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Running coupling and the A parameter from SU(3) lattice simulations
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We present new results on the static qq potential from high-statistics simulations on 32 and
smaller lattices, using the standard Wilson action at P = 6.0, 6.4, and 6.8 on the Connection Machine
CM-2. Within our statistical errors ( 1'%%uo) we do not observe any finite-size effects affecting the
potential values, on varying the spatial lattice extent from 0.9 fm up to 3.3 fm. We are able to see
and quantify the running of the coupling from the Coulomb behavior of the interquark force. From
this we extract the ratio V o /Ar, . We demonstrate that scaling violations on the string tension can be
considerably reduced by introducing effective coupling schemes, which allow for a safe extrapolation
of AL, to its continuum value. Both methods yield consistent values for A: AMs ——0.555+e'oiz x ~o =
244+7 MeV, where MS denotes the modified minimal subtraction scheme. At the highest-energy scale
attainable to us we find a(5 GeV) = 0.150(3).

FACS number(s): 11.15.Ha, 12.38.Aw, 12.38.Gc

I. INTRODUCTION

The experimental determination of the running cou-
pling constant of /CD has reached a reasonable degree of
accuracy [1] after two decades of research efFort. This has
stimulated considerable attention to compute this quan-
tity from first principles, by use of lattice methods [2—4].
The lattice approach to the problem of matching per-
turbative and nonperturbative aspects of @CD is notori-
ously difficult because of the requirement of a high-energy
resolution. Nevertheless, computer experiments in pure
SU(2) and SU(3) gauge theories have reached a precision
that allows to ask rather detailed questions about the
static quark-antiquark potential. The size of the avail-
able lattices (48s x 56, in SU(2) gauge theory [5]) enables
one to decrease the lattice spacing a into a regime where
one can make contact to predictions of continuum pertur-
bation theory. This has been done for the case of SU(2)
by a study of the Coulomb behavior of the interquark
force in Ref. [3]. In the case of SU(3), a lattice spacing
of a = 3.6 GeV was achieved so far [6] on a 324 lattice
at P = 6.4. This resolution is about the threshold for
running coupling efFects to become visible.

In this paper we want to present a detailed investiga-
tion of the running coupling in SU(3) gauge theory, by
further reducing the lattice spacing to a = 6.0GeV.
Within our analysis of the small-distance regime, we will
use a parametrization incorporating lattice effects. Being
limited to lattice sizes up to 324, we have to make sure
that our results are not spoiled by finite-size effects. For
this reason we have worked on a variety of lattices, at
each value of P.

Once the running coupling has been extracted, we will
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be able to compare to perturbative predictions and esti-
mate a value for the corresponding AI, parameter. We
will see that this value is consistent with AL„as obtained
from the string tension (by the use of the two-loop P
function [7]), after an extrapolation to a = 0. In order to
substantiate this result we will improve on scaling viola-
tions (as expressed in the strong P dependence of AL, ) by
replacing the bare coupling with suitable "efFective" cou-
plings [8—11], measured on the lattice from the average
plaquette. In this case we will Gnd nearly asymptotic
scaling for P ) 6.0. The extrapolation to the contin-
uum yields an estimate for Az, which is consistent within
smaller errors with the value obtained from the running
coupling.

II. METHODS

A. Saxnpling

In order to maintain an appropriate stochastic move-
ment of the gauge system through phase space with
increasing P, we have combined one Cabibbo-Marinari
pseudo-heat-bath-sweep [12] over the three diagonal
SU(2) subgroups with 4 (9) successive overrelaxation
sweeps [13] for P = 6.4 (6.8). We reach an acceptance
rate of 99.5% for an overrelaxation link update. For the
heat bath we use the algorithm proposed by Kennedy and
Pendleton [14] which has a high acceptance rate and can
thus be efficiently implemented on a single-instruction
multiple-data (SIMD) machine. We can afford iterating
the algorithm until all link variables are changed. On
our local 8K CM-2 we need 9.2 psec for an overrelax-
ation link update and 11.5 @sec for a single Cabibbo-
Marinari link update. This performance was achieved
after rewriting the SU(3) matrix multiply routines in
assembler language. Measurements were started after
2000—10000 thermalization sweeps.
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B. Smoothing operators

In lattice gauge theory physical quantities of interest
such as masses, potential values, and matrix elements are
related to asymptotic properties of exponentially decreas-
ing correlation functions in Euclidean time, and therefore
prone to be drowned in noise. So one is forced to improve
operators in order to reach the desired asymptotic behav-
ior for the small-T region. We will shortly describe our
particular improvement technique [6].

