Supporting Information

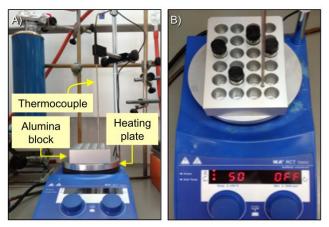

Isosteric Substitution of *4H*-1,2,4-Triazole by *1H*-1,2,3-Triazole in Isophthalic Derivative for Tuning Self-Assembly of Soft Supramolecular Materials

Table of Contents

	page
1. Click-TIA hydrogels	S3
1.1.Devices for T_d determination	S3
1.2.PXRD	S4
1.3.Additional FE-SEM images	S9
1.4.Drug release studies	S11
1.5.NMR spectra	S28
2. Click-TIA metallogels	S29
2.1.Role of water in gel formation.	S29
2.2.Oscillatory rheology	S30
2.3.PXRD	S31
2.4. Additional FE-SEM images	S36

1. Click-TIA hydrogels

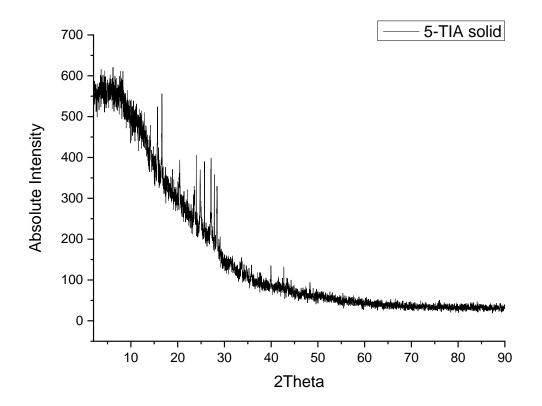

1.1. Devices for T_d determination

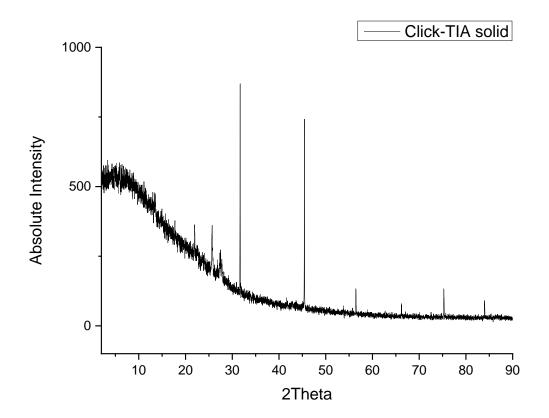
Figure S1. Custom-made set-up for T_d determinations. A) Front view of the set-up. B) Top view of the set-up during a typical experiment. The vials must fit smoothly inside the molds to ensure the optimal transmission of the heat flow.

1.2. PXRD

a)

2θ (°)	d (nm)
15.695	0.07700162
16.64	0.08619103
20.45	-0.10731546
23.54	-0.10771901
23.99	-0.14238548
24.815	-0.48671599
25.745	0.25549968
27.155	0.09086275
27.845	0.07880887
28.415	0.07719084

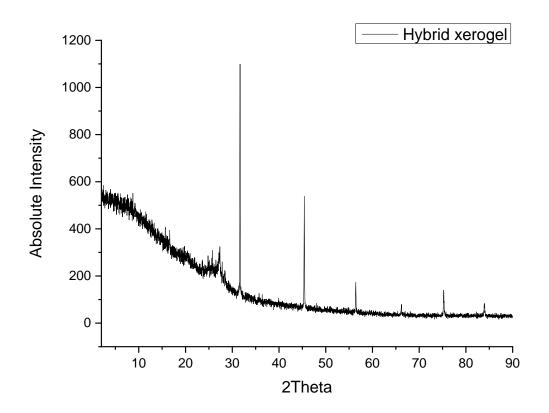
0.08532244


0.12960742

39.95

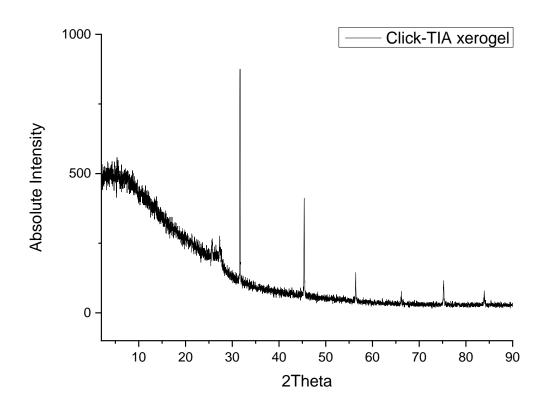
42.71

5-TIA solid

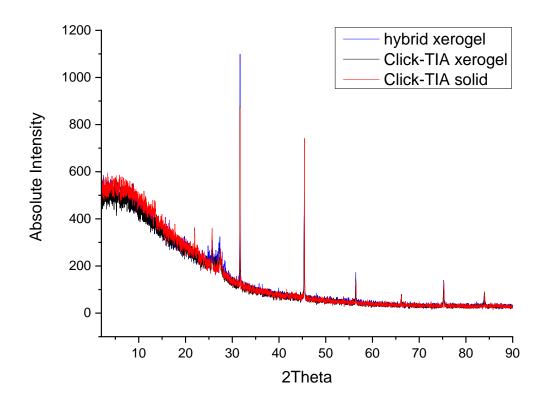

b)

