
 

 

PHOTOCHROMIC  

G-PROTEIN COUPLED RECEPTOR 

LIGANDS 

 

Dissertation 

zur Erlangung des Doktorgrades der Naturwissenschaften 

(Dr. rer. nat.) 

an der Fakultät für Chemie und Pharmazie 

der Universität Regensburg 

 

vorgelegt von 

Daniel Lachmann 

aus Kelheim 

2019



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

 

Der experimentelle Teil der vorliegenden Arbeit wurde in der Zeit von Oktober 2015 bis 

Dezember 2018 unter der Betreuung von Prof. Dr. Burkhard König am Institut für Organische 

Chemie der Universität Regensburg durchgeführt.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Diese Arbeit wurde angeleitet von: Prof. Dr. Burkhard König 

Promotionsgesuch eingereicht am: 16.01.2019 

Promotionskolloquium am: 01.03.2019 

Prüfungsausschuss  

      Vorsitzende: Prof. Dr. Julia Rehbein 

1. Gutachter: Prof. Dr. Burkhard König 

      2. Gutachter: Prof. Dr. Joachim Wegener 

      3. Prüfer: Prof. Dr. Frank-Michael Matysik 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MEINEN ELTERN & KERSTIN 

 

 

 





 

 

Table of contents 

Fulgimides in biological applications 1 

1. Introduction 1 

2. Fulgimides as photoswitches in biological applications 5 

3. Conclusion 10 

4. Literature 11 

1. Photochromic Dopamine Receptor Ligands based on Dithienylethenes  

    and Fulgides 15 

1. Introduction 16 

2. Results and Discussion 18 

 2.1 Synthesis - pharmacophoric headgroups 18 

 2.2 Synthesis - maleimides and cyclopentenes 19 

 2.3 Photophysical properties - arylethenes 21 

 2.4 Synthesis - fulgides and fulgimides 23 

 2.5 Photophysical investigations - fulgimides 25 

 2.6 Biological investigations 26 

3. Conclusions 29 

4. Experimental section 29 

 4.1 Synthesis 30 

 4.2 Assays 58 

5. Literature 61 

6. Supporting Information 64 

2. Photochromic Peptidic NPY Y4-Receptor Ligands 89 

1. Introduction 90 

2. Discussion 91 

 2.1 Synthesis 91 

 2.2 Photopyhsical properties 93 

 2.3 Biological investigations 97 

3. Conclusion 99 

4.Experimental Section 99 

 4.1 General Conditions 99 

 4.2 Synthesis procedures 100 

 4.3 Assays 110 

5. Literature 112 

6. Supporting information 114 

 6.4 Biological characterization 119 



 

 

3. Covalent binding photochromic GPCR-Ligands for single molecule 

    spectroscopy 129 

1. Introduction 130 

2. ß2-Adrenergic receptor 131 

 2.1 Molecular docking studies 131 

 2.2 Synthesis of the photochromic ß2-AR ligands 133 

 2.3 Photophysical investigations 136 

 2.4 Biological investigations 137 

 2.5 Single molecule spectroscopy 138 

3. µ-Opioid receptor 140 

 3.1 Docking studies towards the µOR 140 

 3.2 Synthesis of the azopyrazole based fentanyl derivatives 142 

 3.3 Photophysical investigations 146 

 3.4 Biological investigations 148 

4. Conclusion and Outlook – ß2-AR and µOR 149 

5. Experimental section 150 

6. Literature 185 

7.Supporting information 188 

4. Appendix 

1. Abbreviations 206 

2. Danksagung 208 

3. Curiculum Vitae 209 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 1 

INTRODUCTION 

 

Fulgimides in biological applications 

    
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parts of this chapter have been published as: 

D. Lachmann, R. Lahmy, B. König, Eur. J. Org. Chem, Minireview 

 



INTRODUCTION 

 2 

1. Introduction 

Within the field of photopharmacology, photoswitches have drawn increasing attention over 

the past years. Adjacent to photocaging1, which is an irreversible process, the common 

reversible photoswitches, which are used in biological applications are mainly azobenzenes 

and diarylethenes (DTEs).2,3 In addition, molecules like spiropyranes4, hemithioindigos5, 

donor-acceptor Stenhouse adducts (DASAs)6 and fulgides7,8 were also used for the reversible 

modulation of biological targets by light. Photoresponsive molecules can be divided into two 

groups: the thermally bistable switches (T-type, e.g. azobenzenes, hemithioindigos) and the 

thermally stable ones (P-type, e.g. diarylethenes, fulgides). Fulgimides are the imide 

derivatives of fulgides and were mainly used in optical data storage9, molecular computing10 

and photomechanical materials.11 However, beyond applications in material science, 

fulgimides are also well suited for biological applications.7,12,13 Their stability in conditions 

typical for biological assays was proven by Lees et al. with the development of highly polar 

indolyl fulgimides, which switch reversibly in sodium phosphate buffer.14  

Fulgimides show excellent photochemical properties: High photostationary states (PSS) and 

reversible toggling between both photoisomers without degradation. In general, the 

photochromism occurs between the colourless O-isomers and the coloured C-isomer in a 

conrotatory electrocyclization. The O-isomer shows E/Z isomerization depending on the 

substitution pattern of the 1,3,5-hexatrien-system. The thermal stability reveals from the 

substitution of the methylene hydrogen atoms by methyl groups.15 Introducing a more sterically 

demanding group (e.g. isopropyl) at position R1 limits the isomerization to the OE/C-

isomerization (Scheme 1).16 

 

 

 

Scheme 1. Photoisomerization of fulgides/fulgimides with UV or visible light. When R1 is replaced by an 
isopropyl group, the switching is confined to the OE- and C-isomer interconversion.  

 

Table 1 summarizes the mainly used heteroaromatics for the fulgide and fulgimide synthesis 

resulting in different photochromic properties. The most extensive research was done on 

thiophenyl-, furyl- and indolyl fulgides and fulgimides. 
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Table 1. Characteristic wavelengths and photostationary states of fulgides and fulgimides comprising 
different heteroaromatic moieties. 
 

[a] Amount of closed isomer at the best fitting irradiation wavelength. [b] R1 position is replaced by a methyl group; X = O, see 
Scheme 1; solvent toluene, irradiation wavelength 366 nm except for the indole derivative, 405 nm was used. 

 

Electron rich heteroaromatic moieties27,28,29 or a dicyanomethylene modified anhydride26 as 

part of the fulgimide structure cause a bathochromic shift of the absorption spectrum, which is 

beneficial for biological applications as longer wavelengths can be used to initiate the 

isomerization (Figure 1). Indolyl fulgimides, for example, can be photoisomerized by blue and 

green light. Furthermore, their photostationary states are much higher due to a better 

separation of the absorption bands of the O- and C-isomer. Figure 1 depicts exemplarily the 

bathochromic shift of the absorption spectra of indolyl fulgide 2 (right) in comparison to the 

benzothiophenyl fulgide 1 (left). 

 

 

 

Figure 1. Comparison of the UV/VIS spectra (c = 10-4 M in DMSO) of the benzothiophene fulgide 1 (left) 
and the idolyl fulgide 2 (right). The spectrum of the indolyl fulgide 2 exhibits a bathochromic shift 
compared to the benzothiophene derivative 1. 
 

 

Fulgide/fulgimide 

Heteroaromatic moiety 

lmax [nm] 

(OE/Z-isomers) 

lmax [nm] 

(C-isomer) 
PSS

[a]
 

QY
[b] 

OE à C 

Furane
16,12

 333-364 472-519 96-98% 0.18 

Thiophene
16,17,18

 272-339 514-532 51-92% 0.13 

Pyrrole
19

 364-389 584-642 30-60% 0.20 

Benzofurane
20,21,22,23

 330-387 488-511 43% 0.17 

Benzothiophene
7,24,25

 307-328 473-567 45-70% 0.39 

Indole
7,13,26

 360-481 543-606 19-86% 0.045 
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Upon isomerization, the change in electronic properties and flexibility is accompanied by a 

change in geometry. Whereas the C-isomer is almost planar, the OE isomer is twisted and 

sterically more demanding (Figure 2).  

 

a)                               b) 

         

                     

Figure 2. Topology and flexibility of indolyl fulgimide 3. A) Structure of the fulgimide 3.  b) Left: sterically 
more demanding OE-isomer superimposed to the more planar C-isomer; Right: change in lateral steric 
demand, frontview. The geometry of the structures was optimized using Gaussian09 at the B3LYP/6-
31G(d) level.30 

 

Table 2 summarizes the photochemical parameters, essential for biological applications of 

photoswitches in general. Fulgimides are very promising candidates as the most photophysical 

criteria are perfectly fulfilled.  

 

Table 2. Photophysical properties of different photoswitches: Azobenzenes31,32, hemithioindigos5,33, 
spiropyrans34-37, DASAs6,38,39, diarylethenes32,40-42, fulgimides7,36,26. 
 

Property Azobenzenes Hemithioindigos Spiropyrans DASAs Diarylethenes Fulgimides 

Thermal 
stability 
(thermal 

half-life)[a] 

- 
(days) 

- 
(hours) 

- 
(hours) 

- 
(minutes) 

+ + 

Fatigue 
resistance 

(aqueous 
solution)[b] 

+ + + - +[e] + 

lmax 

(O-isomer/ 
E-isomer)[c]

 

310-440 nm 480-514 nm 320-380 nm 450-700 nm 230-300 nm 270-481 nm 

lmax 

(C-isomer/ 
Z-isomer)[c] 

420-900 nm 400-415 nm 440-660 nm UV 530-980 nm 470-825 nm 

Switching 
effect 

conformation, 
dipole moment 

conformation, 
dipole moment 

conformation, 
polarity 

geometry, 
polarity 

rigidity, 
electronics 

rigidity, 
electronics 

Mechanism E/Z Z/E 
cyclization/ring 

opening 
cyclization/ring 

opening 
cyclization/ring 

opening 
cyclization/ring 

opening 

[a] + à thermally stable, - à thermally non-stable. [b] + à toggling between the isomers without degradation in aqueous solution, 

- à no reversible switching in aqueous solution. [c] Range of irradiation wavelength to obtain the OàC/EàZ or the CàO/ZàE 
photoisomer. [d] Very strong depending on the substitution pattern. 
 

The key step of the fulgide synthesis, the Stobbe condensation, affords a mixture of the syn- 

and anti-lactone isomers or E/Z halfesters depending on the heteroaromatic moiety that is 

N

O
N

O

H2N

3
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installed.7,16 The ratio depends mainly on the sterically demand of the acyl residue. In addition, 

the heteroaromatic moiety also influences the reaction process whereby a strongly electron-

donating system lowers the reactivity.43,44 Scheme 2 shows the synthesis of the thiophene 

fulgimide E-10 based on a general fulgide and fulgimide procedure.7  

 

 

 

Scheme 2. Synthesis of the thiophene fulgimide E-10: (a) Stobbe condensation of 4 and 5 forming a 
mixture of lactones syn/anti-6. (b) Saponification of 6 forming the diacid E-7. (c) Anhydride formation of 
E-7 (d) Imide formation of fulgide E-8 and amine 9.7 

 

Nevertheless, in the last years slightly improvements of the synthesis were achieved.17,45,46 

Furthermore, Kiji et al. reported a Pd-catalyzed carbonylation synthesis yielding fulgides and 

the corresponding fulgenic acids of substituted 1,4-butynediols. This method is suitable for the 

synthesis of sterically demanding fulgides, but does not work for the synthesis of fulgides with 

strongly electron-donating aryl groups e.g. indolyl fulgimide 16.44,47  

The aim of this microreview is to summarize the biological applications of fulgimides over the 

last 30 years. The first reports focused on the modification of an enzyme or protein whereas 

recent publications discuss modifications of ligands that binds to a receptor or protein. 

 

2. Fulgimides as photoswitches in biological applications 

The first incorporation of fulgides in biological structures was reported by Bäuerle et al.48 The 

carbohydrate-binding protein Concanavalin A (ConA) was chemically modified into a 

thiophenefulgide to control the binding of a D-mannopyranoside by light. The thiophene fulgide 

was functionalized by a N-hydroxysuccinimide (NHS) ester, which was supposed to react with 

lysine residues of the ConA (Scheme 3). The photoregulated association of 4-nitrophenyl-α-

D-mannopyranoside towards the fulgide in its open and closed isomeric state, respectively, 

was investigated by the determination of association constants. The highest difference was 

achieved when 9 fulgides were connected to the protein. 
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 Further studies on an esterification reaction, catalyzed by the enzyme α-Chymotrypsin 

followed the same strategy for a photoresponsive modification of proteins. Structural changes 

of the protein were observed, but only moderate differences upon the interconversion of the 

two photoisomers. 

  

     a) 

 

b) 

    

 

Scheme 3. a) Schematic representation of the photostimulated “on” – “off” activities of an enzyme by 
covalent modification of a protein with fulgides (O = open, C = closed). b) Reaction of lysine residues of 
α-Chymotrypsin with the NHS ester derivatized fulgimide 12. 

 

A possible explanation for those slight differences is the marginal conformational perturbation 

of the protein backbone upon photoisomerization. As the fulgide-modified α-Chymotrypsin 

system did not work in aqueous solution, a bioimprinted version of the fulgide-modified α-

Chymotrypsin was used to record the esterification rates of N-acetyl-L-phenylalanine and 

ethanol in cyclohexane. Online switching experiments, which showed an increase or decrease 

of the esterification rate, were done successfully. Finally, they could show that the bioimprinted 

protein revealed enhanced biocatalytic activity in an organic solvent but the switching efficiency 

remained moderate.  

 

A polarity dependent indolyl fulgimide that switches fluorescence in living cells was developed 

(Scheme 4) by the group of Rentzepis.49 The fulgimide 13 only exhibited strong fluorescence 

in its polar, ring closed isomer, while the non-polar, open form showed no fluorescence.  
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Scheme 4. Structure of the open and closed isomer of indolyl fulgimide 13. The closed isomer emits at 
630 nm after excitation at 550 nm. 

 

Ultrafast time resolved spectroscopy for the transformation of the polar (closed isomer) to the 

non-polar (open isomer) form was measured to record kinetics and intermediate spectra. The 

obtained data suggested, that the reversible switching between the two states is rather in the 

picosecond time scale compared to the far slower diffusion controlled rates of most chemical 

and biological reactions. The indolyl fulgimide 13 could be used as an intracellular 

chemical/molecular sensor to investigate local changes in living cells, such as pH and 

viscosity. The cell experiments showed that the fulgimide 13 enters the living cell and 

associates with internal membranous organelles, especially with mitochondria. Seven 

performed cycles showed the stability of fulgimide 13 within the living cell. 

 

In more recent publications, fulgimides are often used to overcome specific limitations of the 

photochemical properties of diarylethenes. Some cyclopentene-dithienylethenes derivatives 

showed degradation after a few isomerizations and dithienylmaleimides do not switch 

reversibly in aqueous buffer solutions.7 Fulgimides typically show high fatigue resistance and 

high PSS, dependent on the heteroaromatic moiety and substitution of the 1,3,5-hexatrien-

system. 

 

Photoresponsive histone deacetylase (HDAC) inhibitors, based on thermally stable 

diarylethenes and fulgimides were developed.12 The enzyme plays a role in cancer formation 

and catalyzes the deacetylation of lysine residues from acetylated lysine residues. First 

approaches were conducted on dithienylethenes (DTEs) and dithienylmaleimides, which were 

functionalized by hydroxamic acids binding to zinc dependent HDACs. As the photochemical 

properties of the cyclopentene-DTEs and the dithienylmaleimides showed drastic limitations, 

the photochromic scaffold was replaced by a fulgimide. The fulgimide derivatives 14 and 15, 

containing the hydroxamic acids, showed excellent properties exhibiting high photostationary 

states and good fatigue resistance (Scheme 5).  

 

 

 



INTRODUCTION 

 8 

 

 

Scheme 5. Structures of the furylfulgimide based HDAC inhibitors 14 and 15 (right). Exemplarily IC50 
values of compound 14 and 15 at the hHDAC6. 
 

The IC50 values of the respective isomers of fulgimides 14 and 15 were determined and for the 

hHDAC6 inhibition, a 3-fold difference between the photoisomers of compound 14 could be 

obtained. In order to explain the in vitro activity of the photochromic inhibitors, docking on 

different classes of HDACs was performed. While the docking studies rationalized the potency 

well, no explanation for the lack of selectivity between the open and closed photoisomers could 

be derived. 

First investigations on fulgides, embedded into dopaminergic G protein-coupled receptor 

ligands (GPCRs) were performed by König and coworkers.7 Fulgides, dithienylethens and 

dithienylmaleimides were incorporated in highly potent and selective dopamine D2S receptor 

ligands, for instance 1,4-disubstituted aromatic- and hydroxybenzoxazinone piperazines. The 

obtained photochromic ligands are biochemical tools and are useful for the investigation of the 

receptor’s function or dynamics. Different fulgimides were synthesized comprising 

benzothiophene, thiophene and indole heteroaromatic moieties resulting in different 

photochromic properties. Particularly, the indolyl fulgimides showed a red shift in the 

absorption spectra, high PSS and could be reversibly switched several times in aqueous 

buffer. The biological investigation was targeted towards the activation of the dopamine D2S 

receptor and revealed good agonistic activity observed for the G-protein mediated signaling 

and weak arrestin recruitment. Compounds with isomer-specific activities were subjected to a 

IP-One accumulation assay. At a concentration of 1 nM a cyclopentene-DTE derivative 

showed 11-fold difference between the open and closed state and the fulgimide 16 was 

discovered as an alternative photoswitch with an inverse activation profile exhibiting four-fold 

difference between the OE -16 and the C-16 state (Scheme 6).  

 

Compd. IC50 

hHDAC6 

O-14 1.8 ± 0.5 

C-14 6.1 ± 1.7 

O-15 0.047 ± 0.032 

C-15 0.075 ± 0.047 
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Scheme 6. The hydroxybenzoxazinone piperazine substituted fulgimide 16 was reversibly switched with 
light of 400 nm and 528 nm. The Emax values were determined in comparison to the reference quinpirole 
at a concentration of 1 nM. 

 

As fulgimide 16 fulfilled most of the requirements for an application in biological systems, it 

represents a promising tool for the regulation of the pharmacologically important dopamine D2S 

receptor. 

 

Simeth et al. attempted to improve dithienylmaleimide based photocontrolable inhibitors for 

sirtuins by introducing N-alkylated indolyl fulgimides.13 As the dithienylmaleimides were not 

photoisomerizable in aqueous solution, indolyl fulgimides with improved photochromic 

properties were used. In addition, a bathochromic shift in the absorption profile caused by the 

indolyl moiety is beneficial for potential applications in biological systems. Different substitution 

patterns of the heteroaromatic moiety affected the synthesis yields and the photochemical 

properties. Again, the Stobbe condensation was the limiting reaction step. For steric reasons, 

also the fulgimide formation occurred with low yields below 10%. The synthesized fulgimide-

derivatives are addressable with purple (400 nm) and orange (590 nm) light and showed 

fluorescence when irradiated with light of 400 nm. The fulgimides could be toggled between 

their open and closed state several times without significant loss of responsiveness. Three 

human sirtuin isoforms (hSirt1-3) were treated with two different fulgimide derivatives in a 

fluorescence-based ZMAL assay. The closed isomer was generated during the assay applying 

a 96-well plate LED irradiation setup. All compounds inhibited hSirt3. One derivative showed 

an IC50 value of 19.9 µM in its open isomer and 1.5-fold lower inhibition in its closed state. In 

summary, the photochromic properties could be improved as desired, but compared to the 

previously reported maleimides partially at the expense of inhibitory activity and isomer 

specificity. 

 

Recently, photoresponsive dimeric peptides were developed to further investigate the G 

protein-coupled neuropeptide Y Y4 receptor (NPY Y4 receptor).22 The NPY Y4 receptor is 

targeted by pancreatic polypeptide, a homologue of NPY. Selective Y4R agonists were 

suggested as potential therapeutics for the treatment of obesity. Highly potent dimeric peptidic 



INTRODUCTION 

 10 

Y4R agonists, constituted by two pentapeptide moieties connected through an aliphatic linker, 

represent an interesting class of Y4R ligands. Based on this compound class, photoresponsive 

Y4R ligands, containing an azobenzene, azopyrazole, diethienylethene or a fulgimide 

chromophore as linker were synthesized to explore structural requirements of such Y4R 

agonists on Y4R binding (Scheme 7). 

 

 
 

Scheme 7. The structure of the benzofuryl fulgimide based dimeric peptidic NPY Y4 receptor ligand (17) 
is shown. 

 

The synthesized Y4R ligands, containing a non-aliphatic rigid photochromic linker, showed an 

efficient and reversible switching in aqueous buffer and exhibited high Y4R affinity. This 

demonstrated that the replacement of the highly flexible aliphatic linker by a considerably less 

flexible photochromic linker was well tolerated with respect to Y4R binding. Differences in Y4R 

affinity and activity between the individual photoisomers, varying in spatial orientation and 

flexibility, were marginal suggesting that the linking element in the dimeric ligands is less 

important for the adaptation of high-affinity binding modes at the receptor. 

 

3. Conclusion 

The photochemical properties of indolyl-, thiophene- and furane- fulgides are well-suited for 

applications in the photomodulation of biological properties. Their photochemical reversibility, 

stability and absorption wavelength range is in many cases superior to azobenzenes or 

diethenylethenes. However, the number of applications of fulgides and fulgimides is still small 

and one reason for this is their challenging synthesis. The success of the Stobbe condensation 

and the fulgimide formation depend on the amine that is used and partially on the substitution 

pattern of the hexatrien system. More predictable and more general synthetic routes to 

functionalized fulgides and fulgimides are clearly in demand to provide this interesting class of 

photochromic molecules for broader applications in life science. 
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1. Introduction 

G-protein coupled receptors (GPCRs) are a vibrant field of research because their dysfunction 

is linked to numerous diseases like central nervous system (CNS) disorders, cancer or 

inflammatory diseases.1a-c Therefore, more than 30% of the approved drugs target the GPCR 

family. Focusing on the dopamine receptors several CNS disorders like schizophrenia, drug 

addiction, Parkinson’s and Huntington’s disease are linked to their dysfunction.2 Privileged 

structures targeting the dopamine D2-like receptors are derivatives of 1,4-disubstituted 

aromatic piperazines (1,4-DAPs), hydroxybenzoxazinone substituted piperazines as well as 

conformationally restricted dopamine analogs involving aminoindanes. The synthesis of D2, D3 

and D4 receptor agonists and antagonists with individual subtype selectivity or functional 

selectivity (biased signaling) has received considerable attention, in recent years.3a-f Although 

a better understanding of the mechanism of GPCR-promoted drug action was achieved, there 

is still a need to develop selective molecular tools to obtain more insight into the dynamics or 

receptors function.  

Photopharmacology can address this issue in a non-invasive way with high spatial and 

temporal precision. The importance of this concept is revealed by the increasing number of 

photochromic enzyme inhibitors,4a-f photochromic ligands for receptors and ion channels,5a-e 

photoswitchable antibiotics,6a-b photo-switches, which are applicable in vivo using visible-

light,7a-c and recently even photochromic ligands, which change their intrinsic activity.8 

Recently, photochromic azobenzol based opioids5c and dopamine receptor ligands, embedded 

in a phenethyl-propyl-hydroxytetraline (PPHT) structure, were developed by Trauner et al.9  

Azobenzenes as well as dithienylethenes (DTEs) and fulgides convert light-induced between 

two isomers, which differ for the azobenzenes in geometry and dipole moment and for the 

DTEs in conformational flexibility and electronic properties.10 Both classes of switches show a 

high fatigue resistance, but only the open and closed form of the DTEs and fulgides are 

thermally stable, which makes them interesting candidates for photopharmaceuticals.11a-b 

Especially fulgides are very interesting for biological applications, because they show high 

fatigue resistance and are mostly water soluble and switchable in aqueous buffer solutions 

(Scheme 1).12a-b 
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b) 

 

 

Scheme 1. a) Switching principle of dithienylethene based switches. b) Photochromic 
fulgides/fulgimides, depicted in three forms after irradiation with UV light. 

 

Two major strategies are commonly applied to introduce a photoswitchable moiety into a 

bioactive compound: the chromophore can either be embedded into the structure of a 

pharmacophore or attached to one or two pharmacophores via a suitable linker.10,13 In each 

case, it is desirable that the light induced switching between the two isomers results in a distinct 

difference in affinity or intrinsic activity. This would allow the photocontrol of biological functions 

and offer the possibility to investigate drug targets like GPCRs very precisely. 

We envisioned that a formal exchange of a structural appendage of known dopamine ligands 

by a photoswitchable unit would lead to potent photochromic dopaminergic ligands (Figure 1). 

Herein, we discuss the synthesis, photophysical characterization and biological evaluation of 

photochromic dopamine receptor ligands based on dithienylethene- and fulgide-type scaffolds. 

 

 

 

Figure 1. Structures of known dopamine ligands: 1,4-DAP FAUC 346
14, aminoindane FAUC 185

15 and 
benzoxazinone derivative16 1, where the blue coloured moieties are replaced by a photochromic 
diarylmaleimide, dithienylethene or fulgide. 
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2. Results and Discussion 

Due to their thermal stability, we investigated DTEs first. Within this classes two kind of 

photoswitches were used to synthesize photoresponsive dopamine ligands: 1) the 

cyclopentene based switches and 2) the diarylmaleic anhydrides. Both types of DTEs have 

been successfully applied in photopharmacology.[21] Furthermore, the isomerization 

wavelength for the chromophores can be bathochromically shifted, reducing cell damage 

otherwise caused by high energy light.11a The photoswitches differ in their attachment mode to 

the pharmacological headgroups. Introducing two different sterically demanding photochromic 

groups to the pharmacological headgroups allows us to investigate the importance of the size 

of the heterocyclic appendage for the affinity and subtype selectivity. 

 

2.1 Synthesis - pharmacophoric headgroups  

Privileged structures for aminergic GPCR ligands are 1,4-DAPs 3, 5, 7 and 9, aminoindanes 

11 and 13 and the benzoxazinon piperazine 17. A coupling reaction between the 

pharmacophoric head groups and the photoswitches gave the target structures. The 2-

methoxy- and 2-methylthiophenylpiperazine building blocks were synthesized as described in 

literature.17 Commercially available 1-(2-methoxyphenyl)- and 1-(2-(methylthio)phenyl)-

piperazine were alkylated with N-(4-bromobutyl)- or N-(2-bromoethyl)phthalimide to give 

intermediates 2, 4, 6 and 8 in good yields. Hydrazinolyses of the respective phthalimides 

yielded building blocks 3, 5, 7, and 9. The same protocol was used to obtain 

hydroxybenzoxazinone substituted piperazine 17. The synthesis of precursor 14 is described 

in the supporting information (SI1). Alkylation of 14 with N-(2-bromoethyl)phthalimide gave 

compound 15. Subsequent hydrazinolysis and acid mediated cleavage of the benzyl protecting 

groups yielded compound 17. Building blocks 11 and 13 were readily accessible following a 

two-step literature procedure.18  

2-Propylaminoindane oxalate was reacted with 4-bromobutyronitrile, respectively 2-

bromoacetonitrile to afford compounds 10 and 12. Reduction of the nitrile group by LiAlH4 

yielded compounds 11 and 13 (Scheme 2). 
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Headgroups B: 

 

Headgroup C: 

 

 
Scheme 2. Synthesis of pharmacophore building blocks, headgroups A, B and C. Reagents and 
conditions: (a) N-(4-bromobutyl)- or N-(2-bromo-ethyl)phthalimid, K2CO3, KI, MeCN, 75 °C, 5–16 h, 75–
90%. (b) Hydrazine hydrate, EtOH, 75 °C, 2 h, then 2 M HCl, EtOH, 75 °C, 2 h, 60–85%. (c) MsOH, 
toluene, 100°C, 2 h, 89%. (d) 4-bromobutyronitrile or 2-bromoacetonitrile, K2CO3, KI, MeCN, 75 °C, 16 
h 88%. e) LiAlH4, Et2O, 0 °C à r.t., 1 h, 71–90%. 

 

2.2 Synthesis - maleimides and cyclopentenes  

The DTE and diarylmaleic based pharmacophores, containing the 1,4-DAP, were used with 

two different spacer lengths. Depending on the DTEs, two different strategies were applied to 

combine photoswitch 18 with headgroups 3, 5, 11, 13, 17 and cyclopentene-DTE 20 with the 

pharmacophores 3, 5, 7, 9, 11, 13 and 17. In case of the diarylmaleic anhydride 18, the 

coupling was performed with the core of the DTE, while the cyclopentene based DTE 20 was 

coupled with one of the thiophene moieties. Diarylmaleimide 18 was easily accessible 

according to literature as well as the precursor 19, which was then carboxylated on only one 

thiophene moiety to obtain 20.19,20a-b The syntheses of the diarylmaleic anhydride based 

photochromic ligands 21-25 were performed under slightly basic conditions using potassium 

carbonate as base and are outlined in Scheme 3. 

 

 

 

Scheme 3. Syntheses of the diarylmaleimide based photochromic ligands 21 – 25. 
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Standard peptide coupling conditions using HBTU and N,N-diisopropylethylamine were 

applied to synthesize the photochromic ligands 26 - 32 (Scheme 4). 

 

 

 

Scheme 4. Syntheses of the cyclopentene-DTE based photochromic ligands 26 - 32. 

Following these two synthetic strategies, we were able to readily obtain various photochromic 

ligands in just one step. A stock solution for the biological testing was prepared with dimethyl 

sulfoxide as solvent. Dilutions thereof were used to study the photophysical properties. Even 

though it is reported that diarylmaleimides cannot be reversibly toggled between their two 

photoisomers in polar solvents due to a twisted intramolecular charge transfer (TICT), we 

observed a reversible photoisomerization in dimethyl sulfoxide for all photochromic ligands 

based on diarylmaleimides.21a-c  
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2.3 Photophysical properties - arylethenes  

The photophysical properties of the photochromic dopamine receptor ligands 21-25 and 26-

32 were investigated by absorption spectroscopy. Therefore, the dissolved compounds were 

irradiated with UV-light (312 or 400 nm) which resulted in a color change of the solution 

accompanied with new absorption maxima, characteristic for each of the photochromic ligands. 

The resulting isosbestic points indicate a clean two-component switching. In addition, the PSS 

was determined by HPLC measurements. All photophysical properties of the compounds 21-

25 and 26-32 are summarized in Table 1. 

 

Table 1. UV-Vis data of the open and closed form of the synthesized ligands 21-25 and 26-32 (50 or        
100 µM in DMSO) after irradiation with λ = 312 or 410 nm. 

[a] Determined by HPLC measurements. 

 

Entries 1-5 represent the photophysical characterization of the diarylmaleimide based 

photochromic ligands 21, 22, 23, 24 and 25, whereas entries 6-12 summarize the cyclopentene 

based photochromic ligands 26-32. A slightly bathochromic shift is observed for the new arising 

absorption maxima corresponding to the closed photoisomers of the diarylmaleimides 21-25, 

which is characteristic for this class of DTEs.11a To our surprise, the photoconversion of the 

diarylmaleimides 21, 22, 23 and 24 (excluded 25) is not as efficient as for the cyclopentene 

ligands 26-32. Compared to a recently reported PSS of 94% for a diarylmaleimide photoswitch, 

with a free maleimide core and a phenyl substitution pattern on the thiophene moieties,4a the 

substitution on the nitrogen atom of the maleimide core with the pharmacophores dramatically 

decreases the efficacy of the photoisomerization. In contrast, the cyclopentenes 26-32 exhibit 

Entry Compd. λmax (open) 

[nm] 

λmax (closed) 

[nm] 

λiso  

[nm] 

PSS[a] 

1 21 260, 378 355, 493 300, 376, 413 46% 

2 22 261, 390 356, 509 305, 377, 413 38% 

3 23 264, 360 355, 500 301, 379, 413 49% 

4 24 263, 391 354, 504 300, 376, 411 52% 

5 25 261, 385 354, 500 300, 380, 412  72% 

6 26 259 491 295 83% 

7 27 270 490 293 73% 

8 28 262 491 292 72% 

9 29 259 489 291 77% 

10 30 262 494 292 71% 

11 31 264 490 291 76% 

12 32 263 503 300 61% 
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sufficiently high photoconversions shown by PSS ranging from 61-83%. Surprisingly, the cycle 

performance exhibits a better fatigue resistance for the maleimide-based switches 21-25. 

Figure 2 exemplary shows the UV-Vis absorption spectra and the cycle performance for the 

diarylmaleimide based ligand 23 and for the cyclopentene based ligand 30.  

 

 

Figure 2. Comparison of the photochromic properties of diarylmaleimide based ligand 23 (a, c) 
(100 µM in DMSO) with the cyclopentene based ligand 30 (b, d) (100 µM in DMSO); a) and b) 
represent the UV-Vis absorption spectra upon continuous irradiation with light of λ = 312 nm 
(Herolab, 6 W), respectively; c) and d) represent the cycle performance using λ = 312 nm 
(Herolab, 6 W) for the ring closing and λ = 530 nm (green LED, 2.5 W) for the ring opening 
reaction, respectively: a) UV-Vis absorption spectra of ligand 23; b) UV-Vis absorption spectra 
of ligand 30; arrows indicate the characteristic changes in the absorption spectra; c) repetitive 
switching cycles at 500 nm of ligand 23; d) repetitive switching cycles at 494 nm of ligand 30. 

 

The arrows indicate the characteristic changes in the spectra upon continuous irradiation with 

light of λ = 312 nm (Herolab, 6 W), accompanied by a characteristic color change of the 

samples. The cycle performance showed that ligand 23 is stable over at least six switching 

cycles, whereas a fast degradation of cyclopentene 30 was observed. 

Further investigations by continuous irradiation with UV light (λ = 312 nm) revealed the 

formation of an irreversible by-product 33 (Scheme 5). The phenomenon of this annulated 

isomer has been reported previously, but the mechanism of the by-product formation, which is 

related to the substitution pattern of the DTEs is not yet fully understood.22a-c  
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Scheme 5. Formation of the irreversible by-product 33 of the ligand 30 (R = 11) upon continuous UV 
irradiation. 

 

The photoisomerization can be monitored by UV-Vis absorption spectroscopy and is depicted 

in Figure SI2a-c. By irradiating the dissolved compound 30 with λ = 312 nm (Herolab, 6 W) 

one new maximum is arising at 494 nm, which is decreasing upon further UV irradiation. A 

new absorption maximum is observed, hypsochromically shifted to 360 nm, which is attributed 

to the irreversible occurring by-product 33. The HPLC traces in Figure SI2d show that upon 

reaching the PSS, approximately 55% of the by-product has already been formed and its 

formation is completed after 192 sec. Similar to the results by Hecht et al.22a we could confirm 

the structure of 33 with 2D-NMR spectroscopy experiments (see SI3, Scheme SI3-1 and SI3-

2). 

 

2.4 Synthesis - fulgides and fulgimides  

In a second series of dopamine receptor ligands, fulgides were synthesized, promising 

reversible switching in aqueous solution12a-b and good fatigue resistance. The synthesis of the 

benzothiophene fulgide 37 was performed according to the experimental protocol of Stobbe e. 

al. and Mattay et al.23a-b The challenging step, the Stobbe condensation, was accomplished by 

enolization of isopropylidenesuccinate and subsequent reaction with 34. This reaction results 

in a mixture of syn/anti lactones 36 whereby the syn-isomer 36 is the favoured one due to the 

isopropylgroup of 34. The diacids were obtained after an elimination reaction and subsequent 

saponification by aqueous potassium hydroxide solution. For the anhydride formation, the 

crude diacids were treated with acetyl chloride to form the fulgide 37E (Scheme 6). 

 

 

Scheme 6. Benzothiophene fulgide 37 synthesis according Stobbe et al.; Reagents and conditions: (a) 
Isopropylidenesuccinate, LDA, THF, -78 °C à r.t., 48 h, 16%. b) Step 1: KOH, EtOH, H2O, 70 °C, 24 h; 
Step 2: AcCl, CH2Cl2, 40 °C, 20 h, 87%. 
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The indolyl-isopropyl fulgide 38, 5-methylthiophene-isopropyl fulgide 39, benzothiophene 

methyl fulgide 40 and indolylmethyl fulgide 41 were synthesized according to literature.[24-26] 

Only the E-isomers were isolated and used for fulgimide formation. 

The target fulgimides were prepared in a two-step reaction. First, the succinamic acids 42, 44, 

47, 49 and 51 were obtained by heating the amines 7, 11 and 17 with the fulgides 37 - 41 in 

chloroform or DMF. Second the imides were formed by an active ester method with DCC, 

HOBt and DIPEA or MSNT and Me-imidazole to obtain the desired fulgimides 43, 45, 46, 48, 

50 and 52 (Scheme 7). 

 

 

 

Scheme 7. Fulgimide synthesis with fulgide 37 (Ar = benzothiophene, R3 = isopropyl), 38 (Ar = indole, 
R3 = isopropyl), 39 (Ar = 5-methyl-thiophene, R3 = isopropyl), 40 (Ar = benzothiophene, R3 = methyl), 
41 (Ar = indole, R3 = methyl) and amines 7, 11, 17. Reaction conditions: a) amine A, B or C, CHCl3 or 
DMF, 60 °C, 4-48h; b) DCC, HOBt, DIPEA or MSNT, Me-imidazole, CHCl3 or DMF, 25 °C, 24-48h. 

 

The fulgimide 46 was formed after heating in CHCl3 for 24 h without adding coupling reagents. 

No fulgimide could be obtained with amine 9 and 13. 
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2.5 Photophysical investigations - fulgimides 

Applications of photoswitches in biological assays require their solubility in aqueous buffer. 

Hence, the photoisomerization of the fulgimides 45, 50 and 52 were carried out in polar 

solvents to obtain UV/Vis absorption spectra. Table 2 summarizes the photostationary states 

(PSS), isosbestic points as well as the absorption maxima of 43 and 45, determined in DMSO. 

The method for the PSS determination by HPLC is exemplarily shown for compound 48 in the 

SI4.  The indolyl fulgimides 45, 50 and 52 were also measured in a 10% DMSO – tris-buffer 

solution (pH = 7.4) (Table 2, Entry 3,7 and 9), whereby a hypsochromic shift of 18 nm of the 

absorption maximum in the visible light range was observed. 

 

Table 2. Photochemical properties of fulgimides 43-52. 

[a] Closing of the open E-isomers with UV light, PSS determined by HPLC measurements. [b] Opening of the closed mixture with visible light, PSS 
determined by HPLC measurements. [c] Solvent: DMSO. [d] Solvent: Tris-buffer + 10% DMSO. 

 

The UV/Vis absorption spectra changes are exemplarily shown for compound 45 in Figure 3 

upon irradiation with 410 nm light in periods of 2 sec. New absorption bands arise at 543 nm 

and 330 nm, the band at 360 nm decreases and belongs to the open isomer. The opening of 

the closed photoisomers was accomplished by irradiation with light of 505 or 530 nm (1-2 min) 

for 43, 45, 46, 48, 50 and 52. 

Entry Compd. 
λmax (open) 

[nm] 

λmax (closed) 

[nm] 

λiso 

[nm] 

PSS[a] 

OàC (Z:E:C) 

PSS[b] 

CàO (Z:E) 

1 43[c] 307 473 290, 342, 347 0:30:70 - 

2 45[c] 360 543 310, 344, 420 0:20:80 - 

3 45[d] 356 525 305, 337, 417 0:19:81 - 

4 46[c] 272 532 360 0:16:84 - 

5 48[c] 328 486 315, 357 19:36:45 19:81 

6 50[c] 370 564 306, 436 6:16:78 6:94 

7 50[d] 370 325, 546 475 4:18:78 4:96 

8 52[c] 363 563 302, 325, 430 4:12:84 4:96 

9 52[d] 279, 366 300, 545 300, 320, 409 4:10:86 4:96 
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Figure 3. Left) the photochromic properties of a solution of 45 (50 µM in DMSO). The slightly yellow 
open form turned purple after 12 sec irradiation with 410 nm. The absorption spectra showed a new 
absorption band at 543 nm. Right) Repetitive switching of 45 is depicted on the right side. 

 

The cycle performances of compounds 43, 45, 46, 48, 50 and 52 were studied by alternating 

irradiation at the appropriate wavelengths (43 à 312close nm, 505open nm; 45 à 400close nm, 

530open nm; 46, 48 à 365close nm, 530open nm; 50, 52 à 400close nm, 530open nm). The 

compounds showed good fatigue resistance and only little degradation was observed. 

Exemplarily, the cycle performance of compound 45 is depicted in Figure 3. 

 

2.6 Biological investigations  

The biological investigation of all test compounds was targeted towards their ability to activate 

the dopamine D2S receptor. Our studies were directed to the identification of compound pairs 

exhibiting different activation profiles for the open and the closed photostationary state. 

Therefore, we applied screening assays for G-protein mediated signaling and arrestin 

recruitment at a fixed concentration (10 µM). The G-protein pathway was investigated utilizing 

the IP-One® assay (Cisbio) with HEK 293T cells transiently co-expressing D2S and the hybrid 

G-protein Gaqi5HA while ß-arrestin-2 recruitment was determined applying the PathHunther® 

assay (DiscoverX). All activation data are summarized in Table 3, SI5 and SI6 in comparison 

to the reference ligand quinpirole. In the arrestin assay, the cyclopentene DTEs 26-30, 32, the 

diarylmaleimides 21-23, 25 and the fulgimides 43, 45, 46, 48, 50 and 52 showed Emax values 

less than 15%. Only DTE 31 and the maleimide 24 both bearing the indanylamine moiety and 

a 4-atom spacer between the pharmacophoric headgroup and the photochromic entity (13) 

showed Emax values of 70% (31-open), 76% (31-closed), 33% (24-open), and 37% (24-

closed), respectively.  

 

Additional measurement of arrestin recruitment for those compounds at 100 nM revealed 

Emax values less than 10% and no differences in the activation pattern of the open and closed 

conformation. Whereas weak arrestin recruitment was observed, the determination of the G-
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protein mediated signaling revealed agonist properties with efficacies in the range of 40 to 95% 

for all test compounds (Figure SI5, Table SI5-1, SI5-2). More detailed measurements at 100 

nM and 1 nM showed a dose-dependent range of efficacies allowing a precise evaluation of 

the open and closed conformations of each photochromic ligand. Within the series of 

maleimides, the indanylamine 24 showed the highest Emax values of 95% for both conformers, 

which is similar to the rank order of agonist effects derived from the arrestin assay, but without 

any difference between the open and the closed form. This observation can be confirmed by 

the results for the cylopentene DTEs, where 31 (indanylamine with headgroup 13) showed an 

Emax value of 95% for the open and the closed conformation, respectively.  

 

Clear differences in Emax between both photochromic states could be observed for the methyl 

ether substituted phenylpiperazines 27 and 29 both carrying a 4-carbon spacer and only 

differing in the heteroatom of the ether group (O for 27, S for 29). For 29, Emax values of 77% 

(10 µM), 80% (100 nM) and 32% (1 nM) have been determined for the open state, while 

efficacies of 70% (10 µM), 47% (100 nM) and 3% (1 nM) could be measured for the closed 

form (Table 3, Figure 4). This data indicate a 11-fold more efficient receptor activation by the 

open conformer compared to the closed derivative at low concentration (1 nM). In contrast, the 

methoxyphenylpiperazine 27 showed stronger receptor activation profile in the closed state 

compared to the open derivative, when a 3-fold increase of efficacy was determined for 27-

closed at 100 nM (closed-open: 49%-16% at 100 nM, 15%-11% at 1 nM). A similar selectivity 

profile could be detected for the indolyl fulgimides 45 and 52. The methylthiophenylpiperazine 

45-closed showed a 2-fold increase of efficacy at 100 nM compared to the open state, while 

the benzoxazinone 52-closed revealed a 4-fold improve of activity at 1 nM (for 45: closed-

open: 45%-25% at 100 nM, 8%-5% at 1 nM, for 52: closed-open: 47%-48% at 100 nM, 40%-

10% at 1 nM).  

 

To learn more about the mechanistic relations of these selective photoswitchable ligands, we 

investigated the binding affinities of the most promising compounds 27-open, 27-closed, 29-

open, 29-closed, 45-open, 45-closed, and 52-(E)-open, 52-closed at the dopamine D2S 

receptor in a competition binding experiment. As all compounds displayed Ki values between 

9 and 17 nM (Table SI6), the state-selective intrinsic activity appears to be controlled by the 

individual ability to preferentially stabilize the active state of the receptor rather than by different 

binding affinities.  
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Table 3. Functional screening of the most promising photoactive ligands 27, 29, 45 and 52 for G-protein 
mediated activation of the dopamine D2S receptor applying an IP accumulation assay[a]. 

[a] IP accumulation determined by applying the IP-One® assay (from Cisbio) with HEK 239T cells co-transfected with the cDNA of the dopamine D2S 

receptor and that of the hybrid G-protein Gaqi5HA. [b] Emax value ± S.E.M. derived from 4 to 8 individual experiments each done in quadruplicate 
relative to the maximum effect of quinpirole. [c] The open isomer describes only the E-isomer. 

