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We report on fundamental aspects of spin dynamics in heterostructures of graphene and transition metal
dichalcogenides (TMDCs). By using realistic models derived from first principles we compute the spin
lifetime anisotropy, defined as the ratio of lifetimes for spins pointing out of the graphene plane to those
pointing in the plane. We find that the anisotropy can reach values of tens to hundreds, which is
unprecedented for typical 2D systems with spin-orbit coupling and indicates a qualitatively new regime of
spin relaxation. This behavior is mediated by spin-valley locking, which is strongly imprinted onto
graphene by TMDCs. Our results indicate that this giant spin lifetime anisotropy can serve as an
experimental signature of materials with strong spin-valley locking, including graphene-TMDC hetero-
structures and TMDCs themselves. Additionally, materials with giant spin lifetime anisotropy can provide
an exciting platform for manipulating the valley and spin degrees of freedom, and for designing novel

spintronic devices.
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Introduction.—Following the discovery of graphene in
2004 [1], a host of other two-dimensional (2D) materials
have been synthesized and studied, each demonstrating
unique properties and showing promise for technological
applications [2]. Currently, there is a great deal of interest in
layered heterostructures of these materials [3,4], where
the combined system might be engineered for specific
applications [5] or might enable the exploration of new
phenomena [6,7]. In the field of spintronics, graphene has
exceptional charge transport properties but weak spin-orbit
coupling (SOC) on the order of 10 xeV [8], which makes it
ideal for long-distance spin transport [9—11] but ineffective
for generating or manipulating spin currents. To advance
towards spin manipulation, recent work has focused on
heterostructures of graphene and magnetic insulators
[12—-16] or strong SOC materials such as transition metal
dichalcogenides (TMDCs) and topological insulators
[17-19]. The SOC induced in graphene by a TMDC could
enable phenomena such as topological edge states [20] or
the spin Hall effect [21-23].

To this end, a variety of recent experiments have
explored spin transport in graphene-TMDC heterostruc-
tures [21,24-29]. Magnetotransport measurements revealed
that graphene in contact with WS, exhibits a large weak
antilocalization (WAL) peak, revealing a strong SOC
induced by proximity effects [24-26,30]. Fits to the
magnetoconductance yielded spin lifetimes 7.~ 5 ps,
which is 2 to 3 orders of magnitude lower than graphene
on traditional substrates [10,31]. It was later asserted that
after the removal of a temperature-independent back-
ground, 7, becomes at most only a few hundred femto-
seconds [26]. Nonlocal Hanle measurements, meanwhile,
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have revealed spin lifetimes up to a few tens of picoseconds
[27-29] that can be tuned by a back gate [28,29]. Finally,
charge transport measurements on a Hall bar demonstrated
a large nonlocal signal that was related to the spin Hall
effect [21]. Fits to experimental measurements have esti-
mated the induced SOC in graphene to be 10-20 meV
[21,26], while most density functional theory (DFT) and
tight-binding (TB) calculations find values closer to 1 meV
[18-20,24,25,32]. While these studies have demonstrated
that TMDCs induce strong SOC in graphene, the estimated
values of 7, vary by 3 orders of magnitude and nothing is
yet known about the mechanisms governing spin dynamics
and relaxation in these systems.

In this Letter, we employ dissipative quantum spin
dynamics arguments, and quantum mechanical numerical
simulations, to elucidate the nature of spin relaxation in
graphene-TMDC heterostructures. We find that spin relax-
ation follows the Dyakonov-Perel (DP) mechanism, with
7, = 1-100 ps for realistic momentum relaxation rates and
Fermi energies. Remarkably, the spin lifetime anisotropy,
defined as the ratio of lifetimes for spins pointing out of the
graphene plane to those pointing in the plane, can reach
unprecedented values of tens to hundreds in the presence of
intervalley scattering. This behavior is mediated by spin-
valley locking induced in graphene by the TMDC, which
ties the in-plane spin lifetime to the intervalley scattering
time. In the absence of valley mixing this ratio reduces to
1/2, typical of systems dominated by Rashba SOC [33]. A
giant spin lifetime anisotropy thus represents a qualitatively
new regime of spin relaxation not typically seen in 2D
systems, and its measurement [34,35] should be an exper-
imental probe of systems with strong spin-valley coupling,
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which includes both graphene-TMDC heterostructures and
TMDCs themselves. Furthermore, systems with giant spin
lifetime anisotropy could serve as an exciting new platform
for the manipulation of spin and the implementation of new
spintronic devices.