Click-TIA solid

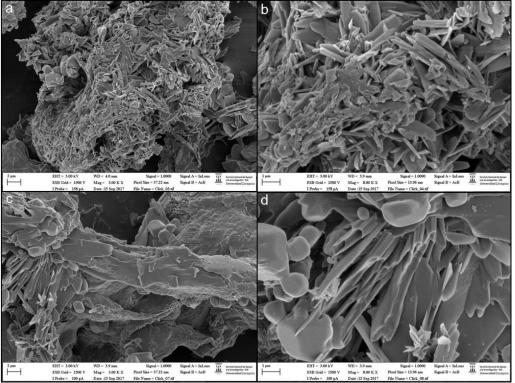
2θ (°)	d (nm)
21.95	-0.0770163
25.7	0.2751554
27.53	0.08265868
31.685	-0.57406461
45.44	-0.11561331
56.45	1.56142674
66.245	0.07771526
75.275	-1.25055076
83.99	-0.08419808


c)

Hybrid xerogel


2θ (°)	d (nm)		
31.67	-0.60775728		
45.41	-0.11760219		
56.435	1.35555527		
66.17	0.07737335		
75.23	-0.91652811		
83 945	-0.08506625		

d)


Click-TIA xerogel 2θ (°) d (nm) 31.67 -0.60775728 45.395 -0.11863264 56.42 1.197707 66.17 0.07737335 75.245 -1.0060504 83.915 -0.08567935

e)

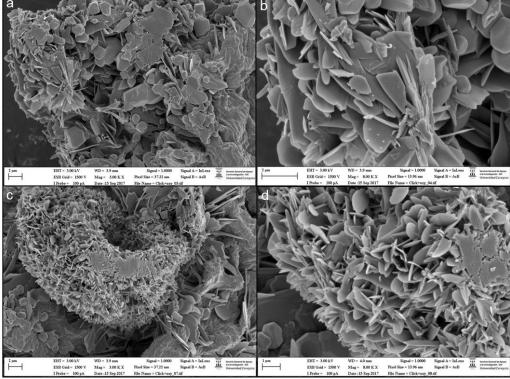


Figure S2. PXRD patterns and lattice spacings of a) **5-TIA** powder, b) **click-TIA** powder, c) hybrid xerogel prepared by freeze-drying the corresponding hybrid hydrogel derived from **click-TIA** and **5-TIA** (1:0.2), and d) **click-TIA** xerogel prepared by freeze-drying the hydrogel derived from **click-TIA**; e) Overlap spectra of b), c) and d).

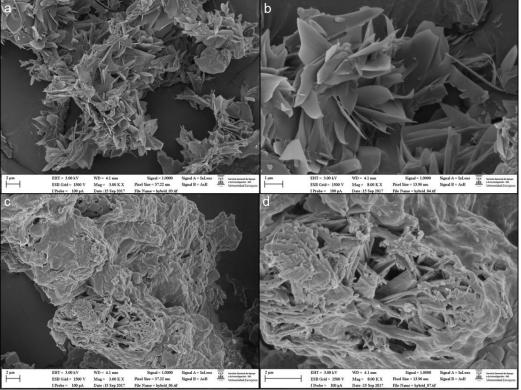

1.3. Additional FE-SEM images

Figure S3. FE-SEM images of xerogels prepared by freeze-drying the hydrogel derived from **click-TIA** $(c = 19 \text{ g L}^{-1})$.

Figure S4. FE-SEM images of xerogels prepared by freeze-drying of the drug-loaded hydrogel derived from **click-TIA** (c = 19 g L^{-1}) and oxytetracycline hydrochloride (c = 0.8 g L^{-1}).

Figure S5. FE-SEM images of xerogels prepared by freeze-drying of the hybrid hydrogel derived from **click-TIA** and **5-TIA** (molar ratio 1:0.2, overall concentration: $c = 19 \text{ g L}^{-1}$).

