Synthesis of γ -cyclobutane amino acids via visible light

Dissertation

zur Erlangung des Doktorgrades der Naturwissenschaften

Dr. rer. nat.

der Fakultät für Chemie und Pharmazie

der Universität Regensburg

vorgelegt von

Sabine Martha Kerres

aus Burglengenfeld

Regensburg 2018

Die Arbeit wurde angeleitet von:	Prof. Dr. O. Reiser	
Promotionsgesuch eingereicht am:	09.07.2018	
Promotionskolloquium am:	21.09.2018	
Prüfungsausschuss:	Vorsitz: Prof. Dr	r. R. Müller
	1. Gutachter: Prof. Dr	r. O. Reiser
	2. Gutachter: Prof. Dr	r. D. J. Aitken
	3. Gutachter: Prof. J.	Wegener

Der experimentelle Teil der vorliegenden Arbeit wurde im Zeitraum von November 2014 bis Dezember 2017 am Lehrstuhl von Prof. Dr. Oliver Reiser, Institut für Organische Chemie, Universität Regensburg, angefertigt.

Herrn Prof. Dr. Oliver Reiser möchte ich herzlich für die Überlassung des interessanten Themas, die anregenden Diskussionen und seine stete Unterstützung während der Durchführung dieser Arbeit danken.

Für Florian und meine Familie

Freiheit bedeutet, dass man nicht unbedingt alles so machen muss, wie andere Menschen. (Astrid Lindgren)

Abbreviations

Å	angstrom	DEE	diethyl ether
Ac	acetyl	DEPT	distortionless enhancement by
ACHC	amino cylcohexane carboxylic		polarization transfer
	acid	dF(CF ₃)ppy	(2-(2,4-difluorophenyl)-
АсОН	acetic acid		5(trifluoromethyl)pyridine
ACC	amino cyclopropane	DIPEA	N,N-diisopropylethylamine
	carboxylic acid	DMA	N,N-dimethylaminiline
ACBC	amino cyclobutane carboxylic	DMAP	N,N-dimethyl-4-aminopyridine
	acid	DMF	dimethylformamide
ACPC	amino cyclopentane	DMSO	dimethylsulfoxide
	carboxylic acid	dr	diastereomeric ratio
APC	amino pyrrolidine carboxylic	dtp-bpy	4,4'-di-tert-butyl-2,2'-dipyridyl
	acid	E _T	triplet energy
aq.	aqueous	E _{1/2}	standard reaction potential
Boc	tert-butyloxycarbonyl	EDC	1-ethyl-3-
bp	boiling point		(3-dimethylaminopropyl)carbodiimide
bpy	bipyridine	ee	enantiomeric excess
bpz	2,2'-bipyrazine	equiv.	equivalent(s)
brine	saturated NaCl solution	ESI	electrospray ionization
Bu	butyl	et al.	and others
°C	degrees Celcius	Et	ethyl
calc.	calculated	ET	energy transfer
CBz	carboxybenzyl	EtOAc	ethyl acetate
CFL	compact fluorescent light bulb	fac	facial
cm ⁻¹	wavenumbers	Fmoc	fluorenylmethyloxycarbonyl
conv.	conversion	GABA	γ-amino butyric acid
CV	cyclic voltammetry	h	hour(s)
d	day(s)	hv	light
D	electron donor	HMDS	hexamethyldisilazane
dap	2,9-bis(para-anisyl)-1,10-	HP	high pressure
	phenanthroline	HPLC	high performance liquid
DCC	N,N'-		chromatography
	dicyclohexylcarbodiimide	HRMS	high resolution mass spectrometry
DCM	dichloromethane	IBX	2-iodoxybenzoic acid
decomp.	decomposition	<i>i-</i> Pr	<i>iso</i> -propyl

IR	infrared	TBDMS	tert-butyldimethylsilyl
ISC	intersystem crossing	tert-Bu	<i>tert</i> -butyl
Κ	reaction constant	TS	transition state
L*	chiral ligand	TFA	trifluoroacetic acid
LED	light-emitting diode	TFMSA	trifluoromethanesulfonic acid
li.	liquid	THF	tetrahydrofuran
LMCT	ligand to metal charge transfer	TLC	thin-layer chromatography
М	molar	UV	ultraviolet
Me	methyl	V	Volt
MeCN	acetonitrile	W	Watt
MHz	megahertz	VS	versus
min	minute(s)	Х	arbitrary moiety
MLCT	metal to ligand charge transfer		
mp.	melting point		
MS	mass spectrometry		
MV	methyl viologen		
NAC	near attack conformation		
NBS	N-bromosuccinimide		
nBuLi	<i>n</i> -butylithium		
nm	nanometer(s)		
NMR	nuclear magnetic resonance		
PC	photocatalyst		
PET	photoinduced electron transfer		
Pg	protecting group		
Ph	phenyl		
ppm	part(s) per million		
рру	2-phenylpyridine		
R	arbitrary rest		
$R_{\rm f}$	retention factor		
rac	racemic		
RP	reversed phase		
R_{f}	retention factor		
rt	room temperature		
SCE	saturated calomel electrode		
Su	succinimide		
Т	temperature		
TBAF	tetrabutylammonium fluoride		

Table of contents

A Introduction	1
1 [2+2] Cycloaddition	1
2 [2+2] Photocycloaddition via first excited singlet state S ₁	3
3 Copper(I)-catalyzed [2+2] photocycloaddition	6
4 [2+2] Photocycloaddition via first excited triplet state T ₁	8
5 [2+2] Photocycloaddition via energy transfer	12
6 [2+2] Photocycloaddition via photoinduced electron transfer	15
7 References	19
B Main Part	23
1 Preliminary studies towards the synthesis of the bicyclic key intermediates	23
1.1 Introduction	23
1.2 Studies towards [2+2] photocycloaddition via radical anion mechanism	26
1.3 Studies towards [2+2] photocycloaddition via radical cation mechanism	35
1.4 Studies towards [2+2] photocycloaddition via energy transfer	39
2 Synthesis of precursors for [2+2] photocycloaddition	42
2.1 Synthesis of amines	42
2.2 Synthesis of acids	44
2.3 Synthesis of amide-linked dienes	46
3 Theoretical studies towards the reaction mechanism of [2+2] photocycloaddition of amide-	linked
dienes	49
4 Optimization of reaction conditions of [2+2] photocycloaddition	53
5 Substrate scope of the [2+2] photocycloaddition	58
6 Upscaling of the [2+2] photocycloaddition	61
7 Transformation of the bicyclic key intermediates into racemic γ-cyclobutane amino acid	63
7.1 Removal of the <i>tert</i> -butyl group	63
7.2 Studies towards debenzylation	66
7.3 Hydrolysis of the <i>N</i> -Boc derivatives	70
7.4 Conclusion	71
8 Chiral resolution	72
9 Second synthetic route towards enantioselective γ-cyclobutane amino acids	74
10 Synthesis of chiral 3-(aminomethyl)-5-phenylpentanoic acid	78
11 Neuropeptide Y analogues	83
11.1 Neuropeptide Y	83
11.2 Incorporation of γ-cyclobutane amino acids	85
12 References	88

C Summary	
D Zusammenfassung	
E Experimental Part	
1 General information	
2 Syntheses of compounds	
3 DFT-calculations	
4 References	215
F Appendix	
1 NMR spectra	
2 HPLC chromatograms	
3 X-ray crystallographic data	
4 Curriculum Vitae	
G Acknowledgment	
H Declaration	

A Introduction

1 [2+2] Cycloaddition

The cyclobutane motif is ubiquitous in a wide range of natural products. Molecules containing these small ring systems are versatile molecular building blocks in organic synthesis since their inherent ring strain enables a selective cleavage of a cyclobutane bond.^[1] Thus they can serve as key intermediates to build up complex molecule structures by ring contraction, ring expansion or ring opening.^[2] Furthermore, cyclobutane derivatives find great application in catalytical processes.^[3] During the last decades, several research groups have been working on the development to get access to such molecules. Besides C-H activation^[4], direct ring closure^[5] and radical cyclization to form cyclobutanes, they are also accessible by cyclopropanes^[6] or sugar derivatives^[7]. However, the most frequently used method to synthesize cyclobutanes is the [2+2] cycloaddition.^[8]

"A cycloaddition reaction is a ring forming addition of "m" number of atoms of one group to "n" number of atoms of another group; if both groups are part of the same molecule the cycloaddition is intramolecular and if both groups are part of different molecules the cycloaddition is intermolecular [...] Most cycloadditions are characterized by the formation of two new sigma bonds as the ring is being formed."^[9]

The unambiguous advantage of this reaction type is the generation of multiple bonds and stereocenters in a single step what makes this reaction a powerful and meaningful method to build up natural products, biologically active molecules and other complex structures. This type of reaction can either take place thermally or photochemically. According to the Woodward-Hoffmann rules^[10], a thermal [2+2] cycloaddition is symmetrically allowed *antara-supra-facial* what is unfavorable for substituted alkenes due to steric reasons. Some exceptions herein represent cycloadditions of molecules which possess two double bonds to the same carbon and therefore two π -bonds at right angles as for example ketenes^[11], isocyanates^[12] or allenes^[13]. The thermal [2+2] cycloaddition of ketenes with alkenes forms cyclobutanones whereas the reactions of ketene with imines or chlorosulfonyl isocyanates with alkenes construct β -lactams. Furthermore, the thermal [2+2] cycloaddition of allenes allows the introduction of exomethylene moieties at the four-membered ring.^[14]

More attention has been paid to the extensively studied photochemical [2+2] cycloaddition since it is symmetrically allowed in a *suprafacial-suprafacial* manner. In 1908, Cíamician and

coworkers described the earliest example of a [2+2] photocycloaddition: the transformation of carvone **1** to carvone camphor **2** by exposure to sunlight for one year (Scheme 1).^[15]

Scheme 1. Conversion of carvone to carvone camphor, reported by Cíamician et al.^[15]

The first synthetic applications were developed by Corey^[16] and Eaton^[17] with the syntheses of caryophyllene **3**, a sesquiterpene, which is an ingredient of several essential oils, and cubane **4** as strained energy-rich molecule. Numerous natural and unnatural compounds have been prepared having a [2+2] photocycloaddition as crucial step in their syntheses.^[18] Depending on the involved substrate different classes of this reaction can be described: [2+2] photocycloaddition of alkenes, enone-photocycloaddition, metal-catalyzed [2+2] photocycloaddition, de Mayo reaction or the Paternò-Büchi reaction. A selection of some representative examples is illustrated in figure 1.^[19,20]

Figure 1. Representative examples of photochemical [2+2] photocycloaddition.

Depending on the used substrates, reagents and excitation mode the [2+2] photocycloaddition occurs *via* different mechanistic pathways.^[21] On the one hand, direct excitation of a reacting partner can generate its excited singlet state S_1 and by a subsequent intersystem crossing (ISC) also its excited triplet state T_1 both of which can react with another alkene in its ground state giving rise to cyclobutane derivatives. On the other hand, the presence of an additive absorbing the light the [2+2] photocycloaddition can be performed either by an energy transfer or by a photoinduced electron transfer (PET) from this photoexcited species to the reactant. In the following chapter, the different reaction modes will be discussed in more detail and be exemplified by synthetic examples.

2 [2+2] Photocycloaddition via first excited singlet state S₁

The direct excitation of an alkene from its ground state S_0 **11** leads to its first excited state S_1 **12**. A subsequent addition to another ground state alkene **13** is called photocycloaddition, giving rise to the cyclobutane compound **15**. The reaction either occurs in a concerted manner or *via* a generation of an exciplex **14** (Scheme 2).^[22]

Scheme 2. Reaction mechanism of [2+2] photocycloaddition via S₁.^[22]

Since the excited state S_1 is mostly dominated by $\pi\pi^*$ character, the *cis-trans* isomerization usually displays the competitive reaction, what serves as very fast radiationless energy decay.^[22] This issue can be circumvented by using constrained molecules, as cycloalkenes with a ring size from three to five or performing the reaction in a rigid environment.^[23] Therefore, there is only a limited number of singlet excited [2+2] photocycloadditions of acyclic alkenes in solution. For example, in the case of liquid *trans*-2-butene (16) and *cis*-2-butene (17) their inefficient dimerizations compete with efficient *cis-trans* isomerization. Irradiation of *trans*-2-butene (16) led stereospecifically to tetramethyl cyclobutanes 18 and 19 and *cis*-2-butene (17) reacted to dimers 19 and 20 at low conversion, respectively. At high reagent concentration, the

cycloaddition competes effectively with the *cis-trans* isomerization resulting in reduced product selectivity (Scheme 3).^[9,24,25]

Scheme 3. Photocycloaddition of acyclic olefin.

Furthermore S₁ ($\pi\pi^*$) has a very short lifetime and the intersystem crossing (ISC) towards the more long-lived first triplet state T₁ ($\pi\pi^*$) is generally too slow to be efficient due to a very large singlet-triplet energy gap (typically > 40 kcal/mol).^[9] Additionally, direct irradiation of simple alkenes is quite a challenge since they exhibit an absorption maximum λ_{max} less than or equal to 200 nm. Conventional light sources are mercury vapor lamps which are commercially available in three different types: low-, medium- and high-pressure. They differ in their spectral characteristic. The low-pressure mercury lamp emits light mainly at 253.7 nm, the weak band of 184.9 nm can be cut off by a suitable filter. Whereas the medium-pressure mercury lamp exhibits spectral lines at 265.4, 313 and 365 nm which are broadened in the case of the high-pressure mercury lamp leading roughly to a continuum.^[26]

Aryl substituted alkenes absorb light at longer wavelengths and represent more suitable substrates for the [2+2] photocycloaddition *via* excited singlet state S₁. Exemplary, the state energy diagrams of *cis*-cyclooctene (**21**), 1,3-butadiene (**22**), *trans*- β -methylstyrene (**23**) and *trans*-stilbene (**24**) are illustrated in figure 2.^[9]

Figure 2. Representative state energy diagrams of alkenes.

Another advantage of aryl alkenes is that some of them possess a small energy barrier for the rotation around their C=C bond what makes the energy dissipation by *cis-trans* isomerization more difficult.^[9,27,28]

In 2007, Abramić *et al.*^[29] build up amidino-benzimidazole derivative **26** in a yield of 80% using an intermolecular [2+2] photocycloaddition of 1,2-diarylalkenes as key step in their synthesis. Herein the corresponding monomer **25** was directly irradiated in water by a 400 W high-pressure mercury lamp applying a Pyrex filter (Scheme 4). By introduction of the cyclobutane moiety as rigid conformation element, the inhibitory potential against dipeptidyl peptidase III which is involved in the mammalian pain modulatory system could be significantly improved.

Scheme 4. Synthesis of amidino-benzimidazole 26 as an inhibitor of dipeptidyl peptidase III.

The group of Nishimura extensively applied an intramolecular variant of the [2+2] photocycloaddition occurring *via* the first excited singlet state S_1 to synthesize cyclophanes^[30] as shown in compound **27** or crownethers^[31] **28** (Figure 3).

Figure 3. Exemplary structures of a cyclophane 27 and crownether 28.

Fleming and coworkers performed their [2+2] photocycloaddition with silyl-tethered aryl alkenes that bears the advantage of pre-organization of the reactant alkenes.^[32] Hence a better control of the regio- and stereochemistry of this reaction could be achieved. Since the likelihood of a collision of both affected double bonds could be increased by this manner, the competitive *cis-trans* isomerization could be minimized. The [2+2] photocycloaddition of the cinnamoyloxy silane **29** gave only one diastereomer **30** which was subsequently treated with ammonium fluoride to achieve the removal of the covalent bridge. Cyclobutane **31** could be obtained in an excellent yield of 94% (Scheme 5).^[33]

Scheme 5. Singlet [2+2] photocycloaddition of silyl-tethered derivatives, described by Fleming et al.^[33]

3 Copper(I)-catalyzed [2+2] photocycloaddition^[27,34]

In the presence of transition metal salts, a direct excitation of non-conjugated alkenes becomes feasible due to the bathochromic shift of their absorption maxima from around 200 nm to 240 nm. The most frequently used metal species were Cu(I) salts, especially the commercially available Cu(OTf) in benzene or toluene. At first, the reacting alkene moieties coordinate to a single copper(I) cation to form a ground state complex **32**. By photoexcitation of this bis-alkene-Cu(I) complex **32** the cyclobutane formation and regeneration of the Cu(I) catalyst are accomplished either *via* a metal-ligand or ligand-metal charge transfer (MLCT **33** or

LMCT **34**). The mechanism as concerted [2+2] photocycloaddition was also proposed (Scheme 6).

Scheme 6. Mechanism of Cu(I)-catalyzed [2+2] photocycloaddition.^[22]

This methodology was especially applied for [2+2] photodimerization of the *endo*dicyclopentadiene **37** giving rise to 88% of the dimer **38**. Interestingly, in the presence of a triplet sensitizer as acetone compound **37** reacted *via* an intramolecular [2+2]photocycloaddition to the cage hydrocarbon compound **39**. Probably due to steric reasons, the complexation of the double bonds of two substrate molecules **37** is preferred over the one of both alkene moieties of one substrate molecule **37** (Scheme 7).^[35]

Scheme 7. Intermolecular and intramolecular [2+2] photocycloaddition of endo-dicyclopentadiene.

The generality as well as the scope of the intramolecular variant of this reaction type has been extensively studied by the groups of Salomon^[36] and Ghosh^[37]. Suitable substrate classes represent 1,6-heptadienes, diallyl ethers, homoallyl vinyl ethers and *N*,*N*-diallyl carbamates. In this manner, a huge variety of natural products and biologically active compound could be generated. Cyclobut-A **42**, a nucleoside analogue of the naturally occurring antibiotic oxetanocin, which exhibit remarkable antiviral activity, was synthesized by Ghosh *et al.*^[38] using a stereoselective intramolecular Cu(I)-catalyzed [2+2] photocycloaddition as essential reaction step (Scheme 8). In the presence of Cu(OTf) the solution of triene **40** in diethyl ether was irradiated by a medium-pressure mercury lamp (450 W) through a double-walled water-cooled quartz immersion well ($\lambda_{irr} > 250$ nm) yielding 70% of an inseparable mixture of four

diastereomers **41**. The reason for obtaining diastereomers **41** is the exocyclic double bond. However, the mixture could be taken for the further synthesis towards cyclobut-A **42**, since this double bond was oxidatively cleaved off and the stereocenter at the cyclobutane ring was epimerized during the reaction sequence.

Scheme 8. The key step of the synthesis towards cyclobut-A 42, reported by Ghosh et al.^[38]

4 [2+2] Photocycloaddition via first excited triplet state T₁^[22,27,39,40]

Alkenes whose double bond is in conjugation with a carbonyl group can react in the [2+2] photocycloaddition via their first excited triplet state T₁. Typical excitation wavelengths of α , β unsaturated carbonyl, carboxyl and related heterocyclic compounds are over 250 nm.^[41] Therefore, they are accessible by commercially available light sources and also suitable cut off filter can be used in order to avoid side reactions by irradiation with short wavelengths light. Since their excited singlet state S_1 is of $n\pi^*$ character, the intersystem crossing takes place very fast and the cyclobutanation occurs from the lowest lying triplet state T₁ possessing mainly $\pi\pi^*$ character.^[42] Especially, cyclic 5- or 6-membered alkenones are widely employed substrate classes for this reaction type. Herein no energy dissipation by isomerization over the C=C double bond can take place.^[43] By direct excitation of cyclopentenone **43** the first excited singlet state S_1 can be reached. By rapid intersystem crossing the long-lived triplet state 45 can be generated followed by the formation of an exciplex 47 with a ground state alkene 46.^[44] This complex 47 can either decay to the triplet 1,4-biradicals 48 and 49 or competitively to the ground state reactants 43 and 46.^[45] Weedon and coworkers confirmed the formation of the 1,4biradical intermediates during the [2+2] photocycloaddition by trapping them with hydrogen selenide.^[46] By a further intersystem crossing the singlet 1,4-biradicals **50** and **51** were obtained which either cyclize to the desired cyclobutane derivative 52 or revert to the starting material.^[39,47]

Scheme 9. Reaction mechanism of [2+2] photocycloaddition of cyclopentenone 43.

Advantageously, the T_1 state represents a more long-lived species so that a cycloaddition of an excited enone with a ground state alkene, which is normally used in excess, becomes more likely. However, in contrast to the singlet [2+2] photocycloaddition where the stereochemistry of the starting material is preserved the stereocontrol during the triplet reaction is lost due to the formation of 1,4-biradical intermediates. On the one hand, the regioselectivity is controlled by the stability of the 1,4-biradical and on the other hand, it is influenced by the ratio between the cleavage of the singlet 1,4-biradicals to the ground state starting material and the cyclization to the product.^[48]

In intermolecular [2+2] photocycloadditions of enones with alkenes, the regioselectivity depends to a certain extent on the substitution pattern of the alkene. The excited state of an enone displays an inverted polarity in contrast to its ground state (Umpolung).^[49] Therefore, electron-rich alkenes prefer a head-to-tail conformation whereas electron poor ones a head-to-head conformation. In the reaction of lactam **53** with acrylonitrile **54** compound **56a** with the 1,2-relationship to the carbonyl represents the major product and with ethyl vinyl ether **55** isomer **57b** with the 1,3-relationship, respectively.^[50]

Scheme 10. [2+2] photocycloaddition of lactam 53 with an acceptor olefin 54 vs with a donor olefin 55.

Applying cyclopentenone as substrate leads always to a *cis*-fusion at the cyclobutane ring whereas also a *trans*-fusion can be obtained in the case of cyclohexanone because of the twisted conformation of its excited state.^[16,44]

Good diastereoselectivity can be easily achieved by the introduction of chirality to the enone derivative as for example a substituent in γ -position to the carbonyl moiety or by using a bicyclic enone since the alkene will preferably attack from the less shielded side. Piers *et al.*^[51] profit from this behavior in their synthesis of (±)-kelsoene **61** obtaining only one diastereomer **60** in the [2+2] photocycloaddition (Scheme 11).

Scheme 11. Intermolecular [2+2] approach towards (±)-kelsoene 61 by Piers and coworkers.^[51]

Moreover, diastereoselectivity in the intermolecular [2+2] photocycloaddition of enones can be induced using already chiral alkene reacting partner.^[52]

The intramolecular variant is usually highly regio- and stereoselective, especially due to the "rule of five", which implies that 1,4-biradicals in which a cyclopentane ring has been formed are preferentially generated.^[49,53]

A synthetically useful variant displays the de Mayo reaction. In the 1960s, de Mayo and coworkers described the photocycloaddition of β -diketones with alkenes giving rise to 1,5-diketones (Scheme 12). The tautomerization of the 1,3-diketone **62** yields the corresponding keto enol **63** which undergoes the [2+2] photocycloaddition. The resulting β -acyclcyclobutanol **64** reacts in a retro-aldolisation to the 1,5 diketone **65**.^[54]

Scheme 12. De Mayo reaction.

A huge variety of natural products could be build up having de Mayo reaction as key step in the synthetical sequence as for example hirsutene^[55], loganin^[20], reserpine^[56] or longifolene^[57]. In analogy, nitrogen-containing ring systems can be generated by subjecting vinylogous amides to the [2+2] photocycloaddition followed by a retro-Mannich fragmentation.^[58] For instance koumine^[59], manzamine-A^[60] or hetisine^[61] could be synthesized.

Another important example is the [2+2] photocycloaddition of an excited carbonyl and an alkene, the so-called Paternò-Büchi reaction which is a powerful method to form oxetanes (Scheme 13). By light absorption, the carbonyl moiety is excited to its first singlet excited state S_1 **67** with $n\pi^*$ character that readily undergoes intersystem crossing to the corresponding T_1 **68**. The cyclobutane formation can be furnished from both the singlet and the triplet state in which the majority of the Paternò-Büchi reactions occur.^[62]

Scheme 13. Paternò-Büchi reaction, in general.^[63]

One limitation of this reaction arises if the applied carbonyl derivative has a higher triplet energy than the alkene. Then the energy transfer would present the major reaction pathway and the oxetane formation will occur slowly or not at all. The irradiation of norbornene $(E_T = 314 \text{ kJ/mol})$ in the presence of benzophenone $(E_T = 288 \text{ kJ/mol})$ led to oxetane formation between both substrates, whereas in the presence of acetophenone $(E_T = 310 \text{ kcal/mol})$ whose triplet energy is close to the one of norbornene the sensitized photodimerization of the alkene was obtained.^[64]

5 [2+2] Photocycloaddition via energy transfer

As already mentioned, numerous compounds proceed an inefficient intersystem crossing (ISC) due to the big energy gap between their singlet and triplet excited state. Therefore, another possibility to generate the first triplet state T_1 of an olefin displays the energy transfer from another photoexcited molecule (Figure 4).^[9]

Figure 4. Energy diagram of sensitization process.

A molecule possessing following characteristics represents a good triplet photosensitizer:

- fast ISC-rate relative to another deactivation mode of S₁ (low-lying S₁ and high-lying T₁)
- high triplet energy E_T (T₁ (sensitizer) higher than T₁ (acceptor olefin))
 → energy transfer has to be exothermic
- long triplet lifetime τ_T
- different absorption spectrum relative to the one of the acceptor olefin
- low chemical reactivity

In general, a sensitization process can be achieved by performing the reaction in acetone ($E_T = 326 \text{ kJ/mol}$) or in a transparent solvent in the presence of an aromatic ketone as benzophenone ($E_T = 288 \text{ kJ/mol}$) or acetophenone ($E_T = 310 \text{ kJ/mol}$).

For instance, Aitken and coworkers used this reaction type to build up several unnatural amino acids containing a cyclobutane core. In their synthetic sequence towards (\pm) -*cis*-2-amino-1-cyclobutanecarboxylic acid **74** the crucial step is an acetone-sensitized [2+2] photocycloaddition of uracil **71** and ethylene **59**.^[65,66] The controlled degradation of the

heterocyclic ring in compound **72** led to the corresponding *N*-carbamoyl- β -amino acid **73** which was further hydrolyzed to the desired *cis*-cyclobutane amino acid **74** in an overall yield of 52% over three steps (Scheme 14).

Scheme 14. Synthesis of (±)-cis-2-amino-1-cyclobutanecarboxylic acid 73 according to Aitken et al.^[65]

Moreover, Aitken *et al.*^[67] applied acetophenone as triplet sensitizer in the synthesis of four stereoisomers of cyclobutane analogues of glutamic acid. Herein the [2+2] photocycloaddition took place between maleic anhydride and again ethylene. By further transformations and through enzymatic transamination all four isomers of *L*-2-(2-carboxycyclobutyl)-glycine (**77-80**) could be obtained (Scheme 15).

Scheme 15. The key step of the synthesis of all four isomers of L-2-(2-carboxycyclobutyl)-glycine (77-80).

Besides the well-studied UV-mediated triplet sensitization, the field of energy transfer by irradiation with visible light remains to be further developed. Organic dyes as flavin^[68] or Eosin $Y^{[69]}$ are known to promote [2+2] photocycloaddition having their absorption maxima in the range of visible light. Furthermore, Yoon and coworkers described the sensitized [2+2] cycloaddition of tethered bisstyrenes whose oxidation potential has precluded the participation in a photoredox catalytic pathway, using the visible light active organometallic compound, $Ir[(dtb-bpy)(dF(CF_3)ppy)_2]PF_6.^{[70]}$

By an energy transfer of the excited Ru(bpy)₃Cl₂ to 2-ylideneoxindoles Xiao *et al.*^[71] succeed in their [2+2] homodimerization.

Especially, the enantioselective approach towards a sensitized [2+2] cycloaddition is still challenging.^[72] For example, the group of Thorsten Bach could introduce chirality in the intramolecular [2+2] photocycloaddition of quinolone-derived substrates^[73] or in the intermolecular reaction of 2-pyridones with acetylene dicarboxylates^[74] by applying a chiral photosensitizer. This catalyst possesses a chromophoric unit to absorb the light and to be capable of energy transfer, as well as a lactam moiety to interact with the substrate and to preorganize it. The incorporation of a thioxanthone unit to the catalyst **82** allowed excitation in the visible light range (Scheme 16).^[75]

Scheme 16. Exemplary intramolecular [2+2] photocycloaddition reported by Bach et al.^[75]

In 2017, Yoon and coworkers took a different approach to develop an enantioselective method for a sensitized [2+2] photocycloaddition *via* visible light.^[76] By coordination of 2'-hydroxychalcones with a chiral Lewis acid, the singlet-triplet energy gap of these substrates can be diminished what enables $Ru(bpy)_3Cl_2$ to serve as triplet sensitizer in this reaction. The chirality of the applied Lewis acid provides the opportunity for a highly enantioselective synthesis of 1,2-diarylcyclobutane derivatives which are key structures in a variety of natural products as for example in norlignan **88**^[77] (Scheme 17).

Scheme 17. The key step in the synthesis of norlignane 88 by Yoon et al.^[76]

6 [2+2] Photocycloaddition via photoinduced electron transfer

In the presence of a photocatalyst such as ketones, pyrylium salts, organic dyes or metalpolypyridyl complexes the [2+2] cycloaddition can also be achieved *via* an electron transfer. Either the olefin is reduced generating a radical anion intermediate (reductive PET) or the alkene delivers an electron to the catalyst having a radical cation intermediate (oxidative PET).^[9,25,78]

For instance, by an oxidative PET an ethene radical cation **89** is generated which reacts with another olefin **11** to a 1,4-radical cation dimeric species **90**. The back-electron transfer can lead to the cyclobutane formation as well as the oxidation of a further alkene **11** during the radical chain propagation (Scheme 18).^[79]

Scheme 18. Reaction mechanism of an oxidative PET.

The formation of a triplet state alkene or of a triplex as intermediates which participate rather in the cycloaddition than the free radical species are described in the literature as well.^[79,80] Especially, electron-rich alkenes display a suitable substrate class for this reaction type. In analogy to T₁ sensitized [2+2] cycloaddition the regiochemistry is dominated by the formation of the most stabilized dimeric 1,4-radical cation leading mainly to head-to-head conformations. Moreover, heterodimer 1,4-radical cation formation can take place though the oxidation potentials of both substrates have to be close to each other.^[81]

In recent years the photoredox catalysis *via* visible light has become very popular in this research field.^[18,82] Exposuring the photoreaction to light in the range of 400-700 nm bears the advantage of an increased functional group tolerance, no need of specialized equipment, no high input of energy and the usage of environmentally friendly LEDs or fluorescent light bulbs as light sources.

In 2013, Nicewicz *et al.*^[83] demonstrated the visible light induced [2+2] photocycloaddition of aryl alkenes towards cyclobutane lignans by applying triaryloxopyrylium salt **94** as photooxidation catalyst in conjunction with anthracene and naphthalene as electron relay compound (Scheme 19).

Scheme 19. Visible light induced [2+2] cycloaddition of styrenes by Nicewicz et al.^[83]

Above all the work of Yoon and coworkers has significantly contributed to the development of visible light induced [2+2] cycloadditions of a broad range of substrates.^[82] They demonstrate that Lewis acid activated enone substrates are capable of participating in [2+2] cycloaddition *via* visible light photocatalysis in an intra-^[84] as well as intermolecular^[85] manner. In contrast to the previously described reactions, key intermediate herein represents a photogenerated radical anion. In 2014, this work group also succeeded in establishing an enantioselective version of [2+2] photocycloaddition of α , β -unsaturated ketones by applying a dual catalyst system consisting of a visible light absorbing photocatalyst and a stereocontrolling Lewis acid cocatalyst (Scheme 20).^[86]

Scheme 20. Enantioselective [2+2] photocycloaddition by Yoon et al.^[86]

The absorption of visible light induces a metal to ligand charge transfer between the Ru-species and the pyridyl ligands generating the photoexcited state $Ru^*(bpy)_3^{2+}$. The reductive quenching with DIPEA as sacrificial electron donor led to the reduced $Ru(bpy)_3^+$ species which transfers one electron to the Lewis acid activated enone **100** by regenerating the starting catalyst, $Ru(bpy)_3^{2+}$. A 1,4-addition of radical **101** to another α,β -unsaturated carbonyl compound **98** and a subsequent radical cyclization provides the cyclobutane radical **103** which can be oxidized either by excited $Ru^*(bpy)_3^{2+}$ or by the amine radical cation to give cyclobutane derivative **104** with an enantiomeric excess of 92% of the major diastereomer. The high enantioselectivity could be achieved by using a complex of the lanthanide salt $Eu(OTf)_3$ and the chiral Schiff base ligand L* as Lewis acid.

In summary, the [2+2] photocycloaddition is a powerful method to build up highly functionalized cyclobutane derivatives. Due to the different reaction pathways on which this cycloaddition can proceed, a wide range of substrates can be covered. Recently, the development of asymmetric [2+2] photocycloaddition has attracted much attention and will remain an interesting as well as challenging research topic in the future.

7 References

- [1] J. C. Namyslo, D. E. Kaufmann, *Chem. Rev.* **2003**, *103*, 1485–1537.
- [2] E. Lee-Ruff, G. Mladenova, *Chem. Rev.* **2003**, *103*, 1449–1483.
- [3] T. Seiser, T. Saget, D. N. Tran, N. Cramer, *Angew. Chem., Int. Ed.* **2011**, *50*, 7740–7752.
- [4] a) C. D. Bray, G. Pattenden, *Tetrahedron Lett.* 2006, 47, 3937–3939; b) M. Chaumontet,
 R. Piccardi, N. Audic, J. Hitce, J.-L. Peglion, E. Clot, O. Baudoin, *J. Am. Chem. Soc.* 2008, 130, 15157–15166.
- [5] a) H. Ito, T. Toyoda, M. Sawamura, J. Am. Chem. Soc. 2010, 132, 5990–5992; b) Y. T. Han,
 N.-J. Kim, J.-W. Jung, H. Yun, S. Lee, Y.-G. Suh, Arch. Pharm. Res. 2011, 34 (9),
 1437–1442.
- [6] a) J. Barluenga, L. Riesgo, L. A. López, E. Rubio, M. Tomás, *Angew. Chem., Int. Ed.* 2009, 48, 7569–7572; b) C. Guérot, B. H. Tchitchanov, H. Knust, E. M. Carreira, *Org. Lett.* 2011, 13, 780–783; c) S. Ye, Z.-X. Yu, *Chem. Commun.* 2011, 47, 794–796; d) A. F. Stepan, C. Subramanyam, I. V. Efremov, J. K. Dutra, T. J. O'Sullivan, K. J. DiRico, W. S. McDonald, A. Won, P. H. Dorff, C. E. Nolan *et al.*, *J. Med. Chem.* 2012, 55, 3414–3424.
- [7] S. Dong, G. D. Parker, T. Tei, L. A. Paquette, Org. Lett. 2006, 8, 2429–2431.
- [8] a) S. L. Schreiber, *Science* 1985, 227, 857–863; b) J. Iriondo-Alberdi, M. F. Greaney, *Eur. J. Org. Chem.* 2007, 4801–4815; c) N. Hoffmann, *Chem. Rev.* 2008, 108, 1052–1103; d) T. Bach, J. P. Hehn, *Angew. Chem., Int. Ed.* 2011, *50*, 1000–1045.
- [9] N. J. Turro, V. Ramamurthy, J. C. Scaiano, *Modern Molecular Photochemistry of Organic Molecules, Chapter 10*, University Science Books, Sausalito, 2010.
- [10] a) R. B. Woodward, R. Hoffmann, J. Am. Chem. Soc. 1965, 87 (2), 395–397;
 b) R. B. Woodward, R. Hoffmann, Angew. Chem., Int. Ed. 1969, 8 (11), 781–932.
- [11] P. Rullière, J. Grisel, C. Poittevin, P. Cividino, S. Carret, J.-F. Poisson, *Org. Lett.* 2016, 18, 2824–2827.
- [12] S. Perreault, T. Rovis, *Chem. Soc. Rev.* **2009**, *38*, 3149–3159.
- [13] B. Alcaide, P. Almendros, C. Aragoncillo, *Chem. Soc. Rev.* 2010, *39*, 783–816.
- [14] J. Clayden, N. Greeves, S. Warren, Organic Chemistry, Second Edition, Oxford University Press 2012, 877–908.
- [15] G. Cíamician, P. Silber, *Chem. Ber.* **1908**, *41*, 1928–1935.
- [16] E. J. Corey, Rajat B. Mitra., Uda Hisashi, J. Am. Chem. Soc. **1964**, 86, 485–492.
- [17] P. E. Eaton, T. W. Cole, J. Am. Chem. Soc. 1964, 86, 3157-3158.
- [18] Markus D. Kärkäs, John A. Porco, Corey R. J. Stephenson, *Chem. Rev.* 2016, *116*, 9683–9747.
- [19] a) R. Zurflüh, L. L. Dunham, V. L. Spain, J. B. Siddall, J. Am. Chem. Soc. 1970, 92 (2), 425–427; b) R. L. Cargill, B. W. Wright, J. Org. Chem. 1975, 40 (1), 120-122; c) A. Meibom, N. H. Sleep, C. P. Chamberlain, R. G. Coleman, R. Frei, M. T. Hren, J. L. Wooden, Nature

2002, *419*, 705–708; d) S. D. Larsen, S. A. Monti, *J. Am. Chem. Soc.* **1977**, *99* (24), 8015–8020; e) M. Takahashi, M. Ichikawa, S. Aoyagi, C. Kibayashi, *Tetrahedron Lett.* **2005**, *46*, 57–59; f) T. Bach, J. Schröder, *Liebigs Ann.* **1997**, *11*, 2265–2267.

- [20] G. Büchi, J. A. Carlson, J. E. Powell Jr., L.-F. Tietze, J. Am. Chem. Soc. 1970, 92 (7), 2165–2167.
- [21] J. Kopecky, Organic Photochemistry: A visual Approach, Chapter 5, VCH, New York, 1992.
- [22] P. Klán, J. Wirz, *Photochemistry of Organic Compounds: From Concepts to Practice, Chapter* 6, Wiley, Chichester, U.K, 2009.
- [23] V. Ramamurthy, J. Sivaguru, *Chem. Rev.* **2016**, *116*, 9914–9993.
- [24] a) N. Sakurai, M. Murakami, M. Kumada, J. Am. Chem. Soc. 1969, 520–522; b) H. Yamazaki,
 R. J. Cvetanovic, J. Am. Chem. Soc. 1969, 91 (2), 520–522; c) H. Yamazaki, R. J. Cvetanovic,
 R. S. Irwin, J. Am. Chem. Soc. 1976, 98 (8), 2198–2205.
- [25] A. Gilbert, J. Baggot, *Essentials of Molecular Photochemistry, Chapter 6*, Blackwell Scientific Publications, Oxford, **1991**.
- [26] W. Horspool, F. Lenci, *CRC Handbook of Organic Photochemistry and Photobiology, Chapter 22*, CRC Press LCC, **2004**.
- [27] G. Kaupp, W. M. Horspool, P.-S. Song, *CRC Handbook of Organic Photochemistry and Photobiology, First Edition, Chapter 6*, CRC Press Inc., **1995**.
- [28] F. D. Lewis, D. H. Volman, G. S. Hammond, Gollnick K., Advances in Photochemistry (Vol 13), John Wiley & Sons, Inc, New York, 1986.
- [29] D. Agić, M. Hranjec, N. Jajcanin, K. Starcević, G. Karminski-Zamola, M. Abramić, *Bioorg. Chem.* 2007, 35, 153–169.
- [30] a) J. Nishimura, H. Doi, E. Ueda, A. Ohbayashi, A. Oku, J. Am. Chem. Soc. 1987, 109, 5293–5295; b) J. Nishimura, A. Ohbayashi, E. Ueda, A. Oku, Chem. Ber. 1988, 121, 2025–2028.
- [31] S. Inokuma, T. Yatsuzuka, S. Ohtsuki, S. Hino, J. Nishimura, *Tetrahedron* 2007, 63, 5088–5094.
- [32] a) C. L. Bradford, S. A. Fleming, S. C. Ward, *Tetrahedron Lett.* 1995, *36* (24), 4189–4192;
 b) S. A. Fleming, A. A. Parent, E. E. Parent, J. A. Pincock, L. Renault, *J. Org. Chem.* 2007, 72, 9464–9470.
- [33] S. C. Ward, S. A. Fleming, J. Org. Chem. 1994, 59, 6476–6479.
- [34] a) W. Horspool, F. Lenci, CRC Handbook of Organic Photochemistry and Photobiology, Second Edition, Chapter 18, CRC Press LCC, 2004; b) A. Albini, M. Fagnoni, Handbook of Synthetic Photochemistry, Chapter 5, Wiley-VCH, Weinheim, 2010.
- [35] R. G. Salomon, J. K. Kochi, J. Am. Chem. Soc. 1974, 96 (4), 1137-1144.

- [36] a) R. G. Salomon, *Tetrahedron* 1983, 39, 485–575; b) R. G. Salomon, S. Ghosh,
 S. R. Raychaudhuri, T. S. Miranti, *Tetrahedron Lett.* 1984, 25, 3167–3170; c) S. Ghosh,
 S. R. Raychaudhuri, R. G. Salomon, *J. Org. Chem.* 1987, 52, 83–90.
- [37] a) J. Panda, S. Ghosh, S. Ghosh, *ARKIVOC* 2005, 2001, 146–153; b) C. Malik, M. Vaultier,
 S. Ghosh, *Synthesis* 2007, 2007, 1247–1250.
- [38] J. Panda, S. Ghosh, S. Ghosh, J. Chem. Soc., Perkin Trans. 1 2001, 3013–3016.
- [39] W. Horspool, F. Lenci, *CRC Handbook of Organic Photochemistry and Photobiology, Second Edition, Chapter 71*, CRC Press LCC, **2004**.
- [40] W. Horspool, F. Lenci, CRC Handbook of Organic Photochemistry and Photobiology, Second Edition, Chapter 72, CRC Press LCC, 2004.
- [41] M. T. Crimmins, T. L. Reinhold, Org. React. (Hoboken, NJ, U. S.) 1993, 44, 297–339.
- [42] a) G. Marsh, D. R. Kearns, K. Schaffner, *Helv. Chim. Acta* 1968, *51* (8), 1890–1899;
 b) D. R. Kearns, G. Marsh, K. Schaffner, *J. Chem. Phys.* 1968, *49*, 3316–3317;
 c) D. R. Kearns, G. Marsh, K. Schaffner, *J. Am. Chem. Soc.* 1971, *93* (13), 3129.
- [43] A. Albini, M. Fagnoni, *Handbook of Synthetic Photochemistry, Chapter 6*, Wiley-VCH, Weinheim, **2010**.
- [44] E. J. Corey, J. D. Bass, R. LeMahieu, R. B. Mitra, J. Am. Chem. Soc. 1964, 86, 5570–5583.
- [45] a) P. de Mayo, J.-P. Pete, M. F. Tchir, J. Am. Chem. Soc. 1967, 89 (22), 5712–5713;
 b) P. de Mayo, J.-P. Pete, M. Thir, Can. J. Chem. 1968, 46, 2535–2547.
- [46] David J. Hastings, A. C. Weedon, J. Am. Chem. Soc. 1991, 113, 8525–8527.
- [47] a) D. I. Schuster, G. Lem, N. A. Kaprinidis, *Chem. Rev.* 1993, 93, 3–22; b) M. T. Crimmins, *Chem. Rev.* 1988, 88, 1453–1473.
- [48] D. O. Cowan, R. L. E. Drisko, J. Am. Chem. Soc. 1970, 92 (12), 6286–6291.
- [49] J. L. Broeker, J. E. Eksterowicz, A. J. Belk, K. N. Houk, J. Am. Chem. Soc. 1995, 117, 1847–1848.
- [50] T. Suishu, T. Shimo, K. Somekawa, *Tetrahedron* **1997**, *53* (10), 3545–3556.
- [51] E. Piers, A. Orellana, *Synthesis* **2001**, *14*, 2138–2142.
- [52] T. Bach, *Synthesis* **1998**, *1998*, 683–703.
- [53] R. Srinivasan, K. H. Carlough, J. Am. Chem. Soc. 1967, 89, 4932–4936.
- [54] P. de Mayo, Acc. Chem. Res. **1971**, 4 (2), 41–47.
- [55] B. W. Disanayaka, A. C. Weedon, J. Org. Chem. 1987, 52, 2905–2910.
- [56] B. A. Pearlman, J. Am. Chem. Soc. 1979, 101 (21), 6404–6408.
- [57] W. Oppolzer, T. Godel, J. Am. Chem. Soc. 1978, 100 (8), 2853–2854.
- [58] Y. Tamura, H. Ishibashi, M. Hirai, Y. Kita, M. Ikeda, J. Org. Chem. 1975, 40 (19), 2702–2710.
- [59] J. D. White, D. C. Ihle, Org. Lett. 2006, 8, 1081–1084.

- [60] J. D. Winkler, J. E. Stelmach, M. G. Siegel, N. Haddad, J. Axten, W. P. Dailey, *Isr. J. Chem.* 1997, 37, 47–67.
- [61] Y.-S. Kwak, J. D. Winkler, J. Am. Chem. Soc. 2001, 123, 7429–7430.
- [62] a) W. Horspool, F. Lenci, *CRC Handbook of Organic Photochemistry and Photobiology*, Second Edition, Chapter 60, CRC Press LCC, 2004; b) G. Büchi, C. G. Inmna, E. S. Lipinsky, J. Am. Chem. Soc. 1954, 76, 4327.
- [63] M. D'Auria, R. Racioppi, Curr. Org. Chem. 2009, 13, 939–954.
- [64] a) D. R. Arnold, R. L. Hinman, A. H. Glick, *Tetrahedron Lett.* 1964, 22, 1425–1430;
 b) D. R. Arnold, D. J. Trecker, E. B. Whipple, *J. Am. Chem. Soc.* 1965, 87, 2596–2602.
- [65] D. J. Aitken, C. Gauzy, E. Pereira, *Tetrahedron Lett.* **2002**, *43*, 6177–6179.
- [66] C. Gauzy, B. Saby, E. Pereira, S. Faure, D. J. Aitken, *Synlett* **2006**, *9*, 1394–1398.
- [67] a) S. Faure, A. A. Jensen, V. Maurat, X. Gu, E. Sagot, D. J. Aitken, J. Bolte, T. Gefflaut, L. Bunch, *J. Med. Chem.* 2006, 49, 6532–6538; b) X. Gu, M. Xian, S. Roy-Faure, J. Bolte, D. J. Aitken, T. Gefflaut, *Tetrahedron Lett.* 2006, 47, 193–196.
- [68] V. Mojr, E. Svobodová, K. Straková, T. Neveselý, J. Chudoba, H. Dvořáková, R. Cibulka, *Chem. Commun.* 2015, 51, 12036–12039.
- [69] M. Neumann, K. Zeitler, *Eur. J. Org. Chem.* **2013**, *19*, 6950–6955.
- [70] Z. Lu, T. P. Yoon, Angew. Chem., Int. Ed. 2012, 51, 10329–10332.
- [71] Y.-Q. Zou, S.-W. Duan, X.-G. Meng, X.-Q. Hu, S. Gao, J.-R. Chen, W.-J. Xiao, *Tetrahedron* 2012, 68, 6914–6919.
- [72] Y. Xu, M. L. Conner, M. K. Brown, Angew. Chem., Int. Ed. 2015, 54, 11918–11928.
- [73] C. Müller, A. Bauer, T. Bach, Angew. Chem., Int. Ed. 2009, 48, 6640–6642.
- [74] M. M. Maturi, T. Bach, Angew. Chem., Int. Ed. 2014, 53, 7661–7664.
- [75] R. Alonso, T. Bach, Angew. Chem., Int. Ed. 2014, 53, 4368–4371.
- [76] Z. D. Miller, B. J. Lee, T. P. Yoon, Angew. Chem., Int. Ed. 2017, 56, 11891–11895.
- [77] Y.-Z. Li, A.-P. Tong, J. Huang, *Chem. Biodivers.* **2012**, *9*, 769–776.
- [78] M. A. Ischay, T. P. Yoon, Eur. J. Org. Chem. 2012, 2012, 3359–3372.
- [79] A. Albini, M. Fagnoni, *Photochemically-generated Intermediates in Synthesis*, John Wiley & Sons, Inc., Pavia (Italy), **2013**.
- [80] K. Mizuno, Y. Otsuji, *Top. Curr. Chem.* **1994**, *169*, 301–346.
- [81] G. Pandey, *Top. Curr. Chem* **1993**, *168*, 175–222.
- [82] Corey R. J. Stephenson, T. P. Yoon, David W. C. MacMillan, Visible Light Photocatalysis in Organic Chemistry, First Edition, Wiley-VCH 2018, 129–158.
- [83] M. Riener, D. A. Nicewicz, *Chem. Sci.* **2013**, *4*, 2625–2629.
- [84] M. A. Ischay, M. E. Anzovino, J. Du, T. P. Yoon, J. Am. Chem. Soc. 2008, 130, 12886–12887.
- [85] J. Du, T. P. Yoon, J. Am. Chem. Soc. 2009, 131, 14604–14605.
- [86] J. Du, K. L. Skubi, D. M. Schultz, T. P. Yoon, *Science* **2014**, *344*, 392–396.

B Main Part

1 Preliminary studies towards the synthesis of the bicyclic key intermediates

1.1 Introduction

The central part of the present thesis constitutes the development of a synthetic strategy towards enantiomerically pure γ -cyclobutane amino acids using a visible light mediated [2+2] cycloaddition as crucial step to install the cyclobutane core. The focus of this work lied on the investigation of an intramolecular version of visible light induced [2+2] photocycloaddition in order to synthesize 3-oxabicyclo-[3.2.0]-heptan-2-one **105** as well as 3-azabicyclo-[3.2.0]-heptan-2-one core **106** (Scheme 21).

Scheme 21. General motif of the desired target molecules.

These intermediates provide the required functional groups (amino and carboxylic acid functionality) of the target γ -cyclobutane amino acids in a masked form and can be liberated through further transformations.

Aitken *et al.*^[1] developed a strategy for the synthesis of all four isomers of γ -cyclobutane amino acid 112 (Scheme 22). A key step in this sequence is a [2+2] photocycloaddition of enantiomerically pure unsaturated γ -lactam 107 and ethylene (59) by irradiation with a 400 W mercury vapor lamp with Pyrex filter. Both azabicycloheptanones 108 were separable via convenient column chromatography. By treatment with dissolved sodium in liquid ammonia and following protection step, the chiral appendage was exchanged by a Boc group. The resulting N-Boc derivatives 109 were smoothly hydrolyzed using LiOH yielding the N-Bocprotected γ -amino acids 111. Simple deprotection under acidic conditions and subsequent elution through an ion exchange resin (H⁺-form) gave the free $cis-\gamma$ -amino acids 112. For the epimerization, 109 cis-trans the **Boc-protected** lactams were treated with trimethylaluminum/ammonia in DCM to achieve the conversion into the corresponding ciscarboxamides **110**. By a one-pot tandem epimerization/hydrolysis process, refluxing in MeOH in the presence of NaOH (6M), the *N*-Boc derivatives of *trans*- γ -cyclobutane amino acids **112** were obtained.

Scheme 22. Synthesis of all four γ -cyclobutane amino acid isomers by Aitken *et al.*^[1]

In 2014, Aitken and coworkers also reported a synthetic sequence towards 1,2,3-trisubstituted cyclobutanes **118** using a UV-mediated [2+2] photocycloaddition of maleic anhydride **75** either with allyl alcohol or propargyl alcohol **113** (Scheme 23).^[2]

Scheme 23. The synthetic sequence towards 1,2,3-trisubstituted cyclobutanes by Aitken et al.^[2]

By irradiation of a solution of maleic anhydride **75** with propargylic alcohol **113** *cis*-3-hydroxymethylcyclobut-3-ene-1,2-dicarboxylic anhydride (**114**) was generated as the only product. Hydrogenation of this crude compound with 10% Pd on charcoal furnished the desired lactone acid **115** stereoselective in an overall yield of 55% over 2 steps. Compound **115** was transformed into the Boc-protected amino lactone *via* acyl azide activation and subsequent Curtius rearrangement. By treatment with NaOH the corresponding sodium carboxylate **117** was obtained which was then reacted with *i*-PrI to get the amino ester **118** in moderate yield. Herein, this oxabicycloheptanone motif **105** was used to synthesize substituted cyclobutane amino acid derivatives.

In the shown procedures the cyclobutane-containing compounds were synthesized using a UV-mediated [2+2] photocycloaddition as key step in the synthesis sequence. Regarding the concept of "Green Chemistry", it is desirable to replace the UV-light source by an environmentally friendly LED or fluorescent light bulb since the use of UV-light in chemical reactions requires a high input of energy and specialized equipment for its safe generation. As extensively discussed in the introduction visible light mediated [2+2] photocycloaddition can be performed by several pathways as *via* radical anion and cation formation or *via* energy transfer. In the following chapters, the relevant literature will be presented in the context of the synthesis of appropriate substrates and their photochemical investigations. The aim constitutes the development of a reaction sequence *via* visible light induced [2+2] photocycloaddition towards the desired bicyclic key intermediates **105** and **106**.

1.2 Studies towards [2+2] photocycloaddition via radical anion mechanism

Bauld and Krische investigated the intramolecular cyclobutanation of several bisenones *via* an anion radical chain mechanism.^[3] They demonstrated the formal [2+2] cycloaddition of tethered enones through cobalt^[4] as well as copper^[5] mediated single electron transfer. Furthermore, the chrysene radical anion is also capable of serving as an electron donor in this reaction type.^[6] This inspired Yoon and coworkers to establish a diastereoselective [2+2] cycloaddition of bisenones *via* ruthenium-based visible light photocatalysis (Scheme 24).^[7]

Scheme 24. Proposed mechanism for Yoon's formal [2+2] cycloaddition of enones.^[7]

By absorption of visible light, the photoexcited state $\text{Ru}^*(\text{bpy})_3^{2+}$ will be generated, which undergoes a reductive quenching pathway with DIPEA as sacrificial electron donor. The resulting $\text{Ru}(\text{bpy})_3^+$ species transfers one electron to the lithium activated enone **120** leading to the regeneration of the starting catalyst, $\text{Ru}(\text{bpy})_3^{2+}$. The cycloaddition affords a cyclobutyl ketyl radical **122**. Afterwards, the final electron transfer produces the neutral product **123**. This product-forming step takes place either as chain-terminating reduction of the photogenerated amine radical cation or as chain-propagation reduction of another equivalent of lithium activated enone **120**. Since the quantum yield is calculated with $\Phi = 77$ in this case, the product formation is dominated by a chain process.^[8] Beside this intramolecular addition reaction
Yoon *et al.*^[9] also developed an intermolecular version. In 2013, Zeitler *et al.*^[10] demonstrated that Eosin Y as organic dye is also capable of accessing ketyl radical anions by visible light photocatalysis.

The task now was to establish a protocol for a [2+2] cycloaddition of either ester-linked or amide-linked bisenones **124** adopting the photoinduced radical anion reaction pathway in order to synthesize the target molecules, 3-oxabicyclo- as well as 3-azabicyclo-[3.2.0]-heptan-2-one derivatives **125** (Scheme 25).

Scheme 25. Envisioned reaction sequence towards γ -cyclobutane amino acids via visible light.

The first goal was to synthesize the ester-linked bisenone derivative **134** according to an optimized reaction pathway of Xu *et al.*^[11] (Scheme 26).

Scheme 26. Synthesis of compound 134.

The aldol condensation between glyoxylic acid **128** and acetophenone **127** led to α,β -unsaturated acid **129** in 68% yield. However, subsequent esterification with ethylene glycol **130** using DCC and DMAP, as coupling reagent, failed as product **131** could not be isolated from the byproduct of the Steglich esterification, the dicyclohexylurea. Therefore, DCC was exchanged by EDC•HCl, since herein the corresponding coupling byproduct is water soluble and was easily removed by aqueous extraction. Ester **131** was obtained in a yield of 68%. In the following step, the hydroxyl group was oxidized with the help of iodoxybenzoic acid (IBX) to give aldehyde **132**, which finally reacted with ylide **133** in a Wittig reaction to compound **134**.

The photochemical investigation of substrate **134** mainly based on the conditions of a reductive reaction pathway (Table 1). Cyclic voltammetry (CV) measurement revealed that compound **134** possesses a potential of $-1.09 \text{ V} vs \text{ SCE}^1$. Therefore, all tested metal based photocatalysts, as well as Eosin Y, should be feasible to reduce ester-linked bisenone **134**.

¹ Redoxpotential was measured against ferrocene and was converted vs SCE (see Experimental Part).

Ph Ph

		ocatalytic co	nditions	Ph
		ν (λ = 455 nn	n), rt	
ontw	134	colvont	time [h]	135
entry	photocatarytic conditions	solvent	ume [n]	
1	Na ₂ EosinY (0.5 mol%) LiBr (2 equiv.), DIPEA (2 equiv.)	MeCN	1.5	decomp.
2	Na ₂ EosinY (0.5 mol%) DIPEA (2 equiv.)	MeCN	1	decomp.
3	Ru(bpy) ₃ Cl ₂ (5 mol%) LiBF ₄ (2 equiv.), DIPEA (2 equiv.)	MeCN	0.75	decomp.
4	Ru(bpy) ₃ Cl ₂ (5 mol%) DIPEA (2 equiv.)	MeCN	0.5	decomp.
5	Ru(bpy) ₃ Cl ₂ (5 mol%) DIPEA (2 equiv.)	DCM	24	decomp.
6	[Ir(dtb-bpy)ppy ₂]PF ₆ (1 mol%) DIPEA (2 equiv.)	MeCN	1	decomp.
7	Cu(dap) ₂ Cl (1 mol%) DIPEA (2 equiv.)	MeCN	24	decomp.
8	– DIPEA (2 equiv.)	MeCN	24	decomp.
9	Ru(bpy) ₃ Cl ₂ (5 mol%) NPh ₃ (2 equiv.)	DCM	48	Ph 0 136 79

Table 1. Photochemical investigation of ester-linked bisenone 134.^{a)}

^{a)} 0.3 mmol substrate (0.1M in corresponding solvent).

In entry 1 and 2, Eosin Y ($E_{1/2}^{PC/PC^{*-}} = -1.14$ V vs SCE) as organic dye served as photocatalyst.^[12] However, the starting material only decomposed also in absence of the Lewis acid LiBr (entry 2). In the following, Ru(bpy)₃Cl₂ ($E_{1/2}^{I/II} = -1.33$ V vs SCE) was investigated to be a suitable photocatalyst for this type of reaction.^[13,14] In the presence as well as the absence of LiBF₄ no product formation was observed (entry 3, 4). Also, the exchange of the solvent by using DCM instead of MeCN did not lead to a successful [2+2] photocycloaddition (entry 5). Using [Ir(dtb-bpy)ppy₂]PF₆ ($E_{1/2}^{II/III} = -1.51$ V vs SCE) or Cu(dap)₂Cl ($E_{1/2}^{I*/II} = -1.43$ V vs SCE) in the reductive quenching cycle the starting material only decomposed (entry 6, 7). It seemed that already the used base reacted with compound 134. No more ester-linked bisenone 134 could be recovered by stirring it in MeCN only in the presence of DIPEA (entry 8). This control experiment showed that DIPEA already led to the decomposition of the starting material 134. Hence, NPh₃ without α -C-H bond was applied as alternative reductive quencher. Herein a cis-trans isomerization of the double bond in the oxo-phenylbutenoic acid part of molecule 134 took place (entry 9). The corresponding Z-isomer 136 was obtained in a vield of 79%.^[15] The decomposition of the starting material could now be circumvented but a [2+2] photocycloaddition was not yet achieved. This could probably be explained by the preferred S-cis conformation of the ester moiety, instead of the less stable S-trans conformation required for the cycloaddition.^[16] In literature, there are few examples, which confirm this observation, that ester tethered substrates similar to the tested material are not able to cyclize to bicyclic compounds under photochemical conditions.^[17]

To summarize, the ester-linked bisenone **134** turned out to be a non-suitable starting material for the proposed reaction mainly due to its favored *S*-*cis* conformation of the ester moiety. Since this problem can be avoided in an amide-linked bisenone by choosing a suitable substituent on the amide bond in order to receive the affected double bonds in the necessary spatial proximity, the investigation was continued and focused now on the synthesis of such substrates.^[18]

In accordance with the described reaction sequence above (see Scheme 26), the key steps in the synthesis of amide-linked bisenones **137** should be an amide bond formation between an aminoethanol derivative **139** and the previously synthesized acid **129**, as well as a Wittig reaction (Scheme 27). A methyl or rather a phenyl group should be bulky enough to occupy the appropriate space to bring both double bonds for the cycloaddition into the necessary spatial proximity.

Scheme 27. The retrosynthetic approach towards amide-linked bisenone 137.

At first, the silvl protection of 2-methylaminoethanol (**139a**) was performed (Table 2). TBDMS-protecting group seemed to be a suitable choice due to its high stability and easily selective Flouride-ion mediated cleavage.^[19]

 Table 2. Synthesis of the silyl-protected compound 140.

	N H 139a H H additive, solvent, r	$\frac{v.)}{t}$ N t H 14	OTBS 0	
entry	additive	solvent	time [h]	yield [%]
1	imidazole (2 equiv.)	DMF	24	complex mixture
2	1-methylimidazole (3 equiv.), I ₂ (2 equiv.)	DCM	1	decomp.
3	NEt ₃ (1.2 equiv.), DMAP (0.01 equiv.)	DCM	18	50

Applying the protocol of Corey *et al.*,^[20] dimethyl-*tert*-butylsilyl chloride and imidazole in DMF led to a complex mixture and the desired product **140** could not be isolated (entry 1). With the highly efficient reagent system, silyl-chloride-*N*-methylimidazole-iodine, only decomposition of the starting material **139a** was detectable (entry 2).^[21] However, the protection using triethylamine and 4-dimethylaminopyridine gave rise to 50% of the protected amino alcohol **140** (entry 3).^[19]

In the following step, the silyl-protected amino alcohol **140** was coupled with acid **129** in the presence of EDC•HCl as coupling reagent yielding 50% of compound **141** (Scheme 28).

Scheme 28. Amide coupling reaction.

During the deprotection, treatment of compound **141** with TBAF, a cyclization immediately occurred and led to compound **143** instead of the desired amide **142** (Scheme 29).

Scheme 29. Deprotection step of compound 141.

On this account, the unprotected amino alcohol **139a** was also tried to couple with acid **129** (Scheme 30).

Scheme 30. Coupling attempts with the unprotected amino alcohol 139a.

In analogy to compound **134**, EDC•HCl served as coupling reagent. In this case, only the cyclic product **143** was isolated in a yield of 9%. The transformation of acid **129** into the corresponding acid chloride as activated carbonyl compound was achieved by refluxing it with thionyl chloride. The lactam derivative **143** was obtained in a yield of 48%. In both cases, no desired product **142** was formed.

Due to this unexpected cyclization, the retrosynthetic approach was modified as followed (Scheme 31).²

Scheme 31. The new envisioned retrosynthesis of the amide-linked bisenone 137.

The new reaction pathway considers starting with an oxidation of a protected amino ethanol derivative to the corresponding protected α -amino aldehyde **145** which then could undergo a Wittig reaction or an aldol condensation to generate compound **144**. In contrast to the previous idea, the amide coupling should be the last reaction step. In this process, the amino functionality should be either protected by a Boc or a Fmoc group. The Boc-protection of the methyl and phenyl substrate **139** worked straightforwardly (Scheme 32). Using Boc-anhydride together with catalytic amounts of DMAP gave the desired protected derivatives **146** in excellent yield of 93% and 90%, respectively.^[19]

Scheme 32. Synthesis of the Boc-protected derivatives 146a and 146b.

Furthermore, a protocol of Chen and coworkers was applied for the Fmoc-protection (Scheme 33).^[22]

Scheme 33. Fmoc-protection of the corresponding amino alcohols 139.

² Several results are adapted from the Bachelor Thesis of Lukas Wein (supervised by S. Kerres).

The amino alcohol **139** was dissolved in a dioxane/water mixture and reacted with Fmoc-succinimide in the presence of NaHCO₃ as an additional base. In the case of the methyl derivative **139a**, the target molecule could be synthesized quantitatively, whereas the analog phenyl substrate **139b** could not be isolated.

According to a modified procedure of Finney *et al.*^[23] the obtained protected amino alcohols **146** were oxidized using IBX as oxidizing agent (Table 3).

		Pg	IBX, EtOAc	Pg H ► I		
		R ^N OH	80 °C	R ^N O		
		146		145		
entry	R	Pg	146	IBX	145	yield [%]
1	Me	Boc	a	1.2 equiv.	a	90
2	Ph	Boc	b	1.2 equiv.	b	decomp.
3	Ph	Boc	b	2.6 equiv.	b	decomp.
4	Me	Fmoc	c	1.2 equiv.	c	n. r.
5	Me	Fmoc	c	2 equiv.	c	45

Table 3. Oxidation step of the amino alcohols 146.

1.2 equivalents of the oxidizing reagent were enough in order to oxidize the Boc-derivative **146a** to the corresponding aldehyde derivative **145a** yielding 90% (entry 1). Unfortunately, during this procedure of the phenyl substituted derivative **146b** only decomposition of the starting material was observed (entry 2, 3). In the case of the Fmoc-protected derivative **146c**, an amount of 2 equivalents of IBX was necessary to afford 45% of aldehyde **145c** (entry 4, 5). With the aldehyde compounds **145** in hand the Wittig reaction with ylide **133** could be performed giving rise to both α , β -unsaturated carbonyl compounds **147** in moderate yields (Scheme 34).

Scheme 34. Wittig coupling of the protected amino aldehyde 145.

no product formation

The following sequence was the deprotection of compounds **147** and the subsequent coupling with acid **129** (Table 4).

 Table 4. Final reaction sequence towards amide-linked bisenone 137a.

3

Fmoc

b

At first the Boc-derivative **147a** was treated with TFA and the crude mixture was then added to a solution of the active ester of acid **129** prepared by applying EDC•HCl. However, only a complex mixture was obtained, and no product formation was detectable. Therefore, milder condition for the deprotection step reported by Reiser *et al.*^[24] was tested: dissolved HCl gas in ethyl acetate as acid source. Indeed, no improvement could be achieved. Since the Fmoc group is cleaved off under basic conditions instead of acidic conditions, this could probably solve this problem. However, already the deprotection step failed and the unprotected derivative could not be synthesized at all and submitted to the last coupling reaction.

piperidine (20 Vol% in DMF), rt, 1 h

In summary, the ester-linked bisenone **134** was not a suitable substrate for the [2+2] photocycloaddition probably due to its favorable *S-cis* conformation so that the double bonds are not in spatial proximity for a successful cycloaddition. Besides the syntheses of the amide-linked bisenones **137** were lined with several problems as unexpected cyclization or decomposition in several reaction steps. As a result, this project was closed and to studies towards the preparation and photochemical behavior of amide-linked bisstyrenes were moved on.

1.3 Studies towards [2+2] photocycloaddition via radical cation mechanism

The cyclodimerization of *N*-vinylcarbazole catalyzed by ferric, ceric or cupric salts is the first unambiguous example of a cycloaddition mediated by a radical cation chain mechanism.^[25]

Later, Ledwith *et al.*^[26] also described a photoinduced electron transfer initiated version of this reaction. During the 1980s, Bauld and coworkers studied radical cation [2+2] cycloadditions of a variety of electron-rich olefins mediated by stable aminium radical salts.^[27] In general, [2+2] cycloadditions are net redox-neutral transformations since they involve no overall change in the oxidation states of the substrates. An advantage of this is that no stoichiometric amount of a terminal oxidant is required what is characteristic for a chain propagation mechanism.^[28,29]

Scheme 35. [2+2] cycloaddition of electron-rich bisstyrenes.^[30]

In 2010, Yoon and coworkers used the advantage of the ability of $Ru(bpy)_3^{2+}$ to generate olefin radical cations by photooxidation to establish a photooxidative [2+2] cycloaddition of electronrich bisstyrenes (Scheme 35).^[30] In the presence of methyl viologen (**MV**²⁺), a pyridinium salt, the photoactivated $Ru^*(bpy)_3^{2+}$ is oxidatively quenched to $Ru(bpy)_3^{3+}$ which is capable of oxidizing the electron-rich bisstyrene **148**. The so obtained radical cation **149** can undergo the [2+2] cycloaddition followed by single electron reduction yielding cyclobutane-containing compound **151**. Besides, Yoon and coworkers published a variant of this reaction, achieving an intermolecular [2+2] photocycloaddition between electron-rich styrenes and a variety of acceptor olefins.^[31]

Inspired by this, the focus was put on the construction of amide-linked bisstyrenes **153** and on the investigation of their behavior in a photochemical radical cation mediated [2+2] cycloaddition.

At first, four derivatives **153** were synthesized by an easy coupling reaction between cinnamic acid **152** and the corresponding amine (Table 5).

	0 1) SOCl ₂ ,	THF, reflux, 2	2 h		
	HO Ph 2) amine,	NEt ₃ , THF, 0	°C to rt	~ X	~ R ²
	152			153	3
entry	amine	time [h]	yield [%]	153	E _{1/2} ³ vs SCE [V]
1	Ph N H H 154 ⁴	19	77	a	1.37
2	Ph N Ph H 155 ⁵	19	81	b	1.32
3	MeO 156 ⁶	19	66	с	1.06
4	MeO 157 ⁷	21	56	d	1.12

 Table 5. Coupling reaction of several amines with the cinnamic acid 152.

By refluxing with SOCl₂ cinnamoyl chloride was generated *in situ* and subsequently reacted with the corresponding amine derivative. All four substrates **153** were obtained in moderate to good yields. The 4-methoxyphenyl derivatives **153c** and **153d** were synthesized, since they were estimated to have a lower potential due to the electron donating substituent and were so easy to oxidize. Substrate **153b** has a potential $E_{1/2} = +1.32$ V *vs* SCE, whereas **153c** has a potential $E_{1/2} = +1.06$ V *vs* SCE. In addition, compound **153d** with the *tert*-butyl group as the bulkiest group in this raw of materials is an interesting test molecule because it should have the necessary conformation for the [2+2] cycloaddition anyways.

³ Redox potentials were measured against ferrocene and were converted vs SCE (see Experimental Part).

⁴ Compound **154** was prepared from cinnamyl bromide and methylamine according to a procedure of Wolfe *et al.*^[32]

⁵ Compound **155** was synthesized by reductive amination of cinnamylaldehyde with aniline using NaBH₄ and amberlyst 15.^[33]

⁶ A stannous catalyzed reductive amination of Kumar *et al.*^[34] furnished compound **156**.

⁷ For the reaction condition of the preparation of compound **157** see chapter 2.1.

In the following, the synthesized compounds **153** were subjected to different photocatalytic conditions benefiting from the oxidative photocatalytic pathway (Table 6).

			0	photoredox catalyst additive	R^1 R^2	
		R ¹	x 153	R^2 h _ν (λ = 455 nm) MeNO ₂ 24 h, rt	× 0 158	
entry	R ¹	X	R ²	catalyst	additive	yield
1				Ru(bpy) ₃ Cl ₂ (2.5 mol%)	MVCl ₂ (15 mol%), MgSO ₄ (2 wt equiv.)	n. r.
2	Н	<i>N</i> -Me	Ph	Ru(bpz) ₃ Cl ₂ (2.5 mol%)	MVCl ₂ (15 mol%), MgSO ₄ (2 wt equiv.)	n. r.
3				Ru(bpz) ₃ (PF ₆) ₂ (2.5 mol%)	O2	n. r.
4				Ru(bpy) ₃ Cl ₂ (2.5 mol%)	MVCl ₂ (15 mol%), MgSO ₄ (2 wt equiv.)	n. r.
5	Н	N-Ph	Ph	Ru(bpz) ₃ Cl ₂ (2.5 mol%)	MVCl ₂ (15 mol%), MgSO ₄ (2 wt equiv.)	n. r.
6				Ru(bpz) ₃ (PF ₆) ₂ (2.5 mol%)	O ₂	n. r.
7	4 MaODh	λ/ D1.	D1.	Ru(bpy) ₃ Cl ₂ (2.5 mol%)	MVCl ₂ (15 mol%), MgSO ₄ (2 wt equiv.)	n. r.
8	4-MeOPn	/v-Pn	Pn	Ru(bpz) ₃ Cl ₂ (2.5 mol%)	MVCl ₂ (15 mol%), MgSO ₄ (2 wt equiv.)	n. r.
9	4 MaODh	N-tert-	DL	Ru(bpy) ₃ Cl ₂ (2.5 mol%)	MVCl ₂ (15 mol%), MgSO ₄ (2 wt equiv.)	n. r.
10	4-meOPh	butyl	rn	Ru(bpz) ₃ Cl ₂ (2.5 mol%)	MVCl ₂ (15 mol%), MgSO ₄ (2 wt equiv.)	n. r.

 Table 6. Photochemical investigations of amide-linked bisstyrenes 153.

Applying the same reaction conditions as the ones from Yoon and coworkers^[30], the participating species $\text{Ru}(\text{bpy})_3^{3+}$ in this oxidative photocatalytic pathway with a potential $\text{E}_{1/2}^{\text{III/II}} = +1.29 \text{ V } vs \text{ SCE}^{[13,14]}$ should be sufficient to oxidize the methoxy-substituted

derivatives **153c** and **153d**, whereas in the case of the other two substrates **153a** and **153b** it would be difficult due to their slightly higher redox potential. However, all four derivatives appeared to be unreactive as the corresponding starting material was recovered (entry 1, 4, 7, 9). Then the reaction conditions were changed to replace Ru(bpy)₃Cl₂ with Ru(bpz)₃Cl₂ (entry 2, 5, 8, 10). This catalyst has a higher redox potential $E_{1/2}^{III/II} = +1.86 \text{ V } vs \text{ SCE}^{[35]}$ and thus a higher oxidative power. Nevertheless, the derivatives did not participate in the [2+2] cycloaddition. In contrast to Ru(bpy)₃²⁺ which must be oxidized to its Ru(bpy)₃³⁺ oxidation state before it can serve as electron acceptor for the electron-rich styrenes the more oxidizing analog Ru(bpz)₃²⁺ is capable of performing this oxidation directly from its photoexcited state Ru*(bpz)₃²⁺ (E_{1/2}*II/I = +1.45 V). In this case molecular oxygen served as sacrificial electron acceptor to close the catalytic cycle again.^[36] Under these conditions, derivative **153a** and **153b** could not cyclize either (entry 3, 6).

1.4 Studies towards [2+2] photocycloaddition via energy transfer

Finally, the third possibility was tested: a visible light mediated [2+2] cycloaddition *via* an energy transfer. Transition metal complexes can also be involved in energy transfer processes that generate highly reactive organic molecules. In these cases, successful activation depends on the relative triplet-state energies of the catalyst and substrate and not on the redox potentials. Reactions involving thermodynamically unfavorable electron transfer processes can be performed in this manner. Due to the different activation mode the substrate scope is considerably broader.^[28,37]

In 2012, Yoon and coworkers demonstrated a triplet sensitized [2+2] photocycloaddition of especially electron-neutral bisstyrene derivative **159**, whose oxidation potential has precluded a participation in the radical cation cycloaddition (Scheme 36).^[38] The iridium-based catalyst, $[Ir(dtb-bpy)(dF(CF_3)ppy)_2]PF_6$, was the suitable triplet sensitizer for this [2+2] photocycloaddition *via* visible light. This method could also be applied to 1,3-dienes.^[39] The intramolecular variant afforded mostly carbocycles or oxygen-containing heterocycles.

Scheme 36. [2+2] photocycloaddition enabled via energy transfer by Yoon et al.^[38,39]

In contrast to this metal-based photocatalyst, also flavin derivatives **166** can serve as triplet sensitizer for this reaction type.^[40] In this case, nitrogen- and sulfur-containing aryl dienes **165** were cyclized to the corresponding aryl-bicyclo-[3.2.0]-heptanes **167**. The nitrogen has been protected either by quaternisation or by acylation and the sulfur had to be in the oxidation state of a sulfone (Scheme 37).^[41]

Scheme 37. Flavin-mediated [2+2] photocycloaddition by Cibulka et al.^[41]

The previous synthesized amide-linked bisstyrenes **153** served as substrates and were subjected to $[Ir(dtb-bpy)(dF(CF_3)ppy)_2]PF_6$ in DMSO (0.04M substrate concentration) at room temperature under irradiation with blue light (Table 7).

		0	[lr(dtb-bpy)(dF(CF ₃)p	py) ₂]PF ₆ (2.5 n	nol%)	
R^1 X R^2 $h_V (\lambda = 455 \text{ nm}), DMS$							X
	1	53					158
entry	R ¹	X	R ²	153	time [h]	158	yield [%]
1	Н	<i>N</i> -Me	Ph	a	48	a	isomerization
2	Н	N-Ph	Ph	b	48	b	isomerization
3	4-MeOPh	N-Ph	Ph	c	48	c	isomerization
4	OMe	<i>N-tert</i> -butyl	Ph	d	24	d	60 (<i>dr</i> 76/24) ^{b)}

Table 7. [2+2] photocycloaddition of amide-linked bisstyrenes 153 via energy transfer mechanism.^{a)}

^{a)} 0.3 mmol substrate (0.04M in DMSO), 2.5 mol% [Ir(dtb-bpy)(dF(CF₃)ppy)₂]PF₆. ^{b)} Diastereomeric ratio was estimated by crude H¹-NMR.

Having a methyl or a phenyl substituent on the amide bond led to an inseparable mixture of different *E/Z*-isomers of the corresponding starting materials in each case (entry 1-3).^[42] This indicates that the used photocatalyst has the suitable triplet energy in order to activate the tested substrate. In general, the *cis-trans* inversion about the reactive double bond is faster than the cyclization. By irradiation, a quasistationary state is generated between both geometric isomers and from the excited intermediate, the cyclization takes place.^[43] However, one prerequisite for cyclization is the spatial proximity of the two double bonds to one another. Finally, the *tert*-butyl compound **153d** took part in this visible light mediated [2+2] photocycloaddition giving rise to 60% of cyclobutane-containing derivative **158d** with a diastereomeric ratio of 76 to 24. The bulkier *tert*-butyl group forces the amide-linked diene in the necessary conformation for the cycloaddition.

In 1976, Weber *et al.*^[44] already observed the corresponding [2+2] cycloadduct as byproduct in the thermolysis of benzyl substituted cinnamyl cinnamide. Its structure was later also confirmed by a UV-mediated [2+2] cycloaddition yielding 50%. More recently, Mykhailiuk and coworkers irradiated benzyl substituted amide-linked dienes at 366 nm and in the presence of acetophenone as photosensitizer. The achieved [2+2] photocycloaddition served as key step in the synthesis towards 3-azabicylo-[3.2.0]-heptanes which are attractive building blocks for drug discovery.^[45]

In conclusion, the energy transfer mechanism is the suitable pathway to generate the desired bicyclic target molecules **158**. Furthermore, the [2+2] photocycloaddition occurs only when the substituent is large enough to bring the two affected double bonds close to each other (Scheme 38).

Scheme 38. The envisioned strategy towards the synthesis of γ -cyclobutane amino acids.

In the following chapters, the focus lied on the photochemical investigation of *N-tert*-butyl-, *N*-Boc- and *N*-benzyl-protected dienes **153** and their transformation towards γ -cyclobutane amino acids **168**.

2 Synthesis of precursors for [2+2] photocycloaddition

2.1 Synthesis of amines

In general, amine derivatives **170** were prepared *via* a S_{N2} reaction of allyl bromide **169** with the corresponding primary amine (Table 8). The used bromides were either commercially available or synthesized according to literature known procedures. For the coupling step an optimized procedure of Buchholz *et al.*^[46] was applied. On this occasion, the bromide derivative **169** was treated with 3 equivalents of K₂CO₃ and the same amount of primary amine. Except for compound **170a**, which was prepared according to a procedure of Ballmann *et al.*^[47] In this case no additional base was necessary.

	R ^{1´}		amine (base ((3 equiv.) 3 equiv.)			R^2	
	K	169	MeCN,	0 °C to rt		H 170		
entry	R ¹	169	amine	base	time [h]	R ²	product	yield [%]
1 ^{a)}	Н	a	<i>tert</i> -butyl amine	-	17	<i>tert</i> -butyl	170a	90
2	Ph	b	<i>tert</i> -butyl amine	K ₂ CO ₃	27	<i>tert</i> -butyl	170b	95
3	4-MeOPh	C	<i>tert</i> -butyl amine	K ₂ CO ₃	16	<i>tert</i> -butyl	157	40
4	CO ₂ Me	d	<i>tert</i> -butyl amine	K ₂ CO ₃	21	<i>tert</i> -butyl	170c	91
5	Н	a	benzylamine	K ₂ CO ₃	21	benzyl	170d	54
6	Ph	b	benzylamine	K ₂ CO ₃	19	benzyl	170e	92

Table 8. Synthesis of allylamines.

^{a)} 10 equivalents of amine.

In addition, the Boc-protected amine derivatives were prepared. In the presence of LiAlH4 and AlCl₃ nitril 171 was reduced to amine 172 which was subsequently Boc-protected using a general procedure with a catalytic amount of DMAP (Scheme 39).^[19,48]

Scheme 39. Synthesis of the phenyl substituted and Boc-protected amine derivative 173.

Allylamine 174 was protected by using Boc-anhydride and triethylamine as base to give compound 175 in a yield of 90% (Scheme 40).^[49]

Scheme 40. Protection reaction of allylamine 174.

2.2 Synthesis of acids

In accordance with a procedure of Worral *et al.*,^[50] monomethyl fumarate **177** was synthesized by the reaction of maleic anhydride **75** with methanol followed by the isomerization of the *Z*-intermediate **176** with the help of acetyl chloride (Scheme 41).

Scheme 41. Synthesis of monomethyl fumarate 177.

Another goal was the preparation of *trans*-heterocyclic-propenoic acids **180** (Scheme 42). The heterocyclic aldehydes **178** underwent a Knoevenagel condensation to give the α , β -unsaturated acid **180** in the case of furane and thiophene in good yields.^[51] However, using pyrrole-carbaldehyde **178c** led only to a total polymerization of the reaction mixture.

Scheme 42. Synthesis of 3-substituted acrylic acids 180.

Therefore, the pyrrole-2-carbaldehyde **178c** was transformed into the corresponding ethyl ester derivative **181a** by a Horner-Wadsworth-Emmons reaction. Subsequent saponification with LiOH led to the desired pyrrole acrylic acid **180c** (Scheme 43).^[52]

Scheme 43. Studies towards the synthesis of a suitable pyrrole-containing acid derivative.

Since a direct coupling between acid **180c** and amine **170a** to the corresponding amide-linked diene failed, investigations were ongoing to prepare a *N*-protected compound **182**.

The subsequent Boc-protection of compound **180c** led only to a polymerization of the starting material. Because of this, the desired compound **182** should be synthesized by protecting the ester intermediates **181a** and **181b** followed by an ester hydrolysis. Compound **183a** and **183b** were generated quantitatively and in 97% yield, respectively. Unfortunately, under basic conditions also a cleavage of the protecting group was observed. Avoiding this side reaction an acetyl group was chosen as next potential protecting group (Scheme 44).

Scheme 44. Acetylation of *trans*-propenoic acid derivatives 180c and 180d.

The acetyl group was introduced by reacting acid derivative **180c** and **180d** with acetic anhydride in the presence of NEt₃ and DMAP.^[53] Herein the desired *N*-heterocycle-containing acid derivatives **184a** and **184b** could be synthesized in moderate yield.

2.3 Synthesis of amide-linked dienes

With required acid and amine compounds in hand, a variety of amide-linked dienes **153** could be prepared (Table 9). Either the *in situ* generated or the commercially available acid chlorides **186** were reacted with the amine derivatives **187** which were previously deprotonated by NEt₃.

0	SC	OCI ₂ , THF O	R ¹	х 7	_	0
но	\mathbb{R}^2	reflux CI	R ² NEt ₃ , 0	°C to rt	R ¹	$X \longrightarrow R^2$
18	5	18	36			153
entry	R ¹	X	R ²	153	time [h]	yield [%]
1	Ph	<i>N</i> -Н	Ph	e	26	72
2	Ph	<i>N</i> -H	Н	f	24	99
3	Ph	<i>N-tert</i> -butyl	Ph	g	16	71
4 ^{a)}	4-MeOPh	<i>N-tert</i> -butyl	Ph	d	21	56
5	Н	<i>N-tert</i> -butyl	Ph	h	19	38
6	Ph	<i>N-tert</i> -butyl	Н	i	24	85
7	Н	<i>N-tert</i> -butyl	Н	j	24	74
8	Н	<i>N-tert</i> -butyl	2-furanyl	k	20	61
9	Н	<i>N-tert</i> -butyl	2-thiophenyl	1	19	66
10	Н	<i>N-tert</i> -butyl	N-acetyl-3- indolyl	m	26	6
11	Н	<i>N-tert</i> -butyl	<i>N</i> -acetyl-2- pyrrolyl	n	24	0
12	CO ₂ Me	<i>N-tert</i> -butyl	Ph	0	19	44
13	Ph	<i>N-tert</i> -butyl	CO ₂ Me	р	19	0
14	Ph	N-benzyl	Ph	q	24	59
15	Н	N-benzyl	Ph	r	24	71
16	Ph	N-benzyl	Н	S	19	61
17 ^{b)}	Ph	N-Boc	Ph	t	20	38
18 ^{b)}	Ph	N-Boc	Н	u	21	traces
19 ^{b)}	Н	N-Boc	Ph	v	19	52
20	Ph	0	Ph	W	24	79

 Table 9. Synthesis of the amide-linked dienes 153.

^{a)} Results are listed again for completeness. ^{b)} KHMDS was used as base instead of NEt₃.

Using the pyrrole-containing acid **184a** the reaction mixture turned black and all the starting material decomposed (entry 11). In entry 13, the monomethyl fumaric acid **177** reacted with the allylamine derivative **170b** in a [4+2] manner followed by a [1,3]-*H*-shift to achieve rearomatization (Scheme 45). The structure of the tricycle **189** was verified *via* X-ray analysis.

Scheme 45. [4+2] cycloaddition of compound 153p, followed by [1,3]-H-shift.

In the case of Boc-protected amines (entry 17-19), KHMDS was used as base for the deprotonation since it is more basic than NEt₃.^[54] In order to improve the yield of compound **153t** and **153u**, the unsubstituted derivatives **153e** and **153f** were Boc-protected giving rise to 85% of compound **153t** and 84% of compound **153u**.^[55] All in all, the amide-linked dienes **153e-v** as well as the only ester-linked compound **153w** could be generated in moderate to good yields.

3 Theoretical studies towards the reaction mechanism of [2+2] photocycloaddition of amide-linked dienes

The photochemical investigation of the different substituted amide-linked dienes **153** revealed that an appropriate substituent that occupies a certain space is necessary to direct both double bonds in spatial proximity for a successful cyclization (Table 10).

		[lr(dtb-bp	oy)(dF(CF ₃)ppy) ₂]PF ₆ (Ph 1 mol%)	Ph
	Ph' ~ X ~	Ph ——— hv	, (λ = 455 nm), DMSO,	rt	X 0
entry	X	153	time [h]	158	yield [%]
1	<i>N</i> -H	e	48	e	-
2	<i>N</i> -Me	а	48	a	-
3	<i>N</i> -Ph	b	48	b	-
4	<i>N-tert</i> -butyl	g	3	g	79 (<i>dr</i> ^{a)} 81/19)

Table 10. Screening of the substituents on the amide bond.^{a)}

^{a)} 1 mmol substrate (0.04M in DMSO), 1 mol% [Ir(dtb-bpy)(dF(CF₃)ppy)₂]PF₆. ^{b)} Diastereomeric ratio was estimated by crude ¹H-NMR.

Applying an unsubstituted derivative **153e**, a methyl **153a** or a phenyl substituent **153b** led to an *E-Z* isomerization of the double bond moieties in the used dienes. However, testing the *tert*-butyl-protected derivative **153g** gave the desired cyclobutane compound **158g** in a yield of 79% within 3 h irradiation time. It seemed that the bulkier *tert*-butyl group forces the amide-linked diene in the necessary conformation for a successful cycloaddition.

In order to get a deeper look in the reaction mechanism a cooperation with the group of Prof. J. Rehbein whose research is mainly focused on reaction dynamics was started. The theoretical calculations were carried out by Simon Malcherek (PhD student of AK Rehbein). Since the experimental data suggested a preference for large substituents, the calculations were performed for the limiting cases. The *tert*-butyl derivative **153g** served as model substrate possessing a large substituent whereas the unprotected derivative **153e** as one having a small substituent.

Ph	$\sim_{X} \stackrel{O}{\longrightarrow}_{Ph} =$	K Y	$ \begin{array}{c} Ph \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{bmatrix} Ph \\ X \\ 0 \end{bmatrix} \xrightarrow{H}$	$-\begin{bmatrix} Ph & Ph \\ X & 0 \end{bmatrix}$	$\xrightarrow{H} \stackrel{Ph}{\longrightarrow} \stackrel{Ph}{\longrightarrow} \stackrel{Ph}{\longrightarrow} \underset{X \xrightarrow{X}}{\longrightarrow} O$	
	153	190	L	191	192	158	
					ΔrG	ΔrG	
				۸C‡	[kcal/mol]	[kcal/mol]	
entry	LOT	X	K	$\Delta \mathbf{G}'$	³ NAC 191 -	¹ NAC 190 –	
				[kcal/mol]	³ intermediate	¹ product	
					(cis) 192	(cis) 158	
1		<i>N</i> -H	2 2•10-4	11.5	15.0	5.6	
1	B3LYP/	153e	2.2.10	11.5	-15.0	5.0	
	032117	N-tert-					
2	6-311+G**	butyl	67.7	7.7	-22.9	-1.2	
		153g					
3		<i>N</i> -H	5 /•10 ⁻³	7.0	17 /	+0.8	
5	D21 VD D2/	153e	5.4•10	1.9	-17.4	+ 0.8	
	D3L1P-D3/	N-tert-					
4	0-311+0 ⁻²¹	butyl	133.0	5.2	-25.0	-6.1	
		153g					

 Table 11. Analysis of the stationary points.

The reaction constant (K) showed, that in the case of the *tert*-butyl derivative **153g** the near attack conformation (NAC) **190** of the diene is preferred whereas having a proton as substituent the linear conformation **153e** predominates. In the following, the reaction can be described as a two-step process. First, the substrate is activated by the triplet sensitizer whose triplet energy suits the calculated energy gap between singlet and triplet state of the substrate. After excitation to the triplet excited state **191**, the first elementary step is the formation of intermediate **192** followed by the generation of the bicyclic compound **158**. Activation barrier of the elemental step ΔG^{\neq} from ³NAC **191** to ³intermediate **192** is 2.7 kcal/mol higher for X = N-H than for X = N-tert-butyl. Therefore, a higher reaction rate for compound **153g** would be obtained. The overall reaction from ¹NAC **190** to ¹product **158** is exothermic for compound **153g** (-6.1 kcal/mol), whereas for compound **153e** close to neutral (+ 0.8 kcal/mol).

The level of theory (LOT) expended with Grimmes Dispersion Correction (D3) considered also the interactions in the molecule. Since there are differences in the relative energy values

B Main Part 5

between both methods (Table 11) and therefore a clear effect of dispersion exists, the dispersion correction was maintained in the following.

For a deeper insight, the correlation between the activation barrier ΔG^{\neq} and thermodynamic properties $\Delta_R G$ was investigated and the intrinsic barrier ΔG_0^{\neq} was calculated. Therefore, the Marcus-analysis^[56] was applied for the first reaction step, the formation of intermediate **192** (Table 12).

