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We propose the suppression of dispersive spreading of wave packets governed by the free-space
Schrödinger equation with a periodically pulsed nonlinear term. Using asymptotic analysis, we
construct stroboscopically-dispersionless quantum states that are physically reminiscent of, but
mathematically different from, the well-known one-soliton solutions of the nonlinear Schrödinger
equation with a constant (time-independent) nonlinearity. Our analytics are strongly supported by
full numerical simulations. The predicted dispersionless wave packets can move with arbitrary veloc-
ity and can be realized in experiments involving ultracold atomic gases with temporally controlled
interactions.

As time elapses, the wave function representing a
freely-propagating nonrelativistic quantum particle in-
evitably changes its shape – a process commonly referred
to as dispersive spreading. The spreading of a free-space
wave function can be entirely suppressed only if one gives
up the normalization condition. Thus, in one spatial di-
mension, there exist only two types of nonnormalizable
quantum waves – the plain wave and the Airy packet
– that preserve their shape during the free motion [1–
3]. Such waves however do not represent the probability
density of a single quantum particle, but should rather be
regarded as describing a statistical ensemble of infinitely
many free particles [1].

Physicists’ desire to tame dispersive spreading of nor-
malizable wave packets is as old as quantum mechanics
itself. Schrödinger was the first to find an example of a
quantum system – a particle trapped inside a stationary
harmonic potential – that supports localized wave pack-
ets moving without dispersion along classical trajectories
[4]. To date, the existence of nonspreading wave packets
has been established in a wide range of physical systems
and lies at the heart of a vibrant area of research on (gen-
eralized) coherent states, much of it reviewed in Refs. [5–
8]. Here we briefly discuss two specific classes which are
relevant for the central result of this work. The first
class encompasses periodically driven quantum systems,
in which dispersive wave packet spreading is suppressed
via creation of a nonlinear resonance between an inter-
nal oscillatory mode of the system and an external peri-
odic driving. The underlying quantum evolution remains
linear at all times, and the nondispersive wave packets
appear as localized eigenstates of the corresponding Flo-
quet Hamiltonian (see Ref. [9] for a review). The second
class includes nonlinear quantum systems, i.e. the ones
governed by the nonlinear Schrödinger equation (NLSE),
that support nondispersive wave packets commonly re-
ferred to as solitons [10, 11]. In these systems, the non-
linear term in the evolution equation is essential to over-

come dispersive spreading and to allow the wave packet
to propagate without deformation.

FIG. 1. Sketch of a stroboscopic soliton, the solution to
Eq. (3). Solid curves represent the probability distribution
|Ψ(x, t)|2 at the kick instants (integer t/ε) and half way be-
tween the adjacent kicks (half-integer t/ε). Dashed curves
illustrate the effective potential caused by the correspond-
ing kick. Short arrows point in the direction of the classical
“squeezing force” due to the effective potential.

The two classes are largely nonoverlapping. One
of the rare exceptions are systems subjected to Fes-
chbach resonance management [12], a technique proposed
for atom optics experiments requiring a periodical sign
change of the interparticle interaction strength [13]. In
this paper we address a related class of quantum sys-
tems that, loosely speaking, can be placed in between
that of linear Floquet and nonlinear time-independent
Schrödinger systems. More specifically, the quantum dy-
namics introduced here consists of long intervals of linear
free-particle motion interspersed periodically with short
(near-instantaneous) intervals of nonlinear evolution (see
Fig. 1 for an illustration). We demonstrate that such pe-
riodic nonlinear kicking is sufficient for certain families of
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localized normalizable wave packets to overcome disper-
sive spreading. When observed stroboscopically at the
kicking frequency these wave packets retain their shape
and propagate with a constant (but arbitrary) velocity,
thus behaving as “stroboscopic solitons.” The latter arise
as solutions of a nonlinear integral equation – Eq. (11)
below – which, to the best of our knowledge, has not
been considered before. While our analytics predicts the
existence of stroboscopic soliton solutions in an asymp-
totic regime of weak kicking, our numerics show their
remarkable robustness even away from it. From the phys-
ical point of view, the robustness implies that their ex-
perimental realization is well within state-of-the-art cold
atom techniques [14–16]. On the purely mathematical
side, proving the existence (and form) of exact strobo-
scopic solutions represents a new open problem.

