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Magnetoconductance correction in zinc-blende semiconductor nanowires with spin-orbit coupling
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We study the effects of spin-orbit coupling on the magnetoconductivity in diffusive cylindrical semiconductor
nanowires. Following up on our former study on tubular semiconductor nanowires, we focus in this paper on
nanowire systems where no surface accumulation layer is formed but instead the electron wave function extends
over the entire cross section. We take into account the Dresselhaus spin-orbit coupling resulting from a zinc-blende
lattice and the Rashba spin-orbit coupling, which is controlled by a lateral gate electrode. The spin relaxation rate
due to Dresselhaus spin-orbit coupling is found to depend neither on the spin density component nor on the wire
growth direction and is unaffected by the radial boundary. In contrast, the Rashba spin relaxation rate is strongly
reduced for a wire radius that is smaller than the spin precession length. The derived model is fitted to the data
of magnetoconductance measurements of a heavily doped back-gated InAs nanowire and transport parameters
are extracted. At last, we compare our results to previous theoretical and experimental studies and discuss the
occurring discrepancies.
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I. INTRODUCTION

Despite the intensive research over the past decade,
semiconductor nanowires continue to be one of the most
active research areas within the nanoscience community
[1]. The significant attention is due to the vast scope of
technical applications [2–6] as well as the capability to
conduct fundamental studies, such as the search for Majorana
bound states [7,8]. Another broad field of interest concerns
the utilization for spintronic devices, which exploit the spin
degree of freedom of the charge carriers. The underlying
effect, which allows to manipulate the spin, is the spin-orbit
coupling (SOC). To understand the behavior of the spin
and control it efficiently, a detailed knowledge about system
parameters is essential. One basic and convenient tool to gather
the desired information are weak-field magnetoconductance
measurements. In disordered systems, the conductivity is
either enhanced or reduced due to quantum interference,
which is denoted as weak antilocalization (WAL) or weak
localization (WL), respectively. By fitting the experimental
data with an appropriate theoretical model, it is possible to
extract SOC strengths as well as dephasing, scattering, and,
most prominently, spin relaxation rates [9–18]. Notably, a
crossover from WAL to WL can even indicate spin-preserving
symmetries [19–21].

The huge degree of freedom in the device preparation
process allows to manipulate many of the nanowire properties
over a wide range. More precisely, one is able to effectively
control the size, morphology, potential landscape, carrier, and

*michael1.kammermeier@ur.de
†Present address: QuTech, Delft University of Technology, 2628 CJ

Delft, The Netherlands.
‡Present address: Physikalisch-Technische Bundesanstalt (PTB),

Bundesallee 100, 38116 Braunschweig, Germany.

impurity concentration, or even crystal structure [12,22–31].
Since typically both the SOC and the WAL/WL correction
strongly depend on these characteristics, the great diversity
makes it difficult to build up a general theoretical description.
In fact, a variety of theoretical models are needed to appro-
priately characterize the differing nanowires. The WAL/WL
effect in the diffusive regime was analyzed by Kettemann [32]
and Wenk [33,34] for planar quantum wires with a zinc-blende
lattice. In our preceding article [14], we developed a model
for diffusive zinc-blende nanowires where the transport is
governed by surface states, which occurs in materials with
Fermi level surface pinning [12,25,30,35,36] or core/shell
nanowires [26].

In this paper, we discuss the situation where the confining
potential is flat over the total cross section. The motion of the
electrons is considered diffusive in three dimensions (3D) and
the nanowire radius R much larger than the mean-free path le.
We take into account the Dresselhaus SOC resulting from the
zinc-blende crystal structure and the Rashba SOC, which is
controlled by a lateral gate electrode. Using this, we compute
analytically the WAL/WL correction as a function of the
nanowire radius. The spin relaxation rate due to Dresselhaus
SOC is found to be independent of the orientation of the spin
density, the wire growth direction, and the wire radius. In
contrast, the Rashba spin relaxation rate is strongly reduced for
a wire radius that is smaller than the spin precession length Lso.
If Rashba SOC is present, the long-lived spin densities have a
helical structure and, elsewise, are homogeneous in real space.
At last, we fit the derived formulas to experimental data of a
heavily doped InAs semiconductor nanowire, which shows a
gate-induced crossover from WL to WAL. Thereby, we extract
spin relaxation and dephasing rates as well as SOC strengths.
To complete our study, we compare our results to the frequently
used one-dimensional (1D) magnetoconductance formula of
Kurdak et al. [37] and discuss the discrepancies in the resulting
fits and the gained transport parameters [9–11,13,15–18].
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II. HAMILTONIAN FOR BULK ELECTRONS

The Hamiltonian H which describes bulk electrons in the
lowest conduction band of a zinc-blende type semiconductor
with SOC reads as

H = h̄2k2

2m
+ HR + HD. (1)

The terms

HR = γR[(kyEz − kzEy)σx + c.p.], (2)

HD = γD
[
kx

(
k2
y − k2

z

)
σx + c.p.

