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We consider the renormalization of four-fermion operators in the critical QED and SU(N,) version of
the Gross-Neveu-Yukawa model in noninteger dimensions. Since the number of mixing operators is
infinite, the diagonalization of an anomalous dimension matrix becomes a nontrivial problem. At leading
order, the construction of eigenoperators is equivalent to solving certain three-term recurrence relations. We
find analytic solutions of these recurrence relations that allow us to determine the spectrum of anomalous

dimensions and study their properties.
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I. INTRODUCTION

Quantum field theories (QFTs) in noninteger dimensions
d <4 were introduced as a tool to calculate critical
exponents in three-dimensional systems at a phase tran-
sition point [1]. As a rule, QFTs in d = 4 — 2¢ possess
nontrivial critical points with coupling constants being of
order e. It allows one to calculate critical dimensions as
power series in € and extrapolate results to € = 1/2. The
current state of the art e-expansion technique and the
corresponding references can be found, e.g., in Refs. [2,3].

It is clear, however, that QFTs in noninteger dimensions
are not full fledged quantum field models—no real physical
system is described by these QFT's. Thus they are not obliged
to comply with expectations based on physical principles. It
was shown in Ref. [4], in the example of 404 theory, that such
models are necessarily nonunitary. In the ¢* model, the
lowest state with a negative norm is associated with an
operator of rather high dimension (A = 15), and the first
complex anomalous dimensions appear for operators of
dimension A = 23. Therefore, one may hope that the effect
of these states on, e.g., the operator product expansion
(OPE), could be neglected. In the fermionic models, how-
ever, the negative norm operators have a rather low, A = 6,
canonical dimension [5] and can hardly be ignored.

Physical observables in conformal field theories (CFTs)
are correlation functions of local operators. One is interested,
in particular, in their behavior under scale and conformal
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transformations. Therefore the basis of operators which
transform in a proper way under scale and conformal
transformations plays a distinguished role. In perturbation
theory, such a basis is constructed by diagonalization of the
anomalous dimension matrices. Since only operators of the
same canonical dimension mix under renormalization, such a
matrix has a finite size in scalar field theories. In a fermionic
QFT, the situation is quite different—the number of mixing
operators is, in most cases, infinite. The simplest example of
this kind is given by the four fermion operators,

T ~1n
Ol‘l - E (qrﬁl an) (qrﬂlqunq)’ (1)

where n=0,1,... and I, , is the antisymmetrized
product of the d-dimensional y-matrices. All these operators
have canonical dimension A = 6 and mix under renormal-
ization. Customarily, the operators with n < 4 are called
physical operators, and all others, since they vanishin d = 4,
evanescent ones.

In the QCD context, four-fermion operators arise in the
description of nonleptonic weak decays of hadrons. Their
renormalization was studied in [6-8]. It was shown in [7]
that the mixing between evanescent operators and the
physical ones can be avoided by an appropriate modifica-
tion of the subtraction scheme.

Here we are interested in a different challenge—
constructing operators which have certain scaling dimen-
sions at a critical point. Since the size of the mixing matrix
for the operators (1) is infinite, it is far from obvious that it
can be done in all situations. Solving the eigenvalue
problem, one has to impose certain requirements (quanti-
zation conditions) on the solutions. Since we are interested
in determining the scaling properties of the correlators of
operators (1), in particular the simplest one (O, (x)O,,(0)),
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it is reasonable to require the correlation functions
between two eigenoperators to be finite, i.e., for O, =
20:0 Cn (A) On’

(Oa(x)04(0)) < co. )

This condition is always fulfilled if the mixing matrix has a
finite size, as in the case of scalar field theories, but leads to
nontrivial “quantization” conditions for infinite matrices.

In this work, we consider renormalization of four-
fermion operators in two theories: the critical QED and
SU(N.) Gross-Neveu-Yukawa (GNY) models. The first
model (QED) was used as an example by Dugan and
Grinstein in their analysis [7]. In both cases, the spectral
problem is equivalent to solving certain three-term recur-
rence relations. We present analytic solutions to these
recurrence relations and discuss the possibility to satisfy
the condition (2).

