ISOMERIZATION OF DODCI IN THE S₀ GROUND STATE

W. BÄUMLER and A. PENZKOFER

Naturwissenschaftliche Fakultät II - Physik, Universität Regensburg, D-8400 Regensburg, Federal Republic of Germany

Received 18 April 1988; in final form 29 June 1988

The long-wavelength absorption spectrum of DODCI indicates the presence of a thermally populated isomer in the electronic ground state. The energy level of this isomer above the normal form is determined by temperature-dependent absorption measurements. The S_0 - S_1 absorption cross section spectrum of the isomer is determined.

1. Introduction

The dye DODCI (3,3'-diethyloxydicarbocyanine iodide) is widely used as a saturable absorber in passively mode-locked dye lasers [1-3]. It may also be applied as a laser dye [4-6]. Conventional flash tube photolysis [7], pulsed laser flash photolysis [7-22], and cw laser excitation spectroscopy [23,24] generate a photoisomer which absorbs and emits at longer wavelength than the normal form. In ref. [14] some evidence is given from rotational diffusion measurements that the normal (N) isomer has a 1,5 cis-cis form or similar coiled up conformation and that the photo (P) isomer has an all-trans or some other elongated form.

In this paper we show that both isomers are present in the electronic ground state (S_0) at room temperature. The P isomer is observed in the long-wavelength region of the S_0 - S_1 absorption spectrum. The level energy E_P of the P isomer above the N isomer ground state is determined from temperature-dependent absorption measurements. The S_0 - S_1 absorption cross section spectrum of the P isomer is determined from an analysis of the absorption spectra.

2. Theory

The photoisomerization dynamics of DODCI is explained by a three-well S_1 potential curve and a two-well S_0 potential curve versus a twisting coor-

dinate [13,18,21]. The S_0 potential curve is depicted in fig. 1. Relaxation of the photoexcited S_1 state populates both the N and the P state [7–24]. The P sate relaxes to the N state across the potential barrier E_A with a rate constant [13,18,19]

$$k_{\mathsf{P}\to\mathsf{N}}(T) = A_{\mathsf{iso}} \exp\left(-E_{\mathsf{A}}/k_{\mathsf{B}}T\right). \tag{1}$$

 $A_{\rm iso}$ is the pre-exponential factor of the Arrhenius equation (1), $k_{\rm B}$ is Boltzmann's constant and T is the temperature. The potential barrier is $E_{\rm A} \approx$

Fig. 1. So ground-state configuration diagram of DODCI.

9.95×10⁻²⁰ J [13]. The P \rightarrow N relaxation time constant at room temperature is $\tau_{P\rightarrow N} = k_{P\rightarrow N}^{-1} \approx 2.53$ ms for DODCI in methanol and $\tau_{P\rightarrow N} \approx 2.60$ ms for DODCI in ethylene glycol [16].

The rate of the $N \rightarrow P$ transition in the electronic ground state is given by

$$k_{N\to P}(T) = A_{iso} \exp[-(E_P + E_A)/k_B T]$$
. (2)

The fraction of thermally populated P isomers is

$$\frac{N_{\rm P0}}{N_0} = \frac{N_{\rm P0}}{N_{\rm N0} + N_{\rm P0}} = \frac{\exp(-E_{\rm P}/k_{\rm B}T)}{1 + \exp(-E_{\rm P}/k_{\rm B}T)}.$$
 (3)

 $N_{\rm P0}$ and $N_{\rm N0}$ are the number densities of the P and N isomers, respectively. N_0 is the total number density. The absorption coefficient α is composed of N and P isomer contributions, i.e. $\alpha = N_{\rm N0}\sigma_{\rm N} + N_{\rm P0}\sigma_{\rm P}$. The total apparent absorption cross section $\sigma' = \alpha/N_0$ is given by

$$\sigma' = \sigma'_{N} + \sigma'_{P} \,, \tag{4}$$

where

$$\sigma_{\rm N}' = \frac{\sigma_{\rm N}}{1 + \exp\left(-E_{\rm P}/k_{\rm B}T\right)} \tag{5}$$

and

$$\sigma_{\rm P}' = \frac{\exp(-E_{\rm P}/k_{\rm B}T)}{1 + \exp(-E_{\rm P}/k_{\rm B}T)} \, \sigma_{\rm P} \,.$$
 (6)

