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Abstract

In this thesis we examine hadron distribution amplitudes, which are uni-
versal, process-independent functions that govern the physics of hard ex-
clusive processes and contribute to both, measurements of fundamental
parameters of the Standard Model and probes of new physics. For this
purpose, we perform lattice QCD simulations for mesons and baryons
in order to calculate Mellin moments of the distribution amplitudes nu-
merically.
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1 Introduction

In the mind of contemporary physicists, the development of quantum chromodynamics
(QCD), the theory of the strong interaction, marked a radical change of perception of our
physical world: During the 1950s, it was common belief that all hadrons like the proton or
pion are equally elementary particles as reflected by the concept of nuclear democracy or
hadronic egalitarianism [1–4]. However, this view had changed completely by the end of
the 70s and it has since been generally accepted that hadrons are composed of fractionally
charged fermionic quarks that are bound together by electrically neutral gluons, the gauge
bosons of the theory which act as mediators of the strong force between the quarks.
In order to satisfy the spin-statistics theorem [5] for ground state hadron multiplets,

refs. [6–8] proposed the existence of an additional quantum number that is nowadays
known as color. Consequently, each quark was assigned one of the three color charges red,
blue or green. In fact, QCD is a Yang-Mills theory [9] with the underlying non-abelian
gauge group SU(3)c. Therefore, each quark is represented by a triplet of fields, while the
gluons form a color octet. Quarks and gluons exhibit color confinement, which means
that below the Hagedorn temperature they cannot be observed as free particles and are
therefore bound in color-singlet hadronic states. The reason for this is that the QCD
one-loop beta function is negative for Nf ≤ 16, which is a consequence of the non-abelian
nature of the theory that allows self-interacting gauge bosons. As a result, the quark
interaction becomes weaker for higher momentum transfers Q2, such that quarks behave
asymptotically free at large energies. In contrast, the strong coupling constant grows for
smaller Q2, which leads to the confinement of quarks within hadrons. Hadrons themselves
can be further classified into two subgroups, namely baryons and mesons. The former
are composite fermions which contain three valence quarks while the latter are bosons
with a quark-antiquark pair valence structure. The Standard Model involves quarks of
six different flavors: up-, down-, charm-, strange-, top- and bottom-quarks. Their masses
range over several orders of magnitude, from the light up-quark with mu = 2.2 MeV to the
heavy top quark which has almost the mass of a gold atom with mt = 173.1 GeV [10].
Due to the intrinsically non-perturbative nature of confinement, hadron structure in

terms of quarks and gluons is highly non-trivial. It can be described with universal
process-independent QCD functions like parton distribution functions (PDFs) and hadron
distribution amplitudes (DAs), which are relevant for both, measurements of fundamental
parameters of the Standard Model and probes of new physics. PDFs are needed to describe
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1 Introduction

deep inelastic scattering (DIS) experiments [11–16], where the inner structure of hadrons
is resolved by probing them inclusively with leptons. In order to understand the inelastic
scattering process, it is helpful to consider the naive parton model [17], where the hadronic
structure functions that parametrize the differential cross section become independent of
the momentum transfer Q2 in the asymptotic limit [18]. This so-called Bjorken scaling
behavior can be understood in the infinite-momentum frame, where the hadron is consid-
ered as a ray of collinear quasi-free partons. Consequently, at a large enough momentum
transfer Q2, the incoming lepton directly scatters with a quasi-free quark that carries the
longitudinal momentum fraction x of the hadron, such that the resulting process can be
described as lepton-quark scattering instead of lepton-hadron scattering. Early measure-
ments showed that quarks are merely responsible for half of the nucleon’s momentum [19],
so that the remaining momentum has to be carried by electromagnetically non-interacting
partons that were eventually identified as gluons. Strictly speaking, the naive parton
model is an approximation of QCD which is only valid for vanishing coupling strength. In
reality, Bjorken scaling is somewhat violated. As a consequence, PDFs exhibit a scale de-
pendence which is governed by the famous DGLAP equations [20–22]. Thus, at a certain
energy scale Q2, a PDF specifies the probability density to find a parton of a certain kind
that carries the longitudinal momentum fraction x of the hadron.
In this work, however, we will focus on hadron distribution amplitudes, which are fun-

damental non-perturbative functions that can be interpreted as light-cone wave functions
integrated over transverse quark momenta [23, 24]. Because of this, they are sensitive to
those Fock states of the hadronic wave function which govern exclusive processes with
large momentum transfer Q2. In the limit Q2 → ∞, distribution amplitudes are given
by their so-called asymptotic expressions [23–25], which, however, deviate significantly
from their form at experimentally accessible momentum transfers. Therefore, in view of
constantly increasing luminosities of modern research facilities like the 12 GeV upgrade
at JLAB [26] or the future EIC [27], a precise determination of hadron distribution am-
plitudes is essential in order to provide rigorous theoretical descriptions of hard exclusive
processes. Compared to PDFs, the connection between DAs and experimentally accessible
observables is more challenging. Especially the relations between hadronic form factors
and hadron distribution amplitudes are of particular importance. For example, it is known
that for very high momentum transfers Q2, hard exclusive processes like elastic electron-
nucleon scattering are dominated by hard gluon exchange contributions [23, 25, 28], such
that the baryonic form factor is given by a convolution of two distribution amplitudes
with a hard scattering kernel. In this case, the same logic applies as for inclusive DIS
processes, i.e., the interaction between the electron and the nucleon can be pictured as
electron-quark scattering in the infinite-momentum frame. As the hit quark has obtained
a large transverse momentum it must exchange gluons with the remaining quarks in order
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to merge into an outgoing baryon again. The fact that all incoming and outgoing quarks
within the elastic process are confined in color-singlet states cancels potential soft interac-
tions between the initial and final quarks in the scattering kernel and enables a Fock state
expansion of the involved hadronic wave functions [23]. On the light-cone, the leading term
of this expansion is given by the valence Fock state, i.e., the Fock state with the minimal
number of constituent quarks for the respective hadron. As each gluonic exchange involves
an additional factor of αs/Q2 in the hard scattering kernel, higher non-valence Fock states
can be neglected. In this picture, the probability amplitude to observe a many-parton
state confined into a small transverse volume is suppressed [29]. As a result, the informa-
tion content obtained from distribution amplitudes is complementary to that of parton
distribution functions: While a PDF always describes the hadron as a whole and does not
discriminate between Fock states, a distribution amplitude corresponds to the probability
amplitude to find the partons with a certain momentum distribution within a single Fock
state. At experimentally achievable intermediate values of Q2, the small prefactors of the
perturbative calculation cause soft contributions to dominate the behavior of hadronic
form factors. In order to account for this, light-cone sum rules (LCSR) have successfully
been applied to both meson [30] and baryon [31] form factors at intermediate momentum
transfers.
The main goal of this thesis is the determination of hadron distribution amplitudes using

lattice QCD simulations. The advent of lattice QCD can be dated to 1974 when Wilson
published the first formulation of gauge theories on a discretized space-time lattice [32].
This new approach, however, did not fully establish itself until 1979, when Creutz et
al. [33] and Wilson [34] showed how to calculate hadronic observables by purely statistical
computer simulations. This was immediately followed by successful attempts to calculate
the SU(2) static quark-antiquark potential [35] as well as various hadron masses [36,37] on
the lattice. Nowadays, lattice QCD is accepted as the tool to investigate non-perturbative
phenomena and provides high-precision results due to a combination of sophisticated algo-
rithms [38] and ever growing processing power. The first attempts to calculate distribution
amplitudes on a lattice were conducted for the second moment ⟨ξ2⟩ of the pion DA more
than 30 years ago [39,40]. In the meantime, lattice results have been obtained for various
hadrons, including the pion, the kaon, the rho and the nucleon [41–44]. In this work, we
will present results of multiple recent lattice studies, including the first calculation of the
DAs of the baryon octet, a calculation of the second moments of the rho meson as well
as a calculation of the pion DA using a new smearing technique. The outline of this work
is structured as follows: The 2nd chapter introduces both, QCD in the continuum as well
as QCD on the lattice. The 3rd chapter explains the utilised simulation methods with a
focus on the lattice ensembles of the CLS effort. Chapter 4 is dedicated to baryon distri-
bution amplitudes and presents a Nf = 2 + 1 calculation of the zeroth and first moments
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1 Introduction

of the DAs of the baryon octet. Chapter 5 is devoted to meson distribution amplitudes
and is divided into two parts: Section 5.1 introduces a new smearing technique for the
second moments of the distribution amplitude of the pseudoscalar pion. Subsequently, the
results of a recent Nf = 2 study of the DAs of the ρ-meson are presented in section 5.2.
Chapter 6 concludes this thesis by giving a short summary as well as an outlook for future
developments.
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2 Quantum chromodynamics on the lattice

2.1 Continuum formulation

This section is dedicated to the fundamentals of QCD in the continuum and focuses on the
derivation of the classical QCD Lagrangian as a starting point for the lattice discretization
in section 2.3. Since we only consider gauge-invariant observables on the lattice, we do
not discuss the Faddeev-Popov method [45] and the BRST quantization [46–49] but refer
the interested reader to the textbooks [50,51].
QCD is a non-abelian gauge field theory with the special unitary group SU(3)c as its

underlying gauge group. Hence the 32 − 1 independent generators give rise to 8 massless
spin 1 gauge bosons, the gluon fields Aaµ (a = 1, . . . ,8). The QCD Lagrangian LQCD can
be constructed by applying the gauge principle with respect to the color group SU(3)c to
the Lagrangian Lfree of a free fermionic spin 1/2 quark field ψ of single flavor:

Lfree = ∑
i,i′
∑
αα′

ψ̄iα(i /∂ii′αα′ −mδii′δαα′)ψi′α′ , (2.1)

with /∂ = ∂µγµ, ψ̄ = ψ†γ0, the Dirac-spinor index α = 1, . . . ,4 and color i = 1,2,3. Due to
the partial derivatives, eq. (2.1) is not invariant under the local gauge transformation

ψ(x) → ψ′(x) = Ω(x)ψ(x) , (2.2)

where Ω(x) = ei∑8
a=1 θ

a(x)ta ∈ SU(3)c. In the fundamental representation, the generators ta

of SU(3) can be expressed as ta = λa

2 , where the λa are the traceless Hermitian Gell-Mann
matrices as introduced in ref. [52]. We replace the partial derivatives in eq. (2.1) by the
covariant derivatives

Dµ = ∂µ + iAaµta ≡ ∂µ + iAµ , (2.3)

where Aµ ≡ Aaµta. As a result, the fermionic Lagrangian,

LF = ∑
i,i′
∑
αα′

ψ̄iα(i /Dii′
αα′ −mδii′δαα′)ψi′α′ , (2.4)
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2 Quantum chromodynamics on the lattice

is now gauge invariant if the gauge potential Aµ transforms as

Aµ → A′
µ = ΩAµΩ† + i(∂µΩ)Ω† . (2.5)

In order to describe the dynamics of the gluon fields, the final Lagrangian must also contain
a kinetic term which is only composed of the gauge fields Aµ. For this purpose, similar to
QED, one defines the non-abelian field strength tensor

Fµν = ∂µAν − ∂νAµ + i[Aµ,Aν] = −i[Dµ,Dν] . (2.6)

Using that Tr(λaλb) = 2δab, one obtains the gluon Lagrangian as

LG = − 1
4g2F

a
µνF

aµν = − 1
2g2 Tr(FµνFµν) , (2.7)

where g is the gauge coupling and again Fµν = F aµνt
a. As already mentioned in the

introduction, the Standard Model involves six quark flavors, (f = u, d, s, c, b, t), such that
we now can obtain the final QCD Lagrangian, which is by construction invariant under
local SU(3)c gauge transformations:

LQCD = LF + LG
= ∑

f

∑
i,i′
∑
α,α′

ψ̄f
i

α
(i /Dii′

αα′ −mfδ
ii′δαα′)ψf i′α′ − 1

2g2 Tr(FµνFµν)
= ∑

f

ψ̄f(x)(i /D −mf)ψf(x) − 1
2g2 Tr(FµνFµν) . (2.8)

The QCD vacuum is highly non-trivial and contains infinitely many vacuum states [53],
such that, in general, eq. (2.8) has to be complemented by another gauge-invariant term
which governs the vacuum topology. This so-called θ-term is of the form

Lθ = θ

64π2 εµνρσF
aµνF aρσ = θ

32π2F
aµνF̃ aµν . (2.9)

Here θ is real and F̃ aµν = 1
2εµνρσF

aρσ is the dual field strength tensor. As εµνρσ is a
pseudotensor, this term acquires a minus sign under parity transformations and thus
would violate P and CP symmetry. Experimentally, the θ-term can best be probed by
measurements of the neutron electric dipole moment (nEDM). To satisfy experimental
bounds on the nEDM [54–58], the θ-parameter has to be very small, θ ≤ 10−10, and
will be neglected in the following. The unexplained smallness of θ poses a fine-tuning
problem that leads to the famous strong CP problem. A proposed solution is given by the
Peccei-Quinn mechanism [59], which introduces pseudoscalar axions as a consequence of
the spontaneously broken U(1) Peccei-Quinn symmetry.
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2.2 Euclidean space-time

2.2 Euclidean space-time

Since the indefinite metric of QCD in Minkowski space gives rise to n-point correlation
functions that oscillate in time, lattice calculations are carried out in Euclidean space-
time. This is achieved by a so-called Wick rotation, an analytical continuation of the time
component to imaginary values,

t→ it , (2.10)

which was first applied by Dyson to avoid poles in contour integrals in QED [60]. The
Minkowski and Euclidean space-time coordinates are then connected in the following way:

xEi = xi = −xi , (2.11a)

xE4 = ix0 = ix0 . (2.11b)

For example, this means with respect to the gluon Lagrangian that

LG = − 1
2g2 Tr(FµνFµν) = − 1

2g2 Tr(FEµνFEµν) = −LEG , (2.12)

such that the action functional gives

SG = ∫ d4xLG = ∫ dx0∫ d3xLG = i∫ dxE4 ∫ d3xE LEG = iSEG , (2.13)

and this “Wick rotation” effectively yields

eiSG → e−SEG . (2.14)

It is possible to recover the Hilbert space quantum field theory from a Euclidean field
theory if certain conditions, such as reflection positivity, are fulfilled [61], guaranteeing
the Wick rotation to be a well-defined isomorphism between Minkowski and Euclidean
space-time theories. The Wick rotation connects the Euclidean field theory to classical
statistical mechanics. The direct equivalence between both theories can be illustrated by
considering the similarities between the Boltzmann weight factor and the Feynman weight
for amplitudes:

e−S ⇐⇒ e−βH . (2.15)

Recognizing the impact of eq. (2.15) is crucial for the understanding of lattice QCD, as
this equivalence allows us to attack problems of the field theory with already established
methods of statistical mechanics. As an illustrative example, the calculation of the vacuum
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2 Quantum chromodynamics on the lattice

expectation value ⟨0∣O∣0⟩ of an observable O on the lattice corresponds to the calculation
of the canonical ensemble average ⟨O⟩ of an observable O in classical statistical mechanics.

2.3 Lattice fermion actions

An introduction to lattice QCD can be found in many textbooks on lattice gauge theories
or quantum field theories. In the next sections we follow the introductory presentations
of refs. [62–64].
We begin by considering the four-dimensional lattice ` of size N3

sNt, which contains Ns

points in each spatial direction and Nt points in the time direction. The vectors nµ form
the grid points of the lattice, which are separated by the dimensional lattice spacing a
from their neighbours and fulfill

` = {n ∈ (nx, ny, nz, nt) ∣ nx, ny, nz = 0, . . . ,Ns − 1;nt = 0, . . . ,Nt − 1} , (2.16)

such that physical space-time coordinates are recovered by xµ = anµ. In particular we
will often refer to the lattice time t = ant, the spatial extent L = aNs and the time extent
T = aNt in the following.

2.3.1 Naive fermion action

Having defined the raw lattice `, our goal is now to construct a discretized lattice version
of the Euclidean fermionic action that approaches the Euclidean continuum version

SF = ∫ d4x ψ(x)(γµ(∂µ + iAµ(x)) +m)ψ(x) , (2.17)

in the limit a → 0. In order to achieve this, we proceed in a similar constructive manner
as for the derivation of the QCD Lagrangian in section 2.1. On the lattice, the continuous
integral over the four-dimensional space-time of eq. (2.17) becomes a sum over all points
of ` such that

∫ d4x→ a4∑
x

. (2.18)

Furthermore, we symmetrically discretize the partial derivative that acts on the fermionic
fields to get

∂µψ(x) = ψ(x + aµ̂) − ψ(x − aµ̂)2a
, (2.19)

8



2.3 Lattice fermion actions

where µ̂ denotes the unit vector in the µ direction. In this way, we obtain an expression
for the free lattice action, similar to the free continuum Lagrangian in eq. (2.1):

Slat.
free = a4∑

x

ψ(x)( 4∑
µ=1

γµ
ψ(x + aµ̂) − ψ(x − aµ̂)

2a
+mψ(x)) . (2.20)

As in the continuum case, due to the partial derivatives, this expression is not invariant
under local gauge rotations defined in eq. (2.2), since

ψ
′(x)ψ′(x + aµ̂) = ψ(x)Ω†(x)Ω(x + aµ̂)ψ(x + aµ̂) . (2.21)

In the continuum, gauge invariance is restored in eq. (2.3) by replacing the partial deriva-
tives with covariant derivatives which contain the gluon fields Aaµ. On the lattice, the
covariant derivatives are achieved by introducing the fields Uµ(x), which transform as

U ′
µ(x) = Ω(x)Uµ(x)Ω†(x + aµ̂) , (2.22)

such that

ψ
′(x)U ′

µ(x)ψ′(x + aµ̂) = ψ(x)Ω†(x)U ′
µ(x)Ω(x + aµ̂)ψ(x + aµ̂) (2.23)

becomes gauge invariant. As an element of SU(3), the gauge field Uµ(x) connects the
two neighbouring grid points x and x + aµ̂, which gives rise to its name as gauge link.
The gauge link U−µ(x + aµ̂), which connects the point x + aµ̂ with x, and its oppositely
orientated counterpart Uµ(x), which connects the point x with x + aµ̂, are related by

U−µ(x + aµ̂) = U †
µ(x) . (2.24)

We now introduce the lattice gauge fields Aµ(x) by defining

Uµ(x) = exp(iaAµ(x)) . (2.25)

Finally, for interacting fermions on the lattice we obtain the so-called naive fermion action:

Slat.
F = a4∑

x

ψ(x)( 4∑
µ=1

γµ
Uµ(x)ψ(x + aµ̂) −U−µ(x)ψ(x − aµ̂)

2a
+mψ(x)) . (2.26)

By using matrix-vector notation, we can rewrite eq. (2.26) to obtain the familiar expression

Slat.
F = a4∑

x,y
α,β,i,j

ψ
i
α(x)Dij

αβ(x, y)ψjβ(y) , (2.27)

9



2 Quantum chromodynamics on the lattice

with the Dirac operator

Dij
αβ(x, y) = ∑

µ

(γµ)αβU
ij
µ (x)δx+aµ̂,y −U ij−µ(x)δx−aµ̂,y

2a
+mδαβδijδx,y . (2.28)

In order to check the proper continuum behavior of eq. (2.26), we consider the limit of
small lattice spacing a, where

Uµ(x) = 1 + iaAµ(x) +O(a2) , (2.29)

and neglect the O(a2) terms to obtain

Slat.
F = a4∑

x

ψ(x)( 4∑
µ=1

γµ
ψ(x + aµ̂) − ψ(x − aµ̂)

2a
+mψ(x))

+ ia4∑
x

4∑
µ=1

ψ(x)γµ 1
2
(Aµ(x)ψ(x + aµ̂) +Aµ(x − aµ̂)ψ(x − aµ̂))

= Slat.
free + ia4(∑

x

4∑
µ=1

ψ(x)γµAµ(x)ψ(x) +O(a)) . (2.30)

Hence, we recover the continuum action of eq. (2.17) in the limit a→ 0 with discretization
errors of O(a).
2.3.2 Wilson fermions

By further investigating the lattice Dirac operator we find that the naive action in eq. (2.26)
actually yields 16 Dirac particles instead of one. We start by comparing the lattice quark
propagator with its continuum counterpart

S(p) = m − iγµpµ
m2 + p2 . (2.31)

For this, we calculate the Fourier transformation of the naive Dirac operator in eq. (2.28)
for the free case and obtain

D̃(p, q) = δ(p − q)D̃(p) , (2.32)

with

D̃(p) =m1 + i

a
∑
µ

γµ sin(pµa) . (2.33)

10



2.3 Lattice fermion actions

For massless fermions, the momentum-space propagator D̃−1(p) is then given by

D̃−1(p) = − i
a ∑µ γµ sin(pµa)
1
a2 ∑µ sin(pµa)2 . (2.34)

At first sight, this result seems reassuring as we recover eq. (2.31) for m = 0 in the
continuum limit

D̃−1(p) a→0→ −iγµpµ
p2 = S(p)∣

m=0
. (2.35)

However, due to the periodicity of the sine function, eq. (2.34) exhibits a pole whenever
each component of pµ is either 0 or π

a , which leaves us with 24 = 16 combinations. Beside
the natural pole at pµ = 0, the 15 additional poles are referred to as doublers. In order to
get rid of these additional poles, Wilson suggested to modify the fermion action by adding
the momentum-dependent term

mψψ →mψψ + a
2
∂µψ∂µψ , (2.36)

to the mass term [63]. Thus the Dirac operator in momentum space gives

D̃(p) =m1 + 1
a
∑
µ

1(1 − cos(pµa)) + i

a
∑
µ

γµ sin(pµa) . (2.37)

The so-called Wilson term does not give any contribution for the natural pole at pµ = 0,
while it acts as an additional mass term for poles with momentum components pµ = π

a ,
such that

mdoubler →mdoubler +Nπ/a 2
a
, (2.38)

where Nπ/a is the number of momentum components that are equal to π
a . In this way the

mass of the unintended doublers is increased to the order of the cutoff, which decouples
them from physics in the continuum. After incorporating eq. (2.36), the lattice Dirac
operator of a fermion f in the interacting case can simply be written as

Df
ij
αβ(x, y) = − 1

2a∑±µ(1 − γµ)
αβ
U ijµ (x)δx+aµ̂,y + (mf + 4

a
)δαβδijδx,y , (2.39)

where for convenience we introduced the compact notation

∑±µ =
±4∑
µ=±1

, (2.40a)

γ−µ = −γµ . (2.40b)

11



2 Quantum chromodynamics on the lattice

An important symmetry of the Wilson Dirac operator is the so-called γ5-Hermiticity

D† = γ5Dγ5 , (2.41)

which also holds for its inverse such that

D−1† = γ5D
−1γ5 . (2.42)

Eq. (2.41) also means that the eigenvalues of the Wilson Dirac operator are either real or
complex conjugate pairs as

det(D − λ1) = det(D† − λ1) = det(D − λ⋆1)⋆ . (2.43)

Finally, the Wilson fermion action for multiple flavors is given by

SF = ∑
f

a4∑
x,y

α,β,i,j

ψf
i

α
(x)Df

ij
αβ(x, y)ψf jβ(y) . (2.44)

2.3.3 Sheikholeslami–Wohlert improvement

The fermion lattice action in eq. (2.44) suffers from discretization errors of O(a) which
distort the lattice results and subsequent continuum extrapolations. In this section we
therefore derive the counterterms to the lattice action which are required for an on-shellO(a) improvement. Following [65,66], we describe the lattice theory for finite a as a local
effective theory which recovers the continuum action S0 in the limit a→ 0 such that

Seff. = S0 + aS1 + a2S2 + . . . , (2.45)

where

Sk = ∫ d4xLk(x) . (2.46)

The so-called correction terms Lk>0(x) are of dimension 4+k and contain additional powers
of the mass or additional derivatives. For an O(a) improvement we want to identify and
cancel the L1 contribution and thus consider only fields with an energy dimension of 5.
In addition, the resulting terms should be gauge invariant and respect the space-time
and charge conjugation symmetries of the lattice. It turns out that L1 must be a linear
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2.3 Lattice fermion actions

combination of the following 5 fields:

O1 = ψσµνFµνψ , (2.47a)

O2 = ψD⃗µD⃗µψ + ψ ⃗Dµ
⃗Dµψ , (2.47b)

O3 =mTr(FµνFµν) , (2.47c)

O4 =mψγµD⃗µψ −mψ ⃗Dµγµψ , (2.47d)

O5 =m2ψψ . (2.47e)

Using the field equations of the continuum theory allows us to eliminate eq. (2.47b) and
eq. (2.47d), which further reduces the number of possible fields. We now want to improve
our fermion action by adding a counterterm δS to the Wilson action such that L1 is
eliminated and thus the O(a) discretization effects are canceled. The counterterm δS can
only be composed of the 3 remaining fields:

δSlat. = a5∑
x

(c1Olat.
1 (x) + c3Olat.

3 (x) + c5Olat.
5 (x)) , (2.48)

where Olat.
i is the lattice version of the respective field in eqs. (2.47). The structures

Tr(FµνFµν) and ψψ already appear in the Wilson gauge and Wilson fermion action and
can be accounted for by a renormalization of the bare coupling and mass. Therefore it
is only necessary to add one term with the structure of eq. (2.47a) and we obtain the
counterterm

δSlat.[U,ψ,ψ] = a5∑
x

cswψ(x)1
2
σµνF

lat.
µν (x)ψ(x) , (2.49)

where csw is the so-called Sheikholeslami–Wohlert coefficient, which is real and can be
calculated numerically, cf. [67]. The lattice version of the Euclidean field strength tensor
can be written as

F lat.
µν (x) = − i

8a2 (Qµν(x) −Qνµ(x)) , (2.50)

with the sum over all adjacent plaquettes

Qµν(x) = Uµν(x) +Uν−µ(x) +U−µ−ν(x) +U−νµ(x) . (2.51)

Due to its four-fold symmetry in a two-dimensional plane, eq. (2.49) is referred to as clover
term.

13



2 Quantum chromodynamics on the lattice

2.4 Lattice gauge actions

2.4.1 Wilson gauge action

The construction of the gluon lattice action is governed by three guidelines: The action has
to be gauge invariant, it can only consist of gauge fields and it has to yield the continuum
gauge action

SG = 1
2g2 ∫ d4xTr(Fµν(x)Fµν(x)) , (2.52)

in the limit a → 0. Equivalent definitions in terms of the inverse squared coupling β = 6
g2

are also found in the literature. We first consider the smallest closed loop Uµν(x) on the
lattice:

Uµν(x) = Uµ(x)Uν(x + aµ̂)U †
µ(x + aν̂)U †

ν(x) . (2.53)

Uµν(x) can be illustrated as a square along the four gauge links and thus is referred to as
plaquette in the literature. The trace of every closed loop of gauge links is gauge invariant
due to the cyclic properties of the trace. Therefore we define the so-called Wilson gauge
action [32] as a sum over all possible plaquettes:

Slat.
G [U] = 2

g2∑
x
∑
µ<νRe Tr(1 −Uµν(x)) . (2.54)

The behavior in the continuum limit can be checked by applying the Baker-Campbell-
Hausdorff formula

exp(A) exp(B) = exp(A +B + 1
2
[A,B] + . . . ) , (2.55)

together with the Taylor expansion

Aν(x + aµ̂) = Aν(x) + a∂µAν(x) +O(a2) . (2.56)

As a result, we get:

Uµν(x) = exp(ia2(∂µAν(x) − ∂νAµ(x) + i[Aµ(x),Aν(x)]) +O(a3))
= exp(ia2Fµν(x) +O(a3)) . (2.57)

We insert this expression for Uµν into eq. (2.54) and obtain

Slat.
G [U] = a4

2g2 ∑
x∈`∑µ,νTr(FµνFµν) +O(a2), (2.58)

14



2.4 Lattice gauge actions

S0 S1 S2 S3

Figure 2.1: Elementary loops contained in each set Si.
which yields eq. (2.52) for a→ 0.

