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6   Summary 

Summary 

The transcription factor signal transducer and activator of transcription 5 (STAT5) is 

activated conditionally and transiently by external stimuli. Thereupon, STAT5 modulates 

the transcription of its target genes, promoting cell survival and growth. Constitutive 

STAT5 activity has been shown to be oncogenic in hematopoietic cells. This correlates 

with the acquisition of cancer hallmarks, such as ‘cytokine-independent survival’, 

‘uncontrolled growth’ and ‘genomic instability’. Chromatin dynamics is of pivotal 

importance for the regulation of transcriptional activity and DNA damage repair. 

Accordingly, cancer hallmarks are not only effected by oncogenic ‘driver’ alterations at 

the DNA level, but also at the chromatin level. Sustained DNA binding of constitutively 

active STAT5 might have distinct effects on chromatin, which might lead to ‘driver’ 

chromatin alterations and underlie its oncogenicity. 

The main goal of the present study was to identify ‘driver’ chromatin alterations and other 

‘driver’ events during the oncogenesis process induced by constitutively active STAT5. 

The constitutively active STAT5 mutant STAT5A-1*6 was previously shown to induce 

oncogenesis in the IL-3-dependent pro-B cell line Ba/F3 by enabling cytokine-

independent survival and growth. Specific aims of this study were to characterize the 

effects of STAT5A-1*6 expression on (i) cell survival and growth, (ii) expression of 

selected STAT5 target genes and (iii) chromatin rearrangements. 

To monitor the oncogenesis process, a stable Ba/F3 cell line – inducibly expressing 

STAT5A-1*6 upon doxycycline administration (Tet-on expression system) – was 

generated and validated. Short- and long-term STAT5A-1*6 induction experiments were 

conducted and STAT5A-1*6 protein levels and activation (Western blot), and cell 

phenotype in terms of survival, growth and genome stability (cell counting, flow 

cytometric analysis of cellular DNA content / cell cycle states) were analyzed. Expression 

of STAT5 target genes including Cis, Osm, Spi2.1, c-Myc, Pim-1, Id-1 and TNFRSF13b 

was investigated in parallel using RT-qPCR. As expected, STAT5A-1*6 expression 

enabled cytokine-independent survival and growth of Ba/F3 cells. Cell viability and 

proliferation rates increased gradually during the initial phase of induction. Interestingly, 

after 4–5 weeks of induction cell survival and growth no longer depended on 

STAT5A-1*6 expression. In addition, in one out of four experiments, STAT5A-1*6-

expressing cells accumulated chromosomal aberrations. The correlation patterns of 

STAT5A-1*6 and STAT5 target gene expression suggested dose-dependent 

STAT5A-1*6-mediated transcriptional activation of STAT5 target genes, at least within 

the first few weeks of induction. Later on however, sustained expression of the STAT5 

target genes c-Myc and Pim-1 became independent of STAT5A-1*6. Altogether, these 

observations suggest the acquisition of the ‘cytokine-independent survival’, ‘uncontrolled 
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growth’ and ‘genomic instability’ cancer hallmarks, possibly due to continually 

accumulating ‘driver’ alterations upon sustained expression of STAT5A-1*6.  

Interestingly, using chromatin immunoprecipitation STAT5 DNA binding to Cis, Osm, 

Spi2.1, Id-1 and TNFRSF13b was correlated with a strong decrease in histone H3 

occupancy, likely reflecting a loss in nucleosomes. This histone H3 loss was particularly 

prominent at the STAT5 binding sites, regardless of (i) their location within the gene 

locus, of (ii) transcriptional activation and of (iii) cytokine supplementation. In addition, 

sustained STAT5A-1*6 DNA binding patterns were associated with broadened histone 

H3 loss in regions distant from STAT5 binding sites. Taken together, these data strongly 

suggest that DNA binding of STAT5 causes a local nucleosome loss, and possibly a 

global nucleosome loss along its target genes. Accordingly, I propose a general STAT5-

mediated chromatin decondensation mechanism leading to a nucleosome loss around 

STAT5 binding sites, at a step preceding transcriptional activation. The broadened 

STAT5A-1*6-associated histone H3 loss patterns also raise the possibility of distinct 

STAT5A-1*6-mediated ‘driver’ chromatin alterations, which might misregulate chromatin 

dynamics and, in turn, promote the acquisition of ‘driver’ DNA alterations (i.e. the 

‘genomic instability’ cancer hallmark). Together, these DNA and chromatin alteration 

events might underlie the oncogenicity of constitutively active STAT5. Further 

characterization of these events might contribute to a better understanding of the 

mechanism of STAT5-mediated oncogenesis and possibly to the identification of novel 

molecular targets for the development of drugs against STAT5-associated cancers. 
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Zusammenfassung 

Der Transkriptionsfaktor signal transducer and activator of transcription 5 (STAT5) wird 

von externen Stimuli zeitlich begrenzt aktiviert. Daraufhin moduliert STAT5 die 

Transkription seiner Zielgene und vermittelt so eine Zellüberlebens- und Zellwachstums-

antwort. Konstitutive STAT5-Aktivität ist onkogen und an der Leukämie- und 

Lymphomentstehung aus blutbildenden Zellen beteiligt. Diese erwerben dabei 

Krebsmerkmale wie ‘zytokin-unabhängiges Überleben’, ‘unkontrolliertes Wachstum’ und 

‘Genominstabilität’. Die Chromatindynamik ist von zentraler Wichtigkeit für die 

Regulierung der Transkriptionsaktivität und die Reparatur von DNA-Schäden. 

Dementsprechend verursachen nicht nur krebsbedingende sogenannte ‘Treiber’-

Veränderungen auf DNA-Ebene Krebsmerkmale, sondern auch solche auf Chromatin-

Ebene. Daher könnte die dauerhafte DNA-Bindungsaktivität von konstitutiv aktivem 

STAT5 spezifische Effekte auf das Chromatin haben, die zu ‘Treiber’-Chromatin-

veränderungen führen und so dessen Onkogenität zugrunde liegen. 

Das Hauptziel der vorliegenden Arbeit war die Identifizierung von ‘Treiber’-Chromatin-

veränderungen und anderer ‘Treiber’-Ereignisse während der von konstitutiv aktivem 

STAT5 induzierten Onkogenese. Es wurde bereits gezeigt, dass die konstitutiv aktive 

STAT5-Mutante STAT5A-1*6 in der IL-3-abhängigen pro-B-Zelllinie Ba/F3 Onkogenese 

induziert, indem sie den Zellen zytokin-unabhängiges Überleben und Wachstum 

ermöglicht. Die vorliegende Arbeit sollte daher im Einzelnen die Effekte der STAT5A-

1*6-Expression auf (i) das Zellüberleben und -wachstum, (ii) die Expression 

ausgewählter STAT5-Zielgene und (iii) Chromatinumstrukturierungen charakterisieren. 

Um die Onkogenese im Zeitverlauf zu beobachten, wurde eine stabile Ba/F3-Zelllinie 

entwickelt und validiert, die über Doxycyclin-Gabe induzierbar STAT5A-1*6 exprimiert 

(Tet-on-Expressionssystem). Nach Induktion der STAT5A-1*6-Expression wurden in 

Zeitkursexperimenten STAT5A-1*6-Proteinlevel und -Aktivierung (Western blot) sowie 

der Überlebens- und Wachstumsphänotyp und die Genomstabilität (Zellzählung, 

durchflusszytometrische Bestimmung des Zell-DNA-Gehalts und der Zellzyklusphase) 

und die Gesamt-DNA-Menge (Zellzyklusanalyse) analysiert. Zusätzlich wurde mittels 

RT-qPCR die Expression von STAT5-Zeilgenen, u.a. Cis, Osm, Spi2.1, c-Myc, Pim-1, 

Id-1 und TNFRSF13b, untersucht. Wie erwartet ermöglichte die STAT5A-1*6-Expression 

Ba/F3-Zellen zytokin-unabhängiges Überleben und Wachstum. Zu Beginn der 

Zeitkursexperimente nahmen Zellviabiliäts- und Zellproliferationsraten fortlaufend zu. 

Interessanterweise hingen aber Zellüberleben und -wachstum nach 4–5 Wochen nicht 

mehr von der STAT5A-1*6-Expression ab. Zudem akkumulierten die Zellen in einem von 

vier Experimenten Chromosomenaberrationen. Die Expressionsstärke von STAT5A-1*6 

korrelierte darüber hinaus mit der von STAT5-Zielgenen – zumindest in den ersten 
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Wochen. Das wies auf eine dosis-abhängige Transkriptionsaktivierung der STAT5-

Zielgene durch STAT5A-1*6 hin. Die STAT5-Zielgene c-Myc und Pim-1 wurden 

hingegen zu späteren Zeitpunkten zunehmend STAT5A-1*6-unabhängig exprimiert. 

Zusammengenommen legen diese Beobachtungen den Erwerb der Krebsmerkmale 

‘zytokin-unabhängiges Überleben’, ‘unkontrolliertes Wachstum’ und ‘Genominstabilität’ 

nahe – womöglich aufgrund stetig akkumulierender ‘Treiber’-Veränderungen bei 

langanhaltender STAT5A-1*6-Expression. 

Chromatin-Immunpräzipitationsexperimente zeigten, dass die STAT5-DNA-Bindung an 

den Cis, Osm, Spi2.1, Id-1 und TNFRSF13b-Loci mit einer starken Abnahme im Histon-

H3-Gehalt korrelierte. Dies spiegelt wahrscheinlich einen Nukleosomenverlust wider. 

Besonders ausgeprägt war der Histon-H3-Verlust an STAT5-Bindestellen, ungeachtet 

(i) deren Lage innerhalb des Genlokus, (ii) von Transkriptionsaktivierung und (iii) von 

Zytokin-Gabe. Zudem korrelierte die anhaltende STAT5A-1*6-DNA-Bindung mit einer 

Ausdehnung des Histon-H3-Verlusts. Diese Daten lassen den Schluss zu, dass die 

Bindung von STAT5 an DNA einen Nukelosomenverlust an dessen Bindestelle und 

möglicherweise auch überall entlang seiner Zielgene verursacht. Daraus könnte sich ein 

allgemeiner STAT5-vermittelter Chromatindekondensierungs-Mechanismus ableiten, 

bei dem es zu Nukleosomenverlust in der Umgebung von STAT5-Bindestellen kommt 

(an einem Schritt vor STAT5-vermittelter Transkriptionsaktivierung). Aus den 

Ausdehnungsmustern des STAT5A-1*6-assoziierten Histon-H3-Verlusts lässt sich 

schlussfolgern, dass STAT5A-1*6 spezifische ‘Treiber’-Chromatinveränderungen 

verursachen könnte. Diese könnten die Chromatindynamik beeinflussen und so 

wiederum den Erwerb von ‘Treiber’-DNA-Veränderungen (d.h. des Krebsmerkmals 

‘Genominstabilität’) begünstigen. Gemeinsam könnten solche DNA- und Chromatin-

veränderungsereignisse der Onkogenität von konstitutiv aktivem STAT5 zugrunde 

liegen. Die weitere Charakterisierung dieser Ereignisse könnte dazu beitragen, den 

Mechanismus hinter STAT5-vermittelter Onkogenese besser zu verstehen. Das könnte 

neue molekulare Ansatzpunkte für die Entwicklung von Medikamenten gegen STAT5-

assoziierte Krebsformen eröffnen. 
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1 Introduction 

1.1 Cancer 

1.1.1 Cancer hallmarks 

The term cancer is used for a heterogenous disease with numerous subtypes affecting 

mammals and other organisms, which originates from normal body cells. For instance, 

hematologic cancers, i.e. leukemias and lymphomas, derive from hematopoietic cells. In 

two landmark papers, Hanahan and Weinberg (2000, 2011) argued that all 

manifestations of mammalian cancer can be unified by ten hallmarks, as uncontrolled 

growth and other traits underlie their malignant phenotype compared with normal cells 

(Figure 1). Pathological and molecular evidence suggests that individual (pre-)cancer 

cells are in competition with each other and that individual cells expand after gaining a 

selective growth advantage by acquiring cancer hallmark traits (Hanahan and Weinberg, 

2000, Merlo et al., 2006), suggesting a clonal evolution process termed oncogenesis, 

where they pass through benign stages before undergoing [malignant] transformation 

(Hanahan and Weinberg, 2000). 

 

 

 

 

 

 

 

 

 
 

Transformed cells cause the disease cancer, which has a total mortality rate of over 50 % 

in humans (Homo sapiens | Jemal et al., 2011). Their uncontrolled growth has been 

argued to be caused by four cancer hallmarks acquired during oncogenesis, namely 

‘resisting cell death’, ’evading growth suppressors’, ’sustaining proliferative signaling’ 

and ‘establishing replicative immortality’ (Figure 1 | Hanahan and Weinberg, 2000). After 

all, normal cells undergo apoptosis after exceeding a certain number of cell divisions or 

enter a quiescent state termed cell senescence (Hanahan and Weinberg, 2011). 

Transformed cancer cells often exhibit ‘activating invasion and metastasis’ hallmark, 

which enables the spread of cancer to other tissues (Figure 1 | Hanahan and Weinberg, 

Figure 1: Visualization of ten hallmark 
traits exhibited by malignant cancers 
(adapted from Hanahan and Weinberg, 
2011) 

This figure visualizes the ten hallmark traits 
defined by Hanahan and Weinberg (2000, 
2011) for malignant cancers, as specified in 
the figure.  
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2000). This is regarded as the leading cause of cancer deaths (Disibio and French, 2008, 

Hanahan and Weinberg, 2000). 

1.1.2 ‘Driver’ DNA and chromatin alterations drive oncogenesis by 
conferring a selective growth advantage 

On the molecular level, the distinct phenotype of cancer cells involves misregulation of 

all pivotal cellular processes (Hanahan and Weinberg, 2000). In fact, cancer cells have 

been shown to exhibit numerous chromosomal aberrations and DNA sequence 

mutations (hereafter collectively referred to as DNA alterations) as well as alterations in 

DNA methylation and in chromatin composition (Campbell and Turner, 2013, Fraga et 

al., 2005, Gama-Sosa et al., 1983, Stratton et al., 2009, Weisenberger, 2014). While 

DNA methylation and chromatin also differ among normal cells with regard to cell 

differentiation, normal cells all share the same euploid chromosome set and DNA 

sequence. Strikingly, DNA methylation and chromatin alterations have been found to be 

tremendously more divergent in cancer cells, when compared with alterations found 

among normal cells (Gama-Sosa et al., 1983, Shen and Laird, 2013). 

In a meta-analysis, Vogelstein et al. (2013) statistically evaluated sequencing analyses 

of multiple human cancers and supported the classification of cancer-associated DNA 

alterations into ‘passenger’ and ‘driver’ DNA alterations. DNA alterations in (pre-)cancer 

cells are defined as ‘drivers’, when they confer a selective growth advantage during 

oncogenesis and cancer progression and, thus, might initiate oncogenesis (Vogelstein 

et al., 2013). The remaining alterations detected in cancers are defined as ‘passengers’ 

and do not (or potentially negatively) impact cell growth (Vogelstein et al., 2013). 

Functionally, genes targeted by ‘driver’ alterations (i.e. ‘driver’ genes) can be 

subclassified into tumor suppressor and oncogenes, impeding and promoting 

oncogenesis and cancer progression respectively (Vogelstein et al., 2013). Tumor 

suppressor genes have been found to be overridden by loss of function mutations, 

deletions and/or chromatin-dependent silencing (Vogelstein et al., 2013). Oncogenes, 

on the other hand, have been found to be invigorated by gain-of-function mutations, gene 

amplifications and/or chromatin-dependent upregulation (Vogelstein et al., 2013).  

In their meta-analysis, Vogelstein et al. (2013) identified ‘driver’ genes by the particular 

types of exhibited DNA alterations. ‘Driver’ genes are involved in eight key signaling 

pathways regulating cell survival, growth and differentiation as well as in apoptosis, cell 

cycle progression and in the maintenance of genomic integrity (Figure 2). Strikingly, the 

misregulation of these particular cellular processes agrees with the cancer hallmarks 

proposed by Hanahan and Weinberg (2000, 2011 | Figure 1). 
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1.1.3  ‘Genomic instability’ is an enabling hallmark of cancer 

‘Passenger’ DNA alterations are much more frequent than ‘driver’ DNA alterations, 

although clonal evolution only favors ‘driver’ DNA alterations during oncogenesis and 

cancer progression (Vogelstein et al., 2013). Hanahan and Weinberg, 2011 argued that 

(prospective) cancer cells with increased mutability (i.e. probability of acquiring ‘driver’ 

DNA alterations) possess a selective growth advantage and defined this trait as the 

enabling ‘Genomic instability’ cancer hallmark (Figure 1). In line with this, genome 

maintenance mechanisms are a frequent target of ‘driver’ DNA alterations (Vogelstein et 

al., 2013). Thus, ‘passenger’ DNA alterations might accumulate stochastically during 

oncogenesis and cancer progression in (pre-)cancer cells and might explain the high 

degree of genomic heterogeneity among individual (pre-) cancer cells (Vogelstein et al., 

2013). 

Of note, most ‘passenger’ DNA alterations are chromosomal aberrations rather than 

DNA sequence mutations (Vogelstein et al., 2013). Proliferating cells normally progress 

through four tightly regulated phases (G1, S, G2, M) between two cell divisions, forming 

the cell cycle and passing through three check-points controlling for DNA damage 

amongst other things (Malumbres and Barbacid, 2009). This prevents the loss of 

genomic integrity in normal cells. By contrast, uncontrolled growth of (pre-)cancer cells 

has been reported to involve unscheduled cell cycle progression due to check-point 

evasion (Hanahan and Weinberg, 2000, Malumbres and Barbacid, 2001). This might 

cause polyploidization and contribute to structural chromosomal rearrangements 

(Malumbres and Barbacid, 2009, Vogelstein et al., 2013). Additionally, the frequent 

misregulation of oxidative phosphorylation in (pre)-cancer cells by ‘driver’ alterations 

increases the formation of reactive oxygen species (i.e. oxidative stress), inducing DNA 

damage as mutagenic agents (Panieri and Santoro, 2016, Pawlowska and Blasiak, 

2015). This is accelerated by frequent loss-of-function ‘driver’ DNA alterations in genome 

Figure 2: Key cell survival, growth and differentiation 
pathways and genome maintenance mechanisms are 
altered during oncogenesis 
(adapted from Vogelstein et al., 2013)  

This figure illustrates the signaling pathways and cellular 
components, which are altered during oncogenesis. They 
were identified by disproportionally frequent somatic DNA 
mutations in constituent genes, termed ‘driver’ genes, 
found in malignant cancers (Vogelstein et al., 2013). 

Abbreviations: APC = activated protein C, HH = hedge-
hog, NOTCH = Notch receptor, MAPK = mitogene-
activated protein kinase, PI3K = phosphatidylinositol-4,5-
bisphosphate 3-kinase, RAS = rat sarcoma, STAT = signal 
transducer and activator of transcription, TGF-β = 
transforming growth factor β.  
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maintenance mechanisms (i.e. antioxidants intercepting reactive oxygen species and the 

DNA damage repair machinery | Vogelstein et al., 2013). 

1.1.4 ‘Driver’ DNA methylation and chromatin alterations may 
complement ‘driver’ DNA alterations 

In addition to DNA alterations, alterations in DNA methylation and in chromatin structure 

participate in oncogenesis by impacting genome maintenance and transcriptional 

regulation (Vogelstein et al., 2013). This is why Vogelstein et al. (2013) proposed that 

DNA methylation and chromatin alterations exhibited by human cancers may 

complement DNA alterations and follow their classification into ‘drivers’ and 

‘passengers’. The role of chromatin and chromatin-associated trans-acting factors in 

general and in oncogenesis is described in the next chapter. For simplicity, DNA 

methylation is not mentioned separately hereafter, but included under the term chromatin 

alterations. In addition, cancer-associated DNA and chromatin alterations are hereafter 

collectively referred to as ‘driver’ and/or ‘passenger’ alterations. Of note, the terms ‘driver’ 

and ‘passenger’ alterations will be used throughout the present study as defined by 

Vogelstein et al. (2013). 

1.2 Chromatin dynamics modulates gene expression 

In eukaryotic cells, genetic information is stored in linear DNA molecules called 

chromosomes. The DNA strands are packaged by histone proteins, forming chromatin 

together with other associated proteins. The fundamental unit of chromatin is termed 

nucleosome and is built up by a histone octamer (containing each two histones H2A, 

H2B, H3 and H4) and 147 bp DNA wrapped around it (Kornberg and Thomas, 1974, 

Luger et al., 1997). The linker DNA in between nucleosomes is further packaged by the 

nucleosome-independent linker histone H1 (Thoma et al., 1979). Chromatin can be 

broadly classified into condensed heterochromatin and decondensed euchromatin 

(Figure 3). In heterochromatin, the encased DNA strand is generally inaccessible. This 

precludes the DNA from interacting with most trans-acting proteins, which effect pivotal 

DNA-dependent processes, namely transcription, DNA damage repair, DNA replication 

and DNA recombination (Han and Grunstein, 1988, Knezetic and Luse, 1986, Li et al., 

2007). Therefore, chromatin structure is dynamically remodeled in a spatio-temporal 

manner to increase accessibility of the DNA strand for trans-acting proteins that enable 

these processes (Li et al., 2007). In doing so, chromatin at a given DNA site has been 

found to be modulated via (i) the positioning and density of nucleosomes, (ii) the 

incorporation of non-canonical histone variants and (iii) posttranslational modification of 

histones (Li et al., 2007). These processes provide a variety of possible chromatin states. 

Hence, the unique composition of these three chromatin components at a given DNA 

site is termed chromatin landscape. 
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1.2.1 Transactivation and transrepression 

Protein-coding genes are DNA loci, where genetic information is transcribed into mRNA, 

which, in turn, serves as a template for the pivotal cellular protein production. They 

consist of the transcribed DNA sequence, the so-called open reading frame (ORF) 

bordered by a transcription start and termination site (TSS and TTS, respectively), and 

nearby regulatory sequences located upstream of the TSS, the so-called promoter.  

1.2.1.1 Nucleosome positioning at protein-coding genes 

Genome-wide analyses of nucleosome positioning revealed that nucleosomes generally 

display a continuum ranging from mostly fixed to rather unpredictable positioning (Iyer, 

2012, Jiang and Pugh, 2009, Yuan et al., 2005). This is why Iyer (2012) as well as Jiang 

and Pugh (2009) proposed that some nucleosomes are anchored to certain DNA sites 

based on sequence-affinity or other factors and that other nucleosomes in the vicinity 

are, in turn, stacked against them in an array by ATP-dependent chromatin remodeling 

complexes. Intriguingly, most euchromatic protein-coding genes exhibit similar 

nucleosome positioning and are devoid of nucleosomes at two regions at the 5’ and 3’ 

ends of the ORF (Figure 4| Iyer, 2012, Jiang and Pugh, 2009, Yuan et al., 2005). The 

so-called 5’-nucleosome-free region (5’-NFR) across the promoter is flanked by two 

nucleosomes (−1 and +1 relative to the TSS) with highly fixed positions (Figure 4). 

Downstream of the TSS, the first few nucleosomes in the ORF are stacked against the 

+1 nucleosome, although the following nucleosomes follow no predictable pattern 

(Figure 4). As heterochromatic protein-coding genes without 5’-NFR are transcriptionally 

silent, the 5’-NFR might be mandatory for transcription by allowing access of trans-acting 

factors to the promoter. Transcriptional activity, however, must be governed by additional 

factors, as transcriptionally inactive euchromatic genes also exhibit the 5’-NFR (Bai and 

Morozov, 2010, Svaren and Horz, 1997).  

1.2.1.2 Transcription factors 

Indeed, trans-acting transcription factor proteins have been argued to be the primary 

governors of transcriptional activity (The ENCODE Project Consortium, 2012). 

Figure 3: Schematic representation of eu- and heterochromatin 
(adapted from Feinberg, 2007) 

This figure exemplifies chromatin structure at a transcriptionally active 
and silent gene, enabling or precluding access of DNA-dependent 
proteins. The DNA doublestrand is shown in brown and histones in 
blue. Brown circles denote DNA methylation, which is sparse in active 
and abundant in silenced genes. Posttranslational histone modi-
fications associated with active genes (active marks) are marked in 
green and those associated with repressed genes (repressive marks) 
in red. Two protein complexes involved in the maintenance of the 
respective eu- or heterochromatic state are shown in green and red. 
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Transcription factors access and bind DNA at sequence-specific binding motifs. There, 

they can effect transcriptional initiation, transactivation and/or transrepression by 

modulating the recruitment of the transcriptional machinery. Therefore, the conditional 

activation and/or production of transcription factors enable the precise transcriptional 

regulation, essential for all forms of life (Maston et al., 2006). The human genome 

encodes at least 1,400 different transcription factors, illustrating their importance 

(Latchman, 1997, Vaquerizas et al., 2009). 

 

 
 

Figure 4: Consensus nucleosome positioning at euchromatic protein-coding genes in eukaryotes 
(adapted from Jiang and Pugh, 2009) 

This figure illustrates the consensus distribution of nucleosomes along euchromatic genes in budding yeast 
(Saccharomyces cerevisiae), which is mirrored in other eukaryotes. The DNA doublestrand is depicted 
schematically as a grey line, with the coding open reading frame (ORF) of the gene denoted as a green 
arrow. Green and red circles mark the transcription start and termination site, respectively. Grey ellipses 
depict nucleosomes, with the highly positioned + 1 nucleosome at the transcription start site marked in black. 
An elongating RNA Polymerase, synthesizing a complementary RNA strand (purple), is depicted 
schematically, showing the temporary eviction of nucleosomes along its way.  

Abbreviations: NFR = nucleosome-free region. 
 

Transcription factors have been found to bind their motifs in proximal and distal gene-

regulatory elements (i.e. enhancers and silencer, promoting and impeding transcriptional 

activity, respectively), but also at DNA sites of unknown function (Li et al., 2008, The 

ENCODE Project Consortium, 2012). Proximal gene-regulatory elements are located in 

(proximal or distal) promoter sites directly upstream of the TSS. Distal gene-regulatory 

elements are typically located ± 50 kbp of their target genes – although distal regulatory 

elements have also been reported farther away and on other chromosomes (Marsman 

and Horsfield, 2012, Maston et al., 2006) – and are often clustered in so-called super-

enhancers (Hnisz et al., 2013). Within the three-dimensional higher order chromatin 

structure in the nuclei of living cells however, the DNA strand forms loops so that, in vivo, 

distal gene-regulatory elements are found spatially close to the promoter and TSS of 

their target gene, allowing physical interaction (Carter et al., 2002, The ENCODE Project 

Consortium, 2012). 

Most transcription factor binding motifs in heterochromatin remain unoccupied (Carr and 

Biggin, 1999, Zaret and Carroll, 2011). In addition, occupied promoter and enhancer 

binding motifs exhibit high chromatin accessibility, with promoter binding motifs often 

overlapping the 5’-NFR (Bai et al., 2010, Thurman et al., 2012). This suggests that most 

transcription factors cannot access nucleosomal DNA with the same efficiency as linker 

DNA (Figure 3), as supported by in vitro assays (Adams and Workman, 1995, Zaret and 

Carroll, 2011). This is why chromatin accessibility patterns have been proposed to inform 

DNA binding patterns of transcription factors (Marsman and Horsfield, 2012). In fact, so-
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called ‘pioneer’ transcription factors have been shown to efficiently access occluded 

nucleosomal DNA in condensed chromatin in vitro and to initiate chromatin 

decondensation, providing access to other transcription factors in vivo (Cirillo et al., 2002, 

Zaret and Carroll, 2011). 

1.2.1.3 Transcription 'initiation’, ‘elongation’ and ‘termination’  

Transcription factors are classified as transactivators, when they promote transcriptional 

activity, and as transrepressors, when they impede transcriptional activity (Latchman, 

1997). Despite their diversity, molecular dynamics of transcription per se has been 

shown to be largely uniform in eukaryotic protein-coding genes with a ‘(pre-)initiation’, 

‘elongation’ and ‘termination’ phase involving RNA Polymerase II-mediated pre-mRNA 

synthesis (Li et al., 2007). In detail, transactivators have been found to recruit auxiliary 

factors termed co-activators upon binding, which trigger the assembly of a large 

transcription pre-initiation complex (PIC) in the 5’-NFR, upstream of the TSS in the 

promoter (Conaway et al., 1990, He et al., 2013, Li et al., 2007). They do so by mediating 

conducive chromatin alterations and/or by recruiting conducive co-factors such as 

Mediator or PIC components (Kim et al., 1994, Li et al., 2007, Pokholok et al., 2005). 

Transrepressors, on the other hand, have been found to recruit so-called co-repressors, 

which antagonize these processes (Kuzmichev et al., 2002, Li et al., 2007, Pokholok et 

al., 2005). Strikingly, this dynamic, where the transcription ‘initiation’ phase is either 

promoted or impeded at gene promoters, has been argued to be the main regulatory 

step of gene expression (The ENCODE Project Consortium, 2012). 

1.2.2 Chromatin alterations 

Co-activators/co-repressors promote/impede transcription by establishing, amongst 

other things, chromatin landscapes conducive or adverse to transcriptional activity, 

respectively, altering the three chromatin components mentioned above. They do so via 

their own enzymatic activities or via recruitment of enzymatic co-factors: 

1.2.2.1 ATP-dependent chromatin remodeling complexes 

Chromatin remodeling enzymes such as brahma-related gene-1 (BRG1) have been 

found to alter nucleosome positioning by conversing the energy from ATP hydrolysis to 

move nucleosomes along the DNA strand, evict and/or insert them via a DNA 

translocase activity (Hargreaves and Crabtree, 2011, Saha et al., 2005, Wang et al., 

2007b). In doing so, they can also promote the incorporation of non-canonical histone 

variants (Hargreaves and Crabtree, 2011, Mizuguchi et al., 2004). As of now, four 

subfamilies of chromatin remodeling complexes are known (SWI/SNF: switching 

defective/sucrose non-fermenting; ISWI: imitation SWI; NuRD/Mi-2/CHD: nucleosome 

remodeling and deacetylation/Mi-2 antigen/chromodomain, helicase, DNA binding; 
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INO80: inositol-requiring 80), which have been implicated both in transcriptional 

activation and repression in a context-dependent manner (Ooi et al., 2006, Peterson and 

Herskowitz, 1992, Wang et al., 2007b, Xu et al., 2007). This may be explained by the 

fact that the ultimate effects of nucleosome re-positioning depend on the exposed and/or 

occluded DNA sequences. Besides, chromatin-remodeling enzymes only function in 

multi-subunit so-called ATP-dependent chromatin remodeling complexes in vivo, where 

non-catalytic subunits may direct the chromatin-remodeling enzymes to certain sites 

(Dang et al., 2007, Hargreaves and Crabtree, 2011). 

1.2.2.2 Histone modifying enzymes 

The third chromatin component, namely posttranslational histone modifications, has 

been found to be altered by histone modifying enzymes (Bannister and Kouzarides, 

2011, Black et al., 2012, Brownell et al., 1996, Rea et al., 2000). As of now, a striking 

plethora of posttranslational histone modifications has been identified, mainly in the 

easily accessible N-terminal tails of histone proteins protruding from their globular core 

(Bannister and Kouzarides, 2011, Phillips, 1963). Among these, histone lysine 

acetylation and methylation are the best characterized, as specified below. The histone 

modifications discussed and analyzed in the present study are summarized in Table 1. 

Hereafter they are abbreviated as specified in the legend of Table 1. Based on their 

catalyzed reaction, histone modifying enzymes can be classified into ‘writers’ or ‘erasers’, 

adding or removing a given histone modification, respectively (Wang et al., 2007a). The 

known effects of histone modifications, in turn, can be roughly split into (i) cis and (ii) 

trans effects (Wang et al., 2007a). 

Cis effects of histone modifications involve the addition/removal of bulky or charged 

groups to/from histones. This alters the sterical and/or electrostatic composition of the 

affected nucleosome and influences the local chromatin structure without involving any 

secondary factors. For instance, histone acetyltransferases (HATs) add acetyl groups to 

several histone lysine residues (Bannister and Kouzarides, 2011, Brownell et al., 1996). 

This neutralizes the positive charge of the lysine residues and has been shown to 

obstruct the interaction between the negatively charged DNA strand and the overall 

positively charged histone octamer in vitro (Hong et al., 1993, Li et al., 2007). This, in 

turn, increases the accessibility of nucleosomal DNA in vivo and has been linked to PIC 

formation (Li et al., 2007, Verdone et al., 2002). In accordance, genome-wide analyses 

revealed that histone acetylation is enriched at transcriptionally active enhancers and 

promoters (Table 1 | Pokholok et al., 2005, The ENCODE Project Consortium, 2012). Of 

note, histone deacetylases (HDACs) have been found to antagonize HATs (Bannister 

and Kouzarides, 2011, Taunton et al., 1996). Counterintuitively however, both HATs and 

HDACs can function as co-activators and co-repressors in a context-dependent manner 
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(e.g. Lin et al., 2014, Nusinzon and Horvath, 2003, Wang et al., 2009, Zupkovitz et al., 

2006). Besides, they have numerous non-histone substrates and, thus, play roles 

beyond the regulation of histone acetylation (e.g. Choudhary et al., 2009, Iwabata et al., 

2005, Shankaranarayanan et al., 2001, Spange et al., 2009). 

Table 1: Histone modifications are enriched in relation to transcriptional activity 
Based on current literature, this table specifies the estimated relative enrichment of histone modifications 
discussed and/or analyzed in the present study in mammals at enhancer loci and along gene loci at proximal 
promoters, transcription start sites (TSS) and open reading frames (ORF) in relation to transcriptional 
activity. In doing so, hetero-, euchromatin states could be distinguished and correlated with silent and active 
transcription. Individual histone modifications are abbreviated by the histone name, amino acid residue and 
the respective modification (ac = acetylation; me1, me2, me3 = mono-, di-, trimethylation). For instance, 
H3K4me3 designates histone 3 lysine 4 trimethylation. Individual histone lysine acetylation marks are 
merged under H_K_ac. Based on their relation to transcriptional activity, histone modifications are classified 
into active and repressive marks. ‘+++’, ‘++’ and ‘+’ specify strong, medium and weak enrichment, 
respectively. Blank cells specify no detectable enrichment of the respective histone modification. 

*Heterochromatin is subdivided into facultative heterochromatin marked by H3K27me3 and *constitutive 
heterochromatin marked by H3K9me3. 

References: Ernst and Kellis, 2010, The ENCODE Project Consortium, 2012  

Abbreviations: AM = active marks, ORF = open reading frame, RM = repressive marks, TSS = transcription 
start site. 
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On the other hand, individual histone modifications are recognized by specific ‘reader’ 

proteins that trigger their trans effects (Wang et al., 2007a). For instance, bromodomain 

and extra-terminal domain (BET) family proteins such as BET protein Brd2 (Brd2) have 

been found to ‘read’ histone acetylation and to promote transactivation (e.g. Crowley et 

al., 2002, Dey et al., 2003, LeRoy et al., 2008, Taniguchi, 2016). In addition, mono-, di- 

and trimethylation of substrate-specific histone lysine residues have been shown to exert 

such trans effects (Bannister and Kouzarides, 2011) and are added/removed by specific 

histone lysine methyltransferases and demethylases, e.g. the H3K4me1/2 and 

H3K9me1/2 demethylase lysine-specific demethylase 1 (LSD1 | Black et al., 2012, Shi 

et al., 2004). Specific roles have been argued for these and other histone modifications 

in relation to transcription (Bannister and Kouzarides, 2011). In line with this, genome-

wide analyses showed that specific histone modifications are correlated positively or 

negatively with transcriptional activity at protein-coding genes and their enhancer 
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elements, as specified in (Table 1). In particular, histone modifications primarily 

associated with transcriptionally active euchromatin have been termed ‘active marks’ 

(H3K4me1, H3K4me2, H3K4me3 amongst others), whereas the ones primarily 

associated with transcriptionally silent heterochromatin have been termed ‘repressive 

marks’ (H3K9me3, H3K27me3 amongst others | Pokholok et al., 2005, The ENCODE 

Project Consortium, 2012). Taken together, the peculiar distribution of histone 

modifications gave rise to the ‚histone code hypothesis‘, which proposes that 

transcriptional activity is at least in part determined by the individual composition of 

histone modifications at a given gene site (Jenuwein and Allis, 2001, Strahl and Allis, 

2000). 

1.2.3 Chromatin alterations participate in oncogenesis and cancer 
progression 

As described above (1.1.4), Vogelstein et al. (2013) proposed that chromatin alterations 

complement DNA alterations and can be classified into ‘drivers’ and ‘passengers’, 

according to chromatin alteration patterns observed both at ‘driver’ genes and globally 

(Campbell and Turner, 2013, Rideout et al., 1994, Sundarrajan et al., 2002,Fraga et al., 

2005 Vogelstein et al., 2013). This presupposes that chromatin alterations are 

maintained in daughter cells upon replication allowing clonal evolution, as proposed for 

H3K9me3 and H3K27me3 (Huang et al., 2013). In fact, some chromatin modifiers, e.g. 

enhancer of zeste homolog 2 (Ezh2), as well as their accessory factors have been 

identified as targets of ‘driver’ DNA alterations and are hence misregulated in cancer 

(Figure 2 | Morin et al., 2010, Vogelstein et al., 2013, Wang et al., 2007a, Wang et al., 

2007b). This suggests a causal relationship with ‘passenger’ chromatin alterations, 

reflecting ‘genomic instability’ due to misregulated DNA damage control.  

Of note, the misregulation of chromatin modifiers has been found to promote the 

‘genomic instability’ cancer hallmark, given the regulation of DNA damage repair and 

DNA replication by chromatin dynamics (Misteli and Soutoglou, 2009, Mostoslavsky et 

al., 2006). On the one hand, euchromatin has been found to be more susceptible than 

heterochromatin to mutagenic agents given the exposed linker DNA (Falk et al., 2008 

Cowell et al., 2007, Han et al., 2016, Kim et al., 2007, Lan et al., 2014). On the other 

hand, euchromatin has been shown to accumulate fewer DNA alterations than 

heterochromatin, as it is more accessible to the DNA damage repair machinery (Lemaitre 

and Soutoglou, 2014, Murga et al., 2007, Nair et al., 2017, Schuster-Bockler and Lehner, 

2012). Given the loss-of-function ‘driver’ alterations in DNA damage repair components 

and antioxidants in (pre-)cancer cells (Vogelstein et al., 2013), this proposes that 

euchromatin is more likely to acquire DNA alterations in response to reactive oxygen 

species than heterochromatin. In fact, decreasing core histone levels (leading to lower 
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nucleosome density and more linker DNA) has been correlated with DNA damage during 

aging (O'Sullivan et al., 2010, Oberdoerffer, 2010), with additional evidence suggesting 

that DNA damage is a consequence of nucleosome loss (Celona et al., 2011). In 

addition, decreased core histone levels in yeast (Saccharomyces cerevisiae) have been 

linked with nucleosome loss and chromosomal instability (Hu et al., 2014). 

As argued above, transcription factor activities are interrelated with chromatin dynamics. 

Moreover, transcription factors and signaling pathways regulating transcription factors 

are significantly overrepresented among ‘driver’ genes (Figure 2 | Furney et al., 2006, 

Vogelstein et al., 2013). This suggests that the oncogenicity of misregulated transcription 

factor activities might involve the mediation of ‘driver’ chromatin alterations. 

1.3 Signal transducer and activator of transcription 5 A/B 
(STAT5A/B) 

The STAT (signal transducer and activator of transcription) pathway is one of the 

signaling pathways targeted by ‘driver’ DNA alterations (Figure 2 | Vogelstein et al., 

2013). Seven STAT members have been identified in mammals (STAT1, STAT2, 

STAT3, STAT4, STAT5A, STAT5B and STAT6) and form an important family of 

intracellular signaling molecules (Fu et al., 1992, Shuai et al., 1992, Stark and Darnell, 

2012). They have been found to rapidly transduce extracellular signals from the cell 

surface into the nucleus, where they function as transcription factors, conditionally 

impacting gene expression patterns (Paukku and Silvennoinen, 2004). In doing so, they 

mediate biological responses to various cytokines and hormones, rendering them 

essential for, amongst others, development, hematopoiesis and immune reactions 

(Paukku and Silvennoinen, 2004).  

1.3.1 Biological roles of the STAT5A and STAT5B paralogs 

The present study focused on the paralogous STAT members STAT5A and STAT5B 

(Azam et al., 1995, Liu et al., 1995, Mui et al., 1995, Wakao et al., 1994). The ancestral 

Stat5 gene first separated from Stat3 and then duplicated into the Stat5a and Stat5b 

paralogs, accounting for the adjacent location of these three genes on human 

chromosome 17 and mouse (Mus musculus) chromosome 11 (Copeland et al., 1995, 

Wang and Levy, 2012). The STAT5A and B paralogs are strongly conserved among 

mammals, suggesting that findings from mice may be transferable to humans (Liu et al., 

1995, Wang and Levy, 2012). The m(urine)/h(uman)STAT5A and B paralogs consist of 

around 790 amino acids and still exhibit an interspecies as well as a paralog sequence 

homology of over 90 %. Most divergence between STAT5A and STAT5B is attributed to 

their C-terminal transactivation domains (Figure 5 | Grimley et al., 1999, Liu et al., 1995). 
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Interestingly, STAT5A and B single knock-out mice have been reported to survive to 

adulthood with only mildly impaired phenotypes, whereas Stat5a/b double knock-out 

have severely impaired phenotypes and are not viable due to defective hematopoiesis 

(Kerenyi et al., 2008, Liu et al., 1997, Teglund et al., 1998, Udy et al., 1997). This 

indicates functional redundancy between STAT5A and B as well as an essential role in 

hematopoiesis. Indeed, cell type-specific conditional Stat5a/b double knock-out mouse 

models have confirmed the essential role of STAT5A/B in differentiation, survival and 

proliferation of hematopoietic cells, for instance during B cell development in 

interleukin(IL)-7 signaling (Dai et al., 2007, Hoelbl et al., 2006, Malin et al., 2010, Wang 

and Bunting, 2013, Yao et al., 2006). Nevertheless, Stat5b single knock-out mice exhibit 

male-specific growth retardation amongst other things and female Stat5a single knock-

out mice fail to lactate after birth, revealing unique biological roles of STAT5A and B (Liu 

et al., 1997, Teglund et al., 1998, Udy et al., 1997). Overall, STAT5A and B possess both 

redundant and non-redundant biological roles. 

1.3.2 STAT5A/B activation and inactivation dynamics 

STAT5A and B have been found to share six characteristic functionally and structurally 

conserved domains with other STAT family members: a N-terminal oligomerization 

domain, a coiled-coil domain, a DNA-binding domain, a linker region, a Src Homology 2 

(SH2) domain and a C-terminal transactivation domain (TAD | Grimley et al., 1999, Kiu 

and Nicholson, 2012, Neculai et al., 2005, Wakao et al., 1994). In addition, a conserved 

tyrosine residue as well as at least one conserved serine residue have been reported to 

be phosphorylated in STAT family members, as further detailed below for STAT5A/B 

(Beuvink et al., 2000, Gouilleux et al., 1994, Grimley et al., 1999, Kiu and Nicholson, 

2012, Yamashita et al., 1998). This is illustrated in Figure 5 for mSTAT5A and B. 

 

 

 

 

 

 

 

 

Figure 5: STAT5A and B protein domains 
(adapted from Mohr et al., 2012) 

This figure schematically illustrates the structural 
organization of the mammalian STAT5A/B trans-
cription factor proteins into six domains by the 
example of mSTAT5A/B, as specified in the figure. 
Domain boundaries are shown to scale within the 
amino acid sequence from the N- to the C-
terminus. The depicted tyrosine and serine 
residues (Y694, S725, S779 in mSTAT5A and Y699, 
S730 in mSTAT5B) have been found to be 
phosphorylated in multiple contexts with roles in 
STAT5A/B function, as further detailed in the text. 

Abbreviations: m = murine (Mus musculus), SH2 
= Src Homology 2. 
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1.3.2.1 Extracellular signals such as interleukin 3 condition STAT5A/B 
activation 

In mammals, extracellular signals are transduced mainly by cytokines and hormones. A 

myriad of cognate receptors induce specific intracellular responses upon selective 

binding of their respective ligand cytokine or hormone, activating the STAT5A/B and/or 

other signaling pathways (reviewed by O'Sullivan et al., 2007, Paukku and Silvennoinen, 

2004 for STATs). STAT5A/B activation and inactivation dynamics in response to the 

cytokine IL-3 is exemplified below, because the murine IL-3-dependent pro-B cell line 

Ba/F3 served as an experimental system of STAT5 activation in the present study: 

The IL-3 cognate transmembrane receptor IL-3 receptor (IL-3R) consists of an IL-3Rα 

subunit together with either a βIL-3 or a common β (βc) subunit in mice (Broughton et al., 

2012, Gorman et al., 1990, Hara and Miyajima, 1992, Itoh et al., 1990). IL-3 binding has 

been proposed to induce the formation of a duodecameric IL-3-IL-3Rα-βc/βIL-3 complex 

(Figure 6 | Dey et al., 2009, Hansen et al., 2008, Hara and Miyajima, 1992, Hercus et al., 

2012). This has been argued to change substrate specificity of the βc/βIL-3-associated 

Janus protein tyrosine kinase (JAK) family member JAK2 via trans-autophosphorylation, 

leading to phosphorylation of tyrosine residues in the βc/βIL-3 cytoplasmic domain 

(Figure 6 | e.g. Feng et al., 1997, Hall et al., 2010, Isfort et al., 1988, Martinez-

Moczygemba and Huston, 2003, Sorensen et al., 1989). These residues have been 

shown to serve as docking sites for STAT5A/B via its SH2 domain (Figure 6 | Chin et al., 

1997, Martinez-Moczygemba and Huston, 2003, Sakurai et al., 2000). Upon docking, 

JAK2 has been shown to phosphorylate the mSTAT5A/B Tyr694/699 residue, marking the 

key event in conditional activation of STAT5A/B activity as a transcription factor 

(hereafter simply STAT5A/B phosphorylation | Figure 5 | de Groot et al., 1998, Gouilleux 

et al., 1994, Mui et al., 1995, Watanabe et al., 1996). Apart from the STAT5A/B pathway, 

IL-3 has been shown to activate the mitogen-activated protein kinase (MAPK) and 

phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) pathways in Ba/F3 cells 

(Kinoshita et al., 1997, Rosa Santos et al., 2000), which are both likewise targeted by 

‘driver’ alterations in cancer (Figure 2 | Vogelstein et al., 2013) and upregulate 

STAT5A/B-independent genes such as c-Fos (Rascle and Lees, 2003, Watanabe et al., 

1997). Interestingly, phosphorylated(p)STAT5A/B has been found to cross-activate the 

MAPK and PI3K pathways in an IL-3R-independent manner via the adaptor protein 

Grb2(growth-factor-receptor-bound protein 2)-associated binder-2 (GAB2 | Nyga et al., 

2005) 

After activation, pSTAT5A/B dimers function as transcription factors and, hence, alter 

gene expression patterns, mediating the cellular response to upstream cytokine or 

hormone ligands (Gouilleux et al., 1994, Kang et al., 2013, Wakao et al., 1994). In doing 

so, STAT5A/B has been argued to mostly play a permissive role for cell survival and 
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proliferation, but also to have context-dependent instructive roles in cell differentiation 

(Kang et al., 2013, Paukku and Silvennoinen, 2004). 

1.3.2.2 STAT5A/B translocates to the nucleus upon phosphorylation 

In the absence of activation, latent unphosphorylated STAT5A has been reported to form 

antiparallel dimers, putatively through interaction of their DNA-binding domains (Figure 6 

| Neculai et al., 2005). Unphosphorylated STAT5A/B has been found to localize in the 

cytoplasm in Ba/F3 cells (Figure 6 | Kawashima et al., 2006) and in the cytoplasm and 

to a lesser extent in the nucleus in other cellular contexts (e.g. Herrington et al., 1999, 

Iyer and Reich, 2008, Shin and Reich, 2013, Zeng et al., 2002). Upon activation however, 

pSTAT5A/B has been shown to form parallel homo- and heterodimers through the 

mutual interaction of the phosphorylated tyrosine residues and SH2 domains (Figure 6 | 

Boehm et al., 2014, Fahrenkamp et al., 2016, Gianti and Zauhar, 2015, Langenfeld et 

al., 2015), which rapidly accumulate in the nucleus (Figure 6 | Herrington et al., 1999, 

Iyer and Reich, 2008, Nagy et al., 2002, Shin and Reich, 2013). pSTAT5A/B DNA binding 

activity might cause their nuclear accumulation, given that DNA binding-deficient 

STAT5A/B mutants failed to accumulate in the nucleus upon activation (Herrington et al., 

1999, Iyer and Reich, 2008).  

1.3.2.3 STAT5A/B activation is transient under normal conditions  

STAT5A/B activation has been found to be tightly controlled under normal conditions, 

with regulation of STAT5A/B activation occurring at every step of activation. Protein 

tyrosine phosphatases (PTPs) and other phosphatases, protein inhibitors of activated 

STAT (PIASs) and suppressors of cytokine signaling (SOCSs) have been identified as 

effectors of STAT5A/B pathway inactivation (Chen et al., 2004). 

In IL-3-induced STAT5 signaling, amongst others SHP-1 (SH2 domain-containing 

phosphatase 1) of the PTP family, as well as CIS (cytokine-inducible SH2 domain-

containing protein) and SOCS1 of the SOCS family, have been found to negatively 

impact cell survival and growth (e.g. Nosaka et al., 1999, Xiao et al., 2009, Yi et al., 1993, 

Yoshimura et al., 1995). SHP-1 dephosphorylates the key tyrosine residues in βc/βIL-3, 

(putatively) JAK2 and STAT5A/B (Figure 6 | e.g. Bone et al., 1997, Wheadon et al., 2002, 

Xiao et al., 2009, Yi et al., 1993). CIS binds to STAT5A/B docking sites on βc/βIL-3, thus 

competing for STAT5A/B binding and resulting in decreased pSTAT5A/B levels 

(Matsumoto et al., 1997, Yoshimura et al., 1995) (Figure 6). SOCS1 directly inhibits JAK2 

kinase activity (Giordanetto and Kroemer, 2003, Yasukawa et al., 1999) and putatively 

targets βIL-3/βc and JAK2 for proteasomal degradation (Figure 6 | Bunda et al., 2013, 

Ungureanu et al., 2002). Accordingly, proteasomal degradation of STAT5A/B pathway 

components has been found to contribute to STAT5A/B pathway inactivation (Callus and 

Mathey-Prevot, 1998, Martinez-Moczygemba and Huston, 2001, Mui et al., 1995). 
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Figure 6: STAT5A/B activation is tightly controlled 
by negative regulators 
(adapted from Lim and Cao, 2006) 
This figure schematically illustrates the STAT5A/B 
pathway activation and inactivation dynamics by the 
example of the putative response to IL-3. Briefly, IL-3 
assembles an IL-3-IL-3 receptor complex, which 
activates JAK2 kinase activity. JAK2 phosphorylates 
Y-residues in the IL-3 receptor (Y). This allows 
inactive antiparallel STAT5A/B dimers to dock in pro-
ximity to JAK2. Upon their Y-phosphorylation by 
JAK2, they form active parallel dimers, which gain 
DNA binding activity and function as transcription fac-
tors in the nucleus. SHP-1, CIS, SOCS1 and 3 plus 
putatively PIAS3 mediate IL-3-STAT5 pathway inacti-
vation. SHP-1 dephosphorylates the IL-3 receptor, 
STAT5A/B and putatively JAK2. PIAS3 might interfere 
with STAT5A/B DNA binding activity. CIS, SOCS1 
and 3 expression is induced by STAT5A/B in 
response to IL-3. CIS inhibits STAT5A/B docking to 
the IL-3 receptor. SOCS1 and 3 inhibit JAK2 kinase 
activity and may target JAK2 and the IL-3 receptor for 
ubiquitination (Ub) and proteasomal degradation. 
Overall, this constitutes a negative feedback mecha-
nism, leading to a temporary desensitization to IL-3 
following STAT5A/B activation. 

Abbreviations: CIS = cytokine-inducible Src homology 2 domain-containing protein, IL-3 = interleukin 3, JAK2 
= Janus kinase 2, m = murine, PIAS3 = protein inhibitor of activated STAT 3, R = receptor, SHP-1 = Src 
homology 2 domain-containing phosphatase 1, SOCS = suppressor of cytokine signaling, STAT5 = signal 
transducer and activator of transcription, Ub = ubiquitin, Y = phosphorylated tyrosine residue. 
 

Of note, Cis and Socs1 are STAT5 target genes transiently induced upon its IL-3-

dependent activation (Basham et al., 2008, Nosaka et al., 1999, Yoshimura et al., 1995) 

and CIS has been found to exhibit low protein stability in response to IL-3, as has been 

SOCS1 in other contexts (Rico-Bautista et al., 2004, Siewert et al., 1999, Yoshimura et 

al., 1995), suggesting their prompt degradation after IL-3-dependent production. By 

contrast, SHP-1 is expressed in an IL-3-independent manner (Paling and Welham, 2002, 

Yang et al., 1998). Though, the normal conformation of SHP-1 auto-inhibits its tyrosine 

phosphatase activity, which is activated upon engagement of phosphorylated tyrosine 

residues (Pao et al., 2007, Pei et al., 1994, Yang et al., 2003), suggesting IL-3-dependent 

dephosphorylation of βc/βIL-3, JAK2 and STAT5A/B by SHP-1. Overall, these 

observations indicate a bona fide negative feedback mechanism in Ba/F3 cells, leading 

to a temporary desensitization to IL-3 following STAT5A/B activation. 

