AUS DEM LEHRSTUHL
FÜR INNERE MEDIZIN I
PROF. DR. MARTINA MÜLLER-SCHILLING
DER FAKULTÄT FÜR MEDIZIN
DER UNIVERSITÄT REGENSBURG

REGULATION VON CHEMOKINE-LIKE RECEPTOR 1 IN HEPATISCHEN STERNZELLEN

Inaugural – Dissertation
zur Erlangung des Doktorgrades
der Medizin

der
Fakultät für Medizin
der Universität Regensburg

vorgelegt von
Maximilian Neumann

2018
REGULATION VON CHEMOKINE-LIKE RECEPTOR 1 IN HEPATISCHEN STERNZELLEN

Inaugural – Dissertation
zur Erlangung des Doktorgrades
der Medizin

der
Fakultät für Medizin
der Universität Regensburg

vorgelegt von
Maximilian Neumann

2018
Dekan: Prof. Dr. Dr. Torsten E. Reichert
1. Berichterstatter: Prof. Dr. Christa Büchler
2. Berichterstatter: Prof. Dr. Charalampos Aslanidis
Tag der mündlichen Prüfung:
INHALTSVERZEICHNIS

1. EINLEITUNG.. 8
 1.1 Die Nicht-alkoholische Fettlebererkrankung (NAFLD) ... 8
 1.1.1 Pathogenese .. 9
 1.1.2 Symptome und Therapie .. 11
 1.1.3 Hepatische Sternzellen und die NAFLD ... 11
 1.2 Chemerin .. 13
 1.2.1 Struktur und Prozessierung .. 13
 1.2.2 Rezeptoren ... 13
 1.2.3 Die biologische Rolle .. 14
 1.2.4 Chemerin und die NAFLD ... 16

2. MATERIAL UND METHODEN .. 18
 2.1 Material ... 18
 2.1.1 Verbrauchsmaterialien .. 18
 2.1.2 Geräte ... 18
 2.1.3 Chemikalien ... 19
 2.1.4 Puffer und Lösungen .. 21
 2.1.4.1 Lösungen für Arbeiten mit Protein ... 21
 2.1.4.2 Lösungen für Arbeiten mit RNA ... 25
 2.1.5 Kit-Systeme ... 25
 2.1.6 Oligonukleotide .. 25
 2.1.7 Zellen .. 26
 2.1.8 Wachstums- und Stimulationsmedien ... 26
 2.1.9 Stimulanzien .. 26
 2.1.10 Patientenkollektiv ... 27
 2.2 Methoden .. 27
 2.2.1 Arbeiten mit Zellen .. 27
 2.2.1.1 Primäre hepatische Sternzellen ... 27
 2.2.1.2 LX-2 humane hepatische Sternzelllinie ... 27
 2.2.1.3 Zellen auftauen .. 28
 2.2.1.4 Zellkultivierung .. 28
 2.2.1.5 Zellpassagierung ... 28
2.2.1.6 Zellzählung ... 28
2.2.1.7 Zellstimulation ... 29
2.2.1.8 Laktat-Dehydrogenase Zytotoxizitäts-Assay .. 30
2.2.1.9 Zellen einfrieren .. 30
2.2.2 Arbeiten mit DNA ... 30
2.2.2.1 Real-Time Polymerase Chain Reaction (RT-PCR) .. 30
2.2.3 Arbeiten mit RNA ... 32
2.2.3.1 Konzentrationsbestimmung von RNA ... 32
2.2.3.2 Reverse Transkription .. 32
2.2.4 Arbeiten mit Protein .. 33
2.2.4.1 Proteinisolierung aus Zellen ... 33
2.2.4.2 Konzentrationsbestimmung von Proteinen .. 33
2.2.4.3 SDS-Polyacrylamid-Gelelektrophorese (SDS-PAGE) 33
2.2.4.4 Western Blotting (Wet Transfer Verfahren) und immunologischer Nachweis 34
2.2.4.5 Coomassie Färbung ... 36
2.2.4.6 Enzyme Linked Immunosorbent Assay (ELISA) .. 36
2.2.5 Statistische Auswertung ... 37
3. ERGEBNISSE .. 38
3.1 Untersuchung hepatischer CMKLR1 mRNA in einem NAFLD-Patientenkollektiv ... 38
3.1.1 Charakterisierung des Kollektivs ... 38
3.1.2 CMKLR1 mRNA in der Leber ... 41
3.1.3 Hepatische CMKLR1 mRNA in der NAFLD .. 41
3.1.4 Hepatische CMKLR1 mRNA in weiblichen NAFLD-Patienten 43
3.1.5 Hepatische CMKLR1 mRNA in männlichen NAFLD-Patienten 45
3.2 Regulation von CMKLR1 Protein durch Zytokine und Lipopolysaccharid 47
3.2.1 Stimulationsversuche mit IL-6 ... 48
3.2.2 Stimulationsversuche mit Leptin .. 48
3.2.3 Stimulationsversuche mit Lipopolysaccharid ... 48
3.2.4 Stimulationsversuche mit TGF-β ... 49
3.2.5 Stimulationsversuche mit TNF-α ... 49
3.3 Regulation von Chemerin Protein durch Zytokine und Lipopolysaccharid 51
3.3.1 Stimulationsversuche mit IL-6 ... 52
3.3.2 Stimulationsversuche mit Leptin .. 52
3.3.3 Stimulationsversuche mit Lipopolysaccharid ... 53
3.3.4 Stimulationsversuche mit TGF-β ... 54
3.3.5 Stimulationsversuche mit TNF-α ... 55

4. DISKUSSION .. 57
4.1 Untersuchung hepatischer CMKLR1 mRNA in einem NAFLD-Patientenkollektiv... 57
4.2 Regulation von CMKLR1 Protein durch Zytokine und Lipopolysaccharid 60
4.3 Regulation von Chemerin Protein durch Zytokine und Lipopolysaccharid......... 62

5. ZUSAMMENFASSUNG ... 64

6. LITERATURVERZEICHNIS ... 66

7. ABBILDUNGSVERZEICHNIS .. 70

8. TABELLENVERZEICHRNIS ... 73

9. PUBLIKATIONEN .. 74

DANKSAGUNG
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AK</td>
<td>Antikörper</td>
</tr>
<tr>
<td>APS</td>
<td>Ammoniumpersulfat</td>
</tr>
<tr>
<td>BCA</td>
<td>Bicinchoninsäure</td>
</tr>
<tr>
<td>BMI</td>
<td>Body-Mass-Index</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovines Serumalbumin</td>
</tr>
<tr>
<td>CCRL2</td>
<td>C-C motif receptor like 2</td>
</tr>
<tr>
<td>cDNA</td>
<td>Komplementäre Desoxyribonukleinsäure</td>
</tr>
<tr>
<td>CMKLR1</td>
<td>Chemokine-like receptor 1</td>
</tr>
<tr>
<td>cp</td>
<td>Crossing point</td>
</tr>
<tr>
<td>C-terminal</td>
<td>Carboxy-terminal</td>
</tr>
<tr>
<td>ddH₂O</td>
<td>Bidestilliertes Wasser</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco´s Modified Eagle Medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxid</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonukleinsäure</td>
</tr>
<tr>
<td>dNTP</td>
<td>Desoxyribonukleotid</td>
</tr>
<tr>
<td>ECL</td>
<td>Enhanced chemiluminescence</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked Immunosorbent Assay</td>
</tr>
<tr>
<td>ET-1</td>
<td>Endothelin-1</td>
</tr>
<tr>
<td>FBS</td>
<td>Fetal bovine serum</td>
</tr>
<tr>
<td>FGF</td>
<td>Fibroblast growth factor</td>
</tr>
<tr>
<td>GAPDH</td>
<td>Glycerinaldehyd-3-phosphat-Dehydrogenase</td>
</tr>
<tr>
<td>GGT</td>
<td>γ-Glutamyltransferase</td>
</tr>
<tr>
<td>GPR1</td>
<td>G protein-coupled receptor 1</td>
</tr>
<tr>
<td>HCC</td>
<td>Hepatozelluläres Karzinom</td>
</tr>
<tr>
<td>HGF</td>
<td>Hepatocyte growth factor</td>
</tr>
<tr>
<td>HRP</td>
<td>Meerrettichperoxidase</td>
</tr>
<tr>
<td>HSC</td>
<td>Humane Sternzelle</td>
</tr>
<tr>
<td>IL-1β</td>
<td>Interleukin 1β</td>
</tr>
<tr>
<td>IL-6</td>
<td>Interleukin 6</td>
</tr>
<tr>
<td>KLK7</td>
<td>Kallikrein 7</td>
</tr>
<tr>
<td>LDH-Assay</td>
<td>Laktat-Dehydrogenase Zytotoxizitäts-Assay</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharid</td>
</tr>
<tr>
<td>MAP-Kinase</td>
<td>Mitogen-activated protein-Kinase</td>
</tr>
<tr>
<td>MCD</td>
<td>Methionin-Cholin-defizient</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger Ribonukleinsäure</td>
</tr>
<tr>
<td>NAFLD</td>
<td>Non-alcoholic fatty liver disease</td>
</tr>
<tr>
<td>NAS</td>
<td>NAFLD activity score</td>
</tr>
<tr>
<td>NASH</td>
<td>Non-alcoholic steatohepatitis</td>
</tr>
<tr>
<td>NFκB</td>
<td>Nuclear factor 'kappa-light-chain-enhancer' of activated B-cells</td>
</tr>
<tr>
<td>N-terminal</td>
<td>Amino-terminal</td>
</tr>
<tr>
<td>OD₂₆₀</td>
<td>Optischen Dichte bei 260 nm</td>
</tr>
<tr>
<td>OD₂₈₀</td>
<td>Optischen Dichte bei 280 nm</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>PAGE</td>
<td>Polyacrylamidgelektrophorese</td>
</tr>
<tr>
<td>PAI-1</td>
<td>Plasminogen activator inhibitor-1</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>PDGF</td>
<td>Platelet-derived growth factor</td>
</tr>
<tr>
<td>PHH</td>
<td>Primärer humaner Hepatozyt</td>
</tr>
<tr>
<td>PNPLA3</td>
<td>Palatin-like phospholipase domain-containing 3 gene</td>
</tr>
<tr>
<td>PVDF-Membran</td>
<td>Polyvinylidenflourid-Membran</td>
</tr>
<tr>
<td>rev</td>
<td>Reverse</td>
</tr>
<tr>
<td>RIPA</td>
<td>Radioimmunoprecipitation assay buffer</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonukleinsäure</td>
</tr>
<tr>
<td>RNase</td>
<td>Ribonuklease</td>
</tr>
<tr>
<td>rpm</td>
<td>Rounds per minute</td>
</tr>
<tr>
<td>rRNA</td>
<td>Ribosomale Ribonukleinsäure</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Real-Time Polymerase Chain Reaction</td>
</tr>
<tr>
<td>SDS</td>
<td>Natriumdodecylsulfat</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>SDS-Polyacrylamid-Gelektrophorese</td>
</tr>
<tr>
<td>TBS</td>
<td>Tris buffered saline</td>
</tr>
<tr>
<td>TBS-T</td>
<td>Tris buffered saline + Tween</td>
</tr>
<tr>
<td>TEMED</td>
<td>N, N, N’, N´, - Tetrarmethylethylendiamin</td>
</tr>
<tr>
<td>TGF-β</td>
<td>Transforming growth factor-beta</td>
</tr>
<tr>
<td>TIG2</td>
<td>Tazarotene-induced gene 2</td>
</tr>
<tr>
<td>TLR4</td>
<td>Toll-like receptor 4</td>
</tr>
<tr>
<td>TNF-α</td>
<td>Tumor necrosis factor-α</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris(hydroxymethyl)-aminomethan</td>
</tr>
<tr>
<td>uni</td>
<td>Universe</td>
</tr>
</tbody>
</table>
1. Einleitung

1.1 Die nicht-alkoholische Fettlebererkrankung (NAFLD)

Erste Fallberichte über Lebererkrankungen bei übergewichtigen Patienten mit unauffälligem Alkoholkonsum, die bis zur Zirrhose fortschreiten können, gab es bereits vor 40 Jahren. Erst in den letzten zehn Jahren jedoch wurde, auch bedingt durch die Zunahme an übergewichtigen und fettleibigen Menschen in den westlichen Industrienationen, die Dringlichkeit dieses Problems erkannt. So liegt die Prävalenz der nicht-alkoholischen Fettlebererkrankung (NAFLD) in westlichen Ländern bei circa 30 %. Wird nur die adipöse Bevölkerung betrachtet, so liegt die Prävalenz bei Menschen mit einem Body-Mass-Index (BMI) > 30 kg/m² deutlich höher bei 65 - 75 % bzw. sogar bei 85 - 90 % bei Menschen mit einem BMI > 35 kg/m² [2].