 

An overall analysis of the data confers that the photoswitches 29 and 52 are most promising 

biochemical tools for the regulation of the pharmacologically important dopamine D2S receptor. 

The potency of the more active isomers is comparable to the activation power of the reference 

dopaminergic agent quinpirole. The compounds require a very low dose of 1nM to exhibit a 

degree of receptor activation that strongly depends on the photostationary state of the ligand. 

Hence, the presence of the cyclopentene-DTE based photochromic ligands 29 in the open 

state induces an 11-fold higher G protein-promoted signaling than the existence of 29-open in 

the same concentration. As a complementary pair of photochromic ligands, the fulgimide 52 

shows four-fold higher D2S receptor activation in the closed state compared to 52-open (Figure 

4). 

 

 

 

 

Entry Compd. 
Photoactive 

state 

 

10 [µM] 

Emax [% ± SEM][b] 

100 [nM] 

 

1 [nM] 

1 27 open 85 ± 2.6 16 ± 9.6 11 ± 9.8 

2 27 closed 67 ± 7.4 49 ± 2.0 15 ± 0.9 

3 29 open 77 ± 3.8 80 ± 2.8 32 ± 4.6 

4 29 closed 70 ± 6.8 47 ± 5.2 2.9 ± 3.2 

5 45 open 68 ± 2.8 25 ± 5.3 5.6 ± 3.2 

6 45 closed 62 ± 2.4 45 ± 7.8 7.7 ± 2.6 

7 52[c] open 58 ± 6.9 48 ± 8.5 10 ± 3.8 

8 52[c] closed 69 ± 6.6 47 ± 4.2 40 ± 4.6 
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Figure 4. Activation of G-protein mediated receptor signaling determined by an IP accumulation assay 

using D2s and the G-protein hybrid Gaqi5HA. Accumulation of IP for the most promising photoswitchable 

ligands 29 and 52 in comparison to the reference quinpirole all determined at 1 nM. The DTE 29 shows 
an 11-fold improved activity for the open state (dark blue) than the closed state (light blue). In contrary, 
fulgimide 52 is 4-fold less active in the open conformation than for the closed one. For comparison, 
receptor activation induced by 1 nM of quinpirole (striped) reveals an efficacy of 28 % (derived from the 
dose-response curve, Figure SI4). Bars represent average efficacy [%±S.E.M.] derived from 4 to 8 
individual experiments each done in quadruplicates. 

 

3. Conclusions  

We succeeded in synthesizing DTE and fulgide based photochromic dopamine receptor 

ligands. The maleimides could not be switched in aqueous solution and the cyclopentene-

DTEs had a low fatigue resistance, whereas the fulgimides showed excellent photophysical 

properties in aqueous solution. At a concentration of 1 nM, the cyclopentene-DTE 29-open 

showed a more than 10-fold higher activation of D2S, a pharmacologically important G protein-

coupled receptor, than its photochromic congener 29-closed. Interestingly, the fulgimide-based 

pair 52-open/52-closed could be discovered as an alternative photoswitch with inverse 

activation properties exhibiting four-fold higher activity in the closed state. Further studies on 

the optimization of GPCR-regulating photoswitches and biological investigations including 

reversible, light-induced control of photochromic ligands when bound to the receptor are in 

progress. 

 

4. Experimental section  

Starting materials were purchased from commercial suppliers and used without any further 

purification. Solvents were used in p.a. quality and dried according to common procedures, if 

necessary. Dry nitrogen was used as inert gas atmosphere. Thin-layer chromatography (TLC) 

for reaction monitoring was performed with alumina plates coated with Merck silica gel 60 F254 

(layer thickness: 0.2 mm) and analyzed under UV-light (254 nm). Flash column 

chromatography was performed with Sigma Aldrich MN silica gel 60M (0.040-0.063 mm, 230-
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400 mesh) as stationary phase or a reversed phase column (KP-C18-HS) on a Biotage Isolera 

One automated flash purification system with UV-Vis detector. NMR spectra were recorded 

using a Bruker Avance 300 (1H: 300 MHz, 13C: 75 MHz, T = 295 K), Bruker Avance 360 (1H: 

360 MHz, 13C: 91 MHz, T = 295 K), Bruker Avance 400 (1H 400.1: MHz, 13C: 100.6 MHz, T = 

300K) or a Bruker Avance 600 (1H: 600 MHz, 13C: 151 MHz, T = 295 K) instrument. The spectra 

are referenced against the NMR solvent and are reported as follows: 1H: chemical shift δ 

(ppm), multiplicity, integration, coupling constant (J in Hz). 13C: chemical shift δ (ppm), 

abbreviations: (+) = primary/tertiary, (−) = secondary, (q) = quaternary carbon. The assignment 

resulted from DEPT, COSY, HMBC and HSQC experiments. Mass spectra were measured 

with a Finnigan MAT 95, Finnigan MAT SSQ 710 A, ThermoQuest Finnigan TSQ 7000 or an 

Agilent Q-TOF 6540 UHD instrument. Standard hand-held lamps (Herolab, 312 nm, 6 W) and 

LEDs with 365 nm (3.2 W) 400 nm (2.5 W) were used for visualizing TLC and to perform the 

ring closure reactions. The ring opening reactions were performed using LEDs with 505 nm 

(2.5 W) and 530 nm (2.5 W) emission maximum. Absorption spectra were recorded on a Varian 

Cary 50 Bio UV/Vis spectrophotometer. Preparative HPLC was performed on a Knauer HPLC 

(column: Luna 10 250 x 21 mm; flow: 3 mL/min, solvent A: H2O [0.1 Vol% TFA], solvent B: 

MeCN à prep-HPLC-1) and on an Agilent1100 Series (Column: Phenomenex Luna 10, C18, 

100A, 250 x 21.2 mm, flow 20 mL/min, solvent A: H2O [0.05 Vol% TFA], solvent B: MeCN à 

prep-HPLC-2). Photostationary states of the final compounds were measured on an Agilent 

1290 Series HPLC (Column: Phenomenex Luna C18, 3 µm, 150 x 2.00 mm, 100 Å; flow: 

0.3 mL/min) and Agilent 1220 Infinity LC System (column: Phenomenex Luna, 3µ C18(2) 100A, 

150 x 2.0 mm, 100 Å, 40 °C). All biological investigations were performed in the group of Prof. 

Dr. P. Gmeiner by Dr. H. Hübner (University of Erlangen-Nürnberg). 

 

4.1 Synthesis 

Compound 2: 4-(2-Methoxyphenyl)-1-[2-(N-phthalimido)ethyl]piperazine  

 

  C21H23N3O3, MW = 365.43 g/mol 

 

1-(2-Methoxyphenyl)piperazine (673 mg, 3.5 mmol, 1.0 eq) and N-(2-bromoethyl)phthalimide 

(1.07 g, 4.2 mmol, 1.2 eq) were dissolved in MeCN (12 mL). K2CO3 (725 mg, 5.2 mmol, 1.5 

eq) and a catalytic amount of KI were added and the reaction mixture was stirred under reflux 

for 5 h. After cooling down to room temperature, the precipitate was filtered off and washed 

with acetonitrile. The solvent was evaporated and the crude product was purified via column 

N

O

N
N

O

O
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chromatography (CH2Cl2/MeOH, 100:1) to yield 2 (914 mg, 2.5 mmol, 71%) as a colorless 

solid. 

 

Analytical data as described in literature.16 

 

Compound 3: 1-(2-Aminoethyl)-4-(2-methoxyphenyl)piperazine  

 

  C13H21N3O, MW = 235.33 g/mol 

 

4-(2-Methoxyphenyl)-1-[2-(N-phthalimido)ethyl]piperazine (2) (350 mg, 0.96 mmol, 1.0 eq) 

was dissolved in EtOH (2.0 mL) and 80% hydrazine hydrate solution (90 µL, 1.4 mmol, 1.5 eq) 

was added. The reaction mixture was stirred under reflux for 2 h, then HCl (2 M, 1.1 mL) was 

added and stirring was continued under reflux for two hours. After cooling down to room 

temperature, the precipitate was filtered off. The solvent was evaporated and the residue was 

dissolved in H2O.  The pH was adjusted to 8 with NaOH (1 M) and the product was extracted 

with CH2Cl2. The combined organic layers were dried over Na2SO4 and the solvent was 

evaporated. The crude product was purified by flash chromatography (CH2Cl2/MeOH, 40:1 à 

12:1) to yield 3 (178 mg, 0.76 mmol, 73%) as a colorless solid.  

 

Analytical data as described in literature.16 

 

Compound 4: 4-(2-Methoxyphenyl)-1-[4-(N-phthalimido)butyl]piperazine 

 

  C23H27N3O3, MW = 393.49 g/mol 

  

Compound 4 was prepared as described for 2, using a solution of 1-(2-

methoxyphenyl)piperazine (600 mg, 3.1 mmol, 1.0 eq), N-(4- bromobutyl)phthalimide (967 mg, 

3.4 mmol, 1.1 eq), K2CO3 (646 mg, 4.7 mmol, 1.5 eq) and a catalytic amount of KI in MeCN 

(10 mL), allowing a reaction time of 16h. Purification of the crude product by column 

chromatography yielded 4 (1.1 g, 2.8 mmol, 88%) as yellow oil.  
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Analytical data as described in literature.16 

 

Compound 5: 1-(4-Aminobutyl)-4-(2-methoxyphenyl)piperazine  

 

  C15H25N3O, MW = 263.39 g/mol 

 

Compound 5 was prepared as described for 3, using a solution of 4-(2-methoxyphenyl)-1-[4-

(N-phthalimido)butyl]piperazine (4) (260 mg, 0.66 mmol, 1.0 eq), 80% hydrazine hydrate 

solution (62 µL, 0.99 mmol,1.5 eq) in EtOH (1.3 mL) and HCl (2 M, 0.7 mL). Purification of the 

crude product by flash chromatography yielded 5 (137 mg, 0.52 mmol, 79%) as a light yellow 

oil.  

 

Analytical data as described in literature.16   

 

Compound 6: 4-(2-Methylthiophenyl)-1-[2-(N-phthalimido)ethyl]piperazine  

 

  C21H23N3O2S, MW = 381.49 g/mol 

 

Compound 6 was prepared as described for 2, using a solution of 1-(2-(methylthio)-

phenyl)piperazine (650 mg, 3.1 mmol, 1.0 eq), N-(2-bromoethyl)phthalimide (871 mg, 

3.4 mmol, 1.1 eq), K2CO3 (646 mg, 4.7 mmol, 1.5 eq) and a catalytic amount of KI in MeCN 

(10 mL), allowing a reaction time of 16h. Purification of the crude product by column 

chromatography yielded 6 (890 mg, 2.3 mmol, 75%) as a yellow solid.  

 
1H-NMR (360 MHz, CDCl3): δ = 2.40 (s, 3H), 2.59 – 2.85 (m, 6H), 2.86 – 3.05 (m, 4H), 3.86 (t, 

J = 6.6 Hz, 2H), 6.98 – 7.04 (m, 1H), 7.05 – 7.15 (m, 3H), 7.71 (dd, J = 5.4, 3.1 Hz, 2H), 7.85 

(dd, J = 5.5, 3.0 Hz, 2H).  

 
13C-NMR (91 MHz, CDCl3): δ = 14.6 (+), 35.5 (−), 51.8 (−), 53.6 (−), 56.0 (−), 119.8 (+), 123.3 

(+), 124.4 (+), 125.0 (+), 132.4 (q), 134.0 (+), 135.0 (q), 149.7 (q), 168.5 (q);  

 

ESI-MS: m/z (%) = 381.9 (M+H+)  
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Compound 7: 1-(2-Aminoethyl)-4-(2-methylthiophenyl)piperazine  

 

  C13H21N3S, MW = 251.39 g/mol 

 

Compound 7 was prepared as described for 3, using a solution of 4-(2-methylthiophenyl)-1-[2-

(N-phthalimido)ethyl]piperazine (6) (400 mg, 1.0 mmol, 1.0 eq), 80% hydrazine hydrate 

solution (0.1 mL, 1.6 mmol, 1.6 eq) in EtOH (2.1 mL) and HCl (2 M, 1.2 mL). Purification of the 

crude product by flash chromatography yielded 7 (233 mg, 0.93 mmol, 82%) as a yellow oil.  

 
1H-NMR (360 MHz, CDCl3): δ = 2.41 (s, 3H), 2.51 (t, J = 6.2 Hz, 2H), 2.65 (m, 4H), 2.84 (t, 

J = 6.2 Hz, 2H), 3.08 – 2.97 (m, 4H), 7.16 – 7.02 (m, 4H);  

 
13C-NMR (151 MHz, CDCl3): δ = 14.6 (+), 39.1 (−), 51.8 (−), 53.8 (−), 61.4 (−), 119.7 (+), 124.4 

(+), 124.5 (+), 125.0 (+), 135.1 (q), 149.7 (q).  

 

ESI-MS: m/z (%) = 251.9 (M+H+)  

 

Compound 8: 4-(2-Methoxyphenyl)-1-[4-(N-phthalimido)butyl]piperazine  

 

  C23H27N3O2S, MW = 409.55 g/mol 

 

Compound 8 was prepared as described for 4, using a solution of 1-(2-

(methylthio)phenyl)piperazine (650 mg, 3.1 mmol, 1.0 eq), N-(4-bromobutyl)phthalimide 

(967 mg, 3.4 mmol, 1.1 eq), K2CO3 (646 mg, 4.7 mmol, 1.5 eq) and a catalytic amount of KI in 

MeCN (10 mL), allowing, a reaction time of 16 h. Purification of the crude product by column 

chromatography yielded 8 (1.15 g, 2.8 mmol, 90%) as a yellow solid.  

 
1H-NMR (360 MHz, CDCl3): δ = 1.53 – 1.68 (m, 2H), 1.68 – 1.90 (m, 2H), 2.40 (s, 3H), 2.44 – 

2.57 (m, 2H), 2.62 – 2.80 (m, 4H), 2.91 – 3.15 (m, 4H), 3.73 (t, J = 7.0 Hz, 2H), 7.01 – 7.07 

(m, 1H), 7.07 – 7.14 (m, 3H), 7.64 – 7.78 (m, 2H), 7.78 – 7.93 (m, 2H).  
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13C-NMR (91 MHz, CDCl3): δ = 14.6 (+), 24.3 (−), 26.8 (−), 38.0 (−), 51.6 (−), 53.7 (−), 58.2 

(−), 119.8 (+), 123.3 (+), 124.4 (+), 124.6 (+), 125.1 (+), 132.3 (q), 134.0 (+), 135.1 (q), 149.6 

(q), 168.6 (q). 

 

ESI-MS: m/z (%) = 410.3 (M+H+) 

 

Compound 9: 1-(4-Aminobutyl)-4-(2-methylthiophenyl)piperazine  

 

  C15H25N3S, MW = 279.45 g/mol 

 

Compound 9 was prepared as described for 3, using a solution of 4-(2-methoxyphenyl)-1-[4-

(N-phthalimido)butyl]piperazine (8) (400 mg, 0.98 mmol, 1.0 eq), 80% hydrazine hydrate 

solution (0.1 mL, 1.5 mmol, 1.5 eq) in EtOH (2 mL). Purification of the crude product by flash 

chromatography yielded 9 (156 mg, 0.56 mmol, 57%) as a yellow oil.  

 
1H-NMR (360 MHz, CDCl3): δ = 1.42 – 1.69 (m, 4H), 2.41 (s, 3H), 2.40 – 2.47 (m, 2H), 2.58 – 

2.69 (s, 4H), 2.69 – 2.89 (m, 2H), 2.93 – 3.15 (m, 4H), 7.02 – 7.18 (m, 4H).  

 
13C-NMR (151 MHz, CDCl3): δ = 14.6 (+), 24.6 (−), 31.9 (−), 42.2 (−), 51.8 (−), 53.8 (−), 58.7 

(−), 119.8 (+), 124.3 (+), 124.5 (+), 125.1 (+), 135.1 (q), 149.7 (q). 

 

ESI-MS: m/z (%) = 280.17 (M+H+)  

 

Compound 10: 2-[(N-Indan-2-yl)(propyl)amino]acetonitrile  

 

  C14H18N2, MW = 214.31 g/mol 

 

2-Propylaminoindane oxalate (210 mg, 0.82 mmol, 1.0 eq), K2CO3 (634 mg, 4.6 mmol, 5.6 eq) 

and KI (136 mg, 0.82 mmol, 1.0 eq) were suspended in MeCN (5.5 mL) and stirred for 5 min. 

Chloroacetonitrile (0.13 mL, 2.0 mmol, 2.4 eq) was added dropwise and the mixture was stirred 

under reflux for 2 h. After cooling down to room temperature, the solvent was removed under 

reduced pressure. Water was added to the residue and the pH was adjusted to 7 with NaOH 

(1 M). The product was extracted with CH2Cl2. The organic layers were dried over Na2SO4 and 
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evaporated. Purification of the crude product by flash chromatography (PE/EtOAc, 10:1) 

yielded 10 (153 mg, 0.71 mmol, 89%) as a yellow oil.  

 
1H-NMR (600 MHz, CDCl3): δ = 0.95 (t, J = 7.4 Hz, 3H), 1.53 (dq, J = 14.7, 7.3 Hz, 2H), 2.56 

– 2.67 (m, 2H), 2.88 (dd, J = 14.8, 9.2 Hz, 2H), 3.14 (dd, J = 14.7, 7.4 Hz, 2H), 3.47 – 3.59 (m, 

1H), 3.67 (s, 2H), 7.11 – 7.17 (m, 2H), 7.17 – 7.22 (m, 2H).  

 
13C-NMR (151 MHz, CDCl3): δ = 11.8 (+), 20.6 (−), 37.9 (C1, C3), 40.2 (−), 53.6 (−), 64.3 (+), 

115.5 (q), 124.6 (+), 126.8 (+), 141.0 (q).  

 

ESI-MS: m/z (%) = 215.0 (M+H+)  

 

Compound 11: 2-[(N-Indan-2-yl)(propyl)amino]ethane-1-amine  

 

  C14H22N2, MW = 218.34 g/mol 

 

2-[(N-Indan-2-yl)(propyl)amino]acetonitrile (10) (149 mg, 0.69 mmol, 1.0 eq) was dissolved in 

Et2O (7 mL) and cooled to 0°C. LiAlH4 (0.35 mL, 1.4 mmol, 2.0 eq) was added dropwise and 

the mixture was stirred at room temperature for 1 h. Saturated NaHCO3 was added at 0°C. 

The precipitate was filtered off and the product was extracted with CH2Cl2. The organic layers 

were dried over Mg2SO4 and evaporated. Purification of the crude product by flash 

chromatography (CH2Cl2/MeOH, 15:1, 0.1% NH3) yielded 11 (107 mg, 0.49 mmol, 71%) as a 

colorless oil.  

 
1H-NMR (600 MHz, CDCl3): δ = 0.89 (t, J = 7.4 Hz, 3H), 1.46 – 1.56 (m, 2H), 2.47 – 2.56 (m, 

2H), 2.60 (t, J = 6.1 Hz, 2H), 2.80 (m, 2H), 2.90 (dd, J = 15.5, 8.3 Hz, 2H), 3.03 (dd, J = 15.5, 

7.9 Hz, 2H), 3.74 (p, J = 8.1 Hz, 1H), 7.10 – 7.15 (m, 2H), 7.17 (dt, J = 7.2, 3.6 Hz, 2H).  

 
13C-NMR (151 MHz, CDCl3): δ = 12.0 (+), 20.8 (−), 36.4 (−), 40.2 (−), 53.9 (−), 54.0 (−), 63.0 

(+), 124.6 (+), 126.4 (+), 142.0 (q). 

 

ESI-MS: m/z (%) = 219.0 (M+H+) 
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Compound 12: 4-[(N-Indan-2-yl)(propyl)amino]butyronitrile  

 

  C16H22N2, MW = 242.37 g/mol 

 

Compound 12 was prepared as described for 10, using a solution of 2-propylaminoindane 

oxalate (80 mg, 0.38 mmol, 1.0 eq), K2CO3 (294 mg, 2.1 mmol, 5.5 eq), KI (63 mg, 0.38 mmol, 

1.0 eq) and 4-bromobutyronitrile (90 µL, 0.91 mmol, 2.4 eq) in MeCN (2.5 mL). Purification of 

the crude product by flash chromatography (PE/EtOAc, 9:1) yielded 12 (81 mg, 0.33 mmol, 

88%) as a brownish oil.  

 

Analytical data as described in literature.2 

 

Compound 13: 4-[(N-Indan-2-yl)(propyl)amino]butane-1-amine  

 

  C16H26N2, MW = 246.40 g/mol 

 

Compound 13 was prepared as described for 11, using a solution of 4-[(N-indan-2-yl)(propyl) 

amino]butyronitrile (30 mg, 0.12 mmol, 1.0 eq) and LiAlH4 (75 µL, 0.30 mmol, 2.5 eq) in Et2O 

(0.85 mL). Purification of the crude product by flash chromatography (CH2Cl2/MeOH 15:1, 

0.1% NH3) yielded 13 (18 mg, 0.073 mmol, 57%) as a colorless oil.  

 

Analytical data as described in literature.18 

 

Compound 15: 4-[4-Benzyl-5-(benzyloxy)-2H-benzo[b][1,4]oxazin-3(4H)-one-8-yl]-1-

[2-(N-phthalimido)ethyl] piperazine  

 

  C36H34N4O5, MW = 602.69 g/mol 
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Compound 15 was prepared as described for 2, using a solution of 4-[4-benzyl-5-(benzyloxy)-

2H-benzo[b][1,4]oxazin-3(4H)-one-8-yl]piperazine  (14) (339 mg, 0.79  mmol, 1.0 eq) and N-

(2-bromoethyl) phthalimide (220 mg, 0.89  mmol, 1.1 eq) , K2CO3 (163 g, 1.18 mmol, 1.5 eq) 

and a catalytic amount of KI in MeCN (8 mL). Purification by flash chromatography 

(CH2Cl2/MeOH 50:1) to yielded 15 (318 mg, 0.53 mmol, 67 %) as a colorless solid.  

 
1H-NMR (600 MHz, CDCl3): δ = 2.58 – 2.80 (m, 6H), 2.84 – 3.02 (m, 4H), 3.85 (t, J = 6.3 Hz, 

2H), 4.56 (s, 2H), 4.90 (s, 2H), 5.38 (s, 2H), 6.50 (d, J = 9.0 Hz, 1H), 6.56 (d, J = 9.0 Hz, 1H), 

7.08 – 7.17 (m, 3H), 7.28 – 7.32 (m, 2H), 7.32 – 7.39 (m, 3H), 7.69 – 7.73 (m, 2H), 7.82 – 7.89 

(m, 2H).  
 

13C-NMR (91 MHz , CDCl3): δ = 35.4 (−), 46.8 (−), 51.2 (−), 53.3 (−), 55.9 (−), 68.9 (−), 71.6 

(−), 107.8 (+), 114.2 (+), 120.1 (q), 123.3 (+), 123.5 (q), 126.9 (+), 127.0 (+), 127.7 (+), 128.3 

(+), 128.3 (+), 128.8 (+), 132.4 (q), 134.0 (+), 134.1 (q), 136.5 (q), 137.4 (q), 142.7 (q), 145.1 

(q), 166.7 (q), 168.5 (q). 

 

ESI-MS: m/z (%) = 603.2 (M+H+) 

 

Compound 16: 1-(2-Aminoethyl)-4-[4-benzyl-5-(benzyloxy)-2H-benzo[b][1,4]oxazin-

3(4H)-one-8-yl]pipera-zine  

 

  C28H32N4O3, MW = 472.59 g/mol 

 

Compound 16 was prepared as described for 3, using a solution of 4-[4-benzyl-5-(benzyloxy)-

2H-benzo[b][1,4]oxazin-3(4H)-one-8-yl]-1-[2-(N-phthalimido)ethyl] piperazine (15) (310 mg, 

0.51 mmol, 1.0 eq) and 80% hydrazine hydrate solution (50 μL, 0.77 mmol, 1.5 eq) in EtOH 

(5 mL). Purification by flash chromatography (CH2Cl2/MeOH 20:1, 0.1% NH3) yielded 16 (206 

mg, 0.44 mmol, 85%) as a colorless solid.  

 
1H-NMR (600 MHz, D6-DMSO): δ = 2.51 – 2.60 (m, 6H), 2.81 – 2.95 (m, 6H), 4.60 (s, 2H), 5.02 

(s, 2H), 5.29 (s, 2H), 6.63 (d, J = 9.1 Hz, 1H), 6.71 (d, J = 9.1 Hz, 1H), 7.00 (d, J = 7.2 Hz, 2H), 

7.15 (t, J = 7.3 Hz, 1H), 7.21 (t, J = 7.4 Hz, 2H), 7.44 – 7.31 (m, 5H).  
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13C-NMR (91 MHz, D6-DMSO): δ = 35.8 (−), 45.6 (−), 50.3 (−), 52.6 (−), 54.7 (−), 68.2 (−), 70.7 

(−), 107.9 (+), 113.9 (+), 119.5 (q), 126.4 (+), 126.8 (+), 127.7 (+), 127.9 (+), 128.2 (+), 128.5 

(+), 135.5 (q), 136.5 (q), 137.4 (q), 142.1 (q), 144.2 (q), 166.3 (q).  

 

ESI-MS: m/z (%) = 473.3 (M+H+) 

 

Compound 17: 1-(2-Aminoethyl)-4-(5-Hydroxy-2H-benzo[b][1,4]oxazin-3(4H)-one-8-

yl)piper-azine  

 

  C14H20N4O3, MW = 292.34 g/mol 

 

1-(2-Aminoethyl)-4-[4-benzyl-5-(benzyloxy)-2H-benzo[b][1,4]oxazin-3(4H)-one-8-yl]piperaz-

ine (16) (120 mg, 0.25 mmol, 1.0 eq) was suspended in toluene (3.6 mL) and methansulfonic 

acid (0.2 mL, 2.5 mmol, 10 eq) was added. The reaction mixture was stirred under reflux for 3 

h. After cooling down to room temperature, the solvent was removed. Purification of the crude 

product by preparative flash chromatography (CH2Cl2/MeOH, 12:1, 0.5% NH3) yielded 17 

(65 mg, 0.22 mmol, 89%) as a colorless solid.  

 

1H-NMR (600 MHz, D6-DMSO): δ = 2.55 – 2.71 (m, 4H), 2.81 – 2.93 (m, 4H), 2.93 – 3.06 (m, 

2H), 3.10 – 3.24 (m, 2H), 4.48 (s, 2H), 6.44 (s, 2H), 9.78 (s, 1H), 9.48 (s, 1H).  

 
13C-NMR (101 MHz, D6-DMSO): δ = 33.5 (−), 47.9 (−), 51.9 (−), 52.6 (−), 66.9 (−), 108.6 (+), 

112.8 (+), 116.7 (q), 131.1 (q), 137.6 (q), 141.7 (q), 164.4 (q).  

 

ESI-MS: m/z (%) = 293.1 (M+H+) 

 

General preparation of diarylmaleimide based switches 21-24: 

To a suspension of 18 (61 mg, 0.17 mmol, 1.0 eq) and K2CO3 (23 mg, 0.17 mmol, 1.0 eq) in 

CH2Cl2 (1.5 mL) was added an amine of A or B (0.17 mmol, 1.0 eq). After stirring for 0.25 - 3 h 

at r.t., water (1 mL) was added and the aqueous phase was extracted with CH2Cl2 (2 x 4 mL). 

The combined organic phases were dried over MgSO4, filtered and the solvent was removed 

under reduced pressure. The crude product was first purified by automated flash column 

chromatography and second by preparative HPLC. 
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Compound 21: 3,4-Bis(5-chloro-2-methylthiophen-3-yl)-1-(2-(4-(2-methoxyphenyl)-

piperazin-1-yl)ethyl)-1H-pyrrole-2,5-dione 

 

  C27H27Cl2N3O3S2, MW = 576.55 g/mol 

 

Yellow solid: 68% yield; reaction time: 2 h; flash chromatography: CH2Cl2/MeOH: 0-5% MeOH; 

preparative HPLC (prep-HPLC-1, gradient A/B: 0-25 min: 80/20, 25-35 min: 5/95; tR = 19.6 min)  

 

TLC: (CH2Cl2/MeOH, 10:1) Rf = 0.10  

 
1H-NMR (600 MHz, CDCl3) δ = 1.98 (s, 6H), 3.08-3.20 (m, 2H), 3.30-3.40 (m, 2H), 3.43 (t, 2H, 

J = 5.7 Hz), 3.46-3.57 (m, 2H), 3.87 (s, 3H), 3.92-4.02 (m, 2H), 4.05 (t, 2H, J = 5.7 Hz), 6.88- 

6.90 (m, 3H), 6.92- 6.98 (m, 2H), 7.07-7.10 (m, 1H).  

 
13C-NMR (151 MHz, CDCl3) δ = 14.8 (+), 32.5 (−), 47.4 (−), 52.3 (−), 55.0 (−), 55.5 (+), 111.4 

(+), 119.1 (+), 121.3 (+), 124.9 (+), 125.7 (q), 127.0 (q), 127.3 (+), 133.1 (q), 138.2 (q), 140.9 

(q), 152.0 (q), 169.8 (q).  

 

HR-MS (ESI): calcd. for C27H28Cl2N3O3S2 (M+H+), m/z = 576.0944, found 576.0945  

 

UV/Vis (50 µM in DMSO): open isomer: λmax = 261 nm, 390 nm; closed isomer: λmax = 356 nm, 

509 nm. 

 

Compound 22: 3,4-Bis(5-chloro-2-methylthiophen-3-yl)-1-(4-(4-(2-methoxyphenyl)-

piperazin-1-yl)butyl)-1H-pyrrole-2,5-dione 

 

  C29H31Cl2N3O3S2, MW = 604.61 g/mol 
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Orange solid: 80% yield; reaction time: 0.25 h; flash chromatography: CH2Cl2/MeOH: 0-10% 

MeOH; preparative HPLC (prep-HPLC-1, gradient A/B: 0-25 min: 80/20, 25-35 min 5/95; 

tR = 19.2 min)  

 

TLC: (CH2Cl2/MeOH, 10:1) Rf = 0.63 

 
1H-NMR (600 MHz, CDCl3) δ = 1.72-1.81 (m, 2H), 1.82-1.91 (m, 2H), 1.94 (s, 6H), 3.09- 3.17 

(m, 4H), 3.27 (t, 2H, J = 12.3 Hz), 3.49-3.55 (m, 2H), 3.62- 3.71 (m, 4H), 3.87 (s, 3H), 6.86- 

6.89 (m, 1H), 6.90 (s, 2H), 6.92- 6.97 (m, 2H), 7.08 (ddd, J = 8.1, 6.2, 2.8 Hz, 1H);  

 
13C-NMR (151 MHz, CDCl3) δ = 14.9 (+), 20.8 (−), 25.8 (−), 37.2 (−), 47.6 (−), 52.2(−), 55.5 

(+), 56.5 (−), 111.4 (+), 119.0 (+), 121.3 (+), 124.7 (+), 125.8 (q), 127.1 (+), 127.2 (q), 132.5 

(q), 138.6 (q), 140.5 (q), 152.1 (q), 170.1 (q);  

 

HR-MS (ESI): calcd. for C29H32Cl2N3O3S2 (M+H+), m/z = 604.1257, found 604.1253  

 

UV/Vis (100 µM in DMSO): open isomer: λmax = 260 nm, 378 nm; closed isomer: λmax = 355 nm, 

493 nm. 

 

Compound 23: 3,4-Bis(5-chloro-2-methylthiophen-3-yl)-1-(2-((2,3-dihydro-1H-inden-2-

yl)-(propyl)amino)ethyl)-1H-pyrrole-2,5-dione 

 

  C28H28Cl2N2O2S2, MW = 559.56 g/mol 

 

Orange solid: 15% yield; reaction time: 3 h; no flash chromatography, preparative HPLC (prep-

HPLC-1, solvent A: H2O [0.05 Vol% TFA], solvent B: MeCN, gradient A/B: 0-30 min: 60/40, 

30-40 min 5/95; tR = 21.6 min) 

 
1H-NMR (300 MHz, D6-DMSO + D2O) δ = 0.97 (t, 3H, J = 7.3 Hz), 1.68-1.81 (m, 2H), 1.91 (s, 

6H), 3.18-3.26 (m, 4H), 3.30-3.37 (m, 4H), 3.13-3.21 (m, 4H), 3.29- 3.40 (m, 4H), 3.88-4.00 

(m, 2H), 4.31-4.44 (m, 1H), 6.99 (s, 2H), 7.19-7.23 (m, 2H), 7.25-7.29 (m, 2H).  
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13C-NMR (151 MHz, D6-DMSO) δ = 10.9 (+), 14.3 (+), 16.3 (−), 32.6 (−), 34.3 (−), 47.1 (−), 

51.9 (−), 62.9 (+), 124.4 (+), 125.0 (q), 126.2 (q), 127.2 (+), 127.6 (+), 132.7 (q), 138.9 (q), 

140.2 (q), 169.4 (q);  

 

HR-MS (ESI): calcd. for C28H29Cl2N2O2S2 (M+H+), m/z = 559.1042, found 559.1048 

 

UV/Vis (100 µM in DMSO): open isomer: λmax = 264 nm, 360 nm; closed isomer: λmax = 355 nm, 

500 nm. 

 

Compound 24: 3,4-Bis(5-chloro-2-methylthiophen-3-yl)-1-(4-((2,3-dihydro-1H-inden-2-

yl)-(propyl)amino)butyl)-1H-pyrrole-2,5-dione  

 

  C30H32Cl2N2O2S2, MW = 587.62 g/mol 

 

Orange solid: 86% yield; reaction time: 3 h; flash chromatography: CH2Cl2/MeOH: 0-10% 

MeOH; preparative HPLC (prep-HPLC-1, gradient A/B: 0-30 min: 60/40, 30-40 min 2/98; 

tR = 16.7 min) 

 

TLC: (CH2Cl2/MeOH, 10:1) Rf = 0.14   

 
1H-NMR (400 MHz, D6-DMSO) δ = 0.92 (t, 3H, J = 7.3 Hz), 1.59-1.83 (m, 6H), 1.91 (s, 6H), 

3.03- 3.10 (m, 2H), 3.12-3.19 (m, 2H), 3.24-3.36 (m, 4H), 3.55 (t, 2H, J = 6.7 Hz), 4.13-4.29 

(m, 1H), 6.99 (s, 2H), 7.18-7.21 (m, 2H), 7.22-7.26 (m, 2H), 10.32 (bs, 1H).  

 
13C-NMR (101 MHz, D6-DMSO): δ = 10.9 (+), 14.2 (+), 16.5 (−), 20.3 (−), 25.2 (−), 34.3 (−), 

37.1 (−), 49.9 (−), 51.9 (−), 62.7 (+), 124.2 (q), 124.3 (q), 124.7 (+), 126.4 (q), 127.1 (+), 127.7 

(+), 132.4 (q), 139.1 (q), 139.9 (q), 169.8 (q);  

 

HR-MS (ESI): calcd. for C30H33Cl2N2O2S2 (M+H+), m/z = 587.1355, found 587.1359;  

 

UV/Vis (50 µM in DMSO): open isomer: λmax = 263 nm, 391 nm; closed isomer: λmax = 354 nm, 

504 nm. 
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Compound 25: 3,4-bis(5-chloro-2-methylthiophen-3-yl)-1-(2-(4-(5-hydroxy-3-oxo-3,4-

dihydro-2H-benzo[b][1,4]oxazin-8-yl)piperazin-1-yl)ethyl)-1H-pyrrole-2,5-dione 

 

  C28H26Cl2N4O5S2, MW = 633.56 g/mol 

 

Dithienylmaleimide 18 (50.0 mg, 0.14 mmol, 1 eq) was dissolved in DMF (5 mL). Than K2CO3 

(19.1 mg, 0.14 mmol, 1eq) and amine 17 (40.5 mg, 0.14 mmol, 1 eq) were added and the 

mixture was stirred for 24 h at room temperature. Water (5 mL) was added and the aqueous 

layer was extracted with CH2Cl2 (3x 50 mL). The combined organic layers were dried over 

Na2SO4 and the solvent was reduced in vacuo. The crude product was first purified by 

automated flash chromatography (CH2Cl2/MeOH: 0-10% MeOH) and second purified by 

preparative HPLC (prep-HPLC-2, gradient A/B: 0-15 min: 30/70, 15-20 min: 2/98, tR = 8.2 min) 

to obtain 25 (6.0 mg, 9.5 µmol, 9%) as a light yellow solid.  

 

TLC: (CH2Cl2/MeOH, 20:1) Rf = 0.55  

 
1H-NMR (400 MHz, D6-DMSO): δ = 1.95 (s, 6H), 2.82-2.96 (m, 2H), 3.22-3.35 (m, 2H), 3.35-

3.48 (m, 4H), 3.67-3.73 (m, 2H), 3.40-3.96 (m, 2H), 4.51 (s, 2H), 6.44 (d, J = 8.7 Hz, 1H), 6.50 

(d, J = 8.7 Hz, 1H), 6.98 (s, 2H).  

 
13C-NMR (151 MHz, D6-DMSO): δ = 14.7 (+), 32.7 (−), 47.6 (−), 51.4 (−), 53.2 (−), 66.8 (−), 

108.4 (+), 112.5 (+), 116.8 (q), 125.0 (q), 126.2 (q), 127.6 (+), 131.6 (q), 132.7 (q), 137.5 (q), 

140.3 (q), 141.4 (q), 164.3 (q), 169.5 (q).  

 

HR-MS (ESI): calcd. for C28H26Cl2N4O5S2 (M+H+), m/z = 633.0794, found 633.08  

 

UV/Vis (50µM in DMSO): open isomer: λmax = 370 nm, closed isomer: λmax = 564 nm. 

 

General preparation of cyclopentene-DTE based switches 26-31: 

To a solution of 20 (44 mg, 0.13 mmol, 1.0 eq) and HBTU (46 mg, 0.12 mmol, 0.95 eq) in 

CH2Cl2 (1 mL) at 0 °C were added DIPEA (45 µL, 0.26 mmol, 2.0 eq) and a solution of  amines 

A or B (0.13 mmol, 1.0 eq) in CH2Cl2 (0.2 mL). The reaction was allowed to come to RT 

overnight. Water (2 mL) was added and the aqueous phase was extracted with CH2Cl2 

S

S

Cl

Cl

N

O

O

NN

O NH

OH

O



  CHAPTER 1 

 43 

(3 x 3 mL). The combined organic phases were dried over MgSO4, filtered and the solvent was 

removed under reduced pressure. The crude product at 26 and 27 was first purified by 

automated flash column chromatography (CH2Cl2/MeOH: 0-10% MeOH). In general, the 

cyclopentene-DTEs 26-31 were then purified by preparative HPLC. 

 

Compound 26: 4-(2-(5-Chloro-2-methylthiophen-3-yl)cyclopent-1-en-1-yl)-N-(4-(4-(2-

methoxyphenyl)piperazin-1-yl)butyl)-5-methylthiophene-2-carboxamide 

 

  C29H34ClN3O2S2, MW = 555.18 g/mol 

 

Light beige solid: 19% yield; preparative HPLC (prep-HPLC-1, gradient A/B: 0-25 min: 60/40, 

25-40 min 5/95; tR = 17.5 min)  

 

 TLC: (CH2Cl2/MeOH, 10:1) Rf = 0.29 

 
1H-NMR (600 MHz, D6-DMSO): δ = 1.82 (s, 3H), 1.91 (s, 3H), 1.97-2.03 (m, 2H), 2.71-2.77 (m, 

4H), 2.89-2.95 (m, 2H), 3.21- 3.28 (m, 2H), 3.31-3.36 (m, 2H), 3.50-3.54 (m, 2H), 3.56-3.61 

(m, 2H), 3.63-3.68 (m, 2H), 3.79 (s, 3H), 6.81 (s, 1H), 6.89-6.92 (m, 1H), 6.94-6.96 (m, 1H), 

6.97-6.99 (m, 1H), 7.00-7.04 (m, 1H), 7.51 (s, 1H), 8.62 (t, 1H, J = 5.7 Hz), 9.47 (bs, 1H).  

 
13C-NMR (151 MHz, D6-DMSO): δ = 13.8 (+), 14.2 (+), 22.3 (−), 34.0 (−), 37.8 (−), 38.1 (−), 

47.0 (−), 51.5 (−), 54.8 (−), 55.4 (+), 111.9 (+), 118.3 (+), 120.8 (+), 123.5 (q), 123.6 (+), 127.3 

(+), 129.3 (+), 133.0 (q), 134.0 (q), 134.1 (q), 134.9 (q), 134.9 (q), 136.1 (q),139.2 (q), 139.6 

(q), 151.8 (q), 161.6 (q).  

 

HR-MS (ESI): calcd. for C29H35ClN3O2S2 (M+H+), m/z = 556.1854, found 556.1857  

 

UV/Vis (50 µM in DMSO): open isomer: λmax = 259 nm; closed isomer: λmax = 323 nm, 491 nm. 
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Compound 27: 4-(2-(5-Chloro-2-methylthiophen-3-yl)cyclopent-1-en-1-yl)-N-(2-(4-(2-

me-thoxyphenyl)piperazin-1-yl)ethyl)-5-methylthiophene-2-carboxamide 

 

  C31H38ClN3O2S2, MW = 583.21 g/mol 

 

Light beige solid: 38% yield; after stirring over night + 2 d at r.t.; preparative HPLC (prep-HPLC-

1, gradient A/B: 0-25 min: 60/40, 25-40 min 5/95; tR = 14.5 min)  

 

TLC: (CH2Cl2/MeOH 100:1) Rf = 0.42  

 
1H-NMR (600 MHz, D6-DMSO): δ = 1.49-1.58 (m, 2H), 1.64-1.73 (m, 2H), 1.81 (s, 3H), 1.89 

(s, 3H), 1.95-2.04 (m, 2H), 2.68-2.78 (m, 4H), 2.86-2.93 (m, 2H), 3.13- 3.20 (m, 4H), 3.21-3.26 

(m, 2H), 3.49-3.56 (m, 4H), 3.78 (s, 3H), 6.81 (s, 1H), 6.88-6.92 (m, 1H), 6.93-6.95 (m, 1H), 

6.97-6.99 (m, 1H), 7.00-7.04 (m, 1H), 7.50 (s, 1H), 8.38 (t, 1H, J = 5.7 Hz), 9.37 (bs, 1H).  

 
13C-NMR (151 MHz, D6-DMSO): δ = 13.8 (+), 14.1 (+), 20.9 (−), 22.3 (−), 26.3 (−), 37.8 (−), 

38.1 (−), 38.4 (−), 47.1 (−), 51.3 (−), 55.3 (−), 55.4 (+), 111.9 (+), 118.3 (+), 120.8 (+), 123.5 

(q), 123.6 (+), 127.3 (+), 128.6 (+), 133.0 (q), 133.9 (q), 134.3 (q), 135.0 (q), 135.8 (q), 136.0 

(q),138.9 (q), 139.3 (q), 151.8 (q), 160.9 (q).  

 

HR-MS (ESI): calcd. for C31H39ClN3O2S2 (M+H+), m/z = 584.2167, found 584.2169.  

 

UV/Vis (50 µM in DMSO): open isomer: λmax = 270 nm; closed isomer: λmax = 490 nm. 
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Compound 28: 4-(2-(5-Chloro-2-methylthiophen-3-yl)cyclopent-1-en-1-yl)-5-methyl-N-

(2-(4-(2-(methylthio)phenyl)piperazin-1-yl)ethyl)thiophene-2-carboxamide  

 

   C29H34ClN3OS3, MW = 572.24 g/mol 

 

Light beige solid: 29% yield; preparative HPLC (prep-HPLC-1, gradient A/B: 0-35 min: 60/40, 

35-40 min 5/95; tR = 17.8 min)  

 
1H-NMR (600 MHz, D6-DMSO): δ = 1.83 (s, 3H), 1.92 (s, 3H), 1.99-2.03 (m, 2H), 2.40 (s, 3H), 

2.72-2.78 (m, 4H), 2.97-3.05 (m, 2H), 3.16-3.29 (m, 4H), 3.35-3.43 (m, 2H), 3.55-3.62 (m, 2H), 

3.65-3.75 (m, 2H), 6.82 (s, 1H), 7.12-7.17 (m, 3H), 7.18-7.20 (m, 1H), 7.53 (s, 1H), 8.63 (bs, 

1H), 9.65 (bs, 1H).  

 
13C-NMR (151 MHz, D6-DMSO): δ = 13.6 (+), 13.8 (+), 14.2 (+), 22.3 (−), 34.1 (−), 37.9 (−), 

38.1 (−), 48.1 (−), 51.9 (−), 55.0 (−), 119.7 (+), 123.7 (q), 124.6 (+), 125.0 (+), 127.3 (+), 129.3 

(+), 133.0 (q), 134.1 (q), 134.2 (q), 134. 4 (q), 134.9 (q), 136.1 (q), 139.7 (q), 147.1 (q), 157.8 

(q), 158.0 (q).  

