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Abstract 
INTRODUCTION. Non-uniform sampling (NUS) accelerates the acquisition of 

otherwise uniformly sampled (US) multidimensional NMR spectra which offer higher 

resolution than 1D 1H spectra but need considerably longer measurement times. 

NUS in metabolomics so far has been primarily tested on pure samples or synthetic 

model mixtures containing predefined metabolites in non-physiological 

concentrations. Hence, the first aim of this contribution was the systematic 

quantitative evaluation of the impact of various NUS parameters on the accuracy and 

precision of 2D NMR measurements of endogenous metabolites in urine specimens. 

After having optimized and validated various NUS parameters regarding acquisition 

and processing, NUS was applied to a set of clinically interesting urine specimens to 

accelerate the acquisition of urine spectra compared to the US equivalent. As NUS 

can alternatively be implemented to enhance the spectral resolution, its effect on 

spectral analysis with respect to the time-equivalent US spectra were qualitatively 

and quantitatively assessed. Afterwards, enhanced resolution NUS spectra were 

employed with respect to NUS for accelerated quantification for the analysis of 

cancer cell lines.  

METHODS. First, the performance of various NUS parameters was assessed in the 

context of accelerated quantification in comparison to US. To this end, six 

endogenous metabolites typically found in urine were spiked into a urine matrix at 

physiological concentrations. Urine aliquots were spiked with varying concentrations 

(15.6 - 500.0 µM) of tryptophan, tyrosine, glutamine, glutamic acid, lactic acid, and 

threonine which can only be resolved fully by 2D NMR. The impact of different 

reconstruction algorithms, sampling schemes, and seed values on the fraction of 

indirect points that might be omitted were analyzed. Both 1H,1H-TOCSY (total 

correlation spectroscopy) and 1H,1H-COSY45 (correlation spectroscopy) NMR 

experiments were chosen as spectral types. Afterwards, cohort study urine 

specimens from the German Chronic Kidney Disease (GCKD) and German National 

Cohort (GNC) studies were taken as a realistic biomedical application to implement 

the optimized NUS parameters. Employing urine from the GNC study, the 

applicability of optimized NUS for enhanced spectral resolution was investigated. 

Finally, supernatants and methanol extracts of two cancer cell lines modified in 

lactate dehydrogenase A (LDHA) expression were collected to quantitatively assess 
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optimized NUS for enhanced resolution compared to NUS for accelerated 

quantification. 

RESULTS. It is demonstrated that a reduction to 50% of the US measurement time is 

feasible for both types of homonuclear 2D NMR spectra when taking sinusoidal 

Poisson-gap sampling (sPGS) and a compressed sensing approach (CS-IRLS) for 

spectral reconstruction. Furthermore, the suitability of applying NUS for accelerated 

quantification of urinary metabolites in the context of cohort studies is shown as there 

is overall a high concordance in obtained results between the NUS and US spectra. 

When choosing NUS to enhance the spectral resolution in the selected urine 

specimen, peak analysis compared to the time-equivalent US spectra benefits from 

better-resolved peak shapes, newly emerged peaks, and separation of overlapping 

peaks. Analysis of the cancer cell samples demonstrates for most selected 

metabolites comparable results between time-reduced and enhanced-resolution NUS 

spectra but for glutamic acid more reliable quantitative results by means of 

enhanced-resolution NUS. 

DISCUSSION. Given the optimized parameters, applying NUS can obtain 

comparable quantitative results as with conventional sampling in half the acquisition 

time. However, as NUS reduces the sensitivity, reliable quantitative results are given 

only if sensitivity is not limited. In case that NUS is applied for enhanced spectral 

resolution more and sharper peaks are obtained in comparison to the time-equivalent 

US spectrum aiding quantitative analysis. 

CONCLUSION. The present study demonstrates that optimized NUS provides a 

suitable alternative to conventionally acquired 2D NMR spectra given complex 

biological mixtures allowing a considerably reduced measurement time of 

metabolites given sufficient sensitivity or increased spectral resolution for improved 

compound analysis. Therefore, NUS allows the application of 2D NMR spectroscopy 

to large cohort studies comprising up to thousands of samples.   
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Zusammenfassung 
EINLEITUNG. Non-uniform sampling (NUS) beschleunigt die Aufnahme von 

anderenfalls uniform gesampelten (US) multidimensionalen NMR Spektren, die eine 

erhöhte Auflösung gegenüber 1D 1H Spektren bieten, aber erheblich längere 

Messzeiten fordern. NUS in der Metabolomik wurde bisher primär an 

Reinsubstanzen oder synthetischen Modell-Mischungen mit vordefinierten 

Metaboliten in nicht-physiologischen Konzentrationen getestet. Daher war die 

Absicht hier zunächst systematisch den Einfluss von diversen NUS Parametern auf 

die Genauigkeit und Präzision von 2D NMR Messungen von endogenen Metaboliten 

in Urinproben quantitativ zu evaluieren. Nachdem verschiedene Aufnahme- und 

Prozessierungsparameter von NUS optimiert und validiert wurden, wurde zeit-

reduziertes NUS im Vergleich zum linear aufgenommenen US Pendant auf ein Set 

von klinisch interessanten Urinproben angewandt. Außerdem wurde untersucht, wie 

sich eine Erhöhung der spektralen Auflösung über NUS qualitativ und quantitativ im 

Vergleich zu zeitäquivalenten US Spektren auswirkt. Anschließend wurden 

auflösungserhöhte im Vergleich zu zeitreduzierten NUS Spektren herangezogen, um 

Krebszelllinien zu analysieren. 

METHODEN. Zuerst wurde die Verwendung verschiedener NUS Parameter für die 

beschleunigte Quantifizierung im Vergleich zu US beurteilt. Dabei wurden sechs 

typischerweise in Urin vorkommende endogene Metabolite in physiologischen 

Konzentrationen zu einer Urinmatrix hinzugegeben. Hierzu wurden Urinaliquote mit 

unterschiedlichen Konzentrationen (15.6 - 500.0 µM) von Tryptophan, Tyrosin, 

Glutamin, Glutaminsäure, Milchsäure und Threonin versetzt, deren Signale in Gänze 

nur mit 2D NMR aufgelöst werden können. Es wurde der Einfluss verschiedener 

Rekonstruktionsalgorithmen, verschiedener Schemata der Datenkollektion und der 

Einfluss von Variationen in den Positionen der ausgewählten Datenpunkte auf den 

Anteil der indirekten Punkte, die ausgelassen werden können, untersucht. Als 

Spektrentypen wurden sowohl 1H,1H-TOCSY (total correlation spectroscopy) als 

auch 1H,1H-COSY45 (correlation spectroscopy) NMR Experimente verwendet. 

Anschließend wurden Urinproben der German Chronic Kidney Disease (GCKD) und 

German National Cohort (GNC) Studien herangezogen, um die optimierten NUS 

Parameter für eine realistische biomedizinische Anwendung zu implementieren. Urin 

der GNC Studie wurde ausgewählt, um optimiertes NUS zur erhöhten spektralen 



 
12 

Auflösung zu verwenden. Schließlich wurden Überstände und Methanolextrakte 

zweier Krebszelllinien, deren Laktatdehydrogenase A (LDHA) Expression modifiziert 

war, gesammelt, um optimiertes NUS zur Erhöhung der spektralen Auflösung im 

Vergleich zu NUS zur schnelleren Aufnahme quantitativ zu bewerten. 

ERGEBNISSE. Es wird gezeigt, dass für beide Typen von homonuklearen 2D NMR 

Spektren eine Reduzierung auf 50% der US Aufnahmezeit praktikabel ist, wenn ein 

sinusförmiges Poisson-gap sampling (sPGS) und ein compressed sensing- 

basierter (CS-IRLS) Ansatz für spektrale Rekonstruktion gewählt wird. Weiterhin wird 

die Eignung von NUS für die beschleunigte Quantifizierung von Urinmetaboliten im 

Kontext von Kohortenstudien anhand einer insgesamt hohen Übereinstimmung 

zwischen NUS und US Spektren gezeigt. Wenn NUS zur Erhöhung der spektralen 

Auflösung der ausgesuchten Urinprobe gewählt wird, begünstigt dies die 

Metabolitsignalanalyse im Vergleich zum zeitäquivalenten US Spektrum durch 

besser aufgelöste Signalformen, neu aufgetauchte Signale und die Auftrennung 

überlappender Signale. Die Analyse der Krebszellprobe ergibt für die meisten der 

gewählten Metabolite vergleichbare quantitative Ergebnisse zwischen zeitreduzierten 

und auflösungserhöhten NUS Spektren, allerdings für Glutaminsäure eine 

verlässlichere Quantifizierung mittels auflösungserhöhten NUS Spektren. 

DISKUSSION. Mit den optimierten NUS Parametern können mit NUS vergleichbare 

quantitative Ergebnisse zu US in der Hälfte der Aufnahmezeit erzielt werden. 

Allerdings, da NUS die Sensitivität verringert, können verlässliche quantitative 

Ergebnisse nur erzielt werden, wenn die Sensitivität nicht beschränkt ist. Wenn NUS 

zur Erhöhung der spektralen Auflösung genutzt wird, können im Vergleich zum US in 

der gleichen Messzeit sowohl mehr als auch schärfere Signale erhalten werden, 

welches die quantitative Analyse begünstigt.  

FAZIT. Die vorliegende Studie zeigt, dass NUS eine geeignete Alternative zu 

konventionell aufgenommenen 2D NMR Spektren von komplexen biologischen 

Mischungen bietet, was eine maßgebliche Reduzierung der Aufnahmezeit von 

Metaboliten bei ausreichender Sensitivität oder eine erhöhte spektrale Auflösung für 

eine verbesserte Komponentenanalyse bietet. Somit ermöglicht NUS die Anwendung 

von 2D NMR Spektren für große Kohortenstudien mit bis zu mehreren tausend 

Proben.   



 
13 

Objectives and Motivation 
Two-dimensional (2D) nuclear magnetic resonance (NMR) spectra provide increased 

resolution of complex mixtures such as urine and cell extracts compared to one-

dimensional (1D) 1H spectra suffering from considerable spectral overlap. The 

chemical shift region of 0.7 - 4.7 ppm in 1H NMR spectra of human urine is especially 

highly populated with signals from low molecular weight compounds giving rise to 

considerable peak overlap.1 Therefore, 2D NMR spectroscopy is beneficial for 

metabolite identification and quantification, albeit at the price of considerably 

extended acquisition times over 1D NMR spectroscopy. In conventional 2D NMR 

spectroscopy, indirect data points are sampled at evenly spaced intervals with their 

spacing dictated by the Nyquist theorem where the last data point determines the 

achieved spectral resoulution.2 For good spectral resolution this in turn requires the 

acquisition of a large amount of data points leading to long measurement times. A 

possible solution allowing the accelerated acquisition of multidimensional NMR 

spectra is non-uniform sampling (NUS), which acquires indirect data points in a non-

linear fashion. Here, only a subset of the data points acquired in conventional 2D 

NMR is measured and the remaining data points are reconstructed.3 As the resulting 

system is underdetermined, additional assumptions are required for faithful spectra 

reconstuction.4 This is one of the main aspects in which the various available 

reconstruction algorithms differ.5 With respect to data sampling also a variety of 

sampling schemes are in common use.6 NUS has been originally developed for the 

accelerated acquisition of multidimensional protein NMR spectra as three- and four-

dimensional NMR spectra may take several days of measurement time and, 

therefore, are particularly time consuming to acquire.7 Numerous other approaches 

which may be combined exist to reduce the experimental time differing on the 

underlying strategy, for instance linear prediction or ultrafast.8 An alternative to NUS 

which also may be used in combination with NUS is linear prediction. Here, the 

measured time-domain signal is extended by in silico methods assuming the 

exponential behavior of the time domain signals to increase spectral resolution.8 In 

metabolomics, non-uniform sampling (NUS) has been shown to speed up 

considerably the acquisition of multidimensional nuclear magnetic resonance (NMR) 

spectra.9-12 Additionally, the use of relaxation enhancing agents can even further 
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expedite spectral data acquisition.13 Furthermore, NUS in metabolomics has in part 

been applied to enhance the spectral resolution of the indirect dimension.  

So far in metabolomics, NUS has been primarily tested on standard mixtures of 

selected metabolites in often non-physiological concentration ranges.9,11,14 The aim of 

this study was to find for realistic biomedical specimens the optimal combination of 

experimental parameters and reconstruction algorithm that would allow a noteworthy 

reduction in measurement time while maintaining quantitative accuracy and 

precision. First, NUS was implemented to reduce the experimental time for 

accelerated metabolite quantification. Throughout the study, urine was used as a 

complex biological matrix to systemically compare various parameters affecting the 

quantitative performance of NUS. Urine is one of the most complex biological fluids in 

composition typically containing hundreds of different solutes1 that can only be 

resolved in part by one-dimensional (1D) 1H NMR. As 2D NMR is beneficial for the 

quantitative analysis of complex mixtures,15 the performance of NUS was assessed 

on urine conducting homonuclear 1H,1H-TOCSY (total correlation spectroscopy) and 
1H,1H-COSY45 (correlation spectroscopy) experiments. The parameters tested 

included the choice of the reconstruction algorithm, sampling scheme, amount of 

omitted data points, spectra type, and seed value, the latter initiating a pseudo-

random number generator to set the sequence of indirect data points to be 

collected.16 In total, four reconstruction algorithms, three sampling schemes, two 

spectra types, three different levels of sparse sampling, and up to six seed values 

were tested. As an experimental setup, six urinary metabolites were spiked into a 

urine specimen as a background matrix at six levels spanning a 32-fold change in 

physiological concentration. The optimized parameters were afterwards validated on 

a second urinary spike-in dataset. 

Next, the best combination of acquisition parameters was applied to the 

determination of differences in urinary metabolite levels between apparently healthy 

subjects and patients suffering from chronic kidney disease (CKD). CKD, defined by 

an abnormal kidney structure or function affecting health lasting for more than three 

months,17 stands at the end of several renal and systemic diseases,18 representing a 

global health burden with a prevalence of about 10% (2013) of adults.19 Structural 

and functional abnormalities of the kidney are associated among others with an 
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elevated risk of cardiovascular disease, renal failure, and mortality.19 Physiologically, 

CKD is present given a reduced glomerular filtration rate (GFR) of below 60 mL/min 

per 1.73 m2 and/or increased urinary albumin secretion.19 As the measurement of the 

GFR is cumbersome and impractical, its values are usually estimated,20 either by the 

use of serum creatinine or cystatine C levels or a combination of both.21 High-risk 

factors for CKD are among others diabetes and hypertension,19 the former being the 

main reason for worldwide increased occurrence of CKD.22 Kidney disease resulting 

from diabetes known as diabetic nephropathy23 has been shown to be among the 

three leading causes of CKD.24 Metabolomic analysis of urine allows to study 

metabolites closely correlated with kidney function.25 As for this, urine specimens 

from patients suffering from chronic kidney disease were analyzed in comparison to 

urine specimens from apparently healthy subjects for a realistic application of the 

optimized NUS parameters.  

In the last part of this contribution, NUS was applied to enhance the spectral 

resolution in the indirect dimension. After having assessed metabolite signals in a 

selected urine specimen in comparison to the time-equivalent US spectrum, 

enhanced resolution NUS was applied to study the effect of an altered lactate 

dehydrogenase A (LDHA) expression on metabolite levels in supernatants and 

methanol extracts of two cancer cell lines. Cancer is responsible for approximately 

20% of all deaths in the Western population with about 90% of human deaths from 

cancer due to distant establishments of tumor cells, so-called metastases.26,27 

Cancer is a malignant tumor, the latter characterized by growth and uncontrolled 

proliferation of an abnormal cell, having the ability to invade surrounding tissue.28 

Factors influencing the development of cancer include age, lifestyle, environment, 

and hereditary background.26 Cancer cells adjust their energy metabolism to meet 

the demand for continuous cell growth and proliferation, thereby deregulating cellular 

energetics known as one of the emerging hallmarks of cancer.29 Proliferating cells 

show an increased demand for glucose, amino acids, nucleotides, and lipids to 

generate biomass.30 Compared to normal cells which rely on oxidative 

phosphorylation for energy production, cancer cells rely on aerobic glycolysis 

generating lactate from glucose despite the presence of oxygen, known as “the 

Warburg effect”.30 Characteristic for aerobic glycolysis are upregulations of LDHA, 

being essential for converting pyruvate to lactate, and the plasma membrane glucose 
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transporter 1 (GLUT1).31,32 Monocarboxylate transporters (MCTs) export lactate 

together with associated protons into the tumor microenvironment where lactate 

accumulates31 leading to its acidification32,33 associated with an increased metastatic 

potential and immune cell suppression.31,34 Avoiding immune destruction, especially 

by T and B lymphocytes, macrophages, and natural killer cells, is the second so-

called emerging hallmark of cancer.29 The occurrence of great amounts of 

extracellular lactate is a general trait of cancer cells35 and high LDHA expression is 

associated with a poor prognosis.31 Targeting LDHA as a key metabolic control point 

in aerobic glycolysis is therefore promising as a potential cancer therapy30 to 

decrease secreted levels of lactic acid to diminish metastasis and reestablish the 

antitumor immune response.36 Previous in vitro studies have shown that inhibiting 

LDHA in multicellular tumor spheroids by means of oxamic acid lowered lactic acid 

concentrations preventing suppression of human cytotoxic T lymphocytes;37 

furthermore, knocking-down LDHA inhibited glioma cell migration.38 In vivo mouse 

models could show that reducing LDHA expression decreased tumorigenesis in non-

small cell lung cancer39 and tumor growth rate in mammary tumor.40 Hence, 

alternating the expression of LDHA is a promising approach in cancer therapy. 
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1. Introduction 

1.1. Metabolomics 

1.1.1. Characteristics 

Metabolomics belongs to one of the various “-omics” approaches in systems 

biology.41 Compared to other “-omics” technologies like genomics, proteomics, and 

transcriptomics analyzing the respective variabilities upstream of metabolites, 

metabolomics allowing to contribute an intergrated profile of the biological status.42 

To enable among others to relate metabolic changes to pathophysiological 

processes,43 metabolomics aims at the comprehensive analysis of all metabolites in 

a biological system revealing its metabolome comprising compound identification and 

quantification.44 Biological matrices applied in NMR-based metabolomics are for 

instance biofluids like urine, plasma or serum and cells or tissues.45 Metabolites are 

small molecules of typically low molecular-weight (< 1.5 kDa),22,46 originating either 

from an endogenous or exogenous source.47 Metabolites comprise a wide range of 

compound classes and are largely different in size and polarity22 with concentrations 

spanning up to nine orders of magnitude (pmol to mmol).48 Functions of metabolites 

include being involved in signaling, energetics, and as parts of biopolymers.46  

Metabolomics is separated into targeted and untargeted approaches, the latter 

further divided into metabolic profiling and metabolic fingerprinting.49 In targeted 

metabolomics, known metabolites of given pathway(s) are selectively quantified 

compared to untargeted metabolomics, which is the global analysis of all 

metabolites.49 In metabolic profiling, certain classes of compounds are analyzed, 

while in metabolic fingerprinting metabolic patterns are measured.49 

1.1.2. Analytical Platforms 

Typically, NMR spectroscopy or hyphenated mass-spectrometry (MS) like liquid 

chromatography-MS (LC-MS) or gas chromatography-MS (GC-MS) are applied in 

metabolomics.41,50 Both platforms allow the information-rich simultaneous analysis of 

a wide range of metabolites different in compound class and chemistry given high 
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analytical precision.41 Besides being a unique spectroscopic method allowing 

structural elucidation at atomic level,3 NMR spectroscopy enables the simultaneous 

detection of all compounds in a sample containing the nucleus of interest in a single 

measurement given sufficient compound concentration. On the contrary, MS 

techniques often require specific column selection for different substance classes.41 

Compared to MS, NMR spectroscopy is non-destructive to the sample and highly 

robust.41 Disadvantages of NMR spectroscopy are that it requires relatively large 

sample volumes of about 500 µL and that it is limited in sensitivity with a lower limit of 

detection (LOD) of approximately 1-5 µM.51 In comparison, MS requires only low µL 

sample volumes with detection limits in the picomolar range.41 Given the different 

strengths and weaknesses of both technologies, the two approaches do not compete 

but complement each other.41,52  
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1.2. Nuclear Magnetic Resonance (NMR) Spectroscopy 

1.2.1. Principals of NMR Spectroscopy 

NMR spectroscopy is a spectroscopic technique which uses electromagnetic 

radiation in the radiofrequency range absorbed and emitted by magnetic nuclei to 

provide information about the sample of interest.53 Nuclei with a spin, meaning a 

spinning motion of electrical charge inducing magnetism,53 non-equal to zero are 

NMR-active.53 The composition of the nucleus determines the nuclear spin.54 The 

spin distribution results in a magnetic moment µ�⃗ 54 given by:  

µ�⃗ = 𝛾𝛾𝐼𝐼 (1)54

𝐼𝐼⃗ = nuclear spin angular moment 

The gyromagnetic ratio γ describes in this context the ratio between the magnetic 

moment of the nucleus and its spin angular momentum.55 In presence of a strong 

external magnetic field B0, nuclei with a nuclear spin quantum number I = ½ take two 

different spin states.7 Positive values of +½ correspond to the lower energy level 

parallel to the external magnetic field and negative values of -½ denote the higher 

energy level anti-parallel to B0.7 The energy difference  between both spin 

states is given by54: 

𝛥𝛥𝛥𝛥 = 𝛾𝛾𝐵𝐵0      (2)54 

At thermal equilibrium, the macroscopic magnetic moment is aligned along B0 in 

z-direction (Figure 1, left panel).54 The population difference between the spin energy 

levels with the α-state being more occupied than the β-state is described by the 

Boltzmann distribution7 as:

𝑛𝑛𝛼𝛼
𝑛𝑛𝛽𝛽

=  𝑒𝑒( ∆𝐸𝐸
𝑘𝑘𝐵𝐵𝑇𝑇

)
(3)7

nα = number of nuclei in parallel orientation 

nβ = number of nuclei in anti-parallel orientation 

kB = Boltzmann constant  

T = temperature 
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Figure 1. NMR-signal detection. Left panel: When placed into a strong external magnetic field (orange 
arrows), the spins (black arrows) in the sample align along B0. Right panel: After applying a high-
frequency B1 field (black bar representing a 90° pulse with the respective equation), the macroscopic 
magnetization M0 (transparent red) given at thermal equilibrium aligns along the x-axis of the B1 field, 
precessing around B0 (red). This induces a voltage Uind (dark blue) in the detection coil (green) 
described by the respective equation. Reprinted from Ross et al. 200754 with permission from Elsevier 
(http://www.elsevier.com).  

