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1. Introduction 

The scanning electrochemical microscope (SECM) was developed by Bard and coworkers in 

the late 80’s. It is a scanning probe technique where a small electrode is used as probe [1,2]. 

Since then it has evolved to a versatile and powerful electroanalytical tool [3]. Today SECM 

has many applications in biology, material science and for kinetic studies of chemical reactions 

[3–5]. It is used to generate images which provide analytical information on the topography of 

the scanned substrate and its local (electro)chemical reactivities with a high resolution in a 

noninvasive way [6]. It is also used to characterize and modify surfaces and to study interactions 

of chemical compounds [6–10]. The substrate in SECM is usually fixed in an electrochemical 

cell and immersed in an electrolyte solution. The diversity of these substrates ranges from 

organic to inorganic materials [11], living cells or liquid/liquid interfaces to just name a few 

examples [11–17]. Analogous to other scanning probe techniques the local resolution depends 

on the size of the probe and ranges from tens of µm to a few nm in SECM [18–20]. 

Even though amperometry [6] is the commonly used measuring technique, SECM can be 

operated with a number of different electroanalytical techniques, like voltammetry [21], 

potentiometry [22] or by the use of an alternating current [22–26]. The versatility of the SECM 

is however reflected in the number of different modes of operation developed with time [27–

31]. Some prominent examples of measuring modes are the feedback mode, the 

generation/collection mode and the redox competition mode. The feedback mode is the most 

common mode and is used for imaging the topography and electrochemical activity of the 

substrate [32]. The generation/collection mode includes a variety of experiments in which the 

signal mediating chemical species is generated in-situ at the substrate or the tip and respectively 

collected at the tip or the substrate at a diffusion-limited rate [33]. In the redox competition 

mode, the tip and the substrate compete for the same mediator species. This mode is used to 

study corrosion and the catalytic activity of a surface. In addition to recent developments in 

operational modes, continuous instrumental developments including novel probes, substrate 

holders, the precise control of environmental parameters like temperature or the surrounding 

atmosphere led to increased possible applications of the SECM [10,34–37]. The combination 

of the SECM with other techniques like atomic force microscopy (AFM), scanning ion 
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conductance microscopy, optical and fluorescence microscopy etc. increased the amount of 

accessible information obtained with SECM [38–45]. 

 

The priority of this work was the application of the SECM for studies involving the formation 

of highly reactive and unstable chemical species produced alongside the electrochemical 

solvent combustion at substrate electrodes of diameters greater than or equal to 2 mm. As a 

model system, the generation of reactive oxygen species (ROS) during the electrochemical 

oxygen evolution reaction (OER) in the substrate generation/tip collection mode was chosen. 

Preliminary studies identified the application of hydrodynamics as the most promising strategy 

to overcome the limitation of a transient signal caused by diffusion during imaging in the 

generation/collection mode. The application of forced convection to generate hydrodynamics 

in SECM required the construction of suitable experimental equipment in collaboration with 

the mechanical, electrical and glassware workshops of the University of Regensburg. The 

integration of these additional units into the present setup of SECM as well as the 

characterization of the effects of forced convection on the different measurement modes were 

an important part of this work. The progress of the project required a detailed characterization 

of the hydrodynamic conditions within the electrochemical cell with numerical simulations 

performed with COMSOL Multiphysics. The modified SECM was later used to study the 

evolution of ROS at macroscopic Pt and boron-doped diamond electrodes during OER. The 

classical application of the SECM to image and characterize novel materials was a second 

fundamental aspect which was also addressed in this work. For all objectives of this work the 

fabrication of high-quality ultramicroelectrodes was a prerequisite, thus a detailed account of 

the same is also included. 
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2. Fundamentals  

2.1 Electrochemical fundamentals 

2.1.1 Electrochemical reaction 

An electrochemical reaction can be described as a transfer of n numbers of electrons (e-) 

between two chemical species. The reaction is located at the electrode/electrolyte interface and 

can be written as eq. 1. [1] 

O + n ∙ e− ⇌ R      (1)  

The electron accepting species (O) gets reduced and the electron donating species (R) gets 

oxidized during the electrochemical reaction. The Nernst equation (eq. 2), delivers the relation 

of the potential E [V] of the O/R-system and the standard electrode potential E0 as a function of 

the activities of oxidized species aOx and the reduced species aRed. The standard electrode 

potential of an electrochemical reaction refers to the standard hydrogen electrode (SHE). 

𝐸 = 𝐸0 +
𝑅𝑇

𝑧𝐹
𝑙𝑛

𝑎𝑂

𝑎𝑅
      (2) 

R is the ideal gas constant (R= 8.3145 J mol-1 K-1), T is temperature [K], z is the stochiometric 

number of transferred electrons and F is the Faraday Constant. The Faraday constant gives the 

charge of one mole (Na) elementary charges (e). 

𝐹 = 𝑒 ∙ 𝑁𝑎 = 96485.3 
𝐶

𝑚𝑜𝑙
     (3) 

Since the activities of the considered species are often unknown, a formal standard potential E0’ 

was introduced to use the bulk concentrations of the oxidized [O] and reduced species [R] 

instead of the activities. [1–3] 

𝐸 = 𝐸0’ +
𝑅𝑇

𝑧𝐹
𝑙𝑛

[𝑂]

[𝑅]
      (4) 

2.1.2 Current 

The current I [A] is defined as change in charge Q [C] per time t [s].  

𝐼 =
𝑑𝑄

𝑑𝑡
         (5) 

At an electrode, two types of processes contribute to I measured in an electrochemical cell. 

They are faradaic (IF) and non-faradaic processes (IC). The total measured current is the sum of 

both. 

𝐼 = 𝐼𝐹 + 𝐼𝑐       (6) 
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Faradaic processes are charge transfer processes governed by Faraday’s law which correlates 

the charge passed through the electrochemical cell, to the amount of product n [mol] and the 

number of electrons transferred per reaction (z) during a chemical reaction.  

𝑄 = 𝑛𝐹𝑧       (7) 

Non-faradaic processes summarize all processes that occur at the electrode excluding chemical 

reactions. Such processes follow Ohm’s law however adsorption and desorption can occur, and 

the structure of the electrode/electrolyte interface, the so-called double layer, can change with 

changing potential or solution composition. The charging of the double layer can be described 

as charging of a capacitator with a capacity Cdl [F] and the conversion of a substance as Faraday-

impedance Zf. Fig. 2.1 shows the equivalent circuit diagram of a schematic electrochemical cell.  

 

Figure 2.1: Schematic representation of the electrochemical cell (A) and the equivalent circuit 

diagram (B). Rs represents the ohmic resistance of the solution, Zf the substance conversion as 

faraday-impedance and Cdl the capacitance of the electrode/electrolyte interface. Adapted from 

[1]. 

 

The resulting charging current Ic for a potential step at an electrode is transient with time and is 

described by eq. 8 where E is the applied potential, Rs [] the ohmic resistance of the solution, 

t the time and Cdl the capacity of the electrode/electrolyte interface. [1,3] 

𝐼𝑐 =
𝐸

𝑅𝑠
𝑒

−
𝑡

𝑅𝑠𝐶𝑑𝑙       (8) 

2.1.3 Reaction rate 

A homogenous reaction occurs everywhere within the medium at a uniform rate k [mol m-2 s-1] 

given by the change of the amount of substance per time. 
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    𝑘 =
𝑑𝑛

𝑑𝑡
        (9) 

In contrast to a homogenous reaction, the electrochemical reaction is a heterogenous reaction 

located at the electrode surface with a finite surface area (A [m2]). According to Faraday’s law, 

the reaction rate of an electrochemical reaction kr [mol s-1] can be written as 

𝑘𝑟 =
𝑑𝑛

𝑑𝑡𝐴
=

𝐼

𝑧𝐹𝐴
      (10) 

The potential-current curve for a Nernstian reaction (Fig. 2.2) shows the relationship between 

an applied potential and the reaction rate. Initially only the oxidant is present in solution. With 

increasing potential, the reaction starts until a complete conversion of the oxidant occurs and a 

limiting current IL can be measured. 

 

Figure 2.2: Current-potential curve for a Nernstian reaction with only one reactant present 

initially in solution. Adapted from [1]. 

 

The half-wave potential E1/2 is independent of the concentration of the reactants and is 

characteristic for the specific O/R-system.[1,3] 

2.1.4 Diffusion layer 

As a consequence of an electrochemical reaction the concentration of the reactant changes at 

the electrode/electrolyte interface and forms a concentration gradient.  

𝑑𝑐𝑖

𝑑𝑥
=

(𝑐𝑖
∗−𝑐𝑖(𝑥=0))

𝑑𝑥
      (11) 
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The difference of the concentration (dci) between the concentration in bulk solution 

(𝑐𝑖
∗ [mol l-1 = M]) and the concentration at the electrode surface ci(x=0) reaches a certain 

distance (dx) into the bulk solution and forms a diffusion layer. The diffusion layer thickness 

depends on the time scale of the experiment as shown in Fig. 2.3 and the rate of the diffusion 

described by a proportionality factor called diffusion coefficient D [m2 s-1]. Even though the 

diffusion layer has no definite thickness it is useful to think about the diffusion layer thickness 

i [m] it in terms of  

𝑑𝑥 = 𝛿𝑖 = 2√𝐷𝑖𝑡.       (12) 

With this equation the calculated distance contains the complete diffusion layer with an error 

of 0.005 [1]. For an experimental time of 1 ms, i is about 2 µm and for 1s the layer has grown 

to 63 µm (with Di = 5·10-9 m2 s-1). [1] 

 

 

Figure 2.3: Schematic representation of concentration profiles for several times after the start 

of an electrochemical experiment. Adapted from [4]. 

 

2.1.5 Mass transport 

If the other processes affecting the reaction rate (e.g.: rate of electron transfer, chemical 

reactions preceding or following or surface reactions like adsorption, desorption) are ignored 

then the reaction rate is proportional to the concentration gradient and only limited by the mass 

transport of the reactant towards the surface.  

𝑘𝑟 ∝
𝑑𝑐𝑖

𝑑𝑥
∝ 𝐽𝑖(𝑥)      (13) 
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The mass transport is the flux Ji of a mass or species i [mol s-1 m-2] at a distance x from one 

compartment of the solution to another along the x axis. The mass transport is described by the 

Nernst-Planck equation (eq. 14) and is categorized into three modes. The flux arises from 

differences in electrical potential (migration), chemical potential (diffusion) and from the 

movement of a volume element of solution (convection). 

𝐽𝑖(𝑥) = −𝐷𝑖
𝜕𝑐𝑖(𝑥)

𝜕𝑥
−

𝑧𝑗𝐹

𝑅𝑇
𝐷𝑖𝑐𝑖

𝜕𝜙(𝑥)

𝜕𝑥
+ 𝑐𝑖𝑣(𝑥)   (14) 

𝐷𝑖, 𝑐𝑖, 𝜙, 𝑣 are the diffusion coefficient, the concentration, the electric potential and the 

velocity, respectively. The first term of the Nernst-Planck equation represents the mass 

transport by diffusion along a concentration gradient. The second term describes the mass 

transport by migration. The third term describes the mass transport by convection. To simplify 

the mathematical solution of the Nernst-Planck equation electrochemical systems are designed 

to neglect one or two contributions to the mass transport. Migration can be neglected by the 

addition of an inert supporting electrolyte at much higher concentrations than the electroactive 

species and convection is avoided by preventing stirring and vibrations. Under such conditions 

the mass transport becomes diffusion limited. [1,5] 

 

2.1.6 Diffusion limited electrochemical reaction  

For a diffusion limited electrochemical reaction the reaction rate is given by the first term of 

the Nernst-Planck equation.  

𝑘𝑟 = 𝐽𝑖(𝑥) = 𝐷𝑖
𝜕𝑐𝑖(𝑥)

𝜕𝑥
= 𝐷𝑖

(𝑐𝑖
∗−𝑐𝑖(𝑥=0))

𝛿𝑖
= 𝑚𝑖(𝑐𝑖

∗ − 𝑐𝑖(𝑥 = 0))  (15) 

Since the diffusion layer thickness is often unknown the combination of i with the diffusion 

coefficient Di to a single constant, called the mass transport coefficient mi [m s-1] is convenient.  

𝑚𝑖 =
𝐷𝑖

𝛿𝑖
       (16) 

In the case of a complete conversion of the reactant at the electrode its concentration at the 

electrode becomes ci(x = 0) = 0 and the reaction rate is given by the product of the mass transport 

coefficient mi and the concentration of the electrochemical active species in bulk solution 𝑐𝑖
∗. 

The diffusion limited current Il can be calculated with eq. 17. 

𝐼𝑙 = 𝑛𝐹𝐴𝑐𝑖
∗𝑚𝑖       (17) 
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In the defined system the mass transport is limited only by diffusion according to Fick’s laws 

of diffusion. The first law describes the flux J of a species i [mol s-1 m-2] as a function of the 

change in its concentration, with distance x from an electrode. 

−𝐽𝑖(𝑥) = 𝐷𝑖
𝜕𝑐𝑖(𝑥)

𝜕𝑥
      (18) 

The second law relates the change in concentration with time, to the change in flux with 

position.  

𝜕𝑐𝑗(𝑥,𝑡)

𝜕𝑡
= 𝐷𝑗

𝜕2𝑐𝑗(𝑥,𝑡)

𝜕𝑥2       (19) 

The solution of this equations for a potential step experiment results in the Cottrell equation 

(eq. 20).  

𝐼𝑙(𝑡) =
𝑛𝐹𝐴𝐷𝑖

1/2
𝑐𝑖

∗

𝜋1/2𝑡1/2 = 𝑛𝐹𝐴𝑐𝑖
∗√

𝐷𝑖

𝜋𝑡
    (20) 

To be valid the current must be diffusion limited and the potential step has to be large enough 

to ensure the rapid depletion of the electroactive species at the electrode surface. The Cottrell 

equation predicts the time dependent Faraday current of such potential step experiment and is 

often applied in chronoamperometry where the current is measured with time (Fig. 2.4A). The 

resulting graph (Fig. 2.4B) is called chronoamperogram. 

 

Figure 2.4: Schematic potential-time diagram of a chronoamperometric experiment (A) and the 

corresponding chronoamperogram (B). Adapted from [1] 

 

The calculation of the diffusion-limited current according to eq. 20 gives the current resulting 

from planar diffusion neglecting radial diffusion at the electrode borders. For a disk shaped 

macroelectrode (electrode with dimensions in the mm or cm range) this simplification is valid 

because the electrode radius a [m] is much larger than the diffusion layer thickness. Disk shaped 
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ultramicroelectrodes (UME) may have an electrode radius smaller than the diffusion layer 

thickness with a predominantly radial diffusion as illustrated in Fig. 2.5.  

 

Figure 2.5: Comparison of the diffusion at a disk electrode with a >>  (A) and at UME (B). 

Adapted from [5]. 

 

In voltammetry the current is measured depending on a changing potential. The potential-

current plot is called voltammogram. In cyclic voltammetry the potential is swept as shown in 

Fig. 2.6A in a linear manner between the starting potential Estart and a second potential Evertex. 

At Estart no reaction occurs so that the current flow is negligible. The potential Evertex is set to a 

value at which the Faraday current is limited by diffusion. At Evertex the direction of the scan is 

reversed and usually the potential is swept back to its original value. Typical CVs at a 

macroelectrode and a ultramicroelectrodes are shown in Fig. 2.6B and 2.6C, respectively. 

 

 

Figure 2.6: Schematic representation of the potential curve of a cyclic voltammetric experiment 

(A) and voltammograms of 1.5 mM FcMeOH in 0.2 M KNO3 at a 25 µm diameter Pt disk UME 

(B) and a 2 mm diameter Pt disk electrode (C) (scan rate: 50 mV s-1). Adapted from [5]. 

 

2.1.7 Electrochemical reaction with convection 

For a mass transport limited electrochemical reaction with forced convection and added 

supporting electrolyte, the reaction rate is given by  

𝐽𝑖(𝑥) = −𝐷𝑖
𝜕𝑐𝑖(𝑥)

𝜕𝑥
+ 𝑐𝑖𝑣(𝑥)     (21) 
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There are several ways known to introduce forced convection into an electrochemical system. 

The most conventional ones are stirring the solution, rotating the electrode, sonication or 

electrochemical flow cells. Methods involving convective mass transport are called 

hydrodynamic methods. The advantages of hydrodynamic methods are a quickly attained 

steady-state current and a high precision in measurements. Furthermore, the rates of mass 

transport at the electrode surface are larger than the rates of diffusion alone. One disadvantage 

of hydrodynamic methods is that the construction of hydrodynamic electrodes and devices that 

provide known and reproducible mass transport conditions is difficult. Two different types of 

fluid flows are considered. An unsteady and chaotic motion, termed turbulent and a smooth and 

steady flow occurring as if separate layers (laminae) of the fluid have constant and characteristic 

velocities, termed laminar. The velocity profile under these conditions is typically parabolic. 

The slowest velocity is found at the solution/solid interface. Theoretical treatments of 

hydrodynamic situations are difficult and require modeling of the system and solving the 

problem numerically. The simplest treatment of a convective systems assumes that migration 

can be neglected, and that convection is ineffective at the electrode surface so that during an 

electrochemical reaction a diffusion layer with a constant thickness is formed. Within the 

diffusion layer no movement of the solution occurs, and a steady-state mass transport takes 

place. Figure 2.7 shows the current-time curve for a potential step experiment at a 

macroelectrode for different convective situations. The recorded steady-state current is the 

result of a constant mass transport. [1,5] 

 

Figure 2.7: Chronoamperometry at a macroelectrode (2 mm diameter) without and with forced 

convection. Adapted from [1]. 
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In most cases only the steady-state solutions of both hydrodynamic and electrochemical 

problems are desired. According to the empirical treatment of the steady-state mass transport 

the diffusion layer thickness can be calculated from the mass transport limited current (ID) of 

chrono-amperometric recordings at macroelectrodes according eq. 22. [1] 

𝛿𝑖 =
𝑛𝐹𝐴𝐷𝐶

𝐼𝐷
        (22) 

2.2 Scanning electrochemical microscope 

The scanning electrochemical microscope (SECM) consists of several important components. 

The measurements are performed in an electrochemical cell, typically with a three or four 

electrode setup, as illustrated in Fig. 2.8. The applied potential refers always to a reference 

electrode (RE) and the electrical circuit is completed by a counter electrode (CE). In a three-

electrode setup only the probe acts as working electrode. In a four-electrode setup, the substrate 

acts as second working electrode. The bipotentiostat is necessary to define and control the 

applied potentials as well as for data acquisition. To image a substrate the probe is positioned 

near its surface. In imaging experiments the probe is scanned across the substrate and the signal 

is recorded with respect to its position. The accurate three-dimensional positioning of the probe 

and the scanning is done with a stepper and/or a piezo positioner. The step width can range 

from few nm to several µm. Both, the movement of the probe and the data acquisition is 

controlled via PC. The acquired data is presented in 2- or 3-dimensional false color images. [6]  

 

 

Figure 2.8: Schematic illustration of the instrumental SECM setup. Adapted from [7]. 
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The measured signal depends on the used technique. In this work the SECM was operated using 

amperometry with a Faraday current of an electrochemical reaction occurring at the UME as 

measuring signal. This technique requires the presence of an electroactive species, a so-called 

mediator, in the solution. An ideal mediator is soluble, stable under experiment conditions and 

undergoes a fast, well-known and reversible one electron transfer reaction within the potential 

window of the used electrode material. [6] 

2.3 Ultramicroelectrode 
The probe used in SECM is an UME with at least one dimension in micrometer range. In 

literature the use of a variety of different electrode materials and designs for SECM experiments 

are reported [2,3,6]. UMEs used as SECM probes are commonly disk shaped with an electrode 

diameter of 25 µm diameter or smaller [8]. As electrode material noble metals (Pt, Au) or 

carbon-based materials are typically used. For the insulation of the electrodes often soda lime 

glass or SiO2 is used. Even though SECM probes are commercially available and the fabrication 

remains difficult, it is still common to use self-fabricated UMEs. Many different methods and 

techniques for the fabrication of UMEs are described in literature [2,3,6]. A typical probe 

fabricated for the experimental work presented in this thesis is shown in Fig. 2.9. The UMEs 

generally consist of a thin Pt wire (25 µm) soldered onto a Cu wire. Both were inserted in a 

soda lime glass capillary tapered at one end. The Pt wire was insulated by melting the glass of 

the tapered end with a heating coil or a Bunsen burner. Since the coefficient of thermal 

expansion of soda lime glass and Pt are similar, this combination of materials delivers well 

insulated UMEs [9]. The insulation process is followed by a careful grinding and polishing of 

the tip to expose the metal disk and to shape the tip. The electrode diameter of such a probe is 

equal to the wire diameter. A prior reduction of the diameter of the wire for example by 

electrochemical etching of the end of the wire to form a sharp tip enables the fabrication of 

UMEs with electrode diameters of a few 100 nm [10–14]. A detailed description of the UME 

fabrication can be found in section 3.2. 
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Figure 2.9: Schematic illustration of lab constructed UMEs to be used as SECM probes. 

 

Two properties of the UMEs are of major importance for their application as SECM probes. 

The active electrode area and the thickness of the insulating sheet surrounding the electrode. 

The active electrode area is the critical value which affects the resolution of the SECM. For a 

disk-shaped UME, the active electrode area is given by a of the metal disk (Fig. 2.9). The second 

important property is represented by the RG value which characterizes the insulation sheath 

thickness relative to the electrode radius. 

𝑅𝐺 =
𝑟𝑔

𝑎
        (23) 

The RG value is defined as the radius of the whole tip (electrode plus insulation, rg) divided by 

the electrode radius [6]. For a disk UME with an electrode insulation of RG > 10 the steady-

state current in the bulk phase (I∞) can be calculated according  

𝐼∞ = 4𝑛𝐹𝑐𝑖
∗𝐷𝑖𝑎.      (24) 

Diffusion at UMEs with a thin insulation thicknesses (RG < 10) can also occur from behind the 

electrode surface resulting in a higher current as estimated by eq. 24. If the RG value is below 

10 and the probe dimensions are exactly known, this can be compensated by multiplying the 

current with the function (RG). [6] 

 𝐼∞ = 4𝑛𝐹𝑐𝑖
∗𝐷𝑖𝑟𝛽(𝑅𝐺)     (25) 
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Different expressions for (RG) can be found in literature [15–18]. Lefrou and Cornut 

suggested the following equation with a accuracy better than 0.3 % for RG > 1.1 [19]. The 

calculated values presented in table 2.1 show that only for very small RG values a significant 

effect is remarkable. 