1.3.2.4 Posttranslational modifications modulate STAT5A/B activity 

In different cellular contexts, STAT5A/B has been found to be glycosylated at a threonine 

residue (Freund et al., 2017, Gewinner et al., 2004, Nanashima et al., 2005), acetylated 

and SUMOylated at lysine residues (Beier et al., 2012, Ma et al., 2010, Van Nguyen et 

al., 2012) as well as phosphorylated at serine residues (Figure 5 | Beuvink et al., 2000, 

Clark et al., 2005, Mitra et al., 2012, Yamashita et al., 1998) and at tyrosine residues 

other than the aforementioned conserved residue (Kabotyanski and Rosen, 2003, Kloth 

et al., 2002, Olayioye et al., 1999, Schaller-Schönitz et al., 2014). These posttranslational 
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modifications have been reported to influence STAT5A/B activity by various mechanisms 

(reviewed by Rani and Murphy, 2016). For instance, STAT5A/B activation and 

dimerization has been found to be regulated by acetylation (Ma et al., 2010, Van Nguyen 

et al., 2012). This regulation appears to take place upstream of the signaling pathway, 

since PD Dr. Anne Rascle’s research group has recently shown in Ba/F3 cells that lysine 

acetylation-mimicking amino acid substitutions in STAT5A did not impact its 

transcriptional activity (Pinz et al., 2015). In addition, mSTAT5A Ser725 and Ser779 

phosphorylation (hereafter simply STAT5A serine phosphorylation) has been detected 

in Ba/F3 cells (Cooper et al., 2006, Friedbichler et al., 2010, Haq et al., 2002). Though, 

disruption of STAT5A serine phosphorylation did not alter the in vivo cell survival and 

proliferation response to cytokine/hormone-activated STAT5A in hematopoietic cells 

(Friedbichler et al., 2010, Xue et al., 2002), opposing an essential role in Ba/F3 cells. 

1.3.3 Phosphorylated STAT5A/B functions as a transcription factor 

Since its discovery in the mid-nineties, characteristics of STAT5A/B DNA binding activity 

and of STAT5A/B-regulated transcriptional activity have been described in numerous 

studies, taking advantage of technical advances. Specifically, STAT5A/B DNA binding 

activity has been studied using (i) in vitro electronic mobility shift assays (EMSAs) and 

its in vivo DNA binding patterns using (ii) DNA site-specific chromatin immuno-

precipitation (ChIP) followed by quantitative PCR (qPCR) and using (iii) genome-wide 

biased (ChIP-on-chip) and unbiased (ChIP followed by high-throughput sequencing | 

ChIP-seq) assays. Similarly, STAT5A/B transcriptional activity has been studied using 

(i) ectopic luciferase reporter assays and by measuring in vivo transcript levels using (ii) 

transcript-specific reverse transcriptase qPCR (RT-qPCR) and using (iii) biased 

(microarray) and unbiased (RNA high-throughput sequencing | RNA-seq) transcriptome 

analyses. Similar advances have permitted correlating STAT5A/B-specific findings with 

DNA site-specific and later genome-wide analyses of histone modifications (using ChIP 

and ChIP-seq) as well as of chromatin accessibility and nucleosome positioning. 

1.3.3.1 STAT5 DNA binding patterns 

Upon phosphorylation STAT5A/B dimers gain DNA binding activity and both paralogs 

have been found to bind to consensus (TTCN3-4GAA) and similar non-consensus GAS 

(interferon γ-activated sequence) motifs – with nearly identical sequence preferences – 

using in vitro EMSAs (Ehret et al., 2001, Soldaini et al., 2000) and by mathematically 

recovering motifs from DNA sites occupied by either STAT5A or B in vivo (hereafter 

simply STAT5 binding sites), as detected by ChIP-seq (e.g. Liao et al., 2008, Lin et al., 

2012, Reid et al., 2010, Yamaji et al., 2012). Nevertheless, STAT5A and B exhibited 

partially differing, though mostly overlapping, genome-wide DNA binding patterns (Kanai 

et al., 2014, Liao et al., 2008, Lin et al., 2012, Yamaji et al., 2012), suggesting other 
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molecular differences. In addition, a minority of STAT5A/B binding sites exhibited only 

partial or no GAS motifs (e.g. Kanai et al., 2014, Kang et al., 2014, Willi et al., 2016, Zhu 

et al., 2012). On the one hand, partial adjacent GAS motifs are more easily accessed by 

STAT5A/B as tetramers, as shown in vitro by EMSAs (John et al., 1999, Meyer et al., 

2004, Meyer et al., 1997, Soldaini et al., 2000). Accordingly, tetramer-deficient 

STAT5A/B forms have been found to occupy fewer DNA sites than wild-type STAT5A/B 

(Lin et al., 2012). Interestingly, considerably more tetramer-specific STAT5B than 

STAT5A binding sites have been identified in vivo (Lin et al., 2012), suggesting paralog-

specific differences. On the other hand, STAT5A/B signals at sites lacking GAS motifs 

may be an artefact of the applied ChIP-seq method (compare Jain et al., 2015) and/or 

suggest recruitment of STAT5A/B to chromatin by other factors, putatively in a paralog-

specific manner.  

Of note, STAT5A/B DNA binding patterns differ in a cell type-specific manner (Zeng et 

al., 2016) with only ~10% of theoretically available GAS motifs occupied (Kang and 

Hennighausen, 2012). For instance, Nanou et al., 2017 have recently reported ~15,500 

STAT5A binding sites in Ba/F3 cells upon synchronized STAT5A/B activation by IL-3, 

among which ~4,500 overlapped consensus GAS motifs (of altogether ~580,000 

theoretically available in the repeat-masked murine genome | Kang and Hennighausen, 

2012). In doing so, STAT5A binding sites were mostly located in intergenic (~40 %) and 

intragenic (predominantly intronic | altogether ~45 %) regions, as opposed to promoters 

(~15 %), in the Ba/F3 pro-B cell line (Nanou et al., 2017, Theodorou et al., 2013), with 

similar distributions in other cell types (e.g. Gillinder et al., 2017, Kang et al., 2013, Wan 

et al., 2013, Zeng et al., 2016).  

1.3.3.2 Patterns of STAT5A/B-regulated transcriptional activity 

Upon disruption/decrease of STAT5A/B activity numerous gene transcripts are 

downregulated in a cell type-specific manner with a minority of upregulated transcripts 

(e.g. Barclay et al., 2011, Legrand et al., 2016, Rowland et al., 2005, Vidal et al., 2007). 

The reverse pattern is observed upon induction/increase of STAT5A/B activity (e.g. Gass 

et al., 2003, Kawai et al., 2007, Wierenga et al., 2006, Willi et al., 2016). This identifies 

STAT5A/B-regulated genes and, in turn, has been correlated with occupied STAT5 

binding sites in proximity (up to 100 kB distance) (e.g. Connerney et al., 2017, Kang et 

al., 2014, Zhang et al., 2012, Zhu et al., 2012), indicating bona fide STAT5 target genes. 

Overall, this suggests that STAT5A/B predominantly functions as transactivator and 

rarely as transrepressor.  

In accordance with this, genome-wide analyses have found that (occupied) STAT5 

binding sites exhibit a chromatin landscape conducive to transcriptional activity, i.e. high 

chromatin accessibility (e.g. Lau-Corona et al., 2017, Siersbaek et al., 2011, Sugathan 
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and Waxman, 2013, Zeng et al., 2016), enrichment of active marks such as H3K27ac, 

H3K4me1 and H3K4me3 (e.g. Robinson et al., 2014, Schmidl et al., 2014, Shin et al., 

2016, Willi et al., 2016) and depletion of the repressive marks H3K9me3 and H3K27me3 

(Mandal et al., 2011, Sugathan and Waxman, 2013, Zhang et al., 2012). Of note, Mandal 

et al. (2011)) have reported enrichment of the repressive mark H3K7me3 at ~10 % of 

STAT5 binding sites correlating with decreased transcript levels of genes nearby, 

agreeing with STAT5A/B also functioning as transrepressor. Numerous DNA-site 

specific analyses, e.g. by PD Anne Rascle’s research group for the STAT5 target genes 

Cis and Osm in Ba/F3 cells (Pinz et al., 2015, Pinz et al., 2014b, Rascle et al., 2003, 

Rascle and Lees, 2003), confirm these patterns. 

Of note, up to 80 % of occupied STAT5 binding sites could not be linked to STAT5A/B-

regulated genes and, in part, were even located in promoter and intragenic regions of 

genes not regulated by STAT5A/B (e.g. Gillinder et al., 2017, Yamaji et al., 2012, Zhang 

et al., 2012, Zhu et al., 2012). On the one hand, this suggests that many STAT5 binding 

sites are transcriptionally silent and might exert independent functions. On the other 

hand, this suggests that STAT5 binding sites might function as distal regulatory elements 

in accordance with H3K27ac and H3K4me1 enrichment (see above), marking 

transcriptionally active enhancers (Table 1). In further support of this, STAT5 binding 

sites have been identified in established enhancer elements, e.g. in the c-Myc super-

enhancer in Ba/F3 cells (Nanou et al., 2017, GEO accession number GSE79520; Pinz 

et al., 2016), and, moreover, in distal enhancers located within or near other genes as 

identified by enhancer RNA (eRNA) transcription (Gillinder et al., 2017). This offers an 

explanation for STAT5-bound, but not -regulated, genes. Besides, STAT5-binding 

enhancer elements have been found to physically interact with promoter regions using 

3C chromosome conformation capture assays indicating chromatin looping (Li et al., 

2017, Mowel et al., 2017, Wagatsuma et al., 2015), e.g. a Csn2 enhancer element and 

the Csn2 promoter (Kabotyanski et al., 2006, Kabotyanski et al., 2009). Furthermore, 

disruption of STAT5-binding GAS motifs in several enhancer elements, e.g. of Wap, has 

been shown to impede transactivation (Metser et al., 2016, Shin et al., 2016, Wagatsuma 

et al., 2015). Taken together, these findings indicate that STAT5A/B transactivates 

and -represses genes through both promoter and enhancer elements. 

Mirroring DNA binding patterns, STAT5A and B paralog-specific knock-down/out 

experiments have shown that they exhibit partially differing, though mostly overlapping, 

patterns of transcriptional regulation (e.g. Clodfelter et al., 2006, Clodfelter et al., 2007, 

Villarino et al., 2016, Yamaji et al., 2012). For instance, ~4 % of the ~7,400 STAT5A 

target gene transcripts were differentially affected in Ba/F3 cells (Nanou et al., 2017), 

with e.g. Bcl-x mRNA (Bcl-xL isoform) downregulated upon Stat5b, but not Stat5a, 

knock-down (Basham et al., 2008, Schaller-Schönitz et al., 2014), despite both STAT5A 
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and B binding to Bcl-x (Nanou et al., 2017, GEO accession number GSE79520; Nelson 

et al., 2004). This suggests that, given their divergent TADs, STAT5A and B paralog-

specific transcriptional regulation depends on selective interaction with other factors. 

1.3.3.3 Common and cell type-specific STAT5 target genes 

Most STAT5 target genes are differentially regulated depending on the investigated cell 

type with only a small set of common STAT5A/B-regulated genes (Gillinder et al., 2017, 

Yamaji et al., 2012, Zeng et al., 2016 and compare above). On the one hand, cell type-

specific genes participate in cell differentiation (Zeng et al., 2016), e.g. Wap in 

lactogenesis with up to 1,000-fold transactivation (Shin 2016). On the other hand, 

common genes participate in the negative feedback mechanisms regulating STAT5A/B 

transient activity, e.g. Cis and Socs1, or in cell survival and growth, e.g. Pim-1 and Bcl-x, 

with lower transactivation levels (Gillinder et al., 2017). Recently, Zeng et al. (2016) 

argued that cell type-specific STAT5 target genes are primarily regulated through 

enhancers and common genes regulated through promoters, suggesting different 

molecular transactivation mechanisms.  

1.3.3.4 Three parameters inform STAT5 DNA binding and transcriptional 
regulation patterns 

The cell type-specific differences in STAT5A/B DNA binding and transcriptional 

regulation patterns imply pre-determination by the cellular context.  

1.3.3.4.1 The respective STAT5A and B paralog dose informs their DNA binding 
patterns 

The STAT5A and B paralogs exhibit partially differing DNA binding (1.3.3.1) and 

transcriptional regulation (1.3.3.2) patterns in mammary epithelial cells and in T cells. 

There, however, STAT5A and B are expressed asymmetrically (Liu et al., 1995, Villarino 

et al., 2016, Yamaji et al., 2012). Villarino et al. (2016) have recently shown that STAT5A 

only substituted for STAT5B during T cell differentiation, when adjusted for dose. In 

addition, increasing STAT5A protein levels have been correlated with broadened 

STAT5A DNA binding patterns, mostly in the number of occupied sites and to a lesser 

degree in STAT5A chromatin occupancy at a given DNA site (Willi et al., 2016, Yamaji 

et al., 2012, Zhu et al., 2012). Though, Stat5a and b overexpression only marginally 

impacted STAT5 target gene transcript levels (Pham et al., 2018, Zhu et al., 2012), 

suggesting transcriptionally silent STAT5 binding sites. Taken together, this suggests 

that the respective pSTAT5A and B dose informs their overlapping and differing DNA 

binding patterns and to a lower degree differing transcriptional regulation patterns. 
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1.3.3.4.2 The pre-existent chromatin accessibility informs STAT5 DNA binding 
patterns 

In addition to exhibiting high chromatin accessibility (1.3.3.2), STAT5 binding sites have 

been found to be co-occupied by cell type-specific pioneer factors (Schmidl et al., 2014, 

Sugathan and Waxman, 2013). Accordingly, chromatin decondensation has been shown 

to precede de novo STAT5 DNA binding (Rawlings et al., 2011), while cytokine/hormone-

inducible heterochromatin formation has been shown to abrogate STAT5 binding to 

Foxp3 (O'Malley et al., 2009) and to Csn2 (Buser et al., 2011). In addition, Zhu et al. 

(2012) have shown that STAT5A does not occupy DNA sites specific to other cell types 

upon forced Stat5a overexpression despite broadened DNA binding patterns. 

Furthermore, prolactin-induced activation (i.e. deacetylation by HDAC6, Medler et al., 

2016) of the linker histone H1 competitor high-mobility group nucleosome-binding 

chromosomal protein 2 (HMGN2 | e.g. Catez et al., 2002, Martinez de Paz and Ausio, 

2016, Rochman et al., 2011, Weisbrod et al., 1980) has been shown to mediate 

displacement of histone H1 at the Cis and putatively other STAT5 binding sites in two 

human breast cancer cell lines (Schauwecker et al., 2017). Strikingly, this mechanism is 

a prerequisite for (i) full STAT5 DNA binding to Cis and (ii) full transactivation of Cis and 

other STAT5 target genes in response to prolactin, but not for the concurrent core 

nucleosome loss (i.e. histone H3 and H4) at the Cis STAT5 binding site (Fiorillo et al., 

2011, Medler et al., 2016, Schauwecker et al., 2017). Therefore, the Clevenger’s 

research group has argued that this is a global mechanism in mammary epithelial cells 

(in response to prolactin) and proposed that STAT5 DNA binding to Cis and putatively 

other sites is a consequence of prolactin-induced STAT5A/B-independent chromatin 

decondensation, i.e. both HMGN2-independent nucleosome loss and HMGN2-

dependent linker histone H1 displacement (Schauwecker et al., 2017). Overall, these 

findings suggest that STAT5A/B cannot access nucleosomal DNA and that the pre-

existent accessibility of GAS motifs informs STAT5 DNA binding patterns.  

1.3.3.4.3 The pre-existent chromatin landscape informs STAT5A/B transcriptional 
regulation patterns 

Gene-specific reports have shown distinct temporal profiles for STAT5 target gene 

transcripts in response to STAT5A/B activation (e.g. Basham et al., 2008, Chia and 

Rotwein, 2010, Gillinder et al., 2017, Jegalian and Wu, 2002). In addition, cell type-

specific STAT5 target genes can be upregulated much higher than common genes 

(1.3.3.3). Accordingly, cell type-specific STAT5 target genes have been reported to be 

poised for transactivation before STAT5 binding in contrast to common STAT5 target 

genes (e.g. Chia et al., 2010a, Jolivet et al., 2005, Wagatsuma et al., 2015, Wu et al., 

2014). For instance, the promoter of the cell type-specific Igf1 gene was enriched for 

histone acetylation and occupied by co-activators as well as stalled RNA Polymerase II 
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prior to STAT5B binding in contrast to common Cis and Socs2, despite comparable 

transactivation upon STAT5B binding (Chia and Rotwein, 2010, Chia et al., 2010b). 

Besides, STAT5A/B has been found to bind and specifically transrepress the Bcl6 gene 

in different cell types while consistently transactivating other target genes such as Cis 

(Lau-Corona et al., 2017, Lin et al., 2014, Tran et al., 2010, Ujvari et al., 2018, Walker et 

al., 2007), whereas it has been argued to transactivate Bcl6 in a B cell subtype (Scheeren 

et al., 2005). Strikingly, in a human breast cancer cell line STAT5A (in part) 

transrepressed Bcl6 luciferase reporters integrated into the genome upon stable 

transfection, but transactivated non-integrated ones upon transient transfection (Tran et 

al., 2010). Overall, this suggests that STAT5A/B may intrinsically function as 

transactivator of common target genes and that cell type-specific STAT5A/B-mediated 

transactivation and repression dynamics are informed by the gene-specific chromatin 

landscape and gene-specific co-factors. 

1.3.3.4.4 Synergistic and antagonistic interactions with other factors inform 
STAT5 DNA binding and transcriptional regulation patterns 

A minority of STAT5 binding sites exhibits only partial or no GAS motifs (1.3.3.1). 

STAT5A/B has been found to access such low-affinity DNA sites by cooperating with 

other transcription factors (e.g. Bertolino et al., 2005, Robinson et al., 2014, Rusterholz 

et al., 1999, Tan et al., 2008). For instance, STAT5A/B physically interacts with the 

glucocorticoid receptor (GR | Baugh et al., 2007, Engblom et al., 2007) and cooperates 

with GR and CCAAT/enhancer-binding protein β (C/EBPβ) in accessing their Csn2-

regulating and other binding sites (Jolivet et al., 2005, Kabotyanski et al., 2006, 

Siersbaek et al., 2011, Wyszomierski and Rosen, 2001, Xu et al., 2007). Of note, GR-

STAT5A, but not GR-STAT5B, interaction has been reported in adipocytes (Baugh et al., 

2007), showing paralog specificity. By contrast, the Bcl6 and other STAT5A/B-mediated 

transrepression mechanisms have been reported to involve the displacement of other 

transcription factors (e.g. Ono et al., 2007, Rocha-Viegas et al., 2006, Yang et al., 2011), 

which (putatively) function as transactivators. Strikingly, STAT5A-mediated Bcl6 

transrepression did not require its TAD in a human breast cancer cell line (Tran et al., 

2010). This opposes intrinsic STAT5A/B transrepression activity and raises the 

possibility that competitive binding underlies STAT5A/B-mediated transrepression. 

Similarly, STAT5A/B has been found to antagonize the transrepressor B cell lymphoma 

6 (BCL6) protein and other transcription factors (e.g. Buser et al., 2011, Liao et al., 2014, 

Lin et al., 2014, Zhang et al., 2012) by competing for their overlapping or adjacent binding 

sites, promoting transactivation. Taken together, this suggests that synergistic and 

antagonistic interactions with other transcription factors, including in a paralog-specific 

manner, inform STAT5 DNA binding and transcriptional regulation patterns. 
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1.3.3.5 STAT5A/B mediates chromatin alterations by recruiting co-activating 
and co-repressive chromatin modifiers 

STAT5A/B functioning as transcription factor implies STAT5A/B-mediated transient 

chromatin alterations conducive (as transactivator) or adverse (as transrepressor) to 

transcriptional activity. Given its biological role in cell differentiation, STAT5A/B might 

even mediate sustained chromatin alterations, persistently changing transcriptional 

regulation patterns. Several lines of evidence indicate such STAT5A/B-mediated 

chromatin alterations: 

Firstly, STAT5A/B has been found to physically interact with various chromatin modifiers 

(and other non-catalytic effectors of chromatin alterations | Table 2A1) and/or to co-

occupy regulatory elements with them (Table 2A2). For instance, BRG1, a catalytic 

subunit of SWI/SNF family ATP-dependent chromatin-remodeling complexes, has been 

found to co-occupy the Csn2 promoter and to physically interact with STAT5A/B (Xu et 

al., 2007). Besides, HDAC3 and LSD1 have been found to physically interact with 

STAT5A in Ba/F3 cells and to co-occupy ~60 % and ~35 %, respectively, of the ~15,500 

STAT5A binding sites (Nanou et al., 2017). Overall, this suggests functional interaction 

of STAT5A/B and chromatin modifiers. 

Secondly, STAT5 DNA binding has been correlated with the recruitment of chromatin 

modifiers (Table 2B1) and with the chromatin alterations effected by them (Table 2B2) in 

a dose- and time-dependent manner upon disruption/decrease and upon induction/

increase of STAT5A/B activity. In doing so, these positive and/or negative correlations 

concurred with STAT5A/B-mediated transactivation or -repression (Table 2B3), 

suggesting that the effectors contributed positively and/or negatively to STAT5A/B 

transcriptional activity (Table 2B3). For instance, GAS motif disruption in a TCRG-Jγ1 

STAT5 binding site abrogated the enrichment of H3K4me1/2/3 and histone H4 

acetylation as well as the recruitment of BRG1 to TCRG-Jγ1 (in addition to the abrogation 

of STAT5 DNA binding and of TCRγ-Jγ1 transactivation | Wagatsuma et al., 2015). This 

suggests that STAT5A/B normally mediates chromatin remodeling and the 

aforementioned histone modifications by recruiting SWI/SNF family complexes, one or 

more of the HATs interacting with STAT5A/B (Table 2) and unidentified H3K4 

methyltransferases, thus creating a chromatin landscape at TCRγ-Jγ1 conducive to 

transcriptional activity.  

Thirdly, to investigate the functional impact of a given chromatin modifier on STAT5A/B-

mediated transactivation and repression, STAT5A/B transcriptional activity has been 

correlated with disruption/decrease and/or induction/increase of modifier activity (Table 

2C). Using luciferase reporter assays (Table 2C1) or by analyzing transcript levels (Table 

2C2), chromatin modifiers have been shown to augment and/or to impede STAT5A/B-
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mediated transactivation and repression in a dose-dependent manner, indicating both 

positive and negative roles. For instance, Xu et al., 2007 have shown by RT-qPCR that 

a dominant-negative BRG1 mutant impeded STAT5A/B-mediated Csn2 transactivation, 

suggesting that SWI/SNF complexes function as STAT5A/B co-activators. In addition, 

transcriptome analyses upon HDAC3 and LSD1 knock-down in Ba/F3 cells suggested 

that HDAC3 functions as a STAT5A co-activator or co-repressor in a gene-specific 

manner, whereas LSD1 predominantly functions as a STAT5A co-repressor (Nanou et 

al., 2017). Of note, the HAT nuclear receptor co-activator 1 (NCoA1) augmented 

STAT5B-mediated transactivation to a higher degree than STAT5A-mediated 

transactivation (Litterst et al., 2003), raising the possibility of paralog-specific differences. 

Interestingly, HDAC6 inhibition has been shown to impede both STAT5 DNA binding to 

Cis (using the [mostly] HDAC6-specific inhibitor Bufexamac [Bantscheff et al., 2011]) and 

transactivation of Cis (using amongst others the HDAC pan-inhibitor trichostatin A [TSA 

| Yoshida et al., 1990] and Hdac6 knock-down) and other STAT5 target genes (using 

Bufexamac) in response to prolactin in two human breast cancer cell lines (Medler et al., 

2016). HDAC6-dependent HMGN2 activation and, in turn, HMGN2-dependent STAT5 

DNA binding to and STAT5A/B-mediated transactivation of Cis (Fiorillo et al., 2011, 

Medler et al., 2016, Schauwecker et al., 2017 | compare 1.3.3.4.2) suggest inhibition of 

STAT5A/B-mediated transactivation through HMGN2 at a step preceding STAT5 DNA 

binding. By contrast, TSA and other HDAC inhibitors have been found by PD Dr. Anne 

Rascle’s research group to impede STAT5A/B-mediated transactivation of multiple 

STAT5 target genes such as Cis and Osm in Ba/F3 cells at a step following STAT5 DNA 

binding, but before RNA Polymerase II recruitment (Pinz et al., 2015, Pinz et al., 2016, 

Rascle et al., 2003, Rascle and Lees, 2003). Strikingly, knock-down of various HDACs 

including HDAC6 did not impact STAT5A/B-mediated transactivation of Cis in Ba/F3 cells 

(Pinz et al., 2015). Taken together, this suggests (i) molecular differences in the Cis and 

putatively other STAT5A/B-mediated transactivation mechanisms in these two cellular 

contexts, opposing a role for HMGN2 in Ba/F3 cells, and (ii) a mechanism of action for 

HDAC inhibitors not dependent on a singular function of a specific HDAC in Ba/F3 cells. 

In fact, PD Dr. Anne Rascle’s research group has recently shown that a pan-inhibitor of 

the BET family equally impedes STAT5A/B-mediated transactivation (of Cis, Osm and 

other genes) and that the BET family member Brd2 is recruited to Cis upon STAT5 DNA 

binding in Ba/F3 cells (Pinz et al., 2015). Given that Brd2 knock-down impeded 

STAT5A/B-mediated transactivation of Cis, but not of Osm, in another cellular context 

(Liu et al., 2014), this suggests the participation of Brd2 in the Cis and possibly of another 

BET family member in the Osm transactivation mechanism. Strikingly, PD Dr. Anne 

Rascle’s research group has shown that HDAC inhibitors induce a genome-wide and 

locus-specific histone hyperacetylation and a concurrent displacement of Brd2 from Cis 
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and, therefore, argued that HDAC inhibitors indirectly inhibit STAT5A/B-mediated 

transactivation in Ba/F3 cells by decreasing the availability of BET family proteins at 

STAT5 target genes (Pinz et al., 2015). 

Fourthly, the aforementioned augmentation and/or impediment of STAT5A/B 

transcriptional activity did not depend on cytokine/hormone-induced STAT5A/B activity, 

as it could be reproduced in the absence of cytokines/hormones using constitutively 

active (dominant positive) STAT5A/B forms. This excluded the possibility that cytokine/

hormone-induced third factors mediated STAT5A/B-associated chromatin alterations. 

For instance, HDAC3 has been shown to impede transactivation and to augment 

transrepression by constitutively active STAT5B (Lin et al., 2014). 

 

Table 2 (next page): DNA-bound STAT5 recruits chromatin modifiers to mediate chromatin 
alterations 
STAT5 functions as a transcription factor in response to external stimuli, suggesting STAT5-mediated 
chromatin alterations by chromatin modifier recruitment. A: STAT5 has been found to co-occupy chromatin 
with chromatin modifiers and/or physically interact with them. These chromatin modifiers are specified and 
grouped into their respective protein family. Co-occupancy and physical interaction with STAT5 is indicated 
by ‘�’. B: STAT5 chromatin occupancy at its target genes has been shown to correlate in dose- and/or time-
dependent manner positively (+) or negatively (−) with modifier recruitment, the chromatin alterations 
effected by them and up- or downregulated transcript levels, indicating STAT5-mediated transactivation (TA) 
or transrepression (TR). The (putative) positive (+), negative (−) or context-dependent positive and negative 
(±) role of a given modifier for STAT5-mediated transactivation (TA) or transrepression (TR) is specified in 
brackets. C: Functional assays using luciferase reporter assays or in vivo transcript levels have shown that 
a given modifier augments (+), impedes (−) or both augments and impedes (±) STAT5-mediated 
transactivation (TA) or transrepression (TR) by increasing/inducing or decreasing/disrupting of modifier 
activity. D: The (putative) function and role of a given chromatin modifier in transcriptional regulation by 
STAT5 is briefly summarized. In particular, the effected chromatin alteration and its (putative) role as co-
activator (CA) or co-repressor (CR) is specified. 

�: CTCF and HP1a interact with unphosphorylated, transcriptionally inactive STAT5. �: HDAC6-STAT5 
chromatin co-occupancy is suggested by circumstantial evidence. �: STAT5 co-occupying the same locus 
as Tet-1/2 has been shown in different studies (50,51). 

References: 1: Xu et al., 2007; 2: Wagatsuma et al., 2015; 3: this study, 1.2.2.1; 4: Liu et al., 2014; 5: Pinz 
et al., 2015; 6: Pinz et al., 2016; 7: Taniguchi, 2016; 8: Park et al., 2016; 9: Merkenschlager and Nora, 2016; 
10: Zhu et al., 1999; 11: Gewinner et al., 2004; 12: Masui et al., 2008; 13: Ma et al., 2010; 14: Pfitzner et al., 
1998; 15: Ye et al., 2001; 16: Boer et al., 2002; 17: Boer et al., 2003; 18: Garrigan et al., 2013; 19: this study, 
1.2.2.2; 20: Peng et al., 2002; 21: Paukku et al., 2003; 22: Litterst et al., 2003; 23: Ling and Lobie, 2004; 24: 
Kabotyanski et al., 2006; 25: Chia and Rotwein, 2010; 26: Chia et al., 2010a; 27: Chia et al., 2010b; 28: 
Buser et al., 2011; 29: Yang et al., 2011; 30: Hedrich et al., 2014; 31: Lin et al., 2014; 32: Katerndahl et al., 
2017; 33: Sen et al., 2018; 34: Kleinschmidt et al., 2008; 35: Di Lorenzo and Bedford, 2011; 36: Kwon and 
Workman, 2011; 37: Hu et al., 2013; 38: Fiorillo et al., 2011; 39: Medler et al., 2016; 40: Martinez de Paz 
and Ausio, 2016; 41: Schauwecker et al., 2017; 42: Xu et al., 2003; 43: Rocha-Viegas et al., 2006; 44: Nanou 
et al., 2017; 45: Nakajima et al., 2001; 46: Black et al., 2012; 47: Yoo et al., 2015; 48: Mandal et al., 2011; 
49: Weng et al., 2014; 50: Feng et al., 2014; 51: Ogawa et al., 2014; 52: Yang et al., 2015; 53: Wu and 
Zhang, 2017; 54: Pham et al., 2018. 

Abbreviations: BET = bromodomain and extra-terminal domain, Brd2 = bromodomain and extra-terminal 
domain (BET) protein Brd2, BRG1 = brahma-related gene-1, CARM1 = co-activator-associated arginine 
methyltransferase 1, CTCF = CCCTC-binding factor, CBP = CREB(cAMP response element-binding 
protein)-binding protein, CPAP = centrosomal P4.1-associated protein, Ezh = enhancer of zeste homolog, 
HDAC = histone deacetylase, HP1α = heterochromatin protein 1 α, HMGN = high-mobility group 
nucleosome-binding chromosomal protein, LSD1 = lysine-specific demethylase 1, n/a = not available, 
NCoA1 = nuclear receptor co-activator 1, NCoR2 = nuclear receptor co-repressor 2, Nmi = n-Myc interactor, 
occ. = occupancy, p100 = 100 kDa co-activator, p300 = E1A binding protein p300, PIC = pre-initiation 
complex, PPI = protein-protein-interaction, PRC2 = polycomb repressive complex 2, PRMT1 = protein 
arginine methyltransferase 1, SMRT = silencing mediator for retinoic acid receptor and thyroid hormone 
receptor, SWI/SNF = switching defective/sucrose non-fermenting, TA = transactivation, TET = ten-eleven 
translocation 1 protein, TR = transrepression. 
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Taken together, these four lines of evidence consolidate the idea that STAT5A/B can 

function as a transactivator/repressor by mediating chromatin alterations conducive/

adverse to transcriptional activity. Strikingly, STAT5 DNA binding has been found to be 

a prerequisite for the binding of other transcription factors (Ogawa et al., 2014, Shi et al., 

2008, Shin et al., 2016), raising the possibility that STAT5A/B-mediated chromatin 

alterations exposed their occluded binding motifs. For instance, disruption of the STAT5 

binding sites in the Wap super-enhancer abrogated chromatin decondensation (at one 

of two sites) and the binding of three other transcription factors, which normally synergize 

with STAT5A/B in Wap transactivation (Shin et al., 2016). This suggests that STAT5A/B 

can function as an anchor for other transcription factors similarly to pioneer factors in 

some contexts and raises the possibility that sustained STAT5A/B-mediated chromatin 

alterations underlie its biological role in cell differentiation and oncogenesis. 

1.3.3.6 Novel role of unphosphorylated STAT5A/B in chromatin regulation 

Unphosphorylated, transcriptionally inactive STAT5A/B has been recently implicated in 

the regulation of chromatin function and transcriptional repression via interaction with 

heterochromatin protein 1 α (HP1α) and with CCCTC-binding factor (CTCF | Hu et al., 

2013, Park et al., 2016, reviewed by Wingelhofer et al., 2018 | Table 2). Interestingly, 

unphosphorylated STAT5A has been reported to occupy chromatin in Ba/F3 cells at DNA 

sites lacking GAS motifs (Nanou et al., 2017), raising the possibility that recruitment of 

unphosphorylated STAT5A/B participates in chromatin regulation in this cellular context. 

1.3.3.7 Summary 

In summary, the STAT5A and B paralogs gain DNA binding activity upon phosphorylation 

and function as transcription factors in both a common and a cell type- and gene-specific 

manner. In doing so, the mostly overlapping, though partially distinct, DNA binding and 

transcriptional regulation patterns of the STAT5A and B paralogs are informed by (i) their 

affinity to access binding motifs as tetramers, (ii) the respective paralog dose, (iii) the 

pre-existent chromatin landscape (including chromatin accessibility) and (iv) [paralog-

specific] synergistic or antagonistic interactions with other transcription factors. STAT5A 

and B mediate their transcriptional activity by recruiting chromatin modifiers (putatively 

in a paralog-specific manner), creating a chromatin landscape (more) conducive or 

(more) adverse to transcriptional activity. Overall these four pre-determining parameters 

and, both transient and putatively sustained, STAT5A/B-mediated chromatin alterations 

may underlie the redundant and non-redundant, biological roles of the STAT5A and B 

paralogs, i.e. their common permissive role in cell survival and growth and their context-

dependent instructive role in cell differentiation. The fact, that STAT5A/B function is 

informed by the pre-existent chromatin landscape and that STAT5A/B can mediate 

chromatin alterations, implies that STAT5 DNA binding and transcriptional activity can 
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be principally both a cause for and a consequence of chromatin alterations, stressing the 

importance of investigating correlative findings. 

1.3.4 Misregulated constitutive STAT5A/B activity is oncogenic  

1.3.4.1 Hematologic cancers are associated with constitutive STAT5A/B activity 

Constitutive instead of transient STAT5A/B activation has been frequently observed in 

several human cancer subtypes (reviewed by Rani and Murphy, 2016), amongst others 

in hematologic cancers (i.e. leukemias and lymphomas) such as B cell acute 

lymphoblastic leukemia (B-ALL | e.g. Gouilleux-Gruart et al., 1997, Heltemes-Harris et 

al., 2011, Tasian et al., 2012, Weber-Nordt et al., 1996). This has been correlated with 

DNA alterations of STAT5A/B pathway components in patterns suggesting gain-of-

function (constitutively active) variants predominantly of cytokine/hormone receptors and 

JAKs and rarely of STAT5B, but notably not STAT5A, and loss-of-function variants of 

negative regulators of STAT5A/B of the SOCS and PTP families (compare 1.3.2 | 

reviewed by Constantinescu et al., 2008, Shahmarvand et al., 2018). For instance, 

(putative) gain-of-function missense mutations have been observed in Csf2rb (= βc, 

hβc
R461C | Watanabe-Smith et al., 2016), in Jak2 (e.g. hJAK2V617F | Levine et al., 2005) 

and in Stat5b (several in the SH2 domain, most often hSTAT5BN642H | e.g. Bandapalli et 

al., 2014, Kiel et al., 2014, Küçük et al., 2015, Rajala et al., 2013), in addition to gene 

fusions such as BCR-ABL (de Klein et al., 1982, Nowell P., 1960, Ravandi and Kebriaei, 

2009). By contrast, (putative) loss-of-function DNA alterations have been observed in 

STAT5A/B negative regulators such as Socs1 (Capello et al., 2013, Melzner et al., 2005) 

and Shp-1 (Demosthenous et al., 2015, Vollbrecht et al., 2015) in addition to chromatin 

alterations (heterochromatic silencing indicated by hypermethylation | e.g.Capello et al., 

2013, Chim et al., 2004a, Chim et al., 2004b, Oka et al., 2002, Zhang et al., 2017). This 

correlative evidence strongly suggests that constitutive STAT5A/B activation is caused 

by ‘driver’ DNA alterations in the STAT5A/B pathway in vivo. The lack of de novo Stat5a 

mutations raises the possibility of paralog-specific differences in oncogenicity, as 

supported by other evidence (compare Casetti et al., 2013, Schaller-Schönitz et al., 

2014, Zhang et al., 2007). 

1.3.4.2 Functional assays have established oncogenicity of constitutively active 
STAT5A/B 

The IL-3-dependent pro-B Ba/F3 cell line, employed in the present study, and other 

hematopoietic cell lines have served as experimental systems to study the 

aforementioned gain-of-function variants. In doing so, their forced expression in Ba/F3 

cells has been shown to constitutively activate STAT5A/B in an IL-3-independent manner 

and to enable IL-3-independent cell survival and growth (βc 
R461C: Watanabe-Smith et al., 

2016; JAK2V617F: James et al., 2005; STAT5BN642H: Ariyoshi et al., 2000, Bandapalli et 
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al., 2014; BCR-ABL: Ilaria and Van Etten, 1996). This suggested oncogenic uncontrolled 

growth and, accordingly, mouse models have confirmed the in vivo oncogenicity of most 

of these variants given the development of leukemia or lymphoma upon expression in 

hematopoietic cells (JAK2V617F: Wernig et al., 2006; STAT5BN642H: Pham et al., 2018; 

BCR-ABL: Groffen et al., 1993). Of note, increased/decreased doses of constitutively 

active STAT5A/B have been shown to have both positive and negative effects on cell 

viability and proliferation at different stages of oncogenesis and cancer progression in 

models of hematologic cancers (Chen et al., 2013, Hoelbl et al., 2006, Tsuruyama et al., 

2002, Wang et al., 2015, Warsch et al., 2011). Accordingly, in vivo hematologic cancers 

have been found to exhibit both decreased and increased levels of STAT5A/B compared 

to normal cells (Adamaki et al., 2015, Taskinen et al., 2010 Brady et al., 2012, Warsch 

et al., 2011). This suggests that constitutively active STAT5A/B can have both oncogenic 

and tumor suppressive effects in vivo depending on its dose and the particular cellular 

context. 

Of note, a constitutively active STAT5A form, STAT5A-1*6 (mSTAT5AH298R/S710F), has 

been generated artificially and confers IL-3 independence to Ba/F3 cells (Onishi et al., 

1998). The behavior of STAT5AN642H and STAT5A-1*6 agreed with that of its STAT5B 

paralogs (STAT5BN642H and STAT5B-1*6) in Ba/F3 cells (Ariyoshi et al., 2000, Nosaka 

et al., 1999, Onishi et al., 1998), with the oncogenicity of both STAT5A-1*6 and 

STAT5B-1*6 confirmed in mouse models (Funakoshi-Tago et al., 2010, Katerndahl et 

al., 2017, Nakayama et al., 2009, Schwaller et al., 2000) – albeit neither of the two 1*6 

mutations has been found in vivo so far. Accordingly, paralog-specific single and double 

knock-down/out of Stat5a/b has been shown to impede/disrupt the effects of oncogenic 

upstream STAT5 pathway components in Ba/F3 cells (Funakoshi-Tago et al., 2010), in 

part in a paralog-specific manner (Schaller-Schönitz et al., 2014), and in mouse models 

(Funakoshi-Tago et al., 2010, Hoelbl et al., 2006, Hoelbl et al., 2010, Walz et al., 2012, 

Ye et al., 2006). Besides, compounds such as the BCR-ABL-inhibitor imatinib, which 

inhibit constitutively active STAT5A/B by targeting upstream pathway components, have 

been clinically approved for treatment of e.g. B-ALL or are undergoing clinical trials 

(Buchdunger et al., 1996, O'Shea et al., 2015, Schwetz, 2001). Pre-clinical models such 

as the Ba/F3 cell line have allowed identification of more STAT5A/B-inhibiting 

compounds, e.g. sulforaphane, by PD Dr. Anne Rascle’s research group (Jobst et al., 

2016, Pinz et al., 2014a, Pinz et al., 2015, Pinz et al., 2014b). In addition, forced 

expression of Socs1 (though not Cis) has been shown to induce apoptosis of IL-3-

independent Ba/F3 cells expressing STAT5A-1*6 (Nosaka et al., 1999) in accordance 

with its proposed tumor suppressive role. Strikingly, (T2/Onc Sleeping Beauty 

transposon) mutagenesis studies have recently shown that STAT5 pathway genes, e.g. 

Jak2, Stat5a and b, are among the most frequently mutated in Ba/F3 cells selected for 
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IL-3-independent growth (Guo et al., 2016) as well as in pre-cancer (B-ALL) primary B 

cells (van der Weyden et al., 2015). Taken together, these findings establish a causal 

link of constitutive STAT5A/B activity with oncogenesis and cancer progression. 

1.3.4.3 Molecular properties of constitutively active STAT5A/B forms 

The (putative) gain-of-function Stat5b mutations identified in vivo are all located within or 

near the SH2 domain responsible for dimerization (Figure 5), suggesting that a similar 

molecular mechanism underlies their constitutive activity. Accordingly, the 

mSTAT5AS710F mutation in STAT5A-1*6, likewise located there, but not the 

mSTAT5AH298R mutation located in the coiled-coil domain (Figure 5), has been shown to 

cause constitutive phosphorylation, DNA binding and transcriptional activity (Onishi et 

al., 1998) and enhanced tetramer formation (Moriggl et al., 2005). In addition, the 

hSTAT5BK694R and K701R mutations located in proximity have each been found to 

decrease/disrupt STAT5B dimerization and transcriptional activity (in addition to 

acetylation | Ma et al., 2010), while no such effect on transcriptional activity and 

phosphorylation was observed for the paralogous mutations of mSTAT5A-1*6 (K689R and 
K696R | Pinz et al., 2015). Taken together, mSTAT5AS710F and other mutations in the SH2 

domain might thus increase the stability of STAT5A/B (parallel) dimerization, 

tetramerization and/or phosphorylation by changing the conformation of the C-terminal 

STAT5A/B domains, which include the key mSTAT5A Tyr694 residue. In this case, 

constitutive STAT5A/B-1*6 phosphorylation in IL-3-independent STAT5A/B-1*6 Ba/F3 

cell lines might rely on IL-3-independent basal JAK2 tyrosine kinase activity, as 

supported by the sensitivity of STAT5A-1*6-enabled Ba/F3 cell survival and growth to 

SOCS1 overexpression (Nosaka et al., 1999), and/or IL-3-independent activity of other 

tyrosine kinases. On the other hand, the mSTAT5AH298R mutation in STAT5A-1*6, has 

been shown to prevent interaction with the nuclear receptor co-repressor silencing 

mediator for retinoid or thyroid-hormone receptors (NCoR2/SMRT | Nakajima et al., 

2001, Table 2), suggesting an augmentation of STAT5A/B-1*6 transcriptional activity 

compared with wild-type STAT5A/B. 

1.3.4.4 Mechanisms of STAT5A/B oncogenicity 

The frequently oncogenic STAT5 target genes c-Myc (Gabay et al., 2014, Hayward et 

al., 1981), Pim-1 (Cuypers et al., 1984, Narlik-Grassow et al., 2014) and Bcl-x (Ola et al., 

2011) have been shown to be upregulated in Ba/F3 cells expressing STAT5A-1*6 and 

to effect their IL-3-independent survival and growth (Nosaka et al., 1999, Nosaka and 

Kitamura, 2002), with similar patterns observed in in vivo hematologic cancers (e.g. 

Brault et al., 2012, Katerndahl et al., 2017, Kontro et al., 2014, Pham et al., 2018). This 

suggests that STAT5A/B, constitutively functioning as a transactivator for oncogenes 

(i.e. transcriptional misregulation), may inform its oncogenicity. Accordingly, STAT5 



Introduction   39 

glycosylation (Freund et al., 2017), serine phosphorylation (Berger et al., 2014, 

Friedbichler et al., 2010, Mitra et al., 2012), tetramer formation (Moriggl et al., 2005) have 

been also found to contribute to or even to be a prerequisite for STAT5A/B oncogenicity, 

in line with their modulation of STAT5A/B transcriptional regulation patterns (compare 

1.3.2.4). Similarly, cross-activation of the PI3K and MAPK pathways via GAB2 has been 

found to be a prerequisite for STAT5A/B oncogenicity (Harir et al., 2008, Harir et al., 

2007, Nyga et al., 2005, Sattler et al., 1999) – with Gab2 also a frequent target in the 

aforementioned Ba/F3 mutagenesis study (Guo et al., 2016) – suggesting indirect 

transcriptional misregulation by constitutively active STAT5A/B through other pathways. 

Furthermore, STAT5A/B has been shown to localize in mitochondria and interact with a 

component of the pyruvate dehydrogenase complex in Ba/F3 cells (Chueh et al., 2010, 

Chueh et al., 2011). Accordingly, STAT5A/B has been argued to have non-canonical 

roles in the redox balance in normal and transformed hematopoietic cells, both impeding 

(Casetti et al., 2013, Cholez et al., 2012) and augmenting oxidative stress (Bourgeais et 

al., 2017, Moloney et al., 2017, Sallmyr et al., 2008, Warsch et al., 2012), suggesting 

protective and destructive roles for DNA damage induced by oxidative stress. Of note, 

Ba/F3 cells expressing STAT5A-1*6 have been recently shown to exhibit increased 

oxidative stress and downregulation of genes adverse to oxidative stress (Bourgeais et 

al., 2017), suggesting augmentation of oxidative stress by STAT5A-1*6. By contrast, 

endogenous STAT5A/B has been shown to transactivate Rad51, a DNA damage repair 

gene, in parental Ba/F3 cells (Heath and Cross, 2004, Slupianek et al., 2002) and to 

interact with a factor (Kawashima et al., 2006), which augments oxidative stress amongst 

other things (Acevedo and Gonzalez-Billault, 2018). This proposes a homeostatic role 

for endogenous STAT5A/B for oxidative stress in parental Ba/F3 cells. Overall, this 

raises the possibility that STAT5A-1*6 induces oncogenic DNA damage by augmenting 

oxidative stress. 

1.3.4.5 Constitutively active STAT5A/B might mediate ‘driver’ chromatin 
alterations 

The transcriptional misregulation found in cancers exhibiting constitutive STAT5A/B 

activity (1.3.4.4) proposes that ‘driver’ chromatin alterations up- or down-regulate genes 

functioning as oncogenes or tumor suppressor genes, respectively. In fact, oncogenic 

mutations inducing constitutive STAT5A/B activity have been found to concur with 

mutations of chromatin modifiers (e.g. Atak et al., 2013, Hou et al., 2014, Kiel et al., 2015, 

Patel et al., 2012) such as the co-repressor Ezh2 (Lopez et al., 2016 Kiel et al., 2014). 

Accordingly, Ezh2 is a target in the aforementioned Ba/F3 mutagenesis study (Guo et 

al., 2016). Of note, STAT5A/B has been shown to bind and transcriptionally regulate 

genes encoding chromatin modifiers in Ba/F3 cells including Ezh2, Dpf3 (a subunit of 

SWI/SNF ATP-dependent chromatin remodeling complexes) and Tet2 (Basham et al., 
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2008, GEO accession number GSE10389; Nanou et al., 2017, GEO accession number 

GSE79520; Nishioka et al., 2016; Theodorou et al., 2013). Interestingly, Dpf3, Ezh2 and 

Tet2 have been found to be transcriptionally misregulated in human hematologic 

cancers, correlating with increased STAT5 binding to the Dpf3 promoter (e.g. 

Hernández-Sánchez et al., 2014, Nishioka et al., 2016, Rabello Ddo et al., 2015, Solary 

et al., 2014, Theodorou et al., 2013). In addition, forced over-expression of Tet2 has 

been correlated with chromosomal aberrations in Ba/F3 cells (Mahfoudhi et al., 2016), 

indicating the ‘genomic instability’ cancer hallmark. Overall, this suggests that (i) 

STAT5A/B-independent loss- and gain-of-function mutations in chromatin modifiers and 

(ii) STAT5A/B-dependent transcriptional misregulation of chromatin modifiers inform 

‘driver’ chromatin alterations in STAT5A/B-associated cancers. 

Though, they may be informed by a third mechanism: ‘driver’ chromatin alterations of 

STAT5 target genes might be mediated by DNA-bound constitutively active STAT5A/B 

itself. In fact, STAT5A/B physically and functionally interacts with Ezh2 and Tet2 (and 

putatively DPF3 through BRG1 | Table 2). Strikingly, chromatin recruitment of Ezh2 has 

been shown to be misregulated in the presence of (i.e. putatively because of) 

constitutively activated STAT5A/B (mediated by JAK2V617F) in Ba/F3 cells (Chen et al., 

2017). Moreover, the oncogenic STAT5 target gene Socs2 (compare Laszlo et al., 2014) 

exhibited increased chromatin accessibility in the presence of constitutive STAT5A/B in 

primary hematopoietic cells, compared to transient STAT5A/B activity (Viny et al., 2015). 

Besides, ectopic STAT5BN642H, but not wild-type STAT5B, expression has been 

correlated with the loss of DNA methylation at putative oncogenes and their upregulation 

in a mouse model of T cell lymphoma (Pham et al., 2018).  

The aforementioned hypothesis, in turn, proposes that sustained STAT5 DNA binding, 

as found in the presence of oncogenic constitutive STAT5A/B activity, can mediate other 

chromatin alterations than normal transient STAT5 DNA binding. Interestingly, sustained 

STAT5 DNA binding has been found in two physiological contexts (in both humans and 

rodents), namely in female livers as opposed to male livers (Choi and Waxman, 1999, 

Tannenbaum et al., 2001, Zhang et al., 2012) and during lactogenesis (Kang et al., 2014, 

Liu et al., 1996, Shin et al., 2016, Willi et al., 2016). In doing so, forced sustained 

STAT5A/B activation in male livers has been shown to cause the almost complete 

feminization of transcript levels and chromatin accessibility patterns (Lau-Corona et al., 

2017, Ling et al., 2010). Moreover, sustained, but not transient, endogenous STAT5A/B 

activity as well as constitutive STAT5A/B-1*6 activity have been shown to correlate with 

upregulation of and histone acetylation at Csn2 in a mammary epithelial cell line (Xu et 

al., 2009). Taken together, these findings raise the possibility of time-dependent 

oncogenic effects of sustained STAT5 DNA binding on chromatin. In support of this, a 

constitutively active, a wild-type, and, strikingly, a dominant negative (i.e. TAD-deficient, 
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with sustained DNA-binding activity but transcriptionally inactive) STAT5A form have all 

been found to induce breast tumorigenesis in a mouse model upon ectopic expression 

in the mammary gland – albeit with decreasing incidence (Iavnilovitch et al., 2004) – 

suggesting that STAT5A oncogenicity does not exclusively involve its transcriptional 

activity but also other effects upon DNA binding. In doing so, the lactogenesis-dependent 

upregulation of a wild-type and constitutively active STAT5A form highly increased the 

incidence of breast tumors at menopause, when comparing mice experiencing several 

pregnancies (i.e. cycles of STAT5A upregulation) with virgin mice (Eilon et al., 2007). 

This suggests that high STAT5A activity levels primed mice for oncogenesis, putatively 

via STAT5A-mediated chromatin alterations persisting after weaning.  

This circumstantial evidence is complemented by molecular differences observed 

between transiently and constitutively active STAT5. Namely, endogenous STAT5A/B 

constitutively activated by an upstream mutation has been reported to bind to low-affinity 

TTCN4GAA GAS motifs with higher affinity than transiently active endogenous 

STAT5A/B in Ba/F3 cells (Moucadel and Constantinescu, 2005), suggesting that 

broadened DNA binding patterns contribute to transcriptional misregulation. Strikingly, 

STAT5A-1*6 overexpression in hematopoietic cells positively or negatively affected 

transcript levels of ~400 genes to mostly higher degrees than wild-type STAT5A 

overexpression, with STAT5A-1*6-specific changes in a few cases (Wierenga et al., 

2008). Accordingly, the miR-28 gene has been found to be strongly upregulated in Ba/F3 

cells expressing STAT5A-1*6, BCR-ABL or JAK2V617F, but not in parental Ba/F3 cells 

upon synchronized activation of endogenous STAT5A/B (Girardot et al., 2010), 

suggesting a transactivation mechanism for miR-28 specific to constitutive STAT5A/B 

activity possibly involving distinct chromatin alterations conducive to transcriptional 

activity. In addition, DNA binding of STAT5B constitutively activated by JAK2V617F in 

another cell line has been found to be a prerequisite for DNA binding of the transcription 

factor p53, which physically interacts and synergistically transactivates the miR-28 gene 

with STAT5B (Girardot et al., 2015), suggesting that constitutively active STAT5B can 

function as an anchor for other transcription factors. Strikingly, Brd2 has been shown to 

co-occupy the c-Myc super-enhancer with STAT5A-1*6 in a transformed Ba/F3 cell line, 

but not with endogenous STAT5A/B in parental Ba/F3 cells, although c-Myc 

transactivation is sensitive to a BET family pan-inhibitor in both cases (Pinz et al., 2016). 