As the population difference between the two nuclear energy levels is small at room 

temperature, NMR is a method of relatively low sensitivity.49  

During pulsed NMR experiments, a short high-frequency B1 field (90° pulse) in the 

orders of several microseconds is applied, transferring the bulk magnetization 𝑀𝑀��⃗  from 

the z-axis to the xy-plane where 𝑀𝑀��⃗  rotates around B0 after the radiofrequency (RF) 

field has been turned off.54,55 The required frequency of the applied B1 field is given 

by the following equation which is equal to the rotation frequency, the so called lamor 

frequency, of 𝑀𝑀��⃗  in the xy-plane7: 

𝛥𝛥𝛥𝛥 = ℎ𝑣𝑣      (4)7 

h = Planck’s constant  

The rotation of 𝑀𝑀��⃗  induces a voltage (Uind) in the spectrometer’s detection coil (Figure 1, 

right panel).7,54 These electrical signals are observed as NMR signals,7 collected as 

free induction decays (FIDs)53 which are time-varying resonances approximated as a 

superposition of sine-waves.5 Once the B1 field is turned off, the nuclei relax back to 

their equilibrium spin state population.53 Two different relaxation processes occur, 

being the T1 or spin-lattice relaxation time needed to restore the equilibrium and the 

T2 or spin-spin relaxation time for the loss of magnetization coherence to take 

place.53 

http://www.elsevier.com/
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The decay rate of the time domain signal defines the signal envelope.56 To transfer 

the FIDs from the time domain into the frequency domain, a Fourier transform (FT) is 

applied giving rise to a spectral representation of the NMR signals.53 Here, the signal 

intensities are distributed according to the nuclear resonant frequencies influenced 

by their chemical environment.53  

The peaks in the spectrum give information about the sample, such as the kind of 

nuclei present and in which concentration, their chemical environment as well as 

structural knowledge like bondage connectivities.3 Due to a molecule’s surrounding 

electron clouds, the spin’s local magnetic field is altered compared to B0.54 

Consequently, the resonant frequency or chemical shift of a nuclear spin is 

influenced by its electronic/chemical environment.54 The chemical shift is denoted in 

parts per million (ppm) relative to the internal reference53 and by division through the 

spectrometer reference it becomes independent of the B0 field applied. The spectral 

width is the ppm range covered by the experiment.53 Typically, 1H nuclei cover a 

spectral width of 15 ppm.54 When two spins interact or couple, they mutually 

influence the spin’s energy level.53,54 If both spins interact through bonding electrons, 

this is called scalar (J-) coupling.7 Spin-spin coupling splits the NMR signals up in 

characteristics multiplet splitting patterns.53  

Central issues in reliable quantitative NMR are sensitivity and resolution.7,51 The 

sensitivity of a measurement, defined by the signal-to-noise ratio (S/N), is dependent 

among others on the number of spins in the sample, the γ of a given nucleus, the 

strength of B0, and the temperature of the wires of the detection coil and the 

preamplifier.54 Cryogenic probe heads which reduce the thermal noise from the 

spectrometer’s electronics may improve the S/N by up to a factor of five41 by 

substantially cooling down both detection coil and preamplifier. The peak integral is 

proportional to the number of NMR-active nuclei in a sample.54 As the natural 

abundance of 1H denotes 99.98% while it lies at 1.11% for 13C, sensitivity is lower in 
13C than in purely 1H-based spectra.7 By repeating the FID acquisition and 

consequent summation given by the number of scans (NS), the S/N increases with 

the signal being proportional to the NS while the noise increases according to 

√𝑁𝑁𝑁𝑁.7,54 The spectral resolution needed to separate two lines in the frequency 

domain determines the sampling time of the FID.7 Improved resolution ultimately 

results in sharper signals and increased S/N, this way aiding peak analysis.14 A fast 
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decay of the FID resulting for instance from rapid (T2) relaxation leads to broad line 

widths and hence poor resolution.7  

1.2.2. 1D and 2D NMR Spectroscopy 

While 1D NMR spectra depict signal intensities in one frequency dimension, 2D NMR 

techniques separate signals in two frequency dimensions mapping correlations 

involving two nuclei.7 Heteronuclear spectra provide knowledge on interactions 

between two different types of nuclei, like 1H-13C correlations, while homonuclear 

spectra show interactions between nuclei of the same type, for example 
1H-1H correlations.7 Heteronuclear 1H-13C HSQC (heteronuclear single quantum 

coherence) spectra, for instance, are based on the scalar coupling between directly 

bound 1H and 13C nuclei.54 In 2D homonuclear experiments, peaks along the 

diagonal of the spectrum, referred to as diagonal peaks, are equivalent to signals 

observed in a 1D spectrum, while off-diagonal signals, or cross peaks, being the 

signals of interest arise due to the transfer of coherence between spins.7 In  
1H-1H TOCSY spectra, cross peaks appear for proton correlations within the same 

spin system given that the J-coupled protons reside within a continuous bondage 

chain.7 Cross peaks in 1H-1H COSY spectra show that two 1H spins being two or 

three bonds apart underwent scalar coupling.7  

 

 

Figure 2. Concept of 2D NMR spectroscopy. During a 2D NMR experiment, a series of 1D spectra is 
acquired while incrementing the t1 evolution delay detected in t2. Reprinted from Ross et al. 200754 
with permission from Elsevier (http://www.elsevier.com).  

For a 2D NMR experiment, a set of 1D spectra is measured while systematically 

incrementing the evolution time t1 (Figure 2).54 Considering a coupled two-spin 

system, the frequency of the first spin is thereby encoded as a modulation of the 

intensity of the second spin which is detected during the acquisition time t2.8 

http://www.elsevier.com/
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Following FT with respect to t1 and t2, a 2D spectrum comprised of two frequency 

dimensions is obtained.54 

1D 1H NMR experiments are among the most commonly applied in NMR based 

metabolomics.57 1D 1H NMR spectra are short in acquisition time but characterized 

by peak overlap especially in complex mixtures hampering spectral analysis.46 The 

acquisition of multidimensional NMR spectra provides increased spectral resolution 

and, thus, reduced spectral overlap.46,58 Hence, 2D NMR spectra offer a better 

separation of resonances because frequencies are spread out into two orthogonal 

dimensions but take prolonged measurement times.15 While 1D 1H NMR spectra are 

typically acquired in minutes, 2D NMR experiments may take several hours.59 The 

experimental time needed for 2D NMR experiments to obtain sufficient digital 

resolution in the indirect dimension is dependent on the number of t1 increments 

collected.11 Long acquisition times may cause spectral artifacts like t1 noise due to 

spectrometer instabilities,9 are impractical for large cohort studies, and are not suited 

for unstable molecules.9 Therefore, utilizing 2D NMR for metabolomics is limited in 

sample size due to time constraints.52  

1.2.3. Non-Uniform Sampling (NUS) 

The acquisition of multidimensional NMR spectra in the conventional way is 

performed by uniformly collecting all data points in the indirect dimension(s) called 

uniform sampling (US).7 US is dictated by the Nyquist Theorem ensuring that the 

frequencies of NMR signals within a defined frequency range are correctly 

detected.2,7 The time interval or sampling rate between the data points acquired in 

the FID, known as dwell time, is inversely proportional to the spectral width being the 

difference between the highest and lowest frequency to be detected.7 In this context 

the last data point determines the achieved resolution.7 As data points are sampled 

at regular intervals, resolution is determined by the amount of sampled data points. 

The same holds true for the indirect dimension where each data point, known as 

increment, corresponds to a separate 1D spectrum.15 As the experimental time 

needed is proportional to the number of increments collected to obtain high resolution 

in the indirect dimension, the experimental time increases with the number of 

increments acquired.60 Alternative sampling methods have been proposed over the 
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past years to reduce the acquisition time, such as non-uniform sampling (NUS).16 

NUS, also called non-linear or sparse sampling,61 picks only a fraction of the indirect 

data points (Figure 3).3 A constraint of the FT is, however, that it requires the 

collection of equidistant time-domain data points.62 Consequently, the data points 

missing from NUS have to be reconstructed by non-Fourier methods.7  

 

 

Figure 3. Principal of the time-saving sampling method NUS for a 2D NMR experiment, here 
exemplarily utilizing a compressed sensing-based reconstruction method of the omitted sampling 
points followed by Fourier transform. A and B stand for the indirect and direct dimensions, 
respectively, of the time (t) and frequency (f) domain. Figure reprinted from Dass et al. 2017.3 

The most common implementation of NUS is to accelerate the acquisition time 

compared to uniform sampling.63 Compared to time-equivalent US spectra, NUS can 

furthermore be implemented to enhance the spectral resolution in the indirect 

dimension or increase the sensitivity or even a mixture of these measures 

simultaneously.60 NUS has been initially developed for the NMR analysis of 

proteins57 as the widespread acquisition of three-dimensional spectra of these 

biomolecules may take days with linear sampling.7 Subsequently, NUS has been 

successfully applied in this context64,65 as well as in metabolomics.11,13   
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2. Materials and Methods 

2.1. Samples 

Urine specimens were used for the generation of spike-in samples to assess NUS for 

the accelerated quantification of metabolites. Compared with other sample types like 

serum, plasma, cells or tissue samples, urine generally comprises considerably more 

metabolites detectable by NMR spectroscopy.66 Spectral complexity arises from 

various endogenous and exogenous compound composition influences as well as 

differences in pH value and salt concentrations that can affect the peak position.66 

The initial urine specimen (urine I) from an apparently healthy female volunteer of the 

German National Cohort (GNC) had a relatively low67 creatinine concen- 

tration (3.31 ± 0.07 mM) and, thus, an overall relatively low content of solutes. The 

spike-in dataset based on this specimen was utilized to determine the best 

combination of parameters for the usage of NUS. To address the effect of differences 

in matrix composition on the finally chosen NUS conditions, a second, analogous 

spike-in dataset was generated for another urine specimen (urine II) of the GNC 

cohort68 featuring a higher creatinine concentration (20.94 ± 0.27 mM) than urine I. 

This urine specimen was also used for experiments regarding the enhancement of 

spectral resolution by NUS. To investigate NUS in context of a biomedical 

application, 28 urine specimens each were randomly chosen from the GNC study 

and the German Chronic Kidney Disease (GCKD) study,24 respectively. In course of 

the GNC study a random sample of the general population was drawn. The external 

Ethics Advisory Board of the German National Cohort accompanied all study 

procedures. The ethics committees of the corresponding study centers provided 

approvals for all study procedures; written informed consent was obtained from all 

participants. The GCKD study is a prospective cohort study of patients with CKD 

treated by nephrologists. It was approved by the local ethics committees and 

registered in the national registry for clinical studies (DRKS 00003971). Between 

2010 and 2012, 5,217 eligible adult patients provided written consent and were 

enrolled into the study.24 The study was carried out in accordance with relevant 

guidelines and regulations. The characteristics of the subjects investigated are 

provided in Table 1. 
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Table 1. Characteristics of cohort study participants. Baseline and pre-test characteristics of subsets 
of individuals with chronic kidney disease enrolled in the German Chronic Kidney Disease (GCKD) 
study or healthy subjects from the German National Cohort (GNC) study, respectively, whose urine 
specimens were measured with the optimized NUS parameters. Abbreviations: ACE-I, angiotensin-
converting enzyme inhibitor; ACR, albumin/creatinine ratio; ARB, angiotensin receptor blocker; BMI, 
body mass index; BP, blood pressure; eGFRcr, estimated glomerular filtration rate from serum 
creatinine; mmHG, millimeter of mercury; NA, not available. Published in von Schlippenbach et al. 
2018.69 

a proteinuria classification: < 30 mg/L (n = 10), 30-300 mg/L (n = 6), > 300 mg/L (n = 12) 
b mean ± SD  
c n = 1 quantified relative to 2.05 mM spiked-in formic acid with Chenomx NMR Suite 8.2 from a 1D  
1H-NOESY spectrum of the corresponding plasma sample 
d determined with MetaboQuant 1.3 from 1D 1H-NOESY spectra of the corresponding serum samples 
e estimated using the CKD-EPI equation70 without specifying for the black race 
f nGCKD = 1 and nGNC = 20 calculated from given or determined serum creatinine concentrations  
g median (interquartile range) 

For the application of NUS to quantify cancer cell metabolites in vitro, clones of two 

metastatic tumor models71,72 were investigated, modified in their LDHA activity shown 

to secrete reduced amounts of lactic acid compared to the unaffected clone.31 Cell 

culture experiments were carried out by the group of Prof. Dr. Marina Kreutz, 

Department of Internal Medicine III, University Hospital Regensburg. In the affected 

murine B16.SIY E12 melanoma cells (B16-LDHAlow), LDHA expression was knocked 

down by stable transfection with an LDHA complementary small hairpin  

RNA (shRNA) plasmid.31 Corresponding control cells (B16-Ctrl) were treated with a 

scrambled shRNA.31 In the affected murine Panc02-H7 pancreatic adenocarcinoma 

cells (Panc-LDHAnull), LDHA was knocked out by means of CRISPR/Cas9.31 

Respective control cells (Panc-Ctrl) underwent an ineffective transfection with 

Characteristic Chronic Kidney Disease Healthy 

sample size, n 28a 28 

men, % 46.43 53.57 

ageb, years 58.71 ± 12.09 52.61 ± 11.77 

BMIb, kg/m2 30.59 ± 6.17 25.51 ± 3.39 

systolic BPb, mmHg 139.21± 19.36 126.93 ± 19.57 

diastolic BPb, mmHg 76.93 ± 8.79 81.96 ± 12.94 

serum creatinineb, mM 0.12 ± 0.03c 0.09 ± 0.02 (8 NA)d 

eGFRcrb,e,f, mL/min per 1.73 m2 54.40 ± 21.77 80.84 ± 18.33 (8 NA) 

ACRg, mg/g 239.18 (37.61-1068.76) NA 

treatment with ACE-I or ARB, % 89.29 10.71 
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CRISPR/Cas9.31 Biological triplicates per clone were cultivated each in T-75 cell 

culture flasks [Eppendorf AG, Hamburg, Germany] in 20 mL RMPI 1640 medium [Life 

Technologies GmbH, Darmstadt, Germany] supplemented with 10% fetal calf  

serum [Merck KGaA, Darmstadt, Germany] and 0.5% (w/v) penicillin-streptomycin 

solution [Thermo Fisher Scientific, Waltham, MA, USA]. The cell culture flasks and a 

separate flask containing only the medium were given in a CO2 incubator for 48 h 

comprised of a humidified atmosphere at 37°C and 5% CO2 [Thermo Fisher 

Scientific]. Cells were passaged in total six times seeding 0.4 - 0.5 × 106 cells per 

flask every three to four days. Afterwards, supernatants and pellets from cultivated 

cancer cells as well as a control cell culture medium sample were provided for further 

sample preparation. 

 

2.2. Sample Preparation 

Separate stock solutions for each spike-in dataset of six endogenous urine 

metabolites67 were prepared in water purified by a PURELAB Plus system [ELGA 

LabWater, Celle, Germany]. Those metabolites were chosen which give overlapping 

signals in the aromatic and aliphatic regions of 1D 1H NMR spectra but are resolved 

in 2D 1H,1H TOCSY and 1H,1H COSY45 spectra (Tables 2 and 3). 

Table 2. Presence of overlap in 1D 1H spectra. 1H chemical shifts73 (for pseudouridine H1 according to 
AMIX-viewer 3.9.13) in ppm of mutually overlapped spike-in and cohort study metabolite signals. 
Published in von Schlippenbach et al. 2018.69 

Metabolite Signal assignment 1H chemical shift [ppm] Overlap with 

Tryptophan H10 7.19 tyrosine 

Tyrosine H5 H9 7.17 tryptophan 

Glutamine H2 3.77 glutamic acid, D-glucose, 
pseudouridine 

Glutamine H4A|B 2.45 glutamic acid, citric acid 

Glutamine H3A|B 2.13 glutamic acid 

Glutamic acid H2 3.75 glutamine 

Glutamic acid H4B 2.34 glutamine 

Glutamic acid H3A 2.12 glutamine 
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Spike-in metabolites were comprised of glutamic acid, glutamine, lactic acid, 

threonine, tryptophan, and tyrosine, all purchased from Sigma-Aldrich, Taufkirchen, 

Germany.  

The stocks, prepared in 5 and 10 mL Erlenmeyer flasks [BRAND GMBH + CO KG 

and DWK Life Sciences GmbH, Wertheim, Germany, respectively], were each 

geometrically diluted in six steps so that the added amounts of metabolites 

represented physiological concentration ranges of 15.6 to 500.0 µM (Table 4).67 

For the preparation of the six spike-in samples of both datasets, all six metabolites 

were added at varying concentrations to both urine aliquots equally, thereby ensuring 

that each concentration level was used only once per compound (Table 4). For each 

of these samples, in total 200 µL spike-in compounds were mixed with 200 µL of the 

Glutamic acid H3B 2.04 glutamine 

Lactic acid H3A|B|C 1.32 threonine 

Lactic acid H2 4.10 pseudouridine 

Threonine H4A|B|C 1.32 lactic acid 

Creatinine H2A|B 4.05 pseudouridine 

Hippuric acid H8 7.62 pseudouridine 

Hippuric acid H2A|B 3.96 pseudouridine, D-glucose 

D-Glucose H1β 4.63 pseudouridine 

D-Glucose H6Bβ 3.89 hippuric acid, 
pseudouridine 

D-Glucose H4 H6α 3.82 pseudouridine 

D-Glucose H6Bα H6Aβ H3α 3.73 glutamine, pseudouridine 

Citric acid H2A H4A 2.51 glutamine 

Pseudouridine H12 7.66 hippuric acid 

Pseudouridine H1 4.69 D-glucose 

Pseudouridine H3 4.14 lactic acid 

Pseudouridine H4 4.01 creatinine, hippuric acid 

Pseudouridine H5A 3.84 D-glucose 

Pseudouridine H5B 3.72 D-glucose, glutamine 



 
29 

corresponding urine. For both datasets, an additional blank sample containing 200 µL 

purified water and 200 µL of the respective urine was generated.  