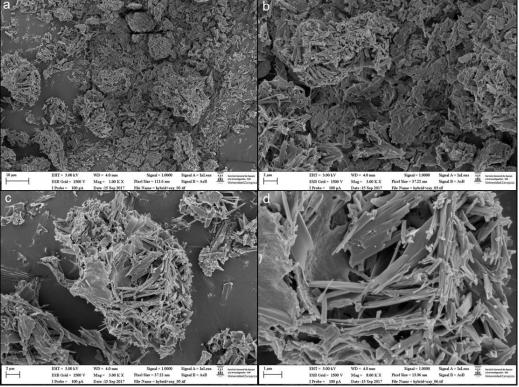
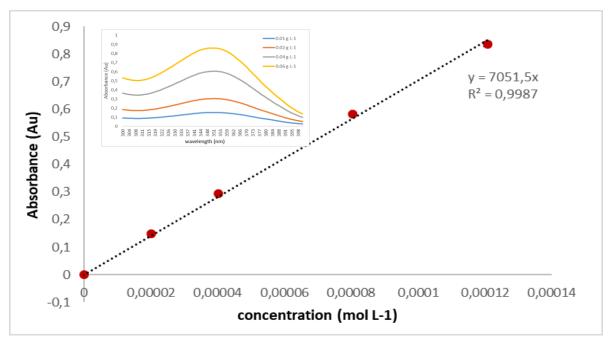
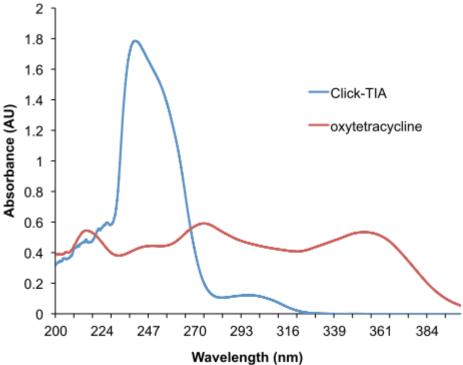
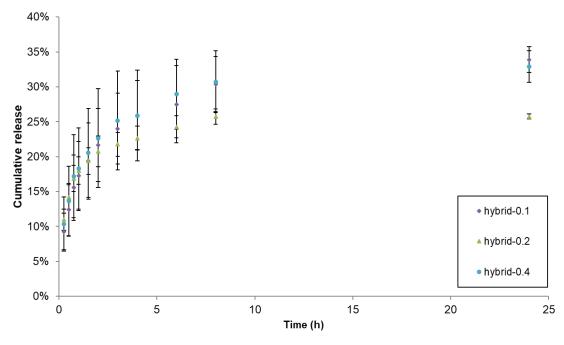
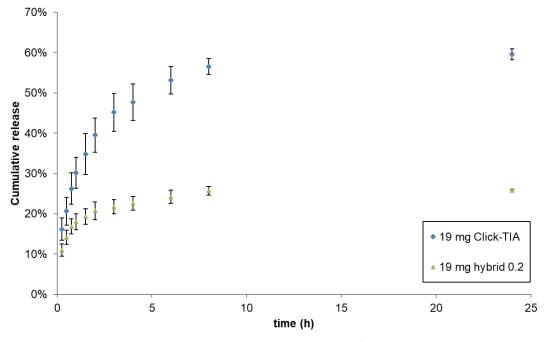




Figure S6. FE-SEM images of xerogels prepared by freeze-drying of the hybrid hydrogel derived from **click-TIA** and **5-TIA** (molar ratio 1:0.2, overall concentration: $c = 19 g L^{-1}$) and oxytetracycline hydrochloride ($c = 0.8 g L^{-1}$).

1.4. Drug release studies


Figure S7. *Top:* Calibration curve of oxytetracycline hydrochloride in PBS buffer (0.01 M, pH 7.4) at the max. absorbance of the drug (λ_{max} = 353 nm). Each point was repeated in triplicate. *Bottom:* Overlapped spectra of gelator and drug.

The data obtained from the in vitro release experiments were fitted according to three drug release mathematical models, including first-order linear regression, Higuchi (eq. 1), Korsmeyer-Peppas (eg. 2) and Weibull (eg. 3) equation models. M_t and M_∞ values correspond to the cumulative and the maximal amounts of drug released at time t, respectively. In the case of the Higuchi equation model, the drug released fraction is proportional to the square root of time t in which K corresponds to the Higuchi constant. The Korsmeyer-Peppas equation model exponentially describes the relationship between the drug released fraction with the elapsed time t. K is a rate constant and n is the release exponent that describes the release processes governed in the liberation of a drug: In particular, there is a Fickian mechanism (Case I) when n is around 0.5 and anomalous diffusion (non-Fickian) when 0.5 < n < 1 (Case II). In the case of the Weibull distribution, b parameter describes the diffusion mechanism: a) Fickian when b ≤ 0.75, and b) others complex release processes combined with diffusion mechanisms when 0.75 < b < 1. First-order linear regression provided the best fitting to the experimental data.


$$\frac{M_t}{M_{co}} = K \times \sqrt{t} \tag{Eq. 1}$$

$$\frac{M_t}{M_{\infty}} = K \times \sqrt{t}$$
 (Eq. 1)
$$\frac{M_t}{M_{\infty}} = K \times t^n$$
 (Eq. 2)