Dissipative spin dynamics model.—To clarify the nature
of spin relaxation in graphene-TMDC systems, we follow
the approach in Ref. [33], which describes spin dynamics in
a randomly fluctuating magnetic field. The low-energy
(Er <300 meV) Hamiltonian of graphene on a TMDC
substrate is given by H=H+H, —|—H’14/B +Hp —i—H’QI/f,
where [20]

HO = hUF(KkaX + Gyky),
HA = AJZ’

1
H}'P =2 (o, + 00) + 47 (0, = o0)ls,

A/B _ a
HPI/A = E [’IIIL"IA (Uz + 60) + )“IID;IA(GZ - 00)](kxsy - kysx)’
Hp = Ag(ko, sy — 6,5,). (1)

In Eq. (1), vp is the Fermi velocity, k = 1(—1) for the K
(K") valley, o, (s;) are the sublattice (spin) Pauli matrices, k;
are the wave vector components relative to K or K’, and
a = 0.246 nm is the graphene lattice constant. H repre-
sents the graphene Dirac cone, and H, is a staggered
sublattice potential induced by the TMDC. H?/ # and H’;I/ /f
are the intrinsic and the pseudospin inversion asymmetry
(PIA) SOC, respectively, the latter of which is permitted by
broken z/ — z symmetry in graphene [36]. Because of the
broken sublattice symmetry, these terms can have different
strengths and signs on the A and B sublattices (A?/ B and

AA/%). Finally, Hy is the Rashba SOC induced by a
perpendicular electric field [8,37].

While Eq. (1) is useful for TB calculations, analytically it
is more transparent to combine the sublattice-dependent
terms, glVll’lgH = HO ‘I‘HA +HI+HVZ+HR +HPIA +
H Apia with

H; = Ajko,s.,
Hyz = Ayzks,
Hpip = adpipo,(k,sy — kys,),

HAPIA = aAPIA(kay - kny), (2)

where A, = (A7 +27)/2, dvz= (4 =21)/2, Ipia =
(A8a + A814)/2, and Appp = (A4 — A5,4)/2. In this form,
Hj is the usual intrinsic SOC in graphene, which opens a
topological gap 24; at the Dirac point [37]. Hyy is a valley
Zeeman term, which locks valley to spin and polarizes the
bands out of the graphene plane with opposite orientation in
the K and K’ valleys. Hpy, renormalizes the Fermi velocity,
while H,,,, leads to a k-linear splitting of the bands, as in
traditional 2D electron gases with Rashba SOC [38].

Except for the PIA terms, this Hamiltonian is the same
as that considered in previous works [24-26,32].

The next step is to derive the effective spin-orbit field
arising from the SOC terms. This is done by rewriting
Eq. (2) in the basis of the eigenstates of H, and projecting
onto the conduction and valence bands. At Fermi energies
away from the Dirac point (Er > 1 meV), this gives

| BN IR
H = HO +§fla)([) -8,
fla)x = —Z(akApIA + AR) sin 9,
fla)y = Z(QkAPIA + /IR) COS 9,
fla)z = ZKlvz, (3)

where £ is the wave vector magnitude, € is the direction of k
with respect to k., and @ is the spin precession frequency of
the effective spin-orbit field. The in-plane components of @&
give a Rashba-like spin texture, where +(—) is for the
conduction (valence) band. Strong PIA SOC thus leads to
electron-hole asymmetry, as will be seen for graphene on
WS,. The out-of-plane component of @ is determined by
Ayz and changes sign between valleys. The overall texture
of the effective spin-orbit field is depicted in Fig. 1.

Owing to momentum scattering, each component of @
will fluctuate in time. A simple model for the correlation of
the fluctuating spin-orbit field is [33]

W = 6aﬂa)_£e_‘t_t,|/rr,a7 (4)

where the correlation time of fluctuation 7., depends on
the component of @. The in-plane components @, /y depend
only on 6, and thus 7., =7., =7, the momentum
relaxation time. Meanwhile, the out-of-plane component
®, depends only on the valley index, giving 7., = 7;,, the
intervalley scattering time. Assuming that 7, ,0, <1,
applying Egs. (3) and (4) to the equation of motion for
the density matrix [33] yields the final expressions for the
spin relaxation rates

FIG. 1. Schematic of spin relaxation in graphene-TMDC
heterostructures. The tall arrows depict the effective spin-orbit
field within the Dirac cones at K and K’ valleys. Intervalley
scattering dominates the in-plane spin dynamics, while overall
momentum scattering controls the out-of-plane behavior.
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Toy = C()ZTI-D -+ a)xrl,,

In Eq. (5), the out-of- plane spin relaxation follows the usual
DP relation, 7} = 75} = [2(akApis £ Ag)/ ]z, with the
Rashba SOC augmented by the PIA term. However the in-
plane relaxation includes contributions from both the
intervalley and the overall momentum scattering, and is
given by ;| =75} = 75y = (2Avz/h)*t;, + 751/2. The
nature of the spin relaxatlon, with 7, determined by z;,
and 7, ;| by 7, is shown schematically in Fig. 1. Ignoring
the PIA term, the spin lifetime anisotropy is