]
, (3)

with cyclic permutations (c.p.) of preceding indices, denote the
Rashba (R) and Dresselhaus (D) SOC contributions with the
material-specific parameters γi , the electric field components
Ei , the Pauli matrices σi , and the effective electron mass m

[38–40]. In this notation, the underlying basis vectors {x̂,ŷ,ẑ}
point along the crystal axes [100], [010], and [001]. We begin
with the assumption that the electrons in the wire experience
a nearly homogeneous electric field perpendicular to the wire
axis. In Sec. IV we will see that the choice of the wire axis and
the perpendicular electric field is arbitrary as the Rashba and
Dresselhaus SOC do not mix with each other in the Cooperon
and the effect of the Dresselhaus SOC is independent of the
crystal direction. Thus, without loss of generality, we define the
wire axis to be oriented along ẑ and the electric field as E = E ŷ.

III. QUANTUM CORRECTION TO THE CONDUCTIVITY

Within diagrammatic perturbation theory taking into ac-
count the quantum interference between self-crossing paths in
a disordered conductor gives rise to the first-order correction to
the Drude conductivity �σ . The following preconditions on
the impurity potential Vimp(r) are assumed: (i) We consider
a standard white-noise model for the impurity potential,
meaning that it vanishes on average and is uncorrelated, i.e.,
〈Vimp(r)〉 = 0 and 〈Vimp(r)Vimp(r′)〉 ∝ δ(r − r′), respectively.
(ii) The disorder is weak, i.e., h̄/(εF τe) � 1, where εF is the
Fermi energy and τe is the mean elastic isotropic scattering
time. Moreover, the motion of the electrons is considered
diffusive in all three spatial directions. By averaging over
all impurities and summing up all maximally crossed ladder
diagrams, we find the quantum correction to the longitudinal
static conductivity [41] to first order in h̄/(εF τe) given by the
real part of the Kubo-Greenwood formula

�σ = 2e2

h

h̄De

V Re

⎛
⎝ ∑

Q,s,ms

χs 〈s,ms |Ĉ(Q)|s,ms〉
⎞
⎠. (4)

Here, V is the volume of the nanowire, De the 3D diffusion
constant, i.e., De = v2

F τe/3, with the Fermi velocity vF , Ĉ the
Cooperon propagator, and Q = k + k′ the sum of the wave
vector of an electron with spin σ and the wave vector of an
electron with spin σ ′. The factor χs is defined as χ0 = 1 and
χ1 = −1. Furthermore, the states |s,ms〉 represent the singlet-
triplet basis of the system with two electrons, that is, s ∈
{0,1} is the total spin quantum number and ms ∈ {0, ± 1}
the corresponding magnetic quantum number. We emphasize,
that there exists a unitary transformation which associates the
triplet basis states with the components of the spin density as

shown in Ref. [33] and defined in Appendix A. Below, we
follow the approach in Refs. [14,32–34,42] to compute the
quantum correction to the conductivity.

IV. 3D COOPERON

As SOC constitutes a small perturbation to the kinetic part in
the Hamiltonian H and the main contribution to the Cooperon
results from terms near Q = 0, the Cooperon propagator Ĉ can
be approximated by

Ĉ(Q) = τe

h̄

(
1 −

∫
d	

4π

1

1 − iτe�̂(Q)/h̄

)−1

, (5)

where �̂(Q) = H(Q − kF ,σ ) − H(kF ,σ ′) and the integral
is performed over all angles 	 of the Fermi wave vector
kF . In 3D, the Fermi contour is nearly spherical and the
integral is continuous. Since εF τe/h̄ � 1, we may further ap-
proximate �̂(Q) ≈ −vF (h̄Q + 2m(âR + âD)S) with the total
electron spin vector S in the singlet-triplet basis as defined in
Appendix B. The matrix âR(âD) contains the contributions due
to Rashba (Dresselhaus) SOC, i.e.,

âR = αR

h̄

⎛
⎝ 0 0 1

0 0 0
−1 0 0

⎞
⎠ (6)

and

âD = γD

h̄

⎛
⎜⎝

k2
y − k2

z 0 0
0 k2

z − k2
x 0

0 0 k2
x − k2

y

⎞
⎟⎠, (7)

where αR = γRE . For convenience and in analogy to previous
publications [14,33,34,42], we define the Cooperon Hamilto-
nian Ĥc = (h̄DeĈ)−1. An additional Taylor expansion of the
integrand in Eq. (5) to second order in [h̄Q + 2m(âR + âD)S]
yields

Ĥc/Q
2
so = (Q + 2eAs/h̄)2 + λDS2/2 (8)

in terms of the dimensionless momenta Qi = Qi/Qso with
Qso = 2mαR/h̄2 = 2π/Lso where Lso is the Rashba spin pre-
cession length. Similar to the 2D and quasi-1D cases [14,32],
the effect of Rashba SOC becomes manifest in an effective vec-
tor potential As = QsoAs where As = h̄/(2e)(Sz,0, − Sx)

and therefore couples to the Cooperon momentum. In contrast,
the Dresselhaus SOC leads to a term ∝λD = 8�2/35, where
� = k2

F γD/αR, which does not couple to the wave vector Q
and is diagonal in the triplet sector. Thus, it gives rise to a
spin relaxation rate which is identical for all components of
the spin density. We stress that unlike in tubular wires [14],
the Dresselhaus contribution does not mix with the Rashba
contribution and does not depend on the growth direction
of the wire due to the averaging over the Fermi contour. Hence,
the result applies to any zinc-blende nanowire irrespective of
the growth direction and for an arbitrarily oriented electric
field perpendicular to the wire axis.