Accordingly, ectopic STAT5B-1*6 expression in Ba/F3 cells has been correlated with 

increased histone acetylation at the c-Myc (and Bcl-x) super-enhancer in addition to 

c-Myc upregulation (albeit not in comparison to wild-type STAT5B activity | Katerndahl 

et al., 2017). This suggests that STAT5A/B-1*6 specifically mediates (increased) histone 

acetylation at and Brd2 recruitment to the c-Myc super-enhancer (and possibly the Bcl-x 

super-enhancer), thus enhancing gene transactivation. 
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In summary, these findings raise the possibility that constitutively active STAT5A/B 

specifically mediates other chromatin alterations than normal transiently active 

STAT5A/B and that such alterations may constitute ‘drivers’ for STAT5A/B-associated 

oncogenesis and cancer progression. 

1.1. Objectives 

The present study aimed to elucidate effects specific to constitutive STAT5A/B activity 

as opposed to transient STAT5A/B activity – in particular upon sustained DNA binding 

on chromatin – underlying its oncogenicity. To do so, a Ba/F3 cell line inducibly 

expressing constitutively active STAT5A-1*6 was generated as an experimental model 

system, to allow the monitoring of oncogenic processes induced by STAT5A-1*6 

expression. 

The main goal of this project was the identification of ‘driver’ events and alterations 

characteristic of STAT5-associated cancers. Specific aims of this study were to:  

(i) characterize the effects of STAT5A-1*6 on the cell survival and growth 

phenotypes; 

(ii) characterize the effects of STAT5A-1*6 on the molecular phenotype, in terms 

of STAT5 DNA binding activity and of gene expression of selected STAT5 

target genes; 

(iii) identify chromatin alterations mediated by endogenous STAT5A/B; 

(iv) investigate whether these STAT5A/B-mediated chromatin alterations were 

misregulated upon sustained DNA-binding of STAT5A-1*6.  

Ultimately, these analyses might identify novel molecular targets for drug development 

against STAT5A/B-associated cancers. 
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2 Material and Methods 

2.1 Material 

2.1.1 Purchased chemicals, buffers and reagents 

name product designation company, 
registered office 

notes 

10x qPCR buffer PCR buffer, 10x Qiagen GmbH, 
D - Hilden 

 

2-mercaptoethanol 2-Mercaptoethanol Sigma-Aldrich Chemie GmbH 
D - Taufkirchen  

 

acetic acid (100 %) Acetic acid (glacial) 100% Merck KGaA, 
D - Darmstadt 

 

acrylamide-bisacrylamide  Rotiphorese® Gel 30 (37,5:1) Carl Roth GmbH + Co. KG, 
D - Karlsruhe 

acrylamide : bisacrylamide 
37.5 : 1 
30 % in H2O 

Agarose Biozym LE Agarose Biozym Scientific GmbH, 
D – Hessisch Oldendorf 

 

Ampicillin Ampicillin Sigma-Aldrich Chemie GmbH 
D - Taufkirchen 

 

Aprotinin Aprotinin Carl Roth GmbH + Co. KG, 
D - Karlsruhe 

lyophilized 
reconstituted in H2O 

APS (ammonium persulfate) Ammonium persulfate Sigma-Aldrich Chemie GmbH 
D - Taufkirchen 

 

Bradford reagent Roti®-Quant Carl Roth GmbH + Co. KG, 
D - Karlsruhe 

contains Coomassie Brilliant 
Blue-G250 
5 x concentrate 

Brij 97 
(polyoxyethylene (10) oleyl 
ether) 

Brij® O10 Sigma-Aldrich Chemie GmbH 
D - Taufkirchen  

 

bromophenol blue (3',3",5',5"-
tetrabromophenolsulfonphthal
ein) 

Bromophenol Blue sodium salt Sigma-Aldrich Chemie GmbH 
D - Taufkirchen 

 

BSA (bovine serum albumin) Bovine Serum Albumin 
(CA#: A9647) 

Sigma-Aldrich Chemie GmbH 
D - Taufkirchen  

 

BSA (bovine serum albumin), 
fatty-acid free 

Bovine Serum Albumin 
(CA#: A7511) 

Sigma-Aldrich Chemie GmbH 
D - Taufkirchen  

 

CutSmart Buffer CutSmart™ Buffer New England Biolabs GmbH, 
D – Frankfurt am Main 

 

DAPI 
(4′,6-diamidino-2-phenylindole 
dihydrochloride) 

4′,6-diamidino-2-phenylindole 
dihydrochloride 

Sigma-Aldrich Chemie GmbH 
D - Taufkirchen  

 

deoxycholic acid, sodium salt Sodium Deoxycholate AppliChem GmbH 
D - Darmstadt 

 

DMSO for cryoconservation 
(dimethyl sulfoxide) 

Dimethyl Sulfoxide AppliChem GmbH 
D - Darmstadt 

 

DMSO, cell pre-treatment and 
SYBR green 
(dimethyl sulfoxide) 

Dimethyl sulfoxide Sigma-Aldrich Chemie GmbH 
D - Taufkirchen 

 

DNA loading dye Gel Loading Dye, Blue (6X) New England Biolabs GmbH, 
D – Frankfurt am Main 

 

dNTP solution dNTP Set, PCR Grade, 4 x 
250 µl 

Qiagen GmbH, 
D - Hilden 

combined before use to: 
25 mM dATP, 25 mM dCTP, 
25 mM dGTP, 25 mM dTTP 

doxycycline Doxycycline hyclate Sigma-Aldrich Chemie GmbH 
D - Taufkirchen 

reconstituted in H2O 

dry milk powder Sucofin skimmed milk powder, 
easily soluble 

TSI GmbH & Co. KG 
D - Zeven 

 

ECL Prime detection reagent Amersham ECL Prime 
Western Blotting Detection 
Reagent 

GE Healthcare Europe GmbH 
D - Freiburg 

 

EDTA 
(ethylenediaminetetraacetic 
acid) 

EDTA disodium salt dihydrate AppliChem GmbH 
D - Darmstadt 

 

Electroporation buffer Gene Pulser® Electroporation 
Buffer 

Bio-Rad Laboratories GmbH, 
D - München 
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ethanol (100 %)) Ethanol 
(CA#: 32205) 

Sigma-Aldrich Chemie GmbH 
D - Taufkirchen 

 

ethidumbromide Ethidium Bromide Solution, 
Molecular Grade 

Promega GmbH, 
D - Mannheim 

 

FCS (i) (fetal calf serum) Fötales Rinderserum PAN Biotech GmbH, 
D - Aidenbach 

heat inactivation before use 
(30min 50°C) 

FCS (ii) (fetal calf serum) Fetal Bovine Serum Life Technologies GmbH, 
D - Darmstadt 

heat inactivation before use 
(30min 50°C) 

Femto detection reagent SuperSignal West Femto 
Chemiluminescent Substrate 

Thermo Fisher Scientific 
GmbH, 
D - Dreieich 

 

Formaldehyde (37% solution) Formaldehyde solution Sigma-Aldrich Chemie GmbH 
D - Taufkirchen 

 

G418 G418, Geneticin® PAA Laboratories GmbH, 
D - Cölbe 

 

glutamine (cell culture) L-Glutamin PAN Biotech GmbH 
D - Aidenbach 

 

glycerol Glycerine Carl Roth GmbH + Co. KG, 
D - Karlsruhe 

 

glycine Glycine Merck KGaA, 
D - Darmstadt 

 

glycogen solution Glycogen, 20 mg/ml Affymetrix GmbH, 
D - München 

 

HCl (hydrochloric acid) Hydrochloric acid fuming 37% Merck KGaA, 
D - Darmstadt 

 

Hotstart Taq Polymerase HotStarTaq® DNA 
Polymerase 

Qiagen GmbH, 
D - Hilden 

 

hygromycin B Hygromycin B PAA Laboratories GmbH, 
D - Cölbe 

 

IL-3 (recombinant murine 
interleukin 3) 

rmIL-3 ImmunoTools GmbH, 
D - Friesoythe 

lyophilized 
reconstituted in RPMI medium 

iScript RT-qPCR Sample 
Preparation Reagent 

iScript™ RT-qPCR Sample 
Preparation Reagent 

Bio-Rad Laboratories GmbH, 
D - München 

 

KCl (potassium chloride) Potassium chloride Merck KGaA, 
D - Darmstadt 

 

KH2PO4 (potassium 
dihydrogen phosphate) 

di-Sodium hydrogen 
phosphate  

Merck KGaA, 
D - Darmstadt 

 

leupeptin Leupeptin Carl Roth GmbH + Co. KG, 
D - Karlsruhe 

lyophilized 
reconstituted in H2O 

LiCl Lithium chloride Sigma-Aldrich Chemie GmbH 
D - Taufkirchen 

 

methanol Methanol Merck KGaA, 
D - Darmstadt 

 

MgCl2 solution MgCl2, 25 mM Qiagen GmbH, 
D - Hilden 

 

MgCl2 x 6H2O 
(magnesium chloride 
hexahydrate) 

Magnesium chloride 
hexahydrate 

Merck KGaA, 
D - Darmstadt 

 

Na3VO4 (sodium 
orthovanadate) 

Sodium orthovanadate Sigma-Aldrich Chemie GmbH 
D - Taufkirchen 

 

NaAc x 3H2O 
(sodium acetate trihydrate) 

Sodium acetate trihydrate Merck KGaA, 
D - Darmstadt 

 

NaCl (sodium chloride) Sodium chloride VWR International GmbH , 
D - Darmstadt 

 

NaF (sodium fluoride) Sodium fluoride Sigma-Aldrich Chemie GmbH 
D - Taufkirchen 

 

NaHCO3 (sodium hydrogen 
carbonate) 

Sodium bicarbonate Sigma-Aldrich Chemie GmbH 
D - Taufkirchen 

 

NaHPO4 (disodium 
phosphate) 

di-Sodium hydrogen 
phosphate 

Merck KGaA, 
D - Darmstadt 

 

NaN3 (sodium azide) Sodium Azide pure AppliChem GmbH 
D - Darmstadt 

 

NaOH (sodium hydroxide) Sodium hydroxide Merck KGaA, 
D - Darmstadt 

pellets 

PBS (phosphate buffered 
saline) 

DPBS, without Ca and Mg PAN Biotech, 
D - Aidenbach 

 

Penicillin/ Streptomycin Penicillin/Streptomycin 
(CA#: P06-07001) 

PAN Biotech GmbH, 
D - Aidenbach 
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Phenol/Chloroform/Isoamyl 
alcohol 

Roti®-
Phenol/Chloroform/Isoamyl 
alcohol 

Carl Roth GmbH + Co. KG, 
D - Karlsruhe 

 

PIPES [piperazine-N,N′-bis(2-
ethanesulfonic acid)] 

Pipes Sigma-Aldrich Chemie GmbH 
D - Taufkirchen 

 

PMSF (phenylmethylsulfonyl 
fluoride) 

Phenylmethanesulfonyl 
fluoride 

Sigma-Aldrich Chemie GmbH 
D - Taufkirchen 

reconstituted in ethanol () 

protein A sepharose beads Protein A Sepharose CL-4B GE Healthcare Europe GmbH 
D - Freiburg 

 

Proteinase K Proteinase K from Tritirachium 
album 

Sigma-Aldrich Chemie GmbH 
D - Taufkirchen 

lyophilized 
reconstituted in H2O 

RNAse A (ribonuclease A) Ribonuclease A from bovine 
pancreas 

Sigma-Aldrich Chemie GmbH 
D - Taufkirchen 

 

RPMI-1640 medium RPMI 1640 
with L-Glutamine 
with 2,0 g/l NaHCO3 
(CA#: P04-16500) 

PAN Biotech, 
D - Aidenbach 

 

Salmon sperm DNA solution  UltraPure™ Salmon Sperm 
DNA Solution 

Life Technologies GmbH, 
D - Darmstadt 

sheared to 2.000 bp 
10 mg/ml 

SDS (sodium dodecyl sulfate) Dodecylsulfate·Na-salt in 
Pellets 

SERVA Electrophoresis 
GmbH, 
D - Heidelberg 

 

SYBR green SYBR Green I Qiagen GmbH, 
D - Hilden 

reconstituted in DMSO 

TEMED 
(tetramethylethylenediamine) 

N,N,N′,N′-
Tetramethylethylenediamine 

Sigma-Aldrich Chemie GmbH 
D - Taufkirchen 

 

Tris 
(tris(hydroxymethyl)aminomet
hane) 

Trizma® base Sigma-Aldrich Chemie GmbH 
D - Taufkirchen 

 

Tris-HCl 
(tris(hydroxymethyl)aminomet
hane hydrochloride) 

tris(hydroxymethyl)aminometh
ane hydrochloride 

Merck KGaA, 
D - Darmstadt 

 

Triton-X 100 Triton® X-100 SERVA Electrophoresis 
GmbH, 
D - Heidelberg 

 

trypan blue solution Trypan Blue solution Sigma-Aldrich Chemie GmbH 
D - Taufkirchen 

0.2 % trypan blue in H2O with 
0.9 % NaCl 

tryptone Tryptone Sigma-Aldrich Chemie GmbH 
D - Taufkirchen 

 

TSA (trichostatin A) Trichostatin A Sigma-Aldrich Chemie GmbH 
D - Taufkirchen 

 

Tween20 TWEEN® 20 Sigma-Aldrich Chemie GmbH 
D - Taufkirchen 

 

yeast extract Yeast Extract Sigma-Aldrich Chemie GmbH 
D - Taufkirchen 

 

2.1.2 Self-made buffers 

All buffers were prepared with ultrapure water (filtered by Milli-Q Integral Water 
Purification System). When the buffers were applied with living cells or native lysates, 
the buffers where sterilized by autoclaving or supplementation with 0.02 % NaN3 (sodium 
azide). If necessary, pH was adjusted using NaOH platelets or HCl. 

name composition application 
0.5x TAE buffer         in H2O: 

  20 mM Tris pH 8.0 
  10 mM acetic acid 
 500 µM EDTA 

Agarose gel electrophoresis 

150 mM NaCl wash buffer  
 

        in H2O: 
 150 mM NaCl 
  20 mM Tris pH 8.0 
   5 mM EDTA 
   1 %  Triton X-100 
 0.2 %  SDS 

Chromatin immunoprecipitation 

500 mM NaCl wash buffer 
 

        in H2O: 
 500 mM NaCl 
  20 mM Tris pH 8.0 
   5 mM EDTA 
   1 %  Triton X-100 
 0.2 %  SDS 

Chromatin immunoprecipitation 
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Brij lysis buffer         in H2O: 
  10 mM Tris pH 7.5 
 150 mM NaCl 
   2 mM EDTA 
0.875 % Brij 
0.125 % NP40 

Protein isolation 

ChIP buffer         in H2O: 
 100 mM NaCl 
  67 mM Tris pH 8.0 
   5 mM EDTA 
0.33 %  SDS 
1.67 %  Triton X-100 

Chromatin immunoprecipitation 

4x Laemmli buffer         in H2O: 
 250 mM Tris-HCl pH 6.8 
  40 %  glycerol 
   5 %  SDS 
0.005%  bromophenol blue 
   10%  β-Mercaptoethanol 

Western blot analysis 

LB medium         in H2O: 
 10 g/l tryptone 
  5 g/l yeast extract 
 10 g/l NaCl 
adjusted to pH 7.5 
autoclaved 

Cloning 

LiCl wash buffer  
 

        in H2O: 
  0.5 % deoxycholic acid 
(sodium salt) 
   1 mM EDTA 
 250 mM LiCl 
  0.5 % NP40 
  10 mM Tris pH 8.0 

Chromatin immunoprecipitation 

1x PBST         in H2O: 
1.37 mM NaCl 
  27 µM KCl 
 100 µM NaHPO4 x 2H2O 
  18 µM KH2PO4 
 0.2 %  Tween20 
adjusted to pH 7.4 

Western blot analysis 

PIPES buffer         in H2O: 
  10 mM PIPES 
 100 mM NaCl 
   2 mM MgCl2 x 6H2O 
   1 %  Triton X-100 
adjusted to pH 6.8 

Flow cytometry 

Protein A Sepharose beads slurry buffer           in TE buffer: 
  1 mg/ml fatty-acid free BSA 
400 µg/ml salmon sperm DNA 

Chromatin immunoprecipitation 

Reverse cross-linking buffer         in H2O: 
   1 %  SDS 
 0.2 M  NaHCO3 

Chromatin immunoprecipitation 

PAGE buffer         in H2O: 
 250 mM Tris 
1.92  M glycine 
   1 %  SDS 

Western blot analysis 

SDS lysis buffer         in H2O: 
 100 mM NaCl 
  50 mM Tris pH 8.0 
   5 mM EDTA 
 0.5 %  SDS 

Chromatin immunoprecipitation 

2x self-made qPCR mix   2x 10x  buffer qiagen  
 5   mM   MgCl2 
 0.4 mM   each dNTP 
1:500,000 SYBR green 
(dATP, dCTP, dGTP, dTTP) 

qPCR, RT-qPCR 

1x TBST         in H2O: 
 150 mM NaCl  
 7,7 mM Tris-HCl 
 0.2 %  Tween20 
adjusted to pH 7.5 

Western blot analysis 

1x TE buffer         in H2O: 
  20 mM Tris pH 8.0 
   1 mM EDTA 
 
 
 

miscellaneous 
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Transfer buffer         in H2O: 
  25 mM Tris 
0.02 %  SDS 
 192 mM glycine 
  20 %  methanol 

Western blot analysis 

Triton X-100 dilution buffer         in H2O: 
 100 mM NaCl 
 100 mM Tris pH 8.0 
   5 mM EDTA 
   5 %  Triton X-100 

Chromatin immunoprecipitation 

2.1.3 Equipment 

name product designation company, 
registered office 

application 

analytical balance Sartorius CP224S Sartorius AG, 
D - Göttingen 

miscellaneous 

automatic propipette controller 
(i) 

accu-jet® pro pipette 
controller 

Brand GmbH & Co. KG, 
D - Wertheim 

miscellaneous 

automatic propipette controller 
(ii) 

Rainin Pipette-X Lightweight 
Controller 

Mettler-Toledo GmbH, 
D - Gießen 

miscellaneous 

balance  PJ400 Mettler-Toledo GmbH, 
D - Gießen 

miscellaneous 

CO2 incubator Heraeus® BBD6220 Thermo Fisher Scientific 
GmbH, 
D - Dreieich 

cell culture 

electroporator Gene Pulser Xcell CE Module Bio-Rad Laboratories GmbH, 
D - München 

transfection 

Flow cytometer BD™ LSR II Flow Cytometer 
System 

Becton Dickinson GmbH, 
D - Heidelberg 

Flow cytometry 

Freezer (−20 °C) Liebherr Premium Liebherr-International 
Deutschland GmbH, 
D - Biberach an der Riß 

miscellaneous 

Freezer (−80 °C) Forma 900 Series -86C 
Upright Freezer 

Thermo Fisher Scientific 
GmbH, 
D - Dreieich 

miscellaneous 

gel documentation system GeneGenius Gel Imaging 
System 

Syngene, 
UK - Cambridge 

agarose gel electrophoresis 

heatable magnetic stirrer MR 2002 Heidolph Instruments GmbH & 
Co.KG, 
D - Schwabach 

miscellaneous 

heating block (72 °C) Thermomixer 5436 Eppendorf AG, 
D - Hamburg 

chromatin 
immunoprecipitation 

heating block (95 °C) Bio TDB-100, Dry block 
thermostat 

A. Hartenstein Laborbedarf 
GmbH, 
D - Würzburg 

Western blot analysis 

horizontal, two-dimensional 
gel system 

Sub-Cell® GT Cell Bio-Rad Laboratories GmbH, 
D - München 

agarose gel electrophoresis 

hybridization incubator (37 °C, 
55  °C, 65 °C) 

hybridization incubator GFL-
7601 

GFL Gesellschaft für 
Labortechnik mbH, 
D - Burgwedel 

chromatin 
immunoprecipitation 

ice maker Scotsman AF80 Scotsman Ice Systems, 
USA - Vernon Hills 

miscellaneous 

manual air displacement 
pipette set: 

- 0.2 µl – 2 µl 
- 2 µl – 20 µl 
- 20 µl – 200 µl 
- 100 µl – 1.000 µl 

Rainin Pipet-Lite XLS+ Mettler-Toledo GmbH, 
D - Gießen 

miscellaneous 

incubator, bacteria WTC binder FD BINDER GmbH 
D - Tuttlingen 

cloning 

incubation shaker, bacteria MaxQ™ 4000 Benchtop 
Orbital Shaker 

Thermo Fisher Scientific 
GmbH, 
D - Dreieich 

cloning 

live imaging microscpe TissueFAXSiPLUS TissueGnostics GmbH, 
A - Wien 

cell culture 

microwave Panasonic inverter Panasonic Europe GmbH 
D - Hamburg 

agarose gel electrophoresis 

ultrapure water system Milli-Q Integral Water 
Purification System 

Merck KGaA, 
D – Darmstadt 
 

miscellaneous 
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nanophotometer NanoPhotometer® P360 Implen GmbH, 
D - München 

cloning 

Neubauer counting chamber Neubauer-improved (depth 
0.1 mm, area 25 µm2) 

Paul Marienfeld GmbH & Co. 
KG, 
D - Lauda Königshofen 

cell culture 

nitrogene tank MVE 810 Eterne/MVE Euro 
Cyl 

german-cryo® GmbH, 
D - Jüchen 

miscellaneous 

optical microscope Olympus CK2 Olympus Deutschland GmbH, 
D - Hamburg 

cell culture 

orbital shaker GFL Shaker 3015 with Orbital 
Motion 

GFL Gesellschaft für 
Labortechnik mbH, 
D - Burgwedel 

Western blot analysis 

PCR thermal cycler MyCyclerTM PCR Thermal 
Cycler 

Bio-Rad Laboratories GmbH, 
D - München 

Gene expression analysis 

pH meter  inoLab® Labor-pH-Meter WTW GmbH, 
D - Weilheim 

miscellaneous 

power supply Power Pack P25 T Biometra GmbH, 
D - Göttingen 

Western blot analysis 

power supply PowerPac™ HC High-Current 
Power Supply 

Bio-Rad Laboratories GmbH, 
D - München 

agarose gel electrophoresis 

refrigerated centrifuge (1,5 ml 
and 2 ml tubes) 

Microcentrifuge 5417R Eppendorf AG, 
D - Hamburg 

miscellaneous 

refrigerated centrifuge (15 ml 
and 50 ml tubes) 

Centrifuge 5810R Eppendorf AG, 
D - Hamburg 

miscellaneous 

Rotator BioSan Rotator Multi RS-60 A. Hartenstein Laborbedarf 
GmbH, 
D - Würzburg 

chromatin 
immunoprecipitation 

Rotor-Gene Q qPCR cycler Rotor-Gene Q Qiagen GmbH, 
D - Hilden 

qPCR, RT-qCPR 

semi-dry electroblotting cell Trans-Blot® SD Semi-Dry 
Transfer Cell 

Bio-Rad Laboratories GmbH, 
D - München 

Western blot analysis 

sonifier power supply Branson Sonifier® S-250A 
analog ultrasonic processor 

G. HEINEMANN Ultraschall- 
und Labortechnik, 
D - Schwäbisch Gmünd 

chromatin 
immunoprecipitation 

sonotrode 5mm tip sonotrode G. HEINEMANN Ultraschall- 
und Labortechnik, 
D - Schwäbisch Gmünd 

chromatin 
immunoprecipitation 

sterile laminar flow working 
bench 

Herasafe™ KS (NSF) Class II, 
Type A2 Biological Safety 
Cabinet 

Thermo Fisher Scientific 
GmbH, 
D - Dreieich 

cell culture 

UV photometer BioPhotometer® Eppendorf AG, 
D - Hamburg 

Western blot analysis 

vertical, two-dimensional gel 
system  

Mini-PROTEAN® 
Electrophoresis System 

Bio-Rad Laboratories GmbH, 
D - München 

Western blot analysis 

vortexer Vortex-Genie 2, 230V Scientific Industries, Inc., 
USA - New York 

miscellaneous 

water-bath water-bath TW12 JULABO GmbH, 
D - Seelbach 

miscellaneous 

Western blot imaging system ImageQuant LAS 4000 Mini GE Healthcare Europe GmbH 
D - Freiburg 

Western blot analysis 

2.1.4 Consumables 

Standard plastic ware was purchased from Sarstedt AG &Co., D - Nümbrecht. 

name product designation company, 
registered office 

application 

96 well cell culture plates BD Falcon Zellkulturplatte mit 
96 Vertiefungen, Flachboden 
und Deckel 

BD Biosciences 
USA - Franklin Lakes 

 

cell culture flasks: 
25 cm2, 75 cm2 and 175 cm2 

TC flasks with quick-release 
cap  

Sarstedt AG &Co., 
D - Nümbrecht 

Cell culture 

cryoconservation tubes CryoPure 2.0 ml tubes with 
internal thread and silicone O-
ring 

Sarstedt AG &Co., 
D - Nümbrecht 

Cell culture 

electroporation cuvettes Gene Pulser/MicroPulser 
Cuvettes 

Bio-Rad Laboratories GmbH, 
D - München 

Transfection 

flow cytometry tubes Tube for flow-cytometer 
FACSAria, FACSCanto, 
FACSCalibur, LRS II, FC 500 

Sarstedt AG &Co., 
D - Nümbrecht 

Flow cytometry 
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photometer cuvettes Semi-micro cuvettes 10 x 4 
mm, optical pathway 10mm 
(CA#: 67.724) 

Sarstedt AG &Co., 
D - Nümbrecht 

Bradford assay 

pipette tips with filter (i) 
(2 µl, 20 µl, 200 µl and 
1,000 µl) 

SafeSeal-Tips® Professional 
Line 

Biozym Scientific GmbH, 
D – Hessisch Oldendorf 

miscellaneous 

pipette tips with filter (ii) 
(20 µl, 200 µl and 1,000 µl) 

Rainin Aerosol-resistant Filter 
Tips 

Mettler-Toledo GmbH, 
D - Gießen 

miscellaneous 

pipette tips without filter (i) 
(10 µl, 200 µl and 1,000 µl) 

Quality Pipette Tips without 
filter 

Sarstedt AG &Co., 
D - Nümbrecht 

miscellaneous 

pipette tips without filter (ii) 
(20 µl, 200 µl and 1,000 µl) 

Rainin SpaceSaver™ Stacked 
Refill 

Mettler-Toledo GmbH, 
D - Gießen 

miscellaneous 

pipette tips without filter (ii) 
(1,000 µl) 

Rainin Bulk Tips Mettler-Toledo GmbH, 
D - Gießen 

miscellaneous 

PVDF transfer membrane, 
0.45 µm pore size 

Immobilon-P Membrane, 
PVDF, 0.45 µm, 26.5 cm x 
3.75 m roll 

Merck KGaA, 
D - Darmstadt 

Western blot analysis 

qPCR tubes (i) 0,1 ml PCR-Tubes and Caps 
for Corbett-System 

Kisker Biotech GmbH & Co. 
KG, 
D - Steinfurt 

qPCR, RT-qPCR 

qPCR tubes (ii) Strip Tubes and Caps, 0.1 ml Qiagen GmbH, 
D - Hilden 

qPCR, RT-qPCR 

reaction tubes 
(15 ml and 50 ml) 

Tubes with conical base, 
screw cap from HD-PE 

Sarstedt AG &Co., 
D - Nümbrecht 

miscellaneous 

reaction tubes 
(1.5 ml and 2 ml) 

SafeSeal micro tubes, 1.5 ml 
(or 2.0 ml), PP, with wide 
hinge 

Sarstedt AG &Co., 
D - Nümbrecht 

miscellaneous 

serological pipettes 
(5 ml, 10 ml and 25 ml) 

Serological pipettes from clear 
polystyrene 

Sarstedt AG &Co., 
D - Nümbrecht 

miscellaneous 

polyamide sieve cloth polyamide sieve cloth Reichelt Chemietechnik 
GmbH, 
D - Heidelberg 

Flow cytometry 

stepper pipette tip Combitips plus 0,5ml Eppendorf AG, 
D - Hamburg 

miscellaneous 

Whatman chromatography 
paper 

Blotting paper WhatmanTM 
3MM Chr 

A. Hartenstein Laborbedarf 
GmbH, 
D - Würzburg 

Western blot analysis 

2.1.5 Kits 

name product designation company, 
registered office 

application 

iScript cDNA synthesis kit iScript™ cDNA Synthesis Kit Bio-Rad Laboratories GmbH, 
D - München 

cDNA synthesis 

DNA purification kit, NTB 
buffer 

Buffer NTB (for clean-up of 
SDS-containing samples) 

MACHEREY-NAGEL GmbH & 
Co. KG, 
D - Düren 

DNA purification for qPCR 

DNA purification kit 
(contains NT3 buffer, elution 
buffer) 

NucleoSpin® Gel and PCR 
Clean-up 

MACHEREY-NAGEL GmbH & 
Co. KG, 
D - Düren 

DNA purification for qPCR 

Miniprep kit Wizard® Plus SV Minipreps 
DNA Purification System 

Promega GmbH, 
D - Mannheim 

DNA purification for cloning 

Midiprep kit QIAGEN Plasmid Plus Midi Kit Qiagen GmbH, 
D - Hilden 

DNA purification for cloning 

Agarose gel DNA purification 
kit 

Wizard® SV Gel and PCR 
Clean-Up System 

Promega GmbH, 
D - Mannheim 

DNA purification for cloning 

2.1.6 Markers 

name product 
designation 

company, 
registered office 

marker sizes application 

Protein marker Protein Marker VI (10 - 
245) prestained 

AppliChem GmbH 
D - Darmstadt 

  245 kDa 
  180 kDa 
  135 kDa 
  100 kDa 
   75 kDa 
   63 kDa 
   48 kDa 
   35 kDa 
   25 kDa 
   20 kDa 

Western blot analysis 
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   17 kDa 
   11 kDa 

100bp DNA ladder 100 bp DNA Ladder New England Biolabs 
GmbH, 
D – Frankfurt am Main 

   1,517 bp 
   1,200 bp 
   1,000 bp 
     900 bp 
     800 bp 
     700 bp 
     600 bp 
     500 bp 
     400 bp 
     300 bp 
     200 bp 
     100 bp 

Agarose gel 
electrophoresis 

1 kb DNA Ladder 1 kb DNA Ladder New England Biolabs 
GmbH, 
D – Frankfurt am Main 

  10,000 bp 
   8,000 bp 
   6,000 bp 
   5,000 bp 
   4,000 bp 
   3,000 bp 
   2,000 bp 
   1,500 bp 
   1,000 bp 
     500 bp 

Agarose gel 
electrophoresis 

2.1.7 Primary antibodies (Western blot analysis) 

name product designation company, 
registered office 

dilution antibody type, 
notes 

anti-α-Tubulin α Tubulin (DM1A): sc-32293 
(CA#: sc-32293) 

Santa Cruz Biotechnology, Inc., 
D - Heidelberg 

1 : 200 monoclonal, 
raised in mouse 

anti-FLAG Monoclonal ANTI-FLAG® M2, Clone M2 
(CA#: F-1804) 

Sigma-Aldrich Chemie GmbH 
D - Taufkirchen 

1 : 500 monoclonal, 
raised in mouse 

anti-pSTAT5A/B Phospho-Stat5 (Tyr694) Antibody 
(CA#: #9351) 

New England Biolabs GmbH, 
D – Frankfurt am Main 

1 : 1,000 polyclonal, 
raised in rabbit 

anti-STAT5A/B Stat5 (C-17): sc-835 
(CA#: sc-835) 

Santa Cruz Biotechnology, Inc., 
D - Heidelberg 

1 : 1,000 polyclonal, 
raised in rabbit, 

anti-TetR TetR Monoclonal Antibody (Clone 9G9) 
(CA#: 631132) 

Takara Bio Europe/Clontech, 
F - Saint-Germain-en-Laye 

1 : 500 to 
1 : 1,000 

monoclonal, 
raised in mouse 

2.1.8 Secondary antibodies (Western blot analysis) 

name product designation company, 
registered office 

dilution antibody type, 
notes 

HRP-conjugated 
anti-mouse  

Anti-Mouse IgG (whole molecule)–
Peroxidase antibody produced in goat 
(CA#: A8924) 

Sigma-Aldrich Chemie GmbH 
D - Taufkirchen 

1 : 10,000 polyclonal, 
raised in goat 

HRP-conjugated 
anti-rabbit 

Anti-Rabbit IgG (whole molecule)–
Peroxidase antibody produced in goat 
(CA#: A0545) 

Sigma-Aldrich Chemie GmbH 
D - Taufkirchen 

1 : 20,000 polyclonal, 
raised in goat 

2.1.9 Antibodies (ChIP) 

ChIP product designation company, 
registered office 

per ChIP antibody 
type, 
notes 

anti-STAT5A/B Stat5a (L-20): sc-1081 
(CA#: sc-1081) 
 + 
Stat5 (C-17): sc-835 
(CA#: sc-835) 

Santa Cruz Biotechnology, 
Inc., 
D - Heidelberg 

1.2 µg (6 µl) 
+ 

1.2 µg (6 µl) 

polyclonal, 
raised in rabbit 

anti-RNA 
Polymerase II 

Pol II (N-20): sc-899 
(CA#: sc-899) 

Santa Cruz Biotechnology, 
Inc., 
D - Heidelberg 

2 µg (10 µl) polyclonal, 
raised in rabbit 

anti-histone H3 Anti-Histone H3 antibody - ChIP Grade 
(CA#: ab1791) 

Abcam 
UK - Cambridge 

4 µg (4–13,33 µl) polyclonal, 
raised in rabbit 

anti-H3K4me1 Anti-Histone H3 (mono methyl K4) - 
ChIP Grade 
(CA#: ab8895) 

Abcam 
UK - Cambridge 

4 µg (4 µl) polyclonal, 
raised in rabbit 

anti-H3K4me3 Anti-trimethyl-Histone H3 (Lys4) 
(CA#: 07-473) 

Merck KGaA, 
D - Darmstadt 

4 µg (4 µl) polyclonal, 
raised in rabbit 



Material and Methods   51 

anti-H3K9me1 Anti-Histone H3 (mono methyl K9) - 
ChIP Grade 
(CA#: ab8896) 

Abcam 
UK - Cambridge 

4 µg (4 µl) polyclonal, 
raised in rabbit 

anti-H3K9me3 Anti-Histone H3 (tri methyl K9) - ChIP 
Grade 
(CA#: ab8898) 

Abcam 
UK - Cambridge 

4 µg (4 µl) polyclonal, 
raised in rabbit 

anti-H3K27me1 Anti-monomethyl-Histone H3 (Lys27) 
(CA#: 07-448) 

Merck KGaA, 
D - Darmstadt 

4 µg (4 µl) polyclonal, 
raised in rabbit  

anti-H3K27me3 Anti-trimethyl-Histone H3 (Lys27) 
(CA#: 07-449) 

Merck KGaA, 
D - Darmstadt 

4 µg (4 µl) polyclonal, 
raised in rabbit  

rabbit IgG IgG from rabbit serum 
(CA#: I5006) 

Sigma-Aldrich Chemie 
GmbH 
D - Taufkirchen 

2–5 µg (2–5 µl) polyclonal, 
raised in rabbit  

anti-acetylated 
histone H3 

(CA#: 06-599) Millipore, D - Darmstadt 3 µg (3 µl) polyclonal, 
raised in rabbit 

anti-acetylated 
histone H4 

(CA#: 06-866) Millipore, D - Darmstadt 3 µg (3 µl) polyclonal, 
raised in rabbit 

anti-BRG1 Brg-1 Antibody (H-88): sc-10768 
(CA#: sc-10768) 

Santa Cruz Biotechnology, 
Inc., 
D - Heidelberg 

2–5 µg (10–30 µl) polyclonal, 
raised in rabbit 

2.1.10 Vectors 

product designation company, 
registered office 

notes 

Invitrogen pcDNA™3 Life Technologies GmbH, 
D - Darmstadt 

 

pTet-On Advanced Takara Bio Europe/Clontech, 
F - Saint-Germain-en-Laye 

 

pTRE-Tight-BI-AcGFP1 Takara Bio Europe/Clontech, 
F - Saint-Germain-en-Laye 

 

pTRE-Tight-BI-Luc2 Takara Bio Europe/Clontech, 
F - Saint-Germain-en-Laye 

 

pTK-Hyg Takara Bio Europe/Clontech, 
F - Saint-Germain-en-Laye 

kind gift from Helen Hoffmeister 
(Biochemistry III, University of Regensburg, 
Germany) 

2.1.11 Enzymes (Cloning) 

name product designation company, 
registered office 

application 

EcoRI-HF EcoRI-HF® New England Biolabs GmbH, 
D – Frankfurt am Main 

restriction enzyme for cloning 

NotI-HF NotI-HF® New England Biolabs GmbH, 
D – Frankfurt am Main 

restriction enzyme for cloning 

T4 DNA Ligase T4 DNA Ligase New England Biolabs GmbH, 
D – Frankfurt am Main 

ligation for cloning 

KpnI-HF KpnI-HF® New England Biolabs GmbH, 
D – Frankfurt am Main 

restriction enzyme for cloning 

2.1.12 Oligonucleotides 

Oligonucleotides were purchased from Sigma-Aldrich Chemie GmbH (D - Taufkirchen) 
and/or metabion international AG (D - Planegg) for Sanger sequencing, RT-qPCR and 
ChIP. Primer design and validation were conducted by PD Dr. Anne Rascle. 

2.1.12.1 Primers (Sanger sequencing, expression vector templates)  

designation primer (5’-3’) 
O21 CGGAAGCAGCAGACCATCATC 
O76 ACATCAGCAGCAACCACCTCG 
O79 AGCTTCTCACACCAGGACTGC 
O94 CAGTGATAGAGAACGTATGTCGAGG 
O95 CACTGATAGGGAGTAAACTCGAGTATG 
O97 CGCACATTTCCCCGAAAAGT 
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2.1.12.2 Primers (RT-qPCR, cDNA templates)  

designation forward primer (5’-3’) reverse primer (5’-3’) template mRNA/cDNA 
O309, O310 ATGGCAGCAGTGAAGCAAGC ACGATGCGACCCCAGTTTACTC Bcl-x mRNA 
O9, O10 CTGGACTCTAACTGCTTGTC TAGGCAGCACCGAGTCAC Cis mRNA 
O11, O12 AACAGGAACTATGACCTCG AGCAGCTCGAATTTCTTC c-Myc mRNA 
O303, O304 CGACATGAACGGCTGCTACTC TCTCCACCTTGCTCACTTTGC Id-1 mRNA 
O182, O183 CATAGTACCCAGTTGTCGGGC GGCTTTGAATGTGGCATTGG IL-2Ra mRNA 
O307, O308 GTGCCTATCACGCTTCTCGG TGGTTGTCCTCCACAGGGAT MKP-1 mRNA 
O13, O14 AGATACCTGAGCCCACACAGACAG AGATACCTGAGCCCACACAGACAG Osm mRNA 
O315, O316 TCTTCTGGCAGGTGCTG GGTAGCGAATCCACTCTG Pim-1 mRNA 
O48, O49 GGCAGTGCCCTGTTTATTGAA GCTGGAAATCTGCTGTGAAGG Spi2.1 mRNA 
O186, O187 CTGCTGTTTCTTGGTGGCCT AGAGTTTGCTTGTGACCCACG TNFRSF13b mRNA  
O15, O16 CGAAGGGAACGGAATAAGATGG AGACCTCCAGTCAAATCCAGGG c-Fos mRNA 
O285, O286 TGATGTCCGACCTGTTCCG CCGAAGAGACAACGGCACA p21 mRNA 
O5, O6 GCGTCCTGGCATTGTCTGT GCCGCAAATGCAGATGG 36b4 mRNA 
O1, O2: GCAAGATGAAGCTGGATTAC GGGATGTTCACCACCTG S9 mRNA 
O81, O168 TTCTCCATTCGGTCCCTGG GTCATCGTCGTCCTTGTAGTCG transgenic 

mSTAT5A-FLAG mRNA 
2.1.12.3 Primers (ChIP, genomic DNA templates) 

designation forward primer (5’-3’) reverse primer (5’-3’) template genomic DNA 
(amplicon position, 

 relative to TSS) 
O348, O349 AAGCCCAGGATCTGAGTTCCA CGTGCCACCGTGTTTATATGG Bcl-x gene (-1006/-924) 
O346, O347 TTGTACCTGCTTGCTGTCGC TTTTACTACAACCACCCACCCC Bcl-x gene (+1261/+1385) 
O344, O345 ATGGGGGTGACTTTTGGAGAA GGTCTGAGTCCGGGTTCTAAGG Bcl-x gene (+1325/+1466) 
O84, O85 AGGGCTGTCTGGGAGCTGA TCTCTGAGTGGACCGACAGTTG Cis gene (-831/-755) 
O86, O87 CAACTCTAGGAGCTCCCGCC AACACCTTTGACAGATTTCCAAGAAC Cis gene (-259/-199) 
O88, O89 GTCCAAAGCACTAGACGCCTG TTCCCGGAAGCCTCATCTT Cis gene (-188/-104) 
O90, O91 GTTCGCACCACAGCCTTTCAGTCC GTCCAGGGGTGCGAAGGTCAGG Cis gene (-18/+55) 
O261, O262 GCCCCCATTCCTGAGATTTAA CCCGTCCTGGAGAACCTCTTA Cis gene (+340/+394) 
O245, O246 AATTTTCGGACTCTTCGGCA CACCCAAGAAAGGAAGGCAG Cis gene (+1061/+1112) 
O249, O250 GAGGACACTGCCTTCCCTCA AAGCTTCTACCCACTCCGGC Cis gene (+2236/+2308) 
O92, O93 TACCCCTTCCAACTCTGACTGAGC TTCCCTCCAGGATGTGACTGTG Cis gene (+3963/+4029) 
O313, O315 CCTGGCGTCTAACGGTCTG TGGTTCCTCCTAGTCCTGGTTT Id-1 gene (-1048/-979) 
O311, O312 GGACCAGGCGCTACTTTCC TGGTTCCTCCTAGTCCTGGTTT Id-1 gene (+5343/+5403) 
O324, O325 GCATGATATGATGTGCAGTTTCTTC TCAGGACTGGTGGTTGGTTG ILR2a gene (-1290/-1170) 
O326, O327 AAACACTGCCCACACCTCCT TTTGCGGTAATTTTTCAAACCA ILR2a gene (-95/-28) 
O336, O337 TTCACGGAACACAGGCTCAC GCCTTCTGGCTGATTTCCAC MKP-1 gene (-3431/-3374) 
O338, O339 GGCAGCAGTTCCAGCTCTTT GCTGTGGAGTTCTGCCCTCT MKP-1 gene (-1731/-1672) 
O136, O137 ATGTTGGCAGTGACCTTGAGGG CACCTGAGAAAGCGAGAGAGAAAAG Osm gene (-737/-676) 
O138, O139 CATCATCCTTGGGCGTGGGGC CGCTCCTCCTCCCGTTTTCTTCG Osm gene (-184/-122) 
O140, O141 GCTGCCAGCCTGCAGGACAC GTACTCTGGCCCGTGCCTCTCAG Osm gene (+25/+87) 
O142, O143 CGGTCCACTACAACACCAGATGTC TATCCCCAGAGAAAGCCACAGC Osm gene (+2917/+2981) 
O328, O329 GCACAGTGGAAGGGAAAAGC ACCCACCACATCCAACATCA Spi2.1 gene (-1767/-1706) 
O330, O331 AAATCACCCGGTCTGTCCAT TGTTGATGCAGATAAGCTGTGC Spi2.1 gene (-120/-61) 
O332, O333 TAAAGCCCTTGCCTGTGACC GCTATCCCCGACAGAATGACA TNFRSF13b gene (-562/-489) 
O334, O335 GGAACGGCAAGATGGAAGAT CCATGGACTTCCCAGAAAGC TNFRSF13b gene 

(+1689/+1765) 
O144, O145 GACCATCTCCGAAATCCTACACGC CACATTTGGGATCTTAGGGGGTCTC c-Fos gene (-259/-200) 
O146, O147 GGAAGTCCATCCATTCACAGCG CAGTCGCGGTTGGAGTAGTAGGC c-Fos gene (-70/-1) 
O148, O149 ATCGGCAGAAGGGGCAAAGTAG CCACAAAGGTCCAGAATCGCTG c-Fos gene (+1260/+1313) 
O291, O292 CTAAATCCGAGGAGGAAGACTGG GCTGTGAGTTCTGACATCTGCTCTC p21 gene (-1968/-1891) 
O293, O294 GAGGGCGGGCCAGCGAGTC CTCAGAGGCAGGACCAACCCACTC p21 gene (-120/-61) 
O295, O296 ATCCAGACATTCAGAGGTGAGAGC CATTGCTACGGGGAAGAACTATTG p21 gene (+75/+136) 
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O297, O298 AAGGGAGCATCGAAGAGCAGG CAGCCTTGGTCTTGACTTTCGG S16 gene (-307/-247) 
O299, O300 CTGAAAAATCGGCTGGGTTGGC CTCCACACCGCAGCGCCG S16 gene (-32/+31) 
O301, O302 GAAGTTCATAGTTGCCTGTCACTCC TGTGCCCATAGAGACCAGAAGAGG S16 gene (+1182/+1258) 
O201, O202 GGGGAAAGGCTGCTCATAATTCT GGGAGGAACTGGCAGACTTCAC Igk gene (Eκi) 

2.1.13 Software 

Application product designation company 
Flow cytometry acquisition BD FACSDiva BD Biosciences 

USA - Franklin Lakes, 
Flow cytometry analysis FlowJo 7.6.3 and 10.4.2 Tree Star Inc. 

USA - Ashland 
Western blot imaging ImageQuant TL 7.0 GE Healthcare Europe GmbH 

D - Freiburg e healthcare 
Table calculation Microsoft Excel 2010 Microsoft Deutschland GmbH 

D - Unterschleißheim 
(RT-)qPCR acquisition/analysis Rotorgene Q series software Qiagen GmbH, 

D - Hilden 
Live microscopy imaging TissueFAXS - TissueGnostics GmbH, 

A - Wien 
Cloning Vector NTI® Software Thermo Fisher Scientific GmbH, 

D - Dreieich 

2.1.14 Organisms 

designation species type source 
Ba/F3 Mus musculus immortalized pro-B cell cell line kind gift from Jacqueline Marvel (IFR 

128, BioSciences Gerland-Lyon Sud, 
France) 

human lymphocytes Homo sapiens primary cells from donor blood kind gift from Melanie Werner-Klein 
(Insitute for Immunology, University of 
Regensburg, Germany) 

competent E. coli Escherichia coli XL1-
blue 

host bacteria for cloning kind gift from Institute for 
Immunology, University Regensburg, 
Germany 

2.2 Methods 
If not specified otherwise, experiments were performed at room temperature. H2O stands 
for ultrapure water (filtered by Milli-Q Integral Water Purification System), if not specified 
otherwise. 

2.2.1 Cell culture 
2.2.1.1 Cell maintenance and selection of stable cell lines 

The immortalized IL-3-dependent murine pro-B cell line Ba/F3, derived from bone 
marrow (Palacios and Steinmetz, 1985), was obtained from Jacqueline Marvel (IFR 128, 
BioSciences Gerland-Lyon Sud, France) as a kind gift. From this parental Ba/F3 cell line 
the following stable cell lines were generated in the present study: 

- Ba/F3-wt 

- Ba/F3-1*6 

- Ba/F3-tet-on 

- Ba/F3-tet-on-wt 

- Ba/F3-tet-on-1*6 

They were kept sterilely in an incubator (Heraeus® BBD6220) at 37 °C with humidified 
5 % CO2 atmosphere. All cell lines grew in suspension in a standard medium with specific 
additives. They were kept at densities of 0.2 to 0.8 x 106 cells/ml. The standard medium 
consisted of RPMI 1640 medium (containing L-glutamine and 2.0 g/l NaHCO3) 
supplemented with additional 2 mM L-glutamine, 100 U/ml penicillin, 100 U/ml 
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streptomycin and 10 % heat-inactivated FCS (i) or FCS (ii). The additives used for 
culturing the different cell lines are specified in Table 3. All cell lines except Ba/F3-1*6 
are dependent on IL-3 and thus were supplemented with 2 ng/ml recombinant murine 
IL-3. Selective agents were used to select stably transfected Ba/F3 cells, which 
integrated vectors encoding respective resistance genes as specified in the results 
section. For selection of clonal stable cell lines higher concentrations of selective agents 
were used as opposed to later maintenance (Table 3). The concentrations were 
determined by titration experiments. For maintenance the cells were passaged every two 
to three days for up to 15 passages by splitting and adding pre-warmed medium. If 
necessary, the cells were cryoconserved. For cryoconservation 10 to 20 x 106 cells per 
vial were pelleted (300 rcf, 3 min) and resuspended in 1 ml FCS with 10 % DMSO and 
frozen incrementally at −20 °C, then −80 °C and then in liquid N2. For thawing, the 
cryoconserved cells were added to medium and incubated for a few hours before 
spinning down to remove toxic DMSO. 
Table 3: Culture media additives used for Ba/F3 cell lines 
The additives to standard medium for culturing the cell lines used in the present study are specified in this 
table. For selection of clonal stable cell lines higher concentrations of selective agents were used as opposed 
to maintenance. ‘�’specifies use as opposed to ‘ ’ 
components: Ba/F3 Ba/F3-wt 

and 
Ba/F3-tet-on 

Ba/F3-1*6 Ba/F3-tet-on-wt 
and 

Ba/F3-tet-on-1*6 
main-

tenance 
selection main-

tenance 
selection main-

tenance 
selection main-

tenance 
standard 
medium � � � � � � � 

IL-3 2 ng/ml 2 ng/ml 2 ng/ml     2 ng/ml 2 ng/ml 
G418   0.8 mg/ml 0.5 mg/ml 0.8 mg/ml 0.5 mg/ml 0.8 mg/ml 0.5 mg/ml 

hygromycin B           1 mg/ml 0.8 mg/ml 

2.2.1.2 Stable cell line generation 

To generate stable transgenic Ba/F3 cell lines, the expression vector has to integrate 
into the genome, because non-integrated vectors are not replicated by the cells during 
proliferation. To introduce vectors into Ba/F3 cells, electroporation was used. A shortly 
applied electric field temporarily permeabilizes the cell membrane, permitting 
introduction vector DNA into cells. Thereupon, the integration of the expression vector 
into the genome is based on stochastic events.  

To transfect Ba/F3 cells by electroporation, 1 x 106 cells were pelleted (300 rcf, 3 min), 
washed once with PBS (300 rcf, 3 min) and resuspended in 100 µl electroporation buffer. 
Beforehand, the electroporation buffer had been supplemented with up to 2 µg vector 
DNA. The cell suspension was transferred to an electroporation cuvette (Gene 
Pulser/MicroPulser Cuvettes). Electroporation was performed using an electroporator 
(Gene Pulser Xcell CE Module) with two successive pulses à 5 ms at 95 V. After 
electroporation the cells were returned into 3 ml standard medium, optionally 
supplemented with 2 ng/ml IL-3. The cell suspension was kept in the incubator for 2 days 
for recovery and then supplemented with a selective agent as specified in Table 3. Only 
cells, which integrated the vector bearing a resistance gene, survived selection. After 
one to two weeks of selection, the remaining cells formed a presumably heterogeneous 
stably transfected bulk culture, whose transgene expression was verified as specified in 
the results section. To select clonal cell lines, cell density of the bulk culture was 
determined and the cell suspension was diluted with standard medium (supplemented 
with respective additives, Table 3) in a limiting dilution. Using 96 well plates the cells 
were diluted to densities reaching from 50 down to 0.5 cells/ml. After one to two weeks, 
some wells exhibited proliferating presumably clonal cells, whose transgene expression 
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was verified as specified in the results section. The limiting dilution was repeated at least 
once. Thus, stably transfected clonal Ba/F3 cell lines were isolated. 