Die NAFLD ist eine chronische Lebererkrankung bei der exzessiver Alkoholkonsum (< 30 g/d bei Männern, < 20 g/d bei Frauen), Hepatitis B und C Infektionen sowie eine medikamenteninduzierte Leberverfettung als Ursache ausgeschlossen werden müssen [1]. Die NALFD umfasst dabei verschiedene Schweregrade der Leberverfettung und Leberschädigung, die sich in Häufigkeit und Prognose unterscheiden. Hierbei ist besonders die Steatose, die reine Leberverfettung, von der nicht-alkoholischen Steatohepatitis (NASH), Steatose mit hepatozellulären Schäden und Entzündung, zu unterscheiden. Diese Differenzierung erfolgt histologisch und häufig an Hand des NAFLD activity score (NAS). Hierbei wird die Verfettung, das ballooning, eine histologische Beschreibung des hepatozellulären Zellunterganges bei dem die Zellen deutlich an Größe zunehmen, die Entzündung und der Fibrosegrad der Leber beurteilt [4]. Ist die Prognose bei der Steatose noch günstig, so entwickelt sich hingegen bei der NASH in etwa 5 % der Fälle innerhalb von zehn Jahren eine Leberzirrhose. Sowohl Patienten mit NASH als auch mit Leberzirrhose haben ein erhöhtes Risiko für ein Hepatozelluläres Karzinom (HCC) (s. Abb. 1) [3].

Abbildung 1: Das Spektrum der NAFLD (nach [2] und [3])
1.1.1 Pathogenese

Abbildung 2: Mechanismen der Pathogenese der NAFLD (nach [1])
vermehrten Apoptose von Hepatozyten [5]. Auch scheint die hepatische Steatose selbst zu einer erhöhten Inflammation zu führen. So ist der Transkriptionsfaktor nuclear factor 'kappa-light-chain-enhancer' of activated B-cells (NFκB) im Lebergewebe von Mäusen, die mit einer Hochfett-Diät gefüttert worden sind, erhöht. Eine Aktivierung von NFκB führt beispielsweise zu einer vermehrten Transkription der Entzündungsmediatoren tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6) und interleukin 1β (IL-1β) [8]+[2].

Bei Patienten mit durch Biopsie gesicherter NAFLD konnte ein Unterschied in der Zusammensetzung des Mikrobioms festgestellt werden. So konnte bei Patienten mit NASH verglichen mit Patienten mit reiner Steatose und gesunden Kontrollen ein höherer Anteil an Clostridium coccoides und ein geringerer Anteil an Bakterien der Gattung Bakteroides/Prevotella nachgewiesen werden [13].

1.1.2 Symptome und Therapie

Klinisch präsentiert sich die NAFLD zum Zeitpunkt der Diagnosestellung meist asymptomatisch. Einige Patienten zeigen Symptome wie Fatigue, rechtsseitige Oberbauchschmerzen oder Hepatosplenomegalie. Ist die NAFLD bereits vor Diagnosestellung in eine Leberzirrhose übergegangen, treten meist typische Symptome wie Aszites oder Splenomegalie auf. Eine Steatose ist teilweise mit erhöhten Serumkonzentrationen der Alanin-Aminotransferase (ALT) und der γ-Glutamyltransferase (GGT) assoziiert [2]. Der kausale Therapieversuch der NAFLD ist die Gewichtsreduktion, welche individuell angepasst durch eine Umstellung des Lebensstils, unterstützende Medikation (z.B. Metformin) oder Adipositaschirurgie erfolgen sollte [14].

1.1.3 Hepatische Sternzellen und die NAFLD

Hepatische Sternzellen (HSCs) besitzen bei den fibrotischen Umbauprozessen von geschädigtem, entzündetem Leberparenchym eine entscheidende Rolle, so auch bei dem Übergang der nicht-alkoholischen Steatohepatitis zur Leberfibrose und im weiteren Verlauf zur Zirrhose. Bei normalen, inaktivierte Sternzellen handelt es sich um ruhende Zellen mit Sitz im Disse-Raum. Sie speichern im Darm resorbiertes Vitamin A und produzieren

Das proinflammatorische Zytokin TNF-α ist bei Patienten mit NALFD vermehrt exprimiert. Es ist von einem Zusammenhang zwischen TNF-α und einer Fibrose des Lebergewebes auszugehen [18]. TNF-α ist einer der Mediatoren, die in der Phase initiation zu einer Aktivierung der hepatischen Sternzellen führen [16].

1.2 Chemerin

1.2.1 Struktur und Prozessierung

1.2.2 Rezeptoren

Für Chemerin sind neben CMKLR1 noch GPR1 (G protein-coupled receptor 1) und CCRL2 (C-C motif receptor like 2) als Rezeptoren bekannt.

Bei CMKLR1, auch bezeichnet als ChemR23, handelt es sich um ein hepta-helikales Transmembranprotein, das zu den G-Protein-gekoppelten Rezeptoren zählt. CMKLR1 ist unter anderem auf der Oberfläche von humanen Makrophagen und unreifen dendritischen Zellen exprimiert [21]. Ebenso ist CMKLR1 mit Hilfe von fluorescence-activated cell sorting bei unreifen plasmazytoiden dendritischen Zellen, natürlichen Killerzellen, polymorphonukleären Leukozyten und dendritischen Zellen der Dermis detektierbar. Bei myeloischen dendritischen Zellen widersprechen sich die Untersuchungen. Neben diesen Zellen des angeborenen Immunsystems ist CMKLR1 auch auf Osteoklasten, Endothelzellen,

Wie bei CMKLR1 handelt es sich auch bei den beiden anderen bekannten Rezeptoren GPR1 und CCRL2 um G-Protein gekoppelte Rezeptoren. Das Expressionsmuster von GPR1 unterscheidet sich gegenüber dem von CMKLR1 dahingehend, dass GPR1 nicht auf Monozyten, Makrophagen und peripheren Blutlymphozyten exprimiert wird, jedoch in Zellen des zentralen Nervensystems [22]. GPR1 ist hierbei phylogenetisch nahe verwandt mit CMKLR1 und scheint auch Chemerin mit einer vergleichbaren Affinität zu binden [28]. Über die funktionelle Rolle von GPR1 ist noch wenig bekannt.

1.2.3 Die biologische Rolle

...in der Haut:

Wurde Chemerin ursprünglich als erstes in der Haut entdeckt, so hat sich doch das Hauptaugenmerk der Forschung auf seine Rolle im metabolischen Stoffwechsel und als

…in der Immunabwehr:

…bei Adipositas und metabolischen Erkrankungen:
16

geringerer Körper- und Fettgewebsmasse zeigen. Dies führten sie auf eine verschlechterte Adipogenese zurück. Darüber hinaus zeigten CMKLR1/−-Mäuse eine schlechtere Glukosetoleranz, eine erniedrigte Glukose-stimulierte Insulinfreisetzung und eine erniedrigte Glukoseaufnahme in Muskulatur und weißes Fettgewebe, was einen Zusammenhang zwischen Chemerin beziehungsweise CMKLR1 und Diabetes mellitus Typ 2 nahelegt [34]. Diesen Ergebnissen widersprechend konnte in weiteren Experimenten mit CMKLR1/−-Mäusen gezeigt werden, dass der knockout keinen Einfluss auf die Glukosetoleranz und die Morphologie des Fettgewebes hat [35] + [36]. Auch zeigten die Tiere ein erhöhtes Gesamtkörpergewicht und ein erhöhtes Gewicht des Fettgewebes [35].

1.2.4 Chemerin und die NAFLD

Sowohl Chemerin als auch der Chemerin-Rezeptor CMKLR1 könnten eine Rolle in der Pathogenese der nicht-alkoholischen Fettlebererkrankung spielen.

In dieser Arbeit zeigte sich jedoch eine erniedrigte Expression von Chemerin in der humanen und murinen NASH [40]. Eine weitere, humane Studie zeigt ebenfalls erniedrigte Chemerinkonzentrationen in Leberbiopsien von NASH-Patienten [41]. Die Regulation der Chemerinexpression in hepatischen Sternzellen wurde bisher nicht untersucht.

In Einklang mit der obig beschriebenen, vermehrten Expression von CMKLR1 in der Leber von Patienten mit NASH konnte von Zhang et al. gezeigt werden, dass ein Herunterregulieren von CMKLR1 in Kupffer-Zellen mit Hilfe des Phosphatidyl-Inositol-3-Kinase-Inhibitors Wortmannin zu einer verminderten hepatischen Steatose und Entzündung bei Mäusen unter
Hochfettdiät führt [42]. Diesem positiven Zusammenhang zwischen NASH und CMKLR1 widersprechend, wurde in früheren Untersuchungen gezeigt, dass das CMKLR1-Protein in der Leber von Patienten mit Fettleber erniedrigt ist und auch nicht mit dem BMI der Patienten korreliert [26].

Die bisherigen Untersuchungen ergeben somit in Bezug auf die hepatische Expression von Chemerin und CMKLR1 bei NAFLD beziehungsweise NASH widersprüchliche Ergebnisse.

Zielsetzung dieser Arbeit war es, die hepatische CMKLR1-Expression in der humanen NAFLD zu untersuchen. Es sollte hierbei geklärt werden, ob CMKRL1 in der NAFLD reguliert ist. Dies könnte ein erster Hinweis auf eine Funktion in dieser chronischen Lebererkrankung sein.