The frequency dependence of the apparent absorption cross section σ_N is given by [25,26]

$$\sigma_{N}(\nu) = \alpha_{N}(\nu)/N_{N0}, \text{ for } \nu > \nu_{01}^{N},$$

$$= \sigma_{em}^{N}(\nu) \exp[-h(\nu_{01}^{N} - \nu)/k_{B}T],$$
for $\nu < \nu_{01}^{N}$. (7)

 $\sigma_{\rm em}^{\rm N}$ is the stimulated emission cross section of the N isomer and $\nu_{01}^{\rm N}$ is the frequency difference between the S₁ and S₀ electronic level of the N isomer. Its value is determined by the crossing point of the absorption and emission cross section spectra (see figs. 2 and 3).

The absorption cross section ratio, σ'_{P}/σ'_{N} , at $\nu_{P,max}$ ($\nu_{P,max} < \nu_{01}^{N}$) is

$$\frac{\sigma_{\rm P}'}{\sigma_{\rm N}'} = \frac{\sigma_{\rm P} \exp(-E_{\rm P}/k_{\rm B}T)}{\sigma_{\rm em}^{\rm N} \exp(-E_{\rm N}/k_{\rm B}T)}$$

$$= \frac{\sigma_{\rm P}}{\sigma_{\rm em}^{\rm N}} \exp[-(E_{\rm P}-E_{\rm N})/k_{\rm B}T] , \qquad (8)$$

where $E_{\rm N} = h(\nu_{01}^{\rm N} - \nu_{\rm P,max})$. $E_{\rm P}$ is determined by measuring the ratio $\sigma_{\rm P}'/\sigma_{\rm N}'$ at two different temperatures T_1 and T_2 . Application of eq. (8) gives

$$E_{P} = E_{N} + \frac{k_{B} T_{1} T_{2}}{T_{1} - T_{2}} \left[\ln \left(\frac{\sigma'_{P}(\nu_{P,max}, T_{1})}{\sigma'_{N}(\nu_{N,max}, T_{1})} - \ln \left(\frac{\sigma'_{P}(\nu_{P,max}, T_{2})}{\sigma'_{N}(\nu_{P,max}, T_{2})} \right) \right].$$
(9)

After determining E_P and E_N the apparent S_0 – S_1 P isomer absorption cross section spectrum may be determined from eq. (8):

$$\sigma_{P}(\nu,T) = \frac{\sigma'_{P}(\nu,T)}{\sigma'_{N}(\nu_{P,max},T)} \sigma^{N}_{em}(\nu_{P,max},T)$$

$$\times \exp\left[(E_{P} - E_{N})/k_{B}T\right]. \tag{10}$$

The stimulated emission cross section $\sigma_{\rm em}^{\rm N}(\nu)$ is determined from fluorescence quantum distribution measurements $\tilde{E}(\lambda)$ ($\int_{\rm em} \tilde{E}(\lambda) \ d\lambda = 1$) [27]. It is

$$\sigma_{\rm em}^{\rm N} = [1 + \exp(-E_{\rm P}/k_{\rm B}T)]\sigma_{\rm em}^{\rm N'}$$
 (11)

and [28-30]

$$\sigma_{\rm em}^{\rm N\prime} = \frac{\lambda^4 n_{\rm F} \tilde{E}(\lambda)}{n_{\rm A}} \frac{\int_{\rm em} \tilde{E}(\lambda) \, \lambda \, d\lambda}{\int_{\rm em} \tilde{E}(\lambda) \, \lambda^4 \, d\lambda} \int_{\rm abs} \frac{\sigma_{\rm N}'(\lambda)}{\lambda} \, d\lambda \, . \tag{12}$$

 $n_{\rm F}$ and $n_{\rm A}$ are the average refractive indices of the solution in the S_1 - S_0 emission and the S_0 - S_1 absorption band, respectively. The integrations extend over the S_1 - S_0 emission band (em) and the S_0 - S_1 absorption band (abs).