2.2.1.3 Resting and IL-3 stimulation 

To turn STAT5A/B activation off in Ba/F3 or Ba/F3-wt cells, they were washed twice 
(300 rcf, 3 min) with pre-warmed RPMI medium (no additives) and then rested for 9 to 
12 h in standard medium lacking IL-3. Optionally, the cells were pre-treated with 0.2 µM 
trichostatin A (TSA), a HDAC inhibitor, for 30 min to inhibit STAT5A/B transactivation 
activity. An equal volume of DMSO was used as a vehicle control. To turn STAT5A/B 
activation on, the rested cells were stimulated with 0.6 ng/ml IL-3 for 30 min. Thus simply 
put, STAT5A/B activation per se and its transcriptional activity specifically could be 
turned on/off, as specified in Table 4. 
Table 4: STAT5A/B activation per se and STAT5A/B transcriptional activity was turned on/off 
The table illustrates the experimental set-ups used to selectively turn STAT5A/B activation per se and 
STAT5A/B transcriptional activity on/off in Ba/F3 and Ba/F3-wt cells. Resting without IL-3 and IL-3 
stimulation turns STAT5A/B activation off/on. Pre-treatment with TSA or the vehicle control DMSO before 
IL-3 stimulation turns STAT5A/B transactivation activity on/off. Concentrations of additives and further 
experimental details are specified in the text. ‘�’ and ‘ ’ specify applied or omitted treatments, respectively. 
‘+’ and ‘−’ specify present and absent effects, respectively. 
*STAT5A/B transcriptional activity is not inhibited by TSA, but coupled to overall STAT5A/B activation. 
Abbreviations: DMSO = dimethyl sulfoxide, TSA = trichostatin A.  

treatment effect designation 
resting 

(−IL-3, 9–12h) 
pre-treatment 

(45 min) 
IL-3 stimulation 
(+IL-3, 30 min) 

STAT5A/B 
activation 

per se 

STAT5A/B 
transcriptional 

activity 
��     − *−*  − IL-3 
��   � + +  + IL-3 
� + DMSO   − *−* + vehicle / − IL-3 
� + DMSO � + + + vehicle / + IL-3 
� + TSA   − − + TSA / − IL-3 
� + TSA � + − + TSA / + IL-3 

2.2.1.4 Doxycycline induction and removal 

Ba/F3-tet-on-wt and Ba/F3-tet-on-1*6 cells inducibly express transgenic STAT5A-wt and 
STAT5A-1*6 in response to doxycycline administration. A standard induction protocol 
was established in the present study as specified in the results section. To induce 
transgene expression, Ba/F3-tet-on-wt and Ba/F3-tet-on-1*6 cells were washed twice 
(300 rcf, 3 min) with pre-warmed RPMI medium (no additives) and then put into standard 
medium supplemented with IL-3 or lacking IL-3, respectively. Then, 1 µg/ml doxycycline 
was administrated to the medium. For sustained induction of transgene expression, 
100 ng/ml doxycycline was replenished every two days. Cells that were not administrated 
with doxycycline were grown in parallel as a control. To halt transgenic STAT5A-wt and 
STAT5A-1*6 expression in induced cells, cells were washed twice (300 rcf, 3 min) with 
pre-warmed RPMI medium (no additives) to remove doxycycline and then put into 
standard medium supplemented with IL-3 or lacking IL-3, respectively. 

2.2.1.5 Trypan blue staining-based cell counting 

To track absolute cell numbers and to harvest defined amounts of Ba/F3 cells, their 
density in suspension was determined using a Neubauer counting chamber (Neubauer-
improved). Before counting, the cell suspension was diluted 1 : 1 with trypan blue 
solution, staining dead/dying cells blue due to their increased membrane permeability. 
With a depth of 0.1 mm and an area 1 mm2 per larger square, cells counted in one larger 
square correspond to 1 mm3 (= 1 µl) of fluid. Hence, cell density was determined with 
following formula (since 10,000 * 1 mm3 = 1 ml):  
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!"#$!%#	'()*+	,#$	-!$%#$	./)!$# ∗ 12-)+2(*	3!'+($	2 ∗ 10,000 = '#--	1#*.2+9 :-⁄  

The cell suspension diluted with trypan blue was loaded in the Neubauer counting 
chamber and at least four mini-squares were counted using an optical microscope 
(Olympus CK2). Living and dead/dying cell densities were computed for a given cell 
suspension with the stated formula. Thus, the percentage of dead/dying cells could be 
calculated. In addition, absolute living cell numbers could be calculated based on the 
volume of the given cell suspension. This allowed calculating doubling times using the 
following formula (Microsoft Office Excel): 

24ℎ ∗	 logA BC
+(+!-	-2"2*%	'#--	*):D#$	!3+#$	2*+#$"!-
+(+!-	-2"2*%	'#--	*):D#$	D#3($#	2*+#$"!-

E
AFG

HIJKLMNO	HI	G
P 	= 1()D-2*%	+2:#	2*	ℎ 

2.2.1.6 Living cell fluorescence microscopy 

Ba/F3-tet-on-wt and Ba/F3-tet-on-1*6 cells inducibly express Aqueorea coerulescens 
green fluorescent protein 1 (AcGFP1). Thus, they emitted native GFP fluorescence after 
induction of transgene expression. To monitor GFP fluorescence and evaluate 
homogeneity within the cell population, induced living cells were transferred into a 6 well 
plate and analyzed using TissueFAXSiPLUS system in parallel to AcGFP1-negative 
cells. Images of the emitted GFP fluorescence were recorded at a 20 x magnification 
using the manufacturer’s software. 

2.2.2 Gene expression analyses 
Gene expression analysis by relative quantification of mRNA is a standard procedure in 
molecular biology to determine gene expression levels. For this, mature mRNA is 
isolated from cells and reverse transcribed into cDNA, which serves as a template in RT-
qPCR. The relative quantification is performed on the basis of a housekeeping gene with 
stable expression level. Thus, this method permits observing changes in gene 
expression levels under different conditions. 

2.2.2.1 Cell harvest 

0.4 x 105 Ba/F3 cells were harvested into 1 ml ice-cold PBS. Cells were pelleted by 
centrifugation (2,000 rcf, 1 min, 4 °C). The dry pellet (optionally supplemented with 20 µl 
of RNA lysis buffer) was processed immediately on ice or flash-frozen in liquid nitrogen 
and stored at −80 °C for further use. 

2.2.2.2 RNA preparation 

RNA was prepared with the iScript RT-qPCR Sample Preparation Reagent according 
the manufacturer’s protocol. This reagent is designated to prepare selectively 
cytoplasmic mRNA for RT-qPCR. It selectively lyses the cytoplasmic membrane, 
allowing isolation of cytoplasmic RNAs and removal of the nuclear fraction containing 
the genomic DNA by centrifugation. Constituent RNase inhibitors and RNA stabilizers 
protect isolated mRNAs. All steps were performed on ice. 100 µl of iScript RNA 
preparation buffer (80 µl, if 20 µl of it was added before flash-freeze) was added to the 
dry cell pellet. After vortexing (medium speed, 30 s, room temperature) the lysate was 
centrifuged (15,000 rcf, 2 min, 4 °C) and 80 µl of the supernatant transferred into a new 
tube. This RNA lysate was used for cDNA synthesis immediately afterwards and could 
be stored at −80 °C after flash-freeze with liquid nitrogen for potential re-use. 

2.2.2.3 cDNA synthesis 

cDNA was synthetized with the iScript cDNA synthesis kit according to the 
manufacturer’s protocol. This kit contains the components needed for cDNA synthesis. 
In particular, the 5x iScript reaction mix comprises buffer and primers necessary for the 
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reaction, where the iScript reverse transcriptase transcribes the RNA template into cDNA 
using the primers as starting points (both oligo(T) and random hexamer primers). 
The reaction was set up on ice as follows: 

- 1 µl RNA template (prepared RNA lysate) 
- 14 µl Nuclease-free water 
- 1 µl iScript reverse transcriptase 
- 4 µl 5x iScript reaction mix  

The components were pipetted into a 50 µl tube and mixed by pipetting up and down. 
The reverse transcription was performed in a thermal cycler (myCycler) with the following 
program: 

- 5 min  25 °C 
- 30 min  42 °C 
- 5 min  85 °C 

The cDNA samples were stored after the reaction at −20 °C for further use. 
2.2.2.4 Reverse transcription quantitative PCR (RT-qPCR) 

Accurate relative quantification of cDNA templates can be performed by reverse 
transcription quantitative PCR (RT-qPCR). As with conventional PCR, DNA is amplified 
by a thermo-stable DNA polymerase with sequence-specific forward and reverse 
primers. Though, a DNA-dependent fluorochrome is added to the reaction. SYBR green, 
used in the present study, binds specifically to dsDNA. After excitation at λ = 494 nm it 
emits light at λ = 521 nm when bound to dsDNA, but not when in solution. Using SYBR 
green the amount of DNA in the reaction can be measured in each amplification cycle 
as a fluorescence signal. Since the sensitive range of the fluorometer is limited, linear 
changes in fluorescence intensity can only be detected for a certain range of 
fluorescence intensities and thereby only certain amplification cycles. In the threshold 
cycle (Ct-value) the fluorescence intensity rises into the sensitive range above 
background level. Within the sensitive range the fluorescence intensity increases 
exponentially, eventually reaching a plateau because of the detection limit. The original 
amount of cDNA (and hence mRNA) can be quantified relatively, by comparing the Ct-
values for a stably expressed housekeeping gene with Ct-values for the gene of interest. 
The relative quantity in this study was calculated with the formula: 

2[RS(GUVWKXKKYHIZ	ZKIK)\RS(ZKIK	U]	HIJKLKWJ)]	 ∗ 10,000 

When using this formula, however, the amplification efficiency for different primers and 
hence DNA templates must be the same. Primer efficiencies were determined and 
validated beforehand by PD Dr. Anne Rascle. 
Table 5: Set-up of reverse transcription quantitative PCR (RT-qPCR) reaction 
The composition of RT-qPCR reactions is specified in this table. 

RT-qPCR 
composition per individual reaction: 

reaction component: volumes: end concentration: 

self-made qPCR mix (25 mM MgCl2, 25 mM each dNTP)    9.67 µl   2.5 mM MgCl2 
  0.2 mM each dNTP 

SYBR green I solution    0.25 µl   1:500,000 
Hotstart-Taq DNA Polymerase (5 U/µl)    0.08 µl   0.4 U/µl 
H2O    4.6  µl  
cDNA template     0.4  µl   ~8 single cells 
forward and reverse primer mix (each 1.6 µM) – on top    5    µl   0.4 µM each primer 
    20   µl  

 

The reaction was set up as specified in Table 5. Each reaction was performed in 
triplicates or duplicates. SYBR green (solved in DMSO) was thawed at room temperature 
before. All remaining components were thawed and handled at 4 °C. The components 
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except for the primers were mixed in a master mix and pre-loaded into the qPCR tubes. 
The primer mix was pipetted on top. The RT-qPCR was performed with the Rotorgene 
Q qPCR cycler with the following program. The forty amplification cycles included only 
two temperature steps, 95 °C for denaturation and 60 °C for annealing and elongation: 

- 15 min  95 °C activation of Hotstart-Taq DNA Polymerase 
- 40 x 15 s 95 °C denaturation 

60 s 60 °C annealing and elongation 
- high resolution melting from 60 °C to 95 °C 

Fluorescence intensities were acquired at the end of each amplification cycle. SYBR 
green was excited with λ = 470 nm and the emitted fluorescence was recorded at 
λ = 510 nm. High resolution melting permitted evaluation of fragment sizes, which should 
be equal for each primer pair. The data were analyzed and the Ct-values were extracted 
with the Rotorgene Q series software. Gene expression analysis was performed using 
the stated formula (Microsoft Office Excel). The ribosomal protein gene S9 was used as 
housekeeping gene, with another ribosomal protein gene 36B4 serving as an internal 
control. The obtained gene of interest mRNA levels were expressed as arbitrary units 
relative to S9 mRNA level. 

2.2.3 Protein analyses 
Protein expression analysis by Western blot is a semi-quantitative standard procedure 
in molecular biology for the detection of proteins. For this, protein is isolated from cells 
and denatured with SDS allowing separation by size in polyacrylamide gel 
electrophoresis. After blotting the proteins on a membrane, specific proteins can be 
detected with antibodies.  

2.2.3.1 Cell harvest 

1 x 106 to 5 x 106 Ba/F3 cells were harvested by centrifugation (300 rcf, 3 min, 4 °C). The 
cell pellet was washed once with PBS and the dry pellet was processed immediately on 
ice or flash-frozen in liquid nitrogen and stored at −80 °C for further use. 

2.2.3.2 Protein isolation 

Protein was isolated from whole cells with Brij lysis buffer containing Brij, a detergent, 
which lyses both the cytoplasmic and nuclear membrane and thus allows separation of 
proteins from other cellular components. All following steps were performed on ice. 
Directly before use the Brij lysis buffer was supplemented with protease and 
phosphatase inhibitors (10 µg/µl aprotinin, 10 µg/µl leupeptin, 0.5 mM PMSF, 10 mM 
Na3VO4, 10 mM NaF) to prevent protein degradation and dephosphorylation. If flash-
frozen before, the dry cell pellet was thawed on ice. The cell pellet was resuspended in 
20 µl to 100 µl Brij lysis buffer (+ inhibitors) according to cell number (20 µl per 1 x 106 
cells) and incubated on ice for 20 to 30 min. After centrifugation (maximum speed, 
15 min, 4 °C) to remove debris the supernatant was transferred to a new tube. The 
received protein lysate was processed immediately or flash-frozen in liquid nitrogen and 
stored at −80 °C for further use. 

2.2.3.3 Protein quantification by Bradford assay 

Protein quantification was performed according to Bradford (1976) using Bradford 
reagent containing the dye Coomassie Brilliant Blue-G250. This dye shifts its adsorption 
maximum to λ = 595 nm upon forming complexes with proteins. Protein concentration 
can be calculated by measuring optical density of a protein lysate together with a protein 
standard curve after incubation with Bradford reagent. In detail, 1 µl protein lysate and a 
standard curve consisting of 0, 1, 2, 5, 10, 20 μg BSA (bovine serum albumin) were each 
added to 1 ml 1x Bradford reagent. After mixing and incubation for around 5 min the 
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optical density was measured at λ = 600 nm with the UV photometer BioPhotometer®. 
Protein concentration was calculated based on linear regression of the standard curve. 

2.2.3.4 SDS-PAGE 

Proteins were separated by molecular mass in a denaturing discontinuous poly-
acrylamide gel electrophoresis (PAGE) as established by Laemmli (1970). Briefly, the 
protein lysates are treated with Laemmli buffer containing the denaturing agent SDS to 
mask their intrinsic charge making their (negative) charge dependent on protein size. 
After denaturation the proteins are separated in a vertical discontinuous polyacrylamide 
gel by electrophoresis. The proteins are compressed at the boundary of the upper 
stacking gel (pH 8.8) and then separated by molecular mass in the lower separating gel 
(pH 6.8). This is achieved with glycine, which functions as trail ion in the stacking gel, but 
changes to slow ion in the separating gel in response to the lower pH, compressing the 
proteins at the boundary of the two gel phases. 

For SDS-PAGE, equal amounts of proteins were used for each sample. The protein 
lysates were thawed on ice, if flash frozen before. The protein sample (20 to 50 µg per 
lane depending on the experiment) was converted to 1x Laemmli buffer, using 
4x Laemmli buffer and the lysis buffer for dilution. The samples were denatured for 5 min 
at 95 °C and spinned down before loading. The discontinuous polyacrylamide gel was 
poured beforehand using a horizontal, two-dimensional gel system (Sub-Cell® GT Cell). 
Composition of the gels is specified in Table 6. The polyacrylamide percentage was 
chosen based on the size of the analyzed protein. The separating gel was overlaid with 
H2O for a horizontal upper edge. After polymerization H2O was removed and the stacking 
gel poured on top. A protein marker (Protein Marker VI (10 - 245) prestained) was loaded 
on the gel along with the protein samples. Free lanes were also loaded with 1x Laemmli 
buffer. PAGE buffer was used both as anode and cathode buffer. The electrophoresis 
was run at 80 V for the stacking gel and 200 V for the separating gel. 
Table 6: Composition of discontinuous polyacrylamide gels for SDS-PAGE 
The composition of discontinuous polyacrylamide gels for SDS-PAGE is specified in this table. 
Abbreviations: SDS-PAGE = SDS polyacrylamide gel electrophoresis. 

gel phase: stacking gel separating gel separating gel 
percentage: 4 % 8 % 10 % 
H2O   7,300 µl   2,860 µl   2,200 µl 
1 M Tris pH 8.8       -   3,750 µl   3,750 µl 
1 M Tris pH 6.8   1,250 µl       -       - 
29.2 % acrylamide, 0.8 % bisacrylamide 
 (37.5 : 1 | in H2O) 

  1,300 µl   2,660 µl   3,330 µl 

glycerol       -     574 µl     574 µl 
10 % SDS  (in H2O)     100 µl     100 µl     100 µl 
10 % APS  (in H2O)      50 µl      50 µl      50 µl 
TEMED      10 µl      10 µl      10 µl 

2.2.3.5 Western blot 

For Western blot, the proteins separated by molecular mass in SDS-PAGE are blotted 
on a membrane by applying an electric field. The proteins migrate into fine pores of the 
membrane, where they bind through intermolecular forces. Specific proteins can be 
detected immunologically on the membrane. Primary antibodies bind to their epitope in 
specific proteins on the membrane. They are detected by secondary antibodies 
(targeting the Fc region of the primary antibodies) conjugated with horseradish 
peroxidase (HRP). HRP can catalyze chemiluminescence of a substrate allowing optical 
detection. 

After SDS-PAGE the stacking gel was removed and the separating gel was equilibrated 
in Transfer buffer for 5 min. Beforehand, a PVDF membrane (Immobilon-P Membrane, 
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PVDF | pore size 0.45 µm) was activated with 100 % methanol for 15 s, washed for 2 min 
with H2O and equilibrated in Transfer buffer for 5 min together with Whatman 
chromatography paper. For blotting, the separating gel was placed on top of the 
membrane and the stack encased with three Whatman chromatography papers. The 
proteins were blotted onto the membrane in a semi-dry electroblotting cell (Trans-Blot® 
SD Semi-Dry Transfer Cell) after removing excess liquid at 24 V for 1 h.  

Immunological detection of proteins was performed as follows for all antibodies except 
for anti-pSTAT5A/B. First, the membrane was blocked for 30 min with 1x PBST plus 
5% dry milk to saturate unspecific binding sites. Second, the membrane was incubated 
for 1 h (or overnight at 4 °C) with 1x PBST plus 3% dry milk and primary antibody in the 
dilution specified in 2.1.7. Third, after washing three times with 1x PBST for 10 min to 
remove excess primary antibody, the membrane was incubated with 1x PBST plus 
3% dry milk and secondary antibody (against the animal, the primary antibody was raised 
in) in the dilution specified in 2.1.8. Fourth, after washing three times with 1x PBST for 
10 min, antibody binding was detected using the ECL Prime detection reagent or Femto 
detection reagent (only for very weak signals) according to the respective manufacturer’s 
protocol. The detection reagents emit chemiluminescence dependent on HRP activity, 
which was detected with a Western blot imaging system (ImageQuant LAS 4000 Mini) 
using the manufacturer’s software (ImageQuant TL 7.0). The membrane could be re-
detected with another primary antibody by adding 0.2 % NaN3 (sodium azide) in the 
blocking step, which irreversibly inhibits activity of the already bound HRP. 

Detection with anti-pSTAT5A/B antibody was performed with a different protocol due to 
the higher sensitivity of the epitope (phosphorylated Tyr694/699 in mSTAT5A/B). First, the 
membrane was blocked for 30 min with 1x TBST plus 3 % BSA to saturate unspecific 
binding sites. Second, the membrane was incubated overnight at 4 °C with 1x TBST plus 
3% BSA and anti-pSTAT5A/B antibody diluted 1 : 1,000. Third, after washing three times 
with 1x TBST for 10 min, the membrane was incubated with 1x TBST plus 3 % BSA and 
anti-rabbit antibody diluted 1 : 20,000. Fourth, after washing three times with 1x TBST for 
10 min, antibody binding was detected as specified above. 

2.2.4 Chromatin analyses 
Chromatin immunoprecipitation (ChIP) is an established method to analyze DNA-
protein-interactions in chromatin. To do this, DNA-protein interactions are stabilized by 
cross-linking. This cross-linked chromatin is fragmented and the obtained fragments 
containing specific proteins can be immunoprecipitated by antibodies. Co-precipitated 
DNA fragments can be mapped and quantified by qPCR using sequence-specific 
primers. 

2.2.4.1 Preparation of Protein A sepharose beads 

For immunoprecipitation of fragments bound by antibodies, Protein A sepharose beads 
were used. The Protein A sepharose beads (Protein A Sepharose CL-4B) were 
reconstituted and washed according to the manufacturer’s protocol (in/with H2O, 
centrifugation: 500 rcf, 30 s, 4 °C). A 50% Protein A sepharose slurry was prepared by 
addition of an equal volume of 1x TE buffer supplemented with 1 mg/ml fatty-acid free 
BSA and 400 µg/ml salmon sperm DNA. To saturate unspecific binding sites for both 
DNAs and proteins, it was rotated overnight at 4 °C. The Protein A sepharose slurry was 
stored at 4 °C and homogenized by inverting before use.  

2.2.4.2 Cell harvest and cross-linking 

Formaldehyde induces covalent, but heat-reversible, cross-linking between proteins and 
DNA as well as between proteins at a distance of at most 2 Å. It was used in the study 
to conserve DNA-protein-interactions for ChIP. For cross-linking, 1 % formaldehyde was 
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added to a Ba/F3 cell suspension and incubated for 10 min at room temperature. 
Formaldehyde was neutralized by addition of 125 mM glycine and incubation for 5 min. 
The cell suspension was further processed on ice. After pelleting the cells (2,000 rcf, 
3 min, 4 °C) the supernatant was removed. The cell pellet was washed twice with PBS 
(2,000 rcf, 3 min, 4 °C) and distributed to pellets à 2 x 107 cells. The dry pellets were 
processed immediately or flash-frozen in liquid nitrogen and stored at −80 °C for further 
use. 

2.2.4.3 Chromatin shearing by sonication 

Shearing chromatin by application of ultrasound is a non-biased method to obtain small 
chromatin fragments. All following steps were performed on ice. Directly before use the 
SDS lysis buffer and Triton X-100 dilution buffer were supplemented with protease 
inhibitors to prevent degradation (10 µg/µl aprotinin, 10 µg/µl leupeptin, 0.5 mM PMSF). 
If flash-frozen before, the dry pellet of 20 x 106 cells was thawed on ice. The pellet was 
resuspended in 3 ml SDS lysis buffer and sonicated using a sonifier (Branson Sonifier® 
S-250A analog ultrasonic processor, 5 mm tip sonotrode). Sonication conditions were 
optimized to shear the chromatin into fragments of around 100–300 bp length (6 pulses 
à 1 min, 2 min pause, output 5, 60% duty cycle). During and between sonication pulses 
the lysate was cooled with iced water. After sonication, 1.5 ml Triton X-100 dilution was 
added to the sonified lysate and debris was removed by centrifugation (4,000 rcf, 10 min, 
4 °C). The supernatant was transferred to a new tube and pre-cleared to avoid unspecific 
binding during ChIP. For pre-clearing, 200 µl Protein A sepharose slurry was added to 
the lysate and rotated for 1 h at 4°C. The Protein A sepharose beads were removed 
afterwards (centrifugation: 500 rcf, 30 s, 4 °C). The pre-cleared lysates were processed 
immediately or flash-frozen in liquid nitrogen and stored at −80 °C for further use. 

2.2.4.4 Quality control of chromatin shearing 

To ensure comparable results in all ChIP experiments, the chromatin fragments should 
exhibit similar sizes, as pull-down efficiencies may differ among fragments of different 
size. Therefore, the DNA encased in the chromatin fragments was purified and their size 
was evaluated by agarose gel electrophoresis.  

The DNA was purified by phenol-chloroform extraction and subsequent ethanol 
precipitation. 380 µl of pre-cleared sonified lysate was supplemented with 95 ng/µl 
Proteinase K and 114 ng/µl glycogen. It was incubated for 1 h at 55 °C for protein digest 
and then overnight at 65 °C to reverse formaldehyde cross-linking. After equilibration to 
room temperature one volume (400 µl) of phenol/chloroform/isoamyl alcohol was added. 
The sample was vortexed (maximum speed, 1 min) and centrifuged (maximum speed, 
5 min, room temperature). The upper aqueous phase (300 µl) containing DNA was 
transferred to a new tube and supplemented with 300 mM NaAc, as cations are essential 
for ethanol precipitation. 1000 µl of chilled 100% ethanol (−20 °C) was added and the 
sample was incubated for 20 min at −20 °C after mixing. The DNA precipitated and was 
pelleted by centrifugation (maximum speed, 15 min, 4 °C). After washing the DNA pellet 
with 700 µl chilled 70% ethanol (−20 °C | maximum speed, 15 min, 4 °C), it was air-dried 
for 15 min to remove residual ethanol and resuspended in 50 µl 1x TE supplemented with 
0.2 µg/µl RNase A for RNA digestion. After incubation for 30 min at 37 °C, the now 
purified DNA was processed immediately or stored at −20 °C. For agarose gel 
electrophoresis, 1.5% agarose was added to 0.5 TAE buffer. The mixture was heated 
until all agarose was dissolved and cooled down to about 50 °C. After adding around 
1% ethidium bromide solution, agarose gels were poured using a horizontal, two-
dimensional gel system (Sub-Cell® GT Cell). For electrophoresis, 6 µl of purified DNA, 
corresponding to approximately 0.2 x 106 cells, was supplemented with DNA loading dye 
and loaded on the agarose gel. Electrophoresis was performed in 0.5 TAE buffer at 100 V 
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for about 30 min. The DNA bands were evaluated visually using a gel documentation 
system (GeneGenius Gel Imaging System). 

2.2.4.5 Chromatin immunoprecipitation 

The pre-cleared sonified lysate contains chromatin fragments of DNA cross-linked with 
associated proteins. Using specific antibodies, chromatin fragments containing certain 
proteins can be pulled down by chromatin immunoprecipitation (ChIP). All following steps 
were performed on ice. If flash-frozen before, the pre-cleared sonified lysate was thawed 
on ice. 50 µl of lysate was taken as input for later normalization to total DNA amount. 
750 µl lysate, corresponding to 3.3 x 106 cells, was supplemented with an antibody and 
rotated for 3 h at 4 °C to allow antibody binding. The amount of antibody used is specified 
in 2.1.9. 30 µl Protein A sepharose slurry was added and the lysate was rotated for 2 h 
at 4 °C to pull down the fragments bound by the antibody. The beads were sedimented 
by centrifugation (500 rcf, 30 s, 4 °C) and the supernatant was aspirated. Then, the beads 
were washed to remove non-specifically bound fragments with 900 µl of the respective 
washing buffer as follows (sedimentation and aspiration as described above): 

- ChIP buffer   à washed by repeated inverting 

- 150 mM NaCl wash buffer à washed by repeated inverting 

- 500 mM NaCl wash buffer à washed by rotating for 5 min at 4 °C 

- LiCl wash buffer  à washed by rotating for 5 min at 4 °C 

- 1x TE    à washed by repeated inverting 

To quantify the co-precipitated chromatin fragments, the DNA was purified. For this, all 
steps were performed at room temperature. Reverse cross-linking buffer was added to 
the input samples as well as to the ChIP samples (= Protein A sepharose beads) for a 
total volume of 120 µl. Both input and ChIP samples were supplemented with 250 mM 
NaCl, to stabilize DNA with low GC content at higher temperatures. To reverse 
formaldehyde cross-linking, the samples were incubated overnight at 65 °C. After 
equilibration to room temperature, they were supplemented with 0.25 µg/µl RNase A and 
incubated for 1–2 h at 37 °C for RNA digest; and then with 0.4 µg/µl Proteinase K and 
incubated for 1–2 h at 55 °C for protein digest. The input and ChIP DNA samples were 
purified using a DNA purification kit (NucleoSpin® Gel and PCR Clean-up) according to 
the manufacturer’s protocol for SDS-containing samples. Briefly, the DNA samples were 
mixed with 600 µl NTB buffer and loaded on the columns by centrifugation (11,000 rcf, 
30 s). They were washed twice with NT3 buffer (centrifugation: 11,00 rcf, 30 s), spinned 
down to remove excess buffer (11,00 rcf, 2 min) and then air-dried for 5 min at 70 °C to 
remove residual ethanol. The columns were eluted twice by adding 50 µl pre-warmed 
elution buffer (70 °C) on the membrane, incubating for 5 min at room temperature and 
spinning down (11,00 rcf, 1 min). The 100 µl of flow-through contained the purified 
genomic DNA (gDNA) fragments. As DNA concentrations for relative quantification by 
qPCR should be in the same range, the ChIP samples were diluted with 200 µl H2O and 
the input samples with 800 µl H2O. The dilutions have been established previously 
(Rascle et al. (2003)). The purified gDNA ChIP and input samples were processed 
immediately or stored at −20 °C for further use. 

2.2.4.6 qPCR and normalization as input percentage 

Relative quantification of the gDNA template was performed by qPCR analogous to 
RT-qPCR for cDNA (2.2.2.4) using input gDNA as a reference. The reaction was set up 
as specified in Table 7. Pipetting was performed as described in 2.2.2.4, except that 5 µl 
gDNA (ChIP or input) was put on top the pre-mixed other components for each reaction. 
The qPCR was performed with the same program using the Rotorgene Q qPCR cycler. 
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Purified input and ChIP gDNA were run in parallel in duplicates or triplicates and the Ct-
values were extracted and evaluated with the Rotorgene Q series software. 
Table 7: Set-up of quantitative PCR (qPCR) reaction 
The composition of qPCR reactions for gDNA templates is specified in this table. 
Abbreviations: ChIP = chromatin immunoprecipitation. 

qPCR 
composition per individual reaction: 

reaction component: volumes: end concentration: 

self-made qPCR mix (25 mM MgCl2, 25 mM each dNTP)    9.67 µl   2.5 mM MgCl2 
  0.2 mM each dNTP 

SYBR green I solution    0.25 µl   1:500,000 
Hotstart-Taq DNA Polymerase (5 U/µl)    0.08 µl   0.4 U/µl 
forward and reverse primer mix (each 1.6 µM)    5    µl   0.4 µM each primer 

gDNA template (input or ChIP sample) – on top    5    µl 
input gDNA: 
~123 single cells 
ChIP gDNA: 
~5,555 single cells 

    20   µl  

 The relative amount of gDNA encased by the co-precipitated chromatin fragments was 
expressed relatively to total input gDNA as ‘percentage of input’ (input %). For this 
purpose, the volume of pre-cleared lysate corresponding to the 5 µl purified gDNA 
amplified per reaction was calculated for input and ChIP. The ratio between input and 
ChIP gDNA was calculated as follows: 
µ-	2*,)+	,#$	/abc	$#!'+2(*
µ-	2*,)+	,)$232#1	def ∗ µ-	.(*232#1	-9.!+#	3($	2*,)+

µ-	bℎga	,#$	/abc	$#!'+2(*
µ-	bℎga	,)$232#1	def ∗ µ-	.(*232#1	-9.!+#	3($	bℎga

=

5 µ-
900 µ- ∗ 50 µ-

5 µ-
300 µ- ∗ 750 µ-

= 0.0222 

This ratio was used to normalize the ChIP Ct-values to input Ct-values. The results were 
expressed as arbitrary units of percentage of input (input %) using the following formula 
(Microsoft Office Excel): 

2[RS(HIYVJ	Zmno)\RS(RGpq	Zmno)]	 ∗ 0.0222 ∗ 100 

When using this formula, however, the amplification efficiency for different primers and 
hence DNA templates must be the same. Primer efficiencies were determined and 
validated beforehand by PD Dr. Anne Rascle applying a gDNA standard. 

2.2.5 Flow cytometry 
Suspensions of single cells can be analyzed for different parameters by flow cytometry, 
where the cells are measured individually in a stream of fluid for multiple parameters in 
real-time (Figure 7). In particular, a light beam is applied towards the stream of fluid/cells 
and detected by two optical detectors measuring light scattered by a given cell in a 
forward direction and a sideward direction in an angle of 90° (Figure 7). On the one hand, 
the light intensity measured by the FSC (forward scatter) detector is proportional to the 
diameter of a given cell, primarily due to light diffraction around it. On the other hand, the 
light intensity measured by the SSC (sideward scatter) detector informs about the 
internal complexity of a given cells, because intracellular structures refract or reflect light 
to varying degrees. Thus, FCS is a measurement for cell size and SSC a measurement 
for cell granularity. In addition to these two basic parameters, flow cytometers can excise 
fluorescent molecules in a given cell and then measure the emitted fluorescence signal 
intensities using filters for specific wave lengths of light (Figure 7). This permits staining 
of cells using fluorescent molecules. The employed flow cytometer (BD™ LSR II Flow 
Cytometer System) can excise at wavelengths of λ = 355, λ = 495 nm, λ = 488 nm, 
λ = 633 nm and, thus, measure GFP (FITC-A channel) and DAPI (DAPI channel) signals. 
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2.2.5.1 Native GFP fluorescence 

Ba/F3-tet-on-wt and Ba/F3-tet-on-1*6 cells inducibly express AcGFP1 (Aqueorea 
coerulescens green fluorescent protein 1). Thus, they emitted native GFP fluorescence 
after induction of transgene expression, which was analyzed by flow cytometry. For this, 
1 x 106 cells expected to be GFP-fluorescent were harvested in parallel to 1 x 106 control 
cells not expressing AcGFP1 (centrifugation: 300 rcf, 30 min, 4 °C). The cell pellet was 
washed once with PBS (centrifugation: 300 rcf, 30 min, 4 °C), resuspended in 2 ml PBS, 
transferred to a FACS tube and kept on ice for data acquisition.  

2.2.5.2 Cell cycle analysis by DAPI staining 

Proliferating eukaryotic cells repeatedly transition through four phases, constituting the 
cell cycle. The cell cycle can be studied using fluorescent dyes staining genomic DNA, 
with DAPI used in the present study. Hence, fluorescence intensity of a single stained 
cell is relative to the size of its genome. Proliferating cells double their diploid 
chromosome set (2 n) during the cell cycle, having 2 n in G1/G0 phase, 2–4 n in S phase 
and 4 n in G2/M phase. Thus, the distribution of cell phases within Ba/F3 cell populations 
was determined by analyzing the amount of genomic DNA per cell. This permitted 
conclusions about their proliferation behavior. In contrast to proliferating cells, dying cells 
undergoing programmed cell death break down their DNA (Kerr et al., 1972, Prokhorova 
et al., 2015, Taylor et al., 2008). Hence, hypoploid cells, which have DNA amounts lower 
than diploid 2 n, could be classified as dead/dying sub-G1 phase cells. For cell cycle 
analysis, 1 x 106 cells were harvested (centrifugation: 300 rcf, 30 min, 4 °C). The cell 
pellet was washed once with PBS (centrifugation: 300 rcf, 30 min, 4 °C), resuspended in 
2 ml PIPES buffer supplemented with 1 µg/ml DAPI, transferred to a FACS tube and kept 
for 30 min on ice protected from light before data acquisition. The PIPES buffer 
permeabilizes membranes, permitting intercalation of DAPI into genomic DNA. 

2.2.5.3 Data acquisition and analysis 

Theoretically, native GFP could be measured in cells stained with DAPI, but no GFP 
fluorescence was detectable after application of PIPES buffer. This is why native GFP 
and DAPI fluorescence were detected separately. Before data acquisition the cell 
suspensions were filtered with a polyamide sieve cloth and mixed thoroughly by 
vortexing. The multiparametric data were acquired with the BD FACSDiva software using 
the flow cytometer BD™ LSR II Flow Cytometer System according to the manufacturer’s 
protocol. 20,000 events were recorded in the stream of fluid at low speed. The data was 

Figure 7: Illustration of a flow cytometer 
(adapted from https:// www. flowjo. com/learn/
flowjo-university/flowjo/getting-started-with-
flowjo/58, 17.05.18) 
The figure schematically illustrates the optical 
system of a flow cytometer, as further detailed 
in text. 
Abbreviations: FSC = forward scatter, PMT = 
photomultiplier tube, SSC = sideward scatter.  
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analyzed using the FlowJo 7.6.3 software. Data was analyzed in scatter plots plotting 
two different parameters, where one dot corresponds to one acquired event, or as 
histograms, where one parameter is plotted against cell number. Cells sticking to each 
other (doublets) as well as debris (cell fragments) were excluded using SSC and FSC 
based on their deviations in length and width (doublets) or size (debris). The remaining 
cells were analyzed for native GFP fluorescence or DAPI staining in histograms. GFP 
signal from negative control cells was plotted together with the expectedly positive cells, 
to be able to estimate the degree of unspecific autofluorescence. The DAPI signal was 
analyzed with the ‘Watson Pragmatic’ algorithm integrated in the FlowJo 7.6.3 software, 
offering the percentages of cells in the three different cell phases. 

2.2.6 Cloning 
For the present study, stable transgenic Ba/F3 cell lines were generated. To do so, 
expression vectors bearing a given transgene were introduced (see Table 8). The 
employed expression vectors are listed in Table 8. They all bore an ampicillin resistance 
gene. Hence, the antibiotic ampicillin was used to select successfully transformed 
bacteria. The expression vectors bearing mSTAT5A.WT_FLAG and mSTAT5A.1*6_
FLAG cDNAs were generated by cloning, as specified in Table 8 and the results section. 
Before use, their DNA sequences were validated by Sanger sequencing (by Geneart AG, 
D - Regensburg). Cloning and sequence validation were conducted by PD Dr. Anne 
Rascle.  
A) Digest with sequence-specific restriction enzymes 
Digest with sequence-specific restriction enzymes was performed to excise DNA 
fragments from a vector and to linearize the target vector for ligation. For this, 10–20 µg 
vector DNA was mixed with 2 U enzyme per µg DNA and 1x CutSmart Buffer (diluted 
with H2O if necessary). The mixture was incubated for 30 min at 37 °C for digest and for 
10 min at 65 °C to terminate enzyme activity. The digest was verified by agarose gel 
electrophoresis (for procedure see 2.2.4.4). The cut DNA could be stored at −20 °C.  
B) Isolation of excised DNA fragments 
To isolate DNA fragments of a specific size, the DNA was separated in agarose gel 
electrophoresis. The desired DNA band was cut out of the agarose gel under UV light 
and DNA was purified using the Wizard® SV Gel and PCR Clean-Up System kit 
according to the manufacturer’s protocol. The isolated DNA could be stored at −20 °C. 
C) Ligation 
The excised DNA fragments were inserted into the target vector by ligation. The target 
vector was cut at the same sites to ensure integration in the desired direction. Before 
ligation, a test agarose electrophoresis was performed to estimate DNA concentrations 
by comparison with marker bands (of known DNA amount). Ligation was performed with 
a ratio of 1.5 : 1, 3 : 1 and 6 : 1 for insert DNA : vector DNA. For the ratio 3 : 1 50 µg total 
DNA was used and accordingly more or less for the other ratios. Additionally, a vector-
only control was performed to estimate auto-ligation rate. For ligation 15 µl 1x T4 DNA 
Ligase buffer was supplemented with the DNAs and 1 µl T4 DNA Ligase. The ligation 
reaction was incubated overnight at 16 °C. 
D) Transformation 
The expression vectors employed in this study bore an ampicillin resistance gene 
allowing selection of transformed bacteria and accurate amplification of a vector with 
insert. For transformation, 5 µl of ligation reaction was added to 100 µl competent 
Escherichia coli XL1-blue bacteria. The bacteria were incubated for 30 min on ice, 
shocked for 90 s at 42 °C and put back on ice. The bacteria were mixed with 500 µl LB 
medium and incubated for 1 h at 37 °C. To concentrate the bacteria, they were pelleted 
(5,000 rcf, 15 s) and 400 µl of supernatant were discarded. The pelleted bacteria were 
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resuspended in the remaining medium and plated on pre-warmed agarose plates (15 g/l 
agarose in LB medium) containing 100 µg/ml ampicillin. The plates were incubated 
overnight at 37 °C. 
E) Miniprep 
By comparing the vector-only control with vector-insert samples, the percentage of auto-
ligations could be estimated. 5–10 colonies were picked, added to 3 ml LB medium 
supplemented with 100 µg/ml ampicillin and grown overnight aerobically in an incubation 
shaker at 37 °C (shaking: 180 rpm). The bacterial cultures were homogenized and DNA 
from 1,5 ml of bacteria was purified using the Wizard® Plus SV Minipreps DNA 
Purification System according to the manufacturer’s protocol. Ligation could then be 
evaluated by agarose gel electrophoresis, where auto-ligated vectors are distinguished 
from vectors with insert by size. A control restriction digest was performed for validation 
by agarose gel electrophoresis. The bacterial cultures were kept at 4 °C for further use. 
F) Midiprep 
A clone of bacteria containing a vector with successful ligation of vector and insert was 
chosen for further amplification of the vector. 100 µl of the clonal bacterial culture was 
added to 50 ml of LB medium supplemented with 100 µg/ml ampicillin. The bacterial 
culture was grown overnight aerobically in an incubation shaker at 37 °C (shaking: 
180 rpm). Vectors were isolated selectively using the QIAGEN Plasmid Plus Midi Kit 
according to the manufacturer’s protocol, yielding 200 µl purified vector DNA. A control 
restriction digest was performed for validation by agarose gel electrophoresis. DNA 
concentration and purity were determined with a nanophotometer (NanoPhotometer® 
P360) with 1 µl sample. For verification of the construct, the vector DNA was sequenced 
by Sanger sequencing at the GeneArt AG (Thermo Fisher Scientific Inc., Regensburg) 
and evaluated with the Vector NTI software. The Midiprep procedure to amplify DNA was 
also used for existing vectors, if necessary. For this, transformed E. coli clones were kept 
in glycerol stocks.  
Table 8: Expression vectors employed in the present study 
The table lists the expression vectors employed in this study to generate transgenic Ba/F3 cell lines and 
specifies how they were generated. Cloning and sequence validation were conducted by PD Dr. Anne 
Rascle, as further specified in the text. 
1These primers were provided by GeneArt AG (Thermo Fisher Scientific Inc., Regensburg), who performed 
1Sanger sequencing. 

Vectors generation sequencing 
primers 

pcDNA3.mSTAT5A.WT_FLAG mSTAT5A.WT_FLAG subcloned into pcDNA3 from 
pMX.neo.mSTAT5A.wt with EcoRI and NotI 

O21, T71, SP61 

pcDNA3.mSTAT5A.1*6_FLAG mSTAT5A.1*6_FLAG subcloned into pcDNA3 from 
pMX.neo.mSTAT5A.1*6 with EcoRI and NotI 

O21, T71, SP61 

pTet-On Advanced Purchased  
pTRE-Tight-BI-AcGFP1.mSTAT5A.WT_FLAG mSTAT5A.WT_FLAG subcloned into pTRE-Tight-BI-AcGFP1 

from pcDNA3.mSTAT5A.WT_FLAG with EcoRI and KpnI 
O76, O79, O94, 
O95, O97 

pTRE-Tight-BI-AcGFP1.mSTAT5A.1*6_FLAG mSTAT5A.1*6_FLAG subcloned into pTRE-Tight-BI-AcGFP1 
from pcDNA3.mSTAT5A.1*6_FLAG with EcoRI and KpnI 

O76, O79, O94, 
O95, O97 

pTK-Hyg Purchased  
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3 Results 

Constitutive activation of the normally transiently activated transcription factor STAT5A/B 

has been found to cause oncogenesis. The present study aimed to elucidate the effects 

of constitutive STAT5A/B activation, which govern its oncogenicity and lead to the 

acquisition of cancer hallmarks, in particular the role of putative chromatin alterations 

mediated by sustained STAT5 DNA binding upon constitutive activation. 

3.1 Experimental systems 

The immortalized murine pro-B cell line Ba/F3 was chosen as an experimental system. 

The Ba/F3 cell line derives from the murine bone marrow and is dependent on the 

cytokine IL-3 (Palacios and Steinmetz, 1985). IL-3 mediates Ba/F3 survival and growth 

via the STAT5A/B, PI3K and MAPK pathways (Kinoshita et al., 1997, Rosa Santos et al., 

2000). Non-synchronized Ba/F3 cells growing under IL-3 supplementation form a 

heterogenous cell population exhibiting successive (non-synchronized) cycles of 

transient activation of endogenous STAT5A/B. STAT5A/B activation, however, can be 

turned off/on respectively by temporary IL-3 deprivation (resting) and subsequent IL-3 

stimulation to study the effects of endogenous STAT5A/B activation in a synchronized 

cell population. 

The present study aimed to identify the effects of sustained oncogenic constitutive 

STAT5A-1*6 activation (see 1.3.4) on Ba/F3 cells, with normal transient wild-type 

STAT5A (hereafter STAT5A-wt) and endogenous STAT5A/B activation serving as 

controls. The parental Ba/F3 cell line permits identification of the effects of endogenous 

STAT5A/B activation. Ba/F3 cell lines stably expressing either STAT5A-1*6 or 

STAT5A-wt permit identification of differences in Ba/F3 cells transformed by 

STAT5A-1*6. In doing so, ectopic expression of STAT5A-wt permits discerning mere 

effects of STAT5A over-expression from effects of constitutive STAT5A-1*6 activation. 

Of note, Ba/F3 cells have been found not to fully survive IL-3 deprivation upon first 

induction of STAT5A-1*6 expression in contrast to Ba/F3-1*6 cells expressing 

STAT5A-1*6 long-term (Gesbert and Griffin, 2000, Nosaka et al., 1999). It was 

hypothesized that surviving Ba/F3 cells gradually acquire cancer hallmarks after first 

induction of STAT5A-1*6 expression, leading to malignant transformation. Thus, a stable 

Ba/F3 cell line inducibly expressing STAT5A-1*6 was predicted to permit monitoring this 

survival and transformation process, allowing identification of time-dependent effects of 

sustained STAT5A-1*6 DNA binding on STAT5 target genes. 

Previously established stable Ba/F3 cell lines constitutively or inducibly expressing 

STAT5A-1*6 and STAT5A-wt (Gesbert and Griffin, 2000, Nosaka et al., 1999, Onishi et 

al., 1998) were no longer available for the present study. Of note, the parental Ba/F3 cell 
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line and stable Ba/F3 cell lines constitutively expressing STAT5A-1*6 (hereafter 

Ba/F3-1*6) and STAT5A-wt (hereafter Ba/F3-wt) have been studied extensively by a 

number of research groups, including by the one of PD Dr. Anne Rascle. In particular, 

the survival and growth phenotype as well as STAT5A/B activation by phosphorylation, 

STAT5A/B DNA binding and STAT5A/B-mediated transactivation have already been 

characterized (Nosaka et al., 1999, Onishi et al., 1998, Rascle et al., 2003, Rascle and 

Lees, 2003). By contrast, Ba/F3 cell lines inducibly expressing STAT5A-1*6 have not 

been investigated extensively except for their survival and growth phenotype and 

tumorigenicity in vivo in one study (Gesbert and Griffin, 2000). Therefore, stable 

Ba/F3-1*6 and Ba/F3-wt cell lines were first re-established and validated by verifying 

their previously published characteristics, with parental Ba/F3 cells serving as a 

reference. Then, stable Ba/F3 cell lines inducibly expressing either STAT5A-1*6 or as a 

control STAT5A-wt were established and employed to monitor the transformation 

process induced by STAT5A-1*6. The consecutive establishment of four separate stable 

cell lines ensured that the previously established characteristics of Ba/F3-1*6 cells are 

replicable in the Ba/F3 cell line inducibly expressing STAT5A-1*6, once these cells are 

transformed. 

3.1.1 Ba/F3-wt and Ba/F3-1*6 cell line generation 

For the present study, stable Ba/F3-wt and Ba/F3-1*6 cell lines were established from 

parental Ba/F3 cells received from Jacqueline Marvel (IFR 128, BioSciences Gerland-

Lyon Sud, France) as a kind gift. To do so, the expression vectors pcDNA3. 

mSTAT5A.WT_FLAG and pcDNA3.mSTAT5A.1*6_FLAG expression were generated 

(Figure 8). They contain mSTAT5A.WT_FLAG and mSTAT5A.1*6_FLAG cDNA inserts, 

each encoding mSTAT5A-wt and mSTAT5A-1*6 in fusion with a C-terminal FLAG tag 

(Figure 8 | Hopp et al., 1988). The FLAG tag permits selective detection of transgenic 

mSTAT5A-wt-FLAG (hereafter simply STAT5A-wt) and mSTAT5A-1*6-FLAG (hereafter 

simply STAT5A-1*6) production by Western blot (see Figure 9 as an illustration). In 

Ba/F3-wt and Ba/F3-1*6 cells, the STAT5A-wt and STAT5A-1*6 transgenes are 

expressed constitutively under the control of the strong viral cytomegalovirus (CMV) 

promoter (Figure 8). Moreover, a neomycin resistance gene confers resistance to G418, 

enabling selection of stably transfected cells (Figure 8). 

Parental Ba/F3 cells were transfected by electroporation with either pcDNA3.

mSTAT5A.WT_FLAG or pcDNA3.mSTAT5A.1*6_FLAG plasmids. Stably transfected 

cells were selected using G418. Prospective Ba/F3-1*6 cells were grown in the absence 

of IL-3, because IL-3 induces apoptosis in Ba/F3-1*6 cells (Nosaka et al., 1999). 

Transgene expression could be demonstrated by Western blot analysis for the selected 

bulk cultures, using an antibody directed against the FLAG tag (data not shown). Several 
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Ba/F3-wt and Ba/F3-1*6 single clones were isolated in two rounds of limiting dilution. 

After evaluating transgene expression by Western blot analysis (data not shown) and 

the cell survival and growth phenotype by light microscopy and trypan blue staining-

based cell counting (data not shown), the single clones Ba/F3-wt A7 and Ba/F3-1*6 F7 

(hereafter simply named Ba/F3-wt and Ba/F3-1*6) were chosen for further analyses. 

 

Figure 8: Expression vectors employed to generate stable Ba/F3-wt and Ba/F3-1*6 cell lines 
(adapted from PD Dr. Anne Rascle) 
The expression vectors pcDNA3.mSTAT5A.WT_FLAG and pcDNA3.mSTAT5A.1*6_FLAG are illustrated 
schematically. mSTAT5A.WT and mSTAT5A.1*6 cDNAs were inserted into the pcDNA3 expression vector 
in frame with a FLAG tag sequence and under the control of the CMV promoter. 
Abbreviations: AmpR = ampicillin resistance gene, BGH = bovine growth hormone, CMV = cytomegalovirus, 
ColE1 = colecin E1, NeoR = neomycin resistance gene, polyA = polyadenylation signal, SV40 = simian virus 
40, T7 = T7 RNA polymerase. 

3.1.2 Parental Ba/F3, Ba/F3-wt and Ba/F3-1*6 cell line validation 

The parental Ba/F3 cells as well as the newly established Ba/F3-wt and Ba/F3-1*6 cells 

were expected to exhibit the characteristics previously reported in the literature. As 

detailed in the introduction section, upon activation by phosphorylation STAT5A/B 

translocates to the nucleus, acquires DNA binding and transcriptional activity, and 

mediates a pro-survival and growth response (see 1.3). Parental Ba/F3, Ba/F3-wt and 

Ba/F3-1*6 cells have been characterized previously for these parameters (Nosaka et al., 

1999, Onishi et al., 1998, Rascle et al., 2003, Rascle and Lees, 2003).  

To verify their reported survival and growth phenotype in response to IL-3, parental 

Ba/F3, Ba/F3-wt and Ba/F3-1*6 cells were cultured in the presence and absence of IL-3 

and monitored by living cell microscopy and trypan blue staining-based cell counting. 

Both parental Ba/F3 and newly established Ba/F3-wt cells grew in the presence of IL-3 

and all died upon IL-3 deprivation within a few days, whereas newly established 

Ba/F3-1*6 cells grew in the absence of IL-3 and all died upon IL-3 supplementation within 

a few days (data not shown). This pattern is in agreement with previously reported data 
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and shows the IL-3 independence conferred by STAT5A-1*6 (Nosaka et al., 1999, Onishi 

et al., 1998).  

To verify transgene expression and STAT5A/B activation by phosphorylation as well as 

STAT5A/B transactivation and DNA binding dynamics, parental Ba/F3 and Ba/F3-wt 

were rested and IL-3-stimulated to turn STAT5A/B activation off/on and harvested for 

Western blot analysis, gene expression analysis by RT-qPCR and chromatin 

immunoprecipitation (ChIP). Ba/F3-1*6 cells growing in the absence of IL-3 were 

harvested in parallel. 

Western blot analysis was performed using antibodies directed against transgenic 

FLAG-tagged STAT5A-wt/1*6 (FLAG), total STAT5A/B (C-terminal region common to 

STAT5A and STAT5B) and phosphorylated STAT5A/B (pSTAT5A/B). In doing so, FLAG 

signals allow identification of transgenic STAT5A-wt/1*6 and total STAT5A/B signals 

allow assessment of the expression level of STAT5A-wt/1*6 compared with endogenous 

STAT5A/B. pSTAT5A/B signals allow identification of both IL-3-dependent 

and -independent STAT5A/B activation. Positive FLAG signals were detected only in 

Ba/F3-wt and Ba/F3-1*6 cells (Figure 9), demonstrating ectopic STAT5A-wt/1*6 protein 

production. Slightly higher total STAT5A/B levels in Ba/F3-wt and Ba/F3-1*6 cells 

compared with parental Ba/F3 cells were observed (Figure 9), indicating a moderate 

level of overexpression of the respective transgene. Importantly, expression levels of 

STAT5A-wt and STAT5A-1*6 were comparable (Figure 9). Upon IL-3 stimulation, 

pSTAT5A/B was detected as expected in parental Ba/F3 and Ba/F3-wt cells, with 

Ba/F3-wt cells exhibiting higher levels attributed to activation of ectopic STAT5A-wt 

(Figure 9). On the other hand, pSTAT5A/B was detected in Ba/F3-1*6 in the absence of 

IL-3 (Figure 9). The observed transgene production and the STAT5A/B activation (i.e. 

phosphorylation) patterns are in agreement with previously reported data by Onishi et al. 

(1998) and Nosaka et al. (1999). 