 

HR-MS (ESI): calcd. for for C29H34ClN3NaOS3 (M+Na+), m/z = 594.1445, found 594.1446  

 

UV/Vis (50 µM in DMSO): open isomer: λmax = 262 nm; closed isomer: λmax = 491 nm. 

 

Compound 29: 4-(2-(5-Chloro-2-methylthiophen-3-yl)cyclopent-1-en-1-yl)-5-methyl-N-

(4-(4-(2-(methylthio)phenyl)piperazin-1-yl)butyl)thiophene-2-carboxamide  

 

  C31H38ClN3OS3, MW = 600.30 g/mol 
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Light beige solid: 26% yield; preparative HPLC (prep-HPLC-1, gradient A/B: 0-25 min: 60/40, 

30-35 min 5/95; tR = 16.1 min)  

 
1H-NMR (600 MHz, D6-DMSO): δ = 1.52-1.60 (m, 2H), 1.67-1.76 (m, 2H), 1.83 (s, 3H), 1.91 

(s, 3H), 1.98-2.06 (m, 2H), 2.41 (s, 3H), 2.73-2.79 (m, 4H), 2.96-3.05 (m, 2H), 3.10- 3.18 (m, 

2H), 3.20-3.29 (m, 4H), 3.30-3.35 (m, 2H), 3.56-3.62 (m, 2H), 6.84 (s, 1H), 7.13-7.15 (m, 1H), 

7.17-7.19 (m, 2H), 7.19-7.22 (m, 1H), 7.53 (s, 1H), 8.41 (t, 1H, J = 5.7 Hz), 9.59 (bs, 1H).  

 
13C-NMR (151 MHz, D6-DMSO): δ = 14.0 (+), 14.3 (+), 14.6 (+), 21.4 (−), 22.8 (−), 26.8 (−), 

38.3 (−), 38.6 (−), 38.8 (−), 48.6 (−), 52.1 (−), 55.8 (−), 120.2 (+), 124.1 (q), 125.1 (+), 125.5 

(+), 125.7 (+), 127.8 (+), 129.1 (+), 133.5 (q), 134.4 (q), 134.8 (q), 134.9 (q), 135.5 (q), 136.3 

(q), 136.4 (q),139.4 (q), 147.8 (q), 161.4 (q).  

 

HR-MS (ESI): calcd. for C31H38ClN3OS3 (M+H+), m/z = 600.1943, found 600.1947 

 

UV/Vis (50 µM in DMSO): open isomer: λmax = 259 nm; closed isomer: λmax = 489 nm. 

 

Compound 30: 4-(2-(5-Chloro-2-methylthiophen-3-yl)cyclopent-1-en-1-yl)-N-(2-((2,3-

dihydro-1H-inden-2-yl)(propyl)amino)ethyl)-5-methylthiophene-2-carboxamide  

 

  C30H35ClN2OS2, MW = 539.19 g/mol 

 

Light beige solid: 26% yield; preparative HPLC (prep-HPLC-1, gradient A/B: 0-30 min: 60/40, 

30-40 min 5/95; tR = 17.1 min) 

 

TLC: (CH2Cl2/MeOH, 100:1) Rf = 0.42 

 
1H-NMR (600 MHz, D6-DMSO): δ = 0.92 (t, 3H, J = 7.3 Hz), 1.65-1.76 (m, 2H), 1.79 (s, 3H), 

1.90 (s, 3H), 1.95-2.04 (m, 2H), 2.69-2.77 (m, 4H), 3.13-3.21 (m, 4H), 3.29- 3.36 (m, 4H), 3.56-

3.64 (m, 2H), 4.27-4.36 (m, 1H), 6.81 (s, 1H), 7.19-7.22 (m, 2H), 7.24-7.26 (m, 2H), 7.50 (s, 

1H), 8.62-8.69 (m, 1H), 9.89 (bs, 1H).  
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13C-NMR (151 MHz, D6-DMSO): δ = 11.3 (+), 14.3 (+), 14.7 (+), 16.9 (−), 22.8 (−), 34.7 (−), 

34.8 (−), 34.9 (−), 38.3 (−), 38.6 (−), 49.6 (−), 52.7 (−), 63.5 (+), 124.2 (q), 124.9 (+), 127.1 (q), 

127.6 (+), 127.7 (+), 129.8 (+), 133.5 (q), 134.6 (q), 135.2 (q), 135.4 (q), 136.6 (q), 139.4 

(q),140.2 (q), 141.1 (q), 162.0 (q).  

 

HR-MS (ESI): calcd. for C30H35ClN2OS2 (M+H+), m/z = 539.1957; found 539.1960  

 

UV/Vis (100 µM in DMSO): open isomer: λmax = 262 nm; closed isomer: λmax = 494 nm. 

 

Compound 31: 4-(2-(5-Chloro-2-methylthiophen-3-yl)cyclopent-1-en-1-yl)-N-(4-((2,3-

dihydro-1H-inden-2-yl)(propyl)amino)butyl)-5-methylthiophene-2-carboxamide 

 

  C32H39ClN2OS2, MW = 567.25 g/mol 

 

Light beige solid: 70% yield; preparative HPLC (prep-HPLC-1, gradient A/B: 0-30 min: 60/40, 

30-40 min 5/95, tR = 20.2 min).  

 
1H-NMR (600 MHz, D6-DMSO): δ = 0.91 (t, 3H, J = 7.3 Hz), 1.52-1.59 (m, 2H), 1.63-1.68 (m, 

2H), 1.63-1.73 (m, 2H), 1.80 (s, 3H), 1.89 (s, 3H), 1.94-2.07 (m, 2H), 2.69-2.76 (m, 4H), 3.04- 

3.11 (m, 2H), 3.11-3.18 (m, 4H), 3.22-3.27 (m, 2H), 3.28-3.31 (m, 2H), 4.13-4.25 (m, 1H), 6.81 

(s, 1H), 7.19-7.21 (m, 2H), 7.22-7.26 (m, 2H), 7.50 (s, 1H), 8.36 (t, 1H, J = 5.7 Hz), 9.38 (bs, 

1H).  

 
13C-NMR (151 MHz, D6-DMSO): δ = 11.4 (+), 14.3 (+), 14.6 (+), 17.3 (−), 21.1 (−), 22.8 (−), 

26.7 (−), 34.8 (−), 34.9 (−), 38.3 (−), 38.5 (−), 38.6 (−), 50.9 (−), 52.6 (−), 63.3 (+), 124.1 (q), 

124.8 (+), 124.9 (+), 127.7 (+), 127.8 (+), 129.1 (+), 133.5 (q), 134.4 (q), 134.8 (q), 135.4 (q), 

136.2 (q), 136.4 (q), 139.4 (q), 139.5 (q), 139.5 (q), 161.5 (q).  

 

HR-MS (calcd. for C32H40ClN2OS2 (M+H+), m/z = 567.2265, found 567.2279 

 

UV/Vis (50 µM in DMSO): open isomer: λmax = 264 nm; closed isomer: λmax = 490 nm. 
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Compound 32: 4-(2-(5-chloro-2-methylthiophen-3-yl)cyclopent-1-en-1-yl)-N-(2-(4-(5-

hydroxy-3-oxo-3,4-dihydro-2H-benzo[b][1,4]oxazin-8-yl)piperazin-1-yl)ethyl)-5-

methylthiophene-2-carboxamide  

 

  C30H33ClN4O4S2, MW = 613.19 g/mol 

 

Compound 20 (20.0 mg, 0.059 mmol, 1.0 eq) and HBTU (21.3 mg, 0.06 mmol, 1.0 eq) were 

dissolved in DMF (2 mL). DIPEA (0.02 mL, 0.12 mmol, 2 eq) and a solution of amine 17 (17.3 

mg, 0.06 mmol, 1.0 eq) in DMF (0.5 mL) was added. The mixture was stirred at room 

temperature for 4h. The solvent was evaporated and the crude mixture was first purified by 

automated flash column chromatography (CH2Cl2/MeOH: 0-20% MeOH) and second purified 

by preparative HPLC (prep-HPLC-2, gradient A/B: 0-15 min: 70/30, 15-20 min: 5/95, tR = 14.1 

min) to afford 32 (2.00 mg, 0.003 mmol, 6%) as a light yellow solid.  

 

TLC: (CH2Cl2/MeOH, 20:1) Rf = 0.78  

 
1H-NMR (400 MHz, D6-DMSO): δ = 1.83 (s, 3H), 1.92 (s, 3H), 2.01 (qi, J = 7.3 Hz, 2H), 2.75 

(q, J = 6.9 Hz, 4H), 2.90 (t, J = 11.4 Hz, 2H), 3.17-3.27 (m, 2H), 3.35-3.41 (m, 4H), 3.54-3.68 

(m, 4H), 4.51 (s, 2H), 6.45 (d, J= 8.7 Hz, 1H), 6.50 (d, J= 8.8 Hz, 1H), 6.82 (s, 1H), 7.52 (s, 

1H), 8.62 (bs, 1H), 9.62 (bs, 1H), 9.88 (bs, 1H).  

 
13C-NMR (151 MHz, D6-DMSO): δ = 13.8 (+), 14.2 (+), 22.3 (−), 34.0 (−), 37.9 (−), 38.2 (−), 

47.7 (−), 51.5 (−), 54.9 (−), 66.8 (−), 108.4 (+), 112.5 (+), 116.8 (q), 123.7 (q), 127.3 (+), 129.3 

(+), 131.6 (q), 133.0 (q), 134.1 (q), 134.2 (q), 134.9 (q), 136.1 (q), 137.5 (q), 139.6 (q), 141.4 

(q), 161.6 (q), 164.3 (q).  

 

HR-MS (ESI): calcd. for C30H33ClN4O4S2 (M+H+), m/z = 613.1705, found 613.1708  

 

UV/VIS:(50µM in DMSO): open isomer: λmax = 263 nm, closed isomer: λmax = 503 nm. 
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Compound 34: 2-Methyl-1-(2-methylbenzo[b]thiophen-3-yl)propan-1-one  

 

  C13H14OS, MW = 218.31 g/mol 

 

A mixture of 2-methylbenzothiophene (1.1 g, 7.4 mmol, 1.0 eq) and isobutyryl chloride (0.9 

mL, 8.2 mmol, 1.1 eq) in dry toluene (40 mL) was cooled to 5 °C under stirring and nitrogen 

atmosphere. SnCl4 was dissolved in toluene (5 mL) and added dropwise to the reaction 

mixture. The solution was stirred 2 h at room temperature before it was quenched by adding 

HCl-solution (2 M, 20 mL). After separation of the organic layer, it was dried over Na2SO4 and 

the solvent was evaporated. The crude product 34 was recrystallized from hexane to obtain a 

yellow solid (1.1 g, 5.0 mmol, 70%).  

 

TLC: (PE/EtOAc, 20:1) Rf = 0.46  

 
1H-NMR (400 MHz, CDCl3): δ = 1.23 (d, J = 6.8 Hz, 6H), 2.67 (s, 3H), 3.36 (sept, J  = 6.8 Hz, 

1H), 7.29-7.41 (m, 2H), 7.76 (d, J  = 8.0 Hz, 1H), 7.84 (d, J  = 8.0 Hz, 1H).  

 
13C-NMR (101 MHz, CDCl3): δ = 15.9 (+), 18.5 (+), 40.6 (+), 121.9 (+), 122.9 (+), 124.3 (+), 

125.0 (+), 133.5 (q), 137.9 (q), 138.5 (q), 144.9 (q), 205.0 (q).  

 

HR-MS (ESI): calcd. for C13H14OS (M+H+), m/z = 219.0838, found 219.0839 

 

Compound 36: (anti/syn)-Ethyl 2-isopropyl-2-(2-methylbenzo[b]thiophen-3-yl)-5-oxo-

4- (propan-2-ylidene)tetrahydrofuran-3-carboxylate  

 

  C22H26O4S, MW = 386.50 g/mol 

 

Diisopropylamine (1.17 g, 16.0 mmol, 1.6 eq) was dissolved in tetrahydrofuran and cooled to 

−78 °C under nitrogen atmosphere. After addition of n-butyllithium (0.96 g, 15.0 mmol, 1.5 eq) 

the mixture was stirred at this temperature for 30 min. Diisopropylidenesuccinate 15 (3.22 g, 

15.0 mmol, 1.2 eq) was added and the mixture was stirred at −78 °C for 1h. Then compound 
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34 (2.20 g, 10.1 mmol, 1.0 eq) was added and the mixture was allowed to warm to room 

temperature overnight. The reaction mixture was stirred for 24 h at room temperature and then 

quenched with HCl-solution (2 M, 60 mL). The aqueous layer was extracted with ethyl acetate 

(3 x 100 mL) and the combined organic layers were dried over Na2SO4. The solvent was 

removed in vacuo and the crude product was purified by automated flash column 

chromatography (CH2Cl2/MeCN, gradient 0 - 3% MeCN then 3 - 20%) to obtain the product 36 

as a colourless oil of syn/anti isomers (622 mg, 16.1 mmol, 16%). To determine the syn/anti 

isomers, the lactone mixture was separated by preparative HPLC. (analytical HPLC: tR (anti-

36) = 21.76 min, tR (syn-36) = 19.89 min , flow rate: 0.3 mL/min, A = H2O (0.05 Vol% TFA), B 

= MeCN, gradient: 30-95% B);  

 

anti-36:  

TLC: (CH2Cl2/MeCN, 100:1) Rf = 0.73 

 
1H-NMR (600 MHz, CDCl3): δ = 0.73 (d, J = 7.0 Hz, 3H), 1.01 (d, J = 6.4 Hz, 3H), 1.38 (t, J  = 

7.2 Hz, 3H), 1.66 (s, 3H), 2.28 (s, 3H), 2.66 (s, 3H), 2.94 (sep, J = 6.7 Hz, 1H), 4.23-4.32 (m, 

1H), 4.34-4.40 (m, 1H), 4.53 (s, 1H), 7.29 (t, J = 7.3 Hz, 1H), 7.38 (t, J  = 7.7 Hz, 1H) 7.72 (d, 

J  = 7.9 Hz, 1H), 8.27 (d, J  = 7.3 Hz, 1H).  

 
13C-NMR (151 MHz, CDCl3): δ = 14.2 (+), 17.0 (+), 19.7 (+), 20.6 (+), 24.8 (+), 33.7 (+), 54.5 

(+), 61.9 (−), 90.3 (q), 115.1 (q), 119.9 (q), 122.3 (+), 122.7 (+), 123.7 (+), 124.3 (+), 131.6 (q), 

138.2 (q), 138.6 (q), 155.1 (q), 168.9 (q), 170.6 (q).  

 

HR-MS (ESI): calcd. for C22H26O4S (M+H+), m/z = 387.1625, found 387.1627  

 

syn-36:  

TLC: (CH2Cl2/MeCN, 100:1) Rf = 0.77  

 
1H-NMR (600 MHz, CDCl3): δ = 0.58 (t, J = 7.1 Hz, 3H), 0.78 (d, J = 6.7 Hz, 3H), 0.97 (d, J  = 

6.8 Hz, 3H), 1.97 (s, 3H), 2.34 (s, 3H), 2.71 (s, 3H), 2.77 (sep, J = 6.8 Hz, 1H), 3.43-3.54 (m, 

2H) 4.42 (s, 1H), 7.20-7.24 (m, 1H), 7.27-730 (m, 1H), 7.67 (t, J = 9.1 Hz, 2H).  

 
13C-NMR (151 MHz, CDCl3): δ = 13.3 (+), 16.2 (+), 17.3 (+), 17.5 (+), 20.6 (+), 24.2 (+), 38.3 

(+), 56.1 (+), 61.0 (−), 89.4 (q), 121.5 (q), 122.0 (+), 123.3 (+), 123.4 (+), 123.5 (+), 128.6 (q), 

137.3 (q), 138.1 (q), 138.6 (q), 152.0 (q), 168.3 (q), 170.0 (q).  

 

HR-MS (ESI): calcd. for C22H26O4S (M+H+), m/z = 387.1625, found 387.1631 
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Compound E-37: (E)-3-(2-methyl-1-(2-methylbenzo[b]thiophen-3-yl)propylidene)-4-

(propan-2-ylidene)dihydrofuran-2,5-dione 

 

  C20H20O3S, MW = 340.44 g/mol 

 

Compound 36 (622 mg, 1.61 mmol, 1.0 eq) was dissolved in ethanol (40 mL) and after addition 

of KOH (4.5 g, 80.5 mmol, 50 eq) and H2O (10 mL), the mixture was stirred for 20 h at 70 °C. 

The reaction mixture was poured onto ice and quenched with an aqueous HCl-solution (2 M, 

50 mL). The aqueous layer was extracted with ethyl acetate (3 x 60 mL) and the combined 

organic layers were washed with brine (40 mL) and dried over Na2SO4. The organic solvent 

was removed in vacuo to get the crude diacid as a yellow solid (258 mg, 0.72 mmol). The 

diacid was suspended in dichloromethane (30 mL) and after adding acetyl chloride (380 mg, 

4.83 mmol, 3.0 eq) the solution was stirred for 1 day at 40 °C. The mixture was neutralized 

with saturated NaHCO3 solution and the aqueous layer was extracted with dichloromethane (2 

x 30 mL). The combined organic layers were dried over Na2SO4 and the solvent was removed 

in vacuo. Then, the crude product was purified by automated flash column chromatography 

(cyclohexane/EtOAc, gradient 1-5% EtOAc) to obtain a slightly yellow solid E-37 (213 mg, 0.65 

mmol, 87%).  

 

TLC: (Cyclohexane/EtOAc, 9:1) Rf = 0.71  

 
1H-NMR (400 MHz, CDCl3): δ = 0.99 (d, J = 7.0, 3H), 1.08 (s, 3H), 1.33 (d, J = 7.0, 3H), 2.13 

(s, 3H), 2.30 (s, 3H), 3.98 (sep, J = 7.0 Hz, 1H), 7.27-7.38 (m, 2H), 7.48-7.52 (d, 1H), 7.71-

7.75 (m, 1H).  

 
13C-NMR (101 MHz, CDCl3): δ = 15.6 (+), 21.2 (+), 23.1 (+), 23.4 (+), 26.8 (+), 33.7 (+), 120.6 

(q), 122.3 (+), 123.0 (+), 124.4 (+), 124.9 (+), 125.1 (q), 132.2 (q), 136.8 (q), 138.5 (q), 157.5 

(q), 158.6 (q), 159.4 (q), 162.8 (q), 163.0 (q).  

 

HR-MS (ESI): calcd. for C20H20O3S (M+H+), m/z = 341.1133, found 341.1135  

 

UV/Vis (100 µM in DMSO): open isomer: λmax = 342 nm; closed isomer: λmax = 479 nm. 
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Compound 43: (E)-3-(2-methyl-1-(2-methylbenzo[b]thiophen-3-yl)propylidene)-1-(2-

(4-(2-(methylthio)-phenyl)piperazin-1-yl)ethyl)-4-(propan-2-ylidene)pyrrolidine-2,5-

dione 

 

  C33H39N3O2S, MW = 573.81 g/mol 

 

The phenyl piperazine derivative 7 (57.8 mg, 0.30 mmol, 1.1 eq) and compound E-37 (71.0 

mg, 0.21 mmol, 1.0 eq) were dissolved in chloroform (30 mL) and heated to 60 °C overnight 

to form amide acid 42. After cooling to room temperature, DCC (55.9 mg, 0.27 mmol, 1.3 eq), 

HOBt (36.6 mg, 0.27 mmol, 1.3 eq) and DIPEA (35.0 mg, 0.27 mmol, 1.3 eq) were added. The 

mixture was stirred for 3 days and quenched with saturated NaHCO3 (10 mL) solution. The 

aqueous layer was separated and extracted with ethyl acetate (3 x 20 mL). The combined 

organic layers were dried over Na2SO4 and the solvent was removed under reduced pressure. 

Purification was done by automated flash column chromatography (PE/EtOAc, gradient 0-12% 

EtOAc) to yield 43 (93.3 mg, 0.16 mmol, 74%) as a colorless solid.  

 

TLC: (PE/EtOAc, 5:1, 0.1 % NEt3) Rf = 0.38  

 
1H-NMR (400 MHz, CDCl3): δ = 0.99 (d, J = 7.0, 3H), 1.05 (s, 3H), 1.32 (d, J = 7.0, 3H), 2.09 

(s, 3H), 2.29 (s, 3H), 2.41 (s, 3H), 2.76 (m, 6H), 3.00 (m, 4H), 3.84 (q, J  = 6.8 Hz, 2H), 4.17 

(sep, J = 7.0 Hz, 1H), 6.97-7.02 (m, 1H), 7.12-7.05 (m, 3H), 7.24-7.34 (m, 2H), 7.54 (d, J = 7.4 

Hz, 1H), 7.72 (d, J = 8.2 Hz, 1H).  

 
13C-NMR (101 MHz, CDCl3): δ = 14.6 (+), 15.7 (+), 21.6 (+), 22.0 (+), 23.7 (+), 26.7 (+), 32.6 

(+), 34.9 (−), 51.7 (−), 53.6 (−), 55.4 (−), 119.6 (+), 122.1 (+), 123.3 (+), 123.4 (+), 123.9 (+), 

124.4 (+), 124.5 (+), 125.0 (+) 128.9 (q), 133.0 (q), 135.1 (q), 136.6 (q), 138.4 (q), 139.3 (q), 

144.5 (q), 149.6 (q), 152.7 (q), 168.1 (q), 168.3 (q).  

 

HR-MS (ESI): calcd. for C33H39N3O2S2 (M+H+), m/z = 574.2556, found 574.2566  

 

UV/Vis (50 µM in DMSO): open isomer: λmax = 307 nm; closed isomer: λmax = 473 nm. 
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Compound 45: Synthesis of (3E,4E)-3-ethylidene-4-(2-methyl-1-(2-methyl-1H-indol-

3-yl)propyli-dene)-1-(2-(4-(2-(methylthio)phenyl)piperazin-1-yl)ethyl)-pyrrolidine-2,5-

dione  

 

  C33H40N4O2S, MW = 556.76 g/mol 

 

The amide acid 44 was formed of amine 7 (20.0 mg, 0.06 mmol, 1.0 eq) and fulgide 38 (16.3 

mg, 0.07 mmol, 1.1 eq) in chloroform (20 mL) at  60 °C overnight. After cooling to room 

temperature DCC (15.8 mg, 0.08 mmol, 1.3 eq), HOBt (10.3 mg, 0.08 mmol, 1.3 eq) and DIPEA 

(10.3 mg, 0.08 mmol, 1.3 eq) were added. The mixture was stirred for 4 days at room 

temperature and quenched with saturated NaHCO3 (8 mL) solution. The aqueous layer was 

separated and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were 

dried over Na2SO4 and the solvent was evaporated. The crude product was first purified by 

automated NP flash column chromatography (PE/EtOAc, gradient 0 - 8% EtOAc), and second 

with RP flash column chromatography (H2O/MeCN, gradient 30 - 95% MeCN) to obtain 45 (8.2 

mg, 0.015 mmol, 25%) as a slightly yellow solid.  

 

TLC: (PE/EtOAc, 2:1, 0.1% NEt3) Rf = 0.47 

 
1H-NMR (600 MHz, CDCl3): δ = 0.96 (d, J  = 7.0 Hz, 3H), 1.00 (s, 3H), 1.41 (d, J  = 7.1 Hz, 3H), 

2.09 (s, 3H), 2.12 (s, 3H), 2.41 (s, 3H), 2.65-2.95 (m, 6H), 2.98-3.12 (m, 4H), 3.80-3.94 (m, 

2H), 4.32 (sep, J  = 7.0 Hz), 7.00-7.05 (m, 1H), 7.07-7.11 (m, 4H), 7.12-7.15 (m, 1H), 7.24-7.26 

(m, 1H), 7.28-7.30 (m, 1H), 7.46-7.48 (m, 1H), 8.00 (s, 1H).  

 
13C-NMR (151 MHz, CDCl3): δ = 13.2 (+), 14.5 (+), 21.1 (+), 21.9 (+), 23.8 (+), 26.9 (+), 32.3 

(+), 34.8 (−), 35.0 (−), 53.5 (−), 55.3 (−), 110.2 (+), 110.4 (q), 114.2 (q), 119.5 (q), 119.7 (+), 

119.8 (q), 120.4 (+), 120.7 (+), 121.2 (q), 121.6 (+), 123.9 (q), 124.4 (+), 124.7 (+), 125.1 (+), 

127.5 (q), 132.0 (q), 135.1 (q), 135.5 (q), 168.2 (q), 168.7 (q).  

 

HR-MS (ESI): calcd. for C33H14N4O2S (M+H+), m/z = 557.2945, found 557.2946  

 

UV/Vis (50 µM in DMSO): open isomer: λmax = 360 nm; closed isomer: λmax = 543 nm. 
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Compound 46: (E)-3-(1-(2,5-dimethylthiophen-3-yl)-2-methylpropylidene)-4-(propan-

2-ylidene)dihydrofuran-2,5-dione  

 

  C31H40N2O2S, MW = 504.73 g/mol 

 

Fulgide 39 (100 mg, 0.33 mmol, 1.0 eq) and N-1-(2,3-dihydro-1H-inden-2-yl)-N1-propylethane-

1,2-diamine 11 (108 mg, 0.49 mmol, 1.5 eq) were dissolved in chloroform (50 mL) and heated 

up to 60 °C for 48 h. The solvent was evaporated and the residue was purified by automated 

NP column chromatography (PE/EtOAc, gradient 0 – 50% EtOAc, 1% NEt3) and second with 

RP flash column chromatography (H2O/MeCN, gradient 30 - 95% MeCN) to obtain 46 (16,1 

mg, 0.032 mmol, 10%) as a colourless solid.  

 

TLC: (PE/EtOAc, 9:1, 0.1% NEt3) Rf = 0.25  

 
1H-NMR (400 MHz, D6-DMSO): δ = 0.69 (d, J = 7.1 Hz, 3H), 0.80 (t, J = 7.3 Hz, 3H), 1.19 (s, 

3H), 1.29 (d, J = 7.1 Hz, 3H), 1.38 (sx, J = 7.3 Hz, 2H), 1.89 (s, 3H), 2.14 (s, 3H), 2.39 (s, 3H), 

2.43 (t, J = 7.2 Hz, 2H), 2.61-2.73 (m, 4H), 2.93 (dd, J = 7.7 Hz, 15.7 Hz, 2H), 3.54-3.62 (m, 

2H), 3.67 (qi, J = 8.0 Hz, 1H), 4.34 (sep, J = 7.0 Hz), 6.71 (s, 1H), 7.05-7.11 (m, 2H), 7.12-7.17 

(m, 2H).  

 
13C-NMR (151 MHz, D6-DMSO): δ = 11.7 (+), 13.6 (+), 14.8 (+), 20.2 (+), 21.2 (+), 22.9 (+), 

25.4 (+), 29.3 (+), 32.5 (−), 35.6 (−), 35.8 (−), 47.3 (−), 52.7 (−),  61.7 (+), 122.8 (+), 124.3 (+),  

124.7 (q), 125.5 (+), 126.2 (+), 129.0 (q), 129.6 (q), 132.4 (q), 135.3 (q), 135.8 (q), 141.5 (q), 

147.0 (q), 152.2 (q), 167.5 (q). 

 

HR-MS (ESI): calcd. for C31H40N2O2S (M+H+), m/z = 505.2883, found 505.2892  

 

UV/Vis (100 µM in DMSO): open isomer: λmax = 272 nm; closed isomer: λmax = 526 nm. 

 

Preparation of amide acids 47 and 49: 

The fulgide (1.0 eq) was dissolved in CHCl3 (10 mL). Than amine 11 (1.5 eq) was added and 

the mixture was heated up to 70 °C for 4h. The solvent was evaporated and the crude mixture 

was purified by preparative HPLC (prep-HPLC-2, gradient A/B: 0-15 min: 30/70, 15-20 min: 

2/98).  
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Compound 47: (E)-3-((2-((2,3-dihydro-1H-inden-2-yl)(propyl)amino)ethyl)carbamoyl)-

4-(2-methylbenzo-[b]thiophen-3-yl)-2-(propan-2-ylidene)pent-3-enoic acid 

 

  C32H38N2O3S, MW = 530.73 g/mol 

 

Colourless solid: 18% yield; preparative HPLC: tR = 7.9 min.  

 
1H-NMR (400 MHz, CDCl3): δ = 0.96-1.07 (m, 3H), 1.75 (s, 6H) 1.78-1.94 (m, 2H), 2.26 (s, 

3H), 2.33 (s, 3H), 2.99-3.17 (m, 2H), 3.25-3.46 (m, 6H), 3.65-3.99 (m, 2H), 4.15-4.26 (m, 1H), 

7.17-7.26 (m, 6H), 7.49-7.58 (m, 1H), 7.64-7.69 (m, 1H).  

 
13C-NMR (151 MHz, CDCl3): δ = 11.2 (+), 14.4 (+), 17.3 (−), 21.7 (+), 22.2 (+), 24.4 (+), 34.6 

(−), 36.1 (−), 51.8 (−), 54.5 (−), 54.7 (−) 64.3 (+), 114.7 (q), 122.0 (+), 122.4 (+), 122.5 (q), 

123.8 (+), 123.9 (+), 124.4 (+), 124.5 (+), 124.7 (+), 128.1 (+), 132.8 (q), 135.7 (q), 138.1 (q), 

138.2 (q), 138.4 (q), 138.8 (q), 151.2 (q), 169.0 (q), 172.2 (q).  

 

HR-MS (ESI): calcd. for C32H39N2O3S (M+H+), m/z = 531.2676, found 531.2676. 

 

Compound 49: (E)-3-((2-((2,3-dihydro-1H-inden-2-yl)(propyl)amino)ethyl)carbamoyl)-

4-(2-methyl-1H-indol-3-yl)-2-(propan-2-ylidene)pent-3-enoic acid 

 

  C32H39N3O3, MW = 513.68 g/mol 

 

Yellow solid: 48% yield; preparative HPLC: tR = 6.9 min.  

 
1H-NMR (400 MHz, D6-DMSO): δ = 0.98 (t, J  = 7.2 Hz, 3H), 1.66 (s, 3H) 1.69-1.79 (m, 2H), 

1.82 (s, 3H), 2.07 (s, 3H), 2.25 (s, 3H), 3.15-3.29 (m, 6H), 3.32-3.43 (m, 2H), 3.50-3.56 (m, 

2H), 4.30-4.41 (m, 1H), 6.88 (dt, J  = 0.79 Hz, 8.0 Hz, 1H), 6.96 (dt, J  = 1.1 Hz, 7.9 Hz, 1H) 

7.18-7.25 (m, 4H), 7.26-7.31 (m, 2H).  
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13C-NMR (151 MHz, D6-DMSO): δ = 10.9 (+), 12.2 (+), 16.9 (−), 21.8 (+), 22.1 (+), 23.9 (+), 

34.1 (−), 34.3 (−), 34.5 (−), 49.1 (−), 52.7 (−), 63.0 (+), 110.5 (+), 113.5 (q), 115.2 (q), 118.1 

(q), 118.5 (+), 118.6 (+), 120.1 (q), 124.4 (+), 126.6 (+), 127.2 (+), 132.2 (q), 135.4 (q), 139.0 

(q), 139.4 (q), 139.6 (q), 168.3 (q), 169.5 (q).  

 

HR-MS (ESI): calcd. for C32H39N3O3 (M+H+), m/z = 514.3064, found 514.3068. 

 

Preparation of fulgimides 48 and 50: 

MSNT (1.2 eq) and Me-imidazole (0.5 eq) were added to a solution of amide acid 47 or 49 (1.0 

eq) in CHCl3 at room temperature. The mixture was stirred for 24 h at 40 °C. The solvent was 

reduced in vacuo and the mixture was purified by automated column chromatography and 

preparative HPLC (prep-HPLC-2, gradient A/B: 0-15 min: 30/70, 15-20 min 2/98). 

Compound 48: (E)-1-(2-((2,3-dihydro-1H-inden-2-yl)(propyl)amino)ethyl)-3-(1-(2-

methylben-zo[b]thiophen-3-yl)ethylidene)-4-(propan-2-ylidene)pyrrolidine-2,5-dione  

 

  C32H36N2O2S, MW = 512.71 g/mol 

 

White solid: 9% yield; column chromatography (PE/EtOAc: 0-50% EtOAc); preparative HPLC: 

tR = 10.3 min. 

 

TLC: (PE/EtOAc, 9:1, 0.1% NEt3) Rf = 0.82 

 
1H-NMR (400 MHz, CDCl3): δ = 1.03 (s, 3H), 1.08 (t, J = 7.3 Hz, 3H), 1.49-1.61 (m, 2H), 2.17 

(s, 3H), 2.26 (s, 3H), 2.69 (s, 3H), 2.79-2.93 (m, 4H), 3.08 (m, 2H), 3.72-3.81 (m, 3H), 7.09-

7.21 (m, 3H), 7.27-7.39 (m, 3H), 7.48 (t, J  = 7.8 Hz, 1H), 7.74 (t, J = 7.0 Hz, 1H);  

 
13C-NMR (151 MHz, CDCl3): δ = 11.4 (+), 15.4 (+), 17.6 (−), 22.2 (+), 22.6 (+), 26.2 (+), 31.6 

(−), 34.8 (−), 35.2 (−), 53.8 (−), 64.6 (+), 122.3 (+), 122.5 (+), 124.4 (q), 124.8 (+), 124.9 (+), 

125.8 (q), 128.0 (+), 135.4 (q), 136.7 (q), 138.0 (q), 138.1 (q), 138.2 (q), 138.7 (q), 153.4 (q), 

167.7 (q), 168.3 (q).  

 

HR-MS (ESI): calcd. for C32H37N2O2S (M+H+), m/z = 513.2570, found 513.2573;  
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UV/Vis (50 µM in DMSO): open isomer: λmax = 328 nm; closed isomer: λmax = 486 nm. 

 

Compound 50: (E)-1-(2-((2,3-dihydro-1H-inden-2-yl)(propyl)amino)ethyl)-3-(1-(2-

methyl-1H-indol-3-yl)ethylidene)-4-(propan-2-ylidene)pyrrolidine-2,5-dione 

 

  C32H37N3O2, MW = 495.67 g/mol 

 

Yellow solid: 14% yield; column chromatography (CH2Cl2, MeOH: 0-10% MeOH); preparative 

HPLC: tR = 9.9 min. 

 

TLC: (CH2Cl2/MeOH, 20:1) Rf = 0.62  

 
1H-NMR (400 MHz, CDCl3): δ = 0.98 (s, 3H), 1.06 (t, J = 7.3 Hz, 3H), 1.94 (q, J = 7.4 Hz, 2H), 

2.18 (s, 6H), 2.79 (s, 3H), 3.28-3.43 (m, 4H), 3.44-3.55 (m, 4H), 4.01-410 (m, 2H), 4.15 (qi, J 

= 8.5 Hz, 1H), 6.88 (m, 1H), 7.09-7.18 (m, 2H), 7.19-7.24 (m, 4H), 7.29 (d, J  = 7.9 Hz, 1H), 

7.38 (d, J = 7.9 Hz, 1H).  

 
13C-NMR (151 MHz, CDCl3): δ = 11.4 (+), 13.7 (+), 17.6 (−), 22.3 (+), 22.8 (+), 26.3 (+), 31.1 

(−), 35.1 (−), 36.6 (−), 46.8 (−), 53.5 (−), 64.5 (+), 110.8 (+), 117.5 (q), 119.8 (+), 120.7 (+), 

122.1 (q), 122.3 (+), 123.4 (q), 124.8 (+), 126.3 (q), 127.8 (+), 133.0 (q), 135.6 (q), 137.6 (q), 

138.4 (q), 145.5 (q), 150.3 (q), 168.1 (q), 168.5 (q).  

 

HR-MS (ESI): calcd. for C32H38N3O2 (M+H+), m/z = 496.2959, found 496.2961  

 

UV/Vis (100 µM in DMSO): open isomer: λmax = 370 nm; closed isomer: λmax = 564 nm. 

 

Compound 52: (E)-1-(2-(4-(5-hydroxy-3-oxo-3,4-dihydro-2H-benzo[b][1,4]oxazin-8-

yl)pipera-zin-1-yl)ethyl)-3-(1-(2-methyl-1H-indol-3-yl)ethylidene)-4-(propan-2-

ylidene)pyrrolidine-2,5-dione  

 

  C32H35N5O5, MW = 569.66 g/mol 
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Indolyl fulgide 41 (10.0 mg, 0.034 mmol, 1.0 eq) and the benzoxazinon derivative 17 (8.87 mg, 

0.041 mmol, 1.2 eq) were dissolved in DMF (4 mL). The mixture was stirred at 60 °C for 4 h 

and cooled to room temperature. HOBt (4.58 mg, 0.034 mmol, 1.0 eq), HBTU (15.4 mg, 0.041 

mmol, 1.2 eq) and DIPEA (4.38 mg, 0.034 mmol, 1.0 eq) were added and the mixture was 

stirred for 4 h at room temperature. The crude product was first purified by automated flash 

chromatography (CH2Cl2/MeOH: 0-30% MeOH) and second purified by preparative HPLC 

(prep-HPLC-2, gradient A/B: 0-15 min: 30/70, 15-20 min: 2/98, tR = 5.2 min) to obtain 52 (2.0 

mg, 3.5 µmol, 10%) as a white solid.  

 

TLC: (CH2Cl2/MeOH, 20:1) Rf = 0.15  

 
1H-NMR (600 MHz, D6-DMSO): δ = 0.87 (s, 3H), 2.13 (s, 3H) 2.17 (s, 3H), 2.75 (s, 3H), 2.84-

2.95 (m, 2H), 3.12-3.22 (m, 2H), 3.41-3.51 (m, 4H), 3.68-3.80 (m, 2H), 3.86-4.01 (m, 2H), 4.51 

(s, 2H) 6.43-6.47 (m, 1H), 6.50-6.55 (m, 1H), 6.96-7.03 (m, 1H), 7.04-7.09 (m, 1H), 7.29-7.36 

(m, 2H).  

 
13C-NMR (151 MHz, D6-DMSO): δ = 12.8 (+), 21.2 (+), 22.0 (+), 25.1 (+), 31.6 (−), 47.2 (−), 

51.2 (−), 52.8 (−), 66.4 (−), 103.3 (q), 108.0 (+), 110.6 (+), 112.2 (+), 113.6 (q), 115.6 (q), 116.4 

(q), 118.6 (+), 119.1 (+), 120.8 (+), 120.9 (q), 123.2 (q), 125.2 (q), 134.1 (q), 135.1 (q), 137.1 

(q), 141.0 (q), 164.0 (q), 167.3 (q), 167.9 (q).  

 

HR-MS (ESI): calcd. for C32H35N5O5 (M+H+), m/z = 570.2711, found 570.2720  

 

UV/Vis (50 µM in DMSO): open isomer: λmax = 363 nm; closed isomer: λmax = 563 nm. 

 

4.2 Assays 

IP accumulation assay 

The measurement of D2S receptor stimulated activation of the G-protein mediated pathway 

was performed applying the IP-One HTRF® assay (Cisbio, Codolet, France) according to the 

manufacturer’s protocol. In brief, HEK-293T cells were grown to a confluence of approx. 70% 

and transiently cotransfected with the cDNAs of the human D2S receptor (in pcDNA3.1) and 

the hybrid G-protein Gaqi5-HA (Gaq protein with the last five amino acids at the C-terminus 

replaced by the corresponding sequence of Gai; gift from The J. David Gladstone Institutes, 

San Francisco, CA)27,28 applying TransIT-293 Mirus transfection reagent (MoBiTec, 

Goettingen, Germany). After one day cells were detached from the culture dish with Versene 

(Life Technologies GmbH, Darmstadt, Germany), seeded into black 384-well plates (10000 

cells/well) (Greiner Bio-One, Frickenhausen, Germany) and maintained for 24 h at 37 °C. Test 
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compounds (final concentration of 10 µM, 100 nM and 1 nM) were dissolved in stimulation 

buffer and added to the cells as quadruplicates in a black box under illumination with 

monochromatic light of a wave length of 625 nm or in the dark according to the photostability 

of the ligands. Incubation was performed for 2 hrs at 37 °C and subsequently stopped by 

adding the detection reagents (IP1-d2 conjugate and Anti-IP1cryptate TB conjugate each 

dissolved in lysis buffer). After waiting for further 1 h at room temperature time resolved 

fluorescence resonance energy transfer (HTRF) was measured using the Clariostar plate 

reader (BMG, Ortenberg, Germany) according to the requirements of the company. FRET data 

were normalized to basal (= 0%) and the maximum effect of quinpirole (= 100%). Average 

values including standard deviation are the result of three to ten individual experiments each 

done in quadruplicate and calculated using PRISM 6.0 (GraphPad software, San Diego, CA). 

 

ß-Arrestin recruitment assay 

D2SR mediated ß-arrestin-2 recruitment was determined using the PathHunter® assay 

(DiscoverX, Birmingham, U.K.) as described previously.29 In brief, HEK293 cells stably 

expressing the enzyme acceptor (EA) tagged ß-arrestin-2 fusion protein were transiently 

transfected with the ProLink tagged D2SR-ARMS2-PK2 construct employing Mirus TransIT-

293. One day (24 hrs) after transfection, cells were detached from the culture dish with Versene 

(Life Technologies, Darmstadt, Germany), seeded into 384-well plates (white plates with 

transparent bottom, Greiner Bio-One, Frickenhausen, Germany) at a cell number of 5000 

cells/well and maintained for further 24 h at 37 °C, 5 % CO2. Test compounds at a final 

concentration of 10 µM, 100 nM and 1 nM were dissolved in PBS and added to the cells as 

quadruplicates in a black box under illumination with monochromatic light of a wave length of 

625 nm or in the dark according to the photostability of the ligands. Incubation with the test 

compounds was continued for 5 hrs at 37 °C and was stopped by adding the detection mix to 

every well. After further 1 h at room temperature chemiluminescence was determined using a 

Clariostar plate reader (BMG, Ortenberg, Germany). Row data were normalized to basal (= 

0%) and the maximum effect of quinpirole (= 100%). Average values including standard 

deviation were derived from four to ten individual experiments each done in quadruplicate and 

mean values were calculated using PRISM 6.0 (GraphPad software, San Diego, CA). 

Dopamine D2S receptor binding 

Receptor binding studies were carried out as described previously.30 In brief, competition 

binding experiments were performed using preparations of membranes from CHO cells stably 

expressing the human D2SR31 and the radioligand [3H]spiperone (specific activity = 81 Ci/mmol, 

PerkinElmer, Rodgau, Germany) at a final concentration of 0.20 nM. The assays were carried 

out with a protein concentration of 2 µg per assay tube, a KD value of 0.050 nM and a 

corresponding Bmax value of 2000 fmol/mg. Test compounds were applied at final 
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concentrations in the range from 0.01 nM to 10000 nM each done as triplicates. Unspecific 

binding was determined in the presence of haloperidol (10 µM), the protein concentration was 

established by the method of Lowry using bovine serum albumin as standard.32 The resulting 

competition curves of the binding experiments were analyzed by nonlinear regression using 

the algorithms in PRISM 6.0 (GraphPad Software, San Diego, CA). For each individual 

experiment, the data was fitted using a monophasic competition model to provide an IC50 value, 

which was then transformed into a Ki value according to the equation of Cheng and Prusoff.33 

Mean Ki values ±SEM were derived from four to six individual experiments. 
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6. Supporting Information 

 

SI1: Synthesis of 14  

 

The synthesis of precursor 14 is described by Männel et al.34 

 

SI2: UV/VIS absorption spectroscopy of 30/33 

 

 

 

Figure SI2. a) UV-Vis absorption spectra of the ligand 30 (50 µM in DMSO) under irradiation with light 
of λ = 312 nm (Herolab, 6 W) until the PSS is reached; b) continuous irradiation causes the decrease at 
494 nm and a hypsochromically shifted new maxima is arising at 360 nm; c) combination of the 
absorbance maxima of the three occurring photoisomers of 30; d) HPLC traces of the corresponding 
isomers (blue: open isomer; red: PSS; green: by-product). A new absorption maximum is observed, 
hypsochromically shifted to 360 nm, which is attributed to the irreversible occurring by-product 33. The 
HPLC traces in Figure 3d) show that upon reaching the PSS approximately 55% of the by-product has 
already been formed and its formation is completed after 192 sec.  
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SI3: 2D-NMR spectra of compound 33 

 

Scheme SI3-1: HMBC spectroscopy from the by-product 33. 

 

 

Scheme SI3-2: HSQC spectroscopy from the by-product 33. 
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SI4: PSS-determination via HPLC 

Compound 48-(E) was irradiated with UV-light of 365 nm for 30 sec. The resulting “closed” mixture 
contained the Z, E and C isomer of 48 and the ratio was determined by a HPLC measurement (detection 
at the isosbestic point at 357 nm). After irradiation of the closed mixture of 48 with light of 530 nm for 2 
min, a mixture of Z/E isomers as the open form was obtained (Figure SI4-1). The same method was 
applied to determine the PSS of diarylmaleimide 23 (Figure SI4-2). 
 