The paper is organized as follows: In Sec. II, we present
the solution to the one-loop mixing problem for the
operators (1) in QED. The operator mixing in the GNY
model is discussed in Sec. III. We introduce an extended
GNY model in Sec. IV and study the renormalization of
four-fermion operators in this model.

II. CRITICAL QED

In d = 4 — 2¢ dimensions, QED with N, fermions has
an infrared stable critical point at a = a, (a = e*/4x°)

a, =3e/N;+ O(e). (3)

At the critical coupling, the theory (in the Landau gauge) is
scale invariant.'

Renormalization of four-fermion operators (1) in QED
was studied in [7]. In order to avoid unnecessary compli-
cations, it is convenient to assume that the fermion and anti-
fermion fields have different flavors. At the critical point
the renormalized operators [O],, satisfy the renormalization
group equation,

(6anaM + Ynm)[o]m = O’ (4)

where M is the renormalization scale and y,, is the
anomalous dimension matrix. At one loop, the matrix 7y
takes the following form [7]:

Ynm = % [(n + 2)(” + 1)5n+2,m - 2(” - 1)(” - 3)5n,m

+ (I’l - 5)(” - 6)6n—2m] (5)

'"The model can also be analyzed with the 1/N + expansion
technique; see Ref. [9] for a review and references. For a
discussion of the three-dimensional model (QED5) and its critical
properties; see, e.g., [10-12].

In order to construct an operator with a certain scaling
dimension, O, = > 0O, one has to find the left eigen-
vectors of the matrix v,

1

ch}/nm =VCm = Ea*ycm- (6)
n

Since there is no mixing between the operators O, with odd
and even index n, each set can be analyzed separately. The
analysis in both cases goes along the same line, and we
therefore consider odd n only.

The transpose matrix y’ (from now on the indices n, m
take odd values) has a three-diagonal form

a, by 0 0 0 0
d a 0 0 0 0

Y =210 d a5 b, 0 0 |, (7)
0 0 ds a; by O

where a, = -2(n—1)(n=3), b, = (n—-5)(n—-06),d, =
(n+2)(n+ 1) and we take into account that b5 = 0. The
two-by-two block in the upper—left corner describes mixing
between the physical operators, O; and Os. The corre-
sponding eigenvalues are 7, = +6. The eigenvectors
corresponding to these eigenvalues take the form

+

=1, ¢y =(n=2), n is odd, (8)

and the two operators OF are

0r=> 0, 0 =) (n-20,. (9

neN_ neN_

where sums go over odd integers.

All other eigenvectors of the matrix y have the form
¢ = (0,0, cs, ¢y, ...). Indeed, the subspace spanned by these
vectors is an invariant subspace of the matrix y. Looking for
solutions in the form ¢y 5 = s5:(2k+5)!/(2k)! with
k=0,1,2,..., one gets the following recurrence relation,

(7 —26)si.  (10)

B —

Crsi—1 — (Ag + Cp)sp + Agspyy =

where Cp=k(k—1/2) and A, = (k+3)(k+7/2).
The above equation is nothing but the recurrence relation
for the continuous dual Hahn polynomials [13,14]. Its
solutions take the form

1), (11)

where v is given by v? = (= — 10)/4. For large k, the
coefficients s;(v) have a powerlike behavior

k3 +iv.3—iv
3,7/2

si(v) = 3F2(

sp(v) ~ r() (k)3 + r(=v)(2k) 3 + ..., (12)

k—o0
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where r(v) = 15-2%/T°(3 + iv). These functions form a
complete orthonormal system on L?(R ) [13,14]

(2k)!

A dvp(v)s(v)s,(v) = 5nkmv (13)

where

(o) = 1 v(l+0v°)(4+0v7)

=55 . (14)

sinh zv

In order to fix the allowed values of v, let us consider the
correlator of two eigenoperators:

O,(x) = Y 5k (1) Ozp5(x). (15)

k>0

Note that the sum involves evanescent operators only. The
operators O,, as follows from Eq. (11), are even functions of
v, 0, =0_,.