We consider the motion of a one-dimensional quantum
particle of massm described by the wave function Ψ̃(x̃, t̃),
with x̃ and t̃ denoting the space and time variables, re-
spectively. The time evolution of the wave function is
governed by the NLSE, in which the nonlinear (Kerr-
type) term is switched on and off periodically:

i
∂Ψ̃

∂t̃
= − ~

2m

∂2Ψ̃

∂x̃2
− λ

∞∑
n=−∞

δ(t̃− nT )|Ψ̃|2Ψ̃ . (1)

Here δ(·) denotes the Dirac delta function, and λ > 0
and T represent the strength and period of the nonlinear
kicking, respectively. The wave function is normalized
to unity,

∫ +∞
−∞ dx̃ |Ψ̃|2 = 1 . It is convenient to rewrite

Eq. (1) in a dimensionless form by introducing

x =
mλ

~T
x̃ , t =

mλ2

~T 2
t̃ , Ψ(x, t) =

√
~T
mλ

Ψ̃(x̃, t̃) . (2)

In terms of the new variables, the NLSE becomes

i
∂Ψ

∂t
= −1

2

∂2Ψ

∂x2
− ε

+∞∑
n=−∞

δ(t− nε)|Ψ|2Ψ (3)

with a single dimensionless parameter

ε =
mλ2

~T
, (4)

and normalization
∫ +∞
−∞ dx |Ψ|2 = 1 .

We now look for stroboscopic soliton solutions to
Eq. (3) under the constrain imposed by normalization.
That is, we aim to find a wave function ψ(x) = Ψ(x, 0+),
describing the system immediately after the kick at time
t = 0, such that Ψ(x, ε+), corresponding to the in-
stant immediately after the kick at t = ε, coincides with
ψ(x), modulo an overall spatial displacement and a global
(position-independent) phase shift. In other words, we
want to find all complex functions ψ(x), velocities v and
angular frequencies ω that satisfy the equation

U εψ(x) = eiωεψ(x− vε) , (5)

where U ε denotes the time-evolution operator propa-
gating Ψ(x, 0+) into Ψ(x, ε+). It follows from Eq. (3)
[17] that U ε = KεU ε0 , where U ε0 is the evolution oper-
ator for the corresponding linear Schrödinger equation,

i∂Ψ
∂t = − 1

2
∂2Ψ
∂x2 , and the operator Kε describes an instan-

taneous transformation of the wave function caused by
a nonlinear kick. Hence, for an arbitrary normalizable
wave function f(x), one has

U ε0f(x) = exp

(
iε

2

∂2

∂x2

)
f(x) (6)

=

√
1

2πiε

∫ +∞

−∞
dy exp

(
i
(x− y)2

2ε

)
f(y) (7)

and Kεf(x) = f(x) exp
(
iε|f(x)|2

)
.

Introducing a new complex function φ(x) according to

ψ(x) = eivxφ(x) , (8)

we rewrite Eq. (5) as [17]

U εφ(x) = eiαεφ(x) , α = ω − v2

2
. (9)

Equation (8) plays the role of a gauge transformation,
and φ(x) describes a stationary stroboscopic soliton of

frequency α and normalization
∫ +∞
−∞ dx |φ|2 = 1.

We proceed with constructing an asymptotic solution
to the problem defined by Eq. (9) and

∫ +∞
−∞ dx |φ|2 = 1

in the limit of small ε. It proves convenient to first trans-
form Eq. (9) into a nonlinear integral equation with a
linear integral operator. Written explicitly, Eq. (9) reads

eiε|U
ε
0φ|

2

U ε0φ = eiαεφ . (10)

It follows immediately that |U ε0φ| = |φ|, and thus

U ε0φ = φeiε(α−|φ|
2) . (11)

We now look for a solution to Eq. (11) in the form of a
power series in ε:

φ = φ0 + εφ1 + ε2φ2 +O(ε3) . (12)