 

Figure SI4-1. HPLC traces of the E-isomer (open, isolated E-isomer, red), the closed mixture (black) 
and the open form after irradiating the closed mixture with light of 530 nm for 2 min (green). 
 

 

Figure SI4-2. HPLC traces of the open isomer of compound 23 (red) and the closed isomer after 
irradiation with 312 nm for 42 sec (black). 
 

 



  CHAPTER 1 

 67 

 

 

SI5: Activation data 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure SI5. Dose-response curve for the reference agonist quinpirole at the dopamine D2S receptor 
determined with the IP-accumulation assay IP-One® assay (from Cisbio). For the test HEK 293T cells 
were transiently co-transfected with the cDNAs of the human D2short receptor isoform and the G-protein 

hybrid Gaqi5HA. The graph displays a mean curve from 19 individual experiments each done in duplicates 
and indicates an EC50 value of 2.3 nM.   
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Table SI5-1. Screening of photoactive ligands based on the diaryl maleimides 21-25 and the 
cyclopentene dithienylethenes 26-32 for functional activity at the dopamine D2S receptor applying an IP 

accumulation assay and a b-arrestin recruitment assay 

comp. 

photo-

active 

state 

IP accumulationa 
b-arrestin recruitmentb 

Emax [% ± SEM]c Emax [% ± SEM]d 

10 µM 100 nM 1 nM 10 µM 100 nM 1 nM 

21 open 84 ± 1.2 49 ± 6.4 6.6 ± 8.4 4.1 ± 0.9 nd nd 

 closed 81 ± 1.1 37 ± 6.0 7.0 ± 6.3 3.2 ± 1.4 nd nd 

22 open 65 ± 5.8 18 ± 3.3 10 ± 3.2 3.0 ± 0.9 nd nd 

 closed 69 ± 2.9 20 ± 7.1 13 ± 5.9 3.2 ± 1.6 nd nd 

23 open 53 ± 4.5 3.5 ± 4.2 5.5 ± 1.8 -0.7 ± 2.6 nd nd 

 closed 66 ± 5.8 14 ± 4.3 9.3 ± 4.9 0.8 ± 1.3 nd nd 

24 open 91 ± 3.0 73 ± 4.4 35 ± 13 33 ± 9.1 12 ± 1.2 2.7 ± 0.8 

 closed 95 ± 1.5 68 ± 1.9 39 ± 9.6 37 ± 10 5.0 ± 1.3 0.7 ± 0.4 

25 open 80 ± 3.7 22 ± 6.7 14 ± 1.6 16 ± 2.4 1.5 ± 0.7 1.2 ± 0.7 

 closed 63 ± 8.0 34 ± 6.1 5.1 ± 5.3 6.2 ± 1.4 2.3 ± 0.8 1.0 ± 0.5 

26 open 44 ± 3.5 43 ± 10 31 ± 16 2.3 ± 0.7 nd nd 

 closed 72 ± 3.5 41 ± 4.6 21 ± 5.7 0.7 ± 1.0 nd nd 

27 open 85 ± 2.6 16 ± 9.6 11 ± 9.8 1.9 ± 0.7 nd nd 

 closed 67 ± 7.4 49 ± 2.0 15 ± 0.9 0.4 ± 0.4 nd nd 

28 open 56 ± 3.3 22 ± 1.8 11 ± 4.8 0.6 ± 0.4 nd nd 

 closed 69 ± 5.0 38 ± 1.3 4.8 ± 1.5 0.3 ± 0.9 nd nd 

29 open 77 ± 3.8 80 ± 2.8 32 ± 4.6 9.3 ± 4.8 n.d. n.d. 

 closed 70 ± 6.8 47 ± 5.2 2.9 ± 3.2 3.6 ± 0.8 n.d. n.d. 

30 open 90 ± 2.9 60 ± 5.2 6.3 ± 4.3 15 ± 1.8 n.d. n.d. 

 closed 86 ± 2.2 28 ± 5.9 15 ± 7.5 14 ± 2.0 n.d. n.d. 

31 open 92 ± 4.8 79 ± 4.8 24 ± 9.5 87 ± 4.9 32 ± 3.3 3.3 ± 1.0 

 closed 84 ± 3.9 80 ± 3.2 24 ± 15 83 ± 5.4 52 ± 3.2 10 ± 2.6 

32 open 41 ± 5.3 52 ± 17 27 ± 11 2.7 ± 0.9 n.d. n.d. 

 closed 59 ± 4.5 37 ± 14 13 ± 5.1 4.6 ± 1.9 n.d. n.d. 
a IP accumulation determined by applying the IP-One® assay (from Cisbio) with HEK 239T cells co-

transfected with the cDNA of the dopamine D2s receptor and that of the hybrid G-protein Gaqi5HA. b b-

arrestin recruitment measured using the PathHunter® complementation assay (from DiscoverX) 

consisting of (EA)-b-arrestin-2-HEK293 cells and the transiently transfected vector D2SR-ARMS2-PK2. 
c Emax value ± S.E.M. derived from 3 to 10 individual experiments each done in quadruplicate relative to 
the maximum effect of quinpirole. d Emax value ± S.E.M. derived from 4 to 10 individual experiments each 

done in quadruplicate relative to the maximum effect of the reference ligand quinpirole. n.d. = not 

determined. 
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Table SI5-2. Screening of the fulgide based photoactive ligands 43, 45, 46, 48,50 and 52 for functional 

activity at the dopamine D2S receptor applying an IP accumulation assay and a b-arrestin recruitment 

assay 

comp. 

photo-

active 

state 

IP accumulationa b-arrestin recruitmentb 

Emax [% ± SEM]c Emax [% ± SEM]d 

10 µM 100 nM 1 nM 10 µM 

43 open 64 ± 5.4 14 ± 5.3 13 ± 3.0 2.4 ± 1.6 

 closed 57 ± 7.3 12 ± 3.4 5.7 ± 3.0 5.6 ± 4.1 

45 open 68 ± 2.8 25 ± 5.3 5.6 ± 3.2 2.4 ± 1.4 

 closed 62 ± 2.4 45 ± 7.8 7.7 ± 2.6 -4.1 ± 1.9 

46 open 81 ± 10 52 ± 2.4 6.6 ± 4.8 2.6 ± 0.9 

 closed 86 ± 6.2 37 ± 5.5 0.6 ± 0.8 6.1 ± 2.7 

48 E / opene 92 ± 3.6 39 ± 1.9 6.0 ± 3.2 3.6 ± 1.4 

 Z / openf 64 ± 7.1 12 ± 5.4 1.4 ± 6.0 3.0 ± 0.8 

 closed 58 ± 8.6 22 ± 12 4.9 ± 4.5 3.5 ± 1.4 

50 E / opene 94 ± 2.9 10 ± 4.7 2.1 ± 4.4 -2.3 ± 0.5 

 Z / openf 80 ± 8.7 9.8 ± 7.1 0.1 ± 0.2 0.4 ± 3.9 

 closed 92 ± 4.3 14 ± 6.1 6.1 ± 3.8 8.4 ± 3.3 

52 opene 58 ± 6.9 48 ± 8.5 10 ± 3.8 7.2 ± 1.3 

 closed 69 ± 6.6 47 ± 4.2 40 ± 4.6 5.4 ± 1.8 
a IP accumulation determined by applying the IP-One® assay (from Cisbio) with HEK 239T cells co-

transfected with the cDNA of the dopamine D2s receptor and that of the hybrid G-protein Gaqi5HA. b b-
arrestin recruitment measured using the PathHunter® complementation assay (from DiscoverX) 

consisting of (EA)-b-arrestin-2-HEK293 cells and the transiently transfected vector D2SR-ARMS2-PK2. 
c Emax value ± S.E.M. derived from 4 to 8 individual experiments each done in quadruplicate relative to 
the maximum effect of quinpirole. d Emax value ± S.E.M. derived from 4 to 8 individual experiments each 
done in quadruplicate relative to the maximum effect of the reference ligand quinpirole. e Open state in 
E-configuration. f Open state in Z-configuration. 
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SI6: D2S receptor competition binding experiments 

 

 

Table SI6. Receptor binding affinities (Ki values) of the most 
promising photoswitchable ligands 27, 29, 45 and 52 in the 
open and closed state at the human dopamine D2S receptor. 

comp. 
photoactive 

state 

D2S bindinga 

Ki [nM ± SEM]b 

27 open 9.1 ± 1.0 

 closed 9.1 ± 1.6 

29 open 11 ± 2.5 

 closed 12 ± 4.3 

45 open 15 ± 2.6 

 closed 15 ± 2.8 

52c open 17 ± 8.0 

 closed 14 ± 3.6 
a Binding data were measured with membrane preparations 
from CHO cells stably expressing the human D2S receptor. b 
Ki values are derived from 4 to 6 individual experiments each 
done in triplicate. c The open isomer describes only the E-
isomer. 
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SI7: 1H- and 13C-NMR spectra of all photochromic ligands 

1H-NMR (600 MHz, CDCl3) for compound 21: 

 

13C-NMR (151 MHz, CDCl3) for compound 21: 
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1H-NMR (600 MHz, CDCl3) for compound 22: 

 

13C-NMR (151 MHz, CDCl3) for compound 22: 
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1H-NMR (300 MHz, D6-DMSO + D2O) for compound 23: 

 

13C-NMR (151 MHz, D6-DMSO) for compound 23: 
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1H-NMR (400 MHz, D6-DMSO) for compound 24: 

 

13C-NMR (101 MHz, D6-DMSO) for compound 24: 
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1H-NMR (400 MHz, D6-DMSO) for compound 25: 

 

13C-NMR (151 MHz, D6-DMSO) for compound 25: 
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1H-NMR (600 MHz, D6-DMSO) for compound 26: 

 

13C-NMR (151 MHz, D6-DMSO) for compound 26: 
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1H-NMR (600 MHz, D6-DMSO) for compound 27: 

 

13C-NMR (151 MHz, D6-DMSO) for compound 27: 
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1H-NMR (600 MHz, D6-DMSO) for compound 28: 

 

13C-NMR (151 MHz, D6-DMSO) for compound 28: 
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1H-NMR (600 MHz, D6-DMSO) for compound 29: 

 

13C-NMR (151 MHz, D6-DMSO) for compound 29: 
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1H-NMR (600 MHz, D6-DMSO) for compound 30: 

 

13C-NMR (151 MHz, D6-DMSO) for compound 30: 
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1H-NMR (600 MHz, D6-DMSO) for compound 31: 

 

13C-NMR (151 MHz, D6-DMSO) for compound 31: 
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1H-NMR (400 MHz, D6-DMSO) for compound 32: 

 

13C-NMR (151 MHz, D6-DMSO) for compound 32: 
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1H-NMR (400 MHz, CDCl3) for compound 43: 

 

13C-NMR (101 MHz, CDCl3) for compound 43: 
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1H-NMR (600 MHz, CDCl3) for compound 45: 

 

13C-NMR (151 MHz, CDCl3) for compound 45: 
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1H-NMR (400 MHz, D6-DMSO) for compound 46: 

 

13C-NMR (151 MHz, D6-DMSO) for compound 46: 
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1H-NMR (400 MHz, CDCl3) for compound 48: 

 

13C-NMR (151 MHz, CDCl3) for compound 48: 
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1H-NMR (400 MHz, CDCl3) for compound 50: 

 

13C-NMR (151 MHz, CDCl3) for compound 50: 
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1H-NMR (600 MHz, D6-DMSO) for compound 52: 

 

13C-NMR (151 MHz, D6-DMSO) for compound 52: 
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CHAPTER 2 

 

2. Photochromic Peptidic NPY Y4-Receptor Ligands  
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1. Introduction 

G protein coupled receptors (GPCRs) are known to bind a broad variety of ligands, among 

them peptides and small proteins acting as hormones, neurotransmitters or neuromodulators, 

and are therefore interesting drug targets.1 Neuropeptide Y (NPY) is a 36-amino acid peptide, 

which is responsible for a variety of physiological functions in central and peripheral biological 

processes. In humans, NPY binds to at least four different GPCRs, the NPY receptor subtypes 

Y1, Y2, Y4 and Y5.
2 Recently, crystal structures of the human Y1 receptor, bound to antagonists, 

were reported, allowing a better structure-based development of NPY receptor-addressing 

ligands.3 The Y4R is considered to play an important role, for example, in the suppression of 

food intake and the regulation of energy metabolism.4,5 The primary natural ligand of the Y4R 

is pancreatic polypeptide (PP), a peptide homologue of NPY, which exhibits higher Y4R affinity 

compared to NPY.6 Detailed investigations of the physiological function of the Y4R require 

selective Y4R agonists and antagonists as pharmacological tools. Whereas several Y4R 

agonists have been reported, Y4R antagonists are lacking. Highly potent, dimeric peptidic NPY 

Y4 receptor agonists, comprising two pentapeptides connected by an aliphatic linker (e.g. 

compound 1, cf. Figure 1), were described to exhibit considerably higher Y4R affinity (> 

100fold) compared to the respective monomeric pentapeptide,2,7,8 revealing a contribution of 

both peptide moieties to Y4R binding. Modifications of the pentapeptide moiety of the dimeric 

ligands, e.g. by introducing aza-amino acids, resulted in a decrease in Y4R affinity.8 Aiming at 

a better understanding of structural requirements on high-affinity Y4R agonists such as 1, we 

replaced the highly flexible aliphatic linker in 1 by considerably less flexible moieties. For this 

purpose, we prepared the dimeric peptides 2-5 containing photochromic moieties 

(azobenzene, azopyrazole, dithienylethene (DTE) and fulgimide, respectively) instead of the 

suberyl linker in 1 (Figure 1). 

 

 

Figure 1. Schematic presentation of the rationale of the present study: replacement of the central 
suberyl moiety in 1 leads to four different photochromic peptidic Y4R ligands (azobenzene 2, 
azopyrazole 3, dithienylethene 4 and fulgimide 5). 
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Besides exhibiting a high degree of rigidity, the photochromic scaffolds in 2-5 allow for two 

isomeric forms of 2-5, which are accessible by irradiation with light: whereas the non-thermally 

stable azobenzene- and azopyrazole-type photochromic scaffolds account for changes in 

spatial orientation (Z vs. E), the thermally stable DTE and fulgimide structures enable, in 

particular, changes in flexibility/rigidity (open vs. closed). In addition, photochromic receptor 

ligands harbor the potential of switching between different modes of actions, i.e. between 

agonism and antagonism.9,10 Compounds 2-5 were characterized with respect to their 

photochemical properties as well as in terms of Y4R affinity and agonism. 

 

2. Discussion  

A typical strategy towards light-switchable peptides is the incorporation of azobenzenes11,12 or 

dithienylethenes13 into the peptide backbone or side chains. However, these chromophores 

show limitation in their photophysical properties. Typically, azobenzenes do not fully 

interconvert to one isomer in their photostationary states and Z-isomers are thermally not 

stable.14 Photoisomers of dithienylethenes are thermally stable, but photodegradation may 

occur during isomerization.10 Azopyrazoles or fulgimides may overcome these limitations, but 

have so far not been used as photochromic moieties to modify peptides.  

 

2.1 Synthesis 

The dicarboxylic acid derivatives of the respective photochromic scaffolds were synthesized in 

order to use both carboxy moieties for peptide coupling. The azopyrazole precursor 8 was 

obtained by a Mills reaction of the nitroso compound 7 and the aminopyrazole 6 (Scheme 1).  

 

 

 

Scheme 1. Synthesis of the azopyrazole precursor 8. (a) Pyridine, NaOH, 2 h, 80 °C, 12%. 

 

The benzofuryl core 9 was synthesized in a Nenitzescu type reaction, following literature 

procedures.15 Substitution of deprotonated compound 9 with methyl-2-bromoacetate gave 

precursor 10 in good yields. The hetereoaromatic ketone 10 was used in a Stobbe 

condensation to form the monoesters E/Z-11 with diethyl isopropylidenesuccinate and LDA as 

base at -78 °C. The monoesters E/Z-11 were subsequently treated with KOH for saponification. 

Anhydride formation of the diacid gave the fulgides E-12 and Z-12 in a ratio of 40:60 (Z : E). 

Only the E-12 isomer was used for further synthesis. Fulgimide precursor E-14 was then 
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synthesized in three steps. First, ring opening of fulgide E-12 with glycine methyl ester and 

subsequent saponification gave the regioisomeric succinamic acids 13. The mixture was 

treated with acetic anhydride to obtain the target imide E-14 (Scheme 2).  

 

 

 

Scheme 2. Synthesis of the dicarboxy-fulgimide E-14. (a) Methyl-2-bromoacetate, NaH, DMF, 4 h, r.t., 
83%. (b) Diethyl isopropylidenesuccinate, LDA, THF, 48 h, -78 °C à r.t. (c) KOH, H2O, EtOH, 12 h, 70 
°C; then DCC, CH2Cl2, 24 h, 40 °C (b-c, 5% overall yield). (d) Glycine methyl ester, DIPEA, 24 h, r.t.; 
then KOH, MeOH, 24 h, r.t., 83%. (e) Ac2O, toluene, 2 h, 0 °C, 20%. 

 

The azobenzene precursor 15 and the cyclopentene-DTE precursor 16 were synthesized 

according to literature reports.16,17 The synthesis of the pentapeptide 17 was carried out by 

manual solid phase supported peptide synthesis (SPPS) according to a standard protocol for 

Fmoc-strategy.2 Every coupling step was performed twice, the pentapeptide was cleaved from 

the resin and the side-chain protecting groups were cleaved by TFA. Two equivalents of 

deprotected pentapeptide reacted with the pre-activated photochromic dicarboxylic acids to 

afford the respective target compounds 2-5. The best yields for the azobenzene- 2 and 

azopyrazole 3-based peptidic dimer were obtained applying PyBOB as the coupling reagent. 

The cyclopentene-DTE 4 and the fulgimide 5 were synthesized using HBTU or TBTU (Scheme 

3). 
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Scheme 3. (a) PyBOB, HOBt, DIPEA, DMF, 24 h, r.t., 44%. (b) PyBOB, HOBt, DIPEA, DMF, 4 h, r.t., 
63%. (c) HBTU, HOBt, DIPEA, DMF, 4 h, r.t., 33%. (d) TBTU, HOBt, DIPEA, DMF, 4 h, r.t., 43%. 

 

2.2 Photopyhsical properties 

All investigated photochromic peptidic ligands isomerize reversibly upon irradiation with UV-

light and visible light in aqueous buffer in order to mimic the conditions of the biological assay. 

The azobenzene 2 could be toggled reversibly between its Z- (365 nm light) and E-isomer (455 

nm light) in aqueous buffer and showed typical photophysical properties of an azobenzene as 

described in literature (Figure 2a).14  

Azopyrazole 3 showed a light-responsive behavior, exhibiting high photostationary states 

(PSS) of 94% for the E to Z and 88% for the Z to E isomerization in aqueous buffer. The 

typically splitting of the E- and Z-isomer absorption band could be observed by UV-VIS 

spectroscopy measurements and is depicted in Figure 2b. The azobenzene 2 and 

arylazopyrazole 3 showed high fatigue resistance and very high thermal half-lives of 6.8 days 

(2) and 8.1 days (3) in aqueous buffer. It is literature known, that hydrophobic interactions 

between the peptide side chains and the aromatic rings provide additional free energy to 

stabilize the Z-isomer resulting in the observed long thermal half-lives in aqueous solution.18 

Table 1 summarizes the photophysical properties of the photochromic ligands 2 and 3. 
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Table 1. Photochemical properties of azobenzene 2 and azopyrazole 3. 

Entry Compd. Solvent λmax λiso t1/2 PSS QY 

   
(E) 

[nm] 

(Z) 

[nm] 
[nm] [d] 

(EàZ)[b] 

  E:Z 

(ZàE)[b] 

   E:Z 

f(E
à

Z) 

 

f(Z
à

E) 

 

1 2 DMSO 

288, 

338, 

459 

278, 

328, 

426 

290, 

395 
3.7  21:79[c] 96:4[d] 0.07 0.20 

2 2 Buffer[a] 

282, 

330, 

437 

278, 

328, 

426 

281,390 6.8  32:68[c] 92:8[d] 0.06 0.16 

3 3 DMSO 351 
278, 

445 

301, 

418 
1.1  5:95 [c] 93:7[e] 0.65 0.40 

4 3 Buffer[a] 
275, 

340 

275, 

437 

297, 

406 
8.1  6:94[c] 88:12[e] 0.15 0.13 

[a] Buffer: 25 mM HEPES, 2.5 mM CaCl2, 1 mM MgCl2, pH = 7.4, 0.4% DMSO; [b] PSS determination was done by HPLC at the 
appropriate isosbestic points at 15 °C; [c] Irradiation with 365 nm; [d] Irradiation with 455 nm; [e] Irradiation with 528 nm.  

 

a)                                               

  

b) 
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c) 

  
 

Figure 2. UV/VIS spectroscopy and repetitive cycle performance of the photochromic target ligands 2 
and 3 in aqueous buffer. a) Azobenzene 2 (c = 20 µM); b) Azopyrazole 3 (c = 20 µM); c) Structures of 
the E- and Z-isomer of 2 and 3 switching upon excitation at 365 nm and 455 nm/528nm, respectively. 

 

The thermally stable cyclopentene-dithienylethene based ligand 4 showed typical 

photoinduced spectral changes when irradiated with UV light of 312 nm. The photochemical 

cyclization resulted in a high PSS of 92% in DMSO and aqueous buffer and was reached after 

12 s of irradiation. The cycle performance of the DTE showed some degradation after three 

cycles because of the formation of an irreversible byproduct. After 10 min of irradiation with 

light of 312 nm, 4 was fully converted to the irreversible byproduct (HPLC trace, see Scheme 

S1 and Figure S5, Supporting Information). This degradation pathway is literature known 

(Figure 3a).10,19 Figure 3b shows the absorption spectrum of fulgimide 5 in aqueous buffer 

upon irradiation with light of 365 nm. A strong absorption band with a maximum around 490 

nm increases and can be assigned to the closed isomer (red), whereby the absorption band 

near 350 nm only slightly decreases. Irradiation with light of 528 nm diminishes the absorption 

band at 490 nm and restores the initial spectrum of the open isomer (black). The fulgimide 5 

could be switched reversibly with high fatigue resistance. However, a low PSS was observed 

due to the overlaying absorption bands of the Z-, E- and C- isomers. All switches showed a 

bathochromic shift when investigating the compounds in aqueous buffer. 
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a) 

   

b) 

 

c) 

  

d) 

 

  

Figure 3. UV/VIS spectroscopy and cycle performance of the photochromic target ligands 4 and 5 in 
aqueous buffer. a) Cyclopentene-DTE 4 (c = 20 µM). b) Structure of the open (O) and closed (C) isomer 
of compound 4 toggling with 312 nm and 528 nm. c) Fulgimide 5 (c = 20 µM).  d) Closed isomer (C) and 
open (O) isomers (E, Z) of fulgimide 5 switching with 365 nm and 528 nm. 
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Table 2. Photochemical properties of compound 4 and 5. 

Entry Compd. Solvent λmax λiso PSS QY 

   
(E) 

[nm] 

(Z) 

[nm] 

Bypr. 

[nm] [nm] 
(OàC)[b] 

  O:C 

(CàO)[b] 

   O:C 
f(O

à
C) f(C

à
O) 

1 4 DMSO 268 

533, 

353, 

276 

277, 

518 
318 5:95[c] 98:2[d] 0.36 0.38 

2 4 Buffer[a] 266 

530, 

350, 

270 

276, 

528 
310 8:92[c] 98:2[d] 0.64 0.27 

3 5 DMSO 280 
280, 

487 
- 356 

Z:E:C[e] 

15:49:36 

Z:E:C[d] 

15:85:0 
0.17 0.10 

4 5 Buffer[a] 278 
279 

495 
- 372 

Z:E:C[e] 

16:49:35 

Z:E:C[d] 

16:84:0 
0.16 0.15 

[a] Buffer: 25 mM HEPES, 2.5 mM CaCl2, 1 mM MgCl2, pH = 7.4, 0.4% DMSO; [b] PSS determination was done by HPLC at the 
appropriate isosbestic points at 25 °C; [c] Irradiation with 312 nm; [d] Irradiation with 528 nm; [e] Irradiation with 365 nm.  

 

The photo-isomerization quantum yields of the photochromic NPY receptor ligands were 

determined in DMSO and aqueous buffer in a quantum yield determination setup (QYDS) and 

are summarized in Table 2 and 3.20 The best results could be obtained for the E-Z 

isomerization of azopyrazole 3 in DMSO and the open-close reaction of the cyclopentene-DTE 

4 in buffer. 

 

2.3 Biological investigations 

The photochromic peptides 2-5 were investigated with respect to their biological activities by 

radioligand competition binding experiments to estimate their binding affinity at the human Y4R 

(for 2 and 3 additionally at the Y1R), as well as in functional assays to study their capability of 

activating the Y4R (for competition binding curves and concentration-effect curves see Figures 

S7 and S9-S11, Supporting Information). The dissociation constants (Ki values) of E/Z-2, E/Z-

3, O/C-4 and O(E)/C-5, obtained from Y4R binding studies, were comparable to that of the 

reference peptide 1 (1: Ki = 3.5 nM2, 2-5: Ki = 0.9-13 nM, Table 3), showing that the 

replacement of the suberyl moiety in 1 by various photochromic scaffolds (8, 12, 15, 16) was 

well tolerated with respect to Y4R binding. Differences in Y4R affinity between Z- and E-isomers 

and C- and O-isomers were marginal (Table 3). These data suggest that the type of the linker 

(rigid vs. flexible, cyclic vs. acyclic), connecting the two pentapeptides, has little impact on the 

interaction of these ligands with the Y4R. Presumably, one pentapeptide moiety, mimicking the 

C-terminus of the endogenous receptor ligands (hPP, NPY)3,21 occupies the orthosteric binding 

pocket of the Y4R, while the second pentapeptidyl residue undergoes additional (allosteric) 
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interactions at the surface of the receptor. The flexibility of the peptide moieties possibly 

compensates reduced flexibility of the linker in 2-5. Y1R binding studies, exemplarily performed 

for E/Z-2 and E/Z-3, revealed lower Y1R affinities (Ki > 400 nM) compared to Y4R affinities (Ki 

< 5 nM) (Table 3).  

 

Table 3. NPY Y4 receptor binding data (Ki values) and agonistic activities (EC50 values and intrinsic 
activities α) of hPP, 1, E/Z-2, E/Z-3, O/C-4 and O(E)/C-5. 

Compd. Ki Y4R [nM][a] 
β-Arrestin 1[b] β-Arrestin 2[b] Aequorin[c] Ki Y1R 

[nM][d] 
EC50 [nM] α EC50 [nM] α EC50 [nM] α 

hPP 0.65 ± 0.13 2.2 ± 0.1 1 4.3 ± 0.3 1 9.7 ± 0.4 1 440 ± 74[e] 

1 3.5 ± 0.6[f] n.d. n.d. n.d. n.d. 49 ± 13[f] 0.73[f] 720 ± 100[f] 

E-2 4.4 ± 1.7 390 ± 90 0.78 470 ± 50 0.81 410 ± 60 0.72 1930 ± 370 

Z-2 2.0 ± 0.4 270 ± 50 0.81 990 ± 120 0.78 290 ± 70 0.70  1550 ± 250 

E-3 1.8 ± 0.1 250 ± 40 0.81 980 ± 250 0.80 150 ± 60 0.60  990 ± 250 

Z-3 1.2 ± 0.1 180 ± 20 0.80 630 ± 180 0.71 800 ± 230 0.74  440 ± 220 

O-4 6.9 ± 0.5 720 ± 30 0.66 100 ± 10 0.70 490 ± 190 0.60 n.d. 

C-4 13 ± 4 830 ± 20 0.66 210 ± 60 0.68 1010 ± 310 0.66 n.d. 

O(E)-5 0.9 ± 0.1 700 ± 110 0.58 270 ± 40 0.63 670 ± 210 0.67 n.d. 

C-5 1.7 ± 0.3 760 ± 130 0.54 440 ± 80 0.66 830 ± 120 0.77 n.d. 

[a] Dissociation constant determined by competition binding with [3H]UR-KK200 at CHO-hY4R-mtAEQ-Gqi5 cells. [b] Agonistic 
potencies (EC50) and intrinsic activities (α) relative to 1 µM hPP (α = 1) determined in a β-arrestin 1/2 recruitment assay at 
HEK293T-ARRB1-Y4R or HEK293T-ARRB2-Y4R cells. [c] Agonistic potencies (EC50) and intrinsic activities (α) relative to 1 µM 
hPP (α = 1) determined in a Ca2+-aequorin assay at CHO-hY4R-mtAEQ-Gqi5 cells. [d] Dissociation constant determined by 
competition binding with [3H]UR-MK299 at SK-N-MC neuroblastoma cells. [e] Berlicki et al.22 [f] Kuhn et al.2 Data represent mean 
values ± SEM (Ki, EC50) or mean values (α) from three or four experiments performed in triplicate. 

 

In order to investigate whether the photochromic peptides 2-5 are Y4R agonists, partial 

agonists or even antagonists, 2-5 were subjected to different functional assays measuring G-

protein mediated signaling23 (Ca2+-aequorin assay24) or coupling of the receptor to arrestins23 

(β-arrestin 1 and 2 recruitment assay25). As both assay types require an optical readout 

(measurement of bioluminescence), control experiments were performed with the 

physiological agonist hPP in the absence and presence of the photochromic scaffolds 8, 14, 

15 and 16 at a concentration of 10 µM. As demonstrated in Figure S8 (Supporting Information) 

compounds 8, 14, 15 and 16 did not affect the assay readout. Like reference peptide 1 in the 

aequorin assay,2 the photochromic Y4R ligands E/Z-2, E/Z-3, O/C-4 and O(E)/C-5 proved to be 

partial agonists in all functional assays with efficacies (α) ranging from 0.54 to 0.81 (Table 3, 

Figures S9-S11, Supporting Information). The differences in Y4R potencies (EC50 values) 

between Z- and E-isomers and C- and O-isomers were marginal (Table 3) as in case of Y4R 

binding affinities (Ki values). One reason for the discrepancies between Ki values and EC50 
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values is the absence or presence of sodium ions in the used buffers for binding and functional 

assays, respectively, as discussed previously.2,25 

 

3. Conclusion 

We successfully incorporated four different photochromic scaffolds into a dimeric peptidic Y4R 

ligand resulting in the first azopyrazole and fulgimide containing bioactive peptides. All 

compounds were soluble and reversibly switchable in aqueous buffer. The photostationary 

states were excellent for the azobenzene-, azopyrazole- and dithienylethene-type ligands, 

and, additionally, the azobenzene and azopyrazole derivatives exhibited high thermal half-

lives. Binding studies at the Y4R showed that the highly flexible aliphatic linker in 1 is not a 

prerequisite for high Y4R affinity of such dimeric ligands. All photochromic derivatives of 1 

proved to be partial agonist when studied in functional assays with respect to Y4R activation 

(Table 3). As some compounds proved to be weaker partial agonists than 1 (lower intrinsic 

activities compared to 1 in functional assays, e.g. O-4, cf. Table 3), this study might support 

the development of Y4R antagonists, i.e. ligands, which give no response when studied in the 

agonist mode of functional assays. 

 

4.Experimental Section  

4.1 General Conditions 

Compounds 726, 917, 1515 and 1616 were synthesized to reported procedures. Starting materials 

were purchased from commercial suppliers and used without any further purification. Solvents 

were used in p.a. quality and dried according to common procedures, if necessary. Dry argon 

was used as inert gas atmosphere. Thin-layer chromatography (TLC) for reaction monitoring 

was performed with alumina plates coated with Merck silica gel 60 F254 (layer thickness: 

0.2 mm). The TLCs were analyzed under UV-light (254 nm, 365 nm) and with a staining 

solution (Ninhydrine). Automated flash column chromatography was performed with Sigma 

Aldrich MN silica gel 60M (0.040-0.063 mm, 230-400 mesh) as stationary phase, pre-packed 

Biotage SNAP cartridges (HP-Sphere 25µM) or a reversed phase column (KP-C18-HS) on a 

Biotage Isolera One system with UV-Vis detector. NMR spectra were recorded using a Bruker 

Avance 300 (1H: 300 MHz, 13C: 75 MHz, T = 295 K), Bruker Avance 400 (1H 400.1: MHz, 13C: 

100.6 MHz, T = 300K) or a Bruker Avance 600 (1H: 600 MHz, 13C: 151 MHz, T = 295 K) 

instrument. The spectra are referenced against the NMR solvent and are reported as follows: 
1H: chemical shift δ (ppm), multiplicity, integration, coupling constant (J in Hz). 13C: chemical 

shift δ (ppm), abbreviations: (+) = primary/tertiary, (−) = secondary, (q) = quaternary carbon. 

The assignment resulted from DEPT, COSY, HMBC and HSQC experiments. Mass spectra 

were measured with a Finnigan MAT 95, Finnigan MAT SSQ 710 A, ThermoQuest Finnigan 

TSQ 7000 or an Agilent Q-TOF 6540 UHD instrument. Absorption spectra were recorded on 
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an Agilent Cary 100 Bio UV/Vis spectrophotometer in 10 mm quartz cuvettes. Preparative 

HPLC was performed on a Agilent1100 Series (Column: Phenomenex Luna 10, C18, 100A, 

250 x 21.2 mm, flow 20 mL/min, solvent A: H2O [0.05 Vol% TFA], solvent B: MeCN). 

Photostationary states of the final compounds were measured on an Agilent 1220 Infinity LC 

System (column: Phenomenex Luna, 3µ C18(2) 100A, 150 x 2.0 mm, 100 Å). All biological 

investigations were performed in the group of Dr. M. Keller at the pharmaceutical department 

of the University of Regensburg.  

 

4.2 Synthesis procedures 

General synthesis of the azo based peptides: 

Dicarboxy-azobenzene 2/-azopyrazole 3 (1.0 eq), PyBOP (2.2 eq), HOBt (2.2 eq) and DIPEA 

(2.0 eq) were dissolved in DMF (1 mL) for preactivation (10 min) at r.t. Pentapeptide 17 (2.0 

eq) was dissolved in dry DMF (0.5 mL) and added to the mixture. After stirring for 24 h (2) / 4 

h (3) at r.t., the mixture was filtered and purified by preparative HPLC (column: Luna 10, 250 

x 21 mm; flow: 20 mL/min, solvent A: H2O (0.05% TFA), solvent B: MeCN; gradient A/B: 0-15 

min: 95/5, 15-20 min: 2/98). 

 

Compound 2 

 

 

 

C86H118N26O16,	MW	=	1772.06	g/mol,	(4x	TFA)	

 

Slightly orange solid; yield: 44%. (HPLC: tR = 7.6 min) 

 
1H-NMR (600 MHz, D6-DMSO): δ = 0.83 (d, J = 6.5 Hz, 6H, CH3(Leu)), 0.86 (d, J = 6.5 Hz, 6H, 

CH3(Leu)), 1.38-1.47 (m, 8H, CH2), 1.48-1.62 (m, 10H, CH2), 1.62-1.68 (m, 2H, CH(Leu)), 2.69-

2.75 (m, 2H, CH2(Tyr)), 2.83-2.93 (m, 4H, CH2(Tyr)), 2.95-3.02 (m, 2H, CH2(Tyr)), 3.03-3.15 (m, 8H, 
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CH2(Arg)), 4.20 (q, J = 7.0 Hz, 2H, CH), 4.27-4.37 (m, 6H, CH), 4.60-4.70 (m, 2H, CH), 6.60-

6.88 (m, 8H, CH(aromTyr)), 6.97 (d, J = 8.6 Hz, 4H, CH(aromTyr)), 7.16 (d, J = 8.5 Hz, 4H, CH(aromTyr)), 

7.96 (d, J = 8.5 Hz, 4H, CH(aromazo)), 8.00 (d, J = 8.6 Hz, 4H, CH(aromazo)). 

 
13C-NMR (151 MHz, D6-DMSO): δ = 21.4 (+), 23.1 (+), 24.2 (+), 24.9 (−), 25.1 (−), 28.9 (−), 

29.0 (−), 36.2 (−), 36.8 (−), 40.5 (−), 40.8 (−), 51.0 (+), 52.3 (+), 53.9 (+), 55.5 (+), 114.9 (+), 

122.5 (+), 128.3 (q), 129.4 (+), 130.8 (+), 136.5 (q), 153.3 (q), 155.8 (q), 156.7 (q), 165.6 (q), 

170.8 (q), 171.1 (q), 171.7 (q), 172.0 (q), 172.7 (q).   

 
HR-MS (ESI): calcd. for C86H118N26O16 (M+3H)3+, m/z = 591.3146, found 591.3158 

	

Compound 3  

 

 

 

	
C86H122N28O16, MW = 1804.10 g/mol, (4x TFA) 
 

White solid; yield: 63%. (HPLC: tR = 7.5 min) 

 
1H-NMR (600 MHz, D6-DMSO): δ = 0.81-0.89 (m, 12H, CH3(Leu)), 1.39-1.47 (m, 4H, CH2), 1.48-

1.54 (m, 4H, CH2), 1.58-1.78 (m, 6H, CH2+CH(Leu)), 2.36 (s, 3H, CH3), 2.37 (s, 3H, CH3), 2.60-

2.67 (m, 1H, CH2), 2.68-2.74 (m, 2H, CH2), 2.85 (dd, J = 13.9 Hz, 5.4 Hz, 2H, CH2), 2.87-2.94 

(m, 2H, CH2), 2.95-2.99 (m, 1H, CH2), 3.04-3.15 (m, 8H, CH2(Arg)), 4.21 (q, J = 7.0 Hz, 2H, CH), 

4.28-4.35 (m, 6H, CH), 4.52-4.57 (m, 1H, CH) 4.61-4.66 (m, 1H, CH), 4.70-4.82 (m, 2H, 

CH2(pyrazol)), 6.61-6-67 (m, 8H, CHarom), 6.97 (d, J = 8.5 Hz, 4H, CHarom), 7.02 (d, J = 8.5 Hz, 2H, 

CHarom), 7.15 (d, J = 8.6 Hz, 2H, CHarom), 7.74-7-78 (m, 2H, CHarom), 7.89-7.93 (m, 2H, CHarom). 
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13C-NMR (151 MHz, D6-DMSO): δ = 9.4 (+), 13.9 (+), 21.4 (+), 23.1 (+), 24.2 (+), 24.9 (−), 25.0 

(−), 25.1 (−), 28.9 (−), 29.0 (−), 36.2 (−), 36.8 (−), 37.1 (−), 40.5 (−), 40.8 (−), 51.0 (+), 51.4 (−), 

52.3 (+), 54.0 (+), 54.1 (+), 55.5 (+), 114.9 (+), 116.2 (q), 118.2 (q), 121.1 (+), 127.5 (q), 128.3 

(q), 128.6 (+), 130.1 (+), 130.2 (q), 134.3 (q), 134.8 (q), 140.9 (q), 141.8 (q), 154.6 (q), 155.7 

(q), 155.8 (q), 155.9 (q), 156.8 (q), 165.9 (q), 170.9 (q), 171.0 (q), 171.1 (q), 171.2 (q), 171.8 

(q), 172.0 (q), 172.7 (q).   

 

HR-MS (ESI): calcd. for C86H122N28O16 (M+2H)2+, m/z = 902.4870, found 902.4880 
 

General synthesis of the DTE/fulgimide based peptides: 

Dicarboxy-fulgimide 5 or cyclopentene-DTE 4 (1.0 eq) was dissolved in dry DMF. TBTU (2.2 

eq), HOBt (2.2 eq) and DIPEA (5.0 eq) were added and the mixture was stirred for 5 min at r.t. 

in the darkness. Pentapeptide 17 (2.0 eq) was added and the mixture was stirred at r.t. for 4 

h. The reaction mixture was filtered and directly used for purification via preparative HPLC. 

(column: Luna 10, 250 x 21 mm; flow: 20 mL/min, solvent A: H2O (0.05% TFA), solvent B: 

MeCN; gradient A/B: 0-15 min: 95/5, 15-20 min: 2/98). 

 

Compound 4 

 

 

 

	
C89H124N24O16S2, MW = 1850.24 g/mol, (4x TFA) 

 
Slightly red solid; yield: 33%. (HPLC: tR = 8.7 min) 

 
1H-NMR (600 MHz, D6-DMSO): δ = 0.83 (d, J = 6.6 Hz, 6H, CH3(Leu)), 0.86 (d, J = 6.6 Hz, 6H, 

CH3(Leu)), 1.38-1.57 (m, 16H, CH2), 1.63 (m, 2H, CH(Leu)), 1.56-1.68 (m, 4H, CH2), 1.69 (s, 6H, 

CH3(DTE)), 2.03-2.11 (m, 2H, CH2(DTE)), 2.68-2.93 (m, 12H, CH2), 3.03-3.13 (m, 8H, CH2(Arg)), 

4.12-4.24 (m, 2H, CH), 4.25-4.35 (m, 6H, CH), 4.51-4.57 (m, 2H, CH), 6.61 (d, J = 8.5Hz, 4H, 
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CH(aromTyr)), 6.63 (d, J = 8.5Hz, 4H, CH(aromTyr)), 6.97 (d, J = 8.5Hz, 4H, CH(aromTyr)), 7.12 (d, J = 

8.6Hz, 4H, CH(aromTyr)), 7.72 (s, 2H, CH(aromDTE)). 

 
13C-NMR (151 MHz, D6-DMSO): δ = 14.1 (+), 21.4 (+), 22.1 (−), 23.1 (+), 24.1 (+), 24.9(−), 

25.1(−), 28.9 (−), 29.0 (−), 36.3 (−), 36.8 (−), 38.6 (−), 40.5 (−), 40.8 (−), 50.9 (+), 52.2(+), 53.9 

(+), 55.1(+), 114.9 (+), 127.5 (q), 128.28 (q), 129.3 (+), 130.0 (+), 134.0 (q), 135.3 (q), 136.1 

(q), 138.9 (q), 155.7 (q), 155.8 (q), 156.7 (q), 160.9 (q), 170.8 (q), 171.1 (q), 171.7 (q), 172.0 

(q), 172.7 (q). 

 
HR-MS (ESI): calcd. for C89H124N24O16S2 (M+3H)3+, m/z = 617.3111, found 617.3096 

 

Compound 5 

 

 

	
C94H129N25O20, MW = 1929.22 g/mol, (4x TFA) 

 

Slightly pink solid; yield: 43%. (HPLC: tR = 8.2 min) 

 
1H-NMR (600 MHz, D6-DMSO): δ = 0.83-0.89 (m, 12H, CH3(Leu)), 1.04 (s, 3H, CH3(fulgimide)), 1.38-

1.56 (m, 16H, CH2), 1.59-1.65 (m, 4H, CHLeu) 1.62-1.70 (m, 4H, CH2), 2.10 (s, 3H, CH3(fulgimide)), 

2.16 (s, 3H, CH3(fulgimide)), 2.59-2.66 (m, 3H, CH3(fulgimide)) 2.68-2.74 (m, 4H, CH2(Tyr)), 2.84-2.87 

(m, 4H, CH2(Tyr)), 3.05-3.10 (m, 8H, CH2(Arg)), 4.13 (s, 2H, CH2(fulgimide)), 4.20-4.23 (m, 2H, 

CH(Leu)), 4.27-4.31 (m, 2H, CH2(fulgimide)), 4.31-4.35 (m, 6H, CH(TyrArg)), 4.56 (s, 2H, CH2(fulgimide)), 

4.53-4.60 (m, 2H, CH) 6.63 (d, 8H, J = 8.1 Hz, CH(aromTyr)), 6.79 (d, 1H, J = 9.0 Hz, 

CH(aromfulgimide)), 6.97 (d, 8H, J = 8.1 Hz, CH(aromTyr)), 7.10 (s, 1H, CH(aromFulgimid)), 7.42 (d, 1H, J = 

8.68, CH(aromfulgimide)) 
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13C-NMR (151 MHz; D6-DMSO): δ = 13.3 (+), 20.4 (+), 21.4 (+), 23.2 (+), 24.2 (+), 24.9 (−), 

25.1 (−), 26.2 (+), 29.0 (−), 36.7 (−), 36.8 (−), 40.5 (−), 40.8 (−), 51.0 (+), 52.0 (+), 52.1 (+), 

52.3 (+), 53.9 (+), 67.5 (−), 104.9 (+), 111.3 (+), 112.2 (+), 114.9 (+),119.3 (q), 122.2 (q), 122.6 

(q), 124.5 (q), 130.05 (q), 127.5 (+), 130.15 (q), 138.6 (q), 147.8 (q), 151.4 (q), 152.6 (q), 154.4 

(q), 155.8 (q), 156.7 (q), 160.2 (q), 164.5 (q), 167.5 (q), 170.8 (q), 170.9 (q), 171.0 (q), 171.1 

(q), 172.0 (q), 172.7 (q). 