𝛽(𝑅𝐺) = 1 +
0.23

(𝑅𝐺3−0.81)0.36
     (26) 

Table 2.1: Values of  (RG) calculated with eq. 26. 

 

 

As shown by Amphlett and Denuault the RG value influences the electrochemical contrast [20]. 

At small RG values, the diffusion of mediator species from behind the electrode increases the 

electrochemical contrast. Another aspect of the RG value for SECM imaging is the ability to 

approach and scan the UME as close as possible across the substrate without crashing the UME 

into it. The working distance is usually one to two electrode radii depending on the roughness 

and the tilt of the substrate. Since the fabrication of UMEs with small RG values is challenging 

as compromise a RG value between 2 to 10 was recommended [20].  

To describe effects independent from individual probe dimensions, dimensionless variables 

were used. The tip-to-substrate distance (d) is normalized with respect to the electrode radius 

resulting in the normalized tip-to-substrate distance (L). 

𝐿 =
𝑑

𝑎
        (27) 

The normalized feedback current (NI) is the current measured in bulk phase (I∞) normalized 

with the measured current during the experiment (IM).  

    𝑁𝐼 =
𝐼𝑀

𝐼∞
       (28) 

2.4 Measuring modes  

2.4.1 Feedback mode 

A classical measurement principle in SECM is the feedback mode [21]. It is used for imaging 

the topography and electrochemical activity of the substrate. The signal in feedback mode is a 

Faraday current at the UME. The magnitude of the current is diffusion controlled and depends 

on the tip-to-substrate distance or the topography of the substrate and on the kinetic reaction 

RG 50 20 10 7 6 5 4 3 2 1.5 1

 (RG) 1.00 1.01 1.03 1.04 1.05 1.06 1.07 1.10 1.16 1.23 1.58
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constant. This reaction constant is, inter alia, determined by the behavior of the substrate as 

conductor or insulator [22]. An amperometric measurement during the approach of the probe 

towards the substrate is called probe approach curve (PAC). In Fig. 2.10 the measured current 

depending on the substrate’s property as conductor and insulator as well as on the distance are 

shown. A feedback occurs at tip-to-substrate distance of less than four times the electrode 

radius. [6] 

  

Figure 2.10: Schematic illustration of the feedback current by approaching different substrates. 

Adapted from [7]. 

 

In SECM imaging experiments using the feedback mode the tip-to-substrate distance is usually 

around one electrode radius. Approaching the probe towards an insulator (e.g. SiO2, 

Polytetrafluoroethylene (PTFE)) results in a negative feedback. With smaller distance the 

insulating substrate blocks the mass transport of the mediator species towards the UME and 

lesser amount of mediator arrives at the UME. As consequence a decreased current, compared 

to the current in bulk solution, is measured. Approaching the probe towards a conductive 

substrate (e.g. Pt, Au) results in positive feedback in which the substrate electrode acts as 

bipolar electrode. The electrode gets polarized according to the Nernst equation by the local 

change in the concentration of mediator species induced by the electrochemical reaction at the 

UME [23]. The redox cycling of the mediator between probe and the conductive substrate 

results in an increased current compared to the current measured in bulk solution. Even though 
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blocking of the diffusion of the mediator towards the UME occurs in positive feedback the 

measured current is dramatically increased at tip-to-substrate distances smaller than two times 

the electrode radius. [6] 

Mathematical expressions for the analytical treatment of PACs in both modes are described in 

literature [17,24,25]. The negative feedback strongly depends on the RG value of the probe. 

Lefrou et al. [25] reported a mathematical expression for the normalized measured current 

during a PAC under steady-state condition in negative feedback depending on RG and L. 

𝑁𝐼(𝐿, 𝑅𝐺) =
2.08

𝑅𝐺0.358(𝐿−
0.145

𝑅𝐺
)+1.585

2.08

𝑅𝐺0.358(𝐿+0.0023𝑅𝐺)+1.57+
ln (𝑅𝐺)

𝐿
+

2

𝜋𝑅𝐺
𝑙𝑛(1+

𝜋𝑅𝐺

2𝐿
)
   (29) 

The influence of the RG value on positive feedback is relatively weak and therefore an easier 

approximation published by Shao et al.[24] is commonly applied.  

𝐼(𝐿) = 𝐵 +
𝐶

𝐿
+ 𝐷𝑒

𝐸

𝐿       (30) 

In this equation A, B, C and D are parameters. Their values for different RG can be found in 

table 2.2. The use of the more complicated RG dependent approximation for positive feedback 

reported in [17] offers only significant advantages if the RG value of the UME is very small, 

exactly known and differs significantly from the values reported in table 2.2. 

Table 2.2: In [24] reported parameter values for eq. 30. 

RG B C D E 

1.1 0.5882629 0.6007009 0.3872741 -0.869822 

1.5 0.6368360 0.6677381 0.3581836 -1.496865 

2.0 0.6686604 0.6973984 0.3218171 -1.744691 

5.1 0.72035 0.75128 0.26651 -1.62091 

10 0.7449932 0.7582943 0.2353042 -1.683087 

 

The simultaneous dependence on both, conductivity and the tip-to-substrate distance makes 

data interpretation difficult. Imaging in feedback mode can be used to gain information about 

the morphology if the substrate is solely insulating or with a uniform reaction rate constant. To 

gain quantitative information about the activity of the substrate the morphology must be well 

known. One approach to overcome this problem is the exploitation of the negative feedback 

itself by exchanging the mediator solution. In one measurement the topographical information 

is recorded with an irreversible mediator and in a second measurement, with a reversible 

mediator, the electrochemical information. In literature several different approaches for 
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topographical and electrochemical imaging have been reported [26,27]. For example, the use 

of twin micro disk or micro ring disk configuration [28,29]. A specific combination of mediator 

systems is required to enable the measurement of the negative feedback at one electrode and at 

the other electrode the positive feedback. Another method is the hopping or standing probe 

approach [30]. Here, approach curves for each point of the final image are recorded which 

drastically increases the measurement time for the image. The so-called voltage switching mode 

is somehow a combination of both [31]. The hopping mode is used to approach the UME in 

negative feedback (for example O2 reduction) and after the positioning the voltage is switched 

to a suitable potential to measure the current of a reversible mediator recording the activity. 

Schumann and coworkers developed a method to measured the tip-to-substrate distance by 

measuring the shear force between an oscillating UME and the substrate [32–34]. Alternating 

current techniques and the usage of fast scan cyclic voltammetry was applied to separate the 

topographical and electrochemical information [35–37]. The hyphenation of the SECM with 

other scanning probe techniques like AFM and scanning ion conductance microscopy [38] are 

promising.  

2.4.2 Substrate generation/tip collection mode 

The generation/collection mode includes a variety of experiments in which the signal mediating 

chemical species is generated in-situ at the substrate or the tip and respectively collected at the 

tip or the substrate [6]. This mode is typically used for the measurement of concentration 

profiles, chemical fluxes, kinetics or to modify surfaces [39–41]. The substrate generation/tip 

collection (SG/TC), illustrated in Fig. 2.11, is a subtype of the generation/collection mode. In 

the simplest form it is assumed that no side or consecutive reactions occur and that no feedback 

effects contribute to the detected signal. In the SG/TC mode an electroactive species is 

generated at the substrate and collected at the biased tip. If the size of the diffusion layer which 

arises from the substrate is much larger than the size of the tip, the SG/TC mode suffers from 

disadvantages like a transient signal and the lack of a steady state. Nevertheless, this mode is 

quite useful and extensively used.  
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Figure 2.11: Schematic representation of the substrate generation/tip collection mode where 

reduced compound (R) present in the solution gets oxidized (O) and diffuses to the UME 

where it is collected. Adapted from [7]. 

2.5 Probe characterization  
For an accurate evaluation of the collected data a detailed knowledge about dimensions and 

characteristics of the probe is mandatory. To characterize the shape, size and the quality of the 

probes including its sealing or fouling during fabrication and operation, different microscopic 

techniques and electrochemical methods are used [42]. Microscopic characterization with 

optical or scanning electron microscopy (SEM) delivers information about the insulation, the 

shape and the dimensions of the UME. Electrochemical methods provide additional information 

about the behavior in electrochemical experiments. Cyclic voltammetry provides information 

about the active electrode area. The radius can be calculated with eq. 31.  

𝑎 =
𝐼∞

4𝑛𝑐𝐹𝐷
       (31) 

A deviation of the recording from theory indicates possible defects in the insulation 

(microfractures, cracks etc.) or fouling of the electrode area. The RG value is estimated by 

mathematical fitting of PACs in the negative feedback. Here, the approach speed of the probe 

is set at a value that allows steady-state condition during the movement of the probe. For fitting 

eq. 29 is used [43]. 
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3. Experimental  

This section describes the chemicals, materials and instrumentation generally used to carry out 

research work outlined in this thesis. However, there are specific chemicals, materials and 

instrumentation which are only used in specific projects. They are described later in the 

corresponding section of the results and discussion chapter.  

3.1 SECM Instrumentation 
A commercial SECM system CHI 920c (CH Instruments, Austin, USA) was used (Fig. 3.1). It 

consisted of a bipotentiostat and a motor control unit that controls both the stepper motor and 

the piezo positioner. The electrochemical cell made of PTFE with an integrated Pt disk 

electrode (2 mm diameter) as substrate was bolted on a platform made of aluminum. The 

platform was held by three micrometer adjustment screws fixed on an object table of a 

transmitted-light microscope (magnification: x50, x100, x200, x500, x1000, Leica, Germany). 

The inverted optical microscope with the electrochemical cell and the stepper motors were 

placed within a faradaic cage on a damped workbench. The bipotentiostat, the motor control 

unit and the PC were placed on the side of the faradaic cage.  

 

Figure 3.1: SECM placed in a faraday cage on a damped workbench with bipotentiostat, motor 

control unit and PC on its sides. 
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3.2 Ultramicroelectrode fabrication  

3.2.1 Chemicals, materials & instrumentation 

An aqueous solution containing 1.5 mM ferrocene methanol (FcMeOH, 99 %, ABCR, 

Karlsruhe, Germany) and KNO3 (analytical grade, Merck KGaA, Darmstadt, Germany) as 

supporting electrolyte was used. All other chemicals were of analytical grade. All the solutions 

were prepared in ultrapure water with a resistivity higher than 18 MΩ cm (membraPure, 

Bodenheim, Germany). 

For preparation of a stable mediator solution, the water was purged with N2 for 15 min before 

dissolving FcMeOH and KNO3 by sonication at 45 °C for 30 min. To prevent a dissolution of 

oxygen from air, the flask was tightly closed. After cooling and precipitation of residues over 

night the mediator solution was ready to use without further filtration. 

For UME fabrication, Pt wires (12.5 µm and 25 µm diameter) and Wollaston-based Pt wires 

(600 nm Pt diameter) were obtained from Goodfellow (Cambridge, UK). Soda lime glass 

capillaries (type I860, inner diameter (ID): 1.1 mm; outer diameter (OD): 1.8 mm) were 

obtained from Technische Glaswerke Ilmenau (Ilmenau, Germany). The heating-coil was made 

from Kanthal wire (21  m-1, length 20 cm, 0.4 mm diameter, coiled in 10 loops with 6-7 mm 

loop diameter). As dual current (DC) power supply the PPS-11360 (180 W, Voltcraft) was used. 

For polishing, alumina (30, 10, 3, 0.3 µm, 3M, St. Paul, USA) and diamond lapping films (0.3, 

0.1 µm, Precision surface international, Houston, USA) were used.  

The electrochemical characterization of UMEs was performed in a two-electrode setup using 

the SECM. A Pt-wire with a diameter of 1 mm was used as a quasi-reference and counter 

electrode. Prior to experiments the Pt substrate electrode was polished with 0.3 µm alumina 

suspension on a polishing cloth (TexMed, Buehler, Lake Bluff, USA). Microscopic images 

were taken with wide stand microscope (magnification: x100, PEAK) and a smartphone camera 

and the digital microscope VHX-1000D (magnification: x500, x1000, Keyence, Osaka, Japan).  

For leveling of the substrate prior to the experiments a bullseye level (Model 1034, 14 mm 

diameter, sensitivity: 5', Glas- und Meßtechnik GmbH, Wächtersbach, Germany) was used. 

3.2.2 Fabrication of Pt ultramicroelectrodes 

UMEs with diameters > 10 µm were fabricated following the procedure described by Lee et al. 

[1]. Briefly, the Pt microwire was soldered to a copper wire and inserted into a pulled soda lime 

glass capillary and insulated by melting the glass with a microtorch or heating coil. The 
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exposure of the Pt disk electrode and the shaping of the surrounding glass-sealing was done by 

polishing with alumina (30, 10, 3, 0.3 µm) and diamond lapping films of decreasing grain sizes. 

All polishing steps were carried out manually. The tip of the UME was then heated using a 

lighter flame to retrieve the glass and to define the RG of the tip. A final fine polishing step was 

done with diamond lapping films of 0.1 µm grain size. Following this procedure, probes with 

an electrode diameter equal to the wire diameter and an RG ≈ 2-8 were routinely fabricated 

within one hour [2].  

UMEs based on electrochemically etched 25 µm diameter Pt wires for sub-µm probes were 

fabricated in a similar way following the procedure described by Bergner et al. [3]. For the 

electrochemical etching, the Pt wire, already soldered on a copper wire, was inserted into a 

pulled soda-lime glass capillary unit it protrudes outside of the tapered capillary tip. The tip of 

the protrude Pt wire was carefully immersed in a solution of CaCl2 (60 % v/v), H2O (36 % v/v) 

and concentrated HCl (4 % v/v). The Pt tip was than etched in a two-electrode setup using 

differential pulse amperometry with potential pulses of ± 2 V (vs a Pt pseudo-reference 

electrode) at a frequency of 50 Hz. The etched Pt wire was inspected under a light microscope 

(100-fold magnification). The application of lower negative potential (-1 V) led to a milder 

etching with a brighter and smoother Pt surface. The etched Pt tip was then retracted into the 

capillary, sealed and polished as described above. Sub-µm UMEs of varying diameter with RG 

> 10 were fabricated following this procedure.  

To simplify the fabrication and to decrease the RG of these sub-µm Pt UMEs, an alternative 

method for the glass-sealing of the electrochemically etched Pt tips was developed. After 

etching the Pt wire as described above, the Pt tip was inserted into a soda lime glass capillary. 

The middle part of the glass capillary was narrowed by careful capillary pulling. The Pt wire 

was inserted until around 2 cm of the Pt wire were inside the narrowed capillary part. As 

illustrated in Fig. 3.2A, the end of the glass capillary without Pt/Cu wire was then fixed (f) 

perpendicular through a heating coil. The heating coil (b) was made of Kanthal wire twisted 

and coiled in 4-5 loops with a loop diameter of 6-7 mm. In order to achieve a uniform heating, 

the coil was inserted in a borosilicate glass tube (c) (length ≈ 3 cm, ID: 7 mm, OD: 10 mm). 

The etched tip of the Pt wire was placed short above (< 5 mm) the top end of the heating coil. 

It was very important to strictly avoid any contact between the heating coil and the glass 

capillary. After the correct positioning, the soda lime glass was melted by heating the coil fast 

with DC power supply (~5-6 A) until the capillary fell into a funnel. The funnel made of glass 
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(B) was used to carefully catch the electrode and prevent a contact between the fragile tip and 

the wall of the tube. The pull of the melted glass during the plunge formed a thin glass sheath, 

which surrounded and sealed the Pt microwire and the etched tip. The exposure of the Pt was 

done by focused ion beam (FIB) milling with argon ions. Figure 3.2B shows a schematic 

drawing of the fabrication process. 

 

Figure 3.2:  Setup (A) and schematic drawing (B) of the gravity enhanced fabrication method 

for high-resolution SECM probes. A) Photo of the workplace with the glass capillary (a), 

heating coil (b), borosilicate glass tubing (c), glass funnel (d), DC power supply (e) and the 

fixation of the capillary (f).  

3.2.3 Fabrication of Wollaston-based Pt ultramicroelectrodes  

This section is adapted from the work of Vatsyayan et al. [4], published by The Royal Society 

of Chemistry. The Wollaston-based Pt disk UMEs (radii 500 nm and 300 nm) were fabricated 

by the procedure described by Bond et al. [5] with partial modification. Briefly, the silver coated 

Pt wire was soldered to a copper lead. The wire was then inserted into a glass capillary (1.1–

1.2 mm diameter) in such a way that the Wollaston wire protruded outside the capillary. The 

silver coating was then dissolved in concentrated nitric acid by dipping the tip of the wire in a 

drop of nitric acid with the help of a micromanipulator for ~30 min. The exposed Pt wire was 

then washed thoroughly in acetone and water to remove any debris on the wire. The wire was 
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then retrieved inside the glass capillary and dried at 100 °C for 1 h to remove moisture. The Pt 

wire was then sealed inside the glass capillary (through the joint from where it was exposed 

from the silver coating) following the procedure described by Bergner et al. [6]. A Kanthal wire 

was heated by a DC power supply (~10 V) for 5-10 s. The capillary containing the exposed Pt 

wire was placed inside the loop till the sealing was complete. The probe was then inspected 

under a light microscope (100-fold magnification) to ensure that the exposed Pt wire did not 

break inside the glass capillary during heating and cooling of glass around it. The disk-shaped 

Pt electrode was then exposed by polishing with alumina polishing foils of decreasing grain 

size (30, 10, 3, 0.3, 0.1 µm). Consecutively, a conically sharpened glass tip was prepared under 

microscope with 500 and 1000-fold magnification by manually polishing the glass-sealing from 

the sides with 0.3-0.1 µm alumina polishing foils. The diameter of the glass sheath produced in 

this way was typically about 10-20 µm. 

3.2.4 Ultramicroelectrode characterization  

SECM probes were characterized with the techniques described in section 2.5. Microscopic 

characterization was carried out using optical microscopy. For SECM probes with an electrode 

diameter > 10 µm the RG was determined using an optical microscope (100-fold 

magnification). For high resolution probes a higher magnification of 500 and 1000- fold was 

used. To evaluate the electrode diameter and the quality of the glass-sealing, CVs were recorded 

between -0.2 and 0.3 V with a scan rate of 50 mV s-1. For the electrochemical RG determination 

PACs towards a polished Pt substrate for positive feedback and on insulators like glass or PTFE 

for negative feedback response were recorded with an approach speed of 0.5 µm s-1. The 

evaluation was done by fitting and comparing theoretical expressions for negative [7] and 

positive [8] feedback current with experimental data. To check the performance of the 

fabricated probes interdigitated electrodes (Micrux Technologies, Oviedo, Spain) with 3 µm Pt 

strips separated by 2 µm distance (Type: IDA 4) or 10 µm Pt stripes with a separation of 10 µm 

(Type: IDA1) were used as standard substrates for imaging in feedback mode. 

3.3 Substrate leveling and imaging 

For SECM imaging a proper positioning of the substrate is prerequisite. The leveling of the 

substrate was done in two steps. First, a coarse leveling was done using a bullseye level. This 

bullseye level was placed on the side of or, if possible, inside the electrochemical cell. The 
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micrometer adjustment screws beneath the aluminum platform were used for leveling. For the 

fine adjustment of the remaining tilt, PACs were recorded at three edges of a virtual triangle 

around the area of interest. A 25 µm diameter probe and an increment distance of 2 µm and an 

increment time of 0.04 s was used for this PACs. The retrieval distance after the first approach 

was ≈ 400 µm and was adjusted after each approach so that the starting height was equal for 

each PAC. For leveling with smaller probes, the values for increment distance and the retrieval 

distance were adjusted depending on the size of the probe. The area covered by the virtual 

triangle was at least 1 mm2. A satisfactory leveling was achieved within a tilt of less or equal 

to one probe radius per mm2 substrate area. In cases where the tilt remained bigger the 

adjustment screws were used for fine adjustment and the tilt was determined again. This 

procedure was repeated until the desired leveling was achieved.   

 

Imaging is a critical process in SECM studies and was always performed in constant height 

mode. The settings were adjusted for each project individually and are reported within the 

corresponding sections in the results and discussion chapter of this thesis. 
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4. Results and discussion 

4.1 Ultramicroelectrode characterization  

4.1.1 Pt ultramicroelectrodes  

UMEs made from unetched Pt wires (12.5 and 25 µm diameters), were used routinely for the 

experimental work. Such UMEs were comparably easy to fabricate and handle. The relatively 

thick tip was robust and easy to clean. Once the electrode surface was fouled or the sealing is 

damaged from crashing the probe into the substrate, it was possible to regenerate the tip either 

by polishing or by a repeated careful melting of the glass followed by polishing as described in 

section 3.2.2. Figure 4.1.1 exemplary shows the optical and electrochemical characterization of 

these Pt disk UMEs. The presented CVs show a steady-state current for the oxidation of 

FcMeOH. The PACs shown in Fig. 4.1.1C were in good agreement with the theoretical 

approach curves for both negative and positive feedback. The RG values of 2.4 for the 25 µm 

diameter UME and 2.3 for the 12.5 µm diameter UME are estimated from negative feedback 

curve and were in agreement with the optical images of the tips. 

 

Figure 4.1.1: Characterization of UMEs. (A) Optical microscopic images of a 25 µm (above) 

and a 12.5 µm (below) diameter Pt disk UME tip (100-fold magnification). (B) Corresponding 

CVs of the UMEs at a scan rate of 50 mV s-1. (C) Experimental and theoretical PACs of the 



 

 

 
32 

 

  

UMEs approaching a glass and a Pt substrate (approach speed: 0.5 µm s-1). For electrochemical 

experiments 1.5 mM FcMeOH in 0.2 M KNO3 was used as mediator and EUME = 0.5 V.  