2.4.2 Lüscher–Weisz gauge action

Similar to the Sheikholeslami–Wohlert improvement for the fermion action, the Wilson
gauge action can be improved by adding a linear combination of 3 operators of dimension
6 to the standard plaquette. We follow [68] and make the ansatz

Slat.
G [U] = 2

g2

3∑
i=0
ci(g2) ∑C∈Si Re Tr[1 −U(C)] , (2.59)

where the Si denote the sets of elementary loops C of a certain kind, while U(C) is the
oriented product of link variables Uµ(x) along C. Figure 2.1 shows a sketch of the possible
elementary loops C that appear in eq. (2.59). In compliance with eq. (2.54), S0 is the set of
oriented 1×1 plaquettes, while S1 contains all 1×2 rectangular loops. S2 and S3 are more
complicated and extend in 3 dimensions, cf. figure 2.1. In order to achieve a tree-level
improved action, Lüscher and Weisz showed that one coefficient can be chosen freely [69],
such that to lowest order in g2, the most general on-shell improved action is given by

c0(0) = 5
3
− 24x , (2.60a)

c1(0) = − 1
12

+ x , (2.60b)

c2(0) = 0 , (2.60c)

c3(0) = x . (2.60d)

For the reader’s convenience we will suppress the superscript lat. in the following and
always use the lattice action unless stated explicitly otherwise.
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2 Quantum chromodynamics on the lattice

2.5 Correlation functions and path integrals

2.5.1 Correlators

Having constructed the appropriate QCD action on the lattice, we will now establish a
connection between the observables of interest and the numerically evaluable path integral
on the lattice. To this end we define the Euclidean correlator of two operators Ô1 and Ô2

as

⟨O2(t)O1(0)⟩ = 1
Z

Tr[e−(T−t)ĤÔ2e
−tĤÔ1] , (2.61)

with the Hamiltonian of the system Ĥ and the partition function Z = Tr[e−TĤ]. The
field operators appearing in eq. (2.61) can measure observables or create and annihilate
particles with certain quantum numbers. We will denote Ô†

H as the operator that creates a
state with the quantum numbers of the hadron H, while its adjoint partner ÔH annihilates
this state or creates a state with the quantum numbers of its antiparticle H. Using the
eigenvalue equation

Ĥ ∣n⟩ = En∣n⟩ , (2.62)

we expand eq. (2.61) by inserting a complete set of states. After normalizing the vacuum
energy E0 to zero we obtain the limit

lim
T→∞⟨O2(t)O2(0)⟩ = ∑

n

⟨0∣Ô2∣n⟩⟨n∣Ô1∣0⟩e−tEn . (2.63)

Let H be a hadron with the corresponding annihilation and creation operators OH and
O†
H , respectively. For this case eq. (2.63) yields

lim
T→∞⟨OH(t)O†

H(0)⟩ = ∣⟨H ∣Ô†
H ∣0⟩∣2e−tEH + ∣⟨H ′∣Ô†

H ∣0⟩∣2e−tEH′ + . . . , (2.64)

where ∣H⟩ denotes the ground state of the hadron H, while ∣H ′⟩, ∣H ′′⟩, . . . denote excited
states with the quantum numbers of H. All states which possess these quantum num-
bers contribute to the correlator with a coefficient that falls off exponentially with the
respective energy of the state. All other contributions from states that do not possess the
quantum numbers of the hadron H vanish. For high lattice times t, the excited states have
sufficiently decayed and only the ground state contributes, which allows us to analyse its
energy and matrix element.
In order to calculate the Euclidean correlator on the lattice, we employ the Feynman
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2.5 Correlation functions and path integrals

path integral formalism such that

⟨O2(t)O1(0)⟩ = 1
Z
∫ D[ψ,ψ]D[U]e−SF [ψ,ψ,U]−SG[U]O2[ψ,ψ,U]O1[ψ,ψ,U] , (2.65)

with the partition function

Z = ∫ D[ψ,ψ]D[U]e−SF [ψ,ψ,U]−SG[U] . (2.66)

The integral in eq. (2.65) runs over all values of the quark fields ψ and ψ̄, as well as over
the gluon fields U at every space-time point. The corresponding integral measures are
products of measures of all quark fields and all gauge links

D[ψ,ψ] = ∏
x
∏
f,α,i

dψf
i
α(x)dψ̄f iα(x) , (2.67a)

D[U] = ∏
x

4∏
µ=1

dUµ(x) , (2.67b)

where dU denotes the normalized Haar measure on SU(3) [63, 70].

2.5.2 Grassmann integrals

Due to Pauli’s exclusion principle, the integration of the fermionic fields ψ and ψ is inher-
ently different from the integration of the gauge links U . Let O be a generic product of
operators

O = N∏
n=1

ψinαn(xn)ψjnβn(yn) , (2.68)

we then rewrite eq. (2.65) such that

⟨O⟩ = 1
Z
∫ D[U]e−SG[U]ZF [U]⟨O⟩F [U] , (2.69)

with the fermionic part of the correlator

⟨O⟩F [U] = 1
ZF [U] ∫ D[ψ,ψ]e−SF [ψ,ψ,U]O[ψ,ψ,U] , (2.70)

and the fermionic partition function

ZF [U] = ∫ D[ψ,ψ]e−SF [ψ,ψ,U] . (2.71)
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2 Quantum chromodynamics on the lattice

In this way we separate the fermionic and bosonic integrals in order to account for their
different nature. The fermionic fields ψ and ψ have to obey Fermi statistics, which means
that ⟨O⟩ has to acquire a minus sign if the quantum numbers of two fermions are inter-
changed. We implement this correct anti-commutation behavior by introducing ψ and ψ
as Grassmann numbers with the properties

{ψiα(x), ψjβ(y)} = 0 , (2.72a)
∂

∂ψjβ(y)ψ
i
α(x) = ∫ dψjβ(y)ψiα(x) = δαβδijδx,y . (2.72b)

Realizing these Grassmann numbers in a computer simulation would be tedious but in
practice this is not required anyway as the fermionic fields can be integrated out before the
simulation. Using the properties (2.72), the fermionic partition function can be expressed
as the determinant of the Dirac operator:

ZF [U] = ∫ D[ψ,ψ] exp(−a4∑
x,y

α,β,i,j

ψ
i
α(x)Dij

αβ(x, y)ψjβ(y))
= det(−a4D) . (2.73)

We use the translational invariance of Grassmannian integration and generalize eq. (2.73)
by making the translations ψ → ψ − a−4θD−1 and ψ → ψ − a−4D−1θ to obtain

∫ D[ψ,ψ] exp(−a4∑
x,y

α,β,i,j

ψ
i
α(x)Dij

αβ(x, y)ψjβ(y) +∑
x
α,i

θ
i
α(x)ψiα(x) +∑

x
α,i

ψ
i
α(x)θiα(x))

= det(−a4D) exp(a−4∑
x,y

α,β,i,j

θ
i
α(x)(D−1)ijαβ(x, y)θjβ(y)) , (2.74)

which we will use as a generating functional for fermions. The inverse of the lattice Dirac
operator D−1 is referred to as quark propagator. By applying derivatives with respect to
θ and θ in eq. (2.74) we obtain the so-called Wick theorem:

⟨ N∏
n=1

ψinαn(xn)ψjnβn(yn)⟩F
= 1
ZF
∫ D[ψ,ψ]( N∏

n=1
ψinαn(xn)ψjnβn(yn)) exp(−a4∑

x,y
α,β,i,j

ψ
i
α(x)Dij

αβ(x, y)ψjβ(y))
= ∑
π∈SNsgn(π) N∏

n=1
(a−4D−1)injπnαnβπn

(xn, yπn) . (2.75)

TheWick theorem allows us to reduce products of quark field operators to sums of products
of quark propagators, which can be calculated on the lattice, cf. eq. (2.69).

18



3 Simulation methods

3.1 General idea

In the following we will describe the simulation details and techniques which were used for
the lattices analysed in this work. In particular, we will focus on the Nf = 2+ 1 ensembles
generated by the Coordinated Lattice Simulations (CLS) community effort.
Having integrated out the fermionic degrees of freedom in section 2.5.2, we are merely

left with an integration over the gauge links U . Employing Nf = 2+1 dynamical fermions,
the corresponding path integral has the form

⟨O⟩ = 1
Z
∫ D[U]e−SG det(Du)det(Dd)det(Ds) ⟨O⟩F . (3.1)

Eq. (3.1) is a high-dimensional group integral for each link of the whole lattice and already
extremely expensive to calculate for very small lattice sizes. As an illustrative example, we
consider a four-dimensional lattice of the size 10×10×10×10 which contains 4 · 104 gauge
links. Each of the SU(3) gauge links contains 8 real parameters, which results in 320000
integrations. Approximating the integral by a mesh of 10 points per integration already
yields a sum of 10320000 terms [64], which obviously cannot be computed in practice.
Therefore, sophisticated numerical methods are needed for the evaluation. Fortunately,
due to the direct equivalence between Euclidean field theories and classical statistical
mechanics as shown in eq. (2.15), we can use well-established techniques that were initially
developed for statistical mechanics systems. In particular we will employ the Metropolis
Monte Carlo algorithm, which was introduced in 1953 [71] to numerically handle multi-
dimensional integrals for interacting individual molecules and spin systems. Following [72]
we introduce the Monte Carlo method for a generic statistical mechanics system. Let H
be the Hamiltonian of the system which is characterized by the set of variables x, while f
is the observable of interest. The expectation value of f is given by

⟨f⟩ = ∑x f(x)e−βH(x)
∑x e−βH(x) . (3.2)
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3 Simulation methods

Using the Monte Carlo method, we approximate ⟨f⟩ by the evaluation of the sequence

fn = ∑ni=1 f(xi)e−βH(xi)P −1(xi)∑ni=1 e
−βH(xi)P −1(xi) , (3.3)

where the independent configurations xi are randomly generated according to the prob-
ability distribution P (xi). In the limit of infinitely many configurations one recovers the
average observable

lim
n→∞ fn = ⟨f⟩ , (3.4)

where the errors are of order 1√
n
for a finite n. The weight P (xi) is used to reduce the

computing time by choosing configurations close to the mean action with higher prob-
ability. This so-called importance sampling approach avoids configurations that hardly
contribute to the mean values and thus allows one to estimate large sums by a relative
small amount of configurations.
In our case, we want to approximate the path integral in eq. (3.1) by evaluating the

observable O on Nc gauge field configurations Ui,

⟨O⟩ ≈ 1
Nc
∑
i

O[Ui], (3.5)

where the Ui are distributed according to the weight

P (U) = 1
Z
e−SG det(Du)det(Dd)det(Ds). (3.6)

The fermion determinants incorporate the effects of virtual quark loops in the fermionic
vacuum. According to Dirac’s picture of a fermion sea, these quarks are referred to as sea
quarks. The lattice Dirac operator Dij

αβ(x, y) is a matrix with (4 · 3 ·N3
s ·Nt)2 complex

entries and thus its determinant is extremely expensive to calculate. Furthermore, the
fermion determinant is highly non-local as it depends on the whole gauge field, which
further complicates the generation of configurations distributed according to eq. (3.6),
especially with one-link update algorithms [62,64]. In the past, fermion determinants were
often simply set to unity, which effectively neglects any effects of virtual quark loops except
those treated explicitly as “disconnected diagrams”, see for example [73,74]. Although this
so-called quenched approximation is comfortable to simulate, we are in the end interested
in the physics that includes dynamical quarks.
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3.2 Hybrid Monte Carlo

3.2 Hybrid Monte Carlo

The Hybrid Monte Carlo (HMC) algorithm [75] allows to generate configurations with dy-
namical sea quarks by updating all link variables in one step while keeping the acceptance
probability high. The computational effort of conventional one-link algorithms scales with
the square of the lattice volume V 2, whereas the cost of the HMC is merely proportional
to V 5/4 (see refs. [76, 77]), which enabled dynamical simulations in the first place. Fol-
lowing [78], we will briefly summarize the essential steps of the HMC algorithm. First we
consider the auxiliary su(3) field

πµ(x) = πaµ(x)ta, (3.7)

where πaµ(x) are real functions. We interpret π as the canonical momentum of a classical
statistical system with the Hamiltonian

H(π,U) = 1
2
π†π + S(U) , (3.8)

where S(U) is a not yet specified non-local action and π†π = ∑x,µ π†a
µ(x)πaµ(x). Vacuum

expectation values with respect to the gauge fields U remain uninfluenced by the field π
as

∫ D[U]O(U)e−S(U) ∝ ∫ D[π]D[U]O(U)e−H(π,U) . (3.9)

The time evolution of this classical system is determined by the so-called molecular-
dynamics equations, which are given by Hamilton’s equations

π̇µ(x) = − ∂S(U)
∂Uµ(x) , (3.10a)

U̇µ(x) = πµ(x)Uµ(x) . (3.10b)

The dot on top of the fields denotes the differentiation with respect to the computer time τ ,
not to be confused with the time coordinate t of the space-time. The gauge configurations
are generated by evolving this classical system via the integration of eqs. (3.10). Starting
from configuration Uµ(x) which is to be updated, the new configuration U ′

µ(x) is generated
according to the following algorithm [78]:

(a) Momentum heatbath: Generate the momentum field π randomly from the Gaussian
distribution exp(−1

2π
†π).

(b) Molecular-dynamics evolution: Integrate the molecular-dynamics equations from τ =
0 to τ = τ ′ where π and U = U0 are the initial values of the fields.
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3 Simulation methods

(c) Metropolis acceptance step: The new field field U ′ is set to the resulting field Uτ ′

with the acceptance probability P = min{1, e−δH(U0 , Uτ ′)}, otherwise U ′ = U .

3.2.1 Inclusion of the light sea quarks

We still need to specify the action used in eq. (3.8) of the Hybrid Monte Carlo algorithm.
Therefore, we first consider the Nf = 2 case of two degenerate light sea quarks, where we
want to obtain configurations distributed according to

P (U) = 1
Z

det(Dl)det(Dl)e−SG(U) , (3.11)

with the light Dirac operator Dl =Du =Du. We introduce the pseudo-fermionic auxiliary
fields φ(x) to express the determinant as an integral:

det(Dl)2 ∝ ∫ D[φl, φ†
l ] e−Sl(U,φ) , (3.12)

Sl(U,φl) = φ†
l (D†D)−1φl . (3.13)

For the HMC algorithm this means that the Hamiltonian is given by

H(π,U) = 1
2
π†π + SG(U) + Sl(U,φl) , (3.14)

and that the first step of the algorithm,

(a) Momentum heatbath: Generate the momentum field π randomly from the Gaussian
distribution exp(−1

2π
†π).

has to be replaced by

(a′) Momentum heatbath: Generate the momentum field π and the pseudo-fermion field
φ randomly from the Gaussian distribution exp(−1

2π
†π − Sl(U,φl)).

3.2.2 Inclusion of the strange sea quarks

Due to the even number of light sea quarks, the contributions from the light determinants
are guaranteed to be positive since

det(Du)det(Dd) = det(D2
l ) = det(D†

lDl) ≥ 0 , (3.15)

where γ5-Hermiticity was employed in the first step. This is not the case for the strange
sea quarks and the determinant can become negative for some configurations such that
both cases

det(Ds) = ±∣det(Ds)∣ , (3.16)
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can appear. The Rational Hybrid Monte Carlo (RHMC) algorithm [79, 80] circumvents
this problem by using an approximation for the positive square root

√
D†
sDs in the HMC

algorithm. The strange determinant is factorized such that

det(Ds) =Ws det(R−1) , (3.17)

where R denotes the Zolotarev optimal rational approximation of the operator (D†
sDs)−1/2.

The reweighting factor,

Ws = det(DsR) , (3.18)

is used to correct for the numerical error of the approximation. Similar as for the light case,
the determinant det(R−1) is then represented as a pseudo-fermionic Gaussian integral

det(Ds) ∝ ∫ D[φs]D[φ†
s] e−Ss(U,φ) , (3.19)

Ss(U,φs) = φ†
sRφs . (3.20)

For further details on the method, the reader is referred to refs. [78, 81,82].

3.3 Ensembles

As most of the results in this work were obtained by analyzing ensembles generated within
the CLS effort, we will describe the details of these ensembles in this section, see also [83].
The CLS lattices contain Nf = 2 + 1 flavors of sea quarks. The fermions employ the
Wilson Dirac operator and the Sheikholeslami–Wohlert term for the O(a) improvement,
introduced in section 2.3.2 and section 2.3.3, respectively. The improvement coefficients
csw have been calculated non-perturbatively in [84]. The gauge action is Lüscher-Weisz
improved and corresponds to setting x = 0 in eqs. (2.60), such that only the plaquettes
contained in S0 and the rectangles contained in S1 have to be included with the respective
coefficients c0 = 5

3 and c1 = − 1
12 , see section 2.4.2.

3.3.1 Open boundary conditions

One of the goals of the CLS effort is to perform reliable continuum extrapolations, which
requires the generation of lattice ensembles with small lattice spacings a. In most lattice
simulations, periodic boundary conditions are imposed on the gauge fields in all space-time
directions in order to sustain the translational symmetry of the lattice. However, for lattice
spacings smaller than 0.05 fm, HMC algorithms can get trapped in sectors of gauge fields
with fixed topological charge and lose ergodicity [81]. As a consequence, large undesired
autocorrelation times arise for quantities that are related to the topological charge of the
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gauge field such as the hadronic matrix elements of pseudoscalar densities [85, 86]. The
CLS ensembles avoid this problem by imposing open boundary conditions on the gauge
fields in time direction. In this way, the topological charge flows through the boundaries,
which makes all the relevant parts of the field space accessible while the physical states
and the Hamiltonian remain unchanged [86]. Open boundary conditions are imposed by
setting the gauge field tensor Fµν(x) to zero at the boundaries in time direction

F4k(x, t = 0) = F4k(x, t = T) = 0 . (3.21)

Meanwhile, periodic boundary conditions are still imposed on all boundaries in the spatial
directions. The price to pay is that open boundary conditions introduce lattice artifacts
at sites close to the boundaries which, have to be discarded in the lattice analysis.

3.3.2 Twisted mass reweighting and preconditioning

In section 2.3.2 we showed that the doublers of the naive fermion action decouple from the
theory if the Wilson term is added to the action. As a side effect, the Wilson term violates
chiral symmetry with effects of O(a), or O(a2) if the action is Sheikholeslami–Wohlert
improved. Unlike for the Ginsparg–Wilson Dirac operator, where chiral symmetry is pre-
served, the spectrum of the Wilson Dirac operator is not protected against gauge fluctua-
tions allowing for arbitrarily small eigenvalues [87]. Employing twisted mass determinant
reweighting avoids this problem by introducing a twisted mass term into the action in order
to shift the eigenvalues away from zero [88]. The modification of the action is compen-
sated by correcting the gauge configuration with a suitable reweighting factor. In practice,
this is implemented by introducing the twisted mass parameter µ > 0 which serves as an
infrared regularization such that

det(D†
lDl) → det((D†

lDl + µ2)2(D†
lDl + 2µ2)−1) . (3.22)

The reweighting factor W for this choice of regularization is given by

W = det(D†
lDl(D†

lDl + 2µ2)(D†
lDl + µ2)−2) . (3.23)

The twisted mass determinant reweighting is conveniently combined with an even-odd
preconditioning of the Dirac operator [89] in order to accelerate the runs. A lattice point
x is considered even or odd if the sum of its coordinates is even or odd. The even-odd
preconditioned Dirac operator is assembled such that

D = ⎛⎝Dee Deo

Doe Doo

⎞⎠ , (3.24)
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id Ns Nt mπ [MeV] mK [MeV] mπL Nc(×Nsrc)
H101 32 96 420 420 5.8 2000(×3)
H102 32 96 355 440 4.9 1997(×3)
H105 32 96 280 465 3.9 2833(×3)
C101 48 96 222 474 4.6 1552(×3)

Table 3.1: List of the CLS ensembles used in this work. All lattices feature the inverse
squared gauge coupling β = 3.4, which corresponds to a lattice spacing of a ≈ 0.0857 fm.
The number of sources, Nsrc, is the same for all lattices, while the number of available
configurations, Nc, varies between 1500 − 2800. For further details on the generation of
the CLS ensembles, the reader may consult refs. [83, 90].

where, for example, Deo contains the hopping terms that connect even and odd sites.
Instead of directly solving the Dirac equation

Dψ = η, (3.25)

we follow [78] and consider the preconditioned equation

LDRϕ = Lη , (3.26)

with the preconditioners

L = ⎛⎝1 −DeoD
−1
oo

0 1
⎞⎠ and R = ⎛⎝ 1 0−D−1

ooDoe 1
⎞⎠ . (3.27)

In this way, the Dirac operator can be block-diagonalized such that

LDR = ⎛⎝D̂ 0
0 Doo

⎞⎠ , (3.28)

where D̂ is the Schur complement of the preconditioned Dirac operator,

D̂ =Dee −DeoD
−1
ooDoe . (3.29)

Using D̂ instead of D is beneficial for the inversion as the condition number of D̂ is in
most cases less than half the one of D.

3.3.3 CLS ensembles

Following our publication [24], we introduce the specific CLS ensembles used in this work.
The lattices will be referred to using their CLS identifier, which is given with the at-
tached properties in table 3.1. As introduced in section 3.3.1, the ensembles employ open
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mπ[MeV] m∞
π [MeV] Ns Nt mπL Nc(×Nsrc)

β = 5.20, a = 0.081 fm, a−1 = 2400 MeV
280 278 32 64 3.7 1999(×4)†

β = 5.29, a = 0.071 fm, a−1 = 2800 MeV
422 422 32 64 4.8 1998(×2)†

295 290 32 64 3.4 1999(×1)
289 290 40 64 4.2 2028(×2)
290 290 64 64 6.7 1237(×2)†

150 150 64 64 3.5 1599(×3)†

β = 5.40, a = 0.060 fm, a−1 = 3300 MeV
490 488 32 64 4.8 982(×2)
426 424 32 64 4.2 1999(×2)†

260 259 48 64 3.8 2178(×2)
Table 3.2: Other ensembles analysed in this work. For each ensemble we give the inverse
squared coupling β, the pion mass mπ, the finite volume corrected pion mass m∞

π deter-
mined in [91], the lattice size, the value of mπL, the number of configurations Nc and the
number of sources Nsrc used on each configuration. The ensembles marked with † were
generated on the QPACE systems of the SFB/TRR 55, while the others were generated
earlier within the QCDSF collaboration.

boundary conditions for the gauge fields in the temporal direction. They comprise be-
tween Nc ≈ 1500 to Nc ≈ 2800 configurations that are separated by four Hybrid Monte
Carlo molecular dynamics units. For each configuration we carried out measurements
with 3 different source positions, tsrc = 30a, 47a and 65a. To enhance the ground state
overlap the interpolators are, if required, Wuppertal-smeared [92], employing spatially
APE-smeared [93] transporters. In addition, we carried out an additional analysis run for
the meson DAs at tsrc = 47a, where we employed a new momentum smearing technique.
In order to reduce possible finite volume effects, the spatial extent of all ensembles fulfills
L > 2.7 fm, such that mπL ≳ 4. As illustrated in figure 3.1, the quark masses of these
lattice ensembles are chosen such that they lie on the TrM = 2ml +ms = const. trajectory,
which implies that they fulfill

2m2
K +m2

π

Xb
= phys. , (3.30)

where Xb = (2mN +3mΣ+2mΞ+mΛ)/8 refers to the average octet baryon mass. Eq. (3.30)
means that the normalized average quadratic meson mass is set to its physical value. This
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Figure 3.1: Plot showing the position of the used lattice ensembles in the meson mass
landscape. The lattices lie on the green TrM = const. line. The flavor symmetric line
(blue) and the line of physical strange quark mass (red) are also shown.

corresponds to an approximately average quadratic mean quark mass

2ml +ms ≈ phys. . (3.31)

Starting at the flavor symmetric point with the lattice H101 (see fig. 3.1), the physical
point is approached by decreasing the light quark mass while simultaneously increasing
the strange quark mass such that their average is kept constant. Similar approaches of
the physical point have already been carried out in the past for hadron masses and form
factors [94–96]. An advantage of such strategies is that the QCD interaction is flavor blind
and best understood at the flavor symmetric point [94], where the properties of different
hadrons can be related by symmetry. For example, in the case of the baryon octet all
baryons have the same mass at the symmetric point, which provides an excellent starting
point for chiral extrapolations as well as the opportunity to backtest the simulation and
analysis code.

3.3.4 Other ensembles

In addition to the CLS ensembles, the analysis runs for the calculation of the distribution
amplitudes of the ρ-meson in section 5.2 were performed on ensembles generated on the
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QPACE systems as well as within the QCDSF collaboration [97]. A list of the lattices is
shown in table 3.2. The gauge configurations employ the Wilson gauge action with Nf = 2
flavors of non-perturbatively order a improved Wilson (clover) fermions. The lattices
exhibit three different inverse couplings, β = 5.20, 5.29, 5.40, which correspond to lattice
spacings between 0.06 fm and 0.081 fm. Since these ensembles employ periodic boundary
conditions, smaller lattice spacings could not be realized and continuum extrapolations
for observables sensitive to cutoff effects are difficult to perform. The pion masses vary
between 150 MeV and 500 MeV, with spatial volumes between (1.9 fm)3 and (4.5 fm)3.
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4 Baryon distribution amplitudes

4.1 Overview

Distribution amplitudes are essential for the understanding of hard exclusive processes,
i.e., processes that exhibit a momentum-transfer Q2 which is large with respect to the
QCD scale such that

Q2 ≫ Λ2
QCD . (4.1)

They represent reactions in which the concept of the parton picture becomes a valid guid-
ing principle and where perturbative QCD (pQCD) becomes applicable due to the small
associated coupling constant αs(Q2) [98]. In particular, modern experimental projects like
the JLAB@12 GeV upgrade [26, 99] or the future EIC [27] press more and more towards
previously unachieved high luminosities. This raises the need for accurate theoretical de-
scriptions of hard exclusive processes in order to deepen our understanding of the structure
of hadrons in terms of quark and gluon degrees of freedom. Early research suggested that
hard exclusive reactions are dominated by hard gluon exchange contributions [23, 25, 28].
As an example, we consider the scattering process of a nucleon and a highly virtual photon
as depicted in figure 4.1. In this case, the Dirac form factor of the nucleon is given by the
convolution

F1(Q2) = ∫ [dx][dy]Φ⋆(yi,Q2)TH(xi, yi,Q2)Φ(xi,Q2) , (4.2)

where the integration measure

∫ [dx] = 1

∫
0

1

∫
0

1

∫
0

dx1dx2dx3 δ(1 − x1 − x2 − x3) , (4.3)

ensures momentum conservation. Here, Φ(xi) denotes the nucleon distribution amplitude,
which is the amplitude to find the incoming nucleon in a valence state with each quark
carrying the fraction xi of the nucleon momentum. The hard scattering kernel TH contains
all diagrams for γ∗+3q → 3q, while the DA Φ⋆(yi) is the amplitude for the final quark state
to form a nucleon again [23]. As already mentioned in the introduction, higher non-valence
Fock states of the nucleon are suppressed as the gluonic momentum transfer between the
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p

x1p

x2p

x3p

q

y1(p + q)y2(p + q)y3(p + q)
p + q

Φ(xi) TH

Φ⋆(yi)
Figure 4.1: The process of absorbing a large transverse momentum while remaining an
intact nucleon is described by the form factor F1(Q2), which is factorized in terms of the
distribution amplitude Φ and the hard scattering kernel TH , see, e.g., ref [23].

quark lines falls off with a factor of 1/Q2 in TH for each additional constituent.
However, this approach is only valid for very large values of Q2 as the leading con-

tribution to the baryon form factors contains two hard gluon exchanges, both of which
enter the perturbative calculation with a coefficient of αs/π. The resulting small prefactor(αs/π)2 ∼ 0.01 suppresses the pQCD contribution compared to purely soft terms and de-
lays the onset of the perturbative regime. Therefore, although being suppressed by extra
powers of 1/Q2, soft contributions play a dominant role at moderately large energies [100].
A possible solution of this problem was given in ref. [31], which suggests to calculate the
baryon form factors for intermediate values of Q2 using light-cone sum rules [101, 102].
This approach connects the standard QCD sum rules [103] with the light-cone kinemat-
ics of hard exclusive processes [31]. The LCSR method involves the same DAs for the
soft contributions as the pQCD calculations and hence provides a direct relation between
hadron form factors and distribution amplitudes [100]. For this purpose, one relates the

p

q

p + q

x

0

Figure 4.2: Simplified sketch of the LCSR for baryon form factors, cf. ref. [31].
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4.1 Overview

correlation function

Tν = ∫ dx4 e−iqx⟨0∣T{η(0)jν(x)∣N(P )⟩ , (4.4)

to both, the nucleon form factors and the leading twist nucleon distribution amplitude,
which enables a comparison to experimental data [31,100]. In our case, ∣N(P )⟩ is the state
of the nucleon with momentum P , jν is an electromagnetic current and η is an operator
with the quantum numbers of the nucleon, see figure 4.2 for a simplified representation.
LCSR for baryons have also been worked out for the exclusive semileptonic heavy baryon
decay Λb → plν̄ [104] and the γ∗N →∆ transition form factors [105].
Having successfully established a theoretical connection between nucleon form factors

and the nucleon distribution amplitude, the natural next step is a generalization to the
whole JP = 1

2
+ baryon octet. However, in contrast to the situation for the nucleon [106–

110], the available experimental data on hyperon form factors is limited due to their
unstable nature. In 1990, the DM2 detector at the Orsay Storage Ring DCI enabled for
the first time measurements of the upper limits for the hyperon pair production cross
sections e+e− → Λ̄0Λ0, Σ̄0Σ0, Σ̄0Λ0 at ∣Q2∣ = 5.8 GeV2 [111]. This was complemented by
results of the BaBar detector in 2007 [112], which furthermore produced an estimate for the
ratio of the electric and magnetic form factors for e+e− → Λ̄0Λ0 as well as measurements
of the branching fractions of J/ψ → Λ̄0Λ0, Σ̄0Σ0 and ψ(2S) → Λ0Λ̄0. The first direct
measurement of the electromagnetic form factors of the Λ0,Σ0,Σ+,Ξ0 and Ξ− hyperons
was conducted by the CLEO-c detector [113] with a time-like momentum transfer of∣Q2∣ = 14.2 GeV2. It was found that the form factors of the different hyperons vary by
almost a factor of two. In particular, the form factors of the Λ0 and Σ0 hyperons, that
share the same valence quark content, fulfill |GM(Λ0)∣ = 1.66 ∣GM(Σ0)∣1. In addition to
electron-positron annihilations, the exclusive production of hyperons via antiproton-proton
collisions, such as p̄p → Λ̄0Λ0 and p̄p → Ξ̄+Ξ− within the P̄anda detector, will also yield
further experimental results in the future [114]. A third class of reactions that can be
described with hyperon distribution amplitudes is given by rare decays of b-baryons like
the Λb → Λ0µ+µ− process, which was measured by both, the CDF [115] and LHCb [116].
The determination of the octet baryon distribution amplitudes provides the foundation

for the theoretical description of these processes. In this context, lattice QCD offers
the possibility to calculate baryon distribution amplitudes from first principles without
additional model input. Previous lattice studies have already investigated the distribution
amplitudes of the nucleon by calculating its Mellin moments [44,117,118]. This approach
is based on the systematic study of higher twist distribution amplitudes in ref. [119], which
contains the first full decomposition of the relevant hadron-to-vacuum matrix element.

