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A common problem in lattice QCD simulations on the torus is the extremely long autocorrelation time of
the topological charge when one approaches the continuum limit. The reason is the suppressed tunneling
between topological sectors. The problem can be circumvented by replacing the torus with a different
manifold, so that the connectivity of the configuration space is changed. This can be achieved by using
open boundary conditions on the fields, as proposed earlier. It has the side effect of breaking translational
invariance strongly. Here we propose to use a nonorientable manifold and show how to define and simulate
lattice QCD on it. We demonstrate in quenched simulations that this leads to a drastic reduction of the
autocorrelation time. A feature of the new proposal is that translational invariance is preserved up
to exponentially small corrections. A Dirac fermion on a nonorientable manifold poses a challenge to
numerical simulations: the fermion determinant becomes complex. We propose two approaches to
circumvent this problem.
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I. INTRODUCTION

Lattice regularization is a powerful method to carry out
calculations in a quantum field theory. It provides a well-
defined, systematically improvable framework, which also
works in the nonperturbative regimes of the theory. There is
currently a lot of activity to calculate various observables
in Quantum Chromodynamics (QCD) by carrying out
numerical computations on lattices. Such activities are
an important cornerstone in the search for physics beyond
the Standard Model. In many cases lattice results with a
precision beyond the % level are needed to fully exploit the
discovery potential of these searches. To reach such a
precision it is important to have a reliable error estimation.
One type of error comes from the autocorrelation in the

Monte Carlo time series of the numerical simulations.
In principle, one has to run the simulation several times
longer than the largest autocorrelation time in the system.
Typically the slowest modes correspond to observables
which are related to the topology of the field space, like the
topological charge

Q ¼
Z
M

d4xqðxÞ; ð1Þ

where qðxÞ ¼ 1
32π2

ϵμνρσtrFμνFρσ is the topological charge
density. In practice, the space-time manifold M is chosen
to be the torus, where periodic/antiperiodic boundary

conditions are imposed on the fields. On the torus Q is
quantized, and the field space splits into disconnected
sectors labeled by integer [1] values ofQ. The advantage of
the torus is translational invariance, and as a consequence
the results have small finite volume corrections. The
disadvantage is that conventional simulation algorithms
have severe difficulties changing the topological properties
of the field configurations, and it gets worse with decreas-
ing lattice spacing. The autocorrelation time of the topo-
logical charge was found to increase with the sixth power of
the inverse lattice spacing in actual simulations [2]. Rare
tunneling events make the extraction of the topological
susceptibility challenging. For a recent proposal see [3].
Besides the susceptibility, the accurate computation of
observables that correlate strongly with topology is also
challenging.
The slow modes can be removed from the theory by

changing the topology of the manifold M. The authors of
[4] proposed to introduce an open boundary in one of the
directions. This change in the topology of space-time also
changes the topology of the gauge field configuration
space, which becomes connected and Q is not restricted
to an integer value anymore. This eliminates the slow
modes from the theory. Indeed, in [4] a drastic reduction of
the autocorrelation time of the topological charge was
observed. A disadvantage of this approach is the lack of the
translational invariance in the open direction, which intro-
duces boundary effects and decreases the effectively
available space-time volume. There are several recent
studies with open boundary conditions, which address
the systematics of the method [5–8].
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Another possibility to circumvent large autocorrelation
times is to restrict the simulation to a single topological
sector. This removes the slow modes corresponding to
the changes between the sectors. To extract the topolo-
gical susceptibility from fixed sector simulations, see
Refs. [9–11]. However, fixing the topology introduces
finite volume effects that are proportional to the inverse
of the volume [12]. Additionally it is not clear if fixing the
topological sector is compatible with ergodicity, and if not,
it is an open question how the observables are affected. Let
us also mention that there are recent Ansätzewhich increase
tunneling between different topological sectors by modi-
fying the original theory and applying a reweighting
correction in the observables [13,14]. Here the efficiency
of the reweighting might limit the applicability of these
methods. Also, it was proposed to modify the action by
dislocation enhancing determinant ratios (DEDR) to
improve the tunneling [15]. Finally, there is a proposal
to use a multilevel thermalization scheme to sample the
topology better on a fine level [16,17]. The validity of this
strategy might currently be limited by the sampling of the
topology on the coarse level which is prolonged to and
frozen on the fine level.