4.1.2 Weight-force sealed etched Pt ultramicroelectrodes 

Compared to the other fabrication methods described previously in this work, the probe 

fabrication with the weight force-sealing and FIB milling pronounced technical aspects instead 

of the experimenter’s skill in manual polishing. The overall shape of the probe was equal 

compared to the probes fabricated by the other methods. However, the use of FIB milling 

limited the length of the probe to a maximum of 6 cm. The probes sealed by this method had a 

thin sheath of glass insulation around the electrode, though sealing the Pt microwire completely 

(Fig. 4.1.2A) forming a long and thin electrode ideal for hydrodynamic SECM experiments. 

For optical characterization and the determination of the electrode and tip diameter SEM 

imaging was used (Fig. 4.1.2B). Electrode diameters between 0.2 – 3 µm with RG values of ≤ 

10 were achieved with this glass-sealing method. 

 

Figure 4.1.2: Images of an etched Pt UME produced with weight force-sealing. (A) Photograph 

and optical microscopic image of the electrode. (B) SEM images of UME after FIB exposure 

(a ≈ 300 nm, RG ≈ 8). 

 

The electrochemical characterization of the probes was carried out to ascertain the quality of 

the probe and its sealing (Fig. 4.1.3). CV measurements showed small charging currents and 

hysteresis proving an intact glass-sealing of the Pt (Fig. 4.1.3A). Probe approach curves with 
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positive feedback on Pt and negative feedback on glass substrate followed theory closely (Fig. 

4.1.3B). A high quality SECM image of an IDA1 interdigitated electrode (10 µm Pt strips with 

10 µm gap) was obtained using these probes (Fig. 4.1.3C). These results established that the 

UMEs fabricated by weight-force sealing and subsequently FIB milling, were of high quality 

and superior in terms of RG compared to probes fabricated according other herein reported 

methods where the probes were manually polished.  

 

Figure 4.1.3: (A) CV of a weight force sealed UME (radius: 0.8 µm) at a scan rate of 100 mV 

s-1. (B) Experimental and theoretical PACs of the UME (RG = 3 ± 1) approaching a glass and 

a Pt substrate (approach speed: 0.5 µm s-1). (C) SECM image of an interdigitated Micrux 

electrode (IDA1, scan speed: 25 µm s-1). All experiments were carried out in 1.5 mM ferrocene 

methanol with EUME = 0.3 V vs Pt. 

 

A limitation of this UME preparation method is the major technical effort necessary to expose 

the Pt disk electrode by FIB milling. Roughly, one quarter of the FIB prepared probes were 

usable. Further technical improvements of the glass-sealing are necessary to ensure the 

complete insulation of the Pt tip inside the capillary and to gain an improved yield.  

4.1.3 Wollaston-based Pt ultramicroelectrodes 

This section is adapted from the work of Vatsyayan et al. [1], published by The Royal Society 

of Chemistry. The Wollaston-based Pt UMEs are used since long for electrochemical studies 

[2] and SECM imaging [3]. However, fabrication of sub-micrometer UME probes was always 

a challenge because of the fragility of the exposed Pt nanowires and difficulty in their sealing 

inside the glass capillaries which required a lot of practice and patience. Despite of these 

limitations, the robustness of Wollaston-based Pt UMEs makes them an interesting target for 

exploitation in SECM imaging studies. With some minor modifications (as discussed in section 

3.2.3) in the already established fabrication protocol of Wollaston-based Pt UMEs, the 
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fabrication of probes down to radii of 300 nm on a regular basis was possible. The probes once 

sealed and polished were robust enough to be used for multiple scans over long periods of time 

with intermittent cleaning and polishing. Thus, Wollaston-based probes provided an advantage 

over other relatively fragile sub-micrometer Pt disk probes fabricated by alternative methods 

such as Pt wire etching or capillary pulling. Fig. 4.1.4A shows the cyclic voltammograms of 

the sub micrometer Wollaston-based Pt UMEs. Well-defined voltammograms with minor 

hysteresis and stable steady-state currents were obtained. With cone formation, a RG value of 

~10 was achieved for 500 nm probe, whereas, the RG for 300 nm probe was more than 10 (Fig. 

4.1.4B). 

 

Figure 4.1.4: (A) Cyclic voltammograms of Wollaston-based Pt UMEs of different radii (500 

nm and 300 nm) at a scan rate of 50 mV s-1. (B) Optical microscopic image of a 300 nm radius 

Wollaston-based UME tip (1000-fold magnification). Adapted from [1]. Published by The 

Royal Society of Chemistry. 

 

Figure 4.1.5: Experimental current–distance curves and corresponding theoretical curves 

obtained with a 300 nm Wollaston-based Pt UME by approaching an insulating glass substrate 
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(A) and a conducting gold-coated glass substrate (B). The probe potential was 0.3 V and the 

approach rate was 0.25 µm s-1. The experiment was carried out in 1.5 mM ferrocene methanol 

solution (pH 5, adjusted with acetic acid). Adapted from [1]. Published by The Royal Society 

of Chemistry. 

 

The probe approach curves over a flat glass substrate and a gold-coated glass substrate were 

recorded for calculation of RG of the fabricated 300 nm radius Wollaston-based Pt UME (Fig. 

4.1.5). A high-resolution image of an interdigitated Micrux electrode with 3 µm Pt strips 

separated by 2 µm distance (nonconductive Pyrex material) was recorded with a 300 nm radius 

UME (Fig. 4.1.6A). A strong positive feedback current (~200 pA) because of recycling of 

ferrocene methanol at the Pt surface was recorded which was well resolved from the negative 

feedback current (~70 pA) from the Pyrex material in between the Pt strips. The I∞ was ~100 

pA. The SECM image of the interdigitated electrode structure correlated very well with its AFM 

image (Fig. 4.1.6B). The flat surfaces of Pt strips as recorded in AFM image were also visible 

in the corresponding SECM image. Figure 4.1.6C shows the representative areas imaged by 

SECM and AFM. The apparent width of the unbiased conductive Pt strip in the SECM image 

correlated closely with the actual width of the strip. Thus, the 300 nm radius probe was 

considered to be potentially suitable to image Gold nanowires later in section 4.5 which were 

2-3 µm long and ~140 nm in diameter.  

 

Figure 4.1.6: (A) High-resolution SECM image of an interdigitated Micrux electrode with 3 

µm Pt strips separated by 2 µm distance (non-conductive Pyrex material). The image was 

recorded with a 300 nm radius Pt probe at a potential of 0.3 V and a scan rate of 12.5 µm s -1 in 

1.5 mM ferrocene methanol solution. (B) Representative AFM image of the same substrate (C) 

Optical microscopic image of an interdigitated Micrux electrode with 3 µm Pt strips separated 
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by 2 µm distance (non-conductive glass material). Adapted from [1]. Published by The Royal 

Society of Chemistry. 

4.1.4 Conclusion 

Different alternative approaches were used to fabricate UMEs and supplement already existing 

fabrication methods to improve the overall efficiency of the fabrication procedure and to 

maintain a constant supply of high-quality probes for the variety of SECM experiments 

mentioned in this work. The described procedure for the fabrication of UMEs with diameters > 

10 µm enabled the fabrication of well insulated electrodes with RG values between 2 and 10. 

The fabrication of high resolution probes (electrode radii of < 1 µm) remained difficult and time 

consuming. Nevertheless, the improved quality and the robustness of the probes compensate 

the drawbacks. The use of novel fabrication techniques like the focused ion beam enabled the 

fabrication of UMEs with sub-micrometer electrode diameters, insulated by a soda lime glass 

layer of few µm thickness. The characterization showed favorable characteristics of the UMEs 

and established their potential for high resolution SECM experiments in combination with 

forced convection.  
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Abstract 

In this section the well-known advantages of hydrodynamic mass transport in electrochemical 

systems are used in combination with scanning electrochemical microscopy (SECM). The 

hydrodynamic SECM system integrates a high-precision stirring device into the experimental 

setup. The well-defined stirring of the SECM electrolyte results in steady-state diffusion layer 

characteristics in the vicinity of large substrate electrodes operated in chronoamperometric 

measuring mode. For a range of rotation frequencies of a rotating cylinder the thickness and the 

stability of the diffusion layer was studied by hydrodynamic SECM in the substrate 

generation/tip collection (SG/TC) as well as in the competition mode using ferrocene methanol 

as redox mediator. Different UME probe dimensions ranging from Pt diameters of 20 µm down 

to 0.6 µm were used. The smallest probe with 0.6 µm electrode diameter was found most 

suitable for these studies due to the almost convection-independent amperometric response 

associated with sub-µm electrodes. Additionally, preliminary studies of hydrodynamic SECM 

imaging of a 2 mm Pt disk electrode surface in the SG/TC mode based on in-situ produced 
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hydrogen as mediator are presented. Comparative images measured in the conventional positive 

feedback mode in quiescent solution show that hydrodynamic SECM offers attractive 

complementary information. 

4.2.1 Introduction 

The technique of scanning electrochemical microscopy (SECM), after its introduction by Bard 

and co-workers in 1989 [1], has evolved to a powerful electrochemical tool for the high 

resolution imaging of topography and surface (re)activity as well as for the investigation and 

determination of important (electro)chemical parameters for mass transfer rates and reaction 

kinetics [2]. Besides the common feedback mode [3], the generation/collection mode [4] is an 

alternative approach for SECM experiments with two variants, the tip generation/substrate 

collection (TG/SC) and the substrate generation/tip collection (SG/TC) modes. In the SG/TC 

mode, a substrate-generated species is detected at the SECM probe at a diffusion-limited rate. 

This mode was used to monitor concentration profiles [5], localized enzyme activity [6] or to 

gain a deeper insight into the oxygen reduction reaction [7] which is important for battery and 

corrosion research, to name just a few examples. Also a large number of novel techniques like 

the hopping intermittent contact [8], surface interrogation [9] and redox competition mode [10] 

are based on the SG/TC mode. One limitation of the SG/TC mode is the time-dependent 

amperometric signal. In quiescent solution the substrate electrode current is transient due to the 

growth of the diffusion layer thickness with time. Consequently, the probe current at fixed tip-

to-substrate distance changes also with time. To achieve a steady-state or at least a quasi steady-

state mass transport, several methods were used. A quasi steady-state around the tip-substrate 

gap with a separation of a few micrometers was achieved after a macroscopic substrate was 

held at a fixed potential for a brief period of time [4,11,12], when the potential was swept slowly 

at 2 mV s-1 [13] or by cyclic sweeping of the substrate potential around E0 for rapid electron 

transfer reactions [14]. Furthermore, potential pulses at the substrate electrode were used to 

limit the extension of the diffusion layer above the substrate [15–17]. A real steady-state mass 

transport was achieved by the use of micro or ultramicroelectrodes instead of macroscopic 

substrate electrodes [18,19]. A disadvantage of this approach was the restriction concerning the 

size of the substrate. This results in limitations concerning several practical applications where 

studies at surfaces of large substrates are of interest. 
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In electroanalytical chemistry with macroscopic electrodes, the introduction of forced 

convection into the electrochemical system is a well-established way for enhancing the 

analytical performance. Hydrodynamic voltammetry is associated with the advantage of 

considerably increased mass transport under steady-state conditions [20]. Various techniques 

of hydrodynamic voltammetry exploiting the increased mass transport are known. Typical 

examples are different kinds of rotating electrodes [21–23], a variety of flow systems like 

channels [24], wall- and micro-jets [25,26] or tubes as well as convective systems based on 

sonication [27], microwave radiation [28] and even magnetic fields [29,30] have been applied. 

The effect of natural convection on the signal at the UME was addressed in a study by Baltes 

et al. [18] in which they showed that natural convection has no effect on the amperometric signal 

and just a small effect on the diffusion layer of an UME with a radius of 40 µm at distances 

smaller than 16 µm. The influence of forced convection due to the moving UME on positive 

feedback approach curves was studied to provide an expression for the maximal approach 

velocity [31]. During the imaging process forced convection originating from the probe velocity 

can induce a perturbed current response [32], so the imaging with different probe velocities was 

used to distinguish between active and less active spots at substrates with a well-known surface 

morphology [33]. Based on this work, a method for high speed SECM imaging [34] was 

developed and used to study living cells [35]. Another approach to SECM experiments in a 

hydrodynamic environment was the use of capillary-based probes with integrated microwires. 

Palatzky et al. [36] used this special probe configuration for the characterization of the 

reproducibility and for the optimization of positioning of a fused silica capillary above a large 

substrate electrode for the concept of electrochemically assisted injection in capillary 

electrophoresis [37]. The opposite way, the integration of a nanoflow-system into a SECM 

probe, was reported by Momotenko et al. [38]. They developed a so-called microfluidic push-

pull probe. In this flexible probe a working and a reference electrode as well as two micro-

channels were integrated. One microchannel was used for the delivery (push) and the other one 

for the aspiration (pull) of mediator solution. With this probe they generated SECM images of 

a dry substrate by applying just a nanodroplet to the substrate. A different approach was 

reported by Kai et al. [39] using a nanoflow system for the continuous delivery of fresh mediator 

solution to increase the resolution of the SECM for the imaging of spots of active horseradish 

peroxidase enzyme. 
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In this section of work, a new approach to establish steady-state mass transport at macroscopic 

electrodes in combination with SECM experiments is described. Forced convection is 

introduced to the SECM measuring cell by high-precision stirring. It is showen that 

hydrodynamic SECM measurements in the SG/TC and competition modes can be used for 

detailed studies within the steady-state diffusion layer of a large substrate electrode. Preliminary 

results for the application of hydrodynamic SG/TC experiments based on hydrogen evolution 

at the substrate will be presented. 

4.2.2 Experimental  

Chemicals  

An aqueous solution containing ferrocene methanol (FcMeOH, 99%, ABCR, Karlsruhe, 

Germany) as mediator and KNO3 (analytical grade, Merck KGaA, Darmstadt, Germany) as 

supporting electrolyte was used. All other chemicals were of analytical reagent grade. The 

solutions were prepared in ultrapure water with a resistivity higher than 18 MΩ cm 

(membraPure, Bodenheim, Germany). 

 

Instrumentation 

For all experiments, a commercial SECM system CHI 920C (CH Instruments, Austin, USA) 

with the included electrochemical cell and a Pt disk electrode (2 mm diameter) as substrate 

electrode was used. Prior to all experiments the substrate electrode was polished with 0.3 µm 

alumina suspension on a polishing cloth (TexMed, Buehler, Lake Bluff, USA). An 

Ag/AgCl/sat. KCl electrode and a Pt-wire electrode were used as reference and counter 

electrodes, respectively. All the potentials mentioned in this work refer to the reference 

electrode specified above. To protect the electrochemical cell from any disturbances caused by 

electrical fields or vibrations, the electrochemical cell and the SECM positioning unit were 

placed in a homemade faradaic cage on a damped working bench. The stirring system consisted 

of an electrical motor (2250S012BX4 CSD 3830, BL- DC- Motor with integrated motion 

controller, Dr. Fritz Faulhaber GmbH & Co. KG, Schönaich, Germany) and a homemade 

rotating cylinder (polyether ether ketone (PEEK); length: 9.7 cm, diameter: 3 mm, beveled at 

the end (45°)). A stirrer guide made of a borosilicate glass tube (length: 2 cm, ID: 3 mm, OD: 

6 mm) completed the stirring system. To control the electrical motor via PC an adapter board 

(BX4CxD RS/CAN) and the motion manager 5 software both provided by Dr. Fritz Faulhaber 
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GmbH & Co were used. To inhibit electrical disturbances the current circuit of the SECM and 

the stirrer were separated via an isolation transformer (230/230V ~50Hz, 550 VA, Voltcraft, 

Germany). A homemade 3D-printed sliding cap with several holes was used to cover the 

electrochemical cell and to ensure a precise (re-) positioning of the stirrer. UMEs with diameters 

of 10 and 20 µm were fabricated following the procedure described by Lee et al. [40]. The sub-

micrometer Pt disk UME (600 nm diameter) was fabricated using Wollaston-based Pt (600 nm 

Pt diameter, Goodfellow, Cambridge, UK) wire by following the procedure described by Bond 

et al. [41] with a partial modification as described by Vatsyayan et al. [42]. The detailed 

descriptions for probe fabrication are covered in section 3.2. 

 

Experimental setup 

The setup for hydrodynamic SECM experiments is shown in Figure 4.2.1. To protect the 

electrochemical cell from vibrations caused by the electrical motor the holder was placed 

alongside the damper plate of the working bench so that there was, beside the electrolyte 

solution, no contact between the SECM and the stirrer system. To achieve a uniform and 

reproducible convection above the substrate electrode the precise positioning of both the 

electrochemical cell and the stirrer (1) was a prerequisite. The electrochemical cell was levelled 

within a range of 30 µm height difference per 1.5 cm distance between the measurement points 

using three micrometer adjustment screws. To fix the X, Y position of the rotating cylinder in 

the plane of the electrochemical cell, a 3D-printed sliding cap (3) with several holes for the 

stirrer (3.5 mm diameter) and the SECM probe (5) was used. This mask covered the cell tightly 

enough to keep the distance between center of the substrate electrode (4) and stirrer fixed at 0.8 

cm so that for all experiments the same distance was used. To avoid any vibration due to contact 

of mask and rotating stirrer shaft, the alignment needed to be done carefully to prevent a contact 

between the stirrer and the slide cap during measurements. To predefine the penetration depth 

of the stirrer into the solution the distance between the bottom of the cell and the end of the 

stirrer (1 mm) was adjusted by matching a mark at the stirrer shaft with the top of the mask. To 

avoid oscillations of the stirrer shaft (length: 10 cm) at higher rotation speed, a borosilicate 

glass tube was used as a guide (2). In all experiments, the electrochemical cell was filled with 

6 ml solution. In experiments with a moving probe, the electrical motor created interferences to 

the amperometric signal. To eliminate this interference the sampling time of the current 

measurement was synchronized with the rotation speed frot of the motor. 
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Figure 4.2.1: Schematic representation (a) and photograph (b) of the experimental setup for 

hydrodynamic SECM experiments. Components: High-precision electrical motor with stirrer 

(1), guide for the stirrer (2), mask for the positioning of the stirrer (3), substrate electrode (4), 

SECM probe (5), reference electrode (6), and auxiliary electrode (7). Copyright © 2017 

American Chemical Society. 

 

Hydrodynamic SECM experiments for the characterization of the diffusion layer for a 

large substrate electrode (2 mm diameter) 

In all experiments FcMeOH was oxidized at the substrate electrode at a potential of 

Esubstrate= 0.45 V. A solution of 1.5 mM FcMeOH with 0.2 M KNO3 was used. To demonstrate 

the effect of forced convection on the mass transport and consequently on the thickness of the 

diffusion layer, chronoamperometric measurements at the substrate electrode were performed. 
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The rotation speed of the stirrer was varied from 8.3 to 33.3 s-1. The solution was stirred for 

about 1 min prior to each measurement to achieve a uniform convection throughout the solution. 

The current was measured for 60 s with 0.1 s sampling time. Based on the steady-state limiting 

current, the thickness of the diffusion layer (δ) was calculated. 

To study the influence of the probe size on the quality of recording diffusion layer profiles near 

the substrate electrode under hydrodynamic conditions, probes with different electrode 

diameters (0.6, ~10, ~20 μm) were used. The rotation speed of the rotating cylinder was varied 

ranging from 8.3 to 16.7 s-1. 

Prior to hydrodynamic SECM studies conventional probe approach measurements were made 

in quiescent solution. The probes were positioned at a tip-to-substrate distance corresponding 

to the normalized value IM/I∞ of 300 % for 20 µm and 10 µm probes and 125 % for the 0.6 µm 

probe. To determine the exact distance, the current ratio (IM/I∞) was compared to theoretical 

probe approach curves (PACs) calculated with the simplified equation reported by Shao et al. 

[43]. After the positioning of the probe near the substrate and prior to all hydrodynamic 

recordings the probe was retracted for 400 µm using the stepper motor. In all further 

experiments, the approach velocity was 20 µm s-1 and each approach was repeated at least two 

times (N = 2). 

 

Hydrodynamic SECM imaging 

To study the influence of forced convection on SECM imaging, two different experiments were 

performed. To investigate the stability of the diffusion layer repetitive images in the SG/TC 

mode were recorded with and without stirring. The potentials were Esubstrate= 0.45 V and 

EUME = 0 V. In order to position the probe at a suitable tip-to-substrate distance a PAC was 

recorded in quiescent solution as described earlier. Then the probe was retrieved to fix a tip-to-

substrate distance of ~28 µm. To reduce the noise generated by the electrical motor an i/E 

conversion filter with 0.32 Hz was applied. The experiment was performed in 1.5 mM FcMeOH 

mediator solution at a probe velocity of 100 µm s-1 and a quiet time of 1 s. The rotation speed 

was set at frot= 16.7 s-1 and the solution was stirred until the convection was uniform (1 min). 

In the second experiment, the SECM with forced convection was used for imaging and surface 

characterization of a Pt disk electrode in the SG/TC mode by using in situ generated hydrogen 

as mediator. For this experiment, the positioning of the stirrer was done as described before. 

However, the mask was removed before performing the experiment to enable access to the 
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solution. For the height positioning of the stirrer, the end of the PEEK cylinder was first placed 

in contact to the cell bottom and then lifted for 1 mm. The Pt disk electrode was first imaged 

with 1.5 mM FcMeOH as mediator in quiescent solution at an approach position corresponding 

to I∞ = 135 %. Afterwards, the mediator solution was exchanged with 0.2 M KNO3 solution. 

The rotating speed of the stirrer was set to 16.7 s-1. For hydrogen generation at the substrate 

electrode, a potential of Esubstrate = -1.2 V was applied. To oxidize the hydrogen, the tip potential 

was set at EUME = -0.1 V. In both images the probe velocity was 150 µm s-1. 