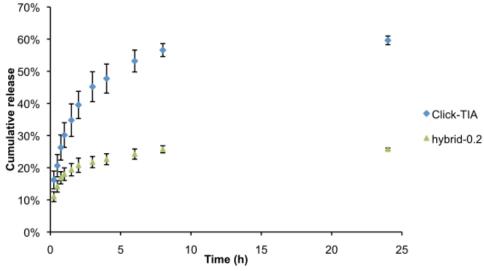
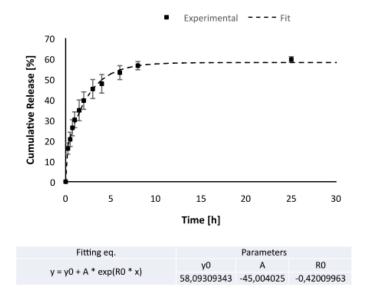
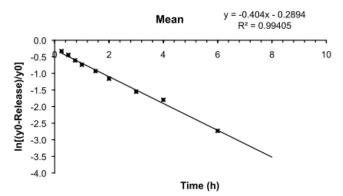
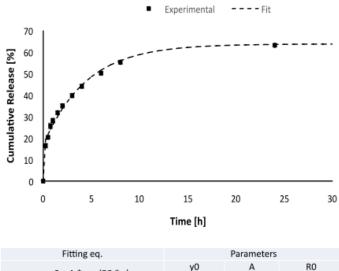

$$\frac{\frac{M_t}{M_{\infty}}}{=} \propto \times (1 - \exp(-(kt)^b))$$
 (Eq. 3)

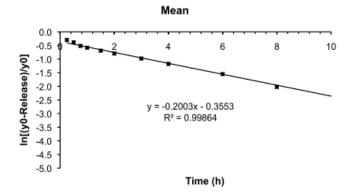
Figure S8. Drug release of oxytetracycline hydrochloride ($c = 0.8 \text{ g L}^{-1}$) from hydrogels derived from hybrid hydrogels with varying **click-TIA**:5-TIA ratios (molar ratio 1:0.1-0.4, overall concentration: $c = 19 \text{ g L}^{-1}$) at pH 7.4.

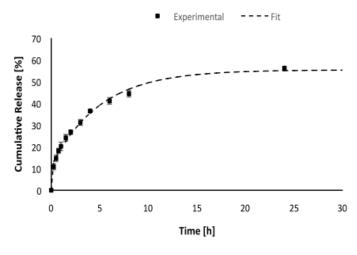


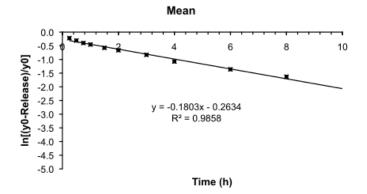

Figure S9. Drug release of oxytetracycline hydrochloride ($c = 0.8 \text{ g L}^{-1}$) from hydrogels derived from **click-TIA** ($c = 19 \text{ or } 25 \text{ g L}^{-1}$).

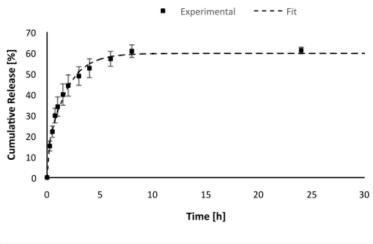

Figure S10. Drug release of oxytetracycline hydrochloride ($c = 0.8 \text{ g L}^{-1}$) from hydrogels derived from **click-TIA** ($c = 19 \text{ g L}^{-1}$) and hybrid made of **click-TIA** (molar ratio = 1:0.2) at pH 7.4.

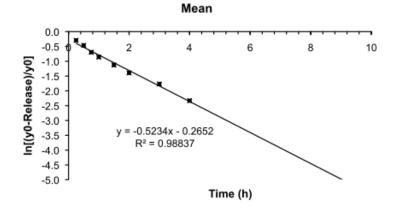
1-Click-TIA: 19 mg Click-TIA + 0.8 mg oxytetracycline, release at pH 7.4

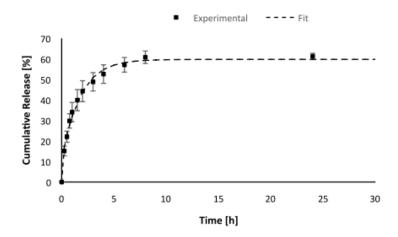


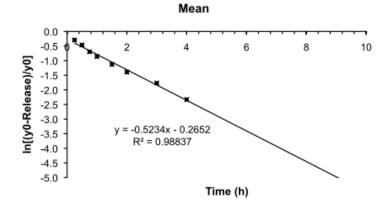

2-Click-TIA: 19 mg Click-TIA + 0.8 mg oxytetracycline, release at pH 1.2

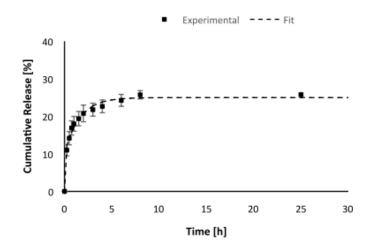

Fitting eq.	Parameters		
y = y0 + A * exp(R0 * x)	у0	Α	R0
	63,71631114	-47,01455	-0,22584361