V. EFFECTS OF A RADIAL BOUNDARY

The finite-size geometry of the nanowire requires a bound-
ary condition for the Cooperon [32,43–45]. For an insulating
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surface and spin-conserving boundary the condition reads as

n̂ · (∇ + 2ieAs/h̄)Ĉ|S = 0, (9)

where n̂ denotes the normal vector of the surfaceS. This condi-
tion accounts for a specular boundary, which is plausible since
the nanowires possess only a small degree of surface roughness
[46]. Aside from that, in the transverse diffusive regime the
ramifications of a diffusive boundary are insignificant [47].
The equation above can be simplified to a Neumann boundary
condition, i.e., n̂ · (∇Ĉ ′)|S = 0, by applying a non-Abelian
gauge transformation. Thereby, the Cooperon (and with it the
Cooperon Hamiltonian) is transformed as Ĉ → Ĉ ′ = UAĈU

†
A

with the unitary transformation operator UA = exp[i2e (n̂ ·
As)(n̂ · r)/h̄]. In this case, the lowest Cooperon mode |0〉
corresponds to a solution which has a vanishing wave vector
perpendicular to the surface, i.e., n̂ · Q = 0, and is thus
constant in coordinate space along n̂ [45].

For a cylindrical nanowire, we identify n̂ = ρ̂ and the
surface S is defined by the constraint ρ = R where R is the
radius of the wire and we introduced the standard cylindrical
coordinates (ρ,φ,z) with the corresponding basis vectors
{ρ̂,φ̂, ẑ}. Accordingly, the unitary transformation operator
reads as UA = exp[i2e (ρ̂ · As)ρ/h̄] = exp[iQsoxSz] and the
boundary condition becomes ρ̂ · (∇Ĉ ′)|ρ=R = 0. Using this,
we obtain the transformed Cooperon Hamiltonian Ĥ ′

c as

Ĥ ′
c/Q

2
so = Q2 − 2Qz[cos(Qsox)Sx − sin(Qsox)Sy]

+ cos2(Qsox)S2
x + sin2(Qsox)S2

y

− sin(Qsox) cos(Qsox){Sx,Sy} + λDS2/2. (10)

The Dresselhaus contribution remains unchanged since
[Si,S2] = 0. A suitable and generic basis which satisfies the
Neumann boundary condition is

〈r|n,l,Qz〉 = J
(n)
l (ρ)eilφeiQzz/Nnl, (11)

with the angular momentum quantum number l ∈ Z, the quasi-
continuous plane-wave number Qz along the wire axis, and an
appropriate normalization constant Nnl . The radial dependence
is given by the Bessel function of the first kind J

(n)
l which

has its nth extremum (n ∈ N+) at the nanowire surface, i.e.,
ρ = R. Additionally, we define J

(0)
l = δl,0 which corresponds

to a constant solution in the x-y plane and constitutes the
lowest mode of H ′

c, thus, |0〉 ≡ |n = 0,l = 0,Qz〉.

VI. ZERO-MODE APPROXIMATION

In order to obtain an analytical result, the transformed
Cooperon Ĉ ′ can be evaluated only for the lowest mode |0〉.
This approach is often termed zero-mode or zero-dimensional
approximation [32,44,45]. Using this approximation, the
eigenvalues of 〈0|H ′

c|0〉 read as

E
(0)
S /Q2

so = Q2
z, (12)

E
(0)
T ,0/Q

2
so = Q2

z + λD + aso/2, (13)

E
(0)
T ,±/Q2

so = Q2
z + λD + 1 − aso/4

± 1

4

√
a2

so + 64(1 − bso)2Q2
z, (14)

FIG. 1. Comparison of the zero-mode approximation (yellow)
[Eqs. (12)–(14)] with the exact diagonalization of Ĥ ′

c (blue) truncated
to nmax = 4 and |lmax| = 4 for λD = 0.1 and (a) QsoR = 0.3 and
(b) QsoR = 1.5.

where we introduced aso = 1 − 2J1(2QsoR)/(2QsoR) and
bso = 1 − 2J1(QsoR)/(QsoR) with the Bessel function of the
first kind J1. We stress that the spectrum is identical for a planar
wire [32] if λD = 0 and the function 2J1(x)/x is replaced by
sin(x)/x. In Fig. 1 we compare the zero-mode approximation
with exact diagonalization for different values of QsoR. As the
zero-mode approximation provides reliable results for small
values of QsoR < 1 [33], we can write the triplet spectrum as

E
(0)
T ,0/Q

2
so = Q2

z + �0, (15)

E
(0)
T ,±/Q2

so = (Q0 ± |Qz|)2 + �1, (16)

where �0 = λD + aso/2, �1 = λD + 2bso − aso/4, and Q0 =
1 − bso. This has the following advantages. First, we capture
the most important features of the spectrum, that is, the minima
of the triplet modes �j , which are direct measures of the
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spin relaxation rate. For E
(0)
T ,± the minimum is shifted to finite

momenta Qz = ±Q0 and the corresponding long-lived spin
densities are, therefore, of helical structure. Second, the simple
form of the spectrum allows to derive a closed-form expression
for the magnetoconductance correction later on.