2. Material und Methoden

2.1 Material

2.1.1 Verbrauchsmaterialien

Absaugpipette (5 ml) BD Falcon
Combitips Eppendorf
Dampfsterilisations-Indikatorband Omnilab
ELISA-Platte (96 well) Corning Costar®
Immun-Blot™ PVDF Membran (0,2 µm) Bio-Rad
LightCycler® Kapillaren (20 µl) Roche
Parafilm Pechiney Plastic Packaging
Pipettenspitzen Sarstedt
Reaktionsgefäße (1,5 ml, 2,0 ml) Eppendorf
Schraubröhrchen (15 ml, 50 ml) Sarstedt
Serologische Einwegpipetten (5 ml, 10 ml, 25 ml) Sarstedt
Sterile Einmalspritzen (1,0 ml) Braun Injekt®-F
Sterile Filterspitzen (10 µl, 1250 µl) Sarstedt
Sterile Filterspitzen (100 µl, 200 µl) Biozym Diagnostik
Sterile Kanülen BD Mircolance™
Sterilfilter Milipore
Vakuum Sterifiltrationssystem (50 ml, 150 ml) Millipore
Wägeschälchen Omnilab
Whatman GB003 0,8 mm VWR
Zellkulturschale (75 cm², 175 cm²) Sarstedt
Zellkulturplatte (6 Well, 12 Well) BD Falcon
Zell Schaber Sarstedt

2.1.2 Geräte

Autoklav Systec VX 150 Systec
Blockthermostat BT 100 Kleinfeld Labortechnik
CCD-Kamera Rainbow
Elektrische Pipettierhilfe Multipette® plus Eppendorf
Inkubationsschrank BBD 6220
Inkubationsschrank mit Umlaufschüttler S150
iMark Microplate Reader
LightCycler® Real-Time RT-PCR mit Zubehör
Magnetrührer MR 3000 D
Magnetrührer/Heizplatte MR 3001 K
Mikroskop DM IL und Zubehör
Molecular Imager® ChemiDoc™ XRS System (CCD-Kamerasystem)
Mr. Frosty™ Gefrierbehälter
Nanodrop ND 200
pH-Meter inoLab®
Power Supply Power Pac 200
Präzisionswaage 440-45N
Präzisionswaage PLE 200-3
Schüttler Rotamax 120
SDS-Gelapparatur Minigel und Zubehör
Sicherheitswerkbank
Tischzentrifuge 5415 D
Tischzentrifuge 5424 R
Trans-Blot Cell Wet-Transferkammer
Ultraschallgerät mit Power Supply
UV-Flächenstrahler TFX-20 M
Vortexer Typ 54117
Vortexer VF2
Vortexer Vortex 1
Wasserbad WPE 45
Zellzählkammer, Tiefe 0,1 mm
Zentrifuge Megafuge 1.0 R

2.1.3 Chemikalien

Acrylamidlösung 40%
Ammoniumpersulfat (APS)

Heraeus Instruments
Stuart
Bio-Rad
Roche
Heidolph
Leica
Bio-Rad
Thermo Scientific
Thermo Scientific
WTW
Bio-Rad
Kern
Kern
Heidolph
Bio-Rad
Heraeus Instruments
Eppendorf
Eppendorf
Bio-Rad
Bandelin
MWG-Biotech
Heidolph
Janke und Kunkel
Ika
Memmert
Neubauer
Heraeus Instruments
β-Mercaptoethanol
Biosafe™ Coomassie
Bisacrylamidlösung 2%
Bromphenolblau
BSA für ELISA
Complete Mini Protease Inhibitor Cocktail
Desoxycholat
Dulbecco’s modified Eagle Medium (DMEM), 4,5 g/l Glucose
Dulbecco’s modified Eagle Medium (DMEM), 4,5 g/l Glucose
Ethanol
Ethanol, technisch
Fetal bovine serum (FBS)
Glyzerin
Glyzin
Igepal
L-Glutamin
Magermilchpulver
Methanol, technisch
Natriumchlorid
Natriumdodecylsulfat (SDS)
N, N, N’, N’- Tetramethylethylenediamin (TEMED)
Nukleasefreies Wasser
Penicillin/Streptomycin
PeqGOLD Proteinmarker
Phosphate buffered saline (PBS) Dulbecco
PhosSTOP Phosphatase Inhibitor Cocktail
Schwefelsäure, rauchend
Tris-HCL
Tris-NH₃
2.1.4 Puffer und Lösungen

Im Folgenden werden die Zusammensetzungen der selbst gemischten Puffer und Lösungen aufgeführt. Wenn nicht anders angegeben, wurden diese bei Raumtemperatur gelagert.

2.1.4.1 Lösungen für Arbeiten mit Protein

2.1.4.1.1 Lösungen für die Herstellung von Proteinextrakten

RIPA-Lysepuffer:

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Menge</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl, 3 M Stammlösung</td>
<td>16,5</td>
<td>ml</td>
</tr>
<tr>
<td>Igepal</td>
<td>3,30</td>
<td>ml</td>
</tr>
<tr>
<td>Desoxycholat</td>
<td>1,65</td>
<td>g</td>
</tr>
<tr>
<td>SDS, 20%ige Stammlösung</td>
<td>1,65</td>
<td>ml</td>
</tr>
<tr>
<td>Tris, 1M Stammlösung pH 7,5</td>
<td>16,5</td>
<td>ml</td>
</tr>
<tr>
<td>ad</td>
<td>0,30</td>
<td>l ddH₂O</td>
</tr>
</tbody>
</table>

Der RIPA-Lysepuffer wurde bei 4°C aufbewahrt. Vor Verwendung wurden zu jeweils 10 ml RIPA-Puffer eine Tablette Complete Mini Protease Inhibitor Cocktail und PhosStop Phosphatase Inhibitor Cocktail frisch zugegeben.

2.1.4.1.2 Lösungen für die SDS-Polyacrylamid-Gelelektrophorese

SDS-Gellaufpuffer, 10-fach:

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Menge</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glyzin</td>
<td>122</td>
<td>g</td>
</tr>
<tr>
<td>Tris-NH₃</td>
<td>30</td>
<td>g</td>
</tr>
<tr>
<td>SDS, 20% Stammlösung</td>
<td>50</td>
<td>ml</td>
</tr>
<tr>
<td>ad</td>
<td>1</td>
<td>l ddH₂O</td>
</tr>
</tbody>
</table>

Lösung für 15%ige Trenngele:

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Menge</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrylamid 40%</td>
<td>45,0</td>
<td>ml</td>
</tr>
<tr>
<td>Bisacrylamid 2%</td>
<td>10,5</td>
<td>ml</td>
</tr>
<tr>
<td>Tris-HCl, 3 M Stammlösung pH 8,7</td>
<td>15,0</td>
<td>ml</td>
</tr>
<tr>
<td>SDS, 20%ige Stammlösung</td>
<td>0,60</td>
<td>ml</td>
</tr>
<tr>
<td>ddH₂O</td>
<td>59,0</td>
<td>ml</td>
</tr>
</tbody>
</table>

Lösung für 5%ige Sammelgele:
Acrylamid 40% 5,0 ml
Bisacrylamid 2% 2,6 ml
Tris-HCl, 3 M Stammlösung pH 6,8 5,0 ml
SDS, 20%ige Stammlösung 0,2 ml
ddH₂O 24,0 ml

SDS-Probenpuffer (5xLämmli), 5-fach:
Glyzerin 20% 5,0 ml
1 M Tris-HCl, pH 6,8 0,3 ml
β-Mercaptoethanol 1,0 ml
SDS, 20%ige Stammlösung 2,0 ml
Bromphenolblau 0,025 g
ad 10,0 ml ddH₂O

Der SDS-Probenpuffer wurde in einem Verhältnis von 1:5 zu den Proteinlysaten zugegeben.

2.1.4.1.3 Lösungen für das Western Blotting
Tank-Puffer, 10-fach:
Glyzin 140 g
Tris-NH₃ 30 g
SDS 5 g
ad 1 l ddH₂O

Wet-Transfer-Puffer:
Methanol (technisch) 200 ml
Tank-Puffer, 10-fach 80 ml
ad 1 l ddH₂O

TBS, pH 7,6; 10-fach:
NaCl 80 g
Tris-HCl 31,5 g
ad 1 l ddH₂O

Das Einstellen des pHs erfolgte mit Hilfe von NaOH.

TBS-T:
TBS, pH 7,6; 10-fach 100 ml
Tween® 20 1 ml
ad 1 l ddH₂O

Blockierlösung:
Magermilchpulver 5 g
ad 100 ml TBS-T

Die Lagerung der Blockierlösung erfolgte bei 4°C.

2.1.4.1.4 Antikörperlösung

BSA-TBS-T:
BSA 7,5 g
Natriumazid 0,5 g
Tween® 20 0,5 ml
ad 0,5 l TBS

Die Antikörperlösung wurde steril filtriert und bei 4°C gelagert.

2.1.4.1.5 Antikörper

<table>
<thead>
<tr>
<th>Antikörper</th>
<th>Spezies</th>
<th>Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-CMKLR1</td>
<td>Kaninchen</td>
<td>Abcam</td>
</tr>
<tr>
<td>Anti-Chemerin</td>
<td>Ziege</td>
<td>R&D Systems</td>
</tr>
<tr>
<td>Antikörper</td>
<td>Spezies</td>
<td>Firma</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Anti-Kaninchen HRP-konjugierter AK</td>
<td>Esel</td>
<td>Jackson Immuno Research</td>
</tr>
<tr>
<td>Anti-Ziege HRP-konjugierter AK</td>
<td>Kaninchen</td>
<td>Jackson Immuno Research</td>
</tr>
</tbody>
</table>

Tabelle 1: Liste aller in dieser Arbeit verwendeten primären Antikörper.

<table>
<thead>
<tr>
<th>Antikörper</th>
<th>Spezies</th>
<th>Firma</th>
</tr>
</thead>
</table>

Tabelle 2: Liste aller in dieser Arbeit verwendeten sekundären Antikörper.

2.1.4.1.6 Lösungen für ELISA

Waschpuffer:

| Tween® 20 | 0,5 ml ad 1 l PBS |

Reagent Diluent:

| BSA | 5 g ad 0,5 l PBS |

Die Lösung wurde steril filtriert und bei 4°C gelagert.

Substratlösung:

Stopplösung:

| Schwefelsäure (rauchend) | 5,70 ml ad 50 ml ddH2O |

Verdünnung des Standards, der Antikörper und des HRP-Streptavidin-Konjugats:

Verdünnung der Proben:

Die Proben wurden den Angaben des Herstellers folgend in Reagent Diluent verdünnt.
2.1.4.2 Lösungen für Arbeiten mit RNA

75%iges Ethanol:

<table>
<thead>
<tr>
<th></th>
<th>ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanol</td>
<td>7,50</td>
</tr>
<tr>
<td>Nukleasefreies Wasser</td>
<td>2,50</td>
</tr>
</tbody>
</table>

2.1.5 Kit-Systeme

Nachfolgend sind alle verwendeten Kit-Systeme und deren Bezugsfirmen aufgeführt.

<table>
<thead>
<tr>
<th>Kit-System</th>
<th>Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amersham ECL Prime Western Blotting Detection Reagent</td>
<td>GE Healthcare</td>
</tr>
<tr>
<td>BCA Protein Assay Kit</td>
<td>Pierce</td>
</tr>
<tr>
<td>Duo Set® ELISA Development System human Chemerin</td>
<td>R&D Systems</td>
</tr>
<tr>
<td>LightCycler FastStart DNA Master SYBR Green I</td>
<td>Roche</td>
</tr>
<tr>
<td>Reverse Transcription System</td>
<td>Promega</td>
</tr>
</tbody>
</table>

Tabelle 3: Liste aller in dieser Arbeit verwendeten Kit-Systeme.

2.1.6 Oligonukleotide

Alle verwendeten Oligonukleotide wurden von der Firma Metabion (Planegg-Martinsried) synthetisiert. Ihre Spezifität wurde durch Sequenzierung des amplifizierten DNA-Abschnitts durch die Firma GeneArt AG (Regensburg) sichergestellt.

<table>
<thead>
<tr>
<th>Oligonukleotid</th>
<th>Sequenz (5´→ 3´)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMKLR1_uni</td>
<td>ACC TGC ATG GGA AAA TAT CCT</td>
</tr>
<tr>
<td>CMKLR1_rev</td>
<td>GAG GTT GAG TGT GTG GTA GGG</td>
</tr>
<tr>
<td>18S rRNA_uni</td>
<td>GAT TGA TAG CTC TTT CTC GAT TCC</td>
</tr>
<tr>
<td>18S rRNA_rev</td>
<td>CAT CTA AGG GCA TCA CAG ACC</td>
</tr>
</tbody>
</table>

Tabelle 4: Liste aller in dieser Arbeit verwendeten Oligonukleotide.
2.1.7 Zellen

Die verwendeten Zellen wurden bei 37°C und 5% CO₂-Gehalt kultiviert.

<table>
<thead>
<tr>
<th>Zellart</th>
<th>Beschreibung</th>
<th>Bezugsquelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>LX-2-Zelllinie</td>
<td>Zelllinie humaner Sternzellen</td>
<td>Merck</td>
</tr>
<tr>
<td>Primäre humane Sternzellen</td>
<td>Isoliert aus den Überständen primärer humaner Hepatozyten</td>
<td>Hepacult</td>
</tr>
</tbody>
</table>

Tabelle 5: Liste der in dieser Arbeit verwendeten humanen Zellen.