Table 12. Marcus-analysis of the first reaction step.

entry	X	conformation intermediate	ΔG≠[kcal/mol]	ΔG₀ [≠] [kcal/mol]	∆rG [kcal/mol]
1	<i>N</i> -Н 191а	cis	+7.9	+15.6	-17.4
2	<i>N-tert</i> -butyl 191b	cis	+5.2	+15.1	-25.0

The intrinsic contribution to the activation barrier, ΔG_0^{\neq} , is quite the same in both cases ($\Delta = 0.5$ kcal/mol). The most significant difference between both substrates seems to be the thermodynamic one, $\Delta_R G$. The reaction step is in the case of the *tert*-butyl derivative **191b** 7.6 kcal/mol more exothermic than having a proton as substituent.

For further investigation of the transition state, the bonding situation in accordance with Pauling^[57] was examined using a factor of 0.6 (suggested for transition states) (Table 13).

Table 13. Pauling-analysis of the first elemental step, c = 0.6.

entry	X	distance in TS [Å]	reference [Å]	bond order
1	<i>N</i> -Н 193а	2.56	1.58	0.20
2	<i>N-tert</i> -butyl 193b	2.69	1.57	0.15

The bonding situation according to Pauling resembled the starting material more than the products. The *tert*-butyl substituted transition state **193b** has a bond order of 15% whereas the unsubstituted one **193a** a slightly higher bond order of 20%. Therefore, the *H*-substituted transition state **193a** has a slightly more established bond ($\Delta = 5$ %) compared to *tert*-butyl one **193b**.

Moreover, the Bell-Evans-Polanyi principle^[58] shows that the difference in activation energy of two reactions of the same family is proportional to the difference in their reaction enthalpy: $E_{\alpha} = E_0 + \propto \Delta H$. A significant parameter is herein α which characterize the transition state along the reaction coordinate. For large substituents an earlier, lower transition state (TS) is achieved, whereas for small substituents a later, higher TS. In context of the Bell-Evans-Polanyi principle, the results from the Marcus-analysis and Pauling-analysis suggest a preference of the *tert*-butyl derivative **153g** in this reaction type over the unsubstituted derivative **153e**.

In conclusion, all investigated features (stationary points, energy barriers, nature of transition state) prefer the [2+2] cycloaddition of derivatives with large substituents (see Figure 19 and Figure 20 in E Experimental Part, chapter 3). The main differences have been observed for the overall thermodynamic driving force of the overall reaction being exothermic for X = N-tert-butyl and endothermic for X = N-H. Additionally, the steric arrangement of the starting material: a large substituent force the diene into its near attack conformation (NAC) while having a less spatial demanding substituent the linear conformation is preferred. The combination of Marcus-, Pauling-analysis as well as the Bell-Evans-Polanyi principle described

well the essential steps of the reaction and explained the better driving force for the *tert*-butyl substituted dienes. Overall the computational data were in good agreement with the experimental observations.

4 Optimization of reaction conditions of [2+2] photocycloaddition

For the optimization of the reaction conditions of [2+2] photocycloaddition different photocatalysts, light sources and reaction temperature were tested (Table 14).

Table 14. Screening of different reaction conditions for the [2+2] photocycloaddition.^{a)}

entry	cotolyst	time	т	light course	conv.	yield [%]
	Catalyst	[h]	I	light source	[%]	(<i>dr</i> a/b) ^{c)}
1	[Ir(dtb-bpy)(dF(CF ₃)ppy) ₂]PF ₆	48	rt	CFL	100	64
•						(<i>dr</i> 81/19)
2	<i>fac</i> -Ir(ppy) ₃	48	rt	CFL	100	57
-			11			(<i>dr</i> 82/18)
3	Ir[(dtb-bpy)ppy2]PF6	48	rt	CFL	0	0
4	[Ir(dtb-bpy)(dF(CF ₃)ppy) ₂]PF ₆	6.5	rt	blue LED	100	75
						(<i>dr</i> 81/19)
5	<i>fac</i> -Ir(ppy) ₃	20.5	rt	blue LED	100	88
						(<i>dr</i> 83/17)
6	Ir[(dtb-bpy)ppy2]PF6	48	art	blue LED	86	67
0			n			(<i>dr</i> 83/17)
7	[Ir(dtb-bpy)(dF(CF ₃)ppy) ₂]PF ₆	3	rt	blue LED-stick	100	79
						(<i>dr</i> 82/18)
8	[Ir(dtb-bpy)(dF(CF ₃)ppy) ₂]PF ₆	3	40 °C	blue LED-stick	100	84
			40 C			(<i>dr</i> 81/19)

entry	catalyst	time [h]	Т	light source	conv. [%]	yield [%]
9	<i>fac</i> -Ir(ppy) ₃	3	rt	blue LED-stick	100	75 (<i>dr</i> 82/18)
10	<i>fac</i> -Ir(ppy) ₃	3	40 °C	blue LED-stick	100	80 (<i>dr</i> 83/17)
11 ^{b)}	-	90	rt	HP Hg-lamp	100	74 (<i>dr</i> 80/20)
12	-	24	40 °C	-	0	0
13		24	40 °C	blue LED-stick	0	0

^{a)} 1 mmol substrate (0.04M in DMSO), 1 mol% catalyst, 40 °C. ^{b)} 1 mmol substrate (0.1M in acetone). ^{c)} Diastereomeric ratio was estimated by crude ¹H-NMR.

The photocatalyst possess decreasing emissive energy in the following series: $[Ir(dtb-bpy)(dF(CF_3)ppy)_2]PF_6$ ($E_T = 61 \text{ kcal/mol})^{[59]}$, *fac*-Ir(ppy)₃ ($E_T = 55 \text{ kcal/mol})^{[60]}$ and $[Ir(dtb-bpy)py_2]PF_6$ (49 kcal/mol)^[61]. $[Ir(dtb-bpy)(dF(CF_3)ppy)_2]PF_6$ with the highest energy value was the most efficient sensitizer in this experimental raw. Furthermore, the reaction time was highly affected by the used light source. Three different irradiation setups were tested as shown in figure 5.

Setup with CFL (A)

Setup with six blue LEDs on a plate (B)

Figure 5. Different light sources.

The irradiation *via* fluorescent household bulb was structured as followed: the light source was put approximately 15 cm away from the reaction flask (Figure 5 A). The compact fluorescent light bulb has several emission maxima (Figure 6), whereas the plate with six high power LEDs as well as LED-stick has an emission maximum at a wavelength of 455 nm.

Figure 6. The emission spectrum of CFL.⁸

The advantages of using LED-containing lighting devices are the narrow emission peak at a specific wavelength, in this case $\lambda = 455$ nm, higher light intensities and a more efficient energy transfer. A common irradiation setup is built up by a suitable vessel equipped with the reaction mixture and an external lighting device, as the LED-plate which were put below the round bottom flask (Figure 5 **B**). Dr. Peter Kreitmeier, member of the group of Prof. O. Reiser, improved the irradiation in this respect that the light generated by a LED is channelled through a glass rod directly in the reaction mixture (Figure 5 **C**). In this manner, the light scattering on the glass wall of the reaction vessel can be circumvented and therefore more emitted photons can excite the used photocatalyst. This issue was verified by the done optimization reactions (Table 14). The direct irradiation *via* an optical fibre allowed the best results in comparison with the external lighting devices (entry 1 *vs* 4 *vs* 7). Direct excitation with the used light sources is not possible since the absorption maximum of substrate **153g** has a value of $\lambda = 256$ nm (Figure 7).

⁸ Emission spectrum was measured by Simon Düsel (PhD student of Prof. B. König) using a Radiometer/Photometer (ILT 1400 by NIST Traceable Light Measurement Systems & Sources).

Figure 7. The absorption spectrum of substrate 153g.⁹

By UV irradiation by a 125 W Phillips high-pressure mercury lamp full conversion was achieved by increased reaction time of 90 h and only 74% of the desired product **158g** was achieved compared to using visible light (entry 7). The control experiments (entry 12, 13) showed, that the [2+2] photocycloaddition occurred only in the presence of light and photocatalyst. By increasing the reaction temperature to 40 °C the yield could be improved to 84% (entry 8).

To sum up, all further reactions for the investigation of the substrate scope were performed using 1 mmol substrate and 1 mol% $[Ir(dtb-bpy)(dF(CF_3)ppy)_2]PF_6$ in DMSO (0.04M substrate concentration) at 40 °C using the blue LED-stick-setup.

⁹ Absorption spectrum was measured on a UV/Vis spectrometer (Specord(R) 200 Plus from Analytik Jena).

5 Substrate scope of the [2+2] photocycloaddition

The previously synthesized *N-tert*-butyl, *N*-benzyl and *N*-Boc-protected amide derivatives **153** cyclize to the cyclobutane-containing compounds **158** in moderate to good yields with an excellent diastereoselectivity by applying the optimized reaction conditions (table 15).

Table 15. Substrate scope of the [2+2] photocatalyzed cycloaddition.^{a)}

	acid moeity $R^1 R^2$					
	R ¹		h_V (λ = 455 nm), DM	SO, 40 °C		
	amine mo	eity 153	158			8
entry	R ¹	X	R ²	158	time	yield [%] (dr a/b) ^{b)}
1	Ph	<i>N-tert</i> -butyl	Ph	g	3 h	85 (<i>dr</i> 81/19)
2	4-MeOPh	<i>N-tert</i> -butyl	Ph	d	7 h	63 (<i>dr</i> 72/28)
3	Ph	N-benzyl	Ph	f	4 h	75 (<i>dr</i> 77/23)
4	Ph	N-Boc	Ph	h	24 h	61 (<i>dr</i> 78/22)
5	Ph	<i>N-tert</i> -butyl	Н	i	3 h	78 (<i>dr</i> 83/17)
6	Ph	N-benzyl	Н	j	4 h	72 (<i>dr</i> 85/15)
7	Ph	N-Boc	Н	k	48 h	73 (<i>dr</i> 81/19)
8	CO ₂ Me	<i>N-tert</i> -butyl	Ph	1	48 h	67 (<i>dr</i> 76/24)
9	Н	<i>N-tert</i> -butyl	Ph	m	23 h	60
10	Н	N-benzyl	Ph	n	19 h	83 (<i>dr</i> 93/7)
11	Н	N-Boc	Ph	0	14 d	47
12	Н	<i>N-tert</i> -butyl	2-furanyl	р	3 h	73
13	Н	<i>N-tert</i> -butyl	2-thiophenyl	q	3 h	78
14	Н	<i>N-tert</i> -butyl	N-acetyl-3- indolyl	r	48 h	35
15	Н	<i>N-tert</i> -butyl	Н	S	48 h	0
16 ^{c)}	Ph	0	Ph	t	48 h	29 (<i>dr</i> 72/28)

^{a)} 1 mmol substrate (0.04M in DMSO), 1 mol% [Ir(dtb-bpy)(dF(CF₃)ppy)₂]PF₆, 40 °C. ^{b)} Diastereomeric ratio was estimated by crude ¹H-NMR. ^{c)} 80 °C reaction temperature.

Depending on the location of the phenyl group on the involved double bonds, the reaction times varied dramatically. If the aromatic substituent is placed on the amine moiety (R^1) the [2+2] photocycloaddition is done within 3 h (entry 5) and 4 h (entry 6), respectively. Whereas in the case of the contrary starting material the [2+2] photocycloaddition takes longer 23 h (entry 9) and 19 h (entry 10). Using the Boc group as substituent also longer reaction times for the cyclization steps are necessary which is obviously caused by additional electronic effects of this protecting group. This is most clearly reflected in entry 11 where full conversion has been only reached after 14 d. After 48 h, only E-Z photoisomerization of compound 153v was observed yielding to a diastereomeric ratio of 35 to 65 wherein the less stable Z-isomer predominates. In contrast to ground-state reactivity where rotation about the $C(sp^2)=C(sp^2)$ bond is hindered by high rotational barriers, it is known that the photochemical mode can circumvent this constraint either by direct excitation or by involving a photosensitizer. The photoisomerization is an ever-present competitive reaction when the olefinic bonds are of cinnamoylic character.^[15,62] Increasing the catalyst amount to 2.5 mol% or applying UV-light irradiation in combination with acetone as sensitizer did not expedite the [2+2] photocycloaddition of compound 153v. The electron rich heterocycles furan and thiophene on the carbonyl side accelerated the photochemical reaction in contrast to the phenyl substituent (entry 12, 13). Additionally, if the aromatic substituent is located on the carbonyl side (\mathbb{R}^2) a better diastereoselectivity was achieved. Either only one diastereomer (entry 9, 11, 12-14) was obtained or in the case of the benzylated compound (entry 10) an excellent diastereoselectivity of 93 to 7 was determined.

The [2+2] photocycloaddition of tethered dienes **153** possessing two aromatic substituents (entry 1-4, 16) resulted in an inseparable diastereomeric mixture whereas having only one aromatic substituent has the advantage that both generated diastereomers could be isolated from each other (entry 5-7). In the structure of the diaryl-substituted main diastereomers, both phenyl groups are in *cis*-conformation what was clearly proven by X-ray crystallography of substrate **158ha** (Figure 8).

Figure 8. X-ray structure of compound 158ha.

Major diastereomers of the monosubstituted compounds are the *trans*-derivatives whereas the minor diastereomers are the *cis*-isomers. For instance, the *trans*-configuration was manifested by X-ray structure of major compound **158ka** and the minor diastereomer was confirmed to be the *cis*-derivative by X-ray analysis of compound **158ib** (Figure 9).

Figure 9. Exemplarily X-ray structures of major diastereomer 158ka and minor diastereomer 158ib.

In the case of the ester-linked derivative 153w, the cyclobutane 158t was only synthesized in a yield of 29% by increasing the reaction temperature to 80 °C. The low yield, as well as the need for higher temperatures, can be explained by the favorable *S-cis* conformation of the ester moiety as previously discussed in chapter 1.2.^[63]

The azabicycloheptanones **158** were synthesized in moderate to good yields with good diastereoselectivity. In general, a suitable substituent of the amide bond is necessary for a successful [2+2] cycloaddition as well as at least one aromatic substituent on one of the double bonds (entry 15) what is consistent with previous observations.

6 Upscaling of the [2+2] photocycloaddition

Since the resulting bicycles **158** should be converted into the corresponding γ -cyclobutane amino acids in the further course, the azabicycloheptanones **158** should be able to be prepared in sufficient quantity. The starting material **153i** was prepared on a multigram scale within two steps without purification in-between in a good overall yield of 91%, about 27 g. Subsequently, investigations were started towards the appropriate amount of catalyst and substrate concentration for a sufficient [2+2] cycloaddition in order to upscale this photochemical reaction (Table 16).

	[lr(dtb-bpy)(dF(CF ₃)ppy) ₂]PF ₆	Ph	
	hν (λ = 455 nm), DMSO, 40 °C		
153i		158ia	158ib

Table 16. Catalyst loading of the [2+2] photocycloaddition of compound 153i.^{a)}

entry	catalyst amount [mol%]	concentration of 153i [M]	time [h]	yield [%] (<i>dr</i> a/b) ^{b)}
1	1	0.04	3	78 (<i>dr</i> 83/17)
2	0.5	0.04	3	73 (<i>dr</i> 82/18)
3	0.5	0.08	3	75 (<i>dr</i> 83/17)
4	0.1	0.04	5	80 (<i>dr</i> 83/17)
5	0.1	0.16	5	79 (<i>dr</i> 84/16)
6	0.01	0.16	48	41 (<i>dr</i> 83/17)
7	0.05	0.16	43	56 (<i>dr</i> 84/16)

^{a)} Irradiation with 1 W LED (λ = 455 nm). ^{b)} Diastereomeric ratio was estimated by crude ¹H-NMR.

The screening revealed that the most suitable result was obtained by applying 0.1 mol% of catalyst with a substrate concentration of 0.16M giving rise to 79% of the cyclobutane-containing product **158i**. A further decrease of catalyst amount led to a prolonged reaction time and concurrently the yield dropped to 41% and 56%, respectively (entry 6/7).

For the reactions on large scale, a reactor was developed adopting the principle of an immersion shaft exposure unit which is generally used for UV irradiation (Figure 10).

Figure 10. Setup of an immersion shaft exposure unit.

The apparatus was equipped with 30 blue LED units ($\lambda_{max} = 455$ nm) and an additional water cooling since LED lights despite their low energy consumption generate significant heat. Depending on the used reaction vessel the [2+2] photocycloaddition could be performed either with 200 mL or 600 mL volume capacity. The reaction was up-graded stepwise (Table 17).

Table 17. Upscaling of the [2+2] photocycloaddition.

Ph [~]	$\frac{0}{153i}$	ρ-bpy)(dF(CF ₃)ppy)₂]PF ₆ ((nν (λ = 455 nm), DMSO, 4	0.1 mol%) 0 °C	Ph N N 158ia	Ph N O 158ib
entry	amount of 153i [mmol]	concentration of 153i [M]	time	conv. [%]	yield [%] (<i>dr</i> a/b) ^{a)}
1 ^{b)}	1	0.040	5 h	100	80 (<i>dr</i> 83/17)
2 ^{c)}	10	0.040	18 h	100	58 (dr 83/17)
3°)	30	0.046	24 h	100	67 (<i>dr</i> 83/17)
4 ^{c)}	110	0.169	7 d	95	70 (<i>dr</i> 81/19)

^{a)} Diastereomeric ratio was estimated by crude ¹H-NMR. ^{b)} Irradiation with one LED (1 W, $\lambda = 455$ nm). ^{c)} Irradiation with 30 LEDs (each 1 W, $\lambda = 455$ nm).
Converting 10 mmol or 30 mmol starting material **153i** 58% or 67% of the cyclobutane-containing compound **158i** was achieved, respectively. After 7 d a conversion of 95% of the used 110 mmol substrate **153i** was achieved and the [2+2] photocycloaddition gave 70% of the desired product **158i**. Due to the limitation of the applied photoapparatus especially the light power, the long reaction time and the incomplete conversion can be explained. However, the cyclobutane derivatives could be synthesized now on a multi-gram scale in order to have enough material for further studies towards the transformations into the corresponding amino acid derivatives.

7 Transformations of the bicyclic key intermediates into racemic γ -cyclobutane amino acids

7.1 Removal of the tert-butyl group

The cleavage of the *N-tert*-butyl protecting group is generally performed in acidic media. $H_2SO_4^{[64]}$, TFA^[65] and TFMSA^[66] were successfully applied to transform *N-tert*-butyl substituted amides or carbamates into the corresponding deprotected derivatives. Aqueous HCl was mainly used in the deprotection step of secondary^[67] or tertiary^[68] *N-tert*-butyl amine derivatives.

Chen *et al.*^[69,70] reported in their synthesis of gabapentin **197** that the treatment of γ -lactam **195** with aqueous HCl led to an effective removal of the *tert*-butyl group and a simultaneous hydrolysis of the lactam ring (Scheme 46).

Scheme 46. A concise synthesis of gabapentin 197 via intramolecular C-H insertion reaction.^[69]

To investigate different acidic conditions for the efficient removal of the *tert*-butyl group, the biphenyl derivative **158g** was chosen as model substrate (Table 18).

	Ph Ph acidic condition	ons	Ph N H	+ H_2N HO HO
	158g		158e	198
entry	conditions	T [°C]	time	yield
1	TFA	80	72 h	0% conv.
2	TFMSA	160	1 h	decomp.
3	96% H ₂ SO ₄ (aq.)	55	24 h	0% conv.
4	25% HCl (aq.)	90	3 d	no full conv.
				198 34%
5	25% HCl (aq.)	90	5 d	100% conv.
				198 43%
6	25% HCl (aq.)/dioxane	90	24 h	traces of 198
7	25% HCl (aq.)/AcOH	90	72 h	traces of 198
8	HCl in EtOAc (4.2M)	0	5 d	0% conv.

 Table 18. Removal of the tert-butyl substituent.

Similar to the results observed by Chen and coworkers, applying trifluoroacetic acid, trifluoromethanesulfonic acid or sulfuric acid did not furnish the desired product **198** (entry 1-3). However, compound **198** was obtained in 34% yield by refluxing model substrate **158g** in 25% aqueous HCl (entry 4). To achieve full conversion of the starting material **158g** the reaction time was prolonged from 3 d to 5 d resulting in an improved yield of 43% (entry 5). During these investigations, it was observed that the bicyclic compound **158g** is slightly soluble in aqueous HCl. Therefore, the involvement of a cosolvent was examined. In the case of dioxane, a complex mixture was generated and only traces of **198** were formed (entry 6). The same result was achieved by using acetic acid as additional solvent (entry 7). For a better solubility, a solution of dissolved HCl gas in ethyl acetate (4.2M) was tested (entry 8). The starting material **158g** was completely dissolved but even after 5 d no conversion was detectable. Obviously, this reaction condition seemed to be too mild.

The substrate scope of this reaction was investigated for amides of type **158** by applying a 25% aqueous HCl under reflux for 5 to 6 days (Scheme 47).

Scheme 47. Substrate scope of the *tert*-butyl removal.

Both single and double aryl-substituted derivatives **199** were synthesized in moderate to good yields. Moreover, an additional carboxylic acid group was also tolerated. It is notable, that either the chloride salt of the free amino acid or the free amino acid itself were obtained since some products required purification by an elution through an ion exchange resin (H⁺-form). Treatment of ester derivative **1581** with 25% aqueous HCl led to a simultaneous cleavage of the *N-tert*-butyl group as well as the ester moiety. Exposure of compound **158p** and **158q** to this acidic condition led to a decomposition of the heterocyclic compounds. In the case of the thiophene derivative **158q**, a slight formation of compound **205** was observed but purification was not possible. In addition, compound **206** could not be isolated either.

The proposed mechanism for this reaction is shown in scheme 48. The first protonation causes an activation of the carbonyl group, followed by the release of *tert*-butyl cation and the formation of lactim derivative **209**. By a proton exchange, the unprotected lactam derivative **210** is obtained as well as *iso*-butene. A further acidic activation of the carbonyl moiety enables

the nucleophilic attack of water resulting in hydrate **213**. Finally, ring opening gives rise to free γ -cyclobutane amino acid **214**.

Scheme 48. The proposed reaction mechanism for the formation of the ring opening product 214.

7.2 Studies towards debenzylation

The benzyl group is a frequently used protective group in organic synthesis and its removal is a well-researched area. The common deprotection method represents the palladium-catalyzed hydrogenation.^[19] In the following, different reaction conditions were investigated to remove the benzyl group from compound **158f** (Table 19).

Table 19. Debenzylation of compound 158f.

	Ph	Ph	Ph	Ph
		0	N	
	Ph 158f		15	8e
entry	conditions	T [°C]	time	yield
1	5 bar, AcOH, Pd(OH) ₂ /C	25	20 h	0% conv.
2	5 bar, AcOH, Pd(OH) ₂ /C	60	20 h	0% conv.
3	20 bar, AcOH, Pd(OH) ₂ /C	60	20 h	0% conv.
4 ^{a)}	80 bar, H-cube, MeOH/AcOH (5:1) 10% Pd/C	80	0.5 mL/min	0% conv.
5	AlCl ₃ , benzene	0 to 25	20 h	0% conv.
6	MeLi, THF	-40	1 h	complex mixture
7	TFA, MW	210	20 min	decomp.
8	NMA, NBS, CHCl ₃	rt	20 h	complex mixture
9 ^{b)}	Na (10 equiv.), NH ₃ (li.), <i>t</i> -BuOH	-33	1 h	complex mixture
10 ^{b)}	Na (3.5 equiv.), NH ₃ (li.), <i>t</i> -BuOH	-33	0.5 h	complex mixture

^{a)} The total reaction volume was 5 mL. ^{b)} Complete debenzylation was detectable.

The first test reactions needing molecular hydrogen pressure from 5 to 20 bar were performed in an autoclave. Applying the Pearlman catalyst^[71], Pd(OH)₂, and acetic acid as solvent under 5 bar hydrogen pressure at 25 °C did not result in debenzylation of starting material **158f** (entry 1). An increase in the reaction temperature to 60 °C (entry 2) and simultaneously the hydrogen pressure to 20 bar (entry 3) did not lead to any improvement. Thus, the hydrogenation was then performed in a heterogeneous catalytic flow hydrogenation system: ThalesNano H-Cube Pro^{TM[72]} (entry 4). The advantages of this device are on the one hand the in situ generation of hydrogen via electrolysis of deionized water and on the other hand the high active area ratio of catalyst to hydrogen and substrate resulting in increased reaction rates. For this purpose, compound 158f was dissolved in a 5:1 mixture of methanol and acetic acid and passed through this reactor containing a cartridge with an immobilized Pd catalyst (10% Pd/C) at a flow rate of 0.5 mL/min. However, no conversion was detectable. Since the reductive method of debenzylation failed, condition applying a Lewis acid was examined. In entry 5, the benzylated compound was treated with AlCl₃ as Lewis acid in benzene which served as solvent and trapping agent of benzyl cations generated during the reaction.^[73] Also, herein no conversion was observed. In 1995, Murakami et al.^[74] have published a lithium base mediated debenzylation. This procedure was applied to the starting material by treating it with MeLi in THF leading to a complex mixture and attempts to isolate the desired compound (entry 6) were unsuccessful. In the following, the condition of a microwave-assisted N-debenzylation with trifluoroacetic acid was tested without success (entry 7).^[75] The combination of NMA and NBS involving probably an amide NH-initiated free radical process did not form the product either (entry 8).^[76] Finally, debenzylation was achieved under dissolving metal conditions with sodium in ammonia (entry 9, 10).^[77] In this manner, an excellent reducing medium, a blue solution of 'solvated electrons' is generated (Figure 11).

Figure 11. Experimental setup of the Birch reduction.

A complete removal of the benzyl group was observed, but also further reduction – potentially of the two additional phenyl groups – occurred thereby and isolation of the target molecule was not possible. Furthermore, no improvement was associated with using less amount of sodium and shortened reaction time (entry 10). Therefore, the testing substrate **158f** was changed to the monosubstituted derivatives **158ja** and **158na** to facilitate the purification step.

Interestingly, depending on the location of the phenyl group on the cyclobutane core the resulting products of the Birch reduction varied in the cases of the monosubstituted compounds (Scheme 49).

Scheme 49. Birch reduction of compound 158ja and 158n. In addition, X-ray analysis of compound 215.

In the case of 6-substituted derivative **158ja** a simple deprotection took place, whereas an analog transformation of 7-substituted derivative **158na** provided product **215** resulting from deprotection and a simultaneous ring opening of the cyclobutane moiety. The structure of the ring opening product **215** was verified by X-ray analysis.

Scheme 50. Proposed reaction mechanism of the debenzylation/ring opening process.

These results are in accordance with the literature.^[78] The deprotected bicyclic compound **218** can accept another electron giving rise to a cyclobutane radical anion intermediate **219** that leads to a stabilized tetramethylene radical anion **220/221**. The intermediate can subsequently

react with *t*-BuOH, as proton donor. Another electron transfer and subsequent protonation form the phenylethylpyrrolidinone **215** as saturated derivative (Scheme 50).

In 2009, SiGNa Chemistry established a safer and more convenient method for the Birch reduction by encapsulating alkali metals into nano-structure porous oxides, as silica gel or alumina, with retained reducing power of the metal.^[79] This method utilizes sodium in silica gel (Na-SG I¹⁰), a black powder with a loading of 35 wt% which can be easily handled under air. Unfortunately, after two days no conversion of **158ja** was detectable (Scheme 51).

Scheme 51. Birch reduction of compound 158ja using Na-SG.

7.3 Hydrolysis of the N-Boc derivatives

In 1983, Grieco *et al.*^[55] developed a mild method for the hydrolysis of *N*-Boc derivatives of lactams into their acyclic amino acid derivatives. Their amino functionality remained in the protected form by employing lithium hydroxide. An analog treatment of *N*-Boc-protected derivatives **158** with an excess of LiOH gave rise to the Boc-protected γ -cyclobutane amino acids **225**, **226** and **227** in good yields (Scheme 52).

Scheme 52. Hydrolysis of the N-Boc-protected bicyclic compounds 158.

¹⁰ SiGNa Chemistry Inc. (http://signachem.com/) has developed three categories of alkali metals in silica gel (M-SG): Stage 0 materials are strongly reducing pyrophoric powders; stage I materials are synthetically useful reducing agents; stage II materials have the least reducing capability but react with water to form H₂. All three stages are commercially available.^[79]

The structure of Boc-protected amino acid **227** was ascertained by X-ray crystallography (Figure 12).

7.4 Conclusion

In summary, three different *N*-protected products of the photocatalytic [2+2] cycloaddition were successfully converted into the racemic *N*-Boc-protected γ -cyclobutane amino acid (±)-226, which served as starting material for the chiral resolution (Scheme 53).

Scheme 53. Three different synthetic routes towards racemic *N*-Boc-*cis*- γ -cyclobutane amino acid (±)-226.

The *tert*-butyl derivative **158ia** was firstly transformed into the chloride salt of the free amino acid **200** by refluxing in 25% aqueous solution of HCl. The subsequent Boc-protection gave rise to *N*-Boc-*cis*- γ -cyclobutane amino acid (±)-**226** in a yield of 96%. Starting from the already

Boc-protected bicyclic compound **158ka**, target molecule (±)-**226** was easily accessible in a single step and 85% yield by treatment with lithium hydroxide in a THF/H₂O mixture at ambient temperature. Applying Birch conditions enabled the removal of the benzyl group in compound **158ja** and the synthesis of the unprotected amide derivative **158u** in an excellent yield of 95%. In two subsequent steps, Boc-protection and basic hydrolysis, derivative **158u** was converted to racemic γ -cyclobutane amino acid (±)-**226** in 86% yield.

8 Chiral resolution

"The chiral auxiliary is actually an enantiopure chiral molecule which temporarily attaches to the substrate to induce chirality to the resulting compound. [...] Probably, the most suitable and common chiral auxiliaries, which meet nearly all these required criteria, are oxazolidin-2-ones, the so-called Evans' 2-oxazolidinones. Initially, it was discovered and presented by Evans and coworkers in 1981 and since then, a large number of structural modifications of these auxiliaries have been accomplished and reported."^[80]

Oxazolidinone can also be used for chiral resolution processes. Covalent derivatization of a racemate with this type of chiral reagents affords a pair of diastereomers which can be separated by common separation techniques since they differ in physical as well as chemical properties. Afterwards, the oxazolidinone moiety needs to be cleaved from the isolated derivatives giving rise to the desired pure enantiomers and the oxazolidinone shall be preferably recyclable.

Aitken and coworkers used this strategy in several synthesis of cyclobutane amino acid derivatives and succeeded in generating a number of enantiomerically pure cyclobutane-containing amino acids for example β -amino cyclobutane amino acid **228**^[81], *N*-aminoazetidinecarboxylic acid **230**^[82], *cis*-(2-aminocyclobutyl)acetic acid **232**^[83] or hydroxyl- β -amino cyclobutane carboxylic acid **234**^[84] (Scheme 54).

Scheme 54. Selected examples for the chiral resolution of the work group of Prof. D. J. Aitken.^[81–84]

Adopting the procedure for chiral resolution developed by Aitken *et al.*^[81] racemic *N*-Boc-protected γ -cyclobutane amino acid (±)-226 was coupled with (4*S*,5*R*)-4-methyl-5-phenyloxazolidin-2-one¹¹ (236). For this purpose, the acid moiety was firstly activated with pivaloyl chloride and the oxazolidinone was introduced as its lithium salt.^[85] The resulting pair of diastereomers 237 was separable *via* silica gel column chromatography. Thus diastereomer 237a could be isolated in 42% and diastereomer 237b in 39% yield. The absolute conformation of diastereomer 237a was unambiguously assigned by X-ray crystallography. Treatment with lithium hydroperoxide in aqueous THF allowed the exocyclic cleavage^[86] of the chiral auxiliary 237 and both enantiomers of *N*-Boc-*cis*- γ -cyclobutane amino acid 226 were

¹¹ Oxazolidinone **236** was available on gram scale at the work group of Prof. O. Reiser since it was a chemical donation of a company several years before.

accessible. It is notable that the used chiral oxazolidinone **236** was almost quantitatively recovered (Scheme 55).

Scheme 55. Chiral resolution of compound (±)-226.

In conclusion, both *cis-N*-Boc- γ -cyclobutane amino acids **226** were accessible in good yield and excellent enantiomeric excess *via* the chiral resolution using (4*S*,5*R*)-4-methyl-5phenyloxazolidin-2-one (**236**) as chiral auxiliary.

9 Second synthetic route towards enantioselective γ-cyclobutane amino acids

In 2011, Aitken *et al.*^[87] took advantage of the good diastereoselectivity of the [2+2] photocycloaddition of ethylene (**59**) with an enantiomerically pure unsaturated γ -lactam **238** for the synthesis of both stereoisomers of *cis*- γ -cyclobutane amino acids (Table 20). The photochemical reaction led exclusively to the *cis*-configuration at the ring junction. The presence of a chiral and removable substituent on the nitrogen atom enabled a separation of the obtained pair of diastereomers by simple column chromatography. Only in the case of the (*S*)-methyl benzyl lactam **242** the diastereomers **246** were successfully isolated from each other followed by transformation into the desired target *cis*- γ -amino acids **112** (see chapter 1.1).

Table 20. Photochemical [2+2] cycloaddition of Aitken et al.[87]

These results served as inspiration for the development of another synthetic route to the previously described 2-(aminomethyl)-3-phenylcyclobutane-1-carboxylic acid (**226**) starting with an already enantiomerically pure amide-linked diene.¹² The photochemical cycloaddition of such a chiral diene *via* visible light should generate diastereomers with a good diastereoselectivity which might be separable by column chromatography.

The synthesis of the starting material worked straightforwardly as described in chapter 2.3. Cinnamyl bromide **169b** was coupled in basic medium with (*S*)- α -methyl benzylamine (**247**) giving rise to chiral amine **248** in a yield of 76% with an enantiomeric excess of 98%. The following amide formation led to 82% of compound **153x** with constant *ee*. The [2+2] photocycloaddition produced four stereoisomers **158v** with an excellent diastereomeric ratio of 43/43/7/7 and an overall yield of 83%. After column chromatography, both major diastereomers **158va** and **158vb** were isolated in 34% and 32% yield, respectively. The

¹² Several results were adapted from the Bachelor Thesis of Fabian Späth (supervised by S. Kerres).

configuration of the three stereocenters on the cyclobutane core structure in compound **158vb** could be determined by X-ray analysis having the chiral appendage as already fixed stereocenter (Scheme 56).

Scheme 56. Reaction sequence with a chiral amide-linked diene (pathway A).

The transformations towards the corresponding *N*-Boc-*cis*- γ -cyclobutane amino acids **226** proceeded in analogy to the reaction sequence for the racemic compound described in chapter 7.4 (Scheme 57).

Scheme 57. Reaction sequences towards both enantiomers of compound 226.

In summary, two different routes were developed to get both *cis*-2-(aminomethyl)-3-phenylcyclobutane-1-carboxylic acid enantiomers (**226**). On the one hand a procedure with a chiral amide-linked diene as starting material (pathway A) and on the other hand a method applying a chiral resolution step with an enantiopure oxazolidinone (pathway B). For comparison, pathway B is again summarized in the following scheme 58.

Scheme 58. Pathway B using the chiral auxiliary.

In pathway A the chiral information is introduced by starting already with an enantiomerically pure compound 153x. In this process, both amino acids (1S,2R,3S)-226 and (1R,2S,3R)-226 were obtained over 6 steps in an overall yield of 15% and 16%, respectively. Pathway B includes the chiral resolution applying a chiral auxiliary. In this manner, the chiral amino acids (1S,2R,3S)-226 and (1R,2S,3R)-226 were synthesized over 8 steps with an overall yield of 7% and 9%, respectively. However, in both cases, the amount of performed reactions which were necessary to synthesize both enantiomers are the same: 9 experiments. The advantage of pathway B is the recyclability of the chiral auxiliary after the separation of both diastereomers 237. In pathway A the chiral appendage was simply lost after the Birch reduction.

10 Synthesis of chiral 3-(aminomethyl)-5-phenylpentanoic acid

 γ -Amino acids play an important role in the clinical treatment of diseases related to the central nervous system such as epilepsy, neuropathic pain or anxiety.^[88] The most prominent representative of this family is γ -aminobutyric acid (GABA) **250** which is the major inhibitory neurotransmitter in the mammalian central nervous system. Its physiological activity is based on the interaction with three receptor subtypes. Two of them are ligand-gated ion channels and the third one is a G-protein coupled receptor, all of them affect the synaptic transmission.^[89] For example, abnormally low levels of GABA in the brain are associated with serious neurological disorders as epilepsy which is characterized by recurrent seizures.^[90] About 45 million people worldwide are affected by epilepsy and its prevalence is approximately 4 to 8 per 1000 in Western countries.^[91,92] However, the administration of GABA orally or intravenously is not efficient because of its limited ability to cross the blood-brain barrier due to its low lipophilicity.^[91] Therefore, the synthesis of more lipophilic GABA derivatives has been the aim of a great number of studies. One possibility to achieve this might be the incorporation of a phenyl ring into the GABA molecule.^[93] A wide variety of GABA compounds have been synthesized and investigated over recent years. Figure 13 shows a variety of marketed GABA-analogues which have been commercialized in their racemic form.

Figure 13. Structure of GABA 250 and its derivatives.

For instance, Phenibut **251**^[93] is a neuropsychotropic drug and Rolipram **252**^[94] is applied in the therapy against depression. Furthermore, Baclofen **253**^[95] possesses muscle relaxing as well as antispastic activities.

As described in chapter 7.2, the unexpected cyclobutane ring opening of compound **158na** during the Birch reduction furnished 4-phenethylpyrrolidin-2-one (**215**) which is itself a GABA-analogue and is also a key intermediate in the synthesis of 3-(aminomethyl)-5-phenylpentanoic acid (**257**).^[96,97] This derivative is an anticonvulsant and used in a variety of

disorders like epilepsy, depression, anxiety, pain, cranial disorders, neurodegenerative literature-known process^[97], disorders inflammatory disease. In the first a or Horner-Wadsworth-Emmons reaction of hydrocinnamaldehyde 254 with the corresponding phosphonate was performed, followed by a Michael addition of nitromethane. The resulting nitro ester 256 was then reduced to phenylethylpyrrolidinone (±)-215 with an overall yield of 45% over 3 steps. Applying the method with [2+2] photocycloaddition as key step this lactam (±)-215 was synthesized in an overall yield of 49% over 4 steps, which is comparable to the literature reported result. Finally, the opening of the lactam ring was achieved by refluxing in aqueous solution of HCl giving rise to 89% of 3-(aminomethyl)-5-phenylpentanoic acid ((**±**)-257) (Scheme 59).

Scheme 59. Comparison of literature procedure with the herein established methodology towards 4-phenethylpyrrolidin-2-one ((\pm) -215).

Up to now, only Wu *et al.*^[98] developed an asymmetric synthesis of GABA derivative **257** the *R*-enantiomer *R*-**257**, with a highly enantioselective Michael addition of an aromatic ketone to $\alpha,\beta,\gamma,\delta$ -nitro compound as crucial step. In contrast to this approach, performing the [2+2] photocycloaddition with a chiral starting material in analogy to chapter 7.2 might give access to both enantiomers **257** (Scheme 60).

Scheme 60. [2+2] photocycloaddition of chiral amide-linked derivative 153y.

In the case of the enantiomerically pure diene **153y** again four diastereomers **158w** were formed. The absolute configuration of product **158wb** was ascertained by X-ray analysis with the chiral appendage as already fixed stereocenter. Major diastereomer **158wa** was successfully isolated, whereas major diastereomer **158wb** could not be completely separated from the minor diastereomers **158wc** and **158wd**.

Scheme 61. Transformation into both enantiomers of compound 257.

Therefore, the Birch reduction of compound 158wb led only to an enantiomeric excess of 90% of corresponding (*R*)-4-phenethylpyrrolidin-2-one the (R)-215while (S)-4-phenethylpyrrolidin-2-one (S)-215 was amenable in this process with >99% ee. By refluxing both pyrrolidinones 215 in a 25% aqueous solution of HCl both enantiomers of anticonvulsant 3-(aminomethyl)-5-phenylpentanoic acid (257) could be obtained. One discrepancy was observed: the optical rotation in the literature^[98] of *R*-enantiomer (*R*)-215 has a value of $[\alpha]_{D}^{25} = +48.2$ (c 4.02, MeOH, 95% ee) whereas in this work an optical rotation of $[\alpha]_{D}^{20} = -14.7$ (c 1, MeOH, 90% ee) was determined (Scheme 61). However, the performed measurements of both synthesized enantiomers (R)-257 and (S)-257 are consistent. Additionally, the configuration of each enantiomer could be ascertained by X-ray analysis (Figure 14) and already the X-ray crystallographic data of the bicyclic compound 158wb confirmed the *R*-configuration of compound (R)-257 (Scheme 60). Nevertheless, with the developed methodology both enantiomers of 257 are now accessible.

Figure 14. X-ray structures of (*S*)- and (*R*)-enantiomer 257.

11 Neuropeptide Y analogues

11.1 Neuropeptide Y

In 1981, the 36 residue peptide amide neuropeptide Y (NPY) was isolated from porcine brain by Tatemoto and Mutt and is one of the most abundant neuropeptides in the mammalian brain.^[99] Together with the pancreatic polypeptide (PP) and peptide YY (PYY), NPY has been classified into a family of homologous hormones due to their similar physiological activities.^[100] The first model of its three-dimensional structure was verified by X-ray analysis from avian pancreatic polypeptide consisting of a polyproline-like helix (amino acids 1-8), followed by a turn (amino acids 9-13) which displays the connection to the α -helix (amino acids 14-31). The amidated C-terminus (amino acids 32-36) is present as flexible loop conformation (Figure 15).^[101]

Figure 15. Structure of porcine NPY according to Allen et al.^[102]

In humans, central and peripheral biological effects of the members of the NPY family are mediated by four G-protein coupled receptor subtypes, labelled Y_nR (n = 1, 2, 4, 5) which are involved in numerous physiological effects in the human body. Several investigations demonstrated that NPY plays a key role in the pathophysiology of a number of diseases.^[103] Relevant biological functions of the different receptors are depicted in table 21.^[91,104,105]

receptor subtype	biological effect		
\mathbf{Y}_1	mediation of vasoconstriction and anxiolysis, regulation of food intake, control of alcohol consumption, expression in various tumor entities		
Y ₂	suppression of neurotransmitter release, regulation of memory retention and of circadian rhythm, implication in epilepsy		
Y4	cardiac function, gastrointestinal regulation, control of emotional and stress-related behavior		
Y 5	regulation of food intake, control of seizures		

Table 21. Overview of biological effects mediated by Y_nR (n = 1,2,4,5) in humans.

In 2001, Schaer *et al.*^[106] determined an overexpression of Y_1 receptor in one of the most frequent harmful cancers, breast carcinoma. Indeed, this receptor may be of functional relevance in tumor cell proliferation. Due to the high incidence of Y_1R in breast cancers NPY related drugs may represent relevant targets for anti-cancer therapy. Therefore, the development of potent and selective agonists and antagonists of the different receptors has attracted much attention.

Substitutions of single amino acids have revealed that especially the highly conserved C-terminal part of NPY, with its two positively charged arginine side chains in positions 33 and 35 and the tyrosine amide in position 36, is most important for the recognition process by the respective receptor.^[104,107] Different substitution patterns close to these significant C-terminal positions allow a distinction between the various receptor subtypes. Potent and selective agonists and antagonists are already available for Y₁R, Y₂R and Y₅R, however, the amount of known selective Y₄R ligands is rather small. An attempt to generate more Y₄R selective ligands seems to be the introduction of cyclic amino acids since they rigidify the peptide backbone and induce or stabilize various secondary structure motifs.^[107]

In 2013 Reiser *et al.*^[108] reported a high Y₄-receptor selectivity and agonistic activity by replacing Thr³² and Gln³⁴ in the C-terminal Neuropeptide Y fragment 25-36 by *cis*-cyclobutane (**1***R***,2***S***)-74** and *cis*-cyclopentane β -amino acids (**1***R***,2***S***)-262**. Using such unnatural building blocks for peptides is attractive since they are more stable against proteolytic degradation. More recently, Thomas Ertl demonstrated that the introduction of β -aminopyrrolidine carboxylic acid (**3***R***,4***R***)-263** to the truncated NPY (25-36) gave access to new Y₄R selective analogues as

well.^[109] Whereas the incorporation of β -amino cyclopropane carboxylic acids (**1***R*,**2***R*,**3***R*)-**261** led to a Y₁R selectivity (Figure 16.).^[107]

Figure 16. Overview of K_i values [nM] of NPY-analogues containing unnatural cyclic amino acids.

Due to various functionalities of the different receptor subtypes, it is of great interest to extend the development of highly selective synthetic analogues of NPY. Especially, the investigation of unnatural cyclic amino acids as potent building blocks for the NPY analogues seems to be very promising.

11.2 Incorporation of γ-cyclobutane amino acids

The incorporation of both 2-amino-3-phenylcyclobutane-1-carboxylic acid enantiomers (1S,2R,3S)-227 and (1R,2S,3R)-227 is worthwhile, since the influence of a γ -amino acid derivative, as well as the effect of a hydrophobic substituent, can be evaluated in this manner. In order to introduce both synthesized *N*-Boc- γ -cyclobutane amino acid enantiomers 227, an exchange of the protecting group was performed yielding the corresponding *N*-Fmoc-protected derivatives 264. Under acidic condition applying TFA, the Boc group was successfully cleaved off. Subsequently, the crude TFA salts of the free amino acids were subjected to basic medium each and were coupled with Fmoc-succinimide giving rise to 84% of enantiomer (1S,2R,3S)-264 and 91% of enantiomer (1R,2S,3R)-264 each with an unrelieved enantiomeric excess of 99% (Scheme 62).

Scheme 62. Exchange of the Boc-protecting group by Fmoc group.

Reiser *et al.*^[108] additionally investigated very short NPY-sequences consisting of only five residues (amino acids 32-36). This truncated C-terminal NPY-analogues **265** exhibit a Y₄R affinity with a K_i-value of 50 (\pm 17) nM. Furthermore, the introduction of an additional Argresidue in position 31 even improved the selectivity towards the Y₄-receptor to the single-digit nanomolar range, K_i of 3.43 (\pm 1.3) nM (Figure 17).^[110]

Figure 17. Amino acid sequences of the pentapeptide 265 and hexapeptide 266 NPY-analogues.

In context of these described results and in order to find new selective ligands for Y₄R, both 2amino-3-phenylcyclobutane-1-carboxylic acid enantiomers (1S,2R,3S)-264 and (1R,2S,3R)-264 were each introduced in position 34 in the pentapeptide NPY (32-36) and in the case of the double substitution in position 32 and 34 the building blocks were incorporated in the sequence of the hexapeptide NPY (31-36) (Figure 18).

Figure 18. Amino acid sequences of the prepared NPY analogues 267-270.

In cooperation with Prof. C. Cabrele from the University of Salzburg, the truncated NPY-analogues **267-270** were synthesized on an automated peptide synthesizer, applying Fmoc-chemistry and double-coupling procedure with HBTU/HOBt/DIPEA. The synthesis was performed on a Rink-amide MBHA resin producing C-terminally amide form peptides. Additionally, the peptides were purified by preparative RP-HPLC achieving a purity of more than 95%. The investigations of the binding profiles of all synthesized NPY analogues **267-270** are currently ongoing in cooperation with the group of Prof. A. Buschauer.

12 References

- V. André, M. Gras, H. Awada, R. Guillot, S. Robin, D. J. Aitken, *Tetrahedron* 2013, 69, 3571–3576.
- [2] F. Hernvann, G. Rasore, V. Declerck, D. J. Aitken, Org. Biomol. Chem. 2014, 12, 8212–8222.
- [3] Y. Roh, H.-Y. Jang, V. Lynch, N. L. Bauld, M. J. Krische, Org. Lett. 2002, 4, 611–613.
- [4] a) L.-C. Wang, H.-Y. Jang, Y. Roh, V. Lynch, A. J. Schultz, X. Wang, M. J. Krische, J. Am. Chem. Soc. 2002, 124, 9448–9453; b) T.-G. Baik, A. L. Luis, L.-C. Wang, M. J. Krische, J. Am. Chem. Soc. 2001, 123, 6716–6717.
- [5] J. Yang, D. F. Cauble, A. J. Berro, N. L. Bauld, M. J. Krische, J. Org. Chem. 2004, 69, 7979–7984.
- [6] J. Yang, G. A. N. Felton, N. L. Bauld, M. J. Krische, J. Am. Chem. Soc. 2004, 126, 1634–1635.
- [7] M. A. Ischay, M. E. Anzovino, J. Du, T. P. Yoon, J. Am. Chem. Soc. 2008, 130, 12886–12887.
- [8] M. A. Cismesia, T. P. Yoon, *Chem. Sci.* **2015**, *6*, 5426–5434.
- [9] J. Du, T. P. Yoon, J. Am. Chem. Soc. 2009, 131, 14604–14605.
- [10] M. Neumann, K. Zeitler, *Eur. J. Org. Chem.* **2013**, *19*, 6950–6955.
- [11] S. Zhao, J.-B. Lin, Y.-Y. Zhao, Y.-M. Liang, P.-F. Xu, Org. Lett. 2014, 16, 1802–1805.
- [12] a) D. Ravelli, M. Fagnoni, *ChemCatChem* 2012, *4*, 169–171; b) X.-F. Zhang, I. Zhang, L. Liu, *Photochem. Photobiol.* 2010, 86, 492–498.
- [13] K. Kalyanasundaram, Coord. Chem. Rev. 1982, 46, 159–244.
- [14] A. Juris, V. Balzani, P. Belser, A. von Zelewsky, *Helv. Chim. Acta* **1981**, *64*, 2175–2182.
- [15] K. Singh, S. J. Staig, J. D. Weaver, J. Am. Chem. Soc. 2014, 136, 5275–5278.
- [16] D. M. Pawar, A. A. Khalil, D. R. Hooks, K. Collins, J. Am. Chem. Soc. 1998, 120, 2108–2112.
- [17] a) A. Throup, L. H. Patterson, H. M. Sheldrake, *Org. Biomol. Chem.* 2016, *14*, 9554–9559;
 b) J. Panda, S. Ghosh, S. Ghosh, *ARKIVOC* 2005, *2001*, 146–153.
- [18] V. P. Manea, K. J. Wilson, J. R. Cable, J. Am. Chem. Soc. 1997, 119, 2033–2039.
- [19] P. G. M. Wuts, T. W. Greene, Greene's Protective Groups in Organic Synthesis, John Wiley & Sons, Inc, Hoboken, NJ, USA, 2006.
- [20] Corey, E. J., A. Venkateswarlu, J. Am. Chem. Soc. 1972, 94, 6190–6191.
- [21] A. Bartoszewicz, M. Kalek, J. Nilsson, R. Hiresova, J. Stawinski, *Synlett* 2008, 37–40.
- [22] M. Chen, A. Maetzke, Knak Jensen, Svend J., K. V. Gothelf, *Eur. J. Org. Chem.* 2007, 2007, 5826–5833.
- [23] J. D. More, N. S. Finney, Org. Lett. 2002, 4, 3001–3003.
- [24] F. Gnad, M. Poleschak, O. Reiser, *Tetrahedron Lett.* 2004, 45, 4277–4280.
- [25] F. A. Bell, R. A. Crellin, H. Fujii, A. Ledwith, *Chem. Commun.* 1969, 251–252.
- [26] R. A. Crellin, M. C. Lambert, A. Ledwith, *Chem. Commun.* 1970, 682–683.

- [27] a) N. L. Bauld, *Tetrahedron* 1989, 45, 5307–5363; b) N. L. Bauld, D. J. Bellville, B. Harirchian, K. T. Lorenz, R. A. Pabon, D. W. Reynolds, D. D. Wirth, H. S. Chiou, B. K. Marsh, *Acc. Chem. Res.* 1987, 20, 371–378; c) R. A. Pabon, D. J. Bellville, N. L. Bauld, *J. Am. Chem. Soc.* 1984, 1984, 2730–2731; d) N. L. Bauld, R. Pabon, *J. Am. Chem. Soc.* 1983, 105, 633–634.
- [28] C. K. Prier, D. A. Rankic, D. W. C. MacMillan, *Chem. Rev.* 2013, 113, 5322–5363.
- [29] M. A. Ischay, T. P. Yoon, Eur. J. Org. Chem. 2012, 2012, 3359–3372.
- [30] M. A. Ischay, Z. Lu, T. P. Yoon, J. Am. Chem. Soc. 2010, 132, 8572–8574.
- [31] M. A. Ischay, M. S. Ament, T. P. Yoon, *Chem. Sci.* 2012, *3*, 2807–2811.
- [32] B. P. Zavesky, N. R. Babij, J. A. Fritz, J. P. Wolfe, Org. Lett. 2013, 15, 5420–5423.
- [33] H. Alinezhad, M. Tajbakhsh, N. Mahdavi, Synth. Commun. 2010, 40, 951–956.
- [34] O. S. Nayal, V. Bhatt, S. Sharma, N. Kumar, J. Org. Chem. 2015, 80, 5912–5918.
- [35] a) M.-A. Haga, E. S. Dodsworth, G. Eryavec, P. Seymour, A. B. P. Lever, *Inorg. Chem.* 1985, 24, 1901–1906; b) R. J. Crutchley, A. B. P. Lever, *J. Am. Chem. Soc.* 1980, *102*, 7128–7129.
- [36] S. Lin, M. A. Ischay, C. G. Fry, T. P. Yoon, J. Am. Chem. Soc. 2011, 133, 19350–19353.
- [37] D. M. Schultz, T. P. Yoon, *Science (New York, N.Y.)* **2014**, *343*, 1239176.
- [38] Z. Lu, T. P. Yoon, Angew. Chem., Int. Ed. 2012, 51, 10329–10332.
- [39] A. E. Hurtley, Z. Lu, T. P. Yoon, Angew. Chem., Int. Ed. 2014, 53, 8991–8994.
- [40] V. Mojr, E. Svobodová, K. Straková, T. Neveselý, J. Chudoba, H. Dvořáková, R. Cibulka, *Chem. Commun.* 2015, 51, 12036–12039.
- [41] M. Jirásek, K. Straková, T. Neveselý, E. Svobodová, Z. Rottnerová, R. Cibulka, *Eur. J. Org. Chem.* 2016.
- [42] A. Singh, C. J. Fennell, J. D. Weaver, *Chem. Sci.* **2016**, *7*, 6796–6802.
- [43] P. L. Egerton, E. M. Hyde, J. Trigg, A. Payne, P. Beynon, M. V. Mijovic, A. Reiser, J. Am. Chem. Soc. 1981, 103, 3859–3863.
- [44] W. Oppolzer, R. Achini, E. Pfenninger, H. P. Weber, *Helv. Chim. Acta* 1976, *59*, 1186–1202.
- [45] A. V. Denisenko, T. Druzhenko, Y. Skalenko, M. Samoilenko, O. O. Grygorenko, S. Zozulya,
 P. K. Mykhailiuk, *J. Org. Chem.* 2017, *82*, 9627–9636.
- [46] R. Buchholz, H. Martin R. Hoffmann, *Helv. Chim. Acta* 1991, 1991, 1213–1220.
- [47] M. Sietzen, S. Batke, L. Merz, H. Wadepohl, J. Ballmann, *Organometallics* 2015, *34*, 1118–1128.
- [48] X. Huang, N. Jiao, Org. Biomol. Chem. 2014, 12, 4324–4328.
- [49] A. Dhami, M. F. Mahon, M. D. Lloyd, M. D. Threadgill, *Tetrahedron* **2009**, *65*, 4751–4765.
- [50] S. P. Raillard, R. A. Scheuerman, S. K. Manthati, T. A. Worral, Patent: PCT/US2014/041406, 2014.
- [51] P. Zhang, H.-R. Hu, Z.-H. Huang, J.-Y. Lei, Y. Chu, D.-Y. Ye, *Bioorg. Med. Chem.* 2012, 22, 7232–7236.

- [52] P. Kancharla, J. X. Kelly, K. A. Reynolds, J. Med. Chem. 2015, 58, 7286–7309.
- [53] D. R. Stuart, K. Fagnou, *Science (New York, N.Y.)* **2007**, *316*, 1172–1175.
- [54] H. Zhang, K. O. Jeon, E. B. Hay, S. J. Geib, D. P. Curran, M. G. LaPorte, Org. Lett. 2014, 16, 94–97.
- [55] Flynn, Daniel L., R. E. Zelle, P. A. Grieco, J. Org. Chem. 1983, 48, 2424–2426.
- [56] R. A. Marcus, J. Phys. Chem. 1968, 72, 891–899.
- [57] L. Pauling, J. Am. Chem. Soc. 1947, 69, 542–553.
- [58] a) R. P. Bell, Proc. Roy. Soc. London 1936, 414–429; b) M. G. Evans, M. Polanyi, Trans. Faraday Soc. 1938, 34, 11–24.
- [59] X. Cui, C. Zhang, K. Xu, J. Zhao, J. Mater. Chem. C 2015, 3, 8735–8759.
- [60] a) S. Sprouse, K. A. King, P. J. Spellane, R. J. Watts, J. Am. Chem. Soc. 1984, 106, 6647–6653; b) L. Flamigni, A. Barbieri, C. Sabatini, B. Ventura, F. Barigelletti, *Top. Curr. Chem.* 2007, 281, 143–203.
- [61] J. D. Slinker, A. A. Gorodetsky, M. S. Lowry, J. Wang, S. Parker, R. Rohl, S. Bernhard,
 G. G. Malliaras, *J. Am. Chem. Soc.* 2004, *126*, 2763–2767.
- [62] a) J. B. Metternich, D. G. Artiukhin, M. C. Holland, M. von Bremen-Kühne, J. Neugebauer, R. Gilmour, *J. Org. Chem.* 2017; b) J. Metternich, R. Gilmour, *Synlett* 2016, *27*, 2541–2552;
 c) J. B. Metternich, R. Gilmour, *J. Am. Chem. Soc.* 2015, *137*, 11254–11257; d) D. C. Fabry, M. A. Ronge, M. Rueping, *Chem. Eur. J.* 2015, *21*, 5350–5354.
- [63] G. I. L. Jones, N. L. Owen, *Journal of Molecular Structure* **1973**, *18*, 1–32.
- [64] a) F. Diaba, J. A. Montiel, A. Martínez-Laporta, J. Bonjoch, *Tetrahedron Lett.* 2013, 54, 2619–2622; b) S. H. Rosenberg, H. Rapoport, J. Org. Chem. 1985, 3979–3982.
- [65] a) D. Albrecht, B. Basler, T. Bach, J. Org. Chem. 2008, 73, 2345–2356; b) M. J. Earle,
 R. A. Fairhurst, H. Heaney, G. Papageorgiou, Synlett 1990, 10, 621–623.
- [66] G. López-Valdez, S. Olguín-Uribe, A. Millan-Ortíz, R. Gamez-Montaño, L. D. Miranda, *Tetrahedron* **2011**, *67*, 2693–2701.
- [67] N. de Kimpe, P. Sulmon, P. Brunet, J. Org. Chem. 1990, 55, 5777–5784.
- [68] E. Leclerc, E. Vrancken, P. Mangeney, J. Org. Chem. 2002, 67, 8928–8937.
- [69] Z. Chen, Z. Chen, Y. Jiang, W. Hu, *Tetrahedron* **2005**, *61*, 1579–1586.
- [70] a) Z. Du, Z. Chen, Z. Chen, X. Yu, W. Hu, *Chirality* 2004, *16*, 516–519; b) Z. Chen, Y. Jiang,
 W. Hu, *Synlett* 2003, 2444.
- [71] W. M. Pearlman, *Tetrahedron Lett.* **1967**, *8*, 1663–1664.
- [72] G. Dormán, L. Kocsis, R. Jones, F. Darvas, J. Chem. Health Safety 2013, 20, 3–8.
- [73] Y. Murakami, T. Watanabe, A. Kobayashi, Y. Yokoyama, *Synth. Commun.* **1984**, 738–740.
- [74] H. Suzuki, A. Tsukuda, M. Kondo, M. Aizawa, Y. Senoo, M. Nakajima, T. Watanabe,Y. Yokoyama, Y. Murakami, *Tetrahedron Lett.* 1995, *36*, 1671–1672.

- [75] F. Rombouts, D. Franken, C. Martínez-Lamenca, M. Braeken, C. Zavattaro, J. Chen, A. A. Trabanco, *Tetrahedron Lett.* 2010, *51*, 4815–4818.
- [76] L. Kuang, J. Zhou, S. Chen, K. Ding, Synthesis 2007, 20, 3129–3134.
- [77] V. Du Vigneaud, O. K. Behrens, J. Biomol. Chem 1937, 117, 27–36.
- [78] J. Nishimura, A. Ohbayashi, E. Ueda, A. Oku, *Chem. Ber.* 1988, 121, 2025–2028.
- [79] M. J. Costanzo, M. N. Patel, K. A. Petersen, P. F. Vogt, *Tetrahedron Lett.* 2009, 50, 5463–5466.
- [80] M. M. Heravi, V. Zadsirjan, B. Farajpour, *RSC Adv.* **2016**, *6*, 30498–30551.
- [81] V. Declerck, D. J. Aitken, Amino Acids 2011, 41, 587–595.
- [82] V. Declerck, D. J. Aitken, J. Org. Chem. 2011, 76, 708–711.
- [83] H. Awada, S. Robin, R. Guillot, O. Yazbeck, D. Naoufal, N. Jaber, A. Hachem, D. J. Aitken, *Eur. J. Org. Chem.* 2014, 7148–7155.
- [84] Z. Chang, F. Boyaud, R. Guillot, T. Boddaert, D. J. Aitken, J. Org. Chem. 2018, 83, 527–534.
- [85] D. A. Evans, J. A. Ellman, J. Am. Chem. Soc. 1989, 111, 1063–1072.
- [86] D. J. Ager, I. Prakash, D. R. Schaad, *Aldrichimica Acta* 1997, 1, 3–11.
- [87] V. André, A. Vidal, J. Ollivier, S. Robin, D. J. Aitken, *Tetrahedron Lett.* **2011**, *52*, 1253–1255.
- [88] J. Aguilera, A. G. Moglioni, G. Y. Moltrasio, R. M. Ortuño, *Tetrahedron: Asymmetry* 2008, 19, 302–308.
- [89] M. Chebib, Johnston, Graham A. R., J. Med. Chem. 2000, 43, 1427–1447.
- [90] K. Gale, *Epilepsia* (N. Y.) **1989**, *30*, S1-S11.
- [91] M. S. Hildebrand, H.-H. M. Dahl, J. A. Damiano, Smith, Richard J H, I. E. Scheffer, S. F. Berkovic, J. Med. Genet. 2013, 50, 271–279.
- [92] a) J. F. Annegers, S. Dubinsky, S. P. Coan, M. E. Newmark, L. Roht, *Epilepsia* 1999, 40, 502–506; b) W. A. Hauser, J. F. Annegers, L. T. Kurland, *Epilepsia* 1993, 34, 453–468;
 c) W. A. Hauser, J. F. Annegers, L. T. Kurland, *Epilepsia* 1991, 32, 429–445.
- [93] I. Lapin, CNS Drug Reviews 2001, 7, 471–481.
- [94] H. Wachtel, *Neuropharmacology* **1983**, *22*, 267–272.
- [95] a) A. Mann, T. Boulanger, B. Brandau, F. Durant, G. Evrard, M. Heaulme, E. Desaulles, C. G. Wermuth, J. Med. Chem. 1991, 34, 1307–1313; b) N. G. Bowery, D. R. Hill, A. L. Hudson, A. Doble, D. N. Middlemiss, J. Shaw, M. Turnbull, Nature 1980, 283, 92–94.
- [96] A. Leyva-Pérez, P. García-García, A. Corma, *Angew. Chem., Int. Ed.* **2014**, *53*, 8687–8690.
- [97] J. S. Bryans, D. C. Horwell, C. O. Kneen, D. J. Wustrow, A. J. Thorpe, WO 9817627, 1998.
- [98] X.-T. Guo, F. Sha, X.-Y. Wu, Synthesis 2017, 49, 647–656.
- [99] K. Tatemoto, Proc. Natl. Acad. Sci. U. S. A. 1982, 79, 5485–5489.
- [100] A. Balasubramaniam, *Peptides* **1997**, *18*, 445–457.
- [101] T. L. Blundell, J. E. Pitts, J. Tickle, S. P. Wood, C.-W. Wu, Proc. Natl. Acad. Sci. USA 1981, 78, 4175–4179.

- [102] J. Allen, J. Novotný, J. Martin, G. Heinrich, Proc. Natl. Acad. Sci. USA 1987, 84, 2532-2536.
- [103] A. Balasubramaniam, Am. J. Surg. 2002, 183, 430–434.
- [104] C. Cabrele, A. G. Beck-Sickinger, J. Pept. Sci. 2000, 6, 97–122.
- [105] a) S. Lin, D. Boey, H. Herzog, *Neuropeptides* 2004, *38*, 189–200; b) C. Walther, K. Mörl,
 A. G. Beck-Sickinger, *J. Pept. Sci* 2011, *17*, 233–246.
- [106] J. C. Reubi, M. Gugger, B. Waser, J.-C. Schaer, *Cancer Res.* **2001**, *61*, 4636–4641.
- [107] N. Koglin, C. Zorn, R. Beumer, C. Cabrele, C. Bubert, N. Sewald, O. Reiser, A. G. Beck-Sickinger, Angew. Chem., Int. Ed. 2003, 42, 202–205.
- [108] L. Berlicki, M. Kaske, R. Gutiérrez-Abad, G. Bernhardt, O. Illa, R. M. Ortuño, C. Cabrele,
 A. Buschauer, O. Reiser, *J. Med. Chem.* 2013, 56, 8422–8431.
- [109] T. Ertl, *Dissertation*, Regensburg, **2017**.
- [110] K. K. Kuhn, T. Littmann, S. Dukorn, M. Tanaka, M. Keller, T. Ozawa, G. Bernhardt, A. Buschauer, ACS Omega 2017, 2, 3616–3631.

C Summary

In the present thesis an intramolecular visible light mediated [2+2] photocycloaddition of amide-linked dienes **153** was developed to build up azabicycloheptanones **158** which were transformed into γ -cyclobutane amino acids. Furthermore, these cyclobutane-containing amino acids were generated enantioselective and incorporated in shortened NPY-analogues to find new selective ligands for Y₄R.

The investigations revealed that the suitable reaction mode for the [2+2] photocycloaddition of amide-linked dienes **153** is an energy transfer mechanism using the Iridium-based photocatalyst $[Ir(dtb-bpy)(dF(CF_3)ppy)_2]PF_6$ as sensitizer. The substituent on the nitrogen atom is crucial for the diene to adopt the necessary conformation for a successful cycloaddition (near attack conformation, NAC, **190**). *N-tert*-butyl, *N*-benzyl and *N*-Boc amide derivatives cyclized to the corresponding bicyclic compounds in moderate to good yields with an excellent diastereoselectivity (Scheme 63)

Scheme 63. Visible light mediated [2+2] photocycloaddition of amide-linked dienes.

In cooperation with the work group of Prof. J. Rehbein DFT-calculations were performed investigating the influence of the *N*-substituent of the amide-linked dienes on the [2+2] photocycloaddition (Scheme 64). All investigated features as stationary points, energy barriers and the nature of transition states prefer the [2+2] photocycloaddition of substrates with a large substituent.

Scheme 64. Overview of the stepwise formation of the bicyclic compounds 158.

The following part is devoted to the upscaling of the photoreaction. Therefore, a reactor with 30 LEDs ($\lambda = 455$ nm) was developed in which photoreactions with either 200 mL or 600 mL reaction volumina could be performed. Up to 110 mmol, 26 g, amide-linked diene **153i** was converted to the target bicyclic compounds **158i**, whereby the catalyst loading was reduced to 0.1 mol% (Scheme 65).

Scheme 65. Big scale [2+2] photocycloaddition of compound 153i.

Another important issue of this thesis constitutes the transformation of the obtained bicyclic compounds **158** into the desired γ -cyclobutane amino acids (Scheme 66). The *tert*-butyl derivatives **A** were firstly transformed into the chloride salts of the free amino acids **199** by refluxing in 25% aqueous solution of HCl. The subsequent Boc-protection gave rise to *N*-Boc*cis*- γ -cyclobutane amino acids **224**. Starting from the already Boc-protected bicyclic compounds **B**, target molecules **224** were easily accessible in a single step by treatment with lithium hydroxide in a THF/H₂O mixture at ambient temperature. Applying Birch conditions enabled the removal of the benzyl group in compounds **C** and the synthesis of the unprotected amide derivatives **271**. In two subsequent steps, Boc-protection and basic hydrolysis, derivatives **271** were converted to racemic γ -cyclobutane amino acids **224**.

Scheme 66. Three different synthetic routes towards racemic *N*-Boc-*cis*-γ-cyclobutane amino acids 224.

Three different *N*-protected products of the photocatalytic [2+2] cycloaddition were successfully transformed into the racemic *N*-Boc-protected γ -cyclobutane amino acid (±)-226, which served as starting material for the chiral resolution using (4*S*,5*R*)-4-methyl-5-

phenyloxazolidin-2-one (236) as chiral auxiliary giving rise to both enantiomers (1S,2R,3S)-226 and (1R,2S,3R)-226 (Scheme 67).

Scheme 67. Chiral resolution of compound (±)-226.

Another part of this thesis represents the investigation of the Birch reduction of the *N*-benzyl substituted bicyclic compounds, especially of the enantiomerically pure derivatives. In the case of 6-substituted derivatives such as **158v** a simple deprotection took place, whereas an analog transformation of 7-substituted derivatives **158w** provided product **215** which is itself a GABA-analogue and also a key intermediate in the synthesis of 3-(aminomethyl)-5-phenylpentanoic acid (**257**), an anticonvulsant. By applying this reaction mode, on the one hand a second enantioselective synthetic route towards γ -cyclobutane amino acids (**15**,**2**,**3**,**3**)-**226** and (**1**,**2**,**2**,**3**,**R**)-**226** and on the other hand a methodology towards both enantiomers (*R*)-**257** and (*S*)-**257** was developed (Scheme 68).

Scheme 68. Birch reduction of the enantiopure amide-linked dienes 158v and 158w.

The last chapter describes the incorporation of *N*-Fmoc-*cis*- γ -cyclobutane amino acids (**1***S*,**2***R*,**3***S*)-**264** and (**1***R*,**2***S*,**3***R*)-**264** in shortened NPY-analogues to develop new selective ligands for Y₄R in cooperation with the work group of Prof. C. Cabrele. The biological evaluation is currently ongoing in cooperation with the work group of Prof. A. Buschauer.

Scheme 69. Incorporation of *N*-Fmoc-*cis*-γ-cyclobutane amino acids **264** resulting in NPY-analogues (267-270).

D Zusammenfassung

Die vorliegende Arbeit beschreibt die Etablierung einer intramolekularen und mittels sichtbaren Licht induzierten [2+2] Photocycloaddition von amidverbrückten Dienen **153** zum Aufbau von Azabicycloheptanonen **158**, die im weiteren Verlauf zu γ -Cyclobutanaminosäuren umgewandelt wurden. Diese unnatürlichen cyclischen Aminosäuren wurden zudem für den Einbau in verkürzte NPY-Analoga enantioselektiv hergestellt, um selektive Liganden für den Y₄-Rezeptor zu gewinnen.

Die experimentellen Untersuchungen ergaben, dass der geeignete Reaktionsmodus für diese [2+2] Photocycloaddition auf einem Energieübertragungsmechanismus beruht. Der Iridiumbasierte Photokatalysator [Ir(dtb-bpy)(dF(CF₃)ppy)₂]PF₆ diente in dieser Reaktion als Sensibilisator. Für die erfolgreiche Cycloaddition ist der Substituent am Stickstoffatom entscheidend. Hierdurch kann das Dien die notwendige Konformation **190** einnehmen. Die Umsetzung von *N-ter*t-Butyl-, *N*-Benzyl- und *N*-Boc-amidderivate zu den entsprechenden Bicyclen gelang mit moderaten bis hin zu guten Ausbeuten mit jeweils hervorragender Diastereoselektivität (Abbildung 1).

Abbildung 1: [2+2] Photocycloaddition von amidverbrückten Dienen 153 mittels sichtbarem Licht.

In Zusammenarbeit mit der Arbeitsgruppe von Frau Prof. J. Rehbein wurden DFT-Berechnungen durchgeführt, die den Einfluss des *N*-Substituenten der amidverbrückten Diene auf den Ausgang der [2+2] Photocycloaddition untersuchten (Abbildung 2). Alle berechneten Merkmale, wie die stationären Energiewerte, die Energiebarrieren und die Art der Übergangszustände wiesen darauf hin, dass für eine erfolgreiche [2+2] Cycloaddition ein ausreichend großer Substituent notwendig ist.

Abbildung 2: Überblick über die schrittweise Bildung der Bicyclen 158.

Der nächste Abschnitt dieser Dissertation widmet sich dem Upscaling der Photoreaktion. Hierfür wurde ein Reaktor mit 30 LEDs ($\lambda = 455$ nm) entwickelt, in dem Photoreaktionen entweder mit 200 mL oder 600 mL Reaktionsvolumen durchgeführt werden können. Mit Hilfe dieser Apparatur wurden bis zu 110 mmol (≈ 26 g) amidverbrücktes Startmaterial **153i** in das Zielmolekül Bicyclus **158i** umgesetzt (Abbildung 3). Die Katalysatormenge konnte hierbei auf 0,1 mol% herabgesetzt werden.

Abbildung 3: [2+2] Photoreaktion im Multigrammaßstab.

Ein weiteres wichtiges Ziel dieser Arbeit stellte die Umwandlung der erhaltenen bicyclischen Verbindungen **158** in die gewünschten γ -Cyclobutanaminosäuren **224** dar (Abbildung 4). Durch Refluxieren der *tert*-Butylderivate **A** in 25%iger wässriger HCl-Lösung wurden diese zunächst in Chloridsalze der freien Aminosäuren **199** umgewandelt. Die anschließende Boc-Schützung führte zur Bildung der *N*-Boc-*cis*- γ -Cyclobutanaminosäuren **224**. Ausgehend von den bereits Boc-geschützten bicyclischen Verbindungen **B** waren die Zielmoleküle **224** durch den Einsatz von Lithiumhydroxid leicht zugänglich. Unter Birch-Bedingungen konnte die Benzylgruppe in Verbindungen **C** entfernt werden und derart die ungeschützten Amidderivate **271** erhalten werden. In zwei weiteren Schritten, einer Boc-Schützung und einer basischen Hydrolyse, wurden diese Derivate **271** schließlich in die racemische γ -Cyclobutanaminosäuren **224** umgewandelt.

Abbildung 4: Drei verschiedene Syntheserouten zu N-Boc-cis-y-Cylcobutanaminosäuren 224.
Drei unterschiedlich *N*-geschützte Produkte der photokatalytischen [2+2] Cycloaddition wurden somit erfolgreich in die racemische *N*-Boc-geschützte γ -Cyclobutanaminosäure (±)-226 umgesetzt, die als Ausgangsmaterial für die Racematspaltung mit (4*S*,5*R*)-4-Methyl-5-phenyloxazolidin-2-on (236) als chirales Hilfsmittel diente (Abbildung 5).

Abbildung 5: Racematspaltung des Produktes (±)-226.

Ein weiterer Teil dieser Arbeit befasst sich mit der Untersuchung der Birch-Reduktion der *N*benzylsubstituierten bicyclischen Verbindungen, insbesondere der enantiomerenreinen Derivate. Im Falle von 6-substituierten Derivaten, wie **158v**, erfolgte lediglich eine Entschützung, während eine analoge Umwandlung der 7-substituierten Derivate, wie **158w**, das Produkt **215** lieferte. Bei Letzterem handelt es sich um ein GABA-Analogon sowie um ein wichtiges Zwischenprodukt in der Synthese von 3-(Aminomethyl)-5-phenylpentansäure (**257**), einer spasmolytischer Substanz. Durch diesen Reaktionstyp wurde einerseits ein zweiter enantioselektiver synthetischer Weg zu γ -Cyclobutanaminosäuren (**1***S*,**2***R*,**3***S*)-**226** und (**1***R*,**2***S*,**3***R*)-**226** und andererseits eine Methodik zur Darstellung beider Enantiomere (*R*)-**257** und (*S*)-**257** entwickelt (Abbildung 6).

Abbildung 6: Birch-Reduktion der enantiomerenreinen Startmaterialen 158v und 158w.

Das letzte Kapitel beschreibt den Einbau der synthetisierten *N*-Fmoc-*cis*- γ -Cyclobutanaminosäuren (**1***S*,**2***R*,**3***S*)-**264** und (**1***R*,**2***S*,**3***R*)-**264** in verkürzte NPY-Analoga zur Entwicklung selektiver Liganden für den Y₄-Rezeptor in Zusammenarbeit mit der Arbeitsgruppe von Frau Prof. C. Cabrele (Abbildung 7). Die biologischen Testungen der dargestellten Substanzen erfolgen gegenwärtig in Zusammenarbeit mit der Arbeitsgruppe von Herrn Prof. A. Buschauer.

Abbildung 7: Einbau der *N*-Fmoc-*cis*-γ-Cyclobutanaminosäuren **264** zur Darstellung der NPY-Analoga (**267-270**).

E Experimental Part

1 General information

Synthesis

All chemicals were used as received or purified according to Purification of Common Laboratory Chemicals if necessary. Glassware was dried in an oven at 110 °C or flame-dried and cooled under a dry atmosphere prior to use. Solvents were applied in puriss p. a. grade and absolute solvents were prepared by established laboratory procedures. Larger quantities of dried solvents were purchased from a MB-SPS solvent purification system. Ethyl acetate, hexanes (40/60) and DCM for chromatography were distilled prior to use. Reactions with moisture and oxygen sensitive reagents were carried out in flame-dried glassware under an atmosphere of pre-dried nitrogen.

¹**H-NMR** spectra were recorded on Bruker Avance 300 (300 MHz) and Bruker Avance 400 (400 MHz). All measurements were performed at ambient temperature. Chemical shifts are reported in δ [ppm] relative to the solvent signals as internal standard, coupling constants *J* are given in [Hz]. Splitting patterns for the spin multiplicity were described in abbreviations: s = singlet, bs = broad singlet, d = doublet, t = triplet, q = quartet, p = pentet, dd = doublet of doublet, ddd = doublet of doublet of doublet, dt = doublet of triplet, dq = doublet of quartet, m = multiplet.

¹³C-NMR spectra were recorded on Bruker Avance 300 (75 MHz) and Bruker Avance 400 (101 MHz). The chemical shifts are reported in δ [ppm] relative to the solvent signals as internal standard. In addition, DEPT 135 spectra (DEPT = distortion less enhancement by polarization transfer; primary or tertiary carbon (positive signal), secondary carbon (negative signal), quaternary carbon (no signal)) were recorded.

High-performance liquid chromatography (HPLC) was performed on a Varian 920-LC with DAD. Phenomenex Lux Cellulose-1 and 2, Chiracel OD-H and AS served as chiral stationary phase and mixtures of *n*-heptane and *i*PrOH were used for elution.

RP High-performance liquid chromatography (RP-HPLC) was performed on a Shimadzu LC-20A series. Marchery-Nagel EC 250/4 Nucleodur 100-5 C18ec and Marchery-Nagel VP

250/10 Nucleodur 100-5 C18ec served as stationary phase and mixtures of MeCN + 0.05% TFA and Millipore water + 0.05% TFA were used for elution. MeCN was removed before lyophilization. Lyophilization was carried out with a Christ Alpha 2-4 LC equipped with a vacuubrand RZ 6 rotary vane vacuum pump.

Infra-red spectroscopy (IR) was carried out on a Cary 630 FTIR Spectrometer (Agilent Technology) with ZnSe windows and Diamond Single Reflection Accessory. Solid and liquid compounds were measured neatly, and the wavenumbers are reported in cm⁻¹.

Mass spectrometry (MS) was performed on Finnigan MAT95, Agilent Q-TOF 6540 UHD, Finnigan MAT SSQ 710 A, ThermoQuest Finnigan TSQ 7000 at the Central Analytical Department of the University of Regensburg.

Melting points (mp) were measured automatically on a MPA 100 Optimelt (Automated Melting Point System, Digital Image Processing Technology).

Optical rotations were determined in a Perkin Elmer 241 polarimeter or an Anton Paar MCP 500 at 589 nm wavelength (sodium-*d*-line) in a 1.0 dm measuring cell of ca. 2 mL volume and the specified solvent.

Cyclic voltammetric measurements (CV) were carried out with an Autolab PGSTAT302N Metrohm (working electrode: glassy carbon, counter electrode: platinum wire, pseudoreference electrode: silver wire, supporting electrolyte: tetrabutylammonium tetrafluoroborate Fluka 0.1 M). All measurements were performed by Regina Hoheisel form the work group of Prof. B. König. Prior to the measurement, the solvent was purged with argon. All experiments were performed under argon atmosphere. Ferrocene was used as an internal reference for determining the reduction and oxidation potentials. Afterwards, the so measured potentials were transferred into potential values *vs* SCE.^[1]

Column chromatography was carried out on silica gel Merck Geduran 60 (0.063-0.200 mm) and flash silica gel Merck Geduran Si 60 (0.040-0.063 mm). Furthermore, the flash system Intelli Flash 310 (AnaLogix) was used with flash silica gel Merck Geduran Si 60 (0.040-0.063 mm).

Thin layer chromatography (TLC) was performed on alumina plates with silica gel (Merck silica gel 60 F 254). Visualization was accomplished using UV light ($\lambda = 254$ nm), iodine, vanillin/sulfuric acid solution (1.25 g vanillin, 8 mL conc. H₂SO₄, 25 mL conc. acetic acid, 215 mL methanol), potassium permanganate solution (3 g KMnO₄, 20 g Na₂CO₃, 5 mL 5%

NaOH (aq.), 300 mL H₂O), Seebach's stain (2.5 g phosphomolybdic acid, 1 g Ce(SO₄)₂, 6 mL conc. H₂SO₄, 94 ml H₂O), bromocresol green (40 mg bromocresol, 100 mL ethanol, 0.1M NaOH added until solution got blue) or ninhydrin (450 mg ninhydrin, 1.5 mL conc. acetic acid, 500 mL ethanol).

Light sources

Blue light irradiation was performed using either a CREE-XP rb Lamp (700 mA, $\lambda = 455$ nm) or an Oslon 80 rb Lamp (700 mA, $\lambda = 455$ nm). For the big scale reaction an immersion shaft exposure unit (30x Osram Oslon SSL 80 deep blue, 1 W/ LED @ 700 mA, $\lambda = 455$ nm, 3x Meanwell LPC-35-700, Input: 90-260 VAC, Output: 700 mA, 9-48 VDC) was used. For the UV-irradiation a Phillips HPK lamp (125 W) was used.

2 Syntheses of compounds

Following compounds were synthesized according to literature procedures and spectroscopic data matched well with those reported:

 $Ru(bpz)_{3}Cl_{2}^{[2]}$, $Cu(dap)_2Cl^{[3]}$, fac-Ir(ppy)₃^[4]. $[Ir(dtb-bpy)ppy_2]PF_6^{[5]}$ $[Ir(dtb-bpy)(dF(CF_3)ppy)_2]PF_6^{[6]}$ 1-phenyl-2-(triphenylphosphaneylidene)ethan-1-one $(133)^{[7]}$, (E)-4-oxo-4-phenylbut-2-en-1-yl-(E)-4-oxo-4-phenylbut-2-enoate $(134)^{[8]}$, tert-butyl $(145a)^{[9]}$, methyl(2-oxoethyl)carbamate (9H-fluoren-9-yl)methyl methyl(2oxoethyl)carbamate $(145c)^{[10]}$, (E)-N-methyl-3-phenylprop-2-en-1-amine $(154)^{[11]}$, Ncinnamylaniline $(155)^{[12]}$, $(E)-N-(3-(4-methoxyphenyl)allyl)aniline <math>(156)^{[13]}$, $(E)-3-(4-methoxyphenyl)allyl)aniline (156)^{[13]}$ methoxyphenyl)prop-2-en-1-ol^[14], (*E*)-1-(3-bromoprop-1-en-1-yl)-4-methoxybenzene $(169c)^{[15]}$, methyl (*E*)-4-bromobut-2-enoate (169d)^{[16]}, *N*-(*tert*-butyl)prop-2-en-1-amine $(170a)^{[17]}$, (E)-3-phenylprop-2-en-1-amine $(172)^{[18]}$, tert-butyl cinnamylcarbamate $(173)^{[19]}$, tert-butyl allylcarbamate $(175)^{[20]}$, (E)-4-methoxy-4-oxobut-2-enoic acid $(177)^{[21]}$, (E)-3-(furan-2-yl)acrylic acid (180a)^[22], (E)-3-(thiophen-2-yl)acrylic acid (180b)^[22], (E)-3-(1Hpyrrol-2-yl)acrylic acid $(180c)^{[23]}$, (E)-3-(1H-indol-3-yl)acrylic acid $(180d)^{[24]}$, methyl (E)-3-(1*H*-pyrrol-2-yl)acrylate (**181b**)^[23].

2-Hydroxyethyl (E)-4-oxo-4-phenylbut-2-enoate (131)^[8]

In a round bottom flask, *trans*-3-benzoylacrylic acid **129** (4.40 g, 25.0 mmol, 1.0 equiv.) and ethanediol **130** (5.60 mL, 6.21 g, 100 mmol, 4.0 equiv.) were dissolved in dry DCM (100 mL). This solution was cooled down to 0 °C by an ice-bath and then EDC•HCl (5.28 g, 27.5 mmol, 1.1 equiv.), as well as DMAP (0.310 g, 2.50 mmol, 0.1 equiv.), were added, successively. The reaction mixture was stirred for 1 h at 0 °C and for further 4.5 h at ambient temperature. Afterwards, the organic phase was washed with 1M HCl (3x). The combined aqueous phases were back-extracted with DCM (30 mL). Finally, the organic phases were dried over MgSO₄, filtered and the solvent was removed under vacuo. By flash silica gel column chromatography (hexanes/EtOAc 2:1) compound **131** (3.22 g, 14.6 mmol, 58%) was obtained as yellow oil.

¹**H-NMR** (400 MHz, CDCl₃) $\delta = 8.03 - 7.98$ (m, 2H), 7.95 (d, J = 15.6 Hz, 1H), 7.67 - 7.59 (m, 1H), 7.56 - 7.48 (m, 2H), 6.93 (d, J = 15.6 Hz, 1H), 4.43 - 4.33 (m, 2H), 3.97 - 3.87 (m, 2H), 1.78 (bs, 1H); ¹³**C-NMR** (75 MHz, CDCl₃) $\delta = 189.4$, 165.8, 137.1, 136.5, 134.0, 132.0, 128.94, 128.91, 66.9, 61.0.

(E)-4-Oxo-4-phenylbut-2-en-1-yl (Z)-4-oxo-4-phenylbut-2-enoate (136)

A flame-dried heavy-wall Schlenk flask was equipped with compound **134** (94.7 mg, 296 μ mol, 1 equiv.), NPh₃ (148 mg, 603 μ mol, 2 equiv.), Ru(bpy)₃Cl₂ (11.2 mg, 15.0 μ mol, 5 mol%) and dry DCM (3 mL). The reaction mixture was degassed via three freeze-pump-thaw cycles and was irradiated via blue LED for 48 h at rt. Afterwards, the solvent was removed, and the crude mixture was purified by silica gel column chromatography (hexanes/EtOAc 5:1) giving rise to compound **136** (75.6 mg, 236 μ mol, 79%) as yellow oil.

 $\mathbf{R}_{\mathbf{f}} = 0.12$ (hexanes/EtOAc 5:1); ¹**H-NMR** (300 MHz, CDCl₃) $\delta = 8.01 - 7.87$ (m, 4H), 7.63 - 7.41 (m, 6H), 7.05 - 6.96 (m, 2H, two signals are overlapping: 7.02 (d, *J* = 15.5 Hz, 1H) + 7.00 (dt, *J* = 15.5, 1.8 Hz, 1H)), 6.83 (dt, *J* = 15.5, 4.4 Hz, 1H), 6.38 (d, *J* = 12.2 Hz, 1H), 4.78 (dd,

J = 4.4, 1.8 Hz, 2H; ¹³C-NMR (101 MHz, CDCl₃) $\delta = 193.7, 189.8, 164.2, 141.7, 139.9, 137.3, 135.6, 133.9, 133.1, 128.9, 128.8, 128.72, 128.67, 128.4, 126.1, 125.5, 63.72;$ **IR (neat)**[cm⁻¹] = 3354, 3026, 2948, 1692, 1602, 1528, 1446, 1319, 1274, 1241, 1148, 1028, 991, 939, 894, 827, 734, 700;**HRMS**: (ESI-MS) m/z calc. for [C₂₀H₁₆O₄Na]⁺ [M+Na]⁺ 343.0941, found 343.0941, m/z calc. for [C₂₀H₁₇O₄]⁺ [M+H]⁺ 321.1121, found 321.1127, m/z calc. for [C₂₀H₂₀NO₄]⁺ [M+NH₄]⁺ 338.1387, found 338.1388.

N OTBS

2-((tert-Butyldimethylsilyl)oxy)-N-methylethan-1-amine (140)^[25]

Methylamino ethanol **139a** (1.50 g, 1.6 mL, 20 mmol, 1.0 equiv.) was dissolved in dry DCM (20 mL) and then TBS-Cl (3.32 g, 22 mmol, 1.1 equiv.) was added portionwise. Afterwards NEt₃ (2.43 g, 3.3 mL, 24 mmol, 1.2 equiv.) and DMAP (24.4 mg, 0.20 mmol, 0.01 equiv.) were added. After 20 h reaction time at ambient temperature, the reaction mixture was quenched by addition of a saturated aqueous solution of NH₄Cl (40 mL). After phase separation, the aqueous phase was extracted with DCM (3 x 20 mL). The combined organic phases were dried over MgSO₄, filtered and the solvent was removed under reduced pressure. Compound **140** (1.95 g, 10 mmol, 50%) was obtained as a white solid and was used in the following without further purification.

¹**H-NMR** (400 MHz, CDCl₃) δ = 4.01 – 3.73 (m, 2H), 3.11 – 2.83 (m, 2H), 2.79 – 2.49 (m, 3H), 0.85 (s, 9H), 0.06 (s, 6H); ¹³**C-NMR** (75 MHz, CDCl₃) δ = 59.0, 50.8, 33.6, 25.9, 18.2, -5.4.

(*E*)-*N*-(2-((*tert*-Butyldimethylsilyl)oxy)ethyl)-*N*-methyl-4-oxo-4-phenylbut-2-enamide (141)

(*E*)-4-Oxo-4-phenylbut-2-enoic acid (**129**) (793 mg, 4.5 mmol, 1.0 equiv.), amine **140** (983 mg, 5.0 mmol) and DMAP (54.5 mg, 0.45 mmol, 0.1 equiv.) were dissolved in dry DCM (15 mL). After cooling to 0 °C, EDC•HCl (955 mg, 5.0 mmol, 1.1 equiv.) in dry DCM (7 mL) was added.

The reaction mixture was stirred for additional 15 min at 0 °C and then for 24 h at ambient temperature. The organic phase was washed twice with 1M HCl, dried over MgSO₄, filtered and the solvent was evaporated. The purification by flash column chromatography on silica gel (hexanes/EtOAc 2:1) yielded compound **141** (776 mg, 2.2 mmol, 50%) as yellow oil.