Table 3. 2D signal assignments. 1H,1H-TOCSY and 1H,1H-COSY45 chemical shifts73 in ppm of 
metabolite signals used for quantification. Abbreviations: F1, indirect spectral dimension; F2, direct 
spectral dimension. Published in von Schlippenbach et al. 2018.69 

 

Table 4. Spike-in sample concentrations equivalent in both spike-in datasets. Metabolite 
concentrations per spike-in sample given in micromolar. Published in von Schlippenbach et al. 2018.69 

Metabolite 1H,1H-TOCSY 1H,1H-COSY45 

 Signal 
assignment 

1H chemical shift 
in F1/F2 [ppm] Signal assignment 

1H chemical shift 
in F1/F2 [ppm] 

Tryptophan H10/H9 7.19/7.72 H3B/H2 3.29/4.03 

Tyrosine H6 H8/H5 H9 6.67/7.04 H6 H8/H5 H9 6.67/7.04 

Glutamine H3A|B/H4A|B 2.13/2.45 H3A|B/H4A|B 2.13/2.45 

Glutamic acid H4A|B/H2 2.34/3.76 H3A|B/H4A|B 2.09/2.34 

Lactic acid H3A|B|C/H2 1.32/4.11 H3A|B|C/H2 1.32/4.11 

Threonine H4A|B|C/H2 1.32/3.57 H4A|B|C/H3 1.32/4.24 

Creatinine - - H6A|B|C/H2A|B 3.03/4.05 

Hippuric acid - - H7 H9/H6 H10 7.54/7.82 

D-Glucose - - H1β/H2β 4.63/3.23 

Citric acid - - H2A H4A/H2B 
H4B 2.53/2.63 

Pseudouridine - - H3/H2 4.14/4.29 

Metabolite sample 

 blank 1 2 3 4 5 6 

Tryptophan - 500 15.6 31.3 62.5 125 250 

Tyrosine - 250 500 125 62.5 31.3 15.6 

Glutamine - 62.5 125 250 500 15.6 31.3 

Glutamic acid - 125 250 500 15.6 31.3 62.5 

Lactic acid - 31.3 62.5 125 250 500 15.6 

Threonine - 15.6 31.3 62.5 125 250 500 
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To determine the lower limits of quantification (LLOQs) and calibration curves of the 

metabolites quantified in the cohort study urine specimens, calibration samples were 

prepared. Fourteen calibration levels were generated containing a 400 µL master mix 

of geometrically diluted stock solutions comprising the selected metabolites over a 

concentration range from 6.10 × 10-4 mM to 5.00 mM. Exceptions were creatinine 

and D-glucose spanning concentrations from 2.44 × 10-3 mM to 20.00 mM. 

Calibration points below 1 mM were measured in triplicates for the determination of 

LLOQ values in accordance to FDA guidelines.  

Both the cancer cell supernatants and medium control sample were ultrafiltrated 

according to known protocols74 by means of a 10 kDa molecular weight cutoff 

Amicon® Ultra-4 centrifugal filter [Merck Chemicals GmbH, Darmstadt, Germany]. 

First, the filter was prewashed with 3 mL Millipore grade water, centrifuging at  

4000 × g given 22°C for 30 min to remove filter-preserving substances. Then taking 

new 15-mL centrifuge tubes [Greiner Bio-One GmbH, Frickenhausen, Germany], 

1000 µl of supernatant and medium each were ultrafiltrated separately, centrifuging 

at 4000 × g given 4°C for 60 min to remove unwanted macromolecules.74 Extracts of 

the cancer cells pellets were obtained by washing the pellets first with 600 µL 80% 

methanol [VWR Chemicals, Radnor, PA, USA] and then re-extracting twice with  

200 µL 80% methanol [VWR Chemicals]. After each step, vortexing for 60 s and 

centrifuging at 10.000 × g for 5 min given 4°C was performed, in the last step 

centrifuging at 12.000 × g. The extracts were collected and combined in 4-mL rolled 

rim amber glass vials [MACHEREY-NAGEL GmbH & Co. KG, Düren, Germany], 

spiked with 10 µL of 2 mM nicotinic acid [Sigma-Aldrich] as an evaporation loss 

control and afterwards concentrated in a CombiDancer vortex evaporator [HETTICH 

AG, Bäch, Switzerland] for 1 h. Consecutively, the residuals were resuspended in 

400 µL purified water. For protein quantification after methanol extraction, the 

FluoroProfile® Protein Quantification Kit [Sigma-Aldrich] was used to prepare the 

samples according to the manufacturer’s protocol. The protein amount was 

determined with the fluorometer FLUOstar Omega [BMG LABTECH GmbH, 

Ortenberg, Germany] and the corresponding microplate reader software  

OPTIMA [BMG LABTECH GmbH]. 

Standard sample preparation comprised 400 µL of stock solution, urine matrix, filtrate 

or resuspended dried extracts if not stated otherwise. To this end, 200 µL of 0.1 M 
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potassium phosphate buffer (K2HPO4, 99%, anhydrous, KH2PO4, 99%,  

anhydrous) [Merck KGaA], pH 7.4, containing 3.9 mM boric acid [Merck KGaA] to 

prevent bacterial growth and 50 µL of 0.75% (w/v) 3-trimethylsilyl-2,2,3,3-

tetradeuteropropionate (TSP) in deuterium oxide (99.9% in D) as internal  

standard [Sigma-Aldrich] were added to each sample.74 All mixtures, comprised of a 

constant volume of 650 µL, were transferred to 5-mm i.d. NMR tubes [Bruker BioSpin 

GmbH, Rheinstetten, Germany or NORELL, Inc., Morganton, NC, USA] and stored at 

-20°C until measurement.  

 

2.3. NMR Spectroscopy 

1D 1H-nuclear Overhauser enhancement spectroscopy (NOESY), 2D 1H,1H-TOCSY, 

and 1H,1H-COSY45 NMR spectra were acquired, the latter comprised of a 45° mixing 

pulse.54 Experiments were performed at 298 K on an Avance III 600 MHz 

spectrometer [Bruker BioSpin GmbH] employing a cryogenically cooled triple-

resonance (1H, 13C, 31P, 2H lock) probe equipped with z-gradients and an automatic 

cooled sample changer. Before measurement, each sample was allowed to 

equilibrate for 300 s in the magnet. The probe was automatically locked utilizing the 

frequency of deuterium to ensure that the magnetic field does not change during 

experiments.53 Furthermore, the probe was tuned and matched for the coils to 

efficiently transmit the RF pulses and receive the NMR signals.7 Shimming was 

implemented to re-homogenize the B0 field after the sample had been introduced into 

the magnet.53  

NMR data were collected using the ICON-NMR suite of TopSpin 3.1 [Bruker BioSpin 

GmbH]. The NUS datasets of the spike-in specimens were either directly measured, 

being the case for the comparison of R-MDD and CS-IRLS, or generated based on 

an experimental data set, as done for all consecutive comparisons. Simulations of 

NUS spectra were achieved by selecting the respective data points from a 

representative US spectrum, employing in-house scripts (section 6.3) specific for 

each NUS scheme. 1D 1H-NOESY experiments, comprising one of the most common 

solvent suppression methods in NMR-based metabolomics particularly for biofluids,45 

were conducted with presaturation of the water resonance during relaxation and 

mixing time as well as additional spoil gradients for optimal water suppression. Four 
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dummy scans were applied prior to each measurement followed by the acquisition of 

128 scans collected into 64k time data points over a total spectral width of 20.55 ppm 

with a relaxation delay of 4 s, a mixing time of 0.01 s, and an acquisition time of  

2.66 s, resulting in a total experimental time of approximately 15 min. For the 2D 

experiments, solvent suppression was achieved in the 1H,1H-TOCSY and  
1H,1H-COSY45 spectra by a water suppression by gradient-tailored  

excitation (WATERGATE) scheme and by presaturation, respectively. For the US 

spectra, 2048 × 512 data points were recorded over a total spectral width of  

12.07 ppm in 1H,1H-TOCSY and 13.35 ppm in 1H,1H-COSY45 with 8 transients per 

increment after initially applying 32 dummy scans. Each 2D spectrum was acquired 

with a relaxation delay of 3 s, a mixing time of 0.06 s (1H,1H-TOCSY) and an 

acquisition time of 0.14 s for 1H,1H-TOCSY and 0.12 s for 1H,1H-COSY45 spectra, 

resulting in a total experimental time of approximately 3 h and 35 min per US 2D 

experiment.  

A chosen sampling schedule defines the distribution of the selected NUS data 

points.16 Three sparse sampling densities, namely 25%, 50%, and 75% of the t1 

increments from the corresponding US spectrum, were applied to the spike-in 

samples employing urine I. The sampling patterns implemented were an unweighted, 

exponentially weighted, and sine-weighted Poisson-gap sampling. The indirect data 

points were selected randomly to avoid systematic violation of the Nyquist theorem75 

this way reducing sampling artifacts.76 In the unweighted sampling, also called 

uniformly random sampling, the increments are evenly chosen along the evolution 

time.16 To obtain higher sensitivity, the amount of collected NUS points can be 

emphasized by weighted sampling to the highest amplitude at the beginning of the 

indirect FID where signals are the strongest.62 For an exponentially weighted 

sampling, the points are selected in an exponential fashion with more points picked 

at the beginning of the t1 time domain.16 Here, the exponentially weighted sampling 

was set so that it matched the exponential T2 signal decay of the spike-in 

metabolites.77 The indirect data points selected during sinusoidal Poisson gap 

sampling followed a sine-weighted Poisson distribution with data dense at the 

beginning of the sampling scheme.78 Up to six seed values were set to initialize a 

random number generator. The equally and exponentially weighted sampling 

schemes were implemented in TopSpin 3.1, the Poisson-gap sampling distribution 
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was generated with the web-based Schedule Generator Version 3.0.79,80 The 

unweighted sampling distributions were generated either with the Stat Trek Random 

Number Generator81 or with TopSpin 3.1.  

Before Fourier transform, an exponential window function with 0.3 Hz line broadening 

and zero filling to 128k points was performed on the FID obtained from the 1D NMR 

experiments.58 1D NMR spectra were then automatically phase and baseline 

corrected, obtaining a flat baseline by implementing the “baseopt” option in  

TopSpin 3.1.  

The indirect data points of the 1H,1H-TOCSY and 1H,1H-COSY45 US and NUS 

spectra were quadrupled or doubled, respectively, in data points by forward linear 

prediction on complex data as well as multiplied with a 90° shifted squared sine-bell 

and an unshifted sine-bell window function, respectively. Phase sensitive  
1H,1H-TOCSY spectra were manually phase corrected, while 1H,1H-COSY45 spectra 

were acquired in magnitude mode and therefore required no phase correction. Non-

uniformly obtained 1H,1H-TOCSY spectra were processed with a Hilbert 

transformation to generate the missing imaginary part from the real part before phase 

correction. 1H,1H-TOCSY and 1H,1H-COSY45 spectra were baseline corrected using 

a polynomial baseline correction of degree 5 or 2, respectively, thereby excluding the 

solvent area (4.5 - 5 ppm) and for 1H,1H-TOCSY spectra also the reference signal 

TSP (0.5 - 0 ppm) to prevent influence of baseline distortion.  

Non-uniformly sampled spectra were reconstructed either with R-MDD,82 the iterative 

re-weighted least squares (IRLS) or iterative soft thresholding (IST) algorithm applied 

as a compressed sensing (CS) approach83 or maximum entropy (MaxEnt),84 the 

former two implemented in TopSpin 3.1, CS-IST in MestRe Nova v.12.0.1-20560, 

and MaxEnt in the Rowland NMR Toolkit (Table 5). Spectral processing was 

achieved with R-MDD and CS-IRLS in TopSpin 3.1, with CS-IST by means of 

MestRe Nova85 and with MaxEnt by using the Rowland NMR Toolkit (RNMRTK)86 

shared on the NMRbox platform.87 In context of reconstruction by MaxEnt, NmrPipe 

and NmrDraw were used to convert the raw data format as well as to display and 

analyze the reconstructed data.88  
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Table 5. Reconstruction algorithm usages. Overview of the reconstruction algorithm usages on 
measured or simulated NUS 1H,1H-TOCSY and 1H,1H-COSY45 spectra according to the sampling 
scheme applied. Abbreviations: UwSa, unweighted sampling; ExSa, exponentially weighted sampling; 
sPGS, sine-weighted Poisson-gap sampling; R-MDD, recursive multidimensional decomposition;  
CS-IRLS, compressed sensing approach employing the iterative re-weighted least squares method; 
MaxEnt, maximum entropy; CS-IST, compressed sensing approach employing the iterative soft 
thresholding method. Published in von Schlippenbach et al. 2018.69 

 

MDD assumes that a multidimensional spectrum can be modeled by the sum of 

tensor products of one-dimensional vectors.61 In R-MDD, the FID’s autoregressive 

behavior is exploited to incorporate it into processing with MDD.82 CS states that if 

the frequency signals are sparse, only as many data points as signals present in the 

spectrum are needed to be sampled to resolve the multidimensional spectrum.89 Two 

variants of CS-based reconstruction algorithms were implemented: CS-IRLS and  

CS-IST. During the CS-IRLS approach, the lp norm penalty function is reformulated 

into a regulized least-squares minimization problem.83,90 Basis for IST is that peaks 

above an iteratively set threshold are selected followed by the inverse FT of the 

updated sought vector.83,90 Afterwards, the non-experimental points are either set to 

zero or added to the initial FID input.90 In contrast to CS, MaxEnt reconstruction 

utilizes maximizing entropy as a regularizer instead of maximum sparsity to yield 

spectra consistent with the measured data.8,84 

The optimized NUS parameters, being a 50% sampling density, a sine-weighted 

Poisson-gap sampling (sPGS) scheme, and a CS-IRLS reconstruction approach, 

were applied to the calibration samples, cohort study urine specimens including the 

urine specimen utilizing NUS for enhanced resolution, and cancer cell samples using 

the default seed value of the random number generator implemented within  

TopSpin 3.1. The calibration sample set was measured with a 1H,1H-COSY45 pulse 

sequence in a uniformly sampled and a 50% non-uniformly sampled manner. 

Exceptions were NUS spectra of tryptophan, tyrosine, and threonine, which were 

Sampling scheme 1H,1H-TOCSY NUS 1H,1H-COSY45 NUS 

 measured simulated measured simulated 

UwSa - CS-IRLS - - 

ExSa R-MDD, CS-IRLS CS-IRLS - - 

sPGS - CS-IRLS, MaxEnt CS-IRLS CS-IRLS, CS-IST 
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simulated from the corresponding US spectra. The 2D spectra of the urine specimen 

used to analyze enhanced spectral resolution by NUS were measured with a  
1H,1H-COSY45 pulse sequence collecting 512 increments in a non-uniform or 

uniform fashion to obtain time-equivalent US and NUS data. Spectral processing of 

the NUS data with CS-IRLS resulted in twice as many data points (1024) in total as 

the time-equivalent US spectrum. Additionally, an enhanced-resolution US  
1H,1H-COSY45 spectrum with 1024 data points was acquired. The cancer cell 

samples were measured with a 1H,1H-COSY45 pulse sequence collecting 256 

increments for the time-reduced 50% NUS spectra and 512 indirect data points for 

the enhanced resolution 50% NUS spectra. After reconstruction with CS-IRLS, 512 

and 1024, respectively, indirect data points were given.  

 

2.4. Spectral Analysis 

Chemical shifts were referenced relative to the TSP resonance at 0 ppm. Signal 

assignment was performed with the help of overlaying the spectrum with pure 

compound reference spectra acquired under comparable experimental conditions 

present in the Bruker Biofluid Reference Compound Database BBIOREFCODE (2-0-3) 

in AMIX-Viewer 3.9.13 [BrukerBioSpin GmbH].74 Quantification of signals was done 

relative to TSP with AMIX 3.9.13 [Bruker BioSpin GmbH]. The cross peaks in the 2D 

spectra were picked in the upper spectral triangle, except for D-glucose in the cohort 

study samples quantified in the lower triangle because of its selected signal in the 

upper triangle being otherwise too close to the water signal for reliable quantification. 

For automated peak identification the peak picking threshold was set to a signal to 

noise ratio of 3.5. For relative and absolute quantification of metabolites from the 2D 

NMR spectra, a single, intense, unambiguous, and well-dispersed cross signal per 

compound was chosen (Table 3). Following peak-picking, signals were automatically 

integrated. Employing test samples, the best integration method being either peak-

shape analysis or peak area integration was selected for each signal. By default, 

scaling the peak integral to the integral of the TSP peak in the spectrum was 

performed to correct for spectrometer instabilities. While in 1D spectra peak areas on 

a given NMR machine and at given measurement conditions given full relaxation 

relate merely to the number of spins contributing to a signal and the compound 

concentration,15 cross peak volumes in multidimensional NMR spectra depend on 
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various factors like pulse sequence parameters such as evolution times as well as on 

compound-structural properties like J-coupling constants.15,58 Taking individual peak 

intensities into account, absolute concentrations in multidimensional NMR can be 

achieved by setting up calibration curves for each separate compound signal58 based 

on a dilution series of the pure compound. The average of three technical replicates 

is taken and then a regression line is fitted. Data from calibration curves were also 

used for the determination of LLOQs.58,91 According to FDA guidelines, the LLOQ 

was defined as the lowest concentration where quantifying the calibration sample 

triplicates yielded a relative standard deviation (RSD) of at maximum 20%. Absolute 

concentrations obtained from 2D spectra were calculated manually following the 

work-flow of MetaboQuant 1.3.91 Absolute quantification of 1D 1H spectra was carried 

out with MetaboQuant 1.3 or Chenomx NMR Suite 8.2 [Chenomx Inc., Edmonton, 

Canada], the latter allows signal deconvolution of overlapping signals. Here, to match 

the reference compound clusters to the individual resonance peaks of a metabolite, a 

subtraction line was utilized to adjust the clusters for an optimal fit. Absolute 

concentrations of creatinine in the spike-in urines were determined from 1D  
1H spectra (n = 5 for urine I, n = 3 for urine II) of the blank control sample by 

MetaboQuant 1.3, taking into account a dilution factor of two. Levels of selected 

metabolites in the cohort study samples, namely hippuric acid, pseudouridine, lactic 

acid, D-glucose, citric acid, and glutamine, were normalized to the corresponding 

creatinine level in each sample to account for variations due to differences in fluid 

intake.92 For statistical power analysis in context of the GKCD and GNC study 
1H,13C-HSQC spectra have been acquired according to standard protocols.74 

Metabolite quantification from these spectra was automatically performed with 

MetaboQuant 1.3. 

Those metabolites assigned in the enhanced resolution spectra of the cancer cells 

with AMIX-Viewer 3.9.13 were absolutely quantified by integrating the peak areas. 

Only metabolites were considered which showed values above the LLOQ in all 

samples. Here, the quantified metabolites in the cell pellets were corrected by the 

individual extraction loss determined from the deviation of nicotinic acid in the sample 

from the spiked-in level of 2 mM. The deviation of the nicotinic acid concentration 

quantified in the individual methanol extraction sample relative to the expected 

concentration was considered to relate to the amount of the other metabolites lost 
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during extraction. Consequently, metabolite concentrations determined were 

corrected for this proportional loss. The quantified metabolite values in the cell pellet 

were normalized to the corresponding total protein amount after 48 h incubation time 

to account for unwanted differences in protein content between samples. The 

absolute metabolite concentrations in the medium control sample were subtracted 

from the corresponding averaged metabolite levels in the supernatant. In n = 5 

supernatant samples as well as in the medium control when having measured  
1H,1H-COSY45 spectra with time-reduced 50% NUS spectra did not yield quantifiable 

glutamate signals. Consequently, the glutamic acid level in the medium control was 

not subtracted from the respective level in the supernatant of cancer cell samples of 

both time-reduced and enhanced-resolution NUS spectra for reasons of comparison. 