VII. SPIN RELAXATION IN NARROW WIRES

In general, four mechanisms have been found to be relevant
for the relaxation of the spin of conduction electrons in metals
and semiconductors: the D’yakonov-Perel’, Elliott-Yafet, Bir-
Aronov-Pikus, and hyperfine-interaction mechanism [39]. In
our approach, we account only for the D’yakonov-Perel’
mechanism [48], which has shown to be a very efficient source
of spin relaxation.

The D’yakonov-Perel’ spin relaxation rate is related to the
gaps in the Cooperon spectrum via the relation (1/τs)j =
DeET,j . This is a direct consequence of the fact that there
exists a unitary transformation (Appendix A) which links the
Cooperon with the spin diffusion equation [33]. Hence, in
general, (1/τs)j depends on the Cooperon wave vector Q as
well as on the orientation of the given spin state which is
subject to a random walk. For a spatially homogeneous spin
density Q = 0, the result is equivalent to the eigenvalues of
the D’yakonov-Perel’ spin relaxation tensor [39].

In the bulk, the 3D Cooperon can be simply evaluated in the
basis of plane waves. For Q = 0 the Cooperon Hamiltonian
(5) is diagonal in the basis of spin density components (Ap-
pendix A), leading to the 3D spin relaxation rates (1/τs)ii =
DeQ

2
so(λD + 1 + δi,y) where i ∈ {x,y,z}. Unlike Rashba SOC,

the Dresselhaus SOC affects the spin relaxation of all spin
density components in the same way.

In presence of a radial boundary condition, the corre-
sponding gauge transformation leads to a position dependence
of the eigenstates of the Cooperon Hamiltonian Hc. In
Appendix C, the Cooperon Hamiltonian Hc in zero-mode
approximation is given in the basis of spin density com-
ponents. For Qz = 0, the sz component is fully decoupled
and independent of the location on the wire cross section.
As a consequence, a spin density which is homogeneously
polarized along the wire axis is an eigenstate of the Cooperon
Hamiltonian and decays according to the spin relaxation
rate (1/τs)zz = DeQ

2
so(λD + 1). Remarkably, this rate is in-

dependent of the wire radius to all orders in QsoR within
the zero-mode approximation. In fact, it is identical to the
3D spin relaxation rate. The remaining two (unnormalized)
eigenstates a‖,j , where a‖,− = ( tan(Qsox),1,0)
 and a‖,+ =
(1, − tan(Qsox),0)
, with the according spin relaxation rates
(1/τs)‖,j = DeQ

2
so(δj,− ± aso/2 + λD) lie in the plane of the

cross section and depend on the position as depicted in Fig. 2.
In analogy to numerous previous works [32,49–52], we

define hereafter the spin relaxation rate of the system 1/τs

as the minimal rate for Qz = 0, which is 1/τs ≡ (1/τs)‖,+ =
DeQ

2
so(aso/2 + λD). In the limit of QsoR � 1, corresponding

to a radius R much smaller than the Rashba spin precession
length Lso, we replace aso → 4bso → (QsoR)2/2, which gives

1

τs

= k2
F α2

Rτe

3h̄2 (QsoR)2 + 32k6
F γ 2

Dτe

105h̄2 (17)

FIG. 2. Eigenstates (a) a‖,−/‖a‖,−‖ and (b) a‖,+/‖a‖,+‖ of the
Cooperon Hamiltonian in zero-mode approximation (Appendix C)
for QsoR = 1. Both states lie in the plane of the nanowire cross
section (yellow).

to second order in QsoR. Noting further that since Qsox �
QsoR � 1, the respective eigenstate is a‖,+ ≈ (1,0,0)
. In
accordance with Ref. [32], the first term in Eq. (17) is strongly
suppressed in wires with small radii. However, compared to
Ref. [32] the first term is a factor 2 smaller if we associated
R = W/2, where W is the width of the planar quantum
wire. The Dresselhaus-dependent spin relaxation rate was
also obtained in Ref. [53]. Notably, as seen from Eq. (16),
the global minimum of the spectrum is found at finite wave
vectors Qz = ±Q0 and given by �1 which is for small λD

approximately half as large as �0. This outlines the superior
spin lifetime of helical spin densities, which was observed
earlier in planar and tubular two-dimensional electron gases
(2DEGs) [14,19,32].