2.1.8 Wachstums- und Stimulationsmedien

Für die primären humanen Sternzellen wurde DMEM mit 4,5 g/l Glukose (Biochrom, Katalognummer: FG 0435), versetzt mit 10% fetalem Kälberserum (FBS) und 1% Penicillin/Streptomycin, als Wachstumsmedium verwendet. Für die Stimulationen wurde DMEM mit 4,5 g/l Glukose (Biochrom, Katalognummer: FG 0435), versetzt mit 1% Penicillin/Streptomycin, verwendet.

Für Zellen der LX-2-Zelllinie wurde DMEM mit 4,5 g/l Glukose (Merck, Katalognummer: SLM-021-B), versetzt mit 2% FBS, 1% Glutamin und 1% Penicillin/Streptomycin, als Wachstumsmedium verwendet. Für die Stimulationen wurde DMEM mit 4,5 g/l Glukose (Merck, Katalognummer: SLM-021-B), versetzt mit 1% Glutamin und 1% Penicillin/Streptomycin, verwendet.

Eine Ausnahme bildeten sowohl bei den primären humanen Sternzellen als auch bei den LX-2-Zellen Stimulationen mit LPS. Hier wurde zum Stimulieren das jeweilige Wachstumsmedium verwendet.

2.1.9 Stimulanzien

Aufgeführt sind die Zytokine und Lipopolysacharid, mit denen im Rahmen dieser Arbeit Zellen inkubiert worden sind.

<table>
<thead>
<tr>
<th>Stimulanz</th>
<th>Bezugsfirma</th>
<th>Katalognummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-6</td>
<td>R&D Systems</td>
<td>206 IL-010/CF</td>
</tr>
<tr>
<td>Leptin</td>
<td>R&D Systems</td>
<td>398-LP-01M</td>
</tr>
<tr>
<td>LPS</td>
<td>Sigma</td>
<td>L6529-1MG</td>
</tr>
<tr>
<td>TGF-β</td>
<td>R&D Systems</td>
<td>240-B-002/CF</td>
</tr>
<tr>
<td>TNF-α</td>
<td>R&D Systems</td>
<td>210-TA-005/CF</td>
</tr>
</tbody>
</table>

Tabelle 6: Die in dieser Arbeit für Stimulationsversuche verwendeten Substanzen.
2.1.10 Patientenkollektiv

2.2 Methoden

2.2.1 Arbeiten mit Zellen

2.2.1.1 Primäre hepatische Sternzellen

2.2.1.2 LX-2 humane hepatische Sternzelllinie

2.2.1.3 Zellen auftauen

Sowohl die HSCs als auch die LX-2 humanen hepatischen Sternzellen wurden in Kryoröhrchen bei -80°C aufbewahrt und musste aufgetaut werden. Hierzu wurde die gefrorene Zellsuspension schonend mit Hilfe einer 1250 µl Pipette in 10 ml 37°C warmem DMEM, versetzt mit 10% FBS und 1% Penicillin/Streptomycin, aufgenommen. Nach Zentrifugieren bei 1200 rpm für 5 Minuten wurde der Überstand abgesaugt und das Zell pellet in 10 ml 37°C warmem DMEM (+ 10% FBS, + 1% Penicillin/Streptomycin) resuspendiert. Diese Suspension wurde in eine geeignete Kulturflasche überführt und die notwendige Menge an Nährmedium noch ergänzt.

2.2.1.4 Zellkultivierung

Um die Bedingungen für ein optimales Zellwachstum zu schaffen, wurden diese in einem Brutschrank bei 37°C und 5% CO₂ kultiviert. Das Medium wurde alle zwei bis drei Tage gewechselt. Waren die Zellen mehr als 80% konfluent, wurden sie passagiert. Für die Zusammensetzung der Nährmedien der HSCs und der LX-2 Zelllinie siehe Abschnitt „2.1.8 Wachstums- und Stimulationsmedien“. Beide Medien enthielten Penicillin/Streptomycin, um eine bakterielle Kontamination zu vermeiden, und FBS, das eine Vielzahl für das Zellwachstum notwendiger Proteine enthält.

2.2.1.5 Zellpassagierung

2.2.1.6 Zellzählung

Die Zellen wurden im Rahmen der Zellpassagierung gezählt. Die Zellzählung erfolgte nachdem das Zell pellet in frischem Medium aufgenommen worden war und bevor die

2.2.1.7 Zellstimulation

<table>
<thead>
<tr>
<th>Stimulanz:</th>
<th>Stimulationskonzentrationen: (nach [26, 39])</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-6 (gelöst in PBS)</td>
<td>5 ng/ml; 10 ng/ml; 20 ng/ml;</td>
</tr>
<tr>
<td>Leptin (gelöst in 20 mM Tris-HCl pH 8.0)</td>
<td>4 ng/ml; 10 ng/ml; 20 ng/ml;</td>
</tr>
<tr>
<td>LPS (gelöst in ddH2O)</td>
<td>1 µg/ml; 10 µg/ml;</td>
</tr>
<tr>
<td>TNF-α (gelöst in PBS)</td>
<td>0,5 ng/ml; 2 ng/ml; 4 ng/ml;</td>
</tr>
<tr>
<td>TGF-β (gelöst in 4 mM HCl mit 0,1% BSA)</td>
<td>5 ng/ml; 7 ng/ml; 10 ng/ml;</td>
</tr>
</tbody>
</table>

Tabelle 7: Die in dieser Arbeit für Stimulationsversuche verwendeten Lösungsmittel und Konzentrationen der Substanzen.
2.2.1.8 Laktat-Dehydrogenase Zytotoxizitäts-Assay

2.2.1.9 Zellen einfrieren

Zellen wurden in entsprechendem Nährmedium, versetzt mit 40% FBS und 10% Dimethylsulfoxid (DMSO), bei -80°C für spätere Experimente eingefroren. Hierbei wurde eine Anzahl von circa 2 Millionen Zellen pro Kryoröhrchen aliquotiert. Um ein langsames Einfrieren der Proben zu erreichen, wurde ein Mr. Frosty Freezing Container verwendet.

2.2.2 Arbeiten mit DNA

2.2.2.1 Real-Time Polymerase Chain Reaction (RT-PCR)

Bei der Real-Time PCR handelt es sich um eine Abwandlung der Polymerase-Kettenreaktion (engl. polymerase chain reaction), die DNA in Echtzeit quantifiziert. Ermöglicht wird dies durch den Fluoreszenzfarbstoff SYBR-Green (LightCycler® FastStart DNA Master SYBR Green I Kit), der ausschließlich in doppelsträngige DNA interkaliert. Mit jedem Zyklus der Polymerase-Kettenreaktion und der damit verbundenen Zunahme an DNA steigt proportional auch die Fluoreszenz. Das für die Reaktion nötige Reaktionsgemisch wurde zusammen mit der zu analysierenden DNA-Probe in eine dünne Glaskapillare pipettiert.
Ein Reaktionsansatz setzte sich wie folgt zusammen:

- ddH$_2$O: 11,6 µl
- MgCl$_2$ (25 mM): 2,4 µl
- universe Primer (5 pmol/µl): 1 µl
- reverse Primer (5 pmol/µl): 1 µl
- LightCyler-Mix (Roche): 2 µl
- cDNA: 2 µl

2.2.3 Arbeiten mit RNA

2.2.3.1 Konzentrationsbestimmung von RNA

Die Konzentrationsbestimmung von RNA erfolgte spektralphotometrisch. So besitzen Nukleinsäuren ein Absorptionsmaximum bei 260 nm. Die Messung erfolgte neben dieser Wellenlänge auch bei 280 nm, wo sich das Absorptionsmaximum von Proteinen befindet. Um Information über die Reinheit der vorliegenden RNA zu erhalten, wurde der Quotient aus der optischen Dichte bei 260 nm (OD$_{260}$) und der optischen Dichte bei 280 nm (OD$_{280}$) gebildet. Bei reiner RNA liegt dieser bei circa 2. Eine OD$_{260}$ von 1 entspricht einer RNA-Konzentration von 40 µg/ml. Hieraus leitet sich die Formel zur Berechnung der RNA-Konzentration ab:

\[
\text{Konz} \left[\frac{\mu g}{ml} \right] = OD_{260} \times 40 \frac{\mu g}{ml} \times \text{Verdünnungsfaktor}
\]

2.2.3.2 Reverse Transkription

Um die RNA analysieren zu können, beispielsweise mit Hilfe der Real-Time PCR, muss diese in komplementäre DNA (cDNA) umgeschrieben werden. Dies geschieht mit Hilfe des Enzyms Reverse Transkriptase, welches zu RNA komplementäre, einzelsträngige DNA bildet. Für die Umschreibung wurde das Reverse Transcription System von Promega verwendet. Als Startpunkte für die Reverse Transkriptase dienten Random Hexamer Primers, die sich an die entsprechenden Sequenzen der RNA anlagerten.

Die Zusammensetzung eines Reaktionsansatzes sah folgendermaßen aus:

- RNA (1 µg) in nukleasefreiem H$_2$O: 21,5 µl
- MgCl$_2$ (25 mM): 8 µl
- dNTP-Mix (10 mM): 4 µl
- 10x RT-Puffer: 4 µl
- Random Hexamer Primer (0,5 µg/µl): 1 µl
- RNAsin Ribonuklease-Inhibitor (40 U/µl): 1 µl
- Reverse Transkriptase (25 U/µl): 0,5 µl

Der beschriebene Ansatz wurde eine Stunde bei 42°C inkubiert und anschließend für fünf Minuten bei 95°C abgestoppt. Die gewonnene cDNA wurde bei -20°C gelagert.

Die RNA-Proben aus den Lebergeweben der Patienten wurden alle gleichzeitig in cDNA umgeschrieben, um möglichst identische Bedingungen zu gewährleisten.
2.2.4 Arbeiten mit Protein

2.2.4.1 Proteinisolierung aus Zellen

Die Proteinisolierung erfolgte mit RIPA (radioimmunoprecipitation assay buffer), versetzt mit einem Mix aus Protease- und Phosphataseinhibitoren. Der RIPA-Puffer dient dabei der Lyse der Zellen, indem er die Detergenzien Natriumdodecylsulfat und Natriumdeoxycholat enthält.

Aus dem Well der 6- oder 12-Well Platte wurden die Zellen nach Abnahme des Nährmediums mit Hilfe von PBS und einem Zellschaber gelöst. Um die Zellen zu sammeln, wurde die Suspension für 5 Minuten bei 4000 rpm und 4°C und für eine Minute bei 8000 rpm und 4°C zentrifugiert. Das entstandene Zellpellet wurde anschließend in 50 µl RIPA, versetzt mit Complete Mini Protease Inhibitor Cocktail und PhosStop Phosphatase Inhibitor Cocktail, gelöst. Um die genomische DNA zu scheren, wurden die Proben einmal für 10 Sekunden mit Ultraschall behandelt. Durch Zentrifugieren bei 4000 rpm für die Dauer von 5 Minuten sammelten sich die Zelltrümmer in einem Pellet. Der Überstand mit Protein wurde abgenommen und bei -20°C aufbewahrt.

2.2.4.2 Konzentrationsbestimmung von Proteinen

2.2.4.3 SDS-Polyacrylamid-Gelelektrophorese (SDS-PAGE)

Bei der SDS-Polyacrylamid-Gelelektrophorese handelt es sich um ein von Ulrich Laemmli entwickeltes Verfahren zum Auftrennen von Proteinen nach ihrer Größe. Bei dem Gel, in dem die Auftrennung erfolgt, handelt es sich um ein diskontinuierliches Gel. Der untere Bereich,

Die vorbereiteten Proben wurden in die Probentaschen des Sammelgels pipettiert. Es wurden 15 µg Protein pro Tasche eingesetzt. Auf jedem Gel erfolgte parallel die Auftrennung einer Standardprobe, um die Größe der aufgetrennten Proteine abschätzen zu können. Für die elektrophoretische Auftrennung wurde das beladene Gel in SDS-Laufpuffer eingelegt. Die Stromstärke betrug konstant 25 mA für 70 Minuten.

