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The hadroquarkonium picture [S. Dubynskiy and M. B. Voloshin, Phys. Lett. B 666, 344 (2008)]
provides one possible interpretation for the pentaquark candidates with hidden charm, recently reported by
the LHCb Collaboration, as well as for some of the charmoniumlike “X, Y, Z” states. In this picture, a
heavy quarkonium core resides within a light hadron giving rise to four- or five-quark/antiquark bound
states. We test this scenario in the heavy quark limit by investigating the modification of the potential
between a static quark-antiquark pair induced by the presence of a hadron. Our lattice QCD simulations are
performed on a Coordinated Lattice Simulations (CLS) ensemble with Nf ¼ 2þ 1 flavors of non-
perturbatively improved Wilson quarks at a pion mass of about 223 MeV and a lattice spacing of about
a ¼ 0.0854 fm. We study the static potential in the presence of a variety of light mesons as well as of octet
and decuplet baryons. In all these cases, the resulting configurations are favored energetically. The
associated binding energies between the quarkonium in the heavy quark limit and the light hadron are
found to be smaller than a fewMeV, similar in strength to deuterium binding. It needs to be seen if the small
attraction survives in the infinite volume limit and supports bound states or resonances.
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I. INTRODUCTION

Recently, the LHCbCollaboration found two structures in
the decay Λb → J=ψpK, which can be interpreted as
candidates for pentaquark states with hidden charm,
containing three light quarks, in addition to a charm
quark-antiquark pair [1,2]. The most likely spin and parity
assignments for these candidates, labeled Pþ

c ð4380Þ and
Pþ
c ð4450Þ, are JP ¼ 3=2− and 5=2þ, respectively, with

3=2þ and 5=2− being another possibility. While the nature
of these (and of some other structures) is still disputed [3,4],
the number of established charmonium resonances certainly
has exploded during the past 15 years, see Ref. [5] and, e.g.,
Ref. [6] for a more recent review. Many of these are of an
exotic nature and some clearly hint at light quark-antiquark
or—in the case of the Pc candidates—even at qqq compo-
nents, in addition to the charm quark and antiquark.
Many models can accommodate some, or if extended to

include states that contain five (anti-)quarks, even all
of these resonances: tetraquarks [7–9] consisting of
diquark-antidiquark pairs, including a recently proposed
“dynamic” picture [10,11], molecules of two open charm
mesons [12–16], hybrid states [17–20] containing a charm
quark-antiquark pair and additional valence gluons, hadro-
charmonium with a compact charmonium core bound
inside a light hadron [21,22], and mixtures of the above.
Here we will specifically aim to establish if the last picture
(hadroquarkonium) is supported in the heavy quark limit.

The standard way of addressing a strongly decaying
resonance and extracting the position of the associated pole
in the unphysical Riemann sheet from simulations in
Euclidean spacetime boxes was introduced by Lüscher
[23]. For applications of this and related methods to
charmonium spectroscopy, see, e.g., Ref. [24] and refer-
ences therein. In the case of charmonia, this is particularly
challenging since, in addition to ground states, radial
excitations need to be considered and the number of
different decay channels can be large, some with more
than two hadrons in the final state. Moreover, while in
principle resonance parameters can be computed, at least
below inelastic multiparticle thresholds, these will not
necessarily tell us much about the “nature” of the under-
lying state: how does the naive quark model need to be
modified to provide a guiding principle for the existence or
nonexistence of an exotic resonance?
A direct computation of the scattering parameters of, e.g.,

a nucleon-charmonium resonance in a realistic setting
constitutes a serious computational challenge, especially
if one aims at conclusive results with meaningful errors.
Instead of directly approaching the problem at hand, herewe
restrict ourselves to the heavy quark limit inwhich the charm
quarks can be considered as slowly moving in the back-
ground of gluons, sea quarks and, possibly, light hadrons.
After integrating out the degrees of freedom associated

with the heavy quark mass mQ, quarkonia can be described
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in terms of an effective field theory: nonrelativistic QCD
(NRQCD) [25]. In the limit of small distances r, or
equivalently, large momentum transfers mQv, where v is
the interquark velocity, the scale mQv ∼ 1=r can also be
integrated out, resulting in potential NRQCD (pNRQCD)
[26,27]. Then, to leading order in r with respect to the
pNRQCD multipole expansion and to v2 ∼ αs in the
NRQCD power counting, quarkonium becomes equivalent
to a nonrelativistic quantum mechanical system, where the
interaction potential is given by the static potential V0ðrÞ
which can, e.g., be computed nonperturbatively fromWilson
loop expectation values hWðr; tÞi in Euclidean spacetime,

V0ðrÞ ¼ − lim
t→∞

d
dt
lnhWðr; tÞi: ð1Þ

Herewe investigatewhether this potential becomesmodified
in the presence of a light hadron. This would then lower or
increase quarkonium energy levels. If embedding the quar-
konium in the light hadron is energetically favorable, this
would suggest a bound state, at least for sufficiently large
quark masses.
This article is organized as follows. In Sec. II we briefly

discuss previous studies of nucleon-charmonium bound
states and comment on the ordering of scales that we
consider. In Sec. III we define the observables that we
compute. Then, in Sec. IV we describe details of the
simulation, before numerical results are presented in Sec. V.
Subsequently, in Sec. VI we relate the modifications of the
static potential to quarkonium bound state energies, before
we summarize in Sec. VII.

II. NUCLEON-CHARMONIUM BOUND STATES

Light meson exchanges between a single nucleon or
nucleons bound in a nucleus and quarkonium, which does
not contain any light valence quarks, are suppressed by the
Zweig rule. Therefore, such interactions should be domi-
nated by gluon exchanges. In the heavy quark limit,
quarkonium can be considered essentially as a point particle
of a heavy quark and antiquark bound by the short-range
perturbative Coulomb potential. The first nonvanishing
chromodynamical multipole is then a dipole and quarko-
nium may interact with the nuclear environment via color
dipole-dipole van der Waals forces. For a recent discussion
of the relevant scales in the context of effective field
theories, see Ref. [28]. Initially, using phenomenological
interaction potentials, nucleon-charmonium binding ener-
gies ranging from 20 MeV [29,30] down to 10 MeV [31]
were estimated for nuclei consisting of A > 3 [29,31] and
A > 10 [30] nucleons. A first QCD-based estimate [32] for
the potential between quarkonium in the heavy quark limit
and a nucleus resulted in ϒ and J=ψ binding energies of a
few MeV and 10 MeV, respectively, possibly with large
relativistic and higher-order multipole corrections in the
charmonium case. This discussion of light nuclei hosting a

quarkonium state may have contributed to the suggestion of
quarkonium states that are embedded within light hadrons,
hadroquarkonia [22].
At present no (p)NRQCD lattice studies of baryon-

charmonium states exist. However, a few investigations
employing relativistic charm quarks have been carried out.
In Ref. [33], the ηc and J=ψ charmonia were scattered with
light pseudoscalar and vector mesons as well as with the
nucleon, in the quenched approximation with rather large
light quark mass values; the ratio Mπ=mρ ranged from 0.9
down to 0.68. Varying the lattice extent from L ¼ 1.6 fm
over 2.2 fm up to 3.2 fm, in this pioneering work scattering
lengths were extracted, indicating some attraction in all the
channels investigated. A similar study was performed in
Ref. [34], combining staggered sea with domain wall light
and Fermilab charm quarks; however, unusually small
scattering lengths were reported. Finally, a pseudoscalar
charmquark-antiquark pair was created alongwith a nucleon
and even with light nuclei by the NPLQCD Collaboration
[35]. In this work the binding energy reported for the nucleon
case was about 20 MeV, albeit at a rather large light quark
mass value, corresponding to Mπ ≈ 800 MeV, and for a
coarse lattice spacing a ≈ 0.145 fm. This value of the bind-
ing energy is consistent with some of the expectations for
charmonia in a nuclear environment discussed above.
Closest in spirit to the van der Waals interaction picture,