1The electric and magnetic Sachs form factors GE and GM are defined as linear combinations of the
Dirac and Pauli form factors, cf. [31].
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Ξ0Ξ−

Σ+Σ− Σ0
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Figure 4.3: Visualization of the JP = 1

2
+ baryon octet.

In this chapter we will present results of the first lattice study on distribution amplitudes
of the JP = 1

2
+ baryon octet, which has been published in ref. [24]. The determination

of the octet DAs requires multidisciplinary expertise from various subfields of QCD. Be-
yond lattice QCD itself, the list includes the renormalization of composite operators and
chiral perturbation theory. This project was carried out as a joint effort, where the renor-
malization was treated by M. Gruber [120], while the chiral extrapolation was provided
by P. Wein [121]. The present work is mainly concerned with the lattice aspects of the
calculation.

4.2 Continuum formulation

The JP = 1
2
+ baryon octet is shown in figure 4.3 and contains eight particles organized

into two isodoublets, (p,n) and (Ξ0,Ξ−), one isotriplet (Σ+,Σ0,Σ−) and one isosinglet(Λ). By assuming exact isospin symmetry (ml ≡mu =md) and neglecting electromagnetic
effects, one only has to consider one member of each isospin multiplet. Hence, we choose
our baryons B such that

B ∈ {N ≡ p,Σ ≡ Σ−,Ξ ≡ Ξ0,Λ} . (4.5)

Baryon distribution amplitudes are defined in terms of baryon-to-vacuum matrix elements

32



4.2 Continuum formulation

of renormalized three-quark operators at light-like separations [119]:

Bfgh
αβγ(a1, a2, a3;µ) = ⟨0∣fα(a1n)gβ(a2n)hγ(a3n)∣B(p, λ)⟩ , (4.6)

where ∣B(p, λ)⟩ is the baryon state with momentum p and helicity λ, while α,β, γ are Dirac
indices, n is a light-cone vector (n2 = 0), the ai are real numbers and f, g, h are quark fields
of the given flavor, chosen to match the valence quark content of the baryon B. In order
to sustain gauge invariance, the quark fields in eq. (4.6) are connected by Wilson lines
which we omit to write out explicitly.
We choose the following flavor ordering:

p ∶ (f, g, h) = (u,u, d) , (4.7a)

Σ− ∶ (f, g, h) = (d, d, s) , (4.7b)

Ξ0 ∶ (f, g, h) = (s, s, u) , (4.7c)

Λ ∶ (f, g, h) = (u, d, s) . (4.7d)

The general Lorentz decomposition of the matrix element (4.6) consists of 24 terms [119]
such that

Bαβγ(a1, a2, a3;µ) = ∑
DA

(ΓDA)
αβ

(Γ̃DAuB(p, λ))
γ ∫ [dx] e−ip·n∑i aixi DAB(x1, x2, x3;µ) .

(4.8)

The Dirac structures ΓDA and Γ̃DA correspond to the distribution amplitude DAB(xi),
see eq. (2.9) of ref. [119], and uB(p, λ) is the Dirac spinor with on-shell momentum p

(p2 = m2
B) and helicity λ. This decomposition can be organized in such a way that all

DAs have definite collinear twist. The variables x1, x2, x3 correspond to the momentum
fractions carried by the quarks f, g, h, respectively.

4.2.1 Leading twist distribution amplitudes

With respect to the leading twist contributions, the general decomposition in eq. (4.8)
yields [25]:

4Bαβγ(a1, a2, a3) = ∫ [dx] e−ip·n∑i aixi
× (vBαβ;γV

B(x1, x2, x3) + aBαβ;γA
B(x1, x2, x3) + tBαβ;γT

B(x1, x2, x3) + . . .) , (4.9)
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4 Baryon distribution amplitudes

with the leading twist Dirac structures

vBαβ;γ = (/̃nC)αβ(γ5u
B+ (p, λ))γ , (4.10a)

aBαβ;γ = (/̃nγ5C)αβ(uB+ (p, λ))γ , (4.10b)

tBαβ;γ = (iσ⊥ñC)αβ(γ⊥γ5u
B+ (p, λ))γ , (4.10c)

where C denotes the charge conjugation matrix and

ñµ = pµ − 1
2
p2

p·n
nµ , uB+ (p, λ) = 1

2
/̃n/n
ñ·n

uB(p, λ) , (4.11a)

σ⊥ñ ⊗ γ⊥ = σµρñρg⊥µν ⊗ γν , g⊥µν = gµν − ñµnν + ñνnµñ·n
. (4.11b)

By inserting suitable Dirac structures into the baryon-to-vacuum matrix element, the
individual DAs appearing in eq. (4.8) can be isolated. For the leading twist contributions
one obtains:

⟨0∣(f ↑T (a1n)C /ng↓(a2n))/nh↑(a3n)∣B(p, λ)⟩
= −1

2(p·n)/nuB↑(p, λ)∫ [dx] e−ipn∑i aixi [V −A]B(x1, x2, x3) , (4.12a)

⟨0∣(f ↑T (a1n)Cγµ /ng↑(a2n))γµ /nh↓(a3n)∣B(p, λ)⟩
= 2(p·n)/nuB↑(p, λ)∫ [dx] e−ipn∑i aixi TB(x1, x2, x3) . (4.12b)

Here we use the definition in terms of the right- and left-handed components of the quark
fields where q↑(↓) = 1

2(1±γ5)q and uB↑(p, λ) = 1
2(1+γ5)uB(p, λ). Eqs. (4.12) also yield that[V −A]B corresponds to the helicity order ∣↑↓↑⟩, while TB corresponds to ∣↑↑↓⟩. The three

leading twist DAs have the following symmetry properties under the exchange of the first
and second quark:

V B≠Λ(x2, x1, x3) = +V B(x1, x2, x3) , V Λ(x2, x1, x3) = −V Λ(x1, x2, x3) , (4.13a)

AB≠Λ(x2, x1, x3) = −AB(x1, x2, x3) , AΛ(x2, x1, x3) = +AΛ(x1, x2, x3) , (4.13b)

TB≠Λ(x2, x1, x3) = +TB(x1, x2, x3) , TΛ(x2, x1, x3) = −TΛ(x1, x2, x3) . (4.13c)

Furthermore, due to isospin symmetry it yields that

2TN(x1, x3, x2) = [V −A]N(x1, x2, x3) + [V −A]N(x3, x2, x1) , (4.14)

which means that the nucleon has only one independent leading twist DA defined as

ΦN(x1, x2, x3) = [V −A]N(x1, x2, x3) . (4.15)
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4.2 Continuum formulation

The standard DAs V N and AN can be recovered from ΦN by using eqs. (4.13). We
generalize eq. (4.15) for the full octet and define

ΦB≠Λ(x1, x2, x3) = [V −A]B(x1, x2, x3) , (4.16a)

ΦΛ(x1, x2, x3) = −√2
3{[V −A]Λ(x1, x2, x3) − 2[V −A]Λ(x3, x2, x1)} . (4.16b)

Eq. (4.14) does not hold for the remaining baryons B ≠ N and the functions TB≠N are
independent of [V − A]B≠N . Hence, in order to examine the SU(3) symmetry breaking
behavior it is advantageous to define the following set of DAs [121]:

ΦB≠Λ± (x1, x2, x3) = 1
2{[V −A]B(x1, x2, x3) ± [V −A]B(x3, x2, x1)} , (4.17a)

ΠB≠Λ(x1, x2, x3) = TB(x1, x3, x2) , (4.17b)

ΦΛ+(x1, x2, x3) = √
1
6{[V −A]Λ(x1, x2, x3) + [V −A]Λ(x3, x2, x1)} , (4.17c)

ΦΛ−(x1, x2, x3) = −√3
2{[V −A]Λ(x1, x2, x3) − [V −A]Λ(x3, x2, x1)} , (4.17d)

ΠΛ(x1, x2, x3) = √
6 TΛ(x1, x3, x2) , (4.17e)

where for the nucleon ΠN = ΦN+ up to isospin breaking effects. In the limit of SU(3) flavor
symmetry, where mu = md = ms (and in particular at the flavor symmetric point with
physical average quark mass indicated by ⋆), the following relations hold:

Φ⋆+ ≡ ΦN⋆+ = ΦΣ⋆+ = ΦΞ⋆+ = ΦΛ⋆+ = ΠN⋆ = ΠΣ⋆ = ΠΞ⋆ , (4.18a)

Φ⋆− ≡ ΦN⋆− = ΦΣ⋆− = ΦΞ⋆− = ΦΛ⋆− = ΠΛ⋆ . (4.18b)

Therefore, the amplitudes ΠB (or TB) are only independent DAs when flavor symmetry
is broken. We expand the DAs in a set of orthogonal polynomials, Pnk(x1, x2, x3), which
correspond to irreducible representations of the collinear conformal group SL(2,R). The
first few polynomials are [122]:

P00 = 1 , P20 = 63
10[3(x1 − x3)2 − 3x2(x1 + x3) + 2x2

2] , (4.19a)

P10 = 21(x1 − x3) , P21 = 63
2 (x1 − 3x2 + x3)(x1 − x3) , (4.19b)

P11 = 7(x1 − 2x2 + x3) , P22 = 9
5[x2

1 + 9x2(x1 + x3) − 12x1x3 − 6x2
2 + x2

3] . (4.19c)
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The DAs ΦB+ and ΠB≠Λ (ΦB− and ΠΛ) are constructed such that they contain only poly-
nomials that are symmetric (antisymmetric) under the exchange of x1 and x3:

ΦB+ = 120x1x2x3(ϕB00P00 + ϕB11P11 + ϕB20P20 + ϕB22P22 + . . . ) , (4.20a)

ΦB− = 120x1x2x3(ϕB10P10 + ϕB21P21 + . . . ) , (4.20b)

ΠB≠Λ = 120x1x2x3(πB00P00 + πB11P11 + πB20P20 + πB22P22 + . . . ) , (4.20c)

ΠΛ = 120x1x2x3(πΛ
10P10 + πΛ

21P21 + . . . ) . (4.20d)

The whole non-perturbative information is in this way encoded in the set of the coeffi-
cients ϕBnk, πBnk, which can be related to matrix elements of local operators. The leading
contributions 120x1x2x3ϕ

B
00 and 120x1x2x3π

B≠Λ
00 are usually referred to as the asymptotic

DAs. The corresponding normalization coefficients ϕB00 and πB≠Λ
00 can be thought of as the

wave functions at the origin. In the following we will use the notation

fB = ϕB00 , fB≠Λ
T = πB00 . (4.21)

Note that for the nucleon the two coupling constants coincide, fNT = fN . For the Λ baryon
the zeroth moment of TΛ vanishes. The higher-order coefficients are usually referred to
as shape parameters.
The interpretation of the DAs V B, AB and TB as well as ΦB+ , ΦB− and ΠB can be

mapped out by considering their relation to light-front wave functions. The leading twist
approximation contains all S-wave contributions in which the helicities of the quarks sum
up to the helicity of the baryon [123, 124]. The standard DAs V B, AB and TB appear
naturally when one describes a flavor-ordered wave function:

∣(B≠Λ)↑⟩ = ∫ [dx]
8
√

6x1x2x3
∣fgh⟩ ⊗ {[V +A]B(x1, x2, x3)∣↓↑↑⟩

+[V −A]B(x1, x2, x3)∣↑↓↑⟩
−2TB(x1, x2, x3)∣↑↑↓⟩} , (4.22a)

∣Λ↑⟩ = ∫ [dx]
4
√

6x1x2x3
∣uds⟩ ⊗ {[V +A]Λ(x1, x2, x3)∣↓↑↑⟩

+[V −A]Λ(x1, x2, x3)∣↑↓↑⟩
−2TΛ(x1, x2, x3)∣↑↑↓⟩} , (4.22b)

where ∣↑↓↑⟩ etc. show quark helicities and ∣fgh⟩ stands for the flavor ordering as specified in
eqs. (4.7). In contrast, the DAs ΦB+ , ΦB− and ΠB appear together with their corresponding
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4.2 Continuum formulation

flavor structure in a helicity-ordered wave function:

∣(B≠Λ)↑⟩ = ∫ [dx]
8
√

3x1x2x3
∣ ↑↑↓⟩ ⊗ {−√3ΦB+ (x1, x3, x2)(∣MS,B⟩ −√

2∣S,B⟩)/3
−√3ΠB(x1, x3, x2)(2∣MS,B⟩ +√

2∣S,B⟩)/3
+ΦB− (x1, x3, x2)∣MA,B⟩} , (4.23a)

∣Λ↑⟩ = ∫ [dx]
8
√

3x1x2x3
∣ ↑↑↓⟩ ⊗ {−√3ΦΛ+(x1, x3, x2)∣MS,Λ⟩

+ΠΛ(x1, x3, x2)(2∣MA,Λ⟩ +√
2∣A,Λ⟩)/3

+ΦΛ−(x1, x3, x2)(∣MA,Λ⟩ −√
2∣A,Λ⟩)/3} , (4.23b)

where ∣MS,B⟩ and ∣MA,B⟩ are the mixed-symmetric and mixed-antisymmetric octet flavor
wave functions, while ∣A,Λ⟩ and ∣S,B ≠ Λ⟩ are the totally antisymmetric and symmetric
flavor wave functions as defined in appendix A of [24].

4.2.2 Higher twist contributions

In general, higher twist contributions stem from three different sources: Contributions
of higher Fock states with additional gluons and/or quark-antiquark pairs, contributions
of transverse motion of quarks in the leading twist components and contributions from
so-called bad2 components in the wave function, cf. [119,127].
In our case, the general decomposition in eq. (4.8) contains 21 DAs of higher twist. They

include only up to three new normalization constants (just two for N , Σ and Ξ) [119,121],
which can be defined as matrix elements of local three-quark twist four operators without
derivatives. These twist four couplings are also interesting in a broader context, e.g., in
studies of baryon decays in generic GUT models [128], and as input parameters for QCD
sum rule calculations, see, e.g., refs. [129–131].
We use the following definitions:

⟨0∣(f ↑T (0)Cγµg↓(0))γµh↑(0)∣(B ≠ Λ)(p, λ)⟩ = −1
2λ

B
1 mBu

B↓(p, λ) , (4.24a)

⟨0∣(f ↑T (0)Cσµνg↑(0))σµνh↑(0)∣(B ≠ Λ)(p, λ)⟩ = λB2 mBu
B↑(p, λ) , (4.24b)

for the isospin-nonsinglet baryons (N , Σ, Ξ) and

⟨0∣(u↑T (0)Cγµd↓(0))γµs↑(0)∣Λ(p, λ)⟩ = 1
2
√

6λ
Λ
1mΛu

Λ↓(p, λ) , (4.25a)

⟨0∣(u↑T (0)Cd↑(0))s↓(0)∣Λ(p, λ)⟩ = 1
2
√

6λ
Λ
TmΛu

Λ↓(p, λ) , (4.25b)

⟨0∣(u↑T (0)Cd↑(0))s↑(0)∣Λ(p, λ)⟩ = −1
4
√

6λ
Λ
2mΛu

Λ↑(p, λ) , (4.25c)

2This terminology is to be understood in terms of the light-cone formalism of Kogut and Soper, which
separates the quark field into “good” and “bad” components, cf. [125,126]
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4 Baryon distribution amplitudes

for the Λ baryon. As defined in [121], all twist four couplings coincide at the flavor
symmetric point such that

λ⋆1 ≡ λN⋆1 = λΣ⋆
1 = λΞ⋆

1 = λΛ⋆
1 = λΛ⋆

T , (4.26a)

λ⋆2 ≡ λN⋆2 = λΣ⋆
2 = λΞ⋆

2 = λΛ⋆
2 . (4.26b)

4.3 Lattice formulation

In the following we will show how baryon DAs can be accessed on a lattice. For this pur-
pose, we follow the Euclidean gamma matrix convention of [117]. Distribution amplitudes
cannot be calculated directly on the lattice, as this would require quark fields at light-like
separations. Instead one calculates moments of the DAs like

V B
lmn = ∫ [dx] xl1xm2 xn3V B(x1, x2, x3) , (4.27)

and similarly for the other functions. In order to extract the desired moments of the DAs
on the lattice one calculates two-point correlation functions of the general form

⟨0∣X (t,p)N̄B(0,p)∣0⟩ . (4.28)

The smeared source operator NB is an interpolating creation operator which is chosen
such that it has a good overlap with the baryon of interest, see, e.g., [132] for spin-1/2
baryons. Our choice of interpolating currents is as follows:

NN = (uTCγ5d)u , (4.29a)

NΣ = (dTCγ5s)d , (4.29b)

NΞ = (sTCγ5u)s , (4.29c)

NΛ = 1√
6(2(uTCγ5d)s + (uTCγ5s)d + (sTCγ5d)u) , (4.29d)

where each operator is smeared to suppress excited state contributions. The optimal
number of smearing steps was determined before the actual analysis runs by gradually
applying more and more smearing steps to the light and strange quark propagators while
simultaneously tracking the ground state behavior and noise of the standard pion and
kaon correlation functions.
The sink operator X is a local (unsmeared) three-quark operator of the form

XB,lmn
r̄l̄m̄n̄

= εijk([ilDl̄f
T(0)]iCΓXr̄r̄ [imDm̄g(0)]j)Γ̃Xr̄[inDn̄h(0)]k . (4.30)

Here we use a multi-index notation for the covariant derivatives, Dl̄ ≡Dλ1⋯Dλl . The Dirac
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4.3 Lattice formulation

Xr̄ S P V A T Vρ Aρ Tρ
ΓXr̄r̄ 1 γ5 γη γηγ5 ση1η2 γρ γργ5 iσρη
Γ̃Xr̄ γ5 1 γηγ5 γη ση1η2γ5 γ5 1 γηγ5

Table 4.1: Definition of the Dirac matrix structures that appear in the local operators
which are used in the lattice calculation, see eq. (4.30). Lorentz indices appearing in both
ΓXr̄r̄ and Γ̃Xr̄ are summed over implicitly.

structures, ΓXr̄r̄ and Γ̃Xr̄ , which isolate the respective moments, are listed in table 4.1.
Neglecting the exponentially suppressed excited states, the correlation functions can be
written as

⟨Oτ(t,p)N̄B
τ ′ (0,p)⟩ = √

ZB
2EB

∑
λ

⟨0∣Oτ(0)∣B(p, λ)⟩ ūBτ ′(p, λ)e−EBt , (4.31)

with the energy EB = EB(p) = √
m2
B + p2. The coupling ZB = ZB(p) is momentum-

dependent and describes the overlap between the smeared source operator and the physical
baryon ground state. It can be obtained from the correlator

⟨NB
τ (t,p)N̄B

τ ′ (0,p)(γ+)τ ′τ ⟩ = ZBmB + kEB
EB

e−EBt , (4.32)

where γ+ = (1 + kγ4)/2 with k = mB∗/EB∗ acts effectively as a parity “projector”3 to
suppress contributions from the negative parity partner B∗ of the baryon B [44, 132].

4.3.1 Correlation functions

The simplest application of eq. (4.31) is the calculation of the leading twist normalization
constants fB and fBT , as in these cases no derivatives are needed within X . In order to
avoid higher twist contributions we construct the following linear combinations of opera-
tors:

OB,000X ,A = −γ1XB,000
1 + γ2XB,000

2 , (4.33a)

OB,000X ,B = −γ3XB,000
3 + γ4XB,000

4 , (4.33b)

OB,000X ,C = −γ1XB,000
1 − γ2XB,000

2 + γ3XB,000
3 + γ4XB,000

4 , (4.33c)

3Strictly speaking, γ+ is not a real projector for k ≠ 1 as γ2
+ ≠ γ+.
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4 Baryon distribution amplitudes

where X can be V, A or T . From these one obtains the following correlation functions:

CB,000X ,A = ⟨(γ4OB,000X ,A (t,p))
τ
N̄B
τ ′ (0,p)(γ+)τ ′τ ⟩

= cXXB
000

√
ZB

k(p2
1 − p2

2)
EB

e−EBt , (4.34a)

CB,000X ,B = ⟨(γ4OB,000X ,B (t,p))
τ
N̄B
τ ′ (0,p)(γ+)τ ′τ ⟩

= cXXB
000

√
ZB

EB(mB + kEB) + kp2
3

EB
e−EBt , (4.34b)

CB,000X ,C = ⟨(γ4OB,000X ,C (t,p))
τ
N̄B
τ ′ (0,p)(γ+)τ ′τ ⟩

= cXXB
000

√
ZB

EB(mB + kEB) + k(p2
1 + p2

2 − p2
3)

EB
e−EBt , (4.34c)

where cV = cA = 1 and cT = −2. Again, X can be V, A or T . A close look at the
right-hand side of eqs. (4.34) shows that it is possible to extract the zeroth moment XB

000
from the correlators CB,000X ,B and CB,000X ,C using p = 0, as in this case terms proportional to
mB = EB(p = 0) do not vanish. In contrast, the correlator CB,000X ,A only contains terms
proportional to either p2

1 or p2
2 and hence vanishes for zero momentum. It is therefore

preferable to use CB,000X ,B and CB,000X ,C as they are less noisy and, therefore, can be measured
with higher accuracy. From the zeroth moments XB

000, one obtains the desired coupling in
the following way:

fB≠Λ ≡ ϕB00 = V B
000 , fΛ ≡ ϕΛ

00 = −√2
3A

Λ
000 , fB≠Λ

T ≡ πB00 = TB000 , (4.35)

where fNT = fN due to isospin symmetry. The remaining zeroth moments of the leading
twist DAs V B, AB and TB vanish:

V Λ
000 = AB≠Λ

000 = TΛ
000 = 0 . (4.36)

The situation for the first moments of the DAs is more involved as the sink operators now
contain covariant derivatives. For l +m + n = 1 we define the leading twist combinations

OB,lmnX ,A = +γ1γ3XB,lmn{13} + γ1γ4XB,lmn{14} − γ2γ3XB,lmn{23} − γ2γ4XB,lmn{24} − 2γ1γ2XB,lmn{12} , (4.37a)

OB,lmnX ,B = +γ1γ3XB,lmn{13} − γ1γ4XB,lmn{14} + γ2γ3XB,lmn{23} − γ2γ4XB,lmn{24} + 2γ3γ4XB,lmn{34} , (4.37b)

OB,lmnX ,C = −γ1γ3XB,lmn{13} + γ1γ4XB,lmn{14} + γ2γ3XB,lmn{23} − γ2γ4XB,lmn{24} , (4.37c)
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4.3 Lattice formulation

where the braces indicate symmetrization. For the calculation of the first moments of the
leading twist DAs one can use the correlation functions (l +m + n = 1)

CB,lmnX ,A,1 = ⟨(γ4γ1OB,lmnX ,A (t,p))
τ
N̄B
τ ′ (0,p)(γ+)τ ′τ ⟩

= −cXXB
lmn

√
ZBp1

EB(mB + kEB) + k(2p2
2 − p2

3)
EB

e−EBt , (4.38a)

CB,lmnX ,A,2 = ⟨(γ4γ2OB,lmnX ,A (t,p))
τ
N̄B
τ ′ (0,p)(γ+)τ ′τ ⟩

= +cXXB
lmn

√
ZBp2

EB(mB + kEB) + k(2p2
1 − p2

3)
EB

e−EBt , (4.38b)

CB,lmnX ,A,3 = ⟨(γ4γ3OB,lmnX ,A (t,p))
τ
N̄B
τ ′ (0,p)(γ+)τ ′τ ⟩

= −cXXB
lmn

√
ZBp3

k(p2
1 − p2

2)
EB

e−EBt , (4.38c)

CB,lmnX ,B,1 = ⟨(γ4γ1OB,lmnX ,B (t,p))
τ
N̄B
τ ′ (0,p)(γ+)τ ′τ ⟩

= +cXXB
lmn

√
ZBp1

EB(mB + kEB) + kp2
3

EB
e−EBt , (4.38d)

CB,lmnX ,B,2 = ⟨(γ4γ2OB,lmnX ,B (t,p))
τ
N̄B
τ ′ (0,p)(γ+)τ ′τ ⟩

= +cXXB
lmn

√
ZBp2

EB(mB + kEB) + kp2
3

EB
e−EBt , (4.38e)

CB,lmnX ,B,3 = ⟨(γ4γ3OB,lmnX ,B (t,p))
τ
N̄B
τ ′ (0,p)(γ+)τ ′τ ⟩

= −cXXB
lmn

√
ZBp3

2EB(mB + kEB) + k(p2
1 + p2

2)
EB

e−EBt , (4.38f)

CB,lmnX ,C,1 = ⟨(γ4γ1OB,lmnX ,C (t,p))
τ
N̄B
τ ′ (0,p)(γ+)τ ′τ ⟩

= −cXXB
lmn

√
ZBp1

EB(mB + kEB) + kp2
3

EB
e−EBt , (4.38g)

CB,lmnX ,C,2 = ⟨(γ4γ2OB,lmnX ,C (t,p))
τ
N̄B
τ ′ (0,p)(γ+)τ ′τ ⟩

= +cXXB
lmn

√
ZBp2

EB(mB + kEB) + kp2
3

EB
e−EBt , (4.38h)

CB,lmnX ,C,3 = ⟨(γ4γ3OB,lmnX ,C (t,p))
τ
N̄B
τ ′ (0,p)(γ+)τ ′τ ⟩

= +cXXB
lmn

√
ZBp3

k(p2
1 − p2

2)
EB

e−EBt . (4.38i)

It becomes obvious from eq. (4.38) that at least one non-zero component of spatial mo-
mentum is required to extract the first moments as each correlator is proportional to pi.
We evaluate CB,lmnX ,A,1 , CB,lmnX ,B,1 and CB,lmnX ,C,1 with momentum in x direction (np = (±1,0,0)),
and CB,lmnX ,A,2 , CB,lmnX ,B,2 and CB,lmnX ,C,2 with momentum in y direction (np = (0,±1,0)). For mo-
mentum in z direction (np = (0,0,±1)) only the correlator CB,lmnX ,B,3 can be used. We do not
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4 Baryon distribution amplitudes

consider the remaining two correlators as they require a higher number of non-vanishing
momentum components, which would lead to larger statistical uncertainties.
The shape parameters defined in eqs. (4.20) can be expressed as linear combinations of

V B
lmn, ABlmn and TBlmn via eqs. (4.17). For the N , Σ and Ξ baryons the shape parameters

are given by

ϕB≠Λ
11 = 1

2([V −A]B100 − 2[V −A]B010 + [V −A]B001) , (4.39a)

ϕB≠Λ
10 = 1

2([V −A]B100 − [V −A]B001) , (4.39b)

πB≠Λ
11 = 1

2(TB100 + TB010 − 2TB001) , (4.39c)

where πN11 = ϕN11 due to isospin symmetry. For the Λ baryon one obtains

ϕΛ
11 = 1√

6([V −A]Λ
100 − 2[V −A]Λ

010 + [V −A]Λ
001) , (4.40a)

ϕΛ
10 = −√3

2([V −A]Λ
100 − [V −A]Λ

001) , (4.40b)

πΛ
10 = √

3
2(TΛ

100 − TΛ
010) . (4.40c)

Due to the momentum conservation enforced in eq. (4.3), we can express the couplings
fB(T ) in terms of a sum of first moments. For this purpose we define:

ϕB≠Λ
00,(1) = [V −A]B100 + [V −A]B010 + [V −A]B001 , (4.41a)

πB≠Λ
00,(1) = TB100 + TB010 + TB001 , (4.41b)

ϕΛ
00,(1) = √

2
3([V −A]Λ

100 + [V −A]Λ
010 + [V −A]Λ

001) , (4.41c)

where the subscript (1) indicates that these shape parameters have been obtained using
the first moments instead of the zeroth moments. In the continuum, due to the Leibniz
product rule for derivatives, it holds that

ϕB00,(1) = ϕB00 , πB≠Λ
00,(1) = πB00 . (4.42)

The Leibniz rule is violated on the lattice due to finite lattice spacing effects. However,
the relations in eqs. (4.42) have to be true again in the limit a→ 0, which provides a good
check for the reliability of a continuum extrapolation.
It is possible to obtain the higher twist normalization constants introduced in sec-

tion 4.2.2 by using correlation functions without derivatives:

⟨XB,000
τ (t,p)N̄B

τ ′ (0,p)(γ+)τ ′τ ⟩ = κBXmB

√
ZB

mB + kEB
EB

e−EBt , (4.43)

where now X can be S, P, V, A or T as shown in table 4.1. The couplings defined in
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4.4 Data analysis

eqs. (4.24) and (4.25) are then given by

λB≠Λ
1 = −κBV , λB≠Λ

2 = κBT , (4.44a)

λΛ
1 = −√6κΛA , λΛ

2 = −2
√

6(κΛS + κΛP) , λΛ
T = −√6(κΛS − κΛP) . (4.44b)

Due to symmetry properties of the associated operators it follows that

κB≠ΛS = κB≠ΛP = κΛV = κB≠ΛA = κΛT = 0 , (4.45)

and the corresponding correlators vanish.