II. SIMULATING ON NONORIENTABLE
MANIFOLDS

In this paper we propose a solution that preserves the
translational symmetry up to exponentially small correc-
tions and alleviates the problems with frozen topological
charge: simulate the theory on a nonorientable manifold. To
construct such a manifold, let us start from a L3 × T torus
with spatial size L and temporal size T. Now we replace the
periodic boundary condition in the temporal direction by a
“P-periodic” boundary condition: the fields are parity
transformed across the boundary. With this boundary we
get a manifold which locally looks like the torus, but is
different globally. The boundary condition can be imagined
as an infinite manifold, which is split into blocks of size
L3 × T with one of the blocks being the original manifold.
In the spatial directions the blocks are replications of the
original manifold, whereas the neighbor in the temporal
direction is obtained by parity transforming the original
block. This is illustrated for two dimensions, one spatial
and one temporal, in Fig. 1, in which case the base manifold
is just the Klein bottle. If we replaced the periodic spatial
with an open boundary, the manifold would be the
Möbius strip.
The straightforward way to define a global topological

charge on a nonorientable manifold, via the integral of a
local topological charge density over the complete mani-
fold, does not work: on a nonorientable manifold there is no
global volume form to define integration. There is, how-
ever, a global volume element, and one can define the
integration of scalar densities like the action density. But

one can not use this to also define the integration of a
pseudoscalar density over the full nonorientable manifold.
As a workaround, we define a total charge Qm on a
maximal oriented submanifold,

Qm ¼
Z

T

0

dt
Z

d3xqðxÞ: ð2Þ

Here the integration is performed over the manifold with a
cut at t ¼ 0, which makes the volume form well-defined.
This definition is the same as on open boundary lattices, but
with an ad hoc introduced cut without physical meaning. In
the following we drop the index m and define Q ≔ Qm.
Then it is simple to show that on a nonorientable

manifold this charge, defined as an integral of qðxÞ over
the base manifold, is not quantized. Under a parity trans-
formation P the topological charge transforms to its
negative. Therefore, applying a continuous translation on
the gauge field in the time direction changes the charge
continuously. After a translation of T we get the same
charge value that we started with, but with an opposite sign.
Since the charge varies continuously during the translation,
it cannot possibly be quantized. Let us note that the charge
over the double cover, i.e. defined as an integral running
from 0 to 2T in time, is zero. However, our setup is different
from fixing the topology of a L3 × 2T lattice. The con-
straint in a fixed topology simulation is nonlocal, and leads
to finite volume effects proportional to the inverse volume
[12]. In contrast, the P-periodic boundary condition gives a
local quantum field theory by construction.
P invariant quantities, like the gauge and fermion actions

in QCD, are invariant under a translation in the t direction.
In contrast, P-noninvariant observables change after such a
translation, as we have seen already in the case of qðxÞ. To
avoid large finite volume effects in P-noninvariant observ-
ables, some care is necessary (see later). The translations in
the x, y, z directions and Euclidean rotations are not exact
symmetries with the P-boundary condition. The violations
of these symmetries originate from Feynman diagrams,

FIG. 1. Illustration of the P-periodic boundary condition in the
t direction. The orientation changes when the boundary is crossed
as indicated by the arrows. In the x direction we have the usual
periodicity. The base manifold is the rectangle with bold lines.
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where a particle propagates around the t direction.
Therefore, they have to be exponentially suppressed with
T times the massgap of the theory.
The P-periodic boundary condition is similar to the

C-periodic boundary condition of Refs. [18–20], where a
charge conjugation is performed when the boundary is
crossed. They lead to processes which change the total
electric charge: charge fluctuations when propagating
through the C-periodic boundary change their sign and
thereby the total electric charge. Analogously, our
P-periodic boundary condition leads to changes in the
total topological charge. Also, just as in the C-periodic
case, the ultraviolet structure of the theory is not affected by
the boundary condition and the same renormalization
applies as in infinite volume [20].
The implementation of the parity transformation on

parallel computers can be cumbersome. Therefore, we
choose another transformation, which serves the purpose
equally well: the lattice points shall be reflected through the
x ¼ 0 hyperplane. Since this transformation is a product of
P and a rotation by 180° around the x axis, it also changes
the orientation and defines a nonorientable manifold.
For simplicity we use the name “P-periodic” boundary
condition for this setup in the rest of the paper.