 

2.5. Evaluation of Quantitative Results  

Accuracy and Precision 

First, the quantitative performance of NUS compared to US was evaluated on the 

spike-in sample set employing urine I. Here, the recovery of a metabolite signal 

intensity with NUS relative to US was analyzed, taking into account only signals 

present in all spectra. Initially, US and NUS spectra were measured to evaluate the 

influence of CS and R-MDD on reconstructed NUS data. Here, five US and three 

NUS spectra, the latter varying in seed value, were acquired as technical replicates. 

Afterwards, six NUS spectra differing in seed value were simulated from one 

measured US spectrum. According to the Food and Drug Administration (FDA) 

guidelines, the mean relative intensity of a given metabolite derived from spectra 

obtained with NUS had to be within 15% of the value of the corresponding US 

spectrum for accurate quantification.93 Furthermore, the deviation of the total peak 

volume in the US and NUS spectra was not to exceed 15% of the coefficient of 

variance (CV) for precise results.93 For the spike-in dataset, the number of recoveries 

observed per parameter was taken into account. Theoretically, this number amounts 

to 40 per NUS level and 120 over all NUS levels for 1H,1H-TOCSY spectra. Note that 

the two missing signals in the blank and lowest spike-in concentration of glutamic 

acid of the theoretically observable 42 in these spectra were not considered. 
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Consequently, these 40 recoveries were also accounted for in 1H,1H-COSY45 

spectra when compared to 1H,1H-TOCSY spectra. When regarding 1H,1H-COSY45 

spectra solely, 42 recoveries per NUS level and 126 over all NUS levels were looked 

at.  

Fold Changes 

To address effects of the individual urine matrix on the performance of the selected 

NUS parameters, the derived fold changes from both spike-in datasets were 

compared to the expected fold changes. For determining fold changes in the spike-

ins, first the relative signal intensity of a quantified metabolite in the corresponding 

blank sample was subtracted from that in the associated spike-in sample. Exceptions 

in the urine I dataset were glutamic acid showing no peaks in three of the six NUS 

spectra of the blank sample and lactic acid yielding a negative fold change with one 

of the six seed value when subtracting the blank. For the NUS data, always six 

different seed values were employed. Next, the compound intensities corresponding 

to a fold change of two or of two to thirty two were compared pairwise, resulting in a 

set of up to fifteen fold changes for each dataset. Because spike-in concentration 

ranges spanned a 32-fold difference between the lowest and highest spike-in 

concentration, minor deviations in relative intensities derived from the lowest spike-in 

led to large differences in fold-changes. To address this observation, the derived 

fifteen fold changes between all possible spike-in level comparisons were divided by 

the respective factor to yield a fold change of two. This way, the effects on 

quantitation were compared to the results obtained from merely relating each spike-in 

level with the next highest one. Then, the fold changes were averaged and the 

difference as well as the linear dependency between expected and observed fold 

changes, for the latter comparing both spike-in datasets, was depicted in bar charts 

or as a regression analysis, respectively.  

Analysis of Cohort Study Specimens 

Visualization of 50% NUS compared to US of the cohort study samples was 

conducted via boxplots and Bland-Altman plots, for the latter also comparing 50% 

NUS to 1D 1H spectra. Boxplots give a graphical representation of the symmetry of 

the data distribution with the box representing the interquartile range between the 

first and third quartile, a horizontal line locating the median, straight lines depicting 
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the most extreme values, and circles the outliers.94 Bland Altman plots are well suited 

to assess how well two experimental methods agree.58  

Statistical Analysis 

Statistical analysis was performed and graphical plots were generated with  

Excel 2013 [Microsoft Corporation, Redmond, WA, USA] and R version 3.2.3 in 

RStudio version 0.99.491 [RStudio, Inc., Boston, MA, USA]. Figures were assembled 

in PowerPoint 2013 [Microsoft Corporation]. Tests considering the spike-in dataset 

employing urine I were performed over all concentrations, either over all spike-in 

metabolites or per metabolite, either over all NUS levels or per NUS level considering 

accuracy and precision separately as derived from the recovery plots. Statistical 

significance of a given comparison was considered given a p-value of less than or 

equal to 0.05. To test for significant differences in the quantitative performance 

between implemented variants of given NUS parameters (Figure 4), those signal 

intensities missing in the NUS spectra were imputed with zero. The respective mean 

ratios and CVs were calculated from non-imputed data.  

 

 

Figure 4. Overview of consecutively applied statistical tests on ratios and CVs derived from recovery plots 
obtained from the spike-in dataset according to analyzed influences on the performance of NUS.  

Normal distribution was tested for with the Shapiro-Wilk test which tests for the 

hypothesis that the investigated samples come from a normally distributed 

population.95 The Student’s t-test hypothesizes that the means of two normally 

distributed populations having equal variances following a Student’s  

t-distribution are equal.94 A paired Student’s t-test, applied on expected fold changes 
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of two (Figure 4), takes into account that two samples are dependent on each 

other.94 The Wilcoxon signed-rank test is a non-parametric alternative to the paired 

Student’s t-test, hypothesizing that the two population distribution differences are 

symmetrical around the median.94 A Wilcoxon signed-rank test was considered when 

two groups were compared, being the case for analyzing the influence of 

reconstruction algorithms and spectra types on NUS data (Figure 4). A Friedman  

test (paired data) was applied in the case of data derived from taking different 

sampling schemes and NUS levels (Figure 4). The Friedman test is appropriate when 

comparing more than two dependent, non-parametric groups.96 A post-hoc test is 

performed for pairwise multiple comparisons given that a test taking into account 

more than two groups shows significance.97 As post hoc tests, either the Nemenyi 

test or a paired Student’s t-test was implemented, the latter after testing for equal 

variances with an F-test. The Nemenyi test applies as a post-hoc test after a 

Friedman test has shown significance.97 An F-test applies to estimate equal 

variances for two populations for performing a Student’s t-test.94 To test for 

quantitative differences between metabolites, a Kruskal-Wallis test and one-way 

analysis of variance (ANOVA) were implemented, for the latter furthermore applying 

a Bartlett test to test for homogeneity of variances (Figure 4). Performing an ANOVA 

is suitable when testing for the equality of means from more than two normally 

distributed independent populations showing equal variance.94 The Bartlett’s test, 

applicable as a test for homogeneity of variance checked for before applying an 

ANOVA, tests the hypothesis that the standard deviation is equal in the groups.98 The 

Kruskal-Wallis test is a non-parametric alternative to ANOVA hypothesizing equal 

distributions of the more than two independent populations.94  

Statistical Power Analysis 

For the cohort study samples, an a priori statistical power analysis was performed to 

control for the statistical power before conducting the study.99 In order to calculate 

the minimum number of samples required from each cohort study to spot trends 

between them,59,74 an a priori statistical power analysis was performed with G*Power 

version 3.1.9.2.100 As the sample variability within the groups was not known before 

recruiting the total number of samples, a set of ten specimens was randomly selected 

from each group for a pilot study to estimate the effect size, from there calculating the 

minimum amount of samples needed for each group given a significance level and 
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minimal statistical power of interest.49,74 To detect the population effect size, power 

analysis was performed with quantified metabolite concentrations derived from 
1H,13C-HSQC spectra normalized to the sample’s urinary creatinine concentration. 

For statistical power analysis D-glucose and glycine values were considered, both 

associated with diabetic nephropathy.101 Power analysis employing a conventional 

significance level α = 0.05 and a statistical power 1 – β = 0.899 led to a necessary 

amount of 28 specimens per group considering equal sample sizes to detect 

significant metabolic differences between them.  

Statistical Analysis of Selected Biological Groups 

P-values derived from statistical comparisons of metabolite total peak volumes 

between the cohort study samples are based on a Mann-Whitney U-test. The  

Mann-Whitney U-test is a non-parametric test applied when comparing two 

independent groups.96 To test for significant differences between metabolite levels 

derived from time-reduced and enhanced-resolution 1H,1H-COSY45 spectra for each 

of the control and affected clones of B16.SIY E12 and Panc02-H7 cells, a Mann-

Whitney U-test was applied imputing those signal intensities missing in the NUS 

spectra with zero. 
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3. Results 

3.1. NUS on Urine 

3.1.1. Spike-in Dataset 

 

Figure 5. Exemplary NMR spectra of the human urine I specimen. Selected signals in the aromatic 
and aliphatic regions of the spectra were assigned to the six endogenous metabolites tryptophan (1), 
tyrosine (2), glutamine (3), glutamic acid (4), lactic acid (5), and threonine (6), which had been spiked-
in at concentrations between 15.6 and 500.0 µM. While 1D 1H NMR spectroscopy failed to resolve the 
selected signals (a), both 2D 1H,1H-TOCSY (b) and 1H,1H-COSY45 (c) experiments yielded sufficient 
resolution as exemplarily shown for tryptophan and tyrosine via inserts. The contour levels of both 2D 
spectra are zoomed in close to the noise level. Key: T, 3-trimethylsilyl-2,2,3,3-tetradeuteropropionate. 
Published in von Schlippenbach et al. 2018.69 

Accelerated Quantification. To test the impact of the choice of sampling scheme, 

reconstruction algorithm, and seed value, a urine specimen (urine I) from an 

apparently healthy donor was spiked with varying concentrations of three pairs of 
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urinary metabolites, namely tryptophan/tyrosine, glutamine/glutamic acid, and lactic 

acid/threonine. These metabolites had been chosen because of the inability of 1D  
1H NMR spectroscopy to resolve them sufficiently for quantitation (Figure 5 a). 

Figures 5 b and 5 c show their successful spectral resolution by 2D 1H,1H-TOCSY 

and 1H,1H-COSY45 NMR spectroscopy, respectively.  

RECONSTRUCTION ALGORITHMS. The two reconstruction algorithms initially 

tested were recursive multidimensional decomposition (R-MDD) and the compressed 

sensing approach employing the iterative re-weighted least squares method (CS-

IRLS), which both are implemented in TopSpin 3.1. 1H,1H-TOCSY spectra were 

chosen as this type of spectrum yields a larger number of signals than  
1H,1H-COSY45 spectra, thus rendering reconstruction of NUS more challenging. 

Figures 6, S1, and S2 depict the recovery of metabolite signal intensities relative to 

uniform sampling (US) as a function of the level of sparse sampling (75%, 50%, and 

25% of data points). The ratios between NUS and US serve as a measure of 

accuracy whereas the coefficients of variation (CVs) of these ratios reflect precision 

as exemplarily shown for glutamine (Figure 6 a, c) and glutamic acid (Figure 6 b, d). 

For the chosen levels of sparse sampling, separate bars are displayed for each 

spike-in level and the blank control. For the US 1H,1H-TOCSY spectra and for each 

level of sparse sampling, five and three spectra were acquired, respectively. The 

replicate spectra employing NUS were measured with an exponentially weighted 

sampling scheme and a different seed value for each replicate. To illustrate 

correlation trends between US and NUS, additional scatter plots with peak volumes 

normalized to TSP were generated (Figure S3).  

For a NUS level of 25%, in particular, it is obvious that R-MDD failed more often than 

CS-IRLS to reconstruct signals for example for glutamine (Figure 6 a, c) and 

tryptophan (Figure S1 a and S2 a) at the lower spike-in concentrations. Regarding 

the number of reconstructed signals per and across NUS levels (Table S1, first two 

columns), CS-IRLS always outperformed R-MDD, yielding e.g. 112 compared to 103 

recoveries over all NUS levels, respectively. Note that one signal was selected per 

metabolite, each present at 6 different concentrations in the different spike-ins and 

the blank sample. For glutamic acid, only five signals were considered as its signal 

intensities in the blank sample and at the lowest spike-in concentration were not 
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present or too low for reliable integration even in the US 1H-1H TOCSY spectra. 

Therefore, a total of 40 signals were considered per NUS level.  

 

Figure 6. Impact of signal reconstruction with recursive multidimensional decomposition (a, b) and 
compressed sensing employing the iterative re-weighted least squares method (c, d), respectively, on 
the recovery of the relative intensity of a selected cross signal in the spike-in samples and the blank 
control employing urine I, exemplarily shown for glutamine (a, c) and glutamic acid (b, d). US  
1H,1H-TOCSY spectra (n = 5) indicated by blue bars. NUS 1H,1H-TOCSY spectra (n = 3 each) 
measured with 75%, 50%, and 25% of the uniformly sampled data points depicted by green, orange, 
and gray bars, respectively. Each NUS spectrum was acquired with an exponentially weighted 
sampling scheme and three seed values per NUS level. The x-axis depicts the spike-in concentration 
in micromolar. The intensity ratio of the total cross peak integrals scaled to the internal standard  
3-trimethylsilyl-2,2,3,3-tetradeuteropropionate (TSP) of the metabolite signal (mean + SD) obtained 
with US or NUS to US is plotted on the y-axis. Published in von Schlippenbach et al. 2018.69 

A Wilcoxon signed-rank test on the ratios and the coefficients of variation (CVs) 

across all spike-ins showed significant differences between CS-IRLS and R-MDD 

across all NUS levels (Table S2, first two columns) for both the ratios (p = 4.109*10-6) 

and CVs (p = 0.037). When comparing the mean ratios and CVs between CS-IRLS 

and R-MDD for each and across all NUS levels (first four columns of Table S3),  

CS-IRLS yielded more accurate and precise results than R-MDD. Taking all NUS 

levels into account, the mean ratio obtained by CS-IRLS was 0.96 with an average 

CV of 12.30%, whereas the corresponding values for R-MDD were 0.89 and 17.16%, 

respectively.  
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However, it is also obvious that the performance of both reconstruction algorithms 

declined with decreasing numbers of acquired indirect data points. In the case of the 

reconstruction of the 75% and 50% NUS spectra by CS-IRLS, though, almost 

identical ratios of 0.98 and 0.99, respectively, were obtained. Overall with regard to 

both the signals reconstructed and the accuracy and precision obtained, CS-IRLS 

proved superior to R-MDD. Therefore, CS-IRLS was used for further parameter 

optimization. 

SAMPLING SCHEMES. Next, the influence of the three different sampling schemes 

and the choice of the seed value was investigated on the quantitative performance of 
1H,1H-TOCSY experiments as a function of the fraction of indirect data points 

acquired. To assess the influence of the seed value regardless of the measurement 

error, simulated NUS spectra were generated by extracting data points of the indirect 

dimension from a single US spectrum in a fashion corresponding to an intended 

percentage of sparse sampling, seed value, and sampling scheme. Figure 7 shows 

exemplarily for lactic acid (a, b, c) and tyrosine (d, e, f) the influence of an 

unweighted (a, d), exponentially weighted (b, e), and sinusoidal Poisson-gap (c, f) 
sampling scheme on the recovery of signal intensities relative to US. For each NUS 

level (75%, 50%, and 25%), six different seed values were employed for data 

extraction from the US spectrum. All NUS spectra were reconstructed by CS-IRLS. 

Data from Figure 7, S4, S5, and S6 on the effect of the sampling scheme on the 

other four metabolites are also depicted as scatter plots (Figure S7).  

Of the three sampling schemes, sinusoidal Poisson-gap sampling performed best 

especially with regard to the number of reconstructed weak signals like lactic  

acid (Figure 7 c). While the tyrosine signal could be reconstructed with good 

accuracy by each of the sampling schemes, unweighted sampling failed to 

reconstruct the lactic acid signal at spike-in concentrations below 250 µM. Further, 

only sinusoidal Poisson-gap sampling allowed quantification of lactic acid in the blank 

employing 50% NUS.  
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Figure 7. Influence of unweighted (a, d), exponentially weighted (b, e), and sinusoidal Poisson-gap (c, 
f) sampling on the recovery of the relative intensity of a selected cross signal in each spike-in and the 
blank employing urine I, exemplarily shown for lactic acid (a, b, c) and tyrosine (d, e, f). US  
1H,1H-TOCSY spectrum (n = 1) indicated by blue bars. NUS 1H,1H-TOCSY spectra simulated from the 
US spectrum displayed with 75%, 50%, and 25% of the US data points depicted by green, orange, 
and gray bars, respectively. Each NUS spectrum was constructed with six seed values per NUS level 
and reconstructed with the compressed sensing approach employing the iterative re-weighted least 
squares method. On the x-axis, the spike-in concentration is given in micromolar. The intensity ratio of 
the total cross peak integral scaled to the internal standard TSP of the metabolite signal (mean + SD) 
obtained with US or NUS to US is plotted on the y-axis. Published in von Schlippenbach et al. 2018.69 

Considering the number of recoveries observed over all NUS levels with either 

sampling scheme (Table S1), it is evident that the sine-weighted Poisson-gap 

sampling scheme recovered the most signals, in total 113 recoveries compared to 

112 with exponentially weighted sampling and 98 with unweighted sampling. The 

same was true for 50% NUS, while for 75% and 25% NUS sine-weighted Poisson-

gap and exponentially weighted sampling performed equally well. Looking at the 

ratios (accuracies) over all spike-in metabolites and concentrations, the Friedman 

test (Table S2) showed significant differences across NUS levels (p = 2.536*10-8). 

Subsequent application of the Nemenyi post hoc test (Table S4) showed that both 

exponential weighted and sinusoidal Poisson-gap sampling differed significantly from 

unweighted sampling (p = 3.9*10-5 and p = 1.8*10-7, respectively) while the former 

two did not differ significantly (p = 0.54).  
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Regarding ratios across all NUS levels (Table S3), the three sampling schemes 

differed little in accuracy. Unweighted, exponentially weighted, and sinusoidal 

Poisson-gap sampling yielded average ratios of 0.97, 1.02, and 1.03, respectively. 

Regarding precision, the Friedman test (Table S2) showed a significant difference 

between the three sampling schemes over all NUS levels (p < 2.2*10-16). The 

Nemenyi post hoc test (Table S4) revealed no significant difference between 

unweighted and exponentially weighted sampling. In terms of precision, significant 

differences, however, were observed between sinusoidal Poisson-gap and the other 

two sampling schemes (last two columns of Table S4). Results given in Table S3 

demonstrate, that precision (CV) depends on the chosen sampling scheme, with the 

sinusoidal Poisson-gap sampling scheme depending the least on the seed value 

chosen showing a CV of 5.39% over all NUS levels compared to unweighted and 

exponentially weighted sampling with a CV of 12.06% and 9.59%, respectively. In 

light of the greater number of signals recovered and the lowest seed value 

dependency, sine-weighted Poisson-gap sampling was used for all further 

evaluations and applications of NUS. 

SPECTRA TYPES. To investigate a potential differential impact of NUS on the type 

of homonuclear 2D experiment used, 1H,1H-TOCSY spectra were compared to 
1H,1H-COSY45 spectra. Figure 8 shows exemplarily the recovery of the tyrosine (a), 

glutamine (b), and lactic acid (c) signals in 1H,1H-COSY45 spectra, which share the 

same cross signal positions in 1H,1H-TOCSY spectra. Results for the other three 

spike-in metabolites are depicted in Figure S8. Note that sine-weighted Poisson-gap 

sampling in combination with CS-IRLS was used here. Data from Figure 8 and  

Figure S8 depicting the influence of the spectra type on the other three compounds 

are also displayed as scatter plots (Figure S9). 

When comparing columns five and six in Table S1 and Figures 8, S6, and S8, the 

number of signals reconstructed successfully over all NUS levels was higher for 
1H,1H-COSY45 than 1H,1H TOCSY. For both 75% and 50% NUS both spectra types 

showed a recovery of all 40 considered signals, whereas for 25% NUS 33 and 38 

signals were recovered for 1H,1H TOCSY and 1H,1H-COSY45, respectively. When 

considering accuracy and precision, Table S2 shows that over all NUS levels 

significant differences were obtained between the two spectra types using the 
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Wilcoxon signed-rank test (p = 1.075*10-4 regarding accuracies and p = 4.585*10-8 

concerning precisions). Next, for each NUS level, mean ratios and CVs were 

compared separately (the last two columns of Table S3 for 1H,1H-TOCSY and  

Table S5 for 1H,1H-COSY45).  