VIII. GENERAL REMARKS

First, we would like to point out some general observations
on the structure of the Cooperon Hamiltonian Ĥc [Eq. (8)]
with respect to the presence of a generic SOC contribution.
Linear and cubic SOC terms can be always expanded in terms
of first- and third-degree spherical harmonics in the wave
vector k. Only the first-degree spherical harmonic terms can
be rewritten in the form of an effective vector potential As

in the Cooperon Hamiltonian. In the present case, e.g., the
bulk Dresselhaus SOC consists only of third-degree spherical
harmonic terms, which leads to the structure of Eq. (8). Owing
to the effective vector potential, the minimum of Ĥc is shifted
to finite Cooperon wave vectors Qmin.

This has important consequences when the Cooperon
Hamiltonian is subject to an insulating spin-conserving bound-
ary condition as a result of a finite-size geometry (cf. Sec. V).
In particular, the component of the effective vector field As

which is perpendicular to the surface is removed by a gauge
transformation UA. Thereby, the component of the minimum
in direction of the boundary, i.e., n̂ · Qmin, is shifted to zero
wave vector after the transformation, i.e., UA(n̂ · Qmin)U †

A =
0. Since the lowest Cooperon mode typically corresponds
to a constant solution in coordinate space, 〈0|n̂ · Q|0〉 = 0
holds true and the remaining gauge-transformed (and therefore
position-dependent) terms are averaged along the confined
directions. This generates a suppression of the spin relaxation
rate in small wires (in zero-mode approximation), which
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is denoted as motional narrowing as it is observed in the
cylindrical wire in this work and also earlier in planar
quantum wires [32–34]. In both cases, the spin relaxation
due to first-degree spherical harmonic SOC terms is strongly
suppressed for wires of widths much smaller than the spin
precession length. A finite relaxation remains, however, due to
the third-degree spherical harmonic contributions.

Hence, the effect of motional narrowing is expected to be
maximal if the entire effective vector potential As is removed.
Here, the cylindrical nanowire can take an outstanding role
as it has a boundary in radial direction for the Cooperon, in
contrast to the planar quantum wire that has a boundary along
one Cartesian coordinate only.

IX. MAGNETIC DEPHASING

For experimental probing, we need to take into account
the phase breaking due to a magnetic field. Disregarding SOC,
the Cooperon propagator Ĉ in real space is defined through the
diffusion equation [43,45]

[h̄De(i∇ − 2eA/h̄)2 + h̄/τφ]Ĉ(r − r′) = δ(r − r′), (18)

with the magnetic vector potential A and the dephasing rate
τφ . This equation has the general solution

Ĉ(r − r′) =
∑

n

�∗
n(r′)�n(r)/(h̄DeEn + h̄/τφ), (19)

where �n solve the eigenvalue equation (i∇ −
2eA/h̄)2�n(r) = En�n(r) with the according eigenenergy
En. If we choose a gauge such that the vector potential has
no component perpendicular to the surface, i.e., n̂ · A = 0,
the vector potential does not affect the boundary condition
(9). For small magnetic fields, we can treat the terms
∝A in the eigenvalue equation perturbatively in zero-mode
approximation. Assuming a Coulomb gauge with 〈0|A|0〉 = 0,
we obtain in lowest order the magnetic phase shift rate as

1/τB = De(2e/h̄)2 〈0|A2|0〉 , (20)

where the expectation value is equivalent to the average taken
over the sample geometry. The same expression is found by
Beenakker et al. in Ref. [54].

If a cylindrical nanowire with the surface vector n̂ = ρ̂ is
placed in a magnetic field perpendicular (B⊥ = Bŷ) or parallel
(B‖ = B ẑ) to the growth axis ẑ, the corresponding vector
potentials that fulfill the above-mentioned criteria are A⊥ =
Byẑ and A‖ = B(xŷ − yx̂)/2. Consequently, the respective
magnetic phase shift rates become 1/τB,⊥ = De(eBR/h̄)2

and 1/τB,‖ = 1/(2τB,⊥). Note that here the magnetic field is
assumed to be small enough such that the magnetic length [43]
lB = √

h̄/(2e|B|) exceeds the wire width.

X. MAGNETOCONDUCTANCE CORRECTION

For cylindrical semiconductor nanowires of length L and
radius R, the macroscopic magnetoconductance correction
�G follows the relation �G = (πR2/L)�σ . More explicitly,
using the groundwork of the preceding paragraphs we find in

zero-mode approximation

�σ (0)(B) = 2e2

h

1

R2π2Qso

∫ √
ce

0
dQz

(
1

E
(0)
S /Q2

so + cφ + cB

−
∑

j∈{0,±}

1

E
(0)
T ,j /Q

2
so + cφ + cB

)
, (21)

with ci = 1/(DeQ
2
soτi) where i ∈ {e,φ,B}. The exact result for

the magnetoconductance correction is obtained by analogously
summing over all eigenmodes of the Cooperon Hamiltonian,
that is, �G = ∑

n �G(n). We stress that the upper cutoff
√

ce

due to the scattering rate τe, to remove the divergence, is strictly
speaking only required in 2D. Thus, neglecting the upper limit√

ce and using the simplified triplet spectrum for QsoR < 1
[Eqs. (15) and (16)], we obtain the closed-form expression

�σ (0)(B) = 2e2

h

1

2πQsoR2

(
1√

cφ + cB

− 2√
�1 + cφ + cB

− 1√
�0 + cφ + cB

)
, (22)

which resembles the result in Ref. [32]. In the following,
we apply the developed model to fit magnetoconductance
measurements.