Substituting the series into Eq. (11), and expanding it in
powers of ε, we obtain to leading order [17]

− 1
2φ
′′
0 +

(
α− |φ0|2

)
φ0 = 0 . (13)

Similarly, expanding the normalization integral in pow-
ers of ε, we get to leading order

∫ +∞
−∞ dx |φ0|2 = 1. Equa-

tion (13) admits the leading order soliton solution

φ0 =
1

2
sech

x

2
(14)

with α = 1/8.
Now we consider the next order correction

φ1 = µ+ iν , (15)
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FIG. 2. Fidelity of stroboscopic solitons. Dependence of the fidelity error 1−F (nε) on the number of kicks for different kicking
strenght ε, see Eq. (4). Three different initial states are considered: a Gaussian state (black curves), φ0(x) = 1

2
sechx

2
(blue

curves), and φ(x) approximated by Eq. (21) (red curves).

with µ(x) and ν(x) real-valued functions. This yields [17]

µ′′ +
(
− 1

4 + 6φ2
0

)
µ = 0 , (16)

ν′′ +
(
− 1

4 + 2φ2
0

)
ν = φ3

0 − 5φ5
0 . (17)

The general bounded solutions to Eqs. (16) and (17) are

µ = Aφ2
0 sinh x

2 , (18)

ν = Bφ0 + 1
2φ

3
0 , (19)

where A and B are arbitrary real constants. It turns out
that the normalization condition, expanded up to O(ε2),
does not impose any constraints on the values of A and
B. Indeed, since φ0 is real, one has∫ +∞

−∞
dxRe(φ∗0φ1) =

∫ +∞

−∞
dxφ0µ = 0 ∀A,B. (20)

A rigorous way of determining A and B would require
one to proceed to a higher order in ε, obtain the gen-
eral expression for φ2 as a function of A and B, and im-
pose normalization up to order O(ε3). The corresponding
calculation however appears to be formidable. Instead,
we take A = 0, which ensures that φ(x) = φ(−x), and
B = 0, motivated by the observation that the quality of
the soliton approximation, as quantified by fidelity (de-
fined and discussed in detail below), is largely insensi-
tive to the value of this parameter. Thus, we arrive at
the following normalized approximation of the stationary
stroboscopic soliton:

φ '
(

1 +
ε2

120

)−1/2(
φ0 +

iε

2
φ3

0

)
. (21)

This constitutes the main analytical result of this paper.
In view of Eq. (9), with α = 1/8, a one-parameter family

of moving stroboscopic solitons is related to the station-
ary one via Eq. (8) with the dispersion relation

ω =
1

8
+
v2

2
. (22)

In order to quantify the accuracy of Eq. (21), we in-
vestigate the problem numerically, using the wave packet
propagation algorithm Time-dependent Quantum Trans-
port (TQT) [18]. Here both space and time are dis-
cretized, and the time-evolution operator is expanded in
Krylov space during each time step, during which the
Hamiltonian is assumed to be time-independent. We
compute Ψ(x, t) by taking a wave function Ψ(x, 0+) and
propagating it numerically according to Eq. (3) with the
δ function replaced by an appropriately normalized Gaus-
sian, whose temporal width is short enough (. ε/50) in
order to mimic an instantaneous perturbation. We then
quantify the overlap between the initial and the propa-
gated wave functions computing the fidelity

F (t) =

∣∣∣∣∫ +∞

−∞
dxΨ∗(x, 0+)Ψ(x, t)

∣∣∣∣2 . (23)

Initially, the fidelity equals unity, F (0+) = 1, and gener-
ally decays in the course of time. However, if Ψ(x, 0+)
is chosen to coincide with the stroboscopic soliton wave
function, Eq. (21), then F (nε) ' 1 for any integer n.
Figure 2 shows the dependence of the quantity 1−F (nε)
on n for three different initial states Ψ(x, 0+) and three
different values of ε, namely 0.1, 0.5 and 1; the smaller
1− F , the closer is Ψ(x, 0+) to a truly stroboscopic soli-
ton wave function. Black curves correspond to Ψ(x, 0+)
being a Gaussian wave packet, blue curves correspond
to Ψ(x, 0+) = φ0(x) = 1