2.2.4.4 Western Blotting (Wet Transfer Verfahren) und immunologischer Nachweis
Ziel des Western Blottings ist es, Proteine auf eine Trägermembran zu übertragen und sie so weiteren Untersuchungen, hier dem immunologischen Nachweis der Proteine, zugänglich zu machen. Die zuvor mittels SDS-Polyacrylamid-Gelelektrophorese aufgetrennten Proteine besitzen durch die Behandlung mit SDS eine negative Ladung und wandern somit in einem elektrischen Feld Richtung Anode. Dies macht man sich zunutze, indem man Gel und Trägermembran nebeneinander senkrecht in ein elektrisches Feld einbringt und die Proteine
aus dem Gel auf die Membran wandern lässt. In der vorliegenden Arbeit wurde das Wet Transfer Verfahren verwendet. Bei der Trägermembran handelte es sich um Polyvinylidenflourid (PVDF)-Membranen.

2.2.4.5 Coomassie Färbung

Im Anschluss an die Immunodetektion der zu untersuchenden Proteine wurden die aus dem Western Blot Verfahren erhaltenen Membranen mit Coomassie Brilliant Blau angefärbt. Bei Coomassie Brilliant Blau handelt es sich um einen Triphenylmethanfarbstoff. Dieser färbt Proteine unspezifisch an, indem er sich an ihre basischen Seitenketten anlagert. Die Nachweissgrenze für das verwendete Coomassie Brilliant Blau G-250 liegt bei 0,5 µg Protein pro Bande. Die Membranen wurde so lange in Coomassie Brilliant Blau inkubiert, bis sich die Banden deutlich abzeichneten. Anschließend wurden sie bis zum gewünschten Färbevorgang mit ddH₂O entfärbt, mit Hilfe des Molecular Imagers ChemiDoc XRS+ (BioRad) fotografiert und zwischen zwei Whatman-Papieren getrocknet.

2.2.4.6 Enzyme Linked Immunosorbent Assay (ELISA)

Bei dem ELISA handelt sich um ein antikörperbasiertes Nachweisverfahren mit dem eine Substanz, beispielsweise ein Hormon oder ein Virus, in einer flüssigen Probe (z.B. Serum oder Gelenksflüssigkeit) nachgewiesen werden kann. In der vorliegenden Arbeit wurde der ELISA dazu verwendet, Chemerin in den überständigen Medien ausgesäter und stimulierter Zellen zu bestimmen. Es wurde hierbei ein Sandwich-ELISA (R&D Duo Set) verwendet.

Proteinkonzentration berechnet werden. Für die statistische Auswertung wurden für jedes der Stimulanzien die Ergebnisse von mindestens drei Stimulationsversuchen vermessen.

2.2.5 Statistische Auswertung

Die statistische Auswertung der Daten erfolgte mittels Mann-Whitney U Test oder Anova mit Dunnett post-hoc Test in SPSS Statistics 21.0 und mittels Student´s t-Test in Microsoft Excel 2010. Als Signifikanzniveau wurde ein p-Wert von $p < 0.05$ festgesetzt. Die jeweiligen in-vitro Versuche wurden mindestens dreimal durchgeführt.
3. Ergebnisse

3.1 Untersuchung hepatischer CMKLR1 mRNA in einem NAFLD-Patientenkollektiv

Wie in der Einleitung unter 1.2.4 bereits ausführlich beschrieben, konnte von Döcke et al. 2013 eine vermehrte CMKLR1 mRNA-Expression in der Leber von NAFLD-Patienten festgestellt werden. Da bei diesen Untersuchungen mit 34 Kontrollpatienten ohne NASH nur 10 Patienten mit einem NAFLD activity score (NAS) von 3-4 und nur 3 Patienten mit einem NAS von ≥ 5 eingeschlossen worden waren, ist eine der Zielsetzungen der Arbeit, die CMKLR1-Expression auf mRNA-Ebene in einer größeren Gruppe an NAFLD-Patienten, im Besonderen in einem Kollektiv mit einer größeren Anzahl an Patienten mit einem NAS ≥ 5, zu untersuchen.

3.1.1 Charakterisierung des Kollektivs

Das hier untersuchte Kollektiv umfasst 118 Leberproben von Patienten, bei denen es auf Grund einer anderen Erkrankung zu einer Teilresektion der Leber kam und von welchen im Rahmen dieser Operation eine Leberprobe aus gesundem Gewebe gewonnen wurde. Die Operationsindikation wurde hierbei auf Grund von Metastasen extrahepatischer Tumore (70 Patienten), fokaler nodulärer Hyperplasie (9 Patienten), Adenom (6 Patienten), Cholangiozellulärem Karzinom (15 Patienten), hepa
tozellulärem Karzinom (12 Patienten) oder auf Grund einer anderen Erkrankung (6 Patienten) gestellt.

Neben dem Alter und dem Body-Mass-Index (BMI) sind von den meisten Patienten die Serumkonzentrationen der Laborparameter Alanin-Aminotransferase (ALT), Aspartat-
Aminotransferase (AST), Alkalische Phosphatase (AP) und der Bilirubin-Wert bekannt. An Nebendiagnosen der Patienten wurde nur das Vorliegen oder die Abwesenheit von Hypercholesterinämie, Diabetes mellitus Typ 2 und Hypertonie dokumentiert (s. Tabelle 8). Die Proben wurden nach einem dem NAFLD activity score (NAS) angelehnten System beurteilt. Es wurde unabhängig voneinander der Schweregrad der Steatose, der Entzündung und der Fibrose bestimmt. Die Steatose wurde eingeteilt nach: < 5% Steatose (0), 5-33% Steatose (1), 33-66% Steatose (2) und > 66% Steatose (3). Die Entzündung wurde eingeteilt nach: kein Herd pro Gesichtsfeld (20-fache Vergrößerung) (0), 0-2 Herde pro Gesichtsfeld (20-fache Vergrößerung) (1), 2-4 Herde pro Gesichtsfeld (20-fache Vergrößerung) (2) und > 4 Herde pro Gesichtsfeld (20-fache Vergrößerung) (3). Die Fibrose nach: keine Fibrose (0), Zone 3 perisinusoidale/perizelluläre Fibrose (1), Zone 3 perisinusoidale/perizelluläre Fibrose
mit periportaler Fibrose (2), Zone 3 perisinusoidale/perizelluläre Fibrose und periportale Fibrose mit brückenbildender Fibrose (3) und Zirrhose (4) [44]. Der Grad jeder Komponente wurde ermittelt. Diese wurden ungewichtet addiert und so zu einem Gesamtscore von 0-9 zusammengefasst. Ein Score größer oder gleich 5 wurde als NASH definiert, ein Score von 1 bis 4 als *borderline* NASH. Alkohol- oder Drogenmissbrauch sowie virale Infektionen wurden anamnestisch als Ursachen der NAFLD ausgeschlossen.

Die Gesamt-RNA wurde dankenswerterweise von Herrn Prof. Dr. Thomas Weiss zur Verfügung gestellt.
<table>
<thead>
<tr>
<th>Charakteristik</th>
<th>Kontrollen</th>
<th>Borderline</th>
<th>NASH</th>
<th>p-Werte</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Männer / Weibl.</td>
<td>16 / 17</td>
<td>22 / 25</td>
<td>24 / 14</td>
</tr>
<tr>
<td>Alter</td>
<td>58 (20-82)</td>
<td>60 (24-84)</td>
<td>66 (33-82)</td>
<td>0,015#</td>
</tr>
<tr>
<td></td>
<td>BMI kg/m²</td>
<td>24.7 (18.3-30.5)</td>
<td>28.0 (22.0-46.0)</td>
<td>28.4 (21.0-57.7)</td>
</tr>
<tr>
<td></td>
<td>ALT U/l</td>
<td>21 (8-50)³²</td>
<td>35 (17-623)³⁶</td>
<td>32 (10-984)³⁵</td>
</tr>
<tr>
<td></td>
<td>AST U/l</td>
<td>23 (8-42)²⁷</td>
<td>31 (11-688)³⁵</td>
<td>30 (9-389)³⁴</td>
</tr>
<tr>
<td></td>
<td>AP U/l</td>
<td>102 (46-203)²⁹</td>
<td>97 (37-444)³⁶</td>
<td>91 (45-826)³⁵</td>
</tr>
<tr>
<td></td>
<td>Bilirubin mg/dl</td>
<td>0.6 (0.19-1.95)³⁰</td>
<td>0.56 (0.19-1.99)³⁷</td>
<td>0.53 (0.20-0.53)³⁶</td>
</tr>
<tr>
<td>Steatose</td>
<td>0 (0-0)</td>
<td>2 (1-2)</td>
<td>2.5 (1-3)</td>
<td><0,001*.#&</td>
</tr>
<tr>
<td>Entzündung</td>
<td>0 (0-0)</td>
<td>0 (0-2)</td>
<td>2 (0-3)</td>
<td>0,005*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0,001*.#&</td>
</tr>
<tr>
<td>Fibrose</td>
<td>0 (0-0)</td>
<td>0 (0-2)</td>
<td>2 (0-4)</td>
<td>0,047*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0,001*.#&</td>
</tr>
<tr>
<td>NAS</td>
<td>0 (0-0)</td>
<td>2 (1-4.5)</td>
<td>6 (5-9)</td>
<td><0,001*.#&</td>
</tr>
<tr>
<td>Typ 2 Diabetes</td>
<td>0</td>
<td>4</td>
<td>11</td>
<td>0,01#</td>
</tr>
<tr>
<td>Hypertonie</td>
<td>7</td>
<td>21</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Hypercholesterinämie</td>
<td>0</td>
<td>4</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 8: Die einzelnen Charakteristika und Laborwerte der Kohorte sind als Median angegeben, der Wertebereich in Klammern. Signifikante Unterschiede zwischen gesunden Kontrollen und Patienten mit einem NAS < 5 sind angegeben mit *, zwischen Kontrollen und Patienten mit einem NAS ≥ 5 mit # und zwischen Patienten mit einem NAS < 5 und einem NAS ≥ 5 mit &. Die hochgestellten Zahlen geben die Anzahl der Patienten an, für die der entsprechende Parameter erfasst worden ist, falls er nicht bei allen Patienten vorhanden ist.
3.1.2 CMKLR1 mRNA in der Leber

Um eine Verfälschung späterer Analysen auszuschließen, wurde zuerst untersucht, ob die Operationsindikation einen Einfluss auf die Menge an CMKRL1 mRNA in der Leber hat. Es konnte nachgewiesen werden, dass dem nicht so ist (s. Abbildung 4A). Für die Analyse eines Zusammenhangs zwischen dem Körpergewicht und CMKLR1 wurde das Kollektiv in Patienten mit einem normalen Körpergewicht (BMI ≤ 25 kg/m²), Patienten mit Übergewicht (BMI > 25 und < 30 kg/m²) und adipöse Patienten (BMI ≥ 30 kg/m²) eingeteilt. Es konnte hierbei kein Zusammenhang zwischen den beschriebenen Gruppen und CMKLR1 festgestellt werden (s. Abbildung 4B). Auch war die Expression von CMKLR1 mRNA in den Proben weiblicher und männlicher Patienten gleich (s. Abbildung 4C).

Abbildung 4: CMKLR1 mRNA (normalisiert auf 18S rRNA) dargestellt entsprechend der unterschiedlichen Operationsindikationen (M, Metastasen extrahepatischer Tumore; CCC, Cholangiozelluläres Karzinom; HCC, hepatzelluläres Karzinom; FNH, fokale noduläre Hyperplasie; Aden., Adenom) (A), der Kategorien Normalgewicht (BMI ≤ 25 kg/m²), Übergewicht (BMI > 25 und < 30 kg/m²) und Adipositas (BMI ≥ 30 kg/m²) (B) und dem Geschlecht (weiblich W, männlich M) (C).