The leading order correlator of two basic operators (all
fields have different flavors) was calculated in [5]

24w(n)

(On(x)0,(0)) = 5mnmv (16)
where
1/n!(4 —n)! n<4
w(n) = { 2e(=1)'(n—5)/nt nzs5 D

Note that for the evanescent operators, n > 5, the weight
factor w(n) is proportional to ¢ and sign changing.
Then for the eigenoperators (15), one obtains

(0,(x)0,(0)) = |x|"***R(v.v/), (18)
where the residue R(v,v') is given by the sum

REw) ~ = Eo ). (19)
0

For large k, the summand decays as k~'***% and
k='+wF Thus, the sum diverges if v has a nonzero
imaginary part. For real v, the correlator (18) can be
understood in the sense of distributions. Assuming that
v, V' > 0 and taking into account Eq. (13), we get

Z %Sk W)sk () = p ' ()d(v =0/).  (20)
‘ !

For the correlator, it results in

(0,(0)0,(0) =~ 4 Wsw—). (1)

|X‘2A”

where we have included the one-loop correction to the
operator dimension |x|~12t3¢ — |x|72A with

Ay_6—46—2a*<§+1/2>. (22)

Note that the anomalous dimensions of evanescent oper-
ators are negative.
The relation inverse to Eq. (15) reads

Ones(x) = / )50, (). (23)

It results in the following expression for the correlator of
two (one-loop renormalized) evanescent operators (1)

(00, 0) = 8¢ [* ) I

|x|2A,/

where n =2k + 5, n’ = 2k' + 5.

Coming back to the physical operators O, we note that
these operators contain an infinite tail of evanescent
operators; see Eq. (9). The contribution of the evanescent
operators to the correlators, (O (x)O.(0)) is of order e
and, strictly speaking, beyond our accuracy. Nevertheless,
we stress that the corresponding sum converges.

Since the operators O, have different scaling dimen-
sions, their correlator has to vanish. One can easily check
using (9) that (O (x)O_(0)) ~ O(e) as it should be. It can
also be easily checked that the correlator of an evanescent
operator with the physical one is of order ¢ as well,

(0,(x)0=(0)) = O(e).

III. OPERATOR MIXING IN THE
GROSS-NEVEU-YUKAWA MODEL

In this section, we briefly consider the specifics of
operator mixing in the GNY model [15]. The one-loop
anomalous dimension matrix for the four-quark operators
(1) has been calculated in Ref. [5]. It has the following
structure: the operator O,_, is renormalized multiplica-
tively, and the anomalous dimensions matrix for the
operators O, n > 1 has a block-diagonal form,

Y:diag(Al,A:i’AS’“')s (25)

where each block Aj, with k being odd, describes the
mixing between the operators, O, and O ;. The blocks A,
depend nontrivially on & but all have the same eigenvalues.
Thus at the one-loop level, there are only two different
anomalous dimensions, y., which correspond to two
different eigenvalues of the blocks Aj;. The anomalous
dimension of the operator O, _, coincides with y_.

Surprisingly enough, the matrix y preserves this form at
the two-loop order as well. We obtain the following
expression for the block A,
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ng+12 k—1 -1
Ay =2u,(1—-u,
4 —(k+1)4-k) 22—k

I 19 0
_§“£<4(k+1)(4—nf) 4nf+3>’ (26)

where ny = N, x trl and the critical value u, for the GNY
model reads [15,16]

2 12
", = —= <1 +—=° ) Lo, (@27)
nf+6 l’lf+6

The eigenvalues of the blocks A; do not depend on %,

Tns + 36
t=6u (1 -u o),
Y u( u D )
2ny+5
y~ = —4du, <1 —u, ”f8 >, (28)

and the anomalous dimension of the operator O,,_, is still
equal to y*.

The explanation for such degeneracy of the anomalous
dimensions is the following: let us consider two sets of
operators,

On = (l/_/anWZ)(l/_/San4)’
O; = (l/_/lrnl//4)(l/_/3rnl//2)' (29)

The operator O, and ), obey exactly the same RG
equation. At the same time, they are related to each other
by Fierz transformation (A4),

0;1 = Zgnm (d) Om . (30)

Going over to the renormalized operators, one gets

01, =Y _Qun(d)[O],.. (31)

Where [O]n = anom ([Ol]n = anO:n) and
Q(d) = zQ(d)Z7". (32)

The matrix Q is a finite matrix (has no e poles) of infinite
size which depends on ¢ and the coupling constants. Taking
the derivative Md,, on both sides of Eq. (31), one finds that
at the critical point, the anomalous dimension matrix y
commutes with Q,

Q= Qy. (33)

Then, provided that the matrix y has a block diagonal form
(25), it follows that the matrix

s (o Y o
Q(km) _ (~ k, b k,m+1 > (34)
Qk+l.m Qk+1,m+l

intertwines the blocks A, and A,,,
A QM = Qlkmg (35)

Hence, they have the same eigenvalues, as Q*™) is a
convertible matrix.