4.3.2 Details and strategy of the lattice simulation

The CLS ensembles used for the calculation of the baryon distribution amplitudes have
already been introduced in section 3.3.3 and are listed in table 3.1. For each lattice, we
have carried out measurements for the source positions tsrc = 30a, 47a and 65a. Taking
the average of correlators from all these different sources is not advisable as the open
boundary conditions break translational invariance in time. Instead, we average suitable
forward and backward propagating states, i.e., the forward direction from tsrc = 30a and
the backward direction from tsrc = 65a as well as the forward and the backward running
state from tsrc = 47a. The two remaining ones (backward from tsrc = 30a and forward from
tsrc = 65a) are not considered in this analysis, as sink positions closer than ∼ 20 time slices
to the boundary can show significant artifacts due to the open boundary conditions.
As a second step, the statistical analysis is conducted by averaging over appropriate

two-point functions and momenta as outlined in section 4.3.1. For the statistical analysis
we then generate 1000 bootstrap samples per ensemble using a binsize of 8 to eliminate
autocorrelations. For each sample we use a χ2-measure to simultaneously fit the two
correlation functions resulting from the forward-backward averaging procedure described
above.
In order to exclude contributions from excited states the choice for the lower bound of

the fit range is crucial. Figure 4.4 demonstrates that, with increasing source-sink distance,
the excited states decay and clear plateaus in the effective masses emerge. To determine
the optimum minimal source-sink distance tstart we perform multiple fits with varying fit
ranges for all observables. tstart is chosen in such a way that fits with even larger starting
times no longer show any systematic trend in the fit results. As an example, figure 4.5
shows the fitted leading twist coupling constants as a function of tstart.
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Figure 4.4: Plot showing the effective baryon masses obtained from the two forward-
backward averaged smeared-smeared correlation functions in eq. (4.32) on the C101 en-
semble using p = 0. The plateaus start at ∣t−tsrc∣ = 7a, where excited states are sufficiently
suppressed. The horizontal lines represent the result of a combined fit to both correlators
in the range 7a ≤ ∣t − tsrc∣ ≤ 20a.

4.4 Data analysis

In order to make physically relevant statements, the bare lattice results have to be renor-
malized. For this purpose we employ a non-perturbative method in a RI′/SMOM scheme
and convert the results to the MS scheme using continuum perturbation theory at one-loop
accuracy. In order to control operator mixing, one organizes the three-quark operators
into multiplets that transform according to the five irreducible spinorial representations of
the spinorial hypercubic group H(4), which are summarized in table 4.2. On the lattice,
however, operators of lower dimension within the same irreducible representation can still
mix with operators of higher dimension due to the dimensionful lattice spacing a [133],
e.g.:

OMS
i = ZijOlat

j +Z ′
ik

1
a
Olat, lower dim
k . (4.46)

As our final goal is to take the continuum limit a → 0, it is obvious that this admixture
should be avoided. Following table 4.2, this behavior poses no problem for the renor-
malization of the leading twist coupling constants fB and the higher twist normalization
constants λB using the operators O7−9 and O1−5, respectively, since in these cases no mul-
tiplets of lower dimension can exist. However, for the calculation of the first moments it is
essential that we choose the operators OD5−D7 instead of OD2−D4, as the latter would mix
under renormalization with the operators O7−8, whereas no such lower dimensional coun-
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Figure 4.5: Typical plot (from the C101 ensemble) used for the determination of the
fit ranges by varying the value of the minimal source-sink distance tstart. It shows the
leading twist normalization constants obtained from the correlators given in eqs. (4.34). A
conservative choice is tstart = 9a, where the results have fully saturated for all leading twist
couplings. A variation of the maximal source-sink separation within reasonable bounds
did not have any significant impact on the result. Here it is always set to tend = 20a.

terpart exists in the representation τ12
2 . For a detailed treatment of the renormalization

procedure we refer to [120].
Having renormalized the bare lattice results, we conduct an extrapolation to the phys-

ical point along the TrM = const. line using the quark mass dependence derived from
three-flavor baryon chiral perturbation theory (ChPT) [121, 134]. We parametrize the
extrapolation using the dimensionless variable

δm = 4(m2
K −m2

π)
3X2

b

∝ (ms −ml) +O((ms −ml)2) , (4.47)

where we start at the symmetric point δm⋆ = 0 and extrapolate to the physical point
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no derivatives 1 derivative 2 derivatives
dimension 9/2 dimension 11/2 dimension 13/2

τ
4
1 O1,O2,O3,O4,O5 ... ODD1,ODD2,ODD3, ...

τ
4
2 ODD4,ODD5,ODD6, ...

τ
8 O6 OD1, ... ODD7,ODD8,ODD9, ...

τ
12
1 O7,O8,O9 OD2,OD3,OD4, ... ODD10,ODD11,ODD12,ODD13, ...

τ
12
2 OD5,OD6,OD7,OD8 ODD14,ODD15,ODD16,ODD17,ODD18, ...

Table 4.2: List of three-quark operator multiplets transforming irreducibly under H(4).
The dimensions of the five irreducible spinorial representations τ4

1 , τ
4
2 , τ

8, τ12
1 and τ12

2 are
indicated by the superscripts. The nomenclature follows ref. [133].

δmphys ≈ 0.228. We make the following ansatz for the extrapolation formulas:

ΦB+ = gBΦ+(δm)(Φ⋆+ + δm∆ΦB+ ) , (4.48a)

ΦB− = gBΦ−(δm)(Φ⋆− + δm∆ΦB− ) , (4.48b)

ΠB≠Λ = gBΠ(δm)(Φ⋆+ + δm∆ΠB) , (4.48c)

ΠΛ = gΛ
Π(δm)(Φ⋆− + δm∆ΠΛ) , (4.48d)

λB1 = gBΦ−(δm)(λ⋆1 + δm∆λB1 ) , (4.48e)

λΛ
T = gΛ

Π(δm)(λ⋆1 + δm∆λΛ
T ) , (4.48f)

λB2 = gBΞ (δm)(λ⋆2 + δm∆λB2 ) . (4.48g)

The functions gBDA(δm) appearing in eqs. (4.48) fulfill gBDA(0) = 1, such that eqs. (4.18)
are recovered at the flavor symmetric point. They are worked out explicitly in [121]
using three-flavor baryon ChPT and contain the usual chiral logs stemming from virtual
pion loops. The functions Φ⋆±, ∆ΦB± , ∆ΠB, λ⋆1,2, ∆λB1,2 and ∆λΛ

T are independent of δm
and act as low-energy constants (LECs) of the theory. The DAs ∆ΦB± and ∆ΠB are
not independent of one another as three-flavor ChPT imposes certain constraints on the
SU(3) symmetry breaking. Following [121] one obtains the following relations between
the leading twist DAs:

∆ΦN± = −∆ΦΣ± −∆ΦΞ± , (4.49a)

∆ΠN = ∆ΦN+ , (4.49b)

∆ΠΣ = −1
2

∆ΦΣ+ − 3
2

∆ΦΛ+ , (4.49c)

∆ΠΞ = 1
2

∆ΦΣ+ + 3
2

∆ΦΛ+ −∆ΦN+ , (4.49d)

∆ΠΛ = −1
2

∆ΦΛ− − 3
2

∆ΦΣ− . (4.49e)
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Analogously, the SU(3) symmetry breaking of the higher twist DAs should satisfy

∆λN1,2 = −∆λΣ
1,2 −∆λΞ

1,2 , (4.49f)

∆λΣ
2 = −∆λΛ

2 , (4.49g)

∆λΛ
T = −1

2
∆λΛ

1 − 3
2

∆λΣ
1 . (4.49h)

In practice, we can enforce these constraints by replacing the respective DAs with the linear
combinations of eq. (4.49) in our χ2 fit function, which effectively reduces the number of
free parameters in the fit. We have performed both constrained and unconstrained fits to
the renormalized lattice data as shown in figures 4.6–4.11. It turns out that the lattice
data is not always adequately described by a constrained fit. This is reflected in a poor
χ2 value for the fits of the leading twist normalization constants fB and fB≠Λ

T , as well
as for ϕB00,(1) and πB≠Λ

00,(1). Alongside the high χ2 value, the discrepancies also become
obvious to the naked eye when considering the left plots in figures 4.6 and 4.9, where,
for example, the orange extrapolation lines for the Λ do not agree with the orange points
within the errors. We stress that this is not a specific problem for the Λ baryon but rather a
consequence of the constraints in eqs. (4.49). We could in principle force the χ2 minimizer
to align the orange lines and points perfectly at the cost of a slightly higher minimum.
However, this would only shift the problem to other particles due to the constraints. The
situation is similar for the higher twist normalization constants λB2 in figure 4.8, where,
for example, the red points for the nucleon do not follow the shape of the extrapolation
line in an acceptable manner. On the contrary, we obtain comparable good values of χ2

for both fits, constrained and unconstrained, for quantities like λB1 and λΛ
T , and for the

first moments of ΦB− and ΠΛ (ϕB10 and πΛ
10), which have the same chiral behavior as λB1

and λΛ
T , see figures 4.7 and 4.11. The constraints are also reasonably well fulfilled for the

first moments ϕB11 and πB≠Λ
11 , which appear in ΦB+ and ΠB≠Λ, and are predicted to have

the same chiral logarithms as the couplings fB and fB≠Λ
T , see figure 4.10.

The problems one encounters for certain observables with a constrained approach may
stem from various reasons. As the ChPT calculation was carried out in leading one-loop
order, higher order effects could be particularly large for these observables. Finite volume
effects could also be responsible for these discrepancies, however, considering that the
spatial extents of our lattices in table 3.1 fulfill mπL ≳ 4 with L > 2.7 fm, this seems rather
unlikely, cf. [44, 135, 136]. Certainly, the claimed constraints in eqs. (4.49) were derived
in a continuum theory and are therefore only true in the limit a → 0. This makes cut-off
effects a probable reason for the observed behavior. In particular lattice spacing effects
have already been identified as a major source of systematic uncertainty in the two-flavor
calculation of ref. [44], where it was also argued that for the leading twist normalization
constants discretization effects are expected to be larger than for the higher twist couplings.
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4 Baryon distribution amplitudes

We can try to account for the leading discretization effects by constructing an ansatz that
recovers the continuum formulas in eqs. (4.48) in the limit a → 0. Since the operators we
use are not O(a) improved we assume the leading corrections to be linear in a. At fixed
mean quark mass this would yield, for instance, for the leading twist couplings:

fB = gBΦ+(δm)(1 + aC + aδmDB)(f⋆ + δm∆fB) , (4.50a)

fB≠Λ
T = gBΠ(δm)(1 + aC + aδmDB

T )(f⋆ + δm∆fBT ) . (4.50b)

The constant C has to be equal for all baryons in the octet, while the DB(T ) can be different
and are not necessarily subject to the same constraints as ∆fB(T ). One can easily convince
oneself that, at non-zero lattice spacing, terms O(aδm) can override the effect of the
constraints given in eqs. (4.49). Note that it is actually rather natural to assume that
discretization effects break the continuum constraints obtained from ChPT, since Wilson
fermions break chiral symmetry by construction. However, the symmetry is recovered
when taking the continuum limit, which is also reflected correctly in eqs. (4.50).
As we only use data at a single lattice spacing in this work, we cannot study discretiza-

tion effects here and take the difference between constrained and unconstrained fits as
evidence for systematic uncertainties.

4.5 Results

The extrapolated results at the physical point δmphys are summarized in table 4.3 for
the constrained fit and table 4.4 for the unconstrained fit. For all quantities the first
error refers to a combined statistical and extrapolation error, while the second error is an
estimate of the uncertainty due to the renormalization procedure. As already mentioned in
the previous section, we estimate any finite volume effects to be small due to the relatively
large size of our lattices. Since the overall quality of the unconstrained fit is better,
indicated by χ2/d.o.f. < 1.5 for all observables, we present the corresponding numbers as
our final results for this lattice spacing (see table 4.4) and view the differences compared
to the constrained chiral extrapolation as part of the systematic uncertainty. All further
tables and figures in this section are generated using these values.
For the case of the nucleon, we can compare our results to a previous Nf = 2 lattice

study [44], where a continuum extrapolation was performed for fN as well as for the higher
twist normalization constants λN1 and λN2 . It turns out that our results at a ≈ 0.0857 fm are
approximately 30% larger for fN and about 20% larger for λN1 and λN2 than the continuum
extrapolated results. However, including the fact that the continuum extrapolation of
lattices in the region a ≈ 0.06 − 0.08 fm decreases fN and λN1,2 by a similar percentage,
which is shown in figure 7 of [44],4 our results are in fact very compatible. Given that we

4We refer to the figure numbers of the journal version of ref. [44].
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4.5 Results

B N Σ Ξ Λ
fB × 103 3.61(3)(1) 5.26(4)(2) 5.48(4)(2) 4.85(3)(2)
fBT × 103 3.61(3)(1) 5.10(3)(2) 5.54(4)(2) —
ϕB11 × 103 0.06(1)(1) 0.13(1)(2) −0.01(1)(3) 0.17(1)(1)
πB11 × 103 0.06(1)(1) −0.09(1)(3) 0.30(1)(1) —
ϕB10 × 103 0.074(10)(4) −0.052(7)(2) 0.15(1)(1) 0.50(2)(3)
πB10 × 103 — — — 0.035(11)(2)
ϕB00,(1) × 103 3.47(4)(2) 5.05(5)(2) 5.26(6)(2) 4.67(5)(2)
πB00,(1) × 103 3.47(4)(2) 4.88(4)(2) 5.35(6)(2) —

λB1 × 103 −48.4(4)(23) −46.4(3)(22) −47.6(3)(23) −40(1)(2)
λBT × 103 — — — −52.5(4)(25)
λB2 × 103 95(1)(5) 87(1)(4) 95(1)(5) 105(1)(5)

Table 4.3: Couplings and shape parameters obtained by the constrained fit method. All
values are given in units of GeV2 in the MS scheme at a scale µ2 = 4 GeV2. The number
in the first parentheses gives a combined statistical and chiral extrapolation error. The
second one is an estimate of the error due to the renormalization procedure.

use a similar lattice action, we have to expect discretization effects of the same magnitude
as in [44], and therefore, a thorough continuum extrapolation is crucial and a primary goal
for future studies. Our results for the momentum sums ϕB00,(1) and πB00,(1) are within 5%
of the corresponding couplings, which allows us to expect that this difference will vanish
in the limit a → 0, as discretization errors in the derivatives seem to be under control, cf.
figure 8 in ref. [44].
Our results for the nucleon shape parameters ϕN11 = πN11 and ϕN10 agree with the results

in ref. [44]5 as well as with the parameters extracted from the study of the nucleon elec-
tromagnetic form factors in light-cone sum rules [137]. Note that our ϕNnk correspond to
fNϕ

N
nk in refs. [44, 137]. In agreement with ref. [44], we also observe the approximate

equality ϕN10 ≈ ϕN11. Compared to QCD sum rule calculations [138], our results for the
shape parameters of hyperons are up to an order of magnitude smaller as shown in ta-
ble 4.5. This phenomenon has already been observed as ref. [44] states that, in general,
modern lattice simulations and light-cone sum rule calculations yield estimates of the first
moments of the nucleon DA that are one order of magnitude smaller than in “old” phe-
nomenological papers, cf. refs. [25, 138]. Our measurements confirm this observation also
for the hyperons.
It is interesting to note that the SU(3) breaking in the shape parameters of the octet

baryons turns out to be large, e.g., πΞ
11 ≳ 3ϕN11 and ϕΛ

10 ≳ 7ϕN10. This relative effect is much
stronger than predicted by QCD sum rule calculations [138], even though the absolute
values are much smaller. As the shape parameters have autonomous scale dependence

5Note that in [44] no continuum extrapolation has been performed for the first moments.
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4 Baryon distribution amplitudes

B N Σ Ξ Λ
fB × 103 3.60(6)(2) 5.07(5)(2) 5.38(5)(2) 4.38(6)(2)
fBT × 103 3.60(6)(2) 4.88(5)(2) 5.47(5)(2) —
ϕB11 × 103 0.08(2)(1) 0.17(1)(2) 0.01(1)(2) 0.18(1)(1)
πB11 × 103 0.08(2)(1) −0.10(1)(3) 0.30(1)(1) —
ϕB10 × 103 0.060(19)(3) −0.069(10)(3) 0.14(1)(1) 0.48(2)(3)
πB10 × 103 — — — 0.010(16)(1)
ϕB00,(1) × 103 3.53(9)(2) 4.91(7)(2) 5.19(6)(2) 4.25(8)(2)
πB00,(1) × 103 3.53(9)(2) 4.70(6)(2) 5.31(6)(2) —

λB1 × 103 −49(1)(2) −45.4(4)(21) −47.6(4)(23) −39(1)(2)
λBT × 103 — — — −51(1)(2)
λB2 × 103 98(1)(5) 86(1)(4) 96(1)(5) 101(1)(5)

Table 4.4: Couplings and shape parameters obtained from the unconstrained fits. All
values are given in units of GeV2 in the MS scheme at a scale µ2 = 4 GeV2. The number
in the first parentheses gives a combined statistical and chiral extrapolation error. The
second one is an estimate of the error due to the renormalization procedure. The numbers
from this table should be quoted as the final results at our lattice spacing.

and should be viewed as independent non-perturbative parameters, the observed large
SU(3) breaking effects for the shape parameters are unexpected and in stark contrast to
the situation for the normalization constants, where the differences between octet baryons
are at most 50%. As a consequence, SU(3) breaking in hard exclusive reactions that are
sensitive to the deviations of the DAs from their asymptotic form can be enhanced.
Since the absolute values of the asymptotic DAs are much bigger than the shape param-

eters themselves, the mentioned SU(3) breaking effects are best visualized by subtracting
the asymptotic DAs from [V −A]B and TB, as shown in figure 4.12. As a consequence of
the approximate equality of the two nucleon shape parameters ϕN10 and ϕN11, we observe
an approximate symmetry of [V − A]N under the exchange of x2 and x3. We note that
this is a non-trivial result in contrast to the behavior of the amplitudes TB≠Λ, which are
merely by construction symmetric under the interchange of x1 and x2. In the nucleon
Fock state u↑u↓d↑ this is equivalent to a symmetric distribution of momentum between
the second and third quark. In agreement with earlier studies [44, 138, 140], we observe
that the “leading” u↑ quark, which has the same helicity as the nucleon, carries a larger
momentum fraction. In the u↑u↑d↓ nucleon state, which is described by TN , the peak of
the distribution is shifted towards the two u quarks in a symmetric manner. TN , however,
is not an independent DA. Taking into account the isospin relation (4.14), the spin-flavor
structure of the nucleon light-cone wave function (4.22a) can be presented, schematically,
as [V −A]Nu↑(u↓d↑−d↓u↑). In this picture our result for [V −A]N corresponds to a shift of
the momentum distribution towards the u↑ quark, which again carries the nucleon helicity.
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Figure 4.12: Barycentric plots (x1+x2+x3 = 1) showing the deviations of the DAs [V −A]B
and TB from the asymptotic shape φas ≡ 120x1x2x3. TΛ vanishes in the asymptotic limit,
see eq. (4.20d). In this representation the coordinates xi directly correspond to quarks of
definite flavor and helicity.
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4 Baryon distribution amplitudes

B work method fB × 103 fBT × 103 ϕB11 × 103 πB11 × 103 ϕB10 × 103 πB10 × 103

N
ours Nf = 2 + 1 3.60 3.60 0.08 0.08 0.06 —
[44] Nf = 2 2.84 2.84 0.085 0.085 0.082 —
[138] COZ 4.55 4.55 0.885 0.885 0.748 —

Σ ours Nf = 2 + 1 5.07 4.88 0.17 −0.10 −0.069 —
[138] COZ 4.65 4.46 1.11 0.511 0.523 —

Ξ ours Nf = 2 + 1 5.38 5.47 0.01 0.30 0.14 —
[138] COZ 4.83 4.92 0.685 1.10 0.883 —

Λ ours Nf = 2 + 1 4.38 — 0.18 — 0.48 0.01
[138] COZ 4.69 — 1.05 — 1.39 1.32

Table 4.5: Comparison of the central values of our Nf = 2+1 results (unconstrained fit, see
table 4.4) with the Nf = 2 lattice study for the nucleon [44] and the Chernyak–Ogloblin–
Zhitnitsky (COZ) model [138]. All values are given in units of GeV2. All quantities have
been converted to the conventions established in this work and rescaled to µ2 = 4 GeV2,
using the three-loop evolution equation for the couplings with the anomalous dimensions
calculated in ref. [139], and the one-loop equation for the shape parameters. Note that fTΛ
in ref. [138] is proportional to the first moment πΛ

10 in our nomenclature.

For the Σ baryon state d↑d↓s↑ one sees that the maximum of the distribution is shifted
from d↓ towards s↑, whereas in the d↑d↑s↓ state the s quark gathers additional momen-
tum from both d quarks equally. The overall size of the deviations from the asymptotic
distribution is, however, quite small, similar to the nucleon case. For the Ξ baryon the
deviations are slightly larger. In the s↑s↓u↑ state, the distribution is tilted towards the s↑
quark and leaves less momentum for the u↑ quark. TΞ is clearly dominated by the two s
quarks. In summary, for the isospin-nonsinglet baryons one can identify two competing
patterns: First, the strange quarks carry, in general, a larger fraction of the momentum.
This behavior can be explained with the fact that the mass of the strange quarks is much
higher compared to the light quarks. Second, in the ∣↑↓↑⟩ state the first quark is favored
over the second, while in the ∣↑↑↓⟩ state the first two quarks behave identically. These rules
do not apply to the Λ baryon due to its reversed symmetry properties, see eqs. (4.13): In
the u↑d↓s↑ state the maximum of the distribution is shifted towards the s quark. TΛ is a
special case, since it does not contain the leading asymptotic part due to the antisymmetry
under exchange of x1 and x2. Hence, for the Λ baryon, the Fock state u↑d↑s↓ is expected
to be highly suppressed.
Having calculated the first order shape parameters of the DAs allows us additionally to

determine the so-called average momentum fractions, defined as

⟨xi⟩B = 1
ϕB00,(1) ∫ [dx] xi[V −A]B , ⟨xi⟩B≠Λ

T = 1
πB00,(1) ∫ [dx] xiTB . (4.51)
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B N Σ Ξ Λ
⟨x1⟩B u↑ 0.358 d↑ 0.331 s↑ 0.361 u↑ 0.310⟨x2⟩B u↓ 0.319 d↓ 0.310 s↓ 0.333 d↓ 0.304⟨x3⟩B d↑ 0.323 s↑ 0.359 u↑ 0.306 s↑ 0.386
⟨x1⟩BT u↑ 0.340 d↑ 0.326 s↑ 0.352 —⟨x2⟩BT u↑ 0.340 d↑ 0.326 s↑ 0.352 —⟨x3⟩BT d↓ 0.319 s↓ 0.348 u↓ 0.296 —

Table 4.6: Normalized first moments of the DAs [V −A]B and TB≠Λ in the MS scheme
at a scale µ2 = 4 GeV2, obtained via eq. (4.52).

Note that the name momentum fraction is somewhat misleading as this indicates averaging
with respect to the full wave function squared instead of the DA. The various ⟨xi⟩ can be
calculated as follows:

⟨x1⟩B≠Λ = 1
3
+ 1

3
ϕ̂B11 + ϕ̂B10 , ⟨x2⟩B≠Λ = 1

3
− 2

3
ϕ̂B11 , ⟨x3⟩B≠Λ = 1

3
+ 1

3
ϕ̂B11 − ϕ̂B10 , (4.52a)

⟨x1⟩B≠Λ
T = 1

3
+ 1

3
π̂B11 , ⟨x2⟩B≠Λ

T = 1
3
+ 1

3
π̂B11 , ⟨x3⟩B≠Λ

T = 1
3
− 2

3
π̂B11 , (4.52b)

⟨x1⟩Λ = 1
3
+ 1

3
ϕ̂Λ

11 − 1
3
ϕ̂Λ

10 , ⟨x2⟩Λ = 1
3
− 2

3
ϕ̂Λ

11 , ⟨x3⟩Λ = 1
3
+ 1

3
ϕ̂Λ

11 + 1
3
ϕ̂Λ

10 , (4.52c)

where

ϕ̂Bnk = ϕBnk
ϕB00,(1)

, π̂B≠Λ
11 = πB11

πB00,(1)
. (4.53)

The results are summarized in table 4.6 and support the qualitative picture suggested by
the discussion of figure 4.12.
Regarding the higher twist matrix elements λBi , which correspond to the normalization

of the P-wave light-cone wave functions and appear as LECs in effective theories for generic
GUT models [128], we make the following observations: Our results confirm very well the
already known relation [117,132]

λN2 ≈ −2λN1 . (4.54)

In addition, we can generalize this statement also to the Σ and Ξ hyperons but not to the
Λ baryon. Instead, we find

λΛ
2 ≈ −2λΛ

T . (4.55)

The likely interpretation (similar to the familiar relations for isospin-nonsinglet baryons)
is that the corresponding matrix elements vanish in the non-relativistic quark model limit.
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4.6 Summary and outlook

The main achievement of the work presented in this chapter is the calculation of the
normalization constants and the first moments of the octet baryon distribution amplitudes
using Nf = 2+1 dynamical fermions. To this end, we have analysed lattice ensembles with
pion masses down to 222 MeV at a single lattice spacing of a ≈ 0.0857 fm. The quark
masses of the lattices were chosen such that the normalized average quadratic meson mass
corresponds to its physical value, i.e., they fulfill TrM = const. We have performed a
non-perturbative renormalization in an RI′/SMOM scheme, followed by a conversion to
the MS scheme applying continuum perturbation theory at one-loop accuracy [120]. The
renormalized lattice results have been extrapolated to the physical point using formulas
derived from three-flavor baryon chiral perturbation theory [121]. The resulting leading
twist normalization constants show definite SU(3) flavor breaking effects

fΣ

fN
= 1.41(4) , fΣ

T

fN
= 1.36(4) , fΞ

fN
= 1.50(4) , fΞ

T

fN
= 1.52(4) , fΛ

fN
= 1.22(4) , (4.56)

whereas the breaking for the higher twist couplings turns out to be somewhat smaller

λΣ
1
λN1

= 0.93(2) , λΞ
1

λN1
= 0.98(2) , λΛ

1
λN1

= 0.81(2) , λΛ
T

λN1
= 1.05(3) . (4.57)

The magnitude of the shape parameters represents a measure for the deviation of the
respective DA from its asymptotic limit. In agreement with previous lattice results for
the nucleon [44], we find that the shape parameters of the octet baryons are rather small.
In particular, we obtain much smaller values than old QCD sum rule calculations [138].
In spite of this, we observe large SU(3) breaking effects of the shape parameters, see
table 4.4. We identify two competing patterns for the isospin-nonsinglet baryons: First,
the momentum is generally shifted towards strange quarks. Second, the first quark is
favored over the second one in the f ↑g↓h↑ state, while in the f ↑g↑h↓ state the first two
quarks behave identically. This behavior does not apply to the Λ baryon due to its
reversed symmetry properties. The interplay of these two patterns leads to the rather
elaborate structure shown in figure 4.12.
Regarding our chiral extrapolations, the symmetry constraints in eqs. (4.49) can only

be implemented with a varying degree of success. As these relations stem from continuum
ChPT calculations and since we use Wilson fermions which explicitly break chiral symme-
try at a ≠ 0, we have identified lattice spacing effects as a possible origin of this problem.
Moreover, previous studies suggest that the extrapolation a→ 0 affects the normalization
constants at our lattice spacing up to 20 − 30%. Therefore, in order to obtain physical
results, our next goal is to conduct a controlled continuum extrapolation by including
various CLS ensembles with a wide range of lattice spacings.
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5.1 Pion distribution amplitude

5.1.1 Overview

The pion DA is maybe the simplest test case of DAs and has been studied over decades.
Nevertheless, its shape is still hotly debated as seen for the classical example of the ex-
perimentally accessible γγ∗ → π0 process, cf. figure 5.1, which can be used to test QCD
factorization. Over the past years, partially disagreeing measurements of the BaBar- [141]
and Belle-collaboration [142] of this form factor have fueled intense discussions [143–147]
about this process and even caused speculations about a possible breakdown of QCD
factorization [148].
Like all distribution amplitudes, the pion DA is universal, i.e., once determined, it can be

used to describe other hard exclusive processes that involve a pion. Prominent examples,
which are important for the determination of the quark mixing matrix in the Standard
Model, are the semileptonic B± → π0l±νl decays [149–151], as well as the weak B → ππ

hadronic decays [152,153].
As for the baryon DAs, the standard lattice approach employs local operators to cal-

culate Mellin moments of the pion distribution amplitude. There also exist alternative
methods [154–157] for the direct calculation of the distribution amplitude in position-space
which, however, all require large hadron momenta on the lattice. With the development of

π0

e

e

γ
q̄

γ∗
q

Figure 5.1: Leading Feynman diagram for the process γγ∗ → qq̄ → π0.
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Figure 5.2: This figure is taken from [159] and shows a comparison of various deter-
minations of the pion distribution amplitude. Left: Results for φ(x) obtained from the
large-momentum effective theory (Lat LaMET) [159], the standard Mellin moment method
(Lat Mom 1 and Lat Mom 2) [42], a Dyson–Schwinger equation approach (DSE) [160], a
fit to the Belle data [146] and a calculation using the light-front constituent quark model
(LFCQM) [161]. The DA in the asymptotic limit (Asymp) is given by 6x(1 − x). Right:
Plot showing the pseudoscalar-scalar channel of the Braun–Müller approach [154] as a
function of the product of the pion momentum p and the spatial distance z of the two
currents. The data points were calculated in ref. [162] while the blue curve was determined
using the one-loop coefficient function for the scalar-pseudoscalar channel from [162] eval-
uated with the distribution amplitude of the LaMET approach [159] together with sum
rule estimates for the higher twist normalization [163].

the momentum smearing technique [158], these approaches became applicable in practice,
see for example figure 5.2. In [154] one calculates matrix elements of space-like separated
currents,

T (pz, z2) = ⟨0∣d̄(z/2)Γ1q(z/2)q̄(−z/2)Γ2u(−z/2)∣π+(p)⟩ , (5.1)

and matches them to the corresponding pQCD factorization in terms of the distribution
amplitude. In this way, the renormalization problem for composite lattice operators is
completely avoided, but in return, a large spatial momentum is required in order to become
sensitive to the DA. We have successfully applied the position-space method to a single
ensemble with a pion mass of mπ ≈ 295 MeV in a recent publication [162]. This approach,
however, is still in its early stages as even though we employed momentum smearing, the
accessible momenta are barely large enough to determine the second Gegenbauer coefficient
with an acceptable precision. Therefore, for the time being the Mellin moment technique
described in this work is the only lattice method which is able to obtain precise results
on DAs. In the future, the position-space method will complement the standard Mellin
moments method.
Previous simulations lack a reliable continuum extrapolation of the lattice results due
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5.1 Pion distribution amplitude

to statistical uncertainties, see for example [42] for a recent study using Nf = 2 dynamical
fermions. In the following sections, we will present the results of an exploratory RQCD
study (recently published in [164]) which employs the mentioned momentum smearing
technique in order to reduce the statistical errors also when using the Mellin moments
method.