4.2.3 Results and discussion 

Hydrodynamic SECM for diffusion layer studies using UME probes of different size 

The application of well-defined convection in chronoamperometric experiments led to 

enhanced steady-state currents at large electrodes. Using a rotating cylinder as source of 

convection, the strength of convection is defined by the rotation speed of the stirrer. Without 

stirring, the diffusion layer above a large substrate electrode would grow infinitely into the 

solution. The chronoamperograms for the oxidation of FcMeOH at a 2 mm Pt disk substrate 

electrode in presence and absence of convection are shown in Figure 4.2.2. In quiescent solution 

(Figure 4.2.2a) the typical current decay according to the Cottrell equation is observed. In 

contrast, the application of convection induced by a rotating stirrer created a stable diffusion 

layer in the vicinity of the substrate electrode associated with an increased and constant current 

(Figure 4.2.2b-d). The steady sate currents were 3.322 ± 0.003 µA, 4.633 ± 0.002 µA, and 5.908 

± 0.007 µA for rotation speeds of 8.3 s-1, 16.7 s-1, and 25 s-1, respectively. Simulations using 

COMSOL Multiphysics, presented in section 4.3, strengthen the suggestion of a laminar 

convective conditions near the substrate electrode. For rotation speeds higher than 25 s-1 there 

were only minor further mass transport enhancements and the precision of current recordings 

declined indicating turbulent convective conditions. In most of the following experiments, the 

rotation speed of the stirrer was set at 16.7 s-1 ensuring high stability of mass transport towards 

and from the substrate electrode.  

 



 

 

 
45 

 

  

 

Figure 4.2.2: Chronoamperometric recordings for the oxidation of FcMeOH at a Pt disk 

electrode (2 mm diameter) at different rotation speeds of the stirrer. (a) without stirring, (b) 8.3 

s-1, (c) 16.7 s-1, (d) 25 s-1
, (e) 33.3 s-1. The measurements were carried out using a solution 

containing 1.5 mM FcMeOH and 0.2 M KNO3. The electrode potential was set at 0.45 V. 

Copyright © 2017 American Chemical Society. 

 

Figure 4.2.3 shows results of hydrodynamic SECM experiments for the characterization of the 

diffusion layer in the vicinity of a 2 mm Pt disk electrode. The measurements were done in the 

substrate generation/tip collection (SG/TC) as well as in the competition mode. In the former 

one the concentration profile of the oxidized species (FcMeOH+) can be studied while the latter 

one reflects the concentration change of FcMeOH. Interestingly, for measurements in the 

competition mode for tip-to-substrate distances larger than the diffusion layer thickness there 

was still a slight current increase measured at the UME for increasing distances from the 

substrate electrode in the case of the rather large UME probes (20 µm and 9 µm diameter). The 

steady-state current of UMEs in this size region shows still some dependence on changing 

convective conditions. In contrast, an UME probe with sub-µm diameter exhibits a nearly 

convection-independent current response [44]. Consequently, the probe current in the 

competition mode measured with the 0.6 µm UME is nearly constant for tip-to-substrate 

distances larger than 100 µm and independent of the rotation speed of the stirrer. In addition, 

deviations from a linear concentration gradient of FcMeOH due to competition with the 
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substrate electrode are just seen at closer tip-to-substrate distances in the case of the 9 µm and 

20 µm UME probes. Deviations from a linear concentration gradient in close vicinity to the 

substrate electrode surface can also be attributed to the physical presence of the probe tip 

influencing the diffusion field of the substrate electrode. This would explain why the 0.6 µm 

electrode shows also some deviation from a linear concentration gradient without being affected 

by competition effects.  

 

 

Figure 4.2.3: Study of the diffusion layer in the vicinity of a 2 mm Pt disk electrode by 

hydrodynamic SECM using UME probes with different diameters (20 µm, 9 µm and 0.6 µm) 

applying varying stirrer rotation speeds (dotted line, 8.3 s-1; dashed line, 12.5 s-1; solid line, 16.7 

s-1). The probe potentials in SG/TC mode and competition mode were 0 V and 0.45 V, 

respectively. The substrate electrode potential was set at 0.45 V. The measurements were 

carried out using a solution containing 1.5 mM FcMeOH and 0.2 M KNO3. Copyright © 2017 

American Chemical Society. 



 

 

 
47 

 

  

It has to be stated that repetitive measurements of the concentration profiles of the mediator and 

its oxidized form, in absence of convection, show a steady growth of the diffusion layer for 

increasing reaction times and rather poor reproducibility. 

In the SG/TC mode (Figure 4.2.3 left) with all probes, a small cathodic offset was measured. 

Upon closer approach to the substrate electrode, the current increased with increasing 

concentration of FcMeOH+ generated at the substrate electrode. In closer proximity to the 

substrate electrode (< 25 µm) deviations from the linear behavior of the measured probe signals 

and a strong dependence on the probe size was seen. For a 20 µm probe, a large increase in the 

UME current at a tip-to-substrate distance of ~ 25 µm was found. This is due to a redox cycling 

effect leading to an enhanced current. The same effect was measured in the case of the 9 µm 

probe at relatively closer distances of ~ 10 µm. For the sub-µm probe (0.6 µm diameter) the 

effect of a redox cycling was not observed as the shortest tip-to-substrate separation was just 

~1 µm. The application of different rotation speeds in both modes illustrated the dependence of 

the thickness of the diffusion layer on the rotation speed. In agreement with the 

chronoamperometric recordings shown in Figure 4.2.2 an increase in rotation speed resulted in 

a reduced diffusion layer thickness. Based on the above results the 0.6 µm UME probe was 

better suited for an undistorted characterization of the diffusion layer in the vicinity of a 2 mm 

Pt disk electrode and was consequently used for a more detailed study. 

 

Determination of the diffusion layer thickness 

A detailed view of the diffusion layer is illustrated in Figure 4.2.4. To calculate the thickness 

of the diffusion layer the recordings of the concentration profiles in both, competition 

(corresponding to FcMeOH) and SG/TG (corresponding to FcMeOH+) modes were used. The 

perpendiculars of the intersection points of the two tangents in the respective plots shown in 

Figure 4.2.4 were used for the determination of the diffusion layer thickness. 
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Figure 4.2.4: Detailed view of the diffusion layer characteristics for a 2 mm Pt disk substrate 

electrode recorded by hydrodynamic SECM using a 0.6 µm UME. The rotation speed of the 

stirrer was 16.7 s-1. Measuring modes: (a) competition mode (EUME = 0.45 V) and (b) SG/TC 

mode (EUME = 0 V). The substrate electrode was set at a potential of 0.45 V, δR and δO represent 

the diffusion layer thicknesses derived from of the concentration profiles of the oxidized 

(FcMeOH+, δO) and reduced (FcMeOH, δR) forms of the mediator, respectively. Cathodic offset 

current was compensated. Other conditions are as in Figure 4.2.3. Copyright © 2017 American 

Chemical Society. 

 

In a region close to the substrate electrode (d < 25 µm) the concentration gradients were 

flattened. This can probably be attributed to the presence of the probe in close vicinity of the 

substrate surface hindering effective mass transport. It should be noted that for the 0.6 µm UME 

probe redox cycling effects would just come into play for tip-to-substrate distances smaller than 

1 µm. It was found that the diffusion layer thickness derived from concentration profiles of 

FcMeOH and FcMeOH+ were in good agreement. For a rotation speed of 16.7 s-1 a mean value 

for the diffusion layer thickness of 67.6 ± 0.7 µm was obtained. The diffusion layer thickness 

can also be calculated using the limiting currents at the substrate electrode according to equation 

(22): 

𝛿 =
𝐷𝑅𝑛𝐹𝐴𝑐0

∗(𝑅)

𝐼𝐷
             (22) 
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where DR is the diffusion coefficient of FcMeOH (R), n the number of transferred electrons, 𝑐0
∗ 

the bulk concentration of R, F the Faraday constant, A the electrode surface area, and ID the 

limiting current. Figure 4.2.5 shows the dependence of the diffusion layer thickness (for various 

ways of determination) on the rotation speed. The calculated errors increased dramatically for 

small and very high rotation speeds (frot < 10 s-1; frot > 25 s-1). This observation can be attributed 

to non-steady-state mass transprot for small rotation speeds and turbulences for high rotation 

speeds, respectively.  

 

Figure 4.2.5: Thickness of the diffusion layer in the vicinity of a 2 mm Pt disk electrode 

(Esubstrate= 0.45 V) studied by hydrodynamic SECM with a 0.6 µm diameter probe applying 

different rotation speeds. (■) Diffusion layer thickness calculated according to equation 1 based 

on chronoamperometric limiting currents (DR = 7.2 ± 0.2 *10-10 m2s-1, A = 3.0 ± 0.2 mm2; error 

bars calculated according to error propagation of ID, DR, A) and (-) its mathematical fit 

(Allometric1 (𝑦 = 𝑎𝑥𝑏)  𝛿 ∝ 𝑓𝑟𝑜𝑡
−0.49). The diffusion layer thicknesses derived from 

hydrodynamic SECM measurements are represented by ● for the SG/TC mode (δO, EUME = 0 

V) and by ▲ for the competition mode (δR, EUME = 0.45 V). Error bars for ● and▲ correspond 

to standard deviations of repeated measurements (N = 3). All measurements were carried out in 

a solution containing 1.5 mM FcMeOH and 0.2 M KNO3. Copyright © 2017 American 

Chemical Society. 

 

The mathematical fit (black line in Figure 4.2.5) of δ as a function of frot based on limiting 

current measurements and calculations using eq. 22 is represented by 𝛿 ∝ 𝑓𝑟𝑜𝑡
−0.49 showing a 
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nearly inversed square root dependence of the diffusion layer thickness on the rotation speed 

within our experimental setup. 

 

Hydrodynamic SECM imaging 

Hydrodynamic SECM enables a reproducible SG/TC imaging at a fixed plane within the 

diffusion layer of a large substrate electrode. This is illustrated in Figure 4.2.6 showing the 

contrast between measurements in quiescent solution and under forced convection. Under the 

former condition it was impossible to generate reproducible results in successive recordings 

due to the instability of the diffusion layer characteristics.  

 

Figure 4.2.6: Successive SECM images in the SG/TC mode (Esubstrate = 0.45 V, EUME = 0 V) 

within the diffusion layer of a 2 mm Pt disk substrate electrode. Left: SECM under quiescent 

conditions. Right: Hydrodynamic SECM applying a constant stirrer rotation speed (frot = 16.7 

s-1). All measurements were done in a fixed plane at a tip-to-substrate distance of ~28 µm using 

a 20 µm probe in a solution containing 1.5 mM FcMeOH and 0.2 M KNO3. Copyright © 2017 

American Chemical Society. 

 

In contrast, hydrodynamic SECM resulted in very well-defined and reproducible SG/TC 

recordings. A uniform current signal of 4.9 ± 0.1 nA was detected at a constant tip-to-substrate 

distance of 28 µm applying a rotation speed of 16.7 s-1. In a second imaging experiment the 2 

mm Pt disk electrode was operated in a potential region of hydrogen evolution in 0.2 M KNO3 

solution (Esubstrate = -1.2 V). The H+/H2 couple was previously been used as mediator system in 

SECM experiments [45–48]. In our experiments the UME probe was set at a potential of -0.1 
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V where hydrogen is oxidized. Hydrodynamic SECM studies at a tip-to-substrate distance of 

14 µm enabled a well-defined imaging of the Pt electrode surface as shown in Figure 4.2.7 (a). 

The same surface region was imaged in quiescent solution after adding FcMeOH (Figure 4.2.7 

(b)).  

 

Figure 4.2.7: SECM images (distance ~14 µm) of a 2 mm Pt disk electrode using a 20 µm UME 

probe. (a) Hydrodynamic SECM image recorded in the SG/TC mode (EUME = -0.1 V, Esubstrate 

= -1.2 V) with a constant stirrer rotation speed of 16.7 s-1. The imaging is based on hydrogen 

evolution at the substrate electrode and hydrogen oxidation at the UME probe, 0.2 M KNO3 
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was used as electrolyte. (b) SECM image in quiescent solution recorded in the positive feedback 

mode (EUME = 0.5 V; substrate at open circuit potential) using 1.5 mM FcMeOH containing 0.2 

M KNO3. Copyright © 2017 American Chemical Society.  

 

Both images reflect some morphological characteristics (scratches) of the Pt electrode surface. 

The contrast of the hydrogen based SG/TC recording under forced convection was clearly better 

than the conventional feedback-based imaging in quiescent solution. In addition, in the case of 

hydrogen-based imaging differences in local electrode activity towards hydrogen evolution 

could be identified. 

4.2.4 Conclusion 

In this work we demonstrated that SECM with forced convection introduced by high-precision 

stirring can be realized. The well-defined convective conditions led to stable diffusion layers in 

the vicinity of a large substrate electrode. Correspondingly, hydrodynamic SECM 

measurements enabled well-defined SG/TC measurements within the diffusion layer region as 

well as measurements in the competition mode. A complete characterization of the diffusion 

layer of a large substrate electrode was possible. Smaller (sub-µm) UME probes were found to 

be better suited for hydrodynamic SECM studies than larger probes (equal to or larger than 10 

µm diameter) in the case of measurements with varying tip-to-substrate distances. The 

advantage of the sub-µm UMEs is the nearly convection independent voltammetric response 

within the hydrodynamic boundary layer near the substrate electrode. However, at constant tip-

to-substrate distances larger probes (10 µm or 20 µm diameter) are also suitable for 

hydrodynamic SECM studies. Well-defined SECM SG/TC imaging at constant distance within 

the diffusion layer region of a large substrate electrode could be demonstrated. Preliminary 

studies based on hydrogen evolution at a 2 mm Pt disk electrode and oxidation of hydrogen at 

the UME probe in neutral solution illustrated that hydrodynamic SECM has a great potential to 

enhance and complement information obtained with conventional SECM modes and paves the 

way for new applications. 
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4.3. Numerical simulation and characterization of the convection 

for hydrodynamic scanning electrochemical microscopy  

4.3.1 Introduction 

In many electrochemical techniques forced convection is used to move the liquid with respect 

to the electrode to generate a convective mass transport of reactants and products. Such methods 

are called hydrodynamic methods and provide an efficiently attained steady state and an 

increased rate of mass transport at the electrode surface. These advantages come at the cost of 

a more difficult construction and theoretical treatment of hydrodynamic systems. The 

theoretical treatment involves solving hydrodynamic problems like the flow velocity profile 

within the electrochemical cell prior to the electrochemical problems [1]. Numerical 

simulations are frequently used to solve electroanalytical problems or to describe and 

characterize velocity profiles especially if only steady-state solutions are desired [2]. 

Furthermore simulations are used in SECM to gain detailed information about experimental 

feedback currents [3–5].  

For the computation with COMSOL Multiphysics of the velocity profile within the 

electrochemical cell of the SECM the Navier-Stokes equations were used [6]. The momentum 

equation reads 

𝜌
𝜕𝑢

𝜕𝑡
+ 𝜌(𝑢 ∙ ∇)𝑢 = ∇ ∙ [−𝑝𝐼 + µ(∇𝑢 + (∇𝑢)𝑇] + 𝐹𝑣. (32) 

In this equation  [kg m-3] is the fluid density, u [m s-1] is the velocity vector, I is the identity 

matrix, µ [Pa s-1] is the dynamic viscosity, t is the time, T the temperature and Fv [N] is the 

volume force vector. The vector operator  can be written as,  

∇= 𝑖
𝜕

𝜕𝑥
+ 𝑗

𝜕

𝜕𝑦
+ 𝑘

𝜕

𝜕𝑧
      (33) 

where i, j, k are the unit vectors along the axis and x, y, z [m] is the distance in a three-

dimensional Cartesian space. The continuity equation is a statement of incompressibility, which 

means that the  is constant within time and space with the velocity vector.  

𝜌∇ ∙ 𝑢 = 0       (34) 

4.3.2 Computational Setup 

Flow solver 

Simulations were carried out with COMSOL Multiphysics 5.2™ with the rotating machinery, 

laminar flow module study for the “Frozen Rotator” with the stationary solver 1 and nonlinear 
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solver. In table 4.3.1 all dimensions of the electrochemical cell and numerical settings for the 

simulation of the velocity profile are given. Simulations were carried out for different rotation 

speeds (frot = 5, 10, 15, 20 s-1). In Fig. 4.3.1 the geometry of the electrochemical cell is presented. 

The model for the simulation of the hydrodynamic environment within the electrochemical cell 

consisted of 105 grid cells and was verified with numerical and experimental methods.  

 

Table 4.3.1: Model dimensions and settings.  

Dimension value / mm 

Hight 6 

Width  24 

Length  38 

Radius of the stirrer  1.5 

Distance (bottom of the cell - stirrer) 1 

Position of the stirrer in (X/Y) 0/0 

Position model basis edge in (X/Y) -7/-10 

Top diameter UME 0.1 

Bottom diameter UME 0.85 

Distance UME - substrate 0.01 

Boundary conditions 

Top wall slip 

All other walls no slip 

Material water (liquid) 

Meshing  

Stirrer, UME and cell bottom normal 

Substrate electrode finer (min. element size: 0.005 mm) 

All other walls coarse 

 

Simulations were carried out using an Acer Aspire V5-573G Laptop with Windows 10 (64-bit), 

Intel® CoreTM i5-4200U 1.6 GHz with Turbo Boos up to 2.6 GHz, NVIDIA® GeForceTM GT 

750M with 4 GB dedicated VRAM, 8 GB DDR3 L Memory and 500 GB HDD. The 

computation time was up to 16 min depending on the applied rotational speed. 
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Figure 4.3.1: Schematic representation of the model for the simulation of the hydrodynamic 

environment during stirring of water within the electrochemical cell. The dimensions are given 

in mm. 

 

Setup for numerical verification model 

A simplified symmetric model of stirred water in a cube as presented in Fig. 4.3.2 was used to 

verify the reliability of the numerical simulation. Near the stirrer, the mean flow velocity of the 

water equals the velocity of the stirrer surface. This enables the comparison of the computed 

results for the mean flow velocity of the liquid with the stirrer velocity. The velocity of the 

surface of the stirrer va can be calculated according eq. 35. 

𝑣𝑎 = 2𝜋𝑎𝑓𝑟𝑜𝑡       (35) 

The applied settings for the simulation are listed in table 4.3.2. A rotational speed of frot = 1 s-1 

was used. 

Table 4.3.2: Model dimensions and setting for simplified model.  

Dimension value / mm 

Height/width/length 10 

Radius of the stirrer  1.5 

Distance (bottom of the cell - stirrer) 1 

Position of the stirrer in (X/Y) 0/0 

Position model basis edge in (X/Y) -5/-5 

Boundary conditions 

top wall slip 

all other walls no slip 

Material water (liquid) 

Meshing coarser (19288 grid cells) 
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Figure 4.3.2: Schematic representation of the simplified model for the numerical verification. 

The dimensions are given in mm. 

 

Setup for experimental verification model 

Principle 

As reported in [7], the current at a 25 µm UME is inflected by the local mean velocity of the 

stirred mediator solution. The higher the mean velocity the higher was the current. To verify 

the numerical result for the mean velocity profile in water an electrochemical experiment was 

performed. The current of a 25 µm UME approaching the substrate electrode in the presence of 

applied forced convection was recorded and compared to the mean velocity profile extracted 

from the simulation applying the same rotational speed. Since during the approach, the UME 

traverse the entire liquid phase vertically, the obtained current profile reflects the mean velocity 

profile.  

 

Instrumentation and Chemicals  

For all electrochemical experiments a commercial SECM system CHI 920C (CH Instruments, 

Austin, USA) with an electrochemical cell made of PTFE was used. The high-precision stirring 

device and its integration was carried out as reported [7]. For SECM experiments an aqueous 

solution of 1.5 mM ferrocene methanol (FcMeOH, 99 %, ABCR, Karlsruhe, Germany) and 0.2 

M KNO3 (Merck KGaA, Darmstadt, Germany) was used as mediator solution. Solutions were 
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prepared with ultrapure water with a resistivity higher than 18 MΩ cm (membraPure, 

Bodenheim, Germany). For measurements a three-electrode setup with an Ag/AgCl reference 

electrode with 3 M KCl and a Pt counter electrode was used. The potential applied at the UME 

was 0.3 V. 

 

Measurement 

Prior to the approach, the UME was placed above the center of the substrate electrode and 

retracted outside of the mediator solution. The PAC was recorded with constant approach speed 

of 100 µm s-1 and forced convection with a stirrer rotation speed of frot = 15 s-1 was applied. The 

stirrer rotation speed was kept the same for both the experimental and the numerical approaches. 

 

4.3.3 Results and discussion 

Numerical verification of the model 

Figure 4.3.3 shows the results of the simulation of stirred water in a cube. The mean velocity 

around the stirrer shaft showed a uniform acceleration of the water. The highest flow velocity 

from the water, extracted from the simulation (v = 9.425 mm s-1), equaled the surface velocity 

of the stirrer at the rotation speed of frot = 1 s-1. The inset shows that the flow velocity profile of 

the water at the end of stirrer (dashed line along y-axis) equals the calculated velocity of the 

stirrer surface. The arrows in the image on the left side represents streamlines. The direction of 

the arrow indicates the direction of the stream and the thickness and length the mean velocity. 

It is shown that the velocity distribution in the water is radial near the stirrer and becomes more 

cubic like at the boundaries of the cube. These results enhanced the reliability of the numerical 

simulation. 
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Figure 4.3.3: Numerical simulation of the convection within a cube. Contour plot of the mean 

flow velocity profile of water stirred at frot = 1 s-1 with a cylindrical stirrer (3 mm diameter), 

left: side view, right: top view. The arrows indicate the streamlines. Inset: comparison of the 

computed mean velocity along y-axis (dashed line) extracted from simulation with the angular 

velocity of the stirrer. The dimensions are in mm.  

 

Experimental verification of the model 

The experimental verification of the hydrodynamic simulation model was achieved by 

comparison of the recorded current of a 25 µm UME during approach towards the substrate 

electrode with the mean flow velocity profile extracted from the simulation. The plot presented 

in Fig. 4.3.4 shows a good correlation of the measured current with the mean velocity of the 

liquid extracted from simulations. The non-linear relation of the current and the mean flow 

velocity prevented quantitative measurements of the local velocity. However, the qualitative 

agreement showed the reliability of the computed simulations. 
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Figure 4.3.4: Comparison of the mean flow velocity profile above the substrate electrode of 

water stirred at frot = 15 s-1 (red line) extracted from simulation with the current recorded at a 

25 µm UME approaching the substrate electrode (black squares). Adapted from [8]. 