 

HR-MS (ESI): calcd. for C94H129N25O20 (M+3H)3+, m/z = 643.6688, found 643.6690 

 

Compound 8: (E)-4-((1-(carboxymethyl)-3,5-dimethyl-1H-pyrazol-4-yl)diazenyl)-
benzoic acid 
 

 

  C14H14N4O4, MW = 302.29 g/mol 

 

4-Nitrosobenzoic acid (200 mg, 1.32 mmol, 1.0 eq) was added to a stirred solution of 2-(4-

amino-3,5-dimethyl-1H-pyrazol-1-yl)acetic acid (250 mg, 1.48 mmol, 1.1 eq) in pyridine (3 mL) 

and aqueous 40% NaOH (3 mL). The mixture was stirred at 80 °C for 2 h and subsequently 

cooled to r.t. Water was added and the mixture was extracted with EtOAc (4x 25 mL). The 

combined organic layers were dried over Na2SO4, filtered and the solvent was removed in 

vacuo to obtain the crude product. The crude product was purified by automated reversed 

phase column chromatography (H2O + 0.05% TFA, MeCN: 10-98% MeCN) to yield the target 

compound 8 (48 mg, 0.15 mmol, 12%) as a yellow solid. 

 
1H-NMR (400 MHz; D6-DMSO): δ = 13.18 (s, 2H), 8.07 (d, J = 8.7 Hz, 2H), 7.81 (d, J = 8.7 Hz, 

2H), 4.97 (s, 2H), 2.54 (s, 3H), 2.39 (s, 3H). 

 
13C-NMR (101 MHz; D6-DMSO): δ = 9.5 (+), 13.9 (+), 39.5 (+), 50.6 (−),121.5 (+), 130.5 (+), 

131.1 (q), 135.0 (q), 141.2 (q), 141.8 (q), 155.5 (q), 166.9 (q), 169.1 (q). 

 

ESI-MS: m/z (%) = 303.10 (MH+)  
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Compound 10: methyl 2-((3-acetyl-2-methylbenzofuran-5-yl)oxy)acetate 
 

  C14H14O5, MW = 262.26 g/mol 

 

1-(5-hydroxy-2-methylbenzofuran-3-yl)ethan-1-one (9) (12.8 g, 67 mmol, 1.0 eq) was 

dissolved in DMF (150 mL) under argon atmosphere at 0 °C. NaH (2.5 g, 70 mmol, 1.1 eq) 

was added in portions and the suspension was stirred for 1 h at 0 °C. Methylbromoacetate 

(10.6 g, 69 mmol, 1.1 eq) was added and the mixture was stirred for 2 h at r.t. An aqueous HCl 

solution (2M, 200 mL) and H2O (200 mL) were added to stop the reaction. The aqueous layer 

was extracted with EtOAc (3 x 200 mL) and the combined organic layers were dried over 

Na2SO4, filtered and the solvent was removed under reduced pressure. The crude product was 

purified by automated column chromatography (PE/EtOAc: gradient 0-60% EtOAc) to obtain 

the desired product 10 (14.6 g, 56 mmol, 83%). 

 

Analytical data were in agreement with published data.26 

 

Compound 11: (E/Z)-2-((3-(1-(2,5-dioxo-4-(propan-2-ylidene)dihydrofuran-3(2H)-

ylidene)-ethyl)-2-methylbenzofuran-5-yl)oxy)acetic acid 

	

  C20H18O7, MW = 370.36 g/moL 

 

To a solution of diisopropylamine (2.77 mL, 26.8 mmol, 1.6 eq) in tetrahydrofuran was added 

a 1.6 M solution of n-butyllithium in hexane (15.7 mL, 25.2 mmol, 1.5 eq) at -78 °C under 

nitrogen atmosphere. The mixture was stirred at this temperature for 30 min. Diethyl 

isopropylidenesuccinate (4.31 g, 20.1 mmol, 1.2 eq) was added and the mixture was stirred at 

−78 °C for 1h. Compound 10 (4.40 g, 16.8 mmol, 1.0 eq) was added and the mixture was 

allowed to warm to room temperature over night. The reaction mixture was stirred for 24 h at 

room temperature and quenched with an aqueous HCl-solution (2 M, 50 mL). The aqueous 

phase was extracted with ethyl acetate (3 x 100 mL) and the combined organic layers were 

dried over Na2SO4. The solvent was removed in vacuo to obtain the crude halfester mixture 

E/Z-11 as intermediate. 

Mixture 11 was dissolved in ethanol (40 mL) and after addition of KOH (23.5 g, 420 mmol, 25 

eq) and H2O (5 mL), the mixture was stirred for 12 h at 70 °C. The reaction mixture was poured 
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onto ice and quenched with an aqueous HCl-solution (2 M, 50 mL). The aqueous layer was 

extracted with ethyl acetate (3 x 50 mL) and the combined organic layers were washed with 

brine (30 mL) and dried over Na2SO4. The organic solvent was evaporated to get the crude 

diacid as a yellow solid. The diacid was suspended in dichloromethane (40 mL) and after 

added DCC (10.4 g, 50.4 mmol, 3.0 eq) the solution was stirred for 24 h at 40 °C. The solvent 

was removed in vacuo and the crude product was purified by automated flash column 

chromatography (PE/EtOAc: gradient 0-80% EtOAc) to obtain a slightly pink solid E-12 (187 

mg, 0.50 mmol, 3% overall yield E-isomer) and a white solid Z-12 (124 mg, 0.34 mmol, 2% 

overall yield Z-isomer) 

 

E-isomer 
1H-NMR (400 MHz, CDCl3): δ = 1.90 (s, 3H, CH3), 2.13 (s, 3H, CH3), 2.20 (s, 3H, CH3), 2.30 

(s, 3H, CH3), 4.59 (s, 2H, CH2), 6.67 (d, 1H, J = 10.3 Hz, CHarom), 6.75 (s, 1H, CHarom), 7.13 (d, 

J = 8.9 Hz, 1H, CHarom). 

  
13C-NMR (151 MHz, CDCl3): δ = 13.3 (+), 22.0 (+), 23.7 (+), 26.9 (+), 68.0 (−), 103.8 (+), 111.4 

(+), 112.2 (+), 114.8 (q), 121.1 (q), 122.7 (q), 127.6 (q), 143.3 (q), 149.1 (q), 153.1 (q), 154.2 

(q), 157.1 (q), 160.7 (q) 16291 (q), 167.5 (q). 

 

ESI-MS: m/z (%) = 369.10 (M-H)-  

 

Z-isomer: 
1H-NMR (400 MHz; CDCl3): δ = 1.14 (s, 3H), 2.24 (s, 3H), 2.29 (s, 3H), 2.73 (s, 3H), 4.69 (s, 

2H), 6.70 (s, 1H), 6.94 (d, J = 7.0 Hz, 1H), 7.35 (d, J = 8.9 Hz, 1H). 

 
13C NMR (101 MHz; CDCl3): δ = 14.2 (+), 22.3 (+), 23.0 (+), 26.8 (+), 65.8 (−), 104.5 (+), 112.1 

(+), 113.6 (+), 119.7 (q), 126.6 (q), 144.7 (q), 149.6 (q), 154.2 (q), 154.3 (q), 156.4 (q), 163.3 

(q), 163.6 (q), 171.8 (q). 

 

ESI-MS: m/z (%) = 369.11 (M-H)-  
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Compound E-13: (E)-4-(5-(carboxymethoxy)-2-methylbenzofuran-3-yl)-3-((carboxy-

methyl)carbamoyl)-2-(propan-2-ylidene)pent-3-enoic acid 

Regioisomer 1 and 2 

 

  

 

C22H23NO9, MW = 445.42 g/mol 

 

The fulgide E-12 (120 mg, 0.32 mmol, 1.0 eq) was dissolved in MeCN (10 mL) and a mixture 

of DIPEA (0.28 mL, 1.62 mmol, 5.0 eq) and glycine methylester (122 mg, 0.97 mmol, 3.0 eq) 

in MeCN (8 mL) was added dropwise at 0 °C. The solution was stirred over night at r.t. The 

solvent was evaporated and the residue was quenched with 50 mL of H2O and extracted with 

EtOAc (2x 70 mL). The aqueous layer was acidified with HCl (2 M) to pH 1 and extracted with 

EtOAc (3x 70 mL). The combined organic layers were dried over Na2SO4, filtered, and 

concentrated in vacuo to obtain the crude intermediate of amide acid ester. The residue was 

dissolved in MeOH and NaOH (64,8 mg, 1.62 mmol, 5.0 eq) was added to stir the solution over 

night at r.t. The solution was concentrated in vacuo and the resulting precipitate was dissolved 

in an aqueous solution of Na2CO3 (0.5 M, 50 mL) and extracted with EtOAc (3x 50 mL). After 

acidification of the aqueous layer with concentrated HCl to pH 1, the mixture was extracted 

again with EtOAc (3x 50 mL). The combined organic layers were dried over Na2SO4 and the 

solvent was concentrated in vacuo. The crude mixture was purified by automated reversed 

phase column chromatography (H2O + 0.05% TFA, MeCN: 20-98% MeCN) to obtain the 

slightly yellowish product E-13 (118 mg, 0.26 mmol, 83%). 

 

Regioisomer 1 
1H-NMR (400 MHz; MeOD): δ = 1.89 (s, 3H), 2.06-2.09 (m, 6H), 2.35 (s, 3H), 4.06 (s, 2H), 

4.65 (s, 2H), 6.87 (d, J = 8.8 Hz, 1H), 6.93 (s, 1H), 7.27 (d, J = 8.8 Hz, 1H). 

 
13C-NMR (101 MHz; MeOD): δ = 12.9 (+), 21.4 (+), 21.6 (+), 22.1 (+), 41.8 (−), 66.7 (−), 104.6 

(+), 111.8 (+), 113.2 (+), 118.4 (q), 128.8 (q), 130.2 (q), 135.2 (q), 140.3 (q), 144.0 (q), 150.5 

(q), 152.8 (q), 155.4 (q), 171.3 (q), 171.5 (q), 172.5 (q), 172.8 (q). 
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ESI-MS: m/z (%) = 446.16 (MH+)  

Regioisomer 2 
1H-NMR (400 MHz; MeOD): δ = 1.88 (s, 3H), 1.91 (s, 3H), 2.21 (s, 3H), 2.29 (s, 3H), 4.04 (s, 

2H), 4.64 (s, 2H), 6.87-6.88 (m, 1H), 6.93 (s, 1H), 7.28-7.24 (m, 1H). 

 
13C-NMR (101 MHz, MeOD): δ = 13.1 (+), 21.2 (+), 22.6 (+), 24.5 (+), 42.1 (−), 66.9 (−), 105.1 

(+), 112.0 (+), 113.5 (+), 118.6 (q), 129.1 (q), 135.8 (q), 138.4 (q), 140.1 (q), 143.7 (q), 150.9 

(q), 153.6 (q), 155.7 (q), 170.7 (q), 171.8 (q), 172.8 (q), 173.0 (q). 

 

ESI-MS: m/z (%) = 446.14 (MH+)  

 

Compound E-14: (E)-2-(3-(1-(5-(carboxymethoxy)-2-methylbenzofuran-3-yl)ethyli-

dene)-2,5-dioxo-4-(propan-2-ylidene)pyrrolidin-1-yl)acetic acid 

 

  C22H23NO9, MW = 427.41 g/mol 

 

The amide acid E-13 (118 mg, 0.26 mmol, 1 eq) was dissolved in toluene (30 mL) and after 

added acetic anhydride (10 mL) at 0 °C, the solution was stirred for 2 h at r.t. The reaction 

mixture was diluted with EtOAc (80 mL) and extracted with saturated NaHCO3 (2x 50 mL) and 

H2O (50 mL). The organic layer was dried over Na2SO4, filtered and the solvent was 

evaporated. The crude product was purified by automated column chromatography 

(CH2Cl2/MeOH: 0-20% MeOH) and further purified by preparative HPLC (column: Luna 10, 

250 x 21 mm; flow: 20 mL/min, solvent A: H2O (0.05% TFA), solvent B: MeCN; gradient A/B: 

0-15 min: 95/5, 15-20 min: 2/98; tR = 11.8 min) to obtain the product E-14 as a light red solid 

(22 mg, 0.05 mmol, 20%). 

 
1H-NMR (400 MHz, D6-DMSO): δ = 1.07 (s, 3H, CH3), 2.16 (s, 3H, CH3), 2.18 (s, 3H, CH3), 

2.67 (s, 3H, CH3), 4.23 (s, 2H, CH2), 4.68 (s, 2H, CH2), 6.88 (d, J 8.9 Hz, 1H, CHarom), 7.01 (s, 

1H, CHarom), 7.43 (d, J 8.9 Hz, 1H, CHarom)  

 
13C-NMR (100 MHz, D6-DMSO): δ = 13.4 (+), 20.6 (+), 21.4 (+), 26.2 (+), 38.9 (−), 65.3 (−), 

104.5 (+), 111.3 (+), 112.4 (+), 119.4 (q), 122.7 (q), 124.3 (q), 127.0 (q), 139.3 (q), 148.6 (q), 

149.1 (q), 152.7 (q), 154.2 (q), 166.8 (q), 167.3 (q), 168.8 (q), 170.3 (q) 

ESI-MS: m/z (%) = 385.23 (MH+)  
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Compound 17: (S)-N-((S)-1-amino-3-(4-hydroxyphenyl)-1-oxopropan-2-yl)-2-((S)-2-

((S)-2-((S)-2-amino-3-(4-hydroxyphenyl)propanamido)-5-guanidinopentanamido)-4-

methylpentanamido)-5-guanidinopentanamide 

 

  C36H56N12O7, MW = 768.92 g/mol, (2x TFA salt) 

 

Manual SPPS applying the Fmoc strategy on a Fmoc-Sieber-PS resin (loading, 0.85 mmol/g, 

250 mg, 0.43 mmol, 1.0 eq) was used for the peptide synthesis. Discardit II syringes (20 mL) 

were equipped with 35 µM polyethylene frits and used as reaction vessels. A mixture of 

DMF/NMP (8:2) was used as solvent and protected standard L-amino acids (5 eq) were 

preactivated with HBTU (5.0 eq)/HOBt (5.0 eq)/DIPEA (10 eq) for 7 min and added to the resin. 

Coupling was performed at r.t. for 1.5 h and every coupling step was done twice. After the 

coupling step, the resin was washed with DMF/NMP (8:2) and treated with 20% piperidine in 

DMF/NMP (8:2) at r.t. (2x, each step 10 min) for Fmoc deprotection. This step was followed 

by a DMF/NMP (8:2) wash (2x). After the last coupling step and Fmoc deprotection, the resin 

was washed with DCM (2x). The peptide was cleaved from the resin with CH2Cl2/TFA (97:3) 

at r.t. (8x 10 min) and filtered. The combined filtrates were poured onto water and the organic 

solvent was removed in vacuo. The aqueous layer was lyophilized and subsequently purified 

by automated reversed phase column chromatography (H2O + 0.05% TFA, MeCN: 30-98% 

MeCN) to obtain the side chain protected peptide. The protected peptide was dissolved in a 

mixture of TFA/H2O (95/5, 5 mL) and stirred at r.t. for 4 h. Water was added and removed by 

lyophilisation. The product was purified by automated reversed phase column chromatography 

(H2O + 0.05% TFA, MeCN: 10-98% MeCN) to obtain the product 17 as a white solid (204 mg, 

0.26 mmol, 62%). 

 
1H-NMR (400 MHz; D6-DMSO): δ = 0.86 (dd, J = 15.3, 6.5 Hz, 6H), 1.69-1.44 (m, 11H), 2.84-

2.74 (m, 3H), 2.98 (dd, J = 14.2, 4.3 Hz, 1H), 3.02-3.12 (m, 4H), 3.97 (t, J = 6.0 Hz, 1H), 4.19 

(q, J = 6.8 Hz, 1H), 4.27-4.40 (m, 3H), 6.65 (dd, J = 16.9, 8.4 Hz, 4H), 6.99 (dd, J = 15.5, 8.4 

Hz, 4H). 

 
13C-NMR (101 MHz; D6-DMSO): δ = 21.52 (+), 23.28 (+), 24.43 (+), 25.02 (−), 25.12 (−), 29.14 

(−), 29.44 (−), 36.34 (−), 36.94 (−), 40.55 (−), 40.63 (−), 40.75 (−), 51.32 (+), 52.35 (+), 52.53 
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(+), 53.60 (+), 54.20 (+), 115.10 (+), 115.52 (+), 124.72 (q), 127.68 (q), 130.25 (+), 130.74 (+), 

155.98 (q), 156.73 (q), 156.95 (q), 156.99 (q), 168.21 (q), 171.01 (q), 171.17 (q), 172.33 (q), 

173.05 (q). 

 

ESI-MS: m/z (%) = 385.23 (M+2H+)2+  

 

4.3 Assays 

NPY Y4 receptor radioligand binding assay 

Radioligand competition binding experiments at the Y4 receptor were performed as previously 

described using CHO-hY4R-mtAEQ-Gqi5 cells and [3H]UR-KK200 (Kd = 0.67 nM, concentration 

= 1 nM) as radioligand.2 Immediately prior to the experiment, Z-isomers* of 2 and 3 were 

generated from the respective E-isomers (10 or 30 µM in binding buffer) by irradiation with UV 

light (λ = 365 nM) in open polypropylene reaction vessels for 40 s. The closed forms* of 4 and 

5 were generated from the respective ‘open’ isomers (5 mM in DMSO/H2O, 1:1) by irradiation 

with UV light (4: λ = 312 nM, 5: λ = 365 nM). All solutions of 2-5 (both isomeric forms) were 

kept in the dark. Assays were performed in the dark using a red LED (λ = 650 nm) to maintain 

visibility for the operator. Specific binding data were analyzed by a four parameter logistic fit 

(log(inhibitor) vs response – variable slope; GraphPad Prism 5.0, GraphPad Software, San 

Diego, CA) to obtain IC50 values. The latter were converted to Ki values according to the 

Cheng-Prusoff equation.27 

*Note: for an approximation of achieved E/Z ratios and O/C ratios (PSS) see Table 1 and 2. 

 

NPY Y1 receptor radioligand binding assay 

Radioligand competition binding experiments at the Y1 receptor were performed as previously 

described, using SK-N-MC neuroblastoma cells and [3H]UR-MK299 (Kd = 0.044 nM, 

concentration = 0.15 nM) as radioligand,28 with the following modification: experiments were 

performed in the dark using a red LED (λ = 650 nm) to maintain visibility for the operator. The 

Z-isomers of 2 and 3 were generated as described under ’NPY Y4 receptor radioligand binding 

assay’. Binding data of 3 were analyzed as in case of Y4 receptor binding. In case of 2 

(incomplete displacement [3H]UR-MK299) pIC50 values were determined by plotting log(B/(B0–

B)) (B = specifically bound [3H]UR-MK299 in the presence of 2; B0 = specifically bound [3H]UR-

MK299 in the absence of 2) versus log(concentration of 2) followed by linear regression. 

Resulting pIC50 values (pIC50 = intercept with the X-axis) were transformed to IC50 values and 

the latter were converted to Ki values according to the Cheng-Prusoff equation. 
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β-Arrestin recruitment assay 

The β-arrestin 1 and 2 recruitment assays were performed with HEK293T-ARRB1-Y4R or 

HEK293T-ARRB2-Y4R cells as previously reported 25 with the following modification: 

experiments were performed in the dark using a red LED (λ = 650 nm) to maintain visibility for 

the operator. The Z-isomers of 2 and 3 as well as the closed forms of 4 and 5 were prepared 

as described under ’NPY Y4 receptor radioligand binding assay’. Measured bioluminescences 

were normalized (100% = bioluminescence obtained from 1 µM hPP, 0% = basal effect in the 

absence of agonist; GraphPad Prism 5.0) and relative cellular responses were plotted against 

log(concentration of agonist) followed by fitting according to a four-parameter logistic equation 

(log(agonist) vs response - variable slope; GraphPad Prism 5.0). Resulting pEC50 values were 

converted to EC50 values. Efficacies α (maximum effect relative to 1 µM hPP) were calculated 

from the upper curve plateaus (α = ‘top’/100). 

 

Aequorin assay 

The Ca2+-aequorin assay was performed with CHO-hY4R-mtAEQ-Gqi5 cells as previously 

reported.24 The Z-isomers of 2 and 3 as well as the closed forms of 4 and 5 were prepared as 

described under ’NPY Y4 receptor radioligand binding assay’. Areas under the curve were 

determined using Sigma Plot 12.5 (Systat Software, Chicago, IL). Fractional bioluminescences 

were normalized (100% = fractional bioluminescence obtained from 1 µM hPP, 0% = basal 

effect in the absence of agonist; GraphPad Prism 5.0) and relative responses were plotted 

against log(concentration of agonist) followed by fitting according to a four-parameter logistic 

equation (log(agonist) vs response - variable slope; GraphPad Prism 5.0). Resulting pEC50 

values were converted to EC50 values. Efficacies α (maximum effect relative to 1 µM hPP) 

were calculated from the upper curve plateaus (α = ‘top’/100). 
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6. Supporting information 

6.1 PSS determination via HPLC 

Azobenzene 2 

The photochemical isomerization of compound 2 is depicted in Figure S1. The EàZ 

isomerization was performed with a 365 nm LED (SSC VIOSYS, 700 mA, 1250 mW) and the 

ZàE isomerization with a 455 nm LED (OSRAM Oslon SSL 80 blue, 1000 mA, 1480 mW). 

Conditions analytical HPLC: column Phenomenex Luna, 3µ C18(2) 100A, 150 x 2.0 mm, 100 

Å, 15 °C, solvent A: H2O (0.05% TFA), solvent B: MeCN; gradient A/B: 0-20 min: 90/10, 20-30 

min: 2/98. 

 

a)  

 

 

b) 

 

 

Figure S1. PSS determination via HPLC measurements at the isosbestic point of azobenzene 2 (tR(E) = 
9.0 min, tR(Z) = 8.6 min). a)EàZ isomerization. b)ZàE isomerization. 

 

Azopyrazole 3 

The photochemical isomerization of compound 3 is depicted in Figure S2. The EàZ 

isomerization was performed with a 365 nm LED (SSC VIOSYS, 700 mA, 1250 mW) and the 

ZàE isomerization with a 528 nm LED (OSRAM Oslon SSL 80 green, 500 mA, 34 mW). 

Conditions analytical HPLC: column Phenomenex Luna, 3µ C18(2) 100A, 150 x 2.0 mm, 100 

Å, 15 °C, solvent A: H2O (0.05% TFA), solvent B: MeCN; gradient A/B: 0-20 min: 90/10, 20-30 

min: 2/98. 
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a) 

 

b) 

 

 

Figure S2. PSS determination via HPLC measurements at the isosbestic point of azopyrazole 3 (tR(E) = 
8.9 min, tR(Z) = 8.6 min). a) EàZ isomerization. b) ZàE isomerization. 

 

Dithienylethene 4 

The photochemical isomerization of compound 4 is depicted in Figure S3. The OàC 

isomerization was performed with a 312 nm tube lamp (Herolab hand-held lamp UV-6 M, 6 W) 

and the CàO isomerization with a 528 nm LED (OSRAM Oslon SSL 80 green, 500 mA, 34 

mW). Conditions analytical HPLC: column Phenomenex Luna, 3µ C18(2) 100A, 150 x 2.0 mm, 

100 Å, 25 °C, solvent A: H2O (0.05% TFA), solvent B: MeCN; gradient A/B: 0-20 min: 90/10, 

20-30 min: 2/98 

 

a) 

 

b) 
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Figure S3. PSS determination via HPLC measurements at the isosbestic point of compound 4 (tR(O) = 
9.4 min, tR(C) = 9.0 min). a) OàC isomerization. b) CàO isomerization. 

 

Fulgimide 5 

The photochemical isomerization of compound 5 is depicted in Figure S4. The OàC 

isomerization was performed with a 365 nm LED (SSC VIOSYS, 700 mA, 1250 mW) and the 

CàO isomerization with a 528 nm LED (OSRAM Oslon SSL 80 green, 500 mA, 34 mW). 

Conditions analytical HPLC: column Phenomenex Luna, 3µ C18(2) 100A, 150 x 2.0 mm, 100 

Å, 15 °C, solvent A: H2O (0.05% TFA), solvent B: MeCN; gradient A/B: 0-40 min: 90/10, 40-50 

min: 55/45, 50-60 min: 2/98). 

 

a) 

 

b) 

 

 

Figure S4. PSS determination via HPLC measurements at the isosbestic point of compound 5 (tR(Z) = 
26.4 min, tR(E) = 26.8 min, tR(C) = 27.0 min). a) OàC isomeri-zation. b) CàO isomerization. 
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6.2 Byproduct formation of compound 4 

 

 

 

 

Scheme S1. Formation of an irreversible byproduct CBP-4 upon irradiation with light of 312 nm (Herolab 
hand-held lamp UV-6 M, 6 W) after 5 min. 

 

 

 

Figure S5. HPLC measurements, the three chromatograms are depicted to show the byproduct 
formation. Chromatogram CBP-4 was measured after 5 min irradiation with 312 nm light. (Method HPLC: 
column Phenomenex Luna, 3µ C18(2) 100A, 150 x 2.0 mm, 100 Å, 25 °C, solvent A: H2O (0.05% TFA), 
solvent B: MeCN; gradient A/B: 0-40 min: 90/10, 40-50 min: 55/45, 50-60 min: 2/98) 

 

 

6.3 Thermal half-life of compound 2 and 3 

To determine the thermal half-lives, the samples were first irradiated until the photostationary 

state (PSS) was reached. The samples were left for thermal relaxation at 25 °C and the 

recovery of the absorbance of the E-isomer at lmax was measured. The calculation of the 

thermal half-life was done by fitting the data with an exponential function (Figure S6). 
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a)          b) 

 

 

Figure S6. Half-life determination of the azo based compounds. a) Azobenzene 2; b) Azopyrazole 3. 
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6.4 Biological characterization  

Displacement curves from radioligand competition binding assays and concentration-effect 

curves from functional assays. 

 

 

Figure S7. A: Displacement curves obtained from competition binding experiments with the Y4R 
radioligand [3H]UR-KK200 (Kd = 0.67 nM, c = 1 nM) and E/Z-2*, E/Z-3*, O/C-4* and O(E)/C-5* performed 
at CHO-hY4R-mtAEQ-Gqi5 cells. B: Displacement curves obtained from competition binding experiments 
with the Y1R radioligand [3H]UR-MK299 (Kd = 0.044 nM, c = 0.15 nM) and E/Z-2* and E/Z-3* performed 
at SK-N-MC neuroblastoma cells. Data (A, B) represent means ± SEM from three or four independent 
experiments performed in triplicate. Data were analyzed by four parameter logistic fits (GraphPad Prism 
5.0). In B, data of E/Z-2 did not allow an analysis by a four parameter logistic fit. 
*For an approximation of achieved E/Z and O/C ratios (PSS) see Tables 1 and 2 (main article).  
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Figure S8. Control experiments to investigate whether the photochromic core structures 8, 14, 15 and 
16 influence the readout of the functional Y4R aequorin and arrestin assay. A: Concentration-response 
curves of hPP (β-arrestin 1 and 2 recruitment assay using HEK293T-ARRB1-Y4R or HEK293T-ARRB2-
Y4R cells) in the absence and presence of E-8, E-14, E-15 and O-16. B: Concentration-response curves 
of hPP (Ca2+-aequorin assay using CHO-hY4R-mtAEQ-Gqi5 cells) in the absence and presence E-8, E-
14, E-15 and O-16. Data (A, B) represent means ± SEM from three or four independent experiments 
performed in triplicate. Data were analyzed by four parameter logistic fits (GraphPad Prism 5.0). Cellular 
responses were normalized to the effect of hPP elicited at a concentration of 1 µM. In both assays, E-

8, E-14, E-15 and O-16 did not affect the assay readout. 
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Figure S9. Y4R functional activities (concentration-response curves) of E/Z-2*, E/Z-3*, O/C-4* and 
O(E)/C-5* and the endogenous agonist hPP determined by measuring β-arrestin 1 recruitment to the Y4R 
using HEK293T-ARRB1-Y4R cells. Data represent means ± SEM from three or four independent 
experiments performed in triplicate. Data were analyzed by four parameter logistic fits (GraphPad Prism 
5.0). Cellular responses were normalized to the effect of hPP elicited at a concentration of 1 µM. 
*For an approximation of achieved E/Z and O/C ratios (PSS) see Tables 1 and 2 (main article). 
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Figure S10. Y4R functional activities (concentration-response curves) of E/Z-2*, E/Z-3*, O/C-4* and 
O(E)/C-5* and the endogenous agonist hPP determined by measuring β-arrestin 2 recruitment to the Y4R 
using HEK293T-ARRB2-Y4R cells. Data represent means ± SEM from three or four independent 
experiments performed in triplicate. Data were analyzed by four parameter logistic fits (GraphPad Prism 
5.0). Cellular responses were normalized to the effect of hPP elicited at a concentration of 1 µM. 
*For an approximation of achieved E/Z and O/C ratios (PSS) see Tables 1 and 2 (main article). 
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Figure S11. Y4R functional activity (concentration-response curve) of E/Z-2*, E/Z-3*, O/C-4* and O(E)/C-
5* and the endogenous agonist hPP determined by measuring the intracellular Ca2+ mobilization in an 
aequorin assay using CHO-hY4R-mtAEQ-Gqi5 cells. Data represent means ± SEM from three or four 
independent experiments performed in triplicate. Data were analyzed by four parameter logistic fits 
(GraphPad Prism 5.0). Cellular responses were normalized to the effect of hPP elicited at a 
concentration of 1 µM. 
*For an approximation of achieved E/Z and O/C ratios (PSS) see Tables 1 and 2 (main article).
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7. NMR-spectra 

Compound 2 
1H (D6-DMSO, 600 MHz) 

 

 

13C (D6-DMSO, 151 MHz) 
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Compound 3 
1H (D6-DMSO, 600 MHz) 

 
13C (D6-DMSO, 151 MHz) 
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Compound 4 
1H (D6-DMSO, 600 MHz) 

 
13C (D6-DMSO, 151 MHz) 
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Compound 5 
1H (D6-DMSO, 600 MHz) 

 

 
13C (D6-DMSO, 151 MHz) 
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CHAPTER 3 

 

3. Covalent binding photochromic GPCR-Ligands for single 

    molecule spectroscopy 
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1. Introduction 

Photochromic ligands are small molecules that act directly on endogenous proteins.1 Several 

clinically significant receptors2,3 and ion channels4,5 have been targeted by photoresponsive 

molecules in the past but photochromic ligands are limited to a narrow concentration range 

and dilution in tissue reduces their efficacy.1 In order to obtain photochromic ligands that are 

not diffusion limited, a series of covalent photoswitchable ligands were developed. They could 

be extremely useful in the functional dissection of closely related receptor subtypes, since 

selectivity can be achieved through covalent attachment to genetically engineered mutant 

receptors.[LI05a] These photochromic tethered ligands were comprised of a bioactive 

photoswitchable moiety and a reactive functionality that could covalently interact with certain 

amino acid residues in the target receptor binding site. To date, the majority of reports of such 

covalent ligands have been described for targeting G protein coupled receptors (GPCRs).7,8  

GPCRs are transmembrane proteins that translate extracellular signals, including ions, 

hormones and peptides into intracellular responses and thus play a central role in many 

physiological and pathophysiological processes. Furthermore, they represent the largest group 

of targets for drug discovery over a broad spectrum of diseases.8,9 Even though GPCRs are 

an important class of receptors that have been heavily investigated, the molecular mechanisms 

responsible for ligand-dependent signalling still remain to be poorly understood. Controlling 

the diffusion by covalently binding ligands that could be triggered by light would offer a new 

way investigating the effects of ligand binding on receptor structure, dynamics and G-protein 

coupling.11  

Single-molecule fluorescence spectroscopy (SMFS) has become widely used for quantifying 

the conformational heterogeneity and structural dynamics of biomolecules in vitro and has 

been applied for studying GPCRs.10 In combination with this technique, covalent photochromic 

ligands could be used in a range of dynamic studies, localization and protein-protein 

associations to explore receptor-drug interactions.12 Additionally, SMFS could be employed in 

another important study to attain key information on the process of ligand switching. It is 

currently believed that photoisomerization occurs once the ligand leaves the binding pocket, 

but it may be indeed possible that switching can proceed when bound to the receptor.13 

The ß2-adrenergic receptor (ß2-AR) and the µ-opioid receptor (µOR) are well-known receptors 

and both play a therapeutically very important role. The availability of X-ray crystal structures 

has allowed for structural insight that is beneficial when designing probe compounds. 14,15 The 

highly potent ß2-AR agonist BI-167107 and the µ-opioid receptor agonist fentanyl were chosen 

as good templates for the incorporation of photoswitches. In this project disulfide- and 

maleimide-modified azopyrazoles were incorporated into the structure of BI-16710716 and 

fentanyl17 to obtain covalent photochromic ligands. Disulfides were chosen as a covalent 
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tethering group due to their chemoselectivity for cysteine residues, while maleimides offer also 

the formation of a covalent bond to amino acids like lysine. 

 

2. ß2-Adrenergic receptor 

ß-Adrenergic receptors belong to the family A of GPCRs and activate intracellular G-proteins 

upon binding catecholamine agonists, such as adrenaline and noradrenaline. The ß2-

adrenergic receptor is one of the best characterized GPCRs due to its role in several important 

physiological systems.18 The receptor plays a very important therapeutic role in the peripheral 

regulation of smooth muscle contraction, for instance in asthma. Furthermore, the ß2-ARs are 

also widely expressed within the CNS, where they mediate a number of immunomodulatory, 

neuroprotective and cognitive enhancing effects.19 Synthetic ligands have been developed that 

either activate or inhibit the ß2-AR, for example salmeterol, carazolol and BI-167107.  

In order to target the ß2-AR in our investigations, a mutation of H93C (Histidine 93C) to cysteine 

was performed. The covalent ligand for the ß2-AR is modelled on the highly potent agonist BI-

167107 and is designed to contain an azopyrazole as the photochromic scaffold and a disulfide 

(1) or a maleimide (2) as the covalent binding moiety (Figure 1). 

 

 

 

Figure 1. Target covalent photochromic ß2-AR ligands 1 and 2 derived from the highly potent agonist 
BI-167107. 

 

2.1 Molecular docking studies 

Weichert et al. demonstrated that it is possible to covalently attach an agonist to the H932.64C 

mutant of the ß2-AR while maintaining receptor affinity and activation.20 We planned to adapt 

this approach to the structure of BI-167107 and further incorporated a photoswitch in the 

ligand. 

To improve the design of these compounds and to better understand potential binding 

interactions, we performed covalent docking studies. Interestingly, 1 showed almost ideal 

binding behavior in these docking studies. When covalently attached to the H93C mutant 

receptor, the Z-conformation of compound 1, displayed a binding mode comparable to BI-

167107. In contrast, the E-conformation was predicted not to bind to the orthosteric site 
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(Figure 2). The results indicated that these ligands may indeed have a biologically active and 

inactive state, which is central in our investigations.  

 

 

 

Figure 2. Superimposition of the bound compounds E-1-ß2-AR (left) and Z-1-ß2-AR (right) complex and 
the BI167107 (grey) active state structure of the ß2-AR mutant H93C. 

 

Compound 2 bearing a maleimide as the reactive group showed only minor docking 

differences between the isomers when covalently bound to the receptor. As the maleimide also 

binds covalently to other nucleophilic residues, we additionally considered two lysine residues 

as covalent attachment points. Lys97 in the extracellular loop 1 (ECL1) and Lys3057.32 in 

transmembrane helix (TM) 7. When considering the H93C as the anchor point, neither the E- 

nor the Z-conformation of ligand 2 resulted in a binding mode in the orthosteric binding site. 

When covalently attached to the two lysine residues, the predicted binding modes of ligand 2 

were comparable to BI-167107 for both the E- and Z-conformations (Figure 3).  

 

 

 

Figure 3. The E-isomer (left) and the Z-isomer (right) of 2 superimposed over BI-167107 (grey) bound 
to the ß2-AR mutant H93C. 
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2.2 Synthesis of the photochromic ß2-AR ligands  

Retrosynthetic analysis of compound 1 followed two main routes (Scheme 1). In the first 

approach, the benzoxazinone and the azopyrazole is synthesized individually in parallel. The 

photochromic moiety and the benzoxazinone is connected in an SN-type reaction to form a 

non-covalent hydroxyl precursor. The last steps would be the disulfide synthesis and the Bn-

deprotection. In the second route two precursors are synthesized and the final step would be 

a reductive amination.  

 

 

 
Scheme 1. Retrosynthetic analysis of compound 1 presenting two possible strategies. 

 

For compound 2 similar approaches could be considered or using an azopyrazole azide and 

an alkyne maleimide to attach the covalent moiety via a click reaction. 

 

Following route 1, azopyrazole 5 was successfully synthesized via diazotization and 

subsequently condensation in good yield (Scheme 2A). The benzoxazinone scaffold 6 was 

synthesized according to a published synthetic route described by Pappano et al.22 Highly 

selective alpha-bromination of ketone 6 could be done to obtain the alpha-bromoketone 7. The 

a-brominated ketone 7 was transformed into its secondary alcohol in a stereoselective 

reduction (Corey-Bakshi-Shibata, CBS) to form the enantiomerically pure compound R-8 

(Scheme 2B).23 The enantiomeric excess (ee) was determined by chiral HPLC and revealed 

excellent ee values of 95% and is described in more detail in the Supplementary Figure SI-1.  
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A) 

 

B) 

 

C) 

 

 

Scheme 2. Precursor synthesis of ligand 1 and 2 following route 1. A) Azopyrazole synthesis: (a) 
NaNO2, H2O, HCl, AcOH, 1 h, 0 °C, then acetylacetone, NaOAc, EtOH, 1 h, r.t. 60%. (b) 2-
Hydrazinoethanol, EtOH, 3 h, reflux, 45%. (c) TFA, CH2Cl2, 1 h, r.t., 98 %. B) Benzoxazinone precursor: 
(d) CuBr2, EtOAc, 50 °C, 24 h, 67%. (e) THF-BH3, (R)-(+)-2-Methyl-CBS-oxazaborolidine, THF, Ar, 2.5 
h, r.t., 64%. C) Synthesis of R-10: (f) K2CO3, KI, MeCN, 12 h, 70 °C, 5%. (g) Pd/C, H2, MeOH, 5 min, 
r.t. 23%. 

 

The hydroxy intermediate R-9 was formed in an SN-reaction under basic conditions and 

utilizing KI as a catalyst. Low yields were obtained and the subsequent Bn-deprotection 

showed only poor reproducibility. As the reaction of the azopyrazole with the pharmacophoric 

moiety R-8 showed only low yields, as well as the deprotection of R-9, a better approach may 

be to first introduce the covalent moiety and do the coupling of pharmacophore and 

photoswitch at the last step of the synthesis. This approach is described in route 2. 

The intermediate 12 was synthesized in a similar way to compound 4. The hydroxyl moiety of 

12 was then protected with TBDMS-Cl and condensation with hydrazinoethanol yielded the 

azopyrazole 14. The mesitylation of compound 14 and subsequent nucleophilic replacement 

gave the thioester 16. The thioester 16 was transformed to the thiopyridil disulfide 17 via 

methanolysis. Deprotection and oxidation with Dess-Martin Periodane of compound 18 yielded 

the aldehyde 19 in very good yields (Scheme 3). 
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Scheme 3. Synthesis of the thiopyridyl-azopyrazole 19. (a) NaNO2, H2O, HCl, AcOH, 1 h, 0 °C, then 
acetylacetone, NaOAc, EtOH, 30 min, r.t. 84%. (b) TBDMS-Cl, imidazole, DMF, 2 h, r.t., 29%. (c) 2-
Hydrazinoethanol, EtOH, 3 h, reflux, 45%. (d) MsCl, NEt3, CH2Cl2, 1 h, 0 °C, 84%. (e), KSAc, acetone, 
3 h, reflux, 74%. (f) 2-Aldrithiole, NaOMe, MeOH, 24 h, r.t., N2, 94%. (g) TBAF, THF, 3 h, r.t., 56%. (h) 
DMP, CH2Cl2, Ar, 1 h, 0 °C, 91%. 

 

Azide R-21 was synthesized in two steps via nucleophilic displacement of the bromine of 7 

and subsequent enantioselective CBS-reduction of the ketone 20. Simultaneous cleavage of 

the benzyl protection group and the reduction of the azide of compound R-22 was 

accomplished by a transfer hydrogenation with good yields (Scheme 4). 

 

 

 
Scheme 4. Synthesis of precursor R-22. (a) NaN3, DMF, 2 h, r.t., 90%. (b) THF-BH3, (R)-(+)-2-Methyl-
CBS-oxazaborolidine, THF, Ar, 2.5 h, r.t., 25%. (c) Pd/C, Et3SiH, MeOH, 1 h, r.t., 89%. 

 

To avoid regioselectivity problems, compound 19 containing a protected disulfide instead of 

the cysteamine containing disulfide moiety was used for the reductive amination. Treating the 

thiopyridyl group containing intermediate with cysteamine resulted in the formation of the target 

disulfide R-1 (Scheme 5). 
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Scheme 5. Target ligand synthesis in a reductive amination of compound R-22 and 19. (a) NaBH3CN, 
MeOH/MeCN, 16 h, r.t., then cysteamine, MeOH, 1 h, r.t., 4%. 

 

The synthesis of the covalent ß2-AR ligand R-2 was done in a similar way as R-1. The 

deprotected benzoxazinone R-22 was converted to the intermediate R-26 in a reductive 

amination with the azopyrazole-aldehyde 24 in acceptable yields. The crude R-26 was 

converted to the desired ß2-AR ligand R-2 by applying click chemistry. The Cu(II) salt was pre-

complexed with TBTA and mixed with the N-propargylmaleimide and the azide R-26 followed 

by the addition of Na-ascorbate to initiate the click reaction (Scheme 6).  

 

 

 

Scheme 6. Synthesis of the maleimide based ligand R-2. (a) NaN3, DMSO, 24 h, 60 °C, Ar, 82%. (b) 
TBAF, THF, 24 h, r.t. 87%. (c) DMP, CH2Cl2, Ar, 1 h, 0 °C, 92%. (d) NaHB(OAc)3, THF/MeCN, r.t., Ar. 
(e) N-Propargylmaleimide, CuSO4, TBTA, Na-ascorbate, tBuOH/THF/H2O, 2 h, r.t., Ar, 25%(over d-e). 
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The azopyrazoles were chosen as the photochromic scaffold in the target ß2-AR ligands due 

to their excellent photochromic properties. The absorbance bands of the E- and Z-isomer of 
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Z-isomers of azobenzenes (Figure 2).24 This resulted in excellent PSS values for both the E 

to Z and the Z to E isomerization. Also, the thermal isomerization rate of the azopyrazoles 1, 

2 and 10 exhibited high values up to t1/2 = 13.4 days in aqueous buffer. Table 1 summarizes 

the photochromic properties of compounds 1, 2 and 10. The cycle performance of compounds 

1, 2 and 10 was investigated during alternate irradiation with light of 365 nm for 1 second and 

528 nm for 70 seconds (SI-2) and all compounds showed high fatigue resistance. 

 

Table 1. Photochemical data of synthesized compounds 1, 2 and 10. 

Entry Ligand Solvent λmax λmax λiso t1/2 PSS 

   (E) 

[nm] 

(Z) 

[nm] 

 [nm] [d]  (EàZ)[a,b] 

E:Z 

(ZàE)[a,c] 

E:Z 

1 1 DMSO 343 
293, 

443 

300, 

414 
7.0 1:99 86:14 

2 1 Buffer[d] 335 
292, 

436 

296, 

400 
2.9 13:87 90:10 

3 2 DMSO 342 
276, 

445 

300, 

417 
25.5 14:86 91:9 

4 2 Buffer[d] 336 
249, 

431 

297, 

408 
13.4 13:87 90:10 

5 10 DMSO 
263, 

242 
442 

301, 

412 
5.6 15:85 99:1 

6 10 Buffer[d] 
262, 

338 
438 

299, 

402 
11.3 n.d. n.d. 

[a] Determined by HPLC measurements at 25 °C, E/Z ratio detected at the isosbestic points. [b] The EàZ isomerization was done 
with a LED of 365 nm. [c] The ZàE isomerization was done with a LED of 528 nm. [d] Tris buffer: 50 mM Tris, 1 mM EDTA, 1 
mM MgCl2, 0.1% DMSO. 

 

The reason for the high thermal stability of the Z-isomer can be due to a combined effect of 

steric and electronic effects, as well as hydrogen bonding.25 

 

2.4 Biological investigations 

Radioligand binding studies at the ß2-AR19 were performed to study the individual ligand 

receptor interactions of the covalent photochromic ligands 1, 2 and the non-covalent ligand 10. 