R_f = 0.39 (hexanes/EtOAc 2:1); ¹**H-NMR** (400 MHz, CDCl₃) δ = 8.04 – 7.97 (m, 2H), 7.92 (dd, J = 15.0, 4.0 Hz, 1H), 7.61 – 7.41 (m, 4H), 3.77 (dt, J = 29.0, 5.3 Hz, 2H), 3.57 (dt, J = 7.5, 5.3 Hz, 2H), 3.23 (s, 1.25H) + 3.07 (s, 2.75H), 0.86 (s, 3.9H) + 0.81 (s, 5.1H), 0.02 (s, 2.57H) + 0.00 (s, 3.43H) (signal doubling due to rotameres); ¹³**C-NMR** (101 MHz, CDCl₃) δ = 189.74, 189.72, 165.8, 165.0, 137.1, 137.0, 134.0, 133.7, 133.6, 133.5, 133.4, 132.8, 128.9, 128.83, 128.81, 128.78, 61.5, 60.8, 52.2, 51.4, 38.0, 34.7, 25.9, 25.8, 18.2, -5.4, -5.5 (signal doubling due to rotameres). **HRMS**: (ESI-MS) calc. for [C₁₉H₃₀NO₃Si]⁺ [M+H]⁺ 348.1989, found 348.1995.

4-Methyl-2-(2-oxo-2-phenylethyl)morpholin-3-one (143)

Compound **141** (776 mg, 2.2 mmol, 1 equiv.) was dissolved in abs. THF (6 mL). Then TBAF (2.08 g, 6.6 mmol, 3 equiv.) and acetic acid (396 mg, 380 μ L, 6.6 mmol, 3 equiv.) were added successively. The resulting black solution was stirred for 17.5 h at room temperature and was quenched by addition of water (3 mL) as well as brine (3 mL). After phase separation, the aqueous phase was extracted with DCM (2x). The combined organic phases were dried over MgSO₄, filtered and the solvent was evaporated. Purification by flash column chromatography on silica gel (hexanes/EtOAc 1:1) gave compound **143** (332 mg, 1.4 mmol, 64%) as slightly yellow oil.

R_f = 0.07 (hexanes/EtOAc 1:1); ¹**H-NMR** (300 MHz, CDCl₃) δ = 7.99 – 7.93 (m, 2H), 7.59 – 7.52 (m, 1H), 7.48 – 7.41 (m, 2H), 4.69 (dd, *J* = 7.4, 3.1 Hz, 1H), 4.01 (ddd, *J* = 11.8, 4.6, 1.8 Hz, 1H), 3.93 – 3.83 (m, 1H), 3.69 (ddd, *J* = 10.6, 9.2, 3.8 Hz, 2H), 3.48 (dd, *J* = 17.4, 7.5 Hz, 1H), 3.22 – 3.14 (m, 1H), 3.03 (s, 3H); ¹³**C-NMR** (101 MHz, CDCl₃) δ = 196.8, 169.0, 136.8, 133.2, 128.6, 128.2, 74.0, 63.0, 48.9, 41.1, 34.5; **IR** (neat) ν [cm⁻¹] = 2926, 2866, 1684, 1640, 1502, 1449, 1345, 1259, 1215, 1118, 756, 689; **LRMS**: (APCI-MS) 234.1129 [M+H]⁺.

tert-Butyl (2-hydroxyethyl)(methyl)carbamate (146a)^[26]

Methylaminoethanol **139a** (751 mg, 0.8 mL, 10 mmol, 1 equiv.) was dissolved in MeCN (50 mL) and the solution was cooled down to 0 °C. Boc₂O (2.18 g, 10 mmol, 1 equiv.) and DMAP (12.7 mg, 0.10 mmol, 0.01 equiv.) were added and the reaction mixture was stirred for 24 h. Then the solvent was removed under reduced pressure. The residue was dissolved again in DCM and water. After phase separation, the aqueous phase was extracted twice with DCM. The combined organic phases were dried over MgSO₄, filtered and the solvent was removed by rotatory evaporator. Compound **146a** (1.62 g, 9.3 mmol, 93%) was obtained as clear oil and was used without further purification.

¹**H-NMR** (400 MHz, CDCl₃) δ = 3.75 (t, *J* = 5.3 Hz, 2H), 3.39 (t, *J* = 5.3 Hz, 2H), 2.92 (s, 3H), 1.46 (s, 9H); ¹³**C-NMR** (101 MHz, CDCl₃) δ = 157.3, 79.9, 61.3, 51.4, 35.5, 28.4.

tert-Butyl (2-hydroxyethyl)(phenyl)carbamate (146b)^[27]

Phenylaminoethanol **139b** (1.37 g, 1.25 mL, 10 mmol, 1 equiv.) was dissolved in MeCN (50 mL) and the solution was cooled down to 0 °C. Boc₂O (2.18 g, 10 mmol, 1 equiv.) and DMAP (13.7 mg, 0.10 mmol, 0.01 equiv.) were added and the reaction mixture was stirred for 24 h. Then the solvent was removed under reduced pressure. The residue was dissolved again in DCM and water. After phase separation, the aqueous phase was extracted twice with DCM. The combined organic phases were dried over MgSO₄, filtered and the solvent was removed by rotatory evaporator. Compound **146b** (2.14 g, 9.0 mmol, 90%) was obtained as clear oil and was used without further purification.

¹**H-NMR** (300 MHz, CDCl₃) δ = 7.22 – 7.15 (m, 2H), 6.77 – 6.69 (m, 1H), 6.67 – 6.60 (m, 2H), 4.31 – 4.24 (m, 2H), 3.46 – 3.37 (m, 2H), 1.50 (s, 9H); ¹³**C-NMR** (101 MHz, CDCl₃) δ =153.5, 147.3, 129.3, 118.1, 113.2, 82.5, 65.4, 43.0, 27.8.

(9H-Fluoren-9-yl)methyl (2-hydroxyethyl)(methyl)carbamate (146c)^[28]

Methylaminoethanol **139a** (751 mg, 0.8 mL, 10.0 mmol, 1.0 equiv.) was dissolved in a mixture of dioxane/water (1:1, 50 mL). After cooling down to 0 °C, FmocOSu (3.83 g, 11.3 mmol, 1.1 equiv.) and NaHCO₃ (1.72 g, 20.5 mmol, 2.05 equiv.) were added. The reaction mixture was stirred in the defrosting ice-bath for 24 h. Afterwards, the solvent was evaporated in vacuo and the residue was dissolved again in saturated aqueous solution of NH₄Cl and DCM. After phase separation, the aqueous phase was extracted with DCM (2x). The combined organic phases were dried over MgSO₄, filtered and the solvent was removed under reduced pressure. Compound **146c** (2.97 g, 10.0 mmol, quant.) was obtained as clear oil.

R_f = 0.45 (hexanes/EtOAc 1:2); ¹**H-NMR** (300 MHz, CDCl₃) δ = 7.77 (d, *J* = 7.4 Hz, 2H), 7.60 (d, *J* = 6.7 Hz, 2H), 7.36 (ddd, *J* = 13.8, 10.9, 6.9 Hz, 4H), 4.63 – 4.32 (m, 2H), 4.25 (t, *J* = 6.5 Hz, 1H), 3.86 – 3.69 (m, 1H), 3.59 – 3.31 (m, 2H), 3.16 (s, 1H), 3.04 – 2.85 (m, 3H) (signal broading due to rotameres); ¹³**C-NMR** (101 MHz, CDCl₃) δ = 157.4, 156.4, 144.1, 141.4, 127.7, 127.1, 125.0, 124.9, 120.0, 67.6, 67.2, 60.9, 60.5, 51.8, 51.0, 47.4, 35.7, 35.3 (signal doubling due to rotameres); **LRMS**: (ESI-MS) 234.1129 [M+H]⁺.

tert-Butyl (*E*)-methyl(4-oxo-4-phenylbut-2-en-1-yl)carbamate (147a)

Compound **145a** (519 mg, 3.0 mmol, 1.0 equiv.) was dissolved in dry DCM (10 mL). Then ylide **133** (1.71 g, 4.5 mmol, 1.5 equiv.) was added and the reaction mixture was stirred for 20 h at ambient temperature. The solvent was removed, and the residue was purified by silica gel column chromatography (hexanes/EtOAc 7:1) yielding compound **147a** (542 mg, 2.0 mmol, 66%) as orange oil.

R_f = 0.17 (hexanes/EtOAc = 7:1); ¹**H-NMR** (300 MHz, CDCl₃) δ = 7.92 (d, *J* = 7.2 Hz, 2H), 7.53 (dt, *J* = 30.2, 7.3 Hz, 3H), 7.11 – 6.74 (m, 2H), 4.09 (bs, 2H), 2.92 (bs, 3H), 1.47 (s, 9H) (signal broading due to rotameres); ¹³**C-NMR** (101 MHz, CDCl₃) δ = 190.4, 190.0, 155.5, 143.8, 137.6, 132.9, 128.6, 128.5, 126.3, 125.3, 50.4, 49.8, 34.5, 28.4 (signal doubling and broading due to rotamers); **IR** (neat) v [cm⁻¹] = 3058, 3026, 2926, 2859, 1652, 1617, 1591, 1492, 1453, 1385, 1237, 1196, 970, 764, 697; **HRMS**: (ESI-MS) calc. for $[C_{16}H_{22}NO_3]^+$ [M+H]⁺ 276.1594, found 276.1598.

(9H-Fluoren-9-yl)methyl (E)-methyl(4-oxo-4-phenylbut-2-en-1-yl)carbamate (147b)

Compound 145c (1.74 g, 5.9 mmol, 1.0 equiv.) was dissolved in dry DCM (20 mL). Then ylide 133 (2.32 g, 6.1 mmol, 1.03 equiv.) was added and the reaction mixture was stirred for 19 h at ambient temperature. The solvent was removed, and the residue was purified by silica gel column chromatography (hexanes/EtOAc $3:1 \rightarrow 1:1$) yielding compound 147b (1.46 g, 3.7 mmol, 63%) as yellow oil.

R_f = 0.16 (hexanes/EtOAc 3:1); ¹**H-NMR** (300 MHz, CDCl₃) δ = 7.90 (t, *J* = 7.9 Hz, 2H), 7.74 (dd, *J* = 20.1, 7.5 Hz, 2H), 7.64 – 7.28 (m, 8H), 7.25 – 7.14 (m, 1H), 7.09 – 6.59 (m, 2H), 4.49 (t, *J* = 7.7 Hz, 2H), 4.32 – 4.13 (m, 2H), 4.00 (d, *J* = 2.9 Hz, 1H), 2.97 (s, 3H); ¹³**C-NMR** (75 MHz, CDCl₃) δ = 190.4, 189.9, 156.3, 156.1, 144.0, 143.9, 143.0, 142.8, 141.4, 137.5, 133.1, 128.7, 127.8, 127.1, 126.6, 125.5, 125.0, 124.8, 120.0, 67.7, 67.5, 50.4, 50.1, 47.3, 35.0, 34.3; **IR** (neat) ν [cm⁻¹] = 3276, 3063, 3015, 2952, 1673, 1625, 1479, 1446, 1401, 1356, 1282, 1207, 1148, 1073, 1017, 984, 883, 738, 693; **HRMS**: (ESI-MS) calc. for [C₂₆H₂₄NO₃]⁺ [M+H]⁺ 398.1751, found 398.1754.

Amine and acid syntheses

General procedure for the amine synthesis A^[29]

The amine (3 equiv.) and K_2CO_3 (3 equiv.) were suspended in MeCN and cooled to 0 °C with a cooling bath. To this suspension, a solution of the corresponding bromide (1 equiv.) in MeCN was added dropwise. The reaction mixture was stirred in the defrosting ice-bath for the given time. Then the inorganic salts were filtered off and the filter cake was washed with small portions of MeCN. The solvent was removed under reduced pressure. The crude product was purified by column chromatography using a hexanes/EtOAc mixture.

(E)-N-(tert-Butyl)-3-phenylprop-2-en-1-amine (170b)^[30]

According to the general procedure **A** *tert*-butylamine (26.3 g, 38 mL, 360 mmol, 3 equiv.) and K₂CO₃ (49.8 g, 360 mmol, 3 equiv.) in MeCN (200 mL) were used and (*E*)-(3-bromoprop-1en-1-yl)benzene (**169b**) (23.6 g, 120 mmol, 1 equiv.) in MeCN (100 mL) was added. The reaction mixture was stirred for 27 h. After filtration (*E*)-*N*-(*tert*-butyl)-3-phenylprop-2-en-1amine (**170b**) (21.6 g, 114 mmol, 95%) was obtained as yellow oil which was used in following steps without further purification.

¹**H-NMR** (400 MHz, CDCl₃) δ = 7.40 – 7.34 (m, 2H), 7.33 – 7.24 (m, 2H), 7.24 – 7.17 (m, 1H), 6.52 (dd, *J* = 14.6, 7.6 Hz, 1H), 6.34 (dt, *J* = 15.8, 6.4 Hz, 1H), 3.38 (dd, *J* = 6.4, 1.2 Hz, 2H), 1.16 (s, 9H); ¹³**C-NMR** (101 MHz, CDCl₃) δ = 137.3, 130.9, 129.4, 128.5, 127.3, 126.3, 50.6, 45.2, 29.1.

(E)-N-(tert-Butyl)-3-(4-methoxyphenyl)prop-2-en-1-amine (157)

According to the general procedure **A** *tert*-butylamine (2.63 g, 3.8 mL, 36 mmol, 3 equiv.) and K₂CO₃ (4.94 g, 36 mmol, 3 equiv.) in MeCN (30 mL) were used and (*E*)-1-(3-bromoprop-1-en-1-yl)-4-methoxybenzene (**169c**) (2.67 g, 12 mmol, 1 equiv.) in MeCN (30 mL) was added. The reaction mixture was stirred for 16 h. After column chromatography (hexanes/EtOAc 5:1) (*E*)-1-(3-bromoprop-1-en-1-yl)-4-methoxybenzene (**157**) was obtained as yellow oil in a yield of 40% (1.06 g, 4.8 mmol).

R_f = 0.19 (hexanes/EtOAc 3:1); ¹**H-NMR** (300 MHz, CDCl₃) δ = 7.37 – 7.20 (m, 2H), 6.93 – 6.76 (m, 2H), 6.47 (d, *J* = 15.8 Hz, 1H), 6.20 (dt, *J* = 15.8, 6.5 Hz, 1H), 3.79 (s, 3H), 3.35 (dd, *J* = 6.5, 1.3 Hz, 2H), 1.16 (s, 9H); ¹³**C-NMR** (75 MHz, CDCl₃) δ = 159.0, 130.6, 130.0, 127.4, 126.6, 113.9, 55.3, 50.8, 45.2, 29.0; **IR** (neat) v [cm⁻¹] = 3034, 2959, 2836, 1714, 1696, 1509, 1461, 1396, 1300, 1244, 1174, 1103, 1036, 965, 838, 805, 760, 697; **HRMS**: (EIC-MS) m/z calc. for [C₁₄H₂₁NO]^{+•} [M]^{+•} 219.16177, found 219.16189.

Methyl (E)-4-(tert-butylamino)but-2-enoate (170c)^[31]

According to the general procedure **A** *tert*-butylamine (6.36 g, 9.1 mL, 87.0 mmol, 3 equiv.) and K₂CO₃ (12.0 g, 87.0 mmol, 3 equiv.) in MeCN (100 mL) were used and methyl (*E*)-4-bromobut-2-enoate (**169d**) (5.13 g, 3.6 ml, 29.0 mmol, 1 equiv.) in MeCN (50 mL) was added. The reaction mixture was stirred for 21 h. After filtration methyl (*E*)-4-(*tert*-butylamino)but-2-enoate (**170c**) (4.50 g, 26.3 mmol, 91%) was obtained as yellow oil which was used in following steps without further purification.

¹**H-NMR** (300 MHz, CDCl₃) δ = 7.04 (dt, *J* = 15.7, 5.5 Hz, 1H), 5.99 (dt, *J* = 15.7, 1.8 Hz, 1H), 3.72 (s, 3H), 3.37 (dd, *J* = 5.5, 1.8 Hz, 2H), 1.11 (s, 9H); ¹³**C-NMR** (101 MHz, CDCl₃) δ = 167.0, 148.2, 120.6, 51.5, 50.6, 43.7, 29.0.

N-Benzylprop-2-en-1-amine (170d)^[32]

According to the general procedure **A** allylamine (5.14 g, 6.7 mL, 90.0 mmol, 3 equiv.) and K_2CO_3 (12.4 g, 90.0 mmol, 3 equiv.) in MeCN (100 mL) were used and benzylbromide (5.13 g, 3.6 mL, 30.0 mmol, 1 equiv.) in MeCN (50 mL) was added. The reaction mixture was stirred for 21 h. Distillitation under reduced pressure (1.0 mbar, 60 °C) yielded *N*-benzylprop-2-en-1-amine (**170d**) (2.40 g, 16.3 mmol, 54%) as colorless oil.

¹**H-NMR** (300 MHz, CDCl₃) δ = 7.39 – 7.22 (m, 5H), 5.95 (ddt, *J* = 16.2, 10.2, 6.0 Hz, 1H), 5.17 (ddq, *J* = 21.5, 10.2, 1.4 Hz, 2H), 3.81 (s, 2H), 3.29 (dt, *J* = 6.0, 1.3 Hz, 2H), 1.42 (s, 1H); ¹³**C-NMR** (75 MHz, CDCl₃) δ = 140.3, 136.8, 128.8, 128.4, 128.2, 127.0, 116.0, 53.3, 51.8.

(E)-N-Benzyl-3-phenylprop-2-en-1-amine (170e)^[33]

According to the general procedure **A** benzylamine (9.64 g, 9.8 mL, 90.0 mmol, 3 equiv.) and K_2CO_3 (12.4 g, 90.0 mmol, 3 equiv.) in MeCN (100 mL) were used and (*E*)-(3-bromoprop-1en-1-yl)benzene (**169b**) (5.91 g, 4.5 mL, 30.0 mmol, 1 equiv.) in MeCN (50 mL) was added. The reaction mixture was stirred for 19 h. The excess benzylamine used was removed by distillation (4.3 mbar, 86 °C). (*E*)-*N*-benzyl-3-phenylprop-2-en-1-amine(**170e**) (6.15 g, 27.5 mmol, 92%) was obtained as yellow liquid.

¹**H-NMR** (300 MHz, CDCl₃) δ = 7.63 – 7.48 (m, 2H), 7.47 – 7.19 (m, 8H), 6.66 – 6.51 (m, 1H), 6.47 – 6.29 (m, 1H), 4.03 (bs, 2H), 3.55 (d, *J* = 6.6 Hz, 2H); ¹³**C-NMR** (101 MHz, CDCl₃) δ = 138.4, 135.4, 130.9, 130.2, 129.3, 129.2, 128.72, 128.70, 128.6, 126.9, 126.5, 118.9, 49.5, 47.8.

(S,E)-3-Phenyl-N-(1-phenylethyl)prop-2-en-1-amine (248)^[34]

According to the general procedure **A** (*S*)-1-phenylethan-1-amine (**247**) (3.94 g, 5.2 mL, 40.0 mmol, 2 equiv.) and K₂CO₃ (5.53 g, 40.0 mmol, 2 equiv.) in MeCN (35 mL) were used and (*E*)-(3-bromoprop-1-en-1-yl)benzene (**169b**) (3.94 g, 20.0 mmol, 1 equiv.) in MeCN (35 mL) was added. The reaction mixture was stirred for 26 h. After purification by silica gel column chromatography (hexanes/EtOAc 2:1) (*S*,*E*)-3-phenyl-*N*-(1-phenylethyl)prop-2-en-1-amine (**248**) (3.59 g, 15.1 mmol, 76%) was obtained as yellow liquid.

¹**H-NMR** (300 MHz, CDCl₃) δ = 7.43 – 7.13 (m, 10H), 6.48 (d, *J* = 15.9 Hz, 1H), 6.29 (dt, *J* = 15.9, 6.2 Hz, 1H), 3.87 (q, *J* = 6.6 Hz, 1H), 3.27 (d, *J* = 6.2 Hz, 2H), 1.41 (d, *J* = 6.6 Hz, 3H); ¹³**C-NMR** (75 MHz, CDCl₃) δ = 145.4, 137.2, 131.2, 128.5, 127.3, 127.0, 126.7, 126.3, 57.6, 49.7, 24.3; **IR** (neat) ν [cm⁻¹] = 3060, 3026, 2967, 2926, 2886, 2825, 1599, 1494, 1449, 1367, 1304, 1118, 965, 909, 745, 693; **HRMS**: (ESI-MS) m/z calc. for [C₁₇H₁₉N]⁺ [M+H]⁺ 238.1590, found 238.1594; $[\alpha]_D^{20} = -48.6$ (*c* 0.1, CH₂Cl₂); **chiral HPLC**: >99% *ee* (Chiralpak AS-H, 4.6 x 250 mm, heptane/i-PrOH = 99:1, 0.5 mL/min, t_R (**S**), (*R*) = **10.4**, 13.7 min).

(S)-N-(1-Phenylethyl)prop-2-en-1-amine (260)^[34]

According to the general procedure **A** (*S*)-1-phenylethan-1-amine (**247**) (9.69 g, 10.3 mL, 80.0 mmol, 2 equiv.) and K₂CO₃ (11.1 g, 80.0 mmol, 2 equiv.) in MeCN (100 mL) were used and 3-bromoprop-1-ene (**169a**) (4.84 g, 3.50 mL, 40.0 mmol, 1 equiv.) in MeCN (15 mL) was added. The reaction mixture was stirred for 24 h. After purification by silica column chromatography (hexanes/EtOAc 2:1) (*S*)-*N*-(1-phenylethyl)prop-2-en-1-amine (**260**) (3.74 g, 23.2 mmol, 58%) was obtained as yellow liquid.

¹**H-NMR** (300 MHz, CDCl₃) $\delta = 7.40 - 7.19$ (m, 5H), 5.91 (ddt, J = 17.0, 10.2, 6.0 Hz, 1H), 5.22 - 5.00 (m, 2H), 3.82 (q, J = 6.6 Hz, 1H), 3.17 - 3.02 (m, 2H), 1.38 (d, J = 6.6 Hz, 3H); ¹³**C-NMR** (101 MHz, CDCl₃) $\delta = 145.5, 137.0, 128.5, 127.0, 126.7, 115.7, 57.6, 50.3, 24.3;$ **IR**(neat) v [cm⁻¹] = 3063, 3026, 2967, 2926, 2870, 2810, 1643, 1602, 1490, 1449, 1371, 1207, 1118, 1077, 991, 916, 760, 700;**HRMS**: (ESI-MS) m/z calc. for [C₁₁H₁₆N]⁺ [M+H]⁺ 162.1277, found 162.1278.

tert-Butyl (E)-2-(3-ethoxy-3-oxoprop-1-en-1-yl)-1H-pyrrole-1-carboxylate (183a)^[35]

Under nitrogen atmosphere ethyl (*E*)-3-(1*H*-pyrrol-2-yl)acrylate (**181a**) (2.48 g, 15.0 mmol, 1.0 equiv.) was dissolved in dry MeCN (45 mL) and the solution was cooled to 0 °C by an icebath. Then, Boc₂O (3.60 g, 16.5 mmol, 1.1 equiv.) and DMAP (27.5 mg, 0.230 mmol, 0.015 equiv.) were subsequently added. The reaction mixture was stirred for 22 h in defrosting ice-bath. Solvent was removed under reduced pressure and the residue was dissolved again in ethyl acetate and sat. NH₄Cl. After phase separation the aqueous phase was extracted with EtOAc (3x). The combined organic phases were dried over MgSO₄, filtered and evaporated. Compound **183a** (3.98 g, 15.0 mmol, quant.) was obtained quantitatively and was used in following reactions without further purification. ¹**H-NMR** (300 MHz, CDCl₃) δ = 8.28 (d, *J* = 15.9 Hz, 1H), 7.41 (ddd, *J* = 14.4, 3.2, 1.7 Hz, 1H), 6.69 (ddd, *J* = 3.6, 1.6, 0.7 Hz, 1H), 6.26 – 6.14 (m, 2H), 4.23 (q, *J* = 7.1 Hz, 2H), 1.63 (s, 9H), 1.31 (t, *J* = 7.1 Hz, 3H); ¹³**C-NMR** (75 MHz, CDCl₃) δ = 167.2, 149.0, 134.9, 131.1, 124.9, 116.6, 114.8, 111.5, 84.9, 60.3, 28.0, 14.4.

tert-Butyl (E)-2-(3-methoxy-3-oxoprop-1-en-1-yl)-1H-pyrrole-1-carboxylate (183b)^[36]

Under nitrogen atmosphere methyl (*E*)-3-(1*H*-pyrrol-2-yl)acrylate (**181b**) (1.99 g, 13.2 mmol, 1 equiv.) was dissolved in dry MeCN (45 mL) and the solution was cooled to 0 °C by an icebath. Then, Boc₂O (3.16 g, 14.5 mmol, 1.1 equiv.) and DMAP (24.1 mg, 0.200 mmol, 0.015 equiv.) were subsequently added. The reaction mixture was stirred for 24 h in defrosting ice-bath. The solvent was removed under reduced pressure and the residue was dissolved again in ethyl acetate and sat. NH₄Cl. After phase separation, the aqueous phase was extracted with ethyl acetate (3x). The combined organic phases were dried over MgSO₄, filtered and evaporated. Compound **183b** (3.19 g, 12.7 mmol, 93%) was obtained as brownish solid and was used in following reactions without further purification.

¹**H-NMR** (300 MHz, CDCl₃) δ = 8.30 (d, *J* = 16.0 Hz, 1H), 7.39 (dd, *J* = 3.2, 1.6 Hz, 1H), 6.76 – 6.60 (m, 1H), 6.27 – 6.13 (m, 2H), 3.77 (s, 3H), 1.62 (s, 9H); ¹³**C-NMR** (75 MHz, CDCl₃) δ = 167.6, 149.0, 135.1, 131.1, 124.9, 116.1, 114.9, 111.5, 84.9, 51.6, 28.0.

(E)-3-(1-Acetyl-1*H*-pyrrol-2-yl)acrylic acid (184a)

Under inert atmosphere (*E*)-3-(1*H*-pyrrol-2-yl)acrylic acid (**180c**) (1.71 g, 12.5 mmol, 1.0 equiv.) was dissolved in dry DCM (20 mL). Then DMAP (153 mg, 1.25 mmol, 0.1 equiv.) and NEt₃ (3.16 g, 4.3 mL, 31.2 mmol, 2.5 equiv.) were subsequently added. The reaction

mixture was cooled to 0 °C with an ice-bath. In the following acetic anhydride (2.55 g, 2.4 mL, 25.0 mmol, 2.0 equiv.) was added dropwise to the reaction mixture. After 18 h stirring at rt the reaction was quenched by adding sat. NH₄Cl. The phases were separated, and the aqueous phase was extracted with EtOAc (3x). The combined organic phases were dried over MgSO₄, filtered and the solvent was removed under reduced pressure. Recrystallization from EtOAc gave (*E*)-3-(1-acetyl-1H-pyrrol-2-yl)acrylic acid (**184a**) (1.54 g, 8.60 mmol, 69%) as brownish solid.

mp = 129 130 °C; ¹**H-NMR** (300 MHz, CDCl₃) δ = 8.43 (dd, J = 26.6, 15.9 Hz, 1H), 7.22 – 7.16 (m, 1H), 6.75 (dd, J = 18.7, 3.2 Hz, 1H), 6.30 – 6.09 (m, 2H), 2.54 (s, 3H); ¹³C-NMR (75 MHz, CDCl₃) δ = 171.5, 169.4, 137.4, 131.9, 124.8, 124.4, 116.3, 113.0, 24.3; **IR** (neat) v [cm⁻¹] = 3153, 2937, 2605, 1755, 1722, 1610, 1457, 1423, 1371, 1341, 1289, 1252, 1155, 1077, 1028, 976, 879, 812, 738; **HRMS**: (ESI-MS) m/z calc. for [C₉H₉NO₃]⁻ [M-H]⁻ 178.0510, found 178.0510.

(E)-3-(1-Acetyl-1H-indol-3-yl)acrylic acid (184b)^[37]

Under inert atmosphere (*E*)-3-(1*H*-indol-3-yl)acrylic acid (**180d**)(1.44 g, 7.70 mmol, 1.0 equiv.) was dissolved in dry DCM (15 mL). Then DMAP (94.1 mg, 0.770 mmol, 0.1 equiv.) and NEt₃ (1.95 g, 2.8 mL, 19.3 mmol, 2.5 equiv.) were subsequently added. The reaction mixture was cooled to 0 °C with an ice-bath. In the following acetic anhydride (1.57 g, 1.5 mL, 15.4 mmol, 2 equiv.) was added dropwise to the reaction mixture. After 18 h stirring at rt the reaction was quenched by adding sat. NH₄Cl. The phases were separated, and the aqueous phase was extracted with EtOAc (3x). The combined organic phases were dried over MgSO₄, filtered and the solvent was removed under reduced pressure. Recrystallization from EtOAc gave (*E*)-3-(1-acetyl-1*H*-indol-3-yl)acrylic acid (**184b**) (1.20 g, 5.20 mmol, 68%) as brownish solid.

¹**H-NMR** (300 MHz, CDCl₃) $\delta = 8.57 - 8.42$ (m, 1H), 8.06 - 7.70 (m, 3H), 7.52 - 7.34 (m, 2H), 6.65 (dd, J = 28.1, 16.0 Hz, 1H), 2.71 (d, J = 4.2 Hz, 3H); ¹³**C-NMR** (101 MHz, CDCl₃) $\delta = 168.3$, 162.9, 140.1, 138.2, 136.8, 129.3, 126.5, 124.8, 120.2, 118.0, 117.1, 116.6, 24.0.

Synthesis of the amide-linked dienes

General protocol for the coupling of the carboxylic acid with the amine B

Either the acid chloride was generated *in situ* or was commercially available. For the generation *in situ* the corresponding carboxylic acid (1.0 equiv.) was dissolved in dry THF and then thionyl chloride (1.0 equiv.) was added dropwise. The reaction mixture was stirred under reflux for 2 h. The obtained acid chloride solution was then cooled down to 0 °C by an ice-bath. The solution containing the corresponding amine (1.0 equiv.) and triethylamine (1.1 equiv.) in dry THF was added via a dropping funnel and the mixture was stirred for the reported time at rt. Afterwards, the solvent was removed under reduced pressure. The residue was dissolved again in DCM and washed twice with sat. NaHCO₃. The organic phase was dried over MgSO₄, filtered and the solvent was removed under reduced pressure. The crude product was purified by column chromatography using hexanes and EtOAc as eluent to obtain the required product.

General protocol for the Boc-protection of the free amide-linked dienes C

Under nitrogen atmosphere, the corresponding amide-linked diene (1.0 equiv.) was dissolved in dry DCM. Then triethylamine (1.0 equiv.), di-*tert*-butyl dicarbonate (2.0 equiv.) and DMAP (0.1 equiv.) were added successively. After the reported time the solvent was evaporated, and the crude product was purified via silica gel column chromatography using hexanes and EtOAc as eluent.

N-Cinnamyl-N-methylcinnamamide (153a)

Following the general procedure **B**, cinnamoyl chloride was generated *in situ* using cinnamic acid **152** (993 mg, 6.7 mmol, 1 equiv.) and thionyl chloride (797 mg, 486 μ L, 6.7 mmol, 1 equiv.) in dry THF (20 mL). Then the reaction mixture was cooled to 0 °C and the solution of (*E*)-*N*-methyl-3-phenylprop-2-en-1-amine (**154**) (986 mg, 6.7 mmol, 1 equiv.) with triethylamine (749 mg, 1.1 mL, 7.4 mmol, 1.1 equiv.) in dry THF (12 mL) was added. The reaction mixture was stirred for 19 h at rt. After silica gel column chromatography (hexanes/EtOAc 5:1) *N*-cinnamyl-*N*-methylcinnamanide (**153a**) (1.42 g, 5.1 mmol, 77%) was obtained as white solid.

R_f = 0.12 (hexanes/EtOAc 5:1); **mp** = 97.6 °C; ¹**H**-NMR (400 MHz, CDCl₃) δ = 7.75 (dd, *J* = 15.7, 5.9 Hz, 1H), 7.53 (bs, 2H), 7.44 − 7.20 (m, 8H), 6.89 (t, *J* = 15.3 Hz, 1H), 6.54 (d, *J* = 15.9 Hz, 1H), 6.21 (dt, *J* = 15.9, 5.9 Hz, 1H), 4.25 (bs, 2H), 3.13 (d, *J* = 12.4 Hz, 3H); ¹³**C**-NMR (75 MHz, CDCl₃) δ = 167.0, 166.4, 143.0, 142.8, 136.6, 136.2, 135.3, 133.0, 131.9, 129.68, 129.65, 128.9, 128.8, 128.7, 128.6, 128.2, 128.0, 127.9, 127.7, 126.48, 126.46, 124.5, 124.1, 117.4, 51.9, 50.1, 34.9, 34.3 (signal doubling and broadening due to rotamers); **IR** (neat) v [cm⁻¹] = 3026, 2959, 1740, 1647, 1610, 1474, 1449, 1401, 1244, 1118, 976, 745, 693; **HRMS**: (ESI-MS) m/z calc. for [C₁₉H₂₀NO]⁺ [M+H]⁺: 278.1539, found 278.1546.

N-Cinnamyl-*N*-phenylcinnamamide (153b)

Following the general procedure **B**, cinnamoyl chloride was generated *in situ* using cinnamic acid **152** (340 mg, 2.3 mmol, 1.0 equiv.) and thionyl chloride (274 mg, 160 μ L, 2.3 mmol, 1.0 equiv.) in dry THF (10 mL). Then the reaction mixture was cooled to 0 °C and the solution of *N*-cinnamylaniline **155** (475 mg, 2.3 mmol, 1.0 equiv.) with triethylamine (263 mg, 360 μ L, 2.6 mmol, 1.1 equiv.) in dry THF (6 mL) was added. The reaction mixture was stirred at rt for 19 h. After silica gel column chromatography (hexanes/EtOAc 9:1) *N*-cinnamyl-*N*-phenylcinnamamide (**153b**) (636 mg, 1.9 mmol, 81%) was obtained as yellowish oil.

R_f = 0.24 (hexanes/EtOAc 9:1); ¹**H-NMR** (300 MHz, CDCl₃) δ = 7.72 (d, *J* = 15.5 Hz, 1H), 7.45 – 7.10 (m, 15H), 6.49 – 6.22 (m, 3H), 4.58 (d, *J* = 5.9 Hz, 2H); ¹³**C-NMR** (75 MHz, CDCl₃) δ = 165.8, 142.14, 142.12, 136.7, 135.2, 133.2, 129.65, 129.60, 129.58, 128.7, 128.5, 128.4, 127.9, 127.7, 126.5, 124.5, 118.9, 52.1; **IR** (neat) ν [cm⁻¹] = 3058, 3026, 2926, 1651, 1613, 1490, 1449, 1328, 1237, 1196, 969, 760, 693; **HRMS**: (ESI-MS) m/z calc. for [C₂₄H₂₂NO]⁺ [M+H]⁺: 340.1696, found 340.1704.

N-((*E*)-3-(4-Methoxyphenyl)allyl)-*N*-phenylcinnamamide (153c)

Following the general procedure **B**, cinnamoyl chloride was generated *in situ* using cinnamic acid **152** (933 mg, 6.3 mmol, 1.0 equiv.) and thionyl chloride (750 mg, 460 μ L, 6.3 mmol, 1.0 equiv.) in dry THF (20 mL). Then the reaction mixture was cooled to 0 °C and a solution of (*E*)-*N*-(3-(4-methoxyphenyl)allyl)aniline (**156**) (1.51 g, 6.3 mmol, 1.0 equiv.) with triethylamine (701 mg, 960 μ L, 6.9 mmol, 1.1 equiv.) in dry THF (10 mL) was added. The reaction mixture was stirred for 19 h at rt. After silica gel column chromatography (hexanes/EtOAc 9:1 \rightarrow 7:1 \rightarrow 2:1) *N*-((*E*)-3-(4-methoxyphenyl)allyl)-*N*-phenylcinnamamide (**153c**) (1.53 g, 4.2 mmol, 66%) was obtained as white solid.

R_f = 0.09 (hexanes/EtOAc 9:1); **mp** = 107.4 °C; ¹**H-NMR** (300 MHz, CDCl₃) δ = 7.72 (d, J = 15.6 Hz, 1H), 7.48 – 7.20 (m, 12H), 6.87 – 6.79 (m, 2H), 6.36 (t, J = 16.0 Hz, 2H), 6.21 (dt, J = 15.8, 6.6 Hz, 1H), 4.57 (dd, J = 6.6, 0.9 Hz, 2H), 3.79 (s, 3H); ¹³**C-NMR** (75 MHz, CDCl₃) δ = 165.8, 159.3, 142.2, 142.1, 135.2, 132.7, 129.6, 128.7, 128.4, 128.0, 127.8, 127.7, 122.2, 119.0, 113.9, 55.3, 52.2; **IR** (neat) v [cm⁻¹] = 3060, 3034, 2959, 2933, 2836, 1651, 1591, 1490, 1449, 1386, 1330, 1300, 1241, 1174, 1032, 969, 834, 760, 700; **HRMS**: (ESI-MS) m/z calc for [C₂₅H₂₃NO₃]⁺ [M+H] ⁺ 370.1802, found 370.1802.

N-(*tert*-Butyl)-*N*-((*E*)-3-(4-methoxyphenyl)allyl)cinnamamide (153d)

Following the general procedure **B**, cinnamoyl chloride was generated *in situ* using cinnamic acid **152** (711 mg, 4.8 mmol, 1.0 equiv.) and thionyl chloride (571 mg, 350 μ L, 4.8 mmol, 1.0 equiv.) in dry THF (20 mL). Then the reaction mixture was cooled to 0 °C and the solution of (*E*)-*N*-(*tert*-butyl)-3-(4-methoxyphenyl)prop-2-en-1-amine (**157**) (1.06 g, 4.8 mmol, 1.0 equiv.) with triethylamine (537 mg, 735 μ L, 5.3 mmol, 1.1 equiv.) in dry THF (10 mL) was added. The reaction mixture was stirred for 21 h at rt. After silica gel column chromatography (hexanes/EtOAc 9:1) *N*-(*tert*-butyl)-*N*-((*E*)-3-(4-methoxyphenyl)allyl)cinnamamide (**153d**) (934 mg, 2.7 mmol, 56%) was obtained as yellowish solid.

R_f = 0.16 (hexanes/EtOAc 9:1); **mp** = 113.1 °C; ¹**H-NMR** (300 MHz, CDCl₃) δ = 7.64 (d, J = 15.4 Hz, 1H), 7.50 – 7.41 (m, 2H), 7.37 – 7.27 (m, 5H), 6.91 – 6.78 (m, 3H), 6.60 – 6.49 (m, 1H), 6.15 (dt, J = 16.0, 4.4 Hz, 1H), 4.22 (dd, J = 4.4, 1.9 Hz, 2H), 3.82 (s, 3H), 1.55 (s, 9H); ¹³**C-NMR** (75 MHz, CDCl₃) δ = 168.5, 159.4, 141.6, 135.6, 130.7, 129.3, 128.7, 127.7, 127.6, 125.4, 121.8, 114.1, 57.5, 55.4, 47.2, 28.7; **IR** (neat) v [cm⁻¹] = 3060, 2955, 2840, 1743, 1654, 1606, 1509, 1449, 1382, 1271, 1244, 1196, 1036, 980, 838, 771; **HRMS**: (ESI-MS) calc. for [C₂₃H₂₈NO₂]⁺ [M+H]⁺ 350.2115, found 350.2113.

N-Cinnamylcinnamamide (153e)

Following the general procedure **B**, cinnamoyl chloride was generated *in situ* using cinnamic acid **152** (1.48 g, 10 mmol, 1.0 equiv.) and thionyl chloride (1.19 g, 725 μ L, 10 mmol, 1.0 equiv.) in dry THF (15 mL). Then the reaction mixture was cooled to 0 °C and the solution of (*E*)-3-phenylprop-2-en-1-amine (**172**) (1.33 g, 10 mmol, 1.0 equiv.) with triethylamine (1.11 g, 1.5 mL, 11 mmol, 1.1 equiv.) in dry THF (10 mL) was added. The reaction mixture was stirred for 26 h at rt. After purification using the flash system (hexanes/EtOAc) *N*-cinnamylcinnamamide (**153e**) (1.89 g, 7.2 mmol, 72%) was obtained as white solid.

R_f = 0.34 (hexanes/EtOAc 3:1); **mp** = 124-125 °C; ¹**H-NMR** (300 MHz, CDCl₃) δ = 7.68 (d, *J* = 15.6 Hz, 1H), 7.56 – 7.43 (m, 2H), 7.40 – 7.18 (m, 8H), 6.55 (d, *J* = 15.9 Hz, 1H), 6.48 (d, *J* = 15.6 Hz, 1H), 6.24 (dt, *J* = 15.9, 6.3 Hz, 1H), 6.13 (bs, 1H), 4.17 (td, *J* = 6.1, 1.3 Hz, 2H); ¹³**C-NMR** (75 MHz, CDCl₃) δ = 165.9, 141.3, 136.5, 134.8, 132.3, 129.8, 128.9, 128.6, 127.9, 127.8, 126.4, 125.4, 120.6, 41.8; **IR** (neat) v [cm⁻¹] =3280, 3082, 3030, 2907, 1654, 1617, 1550, 1494, 1448, 1423, 1338, 1222, 1036, 989, 864, 741, 685; **HRMS**: (ESI-MS) m/z calc for [C₁₈H₁₈NO]⁺ [M+H]⁺ 264.1383, found 264.1391; calc. for [C₁₈H₁₇NONa]⁺ [M+Na]⁺ 286.1202, found 286.1207.

*N-(tert-*Butyl)-*N*-cinnamylcinnamamide (153g)

Following the general procedure **B**, cinnamoyl chloride was generated *in situ* using cinnamic acid **152** (1.51 g, 10 mmol, 1.0 equiv.) and thionyl chloride (1.19 g, 730 μ L, 10 mmol, 1.0 equiv.) in dry THF (25 mL). Then the reaction mixture was cooled to 0 °C and the solution of (*E*)-*N*-(*tert*-butyl)-3-phenylprop-2-en-1-amine (**170b**) (1.89 g, 10 mmol, 1.0 equiv.) with triethylamine (1.11 g, 1.5 mL, 11 mmol, 1.1 equiv.) in dry THF (12 mL) was added. The reaction mixture was stirred for 16 h at rt. After silica gel column chromatography (hexanes/EtOAc 9:1) *N*-(*tert*-butyl)-*N*-cinnamylcinnamamide (**153g**) (2.26 g, 7.1 mmol, 71%) was obtained as white solid.

R_f = 0.32 (hexanes/EtOAc 9:1); **mp** = 119.3 °C; ¹**H**-**NMR** (300 MHz, CDCl₃) δ = 7.65 (d, *J* = 15.4 Hz, 1H), 7.53 − 7.22 (m, 10H), 6.82 (d, *J* = 15.4 Hz, 1H), 6.62 (dt, *J* = 16.0, 1.7 Hz, 1H), 6.31 (dt, *J* = 16.0, 4.4 Hz, 1H), 4.25 (dd, *J* = 4.4, 1.9 Hz, 2H), 1.56 (s, 9H); ¹³**C**-**NMR** (75 MHz, CDCl₃) δ = 168.5, 141.4, 136.5, 135.6, 131.3, 129.3, 128.73, 128.72, 127.8, 127.7, 126.4, 121.7, 57.5, 47.2, 28.7; **IR** (neat) v [cm⁻¹] = 3022, 2955, 2918, 1651, 1613, 1446, 1390, 1356, 1192, 976, 764, 700; **HRMS**: (ESI-MS) m/z calc. for [C₂₂H₂₅NO]⁺ [M+H]⁺ 320.2009, found 320.2014.

N-Benzyl-N-cinnamylcinnamamide (153q)^[38,39]

Following the general procedure **B**, cinnamoyl chloride was generated *in situ* using cinnamic acid **152** (4.1 g, 28.0 mmol, 1 equiv.) and thionyl chloride (3.3 g, 2 mL, 28.0 mmol, 1 equiv.) in dry THF (100 mL). Then the reaction mixture was cooled to 0 °C and the solution of (*E*)-*N*-benzyl-3-phenylprop-2-en-1-amine (**170e**) (6.2 g, 28.0 mmol, 1 equiv.) with triethylamine (3.4 g, 4.7 mL, 34.0 mmol, 1.1 equiv.) in dry THF (100 mL) was added. The reaction mixture was stirred at rt for 24 h. After silica gel column chromatography (hexanes/EtOAc 9:1 \rightarrow 5:1 \rightarrow EtOAc) *N*-benzyl-*N*-cinnamylcinnamamide (**153q**) (5.8 g, 16.4 mmol, 59%) was obtained as yellow oil.

R_f = 0.47 (hexanes/EtOAc 3:1); ¹**H-NMR** (300 MHz, CDCl₃) δ = 7.83 (dd, J = 15.4, 4.6 Hz, 1H), 7.50 (ddd, J = 19.3, 6.6, 2.9 Hz, 2H), 7.43 – 7.20 (m, 13H), 6.90 (dd, J = 17.0, 15.6 Hz, 1H), 6.51 (dd, J = 15.9, 10.8 Hz, 1H), 6.33 – 6.09 (m, 1H), 4.86 – 4.66 (m, 2H), 4.37 – 4.10 (m, 2H); ¹³**C-NMR** (75 MHz, CDCl3) δ = 167.0, 167.0, 143.7, 143.6, 137.6, 137.0, 136.6, 136.2, 135.3, 135.2, 133.3, 132.1, 129.7, 129.0, 128.8, 128.72, 128.67, 128.6, 128.4, 128.0, 127.9, 127.7, 127.5, 126.6, 126.5, 124.5, 124.2, 117.4, 50.2, 49.0, 48.8, 48.1 (signal doubling due to rotamers); **IR** (neat) v [cm⁻¹] = 3060, 3026, 2922, 1647, 1602, 1494, 1416, 1356, 1196, 1077, 1028, 969, 760, 730, 693; **HRMS**: (ESI-MS) m/z calc. for [C₂₅H₂₄NO]⁺ [M+H]⁺ 354.1852, found 354.1858; calc. for [C₂₅H₂₃NONa]⁺ [M+Na]⁺ 376.1672, found 376.1669.

tert-Butyl cinnamoyl(cinnamyl)carbamate (153t)

According to the general protocol C *tert*-butyl cinnamoyl(cinnamyl)carbamate (**153t**) was prepared using *N*-cinnamylcinnamamide (**153e**) (263 mg, 1.0 mmol, 1.0 equiv.), di-*tert*-butyl dicarbonate (458 mg, 2.1 mmol, 2.1 equiv.), triethylamine (102 mg, 140 μ L, 1.0 mmol, 1.0 equiv.) and DMAP (12.2 mg, 0.10 mmol, 0.10 equiv.) in dry DCM (2 mL). The reaction

mixture was stirred for 21 h. After purification using flash system (hexanes/EtOAc) *tert*-butyl cinnamoyl(cinnamyl)carbamate (**153t**) (308 mg, 0.85 mmol, 85%) was obtained as white solid.

R_f = 0.2 (hexanes/EtOAc 19:1); **mp** = 108 109 °C; ¹**H-NMR** (300 MHz, CDCl₃) δ = 7.73 (d, J = 15.6 Hz, 1H), 7.61 – 7.48 (m, 3H), 7.43 – 7.18 (m, 8H), 6.58 (d, J = 15.9 Hz, 1H), 6.26 (dt, J = 15.9, 6.3 Hz, 1H), 4.53 (dd, J = 6.3, 1.2 Hz, 2H), 1.56 (s, 9H); ¹³**C-NMR** (75 MHz, CDCl₃) δ = 168.6, 153.2, 143.4, 136.7, 135.2, 132.7, 130.0, 128.8, 128.6, 128.2, 127.7, 126.4, 124.8, 121.4, 83.3, 46.7, 28.2; **IR** (neat) v [cm⁻¹] = 3063, 3026, 2955, 1722, 1669, 1617, 1494, 1449, 1353, 1271, 1200, 1140, 767, 969, 863, 767, 700; **HRMS**: (ESI-MS) m/z calc. for [C₂₃H₂₆NO₃]⁺ [M+H]⁺ 364.1907, found 364.1903.

N-(tert-Butyl)-N-cinnamylacrylamide (153i)

Following the general procedure **B** a solution of acryloyl chloride **249** (10.3 g, 9.30 mL, 114 mmol, 1.0 equiv.) in dry THF (120 mL) was cooled to 0 °C and (*E*)-*N*-(*tert*-butyl)-3-phenylprop-2-en-1-amine (**170b**) (21.6 g, 114 mmol, 1.0 equiv.) with triethylamine (12.7 g, 17.4 mL, 125 mmol, 1.1 equiv.) in dry THF (80 mL) was added. After stirring for 42 h at rt *N*-(*tert*-butyl)-*N*-cinnamylacrylamide (**153i**) (26.5 g, 109 mmol, 96%) was obtained as brown oil which was used in the following step without further purification.

R_f = 0.38 (hexanes/EtOAc 5:1); ¹**H-NMR** (300 MHz, CDCl₃) δ = 7.42 – 7.18 (m, 5H), 6.58 – 6.45 (m, 2H), 6.33 – 6.17 (m, 2H), 5.58 (dd, J = 10.3, 2.1 Hz, 1H), 4.16 (dd, J = 4.4, 2.0 Hz, 2H), 1.51 (s, 9H); ¹³**C NMR** (101 MHz, CDCl₃) δ = 168.2, 136.5, 131.7, 131.2, 128.7, 128.6, 127.8, 127.5, 126.8, 126.3, 57.4, 47.0, 28.7; **IR** (neat) v [cm⁻¹] = 3060, 3026, 2967, 2926, 1647, 1613, 1412, 1353, 1192, 965, 797, 738, 693; **HRMS**: (APCI-MS) m/z calc. for [C₁₆H₂₂NO]⁺ [M+H]⁺ 244.1696, found 244.1699.

N-Benzyl-N-cinnamylacrylamide (153s)

Following the general procedure **B** a solution of acryloyl chloride **249** (1.86 g, 1.7 mL, 20.6 mmol, 1.0 equiv.) in dry THF (50 mL) was cooled to 0 °C and (*E*)-*N*-benzyl-3-phenylprop-2-en-1-amine (**170e**) (4.60 g, 20.6 mmol, 1.0 equiv.) with triethylamine (2.32 g, 3.2 mL, 23.0 mmol, 1.1 equiv.) in dry THF (20 mL) was added. The reaction mixture was stirred for 19 h at rt. After silica gel column chromatography (hexanes/EtOAc 3:1) *N*-benzyl-*N*-cinnamylacrylamide (**153s**) (3.72 g, 13.4 mmol, 65%) was obtained as yellow sticky oil.

R_f = 0.35 (hexanes/EtOAc 3:1); ¹**H-NMR** (400 MHz, CDCl₃) δ = 7.42 – 7.19 (m, 10H), 6.61 (ddd, J = 22.7, 16.7, 10.2 Hz, 1H), 6.53 – 6.38 (m, 2H), 6.29 – 6.04 (m, 1H), 5.74 (ddd, J = 14.9, 10.3, 1.9 Hz, 1H), 4.73 (s, 1H), 4.62 (s, 1H), 4.23 (d, J = 6.5 Hz, 1H), 4.07 (d, J = 4.5 Hz, 1H); ¹³**C-NMR** (101 MHz, CDCl₃) δ = 166.9, 166.8, 137.4, 136.8, 136.6, 136.1, 133.4, 132.1, 129.0, 128.9, 128.72, 128.67, 128.6, 128.4, 128.0, 127.8, 127.7, 127.5, 126.51, 126.46, 124.4, 124.0, 50.1, 48.8, 48.7, 47.9 (signal doubling due to rotameres); **IR** (neat) v [cm⁻¹] = 3060, 3026, 2922, 1677, 1647, 1610, 1494, 1423, 1356, 1215, 1080, 1028, 965, 793, 730, 693; **HRMS**: (ESI-MS) m/z calc. for [C₁₉H₂₀NO]⁺ [M+H]⁺ 278.1539, found 278.1544.

N-Cinnamylacrylamide (153f)

Following the general procedure **B** a solution of acryloyl chloride **249** (4.10 g, 3.7 mL, 45.3 mmol, 1.0 equiv.) in dry THF (75 mL) was cooled to 0 °C and (*E*)-3-phenylprop-2-en-1amine (**172**) (6.03 g, 45.3 mmol, 1.0 equiv.) with triethylamine (5.04 g, 6.9 mL, 49.8 mmol, 1.1 equiv.) in dry THF (50 mL) was added. After stirring for 24 h at rt, *N*-cinnamylacrylamide (**153f**) (8.39 g, 44.8 mmol, 99%) was obtained as a yellow solid and was used in the following step without further purification.

 $\mathbf{R}_{\mathbf{f}} = 0.47$ (hexanes/EtOAc 1:1); $\mathbf{mp} = 72$ 73 °C; ¹H-NMR (300 MHz, CDCl₃) δ 7.39 – 7.20 (m, 6H), 6.55 (d, J = 15.9 Hz, 1H), 6.33 (dd, J = 17.0, 1.5 Hz, 1H), 6.28 – 6.05 (m, 2H), 5.68

(dd, J = 10.2, 1.5 Hz, 1H), 4.13 (td, J = 6.1, 1.4 Hz, 2H); ¹³C-NMR (101 MHz, CDCl₃) $\delta = 165.4, 136.5, 132.5, 130.7, 128.6, 127.8, 126.8, 126.4, 125.3, 41.7;$ **IR** (neat) v [cm⁻¹] = 3283, 3092, 3030, 2922, 1654, 1550, 1408, 1308, 1241, 1095, 1069, 991, 961, 734, 689; **HRMS**: (ESI-MS) m/z calc. for [C₁₂H₁₄NO]⁺ [M+H]⁺ 188.1070, found 188.1075; calc. for [C₁₂H₁₃NONa]⁺ [M+Na]⁺ 210.0889, found 210.0895.

tert-Butyl acryloyl(cinnamyl)carbamate (153u)

According to the general protocol C *tert*-butyl acryloyl(cinnamyl)carbamate (**153u**) was prepared using *N*-cinnamylacrylamide (**172**) (8.39 g, 44.8 mmol, 1.0 equiv.), di-*tert*-butyl dicarbonate (19.6 g, 89.7 mmol, 2.1 equiv.), triethylamine (4.54 g, 6.2 mL, 44.8 mmol, 1.0 equiv.) and DMAP (549 mg, 4.50 mmol, 0.10 equiv.) in dry DCM (90 mL). The reaction mixture was stirred for 21 h. The crude reaction mixture was washed once with sat. KHSO₄, once with sat. NaHCO₃ and finally with H₂O. The organic phase was dried over MgSO₄, filtered and the solvent was removed under reduced pressure. *Tert*-butyl acryloyl(cinnamyl)carbamate (**153u**) (10.8 g, 37.6 mmol, 84%) was obtained as yellow oil and was used in the following steps without further purification.

R_f = 0.45 (hexanes/EtOAc 9:1); ¹**H-NMR** (400 MHz, CDCl₃) δ = 7.40 – 7.17 (m, 5H), 7.05 (dd, J = 16.9, 10.4 Hz, 1H), 6.55 (d, J = 15.9 Hz, 1H), 6.35 (dd, J = 16.9, 1.8 Hz, 1H), 6.21 (dt, J = 15.9, 6.4 Hz, 1H), 5.71 (dd, J = 10.4, 1.8 Hz, 1H), 4.46 (dd, J = 6.4, 1.2 Hz, 2H), 1.53 (s, 9H); ¹³**C-NMR** (101 MHz, CDCl₃) δ = 168.4, 153.1, 136.7, 132.9, 131.4, 128.6, 128.0, 127.7, 126.4, 124.6, 83.5, 46.5, 28.1; **IR** (neat) v [cm⁻¹] = 3026, 2978, 1729, 1681, 1617, 1405, 1367, 1319, 1256, 1215, 1148, 1080, 985, 853, 775, 745, 693; **HRMS**: (ESI-MS) m/z calc. for [C₁₇H₂₂NO₃]⁺ [M+H]⁺ 288.1594, found 288.1600; m/z calc. for [C₁₇H₂₁NO₃Na]⁺ [M+Na]⁺ 310.1414, found 310.1424.

Methyl (E)-4-(N-(tert-butyl)cinnamamido)but-2-enoate (1530)

Following the general procedure **B** cinnamoyl chloride was generated *in situ* using cinnamic acid **152** (3.9 g, 26.3 mmol, 1.0 equiv.) and thionyl chloride (3.1 g, 1.9 mL, 26.3 mmol, 1.0 equiv.) in dry THF (50 mL). Then the reaction mixture was cooled to 0 °C and the solution of methyl (*E*)-4-(*tert*-butylamino)but-2-enoate (**170c**) (4.5 g, 26.3 mmol, 1.0 equiv.) with triethylamine (2.9 g, 4 mL, 28.9 mmol, 1.1 equiv.) in dry THF (20 mL) was added. The reaction mixture was stirred for 19 h at rt. After silica gel column chromatography (hexanes/EtOAc 9:1 \rightarrow 7:1 \rightarrow 5:1) methyl (*E*)-4-(*N*-(*tert*-butyl)cinnamamido)but-2-enoate (**153o**) (3.5 g, 11.6 mmol, 44%) was obtained as yellowish solid.

R_f = 0.24 (hexanes/EtOAc 5:1); **mp** = 65 66 °C; ¹**H-NMR** (400 MHz, CDCl₃) δ = 7.62 (d, J = 15.4 Hz, 1H), 7.43 (dd, J = 7.5, 2.0 Hz, 2H), 7.37 – 7.29 (m, 3H), 7.09 (dt, J = 15.7, 3.8 Hz, 1H), 6.59 (d, J = 15.4 Hz, 1H), 6.08 (dt, J = 15.7, 2.0 Hz, 1H), 4.22 (dd, J = 3.8, 2.1 Hz, 2H), 3.76 (s, 3H), 1.49 (s, 9H); ¹³**C-NMR** (101 MHz, CDCl₃) δ = 168.3, 166.5, 146.6, 142.5, 135.3, 129.6, 128.8, 127.8, 122.4, 120.8, 57.6, 51.8, 46.4, 28.7; **IR** (neat) v [cm⁻¹] = 3022, 2959, 1714, 1651, 1613, 1438, 1386, 1360, 1278, 1196, 1155, 1021, 976, 924, 760, 685; **HRMS**: (ESI-MS) m/z calc. for [C₁₈H₂₄NO₃]⁺ [M+H⁺] 302.1751, found 302.1754; m/z calc. for [C₃₆H₄₇N₂O₆]⁺ [2M+H]⁺ 603.3429 found 603.3429.

Methyl 2-(*tert*-butyl)-3-oxo-2,3,3a,4,9,9a-hexahydro-1*H*-benzo[f]isoindole-4-carboxylate (189)

Monomethyl fumarate (**177**) (1.30 g, 10 mmol, 1.0 equiv.) was dissolved in dry THF (25 mL) and thionyl chloride (1.23 g, 750 μ L, 10 mmol, 1.0 equiv.) was added. After refluxing for 2 h, the reaction mixture was cooled down to 0 °C. *Via* an additional funnel, amine **170b** (1.92 g, 10 mmol, 1.0 equiv.) and NEt₃ (1.11 g, 1.5 mL, 11 mmol, 1.1 equiv.) in dry THF (10 mL) were

dropwise added. The resulting reaction mixture was stirred for 20 h in defrosting ice bath. Then the solvent was removed under reduced pressure. The residue was dissolved again in DCM and was washed twice with sat. NaHCO₃. The organic phase was dried over MgSO₄, filtered and evaporated. By purification *via* silica gel column chromatography (hexanes/EtOAc 3:1) compound **189** (414 mg, 14 mmol, 14%) was obtained as white solid.

R_f = 0.32 (hexanes/EtOAc 3:1); **mp** = 133.7 °C; ¹**H-NMR** (300 MHz, CDCl₃) δ = 7.29 – 7.05 (m, 4H), 3.88 – 3.83 (m, 1H), 3.83 (s, 3H), 3.63 (dd, J = 9.3, 6.9 Hz, 1H), 3.16 (t, J = 9.7 Hz, 1H), 2.93 (dd, J = 15.6, 4.9 Hz, 1H), 2.88 – 2.66 (m, 2H), 2.20 – 1.98 (m, 1H), 1.38 (s, 9H); ¹³**C-NMR** (75 MHz, CDCl₃) δ = 174.1, 174.0, 135.6, 133.4, 130.2, 127.8, 127.3, 126.9, 54.2, 52.4, 49.7, 48.8, 46.8, 35.9, 33.5, 28.1; **IR** (neat) v [cm⁻¹] = 2959, 2907, 2862, 1744, 1677, 1476, 1405, 1364, 1328, 1271, 1241, 1200, 1144, 1006, 980, 905, 760; **HRMS**: (APCI-MS) (m/z) calc. for [C₁₈H₂₄NO₃]⁺ [M+H]⁺ 302.1751, found 302.1757.

N-Allyl-N-(tert-butyl)cinnamamide (153h)

Following the general procedure **B** cinnamoyl chloride was generated *in situ* using cinnamic acid **152** (1.48 g, 10 mmol, 1.0 equiv.) and thionyl chloride (1.19 g, 730 μ L, 10 mmol, 1.0 equiv.) in dry THF (20 mL). Then the reaction mixture was cooled to 0 °C and the solution of *N*-(*tert*-butyl)prop-2-en-1-amine (**170a**) (1.14 g, 10 mmol, 1.0 equiv.) with triethylamine (1.11 g, 1.5 mL, 11 mmol, 1.1 equiv.) in dry THF (10 mL) was added. The reaction mixture was stirred for 19 h at rt. After silica gel column chromatography (hexanes/EtOAc 9:1) *N*-allyl-*N*-(*tert*-butyl)cinnamamide (**153h**) (927 mg, 3.8 mmol, 38%) was obtained as white solid.

R_f = 0.4 (hexanes/EtOAc 9:1); **mp** = 85.6 °C; ¹**H-NMR** (300 MHz, CDCl₃) δ = 7.68 – 7.51 (m, 1H), 7.49 – 7.29 (m, 5H), 6.75 (d, J = 15.5 Hz, 1H), 6.05 – 5.89 (m, 1H), 5.37 – 5.31 (m, 1H), 5.29 (t, J = 1.9 Hz, 1H), 4.07 (dt, J = 4.0, 2.0 Hz, 2H), 1.51 (s, 9H); ¹³**C-NMR** (101 MHz, CDCl₃) δ = 168.5, 141.5, 136.3, 135.7, 129.3, 128.7, 127.7, 121.8, 116.4, 57.4, 47.5, 28.6; **IR** (neat) v [cm⁻¹] = 3060, 3026, 2967, 2926, 1766, 1699, 1651, 1602, 1449, 1386, 1192, 1073, 984, 760, 682; **HRMS**: (ESI-MS) m/z calc. for [C₁₆H₂₂NO]⁺ [M+H]⁺ 244.1696, found 244.1697.

N-Allyl-N-benzylcinnamamide (153r)^[40]

Following the general procedure **B** cinnamoyl chloride was generated *in situ* using cinnamic acid **152** (7.68 g, 52.0 mmol, 1.0 equiv.) and thionyl chloride (6.17 g, 3.8 mL, 52.0 mmol, 1.0 equiv.) in dry THF (60 mL). Then the reaction mixture was cooled to 0 °C and the solution of *N*-benzylprop-2-en-1-amine (**170d**) (7.63 g, 52.0 mmol, 1.0 equiv.) with triethylamine (5.80 g, 7.9 mL, 57.0 mmol, 1.1 equiv.) in dry THF (40 mL) was added. The reaction mixture was stirred for 24 h at rt. After silica gel column chromatography (hexanes/EtOAc 19:1 \rightarrow 9:1 \rightarrow 5:1) *N*-allyl-*N*-benzylcinnamamide (**153r**) (10.4 g, 37.5 mmol, 72%) was obtained as slightly yellow oil.

R_f = 0.26 (hexanes/EtOAc 5:1); ¹**H-NMR** (400 MHz, CDCl₃) δ = 7.79 (d, *J* = 15.4 Hz, 1H), 7.48 (dd, *J* = 30.4, 4.9 Hz, 2H), 7.42 – 7.15 (m, 8H), 6.84 (d, *J* = 15.4 Hz, 1H), 5.96 – 5.71 (m, 1H), 5.36 – 5.03 (m, 2H), 4.69 (d, *J* = 19.1 Hz, 2H), 4.17 – 3.96 (m, 2H); ¹³**C-NMR** (101 MHz, CDCl₃) δ = 167.1, 166.9, 143.6, 143.3, 137.6, 137.0, 135.4, 135.2, 133.02, 132.98, 129.7, 129.0, 128.82, 128.80, 128.6, 128.3, 127.9, 127.7, 127.4, 126.5, 117.7, 117.5, 117.4, 117.1, 50.2, 49.3, 49.1, 48.7 (signal doubling due to rotamers); **IR** (neat) v [cm⁻¹] = 3063, 3026, 2922, 1647, 1602, 1494, 1408, 1356, 1326, 1200, 976, 916, 760, 738, 697; **HRMS**: (APCI-MS): m/z calc. for [C₁₉H₂₀NO]⁺ [M+H]⁺ 278.1539, found 278.1543.

tert-Butyl allyl(cinnamoyl)carbamate (153v)

At first cinnamoyl chloride was generated *in situ* using cinnamic acid **152** (741 mg, 5.0 mmol, 1.0 equiv.) and thionyl chloride (595 mg, 364 μ L, 5.0 mmol, 1.0 equiv.) in dry THF (10 mL). Then the reaction mixture was cooled to 0 °C. Meanwhile, *tert*-butyl allyl carbamate (**175**) (787 mg, 5.0 mmol, 1.0 equiv.) was dissolved in dry THF (10 mL) and the solution was also cooled down to 0 °C. Then a solution of KHMDS (1M in THF, 6.0 mL, 6.0 mmol, 1.2 equiv.) was added dropwise. After stirring for 1 h at 0 °C the acid chloride solution was added dropwise

and the reaction mixture was stirred for 19 h. Afterwards, the crude mixture was diluted with H_2O and DEE. The phases were separated, and the aqueous phase was extracted twice with DEE. The combined organic layers were dried over MgSO₄, filtered and the solvent was removed under reduced pressure. Silica gel column chromatography (hexanes/EtOAc 19:1) gave *tert*-butyl allyl(cinnamoyl)carbamate (**153v**) (747 mg, 2.6 mmol, 52%) as a colorless oil.

R_f = 0.37 (hexanes/EtOAc 19:1); ¹**H**-NMR (300 MHz, CDCl₃) δ = 7.70 (d, *J* = 15.6 Hz, 1H), 7.54 − 7.46 (m, 3H), 7.37 (dd, *J* = 5.1, 1.9 Hz, 3H), 5.88 (ddt, *J* = 17.2, 10.3, 5.6 Hz, 1H), 5.26 − 5.09 (m, 2H), 4.37 (dt, *J* = 5.6, 1.4 Hz, 2H), 1.54 (s, 9H); ¹³**C**-NMR (101 MHz, CDCl₃) δ = 168.5, 153.2, 143.3, 135.2, 133.5, 129.9, 128.8, 128.2, 121.4, 116.6, 83.2, 47.0, 28.1; **IR** (neat) v [cm⁻¹] = 3086, 2981, 1722, 1673, 1617, 1449, 1341, 1244, 1207, 1136, 1099, 1025, 849, 764, 685.; **HRMS**: (ESI-MS) m/z calc. for [C₁₇H₂₁NO₃Na]⁺ [M+Na]⁺ 310.1414, found 310.1418.

(E)-N-Allyl-N-(tert-butyl)-3-(furan-2-yl)acrylamide (153k)

Following the general procedure **B** (*E*)-3-(furan-2-yl)acryloyl chloride was generated *in situ* using (*E*)-3-(furan-2-yl)acrylic acid (**180a**) (967 mg, 7.0 mmol, 1.0 equiv.) and thionyl chloride (833 mg, 508 μ L, 7.0 mmol, 1.0 equiv.) in dry THF (25 mL). Then the reaction mixture was cooled to 0 °C and the solution of *N*-(*tert*-butyl)prop-2-en-1-amine (**170a**) (792 mg, 7.0 mmol, 1.0 equiv.) with triethylamine (779 mg, 1.1 mL, 7.7 mmol, 1.1 equiv.) in dry THF (10 mL) was added. The reaction mixture was stirred for 20 h at rt. After silica gel column chromatography (hexanes/EtOAc 3:1) (*E*)-*N*-allyl-*N*-(*tert*-butyl)-3-(furan-2-yl)acrylamide (**153k**) (989 mg, 4.2 mmol, 61%) was obtained as orange oil.

R_f = 0.17 (hexanes/EtOAc 9:1); ¹**H-NMR** (300 MHz, CDCl₃) δ = 7.43 – 7.32 (m, 2H), 6.63 (d, J = 15.2 Hz, 1H), 6.47 (d, J = 3.6 Hz, 1H), 6.41 (dd, J = 3.4, 1.9 Hz, 1H), 5.95 (ddt, J = 17.4, 10.3, 4.0 Hz, 1H), 5.37 – 5.19 (m, 2H), 4.05 (dt, J = 4.0, 2.0 Hz, 2H), 1.48 (s, 9H); ¹³**C-NMR** (75 MHz, CDCl₃) δ = 168.2, 152.0, 143.6, 136.2, 128.5, 119.2, 116.3, 113.1, 112.0, 57.4, 47.4, 28.6; **IR** (neat) v [cm⁻¹] = 3090, 2963, 2929, 1654, 1610, 1483, 1386, 1256, 1196, 1013, 969, 924, 741, 667; **HRMS**: (APCI-MS): m/z calc. for [C₁₄H₁₉NO₂]⁺ [M+H]⁺ 234.1489, found 234.1491.

(E)-N-Allyl-N-(tert-butyl)-3-(thiophen-2-yl)acrylamide (153l)

Following the general procedure **B** (*E*)-3-(thiophen-2-yl)acryloyl chloride was generated *in situ* using (*E*)-3-(thiophenyl-2-yl)acrylic acid (**180b**) (1.04 g, 6.8 mmol, 1.0 equiv.) and thionyl chloride (804 mg, 490 μ L, 6.8 mmol, 1.0 equiv.) in dry THF (25 mL). Then the reaction mixture was cooled to 0 °C and the solution of *N*-(*tert*-butyl)prop-2-en-1-amine (**170a**) (764 mg, 6.8 mmol, 1.0 equiv.) with triethylamine (751 mg, 1.0 mL, 7.4 mmol, 1.1 equiv.) in dry THF (10 mL) was added. The reaction mixture was stirred for 19 h at rt. After silica gel column chromatography (hexanes/EtOAc 3:1) (*E*)-*N*-allyl-*N*-(*tert*-butyl)-3-(thiophen-2-yl)acrylamide (**153l**) (1.11 g, 4.5 mmol, 66%) was obtained as orange oil.

R_f = 0.25 (hexanes/EtOAc 9:1); ¹**H-NMR** (300 MHz, CDCl₃) δ = 7.76 – 7.66 (m, 1H), 7.29 – 7.22 (m, 1H), 7.17 – 7.11 (m, 1H), 7.00 (dd, J = 5.1, 3.6 Hz, 1H), 6.55 (d, J = 15.1 Hz, 1H), 5.95 (ddt, J = 17.4, 10.2, 4.1 Hz, 1H), 5.35 – 5.22 (m, 2H), 4.04 (dt, J = 4.1, 2.0 Hz, 2H), 1.49 (s, 9H); ¹³**C-NMR** (75 MHz, CDCl₃) δ = 168.1, 140.9, 136.2, 134.2, 129.6, 127.9, 126.7, 120.6, 116.4, 57.4, 47.5, 28.6; **IR** (neat) v [cm⁻¹] = 3082, 2926, 2963, 1643, 1599, 1386, 1349, 1196, 1125, 1043, 969, 916, 823, 700; **HRMS**: (APCI-MS): m/z calc. for [C₁₄H₁₉NOS]⁺ [M+H]⁺ 250.1260, found 250.1263.

(E)-3-(1-Acetyl-1*H*-indol-3-yl)-*N*-allyl-*N*-(*tert*-butyl)acrylamide (153m)

Following the general procedure **B** (*E*)-3-(1-acetyl-1*H*-indol-3-yl)acryloyl chloride was generated *in situ* using (*E*)-3-(1-acetyl-1*H*-indol-3-yl)acrylic acid (**184b**) (1.15 g, 5.0 mmol, 1.0 equiv.) and thionyl chloride (595 mg, 364 μ L, 5.0 mmol, 1.0 equiv.) in dry THF (16 mL). Then the reaction mixture was cooled to 0 °C and the solution of *N*-(*tert*-butyl)prop-2-en-1-amine (**170a**) (566 mg, 5.0 mmol, 1.0 equiv.) with triethylamine (557 mg, 762 μ L, 5.5 mmol, 1.1 equiv.) in dry THF (10 mL) was added. The reaction mixture was stirred at rt for 26 h. After silica gel column chromatography (hexanes/EtOAc 3:1) (*E*)-3-(1-acetyl-1*H*-indol-3-yl)-*N*-

allyl-*N*-(*tert*-butyl)acrylamide (**153m**) (213 mg, 0.70 mmol, 13%) was obtained as yellowish solid.

R_f = 0.22 (hexanes/EtOAc 2:1); **mp** = 97.5 100 °C; ¹**H-NMR** (300 MHz, CDCl₃) δ = 8.47 (d, J = 8.0 Hz, 1H), 7.78 – 7.68 (m, 2H), 7.57 (s, 1H), 7.37 (dtd, J = 19.7, 7.3, 1.3 Hz, 2H), 6.91 (d, J = 15.5 Hz, 1H), 6.04 (ddt, J = 17.8, 10.3, 3.9 Hz, 1H), 5.47 – 5.28 (m, 2H), 4.12 (dt, J = 3.9, 2.0 Hz, 2H), 2.66 (s, 3H), 1.53 (s, 9H); ¹³**C-NMR** (101 MHz, CDCl₃) δ = 168.6, 168.4, 136.7, 136.3, 132.7, 128.2, 126.6, 125.9, 124.3, 122.2, 120.1, 119.4, 116.9, 116.5, 57.5, 47.6, 28.6, 24.1; **IR** (neat) v [cm⁻¹] = 2959, 1707, 1651, 1599, 1449, 1382, 1349, 1222, 1189, 1017, 987, 924, 734; **HRMS**: (ESI-MS) m/z calc. for [C₂₀H₂₅N₂O₂]⁺ [M+H]⁺ 325.1911, found 325.1914, calc. for [C₂₀H₂₄N₂O₂Na]⁺ [M+Na]⁺ 347.1730, found 347.1728.

N-Allyl-N-(tert-butyl)acrylamide (153j)

Following the general procedure **B** a solution of acryloyl chloride **249** (425 mg, 390 μ L, 4.7 mmol, 1.0 equiv.) in dry THF (5 mL) was cooled to 0 °C and *N*-(*tert*-butyl)prop-2-en-1-amine (**170a**) (532 mg, 4.7 mmol, 1.0 equiv.) with triethylamine (523 mg, 720 μ L, 5.2 mmol, 1.1 equiv.) in dry THF (5 mL) was added. After stirring for 24 h at rt, *N*-allyl-*N*-(*tert*-butyl)acrylamide (**153j**) (581 mg, 3.5 mmol, 74%) was obtained as a yellow liquid and was used in the following step without further purification.

R_f = 0.77 (hexanes/EtOAc 2:1); ¹**H-NMR** (300 MHz, CDCl₃) δ = 6.43 (dd, *J* = 16.7, 10.2 Hz, 1H), 6.23 (dd, *J* = 16.7, 2.2 Hz, 1H), 5.96 – 5.79 (m, 1H), 5.54 (dd, *J* = 10.2, 2.2 Hz, 1H), 5.26 (td, *J* = 2.0, 0.7 Hz, 1H), 5.23 – 5.19 (m, 1H), 3.97 (dt, *J* = 4.1, 2.0 Hz, 2H), 1.45 (s, 9H); ¹³**C-NMR** (75 MHz, CDCl₃) δ = 168.2, 136.0, 131.6, 126.6, 116.2, 57.2, 47.4, 28.5; **IR** (neat) v [cm⁻¹] = 3090, 2929, 2967, 1651, 1613, 1412, 1360, 1196, 980, 916, 797; **HRMS**: (APCI-MS) m/z calc. for [C₁₀H₁₈NO]⁺ [M+H]⁺ 168.1383, found 168.1387.

Cinnamyl cinnamate (153w)

At first cinnamoyl chloride was generated *in situ* using cinnamic acid **152** (1.48 g, 10 mmol, 1 equiv.) and thionyl chloride (1.19 g, 725 μ L, 10 mmol, 1 equiv.) in dry THF (15 mL). The reaction mixture was cooled to 0 °C and a solution of (*E*)-3-phenylprop-2-en-1-ol (1.34 g, 10 mmol, 1 equiv.), triethylamine (3.00 g, 4.2 mL, 30 mmol, 3 equiv.) and DMAP (305 mg, 2.5 mmol, 0.25 equiv.) in dry THF (15 mL) was added dropwise. The reaction mixture was stirred then for 24 h. After purification using flash system (hexanes/EtOAc) cinnamyl cinnamate (**153w**) (2.09 g, 7.9 mmol, 79%) was obtained as colorless oil.

R_f = 0.3 (hexanes/EtOAc 9:1); ¹**H**-NMR (300 MHz, CDCl₃) δ = 7.74 (d, *J* = 16.0 Hz, 1H), 7.60 − 7.49 (m, 2H), 7.47 − 7.20 (m, 8H), 6.72 (d, *J* = 15.9 Hz, 1H), 6.50 (d, *J* = 16.0 Hz, 1H), 6.37 (dt, *J* = 15.9, 6.4 Hz, 1H), 4.88 (dd, *J* = 6.4, 1.3 Hz, 2H); ¹³**C**-NMR (75 MHz, CDCl₃) δ = 166.8, 145.2, 136.3, 134.4, 134.3, 130.4, 128.9, 128.7, 128.2, 128.1, 126.7, 123.3, 117.9, 65.2; **IR** (neat) v [cm⁻¹] = 3060, 3026, 2944, 1707, 1638, 1580, 1494, 1449, 1308, 1252, 1200, 1155, 1069, 965, 864, 745, 685; **HRMS**: (TICC/EIC-MS) m/z calc. for [C₁₈H₁₆O₂]⁺ [M]⁺ 264.11448, found 264.11395.

(S)-N-Cinnamyl-N-(1-phenylethyl)acrylamide (153x)

Following the general procedure **B**, a solution of acryloyl chloride **249** (860 mg, 775 μ L, 9.50 mmol, 1.0 equiv.) in dry THF (10 mL) was cooled to 0 °C. (*S*,*E*)-3-phenyl-*N*-(1-phenylethyl)prop-2-en-1-amine (**248**) (2.25 g, 9.50 mmol, 1.0 equiv.) dissolved together with triethylamine (1.06 g, 1.45 mL, 10.5 mmol, 1.1 equiv.) in dry THF (10 mL) was added. The reaction mixture was stirred for 22 h at rt. After purification by silica column chromatography (hexanes/EtOAc 7:1), (*S*)-*N*-cinnamyl-*N*-(1-phenylethyl)acrylamide (**153x**) (2.26 g, 7.7 mmol, 82%) was obtained as a yellowish sticky oil.

R_f = 0.4 (hexanes/EtOAc 3:1); ¹**H-NMR** (300 MHz, CDCl₃) δ = 7.40 – 7.18 (m, 10H), 6.76 – 5.85 (m, 5H), 5.71 (dd, *J* = 9.8, 2.7 Hz, 1H), 4.09 – 3.62 (m, 2H), 1.64 – 1.50 (m, 3H); ¹³**C-NMR** (75 MHz, CDCl₃) δ = 166.8, 140.8, 136.3, 131.4, 128.7, 128.6, 128.5, 127.8, 127.7, 127.6, 126.6, 126.3, 51.4, 45.3, 16.7; **IR** (**neat**) ν [cm⁻¹] = 3060, 3026, 2978, 2937, 1644, 1610, 1494, 1446, 1420, 1364, 1326, 1282, 1203, 1170, 1062, 961, 793, 730, 693. **HRMS**: (ESI-MS) m/z calc. for [C₂₀H₂₁NOK]⁺ [M+K]⁺ 330.1255, found 330.1256; [α]²⁰ = 154.6 (*c* 0.1, CH₂Cl₂); **chiral HPLC**: 98% *ee* (Phenomenex Lux Cellulose-1, 4.6 x 250 mm, heptane/*i*-PrOH = 90:10, 0.5 mL/min, t_R (*R*), (*S*) = 20.1, **24.3** min).

(S)-N-Allyl-N-(1-phenylethyl)cinnamamide (153y)

Following the general procedure **B**, a solution of cinnamoyl chloride **259** (3.86 g, 23.2 mmol, 1.0 equiv) in dry THF (25 mL) was cooled to 0 °C. (*S*)-*N*-(1-phenylethyl)prop-2-en-1amine (**260**) (3.74 g, 23.2 mmol, 1.0 equiv.) dissolved together with triethylamine (2.58 g, 3.54 mL, 25.5 mmol, 1.1 equiv.) in dry THF (15 mL) was added. The reaction mixture was stirred for 24 h at rt. After purification by flash system (hexanes/EtOAc), (*S*)-*N*-allyl-*N*-(1-phenylethyl)cinnamamide (**153y**) (6.23 g, 21.4 mmol, 92%) was obtained as a colorless oil.

R_f = 0.13 (hexanes/EtOAc 5:1); ¹**H-NMR** (400 MHz, CDCl₃) δ = 7.70 (d, *J* = 15.4 Hz, 1H), 7.40 (d, *J* = 6.1 Hz, 2H), 7.31 – 7.18 (m, 8H), 6.71 (d, *J* = 15.5 Hz, 1H), 6.15 (dd, *J* = 13.6, 6.6 Hz, 1H), 5.72 – 5.53 (m, 1H), 5.12 – 5.00 (m, 2H), 3.89 – 3.57 (m, 2H), 1.47 (d, *J* = 6.9 Hz, 3H); ¹³**C-NMR** (101 MHz, CDCl₃) δ = 167.1, 142.9, 140.9, 135.7, 135.5, 129.6, 128.8, 128.5, 127.8, 127.6, 127.4, 118.7, 116.5, 51.4, 45.9, 16.7. **IR** (neat) v [cm⁻¹] = 3060, 3026, 2978, 2937, 1647, 1602, 1494, 1449, 1405, 1330, 1300, 1203, 1129, 1072, 976, 916, 857, 760, 697; **HRMS**: (ESI-MS) m/z calc. for [C₂₀H₂₁NOK]⁺ [M+K]⁺ 330.1255, found 330.1255; m/z calc. for [C₂₀H₂₂NO]⁺ [M+H]⁺ 292.1696, found 292.1702; m/z calc. for [C₂₀H₂₁NONa]⁺ [M+Na]⁺ 314.1515, found 314.1521; [**α**]²⁰_D = -204.1 (*c* 1, CHCl₃); **chiral HPLC**: 98% *ee* (Phenomenex Lux Cellulose-21, 4.6 x 250 mm, heptane/*i*-PrOH = 70:30, 0.5 mL/min, t_R (R), (**S**) = 11.7, **14.4** min).

[2+2]-Photocycloaddition

General procedure for [2+2]-Photocycloaddition D

The amide-linked diene **153** (1 mmol, 1 equiv.) was dissolved in DMSO (25 mL, 0.04M) together with $Ir[(dtb-bpy)(dF(CF_3)ppy)_2]PF_6$ (0.01 mmol, 1 mol%). The reaction mixture was stirred at 40 °C for the reported time under irradiation with the blue LED-setup. After completion, the reaction mixture was diluted with H₂O (10 mL) and DEE (30 mL). Then the phases were separated, and the aqueous phase was extracted three times with DEE (each 30 mL). The combined organic phases were washed twice with H₂O (each 10 mL) and once with brine (20 mL). Finally, the combined aqueous phases were back-extracted with DEE (30 mL). The combined organic phases were dried over MgSO₄, filtered and the solvent was removed under reduced pressure. The crude product was then purified by column chromatography using hexanes and EtOAc as eluent.

(±)-3-(*tert*-Butyl)-6,7-diphenyl-3-azabicyclo[3.2.0]heptan-2-one (158g)

Compound **158g** was prepared from **153g** (321.8 mg, 1.0 mmol, 1.0 equiv.) and $Ir[(dtb-bpy)(dF(CF_3)ppy)_2]PF_6$ (11.5 mg, 0.010 mmol) in 3 h following general protocol **D**. After silica gel column chromatography (hexanes/EtOAc 5:1) a diastereomeric mixture of compound **158g** (272.5 mg, 0.85 mmol, 85%, *dr* 81:19) was obtained as yellow oil.

In the proton NMR, the signals of both diastereomers are overlapping. Characteristic signals of the minor diastereomer are marked.

R_f = 0.23 (hexanes/EtOAc 5:1); ¹**H-NMR** (400 MHz, CDCl₃) δ 7.42 – 7.27 (m, 3H), 7.26 – 7.17 (m, 1H), 7.13 – 7.05 (m, 4H), 7.05 – 6.94 (m, 4H), 6.86 (d, J = 7.3 Hz, 2H), 4.06 (dd, J = 9.4, 2.3 Hz, 1H), 4.03 – 3.96^{minor} (m, 0.36H), 3.94 (t, J = 8.5 Hz, 1H), 3.79 (dd, J = 10.3, 6.6 Hz, 1H), 3.48 (d, J = 10.3 Hz, 1H), 3.46 – 3.42^{minor} (m, 0.32H), 3.38 (q, J = 7.5 Hz, 1H), 3.27 – 3.22 (m, 1H), 3.22 – 3.11 (m, 1H), 1.51 (s, 9H), 1.35^{minor} (s, 2.42H); ¹³**C-NMR** (75.5 MHz, CDCl₃): major diastereomer: δ = 176.6, 140.0, 139.3, 128.1, 127.9, 127.8, 127.6,

126.0, 54.2, 51.2, 48.8, 48.6, 45.3, 34.0, 27.7; minor diastereomer: $\delta = 176.4$, 143.5, 139.4, 128.6, 128.5, 127.7, 126.8, 126.4, 54.1, 47.3, 47.1, 47.0, 46.5, 30.3, 27.4; **IR** (neat) v [cm⁻¹] = 3063, 3030, 2974, 1654, 1405, 1364, 1282, 1222, 909, 730, 697; **HRMS**: major diastereomer (acquisition time 3.173-3.218 min): (ESI-MS) calc. for [C₂₂H₂₆NO]⁺ [M+H]⁺ 320.2009, found 320.2014; minor diastereomer (acquisition time 3.323-3.373 min): (ESI-MS) calc. for [C₂₂H₂₆NO]⁺ [M+H]⁺ 320.2009, found 320.2017.

(±)-3-(*tert*-Butyl)-6-(4-methoxyphenyl)-7-phenyl-3-azabicyclo[3.2.0]heptan-2-one (158d)

Compound **158d** was prepared from **153d** (347.9 mg, 996 μ mol, 1.0 equiv.) and Ir[(dtb-bpy)(dF(CF₃)ppy)₂]PF₆ (12.1 mg, 0.010 mmol) in 7 h following general protocol **D**. After silica gel column chromatography (hexanes/EtOAc 4:1) a diastereomeric mixture of compound **158d** (217.5 mg, 622 μ mol, 63%, *dr* 72:28) was obtained as yellow oil.

In the proton and carbon NMR, the signals of both diastereomers are overlapping. Characteristic signals of the minor diastereomer are marked.

R_f = 0.25 (hexanes/EtOAc 3:1); ¹**H-NMR** (300 MHz, CDCl₃) δ = 7.37 – 7.27 (m, 2H), 7.25 – 6.84 (m, 8H), 6.81 – 6.70 (m, 2H), 6.65 – 6.55 (m, 2H), 4.02 (dd, J = 9.3, 2.1 Hz, 1H), 3.91 – 3.83 (m, 1.5H), 3.82^{minor} (s, 1H), 3.81 – 3.71 (m, 1.75H), 3.68 (s, 3H), 3.45 (d, J = 10.3 Hz, 1H), 3.35 – 3.07 (m, 3H), 1.50 (s, 9H), 1.37^{minor} (s, 3.7H); ¹³**C-NMR** (75 MHz, CDCl₃) δ = 176.7, 176.5^{minor}, 157.8, 140.0, 131.4, 128.8^{minor}, 128.7, 128.5^{minor}, 128.1, 127.9, 126.4, 126.0, 114.0^{minor}, 113.2, 55.3^{minor}, 55.1, 54.2, 54.1^{minor}, 51.1, 48.5, 48.3, 47.4^{minor}, 47.0^{minor}, 46.8^{minor}, 45.0, 34.5, 30.4, 27.7, 27.6^{minor}; **IR** (neat) ν [cm⁻¹] = 3063, 2974, 2036, 1666, 1610, 1513, 1405, 1285, 1177, 1032, 831, 749, 700; **HRMS**: major diastereomer (acquisition time 3.095-3.151 min): (ESI-MS) m/z calc. for [C₂₃H₂₈NO₂]⁺ [M+H]⁺ 350.2115, found 350.2121; minor diastereomer (acquisition time 3.234-3.289 min): (ESI-MS) m/z calc. for [C₂₃H₂₈NO₂]⁺ [M+H]⁺ 350.2115, found 350.2118.

(±)-3-Benzyl-6,7-diphenyl-3-azabicyclo[3.2.0]heptan-2-one (158f)^[38]

Compound **158f** was prepared from **153q** (350.2 mg, 991 μ mol, 1.0 equiv.) and Ir[(dtb-bpy)(dF(CF₃)ppy)₂]PF₆ (11.9 mg, 0.010 mmol) in 4 h following general protocol **D**. After silica gel column chromatography (hexanes/EtOAc 2:1) a diastereomeric mixture of compound **158f** (263.1 mg, 744 μ mol, 75%, *dr* 72:28) was obtained as yellow oil.

In the proton and carbon NMR, the signals of both diastereomers are overlapping. Characteristic signals of the minor diastereomer are marked.

R_f = 0.26 (hexanes/EtOAc 2:1); ¹**H-NMR** (300 MHz, CDCl₃) δ = 7.56 – 7.27 (m, 10H), 7.26 – 7.19 (m, 2H), 7.17 – 6.94 (m, 9H), 6.80 (dt, J = 25.4, 9.5 Hz, 2H), 4.73 (d, J = 14.5 Hz, 1H), 4.49 (d, J = 14.6, 1H), 4.36^{minor} (d, J = 14.5 Hz, 0.35H), 4.14 (dd, J = 9.4, 2.5 Hz, 1H), 4.09 – 3.94^{minor} (m, 0.63H), 3.92 – 3.82 (m, 1H), 3.60 (dd, J = 10.2, 6.5 Hz, 1H), 3.46 (q, J = 10.4 Hz, 1H), 3.38 (dd, J = 2.04, 7.83, 1H), 3.35 – 3.26^{minor} (m, 0.67H), 3.23 (d, J = 10.3 Hz, 1H), 3.12 – 3.03^{minor} (m, 0.43H); ¹³C-NMR (75 MHz, CDCl₃) δ = 176.1, 175.8^{minor}, 139.7, 139.0, 136.4, 128.9, 128.7^{minor}, 128.60^{minor}, 128.58^{minor}, 128.4^{minor}, 128.3, 128.1, 128.0, 127.80, 127.79, 127.6, 127.4^{minor}, 126.4^{minor}, 126.2, 126.1, 52.0, 48.9, 48.3, 47.2^{minor}, 47.1, 45.5^{minor}, 43.9, 34.6, 31.1^{minor}; **IR** (neat) v [cm⁻¹] = 3026, 3003, 2974, 2918, 2873, 1673, 1494, 1423, 1282, 1233, 1028, 745, 693; **HRMS**: major diastereomer (acquisition time 3.166-3.216 min): (ESI-MS) calc. for [C₂₅H₂₄NO]⁺ [M+H]⁺ 354.1852, found 354.1858; minor diastereomer (acquisition time 3.277-3.322 min): (ESI-MS) calc. for [C₂₅H₂₄NO]⁺ [M+H]⁺ 354.1852, found 354.1855.

