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We calculated the QCD equation of state using Taylor expansions that include contributions from
up to sixth order in the baryon, strangeness and electric charge chemical potentials. Calculations have
been performed with the Highly Improved Staggered Quark action in the temperature range T ∈
½135 MeV; 330 MeV� using up to four different sets of lattice cutoffs corresponding to lattices of size
N3

σ × Nτ with aspect ratio Nσ=Nτ ¼ 4 and Nτ ¼ 6�16. The strange quark mass is tuned to its physical
value, and we use two strange to light quark mass ratiosms=ml ¼ 20 and 27, which in the continuum limit
correspond to a pion mass of about 160 and 140 MeV, respectively. Sixth-order results for Taylor expansion
coefficients are used to estimate truncation errors of the fourth-order expansion. We show that truncation
errors are small for baryon chemical potentials less then twice the temperature (μB ≤ 2T). The fourth-order
equation of state thus is suitable for the modeling of dense matter created in heavy ion collisions with
center-of-mass energies down to

ffiffiffiffiffiffiffiffi
sNN

p ∼ 12 GeV. We provide a parametrization of basic thermodynamic
quantities that can be readily used in hydrodynamic simulation codes. The results on up to sixth-order
expansion coefficients of bulk thermodynamics are used for the calculation of lines of constant pressure,
energy and entropy densities in the T-μB plane and are compared with the crossover line for the QCD chiral
transition as well as with experimental results on freeze-out parameters in heavy ion collisions. These
coefficients also provide estimates for the location of a possible critical point. We argue that results on
sixth-order expansion coefficients disfavor the existence of a critical point in the QCD phase diagram for
μB=T ≤ 2 and T=TcðμB ¼ 0Þ > 0.9.

DOI: 10.1103/PhysRevD.95.054504

I. INTRODUCTION

The temperature and density dependence of bulk thermo-
dynamic quantities, commonly summarized as the equation
of state (EoS), provide the most basic characterization of
equilibrium properties of strong-interaction matter. Its
analysis within the framework of lattice regularized
Quantum Chromodynamics (QCD) has been refined ever
since the early calculations performed in pure SUðNÞ
gauge theories [1]. Quite recently, the continuum extrapo-
lated results for the EoS of QCD with physical light and
strange quark masses have been calculated [2,3]. Bulk
thermodynamic observables such as pressure (P), energy
density (ϵ) and entropy density (s) as well as second-order
quantities such as the specific heat (CV) and velocity of

sound (cs) have now been obtained at vanishing chemical
potentials for the three quark flavors ðμu; μd; μsÞ. In
accordance with the analysis of the chiral transition temper-
ature, Tc ≃ ð154� 9Þ MeV [4], bulk thermodynamic
observables change smoothly in the transition region. At
low temperature they are found to be in quite good
agreement with hadron resonance gas (HRG) model
calculations, although some systematic deviations have
been observed, which may be attributed to the existence
of additional resonances which are not taken into account in
HRG model calculations based on well established reso-
nances listed in the particle data tables [5,6].
The EoS at vanishing chemical potentials does already

provide important input into the modeling of the hydro-
dynamic evolution of hot and dense matter created in heavy
ion collisions. While this is appropriate for the thermal
conditions met in these collisions at the LHC and the
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highest RHIC beam energies, knowledge of the EoS at
nonvanishing baryon (μB), strangeness (μS) and electric
charge (μQ) chemical potentials is indispensable for the
hydrodynamic modeling of the conditions met in the beam
energy scan (BES) at RHIC. Due to the well-known sign
problem for lattice QCD formulations at nonzero chemical
potential, a direct calculation of the EoS at nonzero
ðμB; μQ; μSÞ is unfortunately not yet possible. At least for
small values of the chemical potentials this can be circum-
vented by using a Taylor expansion of the thermodynamic
potential [7,8]. In this way some results for EoS at nonzero
baryon chemical potential have been obtained on coarse
lattices [8–10]. These calculations have even been extended
to sixth order in the baryon chemical potential [11,12]. First
continuum extrapolated results for the EoS using second-
order Taylor expansion coefficients have been obtained
within the stout discretization scheme for staggered fer-
mions [13], and simulations at imaginary chemical potential
have been used to arrive at a sixth-order result for the QCD
EoS [14] and up to eighth order for some generalized
susceptibilities [15] through analytic continuation.
Results for higher-order expansion coefficients are

clearly needed if one wants to cover the range of chemical
potentials, 0 ≤ μB=T ≲ 3 that is expected to be exploredwith
the BES at RHIC by varying the beam energies in the
range 7.7 GeV ≤ ffiffiffiffiffiffiffiffi

sNN
p ≤ 200 GeV. Of course, the Taylor

expansions will break down, should the elusive critical point
in the QCD phase diagram [16,17] turn out to be present
in this range of baryon chemical potentials. The convergence
of the series thus needs to be monitored carefully.
This paper is organized as follows. In the next section we

briefly discuss Taylor series for a HRGmodel in Boltzmann
approximation. This helps to argue for the significance of
sixth-order Taylor expansions. In Sec. III we present the
basic framework of Taylor series expansions, introduce
expansions in the presence of global constraints and discuss
some details of our calculations and the ensembles used. In
Sec. IVwe discuss the sixth-order Taylor expansion of QCD
thermodynamics in the simplified case of vanishing strange-
ness and electric charge chemical potentials. Section V is
devoted to the corresponding discussion of strangeness
neutral systems nS ¼ 0 with fixed net electric charge (nQ)
to net baryon-number (nB) ratio,which is of relevance for the
description of hot and dense matter formed in heavy ion
collisions where typically nQ=nB ≃ 0.4. We discuss the
relevance of a nonvanishing electric charge chemical poten-
tial by considering electric charge neutral (nQ=nB ¼ 0) as
well as isospin symmetric (nQ=nB ¼ 1=2) systems. At the
end of this section we present a parametrization of
the equation of state that can easily be used as input for
the modeling of the thermal conditions met in heavy ion
collisions. In Sec. VI we present results on lines of constant
pressure, energy density and entropy density and compare
their dependence on μB with empirical results for the
freeze-out conditions observed in heavy ion collisions.

We comment on the radius of convergence of the Taylor
series for the pressure and resulting constraints for the
location of a possible critical point in Sec. VII. Finally, we
present our conclusions in Sec. VIII. Details on (A) the
statistics and simulation parameters, (B) explicit expressions
for the expansions of electric charge and baryon number
chemical potentials, and (C) explicit expressions for the
expansion parameters of the lines of constant physics are
given in the three Appendices A–C.

II. TAYLOR EXPANSIONS AND THE LOW AND
HIGH TEMPERATURE LIMITS OF STRONG

INTERACTION MATTER

The main aim of this work is to supply an EoS of strong-
interaction matter using up to sixth-order Taylor expansions
for bulk thermodynamic observables. As we see later,
present results on sixth-order expansion coefficients in
the Taylor series mainly help to constrain truncation errors
in the fourth-order expansion rather than providing accurate
results on the sixth-order contribution to thermodynamic
quantities. We argue that our analysis provides reliable
results for the EoS for baryon chemical potentials up to
μB=T ≃ 2 at temperatures below T ≃ 160 MeV and for an
even larger range in μB=T at higher temperatures.
Before turning to a discussion of lattice QCD results on

the EoS, it may be useful to analyze truncation effects in the
hadron resonance gas (HRG) model, which seems to
provide a good approximation for thermodynamics in
the low temperature, hadronic regime. For simplicity, let
us consider the case of vanishing electric charge and
strangeness chemical potentials, μQ ¼ μS ¼ 0. At temper-
atures close to the transition temperature Tc ≃ 154 MeV
and for baryon chemical potentials less than a few times the
transition temperature, the baryon sector of a HRG is well
described in the Boltzmann approximation. In a HRG
model calculation based on noninteracting hadrons, the
pressure may then be written as

PðT; μBÞ ¼ PMðTÞ þ PBðT; μ̂BÞ
¼ PMðTÞ þ PBðT; 0Þ þ PBðT; 0Þðcoshðμ̂BÞ − 1Þ;

ð1Þ
where we introduced the notation μ̂B ≡ μB=T and PMðTÞ
(PBðT; μ̂BÞ) denotes the meson (baryon) contributions to
the pressure. A similar relation holds for the energy density,

ϵðT; μBÞ ¼ ϵMðTÞ þ ϵBðT; μ̂BÞ
¼ ϵMðTÞ þ ϵBðT; 0Þ þ ϵBðT; 0Þðcoshðμ̂BÞ − 1Þ;

ð2Þ
with ϵM=B ≡ T2ð∂ðPM=B=TÞ=∂TÞμ̂B . The μB-dependent
contribution thus is simple and can easily be represented
by a Taylor series. Truncating this expansion at ð2nÞth
order we obtain
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ðΔðP=T4ÞÞ2n ≡ ðPBðT; μBÞ − PBðT; 0ÞÞ2n
T4

¼
Xn
k¼1

χB;HRG
2k ðTÞ
ð2kÞ! μ̂2kB

≃ PBðT; 0Þ
T4

Xn
k¼1

1

ð2kÞ! μ̂
2k
B ; ð3Þ

where in the last equality we made use of the fact that in
HRG models constructed from noninteracting, pointlike
hadrons, all expansion coefficients are identical when using
a Boltzmann approximation for the baryon sector; i.e.
all baryon number susceptibilities are identical, χB;HRG

2k ¼
PBðT; 0Þ. The ratios of these susceptibilities are unity,
χB;HRG
2k =χB;HRG

2ðk−1Þ ¼ χB;HRG
2k =χB;HRG

2 ¼ 1. Similarly one finds

for the net baryon-number density,

nB
T3

¼ PBðT; 0Þ
T4

sinh μ̂B ¼
X∞
k¼1

χB;HRG
2k ðTÞ
ð2k − 1Þ! μ̂

2k−1
B

≃ PBðT; 0Þ
T4

X∞
k¼1

1

ð2k − 1Þ! μ̂
2k−1
B : ð4Þ

Higher-order corrections are thus more important in the
net baryon-number density than in the expansions of
the pressure or energy density. For instance, the contribu-
tion to μBnB=T4 at Oðμ̂2kB Þ is a factor 2k larger than the
corresponding Oðμ̂2kB Þ expansion coefficient of the
pressure.
In Fig. 1 we show results from a Taylor series expansion

of the μB-dependent part of the pressure in a HRG model
truncated after leading order (LO), next-to-leading
order (NLO) and next-to-next-to-leading (NNLO) order.
These truncated expansions are compared to the exact

result; i.e. ðΔPÞ∞ðTÞ ¼ PBðTÞðcoshðμ̂BÞ − 1Þ. The inser-
tion shows the deviation of the nth order truncated Taylor
series (ðΔPÞnðTÞ) from the exact result (ðΔPÞ∞ðTÞ). As
can be seen already, the fourth-order Taylor series provides
a good approximation for the pressure (and energy as well
as entropy density) of a HRG for all μB ≤ 2T. At μB ¼ 2T,
the fourth-order Taylor series for the μB-dependent con-
tribution to the pressure deviates by less than 5% from
the exact result. These deviations are, of course, even
smaller in the total pressure which in the temperature range
of interest is dominated by the meson contribution. Even at
T ¼ 170 MeV, which certainly is already above the range
of applicability of HRG models, the baryonic contribution
to the pressure (energy density) amounts only to about 20%
(30%). A 5% truncation error in the μB-dependent con-
tribution to the pressure or energy density thus amounts to
less than a 2% effect in the total pressure or energy density.
Similar estimates hold for the more general case of non-
vanishing μQ and μS.
Of course, the good convergence properties of the Taylor

series for the pressure in HRG models also reflect that the
radius of convergence of this series is infinite. If there exists
a critical point in the QCD phase diagram, one cannot
expect to find that the Taylor series is that well behaved.
Still the HRG result provides a benchmark also for the
QCD case. If the radius of convergence of the Taylor series
for the QCD pressure is finite and, in particular, smaller
than μB ≃ 3T, one should find large deviations in the
generalized susceptibilities from the corresponding HRG
results. Ratios of susceptibilities have to grow asymptoti-
cally like χB;QCD

2k =χB;QCD
2ðk−1Þ ∼ k2 in order to yield a finite

radius of convergence for a Taylor expansion. We come
back to a discussion of this asymptotic behavior after
having discussed our sixth-order calculation of Taylor
expansion coefficients.
Let us briefly mention also the high temperature limit. At

large values of the temperature, the pressure approaches
that of a massless ideal gas of quarks and gluons. In this
limit the pressure is just a second order polynomial in μ̂2f,

Pideal

T4
¼ 8π2

45
þ

X
f¼u;d;s

�
7π2

60
þ 1

2

�
μf
T

�
2

þ 1

4π2

�
μf
T

�
4
�
; ð5Þ

In this limit a fourth-order Taylor expansion thus provides
the exact results for the basic bulk thermodynamic observ-
ables. This also is correct in leading order perturbation
theory, i.e. at Oðg2Þ [18].

