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Although the complex Langevin method can solve the sign problem in simulations of theories with
complex actions, the method will yield the wrong results if known validity conditions are not satisfied. We
present a novel method to compute observables for a target ensemble by reweighting complex trajectories
generated with the complex Langevin method for an auxiliary ensemble having itself a complex action.
While it is imperative that the validity conditions be satisfied for the auxiliary ensemble, there are no
such requirements for the target ensemble. This allows us to enlarge the applicability range of the
complex Langevin method. We illustrate this at the hand of a one-dimensional partition function and
two-dimensional strong-coupling QCD.
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I. INTRODUCTION

Lattice simulations of quantum chromodynamics (QCD)
at nonzero chemical potential are especially challenging as
the complex fermion determinant rules out the use of
importance sampling methods. Current solutions to circum-
vent this sign problem have a computational cost which
grows exponentially with the volume and are restricted to
regions of parameter space which do not encompass the
phenomenologically interesting phase transition [1]. An
alternative solution method that has attracted a lot of
attention recently is the complex Langevin (CL) method
[2,3], which uses stochastic differential equations for
complexified degrees of freedom to sample the partition
function and compute expectation values. The hope that
this method may be used to investigate the QCD phase
transition has recently been dented by investigations in
heavy-dense [4] and full QCD [1], which seem to indicate
that the method has problems in the critical region. This
concern has been amplified by recent results in low-
dimensional strong-coupling QCD [5], where the method
was shown to converge to incorrect results for small
masses. It is now understood that the CL method only
produces correct results if some definite validity conditions
are satisfied [6–8], and failure to do this is exactly what
goes wrong for certain parameter regions of the theories
being investigated.
In this paper, we introduce the reweighted complex

Langevin (RCL) method which combines CL and
reweighting to reach regions of parameter space which
can otherwise not be reached by the CL method. The
principle is simple: we generate a CL trajectory for an
auxiliary ensemble with parameter values for which the CL
validity conditions are satisfied and then reweight this
trajectory of complexified configurations to the target
parameter values. One of the upshots of the method is

that the validity conditions do not have to be satisfied in the
target ensemble.
In contrast to standard reweighting methods, the

auxiliary ensemble in this hybrid procedure is taken at
parameter values where the action is complex such that it
could be closer to the target ensemble, hence making the
reweighting more efficient.
The RCL method is generally applicable to theories with

complex actions and has now already been tested success-
fully on a one-dimensional partition function with a strong
sign problem [7,9], random matrix models of QCD [10–12]
and QCD in 0þ 1 and 1þ 1 dimensions [5,13].
In Sec. II, we give a brief introduction of the complex

Langevin method and its validity conditions. In Sec. III, we
introduce the reweighted complex Langevin method, which
is the main theme of this paper. In Sec. IV, we briefly
illustrate the method with results for a one-dimensional
partition function and for two-dimensional QCD. Finally,
we conclude in Sec. V.

II. COMPLEX LANGEVIN METHOD

Consider a partition function,

Z ¼
Z

dx e−SðxÞ; ð1Þ

with multidimensional real degrees of freedom x and a
complex action SðxÞ, which leads to the sign problem.
A Langevin equation based on the complex action is

driven by a complex force, which naturally takes the
real variables into the complex plane. Therefore, we
introduce complexified variables z ¼ xþ iy, satisfying
the CL equation,

_zðtÞ ¼ −
∂S
∂z þ ηðtÞ; ð2Þ*jacques.bloch@ur.de
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with independent multidimensional Gaussian noise η,
which is chosen to be real to get better convergence,
satisfying

hηðtÞi ¼ 0; hηðtÞηðt0Þi ¼ 2δðt − t0Þ: ð3Þ

In practice, the stochastic differential equations need to
be discretized, which in the stochastic Euler scheme yields

zðtþ 1Þ ¼ zðtÞ þ ϵK þ ffiffiffi
ϵ

p
η; ð4Þ

with drift term K ¼ −∂S=∂z and discretized Langevin step
size ϵ.
When applying the complex Langevin method, it is

essential that the expectation values computed along the
complex trajectory agree with the original expectation
values in the partition function with complex action, i.e.,

hOi≡
Z

dx ρðxÞOðxÞ ¼
Z

dxdyPðzÞOðzÞ; ð5Þ

where ρðxÞ ¼ e−SðxÞ=Z is the complex weight in the
original real variables and PðzÞ is the real probability in
the complex variables z ¼ xþ iy along the complex
Langevin trajectory.
Proving the equivalence (5) has been the object of

thorough study in recent years [6,7], and it is now known
to hold if the following validity conditions are satisfied:

(i) The probability PðzÞ decays sufficiently rapidly in
the imaginary direction of the complexified varia-
bles to avoid the excursion problem;

(ii) The probability density PðzÞ is suppressed close to
singularities of the drift and of the observable.