2 sechx2 , and red curves corre-
spond to Ψ(x, 0+) = φ(x), Eq. (21). The Gaussian wave
packet is chosen to maximize its (fidelity) overlap with
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φ0, which fixes its initial spacial width to σ ' 1.77. The
figure demonstrates how improving the ε-order of the soli-
ton approximation increases F (nε). Indeed, the Gaussian
initial state differs from the true stroboscopic soliton al-
ready at order ε0, which leads to a relatively low fidelity
value. The error of taking Ψ(x, 0+) = φ0(x) is of order
ε1, and the corresponding fidelity error, 1 − F , is lower
than that in the Gaussian case by roughly 3 orders of
magnitude. Finally, the error of approximating Ψ(x, 0+)
by Eq. (21) is of order ε2, and Fig. 2 clearly shows that
the corresponding fidelity error becomes systematically
lower in this case. Figure 2 also demonstrates that the fi-
delity F (nε) decreases, though remaining at a high level,
as ε increases; this is in accord with the fact that our
analytical treatment is based on an expansion in ε� 1.

We have also performed numerical analysis of the fi-
delity in the case when the initial wave packet moves with
a nonzero velocity v [19]. We have found however no no-
ticeable change compared to the stationary scenario: the
fidelity curves corresponding to v 6= 0 case appear to be
almost indistinguishable from the ones shown in Fig. 2.
This observation reflects the fact that the problem in-
volving a moving stroboscopic soliton can be mapped
onto the stationary problem via the gauge transforma-
tion, Eq. (8).

0 20 40 60 80 100
t/ε
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Gaussian (no kicks)

Gaussian
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FIG. 3. Spatial width of Ψ(x, t) as a function of t for ε = 0.5
and three different initial states: a Gaussian state (solid black
curve), φ0(x) = 1

2
sechx

2
(solid blue curve), and φ(x) from

Eq. (21) (solid red curve). The dashed black curve cor-
responds to the free-space evolution of the Gaussian wave
packet. Inset shows short time behavior.

The time dependence of the wave packet width

σ(t) =
√
〈x2〉t − 〈x〉2t , (24)

(where the average 〈·〉t is defined with respect to the
probability density |Ψ(x, t)|2) is shown in Fig. 3 for
ε = 0.5 and the three initial wave packets Ψ(x, 0+) used

in Fig. 2; the color codes are the same in both figures. In
addition to the three solid curves, corresponding to the
initial wave functions, σ(t) is also shown for the case of
a Gaussian wave packet evolving in the absence of any
kicks, i.e. in free space (dashed curve). We see that the
introduction of nonlinear kicks significantly slows down
the dispersive spreading of the Gaussian wave packet.
The spreading is reduced further as one increases the
ε-order of accuracy of the stroboscopic soliton approxi-
mation. In particular, the average spreading of the wave
packet initially given by Eq. (21) is almost entirely ar-
rested. The inset in Fig. 3 shows the function σ(t) for
0 < t < 3ε, i.e. during the first three kicks. The width of
the wave packet evolving starting form the real-valued
function φ0 (blue curve) increases monotonically until
the first kick; the kick then changes the phase of the
wave packet and, consequently, the rate of its spreading.
The situation is qualitatively different in the case of the
wave packet evolving from φ, as given by Eq. (21) (red
curve). Here, the wave function first focuses and then
defocuses during the free flight in such a way that the
width of Ψ(x, ε−) is almost the same as that of Ψ(x, 0+).
This process then repeats itself from one kick to the next
one, effectively giving rise to a localized matter wave with
oscillating width.