 

Hydrodynamic environment near the substrate electrode 

The numerical simulation of the convective situation within the electrochemical cell was 

performed neglecting the UME. The results presented in Fig. 4.3.5(a) show a uniform mean 

velocity of the water at different heights above the substrate electrode. The flow of the water is 

directed towards the stirrer. The application of different rotation speeds affected the mean 

velocity near the substrate electrode dramatically as shown in Fig. 4.3.5(b). A higher rotational 

speed resulted in an increased convection above the substrate. Furthermore, the presented data 

shows that within the working distance of SECM measurements, relatively low mean flow 

velocities were present. Since SECM experiments were usually performed near the substrate 

electrode the assumption of an even flow of the water causing the formation of steady-state 

diffusion layers in SG/TC mode and the control of their thickness in hydrodynamic SECM 

experiments is supported by these simulations.  
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Figure 4.3.5: Numerical simulation of the convection within the electrochemical cell. (a) 

Contour plots of the mean flow velocity of water stirred at frot = 15 s-1 at a distance of 50 µm 

(left) and 250 µm (right) above the bottom of the cell. The arrows indicate the streamlines. (b) 

Magnitude of the flow velocity above the center of the substrate electrode for different stirrer 

rotation speeds ranging from 5 rpm to 20 rpm. Adapted from [7]. Copyright © 2017 American 

Chemical Society. 

 

The next step was to integrate the UME into the model to study the effects caused by its 

presence. The movement of the UME during a scan across the substrate is not implemented. 

The simulation assumed a fixed UME. As shown in Fig. 4.3.6 at a height of 1 mm above the 

substrate, the UME affected the flow within the electrochemical cell. The zoomed contour plot 

represents the situation at a typical tip-to-substrate distance of 20 µm. The simulation showed 
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that the UME caused a local disturbance of the velocity profile. Directly below the UME (0.1 

mm diameter) only a slow movement of the water occurred. Before and after the tip of the 

UME, in respect to the stirrer, the mean velocity of the liquid was decreased. The black arrows 

represent streamlines of the flow. The UME caused distortions in X and Y direction, but the 

arrows indicated that only negligible distortion of the laminar flow in Z direction. The indicated 

scan direction illustrates that during the SECM imaging process the UME moves inside a region 

with a higher velocity this shows that SECM imaging within a steady-state diffusion layer 

delivers reliable results.  

 

 

Figure 4.3.6: Numerical simulation of the convection within the electrochemical cell. Contour 

plots of the magnitude of the mean flow velocity of water stirred at frot = 15 s-1 at different 

distances. The zoomed contour plot (right) shows the mean flow velocity above the center of 

the substrate electrode at a tip-to-substrate distance of 20 µm with an UME present in the water. 

The arrows indicate the streamlines. 

 

4.3.4 Conclusion  

The numerical and experimental verification proved the reliability of the simulation. The 

simulations showed a uniform convection near the substrate electrode. This supports the 

assumption of steady-state diffusion layers controlled by the rotational speed of the stirrer 

during SECM experiments. Further simulations showed negligible effects on the laminar flow 

caused by the presence of the UME. The application of UMEs with thinner insulation could 

help reducing the effects of its presence. Furthermore, an extension of the simulation to other 
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cell and substrate geometries as well as the incorporation of electrochemistry into the simulation 

can provide interesting and valuable information for future experiments applying the 

hydrodynamic mode for SECM. 
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Abstract 

Hydrodynamic scanning electrochemical microscopy (SECM) was applied for the 

characterization of Pt and boron-doped diamond (BDD) macroelectrodes operated in a potential 

region producing reactive oxygen species (ROS) during oxygen evolution reaction (OER). 

Forced convection introduced by high-precision stirring enabled the formation of a stable 

diffusion layer of electrochemically produced species and tip-substrate voltammetry was used 

for the detection of different ROS species produced during OER at BDD. Hydrodynamic SECM 

imaging in substrate generation/tip collection mode revealed local differences in the production 

of the ROS species across the BDD electrode surface. 
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4.4.1 Introduction 

Reactive oxygen species (ROS), such as hydroxyl radical (·OH), hydrogen peroxide (H2O2) and 

superoxide (O2
–
), are of immense scientific interest because of their oxidative power and their 

omnipresence in living cells. In living aerobic organism, ROS are generated as byproducts of 

the oxygen metabolism [1] and are involved in many reaction pathways throughout the cell life, 

starting from proliferation and differentiation [2] to self-protection [3] and signaling [4,5] until 

apoptosis [6]. For the artificial production of ROS, many methods are known [7]. One 

prominent and frequently used method to produce large amounts of free radicals is the Fenton 

[8] or the more advanced Fenton-like reaction. Here, free ·OH is generated due to the catalytic 

decay of H2O2 by transition metals ions [9]. The H2O2 decay can be accelerated by UV radiation 

which is then called photo-Fenton reaction [10]. However, for some applications like 

wastewater treatment or the study of degradation mechanism of organic compounds, the use of 

chemical reagents or catalysts has some disadvantages [11]. Therefore, electrochemical 

approaches to produce ROS are intensively discussed in the literature [11–16] for wastewater 

treatment. It is well known that during water oxidation, short-lived intermediates and strong 

oxidants like ·OH, ·HO2, H2O2 and O3 are produced. Many side, cross, and extermination 

reactions with high reaction rates (e.g. k(·OH + ·OH) = 5.5·109 L mol-1 s-1 [17], k(·OH + ·HO2) 

= 6.6·109 L mol-1 s-1 [17], k(·HO2 + ·HO2) = 5.5·105 L mol-1 s-1 [18]) are reported to be involved 

in further reaction steps so that H2O2, O2 and O3 are the relatively stable products of water 

oxidation.  

According to previous reports, the electrode materials and their capability for ROS production 

can be classified into two types [11]. At active electrode materials like Pt, the surface atoms 

continually cycle the oxidation states during the reaction. Active materials are less efficient in 

terms of ·OH production [19]. Composed with the natural characteristics of diamond, such as 

high stability, hardness and an inert surface, boron-doped diamond (BDD) electrodes are an 

example of an inactive electrode material exhibiting attractive electrochemical properties [20]. 

The wide potential window in aqueous solution is important for many electrochemical studies 

and allows for their application in electrochemical advanced oxidation processes (EAOP) [21]. 

The surface atoms of inactive materials do not change their oxidation state during the 

electrochemical reaction. This means that the ·OH is physically adsorbed at the surface, 

resulting in a high overpotential for the oxygen evolution reaction (OER) associated with a 

large amount of free ·OH [22]. Studies showed that BDD [23–28] is a complex electrode 
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material with varying properties like defects, impurities and conductivity affecting its 

electrochemical behavior. Recently, it was proved that especially the boron dopant level is very 

important and can directly be correlated with the electrochemical activity of the BDD [29,30]. 

In many studies regarding the effectivity of ROS generation during anodic oxidation at different 

electrode materials, the detection was performed indirectly by measuring the degradation of 

organic compounds [15,31,32] often with aromatic structural elements like dyes, 

pharmaceuticals, herbicides, pesticides and even DNA. The different and complex degradation 

mechanisms are a difficulty for the determination of the produced ROS. Spin trapping [33], 

however, is a common technique for direct detection of produced radical species. The direct 

detection of ROS can also be performed with rotating ring disc electrodes (RRDE) [34], where 

the reactive species are generated at the disk electrode and detected directly at the ring electrode. 

In all these approaches, the results provide an overview of the capability for radical production 

of the whole electrode area. Local differences in electrode reactions at different electrode 

structures or compositions are neglected.  

Since its introduction by Bard and coworkers in 1989 [35], scanning electrochemical 

microscopy (SECM) evolved to a powerful tool to image surface topography and to localize 

differences in the reactivity [36]. The occurrence of ·OH during oxygen reduction reaction 

(ORR) or H2O2 reduction at Pt ultramicroelectrodes was shown by Noël et al. [37] and as one 

consequence a dissolution of Pt was proved [38]. Zhao et al. [39] localized an increased ROS 

production over the cell core structure in living RAW264.7 cells. Salamifar et al. [37] used a 

combined scanning electrochemical and fluorescence microscope for detection of reactive 

oxygen species in prostate cancer cells and Amatore´s workgroup [40] showed the release of 

reactive oxygen from stimulated macrophage. The interrogation mode [41] was widely used to 

study and quantify surface adsorbed ·OH by electrochemical titration of the radical after its 

formation at a micro-sized substrate [42,43]. The indirect detection of ·OH during OER at a 

BDD microarray was done by Khamis et al. [44] via reduction of the intermediate 

peroxydisulfate. 

In addition to the classical feedback mode [45], the generation/collection mode [46] is a 

standard mode for the characterization of (electrode) surfaces. In the substrate generation/tip 

collection (SG/TC) mode, a substrate-generated species is detected at the SECM probe at a 

diffusion-limited rate. Analogous to the RRDE, the tip-substrate voltammetry (TSV) [47,48] is 

an approach with a local resolution using SG/TC mode. Here, the probe is positioned few 
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micrometers above the studied substrate. The potential applied at the substrate is swept while 

the potential at the probe is kept constant for an amperometric detection of the electrochemically 

produced species arising from the substrate. In quiescent solution, the substrate electrode 

current is transient due to the growth of the diffusion layer thickness with time. As previously 

shown, the introduction of forced convection by high-precision stirring enabled the generation 

and characterization of steady-state diffusion layers above a 2 mm Pt disk electrode [49]. With 

this experimental approach, the localization of an increased hydrogen production at surface 

defects of a Pt electrode was possible. The hydrodynamic SECM imaging revealed a more 

detailed view concerning the surface defects compared to imaging in conventional feedback 

mode in quiescent solution. 

In this work, hydrodynamic SECM as a method for the study of the electrochemical production 

of ROS associated with the OER is presented. This approach enables a local and direct detection 

of ROS. The effect of forced convection for the characterization of production and detection 

potentials for ROS is presented. The exploitation of hydrodynamic effects enables the imaging 

of ROS production at macroscopic substrate electrodes using the SG/TC mode. The applied 

techniques were used to study and compare Pt and BDD electrodes concerning their capability 

to produce ROS. 

4.4.2 Experimental 

Chemicals 

For feedback mode imaging and probe positioning, an aqueous solution of 1.5 mM ferrocene 

methanol (FcMeOH, 99 %, ABCR, Karlsruhe, Germany) and 0.2 M KNO3 (Merck KGaA, 

Darmstadt, Germany) was used as mediator solution. In studies involving oxygen and ROS 

production, a solution of 0.2 M perchloric acid (HClO4, 70 %, Merck KGaA, Darmstadt, 

Germany) served as an electrolyte. All chemicals were of analytical reagent grade. The 

solutions were prepared with ultrapure water with a resistivity higher than 18 MΩ cm 

(membraPure, Bodenheim, Germany). 

 

Instrumentation  

All electrochemical experiments were conducted with the setup shown in Fig. 4.4.1 using a 

commercial SECM system CHI 920C (CH Instruments, Austin, USA) with an electrochemical 

cell made of PTFE. The high-precision stirring device and its integration was carried out as 
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mentioned earlier [49]. Briefly, the stirring system consisted of an electrical motor 

(2250S012BX4 CSD 3830, BL- DC- Motor with integrated motion controller, Dr. Fritz 

Faulhaber GmbH & Co. KG, Schönaich, Germany) and a homemade rotating cylinder (PEEK; 

length: 9.7 cm, 3 mm diameter, beveled at the end with 45°). A stirrer guide made of 

borosilicate glass tube (length: 2 cm, ID: 3 mm, OD: 6 mm) completed the stirring system. For 

the alignment of the stirrer, a 3D-printed sliding cap was used and removed afterwards. A 2 

mm diameter Pt disk electrode (CH Instruments, Austin, USA) and a 3 mm diameter BDD disk 

(Windsor Scientific, Windsor, Great Britain) insulated by heat shrinking (cavity diameter for 

BDD: 2.9 mm, outer diameter: 7 mm, length: 27 mm) into a PTFE cylinder were used as 

substrates. An Ag/AgCl/ 3M KCl electrode served as reference and a Pt-wire as counter 

electrode. To prevent interferences from chloride oxidation in TSV experiments, the reference 

electrode was immersed in a separate glass vial with a fused silica capillary (length: approx. 15 

cm, ID: 150 µm, OD: 360 µm) acting as a salt bridge. The vial was filled with 0.2 M HClO4. 

All experimental potentials refer to the used reference electrode. Prior to all experiments, the 

Pt substrate electrode was polished with 0.3 µm alumina suspension on a polishing cloth 

(TexMed, Buehler, Lake Bluff, USA) and the BDD electrode was cleaned by cycling the 

electrode potential 10 times between -1.5 and 2.5 V in 1 M H2SO4. Ultramicroelectrodes  

(UME) with electrode diameters of 12.5 and 25 µm and outer diameters of about 50 µm were 

fabricated following the procedure described elsewhere [50]. For SECM imaging, the tip-to-

substrate distance was calculated from positive feedback approaches with the equation 

published by Shao et al. [51]. The atomic force microscopic (AFM) image was obtained with 

Nanosurf easyScan 2 (Nanoscience Instruments, Phoenix, USA) and PPP-NCLR cantilevers 

(Nanoscience Instruments, Phoenix, USA) in the tapping mode. Scanning electron microscopy 

(SEM) was performed with Evo Ma 10 SEM (Carl Zeiss AG, Oberkochen, Germany) with a 

secondary electron detector at a working distance of 7.5 mm. The acceleration voltage was 25 

kV. 
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Figure 4.4.1: Schematic representation of the experimental setup. The probe (a), substrate (b) 

and counter electrode (c) were directly immersed in the solution of the SECM cell. The 

reference electrode (d) was connected via a fused silica capillary serving as a salt bridge (e). 

The stirrer (f) was aligned with a mask (g) and guided by a glass tube (h). Copyright © 2018 

Elsevier Ltd. 

 

SECM characterization of the BDD electrode  

The BDD electrode was characterized by SECM in feedback mode. The image was recorded in 

quiescent solution with 1.5 mM FcMeOH mediator solution and a 25 µm diameter probe (EUME 

= 0.5 V) at a tip-to-substrate distance of d ≈ 15 µm and a scan speed of 125 µm s-1
 (pixel size: 

5 × 5 µm, image resolution: 100 × 100 pixels). 

 

Tip-substrate voltammetry  

Prior to experiments involving oxygen and ROS production, the probe was approached to a tip-

to-substrate distance of d ≈ 11 µm using FcMeOH mediator solution. Following the approach, 

the mediator solution was exchanged with 6 mL of 0.2 M HClO4 after a thorough rinsing of the 

electrochemical cell with water. For TSV experiments, UMEs with an electrode diameter of 25 

µm were used and a quiet time of 5 s was applied. Forced convection was introduced by stirring 

with a rotation speed of frot = 25 s-1. To suppress electrical interferences by the stirrer, internal 
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electrical filters of the instrument were adjusted (signal filter: 1.5 Hz, 2nd I/E filter: 3.2 Hz, 2nd 

signal filter: 1.5 Hz). For the evaluation of the detection potentials for oxygen and ROS, the 

substrate electrode was used in the amperometric mode with different fixed potentials (Esubstrate 

= 1.6 V, 1.8 V and 2 V). Simultaneously, the potential at the UME was swept between 0 V and 

1.6 V with a scan rate of 100 mV s-1. To find suitable potentials for the amperometric ROS 

generation for the subsequent imaging experiments, the potential at the substrate electrode was 

swept from 0 V to 2 V for the Pt and from 0 V to 3.2 V for the BDD electrode with a scan rate 

of 100 mV s-1. The amperometric response at the UME was recorded with EUME = 0.3 V for 

oxygen and EUME = 1 V for ROS detection.  

 

Imaging of ROS production 

For the localization of differences in the ROS production at the BDD surface, several SECM 

images in feedback and hydrodynamic SG/TC mode were recorded within an area of 300 x 300 

µm at the center of a 3 mm BDD disk electrode. Prior to the SECM experiments, the BDD 

substrate electrode was levelled within a tilt of ≤ 1 µm per 1 mm2 substrate area. All images 

were recorded with a 12.5 µm diameter UME at a tip-to-substrate distance of ≈ 3 µm. Imaging 

in feedback mode was done in quiescent solution with 1.5 mM FcMeOH solution (EUME = 0.5 

V, pixel size: 2 × 2 µm, image resolution: 150 × 150 pixels, scan speed: 50 µm s-1). Afterwards, 

the mediator solution was exchanged as described in the above section. Imaging in the 

hydrodynamic SG/TC mode (frot = 25 s-1) during OER was performed with fixed substrate 

potentials of Esubstrate = 2.8 V and 3.4 V. The detection at the UME was performed with a fixed 

potential of EUME = 1 V and the scan speed was 100 µm s-1 (pixel size: 4 × 4 µm, image 

resolution: 75 × 75 pixels). 

4.4.3 Results and discussion 

ROS formation at Pt  

Investigation of O2 and ROS detection potentials  

To investigate the potentials suitable to differentiate between simultaneously produced oxygen 

and ROS, cyclic voltammetry (CV) at an UME fixed within the diffusion layer of 

electrochemically produced oxygen was performed. A 2 mm Pt disk electrode was used as 

substrate electrode. To prevent side reactions of highly reactive ROS with electrolyte species, 

HClO4 was used as an electrolyte. Forced convection was used to generate a steady-state 
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diffusion layer in SG/TC experiments as shown previously by our group [46]. The lower part 

of Fig. 4.4.2 shows the currents measured at the Pt substrate electrode and the upper part shows 

the corresponding current measured at the UME. As shown by the amperometric current at the 

substrate electrode, the amount of produced oxygen increased from Esubstrate = 1.6 V to 2 V. For 

an increased oxygen evolution at the substrate electrode, a shift of the oxygen reduction 

potential at the UME towards higher potentials was observed. This showed the effect of a local 

pH decrease near the substrate electrode with increasing oxygen evolution. A steady-state mass 

transport for oxygen was recorded at potentials below EUME = 0.3 V in all three cases. This 

potential was used for the detection of oxygen in further experiments. The observed potential 

shift for increased oxygen evolution made a potential higher than EUME = 0.9 V necessary to 

ensure the differentiation between oxygen and ROS. Therefore, a potential of EUME = 1 V was 

selected for ROS detection. 

 

Figure 4.4.2: Amperometric currents at a 2 mm Pt substrate electrode (below) with 

corresponding CVs (Estart = 0.2 V, Evertex = 1.6 V, scan rate: 100 mV s-1) at a 25 µm UME in 

0.2 M HClO4 with forced convection (frot = 25 s-1). The tip-to-substrate distance was ≈ 11 µm. 

Copyright © 2018 Elsevier Ltd. 
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Investigation of hydrodynamic effects on tip-substrate voltammetry  

For the investigation of hydrodynamic effects on the amperometric signal at the UME, the 

electrode connections for the measurements were switched. CV was performed at the substrate 

electrode and amperometric detection at the UME fixed near the substrate. This setup in 

combination with forced convection resulted in an experiment analogous to rotating ring disc 

electrodes (RRDE). The characterization of hydrodynamic effects was done by UME detection 

of oxygen produced during CV at the substrate electrode. The lower part of Fig. 4.4.3 shows 

CVs at the substrate electrode in quiescent solution and with forced convection and the 

corresponding signals at the UME are shown in the upper part. 

  

Figure 4.4.3: TSV during a potential sweep at a 2 mm Pt disk electrode (Estart = 0 V, Evertex =2 

V, scan rate: 100 mV s-1) in 0.2 M HClO4. Red: forced convection (frot = 25 s-1), black: quiescent 

solution. The potential of the UME was fixed at EUME = 0.3 V for oxygen detection. The tip-to-

substrate distance was ≈ 11 µm. Copyright © 2018 Elsevier Ltd. 

 

A small current was measured during the forward scan at the substrate electrode at potentials 

between Esubstrate = 0.6 V and 1.5 V (inset). The oxygen gas formation occurred independently 
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from the convective environment at potentials higher than Esubstrate > 1.5 V. The corresponding 

signal at the UME showed a small current which increased fast into overload during strong 

oxygen evolution. Forced convection generated a constant current between Esubstrate = 0.6 V and 

1.5 V. During the backward scan, a higher cathodic current was measured at the substrate 

electrode in quiescent solution (inset). The current at the UME showed a decreasing signal for 

oxygen in quiescent solution. In contrast, a relatively fast decay of the oxygen signal followed 

by a constant current showed the effect of forced convection. With forced convection, a stable 

and uniform mass transport of oxygen towards the UME was achieved. In both cases, oxygen 

was detected until the competing reduction at the substrate electrode started.  

 

ROS detection at a Pt disk electrode  

Since highly reactive oxygen radical species decay very fast in solution producing H2O2, the 

capability of Pt to produce H2O2 during OER was studied. In the upper part of Fig. 4.4.4, the 

amperometric signal at the UME during CV at the substrate is shown.  

 

Figure 4.4.4: TSV during a potential sweep at a 2 mm Pt disk electrode (Estart = 0 V, Evertex = 2 

V, scan rate: 100 mV s-1) in 0.2 M HClO4 (red: forced convection (frot = 25 s-1), black: quiescent 

solution). The potential of the UME was fixed at EUME = 1 V for ROS detection. The tip-to-

substrate distance was ≈ 11 µm. Copyright © 2018 Elsevier Ltd. 
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With an applied detection potential of EUME = 1 V, an anodic current, which was attributed to 

H2O2 oxidation was detected. A CV of 5 mM H2O2 in HClO4 showed the oxidation of H2O2 at 

this potential. At potentials higher than Esubstrate = 1.6 V, no difference between the 

measurements in quiescent solution and with forced convection was visible. In the region of 

oxygen reduction at the substrate electrode, an anodic signal occurred during the backward 

scan. H2O2 production alongside the oxygen reduction is consistent with reports in the literature 

[34]. The signal height showed a dependence on the convective situation. Stirring enhanced the 

transport processes and a smaller signal was measured. 