3.1.3 Hepatische CMKLR1 mRNA in der NAFLD

Es konnte kein signifikanter Unterschied zwischen der Expression von CMKLR1 bei Patienten ohne NASH, Patienten mit borderline NASH (NAS < 5) und Patienten mit NASH (NAS ≥ 5) festgestellt werden (s. Abbildung 5A). Wurden in der Analyse die beiden ersten Gruppen zusammengenommen, konnte ein signifikante Zunahme der Menge an CMKLR1 verglichen mit der Gruppe NAS ≥ 5 nachgewiesen werden (p-Wert = 0,010) (s. Abbildung 5B).
Der NAFLD activity score (NAS) wird anhand der Parameter Steatose, Entzündung und Fibrose der Leber bestimmt. Es konnte kein Zusammenhang zwischen der Steatose der Leberproben und der CMKLR1-Expression festgestellt werden. Es bestand jedoch ein signifikanter positiver Zusammenhang zwischen CMKLR1 und der Entzündung (s. Abbildung 6A) und zwischen CMKLR1 und der Fibrose (s. Abbildung 6B). Auch nahm die Menge an CMKLR1 mRNA mit steigendem NASH Score immer weiter zu (s. Abbildung 6C).

Bei dem Vergleichen der hepatischen CMKLR1-Expression von Patienten ohne Typ 2 Diabetes mit der von Typ 2 Diabetikern in unserem Kollektiv, ergab sich eine signifikant erhöhte Menge an CMKLR1 bei letzteren (p-Wert = 0,01) (s. Abbildung 7A). Da jedoch der Anteil an NASH-Patienten unter den Typ 2 Diabetikern deutlich erhöht ist, kann davon ausgegangen werden, dass dieser Zusammenhang verfälscht ist. So lag auch die CMKLR1 mRNA in NASH-Patienten mit oder ohne Typ 2 Diabetes nicht in unterschiedlichen Mengen vor (s. Abbildung 7B).
Abbildung 7: CMKLR1 mRNA (normalisiert auf 18S rRNA) bei allen Patienten des Kollektivs ohne und mit Typ 2 Diabetes (noT2D / T2D) (A); CMKLR1 mRNA bei NASH-Patienten ohne und mit Typ 2 Diabetes (B).

Neben Diabetes mellitus Typ 2 ist noch bekannt, ob ein Patient des Kollektivs an Hypertension oder Hypercholesterinämie erkrankt ist (s. Tabelle 8). Es konnten jedoch keine Unterschiede in der Menge an CMKLR1 mRNA in den Proben von Patienten mit oder ohne Hypertension beziehungsweise Hypercholesterinämie festgestellt werden. Des Weiteren zeigten sich keine Assoziationen zwischen den im Serum gemessenen Werten der ALT, AST, AP, des Bilirubins und der hepatischen CMKLR1 mRNA.

3.1.4 Hepatische CMKLR1 mRNA in weiblichen NAFLD-Patienten

Kukla et al. zeigten, dass es bei weiblichen Patienten mit chronischer Hepatitis C abhängig vom Grad der Fibrose zu einer signifikant unterschiedlichen Expression von CMKLR1 in der Leber kommt [45]. Auf Grund dieser nachgewiesenen geschlechtspezifischen hepatischen Expression von CMKLR1 wurde auch im Rahmen dieser Arbeit im vorliegenden Patientenkollektiv nach Zusammenhängen gesucht, die bei Analyse nur eines der beiden Geschlechter zu Tage treten.

Es zeigte sich kein Unterschied in der Menge an CMKLR1 bei weiblichen Patienten mit einem normalen Körpergewicht (BMI ≤ 25 kg/m²) verglichen mit übergewichtigen (BMI > 25 und < 30 kg/m²) oder adipösen (BMI ≥ 30 kg/m²) Patientinnen (s. Abbildung 8A). Auch bei Vergleich der CMKLR1-Expression von Patientinnen mit einer gesunden Leber, einer borderline NASH oder einer NASH zeigten sich keine signifikanten Differenzen (s. Abbildung 8B).
Abbildung 8: CMKLR1 mRNA (normalisiert auf 18S rRNA) der weiblichen Patienten der Kohorte dargestellt entsprechend der Kategorien Normalgewicht (BMI ≤ 25 kg/m²), Übergewicht (BMI > 25 und < 30 kg/m²) und Adipositas (BMI ≥ 30 kg/m²) (A) und nach Patienten mit gesunder Leber (Kont.), borderline NASH (N < 5) und NASH (N ≥ 5) (B).

Es konnte keine Korrelation zwischen CMKLR1 und dem Grad der Fibrose festgestellt werden (s. Abbildung 9A). Ebenso konnten keine Korrelationen zwischen CMKLR1 und dem Grad der Steatose, der Entzündung und dem NASH Score nachgewiesen werden. Patientinnen mit der Nebendiagnose Hypercholesterinämie zeigten erhöhte Werte an hepatischer CMKLR1 mRNA. Da der p-Wert mit 0,065 über dem Signifikanzniveau liegt, stellt dies nur einen Trend dar (s. Abbildung 9B). Bezüglich der Komorbidität Diabetes mellitus Typ 2 konnten keine signifikanten Unterschiede in der CMKLR1 mRNA-Expression festgestellt werden. Es zeigte sich jedoch ein schwacher Trend zu erhöhten CMKLR1-Werten bei Typ 2 Diabetikerinnen (p-Wert = 0,113) (s. Abbildung 9C). Des Weiteren ergaben sich keine Assoziationen zwischen den im Serum gemessenen Werten der ALT, AST, AP, des Bilirubins und der hepatischen CMKLR1 mRNA bei weiblichen NALFD-Patienten.

Abbildung 9: CMKLR1 mRNA (normalisiert auf 18S rRNA) der weiblichen Patienten der Kohorte: Korrelation mit dem Grad der Fibrose (A); CMKLR1 bei Patientinnen ohne (noHC) und mit (HC) Hypercholesterinämie (B) und ohne (noT2D) und mit (T2D) Typ 2 Diabetes (C).
3.1.5 Hepatische CMKLR1 mRNA in männlichen NAFLD-Patienten

Entsprechend der Analysen der Daten weiblicher Patienten konnte auch bei den männlichen Patienten kein Zusammenhang mit dem BMI nachgewiesen werden (s. Abbildung 10A). Auch zeigte sich kein signifikanter Unterschied in der Menge an CMKLR1 mRNA in den Leberproben von Patienten mit einer gesunden Leber verglichen mit Patienten mit *borderline* NASH oder NASH (s. Abbildung 10B). Wurden die Messergebnisse der CMKLR1 mRNA der beiden ersten Gruppen, Patienten mit einer gesunden Leber und Patienten mit *borderline* NASH, zusammengenommen und mit Patienten mit einer NASH verglichen, ergab sich eine signifikant erhöhte Menge an CMKLR1 in letzteren (p-Wert = 0,003) (s. Abbildung 10C).

Es ergab sich eine positive Korrelation zwischen der CMKLR1 mRNA und dem Grad der Entzündung, der Fibrose und dem NASH Score. Hiervon sei die Korrelation mit dem Grad der Fibrose beispielhaft gezeigt (p-Wert < 0,001) (s. Abbildung 11A). Auch war die Menge an CMKLR1 mRNA bei männlichen Patienten mit Diabetes mellitus Typ 2 tendenziell erhöht (p-Wert = 0,058) (s. Abbildung 11B). Bezüglich der Komorbidität Hypercholesterinämie konnte kein Unterschied der CMKLR1 mRNA bei Patienten mit beziehungsweise ohne dieser Nebendiagnose nachgewiesen werden (s. Abbildung 11C). Des Weiteren zeigten sich keine Assoziationen zwischen den im Serum gemessen Werten der ALT, AST, AP, des Bilirubins und der hepatischen CMKLR1 mRNA bei männlichen NALFD-Patienten.
Abbildung 11: CMKLRI mRNA (normalisiert auf 18S rRNA) der männlichen Patienten der Kohorte: Korrelation mit dem Grad der Fibrose (A); CMKLRI bei Patienten ohne (noT2D) und mit (T2D) Typ 2 Diabetes (B) und ohne (noHC) und mit (HC) Hypercholesterinämie (C).
3.2 Regulation von CMKLR1 Protein durch Zytokine, Leptin und Lipopolysaccharid

Eine erhöhte Menge an CMKLR1 in der Leber von NAFLD-Patienten verglichen mit gesunden Patienten wurde sowohl in dem obig beschriebenen Kollektiv festgestellt als auch in früheren Publikationen einer anderen Arbeitsgruppe bereits beschrieben [38]. Es sollte im Rahmen dieser Arbeit geklärt werden, ob dies auf eine vermehrte Expression von CMKLR1 in Sternzellen zurückgeführt werden kann. Hierzu wurden humane hepatische Sternzellen und Zellen der humanen hepatischen Sternzellreihe LX-2 mit Faktoren mit einer erwiesenen Rolle in der Pathogenese der NAFLD stimuliert. So wurden die Zellen mit verschiedenen Konzentrationen an IL-6, Leptin, LPS, TGF-β und TNF-α für 24 Stunden inkubiert. Die gewählten Konzentrationen orientieren sich an ähnlichen Stimulationsversuchen mit primären humanen Hepatozyten, die von unserer Arbeitsgruppe bereits durchgeführt worden sind [26] + [39].

Nach Extraktion der Proteine aus den Zelllysaten wurden diese mit Hilfe des Western-Blot-Verfahrens analysiert.

Dass sowohl humanen HSCs als auch Zellen der LX-2-Zellreihe den Chemerinrezeptor CMKLR1 exprimieren, ist zum Teil aus früheren Untersuchungen unserer Arbeitsgruppe bekannt und konnte auch im Rahmen dieser Arbeit nachgewiesen werden (s. Abbildung 12 + [26]).

![CMKLR1 and GAPDH Western Blot](image)

Abbildung 12: Western-Blot-Analyse von CMKLR1 in den Zelllysaten von unstimulierten HSCs zweier Spender und von LX-2-Zellen. GAPDH dient der Ladungskontrolle
3.2.1 Stimulationsversuche mit IL-6

Bei Stimulation von LX-2-Zellen mit IL-6 in den Konzentrationen 5 ng/ml, 10 ng/ml und 20 ng/ml zeigte sich keine Veränderung der Expression von CMKLR1 (s. Abbildung 13).

![Abbildung 13: Western-Blot-Analyse von CMKLR1 in den Zelllysaten stimulierter LX-2-Zellen. GAPDH dient der Ladungskontrolle.]

3.2.2 Stimulationsversuche mit Leptin

Bei der Stimulation von LX-2-Zellen mit Leptin in den Konzentrationen 4 ng/ml, 10 ng/ml und 20 ng/ml zeigte sich keine Veränderung der Expression von CMKLR1 (s. Abbildung 14).

![Abbildung 14: Western-Blot-Analyse von CMKLR1 in den Zelllysaten stimulierter LX-2-Zellen. GAPDH dient der Ladungskontrolle.]

3.2.3 Stimulationsversuche mit Lipopolysaccharid

Bei der Stimulation von LX-2-Zellen mit LPS in den Konzentrationen 1 µg/ml und 10 µg/ml zeigte sich keine Veränderung der Expression von CMKLR1 (s. Abbildung 15).
3.2.4 Stimulationsversuche mit TGF-β

Bei der Stimulation von HSCs mit TGF-β in den Konzentrationen 5 ng/ml, 7 ng/ml und 10 ng/ml zeigte sich keine Veränderung der Expression von CMKLR1 (s. Abbildung 16).