(±)-tert-Butyl-2-oxo-6,7-diphenyl-3-azabicyclo[3.2.0]heptane-3-carboxylate (158h)

Compound **158h** was prepared from **153t** (337.6 mg, 929 μ mol, 1.0 equiv.) and Ir[(dtb-bpy)(dF(CF₃)ppy)₂]PF₆ (11.2 mg, 0.010 mmol) in 24 h following general protocol **D**.

After silica gel column chromatography (hexanes/EtOAc 7:1) a diastereomeric mixture of compound **158h** (206.5 mg, 568 µmol, 61%, *dr* 78:22) was obtained as yellowish solid.

In the proton and carbon NMR, the signals of both diastereomers are overlapping. Characteristic signals of the minor diastereomer are marked.

R_f = 0.18 (hexanes/EtOAc 5:1); ¹**H-NMR** (300 MHz, CDCl₃) δ = 7.38 – 7.23 (m, 2H), 7.15 – 6.97 (m, 5H), 6.97 – 6.89 (m, 2H), 6.85 – 6.76 (m, 2H), 4.08 (dd, J = 9.4, 2.1 Hz, 1H), 4.04 – 3.90 (m, 2H), 3.80 (d, J = 11.4 Hz, 1H), 3.47 – 3.33 (m, 2H), 1.54 (s, 9H), 1.46^{minor} (s, 1.66H); ¹³**C-NMR** (101 MHz, CDCl₃) δ = 176.0, 150.7, 142.1^{minor}, 138.9, 138.5, 129.1, 128.8, 128.7, 128.1, 128.0, 127.9, 127.6, 127.2, 126.9, 126.5, 126.4, 126.3, 83.2, 83.0^{minor}, 51.6, 48.6, 48.3, 47.2^{minor}, 46.9^{minor}, 45.9^{minor}, 45.0, 33.4, 29.9^{minor}, 28.10, 28.05^{minor}; **IR** (neat) ν [cm⁻¹] = 3063, 3026, 2974, 2922, 1763, 1714, 1364, 1304, 1252, 1148, 1058, 752, 697; **HRMS**: major diastereomer (acquisition time 3.253-3.297 min): (ESI-MS) calc. for [C₂₃H₂₅NO₃]⁺ [M+H]⁺ 387.1760, found 387.1763; minor diastereomer (acquisition time 3.336-3.386 min): (ESI-MS) calc. for [C₂₃H₂₅NO₃]⁺ [M+H]⁺ 387.1760, found 387.1758.

(±)-3-(tert-Butyl)-6-phenyl-3-azabicyclo[3.2.0]heptan-2-one (158i)

Compound **158i** was prepared from **153i** (241.0 mg, 990 μ mol, 1.0 equiv.) and Ir[(dtb-bpy)(dF(CF₃)ppy)₂]PF₆ (11.2 mg, 0.010 mmol) in 3 h following general protocol **D**. By silica gel column chromatography (hexanes/EtOAc 3:1) both diastereomers of compound **158i** were separated and were obtained in an overall yield of 78% (*dr* 76:24; major diastereomer **158ia**: yellow oil, 157.5 mg, 647 μ mol; minor diastereomer **158ib**: yellow solid, 32.4 mg, 133 μ mol)

158ia:

R_f = 0.33 (hexanes/EtOAc 2:1); ¹**H-NMR** (400 MHz, CDCl₃) δ = 7.36 – 7.29 (m, 2H), 7.24 – 7.18 (m, 3H), 3.66 (dd, *J* = 10.2, 6.3 Hz, 1H), 3.48 – 3.35 (m, 2H), 3.03 – 2.86 (m, 2H), 2.66 – 2.41 (m, 2H), 1.47 (s, 9H); ¹³**C-NMR** (75 MHz, CDCl₃) δ = 177.4, 144.1, 128.5, 126.4, 126.3,

54.0, 51.6, 44.4, 39.5, 38.2, 31.8, 27.7; **IR** (neat) v [cm⁻¹] = 3060, 3020, 2970, 2870, 1669, 1401, 1364, 1289, 1222, 749, 700; **HRMS**: (APCI-MS) calc. for [C₁₆H₂₂NO]⁺ [M+H]⁺ 244.1696, found 244.1700.

158ib:

R_f = 0.2 (hexanes/EtOAc 2:1); **mp** = 51 52 °C; ¹**H-NMR** (400 MHz, CDCl₃) δ = 7.33 (t, J = 7.5 Hz, 2H), 7.28 – 7.14 (m, 3H), 3.91 (dd, J = 16.5, 9.6 Hz, 1H), 3.31 (dd, J = 10.5, 8.2 Hz, 1H), 3.17 – 3.00 (m, 2H), 2.92 (d, J = 10.9 Hz, 1H), 2.87 – 2.75 (m, 1H), 2.53 (ddd, J = 11.2, 6.6, 4.2 Hz, 1H), 1.22 (s, 9H); ¹³**C-NMR** (101 MHz, CDCl₃) δ = 177.4, 139.7, 128.3, 128.1, 126.5, 53.8, 46.8, 40.1, 39.9, 32.7, 28.3, 27.5; **HRMS**: (APCI-MS) calc. for [C₁₆H₂₂NO]⁺ [M+H]⁺ 244.1696, found 244.1707, calc for [C₃₂H₄₃N₂O₂]⁺ [2•(M+H)]⁺ 488.3352, found 488.3355.

(±)-3-Benzyl-6-phenyl-3-azabicyclo[3.2.0]heptan-2-one (158j)

Compound **158j** was prepared from **153s** (280.9 mg, 1.01 mmol, 1.0 equiv.) and $Ir[(dtb-bpy)(dF(CF_3)ppy)_2]PF_6$ (11.1 mg, 0.010 mmol) in 4 h following general protocol **D**. By silica gel column chromatography (hexanes/EtOAc 2:1) both diastereomers of compound **158j** were separated and were obtained in an overall yield of 73% (*dr* 85:15, major diastereomer **158ja**: white solid, 180.4 mg, 650 µmol; minor diastereomer **158jb**: colorless oil, 22.9 mg, 83 µmmol,)

158ja:

R_f = 0.34 (hexanes/EtOAc 1:1); **mp** = 69 °C; ¹**H**-NMR (400 MHz, CDCl₃): δ = 7.44 – 7.26 (m, 7H), 7.25 – 7.09 (m, 3H), 4.66 (d, *J* = 14.6 Hz, 1H), 4.47 (d, *J* = 14.6 Hz, 1H), 3.48 (dd, *J* = 10.3, 6.6 Hz, 1H), 3.36 (dd, *J* = 16.2, 8.8 Hz, 1H), 3.20 (d, *J* = 10.3 Hz, 1H), 3.10 (t, *J* = 8.0 Hz, 1H), 3.00 (dd, *J* = 14.0, 6.9 Hz, 1H), 2.72 – 2.52 (m, 2H); ¹³C-NMR (101 MHz, CDCl₃): δ = 176.9, 143.8, 136.5, 128.8, 128.6, 128.2, 127.7, 126.5, 126.3, 52.3, 47.0, 44.5, 38.8, 38.0, 31.6; **IR** (neat) v [cm⁻¹] = 3063, 3027, 2978, 2929, 2873, 1662, 1491, 1443, 1300, 1267, 1077, 1028, 931, 905, 745, 697; **HRMS**: (ESI-MS) m/z calc. for [C₁₉H₁₉NONa]⁺ [M+Na]⁺ 300.1359, found 300.1357.

158jb:

R_f = 0.23 (hexanes/EtOAc 1:1); ¹**H-NMR** (400 MHz, CDCl₃): δ = 7.39 – 7.09 (m, 8H), 7.03 (d, *J* = 7.0 Hz, 2H), 4.48 (t, *J* = 11.6 Hz, 1H), 4.07 (d, *J* = 14.5 Hz, 1H), 3.95 (dd, *J* = 17.1, 9.5 Hz, 1H), 3.26 – 3.18 (m, 2H), 3.18 – 3.08 (m, 1H), 2.95 – 2.82 (m, 1H), 2.77 (d, *J* = 10.4 Hz, 1H), 2.54 (ddd, *J* = 13.2, 7.6, 4.0 Hz, 1H); ¹³**C-NMR** (101 MHz, CDCl₃): δ = 176.9, 139.5, 136.3, 128.6, 128.40, 128.39, 127.7, 127.5, 126.5, 47.6, 46.7, 39.7, 38.3, 33.7, 28.7; **IR** (neat) v [cm⁻¹] = 3060, 3027, 2980, 2866, 1669, 1491, 1423,1300, 1256, 1077, 1028, 950, 738, 700; **HRMS**: (ESI-MS) m/z calc. for [C₁₉H₁₉NONa]⁺ [M+Na]⁺ 300.1359, found 300.1358.

(±)-tert-Butyl-2-oxo-6-phenyl-3-azabicyclo[3.2.0]heptane-3-carboxylate (158k)

Compound **158k** was prepared from **153u** (287.4 mg, 1.00 mmol, 1.0 equiv.) and $Ir[(dtb-bpy)(dF(CF_3)ppy)_2]PF_6$ (11.2 mg, 0.010 mmol) in 48 h following general protocol **D**. By silica gel column chromatography (hexanes/EtOAc 3:1) both diastereomers of compound **158k** were separated and were obtained in an overall yield of 73% (*dr* 81:19, major diastereomer **158ka**: yellowish solid, 161 mg, 560 µmol; minor diastereomer **158kb**: yellow solid, 35.5 mg, 124 µmmol,).

158ka:

R_f = 0.28 (hexanes/EtOAc 3:1); **m**p = 104 105 °C; ¹**H**-**NMR** (300 MHz, CDCl₃) δ = 7.36 – 7.28 (m, 2H), 7.27 – 7.17 (m, 3H), 3.90 – 3.73 (m, 2H), 3.58 – 3.45 (m, 1H), 3.17 – 3.07 (m, 1H), 2.99 (dd, J = 13.6, 6.6 Hz, 1H), 2.69 – 2.48 (m, 2H), 1.56 (s, 9H); ¹³**C**-**NMR** (75 MHz, CDCl₃) δ = 177.1, 150.6, 143.2, 128.6, 126.7, 126.3, 83.1, 52.0, 44.0, 39.4, 37.6, 31.3, 28.1; **IR** (neat) v [cm⁻¹] = 3063, 2978, 2000, 1777, 1740, 1710, 1476, 1364, 1289, 1252, 1148, 991, 749, 700; **HRMS**: (ESI-MS) m/z calc. for [C₁₇H₂₂NO₃]⁺ [M+H⁺] 288.1594, found 288.1598.

158kb:

R_f = 0.13 (hexanes/EtOAc 3:1); **mp** = 84 85 °C; ¹**H-NMR** (300 MHz, CDCl₃) δ = 7.40 – 7.29 (m, 2H), 7.27 – 7.20 (m, 1H), 7.17 – 7.09 (m, 2H), 4.04 – 3.88 (m, 1H), 3.68 – 3.56 (m, 1H), 3.31 (dd, *J* = 12.0, 3.1 Hz, 1H), 3.27 – 3.12 (m, 2H), 3.00 – 2.86 (m, 1H), 2.66 – 2.56 (m, 1H), 1.43 (s, 9H); ¹³**C-NMR** (101 MHz, CDCl₃) δ = 176.8, 150.1, 139.3, 128.7, 128.6, 127.4, 126.7, 126.3, 82.7, 47.2, 39.5, 39.4, 32.4, 28.6, 28.0; **IR** (neat) v [cm⁻¹] = 3063, 2978, 1774, 1740, 1714, 1476, 1367, 1293, 1256, 1148, 1028, 849, 752, 700; **HRMS**: (ESI-MS) m/z calc. for [C₁₇H₂₂NO₃]⁺ [M+H⁺] 288.1594, found 288.1602.

(±)-Methyl-3-(*tert*-butyl)-2-oxo-7-phenyl-3-azabicyclo[3.2.0]heptane-6-carboxylate (158l)

Compound **158** was prepared from **1530** (305.8 mg, 1.02 mmol, 1.0 equiv.) and $Ir[(dtb-bpy)(dF(CF_3)ppy)_2]PF_6$ (11.3 mg, 0.010 mmol) in 7 h following general protocol **D**. After silica gel column chromatography (hexanes/EtOAc 2:1) a diastereomeric mixture of compound **158** (206.2 mg, 684 µmol, 67%, *dr* 76:24) was obtained as yellow oil.

In the proton and carbon NMR, the signals of both diastereomers are overlapping. Characteristic signals of the minor diastereomer are marked.

R_f = 0.46 (hexanes/EtOAc 2:1); ¹**H-NMR** (400 MHz, CDCl₃): δ = 7.37 – 7.27 (m, 2H), 7.24 – 7.15 (m, 3H), 4.00^{minor} (dd, *J* = 7.9, 5.1 Hz, 0.31H), 3.93 (dd, *J* = 8.8, 2.7 Hz, 1H), 3.76 (s, *J* = 3.0 Hz, 1H), 3.70 (dd, *J* = 11.1, 4.7 Hz, 1H), 3.65-3.58^{minor} (m, 0.64 H), 3.48 (p, *J* = 7.1 Hz, 2H), 3.39 (d, *J* = 10.5 Hz, 1H), 3.21 (s, 3H), 3.17 – 3.07 (m, 1H), 1.46 (s, 9H), 1.43^{minor} (s, 2.57 H); ¹³**C-NMR** (101 MHz, CDCl₃): major diastereomer: δ = 175.6, 171.8, 139.7, 128.3, 127.5, 127.0, 77.5, 77.3, 77.1, 76.6, 54.2, 51.3, 51.0, 48.4, 46.6, 45.7, 30.5, 27.7; minor diastereomer: δ = 175.4, 172.4, 142.2, 128.6, 126.8, 126.3, 77.5, 77.3, 77.1, 76.6, 54.1, 53.1, 51.9, 47.4, 46.8, 45.9, 45.0, 28.7, 27.6; **IR** (neat) v[cm⁻¹] = 3064, 3030, 2974, 1729, 1669, 1405, 1364, 1222, 1196, 1166, 745, 700; **HRMS**: major diastereomer (acquisition time 2.501-2.551 min): (ESI-MS) calc. for [C₁₈H₂₄NO₃]⁺ [M+H]⁺ 302.1751, found 302.1760; minor diastereomer

(acquisition time 2.573-2.623 min): (ESI-MS) calc. for [C₁₈H₂₄NO₃]⁺ [M+H]⁺ 302.1751, found 302.1756.

(±)-3-(*tert*-Butyl)-7-phenyl-3-azabicyclo[3.2.0]heptan-2-one (158m)

Compound **158m** was prepared from **153h** (243.1 mg, 998 μ mol, 1.0 equiv.) and Ir[(dtb-bpy)(dF(CF₃)ppy)₂]PF₆ (11.4 mg, 0.010 mmol) in 23 h following general protocol **D**. After silica gel column chromatography (hexanes/EtOAc 3:1) compound **158m** (146.5 mg, 602 μ mol, 60%) was obtained as yellowish solid.

R_f = 0.47 (hexanes/EtOAc 3:1); **mp** = 47 – 47.5 °C; ¹**H-NMR** (300 MHz, CDCl₃) δ = 7.36 – 7.29 (m, 4H), 7.25 – 7.16 (m, 1H), 3.71 (dd, J = 10.1, 7.6 Hz, 1H), 3.67 – 3.58 (m, 1H), 3.43 (dd, J = 10.2, 1.2 Hz, 1H), 3.14 – 2.96 (m, 1H), 3.00 – 2.82 (m, 1H), 2.59 – 2.29 (m, 2H), 1.47 (s, 9H); ¹³**C-NMR** (75 MHz, CDCl₃) δ = 176.7, 144.8, 128.5, 126.4, 126.2, 54.0, 52.5, 50.0, 42.8, 33.6, 27.6, 26.8; **IR** (neat) v [cm⁻¹] = 3026, 2967, 2922, 1654, 1408, 1364, 1297, 1230, 749, 697; **HRMS**: (APCI-MS) calc for [C₁₆H₂₁NO]⁺ [M+H]⁺ 244.1696, found 244.1702.

(±)-3-Benzyl-7-phenyl-3-azabicyclo[3.2.0]heptan-2-one (158n)

Compound **158na** was prepared from **153r** (299.3 mg, 1.08 mmol, 1.0 equiv.) and $Ir[(dtb-bpy)(dF(CF_3)ppy)_2]PF_6$ (11.9 mg, 0.010 mmol) in 19 h following general protocol **D**. After silica gel column chromatography (hexanes/EtOAc 2:1) the major diastereomer of compound **158na** (247.2 mg, 891 µmol, 83%) was obtained as yellowish solid.

R_f = 0.34 (hexanes/EtOAc 3:1); **mp** = 61.5 – 63 °C; ¹**H-NMR** (300 MHz, CDCl₃) δ = 7.42 – 7.27 (m, 9H), 7.26 – 7.19 (m, 1H), 4.68 (d, *J* = 14.6 Hz, 1H), 4.43 (d, *J* = 14.6 Hz, 1H), 3.78 – 3.63 (m, 1H), 3.51 (dd, *J* = 10.3, 7.7 Hz, 1H), 3.27 – 3.14 (m, 2H), 3.08 – 2.93 (m, 1H), 2.57 – 2.44 (m, 1H), 2.40 – 2.26 (m, 1H); ¹³**C-NMR** (101 MHz, CDCl₃) δ = 176.1, 144.5, 136.6, 128.8, 128.6, 128.2, 127.7, 126.5, 126.4, 53.2, 48.5, 46.8, 42.8, 33.8, 27.4; **IR** (neat) v [cm⁻¹] = 3080, 2981, 2940, 2855, 1669, 1602, 1490, 1446, 1326, 1274, 950, 752, 700; **HRMS**: major diastereomer (acquisition time 8.141-8.258 min): (APCI-MS) calc. for [C₁₉H₂₀NO]⁺ [M+H]⁺ 278.1539, found 278.1542; minor diastereomer (acquisition time 2.733-2.777 min): LRMS: (ESI-MS) calc. for [C₁₉H₂₀NO]⁺ [M+H]⁺ 278.1539, found 278.1546.

(±)-tert-Butyl-2-oxo-7-phenyl-3-azabicyclo[3.2.0]heptane-3-carboxylate (1580)

Compound **1580** was prepared from **153v** (293.9 mg, 1.02 mmol, 1.0 equiv.) and $Ir[(dtb-bpy)(dF(CF_3)ppy)_2]PF_6$ (11.4 mg, 0.010 mmol) in 14 d following general protocol **D**. By silica gel column chromatography (hexanes/EtOAc 5:1 \rightarrow 4:1) compound **1580** was obtained as clear oil (138.1 mg, 481 µmol, 47%).

R_f = 0.43 (hexanes/EtOAc 4:1); ¹**H-NMR** (400 MHz, CDCl₃) δ = 7.38 – 7.27 (m, 4H), 7.26 – 7.19 (m, 1H), 3.97 (dd, J = 11.5, 8.3 Hz, 1H), 3.83 – 3.70 (m, 2H), 3.25 – 3.17 (m, 1H), 3.04 – 2.92 (m, 1H), 2.63 – 2.52 (m, 1H), 2.51 – 2.39 (m, 1H), 1.57 (s, 9H). ¹³**C-NMR** (101 MHz, CDCl₃) δ = 175.8, 150.7, 143.6, 128.6, 126.6, 126.4, 83.0, 52.9, 49.7, 42.4, 33.2, 28.1, 25.8; IR (neat) [cm⁻¹] = 3373, 3060, 2978, 2937, 1774, 1740, 1710, 1476, 1304, 1285, 1148, 1062, 943, 849, 756, 697; **HRMS**: (ESI-MS) m/z calc. for [C₁₇H₂₅N₂O₃]⁺ [M+NH₄]⁺ 305.1860, found 305.1860; m/z calc. for [C₁₇H₂₁NO₃Na]⁺ [M+Na]⁺ 310.1414, found 310.1414; m/z calc. for [C₁₇H₂₂NO₃]⁺ [M+H]⁺ 288.1594, found 288.1594.

(±)-3-(*tert*-Butyl)-7-(furan-2-yl)-3-azabicyclo[3.2.0]heptan-2-one (158p)

Compound **158p** was prepared from **153k** (228.5 mg, 979 μ mol, 1.0 equiv.) and Ir[(dtb-bpy)(dF(CF₃)ppy)₂]PF₆ (11.2 mg, 0.010 mmol) in 3 h following general protocol **D**. After silica gel column chromatography (hexanes/EtOAc 4:1) compound **158p** (167.7 mg, 719 μ mol, 73%) was obtained as yellow oil.

R_f = 0.36 (hexanes/EtOAc 4:1); ¹**H-NMR** (300 MHz, CDCl₃) δ = 7.34 (dd, J = 1.9, 0.9 Hz, 1H), 6.30 (dd, J = 3.2, 1.9 Hz, 1H), 6.08 (dt, J = 3.2, 0.8 Hz, 1H), 3.65 (dd, J = 10.2, 7.1 Hz, 1H), 3.62 – 3.53 (m, 1H), 3.36 (dt, J = 10.2, 1.0 Hz, 1H), 3.11 – 2.92 (m, 2H), 2.50 (dddd, J = 12.5, 8.5, 4.6, 2.7 Hz, 1H), 2.29 (ddd, J = 12.2, 9.0, 6.0 Hz, 1H), 1.45 (s, 9H); ¹³**C-NMR** (75 MHz, CDCl₃) δ = 176.0, 157.4, 141.4, 110.2, 104.7, 54.0, 52.2, 48.2, 36.2, 32.1, 27.6, 27.4; **IR** (neat) v [cm⁻¹] = 3116, 2974, 1669, 1405, 1287, 1230, 730; **HRMS**: (APCI-MS) m/z calc. for [C₁₄H₂₀NO₂]⁺ [M+H]⁺ 234.1489, found 234.1496.

(±)-3-(*tert*-Butyl)-7-(thiophen-2-yl)-3-azabicyclo[3.2.0]heptan-2-one (158q)

Compound **158q** was prepared from **153l** (249.9 mg, 1.00 mmol, 1 equiv.) and $Ir[(dtb-bpy)(dF(CF_3)ppy)_2]PF_6$ (11.6 mg, 0.010 mmol) in 3 h following general protocol **D**. After silica gel column chromatography (hexanes/EtOAc 4:1) compound **158q** (195.5 mg, 782 µmol, 78%) was obtained as colorless oil.

 $\mathbf{R}_{\mathbf{f}} = 0.36$ (hexanes/EtOAc 4:1); ¹**H-NMR** (300 MHz, CDCl₃) $\delta = 7.16$ (dd, J = 5.0, 1.3 Hz, 1H), 6.94 (dd, J = 5.0, 3.5 Hz, 1H), 6.92 – 6.89 (m, 1H), 3.87 – 3.77 (m, 1H), 3.66 (dd, J = 10.2,

7.2 Hz, 1H), 3.37 (dt, J = 10.2, 1.1 Hz, 1H), 3.11 – 2.96 (m, 2H), 2.51 – 2.40 (m, 2H), 1.46 (s, 9H); ¹³C-NMR (75 MHz, CDCl₃) $\delta = 175.8$, 149.2, 126.9, 123.4, 123.3, 54.0, 52.1, 51.3, 38.5, 35.4, 27.6, 27.2; **IR** (neat) v [cm⁻¹] = 3071, 2974, 2933, 1666, 1401, 1364, 1285, 1226, 693; **HRMS**: (APCI-MS) m/z calc. for [C₁₄H₂₀NOS]⁺ [M+H]⁺ 250.1260 found 250.1262.

(±)-7-(1-Acetyl-1*H*-indol-3-yl)-3-(*tert*-butyl)-3-azabicyclo[3.2.0]heptan-2-one (158r)

Compound **158r** was prepared from **153m** (146.9 mg, 453 μ mol, 1.0 equiv.) and Ir[(dtb-bpy)(dF(CF₃)ppy)₂]PF₆ (5.6 mg, 0.0045 mmol) in 48 h following general protocol **D**. After silica gel column chromatography (hexanes/EtOAc 1:1) compound **158r** (51.9 mg, 160 μ mol, 35%) was obtained as yellowish solid.

R_f = 0.27 (hexanes/EtOAc 1:1); **mp** = 134 – 138 °C; ¹**H-NMR** (300 MHz, CDCl₃) δ = 8.38 (bs, 1H), 7.74 – 7.68 (m, 1H), 7.39 – 7.22 (m, 3H), 3.83 – 3.64 (m, 2H), 3.45 (d, *J* = 10.2 Hz, 1H), 3.10 (d, *J* = 7.7 Hz, 1H), 3.01 – 2.84 (m, 1H), 2.62 (s, *J* = 5.7 Hz, 3H), 2.60 – 2.53 (m, 1H), 2.50 – 2.36 (m, 1H), 1.49 (s, 9H); ¹³**C-NMR** (75 MHz, CDCl₃) δ = 176.4, 168.4, 136.4, 129.6, 125.7, 125.5, 123.7, 120.5, 119.8, 116.5, 54.1, 52.5, 48.6, 34.6, 31.6, 27.7, 27.1, 24.1; **IR** (neat) v [cm⁻¹] = 3112, 3049, 2959, 2937, 1699, 1666, 1453, 1379, 1300, 1252, 1215, 1017, 943, 752; **HRMS**: (ESI-MS) m/z calc. for [C₂₀H₂₅N₂O₂]⁺ [M+H]⁺ 325.1911, found 325.1915.

(±)-6,7-Diphenyl-3-oxabicyclo[3.2.0]heptan-2-one (158t)

Compound **158t** was prepared from **153w** (264.3 mg, 1.00 mmol, 1.0 equiv.) and $Ir[(dtb-bpy)(dF(CF_3)ppy)_2]PF_6$ (11.5 mg, 0.010 mmol) in 48 h at 80 °C following general protocol **D**. After silica gel column chromatography (hexanes/EtOAc 5:1) a diastereomeric mixture of compound **158t** (77.8 mg, 294 µmol, 29%, *dr* 72:28) was obtained as clear oil.

In the proton and carbon NMR the signals of both diastereomers are overlapping. Characteristic signals of the minor diastereomer are marked.

R_f = 0.14 (hexanes/EtOAc 5:1); ¹**H-NMR** (300 MHz, CDCl₃) δ = 7.43 – 7.31 (m, 2H), 7.23 – 7.02 (m, 6H), 7.01 – 6.93 (m, 2H), 6.89 – 6.81 (m, 2H), 4.57 (dd, J = 9.6, 6.1 Hz, 1H), 4.48 – 4.36 (m, 1H), 4.27^{minor} (dd, J = 10.3, 5.0 Hz, 0.39H), 4.21 – 4.05 (m, 2H), 3.77 – 3.64 (m, 1H), 3.60 – 3.48^{minor} (m, 0.46H), 3.48 – 3.40 (m, 1H), 3.36 – 3.28^{minor} (m, 0.41H); ¹³**C-NMR** (101 MHz, CDCl₃) δ = 179.4, 141.6, 138.4, 138.1, 128.9, 128.8, 128.2, 128.0, 127.9, 127.7, 127.19, 127.16, 127.1, 126.6, 126.5, 126.3, 72.7, 69.0, 48.1, 47.6, 46.7, 45.8, 42.5, 40.6, 38.9, 35.3; **IR** (neat) v [cm⁻¹] = 3063, 3030, 2970, 2907, 1759, 1602, 1494, 1453, 1371, 1151, 1043, 1002, 976, 730, 697; **HRMS**: major diastereomer (acquisition time 10.1301-10.1501 min): (EIC-MS) calc. for [C₁₈H₁₆O₂]^{+•} [M]^{+•} 264.11448, found 264.11373; minor diastereomer (acquisition time 10.4099-10.4299 min): (ECI-MS) calc. for [C₁₈H₁₆O₂]^{+•} [M]^{+•} 264.11448, found 264.11374.

(1*R*,5*S*,6*R*)-6-Phenyl-3-((*S*)-1-phenylethyl)-3-azabicyclo[3.2.0]heptan-2-one (158va) (1*S*,5*R*,6*S*)-6-Phenyl-3-((*S*)-1-phenylethyl)-3-azabicyclo[3.2.0]heptan-2-one (158vb)

Compound **158v** was prepared from **153x** (296.4 mg, 1.02 μ mol, 1.0 equiv.) and Ir[(dtb-bpy)(dF(CF₃)ppy)₂]PF₆ (11.2 mg, 0.010 mmol) in 5 h following general protocol **D**. By silica gel column chromatography (hexanes/EtOAc 3:1) all four diastereomers of compound

158v were obtained in an overall yield of 83% (*dr* 43:43:7:7, major diastereomer **158va**: yellow oil, 98.6 mg, 338 μmol; major diastereomer **158vb**: white solid, 94.0 mg, 322 μmol).

158va:

R_f = 0.5 (hexanes/EtOAc 1:1); ¹**H-NMR** (400 MHz, CDCl₃) δ = 7.39 – 7.25 (m, 7H), 7.25 – 7.19 (m, *J* = 7.9 Hz, 3H), 5.65 (q, *J* = 7.1 Hz, 1H), 3.42 (dd, *J* = 16.3, 8.6 Hz, 1H), 3.26 (d, *J* = 10.3 Hz, 1H), 3.13 (dd, *J* = 10.3, 6.5 Hz, 1H), 3.06 (t, *J* = 8.2 Hz, 1H), 2.95 (q, *J* = 6.9 Hz, 1H), 2.70 – 2.62 (m, 1H), 2.60 – 2.50 (m, 1H), 1.64 (d, *J* = 7.1 Hz, 3H); ¹³**C-NMR** (101 MHz, CDCl₃) δ = 176.3, 143.9, 139.8, 128.63, 128.61, 127.6, 127.4, 126.6, 126.3, 49.3, 48.2, 44.6, 38.7, 38.5, 31.6, 16.4; **IR** (neat) v[cm⁻¹] = 3060, 3026, 2974, 2937, 2877, 1669, 1494, 1449, 1416, 1300, 1271, 1218, 1192, 1025, 902, 782, 749, 697; **HRMS**: (ESI-MS) m/z calc. for [C₂₀H₂₂NO]⁺ [M+H]⁺ 292.1696, found 292.1700; $[\alpha]_D^{20} = -167.4$ (*c* 1, DCM); **chiral HPLC**: 98% *ee* (Phenomenex Lux Cellulose-2, 4.6 x 250 mm, heptane/*i*-PrOH = 80:20, 0.5 mL/min, t_R (*R*,*S*,*R*,*S*), (*S*,*R*,*S*,*R*) = **21.8**, 25.8 min).

158vb:

R_f = 0.3 (hexanes/EtOAc: 1/1); **mp** = 60.5 – 62 °C; ¹**H-NMR** (300 MHz, CDCl₃): δ = 7.45 – 7.23 (m, 7H), 7.21 – 7.14 (m, 1H), 7.14 – 7.01 (m, 2H), 5.63 (q, *J* = 7.2 Hz, 1H), 3.52 (dd, *J* = 10.2, 6.4 Hz, 1H), 3.11 (dd, *J* = 15.9, 9.3 Hz, 2H), 2.97 (dd, *J* = 13.8, 7.0 Hz, 1H), 2.91 (d, *J* = 10.2 Hz, 1H), 2.68 – 2.48 (m, 2H), 1.57 (d, *J* = 7.1 Hz, 3H); ¹³**C-NMR** (101 MHz, CDCl₃): δ = 176.4, 143.8, 140.4, 128.7, 128.5, 127.6, 127.1, 126.5, 126.3, 49.0, 47.7, 44.0, 38.7, 38.5, 31.7, 15.7; **IR** (neat) v[cm⁻¹] = 3082, 3022, 2967, 2933, 2881, 1666, 1494, 1446, 1304, 1215, 1118, 1066, 1025, 902, 786, 745, 697; **HRMS**: (ESI-MS) m/z calc. for $[C_{20}H_{22}NO]^+$ [M+H]⁺ 292.1696, found 292.1698; $[\alpha]_D^{20} = 22.0$ (*c* 1, DCM); **chiral HPLC**: 99% *ee* (Phenomenex Lux Cellulose-2, 4.6 x 250 mm, heptane/*i*-PrOH = 80:20, 0.5 mL/min, t_R (*R*,*S*,*R*,*R*), (*S*,*R*,*S*,*S*) = 19.2, **24.3** min).

(1*R*,5*S*,7*S*)-7-Phenyl-3-((*S*)-1-phenylethyl)-3-azabicyclo[3.2.0]heptan-2-one (158wa) (1*S*,5*R*,7*R*)-7-Phenyl-3-((*S*)-1-phenylethyl)-3-azabicyclo[3.2.0]heptan-2-one (158wb)

Compound **158w** was prepared from **153y** (290.5 mg, 997 μ mol, 1 equiv.) and Ir[(dtb-bpy)(dF(CF₃)ppy)₂)]PF₆ (11.7 mg, 0.010 mmol) in 24 h following general protocol **D**. By purification via flash system (hexanes/EtOAc) all four diastereomers of compound **158w** were obtained in an overall yield of 76% (*dr* 94:6, major diastereomer **158wa**: white solid, 93.1 mg, 320 μ mol; major diastereomer **158wb** (with minor diastereomer): white solid, 128.4 mg, 441 μ mol).

158wa:

R_f = 0.45 (hexanes/EtOAc 3:1); **mp** = 54 − 56 °C; ¹**H**-NMR (400 MHz, CDCl₃) δ = 7.38 − 7.32 (m, 8H), 7.32 − 7.26 (m, 1H), 7.26 − 7.19 (m, 1H), 5.61 (q, *J* = 7.1 Hz, 1H), 3.68 (dt, *J* = 9.1, 4.6 Hz, 1H), 3.28 − 3.12 (m, 3H), 3.00 − 2.88 (m, 1H), 2.52 (dddd, *J* = 12.6, 8.8, 5.5, 2.1 Hz, 1H), 2.38 (ddd, *J* = 12.7, 9.1, 5.7 Hz, 1H), 1.63 (d, *J* = 7.1 Hz, 3H); ¹³**C**-NMR (101 MHz, CDCl₃) δ = 175.6, 144.5, 139.8, 128.56, 128.55, 127.5, 127.3, 126.4, 126.3, 49.2, 48.93, 48.87, 42.7, 33.8, 27.4, 16.3; **IR** (neat) v[cm⁻¹] = 3190, 3060, 3030, 2978, 2937, 2877, 1669, 1490, 1449, 1416, 1349, 1285, 1215, 1185, 1025, 916, 846, 786, 752, 697; **HRMS**: (ESI-MS) m/z calc. for [C₂₀H₂₁NO]⁺ [M+H]⁺ 292.1696, found 292.1706; m/z calc. for [C₂₀H₂₁NOK]⁺ [M+K]⁺ 330.1255, found 330.1258; m/z calc. for [C₂₀H₂₁NONa]⁺ [M+Na]⁺ 314.1515, found 314.1520; [**α**]²⁰_D = −138.8 (*c* 1, CHCl₃); **chiral HPLC**: >99% *ee* (Phenomenex Lux Cellulose-2, 4.6 x 250 mm, heptane/*i*-PrOH = 90:10, 1 mL/min, t_R (*R*,*S*,*S*,*S*), (*S*,*R*,*R*,*R*) = **31.01**, 40.16 min).

158wb:

R_f = 0.32 (hexanes/EtOAc 3:1); **mp** = 93 – 96.5 °C; ¹**H-NMR** (400 MHz, CDCl₃) δ = 7.37 – 7.29 (m, 4H), 7.29 – 7.21 (m, 5H), 7.20 – 7.11 (m, 1H), 5.55 (q, *J* = 7.1 Hz, 1H), 3.61 – 3.53 (m, 1H), 3.48 (dd, *J* = 10.1, 7.6 Hz, 1H), 3.15 – 3.07 (m, 1H), 2.97 – 2.87 (m, 1H), 2.82 (d, *J* = 10.1 Hz, 1H), 2.37 – 2.26 (m, 1H), 2.13 – 2.01 (m, 1H), 1.51 (d, *J* = 7.1 Hz, 3H); ¹³**C-NMR** (101 MHz, CDCl₃) δ = 175.6, 144.6, 140.6, 128.65, 128.64, 128.57, 127.5, 127.0, 126.4, 126.3, 48.9, 48.5, 42.9, 33.4, 27.5, 15.7; **IR** (neat) v[cm⁻¹] = 3058, 2970, 2937, 2881, 1658, 1490,

1449, 1349, 1297, 1241, 1181, 1025, 935, 782, 697; **HRMS**: (ESI-MS) m/z calc. for $[C_{20}H_{21}NO]^+$ [M+H]⁺ 292.1696, found 292.1703; m/z calc. for $[C_{20}H_{21}NOK]^+$ [M+K]⁺ 330.1255, found 330.1258; m/z calc. for $[C_{20}H_{21}NONa]^+$ [M+Na]⁺ 314.1515, found 314.1521; $[\alpha]_D^{20} = -194.6$ (*c* 1, CHCl₃); **chiral HPLC**: >99% *ee* (Phenomenex Lux Cellulose-2, 4.6 x 250 mm, heptane/*i*-PrOH = 90:10, 1 mL/min, t_R (*R*,*S*,*S*,*R*), (*S*,*R*,*R*,*S*) = 32.15, **43.29** min).

Big Scale [2+2]-Photocycloaddition

Compound **153i** (26.8 g, 110 mmol, 1.0 equiv.) and $Ir[(dtb-bpy)(dF(CF_3)ppy)_2]PF_6$ (123 mg, 0.110 mmol, 0.1 mol%) were dissolved in DMSO (650 mL) in an immersion shaft exposure unit. After irradiation for 7 d, the solvent was removed under reduced pressure. The residue was dissolved in DEE (200 mL) and H₂O (100 mL). The phases were separated, and the aqueous phase was extracted with DEE (4x100 mL). Then the organic phases were washed with H₂O (100 mL) and brine (2x100 mL). After column chromatography, both diastereomers were obtained in an overall yield of 70% (major diastereomer **158ia**: 12.6 g, 52.0 mmol; minor diastereomer **158ib**: 5.45 g, 23.0 mmol).

Transformation of the azabicycloheptanones

General Procedure for the removal of the tert-butyl group E

The bicyclic compound was dissolved in an aqueous solution of HCl (25%) and was stirred for the reported time under reflux. Afterwards, the reaction mixture was extracted once with DEE. Then water was removed under reduced pressure to give the corresponding crude chloride salt of the free amino acid.

(±)-2-(Aminomethyl)-3,4-diphenylcyclobutane-1-carboxylic acid (198)

Compound **198** was prepared from **158g** (558.8 mg, 1.75 mmol, 1.0 equiv) in HCl (25%, 15 mL) after 5 d following general procedure **E**. After elution through an ion-exchange resin (protonated form, Dowex® 50WX8, 200-400 mesh) the diastereomeric mixture of compound **198** (212.5 mg, 753 μ mol, 43%, *dr* 82:18) was obtained as white powder.

In the proton and carbon NMR the signals of both diastereomers are overlapping. Characteristic signals of the minor diastereomer are marked.

mp = 119 – 124 °C; ¹**H-NMR** (300 MHz, MeOD) δ = 7.47 – 6.86 (m, 10H), 4.42 - 4.23 (m, 1H), 4.15 – 3.78 (m, 2H), 3.74 – 3.61^{minor} (m, 0.19H), 3.56 – 3.19 (m, 3H); ¹³**C-NMR** (75 MHz, MeOD) δ = 176.5, 175.2, 139.9, 139.83, 139.78, 139.6, 130.0, 129.6, 129.3, 129.2, 129.12, 129.09, 129.05, 129.0, 127.54, 127.50, 127.4, 127.3, 47.4, 47.3, 46.3 (2xCH), 43.1, 42.9, 42.2, 41.9, 38.3, 38.2; **IR** (neat) v [cm⁻¹] = 3056, 3026, 2926, 2363, 1558, 1494, 1453, 1394, 1191, 1073, 913, 846, 745, 697; **HRMS**: major diastereomer (retention time 1.720-1.770 min): (ESI-MS) m/z calc. for [C₁₈H₂₀NO₂]⁺ [M+H]⁺ 282.1489 found 282.1493; minor diastereomer (retention time 1.637-1.692 min): (ESI-MS) m/z calc. for [C₁₈H₂₀NO₂]⁺ [M+H]⁺ 282.1489 found 282.1493.

(±)-2-(Aminomethyl)-3-phenylcyclobutane-1-carboxylic acid (200)

Compound **200** was prepared from **158ia** (1.10 g, 4.52 mmol, 1.0 equiv) in HCl (25%, 50 mL) after 5 d following the general procedure **E**. After recrystallization from CHCl₃ compound **200** (930 mg, 3.86 mmol, 85%) was obtained as beige powder.

 $\mathbf{Mp} = 204.5 - 206 \text{ °C}; \ ^{1}\mathbf{H}\text{-NMR} (300 \text{ MHz}, \text{ MeOD}) \delta = 7.37 - 7.28 \text{ (m, 4H)}, 7.27 - 7.18 \text{ (m, 1H)}, 3.51 - 3.32 \text{ (m, 2H)}, 3.30 - 3.22 \text{ (m, 1H)}, 3.10 - 2.93 \text{ (m, 2H)}, 2.65 \text{ (ddd, } J = 12.2, 9.2, 1.23 \text{ (m, 2H)}, 3.30 - 3.22 \text{ (m, 1H)}, 3.10 - 2.93 \text{ (m, 2H)}, 2.65 \text{ (ddd, } J = 12.2, 9.2, 1.23 \text{ (m, 2H)}, 3.30 - 3.22 \text{ (m, 1H)}, 3.10 - 2.93 \text{ (m, 2H)}, 3.65 \text{ (ddd, } J = 12.2, 9.2, 1.23 \text{ (m, 2H)}, 3.30 - 3.22 \text{ (m, 1H)}, 3.10 - 2.93 \text{ (m, 2H)}, 3.65 \text{ (ddd, } J = 12.2, 9.2, 1.23 \text{ (m, 2H)}, 3.30 - 3.22 \text{ (m, 1H)}, 3.10 - 2.93 \text{ (m, 2H)}, 3.65 \text{ (ddd, } J = 12.2, 9.2, 1.23 \text{ (m, 2H)}, 3.30 - 3.22 \text{ (m, 1H)}, 3.10 - 2.93 \text{ (m, 2H)}, 3.65 \text{ (ddd, } J = 12.2, 9.2, 1.23 \text{ (m, 2H)}, 3.30 - 3.22 \text{ (m, 2H)}, 3.30 - 3.22 \text{ (m, 2H)}, 3.30 - 3.23 \text{ (m, 2H)}, 3.30 - 3.33 \text{ (m, 2H)}, 3$

3.3 Hz, 1H), 2.37 (dt, J = 11.6, 9.3 Hz, 1H); ¹³C-NMR (75 MHz, MeOD) $\delta = 177.1$, 143.7, 129.8, 128.0, 127.8, 43.40, 43.38, 41.7, 38.5, 30.2; **IR** (neat) v [cm⁻¹] = 3194, 3026, 2978, 2914, 2780, 2598, 2527, 2460, 1688, 1584, 1498, 1453, 1394, 1222, 1159, 872, 756, 700; **HRMS**: (ESI-MS) m/z calc. for [C₁₂H₁₅NNaO₂]⁺ [M+Na]⁺ 228.0995 found 228.0994.

(±)-2-(Aminomethyl)-3-phenylcyclobutane-1-carboxylic acid (201)

Compound **201** was prepared from **158ib** (797.3 mg, 3.28 mmol, 1.0 equiv) in HCl (25%, 40 mL) after 6 d following the general procedure **E**. After cooling to rt, a white powder precipitated which was subsequently filtered. Compound **201** (462.2 mg, 1.91 mmol, 58%) was obtained as white powder.

mp = 209 – 210 °C; ¹**H-NMR** (300 MHz, MeOD) δ = 7.40 – 7.30 (m, 2H), 7.29 – 7.18 (m, 3H), 3.88 (dt, J = 10.6, 8.3 Hz, 1H), 3.62 (ddd, J = 10.4, 9.1, 7.4 Hz, 1H), 3.19 – 2.97 (m, 2H), 2.83 (q, J = 10.9 Hz, 1H), 2.60 (dtd, J = 11.3, 9.0, 2.6 Hz, 1H), 2.47 (d, J = 10.4 Hz, 1H); ¹³**C**-**NMR** (75 MHz, MeOD) δ = 178.27, 139.29, 129.81, 128.80, 128.13, 41.05, 39.80, 38.85, 38.26, 28.61; **IR** (neat) v [cm⁻¹] = 3022, 2974, 1725, 1572, 1505, 1453, 1408, 1244, 1215, 1181, 1080, 916, 875, 816, 749, 700; **HRMS**: (ESI-MS) m/z calc. for [C₁₂H₁₅NO₂]⁺ [M+H]⁺ 206.1176 found 206.1178.

(±)-2-(Aminomethyl)-4-phenylcyclobutane-1,3-dicarboxylic acid (203)

Compound **203** was prepared from **158I** (358.5 mg, 1.19 mmol, 1.0 equiv) in HCl (25%, 15 mL) after 5 d following general procedure **E**. The diastereomeric mixture of compound **203** (240.7 mg, 844 μ mol, 71%, *dr* 72:28) was obtained as beige powder and was not further purified.

In the proton and carbon NMR the signals of both diastereomers are overlapping. Characteristic signals of the minor diastereomer are marked.

mp = 196 – 199 °C; ¹**H-NMR** (400 MHz, MeOD) δ = 7.41 – 7.32^{minor} (m, 0.4H), 7.32 – 7.18 (m, 5H), 4.30 – 4.18 (m, 1H), 4.07^{minor} (t, *J* = 10.4 Hz, 0.13H), 3.84 (t, *J* = 8.5 Hz, 1H), 3.56^{minor} (t, *J* = 9.4 Hz, 0.20H), 3.50 – 3.42 (m, 1H), 3.42 – 3.27 (m, 3H), 3.21 (dd, *J* = 11.3, 8.0 Hz, 1H); ¹³**C-NMR** (101 MHz, MeOD) δ = 174.3, 173.5, 140.6^{minor}, 138.4, 128.1^{minor}, 128.0, 127.2, 126.8, 126.5^{minor}, 45.4, 42.6, 42.3, 40.1, 34.0; **HRMS**: major diastereomer (retention time 0.855-0.910 min): (ESI-MS) m/z calc. for $[C_{13}H_{15}NO_4]^+$ [M+H]⁺ 250.1074 found 250.1079; minor diastereomer (retention time 1.054-1.110 min): (ESI-MS) m/z calc. for $[C_{13}H_{15}NO_4]^+$ [M+H]⁺ 250.1074 found 250.1078.

(±)-2-(Aminomethyl)-4-phenylcyclobutane-1-carboxylic acid (202)

Compound **202** was prepared from **158m** (221.9 mg, 912 μ mol, 1.0 equiv.) in HCl (25%, 12 mL) after 6 d following the general procedure **E**. The crude product was dissolved in a small amount of MeOH and pure product was then precipitated in cold DEE. Compound **202** (212.2 mg, 880 μ mol, 96%) was obtained as beige powder.

mp = 213 – 217 °C; ¹**H-NMR** (400 MHz, MeOD) δ = 7.30 (dd, J = 10.3, 2.8 Hz, 4H), 7.25 – 7.15 (m, 1H), 3.91 (q, J = 9.5 Hz, 1H), 3.54 (t, J = 9.4 Hz, 1H), 3.41 (dd, J = 12.8, 7.5 Hz, 1H), 3.22 (dd, J = 12.8, 8.5 Hz, 1H), 2.86 (pd, J = 8.2, 2.7 Hz, 1H), 2.39 (dt, J = 11.8, 9.2 Hz, 1H), 2.21 (ddd, J = 12.2, 9.6, 3.0 Hz, 1H); ¹³**C-NMR** (101 MHz, MeOD) δ = 174.8, 142.7, 128.1, 126.3, 126.1, 46.2, 40.8, 40.1, 31.2, 28.2; **IR** (neat) v [cm⁻¹] = 3131, 3037, 2948, 2586, 1703, 1553, 1494, 1408, 1237, 1181, 823, 752, 704; **HRMS**: (ESI-MS) m/z calc. for [C₁₂H₁₅NO₂]⁺ [M+H]⁺ 206.1176 found 206.1179.

General procedure for the Boc-protection of the unsubstituted azabicycloheptanones F

Under nitrogen atmosphere, unsubstituted azabicycloheptanone **158u** (1 equiv.) was dissolved in dry MeCN (10 mL) and the solution was cooled to 0 °C by an ice-bath. Then NEt₃ (1 equiv.), Boc₂O (2 equiv.) and DMAP (0.1 mmol, 0.1 equiv.) were subsequently added. The reaction mixture was stirred in defrosting ice-bath for 2 d. The solvent was removed under reduced pressure giving rise to compound **158ka**.

(±)-*tert*-Butyl-2-oxo-6-phenyl-3-azabicyclo[3.2.0]heptane-3-carboxylate ((±)-158ka)

Compound (±)-158ka was synthesized from compound (±)-158u (189.8 mg, 1.01 mmol, 1.0 equiv.), NEt₃ (102.6 mg, 140 μ L, 1.01 mmol, 1.0 equiv.), Boc₂O (442.5 mg, 2.03 mmol, 2.0 equiv.) and DMAP (12.4 mg, 0.1 mmol, 0.10 equiv.) following the general procedure **F**. Compound (±)-158ka(291.3 mg, 1.01 mmol, quant.) was obtained as yellow solid.

Spectral data are in accordance with compound (±)-158ka (see page 138).

tert-Butyl (1*R*,5*S*,6*R*)-2-oxo-6-phenyl-3-azabicyclo[3.2.0]heptane-3-carboxylate ((1*R*,5*S*,6*R*)-158ka)

Compound (1*R*,5*S*,6*R*)-158ka was synthesized from compound (1*R*,5*S*,6*R*)-158u (112.4 mg, 0.60 mmol, 1.0 equiv.), NEt₃ (60.7 mg, 85 μ L, 0.60 mmol, 1.0 equiv.), Boc₂O (261.9 mg, 1.2 mmol, 2.0 equiv.) and DMAP (7.4 mg, 0.060 mmol, 0.10 equiv.) following the general procedure **F**. After silica gel column chromatography (hexanes/EtOAc 4:1) compound (1*R*,5*S*,6*R*)-158ka (151.2 mg, 0.53 mmol, 88%) was obtained.

Spectral data are in accordance with compound (±)-158ka.

mp = 94 95 °C; **HRMS**: (ESI-MS) m/z calc. for $[C_{17}H_{22}NO]^+$ [M+H]⁺ 288.1594, found 288.1597; m/z calc. for $[C_{17}H_{21}NONa]^+$ [M+Na]⁺ 310.1414, found 310.1418; m/z calc. for $[C_{17}H_{21}NONH_4]^+$ [M+NH4]⁺ 305.1860, found 305.1863; $[\alpha]_D^{20} = -138.8$ (*c* 1, DCM); **chiral HPLC**: >99% *ee* (Phenomenex Lux Cellulose-2, 4.6 x 250 mm, heptane/*i*-PrOH = 70:30, 0.5 mL/min, t_R (*S*,*R*,*S*), (*R*,*S*,*R*) = 13.4, **18.3** min).

tert-Butyl (1*S*,5*R*,6*S*)-2-oxo-6-phenyl-3-azabicyclo[3.2.0]heptane-3-carboxylate ((1*S*,5*R*,6*S*)-158ka)

Compound (1*S*,5*R*,6*S*)-158ka was synthesized from compound (1*S*,5*R*,6*S*)-158u (112.4 mg, 0.60 mmol, 1.0 equiv.), NEt₃ (60.7 mg, 85 μ L, 0.60 mmol, 1.0 equiv.), Boc₂O (261.9 mg, 1.2 mmol, 2.0 equiv.) and DMAP (7.4 mg, 0.060 mmol, 0.10 equiv.) following the general procedure **F**. After silica gel column chromatography (hexanes/EtOAc 4:1) compound (1*S*,5*R*,6*S*)-158ka (148 mg, 0.52 mmol, 87%) was obtained.

Spectral data are in accordance with compound (±)-158ka.

 $\mathbf{mp} = 99 \text{ °C}; \mathbf{HRMS}: (ESI-MS) \text{ m/z calc. for } [C_{17}H_{22}NO]^+ [M+H]^+ 288.1594, \text{ found } 288.1598; \\ \text{m/z calc. for } [C_{17}H_{21}NONa]^+ [M+Na]^+ 310.1414, \text{ found } 310.1419; \text{ m/z calc. for } [C_{17}H_{21}NONH_4]^+ [M+NH_4]^+ 305.1860, \text{ found } 305.1863; \\ [\alpha]_D^{20} = 146.7 \text{ (} c \text{ 1, DCM)}; \text{ chiral } \\ \mathbf{HPLC}: 98\% \ ee \text{ (Phenomenex Lux Cellulose-2, } 4.6 \text{ x } 250 \text{ mm, heptane/}i\text{-PrOH} = 70:30, \\ 0.5 \text{ mL/min, } t_R (S,R,S), (R,S,R) = 11.8, 15.5 \text{ min}).$

Lactam ring opening of the Boc-protected bicyclic compounds

(±)-2-(((*tert*-Butoxycarbonyl)amino)methyl)-3,4-diphenylcyclobutane-1-carboxylic acid (225)

Compound **158ha** (709.7 mg, 1.95 mmol, 1.0 equiv.) was dissolved in a mixture of H_2O/THF (1:1, 0.1M, 44 mL). After addition of LiOH (473.8 mg, 19.8 mmol, 10 equiv.) the reaction mixture was stirred at rt for 2 d. The solvent was removed under reduced pressure, the residue was again dissolved in EtOAc and water was added. After phase separation, the aqueous phase was brought to a pH of 1 with aq. HCl (2 M) and extracted with EtOAc (3x). The combined organic phases were dried over MgSO₄, filtered and the solvent was removed under reduced pressure. After purification by silica gel column chromatography (DCM/MeOH 95:5) compound **225** (557.6 mg, 1.46 mmol, 75%, *dr* 88:12) was obtained as white solid.

In the proton and carbon NMR, the signals of both diastereomers are overlapping. Characteristic signals of the minor diastereomer are marked.

R_f = 0.36 (DCM/MeOH 95:5); **mp** = 61 63 °C; ¹**H-NMR** (300 MHz, CDCl₃) δ = 7.48 – 7.27 (m, 2H), 7.16 – 6.98 (m, 5H), 6.98 – 6.88 (m, 3H), 4.95 (bs, 0.5H, NH), 4.40 – 4.23 (m, 1H), 3.92 – 3.64 (m, 2H), 3.63 – 3.26 (m, 3H), 1.43 (s, 9H), 1.35minor (s, 1.19H); ¹³**C-NMR** (75 MHz, MeOD) δ = 176.8, 158.5, 143.6, 141.6, 140.8, 129.7, 129.5, 129.3, 129.1, 129.0, 128.88, 128.85, 127.9, 127.7, 127.6, 127.0, 126.9, 80.1, 47.7, 45.2, 43.6, 43.0, 40.6, 28.8; **IR** (neat) v [cm⁻¹] = 3313, 3083, 3026, 2974, 2933, 1699, 1493, 1449, 1416, 1307, 1248, 1109, 1080, 969, 909, 853, 749, 697; **HRMS**: major diastereomer (retention time 2.939-2.989 min): (ESI-MS) m/z calc. for $[C_{23}H_{28}NO_4]^+$ [M+H]⁺ 382.2013 found 382.2015, m/z calc. for $[C_{23}H_{27}NO_4Na]^+$ [M+Na]⁺ 404.1832 found 404.1836, m/z calc. for $[C_{23}H_{27}NO_4K]^+$ [M+K]⁺ 420.1572 found 420.1558; minor diastereomer (retention time 3.072-3.121 min): (ESI-MS) m/z calc. for $[C_{23}H_{27}NO_4Na]^+$ [M+Na]⁺ 404.1832 found 404.1834, m/z calc. for $[C_{23}H_{27}NO_4K]^+$ [M+K]⁺ [M+K]⁺ 420.1572 found 420.1569.

(±)-*trans*-2-(((*tert*-Butoxycarbonyl)amino)methyl)-3-phenylcyclobutane-1-carboxylic acid ((±)-226)

Method 1:

Compound **200** (240 mg, 995 μ mol, 1.0 equiv.) was dissolved in a H₂O/dioxane mixture (1:1, 5 mL), NaHCO₃ (420 mg, 5.00 mmol, 5.0 equiv.) was added and the reaction mixture was cooled to 0 °C. Then a solution of Boc₂O (327 mg, 1.50 mmol, 1.5 equiv.) in dioxane (5 mL) was added dropwise. The reaction mixture was stirred for 2 d at rt. H₂O (10 mL) was added and the aqueous phase was extracted twice with EtOAc (each 15 mL). The combined organic phases were washed twice with NaHCO₃ (each 15 mL). Then the aqueous phase was brought to a pH of 1 with aq. HCl (5%) and again extracted with EtOAc (3x20 mL). The combined organic phases were dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure. After silica gel column chromatography (DCM/MeOH 95:5) compound (±)-226 (293 mg, 959 μ mol, 96%) was obtained as white solid.

Method 2:

Compound **158ka** (4.31 g, 15.0 mmol, 1.0 equiv.) was dissolved in a mixture of H_2O/THF (1:1, 0.1M, 150 mL). After addition of LiOH (1.79 g, 75.0 mmol, 5.0 equiv.) the reaction mixture was stirred at rt for 2 d. The solvent was removed under reduced pressure, the residue was again dissolved in EtOAc and water was added. After phase separation, the aqueous phase was brought to a pH of 1 with aq. HCl (2 M) and extracted with EtOAc (3x). The combined organic phases were dried over MgSO₄, filtered and the solvent was removed under reduced pressure. After recrystallization from CHCl₃ compound (±)-226 (3.88 g, 12.7 mmol, 85%) was obtained as white solid.

R_f = 0.27 (DCM/MeOH 95:5); **mp** = 112 114 °C; ¹**H-NMR** (400 MHz, CDCl₃) δ = 10.89 (bs, 1H), 7.31 (t, *J* = 7.5 Hz, 2H), 7.22 (dd, *J* = 14.7, 7.2 Hz, 3H), 4.90 (bs, 1H), 3.49 (dd, *J* = 18.5, 8.9 Hz, 2H), 3.29 (t, *J* = 7.5 Hz, 2H), 2.98 (dt, *J* = 16.2, 8.3 Hz, 1H), 2.69 (ddd, *J* = 11.7, 9.2, 2.9 Hz, 1H), 2.24 (dd, *J* = 20.4, 9.4 Hz, 1H), 1.41 (s, 9H); ¹³**C-NMR** (101 MHz, CDCl₃) δ = 179.2, 156.1, 143.3, 128.5, 126.6, 126.5, 79.6, 45.3, 42.1, 42.0, 38.1, 28.4; **IR** (neat) v [cm⁻¹] = 3380, 3060, 3030, 2978, 2940, 2713, 2519, 1714, 1654, 1543, 1442, 1364, 1289, 1252, 1162,

991, 816, 861, 894, 745; **HRMS**: (ESI-MS) m/z calc. for $[C_{17}H_{24}NO_4]^+$ [M+H]⁺ 306.1700 found 306.1698.

(±)-*cis*-2-(((*tert*-Butoxycarbonyl)amino)methyl)-3-phenylcyclobutane-1-carboxylic acid (227)

Compound **158kb** (862.1 mg, 3.00 mmol, 1.0 equiv.) was dissolved in a mixture of H₂O/THF (1:1, 0.1 M, 30 mL). After addition of LiOH (359.2 mg, 15.0 mmol, 5.0 equiv.) the reaction mixture was stirred at rt for 2 d. The solvent was removed under reduced pressure, the residue was again dissolved in EtOAc and water was added. After phase separation the aqueous phase was brought to a pH of 1 with aq. HCl (2 M) and extracted with EtOAc (3x). The combined organic phases were dried over MgSO₄, filtered and the solvent was removed under reduced pressure. After recrystallization from CHCl₃ compound **227** (814.5 mg, 2.67 mmol, 89%) was obtained as white solid.

R_f = 0.45 (DCM/MeOH 95:5); **mp** = 133 134 °C; ¹**H-NMR** (300 MHz, MeOD) δ = 7.37 – 7.14 (m, 5H), 3.75 (dt, J = 10.9, 8.3 Hz, 1H), 3.40 – 3.31 (m, 1H, overlapping with solvent signal), 3.19 – 2.74 (m, 4H), 2.30 (dtd, J = 11.0, 8.0, 2.9 Hz, 1H), 1.32 (s, 9H); ¹³**C-NMR** (101 MHz, MeOD) δ = 175.3, 156.3, 139.3, 128.0, 127.5, 1262, 78.6, 42.2, 38.0, 37.7, 36.3, 27.3, 25.0; **IR** (neat) v [cm⁻¹] = 3388, 3034, 2981, 2952, 2855, 2680, 2553, 1684, 1513, 1435, 1394, 1328, 1237, 1174, 1083, 995, 868, 745, 700; **HRMS**: (-ESI-MS) m/z calc. for [C₁₇H₂₃NO₄]⁻ [M-H]⁻ 304.1554 found 304.1564, m/z calc. for [C₁₇H₂₃NO₄Cl]⁻ [M+Cl]⁻ 304.1321 found 304.1324.

tert-Butyl(((1*R*,2*S*,4*S*)-2-((4*S*,5*R*)-4-methyl-2-oxo-5-phenyloxazolidine-3-carbonyl)-4-phenylcyclobutyl)methyl)carbamate (237a) *tert*-Butyl(((1*S*,2*R*,4*R*)-2-((4*S*,5*R*)-4-methyl-2-oxo-5-phenyloxazolidine-3-carbonyl)-4-phenylcyclobutyl)methyl)carbamate (237b)

Compound (\pm)-226 (1.78 g, 5.82 mmol, 1.0 equiv.) was dissolved together with triethylamine (730 mg, 7.20 mmol, 1.2 equiv.) in dry THF (50 mL) and cooled to -78 °C. Then pivaloyl chloride (702 mg, 5.82 mmol, 1.0 equiv.) was added dropwise and the reaction mixture was stirred for 1 h at 0 °C. Meanwhile, (4S,5R)-4-methyl-5-phenyloxazolidin-2-one (1.03 g, 5.82 mmol, 1.0 equiv.) was dissolved in dry THF (35 mL), cooled to -40 °C, *n*-BuLi (2.7M in toluene, 2.16 mL, 5.82 mmol, 1.0 equiv.) was added dropwise and this reaction mixture was stirred for 5 min at -40 °C. The resulting solution was added by rapid cannulation to the cooled solution of the mixed anhydride. The reaction mixture was stirred for 1 h at -78 °C. After warming to 0 °C, the mixture was treated with saturated NaHCO₃ (50 mL), and the solvent was removed under reduced pressure. The aqueous phase was extracted with DCM (4x50 mL). The combined organic phases were washed once with sat. NaHCO₃ (20 mL) and once with brine (20 mL), dried over MgSO₄, filtered and the solvent was removed under reduced pressure. After purification by using the flash system (hexanes/acetone) both diastereomers 237 were obtained as white solids in an overall yield of 85% (237a: 1.15 g, 2.46 mmol, 42%; 237b: 1.05 g, 2.26 mmol, 39%).

237a:

R_f = 0.36 (hexanes/acetone 4:1); **mp** = 129 – 130 °C; ¹**H-NMR** (400 MHz, CDCl₃) δ = 7.45 – 7.19 (m, 10H), 5.77 (d, *J* = 7.4 Hz, 1H), 4.85 (p, *J* = 6.6 Hz, 1H), 4.63 – 4.46 (m, 2H), 3.52 – 3.24 (m, 3H), 3.09 - 2.96 (m, 1H), 2.90 - 2.77 (m, 1H), 2.25 (dt, *J* = 11.7, 8.7 Hz, 1H), 1.40 (s, 9H), 0.92 (d, *J* = 6.6 Hz, 3H); ¹³**C-NMR** (101 MHz, CDCl₃) δ = 173.4, 155.9, 153.2, 143.6, 133.6, 128.7, 128.6, 126.7, 126.6, 126.3, 125.7, 79.4, 79.0, 54.9, 45.5, 41.7, 41.2, 37.5, 28.4, 27.5, 14.8; **IR** (neat) v [cm⁻¹] = 3406, 3328, 3030, 2981, 2933, 2855, 1774, 1692, 1602, 1524, 1453, 1364, 1241, 1196, 1148, 1121, 1088, 1062, 984, 946, 868, 764, 723, 700; **HRMS**: (ESI-

MS) m/z calc. for $[C_{27}H_{33}N_2O_5]^+$ $[M+H]^+$ 465.2384 found 465.2385; m/z calc. for $[C_{27}H_{32}N_2O_5Na]^+$ $[M+Na]^+$ 487.2203 found 487.2208.

237b:

R_f = 0.30 (hexanes/acetone 4:1); **mp** = 121 122 °C; ¹**H-NMR** (300 MHz, CDCl₃) δ = 7.49 – 7.17 (m, 10H), 5.69 (d, *J* = 7.2 Hz, 1H), 4.82 (p, *J* = 6.7 Hz, 1H), 4.65 (bs, 1H), 4.34 (td, *J* = 8.6, 4.6 Hz, 1H), 3.44 (dd, *J* = 17.3, 8.9 Hz, 1H), 3.36 – 3.04 (m, 3H), 2.98 – 2.80 (m, 1H), 2.23 (dt, *J* = 11.7, 8.6 Hz, 1H), 1.39 (s, 9H), 0.97 (d, *J* = 6.6 Hz, 3H); ¹³**C-NMR** (101 MHz, CDCl₃) δ = 173.2, 155.7, 153.3, 143.8, 133.2, 128.9, 128.8, 128.6, 126.7, 126.5, 125.7, 79.3, 79.1, 55.2, 45.2, 42.1, 41.3, 37.6, 28.4, 27.1, 14.5; **IR** (neat) v [cm⁻¹] = 3414, 3063, 3030, 2974, 2922, 1770, 1714, 1684, 1513, 1453, 1386, 1345, 1248, 1148, 1118, 1039, 976, 924, 887, 767, 693; **HRMS**: (ESI-MS) m/z calc. for [C₂₇H₃₂N₂O₅K]⁺ [M+K]⁺ 503.1943 found 503.1947; m/z calc. for [C₂₇H₃₂N₂O₅Na]⁺ [M+Na]⁺ 487.2203 found 487.2209.

(1*S*,2*R*,3*S*)-2-(((*tert*-Butoxycarbonyl)amino)methyl)-3-phenylcyclobutane-1-carboxylic acid ((1*S*,2*R*,3*S*)-226)

Method 1:

To an ice-cooled solution of compound **237a** (911.6 mg, 1.96 mmol, 1.0 equiv.) in a mixture of H_2O/THF (4:1, 0.05 M, 40 mL) H_2O_2 (30 wt%, 1.2 mL, 6.0 equiv.) was added. The resulting mixture was stirred for 5 min and an aqueous solution of LiOH (0.3M, 13 mL, 94 mg, 3.92 mmol, 2.0 equiv.) was added. The reaction mixture was stirred for 5 h at rt. Afterwards, it was quenched with Na₂SO₃ (1 M, 15 mL) and NaHCO₃ (sat., 15 mL). The solvent was removed under reduced pressure. The aqueous residue was washed with DCM (4x15 mL) in order to recover the chiral auxiliary (almost quantitatively). Then the aqueous phase was acidified to a pH of 1 with aq. HCl (conc.) and extracted with DCM (4x20 mL). The combined organic phases were dried over MgSO₄, filtered and the solvent was removed under reduced pressure to give the compound (**1S,2R,3S)-226** (379.9 mg, 1.24 mmol, 63%) as white solid.

Method 2:

Compound (**1***S*,**2***R*,**3***S*)-**158ka** (134.3 mg, 467 μ mol, 1.0 equiv.) was dissolved in a mixture of H₂O/THF (1:1, 0.1M, 5 mL). After addition of LiOH (111.9 mg, 4.67 mmol, 10 equiv.) the reaction mixture was stirred at rt for 22 h. Then the solvent was removed under reduced pressure, the residue was again dissolved in EtOAc and water was added. After phase separation, the aqueous phase was brought to a pH of 1 with aq. HCl (2M) and extracted with EtOAc (3x). The combined organic phases were dried over MgSO₄, filtered and the solvent was removed under reduced pressure. After purification via flash system (DCM/MeOH) compound (**1***S*,**2***R*,**3***S*)-**226** (142.7 mg, 467 μ mol, quant.) was obtained as a white solid.

The spectral data are in accordance with the racemic compound (\pm) -226.

mp = 112 113 °C; $[\alpha]_D^{20}$ = 32.5 (*c* 1, CH₂Cl₂); chiral HPLC: >99% *ee* (Phenomenex Lux Cellulose-1, 4.6 x 250 mm, heptane/*i*-PrOH = 90:10, 1.0 mL/min, t_R (*S*,*R*,*S*), (*R*,*S*,*R*) = **6.43**, 8.78 min).

(1*R*,2*S*,3*R*)-2-(((*tert*-Butoxycarbonyl)amino)methyl)-3-phenylcyclobutane-1-carboxylic acid ((1*R*,2*S*,3*R*)-226)

Method 1:

To an ice-cooled solution of compound **237b** (715.6 mg, 1.54 mmol, 1.0 equiv.) in a mixture of H₂O/THF (4:1, 0.05M, 30 mL) H₂O₂ (30 wt%, 944 μ L, 6 equiv.) was added. The resulting mixture was stirred for 5 min and then an aqueous solution of LiOH (0.3M, 10 mL, 74 mg, 3.08 mmol, 2.0 equiv.) was added. The reaction mixture was stirred for 5 h at rt. Afterwards, it was quenched with Na₂SO₃ (1M, 15 mL) and NaHCO₃ (sat., 15 mL). The solvent was removed under reduced pressure. The aqueous residue was washed with DCM (4x15 mL) in order to recover the chiral auxiliary (almost quantitatively). Then the aqueous phase was acidified to a pH of 1 with aq. HCl (conc.) and extracted with DCM (4x20 mL). The combined organic phases were dried over MgSO₄, filtered and the solvent was removed under reduced pressure to give compound (1*R*,2*S*,3*R*)-226 (380.8 mg, 1.25 mmol, 81%) as white solid.

Method 2:

Compound (1*R*,2*S*,3*R*)-158ka (129 mg, 449 μ mol, 1.0 equiv.) was dissolved in a mixture of H₂O/THF (1:1, 0.1M, 5 mL). After addition of LiOH (108 mg, 4.49 mmol, 10 equiv.) the reaction mixture was stirred at rt for 21 h. Then the solvent was removed under reduced pressure, the residue was again dissolved in EtOAc and water was added. After phase separation the aqueous phase was brought to a pH of 1 with aq. HCl (2 M) and extracted with EtOAc (3x). The combined organic phases were dried over MgSO₄, filtered and the solvent was removed under reduced pressure. After purification via flash system (DCM/MeOH) compound (1*R*,2*S*,3*R*)-226 (129 mg, 421 μ mol, 94%) was obtained as a white solid.

The spectral data are in accordance with the racemic compound (\pm) -226.

mp = 114 115 °C; $[\alpha]_D^{20} = -33.9$ (*c* 1, CH₂Cl₂); chiral HPLC: 99% *ee* (Phenomenex Lux Cellulose-1, 4.6 x 250 mm, heptane/*i*-PrOH = 90:10, 1.0 mL/min, t_R (*S*,*R*,*S*), (*R*,*S*,*R*) = 6.43, 8.78 min).

General Procedure for the Fmoc-Protection G

The Boc-protected amino acid **226** was dissolved in dry DCM (10 mL) and TFA (5 mL) was added. After stirring the reaction mixture for 24 h at ambient temperature, the volatiles were removed *in vacuo*. The crude TFA salt of the amino acid was dissolved again in a mixture of dioxane and water (1:1) and the solution was cooled down to 0 °C. Then NaHCO₃ (2.05 equiv.) and FmocOSu (1.1 equiv.) were added. After 24 h reaction time, the solvent was removed under reduced pressure and sat. NH4Cl, as well as ethyl acetate, were added. The phases were separated, and the aqueous phase was extracted with EtOAc (3 x). The combined organic phases were dried over MgSO₄, filtered and evaporated. By silica gel column chromatography (DCM/MeOH) followed by recrystallization from MeOH, the corresponding Fmoc-protected amino acid was purified.

(±)-2-((((((9*H*-Fluoren-9-yl)methoxy)carbonyl)amino)methyl)-3-phenylcyclobutane-1carboxylic acid ((±)-264)

According to the general procedure **G** compound (\pm)-264 was synthesized from amino acid (\pm)-226 (305.4 mg, 1.00 mmol, 1.0 equiv.), NaHCO₃ (172.2 mg, 2.05 mmol, 2.05 equiv.) and FmocOSu (371.1 mg, 1.10 mmol, 1.1 equiv.). By purification with the flash system (DCM/MeOH) and recrystallization from MeOH, compound (\pm)-264 (370.3 mg, 866 µmol, 87%) was obtained as a white solid.

R_f = 0.38 (DCM/ MeOH 95:5); **mp** = 165 166 °C; ¹**H**-NMR (400 MHz, MeOD) δ = 7.76 (d, *J* = 7.6 Hz, 2H), 7.57 – 7.50 (m, 2H), 7.36 (t, *J* = 7.4 Hz, 2H), 7.27 – 7.19 (m, 6H), 7.10 (t, *J* = 7.0 Hz, 1H), 4.19 (d, *J* = 7.0 Hz, 2H), 4.05 (t, *J* = 6.9 Hz, 1H), 3.48 (q, *J* = 9.1 Hz, 1H), 3.36 – 3.27 (m, 4H), 3.21 (td, *J* = 9.1, 3.1 Hz, 1H), 2.97 (p, *J* = 8.5 Hz, 1H), 2.63 – 2.53 (m, 1H), 2.18 (dt, *J* = 11.3, 9.0 Hz, 1H); ¹³**C**-NMR (101 MHz, MeOD) δ = 176.3, 157.3, 144.0, 143.91, 143.88, 141.1, 128.0, 127.3, 126.7, 126.3, 125.9, 124.8, 119.5, 66.4, 43.9, 42.5, 42.1, 37.3, 28.0. **IR** (neat) v [cm⁻¹] = 3354, 3026, 2948, 1692, 1602, 1528, 1446, 1274, 1241, 1148, 1028, 991, 939, 894, 827, 734, 700; **HRMS**: (ESI-MS) m/z calc. for $[C_{27}H_{26}NO_4]^+$ [M+H]⁺ 428.1856, found 428.1867.

(1*S*,2*R*,3*S*)-2-(((((9*H*-Fluoren-9-yl)methoxy)carbonyl)amino)methyl)-3phenylcyclobutane-1-carboxylic acid ((1*S*,2*R*,3*S*)-264)

According to the general procedure G compound (1S,2R,3S)-264 was synthesized from amino acid (1S,2R,3S)-226 (925 mg, 3.03 mmol, 1.0 equiv.), NaHCO₃ (522 mg, 6.21 mmol, 2.05 equiv.) and FmocOSu (1.12 g, 3.33 mmol, 1.1 equiv.). By purification with the flash system (DCM/MeOH) and recrystallization from MeOH, compound (1S,2R,3S)-264 (1.09 g, 2.55 mol, 84%) was obtained as a white solid. Spectral data are in accordance with those of (\pm) -264.

mp = 173.3 °C; **HRMS**: (ESI-MS) m/z calc. for $[C_{27}H_{26}NO_4]^+$ [M+H]⁺ 428.1856, found 428.1863; m/z calc. for $[C_{27}H_{25}NO_4Na]^+$ [M+Na]⁺ 450.1676, found 450.1677. [α]²⁰_D = 13.4 (*c* 1, DMSO); **chiral HPLC**: 99% *ee* (Chiralpak AS-H, 4.6 x 250 mm, heptane/*i*-PrOH = 70:30, 0.5 mL/min, t_R (*S*,*R*,*S*), (*R*,*S*,*R*) = **13.7**, 20.2 min).

(1*R*,2*S*,3*R*)-2-(((((9*H*-Fluoren-9-yl)methoxy)carbonyl)amino)methyl)-3phenylcyclobutane-1-carboxylic acid ((1*R*,2*S*,3*R*)-264)

According to the general procedure **G** compound (1R,2S,3R)-264 was synthesized from amino acid (1R,2S,3R)-226 (933 mg, 3.05 mmol, 1.0 equiv.), NaHCO₃ (525 mg, 6.25 mmol, 2.05 equiv.) and FmocOSu (1.13 g, 3.36 mmol, 1.1 equiv.). By purification with the flash system (DCM/MeOH) and recrystallization from MeOH, compound (1R,2S,3R)-264 (1.19 g, 2.78 mol, 91%) was obtained as a white solid.

Spectral data are in accordance with those of (\pm) -264.

 $\mathbf{mp} = 174 - 175 \text{ °C}; \mathbf{HRMS}: (ESI-MS) \text{ m/z calc. for } [C_{27}H_{26}NO_4]^+ [M+H]^+ 428.1856, \text{ found} 428.1860; \text{ m/z calc. for } [C_{27}H_{25}NO_4Na]^+ [M+Na]^+ 450.1676, \text{ found } 450.1669. \ [\alpha]_D^{20} = -12.1 (c 1, \text{DMSO}); \mathbf{chiral HPLC}: 99\% ee (Chiralpak AS-H, 4.6 x 250 mm, heptane/$ *i* $-PrOH = 70:30, 0.5 mL/min, t_R ($ *S,R,S*), (*R,S,R*) =**13.7**, 20.2 min).

General Protocol for Birch Reduction H

In a three-necked round bottom flask under inert gas atmosphere Na (7.0 equiv.) was dissolved in condensed ammonia (ca. 25 ml) at -78 °C. The reaction mixture became dark blue and was stirred for further 15 min until Na was completely dissolved. Then a solution of compound **158** (1.0 equiv.) and *t*-BuOH (2.2 equiv.) in abs. THF was added dropwise and the reaction mixture was stirred for 1 h at -33 °C. Afterwards, the reaction was quenched by the addition of NH₄Cl. The ammonia was allowed to evaporate at ambient temperature. Water (2 mL) and aqueous HCl (1M, 30 mL) were added. After phase separation, the aqueous phase was extracted with DCM (6x20 mL). The combined organic phases were dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure.

(±)-6-Phenyl-3-azabicyclo[3.2.0]heptan-2-one((±)-158u)

Following the general procedure **H** compound (±)-158u was prepared from 158ja (416.1 mg, 1.50 mmol, 1.0 equiv.) using Na (241.4 mg, 10.5 mmol, 7.0 equiv.) and *t*-BuOH (244.6 mg, 310 μ L, 3.30 mmol, 2.2 equiv.). Compound (±)-7 (270.6 mg, 1.43 mmol, 95%) was obtained as a white solid and was used in the following reaction without further purification.

The spectral data are in accordance with those of enantiomer (1*R*,5*S*,6*R*)-158u.

(1*S*,5*R*,6*S*)-6-Phenyl-3-azabicyclo[3.2.0]heptan-2-one ((1*S*,5*R*,6*S*)-158u)

Following the general procedure **H** compound (**1***S***,5***R***,6***S***)-158u** was prepared from **158vb** (272.4 mg, 935 μ mol, 1.0 equiv.) using Na (150.4 mg, 6.50 mmol, 7.0 equiv.) and *t*-BuOH (152.4 mg, 155 μ L, 2.00 mmol, 2.2 equiv.). Compound (**1***S***,5***R***,6***S***)-158u** (168.5 mg, 890 μ mol, 95%) was obtained as a white solid and was used in the following reaction without further purification.

The spectral data are in accordance with those of the enantiomer (1R,5S,6R)-158u.

HRMS: (ESI-MS) m/z calc. for $[C_{12}H_{14}NO]^+ [M+H]^+ 188.1070$, found 188.1072; $[\alpha]_D^{20} = 167.5$ (*c* 1, DCM); **chiral HPLC**: 99% *ee* (Phenomenex Lux Cellulose-1, 4.6 x 250 mm, heptane/*i*-PrOH = 90:10, 0.5 mL/min, t_R (*R*,*S*,*R*), (*S*,*R*,*S*) = 29.5, **36.6** min).

(1*R*,5*S*,6*R*)-6-Phenyl-3-azabicyclo[3.2.0]heptan-2-one ((1*R*,5*S*,6*R*)-158u)

Following the general procedure **G** compound (**1***R***,5***S***,6***R***)-158u** was prepared from **158va** (399.1 mg, 1.37 mmol, 1 equiv.) using Na (220.4 mg, 9.6 mmol, 7.0 equiv.) and *t*-BuOH (223.4 mg, 285 μ L, 3.00 mmol, 2.2 equiv.). Compound (**1***R***,5***S***,6***R***)-158u** (226.2 mg, 1.21 mmol, 88%) was obtained as a white solid and was used in the following reaction without further purification.

R_f = 0.63 (DCM/MeOH 9:1); **mp** = 70 °C; ¹**H-NMR** (300 MHz, CDCl₃) δ = 7.39 – 7.29 (m, 2H), 7.27 – 7.16 (m, 3H), 6.32 (d, *J* = 47.0 Hz, 1H), 3.66 – 3.50 (m, 2H), 3.38 (d, *J* = 10.1 Hz, 1H), 3.17 (q, *J* = 6.9 Hz, 1H), 3.03 – 2.91 (m, 1H), 2.69 – 2.49 (m, 2H); ¹³**C-NMR** (75 MHz, CDCl₃) δ = 180.9, 143.8, 128.6, 126.6, 126.3, 47.6, 44.3, 42.3, 36.6, 31.2. **IR** (neat) v [cm⁻¹] = 3227, 3030, 2959, 2933, 2862, 1688, 1643, 1487, 1431, 1304, 1259, 1066, 1025, 797, 745, 697; **HRMS**: (ESI-MS) m/z calc. for [C₁₂H₁₄NO]⁺ [M+H]⁺ 188.1070, found 188.1069; $[\alpha]_D^{20} = -152.0$ (*c* 1, DCM); **chiral HPLC**: >99% *ee* (Phenomenex Lux Cellulose-1, 4.6 x 250 mm, heptane/*i*-PrOH = 90:10, 0.5 mL/min, t_R (*R*,*S*,*R*), (*S*,*R*,*S*) = **33.2**, 37.5 min).

(±)-4-Phenethylpyrrolidin-2-one ((±)-215)^[41]

Following the general procedure **H** compound (±)-215 was prepared from 158na (832.1 mg, 3.00 mmol, 1.0 equiv.) using Na (482.8 mg, 21.0 mmol, 7.0 equiv.) and *t*-BuOH (487 mg, 620 μ L, 6.60 mmol, 2.2 equiv.). Compound (±)-215 (509.7 mg, 2.72 mmol, 91%) was obtained as a white solid and was used in the following reaction without further purification.

R_f = 0.58 (DCM/MeOH 9:1); **mp** = 86 87 °C; ¹**H-NMR** (300 MHz, CDCl₃) δ = 7.34 – 7.12 (m, 5H), 6.26 (s, 1H), 3.49 (dd, *J* = 9.4, 7.7 Hz, 1H), 3.05 (dd, *J* = 9.4, 6.6 Hz, 1H), 2.72 – 2.55 (m, 2H), 2.46 (ddd, *J* = 15.4, 8.7, 5.6 Hz, 2H), 2.12 – 1.98 (m, 1H), 1.80 (dd, *J* = 14.8, 7.5 Hz,

2H);¹³C-NMR (101 MHz, CDCl₃) δ = 178.2, 141.3, 128.5, 128.3, 126.1, 48.0, 36.6, 36.3, 34.4, 33.8; **IR** (neat) v [cm⁻¹] = 3182, 3082, 3026, 2929, 2855, 1684, 1599, 1453, 1420, 1364, 1297, 1140, 1062, 1025, 916, 887, 849, 805, 745, 700; **HRMS**: (ESI-MS) m/z calc. for [C₁₂H₁₆NO]⁺ [M+H]⁺ 190.1226, found 190.1234; m/z calc. for [C₁₂H₁₅NONa]⁺ [M+Na]⁺ 212.1046, found 212.1052.

(S)-4-Phenethylpyrrolidin-2-one ((S)-215)

Following the general procedure **H** compound (*S*)-215 was prepared from 156wa (435.9 mg, 1.50 mmol, 1.0 equiv.) using Na (241.4 mg, 10.5 mmol, 7.0 equiv.) and *t*-BuOH (244.6 mg, 310 μ L, 3.30 mmol, 2.2 equiv.). Compound (*S*)-215 (266.4 mg, 1.41 mmol, 94%) was obtained as a white solid and was used in the following reaction without further purification.

The spectral data are in accordance with those of the compound (±)-215

mp = 78 79 °C; **HRMS**: (ESI-MS) m/z calc. for $[C_{12}H_{16}NO]^+$ [M+H]⁺ 190.1226, found 190.1234; m/z calc. for $[C_{12}H_{15}NONa]^+$ [M+Na]⁺ 212.1046, found 212.1052. $[\alpha]_D^{20} = 4.7$ (*c* 1, CHCl₃); **chiral HPLC**: 99% *ee* (Phenomenex Lux Cellulose-2, 4.6 x 250 mm, heptane/*i*-PrOH = 70:30, 0.5 mL/min, t_R (*S*), (*R*) = 23.1, 25.3 min).

(*R*)-4-Phenethylpyrrolidin-2-one ((*R*)-215)^[42]

Following the general procedure **G** compound (*R*)-215 was prepared from 158wb (378.8 mg, 1.30 mmol, 1.0 equiv.) using Na (209.2 mg, 9.10 mmol, 7.0 equiv.) and *t*-BuOH (212 mg, 270 μ L, 2.90 mmol, 2.2 equiv.). Compound (*R*)-215 (231 mg, 1.22 mmol, 94%) was obtained as a white solid and was used in the following reaction without further purification.

The spectral data are in accordance with those of the compound (\pm) -215.

mp = 71 73.5 °C; HRMS: (ESI-MS) m/z calc. for [C₁₂H₁₆NO]⁺ [M+H]⁺ 190.1226, found 190.1234; m/z calc. for [C₁₂H₁₅NONa]⁺ [M+Na]⁺ 212.1046, found 212.1052. [α]²⁰_D = -9.0 (*c* 1, CHCl₃); chiral HPLC: 90% *ee* (Phenomenex Lux Cellulose-2, 4.6 x 250 mm, heptane/*i*-PrOH = 70:30, 0.5 mL/min, t_R (*S*), (*R*) = 23.5, 24.7 min).

(±)-3-(Aminomethyl)-5-phenylpentanoic acid hydrochloride ((±)-257)^[41]

Compound (\pm)-215 (189.3 mg, 1.00 mmol, 1.0 equiv.) was dissolved in aq. HCl (25%, 10 mL) and the reaction mixture was stirred for 13 h at 90 °C. The solvent was removed under reduced pressure. The resulting residue was triturated and washed with EtOAc yielding compound (\pm)-257 (220.6 mg, 0.91 mmol, 91%) as beige powder.

mp = 164 166.5 °C; ¹**H-NMR** (300 MHz, MeOD) δ = 7.32 – 7.12 (m, 5H), 3.09 – 2.93 (m, 2H), 2.81 – 2.61 (m, 2H), 2.60 – 2.40 (m, 2H), 2.23 – 2.07 (m, 1H), 1.86 – 1.60 (m, 2H); ¹³**C-NMR** (101 MHz, MeOD) δ = 174.5, 141.3, 128.1, 128.0, 125.7, 42.9, 35.5, 33.23, 33.16, 32.2; **IR** (**neat**) v [cm⁻¹] = 3168, 3082, 3022, 2937, 2370, 1722, 1572, 1528, 1453, 1408, 1300, 1259, 1200, 1092, 1053, 969, 946, 846, 801, 756, 730, 663 **HRMS**: (ESI-MS) m/z calc. for [C₁₂H₁₇NO₂]⁺ [M+H]⁺ 208.1332, found 208.1331.

(S)-3-(Aminomethyl)-5-phenylpentanoic acid hydrochloride ((S)-257)

Compound (S)-215 (184.6 mg, 0.98 mmol, 1.0 equiv.) was dissolved in aq. HCl (25%, 10 mL) and the reaction mixture was stirred for 24 h at 90 °C. The solvent was removed under reduced pressure. The resulting residue was triturated and washed with EtOAc yielding compound (S)-257 (164.3 mg, 0.67 mmol, 69%) as beige powder.

The spectral data were in accordance with those of compound (\pm) -257.

mp = 145 148 °C; $[\alpha]_D^{20}$ = 15.8 (*c* 1, MeOH); **HRMS**: (ESI-MS) m/z calc. for $[C_{12}H_{17}NO_2]^+$ [M+H]⁺ 208.1332, found 208.1330.

(R)-3-(Aminmethyl)-5-phenylpentanoic acid hydrochloride ((R)-257)^[43]

Compound (*R*)-215 (169.6 mg, 0.90 mmol, 1.0 equiv.) was dissolved in aq. HCl (25%, 10 mL) and the reaction mixture was stirred for 24 h at 90 °C. The solvent was removed under reduced pressure. The resulting residue was triturated and washed with EtOAc yielding compound (*R*)-257 (197.2 mg, 0.81 mmol, 89%) as beige powder.

The spectral data were in accordance with those of compound (\pm) -257.

mp = 131 136; $[\alpha]_D^{20} = -14.7$ (*c* 1; MeOH); **HRMS**: (ESI-MS) m/z calc. for $[C_{12}H_{17}NO_2]^+$ [M+H]⁺ 208.1332, found 208.1331.

NPY-analogues

NPY-analogues were synthesized on an automated peptide synthesizer, applying Fmocchemistry in cooperation with Prof. C. Cabrele from the University of Salzburg. At the University of Regensburg the obtained peptides were purified by preparative reversed phase HPLC. In the following, conditions of the purification, as well as the analytical data, were described.

 $Ph-ACBC \equiv Phenylamino cyclobutane amino acid$

Ac-[Tyr-Arg-(1S,2R,3S)-Ph-ACBC-Arg-Tyr]-CONH₂ (267)

Purification by preparative RP-HPLC (Machery-Nagel VP 250/10 Nucleodur 100-5 C18ec, MeCN + 0.05% TFA 10-31% over 23 min, 5 mL/min, 220 nm, t_r = 16.7 min) gave **267** as white fluffy solid.

HPLC analysis (Machery-Nagel EC 250/4 Nucleodur 100-5 C18ec, MeCN + 0.05% TFA 10-60% over 40 min, 60-90% over 3 min, 90% for 10 min, 0.8 mL/min, 220 nm, $t_R = 17.7$ min); **HRMS**: (ESI-MS) m/z calc. for $[C_{44}H_{61}N_{12}O_8]^+$ [M+H]⁺ 885.4730, found 885.4721; m/z calc. for $[C_{44}H_{62}N_{12}O_8]^{2+}$ [M+2H]²⁺ 443.2401, found 443.2405.

Ac-[Tyr-Arg-(1R,2S,3R)-Ph-ACBC-Arg-Tyr]-CONH₂ (268)

Purification by preparative RP-HPLC (Machery-Nagel VP 250/10 Nucleodur 100-5 C18ec, MeCN + 0.05% TFA 10-31% over 23 min, 5 mL/min, 220 nm, t_r = 16.2 min) gave **268** as white fluffy solid.