3. Experimental

10⁻⁴ molar solutions of DODCI in ethylene glycol and in methanol are investigated. The absorption cross section spectra were measured with a conventional spectrophotometer (Beckman model ACTA M4). The temperature was varied with a thermostat. The fluorescence quantum distribution measure-

ments were carried out with a home-made fluorimeter [27] applying the front-face collection technique. The excitation wavelength for the fluorescence detection was set to $\lambda_{\rm exc}$ =570 nm. The excitation light was vertically polarized and the fluorescence signal was detected at the magic angle of 54.7° to the excitation polarization.

4. Results

The absorption cross section spectra, $\sigma'(\lambda)$, and the stimulated emission cross section spectra $\sigma'_{em}(\lambda)$ of DODCI in ethylene glycol and in methanol are plotted in figs. 2 and 3, respectively. These spectra were measured at room temperature (T = 294.5 K). $\sigma'_{em}(\lambda)$ is approximately equal to $\sigma''_{em}(\lambda)$. The shoulders in the long-wavelength region of the S_0 - S_1 absorption band indicates the P isomer contribution.

In figs. 4 and 5 the long-wavelength absorption

spectra are shown in more detail. In fig. 4a the absorption spectra $\sigma'(\lambda)$ (solid curves) at $T_1 = 294.5$ K (1) and $T_2 = 368$ K (2) are depicted for DODCI in ethylene glycol. At elevated temperatures DODCI gradually decomposes and the S_0 - S_1 absorption coefficient decreases. Therefore the spectra are adsuch that $\sigma'(\lambda_{01}^N, T_2)$ is equal to justed $\sigma'(\lambda_{01}^{N}, T_1)$. The broken curves represent σ'_{N} (eqs. (5) and (7)). The differences $\sigma'_P = \sigma' - \sigma'_N$ (eq. (7)) are shown in fig. 4b by the broken curves. The absorption peak of the P isomer occurs at $\lambda_{P,max} \approx 620$ nm. At this wavelength the S_0 - S_1 absorption of the N isomer starts at $E_{\rm N} = h(\nu_{01}^{\rm N} - \nu_{\rm P,max}) = hc_0[(\lambda_{01}^{\rm N})^{-1} - \lambda_{\rm P,max}^{-1}] = 1.179 \times 10^{-20} \text{ J} = 593 \text{ cm}^{-1}$ above the S_0 ground level ($\lambda_{01}^N = 598 \text{ nm}$). The level position of the ground state of the P isomer is calculated from eq. (9). Its value is $E_P = 1.45 \times 10^{-20}$ J=727 cm⁻¹. This energy value gives a fraction of $N_{\rm PO}/N_0 \approx 2.7\%$ of molecules in the P isomer state at 294.5 K (eq. (3)). The apparent S_0 - S_1 absorption

Fig. 2. Apparent absorption and emission spectra of 10^{-4} molar DODCI in ethylene glycol. T = 21.5 °C. Structural formula of DODCI is included.

Fig. 3. Apparent absorption and emission spectra of 10^{-4} molar DODCI in methanol. T=21.5 °C.

Fig. 4. Long-wavelength S_0 - S_1 absorption spectra of DODCI in ethylene glycol. (1) T=294.5 K; (2) T=368 K. (a) Solid curves, apparent absorption cross sections $\sigma'_1 = \sigma'_N + \sigma'_P$. Broken curves, apparent absorption cross sections σ'_N . (b) Broken curves, apparent absorption cross sections σ'_P . Solid curve, $\sigma_P(\lambda)$ at T=294.5 K.