5.1.2 Continuum formulation

Neglecting both isospin breaking and electromagnetic effects, the DAs of the charged
pseudoscalar π± and the neutral π0 are trivially related such that it is sufficient to consider
only one of them. The pion has one independent leading twist DA, φ, which is defined via
a meson-to-vacuum matrix element of renormalized non-local quark-antiquark light-ray
operator,

⟨0∣d̄(z2n)/n[z2n, z1n]γ5u(z1n)∣π+(p)⟩ =
= ifπp·n∫ 1

0
dxe−i(z1x+z2(1−x))p·nφ(x,µ2), (5.2)

where z1,2 are real numbers, nµ is an auxiliary light-like vector with n2 = 0, and ∣π+(p)⟩
represents the ground state pseudoscalar π+ meson with on-shell momentum p2 = m2

π.
The straight path-ordered Wilson line connecting the quark fields, [z2n, z1n], is inserted
to ensure gauge invariance. The scale dependence of φ is indicated by the argument µ2.
The decay constant fπ appearing in eq. (5.2) can be obtained from the matrix element

of a local operator,

⟨0∣d̄(0)γ0γ5u(0)∣π+(p)⟩ = ifπp0 , (5.3)

and has the value fπ ≈ 130 MeV [165].
The physical interpretation of eq. (5.2) is that the fraction x of the pion momentum is

carried by the u quark, while the d̄ antiquark carries the remaining fraction 1 − x. Hence
the difference of the momentum fractions,

ξ = x − (1 − x) = 2x − 1 , (5.4)

is the only relevant parameter. Consequently, the Mellin moments,

⟨ξn⟩ = ∫ 1

0
dx (2x − 1)nφ(x,µ2) , (5.5)

contain all non-trivial information on the pion DA. As we assume isospin symmetry and
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neglect electromagnetic effects, the pion DA is symmetric under the interchange x↔ 1−x,
φ(x,µ2) = φ(1 − x,µ2) , (5.6)

such that all odd moments ⟨ξ2n+1⟩ vanish.
Since the Gegenbauer polynomials C3/2

n (2x − 1), which correspond to irreducible repre-
sentations of the collinear conformal group SL(2,R), form a complete set of functions, the
DAs can be expanded as

φ(x,µ2) = 6x(1 − x)[1 + ∞∑
n=1

an(µ2)C3/2
n (2x − 1)] , (5.7)

where the Gegenbauer moments an renormalize multiplicatively in leading logarithmic
order. Higher-order contributions in the Gegenbauer expansion are suppressed at large
scales, since the anomalous dimensions of an increase with n. Hence, in the limit µ → ∞
only the leading term survives, which gives the asymptotic DA:

φ(x,µ→∞) = φas(x) = 6x(1 − x) . (5.8)

5.1.3 Lattice formulation

The Mellin moments of the DAs can be expressed in terms of matrix elements of local
operators and can be evaluated using lattice QCD. In order to calculate the second moment
of the pion DA (n = 2), we define the bare operators

P(x) = d̄(x)γ5u(x) , (5.9a)

Aρ(x) = d̄(x)γργ5u(x) , (5.9b)

O−ρµν(x) = d̄(x)[ ⃗D(µ ⃗Dν − 2 ⃗D(µD⃗ν + D⃗(µD⃗ν]γρ)γ5u(x) , (5.9c)

O+ρµν(x) = d̄(x)[ ⃗D(µ ⃗Dν + 2 ⃗D(µD⃗ν + D⃗(µD⃗ν]γρ)γ5u(x) , (5.9d)

where Dµ is the covariant derivative, which will be replaced by a symmetric discretized
version on the lattice. In order to obtain a leading twist projection we symmetrize over
all Lorentz indices and subtract all traces. This procedure is indicated by enclosing the
indices in parentheses, for example O(µν) = 1

2(Oµν +Oνµ) − 1
4δµνOλλ.

Often the shorthand notation ⃗D⃗Dµ = D⃗µ − ⃗Dµ is used such that the operator O−ρµν can be
written as

O−ρµν(x) = d̄(x) ⃗D⃗D(µ ⃗D⃗Dνγρ)γ5u(x) . (5.10)

The matrix element of O−ρµν(x) between the vacuum and the π state is proportional to
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5.1 Pion distribution amplitude

the bare value of ⟨ξ2⟩:
⟨0∣O−ρµν ∣π+(p)⟩ = N π+(ρµν)⟨ξ2⟩bare , (5.11)

where N π+(ρµν) is a kinematic prefactor. The operator O+ρµν is, in the continuum, given by
the second derivative of the axialvector current:

O+ρµν(x) = ∂(µ∂νAρ)(x) , (5.12)

which leads to the matrix element

⟨0∣O+ρµν ∣π+(p)⟩ = N π+(ρµν)⟨12⟩bare . (5.13)

Possible admixtures of lower-dimensional operators can be prevented by selecting lattice
operators that belong to a suitable irreducible representation of the hypercubic group
H(4) [43, 166]. For our case, this corresponds to choosing all indices different for the
operators O±. Identifying one index with the temporal direction, this leaves us with the
operators

O±4jk, j, k ∈ {1,2,3}, j ≠ k . (5.14)

In order to extract the desired moments we use two-point correlation functions of the
operators O±4jk and Aρ with an interpolating field,

Cρ(t,p) = a3∑
x
e−ipx⟨Aρ(x, t)J†(0)⟩ , (5.15)

C±
ρµν(t,p) = a3∑

x
e−ipx⟨O±ρµν(x, t)J†(0)⟩ , (5.16)

where J = P or J = A4. For sufficiently large t, the ground state dominates and the
correlation functions give

CO(t,p) = 1
2E

⟨0∣O(0)∣π+(p)⟩⟨π+(p)∣J†(0)∣0⟩(e−Et + τOτJe−E(T−t)) , (5.17)

where the sign factors τO, τJ = ±1 depend on the transformation properties of the corre-
lation functions under time reversal. Following ref. [42], the required matrix elements for
the second moments can be extracted from the ratios

R±
4ik = C±

4ik(t,p)
C4(t,p) = −pipkR± , (5.18)

where R+ = ⟨12⟩bare and R− = ⟨ξ2⟩bare. In order to test the effects of the new smear-
ing technique introduced in the next section it is sufficient to restrict oneself to the
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interpolator J = P. The renormalized moments in the MS scheme read

⟨ξ2⟩MS = ζ11R
− + ζ12R

+ , (5.19)

aMS
2 = 7

12
[5ζ11R

− + (5ζ12 − ζ22)R+] , (5.20)

⟨12⟩MS = ζ22R
+, (5.21)

where ζij are ratios of renormalization constants. Even though by construction,

⟨12⟩MS = 1 (5.22)

in the continuum, this is no longer true on the lattice because the Leibniz rule holds for
discretized derivatives only up to lattice artifacts. This has to be taken into account for
the calculation of the Gegenbauer moment a2, as for finite lattice spacings a the continuum
relation

aMS
2 = 7

12
[5⟨ξ2⟩MS − 1] , (5.23)

is modified to

aMS
2 = 7

12
[5⟨ξ2⟩MS − ⟨12⟩MS] . (5.24)

5.1.4 Simulation details and momentum smearing

On the lattice, the spatial momentum components are quantized in terms of integer mul-
tiples of 2π/L. It follows from eq. (5.18), that the calculation of the second moment
of the DA requires a spatial momentum p = (2π/L)np with at least two non-vanishing
components, i.e., n2

p ≥ 2. In addition, taking two derivatives considerably deteriorates
the signal-to-noise ratio. The problem is ameliorated by using momentum smearing first
introduced in [158].
Quark-smearing on the lattice is used in order to increase the overlap with the ground

state. The smearing operator F should be self-adjoint, gauge covariant and a singlet with
respect to all global transformations that act on a timeslice. In the non-interacting case its
action on a quark field q can be expressed as a convolution with a scalar kernel function f :

(Fq)x = ∑
y
f(x − y)qy . (5.25)

In momentum space this convolution becomes a product.
If our smearing kernel is a real Gaussian, then in momentum space it will remain a

Gaussian centred around q = 0 (see figure 5.3) and large hadron momenta will be strongly
suppressed. If the hadron carries a non-vanishing momentum p, it is natural to assume
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x

f (x)

q

f̃ (q)

Figure 5.3: One dimensional (not to scale) illustration of the Wuppertal smearing process:
A Gaussian smearing kernel f(x) ∝ exp(− x2

2σ2 ) in position-space corresponds to a Gaussian
distribution f̃(q) ∝ exp(−σ2q2

2 ) in momentum space.

x

Re(eikxf (x))

k q

f̃ (q − k)

Figure 5.4: One dimensional (not to scale) illustration of the momentum smearing pro-
cess: By introducing the phase factor exp(ikx) in position-space, the smearing kernel in
momentum space is shifted, f̃(q) → f̃(q − k), such that the resulting Gaussian is now
centered around the non-zero momentum k.

that the quark will carry a momentum fraction k = ζp. Therefore, a better overlap with
the state can be expected if the Gaussian in momentum space is centered around q = k
instead of q = 0. Within the momentum smearing approach, this is achieved by multiplying
a phase factor to the smearing kernel in position-space, see figure 5.4. We remark that
there is no obvious relation between ζ and the longitudinal momentum fraction x of the
light-cone wave function. The modified Gaussian wave function with width σ has the form

f(k)(x − y) = f(0)(0) exp[−(x − y)2

2σ2 + ik(x − y)] , (5.26)

where f(0) = f . Our periodic lattice appears to imply a quantization of the possible values
of k. However, eq. (5.26) can also be cast into an iterative process, lifting this limitation.
In an infinite volume, the above convolution F(k)q can be obtained as the result of evolving
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the heat equation with a drift term,

∂q(τ)
∂τ

= α(∇ − ik)2q(τ) , (5.27)

starting from a spatial delta source at τ = 0, to the fictitious time τ = σ2/(2α).
One can approximate eq. (5.27) by a discrete process, defining F(k) = Φn(k) as the nth

application of an elementary iteration,

(Φ(k)q)x = 1
1 + 6ε

⎡⎢⎢⎢⎢⎣qx + ε ±3∑
j=±1

Ux,je
−ik̂qx+̂

⎤⎥⎥⎥⎥⎦ , (5.28)

where Ux,j is the gauge link connecting the lattice points x and x+̂, for details see refs. [83,
158]. In practice this smearing is implemented by multiplying the spatial connectors within
the timeslice in question by the appropriate phases, Ux,j ↦ e−iakjUx,j . For k = 0 eq. (5.28)
corresponds to the well-known Wuppertal smearing [92, 167]. The time coordinate is
suppressed as the smearing is local in time.
The gauge connectors within eq. (5.28), Ux,j and Ux,−j ≡ U †

x−̂,j , are spatially APE-
smeared [93]:

U
(m+1)
x,i = PSU(3)⎛⎝δ U (m)

x,i +∑∣j∣≠iU
(m)
x,i U

(m)
x+̂,iU

(m)†
x+̂ı,j

⎞⎠ , (5.29)

where the sum runs over the four spatial staples that surround Ux,i with i ∈ {1,2,3}
and j ∈ {±1,±2,±3}. The gauge-covariant projector PSU(3) projects onto the gauge group
SU(3) by maximizing Re Tr{A†PSU(3)(A)}. If the APE smeared links are close to unit
fields then the width parameter of the resulting Gaussian is given by [158]

σ ≈ √
2na2

√
ε

1 + 6ε
, (5.30)

where large values of ε will allow for smaller iteration counts n, but the resulting function
will be less smooth.
In the meson case the quark creation operator at the source needs to be smeared with

F(k) and the quark destruction operator with F(−k), while for baryons all three quarks
should be smeared with F(k), see ref. [158] for details.
We illustrate the reduction of statistical errors for the two-point functions that enter

the calculation of the second moment of the pion DA when using the momentum smearing
technique instead of the standard Wuppertal smearing. For this purpose we consider the
CLS ensembles introduced in table 3.1. The statistical errors were evaluated using the
bootstrap procedure combined with the binning method, where blocks of Nbin consecutive
configurations are randomly chosen. We have observed that a binsize of Nbin = 10 saturates
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the statistical error.
The gauge links entering the quark smearing were APE smeared according to eq. (5.29),

employing 25 iterations with the parameter δ = 2.5. We applied both, the standard
Wuppertal smearing [92, 167] and the novel momentum smearing, i.e., we implemented
eq. (5.28) setting k = 0 and k ≠ 0, respectively, and applied 300 smearing steps with the
smearing parameter ε = 0.25. The root mean squared width of the squared pion interpo-
lator wave function can be estimated using eq. (5.30). This gives

√
3σ ≈ √

3 · 0.664 fm ≈
1.14 fm. After studying the improvement achieved through momentum smearing, we at-
tempt a chiral extrapolation of our results at a fixed lattice spacing a ≈ 0.0857 fm.

5.1.5 Optimizing the smearing and the momentum

In order to obtain the second moment of the pion DA we compute ratios of two-point
functions that are smeared at the source and local at the sink (smeared-point), where the
physical momenta p and smearing vectors k are parallel:

k = ζp. (5.31)

One may naively expect that a value ζ ≲ 1/2 is optimal, as this would distribute the meson
momentum evenly between quark and antiquark. However, ref. [158] indicated that a value
ζ ≈ 0.8 was preferable. We confirm that by decreasing ζ from 0.8 to 0.6, no discernable
improvement of the ground state overlap can be observed, see figure 5.5 for the example
of the ratio R−. If at all, the statistical errors become slightly larger. In the following we
therefore stick to the suggested value of ζ = 0.8.
Using the momentum smearing for mesons, one needs two inversions per momentum

vector np. In contrast to baryonic two-point functions, where all quarks propagate in the
forward direction and therefore are smeared using f(k), the antiquark in mesonic two-point
functions needs to be smeared with f(−k). It is instructive to determine which momentum
vector np produces the best signal for a given ensemble. We make a crude approximation
for the signal-to-noise ratio S(t) by assuming a time-independent noise function. Then
the signal-to-noise ratio of the numerator (which dominates the error of the combination
eq. (5.18)) can be estimated as

S(t) ∝ pipj exp(−√m2
π + p2t) . (5.32)

Maximizing this expression with respect to p2 gives the positive solution

p2 = 2
t2

(1 +√
1 +m2

πt
2) . (5.33)

Clearly, the optimal choice of momentum for a given correlation function depends on t
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Figure 5.5: Comparison of different values for the parameter ζ, using the bare lattice
value of R− (see eq. (5.18)) at the squared momentum p2 = 2(2π/L)2 ≈ (0.64 GeV)2

obtained from 331 configurations of the ensemble H105.

and lower momenta will always be preferred at large values of t. This means the outcome
will depend on the fit window in t and this in turn will depend on the available statistics.
To find the most appropriate momentum, we plot eq. (5.33) in figure 5.8 for the typical
fit range for our different ensembles, 4 ≤ t/a ≤ 12. Based on this model, we can read
off that for the L = 32a lattices squared momenta in the vicinity of n2

p = 2 should give
reasonable results, whereas for the larger L = 48a lattice values of n2

p closer to 5 should
be investigated. As an example, in figure 5.6 we show the results of the bare observables
R± calculated for different momenta p on the L = 48a C101 ensemble. For small values
of t/a, larger p2 exhibit smaller statistical errors, whereas for large values of t/a, the error
increases with p2. Thus there is a window for an optimal choice of momentum. In our
further analysis we choose np = (1,1,0), np = (1,0,1) and np = (0,1,1) for the ensembles
with a spatial extent of L = 32a and np = (2,1,0), np = (2,0,1) and np = (0,2,1) for
the C101 ensemble. For the L = 32a lattices we employ a single source position, while for
C101 we realize on average 2 source positions on each configuration.

5.1.6 Momentum smearing versus Wuppertal smearing

As a direct comparison, figure 5.7 shows the plateau of R+ (left) and R− (right) for the
H105 lattice with Nc = 2830 for both smearing methods. Clearly the momentum smearing
generates a much cleaner and longer plateau with very small statistical errors. In contrast
to the standard Wuppertal smearing, where errors increase rapidly for high values of t,
the signal-to-noise problem is less severe for the momentum smearing. Moreover, in some
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Figure 5.6: Value of R± for C101 (mπ = 222 MeV) with different momenta p using 52
configurations.
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Figure 5.7: Comparison of the bare lattice values of R− for H105 (mπ = 280 MeV) using
the standard Wuppertal smearing and the new momentum smearing techniques.

cases, such as R+ (shown in figure 5.7), we notice reduced contaminations from excited
states.
In figure 5.7 we compared the results for the same number of configurations. However,

the novel momentum smearing method is computationally more expensive. In general
one can average over momenta that are equivalent in terms of the cubic symmetry group.
Taking into account that the results for p and −p are trivially related, this gives, depending
on the momentum, up to 12 possible lattice directions. For the Wuppertal smearing,
additional momenta are computationally almost for free, as they only require additional
Fourier sums. In contrast, for the momentum smearing each momentum direction requires
new, differently smeared sources. For the pion two inversions, with momenta k and −k, are
necessary as discussed in section 5.1.4. For n2

p = 2 this means that momentum smearing is
by a factor of almost 6 more expensive than Wuppertal smearing for a given configuration.
In table 5.1 we provide an equal cost comparison of the ratios of errors obtained using both
methods for the H105 lattice. Even at equal cost, we still see a reduction of the squared
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Figure 5.8: The optimal n2
p, according to the model eq. (5.33), as a function of t/a for

each ensemble.

error by up to a factor 3, in particular for the physically more relevant R− ratio. Note that
for R+, this factor is around 1 for small t/a, but grows after the ground state plateau is
reached for t > 7a. The reduction in error is not only a local effect on individual timeslices,
it persists also when performing a fully correlated fit in the plateau region. For a fixed
number of measurements the gain of momentum smearing is even larger than at a fixed
computational cost. However, the reduction of errors that can be achieved by increasing
the number of measurements on each configuration is limited, as additional measurements
will become increasingly correlated. One could also argue that the computational cost
of the generation of configurations can be decreased by momentum smearing, as fewer
configurations have to be generated in order to achieve a certain statistical precision. In
general, however, this is not true since observables plagued by long autocorrelation times
require a large number of Monte Carlo updates anyway.
Note that for mesons containing non-degenerate quarks, the traditional method becomes

more expensive as this will also require two inversions, while for baryon interpolators
no momentum smearing with −k is required. This means that in terms of a real cost
comparison the pion is the least favorable case for momentum smearing.

5.1.7 Chiral extrapolation

We use ChPT to extrapolate the results obtained with the new momentum smearing
to physical quark masses. Up to one-loop order, ⟨ξ2⟩MS and aMS

2 do not contain chiral
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t/a 3 4 5 6 7 8 9 10 11 12
R− 1.01 1.64 1.35 2.60 1.82 2.51 3.20 1.96 2.48 3.21
R+ 0.85 0.97 1.03 1.64 1.03 0.85 1.28 1.76 1.77 3.24

Table 5.1: Equal cost comparison of the errors obtained with both methods on the H105
lattice for R±. We show the squared ratio of the statistical errors of Wuppertal smearing
over momentum smearing divided by the number of inversions needed for each method.
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Figure 5.9: Mean and one standard deviation error bands of the chiral extrapolation of⟨ξ2⟩ (left) and a2 (right). The vertical dotted line indicates the physical pion mass.

logarithms [168], which yields a linear behavior in m2
π,

⟨ξ2⟩ = ⟨ξ2⟩(0) + ⟨ξ2⟩(2)m2
π , (5.34)

a2 = a(0)2 + a(2)2 m2
π , (5.35)

where ⟨ξ2⟩(n) are LECs of the fit. Higher order corrections would start at O(m4
π) and are

not considered here. The chiral extrapolation is depicted in figure 5.9. At the physical
point we find

⟨ξ2⟩MS(2 GeV) = 0.2077(43) , (5.36)

aMS
2 (2 GeV) = 0.0762(127) . (5.37)

These numbers were obtained at the fixed lattice spacing a ≈ 0.0857 fm and no continuum
limit has been performed yet.
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Note that by inserting eq. (5.36) into eq. (5.23), one obtains

aMS
2 = 7

12
[5⟨ξ2⟩MS − 1]

= 7
12

[5 · 0.2077 − 1]
≈ 0.0225 ≠ 0.0762 , (5.38)

in contradiction to the obtained results for a2 in eq. (5.37). However, due to the effects of
the finite lattice spacing a, one has to use eq. (5.24) instead of eq. (5.23). Thus we also
extrapolate ⟨12⟩MS linear in m2

π to obtain

⟨12⟩MS(2 GeV) = 0.905(3) . (5.39)

Finally, inserting eq. (5.39) and eq. (5.36) into eq. (5.24) gives

aMS
2 = 7

12
[5⟨ξ2⟩MS − ⟨12⟩MS]

= 7
12

[5 · 0.2077 − 0.905]
≈ 0.0779 , (5.40)

which agrees well with eq. (5.37). This also shows that a2 is a much more sensitive quantity
than ⟨ξ2⟩.
5.1.8 Summary and outlook

In the previous sections we have demonstrated the capabilities and advantages of the
momentum smearing technique by comparing it to the standard Wuppertal smearing. It is
important to note that we obtained smaller errors with a similar computational effort even
though we performed this comparison for the example of the pion, where the momentum
smearing requires an additional inversion compared to the Wuppertal smearing. Thus, the
gain of the method is even higher for mesons like the kaon where already two inversions
are required for the Wuppertal smearing. In total, the momentum smearing proves to be
especially useful if only a fixed number of configurations is available, as it yields smaller
statistical errors than other techniques. As a next step, we will apply this technique to the
whole meson octet on multiple CLS lattices, including ensembles at (nearly) physical quark
masses and various lattice spacings down to a ≈ 0.04 fm. This will expand our previous
work on the pion DA [42] and allow us to perform a combined chiral and continuum
extrapolation.
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5.2 Rho-meson distribution amplitudes

5.2.1 Overview

The DAs of the ρ-meson are essential in describing processes like the radiative B → ργ [169]
or the semileptonic B → ρlν decays [170]. The interest in these decays arose due to the
possibility to extract Cabibbo–Kobayashi–Maskawa (CKM) matrix elements, in this case∣Vub∣ and ∣Vtd/Vts∣, as well as the sensitivity of B meson decays to physics beyond the
Standard Model [171]. Other applications are deeply-virtual exclusive meson produc-
tion (DVMP) like the electron-nucleon collision eN → eρN , which allows to probe the
transverse distribution of partons inside the nucleon, as well as deeply-virtual Compton
scattering (DVCS), see [172]. The ρ DA can then be used within global fits of generalized
parton distributions from the DVMP and DVCS data [173].
In the following sections we will present a lattice calculation of the coupling constants

and the second moments of the ρ DA, which has been published in [97]. The analysis runs
of this work were performed on the ensembles introduced in section 3.3.4, which feature
pion masses down to mπ = 150 MeV. In the real world, the ρ-meson decays through strong
interaction to a pair of pions, ρ → ππ, with a branching ratio of more than 99%. Due to
the high computational costs of two-particle interpolators, we neglect the effects of this
decay in this work but refer to [174], where a method to include such contributions is
explained.1

5.2.2 Continuum formulation

In contrast to the pseudoscalar pion in section 5.1.2, the vector ρ-meson has two inde-
pendent leading twist (twist two) DAs, φρ and φρ [25], corresponding to longitudinal and
transverse polarization, respectively. By neglecting isospin breaking and electromagnetic
effects, the DAs of charged ρ± and neutral ρ0 mesons, in a similar manner as for the
pion triplet, are related such that it is sufficient to consider one of them. The correspond-
ing meson-to-vacuum matrix elements of renormalized non-local quark-antiquark light-ray
operators are given by [25,175]

⟨0∣d̄(z2n)/n[z2n, z1n]u(z1n)∣ρ+(p, λ)⟩
=mρfρe

(λ)·n∫ 1

0
dxe−ip·n(z1x+z2(1−x))φρ(x,µ) , (5.41a)

e
(λ′)
,µ nν⟨0∣d̄(z2n)σµν[z2n,z1n]u(z1n)∣ρ+(p, λ)⟩

= ifTρ (e(λ′)·e(λ))p·n∫ 1

0
dxe−ip·n(z1x+z2(1−x))φρ(x,µ) , (5.41b)

1A posteriori, our approximation can at least be partly justified by the fact that the final results are not
influenced significantly when including the ensemble below the decay threshold, see also the discussion
in section 5.2.9.
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where again z1,2 are real numbers, n is an auxiliary light-like vector (n2 = 0), and ∣ρ+(p, λ)⟩
is the state of the ρ+ meson with on-shell momentum p2 = m2

ρ and polarization λ. The
polarization vector e(λ)µ of the ρ-meson fulfills

e(λ)·p = 0 , ∑
λ

e(λ)µ e(λ)∗ν = −gµν + pµpν
m2
ρ

, (5.42)

with the projection

e
(λ)
,µ = gµνe(λ) ν . (5.43)

Similar to the pseudoscalar case, x corresponds to the fraction of the ρ+-meson’s light-cone
momentum p·n which is carried by the u-quark, whereas 1 − x is the momentum fraction
carried by the antiquark d̄. The couplings fρ and fTρ appearing in (5.41) are defined as
matrix elements of local operators:

⟨0∣d̄(0)γµu(0)∣ρ+(p, λ)⟩ = fρmρe
(λ)
µ , (5.44a)

⟨0∣d̄(0)σµνu(0)∣ρ+(p, λ)⟩ = ifTρ (e(λ)µ pν − e(λ)ν pµ) . (5.44b)

In the following, we will refer to them as vector and tensor couplings, respectively. The
vector coupling fρ is scale independent and can be extracted from experiment, see ap-
pendix C in ref. [176] for a detailed discussion. One obtains [176]

fρ+ = (210 ± 4) MeV , f
(u)
ρ0 = (221.5 ± 3) MeV , f

(d)
ρ0 = (209.7 ± 3) MeV , (5.45)

where for the neutral ρ-meson we quote separate values for the ūu and d̄d currents. The
difference in the given three values is due to isospin breaking and electromagnetic correc-
tions, which will be neglected throughout this study.
The tensor coupling fTρ is scale dependent and is not directly accessible from experiment.