Kawanai and Sasaki [36] in a quenched study, again at
rather large pion masses, Mπ ≥ 640 MeV, computed a
charmonium-nucleon Bethe-Salpeter wave function.
Plugging this into a Schrödinger equation, a potential
between the charmonium and the nucleon was extracted,
indicating very weak attractive forces.
Here we will not assume a nonrelativistic light hadron of

massmH, whose dipole-dipole interaction with quarkonium
can be described by a potential. Instead, our light hadron is an
extended relativistic object. We also go beyond the point-
dipole approximation in the heavy quark sector by “pulling”
quark and antiquark apart by a distance r. We then determine
the modification of the interaction potential between the
heavy quark-antiquark pair, that we approximate as static
sources, induced by the presence of a light hadron. To be
more precise, we will consider the limit mQ ≫ mH,
mQ ≫ ΛQCD, whereΛQCD denotes a typical nonperturbative
scale of a fewhundredMeV, andv2 ≪ 1. Sincewe determine
the quark-antiquark potential, i.e., the matching function
between NRQCD and pNRQCD, nonperturbatively,mQv ∼
1=r does not need to bemuch larger thanΛQCD.However, we
neglect color octet contributions [26,27], whichmay become
significant at distances r≳ Λ−1

QCD.

III. STATIC POTENTIALS “INSIDE” HADRONS

We denote an interpolator creating a static fundamental
color charge Q at a position zþ r=2 and destroying it at a
position z − r=2 asQ†

rðzÞ. This will transform according to
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the fundamental 3 representation of the gauge group at zþ
r=2 and according to 3� at z − r=2 and hence it contains a
gauge covariant transporter connecting these two points
(usually a spatially smeared Schwinger line). The Wilson
loop can then be written as

hWðr; tÞi ¼ h0jQrT t=aQ†
r j0i; ð2Þ

where we assume rotational invariance is restored for
r ¼ jrj ≫ a, and T ¼ e−aH denotes the transfer matrix
connecting adjacent time slices.
Within the static approximation, there are different

strategies to investigate bound states containing a heavy
quark-antiquark pair and additional light quarks. One
method, which we are not going to pursue here, amounts
to creating a light hadron H containing either q̄q or qqq
along with the stringy QQ̄ state at equal Euclidean time.
The interpolator for creating a zero-momentum projected
tetra- or pentaquark state then has the form

Pr ¼
X
z

HðzÞQ†
rðzÞ: ð3Þ

Note that the creation interpolatorH of a hadronic state (as
well as Pr) will carry a spinor index, which we suppress.
The correlator of interest is now h0jPrT t=aPrj0i. Even
without summing over positions z this is automatically
projected onto zero momentum at source and sink as the
light hadron is tied in position space to the static quarks, see
Eq. (3). Numerous possibilities exist for where to spatially
place the light quarks relative to the heavy sources within
the interpolator Pr and how to transport and contract the
color such that the interpolator respects the correct gauge
transformation properties. This freedom can be exploited to
enhance the overlap of Prj0i with the physical state and
may also provide some insight into its internal structure.
Subsequent to a pioneering lattice study [37] of a light

qq pair bound in the above way to two static antitriplet
sources, quite a few simulations of a light qq̄ pair bound to
the string state created by Q†

r have also been carried out.
Such results exist both for a light quark-antiquark pair with
isospin I ¼ 1 [38–41] and I ¼ 0 [39,42]. In contrast, a
static quark-antiquark pair accompanied by three light
quarks has not been investigated on the lattice so far.
Instead of creating tetra- or pentaquark states containing

a heavy or static quark and the corresponding antiquark,
here we wish to “directly” address a particular picture of
such bound states, hadroquarkonium [21,22]. This will be
achieved by computing differences between the static
potential in the presence of a light hadron, relative to the
static potential in the vacuum. The former can be obtained
from the large Euclidean time decay of

hHjQrT t=aQ†
r jHi; ð4Þ

where jHi is the ground state that is destroyed by the zero-
momentum interpolator

H≡X
x

HðxÞ: ð5Þ

In order to evaluate the expectation value Eq. (4) we
create a hadronic state at time 0. We then let it propagate to
δt to achieve ground-state dominance. At this time we
create an additional quark-antiquark string by inserting a
(smeared) Wilson loop of time extent t, which terminates at
tþ δt. Finally, we destroy the light hadron at the time
tþ 2δt. Then

hHjQrT t=aQ†
r jHi ∝ lim

δt→∞

h0jHT δt=aQrT t=aQ†
rT δt=aHj0i

h0jHT ðtþ2δtÞ=aHj0i ;

ð6Þ

where we average over all spatial Wilson loop positions z
and light hadronic sink positions x. Zero-momentum
projection at the light hadronic source can be avoided,
due to the translational invariance of expectation values.
The correlator of interest is depicted in Fig. 1.
We can now define the potential in the background of the

hadron as

VHðrÞ ¼ − lim
t→∞

d
dt
lnhHjQrT t=aQ†

r jHi; ð7Þ

in analogy to Eqs. (1) and (2). In the end we will compute
differences

ΔVHðrÞ ¼ VHðrÞ − V0ðrÞ

¼ − lim
t→∞

d
dt
ln
hHjQrT t=aQ†

r jHi
h0jQrT t=aQ†

r j0i

¼ − lim
t→∞

d
dt
ln

hWðr; tÞCH;2ptðtþ 2δtÞi
hWðr; tÞihCH;2ptðtþ 2δtÞi ; ð8Þ

where the argument of the logarithm is simply the corre-
lator of a light hadronic two-point function with the Wilson
loop inserted, divided by the Wilson loop expectation value

ttδ tδ

r

FIG. 1. Graphical representation of the four-point correlation
function in the numerator of Eq. (6) for the example of a static
quark-antiquark pair at a distance r embedded in a baryon. Thin
blue lines correspond to light quark propagators and the black
rectangle to the Wilson loop.
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times the hadronic two-point function hCH;2ptðtþ 2δtÞi ¼
h0jHT ðtþ2δtÞ=aHj0i, see the denominator of Eq. (6).
We are now in the position to address the question within

what hadronic channels ΔVHðrÞ will be attractive and in
what cases repulsive. This may serve as an indicator for the
stability of related hadroquarkonia. In view of the recent
LHCb result [1,2] baryonic states jHi are particularly
interesting. For instance, adding the mass of the Δ to that
of the J=ψ gives 4329 MeV [43], which is not far away
from the mass of the Pcð4380Þ. Furthermore, JP ¼ 3=2þ
can couple to 1− to give 3=2−. Another example is the sum
of the nucleon (N) and χc2 masses, 4496 MeV, which is
close to the mass of the Pþ

c ð4450Þ. Again, 1=2þ and 2þ can
couple to JP ¼ 5=2þ.