Recently, it was shown that these conditions can be
replaced by the single condition that the probability
distribution of the drift term should be suppressed, at least
exponentially, at large magnitude [7].
These validity conditions are not always satisfied as was

verified for various models and physical systems, in which
case the CL method will fail or its expectation values will
be incorrect [5,7–10,14].
The RCL method proposed below uses reweighting to

extend the applicability of the CL method to parameter
regions for which the CL validity conditions are not
satisfied.

III. REWEIGHTING THE COMPLEX
LANGEVIN TRAJECTORIES

The basic principle of the reweighted complex Langevin
method (RCL) is to compute observables for a target
ensemble by reweighting the complex CL trajectories
generated for an auxiliary ensemble. For this, it is imper-
ative that the CL validity conditions are satisfied for the
auxiliary ensemble, but it is interesting to note that they
may be violated in the target ensemble.

We first introduce the standard reweighting method to
compute the expectation value of an observable O in a
target ensemble characterized by the parameters ξ,

hOiξ ¼
R
dxwðx; ξÞOðx; ξÞR

dxwðx; ξÞ ; ð6Þ

with weights wðx; ξÞ ¼ e−Sðx;ξÞ and action Sðx; ξÞ. To
compute this expectation value via reweighting, we also
consider an auxiliary ensemble with parameter values ξ0
and rewrite Eq. (6) in a completely equivalent form:

hOiξ ¼
R
dxwðx; ξ0Þ

h
Oðx; ξÞ wðx;ξÞ

wðx;ξ0Þ
i

R
dxwðx; ξ0Þ

h
wðx;ξÞ
wðx;ξ0Þ

i ¼

D
Oξ

wξ

wξ0

E
ξ0D

wξ

wξ0

E
ξ0

: ð7Þ

This reweighting equation gives a mathematically exact
relation between expectation values in the target ensemble
and in an auxiliary ensemble and holds independently of
the actions being real or complex.
In standard practice, the auxiliary ensemble is chosen

with real and positive weights so that it can be sampled with
importance sampling Monte Carlo methods and the target
observables can be estimated as a ratio of sample means
according to Eq. (7). The target ensemble can have either a
real or complex action. An example of real action reweight-
ing is mass reweighting in QCD. However, the more
relevant case here is when the target ensemble has complex
weights and can itself not be sampled with importance
sampling methods, as is the case in QCD at nonzero
chemical potential. Reweighting is then one possible
way to circumvent the sign problem.
The peculiarity of the new RCL method is that we drop

the requirement for the auxiliary weights to be real and
positive and allow these to be complex; i.e., we reweight
from one ensemble with complex action to another one with
complex action. Although Eq. (7) remains formally correct,
this makes a crucial difference from the algorithmic point
of view as we can no longer use importance sampling
methods to sample relevant configurations in the auxiliary
ensemble. Instead, we aim to use the CL method to
generate an auxiliary trajectory, i.e., a trajectory in the
auxiliary ensemble, along which expectation values in that
ensemble can be estimated. For these estimates to be
correct, the auxiliary ensemble has to be chosen such that
the CL conditions of Sec. II are satisfied. If we then
consider such an auxiliary CL trajectory, the expectation
value of any observable O in this ensemble can be
computed, according to the CL equivalence (5), as

hOiξ0 ¼
Z

dxdyPðz; ξ0ÞOðzÞ; ð8Þ

where Pðz; ξ0Þ is the real probability in the complex
variable along the auxiliary CL trajectory.
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The leap in the RCL method is that we apply the CL
formula (8) to both the numerator and denominator of the
reweighting equation (7), hereby specifying the observable
O of Eq. (8) to the expressions in square brackets in Eq. (7).
This eventually leads to the RCL equation:

hOiξ ¼
R
dxdyPðz; ξ0Þ

h
Oðz; ξÞ wðz;ξÞ

wðz;ξ0Þ
i

R
dxdyPðz; ξ0Þ

h
wðz;ξÞ
wðz;ξ0Þ

i : ð9Þ

Note that, compared to Eq. (7), the expressions in square
brackets are now to be evaluated in the complex variable
along the auxiliary CL trajectory. In applying Eq. (8) to the
reweighting equation, an interesting difference between the
RCL method and the standard reweighting procedure
arises: in the latter, the auxiliary ensemble is sampled
according to wðx; ξ0Þ and this same factor also occurs in the
denominator of the effective observables, whereas in
Eq. (9) for RCL the ensemble is sampled according to
the real probability Pðz; ξ0Þ, but the effective observables
contain the complex weights wðz; ξ0Þ.
An important observation is that, even if the CL validity

conditions are not satisfied for the target ensemble, the
RCL equation (9) will still yield the correct result as it only
uses expectation values in the auxiliary ensemble where the
validity conditions are assumed to be satisfied.
In practice, the auxiliary CL trajectory is discretized

using Eq. (4), and Eq. (9) is estimated by the ratio of sample
means:

hOiξ ≈
1
N

P
N
j¼1Oðzj; ξÞ wðzj;ξÞ

wðzj;ξ0Þ
1
N

P
N
j¼1

wðzj;ξÞ
wðzj;ξ0Þ

: ð10Þ

Although Eq. (7) is mathematically exact, its practical
use is subject to caution. When the auxiliary and target
ensembles are not close enough, the accuracy of the method
in numerical simulations is plagued by the overlap and sign
problems. The overlap problem already occurs when the
weights in both ensembles are positive, while the sign
problem occurs additionally when the target weights are
complex and large cancellations occur in the integrals.
A possible asset of the RCL procedure is that it may

allow us to reweight from an auxiliary ensemble that is
closer to the target ensemble than in standard reweighting,
where the auxiliary ensemble needs to have real and
positive weights.

IV. RESULTS

Below we briefly illustrate the RCL method in two
examples: a one-dimensional partition function and two-
dimensional strong-coupling QCD.

Consider the one-dimensional partition function [9],

Z ¼
Z þ∞

−∞
dx ðxþ iαÞ4e−x2=2; ð11Þ

for which hx2i was shown to converge to a wrong solution
for a large parameter range using the CL method, as the
trajectories cover the singularity of the drift. In Fig. 1, we
compare the CL and RCL results for hx2i with the known
analytical results. The CL results are wrong when α≲ 3.4;
however the RCL, using an auxiliary trajectory generated at
α0 ¼ 5.0, is able to reproduce the correct results over a very
large α range, even across the discontinuity jumps in the
observable.
As a second illustration, we show results for two-

dimensional strong-coupling QCD close to the chiral limit.
Specific implementation details are given in Ref. [13]. The
partition function depends on the chemical potential μ and
the quark mass m. The sign problem is triggered by the
chemical potential: for zero μ, the action is real and there is
no sign problem; as μ is increased the action becomes
complex and for a certain range of the parameters,
especially for small masses, the sign problem can be very
strong. Moreover, the sign problem grows exponentially
with the lattice volume. Although CL can, in principle, be
used to avoid the sign problem, it was shown in Ref. [5] that
for small masses the CL trajectories cover the singularity of
the drift such that the CL validity conditions are violated
and the CL results are wrong.
The failure of the CL method is illustrated in Fig. 2,

where the quark number density is plotted as a function of
the chemical potential for a small mass, m ¼ 0.01, on a
6 × 6 lattice. As a benchmark, we use phase-quenched
reweighting (PQR) results computed with 2M configura-
tions per μ value. The CL results clearly disagree with the
PQR benchmarks over the complete μ range. The CL
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FIG. 1. Results for hx2i as a function of α for the one-
dimensional partition function (11). Comparison of CL (blue),
RCL (red) and analytical (solid) results.
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results are, in fact, very similar to those of the phase-
quenched theory, as was also observed for a random matrix
model for QCD [12].
How should we proceed with the RCL simulations? The

PQR simulations are expected to encounter problems for
mπ=2 < μ < mN=3, where the phase-quenched theory is in
a pion-condensed phase at low temperature. The aim is to
set up the RCL simulations so that the physics of the
auxiliary ensemble represents as closely as possible that of
the target ensemble. In Ref. [13], the RCL for two-
dimensional QCD was performed using an auxiliary CL
trajectory at high μ, far above the phase transition.
However, at that μ value, QCD is already in the chirally
restored phase and performing RCL from that trajectory
may not efficiently capture the phase transition. A better
choice may be to perform RCL from a μ-value below the
phase transition. However, Fig. 2 shows that there is no
valid CL in the low μ-range. Therefore we chose a slightly
different strategy and reweight in both the mass and the
chemical potential. The auxiliary trajectory is taken from a
CL simulation at a somewhat larger mass,m0 ¼ 0.1, and at
μ0 ¼ 0.15, which is below the phase transition. This
auxiliary point is in the validity region of CL, as was
shown in Ref. [13], and can be used to perform RCL. We
thus reweight from an auxiliary ensemble at m0 ¼ 0.1,