3.2.5 Stimulationsversuche mit TNF-α

Bei der Stimulation von HSCs mit TNF-α in den Konzentrationen 0,5 ng/ml, 2 ng/ml und 4 ng/ml zeigte sich keine Veränderung der Expression von CMKLR1 (s. Abbildung 17). Auch bei der gleichartigen Stimulation von LX-2-Zellen konnte keine Veränderung der CMKLR1-Expression festgestellt werden (s. Abbildung 18).
3.3 Regulation von Chemerin Protein durch Zytokine, Leptin und Lipopolysaccharid

Da in früheren Publikationen nicht nur eine vermehrte Expression von CMKLR1 in Leberproben von NALFD-Patienten beschrieben worden ist, sondern auch eine erhöhte Menge an Chemerin [38], wurde bei den unter 3.2 beschriebenen Stimulationsversuchen auch der Einfluss der genannten Faktoren auf die Expression von Chemerin in HSCs und Zellen der LX-2-Zellreihe untersucht. Hierzu wurden die Zelllysate mit dem Western-Blot-Verfahren analysiert.

Dass sowohl humane HSCs als auch Zellen der LX-2-Zellreihe Chemerin exprimieren, ist zum Teil aus früheren Experimenten unserer Arbeitsgruppe bekannt und konnte auch im Rahmen dieser Arbeit nachgewiesen werden (s. Abbildung 19 + [39]).

3.3.1 Stimulationsversuche mit IL-6

Bei der Stimulation von LX-2-Zellen mit IL-6 in den Konzentrationen 5 ng/ml, 10 ng/ml und 20 ng/ml konnte keine Veränderung der Expression von Chemerin festgestellt werden (s. Abbildung 20).

Auch in den Überständen stimulierter LX-2-Zellen zeigten sich keine signifikanten Unterschiede bei den Konzentrationen an Chemerin (s. Abbildung 21).

3.3.2 Stimulationsversuche mit Leptin

3.3.3 Stimulationsversuche mit Lipopolysaccharid

3.3.4 Stimulationsversuche mit TGF-β

Bei Stimulation von HSCs mit TGF-β in den Konzentrationen 5 ng/ml, 7 ng/ml und 10 ng/ml konnte keine Veränderung der Expression von Chemerin in den Zelllysaten festgestellt werden (s. Abbildung 26). Auch bei Stimulation von LX-2-Zellen mit TGF-β in der Konzentration 7 ng/ml zeigte sich kein Unterschied in der Menge an Chemerin-Protein (s. Abbildung 27).

Abbildung 26: Western-Blot-Analyse von Chemerin in den Zelllysaten stimulierter HSCs. GAPDH dient der Ladungskontrolle.

Bei Analyse der Chemerin-Konzentration in den Überständen der stimulierten LX-2-Zellen wurde eine Tendenz bei Stimulation mit 7 ng/ml TGF-β gegenüber den zur Kontrolle inkubierten Zellen deutlich (p-Wert = 0,05) (s. Abbildung 28).

3.3.5 Stimulationsversuche mit TNF-α

Bei Stimulation von HSCs mit TNF-α in den Konzentrationen 0,5 ng/ml, 2 ng/ml und 4 ng/ml zeigte sich keine Veränderung der Chemerin-Expression in den Zelllysaten (s. Abbildung 29). Auch bei Stimulationsversuchen mit LX-2-Zellen mit denselben Konzentrationen an TNF-α ergaben sich keine Unterschiede in der Menge an Chemerin-Protein (s. Abbildung 30).

Abbildung 29: Western-Blot-Analyse von Chemerin in den Zelllysaten stimulierter HSCs. GAPDH dient der Ladungskontrolle.
Bei der Analyse der Chemerin-Konzentrationen in den Überständen stimulierter HSCs konnte eine signifikante Verringerung bei Stimulation mit TNF-α in der Konzentration 0,5 ng/ml gegenüber den zur Kontrolle inkubierten Zellen festgestellt werden (p-Wert = 0,01). Bei Stimulation mit TNF-α-Konzentrationen von 2 und 4 ng/ml kam es auch zu erniedrigten Chemerin-Konzentrationen in den Überständen, wobei diese jedoch gegenüber den Kontrollen nicht signifikant verschieden sind (s. Abbildung 31).

* Abbildung 31: Chemerin-Konzentration in den Überständen stimulierter HSCs. * zeigt einen p-Wert < 0,05, verglichen mit den Kontrollen, an.
4. Diskussion

4.1 Untersuchung hepatischer CMKLR1 mRNA in einem NAFLD-Patientenkollektiv

Des Weitern könnte die erhöhte Menge an CMKLR1 mRNA in den Leberproben männlicher NASH-Patienten darauf hindeuten, dass es hier zu einer verstärkten Aktivierung des Rezeptors durch Chemerin kommt. So konnte bei der Untersuchung von Patienten mit

NASH-Patienten nur wegen der höheren Anzahl an Typ 2 Diabetikern erhöht ist. Diese Überlegungen werden jedoch dadurch widerlegt, dass in der Gruppe der NASH-Patienten mit und ohne Typ 2 Diabetes keine unterschiedliche CMKLR1-Expression nachweisbar ist.

Zusammenfassend lässt sich sagen, dass die hier präsentierten Daten einen Zusammenhang zwischen CMKLR1 und Diabetes mellitus Typ 2 vermuten lassen, jedoch mit Vorsicht interpretiert werden müssen. Da aber auch andere Daten einen Zusammenhang zwischen CMKLR1 beziehungsweise Chemerin und dem Glukosestoffwechsel andeuten [34], werden weitere Untersuchungen in diese Richtung in Zukunft unerlässlich sein und einen besseren Einblick in die Zusammenhänge von CMKLR1 in der Leber und Typ 2 Diabetes ermöglichen.

Körpergewicht kommt [35]. Bei dieser nicht eindeutigen Datenlage unterstützen die hier durchgeführten Untersuchungen die Hypothese, dass es keinen Zusammenhang zwischen CMKLR1 und dem Körpergewicht gibt.

Eine Limitierung der hier durchgeführten Untersuchungen an dem NAFLD-Patientenkollektiv besteht darin, dass keine Proteinproben zur Verfügung standen. Besonders da es Hinweise darauf gibt, dass es auf Grund einer bisher nicht untersuchten posttranskriptionellen Regulation zu Unterschieden zwischen der mRNA-Expression und der Proteinexpression von CMKLR1 kommen könnte. So wurde in früheren Untersuchungen gezeigt, dass CMKLR1 Protein in der humanen Fettleber vermindert exprimiert wird beziehungsweise dass es keinen Zusammenhang zwischen der CMKLR1 Expression und den Aspekten der NASH, wie zum Beispiel Steatose, Inflammation oder Fibrose, gibt [26] + [49]. Es ergibt sich jedoch kein Zusammenhang zwischen der CMKLR1 mRNA-Expression in der Leber und dem Grad der Verfettung in dem hier untersuchten Kollektiv. Des Weiteren ist CMKLR1 Protein in der Leber von Mäusen unter MCD-Diät, eine Diät, die als Modell für die NASH in Mäusen verwendet wird, stark erniedrigt [26]. Auch dies widerspricht der hier gefunden positiven Assoziation von CMKLR1 mRNA und dem NASH Score. Es bedarf weiterer Untersuchungen um herauszufinden, ob und wenn wie CMKLR1 posttranskriptionell reguliert wird und welche Rolle CMKLR1 in der Pathogenese der NASH spielt.

4.2 Regulation von CMKLR1 Protein durch Zytokine, Leptin und Lipopolysaccharid

Von unserer Arbeitsgruppe bereits durchgeführte Stimulationsversuche mit primären humanen Hepatozyten (PHH) und den Stimulanzien LPS, Leptin und TNF-α zeigten keine Veränderung der Expression von CMKLR1-Protein [26]. Auch in den im Rahmen dieser Arbeit durchgeführten Experimenten mit HSCs und LX-2-Zellen konnten keine veränderten CMKLR1-Proteinkonzentrationen bei Stimulation mit den genannten Substanzen festgestellt werden.

Döcke et al. 2013 zeigten, dass es bei Stimulation von PHHs mit IL-6 in einer Konzentration von 50 ng/ml zu einer Zunahme der CMKLR1 mRNA kommt [38]. Bei früheren Versuchen unserer Arbeitsgruppe mit PHHs und IL-6, in Konzentrationen von 5 ng/ml, konnte jedoch keine veränderte CMKLR1-Expression auf Proteinebene festgestellt werden [26]. Auch bei den hier durchgeführten Stimulationen von LX-2-Zellen mit IL-6 in Konzentrationen bis zu 20 ng/ml zeigte sich keine Änderung der Proteinkonzentration von CMKLR1. Eine Ursache der unterschiedlichen Ergebnisse bei den Stimulationsversuchen mit den PHHs könnte an der deutlich höheren Konzentration von IL-6 liegen, die Döcke et al. verwendet hatten. Eine andere Erklärung wäre, dass es, wie bereits obig diskutiert, zu einer posttranskriptionellen Regulation von CMKLR1 kommt und somit eine Veränderung der CMKLR1 mRNA nicht in einer Änderung der Proteinmenge resultiert. Wenn man eine solche Regulation annehmen würde, könnten die erhöhten Werte an CMKLR1 mRNA in dem hier untersuchten Kollektiv durch eine Stimulation der Hepatozyten mit IL-6 erklärt werden. Gestützt würde diese Theorie dadurch, dass in dem von Döcke et al. untersuchten Kollektiv ein positiver Zusammenhang zwischen der IL-6 mRNA und der CMKLR1 mRNA gefunden worden ist [38]. Jedoch ist hierbei im Hinterkopf zu behalten, dass sich in diesem Kollektiv nur drei Patienten mit einer NASH befanden. Auch wäre es interessant zu klären, ob IL-6 nur in den Lebern von männlichen NASH-Patienten erhöht ist. Die bisher veröffentlichten Studien zeigen lediglich eine vermehrte IL-6-Expression in der NASH, wobei hier keine Aufteilung nach den Geschlechtern erfolgte [50] + [51]. Man könnte auch die CMKLR1 mRNA in LX-2-Zellen oder HSCs nach Stimulation mit IL-6 untersuchen, um festzustellen, ob ein Unterschied zwischen der mRNA und dem Protein vorliegt und ob hier ein Grund für die Zunahme der CMKLR1 mRNA bei NASH-Patienten liegen könnte.

Bei Stimulationsversuchen von PHHs mit TGF-β zeigte sich ein Trend zur Abnahme von CMKLR1 Protein [26]. Dies konnte in den HSCs so nicht nachgewiesen werden. Da in der genannten Arbeit von Wanninger et al. 2011 auch eine Zunahme von CMKLR1 Protein in PHHs bei Stimulation mit Adiponektin festgestellt worden ist, könnte dies die erniedrigte Konzentration von CMKLR1 Protein in humanen Fettleberproben und in Leberproben von
Mäusen unter MCD-Diät erklären [26]. Denn in der NAFLD ist TGF-β in der Leber erhöht, was zu einer verminderten Expression von CMKLR1 führen würde, und Adiponektin erniedrigt, was ebenso zu einer geringeren Menge an CMKLR1 Protein beitragen würde [26] [52]. Dem widersprechend wurde in den Lebern von Mäusen unter atherogener Paigen-Diät, einer weiteren Diät, welche bei Mäusen zu einer NASH führt, keine veränderte Expression von CMKLR1 Protein nachgewiesen [53]. So mag der Zusammenhang zwischen TGF-β beziehungsweise Adiponektin und CMKLR1 Protein in PHHs bestehen, ob dies jedoch einen Einfluss auf die CMKLR1 Protein-Konzentration in der NASH hat, ist weiter ungeklärt.