XI. EXPERIMENTAL DATA FITTING

Exemplarily, we present the fitting results for a heavily
n-doped InAs nanowire. As previously shown [14,30,36], the
electrons in undoped InAs nanowires are confined to a narrow
layer beneath the surface due to Fermi level pinning and the
transport is governed by surface states. However, a controlled
doping allows the electrons to distribute over the entire volume
and thereby change the dimensionality and transport topology
to that of a quasi-3D channel [25,30,36].

The studied sample corresponds to Device D of Ref. [30]
and possesses the following parameters. Adopting the findings
of Ref. [38], the narrow band gap of InAs results in large

Rashba and Dresselhaus SOC coefficients γR = 117.1 eÅ
2

and γD = 27.18 eVÅ
3
, respectively. Moreover, the effective

mass is given by m = 0.026 me where me is the bare electron
mass [35]. In line with the experimental setup of Ref. [30],
we consider a length of the nanowire of L = 2.18 μm and
a radius of R = 47.5 nm. Moreover, we use the field-effect
mobility μ = 600 cm2 V−1 s−1 and the 3D electron density
n3D = 5 × 1018 cm−3. The change of the back-gate voltage
Vg from 5 to 60 V yields an increase of the electron density
by a factor of 1.5, whereas the mobility is assumed to remain
relatively unchanged. By means of the relations μ = eτe/m

and kF = (3π2n3D)1/3, we find a mean-free path le = vF τe be-
tween 21 and 24 nm. Accordingly, h̄/(εF τe) ranges from 0.14
to 0.18 and therefore the Ioffe-Regel criterion is generally well
fulfilled.

Figure 3 depicts a gate-induced crossover from positive
to negative relative magnetoconductance �GR ≡ �G(B) −
�G(B = 0), which is usually associated with a crossover from
weak localization to weak antilocalization. The experiments
are performed at a temperature of T = 4 K and the magnetic
field is oriented perpendicular to the wire axis, i.e., τB = τB,⊥
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FIG. 3. Gate-controlled crossover from positive to negative
relative magnetoconductance �GR ≡ �G(B) − �G(B = 0) in a
doped 〈111〉 InAs nanowire. The symbol-dotted lines correspond
to experimental data for different back-gate voltages Vg , which are
fitted by theory (solid lines) using Eq. (21) and varying the Rashba
and effective Dresselhaus SOC strengths as shown in Fig. 4(a).

(cf. Sec. IX). In order to average out the superimposed
universal conductance oscillations, each magnetoconductance
curve represents the mean value of roughly 200 individ-
ual measurements in 20-V gate-voltage intervals. We fitted
Eq. (21) by changing the effective Dresselhaus parameter αD =
γDk2

F according to the modifications of the electron density
and by adjusting the Rashba parameter αR, or equivalently
the strength of the internal electric field |E |. The resulting
electric field increases with the gate voltage from 1.7 × 107 to
3.1 × 107 V/m. The Rashba and effective Dresselhaus SOC
strengths are shown in Fig. 4(a). A slight deviation from the
typically expected linear Vg dependence of αR is attributed
to deviations from a homogeneous electric field within the
wire. We point out that the precondition for the zero-mode
approximation, QsoR < 1 is, strictly speaking, not perfectly
fulfilled for large voltages. More precisely, QsoR ranges from
0.64 to 1.16. However, by comparing the exact diagonalization
with the zero-mode approximation (cf. Fig. 1), it becomes
obvious that the most important characteristics of the spectrum,
the minima, are barely changed and the application of the
zero-mode approximation is here still justified. Furthermore,
using the relation li = √

Deτi , i ∈ {s,φ}, and 1/τs ≡ (1/τs)‖,+
as defined in Sec. VII [and in the limit QsoR � 1 in Eq. (17)],
we can extract the spin relaxation and dephasing lengths
ls and lφ , respectively, which are shown in Fig. 4(b). At
Vg = 5 V the spin relaxation length ls exceeds the dephasing
length lφ , which reflects the observation of weak localization
in Fig. 3. Hence, a controlled application of a gate voltage
allows to reduce the spin relaxation length roughly by a
factor of 3.

Critical discussion and comparison with previous results

Hereafter, we follow with a critical discussion and compare
our gathered data with previous experiments on similar n-
doped InAs nanowire devices [15–18]. In these works, the

FIG. 4. Extracted fitting parameters for a doped 〈111〉 InAs
nanowire. We show in (a) the Rashba and effective Dresselhaus
SOC strength αR and αD = γDk2

F , and in (b) the spin relaxation
and dephasing length ls and lφ , respectively, in dependence of the
back-gate voltage Vg .

magnetoconductance data are analyzed by means of a 1D
magnetoconductance formula [37], which does not consider
the mesoscopic details of the system. In Appendix D, we use
this formula to fit the magnetoconductance data of our device.
Aside from the obvious discrepancy between experimental
data and theory, it shows disagreements with our findings
above.