In a similar manner, one can easily show that the
vector ¢ = (Qox, Qoir1) is an eigenvector of the
matrix A7,

Aggk = Vogka (36)

where y,, is the anomalous dimension of the operator O,,_,.
Hence, y, coincides with one of the eigenvalues (28),
namely yg = 7.

Thus, we conclude that as long as the matrix y retains a
block-diagonal form, its eigenvalues will be degenerate. We
expect that the degeneracy of the anomalous dimensions in
this model will be lifted by the three-loop corrections. It is,
however, simpler to consider a model where the degeneracy
is absent already at the one-loop order.

IV. SU(N,.) GROSS-NEVEU-YUKAWA MODEL

We consider the SU(N,.) extension of the Gross-Neveu-
Yukawa model [15]. This model describes a system of
interacting fermion and scalar fields. (The bosonic model of
this type was considered in Ref. [17-19].) The fermion field
has two isotopic indices, ¢ = ¢*! that refer to the SU(N )
and SU(N) global groups, respectively. The scalar field is
in the adjoint representation of the SU(N,) group,
o = t%?, and we assume the standard normalization
tr1“t? = 1 5% for the generators . The renormalized action
takes the form

Sg = / d'x(2,38q + Z,tr(96)? + MZsggoq

1
+ IMQS(Z4/11 (tr62)2 + Zsﬂztr64)). (37)

For N, = 2, (tr6*)?> = 2tre*, so that one of the couplings
becomes redundant and can be put to zero (we choose
A1 = 0). Introducing the notations

nf:Nf Xtrﬂ], u:gz/(4ﬂ)2, /_11':/11'/(477)27 (38)

one obtains the following one-loop renormalization con-
stants

Zy=1———1\ (39)
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where C = (N2 —1)/2N, and

MWNZ+T 1y 3 1 3N2+3
Z4 =1+— - c e 5
e 24 6e 2N.| 8el; N:
7 9 1. 6npu?
Zs=14+—|N.——| +—4 ————. 40
> +12€{C Nj+2€1 € 1 (40)
For the index 7, one gets
n= qu =uCp + 0(62). (41)

The one-loop S functions take the form

N%+7+/.1 N%2-3
12 2 6N,

'le = )_“1 (—26' —|— nfu + /_11

1- 3
+#(145)

_ _ N2-9 _
B, —/12<—2€+nfu—|—/12 6CN +/11> — 12npu?,
ng N?-3
ﬁu:2u<—e+u<zf+ N >> (42)

and for N, =2 (4, =0),
- 11 - )
B, = Jo| —2¢ +npu+ ﬁﬂz — 12nu*.  (43)
For the critical u-coupling, one immediately gets

u, =4e/(n; +2N. = 6/N.) + O(e?).  (44)

To find the other two couplings, we assume that ny > N,
Then, one gets (up to O(N,/ny) terms)

_ 96¢ - 1152¢ 3
= =1+, 45
oy ! n? <+N3) (43)

The matrix w; = J,,g; at the critical point reads

o = 2¢(1+ O(N,/ny)). (46)

Since all eigenvalues of w are positive, the critical point,
(u,,2%,23), is IR stable. Note that although 1i < 0, the
scalar potential V(o) = A,(tr6?)? + Lytre* is positive
since 43 + N A} > 0.

Numerical analysis shows that the stable critical point
exists for all N, if ny is sufficiently large. For large N, the
necessary condition boils down to ny > 2N..