III. OUTLINE OF THE CALCULATION

A. Taylor series in baryon number, electric charge
and strangeness chemical potentials

Our goal is the calculation of Taylor expansion coef-
ficients for basic bulk thermodynamic observables of
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FIG. 1. The nth order Taylor series, ðΔPÞn for ðΔPÞ∞ ¼
PBðT; 0ÞðcoshðxÞ − 1Þ compared to the exact result. The inser-
tion shows the relative error due to truncation of the Taylor series
after nth order. Note that the sixth-order result is hardly visible
behind the exact result.
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strong-interaction matter in terms of chemical potentials μX
for conserved charges (X ¼ B;Q; SÞ. We start with the
expansion of the pressure, P, in terms of the dimensionless
ratios μ̂X ≡ μX=T, which are the logarithms of fugacities,

P
T4

¼ 1

VT3
lnZðT; V; μ̂u; μ̂d; μ̂sÞ

¼
X∞
i;j;k¼0

χBQS
ijk

i!j!k!
μ̂iBμ̂

j
Qμ̂

k
S; ð6Þ

with χBQS
000 ≡ PðT; 0Þ=T4. The chemical potentials for con-

served charges are related to the quark chemical potentials
ðμu; μd; μsÞ,

μu ¼
1

3
μB þ 2

3
μQ;

μd ¼
1

3
μB −

1

3
μQ;

μs ¼
1

3
μB −

1

3
μQ − μS: ð7Þ

The expansion coefficients χBQS
ijk , i.e. the so-called gener-

alized susceptibilities, can be calculated at vanishing
chemical potential,1

χBQS
ijk ≡ χBQS

ijk ðTÞ ¼ ∂PðT; μ̂Þ=T4

∂μ̂iB∂μ̂jQ∂μ̂kS

����
μ̂¼0

: ð8Þ

From Eq. (6) it is straightforward to obtain the Taylor series
for the number densities,

nX
T3

¼ ∂P=T4

∂μ̂X ; X ¼ B;Q; S: ð9Þ

This only requires knowledge of the expansion coefficients
entering the series for P=T4. The energy (ϵ) and entropy (s)
densities, on the other hand, also require derivatives of the
generalized susceptibilities with respect to temperature,
which are the expansion coefficients of the trace anomaly,

ΔðT; μ̂B; μ̂Q; μ̂SÞ≡ ϵ − 3P
T4

¼ T
∂P=T4

∂T
¼

X∞
i;j;k¼0

ΞBQS
ijk

i!j!k!
μ̂iBμ̂

j
Qμ̂

k
S; ð10Þ

with iþ jþ k even and

ΞBQS
ijk ðTÞ ¼ T

dχBQS
ijk ðTÞ
dT

: ð11Þ

With this one finds for the Taylor expansions of the energy
and entropy densities,

ϵ

T4
¼

X∞
i;j;k¼0

ΞBQS
ijk þ 3χBQS

ijk

i!j!k!
μ̂iBμ̂

j
Qμ̂

k
S; ð12Þ

s
T3

¼ ϵþ p − μBnB − μQnQ − μSnS
T4

¼
X∞
i;j;k¼0

ΞBQS
ijk þ ð4 − i − j − kÞχBQS

ijk

i!j!k!
μ̂iBμ̂

j
Qμ̂

k
S: ð13Þ

B. Constrained series expansions

In our calculations we generated all generalized suscep-
tibilities up to sixth order, which are needed to set up the
general Taylor series in terms of the three conserved charge
chemical potentials as discussed in the previous subsection.
In the followingwe, however, consider only thermodynamic
systems, in which the electric charge and strangeness
chemical potentials are fixed by additional constraints
and become functions of the baryon chemical potential
and temperature. We only consider constraints that can be
fulfilled order by order in the Taylor series expansion. That
is, for the construction of the sixth-order Taylor series of the
pressure in terms of μ̂B we need to know the expansion of
μ̂QðT; μBÞ and μ̂SðT; μBÞ up to fifth order in μ̂B,

μ̂QðT; μBÞ ¼ q1ðTÞμ̂B þ q3ðTÞμ̂3B þ q5ðTÞμ̂5B þ…;

μ̂SðT; μBÞ ¼ s1ðTÞμ̂B þ s3ðTÞμ̂3B þ s5ðTÞμ̂5B þ…: ð14Þ

The above parametrization includes the cases of vanishing
electric charge and strangeness chemical potentials,
μQ ¼ μS ¼ 0, which we are going to discuss in the next
section as well as the strangeness neutral case with fixed
electric charge to baryon-number ratio, which we analyze
in Sec. V.
Implementing the constraints specified in Eq. (14) in the

Taylor series for the pressure and net conserved-charge
number densities, one obtains series in terms of the baryon
chemical potential only,

PðT; μBÞ
T4

−
PðT; 0Þ
T4

¼
X∞
k¼1

P2kðTÞμ̂2kB ; ð15Þ

nX
T3

¼
X∞
k¼1

NX
2k−1μ̂

2k−1
B ; X ¼ B;Q; S: ð16Þ

Using

1We often suppress the argument (T) of the generalized
susceptibilities. We also suppress superscripts and subscripts
of χBQS

ijk whenever one of the subscripts vanishes, e.g. χBQS
i0k ≡ χBSik .
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μ̂B
dP=T4

dμ̂B
¼ μ̂B

nB
T3

þ μ̂B
dμ̂Q
dμ̂B

nQ
T3

þ μ̂B
dμ̂S
dμ̂B

nS
T3

; ð17Þ

and the series expansions of μ̂Q and μ̂S given in Eq. (14)
one easily finds the relation between the expansion coef-
ficients for the pressure and number densities,

P2n ¼
1

2n

�
NB

2n−1 þ
Xn
k¼1

ð2k − 1Þðs2k−1NS
2n−2kþ1

þ q2k−1N
Q
2n−2kþ1Þ

�
: ð18Þ

When imposing constraints on the electric charge and
strangeness chemical potentials, these generally become
temperature-dependent functions as indicated in Eq. (14).
The temperature derivative of P=T4 at fixed μ̂B in the
constraint case and the partial derivative of P=T4 at fixed
ðμ̂B; μ̂Q; μ̂SÞ, which defines the trace anomaly Δ [Eq. (10)],
thus are related through

T
dP=T4

dT
¼ Δþ Tμ̂0Q

nQ
T3

þ Tμ̂0S
nS
T3

; ð19Þ

where the (total) temperature derivative d=dT is taken at
fixed μ̂B and μ̂0X ¼ dμ̂X=dT. With this we obtain the Taylor
series for the trace anomaly,

ΔðT; μ̂BÞ ¼
ϵ − 3P
T4

¼
�
ϵ − 3P
T4

�
μ̂B¼0

þ
X∞
n¼1

ðTP0
2nðTÞ − h2nðTÞÞμ̂2nB ; ð20Þ

with

h2n ¼
Xn
k¼1

ðs02k−1NS
2n−2kþ1 þ q02k−1N

Q
2n−2kþ1Þ: ð21Þ

We also introduce

t2n ¼
Xn
k¼1

ðs2k−1NS
2n−2kþ1 þ q2k−1N

Q
2n−2kþ1Þ: ð22Þ

With this the Taylor series expansion of the energy and
entropy densities for constraint cases, in which μ̂Q and μ̂S
satisfy Eq. (14), becomes

ϵðT; μBÞ
T4

−
ϵðT; 0Þ
T4

¼
X∞
n¼1

ϵ2nðTÞμ̂2nB ; ð23Þ

sðT; μBÞ
T3

−
sðT; 0Þ
T3

¼
X∞
n¼1

σ2nðTÞμ̂2nB ; ð24Þ

with ϵ2nðTÞ ¼ 3P2nðTÞ þ TP0
2nðTÞ − h2nðTÞ and σ2kðtÞ ¼

4P2nðTÞ þ TP0
2nðTÞ − NB

2n−1ðTÞ − h2nðTÞ − t2nðTÞ.

C. Numerical calculation of generalized
susceptibilities up to Oðμ6Þ

The generalized susceptibilities χBQS
ijk have been calcu-

lated on gauge field configurations generated for (2þ 1)-
flavor QCD using the Highly Improved Staggered Quark
(HISQ) action [19] and the tree-level improved Symanzik
gauge action.
All calculations are performed using a strange quark

mass ms tuned to its physical value. We performed
calculations with two different light to strange quark mass
ratios,ml=ms ¼ 1=27 and 1=20. The former corresponds to
a pseudoscalar Goldstone mass, which in the continuum
limit yields a pion mass mπ ≃ 140 MeV, the latter leads to
a pion mass mπ ≃ 160 MeV. These parameters are fixed
using the line of constant physics determined by HotQCD
from the fK scale. Using fK ¼ 155.7ð9Þ= ffiffiffi

2
p

MeV allows
us to determine the lattice spacing aðβÞ at a given value of
the gauge coupling β and the corresponding set of quark
masses (ml;msÞ, which in turn fixes the temperature on a
lattice with temporal extent Nτ; i.e. T ¼ ðNτaÞ−1. More
details on the scale determination are given in [4].
All calculations have been performed on lattices of

size N3
σNτ with an aspect ratio Nσ=Nτ ¼ 4. We perform

calculations in the temperature interval T ∈ ½135 MeV;
330 MeV� using lattices with temporal extentNτ ¼ 6, 8, 12
and 16, which corresponds to four different values of the
lattice spacings at fixed temperature. At temperatures T ≤
175 MeV all calculations have been performed with the
lighter, physical quark mass ratio ml=ms ¼ 1=27. In the
high temperature region quark mass effects are small, and
we based our calculations on existing data sets for
ml=ms ¼ 1=20, which have previously been generated
by the HotQCD Collaboration and used for the calculation
of second-order susceptibilities [20]. These data sets have
been extended for the calculation of higher-order suscep-
tibilities. Gauge field configurations are stored after every
tenth molecular dynamics trajectory of unit length.
All calculations of fourth- and sixth-order expansion

coefficients have been performed on lattices with temporal
extent Nτ ¼ 6 and 8. In these cases we gathered a large
amount of statistics. At low temperatures we have gen-
erated up to 1.2 million trajectories for Nτ ¼ 6 and up to
1.8 million trajectories forNτ ¼ 8. At high temperature less
than a tenth of this statistic turned out to be sufficient. The
second-order expansion coefficients have been calculated
on lattices with four different temporal extends, Nτ ¼ 6, 8,
12, 16. At fixed temperature this corresponds to four
different values of the lattice cutoff, which we used to
extract continuum extrapolated results for the second-order
expansion coefficients. We also extrapolated results for the
higher-order expansion coefficients to the continuum limit.
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However, having at hand results from only two lattice
spacings for these expansion coefficients, we consider
these extrapolations as estimates of the results in the
continuum limit.
On each configuration the traces of all operators needed

to construct up to sixth-order Taylor expansion coefficients
have been calculated stochastically. For the calculation of
second- and fourth-order expansion coefficients, we follow
the standard approach of introducing a nonzero chemical
potential in the QCD Lagrangian as an exponential pre-
factor for timelike gauge field variables [21]; i.e. the
chemical potential μf for quark flavor f is introduced
through a factor eμfa (e−μfa) on timelike links directed in the
forward (backward) direction. This insures that all observ-
ables calculated are free of ultraviolet divergences. For the
calculation of all sixth-order expansion coefficients, we use
the so-called linear-μ approach [22,23]. This becomes
possible as no ultraviolet divergences appear in sixth-order
cumulants and above. In the linear-μ formulation the
number of operators that contribute to cumulants is
drastically reduced, and their structure is simplified. All
operators appearing in the exponential formulation, that
involve second- or higher-order derivatives of the fermion
matrix [11], vanish. The remaining operators are identical
in both formulations. One thus only has to calculate traces
of observables that are of the form,

TrM−1
f M0

fM
−1
f M0

f…:M−1
f M0

f;

where Mf is the staggered fermion matrix for light (f ¼ l)
or strange (f ¼ s) quarks, respectively, and M0

f denotes its
derivative with respect to the flavor chemical potential μ̂f.
The final error on these traces depends on the noise due to
the use of stochastic estimators for the inversion of the
fermion matrices Mf, as well as on the gauge noise
resulting from a finite set of gauge configurations that
get analyzed. We analyzed the signal to noise ratio for all
traces of operators that we calculate and identified the
operatorD1 ¼ M−1

f M0
f as being particularly sensitive to the

stochastic noise contribution. This operator has been
measured using 2000 random noise vectors. For the
calculation of traces of all other operators, we used 500
random noise vectors. We checked that this suffices to
reduce the stochastic noise well below the gauge noise. The
simulation parameters and the statistics accumulated in this
calculation are summarized in the tables of Appendix A.
All fits and continuum extrapolations shown in the

following are based on spline interpolations with coeffi-
cients that are allowed to depend quadratically on the
inverse temporal lattice size. Our fitting ansatz and the
strategy followed to arrive at continuum extrapolated
results are described in detail in Ref. [3]. For the current
analysis we found it sufficient to use spline interpolations
with quartic polynomials and three knots whose location is
allowed to vary in the fit range.