IV. IMPLEMENTATION AND
TECHNICAL DETAILS

We analyse the Nf ¼ 2þ 1 ensemble “C101”, which
has a volume of 96 × 483 sites and was generated by the
Coordinated Lattice Simulations (CLS) effort [44] using
the openQCD simulation program [45,46]. Open boundary
conditions in time and nonperturbatively order-a-improved
Wilson fermions on top of the tree-level Symanzik improved
Wilson gauge action are employed, see Ref. [44] for details
on the simulation. To determine the lattice spacing we
extrapolate the scale parameter t0 [47] to the physical point,
where we obtain

ffiffiffiffiffiffi
8t0

p
=a ¼ 4.852ð7Þ [48]. Using the con-

tinuum limit result
ffiffiffiffiffiffi
8t0

p ¼ 0.4144ð59Þð37Þ fm [49] gives
a ¼ 0.0854ð15Þ fm. The pion and kaon masses on this
ensemble areMπ ≈ 223 MeV andMK ≈ 476 MeV, respec-
tively. Note that while the pion is heavier than in nature the
kaon is somewhat lighter since the sum of quark masses
2ml þms (ml ¼ mu ¼ md) was adjusted to a value close to
the physical one and kept constant within the main set of
CLS simulations [44]. The spatial lattice extent reads
L ≈ 4.6=Mπ ≈ 4.1 fm. For details see Ref. [48].
We analyse 1552 configurations, separated by four

molecular dynamic units. On each of these configurations
we place hadronic sources on 12 different time slices
(30; 43; 44;…; 52; 53; 65) at random spatial positions to
reduce autocorrelations. Due to the use of open boundary
conditions, we have to discard the boundary regions from
our analysis. After carefully checking for translational
invariance in time, we use forward and backward propa-
gating hadronic two-point functions for the 11 sources1

placed in the central region of the lattice but propagate only
forward from t0=a¼30 and backward from ðt − t0Þ=a ¼ 65.
This gives a total of 24 × 1552 two-point functions for each
light hadron and spin polarization considered. Since δt needs
to be kept small to obtain statisticallymeaningful results, the
quark propagators entering these two-point functions are

Wuppertal smeared at source and sink, using spatially
smeared gauge transporters, to improve the overlap with
the physical ground states.
We measure the Wilson loops using the publicly avail-

able WLOOP package [50], following the method described
in Ref. [51]. In a first step, all gauge links are smeared using
a single iteration of hypercubic (HYP) blocking [52].
Smearing the temporal links corresponds to a particular
discretization choice of the static action and results in an
exponential improvement of the signal-to-noise ratio of
correlators involving static quarks [53]; HYP links reduce
the coefficient of the divergent contribution to the self-
energy of a static quark [39,54–56]. In a second step we
construct a variational basis of Wilson loops using four
different levels (0,5,7,12) of HYP smearing restricted to the
three space dimensions.
To enable the construction of the correlators [Eq. (8)], we

separately average the Wilson loops for each direction of r,
pointing along one of the three spatial lattice axes, and for
different temporal positions. As detailed above, due to the
use of open boundary conditions, our hadronic two-point
functionsCH;2ptðtÞ are confined to the central time region of
the lattice. We checked that ratios of Wilson loop expect-
ation values, averaged over different temporal domains,
centered about the middle of the lattice, were statistically
consistent with 1. Furthermore, Eq. (8) was evaluated in two
ways, restricting theWilson loop average in the denominator
to the same time slices as the averaging performedwithin the
numerator as well as averaging the Wilson loop expectation
value in the denominator within the whole region where
boundary effects were negligible, from time slice 24 to 72.
The two results obtained for each quantity were statistically
compatible with each other and below we will make use of
the larger averaging region as this resulted in slightly smaller
statistical errors.
For the error analysis, we apply the standard method of

Ref. [57]. We include the reweighting factors due to
twisted-mass reweighting and the rational approximation
for the strange quark, see Ref. [46]. We checked that
carrying out a more conservative analysis, estimating the
effect of slow modes [58], only affects the errors in very
few cases and never by more than 30%.
The distance r between the static sources breaks the

continuum Oð3Þ symmetry down to the cylindrical sub-
group Oð2Þ ⊗ Z2 ¼ D∞h. Regarding fermionic represen-
tations, i.e., for baryons, the double cover is reduced
accordingly. In our implementation the static source-anti-
source distance r is kept parallel to lattice axes. This means
that the 48 element octahedral crystallographic group with
reflections Oh is reduced to its 16 element subgroup D4h
(and its double cover O0

h to Dih4 ⊗ Dih1). Therefore,
when correlating hadrons with a continuum spin assign-
ment J ≥ 1 with the string state in the Σþ

g irreducible
representation (irrep) of D∞h (A1g of D4h on the lattice),
care has to be taken to construct the adequate irrep of the

1On time slice 47 two different spatial source positions
were used.
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cylindrical group. Below we address the continuum sit-
uation but we have checked that the same arguments hold
regarding the lattice irreps that we use. In the case of vector
mesons, for example, the ϕ meson, the 1− Oð3Þ irrep will
split into Πu and Σþ

u , the latter also appearing in the
pseudoscalar channel. To block out this undesired contri-
bution, we need to correlate a Wilson loop with r pointing
in the z direction with the vector state destroyed by a
polarized interpolator ðϕx þ iϕyÞ=

ffiffiffi
2

p
. We average over

cyclic permutations of x, y, and z. The decuplet baryon
interpolator we use, for example for the Δ baryon, gives a
state maximally polarized in the z direction. This then has
to be correlated with a Wilson loop pointing in the z
direction too, to guarantee Λ ¼ jJzj ¼ 3=2 and to avoid
mixing with spin-1=2 baryonic states. In this case we only
used one polarization and therefore we cannot exploit
averaging over different directions.

V. NUMERICAL RESULTS

Our strategy for testing the hadroquarkonium picture is
to determine the potential between two static quarks in the
vacuum and to compare this with its counterpart in the
presence of a hadron. An energetically favorable difference
may signal a tendency of the system to bind. In Sec. VAwe
discuss the quality of our light hadronic effective masses
and in Sec. V B we determine the potential in the vacuum,
before moving on to Sec. V C where we investigate
the modifications induced by the presence of hadrons.
We delay the discussion of the phenomenological conse-
quences to Sec. VI.