The covalent ligands 1 and 2 were also investigated towards binding to the ß2-AR mutants ß2-

ARH93C and ß2-ARK305C in which the specific positions, the amino acids were mutated to 

cysteine providing selective covalent binding.26,27 Individual testing of every isomer was done 

and the E-isomer of 1 showed high affinity at the ß2-AR receptors but only slight affinity 
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changes when focusing on the Z-isomer. Initial functional experiments were done without 

focusing on the covalent binding of the target compounds 1 and 2. The efficacy of the 

compounds was investigated in a ß-arrestin recruitment assay (PathHunter assay, Eurofins) 

and the ligands displayed similar efficacies being partial agonists. Similar to the binding data, 

also the efficacies showed only 2- or 3-fold difference between the individual isomers. 

 

Table 2. Radioligand binding data for ligands 1, 2 and 10 towards ß2-AR, ß2-ARH93C, ß2-ARK305C and 
receptor activation data for ß-arrestin recruitment at the ß2-AR. 

Entry Ligand 
Binding 

Ki ± SEM [nM][a] 

ß-arrestin 

recruitment  

EC50 [nM][b] 

  ß2-AR ß2-ARH93C ß2-ARK305C ß2-AR α 

1 Norepinephrine 4700 ± 1193 n.d. n.d. 6700 1.00 

2 E-1 0.88 ± 0.14 1.5 ± 0.13 0.45 ± 0.14 190 0.76 

3 Z-1 1.4 ± 0.09 0.84 ± 10 0.37 ± 0.09 110 0.72 

4 E-2 30 ± 7.9 28 ± 9.6 16 ± 11 670 0.90 

5 Z-2 85 ± 39 50 ± 13.4 190 ± 20 1000 0.73 

6 E-10 91 ± 12 n.d. n.d. 670 0.82 

7 Z-10 700 ±108 n.d. n.d. 2100 0.88 

[a] Binding data determined by competition binding with [3H]CGP12177; Ki values in nM ± standard error of the mean (SEM) 
derived from 2 to 4 individual experiments each performed in triplicate; n.d. = not determined. [b] EC50 values and intrinsic activities 
(α) relative to Norpinephrine. 

 

The idea of the covalent ligands is, that the azopyrazole is connecting the pharmacophore with 

the covalent tether and therefore geometric changes should effect binding or activation when 

toggling between the two photoisomers. Experiments, focusing on efficient and irreversible 

blocking of radioligand binding have to be done utilizing the covalent tether. 

 

2.5 Single molecule spectroscopy 

Receptor activation assays were done on a detergent-purified receptor (wild type, without 

mutation) in solution (Stanford, Kobilka lab). The readout of this assay is based on a single-

molecule FRET to probe conformational transitions.11 The dye Atto655 is covalently linked to 

the end of TM6 (L266C) of the ß2-AR and the fluorescence (655nm) is quenched by an 

engineered tryptophan in TM5 (L320W) in the inactive state. Upon activation, TM6 moves 

towards and away from L320W, releasing the fluorescence quenching. Initial experiments were 

done with the non-covalent binding photochromic ligand 10. In the experiment, the 
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fluorescence intensities indicates the conformational changes occurring when a ligand is 

bound to the receptor. 

 

 

Figure 4. Comparison of the normalized fluorescence intensity of the high potent agonist BI-167107 
and E/Z-isomers of compound 10 with absence and presence of the GS-protein.  

 

The experiments in absence of a G-protein showed that the binding to ß2-AR of the ligands is 

possible. In accordance to the radioligand binding studies of the ß2-AR receptor (wild type, see 

Table 2, entry 6 and 7) the E-isomer showed better binding than the Z-isomer of compound 

10. In the presence of the G-protein the E- and Z-isomer of 10 appear to enable G-protein 

coupling, although to a much lower extent than the high potent agonist BI-167107 (Figure 4). 

This suggests that both photoisomers behave like partial agonists and since both isomers gave 

similar responses and enable G-protein coupling, it might be difficult to use them to selectively 

turn activation on or off. 
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3. µ-Opioid receptor 

The µ-opiod receptor (µOR) is one of the oldest and most important drug targets due to its 

primarily responsibility for the effects of opium. The activation of the Gi coupled GPCR displays 

powerful analgesic and sedation effects, as well as euphoria and physical dependence.29 

Besides the historic opiate Morphine, which is an alkaloid from the opium poppy that mainly 

targets the µOR, more potent synthetic opioid agonists have been developed, including BU72, 

pethidine, tapentadol and fentanyl. To sever the analgesic properties of opioids from their 

euphoric and addictive side effects lots of research towards analgesics with reduced side 

effects was done.30 Recent studies have suggested that opioid-induced analgesia results from 

µOR G-protein signalling, while many side effects may be caused via ß-arrestin pathway 

signalling downstream of µOR activation.31 To get a better understanding of the different 

activation pathways, photochromic ligands could support the investigation of the µOR. 

Recently, reversible photochromic fentanyl-azobenzenes were developed by Trauner et al. 

and studied by electrophysiology.30 Based on the structure of this photochromic azobenzene-

fentanyl, we developed a covalent ligand bearing an azopyrazole as the photochromic moiety. 

Targeting different amino acids in the binding pocket, three different covalent groups were 

used: Disulfide (27), maleimide (28) and an N-hydroxysuccinimide (NHS) ester 29 (Figure 5). 

 

 

 

Figure 5. Fentanyl derived covalent target structures 27, 28 and 29 bearing an azopyrazole as the 
photochromic scaffold. 

 

3.1 Docking studies towards the µOR  

Manglik et al. successfully applied the N2.63C mutant in order to achieve covalent binding of 

the PZM29 ligand to the receptor bearing a disulphide.31 

We designed potential covalent agonists bearing an azopyrazole addressing this mutation. In 

the presented docking studies, depicted in Figure 6, the active state µOR crystal structure in 

complex with agonist BU72 was used. At first, we confirmed our design utilizing covalent 

docking for compounds 27 and 28. We were encouraged by the docking results for compound 

27, as the Z-conformation displayed a receptor ligand conformation showing a canonical salt-

bridge to Asp3.32, which was not observed for the respective E-conformation. This suggested 
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that when covalently attached to the receptor, the ligand is able to form favorable ligand 

receptor conformations and may allowthe receptor activation only when switched to the Z-

conformation, which is desirable (Figure 6). 

 

 

Figure 6. Docking pose of compound E-27 (left, green) and compound Z-27 (right, blue). The co-
crystallized agonist BU72 is shown as orange sticks. 

 

For compound 28 bearing the maleimide tether-group the docking results were rather 

ambiguous when considering the attachment to the latter cysteine mutant. Neither the E- nor 

the Z-conformation showed the salt-bridge to Asp3.32 in our docking studies (SI-3). As the 

maleimide is also able to address other nucleophilic amino acids, such as lysine residues, the 

next step would be to consider additional residues for a covalent attachment. As compound 29 

exhibited a very reactive tether that does not favor any mutant, we did not consider any docking 

studies for this ligand.  
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3.2 Synthesis of the azopyrazole based fentanyl derivatives  

The first approach in synthesizing the covalent ligands was similar to the recent publication of 

Trauner et al.30 First, the photochromic moiety 33 was formed in the diazotization of 

nitroaniline, followed by subsequent coupling with acetylacetone. Second, the pharmacophoric 

moiety was attached with reductive amination and acylation of the secondary amine of 36 

(Scheme 7). The attachment of the covalent tether should be done as the last step, avoiding 

side reactions of the reactive covalent binding groups.  

 

 

 
Scheme 7. Synthesis of the photofentanyl precursor 37. (a) NaNO2, HCl, H2O, AcOH, 45 min, 0 °C, 
then NaOAc, EtOH, 1 h, 0 °C, 92%. (b) Hydrazinoethanol, EtOH, 3 h, reflux, 53%. (c) Na2S2, THF/H2O, 
3 h, 80 °C, 93%. (d) Tert-butyl-4-oxopiperidine-1-carboxylate, NaHB(OAc)3, AcOH, DCE, 24 h, r.t., 77%. 
(e) Propionyl anhydride, DMAP, toluenedry, N2, 24 h, r.t., 59%. (f) TFA, CH2Cl2, 1 h, r.t., 87%. (g) 
Phenylacetaldehyde, NaHB(OAc)3, AcOH, DCE, 24 h, r.t., 45%. 

 

Initial determination of the photochromic properties of compound 37 showed only a very short 

thermal half-life of 37 seconds for the Z-isomer. As this half-life did not fit to the conditions of 

the biological assay, a structural modification to enhance the photochemical properties was 

performed. In order to improve thermal stability of the Z-isomer, an aminomethyl scaffold was 

utilized instead of the aniline, isolating the azopyrazole and the amide.32 We did not expect a 

significant loss of potency when changing the structure, as it was previously reported that using 

an aminomethyl scaffold should only slightly change the biological properties.33  
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Scheme 8. Synthesis of the methylene analog 43 to fentanyl photoswitch 37. (a) HCl, NaNO2, AcOH, 0 
°C, 0.75 h, and then acetylacetone, NaOAc, EtOH, 0.5 h, r.t., 90%. (b) Hydrazinoethanol, EtOH, 3 h, 
reflux, 63%. (c) TFA, CH2Cl2, 1 h, r.t., 95%. (d) 1-Phenethyl-4-piperidone, NaHB(OAc)3, AcOH, DCE, 
20 h, r.t., 37%. (e) Prop2O, DMAP, DIPEA, 24 h, r.t., and then KOH, MeOH, H2O, 24 h, r.t., 7%. 

 

The synthetic route for synthesizing the covalent target structures follows a similar strategy as 

used in the synthesis of the ß2-AR ligands. The disulfide moiety of compound 27 was 

introduced by the thiopyridyl strategy.   

 

 

 

Scheme 9. Synthesis of target compound 27. (a) MsCl, NEt3, CH2Cl2, 1 h, r.t., 97%. (b) KSAc, acetone, 
3 h, reflux. (c) 2-Aldrithiol, NaOMe, MeOH, 20 h, r.t., 67%(over b+c). (d) TFA, CH2Cl2, 1 h, r.t. 95%. (e) 
1-Phenethyl-4-piperidone, NaHB(OAc)3, AcOH, DCE, 20 h, r.t., Ar, 88%. (f) Propionylchloride, NEt3, 
CH2Cl2, 10 min, r.t., 95%. (g) Cysteamine, MeOH, 1.0 h, r.t., Ar, 95%.  
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The maleimide derivative was synthesized via CuI-assisted click chemistry. First, compound 

40 was converted to the corresponding azide 51. The pharmacophoric core was then formed 

in a reductive amination, followed by an acylation to obtain intermediate 54. Cycloaddition with 

alkyne 56, which was obtained by the amide formation of the activated carboxylic acid 55 and 

propargylamine, gave the target triazole 28 (Scheme 10).  

 

 

 

Scheme 10. Fentanyl azopyrazole-maleimide 28 synthesis. (a) TsCl, Et3N, CH2Cl2, r.t., 16 h, 76%. (b) 
NaN3, NaI, DMSO, 65 °C, 24 h, N2, 72%. (c) TFA, CH2Cl2, 0 °C -> r.t., 1 h, 99%. (d) 1-Phenethyl-4-
piperidone, NaHB(OAc)3, AcOH, DCE, 16 h, r.t., 64%. (e) Propionyl chloride, Et3N, CH2Cl2, r.t., 1 h, N2, 
71%. (f) Oxalylchloride, THF, 2 h, Ar, r.t., then propargylamine, DMF, 30 min, Ar, r.t., 40%. (g) CuSO4, 
TBTA, Na-ascorbate, tBuOH/THF/H2O, 5 h, r.t., Ar, 47%. 
 

Another approach was to covalently target the wild type receptor that have no overexpression 

of a mutant. N-hydroxylsuccinimide (NHS) esters react with reactive amines and hydroxyl 

groups that are presented in several amino acid side chains. We synthesized a NHS ester, 

containing the azopyrazole-fentanyl, in a click reaction strategy without TBTA using azide 54 

and alkyne 57 (Scheme 11).  

 

N

N

N

O

N

N

N

N3

HN

N

N
N

N

N

N3

52

40: X = OH
a

b
50: X = OTs

51: X = N3

N
N

N

N

X

NHBoc

N
N

N

N

N3

NH2

d e

53

N

O

O

OH

O

N

O

O

N

O

H

N

N

N

O

N

N

N

N N

N

HN

O
N

O
O

c

f

g

54

55 56 28



   CHAPTER 3 

 145 

 

 

Scheme 11. Synthesis of the photochromic fentanyl NHS ester derivative 29 and the conversion with 
lysine to proof the reactivity. (a) CuSO4, Na-ascorbate, tBuOH/THF/H2O, 7 min, r.t. 99%(conversion). 
(b) L-Lysine, buffer. 

 

With LC-MS monitoring, it was found that the click reaction was already finished after 7 

minutes, where afterwards the NHS ester began to hydrolyze (Figure 7). Purification with 

preparative HPLC was not possible due to the fast degradation of the target compound.  

 

 

Figure 7. LC-MS analysis of compound 29 reaction mixture after 10 min. Hydrolysis of compound 29 
could already be detected after 3 more minutes. 

 

In order to characterize and prove the reactivity of the NHS ester, L-Lysine was added to an 

aliquot of the reaction mixture in buffer forming the stable derivative 58. The L-Lysine adduct 

58 was characterized by LC-MS analysis (Figure 8). 
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Figure 8. Example reaction to form the L-Lysine adduct 58. The sample was taken after 15 min. 

 

As significant hydrolysis of compound 29 started already after 10 min, it is not suitable for use 

in a biological assay.  

 

3.3 Photophysical investigations 

UV/VIS spectroscopy was carried out to investigate the photochemical properties of 

photochromic ligands 37, 43, 54 and 27 - 28. All switches showed the characteristic changes 

in the absorbance, which is a significant decrease and a slight blue-shift of the π à π* band 

from 340 to 300 nm and an increase of the n à π* band to approximately 440 nm. All 

photochemical properties are summarized in Table 4 and UV/VIS spectra are depicted in the 

SI-4. For initial biological studies, compound 37 was investigated and the thermal half-life of 

the Z-isomer was only 37 seconds (Figure 9a). Unfortunately, the PSS of 37 could not be 

determined by HPLC nor by NMR spectroscopy with continuous irradiation in MeOD at lower 

temperatures. 

 

a)                                                              b) 

 

Figure 9. a) UV-VIS spectrum of azopyrazole 37 in DMSO; spectra were recorded under continuous 
irradiation with 365, 385, 400 and 435 nm to obtain the PSS (EàZ). b) UV-VIS spectrum of compound 
43 showing excellent splitting of the E- and Z-isomer absorbance band.  
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The installed push-pull system could be a reason for this short thermal half-life. The aniline 

acts as an electron donor, and the second aromatic moiety consisting of a pyrazole acts as  

electron acceptor. In addition, the redshift in absorption observed for compound 37, is typical 

for a push-pull system.34,35 The structurally modified azopyrazole 43, containing an additional 

methylene group, showed long thermal half-lives in DMSO and buffer (Figure 9b). The 

resulting thermal half-lives for compound 54, 27 and 28, exhibiting the additional methylene 

group, were very high from 1.7 days to 241 days, which were similar to the results obtained for 

the ß2-AR ligands. These properties are an advantage, because continuous irradiation is not 

required during the assay, which may cause problems for the biological testing.  

 

Table 4. Photochemical properties of fentanyl derivatives 37, 43, 54 and 27-28. 

Entry Ligand Solvent λmax λmax λiso t1/2 PSS 

   (E) 

[nm] 

(Z) 

[nm] 

 [nm]   (EàZ)[b,c] 

E:Z 

(ZàE)[b,d] 

E:Z 

1 37 DMSO 
235, 

391 

264, 

358, 

452 

458 37 s 20:80[e] 99:1 

2 43 DMSO 341 
297, 

444 

300, 

411 
1.7 d 17:83 79:21 

3 43 Buffer[a] 343 
301, 

444 

303, 

414 
8.0 d 21:79 97:3 

4 27 DMSO 342 
300, 

445 

301, 

414 
18.8 d 20:80 95:5 

5 27 Buffer[a] 342 
299, 

442 

302, 

413 
43.8 d 10:90 91:9 

6 54 DMSO 342 
299, 

442 
299 13.3 d 11:89 90:10 

7 54 Buffer[a] 336 
300, 

437 

292, 

417 
241 d 9:91 83:17 

8 28 DMSO 342 
298, 

443 

300, 

412 
11.8 d 8:92 86:14 

9 28 Buffer[a] 337 
300, 

432 

295, 

405 
34.8 d 9:91 89:11 

[a] Tris buffer: 50 mM Tris, 1 mM EDTA, 1 mM MgCl2, 0.1% DMSO. [b] PSS was determined by HPLC measurement at 25 °C. [c] 
Irradiation wavelength: 365 nm. [d] Irradiation wavelength: 528 nm. [e] Estimated PSS by UV-VIS measurements, irradiation 
wavelength, 400 nm.  
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All photochromic ligands exhibited high photostationary states, with PSS values greater than 

80% for both the E to Z and the Z to E photoisomerization. In addition, all compounds were 

toggled between the two isomers six times showing high fatigue resistance and no 

degradation. The cycle performances are depicted in the supporting information (SI-4).  

 

3.4 Biological investigations 

To evaluate ligand affinity for the µOR and the mutant µORN127C ligands 37, 43, 54 and 27-28 

were studied towards their abilities to displace [3H]diprenorphine from the receptor.31  The 

binding data of compound Z-37 was recorded under permanent irradiation with light of 400 nm 

and could not be used due to cell damages. The hydroxyl fentanyl 43 showed only low binding 

affinity and no differences between the E and Z isomer. The disulfide-fentanyl 27 showed good 

binding for the E isomer at the µOR wild type and the Z isomer, obtained after irradiation with 

light of 365 nm, exhibited a 6-fold lower binding. Generally, ligands 27 and 28 showed better 

binding at the µORN127C.  

 

Table 5. Radioligand binding data and functional investigations for the photochromic fentanyl ligands 
37, 43, 54 and 27-28. 

Entry Ligand Binding 

Ki ± SEM [nM][a] 

Activation 

IP-one[b] 

  µOR µORN127C EC50 [nM][c] α 

1 Morphine 52 ± 4.8 32 ± 10.9 20 1 

2 E-37 970 ± 246 n.d. n.d. n.d. 

3 E-43 3000 ± 168 n.d. n.d. n.d. 

4 Z-43 2900 ± 698 n.d. n.d. n.d. 

5 E-27 53 ± 8.3 19 ± 1.7 270 0.93 

6 Z-27 310 ± 229 42 ± 229 350 0.94 

7 E-28 1100 ± 474[d] 240 ± 21[d] 29 0.12 

8 Z-28 2700 ± 458 170 ± 21 0 0 

[a] Binding data determined by competition binding with [3H]diprenorphine; Ki values in nM ± standard error of the mean (SEM) 
derived from 3 to 18 individual experiments each performed in triplicate; n.d. = not determined. [b] IP accumulation determined by 
applying the IP-One assay (from Cisbio) with HEK 239T cells co-transfected with the cDNA of the individual opioid receptor and 
that of the hybrid G-protein Gα qi5HA. [c] EC50 values and intrinsic activities (α) relative to Morphine. [d] Ki values in nM ± standard 
deviation (SD) derived from 2 individual experiments each performed in triplicate. 

 

The functional investigations towards G protein mediated signalling was done in an IP-One 

accumulation (Cisbio) assay.28 It was found that both isomers of compound 27 have intrinsic 

activities > 90% but no difference between their isomers. In accordance to the biological 
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investigations of the ß2-AR, the formation of the covalent bond has to be considered in further 

experiments. 

 

4. Conclusion and Outlook– ß2-AR and µOR 

In summary, we have incorporated azopyrazoles into the structures of the highly potent 

agonists BI-167107 and fentanyl to obtain photochromic covalent ligands. The concept of the 

photochromic covalent ligands uses the azopyrazole as connecting moiety between the 

pharmacophore and a tethering position. Geometric changes of the azopyrazole should effect 

binding or activation when toggling between the two photoisomers. The different synthetic 

routes were investigated in parallel to the synthesis of the pharmacophoric moiety and the 

covalent groups, including the disulfide and the maleimide. The crucial step for the ß2-AR 

ligands was accomplished in a reductive amination reaction connecting the photoresponsive 

tether and the pharmacophoric moiety as the final step. For the synthesized µOR-ligands, 

either working with a disulfide protection group for the disulfide derivative or a post 

functionalization via a click-reaction for the maleimide or the NHS ester showed to be the best 

synthetic routes. The photochemical characterization of the photochromic ligands revealed 

high fatigue resistance and high thermal half-lives for the azopyrazoles. The fentanyl-derivative 

37 has a very short thermal half-life due to the push-pull system. It could successfully be 

replaced by an azopyrazole exhibiting an additional methylene group. Initial biological 

investigations showed good binding affinities for both the covalent ß2-AR and µOR ligands 

towards the wild type receptor and much higher affinities for their corresponding mutant 

receptors. Functional studies on ß-arrestin recruitment for the ß2-AR and G-protein signalling 

for the µOR showed high intrinsic activities for the BI-derivatives 1 and 2 and the fentanyl-

derivatives 27 and 28. However, the differences in efficacy between the E- and Z-isomers were 

only marginal. 

Further investigations will focus on irreversible blocking of radioligand binding in radioligand 

depletion assays to get more insight into the covalent nature of the ligands. In addition, to only 

measure the efficacies of the covalently bound ligand, the receptor has to be blocked with an 

inverse agonist first. In order to determine the efficiency of the covalent binding, one could 

compare the covalently modified ligands to the non-covalent derivatives 10 (ß2-AR) and 43 

(µOR). 
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5. Experimental section 

General experimental procedures 

Commercial reagents and starting materials were purchased from Acros Organics, Alpha-

Aesar, Sigma Aldrich, TCI, Fisher and were used without further purification. Solvents were 

used in p.A. quality and dried according to common procedures if necessary. Technical 

solvents were used for automated flash column chromatography without further purification.  

Flash column chromatography was performed on a Biotage Isolera One automated flash 

purification system with UV/Vis detector using Macherey Nagel silica gel 60 M (40-63 µm, 230-

400 grain diameter) for normal phase chromatography. For reversed phase chromatography 

Biotage SNAP Cartridges KP-C18-HS were used. Thin layer chromatography (TLC) analyses 

were performed on silica gel 60 F-254 with a 0.2 mm layer thickness. Visualization was done 

by UV-light (254 nm, 312 nm or 365 nm) or staining with a vanillin-H2SO4 solution (0.5 g vanillin, 

85 mL ethanol, 10 mL conc. acetic acid, 3 mL conc. H2SO4). For analytic HPLC measurements 

an Agilent UHPLC-MSD-System (column: Phenomenex Luna C18(2), 150x2.00mm, 100A) 

and Agilent 1220 Infinity LC System (column: Phenomenex Luna, 3µ C18(2) 100A, 150 x 2.0 

mm, 100 Å, 40 °C) were used. Preparative HPLC was done using Agilent1100 Series with a 

Phenomenex Luna 10 (C18, 100A, 250 x 21.2 mm). 

NMR spectra were recorded on a Bruker Avance 600 (1H 600.1 MHz, 13C 150.1 MHz, T = 

300K), Bruker Avance 400 (1H 400.1 MHz, 13C 100.6 MHz, T = 300K) or Bruker Avance 300 

(1H 300.1 MHz, 13C 75.5 MHz, T = 300K). The chemical shifts are reported in δ [ppm] relative 

to tetramethylsilane as external standard. The multiplicity is abbreviated as “s” (singlet), “d” 

(doublet), “t” (triplet), “sep” (septet), “q” (quartet) and “m” (multiplet). The carbon NMR signals 

assignment (+) = primary/tertiary, (−) = secondary and (q) = quaternary resulted from DEPT, 

HSQC, HMBC experiments. Mass spectra were recorded on an Agilent Q-TOF 6540 UHD 

(ESI-MS, APCI-MS), Finnigan MAT95 (EI-MS) or Finnigan MAT SSQ 710 A (EI-MS, CI-MS). 

The IR-spectra were recorded on an Agilent Technologies Cary 630 FTIR instrument. The 

UV/VIS absorption spectra were recorded using a Varian Cary 100 UV/Vis/NIR spectrometer 

in 10 mm quartz cuvettes. The biological investigations were done in Erlangen at the group of 

Prof. P. Gmeiner (labs of Dr. H. Hübner) and in Stanford, group of Prof. B. K. Kobilka. 
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5.1 Synthesis 

Compound 622, 2036, R-2119 and 3137 were synthesized according to literature.  

 

General procedures: 

GP1: Diazotization 

The aniline-derivative (1.0 eq) was dissolved in a mixture of acetic acid (2 mL/mmol) and conc. 

HCl (0.25 mL/mmol) at 0 °C. A solution of NaNO2 (1.2 eq) in a minimum amount of water was 

added and the mixture was stirred for 45 min at 0 °C. To a suspension of acetylacetone (1.3 

eq) and NaAcO (3.0 eq) in EtOH (2 mL/mmol) the diazonium mixture was added and the 

resulting reaction mixture was stirred for 1 h at r.t. Ice water was added and the formed 

precipitate was separated by vacuum filtration followed by washing steps with H2O and 

hexane. After drying under vacuum the target compounds were obtained as yellow-orange 

crystals.  

 

GP2: Pyrazole formation 

A solution of the corresponding diketone (1.0 eq) and 2-hydrazinoethanol (1.1 eq) in EtOH (50 

mL) was refluxed for 3 h. The solvent was evaporated and the title compound was obtained 

as an orange solid with purification (column chromatography) when necessary. 

 

GP3: Boc-deprotection 

The Boc-amine (1.0 eq) was dissolved in CH2Cl2 at r.t. and TFA (1 mL/mmol) was added to 

stir the solution at r.t. for 1 h (TLC monitoring!). An aqueous NaOH (2M) solution (20 mL/mmol) 

was added and extraction with CH2Cl2 was done. The combined organic layers were dried over 

Na2SO4 and the solvent was removed under reduced pressure to afford the target compounds 

as yellow solids. 

 
Compound 4: tert-butyl (4-(2-(2,4-dioxopentan-3-ylidene)hydrazineyl)phenethyl)-car-
bamate 
 

  C18H25N3O4, MW = 347.42 g/mol 

 

GP1, aniline derivative 3, yield: 60%, yellow crystals. 
 
1H-NMR (400 MHz; CDCl3): δ = 1.43 (s, 9H), 2.48 (s, 3H), 2.60 (s, 3H), 2.80 (t, J = 7.0 Hz, 2H), 

3.41-3.32 (m, 2H), 7.23 (d, J = 8.4 Hz, 2H), 7.35 (d, J = 8.5 Hz, 2H). 
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13C-NMR (101 MHz, CDCl3): δ = 26.8 (+), 28.5 (+), 31.8 (+), 35.9 (−), 41.9 (−), 95.6 (q), 116.6 

(+), 130.2 (+), 133.3 (q), 137.1 (q), 140.2 (q), 156.0 (q), 162.8 (q), 198.0 (q). 

 

ESI-MS: m/z (%) = 348.19 (M+H+) 

 

Compound 5a: tert-butyl (E)-(4-((1-(2-hydroxyethyl)-3,5-dimethyl-1H-pyrazol-4-yl)di-

azenyl)phenethyl)carbamate 

 

  C20H29N5O3, MW = 387.48 g/mol 

 

GP2, starting material 4, yield: 45%, orange solid. 

 
1H-NMR (400 MHz; CDCl3): δ	=	1.24 (s, 9H), 2.28 (s, 3H), 2.42 (s, 3H), 2.65-2.63 (m, 2H), 3.21-

3.13 (m, 2H), 3.77-3.73 (m, 2H), 4.01-3.08 (m, 2H), 7.08 (d, J = 8.2 Hz, 2H), 7.51 (d, J = 8.3 

Hz, 2H). 

 
13C-NMR (101 MHz, CDCl3): δ	=	9.6 (+), 13.7 (+), 28.1 (+), 35.6 (−), 41.4 (−), 50.6 (−), 60.2 (−), 

78.8 (q), 121.6 (+), 129.1 (+), 134.5 (q), 139.7 (q), 140.5 (q), 142.0 (q), 151.9 (q), 198.9 (q). 

 

ESI-MS: m/z (%) = 388.24 (M+H+) 

 

Compound 5b: (E)-2-(4-((4-(2-aminoethyl)phenyl)diazenyl)-3,5-dimethyl-1H-py-razol-

1-yl)ethan-1-ol 

 

  C15H21N5O, MW = 287.37 g/mol 

 

GP3, starting material 5a, yield 98%, yellow solid. 

 
1H-NMR (400 MHz; CDCl3): δ = 2.49 (s, 3H), 2.59 (s, 3H), 2.78 (t, J = 6.6 Hz, 2H), 2.96-2.94 

(m, 2H), 4.05-4.01 (m, 2H), 4.17-4.12 (m, 2H), 7.28-7.26 (m, 2H), 7.70 (d, J = 7.7 Hz, 2H). 

 
13C-NMR (101 MHz, CDCl3): δ	=	10.0 (+), 14.1 (+), 40.0 (−), 43.6 (−), 50.4 (−), 61.5 (−), 122.0 

(+), 129.5 (+), 135.1 (q), 139.5 (q), 141.5 (q), 141.6 (q), 142.9 (q), 152.3(q). 
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ESI-MS: m/z (%) = 288.18 (M+H+) 

 

Compound 7: 5-(benzyloxy)-8-(2-bromoacetyl)-2H-benzo[b][1,4]oxazin-3(4H)-one 

 

  C17H14BrNO4, MW = 376.21 g/mol 

 

Compound 6 (4.1 g, 13.7 mmol, 1.0 eq) was dissolved in EtOAc (150 mL) at r.t. and 

subsequently CuBr2 (4.6 g, 20.6 mmol, 1.5 eq) was added to stir the mixture at 50 °C for 24 h. 

The solvent was reduced in vacuo and the crude mixture was directly used for automated 

column chromatography (PE/EtOAc, 0-50% EtOAc) to afford the target compound 7 (3.5 g, 

9.3 mmol, 67%) as a white solid. 

 
1H-NMR (400 MHz; CDCl3): δ = 7.64 (d, J = 8.9 Hz, 1H), 7.45-7.38 (m, 5H), 6.77 (d, J = 8.9 

Hz, 1H), 5.17 (s, 2H), 4.75 (s, 2H), 4.50 (s, 2H) 

 
13C-NMR (101 MHz; CDCl3): δ = 189.6 (q), 163.3 (q), 149.8 (q), 144.2 (q), 135.0(q), 129.1 (q), 

128.1 (q), 126.6 (+), 117.6 (+), 116.2 (q), 106.6 (+), 71.6 (−), 67.5 (−), 36.5 (−) 

 

ESI-MS: m/z (%) = 276.02 (M+H+) 

 

Compound 8: (R)-5-(benzyloxy)-8-(2-bromo-1-hydroxyethyl)-2H-benzo[b][1,4]-oxazin-

3(4H)-one 

 

   C17H16BrNO4, MW = 378.22 g/mol 

 

To a stirred solution of compound 7 (2.2 g, 5.9 mmol, 1.0 eq) and CBS-solution (0.6 mL, c = 1 

M in toluene, 0.6 mmol, 0.1 eq) in anhydrous THF, BH3-THF complex (6.4 mL, c = 1 M in THF, 

6.4 mmol, 1.1 eq) was added dropwise over 2 h at r.t under Ar-atmosphere. The mixture was 

stirred for 0.5 h at r.t. and was then quenched by MeOH (3 mL). The solvent was evaporated 

and the crude product was used for automated column chromatography (PE/EtOAc, 0-60% 
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EtOAc) without any further workup. Compound 8 (1.4 g, 3.7 mmol, 64%) was obtained as a 

white solid. 

 
1H-NMR (400 MHz; CDCl3): δ = 2.72-2.72 (m, 1H), 3.52 (dd, J = 10.2 Hz, 8.4 Hz, 1H), 3.69 

(dd, J = 10.3 Hz, 3.5 Hz, 1H), 4.68-4.57 (m, 2H), 5.10 (s, 2H), 5.13-5.11 (m, 1H), 6.68 (d, J = 

8.7 Hz, 1H), 7.09 (d, J = 8.6 Hz, 1H), 7.40 (d, J = 1.9 Hz, 5H), 7.85 (s, 1H) 

 
13C-NMR (101 MHz; CDCl3): δ = 39.2 (−), 67.3 (−),68.9 (+),71.2 (−),106.1 (+),115.8 (+),121.0 

(q), 121.5 (+),128.0 (+),128.8 (+),129.0 (+),135.8 (q), 140.9 (q), 145.7 (q), 163.7 (q). 

 

ESI-MS: m/z (%) = 378.03 (M+H+)  

 

Compound 9: (R,E)-5-(benzyloxy)-8-(1-hydroxy-2-((4-((1-(2-hydroxyethyl)-3,5-di-

methyl-1H-pyrazol-4-yl)diazenyl)phenethyl)amino)ethyl)-2H-benzo[b][1,4]oxazin-

3(4H)-one 

 

  C32H36N6O5, MW = 584.68 g/mol 

 

Compound 8 (121 mg, 0.32 mmol, 1.1 eq) and 5 (80 mg, 0.28 mmol, 1.0 eq) were dissolved 

in anhydrous MeCN (20 mL) at r.t. under nitrogen atmosphere. K2CO3 (44 mg, 0.32 mmol, 1.1 

eq) and KI (5.3 mg, 0.032 mmol, 0.1 eq) were added and the mixture was refluxed for 3 h. The 

solvent was evaporated and the residue was dissolved in water to do an extraction with CH2Cl2 

(3x 10 mL). The combined organic layers were dried over Na2SO4 and the solvent was reduced 

in vacuo. The crude product was first purified by automated column chromatography 

(CH2Cl2/MeOH, 0-10% MeOH, + 0.1% NEt3) and second by RP chromatography (H2O+TFA 

0.05%/MeCN 10-98% MeCN). Lyophilization afforded compound 9 (15 mg, 0.026 mmol, 9%) 

as a yellowish solid. 

 
1H-NMR (400 MHz; MeOD): δ = 7.73 (d, J = 8.3 Hz, 2H), 7.48 (d, J = 7.2 Hz, 2H), 7.43-7.29 

(m, 5H), 7.05-7.03 (m, 1H), 6.83 (dd, J = 9.8 Hz, 5.7, 1H), 5.29 (s, 2H), 4.63-4.60 (m, 2H), 

4.62-4.58 (m, 1H), 4.19 (t, J = 5.3 Hz, 2H), 3.98 (m, 1H), 4.00-3.94 (t, J = 5.3 Hz, 2H), 3.90-

3.85 (m, 1H), 3.32-3.24 (m, 2H), 3.23-3.24 (m, 2H), 3.13-3.05 (m, 2H), 3.04-3.29 (m, 2H), 2.68 

(s, 3H), 2.46 (s, 3H) 
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13C-NMR (101 MHz, MeOD): δ = 10.0 (+), 14.1 (+), 52.2 (−), 59.8 (+), 61.8 (−), 67.5 (−), 68.2 

(−), 70.0 (−), 71.8 (−), 108.6 (+), 114.0 (q), 122.2 (+), 123.2 (+), 123.9 (q), 128.8 (+), 129.1 (+), 

129.7 (+), 130.4 (+), 135.9 (q), 137.8 (q), 139.2 (q), 142.4 (q), 143.4 (q), 148.6 (q), 153.1 (q), 

167.0 (q). 

 

ESI-MS: m/z (%) = 585.28 (M+H+)  

 

Compound 10: (R,E)-5-hydroxy-8-(1-hydroxy-2-((4-((1-(2-hydroxyethyl)-3,5-dimethyl-

1H-pyrazol-4-yl)diazenyl)phenethyl)amino)ethyl)-2H-benzo[b][1,4]oxazin-3(4H)-one 

 

  C25H30N6O5, MW = 494.55 g/mol 

 

To a solution of compound 9 (15 mg, 0.026 mmol, 1.0 eq) in MeOH (5 mL), Pd/C (0.1 eq) was 

added and the mixture was treated with a H2-balloon for 5 min at r.t. The mixture was filtered 

over celite, washed with MeOH and the solvent was evaporated. The crude product was 

purified by preparative HPLC (column: Luna 10, 250 x 21 mm; flow: 20 mL/min, solvent A: H2O 

(0.05% TFA), solvent B: MeCN; gradient A/B: 0-15 min: 95/5, 15-20 min: 2/98) to obtain 

compound 62 (3 mg, 6.1 mmol, 23%) as a white solid. 

 
1H-NMR (400 MHz; MeOD): δ = 7.73 (d, J = 8.3 Hz, 2H), 7.31 (d, J = 8.3 Hz, 2H), 6.95 (d, J = 

8.6 Hz, 1H), 6.61 (d, J = 8.5 Hz, 1H), 4.62-4.58 (m, 2H), 4.57-4.55 (m, 1H), 4.17 (t, J = 5.3 Hz, 

2H), 3.99 (dd, J = 11.7 Hz, 8.4 Hz, 1H), 3.90 (t, J = 5.3, 2H), 3.89-3.85 (s, 1H), 3.26-3.15 (m, 

2H), 3.13-3.06 (m, 1H), 3.05-2.99 (m, 1H), 2.63 (s, 3H), 2.46 (s, 3H) 

 
13C-NMR (151 MHz, MeOD): δ = 10.0 (+), 14.1 (+), 33.0 (−), 40.7 (−), 47.8 (−), 52.2 (−), 55.8 

(+), 61.8 (−), 68.2 (−), 110.2 (+), 114.2 (q), 123.3 (+), 125.3 (q), 126.7 (+), 130.5 (+), 129.0 (q), 

134.4 (q), 137.7 (q), 141.0 (q), 141.9 (q), 143.1 (q), 152.7 (q), 164.6 (q). 

 

ESI-MS: m/z (%) = 495.24 (M+H+)  
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Compound 12: 3-(2-(4-(2-hydroxyethyl)phenyl)hydrazineylidene)pentane-2,4-dione 

 

  C13H16N2O3, MW = 248.28 g/mol 

 

GP1, aniline derivative 11, yield: 84%, yellow crystals. 

 
1H-NMR (400 MHz; CDCl3): δ = 2.48 (s, 3H), 2.60 (s, 3H), 2.88 (t, J = 6.5 Hz, 2H), 3.88 (t, J = 

6.5 Hz, 2H), 7.28 (d, J = 8.5 Hz, 2H), 7.36 (d, J = 8.5 Hz, 2H). 

 
13C-NMR (101 MHz, CDCl3): δ = 26.8 (+), 31.8 (+), 38.8 (−), 63.7 (−), 116.6 (+), 130.4 (+), 

133.3 (q), 136.7 (q), 140.3 (q), 198.0 (q). 

 

ESI-MS: m/z (%) = 249.13 (M+H+) 

 

Compound 13: 3-(2-(4-(2-((tert-butyldimethylsilyl)oxy)ethyl)phenyl)hydrazine-yli-

dene)pentane-2,4-dione 

 

  C19H30N2O3Si, MW = 362.55 g/mol 

 

Compound 12 (15.2 g, 61.0 mmol, 1.0 eq) was dissolved in DMF (150 mL) at r.t. under Ar-

atmosphere. Imidazole (8.3 g, 122 mmol, 2.0 eq) and TBDMS-Cl (9.2 g, 61 mmol, 1.0 eq) were 

added and the mixture was stirred at r.t. for 2 h. Water was added and the mixture was 

extracted with CH2Cl2 (3x 150 mL). The combined organic layers were again extracted with 

H2O (3x 100 mL). The organic layer was dried over Na2SO4 and the solvent was evaporated 

under reduced pressure to yield the product 13 (6.4 g, 17.7 mmol, 29%) as a yellow oil.  

 
1H-NMR (400 MHz; CDCl3): δ = 0.00 (s, 6H), 0.86 (s, 9H), 2.48 (s, 3H), 2.59 (s, 3H), 2.81 (t, J 

= 6.7 Hz, 2H), 3.80 (t, J = 6.8 Hz, 2H), 7.24 (d, J = 8.5 Hz, 2H), 7.33 (d, J = 8.5 Hz, 2H). 

 
13C-NMR (101 MHz, CDCl3): δ = -5.3 (+), 18.4 (q), 26.0 (+), 26.8 (+), 31.8 (+), 39.2 (−), 64.4 

(−), 116.3 (+), 130.5 (+), 133.12 (q), 137.6 (q), 139.9 (q), 197.9 (q). 
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ESI-MS: m/z (%) = 363.21 (M+H+) 

 

Compound 14: (E)-2-(4-((4-(2-((tert-butyldimethylsilyl)oxy)ethyl)phenyl)-diazenyl)-3,5-

dimethyl-1H-pyrazol-1-yl)ethan-1-ol 

 

  C21H34N4O2Si, MW = 402.61 g/mol 
 

GP2, starting material 13, yield: 45%, purification: automated column chromatography 

(PE/EtOAc, 5-80% EtOAc), orange crystals. 

 
1H-NMR (400 MHz; CDCl3): δ	=	0.00 (s, 6H), 0.88 (s, 9H), 2.49 (s, 3H), 2.59 (s, 3H), 2.87 (t, J 

= 6.9 Hz, 2H), 3.84 (t, J = 6.9 Hz, 2H), 4.04 (t, J = 4.8 Hz, 2H), 4.13 (t, J = 4.8 Hz, 2H), 7.29 

(d, J = 8.3 Hz, 2H), 7.71 (d, J = 8.3 Hz, 2H). 

 
13C-NMR (101 MHz, CDCl3): δ = -3.4 (+), 10.0 (+), 14.1(+), 25.8(+), 26.07 (q), 31.6 (−), 50.3 

(−), 61.6 (−), 63.7 (−), 122.1 (+), 129.7 (+), 135.1 (q), 139.4 (q), 140.3 (q), 142.9 (q), 152.5 (q). 

 

ESI-MS: m/z (%) = 403.25 (M+H+) 

 

Compound 15: (E)-2-(4-((4-(2-((tert-butyldimethylsilyl)oxy)ethyl)phenyl)-diazenyl)-3,5-

dimethyl-1H-pyrazol-1-yl)ethyl methanesulfonate 

 

  C22H36N4O4SSi, MW = 480.70 g/mol 

 

Compound 14 (100 mg, 0.25 mmol, 1.0 eq) was dissolved in CH2Cl2 (100 mL) and the mixture 

was cooled to 0 °C. Triethylamine (0.51 mL, 0.37 mmol, 1.5 eq) and methanesulfonyl chloride 

(0.21 mL, 0.26 mmol, 1.1 eq) were added and the mixture was warmed up to r.t. over 1 h. 

Water (100 mL) was added and the aqueous layer was extracted with CH2Cl2 (2x 100 mL). 

The combined organic layers were dried over Na2SO4 and the solvent was removed under 

reduced pressure to obtain a yellow oil as the product 15 (101 mg, 0.21 mmol, 84%). 
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1H-NMR (400 MHz; CDCl3): δ = 0.00 (s, 6H), 0.88 (s, 9H), 2.49 (s, 3H), 2.63 (s, 3H), 2.89-2.85 

(m, 5H), 3.84 (t, J = 6.9 Hz, 2H), 4.36 (t, J = 5.2 Hz, 2H), 4.63 (t, J = 5.2 Hz, 2H) 7.30 (d, J = 

8.4 Hz, 2H), 7.71 (d, J = 8.4 Hz, 2H). 

 
13C-NMR (101 MHz, CDCl3): δ = -5.2 (+), 9.9 (+), 18.4 (q), 14.2 (+), 26.1 (+), 37.4 (+), 39.6 (−), 

47.8 (−), 64.4 (−), 67.8 (−), 121.8 (+), 129.9 (+), 135.2 (q), 138.7 (q), 139.1 (q), 140.1 (q), 141.4 

(q). 

 

ESI-MS: m/z (%) = 481.23 (M+H+) 

 

Compound 16: (E)-S-(2-(4-((4-(2-((tert-butyldimethylsilyl)oxy)ethyl)phenyl)-diazenyl)-

3,5-dimethyl-1H-pyrazol-1-yl)ethyl) ethanethioate 

	

  C23H36N4O2SSi, MW = 460.71 g/mol 

 

Potassium thioacetate (47.5 mg, 0.42 mmol, 2.0 eq) and compound 15 (100 mg, 0.21 mmol, 

1.0 eq) were dissolved in acetone (50 mL) and the mixture was refluxed for 3 h. The reaction 

mixture was cooled to r.t. and the solvent was removed in vacuo. The residue was dissolved 

in water (80 mL) and extraction with CH2Cl2 (3x 50 mL) was done. The combined organic layers 

were dried (Na2SO4), filtrated and the solvent was removed under reduced pressure to obtain 

an orange solid as the product 16 (71.6 mg, 0.16 mmol, 74%). 