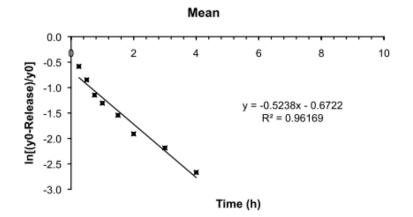

3-Click-TIA: 19 mg Click-TIA + 0.8 mg oxytetracycline, release at pH 5.0

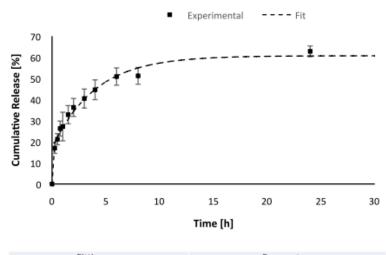

Fitting eq.	Parameters		
y = y0 + A * exp(R0 * x)	y0	Α	R0
	55,36130005	-44,266684	-0,201319082

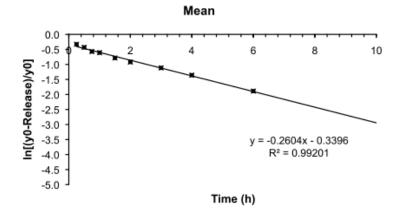

4-Click-TIA: 19 mg Click-TIA + 0.8 mg oxytetracycline, release at pH 6.5

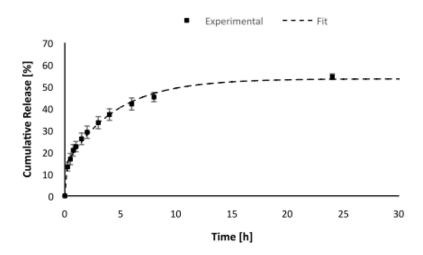

Fitting eq.	Parameters		
y = y0 + A * exp(R0 * x)	y0	Α	R0
	54,55694762	-41,689978	-0,377490657

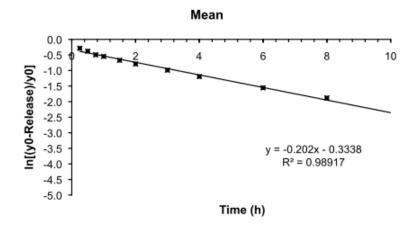

5-Click-TIA: 19 mg Click-TIA + 0.8 mg oxytetracycline, release at pH 10

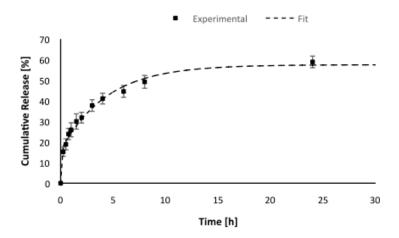

Fitting eq.	Parameters		
y = y0 + A * exp(R0 * x)	y0	Α	R0
y - yo + A exp(No x)	59,73101516	-49,193354	-0,573677837

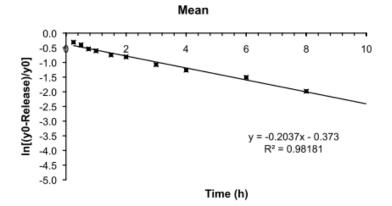

1-Hybrid: 19 mg hybrid-0.2+ 0.8 mg oxytetracycline, release at pH 7.4

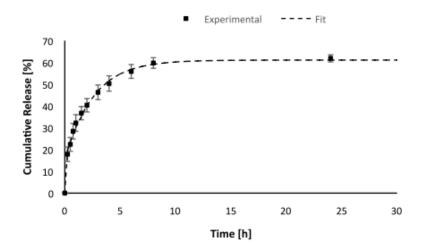

Fitting eq.	Parameters		
y = y0 + A * exp(R0 * x)	y0	Α	R0
	24,97119486	-14,991524	-0,642156061

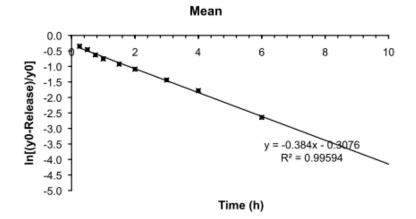

2-Hybrid: 19 mg hybrid-0.2 + 0.8 mg oxytetracycline, release at pH 1.2

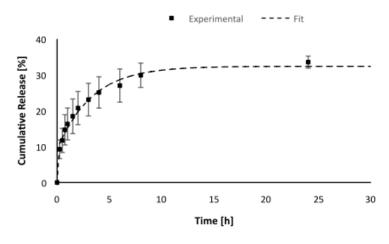

Fitting eq.		Parameters	
y = y0 + A * exp(R0 * x)	y0	Α	R0
y = y0 + A · exp(R0 · x)	60,75507799	-43,689672	-0,253240843