2
R (’Iﬂ> <T> /2. (6)
Ts,|| AR Tp
Equation (6) is the main result of this work, and indicates
that a giant spin lifetime anisotropy, with the in-plane spins
relaxing much faster than the out-of-plane spins, should be
a defining characteristic of systems with strong spin-valley
locking. Using DFT values of Ay; = 1.2 meV and Az =
0.56 meV for graphene on WSe, [20], and assuming
relatively strong intervalley scattering (z;, ~ 57,), we
obtain a spin lifetime anisotropy of ~20. This represents
a qualitatively different regime of spin relaxation than the
usual case of 2D Rashba systems, where without valley
Zeeman SOC the anisotropy is 1/2, with the in-plane spins
relaxing more slowly than the out-of-plane spins.
Equation (5) assumes strong intervalley scattering,
7;,0, < 1, such that fast fluctuation of @, results in
motional narrowing of the in-plane spin precession and
an inverse dependence of 7, on 7;,. In contrast, when
7, — 00, electrons experience a constant out-of-plane spin-
orbit field and only the in-plane components fluctuate with
time. In this limit, the procedure above yields

-1 2 *
Tyx = WYTp,
-1 _ 72
Toy = WT),
-1 _ P
Ty, = (a)x + 3)7}, (7)

where 7, = 7, /(0?73 + 1). Without intervalley scattering
the spin lifetime anistropy thus collapses to 1/2, as found in
Rashba systems [33]. Interestingly, in this regime an
external perpendicular magnetic field B, can induce an
imbalance in the spin population of each valley by
enhancing (canceling) the spin-orbit field at K (K’). The
ratio of spin lifetimes in each valley thus becomes

Tf.a _ (g/’lBBz + 2}“VZ)2T%) + 1
X, (gupB, = 2Mvz)*t, + 17

(8)

where ¢ is the electron ¢ factor and up is the Bohr
magneton. For graphene on WSe, with 7, = 100 fs, the
difference in 7, can reach 10% for B, ~ 4 T. Although this
difference is too modest to achieve a complete valley-spin
imbalance, it should be considered when observing spin
relaxation in these structures in a magnetic field.
Numerical simulations.—To verify the above results, we
perform numerical simulations of spin relaxation. The
graphene-TMDC system is described by the TB form
of Eq. (1), to which we add a disorder term H g, =
Y ois Vais(7 )l cisr where ] (c;,) is the creation (annihi-
lation) operator at site i with spin s, and Vg (7;) is the
potential at site i. We assume the disorder consists of
Gaussian- shaped electron-hole puddles [39], such that
Vais(77) = Y0, € exp(=|r; — 7;|*/2€%), with the strength
e; of each scatterer randomly chosen within [—e, €], and

with a uniform width & = V/3a. In the dilute limit, 7, and
7;, are inversely proportional to the number of scatterers N,
while e controls their relative magnitude, with larger e
giving stronger intervalley scattering [40,41].

To calculate charge and spin transport, we employ a real-
space wave packet propagation method that allows for
efficient simulation of large-scale disordered graphene
systems [42-44]. For charge transport we use the mean-
square spreading of the wave packet (X?(E, t)) to calculate
the diffusion coefficient D(E, ) = O(X*(E, t))/0t, which
in turn gives the momentum relaxation time 7,(E) =
max D(E, t)/2v%. We simultaneously calculate the expect-
ation value of the spin of the wave packet 5(E, 7), from
which the spin lifetime is evaluated by fitting to
exp(—t/7,,) or exp(—t/7y,)cos(w,t), as appropriate.
The density of charge scatterers is characterized as a
percentage of the number of carbon atoms, n = N/N X
100%. We consider a 500 nm x 500 nm system with 9.2 x
10° carbon atoms, and TB parameters are taken from
Table I of Ref. [20].
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FIG. 2. Spin dynamics in the graphene/WSe, system for
(a) strong and (b) weak intervalley scattering. The insets show
the corresponding momentum relaxation times.
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FIG. 3. Spin lifetime with strong intervalley scattering for

graphene on (a) WSe, and (b) WS,. The red (blue) lines are
for out-of-plane (in-plane) spin lifetime. Solid (dashed) lines
are for an impurity density of 0.1% (1%). The open circles are
from Eq. (5).