To leading order one obtains

fTρ (µ) = fTρ (µ0)( αs(µ)
αs(µ0))

CF /β0

, (5.46)

where CF = (N2
color − 1)/(2Ncolor), β0 = (11Ncolor − 2Nf)/3, Ncolor = 3 is the number of

colors and Nf the number of active flavors. The definitions (5.44) correspond to DAs that
are normalized to unity,

∫ 1

0
dxφ ,ρ (x) = 1 , (5.47)

and, as for the pion DA, we introduce the variable ξ = 2x − 1, which corresponds to the
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difference of the momentum fractions of quark and antiquark. We define the corresponding
Mellin moments

⟨ξn⟩ , = ∫ 1

0
dx (2x − 1)n φ ,ρ (x) , n = 2,4,6, . . . , (5.48)

which can be related algebraically to the Gegenbauer moments. We are again interested
in the first non-vanishing case, n = 2. The second Gegenbauer moment is given by

a ,2 = 7
12

(5⟨ξ2⟩ , − 1) . (5.49)

The rationale for using Gegenbauer moments is that they are eigenfunctions of the one-
loop evolution equation and therefore show autonomous scale dependence at the one-loop
level, see [97]. Similar to eq. (5.7) for the pion, we expand the DAs of the ρ-meson and
obtain

φ ,ρ (x,µ) = 6x(1 − x)[1 + ∞∑
n=2,4,...

a ,n (µ)C3/2
n (2x − 1)] . (5.50)

The asymptotic DA is again obtained in the limit µ→∞:

φ ,ρ (x,µ→∞) = φas(x) = 6x(1 − x) . (5.51)

5.2.3 Lattice formulation

As already mentioned, our aim is to calculate the couplings fρ and fTρ as well as the second
DA moments. To this end we define bare operators

Vµ(x) = d̄(x)γµu(x) , (5.52a)

Tµν(x) = d̄(x)σµνu(x) , (5.52b)

and

V ±
µνρ(x) = d̄(x)γµ( ⃗Dν

⃗Dρ ± 2 ⃗DνD⃗ρ + D⃗νD⃗ρ)u(x) , (5.53a)

T±µνρσ(x) = d̄(x)σµν( ⃗Dρ
⃗Dσ ± 2 ⃗DρD⃗σ + D⃗ρD⃗σ)u(x) . (5.53b)

As in section 5.1.3, the projection onto leading twist corresponds to symmetrization over
the maximal possible set of Lorentz indices and subtraction of traces. However, the DAs
of the ρ involve operators containing the σµν-matrix. In this case, also those traces have
to be subtracted which correspond to index pairs where one of the indices equals µ or ν.
The operator V −(µνρ)(x) can be rewritten as

V −(µνρ)(x) = d̄(x)γ(µ ⃗D⃗Dν
⃗D⃗Dρ)u(x) (5.54)
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and its matrix element between the vacuum and the ρ state is proportional to the bare
value of the second moment ⟨ξ2⟩ :

⟨0∣V −(µνρ)∣ρ+(p, λ)⟩ = N ρ+(µνρ)⟨ξ2⟩bare , (5.55)

where N ρ+(µνρ) is again a kinematic prefactor. The operator V +(µνρ)(x) in the continuum
reduces to the second derivative of the vector current,

V +(µνρ)(x) = ∂(µ∂ν d̄(x)γρ)u(x) , (5.56)

so that

⟨0∣V +(µνρ)∣ρ+(p, λ)⟩ = N ρ+(µνρ)⟨12⟩bare . (5.57)

The situation with the tensor operators T±µ(νρσ) and the corresponding matrix elements⟨⋯⟩ is similar. For the bare moments, we use the same notation as for the pion DA and
define

R ,+ = ⟨12⟩ ,bare , (5.58a)

R ,− = ⟨ξ2⟩ ,bare . (5.58b)

The operators V −(µνρ) and V +(µνρ) mix under renormalization even in the continuum, as
do T−µ(νρσ) and T+µ(νρσ). Additional mixing could result from the fact that the continuous
O(4) symmetry of Euclidean space is reduced to the discrete H(4) symmetry of the
hypercubic lattice. This is particularly worrisome if operators of lower dimension are
involved. Fortunately, in the case at hand it is possible to avoid additional mixing by
using suitably chosen operators, which will be detailed in section 5.2.6.

5.2.4 Lattice correlation functions

In order to “create” the ρ-meson we use the interpolating current Vν(x), which is defined
as Vν(x) with smeared quark fields. In this section, quark smearing refers to the standard
Wuppertal smearing, i.e., the momentum smearing in the limit k → 0, see section 5.1.4.2

Let O be a local (unsmeared) operator, e.g., one of the operators defined in eqs. (5.53)
above. One then obtains for the two-point function in the region where the ground state

2Momentum smearing would also help in this case but was only developed after this analysis had already
started.
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Γ 1 γj γ4 γjγ5 γ4γ5 γ5 γjγk γjγ4

σ 1 1 −1 −1 1 −1 1 −1

Table 5.2: Sign factors σ for the different Dirac matrices Γ. Here j, k ∈ {1,2,3} and j ≠ k.
dominates

CO(t,p) = a3∑
x
e−ip·x⟨O(t,x)V †

ν (0)⟩
= 1

2E
A(O,Vν ∣ p)(e−Et + σ σO (−1)nte−E(T−t)) (5.59)

with

A(O,Vν ∣ p) = ∑
λ

⟨0∣O(0)∣ρ+(p, λ)⟩⟨ρ+(p, λ)∣V †
ν (0)∣0⟩ . (5.60)

The sign factors σ are determined by the Dirac matrices in the creation operator (which
is in our case always γν), while σO are the analogous factors for O (see table 5.2), and nt
is the number of time derivatives in O.
For the decay constants and the second DA moments of the ρ-meson we have to evaluate

the following set of correlation functions:

Cµ1ν(t,p) = a3∑
x
e−ip·x⟨Vµ1(t,x)V †

ν (0)⟩ , (5.61a)

Cµ1ν(t,p) = a3∑
x
e−ip·x⟨Vµ1(t,x)V †

ν (0)⟩ , (5.61b)

Cµ0µ1ν(t,p) = a3∑
x
e−ip·x⟨Tµ0µ1(t,x)V †

ν (0)⟩ , (5.61c)

C±
µ1µ2µ3ν(t,p) = a3∑

x
e−ip·x⟨V ±

µ1µ2µ3(t,x)V †
ν (0)⟩ , (5.61d)

C±
µ0µ1µ2µ3ν(t,p) = a3∑

x
e−ip·x⟨T±µ0µ1µ2µ3(t,x)V †

ν (0)⟩ . (5.61e)

5.2.5 Decay constants

In order to determine the leading twist couplings of the ρ-meson, we use the correlation
functions

Cjj(t,0) = Zρ 1
2mρ

(e−mρt + e−mρ(T−t)) + . . . , (5.62a)

Cjj(t,0) =mρfρ
√
Zρ

1
2mρ

(e−mρt + e−mρ(T−t)) + . . . , (5.62b)

C4jj(t,0) = −imρf
T
ρ

√
Zρ

1
2mρ

(e−mρt − e−mρ(T−t)) + . . . , (5.62c)
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with j = 1,2,3, assuming the dominance of the lowest one-particle state. In the actual
fits we average over the forward and backward running states. In our simulations, the
signal disappears in the noise well before the middle point t = T /2 in the time direction is
reached (see figure 5.10 for an example), and the “mixing” of these two contributions is
completely negligible. Therefore we work with simple exponential fits,

1
3

3∑
j=1

t̂+Cjj(t,0) = Zρ

2mρ
e−mρt , (5.63a)

1
3

3∑
j=1

t̂+Cjj(t,0) = fρ
√
Zρ

2
e−mρt , (5.63b)

1
3

3∑
j=1

t̂−C4jj(t,0) = −ifTρ
√
Zρ

2
e−mρt , (5.63c)

where the averaging operator t̂± is defined as

t̂±C(t,p) = 1
2(C(t,p) ±C(T − t,p)) . (5.64)

The decay constants fρ and fTρ can be obtained by simultaneously fitting the correlation
functions (5.63a)–(5.63c). The result for the mass is then dominated by the two smeared-
local correlation functions (5.63b) and (5.63c), as they have much smaller statistical errors.
However, they exhibit larger contributions from excited states so that the isolation of the
ground state is less reliable. Therefore we first fit the correlator with a smeared operator
at the sink, (5.63a), to extract Zρ and mρ. These values are then inserted into eqs. (5.63b)
and (5.63c) in order to obtain fρ and fTρ as well as fTρ /fρ from a second fit. This procedure
is repeated for every bootstrap sample allowing an estimation of the statistical error.

5.2.6 Second moments

Multiplets of twist-2 operators suitable for the evaluation of the second longitudinal mo-
ments consist of the operators

O±1 = V ±{234} , O±2 = V ±{134} , O±3 = V ±{124} , O±4 = V ±{123} . (5.65)

Here and in the following, {⋯} denotes symmetrization of the enclosed n indices with an
overall factor 1/n! included. The two multipletsO+1 , . . . ,O+4 andO−1 , . . . ,O−4 both transform
according to the irreducible representation τ4

2 of the hypercubic group H(4) [177]. Their
symmetry properties ensure that under renormalization they can only mix with each other,
while mixing with additional operators of the same or lower dimension is forbidden. The
amplitudes (5.60) of the 2-point functions (5.59) where O is one member of these multiplets
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are related to the amplitudes where O is a component of the vector current Vµ by

A(O±1 ,Vν ∣ p) = −1
3R±(p2p3A(V4,Vν ∣ p) + ip2EA(V3,Vν ∣ p) + ip3EA(V2,Vν ∣ p)) ,

(5.66a)

A(O±2 ,Vν ∣ p) = −1
3R±(p1p3A(V4,Vν ∣ p) + ip1EA(V3,Vν ∣ p) + ip3EA(V1,Vν ∣ p)) ,

(5.66b)

A(O±3 ,Vν ∣ p) = −1
3R±(p1p2A(V4,Vν ∣ p) + ip2EA(V1,Vν ∣ p) + ip1EA(V2,Vν ∣ p)) ,

(5.66c)

A(O±4 ,Vν ∣ p) = −1
3R±(p1p2A(V3,Vν ∣ p) + p1p3A(V2,Vν ∣ p) + p2p3A(V1,Vν ∣ p)) .

(5.66d)

We will try to increase the signal-to-noise ratio by considering only correlation functions
with the smallest non-zero momentum in one spatial direction, which is equal to 2π/L on a
lattice of spatial extent L. Therefore we exclude O±4 from our calculation. After averaging
over all suitable combinations as well as over forward and backward running states, the
second longitudinal moments can be obtained from the ratio

1
6

3∑
j=1

3∑
k=1
k≠j

p̂−t̂−C±{4jk}k(t, 2π
L ej)

p̂+t̂+Ckk(t, 2π
L ej) = −2π

L
E

1
3
iR± , (5.67)

where momentum averaging is accounted for by the operator p̂±:
p̂±C(t,p) = 1

2(C(t,p) ±C(t,−p)) . (5.68)

In the transverse case we consider the following multiplets:

O±1,T = T ±13{32} + T±23{31} − T±14{42} − T±24{41} , (5.69a)

O±2,T = T ±12{23} + T±32{21} − T±14{43} − T±34{41} , (5.69b)

O±3,T = T ±12{24} + T±42{21} − T±13{34} − T±43{31} , (5.69c)

O±4,T = T ±21{13} + T±31{12} − T±24{43} − T±34{42} , (5.69d)

O±5,T = T±21{14} + T±41{12} − T±23{34} − T±43{32} , (5.69e)

O±6,T = T±31{14} + T±41{13} − T±32{24} − T±42{23} . (5.69f)

The two multiplets O+1,T , . . . ,O+6,T and O−1,T , . . . ,O−6,T both transform according to the irre-
ducible representation τ (6)2 of the hypercubic group H(4). As in the case of the multiplets
(5.65), mixing with additional operators of the same or lower dimension is forbidden by
symmetry. The amplitudes (5.60) of the 2-point functions (5.59) where O is one member
of the multiplets (5.69) are related to the amplitudes where O is a component of the tensor
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current Tµν by

A(O±1,T ,Vν ∣ p) = −R±(p2p3A(T13,Vν ∣ p) + p1p3A(T23,Vν ∣ p)
+ ip2EA(T41,Vν ∣ p) + ip1EA(T42,Vν ∣ p)) , (5.70a)

A(O±2,T ,Vν ∣ p) = −R±(p2p3A(T12,Vν ∣ p) + p1p2A(T32,Vν ∣ p)
+ ip3EA(T41,Vν ∣ p) + ip1EA(T43,Vν ∣ p)) , (5.70b)

A(O±3,T ,Vν ∣ p) = −R±(p1p2A(T42,Vν ∣ p) − p1p3A(T43,Vν ∣ p)
+ ip2EA(T12,Vν ∣ p) + ip3EA(T31,Vν ∣ p)) , (5.70c)

A(O±4,T ,Vν ∣ p) = −R±(p1p3A(T21,Vν ∣ p) + p1p2A(T31,Vν ∣ p)
+ ip3EA(T42,Vν ∣ p) + ip2EA(T43,Vν ∣ p)) , (5.70d)

A(O±5,T ,Vν ∣ p) = −R±(p1p2A(T41,Vν ∣ p) − p2p3A(T43,Vν ∣ p)
+ ip1EA(T21,Vν ∣ p) + ip3EA(T32,Vν ∣ p)) , (5.70e)

A(O±6,T ,Vν ∣ p) = −R±(p1p3A(T41,Vν ∣ p) − p2p3A(T42,Vν ∣ p)
+ ip1EA(T31,Vν ∣ p) + ip2EA(T23,Vν ∣ p)) . (5.70f)

As in the longitudinal case, we only consider correlation functions with the smallest non-
zero momentum in one spatial direction and perform averages similar to those in eq. (5.67).
This leads to the following ratio for the second transverse moments:

1
6

3∑
j=1

3∑
l=1
l≠j

3∑
k=1
k≠j
k≠l

( p̂−t̂+(C±
4{4jl}l(t, 2π

L ej) −C±
k{kjl}l(t, 2π

L ej))
p̂+t̂−C4ll(t, 2π

L ej)
+ p̂+t̂−(C±

j{j4l}l(t, 2π
L ej) −C±

k{k4l}l(t, 2π
L ej))

p̂−t̂+Cjll(t, 2π
L ej) ) = −2π

L
E

2
3
iR± . (5.71)

5.2.7 Details of the lattice simulations

In order to increase the overall statistics we performed multiple measurements per con-
figuration. The source positions of these measurements were selected randomly to reduce
the correlations. To obtain a better overlap with the ground state we applied Wuppertal
smearing [92] in the interpolating current Vν using APE smeared gauge links [93].
For the statistical analysis we generated 1000 bootstrap samples per ensemble using

a binsize of 4 to further eliminate autocorrelations. For the purpose of maximizing the
statistics of the second moments, we average for each bootstrap sample over all suitable
combinations of 2-point functions, all possible momentum directions as well as over for-
ward and backward running states as pointed out in eqs. (5.67) and (5.71). In order to
reduce contributions from excited states the choice of the starting point of the fit range
is important. As an example, figure 5.10 demonstrates that, with increasing source-sink
distance, the excited states fall below the noise and plateaus of the correlation functions
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Figure 5.10: The data points in these plots show R± as a function of the sink position
t, calculated from the time- and momentum-averaged correlation functions according to
eq. (5.67) on the β = 5.29, κ = 0.13632, L = 32a, T = 64a ensemble, cf. table 3.2 on page 26.
The cyan-colored bar indicates the fitted value of R±, the error and the fitting range.

for R± emerge. The starting time tstart is then chosen in such a way that fits with even
larger starting times no longer show any systematic trend in the fitted values. Multi-state
fits (over larger fit ranges) yield consistent results.

5.2.8 Data analysis

Before being able to conduct a chiral extrapolation, the raw lattice data has to be renor-
malized. Again, we employ a non-perturbative method in an RI′/SMOM scheme and
convert the results to the MS scheme using continuum perturbation theory. The full
renormalization procedure is worked out explicitly in [97]. The bare operators are chosen
such that there is only mixing between the + and − operator multiplets. In this way, one
merely has to determine the 2 × 2 mixing matrices

O−MS = Z11O− +Z12O+ , (5.72a)

O+MS = Z22O+ , (5.72b)

and obtains for the second moments of the DAs in the MS scheme

a ,
2,MS

= 7
12[5ζ ,11R

,− + (5ζ ,12 − ζ ,22 )R ,+ ] , (5.73)

⟨ξ2⟩ ,
MS

= ζ ,11R
,− + ζ ,12R

,+ , (5.74)

⟨12⟩ ,
MS

= ζ ,22R
,+ , (5.75)

where

ζij = ZijZV
, ζij = ZijZT , (5.76)
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with the renormalization factors ZV and ZT of the vector and the tensor currents, respec-
tively. Again, we will observe on the lattice that

⟨12⟩ ,
MS

≠ 1 . (5.77)

Similar to the pseudoscalar case in section 5.1.3, the Leibniz rule does not hold for finite
lattice spacings and eq. (5.56) is violated by cut-off effects. We expect this relation to be
recovered in the continuum, i.e.,

⟨12⟩ ,
MS

a→0→ 1 . (5.78)

However, due to the small range of available lattice spacings, a reliable continuum extrap-
olation cannot be performed with the data at hand. Therefore we restrict ourselves to
perform a chiral extrapolation which incorporates the renormalized results of all available
lattice ensembles. Following [178–180], we obtain for the pion mass dependence of the
decay constants

Re fρ = f (0)
ρ (1 − m2

π

16π2F 2
π

log(m2
π

µ2
χ

)) + f (2)
ρ m2

π + f (3)
ρ m3

π +O(m4
π) , (5.79a)

Re fTρ = fT (0)
ρ (1 − m2

π

32π2F 2
π

log(m2
π

µ2
χ

)) + fT (2)
ρ m2

π + fT (3)
ρ m3

π +O(m4
π) , (5.79b)

Re
fTρ

fρ
= δf (0)

ρ (1 + m2
π

32π2F 2
π

log(m2
π

µ2
χ

)) + δf (2)
ρ m2

π + δf (3)
ρ m3

π +O(m4
π) , (5.79c)

see appendix B in [97] for details on the ChPT calculation. For 2mπ < mρ, i.e., below
the decay threshold, this infinite-volume calculation yields complex numbers. However,
as we neglect instability effects in our lattice computation, which is necessarily done on
finite volumes, we use only the real part to fit the mass dependence of our data. The pion
decay constant Fπ = fπ/√2 ≈ 92 MeV is kept fixed at its physical value, and the chiral
renormalization scale µχ is chosen to be mρ ≈ 775 MeV.
A priori ChPT estimates, suggesting that the third-order terms in eq. (5.79) are not

negligible, are confirmed by our results. In fact, it turns out that the terms ∝ m3
π are

necessary to obtain reasonable fits over the full range of pion masses. Restricting oneself
to second-order approaches for ensembles with mπ < 300 MeV also yields consistent fits,
although merely two pion masses are available in this range. For the sake of consistency we
have also performed third-order polynomial fits which also yield similar results. Due to the
relatively small spatial extent of the ensemble at mπ = 150 MeV (mπL ≈ 3.4), we expect
that the full chiral extrapolation yields more reliable results than simply the values of this
ensemble alone. In order to estimate the influence of the instability of the ρ we perform
both fits including and excluding the results at mπ = 150 MeV, which should contain most
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Figure 5.11: ChPT fits using eqs. (5.79) for the decay constants fρ, fTρ , including (left)
and excluding (right) the data point at mπ = 150 MeV. The violet dashed line indicates
the position of the physical pion mass. The band indicates the one sigma statistical error.

effects of the ρ → ππ decay. The resulting ChPT extrapolations for the normalization
constants and their ratio are shown in figure 5.11 and figure 5.12, respectively. It turns
out that the extrapolated values at the physical point are reasonably consistent with the
data point corresponding to the lowest pion mass.
Since no ChPT calculations are available for the second moments of the ρ, we perform

fits linear inm2
π as depicted in figure 5.13. This generic approach is based on the experience

with the corresponding quantities for pseudoscalar mesons [168,181] and the nucleon [121],
where no chiral logarithms appear in leading one-loop order. Within our limited set of
lattice ensembles, we do not observe discernible discretization effects.
Although the available data does not allow us to study finite-size and discretization

effects systematically, significant statements can still be made. With respect to finite
size effects, we have ensembles with three different volumes for β = 5.29, κ = 0.13632 at
our disposal (mπL = 3.4–6.7). A closer look at figures 5.11 and 5.14 reveals that the
finite-volume effects for the decay constants are sizable. Unlike the well-known cases of
pseudoscalar meson and baryon masses, the chiral extrapolations cannot be converted di-
rectly to predictions for the leading large-volume behavior. The problematic contributions
cancel, however, in the ratio of the decay constants fTρ /fρ, so that it is straightforward to
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Figure 5.12: ChPT fits using eqs. (5.79) for the ratio fρ/fTρ , including (left) and excluding
(right) the data point at mπ = 150 MeV. The violet dashed line indicates the position of
the physical pion mass. The band indicates the one sigma statistical error.

compute the leading finite-volume corrections for this ratio, see appendix B in [97]. As
anticipated for a ratio, the corrections turn out to be numerically tiny such that its finite-
volume effects are expected to be much smaller than for the couplings themselves. This
expectation is also met by our results, as shown in figure 5.14: The finite-volume effects for
the ratio fTρ /fρ (right panel) are considerably smaller than for the vector coupling fρ itself
(left panel). In relation to the statistical errors, the observed volume dependence of fTρ /fρ
is small and an infinite-volume extrapolation would not have any significant effect. Since
in phenomenological studies of hard reactions fρ will always be set to the experimental
value, the ratio fTρ /fρ, which is not experimentally accessible, is a much more interesting
quantity. One can see from figure 5.13 that the second moments tend to increase with the
spatial volume, however, less significantly than for the normalization constants and the
data points have comparatively much larger error bars. As mentioned above, the ChPT
analysis of the second moments is not available but the corresponding quantities for stable
hadrons have no leading chiral logarithms and a very mild finite-volume dependence. We
have checked that excluding the smallest-volume lattice with mπL = 3.4 from the fits does
not have any noticeable influence on our results.
Due to their elusive nature, discretization errors are difficult to assess. An important

reference point is given by the Leibniz sum rule, see eq. (5.77), which leads us to examine
the quantities ⟨12⟩MS and ⟨12⟩MS as shown in figure 5.15. In the continuum limit they
should equal one for all pion masses. While ⟨12⟩MS equals one within the statistical errors
with a maximal deviation of about 1%, we observe deviations from one of up to 2% for⟨12⟩MS. Note that these deviations are considerably smaller than what we found in the
case of the pion [42].
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Figure 5.13: Linear fits for the second Gegenbauer moments a2,MS, a2,MS of the linearly
and the transversely polarized leading twist distribution amplitudes, including (left) and
excluding (right) the data point at mπ = 150 MeV. The violet dashed line indicates the
position of the physical pion mass. The band indicates the one sigma statistical error.

5.2.9 Results and conclusion

The final results of our chiral extrapolations are given in table 5.3, where the rows labeled
“analysis 1” and “analysis 2” include and exclude the ensemble at mπ = 150 MeV, respec-
tively. The errors stemming from the renormalization were estimated by performing mul-
tiple chiral extrapolations, each with a different set of renormalization coefficients, which
were determined by using different fit intervals for the renormalization factors themselves.
Details on this procedure are found in section 5 of [97]. For the coupling constants and
their ratio we have used the fit functions (5.79), whereas the second Gegenbauer moments
have been fitted with linear functions of m2

π. The fact that the results of the two fits are
in very good agreement may indicate that the ρ-meson decay ρ → ππ is not of major im-
portance for the short-distance quantities that we are considering here. Although possibly
more relevant with respect to the final values, the available set of lattices does not allow
us to estimate discretization errors and finite-size effects in depth. However, we expect
to be able to systematically quantify the discretization errors using the new Nf = 2 + 1
lattice configurations of the CLS initiative [83]. Compared with the pseudoscalar case,
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Figure 5.15: The left and the right plot show ⟨12⟩MS and ⟨12⟩MS, respectively. The violet
dashed line indicates the position of the physical pion mass.

where two non-vanishing momentum components are necessary (see eq. (5.18)), the vec-
tor structures of the ρ allow us to extract the second Gegenbauer moments with solely a
single non-zero momentum component (see eqs. (5.66) and (5.70)). This results in a sig-
nificantly smaller error, which can in future studies be even further reduced by employing
momentum smearing, cf. section 5.1.4.
We state the values of analysis 1 as our final result. In spite of an absent continuum ex-

trapolation, our final value for the vector coupling, fρ = 199(4)(1) MeV, agrees reasonably
well with the experimental value fρ+ = 210(4) MeV, see eq. (5.45). It is interesting to note
that sum rule calculations yield a similar result for the vector coupling, fSR

ρ = 206(7) MeV,
but a somewhat bigger value for the tensor coupling, fTSR

ρ = 155(8) MeV, cf. [175, 182].3

Although systematic effects are not yet fully under control, the deviations seem to be con-
sistent with the cited errors. In table 5.4 we compare our results for the second moments
and the ratio of the coupling constants with QCD sum rule estimates and previous lattice
results. Our result for the ratio fTρ /fρ is somewhat smaller than the values obtained in

3The sum rule results have been evolved from µ = 1 GeV to our reference scale µ = 2 GeV
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fρ[MeV] fTρ [MeV] fTρ /fρ a2 a2

analysis 1 199(4)(1) 124(4)(1) 0.629(7)(4) 0.132(13)(24) 0.101(18)(12)
analysis 2 194(7)(1) 123(5)(1) 0.642(10)(4) 0.117(16)(24) 0.093(20)(11)

Table 5.3: Results in the MS scheme at µ = 2 GeV from the two analysis methods
explained in the main text. The numbers in parentheses denote the statistical error and
our estimate of the uncertainty introduced by the renormalization procedure.

fTρ /fρ a2 a2

this work 0.629(8) 0.132(27) 0.101(22)
sum rules [175,182] 0.74(5) 0.11(5) 0.11(5)
lattice [183] 0.72(3) — —
lattice [184] 0.742(14) — —
lattice [185] 0.687(27) — —
lattice [43] — 0.20(6) —

Table 5.4: Comparison of our results to QCD sum rule estimates and older lattice QCD
data. The renormalization scale is µ = 2 GeV. Statistical and renormalization errors of
our results have been added in quadrature.

other investigations. At our level of accuracy, the observed discrepancies could be a result
of the ρ → ππ decay, the strong pion mass dependence of the ratio (see figure 5.12), pos-
sible cut-off effects, or a combination of these. Our final values for the second moments
a2 and a2 are in good agreement with other investigations. However, we achieve smaller
statistical errors of approximately 20% and therefore start to be sensitive to the difference
between the longitudinally and transversely polarized mesons. So far, their values indi-
cate that a2 may be slightly larger than a2, although the difference is not yet statistically
significant.
The obtained results are relevant for studies of deeply-virtual vector meson production

in electron nucleon scattering using the GPD formalism [173]. Such processes will be
investigated with high priority at the JLAB@12 GeV upgrade [26] and, in the future, at
the EIC [27]. Also, the tensor coupling appears in calculations of the B-decay form factors
at large recoil [176], where in some cases there is a tension with predictions of the Standard
Model. As a next step, we will expand our analysis to the Nf = 2+1 lattice ensembles of the
CLS effort. This will not only allow us to perform a controlled continuum extrapolation
but also to consider the DAs of the whole SU(3)f meson octet, including the K∗ meson,
whose production is sensitive to strange quarks in the proton [27,186].
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Let us emphasize once again the main results of this thesis. We have argued that hadron
distribution amplitudes are QCD functions that are instrumental for the description of
hard exclusive processes. A hadron DA corresponds to the probability amplitude to find
a hadron in a particular Fock state with a certain momentum distributed between its
constituents. Experimentally, DAs appear in convolutions with hard scattering kernels
and therefore cannot be measured directly. In order to calculate DAs from first principles
we have carried out multiple lattice QCD computer simulations. Although recently a
new position-space method was developed for this purpose, we have used the traditional
approach which allows to extract the leading Mellin moments of distribution amplitudes
more precisely on the lattice.
In chapter 4 we have extended previous lattice calculations of the nucleon DA and per-

formed the first calculation of the DAs of the whole JP = 1
2
+ baryon octet. We employed

CLS ensembles that incorporate Nf = 2 + 1 dynamical sea quarks and hence are particu-
larly suited for this purpose. Taking into account the missing continuum extrapolation,
our results for the nucleon decay constant are in good agreement with previous calcula-
tions. For the coupling constants of the remaining octet baryons, we observe SU(3) flavor
breaking effects between 20− 50%. In agreement with state of the art LCSR and previous
lattice calculations, our results for the shape parameters are up to an order of magnitude
smaller than predicted by early QCD sum rule calculations. Despite their small absolute
values, we unexpectedly noticed considerable SU(3) splitting effects of the octet shape
parameters. This behavior is especially interesting for hard exclusive processes that are
sensitive to deviations of DAs from their asymptotic form. As our results come from en-
sembles at a single lattice spacing of a ≈ 0.0857 fm, we could not examine possible lattice
cut-off effects which we expect to be of order 20 − 30%.
Chapter 5 was devoted to the determination of meson distribution amplitudes on the

lattice. With regard to the pion, previous attempts to calculate the second Gegenbauer
moment lacked the capability to perform a reliable continuum extrapolation. The main
reason for this are large statistical errors due to the requirement of at least two non-
vanishing momentum components in the two-point function. In section 5.1 we have em-
ployed a new smearing technique in an exploratory calculation of the second moment.
The momentum smearing shifts the smearing kernel in momentum-space, which results
in an improved overlap with the actual hadron state. This comes, unfortunately, at the
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computational cost of two inversions per desired meson momentum. However, in the case
of the pion, we were able to show that the new technique allows drastically reduced sta-
tistical errors to be achieved with the same computational effort. We expect this to be
even more effective for non-degenerate mesons like the K or the K∗, since in these cases
two inversions are already required with the standard Wuppertal smearing. In contrast
to the pion, the nucleon two-point function does not involve quarks that propagate in the
backward direction and therefore a significant statistical gain can be anticipated.
Section 5.2 contains an analysis of the DAs of the ρ-meson using the standard Wuppertal

smearing. In this calculation, we have considered the coupling constants as well as the
second moments of both, the vector and tensor current. In contrast to the pion, the
extraction of the second moments requires only one non-vanishing momentum component
which improves the statistical errors of the correlation functions. The included ensembles
have Nf = 2 sea quarks and pion masses down to mπ = 150 MeV. In order to examine the
effects of the ρ→ ππ decay we have conducted chiral extrapolations with and without the
ensemble with mπ = 150 MeV. However, we have not observed any significant difference
between these two approaches and conclude that the effects of the decay are only of
minor importance for short-distant quantities. Our result for the vector decay constant
is consistent with experimental measurements while our final value for the ratio of the
tensor and vector decay constants turns out to be smaller than in other publications. This
might be linked to a significant pion mass dependence or cut-off effects. Our results for
the second moments are in good agreement with other studies whilst at the same time
achieving smaller statistical errors.
We conclude this thesis by stressing that the methods and know-how obtained from

these projects lay the foundation for the upcoming continuum extrapolations of both,
the distribution amplitudes of the baryon octet as well as the pseudoscalar and vector
meson octets. We aim to conduct combined fits along TrM = const. and ms = const. mass
trajectories that include a joint chiral and continuum extrapolation, such that all ChPT
constraints will automatically be fulfilled in the limit a → 0. For this purpose we will
employ numerous Nf = 2 + 1 CLS ensembles with multiple lattice spacings.