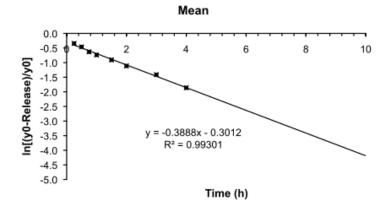

3-Hybrid: 19 mg hybrid-0.2+ 0.8 mg oxytetracycline, release at pH 5.0

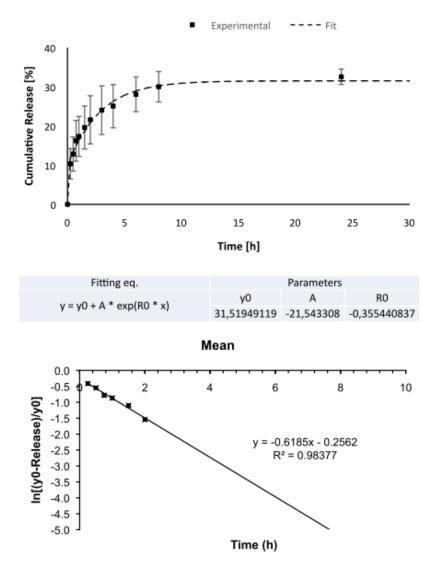

Fitting eq.	Parameters		
y = y0 + A * exp(R0 * x)	y0	Α	R0
	53,46945307	-40,048262	-0,224866412


4-Hybrid: 19 mg hybrid-0.2 + 0.8 mg oxytetracycline, release at pH 6.5


Fitting eq.	Parameters		
y = y0 + A * exp(R0 * x)	y0	Α	R0
y = y0 + A · exp(No · x)	57,50537172	-41,701596	-0,230139676


5-Hybrid: 19 mg hybrid-0.2+ 0.8 mg oxytetracycline, release at pH 10.0


Fitting eq.	Parameters		
y = y0 + A * exp(R0 * x)	y0	Α	RO
	61,0956058	-45,889662	-0,39574179


6-Hybrid: 19 mg hybrid-0.1 mg + 0.8 mg oxytetracycline, release at pH 7.4

Fitting eq.	Parameters		
y = y0 + A * exp(R0 * x)	y0	Α	RO
	32,38519163	-23,279773	-0,305904267

7-Hybrid: 19 mg hybrid-0.4 mg + 0.8 mg oxytetracycline, release at pH 7.4

Figure S11. Drug release profiles and linear regression fitting curves. Conditions for the preparation of drug-loaded gels are specified in each case. Note: Release models have been applied to all data points.

Table S1. Correlation coefficients obtained by fitting the experimental data with Higuchi, Korsmeyer-Peppas and Weibull models.

Gel formulation	Drug release mathematical models		
	Higuchi	Korsmeyer-Peppas	Weibull
1-Click-TIA: 19 mg Click-TIA + 0.8 mg oxytetracycline, release at pH 7.4	$R^2 = 0.71886$	$R^2 = 0.98081$	$R^2 = 0.98737$
2-Click-TIA: 19 mg Click-TIA + 0.8 mg oxytetracycline, release at pH 1.2	$R^2 = 0.77419$	$R^2 = 0.99551$	$R^2 = 0.99732$
3-Click-TIA: 19 mg Click-TIA + 0.8 mg oxytetracycline, release at pH 5.0	R ² = 0.99107	$R^2 = 0.98014$	$R^2 = 0.99107$
4-Click-TIA: 19 mg Click-TIA + 0.8 mg oxytetracycline, release at pH 6.5	$R^2 = 0.79926$	$R^2 = 0.93465$	$R^2 = 0.95558$
5-Click-TIA: 19 mg Click-TIA + 0.8 mg oxytetracycline, release at pH 10	$R^2 = 0.70992$	$R^2 = 0.86849$	$R^2 = 0.89948$
1-Hybrid: 19 mg hybrid-0.2+ 0.8 mg oxytetracycline, release at pH 7.4	$R^2 = 0.64958$	$R^2 = 0.87776$	$R^2 = 0.94407$
2-Hybrid: 19 mg hybrid-0.2 + 0.8 mg oxytetracycline, release at pH 1.2	$R^2 = 0.77172$	$R^2 = 0.94627$	$R^2 = 0.98496$
3-Hybrid: 19 mg hybrid-0.2+ 0.8 mg oxytetracycline, release at pH 5.0	$R^2 = 0.87961$	R ² = 0.97916	$R^2 = 0.98932$
4-Hybrid: 19 mg hybrid-0.2 + 0.8 mg oxytetracycline, release at pH 6.5	R ² = 0.86586	$R^2 = 0.97552$	$R^2 = 0.98829$
5-Hybrid: 19 mg hybrid-0.2+ 0.8 mg oxytetracycline, release at pH 10.0	$R^2 = 0.76203$	$R^2 = 0.98688$	$R^2 = 0.99516$
6-Hybrid: 19 mg hybrid-0.1 mg + 0.8 mg oxytetracycline, release at pH 7.4	$R^2 = 0.81592$	R ² = 0.98556	R ² = 0.9641
7-Hybrid: 19 mg hybrid-0.4 + 0.8 mg oxytetracycline, release at pH 7.4	$R^2 = 0.76823$	$R^2 = 0.98283$	$R^2 = 0.98685$

1.5. NMR spectra

→ NMR spectra are found in the ESI of the paper.