IV. EQUATION OF STATE FOR μQ = μS = 0

Let us first discuss the Taylor expansion for bulk
thermodynamic observables in the case of vanishing
electric charge and strangeness chemical potentials. This
greatly simplifies the discussion and yet incorporates all the
features of the more general case. Also the discussion of
truncation errors presented in this section carries over to the
more general situation.

A. Pressure and net baryon-number density

For μQ ¼ μS ¼ 0, the Taylor expansion coefficients P2n

and NB
2n−1, introduced in Eqs. (15) and (16), are simply

related by

P2n ¼
1

2n
NB

2n−1 ¼
1

ð2nÞ! χ
B
2n: ð25Þ

The series for the pressure and net baryon-number density
simplify to

PðT; μBÞ − PðT; 0Þ
T4

¼
X∞
n¼1

χB2nðTÞ
ð2nÞ!

�
μB
T

�
2n

¼ 1

2
χB2 ðTÞμ̂2B

�
1þ 1

12

χB4 ðTÞ
χB2 ðTÞ

μ̂2B þ 1

360

χB6 ðTÞ
χB2 ðTÞ

μ̂4B þ � � �
�
;

ð26Þ

nB
T3

¼
X∞
n¼1

χB2nðTÞ
ð2n − 1Þ! μ̂

2n−1
B

¼ χB2 ðTÞμ̂B
�
1þ 1

6

χB4 ðTÞ
χB2 ðTÞ

μ̂2B þ 1

120

χB6 ðTÞ
χB2 ðTÞ

μ̂4B þ � � �
�
:

ð27Þ

In Eqs. (26) and (27) we have factored out the leading
order (LO) μB-dependent part in the series for the pressure
as well as the net baryon-number density. This helps to
develop a feeling for the importance of higher-order
contributions and, in particular, the approach to the
HRG limit at low temperatures. Note that all ratios
χB2n=χ

B
2 are unity in a HRG, and in the infinite temperature,

ideal quark gas limit, χB4 =χ
B
2 ¼ 2=ð3π2Þ≃ 0.068 is the only

nonvanishing higher-order expansion coefficient. From
Eqs. (26) and (27), it is evident that contributions from
higher-order expansion coefficients become more impor-
tant in the number density than in the pressure. Relative to
the LO result, the contributions of the NLO and NNLO
expansion coefficients for nB=T3 are a factor two and three
larger, respectively, than for the corresponding expansion
coefficients in the pressure series.
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We show the leading order coefficient χB2 ðTÞ in Fig. 2
and the NLO (χB4 ) and NNLO (χB6 ) coefficients divided by
χB2 ðTÞ in Fig. 3. The left-hand part of Fig. 2 shows the
leading order contribution χB2 in the entire temperature
interval used in the current analysis. For the LO expansion
coefficients, we also used data from simulations on 483 ×
12 lattices. Here, we used existing data for ml=ms ¼ 1=20
[3] and generated new ensembles forml=ms ¼ 1=27 at nine
temperature values below T ¼ 175 MeV. Furthermore, we
used data on 643 × 16 lattices at a corresponding set of low
temperature values. These data are taken from an ongoing
calculation of higher-order susceptibilities performed by
the HotQCD Collaboration.2 This allowed us to update the
continuum extrapolation for χB2 given in [20]. The new
continuum extrapolation shown in Fig. 2 is consistent with
our earlier results, but has significantly smaller errors in the

low temperature region. In the right-hand part of this figure
we compare the continuum extrapolated lattice QCD data
for χB2 with HRG model calculations. It is obvious that the
continuum-extrapolated QCD results overshoot results
obtained from a conventional, noninteracting HRG model
calculations with resonances taken from the particle data
tables (PDG-HRG) and treated as pointlike excitations. We
therefore compare the QCD results also with a HRG model
that includes additional strange baryons, which are not
listed in the PDG but are predicted in quark models and
lattice QCD calculations. We successfully used such an
extended HRG model (QM-HRG) in previous calculations
[5,6]. As can be seen in Fig. 2 (left), continuum extrapo-
lated results for χB2 agree well with QM-HRG calculations.
As can be seen in the left-hand part of Fig. 3, the ratio

χB4 =χ
B
2 approaches unity with decreasing temperature,

but is small at high temperatures where the leading
order correction is large. The relative contribution of the
NLO correction thus is largest in the hadronic phase, where
χB4 =χ

B
2 ≃ 1. For temperatures T ≲ 155 MeV, we find

T [MeV]

χ2
B free quark gas

Tc=(154 +/-9) MeV
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B

FIG. 2. The leading order (Oðμ2BÞ) correction to the pressure calculated at zero baryon chemical potential. The left-hand figure shows the
leading order correction in a large temperature range. The right-hand part of the figure shows an enlarged view into the low temperature
region. In addition to the continuum extrapolation of the lattice QCD results, we also show results fromHRGmodel calculations based on
all hadron resonances listed by the particle data group (PDG-HRG) and obtained in quark model calculations (QM-PDG).
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FIG. 3. (Left) The ratio of fourth- and second-order cumulants of net-baryon number fluctuations (χB4 =χ
B
2 ) versus temperature. (Right)

Same as the left-hand side, but for the ratio of sixth- and second-order cumulants of net-baryon number fluctuations (χB6 =χ
B
2 ). The boxes

indicate the transition region, Tc ¼ ð154� 9Þ MeV. Grey bands show continuum estimate.

2We thank the HotQCD Collaboration for providing access to
the second-order quark number susceptibilities.
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χB4 =χ
B
2 ≤ 0.8. The relative contribution of the NLO correc-

tion to the μB-dependent part of the pressure (number
density) in the crossover region and below thus is about 8%
(16%) at μB=T ¼ 1 and rises to about 33% (66%) at
μB=T ¼ 2. At temperatures larger than 180 MeV, the
relative contribution of the NLO correction to pressure
and number density at μB=T ¼ 2 is less than 8% and 16%,
respectively.
The relative contribution of theOðμ̂6BÞ correction, χB6 =χB2 ,

is shown in the right-hand part of Fig. 3. The ideal gas limit
for this ratio vanishes. Obviously the ratio is already small
for all temperatures T > 180 MeV; i.e. χB6 =χ

B
2 ≤ 0.5.

Consequently, for μ̂B ¼ 2, the correction to the leading
order result is less than 2.2% for the μB-dependent part of
the pressure and less than 7% for the net baryon-number
density. At lower temperatures, the statistical errors on
current results for χB6 =χ

B
2 are still large. However, a crude

estimate for the magnitude of this ratio at all temperatures
larger than 130 MeV suggests jχB6 =χB2 j ≤ 3. In the low
temperature, hadronic regime and for μ̂B ¼ 2 the Oðμ̂6BÞ
corrections to the μB-dependent part of the pressure can be
about 13%. However, in the total pressure, which also
receives large contributions from the meson sector, this will
result only in an error of less than 3%. In the calculation of
the net baryon-number density, on the other hand, the
current uncertainty onOðμ̂6BÞ expansion coefficients results
in errors of about 40% at temperatures below T≃155MeV.
In fact, as discussed already in Sec. II, higher-order
corrections are larger in the Taylor expansion of the number
density. From Eq. (25), it follows for the ratio of NLO and
LO expansion coefficients, NB

5 =N
B
1 ¼ 3P6=P2. Clearly,

better statistics are needed in the low temperature range
to control higher-order corrections to nB=T3.
In Fig. 4 we show results for the μB-dependent part of the

pressure (left) and the net baryon-number density (right)
calculated from Taylor series up to and including LO, NLO

and NNLO contributions, respectively. This suggests that
up to μB ≃ 2T results for the pressure at low temperature
are well described by a Taylor series truncated at NNLO,
while at higher temperature NNLO corrections are small
even at μB ≃ 3T. This also is the case for nB=T3, although
the NNLO correction is large at low temperatures and, at
present, does not allow for a detailed quantitative analysis
of the baryon-number density in this temperature range.
It also is obvious that the Taylor series for the pressure

and nB=T3 in the temperature range up to T ≃ 180 MeV
are sensitive to the negative contributions of the sixth-
order expansion coefficient. The occurrence of a dip in
the sixth-order expansion coefficient of the pressure has
been expected to show up on the basis of general scaling
arguments for higher order derivatives of the QCD
pressure in the vicinity of the chiral phase transition
[24]. It may, however, also reflect the influence of a
singularity on the imaginary chemical potential axis [25]
(Roberge-Weiss critical point [26]) on Taylor series of
bulk thermodynamic observables in QCD. Even with
improved statistics, it thus is expected that the wiggles,
that start to show up in the expansion of pressure and net
baryon-number density above μB=T ≃ 2 (see Fig. 4) and
reflect the change of sign in the sixth-order expansion
coefficient, will persist. Getting the magnitude of the dip
in χB6 =χ

B
2 at T ≃ 160 MeV under control in future calcu-

lations thus is of importance for the understanding of this
nonperturbative regime of the QCD equation of state in
the high temperature phase close to the transition region.
This also indicates that higher-order corrections need to
be calculated in order to control the equation of state in
this temperature regime.

B. Net strangeness and net electric charge densities

For vanishing strangeness and electric charge chemical
potentials, the corresponding net strangeness (nS) and net

FIG. 4. The μB-dependent contribution to the pressure (left) and the baryon-number density (right) in the case of vanishing electric
charge and strangeness chemicals potential for several values of the baryon chemical potential in units of temperature. The different
bands show results including Taylor series results up to the order indicated.
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electric charge (nQ) densities are nonetheless nonzero
because the carriers of these quantum numbers also
carry baryon number. The ratios of number densities are
given by

nX
nB

¼ χBX11 þ 1
6
χBX31 μ̂

2
B þ 1

120
χBX51 μ̂

4
B

χB2 þ 1
6
χB4 μ̂

2
B þ 1

120
χB6 μ̂

4
B

; X ¼ Q; S: ð28Þ

In a hadron resonance gas the ratios nS=nB and nQ=nB are
independent of the baryon chemical potential, and irre-
spective of the value of μ̂B, these ratios approach −1 and 0,
respectively, in the T → ∞ limit. One thus may expect that
these ratios only show a mild dependence on μ̂B, which
indeed is apparent from the results of the NNLO expan-
sions shown in Fig. 5.
For μQ ¼ μS ¼ 0, nonvanishing electric charge and

strangeness densities only arise due to a nonzero baryon-
chemical potential. In the low temperature HRG phase nQ
and nS thus only receive contributions from charged
baryons or strange baryons, respectively. The ratios
nQ=nB and nS=nB thus are sensitive to the particle content
in a hadron resonance gas, and a comparison with PDG-
HRG and QM-HRG is particularly sensitive to the
differences in the baryon content in these two models. It
is apparent from Fig. 5 that at low temperatures the QM-
HRG model provides a better description of the lattice
QCD results than the PDG-HRG model.