STAT5A/B-mediated transactivation dynamics has been investigated previously using 

the STAT5 target genes Cis and Osm and the STAT5A/B-independent MAPK pathway-

Figure 9: STAT5A-1*6 activation does not depend on 
IL-3 in contrast to STAT5A-wt activation 
Parental Ba/F3 and Ba/F3-wt cells were rested for 12 h 
without IL-3 and stimulated for 15 min with IL-3 to induce 
STAT5A/B activation. Ba/F3-1*6 cells were grown in the 
absence of IL-3. Cells were harvested and Brij protein 
lysates were prepared. Protein lysates were analyzed by 
Western blot using antibodies detecting transgenic 
STAT5A-wt/1*6 (FLAG), total STAT5A/B (STAT5), active 
STAT5A/B (pSTAT5) and the loading control α-tubulin. 
Two Western blot analyses were conducted in parallel 
using (i) anti-STAT5A/B, anti-pSTAT5A/B and anti-α-
tubulin as well as using (ii) anti-STAT5A/B, anti-FLAG and 
anti-α-tubulin antibodies. The two anti-STAT5A/B as well 
as the two anti-α-tubulin Western blots exhibited similar 
bands and hence only one representative Western blot is 
depicted, respectively. 
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controlled c-Fos gene as models (Nosaka et al., 1999, Rascle et al., 2003, Rascle and 

Lees, 2003). Hence, RT-qPCR was performed for Cis, Osm, c-Fos and the 

housekeeping gene 36b4. 36b4 mRNA level was expected to be unaffected by 

treatments applied in the present study and, hence, served as negative control (Rascle 

et al., 2003). c-Fos mRNA level was expected to be upregulated in response to IL-3 but 

in a STAT5A/B-independent manner and served as positive control for IL-3 stimulation. 

36b4 and c-Fos were employed as such controls throughout the present study. The 

STAT5 target genes Cis and Osm were expected to be upregulated in the presence of 

transcriptionally active pSTAT5A/B. As expected, the IL-3-independent housekeeping 

gene 36b4 remained unaffected by IL-3 deprivation and restimulation (Figure 10D), while 

the IL-3-dependent control gene c-Fos was upregulated in the presence of IL-3 (parental 

Ba/F3 and Ba/F3-wt cells) but not in cells expressing STAT5A-1*6 in the absence of IL-3 

(Figure 10C). In parental Ba/F3 and Ba/F3-wt cells, Cis and Osm expression was 

likewise upregulated in the presence of IL-3 and, hence, endogenous STAT5A/B and 

STAT5A-wt activation (Figure 10A and B). In addition, Cis and Osm expression was 

upregulated in Ba/F3-1*6 cells despite the absence of IL-3 (compared to baseline level 

of parental Ba/F3 and Ba/F3-wt cells), correlating with constitutive STAT5A-1*6 

activation (Figure 10A and B). The observed pattern is in agreement with previously 

reported STAT5A/B-mediated transactivation dynamics (Nosaka et al., 1999, Rascle et 

al., 2003, Rascle and Lees, 2003). 

 

 

 

 

 

 

 

 

 

 

 

Active STAT5A/B has been shown to bind to GAS motifs in the Cis and Osm proximal 

promoters (Verdier et al., 1998, Yoshimura et al., 1996). STAT5 binding at these sites in 

Ba/F3 cells has been validated by ChIP using antibodies directed against STAT5A/B and 

primers specific to the Cis and Osm STAT5 binding sites (Basham et al., 2008, Rascle 

Figure 10: The STAT5A/B-dependent Cis 
and Osm genes are induced in IL-3-
independent Ba/F3-1*6 cells in contrast to 
the STAT5A/B-independent c-Fos gene 
Parental Ba/F3 and Ba/F3-wt cells were rested 
for 12 h without IL-3 and stimulated for 30 min 
with IL-3 to induce STAT5A/B activation. 
Ba/F3-1*6 cells were grown in the absence of 
IL-3. Cells were harvested, RNA was extracted 
and reverse transcribed into cDNA. cDNA was 
analyzed by RT-qPCR using primers specific 
for transcripts of the STAT5 target genes Cis 
and Osm as well as the control genes c-Fos 
and 36b4. The error bars depict standard 
deviation among RT-qPCR replicates. The 
results shown are representative of two 
independent experiments. 



72  Results 

et al., 2003, Rascle and Lees, 2003). STAT5 DNA binding has been correlated with 

transactivation of the Cis and Osm genes, which involves recruitment of RNA 

Polymerase II to the Cis and Osm transcription start sites (TSS | Basham et al., 2008, 

Rascle et al., 2003, Rascle and Lees, 2003). Recruitment of RNA Polymerase II has 

been investigated by ChIP using antibodies directed against RNA Polymerase II and 

primers specific to the Cis and Osm TSS (Basham et al., 2008, Rascle et al., 2003, 

Rascle and Lees, 2003). To verify these findings, ChIP was performed on the 

aforementioned samples using antibodies directed against STAT5A/B and RNA 

Polymerase II and primers specific to the Cis and Osm STAT5 binding site and TSS. 

Primers specific to unrelated sites in Cis, Osm and c-Fos were tested in parallel, as 

negative controls. Background ChIP signals were evaluated using non-specific IgG 

antibodies. Only in the presence of IL-3, RNA Polymerase II, but not STAT5A/B, was 

recruited to the STAT5A/B-independent c-Fos gene, correlating with its upregulation 

(Figures 11A, 11B, 12A and 12B). On the other hand, both STAT5A/B and RNA 

Polymerase II were recruited to Cis and Osm upon STAT5A/B activation in IL-3-

stimulated parental Ba/F3 and Ba/F3-wt cells as well as in Ba/F3-1*6 cells despite the 

absence of IL-3 (Figures 11A, 11B, 12A and 12B). These observations demonstrate the 

IL-3-independent constitutive DNA binding and transcriptional activity of STAT5A-1*6 in 

Ba/F3-1*6 cells. The observed patterns are in agreement with the previously reported 

STAT5 DNA binding and RNA Polymerase II recruitment dynamics (Basham et al., 2008, 

Rascle et al., 2003, Rascle and Lees, 2003). 
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Figure 11 (previous page): STAT5A/B and RNA Polymerase II are recruited to Cis and Osm upon IL-
3-induced STAT5A/B activation 
Parental Ba/F3 cells were rested for 12 h without IL-3 and stimulated for 30 min with IL-3 to induce STAT5A/B 
activation. Cells were harvested and processed for chromatin immunoprecipitation (ChIP) as described in 
the Material and Methods section. ChIP was performed using antibodies directed against STAT5A/B (A), 
RNA Polymerase II (B) or using Rabbit IgG as a background control (C). Input and co-precipitated genomic 
DNA were analyzed by quantitative PCR using primers specific for the promoter regions, transcription start 
sites and open reading frames of the STAT5 target genes Cis, Osm and the control gene c-Fos, as specified 
further in the figure. Cis and Osm proximal promoter amplicons overlap their respective STAT5 binding sites. 
Cis, Osm and c-Fos gene structures as well as amplicon positions are illustrated in Figure 33. The relative 
quantity of co-precipitated genomic DNA is expressed as percentage of input genomic DNA (input %), 
denoting chromatin occupancy. The error bars depict standard deviation among qPCR replicates. The 
results shown are representative of two independent experiments. Nucleotide positions are relative to the 
transcription start site. 
Abbreviations: BS = binding site, ChIP = chromatin immunoprecipitation, ORF = open reading frame, prom 
= promoter, prox = proximal, TSS = transcription start site 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 12: Constitutively active STAT5A-1*6 and RNA Polymerase II are recruited to Cis and Osm in 
the absence of IL-3  
Ba/F3-wt cells were rested for 13 h without IL-3 and stimulated for 30 min with IL-3 to induce STAT5A/B 
activation. Ba/F3-1*6 cells were grown in the absence of IL-3. Cells were harvested and processed for 
chromatin immunoprecipitation (ChIP) as described in the Material and Methods section. ChIP was 
performed using antibodies directed against STAT5A/B (A), RNA Polymerase II (B) or using Rabbit IgG as 
a background control (C). Input and co-precipitated genomic DNA were analyzed by quantitative PCR using 
the same primers as in Figure 11, as specified in the figure. Cis, Osm and c-Fos gene structures as well as 
amplicon positions are illustrated in Figure 33. The relative quantity of co-precipitated genomic DNA is 
expressed as percentage of input genomic DNA (input %), denoting chromatin occupancy. The error bars 
depict standard deviation among qPCR replicates. The results shown are representative of two independent 
experiments. Nucleotide positions are relative to the transcription start site. 
Abbreviations: BS = binding site, ChIP = chromatin immunoprecipitation, ORF = open reading frame, prom 
= promoter, prox = proximal, TSS = transcription start site 

Taken together, the newly established Ba/F3-wt and Ba/F3-1*6 cell lines as well as the 

parental Ba/F3 cells behaved as previously reported (Nosaka et al., 1999, Onishi et al., 

1998, Rascle et al., 2003, Rascle and Lees, 2003). In addition, the Ba/F3-wt cell line 

behaved comparably to the parental Ba/F3 cell line, exhibiting no growth factor 
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independence and, thus, no oncogenicity despite overexpression of STAT5A-wt. The 

validation of these stable Ba/F3-wt and Ba/F3-1*6 cell lines justified the generation of 

stable Ba/F3 cell lines inducibly expressing STAT5A-wt and STAT5A-1*6, to study 

STAT5A-1*6-mediated cell transformation. 

3.1.3 Ba/F3-tet-on-wt and Ba/F3-tet-on-1*6 inducible cell line generation 

As detailed above, a Ba/F3 cell line inducibly expressing STAT5A-1*6 was predicted to 

permit monitoring the transformation process induced by STAT5A-1*6 and a Ba/F3 

control cell line inducibly expressing STAT5A-wt was predicted to permit discerning mere 

effects of STAT5A over-expression from effects of constitutive STAT5A-1*6 activation. 

These two cell lines had been established previously based on the first generation of the 

Tet-on inducible expression system (Gesbert and Griffin, 2000), but were not available 

for the present study. Therefore, Ba/F3 cell lines inducibly expressing STAT5A-1*6 

(hereafter Ba/F3-tet-on-1*6) and STAT5A-wt (hereafter Ba/F3-tet-on-wt) were 

established using the newer and improved second generation of the Tet-on inducible 

expression system called ‘Tet-on Advanced’ from Takara Bio Europe/Clontech (Saint-

Germain-en-Laye, France | Urlinger et al., 2000). Tet-on (and Tet-off) inducible 

expression systems were originally developed by Gossen and Bujard (1992) on the basis 

of a repressor inhibited by tetracycline (tetracycline repressor) targeting a tetracycline 

resistance gene found in E. coli. Specifically, the Tet-on Advanced inducible expression 

system involves the fusion protein reverse tetracycline-controlled transactivator protein 

Advanced (rtTA Advanced), which comprises a mutated tetracycline repressor fused to 

a viral activation domain. rtTA Advanced functions as a doxycycline (dox)-dependent 

transactivator for sequence-specific tetracycline responsive element (TRE)-promoters.  

In contrast to Gesbert and Griffin (2000), the present study applied a bidirectional TRE-

promoter, where the target gene is co-expressed with a fluorescent protein as an internal 

control for transgene expression. 

The Ba/F3-tet-on-1*6 and Ba/F3-tet-on-wt cell lines were generated using the pTet-on 

Advanced, pTRE-Tight-BI-AcGFP1.mSTAT5A.1*6_FLAG and pTRE-Tight-BI-AcGFP1.

mSTAT5A.WT_FLAG expression vectors. The pTet-on Advanced vector allows 

constitutive expression of rtTA Advanced thanks to the strong viral CMV promoter, as 

well as of a neomycin resistance gene conferring resistance to G418 (Figure 13A). The 

pTRE-Tight-BI-AcGFP1.mSTAT5A.1*6_FLAG and pTRE-Tight-BI-AcGFP1.mSTAT5A. 

WT_FLAG vectors contain the mSTAT5A.1*6_FLAG and mSTAT5A.WT_FLAG cDNA 

inserts described above and (in the presence of rtTA Advanced) allow inducible, dox-

dependent expression of STAT5A-1*6 and STAT5A-wt, respectively, together with the 

internal control Aqueorea coerulescens green fluorescent protein 1 (AcGFP1, hereafter 

simply GFP | Figure 13C and D). 
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Figure 13: Expression vectors employed to generate stable inducible Ba/F3-tet-on-wt/1*6 cell lines  
(adapted from PD Dr. Anne Rascle) 
The expression vectors stably transfected in the Ba/F3-tet-on-wt and Ba/F3-tet-on-1*6 cell lines are 
illustrated. These cell lines were generated using the ‘Tet-on Advanced’ inducible expression system. pTet-
on Advanced (A) was employed to generate the Ba/F3-tet-on promoter cell line. pTK-Hyg (B) was employed 
together with pTRE-Tight-BI-AcGFP1.mSTAT5A.wt_FLAG (C) and pTRE-Tight-BI-AcGFP1. mSTAT5A.1*6
_FLAG (D), respectively, to generate Ba/F3-tet-on-wt and Ba/F3-tet-on-1*6 responder cell lines from the 
Ba/F3-tet-on promoter cell line. mSTAT5A.WT and mSTAT5A.1*6 cDNAs in frame with the FLAG tag 
sequence were inserted into a pTRE-Tight-BI-AcGFP1 backbone, conferring conditional STAT5A-wt-FLAG 
or STAT5A-1*6-FLAG expression, as well as concomitant GFP expression.  
Abbreviations: AmpR = ampicillin resistance gene, CMV = cytomegalovirus, ColE1 ori = colecin E1 origin, 
HSV TK = Herpes simplex virus thymidine kinase, HygromycinR = hygromycin B resistance gene, NeoR = 
neomycin resistance gene, polyA = polyadenylation signal, rtTA = reverse tetracycline-controlled 
transactivator protein, pUC = UC plasmid, TRE = tetracycline responsive element, SV40 = simian virus 40. 

The stable Ba/F3-tet-on-1*6 and Ba/F3-tet-on-wt cell lines were generated in two steps. 

Firstly, Ba/F3 cells were stably transfected with pTet-on Advanced under G418 selection. 

rtTA Advanced transgene expression was confirmed by RT-qPCR (data not shown). 

Several single clones were isolated by limiting dilution and evaluated for rtTA Advanced 

protein production by Western blot, using an antibody directed against rtTA-Advanced 

(Figure 14A). The Ba/F3-tet-on clone #7.1 was chosen because of its strong rtTA 

Advanced protein level (Figure 14A, see lane labelled #7). Secondly, Ba/F3-tet-on clone 

#7.1 was co-transfected with either (i) pTRE-Tight-BI-AcGFP1.mSTAT5A.1*6_FLAG 

and pTK-Hyg or (ii) pTRE-Tight-BI-AcGFP1.mSTAT5A.WT_FLAG and pTK-Hyg. The 

pTK-Hyg expression vector confers resistance to hygromycin B (Figure 13B). Stably 

transfected prospective (i) Ba/F3-tet-on-1*6 and (ii) Ba/F3-tet-on-wt cells were selected 

using hygromycin B and G418. Using living cell fluorescence microscopy, dox-

dependent GFP transgene expression was confirmed on the transfected pool by a 
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short-term dox induction (1 µg/ml for 24 h according to the manufacturer’s protocol, data 

not shown). Several single clones were isolated by limiting dilution and evaluated for 

GFP fluorescence (living cell fluorescence microscopy, data not shown; see Figure 16A 

as an example) and STAT5A-1*6/wt protein production (Western blot anti-FLAG, Figure 

14B and C) upon short-term dox induction (1 µg/ml dox for 24 h). The Ba/F3-tet-on-wt 

clone #3 and Ba/F3-tet-on-1*6 clone #D4.1 (hereafter simply named Ba/F3-tet-on-wt and 

Ba/F3-tet-on-1*6) were chosen for further analyses, because they exhibited 

homogenous GFP fluorescence levels (not shown) and the highest STAT5A-1*6/wt 

protein levels upon dox induction (Figure 14B and C). 

 

 

 

 

 

 

 

 

 

 

 

3.1.4 Conditions for doxycycline-mediated induction of STAT5A-wt and 
STAT5A-1*6 in Ba/F3-tet-on cell lines 

The present study aimed to study the STAT5A-1*6-mediated transformation process 

during long-term dox induction. Ba/F3-tet-on-1*6 cells were expected to be viable in the 

absence of IL-3 during long-term dox induction, whereas Ba/F3-tet-on-wt cells were 

expected to die in the absence of IL-3 (3.1.2, Nosaka et al., 1999, Onishi et al., 1998). 

Besides, Ba/F3-tet-on-1*6 cells were predicted to die from apoptosis in the presence of 

IL-3 upon long-term dox induction (Nosaka et al., 1999). Taken together, this meant that 

dox-induced Ba/F3-tet-on-wt cells could not serve as a long-term control for the 

transformation process in dox-induced Ba/F3-tet-on-1*6 cells in the absence of IL-3. This 

is why in the present study Ba/F3-tet-on-wt cells were only employed as a short-term 

control for the effects of STAT5A-1*6 induction. Hence, non-induced Ba/F3-tet-on-1*6 

Figure 14: Ba/F3-tet-on, Ba/F3-
tet-on-1*6 and Ba/F3-tet-on-wt 
clone selection 
A: Ba/F3-tet-on bulk culture was 
generated as described in the text. 
Ba/F3-tet-on bulk culture cells 
were subjected to limiting dilution 
and clones #1, #2, #4, #6, #7, #11 
and #12 were isolated. Cells were 
harvested and Brij protein lysates 
were prepared. Protein lysates 
were analyzed by Western blot 
using antibodies detecting rtTA 
Advanced and the loading control 
α-tubulin. B, C: Ba/F3-tet-on-1*6 
and -wt bulk culture was generated 
as described in the text. Ba/F3-tet-
on-1*6 and -wt bulk culture cells 
were subjected to limiting dilution 
and clones D4.1, D4.2, D4.4 plus 
D4.5 and #5, #7, #8, #10, #3, #6 
plus #9 were isolated, respectively. 
Cells were treated with 1 µg/ml dox 
for 24 h and harvested. Brij protein 
lysates were prepared and ana-
lyzed by Western blot using 
antibodies detecting FLAG and the 
loading control α-tubulin.   
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cells grown in the presence of IL-3 were usually used as a negative control in 

experiments of dox induction of Ba/F3-tet-on-1*6 cells. 

To establish conditions for short-term transgene induction in the newly established 

Ba/F3-tet-on-1*6 and -wt cell lines, ectopic STAT5A-1*6 production in response to dox 

was first characterized in a dose-dependent manner. Ba/F3-tet-on-1*6 and -wt cells were 

induced for 24 h in the presence of 20, 100, 200 and 1,000 ng/ml dox, based on the range 

recommended by the manufacturer. Non-induced cells served as negative control. For 

this 24h dox induction, IL-3 was maintained in all conditions, in order to directly compare 

transgene expression in STAT5A1*6- and STAT5A-wt-expressing cells under identical 

conditions. Cells were analyzed by Western blot for transgenic STAT5A-1*6/wt protein 

using an antibody directed against its FLAG tag. STAT5A-1*6/wt protein production was 

induced in a dose-dependent manner, with strongest induction using 1,000 ng/ml dox 

(Figure 15A). Thus, this dosage was applied for short-term (24 h) dox induction of 

Ba/F3-tet-on-1*6 and -wt cells in future experiments. 

 

 

 

 

 

 

 

Figure 15: STAT5A-1*6/wt production is induced rapidly, strongly and sustainedly using 1,000 ng/ml 
doxycycline for short-term and 100 ng/ml doxycycline for long-term induction 
A: Ba/F3-tet-on-1*6 (clone #D4.1) and -wt (clone #3) cells were supplemented for 24 h with doxycycline 
(dox) with dosages from 20–1,000 ng/ml in the presence of IL-3 to induce STAT5A-1*6/wt production, as 
specified in the figure. Non-induced cells (0) were grown in the presence of IL-3 as a negative control. B: 
Ba/F3-tet-on-1*6 cells (clone #D4.1) were supplemented with 20 or 100 ng/ml dox under gradual IL-3 
withdrawal for the indicated times to induce STAT5A-1*6 production. Dox was replenished every two days. 
Non-induced cells (0) were grown in the presence of IL-3 as a negative control. A, B: Cells were harvested 
and Brij protein lysates were prepared. Protein lysates were analyzed by Western blot using antibodies 
detecting transgenic STAT5A-1*6/wt (FLAG) and the loading control α-tubulin in three separate experiments 
(two for A and one for B). 
Abbreviations: dox = doxycycline. 

To establish conditions for long-term transgene induction in the newly established Ba/F3-

tet-on-1*6 cell line, ectopic STAT5A-1*6 production in response to dox was characterized 

in a time-dependent manner. For sustained long-term dox induction, dox was 

replenished every two days because of its short physiological half-life of around 24 h 

(Agwuh and MacGowan, 2006). To rule out any adverse effects of the high dosage of 

1,000 ng/ml dox chosen for short-term dox induction, Ba/F3-tet-on-1*6 cells were 

deprived of IL-3 and induced with only 20 or 100 ng/ml dox, with non-induced cells 
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serving as a day 0 control. Cells were harvested after 2, 7 and 12 days of induction and 

analyzed by Western blot as before. Both 20 ng/ml and 100 ng/ml dox induced ectopic 

production of STAT5A-1*6 in Ba/F3-tet-on-1*6 cells, with noticeably higher STAT5A-1*6 

levels using 100 ng/ml dox (Figure 15B; compare the FLAG to α-tubulin signal ratio). This 

suggested that a dosage of 100 ng/ml dox sufficed for sustained long-term dox induction. 

Given that the 24 h time-point was not analyzed and that the 1,000 ng/ml dox dosage 

had shown a stronger induction of STAT5A-1*6 production than the 100 ng/ml dox 

dosage (Figure 15A), it could not be ruled out that maximum transgene expression was 

reached more slowly using 100 ng/ml dox compared with 1,000 ng/ml dox for first 

induction. To exclude this possibility and for better comparability with short-term dox 

induction, 1,000 ng/ml dox was applied as first dosage and replenished every two days 

with 100 ng/ml dox for long-term dox induction in future experiments. 

As detailed above, upon dox induction Ba/F3-tet-on-1*6 and -wt cells were expected to 

co-express GFP and STAT5A-1*6/wt. Given that Ba/F3-tet-on-wt cells were only used 

as a control for short-term dox induction, GFP co-expression was only investigated for 

Ba/F3-tet-on-1*6 cells. To confirm co-expression of GFP for both short-term and 

long-term dox induction, Ba/F3-tet-on-1*6 cells were induced with dox as specified above 

for up to two weeks in the absence of IL-3 and analyzed regularly for native GFP 

fluorescence using living cell fluorescence microscopy and flow cytometry. Non-induced 

cells emitting only autofluorescence served as a negative control. As observed by 

microscopy, dox-induced cells exhibited elevated levels of GFP fluorescence after 24 h 

of dox induction (Figure 16A). Similarly, flow cytometry showed that induced cells formed 

a homogenous cell population emitting elevated levels of GFP fluorescence, when 

compared to non-induced cells (Figure 16B). The shift in GFP fluorescence was 

maintained throughout the two-week dox induction (Figure 16B). These findings 

confirmed rapid and sustained GFP co-expression upon dox induction.  

Upon dox induction, Ba/F3-tet-on-1*6 and -wt cells were expected to exhibit patterns of 

STAT5A protein production and activation by phosphorylation comparable to that of 

Ba/F3-1*6 and Ba/F3-wt cells, respectively (3.1.2, Onishi et al., 1998). For the reasons 

stated above, this was only investigated for Ba/F3-tet-on-1*6 cells. Ba/F3-tet-on-1*6 cells 

were induced for two weeks as specified above and harvested regularly for protein and 

RNA analysis. Non-induced cells rested without IL-3 served as a negative control. 

Western blot analysis was performed using antibodies directed against FLAG-tagged 

STAT5A-1*6, total STAT5A/B and pSTAT5A/B. RT-qPCR analysis was performed using 

primers specific for the STAT5A-1*6 transgene transcript. As identified by the FLAG tag, 

maximum STAT5A-1*6 protein level was reached after two days of induction and was 

maintained thereafter, confirming that dox induced STAT5A-1*6 protein production 

strongly and sustainedly (Figure 16C). pSTAT5A/B was detected in dox-induced cells, 
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Figure 16 (previous page): Doxycycline induces concomitant STAT5A-1*6 and GFP production in 
Ba/F3-tet-on-1*6 cells (clone #D4.1) using the standard protocol 
Ba/F3-tet-on-1*6 cells (clone #D4.1) were treated with doxycycline (dox) for the indicated times (day 1 for C 
and D equals 11 h) in the presence (A) or absence (B–D) of IL-3 to induce STAT5A-1*6 and GFP production 
in three independent experiments (A, B and C/D). 1,000 ng/ml dox was administrated as first dosage 
and100 ng/ml dox was replenished every two days. Non-induced cells were grown in the presence of IL-3 
(A,B) or rested without IL-3 for 11 h (C, D) to serve as negative controls. A: Living cells were surveyed by 
light microscopy and fluorescence microscopy specific for wavelengths emitted by GFP after excitation. An 
exemplary image is shown (20x magnification). B: Cells were harvested for flow cytometric analysis of native 
GFP fluorescence as described in the Material and Methods section. Histograms of GFP fluorescence 
(FITC-A channel) plotted logarithmically against percentage of maximal cell number (% of Max.) are shown. 
Induced cells (green) are depicted with the non-induced control (red) as a reference for autofluorescence. 
C: Cells were harvested and Brij protein lysates were prepared. Protein lysates were analyzed by Western 
blot as described in the legend of Figure 9. D: Within the same experiment as in C, cells were harvested for 
RT-qPCR analysis using primers specific for the STAT5A-1*6 transgene mRNA. The error bars depict 
standard deviation among RT-qPCR replicates. 
Abbreviations: d = day, dox = doxycycline. 

but not in non-induced cells in the absence of IL-3 (Figure 16C), demonstrating 

constitutive activation of ectopic STAT5A-1*6. Notably, two total STAT5A/B signals were 

observed in dox-induced Ba/F3-tet-on-1*6 cells. This resulted from the slower migration 

of (i) STAT5A-1*6 compared to endogenous STAT5A/B due to the added molecular 

weight of around 1 kDa from its FLAG tag (Hopp et al., 1988), (ii) STAT5A compared 

with STAT5B due to its higher molecular weight (Figure 5) and (iii) pSTAT5A/B compared 
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with unphosphorylated STAT5A/B because of the attached negatively charged 

phosphate residue (Cooper et al., 2006). Hence, the upper total STAT5A/B signals 

represent constitutively phosphorylated STAT5A-1*6 and overlap with the FLAG and 

pSTAT5A/B signals, while the lower signals represent (in the absence of IL-3) 

unphosphorylated endogenous STAT5A/B. The upper total STAT5A/B signals were 

approximately two to three times stronger than the lower signals, suggesting a two- to 

three-fold overexpression of STAT5A-1*6 relative to endogenous STAT5A/B. In 

accordance with STAT5A-1*6 protein production, STAT5A-1*6 transgene expression 

was induced strongly and sustainedly upon dox induction (Figure 16D). Maximum mRNA 

level was already reached after one day of dox induction, exemplifying the very rapid 

dox-dependent induction of STAT5A-1*6 transgene expression (Figure 16D), and 

demonstrating a delay in protein production (Figure 17C). 

In summary, the newly established Ba/F3-tet-on-1*6 cell line was shown to behave as 

expected upon dox induction in terms of its STAT5A-1*6 production and activation 

pattern (see Onishi et al., 1998). Similarly, non-induced Ba/F3-tet-on-1*6 cells behaved 

as the parental Ba/F3 cells and therefore can be used as reference of choice for the 

present study. Altogether, this experimental system represents a powerful tool to study 

STAT5A-1*6-induced cell transformation upon dox induction. 

3.2 Characterization of survival and growth phenotype of 
Ba/F3-tet-on-1*6 cells upon doxycycline induction 

The present study aimed to elucidate the effects of sustained constitutive STAT5A-1*6 

activation, which govern its oncogenicity, using long-term dox induction of the newly 

established Ba/F3-tet-on-1*6 cells as an experimental system. STAT5A-1*6 induction 

was predicted to induce oncogenesis in Ba/F3-tet-on-1*6 cells, leading to the acquisition 

of cancer hallmarks, in particular ‘cytokine (i.e. IL-3) independence’. As detailed in the 

introduction section (see 1.1), oncogenesis and cancer progression have been argued 

to be caused by natural selection, where individual (pre-)cancer cells gain a selective 

growth advantage by stochastically acquiring cancer hallmark traits (Hanahan and 

Weinberg, 2000, Merlo et al., 2006). Thus, it was hypothesized that stochastic processes 

could lead to differences in the events observed among different dox induction 

experiments. This hypothesis proposes that events shared among different dox induction 

experiments may be caused by sustained constitutive STAT5A-1*6 activation in a 

deterministic manner, whereas events unique to one dox induction experiments may 

have stochastic causes. 

To study the effects of sustained constitutive STAT5A-1*6 activation and to distinguish 

unique from shared events, altogether five independent dox induction experiments (one 

short-term and four long-term) were conducted (Figure 17A). Dox-induced and control  
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Figure 17: Schematic overview of short- and long-term doxycycline induction as well as doxycycline 
removal experiments conducted in the present study 
One short-term (‘Induction-S’) and four long-term doxycycline (dox) induction (‘Induction-1’, ‘-2’, ‘-3’ and ‘-4’) 
experiments (A) and fifteen dox removal (during Induction-2 and -3) experiments (B) were conducted as 
described in the text. The figure schematically illustrates these experiments. The duration of each dox 
induction experiment (A) and the starting point of each dox removal experiment (B) is depicted in turquoise. 
The applied treatment in terms of dox administration and IL-3 deprivation for dox-induced and control cells is 
detailed in the figure. Transgene expression (red), survival and growth phenotype (green) and optionally 
molecular phenotype (blue) was monitored in each experiment for the indicated time-points (asterisks indicate 
single time-points and double-sledged arrows indicate time spans). The applied methods are specified.  
Abbreviations: ChIP = chromatin immunoprecipitation, dox = doxycycline, ph. =phenotype. 
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cells were investigated, in a first step, for their survival and growth phenotype and, in a 

second step, for their molecular phenotype (gene expression and ChIP profiles | 

Figure 17A). As explained above, Ba/F3-tet-on-wt cells served as a control for short-term 

dox induction (Figure 17A). Specifically, Ba/F3-tet-on-1*6 and -wt cells were induced for 

14 h with dox both in the presence and absence of IL-3, with non-induced cells serving 

as a negative control for the effects of STAT5A-1*6/wt (Figure 17A). For long-term dox 

inductions, Ba/F3-tet-on-1*6 cells were induced with dox for five to eight weeks in the 

absence of IL-3 (+dox / −IL-3 | Figure 17A), with non-induced cells shortly withdrawn from 

IL-3 serving as a baseline control for STAT5A-1*6 activation (−dox / −IL-3 | Figure 17A). 

In addition, non-induced Ba/F3-tet-on-1*6 cells grown in parallel in the presence of IL-3 

(−dox / +IL-3 | Figure 17A) served as a control for potential effects of long-term culture. 

This allowed to discern time-dependent effects of long-term cell culture on Ba/F3 cells of 

the same clonal background from the long-term effects of STAT5A-1*6 induction per se. 

Hereafter, the short-term (14 h) dox induction experiment is named ‘Induction-S’ and the 

long-term dox induction experiments are named ‘Induction-1’, ‘Induction-2’, ‘Induction-3’ 

and ‘Induction-4’ (Figure 17A). 

3.2.1 STAT5A-1*6 production was continuously induced during short- 
and long-term doxycycline induction 

Dox-induced Ba/F3-tet-on-1*6 and -wt cells were predicted to ectopically produce the 

transgenic STAT5A-1*6/wt and GFP proteins. In addition, STAT5A/B activation by 

phosphorylation was expected to occur in the presence of IL-3 and/or STAT5A-1*6 

production. To verify transgene expression during Induction-S and -1, GFP fluorescence 

was analyzed by flow cytometry. To verify transgene expression and investigate 

STAT5A/B activation by phosphorylation during Induction-2, -3 and -4, Western blot 

analyses were performed using antibodies directed against FLAG-tagged STAT5A-1*6, 

total STAT5A/B and pSTAT5A/B, as described before (section 3.1).  

As predicted, both Ba/F3-tet-on-1*6 and -wt cells exhibited increased levels of GFP 

fluorescence in the presence, but not in the absence of dox administration during 

Induction-S (Figure 18A), indicating ectopic STAT5A-1*6/wt protein production. 

Likewise, dox-induced Ba/F3-tet-on-1*6 cells of Induction-1 continuously emitted 

elevated levels of GFP fluorescence, starting as early as 12 h after dox administration, 

compared to non-induced cells (Figure 18B), indicating continuous ectopic STAT5A-1*6 

protein production in the entire cell population. Maximum GFP fluorescence level was 

observed from day 2 to 4 of induction (Figure 18B). Then, GFP fluorescence level 

decreased gradually during the monitored time-span of 32 days (Figure 18B). From day 

14 to 21 of induction, GFP fluorescence levels in the cell population were not distributed 

evenly around a mean, but rather around two means (Figure 18B). This suggests 
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heterogeneity in the cell population and the existence of two distinct ‘lower-GFP’ and 

‘higher-GFP’ subpopulations. This observed shift in GFP fluorescence levels suggests 

that the initially smaller ‘lower-GFP’ subpopulation outgrew and eventually supplanted 

the ‘higher-GFP subpopulation (Figure 18B), possibly reflecting a selective growth 

advantage favoring the ‘lower-GFP’ subpopulation (predicted to express lower levels of 

STAT5A-1*6 protein). 

Dox-induced IL-3-deprived Ba/F3-tet-on-1*6 cells continuously exhibited positive FLAG, 

pSTAT5A/B and total STAT5A/B signals, with IL-3-deprived control (−dox) cells 

exhibiting only positive total STAT5A/B signals and IL-3-supplemented control (−dox) 

cells exhibiting only positive pSTAT5A/B and total STAT5A/B signals (Figure 18C–E). 

This is in agreement with the predicted pattern and indicates specific ectopic 

STAT5A-1*6 protein production and STAT5A-1*6 activation by phosphorylation 

throughout long-term (33 to 49 days) dox-induction (Figure 18C–E). Agreeing with GFP 

fluorescence level during Induction-1, maximum STAT5A-1*6 protein level as identified 

by the FLAG, upper total STAT5A/B and pSTAT5A/B signals was reached at day 2 of 

induction and decreased gradually from day 8 to 11 in Induction-2 and -4 (Figure 18C 

and 18E). Comparison of the upper total STAT5A/B signals (representing STAT5A-1*6) 

and lower total STAT5A/B signals (representing endogenous STAT5A/B) in dox-induced 

cells indicated two- to three-fold overexpression of STAT5A-1*6 in the beginning of 

Induction-2 and -4, which then decreased to an expression level comparable to 

endogenous STAT5A/B (Figure 18C and E). Disagreeing with the pattern detected 

during Induction-1, -2 and -4, maximum STAT5A-1*6 protein level as identified by the 

FLAG and pSTAT5A/B signals detected at day 3 of induction was maintained throughout 

Induction-3, up to day 49 (Figure 18D). Intriguingly, the FLAG signal detected in Western 

blot during Induction-3 was broader (Figure 18D) than that detected during Induction-2 

and -4 (Figure 18C and E). Additionally, a second pSTAT5A/B signal below the expected 

signal was detected at day 49 (Figure 18D). This suggests production of at least one 

aberrant STAT5A-1*6 protein with enhanced migration speed compared to the normal 

STAT5A-1*6 protein during Induction-3. It cannot be determined whether this aberrant 

form was also detected by the applied anti-total STAT5A/B antibody, given the overlap 

with the lower total STAT5A/B signal representing (unphosphorylated) endogenous 

STAT5A/B (Figure 18D). 

In summary, STAT5A-1*6 protein levels were rapidly and continuously induced in all 

induction experiments and tended to decrease over time in at least four of five 

experiments. This may hint at deterministic events and/or a selective growth advantage 

for cells with decreased levels of STAT5A-1*6 protein production. In addition, an aberrant 

STAT5A-1*6 protein appeared to be produced over time in at least one of three long-term 

inductions, suggesting the probable existence of stochastic events. 



84  Results 

  



Results   85 

Figure 18 (previous page): Transgenic STAT5A-1*6/wt or GFP protein was continuously detected 
during short- and long-term doxycycline induction 
A: Ba/F3-tet-on-wt and Ba/F3-tet-on-1*6 cells were kept for 14 h in the presence or absence of IL-3 to turn 
endogenous STAT5A/B and STAT5A-wt activation on/off. They were kept either in the presence or absence 
of 1,000 ng/ml doxycycline to induce STAT5A-wt/1*6 production and study the effects of constitutive 
STAT5A-1*6 activation as part of the ‘Induction-S’ experiment. B–E: Ba/F3-tet-on-1*6 cells were grown in 
the absence of IL-3 and supplemented with doxycycline to induce STAT5A-1*6 production. 1,000 ng/ml dox 
was administrated as first dosage and100 ng/ml dox was replenished every two days. Cells were kept for up 
to nine weeks as part of the ‘Induction-1’, ‘-2’, ‘-3’ and ‘-4’ experiments to study the effects of sustained 
constitutive STAT5A-1*6 activation. Non-induced cells were grown in the presence of IL-3 as control for the 
effects of transient endogenous STAT5A/B activation. Non-induced cells were rested without IL-3 for 9–11 h 
to turn off STAT5A/B activation as a negative control. 
A,B:. Cells were harvested at the indicated time-points and analyzed by flow cytometry for native GFP 
fluorescence, as described in the Material and Methods section. Results are depicted as described in the 
legend of Figure 16. C–E: Cells were harvested at the indicated time-points and Brij protein lysates were 
prepared. Protein lysates were analyzed by Western blot exactly as described in the legend of Figure 9. 
* FLAG-tagged STAT5A-1*6 was detected on a different membrane, where signals of the loading control α-
Tubulin were not comparatively weak, as shown here. 
o Only a partial faint pSTAT5A/B signal could be detected. 
Abbreviations: dox = doxycycline. 

3.2.2 STAT5A-1*6, but neither STAT5A-wt nor endogenous STAT5A/B, 
provides a cell survival and growth signal in the absence of IL-3 

Various Ba/F3 cell lines have been shown to be viable and proliferate in the absence of 

IL-3, when expressing STAT5A-1*6 both continuously and inducibly (Funakoshi-Tago et 

al., 2010, Gesbert and Griffin, 2000, Nosaka et al., 1999, Onishi et al., 1998). Therefore, 

dox-induced Ba/F3-tet-on-1*6 cells, but neither non-induced Ba/F3-tet-on-1*6 nor Ba/F3-

tet-on-wt cells, were predicted to survive and to exhibit cell growth upon IL-3 deprivation. 

In addition, Ba/F3 cells have been found to not fully survive IL-3 deprivation upon first 

induction of STAT5A-1*6 expression in contrast to Ba/F3-1*6 cells expressing 

STAT5A-1*6 long-term (Gesbert and Griffin, 2000, Nosaka et al., 1999). Therefore, IL-3 

deprivation was predicted to initially negatively impact the cell survival and growth 

phenotype of dox-induced Ba/F3-tet-on-1*6 cells. 

To monitor the cell survival and growth phenotype throughout the five independent dox 

induction experiments, the percentage of living cells and the absolute number of living 

cells were calculated regularly using trypan blue staining-based cell counting. Increases 

in the absolute number of living cells indicate the minimum rate of cell proliferation 

(doubling time). In addition, flow cytometry of DAPI-stained cells was performed during 

Induction-S and -1. In doing so, forward scatter (FSC) and sideward scatter (SSC) 

intensities and DAPI fluorescence intensities were measured for individual cells. FSC 

and SSC are measurements of cell size and granularity, as further detailed in the Material 

and Methods section (2.2.5, Figure 7). DAPI intercalates into the DNA and, hence, DAPI 

fluorescence intensity of a single stained cell is relative to the size of its genome. 

Proliferating eukaryotic cells repeatedly transition through four phases, constituting the 

cell cycle. They double their diploid chromosome set (2 n) during one cell cycle, having 

2 n in G1/G0 phase, 2–4 n in S phase and 4 n in G2/M phase. Given that only proliferating 



86  Results 

cells transition through S and G2 phase before cell division (M phase), high percentages 

of S and G2/M phase cells indicate growing cell populations, whereas high percentages 

of G1 phase cells indicate a growth arrest. In contrast to proliferating cells, dying cells 

undergoing programmed cell death break down their DNA (Kerr et al., 1972, Prokhorova 

et al., 2015, Taylor et al., 2008). Hence, hypoploid cells, which have DNA amounts lower 

than diploid 2 n, were classified as dead/dying sub-G1 phase cells. 

Throughout Induction-S (Figure 19) and Induction-1 (Figure 20) sub-G1 cells were less 

granular and smaller than living cells, forming a clearly distinct population of cells in the 

scatter plot agreeing with the apoptotic breakdown of cells (Kerr et al., 1972, O'Connell 

and Stenson-Cox, 2007, Prokhorova et al., 2015, Taylor et al., 2008). These differences 

were also visible upon trypan blue staining, where dead/dying blue-stained cells were 

smaller than non-stained living cells (data not shown). Living cells, on the other hand, 

showed size and granularity differences depending on their cell phase. Namely, G1 

phase cells were less granular and smaller than G2 phase cells, with S phase cells being 

intermediate (Figures 19 and 20). This suggests that Ba/F3-tet-on-1*6 cells increase in 

size and granularity while transitioning through the cell cycle. 

Both non-induced Ba/F3-tet-on-wt and non-induced Ba/F3-tet-on-1*6 cells as well as 

dox-induced Ba/F3-tet-on-wt cells showed a comparable survival and growth phenotype 

in all five dox induction experiments, when supplemented with IL-3. Trypan blue staining-

based cell counting continually showed around 5 % dead/dying cells and allowed 

calculating doubling times of around 12 h for non-induced Ba/F3-tet-on-1*6 cells in the 

four long-term dox induction experiments (Figure 21 and data not shown). This agreed 

with around 5 % dead/dying cells detected in cell cycle analysis upon short-term 

Induction-S (Figure 19A) and during long-term Induction-1 (Figures 20B and 22A). The 

high percentage of dividing S and G2/M phase cells of around 50 % confirmed the short 

doubling times and indicates a high rate of cell proliferation (Figures 19A, 19B, 20B and 

22B). Overall, these results agree with previous studies (Funakoshi-Tago et al., 2010, 

Nosaka et al., 1999, Onishi et al., 1998) and suggest that non-induced Ba/F3-tet-on-1*6 

control cells (i.e. cells not expressing STAT5A-1*6) do not undergo time-dependent 

deterministic or stochastic changes affecting their growth or survival phenotype. 

Figure 19 (next page): STAT5A-1*6, but neither STAT5A-wt nor endogenous STAT5A/B, provides a 
cell survival signal in the absence of IL-3 
Ba/F3-tet-on-wt and Ba/F3-tet-on-1*6 cells were kept for 14 h in the presence (A, B) or absence of IL-3 (C, 
D) to turn endogenous STAT5A/B and STAT5A-wt activation on/off. They were kept either in the presence 
(B, D) or absence (A,C) of 1,000 ng/ml doxycycline to induce STAT5A-wt/1*6 production and study the 
effects of constitutive STAT5A-1*6 activation. Cells were harvested and analyzed by flow cytometry for cell 
cycle profiles, as described in the Material and Methods section. Cell cycle profiles were determined by DAPI 
staining and are depicted as histograms. Cell phases (G1, S and G2/M phase) were classified manually 
based on DNA content, as indicated in the figure. Cells containing DNA contents below the normal diploid 
chromosome set (2 n) were classified as sub-G1 phase. This classification is also depicted in a scatter plot 
(sideward scatter versus forward scatter) to visualize size and granularity differences.  
Abbreviations: dox = doxycycline, FSC = forward scatter, n = haploid chromosome set, SSC= sideward 
scatter.  
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Figure 20 (next page): Ba/F3-tet-on-1*6 cells survive IL-3 deprivation and acquire IL-3-
independent growth  
Ba/F3-tet-on-1*6 cells were grown in the absence of IL-3 and supplemented with doxycycline to induce 
STAT5A-1*6 production. Cells were kept for five weeks as part of the ‘Induction-1’ experiment to study 
the effects of sustained constitutive STAT5A-1*6 activation (C). Non-induced cells were grown in the 
presence of IL-3 (B) or deprived of IL-3 (A), dying within two days, as controls for the effects of 
endogenous STAT5A/B activation. Cells were harvested at the indicated time-points and analyzed by 
flow cytometry for cell cycle profiles, as described in the Material and Methods section. Results are 
depicted as described in the legend of Figure 19. 
Abbreviations: dox = doxycycline, FSC = forward scatter, n = haploid chromosome set, SSC= sideward 
scatter. 
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Figure 21: STAT5A-1*6 provides an IL-3-independent survival and growth signal in Ba/F3-tet-on-1*6 
cells 
Ba/F3-tet-on-1*6 cells were grown in the absence of IL-3 and supplemented with doxycycline to induce 
STAT5A-1*6 production. Cells were kept for five weeks as part of the ‘Induction-1’ experiment to study the 
effects of sustained constitutive STAT5A-1*6 activation. Non-induced cells were grown in the presence of 
IL-3 or deprived of IL-3, dying within two days, as controls for the effects of endogenous STAT5A/B 
activation. Cells were counted at indicated time-points after addition of trypan blue, staining selectively 
dead/dying cells, to determine cell density. A: The absolute number of living cells was calculated based on 
the volume of the cell suspension and plotted relative to the absolute number of living cells at day 0 (= 1). 
The number of non-induced cells relative to day 0 at day 3 and 4 was beyond the displayed segment of the 
diagram. The shown results are representative of four independent experiments. B: Percentage of 
dead/dying cells was calculated based on trypan blue staining. The shown results are representative of four 
independent experiments. 
Abbreviations: dox = doxycycline. 

In the absence of IL-3, both non-induced and dox-induced Ba/F3-tet-on-wt as well as 

non-induced Ba/F3-tet-on-1*6 cells died within three days in all induction experiments, 

as detected using trypan blue staining-based cell counting (Figure 21B and data not 

shown). Cell cycle analysis during Induction-S (Figure 19C and D) and Induction-1 

(Figure 20A) showed that cells accumulated in G1 phase, indicating a growth arrest, and 

died rapidly. This shows that neither STAT5A-wt nor endogenous STAT5A/B can provide 

a cell survival signal in the absence of IL-3, in agreement with previous studies 

(Funakoshi-Tago et al., 2010, Gesbert and Griffin, 2000, Nosaka et al., 1999, Onishi et 

al., 1998). Of note, dox-induced Ba/F3-tet-on-1*6 cells expressing STAT5A-1*6 in the 

presence of IL3 similarly died in the course of several days, but at a slower pace and 

with longer accumulation in G1 phase (Figure 19B and data not shown). This likewise 

agrees with observations reported by Nosaka et al. (1999). 
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Figure 22: Percentage of dividing cells gradually increases during long-term doxycycline induction 
Ba/F3-tet-on-1*6 cells were grown in the absence of IL-3 and supplemented with doxycycline to induce 
STAT5A-1*6 production. Cells were kept for five weeks as part of the ‘Induction-1’ experiment to study the 
effects of sustained constitutive STAT5A-1*6 activation. Non-induced cells were grown in the presence of 
IL-3 as a control for the effects of endogenous STAT5A/B activation. Cells were harvested regularly and 
analyzed by flow cytometry for cell cycle profiles, as described in the Material and Methods section. 
Percentage of dead/dying sub-G1 phase cells was determined manually using the FlowJo 7.6.3 software at 
the indicated time-points (A). Percentages of living cells in G1, S and G2/M phase were calculated by the 
‘Watson Pragmatic’ algorithm integrated in the FlowJo 7.6.3 software and are depicted as an area diagram 
(B). For non-induced cells percentages were calculated for day 0, 1, 2, 3, 4, 7, 11, 14, 16, 18, 21, 28, 30 and 
32. For doxycycline-induced cells percentages were calculated for day 0, 1, 2, 3, 4, 7, 11, 14, 16 and 32. 
The day 0 time-point corresponds to 12 h of doxycycline induction and the day 1 time-point to 24 h of 
doxycycline induction. 
Abbreviations: dox = doxycycline. 

Overall, Ba/F3-tet-on-1*6 cells treated with dox in the absence of IL-3 exhibited similar 

changes in their survival and growth phenotype across all induction experiments as 

detected using trypan blue staining-based cell counting (Figure 21 and data not shown). 

This is why results from Induction-S and -1 are representative for all induction 

experiments and described exemplarily. Namely, after 12–14 h of dox induction around 

75 % cells accumulated in G1 phase and exhibited around 10 % dead/dying cells (Figures 

19D, 20C and 21B), similarly to non-induced cells deprived of IL-3 (Figures 19C, 20A, 

and 21B). In sharp contrast however, the absolute number of living dox-induced cells 

stagnated until 24 h of dox induction and then slowly increased, mirrored by an increase 

in the percentage of dividing cells (S and G2/M phase), indicating cell proliferation 

(Figures 20C, 21A and 22B). The percentage of dead/dying cells increased to 25 % at 

day 2 of induction and thereafter gradually decreased to 5 % after one week (Figures 

20B, 20C, 21B and 22A), suggesting a temporarily impaired cell viability and growth 
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arrest. In summary, these results suggest that STAT5A-1*6 provides an IL-3-

independent (i) survival and (ii) cell growth signal in Ba/F3-tet-on-1*6 cells, as predicted 

and in accordance with previous studies (Funakoshi-Tago et al., 2010, Gesbert and 

Griffin, 2000, Nosaka et al., 1999, Onishi et al., 1998).  

3.2.3 Doxycycline-induced Ba/F3-tet-on-1*6 cells gradually acquire a 
survival and growth phenotype  

Ba/F3 cells expressing STAT5A-1*6 have been shown to cause progressively worsening 

tumors after being injected into immunocompromised mice (Funakoshi-Tago et al., 2010, 

Gesbert and Griffin, 2000). It was thus hypothesized that oncogenicity of Ba/F3-

tet-on-1*6 cells in terms of cell survival and growth phenotype progressively increases in 

the course of long-term dox induction (i.e. in the course of STAT5A-1*6 expression).  

As explained above, results of Induction-1 are representative of all induction experiments 

and described exemplarily. While the percentage of dead/dying cells already reached 

the 5 % level observed in non-induced cells after only one week of induction (exempting 

an increase in the third week of dox induction not observed in the other induction 

experiments, potentially due to an error in cell handling | data not shown, Figures 20C 

and 22A), the initial percentage of dividing cells of 20 % gradually increased and reached 

around 55 % at day 30 of induction, comparable to that of non-induced control cells 

(Figures 20C and 22B). In accordance with this, doubling times gradually decreased and 

reached around 12 h (comparable to non-induced control cells) at day 30 of induction 

(data not shown). 

3.2.4 Stochastic changes accumulated in Ba/F3-tet-on-1*6 cells 
transformed by STAT5A-1*6 over time 

The fact that the cell survival and growth phenotypes changed in a similar manner in all 

five induction experiments raises the possibility that these changes occurred in a 

deterministic manner and are a direct effect of STAT5A-1*6 activity as transcription 

factor. At the same time, the cells enduring the removal of IL-3 experience a strong 

selective pressure for survival and growth, as probably do prospective cancer cells 

during in vivo oncogenesis. This may result in stochastic processes, where individual 

cells with higher viability and/or proliferation rate possess a selective growth advantage 

and, thus, outgrow other cells. 

Flow cytometric analysis of GFP fluorescence levels revealed heterogeneity among 

dox-induced Ba/F3-tet-on-1*6 cells during Induction-1 and suggested the displacement 

of most cells by a subpopulation with a selective growth advantage, i.e. clonal evolution 

(see 3.2.1 and Figure 18B). In addition, their gradual increase in cell survival and growth 

phenotype (Figures 20–22) likewise pointed to clonal evolution and suggested the 

acquisition of cancer hallmarks. As detailed in the introduction section (1.1.3), mutability 
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per se has been argued to confer a selective growth advantage to (pre)-cancer cells, 

leading to acquisition of the ‘genomic instability’ cancer hallmark and often involving 

chromosomal aberrations. STAT5A-1*6 has been linked to oxidative stress in Ba/F3 cells 

(Bourgeais et al., 2017), which can promote DNA damage and lead to chromosomal 

aberrations. Therefore, Ba/F3-tet-on-1*6 cells were hypothesized to acquire 

chromosomal aberrations indicative of ‘genomic instability’ during long-term dox 

induction. Numerical chromosomal aberrations lead to changes in the overall DNA 

content in a given cell. To investigate such potential deviations in DNA content in 

Ba/F3-tet-on-1*6 cells during long-term dox induction, DAPI-stained dox-induced cells 

were subjected to cell cycle analysis at day 61 of Induction-2 and at day 54 of Induction-3 

together with non-induced cells as control. In parallel, primary human leukocytes were 

analyzed as a reference for the absolute DNA content, to identify possible deviations 

from the in vivo murine genome. 