2. Click-TIA metallogels

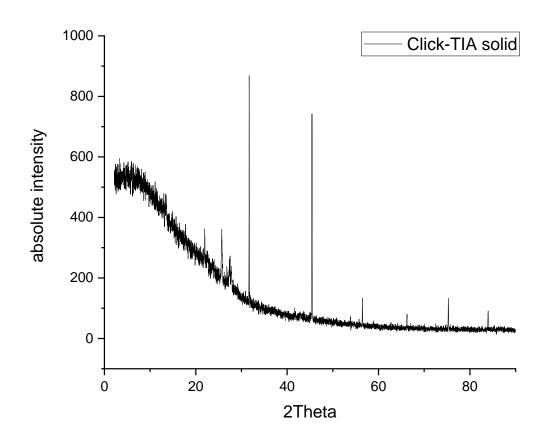
2.1. Role of water in gel formation

 Table S2. Role of water in gel formation.

Entry	c(click-TIA)	c(CuA)	V(DMF)	$V(H_2O)$	Phase ^b
1	0.2 M	0.2 M	500 µL	-	G
2	0.2 M	0.2 M	475 µL	25 µL	G
3	0.2 M	0.2 M	450 µL	50 µL	G
4	0.2 M	0.2 M	400 µL	100 µL	G
5	0.2 M	0.2 M	350 µL	150 µL	G
6	0.2 M	0.2 M	300 µL	200 µL	G
7	0.2 M	0.2 M	250 µL	250 µL	Р
8	0.2 M	0.2 M	200 µL	300 µL	Р
9	0.2 M	0.2 M	150 µL	350 µL	Р
10	0.2 M	0.2 M	100 µL	400 µL	Р
11	0.2 M	0.2 M	50 µL	450 µL	Р
12	0.2 M	0.2 M	25 µL	475 µL	Р
13	0.2 M	0.2 M	-	500 µL	Р

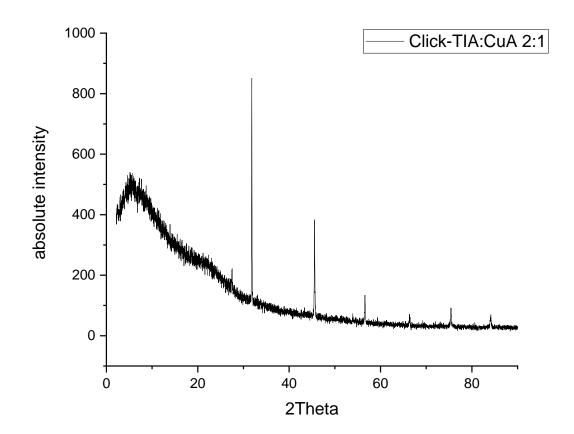
^a Abbreviations: G = gel; PG = partial gel; P = precipitate; S = solution.

2.2. Oscillatory rheology

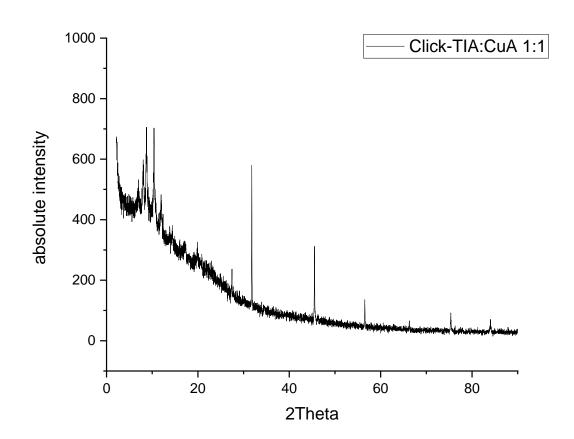

Table S3. Rheological properties of [CuA + click-TIA] metallogels-1, -2, and -3.a

Metallogel	c(click-TIA)	c(CuA)	<i>G'</i> (Pa)	<i>G"</i> (Pa)	tan δ	γ (%)
1	0.2 M	0.1 M	13	2	0.166 ± 0.01	16
2	0.2 M	0.2 M	960	97	0.100 ± 0.01	80
3	0.2 M	0.3 M	1810	212	0.112 ± 0.01	32

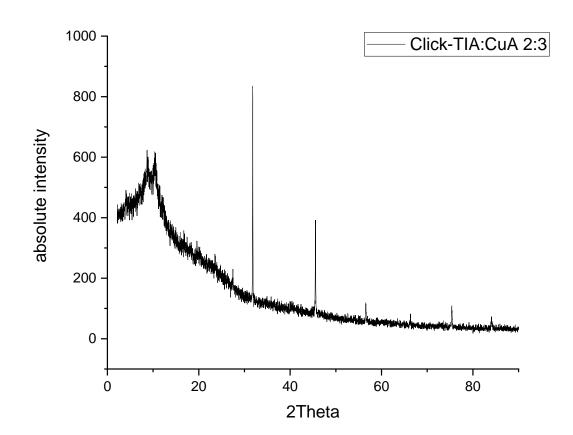
^aRheological measurements were performed at 1 Hz frequency and 0.1% strain.