C. The energy and entropy densities

In order to calculate the energy and entropy densities,
defined in Eqs. (23) and (24), we need to extract the
temperature derivative of the expansion coefficients of the
pressure. We use as a starting point the representation of
the pressure given in Eq. (26) and calculate the temperature
derivatives of χBn from the splines used to fit this observable.
With this, we construct the expansion coefficients ϵBn ðTÞ
and σBn defined in Eqs. (12) and (13),

Δðϵ=T4Þ ¼ ϵðT; μBÞ − ϵðT; 0Þ
T4

¼
X3
k¼1

ϵ2kμ̂
2k
B ¼

X3
k¼1

ðTP0
2k þ 3P2kÞμ̂2kB ; ð29Þ

Δðs=T3Þ ¼ sðT; μBÞ − sðT; 0Þ
T3

¼
X3
k¼1

σ2kμ̂
2k
B ¼

X3
k¼1

ðϵ2k − ð2k − 1ÞP2kÞμ̂2kB : ð30Þ

We show the LO and NLO expansion coefficients
for energy and entropy densities together with the
expansion coefficient for the pressure in Fig. 6.
Because of Eq. (25), the expansion coefficients of the
net baryon-number density are simply proportional to
those of the pressure.
Clearly, the temperature dependence of the expansion

coefficients of the energy and entropy densities shows more
structure than in the case of the pressure. Qualitatively, this
can be understood in terms of the pseudocritical behavior of
bulk thermodynamic observables. Once thermodynamic
quantities are dominated by contributions from the singular
part of the free energy, which is expected to happen in the
transition region, they become functions of ðT − TcÞ þ
κμ̂2B. The temperature derivative of the expansion coeffi-
cient P2, which gives ϵ2, thus will show properties similar
to those of P4. The LO correction ϵB2 =T

4 has a mild peak,
which results from the strongly peaked T-derivative of χB2
which is qualitatively similar to χB4 , and the NLO correction
is negative in a small temperature interval above Tc, which
arises from the negative T-derivative of χB4 at high temper-
ature, which resembles the negative part of χB6 at high
temperature.
Although the temperature dependence of ϵn and σn differs

from that of the pressure coefficient, Pn, the conclusions
drawn for the relative strength of the expansion coefficients

FIG. 5. The ratio of net strangeness and net baryon-number densities (left) and the ratio of net electric charge and net baryon-number
densities (right). At low temperatures, results from hadron resonance gas calculations at μB ¼ 0 are shown (see text).
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are identical in all cases. As can be seen from the inset
in Fig. 6 (right), the relative contribution of the NLO
expansion coefficients never exceeds 10%. In particular, at
temperatures larger than 180 MeV, the magnitude of the
NLO expansion coefficients never exceeds 2% of the LO
expansion coefficients. Again this leads to the conclusion
that at μB=T ¼ 2 and temperatures above 180 MeV the
NLO correction contributes less than 8% of the leading
correction to μB-dependent part of the energy and entropy
densities. For T ≲ 155 MeV, however, the NLO contri-
bution can rise to about 30%. A similar conclusion holds
for the Oðμ̂6BÞ corrections, although it requires higher
statistics to better quantify the magnitude of this contri-
bution. In Fig. 7 we show results for the total pressure and
total energy density. ForP=T4 and ϵ=T4 at μB ¼ 0, we used
the results obtained by the HotQCD Collaboration [3] and
added to it the results from the Oðμ̂6BÞ expansions pre-
sented above. This figure also makes it clear that despite
of the large error of higher-order expansion coefficients,
which we have discussed above, the error on the total
pressure and energy density still is dominated by errors on
their values at μB ¼ 0.

V. EQUATION OF STATE IN STRANGENESS
NEUTRAL SYSTEMS

A. Taylor expansion of pressure, baryon-number,
energy and entropy densities

We now discuss the equation of state for strangeness
neutral systems with a fixed ratio of electric charge to
baryon-number density; i.e. we impose the constraints [27]

nS ¼ 0;
nQ
nB

¼ r: ð31Þ

These constraints can be realized through suitable choices
of the electric charge and strangeness chemical potentials.
This thus is a particular case of the constraint expansion
discussed in Sec. III B. The expansion coefficients qn, sn,
n ¼ 1, 3, 5 needed to satisfy these constraints are given in
Appendix B. For r ¼ 0.4, the constrained EoS obtained in
this way is usually considered to be most appropriate for
applications to heavy ion collisions. We do, however, in the
following also comment on other choices of r, including
the case of isospin symmetric systems (r ¼ 1=2) and
electric charge neutral matter (r ¼ 0).

FIG. 7. (Left) The total pressure in (2þ 1)-flavor QCD in Oðμ̂6BÞ for several values of μB=T. (Right) The total energy density in
(2þ 1)-flavor QCD in Oðμ̂6BÞ for several values of μB=T. The results for μ̂B ¼ 0 are taken from Ref. [3].

FIG. 6. Leading order (left) and next-to-leading order (right) expansion coefficients for the μB-dependent part of pressure, the energy
and entropy densities in the case μQ ¼ μS ¼ 0. The inset in the right-hand figure shows the ratios of NLO and LO expansion coefficients
P4=P2, ϵ4=ϵ2 and σ4=σ2. Note that the expansion coefficients for the net baryon-number density are directly proportional to those of the
pressure series; i.e. NB

1 ¼ 2P2 and NB
3 ¼ 4P4.
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Using the constraints specified in Eq. (31) and the definition
of the pressure in terms of generalized susceptibilities, χBQS

ijk ,
the expansion coefficients P2n can easily be determined.
Here, it advantageous to use the relation between the Taylor
expansion coefficients of the pressure, P2n, and number
densities, NX

2n−1, given in Eq. (18), which simplifies con-
siderably for strangeness neutral systems. It now involves
only the net baryon-number density coefficients,

P2 ¼
1

2
½NB

1 þ rq1NB
1 �; ð32Þ

P4 ¼
1

4
½NB

3 þ rðq1NB
3 þ 3q3NB

1 Þ�; ð33Þ

P6 ¼
1

6
½NB

5 þ rðq1NB
5 þ 3q3NB

3 þ 5q5NB
1 Þ�: ð34Þ

Explicit expressions for allNB
n−1 andqn−1, forn ¼ 2, 4, 6, are

given in Appendix B. The resulting expansion coefficients
for the pressure are shown in Fig. 8. Also shown in the
bottom-right panel of this figure is the ratio of the expansion
coefficients for the net baryon-number density,NB

n−1, and the
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FIG. 8. Expansion coefficients of the pressure (top and bottom left) and the ratio of net baryon-number density and pressure expansion
coefficients (bottom right) in strangeness neutral systems with r ¼ 0.4. Broad bands show continuum extrapolations as discussed in
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FIG. 9. Ratio ofOðμ̂2BÞ expansion coefficients of the pressure in
systems with electric charge to net baryon-number ratio r ¼
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systems (r ¼ 1=2). Triangles show the ratio of the pressure in
systems with vanishing electric charge and strangeness chemical
potential and the strangeness neutral, isospin symmetric system.
Horizontal lines at high temperature show the corresponding free
quark gas values. All data points shown are from calculations on
lattices with temporal extent Nτ ¼ 8.
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appropriately rescaled expansion coefficients of the pressure,
nPn. In electric charge neutral systems, r ¼ 0 aswell as in the
isospin symmetric limit r ¼ 1=2, for which the expansion
coefficients qi ¼ 0 vanish for all i, this ratio is unity. In both
cases the simple relation given in Eq. (25) holds. Also for
other values of r, the contribution from terms proportional to
r are small. In Fig. 8 (bottom right) we show the ratio
NB

2n−1=nPn for the case r ¼ 0.4 and n ¼ 2 and 4, respec-
tively. At Oðμ̂2BÞ, differences between NB

1 and 2P2 never
exceed 2%, and atOðμ̂4BÞ, the difference betweenNB

3 and4P4

varies between 3% at low temperature and −6% at high
temperature. In the infinite temperature ideal gas limit the
ratios become NB

1 =2P2 ¼ 1.018 and NB
3 =4P4 ¼ 0.927,

respectively.
In general one finds that the dependence of bulk

thermodynamic observables on the net electric charge to
net baryon number-ratio is weak. The Oðμ̂2BÞ expansion
coefficient of the pressure in strangeness neutral systems
differs by at most 10% in electric charge neutral (r ¼ 0) and
isospin symmetric systems (r ¼ 1=2), respectively. The
expansion coefficient P2 evaluated for different values of r
is shown in Fig. 9. For chemical potentials μ̂ ≤ 2, this
amounts to differences less than 1.5% of the total pressure.
On the other hand, strangeness neutral systems differ
substantially from systems with vanishing strangeness
chemical potential. In this case the Oðμ̂2BÞ expansion
coefficients differ by almost 50% in the high temperature
limit. For T < 150 MeV, this difference is only about 10%
reflecting that the different treatment of the strangeness
sector becomes less important for the thermodynamics at
low temperature. This is also shown in Fig. 9.
Compared to the leading Oðμ̂2BÞ contributions to bulk

thermodynamic observables, the Oðμ̂4BÞ and Oðμ̂6BÞ correc-
tions are smaller in the strangeness neutral case than in the
case μQ ¼ μS ¼ 0, which we have discussed in the previous
section. This is evident from Fig. 10, where we show the
ratios 12P4=P2 and 360P6=P2. These combinations are
unity in a HRG with μS ¼ μQ ¼ 0 but smaller than unity in
the strangeness neutral case. Higher-order corrections in

Taylor series for strangeness neutral systems thus are of less
importance than in the case μS ¼ 0. This also means that
the errors, which are large on e.g. sixth-order expansion
coefficients, are of less importance for the overall error
budget of Taylor expansions in strangeness neutral systems.
This is indeed reflected in the μB-dependence of
ðPðT; μBÞ − PðT; 0ÞÞ=T4 and nBðT; μBÞ=T3 shown in the
upper panels of Fig. 11 for the case r ¼ 0.4. As can be seen
in these two figures, at low temperatures the μB-dependent
part of the pressure as well as the net baryon-number
density agree quite well with HRG model calculations that
describe the thermodynamics of a gas of noninteracting,
pointlike hadron resonances. This agreement, however, gets
worse at larger values of μB. Not unexpectedly, at higher
temperatures deviations from HRG model calculations
become large already at small values of μB. This is apparent
from the lower two panels of Fig. 11, where we show the
ratio of the μB-dependent part of the pressure and the
corresponding HRG model result (left) and the net baryon-
number density divided by the corresponding HRG model
result (right). In the HRG model calculation ðPðT; μBÞ −
PðT; 0ÞÞ=T4 as well as nBðT; μBÞ=T3 only depend on the
baryon sector of the hadron spectrum. The results shown in
Fig. 11 thus strongly suggest that HRG model calculations
using resonance spectra in model calculations for non-
interacting, pointlike hadron gases may be appropriate
(within ∼10% accuracy) to describe the physics in the
crossover region of strongly interacting matter at vanishing
or small values of the baryon chemical potential, but fail3
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FIG. 10. Ratio of expansion coefficients of the pressure in strangeness neutral systems with r ¼ 0.4. The darker lines in the center of
the error bands of these extrapolations show results obtained with the parametrization discussed in Sec. V B.

3It has been pointed out that the pointlike particle approxi-
mation is appropriate in the meson sector but not in the baryon
sector at high density. Introducing a nonzero size of hadron
resonances [28,29] may, for some observables, improve the
comparison with QCD thermodynamics [30,31]. However, it
seems that the introduction of several additional parameters will
be needed to achieve overall good agreement with the many
observables calculated now in QCD in the temperature range of
interest, i.e. in the crossover region from a hadron gas to strongly
interacting quark-gluon matter.
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to do so at large μB=T and/or T ≳ 160 MeV. At T ¼
165 MeV, QCD and HRG model results for the net
baryon-number density differ by 40% at μB=T ¼ 2. This
has consequences for the determination of freeze-out
conditions in heavy ion collisions. We come back to this
discussion in Sec. VI.
The μB-dependent contributions to the energy and

entropy densities have been defined in Eqs. (23) and
(24). In strangeness neutral systems the expansion coef-
ficients simplify considerably,

ϵ2nðTÞ ¼ 3P2nðTÞ þ TP0
2nðTÞ

− r
Xn
k¼1

Tq02k−1N
B
2n−2kþ1 ð35Þ

σ2nðTÞ ¼ 4P2nðTÞ þ TP0
2nðTÞ − NB

2n−1

− r
Xn
k¼1

ðq2k−1 þ Tq02k−1ÞNB
2n−2kþ1: ð36Þ

Results for theOðμ2BÞ andOðμ4BÞ expansion coefficients are
shown in Fig. 12 together with the corresponding expansion

coefficients for the pressure and net baryon-number density.
Results for the total energy density as well as the total
pressure for μB=T ¼ 0 and 2 are shown in Fig. 13. As
discussed in the previous section also, here it is evident that
current errors on the total pressure and energy density are
dominated by errors on these observables at μB ¼ 0.
In Fig. 13 we also show results for the total pressure

obtained within the stout discretization scheme. The result
for μ̂B ¼ 0 is taken from [2]. The μ̂B-dependent contribution
is based on calculationswith an imaginary chemical potential
[14]. These results have been analytically continued to real
values of μ̂B using a sixth-order polynomial in μ̂B. As can be
seen, the total pressure agrees quite well with the results
obtained with a sixth-order Taylor expansion, although the
results obtained the analytic continuation within the stout
discretization scheme tend to stay systematically below the
central values obtained from the analysis of Taylor series
expansions in the HISQ discretization scheme.