μ0 ¼ 0.15 to target ensembles withm ¼ 0.01 and a μ range
from 0 to 0.6.
In practice, we generate a single auxiliary trajectory with

10M configurations and reweight to the 60 target parameter
values using one out of every five stored configurations to
reduce autocorrelations,1 such that 2M configurations are
effectively used in the RCL runs, just as for PQR. A
comparison of the RCL and PQR results for the quark
number density is shown in Fig. 2. The RCL results are in
complete agreement with the PQR benchmarks over the
entire μ range. Moreover, as can be seen in the bottom plot,
the errors of RCL are almost a factor of 2 smaller than those
of PQR in the phase transition region, such that the PQR
simulations would require 4 times more CPU time to reach
the same level of accuracy. The time needed to generate the
auxiliary trajectory in RCL is easily amortized when
computing many target values, as was the case in our
run. Note that the RCL data for the various target values
are correlated as they originate from a single auxiliary
trajectory.
From these results, it seems that indeed the “wrong-

phase” problem of PQR can be improved upon by RCL,
even though this was only shown in a first preliminary
analysis. Moreover, it is always useful and even necessary
to have independent methods to investigate problems that
are far from trivial, as is the case for the sign problem, so
that RCL could be a welcome alternative to verify results
obtained with PQR.
In both examples, RCL is able to reproduce the correct

results, even when CL fails for the target ensemble. In
separate publications, we present more detailed RCL
results obtained for a random matrix model of QCD
[12] and for two-dimensional QCD [13].

V. CONCLUSIONS

Previous studies have shown that the complex Langevin
method can solve the sign problem occurring in simulations
of theories with a complex action; however, caution should
be exercised as this requires the CL validity conditions to
be satisfied. It turns out that these conditions are often only
satisfied for some range of parameters, while they are
violated for other parameter values, in which case the CL
gives the wrong results. Here we have introduced the
reweighted complex Langevin (RCL) method, which com-
bines the CL method with a reweighting of the complex
trajectories to enlarge the applicability range of the method.
As a proof of principle, we presented first results of the
method on a one-dimensional partition function and on
two-dimensional strong-coupling QCD and verified that
the RCL procedure indeed yields the correct results, even
when CL itself does not work for the target ensemble.
Moreover, we showed that the RCL method can compete
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FIG. 2. Comparison of RCL and PQR: Quark number density
(top) and statistical error (bottom) in two-dimensional QCD as a
function of μ for β ¼ 0 andm ¼ 0.01 on a 6 × 6 lattice. The PQR
data were computed using Markov chains with 2M configura-
tions; the RCL results using 2M configurations evenly distributed
along the auxiliary trajectory at μ0 ¼ 0.15 and m0 ¼ 0.1 con-
taining 10M configurations. For comparison, we also show the
wrong CL results.

1The remaining autocorrelations are taken care of during the
statistical analysis of the RCL measurements.
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with, or even beat, the PQR method if the auxiliary
trajectory is chosen in a knowledgeable way. In the case
of two-dimensional QCD, this was done by reweighting
both in the mass and in the chemical potential, such that
reweighting from below the phase transition was possible.
Although we focused here on cases where CL does not

satisfy the validity conditions for the target ensemble, the
RCL method can also be applied in cases where CL works
fine in the target ensemble with the aim to reuse already
existing trajectories obtained at different parameter values
and hence gain simulation time. The fact that target and
auxiliary ensembles can be chosen close to one another
should form a clear advantage over other reweighting
methods.
Another possible avenue is to use RCL to interpolate

instead of extrapolate in the reweighting parameter, for
example the chemical potential in QCD, as we could
combine results obtained from auxiliary ensembles at

parameter values above and below the target value. This
again could improve the quality of the RCL estimates
compared to standard reweighting.
Even so, it is to be expected that the overlap and sign

problems will deteriorate the efficiency of RCL, as for any
reweighting method, once the auxiliary and target ensem-
bles are too distant. The efficiency of the method and the
optimization of reweighting strategies will be studied in
more detail in forthcoming work.
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