 
1H-NMR (400 MHz; CDCl3): δ = 0.00 (s, 6H), 0.88 (s, 9H), 2.37 (s, 3H), 2.50 (s, 3H), 2.62 (s, 

3H), 2.89-2.85 (m, 2H), 3.31 (t, J = 6.8, 2H), 3.84 (t, J = 7.0, 2H), 4.21 (t, J = 6.8, 2H), 7.29 (d, 

J = 7.5, 2H), 7.71 (d, J = 7.4, 2H). 

 
13C-NMR (101 MHz, CDCl3): δ	=	-5.2 (+), 10.0 (+), 14.0 (+), 18.5 (p), 26.1(+), 29.1 (−), 30.8(+), 

39.6 (−), 47.9 (−), 64.5 (−), 113.0 (p), 121.9 (+), 122.1 (p), 129.9 (+), 139.3 (p), 141.3 (p), 143.0 

(p), 195.7 (p). 

 

ESI-MS: m/z (%) = 461.24 (M+H+) 

 

Compound 17: (E)-2-((2-(4-((4-(2-((tert-butyldimethylsilyl)oxy)ethyl)phenyl)-diazenyl)-

3,5-dimethyl-1H-pyrazol-1-yl)ethyl)disulfaneyl)pyridine 
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  C26H37N5OS2Si, MW = 527.82 g/mol 

 

Compound 16 (60.0 mg, 0.15 mmol, 1.0 eq) and 2-aldrithiol (39.4 mg, 0.18 mmol, 1.2 eq) were 

dissolved in a 0.5 M NaOMe solution in MeOH (50 mL) under N2-atmosphere. The mixture was 

stirred 24 h at r.t. and the solvent was removed under reduced pressure. The crude product 

was purified by automated column chromatography (PE/EtOAc, 5-80% EtOAc) to obtain 17 

(73.8 mg, 0.14 mmol, 94%) as a yellow oil. 

 
1H-NMR (400 MHz; CDCl3): δ =	0.00 (s, 6H), 0.88 (s, 9H), 2.49 (s, 3H), 2.58 (s, 3H), 2.87 (t, J 

= 6.9 Hz, 2H), 3.26 (t, J = 6.8 Hz, 2H), 3.84 (t, J = 6.9 Hz, 2H), 4.37 (t, J = 6.8 Hz, 2H), 7.13-

7.09 (m, 1H), 7.30 (d, J = 8.3 Hz, 2H), 7.66-7.62 (m, 2H), 7.70 (d, J = 8.3 Hz, 2H), 8.49 (d, J = 

4.8 Hz, 1H). 

 
13C-NMR (101 MHz, CDCl3): δ =	-3.4 (+), 10.1 (+), 14.2 (+), 18.1 (q), 25.8 (+), 37.7 (−), 39.2 

(−), 47.3 (−), 63.7 (−), 120.3 (+), 121.2 (+), 122.1 (+), 129.7 (+), 135.1 (q), 137.3 (+), 139.4 (q), 

140.2 (q), 143.2 (q), 149.7 (+), 152.5 (q), 159.3 (q). 

 

ESI-MS: m/z (%) = 528.23 (M+H+) 

 

Compound 18: (E)-2-(4-((3,5-dimethyl-1-(2-(pyridin-2-yldisulfaneyl)ethyl)-1H-pyrazol-

4-yl)diazenyl)phenyl)ethan-1-ol 

 

   C20H23N5OS2, MW = 413.56 g/mol 

 

Compound 17 (100 mg, 0.19 mmol, 1.0 eq) was dissolved in THF and a 1M TBAF solution in 

THF (1 mL) was added to stir the solution for 1 h at r.t. (TLC-monitoring!). Saturated NaCl-

solution (50 mL) was added and the mixture was extracted with EtOAc (3x 50 mL). The 

combined organic layers were dried (Na2SO4), and concentrated under reduced pressure. 
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The residue was purified by automated column chromatography (PE/EtOAc, 10-80% EtOAc) 

to obtain 18 (50 mg, 0.12 mmol, 64%) as a yellow oil. 

 
1H-NMR (400 MHz; CDCl3): δ	=	2.44 (s, 3H), 2.53 (s, 3H), 2.88 (t, J = 6.6 Hz, 2H), 3.21 (t, J = 

6.8 Hz, 2H), 3.85 (t, J = 6.6 Hz, 2H), 4.31 (t, J = 6.8 Hz, 2H), 7.06 (s, 1H), 7.27 (d, J = 8.3 Hz, 

2H), 7.62-7.55 (m, 2H), 7.68 (d, J = 8.3 Hz, 2H), 8.42 (s, 1H). 

 
13C-NMR (101 MHz, CDCl3): δ = 10.0 (+), 14.1 (+), 37.6 (−), 39.1 (−), 47.2 (−), 63.5 (−), 120.2 

(+), 121.2 (+), 122.0 (+), 129.6 (+), 135.0 (q), 137.3 (+), 139.3 (q), 140.3 (q), 143.1 (q), 

149.9(+), 152.4 (q), 159.2 (q). 

 

ESI-MS: m/z (%) = 414.14 (M+H+) 

 

Compound 19: (E)-2-(4-((3,5-dimethyl-1-(2-(pyridin-2-yldisulfaneyl)ethyl)-1H-pyrazol-

4-yl)diazenyl)phenyl)acetaldehyde 

 

  C20H21N5OS2, MW = 411.54 g/mol 

 

The alcohol 18 (50 mg, 0.12 mmol, 1.0 eq) was dissolved in CH2Cl2 (30 mL) under Ar-

atmosphere and Dess Martin periodinane (76 mg, 0.18 mmol, 1.5 eq) was added to stir the 

mixture at 0 °C for 1.5 h. The reaction mixture was diluted with EtOAc (50 mL) and 

subsequently extracted with aqueous sat. Na2S2O3 (50 mL), sat. NaHCO3 (50 mL) and sat. 

NaCl (50 mL). The combined organic layers were dried over Na2SO4 and after filtration the 

solvent was removed under reduced pressure to get the crude compound 19 (45 mg, 0.11, 

91%) as a yellow solid. Compound 19 was carried on to the reductive amination immediately 

for the formation of compound 1. 
 

1H-NMR (400 MHz; CDCl3): δ = 2.49 (s, 4H), 2.59 (s, 3H), 3.27 (t, J = 6.8 Hz, 2H), 3.75 (d, J = 

2.3 Hz, 2H), 4.38 (t, J = 6.8 Hz, 2H), 7.13-7.10 (m, 1H), 7.31 (d, J = 8.4 Hz, 2H), 7.67-7.61 (m, 

2H), 7.78 (d, J = 8.4 Hz, 2H), 8.49 (d, J = 4.7 Hz, 1H), 9.78 (s, 1H). 

 
13C-NMR (101 MHz, CDCl3): δ = 10.1 (+), 14.2 (+), 37.7 (−), 47.3 (−), 50.5 (−), 120.3 (+), 121.3 

(+), 122.5 (+), 130.3 (+), 135.2 (q), 137.4 (+), 139.8 (q), 143.3 (q), 150.0 (+), 153.0 (q), 159.3 

(q), 199.2 (q). 
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ESI-MS: m/z (%) = 412.13 (M+H+) 

 

Compound 20: 8-(2-azidoacetyl)-5-(benzyloxy)-2H-benzo[b][1,4]oxazin-3(4H)-one 

 

  C17H14N4O4, MW = 338.32 g/mol 

 

Compound 7 (800 mg, 2.13 mmol, 1.0 eq), NaN3 (210 mg, 3.19 mmol, 1.5 eq) were dissolved 

in DMF (10 mL) and the mixture was stirred at r.t. for 2 h. The reaction was stopped by the 

addition of water and the formed precipitate was filtered, washed with ice-water and EtOH. 

The crude product was dried under vacuum to afford 20 (649 mg, 1.91 mmol, 90%) as a beige 

solid.  

 

Analytical data were in agreement with published data 22. 

 

5.1.17 Compound R-21: (R)-8-(2-azido-1-hydroxyethyl)-5-(benzyloxy)-2H-benzo-

[b][1,4]oxazin-3(4H)-one 

 

  C17H16N4O4, MW = 340.34 g/mol 

 

Compound 20 (400 mg, 1.2 mmol, 1.0 eq) and CBS-solution (0.12 mL, c = 1 M in toluene, 0.12 

mmol, 0.1 eq) were dissolved in anhydrous THF under Ar-atmosphere at r.t. A solution of BH3-

THF complex (1.4 mL, c = 1 M in THF, 1.4 mmol, 1.1 eq) in THF was added dropwise over 2 

h at r.t. The mixture was stirred for 2.5 h at r.t. and was then quenched by MeOH (1.5 mL). 

The solvent was evaporated and the crude product was used for automated column 

chromatography (PE/EtOAc, 0-40% EtOAc) without any further workup. Compound R-21 (102 

mg, 0.31 mmol, 25%) was obtained as a beige solid. 

 

Analytical data were in agreement with published data.19 
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Compound R-22: (R)-8-(2-amino-1-hydroxyethyl)-5-hydroxy-2H-benzo[b]-[1,4]oxazin-

3(4H)-one 

  C10H12N2O4, MW = 224.22 g/mol 

 

To a solution of R-21 (50 mg, 0.16 mmol, 1.0 eq) in MeOH (5 mL) was added Pd/C (10 mol%) 

and Et3SiH (0.13 mL, 0.8 mmol, 5.0 eq). The mixture was stirred for 1 h at r.t. and subsequently 

the charcoal was filtered off over celite. The solvent was removed in vacuo and the crude was 

purified by automated column chromatography (CH2Cl2/(CH2Cl2,MeOH10% + 1%NH3), 0-80 

%) to yield compound R-22 (31 mg, 0.14 mmol, 89%) as a white solid.  

 

Analytical data were in agreement with published data.38 

 

Compound R-1: (R,E)-8-(2-((4-((1-(2-((2-aminoethyl)disulfaneyl)ethyl)-3,5-di-methyl-

1H-pyrazol-4-yl)diazenyl)phenethyl)amino)-1-hydroxyethyl)-5-hydroxy-2H-

benzo[b][1,4]oxazin-3(4H)-one 

 

   C27H35N7O4S2, MW = 585.74 g/mol 

 

Compound R-22 (25 mg, 0.11 mmol, 1.0 eq), 19 (46 mg, 0.11 mmol, 1.0 eq) and NaCNBH3 

(11 mg, 0.17 mmol, 1.5 eq) were dissolved in MeOH (10 mL) under Ar-atmosphere and stirred 

at r.t. for 16 h. The reaction mixture was diluted with EtOAc (20 mL) and extracted with sat. 

aqueous NaHCO3 solution (50 mL) and H2O (50 mL). The organic layer was dried over Na2SO4, 

filtered and the solvent was removed in vacuo. The crude product was dissolved in MeOH (5 

mL) and cysteamine hydrochloride (25 mg, 0.22 mmol, 2.0 eq) was added to stir the mixture 

for 1 h at r.t. The solvent was carefully removed in vacuo and the crude product was purified 

by preparative HPLC (column: Luna 10, 250 x 21 mm; flow: 20 mL/min, solvent A: H2O (0.05% 

TFA), solvent B: MeCN; gradient A/B: 0-20 min: 90/10, 20-25 min: 2/98) to obtain R-1 (2.6 mg, 

4.4 µmol, 4%) as a yellow solid. 

 
1H-NMR (400 MHz; DMSO-D6): δ = 2.38 (s, 3H), 2.59 (s, 3H), 2.96 (d, J = 6.8 Hz, 2H), 3.03-

3.01 (m, 2H), 3.16-3.17 (m, 4H), 3.19 (t, J = 6.7 Hz, 4H), 4.22 (t, J = 0.6 Hz, 1H), 4.35 (t, J = 
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6.5 Hz, 2H), 4.57-4.51 (m, 2H), 6.57 (d, J = 8.4 Hz, 1H), 6.92 (d, J = 8.5 Hz, 1H), 7.40 (d, J = 

8.4 Hz, 2H), 7.70 (d, J = 8.3 Hz, 2H), 
13C-NMR (151 MHz, DMSO-D6): δ = 9.4 (+), 14.0 (+), 31.1 (−), 34.0 (−), 36.5 (−), 37.7 (−), 47.1 

(−), 47.9 (−), 52.2 (−), 62.8 (+), 67.0 (−), 109.1 (+), 115.3 (q), 120.0 (+), 121.7 (+), 127.7 (q), 

129.5 (+), 134.3 (q), 136.9 (q), 138.9 (q), 140.0 (q), 141.0 (q), 144.9 (q), 151.9 (q), 164.2 (q). 

 

ESI-MS: m/z (%) = 586.23 (M+H+)  

 

HR-MS (ESI): calcd. for C27H35N7O4S2 (M+2H)2+, m/z = 293.6169, found 293.6173 

 

Compound 23: (E)-1-(2-azidoethyl)-4-((4-(2-((tert-butyldimethylsilyl)oxy)ethyl)-

phenyl)diazenyl)-3,5-dimethyl-1H-pyrazole 

 

  C21H33N7OSi, MW = 427.63 g/mol 

 

Compound 15 (200 mg, 0.42 mmol, 1.0 eq), NaN3 (30 mg, 0.46 mmol, 1.1 eq) and NaI (69 mg, 

0.46 mmol, 1.1 eq) were dissolved in DMSO under Ar-atmosphere to stir the mixture 24 h at 

65 °C. The reaction was quenched by the addition of H2O (50 mL) and subsequently the 

reaction mixture was extracted with EtOAc (3x 60 mL). The combined organic layers were 

dried (Na2SO4), filtered and the solvent was removed under reduced pressure. The crude 

product was purified by automated column chromatography (PE/EtOAc, 0-100% EtOAc), 

affording 23 (147 mg, 0.34 mmol, 82%) as a bright yellow solid. 

 
1H-NMR (400 MHz; CDCl3): δ = 0.00 (s, 6H), 0.88 (s, 9H), 2.51 (s, 3H), 2.62 (s, 3H), 2.87 (t, J 

= 6.9 Hz, 2H), 3.77 (t, J = 5.7 Hz, 2H), 3.84 (t, J = 6.9 Hz, 2H), 4.16 (t, J = 5.7 Hz, 2H), 7.30 

(d, J = 8.3 Hz, 2H), 7.72 (d, J = 8.3 Hz, 2H). 

 
13C-NMR (101 MHz, CDCl3): δ = -5.25 (+), 9.94 (+), 14.20 (+), 18.47 (+), 26.06 (−), 39.55 (−), 

47.84 (−), 50.83 (−), 64.44 (q), 121.81 (+), 129.81 (+), 135.22 (q), 139.67 (q), 141.18 (q), 

143.36 (q), 152.22 (q). 

 

ESI-MS: m/z (%) = 428.26 (M+H+)  
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Compound 24: (E)-2-(4-((1-(2-azidoethyl)-3,5-dimethyl-1H-pyrazol-4-yl)-di-azenyl)-

phenyl)ethan-1-ol 

 

  C15H19N7O, MW = 313.37 g/mol 

 

Azide 23 (1.2 g, 2.8 mmol, 1.0 eq) was dissolved in THF and a 1 M TBAF solution in THF (5 

mL) was added to stir the mixture 24 h at r.t. The solvent evaporated and the crude was purified 

by automated column chromatography (CH2Cl2/MeOH, 0-10% MeOH) to afford compound 24 

(764 mg, 2.4 mmol, 87%) as a yellow solid. 

 
1H-NMR (400 MHz, CDCl3): δ = 2.50 (s, 3H), 2.62 (s, 3H), 2.93 (t, J = 6.5, 2H), 3.77 (t, J = 5.7, 

2H), 3.90 (t, J = 6.5, 2H), 4.16 (t, J = 5.6, 2H), 7.32 (d, J = 8.3, 2H), 7.74 (d, J = 8.3, 2H). 

 
13C-NMR (101 MHz, CDCl3): δ = 9.9 (+), 14.2 (+), 39.1 (−), 47.8 (−), 50.8 (−), 63.6 (−),122.1 

(+),129.7 (+),135.2 (q), 139.9 (q), 140.4 (q), 152.4 (q). 

 

ESI-MS: m/z (%) = 314.16 (M+H+)  

 

Compound 25: (E)-2-(4-((1-(2-azidoethyl)-3,5-dimethyl-1H-pyrazol-4-yl)di-azenyl)-

phenyl)acetaldehyde 

 

  C15H17N7O, MW = 311.35 g/mol 

 

Compound 24 (40 mg, 0.13 mmol, 1.0 eq) was dissolved in CH2Cl2 (30 mL) under Ar-

atmosphere and the solution was cooled to 0 °C. Dess Martin periodinane (81 mg, 0.19 mmol, 

1.5 eq) was added and the mixture was stirred for 1.5 h. The reaction mixture was diluted with 

EtOAc (50 mL) and subsequently washed with aqueous sat. Na2S2O3 (50 mL), sat. NaHCO3 

(50 mL) and sat. NaCl (50 mL). The combined organic layers were dried (Na2SO4), filtered and 

the solvent was removed under reduced pressure to get the crude compound 25 (37 mg, 0.12 

mmol, 92%) as a yellow solid. Compound 25 was carried on to the reductive amination 

immediately for the formation of compound 2. 
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1H-NMR (400 MHz; CDCl3): δ = 2.50 (s, 3H), 2.62 (s, 3H), 3.82-3.74 (m, 4H), 4.22-4.14 (m, 

2H), 7.30 (d, J = 8.3 Hz, 2H), 7.79 (s, 2H), 9.77 (s, 1H). 

 
13C-NMR (101 MHz, CDCl3): δ	=	9.9 (+), 14.2 (+), 47.8 (−), 50.4 (−), 50.8 (−), 122.5 (+), 130.3 

(+), 133.2 (q), 135.2 (q), 140.19 (q), 143.4 (q), 152.9 (q), 199.1 (+). 

 

ESI-MS: m/z (%) = 312.14 (M+H+)  

 

Compound 2: (R,E)-1-((1-(2-(4-((4-(2-((2-hydroxy-2-(5-hydroxy-3-oxo-3,4-di-hydro-

2H-benzo[b][1,4]oxazin-8-yl)ethyl)amino)ethyl)phenyl)diazenyl)-3,5-dimethyl-1H-

pyrazol-1-yl)ethyl)-1H-1,2,3-triazol-4-yl)methyl)-1H-pyrrole-2,5-dione 

 

  C32H34O10N6, MW = 654.69 g/mol 

 

Compound R-22 (20 mg, 0.088 mmol, 1.1 eq), 25 (25 mg, 0,080 mmol, 1.0 eq) and 

Na(AcO)3BH (19 mg, 0,088 mmol, 1.1 eq) were dissolved in dry THF/MeCN (1:1, 20 mL) under 

Ar-atmosphere. The reaction mixture was stirred at r.t. for 16 h and then diluted with EtOAc 

(30 mL). The mixture was extracted with sat. aqueous NaHCO3 solution (50 mL) and water (50 

mL). The organic layer was dried over Na2SO4 and the solvent was removed under reduced 

pressure. The crude intermediate 26 was dissolved in tBuOH, THF, H2O (1:1:1, 5 mL) and N-

propargylmaleimide (13 mg, 0.096 mmol, 1.2 eq), CuSO4*5H2O (4.3 mg, 0,026 mmol, 0.33 eq) 

and TBTA (17 mg, 0.026 mmol, 0.33 eq) were added. After 2 min, Na-ascorbate (5.3 mg, 0.026 

mmol, 0.33 eq) was added and the mixture was stirred at r.t. for 2h. The reaction mixture was 

diluted with DMSO (1 mL) and directly used for purification with preparative HPLC (column: 

Luna 10, 250 x 21 mm; flow: 20 mL/min, solvent A: H2O (0.05% TFA), solvent B: MeCN; 

gradient A/B: 0-20 min: 90/10, 20-25 min: 2/98) to obtain the desired product R-2 (5.7 mg, 

0.0087 mmol, 11%) as a yellow solid.  

 
1H-NMR (600 MHz; DMSO-D6): δ = 2.13 (s, 3H, CH3), 2.35 (s, 3H, CH3), 3.02-2.97 (m, 2H, 

CH2), 3.15-3.08 (m, 2H, CH2), 3.25-3.19 (m, 2H CH2), 4.48 (t, J = 5.6 Hz, 2H, CH2), 4.54 (d, J 

= 4.6 Hz, 2H, CH2), 4.61 (s, 2H, CH2), 4.77 (t, J = 5.6 Hz, 2H, CH2), 5.09-5.07 (m, 1H, CHarom), 

5.96 (s, 1H, OH), 6.56 (d, J = 8.4 Hz, 1H, CHarom), 6.93 (d, J = 8.5, 1H, CHarom), 7.00 (s, 2H, 
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CHarom), 7.00 (s, 2H, CHarom), 7.39 (d, J = 8.3 Hz, 2H, CHarom), 7.68 (d, J = 8.3 Hz, 2H, CHarom), 

7.88 (s, 1H), 7.88 (s, 1H), 8.64 (s, 1H, NH), 8.76 (s, 1H, OH), 9.98 (s, 1H, NH) 

 
13C-NMR (151 MHz; DMSO-D6): δ = 8.6 (+), 14.0 (+), 31.1 (−), 32.4 (−), 47.9 (−), 48.2 (−), 48.9 

(−), 52.2 (−), 62.8 (+), 67.0 (−), 109.1 (+), 115.3 (q), 119.8 (q), 120.0 (+), 121.7 (+), 123.6 (+), 

129.5 (+), 134.1 (q), 134.7 (+), 140.4 (q), 141.18 (q), 141.21 (q), 142.5 (q), 144.9 (q), 151.9 

(q), 164.2 (q), 170.3 (q, = 3x C=O), 

 

ESI-MS: m/z (%) = 655.27 (M+H+)  

 

HR-MS (ESI): calcd. for C32H34N10O6 (M+H+), m/z = 655.2736, found 655.2731 

 

Compound 32: (E)-2-(3,5-dimethyl-4-((4-nitrophenyl)diazenyl)-1H-pyrazol-1-yl)-ethan-

1-ol 

 

  C13H15N5O3, MW = 289.30 g/mol 

 

GP2, starting material 31, yield: 98%, orange solid. 

 

TLC: (PE/EtOAc, 3:1) Rf = 0.46 

 
1H-NMR (400 MHz; CDCl3): δ	= 2.51 (s, 3H),	2.64 (s, 3H),	4.07 (t, J = 4.8 Hz, 2H),	4.18 (t, J = 

4.8 Hz, 2H),	7.87 (d, J = 9.0 Hz, 2H),	8.32 (d, J = 9.1 Hz, 2H). 

 
13C-NMR (101 MHz; CDCl3): δ	= 10.1 (+), 14.3 (+), 50.6 (−), 61.5 (−), 122.5 (+),124.8 (+),136.3 

(q),	141.5 (q), 143.8 (q), 147.1 (q), 157.2 (q),  

 

ESI-MS: m/z (%) = 290.13 (M+H+) 

 

Compound 33: (E)-2-(4-((4-aminophenyl)diazenyl)-3,5-dimethyl-1H-pyrazol-1-yl)-

ethan-1-ol) 

 

  C13H17N5O, MW = 259.31 g/mol 
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Compound 32 (1.0 g, 3.5 mmol, 1.0 eq) was dissolved in a mixture of THF/H2O (3:1 (v/v), 60 

mL) and Na2S (1.0 g, 12.8 mmol, 3.4 eq) was added to reflux the reaction mixture for 4 h. The 

mixture was cooled to r.t. and the organic solvent was removed in vacuo. Aqueous 1 M NaOH 

and EtOAc were added and after separation of the aqueous layer, the organic layer was 

extracted with sat. NaHCO3 solution (1 x 50 mL) and sat. NaCl solution (1 x 50 mL). The 

organic layer was dried over Na2SO4 and after filtration the solvent was removed in vacuo. The 

crude product was purified by automated column chromatography (CH2Cl2/MeOH, 0-30% 

MeOH, + 0.1% NEt3) to afford compound 33 (0.8 g, 0.2 mmol, 77%) as an orange solid. 

 

TLC: (CH2Cl2/MeOH, 20:1) Rf = 0.22 

 
1H-NMR (400 MHz; DMSO-D6): δ = 2.34 (s, 3H),	2.51 (s, 4H),	3.71 (q, J = 5.5 Hz, 2H),	4.04 (t, 

J = 5.6 Hz, 2H),	6.62 (d, J = 8.8 Hz, 2H), 7.49 (d, J = 8.7 Hz, 2H). 

 
13C-NMR (101 MHz; DMSO-D6): δ = 9.5 (+), 13.9 (+), 50.9 (−), 60.1 (−), 113.4 (+), 123.2 (+), 

133.8 (q), 138.0 (q), 139.9 (q), 143.8 (q), 150.8 (q). 

 

ESI-MS: m/z (%) = 260.15 (M+H+) 

 

Compound 34: tert-butyl (E)-4-((4-((1-(2-hydroxyethyl)-3,5-dimethyl-1H-pyrazol-4-

yl)diazenyl)phenyl)amino)piperidine-1-carboxylate 

 

  C23H34N6O3, MW = 442.56 g/mol 

 

Azopyrazol 33 (0.7 g, 2.7 mmol, 1.05 eq), Boc-piperidone (0.5 g, 2.6 mmol, 1.0 eq) and AcOH 

(169 µL, 2.7 mmol, 1.0 eq) were dissolved in dichloroethane (50 mL) at r.t. Na(AcO)3BH (0.8 

g, 3.5 mmol, 1.0 eq) was added in small portions over 15 min and the mixture was stirred for 

24 h at r.t. The reaction mixture was diluted with EtOAc and the organic layer was extracted 

with 1 M NaOH (2 x 50 mL), sat. NaHCO3 solution (1 x 50 mL) and sat. NaCl solution (1 x 50 

mL). The organic layer was dried over Na2SO4 and after filtration the solvent was reduced in 

vacuo. The crude product was purified by automated column chromatography (CH2Cl2/MeOH, 
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0-10% MeOH, + 0.1% NEt3) to afford the target compound 34 (0.8 g, 0.2 mmol, 77%) as a 

yellow solid. 

 

TLC: (CH2Cl2/MeOH, 20:1) Rf = 0.45 

 
1H-NMR (400 MHz; DMSO-D6): δ = 1.32-1.20 (m, 2H),	1.41 (s, 9H),	1.96-186 (m, 2H),	2.34 (s, 

3H),	2.51 (s, 3H),	3.01-2.84 (m, 2H), 3.70 (t, J = 5.6 Hz, 2H), 3.90-3.87 (m, 2H), 4.04 (t, J = 5.6 

Hz, 2H), 6.67 (d, J = 8.9 Hz, 2H), 7.54 (d, J = 8.9 Hz, 2H). 

 
13C-NMR (101 MHz; DMSO-D6): δ = 9.5 (+), 13.9 (+), 28.1 (+), 31.5 (−), 42.7 (−), 48.6 (+), 50.9 

(−), 60.1 (−), 78.6 (q), 112.0 (+), 123.3 (+), 133.8 (q), 138.0 (q), 139.9 (q), 143.7 (q), 149.3 (q), 

153.9 (q), 

 

ESI-MS: m/z (%) = 443.28 (M+H+) 

 

Compound 35: tert-butyl (E)-4-(N-(4-((1-(2-hydroxyethyl)-3,5-dimethyl-1H-pyrazol-4-

yl)diazenyl)phenyl)propionamido)piperidine-1-carboxylate 

 

  C26H38N6O4, MW = 498.63 g/mol 

 

Compound 34 (1.1g, 2.5 mmol, 1.0 eq) was dissolved in anhydrous toluene (35 mL) under Ar-

atmosphere. DMAP (0.62 g, 5.1 mmol, 2.0 eq), propionic anhydride (0.65 mL, 5.1 mmol, 2 eq) 

and NEt3 (1.8 mL, 12.7 mmol, 5.0 eq) were added and the mixture was stirred over night at r.t. 

The solvent was evaporated and the crude product was purified by automated column 

chromatography (PE/EtOAc, 0-90% EtOAc) to obtain compound 35 (0.1 g, 0.31 mmol, 10%) 

as a yellowish oil. 

 

TLC: (PE/EtOAc, 1:1 + 1% NEt3) Rf = 0.23 

 
1H-NMR (400 MHz; CDCl3): δ = 1.25-1.21 (m, 3H), 1.40-1.29 (m, 2H), 1.45 (s, 9H), 2.08-2.03 

(m, 2H), 2.32-2.26 (m, 2H), 2.46 (d, 3H), 2.54 (s, 3H), 2.93 (t, J = 11.9 Hz, 2H), 3.54-3.42 (m, 

1H), 4.09-3.95 (m, 2H), 4.26 (t, J = 5.3 Hz, 2H), 4.41 (t, J = 5.3 Hz, 2H), 6.61 (d, J = 7.8 Hz, 

2H), 7.66 (d, J = 7.9 Hz, 2H). 
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13C-NMR (101 MHz; CDCl3): δ	= 9.9 (+), 14.3 (+), 13.9 (+), 27.4, 28.5 (+), 32.3 (−), 47.5 (−), 

50.1(+), 62.9 (−), 79.8 (q), 112.8 (+), 123.8 (+), 134.9 (q), 137.9 (q), 142.7 (q), 145.7 (q), 148.3 

(q), 154.8 (q), 174.1 (q). 

 

ESI-MS: m/z (%) = 499.30 (M+H+) 

 

Compound 36: (E)-N-(4-((1-(2-hydroxyethyl)-3,5-dimethyl-1H-pyrazol-4-yl)di-azenyl)-

phenyl)-N-(piperidin-4-yl)propionamide 

 

  C21H30N6O2, MW = 398.51 g/mol 

 

Compound 35 (196 mg, 0.39 mmol, 1 eq) was dissolved in a mixture of THF/CH2Cl2 (1:1). A 

solution of HCl in Dioxane (5 mL) was added and the mixture was stirred at r.t. for 1.5 h. The 

solvent was evaporated and the crude product was purified by RP chromatography (H2O+TFA 

0.05%/MeCN 10-98% MeCN). After lyophilization the product 36 (120 mg, 0.3 mmol, 77%) 

was obtained as a white solid. 

 

1-H NMR (400 MHz; DMSO-D6): δ = 0.98 (t, J = 7.5 Hz, 3H), 1.65-1.55 (m, 2H), 2.08-2.05 (m, 

2H), 2.28 (q, J = 7.5 Hz, 2H), 2.34 (s, 3H), 2.51 (s, 3H), 3.04-3.01 (m, 2H), 3.33-3.30 (m, 2H), 

3.63 (s, 1H), 4.27 (t, J = 5.0 Hz, 2H), 4.36-4.33 (m, 2H), 6.71 (d, J = 8.8 Hz, 2H), 7.56 (d, J = 

8.8 Hz, 2H). 

 

13-C NMR (101 MHz; DMSO-D6): δ = 8.8 (+), 9.3 (+),13.9 (+), 26.7 (−), 28.3 (−), 42.1(−), 46.2 

(+), 47.1 (−), 62.3 (−),112.0 (+), 123.3 (+), 133.9 (q), 137.9 (q), 140.3 (q), 143.8 (q), 149.1 (q), 

173.3 (q). 

 

ESI-MS: m/z (%) = 399.25 (M+H+) 

 

Compound 37: (E)-N-(4-((1-(2-hydroxyethyl)-3,5-dimethyl-1H-pyrazol-4-yl)-diaze-

nyl)phenyl)-N-(1-phenethylpiperidin-4-yl)propionamide 
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   C29H38N6O2, MW = 502.66 g/mol 

 

Compound 37 (1.6 g, 4.0 mmol, 1.0 eq) was dissolved in dichloroethane (100 mL) at r.t. 

Phenylacetaldehyde (0.72 g, 6.0 mmol, 1.5 eq) and Na(AcO)3BH (7.7 g, 36 mmol, 6 eq) were 

added and the mixture was stirred under Ar-atmosphere and r.t. over night. The reaction 

mixture was diluted with EtOAc and the organic mixture was extracted with 1 M NaOH (100 

mL), sat. NaHCO3 (100 mL) and brine (100 mL). The organic layer was dried over Na2SO4, 

filtered and the solvent was evaporated. The crude product was purified by automated column 

chromatography (CH2Cl2/MeOH, 0-8% MeOH) to afford compound 38 (0.9 g, 1.8 mmol, 45%) 

as an orange solid. 

 
1H-NMR (400 MHz; MeOD): δ = 1.06 (t, J = 7.6, 3H), 1.61-1.52 (m, 2H), 2.06 (d, J = 12.0, 2H), 

2.29-2.21 (m, 2H), 2.31 (q, J = 7.6, 2H), 2.44 (s, 3H), 2.56 (s, 3H), 2.63-2.59 (m, 2H), 2.84-

2.77 (m, 2H), 3.01 (d, J = 11.8 Hz, 2H), 3.41-3.34 (m, 1H), 4.28 (t, J = 5.2 Hz, 2H), 4.41 (t, J = 

5.2 Hz, 2H), 6.68 (d, J = 8.9 Hz, 2H), 7.23-7.18 (m, 3H), 7.27 (d, J = 7.3 Hz, 2H), 7.64 (d, J = 

8.8 Hz, 2H). 

 
13C-NMR (101 MHz; MeOD): δ = 9.3 (+), 9.9 (+), 14.0 (+), 28.1 (−), 32.7 (−), 34.2 (−), 48.4 (−), 

50.5 (+), 53.4 (−), 61.6 (−), 63.7 (−), 113.4 (+), 124.8 (+), 127.2 (+), 129.5 (+), 129.8 (+), 135.7 

(q), 139.5 (q), 141.2 (q), 143.2 (q), 146.0 (q), 151.2 (q), 175.5 (q). 

 

ESI-MS: m/z (%) = 503.31 (M+H+) 

 

Compound 39: tert-butyl (4-(2-(2,4-dioxopentan-3-ylidene)hydrazineyl)-benzyl)-car-

bamate 

 

  C17H23N3O4, MW = 333.39 g/mol 

 

GP1, aniline derivative 38, yield: 90%, yellow crystals. 
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TLC: (CH2Cl2/MeOH, 20:1) Rf = 0.46 

 
1H-NMR (400 MHz; CDCl3): δ	=	1.46 (s, 9H), 2.48 (s, 3H), 2.59 (s, 3H), 4.34-4.22 (m, 2H) 7.32 

(d, J = 8.6 Hz, 2H), 7.36 (d, J = 8.6 Hz, 2H). 

 
13C-NMR (101 MHz, CDCl3): δ	=	26.8 (+), 28.5 (+), 31.8 (+), 44.3 (−), 79.8 (q), 116.6 (+), 128.9 

(+), 133.4 (q), 137.0 (q), 140.9 (q), 198.1 (q). 

 

ESI-MS: m/z (%) = 334.18 (M+H+) 

 

Compound 40: tert-butyl (E)-(4-((1-(2-hydroxyethyl)-3,5-dimethyl-1H-pyrazol-4-

yl)diazenyl)benzyl)carbamate 

 

  C19H27N5O3, MW = 373.46 g/mol 

 

GP2, starting material 39, yield 63%, yellow crystals. 

 

TLC: (CH2Cl2/MeOH, 20:1) Rf = 0.12 

 
1H-NMR (400 MHz; CDCl3): δ = 1.46 (s, 9H), 2.47 (s, 3H), 2.58 (s, 3H), 4.01 (t, J = 4.9 Hz, 2H), 

4.12 (t, J = 4.9 Hz, 2H), 4.35 (d, J = 5.3 Hz, 2H), 7.35 (d, J = 8.2 Hz, 2H), 7.72 (d, J = 8.3 Hz, 

2H). 

 
13C-NMR (101 MHz, CDCl3): δ	=	10.0 (+), 14.1 (+), 28.5 (+), 50.4 (−), 58.5 (−), 61.5 (−), 79.8 

(q), 122.1 (+), 128.1 (+), 135.1 (q), 139.7 (q), 142.9 (q), 153.0 (q), 156.1 (q). 

 

ESI-MS: m/z (%) = 374.22 (M+H+) 

 

Compound 41: (E)-2-(4-((4-(aminomethyl)phenyl)diazenyl)-3,5-dimethyl-1H-pyrazol-

1-yl)ethan-1-ol 

 

  C14H19N5O, MW = 273.34 g/mol 
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GP3, starting material 40, yield: 95%, yellow crystals. 

 
1H-NMR (300 MHz; CDCl3): δ = 2.46 (s, 3H), 2.58 (s, 3H), 3.84 (s, 2H), 3.99 (t, J = 4.9 Hz, 2H), 

4.11 (t, J = 4.8 Hz, 2H), 7.32 (d, J = 8.6 Hz, 2H), 7.70 (d, J = 8.4 Hz, 2H). 

 
13C-NMR (75 MHz, CDCl3): δ	=	10.0 (+), 14.1 (+), 46.2 (−), 50.7 (−), 61.2 (−), 122.1 (+), 127.6 

(+), 135.0 (q), 139.8 (q), 142.7 (q), 144.4 (q), 152.6 (q). 

 

ESI-MS: m/z (%) = 274.15 (M+H+) 

 

Compound 42: (E)-2-(3,5-dimethyl-4-((4-(((1-phenethylpiperidin-4-yl)amino)-methyl)-

phenyl)diazenyl)-1H-pyrazol-1-yl)ethan-1-ol 

 

   C27H36N6O, MW = 460.63 g/mol 

 

To a solution of azopyrazole 41 (600 mg, 1.61 mmol, 1.0 eq), phenethyl-4-piperidone (444 mg, 

1.61 mmol, 1.0 eq) and AcOH (0.13 mL, 1.61 mmol, 1.0 eq) in dichloroethane (80 mL) was 

added Na(AcO)3BH (651 mg, 3.07 mmol, 1.9 eq) in small portions over 15 min and the mixture 

was stirred for 24 h at r.t. The reaction mixture was diluted with EtOAc (120 mL) and the organic 

layer was extracted with 1 M NaOH (100 mL), sat. aqueous NaHCO3 solution (100 mL) and 

sat. aqueous NaCl solution (100 mL). The organic layer was dried over Na2SO4 and after 

filtration the solvent was reduced in vacuo. The crude product was purified by automated 

column chromatography (CH2Cl2/MeOH, 0-20% MeOH, + 0.1% NEt3) to afford the target 

compound 42 (270 mg, 0.59 mmol, 37%) as a yellow solid. 

 
1H-NMR (400 MHz; CDCl3): δ	=	1.52-1.41 (m, 2H), 1.92 (d, J = 10.2 Hz, 2H), 2.05 (t, J = 10.6 

Hz, 2H), 2.49 (s, 3H), 2.57-2.53 (m, 2H), 2.59 (s, 3H), 2.82-2.74 (m, 3H), 2.95 (d, J = 11.8 Hz, 

2H), 3.85 (s, 2H), 4.01 (t, J = 4.9 Hz, 2H), 4.12 (t, J = 4.8 Hz, 2H), 7.21-7.17 (m, 3H), 7.31-7.23 

(m, 2H), 7.39 (d, J = 8.3 Hz, 2H), 7.73 (d, J = 8.3 Hz, 2H). 
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13C-NMR (101 MHz, CDCl3): δ	=	10.0 (+), 14.1 (+), 32.8 (−), 33.9 (−), 50.5 (−), 52.5 (−), 54.1 

(+), 60.7 (−), 61.4 (−), 122.0 (+), 126.1 (+), 128.5 (+), 128.6 (+), 128.8 (q), 135.0 (q), 139.6 (q), 

140.5 (q), 142.2 (q), 142.8 (q), 152.7 (q). 

 

ESI-MS: m/z (%) = 461.30 (M+H+) 

 

Compound 43: (E)-N-(4-((1-(2-hydroxyethyl)-3,5-dimethyl-1H-pyrazol-4-yl)diazenyl)-

benzyl)-N-(1-phenethylpiperidin-4-yl)propionamide 

 

  C30H40N6O2, MW = 516.69 g/mol 

 

Compound 42 (270 mg, 0.587 mmol, 1.0 eq), DMAP (86.0 mg, 0.704 mmol, 1.2 eq), propionic 

anhydride (90 µL, 0.704 mmol, 1.2 eq) and DIPEA (0.5 mL, 2.93 mmol, 5 eq) were dissolved 

in CH2Cl2 (10 mL) and stirred at r.t. for 24 h. The solvent was evaporated and the crude product 

was purified by automated column chromatography (CH2Cl2/MeOH, 0-5% MeOH) and 

preparative HPLC (column: Luna 10, 250 x 21 mm; flow: 20 mL/min, solvent A: H2O (0.05% 

TFA)), solvent B: MeCN; gradient A/B: 0-15 min: 90/10, 15-20 min: 2/98; tR = 10.0 min). The 

intermediate was dissolved in MeOH/H2O (9:1, 10 mL) and KOH (164 mg, 2.93 mmol, 5.0 eq) 

was added to stir the mixture over night. The reaction mixture was acidified with 2M HCl and 

extracted with CH2Cl2 (3x 50 mL). The combined organic layers were dried over Na2SO4, 

filtered and the solvent was removed under reduced pressure to obtain compound 43 (20 mg, 

0.038 mmol, 7%) as the desired product. 

 
1H-NMR (400 MHz; CDCl3): δ = 1.12 (t, J = 7.2 Hz, 3H), 1.79 (d, J = 12.6 Hz, 2H), 2.33-2.29 

(m, 2H), 2.53-2.40 (s, 5H), 2.58 (s, 3H), 2.78 (t, J = 10.3 Hz, 2H), 3.15 (s, 4H), 3.60-3.58 (m, 

2H), 4.03 (t, J = 4.8 Hz, 2H), 4.14 (t, J = 4.8 Hz, 2H), 4.64 (s, 2H), 4.89 (s, 1H), 7.20 (d, J = 6.7 

Hz, 2H), 7.28-7.26 (m, 5H), 7.72 (d, J = 8.4 Hz, 2H). 

 
13C-NMR (101 MHz; CDCl3): δ = 9.6 (+),10.0 (+), 14.1 (+), 26.4 (−), 27.2 (−), 27.4 (−), 30.6 (−), 

46.4 (−), 48.9 (+), 50.5 (−), 52.7 (−), 52.8 (−), 53.6 (−), 58.7 (−), 61.5 (−), 122.4 (+), 126.4 (+), 

127.4(+), 128.8 (+), 129.1 (+), 135.1 (q), 136.1 (q), 139.2 (q), 139.9 (q), 142.9 (q), 153.0 (q), 

175.4 (q), 
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ESI-MS: m/z (%) = 517.33 (M+H+) 

 

HR-MS (ESI): calcd. for C30H40N6O2 (M+H+), m/z = 517.3286, found 517.3294 

 

Compound 44: (E)-2-(4-((4-(((tert-butoxycarbonyl)amino)methyl)phenyl)-diazenyl)-

3,5-dimethyl-1H-pyrazol-1-yl)ethyl 4-methylbenzenesulfonate 

 

  C20H29N5O5S, MW = 451.54 g/mol 

 

A solution of Compound 40 (4.0 g, 11.0 mmol, 1.0 eq) in CH2Cl2 (150 mL) was cooled to 0 °C 

and NEt3 (2.2 mL, 16.5 mmol, 1.5 eq) and methanesulfonyl chloride (2.2 mL, 11.1 mmol, 1.05 

eq) were added. The mixture was stirred and warmed up to r.t. over 1 h. Water (100 mL) was 

added and the aqueous layer was extracted with CH2Cl2 (2x 100 mL). The combined organic 

layers were dried over Na2SO4 and the solvent was removed under reduced pressure to obtain 

a yellow oil as the product 44 (4.8 g, 10.6 mmol, 97%). 

 
1H-NMR (400 MHz; CDCl3): δ = 1.47 (s, 9H), 2.49 (s, 3H), 2.62 (s, 3H), 2.87 (s, 3H), 4.39-4.31 

(m, 4H), 4.63 (t, J = 5.2 Hz, 2H), 7.37 (d, J = 8.3 Hz, 2H), 7.74 (d, J = 8.4 Hz, 2H). 

 
13C-NMR (101 MHz, CDCl3): δ = 9.9 (+), 14.2 (+), 28.6 (+), 37.4 (+), 44.5 (−), 47.8 (−), 67.8 

(−), 79.8 (q), 122.2 (+), 128.1 (+), 135.3 (q), 140.4 (q), 143.5 (q), 152.9 (q), 156.0 (q), 162.7 

(q). 

 

ESI-MS: m/z (%) = 452.20 (M+H+) 

 

5.4.2 Compound 46: tert-butyl (E)-(4-((3,5-dimethyl-1-(2-(pyridin-2-yldisulfaneyl)ethyl)-

1H-pyrazol-4-yl)diazenyl)benzyl)carbamate 

 

  C24H30N6O2S2, MW = 498.66 g/mol 

 

Potassium acetate (0.51 g, 3.79 mmol, 2.0 eq) was added to a stirred mixture of compound 44 

(1.0 g, 1.89 mmol, 1.0 eq) in acetone (80 mL). The mixture was refluxed for 3 h and 
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subsequently cooled down to r.t. The solvent was removed under reduced pressure and the 

residue was dissolved in H2O to do an extraction with EtOAc (3x 80 mL). The combined organic 

layers were dried (Na2SO4) and the solvent was removed in vacuo to obtain the intermediate 

45 as an orange solid. Intermediate 45 was dissolved in a 0.5 M NaOMe solution in MeOH 

under Ar-atmosphere. 2-Aldrithiol (0.46 g, 2.08 mmol, 1.1 eq) was added and the mixture was 

stirred over night at r.t. The solvent was evaporated and the crude product was purified by 

automated column chromatography (PE/EtOAc, 5-80% EtOAc) to afford 26 (0.63 g, 1.26 mmol, 

67%) as a yellow oil. 