III. GAUGE FIELDS

To demonstrate the viability of our proposal, we
performed numerical simulations in pure SU(3) gauge
theory. The prescription for the P boundary is

Uxðx; y; z; tþ TÞ ¼ U†
xðL − x − 1; y; z; tÞ;

Uiðx; y; z; tþ TÞ ¼ UiðL − x; y; z; tÞ ð3Þ

for i ¼ y, z, t. In the other three directions we keep the
usual periodic boundary condition. We use the tree-level
Symanzik-improved action [21] and lattices of a fixed
physical size of L ¼ T ∼ 2.27=Tc. One update sweep
consists of four overrelaxation and one heatbath steps
[22–24]. There is practically no overhead on the simulation
time coming from the P-boundary condition. We chose five
different lattice spacings. The lattice size, gauge coupling,
w0 scale [25], the lattice spacing, and the number of update
sweeps are given in Table I. The lattice spacings shown are
obtained from the conversion a ¼ 0.167 fm=w0 [26]. For
comparison we simulate three streams at every set of
parameters: one with periodic, one with open, and one
with P-periodic boundaries. Our main observables are the
topological charge Q and time slice averages of the
topological charge and action densities QðtÞ and EðtÞ as
defined in [4]. All are evaluated along the Wilson flow [27]
at a flow time of w2

0.
Figure 2 shows the simulation time history of the

topological charge for the finest lattice spacing. It already
shows a drastic reduction of the autocorrelation of Q.

The discrete nature of the topological charge in the
periodic case can be seen best in a histogram of the
topological charge, which is given in Fig. 3 together with
the histograms of the charges with the other two boundary
conditions, which show no sign of discretization.
The lattice spacing dependence of the integrated auto-

correlation time of the topological charge τintðQÞ is given in
Fig. 4. Again, one can clearly see that both open and
P-periodic boundaries give a strong reduction of τintðQÞ
compared to the periodic case. Though P-periodic simu-
lations have somewhat larger autocorrelation times than the
open simulations, they seem to scale with a similar power
of the lattice spacing.
In [28] a simple model was set up to describe the scaling

of τintðQÞwith the lattice spacing. There the autocorrelation
function of the topological charge is investigated: Γðt; τÞ ¼
hQðtÞτQð0Þ0i, where QðtÞτ is the time-slice topological
charge after τ update sweeps. A diffusion equation for Γ is
set up, whose solutions describe numerical data from
periodic and open lattices quite accurately. The extremely
large autocorrelation times of the topological charge on
periodic lattices are attributed to the presence of zero
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FIG. 2. History of the topological charge Q at β ¼ 5.1. The
corresponding lattice spacing is 0.040 fm.

TABLE I. Lattice Parameters

L β w0 a [fm] nsweep

16 4.42466 1.79 0.093 2 × 4001
20 4.57857 2.24 0.075 3 × 4001
24 4.70965 2.65 0.063 4 × 4001
32 4.92555 3.43 0.049 10 × 4001
40 5.1 4.13 0.040 19 × 4001
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timelike momentum modes in Γ. They arise due to the
periodicity of Γ in the t variable: Γðtþ T; τÞ ¼ Γðt; τÞ,
which is the consequence of the periodic boundary
Qðtþ TÞ ¼ QðtÞ. These zero modes are shown to be
eliminated by changing the boundary condition from peri-
odic to open [28]. Repeating the calculation for the P
boundary, we see that the same elimination occurs. The zero
modes are absent since, as explained before, the charge is
antiperiodic Qðtþ TÞ ¼ −QðtÞ, and therefore Γ is also
antiperiodic: Γðtþ T; τÞ ¼ −Γðt; τÞ. Without these zero
modes the autocorrelation time of Q scales similarly to that
of the local observables. Let us note that the diffusion and
local tunneling parameters of this model do not depend on
the boundary condition. Our findings are in agreement with
the qualitative picture taken from this model calculation.
Now we come to the most important feature of our