HPLC analysis (Machery-Nagel EC 250/4 Nucleodur 100-5 C18ec, MeCN + 0.05% TFA 10-60% over 40 min, 60-90% over 3 min, 90% for 10 min, 0.8 mL/min, 220 nm, $t_R = 17.3$ min); **HRMS**: (ESI-MS) m/z calc. for $[C_{44}H_{61}N_{12}O_8]^+$ [M+H]⁺ 885.4730, found 885.4721, m/z calc. for $[C_{44}H_{62}N_{12}O_8]^{2+}$ [M+2H]²⁺ 443.2401, found 443.2406.

Ac-[Arg-(1S,2R,3S)-Ph-ACBC-Arg-(1S,2R,3S)-Ph-ACBC-Arg-Tyr]-CONH₂ (269)

Purification by preparative RP-HPLC (Machery-Nagel VP 250/10 Nucleodur 100-5 C18ec, MeCN + 0.05% TFA 10-35% over 25 min, 5 mL/min, 220 nm, t_r = 17.9 min) gave **269** as white fluffy solid.

HPLC analysis (Machery-Nagel EC 250/4 Nucleodur 100-5 C18ec, MeCN + 0.05% TFA 10-60% over 40 min, 60-90% over 3 min, 90% for 10 min, 0.8 mL/min, 220 nm, $t_R = 19.5$ min); **HRMS**: (ESI-MS) m/z calc. for $[C_{53}H_{77}N_{16}O_8]^+$ [M+H]⁺ 1065.6105, found 1065.6106, m/z calc. for $[C_{53}H_{78}N_{16}O_8]^{2+}$ [M+2H]²⁺ 533.3089, found 533.3095, m/z calc. for $[C_{53}H_{79}N_{16}O_8]^{2+}$ [M+3H]³⁺ 355.8750, found 355.8757.

Ac-[Arg-(1R,2S,3R)-Ph-ACBC-Arg-(1R,2S,3R)-Ph-ACBC-Arg-Tyr]-CONH₂ (270)

Purification by preparative RP-HPLC (Machery-Nagel VP 250/10 Nucleodur 100-5 C18ec, MeCN + 0.05% TFA 10-35% over 25 min, 5 mL/min, 220 nm, $t_r = 17.2$ min) gave **270** as white fluffy solid.

HPLC analysis (Machery-Nagel EC 250/4 Nucleodur 100-5 C18ec, MeCN + 0.05% TFA 10-60% over 40 min, 60-90% over 3 min, 90% for 10 min, 0.8 mL/min, 220 nm, $t_R = 18.6$ min); **HRMS**: (ESI-MS) m/z calc. for $[C_{53}H_{78}N_{16}O_8]^{2+}$ [M+2H]²⁺ 533.3089, found 533.3091, m/z calc. for $[C_{53}H_{79}N_{16}O_8]^{2+}$ [M+3H]³⁺ 355.8750, found 355.8756.

3 DFT-calculations

All DFT calculations were run using the Gaussian09 Revision $E01^{[44]}$ suite of programs. The chosen level of theory is B3LYP/6-311+G**^[45,46,47,48,49] with the addition of Grimmes Empirical Dispersion GD3^[50]. After comparison it was found that adding dispersion correction does have a significant impact on the system, therefore dispersion corrected values were used going forward. To compute non-covalent interactions the NCI package was used.^[51,52]

Figure 19. Reaction coordination diagram for [2+2] photocycloaddition of substrate **153e** with the level of theory B3LYP-D3/6-311+G**.

Figure 20. Reaction coordination diagram for [2+2] photocycloaddition of substrate **153g** with the level of theory B3LYP-D3/6-311+G**.
```
#B3LYP/6-311+G**
```

Singulett-153g

#E	33LYP/6-311+0	3**		Singulett-153	g
-					
			0 1		
					1.4
	Ph	N	h		
	• •	Ĩ			
		Ö			
		-			
VV/7	motriv				<u> </u>
лу <i>Ц</i> 6	-3 611896000	0 390215000	0 667884000		
6	-2 319144000	0.102421000	0.859879000		
6	-1 326527000	1 048454000	1 480485000		
7	-0.074516000	1 201265000	0 701516000		
6	0.849856000	0.201744000	0.961136000		
6	0.059755000	2.301859000	-0.324070000		
6	2.219267000	0.248415000	0.370054000		
8	0.551385000	-0.730393000	1.710166000		
6	3.055888000	-0.784200000	0.562172000		
6	-1.265389000	3.081075000	-0.466390000		
6	1.122988000	3.332405000	0.117415000		
6	0.354411000	1.710807000	-1.721011000		
6	-4.651585000	-0.495137000	0.119692000		
6	-5.906700000	0.045936000	-0.200610000		
6	-6.920166000	-0.745057000	-0.736414000		
6	-6.701646000	-2.102309000	-0.959993000		
6	-5.462246000	-2.659044000	-0.637386000		
6	-4.452212000	-1.868741000	-0.101896000		
6	4.435087000	-0.915537000	0.086778000		
6	5.125829000	-2.108073000	0.359591000		
6	6.437606000	-2.295888000	-0.066856000		
6	7.090330000	-1.290674000	-0.776347000		
6	6.420132000	-0.096961000	-1.054598000		
6	5.111278000	0.088884000	-0.629016000		
1	-3.961058000	1.388006000	0.932469000		
1	-1.916886000	-0.872864000	0.604634000		
1	-1.775022000	2.025330000	1.644374000		
1	-1.034393000	0.651281000	2.454523000		
1	2.541122000	1.110121000	-0.190450000		
1	2.66/1/1000	-1.620325000	1.136442000		
1	-1.145919000	3./98949000	-1.280/31000		
1	-2.101161000	2.427762000	-0.717251000		
1	-1.515223000	3.651/20000	0.430181000		
1	1.15/46/000	4.160196000	-0.596/01000		
1	2.128053000	2.9211/6000	0.194093000		
1	0.839291000	3.740780000	2.026677000		
1	-0.400040000 0.434786000	2 510010000	-2.020077000		
1	1 273837000	2.319019000	-2.455240000		
1	-6.085530000	1 102722000	-0.028735000		
1	-7 879862000	-0.301126000	-0 977092000		
1	-7.488100000	-2.722821000	-1.374336000		
1	-5.286153000	-3.717082000	-0.797752000		
1	-3.503701000	-2,324536000	0.156668000		
1	4.621151000	-2.892825000	0.913040000		
1	6.949079000	-3.225530000	0.155812000		
1	8.112223000	-1.431921000	-1.109489000		
1	6.923550000	0.690548000	-1.604332000		
1	4.612373000	1.024661000	-0.852741000		
Zer	o-point correcti	on=	0.414712 (Ha	rtree/Particle)	
Th	ermal correction	n to Energy=	0 437006	· · · · · · · · · · · · · · · · · · ·	
Th	ermal correction	n to Enthalov–	0.437990 0.438040)	
110 TL		a to Cibbo Error	U.43094	, 7000	
Inc		1 to GIDDS Free	Energy= 0.35	1707	
Sui	m of electronic	and zero-point	Energies= -9	85.19/296	
Sui	m ot electronic	and thermal En	ergies= -98	33.174011	
Su	m of electronic	and thermal En	thalpies= -98	83.173067	
Sui	m of electronic	and thermal Fre	e Energies= -	983.254098	
	E (Th	ermal) (CV S		
	KCal	/Mol Cal/N	Iol-Kelvin Cal/M	Iol-Kelvin	
Tot	tal 27	74.847 8	9.685 170.5	44	

#U	JB3LYP/6-311	+G**		1	riplet-153g	
			0	3		
		\checkmark				
	Ph 🦯	/N、 / / / / /	Ph			
	~ ~	Ť Ť				
		Ö				
		Ŭ				
xyz	-matrix		0.6404400			
6	3.245/81000	0.418///000	-0.6431490	0		
6	1.928139000	0.413350000	-0.8774020	0		
6	1.141443000	1.62/552000	-1.2941940	0		
6	-0.075929000	1.800330000	-0.4830310	00		
6	-1.10/009000	2 754204000	-0.9183170	0		
6	-0.035357000	2.754204000	0.7307920	00		
0	-2.302479000	0.206012000	-0.3330210	00		
0 6	-1.03/480000	0.300912000	-1.8409270	00		
6	1 402753000	3 247312000	0.9973300770	0		
6	-0.896647000	4.017486000	0.5068580	0		
6	-0.460625000	1.974993000	1.9954740	00		
6	4.095339000	-0.728612000	-0.2872930	00		
6	5.426479000	-0.497144000	0.0934920	00		
6	6.269868000	-1.546481000	0.4504950	00		
6	5.799717000	-2.857330000	0.4302750	00		
6	4.480577000	-3.106236000	0.0455210	00		
6	3.640377000	-2.058323000	-0.3111580	00		
6	-4.116021000	-0.702754000	-0.2598600	00		
6	-5.238959000	-1.366433000	-0.8313950	00		
6	-5.742900000	-2.528707000	-0.2757150	00		
6	-5.153687000	-3.082236000	0.8679910	00		
6	-4.045726000	-2.451753000	1.4457640	00		
6	-3.53210/000	-1.28/86/000	0.8988070	00		
1	3.775394000	1.3685/4000	-0./131300	0		
1	1.350165000	-0.50339/000	-0.8151010	00		
1	1.767842000	2.516214000	-1.2/69430	0		
1	2 700808000	2.045104000	-2.5216500	0		
1	-4 118780000	0.854795000	-1 7369710	00		
1	1 396217000	3 814450000	1 93053600	0		
1	2.104712000	2.421196000	1.11269300	00		
1	1.766324000	3.917724000	0.21628400	00		
1	-0.807302000	4.686799000	1.3672580	00		
1	-1.955143000	3.804365000	0.3642000	00		
1	-0.545590000	4.554608000	-0.3778370	00		
1	0.207696000	1.124296000	2.14897100	00		
1	-0.390787000	2.625500000	2.8714440	00		
1	-1.480444000	1.596581000	1.9481050	00		
1	5.801478000	0.521397000	0.11019300	00		
1	7.293648000	-1.339506000	0.7420980	00		
1	6.453030000	-3.677898000	0.7042420	00		
1	4.108245000	-4.124408000	0.0168700	00		
1	2.625326000	-2.275951000	-0.6219430	JU 20		
1	-5.698338000	-0.944883000	-1./191220	00		
1	-0.398834000	-5.014922000	-0./308610			
1	-5.550/52000	-3.993047000	1.300/010	00		
1	-3.362130000 -2.667715000	-2.0/9349000 _0.81/262000	2.3201130)0)0		
1	2.007713000	-0.014202000	1.5504000	50		
7~~	a naint anna-t	on-	0.410	200 (Uantraa/Darti-1	a)	
Zer	o-point correcti	n to Error	0.410		c)	
In		n to Energy=	0	434332		
The	ermai correctio	n to Enthalpy=	. (.435276		
The	ermal correction	n to Gibbs Free	Energy=	0.353818		
Su	m of electronic	and zero-point	Energies=	-983.117589		
Su	m of electronic	and thermal Er	nergies=	-983.094058		
Su	m of electronic	and thermal Er	nthalpies=	-983.093114		
Su	m of electronic	and thermal Fr	ee Energies	-983.174572		
	E (Th	ermal)	CV	S		
	KCal	l/Mol Cal/I	Mol-Kelvin	Cal/Mol-Kelvin		
Tot	tal 2'	72.547	91.406	171.443		

```
#B3I VD/6 311+C**
```

#I	B3LYP/6-311+	G**			190b	
	~		01			
		\forall				-F
		N .O				
	<u> </u>					
						K R
	Ph	Ph				\overline{A}
xyz	-matrix					
6	-1.993483000	-0.553999000	-0.88427100)		
6	-1.768977000	0.699558000	-0.472368000)		
6	-0.781160000	1.630022000	-1.131840000)		
6	0.012048000	2.456690000	-0.199606000)		
6	0.383507000	2.02/330000	0.138390000			
6	1 550138000	0.562009000	0.047022000			
8	2.145391000	2.789537000	0.580826000			
6	2.808859000	0.104999000	0.136827000			
6	-1.887310000	4.100338000	-0.224343000)		
6	-0.149890000	4.248899000	1.531020000)		
6	0.420556000	4.828534000	-0.877684000)		
6	-2.953458000	-1.524543000	-0.33589700)		
6	-3.093819000	-2.768791000	-0.97034100)		
6	-5.98/563000	-3.725756000	-0.49556500	J		
0 6	-4.701094000	-3.439399000 _2228030000	0.031268000	,)		
6	-3.740180000	-1.273779000	0.80135100	,)		
6	3.254113000	-1.290238000	0.103114000)		
6	4.633203000	-1.556809000	0.091120000)		
6	5.114942000	-2.862556000	0.055386000)		
6	4.224370000	-3.933347000	0.036787000)		
6	2.849372000	-3.686796000	0.055979000)		
6	2.369643000	-2.383841000	0.089413000)		
1	-1.414082000	-0.922305000	-1.73064000)		
1	-2.318380000	1.112350000	0.368088000)		
1	-1 311363000	2 305305000	-1.805228000)		
1	0.715113000	-0.117346000	-0.060459000	,)		
1	3.590214000	0.852088000	0.250788000			
1	-2.149093000	5.114521000	0.083682000)		
1	-2.155759000	4.011472000	-1.278749000)		
1	-2.507960000	3.412282000	0.354133000			
1	-0.49/346000	5.269332000	1.714686000			
1	0.899976000	4.184141000	1.802446000			
1	0.242911000	4 576737000	-1 927971000			
1	0.110098000	5.866648000	-0.725471000)		
1	1.487122000	4.748571000	-0.673053000)		
1	-2.494906000	-2.983742000	-1.84967000)		
1	-4.078343000	-4.678143000	-1.005894000)		
1	-5.456998000	-4.201371000	1.005728000)		
1	-5.226402000	-2.013484000	2.157674000)		
1	-5.052542000	-0.328046000	1.525291000	J N		
1 1	6 183998000	-0.723443000	0.100029000	,)		
1	4.594718000	-4.951937000	0.012096000)		
1	2.150780000	-4.516128000	0.050153000)		
1	1.299570000	-2.214640000	0.115732000)		
Zer	o-point correcti	ion=	0.4144	19 (Hartree/Partic	le)	
Th	ermal correctio	n to Energy=	0.4	37767		
Th	ermal correctio	n to Enthalpy=	0.4	438712		
Th	ermal correctio	n to Gibbs Free	Energy=	0.357551		
Su	m of electronic	and zero-point	Energies=	-983.201184		
Su	m of electronic	and thermal Er	nergies=	-983.177836		
Su	m of electronic	and thermal Er	thalpies=	-983.176892		
Su	m of electronic	and thermal Fr	ee Energies=	-983.258053	3	
			2			
	E (T	hermal)	CV	S		
	KCa	l/Mol Cal/N	Mol-Kelvin	Cal/Mol-Kelvin		
To	tal 2	74.703 8	39.810	170.817		

#BU3LYP/6-311+G**

191b

٦

111	JO3E1170 511	10		17	
			0.3		
		\checkmark			L.L
		Ń.O			
	1				
					7 41
	Ph	Ph			n n n n n n n n n n n n n n n n n n n
L					
xyz	-matrix				
6	-2.430898000	0.094596000	-1.015828000		
6	-1.784159000	1.105571000	-0.423277000		
6	-0 791508000	1 996572000	-1 128293000		
7	0.420455000	2 287077000	0.357001000		
1	0.429455000	2.287977000	-0.337991000		
6	1.513035000	1.423085000	-0.420942000		
6	0.556288000	3.565669000	0.444391000		
6	1.344417000	0.131569000	-1.106234000		
8	2 605827000	1 688800000	0.088840000		
6	2.005027000	0.724059000	1.250(25000		
0	2.495924000	-0./34938000	-1.550635000		
6	-0.766724000	4.354544000	0.448266000		
6	0.891708000	3.222050000	1.911167000		
6	1.642279000	4.468759000	-0.175568000		
6	-3 439451000	-0 798072000	-0 424778000		
6	2 975005000	1 000470000	1 16260000		
U	-3.8/3983000	-1.9080/9000	-1.10308000		
6	-4.819703000	-2.793585000	-0.648359000		
6	-5.352694000	-2.583730000	0.620979000		
6	-4.934981000	-1.479495000	1.366771000		
6	-3 994028000	-0 596793000	0.8506/3000		
6	2 020060000	1 780210000	0.504245000		
0	2.950909000	-1./80518000	-0.304243000		
6	4.059633000	-2.571738000	-0.860777000		
6	4.494417000	-3.604317000	-0.049048000		
6	3.828466000	-3.893808000	1.148512000		
6	2 717437000	-3 128588000	1 521675000		
6	2.717437000	-3.120300000	0.719542000		
0	2.273224000	-2.092028000	0.718542000		
1	-2.195183000	-0.118788000	-2.058335000		
1	-1.965257000	1.339567000	0.622215000		
1	-0.519176000	1.564442000	-2.093701000		
1	1 260515000	2 945593000	1 367549000		
1	-1.209515000	2.945595000	-1.307349000		
1	0.362661000	-0.216615000	-1.408113000		
1	3.061252000	-0.559541000	-2.265119000		
1	-0.643242000	5.205142000	1.121605000		
1	-1 022409000	4 760284000	-0 533337000		
1	1 600056000	3 766207000	0.818102000		
1	-1.009950000	3.700297000	0.010102000		
I	0.979132000	4.144936000	2.491493000		
1	1.828947000	2.676036000	1.988071000		
1	0.093029000	2.619408000	2.353744000		
1	1.390822000	4,706970000	-1.213417000		
1	1 701488000	5 408852000	0.381100000		
1	2 616772000	2 004047000	0.151(01000		
1	2.010//3000	3.98000/000	-0.151621000		
1	-3.464778000	-2.080034000	-2.153333000		
1	-5.137934000	-3.645571000	-1.238666000		
1	-6.088851000	-3.268786000	1.025713000		
1	-5 350060000	-1.304310000	2.353148000		
1	3 60/17/000	0.26020000	1 1/12255000		
1	-3.0941/4000	0.200290000	1.442333000		
1	4.581/34000	-2.350860000	-1./85849000		
1	5.357965000	-4.191440000	-0.342119000		
1	4.172025000	-4.703053000	1.782335000		
1	2 200446000	-3 346745000	2 449855000		
1	1 415450000	1 500001000	1 020000000		
1	1.415458000	-1.502221000	1.020999000		
Zero	o-point correcti	on=	0.41039	3 (Hartree/Particle)	
TL	armal correction	n to Energy-	0.4	33078	
110		n to Ellergy=	0.4	24000	
The	ermal correction	n to Enthalpy=	0.4	34922	
The	ermal correction	n to Gibbs Free	Energy=	0.352383	
C	m of ala-t	and game and t	Energi	002 101114	
Sui	ii oi electronic	and zero-point	Energies=	-985.121114	
Sur	n of electronic	and thermal Er	nergies=	-983.097529	
Su	n of electronic	and thermal Fr	thalnies=	-983 096585	
C	n of alastered	and theme-1 F	oo Enonal	002 170104	
Sui	ii oi electronic	and mermai Fr	ce Ellergies=	-963.1/9124	
	E (Th	ermal)	CV 9	5	
		(Mol C-10		Cal/Mal Val-	
	KCal	/woi Cal/M	viol-Kelvin	ai/woi-Kelvin	
Tot	tal 2'	72.325	91.581	173.719	

```
#UB3LYP/6-311+G**
```

cis-193b

		1			······
	\		03		ALL
		Ţ	¥:	= -171 5	
		.NO	vimag	-1/1.5	
					AT Y
					IP YY
	≜ Ph	≜ Ph			1 AA
XV7	-matrix				
1	-2.691259000	1.026965000	1.923653000		
1	-4.800448000	0.131722000	2.065473000		
1	-2.012506000	-0.522342000	2.358134000		
1	2.039818000	1.339891000	1.668125000		
1	-4 507967000	1.658963000	2.030231000		
6	-2.061479000	0.221906000	1.551055000		
1	4.127515000	2.543303000	1.229470000		
6	-0.665386000	0.762624000	1.295676000		
6	2.063514000	2.085531000	0.882711000		
0	-4.866324000	0.631838000	1.095726000		
6	3.248797000	2.764458000	0.633860000		
1	3.872158000	-2.339994000	2.423303000		
6	-0.370135000	1.676492000	0.341541000		
6	0.907293000	2.345856000	0.120995000		
1	-4./62418000	-2.072946000	0.776278000		
1 1	-1.15345000	1.935969000	-0.367700000		
7	-2.681791000	-0.342759000	0.343918000		
6	-4.131452000	-0.141008000	-0.012758000		
6	3.317950000	3.722729000	-0.380143000		
6	3.584381000	-2.342861000	1.377234000		
1	4.245860000	4.249689000	-0.5/0/46000		
6	0.998798000	3.309349000	-0.901334000		
6	2.273801000	-2.080425000	1.030542000		
6	-4.815459000	-1.515204000	-0.163304000		
6	2.185527000	3.991035000	-1.147710000		
6	-4.237532000	0.667299000	-1.321251000		
1	-4.347931000	-2.103078000	-0.949332000		
1	0.122550000	3.520176000	-1.505769000		
6	-0.569354000	-1.501989000	0.137387000		
6	4.547149000	-2.620719000	0.395606000		
6	-1.864862000	-1.127478000	-0.442501000		
1	2.22/926000	4./29216000	-1.940809000		
6	1.854018000	-2.083396000	-0.347024000		
6	0.549012000	-1.827067000	-0.751442000		
6	4.167592000	-2.632493000	-0.962123000		
8	-2.166332000	-1.510482000	-1.579126000		
6 1	2.867864000	-2.3/4/08000	-1.32/856000		
1 1	4.908399000	-2.848558000	-1.724166000		
1	2.581575000	-2.386071000	-2.373947000		
1	-3.766070000	1.647698000	-1.204595000		
1	-5.289381000	0.828653000	-1.575630000		
I	-3./54560000	0.141457000	-2.142971000		
7~~	o point comost	on-	0 400760	(Hartroa/Dartiala)	
Zer Th	ermal correction	n to Energy-	0.409760 0.42	(natuce/Particle)	
Th	ermal correction	n to Entralov–	0.43	33643	
Th	ermal correction	n to Gibbs Free	Energy=	0 354275	
Sm	m of electronic	and zero-point	Energies=	-983,111250	
Su	m of electronic	and thermal Fr	ergies=	-983.088311	
Sui	m of electronic	and thermal Er	thalpies=	-983.087366	
Sui	m of electronic	and thermal Fr	ee Energies=	-983.166735	
			č		
	E (Th	ermal)	CV S		
	KCal	l/Mol Cal/N	Mol-Kelvin C	Cal/Mol-Kelvin	
Tot	tal 2'	71.523	39.973	167.045	

#	UB3LYP/6-311	+G**			trans-193b	
-						
				03		h h
	~	\checkmark				The state of the s
		NO		$v_{imag} = -231.3$		
	ſ	Ý				9 5
	L					2. 3
						AT St
	L L	<u>`-</u>				
	Ph	Ph				17 Y
	· · · · · ·					200
xy	z-matrix					
6	-0.580357000	1.305856000	-1.55288	6000		
6	0.703071000	0.899540000	-1.35587	3000		
6	0.940554000	-1.517598000	-0.84084	8000		
6	0.040167000	-1.692414000	0.31252	6000		
6	1.577897000	1.111771000	-0.14483	0000		
7	2.586230000	0.046991000	0.01018	4000		
6	2.350176000	-1.133339000	-0.66607	2000		
8	3.237141000	-1.876106000	-1.09494	9000		
6	3.953499000	0.405671000	0.51636	4000		
6	3 829377000	1 533688000	1 56109	7000		
6	4.585334000	-0.802605000	1,23510	0000		
6	4 843575000	0.865782000	-0.65324	2000		
6	-1 596808000	1 840830000	-0.64639	2000		
6	2 618875000	2 628364000	1 21633	2000		
6	2 616021000	2.020304000	0 42711	3000		
0	-3.010981000	3.20009/000 2.085080000	-0.45/1	.5000 7000		
0	-3.0309/2000	2.985989000	0.940/9	5000		
6	-2.653630000	2.184869000	1.52149	5000		
6	-1.650994000	1.617790000	0.74333	5000		
6	-1.315630000	-2.004772000	0.24311	1000		
6	-2.066793000	-2.239070000	1.44711	5000		
6	-3.398728000	-2.584621000	1.40610	2000		
6	-4.065788000	-2.716953000	0.17442	25000		
6	-3.361354000	-2.490200000	-1.01874	41000		
6	-2.026679000	-2.141890000	-0.99840	52000		
1	-0.912760000	1.268695000	-2.58802	23000		
1	1.262367000	0.665555000	-2.25733	0000		
1	0.757272000	-2.103718000	-1.73580	07000		
1	0.495772000	-1.636473000	1.29765	2000		
1	0.997759000	1.247070000	0.76746	4000		
1	2.109195000	2.053716000	-0.31675	3000		
1	4.810333000	1.704732000	2.00964	0000		
1	3.501115000	2,483250000	1.13474	3000		
1	3.139501000	1.255878000	2.36258	7000		
1	4 768020000	-1.631500000	0.55649	6000		
1	3.934486000	-1.148845000	2.04325	7000		
1	5 536221000	-0.494280000	1 67782	4000		
1	4 405175000	1 728/180000	-1 16/63	0000		
1	5 831113000	1 162717000	-0.28704	1000		
1	1 067302000	0.057801000	-0.20790	2000		
1	4.90/392000	0.03/891000	-1.5/333	2000		
1	-2.014143000	2.190190000	-2.26807	0000		
1	-4.382880000	2 424782000	-0.90490	4000		
1	-4.41/00/000	3.424782000	1.33230	2000		
1	-2.0/6569000	1.98//30000	2.58/58	2000		
1	-0.932184000	0.961975000	1.21352	7000		
1	-1.556621000	-2.149365000	2.40069	00080		
1	-3.937926000	-2.760316000	2.33061	4000		
1	-5.113074000	-2.993017000	0.14703	4000		
1	-3.873512000	-2.589901000	-1.9697	2000		
1	-1.503607000	-1.962729000	-1.92919	91000		
Ze	ro-point correcti	on=	0.4	10000 (Hartree/Pa	rticle)	
T	nermal correction	n to Energy=		0.432921	- /	
11 TI	hermal correction	n to Enthelay-		0 /33865		
		r to Enumarpy =	. Б.	0.433803		
T	nermal correction	n to Gibbs Free	e Energy=	= 0.354551		
Sı	um of electronic	and zero-point	Energies	= -983.1018	80	
Sı	um of electronic	and thermal Er	nergies=	-983.07896	60	
Sı	um of electronic	and thermal Er	nthalpies=	-983.0780	16	
S	im of electronic	and thermal Fr	ee Enero	ies= -983.157	330	
51	or electronite		211018	200.107		
	с / т ь	ermal)	CV	\$		
		(M_{-1})		3 	·	
_	KCal	VIVIOI Cal/I	vioi-Kelv	in Cal/Mol-Kelv	IN	
T	otal 2'	/1.662	89.758	166.931		

#UB3LYP/6-311+G**		cis-192b
		·
	03	414
		and the second sec
N_0		1
		74
Phillip		8
vyz-metriv		
1 = -3.627731000 = -2.971352000	-2 363242000	
1 -5.246074000 -3.530195000	-0.563604000	
6 -3 370639000 -2 780766000	-1 326740000	
6 -4 283968000 -3 097400000	-0.315608000	
1 -1 449190000 -1 994556000	-1 822154000	
6 -2 138445000 -2 226628000	-1 018564000	
6 -3 941930000 -2.851168000	1 020103000	
1 -4 643160000 -3 095100000	1 810676000	
6 -1 763754000 -1 966898000	0.330762000	
6 -2.714103000 -2.300379000	1.339317000	
1 0.598354000 -1.719933000	-1.086380000	
1 -2.455491000 -2.115824000	2.376532000	
6 -0.519082000 -1.409533000	0.699643000	
1 4.500191000 -2.164904000	-0.009165000	
6 0.562684000 -1.013707000	-0.243785000	
1 -2.039711000 1.257283000	-1.678310000	
1 -0.117932000 0.431705000	-1.758284000	
1 -0.323094000 -1.268406000	1.756835000	
1 -4.072221000 2.611713000	-1.669349000	
1 2.187891000 0.193709000	-2.254180000	
8 2.335854000 -1.870198000	1.211813000	
6 1.970905000 -1.066107000	0.370523000	
6 0.508831000 0.427819000	-0.866458000	
1 4.173333000 -0.635471000	2.055275000	
6 4.869261000 -1.297745000	-0.557186000	
6 -2.157856000 2.022479000	-0.921405000	
1 4.654700000 -1.436009000	-1.621231000	
6 1.993507000 0.623815000	-1.261202000	
6 -3.313464000 2.786079000	-0.914209000	
7 2.734843000 -0.088719000	-0.214952000	
1 5.954986000 -1.248523000	-0.436561000	
6 4.218239000 -0.002919000	-0.033337000	
6 4.536555000 0.200095000	1.459866000	
6 0.063880000 1.479865000	0.098312000	
1 5.618348000 0.286469000	1.595585000	
6 -1.140609000 2.216976000	0.056979000	
1 2.261925000 1.679001000	-1.292040000	
o -3.515655000 3.771217000	0.058401000	
1 -4.423220000 4.363415000	0.057058000	
0 4.709244000 1.197573000	-0.819042000	
1 U./45481000 1.696088000	0.91/222000	
1 4.0/5124000 1.120131000 6 1.277808000 2.2222602000	1.020920000	
6 2 535550000 2 070692000	1.04000000	
1 -0.623956000 -2.302472000 1 -0.623956000 -2.302472000	1.802031000	
1 _2 684332000 / 737072000	1 797893000	
1 4 586759000 1 111605000	-1.893055000	
1 5 850493000 1 242015000	-0.671662000	
1 4 348379000 2 1/2503000	-0.466410000	
·	0.100110000	
Zero point correction-	0 112021 (Usutuss/D	ticle)
Thermal as a static r (T	0.412924 (naturee/Par	
Thermal correction to Energy=	0.435455	
Inermal correction to Enthalpy=	0.436377	
Thermal correction to Gibbs Free	e Energy= 0.357934	
Sum of electronic and zero-point	t Energies= -983.16057	15
Sum of electronic and thermal E	nergies= -983.13806	6
Sum of electronic and thermal E	nthalpies= -983.13712	1
Sum of electronic and thermal Fi	ree Energies= -983.215	65
E (Thermal)	CV S	
KCal/Mol Cal/	Mol-Kelvin Cal/Mol-Kelvi	n
Total 272 220	20 002 165 007	
10tai 213.230	02.020 103.09/	

#1	UB3LYP/6-311	+G**			trans-192b	
			03			1 11
		Y				
	/	,N ~ 0				
	\backslash					
		- Dh				17
	Ph ¹	∠ FII				PT 12
						S .
	matuin					•
1	4 983071000	2 155232000	1 887572000			
6	4.983071000	-2.133232000	0.979520000			
1	2.571280000	-1.962172000	1.503258000			
1	6.602981000	-1.282627000	0.219145000			
6	3.258602000	-1.573578000	0.760666000			
6	5.537570000	-1.193962000	0.041551000			
1	0.524577000	-2.284843000	0.600633000			
1	0.341977000	-0.848995000	2.336703000			
1	-3.533487000	-3.252252000	0.941162000			
1	-1.894400000	-1.244245000	2.350340000			
6	2.749271000	-0.904299000	-0.421228000			
6	0.270213000	-1.290418000	0.208564000			
6	-0.094310000	-0.384334000	1.451262000			
1	1.294653000	1.185951000	2.081073000			
1	5.766067000	-0.209452000	-1.863376000			
6	-1.640104000	-0.537180000	1.551670000			
6	1.368953000	-0.827975000	-0.690183000			
6	3.704244000	-0.475895000	-1.359430000			
6	-3./6112/000	-2.839895000	-0.046439000			
1	-1.037433000	-1.499431000	-0.328000000			
6	0.441688000	1.020372000	1.430297000			
7	-2.086666000	-1.042528000	0.250211000			
8	-1.155766000	-2.025436000	-1.625232000			
1	-3.135900000	-3.337809000	-0.787968000			
1	-2.116359000	0.414579000	1.787721000			
6	-3.526139000	-1.317393000	-0.068873000			
1	3 344684000	-0.301034000	-1.024839000			
1	-3.258446000	-1.184620000	-2.233089000			
6	-4.428261000	-0.645093000	0.978872000			
1	1.517483000	3.420417000	1.603863000			
6	0.039646000	2.143649000	0.666879000			
6	-3.871721000	-0.736990000	-1.453526000			
1	-4.924445000	-0.932410000	-1.6/6453000			
1	-1 532215000	1 218342000	-0 516415000			
6	-0.996882000	2.134575000	-0.309194000			
1	-3.721281000	0.346085000	-1.464938000			
6	0.382257000	4.519740000	0.160381000			
1	0.919512000	5.444420000	0.340790000			
6	-1.323627000	3.281319000	-1.016964000			
6	-0.644341000	4.482302000	-0.791349000			
1	-2.113/03000	5.241543000 5.373232000	-1./39133000			
1	-5.469994000	-0.849981000	0.722462000			
1	-4.298402000	0.439690000	0.991677000			
1	-4.256059000	-1.030548000	1.986303000			
Zer	o-point correcti	on=	0.41348	5 (Hartree/Part	icle)	
Th	ermal correction	n to Energy=	0.43	35949	- /	
Th	ermal correction	n to Enthalpy=	0.4	36893		
Th	ermal correction	n to Gibbs Free	Energy=	0.359210		
Su	m of electronic	and zero-point	Energies=	-983.15417	1	
Su	m of electronic	and thermal Er	nergies=	-983.131707		
Su	m of electronic	and thermal Er	thalpies=	-983.13076	3	
Su	m of electronic	and thermal Fr	ee Energies=	-983.2084	47	
			0			
	E (Th	ermal)	CV S			
	KCal	/Mol Cal/I	Mol-Kelvin (Cal/Mol-Kelvir	l	
То	tal 2'	73.562	88.980	163.498		

```
#B3LYP/6-311+G**
```

#I	B3LYP/6-311+	G**		<i>cis</i> -158g
		1	0.1	
	\		01	LE
		Ţ		
		N_O		74
	1	r -		
				19 B
		<i>,</i>		
	Ph	[´] Ph		
xyz	-matrix			
6	-0.216676000	0.662055000	0.186028000	
6	0.616360000	0.259086000	-1.070251000	
6	-0.363669000	-0.890984000	0.545844000	
6	2.031886000	0.831546000	-1.163530000	
7	2.812656000	-0.010533000	-0.243223000)
6	2.165710000	-1.172524000	0.106332000	
8	2.626012000	-2.081174000	0.780650000	
6	4.251560000	0.240045000	0.085449000	
6	4.445811000	0.183685000	1.612742000	
6	5.121749000	-0.822559000	-0.613633000	
6	-1.414519000	1.564077000	0.067931000	
6	-1.675003000	2.498325000	1.079713000	
0 6	-2.778708000	3.340086000 3.277757000	1.010535000	
6	-3.403261000	2.355866000	-1.085759000	
6	-2.299927000	1.508065000	-1.016258000	
6	-1.709545000	-1.529304000	0.297333000	
6	-2.640849000	-1.560673000	1.344646000	
6	-3.905110000	-2.11586/000	1.1/1633000	
6	-3.354721000	-2.639581000	-1.109940000	
6	-2.089509000	-2.079565000	-0.931917000)
1	0.458675000	1.096016000	0.928489000	
1	0.066544000	0.347394000	-2.006440000	
1	0.646709000	-2.035103000	-1.133831000	
1	2.060769000	1.881722000	-0.864148000	
1	2.425113000	0.763209000	-2.185805000	
1	5.716748000	1.794175000	-0.161231000	
1	4.559827000	1.744669000	-1.489248000	
1	4.089932000	2.428017000	0.080766000	
1	4.183185000	-0.796494000	2.006578000	
1	3.824429000	0.937961000	2.104023000	
1	4.995669000	-0.771273000	-1.699292000	
1	6.178002000	-0.650795000	-0.388019000	
1	4.85364/000	-1.823630000	-0.2/6093000	
1	-2.955674000	4.061202000	1.812444000	
1	-4.507654000	3.936863000	-0.125332000	
1	-4.074619000	2.293374000	-1.935162000	
1	-2.136281000	0.794105000	-1.814376000	
1	-2.500502000	-1.14/951000	2.000270000	
1	-5.251358000	-3.096182000	-0.197316000)
1	-3.621960000	-3.065027000	-2.071187000)
1	-1.396854000	-2.084642000	-1.765652000)
_				
Zer	o-point correcti	on=	0.418140	10 (Hartree/Particle)
The	ermal correction	n to Energy=	0.43	39494 140428
The The	ermal correction	n to Enthalpy=	U.44	140438 0 266405
1 no 5	n of electronic	and zero point	Energies	0.300493
Su	m of electronic	and thermal Fr	ergies=	-983 187026
Su	m of electronic	and thermal Fr	thalpies=	-983.186082
Su	m of electronic	and thermal Fr	ee Energies=	-983.260025
			0	
	E (Th	ermal)	CV S	S
	KCal	/Mol Cal/I	Mol-Kelvin C	Cal/Mol-Kelvin
Tot	tal 2'	75.786	85.424 1	155.626

#B3LYP/6-31	+G**		trans-158g	
	\checkmark	0 1		上九
	Į			
	∠ ^N ≽O			
				dest of
Ph	Ph			
xyz-matrix	0 0 7(202(000	0.802((2000		
6 -0.72893800 6 0.26286800	0 -0.192369000	-0.893663000 -1.660269000		
6 -0.22953100	0 -1.379321000	-0.804794000		
6 -1.13990600	0 -0.426605000	0.049689000		
6 1.77427600	0 -0.094690000	-1.400820000		
7 2.04302600 6 0.98758600	J = 1.03/435000	-0.302805000		
8 0.99970600	-2.853273000	0.693516000		
6 3.42293200	0 -1.291203000	0.219692000		
6 4.34777100	0 -0.125078000	-0.167919000		
o 3.38462700	J = -1.385614000	1./36681000		
6 -0.24087300	0 2.064132000	-0.308007000		
6 -0.56710800	0 3.271955000	-0.940043000		
6 -0.11273800	0 4.493020000	-0.446559000		
6 0.67968000 6 1.01127500) 4.532037000) 3.340002000	0.699101000		
6 0.55735500	3.340903000 2.121263000	0.842601000		
6 -2.60995800	0 -0.739420000	0.159248000		
6 -3.24642400	0 -0.713727000	1.404899000		
6 -4.60910000	0 -0.984266000	1.523109000		
6 -5.36211800	0 -1.289281000 1.322034000	0.392145000		
6 -3.38096100	0 -1.049671000	-0.969666000		
1 -1.56188100	0 0.988042000	-1.563023000		
1 0.05904300	0 -0.232813000	-2.730359000		
1 -0.74768100	0 -2.204786000	-1.290502000		
1 -0./3551900	0 -0.309911000 0 0918862000	1.056366000		
1 2.33318400	0.384258000	-2.298733000		
1 5.34121800	0 -0.317828000	0.243208000		
1 4.45555200	0 -0.018060000	-1.249452000		
1 3.99609300	0.824075000 1.553081000	0.243/35000		
1 2.74596000	-2.202294000	2.086989000		
1 3.01305400	0 -0.451237000	2.186985000		
1 3.99846000	0 -2.531905000	-1.482415000		
1 4.97525500 1 3.32708000	J = -2.795087000	-0.031019000		
1 -1.19235200	0 3,253671000	-1.827260000		
1 -0.38396200	0 5.413158000	-0.952387000		
1 1.03071500	5.480455000	1.089790000		
1 1.62346000	J 3.359895000	2.237142000		
1 -2.66651500	0 -0.483249000	2.292491000		
1 -5.07970000	0 -0.959639000	2.499776000		
1 -6.42120900	0 -1.503159000	0.481164000		
1 -5.31801000	0 -1.563145000	-1.743079000		
1 -2.91669800	0 -1.085674000	-1.950463000		
Zero-point com	ection-	0 /18278 /U.	artree/Particle)	
Thermal correct	ion to Energy=	0.410520 (Ha 0 439706		
Thermal correct	ion to Entralpy=	0.440651		
Thermal correct	ion to Gibbs Free	Energy= 0.362	5797	
Sum of electron	ic and zero-point	Energies= -98	83.209660	
Sum of electron	ic and thermal En	ergies= -98	3.188281	
Sum of electron	ic and thermal En	thalpies= -98	83.187337	
Sum of electron	ic and thermal Fro	ee Energies= -9	983.262191	
n //				
E (inermal) (JV S Jol Kelvin Col/M	ol Kalvin	
KU Total	275020 Cal/N	101-Keivin Cal/M	01-KCIVIII 43	
illai	213.720 (5.333 137.34	TJ	

#B3	LYP/6-311+G**				Singulett-153e	
	Ĥ		01			sk 🕇 👔 👔
F	Ph. 🦟 N	A F	Ph			and the second s
		\bigvee \checkmark				
		Ö				July T
xyz-n	natrix					<u> </u>
6 -	3.598643000 0.7	753141000	-0.615480000	1		
6 -	2.449972000 0.9	954232000	0.042154000			
6 -	1.321668000 1.7	794087000	-0.484323000			
/ - 6	0.087532000 1.0	025891000	-0.616621000			
6	2 215723000 0 4	443146000	-0.263828000			
8	1.190485000 2.3	378055000	0.698112000			
6	3.426836000 0.6	676176000	0.262338000			
6 -	4.759661000 -0.0	036381000	-0.177809000)		
6 -	-5.824870000 -0.2	225794000	-1.072172000			
6 -	6.944372000 -0.9	973336000	-0.715368000)		
6 -	-7.025173000 -1.3	54/338000	0.550914000			
6 -	4.861150000 -1.	616779000	1.098225000			
6	4.644299000 -0.1	123081000	0.110993000			
6	5.827184000 0.3	335688000	0.713506000			
6	7.016985000 -0.3	378229000	0.600659000			
6	7.047815000 -1.5	571170000	-0.117508000	1		
6 :	5.879722000 -2.0	044101000	-0.720468000			
6 4	4.6935/6000 -1.3	330620000	-0.608120000			
1 -	.2 276061000 0.4	500810000	1 014787000			
1 -	1.595375000 2.2	238980000	-1.447672000	1		
1 -	1.087706000 2.6	611104000	0.202913000			
1 1	2.023101000 -0.4	420115000	-0.893982000	1		
1	3.515344000 1.5	571383000	0.873315000			
1 -	5.769825000 0.2	218727000	-2.060776000			
I -	7 805205000 2	105580000	-1.425913000			
1 -	-6.034995000 -2.	799954000	2 446516000			
1 -	4.065943000 -0.4	477575000	1.821249000			
1 :	5.806234000 1.2	264146000	1.274202000			
1 '	7.917787000 -0.0	003517000	1.073355000			
1 '	7.971741000 -2.1	131041000	-0.207507000			
1 :	5.897239000 -2.9	973552000	-1.278616000			
1.	5.798050000 -1.7 0.114650000 0.1	180917000	-1.080635000			
1 -	0.114050000 0.1	100717000	-1.100470000			
Zero-	point correction=	:	0.30257	3 (Hartree/Parti	cle)	
Ther	mal correction to	Energy=	0.3	20687)	
Ther	mal correction to	Enthalpy=	0.3	21631		
Ther	mal correction to	Gibbs Free	Energy=	0.250949		
Sum	of electronic and	zero-point I	Energies=	-826.039754	Ļ	
Sum	of electronic and	thermal Ene	ergies=	-826.021640		
Sum	of electronic and	thermal Ent	halpies=	-826.020696		
Sum	of electronic and	thermal Fre	e Energies=	-826.09137	'8	
			c			
	E (Therm	al) C	V S	5		
	KCal/Mo	ol Cal/M	lol-Kelvin	Cal/Mol-Kelvin		
Total	1 201.2	34 68	8.519	148.763		

#U	JB3LYP/6-311+G**			triplet-153e	
	U		0.3		
			05		and the state
		Pn			Charles I have
	Ö)			
xyz	-matrix				·
6	-3.456144000 -0.846	6783000 -0.3541	29000		
6	-2.348230000 -0.153	3694000 -0.6453 0757000 -0.9568	47000 28000		
7	0.013462000 -0.373	3586000 -0.0198	53000		
6	1.202142000 0.200	0255000 -0.4202	4000		
6	2.101827000 0.570	0162000 0.6800	0000		
8	1.481926000 0.385	0694000 -1.6015 0881000 0.4520	0000		
6	-4 794760000 -0.319	9141000 -0.0503	20000		
6	-5.799802000 -1.214	4343000 0.3483	09000		
6	-7.082748000 -0.769	9745000 0.6578	53000		
6	-7.390946000 0.585	5553000 0.5711	25000		
6	-6.404737000 1.489	9229000 0.1698 1087000 0.1385	3000		
6	4 632080000 0.523	920000 0 35084	.0000		
6	5.837923000 1.253	3756000 0.14992	8000		
6	7.057317000 0.607	0.05589	2000		
6	7.130079000 -0.787	7792000 0.1563	55000		
6	5.958028000 -1.527	//16000 0.3508	35000 2000		
1	-3.381262000 -1.933	3258000 -0.3327	70000		
1	-2.357561000 0.933	-0.6641	51000		
1	-1.119216000 -1.882	2898000 -0.9569	52000		
1	-0.666715000 -0.490	0961000 -1.9453	60000		
1	1./58133000 0.413	5772000 1.70348 7544000 0.3519	5000		
1	-5.567848000 -2.272	2380000 0.4168	53000		
1	-7.840483000 -1.482	2150000 0.9644	55000		
1	-8.388735000 0.936	6460000 0.8085	32000		
1	-6.637800000 2.545	5503000 0.0930	0000		
1	-4.3/9184000 1.762 5 787568000 2 334	2267000 -0.4585	33000		
1	7.961862000 1.185	035000 -0.0986	26000		
1	8.086872000 -1.291	0.0809	13000		
1	6.009291000 -2.608	3623000 0.4233	29000		
1	3.828730000 -1.475	5879000 0.5873	9000		
I	-0.169/0/000 -0.4/8	8/96000 0.9663	/2000		
Zer	o-point correction=	0.2	98589 (Hartree/Par	ticle)	
The	ermal correction to En	nergy=	0.317043)	
The	ermal correction to En	nthalpy=	0.317987		
The	ermal correction to Gi	ibbs Free Energy	= 0.245356		
Sur	n of electronic and zer	ro-point Energie	-825.95897	8	
Sur	n of electronic and the	ermal Energies=	-825.94052	3	
Sur	n of electronic and the	ermal Enthalpies	-825.93957	9	
Sur	n of electronic and the	ermal Free Energ	-826.0122	210	
	F (Thermal)	CV	S		
	KCal/Mol	Cal/Mol-Kel	vin Cal/Mol-Kelvi	n	
Tot	al 198.948	70.265	152.864		
	-, -, -, -, -, -, -, -, -, -, -, -, -, -				

|--|

#B3LYP/6-311+	·G**		1	90a	
	н	0.1			
	N .O	01			
ſ					the second
					E X
	 				* ~
vvz-matrix	FII				0
6 -2.175549000	0.701964000	-0.87497800	0		
6 -1.813067000	1.901818000	-0.40673000	0		
6 -0.843031000	2.816931000	-1.10867800	0		
/ 0.108309000 6 1.328017000	3.410644000 2.853594000	-0.23372900)		
6 1 554562000	1 411106000	-0.02421700)		
8 2.119580000	3.540501000	0.891423000)		
6 2.716464000	0.836915000	0.325365000)		
6 -3.133581000	-0.244718000	-0.28408700	0		
6 -3.445050000	-1.418833000	-0.98728100	0		
6 -4.345783000	-2.350054000	-0.47615300	0		
6 -4.954576000	-2.127511000	0.75627800)		
6 -4.052852000 6 2.755227000	-0.966264000	1.4/094500)		
6 3 111501000	-0.561263000	0.14545900)		
6 4.437091000	-0.927990000	0.431012000)		
6 4.871402000	-2.240796000	0.270226000)		
6 3.984014000	-3.218586000	-0.17330500	0		
6 2.659403000	-2.873301000	-0.45234000	0		
6 2.227706000	-1.562773000	-0.29478700	0		
1 -1.727567000	0.366597000	-1.81024300)		
1 -2.227610000	2.290518000	-1 9/793300))		
1 -1 391972000	3 658888000	-1 54402400	0		
1 0.763146000	0.843909000	-0.49658000)		
1 3.453319000	1.486419000	0.791499000)		
1 -2.975570000	-1.599364000	-1.94912100	0		
1 -4.570309000	-3.248343000	-1.04035500	0		
1 -5.654993000	-2.849946000	1.15941800	0		
1 -5.118869000	-0.786745000	2.43346500)		
1 -5.552005000	0.853092000	0.77962500)		
1 5 900077000	-2.499888000	0.49401100)		
1 4.316951000	-4.242959000	-0.29610400	0		
1 1.961609000	-3.632378000	-0.78789600	0		
1 1.192760000	-1.317615000	-0.50242500	0		
1 0.087594000	4.394170000	-0.019571000)		
Zero-point correct	ion=	0 3026	55 (Hartree/Particle	e)	
Thermal correction	on to Energy=	0.3020	320665	-,	
Thermal correction	on to Enthalow=	0.0	321609		
Thermal correction	n to Gibbs Free	Energy=	0.252185		
Sum of electronic	and zero-point	Energies=	-826.032923		
Sum of electronic	and thermal Er	ergies=	-826.014914		
Sum of electronic	and thermal Er	thalpies=	-826.013969		
Sum of electronic	and thermal Fr	ee Energies=	-826.083394		
		-	_		
E (Th	nermal)	CV	S		
KCa	I/Mol Cal/I	VIOI-Kelvin	Cal/Mol-Kelvin		
Total 2	01.220	58.518	146.116		

#E	3U3LYP/6-311	+G**				191a		
							121	
		Η.	() 3				
		Ń0						•
	<u> </u>							
								Y
	Ĩ	Ì					1 1 1	
	Ρ̈́h	Ρ̈́h					N	
XV7.	-matrix							
лу <i>L</i> 6	-2 026644000	1 279308000	-0.661352	000				
6	-1.445695000	2.165129000	0.156331	000				
6	-0.575604000	3.301056000	-0.316884	000				
7	0.705752000	3.409309000	0.378296	000				
6	1.780945000	2.542109000	0.329257	000				
6	1.793841000	1.527076000	-0.726298	000				
8	2.710783000	2.659092000	1.127497	000				
6	2.875754000	0.551114000	-0.825993	000				
6	-2.903427000	0.156010000	-0.297466	000				
6	-3.3508/6000	-0./06/21000	-1.31010	.000				
6	-4.1/4520000	-1.792191000	-1.022580	000				
6	-4.371048000	-2.038242000	1 308725	000				
6	-3 317550000	-0.103901000	1.020200	000				
6	2.808882000	-0.785176000	-0.371114	.000				
6	3.934802000	-1.647153000	-0.505277	000				
6	3.885439000	-2.959591000	-0.071328	000				
6	2.718871000	-3.471062000	0.511541	000				
6	1.598809000	-2.643849000	0.653864	000				
6	1.635281000	-1.327853000	0.225070	000				
1	-1.840003000	1.377899000	-1.730320	000				
1	-1.583695000	2.105125000	1.233133	000				
1	-0.417869000	3.232221000	-1.397796	000				
1	-1.089432000	4.253409000	-0.148261	000				
1	1.022964000	1.543821000	-1.492/29	000				
1	3.808/15000	0.889/03000	-1.2/3001	000				
1	-3.044303000	-0.323010000	-2.334641	000				
1	-5 212552000	-2 881534000	0 518279	000				
1	-4.446062000	-1.368961000	2.332529	000				
1	-2.999477000	0.546107000	1.826948	000				
1	4.842394000	-1.255646000	-0.952365	000				
1	4.757102000	-3.595344000	-0.181705	000				
1	2.683855000	-4.500133000	0.849783	000				
1	0.692889000	-3.035251000	1.103630	000				
1	0.761029000	-0.697060000	0.340098	000				
1	0.769861000	4.062470000	1.146137	000				
_						• .		
Zero	o-point correcti	on=	0.29	8633 (Hartree/Parti	cle)		
The	ermal correctio	n to Energy=		0.3170	006			
The	ermal correctio	n to Enthalpy=		0.317	950			
The	ermal correctio	n to Gibbs Free	Energy=	0	.246072			
Sur	n of electronic	and zero-point	Energies=		-825.952917	,		
Sur	n of electronic	and thermal Er	ergies=		-825.934545			
Sur	n of electronic	and thermal Er	thalpies=		-825.933600			
Sur	n of electronic	and thermal Fr	ee Energie	es=	-826.00547	8		
	E (Th	ermal)	CV	S				
	KCal	/Mol Cal/N	Mol-Kelvi	n Ca	l/Mol-Kelvin			
Tot	al 1	98.924	70.280	15	1.279			

```
#UB3LYP/6-311+G**
```

#	UB3LYP/6-311	+G**		cis-19	3a	
		Н	03			
			Vimag	= -284.2		
	Ph	Ph				1 1
XVZ	z-matrix					5
1	2.941323000	-2.126598000	2.460453000			
1	4.741622000	-2.281778000	0.755257000			
6	2.689343000	-2.086291000	1.405996000			
0	3.708410000	-2.175725000	0.4468/1000			
6	1 367934000	-1.900291000	1.785051000			
6	3.376061000	-2.134477000	-0.921779000			
1	-1.474049000	-2.035563000	1.065284000			
1	4.160728000	-2.205974000	-1.666935000			
6	0.996200000	-1.907206000	-0.363255000			
1	-1.140732000	0.316908000	1.978652000			
1	0.787343000	1.257655000	1.676171000			
1	-3.255336000	-0.6/505/000	2.301420000			
1	2.003931000	2 561 529000	1 313255000			
6	-1.494616000	-1.639006000	0.056164000			
6	-0.318425000	-1.771264000	-0.801274000			
6	-1.863863000	0.531512000	1.199901000			
1	1.816077000	-1.976916000	-2.375153000			
6	0.799807000	2.012205000	0.899381000			
6	-3.259688000	-0.039078000	1.407755000			
6	1.958100000	2.748571000	0.693690000			
8	-2.813432000	-1.439381000	-0.301708000			
1	-0.515109000	-1.761292000	-1.867707000			
7	-3.714968000	-0.782401000	0.237595000			
1	-3.980484000	0.761939000	1.600451000			
6	-1.590529000	1.498797000	0.279258000			
6	-0.345287000	2.227623000	0.104530000			
6	2.011673000	3.722260000	-0.306760000			
1	2.918679000	4.294968000	-0.462608000			
1	-2.3/4534000	1.747849000	-0.433/31000			
6	0.890397000	3.948676000	-1.105160000			
1	-1.136348000	3.388073000	-1.531107000			
1	0.921912000	4.699363000	-1.886879000			
1	-4.633590000	-0.623898000	-0.147779000			
7	o-noint correct	on-	0 20700	8 (Hartrae/Particle)		
エレレ	ermal correction	n to Energy-	0.29799	5607		
111 Th	ermal correctio	n to Entralov-	0.5	16551		
111 Th	ermal correctio	n to Gibbs Free	Energy-	0.248026		
c	m of electronic	and zero point	Energies-	-825 038015		
50 51	m of electronic	and thermal Er	Energies=	-023.930013 825.020406		
5u c	m of electronic	and thermal Er	thelpice-	-023.920400 825.010462		
- SU - C	m of electronic	and thermal Er	a Energias	-023.919402 825 007007		
Su	in or electronic	and mermai Fr	ce Energies=	-023.90/00/		
	E (Th	ermal)	CV S			
	KCa	l/Mol Cal/N	Aol-Kelvin	Cal/Mol-Kelvin		
То	tal 1	98.046	68.654	142.330		

#UB3LYP/6-311+G**	trans-193a
Н	03
N _ O	
	<i>v</i> _{imag} = -388.6
Ph Ph	
xyz-matrix	
1 -0.962135000 2.963750000 -1.1588	34000
8 2.551190000 2.946395000 -0.0291	21000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22000 22000
1 -2.272039000 -1.319190000 -2.1310 1 $3544959000 -0.694624000 -0.5895$	01000
6 1 432077000 2 460589000 0.0649	34000
6 -1.211145000 2.113727000 -0.5298	342000
6 0.928002000 1.376361000 -0.8470	83000
6 -2.115835000 1.225546000 -1.0591	09000
1 -3.042761000 -0.877695000 -2.3632	252000
1 5.475729000 -0.780864000 -0.2087	737000
7 0.506920000 2.851336000 0.9855	11000
1 -1.526511000 3.043999000 1.3912	99000
6 3.385663000 -0.342759000 -0.3203	29000
6 -0.848785000 2.319958000 0.9248	66000
6 4.4/1321000 -1.1/48/7000 -0.0980 6 2.265654000 0.026227000 1.2020)1/000 004000
6 -3.203034000 -0.930227000 -1.3029	22000
-2.828955000 -0.100050000 -0.4502	83000
6 2055754000 -0.831231000 -0.1788	70000
1 -0.924876000 1.385430000 1.4881	33000
1 -4.268775000 -2.822652000 -1.4821	46000
1 -0.059173000 -0.505512000 -0.2874	463000
6 -3.956525000 -2.033778000 -0.8069	047000
6 4.286254000 -2.512231000 0.2693	18000
6 -3.162563000 0.010654000 0.9116	24000
1 5.141843000 -3.155094000 0.4413	32000
1 -2.913111000 0.815140000 1.5897	48000
6 1.892955000 -2.1957/6000 0.1973	57000
6 2.986838000 -3.014252000 0.4149	/2000
0 -4.231830000 -2.120100000 0.3544 6 -3.858563000 .1.087453000 1.4054	-2000 18000
1 0 888311000 -7 580860000 0 3111	63000
1 2.836153000 -4.049885000 0.5111	38000
1 -4.794710000 -2.973433000 0.9442	65000
1 -4.107255000 -1.131150000 2.4600	42000
1 0.780841000 3.527891000 1.6827	13000
Zero-point correction0	298915 (Hartree/Particle)
Thermal correction to Energy-	0.316050
Thermal correction to Entralay-	0.316094
Thermal correction to Gibbs Free Energy	- 0.250884
Sum of electronic and zero point Energie	- 0.2000 1
Sum of electronic and thermal Energie	0
Sum of electronic and thermal Entrefies=	-023.91/930
Sum of electronic and thermal Error Error	= -023.91/014
Sum of electronic and thermal Free Energ	gics= -023.903124
E (Thermal) CV	S
KCal/Mol Cal/Mol-Kel	vin Cal/Mol-Kelvin
Total 198.324 67.738	139.140

```
#UB3LYP/6-311+G**
```

cis-192a

			Г.		-
		Η,	03		
		Ň. O			T T
	<				
	\				M
	/	⊂ ∖Ph			47 58
	Phuu/				A 16
XVZ	-matrix				
6	0.873918000	1.653695000	-0.091879000		
6	-0.272278000	1.626681000	0.867568000		
6	-1.611408000	1.083838000	0.227133000		
6	-1.514916000	-0.064625000	-0.714962000		
6	-0.696553000	3.066960000	1.272552000		
7	-1.659614000	3.418136000	0.238707000		
6	-2.234255000	2.349088000	-0.390733000		
8	-3.084273000	2.398293000	-1.256396000		
6	2.031959000	0.845378000	-0.056825000		
6	3.046115000	1.035767000	-1.042212000		
6	4.201469000	0.276042000	-1.046981000		
6	4.404512000	-0.711453000	-0.074804000		
6	3,424482000	-0.924222000	0.900575000		
6	2.263098000	-0.169619000	0.915845000		
6	-1.484858000	-1.426491000	-0.339407000		
6	-1.381033000	-2.433363000	-1.342605000		
6	-1.348184000	-3.776875000	-1.015639000		
6	-1.417092000	-4.183464000	0.322773000		
6	-1.522208000	-3.217184000	1.328670000		
6	-1.554917000	-1.868373000	1.012665000		
1	0.799094000	2.371623000	-0.904940000		
1	-0.021208000	1.045986000	1.754526000		
1	-2.275893000	0.825412000	1.064445000		
1	-1.473364000	0.170313000	-1.772766000		
1	0.149549000	3.756990000	1.278181000		
1	-1.153459000	3.072686000	2.270956000		
1	2.896637000	1.797759000	-1.800116000		
1	4.953463000	0.446486000	-1.809665000		
1	5.309540000	-1.307477000	-0.080294000		
1	3.570477000	-1.693269000	1.651271000		
1	1.517188000	-0.371187000	1.674463000		
1	-1.329320000	-2.126519000	-2.381776000		
1	-1.269509000	-4.519442000	-1.802117000		
1	-1.391881000	-5.236672000	0.576910000		
1	-1.580463000	-3.525368000	2.367097000		
1	-1.641623000	-1.142031000	1.812580000		
1	-2.014842000	4.350733000	0.091040000		
Zer	o-point correcti	on=	0.30130	2 (Hartree/Particle)	
The	ermal correctio	n to Energy=	0.31	8400	
Th	ermal correctio	n to Enthalny=	0.3	19345	
Th	ermal correctio	n to Gibbs Free	Energy-	0 252750	
C 110	n of electronic	and zero noint	Energias-	875 000000	
Sui		and zero-point	Energies=	-023.900000	
Sui	m of electronic	and thermal Er	iergies=	-825.963/10	
Su	m of electronic	and thermal Er	thalpies=	-825.962766	
Su	m of electronic	and thermal Fr	ee Energies=	-826.029360	
		•			
	E (Th	ermal)	CV S		
	KCal	/Mol Cal/I	Mol-Kelvin (Cal/Mol-Kelvin	
Tot	tal 1	99.799	67.710	140.160	

#(UB3LYP/6-311	+G**		ti	ans-192a	
			0.3			
		H	0.3			
	/	N_O				by LL
						LAT .
	/	Ph				
	Ph ^{····}					* }
						R
xyz	-matrix					
1	-4.378078000	-3.125303000	1.28955700	0		
1	-4.101500000	-0.717400000	1.83525500	0		
0	-3.03/023000	-2.522827000	-0.49714700	0		
6	-3.501496000	-1.166994000	1.05153200	0		
6	-2.868972000	-3.095170000	-0.25669700	0		
1	2.208394000	-1.279175000	2.20095000	0		
1	4.302023000	-2.474640000	1.69614900	0		
6 1	-2.582238000	-0.386146000	0.36737800	U		
1 6	-1 947731000	-2 326915000	-0.94476300	0		
6	2.761369000	-1.045216000	1.29758100	Ő		
1	-2.479675000	0.655964000	0.63729100	0		
6	3.937594000	-1.715182000	1.01305900	0		
1	-1.338895000	-2.780386000	-1.71994500	0		
6	-1.769234000	-0.939886000	-0.66212800	0		
8	-0.404255000	2 953463000	1 87626000)		
6	2.250407000	-0.039757000	0.42676100	0		
6	4.660831000	-1.417543000	-0.14886900	0		
6	-0.562274000	2.567039000	0.73485000	0		
1	5.582777000	-1.942814000	-0.36928100	0		
6	-0.803991000	-0.218924000	-1.40768000	0		
0 7	-1 627831000	2 854232000	-0.07224500	0		
1	-0.224060000	-0.809474000	-2.10982200	0		
6	3.005169000	0.242341000	-0.74701800	0		
1	-2.563874000	1.753773000	-1.60467200	0		
6	-0.428182000	1.235275000	-1.34890400	0		
6	4.183401000	-0.433947000	-1.02129300	0		
1	-1.0159/8000	2.232129000	-1.36988700	0		
1	2.658751000	1.001187000	-1.43930200	õ		
1	0.194539000	1.416166000	-2.22561100	0		
1	4.740050000	-0.196619000	-1.92153700	0		
1	-1.446787000	3.007901000	-2.16471500	0		
1	-2.340613000	3.495950000	0.24/43/00	J		
Zar	a naint aarraati	on-	0 2017	12 (Hartraa/Dartial	.)	
Th	ermal correction	on to Energy-	0.3017	12 (Hailee/Faile	;)	
Th	ermal correction	n to Enthalow-	0.	319741		
Th	ermal correction	n to Gibbs Free	Energy=	0.253218		
Sm	m of electronic	and zero-point	Energies=	-825,975247		
Su	m of electronic	and thermal Er	ergies=	-825,958162		
Su	m of electronic	and thermal Er	thalpies=	-825.957218		
Su	m of electronic	and thermal Fr	ee Energies=	-826.023741		
			0.0			
	E (Th	ermal)	CV	S		
	KCal	/Mol Cal/N	Mol-Kelvin	Cal/Mol-Kelvin		
To	tal 20	00.048	57.600	140.009		

```
#B3LYP/6-311+G**
```

#B3LYP/6-311+G**	<i>cis</i> -15	8e
· · · ·	0.1	
	01	Ŕ
Ph ^{ivi} Ph		
xyz-matrix		
6 0.662406000 -0.901471000 -0.2	70374000	
6 1.609851000 -0.710227000 0.9	53936000	
6 2.059599000 0.645687000 0.3	22747000	
6 2 855536000 -1 609300000 1 0	03177000	
7 3761957000 -0.935235000 0.0	78632000	
6 3 403438000 0 330845000 -0.3	04085000	
8 4.045040000 1.060364000 -1.0	35300000	
6 -0.702257000 -1.514052000 -0.1	11254000	
6 -1.205867000 -2.343830000 -1.1	22259000	
6 -2.469460000 -2.921976000 -1.0	21757000	
6 -3.258409000 -2.682296000 0.1	01426000	
6 -2.772092000 -1.860780000 1.1	16742000	
6 -1.509142000 -1.282243000 1.0	10138000	
6 -0.298493000 1.568544000 -0.3	00800000	
6 -2.349985000 -2.642490000 -1.2	52196000	
6 -2 514964000 3 238555000 0 1	97587000	
6 -1.573432000 3.002147000 1.1	95358000	
6 -0.478202000 2.174452000 0.9	47614000	
1 1.197756000 -1.466758000 -1.0	38364000	
1 1.087032000 -0.663208000 1.9	07961000	
1 2.180364000 1.517120000 1.0	01155000	
1 1.137292000 0.802068000 -1.6	65919000	
1 2.637088000 -2.630381000 0.6	74415000	
1 3.283369000 -1.659568000 2.0	11433000	
1 -0.596227000 -2.541071000 -1.5 1 -2.834101000 -2.562307000 -1.5	17225000	
1 -2.834191000 -3.302397000 -1.0 1 -4.241083000 -3.132456000 -1.0	85001000	
1 -3 378534000 -1 666324000 1 9	94497000	
1 -1.158176000 -0.639476000 1.8	08326000	
1 -1.131762000 1.368445000 -2.2	74349000	
1 -3.072299000 2.823428000 -1.8	40562000	
1 -3.364535000 3.884496000 0.3	88173000	
1 -1.685732000 3.465388000 2.1	69597000	
1 0.241766000 2.013560000 1.7	41743000	
1 4.651613000 -1.315261000 -0.2	08656000	
Zero-point correction=	0.306479 (Hartree/Particle)	
Thermal correction to Energy=	0.322408	
Thermal correction to Enthalpy=	0.323352	
Thermal correction to Gibbs Free Ene	rgy= 0.261146	
Sum of electronic and zero-point Ener	gies= -826.029154	
Sum of electronic and thermal Energie	es = -826.013225	
Sum of electronic and thermal Enthal	bies= -826.012281	
Sum of electronic and thermal Free E	nergies= -826.074487	
E (Thermal) CV	S	
KCal/Mol Cal/Mol-	Kelvin Cal/Mol-Kelvin	
Total 202.314 63.99	1 130.925	

#]	B3LYP/6-311+	G**		tra	ns-158e	
		11	0	1		
			0	L		
	6					And the
						01
		,				
	Ph	⁷ Ph				- A
xyz	-matrix					·
6	-0.433122000	-0.143440000	-0.8219770	00		
6	-0.595643000	1.314351000	-1.40101200	00		
6	0.566001000	1.795340000	-0.49436/00	0		
6	-1.825210000	2.162033000	-1.00909100	0		
7	-1.371206000	2.907798000	0.16088000	0		
6	-0.032707000	2.837405000	0.44158900	0		
8	0.545795000	3.463010000	1.31011500	0		
6	-1.627152000	-0.891064000	-0.2851610	00		
6	-2.165942000	-1.952482000	-1.0250520	00		
6	-3.281501000	-2.655653000	-0.5/56820	00		
6	-3 360317000	-1 258996000	1 38216800	0		
6	-2.245677000	-0.556261000	0.92747200	00		
6	2.010077000	-0.327842000	0.13428400	0		
6	2.529021000	-0.907414000	1.29705300	0		
6	3.754224000	-1.572812000	1.28490400	0		
6	4.486145000	-1.668603000	0.10412100	0		
6	3.983666000	-1.093168000	-1.06294200	0		
1	2.739121000	-0.451105000	-1.04020300	0		
1	-0.428943000	1.355202000	-2.4772060	00		
1	1.477704000	2.167209000	-0.95947400	0		
1	0.325155000	0.401595000	1.19762600	0		
1	-2.695861000	1.544696000	-0.77218100	00		
1	-2.103033000	2.842996000	-1.82119000	00		
1	-1.698127000	-2.236303000	-1.9625480	00		
1	-3.074394000	-3.4/0398000	-1.1053020	0		
1	-3 818695000	-0.984510000	2 32593300	0		
1	-1.858156000	0.259240000	1.52784000	0		
1	1.969010000	-0.831971000	2.22325400	0		
1	4.136577000	-2.012437000	2.19945700	0		
1	5.440553000	-2.182653000	0.09187000	0		
1	4.548243000	-1.157869000	-1.98665900	00		
1	2.389107000	0.014089000	-1.964/6100	0		
1	-1.)30++7000	5.570049000	0.04702400	0		
Zer	o_point correcti	on-	0 306	80 (Hartree/Particle)		
Th	ermal correction	n to Energy=	0.5000	322650		
Th	ermal correction	n to Enthalpy=	0	323595		
Th	ermal correction	n to Gibbs Free	Energy=	0 260729		
Su	m of electronic	and zero-point	Energies=	-826.030579		
Su	m of electronic	and thermal En	ergies=	-826.014618		
Su	m of electronic	and thermal En	thalpies=	-826.013674		
Su	m of electronic	and thermal Fr	ee Energies	-826.076540		
	E (Th	ermal)	CV	S		
	KCal	/Mol Cal/N	Mol-Kelvin	Cal/Mol-Kelvin		
То	tal 20	02.466 6	53.880	132.312		

```
#B3LYP-D3/6-311+G**
```

Singulett-153e

ļ	01	be a second
Ph. A N. A Ph		The have
– – – – – – – – – – – – – – – – – – –		
xvz-matrix	1	Ű.
6 -3.560948000 -0.887855000 0.563	596000	
6 -2.389347000 -1.084752000 -0.052	2184000	
6 -1.350635000 -2.064619000 0.416	415000	
7 -0.080671000 -1.411123000 0.722	786000	
6 0.998340000 -1.452467000 -0.125	606000	
6 2.159280000 -0.635780000 0.321	491000	
8 0.999936000 -2.119293000 -1.153	424000	
6 3.275278000 -0.580495000 -0.419	499000	
6 -4.632592000 0.041495000 0.176	196000	
6 -5./309/2000 0.205951000 1.034 (778250000 1.081180000 0.721	/53000	
0 -0.706239000 1.081180000 0.721 6 -6.731770000 1.811273000 0.762	665000 657000	
6 _5 649437000 1 65/106000 1 222	817000	
6 -4.615299000 0.780354000 -1.019	427000	
6 4.503479000 0.164523000 -0.138	022000	
6 5.535560000 0.144264000 -1.090	579000	
6 6.724232000 0.837665000 -0.879	001000	
6 6.907120000 1.565067000 0.294	861000	
6 5.892396000 1.592606000 1.255	015000	
6 4.706470000 0.901953000 1.042	380000	
1 -3.765606000 -1.471331000 1.460	712000	
1 -2.118668000 -0.519937000 -0.940	0420000	
1 -1.700803000 -2.606774000 1.300	152000	
1 -1.133026000 -2.796228000 -0.365	(15000 (15000	
1 2.068629000 -0.091276000 1.256	074000	
1 5.203030000 -1.130439000 -1.342 1 5.768701000 0.350643000 1.060	264000	
1 -7.604631000 -0.559045000 1.900	183000	
1 -7 537502000 2 491905000 -0 712	871000	
1 -5.616025000 2.212533000 -2.261	775000	
1 -3.792347000 0.665055000 -1.714	863000	
1 5.398042000 -0.422471000 -2.005	370000	
1 7.506409000 0.808530000 -1.629	053000	
1 7.831606000 2.105162000 0.464	478000	
1 6.030597000 2.154215000 2.172	144000	
1 3.934292000 0.931817000 1.8020	020000	
1 -0.069845000 -0.750461000 1.484	995000	
Zero-point correction= 0	0.303064 (Hartree/Particle)	
Thermal correction to Energy=	0.321048	
Thermal correction to Enthalpy=	0.321992	
Thermal correction to Gibbs Free Energ	y= 0.251757	
Sum of electronic and zero-point Energi	es= -826.067187	
Sum of electronic and thermal Energies=	-826.049203	
Sum of electronic and thermal Enthalpie	es= -826.048259	
Sum of electronic and thermal Free Ener	rgies= -826.118493	
E (Thermal) CV	S	
KCal/Mol Cal/Mol-Ke	lvin Cal/Mol-Kelvin	
Total 201.461 68.286	147.822	

#UB3LYP-D3/6-311+G**	triplet-153e	
Н	03	
$Ph_{N} \sim N_{N} \sim Ph$		JANK .
		XCX
0		<i>H</i>
xyz-matrix		·
6 -3.106954000 1.235744000 -0.0313	017000	
6 -1.091101000 2.683295000 0.3412	259000	
7 0.135586000 2.548865000 -0.4444	186000	
6 1.298519000 2.072363000 0.1284	17000	
6 2.390936000 1.805785000 -0.8131	64000	
8 1.407385000 1.899421000 1.3400	34000	
6 3.675485000 1.280302000 -0.3673	565000 78000	
-5 -3.92000000 0.014755000 0.0000	27000	
6 -6.036375000 -1.077111000 -0.542	383000	
6 -5.574176000 -2.272527000 0.0026	542000	
6 -4.289444000 -2.326113000 0.5483	344000	
6 -3.476352000 -1.199372000 0.5482	298000	
6 3.978877000 -0.094210000 -0.2394	455000	
6 5.267551000 -0.511993000 0.1979	228000	
6 5.577266000 -1.854434000 0.3256 6 4.623087000 2.834872000 0.0256	010000	
6 3 347705000 -2 448505000 -0 4038	355000	
6 3.024923000 -1.108600000 -0.5342	258000	
1 -3.597336000 2.100796000 -0.4771	165000	
1 -1.313764000 0.569177000 0.8764	32000	
1 -1.702174000 3.474228000 -0.1014	189000	
1 -0.786939000 3.005326000 1.3398	320000	
1 2.236299000 2.021921000 -1.8706	50000 50000	
1 4.442801000 2.002400000 -0.0930	335000 535000	
1 -7.032396000 -1.021496000 -0.967	338000	
1 -6.205847000 -3.153478000 0.0056	650000	
1 -3.922064000 -3.251776000 0.9774	464000	
1 -2.484812000 -1.264364000 0.9804	462000	
1 6.010146000 0.242344000 0.4355	41000	
1 6.565119000 -2.148457000 0.6628	312000	
1 4.869361000 -3.885277000 0.1273	53000	
1 2.003939000 -0.204203000 -0.0310	139000	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	290000	
Zero-point correction= 0	298992 (Hartree/Particle)	
Thermal correction to Energy=	0.317307	
Thermal correction to Enthalpy=	0.318251	
Thermal correction to Gibbs Free Energy	v= 0.246473	
Sum of electronic and zero-point Energie	es= -825.986909	
Sum of electronic and thermal Energies=	-825.968594	
Sum of electronic and thermal Enthalpies	s= -825.967650	
Sum of electronic and thermal Free Ener	gies= -826.039428	
E (Thermal) CV	S	
KCal/Mol Cal/Mol-Kel	vin Cal/Mol-Kelvin	
Total 199.113 70.064	151.070	

```
#B3LYP-D3/6-311+G**
```

#B3LYP-D3/6-311+	·G**		190a	
r		1	-	
H N	¥0	0 1		, the
Dh				1 tr
	PII			
xyz-matrix				
6 1.952665000 0.	923230000 0.901	615000		
6 1.659805000 2.	122564000 0.386	515000		
6 0.720383000 3.	099555000 1.043	320000		
7 -0.339387000 3.	.588671000 0.158	088000		
6 -1.453063000 2.	.918652000 -0.298	456000		
0 -1.551//1000 1. 8 2.313204000 3	.408001000 0.012 512178000 0.039	430000 2705000		
6 -2.515294000 5.	.512178000 -0.950 739162000 -0.377	2067000		
6 2 819556000 -0	115868000 0.329	611000		
6 2.830376000 -1.	.388183000 0.923	118000		
6 3.610109000 -2.	.419290000 0.404	823000		
6 4.402039000 -2.	.197140000 -0.719	248000		
6 4.408950000 -0.	.934499000 -1.316	6481000		
6 3.630647000 0.	093509000 -0.798	608000		
6 -2.760092000 -0	.701672000 -0.170)342000		
6 -4.041293000 -1	.262722000 -0.294	1236000		
6 -4.250990000 -2	.624359000 -0.092	2600000		
6 -3.1/8253000 -3	.456303000 0.222	2426000		
6 1.695997000 -2 6 1.685473000 1	.910910000 0.320 .57342000 0.133	3420000		
1 1 477333000 0	649473000 1 843	444000		
1 2.070393000 2.	441419000 -0.567	501000		
1 0.292598000 2.	660995000 1.951	549000		
1 1.277931000 3.	985539000 1.363	122000		
1 -0.707388000 1.	.004128000 0.533	907000		
1 -3.398912000 1.	.265108000 -0.873	8010000		
1 2.216373000 -1.	.569054000 1.799	878000		
1 3.599892000 -3.	.393913000 0.879	823000		
1 5.011760000 -2.	.995941000 -1.125	5554000		
1 5.02/73/000 -0.	./51802000 -2.18	(935000		
1 3.038441000 l.	618845000 -1.2/1	000000		
1 -5.249692000 -3	035758000 -0.18	5018000		
1 -3.337026000 -4	.518142000 0.372	2189000		
1 -1.051802000 -3	.562381000 0.551	771000		
1 -0.677949000 -1	.161327000 0.190	0822000		
1 -0.348550000 4.	.571687000 -0.071	.951000		
Zero-point correction	=	0.303249 (Hartree/Part	icle)	
Thermal correction to	Energy=	0.321131	,	
Thermal correction to	Enthalpv=	0.322076		
Thermal correction to	Gibbs Free Energ	v = 0.252770		
Sum of electronic and	zero-point Energy	$= -826.06304^{\circ}$	5	
Sum of electronic and	thermal Energies	= _876 045167	, ,	
Sum of electronic and	thermal Enthalni	= -826.043102		
Sum of electronic and	thermal Free Fre	rgies= _826 11352	24	
sam or electronic and		-020.11332		

#I	BU3LYP-D3/6-	311+G**			191a	
		Η.	03			~~ ~
		ŃO				
	ſ	Ť				I Y
						No service
	ſ]				
	Ph	Ph				1
	motriv					J • •
5 xyz	-111au 1x -0.627640000	2 111960000	-0 678245000			
6	0.321337000	2.571092000	0.145322000			
6	1.648030000	3.114438000	-0.315409000			
7	2.792739000	2.454618000	0.317702000			
6	3.061154000	1.095657000	0.305837000			
6	2.453298000	0.296744000	-0.759196000			
8	3.821579000	0.599473000	1.136185000			
6	2.498239000	-1.162542000	-0.738740000)		
6	-1.905348000	1.487370000	-0.307390000			
6	-2.675573000	0.877794000	-1.309569000			
6	-3.863533000	0.218270000	-1.005391000			
6	-4.309600000	0.1568/1000	0.312666000			
6	-3.558650000	0.765041000	1.321264000			
6	-2.3/3039000	1.423588000	1.0100/5000			
6	1.421437000	-1.977074000	-0.32212000			
6	0.471205000	-4 107530000	0.047943000			
6	-0 740717000	-3 625161000	0.047945000			
6	-0.872732000	-2 231741000	0.485960000			
6	0.184206000	-1.421353000	0.109579000			
1	-0.431550000	2.148601000	-1.749128000	1		
1	0.193838000	2.524024000	1.223903000			
1	1.727903000	3.052611000	-1.405811000			
1	1.731436000	4.176304000	-0.063980000			
1	1.994441000	0.802416000	-1.605313000			
1	3.421837000	-1.643635000	-1.054231000)		
1	-2.328437000	0.909125000	-2.337159000)		
1	-4.436209000	-0.251887000	-1.796713000)		
1	-5.232568000	-0.357420000	0.554756000)		
1	-3.899780000	0.724514000	2.349680000			
1	-1.808068000	1.888381000	1.814911000			
1	2.40/220000	-3.84/945000	-0.034004000	1		
1	0.3/8024000	-3.2/0030000	0.050165000			
1	-1.309318000	-1.236326000	0.79767000			
1	0.072652000	-0.345973000	0.135738000			
1	3.217063000	2.921705000	1.106809000			
Zer	o-point correcti	on=	0.29926	6 (Hartree/Partic	le)	
Th	ermal correctio	n to Energy=	0.3	17391		
Th	ermal correctio	n to Enthalpy=	0.3	318335		
Th	ermal correctio	n to Gibbs Free	Energy=	0.249252		
Su	m of electronic	and zero-point	Energies=	-825,986423		
Su	m of electronic	and thermal En	ergies=	-825,968299		
Su	m of electronic	and thermal En	thalpies=	-825,967355		
Su	m of electronic	and thermal Er	e Energies-	-826 036438		
Su		und ulermai Pit	~ Energies-	-020.030430		
	E (Th	ermal) (CV	8		
	KCal	Mol Cal/N	/ol-Kelvin	- Cal/Mol-Kelvin		
To	tal 10	99 166 <i>e</i>	50 083	145 398		

```
#UB3LYP-D3/6-311+G**
```

#1	UB3LYP-D3/6-	-311+G**		cis	-193a	
			0.0			
		H	03			
	/	ŇO	12	- 167.2		LI
		F	Vima	g = -107.2		14
	<u> </u>					
	<u> </u>	1				
	Ph	Ph				
	matrix					
1 X Y Z	-111at 1X	-2 375961000	-2 42591900)		
1	-4.105963000	-2.250665000	-0.83909500)		
6	-2.016095000	-2.152973000	-1.37990000)		
6	-3.094512000	-2.083551000	-0.48826700)		
1	0.094523000	-1.998162000	-1.651586000)		
6	-0.722761000	-1.936193000	-0.94427200)		
0	-2.852254000	-1./98/90000	0.80903/000)		
1	-3 684890000	-1.736648000	1.56146700)		
6	-0.443048000	-1.651791000	0.436055000)		
1	1.138271000	0.377977000	-2.123680000)		
1	-0.947715000	0.880659000	-2.049292000)		
1	3.442962000	-0.048764000	-2.299169000)		
6	-1.570410000	-1.596429000	1.325013000)		
1	-3.333889000	-1.276233000	-1.39/313000)		
6	0.840924000	-1.415369000	0.920394000)		
6	1.738869000	0.819269000	-1.335934000)		
1	-1.391494000	-1.372442000	2.370932000)		
6	-1.254866000	1.351514000	-1.124612000)		
6	3.242636000	0.659704000	-1.487244000)		
6	-2.609025000	1.523306000	-0.872583000)		
8	3.202132000	-0.373339000	1 834745000			
1	0.978193000	-1.234836000	1.981210000)		
7	3.879501000	0.217239000	-0.247548000)		
1	3.706924000	1.606824000	-1.782097000)		
6	1.141690000	1.569820000	-0.377787000)		
6	-0.286954000	1.771109000	-0.191072000)		
0	-3.03/882000	2.128955000	0.309265000			
1	1 778212000	1 999825000	0.302902000			
6	-0.738191000	2.385723000	0.993430000)		
6	-2.093984000	2.562467000	1.241167000)		
1	-0.009631000	2.711781000	1.728621000)		
1	-2.416175000	3.033275000	2.163218000			
1	4.661568000	0.733528000	0.12/176000			
700	o-noint correcti	on-	0 2086	85 (Hartree/Particle)		
エロ	ermal correctio	n to Energy-	0.2980.	16041		
Th	ermal correctio	n to Enthalny–	0.2	316985		
Th	ermal correctio	n to Gibbs Free	e Energy=	0 250674		
Su	m of electronic	and zero-point	Energies=	-825,975895		
Su	m of electronic	and thermal Er	nergies=	-825.958489		
Su	m of electronic	and thermal Er	nthalpies=	-825.957545		
Su	m of electronic	and thermal Fr	ee Energies=	-826.023857		
			-6			
	E (Th	ermal)	CV	S		
	KCa	l/Mol Cal/I	Mol-Kelvin	Cal/Mol-Kelvin		
То	tal 1	98.319	68.485	139.564		

#1	UB3LYP-D3/6-	311+G**		trai	ıs-193a	
			0	3		
			0	5		
			Vir	aag = -385.2		7 4 1
						A Arr
	<u> </u>					
	Ph	Ph				
xyz	-matrix					, and the second
1	-0.998924000	3.100483000	-1.0588050	00		
8	2.560962000	2.920705000	-0.05286500	00		
1	1.085543000	1.634728000	-1.9220110	0		
1	-2.329241000	1.485858000	-2.0881370	0		
1	1 432573000	2.461034000	-0.0033230	0		
6	-1 227423000	2.401054000	-0.4765700	0		
6	0.868959000	1.427791000	-0.8741560	00		
6	-2.136244000	1.343004000	-1.0279170	00		
1	-2.839817000	-0.833983000	-2.3683690	00		
1	5.328833000	-0.871572000	-0.1827900	00		
7	0.546283000	2.832366000	1.02464100	0		
1	-1.473243000	3.022265000	1.50864300	00		
6	3.255534000	-0.369408000	-0.3304930	00		
6	-0.818416000	2.323570000	0.97695300	00		
6	4.310988000	-1.233441000	-0.0861960	0		
6	-3.070041000	-0.920304000	-1.3110230	JU JO		
6	0 794805000	0.130773000	-0.4540220	0		
6	1 909181000	-0.817169000	-0.2073210	0		
1	-0.887407000	1.354158000	1.4788670	00		
1	-3.849588000	-2.908608000	-1.5050870	00		
1	-0.191638000	-0.422046000	-0.3450730	00		
6	-3.636016000	-2.091615000	-0.8249650	00		
6	4.078511000	-2.562583000	0.28549800	00		
6	-3.095662000	0.021469000	0.90854400	00		
1	4.910999000	-3.230378000	0.47496100	00		
1	-2.945259000	0.850880000	1.58634600	0		
6	2 761755000	-2.174013000	0.17505500	0		
6	-3 930483000	-3.024140000	0.412/100	0		
6	-3.667583000	-1.150105000	1.3928120	00		
1	0.678534000	-2.535416000	0.27302700	00		
1	2.575229000	-4.053018000	0.70091900	00		
1	-4.374370000	-3.129658000	0.9154240	00		
1	-3.920843000	-1.226360000	2.4444170	00		
1	0.857375000	3.462468000	1.74865500	0		
7	o point correct	on-	0.200	1/1 (Hartras/Dartisla)		
エピレ	ermal correction	n to Energy-	0.299	316/22		
111 Th	armal correction	n to Enthelpy=	0	317366		
11) Ծե	ermal correction	n to Enthalpy=	Energy-	.31/300		
1 n 6-	ermai correctioi	and game refe	Energy=	0.2310/9		
Su	m of electronic	and the series of T	Energies=	-023.9/1139		
Su	m of electronic	and thermal Er	thelmi	-823.934138		
Su	m of electronic	and thermal Er	inalpies=	-825.953213		
Su	m of electronic	and thermal Fr	ee Energies	-826.018/00		
	E (Th	ermal)	CV	S		
	KCal	/Mol Cal/M	 Mol-Kelvin	- Cal/Mol-Kelvin		
То	tal 19	98.558	67.486	137.829		

#UB3LYP-D3/6-311+G**

cis-192a

					-
		H.	03		
		N O			
	/	."_0			
	\backslash	/			Se J
)	Ph			47 14
	Ph ¹ ¹				PT 14
xyz	-matrix	1 500 10 5000			
6	1.100098000	-1.598486000	0.142411000		
6	1.679507000	-0.493155000	0.967079000		
6	1.843/13000	0.84/924000	0.14/584000		
6	0.743956000	1.202808000	-0.787868000		
6	3.152380000	-0./91061000	1.346613000		
1	3.883115000	-0.280078000	0.194256000		
6	3.2103/8000	0.664266000	-0.529868000		
8	3.624331000	1.249/6/000	-1.509616000		
6	-0.257497000	-1.982041000	0.087840000		
6	-0.65/0/3000	-3.030314000	-0./9285/000		
6	-1.9/92/5000	-3.424081000	-0.891815000		
6	-2.966089000	-2.794890000	-0.121931000		
6	-2.601377000	-1.764700000	0.751809000		
6	-1.280497000	-1.364956000	0.862550000		
6	-0.493589000	1.754001000	-0.392119000		
6	-1.529486000	1.93/582000	-1.351839000		
6	-2.768544000	2.432696000	-0.987287000		
6	-3.032231000	2.777384000	0.344545000		
6	-2.027220000	2.622583000	1.305653000		
6	-0.784440000	2.122728000	0.952362000		
1	1.788223000	-2.102905000	-0.530903000		
1	1.078792000	-0.316001000	1.860018000		
1	1.996145000	1.654169000	0.881034000		
1	0.898659000	0.978049000	-1.836971000		
1	3.3323/9000	-1.858512000	1.489200000		
1	3.433727000	-0.265565000	2.268226000		
1	0.099496000	-3.519640000	-1.397639000		
1	-2.252631000	-4.222691000	-1.572794000		
1	-4.002436000	-3.100712000	-0.205224000		
1	-3.359869000	-1.263762000	1.343085000		
1	-1.035311000	-0.550623000	1.530547000		
1	-1.335804000	1.666310000	-2.384032000		
1	-3.541455000	2.552178000	-1.738538000		
1	-4.004235000	3.164151000	0.62/499000		
1	-2.221653000	2.895551000	2.337329000		
1	-0.024058000	2.009759000	1./163/2000		
I	4.857301000	-0.46/08/000	0.012/68000		
-			0.001		
Zero	o-point correcti	on=	0.30186	9 (Hartree/Particle)	
The	ermal correction	n to Energy=	0.31	8753	
The	ermal correction	n to Enthalpy=	0.3	19697	
The	ermal correction	n to Gibbs Free	e Energy=	0.254750	
Sur	n of electronic	and zero-point	Energies=	-826 017094	
Sur	n of electronic	and thermal Er	ergies-	-826 000210	
Sur	n of electronic	and thermal Er	thelpice-	°25.000210	
Sui		and the second E	maiples=	-02J.777200 926.064212	
Sui	n of electronic	and thermal Fr	ee Energies=	-826.064213	
		I)			
	E (Th	ermal)	CV S		
	KCal	/Mol Cal/I	Mol-Kelvin (Cal/Mol-Kelvin	
Tot	tal 20	00.020	67.476	136.693	