 

ROS formation at BDD 

Characterization of the BDD electrode 

To characterize the BDD electrode, several imaging techniques were used. SECM imaging of 

BDD disk electrode (Fig. 4.4.5A) was done in constant height feedback mode. The minor 

differences in the feedback current across the surface could not be correlated to surface 

morphology as the subsequent AFM image (Fig. 4.4.5B) shows a flat topology nearly ideal for 

feedback imaging in constant height mode. The randomly distributed surface attachments of a 

few micrometers in length and width and up to 160 nm in height visible in the AFM image are 

relatively small and are thus invisible to the SECM probe of 25 µm diameter. The SEM image 

(Fig. 4.4.5C) of the BDD revealed a heterogenic boron distribution across the surface 

represented as darker (more conductive) and brighter (less conductive) areas of a few tenths of 

micrometers in size.  

 

Figure 4.4.5: Surface characterization of the 3 mm BDD disk electrode. (A) SECM image of 

the BDD electrode in feedback mode in quiescent solution with a Pt probe of 25 µm diameter 

and a scan speed of 125 µm s-1 (EUME = 0.5 V, 1.5 mM FcMeOH in 0.2 M KNO3, pixel size: 5 

× 5 µm, image resolution: 100 × 100 pixels), (B) AFM image and (C) SEM image of the BDD 

electrode. Copyright © 2018 Elsevier Ltd. 
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A similar observation was made earlier by Neufeld et al. [24]. More recent reports clearly 

correlated the spatial resolution of electrochemical activity differences with the boron doping 

level of the electrode [29,30]. However, imaging of exactly the same area segment for a direct 

comparison of SECM, AFM, and SEM images is a challenging task which was not tackled in 

the present work. The use of dual AFM/SECM techniques would be an attractive approach for 

related studies [25]. 

 

ROS detection at BDD disk electrode 

As an example of an inactive electrode material, a 3 mm BDD disk electrode was used. For the 

characterization of the OER and the simultaneous ROS production at BDD, similar experiments 

as with Pt were performed. As expected, Fig. 4.4.6 shows a wider potential range for BDD 

compared to Pt. The fast combination of ·OH and the kinetically limited H2O2 oxidation at BDD 

[52] led to the production of H2O2 detected as anodic current at the UME during the OER. 

 

Figure 4.4.6: TSV during a potential sweep at a 3 mm BDD disk electrode (Estart = 0 V, Evertex 

= 3.2 V, scan rate: 100 mV s-1) in 0.2 M HClO4 (red: forced convection (frot = 25 s-1), black: 

quiescent solution). The potential of the UME was fixed at EUME = 1 V for ROS detection. The 

tip-to-substrate distance was ≈ 11 µm. Copyright © 2018 Elsevier Ltd. 
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The H2O2 signal decreased with increasing substrate potential and the followed change from 

anodic to cathodic current showed the production of another very strong oxidizing species that 

could be reduced at the UME. With applied forced convection, the species were detected with 

higher current. O3 is known to be produced at high overpotentials at BDD electrodes [21,53]. 

Some studies [54,55] reported the reduction of O3 at similar potentials as applied in this work. 

Nevertheless, the occurrence of O3 could not be proved. 

 

Imaging of ROS production at BDD disk electrode 

To investigate the spatial resolution of the ROS production at BDD, different SECM imaging 

experiments of a 300 x 300 µm area were performed. All enlargements in Fig. 4.4.7 show the 

same 150 x 150 µm area. The surface was characterized concerning the conductivity using the 

feedback mode (Fig. 4.4.7A). The evaluation of the H2O2 production at a fixed substrate 

potential of Esubstrate = 2.8 V (Fig. 4.4.7B) showed significant differences in the surface activity. 

The correlation with the image of the same area recorded in feedback mode revealed that at 

domains with small feedback currents considerable amounts of H2O2 were produced. Imaging 

with a higher substrate potential (Esubstrate = 3.4 V, Fig. 4.4.7C) showed the production of the 

reducible ROS species predominantly at domains with decreased ·OH evolution. This 

observation shows that both species are produced simultaneously, but at different areas of the 

electrode. The size of these areas varied from 100 to several 1000 µm2 and was in the same 

range as the darker and brighter domains imaged with SEM. Thus, as pointed out by Patten et 

al. [29], the ·OH formation can be attributed to less conductive areas with correspondingly 

lower boron content. 
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Figure 4.4.7: SECM false-color images of a 300 x 300 µm area of a 3 mm BDD disk electrode. 

A 12.5 µm diameter UME at a tip-to-substrate distance of 3 µm was used. All enlargements 

show the same area. (A) Feedback mode in quiescent solution with 1.5 mM FcMeOH in 0.2 M 

KNO3 (EUME = 0.5 V) and a scan speed of 50 µm s-1 (pixel size: 2 × 2 µm, image resolution: 

150 × 150 pixels). (B) and (C) SECM images in hydrodynamic SG/TC mode (frot = 25 s-1) 

during amperometric OER in 0.2 M HClO4 with Esubstrate = 2.8 V (B) and Esubstrate = 3.4 V (C). 

UME potential was fixed at EUME = 1 V and the scan speed was 100 µm s-1 (pixel size: 4 × 4 

µm, image resolution: 75 × 75 pixels). Anodic currents are illustrated in green and cathodic 

currents in red. Copyright © 2018 Elsevier Ltd. 
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4.4.4 Conclusions  

The work presented here showed that the combination of SECM with forced convection 

increases the capability and the applicability of the SECM for material characterization and 

surface analysis during gas evolution at the investigated surface. Tip-substrate voltammetry in 

combination with forced convection gained similar information as with RRDE. The 

exploitation of the hydrodynamic effect forming a steady-state diffusion layer resulted in 

additional knowledge of the special localization of in situ produced electrochemically active 

species. The characterization of ROS production at BDD showed the production of H2O2 and a 

reducible ROS species. Imaging in hydrodynamic SG/TC mode revealed a local production of 

both species simultaneously at different domains. The possibility to localize and image reactive 

species at macroscopic electrodes is a great advantage of hydrodynamic SECM and increases 

the accessible analytical information for a better understanding of electrochemical processes. 

The methods described in this work can pave the way for extended studies of important OER 

catalysts used in various applications. 
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Abstract 

Scanning electrochemical microscopy (SECM) in constant-height mode was used to image 

individual gold nanowires (AuNWs, 2-3 µm long and ~140 nm diameter). High-resolution 

negative and positive feedback current images of individual AuNWs immobilized on glass and 

gold-coated glass slides, respectively were recorded with a Wollaston-based platinum disk 

ultramicroelectrode (UME) of radius 300 nm at 0.3 V probe potential using ferrocene methanol 

as mediator. The negative and positive feedback current responses were dependent on the 

effective recycling of mediator on the unbiased AuNWs.  
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4.5.1 Introduction 

   

Scanning electrochemical microscopy (SECM) is known to be a powerful tool for the 

investigation and imaging of topography and surface reactivity of microstructured substrates 

[1,2]. It is a non-contact scanning probe imaging technique that has evolved from a low 

resolution electrochemical imaging system after its introduction by Bard et al. in 1989, to a high 

resolution topographic imaging technique in recent years [3,4]. Recently, SECM has been used 

for imaging both living and non-living substrates with nanoscale resolution. However, the 

imaging at nanoscale is largely dependent on the size of the probes. Lately, with the 

development of methods for fabrication of sub-micrometer and nanometer sized probes for 

SECM, the high-resolution topographic imaging has frequently been possible. The fabrication 

of SECM probes by pulling annealed Pt wires in capillaries through a laser puller enables the 

fabrication of probes with diameters as small as 50 nm with very small RG values (ratio of glass 

sheath radius and probe electrode radius). Such probes can be used to image living cells and 

non-living substrates with lateral resolutions as high as 100-200 nm [5,6]. However, frequent 

use of such nanoprobes is still limited for many applications because of the difficulty in their 

handling and operation. 

Besides providing topographic details, a very interesting aspect of SECM is the ability to study 

surface reactivity. This feature gives SECM an advantage over other microscopic techniques 

such as atomic force microscopy (AFM), scanning and transmission electron microscopy (SEM 

and TEM) etc. which cannot provide information about the chemical reactivity of the surface. 

Thus, SECM has potential applications in biosensors research to study localized enzymatic 

activity over transducer surfaces independent of transducer itself. It also allows imaging of 

relative positions of active spots of immobilized enzymes. Furthermore, SECM is also 

efficiently used for imaging of enzymatic activity over protein-tagged DNA or protein 

microarrays or chips. Although, SECM has been used as a tool in biosensor studies since long 

[7], most of the works with SECM imaging in biosensing studies were limited to rather large 

enzyme spots with microscale resolution. 

Lately, there has been a tremendous increase in the use of nanomaterials for bioelectrochemical 

applications for developing new nanoscale sensing devices for future biological, medical, and 

electronic applications [8–10]. The reasons for such increase are high surface to volume ratio 

provided by nanomaterials over the transducer surface (that results in higher sensitivity and 

lower detection limit), their fast electron transfer efficiency and their specific electronic and 
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optical properties. Among nanomaterials, nanotubes and nanowires are extensively used 

materials for sensor applications [11–13]. They are also termed as one dimensional (1-D) 

nanostructures because of a high ratio of their length (µm) to their diameter (nm). Gold 

nanowires (AuNWs) are fast gaining ground in sensing applications due to their high chemical 

and thermal stability, biocompatibility and excellent electrical conductivity [14–24]. Their ease 

of self-assembly over thiol modified transducer surfaces provides a stable matrix for 

electrochemical studies and/or for biomolecule assembly via chemical cross-linking. The recent 

trend towards miniaturization of sensing devices encourages the use of single AuNW for 

electrochemical studies [25,26]. Thus, it would be interesting to carry out SECM studies of 

individual AuNW and to utilize its potential to map enzymatic activity distribution over it. 

Some of the recent publications have already established the role of SECM in imaging and 

characterization of the electrochemical activity of individual nanomaterials [27–29]. Unwin and 

coworkers have extensively used scanning electrochemical cell microscopy (SECCM) to study 

individual biased single walled carbon nanotube and its catalytic activity [30,31]. However, 

SECCM is not yet explored for electrochemical studies of unbiased individual nanomaterials. 

Besides, the immobilization and imaging of redox proteins over individual nanomaterial are not 

reported so far. The classical constant height mode of SECM can be reliably used to image 

individual nanomaterials topographically and to study redox (enzymatic) activity over them. 

The distribution and stability of enzymatic activity (after immobilization) over individual 

nanostructure can also be visualized via this technique.  

In this work, we used SECM to image individual AuNWs over glass and gold-coated glass 

slides with high resolution using Wollaston-based Pt nanoprobes. The work was further 

extended by imaging the enzymatic peroxidase activity over individual AuNWs using ferrocene 

methanol as the mediator system. The enzyme horseradish peroxidase (HRP) was used as the 

model enzyme for peroxidase activity imaging as in addition to having an extensive biosensor 

potential, it is a commonly used tagging enzyme (enzyme label) for antibody or ligand 

molecules for molecular recognition or signal amplification in immunoassays, protein 

microarrays and SECM imaging studies [17,23,32–34]. 
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4.5.2. Materials and Methods 

Reagents 

For all the SECM experiments, an aqueous solution of 1.5 mM ferrocene methanol (99 %, 

ABCR, Karlsruhe, Germany) containing 0.25 M KNO3 as supporting electrolyte was used as 

the mediator solution. The reagents (3-mercaptopropyl)triethoxysilane (MPTES), 1,4-

butanedithiol, 11 mercaptoundecanoic acid, N-hydroxysuccinimide (NHS) were from Aldrich, 

Steinheim, Germany. N-(3-Dimethylaminopropyl)-N’-ethylcarbodimide hydrochloride (EDC) 

was obtained from Fluka, Steinheim, Germany. The enzyme horseradish peroxidase (HRP) was 

obtained from Serva GMBH, Germany. All other chemicals were of analytical reagent grade. 

The solutions were prepared in ultrapure water with a resistivity greater than 18 MΩ cm 

(membraPure, Bodenheim, Germany). 

 

Synthesis of gold nanowires and their immobilization on substrates 

Gold nanowires (AuNWs) were synthesized by electrodeposition of gold in a polycarbonate 

membrane template by modification of the procedure described by Mayorga-Martinez et al. 

[24]. Prior to AuNWs synthesis, an ultrathin gold-film was first sputtered on one side of the 0.1 

µm isopore polycarbonate membrane (Merck Millipore) by using a conventional ion sputtering 

method to make the template conductive to be used as the working electrode. The membrane 

was then assembled in a plating cell by using an aluminum foil as contact. An Ag/AgCl 

electrode (CH Instruments, Austin, USA) and a 0.3 mm diameter platinum wire were used as 

reference and counter electrodes, respectively. Gold was electrodeposited at -0.9 V for 60 s 

from a commercial plating solution (AMI DODUCO, Spain). After electroplating, the sputtered 

gold layer was removed mechanically with a 3–4 µm alumina slurry. To release the nanowire 

from the polycarbonate template, the membrane was dissolved by immersing it in methylene 

chloride solution for 10 min. Finally, the solution was centrifuged at 6000 rpm for 2 min to 

pellet the nanowires. The pellet was then washed repeatedly with methylene chloride and 

ethanol with intermittent centrifugation and dissolution. The synthesized AuNWs were then 

inspected by TEM (JEOL Ltd., Japan). 

AuNWs were immobilized on thiol-modified glass and gold-coated glass slides. The 

microscopic glass slide was cleaned overnight in concentrated nitric acid. The cleaned glass 

slide was rinsed with water followed by drying with nitrogen gas and kept at 110 °C in oven 

for 1 h. The oven dried slide was immediately immersed in a 5 % solution of MPTES in 
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anhydrous toluene for 30 min. After rinsing the thiosilane-modified glass slide with toluene and 

acetone several times, it was then dried at 110 °C in oven for 1 h prior to use. The gold-coated 

glass slide (commercial surface plasmon resonance slide with 50 nm thin film of gold) was 

thoroughly cleaned with ethanol and dried with nitrogen gas. A 10 mM ethanolic solution of 

1,4 butanedithiol was drop-coated on the slide and left overnight. The dithiol modified slide 

was rinsed thoroughly with water before use.  

An ethanolic solution of AuNWs was drop-coated on thiol-modified glass and gold-coated glass 

slides and left for ~6 h. The slides with immobilized AuNWs were rinsed thoroughly with water 

prior to SECM imaging to remove any unbound AuNWs. AuNWs were imaged 

electrochemically in constant height mode at 0.3 V probe potential in ferrocene methanol 

mediator solution. 

Covalent-linking of HRP with AuNWs was achieved by partial modification of the procedure 

described by Saxena et al. [35]. Briefly, 0.5 mM freshly prepared ethanolic solution of 11 

mercaptoundecanoic acid was added to AuNWs in an Eppendorf cup and left for 5 h to obtain 

carboxylic group functionalized AuNWs. The solution was then centrifuged at 10,000 ×g for 5 

min to pellet AuNWs. The pellet was then washed with ethanol to remove unbound 11- 

mercaptoundecanoic acid. The carboxyl functionalized AuNWs were then treated with a 

solution of EDC (10 mg ml-1) and NHS (50 mg ml-1) for 10 min to activate the carboxylic group 

on the AuNWs. Freshly prepared HRP solution (10 mg ml-1) in sodium phosphate buffer (SPB, 

50 mM, pH 6) was added to that and kept at 4 °C for 12 h to obtain HRP-linked AuNWs. The 

HRP-linked AuNWs were then immobilized on the thiol modified gold-coated glass slide for 

subsequent feedback and peroxidase activity imaging by SECM. The localized HRP activity on 

AuNWs was imaged in constant height mode by adding 0.3 % H2O2 to the ferrocene methanol 

solution and applying a probe potential of 0 V. The ferrocene methanol solution for activity 

imaging was prepared in SPB. 

  

Electrochemical and AFM instrumentation 

A commercial SECM system CHI 920c (CH Instruments, Austin, USA) was used for all 

experiments. It consisted of a bipotentiostat and a motor control unit that controls both the 

stepper motor and the piezo positioner. A tailor-made electrochemical cell (Teflon) with two 

clamps (PEEK) and four integrated screws (Teflon) for substrate fixation was used. The 

electrochemical cell was bolted on a stainless-steel carrier that was levelled using three 



 

 

 
89 

 

  

micrometer adjustment screws. A Pt electrode was used both as reference and counter 

electrodes throughout the SECM experiments. All the potentials mentioned in this paper refer 

to this quasi-reference electrode. 

AFM imaging of all the AuNWs modified substrates was performed with a commercial system 

Nanosurf easyScan 2 (Nanoscience Instruments, Phoenix, USA) and AFM probes PPP-NCLR 

(Nanoscience Instruments, Phoenix, USA) in the tapping mode. 

4.5.3 Results and discussion 

Feedback Imaging of AuNWs 

The characterization of synthesized AuNWs with TEM showed that the average AuNWs were 

2-3 µm long and ~140 nm in diameter (Fig. 4.5.S1, supporting information). Later, an approach 

for immobilization of AuNWs on a thiosilane-modified glass slide was developed. The 

nanowires immobilized on the glass substrate were stable for frequent SECM scans in mediator 

solution. The AuNWs on glass slides did not show positive feedback current response by 

mediator recycling despite being a conductor. Instead, negative topographic images were 

recorded for individual AuNWs by a 300 nm radius probe within 70-80 % I∞ (Fig. 4.5.1A). 

Figure 4.5.1B shows a representative AFM image of immobilized AuNWs on glass slide. The 

negative feedback image of individual AuNWs immobilized on an insulating glass surface was 

intriguing and the reason could be attributed to their inability to act as efficient bipolar 

substrates (enabling an anodic reaction at some distance from the cathodic mediator 

regeneration at the unbiased AuNWs in the probe vicinity). Normally, when a conducting 

substrate has a smaller area compared to that of the probe, positive feedback is significantly 

limited by the substrate’s ability to act as an efficient bipolar electrode and the substrate could 

get charged with time. However, in one of the recent reports by Oleinick et al. [36] it has been 

shown experimentally that if the substrate extends beyond the area covered by the tip, the 

constraints due to the bipolar function become negligible because the extended parts of the 

conductor may act as an efficient second pole of the bipolar substrate exchanging electrons with 

the bulk solution. In our experiment, the diameter of the AuNW (~140 nm) was significantly 

smaller than the Pt probe diameter (600 nm). However, the relatively extended length of the 

nanowire (2-3 µm) was still not sufficient for effective recycling of the electrons with the bulk 

mediator solution resulting in negative feedback current response. Previously, Amemiya and 

co-workers [27,28] were able to record positive feedback images of lithographically casted gold 
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nanoband (100 nm broad and 50 µm long) and single walled carbon nanotube (∼1.6 nm 

diameter and ∼2 mm long) on insulating surfaces with probes of diameters ∼2 µm and 10 µm, 

respectively. Although, the diameters of probes used to record these images were rather large 

compared to the one used in our studies with AuNWs, the extreme extended lengths of these 

bands and nanowires were sufficient to exchange electrons with the bulk solution and to behave 

as bipolar substrates. Thus, a certain minimum ratio of length of the nanowire to the Pt tip 

diameter was necessary to have an effective second pole, which could exchange electrons with 

the bulk solution and facilitate positive feedback response from the unbiased AuNWs. 

Additionally, a significantly larger RG (between ∼15-30) of the 300 nm radius probe could also 

have had a shielding effect for the flow of bulk mediator solution towards the far ends of 

individual AuNWs below the tip, hindering the exchange of electrons from them. A similar 

effect of RG was observed by Xiong et al. [37] where the positive feedback from an unbiased 

conducting substrate was found to depend on the thickness of the insulating layer surrounding 

the metal disk probe of comparable radius, which hindered mediator diffusion from the bulk 

solution to the substrate. 

 

 

Figure 4.5.1: (A) Negative feedback SECM image of individual AuNWs immobilized on a glass 

slide. The image was recorded with a 300 nm radius Pt probe at a potential of 0.3 V and a scan 

rate of 5 µm s-1 in 1.5 mM ferrocene methanol solution. (B) Representative AFM image of 

AuNWs immobilized on a glass slide. Published by the Royal Society of Chemistry. 
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However, they also showed that the current approach curves changed from negative to positive 

as RG was changed from 50 to 1.1. Although, the length of 1-D nanostructures compared to the 

probe diameters (including RG) is well known to have an effect on the feedback response 

(negative or positive) from the unbiased conducting substrates [27,37], a clear negative 

feedback current image of an individual unbiased conducting nanowire immobilized over an 

insulating substrate has not been reported before. 

To further investigate the above observation, AuNWs were immobilized on glass slide coated 

with thin-film of gold. A well-dispersed assembly of AuNWs over thiol-modified gold-coated 

glass slide was achieved as seen in the representative AFM images (Fig. 4.5.2C and D). The 

AuNWs immobilized on a gold coated slide were stable enough to be scanned frequently by 

SECM probes. Positive feedback approach curves over an entire thiol-modified gold surface 

were recorded which showed that thiol-modification did not interfere with the recycling of 

mediator over the bulk gold surface. Well-resolved positive feedback images of both clustered 

as well as individual AuNWs were recorded with a 300 nm radius probe within 105-110 % I∞ 

over conducting gold surface (Fig. 4.5.2A and B). The extended conducting surface (thin 

conducting gold film in this case) beyond the tip area facilitated the recycling of electrons of 

nanowires with the bulk mediator solution resulting in positive feedback response. The visibly 

differentiated contrast of AuNWs over a bulk gold surface was the result of the differences in 

topography (effectively exposed surface area for recycling of mediator) and in intrinsic 

conductivity of AuNWs and thin-film gold surface. However, the positive feedback on the 

AuNWs supported the fact that the immobilized AuNWs were effectively electrically connected 

with the bulk gold surface. This result supports the fact that SECM can be used as a method of 

choice for characterization of immobilization of nanomaterials as support matrix for 

biomolecule assembly over transducer surfaces in addition to other physical and 

electrochemical methods.  
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Figure 4.5.2: (A and B) Positive feedback SECM images of clustered and individual AuNWs 

immobilized on a gold-coated glass slide. The image was recorded with a 300 nm radius Pt 

probe at a potential of 0.3 V and a scan rate of 5 µm s-1 in 1.5 mM ferrocene methanol solution. 