A. Light hadronic effective masses

In the determination of ΔVHðrÞ below we will quote the
δt ¼ δtopt ¼ 5a ≈ 0.43 fm estimates as our final results.
With this δt value, the fit in t to the right-hand side of Eq. (8)
is dominated by data with t ≤ tmax ¼ 10a. Therefore, the
hadronic effective masses

mH;effðtþ a=2Þ≡ a−1 ln
CH;2ptðtÞ

CH;2ptðtþ aÞ ð9Þ

should ideally exhibit plateaus for t ≪ tmax þ 2δtopt ¼
20a ≈ 1.7 fm. We wish to check whether this is the case
within the given statistics and for the quark smearing that we
employ.
In Fig. 2 we display effective masses for some repre-

sentative hadrons, namely the K�, the nucleon N, and the
cascades Ξ and Ξ�, together with one-exponential fits to
the plateau region. This region was determined from the
requirement that the contribution of the second exponent of
a two-exponential fit to data starting at t ¼ 3a amounted to
less than 25% of the error of the correlation function. Using
this criterion, indeed, in almost all the cases the plateau
starts at t < 10a ¼ 2δtopt ¼ ðtmax þ 2δtoptÞ=2. One of the

few exceptions, that may very well be due to a statistical
fluctuation, is the Ξ shown in the figure. We conclude that
the ground-state overlap achieved for the light hadrons is
sufficient for our purposes.

B. The static potential in the vacuum

As described in Sec. IV, we determine the static
potential, V0ðrÞ, from a variational procedure applied to
a matrix of correlation functions consisting of spatially
smeared Wilson loops. In Fig. 3, we show the physical
quantity, V0ðrÞ − V0ð

ffiffiffiffiffiffi
8t0

p Þ, where the subtraction ensures
that the self-energies of the static quarks are removed. The
value of V0ðrÞ at r ¼ ffiffiffiffiffiffi

8t0
p

was obtained from a local
interpolation, cf. Ref. [59]. For later use we also performed
a fit to the Cornell parametrization [60]

V0ðrÞ ¼ μ −
c
r
þ σr; ð10Þ

FIG. 2. Effective masses Eq. (9), extracted from various
hadronic two-point functions, together with results from one-
exponential fits (shaded regions).
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FIG. 3. The quantity V0ðrÞ − V0ð
ffiffiffiffiffiffi
8t0

p Þ, where V0ðrÞ denotes
the static quark-antiquark potential in the vacuum, together with
the Cornell fit Eq. (10).
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where μ denotes a constant offset (that diverges in the
continuum limit), σ is the string tension, and the Coulomb
coefficient reads c ¼ 4αs=3 at tree level. The fit with the
parameter values,

μ ¼ 0.721ð14Þ GeV; c ¼ 0.468ð14Þ;
σ ¼ 0.906ð16Þ GeV=fm; ð11Þ

where we used a ¼ 0.0854 fm, is also shown in the figure.
To ensure that our results are not tainted by the breaking

of the “string” between the static quarks, we only consider
the static potential up to ∼1.2 fm ≈ 14a, the distance
for which string breaking is expected to occur [39,61].
At larger distances, the phenomenological parametrization
Eq. (10) is no longer valid and additional interpolating
operators would be required to extract the true ground
state. From the static potential, we compute the static
force F ¼ V 0ðrÞ and determine the Sommer scale [62],
r0 ≈ 0.5 fm, from the equation r2FðrÞjr¼r0 ¼ 1.65,
obtaining r0=a ¼ 5.890ð41Þ. We determine r0 from a local
interpolation of the static force as it is explained in [51].
Indeed, at our lattice spacing and quark mass val-
ues, r0 ≈ 5.89a ≈ 5.89 × 0.0854 fm ≈ 0.50 fm.

C. The static potential within a hadron

We now determine how the presence of a hadron alters
the static potential. As discussed in Sec. III, we compute
correlation functions

CHðr; δt; tÞ ¼
hWðr; tÞCH;2ptðtþ 2δtÞi
hWðr; tÞihCH;2ptðtþ 2δtÞi ; ð12Þ

wherewe average over the spatial Wilson loop and hadronic
sink positions, for different hadronsH. For sufficiently large
values of t and for fixed values of r and δt, we can extract
the difference between the static potential in the presence

of the hadron, VHðr; δtÞ →
δt→∞

VHðrÞ, and the vacuum static
potential,V0ðrÞ, from the exponential decay of this function
in Euclidean time,

ΔVHðr; δtÞ≡ VHðr; δtÞ − V0ðrÞ

¼ − lim
t→∞

d
dt
ln½CHðr; δt; tÞ�: ð13Þ

As the clover term that appears within the fermionic action
extends one unit in time and we have also applied one level
of four-dimensional HYP smearing to the Wilson loop, we
only consider δt ≥ 2a. In practice, we obtain statistically
meaningful results for δt≲ 8a, and in some channels even
larger values are possible. Note that within Eq. (12) no
variational optimization is performed but we restrict our-
selves to our highest level of 12 spatial HYP smearing
iterations for the Wilson loops.

For a given hadron and for each combination of r and δt,
we perform linear fits in t to ln½Cðt; δt; tÞ� within the
effective energy plateau range. For examples see Figs. 4
and 5, where we display effective energies for the cascade
and the nucleon, respectively, for r ¼ 6a ≈ 0.51 fm and
δt ¼ 5a, together with the results of the corresponding fits.
The errors are determined following Ref. [57]. Below we
will assign an additional systematic error to our results from
varying the fit range.
We will approximate ΔVHðrÞ by ΔVHðr; δt ¼ 5aÞ. The

functional form is well described by the Cornell para-
metrization

ΔVHðrÞ ¼ ΔμH −
ΔcH
r

þ ΔσHr: ð14Þ

The errors on the fit parameters ΔμH, ΔcH, and ΔσH which
we will quote below will be indicative, since they only take
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FIG. 4. Effective energy for ΔVΞðr ¼ 6a; δt ¼ 5aÞ, defined in
Eqs. (12) and (13), as a function of t. For the definition of
effective energies, see Eq. (9). The error band shows our estimate
for ΔVðr; δtÞ, obtained from a linear fit to lnCHðr; δt; tÞ.
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FIG. 5. The same as in Fig. 4 for the nucleon.
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into account the statistical errors of ΔVH and neglect their
correlations. Below we summarize our results for the
hadron H being a pseudoscalar or vector meson, a
positive-parity octet or decuplet baryon, and a negative-
parity baryon, respectively.
Note that the ρ and K� mesons as well as the negative-

parity baryons are not stable for our light quark mass value
and lattice volume. However, using only quark-antiquark
and three-quark interpolators, we are unable to detect their
decays into pairs of p-wave pions, pion plus kaon, and
s-wave pion plus positive-parity baryon, respectively. As
we see effective energy plateaus, we also quote results for
these channels. Clearly, this needs to be digested with some
caution. We also note that the disconnected quark line
contribution was neglected for the ϕ meson.