Zusammenfassend kann über die Stimulationsversuche von HSCs und LX-2-Zellen mit den genannten Zytokinen, Leptin und Lipopolysaccharid gesagt werden, dass es bei keinem Experiment zu einer veränderten Expression von CMKLR1 Protein kam. Welchen Einfluss die genannten Faktoren auf CMKLR1 in PHHs haben, ist in diesem Abschnitt diskutiert worden. Da die Zusammenhänge jedoch nicht eindeutig und widersprüchlich sind, besteht weiter die Frage, welche Faktoren CMKLR1 in den Leberzellen regulieren, welche Rolle CMKLR1 in der Pathogenese der NASH hat beziehungsweise ob CMKLR1 überhaupt eine Rolle in der Pathogenese der NASH spielt.

4.3 Regulation von Chemerin Protein durch Zytokine, Leptin und Lipopolysaccharid

wurden in früheren Arbeiten bereits PHHs und im Rahmen dieser Arbeit HSCs und LX-2-Zellen mit Zytokinen, mit einer erwiesenen Rolle in der NAFLD, und LPS stimuliert.

Versuche mit PHHs zeigten keinen Einfluss von IL-6, Leptin, LPS, TNF-α und TGF-β auf die Expression von Chemerin Protein in den Zellysaten [39]. Auch bei Untersuchungen auf mRNA-Ebene nach Stimulation mit IL-6 konnte keine veränderte Menge an Chemerin in den Zellysaten festgestellt werden [38]. Die hier durchgeführten Versuche zeigten ebenso keine Veränderung der Proteinexpression von Chemerin in den Zellysaten von HSCs beziehungsweise LX-2-Zellen nach Stimulation mit IL-6, Leptin, LPS, TGF-β und TNF-α.

5. Zusammenfassung

Bei Stimulation von humanen Sternzellen und Zellen der LX-2-Zellreihe mit IL-6, Leptin, TGF-β, TNF-α und Lipopolysaccharid und anschließender Analyse von CMKLR1 mittels Immunoblot in den Zelldrucksaften, konnte keine Veränderung von CMKLR1 festgestellt werden. Die Studie zeigt somit, dass ein Zusammenhang zwischen der hepatischen CMKLR1 mRNA und der NASH besteht. Dass die hepatischen Sternzellen in diesem Zusammenhang zu der erhöhten CMKLR1-Expression beitragen, scheint auf Grundlage der hier erhobenen Daten unwahrscheinlich. Da jedoch in den Stimulationsversuchen Proteine analysiert wurden und eine differenzielle Regulation von CMKLR1 auf Protein- und mRNA-Ebene diskutiert wird, sind weitere Untersuchungen notwendig, um diese Frage abschließend zu klären.

Die hepatischen Sternzellen scheinen also mit einem Grund für die veränderten Chemerinkonzentrationen in der Leber und im Serum bei NASH-Patienten zu sein. Da die Ergebnisse der Stimulationsversuche von hepatischen Sternzellen zum Teil den Ergebnissen gleicher Stimulationen mit Hepatozyten widersprechen [39] und diese einen viel größeren
Zellanteil in der Leber besitzen, gilt es in weiteren Untersuchungen zu klären, wie groß der Einfluss von Konzentrationsänderungen an Chemerin in HSCs auf die gesamte Leber wirklich ist.
6. Literaturverzeichnis

7. Abbildungsverzeichnis

Abbildung 1: Das Spektrum der NAFLD (nach [2] und [3]) ... 8
Abbildung 2: Mechanismen der Pathogenese der NAFLD (nach [1]) .. 9
Abbildung 3: Aufbau des "Sandwiches" bei dem Wet Transfer Verfahren des Western Blottings. .. 35
Abbildung 4: CMKLR1 mRNA (normalisiert auf 18S rRNA) dargestellt entsprechend der unterschiedlichen Operationsindikationen (M, Metastasen extrahepatischer Tumore; CCC, Cholangiozelluläres Karzinom; HCC, hepatozelluläres Karzinom; FNH, fokale noduläre Hyperplasie; Aden., Adenom) (A), der Kategorien Normalgewicht (BMI ≤ 25 kg/m²), Übergewicht (BMI > 25 und < 30 kg/m²) und Adipositas (BMI ≥ 30 kg/m²) (B) und dem Geschlecht (C) ... 41
Abbildung 5: CMKLR1 mRNA (normalisiert auf 18S rRNA) in den Proben von Patienten mit gesunder Leber (Kont.), Patienten mit borderline NASH (N < 5) und Patienten mit NASH (N ≥ 5) (A); zusammengenommene Kontrollen und borderline NASH-Patienten im Vergleich mit NASH-Patienten (B); ... 42
Abbildung 6: Korrelation von CMKLR1 mRNA (normalisiert auf 18S rRNA) mit dem Grad der Entzündung (A), der Fibrose (B) und dem NASH Score (C); .. 42
Abbildung 7: CMKLR1 mRNA (normalisiert auf 18S rRNA) bei allen Patienten des Kollektivs ohne und mit Typ 2 Diabetes (noT2D / T2D) (A); CMKLR1 mRNA bei NASH-Patienten ohne und mit Typ 2 Diabetes (B); ... 43
Abbildung 8: CMKLR1 mRNA (normalisiert auf 18S rRNA) in weiblichen NAFLD-Patienten dargestellt entsprechend der Kategorien Normalgewicht (BMI ≤ 25 kg/m²), Übergewicht (BMI > 25 und < 30 kg/m²) und Adipositas (BMI ≥ 30 kg/m²) (A) und nach Patienten mit gesunder Leber (Kont.), borderline NASH (N < 5) und NASH (N ≥ 5) (B); ... 44
Abbildung 9: CMKLR1 mRNA (normalisiert auf 18S rRNA) in weiblichen NAFLD-Patienten: Korrelation mit dem Grad der Fibrose (A); CMKLR1 bei Patientinnen ohne (noHC) und mit (HC) Hypercholesterinämie (B) und ohne (noT2D) und mit (T2D) Typ 2 Diabetes (C); 44
Abbildung 10: CMKLR1 mRNA (normalisiert auf 18S rRNA) in männlichen NAFLD-Patienten dargestellt entsprechend der Kategorien Normalgewicht (BMI ≤ 25 kg/m²), Übergewicht (BMI > 25 und < 30 kg/m²) und Adipositas (BMI ≥ 30 kg/m²) (A); zusammengenommene Kontrollen und borderline NASH-Patienten im Vergleich mit NASH-Patienten (B); .. 45
Abbildung 11: CMKLR1 mRNA (normalisiert auf 18S rRNA) in männlichen NAFLD-Patienten: Korrelation mit dem Grad der Fibrose (A); CMKLR1 bei Patienten ohne (noT2D)
und mit (T2D) Typ 2 Diabetes (B) und ohne (noHC) und mit (HC) Hypercholesterinämie (C);

Abbildung 12: Western-Blot-Analyse von CMKLR1 in den Zelllysaten von unstimulierten HSCs und LX-2-Zellen. GAPDH dient der Ladungskontrolle .. 46

Abbildung 13: Western-Blot-Analyse von CMKLR1 in den Zelllysaten stimulierter LX-2-Zellen. GAPDH dient der Ladungskontrolle .. 47

Abbildung 14: Western-Blot-Analyse von CMKLR1 in den Zelllysaten stimulierter LX-2-Zellen. GAPDH dient der Ladungskontrolle .. 48

Abbildung 15: Western-Blot-Analyse von CMKLR1 in den Zelllysaten stimulierter LX-2-Zellen. GAPDH dient der Ladungskontrolle .. 49

Abbildung 16: Western-Blot-Analyse von CMKLR1 in den Zelllysaten stimulierter HSCs. GAPDH dient der Ladungskontrolle .. 49

Abbildung 17: Western-Blot-Analyse von CMKLR1 in den Zelllysaten stimulierter HSCs. GAPDH dient der Ladungskontrolle .. 49

Abbildung 18: Western-Blot-Analyse von CMKLR1 in den Zelllysaten stimulierter LX-2-Zellen. GAPDH dient der Ladungskontrolle .. 50

Abbildung 20: Western-Blot-Analyse von Chemerin in den Zelllysaten stimulierter LX-2-Zellen. GAPDH dient der Ladungskontrolle .. 52

Abbildung 21: Chemerin-Konzentration in den Überständen stimulierter LX-2-Zellen. 52

Abbildung 23: Chemerin-Konzentration in den Überständen stimulierter LX-2-Zellen. 53

Abbildung 24: Western-Blot-Analyse von Chemerin in den Zelllysaten stimulierter LX-2-Zellen. GAPDH dient der Ladungskontrolle .. 53

Abbildung 25: Chemerin-Konzentration in den Überständen stimulierter LX-2-Zellen. * zeigt einen p-Wert < 0,05, verglichen mit den Kontrollen, an .. 54

Abbildung 26: Western-Blot-Analyse von Chemerin in den Zelllysaten stimulierter HSCs. GAPDH dient der Ladungskontrolle .. 54

Abbildung 27: Western-Blot-Analyse von Chemerin in den Zelllysaten stimulierter LX-2-Zellen. GAPDH dient der Ladungskontrolle .. 54

Abbildung 28: Chemerin-Konzentration in den Überständen stimulierter LX-2-Zellen. 55
Abbildung 29: Western-Blot-Analyse von Chemerin in den Zel lysaten stimulierter HSCs. GAPDH dient der Ladungskontrolle. 55
Abbildung 30: Western-Blot-Analyse von Chemerin in den Zell lysaten stimulierter LX-2-Zellen. GAPDH dient der Ladungskontrolle. .. 56
Abbildung 31: Chemerin-Konzentration in den Überständen stimulierter HSCs. * zeigt einen p-Wert < 0,05, verglichen mit den Kontrollen, an. ... 56
8. Tabellenverzeichnis

Tabelle 1: Liste aller in dieser Arbeit verwendeten primären Antikörper 24
Tabelle 2: Liste aller in dieser Arbeit verwendeten sekundären Antikörper 24
Tabelle 3: Liste aller in dieser Arbeit verwendeten Kit-Systeme 25
Tabelle 4: Liste aller in dieser Arbeit verwendeten Oligonukleotide 25
Tabelle 5: Liste der in dieser Arbeit verwendeten humanen Zellen 26
Tabelle 6: Die in dieser Arbeit für Stimulationsversuche verwendeten Substanzen 26
Tabelle 7: Die in dieser Arbeit für Stimulationsversuche verwendeten Lösungsmittel und Konzentrationen der Substanzen .. 29
Tabelle 8: Die einzelnen Charakteristika und Laborwerte der Kohorte sind als Median angegeben, der Wertebereich in Klammern. Signifikante Unterschiede zwischen gesunden Kontrollen und Patienten mit einem NAS < 5 sind angegeben mit *, zwischen Kontrollen und Patienten mit einem NAS ≥ 5 mit # und zwischen Patienten mit einem NAS < 5 und einem NAS ≥ 5 mit &. Die hochgestellten Zahlen geben die Anzahl der Patienten an, für diese die Werte festgehalten worden waren, falls die Werte nicht für alle Patienten verfügbar waren. 40
9. Publikationen

Danksagung

Ganz besonders herzlich möchte ich mich bei Frau Prof. Dr. Christa Büchler für die sehr gute Betreuung, wertvolle Anregungen, die Geduld bei Fragen und Problemen und die stets offene Tür bedanken. Auch möchte ich mir dafür bedanken, dass sie mir die Arbeit in ihrer Arbeitsgruppe ermöglicht hat und stets hinter dieser Arbeit gestanden ist.

Bei Herrn Prof. Dr. Charalampos Aslanidis möchte ich mich für die Übernahme des Zweitgutachtens bedanken.

Vielen Dank auch an die Teammitglieder Dr. Kristina Eisinger, Dr. Lisa Rein-Fischböck, Dr. Rebekka Pohl, Dr. Sabrina Krautbauer und besonders Dr. Elisabeth Haberl für die Unterstützung und Hilfsbereitschaft, das stets offene Ohr bei Fragen, die angenehme Arbeitsatmosphäre und die schöne Zeit.