#U	JB3LYP-D3/6-	311+G**		tr	ans-192a	
		H N FO	0	3		2.
	Phuu	Ph				
XVZ	-matrix					
6	-0.571852000	-0.195230000	-1.5096220	00		
6	-0.713883000	1.290704000	-1.3541430	00		
6	-0.142399000	1.894946000	-0.0031510	00		
6	0.675796000	0.988908000	0.85752700	0		
6	-2.187736000	1.821576000	-1.4195390	00		
6	-2.418338000	2.434434000	-0.1222380	0		
8	-1.303031000	2.440732000	1 80226400			
6	-1.176001000	-1.215201000	-0.7373160	00		
6	-0.879634000	-2.576086000	-1.0401840	00		
6	-1.428212000	-3.615745000	-0.3108540	00		
6	-2.297675000	-3.351791000	0.7544440	00		
6	-2.605465000	-2.025368000	1.0749160	00		
6	-2.062665000	-0.975999000	0.3506430	00		
0	1.940940000	0.474044000	0.50208900			
6	2.398033000	-0.448797000	1.03811200	0		
6	4.466260000	-0.629068000	-0.1572670	00		
6	3.846000000	0.281895000	-1.01978400	00		
6	2.610449000	0.823596000	-0.70401000	00		
1	0.123913000	-0.523493000	-2.2742420	00		
1	-0.162078000	1.741543000	-2.1787420	00		
1	0.454451000	2.779302000	-0.26691400	0		
1	0.253755000	1.005249000	1.815/0100			
1	-2.301800000	2.552975000	-2.2253530)0		
1	-0.201655000	-2.790839000	-1.8595100	00		
1	-1.179466000	-4.640312000	-0.5648190	00		
1	-2.725142000	-4.166395000	1.3272510	00		
1	-3.272126000	-1.811368000	1.9031720	00		
1	-2.314919000	0.035946000	0.63449900	00		
1	2.110040000	-0./32/63000	2.291/5800			
1	5 431508000	-1.051442000	-0.4109600	00		
1	4.336301000	0.567835000	-1.94416000	00		
1	2.150676000	1.528348000	-1.38686600	00		
1	-3.318415000	2.777711000	0.17769500	00		
Zer	o-point correcti	on=	0.302	100 (Hartree/Particle	e)	
The	ermal correction	n to Energy=	0.	319071		
The	ermal correction	n to Enthalpy=	0	.320015		
The	ermal correction	n to Gibbs Free	Energy=	0.254552		
Sui	m of electronic	and zero-point	Energies=	-826.012774		
Sui	m of electronic	and thermal En	ergies=	-825.995803		
Sui	m of electronic	and thermal En	thalpies=	-825.994859		
Sui	m of electronic	and thermal Fr	ee Energies	-826.060322		
			~ .	~		
	E (Th	ermal) (CV	S		
-	KCal	/Mol Cal/N	Aol-Kelvin	Cal/Mol-Kelvin		
Tot	tal 20	JU.220 6	07.459	137.778		

```
#B3I VD D3/6 311+C**
```

#E	33LYP-D3/6-3	11+G**		С	<i>vis</i> -158e	
	Ń		01			
	Ph``	[´] Ph				
xyz	-matrix		•			
6	0.716717000	-0.879675000	-0.244212000			
6	1.637625000	-0.607783000	0.984623000			
6	2.084935000	0.713396000	0.314246000			
6	0.883424000	0.653200000	-0.662459000			
6 7	2.88//4/000	-1.491302000	1.100608000			
6	3.787907000	0.356814000	-0.336335000			
8	4 051008000	1.036270000	-1 124252000			
6	-0.649594000	-1.478599000	-0.077953000			
6	-1.142079000	-2.358144000	-1.050104000			
6	-2.423597000	-2.896967000	-0.953186000			
6	-3.240184000	-2.563686000	0.125788000			
6	-2.763297000	-1.690371000	1.102306000			
6	-1.482561000	-1.153550000	1.000133000			
6	-0.307001000	1.523857000	-0.348805000			
6	-1.338188000	1.606279000	-1.294230000			
6	-2.496097000	2.332133000	-1.035/50000			
6	-2.648127000	2.998339000	0.180537000			
6	-1.0505/1000	2.929973000	0.865045000			
1	1 273400000	-1 477050000	-0.971549000			
1	1.095877000	-0.509138000	1.923439000			
1	2.213394000	1.620235000	0.905573000			
1	1.154994000	0.782809000	-1.712067000			
1	2.674371000	-2.534094000	0.845308000			
1	3.316517000	-1.464073000	2.109059000			
1	-0.512811000	-2.621994000	-1.894587000			
1	-2.782020000	-3.577079000	-1.718058000			
1	-4.238006000	-2.980159000	0.205404000			
1	-3.392653000	-1.419877000	1.942900000			
1	-1.141304000	-0.439479000	2 230878000			
1	-3 280329000	2 378790000	-1 783129000			
1	-3.548323000	3.567059000	0.384167000			
1	-1.734008000	3.447398000	2.075439000			
1	0.300885000	2.155044000	1.622950000			
1	4.673545000	-1.277910000	-0.144484000			
_						
Zer	o-point correcti	on=	0.306947	(Hartree/Particl	e)	
The	ermal correctio	n to Energy=	0.32	2760		
The	ermal correctio	n to Enthalpy=	0.32	23705		
The	ermal correctio	n to Gibbs Free	e Energy=	0.262215		
Sui	n of electronic	and zero-point	Energies=	-826.067512		
Sui	n of electronic	and thermal Er	ergies=	-826.051699		
Sui	n of electronic	and thermal Er	thalpies=	-826.050755		
Sui	n of electronic	and thermal Fr	ee Energies=	-826.112244		
		1)	O V 2			
	E (Th	ermal)	CV S			
_	KCal	I/Mol Cal/N	Mol-Kelvin C	Cal/Mol-Kelvin		
Tot	tal 20	02.535	53.810 1	29.415		

#B3	3LYP-D3/6-3	11+G**			all-cis-153e	
	Ph	H N O Ph	0 1			
XVZ-I	matrix					
6 6	-0.826627000 -1.316625000	0.291158000 1.776094000	-1.45858500 -1.23300600	0 0		
6 6	0.101787000	2.170100000 0.820780000	-0.74080200	0 0		
6	-2.290978000	2.060281000	-0.07996800	0		
7	-1.397499000	2.275633000	1.04949100	0		
6	-0.065310000	2.356486000	0.77019300	0		
8	0.811365000	2.579563000	1.58681900)		
6	-0.923345000	-0.897735000	0.81260100	0		
6	-1.502082000	-1.840982000	1.65879500	0		
6	-2.537484000	-2.657111000	1.20608100	0		
6	-2.987362000	-2.525941000	-0.10635600	0		
6	-2.404446000	-1.582707000	-0.95030400	0		
6	1.736662000	-0.009193000	-0.67415200	0		
6	2.696010000	0.543239000	0.1/8/6100)		
6	3.723103000	-0.248810000	0.09320300	0		
6	2.856346000	-2.157593000	-0.49107300	0		
6	1.832055000	-1.367657000	-1.00419400	0		
1	-1.037010000	-0.048146000	-2.47447900	0		
1	-1.636653000	2.241353000	-2.16452400	0		
1	0.571962000	3.070723000	-1.14006700	0		
1	0.985270000	1.049986000	-2.32668400	0		
1	-2.962216000	2 952071000	-0.27500800	0		
1	-0.110007000	-0 291381000	1 18661400	0		
1	-1.134883000	-1.941841000	2.67405900	0		
1	-2.983112000	-3.392629000	1.86632500	0		
1	-3.786571000	-3.159187000	-0.47553300	0		
1	-2.758231000	-1.491975000	-1.97291800	0		
1	2.622754000	1.582242000	0.47092000)		
1	4.453570000	0.194125000	1.36141/00) 0		
1	2 908180000	-3 208915000	-0 75218700	0		
1	1.087977000	-1.814105000	-1.65503700	0		
1	-1.718426000	2.396112000	1.99834000	0		
7ero	-noint correcti	on-	0 3075	20 (Hartree/Port	ticle)	
The	rmal correction	n to Energy=	0.5075	323071		
The	rmal correction	n to Enthalov=	0.	324015		
The	rmal correction	n to Gibbs Free	Energy=	0.263655		
Sum	of electronic	and zero-point	Energies=	-826.06408	2	
Sum	of electronic	and thermal Er	ergies=	-826.04853	1	
Sum	of electronic	and thermal Er	thalpies=	-826.04758	7	
Sum	of electronic	and thermal Fr	ee Energies=	-826.1079	47	
	E (Th	ermal)	CV	S		
	KCal	/Mol Cal/	Mol-Kelvin	- Cal/Mol-Kelvin	n	
Tota	al 20	02.730	63.504	127.039		

٦

```
#B3LYP-D3/6-311+G**
```

trans-158e

L					
		н	01		
			01		
		∕ ^N ∕_ O			
		r			and I
	Ph	́Рh			
	- matuir				
<u>xy</u> 2	0 202707000	0.286814000	0 740183000		
6	-0.292797000	1 132348000	-0.749183000		
6	0 489264000	1.727440000	-0.330064000		
6	0.730226000	0.313030000	0.287976000		
6	-1.758415000	1.883647000	-1.354058000		
7	-1.655824000	2.610959000	-0.094291000		
6	-0.435977000	2.592410000	0.520038000		
8	-0.158491000	3.136259000	1.572968000		
6	-1.550583000	-0.942743000	-0.241546000		
6	-2.135568000	-1.973646000	-0.988968000		
6	-3.325955000	-2.573644000	-0.583882000		
6	-3.957140000	-2.153050000	0.585584000		
6	-3.386324000	-1.130464000	1.341467000		
6	-2.196860000	-0.530663000	0.931315000		
6	2.130038000	-0.235023000	0.201309000		
6	2./19135000	-0.85126/000	1.309540000		
6	4.00/120000	-1.381231000	1.235500000		
6	4.729967000	-1.301283000	0.047694000		
6	2 868035000	-0.087133000	-1.005051000		
1	0.211437000	-0.981196000	-1 422959000		
1	-0.016565000	1 135793000	-2 445874000		
1	1.381823000	2.287357000	-0.608457000		
1	0.391850000	0.250244000	1.322584000		
1	-2.610771000	1.198505000	-1.344690000		
1	-1.878703000	2.574109000	-2.195995000		
1	-1.647754000	-2.312302000	-1.897654000		
1	-3.755911000	-3.372902000	-1.177461000		
1	-4.880916000	-2.620527000	0.907096000		
1	-3.866347000	-0.797602000	2.255129000		
1	-1.778603000	0.268187000	1.531209000		
1	2.165007000	-0.912409000	2.240325000		
1	4.445240000	-1.853131000	2.108073000		
1	5.752389000	-1./09822000	-0.011127000		
1	4./11132000	-0.616/18000	-1.994181000		
1	2.436963000	0.316253000	-1.86168/000		
1	-2.41//02000	3.133933000	0.310407000		
7-	a naint acres "	on-	0 207070	(Uartree/Danti-1.)	
	o-point correcti	n to Engran	0.307078	(naruee/Parucie)	
1 h	ermai correctio	n to Energy=	0.32	2737 2992	
Th	ermai correctio	n to Enthalpy=	0.32	.3883	
Th	ermal correctio	n to Gibbs Free	Energy=	0.261304	
Su	m of electronic	and zero-point	Energies=	-826.068072	
Su	m of electronic	and thermal Er	nergies=	-826.052212	
Su	m of electronic	and thermal Er	nthalpies=	-826.051267	
Su	m of electronic	and thermal Fr	ee Energies=	-826.113846	
	E (Th	ermal)	CV S		
	KCal	l/Mol Cal/I	Mol-Kelvin C	Cal/Mol-Kelvin	
То	otal 2	02.647	63.701 1	31.707	

B3LYP-D3/6-311+G** all-trans-158e	
Ph' Ph	
<i>i</i> -matrix	
-0.743168000 0.598310000 0.132851000	
-0.619105000 2.014160000 -0.504002000 0.735081000 1.583428000 -1.126571000	
0.388362000 0.085979000 -0.816805000	
-0.312933000 3.173147000 0.455754000	
1.121952000 3.021848000 0.678571000	
1.786195000 2.248052000 -0.242257000	
2.991967000 2.128390000 -0.324749000	
-2.064126000 -0.124301000 0.120094000	
-5.2/3840000 0.3/1069000 0.1/9//1000 4/402130000 0.111331000 0.101217000	
-4.513778000 -1.503700000 0.141732000	
-3.310899000 -2.207589000 0.083680000	
-2.097430000 -1.523744000 0.073226000	
1.416327000 -0.892687000 -0.319174000	
2.044552000 -0.738400000 0.922568000	
2.978729000 -1.667692000 1.370251000	
3.304058000 -2.772739000 0.384137000 2.264787600 2.268876000 2.38427000 0.264784000	
2.06687/0000 -2.904763000 -0.054764000	
-0.366493000 0.636151000 1.161087000	
-1.414452000 2.241264000 -1.212603000	
0.953604000 1.809428000 -2.170507000	
-0.081872000 -0.324671000 -1.714348000	
-0.870886000 3.086540000 1.393205000 0.543927000 4.14659000 0.006463000	
-0.545827000 4.140589000 0.000402000 -3.273445000 1.655471000 0.217244000	
-5.421736000 0.45547000 0.236094000	
-5.458371000 -2.035673000 0.147123000	
-3.317451000 -3.291370000 0.045145000	
-1.166287000 -2.078325000 0.029307000	
1.815583000 0.119399000 1.544220000	
5.458502000 -1.526085000 2.3 <i>52</i> 254000 4.032120000 3.406023000 0.033740000	
2.934894000 -3.792764000 -1.275669000	
1.277256000 -2.141012000 -2.064493000	
1.652417000 3.632818000 1.282027000	
ro-point correction= 0.306990 (Hartree/Particle)	
ermal correction to Energy= 0.322818	
ermal correction to Enthalpy= 0.323763	
ermal correction to Gibbs Free Energy= 0.261849	
m of electronic and zero-point Energies= -826.068258	
m of electronic and thermal Energies= -826.052429	
m of electronic and thermal Enthalpies= -826.051485	
m of electronic and thermal Free Energies= -826.113399	
F (Thermal) CV S	
KCal/Mol Cal/Mol-Kelvin	

#B3LYP-D3/6-311+G**	
---------------------	--

#	B3LYP-D3/6-3	11+G**		1	Singulett-153g	
			0 1			1.1
		\checkmark	-			
	Ph	N N	.Ph			A Providence of the second sec
						II WA
		0				Y 3
xyz	z-matrix					
6	3.585682000	0.420238000	-0.68147600	0		
6	2.305032000	0.132278000	-0.93773600	0		
6	1.325501000	1.102978000	-1.53699000	0		
7	0.075156000	1.228349000	-0.75305400	0		
6	-0.838815000	0.223304000	-1.02489400	0		
6	-0.032934000	2.256438000	0.34649300	0		
6	-2.208777000	0.266329000	-0.43989000	0		
8	-0.533028000	-0.700142000	-1.78166800	0		
6	-3.026/54000	-0.788913000	-0.57430200	0		
6	1.073668000	2.991430000	0.02104300	0		
6	-0.344502000	1 573518000	1 69597400	0		
6	4,605238000	-0.480268000	-0.12279800	0		
6	5.837636000	0.054702000	0.28434900)		
6	6.828828000	-0.752504000	0.83774000	0		
6	6.610343000	-2.119558000	0.99204200	0		
6	5.393509000	-2.669667000	0.58257800	C		
6	4.405857000	-1.863389000	0.02940400	0		
6	-4.401450000	-0.908901000	-0.08441300	0		
6	-5.099006000	-2.103947000	-0.32672000	0		
6	-6.408048000	-2.276895000	0.11481800	0		
6	-7.049825000	-1.255080000	0.81079200	0		
6	-6.3/116/000	-0.05962/000	1.06118100	0		
0	-5.065556000	0.111806000	0.62010100)		
1	1 803064000	0.851880000	-0.88711200	0		
1	1.775192000	2 084854000	-0.75827000	0		
1	1.037950000	0 743844000	-2 52677700	0		
1	-2.547404000	1.152480000	0.07008600)		
1	-2.629124000	-1.649432000	-1.10515700	0		
1	1.204983000	3.663528000	1.39616600)		
1	2.125817000	2.300988000	0.75788200)		
1	1.581705000	3.605535000	-0.31860400	0		
1	-1.091121000	4.113061000	0.74812500	0		
1	-2.085978000	2.948266000	-0.12190800	0		
1	-0.803204000	3.801575000	-0.97191300	0		
1	0.448414000	0.861942000	1.93884500)		
1	-0.385706000	2.325131000	2.48896000)		
1	-1.289049000	1.033409000	0.16907100)		
1	7771114000	-0.313/33000	1 1/6/2700))		
1	7 379619000	-2 752351000	1 41977800	0		
1	5.218274000	-3.734637000	0.68855500	õ		
1	3.475839000	-2.313351000	-0.29737800	0		
1	-4.603750000	-2.902336000	-0.86916600	0		
1	-6.925809000	-3.208204000	-0.08509300	0		
1	-8.069081000	-1.385364000	1.15616600	0		
1	-6.865090000	0.739649000	1.60242300	0		
1	-4.558641000	1.047507000	0.82554600)		
_						
Zei	ro-point correcti	on=	0.4156	20 (Hartree/Particl	e)	
Th	ermal correction	n to Energy=	0.4	138659		
Th	ermal correction	n to Enthalpy=	0.	439603		
Th	ermal correction	n to Gibbs Free	e Energy=	0.359568		
Su	m of electronic	and zero-point	Energies=	-983.245002		
Su	m of electronic	and thermal E	nergies=	-983.221963		
Su	im of electronic	and thermal E	nthalpies=	-983.221019		
Su	im of electronic	and thermal Fi	ee Energies=	-983.301054		
			-			
	E (Th	ermal)	CV	S		
	KCal	/Mol Cal/	Mol-Kelvin	Cal/Mol-Kelvin		
Tc	otal 27	75.263	89.210	168.447		

#UI	<u>B3LYP-D3/6-</u>	·311+G**		trij	olet-153g			
_								
			03			4.4		
		\checkmark						
						ALK		
	rn	∕N√∕∕	rn			TL. M		
						No - M		
		0				No.		
xyz-r	natrix		A 2285					
6	-3.084259000	0.512642000	0.665744000					
6	-1.782122000	0.556297000	0.968100000					
0 · 7	-1.041005000	1.813384000	1.333993000					
6	1 262476000	2.019849000	0.310797000					
6	0.100300000	2 763930000	-0 791898000					
6	2.582977000	1.381690000	0.343063000					
8	1.140451000	0.523897000	1.943026000					
6	3.661315000	0.495438000	0.775277000					
6	-1.342181000	3.235993000	-1.070549000					
6	0.974821000	4.034688000	-0.740195000					
6	0.486641000	1.837641000	-1.965565000					
6	-3.880135000	-0.674319000	0.319410000					
6	-5.210615000	-0.504446000	-0.094877000					
6	-6.004133000	-1.594377000	-0.445280000					
6	-5.482/91000	-2.884639000	-0.386830000					
6	-4.102300000	-3.0/1802000	0.0280/3000					
6	3 916431000	-1.903028000 _0 779896000	0.379038000					
6	5.011382000	-1 562928000	0.223404000					
6	5.273132000	-2.812056000	0.152471000					
6	4.459523000	-3.336113000	-0.860351000					
6	3.372807000	-2.587913000	-1.328164000					
6	3.100306000	-1.336758000	-0.801428000					
1 .	-3.640215000	1.449855000	0.662010000					
1 .	-1.173337000	-0.341915000	0.983581000					
1 ·	-1.686575000	2.685291000	1.258119000					
1 ·	-0.712786000	1.739352000	2.371955000					
1	2.802581000	2.124955000	-0.411464000					
1	4.292636000	0.836451000	1.593758000					
1 .	-1.356007000	3.717689000	-2.050441000					
1 ·	-2.046632000	2.404873000	-1.09681/000					
1 ·	-1.085089000	3.974230000	-0.343352000					
1	2 033772000	4.393343000 3.827747000	-1.073093000					
1	0.648707000	4 674557000	0.083356000					
1 .	-0.182059000	0.973675000	-1.989780000					
1	0.387320000	2.375182000	-2.912316000					
1	1.510025000	1.471639000	-1.901343000					
1 .	-5.625925000	0.497384000	-0.142581000					
1 ·	-7.028831000	-1.434852000	-0.762254000					
1 ·	-6.096806000	-3.736428000	-0.656263000					
1 .	-3.749745000	-4.073204000	0.084905000					
1 .	-2.354721000	-2.154324000	0.710444000					
1	5.642/88000	-1.165188000	1.4/4523000					
1	0.11230/000	-3.390046000	0.523188000					
1 1	7.000090000 7.734767000	-4.313/11000	-1.2/4948000 -2 1060/2000					
1	2.734707000	-2.333120000	-2.100042000					
1	2.270203000	0.775022000	1.1005-0000					
7ero	-noint correcti	on=	0 411674	(Hartree/Particle)				
Ther	mal correction	n to Energy-	0.7110/2	4954				
Ther	Thermal correction to Entrolpy 0.434934							
The	Thermal correction to Cibbs Free Energy 0.254949							
Sum	Functional confection to GIDDS Free Energy= 0.554848							
Sum	Sum of electronic and thermal Energies>05.100047							
Sum	Sum of electronic and thermal Entrolpies -983.142/09							
Sum	of electronic	and thermal Er	maipies=	-983.141824				
Sum of electronic and inermal Free Energies= -985.2228/4								
	\mathbf{F} (Thermal) $\mathbf{C}\mathbf{V}$							
	E (Th	ermai)	∇S	N-1/N/-1 TZ 1 '				
T-+		72 027 Cal/I	v_{101} -Kelvin (ai/Woi-Kelvin				
rota	.1 2	12.931	90.934 1	10.364				

```
#B3I VD D3/6 311+C**
```

#B3LYP-D3/6-3	11+G**)						
		0 1			14				
	\uparrow								
	N				J. J.				
					A A				
 Ph	 Ph				$\gamma \sim \gamma$				
xyz-matrix	1 972252000	0.002152000							
6 -0.323936000 6 0.955067000	-1.678491000	0.893133000							
6 1.802026000	-0.582272000	1.146792000							
7 2.505004000	0.248669000	0.143660000							
6 3 967393000	-0.005598000	-0.100584000							
6 0.460785000	1.551589000	-0.101238000							
8 2.615660000	2.454633000	-0.507117000							
6 -0.175265000	2.731973000	-0.115561000							
6 4.246436000 6 4.362901000	-1.521434000	-0.046302000							
6 4.804853000	0.722191000	0.965698000							
6 -1.245046000	-2.896050000	0.374400000							
6 -2.604843000	-2.818680000	0.714879000							
6 -3.523399000 6 2.000268000	-3.748570000	0.233643000							
6 -1.748458000	-4.877517000	-0.398230000							
6 -0.832990000	-3.949486000	-0.459427000							
6 -1.624805000	2.944379000	-0.101981000							
6 -2.115637000	4.258036000	-0.027726000							
6 -3.483944000 6 -4 393043000	4.516018000	-0.004213000							
6 -3.921980000	2.148791000	-0.138438000							
6 -2.557402000	1.891927000	-0.160508000							
1 -0.768872000	-1.191796000	1.619006000							
1 1.438831000 1 1.188825000	-2.305688000	-0.182385000							
1 2.554688000	-1.007429000	1.813686000							
1 -0.092672000	0.623134000	-0.086796000							
1 0.443638000	3.625632000	-0.139673000							
1 5.301929000	-1.687581000	-0.270970000							
1 3.658095000	-2.055167000	-0.796500000							
1 5.377257000	0.111943000	-1.731042000							
1 4.332998000	1.539360000	-1.617511000							
1 3.689594000	0.021170000	-2.259428000							
1 4.551550000	0.368296000	1.970038000							
1 4.621280000	1.795586000	0.914383000							
1 -2.943208000	-2.016723000	1.363620000							
1 -4.568574000	-3.666366000	0.510291000							
1 -3.809985000 1 -1.408642000	-5.509460000	-0.9/3452000							
1 0.212005000	-4.049032000	-0.728673000							
1 -1.411537000	5.082520000	0.012865000							
1 -3.838864000	5.538774000	0.054392000							
1 -5.459097000 1 -4.624002000	3.658279000	-0.042757000							
1 -2.214817000	0.866215000	-0.232715000							
Thermal correction	n to Energy–	0.4150/5 0.42	(manuee/Particle)						
Thermal correction	n to Enthalov=	0.43	9182						
Thermal correction	n to Gibbs Free	Energy=	0.359062						
Sum of electronic	and zero-point	Energies=	-983.249686						
Sum of electronic	Sum of electronic and thermal Energies= -983.226523								
Sum of electronic and thermal Enthalpies= -983.225578									
Sum of electronic and thermal Free Energies= -983.305698									
E (Th	ermal)	CV S							
KCal	/Mol Cal/N	Mol-Kelvin C	al/Mol-Kelvin						
Total 27	74.998	89.429 1	68.626						

#UB3LYP-D3/6-311+G**

191b

٦

πC	JDJL11-D3/0-	511+0		13	10			
			0	3				
		\checkmark	-			A .A		
		Ī						
		N O						
	/							
		ſ						
						Y A THE		
	bh	bh						
	FII	FII						
XVZ	-matrix							
6	2 162888000	0.638000000	0.7010100	00				
0	-2.103888000	-0.038000000	-0.7010190					
6	-1.815623000	0.649625000	-0.5963910	00				
6	-0.490778000	1.192076000	-1.0600010	00				
7	0.215725000	2 010913000	-0.0554610	00				
6	1.244646000	1.410061000	0.0554010	0				
0	1.244040000	1.410901000	0.03934400	0				
6	0.146048000	3.511904000	-0.1491790	00				
6	1.145271000	-0.040176000	0.8818550	00				
õ	2 100412000	2 025687000	1 1/256800	0				
0	2.190412000	2.033087000	1.14550800					
6	2.284939000	-0.795512000	1.3924630	00				
6	-1.215810000	3.946574000	-0.7273530	00				
6	0 242045000	4 134958000	1 25816200	0				
6	1.077720000	4.00000	1.2301020	0				
0	1.277/39000	4.02386/000	-1.0586630	U .				
6	-3.432708000	-1.256730000	-0.2904710	00				
6	-3.529896000	-2.656824000	-0.2694480	00				
6	4 702727000	2 202614000	0.1274500	00				
U	-4.703727000	-5.292014000	0.12/0580	<i>1</i> 0				
6	-5.811361000	-2.538753000	0.5085760	00				
6	-5.734320000	-1.144479000	0.4840850	00				
6	-4 562786000	-0.511/00000	0.0867490	00				
6	2 10 (000000	1 522 45 4000	0.0007400					
6	3.186809000	-1.523454000	0.5842850	0				
6	4.272352000	-2.235332000	1.1700620	00				
6	5 159598000	-2 954733000	0 3893030	00				
6	5.000((5000	2.000040000	1.0020220					
0	5.008005000	-2.998048000	-1.0028550	00				
6	3.951535000	-2.303879000	-1.6031670)0				
6	3.057027000	-1.580868000	-0.8324890	00				
1	1 424177000	1 220577000	1 1215700	00				
1	-1.434177000	-1.529577000	-1.1213700	00				
1	-2.492155000	1.3/1335000	-0.1506010	00				
1	0.154554000	0.368820000	-1.3748990	00				
1	-0.628866000	1.800856000	-1.9560480	00				
1	0.120514000	0.521650000	0.7800250					
1	0.180514000	-0.551650000	0.7890250	10				
1	2.460607000	-0.775231000	2.4664540	00				
1	-1.254818000	5.037690000	-0.7269720	00				
1	-1 377366000	3 623663000	-1 7560130	00				
1	-1.577500000	3.023003000	-1.7507150					
1	-2.0435/4000	3.585524000	-0.1128020	00				
1	0.061442000	5.210488000	1.1831340	0				
1	1 216555000	3 975399000	1 7098170	0				
1	0.522214000	2 705 420000	1.0116020	Ň				
1	-0.522214000	5.705459000	1.9110930	10				
1	1.187192000	3.598141000	-2.0629940	00				
1	1.229914000	5.113015000	-1.1488800	00				
1	2 2479/0000	3 748149000	-0 6450800	0				
1	2.277240000	2 252000000	0.0-0.2020	0				
1	-2.6/1225000	-3.252000000	-0.5634820	JU				
1	-4.752337000	-4.375704000	0.1384670)0				
1	-6.727727000	-3.029301000	0.8161950	00				
1	-6 59/052000	-0 549878000	0 7608300	00				
1	4 520120000	0.57150000	0.7090390	0				
1	-4.550159000	0.571500000	0.0594980	IU I				
1	4.397821000	-2.203559000	2.2471520	00				
1	5.979208000	-3.487177000	0.8593170	00				
1	5 706486000	-3 562157000	-1 610/070	00				
1	2.022121222	0.002107000	-1.01049/0					
1	3.833131000	-2.329925000	-2.6810200	0				
1	2.246149000	-1.040724000	-1.3086150	00				
-			o					
Zer	o-point correcti	on=	0.410	921 (Hartree/Particle)				
The	ermal correction	n to Energy=	0	434404				
T1.		$r_{1} = r_{2} = r_{1} = r_{2}$	0	125210				
The	ermai correctio	n to Enthalpy=	(.433348				
The	Thermal correction to Gibbs Free Energy= 0.353092							
C	m of electroni-	and zoro point	Energias	082 160421				
Sui	Sum of electronic and zero-point Energies= -983.169631							
Sum of electronic and thermal Energies= -983.146148								
Sum of electronic and thermal Enthalpies= $-983,145203$								
Sound of control in the initial Entering in the 2003 control in the 2003 control in the initial Entering in the 2003 control i								
Sum of electronic and thermal Free Energies= -983.22/460								
			e					
	T /	1		0				
	E (Th	ermai)	UV	3				
	KCal	/Mol Cal/M	Mol-Kelvin	Cal/Mol-Kelvin				
T_{α}	tal 2	72 502	01 182	173 123				
101	Z	14.575	1.102	1/3.123				
```
#UB3LYP-D3/6-311+G**
```

#UB3LYP-D3/6-311+G**	<i>cis</i> -193b
	03
_N、_O	<i>v</i> _{imag} = -66.1
	£ 4
	5 A
	9 XX
xyz-matrix	158000
1 -4.937531000 -0.104467000 2.0193	502000
1 -2.082722000 -0.981514000 2.2692	26000
1 1.999282000 0.883939000 2.0359 1 -0.004045000 0.135609000 2.2586	62000
1 -4.390853000 1.565887000 1.7416	541000
6 -2.104957000 -0.086109000 1.634	874000
1 4.268296000 1.632351000 1.5048 6 0.689549000 0.431024000 1.470/	51000
6 2.168855000 1.443516000 1.1252	86000
6 -4.858041000 0.694288000 1.2772	252000
1 -5.870913000 0.990094000 0.9957	798000
1 3.500088000 -2.099239000 2.4110	2000
6 -0.263835000 1.234278000 0.4791	67000
6 1.099255000 1.710824000 0.2522	62000
1 -5.12/191000 -1./03902000 0.024 1 1.180372000 -2.105613000 1.6214	12000
1 -0.976237000 1.500450000 -0.2976	598000
7 -2.786948000 -0.372130000 0.362	382000
6 -4.122700000 0.225146000 0.0096 6 3.712473000 2.579722000 0.3469	947000 001000
6 3.292022000 -1.940373000 1.3580	68000
1 4.719896000 2.906261000 -0.5786	529000
1 -0.895654000 -2.324914000 0.7730	505000 110000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	312000
6 -5.000666000 -0.855069000 -0.653	632000
6 2.662985000 2.862811000 -1.2199	81000
6 -3.928507000 1.429970000 -0.929 1 -4 565935000 -1 210667000 -1 584	591000 342000
$1 \qquad 5.375407000 \qquad -1.732547000 \qquad 0.8227$	/59000
1 0.564834000 2.639561000 -1.6158	857000
6 -0.838243000 -1.730688000 -0.131 6 4.352395000 1.735641000 0.4656	08000
6 -2.033105000 -1.016724000 -0.598	771000
1 2.849385000 3.413542000 -2.1352	276000
1 -5.988532000 -0.438845000 -0.868	586000
6 0.367200000 -1.732280000 -0.966	543000
6 4.077353000 -1.538849000 -0.9004	413000
8 -2.299718000 -1.004640000 -1.804	615000 062000
1 0.206280000 -1.626139000 -2.0340	202000
1 4.894402000 -1.373500000 -1.5939	956000
1 2.576397000 -1.391309000 -2.416	401000
1 -3.323876000 2.200595000 -0.442 1 -4 897462000 1 871365000 -1 1800	146000 937000
1 -3.435205000 1.122307000 -1.8509	932000
Zero-point correction = 0.	410812 (Hartree/Particle) 0.422304
Thermal correction to Energy=	0.432338
Thermal correction to Gibbs Free Energy	/= 0.357521
Sum of electronic and zero-point Energie	es= -983.165921
Sum of electronic and thermal Energies=	-983.143339
Sum of electronic and thermal Enthalpier	5= -983.142394
Sum of electronic and thermal Free Ener	gies= -983.219212
E (Thermal) CV	S
KCal/Mol Cal/Mol-Ke	vin Cal/Mol-Kelvin
Total 271.959 89.579	161.677

#UB3LYP-D3/6-311+G**	trans-193b
	03
	$v_{imag} = -260.8$
	Vinnag 20010
	YI w
Ph Ph	· •
xvz-matrix	
6 -0.468237000 0.862477000 -	.796459000
6 0.842037000 0.581308000 -	.545053000
6 0.868604000 -1.611365000 -).502375000
6 -0.101421000 -1.299969000).553091000
6 1.662476000 1.004766000	0.353089000
7 2.623141000 -0.044043000	0.027367000
6 2.303901000 -1.328585000 -).375144000
8 3.136466000 -2.203917000 -).623452000
6 4.006208000 0.325121000 0	.463002000
6 3.965794000 1.673676000	.209028000
6 4.538968000 -0.726017000	.455890000
6 4.924613000 0.429150000	J. /66960000
6 -1.466929000 1.517890000 -	1.962334000
o -2.815297000 1.133690000 -	
	J.555292000
0 -5.507053000 2.691904000 (6 2.184220000 2.115022000	1.373040000 0.721800000
0 -2.104259000 5.115052000 0 6 1.177880000 2.540021000	./31000000
6 1.469311000 1.551905000 -)/0201/1000
6 2 317771000 1 160884000	1.498393000
6 -3.671073000 -1.100884000	57/301000
6 -4.266249000 -2.062541000) /789/0000
6 -3 466534000 -2 449944000 -) 607610000
6 -2.108483000 -2.202198000 -) 613212000
1 -0.858536000 0.462364000 -	2 729085000
1 1.421705000 0.162612000 -	2.362577000
1 0.638601000 -2.385509000 -	.224052000
1 0.289060000 -0.820254000	.444889000
1 1.020591000 1.269074000 0	.489940000
1 2.216417000 1.905449000 -	0.628749000
1 4.947310000 1.861875000	.648967000
1 3.741967000 2.518483000 0	.554893000
1 3.230700000 1.654337000	.018063000
1 4.653217000 -1.701252000	0.990333000
1 3.857519000 -0.821932000	
1 5.512049000 -0.400882000	.833109000
1 4.544134000 1.177676000 -	.469161000
1 5.934420000 0.727678000	0.470267000
1 4.976377000 -0.534055000 -	
1 -3.064886000 0.356244000 -	824151000
1 -4.841082000 1.364639000 -	1.45.548 /000
1 -4.288811000 3.139558000	.198722000
1 -1.938293000 3.907180000 1 0.168402000 2.020044000	.450450000
1 -0.108493000 2.920044000 (1 1.868837000 0.651156000	.031/1/000 0/436586000
1 - 1.00005/000 - 0.051150000 1 - 4.285173000 - 1.006048000	+30300000 2/4115//6000
1 -4.2031/3000 -1.090948000 1 _5.331257000 _2.261562000	+115+0000 1472906000
1 -3.921437000 -2.201302000	1.456279000
1 -1.515692000 -2.5949778000 -	1 467904000
. 1.515652000 2.501950000 -	
Zana paint as muchter	0 (111221 (Hartman/Dartiala)
Zero-point correction=	0.411221 (Hartree/Particle)
i nermal correction to Energy=	0.423004
Inermal correction to Enthalpy=	0.434608
Thermal correction to Gibbs Free E	nergy= 0.357949
Sum of electronic and zero-point E	ergies= -983.161616
Sum of electronic and thermal Ener	gies= -983.139172
Sum of electronic and thermal Enth	alpies= -983.138228
Sum of electronic and thermal Free	Energies= -983.214888
	-
E (Thermal) CV	s S
KCal/Mol Cal/Mo	l-Kelvin Cal/Mol-Kelvin
Total 272.128 89	135 161.344

#UB3LYP-D3/6-311+G**

#	UB3LYP-D3/6-	-311+G**		cis-1	92b	
		1.	03			1.11
		\checkmark				and a second
		<u>)</u>				~~~
		,NO				
	{	F				
						The second
	Dhuu/	\sum Ph				1 4 4
	F 11					p p
xyz	z-matrix					
1	-3.585554000	-2.735804000	-2.321943000			
1	-5.367916000	-2.853240000	-0.594743000			
6	-3.359810000	-2.476442000	-1.293087000			
6	-4.365074000	-2.545713000	-0.322281000			
1	-1.316971000	-2.031590000	-1.724339000			
6	-2.076968000	-2.078703000	-0.953176000			
6	-4.061456000	-2.218942000	1.005666000			
I	-4.8344/4000	-2.2/2515000	1./64398000			
6	-1./43/29000	-1./31499000	0.38/322000			
1	-2.782712000	-1.823312000	0.000203000			
1	-2.557573000	-1.567595000	2.386067000			
6	-0.460302000	-1.286607000	0.770061000			
1	4.577758000	-2.059442000	0.426555000			
6	0.659091000	-1.034502000	-0.175772000			
1	-2.098837000	0.607773000	-1.504679000			
1	-0.011669000	0.176198000	-1.890395000			
1	-0.275567000	-1.077188000	1.817480000			
1	-4.337196000	1.552718000	-1.285321000			
1	2.325391000	-0.150357000	-2.294202000			
8	2.378047000	-1.604146000	1.469262000			
6	2.038257000	-0.961498000	0.490011000			
6	0.612812000	0.298814000	-1.004150000			
1	4.160890000	-0.188749000	2.155712000			
6	4.960832000	-1.304584000	-0.260068000			
6 1	-2.24/568000	1.455890000	-0.8504/1000			
1	4./811/9000	-1.03/0/9000	-1.280801000			
6	2.098444000	0.438438000	-1.39463/000			
7	2 8118/0000	-0.0835/9000	-0.223057000			
1	6.041036000	-1 217794000	-0.114472000			
6	4.282674000	0.055066000	-0.007718000			
6	4.537331000	0.533097000	1.433316000			
6	0.160862000	1.468667000	-0.187522000			
1	5.611055000	0.665778000	1.593023000			
6	-1.150970000	1.984051000	-0.111215000			
1	2.362109000	1.476232000	-1.592727000			
6	-3.760475000	3.066050000	0.136999000			
1	-4.759391000	3.474800000	0.235085000			
6	4.855157000	1.096167000	-0.981345000			
1	0.910729000	1.916579000	0.459147000			
I	4.043377000	1.493301000	1.606436000			
0	-1.424842000	3.084138000	0.754413000			
0	-2.098906000	3.009406000	0.8/2110000			
1	-0.009/14000	5.507785000	1.552105000			
1	4 705366000	0.811256000	-2 025600000			
1	5,930858000	1.177347000	-0.811654000			
1	4 418819000	2.085100000	-0.820396000			
*		2.000100000	0.020090000			
701	o-noint correcti	ion=	0 41405	2 (Hartree/Particle)		
エト	ermal correctio	n to Energy-	0.1100	S6206		
111 Th	ermal correctio	n to Entrology=	0.4	37150		
111		r to Enumarpy=	0.4	0.260592		
in C	ermai correctio	II to GIDDS Free	Energy=	0.200383		
Su	m of electronic	and zero-point	Energies=	-983.213844		
Su	m of electronic	and thermal Er	nergies=	-983.191690		
Su	m of electronic	and thermal Er	nthalpies=	-983.190746		
Su	m of electronic	and thermal Fr	ee Energies=	-983.267313		
	E (Th	ermal)	CV S			
	KCal	l/Mol Cal/I	Mol-Kelvin	Cal/Mol-Kelvin		
То	tal 2	73.723	88.492	161.150		

#UB3LYP-D3/6-3	311+G**		trans-1	92b
				
		0.3		1 1
	N O			
	F			
	Ph			
Phuu/				1
xyz-matrix				
1 4.613744000	-2.319037000	1.931069000		
6 4.285255000	-1.878666000	0.995700000		
1 2.215897000	-2.142594000	1.453330000		
1 6.291076000	-1.499066000	0.292024000		
6 2.930199000	-1.777438000	0.725069000		
6 5.232540000	-1.419697000	0.073611000		
1 0.083301000	-2.511691000	0.389722000		
1 0.135668000	-1.255488000	2.273058000		
1 -4.218/23000	-2.801963000	0.317816000		
1 -2.125054000	-0.990966000	2.409071000		
b 2.463515000	-1.2087/3000	-0.494004000		
6 4.799879000	-0.860431000	-1.135601000		
о -0.024697000	-1.453532000	0.110342000		
b -0.184432000	-0.625654000	1.4429/7000		
1 1.432691000	0.627297000	2.255475000		
1 5.527935000	-0.505200000	-1.856/16000		
ь -1.725866000	-0.41/759000	1.56/883000		
ь 1.093568000	-1.0/4844000	-0.804367000		
6 3.449199000	-0.757567000	-1.417/57000		
6 -4.325856000	-2.066063000	-0.484165000		
6 -1.3885/5000	-1.362384000	-0.5/6893000		
1 -5.390279000	-1.959588000	-0./10509000		
6 0.627479000	0.634314000	1.528682000		
7 -2.30/329000	-0.873110000	0.305166000		
8 -1.596882000	-1.690158000	-1./35128000		
1 -3.814746000	-2.436901000	-1.3/06/6000		
1 -1.956338000	0.634983000	1.742426000		
6 -3.753388000	-0.707356000	-0.041292000		
1 0.81/329000	-0.677680000	-1.//4060000		
1 3.121851000	-0.321825000	-2.355679000		
1 -3.334585000	0.019321000	-2.0504/4000		
6 -4.534058000	-0.2248/6000	1.191943000		
1 2.111251000	2.813659000	1.789155000		
6 0.507035000	1.803474000	0.741317000		
6 -3.88/013000	0.335961000	-1.165991000		
1 -4.939328000	0.459224000	-1.430400000		
0 1.37753000	2.903112000	0.994900000		
1 -1.104455000 6 0.422047000	1.130043000	-0.0008/0000		
0 -0.43294/000 1 3.50609000	1.938208000	-0.310303000		
1 -3.300088000 6 1.207114000	1.300408000	-0.855824000		
1 1 085778000	4.00/002000	0.2314/3000		
6 _0/05/1/0000	3 120102000	-1 05/171000		
6 0.493414000	4 194862000	-1.03+171000		
1 _1 210/12000	3 213/10000	-1 857/01000		
1 0 314945000	5.106898000	-1.362727000		
1 -5 588420000	-0 136759000	0.921412000		
1 _4 200610000	0.150759000	1 53722412000		
1 _4 /62019000	-0.033030000	2 020824000		
1 -7.402710000	0.755050000	2.020024000		
- -		a		
Zero-point correctio	on=	0.41457	(Hartree/Particle)	
Thermal correction	to Energy=	0.43	6743	
Thermal correction	to Enthalpy=	0.4	37688	
Thermal correction	to Gibbs Free	Energy=	0.360989	
Sum of electronic a	and zero-point	Energies=	-983.209913	
Sum of electronic a	and thermal En	ergies=	-983 187748	
Sum of electronic of	and thermal En	thalnies-	-983 186804	
Sum of electronic	and thermal En	naipies=	-703.100004	
sum of electronic a	mu mermai Fre	e Energies=	-903.203303	
F. /~~	1)			
E (The	ermal) C	SV S		
KCal/	Mol Cal/M	10l-Kelvin (Cal/Mol-Kelvin	
	4 061 8	8 127	161 426	

```
#B3LYP-D3/6-311+G**
```

#I	33LYP-D3/6-3	11+G**		cis	-158g	
			01			4.4
		\checkmark	-			
		N O				
	Í	F				
						AN L
						34
		/				
	Pn	Pn				78
xyz	-matrix					
6	0.177747000	-0.624039000	0.164893000			
6	-0.623014000	-0.157114000	-1.089208000			
6	-0./92026000	1.225959000	-0.432060000			
6	2 028280000	0.907792000	1 236661000			
7	-2.028280000	0.021801000	-0.255080000			
6	-2.193252000	1.170312000	0.167593000			
8	-2.666282000	2.022539000	0.903509000			
6	-4.244353000	-0.280688000	0.067030000			
6	-4.633319000	-1.646449000	-0.520343000)		
6	-4.420682000	-0.336695000	1.595721000			
6	-5.139888000	0.810967000	-0.547795000			
6	1.390082000	-1.498936000	0.033795000			
6	1.645677000	-2.474604000	1.005410000			
6	2.782588000	-3.277722000	0.941415000			
6	3.689993000	-3.118810000	-0.104178000			
6	3.4490/9000	-2.152082000	-1.0/961/000			
6	2.312242000	-1.351000000	-1.010043000			
6	1.088405000	1.303446000	0.343/23000			
6	2.00/941000	1.304240000	1.330039000			
6	1 309456000	2 457231000	-0.056309000			
6	3 346766000	2.437231000	-1.050686000			
6	2.049587000	2.133110000	-0.851946000			
1	-0.515960000	-1.092990000	0.868110000			
1	-0.049067000	-0.189701000	-2.013814000)		
1	-0.697337000	2.139930000	-1.018677000			
1	0.042763000	1.089505000	1.631480000			
1	-2.042499000	-1.806223000	-1.018942000)		
1	-2.422800000	-0.591192000	-2.250105000			
1	-5.680974000	-1.842032000	-0.281917000			
1	-4.531156000	-1.673569000	-1.607594000			
1	-4.038854000	-2.456655000	-0.091188000			
1	-5.4552/6000	-0.596358000	1.836/50000			
1	-4.182/39000	1 102288000	2.033043000			
1	-5.019333000	-1.102288000	-1 634962000			
1	-6.190612000	0.604113000	-0.326276000			
1	-4.884176000	1.789733000	-0.142637000			
1	0.944064000	-2.604854000	1.823668000			
1	2.957598000	-4.027193000	1.705469000			
1	4.576006000	-3.741254000	-0.158916000			
1	4.151512000	-2.016319000	-1.894518000			
1	2.155884000	-0.591859000	-1.766162000			
1	2.409511000	0.872237000	2.268054000			
1	4.703273000	1.709470000	1.924963000			
1	5.317592000	2.824967000	-0.210331000			
1	3.602257000	3.094513000	-1.985376000			
1	1.32165/000	2.236333000	-1.045049000			
_						
Zer	o-point correcti	on=	0.41901	0 (Hartree/Particle)		
The	ermal correction	n to Energy=	0.4	40149		
The	ermal correction	n to Enthalpy=	0.4	41093		
The	ermal correction	n to Gibbs Free	Energy=	0.367461		
Su	n of electronic	and zero-point	Energies=	-983.263833		
Su	n of electronic	and thermal En	ergies=	-983.242694		
Su	n of electronic	and thermal En	thalpies=	-983.241750		
Su	n of electronic	and thermal Fr	ee Energies=	-983.315382		
			-			
	E (Th	ermal)	CV S	5		
	KCal	/Mol Cal/N	Mol-Kelvin	Cal/Mol-Kelvin		
To	tal 2	76.198 8	34.924	154.971		

-2.992310000

-1.601512000

-1.602927000

-4.266310000

-4.561365000

-3.176631000

0.484946000

0.030797000

-0.399813000

-0.351987000

0.112657000

1.632120000

3,411722000

5.089408000

4.976658000

3.203724000

1

1

1 1

1

1

1

1

1

1

1

1

1

1

-1.110667000

-1.929456000

-0.164788000

-1.983916000

-2.214526000

-3.010163000

0.299244000

1.880376000

4.276206000

5.065880000

3.474272000

-2.729126000

-3.068672000

-1.287069000

0.834787000

1.166573000

-2.891999000

-2.156392000

-2.336319000

0.545387000

-1.185365000

-0.411806000

-0.934392000

-2.750129000

-2.255910000

0.102109000

1.927428000

-0.006052000

-1.677697000

-2.102825000

-0.812143000

0.867918000

#B3LYP-D3/6-311+G** all-cis-158g 01 -0 Ph Ρh xyz-matrix 0.831316000 1.813476000 6 0.519103000 -0.748392000 0.005715000 2.266251000 6 -0.085059000 -1.300408000 1.773952000 6 -0.540811000 6 1.276605000 1.649183000 6 -2.034569000 0.168350000 1.460069000 7 -1.865772000 -0.743592000 0.323352000 6 -0.873505000 -1.666946000 0.518068000 8 -2.659675000 -0.671180000 -0.168422000 6 -2.900615000 -0.879612000 -0.745467000 -3.763920000 0.392019000 -0.784510000 6 6 -2.222270000 -1.037356000 -2.119097000 6 -3.780474000 -2.102234000 -0.4280470001.761881000 0.641079000 6 0.322120000 6 1.335093000 0.295473000 -0.692440000 6 0.038759000 2.234284000 -1.725049000 6 -0.201550000 3.579143000 -1.449484000 6 -0.174132000 4.021118000 -0.127856000 0.089085000 3.119500000 0.901371000 6 6 2.300569000 -0.765490000 0.564963000 6 2.373720000 -1.957005000 -0.161926000 3.374784000 -2.141019000 -1.117031000 6 6 4.315708000 -1.142666000 -1.356903000 6 4.252563000 0.047800000 -0.631718000 6 3.254388000 0.231738000 0.319948000 2.637818000 0.925228000 1.420718000 1 1 -0.923353000 0.079132000 3.339122000 -0.071148000 -2.174196000 2.427370000 1 1.791051000 -0.708718000 2.602285000 1 1.197191000 1.123987000 1 -2.1689670001 -2.914097000 -0.115919000 2.051433000 -4.490719000 0.296109000 -1.594073000 1 -4.322251000 0.544681000 0.141833000 1 1 -3.155420000 1.278127000 -0.980661000

Zero-point correction=	0.420087 (Hartree/Particle)
Thermal correction to Energy=	0.440752
Thermal correction to Enthalpy=	0.441696
Thermal correction to Gibbs Free Ener	rgy= 0.370696
Sum of electronic and zero-point Ener	gies= -983.262367
Sum of electronic and thermal Energie	-983.241702
Sum of electronic and thermal Enthalp	bies= -983.240758
Sum of electronic and thermal Free Er	nergies= -983.311759

	E (Thermal)	CV	S
	KCal/Mol	Cal/Mol-Kelvin	Cal/Mol-Kelvin
Total	276.576	84.424	149.434

```
#B3LYP-D3/6-311+G**
```

#]	B3LYP-D3/6-3	11+G**		tra	ns-158g	
			01			
		\checkmark				175
		N O				
	<u> </u>	F				
						2
	Ph	Ph				40
xyz	-matrix					
6	-0.731569000	0.813920000	-0.772650000			
6	-0.052388000	-0.346416000	-1.600195000			
6	-0.571216000	-1.370496000	-0.572125000			
6	-1.344844000	-0.256450000	0.206301000			
6	1.473083000	-0.459216000	-1.575875000			
7	1.767113000	-1.205457000	-0.345451000			
6	0.668868000	-1.843995000	0.171316000			
8	0.660064000	-2.639025000	1.099536000			
6	3.160534000	-1.498953000	0.106081000			
6	4.142091000	-0.548794000	-0.598307000			
6	3.275560000	-1.268360000	1.624423000			
6	3.500716000	-2.957697000	-0.249594000			
6	0.165738000	1.894395000	-0.227952000			
6	0.291784000	3.098732000	-0.933633000			
6	1.166590000	4.096353000	-0.509114000			
6	1.936049000	3.908645000	0.638408000			
6	1.817599000	2.718535000	1.353797000			
6	0.942149000	1.722829000	0.924249000			
6	-2.847813000	-0.341723000	0.208224000			
6	-3.567212000	-0.128391000	1.388121000			
6	-4.960732000	-0.182227000	1.399280000			
6	-5.660008000	-0.453666000	0.225666000			
6	-4.955077000	-0.6/1502000	-0.958618000			
6	-3.564219000	-0.615292000	-0.96504/000			
1	-1.51940/000	1.282491000	-1.365039000			
1	-0.445361000	-0.4208/1000	-2.613969000			
1	-1.104222000	-2.222857000	-0.901936000			
1	-0.999005000	-0.158085000	1.233900000			
1	1.947892000	1.004152000	-1.303183000			
1	1.842040000	-1.004132000	-2.435370000			
1	4 141520000	-0.703437000	-0.2411/8000			
1	3.010472000	-0.079404000	-1.082722000			
1	1 200530000	-1 479065000	1 9/15299000			
1	2 595327000	-1.479003000	2 175609000			
1	3.051850000	-0.226524000	1 865762000			
1	3.423186000	-3.117164000	-1.329288000			
1	4.523970000	-3.192736000	0.056028000			
1	2.819170000	-3.641654000	0.256920000			
1	-0.305498000	3.254801000	-1.826666000			
1	1.243976000	5.020615000	-1.071064000			
1	2.616210000	4.683383000	0.973763000			
1	2.408375000	2.562136000	2.249837000			
1	0.877104000	0.801690000	1.488012000			
1	-3.029906000	0.077482000	2.308012000			
1	-5.498079000	-0.015256000	2.326287000			
1	-6.743146000	-0.498575000	0.232251000			
1	-5.490146000	-0.887403000	-1.876915000			
1	-3.030408000	-0.790416000	-1.894056000			
Zer	o-point correcti	on=	0.419620	(Hartree/Particle)		
Th	ermal correction	n to Energy=	0 44	0588		
Th	ermal correction	n to Enthalny $-$	0.44	1532		
ть Ть	ermal correction	n to Gibbs From	Energy-	0 368220		
111 C	m of electroni-	and zero point	Energies	0.200227		
Su	in or electronic	and dealership	Ellergies=	-703.2030/3		
Su	m of electronic	and thermal Er	ergies=	-983.244/07		
Su	m of electronic	and thermal Er	thalpies=	-983.243763		
Su	m ot electronic	and thermal Fr	ee Energies=	-983.317066		
	E (Th	ermal)	CV S			
	KCal	/Mol Cal/N	Mol-Kelvin C	al/Mol-Kelvin		
То	tal 2'	76.473 8	84.614 1	54.281		

#B	3LYP-D3/6-3	11+G**		all-	trans-158g	
						·
			01			4 4
	·	\forall				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		Ň				
	(\sim				1
						1. A. 184
						1.15
		└──\				
	<u> </u>	Ph				- U
xyz-	matrix					
6	-0.992033000	-0.660321000	0.122897000			
6	-0.060070000	-1.497587000	1.048949000			
6	0.473688000	-0.183555000	1.661100000			
6	-0./14890000	0.601914000	1.003161000			
7	2 089488000	-1.063935000	0.181582000			
6	1.839291000	0.002342000	1.018159000			
8	2.581673000	0.948111000	1.222419000			
6	3.398175000	-1.240523000	-0.515746000			
6	3.340993000	-2.486585000	-1.413550000			
6	3.670154000	-0.013797000	-1.406017000			
6	4.512217000	-1.412365000	0.533290000			
0 6	-2.422814000	-1.0/910/000	-0.088303000			
6	-4.118038000	-2.804768000	-0.311498000			
6	-5.092775000	-1.835930000	-0.542093000			
6	-4.733039000	-0.488315000	-0.548072000			
6	-3.410161000	-0.114038000	-0.323527000			
6	-0.518935000	1.947816000	0.361093000			
6	0.279597000	2.112828000	-0.777415000			
6	0.439740000	3.365017000	-1.362649000			
6	-0.196668000	4.4812/0000	-0.82026/000			
6	-0.992133000	3.076637000	0.313737000			
1	-0.511299000	-0.539617000	-0.854096000			
1	-0.597399000	-2.159434000	1.727118000			
1	0.567465000	-0.076200000	2.741761000			
1	-1.506550000	0.679514000	1.753120000			
1	0.855256000	-2.618174000	-0.579967000			
1	1.573125000	-2.951349000	1.004715000			
1	4.294293000	-2.584216000	-1.93/400000			
1	2 553774000	-2 403562000	-0.841238000			
1	4.616211000	-0.150806000	-1.937023000			
1	3.727846000	0.897807000	-0.814995000			
1	2.876179000	0.097971000	-2.150096000			
1	4.312341000	-2.283422000	1.164562000			
1	5.475724000	-1.565022000	0.039311000			
1	4.579735000	-0.527373000	1.165763000			
1	-2.045604000	-3.191/96000	0.092151000			
1 1	-6 122716000	-2 127416000	-0.504094000			
1	-5.484136000	0.273318000	-0.726833000			
1	-3.138855000	0.936187000	-0.331469000			
1	0.794895000	1.260948000	-1.204952000			
1	1.067662000	3.471155000	-2.240372000			
1	-0.070936000	5.456823000	-1.276290000			
1	-1.490384000	5.194227000	0.745751000			
1	-1.//1522000	2.969106000	1.7/9201000			
-	•		0 1107-	· / · · · · · · · · · · · · · · · · · ·		
Zero	point correcti	ion=	0.419235	(Hartree/Particle)		
The	rmal correctio	n to Energy=	0.44	0278		
The	rmal correctio	n to Enthalpy=	0.44	1222		
The	rmal correctio	n to Gibbs Free	Energy=	0.367831		
Sun	n of electronic	and zero-point	Energies=	-983.265532		
Sun	n ot electronic	and thermal Er	nergies=	-983.244489		
Sun	n ot electronic	and thermal Er	nthalpies=	-983.243545		
Sun	n ot electronic	and thermal Fr	ee Energies=	-983.316937		
		1)	O V ~			
	E (Th	ermal)	UV S	1/N/-1 TZ 1 '		
m	KCa	I/Moi Cal/I	VIOI-Kelvin C	al/Mol-Kelvin		
Tot	al 2'	/6.279	84.763 1	54.465		

4 References

- [1] V. V. Pavlishchuk, A. W. Addison, *Inorg. Chim. Acta* 2000, 298, 97–102.
- [2] a) M.-A. Haga, E. S. Dodsworth, G. Eryavec, P. Seymour, A. B. P. Lever, *Inorg. Chem.* 1985, 24, 1901–1906; b) R. J. Crutchley, A. B. P. Lever, *J. Am. Chem. Soc.* 1980, 102, 7128–7129.
- [3] M. Pirtsch, S. Paria, T. Matsuno, H. Isobe, O. Reiser, *Chem. Eur. J.* 2012, *18*, 7336–7340.
- [4] J. Sun, W. Wu, J. Zhao, *Chem. Eur. J.* **2012**, *18*, 8100–8112.
- [5] J. D. Slinker, A. A. Gorodetsky, M. S. Lowry, J. Wang, S. Parker, R. Rohl, S. Bernhard,
 G. G. Malliaras, J. Am. Chem. Soc. 2004, 126, 2763–2767.
- [6] M. Lee, S. Neukirchen, C. Cabrele, O. Reiser, J. Pept. Sci. 2017, 23, 556–562.
- [7] D.-J. Barrios Antúnez, M. D. Greenhalgh, C. Fallan, A. M. Z. Slawin, A. D. Smith, Org. Biomol. Chem. 2016, 14, 7268–7274.
- [8] S. Zhao, J.-B. Lin, Y.-Y. Zhao, Y.-M. Liang, P.-F. Xu, Org. Lett. 2014, 16, 1802–1805.
- [9] P. Blaney, R. Grigg, Z. Rankovic, M. Thornton-Pett, J. Xu, *Tetrahedron* 2002, 58, 1719–1737.
- [10] J. D. More, N. S. Finney, Org. Lett. 2002, 4, 3001–3003.
- [11] B. P. Zavesky, N. R. Babij, J. A. Fritz, J. P. Wolfe, Org. Lett. 2013, 15, 5420–5423.
- [12] H. Alinezhad, M. Tajbakhsh, N. Mahdavi, Synth. Commun. 2010, 40, 951–956.
- [13] O. S. Nayal, V. Bhatt, S. Sharma, N. Kumar, J. Org. Chem. 2015, 80, 5912–5918.
- [14] A. A. Nagarkar, M. Yasir, A. Crochet, K. M. Fromm, A. F. M. Kilbinger, *Angew. Chem., Int. Ed.* **2016**, *55*, 12343–12346.
- [15] J. Penjisevic, V. Sukalovic, D. Andric, S. Kostic-Rajacic, V. Soskic, G. Roglic, *Archiv der Pharmazie* 2007, 340, 456–465.
- [16] M. D. Kosobokov, V. V. Levin, A. A. Zemtsov, M. I. Struchkova, A. A. Korlyukov,
 D. E. Arkhipov, A. D. Dilman, *Org. Lett.* 2014, *16*, 1438–1441.
- [17] M. Sietzen, S. Batke, L. Merz, H. Wadepohl, J. Ballmann, *Organometallics* 2015, *34*, 1118–1128.
- [18] X. Huang, N. Jiao, Org. Biomol. Chem. 2014, 12, 4324–4328.
- [19] N. J. Gesmundo, J.-M. M. Grandjean, D. A. Nicewicz, Org. Lett. 2015, 17, 1316–1319.
- [20] G. W. Langley, A. Brinko, M. Munzel, L. J. Walport, C. J. Schofield, R. J. Hopkinson, ACS Chem. Biol. 2016, 11, 755–762.
- [21] S. P. Raillard, R. A. Scheuerman, S. K. Manthati, PCT/US2014/041406, **2014**.
- [22] P. Zhang, H.-R. Hu, Z.-H. Huang, J.-Y. Lei, Y. Chu, D.-Y. Ye, *Bioorg. Med. Chem.* 2012, 22, 7232–7236.
- [23] P. Kancharla, J. X. Kelly, K. A. Reynolds, J. Med. Chem. 2015, 58, 7286–7309.
- [24] K. Naresh, B. Madhava Reddy, V. Harinadha Babu, Eur. J. Pharm. Sci. 2014, 1, 446–451.
- [25] S. Yamazaki, Y. Iwata, Y. Fukushima, Org. Biomol. Chem. 2009, 7, 655–659.

- [26] A. G. Chittiboyina, C. S. Mizuno, P. V. Desai, A. Patny, T. W. Kurtz, H. A. Pershadsingh, R. C. Speth, V. Karamyan, M. A. Avery, *Med. Chem. Res.* 2009, *18*, 589–610.
- [27] T. Vilaivan, *Tetrahedron Lett.* **2006**, *47*, 6739–6742.
- [28] M. Chen, A. Maetzke, Knak Jensen, Svend J., K. V. Gothelf, Eur. J. Org. Chem. 2007, 2007, 5826–5833.
- [29] R. Buchholz, H. Martin R. Hoffmann, Helv. Chim. Acta 1991, 1991, 1213–1220.
- [30] N. de Kimpe, E. Stanoeva, R. Verhé, N. Schamp, *Synthesis* 1988, 8, 587–592.
- [31] S. G. Davies, D. Diez, S. H. Dominguez, N. M. Garrido, D. Kruchinin, P. D. Price, A. D. Smith, Org. Biomol. Chem. 2005, 3, 1284–1301.
- [32] M. Porel, D. N. Thornlow, N. N. Phan, C. A. Alabi, *Nat. Chem.* **2016**, *8*, 590–596.
- [33] B. Emayavaramban, M. Roy, B. Sundararaju, *Chem. Eur. J.* 2016, 22, 3952–3955.
- [34] S. G. Davies, M. E. C. Polywka, D. R. Fenwick, Frank, R. WO Patent WO/1995/018134, 1995.
- [35] A. Acharya, J. Eickhoff, C. Jeffrey, *Synthesis* **2013**, *45*, 1825–1836.
- [36] H. You, H.-S. Youn, I. Im, M.-H. Bae, S.-K. Lee, H. Ko, S. H. Eom, Y.-C. Kim, *Eur. J. Med. Chem.* 2011, 46, 1153–1164.
- [37] M. Beugelmans-Verrier, J. Royer, *Tetrahedron Lett.* **1976**, *18*, 1499–1502.
- [38] W. Oppolzer, R. Achini, E. Pfenninger, H. P. Weber, *Helvetica Chimica Acta* 1976, 59, 1186–1202.
- [39] a) E. Ciganek, Org. React. (Hoboken, NJ, U. S.) 1984, 32, 1–374; b) L. H. Klemm,
 T. M. McGuire, J. Heterocycl. Chem. 1972, 9, 1215–1218.
- [40] R. Hunter, D. Macfarlane, R. Whitby, *Synlett* **2006**, *2006*, 3314–3318.
- [41] J. S. Bryans, D. C. Horwell, C. O. Kneen, D. J. Wustrow, A. J. Thorpe, WO 9817627, 1998.
- [42] A. Leyva-Pérez, P. García-García, A. Corma, Angew. Chem. 2014, 126, 8831–8834.
- [43] X.-T. G. F. Sha, X.-Y. Wu, Synthesis 2017, 49, 647–656.
- [44] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, *Gaussian 09, Revision E.01, Gaussian, Inc., Wallingford CT*, **2013**.
- [45] A. D. McLean and G. S. Chandler, J. Chem. Phys. 1980, 72, 5639-5648.

- [46] K. Raghavachari, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 1980, 72, 650-654.
- [47] A. D. Becke. J. Chem. Phys. 98 **1993** 5648-5652.
- [48] C. Lee, W. Yang, R. G. Parr, *Phys. Rev. B* 1988, 37, 785-789.
- [49] B. Miehlich, A. Savin, H. Stoll, H. Preuss, *Chem. Phys. Lett.* **1989**, *157*, 200-206.
- [50] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 154104.
- [51] E. R. Johnson, S. Keinan, P. Mori-Sanchez, J. Contreras-Garcia, A. J. Cohen, W. Yang, J. Am. Chem. Soc. 2010, 132, 6498-6506.
- [52] J. Contreras-Garcia, E. R. Johnson, S. Keinan, R. Chaudret, J-P. Piquemal, D. N. Beratan, W. Yang. J. Chem. Theory Comput. 2011, 7, 625-632.

F Appendix

1 NMR spectra

¹H-NMR spectra: upper image

¹³C-NMR spectra (DEPT135 integrated): lower image

Solvent and frequency are stated in each spectrum.

2-Hydroxyethyl (E)-4-oxo-4-phenylbut-2-enoate (131)

(E)-4-Oxo-4-phenylbut-2-en-1-yl (Z)-4-oxo-4-phenylbut-2-enoate (136)

2-((tert-Butyldimethylsilyl)oxy)-N-methylethan-1-amine (140)

(*E*)-*N*-(2-((*tert*-Butyldimethylsilyl)oxy)ethyl)-N-methyl-4-oxo-4-phenylbut-2-enamide (141)

4-Methyl-2-(2-oxo-2-phenylethyl)morpholin-3-one (143)

tert-Butyl (2-hydroxyethyl)(methyl)carbamate (146a)

tert-Butyl (2-hydroxyethyl)(phenyl)carbamate (146b)

(9H-Fluoren-9-yl)methyl (2-hydroxyethyl)(methyl)carbamate (146c)

tert-Butyl (*E*)-methyl(4-oxo-4-phenylbut-2-en-1-yl)carbamate (147a)

(9H-Fuoren-9-yl)methyl (E)-methyl(4-oxo-4-phenylbut-2-en-1-yl)carbamate (147b)

(E)-N-(tert-Butyl)-3-phenylprop-2-en-1-amine (170b)

(E)-N-(tert-Butyl)-3-(4-methoxyphenyl)prop-2-en-1-amine (157)

Methyl (E)-4-(tert-butylamino)but-2-enoate (170c)

(101 MHz, CDCl₃)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

N-Benzylprop-2-en-1-amine (170d)

(E)-N-Benzyl-3-phenylprop-2-en-1-amine (170e)

(S,E)-3-Phenyl-N-(1-phenylethyl)prop-2-en-1-amine (248)

(S)-N-(1-Phenylethyl)prop-2-en-1-amine (260)

tert-Butyl (*E*)-2-(3-ethoxy-3-oxoprop-1-en-1-yl)-1*H*-pyrrole-1-carboxylate (183a)

tert-Butyl (E)-2-(3-methoxy-3-oxoprop-1-en-1-yl)-1H-pyrrole-1-carboxylate (183b)

(E)-3-(1-Acetyl-1H-pyrrol-2-yl)acrylic acid (184a)

(E)-3-(1-Acetyl-1H-indol-3-yl)acrylic acid (184b)

N-Cinnamyl-N-methylcinnamamide (153a)

N-Cinnamyl-N-phenylcinnamamide (153b)

N-((*E*)-3-(4-Methoxyphenyl)allyl)-*N*-phenylcinnamamide (153c)

N-(tert-Butyl)-*N-((E)*-3-(4-methoxyphenyl)allyl)cinnamamide (153d)

N-(tert-Butyl)-N-cinnamylcinnamamide (153g)

N-Cinnamylcinnamamide (153e)

N-Benzyl-N-cinnamylcinnamamide (153q)

tert-Butyl cinnamoyl(cinnamyl)carbamate (153t)

N-(tert-Butyl)-N-cinnamylacrylamide (153i)

N-Benzyl-N-cinnamylacrylamide (153s)

N-Cinnamylacrylamide (153f)

0 -10

tert-Butyl allyl(cinnamoyl)carbamate (153u)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm)

80 70 60 50 40 30 20 10

Methyl (E)-4-(N-(tert-butyl)cinnamamido)but-2-enoate (1530)

Methyl 2-(tert-butyl)-3-oxo-2,3,3a,4,9,9a-hexahydro-1H-benzo[f]isoindole-4-

carboxylate (189) (300 MHz, CDCl₃)

N-Allyl-N-(tert-butyl)cinnamamide (153h)

N-Allyl-N-benzylcinnamamide (153r)

tert-Butyl acryloyl(cinnamyl)carbamate (153v)

(E)-N-Allyl-N-(tert-butyl)-3-(furan-2-yl)acrylamide (153k)

(E)-N-Allyl-N-(tert-butyl)-3-(thiophen-2-yl)acrylamide (153l)

(E)-3-(1-Acetyl-1*H*-indol-3-yl)-*N*-allyl-*N*-(*tert*-butyl)acrylamide (153m)

N-Allyl-N-(tert-butyl)acrylamide (153j)

Cinnamyl cinnamate (153w)

(S)-N-Cinnamyl-N-(1-phenylethyl)acrylamide (153x)

(S)-N-Allyl-N-(1-phenylethyl)cinnamamide (153y)

(±)-3-(*tert*-Butyl)-6,7-diphenyl-3-azabicyclo[3.2.0]heptan-2-one (158g)

(±)-3-(*tert*-Butyl)-6-(4-methoxyphenyl)-7-phenyl-3-azabicyclo[3.2.0]heptan-2-one (158d) (300 MHz, CDCl₃)

(±)-3-Benzyl-6,7-diphenyl-3-azabicyclo[3.2.0]heptan-2-one (158f)

(±)-tert-Butyl -2-oxo-6,7-diphenyl-3-azabicyclo[3.2.0]heptane-3-carboxylate (158h)

(±)-trans-3-(tert-Butyl)-6-phenyl-3-azabicyclo[3.2.0]heptan-2-one (158ia)

(±)-cis-3-(tert-Butyl)-6-phenyl-3-azabicyclo[3.2.0]heptan-2-one (158ib)

(±)-trans-3-Benzyl-6-phenyl-3-azabicyclo[3.2.0]heptan-2-on (158ja)

(±)-cis-3-Benzyl-6-phenyl-3-azabicyclo[3.2.0]heptan-2-on (158jb)

(±)-*trans-tert*-Butyl-2-oxo-6-phenyl-3-azabicyclo[3.2.0]heptane-3-carboxylate (158ka)

(±)-cis-tert-Butyl-2-oxo-6-phenyl-3-azabicyclo[3.2.0]heptane-3-carboxylate (158kb)

(±)-Methyl-3-(*tert*-butyl)-2-oxo-7-phenyl-3-azabicyclo[3.2.0]heptane-6-carboxylate (158l) (400 MHz, CDCl₃)

(±)-3-(*tert*-Butyl)-7-phenyl-3-azabicyclo[3.2.0]heptan-2-one (158m)

(±)-3-Benzyl-7-phenyl-3-azabicyclo[3.2.0]heptan-2-one (158n)

(±)-tert-Butyl-2-oxo-7-phenyl-3-azabicyclo[3.2.0]heptane-3-carboxylate (1580)

(±)-3-(*tert*-Butyl)-7-(furan-2-yl)-3-azabicyclo[3.2.0]heptan-2-one (158p)

(±)-3-(*tert*-Butyl)-7-(thiophen-2-yl)-3-azabicyclo[3.2.0]heptan-2-one (158q) (300 MHz, CDCl₃)

(±)-7-(1-Acetyl-1*H*-indol-3-yl)-3-(*tert*-butyl)-3-azabicyclo[3.2.0]heptan-2-one (158r) (300 MHz, CDCl₃)

(±)-6,7-Diphenyl-3-oxabicyclo[3.2.0]heptan-2-one (158t)

(1*R*,5*S*,6*R*)-6-Phenyl-3-((*S*)-1-phenylethyl)-3-azabicyclo[3.2.0]heptan-2-one (158va) (400 MHz, CDCl₃)

(1*S*,5*R*,6*S*)-6-Phenyl-3-((*S*)-1-phenylethyl)-3-azabicyclo[3.2.0]heptan-2-one (158vb) (300 MHz, CDCl₃)

(1*R*,5*S*,7*S*)-7-Phenyl-3-((*S*)-1-phenylethyl)-3-azabicyclo[3.2.0]heptan-2-one (158wa) (400 MHz, CDCl₃)

(1*S*,5*R*,7*R*)-7-Phenyl-3-((*S*)-1-phenylethyl)-3-azabicyclo[3.2.0]heptan-2-one (158wb)

(±)-2-(Aminomethyl)-3,4-diphenylcyclobutane-1-carboxylic acid (198)

(±)-2-(Aminomethyl)-3-phenylcyclobutane-1-carboxylic acid (200)

(±)-2-(Aminomethyl)-3-phenylcyclobutane-1-carboxylic acid (201)

(±)-2-(Aminomethyl)-4-phenylcyclobutane-1,3-dicarboxylic acid (203)

(400 MHz, MeOD)

(±)-2-(Aminomethyl)-4-phenylcyclobutane-1-carboxylic acid (202)

(400 MHz, MeOD)

(±)-2-(((*tert*-Butoxycarbonyl)amino)methyl)-3,4-diphenylcyclobutane-1-carboxylic acid (225) (300 MHz, CDCl₃)

(±)-2-(((*tert*-Butoxycarbonyl)amino)methyl)-3-phenylcyclobutane-1-carboxylic

(±)-cis-2-(((tert-Butoxycarbonyl)amino)methyl)-3-phenylcyclobutane-1-carboxylic

tert-Butyl(((1*R*,2*S*,4*S*)-2-((4*S*,5*R*)-4-methyl-2-oxo-5-phenyloxazolidine-3-carbonyl)-4phenylcyclobutyl)methyl)carbamate (237a) (400 MHz, CDCl₃)

tert-Butyl(((1*S*,2*R*,4*R*)-2-((4*S*,5*R*)-4-methyl-2-oxo-5-phenyloxazolidine-3-carbonyl)-4phenylcyclobutyl)methyl)carbamate (237b) (300 MHz, CDCl₃)

(±)-2-((((((9*H*-Fluoren-9-yl)methoxy)carbonyl)amino)methyl)-3-phenylcyclobutane-1carboxylic acid ((±)-264) (400 MHz)

(1*R*,5*S*,6*R*)-6-Phenyl-3-azabicyclo[3.2.0]heptan-2-one ((1*R*,5*S*,6*R*)-158u)

(300 MHz, CDCl₃)

$(\pm)-4-Phenethylpyrrolidin-2-one~((\pm)-215)$

(300 MHz, CDCl₃)

(±)-3-(Aminomethyl)-5-phenylpentanoic acid hydrochloride ((±)-257)

(300 MHz, MeOD)

2 HPLC-chromatograms

(±)-(*E*)-3-Phenyl-*N*-(1-phenylethyl)prop-2-en-1-amine

Peak Results :

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	UNKNOWN	10,35	49,13	53,4	53,8	49,125
2	UNKNOWN	13.68	50.87	43.4	55.7	50.875
						10
Total			100,00	96,8	109,5	100,000

(S,E)-3-Phenyl-N-(1-phenylethyl)prop-2-en-1-amine (248)

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	UNKNOWN	10,37	100,00	77,2	82,1	100,000
Total			100,00	77,2	82,1	100,000

(±)-N-Cinnamyl-N-(1-phenylethyl)acrylamide

Peak Results :

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]
1	UNKNOWN	20,08	47,94	320,8	237,2	47,938
2	UNKNOWN	24,32	52,06	312,8	257,6	52,062
Total			100,00	633,6	494,7	100,000

(S)-N-Cinnamyl-N-(1-phenylethyl)acrylamide (153x)

Min

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]
2	UNKNOWN	20,47	1,19	6,2	3,4	1,188
1	UNKNOWN	24,38	98,81	327,6	286,8	98,812
Total			100,00	333,8	290,3	100,000

(±)-N-Allyl-N-(1-phenylethyl)cinnamamide

Peak Results :

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	UNKNOWN	11,66	49,08	792,2	204,3	49,080
2	UNKNOWN	14,36	50,92	655,1	212,0	50,920
Total			100.00	1447.3	416.3	100.000

(S)-N-Allyl-N-(1-phenylethyl)cinnamamide (153y)

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	UNKNOWN	11,66	0,19	1,8	0,5	0,189
2	UNKNOWN	14,35	99,81	728,0	238,9	99,811
Total			100.00	729.9	239.3	100.000

Peak Results :

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]
1	UNKNOWN	21,83	45,84	262,8	178,2	45,843
2	UNKNOWN	24,10	0,81	5,2	3,2	0,810
3	UNKNOWN	25.78	52.27	253.3	203.2	52.275
4	UNKNOWN	27,30	1,07	6,6	4,2	1,072
Total			100,00	527,9	388,8	100,000

(1*R*,5*S*,6*R*)-6-Phenyl-3-((*S*)-1-phenylethyl)-3-azabicyclo[3.2.0]heptan-2-one (158va)

SK579_1.DATA - PDA detector Absorbance Analog Channel 1

Indov	Namo	Timo	Ouantity	Hoight	Aroa	Aroa 94
muex	Name	Time	Quantity	Height	Alea	Alea 70
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]
1	UNKNOWN	22,20	99,23	397,8	368,6	99,230
2	UNKNOWN	26,67	0,77	4,3	2,9	0,770
Total			100,00	402,1	371,4	100,000

(±)-6-Phenyl-3-((S)-1-phenylethyl)-3-azabicyclo[3.2.0]heptan-2-one

Peak Results :

			-			
Index	Name	Time	Quantity	Height	Area	Area %
	-	[Min]	[% Area]	[mAU]	[mAU.Min]	[%]
1	UNKNOWN	19,17	45,32	307,2	171,2	45,320
2	UNKNOWN	21,36	1,61	4,7	6,1	1,612
3	UNKNOWN	24.27	50.74	276.3	191.6	50.743
4	UNKNOWN	27,12	2,32	14,1	8,8	2,324
Total			100,00	602,2	377,7	100,000

(1*S*,5*R*,6*S*)-6-Phenyl-3-((*S*)-1-phenylethyl)-3-azabicyclo[3.2.0]heptan-2-one (158vb)

Index	Name	Timo	Quantity	Height	Area	Area %
Index	Name	THILE	Guariary	Tieigitt	Aica	Alea /u
		Min	[% Area]	[mAU]	[mAU.Min]	[%]
1	UNKNOWN	19,53	90,74	388,8	279,8	90,739
2	UNKNOWN	22,44	0,85	5,0	2,6	0,846
3	UNKNOWN	24.94	0.54	2.5	1.7	0,536
4	UNKNOWN	27,83	7,88	38,9	24,3	7,879
Total			100,00	435,3	308,4	100,000

Peak Results :

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	UNKNOWN	32,65	48,60	431,8	415,3	48,602
2	UNKNOWN	40,16	51,40	357,5	439,1	51,398
Total			100.00	789.4	854.4	100.000

(1*R*,5*S*,7*S*)-7-Phenyl-3-((*S*)-1-phenylethyl)-3-azabicyclo[3.2.0]heptan-2-one (158wa)

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	UNKNOWN	31,01	100,00	584,4	716,4	100,000
Total			100,00	584,4	716,4	100,000

(±)-7-Phenyl-3-((S)-1-phenylethyl)-3-azabicyclo[3.2.0]heptan-2-one

Peak Results :

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	UNKNOWN	32,14	49,68	259,1	264,9	49,685
2	UNKNOWN	44,85	50,32	221,8	268,3	50,315
Total			100.00	480.9	533.2	100.000

(1*S*,5*R*,7*R*)-7-Phenyl-3-((*S*)-1-phenylethyl)-3-azabicyclo[3.2.0]heptan-2-one (158wb)

SK618_2_3.DATA - PDA detector Absorbance Analog Channel 1

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	UNKNOWN	32,15	0,30	1,9	2,1	0,301
2	UNKNOWN	43,29	99,70	455,9	680,9	99,699
Total			100.00	457.8	683.0	100.000

(±)-tert-Butyl-2-oxo-6-phenyl-3-azabicyclo[3.2.0]heptane-3-carboxylate ((±)-158ka)

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	UNKNOWN	13,51	48,05	826,3	274,4	48,051
2	UNKNOWN	18,59	51,95	678,4	296,6	51,949
Total			100.00	1504.7	571.0	100.000

tert-Butyl-(1*S*,5*R*,6*S*)-2-oxo-6-phenyl-3-azabicyclo[3.2.0]heptane-3-carboxylate ((1*S*,5*R*,6*S*)-158ka)

Peak Results :

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
2	UNKNOWN	11,81	98,96	424,4	115,2	98,958
1	UNKNOWN	15,52	1,04	3,6	1,2	1,042
Total			100.00	428.0	116.5	100.000

tert-Butyl-(1R,5S,6R)-2-oxo-6-phenyl-3-azabicyclo[3.2.0]heptane-3-carboxylate

((1*R*,5*S*,6*R*)-158ka)

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	UNKNOWN	13,46	0,19	1,5	0,4	0,188
2	UNKNOWN	18,26	99,81	556,0	237,6	99,812
Total			100.00	557.6	238.0	100.000

(±)-6-Phenyl-3-azabicyclo[3.2.0]heptan-2-one ((±)-158u)

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]
1	UNKNOWN	27,52	1,71	7,5	5,4	1,712
2	UNKNOWN	31,05	1,40	6,2	4,4	1,402
3	UNKNOWN	33.64	48.44	177.6	152.0	48.436
4	UNKNOWN	37,43	48,45	159,3	152,0	48,451
Total			100,00	350,6	313,8	100,000

Peak Results :

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]
1	UNKNOWN	33,23	99,81	520,3	480,4	99,815
2	UNKNOWN	37,47	0,19	1,3	0,9	0,185
Total			100,00	521,5	481,3	100,000

(1*S*,5*R*,6*S*)-6-Phenyl-3-azabicyclo[3.2.0]heptan-2-one ((1*S*,5*R*,6*S*)-158u)

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]
3	UNKNOWN	29,51	2,29	17,5	12,2	2,286
4	UNKNOWN	30,54	1,30	9,2	6,9	1,301
2	UNKNOWN	33,36	0.37	2.8	2.0	0.367
1	UNKNOWN	36,57	96,05	505,9	512,1	96,045
Total			100,00	535,4	533,2	100,000

(±)-4-Phenethylpyrrolidin-2-one ((±)-215)

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	UNKNOWN	23,46	49,14	167,2	95,3	49,135
2	UNKNOWN	25,03	50,86	150,7	98,7	50,865
Total			100.00	317.9	194.0	100.000

(S)-4-Phenethylpyrrolidin-2-one ((S)-215)

SK605.DATA - PDA detector Absorbance Analog Channel 1

Peak Results :

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	UNKNOWN	23,07	99,41	274,6	202,4	99,407
2	UNKNOWN	25,25	0,59	2,0	1,2	0,593
Total			100.00	276.6	203.6	100.000

(*R*)-4-Phenethylpyrrolidin-2-one ((*R*)-215)

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]
1	UNKNOWN	23,50	4,94	16,6	7,9	4,943
2	UNKNOWN	24,67	95,06	205,4	151,4	95,057
Total			100.00	222.0	159.3	100.000

(±)-2-(((*tert*-Butoxycarbonyl)amino)methyl)-3-phenylcyclobutane-1-carboxylic acid ((±)-226)

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]
2	UNKNOWN	6,28	50,74	186,7	59,1	50,738
1	UNKNOWN	8,12	49,26	155,8	57,4	49,262
Total			100,00	342,5	116,4	100,000

(1*S*,2*R*,3*S*)-2-(((*tert*-Butoxycarbonyl)amino)methyl)-3-phenylcyclobutane-1-carboxylic acid ((1*S*,2*R*,3*S*)-226)

Peak Results :

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	UNKNOWN	6,43	99,77	283,3	102,7	99,773
2	UNKNOWN	8.78	0.23	0.8	0.2	0.227
Total			100,00	284,2	102,9	100,000

(1*R*,2*S*,3*R*)-2-(((*tert*-Butoxycarbonyl)amino)methyl)-3-phenylcyclobutane-1-carboxylic acid ((1*R*,2*S*,3*R*)-226)

Min

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	UNKNOWN	6,69	0,71	2,5	0,7	0,705
2	UNKNOWN	8.35	99.29	246.2	102.9	99.295
Total			100,00	248,8	103,6	100,000
(±)-2-(((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)methyl)-3-phenylcyclobutane-1carboxylic acid ((±)-264)

Peak Results :

Index Name		Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	UNKNOWN	13,44	46,76	293,6	290,9	46,758
2	UNKNOWN	19,96	53,24	95,8	331,2	53,242
Total			100,00	389,4	622.1	100,000

(1*S*,2*R*,3*S*)-2-(((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)methyl)-3phenylcyclobutane-1-carboxylic acid ((1*S*,2*R*,3*S*)-264)

Peak Results :

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	UNKNOWN	13,66	100,00	224,3	316,9	100,000
Total			100,00	224,3	316,9	100,000

(1R,2S,3R)-2-(((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)methyl)-3-

phenylcyclobutane-1-carboxylic acid ((1R,2S,3R)-264)

Peak Results :

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	UNKNOWN	20,20	100,00	91,2	345,2	100,000
Total			100,00	91,2	345,2	100,000

Analytical HPLC of NPY-analoga (267-270)

Ac-[Tyr-Arg-(1S,2R,3S)-Ph-ACBC-Arg-Tyr]-CONH₂ (267)

Ac-[Tyr-Arg-(1R,2S,3R)-Ph-ACBC-Arg-Tyr]-CONH₂ (268)

100,000

Tota

Ac-[Arg-(1S,2R,3S)-Ph-ACBC-Arg-(1S,2R,3S)-Ph-ACBC-Arg-Tyr]-CONH₂ (269)

Ac-[Arg-(1RS,2S,3R)-Ph-ACBC-Arg-(1R,2S,3R)-Ph-ACBC-Arg-Tyr]-CONH₂ (270)

Peak Table

PDA Ch1 220nm							
Peak#	Ret. Time	Area%					
1	18,639	100,000					
Total		100,000					

3 X-ray crystallographic data

(±)-Methyl 2-(tert-butyl)-3-oxo-2,3,3a,4,9,9a-hexahydro-1H-benzo[f]isoindole-4carboxylate (189)

Table 1: Crystal data and structure refinement for 189.				
Chemical formula	C ₁₈ H ₂₃ NO ₃			
Mr	301.37			
Crystal system, space group	Orthorhombic, Pnma			
Temperature (K)	123			
<i>a</i> , <i>b</i> , <i>c</i> (Å)	19.4261 (6), 7.7504 (3), 10.7507 (3)			
$V(\text{\AA}^3)$	1618.63 (9)			
Ζ	4			
Radiation type	Cu Ka			
$\mu (mm^{-1})$	0.67			
Crystal size (mm)	$0.18 \times 0.05 \times 0.04$			
F(000)	648			
Diffractometer	SuperNova, Single source at offset, Atlas			
Absorption correction	Gaussian <i>CrysAlis PRO</i> 1.171.38.42b (Rigaku Oxford Diffraction, 2015) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.			

T_{\min}, T_{\max}	0.924, 0.980
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	18337, 1748, 1555
R _{int}	0.042
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.622
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.047, 0.130, 1.04
No. of reflections	1748
No. of parameters	239
No. of restraints	25
H-atom treatment	All H-atom parameters refined
$\Delta \rho_{max}, \Delta \rho_{min} \ (e \ {\AA}^{-3})$	0.33, -0.35

Table 2: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **189**. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} .