B. Parametrization of the equation of state

At μB ¼ 0, the HotQCD Collaboration presented a
parametrization of the pressure, obtained as interpolating

FIG. 11. The μB-dependent contribution to the pressure (top left) and the baryon-number density (top right) for several values of the
baryon chemical potential in units of temperature. The lower two panels show these quantities normalized to the corresponding HRG
model values, obtained from a calculation with all baryon resonances, up to mass mH ¼ 2.5 GeV, listed in the PDG tables, as function
of μB=T for three values of the temperature.
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curves for the continuum extrapolated fit, that also provided
an adequate description of all the other basic thermody-
namic quantities, i.e. the energy and entropy densities as
well as the specific heat and the velocity of sound [3]. Here,
we want to extend this parametrization to the case μ̂B > 0.
Similar to what has been done at μB ¼ 0, it turns out that a
ratio of fourth-order polynomials in the inverse temperature
is flexible enough to describe the temperature dependence
of all required Taylor expansion coefficients in the temper-
ature range T ∈ ½130 MeV; 280 MeV�. We use such an
ansatz for the three expansion coefficients of the net
baryon-number density (NB

1 ; N
B
3 ; N

B
5 ) and the three electric

charge chemical potentials (q1, q3, q5). This suffices to
calculate all thermodynamic observables in strangeness
neutral systems.
We use a ratio of fourth-order polynomials in 1=T as an

ansatz for the expansion coefficients of the net baryon-
number density,

NB
k ðTÞ ¼

NB
k;0n þ NB

k;1nt̄þ NB
k;2nt̄

2 þ NB
k;3nt̄

3 þ NB
k;4nt̄

4

1þ NB
k;1dt̄þ NB

k;2dt̄
2 þ NB

k;3dt̄
3 þ NB

k;4dt̄
4

;

k ¼ 1; 3; 5: ð37Þ

Here, t̄ ¼ Tc=T, and the QCD transition temperature
Tc ¼ 154 MeV is used as a convenient normalization.
Similarly, we define the parametrization of the expansion
coefficients for the electric charge chemical potential,

qkðTÞ ¼
qk;0n þ qk;1nt̄þ qk;2nt̄2 þ qk;3nt̄3 þ qk;4nt̄4

1þ qk;1dt̄þ qk;2dt̄2 þ qk;3dt̄3 þ qk;4dt̄4
;

k ¼ 1; 3; 5: ð38Þ

The parameters for these interpolating curves are summa-
rized in Table I.
The expansion coefficients of the pressure are then

obtained by using Eqs. (32)–(34). The resulting interpolat-
ing curves for Pk are shown as darker curves in Fig. 8. All
other interpolating curves shown as darker curves in other
figures have been obtained by using the above interpola-
tions. In particular, interpolating curves for the energy and
entropy densities are obtained by using Eqs. (35) and (36)
and calculating analytically temperature derivatives of the
parametrizations of Pn and qn given in Eqs. (37) and (38).
The resulting interpolating curves for the second- and

FIG. 12. Leading order (left) and next-to-leading order (right) expansion coefficients for the μB-dependent part of pressure, the energy
and entropy densities in the strangeness neutral case with fixed electric charge to net baryon-number density, nQ=nB ¼ 0.4. The darker
lines in the center of the error bands of these extrapolations show the interpolating fits discussed in Sec. V B. The insert in the right-hand
figure shows the ratios of NLO and LO expansion coefficients NB

3 =N
B
1 , P4=P2, ϵ4=ϵ2 and σ4=σ2. The influence of a nonvanishing

electric charge chemical potential, which formally gives rise to deviations from the result in the isospin symmetric limit (NB
1 ¼ 2P2,

NB
3 ¼ 4P4), are negligible at Oðμ̂2BÞ and Oðμ̂4BÞ. For that reason, we do not show results for NB

1 and NB
3 . However, we show in the

insertion in the left-hand figure the ratio NB
3 =N

B
1 (black line) which clearly shows that NLO corrections are a factor two larger in the

Taylor series for the number density then in the pressure series.

FIG. 13. The total energy density (upper two curves) of (2þ 1)-
flavor QCD for μB=T ¼ 0 and 2, respectively. The lower two
curves show corresponding results for three times the pressure.
The dark lines show the results obtained with the stout action
from analytic continuation with sixth-order polynomials in
μ̂B [14].
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fourth-order Taylor expansion coefficients are shown
in Fig. 12.
We also used a ratio of fourth-order polynomials to

interpolate results for the pressure at μB ¼ 0. We write the
pressure as

PðT;μB ¼ 0Þ
T4

¼ p0nþp1nt̄þp2nt̄2þp3nt̄3þp4nt̄4

1þp1dt̄þp2dt̄2þp3dt̄3þp4dt̄4
: ð39Þ

The coefficients pin and pid are also given in Table I.

VI. LINES OF CONSTANT PHYSICS TO Oðμ4BÞ
We use here the Taylor series for bulk thermodynamic

observables, i.e. the pressure, energy and entropy densities,
to discuss contour lines in the T-μB plane on which these
observables stay constant. It has been argued quite success-
fully that the thermal conditions at the time of chemical
freeze-out in heavy ion collisions can be characterized by
lines in the T-μB plane on which certain thermodynamic
observables or ratios thereof stay constant [32,33], although
the freeze-out mechanism in the rapidly expanding fireball
created in a heavy ion collision is of dynamical origin and
will in detail be more complicated (see, for instance, [34]).
While lines of constant physics (LCPs) involving total
baryon-number densities, as used in [32,33], are not
appropriate for calculations within the framework of

quantum field theories, other criteria like lines of constant
entropy density in units of T3 [35] or constant pressure
[36–38] have been suggested to characterize freeze-out
parameters ðTf; μ

f
BÞ corresponding to heavy ion collisions

at different values of the beam energy (
ffiffiffiffiffiffiffiffi
sNN

p
). Generally,

such criteria have been established by comparing exper-
imental data with model calculations based on some
version of a HRG model. We determine here LCPs from
the lattice QCD calculations of pressure, energy and
entropy densities and confront them with freeze-out
parameters that have been obtained by comparing particle
yields, measured at different values of

ffiffiffiffiffiffiffiffi
sNN

p
, to HRG

model calculations.
We consider an observable fðT; μBÞ, i.e. the pressure,

energy density or entropy density which are even functions
of μB. We parametrize a “line of constant f” by

TfðμBÞ ¼ T0

�
1 − κf2

�
μB
T0

�
2

− κf4

�
μB
T0

�
4
�
: ð40Þ

In order to determine the expansion coefficients κf2 and κf4
we need to expand the function fðT; μBÞ up to fourth-order
in μB and up to second-order in T around some
point ðT0; 0Þ,

fðT; μBÞ ¼ fðT0; 0Þ þ
∂fðT; μBÞ

∂T
����
ðT0;0Þ

ðT − T0Þ þ
1

2

∂2fðT; μBÞ
∂μ2B

����
ðT0;0Þ

μ2B

þ 1

2

∂2fðT; μBÞ
∂T2

����
ðT0;0Þ

ðT − T0Þ2 þ
1

2

∂
∂T

∂2fðT; μBÞ
∂μ2B

����
ðT0;0Þ

ðT − T0Þμ2B þ 1

4!

∂4fðT; μBÞ
∂μ4B

����
ðT0;0Þ

μ4B: ð41Þ

Note that we expand here in terms of μB rather than in μ̂B ≡ μB=T. Replacing the temperature T in Eq. (41) by the ansatz for
a line of constant f, Eq. (40), and keeping terms up to Oðμ4BÞ gives

TABLE I. Parameters used in the ansatz given in Eq. (37) for the interpolation of the expansion coefficients of the net baryon-number
density of (2þ 1)-flavor QCD with vanishing net strangeness and a fixed ratio of electric charge and net baryon-number density,
nQ=nB ¼ 0.4. These interpolations have been determined for the temperature interval T ∈ ½130 MeV; 280 MeV�. Also given are
parameters needed for the interpolation of the expansion coefficients for the electric charge chemical potential [Eq. (38)] and the
coefficients for the parametrization of the pressure at μB ¼ 0 given in Eq. (39).

k NB
k;0n NB

k;1n NB
k;2n NB

k;3n NB
k;4n NB

k;1d NB
k;2d NB

k;3d NB
k;4d

1 0.302182 −0.929305 1.230560 −0.798724 0.204722 −2.011836 1.190147 0.003869 −0.076244
3 0.000446650 0.00983742 −0.0315076 0.0323632 −0.0107642 −1.327047 0.0472047 0.0 0.323696
5 0.0000104211 −0.000327321 0.00122751 −0.00158725 0.000672708 −1.467875 −0.264770 0.796010 −0.044968
k qk;0n qk;1n qk;2n qk;3n qk;4n qk;1d qk;2d qk;3d qk;4d
1 −0.114472 −0.631833 2.102001 −2.165174 0.739905 16.565265 −35.328733 19.940335 0.384797
3 0.0505332 −0.312052 0.700958 −0.662171 0.219351 −23.224117 82.688725 −89.160400 31.381036
5 0.0000842 −0.0005250 0.00113467 −0.00103897 0.00034414 −2.095094 0.987940 0.146830 −0.0210650

p0n p1n p2n p3n p4n p1d p2d p3d p4d
0 0.00556035 128.702341 −293.064074 228.763685 −58.084225 12.713331 0.0 −31.330957 26.524394
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fðTðμBÞ;μBÞ¼fðT0;0Þþ
�
−κf2

∂fðT;μBÞ
∂T

����
ðT0;0Þ

1

T0

þ1

2

∂2fðT;μBÞ
∂μ2B

����
ðT0;0Þ

�
μ2B

þ
�
−κf4

∂fðT;μBÞ
∂T

����
ðT0;0Þ

1

T3
0

þ1

2

∂2fðT;μBÞ
∂T2

����
ðT0;0Þ

ðκf2Þ2
1

T2
0

−
1

2

∂
∂T

∂2fðT;μBÞ
∂μ2B

����
ðT0;0Þ

κf2
1

T0

þ 1

4!

∂4fðT;μBÞ
∂μ4B

����
ðT0;0Þ

�
μ4B:

We then can determine κf2 and κf4 by demanding that the expansion coefficients at Oðμ2BÞ and Oðμ4BÞ vanish; i.e.

κf2 ¼ T0

2

∂2fðT;μBÞ
∂μ2B j

ðT0;0Þ
∂fðT;μBÞ∂T jðT0;0Þ

; ð42Þ

κf4 ¼
1
2
T2
0
∂2fðT;μBÞ

∂T2 jðT0;0Þðκ
f
2Þ2 − 1

2
T3
0

∂
∂T

∂2fðT;μBÞ
∂μ2B j

ðT0;0Þ
κf2 þ 1

4!
T4
0
∂4fðT;μBÞ

∂μ4B j
ðT0;0Þ

T0
∂fðT;μBÞ∂T jðT0;0Þ

: ð43Þ

As we deal with observables that are given as a Taylor series in μ̂B at fixed T, i.e. fðT; μBÞ ¼
P∞

k¼0 f2kðTÞμ̂2kB , the
derivatives with respect to μB appearing in Eqs. (42) and (43) can be replaced by suitable Taylor expansion coefficients
of fðT; μBÞ,

κf2 ¼ f2ðT0Þ
T0

∂f0ðTÞ∂T jðT0;0Þ
ð44Þ

κf4 ¼
1
2
T2
0
∂2f0ðTÞ
∂T2 jðT0;0Þðκ

f
2Þ2 − ðT0

∂f2ðTÞ∂T jðT0;0Þ − 2f2ðT0ÞÞκf2 þ f4ðT0Þ
T0

∂f0ðTÞ∂T jðT0;0Þ
: ð45Þ

We in the following work out detailed expressions for the
quadratic correction coefficient, κf2 , for lines of constant
pressure (f ≡ P), energy density (f ≡ ϵ) and entropy
density (f ≡ s) in strangeness neutral systems with electric
charge to net baryon-number ratio r ¼ 0.4. Details for the
quartic coefficient, κf4 , are given in Appendix C.
Pressure f ≡ P: The function fðT; μBÞ is given by

P ¼ T4
P

nPnðμB=TÞn, with P0 ¼ PðT; 0Þ=T4 denoting
the pressure in units of T4 at vanishing baryon chemical
potential and PnðTÞ, n > 0 denoting the expansion coef-
ficients of PðT; μBÞ=T4 as introduced in Eq. (15). In the
denominator of Eq. (44) we use the thermodynamic relation
between pressure and entropy density s ¼ ð∂P=∂TÞμB. The
numerator is given by f2ðTÞ ¼ T4P2ðTÞ. This gives