(C and D) Representative AFM images of AuNWs immobilized on a gold-coated glass slide. 

Published by the Royal Society of Chemistry. 

 

An apparent width of ∼10 µm with ∼5 pA of negative feedback current was recorded for 

individual AuNWs immobilized on a glass slide (Fig. 4.5.3A). On the other hand, an apparent 

width of ∼1.5-2 µm with ∼2 pA positive feedback current was recorded for individual AuNWs 

immobilized on a gold-coated glass slide (Fig. 4.5.3B). The apparent width of the nanowire in 

negative feedback image was largely affected by the big RG of the probe, whereas in positive 

feedback image over bulk gold substrate, it was almost independent of the RG. When compared 

to negative feedback current, a smaller difference in positive feedback current over individual 

AuNWs from the bulk substrate was recorded because of the positive background current 

contributed from the bulk gold film. The differences in overall current between negative and 

positive feedback current images (Fig. 4.5.1A and 4.5.2B) and even between different positive 

feedback current images of individual AuNWs (Fig. 4.5.2B and 4.5.6A) were due to different 

batches of mediator solutions and sometimes due to partial fouling of the probes used. 
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Figure 4.5.3: SECM line scans across individual AuNWs with (A) negative (over glass slide) 

and (B) positive (over gold-coated glass slide) feedback current responses. The line scans were 

obtained with a 300 nm radius Pt probe at a potential of 0.3 V in 1.5 mM ferrocene methanol 

solution. Published by the Royal Society of Chemistry. 

 

Although, the apparent width of AuNW in positive feedback image was almost independent of 

the RG of the tip, it was largely dependent on the Pt disk diameter. The AuNW appeared wider 

than its actual diameter (Fig. 4.5.2B and 4.5.3B), whereas, the apparent length of the nanowire 

was similar to its actual length as seen in the representative AFM image (Fig. 4.5.2D). Since 

the apparent dimensions of the nanostructures in high-resolution SECM are largely dependent 

on the probe diameters, the nanostructures appeared even broader in the earlier reports by 

Amemiya and co-workers [27,28], where they used relatively larger diameter probes to image 

the gold nanoband and carbon nanotube. However, the broadening of the carbon nanotube was 

significantly decreased when scanned across with a 1.5 µm diameter Pt probe. The apparent 

width of the nanotube was around 4 times the diameter of the Pt disk [28]. The observation 

correlated closely to our studies with 300 nm radius probe, where the apparent width in positive 

feedback image was around 3 times the diameter of the Pt disk. The recent publications by 

Mirkin and co-workers have reported the imaging and catalytic efficiency of individual gold 

nanoparticles (AuNPs, 10-20 nm diameter) with an extremely small probe of radius ≥ 3 nm 

[29,38]. Although, they could record a positive feedback current over individual AuNPs with a 

probe of radius 42 nm (where the AuNPs were electrically connected via underlying highly 

ordered pyrolytic graphite surface), the image resolution impressively improved with the 

decreasing probe sizes. With the probes of radii 14 nm and 3 nm, the SECM measurements 
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quite close to actual diameters were made for 20 nm and 10 nm diameter AuNPs, respectively. 

Although, a closer correlation of apparent and actual nano-dimensions could be achieved in 

SECM images with decreasing probe sizes, the Wollaston-based 300 nm radius Pt probe 

appeared to be an appropriate choice to image immobilized AuNWs in our case. As seen in 

representative AFM images (Fig. 4.5.2C and inset of Fig. 4.5.5), the assembly of AuNWs over 

substrates was not even. Entangled AuNWs bundles of various sizes were frequently 

encountered during the constant height scans of substrates which could have easily destroyed 

etched or capillary pulled nano-probes with smaller RGs. The probes used in our studies were 

robust enough to be used again after crashing to these bundles with intermittent cleaning and 

polishing.  

Since the apparent dimensions of individual AuNWs immobilized on gold coated glass slides 

correlated better with the actual AuNWs dimensions, the same was chosen for enzyme (HRP) 

activity imaging studies. 

 

Subsequent feedback and activity imaging of HRP-linked AuNWs 

For imaging of peroxidase activity, HRP was covalently linked to AuNWs by EDC-NHS 

method. The HRP-linked AuNWs were then immobilized on the gold-coated glass slide. 

Generally, the catalytic cycle of HRP involves the reaction of ferric form of the protein (FeIII) 

with H2O2 to give the ferryloxy radical (FeIV=O) of the enzyme known as compound I. The 

ferryloxy radical reacts with an electron donor to give the non-radical ferryloxy form (FeIV=O) 

of the enzyme known as compound II which then reacts with H2O2 to give an oxyperoxidase 

form of the enzyme that decomposes to superoxide and FeIII. The resulting HRP activity could 

either be imaged by recording the peroxide consumption at high overpotential (~1 V) [39] or 

by imaging the reduction of electron donor oxidized by HRP. Ferrocene methanol was used as 

electron donor for HRP in this work which was then reduced at the Pt probe at a potential of 0 

V. A similar mechanism was used previously for SECM imaging of HRP-labelled protein 

microarrays [33]. As shown in Fig. 4.5.4, at 0.3 V probe potential, the AuNWs were imaged in 

feedback mode, whereas, by switching the probe potential to 0 V after addition of H2O2, 

peroxidase activity of HRP covalently linked to AuNWs can be imaged subsequently in the 

same experiment. 

 

 



 

 

 
95 

 

  

 

 

 

Figure 4.5.4: Schematic representation of (A) positive feedback at 0.3 V probe potential and 

(B) SG/TC at 0 V probe potential over HRP-linked AuNWs in ferrocene methanol solution. 

(Diagram not to scale). Published by the Royal Society of Chemistry. 

 

Figure 4.5.5A shows the positive feedback image of ferrocene methanol recycling at AuNWs 

clusters (representative AFM image inset of Fig. 4.5.5) at probe potential of 0.3 V. When the 

potential was switched to 0 V, no current was recorded at the probe (Fig. 4.5.5B). However, 

when H2O2 was added to the same mediator solution, HRP activity was imaged at AuNWs 

clusters by reduction of HRP oxidized ferrocene methanol at Pt UME in substrate generation/tip 

collection (SG/TC) mode (Fig. 4.5.5C). Interestingly, although the measured current in SG/TC 

imaging of AuNWs clusters was nearly half of the measured current in positive feedback image, 

a current difference of ~30 pA was recorded over the AuNWs clusters from the bulk substrate 

in SG/TC mode. This difference was significantly higher than the current difference (~20 pA) 

recorded in positive feedback mode. The observation suggests the localization of HRP activity 

over and around AuNWs clusters rather than on bulk substrate surface resulting in less 

background current in SG/TC mode at 0 V. This also confirms the stable covalent linking of 

HRP with the AuNWs. In positive feedback image at 0.3 V, the bulk gold substrate surface 

contributed towards higher background current, thus resulted in lesser current difference over 

AuNWs. However, a considerably higher positive feedback response from the AuNWs from 

the bulk gold substrate further supported our above observation that covalent-linking of HRP 

with the carboxyl groups of thiol-modified AuNWs did not interfere with recycling of ferrocene 

methanol mediator at 0.3 V probe potential (Fig. 4.5.5A). The same was also observed by 
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unhindered positive feedback response from individual AuNWs (HRP-modified) at 0.3 V probe 

potential in Fig. 4.5.6A. 

 

      

 

Figure 4.5.5: SECM images of HRP-linked AuNWs clusters immobilized on a gold-coated 

glass slide at (A) 0.3 V probe potential (positive feedback), (B) 0 V probe potential, and (C) 0 

V probe potential after addition of 0.3 % H2O2 (SG/TC). The images were recorded with Pt 

probes of radii 1-3 µm at a scan rate of 50 µm s-1 in 1.5 mM ferrocene methanol solution in pH 

6 SPB. Inset: Representative AFM image of the same substrate. Published by the Royal Society 

of Chemistry. 

 

Some of the recent research focused on the use of single AuNW or AuNP to study catalytic 

properties and sensing [25–29,35,36] which prompted us to image the distribution of HRP 

activity over individual AuNWs. Fig. 4.5.6A and B show the images of individual AuNWs in 

feedback and SG/TC modes at 0.3 V and 0 V (in presence of H2O2) probe potentials, 

respectively. Interestingly, although the HRP activity was distributed along the entire length of 

AuNWs, higher enzymatic activity was imaged at the ends of nanowires. The representative 

AFM image of the HRP-linked AuNWs (Fig. 4.5.6C) shows that HRP was immobilized 
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throughout the length of nanowire. However, the ends of AuNWs showed relatively larger 

aggregation of immobilized HRP which correlated well with the corresponding SECM image. 

 

 

Figure 4.5.6: SECM images of individual HRP-linked AuNWs immobilized on a gold-coated 

glass slide at (A) 0.3 V probe potential (Positive feedback) and (B) 0 V probe potential after 

addition of 0.3 % H2O2 (SG/TC). The images were recorded with a 300 nm radius probe at a 

scan rate of 5 µm s-1 in 1.5 mM ferrocene methanol solution in pH 6 SPB. (C) Representative 

AFM image of the same substrate. Published by the Royal Society of Chemistry. 

 

Since the current recorded at individual AuNWs in SG/TC mode was very small (~2 pA), a 

clear image from the background current could not be differentiated; so, a comparison with 

positive feedback current cannot be made. A drift in current along the length of the wire was 

observed mainly due to a slight tilt in the substrate. Since the measured enzymatic activity in 

SG/TC mode was small, the drift appears quite pronounced in the image. A similar drift (but 

not so pronounced) was also observed in the corresponding positive feedback image of AuNWs. 

This is one of the first reports (to the best of our knowledge), where SECM imaging of 

enzymatic activity at individual nanomaterial was achieved. A similar amount of current (~2 

pA) was mapped at around 1 V probe potential over individual AuNPs (~200 nm diameter) with 

a bias potential of 0.4 V by Wain’s research group [39]. Thus, the similar current over unbiased 
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HRP-linked AuNWs at 0 V probe potential provides a more feasible alternative for signal 

mapping over various DNA or protein microarrays. 

4.5.4 Conclusion 

Subsequent feedback and enzymatic peroxidase activity over individual AuNWs were imaged 

by a 300 nm radius Wollaston-based Pt probe in constant height mode of SECM. The SECM 

imaging of enzymatic activity at individual nanomaterial is reported for the first time. The 

observations could be extended to study catalytic properties of other nanomaterials or to 

characterize enzyme modified electrode surfaces (biased or unbiased) or to map amplified 

signals over HRP-linked DNA or protein microarrays with sub-micrometer resolutions. The 

negative and positive feedback responses of individual AuNWs immobilized on insulating and 

conducting film surfaces, respectively, provided an insight into the factors affecting the 

effective recycling of mediator by conducting nanomaterials particularly by 1-D nanostructures. 

The imaging with positive feedback current response of individual AuNWs (~140 nm wide) 

over a bulk conducting substrate by a rather large 300 nm radius Pt probe also eliminates the 

requirement for very small probes for imaging of unmodified or variously modified conductive 

nanomaterials. The work also establishes the importance of constant height mode of SECM in 

surface characterization of transducers after nanomaterial/biomolecule immobilization in 

biosensing applications providing additional electrical connectivity/activity distribution data to 

the topographic details provided by other microscopic methods.  

4.5.5 Supporting information 

 

Figure 4.5.S1: Transmission electron microscopic image of synthesized gold nanowires. 

Published by the Royal Society of Chemistry. 
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4.6 Complementary analytical imaging techniques for the 

characterization of pretreated carbon fiber reinforced plastics 
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Abstract 

In this work the complementary characterization of pretreatment techniques for adhesive 

bonding of carbon fiber reinforced plastics (CFRP) is presented. Industrial CFRP plates were 

pretreated with laser, plasma and corundum blasting abrasive techniques followed by chemical 

activation. The combined use of atomic force microscopy and chemical force microscopy 

enabled the characterization of the surface morphology and the specific adhesion force between 

a chemically functionalized cantilever and the pretreated surfaces simulating the adhesive bond. 

Complementary measurements with scanning electrochemical microscopy and X-ray 

photoelectron spectroscopy supported the experimental findings and delivered additional 

information about the chemical structure of the surfaces. A comparison of experimental data of 

mechanical tensile shear strength measurements and the applied analytical methods revealed a 

valid correlation of microscopic and macroscopic techniques. 
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4.6.1 Introduction 

Carbon fiber reinforced plastics (CFRP) represent an attractive class of composite material 

consisting of carbon fibers immersed in a surrounding plastic matrix. The combination of the 

materials can strengthen their individual properties so that CFRP possess a greater ratio of 

modulus and tensile strength to their weight, a lower thermal coefficient and a higher internal 

damping compared to steel or lightweight alloys such as aluminum or titanium [1]. These 

characteristics lead to a broad field of commercial and industrial applications including military 

and commercial aircrafts, automotive, space and sporting goods [2] to name just a few 

examples. In the automotive industry CFRP components are used to construct body parts, 

chassis or engine components of lighter weight and with a better stability. 

The special chemical composition of workpieces consisting of CFRP requires different joining 

methods than conventional aluminum, steel or iron parts. Riveting, welding or screwing are not 

suitable for composite lightweight car manufacturing [3]. In addition to that, adhesive bonding 

won’t adhere properly on a recently manufactured CFRP part. Since large scale and automated 

production/compression tools require release agents and thereby contaminate the surface of the 

manufactured parts. Different pretreatment techniques are used to remove the release agent and 

activate the surface to enable adhesive bonding. The quality aspect of the CFRP bonding is 

regarded as a crucial safety issue. Thus, new methods for quality evaluation are needed. 

Currently only macroscopic measurements such as tensile shear strength and peel tests are 

applied to evaluate the adhesive bonding [4]. The surface is evaluated according to the 

fracturing and conclusively regarding the efficiency of the surface pretreatment technique. For 

detailed information on the impact of the surface pretreatment techniques and possible 

consequences for the adhesive bonding, further investigations and new analytical methods must 

be established.  

In scanning probe microscopy, the information is generated through interactions between a 

probe, which is scanned across a substrate. The result of this measuring process is expressed as 

an image [5]. Beside the topographical mapping [6] atomic force microscopy (AFM) possesses 

the potential for the detection of interacting forces between the cantilever and a surface [7,8]. 

Especially for biochemical applications this measuring mode is often combined with a 

chemically modified cantilever [9]. Using this chemical force microscopy (CFM) recent studies 

show the specific interaction of functional groups and a biolayer [10]. The strength of AFM, 

the atomic [11,12] or molecular [13] resolution, is often compromised by the restriction to 
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relatively small surface areas. For studying atomic or molecular effects and correlating them 

with macroscopic surface properties the uniformity of the studied surface is a prerequisite. From 

the practical point of view the microscopic surface properties are often determined by many 

various effects occurring at different spots across the surface. This aspect is a limitation of many 

high-resolution scanning probe techniques for studying workpieces at industrial scale and size. 

The lack of representative characterization of larger surface areas can be considered as a 

disadvantage of AFM in the context of industrial applications. 

Scanning electrochemical microscopy (SECM), developed and characterized by A.J. Bard and 

coworkers [14], is an alternative scanning probe technique. SECM has found a wide range of 

applications ranging from biological surfaces [15,16] to novel inorganic materials [17]. Usually 

the studied substrate is fixed in an electrochemical cell and immersed in a solution containing 

an electroactive compound as mediator substance. In the amperometric measurement mode the 

current of an electrochemical reaction occurring at the ultramicroelectrode (UME) is used as 

signal to generate analytical information about the (electro)chemical activity and/or 

topographical details of the scanned surface, in a noninvasive way [18]. In SECM the probe is 

an UME with an electrode diameter of 25 µm or less resulting in a limited resolution compared 

to AFM. SECM is well suited for studying properties of inhomogeneous surfaces within areas 

of a few square mm [19]. This is particularly attractive for surfaces which can hardly be 

characterized by optical methods. In addition, surfaces exhibiting regions with different 

(electro)chemical properties like CFRP are ideal substrates for SECM studies. With its ability 

to scan across rather large surface areas SECM provides additional information to AFM 

(surface morphology and the electrochemical activity which correlates with the material 

composition of the surface in particular carbon fiber and epoxy matrix). A classical 

amperometric measuring principle is the feedback mode [14], with its two possibilities to 

influence the signal. In negative feedback, isolating surface regions hinder the mass transport 

of the mediator towards the UME resulting in a decreased current. A conductive substrate, 

however, leads to an enhanced current due to redox cycling between probe and substrate. As 

with other scanning probe techniques the resolution of the SECM depends on the probe size. 

Mathematical expressions for the analytical treatment of the measured currents are described in 

literature [20] and a comprehensive review of applications and experimental parameters for 

SECM studies was published recently by Polcari et al. [21]. Further surface techniques such as 

X-ray photoelectron spectroscopy [22,23] or time of flight – secondary ion mass spectrometry 
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(ToF-SIMS) [24] complement previous methods with information on the chemical composition 

of the surface. 

In this work, advanced scanning probe techniques such as AFM/CFM and SECM were used 

for the characterization of the surface of CFRP plates and to correlate the effects of different 

activation procedures such as corundum blasting, plasma and laser activation prior to chemical 

activation of the CFRP/CFRP bonding. X-ray photoelectron spectroscopy was applied for 

additional characterization the chemical composition of the CFRP surface. 

4.6.2 Experimental 

Chemicals & Materials 

Industrial CFRP plates, a commercially available material (Rhein Composite GmbH), were 

used after a resin transfer molding process. Different pretreatment techniques were applied to 

activate the CFRP surface and to remove the release agent and surface contamination. In detail, 

the following mechanical pretreatment methods were applied: (i) corundum blasting (4-5 bar, 

120 grit), (ii) CO2-laser activation ( = 10.6 µm with 80 W), and (iii) atmospheric plasma 

treatment (~200°C with 10 kV). All techniques were applied with optimized settings as used 

under industrial conditions for comparable composites. In addition to mechanical pretreatment 

a chemical activator [25] (e.g. organometallic compound) was subsequently used to activate 

functional surface groups and to catalyze the reaction of an adhesive to the surface. The AFM 

and CFM studies were done either after mechanical pretreatments or after mechanical 

pretreatments combined with chemical activation. 

Prior to all scanning probe experiments the CFRP plates were cut into squares with an area of 

a few square cm. The obtained squares were cleaned with ultrapure water and isopropanol (MS 

grade, Merck KGaA, Darmstadt, Germany). For a better correlation of the measured area with 

the different analytical techniques the examined surface was restricted by laying a square 

(1 cm2) of a pierced (diameter 2.1 mm) silicone foil on the CFRP surface. The foil had a 

thickness of 100 µm (Elastosil, Wacker Chemie AG, Burghausen, Germany). The roughness of 

the corundum blasting treated sample made a fixation of the silicone foil with a fast curing 2-

componenent epoxy resin (UHU GmbH & Co. KG, Buhl, Germany) necessary. All imaging 

experiments were performed within the restricted area. For all SECM experiments an aqueous 

solution of 1.5 mM ferrocene methanol (FcMeOH, 99 %, ABCR, Karlsruhe, Germany) as 

mediator and 0.2 M KNO3 (analytical grade, Merck KGaA, Darmstadt, Germany) as supporting 
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electrolyte were used. The solution was prepared in ultrapure water with a resistivity higher 

than 18 MΩ cm (membraPure, Bodenheim, Germany). 

As adhesive system a two-component polyurethane mixture (1:1) was used. The first 

component was formulated as a multicomponent polyol mixture [26]. A prepolymeric alcohol 

functionalized polybutadiene mixture (52.5 w.%, Polyvest EP HT, EVONIK Resource 

Efficiency GmbH, Marl, Germany) was used as reactive polyol. Thiodiethanol (9.0 w.%, Fluka 

Analytical) was used as chain extending component. The filler, kaolin (35.7 w.%), and the 

adhesion agent, trimethoxysilan (0.4 w.%), were obtained from Sigma-Aldrich. 

Dimethoxypolysiloxan (0.04 w.%, Sigma-Aldrich) was used as antifoaming agent. 

Pentaerythrit (2.0 w.%, Sigma-Aldrich) was used for crosslinking. To increase the reaction 

speed zirconium(IV)acetylacetonate was used as catalyst (0.4 w.%, Sigma-Aldrich) [27]. All 

components were homogenized with a Thinky Mixer ARE 250 (Thinky corp., Tokyo, Japan) 

for 2 minutes at 2000 rpm. The second component was a prepolymeric MDI isocyanate mixture 

(DOW Chemicals). Each component was filled in a cartridge and applied with the help of a 

two-component adhesive gun with multi-chamber mixing nozzle. 

 

Instrumentation & Measurements 

All AFM measurements were done with a commercial AFM (Nanosurf - FlexAFM). The 

topographical measurements were done in tapping mode and with Tap300Al-G cantilevers and 

the force measurements with Tap300GB-G and HQ:NSC19/Cr-Au cantilevers. For each 

cantilever calibrations of the deflection-sensitivity and the spring constant were done. The 

modification with functional alcohol groups was done via a self-assembled monolayer (SAM) 

process (Fig. 1B). For this a 5 mM solution of 11-mercapto-1-undecanol in ethanol (Sigma 

Aldrich) was used. To facilitate the handling, the cap of a micro vial was used and provided an 

ideal storing space for the cantilever and the thiol solution. The respective vial was filled with 

argon gas and used as cap to assure a clean reaction environment and was stored for 48 hours. 

XPS measurements were done to verify a successful monolayer formation.  