Let us study the renormalization of four-fermion oper-
ators in this model. First, we note that the operators (1) are
not closed under renormalization, and one has to consider
the extended set of operators

| B _
O = — (@ " q)(@}, ., 9)-

A

1
O, = (@i g @ Ty, g (47)

Hi---Hn

Hereafter, we assume that all fields have different flavors.
In order to write the anomalous dimension matrix, it is
convenient to organize the operators into the following
multiplets,

A A

Xg = (On’ On+17 On+27 On+3>7 (48)

where n = —1, 1,3, ... (of course, the operator O
X_; has to be omitted.).

At the critical point, the RGE for the operators X, can be
written in the form

-1 in

n—=

d N2 -4
M—+42 H,|X,=- - Y, 49
(v g+ 20 )%, = = o)

where the matrix H, and vector Y, take the form

Cr(2-n) n+1 0 0 0
C 1 N, 2
E(4—n) —5-(n—=1) =5£(n+2) 0 4-n)O,
H,=2u,| ™ N . . Y, = (4= n) . (50)
0 -Z3B-n) T Wi(n—f—S) (n+3)0,u3
0 0 2—n Cr(n+1) 0

For N. =2, the rhs of Eq. (49) vanishes and the
anomalous dimension matrix acquires a block-diagonal
form, with the block being equal to the matrix H,,. As could
be expected from the discussion in the previous section, the
eigenvalues of the block H,, do not depend on 7, and the
anomalous dimensions take the following values:

9 3
Y = {61/‘*’5’4*’2”*’_5”*}-

For N. > 2, Egs. (49) do not decouple for different n
and, although they can be reduced to the three term
recurrence relations, are still too complicated to be
solved analytically. The problem becomes more tractable
in the large N, limit. In this limit, N, — oo, with N./n;
being fixed, the operators with and without a hat
decouple from each other. Moreover, there is no
mixing within the operators O, themselves so that each

105001-5
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operator (0, evolves autonomously in this limit.
The anomalous dimensions of the operators O, with
even n and odd n are

i =uN(n—1)+0(),
Yn = M*Nc(3 - I’l) + 0(62)’

respectively. At the same time, the operator @,, satisfies
the following equation:

A

(MOy +21)0O,
_u,N,

5 (=D + D041+ (1 =5)0,.].  (51)

Looking for the eigenoperator in the form

O =3 (-1)"7"¢,0,. (52)

n

one finds that, if the coefficients c,, satisfy the recurrence
relation

2icn =nc,_1 — (l’l - 4)Cn+l’ (53)

then (M8y +7,)0, =0, where y; = u,N.(1 - 1).

As was discussed in Sec. II, the solutions to (53) must
ensure that the correlator of eigenoperators (O, (x)O;(0))
is finite.

For the “physical” operators (such that not all ¢, = 0, for
n < 5), one easily obtains

@l:iZ = Z(il)n(_l)%n(n_wé)m

n

(Agl:il = Z(:‘:l)n(}’l - 2)(_1)%71()1—1)@"’

n

Oro =Y _(-1)"D(n=1)(n-3)0,. (54)

n

All other solutions of the recurrence relation (53) have
the following form,

1 dz _ L
Crrs(A) =1(4) = Tmf{zm(l —2) (1 + )7

_ 1 (3 :!A)kzFl (_—:,_32—_/1/1 ' _ 1>,

(55)

where the integration contour encircles the point z = 0.
Since the coefficients ¢, = 0 for n < 5, the corresponding
eigenoperator is built from the evanescent operators only.
The functions #, (1) are polynomials of degree k in 4, (anti)
symmetric under A — —1, 1;(1) = (=1)#(=4). The
asymptotic of 7,(4) for large k reads

kZ—/l . k2+ﬂ

m"—.... (56)

They form a complete orthonormal system,

I e (k+5)!
|7 axn e = a2 )
with respect to the measure
A1 +22)(4+ 22
w() = D@L (58)

sinh 7/

which coincides, by chance, with the measure (14). It
implies, in particular, that ,;(id) ~ s, (4). We discuss it in
more detail in Appendix B.