One haploid murine chromosome set comprises roughly 2.9 Gbp DNA and one such 

human set roughly 3.1 Gbp DNA (Ensembl database, 27.01.2018). DAPI fluorescence 

intensity of non-induced Ba/F3-tet-on-1*6 cells (of Induction-2 and -3) in G1 phase was 

slightly lower than that of human leukocytes (Figure 23B and data not shown), verifying 

that the investigated non-induced Ba/F3-tet-on-1*6 cells have roughly the same DNA 

content as human and murine cells. This suggests an euploid diploid chromosome set 

for the Ba/F3-tet-on-1*6 cell line (disregarding putative changes during long-term cell 

culture) and possibly for the parental Ba/F3 cell line (disregarding putative changes 

during establishment of the Ba/F3-tet-on-1*6 cell line) employed in the present study. 
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Figure 23 (previous page): An aneuploid Ba/F3-tet-on-1*6 subpopulation emerged during long-term 
doxycycline induction 
A, B: Ba/F3-tet-on-1*6 cells were grown in the absence of IL-3 and supplemented with doxycycline as part 
of the ‘Induction-3’ experiment to induce STAT5A-1*6 production in order to study the effects of sustained 
constitutive STAT5A-1*6 activation. Non-induced cells were grown in the presence of IL-3 as a control for 
the effects of endogenous STAT5A/B activation. Doxycycline-induced and non-induced cells were harvested 
after 54 days. A: Cells were analyzed by flow cytometry for cell cycle profiles as described in the Material 
and Methods section. Results are depicted as described in the legend of Figure 19. B: Leukocytes were 
extracted from human blood as a reference for genome size (kind donation from Dr. Melanie Werner-Klein). 
Cell cycle profiles of Ba/F3-tet-on-1*6 cells and human blood leukocytes are depicted together as 
histograms. A, B: The scale depicting DAPI fluorescence intensities was adjusted to fit the data of 
doxycycline-induced cells into the shown window. Both non-induced and doxycycline-induced cells exhibited 
equal DAPI fluorescence intensities for the depicted 2–4 n cell (sub)population. 
*An error in cell handling (cell density too high) caused increased cell death in non-induced cells. 
Abbreviations: dox = doxycycline, n = haploid chromosome set.  

The cell cycle profile of dox-induced cells from Induction-2 was similar to that of 

non-induced cells (data not shown), indicating no acquisition of numerical chromosomal 

aberrations in Induction-2 cells. Strikingly though, dox-induced cells from Induction-3 

exhibited an aneuploid subpopulation of cells in addition to a 2 n–4 n subpopulation, as 

observed in non-induced cells (Figure 23A, > 4 n cell population). The DNA content of 

this aneuploid subpopulation ranged from roughly 4 n to roughly 8 n (Figure 23B), 

suggesting tetraploidy and ongoing cell proliferation. This finding implies that a 

tetraploidization event probably occurred in at least one cell during Induction-3. This 

therefore points to a possible clonal evolution of cancer hallmarks during long-term dox 

induction and strongly suggests acquisition of the ‘genomic instability’ cancer hallmark 

during Induction-3. Besides, the heterogeneity within the cell population detected in 

Induction-1 (Figure 18B) and Induction-3 (Figure 23) agrees with the heterogeneity found 

in cancers in vivo (Vogelstein et al., 2013). 

3.3 Characterization of the growth and survival phenotypes of 
induced Ba/F3-tet-on-1*6 cells upon doxycycline removal 

Three previous findings, namely (i) the heterogeneity detected during Induction-1 and -3 

(Figures 18B and 23), (ii) the gradual change in cell survival and growth phenotype 

during all induction experiments (Figures 20–22) and (iii) the putatively tetraploid 

subpopulation detected during Induction-3 (Figure 23), may indicate that individual 

Ba/F3-tet-on-1*6 cells acquired ‘driver’ alterations in a stochastic manner during 

long-term dox induction, potentially mirroring in vivo oncogenesis. These ‘driver’ 

alterations are predicted to spread and establish themselves by clonal evolution, leading 

to an incremental increase in oncogenicity. In particular, these findings potentially point 

to the acquisition of the ‘resisting cell death’, ‘sustaining proliferative signaling’ and 

‘genomic instability’ cancer hallmarks during long-term dox induction. Acquisition of the 

‘Resisting cell death’ and ‘Sustaining proliferative signaling’ cancer hallmarks implies that 

Ba/F3-tet-on-1*6 cells do not rely on survival and growth signals, including constitutive 

STAT5A-1*6 activation in place of IL-3 signaling. 
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To investigate this hypothesis, dox was removed at different stages of dox induction, to 

halt STAT5A-1*6 production and, thus, to uncover the effects that are dependent and 

independent of constitutive STAT5A-1*6 activation. Dox was removed weekly during 

Induction-2 and -3, as depicted schematically in Figure 17B, and cells were thereafter 

investigated, in a first step, for their survival and growth phenotype and, in a second step, 

for their gene expression profile. 

3.3.1 STAT5A-1*6 production halted upon dox removal 

The employed ‘Tet-on advanced’ inducible expression system has been shown to be 

tight and reversible (Urlinger et al., 2000). Hence, dox removal was predicted to result in 

a rapid halt of STAT5A-1*6 transgene expression and, accordingly, a persisting absence 

of STAT5A/B activation by phosphorylation given the absence of IL-3. To verify this, 

Western blot analysis was performed using antibodies directed against FLAG-tagged 

STAT5A-1*6, total STAT5A/B and pSTAT5A/B during selected dox removal 

experiments, namely dox removal from day 21 and day 42 of Induction-2 as well as from 

day 7 and day 49 of Induction-3 (see Figure 17B). Non-induced cells rested without IL-3 

served as a negative (baseline) control for STAT5A/B activation. 

As predicted, FLAG and the upper total STAT5A/B protein signals disappeared after two 

days of dox removal, evidencing the halt in ectopic STAT5A-1*6 protein production 

(Figure 24). pSTAT5A/B levels concurrently dropped upon dox removal, although faint 

pSTAT5A/B signals remained in dox-removed cells later than day 2 of dox removal, albeit 

not in the negative control (Figure 24). It is unclear, whether the residual pSTAT5A/B 

signals constitute bona fide signals or merely artefacts.  

  

Figure 24: STAT5A-1*6 protein production halts upon doxycycline removal 
Ba/F3-tet-on-1*6 cells were supplemented with doxycycline to induce STAT5A-1*6 production and grown in the absence of 
IL-3. Cells were kept for seven weeks as part of the ‘Induction-2’ and ‘Induction-3’ experiments to study the effects of 
sustained constitutive STAT5A-1*6 activation. At the indicated time-points, a subset of cells was washed and removed from 
doxycycline and kept in the absence of IL-3 to halt STAT5A-1*6 production in order to uncover the effect of constitutive 
STAT5A-1*6 activation. Non-induced cells were rested for 9 h without IL-3 to turn off STAT5A/B activation as a negative 
control (∅). Cells were harvested at the indicated time-points and Brij protein lysates were prepared. Protein lysates were 
analyzed by Western blot exactly as described in the legend of Figure 9. 
Abbreviations: ∅ = rested without IL-3, d = day(s), dox = doxycycline. 



Results   95 

3.3.2 STAT5A-1*6 function as survival and growth signal decreases over 
time 

As detailed above, Ba/F3-tet-on-1*6 cells were hypothesized to acquire the ‘Resisting 

cell death’ and ‘Sustaining proliferative signaling’ cancer hallmarks during long-term dox 

induction. Accordingly, they would be expected to survive and proliferate despite dox 

removal upon acquisition of these cancer hallmarks. To investigate their cell survival and 

growth phenotype upon dox removal, dox-removed cells were monitored by light 

microscopy and trypan blue staining-based cell counting, as described above. 

Interestingly, all dox-induced cells ultimately died when dox removal was initiated within 

the first two weeks of Induction-2 and within the first four weeks of Induction-3 (Table 9). 

In doing so, the absolute number of living cells decreased slowly, the culture showing 

> 90 % dead/dying cells after 4–7 days of dox removal (Table 9 and data not shown). At 

the latest 11 days after dox removal, no living cells remained (Table 9). In later weeks (4 

to 5) of induction however, dox-induced cells were less susceptible to dox removal. 

Specifically, first only scattered morphologically aberrant cells survived dox removal in 

the long term (Table 9). After that however, higher percentages of cells managed to 

survive dox removal, with up to 25 % living cells observed after one week of dox removal 

(Table 9 and data not shown). The absolute number of living cells increased over time, 

albeit with longer doubling times than for dox-induced cells, indicating ongoing cell 

proliferation (Table 9 and data not shown). Overall, these results indicate that a cell 

survival and proliferation effect independent of STAT5A-1*6 was acquired over time, 

allowing survival and growth despite the loss of STAT5A-1*6 expression (Table 9). 
 

Table 9: STAT5A-1*6 function as survival and growth signal decreases over time 
Ba/F3-tet-on-1*6 cells were supplemented with doxycycline to induce STAT5A-1*6 production and grown in 
the absence of IL-3. Cells were kept for seven weeks as part of the ‘Induction-2’ and ‘Induction-3’ 
experiments to study the effects of sustained constitutive STAT5A-1*6 activation. At the indicated time-
points, a subset of cells was washed and removed from doxycycline and kept in the absence of IL-3 to halt 
STAT5A-1*6 production in order to uncover the effect of constitutive STAT5A-1*6 activation. Doxycycline-
removed cells were monitored by trypan blue staining-based cell counting exactly as described in the legend 
of Figure 21. The table specifies the percentage of dead/dying cells following doxycycline removal at the 
indicated time-points and the change (Δ) in absolute living cell number within the first four days of doxycycline 
removal. ‘−‘ specifies decrease, ‘+’ increase and ‘0’ no change. Doubled ‘−‘ signified ≥ 50% decrease, 
doubled ‘+’ ≥ 100 % increase and tripled ‘+’ ≥  200 % increase. 
* Only scattered morphologically aberrant cells survived. 

doxycycline removal 
Induction-2 Induction-3 

% cell death Δ absolute living cell 
number (4 days) % cell death Δ absolute living cell 

number (4 days) 
week 1 (day 3) 100 % after 6 days −− 100 % after 11 days −− 
week 1 (day 7) 100 % after 7 days −− 100 % after 9 days −− 
week 2 (day 14) 100 % after 10 days −− 100 % after 10 days −− 
week 3 (day 21) > 90 % after 7 days* 0 100 % after 10 days − 
week 4 (day 28) ~70 % after 7 days ++ > 90 % after 16 days* − 
week 5 (day 35) ~75 % after 8 days + > 90 % after 23 days* ++ 
week 6 (day 42) ~40 % after 18 days +++ ~50 % after 11 days +++ 
week 7 (day 49) no experiment ~50 % after 9 days ++ 
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Intriguingly, this was noticeably occurring earlier in case of Induction-2 compared to 

Induction-3 (Table 9). 

In summary, these observations suggest that STAT5A-1*6 function as a survival and 

growth factor is essential in the first few weeks of dox induction, while it appears to be 

progressively lost thereafter. These findings support the hypothesized acquisition of 

‘resisting cell death’ and ‘sustaining proliferative signaling’ cancer hallmarks during 

Induction-2 and -3.  

3.4 Characterization of the molecular phenotype of Ba/F3-tet-
on-1*6 cells upon dox induction and dox removal 

3.4.1 STAT5 target gene expression was induced throughout long-term 
doxycycline induction and aborted upon doxycycline removal 

STAT5A/B has been found to be a potent transactivator of tumor suppressor and 

oncogenes as well as of genes, which have no known role in oncogenesis (Kang et al., 

2013). This raises the question as to how constitutive STAT5A-1*6 activation relates to 

STAT5 target gene expression during long-term dox induction. STAT5A-1*6 protein 

levels declined during Induction-2 and -4, but remained stable during Induction-3 (Figure 

18C–E). STAT5A-1*6 protein levels were hypothesized to correlate with STAT5A-1*6 

transcriptional activity and, accordingly, mRNA levels of its target genes. Additionally, 

the progressive increase in cell survival and proliferation during long-term dox induction 

(Figures 20 and 22) raises the possibility that expression of STAT5-controlled tumor 

suppressor and oncogenes might be subjected to negative and positive selection 

pressures, respectively. Hence, it was hypothesized that Ba/F3-tet-on-1*6 cells 

accumulated ‘driver’ alterations during long-term dox induction that affected the mRNA 

levels of tumor suppressor and of oncogenes in an opposite manner. Moreover, the 

importance of STAT5A-1*6 function as survival and growth signal decreased over time 

(Table 9), raising the possibility of an acquired upregulation of oncogenes independent 

of STAT5A-1*6 transcriptional activity, allowing survival and growth of dox-induced cells 

upon dox removal. 

To investigate these three hypotheses, samples taken during the long-term dox induction 

experiments Induction-2, -3 and -4 and selected dox removal experiments (Induction-2: 

dox removal from day 7 and day 42; Induction-3: dox removal from day 7 and day 49) 

were analyzed by RT-qPCR (as depicted in Figure 17). In doing so, samples from rested 

non-induced cells served as baseline control, allowing calculation of fold-induction, and 

samples from non-induced cells growing with IL-3 (exhibiting non-synchronized cycles 

of transient endogenous STAT5A/B activity) as reference. Using RT-qPCR, STAT5A-1*6 

transgene mRNA levels were analyzed and compared to STAT5A-1*6 protein levels. 

36b4 housekeeping gene mRNA levels were monitored as internal control, in addition to 
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mRNA levels of a panel of STAT5 target genes (Cis, Spi2.1, c-Myc, Pim-1, Bcl-x and 

Osm [only Induction-4]). Of note, Nosaka et al. (1999), Nosaka and Kitamura (2002) and 

Funakoshi-Tago et al. (2013) have shown that c-Myc, Pim-1 and Bcl-x effect IL-3-

independent survival of Ba/F3 cells expressing STAT5A-1*6, suggesting essential roles 

of these genes in STAT5A-1*6-induced oncogenesis. 

As expected, STAT5A-1*6 transgene mRNA levels were at the detection limit in 

non-induced cells (Figure 25A). Upon dox induction, STAT5A-1*6 transgene mRNA 

levels were strongly induced (Figure 25A). Subsequently, the STAT5A-1*6 mRNA levels 

decreased to around 30 % of the maximal level during Induction-2, -3 and -4, albeit less 

rapidly during Induction-4 (Figure 25A). This decrease in mRNA levels thus correlated 

with decreasing protein levels observed in Induction-2 and -4 (Figure 18C and E). 

Interestingly, the considerable decrease in STAT5A-1*6 mRNA level during Induction-3 

was not reflected at the protein level (Figure 18D), suggesting a possible difference at a 

regulation step of STAT5A-1*6 protein production or stability following mRNA synthesis 

in Induction-3, compared to Induction-2 and -4. In contrast to Induction-2 and -4, 

STAT5A-1*6 mRNA levels in Induction-3 increased again to the level of initial induction 

after seven weeks of dox treatment (Figure 25A). Intriguingly, this renewed peak of 

mRNA level correlated with the detection of a putatively tetraploid subpopulation and 

was followed by another decrease after eight weeks of dox treatment (Figure 23). As 

opposed to STAT5A-1*6 mRNA levels, mRNA levels of the housekeeping gene 36b4 

remained stable in non-induced and dox-induced cells throughout long-term dox 

induction (Figure 25H).  

In non-induced cells, Cis mRNA was stably detected in cells grown in the presence of 

IL-3, at levels ten- to twenty-fold above those observed in non-induced rested cells 

(Figure 25B). Cis mRNA levels were likewise sustainedly upregulated during dox 

induction and correlated closely with STAT5A-1*6 mRNA levels, (Figure 25A and B). 

Spi2.1 mRNA levels, on the other hand, were near detection limit in non-induced rested 

cells and not detectably expressed in IL-3-growing cells (Figure 25C). This suggests a 

transient IL-3-mediated induction of Spi2.1 mRNAs, resulting in overall low mRNA levels 

in non-synchronized non-induced cells grown in IL-3, in agreement with past 

observations by Rascle et al. (2003). Strikingly, however, Spi2.1 mRNA levels were 

strongly upregulated in dox-induced cells (Figure 25C). In particular, Spi2.1 mRNA levels 

increased progressively upon dox induction during Induction-2 and -4, reaching thirty-

fold induction relative to non-induced rested cells in the second week of dox treatment 

(Figure 25C). This tremendous upregulation suggests a STAT5A-1*6-specific effect. 

Accordingly, Spi2.1 mRNA levels subsequently decreased, correlating with the decrease 

in STAT5A-1*6 mRNA levels (Figure 25A and C). By contrast, during Induction-3, Spi2.1 

expression was only induced around eight-fold above the respective levels of  
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Figure 25 (previous page): Expression of STAT5 target genes Cis, Spi2.1, c-Myc and Pim-1 is induced 
throughout long-term STAT5A-1*6 induction 
Ba/F3-tet-on-1*6 cells were grown in the absence of IL-3 and supplemented with dox (doxycycline) to induce 
STAT5A-1*6 production. Cells were kept for six to nine weeks as part of the ‘Induction-2’, ‘-3’ and ‘-4’ 
experiments to study the effects of sustained constitutive STAT5A-1*6 activation. Non-induced cells were 
grown in the presence of IL-3 as control for the effects of endogenous STAT5A/B activation or rested without 
IL-3 for 9–14 h as a baseline control for the absence of STAT5A/B activation. Cells were harvested at the 
indicated time-points. RNA was extracted and reverse transcribed into cDNA. cDNA was analyzed by 
RT-qPCR using primers specific for the transcripts of the STAT5A-1*6 transgene, the STAT5 target genes 
Cis, Spi2.1, c-Myc, Pim-1, Bcl-x (Bcl-xL isoform) and the control gene 36b4. The error bars depict standard 
deviation among RT-qPCR replicates. The dotted lines connect single data points for dox-induced cells and 
non-induced cells, growing in the presence of IL-3. 
Abbreviations: d = day, dox = doxycycline. 

non-induced rested cells in the first four weeks of induction (Figure 25C). Then, Spi2.1 

mRNA levels increased tremendously correlating with that of STAT5A-1*6 (Figure 25A 

and C). Taken together, these results suggest that STAT5A-1*6 protein transactivated 

both Cis and Spi2.1 in a dose-dependent manner throughout long-term dox induction. 

In non-induced cells, c-Myc and Pim-1 mRNA levels were stably detected, around four- 

to twelve-fold and around twenty- to fifty-fold above the respective levels observed in 

rested cells, in cells grown in IL-3 (Figure 25D and E). Upon dox induction, c-Myc and 

Pim-1 mRNA levels were upregulated at least four(c-Myc)/eight(Pim-1)-fold relative to 

non-induced rested cells initially and then increased steadily to at least seven (c-Myc)/

twenty(Pim-1)-fold above the level of non-induced rested cells during the first week of 

induction (though to a lesser extent for Pim-1 in Induction-2 | Figure 25D and E). This 

pattern correlated with those of STAT5A-1*6, Cis and Spi2.1 mRNA levels (Figure 

25A–C). This suggests that STAT5A-1*6 likewise mediated c-Myc and Pim-1 

transactivation in a dose-dependent manner. Moreover, the increase in c-Myc and Pim-1 

mRNA levels (Figure 25D and E) correlated with the increase in cell survival and 

proliferation (Figures 20 and 21) observed during the first week of induction, suggesting 

a dose-dependent effect of c-Myc and Pim-1 expression on cell survival and growth. 

Subsequently, c-Myc and Pim-1 mRNA levels only correlated partially with STAT5A-1*6 

mRNA levels (Figure 25A, D and E) and, in sharp contrast to Cis and Spi2.1, did not 

follow the strong decrease in STAT5A-1*6 mRNA level (Figure 25A–E). This suggests 

that c-Myc and Pim-1 expression became less dependent on transactivation by 

STAT5A-1*6 over time. 

In non-induced cells grown in the presence of IL-3, Bcl-x mRNA levels were three- to 

four-fold above those of rested cells (Figure 25F). Similarly, Bcl-x mRNA levels were only 

upregulated maximally two-fold in dox-induced cells relative to rested cells (Figure 25F). 

The patterns of Bcl-x and STAT5A-1*6 mRNA levels did not correlate with each other 

(Figure 25A and F). This was unexpected given the upregulation of Bcl-x in Ba/F3-1*6 

cells reported by Nosaka et al. (1999), and the description of Bcl-x as a bona fide STAT5 

target gene in parental Ba/F3 cells by Dumon et al., 1999 (confirmed by Nelson et al., 
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2004 and Basham et al., 2008). On the other hand, Osm mRNA levels were at the limit 

of detection in both dox-induced and non-induced cells during Induction-4 (Figure 25G), 

and were therefore not further analyzed. The transient IL-3-mediated induction pattern 

reported for Osm mRNAs (Nosaka et al., 1999, Rascle et al., 2003, Yoshimura et al., 

1996) might explain the overall low mRNA levels detected in these experiments. Taken 

together, these findings indicate that neither Bcl-x nor Osm were transactivated by 

STAT5A-1*6 during long-term dox induction and that Bcl-x expression was regulated in 

a STAT5A-1*6-independent manner. 

To further investigate their dependence to STAT5A-1*6, gene expression was also 

analyzed following withdrawal of dox treatment. As expected, STAT5A-1*6 transgene 

mRNA levels rapidly decreased upon dox removal (Figure 26A). Though, low levels of 

STAT5A-1*6 transgene mRNA were observed above the background level observed in 

non-induced rested cells throughout all investigated dox removal experiments 

(Figure 26A), with slightly higher levels detected during dox removal from day 42/49 than 

from day 7 of induction (Figure 26A, data not shown). This suggests some level of 

sustained expression of the STAT5A-1*6 transgene and/or persistence of its mRNA and 

suggests that the faint pSTAT5A/B signals detected by Western blot (Figure 24) were 

not artefacts, but rather represented residual constitutive STAT5A-1*6 activation. As 

expected, dox removal did not affect mRNA levels of the housekeeping gene 36b4 

(Figure 26G). Interestingly, Cis and Spi2.1 mRNA levels decreased gradually upon dox 

removal and then remained above the baseline level (Figure 26B and C). Given that their 

mRNA profiles during dox induction suggested STAT5A-1*6-controlled expression 

(Figure 25A–C), this further suggests that Cis and Spi2.1 remained transactivated by 

residual STAT5A-1*6 proteins. 

Strikingly, c-Myc and Pim-1 mRNA levels were differentially affected by dox removal 

depending on the duration of the preceding dox induction (Figure 26D and E). 

Specifically, c-Myc and Pim-1 mRNA levels gradually decreased to 20–30 % of their 

initial level upon early dox removal after one week of induction, still exhibiting three- to 

five-fold change relative to rested non-induced cells after four days of dox removal 

(Figure 26D and E). By contrast, c-Myc and Pim-1 mRNA levels were not markedly 

impacted by late dox removal after six weeks of induction (Figure 26D and E). This 

corroborates the suggestion that late expression of c-Myc and Pim-1 was STAT5A-1*6-

independent. In addition, their STAT5A-1*6 independence as transactivator correlated 

with the improved cell survival and growth phenotype observed in later dox removal 

experiments. On the other hand, dox removal did not impact Bcl-x mRNA levels 

(Figure 26F), further corroborating its STAT5A-1*6-independent transactivation pattern. 
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Figure 26: Cis and Spi2.1 expression, but not c-Myc and Pim-1 expression, is exclusively controlled 
by constitutively active STAT5A-1*6 
Ba/F3-tet-on-1*6 cells were supplemented with doxycycline to induce STAT5A-1*6 production and grown in 
the absence of IL-3. Cells were kept for seven weeks as part of the ‘Induction-2’ experiment to study the 
effects of sustained constitutive STAT5A-1*6 activation. At the indicated time-points, a subset of cells was 
washed, removed from doxycycline and kept in the absence of IL-3 to halt STAT5A-1*6 production in order 
to uncover the effect of constitutive STAT5A-1*6 activation. Non-induced cells were rested without IL-3 for 
9 h as baseline control for the absence of STAT5A/B activation. Cells were harvested at the indicated time-
points. RNA was extracted and reverse transcribed into cDNA. cDNA was analyzed by RT-qPCR using 
primers specific for the transcripts of the STAT5A-1*6 transgene, the STAT5 target genes Cis, Spi2.1, c-Myc, 
Pim-1, Bcl-x (Bcl-xL isoform) and the control gene 36b4. The error bars depict standard deviation among 
RT-qPCR replicates. The results shown are also representative of doxycycline removal experiments 
conducted during the ‘Induction-3’ experiment. 
Abbreviations: d = day(s), dox = doxycycline. 
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3.4.2 STAT5 binding to the promoter elements of Spi2.1, but not to those 
of Cis and Osm, correlated with STAT5A-1*6 transgene expression and 
transactivation activity 

Cis and Spi2.1 mRNA profiles during long-term dox induction (Figure 25A–C) suggested 

a dose-dependent transactivation by STAT5A-1*6. In particular, the decline in available 

STAT5A-1*6 proteins during Induction-2 and -4 (Figure 18C and E) was hypothesized to 

impact the DNA binding and, thus, transcriptional activity of STAT5A-1*6 on the Cis and 

Spi2.1 genes. Besides, the Osm gene was not detectably upregulated during long-term 

dox induction and therefore expected to exhibit weak binding of STAT5A-1*6 to its 

promoter. 

To test these hypotheses, samples taken during Induction-4 were analyzed for their 

STAT5 occupancy at its binding sites in the Cis, Spi2.1 and Osm genes using ChIP 

(Figure 17A | Basham et al., 2008). Of note, STAT5 binding sites regulating c-Myc and 

Pim-1 expression would have been an interesting target of research given the 

hypothesized time-dependent decrease in STAT5A-1*6-dependent regulation. Though, 

they could not be investigated in the present study, because STAT5 binding sites 

(putatively) regulating c-Myc in the c-Myc super-enhancer had not yet been identified 

(Pinz et al., 2016; confirmed by Nanou et al., 2017, GEO accession number GSE79520) 

and STAT5 binding sites (putatively) regulating Pim-1 through promoter and enhancer 

elements (Katerndahl et al., 2017, Kieffer-Kwon et al., 2013, Matikainen et al., 1999 and 

others) had not yet been identified and validated in Ba/F3 cells (Nanou et al., 2017, GEO 

accession number GSE79520). In addition, RNA Polymerase II occupancy at the TSS of 

the Cis gene was analyzed using ChIP, as a measure of active transcription (Li et al., 

2007, Rascle et al., 2003, Rascle and Lees, 2003). As before, non-induced cells (rested 

and growing with IL-3) served as controls. 

As expected, RNA Polymerase II occupancy at the Cis TSS correlated closely with Cis 

mRNA level in both non-induced and dox-induced cells (Figures 25B and 27B). In 

accordance with Cis transactivation (Figure 25B), STAT5 DNA binding activity to Cis was 

detected continuously in non-induced cells in the presence of IL-3 and in dox-induced 

cells in the absence of IL-3 (Figure 27A), confirming IL-3-dependent DNA binding activity 

of endogenous STAT5A/B and IL-3-independent DNA binding activity of constitutively 

active STAT5A-1*6, respectively (Nagata and Todokoro, 1996, Onishi et al., 1998). 

Conspicuously however, the detected STAT5 occupancy at Cis did not correlate well 

with Cis mRNA level in the course of dox induction, neither in non-induced nor in 

dox-induced cells (Figures 25B and 27A). Instead, STAT5 occupancy fluctuated 

randomly between 0.2 and 0.7 % input DNA (Figure 27A).  
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In line with its background expression level (Figure 25C), STAT5 DNA binding activity to 

Spi2.1 was near the detection limit in non-induced cells despite the presence of IL-3 

(Figure 27C). In dox-induced cells, however, STAT5 was bound to the STAT5 binding 

site of the Spi2.1 gene (Figure 27C) in accordance with its transactivation (Figure 25C). 

Strikingly, STAT5 occupancy nearly tripled in the second week of induction correlating 

with the tremendous thirty-fold upregulation of the Spi2.1 mRNA level (relative to the 

level of non-induced rested cells | Figure 25C) and with the increase in STAT5A-1*6 

mRNA levels (Figure 25A). This suggests more effective recruitment of STAT5A-1*6 and 

possibly of the transcription machinery to the Spi2.1 locus at this time-point. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Intriguingly, STAT5 DNA binding to the Osm promoter was detected in both non-induced 

(+IL-3) and dox-induced (−IL-3) cells (Figure 27D), although Osm was not upregulated 

in these conditions (Figure 25G). STAT5 occupancy at Osm STAT5 binding sites 

fluctuated between 0.1 and 0.3 % input DNA in dox-induced cells (Figure 27D), following 

a pattern similar to that found at the STAT5 binding sites of the Cis gene (Figure 27A). 

Importantly, this refutes a hypothesized lack of STAT5A-1*6 DNA binding as a cause for 

Figure 27: STAT5A-1*6 bound to its Cis, Spi2.1 
and Osm binding sites throughout long-term 
doxycycline induction 
Ba/F3-tet-on-1*6 cells were grown in the absence 
of IL-3 and supplemented with doxycycline to in-
duce STAT5A-1*6 production. Cells were kept for 
nine weeks as part of the ‘Induction-4’ experiment 
to study the effects of sustained constitutive 
STAT5A-1*6 activation. Non-induced cells were 
grown in the presence of IL-3 as control for the ef-
fects of endogenous STAT5A/B activation or res-
ted without IL-3 for 11  h as baseline control for the 
absence of STAT5A/B activation. Cells were har-
vested at the indicated time-points and processed 
for chromatin immunoprecipitation (ChIP) as des-
cribed in the Material and Methods section. ChIP 
was performed using antibodies directed against 
STAT5A/B (A, C, D) and RNA Polymerase II (B). 
Input and co-precipitated genomic DNA were ana-
lyzed by quantitative PCR using primers specific 
for the promoter regions of the STAT5 target 
genes Cis, Osm and Spi2.1 (STAT5) and the Cis 
transcription start site (RNA Polymerase II), as 
specified further in the figure. Cis, Osm and Spi2.1 
proximal promoter amplicons overlap their res-
pective STAT5 binding sites. Cis, Osm and Spi2.1 
gene structure as well as amplicon positions are 
illustrated in Figure 33. The relative quantity of co-
precipitated genomic DNA is expressed as 
percentage of input genomic DNA (input %), de-
noting chromatin occupancy. The error bars depict 
standard deviation among qPCR replicates. 
Nucleotide positions are relative to the trans-
cription start site. The dotted lines connect single 
data points for dox-induced cells and non-induced 
cells, growing in the presence of IL-3. 
Abbreviations: ChIP = chromatin immunopreci-
pitation, dox = doxycycline, Pol = Polymerase. 
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the undetectable Osm transactivation (Figure 25G). This, in turn, suggests that either 

missing co-factors, the Osm-specific chromatin context or high Osm mRNA instability 

impeded the detection of Osm mRNAs in STAT5A-1*6-induced cells. On the other hand, 

it cannot be excluded that the region overlapping the applied quantitative PCR primers 

was altered in Ba/F3-1*6 cells, impeding Osm mRNA detection in our assay. 

Altogether, these findings confirm the STAT5A-1*6-dependent regulation of the STAT5 

target genes Cis and Spi2.1. They also suggest that the gene-specific chromatin context 

(e.g. at Osm) might play a significant role in transcriptional regulation by STAT5A-1*6 

and, ultimately, hint at the acquisition of ‘driver’ and/or ‘passenger’ chromatin alterations 

during long-term dox induction.  

3.5 Chromatin regulation by transiently- and constitutively-
active STAT5A/B forms 

The present study aimed to elucidate whether constitutively active STAT5A-1*6 

mediates sustained chromatin alterations as opposed to transient alterations mediated 

by wild-type active STAT5A/B. It was hypothesized that STAT5A-1*6 can mediate 

different chromatin modifications than endogenous STAT5A/B and that this may play a 

role in its oncogenicity. 

3.5.1 The STAT5 target genes Cis and Osm are enriched for active, but 
not for repressive histone marks upon STAT5 binding 

To uncover which particular chromatin alterations may be impacted by STAT5A-1*6 DNA 

binding, a panel including common active and repressive histone modifications (The 

ENCODE Project Consortium, 2012) was investigated and correlated with changes 

mediated by IL-3 stimulation in parental Ba/F3 cells. Specifically, STAT5A/B activation 

in parental Ba/F3 cells was turned off/on by IL-3 removal/stimulation and cells were 

analyzed by ChIP using antibodies targeting histone H3 bearing the H3K4me1, 

H3K4me3, H3K9me1, H3K9me3, H3K27me1 and H3K27me3 marks. H3K4me1 and 

H3K4me3 constitute active marks, whereas H3K9me3 and H3K27me3 constitute 

repressive marks (Table 1). In addition, ChIP was conducted in parallel using antibodies 

against total histone H3 as a reference for changes in total histone occupancy and using 

IgG as background control. ChIP signal relative to total input DNA was analyzed by 

qPCR for sites in the Cis and Osm gene, namely the distal promoter, the proximal 

promoter overlapping STAT5 binding sites, the TSS and the open reading frame (ORF). 

As a negative control, ChIPed DNA was analyzed for sites in the distal promoter, at the 

TSS and in the ORF of the STAT5A/B-independent gene c-Fos. These three genes have 

been previously studied by the PD Dr. Anne Rascle’s research group for their STAT5 

and RNA Polymerase II occupancy as well as for histone acetylation at the afore-

mentioned sites in Ba/F3 cells (Rascle et al., 2003, Rascle and Lees, 2003). Cis, Osm 
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and c-Fos expression is induced upon IL-3 stimulation, correlating with increased 

occupation of RNA Polymerase II at their TSS and of STAT5 proteins at the Cis and Osm 

STAT5 binding sites (Rascle et al., 2003, Rascle and Lees, 2003 | verified in the present 

study, Figures 10 and 11). 

H3K9me1, H3K9me3, H3K27me1 and H3K27me3 enrichment was at or near the 

background level (ranging from ~0.01 % to ~0.06 % of input DNA) at the tested sites in 

the Cis, Osm and c-Fos genes both in the presence and absence of IL-3 (Figure 28), 

with the exception of the Osm ORF (H3K9me3, H3K27me1, ~0.09 % to 0.15 % input 

DNA; Figure 28B and C) and the c-Fos ORF (H3K27me1, H3K27me3, ~0.08 % input 

DNA; Figure 28C). This indicates no or negligible mono- and trimethylation of both H3K9 

and H3K27. Though, it could not be ruled out that the lack of positive signals was caused  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28: Repressive histone marks H3K9me3 and H3K27me3 were not enriched at Cis, Osm and 
c-Fos  
Parental Ba/F3 cells were rested for 12 h without IL-3 and stimulated for 30 min with IL-3 to turn STAT5A/B 
activation off/on. Cells were harvested and processed for chromatin immunoprecipitation (ChIP) as 
described in the Material and Methods section. ChIP was performed using antibodies directed against the 
modified histones H3K9me1 (B), H3K9me3 (B), H3K27me1 (C) and H3K27me3 (C) or using Rabbit IgG as 
a background control (A). Input and co-precipitated genomic DNA was analyzed by quantitative PCR using 
the same primers for Cis, Osm and c-Fos as in Figure 11 and as specified further in the figure. Cis, Osm 
and c-Fos gene structure as well as amplicon positions are illustrated in Figure 33. The relative quantity of 
co-precipitated genomic DNA is expressed as percentage of input genomic DNA (input %), denoting 
chromatin enrichment. The error bars depict standard deviation among qPCR replicates. Nucleotide 
positions are relative to the transcription start site. 
Abbreviations: BS = binding site, ChIP = chromatin immunoprecipitation, ORF = open reading frame, prom 
= promoter, prox = proximal, TSS = transcription start site. 
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by non-functioning antibodies. To verify the functionality of the anti-H3K27me3 antibody, 

H3K27me3 enrichment was analyzed by qPCR at the Igk-Eκi DNA site, where H3K27me3 

marks have been described previously in murine B cells (Mandal et al., 2011). 

H3K27me3 was enriched at this site, with 1–1.5 % of input DNA (Figure 29), validating 

the functionality of the anti-H3K27me3 antibody, and thus confirming the absence of this 

repressive histone mark at the Cis, Osm and c-Fos genes. Such control sites were not 

readily available for the anti-H3K9me1, anti-H3K9me3 and anti-H3K27me1 antibodies, 

whose functionality hence could not be confirmed. At any rate, the absence or marginal 

enrichment of H3K9me1, H3K9me3, H3K27me1 and H3K27me3 along Cis, Osm and 

c-Fos agrees with their distributions reported for actively transcribed euchromatic genes 

(Table 1). 

 

 

 

 

 

 

 
 

The active marks H3K4me1 and H3K4me3 were enriched at the tested sites along Cis, 

Osm and c-Fos both in the absence and presence of IL-3 (Figure 30A). Interestingly, 

total histone H3 occupancy decreased upon IL-3 stimulation along Cis and Osm, in 

particular within their promoter and TSS regions, but not along c-Fos (Figure 30C). 

Strikingly, this decrease was most pronounced at the STAT5 binding sites in the Cis and 

Osm proximal promoters (Figure 30C). Given that a change in total histone H3 

occupancy will impact the interpretation of detected H3K4me1 and H3K4me3 signals, 

H3K4me1 and H3K4me3 ChIP results were normalized to total histone H3 occupancy 

(Figure 30B), to better reflect true histone mark enrichment. Upon normalization to 

histone H3 occupancy, H3K4me3 was tremendously enriched in the proximal promoter 

and at the TSS, both in the absence and presence of IL-3 (Figure 30B). H3K4me3 was 

also detected at the Cis and Osm distal promoter, but was comparatively low in the Cis, 

Osm and c-Fos ORF (Figure 30B). Upon IL-3 stimulation, H3K4me3 level increased 

slightly at the transcription start site of all three genes (Figure 30B), correlating with the 

increased transcriptional activity (Figure 10). H3K4me3 level around the STAT5 binding 

sites in the Osm and Cis proximal promoters, as well as within the c-Fos proximal 

promoter, remained mainly unchanged upon IL-3 stimulation (Figure 30B). On the other 

Figure 29: The histone mark H3K27me3 is enriched at the Igk-Eκi site, used 
in the present study as a positive control for the H3K27me3-specific 
antibodies 
Parental Ba/F3 cells were rested for 12 h without IL-3 and stimulated for 30 min 
with IL-3 to turn STAT5A/B activation off/on, respectively. Cells were harvested 
and processed for chromatin immunoprecipitation (ChIP) as described in the 
Material and Methods section. ChIP was performed using antibodies directed 
against the modified histone H3K27me3 or using Rabbit IgG as a background 
control. Input and co-precipitated genomic DNA was analyzed by quantitative 
PCR using primers specific for the Eκi site in the Igk gene. The relative quantity of 
co-precipitated genomic DNA is expressed as percentage of input genomic DNA 
(input %), denoting chromatin enrichment. The error bars depict standard 
deviation among qPCR replicates. 
Abbreviations: ChIP = chromatin immunoprecipitation. 
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hand, H3K4me1 exhibited considerably lower signal than H3K4me3, indicative of lower 

enrichment, and remained unaffected by IL-3 stimulation (Figure 30B). Altogether, the 

distribution of mono- and trimethylation of H3K4 agreed with previous reports for actively 

transcribed euchromatic genes (Table 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 30: Active mark H3K4me3 is enriched at the transcription start site upon transactivation of 
Cis, Osm and c-Fos 
Parental Ba/F3 cells were rested for 12 h without IL-3 and stimulated for 30 min with IL-3 to turn STAT5A/B 
activation off/on. Cells were harvested and processed for chromatin immunoprecipitation (ChIP) as 
described in the Material and Methods section. ChIP was performed using antibodies directed against the 
modified histones H3K4me1 (A), H3K4me3 (A) as well as total histone H3 (C). Input and co-precipitated 
genomic DNA was analyzed by quantitative PCR using the same primers for Cis, Osm and c-Fos as in 
Figure 11, as specified further in the figure. Cis, Osm and c-Fos gene structures as well as amplicon positions 
are illustrated in Figure 33. The relative quantity of co-precipitated genomic DNA is expressed as percentage 
of input genomic DNA (input %), denoting chromatin occupancy/enrichment. H3K4me1 and H3K4me3 
occupancy was normalized to total histone H3 occupancy (B). The error bars depict standard deviation 
among qPCR replicates. The shown results are representative of two independent experiments. Nucleotide 
positions are relative to the transcription start site. 
Abbreviations: BS = binding site, ChIP = chromatin immunoprecipitation, ORF = open reading frame, prom 
= promoter, prox = proximal, TSS = transcription start site. 

The fact that relative H3K4me1 and H3K4me3 enrichment did not change in a manner 

specific to the investigated STAT5 target genes opposes STAT5A/B-specific effects on 

these marks. Therefore, H3K4me1 and H3K4me3 were not further investigated in the 

present study. However, the striking decrease in total histone H3 occupancy correlating 

with STAT5 binding to Cis and Osm suggests a chromatin remodeling event that either 

mediates or is mediated by STAT5 binding. This chromatin remodeling event was 

therefore investigated in detail in the remaining part of the present study. 
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It should be noted that, due to a lack of time, the histone marks investigated above in 

IL-3-stimulated Ba/F3 cells were not assessed in cells expressing STAT5A-1*6 and 

therefore that the question of how these marks might be altered during STAT5A-1*6-

induced oncogenesis was not addressed. 

3.5.2 STAT5 DNA binding correlates with a histone H3 decrease in 
parental Ba/F3 cells 

3.5.2.1  STAT5 DNA binding correlates with a histone H3 decrease all along the 
Cis gene 

The most pronounced decrease in histone H3 occupancy upon STAT5 DNA binding and 

transactivation of Cis was observed at its STAT5 binding site. To further investigate 

whether this decrease was also detected at other sites along the Cis locus, histone H3 

occupancy in Ba/F3 cells was analyzed by qPCR using the same ChIP samples as 

before (3.5.1). Primers specific for multiple representative sites all along the Cis gene 

between position −831 bp and +4029 bp relative to the TSS were employed for the 

qPCR, in parallel to control sites within the c-Fos gene, as illustrated in Figure 33.  

Both in the presence and absence of IL-3, histone H3 occupancy along the Cis and c-Fos 

gene was lower at the TSS and in the proximal promoter compared with the ORF and 

the distal promoter region (Figure 31). This pattern follows the nucleosome distribution 

reported for euchromatic protein-coding genes with a 5’ nucleosome-free region 

(5’-NFR) upstream of the TSS (Figure 4| Iyer, 2012, Jiang and Pugh, 2009, Yuan et al., 

2005). Of note, the comparatively low histone H3 occupancy within the Cis promoter 

agrees with the 5’-NFR encompassing the STAT5 binding sites. Strikingly, histone H3 

occupancy decreased all along the Cis gene upon IL-3 stimulation, but only negligibly 

along the c-Fos gene (Figure 31A). The decrease in histone H3 occupancy thus 

correlates with STAT5 DNA binding and transactivation (Figures 10A, 11A and 31A). 

Although the decrease in histone H3 occupancy was observed all along the Cis locus in 

response to IL-3, it was strongest around the STAT5 binding sites, down to 10 % of the 

histone H3 occupancy detected in rested cells (Figure 31B). Overall, these findings raise 

the possibility that the decrease in histone H3 occupancy around the STAT5 binding 

region is a consequence of STAT5 DNA binding, suggesting a possible STAT5A/B-

mediated nucleosome loss (although STAT5A/B-independent nucleosome loss cannot 

be excluded at this point). This is in agreement with the increased chromatin accessibility 

reported for the Cis STAT5 binding site upon STAT5 binding by Rascle and Lees (2003). 

These observations also raise the question as to whether the decrease in histone H3 

content along the entire Cis locus reflects a global increase in chromatin accessibility at 

this locus as a consequence of (or alternatively in preparation for) STAT5 binding and/or 

transcriptional activation. 
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Figure 31: Upon IL-3 stimulation, histone H3 occupancy decreases along the STAT5 target gene Cis, 
but is strongest in the proximal promoter, around the STAT5 binding site 
Parental Ba/F3 cells were rested for 9 h without IL-3 and stimulated for 30 min with IL-3 to turn STAT5A/B 
activation off/on. Cells were harvested and processed for chromatin immunoprecipitation (ChIP) as 
described in the Material and Methods section. ChIP was performed using antibodies directed against 
histone H3 (A). Input and co-precipitated genomic DNA were analyzed by quantitative PCR using primers 
specific for sites all along the STAT5 target gene Cis and for the proximal promoter, transcription start site 
and open reading frame of the control gene c-Fos, as specified further in the figure. The relative quantity of 
co-precipitated genomic DNA is expressed as percentage of input genomic DNA (input %), denoting histone 
H3 occupancy (A). Histone H3 occupancy relative to ‘−IL-3’ was calculated (B). Cis, Osm and c-Fos gene 
structures as well as amplicon positions are illustrated in Figure 33. The error bars depict standard deviation 
among qPCR replicates. The shown results are representative of three independent experiments. Nucleotide 
positions are relative to the transcription start site. 
Abbreviations: ChIP = chromatin immunoprecipitation, n. = nucleotide, pos. = position, TSS = transcription 
start site. 

3.5.2.2 STAT5A/B-associated histone H3 decrease does not correlate with 
enriched histone acetylation at the Cis STAT5 binding site 

The detected decrease in histone H3 occupancy indicates a decrease in nucleosome 

density along Cis and Osm (Figures 30C and 31). As detailed in the introduction section, 

two main mechanisms have been found to govern nucleosome density: (i) ATP-

dependent chromatin remodeling complexes, and (ii) HATs and HDACs (1.2). ATP-

dependent chromatin remodeling complexes dislocate and/or eject nucleosomes, 

leading to local nucleosome loss (1.2). HATs acetylate various histone lysine residues, 

which impedes nucleosome-DNA interaction and, thus, leads to a local decrease in 

nucleosome density (1.2). Of note, STAT5A/B has been argued to recruit HATs as well 

as ATP-dependent chromatin remodeling complexes (1.3.3.5, Table 2). Therefore, it was 

hypothesized that both mechanisms might contribute to the observed histone H3 

decrease along Cis and Osm. Hence, histone acetylation was predicted to be enriched 

in parallel to the histone H3 decrease in the Cis and Osm gene upon STAT5 binding to 

DNA. To investigate this, the parental Ba/F3 samples used before (3.5.1, 3.5.2.1) were 
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analyzed by ChIP using antibodies targeting acetylated histone H3 (acH3) and H4 

(acH4). acH3 and acH4 enrichment was analyzed by qPCR at the previously investigated 

sites in Cis and Osm, as well as in c-Fos as a control, and normalized to total histone H3 

occupancy as before (3.5.1). 

Interestingly, acH3 and acH4 was enriched upon IL-3 stimulation in the Cis and Osm 

distal promoter region, in the c-Fos proximal promoter region and at the Cis, Osm and 

c-Fos TSS (Figure 32B). Though, acH3 and acH4 was only slightly or not enriched in the 

Cis, Osm and c-Fos ORF, slightly enriched at the Osm STAT5 binding site and not 

enriched at the Cis STAT5 binding site upon IL-3 stimulation (Figure 32B). This agrees 

with the reported distribution for actively transcribed euchromatic genes, with the 

exception of the Cis (and to a lesser extent Osm) STAT5 binding site lacking the 

expected enrichment in histone acetylation (Figure 32B, Table 1). This opposes the 

hypothesis that HAT activity contributed to the decrease in histone H3 occupancy, i.e. 

nucleosome density, at the Cis STAT5 binding site (Figures 30C and 31). Though, this 

does not exclude that HAT activity contributed to the histone H3 decrease detected at 

other investigated sites (Figure 30C). Overall, these findings suggest that the 

 

 

 

 

 

 

 

 

 

 

Figure 32: Acetylated histones H3 and H4 are not enriched upon IL-3 stimulation at the Cis STAT5 
binding site 
Parental Ba/F3 cells were rested for 12 h without IL-3 and stimulated for 30 min with IL-3 to turn STAT5A/B 
activation off/on. Cells were harvested and processed for chromatin immunoprecipitation (ChIP) as 
described in the Material and Methods section. ChIP was performed using antibodies directed against 
acetylated histone H3 (acH3) and acetylated histone H4 (acH4) (A) as well as total histone H3 (data shown 
in Figure 30C). Input and co-precipitated genomic DNA was analyzed by quantitative PCR using the same 
primers for Cis, Osm and c-Fos as in Figure 11, as specified further in the figure. Cis, Osm and c-Fos gene 
structures as well as amplicon positions are illustrated in Figure 33. The relative quantity of co-precipitated 
genomic DNA is expressed as percentage of input genomic DNA (input %), denoting chromatin enrichment. 
acH3 and acH4 enrichment was normalized to total H3 occupancy (B). The error bars depict standard 
deviation among qPCR replicates. The shown results are representative of three independent experiments. 
Nucleotide positions are relative to the transcription start site. 
Abbreviations: BS = binding site, ChIP = chromatin immunoprecipitation, ORF = open reading frame, prom 
= promoter, prox = proximal, TSS = transcription start site. 
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nucleosome loss at the Cis STAT5 binding site might be dependent on the recruitment 

of ATP-dependent chromatin remodeling complexes, but not on HATs. They also 

suggest that different mechanisms might be involved in the nucleosome loss at the 

STAT5 binding sites of Cis (likely HAT-independent) and at upstream and downstream 

regions along these gene loci (likely HAT-dependent). 

3.5.2.3 BRG1 co-recruitment with STAT5A/B was not detected at the Cis STAT5 
binding site 

STAT5A/B has been shown to functionally and physically interact with BRG1, a catalytic 

subunit of SWI/SNF family ATP-dependent chromatin remodeling complexes, in 

mediating chromatin alterations conducive to transcriptional activity (Wagatsuma et al., 

2015, Xu et al., 2007 | 1.3.3.5, Table 2). Given this, the putatively HAT-independent H3 

decrease at the Cis STAT5 binding site (Figures 30C, 31 and 32B) was hypothesized to 

be catalyzed by a BRG1-containing SWI/SNF family complex. This proposes co-

recruitment of BRG1 with STAT5A/B to the Cis STAT5 binding site upon IL-3 stimulation. 

To investigate this, Ba/F3-wt cells (shown to be comparable to parental Ba/F3 cells in 

the present study, 3.1.2) were subjected to IL-3-stimulation and analyzed by ChIP using 

an antibody targeting BRG1 (5 µg and 2 µg) and using IgG (5 µg) as background control. 

Occupancy relative to total input DNA was analyzed by qPCR at the previously 

investigated Cis STAT5 binding site and at the Cis TSS as a control. 

At the tested sites, BRG1 occupancy was at or near the background level both in 

presence and absence of IL-3 (≤ 0.04 % of input DNA, data not shown). This indicates 

no or negligible recruitment of BRG1 to the Cis STAT5 binding site and proposes that 

the histone H3 decrease at these sites (Figure 35C) was not catalyzed by a BRG1-

containing SWI/SNF complex. However, given that primers specific to a control DNA site 

with a known positive BRG1 signal in Ba/F3 cells were not tested, it cannot be totally 

ruled out that the lack of positive signals was caused by occlusion of the BRG1 epitope 

or by a non-functioning antibody. 

3.5.2.4 Histone H3 decrease is not restricted to STAT5 binding sites located in 
the proximal promoter region  

STAT5 binding to the Cis and Osm proximal promoters correlated with a decrease in 

histone H3 occupancy. STAT5 binding sites mediating transcriptional activation are not 

always located within proximal promoters, but are also found in other locations relative 

to the ORF (1.3.3.1, Kang et al., 2013). This raises the question as to whether the 

detected nucleosome loss upon STAT5 binding depends on the location of the STAT5 

binding sites within the gene locus. A decrease in histone H3 occupancy at STAT5 

binding sites regardless of their location would support the hypothesis of a STAT5A/B-

mediated nucleosome loss. 
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To investigate this hypothesis, a panel of STAT5 target genes with different STAT5 

binding site locations validated by Basham et al., (2008 | Spi2.1, Id-1, TNFRSF13b, 

Bcl-x, MKP-1 and IL2Ra) as well as control regions from the IL-3-inducible STAT5-

regulated p21 gene and from the IL-3-independent housekeeper S16 as additional 

controls were selected and studied using the same parental Ba/F3 cell samples 

employed before (cDNA, STAT5-co-precipitated DNA and histone H3-co-precipitated 

DNA | 3.5.1, 3.5.2.1). Even though IL-3-inducible p21 transactivation is impeded upon 

STAT5A and/or STAT5B knock-down and as such defined p21 as a STAT5 target gene 

(Basham et al., 2008), STAT5A/B was not found to bind to two GAS motifs identified in 

the p21 promoter (PD Dr. Anne Rascle, personal communication), suggesting that 

STAT5A/B transactivates p21 through distinct element(s) (two such candidate STAT5 

binding sites [overlapping previously not investigated GAS motifs] have been recently 

identified within promoter/enhancer regions located ~4 kb upstream and ~11 kb 

downstream of the p21 ORF | Nanou et al., 2017, GEO accession number GSE79520). 

Given previous reports in Ba/F3 cells, the IL-3-dependent Spi2.1, Id-1, TNFRSF13b, 

Bcl-x, MKP-1, IL2Ra and p21 genes were expected to be transactivated upon IL-3 

stimulation and were analyzed by RT-qPCR for their mRNA levels (Basham et al., 2008, 

Dumon et al., 1999, Nelson et al., 2004, Rascle et al., 2003, Xu et al., 2003 Lecine et al., 

1996). mRNA levels for the IL-3-independent control gene S16 were not analyzed, as 

they were expected to remain unchanged, comparatively to those of the housekeeping 

gene 36b4 (Figure 10D). STAT5 binding sites of the investigated genes are located in 

the proximal promoter (Spi2.1) and distal promoter (MKP-1 and IL2Ra) regions, within 

an intron (TNFRSF13b and Bcl-x) or farther downstream the ORF (Id-1), as illustrated in 

Figure 33. They were expected to be occupied by STAT5 upon IL-3 stimulation, and 

were analyzed by ChIP-qPCR. Histone H3 occupancy was expected to decrease at the 

investigated STAT5 binding sites, and was analyzed by ChIP-qPCR in parallel to at least 

one control site for each investigated gene (Figure 33). Moreover, various sites in the 

p21 and S16 genes were analyzed for their histone H3 occupancy as an additional 

control for the effects of the presence and absence of IL-3-inducible transactivation 

(Figure 33). 