Stroboscopically-dispersionless wave packets, proposed
in this paper, could be realized in state-of-the-art
atom-optics experiments involving ultracold atomic gases
with temporally controlled scattering length (see, e.g.,
Refs. [14–16]). In order to facilitate such a realization, we
make an estimate of ε, given by Eq. (4), that corresponds
to a typical experimental setup. The dimensional kicking
strength λ is approximately equal to 2N~as∆t/(ma2

⊥),
where N is the number of atoms, ∆t is the nonlinear
kick duration, as is the scattering length, and a⊥ is the
linear length scale of the potential confining the atomic
motion in the transverse direction [20]. Taking N = 105,
m = 7.016 u (7Li atom), as = 10nm, a⊥ = 10µm,
∆t = 10µs, as well as the duration between adjacent
kicks T = 5 ms, we obtain ε ' 0.072. As confirmed by
our numerical analysis, see Fig. 2(a), this value of ε lies
well within the range of validity of Eq. (21), implying
stable solitonic dynamics of ultracold atoms on scales of
seconds.

In conclusion, we have shown that dispersive spreading
of a quantum wave packet can be stroboscopically undone
by periodically kicking the nonlinear (interaction) term
of the NLSE. The problem depends on a single parameter
ε, Eq. (4), independent of the wave packet velocity, which
translates into a wide range of physical regimes. More-
over, our analytical solution was numerically shown to
be robust beyond the perturbative ε � 1 regime. Cou-
pled with the simplicity of the proposed protocol, this
shows that the realization of such a soliton-like object in
atom optics experiments is well within reach of current
capabilities [15, 16].
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From a broader perspective, while engineering stable
soliton-like waves via suitable periodic modulation of
nonlinearity and dispersion is used in fibre optics [21],
nonlinearity management in the context of quantum me-
chanical phenomena is incomparably less developed. Re-
cent proposals connected it with the physics of chaotic
behavior [22] and echoes [23], and a powerful motivation
for its study came very recently in the form of time crys-
tals [24, 25]. In such a context it would be interesting to
establish (or rule out) the existence, form and stability
of (stroboscopic) soliton-like solutions to nonlinear inte-
gral equations like (11), their possible connection with
recently proposed exotic states [26], and their generaliza-
tion to higher-dimensional systems.

The authors thank Ilya Arakelyan and Gino Biondini
for useful discussions, and Viktor Krückl for providing
the TQT algorithm [18]. A.G. acknowledges the support
of EPSRC Grant No. EP/K024116/1.

APPENDIX

Here we provide the derivation details for the main
formulas and equations of the paper.

Derivation of the evolution operator

We first derive the evolution operator U ε that propa-
gates Ψ(x, 0) into Ψ(x, ε+) in accordance with

i
∂Ψ

∂t
= −1

2

∂2Ψ

∂x2
− εδ(t− ε)|Ψ|2Ψ .

To this end, we first construct the operator Ũ εη that de-
scribes the evolution of Ψ(x, 0) into Ψ(x, ε + η) as gov-
erned by

i
∂Ψ

∂t
= −1

2

∂2Ψ

∂x2
− ε

η

[
θ(t− ε)− θ(t− ε− η)

]
|Ψ|2Ψ ,

where θ(τ) is the Heaviside step function. Then, U ε can
be found as

U ε = lim
η→0

Ũ εη .

Here, Ũ εη satisfies the composition property

Ũ εη = K̃ε
ηU

ε
0 ,

where U ε0 is the free particle propagator, and K̃ε
η is the

operator propagating Ψ(x, ε) into Ψ(x, ε + η) in accor-
dance with

i
∂Ψ

∂t
= −1

2

∂2Ψ

∂x2
− ε

η
|Ψ|2Ψ .

Similarly, we have

U ε = KεU ε0 with Kε = lim
η→0

K̃ε
η .

Making the substitution Ψ =
√
ρeiS , where ρ(x, t) and

S(x, t) are real-valued functions, we rewrite the complex
NLSE in the Hamilton-Jacobi form:

∂ρ

∂t
= − ∂

∂x

(
ρ
∂S

∂x

)
,

∂S

∂t
=

1

2
√
ρ

∂2√ρ
∂x2

− 1

2

(
∂S

∂x

)2

+
ε

η
ρ ,

for ε < t < ε + η. Then, rescaling the time variable as
τ = (t − ε)/η and treating η as a small parameter, we
obtain

∂ρ

∂τ
= O(η) ,

∂S

∂τ
= ερ+O(η) ,

for 0 < τ < 1. Integrating this system of equations,
we obtain ρ

∣∣
τ=1

= ρ
∣∣
τ=0

+ O(η) and S
∣∣
τ=1

= S
∣∣
τ=0

+

ερ
∣∣
τ=0

+O(η), or, in terms of the original time variable,

ρ(x, ε+ η) = ρ(x, ε) +O(η) ,

S(x, ε+ η) = S(x, ε) + ερ(x, ε) +O(η) .