proposal. In contrast to the open boundary condition, the
P-periodic boundary is translationally invariant in the t
direction by construction. This is shown in Figs. 5 and 6.
Figure 5 gives the time-slice averaged action EðtÞ as the
function of time. For the usual and P-periodic boundaries
EðtÞ are practically constant and agree well with each other,
reflecting translational symmetry and the absence of large

finite volume effects. The open boundary result deviates
from them significantly. Although it is expected to approach
the periodic value in the middle of the lattice, here the time
extent was not large enough to reach it.
Similar effects can also be seen in Fig. 6, which gives the

integrated autocorrelation time of the topological charge on
a time slice as a function of time. Again the results for
periodic and P-periodic boundaries are independent of
time, while the result for open boundaries has a dependence
on the distance from the boundary. Additionally, this plot
shows that compared to the full volume results the
integrated autocorrelation time of the topological charge
on a single time slice improves for all choices of the
boundary. In the periodic case, however, the result for a
single time slice is larger than the result for open and
P-periodic boundaries. The reasoning of the subvolume
method [3] would suggest that the autocorrelation time on
the smallest subvolume—a single time slice—would be the
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FIG. 3. Histogram of the topological charge Q at β ¼ 5.1. The
corresponding lattice spacing is 0.040 fm.
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FIG. 4. Integrated autocorrelation time of the topological
charge as a function of the lattice spacing.
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FIG. 5. Time-slice averaged action density at β ¼ 5.1, lattice
spacing a ¼ 0.040 fm, and box size 1.6 fm. Filled symbols give
the per time-slice results, while open symbols give the result for
the full volume.

101

102

103

104

 0  10  20  30  40

τ in
t(Q

(t
))

t

periodic
open

P-periodic

FIG. 6. Integrated autocorrelation time of the topolo-
gical charge on a time slice at β ¼ 5.1, lattice spacing
a ¼ 0.040 fm, and box size 1.6 fm. Filled symbols give the
per time-slice results, while open symbols give the result for the
full volume.
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same independent of the boundary conditions. In the
diffusion model one can see why this might be not the
case: there is a zero mode contributing to the autocorre-
lation time only in the periodic case, but not in the open or
P-periodic case, which increases the autocorrelation.
The reason for Q being not quantized with P-periodic

boundary condition is the lack of translational invariance
for Q as described earlier. This demands some additional
care when calculating an observable like the topological
susceptibility. The appropriate procedure uses the defini-
tion via the topological charge density correlator, where we
place the origin of the correlator to timeslice T=2,

χ ¼
Z

T

0

dt
Z

d3xhqðx⃗; tÞqðx⃗; T=2Þi: ð4Þ

It has exponentially small finite volume corrections as T is
increased since when t in the integral is close to 0 or T, the
correlator is exponentially small. Also, this definition is
symmetric in t and leads to a maximal cancellation of the
negative tail of the correlator with its positive core. To
illustrate this, we generated dedicated ensembles at β ¼
4.42466 with size 163 × T with T ¼ 12;…64. The results
show no significant finite volume effects, as shown in Fig. 7
with the label “corr.” The more commonly used definition
for the susceptibility is hQ2i=ðL3TÞ. For periodic boundary
condition the two definitions are equivalent due to the
translational invariance. In the P-periodic case the latter
definition gives an observable that has finite size effects
proportional to 1=T; see the points with the label “naive” in
Figure 7. Let us remark that a similar prescription as in
Eq. (4) can also improve the finite volume correction of the
standard subvolume method in periodic simulations.

IV. FERMIONS

While nonorientability can be implemented on the gauge
fields right away, it becomes nontrivial for fermions. As the
boundary mixes the handedness, it is not possible to define

Weyl fermions on a nonorientable manifold. The definition
of Dirac fermions is straightforward [29]; the fields undergo
an x-axis reflection on the boundary.However,we encounter
a serious obstacle: the Dirac matrix entering in the x-axis
reflection (γ5γx) spoils the γ5 Hermiticity of the Dirac
operator and leads to a complex fermion path integral.
Numerical simulations with standard algorithms are not
possible in this case. Here we show two workarounds.
The first solution is to combine the x reflection with a

charge conjugation. Since the topological charge is not only
P-odd but also CP-odd, this combination has the same
advantageous effect as the P-periodic boundary condition.
Instead of the usual ψ , ψ̄ fields, it turns out to be more
convenient to work with the eigenstates of charge con-
jugation. These are the spinor fields ηa, a ¼ 1, 2, defined in
[20]. In both bases we can write down the one flavor
fermion action in infinite volume,