 

TLC: (CH2Cl2/MeOH, 20:1) Rf = 0.55 

 
1H-NMR (400 MHz; CDCl3): δ = 1.47 (s, 9H), 1.66 (d, J = 0.3, 2H), 2.48 (s, 3H), 2.58 (s, 3H), 

3.26 (t, J = 6.8, 2H), 4.37 (t, J = 6.8, 4H), 7.12-7.10 (m, 1H), 7.36 (d, J = 8.3, 2H), 7.65 (d, J = 

1.4, 2H), 7.73 (d, J = 8.4, 2H), 8.50-8.48 (m, 1H). 

 
13C-NMR (101 MHz, CDCl3): δ = 10.2 (+), 14.4 (+), 28.7 (+), 37.8 (−), 44.7 (−), 47.4 (−), 79.9 

(q), 120.4 (+), 121.3 (+),122.3 (+),128.2 (q), 135.3 (+), 137.4 (q), 143.3 (q), 150.1 (+), 159.4 

(q), 171.4 (q), 

 

ESI-MS: m/z (%) = 499.19 (M+H+) 

 

Compound 47: (E)-(4-((3,5-dimethyl-1-(2-(pyridin-2-yldisulfaneyl)ethyl)-1H-pyrazol-4-

yl)diazenyl)phenyl)methanamine 

 

  C19H22N6S2, MW = 398.55 g/mol 

 

GP3, starting material 46, yield: 95%, yellow crystals. 

 

TLC: (CH2Cl2/MeOH 0.01 % Et3N, 20:1) Rf = 0.09 

 
1H-NMR (400 MHz; CDCl3): δ = 2.40 (s, 3H), 2.50 (s, 3H), 3.21 (t, J = 6.6, 2H), 4.33 (t, J = 6.6, 

2H), 7.18-7.12 (m, 1H), 7.37 (d, J = 8.4, 2H), 7.69-7.66 (m, 4H), 8.47 (d, J = 4.9, 1H), 
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13C-NMR (CDCl3, 101 MHz): δ = 10.0 (+), 13.9 (+), 37.7 (−), 43.5 (−), 47.1 (−), 121.0 (+), 121.7 

(+),122.5 (+), 129.9 (+), 133.4 (q), 135.0 (q), 138.3 (+), 140.4 (q), 143.2 (q), 149.1 (+), 153.8 

(q), 158.8 (q). 

 

ESI-MS: m/z (%) = 399.14 (M+H+) 

 

Compound 48: (E)-N-(4-((3,5-dimethyl-1-(2-(pyridin-2-yldisulfaneyl)ethyl)-1H-pyrazol-

4-yl)diazenyl)benzyl)-1-phenethylpiperidin-4-amine 

 

  C32H39N7S2, MW = 585.83 g/mol 

 

To a solution of 1-phenethylpiperidin-4-one (162 mg, 1.0 mmol, 1.0 eq) in dichloroethane (40 

mL), was added sequentially compound 47 (400 mg, 1.0 mmol, 1.0 eq), NaHB(OAc)3, (391 

mg, 1.4 mmol, 1.4 eq) and AcOH (0.08 mL, 1.4 mmol, 1.0 eq) under Ar-atmosphere at r.t. The 

bright orange reaction mixture was stirred overnight at r.t. After 20 h, the reaction mixture was 

diluted with EtOAc (100 mL), washed with 1M NaOH (50 mL), aqueous sat. NaHCO3 (50 mL), 

aqueous sat. NaCl solution (50 mL). The combined organic layers were dried (Na2SO4), filtered 

and concentrated in vacuo. The crude residue was purified by automated column 

chromatography (CH2Cl2/MeOH, 0-10% MeOH) to obtain 48 as an orange oil (342 mg, 0.58 

mmol, 88%). 

 

TLC: (CH2Cl2/MeOH 0.01 % Et3N, 20:1) Rf = 0.05 

 
1H-NMR (400 MHz; CDCl3): δ = 1.61-1.48 (m, 8.6, 2H), 2.01-1.93 (m, 2H), 2.17-2.08 (m, 2H), 

2.50 (s, 3H), 2.58 (s, 3H), 2.61-2.50 (m, 1H), 2.63-2.61 (m, 2H), 2.85-2.80 (m, 2H), 3.04-2.97 

(m, 2H), 3.26 (t, J = 6.8, 2H), 3.88 (s, 2H), 4.36 (t, J = 6.8, 2H), 7.11 (ddd, J = 5.9, 4.9, 2.5, 

1H), 7.21-7.19 (m, 3H), 7.30-7.27 (m, 2H), 7.43 (d, J = 8.4, 2H), 7.65-7.62 (m, 2H), 7.76-7.74 

(m, 2H), 8.48 (dt, J = 4.7, 1.4, 1H). 

 
13C-NMR (101 MHz; CDCl3): δ = 10.0 (+), 14.1 (+), 32.2 (−), 33.6 (−), 37.6 (−), 47.2 (−), 50.3 

(−), 52.2 (−), 53.8 (+), 60.4 (−), 120.1 (+), 121.1 (+),121.9 (+),126.1 (+),128.4 (+),128.7 (+), 

134.9 (q), 137.2 (+),139.4 (q), 140.2 (q), 141.6 (q), 143.0 (q), 149.9 (+),152.7 (q), 159.2 (q). 
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ESI-MS: m/z (%) = 586.28 (M+H+) 

 

Compound 49: (E)-N-(4-((3,5-dimethyl-1-(2-(pyridin-2-yldisulfaneyl)ethyl)-1H-pyrazol-

4-yl)diazenyl)benzyl)-N-(1-phenethylpiperidin-4-yl)propionamide 

 

  C35H43N7OS2, MW = 641.90 g/mol 

 

Compound 48 (200 mg, 0.34 mmol, 1.0 eq) was dissolved in CH2Cl2 at r.t. and 

propionylchloride (40 µL, 0.41 mmol, 1.2 eq) and NEt3 (240 µL, 1.71 mmol, 5.0 eq) were added 

to stir the mixture 10 min at r.t. The reaction was quenched by H2O and extraction with CH2Cl2 

(3x 50 mL) was done. The combined organic layers were dried over Na2SO4 and the solvent 

was removed under reduced pressure. The crude product was purified by automated reverse 

phase column chromatography (H2O + 0.05%TFA/MeCN, 10-98% MeCN) to obtain target 

compound 49 (208 mg, 0.32 mmol, 95%) as a yellowish powder. 

 

TLC: (CH2Cl2/MeOH, 0.01 % Et3N, 20:1) Rf = 0.29 

 
1H-NMR (400 MHz; MeOD): δ = 1.14 (t, J = 7.0 Hz, 3H), 2.03-1.93 (m, 2H), 2.23-2.07 (m, 2H), 

2.44 (s, 3H), 2.50-2.45 (m, 2H), 2.62 (s, 3H), 2.68-2.63 (m, 2H), 3.06-2.99 (m, 2H), 3.17-3.07 

(m, 2H), 3.36-3.32 (m, 2H), 3.67 (d, J = 11.4 Hz, 2H), 4.41 (t, J = 6.4 Hz, 2H), 4.52-4.44 (m, 

1H), 4.70 (s, 2H), 7.29-7.21 (m, 4H), 7.35-7.29 (m, 3H), 7.39 (d, J = 8.0 Hz, 1H), 7.77-7.67 (m, 

1H), 7.83-7.76 (m, 3H), 8.41 (d, J = 4.8 Hz, 1H). 

 
13C-NMR (101 MHz, MeOD): δ = 9.8 (+), 9.9, 14.1 (+), 28.0 (+), 31.4 (−), 39.1 (−), 48.7 (−), 

48.8 (−), 49.1 (−), 53.5 (+), 59.0, 121.6 (+), 122.7 (+), 123.3 (+), 128.0 (+), 128.4 (+), 129.8 (+), 

130.0 (+), 136.0(+), 137.4 (+), 139.4 (q), 140.7 (q), 141.6 (q), 143.7 (q), 150.4 (q), 154.4 (q), 

177.2 (q). 

 

ESI-MS: m/z (%) = 642.31 (M+H+) 

 

Compound 27: (E)-N-(4-((1-(2-((2-aminoethyl)disulfaneyl)ethyl)-3,5-dimethyl-1H-

pyrazol-4-yl)diazenyl)benzyl)-N-(1-phenethylpiperidin-4-yl)propionamide 
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  C32H45N7OS2, MW = 607.88 g/mol 

 

Compound 49 (6.0 mg, 9.3 µmol, 1.0 eq) was dissolved in MeOH (10 mL) at r.t. under Ar-

atmosphere. Cysteamine hydrochloride (1.2 mg, 10 µmol, 1.1 eq) was added and the mixture 

was stirred at r.t. for 0.5 h. The solvent was removed carefully and the crude product was 

purified by preparative HPLC (column: Luna 10, 250 x 21 mm; flow: 20 mL/min, solvent A: H2O 

(0.05% TFA), solvent B: MeCN; gradient A/B: 0-15 min: 90/10, 15-20 min: 2/98; tR = 7.9 min). 

Lyophilization afforded compound 27 (5.4 mg, 9.3 µmol, 95%) as a pale yellow solid. 

 
1H-NMR (600 MHz; MeOD): δ = 1.13 (t, J = 7.4 Hz, 3H), 2.02-1.97 (m, 2H), 2.24-2.14 (m, 2H), 

2.46-2.41 (m, 2H), 2.47 (s, 3H), 2.65 (s, 3H), 2.68-2.67 (m, 2H), 3.00-2.99 (m, 2H), 3.03-3.02 

(m, 2H), 3.13-3.10 (m, 2H), 3.24-3.20 (m, 2H), 3.31-3.28 (m, 2H), 3.70-3.66 (m, 2H), 4.43 (t, J 

= 6.6 Hz, 2H), 4.52-4.46 (m, 1H), 4.71 (s, 2H), 7.28-7.24 (m, 3H), 7.35-7.31 (m, 2H), 7.39 (d, 

J = 8.2 Hz, 2H), 7.80 (d, J = 8.3 Hz, 2H). 

 
13C-NMR (151 MHz, MeOD): δ = 9.7 (+), 9.8 (+), 14.0 (+), 27.5 (−), 27.8 (−), 28.1 (−), 31.3 (−), 

35.0 (−), 37.8 (−), 39.0 (−), 45.2 (−), 48.3 (−), 49.0 (−), 52.4 (+), 53.4 (−), 58.9 (−), 123.2 (+), 

127.8 (+), 128.2 (+), 129.6 (+), 129.9 (+), 135.9 (q), 137.3 (q), 140.6 (q), 141.7 (q), 143.7 (q), 

154.3 (q), 177.2 (q). 

 

ESI-MS: m/z (%) = 608.32 (M+H+) 

 

HR-MS (ESI): calcd. for C32H45N7OS2 [MH+], m/z = 608.3200, found 608.3207 

 

Compound 50: (E)-2-(4-((4-(((tert-butoxycarbonyl)amino)methyl)phenyl)-diazenyl)-

3,5-dimethyl-1H-pyrazol-1-yl)ethyl 4-methylbenzenesulfonate 

 

   C26H33N5O5S, MW = 527.64 g/mol 
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To a solution of 40 (1.30 g, 3.48 mmol, 1.0 eq) in CH2Cl2 (80 mL), NEt3 (1.46 mL, 10.4 mmol, 

3.0 eq) was added, followed by the addition of p-toluenesulfonyl chloride (0.73 g, 3.83 mmol, 

1.1 eq) at r.t. After 16 h of stirring, water was added (60 mL), and the mixture was extracted 

with CH2Cl2 (2x 40 mL). The combined organic layers were dried (Na2SO4), filtered and 

concentrated in vacuo. The crude residue was purified by automated column chromatography 

(CH2Cl2/MeOH, 0-20% MeOH) to obtain 50 as yellow crystals (1.40 mg, 2.65 mmol, 76%). 

TLC: (CH2Cl2/MeOH, 20:1) Rf = 0.66  

 
1H-NMR (400 MHz, CDCl3): δ = 1.48 (s, 9H), 2.34 (s, 3H), 2.35 (s, 3H), 2.54 (s, 3H), 4.27 (t, J 

= 4.92 Hz, 2H), 4.38 (br s, 2H), 4.43 (t, J = 4.94 Hz, 2H), 7.18 (d, J = 8.17 Hz, 2H), 7.39 (d, J 

= 8.13 Hz, 2H), 7.59 (d, J = 8.29 Hz, 2H), 7.76 (d, J = 8.29 Hz, 2H). 

 
13C-NMR (101 MHz, CDCl3): δ = 9.8 (+), 13.8 (+), 21.7 (+), 28.4 (+), 44.6 (−), 47.6 (−), 68.3 

(−), 79.8 (q), 122.2 (+), 122.5 (q), 127.9 (+), 128.2 (+), 129.9 (+), 132.2 (q), 135.0 (q), 140.7 

(q), 142.8 (q), 145.2 (q), 152.8 (q), 156.0 (q). 

 

ESI-MS: m/z (%) = 528.23 (M+H+) 

 

Compound 51: tert-butyl (E)-(4-((1-(2-azidoethyl)-3,5-dimethyl-1H-pyrazol-4-yl)-diaze-

nyl)benzyl)carbamate 

 

  C19H26N8O2, MW = 398.47 g/mol 

 

Compound 50 (1.30 g, 2.46 mmol, 1.0 eq) was dissolved in anhydrous DMSO (55 mL). NaN3 

(641 mg, 9.86 mmol, 4.0 eq) and NaI (369 mg, 2.46 mmol, 1.0 eq) were added and the reaction 

mixture was heated to 65 °C for 24 h under N2 atmosphere. The reaction was allowed to cool 

to room temperature, water (50 mL) was added and the mixture was extracted with CH2Cl2 (2x 

30 mL). The combined organic layers were dried (Na2SO4), filtered and concentrated in vacuo. 

The crude residue was purified by automated column chromatography (CH2Cl2/MeOH, 0-20% 

MeOH) to obtain 51 as a yellow oil (714 mg, 1.79 mmol, 72%). 

 

TLC: (CH2Cl2/MeOH, 20:1) Rf = 0.69  
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1H-NMR (400 MHz, CDCl3): δ = 1.46 (s, 9H), 2.49 (s, 3H), 2.61 (s, 3H), 3.77 (t, J = 5.68 Hz, 

2H), 4.16 (t, J = 5.68 Hz, 2H), 4.36 (br s, 2H), 7.36 (d, J = 8.09 Hz, 2H), 7.74 (d, J = 8.33 Hz, 

2H). 

 
13C-NMR (101 MHz, CDCl3): δ = 9.9 (+), 14.1 (+), 28.5 (+), 44.5 (−), 47.8 (−), 50.8 (−), 79.7 

(+), 122.2 (+), 128.1 (+), 135.2 (q), 140.1 (q), 140.5 (q), 143.3 (q), 152.9 (q), 156.0 (q). 

 

ESI-MS: m/z (%) = 399.23 (M+H+) 

 

Compound 52: (E)-(4-((1-(2-azidoethyl)-3,5-dimethyl-1H-pyrazol-4-yl)-di-azenyl)phe-

nyl)-methanamine 

 

  C14H18N8, MW = 298.35 g/mol 

 

GP3, starting material 51, yield: 99%, yellow crystals. 

 

TLC: (CH2Cl2/MeOH 0.01 % Et3N, 20:1) Rf = 0.07  

 
1H-NMR (400 MHz, CDCl3): δ = 2.49 (s, 3H), 2.60 (s, 3H), 3.76 (t, J = 5.67 Hz, 2H), 3.91 (s, 

2H), 4.15 (t, J = 5.67 Hz, 2H), 7.39 (d, J = 8.24 Hz, 2H), 7.74 (d, J = 8.32 Hz, 2H). 

 
13C-NMR (101 MHz, MeOD): δ = 9.8 (+), 14.2 (+), 45.8 (−), 48.9 (−), 51.9 (−), 123.1 (+), 129.5 

(+), 136.1 (q), 142.1 (q), 143.0 (q), 143.9 (q), 154.2 (q). 

 

ESI-MS: m/z (%) = 299.17 (M+H+) 

 

Compound 53: (E)-N-(4-((1-(2-azidoethyl)-3,5-dimethyl-1H-pyrazol-4-yl)di-azenyl)-

benzyl)-1-phenethylpiperidin-4-amine 

 

  C27H35N9, MW = 485.64 g/mol 
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To a solution of 1-phenethylpiperidin-4-one (465 mg, 2.29 mmol, 1.05 eq) in dichloroethane 

(10 mL), was added sequentially to 52 (650 mg, 2.18 mmol, 1.0 eq), NaHB(OAc)3, (646 mg, 

3.05 mmol, 1.4 eq) and AcOH (0.12 mL, 2.18 mmol, 1.0 eq). The bright orange reaction mixture 

was stirred overnight at r.t. After 15 h, the reaction mixture was diluted with EtOAc (2 x 10 mL), 

washed with 1M NaOH (5 mL), aqueous sat. NaHCO3 (5 mL) and aqueous sat. NaCl (10 mL). 

The combined organic layers were dried (Na2SO4), filtered and concentrated in vacuo. The 

crude residue was purified by automated column chromatography (CH2Cl2/MeOH, 0-10% 

MeOH) to obtain 53 as an orange oil (680 mg, 1.40 mmol, 64%). 

 

TLC: (CH2Cl2/MeOH, 0.01 % Et3N, 20:1) Rf = 0.13 

 
1H-NMR (400 MHz; CDCl3): δ = 1.28 (s, 2H), 1.84-1.81 (m, 2H), 2.18-2.14 (m, 2H), 2.49 (s, 

3H), 2.60 (s, 3H), 2.79-2.71 (m, 1H), 2.88-2.78 (m, 2H), 3.00-2.92 (m, 2H), 3.22-3.10 (m, 2H), 

3.76 (t, J = 5.7 Hz, 2H), 3.91 (s, 2H), 4.14 (t, J = 5.7 Hz, 2H), 7.23-7.16 (t, J = 5.9 Hz, 3H), 

7.31-7.27 (d, J = 7.0 Hz, 2H), 7.48 (s, 2H), 7.76 (d, J = 8.3 Hz, 2H). 

 
13C-NMR (101 MHz, CDCl3): δ = 10.0 (+), 14.3 (+), 29.5 (−), 29.8 (−), 32.2 (−), 47.9 (−), 49.6 

(−), 50.8 (−), 54.3 (+), 59.5 (−), 59.7 (−), 122.2 (+), 126.7 (+), 128.8 (+), 128.8 (+), 131.0 (q), 

135.3 (q), 140.2 (q), 143.4 (q), 144.9 (q), 153.2 (q). 

 

ESI-MS: m/z (%) = 486.31 (M+H+) 

 

Compound 54: (E)-N-(4-((1-(2-azidoethyl)-3,5-dimethyl-1H-pyrazol-4-yl)-diazenyl)-

benzyl)-N-(1-phenethylpiperidin-4-yl)propionamide 

 

  C30H39N9O, MW = 541.70 g/mol 

 

To a solution of 53 (660 mg, 1.36 mmol, 1.0 eq) in anhydrous CH2Cl2 (15 mL), NEt3 (0.37 mL, 

2.72 mmol, 2.0 eq) was added, followed by propionyl chloride (0.24 mL, 2.72 mmol, 2.0 eq). 

The reaction mixture was allowed to stir for 24 h under N2-atmosphere at r.t. Water was then 

added, and the organic phase was extracted with CH2Cl2 (2 x 10 mL). The pooled organic 
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phase was washed with sat. NaHCO3 (1x 20 mL) and brine (1 x 20 mL). The combined organic 

layers were dried (Na2SO4), filtered and concentrated in vacuo. The crude residue was purified 

by automated column chromatography (CH2Cl2/MeOH, 0-10% MeOH) to obtain 54 as an 

orange oil (525 mg, 0.97 mmol, 71%). 

 

TLC: (CH2Cl2/MeOH, 20:1) Rf = 0.31 

 
1H-NMR (400 MHz; MeOD): δ = 1.22 (t, J = 7.4 Hz, 3H), 1.75-1.68 (m, 4H), 1.85-1.79 (m, 2H), 

2.26-2.21 (m, 2H), 2.47 (s, 3H), 2.61-2.59 (m, 2H), 2.64 (s, 3H), 2.79-2.77 (m, 3H), 3.16-3.07 

(m, 2H), 3.76-3.73 (m, 2H), 4.27-4.22 (m, 2H), 4.50 (s, 1H), 4.68 (s, 2H), 7.20-7.18 (m, 3H), 

7.28-2.25 (s, 2H), 7.36 (d, J = 8.5 Hz, 2H), 7.79 (d, J = 8.3 Hz, 2H). 

 
13C-NMR (101 MHz, CDCl3): δ = 9.8 (+), 10.2 (+), 14.2 (+), 27.7 (−), 29.8 (−), 31.3 (−), 33.9 

(−), 48.0 (−), 48.9 (−), 51.9 (−), 53.7 (−), 54.0 (+), 61.1 (−), 111.4 (q), 123.2 (+), 127.7 (+), 

129.5 (+), 129.7 (+), 136.1 (q), 141.4 (q), 142.2 (q), 143.9 (q), 153.8 (q), 176.7 (q). 

 

IR: 𝜈	[cm-1]:  2934, 2803, 2102, 1733, 1640, 1558, 1502, 1409, 1375, 1282, 1233, 1200, 1118, 

1077, 1032, 999, 936, 824, 749. 

 

ESI-MS: m/z (%) = 542.34 (M+H+) 

 

Compound 56: 2-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)-N-(prop-2-yn-1-yl)-acetamide 

 

  C9H8N2O3, MW = 192.17 g/mol 

 

2-Maleimidoacetic acid 55 (100 mg, 0.65 mmol, 1.0 eq) was dissolved in a mixture of 

CH2Cl2/DMF (100:1, 5 mL) and oxalylchloride (124 mg, 0.97 mmol, 1.5 eq) was added 

dropwise. The reaction mixture was stirred for 2 h at r.t. and subsequently the solvent was 

removed under reduced pressure. The residue was dissolved in THF (4 mL) and was then 

added to a solution of N-propargylamine (50 µL, 0.78 mmol, 1.2 eq) and DIPEA (0.23 mL, 1.3 

mmol, 2.0 eq) in THF (4 mL) at 0 °C. The mixture was stirred for 1 h at r.t., the solvent was 

removed in vacuo and the crude mixture was purified by automated column chromatography 

(PE/EtOAc, 0-80% EtOAc) to yield compound 56 (50 mg, 0.26 mmol, 40%) as a white powder. 

 

N

O

O

N

O

H
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1H-NMR (400 MHz; CDCl3): δ = 2.26 (t, J = 2.6 Hz, 1H), 4.07 (t, J = 2.6 Hz, 2H), 4.19 (s, 2H), 

6.80 (s, 2H). 

 
13C-NMR (101 MHz, CDCl3): δ = 29.7 (−), 40.5 (−), 72.4 (+), 78.9 (q), 134.7 (+), 165.8 (q), 

170.2 (q). 

 

ESI-MS: m/z (%) = 193.06 (M+H+) 

 

Compound 28: (E)-N-(4-((1-(2-(4-((2-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)acet-

amido)methyl)-1H-1,2,3-triazol-1-yl)ethyl)-3,5-dimethyl-1H-pyrazol-4-yl)di-azenyl)-

benzyl)-N-(1-phenethylpiperidin-4-yl)propionamide 

 

   C39H47N11O4, MW = 733.88 g/mol 

 

Alkyne 56 (15.0 mg, 78.1 µmol, 1.0 eq) and azide 54 (48.6 mg, 89.8 µmol, 1.15 eq), were 

dissolved in a 3 mL mixture of tBuOH/H2O/THF (1:1:1) under N2-atmosphere. CuSO4·5H2O 

(1.95 mg, 7.81 µmol, 0.1 eq), TBTA (2.32 mg, 11.7 µmol, 0.15 eq), (+)-sodium-L-ascorbate 

(4.14 mg, 7.81 µmol, 0.1 eq) were then added. The reaction was allowed to stir for 16 h at 

room temperature. The crude was purified by preparative HPLC (column: Luna 10 250 x 21 

mm; flow: 20 mL/min; solvent A: H2O [0.05 Vol% TFA], solvent B: MeCN; gradient A/B: 0-20 

min: 30/70, 20-25 min: 2/98, tR = 10.9 min) to yield target compound 28 as an orange solid 

(27.0 mg, 36.8 µmol, 47%). 

 

TLC: (CH2Cl2/MeOH, 20:1) Rf = 0.77  

 
1H-NMR (400 MHz; CDCl3): δ = 1.15 (t, J = 7.4 Hz, 3H), 1.85-1.81 (m, 2H), 2.16-2.08 (m, 2H), 

2.18 (s, 3H), 2.39 (q, J = 7.4 Hz, 2H), 2.52 (s, 3H), 2.79 (t, J = 11.6 Hz, 2H), 3.03 (dd, J = 10.6, 

5.8 Hz, 2H), 3.17 (dd, J = 10.6, 5.9 Hz, 2H), 3.67 (d, J = 11.8 Hz, 2H), 4.05 (s, 2H), 4.41 (d, J 

= 5.8 Hz, 2H), 4.53 (t, J = 5.5 Hz, 2H), 4.59 (s, 2H), 4.86 (t, J = 5.5 Hz, 3H), 4.91 (s, 1H), 6.73 
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(s, 2H), 7.17-7.15 (m, 2H), 7.26-7.23 (m, 3H), 7.30 (dd, J = 7.1, 5.6 Hz, 2H), 7.74 (d, J = 8.3 

Hz, 2H). 

 
13C-NMR (101 MHz, CDCl3): δ = 9.1 (+), 9.7 (+), 14.0 (+), 26.7 (−), 27.2 (−), 30.6 (−), 34.4 (−), 

40.3 (−), 46.4 (−), 48.1 (−), 49.0 (+), 49.9 (−), 52.8 (−), 58.6 (−), 117.1 (+), 122.7 (+), 126.5 (+), 

128.7 (+), 129.2 (+), 134.6 (q), 135.6 (q), 139.2 (q), 140.6 (q), 144.2 (q), 152.9 (q), 166.7 (q), 

170.2 (q), 175.6 (q). 

 

ESI-MS: m/z (%) = 734.39 (M+H+) 

 

HR-MS (ESI): calcd. for C39H47N11O4S2 [MH+], m/z = 734.3885, found 734.3899 

 

5.5 Molecular Docking 

 

ß2-AR 

Docking studies were performed using the published active state ß2-AR crystal structures in 

complex with BI (PDB entry 3P0G, 4LDE) (doi:10.1038/nature09648, 

doi:10.1038/nature12572). UCSF Chimera (doi:10.1002/jcc.20084) was used to introduce the 

N2.63C mutant, add missing sidechains and add hydrogens. The investigated compounds 1 and 

2 were geometry-optimized by means of Gaussian 0921 at the B3LYP/6-31G(d) level attributing 

a formal charge of +1. Subsequently, the ligands were docked into the crystal structure utilizing 

the covalent docking procedure of the CCDC GOLD Suite v5.4. On the basis of the scoring 

function and the presence of the canonical salt bridge to Asp3.32, we selected one final 

conformation for each ligand. Figures were prepared using PyMOL Molecular Graphics 

System, Version 2.1.1 (Schrödinger, LLC). 

 

µOR 

Docking studies were performed using the recently published active state µOR crystal structure 

in complex with BU72 (PDB entry 5C1M) (doi:10.1038/nature14886). UCSF Chimera 

(doi:10.1002/jcc.20084) was used to introduce the N2.63C mutant, add missing sidechains and 

add hydrogens. The investigated compounds 27 and 28 were geometry-optimized by means 

of Gaussian 0921 at the B3LYP/6-31G(d) level attributing a formal charge of +1. Subsequently, 

the ligands were docked into the crystal structure utilizing the covalent docking procedure of 

the CCDC GOLD Suite v5.4. On the basis of the scoring function and the presence of the 

canonical salt bridge to Asp3.32, we selected one final conformation for each ligand. Figures 

were prepared using PyMOL Molecular Graphics System, Version 2.1.1 (Schrödinger, LLC). 
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7.Supporting information 

 
SI-1: Chiral HPLC 

 
Chromatogram of the enantiomeric excess (ee) determination by chiral HPLC; the upper trace shows 
the racemate of 8 (R-isomer: tR = 20.4 min, S-isomer: tR = 23.0 min), the lower shows the R-isomer 
selective reduction. (HPLC: normal phase, column: phenomenex, LUX-i-Amylose-1) 

 
SI-2: Absorption spectra, cycle performance and thermal half-life of compounds 1, 2 and 10 
 

Absorption spectra, cycle performance and thermal half-life of compound 1,2 and 10 in 

aqueous tris-buffer (c = 10 µM). LEDs, used for isomerization: 

EàZ isomerization: 365 nm LED (SSC VIOSYS, 700 mA, 1250 mW)  

ZàE isomerization: 528 nm LED (OSRAM Oslon SSL 80 green, 500 mA, 34 mW) 

 

Compound 1               
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Compound 2 
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Compound 10 

  

 

 
SI-3: Docking studies towards compound E/Z-28 

 

 
 
Docking pose of compound E-28 (left, green) and compound Z-28 (right, blue). The co-crystallized 
agonist BU72 is shown as orange sticks. 
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SI-4: UV/VIS-spectra, cycle performance and thermal half-life of compounds 43, 54 and 27 – 

28 

 
UV/VIS absorption spectra, cycle performance and thermal half-life of compounds 43, 54, 27 
- 28 in aqueous tris-buffer. (c = 10µM) LEDs à see SI-4. 
 
Compound 27 

	 	

	
	

Compound 28 
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Compound 43 
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Compound 54 
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SI-5: NMR-spectra 

Compound 1  
1H-NMR in D6-DMSO, 600 MHz 

 
 
13C-NMR in D6-DMSO*, 151 MHz 

 
*C signals were detected indirect by HMBC and HSQC 
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Compound 2 
1H-NMR in D6-DMSO, 600 MHz 

 
13C-NMR in D6-DMSO, 151 MHz 
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Compound 27 
1H-NMR in D6-DMSO, 600 MHz 

 
13C-NMR in DMSO, 151 MHz 
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Compound 28 
1H-NMR in D6-DMSO, 400 MHz 

 
 
13C-NMR in D6-DMSO, 101 MHz 
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This thesis focuses on the synthesis, photophysical characterization and application of 

photochromic G-protein receptor ligands.  

In Chapter 1 the incorporation of the well-investigated class of photochromic dithienylethenes 

(DTEs) and fulgides into known dopamine receptor ligands like 1,4-disubstituted aromatic and 

hydroxybenzoxazinone piperazines as well as aminoindanes is described. Subtype and 

functional selective photochromic ligands were obtained and characterized by NMR and UV-

VIS spectroscopic measurements. The photophysical properties of the DTE based dopamine 

ligands revealed a high fatigue resistance for the diarylmaleimides in DMSO, but the 

ringclosure could not be accomplished in aqueous solutions due to a known twisted 

intramolecular charge transfer (TICT). Several cyclopentene-DTEs showed high PSS, but a 

fast degradation by forming an irreversible byproduct. Focusing on the fulgides, high 

photostationary states and switching in polar solvents were possible. Fulgimides, containing 

the isopropyl group, showed only isomerization between the open E-form and the closed C-

form. At a concentration of 1 nM, an open isomer of a cyclopentene-DTE derivative showed a 

more than 10-fold higher activation of D2S, a pharmacologically important G protein-coupled 

receptor, than its photochromic closed congener. Interestingly, a indolyl fulgimide-based pair 

(open/closed) could be discovered as an alternative photoswitch with inverse activation 

properties exhibiting four-fold higher activity in the closed state. Further studies on the 

optimization of GPCR-regulating photoswitches and biological investigations including 

reversible, light-induced control of photochromic ligands when bound to the receptor have to 

be done. 

 

Chapter 2 deals with photochromic peptidic NPY Y4 receptor ligands. The neuropeptide Y 

(NPY) Y4 receptor is a G protein coupled receptor, which is targeted by pancreatic polypeptide, 

a homologue of NPY. Selective Y4R agonists were suggested as potential therapeutics for the 

treatment of obesity. Highly potent dimeric peptidic Y4R agonists, constituted of two 

pentapeptide moieties connected through an aliphatic linker, represent an interesting class of 

Y4R ligands. Based on this compound class, photoresponsive Y4R ligands, containing an 

azobenzene, azopyrazole, diethienylethene or a fulgimide chromophore were prepared to 

explore structural requirements of such Y4R agonists on Y4R binding. The synthesized Y4R 

ligands, containing a non-aliphatic rigid photochromic linker, switch reversible in aqueous 

buffer and exhibit high Y4R affinity throughout. This demonstrated that the replacement of the 

highly flexible aliphatic linker by a considerably less flexible photochromic linker was well 

tolerated with respect to Y4R binding. Differences in Y4R affinity and activity between the 

individual photoisomers (varying in spatial orientation and flexibility) were marginal. This 

suggests that the linking element in the dimeric ligands is less critical for the adaptation of high-

affinity binding modes at the receptor. As some compounds proved to be weaker partial 



SUMMARY 

 200 

agonists than the model dimeric pentapeptide, this study might support the development of 

Y4R antagonists. 

 

The synthesis and biological evaluation of covalent binding photochromic GPCR ligands for 

single molecule spectroscopy was is reported in chapter 3. The ß2-adrenergic receptor (ß2-

AR) and the µ-opioid receptor (µOR) were choosen for investigations towards covalently bound 

photochromic ligands. Azopyrazoles, comprising an covalent tether, were embedded in the 

structures of the highly potent ß2-AR agonist BI-167107 and into the µOR-agonist fentanyl to 

obtain photochromic covalent ligands. The azopyrazole acts as the photochromic functional 

linker between the pharmacophore and the tethering position. Geometric changes should 

effect binding or receptor activation when toggling between the two photoisomers. A parallel 

investigation of different synthetic routes to synthesize the pharmacophoric moiety and the 

covalent groups, including a disulfide or a maleimide as the tethering group, was done. The 

crucial step for the ß2-AR ligands was accomplished in a reductive amination reaction 

connecting the photoresponsive tether and the pharmacophoric moiety as the final step. The 

µOR-ligands were synthesized with a disulfide protection group for the disulfide derivative or 

via a post functionalization of an azopyrazole-fentanyl azide, installing a maleimide- or a NHS 

ester-tethering group in a click-reaction. The photochemical characterizations of the 

photochromic ligands revealed high fatigue resistance and high thermal half-lives for the 

azopyrazoles. Initial biological investigations showed good binding affinities for both the 

covalent ß2-AR and µOR ligands towards the wild type receptor and much higher affinities for 

their corresponding mutant receptors. Functional studies on ß-arrestin recruitment for the ß2-

AR and G-protein signaling for the µOR showed high intrinsic activities for the synthesized 

ligands. Finally, the differences in efficacy and binding between the E- and Z-isomers were 

only marginal. As the initial studies did not consider the covalent binding, further investigations 

would be to study irreversible binding and functional assays, to get more insight into the 

covalent nature of the ligands. 
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Diese Dissertation behandelt die Synthese, photophysikalische Charakterisierung und 

Anwendung von photochromen G-Protein gekoppelten Rezeptor-Liganden. 

Kapitel 1 beschreibt die Einbindung der bereits gut untersuchten Klassen der photochromen 

Dithienylethene und Fulgide in bekannte Dopamin-Rezeptor-Liganden wie 1,4-disubstituierte 

aromatische und Hydroxybenzoxazinon-Piperazine sowie Aminoindane. Es gelang, subtyp 

und funktionell selektive photochrome Liganden zu synthetisieren, welche mittels NMR-

Spektroskopie und UV/VIS-Absorptionsspektroskopie charakterisiert wurden. Die 

photophysikalischen Eigenschaften der Dithienylethen Dopamin-Liganden wiesen eine hohe 

Ermüdungsresistenz in DMSO auf. Diese konnte in wässrigen Lösungen aufgrund des 

bekannten Twisted intramolecular charge transfer (TICT) jedoch nicht bestätigt werden. Einige 

Cyclopenten-Dithienylethene zeigten hohe photostationäre Zustände.  Sie formten jedoch ein 

irreversibles Nebenprodukt, was den Abbau des Photoschalters zur Folge hatte. Bei 

Betrachtung der Fulgide konnten hohe photostationäre Zustände und eine Schaltbarkeit in 

polaren Lösungsmitteln festgestellt werden. Fulgimide mit Isopropyl-Rest wiesen 

ausschließlich eine Isomerisierung zwischen der offenen E-Form und der geschlossenen C-

Form auf. Bei einer Konzentration von 1 nM zeigte ein offenes Isomer eines Cyclopenten-

Dithienylethens eine 10-fach höhere Aktivierung des pharmakologisch bedeutenden D2S-

Rezeptors als das geschlossene Isomer. Als alternativer Photoschalter wurde ein Indolyl-

Fulgimid-Isomerenpaar (offen/geschlossen) entdeckt, dessen inverse Aktivierungs-

eigenschaften im geschlossenen Zustand eine vierfach höhere Aktivität zeigte. Um die GPCR-

regulierenden Photoschalter weiter zu optimieren und weitere biologische Erkenntnisse 

bezüglich des lichtinduzierten Schaltens am Rezeptor in vivo zu erhalten, müssen weitere 

Untersuchungen durchgeführt werden. 

 

Das Kapitel 2 handelt von peptidischen photochromen Neuropeptid Y4-Rezeptor (NPY Y4-

Rezeptor) Liganden. Der NPY Y4-Rezeptor ist ein G-Protein Protein-gekoppelter Rezeptor und 

bindet als natürlichen Liganden das pankreatischen Polypeptid, ein Homolog des NPY. 

Selektive Y4-Rezeptor Agonisten wurden zur Behandlung von Fettleibigkeit vorgeschlagen. 

Hochpotente dimere peptidische Y4-Rezeptor (Y4R)-Agonisten, die aus zwei durch einen 

aliphatischen Linker verbundenen Pentapeptid-Einheiten bestehen, repräsentieren eine 

interessante Klasse an Y4R-Liganden. Basierend auf dieser Ligandenklasse wurden 

photoempfindliche Y4R-Liganden mit Azobenzolen, Azopyrazolen, Dithienylethenen und 

Fulgimiden synthetisiert, um strukturelle Anforderungen solcher Y4R-Agonisten bezüglich der 

Y4R-Bindung zu untersuchen. Die synthetisierten Y4R-Liganden beinhalten einen starren nicht 

aliphatischen, photochromen Linker, der ein reversibles Schalten in wässrigem Puffer 

ermöglicht und durchwegs hohe Y4R-Affinitäten aufweist. Dies zeigt, dass der Austausch des 

hochflexiblen aliphatischen Linkers durch einen weniger flexiblen photochromen Linker 
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bezüglich der Y4R-Bindung gut toleriert wird. Unterschiede in der Affinität und Aktivierung des 

Y4R zwischen den jeweiligen Photoisomeren, welche sich in der räumlichen Orientierung und 

Flexibilität unterscheiden, waren nur gering. Dies lässt vermuten, dass die verbindende Einheit 

in dimeren Liganden bezüglich der Adaptierung von hoch affinen Bindungsmodi am Rezeptor 

eine weniger wichtige Rolle spielt. Da einige der photochromen Peptide einen schwächeren 

Partialagonismus als das Musterpeptid aufwiesen, könnten die vorliegenden Ergebnisse bei 

der Entwicklung von Y4R Antagonisten helfen.  

 

Die Synthese und biologische Untersuchung von kovalent bindenden photochromen GPCR- 

Liganden für die Einzelmolekülspektroskopie ist in Kapitel 3 dargestellt. Für Untersuchungen 

bezüglich kovalent gebundenen Photoschaltern wurden der ß2-adrenerge Rezeptor (ß2-AR) 

sowie der µ-Opioid-Rezeptor (µOR) betrachtet. Als hoch potente Agonisten für ß2-AR wurde  

BI-167107, für µOR Fentanyl verwendet. In beide Liganden wurden Azopyrazole eingebaut 

und kovalente Ankergruppen angefügt. Das Azopyrazol stellt die photochrome funktionale 

Einheit zwischen dem Pharmakophor und der Ankerposition dar. Die Änderung der Geometrie 

des kovalent gebundenen Liganden sollte die Bindung und Aktivierung beeinflussen. Es 

wurden verschiedene Synthesewege der pharmakologischen Kopfgruppe und der 

photochromen Einheit mit einer kovalenten Struktur, wie einem Disulfid oder einem Maleimid, 

entwickelt. Als entscheidender und letzter Schritt der Synthese der ß2-AR-Liganden wurde 

eine reduktive Aminierung durchgeführt, welche den kovalent bindenden Photoschalter mit der 

pharmakologischen Kopfgruppe verbindet. Die µOR-Liganden wurden mit einer Disulfid-

Schutzgruppe oder durch post-Funktionalisierung eines Azopyrazol-Fentanylazides 

synthetisiert, wobei eine Maleimid- und N-Hydroxysuccinimidester-Funktion mittels Click-

Reaktion installiert wurde. Die Untersuchung der photophysikalischen Eigenschaften der 

photochromen Liganden ergab eine sehr gute Ermüdungsresistenz und große thermische 

Halbwertszeiten der Azopyrazole. Erste biologische Untersuchungen zeigten hohe 

Bindungsaffinitäten für beide kovalente ß2-AR-bzw. µOR-Liganden am jeweiligen Wildtyp-

Rezeptor und deutlich höhere Affinitäten an den verwendeten Mutanten der Rezeptoren. Hohe 

intrinsische Aktivitäten zeigten die synthetisierten Liganden in Experimenten mit ß-Arrestin-

Assays (für ß2-AR) bzw. G-Protein-Aktivierung (für µOR). Letztendlich waren die Unterschiede 

in der Wirkung und Bindung zwischen den jeweiligen Photoisomeren nur gering. Da diese 

ersten Untersuchungen noch nicht die kovalente Bindung der Liganden berücksichtigten, 

sollten weitere Untersuchungen zur irreversiblen Bindung und der damit verbundenen 

Auswirkungen auf die Funktionalität durchgeführt werden, um ein besseres Verständnis der 

kovalenten Natur der Liganden zu bekommen. 
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4. APPENDIX 
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1. Abbreviations 

Abs absorbance 

AcCl acetyl chloride 

Ac2O acetic anhydride 

Asp Aspartate 

cAMP cyclic adenosine monophosphate 

calcd.  calculated 

DCC dicyclohexylcarbodiimide 

DEPT distortionless enhancement by polarization transfer 

CHO Chinese hamster overay 

CNS central nerveous system 

COSY correlated spin spectroscopy 

DAP disubstituted aromatic piperazines 

DIPEA diisopropylethylamin 

DMSO dimethylsulfoxide 

DTE dithienylethene 

DMP Dess Martin Periodinane 

eq equivalent 

ESI electrospray ionization 

EtOAc ethyl acetate 

EtOH ethanol 

Et2O diethyl ether 

ee enantiomeric excess 

GPCR G-protein coupled receptor 

h hour 

HBTU 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluroniumhexa- 

 fluorophosphate 

HMBC heteronuclear multiple-bond correlation spectroscopy 

HOBt 1-hydroxybenzotrialzole 

HPLC high performance liquid chromatography 

HSQC heteronuclear single-quantum correlation spectroscopy 

HR high resolution 

IR infrared spectroscopy 

IP inositol phosphate 

J coupling constant  

λ wavelength 

LDA lithiumdiisopropylamin 
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LYS lysine 

MD molecular dynamics 

min minute 

M mol/L 

MeCN acetonitrile 

MeOH methanol 

MSNT 1-(2-mesitylensulfonyl)-3-nitro-1H-1,2,5-triazole 

MS mass spectrometry 

MW molecular weight 

NEt3 triethylamine 

NMR nuclear magnetic resonance 

NOESY nuclear Overhause effect spectroscopy 
nBuli n-butyl lithium 

p.A. pro analysi 

PE petroleoum ether 

PHAcBr phenacyl bromide 

PKA protein kinase A 

ppm parts per million 

r.t.  room temperature 

Rf  retention value 

s second 

SEM standard error of the mean 

SMFS single-molecule fluorescence spectroscopy 

PSS photostationary state 

p-TsOH p-toluenesulfonic acid 
tBuOH tert-butanol 
tBuOK potassium tert-butoxide 

T  temperature 

THF  tetrahydrofuran 

TBTU  2-(1H-Benzotriazole-1-yl)-1,1,3,3-tetramethylaminium  

  tetrafluoroborate 

TBTA  Tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amin 

TICT  twisted intramolecular charge transfer 

TLC  thin layer chromatography 

Tyr  tyrosin 

UV  ultraviolet 

Vis visible  
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