  Figure 33 (next page): Structure of the investigated gene loci and depiction of amplicon positions analyzed by ChIP 
Ba/F3 cells were harvested, processed and analyzed by chromatin immunoprecipitation, as described in the Material and 
Methods section, to quantify protein-DNA interactions in chromatin at specific loci using antibodies targeting the desired 
protein. The obtained genomic DNA co-precipitated by the antibody and input genomic DNA was quantified relatively by 
qPCR using sequence-specific primers. The relative quantity of co-precipitated genomic DNA expressed as percentage of 
input genomic DNA denotes the occupancy of the desired protein in the chromatin at a specific DNA site. This figure illustrates 
the DNA sites targeted by the employed sequence-specific primers. The primers amplified amplicons in the STAT5 target 
genes Cis, Osm, Spi2.1, Id-1, TNFRSF13b, Bcl-x, MKP-1, IL2Ra and p21 as well as the IL-3-inducible STAT5-independent 
gene c-Fos and the IL-3-independent housekeeping gene S16 as controls. Their loci are depicted schematically, with exons 
and introns in the open reading frame marked in dark grey and light grey, respectively. When the ORF extended beyond the 
shown section, this is indicated by an arrow. The position and number of STAT5 binding sites is denoted, as validated by 
Basham et al. (2008) for Ba/F3 cells. Position of the qPCR amplicons are marked by rectangles. Red rectangles signify 
amplicons at STAT5 binding sites and green rectangles amplicons at control sites. Annotations are relative to the transcription 
start site (0 bp) and were extracted from the Ensembl database (https://www.ensembl.org, 26.02.2015). 
Abbreviations: BS = binding site, ChIP = chromatin immunoprecipitation. 
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It should be noted that upon 30-minute IL-3 stimulation, the early-responsive genes p21, 

MKP-1 and Id-1 were expected to show a stronger upregulation than the late-responsive 

genes Spi2.1, IL2Ra, TNFRSF13b and Bcl-x (Basham et al., 2008, Rascle et al., 2003). 
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In agreement with these reports, mRNA levels of the STAT5-regulated genes p21, 

Spi2.1, Id-1, TNFRSF13b, Bcl-x and MKP-1 were upregulated upon IL-3 stimulation to 

various extents (Figure 34A). The IL2Ra mRNA level, however, was at the detection limit 

both in the presence and absence of IL-3 (Figure 34A), disagreeing with the IL2Ra 

mRNA levels slightly above the detection limit detected by Basham et al. (2008) and with 

the description of IL2Ra as STAT5 target gene in Ba/F3 cells (Basham et al., 2008, 

Lecine et al., 1996, Rascle et al., 2003) and in other hematopoietic cells (e.g. Imada et 

al., 1998, John et al., 1996, Lin et al., 2012, Matikainen et al., 1999, Meyer et al., 1997, 

Nakajima et al., 1997, Rusterholz et al., 1999). This suggests differences between the 

parental Ba/F3 cell line employed in the present study, the one employed previously 

(Basham et al., 2008, Rascle et al., 2003) and by others (Lecine et al., 1996), possibly 

involving a DNA and/or chromatin alteration at the IL2Ra locus. Further agreeing with 

Basham et al. (2008), STAT5 occupancy increased upon IL-3 stimulation at the Spi2.1, 

Id-1, and TNFRSF13b STAT5 binding sites, and at the Bcl-x STAT5 binding site to a 

lesser extent, indicating STAT5A/B-mediated transactivation (Figure 34B). The STAT5 

target genes MKP-1 and IL2Ra, however, exhibited no detectable STAT5 binding upon 

IL-3 stimulation (Figure 34B), disagreeing with Basham et al. (2008). This may oppose 

STAT5A/B-mediated transactivation for these genes and, thus, suggests further 

differences between the parental Ba/F3 cell line employed in the present study and the 

one employed by Basham et al. (2008). The absence of STAT5 binding to the IL2Ra 

promoter, however, is in line with the absence of regulation of this gene at the mRNA 

level (Figure 36A), and further suggests the acquisition of a DNA and/or chromatin 

alteration preventing the recruitment of STAT5 to the IL2Ra promoter.  

Figure 34 (next page): STAT5 DNA binding activity correlates with histone H3 decrease in Spi2.1, Id-1 
and TNFRSF13b gene 
Parental Ba/F3 cells were rested for 9–12 h  without IL-3 and stimulated for 30 min with IL-3 to turn STAT5A/B 
activation off/on. Cells were harvested and processed for RT-qPCR or chromatin immunoprecipitation (ChIP) 
as described in the Material and Methods section.  
A: RNA was extracted and reverse transcribed into cDNA. cDNA was analyzed by RT-qPCR using primers 
specific for the transcripts of the STAT5 target genes Spi2.1, Id-1, TNFRSF13b, Bcl-x (Bcl-xL isoform), 
MKP-1, IL2Ra and p21. 
B–D: ChIP was performed using antibodies directed against STAT5A/B (B) and total histone H3 (C). Input 
and co-precipitated genomic DNA were analyzed by quantitative PCR using primers specific for the STAT5 
binding sites of the Spi2.1, Id-1, TNFRSF13b, Bcl-x, MKP-1 and IL2Ra genes (STAT5, H3) as well as control 
sites in the latter genes (H3) and the p21 and S16 genes (H3), as specified further in the figure. The relative 
quantity of co-precipitated genomic DNA is expressed as percentage of input genomic DNA (input %), 
denoting chromatin occupancy. Histone H3 occupancy relative to ‘−IL-3’ was calculated (D). Structures of 
the studied genes as well as amplicon positions are illustrated in Figure 33. 
A–D: The error bars depict standard deviation among (RT-)qPCR replicates. The results shown in A and B 
derive from another experiment than C and D. The two depicted independent experiments are nonetheless 
representative of each other (data not shown). Nucleotide positions are relative to the transcription start site. 
Abbreviations: ChIP = chromatin immunoprecipitation, BS = binding site, ORF = open reading frame, prom 
= promoter, prox = proximal, TSS = transcription start site 
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Histone H3 occupancy did not change in response to IL-3 in the housekeeping gene 

S16, correlating with its predicted constitutive expression pattern (Figure 34C). On the 

other hand, histone H3 occupancy, which was very low in the proximal promoter of the 

p21 gene before IL-3 stimulation (~0.5 % input DNA), further decreased in response to 

IL-3, down to 40 % of the histone H3 occupancy level of rested cells, correlating with 

transactivation (Figure 34C and D). However, changes in histone H3 occupancy at other 

sites along the p21 gene were negligible upon IL-3 stimulation (Figure 34C and D). Bcl-x, 

MKP-1 and IL2Ra, which showed no or low STAT5 binding (Figure 34B), exhibited a low 

decrease in histone H3 occupancy at STAT5 binding and control sites upon IL-3 

stimulation, with levels remaining at 70–95 % of that of rested cells (Figure 34C and D). 

Strikingly, a strong decrease in histone H3 occupancy down to 15–55 % of that of rested 

cells, was observed at the STAT5 binding sites of Spi2.1, Id-1 and TNFRSF13b upon 

IL-3 stimulation (Figure 34C and D), correlating with the stronger binding of STAT5 

observed at these sites (Figure 34B). This correlation between STAT5 binding and 

reduced histone H3 occupancy is in line with the strong decrease of histone H3 

occupancy to 10% of that of rested cells observed at the Cis STAT5 binding site 

(Figure 31). These results therefore confirm a strong association between STAT5 

binding and reduced histone H3 occupancy at STAT5 binding sites, and this regardless 

of the location of the STAT5 binding sites within the gene. These observations thus 

support the hypothesized STAT5A/B-mediated nucleosome loss, although an event 

consequential to STAT5 DNA binding cannot be ruled out yet. 

Of note, the decrease in histone H3 occupancy was also observed to a lesser extent at 

control sites in the TNFRSF13b proximal and Spi2.1 as well as Id-1 distal promoter 

regions (Figure 34C and D), suggesting a global decrease in histone H3 occupancy 

along these genes, as observed for the Cis and Osm genes (Figures 30C and 31). 

3.5.3 The STAT5A/B-associated histone H3 decrease does not depend on 
the upregulation of transcriptional activity per se 

The absence of detectable STAT5 binding to Bcl-x and MKP-1 despite the IL-3-inducible 

transactivation and histone H3 decrease (Figure 34) might suggest a STAT5A/B-

independent transactivation and chromatin remodeling mechanism. Besides, the IL-3-

inducible genes p21 and c-Fos exhibited some degree of histone H3 loss within their 

proximal promoter correlating with their transactivation, in contrast to IL-3-independent 

S16 (Figures 31, 34A, 34C and 34D), possibly indicating transactivation-associated 

chromatin remodeling. Taken together, this raises the possibility that the upregulation of 

transcriptional activity per se, rather than STAT5 DNA binding, may be responsible for 

the histone H3 decrease in a gene-specific manner. The HDAC inhibitor trichostatin A 

(TSA) has been found by PD Dr. Anne Rascle’s research group to inhibit STAT5A/B-
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mediated transactivation at a step following STAT5 binding to DNA but preceding the 

recruitment of RNA polymerase II, a prerequisite for transcriptional activation (Rascle et 

al., 2003, Rascle and Lees, 2003). Given the hypothesized STAT5A/B-mediated 

nucleosome loss, TSA was predicted to inhibit STAT5A/B-mediated transactivation, but 

not the STAT5A/B-associated histone H3 decrease. 

To investigate the effect of TSA-induced inhibition, rested Ba/F3-wt cells were pre-

treated with TSA or a vehicle control and subjected to IL-3 stimulation. Ba/F3-wt cells 

have been shown to be comparable to parental Ba/F3 cells in the present study (3.1.2). 

The previously investigated STAT5 target genes (Cis, Osm, Spi2.1, Id-1, TNFRSF13b, 

IL2Ra and p21) and the IL-3-inducible STAT5A/B-independent gene c-Fos were 

analyzed for their mRNA levels (RT-qPCR), and for STAT5 and histone H3 occupancy 

(ChIP), as before.  

As expected from Rascle et al. (2003) and Rascle and Lees (2003), TSA inhibited IL-3-

induced transactivation of the STAT5 target genes Cis, Osm, Spi2.1, Id-1 and p21 to 

varying degrees while not impacting transactivation of the IL-3-inducible STAT5A/B-

independent gene c-Fos (Figure 35A). Of note, induction of the late-responsive STAT5 

target gene TNFRSF13b was not detectable after 30 minutes of IL-3 stimulation in the 

Ba/F3-wt cells (Figure 35A), as opposed to the weak induction detected in parental Ba/F3 

cells in similar conditions (Figure 34A), despite strong STAT5 binding at its STAT5 

binding site (Figure 35B). IL2Ra expression was at the detection limit regardless of 

treatment (Figure 35A), as observed before in parental Ba/F3 cells (Figure 34A). Thus, 

the inhibitory effect of TSA could not be evaluated for these two genes. The slightly 

increased mRNA levels in rested Ba/F3-wt cells pre-treated with TSA, as observed in 

Cis, Spi2.1 and Id-1 (Figure 35A), have been proposed by PD Dr. Anne Rascle’s 

research group to be caused by genome-wide hyperacetylation (Pinz et al., 2014b, 

Figure 6 and Pinz et al., 2015, Figure 5) and/or locus-specific hyperacetylation (Cis, 

Osm, c-Fos and p21 | Pinz et al., 2014b, Figure 7 and Pinz et al., 2015, Figures 7 and 8), 

predicted to result in increased chromatin accessibility for the transcription machinery. 

Agreeing with results in parental Ba/F3 cells (Figure 34B), STAT5 DNA binding activity 

was detected upon IL-3 stimulation at the STAT5 binding sites of Cis, Osm, Spi2.1, Id-1 

and TNFRSF13b, but not of IL2Ra (Figure 35B). STAT5 occupancy was reduced to 

varying degrees – but not abrogated - in the presence of TSA (Figure 35B), as observed 

before for Cis and Osm (Rascle et al., 2003). 

With the exception of c-Fos, the investigated sites exhibited a clearly lowered histone H3 

occupancy in the presence of TSA (Figure 35C) possibly due to genome-wide 

hyperacetylation (Pinz et al., 2014b, Figure 6 and Pinz et al., 2015, Figure 5). No 

decrease in histone H3 occupancy was observed at control sites in the proximal promoter 
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Figure 35 (previous page): STAT5A/B-associated histone H3 decrease does not depend on 
transcriptional activation 
Ba/F3-wt cells were rested for 10 h without IL-3 and stimulated for 30 min with IL-3 to turn STAT5A/B 
activation off/on. Before IL-3 stimulation, cells were pre-treated for 45 min with trichostatin A (TSA) to inhibit 
STAT5 target gene transactivation, with empty vehicle serving as negative control. Cells were harvested and 
processed for RT-qPCR or chromatin immunoprecipitation (ChIP) as described in the Material and Methods 
section.  
A: RNA was extracted and reverse transcribed into cDNA. cDNA was analyzed by RT-qPCR using primers 
specific for the transcripts of the STAT5 target genes Cis, Osm, Spi2.1, Id-1, TNFRSF13b, IL2Ra and p21 
as well as the IL-3-inducible STAT5-independent gene c-Fos as control. 
B–D: ChIP was performed using antibodies directed against STAT5A/B (B) and total histone H3 (C). Input 
and co-precipitated genomic DNA were analyzed by quantitative PCR using primers specific for the STAT5 
binding sites of the Cis, Osm, Spi2.1, Id-1, TNFRSF13b and IL2Ra genes (STAT5, H3) as well as control 
sites in the latter genes (STAT5) and in the c-Fos and p21 genes (STAT5, H3), as specified further in the 
figure. The relative quantity of co-precipitated genomic DNA is expressed as percentage of input genomic 
DNA (input %), denoting chromatin occupancy. Histone H3 occupancy relative to ‘−IL-3’ was calculated (D). 
Structures of the studied genes as well as amplicon positions are illustrated in Figure 33.  
A–D: The error bars depict standard deviation among (RT-)qPCR replicates. Nucleotide positions are 
relative to the transcription start site. 
Abbreviations: BS = binding site, ChIP = chromatin immunoprecipitation, occ. = occupancy, ORF = open 
reading frame, prom = promoter, prox = proximal, r. = relative, TSA = trichostatin A, TSS = transcription start 
site. 

region of c-Fos and p21 in response to IL-3 (Figure 35C and D). This disagrees with the 

decrease in histone H3 occupancy observed in parental Ba/F3 cells (Figures 31, 34C 

and 34D). This discrepancy might be due to the very low histone H3 occupancy detected 

at these sites, making an accurate determination of % of input DNA difficult. In 

accordance with parental Ba/F3 cells (Figure 34C and D), the IL2Ra STAT5 binding site 

exhibited a low histone H3 decrease associated with an absence of detectable STAT5 

DNA binding activity (Figure 35B–D). Strikingly, elevated STAT5 occupancy at Cis, Osm, 

Spi2.1, Id-1 and TNFRSF13b correlated with a strong decrease in histone H3 occupancy, 

both in the absence and presence of TSA (Figure 35C and D). Hence, the decrease in 

histone H3 occupancy was not affected by TSA-induced inhibition of transcription of 

these STAT5 target genes, demonstrating that the decrease in histone H3 occupancy 

was associated with STAT5 binding, independently of transcriptional activation. This 

further supports a – causal or consequential – link between DNA binding of STAT5 and 

nucleosome loss. In addition, these results demonstrate that STAT5 binding to DNA and 

histone H3 loss precede the recruitment of RNA Polymerase II and transcriptional 

activation. 

3.5.4 STAT5A-1*6 DNA binding correlates with histone H3 decrease in 
Ba/F3-tet-on-1*6 cells  

3.5.4.1 De novo STAT5A-1*6 binding to Cis and Id-1 correlates with IL-3-
independent histone H3 decrease  

The previous findings indicate that the binding of wild-type STAT5 (endogenous 

STAT5A/B and STAT5A-wt) to DNA is associated with chromatin remodeling (i.e. 

nucleosome loss) at STAT5 binding sites in response to IL-3. Whether histone H3 loss 

is the cause or the consequence of STAT5 binding remains to be demonstrated. In the 
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IL-3-dependent cell line Ba/F3, it is conceivable that IL-3-inducible third factors may 

contribute to or even solely mediate the observed STAT5A/B-associated histone H3 

decrease, considering that IL-3 has been found to additionally activate the MAPK and 

PI3K pathways in Ba/F3 cells (Kinoshita et al., 1997, Rosa Santos et al., 2000). 

Therefore, the IL-3-independent STAT5A-1*6 model was used to address whether 

constitutive binding of STAT5 to DNA (in the absence of IL-3) is sufficient to trigger a 

nucleosome loss at its binding site.  

Ba/F3-tet-on-1*6 cells were treated for 11h with dox in the absence of IL-3. The 

previously investigated STAT5 target genes (Cis, Osm, Spi2.1, Id-1, TNFRSF13b, Bcl-x, 

MKP-1, IL2Ra and p21) and IL-3-inducible STAT5A/B-independent control gene c-Fos 

were analyzed for their mRNA level by RT-qPCR, and for their STAT5 and histone H3 

occupancy by ChIP, as before.  

As expected from Ba/F3-1*6 cells (Nosaka et al., 1999), and as shown in the present 

study (Figure 10C), c-Fos mRNA levels were not upregulated upon dox treatment in the 

absence of IL-3 (Figure 36A). mRNA levels of the STAT5 target genes Cis, Id-1, and to 

a lesser extent TNFRSF13b, Bcl-x, MKP-1 and p21 were upregulated upon dox 

treatment (Figure 36A). The STAT5 target genes Spi2.1, Osm and IL2Ra, on the other 

hand, exhibited mRNA levels near or at the detection limit both in the presence and 

absence of dox (Figure 36A), opposing any transactivation of these genes following 11h 

of dox induction. The absence of IL2Ra induction by STAT5A-1*6 is in line with the 

absence of induction of this gene by endogenous STAT5A/B in response to IL-3 in 

parental Ba/F3 cells (Figure 34A). The low or absent induction of Spi2.1, Osm and Bcl-x 

is in line with the delayed or low induction of these genes described above (Figure 25C, 

F and G). STAT5 occupancy strongly increased upon dox treatment at the Cis, Osm, Id-

1 and TNFRSF13b STAT5 binding sites (Figure 36B), showing STAT5A-1*6 DNA 

binding activity. STAT5 binding at these sites correlated with increased mRNA levels for 

Cis, Id-1 and TNFRSF13b, but not Osm, which remained low (Figure 36A). This suggests 

Osm-specific differences, possibly in the chromatin context, preventing its transactivation 

despite the proper recruitment of STAT5. On the other hand, STAT5 occupancy weakly 

increased or remained at background levels at the STAT5 binding sites of the Spi2.1, 

MKP-1, Bcl-x and IL2Ra genes (Figure 36B), in line with their low mRNA levels.  

Dox treatment did not impact histone H3 occupancy at the c-Fos and p21 proximal 

promoters (Figure 36C and D). Likewise, Spi2.1, Bcl-x, MKP-1 and IL2Ra STAT5 binding 

sites did not exhibit a change in histone H3 occupancy, correlating with the absence of 

STAT5 binding (Figure 36C and D). By contrast, histone H3 occupancy decreased by 

60 % (relative to the level observed before dox treatment) at the Cis STAT5 binding site, 

by 40 % at the Id-1 STAT5 binding site and by 20 % at the Cis TSS (Figure 36C and D),  
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Figure 36 (previous page): De novo STAT5A-1*6 binding to Cis and Id-1 correlates with IL-3-
independent histone H3 decrease 
Ba/F3-tet-on-1*6 cells were deprived of IL-3 and supplemented for 11 h with dox(doxycycline) to induce 
STAT5A-1*6 production and study the effect of IL-3-independent constitutive STAT5A-1*6 activation. 
Non-induced cells were rested for 11 h without IL-3 as negative control for STAT5A/B activation. Cells were 
harvested and processed for RT-qPCR or chromatin immunoprecipitation (ChIP) as described in the Material 
and Methods section.  
A: RNA was extracted and reverse transcribed into cDNA. cDNA was analyzed by RT-qPCR using primers 
specific for the transcripts of the STAT5 target genes Cis, Osm, Spi2.1, Id-1, TNFRSF13b, Bcl-x, MKP-1, 
IL2Ra and p21, and for the IL-3-inducible STAT5-independent gene c-Fos. 
B–D: ChIP was performed using antibodies directed against STAT5A/B (B) and total histone H3 (C). Input 
and co-precipitated genomic DNA were analyzed by quantitative PCR using primers specific for the STAT5 
binding sites of the Cis, Osm, Spi2.1, Id-1, TNFRSF13b, Bcl-x, MKP-1 and IL2Ra genes (STAT5, H3) and 
for control sites in the Cis, Osm, c-Fos and p21 genes (STAT5, H3), as specified further in the figure. The 
relative quantity of co-precipitated genomic DNA is expressed as percentage of input genomic DNA (input 
%), denoting chromatin occupancy. Histone H3 occupancy relative to ‘−dox’ was calculated (D). Structures 
of the studied genes as well as amplicon positions are illustrated in Figure 33. 
A–D: The error bars depict standard deviation among (RT-)qPCR replicates. Nucleotide positions are 
relative to the transcription start site. 
Abbreviations: BS = binding site, ChIP = chromatin immunoprecipitation, dox = doxycycline, occ. = 
occupancy, ORF = open reading frame, prom = promoter, prox = proximal, TSS = transcription start site 

confirming the correlation observed in IL-3-stimulated Ba/F3 cells between a strong 

STAT5 binding and a decrease in histone H3 occupancy, and suggesting a STAT5-

dependent nucleosome loss. Surprisingly however, histone H3 occupancy at the Osm 

and TNFRSF13b STAT5 binding sites did not change (Figure 36C and D), despite 

STAT5 binding activity (Figure 36B), correlating with low transcriptional activity (Figure 

36A). This suggests that IL-3-inducible STAT5-independent factors might be essential 

for nucleosome loss following STAT5 binding to allow transcriptional activation of Osm 

and TNFRSF13b. Alternatively, it might suggest that the treatment duration of 11 h was 

too short to observe an effect of STAT5 DNA binding on histone H3 occupancy and 

transcriptional activation. In fact, experiments presented in the next section based on a 

long-term time course of dox treatment support this proposition (Figure 37). Thus, these 

observations on Osm and TNFRSF13b cannot totally rule out a mechanism of STAT5-

mediated nucleosome loss. Anyhow, these data demonstrate that STAT5 binding can 

occur in the absence of decreased histone H3 occupancy, further supporting the idea 

that nucleosome loss is a consequence of rather than a prerequisite for STAT5 binding.  

3.5.4.2 Sustained STAT5A-1*6 binding to Cis, Osm and Spi2.1 is associated with 
persistent long-term histone H3 decrease 

The observed histone H3 decrease suggests chromatin remodeling and correlated with 

binding of transiently active endogenous STAT5A/B and of constitutively active 

STAT5A-1*6 in several genes independently of IL-3 supplementation (Figure 36B–D) 

and independently of the location of the STAT5 binding site relative to the ORF 

(Figure 34B–D). These findings strongly suggest a causal link between STAT5 DNA 

binding and chromatin remodeling, proposing an interaction of STAT5A/B with ATP-

dependent chromatin-remodeling complexes. Given this, sustained constitutive 

STAT5A-1*6 activation was hypothesized to correlate with a sustained decrease in 
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histone H3 occupancy. Besides, such putative sustained chromatin alterations at STAT5 

binding sites were hypothesized to constitute ‘passenger’ and/or ‘driver’ alterations and 

to contribute to the oncogenicity of STAT5A-1*6. 

To investigate the effects of constitutive STAT5A-1*6 activation, the previously studied 

samples from Induction-4 (Figure 17A) were analyzed by ChIP using antibodies against 

histone H3. Cis, Spi2.1 and Osm mRNA levels and STAT5 occupancy have been 

described before (Figures 25B, 25C, 25G, 27A, 27C and 27D) and are shown again in 

Figure 37 for easier reference. Histone H3 occupancy was analyzed by qPCR for the 

previously investigated Cis, Spi2.1 and Osm STAT5 binding sites in addition to the Cis 

and Osm TSS. As controls, histone H3 occupancy was analyzed at sites in the c-Fos 

proximal promoter, at the TSS of the housekeeping gene S16 and in the Id-1 distal 

promoter. 

Both in non-induced and in dox-induced cells, histone H3 occupancy was stable at the 

control S16 TSS throughout Induction-4 (Figure 37G). This suggests no global (genome-

wide) or S16 locus-specific ‘passenger’ chromatin alterations involving nucleosome 

density. On the other hand, histone H3 occupancy fluctuated in a random manner at the 

control Id-1 distal promoter, exhibiting a downward tendency in dox-induced and 

non-induced cells (Figure 37H). Similarly, histone H3 occupancy at the control c-Fos 

proximal promoter halved in dox-induced cells within one week of dox induction and 

remained around that lower level throughout dox induction, mirrored by a similar 

decrease in non-induced cells (Figure 37F). These decreases suggest a locus-specific 

time-dependent decrease in nucleosome density and putatively locus-specific 

‘passenger’ and/or ‘driver’ chromatin alterations during Induction-4. Interestingly, histone 

H3 occupancy also decreased considerably during Induction-4 in non-induced cells at 

the Cis and Osm TSS (Figure 37B and E) and at the STAT5 binding sites in the Spi2.1 

and Osm proximal promoters (Figure 37C and E), suggesting locus-specific time-

dependent decreases in nucleosome density putatively involving STAT5 DNA binding 

activity. 

Within the first week of dox induction, histone H3 occupancy decreased down to 10 % of 

the initial level at the investigated sites in Cis, Osm and Spi2.1 (Figure 37A–E), strongly 

correlating with Spi2.1 and Osm STAT5 occupancy (Figure 27C and D), but not so much 

with Cis STAT5 occupancy, which showed little fluctuation over time (Figure 27A). This 

was particularly striking for Spi2.1, at which a downward peak of histone H3 occupancy 

at day 7 of induction (Figure 37C) concurred with an upward peak in Spi2.1 STAT5 

occupancy (Figure 27C) and in mRNA levels (Figure 25C). Following the first week of 

induction, histone H3 occupancy at the Cis, Osm and Spi2.1 STAT5 binding sites 

remained low (Figure 37A, C and D), exhibiting a moderate correlation with STAT5 
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Figure 37: Sustained STAT5A-1*6 binding to Cis, Osm and Spi2.1 was associated with persistent long-
term histone H3 decrease 
Ba/F3-tet-on-1*6 cells were grown in the absence of IL-3 and supplemented with doxycycline to induce 
STAT5A-1*6 production. Cells were kept for nine weeks as part of the ‘Induction-4’ experiment to study the effects 
of sustained constitutive STAT5A-1*6 activation. Non-induced cells were grown in the presence of IL-3 as control 
for the effects of endogenous STAT5A/B activation or rested without IL-3 for 11 h as baseline control for the 
absence of STAT5A/B activation. Cells were harvested at the indicated time-points and processed for chromatin 
immunoprecipitation (ChIP) as described in the Material and Methods section. ChIP was performed using an 
antibody directed against histone H3. Input and co-precipitated genomic DNA were analyzed by quantitative PCR 
using primers specific for sites in the STAT5 target genes Cis, Spi2.1, Osm and Id-1 as well as in the STAT5-
independent control genes c-Fos and S16. Primers were specific for the Cis, Spi2.1, Osm and c-Fos proximal 
promoter regions (A, C, D, F), the Cis, Osm and S16 transcription start sites (B, E, G) and the Id-1 distal promoter 
region (H), as specified further in the figure. Cis, Spi2.1 and Osm proximal promoter amplicons overlap their 
respective STA5 binding sites. S16 and Id-1 amplicons were not analyzed for rested non-induced cells. The relative 
quantity of co-precipitated genomic DNA is expressed as percentage of input genomic DNA (input %), denoting 
H3 occupancy. Structures of the studied genes as well as amplicon positions are illustrated in Figure 33.The error 
bars depict standard deviation among qPCR replicates. Nucleotide positions are relative to the transcription start 
site. The dotted lines connect single data points for dox-induced cells and non-induced cells, growing in the 
presence of IL-3. Cis, Spi2.1 and Osm mRNA level and STAT5 occupancy profiles from Figures 25B, 25C, 25G, 
27A, 27C and 27D are shown on the side for easier reference. 
Abbreviations: BS = binding site, ChIP = chromatin immunoprecipitation, dox = doxycycline, TSS = transcription 
start site. 
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occupancy (Figure 27A, C and D). Of note, histone H3 occupancy had only decreased 

considerably by day 2 of dox induction for Spi2.1 and by day 3 for Osm (Figure 37C and 

D), suggesting that the lack of detectable histone H3 decrease despite STAT5 binding 

in Osm and TNFRSF13b (Figure 36B–D) was linked to the short treatment duration of 

11 h. 

Altogether, the correlation of STAT5A-1*6 DNA binding with histone H3 decrease in Cis, 

Osm and Spi2.1 despite the absence of IL-3 strongly supports a causal link between 

STAT5A-1*6 DNA binding and nucleosome loss, leading to transcriptional activation, and 

opposes the participation of third IL-3-inducible factors in STAT5A/B-mediated 

nucleosome loss. In addition, the maintained low histone H3 occupancy in long-term dox 

induction at Cis, Osm and Spi2.1 STAT5 binding sites strongly suggests sustained 

chromatin alterations, involving nucleosome loss, mediated by STAT5A-1*6 and, thus, 

proposes STAT5A-1*6-mediated ‘passenger’ and/or ‘driver’ chromatin alterations as 

contributing factors to STAT5A-1*6 oncogenicity. 
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4 Discussion 

Constitutive, as opposed to transient, STAT5A/B activity has been shown to be 

oncogenic in amongst others hematopoietic cells. Therefore, the present study aimed to 

elucidate effects specific to constitutive STAT5A/B activity as opposed to transient 

STAT5A/B activity – in particular upon sustained DNA binding on chromatin – underlying 

its oncogenicity. A stable Ba/F3 cell line inducibly expressing constitutively active 

STAT5A-1*6 (Ba/F3-tet-on-1*6) was generated as an experimental model system and 

shown to mirror in vivo oncogenesis in the acquisition of cancer hallmarks upon 

STAT5A-1*6 induction and in the misregulation of oncogenes.  

Using the Ba/F3-tet-on-1*6 cell line and other Ba/F3-derived cell lines, STAT5 DNA 

binding was correlated with nucleosome loss. Several lines of evidence suggested a 

causal link between STAT5 DNA binding and nucleosome loss. Strikingly, persistent 

nucleosome loss was correlated with sustained STAT5A-1*6 DNA binding in transformed 

(dox-induced) Ba/F3-tet-on-1*6 cells, leading me to propose a new molecular 

mechanism for ‘driver’ and ‘passenger’ chromatin alterations mediated by oncogenic 

constitutive STAT5 activity. 

4.1 Correlative evidence suggests that STAT5A/B causes 
nucleosome loss in Ba/F3 cells upon DNA binding 

4.1.1 The STAT5A/B-mediated Cis and Osm transactivation mechanisms 
might involve HAT and H3K4 methyltransferase recruitment 

Distribution of the histone modifications investigated in parental Ba/F3 cells (acH3, acH4, 

H3K4me1/3, H3K9me1/3 and H3K27me1/3) along the STAT5 target genes Cis, Osm 

and the control gene c-Fos (Figures 28, 30 and 32) mostly agreed with their reported 

distributions for active euchromatic genes with an expected increase in active marks 

upon IL-3-induced transactivation (Table 1 and 1.2.2.2), as well as with previous reports 

and with the predominant function of STAT5A/B as transactivator (1.3.3). Surprisingly, 

this excepted the unchanged acH3 and acH4 enrichment at the Cis STAT5 binding site 

(upon IL-3 stimulation in parental Ba/F3 cells | Figures 28 and 30). This might be 

explained by the concurrent histone H3 decrease at this site, which was much stronger 

than at the Osm STAT5 binding site (Figure 30), or by gene-specific differences in the 

STAT5A/B-mediated transactivation mechanisms (discussed in 4.1.2). Besides, (i) 

above-background signals of the repressive heterochromatic marks H3K9me3 (Osm 

ORF) and H3K27me3 (c-Fos ORF | Figure 28 and Table 1) and (ii) negative Osm and 

c-Fos mRNA signals compared with the low positive Cis mRNA signals (Figure 10) were 

observed upon IL-3 deprivation, raising the possibility of heterochromatic silencing of 

Osm and c-Fos, but not Cis, in the absence of IL-3.  



Discussion   127 

The increase in acH3, acH4 and H3K4me3 enrichment along Cis, Osm and c-Fos 

(Figures 30 and 32) suggests IL-3-induced recruitment of HATs and H3K4 

methyltransferases, whereas the loss of above-background H3K9me3 and H3K27me3 

signals at DNA sites in Osm and c-Fos (Figure 28) might point to IL-3-induced 

recruitment of H3K9 and K27 demethylases (provided that the loss of signals is not 

caused by histone H3 loss per se). Reversely, the observed pattern opposes the IL-3-

induced recruitment of antagonistic HDACs and H3K4 demethylases, in accordance with 

recently reported negative HDAC3 and LSD1 signals at these three loci (Nanou et al., 

2017, GEO accession number GSE79520). It remains to be determined, whether these 

chromatin modifiers are recruited to Cis and Osm by DNA-bound STAT5 and/or other 

IL-3-inducible factors, e.g. by experiments based on the ones conducted for histone H3 

decrease in the present study (3.5). STAT5A/B-mediated HAT recruitment is strongly 

supported by the existent evidence (Table 2). Although no STAT5A/B-histone lysine 

methyltransferase interaction has been described so far, Wagatsuma et al. (2015) has 

recently shown that GAS motif disruption in a TCRG-Jγ1 STAT5 binding site abrogated 

(amongst other things) enrichment of H3K4me1/2/3, supporting STAT5A/B-mediated 

H3K4 methyltransferase recruitment. Identifying the chromatin modifiers responsible for 

the observed chromatin alterations, for instance by screening available transcriptome 

data of Ba/F3 cells (Basham et al., 2008, GEO accession number GSE10389; Nanou et 

al., 2017, GEO accession number GSE79520) for candidates and confirming their 

recruitment using ChIP assay (with specific antibodies), might offer novel insights into 

the STAT5A/B transactivation mechanism. 

STAT5 DNA binding to the Cis proximal promoter has been correlated with increased 

acH3 enrichment in a human breast cancer cell line (Schauwecker et al., 2017), in 

contrast to the unchanged acH3 enrichment observed in the present study (Figure 32). 

This disagreement might be explained by the fact that the Cis proximal promoter site 

investigated by Schauwecker et al. (2017) is located more closely to the Cis TSS, where 

increased acH3 enrichment was also detected in the present study (Figure 32). In 

accordance with my findings (Figure 28), Schauwecker et al. (2017) detected negative 

H3K9me3 and H3K27me3 ChIP signals at this site both in the absence and presence of 

STAT5 DNA binding. Interestingly, Chia and Rotwein (2010) observed decreased 

H3K4me1 and H3K4me3 and unchanged acH3 and acH4 ChIP signals (not normalized 

to histone H3 occupancy) in hepatocytes at the Cis STAT5 binding site upon STAT5 

DNA binding. While the H3K4 methylation pattern is in agreement with my findings 

(Figure 30), the acH3 and acH4 pattern is not (Figure 32). The comparability of these 

patterns is, however, unclear, given that ChIP signals of histone modifications changed 

dramatically after normalization to histone H3 occupancy in the present study (Figures 

30 and 32). Overall, these findings raise the possibility of cell type-specific differences in 
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H3K4me1/3, acH3 and acH4 enrichment and/or histone H3 occupancies, i.e. the overall 

chromatin landscape, at the Cis locus among B cells, mammary epithelial cells and 

hepatocytes despite Cis being a common STAT5 target gene (compare 1.3.3.3). 

4.1.2 Chromatin decondensation mechanisms at the investigated sites 
might exhibit gene-specific differences 

The present study investigated mRNA levels, STAT5 and histone H3 occupancy at the 

STAT5 binding sites of Cis, Osm, Spi2.1, Id-1, TNFRSF13b, Bcl-x, MKP-1 and IL2Ra, 

with additional chromatin components investigated for Cis and Osm (3.5). In doing so, 

the observed differences among STAT5 target genes suggest gene-specific differences 

in the STAT5A/B transactivation and STAT5A/B-associated nucleosome loss 

mechanism, as further detailed below. Such differences agree with the information of 

STAT5A/B DNA binding and transcriptional regulation patterns by the pre-existent 

chromatin landscape (amongst other things | 1.3.3.4) and have been confirmed by recent 

genome-wide ChIP-seq data of Ba/F3 cells (Nanou et al., 2017, GEO accession number 

GSE79520). Specifically, LSD1 was co-recruited to the Bcl-x STAT5 binding site upon 

IL-3 stimulation and HDAC3 and LSD1 co-occupied the Id-1 STAT5 binding site 

independently of IL-3 stimulation, proposing a role for LSD1 in Bcl-x and for both HDAC3 

and LSD1 in Id-1 transactivation. By contrast, no positive HDAC3 and LSD1 ChIP signals 

were detected among all other investigated STAT5 target genes, opposing a role for 

HDAC3 or LSD1 there. 

4.1.2.1 Short doxycycline treatment duration might explain the absence of 
detectable nucleosome loss in the presence of STAT5A-1*6 DNA binding 

DNA binding of wild-type STAT5 (i.e. endogenous STAT5A/B and STAT5A-wt) 

consistently correlated with histone H3 decrease at the Cis, Osm, Spi2.1, Id-1 and 

TNFRSF13b STAT5 binding sites (Figures 30, 31, 34 and 35). Unexpectedly, 

STAT5A-1*6 DNA binding in dox-induced Ba/F3-tet-on-1*6 cells did so only for Cis, Id-1 

and Spi2.1, but not for TNFRSF13b and only in a time-delayed manner for Osm starting 

after day 3 of induction (Figures 36 and 37). This suggests the contribution of third factors 

late-responsive to STAT5A-1*6 activity for Osm and putatively TNFRSF13b (given 

investigation of only the 11 h of dox induction time-point | discussed in 4.1.3), although a 

technical problem in the ChIP assay, interfering with the proper detection of histone H3 

loss cannot be excluded.  

Indeed, two of my findings support the latter possibility, considering that the applied ChIP 

assay measures average chromatin occupancies across the entire cell population: On 

the one hand, nucleosome positioning and overall density has been shown to change 

during the cell cycle along protein-coding genes (in yeast | Deniz et al., 2016, Hogan et 

al., 2006, Ma et al., 2015) and chromatin condensation and DNA fragmentation are 
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hallmarks of apoptosis (Kerr et al., 1972, Prokhorova et al., 2015, Taylor et al., 2008 | 

compare 4.2.2). Therefore, the presence of dead/dying cells and the absence of dividing 

cells (most pronounced in the first three days of induction | Figures 20–22) might have 

skewed average histone H3 occupancy and precluded the detection of a histone H3 

decrease observed under different conditions. On the other hand, STAT5A-1*6 

production was not fully induced until day 3 of dox induction with undetectable production 

in ~50 % of the cells after 12 h of induction (Figure 18). While the absence of STAT5A-1*6 

activity in ~50 % of cells might not have affected the detectability of STAT5 DNA binding 

in ChIP assay, the putatively concurrent decrease in histone H3 occupancy might have 

been less pronounced and therefore not detectable in ChIP assay. These two issues 

could be addressed by (i) increasing the duration of dox treatment to 3 days and/or (ii) 

by flow cytometric cell sorting prior to the ChIP assay to isolate GFP-positive (i.e. 

STAT5A-1*6-expressing) cells and/or living cells of a given cell cycle phase (among 

dox-induced and non-induced control cells to ensure comparability). 

4.1.2.2 The nucleosome loss mechanism at the Cis STAT5 binding site might 
not involve a BRG1-containing SWI/SNF complex and HAT activity 

Given multiple STAT5A/B-HAT interactions (Table 2), the absence of IL-3-induced acH3 

and acH4 enrichment at the Cis and the weak increase at the Osm STAT5 binding site 

(Figure 32) was unexpected and suggested that STAT5A/B does not recruit HATs to its 

Cis STAT5 binding site, while it might at the Osm STAT5 binding site. This, in turn, 

proposes that HATs contributed to the STAT5A/B-associated chromatin remodeling in 

Osm, but not Cis. Interestingly, this Cis and Osm gene-specific difference is in agreement 

with the proposal that two different BET family members participate in Cis (Brd2) and 

Osm (unidentified) transactivation in Ba/F3 cells, respectively (1.3.3.5 | Liu et al., 2014, 

Pinz et al., 2015). Though, my findings cannot entirely refute the participation of HATs in 

the nucleosome loss mechanism at the Cis STAT5 binding site, considering the (i) acH3 

and acH4 enrichment in proximity (Figure 32), that (ii) nucleosomes containing acH3 and 

acH4 (acetylated de novo in response to IL-3) might be selectively lost or deacetylated 

and that (iii) HATs regulate activity of numerous non-histone substrates (e.g. Choudhary 

et al., 2009, Iwabata et al., 2005, Shankaranarayanan et al., 2001, Spange et al., 2009). 

Overall, the role of HATs in STAT5A/B-associated nucleosome loss remains to be 

determined and could be uncovered by investigating the effects of pan-HAT inhibitor 

treatment (e.g. anacardic acid | Balasubramanyam et al., 2003, Sun et al., 2006, 

Wapenaar and Dekker, 2016) or the specific recruitment of HAT proteins by ChIP. 

So far, the catalytic SWI/SNF-family subunit BRG1 is the only constituent subunit of ATP-

dependent chromatin remodeling complexes shown to physically and functionally 

interact with STAT5A/B (Wagatsuma et al., 2015, Xu et al., 2007 | Table 2), proposing a 

role in the STAT5A/B-associated nucleosome loss mechanism in Ba/F3 cells. Therefore, 
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the negative BRG1 ChIP signal detected at the Cis STAT5 binding site and TSS (in 

absence and presence of IL-3 | data not shown) was surprising, especially given the 

demonstrated expression of Brg1 in Ba/F3 cells (Basham et al., 2008, GEO accession 

number GSE10389). We cannot exclude that this negative signal is due to a technical 

issue linked to the application of a non-verified antibody. The present study, hence, 

cannot refute the hypothesized recruitment of BRG1 to the aforementioned sites. 

Investigating STAT5A/B-associated chromatin condensation upon Brg1 knock-down 

and/or forced expression of dominant-negative BRG1 (compare Xu et al., 2007) could 

uncover its possible implication. Though, it is conceivable that another chromatin 

remodeling enzyme catalyzes nucleosome loss along Cis.  

4.1.2.3 The absence of detectable STAT5 DNA binding at its Bcl-x, MKP-1 and 
IL2Ra binding sites might be due to a technical issue  

The STAT5 target genes Bcl-x, MKP-1 and IL2Ra have been shown to be bound and 

transactivated by STAT5A/B in response to IL-3 in Ba/F3 cells (Basham et al., 2008, 

Dumon et al., 1999, Lecine et al., 1996, Nelson et al., 2004). Therefore, the absence of 

detectable STAT5 DNA binding at the Bcl-x, MKP-1 and IL2Ra STAT5 binding sites was 

unexpected (Figures 34–36). Nevertheless, both IL-3-dependent and -independent 

STAT5 activity correlated with Bcl-x and MKP-1 transactivation (Figures 34–36) and IL-3-

dependent STAT5 activity correlated with histone H3 decrease at Bcl-x, MKP-1 and 

IL2Ra (Figures 34 and 35), suggesting STAT5A/B-mediated mechanisms. These 

contradictory findings could be explained (i) by false negative STAT5 ChIP signals for 

technical reasons or (ii) by differences between the Ba/F3 cells employed by Basham et 

al. (2008) and the ones employed in the present study in case of bona fide negative 

signals. 

In support of possibility (i), STAT5 occupancy levels in IL-3 stimulated parental Ba/F3 

cells, as detected using ChIP assay (Basham et al., 2008, not Bcl-x) and ChIP-seq assay 

(Nanou et al., 2017, GEO accession number GSE79520), were lower at the Bcl-x, 

MKP-1, IL2Ra and Spi2.1 STAT5 binding sites than at the other STAT5 binding sites 

(Cis, Osm, Id-1 and TNFRSF13b) investigated in the present study (~5–15 % of the level 

at the Cis STAT5 binding site with the exception of the level observed a the IL2Ra STAT5 

binding site by Basham et al., 2008 [~40 %]). In case of similar ratios in the present study, 

the expected values for STAT5 chromatin occupancy (~0.02–0.05 % of input DNA) would 

be below the detection limit of the ChIP assay (≲0.10 % of input DNA), with the exception 

of the expected values for IL2Ra according to Basham et al. (2008 | ~0.14 %). This 

agrees with the values detected in the present study (Figure 34). This, in turn, suggests 

a lower sensitivity of the applied ChIP assay for technical reasons and proposes STAT5 

DNA binding to Bcl-x, MKP-1 and IL2Ra below the detection limit in the present study. 
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Technical improvements to the STAT5 ChIP assay (e.g. based on Pinz and Rascle, 

2017) might allow detection of STAT5 DNA binding to these genes. 

In support of possibility (ii), the striking difference in STAT5 occupancy at IL2Ra (relative 

to the Cis and the other investigated STAT5 binding sites) between, on the one hand, 

the Basham et al. (2008) study and, on the other hand, the Nanou et al. (2017 | GEO 

accession number GSE79520) and the present studies suggests molecular differences 

between the employed parental Ba/F3 cell lines. Moreover, the IL-3-independent 

upregulation of Bcl-x and MKP-1 in the presence of STAT5A-1*6 suggests a STAT5A/B-

dependent transactivation mechanism in the present study. In case of bona fide negative 

STAT5 ChIP signals, this proposes that STAT5A-1*6 mediated Bcl-x and MKP-1 

transactivation (a) by a mechanism independent of its DNA binding and transcriptional 

activity, (b) by transactivation of third Bcl-x- and MKP-1-regulating factors and/or (c) 

through occupation of other than the investigated Bcl-x and MKP-1 promoter/enhancer 

elements. Previous and recent findings propose molecular mechanisms for possibilities 

(a) and (c): (a) IL-3-independent cross-activation of the PI3K and MAPK pathways by 

STAT5A-1*6 (via GAB2 | Nyga et al., 2005) might transactivate Bcl-x and MKP-1, given 

the reported (partially) PI3K pathway-dependent upregulation of Bcl-x in Ba/F3 cells 

(Gesbert and Griffin, 2000). (c) ChIP-seq data of Ba/F3 cells (Nanou et al., 2017, GEO 

accession number GSE79520) have revealed four additional STAT5 binding sites in its 

second intron both outside and within the Bcl-x super-enhancer (two sites respectively | 

Katerndahl et al., 2017, Loven et al., 2013) as well as one additional STAT5 binding site 

~7 kb upstream the MKP-1 ORF, suggesting alternative candidate Bcl-x and MKP-1-

regulating STAT5 binding sites. These three possibilities could be investigated in 

dox-induced Ba/F3-tet-on-1*6 cells by (a) forced expression of a dominant negative 

GAB2 form to abrogate PI3K pathway cross-activation (compare Nyga et al., 2005), by 

(b) treatment with a protein synthesis inhibitor (e.g. cycloheximide | compare Thiel et al., 

2000) and by (c) GAS motif disruption (using e.g. CRISPR/Cas9-mediated gene editing) 

in the candidate alternative Bcl-x and MKP-1-regulating STAT5 binding sites.  

4.1.2.4 Differences at the IL2Ra locus among parental Ba/F3 cell lines might 
explain negative IL2Ra mRNA signals 

In accordance with its previously reported late-responsiveness (Basham et al., 2008), 

IL2Ra transactivation was not detectable after 30-minute IL-3 stimulation of parental 

Ba/F3 cells in the present study (Figure 34). Though unexpectedly, IL2Ra mRNA levels 

were at the detection limit in contrast to the IL2Ra mRNA levels slightly above the 

detection limit detected by Basham et al., 2008 (despite application of the same 

RT-qPCR primers). Surprisingly, my negative IL2Ra mRNA signals agree with recent 

RNA-seq data (Nanou et al., 2017, GEO accession number GSE79520). This fact, in 

turn, agrees with the difference in STAT5 occupancy described above and, thus, further 
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supports molecular differences between the employed parental Ba/F3 cell lines. It is 

conceivable that a more condensed chromatin state impeded both STAT5 DNA binding 

and transcriptional activity. Though, other possibilities such as DNA alterations (affecting 

STAT5 DNA binding and/or the detectability of the IL2Ra mRNA by the applied RT-qPCR 

primers) cannot be excluded. Extending the duration of IL-3 stimulation to 2 h (based on 

Basham et al., 2008) might allow detection of late-responsive IL2Ra transactivation and 

exclude the possibility of false negative IL2Ra mRNA signals in the present study. 

4.1.3 STAT5A/B DNA binding activity might be a cause of, rather than a 
consequence of, nucleosome loss at the Cis, Osm, Spi2.1 and Id-1 
STAT5 binding sites 

The correlative evidence of the present study strongly suggests a causal link between 

STAT5 DNA binding and histone H3 decrease (i.e. STAT5A/B-mediated recruitment of 

ATP-dependent chromatin remodeling complexes catalyzing nucleosome translocation 

and/or eviction) for its Cis, Osm, Spi2.1 and Id-1 binding sites in Ba/F3 cells. This 

evidence is based on the positive correlation of STAT5 DNA binding with histone H3 

decrease, while being independent of (i) STAT5 binding site location within the gene 

locus, (ii) transactivation and (iii) IL-3 supplementation (Figures 30, 31 and 34–37). 

Future studies might reveal a similar link at the TNFRSF13b, Bcl-x, MKP-1 and IL2Ra 

STAT5 binding sites for the reasons detailed above (4.1.2). My findings are in agreement 

with an abundance of correlative evidence linking STAT5 DNA binding with high 

chromatin accessibility (1.3.3.2). This includes the Cis STAT5 binding site in the Ba/F3 

cell line (Rascle and Lees, 2003) as well as in a human breast cancer cell line 

(Schauwecker et al., 2017), where prolactin-induced STAT5 DNA binding has been 

correlated with the eviction of the −1 nucleosome overlapping the Cis STAT5 binding 

sites and upstream translocation of the −2 nucleosome. This mirrors the tremendous 

decrease (by up to 90 %) in histone H3 occupancy observed at this site in the present 

study in response to STAT5A/B activation (Figures 30, 31 and 35–37). Interestingly, 

STAT5 DNA binding has been found to be a prerequisite for chromatin decondensation 

at one of two of its binding sites in the Wap super-enhancer using GAS motif disruption 

(Shin et al., 2016), again supporting a STAT5A/B-mediated chromatin decondensation 

mechanism in accordance with my findings. 

As detailed in the introduction section (1.3.3.4.2), the Clevenger’s research group has 

recently shown that HMGN2-dependent linker histone H1 displacement in response to 

prolactin is a prerequisite for (likewise prolactin-induced) full STAT5 DNA binding to Cis 

and full STAT5A/B-mediated transactivation of Cis and other genes in two human breast 

cancer cell lines (Fiorillo et al., 2011, Medler et al., 2016, Schauwecker et al., 2017). 

They, therefore, proposed that STAT5 DNA binding is a consequence of concurrent 

STAT5A/B-independent chromatin decondensation in this cellular context, i.e. both the 
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HMGN2-independent nucleosome loss described above and the HMGN2-dependent 

linker histone H1 displacement (Schauwecker et al., 2017). This disagrees with my 

findings in Ba/F3 cells, which suggest that STAT5A/B binding is a cause of, not a 

consequence of, concurrent nucleosome loss. Of note, STAT5 DNA binding to Cis is 

decreased, but not fully abrogated, in response to prolactin upon complete inhibition of 

prolactin-inducible HMGN2 recruitment to Cis (Medler et al., 2016). Considering this and 

my findings, Schauwecker et al. (2017) cannot exclude the possibility that the prolactin-

induced (decreased) HMGN2 (recruitment)-independent STAT5 DNA binding is a cause, 

rather than a consequence of, the concurrent HMGN2-independent nucleosome loss in 

Cis. In addition, considering this argument and that Schauwecker et al. (2017) did not 

investigate (i) prolactin-independent effects of STAT5 DNA binding and/or (ii) STAT5A/B-

independent effects of prolactin on Cis linker histone H1 occupancy, their findings can 

neither exclude the possibility that the (decreased) HMGN2 (recruitment)-independent 

STAT5 DNA binding to Cis is a prerequisite for the concurrent recruitment of HMGN2, 

proposing a STAT5A/B-dependent mechanism for HMGN2-dependent histone H1 

displacement and its consequential events described above. The availability of active 

HMGN2 molecules might be the rate-limiting factor for these consequential events, given 

that HMGN2 inhibition impedes them and that Hdac6 overexpression (increasing 

HMGN2 activation) augments them (Fiorillo et al., 2011, Medler et al., 2016, 

Schauwecker et al., 2017). Overall, for these reasons the findings of the Clevenger’s 

research group might not be in disagreement with my findings despite different cellular 

contexts.  