κP2 ¼ P2

s=T3
; ð46Þ

where s=T3 is evaluated at μ̂B ¼ 0.
Energy density f ≡ ϵ: The function fðT; μBÞ is given by

ϵ ¼ T4
P

nϵnðμB=TÞn, with ϵ0 ¼ ϵðT; 0Þ=T4 denoting the
energy density in units of T4 at vanishing baryon chemical
potential. In the denominator of Eq. (44) we use the
thermodynamic relation between energy density and
specific heat CV ¼ ð∂ϵ=∂TÞμB In the numerator we have
f2ðTÞ ¼ T4ϵ2ðTÞ. This gives

κϵ2 ¼
ϵ2

CV=T3
; ð47Þ

where CV=T3 is evaluated at μ̂B ¼ 0.
Entropy density f ≡ s: The function fðT; μBÞ is given

by s¼ðϵþP−μBnB−μQnQÞ=T¼ðϵþP−μBnBð1þrμQ=
μBÞÞ=T. As nB is ofOðμBÞ, we need for the ratio of electric
charge and strangeness chemical potentials only the leading
order relation μQ=μB ¼ q1 defined in Eq. (14). In the
denominator we use

∂s
∂T ¼ ∂ðϵþ PÞ=T

∂T ¼ −
s
T
þ 1

T
∂ðϵþ PÞ

∂T ¼ CV

T
: ð48Þ

In the numerator we have f2ðTÞ ¼ T3ðϵ2 þ P2−
NB

1 ð1þ rq1ÞÞ. With this we get

κs2 ¼ T3
ϵ2 þ P2 − NB

1 ð1þ rq1Þ
CV

¼ ϵ2 − P2

CV=T3
; ð49Þ

where we have used Eq. (32) to replace NB
1 in favor

of P2.
We note that κϵ2 > κs2, i.e. with increasing μB, the entropy

density decreases on lines of constant energy density.
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The second-order coefficients for the lines of constant
physics thus can directly be calculated using the continuum
extrapolated results for the pressure and energy density
obtained at vanishing chemical potential in [3] and the
leading order expansion coefficient of the pressure shown
in Fig. 10. Similarly, we obtain the quartic coefficients from
the fourth-order expansion of the pressure using the relations
given inAppendixC.We show results for κf2 and κ

f
4 inFig. 14.

In the interval around Tc, i.e. T ∈ ½145 MeV; 165 MeV�,
we find

0.0064 ≤ κP2 ≤ 0.0101;

0.0087 ≤ κϵ2 ≤ 0.012;

0.0074 ≤ κs2 ≤ 0.011: ð50Þ

Apparently, at Oðμ2BÞ, lines of constant pressure and con-
stant energy or entropy densities agree quite well, and they
also agree, within currently large errors, with the curvature
of the transition line in (2þ 1)-flavor QCD. The coefficient
of the quartic correction for the contour lines turns out to be
about twoorders ofmagnitude smaller than the leading order
coefficients. This, of course, reflects the small contribution
of the NLO corrections to the μB-dependent part of pressure
and energy density. For all fourth-order coefficients, we find
jκf4 j ≤ 0.00024 in the temperature interval around Tc. For
μB=T ≤ 2, the contribution arising from κf4 only leads to
modifications of TfðμBÞ that stays within the error band

arising from the uncertainty in κf2 .
The resulting lines of constant physics in the T-μB plane

are shown in Fig. 15 (left) for three values of the

FIG. 14. (Left) Second-order curvature coefficients of lines of constant pressure, energy density and entropy density versus
temperature in (2þ 1)-flavor QCD (bands) and in a HRG model (lines). (Right) Same as on the left, but for fourth-order coefficients.
The darker lines in the center of the error bands show the interpolating fits discussed in Sec. V B. For κϵ4 and κ

s
4, only these interpolating

curves are shown.

FIG. 15. (Left) Lines of constant pressure, energy density and entropy density versus temperature in (2þ 1)-flavor QCD for three
different initial sets of values fixed at μB ¼ 0 and T0 ¼ 145, 155 and 165 MeV, respectively (see Table II). Data points show freeze-out
temperatures determined by the STAR Collaboration in the BES at RHIC (squares) [39] and the ALICE Collaboration at the LHC
(triangles) [40]. The circles denote hadronization temperatures obtained by comparing experimental data on particle yields with a
hadronization model calculation [41]. Also shown are two lines representing the current spread in determinations of the μB-dependence
of the QCD crossover transition line (see text). (Right) Net baryon-number density on the lines of constant physics for three values of the
energy density at μB ¼ 0. Other thermodynamic parameters characterizing these lines are summarized in Table II.
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temperature, T ¼ 145, 155 and 165 MeV. These corre-
spond to constant energy densities ϵ ¼ 0.203ð27Þ, 0.346
(41) and 0.556ð57Þ GeV=fm3, which roughly correspond to
the energy density of cold nuclear matter, a hard sphere gas
of nucleons at dense packing and the interior of a nucleus,
respectively. Values of other bulk thermodynamic observ-
ables characterizing these LCPs are summarized in Table II.
The corresponding net baryon-number densities on these
LCPs are shown in Fig. 15 (right). It is apparent from Fig. 15
(left) that LCPs for constant pressure, energy or entropy
density agree well with each other up to baryon chemical
potentials μB=T ¼ 2, where the difference in temperature on
different LCPs is at most 2 MeV. We also note that the
temperature on a LCP varies by about 7 MeV or, equiv-
alently, 5% between μ̂B ¼ 0 and μ̂B ¼ 2. Thus, on a line of
constant pressure, the entropy in units of T3 changes by
about 15%. That is, constantP or constant s=T3, which both
have been suggested as phenomenological descriptions for
freeze-out conditions in heavy ion collisions, cannot hold
simultaneously, although a change of 15% of one of these
observables may phenomenologically not be of much
relevance. We also stress that at large values of μ̂B the
comparison of experimental data with HRG model calcu-
lations, e.g. the use of single particle Boltzmann distribu-
tions used to extract freeze-out temperatures and chemical
potentials, becomes questionable. As shown in Fig. 11, net
baryon-number densities extracted from HRG and QCD
calculations differ substantially at μB=T ≃ 2.
Also shown in Fig. 15 (left) are results on freeze-out

parameters and hadronization temperatures extracted from
particle yields measured in heavy ion experiments [39–41]
by comparing data with model calculations based on the
hadron resonance gas models. The region μB=T ≤ 2 cor-
responds to beam energies

ffiffiffiffiffiffiffiffi
sNN

p ≥ 11.4 GeV in the RHIC
beam energy scan. Obviously, the freeze-out parameters
extracted from the beam energy scan data [39] do not
follow any of the LCPs. However, the discrepancy between
the freeze-out parameters determined at the LHC [40] and
the highest beam energy at RHIC [39] suggests that also
these determinations are not consistent among each other.
Finally, we note that the lines of constant physics

discussed above compare also well with the crossover line
for the QCD transition. At nonzero values of the baryon
chemical potential the change of the (pseudo)critical

temperature has been determined, using various approaches
at real [42,43] and imaginary [44–46] values of the
chemical potential. To leading order one obtains

TcðμBÞ ¼ Tcð0Þ
�
1 − κc2

�
μB

Tcð0Þ
�

2
�
; ð51Þ

with κc2 ranging from 0.0066(7) [42,43] to 0.0135(20) [44],
0.0149(21) [45] and 0.020(4) [46]. Lines that cover this
spread in curvature parameters are also shown in Fig. 15
(left) for Tcð0Þ ¼ 155 MeV. While a small curvature for
the crossover line would suggest that the crossover tran-
sition happens under more or less identical bulk thermo-
dynamic conditions, a large curvature obviously would
indicate that the crossover transition happens already at
significantly smaller values of pressure and energy density
as μB=T increases.

VII. RADIUS OF CONVERGENCE AND THE
CRITICAL POINT

As discussed in the previous sections, we generally find
that the Taylor series for all basic thermodynamic quantities
converge well for values of baryon chemical potentials
μB ≤ 2T. Even in the low temperature regime, the relative
contribution of higher-order expansion coefficients are
generally smaller than in corresponding HRG model
calculations. This, of course, also has consequences for
our current understanding of the location of a possible
critical point in the QCD phase diagram.
The results on the expansion coefficients of the Taylor

series for, e.g., the pressure can be cast into estimates for the
location of a possible critical point in the QCD phase
diagram. In general the radius of convergence can be
obtained from ratios of subsequent expansion coefficients
in the Taylor series for the pressure. Equally well, one may
use one of the derivatives of the pressure series. As one has to
rely on estimates of the radius of convergence that generally
are based on a rather short series, it may indeed be
advantageous to use as a starting point the series for the
net baryon-number susceptibility [47], which diverges at the
critical point, but still contains information from all expan-
sion coefficients of the pressure series. The radius of
convergence of this series is identical to that of the pressure.
Model calculations also suggest that the estimators obtained

TABLE II. Pressure, energy density and entropy density, characterizing lines of constant physics which correspond to the conditions
met for μB ¼ 0 at T0 ¼ 145, 155 and 165 MeV. Columns 2–4 give results in appropriate units of temperature, while columns 5–7 give
the same results expressed in units of GeV and fm.

at μB ¼ 0 on LCP

T0½MeV� p=T4
0 ϵ=T4

0 s=T3
0 p½GeV=fm3� ϵ½GeV=fm3� s½fm−3�

145 0.586(80) 3.52(47) 4.11(53) 0.0337(46) 0.203(27) 1.63(21)
155 0.726(95) 4.61(55) 5.34(63) 0.0546(71) 0.346(41) 2.59(30)
165 0.898(110) 5.76(59) 6.66(69) 0.0868(106) 0.556(57) 3.90(40)
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from the susceptibility series converge faster to the true
radius of convergence [48]. For μQ ¼ μS ¼ 0, the expansion
coefficients of the Taylor series for the net baryon-number
susceptibility are again simply related to that of the pressure,

χB2 ðT; μBÞ ¼
X∞
n¼0

1

ð2nÞ! χ
B
2nþ2μ̂

2n
B : ð52Þ

From this, one obtains estimators for the radius of con-
vergence of the pressure and susceptibility series,

rP2n ¼
���� ð2nþ 2Þð2nþ 1ÞχB2n

χB2nþ2

����
1=2

;

rχ2n ¼
���� 2nð2n − 1ÞχB2n

χB2nþ2

����
1=2

: ð53Þ

Both estimators converge to the true radius of convergence
in the limit n → ∞. In order for this to correspond to a
singularity at real values of μ̂B, all expansion coefficients
should asymptotically stay positive.
Obviously, the estimators rP2n and rχ2n are proportional to

each other, rP2n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2nþ 2Þð2nþ 1Þ=½2nð2n − 1Þ�p

rχ2n.
The difference between these to estimators may be taken
as a systematic error for any estimate of the radius of
convergence obtained from a truncated Taylor series. In
the hadron resonance gas limit one finds for estimators
involving sixth-order cumulants, rP4 ¼ 1.58rχ4. In the
following we restrict our discussion to an analysis of
rχ2n, which at finite n leads to the smaller estimator for
the radius of convergence. This seems to be appropriate in
the present situation where we only can construct two
independent estimators from ratios of three distinct
susceptibilities. We thus may hope to identify regions in
the QCD phase diagram at small values of μ̂B which are
unlikely locations for a possible critical point.
An immediate consequence of the definitions given in

Eq. (53) is that the ratios of generalized susceptibilities
need to grow asymptotically like jχBnþ2=χ

B
n j ∼ n2 in order to

arrive in the limit n → ∞ at a finite value for the radius of
convergence. At least for large values of n, one thus needs
to find large deviations from the hadron resonance gas
results jχBnþ2=χ

B
n jHRG ¼ 1. As is obvious from the results

presented in the previous sections, in particular from Fig. 3,
the analysis of up to sixth-order Taylor expansion coef-
ficients does not provide any hints for such large devia-
tions. The ratio χB4 =χ

B
2 turns out to be less than unity in the

entire temperature range explored so far, i.e. for T ≥
135 MeV or T=Tc > 0.87ð6Þ. Below the crossover temper-
ature, T ∼ 155 MeV, the sixth-order expansion coefficients
also are consistent with HRG model results. They still have
large errors. However, using the upper value of the error for
χB6 =χ