Sf ¼ ψ̄D½U�ψ ¼ −
1

2
ηaCD̂½U�abηb; ð5Þ

where D is some possibly massive lattice Dirac operator
using the usual symmetric expression for the time deriv-
atives, and C is the charge conjugation matrix. The hatted
Dirac operator D̂½U� can be written with the original Dirac
operator as D̂½U�ab ¼ D½ReU · δab − iImU · ρ2;ab� with the
Pauli matrices ρi acting on the a index of the ηa fields. As
the map U ↦ ReU · δab − iImU · ρ2;ab defines a represen-
tation of SU(3) equivalent to 3 ⊕ 3�, Eq. (5) is valid not
only for Dirac operators which are linear in the links but
also for operators which are linear in products of links, such
as the clover-improvedWilson-Dirac operator. Equation (5)
is even valid for some more general cases, like the overlap
operator. For the readers’ convenience we collect the
symmetries of Sf in this somewhat uncommon representa-
tion in the appendix. Now we introduce the “CP-boundary”
condition

ηðx; y; z; tþ TÞ ¼ −γ5γxρ2ρ3ηðL − x; y; z; tÞ; ð6Þ
where we used the x reflection and charge conjugation
operators defined in the appendix. The gauge fields also
have to undergo aCP-transformation; this means additional
complex conjugations in Eq. (4). The resulting Dirac
operator is γ5ρ2 Hermitian

D̂† ¼ γ5ρ2D̂γ5ρ2 ð7Þ
since the matrix γ5ρ2 commutes with the boundary con-
dition [30]. Therefore, the path integral over the η fields
gives a real Pfaffian. In the massless case and in the
continuum D̂ also satisfies

fD̂; γ5ρ2g ¼ 0 for m ¼ 0: ð8Þ
There is no continuous chiral symmetry behind this
relation, but only a discrete one η → γ5ρ2η. For further
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FIG. 7. Finite size dependence of different topological suscep-
tibility definitions for P-periodic boundary conditions at
β ¼ 4.42466, lattice spacing a ¼ 0.093 fm.
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fermionic symmetries see the appendix. The argument
presented in [20] for the case of the C-boundary condition
also applies for the CP-boundary: for those symmetries that
are broken by the boundary, the breaking is expected to fall
off exponentially in T.
Another solution to the complex determinant problem

can be given for two degenerate flavors. Then the recipe is
to add an extra rotation in flavor space at the boundary as

ηðx; y; z; tþ TÞ ¼ −γ5γxρ2τ1ηðL − x; y; z; tÞ; ð9Þ

where τi’s are Pauli matrices in flavor space, and now the η
carries a flavor index, too. This makes the fermion path
integral real since the Dirac operator is γ5τ3 Hermitian. This
solution can be written in the usual four-component spinor
basis, and it can be implemented in a similar way as the so-
called G-parity boundary condition [31]. Equation (9) can
be also applied to unrooted staggered fermions.
To get the expression for the two point pion correlation

function, the interpolating operators are needed in the
Majorana basis,

Oπ− ¼ ψ̄uγ5ψd ¼ −
1

2
ηtuγ5Cð1 − ρ2Þηd;

Ōπ− ¼ −ψ̄dγ5ψu ¼
1

2
ηtdγ5Cð1 − ρ2Þηu: ð10Þ

The correlator between x and y then is

hOπ−ðxÞŌπ−ðyÞi

¼ −
1

4
hðηtuÞxγ5Cð1 − ρ2ÞðηdÞxðηtdÞyγ5Cð1 − ρ2ÞðηuÞyi;