Figure 8. Influence of the spectral type on the recovery of the relative intensity of a selected cross 
signal in each spike-in sample and the blank employing urine I, exemplarily shown for tyrosine (a), 
glutamine (b), and lactic acid (c). US 1H,1H-COSY45 spectrum (n = 1) indicated by blue bars. NUS 
1H,1H-COSY45 spectra simulated from the US spectrum displayed with 75%, 50%, and 25% of the US 
data points depicted by green, orange, and gray bars, respectively. Each NUS spectrum was 
constructed with a sinusoidal Poisson-gap sampling scheme taking six seed values per NUS level and 
reconstructed with the compressed sensing approach employing the iterative re-weighted least 
squares method. On the x-axis, the spike-in concentration given in micromolar is shown. The intensity 
ratio of the total cross peak integral scaled to the internal standard TSP of the metabolite  
signal (mean + SD) obtained with US or NUS relative to US is plotted on the y-axis. Published in von 
Schlippenbach et al. 2018.69 

Results indicate that at NUS levels of 75% and 50%, 1H,1H-TOCSY and  
1H,1H-COSY45 yielded similar accuracies with ratios of 1.06 and 1.02 at 75% NUS 

and of 1.05 and 0.96 at 50% NUS, respectively. At 25% NUS, in contrast, a 

considerable drop in accuracy was observed for 1H,1H-COSY45 spectra with the ratio 

to US decreasing to 0.80. In terms of precision, 1H,1H-TOCSY was more precise than 
1H,1H-COSY45 with CVs of 5.39% and 8.89%, respectively, across the three NUS 

levels. However, the differences in accuracy and precision between 1H,1H-TOCSY 

and 1H,1H-COSY45 were mostly observed at the 25% NUS level. Having applied the 

Friedman test, significant differences in accuracy and precision were observed 

across the different NUS levels in 1H,1H-COSY45 spectra (p <2.2*10-16 and  

p = 4.0*10-6, respectively) (Table S6). In terms of accuracy, the Nemenyi post hoc test 

showed significant differences in Table S6 for each NUS level comparison with  

p = 4.9*10-4 for 75% vs. 50% NUS, p = 2.5*10-14 when comparing 75% against  

25% NUS and p = 2.7*10-6 when testing 50% against 25% NUS. The same was true 
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in terms of precision except for the comparison of 75% against 50% NUS resulting in 

p = 0.065 (Table S6). 

In conclusion, 1H,1H-TOCSY or 1H,1H-COSY45 appear to have performed equally 

well with regard to the number of signals reconstructed, accuracy, and precision as 

long as the fraction of data points acquired did not drop below 50%. However,  
1H,1H-COSY45 is the more simple pulse sequence and, therefore, may be better 

suited for large metabolomic studies. The number of expected signals per metabolite 

was generally lower in 1H,1H-COSY45 than in 1H,1H-TOCSY spectra, which reduces 

signal overlap in highly complex biofluids such as human urine. Therefore,  
1H,1H-COSY45 spectra have in this context a slight advantage over 1H,1H-TOCSY 

spectra.  

Having shown that a sine-weighted Poisson-gap sampling scheme in combination 

with 50% NUS performed best on the experimental setup, two other commonly 

applied reconstruction algorithms were chosen to be evaluated, namely the Iterative 

Soft Thresholding Compressed Sensing method (CS-IST) implemented in the 

MestRe Nova software suite and the maximum entropy (MaxEnt) approach 

implemented in the Rowland NMR toolkit. CS-IST was evaluated on 1H,1HCOSY45 

spectra acquired in magnitude mode as these spectra provide a slight advantage 

over phase sensitive 1H,1H-TOCSY spectra. As reconstruction by the applied MaxEnt 

approach is restricted to phase-sensitive data, MaxEnt reconstruction was 

investigated on 1H,1H-TOCSY spectra. When comparing the number of signals 

reconstructed with the so far best performing method CS-IRLS, with CS-IST, and 

MaxEnt in Figure 8 and Figures S8, S10 and S11, respectively, as well as in  

Table S7, CS-IRLS outperforms the other two reconstruction algorithms. This is 

particularly true for MaxEnt which is able to recover merely 31 out of all possible 42 

signals compared to CS-IRLS yielding nearly all observable recoveries (Table S7). 

Recoveries obtained from data having applied MaxEnt show heavy underestimation 

for tryptophan, glutamic acid, lactic acid, and threonine and on the other hand strong 

overestimation of tyrosine signal volumes (Figure S11). Results show that CS-IRLS 

allows a more accurate and precise quantitation with a mean ratio of 0.96 and a CV 

of 8.01% in comparison to CS-IST with a mean ratio of 0.93 and a CV of  

8.47% (Table S8). The difference is even more striking when comparing to MaxEnt 
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showing a mean ratio of 0.61 and a CV of 13.70% (Table S8). Table S9 shows that 

significant differences in ratios but non-significant differences in CV were obtained 

between the three reconstruction algorithms having applied the Friedman test. 

Results from the Nemenyi post-hoc test show that significant differences in ratio are 

derived from results obtained from data reconstructed with MaxEnt (Table S10). 

METABOLITES. Next, applying 50% NUS on 1H,1H-COSY45 spectra with a 

sinusoidal Poisson-gap sampling scheme and spectral reconstruction by CS-IRLS, 

metabolite-dependent differences in accuracy and precision were investigated.  

Table S11 lists the median ratios and mean CVs of a given spike-in metabolite over 

all concentrations and per spike-in concentration, respectively.  

All metabolites yielded acceptable accuracies and precisions according to FDA 

guidelines for the upper four spike-in concentrations, with tyrosine, glutamine, and 

lactic acid even yielded adequate accuracy and precision for the lower spike-in 

levels. Having applied a Kruskal-Wallis test on ratios (p = 0.0533) and a one-way 

ANOVA on the CVs (p = 0.1359), for the latter showing homogeneity of variances 

with the Bartlett test (p = 0.1502), no significant differences could be seen between 

the metabolites. 

FOLD CHANGES. Next, employing urine I, the determination of fold changes was 

investigated. For each metabolite, the difference between expected and observed 

fold changes was analyzed. Note that before calculation of fold changes the 

corresponding signal intensities of the blank were subtracted from the spike-in data. 

Figure S12a summarizes the results for the n = 5 fold changes of two.  

For Figure S12b, all fold changes between 2 and 32 were considered to compute 15 

fold changes of two. For reasons of comparison, also fold changes obtained from the 

corresponding US spectrum were included.  

For expected fold changes of two (Figure S12a), the mean observed fold change 

over all metabolites was 2.08 for US, while it was 2.15 for 50% NUS showing an 

average error for both US and 50% NUS of less than 10%. Over all metabolites and 

six spectral replicates, 50% NUS had an acceptable precision according to FDA 

guidelines with a mean precision of 9.26%. Further, with the exception of lactic acid 
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which yielded a CV of 22.52% in the 50% NUS data, the expected fold changes of 

two could be determined with an error in accuracy and precision of less than 15%. A 

paired Student’s t-test applied over all metabolites showed no significant differences 

in the observed fold changes between US and 50% NUS (p = 0.0666). Consideration 

of all fold changes of 2 to 32 (Figure S12b) resulted in stronger deviations in 

accuracy and precision for all metabolites. For example, lactic acid showed a 

difference between expected and observed fold changes in 50% NUS spectra  

of -0.23 with an SD of ± 0.05 when taking five fold changes of two while it yielded a 

difference between expected and observed fold changes in 50% NUS spectra  

of -0.79 with an SD of ± 0.38 when taking fifteen fold changes of two. For expected 

fold changes of 2 to 32, Figure S12c depicts the linear dependency between 

expected and observed fold changes over all spike-in metabolites in urine I as a 

further measure to assess the reproducibility of determining fold changes.  

The regression lines of both the US and 50% NUS dataset nearly overlap, each with 

a slope of about one, an offset near zero, and coefficients of determination of  

0.999 (Figure S12c). Stronger variations of the observed fold changes from the 

expected fold changes determined with 50% NUS compared to US can be seen in 

the wider standard deviation ranges for 50% NUS. 

PARAMETER VALIDATION. So far parameters were optimized based on one spike-

in dataset. For validation purposes, a second spike-in dataset (urine II) was 

generated in the same manner as the first one except that this time a more 

concentrated urine matrix was used. As described above, for each sample a US 
1H,1H-COSY45 spectrum was acquired and data points were drawn from this 

experimental data for the in silico generation of 50% NUS spectra employing 

sinusoidal Poisson-gap sampling. Spectra were reconstructed employing CS-IRLS. 

Table S12 lists the median ratios and mean CVs of a given spike-in metabolite over 

all concentrations and per spike-in concentration, respectively.  

With the exception of tryptophan, all metabolites yielded acceptable accuracies and 

precisions for all spike-in concentrations. For the lower spike-in concentrations of 

tryptophan, deviations in both accuracy and precision that exceeded FDA 

recommendations were observed. This is explained by the comparatively weak 
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endogenous tryptophan signals of urine II. Overall, results from the two spike-in 

datasets agreed well. Thus, it is concluded that the set of optimized parameters is 

applicable to different urinary matrices. 

3.1.2. Cohort Study Samples  

Application of Accelerated Quantification with NUS to Urine Specimens. Next, 

1D 1H NOESY and 2D 1H,1H-COSY45 spectra with and without 50% NUS were 

acquired for 28 urine specimens each selected at random from the GCKD study and 

the GNC study. A short description of both studies is given in section 2.1. To compare 

the performance of the three types of NMR experiments, Bland-Altman plots were 

generated for a small selected set of metabolites of medical relevance in chronic 

kidney disease, namely creatinine, hippurate, lactate, D-glucose, citrate, glutamine 

and pseudouridine (Figures S13, S14, and S15). In Figure S14, the spike-in 

metabolites were considered in addition, being lactic acid, threonine, tryptophan, and 

tyrosine, except for glutamine shown in Figure S15 a and glutamic acid, which could 

not be detected in any of the GCKD and GNC urine specimens. The Bland-Altman 

plots depicted in Figure S13 revealed no bias in the concentrations of creatinine (a), 

hippuric acid (b), and D-glucose (d) determined by 1D 1H NOESY and 50% NUS 2D 
1H,1H-COSY45. In case of lactic acid (c), 1D 1H NOESY yielded increasingly higher 

concentrations compared to 50% NUS 2D 1H,1H-COSY45 with elevated urinary 

levels of lactic acid, while for both citric acid (e) and glutamine (f) deviations between 

the two methods considerably enlarged with higher concentrations. For the 

comparison of 2D 1H,1H-COSY45 data acquired by US and 50% NUS, respectively, 

no systematic bias was obvious and with the exception of tryptophan only minimal 

variations were observed for any of the ten metabolites investigated (Figures S14, 

and S15 a). The agreement in urinary cohort sample metabolite levels determined by 

50% NUS and US 1H,1H-COSY45 NMR spectroscopy, respectively, is furthermore 

demonstrated in the boxplots depicted in Figures S15 b and c, S16 and S17. The 

boxplots show the levels of glutamine, hippuric acid, lactic acid, D-glucose, citric acid, 

and pseudouridine, respectively, normalized against the respective creatinine level in 

each specimen for the two cohorts.  
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Using a Mann-Whitney U-test, significant differences in the urinary levels of 

pseudouridine, citric acid, and glutamine between the two cohorts were  

observed (Table S13). The p-values derived from US and 50% NUS spectra were in 

each case comparable. The average amount of pseudouridine was higher in the CKD 

specimens, while the opposite applied to glutamine and citric acid.  

Further, while the lower limits of quantification (LLOQs) for lactic acid, D-glucose, and 

glutamine did not differ between 50% NUS and US, the latter yielded two-fold lower 

LLOQs for hippuric acid, citric acid, and pseudouridine, and in case of creatinine the 

LLOQs differed even by a factor of 4 (Table S14). However, this did not affect the 

number of quantifiable signals of these four metabolites in the urine spectra due to 

the presence of endogenous concentrations above the LLOQ derived from 50% NUS 

spectra. In comparison, the corresponding LLOQs for 1D 1H spectra are around 3 µM 

with the exception of glutamine, which yielded an LLOQ of 39 µM. 

Implementation of Enhanced Resolution with NUS to Urine Specimen. 
Additionally, the applicability of NUS to enhance the spectral resolution in the indirect 

dimension without increasing measurement time compared to the US equivalent was 

analyzed. For this, urine II selected in the spike-in dataset having an above average 

creatinine concentration was selected and 1H,1H-COSY45 spectra were acquired. In 

the 50% NUS spectrum implementing the optimized NUS parameters and the time-

equivalent US spectrum, the number of experimentally sampled data points in the 

indirect dimension was kept constant, therefore yielding after reconstruction twice the 

amount of indirect data points in the NUS spectrum. Additionally, a US spectrum with 

twice as many indirect data points was measured to yield the spectral resolution 

comparable with NUS. Figure 9 exemplarily depicts three spectral areas (a, b, c) 

derived from the time-equivalent US (1), 50% NUS (2), and enhanced resolution  

US (3) 1H,1H-COSY45 spectrum. 
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Figure 9. Three selected spectral areas (a, b, c) derived from a time-equivalent US (1), enhanced 
resolution 50% NUS (2), and enhanced resolution US (3) 1H,1H-COSY45 spectrum, respectively. The 
NUS spectrum was acquired by means of sine-weighted Poisson-gap sampling with a single seed 
value and reconstructed using CS-IRLS. The contour levels are zoomed in close to the noise level. 

When comparing the number of automatically picked peaks after manual removal of 

those belonging to the diagonal, noise, artifacts, and the lower triangle in the time-

equivalent US and NUS spectrum, a surplus of 107 peaks between the spectral area 

of 0 to 10 ppm were picked in the NUS spectrum (2111 peaks with US and 2218 

peaks with NUS), being an increase in peak number of about 5%. With respect to 

quantitatively assessing the effect of enhanced resolution with NUS, Figure 9 shows 

its influence on three spectral areas. Panel a shows an example for peaks of the 

same compound more resolved in NUS and enhanced resolution US spectra due to 

the increased resolution in the indirect dimension. In the spectral region depicted in  
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panel b, the enhanced resolution spectra reveal a newly emerged peak not visible in 

the time-equivalent US spectrum. Merged peaks of different signals present in the 

US spectra are separated in the NUS spectrum, seen in panel c. Here, the enhanced 

resolution US spectrum is able to resolve two peaks while in the time-equivalent US 

spectrum merely one peak is picked. When looking at the contour plots of all three 

spectral areas, there is a slight decrease in peak intensity in the enhanced resolution 

NUS spectrum compared to the enhanced resolution US spectrum. Note that 

increased F1 ridges in the enhanced resolution spectra, predominantly between 3.20 

and 4.10 ppm, compared to the time-equivalent US spectrum were observed.  
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3.2. NUS on Cancer Cells 

Comparison of NUS for Accelerated Quantification and Enhanced Resolution. 
After having compared the quantitative difference between US and time-reduced 

NUS spectra on urine specimens, the quantitative performance of NUS was 

evaluated when applied to accelerate the acquisition or enhance the spectral 

resolution. Here, the enhanced resolution NUS spectra were comprised of twice as 

many indirect data points. The higher the intended resolution in the indirect 

dimension, the more increments have to be collected. As shown for the selected 

urine sample in section 3.1.2, enhancing the digital resolution in the indirect 

dimension aids peak analysis.  

After having addressed the difference between both NUS applications qualitatively in 

the second part of section 3.1.2, the affects were analyzed quantitatively taking 

cancer cells. To investigate the difference in quantitative performance between time-

reduced and enhanced resolution 50% NUS of cancer cell samples, all metabolites 

assignable with AMIX-Viewer 3.9.13 showing concentrations above the LLOQ in all 

samples were absolutely quantified, resulting in seven metabolites in the 

supernatants and three in the cell pellets. Afterwards, quantitative differences in 

metabolite levels in the supernatants and methanol extracts of the cell pellets were 

tested for statistical significance. As an application, B16.SIY E12 melanoma and 

Panc02-H7 pancreatic adenocarcinoma cells in which LDHA was knocked down, 

respectively knocked out, were compared to their corresponding controls unaffected 

in LDHA expression. For each clone, three biological replicates of both cell lines were 

available. 

3.2.1. Supernatants 

Figure 10 shows the average quantified levels derived from time-reduced (a, c) or 

enhanced resolution (b, d) 50% NUS 1H,1H-COSY45 spectra of seven identified 

compounds having subtracted the corresponding metabolite level in the cell culture 

medium from the mean level. The level of glutamic acid in the medium, however, was 

not subtracted from the corresponding level in the supernatant because glutamic acid 

could not be quantified in the medium (section 2.4). Each metabolite level was 

normalized to the amount of protein per pellet after 48 h of cultivation. For reasons of 
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depiction due to large differences in compound levels between metabolites, glucose 

together with lactic acid (a, b) as well as citric acid, glutamine, glutamic acid together 

with tyrosine (c, d) are shown separately. 

 

 

Figure 10. Amount of glucose (glc) and lactic acid (lac) (a, b) as well as citric acid (cit),  
glutamine (gln), glutamic acid (glu), and tyrosine (tyr) (c, d) given in the supernatants of  
B16.SIY E12 (B16) melanoma and Panc02-H7 (Panc) pancreatic adenocarcinoma cells having 
subtracted the corresponding metabolite level in the medium from the mean level with the exception of 
glutamic acid which was excluded, normalized to the amount of protein per pellet given in g after 48 h. 
The metabolite levels present in millimol derived from time-reduced (a, c) or enhanced resolution (b, 
d) 50% NUS 1H,1H-COSY45 spectra (n = 3 biological replicates per clone with the exception of 
glutamic acid in the B16-Ctrl samples given n = 2 as well as the B16-LDHAlow and Panc-LDHAnull each 
given n = 1 in time-reduced NUS spectra due to excluded signals) are given in mean ± SD. A  
Mann-Whitney U-test was applied to test for significant differences in normalized compound levels 
between the control (Ctrl) and affected clones (LDHAlow and LDHAnull) of the corresponding cancer cell 
line. 

Overall, the quantitative results derived from both NUS spectra were similar. 

However, the standard deviation (SD) in time-reduced NUS spectra is overall higher 

than in the enhanced-resolution NUS spectra seen for instance for glutamic acid, 

showing in B16-Ctrl clones a SD of ± 2.96 (taking n = 2) in time-reduced  

B16-Ctrl B16-Ldhalow Panc-Ctrl Panc-LdhanullB16-Ctrl Panc-Ctrl Panc-LDHAnullB16-LDHAlow

a b

-4.0

-2.0

0.0

2.0

4.0

6.0

8.0

10.0

12.0

cit gln glu tyr thr

su
pe

rn
at

an
t 

(m
m

ol
/g

 p
ro

te
in

 p
er

 4
8h

)

-4.0

-2.0

0.0

2.0

4.0

6.0

8.0

10.0

12.0

cit gln glu tyr thr

su
pe

rn
at

an
t 

(m
m

ol
/g

 p
ro

te
in

 p
er

 4
8h

)c d

-100.0

-50.0

0.0

50.0

100.0

150.0

glc lac

su
pe

rn
an

t
(m

m
ol

/g
 p

ro
te

in
 p

er
 4

8h
)

-100.0

-50.0

0.0

50.0

100.0

150.0

glc lac
su

pe
rn

an
t

(m
m

ol
/g

 p
ro

te
in

 p
er

 4
8h

)



 
58 

while ± 1.84 (taking n = 3) in enhanced resolution NUS spectra. A Mann-Whitney U-test 

revealed no significant differences between metabolite levels of a given compound in 

the supernatants derived from time-reduced and enhanced-resolution 1H,1H-COSY45 

spectra for any of the four clones. Note that six of the time-reduced 50% NUS 

spectra including the medium control did not yield quantifiable glutamic acid signals.  

3.2.2. Methanol Extracts 

Next methanol extracts of the cancer cell pellets were analyzed. Figure 11 shows the 

average quantified metabolite levels derived from time-reduced (a) or enhanced 

resolution (b) 50% NUS 1H,1H-COSY45 spectra in the methanol extracts of the cell 

pellets of both cell lines, normalized to the amount of protein per pellet given after  

48 h of cultivation. Note that one out of three biological replicates of the  

Panc02-H7 LDHAnull clones did not show quantifiable tyrosine signals. 