B
4 provides a lower limit for the value of the estimator

rχ4. For temperatures in the interval 135 MeV ≤ T ≤
155 MeV (or equivalently 0.87ð5Þ ≤ T=Tc ≤ 1), we

currently obtain a lower limit on rχ4 from the estimate
χB6 =χ

B
4 ≃ χB6 =χ

B
2 < 3. This converts into the bound rχ4 ≥ 2,

which is consistent with our observation that the Taylor
series of all thermodynamic observables discussed in the
previous sections is well behaved up to μB ¼ 2T. A more
detailed analysis, using the current errors on χB6 =χ

B
4 at five

temperature values below and in the crossover region of the
transition at μB ¼ 0, is shown in Fig. 16. This shows that
the bound arising from rχ4 is actually more stringent at
temperatures closer to Tc, where χ6 starts to become small
and eventually tends to become negative.
These findings are consistent with recent results for

susceptibility ratios obtained from calculations with an
imaginary chemical potential [15]. Also in that case, all
susceptibility ratios are consistent with HRG model results.
At present, one thus cannot rule out that the radius of
convergence may actually be infinite. Results for rχ4
obtained in Ref. [15] lead to even larger estimators for
the radius of convergence than our current lower bound.
This is also shown in Fig. 16.
The observations and conclusions discussed above are

in contrast to estimates for the location of a critical point
obtained from a calculation based on a reweighting
technique [49] as well as from Taylor series expansion
in 2-flavor QCD [50,51]. Both these calculations have been
performed with unimproved staggered fermion discretiza-
tion schemes and thus may suffer from large cutoff effects.
Moreover, the latter calculation also suffers from large
statistical errors on higher order susceptibilities. Results
from Refs. [49] and [50] are also shown in Fig. 16.
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FIG. 16. Estimators for the radius of convergence of the Taylor
series for net baryon-number fluctuations, χB2 ðT; μBÞ, in the case
of vanishing electric charge and strangeness chemical potentials
obtained on lattices with temporal extent Nτ ¼ 8. Shown are
lower bounds for the estimator rχ4 obtained in this work (squares)
and results for this estimator obtained from calculations with an
imaginary chemical potential (triangles) [15]. Also shown are
estimates for the location of the critical point obtained from
calculations with unimproved staggered fermions using a re-
weighting technique [49] and Taylor expansions [50]. In both
cases, results have been rescaled using Tc ¼ 154 MeV.
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We thus conclude from our current analysis that a critical
point at chemical potentials smaller than μB ¼ 2T is
strongly disfavored in the temperature range 135 MeV ≤
T ≤ 155 MeV, and its location at higher values of temper-
ature seems to be ruled out. Our results suggest that the
radius of convergence in that temperature interval will turn
out to be significantly larger than the current bound once
the statistics on sixth-order cumulants gets improved and
higher-order cumulants become available.

VIII. CONCLUSIONS

We have presented results on the equation of state of
strong-interaction matter obtained from a sixth-order Taylor
expansion of the pressure of (2þ 1)-flavor QCD with
physical light and strange quark masses. We discussed
expansions at vanishing strangeness chemical potential
μS ¼ 0 as well as for strangeness neutral systems nS ¼ 0.
We have discussed in detail the latter case for a fixed electric
charge to net baryon-number ratio, nQ=nB ¼ 0.4, which is
appropriate for situations met in heavy ion collisions. The
results, however, can easily be extended to arbitrary ratios of
nQ=nB. We find that the dependence of basic thermodynamic
observables on nQ=nB is small for 0 ≤ nQ=nB ≤ 1=2. This
may be of interest for applications in heavy ion collisions
where strong externalmagnetic fields and nontrivial topology
inQCDcan lead to charge asymmetries in different regions of
phase space.
We have presented a parametrization of basic thermo-

dynamic observables in terms of ratios of fourth-order
polynomials in the inverse temperature which is appropriate
in the temperature range studied here; i.e. T ∈ ½130 MeV;
330 MeV�.
We presented results for lines of constant pressure,

energy and entropy density in the T-μB plane and showed
that corrections of Oðμ̂4BÞ are negligible for μ̂B < 2. For all
three observables, the curvature term at Oðμ̂2BÞ is smaller
than κmax ¼ 0.012. This suggest that, e.g., energy density
and pressure would drop on the crossover line for the chiral
transition, if the corresponding curvature coefficient turns
out to be larger than κmax.
The Taylor series for pressure and net baryon-number

density as well as energy density and entropy density
determined for μS ¼ 0 as well as nS ¼ 0 have expansion
coefficients that are close to HRG model results at low
temperature. In general ratios of subsequent expansion
coefficients approach the corresponding HRG model values
from below when lowering the temperature. As a conse-
quence, in the entire temperature range explored so far, the
expansions are “better behaved” than the HRGmodel series,
which have an infinite radius of convergence. Assuming that
the current results obtained with expansion coefficients up to
sixth-order are indicative for the behavior of higher-order
expansion coefficients and taking into account the current
errors on sixth-order expansion coefficients, we concluded
that at temperatures T > 135 MeV the presence of a critical
point in the QCD phase diagram for μB ≤ 2T is unlikely.
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APPENDIX A: DETAILS ON SIMULATION
PARAMETERS AND DATA SETS

Our main data sets have been generated on lattices of size
N3

σ × Nτ, with Nσ=Nτ ¼ 4 and Nτ ¼ 6, 8 and 12. We
performed calculations with two different light to strange
quark mass ratios, ml=ms ¼ 1=20 and 1=27, respectively.
The simulation parameters are summarized in Tables III
and IV.

TABLE III. Ensemble parameters for calculations with light to
strange quark mass ratio ml=ms ¼ 1=20 on lattices of size N3

σNτ

with Nτ ¼ 6, 8 and Nσ ¼ 4Nτ. Columns 4 and 8 give the number
of gauge field configurations, separated by 10 RHMC steps, that
contributed to the analysis of up to sixth-order generalized
susceptibilities χBQS

ijk .

Nτ ¼ 6 Nτ ¼ 8

β ml T[MeV] #conf. β ml T[MeV] #conf.

6.245 0.00415 179.52 14521 6.515 0.00302 178.36 16933
6.341 0.00370 198.61 3745 6.550 0.00291 184.84 15853
6.423 0.00335 216.33 1481 6.575 0.00282 189.58 11853
6.515 0.00302 237.81 1408 6.608 0.00271 196.01 16760
6.664 0.00257 276.43 1364 6.664 0.00257 207.32 8358

6.800 0.00224 237.07 5816
6.950 0.00193 273.88 9550
7.150 0.00160 330.23 9184
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APPENDIX B: CONSTRAINTS ON CHEMICAL
POTENTIAL FOR STRANGENESS NEUTRAL

SYSTEMS WITH FIXED ELECTRIC CHARGE TO
BARYON-NUMBER RATIO

We are interested in expansion coefficients for strangeness
neutral systems in which the net electric charge is propor-
tional to the net baryon-number. That is, we introduce the
constraint given inEq. (31). These constraints can be fulfilled
order by order in the Taylor expansion of the number
densities by choosing the expansion coefficients of the series
for μ̂Q and μ̂S, given in Eq. (14), appropriately; i.e. the
coefficients sn and qn can be determined order by order. We
start with the Taylor series for the number densities intro-
duced in Eq. (16) and define the expansion coefficients as

NB
n ¼ snχBS11 þ qnχ

BQ
11 þmB

n ðB1Þ

NQ
n ¼ snχ

QS
11 þ qnχ

Q
2 þmQ

n ðB2Þ

NS
n ¼ snχS2 þ qnχ

QS
11 þmS

n ðB3Þ

for n ¼ 1, 3, 5. At each order in the expansion, we then have
to solve a set of two linear equations, which always have the
same structure. We find as solutions

sn ¼ −
qnχ

QS
11 þmS

n

χS2
ðB4Þ

and

qn ¼
−mB

nrχS2 þmQ
n χS2 þmS

nðrχBS11 − χQS
11 Þ

ðχQS
11 Þ2 − rχBS11 χ

QS
11 þ rχS2χ

BQ
11 − χS2χ

Q
2

: ðB5Þ

At leading order one finds for the terms mX
1 ,

mB
1 ¼ χB2 ; mQ

1 ¼ χBQ11 ; mS
1 ¼ χBS11 ; ðB6Þ

and the contributions to the next-to-leading order expansion
terms, mX

3 , are given by

mB
3 ¼

1

6
ð3q21s1χBQS

121 þ3q1s21χ
BQS
112 þ6q1s1χ

BQS
211 þq31χ

BQ
13

þ3q21χ
BQ
22 þ3q1χ

BQ
31 þs31χ

BS
13 þ3s21χ

BS
22 þ3s1χBS31 þχB4 Þ

mQ
3 ¼1

6
ð3q21s1χQS

31 þ3q1s21χ
QS
22 þ6q1s1χ

BQS
121 þq31χ

Q
4

þ3q21χ
BQ
13 þ3q1χ

BQ
22 þs31χ

QS
13 þ3s21χ

BQS
112

þ3s1χ
BQS
211 þχBQ31 Þ

mS
3¼

1

6
ð3q21s1χQS

22 þ3q1s21χ
QS
13 þ6q1s1χ

BQS
112 þq31χ

QS
31

þ3q21χ
BQS
121 þ3q1χ

BQS
211 þs31χ

S
4þ3s21χ

BS
13 þ3s1χBS22 þχBS31 Þ

ðB7Þ

Finally, the contributions to the next-to-next-to-leading
order expansion terms, mX

5 , are given by

mB
5 ¼ 1

120
ð5q41s1χBQS

141 þ 10q31s
2
1χ

BQS
132 þ 20q31s1χ

BQS
231 þ 60q21s3χ

BQS
121 þ 10q21s

3
1χ

BQS
123 þ 30q21s

2
1χ

BQS
222 þ 30q21s1χ

BQS
321

þ 120q1s1s3χ
BQS
112 þ 5q1s41χ

BQS
114 þ 120q3q1s1χ

BQS
121 þ 120q1s3χ

BQS
211 þ 20q1s31χ

BQS
213 þ 30q1s21χ

BQS
312

þ 20q1s1χ
BQS
411 þ 60q3s21χ

BQS
112 þ 120q3s1χ

BQS
211 þ q51χ

BQ
15 þ 5q41χ

BQ
24 þ 10q31χ

BQ
33 þ 60q3q21χ

BQ
13

þ 10q21χ
BQ
42 þ 120q3q1χ

BQ
22 þ 5q1χ

BQ
51 þ 60q3χ

BQ
31 þ 60s21s3χ

BS
13 þ s51χ

BS
15 þ 120s1s3χBS22

þ 5s41χ
BS
24 þ 60s3χBS31 þ 10s31χ

BS
33 þ 10s21χ

BS
42 þ 5s1χBS51 þ χB6 Þ

TABLE IV. Same as Table III but for the light to strange quark mass ratio ml=ms ¼ 1=27 and including results for Nτ ¼ 12.

Nτ ¼ 6 Nτ ¼ 8 Nτ ¼ 12

β ml T[MeV] #conf. β ml T[MeV] #conf. β ml T[MeV] #conf.