During CFM measurements, the functionalized cantilever approaches the surface with a 

constant speed and the force of interactions (e.g. van der Waals interactions) between the 

surface and the cantilever is detected. At a certain distance the cantilever is deflected and 

attracted to the surface, which can be seen in a force distance diagram. During the retracting 

process the cantilever interacts with the surface and is retarded due to adhesion forces. 
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Consequently, two issues are obtained with force spectroscopy – the attractive forces for 

approaching the surface and the adhesion forces for retracting the cantilever [28]. With 

functionalized cantilevers specific interaction forces are detected (Fig. 4.6.1A). All AFM 

experiments were performed within an acoustic enclosure, defined laboratory environment and 

an active damping system to ensure reproducible results. 

 

 

Figure 4.6.1. Schematic representation of the principle of AFM/CFM measurements (A) and 

functionalized cantilever (B). 

SECM imaging was performed with a commercial SECM system CHI 920C (CH Instruments, 

Austin, USA) in a two-electrode setup with a Pt wire (0.5 mm diameter) as counter and quasi-

reference electrode. All potentials refer to this quasi-reference electrode. A Pt disk UME with 

an electrode diameter of 25 µm and an RG of 2-3 was used as SECM probe. The probe was 

fabricated according to the procedure described elsewhere [17]. Prior to the imaging the 

substrate was levelled until a tilt less than 10 µm per mm2 was achieved. The imaging for the 

reference, laser- and plasma-activated sample was performed at a tip-to-substrate distance of d 

< 10 µm, according to the measured current (IM) of 60 % in relation to the current measured in 

the bulk phase (I∞). For the corundum blasting treated sample IM was 125 % relative to I∞ 

corresponding to a tip-to-substrate distance of about 17 µm. The scan speed was 100 µm s-1 

with a pixel size of 4 µm. After imaging by scanning probe techniques optical images of the 

studied area were taken using a Leica M205 C stereo microscope. 

 

Tensile shear strength experiments 



 

 

 
108 

 

  

For macroscopic characterization, tensile shear strength measurements were conducted. For all 

tensile shear tests the substrates were cut into plates with a width of 45 mm and a length of 100 

mm. The adhesive was applied onto the two substrates with a two-component adhesive gun and 

a multi chamber mixing nozzle. The two plates overlapped and adhered with an area of 45 mm 

x 20 mm. After 7 days of curing the complementary ends of both plates were fixed in the tensile 

shear testing device and sheared with a constant speed of 0.4 mm s-1. Five independent 

measurements were done, and the result is calculated as mean value. 

 

XPS experiments 

X-ray photoelectron spectroscopy (XPS) was performed with a commercial system Phi 5000 

VersaProbe III (Ulvac PHI, Hagisono, Chigasaki, Kanagawa, Japan). The same samples as used 

for the SECM experiments were studied at several positions with an incoming Al-K X-Ray of 

100 µm with 100 W and 20 kV. First, a survey spectrum was measured to study all components 

on the surface. Afterwards a detail spectrum with 3 spots on each sample for C1s (278-298 eV), 

O1s (523-543 eV), N1s (391-411 eV), Si2p (94-114 eV) and Sn3d5 (480-500 eV) was recorded. 

4.6.3 Results and discussion 

Untreated CFRP surface 

The optical characterization of the untreated CFRP plate is shown in Fig. 4.6.2A. It shows 

surface defects induced by mechanical stress. As expected, in the scanning electrochemical 

microscopy image (Fig. 4.6.2B), recorded with a 25 µm UME in 1.5 mM FcMeOH (bulk phase 

current of I∞ ≈ 5.5 nA, supporting information, Figure 4.6.S1), the predominant negative 

feedback (decreased current due to hindered mediator diffusion towards the UME and 

insulating surface) signal indicates a complete isolation of the carbon fiber by the epoxy resin. 

At spots where the epoxide layer is damaged the exposed carbon fibers show a positive feedback 

(increased current due to redox mediator recycling between UME and conductive surface). The 

adhesion force measured before the chemical activation (Fig. 4.6.2C) was predominantly in the 

range of 10 to 25 nN at some spots adhesion forces of up to 60 nN were measured. After 

chemical activation the chemical force measurements (Fig. 4.6.2D) showed an increase for the 

adhesion at the examined area proving the effectiveness of the chemical activation process. 
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Figure 4.6.2. Characterization of untreated CFRP. (A) Optical image of the CFRP, the red 

square corresponds to the area imaged by SECM. (B) SECM false color image of the CFRP. 

AFM topography and adhesion force (false coloring) images before (C) and after (D) chemical 

activation.  

 

Plasma pretreated CFRP surface 

In case of plasma activation, the optical image shown in Fig. 4.6.3A indicates an increased 

roughness and topographical changes of the CFRP surface associated with several surface 

defects. With the SECM (Fig. 4.6.3B) a significantly increased current is shown in the plasma 

pretreated area. The intense energy of the plasma burned the epoxy resin and exposed carbon 

fibers at the outermost layer. Thus, the fibers are clearly imaged by a positive feedback 

response. The diameter of the 7 µm carbon fibers is magnified by the larger probe diameter of 

25 µm. The generally increased current within the activated area could be derived from graphite 
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depositions due to pyrolysis of the epoxy resin. Further surface defects can be seen in the SECM 

image. For both AFM images (Fig. 4.6.3C and 4.6.3D) a localization within a defined area of 

the SECM image was possible.  

  

Figure 4.6.3: Characterization of plasma treated CFRP. (A) Optical image of the CFRP, the red 

square corresponds to the area imaged by SECM. (B) SECM false color image of the CFRP. 

AFM topography and adhesion force (false coloring) image before (C) and after (D) chemical 

activation. The imaged areas correspond to the red squares shown in (B).  

The topographical information gained with AFM indicated an increased roughness for the 

plasma activated area (Fig. 4.6.3C-1) with a carbon fiber of about 7 µm in width (Fig. 4.6.3C-

2). Regarding the surface and the adhesion force, no significant influence can be found between 

the fiber and the detected forces. However, the topographical image of the plasma activated 

area correlates well with a slightly increased adhesion force of 30-50 nN which compares to 

forces of 20-30 nN (Fig. 4.6.3C-3) for partially activated areas. Thus, the overall adhesion force 

in the plasma activated area is significantly increased. In addition, several spots with adhesion 
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forces up to 140 nN were detected within the plasma pretreated area. With additional chemical 

activation 3D chemical force microscopy indicated a higher overall adhesion force of 50-70 nN 

and various areas with forces larger 200 nN correlating to the topographical image of the plasma 

influenced spots were found. 

 

Laser pretreated CFRP surface 

Compared to the smooth appearance of the untreated CFRP, the laser pretreatment resulted in 

exposing single carbon fiber strands and in a grooved surface structure (Fig. 4.6.4A). This 

optical change correlates with the examinations reported in literature [29]. In the SECM image 

(Fig. 4.6.4B) exposed carbon fiber strands are indicated by a positive feedback current of up to 

7.8 nA.  

 

Figure 4.6.4: Characterization of laser treated CFRP. (A) Optical image of the CFRP, the red 

square corresponds to the area imaged by SECM. SECM false color image of the CFRP (B). 

AFM topography and adhesion force (false coloring) image before (C) and after (D) chemical 

activation. 
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The line by line pretreatment by the laser is clearly visible, showing the limited effectivity of a 

linear laser activation. Smaller currents in wide areas of the image between the fiber strands 

reflect the rough topography which is also shown in the AFM images (Fig. 4.6.4C and D). A 

reduction of the positive feedback by isolating areas of resin could also decrease the measured 

current. The adhesion force measured before the chemical activation (Fig. 4.6.4C) was slightly 

increased compared with the untreated CFRP. After chemical activation (Fig. 4.6.4D) an 

increased overall adhesion comparable to the untreated CFRP was detected. Interestingly, 

within the imaged grooves a strong increase in the adhesion force caused by a higher amount 

of activator could be seen. In all images the line structure of the laser induced impact can be 

seen. 

 

CFRP surface pretreated by corundum blasting  

With corundum blasting pretreatment a significant mechanical impact can be observed in the 

microscopic image (Fig. 4.6.5A). In contrast to laser pretreatment an increased erratic 

roughness was found. The electrochemical activity (Fig. 4.6.5B) was drastically increased 

reflected by an average feedback current of 7 nA and maximum currents up to 12 nA. Only 

small areas show a negative feedback which can be assigned to regions still covered with epoxy 

resin. The topographical inhomogeneity is also shown in the AFM images (Fig. 4.6.5C and D) 

with a maximum roughness of 8.4 µm. Compared to the untreated substrate the adhesion 

increases on several spots to 50-80 nN (Fig. 4.6.5C). The positive influence of the corundum 

blasting pretreatment is shown after applying a chemical activator (Fig. 4.6.5D). A maximum 

of 1.3 µN and an overall increased adhesion force within multiple activated areas of 100-250 

nN were measured. Compared to the previously discussed activation techniques the adhesion 

forces were clearly enhanced and were distributed more homogenously over the surface. 
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Figure 4.6.5: Characterization of CFRP treated by corundum blasting. (A) Optical image of the 

CFRP, the red square corresponds to the area imaged by SECM. (B) SECM false color image 

of the CFRP. AFM topography and adhesion force (false coloring) image before (C) and after 

(D) chemical activation.  

XPS investigations 

To study the influence of the chemical composition of the CFRP surfaces XPS measurements 

were carried out (Table 4.6.1). The reference sample and the surface pretreated by corundum 

blasting showed the highest amount of carbon. It was found that plasma and laser pretreated 

surfaces exhibited a high amount of oxygen. 

For further evaluation the binding state of the carbon was examined (Fig. 4.6.6). Notably, the 

reference CFRP surface (Fig. 4.6.6A) was the only one with an intact epoxy layer represented 

by bound ester groups. The increased carbon signal can be deduced from surface contamination. 

Laser and plasma pretreatments (Fig. 4.6.6B and C) led to free functional groups, such as 

alcohol and carboxyl groups. However, the analysis of the binding state of the corundum 
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blasting pretreated surface indicated that the amount of alcohol groups was twice as much 

compared to the other pretreatments. 

Without any pretreatment, the surface is non-reactive due to the lack of free functional groups. 

Laser and plasma pretreatment have a similar impact on the surface, generating reactive 

carboxyl and alcohol groups. The highest density of functional groups was generated with 

corundum blasting pretreatment. Depending on the distribution and the density of reactive 

groups an increased adhesion force is expected. 

 

Figure 4.6.6: XPS measurements of CFRP surfaces with different pretreatment protocols. C1s 

signals are shown for (A) reference CFRP without pretreatment, (B) laser pretreated CFRP, (C) 

plasma pretreated CFRP, (D) corundum blasting pretreated CFRP. 
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Table 4.6.1: Quantification of surface atom distribution by XPS measurements. 

 

Macroscopic mechanical tests 

The tensile shear test was optically evaluated regarding the fracturing of the adhesive (Table 

4.6.2). The samples without any mechanical pretreatment but with chemical activation (Fig. 

4.6.7A) showed an adhesive failure of 70 % (N = 5). For plasma pretreatment with chemical 

activation (Fig. 4.6.7B) an adhesive detachment of 15 % (N = 5) was found and for laser 

pretreatment with chemical activation (Fig. 4.6.7C) the test showed an adhesive fracture of 35 

% (N = 5). The different pretreatment techniques showed an improvement of the bonding 

between adhesive and CFRP. For corundum blasting with chemical activation (Fig. 4.6.7D) a 

100 % cohesive fracturing was found. 

 

 

Figure 4.6.7: Representative examples for fracturing of the CFRP correlated with the different 

pretreatment methods. 

 

 

 

sample      C1s        N1s        O1s        Si2p  Sn3d5 C/O 

Atom.-% Atom.-% Atom.-% Atom.-% Atom.-% 
reference 83.7 0.8 13.2 2.3 - 6.4 

plasma 78.2 1.0 17.5 3.1 0.2 4.5 

laser 77.2 1.4 17.5 3.9 - 4.5 

corundum 82.7 2.0 14.8 0.5 - 5.6 

XPS quantification 
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Table 4.6.2: Tensile shear strength measurements of bonded CFRP samples pretreated with 

different methods. 

 

Untreated + 

chemical 

Plasma + 

chemical 

Laser + 

chemical 

Corundum  

blasting + 

chemical 

70 % adhesive 15 % adhesive 35 % adhesive 100 % cohesive 

 

4.6.4 Conclusion 

The combination of optical microscopy with electrochemical imaging via SECM and adhesion 

force imaging via CFM was proven to be suitable for the evaluation of CFRP surface 

characteristics and for studying the influence of activation techniques in the context of adhesive 

bonding. With CFM a clear increase of adhesion forces after chemical activation of the substrate 

was identified and assigned to an enhancement concerning the reaction of the adhesive with the 

surface. With XPS the chemical activity of the substrate surface was studied supplementing the 

microscopic characterization. SECM imaging revealed the exposure of carbon fiber strands and 

enabled the characterization of the pretreatment methods for larger surface regions. The results 

of the macroscopic fracturing tests correlated well with the results of the advanced microscopic 

imaging techniques. The corundum blasting pretreatment combined with chemical activation 

was found to be the most effective pretreatment protocol for reliable adhesive bonding. All 

imaging techniques applied in this study added information for a better understanding of micro 

and macroscopic effects influencing the surface characteristics of CFRP substrates. Thus, the 

effectiveness of a bonding between CFRP substrates and adhesive can be foretold based on 

combined information derived from the analytical techniques applied in this report. 

 



 

 

 
117 

 

  

4.6.5 Supporting information 

 

Figure 4.6.S1: Cyclic voltammogram using a SECM probe with a diameter of 25 µm (1.5 mM 

FcMeOH with 0.2 M KNO3, Estart = -0.2 V, Evertex = 0.3 V, scan rate: 50 mV s-1). Inset: Optical 

micrograph of the SECM probe. 
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5. Summary  

The fabrication of high-quality ultramicroelectrodes (UME) was a prerequisite for a variety of 

scanning electrochemical microscopic (SECM) experiments carried out in this thesis. UMEs 

with diameters ranging from 1 to 25 µm with a thin soda lime glass insulation (RG 2-20) and 

desired electrochemical properties were routinely fabricated to accomplish these targets.    

Further, for the imaging of the reactive oxygen species (ROS) generated during electrochemical 

oxygen evolution reaction (OER), the formation of transient diffusion layers during 

electrochemical reactions at large substrates was one major limitation. To overcome this 

limitation the well-known advantages of convective mass transport in electrochemical systems 

were exploited. After the integration of a high-precision stirring device into the experimental 

setup, the well-defined stirring led to steady-state diffusion layer characteristics near large 

substrate electrodes operated as generator electrodes. The imaging of the electrochemical 

hydrogen evolution at a 2 mm Pt disk electrode in the substrate generation/tip collection 

(SG/TC) mode demonstrated that SECM with forced convection increases the amount of 

obtained information. The added complexity of hydrodynamic methods in the theoretical 

description and construction of devices with known and reproducible mass transport conditions 

were addressed with numerical simulations. The reliability of the simulation was verified 

numerically and experimentally. The simulation showed that the rotation of the cylindrical 

stirrer resulted in a laminar convection near the substrate electrode. The flow profile within the 

liquid depended on the rotational speed of the stirrer. This enabled the formation of steady-state 

diffusion layers with a defined layer thickness. The constructed numerical model paves the way 

for additional numerical studies involving other cell and substrate geometries. The combination 

with other simulation modules (e.g.: electrochemistry) could provide interesting and valuable 

information for future applications.    

Hydrodynamic SECM further enabled the detection and imaging of the production of ROS at 

Pt and boron-doped diamond (BDD) macroelectrodes during OER. The combination of the tip-

substrate voltammetry with forced convection resulted in a measurement principle similar to 

the rotating ring disk electrode and enabled the detection of ROS at BDD and Pt. Imaging in 

hydrodynamic SG/TC mode revealed that both, H2O2 and another reducible ROS species, are 

produced simultaneously at different domains depending on the local boron content of the 

surface.  
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These pioneering experiments established the advantage of hydrodynamic SECM for locally 

resolved studies of highly reactive species produced during electrochemical gas evolution 

reaction. The increased amount of accessible analytical information aids toward a better 

understanding of electrochemical processes. The application of SECM in combination with 

forced convection to other heterogeneous reactions could help to expand the knowledge in other 

scientific fields and opens the door for new applications.  

In addition, the high-resolution SECM was used to image individual gold nanowires (AuNWs) 

immobilized on glass and gold coated glass slides in negative and positive feedback modes, 

respectively. Later the enzymatic peroxidase activity of immobilized horseradish peroxidase on 

individual AuNWs was imaged. These images revealed a higher enzymatic activity located at 

the ends of the AuNWs. This work can be further extended for the characterization of other 

novel nanomaterials and to study their redox behavior alone or in combination with other redox 

enzymes.   

In another work, SECM was used to provide complementary information in combination with 

the atomic/chemical force microscopy to evaluate the surface characteristics of pretreated 

carbon fiber reinforced plastics (CFRP). SECM images revealed the exposure of carbon fiber 

strands and delivered additional information about the chemical and morphological structure of 

the pretreated CFRP. 
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6. Zusammenfassung in deutscher Sprache 

Die Herstellung von hochwertigen Ultramikroelektroden (UME) war eine Voraussetzung für 

eine Vielzahl der in dieser Arbeit durchgeführten Experimente mit dem elektrochemischen 

Rastermikroskop (SECM). Die benötigten UMEs wurden routinemäßig mit Durchmessern von 

1 bis 25 μm, mit einer dünnen Isolierung (RG 2-20) aus Kalk-Natron-Glas und den gewünschten 

elektrochemischen Eigenschaften hergestellt. 

Für die Abbildung von reaktiven Sauerstoffspezies (ROS), die während der elektrochemischen 

Sauerstoffentwicklungsreaktion (OER) erzeugt werden, war die Bildung transienter 

Diffusionsschichten während der elektrochemischen Reaktionen an großen Substratelektroden 

einschränkend. Um diese Einschränkung zu überwinden wurden die bekannten Vorteile des 

konvektiven Stofftransports genutzt. Nach der Integration eines hoch Präzision Rührers in den 

Versuchsaufbau führte das wohldefinierte Rühren zu einer stationären Diffusionsschicht in der 

Nähe von großen Substratelektroden, die als Generatorelektroden betrieben wurden. Die 

Abbildung der elektrochemischen Wasserstoffentwicklung an einer 2 mm Scheibenelektrode 

aus Pt im Messmodus Substratgenerierung/Spitzensammlung (SG/TC) zeigte, dass das SECM 

in Kombination mit forcierter Konvektion die Menge an erhaltenen Information erhöht. Die 

zusätzliche Komplexität hydrodynamischer Methoden bei der theoretischen Beschreibung und 

Konstruktion von Bauelementen mit bekannten und reproduzierbaren Stofftransport-

bedingungen wurde mit numerischen Simulationen untersucht. Die Zuverlässigkeit der 

Simulation wurde numerisch und experimentell verifiziert. Die Simulation zeigte, dass die 

Rotation des zylindrischen Rührers zu einer laminaren Konvektion in der Nähe der 

Substratelektrode führte. Das Strömungsprofil in der Flüssigkeit hing von der Drehzahl des 

Rührers ab. Dies ermöglichte die Bildung von stationären Diffusionsschichten mit einer 

definierten Schichtdicke. Das konstruierte Modell ebnet den Weg für weitere numerische 

Studien mit anderen Zell- und Substratgeometrien. Die Kombination mit anderen 

Simulationsmodulen (z.B. für die Elektrochemie) könnte interessante und wertvolle 

Informationen für zukünftige Anwendungen liefern. 

Das hydrodynamische SECM ermöglichte ferner die Detektion und Abbildung der Produktion 

von ROS an Pt- und Bor-dotierten Diamant (BDD) Makroelektroden während der OER. Die 

Kombination der Spitze-Substrat-Voltammetrie mit der forcierten Konvektion führte zu einem 

Messprinzip ähnlich der rotierenden Ringscheibenelektrode und ermöglichte die Detektion von 
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ROS an BDD und Pt. Die Abbildung im hydrodynamischen SG/TC-Modus zeigte, dass sowohl 

H2O2 als auch eine weitere reduzierbare ROS-Spezies in Abhängigkeit vom lokalen Borgehalt 

der Oberfläche gleichzeitig an unterschiedlichen Domänen erzeugt werden.  

Diese bahnbrechenden Experimente haben den Vorteil des hydrodynamischen SECM für lokal 

aufgelöste Untersuchungen von hochreaktiven Spezies, die während der elektrochemischen 

Gasentwicklungsreaktion erzeugt werden, aufgezeigt. Die zusätzlichen analytischen 

Informationen helfen dabei elektrochemische Prozesse besser zu verstehen. Die Anwendung 

des SECM in Kombination mit forcierter Konvektion für andere heterogene Reaktionen könnte 

helfen, das Wissen in anderen wissenschaftlichen Bereichen zu erweitern und die Tür für neue 

Anwendungen zu öffnen. 

Darüber hinaus wurde das SECM dazu verwendet einzelne Goldnanodrähte (AuNWs), die auf 

Glasobjektträgern und auf Goldbeschichteten Glasobjektträgern immobilisiert wurden, mit 

negativer bzw. positiver Rückkopplung hochauflösend abzubilden. Später wurde die 

enzymatische Aktivität von immobilisierter Meerrettich-Peroxidase auf einzelnen AuNWs 

abgebildet. Diese Bilder zeigten eine höhere enzymatische Aktivität an den Enden der AuNWs. 

Diese Arbeit kann für die Charakterisierung anderer neuartiger Nanomaterialien erweitert 

werden, um ihr Redoxverhalten allein oder in Kombination mit anderen Redoxenzymen zu 

untersuchen. 

In einer weiteren Arbeit wurde das SECM dazu verwendet, um ergänzende Informationen über 

die Oberflächeneigenschaften von vorbehandelten kohlenstofffaserverstärkten Kunststoffen 

(CFRP) in Kombination mit der atomaren/chemischen Kraftmikroskopie zu liefern. SECM 

Bilder zeigten die Exposition von einzelnen Kohlenstofffasersträngen und lieferten zusätzliche 

Informationen über die chemische und morphologische Struktur des vorbehandelten CFRP-

Substrats. 
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