First, we remark that even for a vanishing back-gate voltage,
a finite Rashba strength αR will remain, which was also seen
in Refs. [15–18]. We attribute this to the fact that even for zero
gate voltage an intrinsic electric field due to Fermi level surface
pinning will remain. Aside from that, for small voltages other
spin relaxation mechanisms can become important, above all,
the Elliott-Yafet (EY) mechanism due to the large electron
density through doping. However, we emphasize that the
modification of the electron density in our sample alters the
EY spin relaxation rate by a factor of 1.7 [55]. Since we
detect an increase of the spin relaxation rate by a factor of 9.5,
it is not possible to explain this behavior within EY theory.
Nevertheless, the strength of the extracted Rashba parameter
αR should be treated with caution as it comprises a contribution
of additional spin relaxation rates.

Second, although similar transport parameters are found
in Refs. [15–18], the variation of the dephasing length lφ
with the gate voltage in the according fits is most striking. In
most of these works, the dephasing length increases with the
gate voltage which is usually justified by a reduced electron-
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electron interaction through an increase of the electron density.
Some authors even observed a decrease of lφ with increasing
gate voltage [17] or oscillations [15]. It is most pronounced
in Refs. [15,16,18], where the dephasing length suddenly
changes by about 100 nm near the WL regime. In Appendix D,
we show that the application of the 1D magnetoconductance
formula of Ref. [37] to our nanowire device likewise leads to
an unusual trend for lφ . This behavior is not seen in our device
with our magnetoconductance model, where the dephasing
length remains nearly constant. However, we find that in our
model an unambiguous fitting of the magnetoconductance
curve in the WL regime, in contrast to the WAL regime and
opposed to the model in Ref. [37], is barely possible. Note
that we could also fit for a lower value of lφ for Vg = 5 V
which would further increase the spin relaxation length and
diminish the saturation value for αR. However, as we do not
see any indication of a change of lφ in the WAL regime, we
assume that a similar value holds in the WL regime. This
finding supports the need of taking into account details on the
mesoscopic scale of the nanowire as presented in this paper in
order to obtain reliable transport parameters.

Based on our observations, we suggest that for dephasing
the electron-electron interaction may be not as effective as
previously assumed in a largely doped sample as considered
here. This would be in agreement with the findings in
disordered 3D metal films [56]. On the other hand, the change
of electron density in our investigated system is possibly
too low in order to make a reliable statement. Also, as the
extracted dephasing length exceeds the diameter d of the
wire, we expect the geometric properties to play an important
role in a similar manner as it is the case for the magnetic
dephasing. In planar quantum wires with a width smaller
than the dephasing length electron-electron interaction has
been identified as the predominant mechanism [57]. For
further studies, we propose therefore (a) the development of a
theoretical description of the inelastic scattering mechanisms
as a function of temperature, electron density, and system
size for a quasi-3D cylindrical wire and (b) an experimental
investigation to see which mechanisms really apply. This
would support a reliable parameter fitting in the WL regime and
thereby enable a correct determination of the zero gate-voltage
spin relaxation processes.

XII. SUMMARY AND PERSPECTIVE

We studied the effects of SOC on the quantum conductivity
correction for semiconductor nanowires with zinc-blende
structure. The spin relaxation due to Dresselhaus SOC is
found to be the same for all spin components, independent
of the wire growth direction and the wave vector of the spin
density, and not affected by a change of the wire radius.
Contrarily, in presence of Rashba SOC the relaxation depends
on the spin component. A homogeneous spin density that is
polarized along the x̂ axis decays according to Eq. (17) if
the wire radius is smaller than the spin precession length.
However, the long-lived spin states have helical structure in
real space. Similarly to the planar wire [32], the relaxation
due to Rashba SOC is strongly suppressed for small wire
widths. Interestingly, a homogeneously excited spin density
along the wire axis does not exhibit any dependence on the wire

radius and is therefore not subject to motional narrowing. The
derived expressions for the magnetoconductance correction
are fitted to the data of magnetoconductance measurements
of a heavily doped back-gated InAs nanowire. We find good
agreement between theory and experiment and reasonable
transport parameters. For comparison, we also apply the 1D
magnetoconductance formula of Kurdak et al. [37], which
has been frequently used by other authors [9–11,13,15–18].
The fitted curves show larger deviations from the experi-
mental observations and an unusual trend of the dephasing
length.