 

Figure 11. Amount of lactic acid (lac), glutamic acid (glu), and tyrosine (tyr) given in the methanol 
extractions of B16.SIY E12 (B16) melanoma and Panc02-H7 (Panc) pancreatic adenocarcinoma cell 
pellets, normalized to the amount of protein per pellet given in g after 48 h. The metabolite levels 
present in micromole derived from time-reduced (a) or enhanced resolution (b) 1H,1H-COSY45  
spectra (n = 3 biological replicates per clone with the exception of tyrosine in the Panc-LDHAnull 
samples acquired with both NUS settings given n = 2 due to one missing value) are given in  
mean ± SD. A Mann-Whitney U-test was applied to test for significant differences in normalized 
compound levels between the control (Ctrl) and affected clones (LDHAlow and LDHAnull) of the 
corresponding cancer cell line.  

The Mann-Whitney U-test revealed no significant differences between metabolite 

levels in the methanol extracts derived from time-reduced and enhanced-resolution 
1H,1H-COSY45 spectra for any of the four clones. The metabolite levels in both NUS 

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

lac glu tyr

pe
lle

t (
µm

ol
/g

 p
ro

te
in

 p
er

 4
8h

)

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

lac glu tyr

pe
lle

t (
µm

ol
/g

 p
ro

te
in

 p
er

 4
8h

)a b

B16-Ctrl B16-Ldhalow Panc-Ctrl Panc-LdhanullB16-Ctrl Panc-Ctrl Panc-LDHAnullB16-LDHAlow



 
59 

spectra showed high concordance, for instance lactic acid in the B16-Ctrl clones 

revealed a metabolite level of 7.55 µmol/g protein in time-reduced while 8.96 µmol/g 

protein in enhanced resolution NUS spectra. The SD was overall comparable, 

showing exemplarily a value of ± 2.31 in time-reduced and 2.45 in enhanced 

resolution NUS spectra.  

  



 
60 

4. Discussion 

4.1. NUS for Accelerated Quantification 
 

SPIKE-IN DATASET 

So far, there has been a lack in a comprehensive evaluation of different NUS 

parameters given a common reference dataset84,102 and their validation in context of 

metabolomic data analyses.103 Although various NUS settings exist e.g. in terms of 

sampling scheme and spectral reconstruction, there is still a lack of agreement on 

best practices.104 Designing an optimal NUS sampling scheme is further limited by a 

lack of predicting the performance of a NUS schedule a priori and a consent 

performance metric.102 To date, different NUS parameters in 2D NMR-based 

metabolomics have mostly only been preliminarily evaluated against each  

other.9,12-14,16,78 In this contribution, a number of combinations of sampling scheme, 

reconstruction algorithm, NUS level, and spectra type have been tested. It is clear 

that the combinations tested are by no means exhaustive and, therefore, it is 

possible that other combinations will give similar or even better results.  

 

RECONSTRUCTION ALGORITHMS  

The strategies applied to date to the reconstruction of NUS spectra are versatile5 and 

differ in their assumptions about the properties of the time domain signal or 

reconstructed spectrum.3,4 Assumptions applicable to NUS processing include the 

introduction of a certain model of a spectrum as exploited in MDD,4 a spectrum 

containing the least amount of information consistent with the measured data as 

assumed in maximum entropy60,84 and in forward maximum entropy reconstruction,12 

knowledge on empty regions in a spectrum105 and maximum sparsity underlying 

compressed sensing (CS) approaches. Typical methods applied in the context of CS 

include iterative re-weighted least squares (IRLS),90 iterative soft thresholding (IST),90 

orthogonal matching pursuit (OMP),90 its predecessor CLEAN,90 and SCRUB.106 

Reconstruction algorithms appropriate for NUS are commonly non-parametric signal 

processing methods. However, parametric approaches such as maximum likelihood 



 
61 

and Bayesian methods, where the time-domain signal is described as a sum of 

exponentially decaying sinusoids, have also been used.6 Another suitable parametric 

method is the sparse multidimensional iterative lineshape enhanced (SMILE) 

algorithm, which integrates a priori information about NMR signals for robust signal 

reconstruction.107 In general, sufficient S/N is critical in the performance of 

reconstruction algorithms.7,108  

For this contribution we included the two reconstruction methods implemented in 

TopSpin 3.1, R-MDD and CS-IRLS and additionally implemented MaxEnt and  

CS-IST. The latter two algorithms were chosen because MaxEnt is known to be a 

well established, very robust and versatile non-Fourier method which efficiently 

reduces artifacts5,60,84,104,109 and CS-IST is a popular CS-based approach next to  

CS-IRLS.90 For the purpose of this contribution, the number of reconstruction 

approaches was restricted to R-MDD, CS-IRLS, CS-IST and MaxEnt. In literature, 

CS has been shown to be the preferred reconstruction approach over R-MDD for 2D 

NMR in metabolomics, the latter resulting in increased noise artifacts.9 As stated by 

others, heavy artifacts derived from strong peaks can mask weak signals,90 making 

quantitative NMR analysis cumbersome.75 With regard to the evaluation of NUS on 

the first spike-in dataset, there is a clear difference in signal recovery fidelity between 

R-MDD and CS-IRLS. Especially for the reconstruction of weak signals, CS-IRLS is 

clearly superior to both R-MDD and MaxEnt, whereas it performed slightly better than 

CS-IST. Findings from literature that MaxEnt enhances strong peaks and reduces 

weak peaks64 match the results here that the strong signal of tyrosine is 

overestimated while the other four weak signals are severely underestimated. In 

particular, reconstruction of weak peaks in spectra with large dynamic range are 

more feasible with CS than with MaxEnt as the latter tends to diminish their peak 

intensities.109 Although quantitative accuracy is not significantly different between 

CS-IRLS and CS-IST, CS-IRLS does reconstruct slightly more signals and overall is 

more accurate and precise. Kazimierczuk et al. explained their observed limited 

performance of IST compared to IRLS in that IST is well suited for spectra with a 

modest dynamic range while CS-IRLS is more suited for cases with a high dynamic 

range as is the case here.83  
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SAMPLING SCHEMES 

Clearly, spectral quality does not only depend on the reconstruction technique to 

compute the NUS spectrum but also on the sampling scheme chosen.76,102,110 The 

possible selection of NUS sampling schemes addressing issues of sensitivity, 

resolution, and randomness is manifold.6 NUS schemes can be divided into on-grid 

and off-grid sampling. The former is characterized by sampling along the analogous 

US evolution times, while the latter does not fall on this Cartesian grid.6,102 Off-grid 

sampling is applied mostly to spectra of more than two dimensions or requiring 

particularly narrow peak widths.111 Examples of sampling schemes with point 

coordinates not falling on the Cartesian grid are radial sampling, spiral sampling, and 

concentric ring sampling (CRS).6,111 As in this contribution solely 2D spectra were 

dealt with, on-grid sampling schemes such as unweighted, exponentially weighted, 

and sine-weighted Poisson gap sampling were concentrated on. Others have also 

investigated these sampling schemes for example with regard to the introduction of  

t1 noise. It was noticed that unweighted sampling introduced F1 ridges at high NUS 

densities while Poisson gap sampling clearly performed better in that regard.14 

Recently, Le Guennec et al. reported to have overcome t1 noise arising from 

unweighted sampling below 25% NUS by using Poisson gap sampling.14 Improved 

sensitivity, achievable for instance by choosing a scheme that samples more points 

where signal intensity of the FID is high,16 is especially relevant to distinguish weak 

signals110 from noise or artifacts.102 It was shown that a substantial time reduction is 

achievable with an optimized sampling scheme.11,14 Other sampling schemes known 

from the literature include for example burst sampling.6 Similar to the on-grid 

sampling schemes applied in this contribution, it addresses the aspect of gaps in its 

sampling schedule.6 In contrast to sPGS, which minimizes the length of gaps,  

burst-mode sampling minimizes the number of gaps.6 Furthermore, beat-matched 

sampling (BMS) matches the sampling density to the signal envelope analogous to 

exponentially weighted sampling, but considers in addition the finer details of the 

predicted time-domain data.6,56,102 Employing a set of known frequencies the 

expected time-domain signal is modeled as a sum of exponentially decaying 

sinusoids and the BMS pattern is adapted to collect data only at the greatest 

intensities of the modeled signal.56 However, to date BMS has only been tested with 

moderate success on synthetic data.56 As far as the data here are concerned, 
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sinusoidal Poisson-gap sampling outperformed unweighted and exponentially 

weighted sampling particularly in the reconstruction of weak signals. 

 

VARIATIONS IN SEED NUMBER 

The variation introduced by the seed number used for initializing the random number 

generator, which has been reported to influence the reliability of spectral 

reconstruction,12 is particularly evident where data points are sparsely sampled.63 

The observation that sinusoidal Poisson-gap sampling is less affected by the seed 

value chosen than the unweighted and exponentially weighted sampling is in line with 

literature findings.16 In fact, Hyberts et al. already showed in 2010 by means of an  

L2 norm analysis on a synthetic FID of a single resonance given 25% NUS that sPSG 

is almost insensitive to the seed value chosen.78 It was shown that even with sPSG, 

the chosen seed value exerts some influence on the results obtained. One has to 

keep this additional source of variation in mind when interpreting results obtained 

from NUS spectra because the results may not be reproducible without knowledge of 

the actual data points picked.63 Employing 10.000 different seed values it has been 

demonstrated that the average sPGS scheme in combination with 12.5% NUS does 

not yield optimal results with regard to chemical shifts.11 Optimizing the seed value 

chosen for the sPGS scheme may yield improved results with a spectral quality 

comparable to the US spectrum.11  

 

SPECTRA TYPES 

With regard to the performance of NUS considering the pulse sequence 

implemented,9 NUS was expected to be more successful on the sparser  
1H,1H-COSY45 than 1H,1H-TOCSY spectra. Surprisingly, for 75% and 50% NUS 
1H,1H-COSY45 and 1H,1H-TOCSY are fairly comparable given the chosen dataset 

with 75% and 50% NUS. At 25% NUS, neither 1H,1H-TOCSY nor 1H,1H-COSY45 can 

be recommended for quantification, albeit 1H,1H-TOCSY is here slightly more 

accurate and precise.  
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OMITTED DATA POINTS 

The spectral quality obtained from NUS depends critically on the amount of 

experimentally measured data points in the indirect dimension. The minimum amount 

of data points required to reliably reconstruct a spectrum is influenced by the signal 

density112 and spectral type.12 It is advised to choose a more conservative approach 

when dealing with many signals,12 crowded spectra113 or complex mixtures.57 

Generally, non-uniform sampling of only a subset of the full uniformly sampled 

dataset results in decreased sensitivity, however, if constructed properly, the 

sensitivity per unit measurement time can be increased.102 As a consequence, a 

drastic reduction in experimental time by means of NUS is only possible if sensitivity 

is not limited.114 Sensitivity depends on the cross signal intensity determined by the 

compound concentration, structure of the compound, and experimental factors.13,58 

Intrinsically strong peaks as in the spike-in datasets, for instance the selected 

tyrosine signal (H6 H8/H5 H9), are comparably insensitive to the sampling scheme 

and reconstruction technique applied.110 Previously, often either pure compounds,11 

synthetic samples containing selected metabolites,9,14 or samples comprising 

metabolite concentrations in the millimolar9,11 range were analyzed, thereby 

drastically reducing the importance of sensitivity issues. When the sensitivity or 

number of collected indirect data points is too low, NUS spectra are prone to 

artifacts.7 While dependent on the sample and processing procedure, a rule of thumb 

for biological samples is that the sampling density per indirect dimension needs to be 

roughly one-third relative to the US amount to reduce sampling artifacts and maintain 

sufficient sensitivity.62 A considerable, approximately 22-fold reduction in acquisition 

time compared to the conventional linear sampling of lyophilized human urine 

specimens was accomplished acquiring one third of the linearly sampled data points 

with the use of a relaxation enhancing agent applying forward maximum (FM) 

entropy reconstruction on J-compensated 1H,13C-HSQC spectra given added 

metabolite concentrations of 300 µM and higher.13 Other observations taking 12.5% 

NUS of multiplicity edited 1H,13C-HSQC spectra were derived from highly 

concentrated pure samples of 20 and 80 mM.11 As the author of the cited study 

states himself, such a low NUS percentage is not expected to deliver adequate 

results for complex samples or spectra containing large numbers of signals. Le 

Guennec et al. observed a substantial increase in t1-noise ridges at a threshold of 
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below 30% NUS and for thresholds of below 25% a drop in peak intensities.9 

Applying NUS for accelerated quantification in 2D NMR while maintaining spectral 

quality is typically performed with NUS levels of 20-30%.14 Furthermore, low amounts 

of sparse sampling yield a higher reconstruction fidelity when the amount of indirect 

data points to sample from is high, concluding that the results obtained with NUS rely 

rather on the relation of the amount of collected data points to the number of 

expected signals than the NUS percentage taken.11 This explains why in the study by 

Hyberts et al. in 2007,12 the amount of in total 8k t1 increments for the conventionally 

sampled ultrahigh-resolution 1H-13C HSQC spectrum of leukocyte extracts is high 

enough to yield a reliable reconstruction even when the amount of data points 

sampled is reduced to one-seventh, which is still impractically long for routine 

applications. As the authors of this study state themselves, the information content 

recorded is high compared to the information needed for spectrum reconstruction, 

this way explaining the feasibility of NUS given the reduced dataset. In comparison to 

the above cited literature, data here show that reliable quantitative results can be 

obtained with slightly higher levels of experimentally sampled data points (50%), 

whereas at a NUS level of 25%, a substantial drop in accuracy, precision and 

number of recovered signals is observed. This can be explained by the fact that urine 

as a real, highly complex biological matrix was taken in which metabolites were 

added in relative low physiologically relevant concentrations. Also, 1H,1H TOCSY and 
1H,1H-COSY45 spectra were employed that contain a large number of metabolite 

signals, choosing a total number of data points (including measured and 

reconstructed data points) in the indirect dimension in the range typically applied in 

2D metabolomics.9,14 Here, the use of 50% NUS did not affect the determination of 

the urinary levels of metabolites of interest. In some cases, however, relative 

intensity ratios larger than one between NUS and US spectra were observed. This is 

explained by the fact that if a very weak signal is reconstructed by means of the 

applied reconstruction algorithm, reconstruction is more challenging which may lead 

to an over- or underestimation.  
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PARAMETER VALIDATION 

Concerning compound concentrations, the performance of NUS with 50% omitted 

data points and the optimized parameters with regard to US is comparable given 

different urine matrices as could be shown by comparing the median ratios and mean 

CVs of a given spike-in metabolite using either a low (urine I) or highly (urine II) 

concentrated urine. 

 

COHORT STUDY SAMPLES  

To demonstrate the suitability of NUS for a real case study employing accelerated 

metabolite quantification, urinary specimens of apparently healthy volunteers of the 

GNC cohort were compared to those with chronic kidney disease of the GCKD study. 

Metabolites were analyzed which are relevant in the context of diabetic 

nephropathy25,101,115-118 being the major cause of chronic kidney disease in the 

Western population.92 For this, a set of metabolites expected to be relevant for the 

discrimination of GCKD and GNC specimens and the metabolites used for the spike-

in experiments were considered. Urine metabolomics has been shown to relate 

specific metabolite changes to diabetic nephropathy.92 One has to keep in mind that 

considerable binding of the internal standard TSP to protein in case of strong 

proteinuria may occur as present for some of the GCKD specimen (Table 1). 

Consequently, the signal of TSP may be reduced leading to an overquantfication of 

urinary metabolites.58,119 As such, the concentration values obtained with both NUS 

and US have to be treated with care. The necessity of acquiring 2D NMR spectra of 

these cohort study urine specimens for reliable signal quantification is given since the 

metabolites under investigation here mutually overlap in 1D 1H spectra. Although the 

lower limits of quantification (LLOQs) were higher for NUS than US, they were still 

sufficiently low to determine the urinary levels of metabolites of interest. Overall, 

there is a good agreement between the data obtained by US and 50% NUS, 

respectively, as evidenced by the Bland-Altman plots given that the mean difference 

between both methods lies at around zero, the standard deviation compared to the 

intensity range is small, and that there are no signal intensity dependency trends 

visible (Figure S14 and Figure S15 a). The only exception is the weak tryptophan 

signal for which larger differences were observed. The Bland-Altman plots comparing 
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the quantitative agreement between 1D 1H and 50% NUS spectra (Figure S13), 

however, show signal intensity dependent differences predominantly for lactic acid 

and glutamine, both highly overlapped in 1D 1H spectra and well resolved by 2D 

NMR. As shown in Figure S12 a, both US and 50% NUS 1H,1H COSY45 allow the 

reliable determination of fold changes for glutamine and lactic acid. Therefore, it is 

safe to assume that the observed variations are due to imperfect signal integration in 

1D spectra, which is hampered despite signal deconvolution from extensive signal 

overlap present in biological matrices such as human urine. It has been shown that 

the quantification results obtained from 2D 1H,13C-HSQC spectra are superior to 

those obtained from 1D spectra.58 Furthermore, the boxplots and p-values derived 

from the NUS and US data are comparable. The similarity of the US and 50% NUS 

data shows that NUS is suitable for quantifying compounds present at physiological 

concentrations in complex biological specimens in half the measurement time.  

 

4.2. NUS for Enhanced Spectral Resolution  
 

Applying NUS in metabolomics to aim at an enhanced spectral resolution in the 

indirect dimension has so far only been partly exploited for example for the analysis 

of carbon isotopomers.57 Therefore as its second usage, NUS was utilized to 

increase the spectral resolution in acquired spectra of urine and cancer cell samples. 

In the case of urine, enhanced resolution NUS was applied to a highly concentrated 

urine specimen derived from the cohort study dataset while for cancer cell 

metabolomics, two different cell lines modified in their LDHA expression were 

utilized. To this end, first the gain in metabolite signals and spectral information in the 

NUS compared to both a time-equivalent and an enhanced resolution US spectrum 

was analyzed. Note that the enhanced resolution US spectrum possesses the same 

resolution as the NUS spectrum. It is demonstrated that NUS when applied for 

enhancing the resolution of two-dimensional homonuclear spectra compared to the 

time-equivalent US spectrum results in a higher total amount of peaks with more 

resolved peak shapes, newly emerged peaks, and separation of overlapping peaks. 

This shows that enhanced-resolution NUS compared to time-equivalent US leads to 

a gain in spectral information. Better-defined peak shapes of the same compound are 
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beneficial for compound analysis e.g. in terms of more reliable identification, more 

precise quantification like seen for glutamic acid in the cancer cell supernatants, and 

improved elucidation of coupling patterns. More peaks per compound due to 

enhanced resolution have been shown to allow improved isotopomere analysis of a 

given compound resulting from NUS to enhance the spectral resolution compared to 

the time-equivalent US spectrum.57 An increase in spectral resolution in NUS spectra 

compared to time-equivalent US spectra given a complex mixture of cell lysates was 

previously shown for 1H,13C-HSQC spectra applying 25% NUS in a sine-weighted 

Poisson-gap sampling fashion and hmsIST (Harvard Medical School Iterative Soft 

Threshold) reconstruction resulting in well-resolved carbon isotopomere multiplet 

structures promoting proper coupling analysis.57 The presence of newly emerged 

peaks in the NUS spectrum demonstrates that enhanced resolution can lower the 

detection limit of peaks that would otherwise get lost with lower spectral resolution. 