2.3. PXRD

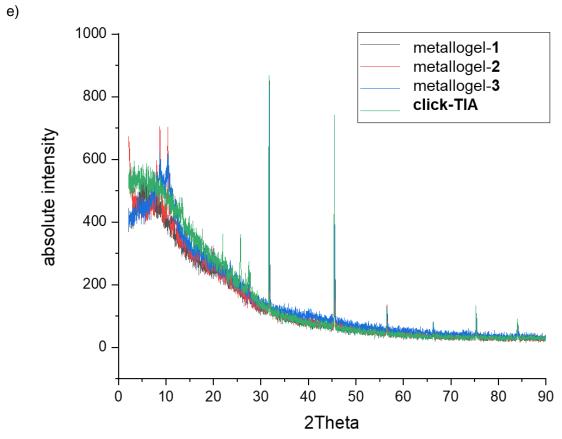
a)


Click-TIA solid			
2θ (°)	θ d (nm)	
21,95	10,975 4,046	55474	
25,7	12,85 3,463	96625	
27,35	13,675 3,258	616	
27,515	13,75753,239	44821	
27,77	13,885 3,210	27777	
31,685	15,84252,821	96972	
45,44	22,72 1,994	59848	
56,45	28,225 1,628	88774	
66,245	33,12251,409	77766	
75,275	37,63751,261	46823	
83,99	41,995 1,151	33378	

b)

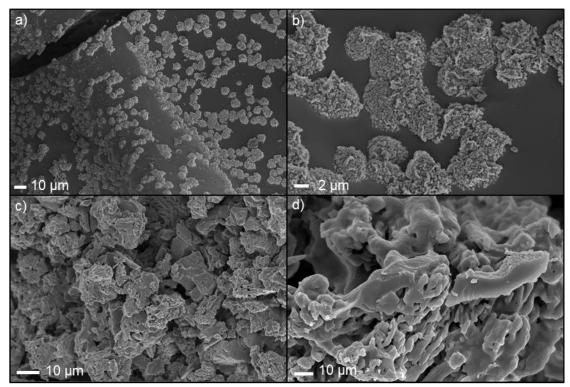

Metalloge	l- 1	
2θ (°)	θ	d (nm)
27,515	13,7575	3,23944821
31,82	15,91	2,81030424
45,575	22,7875	1,98900333
56,585	28,2925	1,62532122
66,335	33,1675	1,40808286
75,425	37,7125	1,25933124
84.155	42.0775	1.14949597

c)



Metallogel-2			
2θ (°)	θ	d (nm)	
2,18	1,09	40,49797	
7,025	3,5125	12,5744512	
8,015	4,0075	11,0233566	
8,75	4,375	10,098973	
10,385	5,1925	8,51238233	
11,945	5,9725	7,40394891	
19,94	9,97	4,44969352	
27,455	13,7275	3,24639139	
31,79	15,895	2,81288789	
45,53	22,765	1,99086458	
56,525	28,2625	1,62690413	
66,29	33,145	1,40892964	
75,365	37,6825	1,26018491	
84,035	42,0175	1,15083174	

d)



Metallogel-3			
2θ (°)	θ	d (nm)	
8,69	4,345	10,1685662	
10,37	5,185	8,52466166	
27,47	13,735	3,24465272	
31,805	15,9025	2,81159545	
45,545	22,7725	1,99024375	
56,555	28,2775	1,62611223	
66,335	33,1675	1,40808286	
75,38	37,69	1,25997135	
84 08	42 04	1 15033031	

Figure S12. PXRD patterns and lattice spacings of a) **click-TIA** powder, b) xerogel of metallogel-1 (*i.e.***click-TIA**:CuA 0.2 M:0.1 M), c) xerogel of metallogel-2 (*i.e.***click-TIA**:CuA 0.2 M:0.2 M), d) xerogel of metallogel-3 (*i.e.***click-TIA**:CuA 0.2 M:0.3 M); e) 0verlap spectra of a)-d).

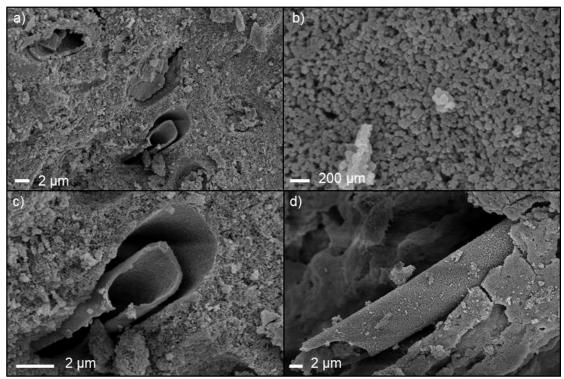

2.4. Additional FE-SEM images

Figure S13. FE-SEM images of xerogels prepared by freeze-drying of metallogel-1 (*i.e.* click-TIA:CuA 0.2 M:0.1 M).

Figure S14. FE-SEM images of xerogels prepared by freeze-drying of metallogel-**2** (*i.e.* **click-TIA**:CuA 0.2 M:0.2 M).

Figure S15. FE-SEM images of xerogels prepared by freeze-drying of metallogel-**3** (*i.e.* **click-TIA**:CuA 0.2 M:0.3 M).