Fig. 5. Long-wavelength S_0 – S_1 absorption spectra of DODCI in methanol. Temperature T=21.5°C. (a) Solid curve, apparent absorption cross section spectrum σ' . Broken curve, apparent absorption cross section spectrum σ_N . (b) Broken curve, apparent absorption cross section spectrum; $\sigma'_P(\lambda)$. Solid curve, apparent absorption cross section spectrum $\sigma_P(\lambda)$, taken from ref. [7]. Dash-dotted curve, $\sigma_P(\lambda)$ curve calculated from eq. (10).

cross section spectrum $\sigma_P(\lambda, T_1=294.5 \text{ K})$ is depicted by the solid curve in fig. 4b. It is calculated from eq. (10). The peak absorption cross section is found to be $\sigma_P(620 \text{ nm}) = 5.7 \times 10^{-16} \text{ cm}^2$. This value is not considered to be very accurate because of its exponential dependence on $E_P - E_N$. (The standard deviation of $\sigma_P(620 \text{ nm})$ is $\approx 2 \times 10^{-16} \text{ cm}^2$.)

The long-wavelength S_0 – S_1 absorption spectrum of DODCI in methanol is shown in fig. 5a. The temperature is T=294.5 K. The solid curve presents $\sigma'(\lambda)$, the broken curve gives $\sigma'_N(\lambda)$ (eqs. (5) and (7)). $\sigma'_P(\lambda) = \sigma'(\lambda) - \sigma'_N(\lambda)$ (eq. (6)) is shown by the broken curve in fig. 5b. The P isomer S_0 – S_1 absorption peak is at $\lambda_{P,max}$ =615 nm. The value of E_N is $hc_0[(\lambda^N_{01})^{-1} - \lambda^{-1}_{P,max}]$ =1.31×10⁻²⁰ J=660 cm⁻¹ (λ^N_{01} =591 nm). The P isomer absorption cross section spectrum $\sigma_P(\lambda)$ (solid curve in fig. 5b) is taken from ref. [7] where it was determined from absorp-

tion changes in flash photolysis experiments for DODCI in ethanol. E_P is determined from the broken and solid curve in fig. 5b by application of eq. (6). The value $E_P = 1.51 \times 10^{-20} \text{ J} = 760 \text{ cm}^{-1}$ is ob-

Table 1 Spectroscopic parameters of DODCI. T=21.5 °C. Concentration 10^{-4} mol/dm³

Parameter	Solvent	
	ethylene glycol	methanol
$\lambda_{P,max}$ (nm)	620	615
$\sigma_{\rm P,max}~({\rm cm}^2)$	$(5.7\pm2)\times10^{-16}$	$(7\pm0.7)\times10^{-16}$ [7]
$N_{\rm P0}/N_{\rm 0}$	0.027	0.024
$N_{\rm N}/N_0^{\rm a}$	0.054	0.039
$E_{\rm P}$ (cm ⁻¹)	727	760
$E_{\rm N}$ (cm ⁻¹)	593	660

^{a)} Fraction of N isomers absorbing effectively at $\lambda_{P,max}$.

tained. Eq. (10) gives the dash-dotted curve in fig. 5b for $\sigma_P(\lambda)$. The fraction of molecules in the P isomer state at T=294.5 K is $N_{PO}/N_0 \approx 2.4\%$ (eq. (3)).

The spectroscopic data obtained for DODCI in ethylene glycol and methanol are collected in table 1.

5. Discussion

Analysis of the S_0 – S_1 absorption spectra of DODCI in the long-wavelength absorption region enables us to determine the P isomer absorption cross section spectrum, the energy level position of the ground state of the P isomer, and the fraction of P isomers in thermal equilibrium with the N isomers. The potential energy curve of the S_0 state of DODCI versus the twisting coordinate between the isomer configurations [14] is shown in fig. 1. The activation energy $E_A \approx 9.95 \times 10^{-20} \text{ J} = 5005 \text{ cm}^{-1}$ is taken from ref. [13]. The time constant for P isomer formation is estimated to be $\tau_{N\rightarrow P} = k_{N\rightarrow P}^{-1} = k_{P\rightarrow N}^{-1} \exp(E_P/k_BT) = 0.092 \text{ s for DODCI in ethylene glycol and 0.10 is for DODCI in methanol at <math>T = 294.5 \text{ K}$.

6. Conclusions

The technique of long-wavelength absorption analysis described here may be applied to study the thermal formation of ground-state isomers in molecules which form isomers by photo-excitation.