1. Mesons

Several hidden charm resonances such as the Yð4260Þ
have been interpreted as tightly bound quarkonium states,
embedded within light mesonic matter [21,22]. Here we
follow the procedure described above to calculate the
modification of the static potential, ΔVHðr; δtÞ, for several
light mesons.
In Figs. 6, 7, 8, and 9, we show our determinations for

the π, K, K⋆, and ϕ mesons, respectively, where the color
coding corresponds to different values of δt which are
displaced horizontally in the plots for clarity.
In all the cases we find ΔVHðr; δtÞ < 0. When consid-

ering the dependence on the spatial distance between the
static sources, we observe a similar pattern for all the
mesons; the modification of the static potential becomes
more pronounced toward large distances r. For distances up
to about 0.3 fm, we generally find jΔVHðr; δtÞj ≲ 1 MeV,
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FIG. 6. The modification to the static potential in the presence
of a pion, ΔVπðr; δtÞ. The color coding corresponds to different
values of δt as indicated in the legend, where the leftmost point
within a group corresponds to δt ¼ 2a. The curve shown is the
result of a fit of the δt ¼ 5a data to Eq. (14).
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FIG. 7. The same as in Fig. 6 for the kaon.
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FIG. 8. The same as in Fig. 6 for the K⋆ meson.
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FIG. 9. The same as in Fig. 6 for the ϕ meson.
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and at our largest shown distance of about 0.7 fm, we
always find jΔVHðr; δtÞj≲ 4 MeV. The values of ΔVHðrÞ
should be determined from the extrapolation δt → ∞. In
practice we find that all results for δt≳ 3a agree. The
numbers obtained for δt ¼ 5a represent a compromise
between a value of δt as large as possible and a reasonable
signal-to-noise ratio. These should be considered as our
final results and are displayed in Table I.
Our data are well described by the parametrization given

in Eq. (14). The resulting fit parameters for the different
mesons are displayed in Table II and the corresponding
curves are also shown in the figures. Note that, although the
fit parameters appear to indicate a somewhat different
behavior for the ρ meson, the data points alone, which
are displayed in Table I, do not show any statistically
significant deviation.
We will take the analysis one step further in Sec. VI.

However, taking the above results at face value, we can
already make two interesting observations. The first one is
that, for identical valence quark content, there is no differ-
ence between the tendency of light pseudoscalars, such as
the pion or the kaon, and vector mesons, such as the ρ or the
K⋆, to bindwith quarkonium. The second observation is that
there appears to be little or no difference increasing or
decreasing the strangeness of the light mesonic matter.

2. Positive-parity baryons

We now turn our attention to modifications of the static
potential in the presence of a positive-parity octet
(JP ¼ 1=2þ) or decuplet (JP ¼ 3=2þ) baryon. As explained
at the end of Sec. IV, in the latter case we are restricted to

employing a particular polarization to avoid mixing with
J ¼ 1=2 states. In our case we project onto Jz ¼ 3=2 with
respect to the z axis. We remark that embedding charmo-
nium states within baryons of vanishing strangeness could

TABLE I. Values of the difference in the static potential for the mesons, measured at δt ¼ 5a. Errors are statistical and systematic,
respectively.

r=a ΔVπ (MeV) ΔVK (MeV) ΔVρ (MeV) ΔVK⋆ (MeV) ΔVϕ (MeV)

1 −0.16ð3Þð1Þ −0.10ð3Þð1Þ −0.07ð6Þð5Þ −0.11ð3Þð3Þ −0.08ð2Þð3Þ
2 −0.40ð8Þð4Þ −0.24ð8Þð3Þ −0.17ð17Þð20Þ −0.27ð8Þð7Þ −0.22ð7Þð6Þ
3 −0.80ð16Þð19Þ −0.53ð14Þð09Þ −0.29ð33Þð56Þ −0.50ð17Þð08Þ −0.49ð16Þð9Þ
4 −1.21ð26Þð30Þ −0.91ð24Þð18Þ −0.46ð52Þð1.03Þ −0.78ð28Þð21Þ −0.85ð26Þð22Þ
5 −1.71ð40Þð56Þ −1.43ð37Þð27Þ −0.67ð73Þð1.24Þ −1.22ð41Þð45Þ −1.39ð38Þð49Þ
6 −2.24ð61Þð71Þ −2.02ð51Þð45Þ −1.33ð96Þð2.09Þ −1.91ð55Þð83Þ −2.09ð52Þð80Þ
7 −2.73ð80Þð86Þ −2.66ð68Þð71Þ −2.03ð1.20Þð3.19Þ −2.48ð67Þð1.36Þ −2.78ð66Þð1.38Þ
8 −3.27ð1.06Þð63Þ −3.40ð89Þð1.02Þ −2.77ð1.46Þð4.75Þ −3.15ð84Þð2.24Þ −3.43ð84Þð2.10Þ

TABLE II. Fit parameters for the difference of the potential for
the mesons, see Eq. (14).

Meson H ΔμH (MeV) ΔcHð10−4Þ ΔσH (MeV/fm)

π 0.858(39) 2.30(13) −5.75ð11Þ
K 1.167(15) 3.34(52) −5.82ð42Þ
ρ 2.28(38) 6.62(1.31) −10.19ð1.02Þ
K⋆ 1.38(16) 4.10(59) −6.47ð46Þ
ϕ 1.45(12) 4.18(42) −6.67ð32Þ
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FIG. 10. The same as in Fig. 6 for the positive-parity nucleon.
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FIG. 11. The same as in Fig. 6 for the positive-parity cascade.
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be an interpretation of the “pentaquark” structures that were
recently reported by the LHCb Collaboration [1,2]; for
examples see the last paragraph of Sec. III.
In Figs. 10, 11, 12, and 13 we show ΔVHðr; δtÞ for the

nucleon, the cascade Ξ, the Δ, and the decuplet cascade
Ξ�, respectively. Again, in all the cases we observe
ΔVHðr; δtÞ < 0. The results for the positive-parity baryons
are collected in Table III and are very similar to the values
discussed above for the pseudoscalar and vector mesons.
Note, however, that the errors of ΔV in the presence of
decuplet baryons become rather large. In particular, this is

so for the Δ, which is why in this case we only show the
data up to δt ¼ 5a. The Cornell fit parameters [Eq. (14)] are
displayed in Table IV.

3. Negative-parity baryons

The modification of the potential in the presence of
negative-parity baryons appears statistically consistent to
the positive-parity case; however, due to the much larger
statistical errors, we cannot exclude a more rapid decrease
of ΔVHðrÞ as a function of r. As examples we show in
Figs. 14, 15, and 16 the results for the negative-parity
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FIG. 12. The same as in Fig. 6 for the positive-parity Δ baryon.
The subscript z of the baryon label refers to the projection along
the Z axis Jz ¼ 3=2, ensuring no mixing with JP ¼ 1=2þ states
takes place.
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FIG. 13. The same as in Fig. 12 for the positive-parity
Ξ⋆ baryon.

TABLE III. Values of the difference in the static potential for the positive-parity baryons, measured at δt ¼ 5a.

r=a ΔVNð1=2þÞ (MeV) ΔVΣð1=2þÞ (MeV) ΔVΛð1=2þÞ (MeV) ΔVΞð1=2þÞ (MeV)

1 −0.24ð8Þð13Þ −0.12ð3Þð10Þ −0.24ð4Þð5Þ −0.12ð3Þð5Þ
2 −0.58ð19Þð33Þ −0.32ð9Þð20Þ −0.60ð10Þð15Þ −0.33ð8Þð9Þ
3 −1.12ð41Þð68Þ −0.67ð20Þð38Þ −1.12ð22Þð29Þ −0.72ð18Þð15Þ
4 −1.40ð63Þð72Þ −1.22ð32Þð33Þ −1.64ð35Þð28Þ −1.25ð30Þð22Þ
5 −1.99ð91Þð67Þ −2.03ð49Þð54Þ −2.49ð60Þð46Þ −1.93ð44Þð40Þ
6 −2.73ð1.05Þð1.08Þ −2.87ð68Þð91Þ −3.21ð80Þð59Þ −2.67ð61Þð51Þ
7 −3.93ð1.35Þð1.53Þ −3.62ð90Þð1.08Þ −4.19ð1.00Þð1.30Þ −3.54ð78Þð1.00Þ
8 −5.48ð1.67Þð2.28Þ −4.40ð1.16Þð1.47Þ −5.34ð1.23Þð1.84Þ −4.63ð1.01Þð1.80Þ