· /	1		e	
Atom	X	У	Z	U_{eq}
O(3)	3015.2(7)	7500	2780.2(12)	40.0(4)
N(1)	2886.4(10)	7253(17)	4915.7(18)	33(2)
C(1)	5292.0(9)	7500	5325.9(17)	26.1(4)
C(9)	3245.5(9)	7500	3836.2(18)	29.8(4)
C(3)	6540.6(10)	7500	5190(2)	33.2(5)
C(2)	5942.9(10)	7500	5880(2)	31.2(4)
C(12)	4665(1)	7500	6164.2(18)	32.1(5)
C(10)	3328.3(10)	7500	6020.0(18)	34.1(5)
C(8)	3992.6(12)	7747(14)	4192(2)	25(2)
C(17)	4683.0(13)	7500	-59.4(19)	35.6(5)
C(6)	5251.7(12)	7218(5)	4031(2)	21.2(11)
C(4)	6503.6(13)	7252(10)	3908(3)	29.0(16)
O(2)	4656.2(10)	6745(2)	1179.3(16)	28.2(4)
C(15A)	1822(3)	9095(7)	4506(4)	46.8(6)
C(5)	5861.6(13)	7154(4)	3344(2)	30.7(11)
C(16)	4568.3(12)	7895(3)	2100(2)	24.0(8)
C(7)	4551.9(12)	7028(3)	3360(2)	23.2(6)
C(11)	4031.0(13)	6983(3)	5486(2)	25.8(6)
C(13)	2119.2(11)	7500	4976(2)	47.9(5)
C(14)	1884.7(15)	7983(6)	6327(3)	49.8(6)
C(15)	1878(3)	9165(7)	4213(4)	46.2(6)
O(1)	4525.5(10)	9430(2)	1925.8(17)	31.0(4)

exponent	$xponent takes the form2 \square [n u x 0]_1 + + 2n u x 0 x 0]_{2}$						
Atom	U ₁₁	U_{22}	U ₃₃	U_{23}	<i>U</i> ₁₃	U_{12}	
O(3)	23.4(7)	71.9(11)	24.7(7)	0	-1.1(5)	0	
N(1)	18.8(8)	57(7)	23.7(9)	0.0(14)	1.0(6)	-1.9(14)	
C(1)	23.4(9)	25.5(9)	29.4(9)	0	-1.5(7)	0	
C(9)	20.4(9)	43.5(11)	25.5(9)	0	1.6(7)	0	
C(3)	21.9(9)	32.2(10)	45.6(12)	0	-5.5(8)	0	
C(2)	25.6(9)	33.6(10)	34.4(10)	0	-5.8(8)	0	
C(12)	26(1)	45.5(12)	24.9(9)	0	-1.8(7)	0	
C(10)	23.2(9)	56.9(14)	22.2(9)	0	1.3(7)	0	
C(8)	20.2(10)	29(7)	24.2(10)	0.3(12)	0.0(7)	0.1(12)	
C(17)	46.0(13)	38.8(12)	22.0(9)	0	3.8(8)	0	
C(6)	20.6(9)	14(3)	29.5(10)	0.4(9)	-0.7(8)	-1.0(9)	
C(4)	21.5(10)	24(5)	42.1(12)	3.7(13)	4.5(9)	-0.8(12)	
O(2)	36.8(10)	28.0(8)	19.8(9)	-1.5(7)	3.7(7)	1.5(7)	
C(15A)	20.6(9)	82.0(13)	37.8(13)	-7.6(8)	10.5(10)	1.2(7)	
C(5)	24.4(11)	36(3)	31.8(12)	2.5(11)	3.6(9)	-1.5(10)	
C(16)	17.9(9)	25(3)	28.8(12)	-0.9(9)	1.8(8)	-1.0(8)	
C(7)	21.1(10)	23.8(17)	24.6(11)	0.3(8)	0.7(9)	-2.4(8)	
C(11)	23.1(11)	32.1(16)	22.2(11)	-1.5(9)	1.0(9)	0.0(8)	
C(13)	21.3(7)	86.1(12)	36.2(10)	0	7.8(7)	0	
C(14)	23.9(9)	88.0(16)	37.6(11)	0.0(9)	8.1(9)	1.2(9)	
C(15)	20.4(9)	81.6(13)	36.7(13)	-7.1(8)	10.2(10)	1.1(7)	
O (1)	39.2(10)	25.6(11)	28.3(9)	1.9(8)	3.5(8)	0.5(8)	

Table 3: Anisotropic Displacement Parameters (×10⁴) for 189. The anisotropic displacement factor exponent takes the form: $-2\Box^2/h^2a^{*2} \times U_{11} + ... + 2hka^* \times b^* \times U_{12}$

 Table 4: Bond Lengths in Å for 189.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
O(3)	C(9)	1.220(2)	C(10)	C(11)	1.534(3)
N(1)	$N(1)^{1}$	0.38(3)	C(8)	$C(8)^{1}$	0.38(2)
N(1)	C(9)	1.367(3)	C(8)	C(7)	1.514(5)
N(1)	C(10)	1.478(3)	C(8)	C(11)	1.514(5)
N(1)	$C(13)^{1}$	1.504(3)	C(17)	$O(2)^{1}$	1.456(2)
N(1)	C(13)	1.504(3)	C (17)	O(2)	1.456(2)
C (1)	C(2)	1.398(3)	C(6)	C(5)	1.397(3)
C(1)	C(12)	1.515(3)	C(6)	$C(5)^{1}$	1.479(3)
C(1)	$C(6)^{1}$	1.411(3)	C(6)	C(7)	1.546(3)
C(1)	C(6)	1.411(3)	C(6)	$C(7)^{1}$	1.646(3)
C(9)	$N(1)^{1}$	1.367(3)	C(4)	$C(4)^{1}$	0.384(16)
C(9)	$C(8)^{1}$	1.513(3)	C(4)	C(5)	1.389(3)
C(9)	C(8)	1.513(3)	O(2)	C(16)	1.343(3)
C(3)	C(2)	1.378(3)	O(2)	$O(1)^1$	1.240(3)
C(3)	C(4)	1.394(4)	C(15A)	$C(13)^{1}$	1.455(5)
C(3)	$C(4)^{1}$	1.394(4)	C(15A)	C(13)	1.455(5)
C(12)	C(11)	1.486(3)	C(5)	$C(4)^{1}$	1.461(4)
C(12)	$C(11)^1$	1.486(3)	C(16)	$O(2)^{1}$	1.042(3)
C(10)	$N(1)^{1}$	1.478(3)	C(16)	C(7)	1.512(3)
C(10)	$C(11)^{1}$	1.534(3)	C(16)	O (1)	1.207(3)

Atom	Atom	Length/Å	
C(16)	$O(1)^1$	1.814(3)	
C(7)	C(8) ¹	1.419(3)	
C(7)	$C(16)^1$	1.356(3)	
C(7)	$O(1)^1$	1.912(3)	
C(11)	$C(8)^{1}$	1.409(4)	
C(13)	$N(1)^{1}$	1.504(3)	
C(13)	$C(15A)^{1}$	1.455(5)	
C(13)	$C(13)^{1}$	0.000(5)	
C(13)	C(14)	1.567(4)	

Atom	Atom	Length/Å
C(13)	$C(14)^{1}$	1.567(4)
C(13)	$C(15)^{1}$	1.599(5)
C(13)	C(15)	1.599(5)
C(14)	$C(14)^{1}$	0.748(9)
C(15)	$C(13)^{1}$	1.599(5)
O(1)	$O(2)^{1}$	1.240(3)
O(1)	$C(16)^{1}$	1.814(3)
O(1)	$C(7)^{1}$	1.912(3)

Table 5: Bond Angles in ° for 189.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
$N(1)^{1}$	N(1)	C(9)	81.9(5)	N(1)	C(10)	C(11)	100.5(2)
$N(1)^{1}$	N(1)	C(10)	82.5(5)	N(1)	C(10)	$C(11)^{1}$	104.5(2)
$N(1)^{1}$	N(1)	C(13)	82.7(5)	$N(1)^{1}$	C(10)	C(11)	104.5(2)
$N(1)^{1}$	N(1)	$C(13)^{1}$	82.7(5)	$C(11)^1$	C(10)	C(11)	30.3(2)
C(9)	N(1)	C(10)	111.6(3)	C(9)	C(8)	C(7)	119.5(4)
C(9)	N(1)	$C(13)^1$	121.6(3)	C(9)	C(8)	C(11)	103.3(3)
C(9)	N(1)	C(13)	121.6(3)	$C(8)^{1}$	C(8)	C(9)	82.7(4)
C(10)	N(1)	$C(13)^{1}$	121.6(3)	C(8) ¹	C(8)	C(7)	68.4(4)
C(10)	N(1)	C(13)	121.6(3)	$C(8)^{1}$	C(8)	C(11)	67.0(4)
C(13)	N(1)	$C(13)^{1}$	0.00(18)	C(11)	C(8)	C(7)	111.4(5)
C(2)	C(1)	C(12)	118.27(17)	$O(2)^{1}$	C(17)	O(2)	47.43(16)
C(2)	C(1)	C(6)	118.09(18)	C(1)	C(6)	$C(5)^{1}$	113.4(2)
C(2)	C(1)	$C(6)^{1}$	118.09(18)	C(1)	C(6)	C(7)	121.61(19)
C(6)	C(1)	C(12)	122.82(17)	C(1)	C(6)	$C(7)^{1}$	115.1(2)
$C(6)^1$	C(1)	C(12)	122.82(17)	C(5)	C(6)	C(1)	118.7(2)
C(6)	C(1)	$C(6)^1$	17.8(3)	C(5)	C(6)	C(5) ¹	21.3(2)
O(3)	C(9)	$N(1)^{1}$	127.05(19)	C(5)	C(6)	C(7)	119.7(2)
O(3)	C(9)	N(1)	127.04(19)	C(5)	C(6)	$C(7)^{1}$	118.7(2)
O(3)	C(9)	C(8) ¹	125.96(18)	$C(5)^{1}$	C(6)	C(7)	120.2(2)
O(3)	C(9)	C(8)	125.96(18)	C(5) ¹	C(6)	$C(7)^{1}$	109.0(2)
$N(1)^{1}$	C(9)	N(1)	16.1(11)	C(7)	C(6)	$C(7)^{1}$	26.24(17)
N(1)	C(9)	C(8) ¹	104.9(2)	$C(4)^{1}$	C(4)	C(3)	82.1(3)
$N(1)^{1}$	C(9)	C(8) ¹	106.99(19)	$C(4)^{1}$	C(4)	C(5)	93.2(4)
N(1)	C(9)	C(8)	106.99(19)	C(5)	C(4)	C(3)	119.1(2)
$N(1)^{1}$	C(9)	C(8)	104.9(2)	C(16)	O(2)	C(17)	114.32(17)
C(8)	C(9)	C(8) ¹	14.5(8)	$O(1)^1$	O(2)	C(17)	153.48(19)
C(2)	C(3)	$C(4)^{1}$	119.3(2)	$O(1)^1$	O(2)	C(16)	89.12(17)
C(2)	C(3)	C(4)	119.3(2)	$C(13)^{1}$	C(15A)	C(13)	0.00(17)
$C(4)^{1}$	C(3)	C(4)	15.8(7)	C(6)	C(5)	$C(4)^{1}$	119.5(2)
C(3)	C(2)	C(1)	122.19(19)	C(4)	C(5)	C(6)	121.9(2)
$C(11)^{1}$	C(12)	C(1)	112.01(17)	C(4)	C(5)	$C(4)^{1}$	15.2(6)
C(11)	C(12)	C(1)	112.01(17)	$O(2)^{1}$	C(16)	O(2)	57.1(2)
C(11)	C(12)	$C(11)^{1}$	31.3(2)	$O(2)^{1}$	C(16)	C(7)	166.6(2)
$N(1)^{1}$	C(10)	N(1)	14.9(10)	O(2)	C(16)	C(7)	111.58(18)
$N(1)^{1}$	C(10)	$C(11)^{1}$	100.5(2)	O(2)	C(16)	O(1) ¹	43.13(12)

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
$O(2)^{1}$	C(16)	O(1)	66.43(19)	$N(1)^{1}$	C(13)	$C(15)^{1}$	111.8(5)
$O(2)^{1}$	C(16)	$O(1)^{1}$	100.1(2)	N(1)	C(13)	C(15)	111.8(5)
C(7)	C(16)	$O(1)^1$	69.51(14)	C(15A)	C(13)	$N(1)^{1}$	105.7(5)
O(1)	C(16)	O(2)	123.3(2)	C(15A) ¹	C(13)	N(1)	105.7(5)
O(1)	C(16)	C(7)	125.1(2)	$C(15A)^{1}$	C(13)	$N(1)^{1}$	119.1(5)
O(1)	C(16)	$O(1)^1$	163.8(3)	C(15A)	C(13)	N(1)	119.1(5)
C(8) ¹	C(7)	C(8)	14.5(8)	$C(15A)^{1}$	C(13)	C(15A)	116.3(5)
C(8) ¹	C(7)	C(6)	111.5(2)	C(15A)	C(13)	$C(14)^{1}$	114.2(2)
C(8)	C(7)	C(6)	108.6(2)	C(15A)	C(13)	C(14)	90.2(2)
C(8) ¹	C(7)	C(16)	121.8(3)	$C(15A)^{1}$	C(13)	C(14)	114.2(2)
C(8)	C(7)	$O(1)^1$	132.5(3)	$C(15A)^{1}$	C(13)	$C(14)^{1}$	90.2(2)
C(8) ¹	C(7)	$O(1)^1$	124.1(3)	$C(13)^{1}$	C(13)	N(1)	0(10)
C(6)	C(7)	$O(1)^{1}$	117.14(19)	$C(13)^{1}$	C(13)	$N(1)^{1}$	0(10)
C(16) ¹	C(7)	C(8) ¹	130.0(2)	$C(13)^1$	C(13)	C(15A)	0(10)
C(16)	C(7)	C(8)	112.4(3)	$C(13)^{1}$	C(13)	C(15A) ¹	0(10)
C(16) ¹	C(7)	C(8)	126.3(3)	$C(13)^{1}$	C(13)	$C(14)^{1}$	0(10)
C(16)	C(7)	C(6)	110.9(2)	$C(13)^{1}$	C(13)	C(14)	0(10)
$C(16)^1$	C(7)	C(6)	116.2(2)	$C(13)^{1}$	C(13)	$C(15)^{1}$	0(10)
C(16) ¹	C(7)	C(16)	23.86(17)	$C(13)^{1}$	C(13)	C(15)	0(10)
C(16) ¹	C(7)	$O(1)^1$	38.88(13)	C(14)	C(13)	$C(14)^{1}$	27.6(3)
C(16)	C(7)	$O(1)^1$	62.69(13)	C(14)	C(13)	C(15)	101.4(2)
C(12)	C(11)	C(10)	118.94(19)	$C(14)^1$	C(13)	$C(15)^{1}$	101.4(2)
C(12)	C(11)	C(8)	112.7(3)	C(14)	C(13)	$C(15)^{1}$	125.6(2)
C(8) ¹	C(11)	C(12)	119.2(3)	$C(14)^1$	C(13)	C(15)	125.6(2)
C(8) ¹	C(11)	C(10)	106.5(2)	$C(15)^{1}$	C(13)	C(15)	107.6(5)
C(8)	C(11)	C(10)	101.4(2)	$C(14)^1$	C(14)	C(13)	76.19(16)
C(8) ¹	C(11)	C(8)	14.5(8)	$C(13)^{1}$	C(15)	C(13)	0.00(14)
N(1)	C(13)	$N(1)^{1}$	14.6(10)	$O(2)^{1}$	O(1)	$C(16)^{1}$	47.76(13)
N(1)	C(13)	$C(14)^1$	107.3(2)	$O(2)^{1}$	O(1)	C(7) ¹	94.71(15)
N(1)	C(13)	C(14)	111.0(2)	C(16)	O(1)	$O(2)^{1}$	50.39(16)
$N(1)^{1}$	C(13)	$C(14)^1$	111.0(2)	C(16)	O(1)	$C(16)^{1}$	3.28(6)
$N(1)^{1}$	C(13)	C(14)	107.3(2)	$C(16)^1$	O(1)	$C(7)^{1}$	47.79(12)
$N(1)^{1}$	C(13)	C(15)	99.5(5)	C(16)	O(1)	$C(7)^{1}$	44.82(15)
N(1)	C(13)	$C(15)^{1}$	99.5(5)				

Table 6: Torsion Angles in ° for 189.

Atom	Atom	Atom Atom	Angle/°
O(3)	C(9)	$C(8) C(8)^1$	-95.3(3)
O(3)	C(9)	C(8) C(7)	-35.2(9)
O(3)	C(9)	C(8) C(11)	-159.5(2)
$N(1)^{1}$	N(1)	C(9) O(3)	-96.1(4)
$N(1)^{1}$	N(1)	C(9) C(8)	84.8(4)
$N(1)^{1}$	N(1)	$C(9) C(8)^1$	99.8(4)
$N(1)^{1}$	N(1)	C(10) C(11)	-106.98(15)
$N(1)^{1}$	N(1)	$C(10) C(11)^1$	-76.21(17)
$N(1)^{1}$	N(1)	C(13) C(15A)	24.6(3)
$N(1)^{1}$	N(1)	C(13) C(15A)	157.8(2)

Atom	Atom	Atom Atom	Angle/°
$N(1)^{1}$	N(1)	$C(13) C(13)^1$	0.00(11)
$N(1)^{1}$	N(1)	$C(13) C(14)^1$	-107.0(2)
$N(1)^{1}$	N(1)	C(13) C(14)	-78.0(3)
$N(1)^{1}$	N(1)	$C(13) C(15)^1$	147.8(2)
$N(1)^{1}$	N(1)	C(13) C(15)	34.4(3)
N(1)	C(9)	$C(8) C(8)^1$	83.8(6)
$N(1)^{1}$	C(9)	$C(8) C(8)^1$	100.4(6)
N(1)	C(9)	C(8) C(7)	143.9(7)
$N(1)^{1}$	C(9)	C(8) C(7)	160.5(7)
$N(1)^{1}$	C(9)	C(8) C(11)	36.2(8)

Atom	Atom	Atom Atom	Angle/°	Atom	Atom	Atom Atom	Angle/°
N(1)	C(9)	C(8) C(11)	19.6(8)	C(2)	C(3)	$C(4) C(4)^1$	94.47(19)
$N(1)^{1}$	C(10)	C(11) C(12)	148.1(5)	C(2)	C(3)	C(4) C(5)	5.3(8)
N(1)	C(10)	C(11) C(12)	162.8(5)	C(12)	C(1)	C(2) C(3)	180.000(0)
N(1)	C(10)	$C(11) C(8)^1$	24.7(7)	C(12)	C(1)	C(6) C(5)	-176.8(2)
$N(1)^{1}$	C(10)	$C(11) C(8)^1$	10.0(7)	C(12)	C(1)	$C(6) C(5)^1$	160.27(17)
$N(1)^{1}$	C(10)	C(11) C(8)	23.9(6)	C(12)	C(1)	$C(6) C(7)^1$	33.8(3)
N(1)	C(10)	C(11) C(8)	38.7(6)	C(12)	C(1)	C(6) C(7)	4.8(4)
$N(1)^{1}$	C(13)	$C(14) C(14)^1$	-102.4(5)	C(10)	N(1)	C(9) O(3)	-174.8(3)
N(1)	C(13)	$C(14) C(14)^1$	-87.4(5)	C(10)	N(1)	$C(9) N(1)^1$	-78.7(7)
$N(1)^{1}$	C(13)	$C(15) C(13)^1$	0(39)	C(10)	N(1)	$C(9) C(8)^1$	21.1(10)
N(1)	C(13)	$C(15) C(13)^1$	0(80)	C(10)	N(1)	C(9) C(8)	6.2(10)
C(1)	C(12)	C(11) C(10)	-158.81(14)	C(10)	N(1)	$C(13) N(1)^1$	76.6(9)
C(1)	C(12)	C(11) C(8)	-40.4(4)	C(10)	N(1)	C(13) C(15A) ¹	-125.7(8)
C(1)	C(12)	$C(11) C(8)^1$	-26.0(5)	C(10)	N(1)	C(13) C(15A)	101.2(8)
C(1)	C(6)	$C(5) C(4)^1$	-13.5(6)	C(10)	N(1)	$C(13) C(13)^1$	0.00(13)
C(1)	C(6)	C(5) C(4)	4.0(6)	C(10)	N(1)	$C(13) C(14)^1$	-30.4(10)
C(1)	C(6)	C(7) C(8)	17.9(5)	C(10)	N(1)	C(13) C(14)	-1.4(11)
C(1)	C(6)	$C(7) C(8)^1$	2.7(6)	C(10)	N(1)	$C(13) C(15)^1$	-135.6(9)
C(1)	C(6)	$C(7) C(16)^1$	167.4(2)	C(10)	N(1)	C(13) C(15)	111.0(8)
C(1)	C(6)	C(7) C(16)	141.9(3)	C (8) ¹	C(9)	C(8) C(7)	60.1(6)
C(1)	C(6)	$C(7) O(1)^1$	-148.9(2)	C (8) ¹	C(9)	C(8) C(11)	-64.2(5)
C(9)	N(1)	$C(10) N(1)^1$	78.2(8)	C (8) ¹	C(8)	C(7) C(6)	-104.0(2)
C(9)	N(1)	C(10) C(11)	-28.7(9)	C(8) ¹	C(8)	$C(7) C(16)^1$	110.4(4)
C(9)	N(1)	$C(10) C(11)^1$	2.0(9)	C(8) ¹	C(8)	C(7) C(16)	132.9(2)
C(9)	N(1)	$C(13) N(1)^1$	-75.8(9)	C (8) ¹	C(8)	$C(7) O(1)^1$	60.0(4)
C(9)	N(1)	C(13) C(15A)	-51.2(11)	$C(8)^{1}$	C(8)	C(11) C(12)	119.7(2)
C(9)	N(1)	C(13) C(15A) ¹	81.9(10)	C (8) ¹	C(8)	C(11) C(10)	-112.04(17)
C(9)	N(1)	$C(13) C(13)^1$	0.00(14)	C(17)	O(2)	$C(16) O(2)^1$	-7.6(3)
C(9)	N(1)	$C(13) C(14)^1$	177.2(8)	C(17)	O(2)	C(16) C(7)	-179.45(19)
C(9)	N(1)	C(13) C(14)	-153.8(7)	C(17)	O(2)	$C(16) O(1)^1$	167.2(2)
C(9)	N(1)	$C(13) C(15)^1$	72.0(10)	C(17)	O(2)	C(16) O(1)	-1.1(3)
C(9)	N(1)	C(13) C(15)	-41.4(11)	C(6) ¹	C(1)	C(2) C(3)	-10.11(18)
C(9)	C(8)	$C(7) C(8)^1$	-67.7(6)	C(6)	C(1)	C(2) C(3)	10.11(18)
C(9)	C(8)	C(7) C(6)	-171.7(5)	C(6)	C(1)	$C(12) C(11)^1$	-27.5(2)
C(9)	C(8)	$C(7) C(16)^1$	42.7(9)	C(6)	C(1)	C(12) C(11)	6.3(2)
C(9)	C(8)	C(7) C(16)	65.2(7)	C(6) ¹	C(1)	C(12) C(11)	27.5(2)
C(9)	C(8)	$C(7) O(1)^1$	-7.7(9)	C(6) ¹	C(1)	$C(12) C(11)^1$	-6.3(2)
C(9)	C(8)	C(11) C(12)	-164.3(3)	C(6) ¹	C(1)	C(6) C(5)	87.4(3)
C(9)	C(8)	C(11) C(10)	-36.0(5)	C(6) ¹	C(1)	$C(6) C(5)^1$	64.5(3)
C(9)	C(8)	$C(11) C(8)^1$	76.0(5)	$C(6)^1$	C(1)	$C(6) C(7)^1$	-62.0(2)
C(3)	C(4)	C(5) C(6)	-2.9(8)	C(6) ¹	C(1)	C(6) C(7)	-91.0(3)
C(3)	C(4)	$C(5) C(4)^1$	82.7(6)	$C(4)^{1}$	C(3)	C(2) C(1)	9.1(4)
C(2)	C(1)	$C(12) C(11)^1$	163.10(11)	C(4)	C(3)	C(2) C(1)	-9.1(4)
C(2)	C(1)	C(12) C(11)	-163.10(11)	$C(4)^{1}$	C(3)	C(4) C(5)	-89.2(6)
C(2)	C(1)	$C(6) C(5)^1$	-30.3(3)	C(4) ¹	C(4)	C(5) C(6)	-85.6(4)
C(2)	C(1)	C(6) C(5)	-7.3(4)	O(2) ¹	C(17)	O(2) C(16)	6.2(2)
C(2)	C(1)	$C(6) C(7)^1$	-156.78(15)	O(2) ¹	C(17)	$O(2) O(1)^1$	156.4(4)
C(2)	C (1)	C(6) C(7)	174.2(2)	O(2) ¹	C(16)	C(7) C(8)	-168.1(11)

Atom	Atom	Atom Atom	Angle/°	Atom	Atom	Atom Atom	Angle/°
O(2)	C(16)	C(7) C(8) ¹	-124.7(4)	$C(11)^{1}$	C(10)	$C(11) C(8)^1$	-76.1(4)
O(2)	C(16)	C(7) C(8)	-137.2(4)	C(11)	C(8)	$C(7) C(8)^1$	52.7(5)
$O(2)^{1}$	C(16)	$C(7) C(8)^1$	-155.6(11)	C(11)	C(8)	C(7) C(6)	-51.3(6)
$O(2)^{1}$	C(16)	C(7) C(6)	70.0(11)	C(11)	C(8)	C(7) C(16)	-174.5(4)
O(2)	C(16)	C(7) C(6)	100.9(2)	C(11)	C(8)	$C(7) C(16)^1$	163.1(3)
$O(2)^{1}$	C(16)	$C(7) C(16)^1$	-37.6(11)	C(11)	C(8)	$C(7) O(1)^1$	112.7(3)
O(2)	C(16)	$C(7) C(16)^1$	-6.8(2)	C(13) ¹	N(1)	C(9) O(3)	-19.9(13)
O(2)	C(16)	$C(7) O(1)^1$	-9.72(16)	C(13)	N(1)	C(9) O(3)	-19.9(13)
$O(2)^{1}$	C(16)	$C(7) O(1)^1$	-40.6(11)	C(13)	N(1)	$C(9) N(1)^1$	76.2(9)
O(2)	C(16)	$O(1) O(2)^1$	-5.92(15)	$C(13)^{1}$	N(1)	$C(9) N(1)^1$	76.2(9)
$O(2)^{1}$	C(16)	$O(1) C(16)^1$	35.7(9)	C(13)	N(1)	$C(9) C(8)^1$	176.0(8)
O(2)	C(16)	$O(1) C(16)^1$	29.8(7)	$C(13)^{1}$	N(1)	$C(9) C(8)^1$	176.0(8)
O(2)	C(16)	$O(1) C(7)^1$	-175.6(3)	C(13)	N(1)	C(9) C(8)	161.0(8)
O(2) ¹	C(16)	$O(1) C(7)^1$	-169.7(3)	$C(13)^{1}$	N(1)	C(9) C(8)	161.0(8)
C(15A)	C(13)	$C(14) C(14)^1$	151.1(3)	$C(13)^{1}$	N(1)	$C(10) N(1)^1$	-76.6(9)
C(15A) ¹	^L C(13)	$C(14) C(14)^1$	31.9(3)	C(13)	N(1)	$C(10) N(1)^1$	-76.6(9)
$C(5)^{1}$	C(6)	C(5) C(4)	85.0(5)	C(13)	N(1)	$C(10) C(11)^1$	-152.8(7)
$C(5)^{1}$	C(6)	$C(5) C(4)^1$	67.5(4)	$C(13)^{1}$	N(1)	$C(10) C(11)^1$	-152.8(7)
C(5) ¹	C(6)	$C(7) C(8)^1$	-151.1(5)	C(13)	N(1)	C(10) C(11)	176.4(8)
$C(5)^{1}$	C(6)	C(7) C(8)	-135.9(5)	$C(13)^{1}$	N(1)	C(10) C(11)	176.4(8)
C(5)	C(6)	$C(7) C(8)^1$	-175.7(5)	$C(13)^{1}$	N(1)	$C(13) N(1)^1$	0(100)
C(5)	C(6)	C(7) C(8)	-160.5(5)	$C(13)^{1}$	N(1)	C(13) C(15A)	0(100)
C(5)	C(6)	$C(7) C(16)^1$	-11.0(4)	$C(13)^1$	N(1)	C(13) C(15A) ¹	0(100)
C(5) ¹	C(6)	$C(7) C(16)^1$	13.6(4)	$C(13)^1$	N(1)	C(13) C(14)	0(100)
C(5)	C(6)	C(7) C(16)	-36.5(4)	$C(13)^{1}$	N(1)	$C(13) C(14)^1$	0(100)
$C(5)^{1}$	C(6)	C(7) C(16)	-11.9(4)	$C(13)^{1}$	N(1)	C(13) C(15)	0(100)
$C(5)^{1}$	C(6)	$C(7) O(1)^1$	57.3(4)	$C(13)^{1}$	N(1)	$C(13) C(15)^1$	0(100)
C(5)	C(6)	$C(7) O(1)^1$	32.7(4)	$C(13)^{1}$	C(15A)	$C(13) N(1)^1$	0(100)
C(7)	C(8)	C(11) C(12)	66.2(6)	$C(13)^{1}$	C(15A)	C(13) N(1)	0(100)
C(7)	C(8)	C(11) C(10)	-165.5(4)	$C(13)^{1}$	C(15A)	$C(13) C(15A)^{1}$	0(100)
C(7)	C(8)	$C(11) C(8)^1$	-53.5(5)	$C(13)^{1}$	C(15A)	$C(13) C(14)^1$	0(100)
C(7)	C(6)	$C(5) C(4)^1$	165.0(4)	$C(13)^{1}$	C(15A)	C(13) C(14)	0(100)
C(7)	C(6)	C(5) C(4)	-177.5(5)	$C(13)^{1}$	C(13)	$C(14) C(14)^1$	0.0(5)
$C(7)^{1}$	C(6)	$C(5) C(4)^1$	134.8(4)	$C(14)^{1}$	C(13)	$C(15) C(13)^1$	0(100)
$C(7)^{1}$	C(6)	C(5) C(4)	152.3(5)	C(14)	C(13)	$C(15) C(13)^1$	0(100)
$C(7)^{1}$	C(6)	$C(7) C(8)^1$	-80.2(5)	$C(15)^{1}$	C(13)	$C(14) C(14)^1$	32.2(3)
$C(7)^{1}$	C(6)	C(7) C(8)	-65.0(4)	C(15)	C(13)	$C(14) C(14)^1$	153.8(3)
$C(7)^{1}$	C(6)	$C(7) C(16)^1$	84.5(2)	$C(15)^{1}$	C(13)	$C(15) C(13)^1$	0(100)
$C(7)^{1}$	C(6)	C(7) C(16)	59.04(17)	$O(1)^1$	O(2)	$C(16) O(2)^1$	-174.75(13)
$C(7)^{1}$	C(6)	$C(7) O(1)^1$	128.20(15)	$O(1)^1$	O(2)	C(16) C(7)	13.4(2)
C(7)	C(16)	$O(1) O(2)^1$	172.2(3)	$O(1)^{1}$	O(2)	C(16) O(1)	-168.3(3)
C(7)	C(16)	$O(1) C(16)^1$	-152.1(11)	$O(1)^1$	C(16)	C(7) C(8)	-127.5(3)
C(7)	C(16)	$O(1) C(7)^1$	2.46(10)	$O(1)^1$	C(16)	$C(7) C(8)^1$	-115.0(4)
$C(11)^{1}$	C(12)	C(11) C(10)	-62.32(19)	O (1)	C(16)	C(7) C(8)	44.5(4)
$C(11)^{1}$	C(12)	C(11) C(8)	56.1(4)	O(1)	C(16)	$C(7) C(8)^1$	57.0(5)
$C(11)^{1}$	C(12)	$C(11) C(8)^1$	70.5(5)	O(1)	C(16)	C(7) C(6)	-77.4(3)
$C(11)^{1}$	C(10)	C(11) C(12)	62.06(19)	$O(1)^{1}$	C(16)	C(7) C(6)	110.6(2)
$C(11)^{1}$	C(10)	C(11) C(8)	-62.1(4)	$O(1)^1$	C(16)	$C(7) C(16)^1$	2.95(11)

Atom	Atom	Atom	Atom	Angle/°
O(1)	C(16)	C(7)	$C(16)^1$	174.92(19)
O(1)	C(16)	C(7)	O(1) ¹	172.0(3)
$O(1)^1$	C(16)	O(1)	$O(2)^{1}$	-35.7(8)

Atom	Atom	Atom Atom	Angle/°
$O(1)^{1}$	C(16)	$O(1) C(16)^1$	0.01(3)
$O(1)^1$	C(16)	$O(1) C(7)^1$	154.6(9)

Table 7: Hydrogen Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **189**. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} .

Atom	X	у	Z	Ueq
H(4)	6918(13)	7190(50)	3400(20)	30(9)
H(5)	5820(14)	6990(30)	2410(20)	23(7)
H(2)	5958(14)	7500	6800(30)	50(7)
H(10)	3239(10)	8500(30)	6536(19)	52(5)
H(11)	4047(16)	5680(50)	5410(30)	33(8)
H(17A)	4886(18)	8460(40)	-390(30)	111(10)
H(17B)	4230(20)	7500	-290(30)	72(10)
H(15A)	1964(9)	9270(20)	3543(19)	43(5)
H(15B)	1323(12)	9140(30)	4384(19)	62(6)
H(15C)	2039(14)	10290(40)	4890(30)	103(9)
H(14A)	2021(15)	8990(40)	6630(30)	20(7)
H(14B)	2090(20)	7500	6910(40)	95(13)
H(14C)	1360(20)	7500	6340(40)	99(13)
H(8)	4064(19)	9000(50)	4280(30)	44(10)
H(12A)	4742(10)	7900(30)	7080(20)	5(6)
H(7)	4466(15)	5760(50)	3210(30)	25(7)
H(12B)	4610(17)	8780(50)	6520(30)	40(9)
H(3)	6991(14)	7500	5590(20)	43(7)

Table 8: Atomic Occupancies for all atoms that are not fully occupied in 189.

Atom	Occupancy	Atom	Occupancy
N(1)	0.5	H(7)	0.5
C(8)	0.5	H(12B)	0.5
C(6)	0.5		
C(4)	0.5		
O(2)	0.5		
C(15A)	0.5		
C(5)	0.5		
C(16)	0.5		
C(7)	0.5		
C(11)	0.5		
C(14)	0.5		
C(15)	0.5		
H(4)	0.5		
H(5)	0.5		
H(11)	0.5		
H(14A)	0.5		
H(8)	0.5		
H(12A)	0.5		
O(1)	0.5		

(±)-tert-Butyl-2-oxo-6,7-diphenyl-3-azabicyclo[3.2.0]heptane-3-carboxylate (225)

Table 1: Crystal data and	structure refinement for 225.
---------------------------	-------------------------------

Chemical formula	C ₂₃ H ₂₅ NO ₃
Mr	363.44
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	123
<i>a</i> , <i>b</i> , <i>c</i> (Å)	14.0383 (7), 6.5220 (3), 22.5569 (11)
β (°)	100.806 (4)
$V(\text{\AA}^3)$	2028.64 (17)
Ζ	4
Radiation type	Cu Ka
$\mu (mm^{-1})$	0.63
Crystal size (mm)	$0.23 \times 0.21 \times 0.08$
F(000)	776
Diffractometer	SuperNova, Single source at offset, Atlas
Absorption correction	Gaussian <i>CrysAlis PRO</i> 1.171.38.42b (Rigaku Oxford Diffraction, 2015) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

T_{\min}, T_{\max}	0.763, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	6395, 6395, 5371
R _{int}	-1.0
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.622
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.048, 0.138, 1.05
No. of reflections	6395
No. of parameters	248
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	0.27, -0.23

Table 2: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **225**. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} .

Atom	X	У	Z	U_{eq}
O(3)	2943.6(7)	1916.4(16)	7079.5(5)	33.7(3)
O(1)	136.6(7)	3688.2(16)	6307.8(6)	35.3(3)
O(2)	1081.8(8)	856.8(17)	6469.6(6)	44.1(3)
N(1)	1716.8(8)	4105.7(19)	6616.3(6)	29.7(3)
C(6)	2661.3(10)	3599(2)	6900.5(7)	28.5(3)
C(7)	3270.9(10)	5529(2)	6945.2(7)	28.0(3)
C(5)	969.4(10)	2677(2)	6464.1(6)	29.3(3)
C(8)	2610.5(10)	7092(2)	6553.2(7)	29.3(3)
C(9)	1573.8(10)	6322(2)	6491.1(8)	31.1(3)
C(10)	3132.3(11)	6526(2)	6027.7(7)	33.6(3)
C(11)	3981.8(10)	5514(2)	6492.4(7)	32.5(3)
C(12)	4877.8(11)	6802(3)	6686.4(8)	34.8(4)
C(18)	3328.9(12)	8081(3)	5574.7(8)	38.4(4)
C(13)	5783.5(12)	5999(3)	6648.4(8)	44.1(4)
C(2)	-768(1)	2578(3)	6053.2(8)	42.3(4)
C(17)	4840.5(12)	8785(3)	6914.0(9)	43.6(4)
C(19)	2961.4(15)	10045(3)	5559.6(9)	48.1(4)
C(23)	3844.4(14)	7480(4)	5132.0(8)	53.1(5)
C(16)	5681.2(13)	9933(3)	7089.4(9)	51.1(5)
C(14)	6622.3(12)	7161(4)	6826.7(8)	56.9(6)
C(15)	6573.8(13)	9119(4)	7042.7(9)	56.9(6)
C(20)	3106.4(19)	11397(4)	5102.4(10)	63.9(6)
C(21)	3614(2)	10784(4)	4666.9(10)	73.0(8)
C(22)	3982.2(18)	8838(4)	4681.9(10)	67.0(7)
C(3)	-1022.9(15)	1057(4)	6504.1(11)	65.0(7)
C(4)	-644.7(17)	1566(4)	5474.3(10)	63.0(6)
C (1)	-1490.1(15)	4327(4)	5946(2)	105.7(14)

takes tik	2p [<i>n</i> c			(0 ₁₂]		
Atom	U_{11}	U_{22}	U_{33}	U_{23}	U13	U_{12}
O(3)	30.5(5)	28.1(5)	39.0(6)	8.0(4)	-2.7(5)	0.5(4)
O(1)	23.1(5)	34.2(6)	44.6(7)	-6.4(5)	-4.1(5)	-1.7(4)
O(2)	33.7(5)	27.2(6)	65.7(9)	7.2(5)	-5.3(5)	-5.0(4)
N(1)	25.8(6)	25.9(6)	33.7(7)	4.6(5)	-4.2(5)	-1.9(4)
C(6)	26.3(6)	28.6(7)	28.3(8)	4.3(5)	-1.0(6)	-0.9(5)
C(7)	26.8(6)	26.2(7)	28.3(7)	3.1(5)	-1.9(6)	-2.6(5)
C(5)	26.7(6)	30.1(8)	28.7(7)	2.4(6)	-1.0(6)	-3.1(5)
C(8)	28.0(6)	25.2(6)	31.4(8)	4.4(5)	-2.8(6)	-2.6(5)
C(9)	26.9(6)	25.2(7)	37.6(9)	5.7(6)	-3.4(6)	-0.7(5)
C(10)	32.8(7)	33.9(8)	30.7(8)	0.8(6)	-2.5(6)	-7.2(6)
C(11)	30.2(7)	31.1(8)	34.8(8)	1.7(6)	2.5(6)	-1.9(5)
C(12)	28.2(7)	41.7(9)	31.9(9)	10.5(6)	-0.8(6)	-3.6(6)
C(18)	38.0(7)	45.7(9)	26.0(8)	3.5(6)	-8.3(6)	-17.1(7)
C(13)	34.5(8)	66.9(12)	30.6(9)	10.3(8)	5.5(7)	3.2(7)
C(2)	24.3(6)	47.3(10)	51.2(10)	-13.0(9)	-3.7(7)	-6.0(6)
C(17)	34.0(8)	41.2(9)	50.3(11)	6.3(7)	-6.0(7)	-8.1(7)
C(19)	60.7(10)	45.9(10)	30.7(9)	8.3(7)	-9.9(8)	-15.8(8)
C(23)	49.5(9)	71.0(14)	36.2(10)	-0.1(10)	1.5(8)	-21.9(10)
C(16)	45.3(9)	54.0(11)	47.0(11)	11.3(9)	-9.2(8)	-19.3(8)
C(14)	27.7(7)	110.6(18)	31.6(9)	13.1(11)	3.1(7)	-4.5(9)
C(15)	37.9(9)	96.7(17)	32.6(10)	8.8(10)	-2.2(8)	-30.5(10)
C(20)	84.0(15)	54.4(12)	41.7(12)	17.4(9)	-18.1(11)	-26.0(11)
C(21)	89.1(16)	90.1(18)	31.3(11)	18.8(11)	-10.5(11)	-52.1(15)
C(22)	69.0(13)	95.2(19)	34.9(11)	2.8(11)	5(1)	-40.6(13)
C(3)	46.5(10)	92.6(17)	58.3(14)	-15.6(12)	16(1)	-35.0(11)
C(4)	57.5(11)	87.0(17)	39.0(11)	-15.2(10)	-5.2(9)	-19.5(10)
C(1)	27.4(9)	76.9(18)	194(4)	-33(2)	-28.7(15)	10.9(10)

Table 3: Anisotropic Displacement Parameters (×10⁴) **225**. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2a^{*2} \times U_{11} + ... + 2hka^* \times b^* \times U_{12}]$

 Table 4: Bond Lengths in Å for 225.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
O(3)	C(6)	1.2103(18)	C(12)	C(13)	1.392(2)
O(1)	C(5)	1.3310(17)	C(12)	C(17)	1.396(3)
O(1)	C(2)	1.4808(17)	C(18)	C(19)	1.379(3)
O(2)	C(5)	1.1972(19)	C(18)	C(23)	1.395(3)
N(1)	C(6)	1.3998(18)	C(13)	C(14)	1.395(3)
N(1)	C(5)	1.3972(18)	C(2)	C(3)	1.511(3)
N(1)	C(9)	1.4790(18)	C(2)	C(4)	1.502(3)
C(6)	C(7)	1.5147(19)	C(2)	C (1)	1.515(3)
C(7)	C(8)	1.540(2)	C(17)	C(16)	1.391(2)
C(7)	C(11)	1.5560(19)	C(19)	C(20)	1.400(3)
C(8)	C(9)	1.5210(18)	C(23)	C(22)	1.388(3)
C(8)	C(10)	1.550(2)	C(16)	C(15)	1.383(3)
C(10)	C(11)	1.577(2)	C(14)	C(15)	1.373(3)
C(10)	C(18)	1.501(2)	C(20)	C(21)	1.376(4)
C(11)	C(12)	1.508(2)	C(21)	C(22)	1.368(4)

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C(5)	O(1)	C(2)	120.48(12)	C(13)	C(12)	C(11)	119.64(16)
C(6)	N(1)	C(9)	113.64(11)	C(13)	C(12)	C(17)	117.94(16)
C(5)	N(1)	C(6)	123.94(12)	C(17)	C(12)	C(11)	122.41(14)
C(5)	N(1)	C(9)	122.42(12)	C(19)	C(18)	C(10)	121.91(16)
O(3)	C(6)	N(1)	126.13(13)	C(19)	C(18)	C(23)	119.02(17)
O(3)	C(6)	C(7)	125.86(12)	C(23)	C(18)	C(10)	118.94(17)
N(1)	C(6)	C(7)	108.02(12)	C(12)	C(13)	C(14)	120.6(2)
C(6)	C(7)	C(8)	103.88(11)	O (1)	C(2)	C(3)	110.74(15)
C(6)	C(7)	C(11)	112.02(12)	O (1)	C(2)	C(4)	108.77(14)
C(8)	C(7)	C(11)	91.06(11)	O (1)	C(2)	C(1)	101.16(14)
O(1)	C(5)	N(1)	108.45(12)	C(3)	C(2)	C(1)	111.5(2)
O(2)	C(5)	O(1)	126.98(13)	C(4)	C(2)	C(3)	112.13(18)
O(2)	C(5)	N(1)	124.56(13)	C(4)	C(2)	C(1)	112.0(2)
C(7)	C(8)	C(10)	87.79(11)	C(16)	C(17)	C(12)	120.99(18)
C(9)	C(8)	C(7)	107.27(11)	C(18)	C(19)	C(20)	119.9(2)
C(9)	C(8)	C(10)	115.60(13)	C(22)	C(23)	C(18)	120.4(2)
N(1)	C(9)	C(8)	102.24(11)	C(15)	C(16)	C(17)	120.3(2)
C(8)	C(10)	C(11)	89.90(11)	C(15)	C(14)	C(13)	120.83(18)
C(18)	C(10)	C(8)	122.22(14)	C(14)	C(15)	C(16)	119.34(17)
C(18)	C(10)	C(11)	121.49(13)	C(21)	C(20)	C(19)	120.6(2)
C(7)	C(11)	C(10)	86.30(10)	C(22)	C(21)	C(20)	119.73(19)
C(12)	C(11)	C(7)	114.14(13)	C(21)	C(22)	C(23)	120.4(2)
C(12)	C(11)	C(10)	116.45(13)				

Table 5: Bond Angles in \degree for 225.

Atom	Atom	Atom	Atom	Angle/°
O(3)	C(6)	C(7)	C(8)	170.17(15)
O(3)	C(6)	C(7)	C (11)	73.25(19)
N(1)	C(6)	C(7)	C(8)	-9.82(15)
N(1)	C(6)	C(7)	C (11)	-106.74(14)
C(6)	N(1)	C(5)	O (1)	168.48(13)
C(6)	N(1)	C(5)	O(2)	-12.4(2)
C(6)	N(1)	C(9)	C(8)	16.81(17)
C(6)	C(7)	C(8)	C(9)	20.08(16)
C(6)	C(7)	C(8)	C(10)	-96.07(12)
C(6)	C(7)	C(11)	C(10)	88.78(13)
C(6)	C(7)	C(11)	C(12)	-153.82(13)
C(7)	C(8)	C(9)	N(1)	-22.11(16)
C(7)	C(8)	C(10)	C(11)	-16.70(10)
C(7)	C(8)	C(10)	C(18)	-144.74(14)
C(7)	C(11)	C(12)	C(13)	133.49(15)
C(7)	C(11)	C(12)	C(17)	-45.6(2)
C(5)	O(1)	C(2)	C(3)	62.2(2)
C(5)	O(1)	C(2)	C(4)	-61.5(2)
C(5)	O(1)	C(2)	C(1)	-179.5(2)
C(5)	N(1)	C(6)	O(3)	-4.2(2)
C(5)	N(1)	C(6)	C(7)	175.78(13)
C(5)	N(1)	C(9)	C(8)	-163.45(13)
C(8)	C(7)	C(11)	C(10)	-16.66(11)
C(8)	C(7)	C(11)	C(12)	100.74(14)
C(8)	C(10)	C (11)	C(7)	16.55(11)
C(8)	C(10)	C(11)	C(12)	-98.64(14)
C(8)	C(10)	C(18)	C(19)	-7.4(2)
C(8)	C(10)	C(18)	C(23)	176.86(14)
C(9)	N(1)	C(6)	O(3)	175.53(15)
C(9)	N(1)	C(6)	C(7)	-4.48(17)
C(9)	N(1)	C(5)	O (1)	-11.23(19)
C(9)	N(1)	C(5)	O(2)	167.86(16)
C(9)	C(8)	C(10)	C(11)	-124.81(13)
C(9)	C(8)	C(10)	C(18)	107.14(16)
C(10)	C(8)	C(9)	N(1)	73.87(15)
C(10)	C(11)	C(12)	C(13)	-128.23(16)
C(10)	C(11)	C(12)	C(17)	52.7(2)
C(10)	C(18)	C(19)	C(20)	-175.47(16)
C(10)	C(18)	C(23)	C(22)	175.61(17)
C(11)	C(7)	C(8)	C(9)	133.09(13)
C(11)	C(7)	C(8)	C(10)	16.93(11)
C(11)	C(10)	C(18)	C(19)	-120.00(18)
C(11)	C(10)	C(18)	C(23)	64.3(2)
C(11)	C(12)	C(13)	C(14)	-179.84(16)
C(11)	C(12)	C(17)	C(16)	179.97(17)
C(12)	C(13)	C(14)	C(15)	-0.1(3)
C(12)	C(17)	C(16)	C(15)	-0.2(3)

Table 6: Torsion Angles in ° for 225

Atom	Atom	Atom	Atom	Angle/°
C(18)	C(10)	C(11)	C(7)	145.17(15)
C(18)	C(10)	C(11)	C(12)	30.0(2)
C(18)	C(19)	C(20)	C(21)	0.0(3)
C(18)	C(23)	C(22)	C(21)	0.0(3)
C(13)	C(12)	C(17)	C(16)	0.9(3)
C(13)	C(14)	C(15)	C(16)	0.7(3)
C(2)	O (1)	C(5)	O(2)	-6.5(2)
C(2)	O (1)	C(5)	N(1)	172.59(13)
C(17)	C(12)	C(13)	C(14)	-0.7(2)
C(17)	C(16)	C(15)	C(14)	-0.6(3)
C(19)	C(18)	C(23)	C(22)	-0.2(3)
C(19)	C(20)	C(21)	C(22)	-0.2(3)
C(23)	C(18)	C(19)	C(20)	0.2(3)
C(20)	C(21)	C(22)	C(23)	0.2(3)

Table 7: Hydrogen Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **225**. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} .

Atom	X	У	Z	Ueq
H(7)	3548	5982	7356	34
H(8)	2705	8515	6691	35
H(9A)	1244	6973	6782	37
H(9B)	1208	6558	6088	37
H(10)	2763	5409	5802	40
H(11)	4133	4123	6374	39
H(13)	5829	4676	6503	53
H(17)	4245	9347	6949	52
H(19)	2618	10471	5852	58
H(23)	4097	6161	5138	64
H(16)	5643	11254	7239	61
H(14)	7222	6603	6799	68
H(15)	7136	9891	7157	68
H(20)	2858	12721	5093	77
H(21)	3705	11688	4364	88
H(22)	4327	8424	4389	80
H(3A)	-549	-22	6566	98
H(3B)	-1652	486	6353	98
H(3C)	-1030	1739	6880	98
H(4A)	-432	2562	5214	95
H(4B)	-1253	995	5278	95
H(4C)	-171	493	5560	95
H(1A)	-1475	5064	6316	159
H(1B)	-2129	3788	5807	159
H(1C)	-1323	5236	5647	159

(±)-cis-3-(tert-Butyl)-6-phenyl-3-azabicyclo[3.2.0]heptan-2-one (158ib)

Table 1: Crystal data and structure refinement for 158ib.				
Chemical formula	C ₁₆ H ₂₁ NO			
$M_{ m r}$	243.34			
Crystal system, space group	Monoclinic, $P2_1/c$			
Temperature (K)	123			
<i>a</i> , <i>b</i> , <i>c</i> (Å)	9.89130 (17), 24.3530 (4), 11.16173 (17)			
β (°)	90.4878 (14)			
$V(\text{\AA}^3)$	2688.57 (8)			
Ζ	8			
Radiation type	Cu Ka			
$\mu \ (mm^{-1})$	0.57			
Crystal size (mm)	$0.20 \times 0.14 \times 0.04$			
F(000)	1056			
Diffractometer	SuperNova, Single source at offset, Atlas			
Absorption correction	Gaussian <i>CrysAlis PRO</i> 1.171.38.42b (Rigaku Oxford Diffraction, 2015) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.			

T_{\min}, T_{\max}	0.991, 0.997
No. of measured, independent and observed [$I > 2\sigma(I)$] reflections	28853, 5625, 4815
R _{int}	0.032
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.630
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.040, 0.108, 1.03
No. of reflections	5625
No. of parameters	331
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	0.26, -0.19

Table 2: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **158ib**. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} .

Atom	X	У	Z	U_{eq}
O(2)	5081.4(9)	3179.8(4)	6974.6(7)	27.25(19)
O(1)	67.4(9)	1794.1(4)	5343.8(8)	27.77(19)
N(2)	7252.7(10)	3429.9(4)	6475.8(8)	21.6(2)
N(1)	2189(1)	1539.3(4)	6019.1(8)	22.1(2)
C(5)	1086.9(11)	1870.8(5)	5960.8(10)	21.4(2)
C(21)	6129.3(12)	3112.4(5)	6409.3(10)	21.2(2)
C(10)	1704.5(12)	1533.7(5)	9102.9(10)	22.8(2)
C(25)	6738.0(12)	3530.7(5)	3270.4(10)	23.6(2)
C(22)	6358.8(12)	2653.5(5)	5517.9(10)	23.1(2)
C(6)	1296.2(12)	2359.1(5)	6783.4(10)	23.1(2)
C(7)	2610.4(12)	2228.8(5)	7471(1)	23.4(2)
C(8)	3261.8(11)	1749.1(5)	6819.1(10)	24.6(2)
C(9)	1753.6(12)	2113.3(5)	8635.2(10)	22.9(2)
C(26)	7474.8(12)	3695.1(5)	2266.3(11)	27.3(3)
C(11)	914.0(12)	1127.1(5)	8561.6(10)	25.3(2)
C(16)	480.1(12)	2335.9(5)	7958.9(10)	24.4(2)
C(15)	2487.5(12)	1385.6(5)	10106(1)	25.5(2)
C(18)	7411.0(12)	3895.3(5)	7333.8(11)	25.2(2)
C(24)	6808.3(12)	2945.1(5)	3702.3(10)	23.6(2)
C(32)	8287.3(11)	3285.7(5)	5593.3(10)	24.9(2)
C(23)	5538.8(12)	2706.1(5)	4336.6(10)	24.4(2)
C(30)	5959.4(13)	3926.6(5)	3850.5(11)	26.2(2)
C(14)	2496.3(13)	846.9(6)	10523.9(11)	30.3(3)
C(31)	7667.7(12)	2815.0(5)	4872.5(10)	23.8(2)
C(2)	2388.7(13)	1059.1(5)	5210.6(11)	27.1(3)
C(13)	1717.9(14)	447.8(5)	9969.7(12)	31.8(3)
C(12)	915.4(14)	590.7(5)	8988.6(12)	30.1(3)

Atom	X	У	Z	U_{eq}	
C(29)	5920.0(14)	4466.6(5)	3452.0(12)	31.6(3)	
C(27)	7449.4(14)	4236.8(6)	1875.7(11)	32.3(3)	
C(28)	6670.2(15)	4623.9(6)	2465.5(12)	34.8(3)	
C(19)	6390.8(16)	4343.1(6)	7019.9(13)	37.3(3)	
C(3)	1203.6(17)	660.7(6)	5322.3(14)	39.4(3)	
C(1)	2509.1(16)	1270.3(6)	3925.5(12)	36.3(3)	
C(17)	7202.1(17)	3688.3(6)	8609.4(12)	39.6(3)	
C(20)	8840.8(15)	4128.6(6)	7253.1(15)	41.0(3)	
C(4)	3685.2(17)	756.6(7)	5571.9(15)	45.2(4)	

Table 3: Anisotropic Displacement Parameters (×10⁴) **158ib**. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2a^{*2} \times U_{11} + ... + 2hka^* \times b^* \times U_{12}]$

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}	
O(2)	23.8(4)	35.1(5)	22.9(4)	-0.4(3)	4.2(3)	-2.6(4)	
O(1)	23.6(4)	34.7(5)	24.9(4)	-0.8(3)	-3.9(3)	2.3(3)	
N(2)	21.4(5)	22.0(5)	21.4(5)	0.0(4)	0.7(4)	-0.6(4)	
N(1)	21.8(5)	24.8(5)	19.9(5)	-0.5(4)	-0.4(3)	1.9(4)	
C(5)	22.4(5)	24.0(5)	17.7(5)	3.4(4)	2.1(4)	0.4(4)	
C(21)	23.5(5)	22.8(5)	17.4(5)	3.1(4)	-0.6(4)	0.0(4)	
C(10)	22.7(5)	26.7(6)	19.1(5)	-0.4(4)	5.5(4)	-0.8(4)	
C(25)	23.1(5)	27.5(6)	20.2(5)	-1.3(4)	-4.1(4)	1.0(5)	
C(22)	26.3(6)	20.7(5)	22.3(6)	1.4(4)	-1.6(4)	0.3(4)	
C(6)	25.2(6)	22.1(5)	21.9(5)	2.0(4)	2.5(4)	-0.2(4)	
C(7)	23.7(5)	25.9(6)	20.5(5)	0.6(4)	1.6(4)	-5.0(4)	
C(8)	19.1(5)	33.0(6)	21.6(5)	0.9(5)	0.5(4)	-1.1(5)	
C(9)	25.2(6)	24.4(6)	19.1(5)	-1.8(4)	2.0(4)	-3.0(4)	
C(26)	24.7(6)	34.6(6)	22.4(6)	-1.7(5)	-2.2(4)	-0.6(5)	
C(11)	25.6(6)	28.7(6)	21.6(5)	-0.4(4)	2.6(4)	-2.3(5)	
C(16)	26.4(6)	23.7(6)	23.0(6)	-1.3(4)	3.6(4)	0.7(4)	
C(15)	22.5(5)	32.7(6)	21.3(5)	-0.7(5)	3.0(4)	-1.1(5)	
C(18)	28.3(6)	23.1(6)	24.3(6)	-2.0(4)	-3.4(4)	-0.4(5)	
C(24)	25.0(6)	26.0(6)	19.8(5)	-2.9(4)	-0.3(4)	4.2(4)	
C(32)	18.8(5)	32.9(6)	23.1(5)	0.7(5)	0.1(4)	0.8(5)	
C(23)	25.5(6)	25.1(6)	22.5(6)	-2.5(4)	-2.1(4)	0.0(5)	
C(30)	28.9(6)	28.8(6)	21.0(5)	-1.0(5)	-1.7(4)	3.6(5)	
C(14)	29.5(6)	36.6(7)	24.7(6)	5.1(5)	2.9(5)	4.2(5)	
C(31)	23.8(6)	26.8(6)	20.9(5)	0.3(4)	0.1(4)	5.9(5)	
C(2)	31.8(6)	26.7(6)	22.9(6)	-2.2(5)	1.8(5)	5.2(5)	
C(13)	35.7(7)	27.5(6)	32.3(6)	6.1(5)	7.7(5)	2.7(5)	
C(12)	32.5(6)	27.3(6)	30.7(6)	-1.4(5)	5.7(5)	-4.9(5)	
C(29)	39.4(7)	28.3(6)	27.2(6)	-2.8(5)	-6.0(5)	6.5(5)	
C(27)	36.6(7)	36.8(7)	23.4(6)	3.2(5)	-2.3(5)	-7.8(6)	
C(28)	49.0(8)	26.2(6)	29.1(6)	3.6(5)	-8.8(6)	-3.9(6)	
C(19)	44.9(8)	27.5(6)	39.3(7)	-6.9(5)	-11.2(6)	8.0(6)	
C(3)	51.8(9)	27.9(7)	38.6(7)	-6.6(6)	8.2(6)	-6.1(6)	
C (1)	49.2(8)	35.8(7)	24.1(6)	-1.7(5)	8.4(5)	7.2(6)	
C(17)	59.7(9)	36.3(7)	22.5(6)	-1.7(5)	-6.7(6)	-8.7(7)	
C(20)	35.8(7)	35.8(7)	51.3(9)	-9.1(6)	-3.3(6)	-10.2(6)	

Atom	U_{11}	U_{22}	U 33	U_{23}	U_{13}	U_{12}	
C(4)	49.6(9)	41.1(8)	44.9(8)	-9.2(7)	-6.5(7)	21.5(7)	

Atom	Atom	Length/Å		
O(2)	C(21)	1.2290(15)		
O (1)	C(5)	1.2305(15)		
N(2)	C(21)	1.3553(15)		
N(2)	C(18)	1.4912(15)		
N(2)	C(32)	1.4691(15)		
N(1)	C(5)	1.3576(15)		
N(1)	C(8)	1.4724(14)		
N(1)	C(2)	1.4914(15)		
C(5)	C(6)	1.5155(16)		
C(21)	C(22)	1.5146(16)		
C(10)	C(9)	1.5060(16)		
C(10)	C(11)	1.3960(17)		
C(10)	C(15)	1.4031(17)		
C(25)	C(26)	1.4004(17)		
C(25)	C(24)	1.5068(17)		
C(25)	C(30)	1.3966(17)		
C(22)	C(23)	1.5475(16)		
C(22)	C(31)	1.5380(16)		
C(6)	C(7)	1.5370(16)		
C(6)	C(16)	1.5474(16)		

Table 4: Bond Lengths i	n Å	for	1 58 ib.
-------------------------	-----	-----	-----------------

Atom	Atom	Length/A
C(7)	C(8)	1.5224(17)
C(7)	C(9)	1.5826(15)
C(9)	C(16)	1.5602(16)
C(26)	C(27)	1.3896(19)
C(11)	C(12)	1.3904(18)
C(15)	C(14)	1.3923(18)
C(18)	C(19)	1.5246(17)
C(18)	C(17)	1.5261(18)
C(18)	C(20)	1.5274(18)
C(24)	C(23)	1.5595(17)
C(24)	C(31)	1.5843(15)
C(32)	C(31)	1.5260(17)
C(30)	C(29)	1.3886(18)
C(14)	C(13)	1.383(2)
C(2)	C(3)	1.5275(19)
C(2)	C(1)	1.5294(17)
C(2)	C(4)	1.5300(19)
C(13)	C(12)	1.3913(19)
C(29)	C(28)	1.387(2)
C(27)	C(28)	1.387(2)

Table 5: Bond Angles in \degree for 158ib.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C(21)	N(2)	C(18)	123.40(10)	C(21)	C(22)	C(31)	104.51(9)
C(21)	N(2)	C(32)	113.73(9)	C(31)	C(22)	C(23)	90.97(9)
C(32)	N(2)	C(18)	122.84(10)	C(5)	C(6)	C(7)	104.54(9)
C(5)	N(1)	C(8)	113.40(10)	C(5)	C(6)	C(16)	114.55(10)
C(5)	N(1)	C(2)	123.21(10)	C(7)	C(6)	C(16)	90.81(9)
C(8)	N(1)	C(2)	122.71(10)	C(6)	C(7)	C(9)	89.44(9)
O(1)	C(5)	N(1)	126.19(11)	C(8)	C(7)	C(6)	106.22(9)
O(1)	C(5)	C(6)	124.42(11)	C(8)	C(7)	C(9)	119.20(10)
N(1)	C(5)	C(6)	109.39(10)	N(1)	C(8)	C(7)	104.49(9)
O(2)	C(21)	N(2)	126.17(11)	C(10)	C(9)	C(7)	118.05(10)
O(2)	C(21)	C(22)	124.59(11)	C(10)	C(9)	C(16)	117.72(10)
N(2)	C(21)	C(22)	109.24(10)	C(16)	C(9)	C(7)	88.67(8)
C(11)	C(10)	C(9)	122.30(11)	C(27)	C(26)	C(25)	120.94(12)
C(11)	C(10)	C(15)	117.80(11)	C(12)	C(11)	C(10)	121.27(12)
C(15)	C(10)	C(9)	119.89(11)	C(6)	C(16)	C(9)	89.89(9)
C(26)	C(25)	C(24)	120.24(11)	C(14)	C(15)	C(10)	120.76(12)
C(30)	C(25)	C(26)	117.81(11)	N(2)	C(18)	C(19)	109.29(10)
C(30)	C(25)	C(24)	121.95(11)	N(2)	C(18)	C(17)	109.50(10)
C(21)	C(22)	C(23)	114.73(10)	N(2)	C(18)	C(20)	109.70(10)

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C(19)	C(18)	C(17)	110.86(12)	C(32)	C(31)	C(24)	119.64(10)
C(19)	C(18)	C(20)	109.37(11)	N(1)	C(2)	C(3)	110.06(10)
C(17)	C(18)	C(20)	108.10(12)	N(1)	C(2)	C(1)	108.39(10)
C(25)	C(24)	C(23)	117.61(10)	N(1)	C(2)	C(4)	109.46(11)
C(25)	C(24)	C(31)	118.43(10)	C(3)	C(2)	C(1)	110.86(12)
C(23)	C(24)	C(31)	88.82(9)	C(3)	C(2)	C(4)	108.34(12)
N(2)	C(32)	C(31)	104.72(9)	C (1)	C(2)	C(4)	109.71(12)
C(22)	C(23)	C(24)	89.97(9)	C(14)	C(13)	C(12)	119.21(12)
C(29)	C(30)	C(25)	121.29(12)	C(11)	C(12)	C(13)	120.25(12)
C(13)	C(14)	C(15)	120.70(12)	C(28)	C(29)	C(30)	120.14(12)
C(22)	C(31)	C(24)	89.40(9)	C(28)	C(27)	C(26)	120.33(12)
C(32)	C(31)	C(22)	106.33(9)	C(29)	C(28)	C(27)	119.48(12)

Table 6: Torsion Angles in ° for 158ib.			Atom	Atom	Atom	Atom	Angle/°		
Atom	Atom	Atom	Atom	Angle/°	C(8)	C(7)	C(9)	C(10)	4.44(15)
O(2)	C(21)	C(22)	C(23)	70.53(15)	C(8)	C(7)	C(9)	C(16)	-116.54(11)
O(2)	C(21)	C(22)	C(31)	168.49(11)	C(9)	C(10)	C(11)	C(12)	178.09(11)
O (1)	C(5)	C(6)	C(7)	172.53(11)	C(9)	C(10)	C(15)	C(14)	-177.50(11)
O(1)	C(5)	C(6)	C(16)	74.79(14)	C(9)	C(7)	C(8)	N(1)	84.98(12)
N(2)	C(21)	C(22)	C(23)	-109.42(11)	C(26)	C(25)	C(24)	C(23)	-150.01(11)
N(2)	C(21)	C(22)	C(31)	-11.46(12)	C(26)	C(25)	C(24)	C(31)	105.11(12)
N(2)	C(32)	C(31)	C(22)	-8.35(12)	C(26)	C(25)	C(30)	C(29)	-0.35(18)
N(2)	C(32)	C(31)	C(24)	90.51(12)	C(26)	C(27)	C(28)	C(29)	0.3(2)
N(1)	C(5)	C(6)	C(7)	-7.41(12)	C(11)	C(10)	C(9)	C(7)	-76.14(14)
N(1)	C(5)	C(6)	C(16)	-105.14(11)	C(11)	C(10)	C(9)	C(16)	28.35(16)
C(5)	N(1)	C(8)	C(7)	9.75(12)	C(11)	C(10)	C(15)	C(14)	1.58(17)
C(5)	N(1)	C(2)	C(3)	-57.46(15)	C(16)	C(6)	C(7)	C(8)	128.62(9)
C(5)	N(1)	C(2)	C(1)	63.93(15)	C(16)	C(6)	C(7)	C(9)	8.27(9)
C(5)	N(1)	C(2)	C(4)	-176.43(12)	C(15)	C(10)	C(9)	C(7)	102.90(12)
C(5)	C(6)	C(7)	C(8)	12.97(12)	C(15)	C(10)	C(9)	C(16)	-152.62(10)
C(5)	C(6)	C(7)	C(9)	-107.38(9)	C(15)	C(10)	C(11)	C(12)	-0.96(17)
C(5)	C(6)	C(16)	C(9)	98.02(11)	C(15)	C(14)	C(13)	C(12)	-0.34(19)
C(21)	N(2)	C(18)	C(19)	-65.48(14)	C(18)	N(2)	C(21)	O(2)	4.63(18)
C(21)	N(2)	C(18)	C(17)	56.13(15)	C(18)	N(2)	C(21)	C(22)	-175.42(10)
C(21)	N(2)	C(18)	C(20)	174.61(11)	C(18)	N(2)	C(32)	C(31)	-176.72(10)
C(21)	N(2)	C(32)	C(31)	1.27(13)	C(24)	C(25)	C(26)	C(27)	-178.27(11)
C(21)	C(22)	C(23)	C(24)	99.43(10)	C(24)	C(25)	C(30)	C(29)	179.06(11)
C(21)	C(22)	C(31)	C(24)	-108.94(9)	C(32)	N(2)	C(21)	O(2)	-173.35(11)
C(21)	C(22)	C(31)	C(32)	11.87(12)	C(32)	N(2)	C(21)	C(22)	6.60(13)
C(10)	C(9)	C(16)	C(6)	-113.12(10)	C(32)	N(2)	C(18)	C(19)	112.32(13)
C(10)	C(11)	C(12)	C(13)	-0.30(19)	C(32)	N(2)	C(18)	C(17)	-126.07(12)
C(10)	C(15)	C(14)	C(13)	-0.95(19)	C(32)	N(2)	C(18)	C(20)	-7.59(15)
C(25)	C(26)	C(27)	C(28)	-1.13(19)	C(23)	C(22)	C(31)	C(24)	6.94(9)
C(25)	C(24)	C(23)	C(22)	-114.93(10)	C(23)	C(22)	C(31)	C(32)	127.76(9)
C(25)	C(24)	C(31)	C(22)	114.18(11)	C(23)	C(24)	C(31)	C(22)	-6.89(9)
C(25)	C(24)	C(31)	C(32)	5.67(16)	C(23)	C(24)	C(31)	C(32)	-115.40(11)
C(25)	C(30)	C(29)	C(28)	-0.50(19)	C(30)	C(25)	C(26)	C(27)	1.16(17)
C(6)	C(7)	C(8)	N(1)	-13.70(12)	C(30)	C(25)	C(24)	C(23)	30.58(16)
C(6)	C(7)	C(9)	C(10)	112.77(11)	C(30)	C(25)	C(24)	C(31)	-74.30(15)
C(6)	C(7)	C(9)	C(16)	-8.21(9)	C(30)	C(29)	C(28)	C(27)	0.6(2)
C(7)	C(6)	C(16)	C(9)	-8.39(9)	C(14)	C(13)	C(12)	C(11)	0.96(19)
C(7)	C(9)	C(16)	C(6)	8.15(9)	C(31)	C(22)	C(23)	C(24)	-7.05(9)
C(8)	N(1)	C(5)	O(1)	178.62(11)	C(31)	C(24)	C(23)	C(22)	6.85(9)
C(8)	N(1)	C(5)	C(6)	-1.45(13)	C(2)	N(1)	C(5)	O(1)	7.84(18)
C(8)	N(1)	C(2)	C(3)	132.60(12)	C(2)	N(1)	C(5)	C(6)	-172.23(10)
C(8)	N(1)	C(2)	C(1)	-106.00(13)	C(2)	N(1)	C(8)	C(7)	-179.42(10)
C(8)	N(1)	C(2)	C(4)	13.64(16)					

Atom	X	У	Z	U_{eq}	
H(22)	6367	2284	5867	28	
H(6)	1286	2717	6380	28	
H(7)	3211	2547	7553	28	
H(8A)	4036	1871	6363	30	
H(8B)	3552	1468	7381	30	
H(9)	2020	2367	9277	27	
H(26)	7988	3438	1855	33	
H(11)	376	1217	7903	30	
H(16A)	-267	2078	7933	29	
H(16B)	183	2693	8238	29	
H(15)	3007	1650	10496	31	
H(24)	7084	2703	3047	28	
H(32A)	9116	3170	5989	30	
H(32B)	8484	3596	5079	30	
H(23A)	4791	2963	4384	29	
H(23B)	5241	2357	4012	29	
H(30)	5458	3827	4517	31	
H(14)	3031	755	11183	36	
H(31)	8289	2506	4769	29	
H(13)	1731	88	10249	38	
H(12)	378	327	8617	36	
H(29)	5389	4723	3847	38	
H(27)	7957	4340	1216	39	
H(28)	6651	4986	2201	42	
H(19A)	6555	4474	6223	56	
H(19B)	6483	4641	7577	56	
H(19C)	5492	4196	7062	56	
H(3A)	1127	544	6140	59	
H(3B)	1356	347	4820	59	
H(3C)	384	841	5077	59	
H(1A)	1707	1471	3712	54	
H(1B)	2615	965	3390	54	
H(1C)	3281	1507	3868	54	
H(17A)	6312	3535	8677	59	
H(17B)	7299	3988	9161	59	
H(17C)	7863	3412	8793	59	
H(20A)	9485	3847	7446	61	
H(20B)	8940	4427	7808	61	
H(20C)	8996	4259	6454	61	
H(4A)	4444	999	5491	68	
H(4B)	3804	443	5062	68	
H(4C)	3621	638	6390	68	

Table 7: Hydrogen Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **158ib**. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ii} .

(±)-trans-tert-Butyl-2-oxo-6-phenyl-3-azabicyclo[3.2.0]heptane-3-carboxylate (158ka)

Table 1. Crystal data and structure refinem	cht 101 130Ka .
Chemical formula	$C_{17}H_{21}NO_3$
$M_{ m r}$	287.35
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	123
<i>a</i> , <i>b</i> , <i>c</i> (Å)	9.3829 (2), 26.3989 (5), 6.1630 (1)
β (°)	94.269 (2)
$V(\text{\AA}^3)$	1522.33 (5)
Ζ	4
Radiation type	Cu Ka
μ (mm ⁻¹)	0.69
Crystal size (mm)	$0.23 \times 0.07 \times 0.04$
F(000)	616
Diffractometer	GV1000, TitanS2
Absorption correction	Gaussian <i>CrysAlis PRO</i> 1.171.38.46 (Rigaku Oxford Diffraction, 2015) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Table 1: Crystal data and structure refinement for 158ka.

F Appendix 341

T_{\min}, T_{\max}	0.777, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	32136, 3039, 2705
R _{int}	0.051
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.622
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.034, 0.090, 1.04
No. of reflections	3039
No. of parameters	193
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{max}, \Delta \rho_{min} (e \text{ Å}^{-3})$	0.23, -0.18

Table 2: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **158ka**. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} .

Atom	X	У	Z	U_{eq}
O(3)	3614.8(8)	4397.9(3)	7361.0(12)	24.27(18)
O(2)	3418.3(9)	4120.5(3)	10822.3(13)	29.5(2)
O(1)	4790.2(9)	3186.8(3)	11455.3(13)	29.6(2)
N(1)	4850.3(9)	3720.3(3)	8461.0(14)	20.2(2)
C(13)	3886.6(11)	4090.3(4)	9070.3(17)	21.2(2)
C(2)	6092.8(11)	2946.8(4)	8358.3(17)	20.5(2)
C(1)	5173.8(11)	3282.2(4)	9668.1(17)	20.6(2)
C(3)	6501.3(11)	3284.7(4)	6461.0(17)	20.1(2)
C(4)	7994.2(11)	3371.5(4)	7700.8(17)	20.8(2)
C(5)	7674.5(11)	2932.1(4)	9270.7(17)	22.5(2)
C(6)	9296.8(11)	3337.4(4)	6422.1(18)	23.2(2)
C(12)	5446.5(11)	3724.0(4)	6309.1(17)	22.1(2)
C(14)	2548.2(12)	4807.6(4)	7407.3(18)	24.9(2)
C(7)	9301.9(13)	3572.9(4)	4394.6(19)	27.8(2)
C(11)	10516.6(12)	3079.4(5)	7220(2)	30.1(3)
C(15)	3127.4(14)	5224.7(4)	8922(2)	33.7(3)
C(8)	10500.9(14)	3554.5(5)	3211(2)	35.5(3)
C(17)	1127.2(13)	4602.4(5)	8034(2)	37.2(3)
C(10)	11714.6(13)	3058.5(5)	6017(2)	37.7(3)
C(16)	2456.4(15)	4981.9(5)	5054(2)	35.1(3)
C(9)	11711.4(13)	3296.7(5)	4016(2)	38.2(3)

Table 3: Anisotropic Displacement Parameters (×10⁴) **158ka**. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2a^{*2} \times U_{11} + ... + 2hka^* \times b^* \times U_{12}]$

exponer	it takes the fo	2p n a	× 0111 12n		[2]		
Atom	U_{11}	U_{22}	U_{33}	U_{23}	<i>U</i> ₁₃	U_{12}	
O(3)	27.9(4)	22.3(4)	22.9(4)	2.2(3)	3.6(3)	7.3(3)	
O(2)	36.3(4)	29.0(4)	24.2(4)	0.3(3)	10.0(3)	8.4(3)	
O(1)	33.6(4)	32.0(4)	24.4(4)	8.2(3)	10.9(3)	8.4(3)	

Atom	U ₁₁	U_{22}	U 33	U 23	U 13	<i>U</i> ₁₂
N(1)	23.3(4)	19.6(4)	18.1(4)	1.0(3)	4.6(3)	2.2(3)
C(13)	22.1(5)	19.6(5)	22.1(5)	-0.4(4)	2.2(4)	0.6(4)
C(2)	22.3(5)	17.9(5)	21.7(5)	0.0(4)	4.0(4)	-0.4(4)
C(1)	19.9(5)	21.1(5)	20.9(5)	1.1(4)	2.1(4)	0.0(4)
C(3)	22.5(5)	19.8(5)	18.2(5)	-1.1(4)	3.8(4)	0.7(4)
C(4)	22.8(5)	19.9(5)	20.0(5)	-2.0(4)	3.0(4)	-0.7(4)
C(5)	22.2(5)	23.5(5)	22.1(5)	1.8(4)	3.6(4)	1.7(4)
C(6)	23.3(5)	22.1(5)	24.7(5)	-5.3(4)	4.9(4)	-5.3(4)
C(12)	25.7(5)	23.0(5)	18.1(5)	1.8(4)	5.2(4)	2.8(4)
C(14)	25.6(5)	20.1(5)	28.3(6)	-3.1(4)	-2.4(4)	6.4(4)
C(7)	30.3(6)	26.7(5)	27.0(6)	-1.8(4)	6.1(5)	-4.8(4)
C(11)	24.6(5)	35.6(6)	30.3(6)	-2.5(5)	4.1(5)	-1.5(5)
C(15)	40.7(7)	24.4(6)	34.5(7)	-5.7(5)	-8.3(5)	4.8(5)
C(8)	39.0(7)	39.0(7)	29.9(6)	-4.9(5)	12.3(5)	-13.1(5)
C(17)	24.8(6)	35.1(7)	51.0(8)	-4.2(6)	-0.3(5)	4.3(5)
C(10)	22.2(5)	47.1(7)	44.3(7)	-8.5(6)	5.0(5)	-1.5(5)
C(16)	45.3(7)	28.5(6)	30.0(6)	0.5(5)	-7.1(5)	10.5(5)
C(9)	28.0(6)	49.6(8)	39.0(7)	-13.4(6)	16.3(5)	-11.7(5)

 Table 4: Bond Lengths in Å for 158ka.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
O(3)	C(13)	1.3395(13)	C(4)	C(5)	1.5540(14)
O(3)	C(14)	1.4752(12)	C(4)	C(6)	1.5055(15)
O(2)	C(13)	1.1984(13)	C(6)	C(7)	1.3960(16)
O (1)	C(1)	1.2104(13)	C(6)	C(11)	1.3900(16)
N(1)	C(13)	1.4010(13)	C(14)	C(15)	1.5180(15)
N(1)	C (1)	1.3963(13)	C(14)	C(17)	1.5154(17)
N(1)	C(12)	1.4772(13)	C(14)	C(16)	1.5180(16)
C(2)	C(1)	1.5109(14)	C(7)	C(8)	1.3867(17)
C(2)	C(3)	1.5415(14)	C (11)	C(10)	1.3929(17)
C(2)	C(5)	1.5479(14)	C(8)	C(9)	1.384(2)
C(3)	C(4)	1.5618(14)	C(10)	C(9)	1.384(2)
C(3)	C(12)	1.5231(14)			

Atom	Atom	Atom	Angle/°
C(13)	O(3)	C(14)	121.26(8)
C(13)	N(1)	C(12)	122.08(8)
C(1)	N(1)	C(13)	123.62(9)
C(1)	N(1)	C(12)	113.70(8)
O(3)	C(13)	N(1)	107.50(9)
O(2)	C(13)	O(3)	127.38(10)
O(2)	C(13)	N(1)	125.12(10)
C(1)	C(2)	C(3)	104.49(8)
C(1)	C(2)	C(5)	112.99(9)
C(3)	C(2)	C(5)	90.24(8)
O(1)	C(1)	N(1)	126.13(10)
O(1)	C(1)	C(2)	125.76(9)
N(1)	C(1)	C(2)	108.11(8)
C(2)	C(3)	C(4)	88.76(8)
C(12)	C(3)	C(2)	106.86(8)
C(12)	C(3)	C(4)	118.25(8)
C(5)	C(4)	C(3)	89.28(8)
C(6)	C(4)	C(3)	117.94(9)
C(6)	C(4)	C(5)	118.89(9)
C(2)	C(5)	C(4)	88.82(8)
C(7)	C(6)	C(4)	119.93(10)
C(11)	C(6)	C(4)	121.55(10)
C(11)	C(6)	C(7)	118.52(11)
N(1)	C(12)	C(3)	103.16(8)
O(3)	C(14)	C(15)	109.36(9)
O(3)	C(14)	C(17)	110.73(9)
O(3)	C(14)	C(16)	101.19(9)
C(17)	C(14)	C(15)	112.59(10)
C(17)	C(14)	C(16)	111.30(10)
C(16)	C(14)	C(15)	111.09(10)
C(8)	C(7)	C(6)	120.82(12)
C(6)	C(11)	C(10)	120.46(12)
C(9)	C(8)	C(7)	120.33(12)
C(9)	C(10)	C(11)	120.53(12)
C(8)	C(9)	C(10)	119.34(11)

Table 5: Bond Angles in ° for 158ka

Atom	X	У	Z	U_{eq}	
H(2)	5674.83	2617.91	7935.76	25	
H(3)	6550.2	3100.16	5088.69	24	
H(4)	7996.37	3694.83	8482.63	25	
H(5A)	8160.71	2618.26	8972.31	27	
H(5B)	7815.5	3021.38	10798.39	27	
H(12A)	5927	4041.68	6057.96	26	
H(12B)	4704.3	3669.79	5150.96	26	
H(7)	8491.03	3744.36	3831.09	33	
H(11)	10533.01	2919.61	8566.67	36	
H(15A)	3275.73	5094.09	10374.93	51	
H(15B)	2454.2	5498.88	8900.42	51	
H(15C)	4018.54	5345.12	8448.58	51	
H(8)	10491.6	3716.1	1868.82	43	
H(17A)	872.27	4309.62	7165.94	56	
H(17B)	404.53	4857.7	7786.98	56	
H(17C)	1204.53	4510.05	9544.27	56	
H(10)	12523.06	2883.19	6563.32	45	
H(16A)	3387.73	5081.94	4666.1	53	
H(16B)	1814.4	5264.5	4878.99	53	
H(16C)	2109.1	4709.34	4128.05	53	
H(9)	12514.82	3283.7	3220.07	46	

Table 6: Hydrogen Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **158ka**. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ii} .

(1*S*,5*R*,6*S*)-6-Phenyl-3-((*S*)-1-phenylethyl)-3-azabicyclo[3.2.0]heptan-2-one (158vb)

Chemical formula	C ₂₀ H ₂₁ NO
$M_{ m r}$	291.38
Crystal system, space group	Monoclinic, C2
Temperature (K)	123
<i>a</i> , <i>b</i> , <i>c</i> (Å)	15.9956 (4), 6.5511 (2), 30.3071 (6)
β (°)	91.187 (2)
$V(\text{\AA}^3)$	3175.16 (14)
Ζ	8
Radiation type	Cu Ka
$\mu (mm^{-1})$	0.58
Crystal size (mm)	$0.17 \times 0.16 \times 0.09$
F(000)	1248
Diffractometer	GV1000, TitanS2
Absorption correction	Gaussian <i>CrysAlis PRO</i> 1.171.38.46 (Rigaku Oxford Diffraction, 2015) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

 Table 1: Crystal data and structure refinement for 158vb.

T_{\min}, T_{\max}	0.912, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	32743, 6285, 5766
$R_{\rm int}$	0.074
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.624
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.047, 0.129, 1.05
No. of reflections	6285
No. of parameters	442
No. of restraints	169
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{max}, \Delta \rho_{min} \ (e \ \text{\AA}^{-3})$	0.17, -0.20
Absolute structure	Flack x determined using 2313 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
Absolute structure parameter	0.00 (16)

Table 2: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **158vb**. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ii} .

Atom	X	У	Z	U_{eq}
O(1)	4124.4(15)	12786(3)	3413.6(6)	52.0(5)
O(2)	4092.5(15)	-2795(3)	1566.6(7)	52.4(5)
N(1)	4047.4(15)	9349(3)	3547.4(6)	37.8(5)
N(2)	4130.7(15)	682(3)	1501.9(7)	39.2(5)
C(34)	2909.2(18)	1669(4)	1934.5(7)	41.0(6)
C(32)	4255.2(17)	-1237(4)	1359.0(8)	39.5(6)
C(14)	2864.4(18)	8031(4)	3107.3(7)	39.4(6)
C(33)	3824.2(18)	1115(4)	1946.9(7)	39.0(6)
C(22)	4505.6(17)	1074(4)	766.8(8)	40.6(6)
C(23)	3729.5(18)	400(4)	489.0(8)	41.5(6)
C(4)	3502.4(17)	9454(4)	5022.8(8)	40.2(6)
C(13)	3761.3(18)	8763(4)	3102.2(7)	39.1(6)
C(5)	3637.6(19)	7456(4)	5160.9(9)	45.7(6)
C(12)	4219.2(17)	11297(4)	3658.3(8)	39.1(6)
C(40)	4386.7(18)	2661(4)	2179.6(8)	42.3(6)
C(2)	4373.8(17)	9201(4)	4303.1(8)	41.0(6)
C(3)	3618.7(17)	10077(4)	4550.1(8)	39.2(6)
C(1)	4199.3(19)	7854(4)	3898.9(8)	42.0(6)
C(15)	2618.0(19)	6060(4)	2991.1(8)	46.2(6)
C(10)	3944.1(19)	12262(4)	4461.5(9)	44.8(6)

Atom	X	у	Z	Ueq
C(9)	3245.9(18)	10871(5)	5336.1(8)	45.7(6)
C(20)	4378.2(19)	7296(4)	2894.7(9)	43.0(6)
C(8)	3159(2)	10308(5)	5774.4(10)	52.5(7)
C(24)	3602(7)	1347(16)	38(2)	46.5(6)
C(21)	4358(2)	2278(4)	1187.2(8)	44.4(7)
C(35)	2624(2)	3637(5)	1851.0(9)	51.2(7)
C(25)	3863(6)	3348(15)	-44(2)	47.0(6)
C(31)	4632.2(19)	-1170(4)	905.7(9)	43.4(6)
C(11)	4551.8(18)	11359(4)	4127.8(9)	43.8(6)
C(6)	3551(2)	6893(5)	5597.5(10)	54.6(7)
C(39)	2326(2)	148(6)	2014.4(10)	59.6(8)
C(7)	3314(2)	8334(5)	5905.8(9)	55.7(8)
C(16)	1783(2)	5525(6)	2978.3(9)	55.1(8)
C(17)	1180(2)	6906(7)	3089.4(10)	62.0(9)
C(19)	2246(2)	9413(5)	3222.7(9)	53.1(7)
C(30)	4036(2)	-1843(4)	529.8(10)	47.4(6)
C(29)	3195(5)	319(13)	-309(3)	47.6(7)
C(36)	1781(2)	4076(7)	1844.3(10)	66.1(9)
C(38)	1483(3)	602(8)	2009.6(13)	77.6(12)
C(26)	3736(5)	4278(13)	-448(2)	47.6(7)
C(28)	3077(5)	1216(16)	-722(2)	48.0(7)
C(37)	1206(2)	2569(8)	1920.9(11)	75.5(12)
C(18)	1413(2)	8862(7)	3216.7(11)	64.8(9)
C(27)	3339(5)	3208(14)	-790(2)	48.0(7)
C(0AA)	3236(5)	-198(12)	-278(2)	47.4(7)
C(1AA)	3059(4)	464(14)	-705.2(19)	48.1(7)
C(2AA)	3213(4)	2479(14)	-822.0(15)	48.0(7)
C(XD)	3544(5)	3832(11)	-511(2)	47.7(7)
C(XE)	3722(5)	3169(13)	-84(2)	47.0(7)
C(XF)	3568(6)	1154(14)	32.9(18)	46.6(6)

Table 3: Anisotropic Displacement Parameters (×10⁴) **158vb** The anisotropic displacement factor exponent takes the form: $-2p^2[h^2a^{*2} \times U_{11} + ... + 2hka^* \times b^* \times U_{12}]$

<u></u>						
Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
O(1)	76.3(15)	30.7(10)	49.3(10)	5.5(8)	5.7(9)	-2.9(9)
O(2)	69.8(15)	27.0(9)	60.4(11)	7.3(8)	3.5(10)	-0.6(9)
N(1)	51.9(13)	27.4(10)	34.1(9)	2.0(8)	-3.3(8)	4.7(9)
N(2)	56.0(14)	25.7(10)	35.9(10)	2.2(8)	2.3(9)	-7.2(9)
C(34)	49.5(16)	46.9(15)	26.5(10)	1.6(10)	-1.9(9)	-9.3(12)
C(32)	42.0(15)	27.9(12)	48.7(13)	2.4(10)	0.9(10)	0(1)
C(14)	51.9(16)	39.1(12)	27.1(10)	0.9(9)	-2.3(9)	7.1(11)
C(33)	54.2(16)	31.5(12)	31.2(10)	4.4(9)	-1.3(10)	-7.5(11)
C(22)	48.4(16)	33.4(13)	40.3(12)	-1.4(10)	6.1(10)	-9.5(11)
C(23)	48.1(16)	35.5(13)	41.3(12)	-7.9(10)	7.4(10)	-3.6(11)
C(4)	40.1(14)	40.5(13)	39.4(12)	-3.5(10)	-9.9(10)	-3.1(11)
C(13)	57.4(17)	29.3(12)	30.6(10)	3.5(9)	0.7(10)	4.0(11)
C(5)	50.6(16)	39.9(14)	46.0(14)	-2.0(11)	-9.1(11)	-5.5(12)
C(12)	43.9(15)	29.9(12)	43.6(12)	1.6(10)	2.4(10)	-0.6(10)

Atom	U ₁₁	U_{22}	U 33	U_{23}	<i>U</i> ₁₃	U ₁₂
C(40)	50.4(16)	38.6(14)	37.6(11)	0(1)	-5.3(10)	-7.3(11)
C(2)	44.7(16)	38.9(13)	38.9(11)	1.2(10)	-8.4(10)	8.2(11)
C(3)	42.1(15)	36.6(13)	38.6(12)	-2.3(10)	-8.9(10)	3.9(10)
C(1)	58.7(17)	30.3(13)	36.8(12)	5.6(9)	-3.5(10)	8.8(11)
C(15)	53.9(17)	44.0(15)	40.5(12)	-1.8(11)	-1.1(11)	0.6(12)
C(10)	54.2(18)	38.6(14)	41.3(13)	-4.4(10)	-5.3(11)	4.2(11)
C(9)	44.6(16)	48.5(16)	43.8(13)	-7.2(12)	-6.3(11)	0.2(12)
C(20)	51.5(17)	35.9(13)	42.0(12)	0(1)	7.7(11)	2.2(11)
C(8)	49.9(18)	61.9(19)	45.7(14)	-9.6(13)	2.6(12)	-8.9(14)
C(24)	47.2(11)	46.2(17)	46.1(9)	-6.6(10)	2.5(8)	6.2(12)
C(21)	68(2)	28.8(12)	36.0(12)	2.1(10)	3.4(11)	-15.2(12)
C(35)	52.8(18)	55.0(18)	45.9(14)	9.5(12)	5.1(12)	-0.9(14)
C(25)	48.2(12)	46.4(16)	46.6(10)	-6.4(10)	2.0(9)	6.6(12)
C(31)	43.9(16)	35.1(13)	51.4(14)	-2.3(11)	6.0(11)	0.4(11)
C(11)	41.9(15)	39.1(14)	50.0(14)	-3.4(11)	-6.2(11)	-1.7(11)
C(6)	59(2)	49.3(17)	54.7(16)	7.4(13)	-9.4(13)	-15.2(14)
C(39)	62(2)	62(2)	55.4(16)	3.3(14)	-1.8(14)	-25.1(16)
C(7)	57.8(19)	66(2)	43.7(14)	3.2(14)	-1.5(12)	-20.8(15)
C(16)	54.2(19)	68(2)	42.8(13)	-2.6(13)	-1.3(12)	-7.5(15)
C(17)	51(2)	90(3)	44.1(15)	5.2(16)	-8.0(13)	-5.3(17)
C(19)	58(2)	51.0(17)	49.9(14)	-3.2(13)	-2.0(12)	13.4(14)
C(30)	56.6(18)	34.6(13)	51.5(14)	-10.8(11)	10.1(12)	-6.2(12)
C(29)	48.3(11)	46.8(18)	47.7(9)	-6.1(11)	0.8(8)	5.9(13)
C(36)	57(2)	88(3)	53.2(16)	11.4(17)	2.3(14)	10.7(19)
C(38)	58(2)	105(3)	70(2)	-2(2)	2.1(16)	-36(2)
C(26)	48.6(13)	46.8(17)	47.5(10)	-6.3(11)	1.4(9)	6.3(13)
C(28)	49.1(11)	46.8(18)	48.1(9)	-6.0(12)	-0.2(8)	5.8(14)
C(37)	46(2)	130(4)	50.1(16)	1(2)	-2.3(13)	-6(2)
C(18)	55(2)	83(3)	56.3(16)	-0.4(17)	0.2(14)	23.0(18)
C(27)	49.2(12)	46.9(18)	47.8(10)	-6.1(12)	0.6(9)	5.9(13)
C(0AA)	48.3(11)	46.6(18)	47.3(9)	-5.9(11)	0.7(8)	5.9(13)
C(1AA)	49.1(12)	46.9(18)	48.3(10)	-6.0(12)	-0.1(9)	5.8(14)
C(2AA)	49.2(12)	46.9(18)	47.8(10)	-6.1(12)	0.0(9)	5.8(14)
C(XD)	48.8(12)	46.7(17)	47.6(10)	-6.1(11)	0.9(9)	6.2(13)
C(XE)	48.0(12)	46.4(17)	46.6(10)	-6.5(10)	2.1(9)	6.6(12)
C(XF)	47.3(11)	46.3(17)	46.2(9)	-6.5(10)	2.5(8)	6.3(12)

Table 4: Bond Lengths in Å for 158vb.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
O(1)	C(12)	1.233(3)	C(34)	C(33)	1.507(4)
O(2)	C(32)	1.229(3)	C(34)	C(35)	1.389(4)
N(1)	C(13)	1.467(3)	C(34)	C(39)	1.389(4)
N(1)	C(12)	1.347(3)	C(32)	C(31)	1.512(4)
N(1)	C (1)	1.464(3)	C(14)	C(13)	1.513(4)
N(2)	C(32)	1.345(3)	C(14)	C(15)	1.393(4)
N(2)	C(33)	1.472(3)	C(14)	C(19)	1.392(4)
N(2)	C(21)	1.466(3)	C(33)	C(40)	1.519(3)

Atom	Atom	Length/Å
C(22)	C(23)	1.550(4)
C(22)	C(21)	1.521(4)
C(22)	C(31)	1.542(4)
C(23)	C(24)	1.512(7)
C(23)	C(30)	1.553(4)
C(23)	C(XF)	1.486(5)
C(4)	C(5)	1.390(4)
C(4)	C(3)	1.505(4)
C(4)	C(9)	1.396(4)
C(13)	C(20)	1.523(4)
C(5)	C(6)	1.383(4)
C(12)	C(11)	1.509(3)
C(2)	C(3)	1.545(4)
C(2)	C(1)	1.530(3)
C(2)	C(11)	1.539(4)
C(3)	C(10)	1.549(4)
C(15)	C(16)	1.380(4)
C(10)	C(11)	1.536(4)
C(9)	C(8)	1.389(4)
C(8)	C(7)	1.374(5)
C(24)	C(25)	1.399(9)

Atom	Atom	Length/Å
C(24)	C(29)	1.398(8)
C(35)	C(36)	1.378(5)
C(25)	C(26)	1.378(8)
C(31)	C(30)	1.535(4)
C(6)	C(7)	1.387(5)
C(39)	C(38)	1.382(6)
C(16)	C(17)	1.369(5)
C(17)	C(18)	1.387(6)
C(19)	C(18)	1.379(5)
C(29)	C(28)	1.391(8)
C(36)	C(37)	1.372(6)
C(38)	C(37)	1.387(7)
C(26)	C(27)	1.395(8)
C(28)	C(27)	1.387(9)
C(0AA)	C(1AA)	1.3900
C(0AA)	C(XF)	1.3900
C(1AA)	C(2AA)	1.3900
C(2AA)	C(XD)	1.3900
C(XD)	C(XE)	1.3900
C(XE)	C(XF)	1.3900

Table 5: Bond Angles in ° for 158vb.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C(12)	N(1)	C(13)	122.4(2)	C(24)	C(23)	C(30)	119.8(4)
C(12)	N(1)	C(1)	115.0(2)	C(XF)	C(23)	C(22)	122.2(4)
C(1)	N(1)	C(13)	122.61(19)	C(XF)	C(23)	C(30)	115.9(4)
C(32)	N(2)	C(33)	122.0(2)	C(5)	C(4)	C(3)	121.4(2)
C(32)	N(2)	C(21)	114.6(2)	C(5)	C(4)	C(9)	117.9(2)
C(21)	N(2)	C(33)	123.4(2)	C(9)	C(4)	C(3)	120.7(2)
C(35)	C(34)	C(33)	122.9(2)	N(1)	C(13)	C(14)	110.6(2)
C(39)	C(34)	C(33)	118.5(3)	N(1)	C(13)	C(20)	110.6(2)
C(39)	C(34)	C(35)	118.6(3)	C(14)	C(13)	C(20)	115.3(2)
O(2)	C(32)	N(2)	125.2(2)	C(6)	C(5)	C(4)	121.4(3)
O(2)	C(32)	C(31)	125.5(2)	O (1)	C(12)	N(1)	125.3(2)
N(2)	C(32)	C(31)	109.3(2)	O (1)	C(12)	C(11)	125.6(2)
C(15)	C(14)	C(13)	123.7(2)	N(1)	C(12)	C(11)	109.1(2)
C(19)	C(14)	C(13)	118.4(3)	C (1)	C(2)	C(3)	118.1(2)
C(19)	C(14)	C(15)	117.9(3)	C (1)	C(2)	C(11)	106.6(2)
N(2)	C(33)	C(34)	111.41(19)	C(11)	C(2)	C(3)	88.7(2)
N(2)	C(33)	C(40)	110.4(2)	C(4)	C(3)	C(2)	118.3(2)
C(34)	C(33)	C(40)	114.6(2)	C(4)	C(3)	C(10)	117.7(2)
C(21)	C(22)	C(23)	117.8(2)	C(2)	C(3)	C(10)	89.5(2)
C(21)	C(22)	C(31)	106.7(2)	N(1)	C(1)	C(2)	102.8(2)
C(31)	C(22)	C(23)	88.60(19)	C(16)	C(15)	C(14)	120.7(3)
C(22)	C(23)	C(30)	88.8(2)	C(11)	C(10)	C(3)	88.7(2)
C(24)	C(23)	C(22)	117.8(5)	C(8)	C(9)	C(4)	120.7(3)

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C(7)	C(8)	C(9)	120.4(3)	C(18)	C(19)	C(14)	121.2(3)
C(25)	C(24)	C(23)	120.6(7)	C(31)	C(30)	C(23)	88.7(2)
C(29)	C(24)	C(23)	122.3(7)	C(28)	C(29)	C(24)	121.6(6)
C(29)	C(24)	C(25)	117.0(5)	C(37)	C(36)	C(35)	120.4(4)
N(2)	C(21)	C(22)	102.7(2)	C(39)	C(38)	C(37)	120.6(4)
C(36)	C(35)	C(34)	120.9(3)	C(25)	C(26)	C(27)	119.7(6)
C(26)	C(25)	C(24)	122.2(6)	C(27)	C(28)	C(29)	119.8(5)
C(32)	C(31)	C(22)	102.9(2)	C(36)	C(37)	C(38)	119.3(4)
C(32)	C(31)	C(30)	114.4(2)	C(19)	C(18)	C(17)	120.0(3)
C(30)	C(31)	C(22)	89.7(2)	C(28)	C(27)	C(26)	119.7(6)
C(12)	C(11)	C(2)	103.7(2)	C(1AA)	C(0AA)	C(XF)	120.0
C(12)	C(11)	C(10)	114.6(2)	C(2AA)	C(1AA)	C(0AA)	120.0
C(10)	C(11)	C(2)	90.1(2)	C(XD)	C(2AA)	C(1AA)	120.0
C(5)	C(6)	C(7)	119.8(3)	C(XE)	C(XD)	C(2AA)	120.0
C(38)	C(39)	C(34)	120.2(4)	C(XD)	C(XE)	C(XF)	120.0
C(8)	C(7)	C(6)	119.7(3)	C(0AA)	C(XF)	C(23)	118.3(5)
C(17)	C(16)	C(15)	120.7(3)	C(XE)	C(XF)	C(23)	121.6(5)
C(16)	C(17)	C(18)	119.5(3)	C(XE)	C(XF)	C(0AA)	120.0

Table 6: Hydrogen Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **158vb**. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} .