This raises the possibility of a similar mechanism involving HDAC6/HMGN2-dependent 

histone H1 displacement in Ba/F3 cells (given the presence of HGMN2 expression; 

Basham et al., 2008, GEO accession number GSE10389). This is opposed by the fact 

that Hdac6 knock-down has been found to not impede STAT5A/B-dependent Cis 

transactivation in Ba/F3 cells (Pinz et al., 2015). Interestingly, pre-treatment with TSA 

decreased both STAT5 occupancy (upon IL-3 stimulation) to varying degrees and 

histone H3 occupancy slightly (independently of IL-3, putatively due to hyperacetylation; 

compare 3.5.3) at the investigated STAT5 binding sites (Cis, Osm, Spi2.1, Id-1 and 

TNFRSF13b | Figure 35 in accordance with Rascle et al., 2003, Rascle and Lees, 2003 

for Cis and Osm). This is an unexpected finding, as (i) increased chromatin accessibility 

has been argued to facilitate DNA binding of transcription factors (1.2.1.2), including 

STAT5A/B (1.3.3.4.2), and that (ii) TSA has been argued to inhibit STAT5A/B-mediated 

transactivation of Cis and other genes at a step following STAT5 DNA binding by an 

indirect mechanism (involving the displacement of BET family proteins) in Ba/F3 cells 

(Pinz et al., 2015 | 1.3.3.5). By contrast, Bufexamac and, accordingly, TSA have been 

argued to do this at a step preceding full (HMGN2-dependent) STAT5 DNA binding by 
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impeding HDAC6-mediated HMGN2 activation in two human breast cancer cell lines 

(Medler et al., 2016 | 1.3.3.5). Taken together, this raises the possibility of an additional 

molecular mechanism for TSA-inhibited STAT5A/B-mediated transactivation at a step 

preceding (full) STAT5 DNA binding. It is conceivable that this involves inhibition of IL-3-

inducible HDAC-dependent activation of histone H1 displacement activity of HMGN2 or 

another HMGN family member (by deacetylation | compare Bergel et al., 2000, Herrera 

et al., 1999, Medler et al., 2016). It remains to be determined, whether the 

aforementioned findings in two human breast cancer cell lines are transferrable to the 

murine pro-B cell line Ba/F3 e.g. by (single and combined) knock-down experiments of 

HMGN family members, considering the cell type-specific DNA binding and 

transcriptional regulation patterns of STAT5A/B (1.3.3).  

The putative causal link between STAT5 binding and nucleosome loss, suggested in the 

present study, rests on its IL-3 independence. My findings, however, cannot exclude the 

possibility that STAT5A-1*6, but not wild-type STAT5A/B, mediates nucleosome loss 

independently of IL-3 due to molecular differences (including the disrupted interaction 

with the co-repressor NCoR2/SMRT, Nakajima et al., 2001 | 1.3.4.3). In addition, 

nucleosome loss at Cis and Id-1 was less pronounced upon de novo STAT5A-1*6 DNA 

binding than upon wild-type STAT5 DNA binding and time-delayed at Osm and putatively 

TNFRSF13b (Figures 36 and 37 | 4.1.2.1). (Disregarding the technical issues discussed 

in 4.1.2.1), this suggests (i) the possible necessity of third IL-3-inducible factors for full 

histone H3 decrease at Cis and Id-1 and (ii) the participation of third (putatively IL-3-

dependent) factors late-responsive to STAT5A-1*6 activity in histone H3 decrease at 

least at Osm. Mirroring these findings, Lau-Corona et al. (2017) have reported temporal 

differences in chromatin decondensation following forced sustained STAT5A/B 

activation in hepatocytes. Taken together, the aforementioned possibility should be 

addressed by further experiments to consolidate a causal link between STAT5 DNA 

binding and nucleosome loss in Ba/F3 cells. For instance, the abrogation of IL-3-

inducible STAT5 DNA binding by GAS motif disruption in parental Ba/F3 cells would be 

expected to impede IL-3-inducible nucleosome loss. In addition, gain and loss of both (i) 

IL-3-dependent and (ii) IL-3-independent STAT5 DNA binding would be expected to 

tightly correlate with chromatin decondensation and condensation, respectively, in a 

temporal manner. This could be investigated in time-courses of (i) IL-3 stimulation and 

withdrawal of parental Ba/F3 cells and (ii) dox induction and removal of Ba/F3-tet-on-1*6 

cells. Besides, chromatin co-precipitated with STAT5 in ChIP-ChIP assays would be 

expected to have a lower histone H3 occupancy than overall chromatin. 
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4.1.3.1 STAT5A/B might cause a nucleosome loss at its binding sites globally in 
Ba/F3 cells 

The STAT5A/B-mediated chromatin remodeling suggested for Cis, Osm, Spi2.1 and Id-1 

and proposed for TNFRSF13b, Bcl-x, MKP-1 and IL2Ra in the present study raises the 

possibility that STAT5A/B-mediated chromatin remodeling is not restricted to this small 

set of STAT5 binding sites, but might be a global mechanism in Ba/F3 cells and other 

cellular contexts. Besides, the fact that histone H3 decrease was observed all along the 

Cis gene (Figure 31) and at control sites in other genes (Figures 30, 34, 35 and 37) 

raises the possibility that STAT5A/B also mediated nucleosome loss at DNA sites in 

proximity to its binding sites. On the other hand, my results suggest HAT-dependent 

nucleosome loss at upstream and downstream regions, thus suggesting a different 

mechanism of nucleosome eviction at these regions compared to that at STAT5 binding 

sites, whether STAT5A/B-independent or -dependent. Besides, the gene-specific 

differences observed in the present study (4.1.2) and the fact, that abrogated STAT5 

DNA binding (upon GAS motif disruption) only partially correlated with the absence of 

chromatin decondensation (Shin et al., 2016), proposes information of STAT5A/B-

mediated chromatin decondensation by the pre-existent cellular context (i.e. the 

chromatin landscape and interactions with other factors) in accordance with previous 

findings (1.3.3.4). Therefore, it remains to be determined whether the correlation of 

STAT5 DNA binding and chromatin decondensation in the present and other studies 

(1.3.3.2) have a causal, consequential or another relationship. Notably, this pattern is 

mirrored by STAT3 (the STAT family member most closely related to STAT5A/B | 

Copeland et al., 1995, Wang and Levy, 2012), as STAT3 DNA binding and transcriptional 

regulation patterns have likewise been proposed/shown to be informed by the pre-

existent cellular context (e.g. Fleming et al., 2015, Ho et al., 2011, Oestreich et al., 2012, 

Urayama et al., 2013), and STAT3 has likewise been proposed/shown to mediate 

chromatin alterations by functional and physical interaction with chromatin modifiers 

(reviewed by Wingelhofer et al., 2018) including BRG1 (e.g. Fan et al., 2017, Giraud et 

al., 2004, Ito et al., 2018, Wu et al., 2016). This raises the possibility of a general 

association of chromatin remodeling with STAT family transcription factors. 

Expanding the locus/transcript-specific assays applied in the present study and the ones 

proposed above using genome-wide/transcriptome assays would allow investigating 

global correlations of STAT5 DNA binding (using STAT5A/B ChIP-seq) and STAT5A/B-

mediated transcriptional regulation (using RNA-seq) and nucleosome loss (see below) 

as well as co-occupancies with ATP-dependent chromatin remodeling complexes such 

as the SWI/SNF subunit BRG1 (using BRG1 ChIP-seq), further elucidating causal or 

consequential relationships between STAT5 DNA binding and chromatin remodeling. 

After all, recently available STAT5A ChIP-seq data of parental Ba/F3 cells has identified 
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overall ~15,500 STAT5A binding sites in parental Ba/F3 cells (Nanou et al., 2017, GEO 

accession number GSE79520). Of note, histone H3 ChIP assays indicate the (core) 

nucleosome density at a given DNA site, but cannot indicate chromatin accessibility per 

se (i.e. the degree of DNA exposure) given its information by other parameters in addition 

to nucleosome positioning (e.g. the presence of linker histone H1 | Tsompana and Buck, 

2014). Several techniques are now available for locus-specific and genome-wide 

analyses of both nucleosome positioning (e.g. micrococcal nuclease digest followed by 

high-throughput sequencing [MNase-seq]) and chromatin accessibility (e.g. DNase-seq 

I DNase I digest followed by high-throughput sequencing [DNase-seq] | reviewed by 

Tsompana and Buck, 2014). 

It is tempting to speculate about the far-reaching implications of a STAT5A/B-mediated 

chromatin decondensation mechanism. For instance, previously reported negative 

correlations of STAT5A/B DNA binding with ChIP signals of active marks (without 

normalization to histone occupancy | Chia and Rotwein, 2010, Chia et al., 2010a, Chia 

et al., 2010b, Eilon et al., 2007, Xu et al., 2003) might not suggest an unexpected 

depletion of active marks despite concurrent transactivation, but rather nucleosome loss. 

In addition, STAT5A/B functioning as an anchor for other transcription factors similarly 

to pioneer factors (Girardot et al., 2015, Ogawa et al., 2014, Shi et al., 2008, Shin et al., 

2016) might depend on the exposure of their binding motifs by STAT5A/B-mediated 

chromatin remodeling. Besides, misregulated STAT5A/B-mediated chromatin 

remodeling upon sustained DNA binding of constitutively active STAT5 proposes 

potentially oncogenic ‘driver’ chromatin alterations, as further detailed below. 

4.2 Ba/F3-tet-on-1*6 cells mirror in vivo oncogenesis upon 
STAT5A-1*6 induction 

4.2.1 The Ba/F3-tet-on-1*6 experimental system might reflect the clonal 
evolution of in vivo tumorigenesis and its heterogeneity 

The mutability of cancer cells is their defining characteristic and underlies the clonal 

evolution process among them, which leads to the stochastic acquisition of cancer 

hallmark traits defining the disease cancer (1.1.1). Circumstantial evidence suggests 

such a clonal evolution process in long-term dox induction experiments of Ba/F3-

tet-on-1*6 cells, mirroring in vivo cancers. Specifically, the detected pattern in singe-cell 

GFP fluorescence levels (co-expressed with the STAT5A-1*6 transgene) during 

Induction-1 (Figure 18) suggested outgrowth of a single cell with a selective growth 

advantage, which eventually supplanted all other cells. Similarly, a dividing 

subpopulation of cells with tetraploid G1 phase DNA content was detected at day 54 of 

Induction-3, suggesting outgrowth of a single cell after a tetraploidization event 

(Figure 23). In addition, the temporal differences in survival of dox removal between 
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Induction-2 and -3 (Table 9) suggest that they were caused by stochastic rather than 

deterministic events. Besides, the detection of an aberrant STAT5A-1*6 form during 

Induction-3 (Figure 18) suggests a stochastically acquired ‘driver’ or ‘passenger’ 

alteration. 

4.2.2 Ba/F3-tet-on-1*6 cells acquired the ‘resisting cell death’ and 
‘sustaining proliferative signaling’ cancer hallmarks in a stochastic 
manner 

The reproducible changes in cell cycle distribution, doubling times and the percentage 

of dead/dying cells during long-term dox induction (Figures 19–23) indicated severely 

impaired cell viability and proliferation (i.e. a growth arrest) directly following dox 

induction, which gradually increased reaching the level observed in control cells after 1 

and 4–5 weeks of induction, respectively. Given only ~50 % GFP-positive (Figure 18) 

and G1 phase accumulation (Figures 18 and 19) after 12–14 h of induction, Ba/F3-

tet-on-1*6 cells with late-onset STAT5A-1*6 production and/or in S and G2/M phase 

might have died disproportionately directly following IL-3 deprivation. In addition, this 

pattern suggests that surviving cells could not transition through the G1 cell cycle check-

point, proposing that STAT5A-1*6 activity per se constituted a sufficient survival, but yet 

a weak growth signal upon IL-3 deprivation, likely due to suboptimal STAT5A-1*6 

expression levels.  

Given the circumstantial evidence for clonal evolution (4.2.1), the gradual increase in cell 

viability and proliferation (Figures 20–22) suggests the acquisition of ‘driver’ alterations 

in a stochastic manner rather than time-dependent deterministic effects of STAT5A-1*6. 

This is supported by the enormous selective growth advantage for single cells upon 

acquisition of higher viability or proliferation rate. Ba/F3-tet-on-1*6 relied on STAT5A-1*6 

as survival and growth signal until week 4–5 of induction (Table 9). This suggests that 

‘driver’ alterations invigorated the pre-existent pro-survival effect of STAT5A-1*6 and 

enabled and/or invigorated a pro-growth effect of STAT5A-1*6, rather than having 

STAT5A-1*6-independent effects. This proposes that STAT5A-1*6 activity per se 

effected the initial cell survival and growth despite IL-3 deprivation in a deterministic 

manner, possibly by transactivating pro-survival oncogenes. Later on (4–5 weeks of dox 

induction), STAT5A-1*6-independent Ba/F3-tet-on-1*6 cell survival and growth (upon 

dox removal | Table 9) suggests that accumulated ‘driver’ alterations enabled an 

independence of external growth and survival signaling (both IL-3 and STAT5A-1*6), 

suggesting the acquisition of the ‘resisting cell death’ and ‘sustaining proliferative 

signaling’ cancer hallmarks (Figure 1). Strikingly, immunocompromised mice injected 

with Ba/F3 cells producing STAT5A-1*6 de novo developed Ba/F3-cell-based-leukemia 

after around six weeks (Gesbert and Griffin, 2000), suggesting a similar time-frame for 

the acquisition of these two cancer hallmarks in vivo, in accordance with my findings.  
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Of note, the applied methods (trypan blue staining-based cell counting, cell cycle 

analysis) together are indicative of cell viability and proliferation. Though, they cannot 

exclude the possibility that high rates of cell proliferation mask low cell viability, 

considering that this is a feature present in early stages of in vivo cancers (e.g. Bergers 

et al., 1999, Hanahan and Weinberg, 2000, Kim et al., 2014, Symonds et al., 1994). 

Although parental Ba/F3 cells have been shown to undergo apoptosis upon IL-3 

deprivation in numerous studies (e.g. Ahmed et al., 1998, Ariyoshi et al., 2000, 

Funakoshi-Tago et al., 2010, Gesbert and Griffin, 2000) and the observed pattern (lower 

size cellular bodies with sub-G1 DNA content | Figures 24 and 25) agreed with apoptotic 

cell death (Kerr et al., 1972, Prokhorova et al., 2015, Taylor et al., 2008), the applied 

methods can neither distinguish between different forms of cell death. Terminal 

deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay (Gorczyca et al., 

1992) could (i) confirm apoptotic cell death of IL-3-deprived Ba/F3-tet-on-1*6 cells and 

(ii) uncover whether S or G2/M phase cells disproportionately undergo apoptosis. Bona 

fide cell proliferation could be investigated using a dye dilute assay (Lyons and Parish, 

1994). 

4.2.3 Ba/F3-tet-on-1*6 cells exhibited leaky expression of STAT5A-1*6 
upon doxycycline removal 

Of note, positive pSTAT5 and STAT5A-1*6 transgene mRNA signals persisted after dox 

removal (Figures 24 and 26), suggesting the continued presence of active STAT5A-1*6 

molecules – albeit only at a very low level – and thus of associated pSTAT5 signals. On 

the other hand, pSTAT5 signals might also be explained by autocrine IL-3-induced 

endogenous STAT5A/B activity, considering that some Ba/F3 cells acquired 

independence of IL-3 supplementation by producing IL-3 themselves in the 

aforementioned mutagenesis study (Guo et al., 2016). The persistence of STAT5A-1*6 

mRNA and protein (provided bona fide positive signals) could be due to (i) a long mRNA 

and protein half-life or (ii) continued transcription of the STAT5A-1*6 transgene mRNA. 

Given the short half-life of dox (Agwuh and MacGowan, 2006), possibility (ii) cannot be 

explained by the continued presence of dox intracellularly or by insufficient cell washing. 

This proposes transcriptional activity at the integrated STAT5A-1*6 transgene loci 

despite the absence of dox-dependent rtTA Advanced-mediated transactivation (i.e. 

leaky expression), putatively due to DNA or chromatin alterations at these loci preventing 

the re-establishment of heterochromatic silencing. 

The slight increase in above-background in STAT5A-1*6 transgene mRNA signals upon 

dox removal (from day 42/49 compared with from day 7 | Figure 26) raises the possibility 

that the presence of more STAT5A-1*6 molecules contributed to the survival of Ba/F3-

tet-on-1*6 cells at these time-points. This is supported by the fact that a stable Ba/F3 cell 
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line with BCR-ABL expression slightly above background level exhibited higher 

spontaneous oncogenicity than its parental BCR-ABL-free Ba/F3 cell line (Klucher et al., 

1998). Though, in line with the effects of dox removal in the present study, incomplete 

knock-down of constitutively activated endogenous STAT5A (and/or STAT5B) negatively 

impacted survival and growth of an IL-3-independent Ba/F3 cell line expressing BCR-

ABL (Schaller-Schönitz et al., 2014). To exclude the aforementioned possibility in the 

future, complete STAT5A/B inhibition e.g. by treatment with CAS 285986-31-4 (Muller et 

al., 2008) could be applied in lieu of dox removal experiments.  

4.2.4 Ba/F3-tet-on-1*6 cells acquired the ‘genomic instability’ cancer 
hallmark 

Given that mutability per se constitutes a selective growth advantage for individual 

cancer cells, Hanahan and Weinberg (2011) proposed ‘genomic instability’ as an 

enabling cancer hallmark (Figure 1). Thus, the proposed clonal evolution in all four 

long-term dox induction experiments (4.2.1) suggests a positive selection pressure on 

‘genomic instability’. This is supported by the fact that parental Ba/F3 cells have been 

shown to not survive IL-3 deprivation spontaneously and only in 20 % of cases in the 

aforementioned mutagenesis study (Guo et al., 2016), suggesting low mutability of 

parental Ba/F3 and, accordingly, non-induced Ba/F3-tet-on-1*6 cells. Thus, the detection 

of a tetraploid DNA content during Induction-3 (Figure 23) was an expected finding. It 

suggests a tetraploidization event in at least one cell conferring a selective growth 

advantage, which is indicative of misregulated cell division and cell cycle check-point 

evasion, and, thus, ‘genomic instability’.  

The applied cell cycle analysis method a priori can only detect large deviations in overall 

DNA content, but not other DNA alterations indicative of ‘genomic instability’. Specifically, 

increased DNA sequence mutations and balanced chromosomal aberrations due to 

double-strand breaks (e.g. translocations) are indicative of disrupted DNA repair 

mechanisms, likewise causing ‘genomic instability’. Thus, the present study could not 

determine the presence or absence of such DNA alterations indicative of ‘genomic 

instability’ in the other three long-term dox induction experiments. Though, the 

acquisition of ‘genomic instability’ conferring increased mutability per se might underlie 

the STAT5A-1*6-independent survival and growth (upon dox removal | Table 9) of Ba/F3-

tet-on-1*6 cells after 4–5 weeks of induction (Induction-2 and -3), rather than or in 

addition to other accumulated ‘driver’ alterations. In this case, STAT5A-1*6-independent 

survival and growth of Ba/F3-tet-on-1*6 cells mirror acquisition of the ‘evading growth 

suppressors’ cancer hallmark. Next-generation sequencing of Ba/F3-tet-on-1*6 cells, 

preferably at the single-cell level, during long-term dox induction experiments could 
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elucidate the emergence and spread of DNA alterations indicative of ‘genomic instability’ 

during long-term dox induction (reviewed by Wang and Navin, 2015). 

Although it is conceivable that the (putative) acquisition of the ‘genomic instability’ cancer 

hallmark is solely a result of ‘driver’ alterations functioning independently of STAT5A-1*6 

activity, several molecular mechanisms have been described by which STAT5A-1*6 

activity per se could contribute to ‘genomic instability’, as detailed below (4.6). 

4.3 STAT5A-1*6 overexpression might have adverse effects on 
oncogenesis 

The reproducible negative correlation of STAT5A-1*6 protein levels (Figure 18) with 

increasing cell viability and proliferation rates (Figures 20–22 | 4.2.2) in three of the four 

long-term dox induction experiments at later time points and the selective growth 

advantage observed for a ‘lower-GFP’ (i.e. STAT5A-1*6) subpopulation during 

Induction-1 (Figure 18) raise the possibility of dose-dependent adverse effects of 

STAT5A-1*6 on cell survival and growth over time. This proposes a negative selective 

pressure on STAT5A-1*6 three-fold overexpression (relative to endogenous STAT5A/B | 

Figure 18). Of note, seven-fold overexpression of wild-type STAT5A has been found to 

have neither positive nor negative effects on parental Ba/F3 cell survival and growth 

(Royer et al., 2004). Surprisingly, increased doses of constitutively activated wild-type 

STAT5A (upon ectopic Stat5a overexpression to levels even higher than in the present 

study) have likewise been found to have no such effects in a Ba/F3 cell line expressing 

BCR-ABL (Schaller-Schönitz et al., 2014). This is in disagreement with the description 

of both negative and positive dose-dependent effects of constitutively active wild-type 

STAT5A on cell survival and growth in models of hematologic cancers (Chen et al., 2013, 

Hoelbl et al., 2006, Tsuruyama et al., 2002, Wang et al., 2015, Warsch et al., 2011) and 

of STAT5A-1*6 and wild-type STAT5A in normal hematopoietic cells (Wierenga et al., 

2008). 

This proposes that (i) the (putative) effects adverse to cell survival and growth are 

specific to STAT5A-1*6 in Ba/F3-tet-on-1*6 cells, either due to unique molecular 

properties not shared by constitutively activated wild-type STAT5A or due to differences 

between the employed Ba/F3 cell lines, or that (ii) the detected dose differences were 

caused by ‘passenger’ alterations and have no effect on cell survival and growth. Given 

the reproducibility of the STAT5A-1*6 decrease, possibility (ii) proposes that certain 

‘driver’ alterations selected by clonal evolution entailed such ‘passenger’ alterations. 

STAT5A-1*6 transgene overexpression, for instance by increasing the dox concentration 

during long-term dox induction, might help elucidating whether STAT5A-1*6 has dose-

dependent effects on cell survival and growth. Flow cytometric cell sorting could allow 

investigation of potential differences in cell survival and growth phenotype between 
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‘lower-GFP’ and ‘higher-GFP’ subpopulations. Investigation of the integration loci of the 

STAT5A-1*6 transgene on the DNA and chromatin level could also reveal the acquisition 

of ‘passenger’ or ‘driver’ alterations. 

4.3.1 Aberrant STAT5A-1*6 forms might reflect a loss of constitutive 
activity function 

Interestingly, co-production of at least one aberrant STAT5A-1*6 protein form with 

enhanced migration speed was identified by FLAG signals throughout Induction-3 

(Figure 18). The detectability of the aberrant STAT5A-1*6 form(s) by the anti-total 

STAT5A/B and anti-pSTAT5A/B antibodies remains to be determined and could be 

investigated by Western blot analysis following co-immunoprecipitation of normal and 

aberrant STAT5A-1*6 using the anti-FLAG antibody. The second positive pSTAT5 signal 

below the normal signal at day 49 of Induction-3 (Figure 18) suggests (a) undetectability 

by the anti-pSTAT5A/B antibody for the first seven weeks of induction in case of one 

aberrant STAT5A-1*6 form or (b) the acquisition of another new aberrant STAT5A-1*6 

form at day 49. Importantly, this raises the possibility that the aberrant STAT5A-1*6 

form(s) was not phosphorylated at the key Tyr694 residue (until day 49), in turn offering 

an explanation for the enhanced migration speed. The enhanced migration speed could 

also be explained by (i) a lower molecular weight due to a deletion of some amino acids 

and/or the exchange of amino acids with higher molecular weight into ones with lower 

molecular weight and/or by (ii) the gain or loss of one or more charged posttranslational 

modifications impacting migration speed (e.g. Ser725, Ser779 and Tyr682 phosphorylation | 

Cooper et al., 2006, Friedbichler et al., 2010, Haq et al., 2002, Schaller-Schönitz et al., 

2014). Taken together, it is thinkable that the co-production of at least one loss-of-

function aberrant STAT5A-1*6 form masked the decreasing protein levels of normal 

STAT5A-1*6 in Western blot analysis, opposing differences between Induction-3 and the 

other three induction experiments and supporting the aforementioned negative selection 

pressure hypothesis. 

4.4 STAT5A-1*6 might mediate ‘driver’ chromatin alterations in 
some of its target genes 

4.4.1 Continuous dose-dependent STAT5A-1*6-mediated Cis 
transactivation opposes tumor suppressive effects of CIS 

The reproducibly tight correlation of STAT5A-1*6 transgene and Cis mRNA levels (in the 

absence and presence of dox | Figures 25 and 26) suggested dose-dependent 

STAT5A-*6-mediated transactivation during long-term dox induction experiments. Given 

similar mRNA levels in control cells grown with IL-3 (Figure 25), this opposes any 

negative or positive selection pressures on Cis expression level upon IL-3 deprivation. 

In line with this, Cis forced (over)expression has been found to maximally slightly impact 
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IL-3-dependent parental Ba/F3 cell survival and growth (Cohney et al., 1999, Nosaka et 

al., 1999, Yoshimura et al., 1995) despite CIS inhibiting STAT5A/B activation 

(Matsumoto et al., 1997, Yoshimura et al., 1995). In addition, Cis was not a target in the 

aforementioned mutagenesis study (Guo et al., 2016). Thus, CIS might not have any 

tumor suppressive effects on IL-3-independent Ba/F3-tet-on-1*6 cell survival and growth. 

It is tempting to speculate that CIS does not inhibit IL-3-independent STAT5A-1*6 

activation, or that its tumor suppressive effects require a higher dose. Such dose-

dependent tumor suppressive effects of STAT5 target genes might offer an explanation 

for the proposed negative selective pressure on STAT5A-1*6 overexpression (see 4.3). 

Ectopic forced Cis overexpression (e.g. using transient transfection) could elucidate its 

effects on IL-3-independent Ba/F3-tet-on-1*6 cell survival and growth as well as 

STAT5A-1*6 activation by phosphorylation. 

4.4.2 STAT5A-1*6-associated nucleosome loss at Cis and Osm does not 
correlate with STAT5 occupancy level 

Although histone H3 loss was detected in STAT5A-1*6-expressing cells at the Cis and 

Osm STAT5 binding sites and adjacent TSS (Figure 37), and although STAT5 was 

bound to these sites, STAT5 occupancy level over time, as detected by ChIP, followed 

a random pattern (Figure 27). This is to be opposed to Spi2.1, which exhibited a perfect 

correlation between the kinetics of STAT5 DNA binding, histone H3 loss and mRNA 

levels (Figures 25, 27 and 37). It is possible that the occlusion of the STAT5 ChIP 

antibody epitope by other chromatin components might explain an impaired detection of 

STAT5 binding at the Cis and Osm STAT5 binding sites. Alternatively, the recent 

identification of other candidate Cis and Osm-regulating STAT5 binding sites (Nanou et 

al., 2017, GEO accession number GSE79520) raises the possibility that STAT5A-1*6 

mediated the detected nucleosome loss in a dose-dependent manner through these 

sites or even new STAT5 binding sites, given the possibility of broadened DNA binding 

patterns (compare 4.5). Overall, it remains to be verified whether STAT5A-1*6 DNA 

binding is a cause of or a consequence of the concurrent chromatin remodeling at the 

Cis and Osm STAT5 binding site and TSS (e.g. by GAS motif disruption and other 

experiments proposed in 4.1.3). 

4.4.3 Spi2.1 might function as an oncogene in response to STAT5A-1*6 

In accordance with Cis, the reproducibly tight correlation of STAT5A-1*6 transgene and 

Spi2.1 mRNA levels (exempting the first week of induction | Figures 25 and 26) 

suggested dose-dependent STAT5A-1*6-mediated Spi2.1 transactivation. Contrary to 

Cis however, Spi2.1 mRNA levels were reproducibly tremendously upregulated during 

the first two weeks of induction compared with control cells (grown in the presence of 

IL-3 | Figure 25). This strong upregulation correlated perfectly with a strong STAT5A-1*6 
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binding to Spi2.1 STAT5 binding sites (Figure 27) and with a strong histone H3 loss 

(Figure 37), indicating a direct dose-dependent effect of STAT5A-1*6. STAT5A-1*6-

mediated chromatin remodeling in Spi2.1 remains to confirmed following GAS motif 

disruption and other experiments proposed in 4.1.3. Additionally, it remains to be 

determined, why sustained STAT5A-1*6 DNA binding correlated with Spi2.1, but not Cis 

and Osm overexpression (Figures 25 and 27). The pre-existent chromatin context at the 

Spi2.1 locus might render Spi2.1 more responsive to STAT5A-1*6. This is in line with the 

observation that IL-3-induced Spi2.1 transactivation in Ba/F3 cells is more susceptible to 

Stat5a than to Stat5b knock-down, in contrast to Cis and Osm (Basham et al., 2008). Of 

note, the absence of additional candidate Spi2.1-regulating STAT5 binding sites in 

parental Ba/F3 cells further disagrees with Cis and Osm (Nanou et al., 2017, GEO 

accession number GSE79520), although STAT5A-1*6 might have occupied other 

Spi2.1-regulating sites (given the possibility of broadened DNA binding patterns, 

compare 4.5).  

Spi2.1 has been shown to promote cell survival of hematopoietic cells (Byrne et al., 2012, 

Dev et al., 2013, Li et al., 2014, Liu et al., 2004a, Liu et al., 2003, Liu et al., 2004b, Shamji 

et al., 2018), amongst other things by protection from oxidative stress (Dev et al., 2013, 

Li et al., 2014, Liu et al., 2004b). In addition, Spi.2.1 has been shown to be upregulated 

in response to forced oxidative stress in leukemia cells (Liu et al., 2016), suggesting that 

Spi2.1 promoted leukemia cell survival there and functioned as an oncogene. Given that 

Ba/F3 cells expressing STAT5A-1*6 have been shown to exhibit increased oxidative 

stress (Bourgeais et al., 2017), it is therefore possible that overexpression of Spi2.1 by 

STAT5A-1*6 in Ba/F3-tet-on-1*6 cells plays a role in protection from oxidative stress, 

contributing to the cell survival effect mediated by STAT5A-1*6. The role of Spi2.1 in 

IL-3-independent Ba/F3-tet-on-1*6 cell survival and growth could be elucidated using 

Spi2.1 knock-down and forced overexpression experiments. Taken together, the 

possibility of Spi2.1 functioning as an oncogene in Ba/F3-tet-on-1*6 cells proposes that 

the (putatively) STAT5A-1*6-mediated nucleosome loss in Spi2.1 might underlie Spi2.1 

overexpression and, thus, constitutes a ‘driver’ chromatin alteration. 

4.4.4 The oncogenes c-Myc and Pim-1, but not Bcl-x, might be targeted 
by ‘driver’ alterations 

Forced overexpression of Pim-1 (or of a dominant positive c-MYC form | Funakoshi-Tago 

et al., 2013) alone or of at least two genes among Pim-1, c-Myc and Bcl-x, have been 

shown to enable IL-3-independent survival and growth of Ba/F3 cells, with a growth 

phenotype similar to that of STAT5A-1*6 expression (Nosaka et al., 1999, Nosaka and 

Kitamura, 2002). This suggests that Pim-1, c-Myc and Bcl-x are among the main 

effectors of IL-3-independent survival and growth of Ba/F3 cells. This is in agreement 
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with the reproducible correlation of Pim-1 and c-Myc mRNA levels (Figures 25 and 26) 

with IL-3-independent cell survival and growth both in the presence and absence of dox 

(i.e. STAT5A-1*6 | Figures 20–22) during long-term dox induction. This suggests that 

Pim-1 and c-Myc might function as oncogenes in the Ba/F3-tet-on-1*6 experimental 

system, in accordance with various other models of hematologic cancers (Cuypers et al., 

1984, Gabay et al., 2014, Hayward et al., 1981, Narlik-Grassow et al., 2014). 

Interestingly, their correlation with STAT5A-1*6 mRNA levels was reproducibly restricted 

to the first few weeks of induction in contrast to Cis and Spi2.1 (Figures 25 and 26), 

suggesting STAT5A-1*6-dependent Pim-1 and c-Myc transactivation in the first few 

weeks of induction and (at least partially) STAT5A-1*6-independent transactivation 

afterwards. This proposes that the hypothesized deterministic effects of STAT5A-1*6, 

enabling Ba/F3-tet-on-1*6 survival directly after IL-3 deprivation, involved Pim-1 and 

c-Myc transactivation. Of note, the present study cannot exclude the possibility that low 

levels of STAT5A-1*6 persisting after dox removal contributed to Pim-1 and c-Myc 

transactivation. This is supported by the low sensitivity of IL-3-induced STAT5A/B-

mediated Pim-1 and c-Myc transactivation to ~50 % Stat5a/b knock-down in parental 

Ba/F3 cells (~35 % and ~0 % inhibition, respectively | Basham et al., 2008). The 

experiments proposed in 4.2.3 could elucidate this issue. The contribution of c-Myc and 

Pim-1 to IL-3-independent survival and growth during long-term dox induction could be 

investigated by knock-down experiments. 

STAT5A-1*6-independent transactivation of Pim-1 and c-Myc suggests the reproducible 

stochastic acquisition of ‘driver’ alterations effecting Pim-1 and c-Myc transactivation 

(Figure 37). The recent identification of (candidate) Pim-1- and c-Myc-regulating STAT5 

binding sites in parental Ba/F3 cells amongst others in the c-Myc super-enhancer 

(Katerndahl et al., 2017; Kieffer-Kwon et al., 2013; Matikainen et al., 1999; Nanou et al., 

2017, GEO accession number GSE79520; Pinz et al., 2016) will allow the investigation 

of such STAT5A-1*6-associated chromatin remodeling and other chromatin alterations 

in the future. Of note, HDAC3 and LSD1 co-occupied the STAT5 binding sites in the 

c-Myc super-enhancer in Ba/F3 cells, with a decrease in occupancy upon IL-3 stimulation 

(Nanou et al., 2017, GEO accession number GSE79520). This suggests a co-repressive 

function for HDAC3 and LSD1 in c-Myc transactivation, proposing their displacement in 

response STAT5 DNA binding. As detailed in the introduction section (1.3.4.5), 

STAT5A/B-1*6 might mediate histone acetylation and specifically recruit Brd2 to the 

c-Myc super-enhancer, proposing a STAT5A/B-1*6-specific c-Myc transactivation 

mechanism due to ‘driver’ alterations. Overall, this might involve recruitment of additional 

BET family members due to increased histone acetylation in response to sustained 

HDAC3 displacement. 
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Despite its identification as effector of IL-3-independent Ba/F3 cell survival and growth, 

Bcl-x was reproducibly not or maximally slightly upregulated in the presence and 

absence of STAT5A-1*6 throughout long-term dox induction compared with rested 

control cells (lacking STAT5A/B activity | Figures 25 and 26). This suggests that Bcl-x 

did not participate in IL-3-independent Ba/F3 cell survival and growth, opposing any 

function as oncogene. This agrees with a B-ALL mouse model, where Bcl-x has been 

found to be dispensable for oncogenesis (Harb et al., 2008). Notably, Bcl-x was 

upregulated in non-induced control cells in the presence of IL-3-induced endogenous 

STAT5A/B activity (compared with rested control cells | Figure 25). This pattern is in 

agreement with the fact that Bcl-x transactivation is sensitive to paralog-specific Stat5b, 

but not Stat5a knock-down in parental Ba/F3 cells (upon IL-3 stimulation | Basham et al., 

2008) and in a Ba/F3 cell line expressing BCR-ABL (Schaller-Schönitz et al., 2014), 

suggesting paralog-specific STAT5B-mediated Bcl-x transactivation in Ba/F3 cells. 

Therefore, the slight Bcl-x upregulation in dox-induced cells (Figures 25 and 26) might 

be explained by STAT5A-1*6-mediated PI3K pathway cross-activation, as detailed 

above (4.1.2.3). 

4.5 STAT5A-1*6-mediated chromatin remodeling might 
misregulate nucleosome positioning globally 

I proposed that wild-type STAT5A/B might mediate nucleosome loss at and in proximity 

of its binding sites in Ba/F3 cells (4.1.3.1). The correlation of histone H3 decrease 

(Figure 37) and STAT5A-1*6 DNA binding in Cis, Osm and Spi2.1 (Figure 27) during 

long-term dox-induction likewise raises the possibility of STAT5A-1*6-mediated 

nucleosome loss as a conserved mechanism among all STAT5 target genes. 

Surprisingly, histone H3 decrease was not restricted to STAT5 binding sites (Cis, Osm 

and Spi2.1) and sites nearby (Cis and Osm TSS), but was also detected at controls sites 

(c-Fos proximal promoter and Id-1 distal promoter | Figure 37), lacking STAT5 DNA 

binding in parental Ba/F3 cells (Basham et al., 2008; Nanou et al., 2017, GEO accession 

number GSE79520; Rascle and Lees, 2003), to varying degrees. Although the present 

study cannot exclude a chromatin remodeling mechanism independent of STAT5A-1*6 

at the control sites given a similar histone H3 decrease in non-induced controls 

(Figure 37), STAT5A-1*6 activity might have contributed to it. On the one hand, 

sustained STAT5A-1*6 DNA binding might have long-range effects on these two control 

sites. On the other hand, STAT5A-1*6 might have occupied new DNA sites in proximity 

given the dose-dependent broadening of STAT5 DNA binding patterns upon STAT5A 

overexpression (Zhu et al., 2012) and the higher affinity of STAT5A-1*6 to low-affinity 

GAS motifs (Moucadel and Constantinescu, 2005). In support of this, chromatin 

recruitment of Ezh2 has been shown to be broadened in Ba/F3 cells expressing 
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JAK2V617F (Chen et al., 2017), raising the possibility that broadened DNA binding of 

constitutively activated STAT5A/B recruited Ezh2 to these sites. Besides, the putative 

leakiness at the loci of integrated STAT5A-1*6 transgenes upon dox removal (compare 

4.2.3) might be explained by STAT5A-1*6-mediated chromatin remodeling preventing 

the re-establishment of heterochromatic silencing. In further support of this, STAT5B-1*6 

has been shown to enable binding of the transcription factor p53 globally in contrast to 

wild-type STAT5A/B (Girardot et al., 2015), proposing that STAT5A-1*6-specific 

chromatin remodeling exposed occluded p53 binding motifs. On the other hand, histone 

acetylation patterns differed at STAT5 binding sites and distal sites affected by histone 

H3 loss (Figures 30 and 32), favoring the implication of HAT-dependent mechanisms at 

distal sites, as opposed to HAT-independent mechanisms at STAT5 binding sites. This 

suggests the action of different mechanisms of chromatin remodeling along STAT5 

target gene loci, whether regulated by STAT5A-1*6 or not. 

In summary, broadened and sustained DNA binding patterns of STAT5A-1*6 and, 

accordingly, broadened and sustained STAT5A-1*6 chromatin remodeling patterns 

might have caused global misregulation of nucleosome positioning, in particular 

nucleosome loss, during long-term dox induction. This might contribute to STAT5A-1*6 

oncogenicity, given the essential role of chromatin dynamics for pivotal cellular 

processes. 

4.6 STAT5A-1*6 activity per se might effect acquisition of the 
‘genomic instability’ cancer hallmark 

Several previous findings suggest that STAT5A-1*6 activity per se participates in the 

acquisition of the ‘genomic instability’ cancer hallmark in Ba/F3-tet-on-1*6 cells during 

long-term dox induction (compare 4.2.4). The misregulated chromatin dynamics due to 

the hypothesized global STAT5A-1*6-mediated nucleosome loss complements existent 

and proposes additional molecular mechanisms: 

Transcriptional misregulation: 

The hypothesized STAT5A-1*6-mediated global nucleosome loss might effect 

transcriptional misregulation, in line with reports of forced nucleosome loss (Booth and 

Brunet, 2016, Celona et al., 2011, Hu et al., 2014, Zahn et al., 2005). This might involve 

downregulation of genes adverse to DNA damage and, reversely, upregulation of genes 

conducive to it, promoting ‘genomic instability’. In fact, c-Myc overexpression in Ba/F3 

cells has been shown to cause chromosomal aberrations (Fest et al., 2002) indicative of 

‘genomic instability’. Although average c-Myc mRNA levels were not increased during 

long-term dox induction in the presence of constitutive STAT5A-1*6 activity (compared 

to control cells with transient endogenous STAT5A/B activity | Figure 25), the temporal 

patterns of c-Myc expression might have differed at the single-cell level, with sustained 
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c-Myc transactivation (as opposed to cycles of transient c-Myc transactivation) promoting 

‘genomic instability’. 

Oxidative stress: 

As detailed in the introduction section (1.3.4.4), STAT5A-1*6 activity per se might 

mediate oxidative stress through transcriptional misregulation and by non-canonical 

mechanisms in mitochondria in Ba/F3 cells. This is supported by the tremendous 

upregulation of Spi2.1 in dox-induced cells in the first two weeks of induction (compare 

4.4.3). Given that linker / euchromatic DNA has been found to be more susceptible to 

mutagenic agents, putatively including reactive oxygen species, than nucleosomal / 

heterochromatic DNA (Falk et al., 2008 Cowell et al., 2007, Han et al., 2016, Kim et al., 

2007, Lan et al., 2014), the hypothesized STAT5A-1*6-mediated global nucleosome loss 

might increase DNA damage and promote ‘genomic instability’. 

Misregulated recruitment of chromatin modifiers: 

Broadened and sustained STAT5A-1*6 DNA binding proposes misregulated 

STAT5A-1*6 recruitment of chromatin modifiers as argued above for Ezh2, which could 

contribute to ‘genomic instability’. For instance, the STAT5A/B-interacting chromatin 

modifier Tet2 (Yang et al., 2015 | Table 2) has been linked to ‘genomic instability’ in 

Ba/F3 cells (Mahfoudhi et al., 2016), raising the possibility of misregulated Tet2 

chromatin recruitment in dox-induced cells.  

Misregulated chromatin dynamics interferes with DNA damage repair: 

DNA damage repair has been found to require accessible DNA, i.e. decondensed 

euchromatin (Lemaitre and Soutoglou, 2014, Murga et al., 2007, Nair et al., 2017, 

Schuster-Bockler and Lehner, 2012). Although the hypothesized STAT5A-1*6-mediated 

global nucleosome loss would render the DNA more accessible, it might nonetheless 

interfere with DNA damage repair directly, as chromatin condensation mechanisms have 

been argued to be as essential as chromatin decondensation mechanisms for DNA 

damage repair (Burgess et al., 2014). In addition, global nucleosome loss has been 

proposed to cause DNA damage and chromosomal aberrations (Celona et al., 2011, Hu 

et al., 2014, O'Sullivan et al., 2010, Oberdoerffer, 2010). This raises the possibility that 

STAT5A-1*6-mediated global nucleosome loss impedes DNA damage repair and, thus, 

contributes to ‘genomic instability’.  

In summary, STAT5A-1*6 activity per se might have induced the acquisition of the 

‘genomic instability’ cancer hallmark during long-term dox induction. Accordingly, 

‘genomic instability’ has been reported for a Ba/F3 cell line in response to JAK2V617F (Plo 

et al., 2008), raising the possibility of an effect mediated by constitutively activated 

endogenous STAT5A/B. Thus, the hypothesized STAT5A-1*6-mediated global 
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nucleosome loss might not only effect ‘driver’ chromatin alterations, but also promote 

‘driver’ DNA alterations. In support of this hypothesis, Katerndahl et al., 2017 recently 

argued that STAT5B-1*6 functioning as survival and growth signal was not underlying its 

oncogenicity, given that another survival and growth signal failed to induce oncogenesis 

in a B-ALL mouse model. Besides, this offers an additional explanation for the 

hypothesized negative selection pressure on STAT5A-1*6 overexpression (4.3), as too 

severe misregulation of the aforementioned dynamics might be adverse to cell survival 

and growth. Expanding the locus- and transcript-specific assays of the present study with 

the genome-wide and transcriptome analyses proposed in 4.1.3.1 might elucidate the 

extent of the hypothesized broadened STAT5A-1*6 DNA binding patterns, STAT5A-1*6-

associated chromatin remodeling and transcriptional misregulation during long-term dox 

induction. The next generation sequencing experiments proposed in 4.2.4 might 

elucidate their relation to DNA damage indicative of ‘genomic instability’.  

4.7 Model of STAT5A-1*6-induced oncogenesis in the Ba/F3-
tet-on-1*6 experimental system 

Based on the findings of the present study, I propose the following model of STAT5A-1*6-

mediated oncogenesis during long-term dox induction of the Ba/F3-tet-on-1*6 cells:  

Upon IL-3 deprivation, STAT5A-1*6 enables IL-3-independent survival deterministically 

by transactivating effectors of cell survival, in particular c-Myc and Pim-1. Broadened 

and sustained STAT5A-1*6 DNA binding and, accordingly, global STAT5A-1*6-mediated 

chromatin remodeling (i.e. nucleosome loss) likely causes transcriptional misregulation, 

constituting ‘driver’ and ‘passenger’ chromatin alterations. This might include the strong 

STAT5A-1*6-mediated Spi2.1 overexpression. In addition, STAT5A-1*6 might mediate 

transcriptional misregulation by cross-activating the PI3K and MAPK pathways (via 

GAB2) and augment oxidative stress (putatively by non-canonical activities in 

mitochondria in addition to transcriptional misregulation). Oxidative stress negatively 

impacts cell viability and might be antagonized by Spi2.1 overexpression. It might also 

induce DNA damage, in particular at linker DNA exposed by global STAT5A-1*6-

mediated chromatin remodeling. The selective pressures favoring increased (i) cell 

viability, (ii) cell proliferation and (iii) mutability per se might lead to the stochastic 

acquisition of corresponding ‘driver’ DNA alterations in single cells. These single cells 

might outgrow and supplant other cells (i.e. clonal evolution) leading to gradual changes 

in cell survival and growth phenotype. At this stage (1–2 weeks of induction), ‘driver’ 

alterations conferring IL-3-independent cell survival and growth depend on STAT5A-1*6 

activity and, accordingly, cells did not survive dox removal. 

STAT5A-1*6 three-fold overexpression (over endogenous STAT5A/B) was under 

negative selection pressure, putatively because of STAT5A-1*6-mediated oxidative 
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stress and/or the dose-dependent transactivation of STAT5A-1*6 inhibitors such as Cis. 

This might have led to a decrease in active STAT5A-1*6 protein levels due to ‘driver’ 

alterations and, in turn, subjected effectors of cell survival and growth to a positive 

selection pressure, in particular c-Myc and Pim-1, given mostly STAT5A-1*6-mediated 

transactivation. This and the aforementioned three selection pressures might have led 

to the accumulation of further ‘driver’ alterations effecting STAT5A-1*6-independent 

c-Myc and Pim-1 transactivation and increased (i) cell viability, (ii) cell proliferation and 

(iii) mutability per se. At this stage (4–5 weeks of induction), cells managed to survive 

dox removal because of accumulated ‘driver’ alterations and/or their increased mutability 

and had acquired the ‘resisting cell death’, ’sustaining proliferative signaling’, ‘genomic 

instability’ and ’evading growth suppressors’ cancer hallmarks (Figure 1). 

4.8 Outlook 

The present study aimed to elucidate effects specific to constitutive STAT5A/B activity 

as opposed to transient STAT5A/B activity – in particular upon sustained DNA binding 

on chromatin – underlying its oncogenicity. For this, I established a cellular experimental 

model system: the stable Ba/F3-tet-on-1*6 cell line. This experimental system was 

shown to mirror in vivo oncogenesis induced by constitutive STAT5A/B activity in the 

acquisition of cancer hallmarks and in the misregulation of oncogenes. It could be 

employed as pre-clinical model for both early and late stages of STAT5A/B-associated 

hematologic cancers in future research. Analogous Ba/F3 cell-based experimental 

systems inducibly expressing STAT5B-1*6 or other gain-of-function STAT5A/B forms 

could allow the investigation of paralog-specific and mutation-specific differences in 

oncogenicity. 

Using the Ba/F3-tet-on-1*6 cell line and other Ba/F3 cell lines, STAT5 DNA binding was 

correlated with nucleosome loss. Several lines of evidence strongly suggest a causal link 

between STAT5 DNA binding and nucleosome loss and raise the possibility of global 

STAT5A/B-mediated chromatin remodeling. The correlative evidence of the present 

study remains be to consolidated by further experiments at a genome-wide level, 

considering that STAT5A/B DNA binding and transcriptional activity can be both a cause 

and a consequence of chromatin alterations. Nonetheless, this possibility offers an 

explanation for STAT5A/B functioning as an anchor for other transcription factors and its 

instructive biological role in cell differentiation, namely enabling DNA access to other 

transcription factors similarly to pioneer factors. Strikingly, nucleosome loss was 

correlated with sustained DNA binding of a constitutively active STAT5A form, proposing 

a new molecular mechanism for ‘driver’ and ‘passenger’ chromatin alterations mediated 

by oncogenic constitutive STAT5A/B activity. The possibility of broadened and sustained 

DNA binding patterns of constitutively active STAT5A and, accordingly, globally 
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misregulated STAT5A-mediated chromatin remodeling likewise remains to be confirmed 

by genome-wide analyses. It proposes novel molecular mechanisms underlying the 

oncogenicity of constitutively active STAT5A/B. Specifically, STAT5A/B-mediated global 

‘driver’ and ‘passenger’ chromatin alterations might promote ‘driver’ and ‘passenger’ 

DNA alterations. 

Ultimately, elucidating such molecular mechanisms might provide novel molecular 

targets for cancer therapy and allow the identification of early-stage molecular markers 

for the early detection and management of cancer. 
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SI units and SI prefixes were abbreviated in the standardized manner. Amino acids and 
nucleotides were abbreviated by their standardized three- and/or one-letter codes. 

Å   Ångström (= 100 pm) 
ATP   adenosine triphosphate 
B-ALL   B cell acute lymphoblastic leukemia 
βc   common β chain (of interleukin 3 receptor family) 
BET   bromodomain and extra-terminal domain protein 
bp   base pairs (of DNA/RNA) [used with SI prefixes] 
Brd2   bromodomain and extra-terminal domain (BET) protein Brd2 
BRG1   brahma-related gene-1 protein 
BSA   bovine serum albumin 
CA#   catalogue number 
C/EBPβ  CCAAT/enhancer-binding protein β 
ChIP   chromatin immunoprecipitation 
 ChIP-seq ChIP followed by high-throughput sequencing 
CIS   cytokine-inducible SH2(Src Homology 2)-containing protein 
c-MYC   cellular avian myelocytomatosis viral oncogene protein 
C-terminus  COOH-terminus / carboxyl-terminus 
Ct-value  threshold cycle value 
DAPI   4′,6-diamidino-2-phenylindole dihydrochloride 
DMSO   dimethyl sulfoxide 
DNA   deoxyribonucleic acid 
 cDNA  complementary DNA 
 dsDNA  double-stranded DNA 
 gDNA  genomic DNA 
dox   doxycycline 
DPF3   double plant homeodomain(PHD) fingers 3 protein 
dUTP   deoxyuridine triphosphate 
E. coli   Escherichia coli 
e.g.   exempli gratia (for example) 
EMSA   electronic mobility shift assay 
et al.   et alii (and others) 
Ezh2   enhancer of zeste homolog 2 protein 
Fc   crystallisable fragment 
FCS   fetal calf serum 
FSC   forward scatter 
G1 phase  gab 1 phase 
G2 phase  gab 2 phase 
GAB2   GRB2(growth factor receptor-bound protein 2)-associated binding protein 2 
GAS   interferon γ-activated sequence 
GFP   green fluorescent protein 
GR   glucocorticoid receptor 
HAT   histone acetyltransferase 
HDAC   histone deacetylase 
HMGN   high-mobility group nucleosome-binding chromosomal protein 
HRP   horseradish peroxidase 
i.e.   id est (this means) 
IgG   immunoglobulin G  
IL-3   interleukin 3 
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 IL-3R  IL-3 receptor 
JAK   Janus kinase 
λ   wavelength 
LSD1   lysine-specific demethylase 1 
M phase  mitosis phase 
MAPK   mitogene-activated protein kinase 
NCoR2  nuclear receptor co-repressor 2 
NFR   nucleosome-free region 
N-terminus  NH2-terminus / amino-terminus 
ORF   open reading frame 
p.   page 
PAGE   polyacrylamide gel electrophoresis 
PBS   phosphate-buffered saline 
 PBST  PBS with Tween20 
PCR   polymerase chain reaction 
 qPCR  quantitative PCR 
 RT-qPCR reverse transcription quantitative PCR 
PI3K   phosphatidylinositol-4,5-bisphosphate 3-kinase 
PIAS   protein inhibitor of activated STAT 
PIC   pre-initiation complex 
PIPES   piperazine-N,N′-bis(2-ethanesulfonic acid) 
PMSF   phenylmethylsulfonyl fluoride 
PTP   protein tyrosine phosphatase 
PVDF   polyvinylidene difluoride 
RNA   ribonucleic acid 
 pre-mRNA precursor messenger RNA 

mRNA  messenger RNA 
RNA-Seq RNA high-throughput sequencing 

rtTA Advanced  reverse tetracycline-controlled transactivator protein Advanced 
S phase  DNA synthesis and replication phase 
SDS   sodium dodecyl sulfate 
SSC   sideward scatter 
SH2   Src Homology 2 
SHP-1   Src Homology 2(SH2) domain-containing phosphatase 1 
SMRT  silencing mediator for retinoic acid receptor and thyroid hormone receptor 
SOCS   suppressor of cytokine signaling 
STAT   signal transducer and activator of transcription 
SUMO   small ubiquitin-like modifier 
SWI/SNF  switching defective/sucrose non-fermenting 
wt   wild-type 
TAD   transactivation domain 
Taq   Thermus aquaticus 
TBST   Tris-buffered saline with Tween20 
TE   Tris-EDTA(ethylenediaminetetraacetic acid) 
Tet2   ten-eleven translocation 1 protein 2 
Tet-on Advanced Tetracycline-on Advanced 
TRE   tetracycline responsive element 
TSA   trichostatin A 
TSS   transcription start site 
TTS   transcription termination site 
U   unit 
UV   ultraviolet  
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