ð11Þ

which after integrating out the Grassmann fields and
choosing mu ¼ md becomes

hOπ−ðxÞŌπ−ðyÞi

¼1

4
Tr½ðD̂−1Þy;xρ2ðD̂−1Þ†x;yρ2þðD̂−1Þy;xðD̂−1Þ†x;y�: ð12Þ

More point correlation functions can be constructed
analogously.
As a first exploratory study we implemented the

CP-boundary condition with a Wilson-Dirac operator.
Quenched configurationswere generatedwithCP boundary
and we found that the observables and, in particular, their
autocorrelation times were consistent with the respective
P-boundary condition values. To study the above proposal
for fermions, we took CP-boundary configurations gener-
ated at β ¼ 4.35 on 163 × 32 lattices, w0 ¼ 1.57. Four steps
of stout smearing with smearing parameter 0.125 were
applied [32]. The πþ pion propagator was measured at
the bare Wilson mass −0.16; see upper panel of Fig. 8.

Contrary to the usual periodic case, the propagator is a single
exponential for times far away from t ¼ 0 and T. There is no
backward contribution coming from the antiparticle π−. The
reason for this is that the antiparticle π− is now transformed
under CP conjugation to a −πþ. The corresponding propa-
gation amplitudewill be zero since the matrix element of the
pion annihilating operator between theπþ and vacuumstates
is zero. To demonstrate the translational invariance, we also
show fitted pion masses, which were obtained after shifting
the gauge configuration in t direction by 0, 8, 16, and 24
slices. The mass values are compatible with each other and
also with the mass obtained from a lattice of same size with
periodic boundary condition.

V. DISCUSSION AND OUTLOOK

The last sections show that a lot of properties of
observables in the P-periodic setting are similar to or
better than those in the open setting where the field space is
connected. In particular, the autocorrelation time of local
quantities like the topological charge on a time slice
improves to the level of open boundary conditions without
showing boundary artifacts. However, this does not mean
that the field space in the P-periodic setup is connected.
This can be seen, for example, in the instanton picture. In
the periodic case the topological sectors are labeled by the
net number of instantons with positive and negative charge
Nþ − N−, which is an integer and conserved. The total
instanton number Nþ þ N− is only conserved mod 2 due
to instanton pair creation and annihilation. For open lattices
Nþ, N−, and Nþ � N− are not well defined, so instantons
do not lead to multiple sectors in field space. For the
P-periodic case instantons can propagate once around the
P-periodic direction and become anti-instantons, so Nþ,
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FIG. 8. Upper: Pion propagator with CP-boundary condition.
Lower: Pion masses obtained after shifting the gauge field by 0,
8, 16, and 24 units in t direction (filled), and with periodic
boundary condition (open).
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N−, and Nþ − N− are also not well defined. However, the
total instanton number Nþ þ N− is conserved by this
process and like on the torus is well defined (mod 2).
This suggests there are still two sectors in field space which
correspond to the even and odd sectors on the torus, and
that the same lattice artifacts are necessary to move between
these sectors. Then also the critical slowing down affects
the tunneling rate identically as on the torus. But in the case
with P-periodic boundary conditions, i.e. only two sectors,
it is much simpler to simulate long enough such that all
sectors are sampled well. Already this makes the simulation
at smaller lattice spacings feasible.
Having only two sectors also opens up possibilities to

study even smaller lattice spacings with completely frozen
topology if the relative weight of the two sectors is known.
This can be achieved, for example, by integrating up the
relative weight of the two sectors starting at a coupling
where there is still enough tunneling between the sectors.
This strategy has recently been applied at high temperatures
where there are only two sectors relevant as well [33,34].
P-periodic boundaries make this method applicable also at
low temperatures where on the torus at reasonable volumes
many sectors with different relative weights contribute.
In this article we have shown how to formulate and

simulate lattice QCD on a nonorientable space-time mani-
fold. For the pure gauge case our simulations show that this
change in the topology of space-time leads to a strong
reduction of the autocorrelation time of the topological
charge density comparable to the improvement observed
using open boundary conditions. While the pure gauge case
is straightforward to construct and its implementation is
virtually free of additional numerical cost, the inclusion of
fermions is not trivial. We have demonstrated how to
combine nonorientable space-time with charge conjugation
or flavor symmetry to get a real fermionic contribution to
the action and also how to measure fermionic observables.
Testing the new boundaries for dynamical fermions is left
for future work. It will be especially interesting to compare
the numerical costs to that of e.g. open boundary con-
ditions. Since it depends on the implementation details of
fermions in the Majorana basis, we refrain from a precise
cost estimation at this point.
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APPENDIX: SYMMETRIES OF
THE FERMION ACTION