88



Acknowledgments

First and foremost I would like to thank Andreas Schäfer for his excellent supervision and
guidance throughout this work. He always had an open ear for every problem and offered
valuable advice while at the same time creating an outstanding working atmosphere. In
addition, I am very much obliged to Vladimir Braun for his assistance and support during
my time at the Regensburg QCD group. He has been mentoring me since my bachelor
thesis and has always provided exceptional advice and insight into complex circumstances.
I also thank Gunnar Bali, Sara Collins, Meinulf Göckeler and Wolfgang Söldner for con-
sulting me in many technical matters as well as Rainer Schiel for his excellent introduction
to lattice QCD. I am especially grateful to the Studienstiftung des deutschen Volkes for
the scholarship and financial support of this thesis.
Many projects would not have been possible without the wonderful collaborations with

my colleagues from the Regensburg QCD group. In particular I take great pleasure in
acknowledging gratitude to Philipp Wein, Michael Gruber, Piotr Korcyl, Thomas Wurm,
Rudolf Rödl and Simon Bürger for uncountable fruitful discussions and joint projects.
Through them I learned that a team can achieve much more than the sum of its parts.
Last but not least, I would like to thank my parents Peter and Silvia for their un-

conditional love and support at all times, as well as my beloved girlfriend Vera, who
accompanied and supported me wholeheartedly at every step of the way.

89





7 Bibliography

[1] T. Y. Cao, From Current Algebra to Quantum Chromodynamics. Cambridge
University Press, Cambridge, UK, 2010.

[2] G. F. Chew and S. C. Frautschi, “Potential Scattering as Opposed to Scattering
Associated with Independent Particles in the S-Matrix Theory of Strong
Interactions,” Phys. Rev. 124 (1961) 264.

[3] G. F. Chew and S. C. Frautschi, “Principle of Equivalence for all Strongly
Interacting Particles within the S-Matrix Framework,” Phys. Rev. Lett. 7 (1961)
394.

[4] M. Gell-Mann, “Particle theory from S-matrix to quarks,” Conf. Proc. C8309201
(1983) 473.

[5] W. Pauli, “The Connection Between Spin and Statistics,” Phys. Rev. 58 (1940)
716.

[6] O. W. Greenberg, “Spin and Unitary-Spin Independence in a Paraquark Model of
Baryons and Mesons,” Phys. Rev. Lett. 13 (1964) 598.

[7] F. Tkachov, “A contribution to the history of quarks: Boris Struminsky’s 1965
JINR publication,” arXiv:0904.0343 [physics.hist-ph].

[8] M. Y. Han and Y. Nambu, “Three-Triplet Model with Double SU(3) Symmetry,”
Phys. Rev. 139 (1965) B1006.

[9] C. N. Yang and R. L. Mills, “Conservation of Isotopic Spin and Isotopic Gauge
Invariance,” Phys. Rev. 96 (1954) 191.

[10] Particle Data Group Collaboration, C. Patrignani et al., “Review of Particle
Physics,” Chin. Phys. C40 (2016) 100001.

[11] R. D. Ball et al., “Parton distribution benchmarking with LHC Data,” JHEP 04
(2013) 125, arXiv:1211.5142.

[12] J. Rojo et al., “The PDF4LHC report on PDFs and LHC data: results from Run I
and preparation for Run II,” J. Phys. G42 (2015) 103103, arXiv:1507.00556.

91

http://dx.doi.org/10.1103/PhysRev.124.264
http://dx.doi.org/10.1103/PhysRevLett.7.394
http://dx.doi.org/10.1103/PhysRevLett.7.394
http://dx.doi.org/10.1103/PhysRev.58.716
http://dx.doi.org/10.1103/PhysRev.58.716
http://dx.doi.org/10.1103/PhysRevLett.13.598
http://arxiv.org/abs/0904.0343
http://dx.doi.org/10.1103/PhysRev.139.B1006
http://dx.doi.org/10.1103/PhysRev.96.191
http://dx.doi.org/10.1088/1674-1137/40/10/100001
http://dx.doi.org/10.1007/JHEP04(2013)125
http://dx.doi.org/10.1007/JHEP04(2013)125
http://arxiv.org/abs/1211.5142
http://dx.doi.org/10.1088/0954-3899/42/10/103103
http://arxiv.org/abs/1507.00556


7 Bibliography

[13] L. A. Harland-Lang, A. D. Martin, P. Motylinski, and R. S. Thorne, “Parton
distributions in the LHC era: MMHT 2014 PDFs,” Eur. Phys. J. C75 (2015) 204,
arXiv:1412.3989.

[14] NNPDF Collaboration, R. D. Ball et al., “Parton distributions for the LHC
run II,” JHEP 04 (2015) 040, arXiv:1410.8849.

[15] S. Dulat et al., “New parton distribution functions from a global analysis of
quantum chromodynamics,” Phys. Rev. D93 (2016) 033006, arXiv:1506.07443.

[16] H1 and ZEUS Collaborations, H. Abramowicz et al., “Combination of
measurements of inclusive deep inelastic e±p scattering cross sections and QCD
analysis of HERA data,” Eur. Phys. J. C75 (2015) 580, arXiv:1506.06042.

[17] R. P. Feynman, “Very High-Energy Collisions of Hadrons,” Phys. Rev. Lett. 23
(1969) 1415.

[18] J. D. Bjorken, “Asymptotic Sum Rules at Infinite Momentum,” Phys. Rev. 179
(1969) 1547.

[19] D. H. Perkins, “Neutrino interactions,” eConf C720906 (1972) 189.

[20] V. N. Gribov and L. N. Lipatov, “Deep inelastic ep scattering in perturbation
theory,” Sov. J. Nucl. Phys. 15 (1972) 438. [Yad. Fiz. 15 (1972) 781].

[21] G. Altarelli and G. Parisi, “Asymptotic freedom in parton language,” Nucl. Phys.
B126 (1977) 298.

[22] Y. L. Dokshitser, “Calculation of structure functions for deep- inelastic scattering
and e+e− annihilation by perturbation theory in quantum chromodynamics.,” Sov.
Phys. JETP 46 (1977) 641. [Zh. Eksp. Teor. Fiz. 73 (1977) 1216].

[23] G. P. Lepage and S. J. Brodsky, “Exclusive processes in perturbative quantum
chromodynamics,” Phys. Rev. D22 (1980) 2157.

[24] G. S. Bali et al., “Light-cone distribution amplitudes of the baryon octet,” JHEP
02 (2016) 070, arXiv:1512.02050.

[25] V. L. Chernyak and A. R. Zhitnitsky, “Asymptotic behavior of exclusive processes
in QCD,” Phys. Rept. 112 (1984) 173.

[26] J. Dudek et al., “Physics opportunities with the 12 GeV upgrade at Jefferson Lab,”
Eur. Phys. J. A48 (2012) 187, arXiv:1208.1244.

[27] A. Accardi et al., “Electron Ion Collider: The next QCD frontier,” Eur. Phys. J.
A52 (2016) 268, arXiv:1212.1701.

92

http://dx.doi.org/10.1140/epjc/s10052-015-3397-6
http://arxiv.org/abs/1412.3989
http://dx.doi.org/10.1007/JHEP04(2015)040
http://arxiv.org/abs/1410.8849
http://dx.doi.org/10.1103/PhysRevD.93.033006
http://arxiv.org/abs/1506.07443
http://dx.doi.org/10.1140/epjc/s10052-015-3710-4
http://arxiv.org/abs/1506.06042
http://dx.doi.org/10.1103/PhysRevLett.23.1415
http://dx.doi.org/10.1103/PhysRevLett.23.1415
http://dx.doi.org/10.1103/PhysRev.179.1547
http://dx.doi.org/10.1103/PhysRev.179.1547
http://dx.doi.org/10.1016/0550-3213(77)90384-4
http://dx.doi.org/10.1016/0550-3213(77)90384-4
http://dx.doi.org/10.1103/PhysRevD.22.2157
http://dx.doi.org/10.1007/JHEP02(2016)070
http://dx.doi.org/10.1007/JHEP02(2016)070
http://arxiv.org/abs/1512.02050
http://dx.doi.org/10.1016/0370-1573(84)90126-1
http://dx.doi.org/10.1140/epja/i2012-12187-1
http://arxiv.org/abs/1208.1244
http://dx.doi.org/10.1140/epja/i2016-16268-9
http://dx.doi.org/10.1140/epja/i2016-16268-9
http://arxiv.org/abs/1212.1701


[28] A. V. Efremov and A. V. Radyushkin, “Factorization and asymptotic behaviour of
pion form factor in QCD,” Phys. Lett. 94B (1980) 245.

[29] V. M. Braun, “Hadron Wave Functions from Lattice QCD,” Few-Body Syst. 57
(2016) 1019.

[30] V. Braun and I. Halperin, “Soft contribution to the pion form factor from
light-cone QCD sum rules,” Phys. Lett. B328 (1994) 457, arXiv:hep-ph/9402270.

[31] V. M. Braun, A. Lenz, N. Mahnke, and E. Stein, “Light cone sum rules for the
nucleon form factors,” Phys. Rev. D65 (2002) 074011, arXiv:hep-ph/0112085.

[32] K. G. Wilson, “Confinement of quarks,” Phys. Rev. D10 (1974) 2445.

[33] M. Creutz, L. Jacobs, and C. Rebbi, “Experiments with a Gauge Invariant Ising
System,” Phys. Rev. Lett. 42 (1979) 1390.

[34] K. G. Wilson, “Monte-Carlo Calculations for the Lattice Gauge Theory,” NATO
Sci. Ser. B59 (1980) 363.

[35] M. Creutz, “Monte Carlo study of quantized SU(2) gauge theory,” Phys. Rev. D21
(1980) 2308.

[36] D. Weingarten, “Monte Carlo evaluation of hadron masses in lattice gauge theories
with fermions,” Phys. Lett. 109B (1982) 57.

[37] H. Hamber and G. Parisi, “Numerical Estimates of Hadronic Masses in a Pure
SU(3) Gauge Theory,” Phys. Rev. Lett. 47 (1981) 1792.

[38] S. Schaefer, “Algorithms for lattice QCD: progress and challenges,” AIP Conf.
Proc. 1343 (2011) 93, arXiv:1011.5641.

[39] A. S. Kronfeld and D. M. Photiadis, “Phenomenology on the lattice: Composite
operators in lattice gauge theory,” Phys. Rev. D31 (1985) 2939.

[40] G. Martinelli and C. T. Sachrajda, “A lattice calculation of the second moment of
the pion’s distribution amplitude,” Phys. Lett. B190 (1987) 151.

[41] G. Martinelli and C. T. Sachrajda, “The quark distribution amplitude of the
Proton: A lattice computation of the lowest two moments,” Phys. Lett. B217
(1989) 319.

[42] V. M. Braun et al., “Second moment of the pion light-cone distribution amplitude
from lattice QCD,” Phys. Rev. D92 (2015) 014504, arXiv:1503.03656.

93

http://dx.doi.org/10.1016/0370-2693(80)90869-2
http://dx.doi.org/10.1007/s00601-016-1143-8
http://dx.doi.org/10.1007/s00601-016-1143-8
http://dx.doi.org/10.1016/0370-2693(94)91505-9
http://arxiv.org/abs/hep-ph/9402270
http://dx.doi.org/10.1103/PhysRevD.65.074011
http://arxiv.org/abs/hep-ph/0112085
http://dx.doi.org/10.1103/PhysRevD.10.2445
http://dx.doi.org/10.1103/PhysRevLett.42.1390
http://dx.doi.org/10.1007/978-1-4684-7571-5_20
http://dx.doi.org/10.1007/978-1-4684-7571-5_20
http://dx.doi.org/10.1103/PhysRevD.21.2308
http://dx.doi.org/10.1103/PhysRevD.21.2308
http://dx.doi.org/10.1016/0370-2693(82)90463-4
http://dx.doi.org/10.1103/PhysRevLett.47.1792
http://dx.doi.org/10.1063/1.3574948
http://dx.doi.org/10.1063/1.3574948
http://arxiv.org/abs/1011.5641
http://dx.doi.org/10.1103/PhysRevD.31.2939
http://dx.doi.org/10.1016/0370-2693(87)90858-6
http://dx.doi.org/10.1016/0370-2693(89)90874-5
http://dx.doi.org/10.1016/0370-2693(89)90874-5
http://dx.doi.org/10.1103/PhysRevD.92.014504
http://arxiv.org/abs/1503.03656


7 Bibliography

[43] RBC and UKQCD Collaborations, R. Arthur et al., “Lattice results for low
moments of light meson distribution amplitudes,” Phys. Rev. D83 (2011) 074505,
arXiv:1011.5906.

[44] V. M. Braun et al., “Light-cone distribution amplitudes of the nucleon and
negative parity nucleon resonances from lattice QCD,” Phys. Rev. D89 (2014)
094511, arXiv:1403.4189.

[45] L. D. Faddeev and V. N. Popov, “Feynman diagrams for the Yang-Mills field,”
Phys. Lett. 25B (1967) 29.

[46] C. Becchi, A. Rouet, and R. Stora, “The abelian Higgs Kibble model, unitarity of
the S- operator,” Phys. Lett. 52B (1974) 344.

[47] C. Becchi, A. Rouet, and R. Stora, “Renormalization of the Abelian Higgs-Kibble
Model,” Commun. Math. Phys. 42 (1975) 127.

[48] C. Becchi, A. Rouet, and R. Stora, “Renormalization of Gauge Theories,” Annals
Phys. 98 (1976) 287.

[49] I. V. Tyutin, “Gauge Invariance in Field Theory and Statistical Physics in
Operator Formalism,” arXiv:0812.0580.

[50] M. Göckeler and T. Schücker, Differential geometry, gauge theories, and gravity.
Cambridge University Press, Cambridge, UK, 1989.

[51] M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory.
Westview Press, Boulder, USA, 1995.

[52] M. Gell-Mann, “Symmetries of baryons and mesons,” Phys. Rev. 125 (1962) 1067.

[53] C. G. Callan, Jr., R. F. Dashen, and D. J. Gross, “The Structure of the Gauge
Theory Vacuum,” Phys. Lett. 63B (1976) 334.

[54] M. Pospelov and A. Ritz, “Theta-Induced Electric Dipole Moment of the Neutron
via QCD Sum Rules,” Phys. Rev. Lett. 83 (1999) 2526, arXiv:hep-ph/9904483.

[55] M. Pospelov and A. Ritz, “Theta vacua, QCD sum rules, and the neutron electric
dipole moment,” Nucl. Phys. B573 (2000) 177, arXiv:hep-ph/9908508.

[56] S. A. Abel and O. Lebedev, “Neutron-electron EDM correlations in supersymmetry
and prospects for EDM searches,” JHEP 01 (2006) 133, arXiv:hep-ph/0508135.

[57] C. A. Baker et al., “Improved Experimental Limit on the Electric Dipole Moment
of the Neutron,” Phys. Rev. Lett. 97 (2006) 131801, arXiv:hep-ex/0602020.

94

http://dx.doi.org/10.1103/PhysRevD.83.074505
http://arxiv.org/abs/1011.5906
http://dx.doi.org/10.1103/PhysRevD.89.094511
http://dx.doi.org/10.1103/PhysRevD.89.094511
http://arxiv.org/abs/1403.4189
http://dx.doi.org/10.1016/0370-2693(67)90067-6
http://dx.doi.org/10.1016/0370-2693(74)90058-6
http://dx.doi.org/10.1007/BF01614158
http://dx.doi.org/10.1016/0003-4916(76)90156-1
http://dx.doi.org/10.1016/0003-4916(76)90156-1
http://arxiv.org/abs/0812.0580
http://dx.doi.org/10.1103/PhysRev.125.1067
http://dx.doi.org/10.1016/0370-2693(76)90277-X
http://dx.doi.org/10.1103/PhysRevLett.83.2526
http://arxiv.org/abs/hep-ph/9904483
http://dx.doi.org/10.1016/S0550-3213(99)00817-2
http://arxiv.org/abs/hep-ph/9908508
http://dx.doi.org/10.1088/1126-6708/2006/01/133
http://arxiv.org/abs/hep-ph/0508135
http://dx.doi.org/10.1103/PhysRevLett.97.131801
http://arxiv.org/abs/hep-ex/0602020


[58] K. Ottnad, B. Kubis, U.-G. Meißner, and F.-K. Guo, “New insights into the
neutron electric dipole moment,” Phys. Lett. B687 (2010) 42, arXiv:0911.3981.

[59] R. D. Peccei and H. R. Quinn, “CP Conservation in the Presence of
Pseudoparticles,” Phys. Rev. Lett. 38 (1977) 1440.

[60] F. J. Dyson, “The S Matrix in Quantum Electrodynamics,” Phys. Rev. 75 (1949)
1736.

[61] K. Osterwalder and R. Schrader, “Axioms for Euclidean Green’s Functions,”
Commun. Math. Phys. 31 (1973) 83.

[62] C. Gattringer and C. B. Lang, Quantum Chromodynamics on the Lattice. Springer,
Berlin, Germany, 2010.

[63] J. Smit, Introduction to Quantum Fields on a Lattice. Cambridge University Press,
Cambridge, UK, 2002.

[64] H. J. Rothe, Lattice Gauge Theories. World Scientific, Singapore, 2012.

[65] B. Sheikholeslami and R. Wohlert, “Improved continuum limit lattice action for
QCD with Wilson fermions,” Nucl. Phys. B259 (1985) 572.

[66] M. Lüscher, S. Sint, R. Sommer, and P. Weisz, “Chiral symmetry and O(a)
improvement in lattice QCD,” Nucl. Phys. B478 (1996) 365,
arXiv:hep-lat/9605038.

[67] K. Jansen and R. Sommer, “O(a) improvement of lattice QCD with two flavors of
Wilson quarks,” Nucl. Phys. B530 (1998) 185, arXiv:hep-lat/9803017.
[Erratum: Nucl. Phys. B643 (2002) 517].

[68] P. Weisz, “Continuum limit improved lattice action for pure Yang-Mills
theory (I),” Nucl. Phys. B212 (1983) 1.

[69] M. Lüscher and P. Weisz, “On-shell Improved Lattice Gauge Theories,” Commun.
Math. Phys. 97 (1985) 59. [Erratum: Commun. Math. Phys. 98 (1985) 433].

[70] A. Haar, “Der Massbegriff in der Theorie der kontinuierlichen Gruppen,” Ann.
Math. (1933) 147.

[71] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller,
“Equation of State Calculations by Fast Computing Machines,” J. Chem. Phys. 21
(1953) 1087.

95

http://dx.doi.org/10.1016/j.physletb.2010.03.005
http://arxiv.org/abs/0911.3981
http://dx.doi.org/10.1103/PhysRevLett.38.1440
http://dx.doi.org/10.1103/PhysRev.75.1736
http://dx.doi.org/10.1103/PhysRev.75.1736
http://dx.doi.org/10.1007/BF01645738
http://dx.doi.org/10.1016/0550-3213(85)90002-1
http://dx.doi.org/10.1016/0550-3213(96)00378-1
http://arxiv.org/abs/hep-lat/9605038
http://dx.doi.org/10.1016/S0550-3213(98)00396-4
http://arxiv.org/abs/hep-lat/9803017
http://dx.doi.org/10.1016/0550-3213(83)90595-3
http://dx.doi.org/10.1007/BF01206178
http://dx.doi.org/10.1007/BF01206178
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1063/1.1699114


7 Bibliography

[72] C. Itzykson and J.-M. Drouffe, Statistical Field Theory: Volume 2, Strong
Coupling, Monte Carlo Methods, Conformal Field Theory and Random Systems.
Cambridge University Press, Cambridge, UK, 1989.

[73] CP-PACS Collaboration, S. Aoki et al., “Light hadron spectrum and quark
masses from quenched lattice QCD,” Phys. Rev. D67 (2003) 034503,
arXiv:hep-lat/0206009.

[74] UKQCD Collaboration, K. C. Bowler et al., “Quenched QCD with O(a)
improvement: The spectrum of light hadrons,” Phys. Rev. D62 (2000) 054506,
arXiv:hep-lat/9910022.

[75] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth, “Hybrid Monte Carlo,”
Phys. Lett. B195 (1987) 216.

[76] M. Creutz, “Global Monte Carlo algorithms for many-fermion systems,” Phys. Rev.
D38 (1988) 1228.

[77] R. Gupta, G. W. Kilcup, and S. R. Sharpe, “Tuning the hybrid Monte Carlo
algorithm,” Phys. Rev. D38 (1988) 1278.

[78] M. Lüscher, “Computational Strategies in Lattice QCD,” arXiv:1002.4232.

[79] I. Horváth, A. D. Kennedy, and S. Sint, “A New Exact Method for Dynamical
Fermion Computations with Non-Local Actions,” Nucl. Phys. B (Proc. Suppl.) 73
(1999) 834, arXiv:hep-lat/9809092.

[80] M. A. Clark and A. D. Kennedy, “Accelerating Dynamical-Fermion Computations
Using the Rational Hybrid Monte Carlo Algorithm with Multiple Pseudofermion
Fields,” Phys. Rev. Lett. 98 (2007) 051601, arXiv:hep-lat/0608015.

[81] M. Lüscher and S. Schaefer, “Lattice QCD with open boundary conditions and
twisted-mass reweighting,” Comput. Phys. Commun. 184 (2013) 519,
arXiv:1206.2809.

[82] N. I. Achieser, Theory of Approximation. Courier Corporation, North Chelmsford,
USA, 2013.

[83] M. Bruno et al., “Simulation of QCD with Nf = 2 + 1 flavors of non-perturbatively
improved Wilson fermions,” JHEP 02 (2015) 043, arXiv:1411.3982.

[84] J. Bulava and S. Schaefer, “Improvement of Nf = 3 lattice QCD with Wilson
fermions and tree-level improved gauge action,” Nucl. Phys. B874 (2013) 188,
arXiv:1304.7093.

96

http://dx.doi.org/10.1103/PhysRevD.67.034503
http://arxiv.org/abs/hep-lat/0206009
http://dx.doi.org/10.1103/PhysRevD.62.054506
http://arxiv.org/abs/hep-lat/9910022
http://dx.doi.org/10.1016/0370-2693(87)91197-X
http://dx.doi.org/10.1103/PhysRevD.38.1228
http://dx.doi.org/10.1103/PhysRevD.38.1228
http://dx.doi.org/10.1103/PhysRevD.38.1278
http://arxiv.org/abs/1002.4232
http://dx.doi.org/10.1016/S0920-5632(99)85217-7
http://dx.doi.org/10.1016/S0920-5632(99)85217-7
http://arxiv.org/abs/hep-lat/9809092
http://dx.doi.org/10.1103/PhysRevLett.98.051601
http://arxiv.org/abs/hep-lat/0608015
http://dx.doi.org/10.1016/j.cpc.2012.10.003
http://arxiv.org/abs/1206.2809
http://dx.doi.org/10.1007/JHEP02(2015)043
http://arxiv.org/abs/1411.3982
http://dx.doi.org/10.1016/j.nuclphysb.2013.05.019
http://arxiv.org/abs/1304.7093


[85] M. Lüscher, “Topology, the Wilson flow and the HMC algorithm,” PoS LATTICE
2010 (2010) 015, arXiv:1009.5877.

[86] M. Lüscher and S. Schaefer, “Lattice QCD without topology barriers,” JHEP 07
(2011) 036, arXiv:1105.4749.

[87] L. Del Debbio, L. Giusti, M. Lüscher, R. Petronzio, and N. Tantalo, “Stability of
lattice QCD simulations and the thermodynamic limit,” JHEP 02 (2006) 011,
arXiv:hep-lat/0512021.

[88] M. Lüscher and F. Palombi, “Fluctuations and reweighting of the quark
determinant on large lattices,” PoS LATTICE 2008 (2008) 049,
arXiv:0810.0946.

[89] T. A. DeGrand, “A conditioning technique for matrix inversion for Wilson
fermions,” Comput. Phys. Commun. 52 (1988) 161.

[90] RQCD Collaboration, G. S. Bali, E. E. Scholz, J. Simeth, and W. Söldner,
“Lattice simulations with Nf = 2 + 1 improved Wilson fermions at a fixed strange
quark mass,” Phys. Rev. D94 (2016) 074501, arXiv:1606.09039.

[91] RQCD Collaboration, G. S. Bali et al., “Direct determinations of the nucleon and
pion σ terms at nearly physical quark masses,” Phys. Rev. D93 (2016) 094504,
arXiv:1603.00827.

[92] S. Güsken, “A study of smearing techniques for hadron correlation functions,”
Nucl. Phys. B (Proc. Suppl.) 17 (1990) 361.

[93] M. Falcioni, M. L. Paciello, G. Parisi, and B. Taglienti, “Again on SU(3) glueball
mass,” Nucl. Phys. B251 (1985) 624.

[94] QCDSF and UKQCD Collaborations, W. Bietenholz et al., “Flavour blindness
and patterns of flavour symmetry breaking in lattice simulations of up, down and
strange quarks,” Phys. Rev. D84 (2011) 054509, arXiv:1102.5300.

[95] QCDSF and UKQCD Collaborations, M. Göckeler et al., “Baryon axial charges
and momentum fractions with Nf = 2 + 1 dynamical fermions,” PoS LATTICE
2010 (2010) 163, arXiv:1102.3407.

[96] QCDSF and UKQCD Collaborations, A. N. Cooke et al., “SU(3) flavour
breaking and baryon structure,” PoS LATTICE 2013 (2014) 278,
arXiv:1311.4916.

[97] V. M. Braun et al., “The ρ-meson light-cone distribution amplitudes from lattice
QCD,” JHEP 04 (2017) 082.

97

http://arxiv.org/abs/1009.5877
http://dx.doi.org/10.1007/JHEP07(2011)036
http://dx.doi.org/10.1007/JHEP07(2011)036
http://arxiv.org/abs/1105.4749
http://dx.doi.org/10.1088/1126-6708/2006/02/011
http://arxiv.org/abs/hep-lat/0512021
http://arxiv.org/abs/0810.0946
http://dx.doi.org/10.1016/0010-4655(88)90180-4
http://dx.doi.org/10.1103/PhysRevD.94.074501
http://arxiv.org/abs/1606.09039
http://dx.doi.org/10.1103/PhysRevD.93.094504
http://arxiv.org/abs/1603.00827
http://dx.doi.org/10.1016/0920-5632(90)90273-W
http://dx.doi.org/10.1016/0550-3213(85)90280-9
http://dx.doi.org/10.1103/PhysRevD.84.054509
http://arxiv.org/abs/1102.5300
http://arxiv.org/abs/1102.3407
http://arxiv.org/abs/1311.4916
http://dx.doi.org/10.1007/JHEP04(2017)082


7 Bibliography

[98] C.-Y. Wong, Introduction to High-Energy Heavy-Ion Collisions. World Scientific,
Singapore, 1994.

[99] I. G. Aznauryan et al., “Studies of Nucleon Resonance Structure in Exclusive
Meson Electroproduction,” Int. J. Mod. Phys. E22 (2013) 1330015,
arXiv:1212.4891.

[100] V. M. Braun, A. Lenz, and M. Wittmann, “Nucleon form factors in QCD,” Phys.
Rev. D73 (2006) 094019, arXiv:hep-ph/0604050.