Acknowledgement

The authors thank the Deutsche Forschungsgemeinschaft for financial support and the Rechenzentrum of the University for computer time.

References

[1] W. Schmidt and F.P. Schäfer, Phys. Letters A 26 (1968) 558

- [2] D.J. Bradley, in: Topics in applied physics, Vol. 18. Ultrashort light pulses, ed. S.L. Shapiro (Springer, Berlin, 1977) p. 18.
- [3] A. Penzkofer, Appl. Phys. B 46 (1988) 43.
- [4] F.P. Schäfer, W. Schmidt and K. Marth, Phys. Letters A 24 (1967) 280.
- [5] M. Maeda and Y. Miyazoe, Japan. J. Appl. Phys. 11 (1972) 692
- [6] A. Hirth and K. Vollrath, Opt. Commun. 7 (1973) 339.
- [7] D.N. Dempster, T. Morrow, R. Rankin and G.F. Thompson, J. Chem. Soc. Faraday Trans. II 68 (1972) 1479.
- [8] E.G. Arthurs, D.J. Bradley and A.G. Roddie, Chem. Phys. Letters 22 (1973) 230.
- [9] E.G. Arthurs, D.J. Bradley and A.G. Roddie, Opt. Commun. 8 (1973) 118.
- [10] D. Madge and M.W. Windsor, Chem. Phys. Letters 27 (1974) 31.
- [11] G.E. Bush, K.S. Greve, G.L. Olson, R.P. Jones and P.M. Rentzepis, Chem. Phys. Letters 33 (1975) 412.
- [12] J.C. Mialocq, A.W. Boyd, J. Jaraudias and J. Sutton, Chem. Phys. Letters 37 (1976) 236.
- [13] C. Rullière, Chem. Phys. Letters 43 (1976) 303.
- [14] G.R. Fleming, A.E.W. Knight, J.M. Morris, R.J. Robbins and G.W. Robinson, Chem. Phys. Letters 49 (1977) 1.
- [15] J. Jaraudias, P. Goujon and J.C. Mialocq, Chem. Phys. Letters 45 (1977) 107.
- [16] J. Jaraudias, J. Photochem. 13 (1980) 35.
- [17] F. Heisel, J.A. Miehe and B. Sipp, J. Luminescence 24 (1981) 651.
- [18] S.P. Velsko and G.R. Fleming, Chem. Phys. 65 (1982) 59.
- [19] S.P. Velsko, D.H. Waldeck and G.R. Fleming, J. Chem. Phys. 78 (1983) 249.
- [20] D. Doizi and J.C. Mialocq, Compt. Rend. Acad. Sci. (Paris) C 297 (1983) 109.
- [21] D. Khechinashvili, S. Rentsch. B. Schröder and H. Wabnitz, in: Teubner Texte zur Physik, Vol. 10, eds. E. Klose and B. Wilhelmi (Teubner, Leipzig, 1986) p. 234.
- [22] G.M. Bilmes, J.O. Tocho and S.E. Braslavsky, Chem. Phys. Letters 134 (1987) 335.
- [23] S. Schneider, U. Möller and H. Coufal, Appl. Opt. 21 (1982) 517.
- [24] L. Scaffardi, G.M. Bilmes, D. Schinca and J.O. Tocho, Chem. Phys. Letters 140 (1987) 163.
- [25] W. Blau, W. Dankesreiter and A. Penzkofer, Chem. Phys. 85 (1984) 473.
- [26] A. Penzkofer and P. Sperber, Chem. Phys. 88 (1984) 309.
- [27] A. Penzkofer and W. Leupacher, J. Luminescence 37 (1987) 61.
- [28] O.G. Peterson, J.P. Webb, W.C. McColgin and J.H. Eberly, J. Appl. Phys. 42 (1971) 1917.
- [29] S.J. Strickler and R.A. Berg, J. Chem. Phys. 37 (1962) 814.
- [30] J.B. Birks and D.J. Dyson, Proc. Roy. Soc. A 275 (1963) 135.