ΔVΔð3=2þÞ (MeV) ΔVΣ⋆ð3=2þÞ (MeV) ΔVΞ⋆ð3=2þÞ (MeV) ΔVΩð3=2þÞ (MeV)

1 −0.50ð28Þð46Þ −0.23ð9Þð7Þ −0.18ð6Þð5Þ −0.15ð4Þð5Þ
2 −0.65ð66Þð58Þ −0.49ð24Þð13Þ −0.47ð14Þð20Þ −0.40ð10Þð16Þ
3 −0.01ð2.43Þð1.29Þ −1.27ð52Þð31Þ −1.04ð29Þð48Þ −0.91ð22Þð40Þ
4 −1.68ð2.22Þð1.22Þ −1.96ð84Þð45Þ −1.53ð46Þð72Þ −1.45ð37Þð70Þ
5 −2.18ð3.20Þð3.04Þ −3.27ð1.18Þð65Þ −2.12ð67Þð99Þ −2.07ð53Þð1.22Þ
6 −2.91ð4.26Þð3.64Þ −5.33ð2.81Þð1.65Þ −3.47ð1.50Þð1.04Þ −3.31ð1.00Þð1.41Þ
7 −1.99ð5.75Þð2.12Þ −5.41ð2.09Þð1.86Þ −5.76ð1.90Þð1.87Þ −5.70ð1.23Þð2.24Þ
8 9.48(15.3)(11.4) −6.14ð2.79Þð2.02Þ −7.08ð2.53Þð3.02Þ −7.35ð1.66Þð3.37Þ
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partners of the nucleon, the cascade, and the decuplet
cascade, respectively. The corresponding numerical values
for δt ¼ 5a are displayed in Table V and the Cornell fit
parameters in Table VI.

4. Summary

Regardless of meson or baryon, spin, strangeness, or
parity, the modifications of the static potential are well
described by the parametrization Eq. (14), with the main
effects being a reduction of the linear slope and increases of
the Coulomb coefficient c and of the offset μ. All data are
consistent with a decrease of the static potential at the
distance r ¼ 0.5 fm by about 2–3 MeV.
For r > 0.7 fm the statistical errors grow substantially

as a result of the deteriorating signal-to-noise ratio.
Fortunately, larger distances exceed the size both of
charmonium and of the hosting hadron and will not
be relevant for the discussion of Sec. VI below. However,
one may wonder if the reduction persists. In Fig. 17 we
show the data for the pion, the kaon, the nucleon, and the
cascade up to r ≈ 1.2 fm, a distance around which string
breaking will occur [39,61]. The decrease of the slope
appears to be robust and all large distance data points are
consistent with our parametrizations. However, for the
more compact pseudoscalar mesons and in particular the
kaon the data suggests that above r ≈ 0.8 fm some
saturation may set in.

VI. MODIFICATION OF CHARMONIUM
BINDING ENERGIES

We have investigated how the static quark-antiquark
potential changes in the presence of a light hadron. This is a
well-defined observable and the results by themselves are
already interesting. However, we wish to go one step
further and address possible phenomenological conse-
quences. We start with a few words of caution. When it
comes to charmonia (and even for bottomonia), relativistic
corrections are not small. Moreover, baryons are not
particularly light in comparison to the charm quark.
Therefore, for charmonia it may be doubtful if their effect

TABLE IV. Fit parameters for the difference of the potential for
the positive-parity baryons, see Eq. (14).

Baryon H ΔμH (MeV) ΔcHð10−4Þ ΔσH (MeV/fm)

Nð1=2þÞ 1.17(37) 3.21(1.30) −7.83ð97Þ
Σð1=2þÞ 1.62(21) 4.63(73) −7.99ð60Þ
Λð1=2þÞ 1.28(20) 3.46(69) −8.49ð57Þ
Ξð1=2þÞ 1.54(19) 4.32(75) −7.81ð55Þ
Δð3=2þÞ −0.99ð1.75Þ −2.22ð6.16Þ −0.10ð4.77Þ
Σ⋆ð3=2þÞ 2.15(37) 6.14(1.30) −11.38ð1.01Þ
Ξ⋆ð3=2þÞ 1.74(36) 4.90(1.41) −9.40ð1.03Þ
Ωð3=2þÞ 2.34(49) 6.77(1.68) −11.02ð1.41Þ
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FIG. 14. The same as in Fig. 6 for the negative-parity nucleon.
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FIG. 15. The same as in Fig. 6 for the negative-parity cascade.
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FIG. 16. The same as in Fig. 12 for the negative-parity Ξ⋆
baryon.
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can be completely integrated out in a Born-Oppenheimer or
adiabatic spirit and put into the quark-antiquark interaction
potential. This is less of a problem for the pion and the kaon
since MK=mc and Mπ=mc are of similar sizes as the
squared velocity v2 ∼ 0.3. In what follows, we will neglect
these effects.
We start from the Schrödinger equation

�
−
∇2

mc
þ EHðrÞ

�
ψ ðHÞ
nL ðr; θ;ϕÞ ¼ MðHÞ

nL ψ ðHÞ
nL ðr; θ;ϕÞ; ð15Þ

where the reduced mass is mc=2 and

EHðrÞ ¼ 2ðmc − δmÞ þ VHðrÞ ð16Þ

¼ 2mc þ v0 þ ΔμH −
cH
r
þ σHr: ð17Þ

In the second step, we have assumed the Cornell
parametrization given by Eqs. (10) and (14), where we

set cH ¼ cþ ΔcH and σH ¼ σ þ ΔσH. The parameters
ΔμH, ΔcH, and ΔσH specify the modifications of the
constant, the Coulomb, and the linear terms, respectively,
obtained from the Cornell fits to ΔVHðrÞ ¼ VHðrÞ − V0ðrÞ
carried out in the previous section.
The Cornell parametrization is not valid at large dis-

tances due to string breaking effects [39,61] or at small
distances where one would expect the coefficient cH to run
with the scale r. However, we are only interested in mass

differences ΔMðHÞ
nL ¼ MðHÞ

nL −Mð0Þ
nL between a charmonium

state with radial and angular momentum quantum numbers
n and L respectively, in the presence of a hadronH, relative

TABLE VI. Fit parameters for the difference of the potential for
the negative-parity baryons, see Eq. (14).