Figures 2(a) and 2(b) show § and 7, for disorder profiles
corresponding to strong and weak intervalley scattering,
respectively. In the former we set n=0.1% and
e =2.8¢V, and in the latter n = 1% and ¢ = 0.5 eV.
The 7, for these two cases are shown in the insets, with
values typical of those found experimentally [24-26]. The
different energy dependence of 7,, with a minimum or
maximum at the Dirac point, is indicative of the contribu-
tion of intervalley scattering [45]. In Fig. 2(a), where
intervalley scattering is strong, the in-plane component
of § decays much more quickly than the out-of-plane
component, and spin precession is suppressed. Meanwhile,
in Fig. 2(b) the in-plane spin precesses about the effective
spin-orbit field with frequency w, = 24y/h, and relaxes
more slowly than the out-of-plane spin. This behavior is
consistent with Egs. (5)—(7).

Figure 3 shows the numerical spin lifetimes in the case of
strong intervalley scattering for graphene on (a) WSe, and
(b) WS,. The solid lines, for n = 0.1%, indicate a giant
anisotropy with 7, ;| = 20-200 ps and 7, ~ 1 ps. There is
also a significant electron-hole asymmetry in 7, | for graphene
on WS,, arising from the larger PIA SOC in this system;
Agr = 0.56 meV and Apy, = 75 ueV for WSe,, while 1 =
0.36 meV and Apjp = 1.4 meV for WS, [20]. The open
circles are the values of 7, estimated from Eq. (5), showing
good agreement between the numerical simulations and the
spin dynamics model. To fit 7, we assumed 7;, = 57,;
although our calculations do not permit an exact determination
of z;,, this ratio is consistent with prior numerical results [40].
As shown by the dashed lines, increasing the disorder density
to n = 1% scales 7, by a factor of 10, confirming the inverse
relationship between 7, and 7, ;.

The numerical spin lifetimes in the absence of intervalley
scattering are shown in Fig. 4, where 7, | is now larger than
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FIG. 4. Spin lifetime without intervalley scattering for graphene
on (a) WSe, and (b) WS,. The red (blue) lines are for out-of-
plane (in-plane) spin lifetime. The open circles are from Eq. (7),
and the insets show the anisotropy for strong and weak intervalley
scattering.

7,1 . The agreement with the predictions of Eq. (7), shown
as the open circles, is very convincing. However, we note
that the agreement worsens at low energies, as the effective
spin-orbit field in Eq. (3) is only valid for energies away
from the Dirac point. The insets of Fig. 4 show the
numerical values of the spin lifetime anisotropy. As
predicted by the semiclassical theory, the anisotropy is
giant in the case of strong intervalley scattering, and
collapses toward 1/2 otherwise.

Summary and conclusions.—Using realistic quantum
spin dynamics modeling and numerical simulations, we
have presented a unified picture of the spin relaxation in
graphene on TMDCs. We predict a giant spin relaxation
anisotropy, which emerges in graphene due to proximity
effects but should exist in any system with strong spin-
valley locking, including TMDCs themselves. In the
absence of spin-valley locking or intervalley scattering
the anisotropy falls to 1/2, as expected for Rashba systems.
This large variation indicates a qualitatively new regime of
spin relaxation in graphene and other 2D materials.

It should be noted that the theory presented here is
applicable when spin relaxation is dominated by SOC
effects, but other spin relaxation mechanisms can take over
when the SOC is small. This appears to be the case for
graphene on SiO, substrates, where measurements yielded
no anisotropy, i.e., 7, | = 7, [34,35]. In these systems the
SOC is small and spin relaxation is likely dominated by
paramagnetic impurities [46,47]. Meanwhile, very recent
measurements have confirmed our prediction of giant spin
lifetime anisotropy in graphene-TMDC heterostructures,
with an anisotropy of ~11 (40) for graphene on MoSe,
(WSe,) at a temperature of 75 K [48]. Another recent
measurement found an anisotropy of ~10 in graphene on
WS, at room temperature [49], suggesting that
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temperature-dependent effects driven by electron-electron
or electron-phonon scattering should have a weak impact.

These results also have important implications for the
WAL analysis of magnetotransport in graphene-TMDC
heterostructures. Previous analyses have concluded that the
spin relaxation is dominated by Rashba SOC [25,30],
which is seemingly at odds with the presence of giant
spin lifetime anisotropy. By reanalyzing the magnetocon-
ductance measurements of Ref. [30], and introducing valley
Zeeman SOC into the analysis, the experimental results can
be shown to be consistent with our theory [50].

On the more applied side, the giant spin lifetime
anisotropy in graphene-TMDC heterostructures might be
utilized for practical purposes in spin logic devices [53,54]
or in relation with opto-valleytronic spin injection in
graphene-TMDC spin valves [55,56]. One possible appli-
cation would be the design of a linear spin polarizer, where
the in-plane components of an incoming spin current
would be filtered out, leaving only the net out-of-plane
polarization.
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