In order to fix the allowed values of A, we consider the
correlator of two eigenoperators. At the leading order it
takes the form

(O:(x)04(0)) ~ x| 5R(2, 4, (59)

where the residue R is given by the sum [see Eq. (17)]

RO = S (1) g nn (). (60)
k>0 :

The sum diverges unless Red = 0. For imaginary A the
correlator (59) exists in the sense of distributions. Thus the
anomalous dimensions of the operator (AQE is complex,
V2= M*Nc(l _/1)

One notices that there is a certain resemblance between
the anomalous dimensions of four-fermion operators in the
SU(N,) x SU(N;) GNY model and QED. Mixing among
evanescent operators results in a continuous spectrum. In
QED, the anomalous dimensions stay real, although neg-
ative, while in the GNY model they become complex. Of
course, it is not excluded that this effect is an artifact of the
one-loop approximation. Indeed, the spectrum is mainly
determined by details of the anomalous dimension matrix at
large n. At one loop, the matrix elements y,,,,, grow with n
as en’? and en in QED and in the GNY model, respectively.
One has all reasons to expect that higher-order corrections
will scale as (en?)* and (en)*. Whenever en, en> ~ O(1),
these corrections have to be resummed. Such a resumma-
tion can drastically change the large n behavior of the
matrix elements.”

Finally, we consider an example to show that the
construction of operators with “good” scaling properties
is not always possible. Let O, and O, be the operators
introduced in Sec. III, Eq. (29). These two sets of operators
are related to each other by the Fierz transformation (30).

’In QED, the anomalous dimension matrix in the physical
sector at two loops was obtained in [20].

105001-6
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The correlators of the operators

Fum (%) = (0,(x)0,,(0)) = (0, (x) 0, (0)).
wm(X) = (0, (x)0,,(0)), (61)

are well defined in the perturbative expansion (here, for
definiteness, we consider QED model) and satisfy the same
RGEs. Namely, for ¢ = f, f’ one gets (at the critical point)

MOy @um + (Y@) i + (@7") . = 0. (62)

Going over to the operators O, =) ,c,(v)O,
(O, =>,c,(v)O;,) one can bring the correlator f,, into
the form (24). The coefficients c¢,(v) are determined
by two conditions: first, they have to diagonalize the
matrix y, ¥,mcm(v)~c,(v) and second, the product
(c,()fum(x)c,(V)) should exist in the sense of
distributions.

Proceeding along the same lines with the correlator f7,,,,
one finds that while the first condition leads to the same
vectors ¢, (v), the normalization condition changes. Now it
reads (at the leading order in ¢)

R(w.) ~ Y cy(V)Quuoyc, (V) < oo (63)

The matrix C,,, = Q,,,,®,, is symmetric in n, m and grows
as ~n™ for large n and fixed m. It is easy to see that the
sums in Eq. (63) diverge for any v, /. It means that while
Sfrm correlators satisfy exactly the same RGE as f,,,, the
former cannot be brought to the form (24).

This statement can also be formulated as follows. The
matrix y commutes with the matrix Q, e.g., yQ = Qy.
However, while ¢, (v) is an eigenvector of y, it does not
belong to the domain of the operator Q, i.e., > Q,,.c,,(v)
diverges.

The conclusion is that in noninteger dimensions, the
possibility of representing the correlator ([ [,O(x;)) as a
sum of the correlators with “good” scaling properties
depends on the operators O, in question.

V. SUMMARY

We have considered the renormalization of four-fermion
operators in the critical QED and extended GNY models.
The anomalous dimension matrix in both models is of
infinite size so that in order to make the diagonalization
problem well defined, additional restrictions have to be
imposed on the solutions. It is natural to demand for the
correlation functions of the eigenoperators to be finite in the
€ expansion, Eq. (2). By diagonalizing the anomalous
dimension matrix in both models, we found that in both
cases the spectrum is continuous and, for the extended
GNY model, complex. Moreover, we argued that not all
correlators can be expanded as a sum (integral) of con-
tributions with specific scale dependence. We expect that

all these properties are likely to be true in general for
theories with fermions in d < 4 dimensions.