In this appendix we list the symmetries of the single
flavor fermion action in the Majorana representation, i.e. in
the basis of eigenstates of the charge conjugation operation.
For the definition see [20]. We use the following repre-
sentation for the charge conjugation matrix: C ¼ iγyγt ¼
C† ¼ C−1 ¼ −Ct. The usual fermion action is

Sf½ψ ; ψ̄ ; U� ¼ ψ̄D½U�ψ :

Applying the following transformation,

η ¼ 1ffiffi
2

p
�

1 C

−i iC

��
ψ

ψ̄ t

�
;

we get

Sf½η; U� ¼ − 1
2
ηtCD̂½U�η;

where D̂½U� ¼ D½ReU · 12×2 − iImU · ρ2�.

1. Infinite volume

First, we start with the symmetries of the fermion action
in infinite volume. The symmetries also apply in a finite
box with periodic boundary conditions. The transformation
for the gauge fields is standard and not shown explicitly.
(1) U(1) phase transformation:

ψ → expðiθÞψ and ψ̄ → ψ̄ expð−iθÞ;
η → expð−iθρ2Þη:

(2) U(1) chiral transformation for a massless fermion in
the continuum:

ψ → expðiθγ5Þψ and ψ̄ → ψ̄ expðiθγ5Þ;
η → expðiθγ5Þη:

(3) Charge conjugation:

ψ → Cψ̄ t and ψ̄ → −ψ tC; η → ρ3η:

(4) Translations along the μ axis with x0μ ¼ xμ þ 1:

ψðxÞ→ψðx0Þ and ψ̄ðxÞ→ ψ̄ðx0Þ; ηðxÞ→ηðx0Þ:
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(5) μ-axis reversal with x0μ ¼ −xμ:

ψðxÞ → γ5γμψðx0Þ and ψ̄ðxÞ → ψ̄ðx0Þγμγ5;
ηðxÞ → −γ5γμρ2ηðx0Þ:

(6) 90° rotation in μν plane with x0μ ¼ −xν; x0ν ¼ xμ:

ψðxÞ → exp

�
−i

π

2
σμν

�
ψðx0Þ and

ψ̄ðxÞ → ψ̄ðx0Þ exp
�
i
π

2
σμν

�
;

ηðxÞ → exp

�
−i

π

2
σμν

�
ηðx0Þ;

where σμν ¼ − i
4
½γμ; γν�.

2. CP boundary

Here we list the symmetries of the theory with CP-
boundary conditions. In the spatial directions we have usual
periodic boundary conditions, whereas in the time direction
we have

Uxðx; y; z; tþ TÞ ¼ Ut
xðL − x − 1; y; z; tÞ;

Uiðx; y; z; tþ TÞ ¼ U�
i ðL − x; y; z; tÞ; i ¼ y; z; t

for the gauge fields and

ηðx; y; z; tþ TÞ ¼ −γ5γxρ2ρ3ηðL − x; y; z; tÞ

for the fermions. The symmetries are
(1) Sign transformation:

ψ → −ψ and ψ̄ → −ψ̄ ; η → −η:

(2) Combined chiral and Uð1Þ phase transformation for
a massless fermion in the continuum:

ψ → −γ5ψ and ψ̄ → ψ̄γ5; η → γ5ρ2η:

(3) Charge conjugation combined with a Uð1Þ phase
transformation:

ψ → iCψ̄ t and ψ̄ → iψ tC; η → −iρ2ρ3η:

(4) Translations along the μ axis for μ ¼ y, z, t.
(5) μ-axis reversal for μ ¼ y, z, t.

μ-axis reversal combined with a Uð1Þ phase
transformation for μ ¼ x:

ψðxÞ → iγ5γμψðx0Þ and ψ̄ðxÞ → −iψ̄ðx0Þγμγ5;
ηðxÞ → iγ5γμηðx0Þ:

(6) 90° rotation in the yz plane.
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