Resolving signal multiplets in the indirect dimension by an increase in resolution aids 

compound identification.14 Corroborating to this contribution, Le Guennec et al. have 

shown on artificial metabolite mixtures that resolution-enhanced 2D 1H,13C-HSQC 

and 1H,1H-TOCSY spectra applying NUS choosing 3.125% and 12.5% of sparse 

sampling, respectively, were able to resolve peaks which were broadly overlapped in 

the time-equivalent US spectra.14 The authors demonstrated a substantial increase in 

spectral resolution of signals derived from small molecules in a complex mixture by 

means of NUS without increase in measurement time and no introduction of false 

peaks.14 Achieving separated compound signals aids in compound quantification and 

occurrence of less peak overlap in crowded regions allowing adjacent signals to be 

discriminated. The enhanced resolution NUS spectra show a decrease in sensitivity 

compared to the enhanced resolution US spectra of identical resolution. This is due 

to the fact that small imperfections in the reconstruction of the missing data points 

lead subsequently to a decrease in signal to noise ratio.7 Hyberts et al. showed in 

2007 that full separation of overlapped peaks in 1H,13C-HSQC spectra of a complex 

cell extraction mixture was only accomplished given high spectral resolution resulting 

in sharper peak shapes and increased peak heights, requiring, however, an 

undesirably long measurement time.12 This explains why with enhanced-resolution 

NUS, the glutamic acid signal in the cancer cell supernatants could be consistently 

quantified while it was not quantifiable in all time-reduced NUS spectra because the 

resolution was not high enough to resolve this signal in all samples.  
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5. Conclusion 

This is the first study to demonstrate that 50% NUS can be applied to the 

determination of metabolites in complex biological specimens for sufficiently 

concentrated compounds without a noteworthy drop in the number of reconstructed 

signals, accuracy, precision, and sensitivity using a combination of optimized NUS 

parameters. These are a sine-weighed Poisson-gap sampling applying a 

compressed sensing approach employing the iterative re-weighted least squares 

method for the reconstruction of 2D homonuclear 1H,1H spectra. Data clearly show 

that reliable metabolite quantification crucially depends on the NUS parameters 

chosen, emphasizing the importance of selecting the optimal set of NUS approaches. 

NUS in 2D NMR spectroscopy promises to facilitate compound quantification and 

identification with the potential to complement or substitute 1D NMR measurements 

that are prone to signal overlap. As it was demonstrated in the context of chronic 

kidney disease and cancer, 2D NUS NMR measurements are well applicable to real 

case specimens with the potential to aid e.g. in earlier disease discovery or 

therapeutic treatment. Together with other advances in instrument design, such as 

state-of-the-art cryogenic probes, use of 2D NMR spectroscopy in large biomedical 

cohort studies seems feasible by means of NUS for accelerated acquisition with 

further reductions in measurement time to about one hour per specimen.  
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6. Appendix 

6.1. Supplemental Figures 

Accelerated Quantification Spike-In Plots 

 

Figure S1. Signal reconstruction with R-MDD. Influence of the signal reconstruction with R-MDD on 
the recovery of the relative intensity of a selected cross signal in each spike-in sample and the blank 
control employing urine I, exemplarily shown for tryptophan (a), tyrosine (b), lactic acid (c), and 
threonine (d). US 1H, 1H TOCSY spectra (n = 5) indicated by blue bars. NUS 1H, 1H TOCSY spectra 
measured with 75%, 50%, and 25% of the linearly sampled data points depicted by green, orange, 
and gray bars, respectively. Each NUS spectrum was acquired with an exponentially weighted 
sampling scheme taking three seed values per NUS level. On the x-axis, the spike-in concentration 
given in micromolar is shown. The intensity ratio of the total cross peak integral scaled to the internal 
standard TSP of the metabolite signal (mean + SD) obtained with US or NUS to US is plotted on the  
y-axis. Published in von Schlippenbach et al. 2018.69 
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Figure S2. Signal reconstruction with CS-IRLS. Influence of the signal reconstruction with CS-IRLS on 
the recovery of the relative intensity of a selected cross signal in each spike-in sample and the blank 
control employing urine I, exemplarily shown for tryptophan (a), tyrosine (b), lactic acid (c), and 
threonine (d). US 1H, 1H TOCSY spectra (n = 5) indicated by blue bars. NUS 1H, 1H TOCSY spectra 
measured with 75%, 50%, and 25% of the linearly sampled data points depicted by green, orange, 
and gray bars, respectively. Each NUS spectrum was acquired with an exponentially weighted 
sampling scheme taking three seed values per NUS level. On the x-axis, the spike-in concentration 
given in micromolar is shown. The intensity ratio of the total cross peak integral scaled to the internal 
standard TSP of the metabolite signal (mean + SD) obtained with US or NUS to US is plotted on the  
y-axis. Published in von Schlippenbach et al. 2018.69 
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Figure S3. X/Y plots supplementing the corresponding bar charts on signal reconstruction influence. 
Scatter plots showing the correlation between US (x-axis) and NUS (y-axis) normalized peak volumes 
when implementing the reconstruction method recursive multidimensional decomposition (R-MDD) or 
the compressed sensing approach employing the iterative re-weighted least squares method (CS-
IRLS) depicted by purple and green data points, respectively. The relative peak intensities, being the 
intensity ratio of the total cross peak integral of the corresponding metabolite signal scaled to the 
internal standard TSP, was obtained for US from the mean of five measurements while for NUS with 
25% (a), 50% (b), or 75% (c) sampling density. Each data series corresponds to the relative peak 
intensity of a given metabolite over all spike-in concentrations for the number of observed  
recoveries (Table S1) having taken a defined seed value of three. Published in von Schlippenbach et 
al. 2018.69 
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Figure S4. Use of unweighted sampling. Influence of the unweighted sampling scheme on the 
recovery of the relative intensity of a selected cross signal of tryptophan (a), glutamine (b), glutamic 
acid (c), and threonine (d) in each spike-in sample and the blank control employing urine I. US  
1H, 1H TOCSY spectrum (n = 1) indicated by blue bars. NUS 1H, 1H TOCSY spectra simulated from 
the US spectrum displayed with 75%, 50%, and 25% of the linearly sampled data points depicted by 
green, orange, and gray bars, respectively. Each NUS spectrum was constructed with six seed values 
per NUS level and reconstructed with the compressed sensing approach employing the iterative re-
weighted least squares method. On the x-axis, the spike-in concentration given in micromolar is 
shown. The intensity ratio of the total cross peak integral scaled to the internal standard TSP of the 
metabolite signal (mean + SD) obtained with US or NUS to US is plotted on the y-axis. Published in 
von Schlippenbach et al. 2018.69 
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Figure S5. Use of exponentially weighted sampling. Influence of the exponentially weighted sampling 
scheme on the recovery of the relative intensity of a selected cross signal of tryptophan (a),  
glutamine (b), glutamic acid (c), and threonine (d) in each spike-in sample and the blank control 
employing urine I. US 1H, 1H TOCSY spectrum (n = 1) indicated by blue bars. NUS 1H, 1H TOCSY 
spectra simulated from the US spectrum displayed with 75%, 50%, and 25% of the linearly sampled 
data points depicted by green, orange, and gray bars, respectively. Each NUS spectrum was 
constructed with six seed values per NUS level and reconstructed with the compressed sensing 
approach employing the iterative re-weighted least squares method. On the x-axis, the spike-in 
concentration given in micromolar is shown. The intensity ratio of the total cross peak integral scaled 
to the internal standard TSP of the metabolite signal (mean + SD) obtained with US or NUS to US is 
plotted on the y-axis. Published in von Schlippenbach et al. 2018.69 
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Figure S6. Use of sinusoidal Poisson-gap sampling. Influence of the sinusoidal Poisson-gap sampling 
scheme on the recovery of the relative intensity of a selected cross signal of tryptophan (a),  
glutamine (b), glutamic acid (c), and threonine (d) in each spike-in sample and the blank control 
employing urine I. US 1H, 1H TOCSY spectrum (n = 1) indicated by blue bars. NUS 1H, 1H TOCSY 
spectra simulated from the US spectrum displayed with 75%, 50%, and 25% of the linearly sampled 
data points depicted by green, orange, and gray bars, respectively. Each NUS spectrum was 
constructed with six seed values per NUS level and reconstructed with the compressed sensing 
approach employing the iterative re-weighted least squares method. On the x-axis, the spike-in 
concentration given in micromolar is shown. The intensity ratio of the total cross peak integral scaled 
to the internal standard TSP of the metabolite signal (mean + SD) obtained with US or NUS to US is 
plotted on the y-axis. Published in von Schlippenbach et al. 2018.69 
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Figure S7. X/Y plots supplementing the corresponding bar charts on sampling scheme influence. 
Scatter plots showing the correlation between US (x-axis) and NUS (y-axis) normalized peak volumes 
when implementing the sampling schemes unweighted sampling (USa), exponentially weighted 
sampling (ExSa), or sine-weighted Poisson-gap sampling (sPGS) depicted by purple, green, and red 
data points, respectively. The relative peak intensities, being the intensity ratio of the total cross peak 
integral of the corresponding metabolite signal scaled to the internal standard TSP, was obtained for 
US from the measurement taken for generating simulated NUS spectra while for NUS with 25% (a), 
50% (b), or 75% (c) sampling density. Each data series corresponds to the relative peak intensity of a 
given metabolite over all spike-in concentrations for the number of observed recoveries (Table S1) 
having taken a defined seed value of six. Published in von Schlippenbach et al. 2018.69 

  

re
la

tiv
e 

pe
ak

 in
te

ns
ity

 N
U

S

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035

0.000 0.020 0.040
relative peak intensity US

re
la

tiv
e 

pe
ak

 in
te

ns
ity

 N
U

S

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035

0.000 0.020 0.040
relative peak intensity US

re
la

tiv
e 

pe
ak

 in
te

ns
ity

 N
U

S

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035

0.000 0.020 0.040
relative peak intensity US

USa ExSa sPGS

a b c



 
77 

 

Figure S8. Comparison of spectra types. Influence of the spectral type on the recovery of the relative 
intensity of a selected cross signal of tryptophan (a), glutamic acid (b), and threonine (c) in each 
spike-in sample and the blank control employing urine I. US 1H, 1H COSY45 spectrum (n = 1) 
indicated by blue bars. NUS spectra simulated from the US spectrum displayed with 75%, 50%, and 
25% of the linearly sampled data points depicted by green, orange, and gray bars, respectively. Each 
NUS spectrum was constructed with a sinusoidal Poisson-gap sampling scheme taking six seed 
values per NUS level and reconstructed with the compressed sensing approach employing the 
iterative re-weighted least squares method. On the x-axis, the spike-in concentration given in 
micromolar is shown. The intensity ratio of the total cross peak integral of the metabolite signal scaled 
to the internal standard TSP (mean + SD) obtained with US or NUS to US is plotted on the y-axis. 
Published in von Schlippenbach et al. 2018.69 
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Figure S9. X/Y plots supplementing the corresponding bar charts on spectra type influence. Scatter 
plots showing the correlation between US (x-axis) and NUS (y-axis) normalized peak volumes when 
implementing 1H,1H TOCSY or 1H,1H-COSY45 depicted by purple and green data points, respectively. 
The relative peak intensities, being the intensity ratio of the total cross peak integral of the 
corresponding metabolite signal scaled to the internal standard TSP, was obtained for US from the 
measurement taken for generating simulated NUS spectra while for NUS with 25% (a), 50% (b), or 
75% (c) sampling density. Each data series corresponds to the relative peak intensity of a given 
metabolite over all spike-in concentrations for the number of observed recoveries (Table S1) having 
taken a defined seed value of six. Published in von Schlippenbach et al. 2018.69 
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Figure S10. Signal reconstruction with CS-IST. Influence of the signal reconstruction with compressed 
sensing employing the iterative soft thresholding method on the recovery of the relative intensity of a 
selected cross signal of tryptophan (a), tyrosine (b), glutamine (c), glutamic acid (d), lactic acid (e), 
and threonine (f) in each spike-in sample and the blank control employing urine I. US 1H,1H-COSY45 
spectrum (n = 1) indicated by blue bars. NUS spectra simulated from the US spectrum displayed with 
50% of the linearly sampled data points depicted by orange bars. Each NUS spectrum was 
constructed with a sinusoidal Poisson-gap sampling scheme taking six seed values per NUS level. On 
the x-axis, the spike-in concentration given in micromolar is shown. The intensity ratio of the total 
cross peak integral of the metabolite signal scaled to the internal standard TSP (mean + SD) obtained 
with US or NUS to US is plotted on the y-axis. Published in von Schlippenbach et al. 2018.69 
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Figure S11. Signal reconstruction with MaxEnt. Influence of the signal reconstruction with maximum 
entropy on the recovery of the relative intensity of a selected cross signal of tryptophan (a),  
tyrosine (b), glutamine (c), glutamic acid (d), lactic acid (e), and threonine (f) in each spike-in sample 
and the blank control employing urine I. US 1H,1H-TOCSY spectrum (n = 1) indicated by blue bars. 
NUS spectra simulated from the US spectrum displayed with 50% of the linearly sampled data points 
depicted by orange bars. Each NUS spectrum was constructed with a sinusoidal Poisson-gap 
sampling scheme taking three seed values per NUS level. On the x-axis, the spike-in concentration 
given in micromolar is shown. The intensity ratio of the total cross peak integral of the metabolite 
signal scaled to the internal standard TSP (mean + SD) obtained with US or NUS to US is plotted on 
the y-axis. Published in von Schlippenbach et al. 2018.69 
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Figure S12a. Difference between expected and observed fold changes of each spike-in metabolite 
from the spike-in data employing urine I obtained with US or with 50% NUS. Here, fold changes of two 
were considered. For this, the relative signal intensity of a given metabolite in the blank control was 
subtracted from that in the spike-in samples. With six different spike-in concentration levels, this 
resulted in five fold changes of two per metabolite and spectrum. These five values were averaged to 
obtain one value per metabolite and spectrum. As each 50% NUS experiment was executed with six 
replicates (six seed values), this resulted in six values per metabolite. From this data, for all 
metabolites the mean ± SD were plotted. Data of the US 1H,1H-COSY45 spectrum (n = 1) are 
indicated by blue bars, 50% NUS by orange bars. Published in von Schlippenbach et al. 2018.69 
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Figure S12b. Difference between expected and observed fold changes of each spike-in metabolite 
from the spike-in data employing urine I obtained with US or 50% NUS. Here, fold changes from all 
pairwise comparisons were considered. For this, the relative signal intensity of a given metabolite in 
the blank control was subtracted from that in the spike-in samples. With six different spike-in 
concentration levels, this resulted in fifteen fold changes per metabolite and spectrum. These fifteen 
values were averaged to obtain one value per metabolite and spectrum. As each 50% NUS 
experiment was executed with six replicates (six seed values), this resulted in six values per 
metabolite. From this data, for all metabolites the mean ± SD was plotted. Data of the US  
1H,1H-COSY45 spectrum (n = 1) are indicated by blue bars, 50% NUS by orange bars. Published in 
von Schlippenbach et al. 2018.69 
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Figure S12c. Linear dependency between observed and expected fold changes over all metabolites 
including all fold changes from two to thirty-two from the spike-in data employing urine I. The data was 
log base 2 transformed and plotted as the mean ± SD. The dashed lines represent the regression 
lines for the US and 50% NUS data, the respective regression equations and coefficients of 
determination are given in the figure. Data of the US 1H,1H-COSY45 spectrum and the 50% NUS 
spectra are indicated by blue and orange squares. Published in von Schlippenbach et al. 2018.69 
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Application of Accelerated Quantification with NUS to Urinary Specimens of 
CKD Patients and Healthy Subjects 

 

Figure S13. Agreement between 1D 1H-NOESY and 2D 1H,1H-COSY45 50% NUS data of GCKD and 
GNC specimens. Bland-Altman plots showing the agreement between absolute metabolite 
quantification given in millimolar derived from 1D 1H-NOESY or NUS 1H,1H-COSY45 spectra (n = 56 
per metabolite and spectral type; for exceptions see legend Table S13) of selected metabolites, 
namely creatinine (a), hippuric acid (b), lactic acid (c), D-glucose (d), citric acid (e), and glutamine (f) 
in urine specimens from patients with CKD and healthy subjects (GNC). Pseudouridine was not 
considered because it was not present as a reference in the compound library of Chenomx NMR  
Suite 8.2. Note that the glucose level of one GCKD sample yielding a concentration of  
26.23 mM (derived from 1D) or 26.58 mM (derived from 50% NUS) was not included in the Bland-
Altman plot for reasons of depiction but considered for calculation of the mean ± 1.96*SD. The mean 
metabolite concentration of both methods is given on the x-axis, the difference between both on the  
y-axis. The solid line marks the mean difference between both methods, the dashed lines the 95% 
limits of agreement as mean ± 1.96*SD. Note that in case of strong proteinuria, as present for some of 
the GCKD specimens (Table 1), both the internal standard TSP as well as some of the metabolites 
may bind to proteins, potentially leading to inaccuracies in metabolite quantification for these 
specimens. Note that this effect is independent of the used spectra type and therefore, will not impact 
comparisons between spectra types. Published in von Schlippenbach et al. 2018.69 
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Figure S14. Agreement between 2D 1H,1H-COSY45 US and 50% NUS data of GCKD and GNC 
specimens. Bland-Altman plots showing the agreement between absolute metabolite quantification 
given in millimolar derived from US or NUS 1H,1H-COSY45 spectra (n = 56 per metabolite and 
sampling with the following exceptions due to missing values or quantified values below the lower limit 
of quantification (LLOQ): ntryptophan = 8, ntyrosine = 17, nthreonine = 16; for further exceptions see legend 
Table S13) of selected metabolites, namely creatinine (a), hippuric acid (b), lactic acid (c),  
D-glucose (d), citric acid (e), pseudouridine (f), tryptophan (g), tyrosine (h), and threonine (i) in urine 
specimens from patients with CKD and healthy subjects (GNC). Note that the D-glucose level of one 
GCKD sample yielding a concentration of 26.62 mM (derived from US) or 26.58 mM (derived from 
50% NUS) was not included in the Bland-Altman plot for reasons of depiction but considered for 
calculation of the mean ± 1.96*SD. The mean metabolite concentration of both methods is given on 
the x-axis, the difference between both on the y-axis. The solid line marks the mean difference 
between both methods, the dashed lines the 95% limits of agreement as mean ± 1.96*SD. Note that in 
case of strong proteinuria, as present for some of the GCKD specimens (Table 1), both the internal 
standard TSP as well as some of the metabolites may bind to proteins, potentially leading to 
inaccuracies in metabolite quantification for these specimens. Note that this effect is independent of 
the used spectra type and therefore, will not impact comparisons between spectra types. Published in 
von Schlippenbach et al. 2018.69 
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Figure S15. Absolute concentrations (a) of glutamine in urine specimens from CKD subjects and the 
GNC cohort respectively, in millimolar derived from 50% NUS (b) or US (c) 1H,1H-COSY45  
spectra (n = 28 per group and sampling, for exceptions see Table S13). Note that in case of strong 
proteinuria, as present for some of the GCKD specimens (Table 1), both the internal standard TSP as 
well as some of the metabolites may bind to proteins, potentially leading to inaccuracies in metabolite 
quantification for these specimens. Note that this effect is independent of the used spectra type and 
therefore, will not impact comparisons between spectra types. Bland-Altman plots showing the 
agreement between absolute metabolite quantification given in millimolar derived from both 50% NUS 
and US spectra. The average metabolite concentration of both methods is given on the x-axis, the 
difference between the two sampling schemes on the y-axis. The solid line marks the mean difference, 
the dashed lines the 95% limits of agreement as mean ± 1.96*SD. For the boxplots, glutamine 
concentrations were normalized against the creatinine concentrations in millimolar. A  
Mann-Whitney U-test was applied to test for significant differences in normalized concentrations 
between the two groups. Abbreviations: conc, concentration; crea, creatinine. *** p ≤ 0.001; for exact 
p-values see Table S13. Published in von Schlippenbach et al. 2018.69 
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Figure S16. Quantification of cohort study metabolites with 50% NUS. Absolute quantification of 
selected metabolites, namely creatinine (a), hippuric acid (b), lactic acid (c), D-glucose (d),  
citric acid (e), and pseudouridine (f) in urine specimens from patients with CKD and healthy  
subjects (GNC), given on the x-axis, depicted as boxplots. The metabolite concentrations given in 
micromolar derived from 50% NUS 1H,1H-COSY45 spectra (n = 28 per group, for exceptions see 
Table S13; note: n = 7 CKD and n = 5 spectra from healthy specimens contained increased F1 ridges, 
predominantly between 3.20 and 4.10 ppm) were normalized to the corresponding creatinine 
concentration in millimolar except for creatinine itself in each sample shown on the y-axis. A  
Mann-Whitney U-test was applied to test for significant differences in normalized concentrations 
between both groups. Abbreviations: conc, concentration; crea, creatinine. Indications: n.s., not 
significant; ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001; for exact p-values see Table S13. Published in 
von Schlippenbach et al. 2018.69 
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Figure S17. Quantification of cohort study metabolites with US. Absolute quantification of selected 
metabolites, namely creatinine (a), hippuric acid (b), lactic acid (c), D-glucose (d), citric acid (e), and 
pseudouridine (f) in urine specimens from patients with CKD and healthy subjects (GNC), given on the 
x-axis, depicted as boxplots. The metabolite concentrations given in micromolar derived from US 
1H,1H-COSY45 spectra (n = 28 per group, for exceptions see Table S13; note: n = 7 CKD and n = 5 
spectra from healthy specimens contained increased F1 ridges, predominantly between 3.20 and  
4.10 ppm) were normalized to the corresponding creatinine concentration in millimolar except for 
creatinine itself in each sample shown on the y-axis. A Mann-Whitney U-test was applied to test for 
significant differences in normalized concentrations between both groups. Abbreviations: conc, 
concentration; crea, creatinine. Indications: n.s., not significant; ** p ≤ 0.01, *** p ≤ 0.001,  
**** p ≤ 0.0001; for exact p-values see Table S13. Published in von Schlippenbach et al. 2018.69 
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6.2. Supplemental Tables 