5.980 0.00435 135.29 81200 6.245 0.00307 134.64 180320 6.640 0.00196 134.94 5834
6.010 0.00416 139.71 120790 6.285 0.00293 140.45 172110 6.680 0.00187 140.44 5833
6.045 0.00397 145.05 120770 6.315 0.00281 144.95 138150 6.712 0.00181 144.97 13846
6.080 0.00387 150.59 79390 6.354 0.00270 151.00 107510 6.754 0.00173 151.10 14200
6.120 0.00359 157.17 66180 6.390 0.00257 156.78 135730 6.794 0.00167 157.13 15476
6.150 0.00345 162.28 79660 6.423 0.00248 162.25 115850 6.825 0.00161 161.94 16772
6.170 0.00336 165.98 49760 6.445 0.00241 165.98 120270 6.850 0.00157 165.91 19542
6.200 0.00324 171.15 122700 6.474 0.00234 171.02 139980 6.880 0.00153 170.77 21220
6.225 0.00314 175.76 122730 6.500 0.00228 175.64 133070 6.910 0.00148 175.76 12303
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mQ
5 ¼ 1

120
ð5q41s1χQS

51 þ10q31s
2
1χ

QS
42 þ20q31s1χ

BQS
141 þ60q21s3χ

QS
31 þ10q21s

3
1χ

QS
33 þ30q21s

2
1χ

BQS
132 þ30q21s1χ

BQS
231 þ120q1s1s3χ

QS
22

þ5q1s41χ
QS
24 þ120q3q1s1χ

QS
31 þ120q1s3χ

BQS
121 þ20q1s31χ

BQS
123 þ30q1s21χ

BQS
222 þ20q1s1χ

BQS
321 þ60q3s21χ

QS
22 þ120q3s1χ

BQS
121

þq51χ
Q
6 þ5q41χ

BQ
15 þ10q31χ

BQ
24 þ60q3q21χ

Q
4 þ10q21χ

BQ
33 þ120q3q1χ

BQ
13 þ5q1χ

BQ
42 þ60q3χ

BQ
22 þ60s21s3χ

QS
13 þs51χ

QS
15

þ120s1s3χ
BQS
112 þ5s41χ

BQS
114 þ60s3χ

BQS
211 þ10s31χ

BQS
213 þ10s21χ

BQS
312 þ5s1χ

BQS
411 þχBQ51 Þ

mS
5¼

1

120
ð5q41s1χQS

42 þ10q31s
2
1χ

QS
33 þ20q31s1χ

BQS
132 þ60q21s3χ

QS
22 þ10q21s

3
1χ

QS
24 þ30q21s

2
1χ

BQS
123 þ30q21s1χ

BQS
222 þ120q1s1s3χ

QS
13

þ5q1s41χ
QS
15 þ120q3q1s1χ

QS
22 þ120q1s3χ

BQS
112 þ20q1s31χ

BQS
114 þ30q1s21χ

BQS
213 þ20q1s1χ

BQS
312 þ60q3s21χ

QS
13 þ120q3s1χ

BQS
112

þq51χ
QS
51 þ5q41χ

BQS
141 þ10q31χ

BQS
231 þ60q3q21χ

QS
31 þ10q21χ

BQS
321 þ120q3q1χ

BQS
121 þ5q1χ

BQS
411 þ60q3χ

BQS
211 þ60s21s3χ

S
4þs51χ

S
6

þ120s1s3χBS13 þ5s41χ
BS
15 þ60s3χBS22 þ10s31χ

BS
24 þ10s21χ

BS
33 þ5s1χBS42 þχBS51 Þ:

ðB8Þ

In (2þ 1)-flavor QCD calculations the light (u, d) quark masses are taken to be degenerate. A consequence of this
degeneracy is that not all generalized susceptibilities χBQS

ijk that enter the above expressions are independent. In a given order
n≡ 2l≡ iþ jþ k this results in a set of relations among the expansion coefficients. In general at order n ¼ 2l, there are
lðlþ 1Þ constraints; i.e. for l ¼ 1 this gives rise to two relations, [27]

0 ¼ χB2 − 2χBQ11 þ χBS11

0 ¼ χS2 − 2χQS
11 þ χBS11 ; ðB9Þ

for l ¼ 2 there are six constraints,

0 ¼ χB4 − 2χBQ31 þ χBS31

0 ¼ χS4 − 2χQS
13 þ χBS13

0 ¼ χBS22 þ χBS13 − 2χBQS
112

0 ¼ χBS31 þ χBS22 − 2χBQS
211

0 ¼ χB4 − 6χBQ31 þ 12χBQ22 − 8χBQ13 þ 3χBS31 þ 3χBS22 þ χBS13 − 12χBQS
211 þ 12χBQS

121 − 6χBQS
112

0 ¼ χS4 þ χBS31 þ 3χBS22 þ 3χBS13 − 8χQS
31 þ 12χQS

22 − 6χQS
13 − 6χBQS

211 þ 12χBQS
121 − 12χBQS

112 ; ðB10Þ

and for l ¼ 3 there are 12 constraints,

0 ¼ χB6 − 2χBQ51 þ χBS51 ; 0 ¼ χBS15 − 2χQS
15 þ χS6; 0 ¼ χBS42 − 2χBQS

312 þ χBS33 ; 0 ¼ χBS33 − 2χBQS
213 þ χBS24 ;

0 ¼ χBS51 − 2χBQS
411 þ χBS42 ; 0 ¼ χBS24 − 2χBQS

114 þ χBS15 ;

0 ¼ χB6 − 6χBQ51 þ 12χBQ42 − 8χBQ33 þ 3χBS51 − 12χBQS
411 þ 12χBQS

321 þ 3χBS42 − 6χBQS
312 þ χBS33 ;

0 ¼ χBS33 − 6χBQS
213 þ 12χBQS

123 − 8χQS
33 þ 3χBS24 − 12χBQS

114 þ 12χQS
24 þ 3χBS15 − 6χQS

15 þ χS6;

0 ¼ χBS42 − 6χBQS
312 þ 12χBQS

222 − 8χBQS
132 þ 3χBS33 − 12χBQS

213 þ 12χBQS
123 þ 3χBS24 − 6χBQS

114 þ χBS15 ;

0 ¼ χBS51 − 6χBQS
411 þ 12χBQS

321 − 8χBQS
231 þ 3χBS42 − 12χBQS

312 þ 12χBQS
222 þ 3χBS33 − 6χBQS

213 þ χBS24 ;

0 ¼ χB6 − 10χBQ51 þ 40χBQ42 − 80χBQ33 þ 80χBQ24 − 32χBQ15 þ 5χBS51 − 40χBQS
411 þ 120χBQS

321 − 160χBQS
231 þ 80χBQS

141 þ 10χBS42

− 60χBQS
312 þ 120χBQS

222 − 80χBQS
132 þ 10χBS33 − 40χBQS

213 þ 40χBQS
123 þ 5χBS24 − 10χBQS

114 þ χBS15 ;

0 ¼ χBS51 − 10χBQS
411 þ 40χBQS

321 − 80χBQS
231 þ 80χBQS

141 − 32χQS
51 þ 5χBS42 − 40χBQS

312 þ 120χBQS
222 − 160χBQS

132 þ 80χQS
42 þ 10χBS33

− 60χBQS
213 þ 120χBQS

123 − 80χQS
33 þ 10χBS24 − 40χBQS

114 þ 40χQS
24 þ 5χBS15 − 10χQS

15 þ χS6: ðB11Þ
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Using these constraints it is tedious, but straightforward, to
show that in the isospin symmetric case, r ¼ 1=2, indeed
all expansion coefficients for the electric charge chemical
potential vanish; i.e. μ̂Q ¼ 0 to all orders in μB.
We show results for the LO expansion coefficients s1 and

q1 and the ratios of the NLO and LO expansion coef-
ficients, s3=s1 and q3=q1 in Fig. 17. As can be seen, the
NLO coefficients are already negligible for T ≳ 170 MeV.
The absolute value of the NNLO expansion coefficients s5
and q5 never is larger than 1% of the corresponding LO
coefficients.
In Fig. 17, we also show results from hadron resonance

gas (HRG) model calculations. The black curves are the
predictions of the usual HRG model which consists of all
the resonances listed in the Particle Data Group tables up to
2.5 GeV (PDG-HRG). The PDG-HRG results for s1 are
substantially smaller than the continuum-extrapolated lat-
tice QCD results. It has been argued in [6] that this can be
caused by contributions from additional, experimentally

not yet observed, strange hadron resonances which are
predicted in quark model calculations. A HRG model
calculation based on such an extended resonance spectrum
(QM-HRG) is also shown in Fig. 17. At finite values of the
lattice cutoff we observe significant differences between
lattice QCD calculations and both versions of the HRG
models. This is, in particular, the case for the expansion
coefficients of the electric charge chemical potentials. One
thus may wonder whether these deviations can be under-
stood in terms of taste violations in the staggered fermion
formulation which result in a modification of the resonance
spectrum and affect most strongly the light pseudoscalar
(pion) sector.

APPENDIX C: THE COEFFCIENT κf4 OF LINES
OF CONSTANT PHYSICS AT Oðμ4BÞ

We present here results for the expansion coefficient κf4
of lines of constant physics defined in Eq. (43),
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FIG. 17. The LO Taylor expansion coefficients s1 (top left) and q1 (top right) of the expansions of μ̂S and μ̂Q with respect to μ̂B.
The bottom set of figures show the ratios of NLO and LO expansion coefficients. The broad bands give the continuum extrapolated
results. The curves inside these bands show results obtained with the interpolating curves introduced in Eq. (38). Also shown are the
PDG-HRG and QM-HRG results (see text). The solid black lines labeled “free quark gas” denote the T → ∞ noninteracting massless
quark gas result.
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κf4 ¼
1
2

∂2fðT;μBÞ
∂T2 jðT0;0Þðκ

f
2Þ2 1

T2
0

− 1
2

∂
∂T

∂2fðT;μBÞ
∂μ2B j

ðT0;0Þ
κf2

1
T0
þ 1

4!

∂4fðT;μBÞ
∂μ4B j

ðT0;0Þ
∂fðT;μBÞ∂T jðT0;0Þ

1
T3
0

¼
1
2
T2
0
∂2f0ðTÞ
∂T2 jðT0;0Þðκ

f
2Þ2 − ðT0

∂f2ðTÞ∂T jðT0;0Þ − 2f2ðT0ÞÞκf2 þ f4ðT0Þ
T0

∂f0ðTÞ∂T jðT0;0Þ
: ðC1Þ

The coefficients f2k are defined by

fðT; μBÞ ¼
X∞
k¼0

f2kμ̂2kB : ðC2Þ

In particular, we give explicit expressions for the case of
constant pressure (f ≡ P), constant energy density (f ≡ ϵ)
and constant entropy density(f ≡ s). For the pressure, we
had the earlier expression [Eq. (15)]

PðT; μBÞ − PðT; 0Þ
T4

¼
X∞
n¼1

P2nμ̂
2n
B : ðC3Þ

Comparing Eqs. (C3) and (C2) we have f0 ¼ PðT; 0Þ≡
T4P0, f2 ¼ T4P2 and f4 ¼ T4P4. Thus,

∂f0
∂T

����
μB

¼ ∂P0T4

∂T
����
μB

¼ T3ðTP0
0 þ 4P0Þ≡ s; ðC4aÞ

∂2f0
∂T2

����
μB

¼ ∂2P0T4

∂T2

����
μB

¼ T2ðT2P00
0 þ 8TP0

0 þ 12P0Þ≡ CV

T
:

ðC4bÞ

Here, s and CV are the entropy density and specific heat
per unit volume at vanishing chemical potential. Similarly,

∂f2
∂T

����
μB

¼ ∂P2T4

∂T
����
μB

¼ T3ðTP0
2 þ 4P2Þ: ðC5Þ

Putting everything together we get, for the pressure

κP4 ¼ 1

TP0
0 þ 4P0

�
P4 − κP2 ðTP0

2 þ 2P2Þ

þ 1

2
ðκP2 Þ2ðT2P00

0 þ 8TP0
0 þ 12P0Þ

�

¼ T3

s

�
P4ðTÞ − κP2 σ2ðTÞ þ

1

2
ðκP2 Þ2

CV

T3

�
; ðC6Þ

where σ2 denotes the Oðμ̂2BÞ expansion coefficient of the
entropy density as introduced in Eq. (24).
Next, we consider κϵ4. Since the energy density is also of

dimension four, we only need to replace P2n with ϵ2n in the
first line of Eq. (C6). With this, we obtain

κϵ4 ¼
1

Tϵ00 þ 4ϵ0

�
ϵ4 − κϵ2ðTϵ02 þ 2ϵ2Þ

þ 1

2
ðκϵ2Þ2ðT2ϵ000 þ 8Tϵ00 þ 12ϵ0Þ

�
: ðC7Þ

Since CV ≡ ð∂ϵ0=∂TÞμB , the above may be written as

κϵ4 ¼
T3

CV

�
ϵ4 − κϵ2ðTϵ02 þ 2ϵ2Þ þ

1

2
ðκϵ2Þ2

1

T2

∂CV

∂T
�
: ðC8Þ

Finally, we consider κs4. Since the entropy density is of
dimension three, Eqs. (C4) become

∂ðsT3Þ
∂T

����
μB

¼ T2ðTs0 þ 3sÞ;

∂2ðsT3Þ
∂T2

����
μB

¼ TðT2s00 þ 6Ts0 þ 6sÞ; ðC9Þ

and therefore,

κσ4 ¼
1

Ts0 þ 3s

�
σ4 − κσ2ðTσ02 þ σ2Þ

þ 1

2
ðκσ2Þ2ðT2s00 þ 6Ts0 þ 6sÞ

�
: ðC10Þ

To zeroth order, the specific heat is also given by
CV ¼ ð∂ðTsÞ=∂TÞμB . Thus,

κσ4 ¼
T3

CV

�
σ4 − κσ2ðTσ02 þ σ2Þ þ

1

2
ðκσ2Þ2

1

T2

∂CV

∂T
�
: ðC11Þ
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