We start from the relation between Wilson loops
W(R, T) and the (ground-state) potential V(B)

W(R, T) = C(R) exp( —TV(B))
+excited state contributions.

Our aim is to enhance, for each value of A, the corre-
sponding ground-state overlap C(A). Since the ground-
state wave function is expected to be smooth on an ultra-
violet scale we concentrate on reducing noise by applying
a local smoothing procedure on the spatial links: consider
a spatial link variable U, (n), and the sum of the four spa-
tial staples II,(n) connected to it:

link set to zero, but with even/odd updating. The lat-
ter feature renders the algorithm less memory consuming
and seems to improve convergence. Contributions from
excited states become increasingly suppressed, as we re-
peat this procedure. After 30 (45) such smoothing steps
at P = 6.4 (6.8) we reach values for the overlap C (R) of
95 (80)Fo for small (large) spatial separations R.

C. Extraction of potential values

For the extraction of the potential from the Wilson
loop data we proceed essentially as described in Ref. [6],
with a slight modification that helps to carry out a
straightforward error analysis. Instead of fitting the Wil-
son loops to the dependence

Wri(T; C(R), V(R)):=C(R) exp (—V(R)T) (3)

for T & T~;„with some reasonable cutoff T;„we take
the local mass

W(R, T;„)
(W(R, T; + 1) )

(2)

We apply a gauge-covariant, iterative smoothing algo-
rithm which replaces (in the same checkerboard ordering
as the Metropolis update) U~(n) by U,'(n) minimizing the
local spatial action S,(n) = —Re Tr(Ui(n)IIt(n)), which
is qualitatively a measure for the roughness of the gauge
field. This is very similar to lattice cooling techniques al-
ready invented by previous authors [15,16] except that we
are cooling only within time slices and thus not affecting
the transfer matri~. Alternatively, this algorithm may be
interpreted as substituting U, (n) by 'P [II,(n)] where 'P

denotes the projection operator onto the nearest SU(3)
matrix. In this sense it is a variant of the APE recursive
blocking scheme [17] with the coefBcient of the straight

as an estimator for the potential V(R). By using this ex-
plicit formula for the calculation of V(R) we are able to
propagate the covariance matrix between Wilson loops to
a covariance matrix for the potential values. This allows
one to separate the determination of potential parame-
ters from the measurement of the potential itself, helping
to decrease the degrees of freedom and promoting stabil-
ity within the fitting procedure. Note that the value of
V(R,) = VT,„(R) does not differ appreciably from the
result of a fit to Eq. (3) because the latter is anyhow
dominated by the lowest two T data due to their small
relative errors.

The optimization of the overlap C(R) proceeds as de-
scribed in Ref. [6]: The parameters C(R) and V(R,) are
fitted for different T~;„ to the Wilson loop data sep-
arately for each smoothing step (and R) according to
Eq. (3) by minimizing

yR(C(R), V(R)) = ) [W(R, Ti) —W~(Ti) C(R), V(R))] (C )T ~ [W(R, T2) —WR(T2, C(R), V(R))].
T1,T2

CT, 'T ' denotes the covariance matrix which is estimated to be

N

CTqTq = ) [Wi(R1) Ti) W(R1) Tl)][Wi(R2&1T2) W(R2)1T2)] ~

i=i
(6)

We have divided the time series of Wilson loops into N successive subsets of given length n. W, (R,, T) stands for the
average of the respective Wilson loop over the ith subset. n should be chosen such that ~ &( n && X, in order to cope
with the autocorrelation time r. Afterward for each value of R the smoothing step with highest ground-state overlap
C(R) is selected from the fits with reasonable yz.

In a second step stability of local masses VT (R) [Eq. (4)] against variation of T is checked, and T;„(R)is determined
as the T value (plus one) from which onward stability within errors is observed. For large R values we find T;„=4.
For simplicity we chose the same value for small B.

As promised, we are now able to propagate the covariance matrix between different Wilson loops Cz'T ' to a
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TABLE I. The simulated lattices. Physical units correspond to the choice ~o = 440 MeV for the string tension. Errors
ignore the experimental uncertainty within the value of the string tension.