We stress that the developed model holds for 3D-diffusive
nanowires and a crossover to the quasiballistic regime is not
included. For the latter case, it is plausible to assume that
the Dresselhaus spin relaxation rate will decrease due to the
reduction of the number of contributing channels as shown
in Ref. [34] for planar wires. Additionally, the effects of
surface roughness will start to play a noticeable role [47].
It is also to mention that semiconductor nanowires are often
polytypic with zinc-blende and wurtzite segments or even pure
wurtzite phase, even though the underlying semiconductor
material has zinc-blende lattice in the bulk [28,58]. As the
SOC in the wurtzite phase is fundamentally different, distinct
characteristics concerning conductivity and spin relaxation
can be expected and therefore further model calculations are
strongly requested.
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APPENDIX A: RELATION BETWEEN TRIPLET BASIS
AND SPIN DENSITY COMPONENTS

As shown in Ref. [33], there exists a unitary transformation
between the spin diffusion equation and the Cooperon.
Therefore, we obtain an according transformation between
the spin density s = (sx,sy,sz)
 and the triplet vector s̃ =
(|1,1〉 , |1,0〉 , |1, − 1〉)
 of the Cooperon, which is

s̃ = Ucd s, (A1)

with the unitary operator

Ucd =

⎛
⎜⎝

−1 i 0

0 0
√

2

1 i 0

⎞
⎟⎠

/√
2. (A2)

APPENDIX B: SPIN MATRICES

The spin matrices of a system with two electrons in singlet-
triplet basis |s,ms〉, with total spin quantum number s ∈ {0,1}
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and according magnetic quantum number ms ∈ {0, ± 1}, are

Sx = 1√
2

⎛
⎜⎝

0 0 0 0
0 0 1 0
0 1 0 1
0 0 1 0

⎞
⎟⎠,

Sy = i√
2

⎛
⎜⎝

0 0 0 0
0 0 −1 0
0 1 0 −1
0 0 1 0

⎞
⎟⎠,

Sz =

⎛
⎜⎝

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 −1

⎞
⎟⎠, (B1)

in the order {|0,0〉 , |1,1〉 , |1,0〉 , |1, − 1〉}. The singlet and
triplet sectors are decoupled in this representation.

APPENDIX C: COOPERON HAMILTONIAN IN
ZERO-MODE APPROXIMATION IN TERMS OF SPIN

DENSITY COMPONENTS

Relevant in experiments is the relaxation process of the spin
density s. Due to the gauge transformation UA the eigenstates
of the Cooperon Hamiltonian Hc depend on the position on the
cross section. We can write the triplet sector of the Cooperon
Hamiltonian in the basis of the spin density components
by reverting the gauge transformation after projecting the
transformed Cooperon Hamiltonian on the zero mode and
applying the basis transformation to the triplet sector as
defined in Appendix A. More precisely, the triplet sector of
the Cooperon Hamiltonian in the basis of the spin density
components {sx,sy,sz} reads as in terms of Q2

so⎛
⎝ a d e

d∗ b f

e∗ f ∗ c

⎞
⎠, (C1)

where

a = c − 1
2 + 1

2 (aso − 1) cos(2Qsox),

b = c − 1
2 − 1

2 (aso − 1) cos(2Qsox),

c = Q2
z + λD + 1,

d = − 1
2 (aso − 1) sin(2Qsox),

e = −2iQz(bso − 1) sin(2Qsox),

f = −2iQz(bso − 1) cos(2Qsox). (C2)

Notably, for Qz = 0 the sz component is decoupled and
independent of the location on the wire cross section and
the wire radius. Consequently, a spin density which is
homogeneously polarized along the wire axis is not subject
to motional narrowing in zero-mode approximation.

APPENDIX D: EXPERIMENTAL DATA FITTING WITH
THE FORMULA OF KURDAK et al.

Here, we demonstrate the application of the 1D magneto-
conductance formula of Kurdak et al. [37] to the nanowire
device discussed in Sec. XI. This model is frequently used for

FIG. 5. (a) Gate-controlled crossover from positive to negative
relative magnetoconductance �GR ≡ �G(B) − �G(B = 0) in a
doped 〈111〉 InAs nanowire. The symbol-dotted lines correspond
to experimental data for different back-gate voltages Vg , which are
fitted by the 1D magnetoconductance formula of Kurdak et al. [37]
(solid lines), and adjusting the dephasing and spin relaxation lengths
lφ and ls , as shown in (b).

the theoretical analysis of semiconductor nanowire devices
[9–11,13,15–18]. In case of a diffusive wire of length L, the
magnetoconductance correction reads as

�G(B) = 2e2

h

1

2L

[
3

(
1

l2
φ

+ 4

3l2
s

+ 1

l2
B

)−1/2

−
(

1

l2
φ

+ 1

l2
B

)−1/2
]
, (D1)

with the dephasing, spin relaxation, magnetic dephasing
length, lφ , ls , and lB , respectively. For the magnetic dephasing
length, we used our relation for a perpendicular magnetic field,
that is, lB = √

DeτB,⊥ as derived in Sec. IX which is more
appropriate for a cylindrical wire. Note that compared to the
definition in Refs. [54,59], here also lB ∝ |B|−1 holds true. In
Fig. 5 we show the relative magnetoconductance correction
GR = �G(B) − �G(0) and the accordingly obtained fitting
parameters. Remarkably, in strong contradiction to the obser-
vations using our model (cf. Sec. XI), the extracted dephasing
length shows a monotonous decrease with the gate voltage
which is rather unphysical. Also, the spin relaxation length
is nearly twice as large for small gate voltages. Aside from
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that, a strong discrepancy between the experimental data and
theory in the weak antilocalization regime is obvious. As a

consequence of these observations, we suggest that a more
appropriate model should be used.
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