[101] I. I. Balitsky, V. M. Braun, and A. V. Kolesnichenko, “Radiative decay Σ+ → pγ in
quantum chromodynamics,” Nucl. Phys. B312 (1989) 509.

[102] V. L. Chernyak and I. R. Zhitnitsky, “B-meson exclusive decays into baryons,”
Nucl. Phys. B345 (1990) 137.

[103] M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, “QCD and resonance physics.
Theoretical foundations,” Nucl. Phys. B147 (1979) 385.

[104] M.-Q. Huang and D.-W. Wang, “Light-cone QCD sum rules for the semileptonic
decay Λb → plν̄,” Phys. Rev. D69 (2004) 094003, arXiv:hep-ph/0401094.

[105] V. M. Braun, A. Lenz, G. Peters, and A. V. Radyushkin, “Light cone sum rules for
γ∗N →∆ transition form-factors,” Phys. Rev. D73 (2006) 034020,
arXiv:hep-ph/0510237.

[106] J. Arrington, C. D. Roberts, and J. M. Zanotti, “Nucleon electromagnetic form
factors,” J. Phys. G34 (2007) S23, arXiv:nucl-th/0611050.

[107] C. F. Perdrisat, V. Punjabi, and M. Vanderhaeghen, “Nucleon electromagnetic
form factors,” Prog. Part. Nucl. Phys. 59 (2007) 694, arXiv:hep-ph/0612014.

[108] J. Arrington, K. de Jager, and C. F. Perdrisat, “Nucleon Form Factors: A Jefferson
Lab Perspective,” J. Phys. Conf. Ser. 299 (2011) 012002, arXiv:1102.2463.

[109] V. Punjabi, C. F. Perdrisat, M. K. Jones, E. J. Brash, and C. E. Carlson, “The
structure of the nucleon: Elastic electromagnetic form factors,” Eur. Phys. J. A51
(2015) 79, arXiv:1503.01452.

[110] Z. Ye, J. Arrington, R. J. Hill, and G. Lee, “Proton and neutron electromagnetic
form factors and uncertainties,” Phys. Lett. B777 (2018) 8, arXiv:1707.09063.

[111] DM2 Collaboration, D. Bisello et al., “Baryon pairs production in e+e−
annihilation at

√
s = 2.4 GeV,” Z. Phys. C48 (1990) 23.

98

http://dx.doi.org/10.1142/S0218301313300154
http://arxiv.org/abs/1212.4891
http://dx.doi.org/10.1103/PhysRevD.73.094019
http://dx.doi.org/10.1103/PhysRevD.73.094019
http://arxiv.org/abs/hep-ph/0604050
http://dx.doi.org/10.1016/0550-3213(89)90570-1
http://dx.doi.org/10.1016/0550-3213(90)90612-H
http://dx.doi.org/10.1016/0550-3213(79)90022-1
http://dx.doi.org/10.1103/PhysRevD.69.094003
http://arxiv.org/abs/hep-ph/0401094
http://dx.doi.org/10.1103/PhysRevD.73.034020
http://arxiv.org/abs/hep-ph/0510237
http://dx.doi.org/10.1088/0954-3899/34/7/S03
http://arxiv.org/abs/nucl-th/0611050
http://dx.doi.org/10.1016/j.ppnp.2007.05.001
http://arxiv.org/abs/hep-ph/0612014
http://dx.doi.org/10.1088/1742-6596/299/1/012002
http://arxiv.org/abs/1102.2463
http://dx.doi.org/10.1140/epja/i2015-15079-x
http://dx.doi.org/10.1140/epja/i2015-15079-x
http://arxiv.org/abs/1503.01452
http://dx.doi.org/10.1016/j.physletb.2017.11.023
http://arxiv.org/abs/1707.09063
http://dx.doi.org/10.1007/BF01565602


[112] BaBar Collaboration, B. Aubert et al., “Study of e+e− → ΛΛ̄, ΛΣ̄0, Σ0Σ̄0 using
initial state radiation with BABAR,” Phys. Rev. D76 (2007) 092006,
arXiv:0709.1988.

[113] S. Dobbs, A. Tomaradze, T. Xiao, K. K. Seth, and G. Bonvicini, “First
measurements of timelike form factors of the hyperons, Λ0,Σ0,Σ+,Ξ0,Ξ− and Ω−,
and evidence of diquark correlations,” Phys. Lett. B739 (2014) 90,
arXiv:1410.8356.

[114] PANDA Collaboration, W. Erni et al., “Physics Performance Report for PANDA:
Strong Interaction Studies with Antiprotons,” arXiv:0903.3905.

[115] CDF Collaboration, T. Aaltonen et al., “Observation of the Baryonic
Flavor-Changing Neutral Current Decay Λ0

b → Λµ+µ−,” Phys. Rev. Lett. 107
(2011) 201802, arXiv:1107.3753.

[116] LHCb Collaboration, R. Aaij et al., “Measurement of the differential branching
fraction of the decay Λ0

b → Λµ+µ−,” Phys. Lett. B725 (2013) 25, arXiv:1306.2577.

[117] QCDSF Collaboration, V. M. Braun et al., “Nucleon distribution amplitudes and
proton decay matrix elements on the lattice,” Phys. Rev. D79 (2009) 034504,
arXiv:0811.2712.

[118] QCDSF Collaboration, V. M. Braun et al., “Nucleon and N∗(1535) Distribution
Amplitudes,” PoS LATTICE 2010 (2010) 158, arXiv:1011.1092.

[119] V. Braun, R. J. Fries, N. Mahnke, and E. Stein, “Higher twist distribution
amplitudes of the nucleon in QCD,” Nucl. Phys. B589 (2000) 381,
arXiv:hep-ph/0007279. [Erratum: Nucl. Phys. B607 (2001) 433].

[120] M. Gruber, Renormalization of three-quark operators for baryon distribution
amplitudes. PhD thesis, Universität Regensburg, 2017.

[121] P. Wein and A. Schäfer, “Model-independent calculation of SU(3)f violation in
baryon octet light-cone distribution amplitudes,” JHEP 05 (2015) 073,
arXiv:1501.07218.

[122] V. M. Braun, A. N. Manashov, and J. Rohrwild, “Baryon operators of higher twist
in QCD and nucleon distribution amplitudes,” Nucl. Phys. B807 (2009) 89,
arXiv:0806.2531.

[123] X. Ji, J.-P. Ma, and F. Yuan, “Three-quark light-cone amplitudes of the proton
and quark orbital-motion-dependent observables,” Nucl. Phys. B652 (2003) 383,
arXiv:hep-ph/0210430.

99

http://dx.doi.org/10.1103/PhysRevD.76.092006
http://arxiv.org/abs/0709.1988
http://dx.doi.org/10.1016/j.physletb.2014.10.025
http://arxiv.org/abs/1410.8356
http://arxiv.org/abs/0903.3905
http://dx.doi.org/10.1103/PhysRevLett.107.201802
http://dx.doi.org/10.1103/PhysRevLett.107.201802
http://arxiv.org/abs/1107.3753
http://dx.doi.org/10.1016/j.physletb.2013.06.060
http://arxiv.org/abs/1306.2577
http://dx.doi.org/10.1103/PhysRevD.79.034504
http://arxiv.org/abs/0811.2712
http://arxiv.org/abs/1011.1092
http://dx.doi.org/10.1016/S0550-3213(00)00516-2
http://arxiv.org/abs/hep-ph/0007279
http://dx.doi.org/10.1007/JHEP05(2015)073
http://arxiv.org/abs/1501.07218
http://dx.doi.org/10.1016/j.nuclphysb.2008.08.012
http://arxiv.org/abs/0806.2531
http://dx.doi.org/10.1016/S0550-3213(03)00010-5
http://arxiv.org/abs/hep-ph/0210430


7 Bibliography

[124] A. V. Belitsky and A. V. Radyushkin, “Unraveling hadron structure with
generalized parton distributions,” Phys. Rept. 418 (2005) 1,
arXiv:hep-ph/0504030.

[125] R. L. Jaffe and X. Ji, “Chiral-Odd Parton Distributions and Polarized Drell-Yan
Process,” Phys. Rev. Lett. 67 (1991) 552.

[126] J. B. Kogut and D. E. Soper, “Quantum Electrodynamics in the Infinite
Momentum Frame,” Phys. Rev. D1 (1970) 2901.

[127] P. Ball and V. M. Braun, “Higher twist distribution amplitudes of vector mesons in
QCD: twist-4 distributions and meson mass corrections,” Nucl. Phys. B543 (1999)
201, arXiv:hep-ph/9810475.

[128] M. Claudson, M. B. Wise, and L. J. Hall, “Chiral lagrangian for deep mine
physics,” Nucl. Phys. B195 (1982) 297.

[129] V. M. Belyaev and B. L. Ioffe, “Determination of the baryon mass and baryon
resonances from the quantum-chromodynamics sum rule. Strange baryons,” Sov.
Phys. JETP 57 (1983) 716. [Zh. Eksp. Teor. Fiz. 84 (1983) 1236].

[130] B. L. Ioffe and A. V. Smilga, “Hyperon magnetic moments in QCD,” Phys. Lett.
133B (1983) 436.

[131] T. M. Aliev and M. Savcı, “Octet negative parity to octet positive parity
electromagnetic transitions in light cone QCD,” J. Phys. G41 (2014) 075007,
arXiv:1403.0096.

[132] D. B. Leinweber, W. Melnitchouk, D. G. Richards, A. G. Williams, and J. M.
Zanotti, “Baryon Spectroscopy in Lattice QCD,” Lect. Notes Phys. 663 (2005) 71,
arXiv:nucl-th/0406032.

[133] T. Kaltenbrunner, M. Göckeler, and A. Schäfer, “Irreducible multiplets of
three-quark operators on the lattice: Controlling mixing under renormalization,”
Eur. Phys. J. C55 (2008) 387, arXiv:0801.3932.

[134] S. Weinberg, “Phenomenological Lagrangians,” Physica 96A (1979) 327.

[135] P. Wein, P. C. Bruns, T. R. Hemmert, and A. Schäfer, “Chiral extrapolation of
nucleon wave function normalization constants,” Eur. Phys. J. A47 (2011) 149,
arXiv:1106.3440.

[136] QCDSF Collaboration, R. W. Schiel et al., “An Update on Distribution
Amplitudes of the Nucleon and its Parity Partner,” PoS LATTICE 2011 (2011)
175, arXiv:1112.0473.

100

http://dx.doi.org/10.1016/j.physrep.2005.06.002
http://arxiv.org/abs/hep-ph/0504030
http://dx.doi.org/10.1103/PhysRevLett.67.552
http://dx.doi.org/10.1103/PhysRevD.1.2901
http://dx.doi.org/10.1016/S0550-3213(99)00014-0
http://dx.doi.org/10.1016/S0550-3213(99)00014-0
http://arxiv.org/abs/hep-ph/9810475
http://dx.doi.org/10.1016/0550-3213(82)90401-1
http://dx.doi.org/10.1016/0370-2693(83)90823-7
http://dx.doi.org/10.1016/0370-2693(83)90823-7
http://dx.doi.org/10.1088/0954-3899/41/7/075007
http://arxiv.org/abs/1403.0096
http://dx.doi.org/10.1007/11356462_4
http://arxiv.org/abs/nucl-th/0406032
http://dx.doi.org/10.1140/epjc/s10052-008-0596-4
http://arxiv.org/abs/0801.3932
http://dx.doi.org/10.1016/0378-4371(79)90223-1
http://dx.doi.org/10.1140/epja/i2011-11149-5
http://arxiv.org/abs/1106.3440
http://arxiv.org/abs/1112.0473


[137] I. V. Anikin, V. M. Braun, and N. Offen, “Nucleon form factors and distribution
amplitudes in QCD,” Phys. Rev. D88 (2013) 114021, arXiv:1310.1375.

[138] V. L. Chernyak, A. A. Ogloblin, and I. R. Zhitnitsky, “Wave functions of octet
baryons,” Z. Phys. C42 (1989) 569.

[139] J. A. Gracey, “Three loop renormalization of 3-quark operators in QCD,” JHEP
09 (2012) 052, arXiv:1208.5619.

[140] V. L. Chernyak and I. R. Zhitnitsky, “Nucleon wave function and nucleon form
factors in QCD,” Nucl. Phys. B246 (1984) 52.

[141] BaBar Collaboration, B. Aubert et al., “Measurement of the γγ∗ → π0 transition
form factor,” Phys. Rev. D80 (2009) 052002, arXiv:0905.4778.

[142] Belle Collaboration, S. Uehara et al., “Measurement of γγ∗ → π0 transition form
factor at Belle,” Phys. Rev. D86 (2012) 092007, arXiv:1205.3249.

[143] A. V. Radyushkin, “Shape of pion distribution amplitude,” Phys. Rev. D80 (2009)
094009, arXiv:0906.0323.

[144] S. S. Agaev, V. M. Braun, N. Offen, and F. A. Porkert, “Light cone sum rules for
the π0γ∗γ form factor revisited,” Phys. Rev. D83 (2011) 054020,
arXiv:1012.4671.

[145] A. P. Bakulev, S. V. Mikhailov, A. V. Pimikov, and N. G. Stefanis, “Comparing
antithetic trends of data for the pion-photon transition form factor,” Phys. Rev.
D86 (2012) 031501, arXiv:1205.3770.

[146] S. S. Agaev, V. M. Braun, N. Offen, and F. A. Porkert, “Belle data on the π0γ∗γ
form factor: A game changer?,” Phys. Rev. D86 (2012) 077504, arXiv:1206.3968.

[147] V. L. Chernyak and S. I. Eidelman, “Hard exclusive two photon processes in
QCD,” Prog. Part. Nucl. Phys. 80 (2014) 1, arXiv:1409.3348.

[148] A. E. Dorokhov, “Photon-pion transition form factor: BABAR puzzle is cracked,”
arXiv:1003.4693.

[149] P. Ball and R. Zwicky, “New results on B → π,K, η decay form factors from
light-cone sum rules,” Phys. Rev. D71 (2005) 014015, arXiv:hep-ph/0406232.

[150] G. Duplančić, A. Khodjamirian, T. Mannel, B. Melić, and N. Offen, “Light-cone
sum rules for B → π form factors revisited,” JHEP 04 (2008) 014,
arXiv:0801.1796.

101

http://dx.doi.org/10.1103/PhysRevD.88.114021
http://arxiv.org/abs/1310.1375
http://dx.doi.org/10.1007/BF01557663
http://dx.doi.org/10.1007/JHEP09(2012)052
http://dx.doi.org/10.1007/JHEP09(2012)052
http://arxiv.org/abs/1208.5619
http://dx.doi.org/10.1016/0550-3213(84)90114-7
http://dx.doi.org/10.1103/PhysRevD.80.052002
http://arxiv.org/abs/0905.4778
http://dx.doi.org/10.1103/PhysRevD.86.092007
http://arxiv.org/abs/1205.3249
http://dx.doi.org/10.1103/PhysRevD.80.094009
http://dx.doi.org/10.1103/PhysRevD.80.094009
http://arxiv.org/abs/0906.0323
http://dx.doi.org/10.1103/PhysRevD.83.054020
http://arxiv.org/abs/1012.4671
http://dx.doi.org/10.1103/PhysRevD.86.031501
http://dx.doi.org/10.1103/PhysRevD.86.031501
http://arxiv.org/abs/1205.3770
http://dx.doi.org/10.1103/PhysRevD.86.077504
http://arxiv.org/abs/1206.3968
http://dx.doi.org/10.1016/j.ppnp.2014.09.002
http://arxiv.org/abs/1409.3348
http://arxiv.org/abs/1003.4693
http://dx.doi.org/10.1103/PhysRevD.71.014015
http://arxiv.org/abs/hep-ph/0406232
http://dx.doi.org/10.1088/1126-6708/2008/04/014
http://arxiv.org/abs/0801.1796


7 Bibliography

[151] A. Khodjamirian, T. Mannel, N. Offen, and Y. M. Wang, “B → π`ν` width and∣Vub∣ from QCD light-cone sum rules,” Phys. Rev. D83 (2011) 094031,
arXiv:1103.2655.

[152] M. Beneke, G. Buchalla, M. Neubert, and C. T. Sachrajda, “QCD Factorization for
B → ππ Decays: Strong Phases and CP Violation in the Heavy Quark Limit,”
Phys. Rev. Lett. 83 (1999) 1914, arXiv:hep-ph/9905312.

[153] M. Beneke and M. Neubert, “QCD factorization for B → PP and B → PV

decays,” Nucl. Phys. B675 (2003) 333, arXiv:hep-ph/0308039.

[154] V. M. Braun and D. Müller, “Exclusive processes in position space and the pion
distribution amplitude,” Eur. Phys. J. C55 (2008) 349, arXiv:0709.1348.

[155] X. Ji, “Parton Physics on a Euclidean Lattice,” Phys. Rev. Lett. 110 (2013)
262002, arXiv:1305.1539 [hep-ph].

[156] A. V. Radyushkin, “Quasi-parton distribution functions, momentum distributions,
and pseudo-parton distribution functions,” Phys. Rev. D96 (2017) 034025,
arXiv:1705.01488 [hep-ph].

[157] A. V. Radyushkin, “Pion distribution amplitude and quasidistributions,” Phys.
Rev. D95 (2017) 056020, arXiv:1701.02688 [hep-ph].

[158] RQCD Collaboration, G. S. Bali, B. Lang, B. U. Musch, and A. Schäfer, “Novel
quark smearing for hadrons with high momenta in lattice QCD,” Phys. Rev. D93
(2016) 094515, arXiv:1602.05525.

[159] LP3 Collaboration, J.-W. Chen et al., “Kaon Distribution Amplitude from Lattice
QCD and the Flavor SU(3) Symmetry,” arXiv:1712.10025 [hep-ph].

[160] L. Chang et al., “Imaging dynamical chiral symmetry breaking: pion wave function
on the light front,” Phys. Rev. Lett. 110 (2013) 132001, arXiv:1301.0324.

[161] J. P. B. C. de Melo, I. Ahmed, and K. Tsushima, “Parton Distribution in
Pseudoscalar Mesons with a Light-Front Constituent Quark Model,” AIP Conf.
Proc. 1735 (2016) 080012, arXiv:1512.07260.

[162] G. S. Bali et al., “Pion distribution amplitude from Euclidean correlation
functions,” Eur. Phys. J. C78 (2018) 217, arXiv:1709.04325 [hep-lat].

[163] P. Ball, V. M. Braun, and A. Lenz, “Higher-twist distribution amplitudes of the K
meson in QCD,” JHEP 05 (2006) 004, arXiv:hep-ph/0603063.

102

http://dx.doi.org/10.1103/PhysRevD.83.094031
http://arxiv.org/abs/1103.2655
http://dx.doi.org/10.1103/PhysRevLett.83.1914
http://arxiv.org/abs/hep-ph/9905312
http://dx.doi.org/10.1016/j.nuclphysb.2003.09.026
http://arxiv.org/abs/hep-ph/0308039
http://dx.doi.org/10.1140/epjc/s10052-008-0608-4
http://arxiv.org/abs/0709.1348
http://dx.doi.org/10.1103/PhysRevLett.110.262002
http://dx.doi.org/10.1103/PhysRevLett.110.262002
http://arxiv.org/abs/1305.1539
http://dx.doi.org/10.1103/PhysRevD.96.034025
http://arxiv.org/abs/1705.01488
http://dx.doi.org/10.1103/PhysRevD.95.056020
http://dx.doi.org/10.1103/PhysRevD.95.056020
http://arxiv.org/abs/1701.02688
http://dx.doi.org/10.1103/PhysRevD.93.094515
http://dx.doi.org/10.1103/PhysRevD.93.094515
http://arxiv.org/abs/1602.05525
http://arxiv.org/abs/1712.10025
http://dx.doi.org/10.1103/PhysRevLett.110.132001
http://arxiv.org/abs/1301.0324
http://dx.doi.org/10.1063/1.4949465
http://dx.doi.org/10.1063/1.4949465
http://arxiv.org/abs/1512.07260
http://dx.doi.org/10.1140/epjc/s10052-018-5700-9
http://arxiv.org/abs/1709.04325
http://dx.doi.org/10.1088/1126-6708/2006/05/004
http://arxiv.org/abs/hep-ph/0603063


[164] RQCD Collaboration, G. S. Bali et al., “Second moment of the pion distribution
amplitude with the momentum smearing technique,” Phys. Lett. B774 (2017) 91,
arXiv:1705.10236.

[165] J. L. Rosner, S. Stone, and R. S. Van de Water, “Leptonic Decays of Charged
Pseudoscalar Mesons – 2015,” arXiv:1509.02220.

[166] QCDSF and UKQCD Collaborations, V. M. Braun et al., “Moments of
pseudoscalar meson distribution amplitudes from the lattice,” Phys. Rev. D74
(2006) 074501, arXiv:hep-lat/0606012.

[167] S. Güsken, U. Löw, K.-H. Mütter, R. Sommer, A. Patel, and K. Schilling,
“Non-Singlet axial vector couplings of the baryon octet in lattice QCD,” Phys.
Lett. B227 (1989) 266.

[168] J.-W. Chen, H.-M. Tsai, and K.-C. Weng, “Model-independent results for SU(3)
violation in twist-3 light-cone distribution functions,” Phys. Rev. D73 (2006)
054010, arXiv:hep-ph/0511036.

[169] P. Ball, G. W. Jones, and R. Zwicky, “B → V γ beyond QCD factorisation,” Phys.
Rev. D75 (2007) 054004, arXiv:hep-ph/0612081.

[170] P. Ball and V. M. Braun, “Use and misuse of QCD sum rules in heavy-to-light
transitions: The Decay B → ρeν reexamined,” Phys. Rev. D55 (1997) 5561,
arXiv:hep-ph/9701238.

[171] T. Hurth, “Present status of inclusive rare B decays,” Rev. Mod. Phys. 75 (2003)
1159, arXiv:hep-ph/0212304.

[172] A. Bruni, X. Janssen, and P. Marage, “Exclusive Vector Meson Production and
Deeply Virtual Compton Scattering at HERA,” arXiv:0812.0539.

[173] D. Müller, T. Lautenschlager, K. Passek-Kumerički, and A. Schäfer, “Towards a
fitting procedure to deeply virtual meson production – the next-to-leading order
case,” Nucl. Phys. B884 (2014) 438, arXiv:1310.5394.

[174] RQCD Collaboration, G. S. Bali et al., “ρ and K∗ resonances on the lattice at
nearly physical quark masses and Nf = 2,” Phys. Rev. D93 (2016) 054509,
arXiv:1512.08678.

[175] P. Ball and V. M. Braun, “ρ meson light-cone distribution amplitudes of leading
twist reexamined,” Phys. Rev. D54 (1996) 2182, arXiv:hep-ph/9602323.

[176] A. Bharucha, D. M. Straub, and R. Zwicky, “B → V `+`− in the Standard Model
from light-cone sum rules,” JHEP 08 (2016) 098, arXiv:1503.05534.

103

http://dx.doi.org/10.1016/j.physletb.2017.08.077
http://arxiv.org/abs/1705.10236
http://arxiv.org/abs/1509.02220
http://dx.doi.org/10.1103/PhysRevD.74.074501
http://dx.doi.org/10.1103/PhysRevD.74.074501
http://arxiv.org/abs/hep-lat/0606012
http://dx.doi.org/10.1016/S0370-2693(89)80034-6
http://dx.doi.org/10.1016/S0370-2693(89)80034-6
http://dx.doi.org/10.1103/PhysRevD.73.054010
http://dx.doi.org/10.1103/PhysRevD.73.054010
http://arxiv.org/abs/hep-ph/0511036
http://dx.doi.org/10.1103/PhysRevD.75.054004
http://dx.doi.org/10.1103/PhysRevD.75.054004
http://arxiv.org/abs/hep-ph/0612081
http://dx.doi.org/10.1103/PhysRevD.55.5561
http://arxiv.org/abs/hep-ph/9701238
http://dx.doi.org/10.1103/RevModPhys.75.1159
http://dx.doi.org/10.1103/RevModPhys.75.1159
http://arxiv.org/abs/hep-ph/0212304
http://arxiv.org/abs/0812.0539
http://dx.doi.org/10.1016/j.nuclphysb.2014.04.012
http://arxiv.org/abs/1310.5394
http://dx.doi.org/10.1103/PhysRevD.93.054509
http://arxiv.org/abs/1512.08678
http://dx.doi.org/10.1103/PhysRevD.54.2182
http://arxiv.org/abs/hep-ph/9602323
http://dx.doi.org/10.1007/JHEP08(2016)098
http://arxiv.org/abs/1503.05534


7 Bibliography

[177] M. Göckeler et al., “Lattice operators for moments of the structure functions and
their transformation under the hypercubic group,” Phys. Rev. D54 (1996) 5705,
arXiv:hep-lat/9602029.

[178] G. Ecker, J. Gasser, A. Pich, and E. De Rafael, “The role of resonances in chiral
perturbation theory,” Nucl. Phys. B321 (1989) 311.

[179] G. Ecker, J. Gasser, H. Leutwyler, A. Pich, and E. De Rafael, “Chiral lagrangians
for massive spin-1 fields,” Phys. Lett. B223 (1989) 425.

[180] E. E. Jenkins, A. V. Manohar, and M. B. Wise, “Chiral Perturbation Theory for
Vector Mesons,” Phys. Rev. Lett. 75 (1995) 2272, arXiv:hep-ph/9506356.

[181] J.-W. Chen and I. W. Stewart, “Model Independent Results for SU(3) Violation in
Light-Cone Distribution Functions,” Phys. Rev. Lett. 92 (2004) 202001,
arXiv:hep-ph/0311285.

[182] P. Ball and R. Zwicky, “∣Vtd/Vts∣ from B → V γ,” JHEP 04 (2006) 046,
arXiv:hep-ph/0603232.

[183] D. Becirevic, V. Lubicz, F. Mescia, and C. Tarantino, “Coupling of the light vector
meson to the vector and to the tensor current,” JHEP 05 (2003) 007,
arXiv:hep-lat/0301020.

[184] BGR Collaboration, V. M. Braun et al., “Lattice calculation of vector meson
couplings to the vector and tensor currents using chirally improved fermions,”
Phys. Rev. D68 (2003) 054501, arXiv:hep-lat/0306006.

[185] RBC and UKQCD Collaborations, C. Allton et al., “Physical results from 2 + 1
flavor domain wall QCD and SU(2) chiral perturbation theory,” Phys. Rev. D78
(2008) 114509, arXiv:0804.0473.

[186] M. Diehl, W. Kugler, A. Schäfer, and C. Weiss, “Exclusive channels in
semi-inclusive production of pions and kaons,” Phys. Rev. D72 (2005) 034034,
arXiv:hep-ph/0506171. [Erratum: Phys. Rev. D72 (2005) 059902].

104

http://dx.doi.org/10.1103/PhysRevD.54.5705
http://arxiv.org/abs/hep-lat/9602029
http://dx.doi.org/10.1016/0550-3213(89)90346-5
http://dx.doi.org/10.1016/0370-2693(89)91627-4
http://dx.doi.org/10.1103/PhysRevLett.75.2272
http://arxiv.org/abs/hep-ph/9506356
http://dx.doi.org/10.1103/PhysRevLett.92.202001
http://arxiv.org/abs/hep-ph/0311285
http://dx.doi.org/10.1088/1126-6708/2006/04/046
http://arxiv.org/abs/hep-ph/0603232
http://dx.doi.org/10.1088/1126-6708/2003/05/007
http://arxiv.org/abs/hep-lat/0301020
http://dx.doi.org/10.1103/PhysRevD.68.054501
http://arxiv.org/abs/hep-lat/0306006
http://dx.doi.org/10.1103/PhysRevD.78.114509
http://dx.doi.org/10.1103/PhysRevD.78.114509
http://arxiv.org/abs/0804.0473
http://dx.doi.org/10.1103/PhysRevD.72.034034
http://arxiv.org/abs/hep-ph/0506171

	Introduction
	Quantum chromodynamics on the lattice
	Continuum formulation
	Euclidean space-time
	Lattice fermion actions
	Naive fermion action
	Wilson fermions
	Sheikholeslami–Wohlert improvement

	Lattice gauge actions
	Wilson gauge action
	Lüscher–Weisz gauge action

	Correlation functions and path integrals
	Correlators
	Grassmann integrals


	Simulation methods
	General idea
	Hybrid Monte Carlo
	Inclusion of the light sea quarks
	Inclusion of the strange sea quarks

	Ensembles
	Open boundary conditions
	Twisted mass reweighting and preconditioning
	CLS ensembles
	Other ensembles


	Baryon distribution amplitudes
	Overview
	Continuum formulation
	Leading twist distribution amplitudes
	Higher twist contributions

	Lattice formulation
	Correlation functions
	Details and strategy of the lattice simulation

	Data analysis
	Results
	Summary and outlook

	Meson distribution amplitudes
	Pion distribution amplitude
	Overview
	Continuum formulation
	Lattice formulation
	Simulation details and momentum smearing 
	Optimizing the smearing and the momentum
	Momentum smearing versus Wuppertal smearing
	Chiral extrapolation
	Summary and outlook

	Rho-meson distribution amplitudes
	Overview
	Continuum formulation
	Lattice formulation
	Lattice correlation functions
	Decay constants
	Second moments
	Details of the lattice simulations
	Data analysis
	Results and conclusion


	Conclusion and outlook 
	Bibliography