Atom	x	y	Z	Ueq	
H(33)	3873.85	-159.47	2114.73	47	
H(22)	4960.31	1616.95	589.52	49	
H(23)	3223.75	582.06	661.81	50	
H(23A)	3225.33	578.11	663.25	50	
H(13)	3764.79	10009.32	2923.24	47	
H(5)	3789.75	6476.23	4955.42	55	
H(40A)	4951.2	2161.9	2187.95	63	
H(40B)	4199.99	2863.95	2475.39	63	
H(40C)	4364.69	3932.75	2022.62	63	
H(2)	4816.59	8669.73	4499.76	49	
H(3)	3102.25	9833.51	4378.6	47	
H(1A)	4676.48	6997.5	3835.24	50	
H(1B)	3713.05	6997.05	3941.14	50	
H(15)	3020.33	5093.96	2921.35	55	
H(10A)	3527.56	13166.08	4330.58	54	
H(10B)	4218.28	12893.64	4715.3	54	
H(9)	3132.16	12207.05	5250.33	55	
H(20A)	4927.11	7889.4	2903.43	65	
H(20B)	4211.33	7038.89	2593.76	65	
H(20C)	4385.15	6035.51	3056.22	65	
H(8)	2994.56	11272.46	5980.38	63	
H(21A)	4860.46	2991.7	1284.16	53	
H(21B)	3908.33	3256.55	1145.86	53	
H(35)	3007.25	4673.19	1799.05	61	
H(25)	4131.21	4073.61	181.32	56	
Atom	X	У	Z	U_{eq}	
--------	---------	----------	----------	----------	--
H(31)	5206.23	-1682.54	888.47	52	
H(11)	5133.12	11814	4162.41	53	
H(6)	3650.77	5551.03	5683.97	65	
H(39)	2504.64	-1179.32	2071.35	72	
H(7)	3260.49	7965.96	6200.28	67	
H(16)	1628.22	4212.27	2893.38	66	
H(17)	619.16	6535.02	3079.5	74	
H(19)	2396.14	10732.42	3305.37	64	
H(30A)	3607.57	-2791.9	621.02	57	
H(30B)	4318.84	-2339.85	270.82	57	
H(29)	2998.57	-998.11	-262.77	57	
H(36)	1600.93	5401.47	1787.47	79	
H(38)	1096.49	-421.36	2066.46	93	
H(26)	3913.6	5612.58	-491.48	57	
H(28)	2824.45	483.05	-950.84	58	
H(37)	637.19	2863.55	1913.37	91	
H(18)	1008.57	9800.95	3297.91	78	
H(27)	3249.44	3827.48	-1063.39	58	
H(0AA)	3132.96	-1546.2	-199.53	57	
H(1AA)	2836.72	-440.79	-913.02	58	
H(2AA)	3093.98	2922.12	-1108.05	58	
H(XD)	3647.48	5179.65	-589.6	57	
H(XE)	3943.72	4074.28	123.89	56	

 Table 7: Atomic Occupancies for all atoms that are not fully occupied in 158vb.

Atom	Occupancy	-	Atom	Occupancy
H(23)	0.518(12)	_	C(XE)	0.482(12)
H(23A)	0.482(12)		H(XE)	0.482(12)
C(24)	0.518(12)		C(XF)	0.482(12)
C(25)	0.518(12)			
H(25)	0.518(12)			
C(29)	0.518(12)			
H(29)	0.518(12)			
C(26)	0.518(12)			
H(26)	0.518(12)			
C(28)	0.518(12)			
H(28)	0.518(12)			
C(27)	0.518(12)			
H(27)	0.518(12)			
C(0AA)	0.482(12)			
H(0AA)	0.482(12)			
C(1AA)	0.482(12)			
H(1AA)	0.482(12)			
C(2AA)	0.482(12)			
H(2AA)	0.482(12)			
C(XD)	0.482(12)			
(XD)	0.482(12)			

(1*S*,5*R*,7*R*)-7-Phenyl-3-((*S*)-1-phenylethyl)-3-azabicyclo[3.2.0]heptan-2-one (158wb)

Table 1: Crystal data and structure refinement for 158wb .					
Chemical formula	$C_{20}H_{21}NO$				
Mr	291.38				
Crystal system, space group	Orthorhombic, P212121				
Temperature (K)	123				
<i>a</i> , <i>b</i> , <i>c</i> (Å)	6.1125 (3), 9.5571 (6), 53.180 (3)				
V (Å3)	3106.7 (3)				
Ζ	8				
Radiation type	Cu Ka				
μ (mm-1)	0.59				
Crystal size (mm)	$0.20 \times 0.12 \times 0.06$				
F(000)	1248				
Diffractometer	GV1000, TitanS2				
Absorption correction	Gaussian <i>CrysAlis PRO</i> 1.171.38.42b (Rigaku Oxford Diffraction, 2015) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.				

Tmin, Tmax	0.824, 1.000
No. of measured,	25558, 6266, 5570
independent and	
observed $[I > 2\sigma(I)]$	
reflections	
Rint	0.063
$(\sin \theta / \lambda) \max (\text{\AA}-1)$	0.631
$R[F2 > 2\sigma(F2)], wR(F2), S$	0.041, 0.099, 1.07
No. of reflections	6266
No. of parameters	399
H-atom treatment	H-atom parameters constrained
$\Delta \rho$ max, $\Delta \rho$ min (e Å ⁻³)	0.15, -0.17
	Flack x determined using 2086 quotients
Absolute structure	[(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and
	Wagner, Acta Cryst. B69 (2013) 249-259).
Absolute structure parameter	-0.1 (2)

Table 2: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **158wb**. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} .

Atom	X	У	Z	U_{eq}
02	9849(3)	2537(2)	3104.4(3)	27.3(4)
01	5882(3)	8845(2)	4353.2(4)	28.9(4)
N1	9272(3)	8035(2)	4239.0(4)	21.4(4)
N2	8629(4)	321(2)	3014.3(4)	21.9(4)
C23	4721(4)	2534(3)	3680.1(4)	21.2(5)
C9	7533(4)	8150(3)	4395.2(4)	21.2(5)
C26	8851(4)	1469(3)	3160.4(4)	21.8(5)
C3	4202(4)	4368(3)	4895.4(5)	22.4(5)
C13	9404(4)	8762(3)	3996.9(4)	22.8(5)
C4	6036(4)	5231(3)	4874.5(4)	20.4(5)
C22	2723(4)	3235(3)	3693.2(5)	24.2(5)
C34	7981(4)	295(3)	2558.3(4)	22.5(5)
C10	10046(4)	6439(3)	4558.8(4)	23.0(5)
C14	9435(4)	7695(3)	3783.9(4)	24.0(5)
C24	5526(4)	2114(3)	3421.7(4)	21.6(5)

Atom	X	У	Z	U_{eq}
C25	7631(4)	1223(3)	3405.7(4)	21.7(5)
C11	11084(4)	7189(3)	4334.2(5)	23.1(5)
C20	11289(5)	9791(3)	3996.5(5)	27.7(6)
C5	7385(5)	5370(3)	5085.1(5)	26.0(6)
C28	4264(4)	847(3)	3305.8(4)	23.5(5)
C27	6268(4)	-104(3)	3352.2(4)	23.4(5)
C33	9682(4)	202(3)	2767.8(4)	23.3(5)
C30	5850(5)	2277(3)	3901.7(4)	25.8(6)
C8	7946(4)	7254(3)	4626.3(4)	21.8(5)
C35	6213(5)	1207(3)	2581.9(4)	26.1(6)
C2	3709(5)	3680(3)	5118.1(5)	28.1(6)
C21	1885(5)	3678(3)	3921.4(5)	28.3(6)
C6	6918(5)	4671(3)	5307.1(5)	28.5(6)
C29	7310(5)	-803(3)	3121.7(5)	25.2(6)
C39	8171(5)	-477(3)	2338.0(5)	27.7(6)
C7	6591(4)	5878(3)	4623.9(4)	22.8(5)
C32	3027(5)	3418(3)	4142.4(5)	29.1(6)
C1	5069(5)	3832(3)	5324.6(5)	28.3(6)
C12	8608(5)	5158(3)	4496.7(5)	26.1(6)
C15	7631(5)	6822(3)	3753.3(5)	31.3(6)
C31	4986(5)	2708(3)	4132.9(5)	28.5(6)
C19	11184(5)	7561(3)	3619.6(5)	29.2(6)
C36	4667(5)	1333(3)	2393.0(5)	32.8(6)
C38	6619(5)	-358(4)	2147.7(5)	35.0(7)
C40	11110(5)	-1102(3)	2758.4(5)	31.8(6)
C16	7597(6)	5837(3)	3559.3(6)	41.7(8)
C37	4870(5)	535(4)	2174.6(5)	36.6(7)
C18	11138(6)	6567(4)	3426.5(5)	38.1(7)
C17	9348(6)	5717(3)	3396.2(6)	42.1(8)

Table 3: Anisotropic Displacement Parameters (×10⁴) **158wb**. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2a^{*2} \times U_{11} + ... + 2hka^* \times b^* \times U_{12}]$

Atom	U_{11}	U_{22}	U33	U_{23}	<i>U</i> ₁₃	U_{12}
O2	30(1)	24.0(11)	27.9(8)	-3.2(7)	4.3(8)	-6.4(8)
01	20.2(9)	26.6(11)	40(1)	5.4(8)	0.8(8)	7.3(8)
N1	19.5(10)	20.7(12)	24.0(9)	3.7(8)	0.8(8)	4.0(9)
N2	23.7(11)	20.2(11)	21.9(9)	-0.6(8)	0.3(8)	-1.1(9)
C23	23.8(12)	17.2(13)	22.6(11)	1.9(9)	0.2(10)	-1.3(10)
C9	19.4(12)	17.1(13)	27.2(11)	-0.5(9)	0(1)	-1.3(10)
C26	20.4(12)	23.8(14)	21.3(10)	-0.9(10)	-2.2(10)	0(1)
C3	20.7(13)	21.4(14)	25.1(11)	2(1)	-1.8(10)	-1.7(10)
C13	23.8(13)	20.4(13)	24.1(11)	4.4(10)	-0.7(10)	1.3(11)
C4	20.9(12)	18.0(13)	22.3(10)	-0.3(9)	2.9(10)	-0.2(10)
C22	25.9(13)	21.1(14)	25.6(11)	1(1)	-3(1)	2.6(11)
C34	25.0(13)	20.5(13)	22.0(11)	0.3(9)	2.8(10)	-2.6(11)
C10	21.3(13)	22.2(14)	25.5(11)	2.8(10)	1.5(10)	1.7(10)
C14	27.8(14)	19.1(14)	25.0(11)	4.6(10)	-6.4(10)	-1.5(11)

Atom	U_{11}	U_{22}	<i>U</i> 33	U_{23}	U 13	U_{12}
C24	21.7(12)	22.9(14)	20.1(10)	3.0(9)	-1.0(9)	1.4(10)
C25	19.9(12)	26.6(14)	18.7(10)	2.0(9)	-0.7(9)	-0.4(11)
C11	20.2(12)	21.6(14)	27.4(11)	5(1)	1.7(10)	3.9(11)
C20	38.0(15)	21.8(14)	23.5(11)	3.6(10)	-1.1(11)	-5.8(12)
C5	25.2(14)	26.3(15)	26.6(11)	-1.6(10)	0.6(10)	-5.2(12)
C28	21.3(13)	28.1(15)	21(1)	-0.7(10)	-0.8(10)	-1.6(11)
C27	23.8(13)	23.0(14)	23.5(11)	4.6(10)	0.5(10)	1.7(11)
C33	22.2(13)	23.6(14)	24.0(11)	-3.7(9)	5.6(10)	-0.5(11)
C30	26.2(14)	27.9(15)	23.4(11)	-0.5(10)	-1.5(10)	2.3(12)
C8	22.2(12)	20.3(14)	23(1)	-0.1(9)	1.5(9)	0.3(10)
C35	29.4(14)	26.4(15)	22.6(11)	0.7(10)	3.7(10)	3.9(12)
C2	27.1(14)	24.6(15)	32.5(12)	3.1(11)	2.0(11)	-5.8(12)
C21	28.3(14)	25.5(15)	31.1(12)	-2.6(11)	2.0(11)	4.0(12)
C6	31.9(14)	29.9(16)	23.8(11)	-1.5(11)	-2.2(11)	-4.5(12)
C29	26.2(14)	19.3(14)	30.0(12)	1.6(10)	2.5(11)	-0.6(11)
C39	31.0(15)	26.7(16)	25.4(12)	-0.5(10)	2.8(11)	1.6(12)
C7	21.6(13)	23.4(15)	23.5(11)	1.8(10)	1.1(10)	-1.7(10)
C32	35.4(15)	27.6(16)	24.4(11)	-6.1(10)	4.9(11)	0.0(12)
C1	38.6(16)	23.2(14)	23.1(11)	3(1)	0.7(11)	-6.7(12)
C12	29.7(14)	21.9(14)	26.7(11)	-0.8(10)	6.9(11)	-1.6(11)
C15	31.5(15)	25.5(16)	36.9(14)	5.8(11)	-9.9(12)	-4.3(12)
C31	32.8(15)	30.6(15)	22.0(11)	0.5(10)	-4.1(11)	-1.1(12)
C19	32.6(15)	27.7(16)	27.2(12)	2.7(11)	-1.4(11)	1.9(12)
C36	31.1(15)	38.2(18)	29.2(12)	8.0(12)	2.4(11)	5.5(13)
C38	45.6(18)	35.6(18)	23.8(12)	-2.3(12)	-2.5(12)	-2.9(14)
C40	27.5(14)	34.1(17)	33.8(13)	-7.5(12)	-2.4(12)	5.8(13)
C16	52(2)	23.0(16)	50.0(17)	3.9(13)	-25.7(16)	-5.8(15)
C37	36.8(16)	47(2)	26.3(12)	6.9(12)	-4.9(12)	-2.3(15)
C18	50.9(19)	33.4(18)	30.0(13)	-2.4(12)	-4.6(14)	14.1(15)
C17	66(2)	25.3(17)	34.7(14)	-6.4(12)	-21.5(16)	13.2(16)

Table 4: Bond Lengths in Å for 158wb.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
02	C26	1.226(3)	C3	C4	1.396(4)
01	C9	1.229(3)	C3	C2	1.387(4)
N1	C9	1.354(3)	C13	C14	1.524(4)
N1	C13	1.466(3)	C13	C20	1.515(4)
N1	C11	1.462(3)	C4	C5	1.397(4)
N2	C26	1.351(3)	C4	C7	1.508(3)
N2	C33	1.465(3)	C22	C21	1.384(4)
N2	C29	1.459(3)	C34	C33	1.526(4)
C23	C22	1.395(4)	C34	C35	1.394(4)
C23	C24	1.513(3)	C34	C39	1.390(4)
C23	C30	1.388(3)	C10	C11	1.530(3)
C9	C8	1.519(3)	C10	C8	1.544(4)
C26	C25	1.521(3)	C10	C12	1.543(4)

Atom	Atom	Length/Å	Atom	Atom	Length/Å
C14	C15	1.392(4)	C2	C1	1.385(4)
C14	C19	1.387(4)	C21	C32	1.389(4)
C24	C25	1.546(4)	C6	C1	1.389(4)
C24	C28	1.563(4)	C39	C38	1.392(4)
C25	C27	1.544(4)	C7	C12	1.566(4)
C5	C6	1.386(4)	C32	C31	1.377(4)
C28	C27	1.545(4)	C15	C16	1.397(4)
C27	C29	1.534(4)	C19	C18	1.399(4)
C33	C40	1.522(4)	C36	C37	1.395(4)
C30	C31	1.400(4)	C38	C37	1.375(5)
C8	C7	1.554(4)	C16	C17	1.382(5)
C35	C36	1.385(4)	C18	C17	1.372(5)

Table 5:	Bond Ang	les in ° for 1	158wb.	Atom	Atom	Atom	Angle/°
Atom	Atom	Atom	Angle/°	C26	C25	C27	103.5(2)
$\frac{1}{C_0}$	N1		122 Q(2)	C27	C25	C24	90.77(19)
C9 C0	N1	C13	122.9(2) 115.3(2)	N1	C11	C10	102.4(2)
C9	N1	C11 C13	113.3(2) 121.7(2)	C6	C5	C4	121.0(3)
C11 C26	INI NO	C15 C22	121.7(2) 122.2(2)	C27	C28	C24	90.10(19)
C20	INZ NO	C35	122.2(2) 115.2(2)	C25	C27	C28	88.5(2)
C20	INZ NO	C29	113.3(2)	C29	C27	C25	106.3(2)
C29	NZ C22	C33	122.4(2)	C29	C27	C28	117.2(2)
C22	C23	C24	117.2(2)	N2	C33	C34	110.4(2)
C30	C23	C22	118.3(2)	N2	C33	C40	110.2(2)
C30	C23	C24	124.2(2)	C40	C33	C34	114.5(2)
01	C9		125.3(2)	C23	C30	C31	120.4(3)
	C9 C9	C8	126.0(2)	C9	C8	C10	103.55(19)
NI	C9	C8	108.7(2)	C9	C8	C7	112.4(2)
02	C26	N2	125.9(2)	C10	C8	C7	90.8(2)
02	C26	C25	125.5(2)	C36	C35	C34	121.2(2)
N2	C26	C25	108.6(2)	C1	C2	C3	119.8(3)
C2	C3	C4	121.5(2)	C22	C21	C32	120.1(3)
NI	C13	CI4	109.6(2)	C5	C6	C1	120.2(2)
N1	C13	C20	110.5(2)	N2	C29	C27	102.8(2)
C20	C13	C14	115.1(2)	C34	C39	C38	120.8(3)
C3	C4	C5	117.8(2)	C4	C7	C8	117.4(2)
C3	C4	C7	119.6(2)	C4	C7	C12	112.2(2)
C5	C4	C7	122.4(2)	C8	C7	C12	87.47(19)
C21	C22	C23	121.0(2)	C31	C32	C21	119.6(2)
C35	C34	C33	119.9(2)	C2	C1	C6	119.8(2)
C39	C34	C33	121.8(2)	C10	C12	C7	90.4(2)
C39	C34	C35	118.2(2)	C14	C15	C16	120.1(3)
C11	C10	C8	106.9(2)	C32	C31	C30	120.3(2)
C11	C10	C12	116.1(2)	C14	C19	C18	120.6(3)
C12	C10	C8	88.7(2)	C35	C36	C37	119 8(3)
C15	C14	C13	118.6(2)	C37	C38	C39	120 3(3)
C19	C14	C13	122.6(3)	C17	C16	C15	120.5(3) 120.5(3)
C19	C14	C15	118.8(3)	C38	C37	C36	120.5(3) 1197(3)
C23	C24	C25	117.8(2)	C17	C18	C19	120 3(3)
C23	C24	C28	113.8(2)	C18	C10	C16	120.5(3) 110 6(3)
C25	C24	C28	87.82(19)		01/	010	117.0(3)
C26	C25	C24	111.7(2)				

Table 5: Bond Angles in ° for 158wb.

Table 6: Hydrogen Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **158wb**. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} .

Atom	X	У	Z	U_{eq}
H3	3290.1	4251.19	4757.02	27
H13	8056.39	9308.71	3978.63	27
H22	1942.53	3408.04	3546.36	29
H10	11043.82	6296.35	4700.73	28
H24	5571.38	2913.43	3306.31	26

Atom	X	У	Z	U_{eq}
H25	8533.7	1198.42	3557.99	26
H11A	12301.05	7771.02	4386.44	28
H11B	11586.71	6525.95	4208.7	28
H20A	11076.04	10467.87	4127.73	42
H20B	11349.96	10259.92	3837.02	42
H20C	12635.25	9298.48	4024.69	42
Н5	8616.37	5939.52	5076.12	31
H28A	2979.74	574.99	3401.18	28
H28B	3909.45	965.89	3129.32	28
H27	6112.11	-726.74	3497.5	28
H33	10654.91	1010.71	2749.45	28
H30	7189.04	1815.23	3896.63	31
H8	7978.84	7756.52	4786.92	26
H35	6069.06	1740.76	2727.23	31
H2	2469.99	3117.82	5128.63	34
H21	555.5	4150.9	3926.91	34
H6	7844.4	4764.5	5444.8	34
H29A	8214.42	-1591.38	3170.39	30
H29B	6203.29	-1118.6	3003.99	30
H39	9350.83	-1081.35	2317.47	33
H7	5323.02	5931.73	4511.5	27
H32	2471.78	3721.4	4295.79	35
H1	4744.51	3374.95	5474.35	34
H12A	9072.63	4307.5	4580.73	31
H12B	8422.73	5000.21	4317.8	31
H15	6446.65	6895.28	3862.24	38
H31	5738.72	2513.72	4280.84	34
H19	12399.85	8137.27	3637.99	35
H36	3498.07	1946.42	2411.59	39
H38	6764.08	-885.79	2001.64	42
H40A	12004.72	-1143.22	2906.53	48
H40B	12027.71	-1067.08	2612.07	48
H40C	10196.33	-1918.09	2750.63	48
H16	6386.48	5257.84	3539.64	50
H37	3828.98	607.56	2047.76	44
H18	12325.19	6482.01	3318.25	46
H17	9313.23	5062.98	3266.67	50

(±)-*cis*-2-(((*tert*-Butoxycarbonyl)amino)methyl)-3-phenylcyclobutane-1-carboxylic acid (227)

Table 1: Crystal data and structure refinem	ent for 227 .
Chemical formula	$C_{17}H_{23}NO_4$
$M_{ m r}$	305.36
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	123
<i>a</i> , <i>b</i> , <i>c</i> (Å)	11.4168 (1), 14.3790 (1), 10.0058 (1)
β (°)	99.937 (1)
$V(\text{\AA}^3)$	1617.93 (2)
Ζ	4
Radiation type	Cu Ka
$\mu (mm^{-1})$	0.73
Crystal size (mm)	$0.28 \times 0.11 \times 0.08$
F(000)	656
Diffractometer	GV1000, TitanS2
Absorption correction	Gaussian <i>CrysAlis PRO</i> 1.171.38.46 (Rigaku Oxford Diffraction, 2015) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

T_{\min}, T_{\max}	0.724, 1.000
No. of measured, independent and observed [$I > 2\sigma(I)$] reflections	41835, 3281, 3078
R _{int}	0.057
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.624
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.038, 0.100, 1.02
No. of reflections	3281
No. of parameters	203
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} \ (e \ \text{\AA}^{-3})$	0.21, -0.22

Table 2: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **227**. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} .

Atom	X	У	Z	U_{eq}
O(4)	7730.3(6)	8063.7(6)	4719.3(7)	17.47(18)
O(2)	4155.8(7)	9075.3(5)	5011.4(7)	19.07(18)
O(3)	6450.8(7)	7833.9(6)	6211.7(7)	19.42(18)
O(1)	4740.5(7)	9713.3(6)	3196.0(8)	23.9(2)
N(1)	5958.2(8)	7475.5(7)	3966.2(9)	16.6(2)
C(13)	6687.8(9)	7792.6(7)	5070.6(10)	13.9(2)
C(3)	3928.3(9)	7379.7(7)	2775(1)	14.8(2)
C(1)	4159.7(9)	9086.9(7)	3788.9(11)	16.0(2)
C(5)	2341.4(9)	6180.8(8)	3423.9(10)	16.4(2)
C(4)	2607.4(9)	7055.8(7)	2709.3(10)	15.9(2)
C(12)	4801.7(9)	7059.2(7)	4012.1(10)	15.2(2)
C(2)	3470.1(9)	8405.8(7)	2825.5(10)	16.8(2)
C(6)	1709.1(9)	6184.6(8)	4493.4(11)	18.3(2)
C(14)	8662.3(9)	8506.2(7)	5711.6(10)	15.7(2)
C(11)	2321.8(9)	8019.7(8)	3246.1(11)	18.9(2)
C(15)	9629.0(9)	8690.2(8)	4874.3(12)	22.0(2)
C(7)	1486.1(11)	5359.7(9)	5134.4(12)	25.2(3)
C(17)	9111.7(10)	7847.4(9)	6871.8(13)	26.0(3)
C(10)	2729.3(11)	5329.1(9)	3002.2(14)	28.1(3)
C(16)	8210.1(11)	9414.7(8)	6205.7(13)	26.4(3)
C(8)	1903.8(12)	4523.7(9)	4724.5(14)	31.5(3)
C(9)	2521.8(13)	4508.8(9)	3646.8(17)	36.8(3)

tunes the	\mathbf{z}_{p} [10]					
Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
O(4)	10.4(3)	26.8(4)	15.2(3)	-3.5(3)	2.2(3)	-4.3(3)
O(2)	22.2(4)	16.6(4)	18.3(4)	-0.1(3)	3.3(3)	-3.5(3)
O(3)	16.5(4)	28.7(4)	13.2(3)	-0.4(3)	3.2(3)	-2.4(3)
O(1)	28.0(4)	23.1(4)	21.6(4)	-2.4(3)	7.1(3)	-13.0(3)
N(1)	12.0(4)	24.8(5)	13.3(4)	-2.6(3)	3.2(3)	-3.6(3)
C(13)	11.1(4)	15.2(5)	15.5(5)	1.5(4)	2.3(4)	0.9(4)
C(3)	13.0(5)	18.2(5)	13.4(4)	-2.0(4)	2.4(4)	-3.5(4)
C(1)	13.4(5)	14.2(5)	20.4(5)	1.9(4)	2.8(4)	0.4(4)
C(5)	10.7(4)	17.8(5)	19.6(5)	-1.9(4)	-0.5(4)	-3.1(4)
C(4)	12.4(5)	18.8(5)	15.8(5)	-1.2(4)	0.3(4)	-2.9(4)
C(12)	12.1(5)	17.2(5)	16.6(5)	-0.6(4)	2.9(4)	-2.0(4)
C(2)	14.3(5)	17.7(5)	17.5(5)	1.9(4)	0.2(4)	-2.8(4)
C(6)	16.7(5)	19.7(5)	17.6(5)	-1.7(4)	0.6(4)	-2.2(4)
C(14)	11.5(4)	17.2(5)	17.4(5)	-2.3(4)	-0.4(4)	-2.6(4)
C(11)	12.4(5)	17.7(5)	26.2(5)	0.8(4)	2.9(4)	-1.3(4)
C(15)	14.4(5)	24.9(6)	27.2(6)	-3.5(4)	5.4(4)	-4.4(4)
C(7)	26.6(6)	27.8(6)	20.6(5)	2.1(4)	2.6(4)	-8.2(5)
C(17)	16.9(5)	29.3(6)	28.4(6)	6.9(5)	-5.8(4)	-3.2(4)
C(10)	26.9(6)	21.9(6)	39.2(7)	-5.1(5)	15.8(5)	-2.5(4)
C(16)	25.9(6)	20.9(6)	34.6(6)	-7.0(5)	11.0(5)	-1.2(5)
C(8)	35.3(7)	19.6(6)	38.6(7)	7.1(5)	3.2(5)	-7.3(5)
C(9)	38.7(7)	16.7(6)	57.8(9)	-3.0(6)	16.1(6)	0.7(5)

Table 3: Anisotropic Displacement Parameters (×10⁴) **227**. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2a^{*2} \times U_{11} + ... + 2hka^* \times b^* \times U_{12}]$

 Table 4: Bond Lengths in Å for 227.

Atom	Atom	Length/Å	Atom	Ato
O(4)	C(13)	1.3551(12)	C(5)	C(6
O(4)	C(14)	1.4691(12)	C(5)	C(1
O(2)	C (1)	1.2240(13)	C(4)	C(1
O(3)	C(13)	1.2194(13)	C(2)	C(1
O(1)	C (1)	1.3186(13)	C(6)	C(7
N(1)	C(13)	1.3436(13)	C(14)	C(1
N(1)	C(12)	1.4576(13)	C(14)	C(1
C(3)	C(4)	1.5688(13)	C(14)	C(1
C(3)	C(12)	1.5208(14)	C(7)	C(8
C(3)	C(2)	1.5692(15)	C(10)	C(9
C(1)	C(2)	1.4988(14)	C(8)	C(9
C(5)	C(4)	1.5037(14)		

Atom	Atom	Length/Å
C(5)	C(6)	1.3903(15)
C(5)	C(10)	1.3923(16)
C(4)	C(11)	1.5415(15)
C(2)	C(11)	1.5474(14)
C(6)	C(7)	1.3927(16)
C(14)	C(15)	1.5195(14)
C(14)	C(17)	1.5175(15)
C(14)	C(16)	1.5184(15)
C(7)	C(8)	1.3814(19)
C(10)	C(9)	1.3843(19)
C(8)	C(9)	1.387(2)

Table 5: Bond Angles in \degree for 227.

Atom	Atom	Atom	Angle/°
C(13)	O(4)	C(14)	121.03(8)
C(13)	N(1)	C(12)	123.36(8)
O(3)	C(13)	O(4)	125.14(9)
O(3)	C(13)	N(1)	125.48(9)
N(1)	C(13)	O(4)	109.38(8)
C(4)	C(3)	C(2)	87.54(7)
C(12)	C(3)	C(4)	115.77(8)
C(12)	C(3)	C(2)	115.73(8)
O(2)	C (1)	O(1)	123.21(10)
O(2)	C(1)	C(2)	122.80(9)
O (1)	C(1)	C(2)	113.96(9)
C(6)	C(5)	C(4)	122.48(10)
C(6)	C(5)	C(10)	118.12(10)
C(10)	C(5)	C(4)	119.40(10)
C(5)	C(4)	C(3)	120.00(9)
C(5)	C(4)	C(11)	120.96(9)
C(11)	C(4)	C(3)	88.75(8)
N(1)	C(12)	C(3)	108.67(8)
C(1)	C(2)	C(3)	119.61(8)
C(1)	C(2)	C(11)	115.80(9)
C(11)	C(2)	C(3)	88.52(8)
C(5)	C(6)	C(7)	120.77(11)
O(4)	C(14)	C(15)	102.30(8)
O(4)	C(14)	C(17)	110.88(9)
O(4)	C(14)	C(16)	110.21(9)
C(17)	C(14)	C(15)	110.40(9)
C(17)	C(14)	C(16)	112.15(10)
C(16)	C(14)	C(15)	110.48(9)
C(4)	C(11)	C(2)	89.30(8)
C(8)	C(7)	C(6)	120.31(11)
C(9)	C(10)	C(5)	121.29(11)
C (7)	C(8)	C(9)	119.49(11)
C(10)	C(9)	C(8)	120.00(12)

Atom	X	У	Z	U_{eq}	
H(1)	5087.67	10070.97	3769.54	36	
H(1A)	6185.08	7520.48	3192.59	20	
H(3)	4218.91	7248.61	1928.3	18	
H(4)	2231.39	7009.91	1754.19	19	
H(12A)	4524.57	7248.46	4834.33	18	
H(12B)	4865.43	6386.47	4012.72	18	
H(2)	3295.84	8669.23	1909.39	20	
H(6)	1431.85	6744.59	4784.13	22	
H(11A)	2329.14	8034.69	4216.7	23	
H(11B)	1598.23	8294.99	2754.28	23	
H(15A)	9881.33	8111.86	4537.5	33	
H(15B)	10293.32	8986.44	5431.49	33	
H(15C)	9323	9088.43	4125.09	33	
H(7)	1054.03	5371.73	5841.59	30	
H(17A)	8488.39	7729.81	7382.49	39	
H(17B)	9778.15	8123.34	7452.83	39	
H(17C)	9352.89	7272.4	6514.13	39	
H(10)	3135.85	5311	2273.2	34	
H(16A)	7876.33	9789.35	5439.98	40	
H(16B)	8857.55	9742.77	6744.09	40	
H(16C)	7610.64	9286.49	6745.37	40	
H(8)	1771.71	3975.03	5167.86	38	
H(9)	2796.72	3947.64	3357.14	44	

Table 6: Hydrogen Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **227**. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} .

tert-Butyl (((1*R*,2*S*,4*S*)-2-((4*S*,5*R*)-4-methyl-2-oxo-5-phenyloxazolidine-3-carbonyl)-4-phenylcyclobutyl)methyl)carbamate (237a)

Chemical formula	$C_{27}H_{32}N_2O_5$
$M_{ m r}$	464.54
Crystal system, space group	Orthorhombic, $P2_12_12_1$
Temperature (K)	123
<i>a</i> , <i>b</i> , <i>c</i> (Å)	9.6101 (1), 11.1874 (1), 23.1811 (3)
$V(\text{\AA}^3)$	2492.25 (5)
Ζ	4
Radiation type	Cu Ka
$\mu (mm^{-1})$	0.69
Crystal size (mm)	$0.19 \times 0.06 \times 0.04$
F(000)	992
Diffractometer	SuperNova, Single source at offset, Atlas
Absorption correction	Gaussian <i>CrysAlis PRO</i> 1.171.38.42b (Rigaku Oxford Diffraction, 2015) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

T_{\min}, T_{\max}	0.976, 0.994
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	29493, 4992, 4717
R _{int}	0.042
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.622
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.028, 0.070, 1.06
No. of reflections	4992
No. of parameters	312
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{max}, \Delta \rho_{min} (e \text{ Å}^{-3})$	0.15, -0.16
Absolute structure	Refined as an inversion twin.
Absolute structure parameter	-0.07 (17)

Table 2: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **237a**. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} .

Atom	X	у	Z	U_{eq}
O(3)	4947.4(12)	4041.2(11)	4282.7(5)	23.7(3)
O(1)	7336.2(13)	5765.3(12)	5688.3(6)	28.6(3)
O(4)	6682.9(13)	6884.6(12)	3942.6(6)	27.9(3)
O(2)	3582.3(13)	5292.5(13)	4777.2(6)	32.2(3)
O(5)	4556.8(12)	7345.5(12)	3558.9(5)	26.9(3)
N(1)	5906.0(14)	4967.8(12)	5034.3(6)	19.2(3)
N(2)	5020.8(14)	7904.1(13)	4444.7(6)	20.3(3)
C(23)	5534.7(16)	7340.2(15)	3979.1(7)	19.0(3)
C(1)	5849.2(17)	8213.7(15)	4947.8(7)	19.0(3)
C(22)	4696.9(18)	4836.3(15)	4709.9(7)	21.9(3)
C(12)	6166.0(17)	5759.0(15)	5484.4(7)	20.2(3)
C(15)	6674.2(18)	2544.2(15)	4037.2(7)	21.1(3)
C(3)	5009.7(18)	6544.5(14)	5701.8(7)	20.4(3)
C(6)	5582.5(16)	9327.1(15)	6402.4(7)	19.7(3)
C(14)	6430.1(17)	3794.6(15)	4248.2(7)	20.3(3)
C(13)	6948.4(17)	4072.1(15)	4862.4(7)	20.7(3)
C(5)	5869.3(17)	8179.6(15)	6083.8(7)	19.5(3)
C(24)	4846.8(18)	6918.7(15)	2972.1(7)	21.2(3)
C(4)	5305(2)	6983.6(15)	6324.4(7)	24.9(4)
C(7)	6505.4(19)	10282.3(16)	6362.3(8)	25.8(4)
C(16)	5601.2(19)	1718.3(16)	3979.6(8)	25.7(4)
C(20)	8025.3(19)	2207.2(17)	3900.5(8)	26.1(4)
C(2)	5118.2(16)	7887.6(14)	5505.4(7)	16.9(3)
C(8)	6311(2)	11313.1(17)	6686.4(9)	30.0(4)

Atom	X	У	Z	U_{eq}	
C(19)	8297(2)	1049.3(18)	3711.8(9)	32.5(4)	
C(25)	5154(2)	5587.3(16)	2971.9(8)	32.2(4)	
C(18)	7231(2)	233.0(17)	3658.2(9)	34.4(4)	
C(27)	6030(2)	7618.6(17)	2705.3(8)	28.7(4)	
C(17)	5882(2)	565.1(17)	3789.2(8)	31.2(4)	
C(21)	6919(2)	3020.2(17)	5277.8(8)	28.4(4)	
C(11)	4438(2)	9456.2(18)	6764.6(10)	35.7(5)	
C(9)	5201(2)	11415.4(17)	7058.9(8)	33.2(4)	
C(26)	3485(2)	7186(2)	2664.7(8)	32.8(4)	
C(10)	4260(2)	10487(2)	7092.9(10)	43.4(5)	

Table 3: Anisotropic Displacement Parameters (×10⁴) **237a**. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2a^{*2} \times U_{11} + ... + 2hka^* \times b^* \times U_{12}]$

Atom	U ₁₁	U_{22}	U ₃₃	U_{23}	<i>U</i> ₁₃	U ₁₂
O(3)	21.8(6)	25.5(6)	23.7(6)	-7.4(5)	-5.5(5)	6.5(5)
O(1)	21.2(6)	29.4(7)	35.4(7)	-7.5(6)	-7.7(5)	-2.0(5)
O(4)	23.4(6)	36.1(7)	24.1(6)	-7.4(5)	-4.5(5)	9.8(5)
O(2)	21.5(6)	37.6(7)	37.4(7)	-15.2(6)	-9.2(5)	10.2(6)
O(5)	21.0(6)	43.8(7)	16.1(6)	-7.3(5)	-2.8(4)	7.6(5)
N(1)	16.6(6)	19.8(6)	21.1(6)	-2.0(5)	-1.7(5)	1.4(5)
N(2)	15.9(6)	28.1(7)	16.9(6)	-2.7(5)	-1.5(5)	0.8(5)
C(23)	18.5(8)	21.0(7)	17.5(7)	-0.2(6)	-2.3(6)	-0.5(6)
C(1)	17.4(7)	21.6(8)	17.8(7)	-2.1(6)	-0.3(6)	-2.7(6)
C(22)	21.4(8)	21.5(8)	22.8(8)	-2.5(7)	-5.0(6)	2.1(6)
C(12)	20.2(8)	18.6(7)	21.6(8)	-0.1(6)	-1.1(6)	-2.9(6)
C(15)	26.6(8)	20.1(8)	16.5(7)	1.5(6)	0.4(6)	3.6(7)
C(3)	21.2(8)	20.6(8)	19.4(7)	-2.5(6)	2.0(6)	-3.2(6)
C(6)	17.4(7)	25.0(8)	16.5(7)	-3.1(6)	-2.2(6)	0.0(6)
C(14)	19.3(8)	20.0(8)	21.5(8)	0.2(6)	0.2(6)	1.7(6)
C(13)	16.4(7)	21.2(8)	24.4(8)	-3.1(7)	-1.1(6)	1.7(6)
C(5)	18.3(7)	23.5(8)	16.8(7)	-3.5(6)	-1.2(6)	-0.3(6)
C(24)	23.2(8)	25.8(8)	14.5(7)	-2.1(6)	-0.6(6)	-0.2(7)
C(4)	34.2(9)	23.8(8)	16.7(8)	-1.5(7)	0.1(7)	-1.1(7)
C(7)	24.4(9)	27.5(9)	25.6(8)	-1.7(7)	1.7(7)	-2.3(7)
C(16)	28.1(9)	25.3(9)	23.7(8)	2.3(7)	3.3(7)	0.9(7)
C(20)	24.9(9)	27.9(9)	25.6(9)	-1.0(7)	-1.1(7)	3.6(7)
C(2)	14.8(7)	19.6(7)	16.2(7)	-2.6(6)	-0.2(6)	-0.9(6)
C(8)	31.1(10)	25.5(9)	33.6(10)	-3.9(8)	-7.5(8)	-4.9(8)
C(19)	33.2(10)	33.1(10)	31.1(10)	-3.5(8)	-3.0(8)	14.8(8)
C(25)	47.0(11)	24.1(9)	25.4(8)	-1.4(7)	-5.4(8)	-4.4(8)
C(18)	49.3(12)	22.1(9)	31.7(10)	-3.7(8)	-8.3(9)	11.8(8)
C(27)	31.4(10)	29.9(9)	24.9(8)	4.9(8)	0.9(7)	-3.0(8)
C(17)	41.7(11)	21.7(8)	30.2(9)	2.8(7)	-4.4(8)	-2.3(8)
C(21)	35.1(10)	26.0(9)	24.2(9)	-0.3(7)	-7.6(7)	8.4(8)
C(11)	27.9(10)	31.1(10)	48.0(12)	-10.3(9)	15.3(9)	-6.0(8)
C(9)	45.6(11)	27.9(9)	26.1(9)	-10.2(8)	-3.3(9)	5.5(9)
C(26)	27.3(9)	52.2(12)	19.0(8)	-4.6(8)	-5.2(7)	3.9(9)
C(10)	44.9(12)	38.3(11)	47.2(13)	-11(1)	24.2(10)	1.6(10)

Atom	Atom	Length/Å
O(3)	C(22)	1.353(2)
O(3)	C(14)	1.454(2)
O (1)	C(12)	1.220(2)
O(4)	C(23)	1.218(2)
O(2)	C(22)	1.197(2)
O(5)	C(23)	1.354(2)
O(5)	C(24)	1.4683(19)
N(1)	C(22)	1.392(2)
N(1)	C(12)	1.391(2)
N(1)	C(13)	1.472(2)
N(2)	C(23)	1.344(2)
N(2)	C(1)	1.454(2)
C(1)	C(2)	1.516(2)
C(12)	C(3)	1.504(2)
C(15)	C(14)	1.500(2)
C(15)	C(16)	1.391(3)
C(15)	C(20)	1.389(2)
C(3)	C(4)	1.551(2)
C(3)	C(2)	1.573(2)

Table 4: Bond Lengths in Å	for 237a .
Table 4: Bond Lengths in Å	for 237a .

Atom	Atom	Length/Å
C(6)	C(5)	1.506(2)
C(6)	C(7)	1.392(2)
C(6)	C(11)	1.391(2)
C(14)	C(13)	1.540(2)
C(13)	C(21)	1.521(2)
C(5)	C(4)	1.548(2)
C(5)	C(2)	1.558(2)
C(24)	C(25)	1.519(2)
C(24)	C(27)	1.513(2)
C(24)	C(26)	1.520(2)
C(7)	C(8)	1.389(3)
C(16)	C(17)	1.390(3)
C(20)	C(19)	1.392(3)
C(8)	C(9)	1.377(3)
C(19)	C(18)	1.378(3)
C(18)	C(17)	1.383(3)
C(11)	C(10)	1.392(3)
C(9)	C(10)	1.379(3)

Table 5: Bond Angles in ° for 237a.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C(22)	O(3)	C(14)	109.84(13)	C(11)	C(6)	C(5)	121.94(16)
C(23)	O(5)	C(24)	122.24(13)	C(11)	C(6)	C(7)	117.67(16)
C(22)	N(1)	C(13)	110.48(13)	O(3)	C(14)	C(15)	110.37(14)
C(12)	N(1)	C(22)	128.50(15)	O(3)	C(14)	C(13)	103.18(13)
C(12)	N(1)	C(13)	120.94(14)	C(15)	C(14)	C(13)	116.02(14)
C(23)	N(2)	C(1)	123.69(13)	N(1)	C(13)	C(14)	99.64(13)
O(4)	C(23)	O(5)	125.49(15)	N(1)	C(13)	C(21)	110.05(14)
O(4)	C(23)	N(2)	125.79(15)	C(21)	C(13)	C(14)	115.05(14)
N(2)	C(23)	O(5)	108.71(13)	C(6)	C(5)	C(4)	119.74(14)
N(2)	C(1)	C(2)	111.89(13)	C(6)	C(5)	C(2)	121.07(14)
O(3)	C(22)	N(1)	108.45(14)	C(4)	C(5)	C(2)	88.07(12)
O(2)	C(22)	O(3)	122.35(15)	O(5)	C(24)	C(25)	110.86(14)
O(2)	C(22)	N(1)	129.17(16)	O(5)	C(24)	C(27)	110.68(14)
O(1)	C(12)	N(1)	117.38(16)	O(5)	C(24)	C(26)	101.94(13)
O(1)	C(12)	C(3)	123.23(15)	C(25)	C(24)	C(26)	111.12(16)
N(1)	C(12)	C(3)	119.38(14)	C(27)	C(24)	C(25)	111.19(15)
C(16)	C(15)	C(14)	122.33(15)	C(27)	C(24)	C(26)	110.72(15)
C(20)	C(15)	C(14)	118.27(16)	C(5)	C(4)	C(3)	90.16(12)
C(20)	C(15)	C(16)	119.40(16)	C(8)	C(7)	C(6)	121.04(17)
C(12)	C(3)	C(4)	111.22(14)	C(17)	C(16)	C(15)	120.22(17)
C(12)	C(3)	C(2)	114.34(13)	C(15)	C(20)	C(19)	119.99(18)
C(4)	C(3)	C(2)	87.40(12)	C (1)	C(2)	C(3)	120.49(13)
C(7)	C(6)	C(5)	120.33(15)	C(1)	C(2)	C(5)	117.96(13)

Atom	Atom	Atom	Angle/°
C(5)	C(2)	C(3)	88.96(12)
C(9)	C(8)	C(7)	120.81(18)
C(18)	C(19)	C(20)	120.37(18)
C(19)	C(18)	C(17)	119.96(18)
C(18)	C(17)	C(16)	120.06(18)
C(6)	C(11)	C(10)	120.88(18)
C(8)	C(9)	C(10)	118.76(18)
C(9)	C(10)	C(11)	120.78(18)

Atom	X	y	Z	U _{eq}	
H(2)	4153.2	8092.38	4445.08	24	
H(1A)	6036.78	9065.66	4944.45	23	
H(1B)	6733.89	7798.18	4928.85	23	
H(3)	4080.66	6198.85	5651.37	24	
H(14)	6859.24	4358.14	3977.77	24	
H(13)	7878.88	4429.74	4850.24	25	
H(5)	6875.63	8104.4	6025.79	23	
H(4A)	4473.18	7072.8	6557.54	30	
H(4B)	6000.52	6512.85	6525.1	30	
H(7)	7264.11	10229.48	6114.54	31	
H(16)	4693.13	1938.54	4068.67	31	
H(20)	8748.4	2755	3934.95	31	
H(2A)	4188.55	8247.6	5508.52	20	
H(8)	6938.5	11941.94	6651.56	36	
H(19)	9203.22	825.44	3621.32	39	
H(25A)	6020.56	5443.11	3165.84	48	
H(25B)	5215.2	5306.31	2581.44	48	
H(25C)	4420.42	5170.69	3168.38	48	
H(18)	7419.25	-540.84	3534.12	41	
H(27A)	5848.36	8458.86	2742.4	43	
H(27B)	6110.13	7415.26	2304.33	43	
H(27C)	6882.94	7425.76	2899.88	43	
H(17)	5160.93	16.33	3749.78	37	
H(21A)	7097.69	3299.05	5662.38	43	
H(21B)	7620.53	2452.08	5169.15	43	
H(21C)	6021.16	2645.6	5263.99	43	
H(11)	3783.66	8845.85	6787.76	43	
H(9)	5087.27	12097.75	7283.15	40	
H(26A)	2747.12	6738.34	2841.51	49	
H(26B)	3562.78	6963.7	2266.04	49	
H(26C)	3284.94	8024.74	2692.5	49	
H(10)	3497.34	10550.25	7338.05	52	

Table 6: Hydrogen Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **237a**. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ii} .

(±)-4-Phenethylpyrrolidin-2-one ((±)-215)

Table 1: Crystal data and structure refinement for (±)-215.				
Chemical formula	C ₁₂ H ₁₅ NO			
M _r	189.25			
Crystal system, space group	Monoclinic, P21/c			
Temperature (K)	123			
a, b, c (Å)	13.2652 (6), 8.1381 (3), 10.0280 (4)			
β(°)	109.190 (5)			
$V(\text{\AA}^3)$	1022.40 (8)			
Ζ	4			
Radiation type	Cu Ka			
$\mu \ (mm^{-1})$	0.61			
Crystal size (mm)	$0.22 \times 0.12 \times 0.08$			
F(000)	408			
Diffractometer	SuperNova, Single source at offset, Atlas			
Absorption correction	Gaussian <i>CrysAlis PRO</i> 1.171.38.42b (Rigaku Oxford Diffraction, 2015) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm			

•

T_{\min}, T_{\max}	0.759, 0.899
No. of measured, independent and	19680, 1787, 1480
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.070
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.595
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.035, 0.096, 1.03
No. of reflections	1787
No. of parameters	127
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{max}, \Delta \rho_{min} (e \text{ Å}^{-3})$	0.17, -0.17

Table 2: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for (±)-215. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} .

· /			υ	5
Atom	X	У	Z	$oldsymbol{U}_{eq}$
O(001)	5496.1(7)	2678.0(12)	3186.9(10)	29.5(3)
N(002)	4200.0(9)	4610.0(14)	2994.5(11)	25.6(3)
C(003)	1555.7(11)	4792.6(16)	6617.9(14)	25.7(3)
C(004)	4190.3(10)	2393.3(17)	4430.7(14)	24.4(3)
C(005)	3149.7(10)	3348.2(16)	4203.0(14)	23.9(3)
C(006)	4713.3(11)	3205.9(16)	3469.5(13)	24.0(3)
C(007)	3329.3(10)	4982.0(16)	3527.0(14)	24.5(3)
C(008)	1833.3(11)	4594.6(18)	5284.2(15)	27.2(3)
C(009)	2859.4(11)	3600.0(17)	5532.5(14)	25.0(3)
C(00A)	2202.2(12)	5732.9(17)	7741.3(16)	29.9(3)
C(00B)	689.3(11)	3970.6(18)	6798.2(15)	30.1(3)
C(00C)	472.3(12)	4077(2)	8057.5(16)	36.5(4)
C(00D)	1997.1(13)	5820.1(18)	9009.2(16)	35.0(4)
C(00E)	1130.8(13)	4994(2)	9167.8(17)	38.2(4)

Table 3: Anisotropic Displacement Parameters (×10⁴) (±)-215. The anisotropic displacement factor exponent takes the form: $-2p^2 [h^2 a^{*2} \times U_{11} + ... + 2hka^* \times b^* \times U_{12}]$

exponent	takes the for	m 2p n a	× 0111 12100			
Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
O(001)	30.4(5)	29.1(6)	34.0(5)	-6.8(4)	17.4(4)	-1.0(4)
N(002)	32.3(6)	21.0(6)	28.4(6)	1.2(5)	16.5(5)	-1.7(5)
C(003)	27.0(7)	20.8(7)	31.7(7)	5.6(5)	13.2(6)	8.0(5)
C(004)	27.9(7)	20.1(7)	27.2(7)	-1.0(5)	11.9(5)	-0.8(5)
C(005)	26.0(7)	20.6(7)	26.0(7)	-0.4(5)	9.9(5)	-1.5(5)
C(006)	27.4(7)	22.1(7)	23.4(6)	-7.0(5)	9.5(5)	-5.2(5)
C(007)	27.2(7)	22.0(7)	26.1(7)	0.0(5)	11.0(6)	0.3(5)
C(008)	29.1(7)	24.7(7)	30.0(7)	4.2(6)	12.8(6)	3.1(6)
C(009)	27.7(7)	22.0(7)	27.4(7)	2.3(5)	11.8(6)	1.3(6)
C(00A)	33.7(8)	19.5(7)	39.5(8)	1.0(6)	16.1(6)	3.6(6)

Atom	U ₁₁	U_{22}	U33	U_{23}	<i>U</i> ₁₃	U_{12}
C(00B)	25.5(7)	30.3(8)	35.9(8)	3.9(6)	11.9(6)	4.7(6)
C(00C)	30.4(8)	41.4(9)	43.7(9)	11.4(7)	20.6(7)	8.6(7)
C(00D)	43.6(9)	27.0(8)	36.4(8)	-3.5(6)	15.7(7)	7.3(7)
C(00E)	44.0(9)	41.1(9)	36.8(8)	4.0(7)	23.1(7)	15.2(7)

Table 4: Bond Lengths in Å for (±)-215.

Atom	Atom	Length/Å
O(001)	C(006)	1.2397(16)
N(002)	C(006)	1.3353(18)
N(002)	C(007)	1.4547(16)
C(003)	C(008)	1.5079(19)
C(003)	C(00A)	1.398(2)
C(003)	C(00B)	1.3921(19)
C(004)	C(005)	1.5344(18)
C(004)	C(006)	1.5124(18)

Atom	Atom	Length/Å
C(005)	C(007)	1.5462(18)
C(005)	C(009)	1.5182(18)
C(008)	C(009)	1.5320(18)
C(00A)	C(00D)	1.387(2)
C(00B)	C(00C)	1.387(2)
C(00C)	C(00E)	1.386(2)
C(00D)	C(00E)	1.385(2)

Table 5: Bond Angles in ° for (±)-215.

	0		
Atom	Atom	Atom	Angle/°
C(006)	N(002)	C(007)	114.86(11)
C(00A)	C(003)	C(008)	120.61(13)
C(00B)	C(003)	C(008)	121.10(13)
C(00B)	C(003)	C(00A)	118.18(13)
C(006)	C(004)	C(005)	105.21(11)
C(004)	C(005)	C(007)	103.89(10)
C(009)	C(005)	C(004)	114.40(11)
C(009)	C(005)	C(007)	112.90(11)
O(001)	C(006)	N(002)	125.61(13)
O(001)	C(006)	C(004)	126.04(12)
N(002)	C(006)	C(004)	108.34(11)
N(002)	C(007)	C(005)	103.73(10)
C(003)	C(008)	C(009)	112.04(11)
C(005)	C(009)	C(008)	113.38(11)
C(00D)	C(00A)	C(003)	120.90(14)
C(00C)	C(00B)	C(003)	121.03(14)
C(00E)	C(00C)	C(00B)	120.03(14)
C(00E)	C(00D)	C(00A)	120.05(15)
C(00D)	C(00E)	C(00C)	119.79(14)

	, (III ···IO) IOI (<u>–</u>)			er ano go manizo a o iji
Atom	X	У	Z	U_{eq}
H(002)	4371.01	5245.74	2417.98	31
H(00A)	4647.2	2462.87	5408.3	29
H(00B)	4042.58	1245.55	4182.11	29
H(005)	2566.56	2751.19	3513.97	29
H(00C)	2692.81	5305.54	2766.04	29
H(00D)	3525.83	5855.68	4222.89	29
H(00E)	1920.97	5671.77	4922.92	33
H(00F)	1249.5	4046.43	4576.67	33
H(00G)	3442.77	4161.85	6229.49	30
H(00H)	2774.49	2534.76	5916.32	30
H(00I)	2777.65	6307.55	7636.8	36
H(00J)	249.06	3340.16	6062.83	36
H(00K)	-115.51	3532.87	8156.72	44
H(00L)	2441.59	6433.93	9753.45	42
H(00M)	991.6	5054.11	10016.93	46

Table 6: Hydrogen Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for (±)-215. U_{ea} is defined as 1/3 of the trace of the orthogonalized U_{ii} .

(S)-3-(Aminomethyl)-5-phenylpentanoic acid hydrochloride ((S)-257)

Tuble 1. Crystal data and structure refined	
Chemical formula	$Cl \cdot C_{12}H_{18}NO_2 \cdot H_2O$
M _r	261.74
Crystal system, space group	Monoclinic, P21
Temperature (K)	123
<i>a</i> , <i>b</i> , <i>c</i> (Å)	6.3309 (2), 8.1505 (2), 13.7227 (4)
β (°)	101.228 (3)
$V(\text{\AA}^3)$	694.54 (4)
Ζ	2
Radiation type	Cu Ka
$\mu (mm^{-1})$	2.42
Crystal size (mm)	$0.22 \times 0.19 \times 0.11$
F(000)	280
Diffractometer	SuperNova, Single source at offset, Atlas
Absorption correction	Gaussian <i>CrysAlis PRO</i> 1.171.38.43 (Rigaku Oxford Diffraction, 2015) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

 Table 1: Crystal data and structure refinement for (S)-257.

T_{\min}, T_{\max}	0.808, 0.907
No. of measured, independent and	8612, 2879, 2826
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.029
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.630
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.024, 0.063, 1.07
No. of reflections	2879
No. of parameters	163
No. of restraints	1
H-atom treatment	0.17, -0.15
Absolute structure $\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	Flack x determined using 1276 quotients [(I+)- (I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 H-atom treatment H atoms treated by a
	mixture of independent and constrained refinement(2013) 249-259).
Absolute structure parameter	-0.009 (7)

Table 2: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for (*S*)-257. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} .

Atom	X	У	Z	U_{eq}
Cl1	1657.1(6)	5660.2(5)	-593.7(3)	27.58(12)
01	9678.1(19)	5621(2)	2263.4(9)	28.4(3)
O2	6996(2)	5197.3(19)	972.4(10)	34.1(4)
O3	1517(2)	7742.7(19)	1293.5(11)	32.5(3)
N1	3917(3)	2494.5(19)	586.8(11)	23.8(3)
C9	4556(3)	3635(2)	2325.1(12)	18.6(3)
C12	7879(3)	4914(2)	1821.5(12)	19.4(3)
C10	3549(3)	2268(2)	1622.0(12)	23.3(4)
C8	3825(3)	3404(2)	3322.4(12)	20.1(3)
C7	4176(3)	4957(2)	3964.3(13)	23.9(3)
C11	7039(3)	3693(2)	2479.1(12)	19.6(3)
C2	3185(3)	4836(2)	4880.2(12)	22.1(3)
C1	1182(3)	5531(3)	4886.4(13)	28.1(4)
C3	4239(3)	4012(2)	5725.1(14)	28.2(4)
C5	1301(4)	4571(3)	6557.7(16)	37.9(5)

Atom	X	У	Z	U_{eq}
C6	248(3)	5403(3)	5724.8(16)	36.2(5)
C4	3309(4)	3878(3)	6561.6(15)	35.7(5)

Table 3: Anisotropic Displacement Parameters (×10⁴) (*S*)-257. The anisotropic displacement factor exponent takes the form: $-2p^2 [h^2 a^{*2} \times U_{11} + ... + 2hka^* \times b^* \times U_{12}]$

Atom	U_{11}	U_{22}	U 33	U_{23}	<i>U</i> ₁₃	U_{12}
C11	23.50(19)	29.1(2)	28.35(19)	4.85(16)	0.68(13)	-0.38(17)
01	24.1(6)	37.0(7)	22.3(5)	5.9(6)	0.3(4)	-8.9(7)
O2	32.4(7)	43.7(9)	21.9(6)	13.4(5)	-5.0(5)	-11.1(6)
03	32.6(7)	31.9(7)	34.9(7)	5.9(6)	11.1(6)	0.9(6)
N1	26.3(7)	25.7(7)	17.4(6)	-4.4(5)	-0.3(5)	3.0(6)
C9	18.9(8)	19.4(8)	16.8(7)	0.7(5)	2.2(6)	0.0(6)
C12	18.3(8)	22.6(7)	17.0(7)	1.5(6)	2.9(6)	3.9(6)
C10	24.8(8)	25.1(9)	18.8(8)	-2.7(6)	1.7(6)	-3.3(6)
C8	22.9(8)	19.6(7)	18.0(7)	0.1(6)	4.7(6)	-2.1(6)
C7	29.0(9)	21.4(8)	22.2(8)	-2.3(6)	7.5(7)	-3.7(7)
C11	19.5(8)	23.3(8)	15.2(7)	2.9(6)	1.4(6)	0.5(6)
C2	28.5(9)	18.0(8)	20.4(8)	-5.1(6)	6.4(6)	-4.9(6)
C1	30.1(8)	29.3(9)	24.1(7)	-6.7(7)	3.5(6)	-0.3(8)
C3	36.2(10)	20.3(8)	28.2(9)	0.7(7)	6.4(7)	1.8(7)
C5	58.2(14)	33.4(10)	28.0(9)	-12.2(8)	23.0(9)	-12.6(10)
C6	35.2(10)	39.6(13)	37(1)	-17.6(9)	14.8(8)	-2.1(9)
C4	60.2(14)	24.8(9)	22.6(9)	1.7(7)	9.2(9)	-3.9(9)

Table 4: Bond Lengths in Å for (S)-257.

Atom	Atom	Length/Å
01	C12	1.314(2)
O2	C12	1.212(2)
N1	C10	1.495(2)
C9	C10	1.529(2)
C9	C8	1.539(2)
C9	C11	1.546(2)
C12	C11	1.509(2)
C8	C7	1.533(2)

Atom	Atom	Length/Å
C7	C2	1.513(2)
C2	C1	1.391(3)
C2	C3	1.392(3)
C1	C6	1.396(3)
C3	C4	1.392(3)
C5	C6	1.383(4)
C5	C4	1.390(4)

Atom	Atom	Atom	Angle/°	Atom	1
C10	C9	C8	108.12(13)	C12	(
C10	C9	C11	113.35(14)	C1	(
C8	C9	C11	110.85(13)	C1	(
01	C12	C11	112.83(14)	C3	(
O2	C12	01	123.79(16)	C2	(
O2	C12	C11	123.37(16)	C2	(
N1	C10	C9	112.75(15)	C6	(
C7	C8	C9	111.98(14)	C5	(
C2	C7	C8	112.73(15)	C5	(

Atom	Atom	Atom	Angle/°
C12	C11	C9	113.96(14)
C1	C2	C7	120.31(17)
C1	C2	C3	118.75(17)
C3	C2	C7	120.93(17)
C2	C1	C6	120.51(18)
C2	C3	C4	120.90(19)
C6	C5	C4	119.70(18)
C5	C6	C1	120.28(19)
C5	C4	C3	119.9(2)

Atom	X	У	Z	U_{eq}
H1	10048.84	6298.37	1887.87	43
H3A	1500.95	7309.5	729.03	49
H1A	3142.83	1761.97	187.56	29
H1B	5307.33	2353.81	578.87	29
H1C	3519.02	3502.13	377.76	29
H9	3989.94	4686.88	2041.18	22
H10A	4152.17	1223.56	1876	28
H10B	2011.54	2235	1608.18	28
H8A	2309.16	3116.72	3196.33	24
H8B	4622.84	2503	3682.63	24
H7A	5709.94	5153.6	4166.98	29
H7B	3553.94	5886.83	3568.99	29
H11A	7618.12	3964.33	3167.5	24
H11B	7562.3	2609.96	2353.4	24
H1D	458.67	6085.67	4327.71	34
H3	5581.5	3545.66	5730.83	34
H5	668.17	4475.53	7112.59	45
H6	-1088.32	5878.52	5723.32	43
H4	4030.55	3326	7121.62	43
H3B	690(50)	8510(50)	1090(30)	51(9)

Table 6: Hydrogen Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for (*S*)-257. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} .

(R)-3-(Aminomethyl)-5-phenylpentanoic acid hydrochloride ((R)-257)

Table 1: Crystal data and structure refinement for(R)-257.					
Chemical formula	$Cl \cdot C_{12}H_{18}NO_2 \cdot H_2O$				
M _r	261.74				
Crystal system, space group	Monoclinic, P21				
Temperature (K)	123				
<i>a</i> , <i>b</i> , <i>c</i> (Å)	6.3143 (3), 8.1582 (3), 13.6974 (5)				
β (°)	101.031 (4)				
$V(\text{\AA}^3)$	692.56 (5)				
Ζ	2				
Radiation type	Cu Ka				
$\mu (mm^{-1})$	2.43				
Crystal size (mm)	$0.16 \times 0.12 \times 0.05$				
F(000)	280				
Diffractometer	SuperNova, Single source at offset, Atlas				
Absorption correction	Gaussian <i>CrysAlis PRO</i> 1.171.38.43 (Rigaku Oxford Diffraction, 2015) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.				

 Table 1: Crystal data and structure refinement for(*R*)-257.

T_{\min}, T_{\max}	0.878, 0.943
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	9612, 2866, 2713
R _{int}	0.052
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.630
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.057, 0.159, 1.14
No. of reflections	2866
No. of parameters	240
No. of restraints	14
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
Absolute structure	Classical Flack method preferred over Parsons because s.u. lower.
$\Delta \rho_{max}, \Delta \rho_{min} \ (e \ \mathring{A}^{-3})$	0.31, -0.42
Absolute structure parameter	0.03 (3)

Table 2: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for (*R*)-257. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} .

Atom	x	у	z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
C12	0.16519 (19)	0.43599 (13)	-0.05938 (18)	0.0300 (5)	0.942 (8)
01	0.6991 (6)	0.4821 (4)	0.0968 (2)	0.0386 (9)	
O3	0.9683 (5)	0.4383 (5)	0.2264 (2)	0.0301 (8)	0.942 (8)
H3	1.001553	0.366720	0.190082	0.045*	0.942 (8)
O4	0.1519 (6)	0.2265 (5)	0.1288 (3)	0.0377 (8)	
H4C	0.075657	0.141168	0.113216	0.056*	
H4D	0.160702	0.279758	0.076238	0.056*	
N1	0.3918 (7)	0.7523 (5)	0.0585 (3)	0.0278 (8)	
C2	0.4570 (7)	0.6388 (4)	0.2325 (3)	0.0210 (8)	
C1	0.3562 (7)	0.7751 (5)	0.1626 (3)	0.0260 (9)	
C12	0.7891 (6)	0.5107 (5)	0.1817 (3)	0.0233 (8)	
C3	0.3833 (7)	0.6620 (5)	0.3325 (3)	0.0229 (8)	
H3A	0.463166	0.751899	0.368622	0.028*	
H3B	0.231377	0.690704	0.320065	0.028*	
C4	0.4182 (7)	0.5069 (5)	0.3964 (3)	0.0264 (8)	

Atom	x	у	Z	Uiso*/Ueq	Occ. (<1)
C11	0.7044 (6)	0.6322 (5)	0.2475 (3)	0.0223 (8)	
C5	0.3182 (7)	0.5186 (5)	0.4883 (3)	0.0243 (8)	
C6	0.4241 (8)	0.6007 (5)	0.5729 (3)	0.0312 (9)	
C8	0.1293 (10)	0.5450 (7)	0.6563 (4)	0.0418 (13)	
C10	0.1181 (7)	0.4485 (6)	0.4890 (3)	0.0313 (9)	
C9	0.0231 (9)	0.4619 (6)	0.5730 (4)	0.0389 (12)	
C7	0.3304 (10)	0.6146 (6)	0.6563 (3)	0.0386 (11)	
H2	0.402 (9)	0.530 (7)	0.204 (4)	0.022 (12)*	
H4A	0.583 (10)	0.479 (7)	0.422 (4)	0.031 (14)*	
H4B	0.349 (8)	0.408 (7)	0.352 (4)	0.021 (12)*	
H6	0.575 (11)	0.659 (10)	0.571 (5)	0.041 (17)*	
H1D	0.417 (11)	0.879 (9)	0.183 (5)	0.041 (17)*	
H11A	0.763 (10)	0.739 (8)	0.233 (4)	0.031 (14)*	
H10	0.038 (10)	0.392 (8)	0.426 (5)	0.036 (16)*	
H8	0.057 (12)	0.554 (10)	0.716 (6)	0.05 (2)*	
H11B	0.769 (11)	0.606 (9)	0.319 (5)	0.040 (16)*	
H1E	0.211 (14)	0.783 (12)	0.163 (6)	0.06 (2)*	
H9	-0.110 (14)	0.410 (12)	0.571 (6)	0.06 (2)*	
H7	0.404 (14)	0.671 (12)	0.721 (7)	0.06 (2)*	
O2	0.993 (3)	0.507 (8)	0.173 (4)	0.0301 (12)	0.058 (8)
H2A	1.001225	0.481723	0.115939	0.045*	0.058 (8)
C11	0.147 (3)	0.419 (3)	-0.021 (3)	0.0298 (10)	0.058 (8)
H1A	0.347 (11)	0.653 (10)	0.029 (5)	0.042 (17)*	
H1B	0.330 (13)	0.820 (11)	0.014 (7)	0.06 (2)*	
H1C	0.537 (14)	0.771 (12)	0.056 (6)	0.06 (2)*	

Table 3: Anisotropic Displacement Parameters (×10⁴) (*R*)-257. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2a^{*2} \times U_{11} + ... + 2hka^* \times b^* \times U_{12}]$

<u> </u>		1 -			-	
Atom	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl2	0.0290 (5)	0.0284 (5)	0.0304 (11)	0.0006 (4)	0.0004 (5)	-0.0051 (5)
O1	0.0408 (18)	0.044 (2)	0.0272 (14)	0.0114 (15)	-0.0022 (13)	-0.0149 (14)
O3	0.0281 (15)	0.0352 (17)	0.0251 (14)	0.0103 (16)	0.0003 (11)	-0.0063 (14)
O4	0.0389 (18)	0.0348 (18)	0.0408 (17)	-0.0004 (15)	0.0115 (14)	-0.0049 (14)
N1	0.0330 (19)	0.0258 (18)	0.0214 (15)	-0.0036 (15)	-0.0027 (12)	0.0055 (13)
C2	0.0244 (19)	0.0184 (17)	0.0192 (15)	0.0017 (13)	0.0019 (13)	-0.0005 (12)
C1	0.027 (2)	0.025 (2)	0.0237 (18)	0.0039 (15)	0.0005 (14)	0.0024 (14)
C12	0.0235 (18)	0.0229 (17)	0.0227 (17)	-0.0034 (15)	0.0023 (13)	-0.0039 (14)
C3	0.0276 (19)	0.0183 (15)	0.0229 (17)	0.0032 (14)	0.0049 (13)	-0.0010 (13)
C4	0.034 (2)	0.0220 (18)	0.0248 (17)	0.0052 (16)	0.0086 (15)	0.0020 (15)
C11	0.0243 (19)	0.0228 (19)	0.0189 (16)	-0.0014 (14)	0.0019 (13)	-0.0024 (13)
C5	0.033 (2)	0.0170 (17)	0.0237 (18)	0.0034 (14)	0.0067 (15)	0.0049 (13)

Atom	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C6	0.042 (3)	0.0207 (17)	0.031 (2)	-0.0011 (17)	0.0058 (17)	-0.0018 (16)
C8	0.066 (4)	0.033 (2)	0.033 (2)	0.014 (2)	0.025 (2)	0.0133 (19)
C10	0.034 (2)	0.029 (2)	0.0293 (18)	0.0004 (19)	0.0035 (16)	0.0086 (17)
C9	0.039 (2)	0.039 (3)	0.041 (2)	0.001 (2)	0.0138 (19)	0.017 (2)
C7	0.065 (3)	0.025 (2)	0.027 (2)	0.002 (2)	0.011 (2)	-0.0012 (16)
O2	0.028 (2)	0.035 (2)	0.025 (2)	0.010 (2)	0.0003 (18)	-0.006 (2)
Cl1	0.0287 (15)	0.0283 (15)	0.0304 (18)	0.0005 (15)	0.0006 (16)	-0.0052 (16)

 Table 4: Bond Lenghts in Å for (R)-257.

Atoms	Length/ Å	Atoms	Length/ Å
O1—C12	1.214 (5)	C3—C4	1.530 (5)
O3—H3	0.8200	C4—C5	1.515 (5)
O3—C12	1.319 (5)	C4—H4A	1.06 (6)
O4—H4C	0.8501	C4—H4B	1.05 (6)
O4—H4D	0.8512	C11—H11A	0.98 (7)
N1—C1	1.497 (5)	C11—H11B	1.00 (7)
N1—H1A	0.93 (8)	C5—C6	1.393 (6)
N1—H1B	0.86 (10)	C5—C10	1.389 (6)
N1—H1C	0.94 (9)	C6—C7	1.389 (7)
C2—C1	1.525 (5)	C6—H6	1.07 (7)
C2—C3	1.541 (5)	C8—C9	1.386 (9)
C2—C11	1.537 (6)	C8—C7	1.391 (9)
C2—H2	1.00 (6)	C8—H8	1.01 (8)
C1—H1D	0.95 (8)	C10—C9	1.399 (6)
C1—H1E	0.92 (9)	C10—H10	1.02 (6)
C12—C11	1.506 (6)	С9—Н9	0.94 (9)
C12—O2	1.316 (15)	С7—Н7	1.03 (9)
С3—НЗА	0.9700	O2—H2A	0.8200
C3—H3B	0.9700	Cl1—H4D	1.7373

Table 5: Bond Angles in \degree for (*R*)-257.

Atoms	Angle/°
С12—О3—Н3	109.5
H4C—O4—H4D	109.4
C1—N1—H1A	116 (5)
C1—N1—H1B	117 (6)
C1—N1—H1C	110 (5)
H1A—N1—H1B	101 (7)
H1A—N1—H1C	110 (7)
H1B—N1—H1C	101 (8)
C1—C2—C3	107.9 (3)
C1-C2-C11	113.7 (3)
C1—C2—H2	109 (3)

Atoms	Angle/°	_
C3—C4—H4A	113 (3)	
C3—C4—H4B	108 (3)	
C5—C4—C3	112.7 (3)	
C5—C4—H4A	106 (3)	
C5—C4—H4B	109 (3)	
H4A—C4—H4B	108 (4)	
C2-C11-H11A	111 (4)	
C2-C11-H11B	110 (4)	
C12—C11—C2	114.3 (3)	
C12—C11—H11A	106 (3)	
C12-C11-H11B	109 (4)	

Atoms	Angle/°	Atoms	Angle/°
С3—С2—Н2	108 (3)	H11A—C11—H11B	107 (5)
C11—C2—C3	110.9 (3)	C6—C5—C4	120.7 (4)
C11—C2—H2	107 (3)	C10-C5-C4	120.3 (4)
N1—C1—C2	112.7 (3)	C10—C5—C6	119.0 (4)
N1—C1—H1D	106 (4)	С5—С6—Н6	119 (4)
N1—C1—H1E	110 (5)	C7—C6—C5	120.8 (5)
C2—C1—H1D	112 (4)	С7—С6—Н6	120 (4)
C2—C1—H1E	110 (6)	C9—C8—C7	119.8 (4)
H1D—C1—H1E	106 (7)	С9—С8—Н8	119 (5)
O1—C12—O3	124.2 (4)	С7—С8—Н8	122 (5)
O1-C12-C11	123.0 (4)	C5—C10—C9	120.4 (4)
O1—C12—O2	101 (2)	C5-C10-H10	119 (4)
O3—C12—C11	112.8 (3)	C9—C10—H10	121 (4)
O2—C12—C11	122 (2)	C8—C9—C10	120.0 (5)
С2—С3—Н3А	109.3	С8—С9—Н9	122 (5)
C2—C3—H3B	109.3	С10—С9—Н9	118 (5)
НЗА—СЗ—НЗВ	107.9	C6—C7—C8	120.0 (5)
C4—C3—C2	111.8 (3)	С6—С7—Н7	124 (5)
C4—C3—H3A	109.3	С8—С7—Н7	116 (5)
C4—C3—H3B	109.3	C12—O2—H2A	109.5

4 Curriculum Vitae

Name	Sabine Martha Kerres
Date of birth	February 1, 1990 in Burglengenfeld
Nationality	German
Email	Sabine.Kerres@chemie.uni-regensburg.de
Education	
Since 11/2014	PhD thesis in the group of Prof. Dr. O. Reiser at
	the University of Regensburg, Germany
09/2014	Master of Science in chemistry
1/2014-09/2014	Master thesis in the group of Prof. Dr. O. Reiser
	at the University of Regensburg, Germany
04/2014-07/2014	Research stay in the group of Prof. Dr. J. D.
	Aitken at Université Paris-Sud XI, Orsay, France
10/2012-09/2014	Advanced studies in chemistry, University of
	Regensburg, Germany
09/2012	Bachelor of Science in chemistry
10/2009-09/2012	Studies in chemistry, University of Regensburg,
	Germany
09/2000-06/2009	Allgemeine Hochschulreife (A-levels), Johann-
	Michael-Fischer-Gymnasium (secondary
	school), Burglengenfeld, Germany
Professional References	

Personal data

Prof. Dr. Oliver Reiser

Institut für Organische Chemie Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany Phone: 0049 941 943 4631

Prof. Dr. D. J. Aitken

Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) Université Paris-Sud XI 15 rue Georges Clemenceau, 91405 Orsay Cedex, France Phone: 0033 1 69 15 32 38

List of publications

Visible Light Mediated Synthesis of γ*-Cyclobutane Amino Acids* <u>S. Kerres</u>, S. Malcherek, J. Rehbein, O. Reiser, manuscript in preparation.

Photosensitised regioselective [2+2]-cycloaddition of cinnamates and related alkenes S. K. Pagire, A. Hossain, L. Traub, <u>S. Kerres</u>, O. Reiser, *Chem. Comm.* **2017**, *53* (89), 12072-12075.

Asymmetric Synthesis of Both Enantiomers of Arteludovicinolide A Kreuzer, <u>S. Kerres</u>, T. Ertl, H. Rücker, S. Amslinger, O. Reiser, Org. Lett. **2013**, 15, 3420-3423.

Conferences

GdCh-Wissenschaftsforum 2017 (10.-14-09.2017), Berlin, Germany "Photocatalytic Synthesis of γ-Cyclobutane Amino Acids and their Application in NPY Analogues" (Poster)

26th ISHC-Congress (03.-08.09.2017), Regensburg, Germany "Synthesis of γ-Cyclobutane Amino Acids via Visible Light" (Poster)

6th EuCheMS Chemistry Congress (11.-15.09.2016), Sevilla, Spain *"Photocatalytic Synthesis of γ-Cyclobutane Amino Acids"* (Poster)

GdCh-Wissenschaftsforum 2015 (30.08.-02.09.2015), Dresden, Germany "Synthesis of γ-Cyclobutane Amino Acids and their Application in NPY Analogues" (Poster)

Annual GRK 1626 Report Meetings (oral presentation, 15 min)

Regularly Group Seminar Research Report (oral presentation, 15 min)

G Acknowledgment

Ich bedanke mich bei Prof. Oliver Reiser für die Überlassung des äußerst interessanten Themas und seine beständige Unterstützung während der gesamten Arbeit.

Für die ideelle als auch finanzielle Unterstützung während meiner Promotion bedanke ich mich bei der DFG Research Training Group GRK 1626 und der Friedrich-Ebert-Stiftung.

Vielen Dank an Simon Malcherek (AK Rehbein) für die Berechnungen zum Reaktionsmechanismus der [2+2] Photocycloaddition.

Vielen Dank auch an die Arbeitsgruppen von Prof. C. Cabrele für die Synthese der Peptidsequenzen und von Prof. A. Buschauer für die Durchführung der biologischen Tests.

Bei allen Mitarbeitern der zentralen Analytik bedanke ich mich insbesondere für die Aufnahme der Röntgenstrukturanalysen, der Durchführung der Massenspektroskopien und der NMR-Messungen. Vielen Dank auch an Regina Hoheisel für die CV-Messungen.

Ein herzliches Dankeschön an unsere Sekretärinnen, Antje Weigert und Michaela Schüle, für alle Hilfe organisatorischer Art. Insbesondere Antje Weigert, die immer ein offenes Ohr für jegliche Belange hatte.

Herzlichen Dank an Dr. Peter Kreitmeier für seine Hilfe bei technischen und chemischen Problemen sowie für die unzähligen fachlichen, aber besonders für die nicht fachlichen Diskussionen. Außerdem bedanke ich mich bei Klaus Döring, Roxane Harteis, Helena Konkel und Brigitte Eichenseher für die Unterstützung im Laboralltag.

Vielen lieben Dank an meine Laborkollegen, Corina Neumeister, Thomas Ertl, Michael Leitner, Robert Eckl und Eva Plut für die super Atmosphäre und Zusammenarbeit im Labor 33.1.19, die wissenschaftlichen Diskussionen und vor allem für die nicht chemischen Gespräche. Arbeiten mit Euch hat richtig Spaß gemacht.

Mein besonderer Dank gilt hierbei Corina und Tom. Wir waren ein wahres Powerlabor und ein super Team. Wir haben das alles gut hinbekommen [©] Ich habe die Zeit mit Euch richtig genossen. Danke für die wunderbare Zeit mit Euch und Eure Freundschaft!

Lieber Michi, eine Laborseite mit dir zu teilen war einfach mega. Geordnetes Chaos lebe hoch! Danke für deine Geduld und deine Unterstützung vor allem in der Endphase dieser Promotion. Ohne dich wäre es nie im Leben noch so lustig geworden und ohne dich wäre auch einiges schwerer gefallen. Danke für unsere Freundschaft.

Lieben Dank an Thomas Ertl und Martin Hofmann für all die Hilfe rund um das Thema Aminosäuren und Peptide. Vor allem Thomas Ertl für die Unterstützung bei der HPLC und dem NPY-Thema und Martin Hofmann für die Hilfe mit jeglichem "Computerkram". Besonderen Dank natürlich für den Spaß, den man immer mit Euch hatte. Durch Euch hat man sich von Anfang an am Arbeitskreis wohl gefühlt.

Liebe Verena, es war Freundschaft auf den zweiten Blick ;-) Danke für die gemeinsame Zeit vor allem in der Regensburger Innenstadt und für den Schlafplatz ab und an.

An meine Leidensgenossen Matthias Gnahn, Benjamin Kastl und Saerom Park ein herzliches Dankeschön. Mit Euch wurde sogar die Schreibphase ertragbarer Spaß ⁽²⁾. Lieber Matze, es war immer wieder lustig mit dir und danke für deine Hilfsbereitschaft jeglicher Art. Liebe Saerom, danke für deine fröhliche und offene Art. Danke Euch dreien für die super entspannte und fröhliche Atmosphäre und gemeinsame Zeit im Office bzw. in der Handbib.

Vielen Dank für die unvergessliche Zeit mit Euch allen: Andi, Benjamin, Berni, Christian, Corina, Daniel, Easy, Felix, Jimmy, Lisa, Lu, Matze, Michi, Petermeister, Roxy, Saerom, Tom, Vreni!

Herzlichen Dank an alle aktuellen und ehemaligen Mitarbeiter des AK Reisers. Für die gute Zusammenarbeit, die schönen Aktivitäten am und außerhalb des Arbeitskreises. Insbesondere danke ich Andreas Bergmann, Francesca Besostri, Simon Budde, Daniel Dobler, Robert Eckl, Peter Ehrnsberger, Christian Eichinger, Thomas Ertl, Christian Faderl, Thomas Föll, Matthias Gnahn, Andreas Hartl, Martin Hofmann, Benjamin Kastl, Paul Kohls, Andreas Kreuzer, Christian Lankes, Verena Lehner, Michael Leitner, Roland Lindhardt, Sabine Möhle, Natalja Moor, Corina Neumeister, Andreas Okun, Saerom Park, Ludwig Pilsl, Eva Plut, Daniel Rackl, Thomas Rawner, Carina Sonnleitner, Lisa Stadler und Kathrin Ulbrich.

Für das gewissenhafte Korrekturlesen bedanke ich mich herzlichst bei Robert Eckl, Thomas Ertl, Kristina Hebauer, Verena Lehner, Michael Leitner, Corina Neumeister und Carina Sonnleitner.

Außerdem danke ich meinen ehemaligen Bachelorstudenten und Forschungspraktikant(inn)en Lukas Wein, Fabian Späth, Josefine Weiß, Alexander Röther, Robert Eckl, Bernhard Leitner.
Liebe Sabine, herzlichen Dank für die gemeinsame Studienzeit. Mit dir hat das Chemiestudium einfach Spaß gemacht. Vor allem bedanke ich mich für die wunderbare Zeit außerhalb der Uni und unserer Freundschaft trotz jeglicher räumlicher Distanz.

Natürlich bedanke ich mich über alles bei meinen Freunden von "*Dahoam*". Ein unendliches Dankeschön Karina, Kristina, Carina, Dominique, Juli, Anna Z., Anna S., Max, Michael, Florian R, Martin, Christina, Bernhard, Markus, dass ihr immer für die notwendige Ablenkung gesorgt habt. Ohne Euch hätte es nicht funktioniert.

Lieber Benjamin, es ist unmöglich mein Dankeschön an dich in Worte zu fassen. Danke, dass du mich immer in allem unterstützt hast, für mich da warst, für unsere langjährige Freundschaft. Du bist für mich nicht mehr weg zu denken ©

Lieber Florian, danke für deine unermüdliche Geduld, deine liebevolle Unterstützung, dein unendliches Vertrauen und deinen Rückhalt. Ohne dich hätte ich das nicht alles erreichen können.

Zu guter Letzt bedanke ich mich bei meiner ganzen Familie für die Liebe, Geborgenheit und Unterstützung. Ich bin so unendlich froh Euch alle zu haben. Danke, Schwesterlein, dass es dich gibt [©] Danke Mama und Papa, dass ihr mich in all meinen Vorstellungen und Entscheidungen stets unterstützt und ermutigt habt. Ohne Euch wäre ich nie so weit gekommen.

H Declaration

Herewith I declare that this present thesis is a presentation of my original work prepared singlehanded. Wherever contributions from others are involved all of them are marked clearly, with reference to the literature, license, and acknowledgement of collaborative research.

Regensburg, July 09, 2018

Sabine Kerres