Baryon H ΔμH (MeV) ΔcHð10−4Þ ΔσH (MeV/fm)

Nð1=2−Þ −10.18ð6.43Þ −3.50ð22.58Þ 5.39(17.46)
Σð1=2−Þ 1.88(83) 4.84(2.91) −16.89ð2.26Þ
Λð1=2−Þ −0.77ð3.51Þ −5.03ð12.61Þ −16.92ð8.93Þ
Ξð1=2−Þ 4.74(1.18) 14.21(4.11) −20.93ð3.25Þ
Δð3=2−Þ −23.1ð27.6Þ −69.34ð96.85Þ 94.8(76.2)
Σ⋆ð3=2−Þ −0.853ð3.26Þ −12.11ð11.90Þ −30.3ð7.22Þ
Ξ⋆ð3=2−Þ −0.23ð1.25Þ −4.37ð4.59Þ −8.92ð2.61Þ
Ωð3=2−Þ −0.47ð62Þ −1.92ð2.18Þ −0.99ð1.67Þ

TABLE V. Values of the difference in the static potential for the negative-parity baryons, measured at δt ¼ 5a.

r=a ΔVNð1=2−Þ (MeV) ΔVΣð1=2−Þ (MeV) ΔVΛð1=2−Þ (MeV) ΔVΞð1=2−Þ (MeV)

1 −1.73ð91Þð43Þ −0.68ð50Þð77Þ −1.09ð48Þð95Þ −0.31ð26Þð29Þ
2 −4.19ð2.30Þð1.74Þ −1.46ð1.27Þð1.61Þ −2.59ð1.24Þð1.92Þ −0.60ð69Þð51Þ
3 −8.43ð5.48Þð4.19Þ −2.93ð2.59Þð3.16Þ −5.31ð2.69Þð3.68Þ −1.13ð1.41Þð58Þ
4 −12.27ð7.53Þð5.25Þ −5.12ð4.06Þð4.76Þ −8.08ð4.12Þð6.48Þ −3.29ð2.28Þð2.08Þ
5 −12.67ð11.4Þð9.74Þ −6.21ð6.01Þð6.09Þ −12.1ð6.15Þð10.1Þ −5.28ð3.32Þð3.80Þ
6 1.11(12.7)(22.9) −5.80ð8.06Þð5.20Þ −14.2ð6.43Þð9.63Þ −8.93ð4.61Þð6.57Þ
7 4.55(18.7)(31.8) −7.29ð10.2Þð5.93Þ −7.36ð6.80Þð7.91Þ −9.16ð5.75Þð6.29Þ
8 0.88(24.8)(35.4) −9.12ð12.9Þð7.14Þ −3.93ð8.81Þð19.5Þ −6.65ð7.10Þð5.83Þ

ΔVΔð3=2−Þ (MeV) ΔVΣ⋆ð3=2−Þ (MeV) ΔVΞ⋆ð3=2−Þ (MeV) ΔVΩð3=2−Þ (MeV)

1 0.98(7.20)(1.66) −0.70ð1.22Þð0.28Þ 0.01(28)(25) −0.11ð20Þð10Þ
2 0.07(16.7)(7.52) −3.74ð4.87Þð1.49Þ −1.72ð1.52Þð1.02Þ −0.46ð47Þð13Þ
3 0.97(29.2)(16.1) −8.06ð5.46Þð3.29Þ −2.47ð2.17Þð1.57Þ −0.64ð96Þð55Þ
4 49.3(64.4)(7.60) −13.8ð8.48Þð3.86Þ −2.47ð1.79Þð0.83Þ −0.48ð1.50Þð1.30Þ
5 35.8(95.8)(12.5) −12.6ð6.80Þð12.6Þ −3.26ð2.48Þð3.05Þ 0.01(2.11)(2.11)
6 56.9(96.8)(17.2) −11.0ð32.4Þð4.25Þ −4.35ð3.19Þð5.40Þ −0.46ð2.87Þð2.76Þ
7 1.41(132.0)(34.6) −8.06ð42.7Þð9.71Þ −6.06ð3.99Þð5.70Þ −1.62ð3.73Þð2.77Þ
8 −25.6ð160.0Þð49.7Þ −21.5ð13.2Þð11.9Þ −8.09ð4.90Þð6.33Þ −3.33ð4.77Þð3.23Þ

FIG. 17. The difference in the static potential for the pion, the
kaon, and the positive-parity nucleon and cascade, measured at
δt ¼ 5a, up to a distance of 1.2 fm. The curves correspond to the
parametrization Eq. (14) with the parameters (obtained by fitting
the r < 0.7 fm data points) displayed in Tables II and IV.
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to the same state in the vacuum. We expect such corrections
to affect both masses in similar ways, and therefore to
cancel from these differences. The coefficients ΔμH, cH,
and σH are taken from the fits performed in the previous
section, while the mass parameter mc and the offset v0 ¼
μ − 2δm have to be fixed by matching the energy levels

MnL ¼ Mð0Þ
nL , obtained from solving the above Schrödinger

equation, to experiment.
Due to the approximations made, our discussion can

only be qualitative and hence we neglect our statistical and
systematic uncertainties. The central values for the param-
eters from the Cornell fit to the static potential in the
vacuum read [see also Eq. (11)]

σ ¼ 0.0335a−2 ≈ ð423 MeVÞ2; c ¼ 0.468: ð18Þ

Numerically solving the Schrödinger equation and adjust-
ing mc and v0 so that we reproduce the spin-averaged 1S
and 2S charmonium levels, we find

mc ¼ 1269 MeV; v0 ¼ 113 MeV: ð19Þ

From Table VII, we see that the above parameters indeed
reproduce the experimental 1S and 2S levels; however, we
underestimate the 1P mass by 42 MeV. This is due to a
combination of overestimating the value of the wave
function at the origin, as we neglected running coupling
effects, and relativistic corrections [63]; within our approx-
imations, it is not possible to simultaneously reproduce all
spin-independent mass splittings within an accuracy better
than about 10%.
A negative value of ΔMðHÞ

nL means that embedding a
charmonium state within the hadron H is energetically
favorable, which we interpret as attraction. Unlike in the
hydrogen case, the potential is only bound from above by
the DD̄ threshold and so it may not be entirely obvious

whether a negative ΔVHðrÞ results in a positive or a
negative shift of the charmonium mass. On one hand, a
lower VH results in a lower EH and therefore in a smaller

MðHÞ
nL mass. On the other hand, the slope is reduced,

resulting in a more extended and less strongly bound wave
function.
Before numerically solving the Schrödinger equation we

investigate a toy model with a purely linear potential
VðrÞ ¼ σr. The virial theorem then gives a kinetic energy

2hTi ¼ hrdV=dri ¼ σhri ¼ 2M − 2σhri; ð20Þ

where we used M ¼ hTi þ hVi ¼ hTi þ σhri. This
means that hri ¼ 2M=ð3σÞ. The Feynman-Hellmann theo-
rem then gives

∂M
∂σ ¼

�∂H
∂σ

�
¼ hri ¼ 2M

3σ
; ð21Þ

i.e.

ΔMðHÞ ¼ ðσH − σÞ∂M∂σ
����
σ¼σ0

¼ 2σH
3σ0

Mð0Þ; ð22Þ

whereMðHÞ ¼ MðσHÞ. Therefore, we expect the part of the
mass which is due to the interaction,M − 2ðmc − δmÞ, to be
lowered by a factor 2σH=ð3σÞ, which for our data typically
amounts to about 0.4%. As we have neglected Coulomb
interactions, we should also neglect the self-energy δm.
Then, using themc value of Eq. (19) andM1S ¼ 3069 MeV,
this difference gives 530MeV. So, for the 1S state, we expect

an attraction ΔMðHÞ
1S ≈ −2 MeV. Using the experimental

1P–1S and 2S–1S differences lowers this to ΔMðHÞ
1P ≈

−3.9 MeV and ΔMðHÞ
2S ≈ −4.5 MeV, respectively.