Accelerated Quantification Spike-Ins Tables 

 

Table S1. Number of observed recoveries observed per parameter for the spike-in data employing 
urine I. The analysis of initially employed reconstruction algorithms and sampling schemes is based on 
1H,1H-TOCSY spectra. To determine the optimal spectra type, the last column contains data from NUS 
1H,1H-COSY45 spectra reconstructed with CS-IRLS and generated with sPGS. Note that for glutamic 
acid, only five signals were considered as its signal intensities in the blank sample and lowest spike-in 
concentration were not present or too low for reliable integration even in the US 1H-1H-TOCSY spectra 
leading to 40 instead of 42 expected recoveries per NUS level and to 120 expected recoveries over all 
NUS levels. Abbreviations: R-MDD, recursive multidimensional decomposition; CS-IRLS, compressed 
sensing approach employing the iterative re-weighted least squares method; UwSa, unweighted 
sampling; ExSa, exponentially weighted sampling; sPGS, sine-weighted Poisson-gap sampling. 
Published in von Schlippenbach et al. 2018.69 

 

 
  

NUS level Reconstruction algorithms Sampling schemes Spectra type 

 R-MDD CS-IRLS UwSa ExSa sPGS 1H,1H-COSY45 

all 103 112 98 112 113 118 

75% 39 40 33 40 40 40 

50% 37 38 34 39 40 40 

25% 27 34 31 33 33 38 



 
90 

Table S2. Comparison of initially employed reconstruction algorithms, sampling schemes, and spectra 
types for the spike-in data of urine I. P-values derived from the comparison of the quantitative 
performance of NUS utilizing different reconstruction algorithms, sampling schemes or spectra types 
using the Wilcoxon signed-rank testa or the Friedman testb on ratios (accuracy) and CVs (precision) 
derived from recoveries over all spike-in metabolites and concentrations either over all NUS levels or 
per NUS level. Data concerning the reconstruction algorithms and sampling schemes are based on 
1H,1H-TOCSY spectra. Abbreviations: R-MDD, recursive multidimensional decomposition; CS-IRLS, 
compressed sensing approach employing the iterative re-weighted least squares method; UwSa, 
unweighted sampling; ExSa, exponentially weighted sampling; sPGS, sine-weighted Poisson-gap 
sampling; CV, coefficient of variation. Published in von Schlippenbach et al. 2018.69 

  
NUS level Reconstruction 

algorithmsa Sampling schemesb Spectra typesa 

 R-MDD vs. CS-IRLS UwSa vs. ExSa vs. sPGS 
1H,1H-TOCSY vs. 

1H,1H-COSY45 

 ratio CV ratio CV ratio CV 

all 4.109e-6 0.037 2.536e-8 < 2.2e-16 1.075e-4 4.585e-8 

75% 0.032 0.100 4.027e-7 3.851e-9 0.150 1.162e-6 

50% 0.164 0. 695 2.384e-10 1.801e-5 0.002 0.179 

25% 7.838e-5 0.091 8.164e-8 2.427e-7 0.080 1.790e-4 
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Table S3. Quantitative performance of initially employed reconstruction algorithms and sampling 
schemes for the spike-in data of urine I. Means of the ratios (accuracy) and CVs (precision) derived 
from recoveries over all spike-in metabolites and concentrations either over all NUS levels or per NUS 
level for comparing the quantitative performance of NUS utilizing different reconstruction algorithms or 
sampling schemes employing 1H,1H-TOCSY spectra. Abbreviations: R-MDD, recursive 
multidimensional decomposition; CS-IRLS, compressed sensing approach employing the iterative  
re-weighted least squares method; UwSa, unweighted sampling; ExSa, exponentially weighted 
sampling; sPGS, sine-weighted Poisson-gap sampling; CV, coefficient of variation. Published in von 
Schlippenbach et al. 2018.69 

 

 

 

 

 

 

 

 

  

NUS level Reconstruction algorithms Sampling schemes 

 R-MDD CS-IRLS UwSa ExSa sPGS 

 ratio CV ratio CV ratio CV ratio CV ratio CV 

all 0.89 17.16 0.96 12.30 0.97 12.06 1.02 9.59 1.03 5.39 

75% 0.95 8.89 0.98 7.23 1.03 12.49 1.17 4.36 1.06 2.56 

50% 0.94 15.13 0.99 12.98 1.00 11.63 0.92 10.87 1.05 6.49 

25% 0.74 31.88 0.89 17.50 0.88 12.06 0.96 14.40 0.98 7.49 
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Table S4. Comparison of sampling schemes for the spike-in data of urine I. P-values derived from 
comparing the quantitative performance of NUS utilizing different sampling schemes with each other 
were obtained having applied the Nemenyi post hoc test on ratios (accuracy) and CVs (precision) 
derived from recovery plots over all spike-in metabolites and concentrations either over all NUS levels 
or per NUS level. Data are based on 1H,1H-TOCSY spectra. Abbreviations: UwSa, unweighted 
sampling; ExSa, exponentially weighted sampling; sPGS, sine-weighted Poisson-gap sampling. 
Published in von Schlippenbach et al. 2018.69 

 
  

NUS level Sampling schemes 

 ratio CV 

 
UwSa vs. 

ExSa 

UwSa vs. 

sPGS 

ExSa vs. 

sPGS 

UwSa vs. 

ExSa 

UwSa vs. 

sPGS 

ExSa vs. 

sPGS 

all 3.9e-5 1.8e-7 0.54 0.88 4.8e-14 2.9e-13 

75% 4.6e-6 0.97 1.4e-5 0.06526 2.3e-9 0.00027 

50% 0.17 1.0e-5 3.9e-10 0.93987 0.00034 8.2e-5 

25% 1.8e-5 1.8e-5 1 0.53767 0.00053 4.6e-6 
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Table S5. Quantitative performance of spectra types for the spike-in data of urine I. Means of the 
ratios (accuracy) and CVs (precision) over all spike-in metabolites and concentrations either derived 
from the depicted recoveries over all NUS levels or per NUS level. Note that 40 out of 42 expected 
recoveries per NUS level and 120 out of 126 expected recoveries over all NUS levels were 
considered. Abbreviation: CV, coefficient of variation. Published in von Schlippenbach et al. 2018.69 

  

NUS level Spectra type 

 1H,1H-COSY45 

 ratio CV 

all 0.93 8.89 

75% 1.02 5.66 

50% 0.96 7.82 

25% 0.80 13.43 



 
94 

Table S6. Comparison of NUS levels for the spike-in data of urine I. P-values derived from comparing 
the quantitative performance of NUS mutually were obtained having applied the Friedman testa and 
consecutive Nemenyi post hoc testb on ratios (accuracy) or on CVs (precision) over all spike-in 
metabolites and concentrations derived from the given recovery plot. Abbreviation: CV, coefficient of 
variation. Published in von Schlippenbach et al. 2018.69 

 

 
 
 
  

NUS level 

Ratio CV 

all NUS 

levelsa 

75% vs. 

50% NUSb 

75% vs. 

25% NUSb 

50% vs. 

25% NUSb 

all NUS 

levelsa 

75% vs. 

50% NUSb 

75% vs. 

25% NUSb 

50% vs. 

25% NUSb 

<2.2e-16 4.9e-4 2.5e-14 2.7e-06 4.0e-6 0.065  2.1e-6 0.018 
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Table S7. Number of observed recoveries observed per applied additional reconstruction algorithm for 
the spike-in data employing urine I. Data are based on 50% NUS 1H,1H-COSY45a and 1H,1H-TOCSYb 
spectra generated with sine-weighted Poisson-gap sampling. Note that all 42 expected recoveries 
were considered. Abbreviations: CS-IRLS, compressed sensing approach employing the iterative  
re-weighted least squares method; CS-IST, compressed sensing approach employing the iterative soft 
thresholding method; MaxEnt, maximum entropy. Published in von Schlippenbach et al. 2018.69 

 

  

NUS level Reconstruction algorithms 

 CS-IRLSa CS-ISTa MaxEntb 

50% 41 40 31 
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Table S8. Quantitative performance of additional reconstruction algorithms for the spike-in data of 
urine I. Means of the ratios (accuracy) and CVs (precision) derived from recoveries over all spike-in 
metabolites and concentrations for comparing the quantitative performance of 50% NUS utilizing 
different supplementary reconstruction algorithms employing 1H,1H-COSY45a and 1H,1H-TOCSYb 
spectra. Abbreviations: CS-IRLS, compressed sensing approach employing the iterative re-weighted 
least squares method; CS-IST, compressed sensing approach employing the iterative soft 
thresholding method; MaxEnt, maximum entropy; CV, coefficient of variation. Published in  
von Schlippenbach et al. 2018.69 

 

  

NUS level Reconstruction algorithms 

 CS-IRLSa CS-ISTa MaxEntb 

 ratio CV ratio CV ratio CV 

50% 0.96 8.01 0.93 8.47 0.61 13.70 



 
97 

Table S9. Comparison of additional reconstruction algorithms for the spike-in data of urine I. P-values 
derived from the comparison of the quantitative performance of NUS utilizing the different 
supplementary reconstruction algorithms using the Friedman test on ratios (accuracy) and  
CVs (precision) derived from recoveries over all spike-in metabolites and concentrations. Data are 
based on 50% NUS 1H,1H-COSY45a and 1H,1H-TOCSYb spectra generated with sine-weighted 
Poisson-gap sampling. Abbreviations: CS-IRLS, compressed sensing approach employing the 
iterative re-weighted least squares method; CS-IST, compressed sensing approach employing the 
iterative soft thresholding method; MaxEnt, maximum entropy; CV, coefficient of variation. Published 
in von Schlippenbach et al. 2018.69 

 

  

NUS level Reconstruction algorithms 

 CS-IRLSa vs. CS-ISTa vs. MaxEntb 

 ratio CV 

50% 2.3e-6 0.51 
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Table S10. Comparison of additional reconstruction algorithms for the spike-in data of urine I.  
P-values derived from comparing the quantitative performance of NUS utilizing different 
supplementary reconstruction algorithms with each other were obtained having applied the Nemenyi 
post hoc test on ratios (accuracy) derived from recovery plots over all spike-in metabolites and 
concentrations. Data are based on 50% NUS 1H,1H-COSY45a and 1H,1H-TOCSYb spectra generated 
with sine-weighted Poisson-gap sampling. Abbreviations: CS-IRLS, compressed sensing approach 
employing the iterative re-weighted least squares method; CS-IST, compressed sensing approach 
employing the iterative soft thresholding method; MaxEnt, maximum entropy. Published in  
von Schlippenbach et al. 2018.69 

 

NUS level Reconstruction algorithms 

 ratio 

 CS-IRLSa vs. CS-ISTa CS-IRLSa vs. MaxEntb CS-ISTa vs. MaxEntb 

all 0.52 4.7e-6 6.1e-4 
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Table S11. Concentration-dependent quantitative performance for spike-in metabolites for the spike-in 
data of urine I. Ratios (accuracy) and coefficients of variation (precision) derived from recovery plots of 
50% NUS 1H,1H-COSY45 spectra for all added concentrations given in micromolar and the mean or 
median of all spike-in metabolites, namely tryptophan (Trp), tyrosine (Tyr), glutamine (Gln), glutamic 
acid (Glu), lactic acid (Lac), and threonine (Thr). Abbreviations: conc., concentration; CV, coefficient of 
variation. Published in von Schlippenbach et al. 2018.69 

 

Spike-in 
conc. 
[µM] 

Trp Tyr Gln Glu Lac Thr 

 ratio CV  ratio CV  ratio CV  ratio CV  ratio CV  ratio CV  

0.0 0.76 22.29 1.02 9.34 0.98 7.85 - - 0.92 13.00 1.00 15.68 

15.6 0.85 19.42 1.08 4.67 0.95 1.71 0.87 15.81 0.88 10.91 0.94 14.23 

31.3 0.91 13.82 1.05 10.48 0.96 4.65 1.03 16.62 0.87 9.35 0.84 9.72 

62.5 0.85 7.83 0.88 14.90 0.98 3.40 0.97 8.34 1.03 3.73 0.98 7.14 

125.0 0.92 4.21 0.93 10.21 1.04 3.27 0.96 4.44 1.00 2.21 1.11 11.69 

250.0 0.92 9.90 1.01 2.05 0.98 4.45 0.95 5.13 1.00 1.35 1.04 6.36 

500.0 0.95 2.61 0.97 7.29 1.01 1.40 1.02 3.48 0.99 1.69 0.98 1.82 

median 0.91 - 1.01 - 0.98 - 0.97 - 0.99 - 0.98 - 

mean - 11.44 - 8.42 - 3.82 - 8.97 - 6.03 - 9.52 
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Table S12. Concentration-dependent quantitative performance for spike-in metabolites for the spike-in 
data of urine II. Ratios (accuracy) and coefficients of variation (precision) derived from recovery plots 
of 50% NUS 1H,1H-COSY45 spectra for all added concentrations given in micromolar and the mean or 
median of all spike-in metabolites, namely tryptophan (Trp), tyrosine (Tyr), glutamine (Gln), glutamic 
acid (Glu), lactic acid (Lac), and threonine (Thr). Abbreviations: conc., concentration; CV, coefficient of 
variation. Published in von Schlippenbach et al. 2018.69 

 

Spike-in 
conc. 
[µM] 

Trp Tyr Gln Glu Lac Thr 

 ratio CV  ratio CV  ratio CV  ratio CV  ratio CV  ratio CV  

0.0 - - - - 0.94 3.82 - - 0.91 10.61 0.82 6.62 

15.6 0.76 59.96 0.89 3.68 0.91 6.51 0.94 9.65 0.86 10.56 0.88 8.05 

31.3 1.21 33.86 0.93 4.95 0.98 10.54 1.04 6.74 0.90 8.12 0.88 12.53 

62.5 0.78 21.39 0.89 3.55 0.92 8.25 1.03 8.31 1.07 8.72 0.90 6.58 

125.0 0.87 16.54 1.02 1.34 0.89 6.40 1.05 6.58 1.05 8.59 0.89 6.72 

250.0 0.88 10.38 1.00 0.90 0.83 5.49 1.01 1.86 1.01 3.55 0.90 8.00 

500.0 0.94 4.51 1.00 2.00 1.05 4.96 0.96 3.33 1.00 2.78 0.98 5.34 

median 0.88 - 0.96 - 0.92 - 1.02 - 1.00 - 0.89 - 

mean - 24.44 - 2.73 - 6.57 - 6.08 - 7.56 - 7.71 
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Application of Accelerated Quantification with NUS to Urinary Specimens of 
CKD Patients and Healthy Subjects 

Table S13. Comparison of US and accelerated quantification with NUS. P-values derived from 
comparing metabolite levels in the cohort study urine specimens from patients with CKD and healthy 
subjects were obtained having applied the Mann-Whitney U-test on relative intensities per metabolite 
or over all metabolites in specimens from patients with CKD or healthy subjects, normalized to the 
corresponding creatinine value in each sample derived from measured US or 50% NUS  
1H,1H-COSY45 spectra (n = 28 per group and sampling; exceptions due to missing  
values: anGCKD = 27). Published in von Schlippenbach et al. 2018.69 

 

Metabolite 1H,1H COSY45 US 1H,1H COSY45 50% NUS 

Creatinine 0.7145 0.7024 

Hippuric acid 0.4297 0.3925 

Lactic acid 0.4773a 0.4568a 

D-Glucose 0.3836 0.4203 

Citric acid 1.616e-8 8.173e-9 

Glutamine 1.24e-4 1.24e-4 

Pseudouridine 2.338e-3 1.448e-3 

Over all 0.9236 0.9456 
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LLOQs Cohort Study Metabolites 

 

Table S14. LLOQs. LLOQs of the quantified metabolite signals in the cohort study urine specimens 
given in micromolar derived from US or 50% NUS 1H,1H-COSY45 spectra of the calibration samples. 
Published in von Schlippenbach et al. 2018.69 

 
  

Metabolite 1H,1H COSY45 US [µM] 1H,1H COSY45 50% NUS [µM]  

Creatinine 78.13 312.50  

Hippuric acid 4.88 9.77  

Lactic acid 9.77 9.77  

D-Glucose 39.06 39.06  

Citric acid 4.88 9.77  

Glutamine 9.77 9.77  

Pseudouridine 19.53 39.06  
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6.3. Simulation of NUS Spectra 

For generating simulated NUS spectra, the TopSpin 3.1 AU programs “splitser” and 

“fidtoser” were modified accordingly with the help of Thorsten Rehberg. The “splitser” 

command was adapted to extract from an acquired US spectrum individual FIDs 

according to the sampling density, sampling scheme, and seed value intended. The 

adapted “fidtoser” command writes the extracted FIDs to a new ser file matching the 

NUSLIST point schedule to give the simulated NUS spectrum. The NUSLIST 

comprises one column per indirect dimension containing the data point to be 

considered, being complex for 1H,1H-TOCSY spectra meaning that the complex time 

domain signal is composed of magnetization along the x- and y-direction,54 starting 

with the indices 0 adjusted to the sampled NUS points of the simulated NUS 

spectrum.  

The codes for the adapted “splitser” and “fidtoser” command are exemplarily shown 

below, comprising the 128 indirect data points corresponding to a 25% NUS dataset 

with sine-weighted Poisson-gap sampling given the default seed value of TopSpin 

3.1. 

modified “splitser” schedule: 

 
int td; 
 
GETCURDATA   
FETCHPAR1S("TD",&td) 
int 
a[128]={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,19,20,23,24,25, 
26,27,28,29,30,35,36,41,42,47,48,49,50,55,56,61,62,65,66,69,70
,71,72,75,76,79,80,87,88,91,92,93,94,99,100,101,102,107,108,11
1,112,117,118,125,126,131,132,141,142,151,152,165,166,171,172,
177,178,179,180,191,192,195,196,205,206,225,226,237,238,243,24
4,255,256,263,264,279,280,301,302,317,318,329,330,343,344,357,
358,365,366,379,380,397,398,405,406,417,418,433,434,459,460,47
3,474,487,488,509,510};    
i1=0;   
TIMES(128)  
  RSER(a[i1],a[i1],1);  
  i1 ++;  
END 
QUITMSG("--- splitser finished ---") 
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modified “fidtoser” schedule 

 

int 
a[128]={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,19,20,23,24,25, 
26,27,28,29,30,35,36,41,42,47,48,49,50,55,56,61,62,65,66,69,70
,71,72,75,76,79,80,87,88,91,92,93,94,99,100,101,102,107,108,11
1,112,117,118,125,126,131,132,141,142,151,152,165,166,171,172,
177,178,179,180,191,192,195,196,205,206,225,226,237,238,243,24
4,255,256,263,264,279,280,301,302,317,318,329,330,343,344,357,
358,365,366,379,380,397,398,405,406,417,418,433,434,459,460,47
3,474,487,488,509,510};   
 
char nm1[PATH_MAX];   
int ne = 128;    
int proc1 = 1;   
 
strcpy(nm1, name);   
GETSTRING("Enter name of 1D series:", nm1)   
 
USECURPARS   
int i=0;    
TIMES(ne)    
  WSER(loopcount1+1, nm1, a[i], proc1, disk, user)  
  i += 1;   
END 
QUIT 
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