It is expected that in the d — 3 limit, these continuous
spectrum operators should somehow decouple from the
physical operators so that the evanescent operators can be
consistently put to zero. Clearly, this property is hard to check
within the € expansion where only a few terms in the series
could be calculated. It seems that alternative approaches such
as the 1/N expansion are better suited for this purpose.
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APPENDIX A: y MATRICES IN d DIMENSIONS

The antisymmetrized product of y matrices is defined as
1
VT > Y AR AR

where the sum is taken over all permutations. Below we
collect some formulas which were helpful for the calcu-
lation. The effective technique for handling y-matrices can
be found in Refs. [21,22]. Let us denote

r,er,=r", er.,. (A2)

Then one finds

Ty, @, = (=1)"(d-2n)l, T,

y,urn ® }/ﬂrn = Fnyu ® Fnyﬂ = IﬂnJrl ® l—‘nJrl
+nld-n+ 1), ®T,_,

yurn ® Fn}/ﬂ = Fnyu ® }/”Fn = (_1)11(Fn+1) b2 l—‘}'H»l

- I’l(d —-n+ 1)Fn_1 ® Fn—l)' (A3)
The Fierz identity in d dimensions has the form
O/ @I =Y QudIye @I (A4)

m=0

The Fierz coefficients Q,,,, can be written as follows [22]:

1 n(n=1) | m(m—1
Qu(d) = 5 (=155
X (1 (=1)" 4 (=1)" = (=1
L a d—m m
X (L) (=0 (AS)
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The matrix Q has to satisfy the consistency relation,

[Se]

Z Qnm<d)gmk (d) = 5nk'

m=0

(A6)

The series converges in the region n, k < d and for other d,
it has to be understood as an analytical continuation [23].
With the help of the representation (AS5), the sum in (A6)
can be easily evaluated resulting in 6,,2¢/tr1. Thus the
consistency relation (A6) holds only if the trace of the unit
matrix is chosen to be [23],

tr,1 = 24/2, (A7)
Notice that this expression coincides with the dimensions

of the canonical (finite-dimensional) y matrix representa-
tion only for even d.

APPENDIX B: HAHN POLYNOMIALS

Here we collected some basic facts about the dual
continuous Hahn polynomials, S, (x?, a, b, c¢), which are
defined as [13]

—n,a-+ix,a—ix

S,(x,a,b,c) = F
( ) 32( a+b,a+c

1>. (B1)

They satisfy the recurrence relation
(A, + Cy —a* = x)8,(x) = C, S, (%) + A, 8,1 (),
where
C,=nn+b+c-1),
A, =mn+a+b)(n+a+c).
They form a complete orthonormal system on L?(R,),

1 oo

2 ) dxw(x,a,b,c)S,(x)S,,(x)

['(a+ b)(a+ c)

=0,,n'I'(n+b+c , B2
( Sarb,aro, B
where the measure function reads
r ix)I'(b + ix)[ ix)|?
Wi, a, b, c) = IT(a + ix)['(b + ix)[(c + ix)| (B3)

T (2ix)[?

Next, we demonstrate that the polynomials in Eq. (11) and
(55) coincide, s,(4) ~ 1,,(id). Let us consider the recur-
rence relation,

2/1pn :(n+2ﬂ_1)pn—l_(n+1)pn+l’ (B4)
which for 4 = 3 is the recurrence relation for the poly-
nomial #,(4). The solutions have the form

Pal) =5 f i (1=2) (1 2)
=(=1)" (p i!i)nzpl (1 :Zf;iﬂ' - 1) . (B5)

After rescaling t, = (2u),/n!b,, the recurrence relation
takes the form

2/1bn = nbn—l - (n + Zﬂ)bn-&-l' (B6)

After some algebra, it can be transformed to the equation

4(/12 _”z)bn = (I’l + 2/")(” +2pu + 1)(bn+2 - bn)

+n(n_l)<bn—2_bn)’ (B7)
which involves the even/odd polynomials p,, only. Having
put n = 2k (n = 2k + 1) one find that (B7) coincides with
the defining relation for the continuous dual Hahn poly-
nomials, Sy (id, u,0,1/2) for even n, and Sy (id, u,1/2,1)
for odd one. Taking into account the initial conditions
Pn=0 = bg =1 (b; = —/p), one gets

—k,p+A,pu—2
()
Hopt + 5

2k, u— 41
—M2F1< H ’_1> (B8)
(24)2 1 =2k—p—-2
and
A —k,p+ A u—2
H pts.u+1
A 2k—-1,u—24
:Mﬂ:l( H ‘_1>. (B9)
(2:“)2k+1 —2k—pu—2

Having put =3 in the relation (BS), one finds
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