Hence, for K̃ε
η we have

Kε
ηΨ(x, ε) = Ψ(x, ε+ η)

=
√
ρ(x, ε)eiS(x,ε)+iερ(x,ε) +O(η)

= Ψ(x, ε)eiε|Ψ(x,ε)|2 +O(η) .

Finally, taking the limit η → 0, we obtain the sought
expression for the nonlinear kick operator:

KεΨ = Ψeiε|Ψ|
2

.

Derivation of Eq. (9)

Let us consider the equation describing moving strob-
scopic solitons,

U εψ(x) = eiωεψ(x− vε) .

and make the substitution

ψ(x) = eivxφ(x) .
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Then, we have

U εψ(x) = KεU ε0e
ivxφ(x)

= Kε

√
1

2πiε

∫ +∞

−∞
dy ei(x−y)2/2εeivyφ(y)

= Kεeivx−iv
2ε/2

√
1

2πiε

∫ +∞

−∞
dy ei[(x−vε)−y]2/2εφ(y)

= Kεeivx−iv
2ε/2U ε0φ(x− vε)

= eivx−iv
2ε/2KεU ε0φ(x− vε)

= eivx−iv
2ε/2U εφ(x− vε) ,

and

eiωεψ(x− vε) = eiωεeiv(x−vε)φ(x− vε)
= eivx+i(ω−v2)εφ(x− vε) .

Equating the obtained expressions for U εψ(x) and eiωεψ(x − vε), and making the coordinate transformation to the
moving reference frame, z = x− vε, we find the desired equation:

U εφ(z) = ei(ω−v
2/2)εφ(z) .

Derivation of Eqs. (13), (16) and (17)

Here, we look for an asymptotic form of the stroboscopic soliton equation,

U ε0φ = φeiε(α−|φ|
2) ,

by expanding the wave function into a power series in ε,

φ = φ0 + εφ1 + ε2φ2 +O(ε3) .

For the left-hand side of the equation, we have

U ε0φ = φ+ ε i2φ
′′ − ε2 1

8φ
(4) +O(ε3)

= φ0 + ε
(
i
2φ
′′
0 + φ1

)
+ ε2

(
− 1

8φ
′′′′
0 + i

2φ
′′
1 + φ2

)
+O(ε3) .

The right-hand side is expanded as follows. Since

|φ|2 = |φ0|2 + 2εRe(φ∗0φ1) +O(ε2) ,

we have

φeiε(α−|φ|
2) =

[
φ0 + εφ1 + ε2φ2 +O(ε3)

] [
1 + iε(α− |φ|2)− 1

2ε
2(α− |φ|2)2 +O(ε3)

]
= φ0 + ε

[
i(α− |φ0|2)φ0 + φ1

]
+ ε2

[
− 1

2 (α− |φ0|2)2φ0 − 2iφ0Re(φ∗0φ1) + i(α− |φ0|2)φ1 + φ2

]
+O(ε3) .

Now, we compare the obtained expressions for the left- and right-hand sides order by order in ε. At order ε0, we get
a trivial identity. At order ε1, we obtain

− 1
2φ
′′
0 +

(
α− |φ0|2

)
φ0 = 0 .

At order ε2, we find the equation

− 1
2φ
′′
1 +

(
α− |φ0|2

)
φ1 − 2φ0Re(φ∗0φ1) = i

8φ
′′′′
0 − i

2 (α− |φ0|2)2φ0 .

Upon substituting φ1 = µ + iν, and taking into account that φ0 = 1
2 sechx2 and α = 1

8 , the last equation splits into
the two desired equations for µ and ν.
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