We now solve the Schrödinger equation numerically for
the mesons and for some of the positive-parity baryons,
using the parameter values of Eqs. (18) and (19), together
withΔμH,ΔcH, andΔσH obtained from the fits toΔVHðrÞ,
see Tables II and IV. The results are collected in Table VII.
Indeed, the masses in all the channels shown are lowered by
amounts that are in qualitative agreement with the consid-
erations from the virial and Feynman-Hellmann theorems
above, and the effect becomes larger for spatially more
extended charmonia. Note that the potentials for the ρ
meson and the Δ baryon have relatively large errors.
Therefore, the resulting mass shifts statistically agree with
those shown for the K� and the Ξ�, respectively.
In Ref. [35], a charmonium-nucleon bound state energy

of −20 MeV was reported—a factor of 8 larger than our
result. The light quark mass employed in that study was
approximately 13 times larger than the one we use here.
However, as one can see from Table VII, if we replace the
nucleon by the cascade that contains two strange quarks,
which are 8 times heavier than our light quark, the binding

TABLE VII. Masses and mass differences of spin-averaged
states in MeV taken from experiment [43] and from solving the
Schrödinger equation using the Cornell parametrization of our
lattice results.

Mass/Mass difference 1S (MeV) 1P (MeV) 2S (MeV)

MnL (experiment) 3068.6 3525.3 3674.4
MnL (Schrödinger) 3068.6 3483.3 3674.4
ΔMðπÞ −1.7 −3.1 −4.0
ΔMðKÞ −1.5 −2.9 −3.8
ΔMðρÞ −2.5 −4.9 −6.5
ΔMðK�Þ −1.6 −3.2 −4.2
ΔMðϕÞ −1.6 −3.2 −4.3
ΔMðNÞ −2.4 −4.3 −5.5
ΔMðΞÞ −2.0 −3.9 −5.1
ΔMðΔÞ −0.9 −1.0 −1.0
ΔMðΞ�Þ −2.6 −4.8 −6.3
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appears to become even weaker, albeit by a statistically
insignificant difference.
We found that, within the approximations made, the

binding of the charmonium 1S state becomes stronger by
values ranging from −1 MeV to −2.5 MeV. For the 2S
state this effect increases to −1 MeV to −6.5 MeV. Such
estimates will be more reliable for bottomonia where
relativistic and mH=mb corrections are smaller. However,
these states are also less extended spatially and V0ðrÞ is
most strongly modified towards large distances. This means
that the mass shifts induced by the presence of a light
hadron will be even smaller in the bottomonium case since
charmonium and bottomonium binding energies ∼mQv2

are of similar sizes.

VII. SUMMARY AND OUTLOOK

Studying charmonium resonances above strong decay
thresholds poses a considerable challenge to lattice QCD.
In most cases not only radial excitations of the charm
quark-antiquark system need to be resolved but also several
decay channels open up, at least near the physical values of
the light quark mass. Some of the relevant thresholds
involve the scattering of three and more hadrons. In this
case even the required methodology is under active devel-
opment—for recent progress in this direction, see
Refs. [64–69]. In view of this, testing specific models or
making assumptions in certain limiting cases represents a
viable alternative and may provide at least some first-
principles insight into the nature of exotic bound states
containing hidden charm.
Here we have investigated in the heavy quark limit the

hadro-quarkonium picture [22], which assumes quarko-
nium can be bound inside the core of a light hadron. We
employed a single CLS [44] ensemble with Nf ¼ 2þ 1
flavors of nonperturbatively order-a-improved Wilson
quarks at a lattice spacing a ≈ 0.085 fm. The pion and
kaon masses are approximately 223 MeV and 476 MeV,
respectively; i.e., the light quark mass is by a factor of about
2.7 larger than in nature. Our approach for testing this
picture was first to determine the potential between a pair of
static sources, approximating a heavy quark-antiquark pair,
in the absence of the hadron. Assuming the nonrelativistic
limit, the Schrödinger equation can then be solved with this
potential in order to obtain (spin-averaged) quarkonium
energy levels. This approach can be extended systemati-
cally, adding v2 corrections, to include heavy quark spin
and momentum dependent effects [70–75]. Making the
additional assumption that the heavy quark mass is much
larger than the mass of the light hadron, the effect of the
light hadron onto the quarkonium can also be integrated out
adiabatically and cast into the quark-antiquark interaction
potential.
We calculated such potentials in the background of a

hadron H for a variety of pseudoscalar and vector mesons,
octet and decuplet baryons, and their negative-parity

partners. Of particular interest are the differences
ΔVHðrÞ, relative to the potential in the vacuum. Solving
the Schrödinger equation with the modified potential and
comparing the outcome to the results obtained in vacuo
provides an indication of the strength of the binding
between the host hadron and the quarkonium, at least in
the heavy quark limit. In principle this approach can also be
extended, including mass-dependent corrections and inter-
actions between the spins of the hadron and the heavy
quarks. As the effects we detected were quite small, we
have, however, no immediate plans of pursuing this line of
research.
Resolving very small energy differences was possible by

employing a large number of sources on 1552 gauge
configurations, corresponding to over 6000 molecular
dynamics units of the hybrid Monte Carlo algorithm.
For all the light mesons, namely the π, K, ρ, K⋆, and ϕ,
as well as the baryons we considered, namely the N, Σ, Λ,
Ξ,Δ, Σ�, Ξ�, andΩ of both parities, we foundΔVHðrÞ < 0,
suggesting a tendency to bind. The main effect could be
quantified as a reduction of the linear slope of the potential.
At a distance of 0.5 fm the potential was lowered by only
2–3 MeV for all these hadrons. Increasing the strangeness
resulted in smaller statistical errors but differences between
the investigated hadrons were not significant. Translating
the modification of the potential into energy levels by
solving the Schrödinger equation suggested values for the
finite volume binding energy of 1S charmonium ranging
from −1 to −2.5 MeV and 2S charmonium from −1 to
−6.5 MeV, see Table VII. These effects should be even
smaller for bottomonia that are most sensitive to modifi-
cations of the potential at very short distances.
These binding energies are similar in size to that of

deuterium and may be hard to reconcile with the
hadroquarkonium picture where the quarkonium is
thought to be localized inside the light hadron which
has a size ≲1 fm. Therefore, in the heavy quark limit,
which should at least apply to bottomonia, this may not
be a viable picture. We cannot exclude, however, differ-
ent mechanisms to stabilize hadrocharmonia such as
relativistic corrections or corrections due to the mass
of the hosting hadron.
The spatial lattice extent L ≈ 4.6=Mπ ≈ 4.1 fm was not

only large relative to the inverse pion mass but also in
comparison to the size of a light hadron or a quarkonium
state; however, the observed effects were very small.
Hence, a finite-volume study (see, e.g., Ref. [33]) is
required to establish if the reported binding energies
survive the infinite-volume limit. Simulations on different
volumes, and also injecting momentum to enable a scatter-
ing study, are ongoing; see Ref. [76] for preliminary results.
Until these more extensive investigations are concluded, we
cannot exclude the possibility that no bound state or
resonance exists. Therefore, the binding energies presented
here should only be considered as upper limits.
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