V=Lz xLT
a/fm

a '/GeV
aLs/fm

(aLT )
' MeV

Total no. of sweeps
Thermalization phase
No. of measurements

P=60
324

0.101 (2)
1.94 (5)
3.25 (8)

61 (1)
6100
1000

102

163 x 32

0.87 (1)
113 (1)

11900
2000

100

1.74 (2)
226 (2)
10000

2100
80

22 000
2100

200

p=6.4

24 x 32 32 x 16
0.0544 (5)
3.62 (4)

1.31 (1)

324

113 (1)
8900
2500

65

P=68
16 x 64 324

0.0327 (5)
6.02 (10)

0.52 (1) 1.05 (2)
94 (2) 188 (3)
20 400 15 900
10000 5000

105 110

covariance matrix between the potential values Cv' ', by using the quadratic approximation

). BV(Ri) ~,~, BV(R2)
BW(Ri, Ti) '~' BW(R2, Tz)

gRzRg gRy Rg
T(R1),T(Rg ) T(R1)+1,T(Rg)+1

W(Ri, T(Ri))W(Rs, T(Rs)) W(Ri) T(Ri) + 1)W(Rs) T(R2) + 1)
gRxRg gRyRg

T(R&)+1 T(R&) T(Rg),T(Rg)+1
W(Ri, T(Ri) + 1)W(Rz, T(Rz)) W(Ri, T(Ri))W(Rs, T(Rz) + 1)

where T(R) is used as an abbreviation for T~;„(R). With
this covariance matrix we are able to fit the potential
data to various parametrizations, incorporating all pos-
sible correlations between different operators measured
on individual configurations as well as correlation efFects
within the Monte Carlo time series of configurations.

D. Measurements

The lattice parameters used for the simulations2 are
collected in Table I which includes quotations of 324 lat-
tices at p = 6.0 and p = 6.4, as well as a 24s x 32 lattice
at P = 6.4 that have been simulated recently [6], and
are reanalyzed in the present investigation. The spatial
extent of the lattices at p = 6.4 ranges from aLs=0.87
fm to 1.74 fm. At P = 6.8 lattice volumes of (0.52 fm)s
and (1.05 fm)s have been realized. The resolution a i is
varied from 1.9 GeV to 6.0 GeV.

Smoothened on- and off-axis Wilson loops were mea-
sured every 100 sweeps (every 50 sweeps for P
6.0). Up to N~~„= 30 (45) smoothing steps were
performed at P = 6.0, 6.4 (6.8). The following

In order to check the validity of this approximation, we have
moreover carried out a bootstrap analysis [18] of our data on
the 32 lattices. (This method is also shortly described in
the Appendix of Ref. [19].) The resulting errors (and biased
values) are almost identical with the results of our approxima-
tion, but the bootstrap method alone does not deliver reliable

values (incorporating the correlation eKects).
Note that we have adapted the physical scales from Vcr =

420 MeV to v o = 440 MeV.

spatial separations were realized: R = Me, with
e; = (1,0, 0), (1, 1, 0), (2, 1,0), (1, 1, 1), (2, 1, 1), (2, 2, 1).
M was increased up to Ls/2 for i = 1, 2, 4, and up to
Ls/4 for the remaining directions. Altogether this yields
72 different separations R on the 32s x LT lattices. The
time separations T = 1, 2, . . . , 10 were used. Thus the to-
tal number of operators measured on one configuration
(V = 32s x LT ) is 72 x 10 x N

The potential values at P = 6.0 and P = 6.4 have been
listed in our previous publication [6]. For the convenience
of the reader we collect the corresponding values for P =
6.8 in the Appendi~.

III. R,ESULTS

A. qq potential

The lattice propagator for the one-gluon exchange [20],

Gl. (R) = d k cos(k R,)
(2m)s 4Q,. sin (k, /2)

' (9)

has been calculated numerically. The parameter l is ex-
pected to be in the range 0 & l & 1 and controls the
violation of rotational symmetry on the lattice (within
this ansatz). The term f/R mocks deviations from a
pure Coulomb behavior and is expected to be positive to
the extent that asymptotic freedom becomes visible in
the efFective Coulomb term —(e —f/R)/R

We connect our investigation to the recent SU(2) anal-
ysis by Michael [3], and start from his ansatz

V(R) = V&+ KR —e
i + l4~GL, (R) i +, . (8)
/1 —l f
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TABLE II. Fit results. Since the parameter values on the largest lattices are most precise, we
refrain from citing results gained on smaller volumes as long as they are compatible with the stated
numbers. For the 16 x 64 lattice at P = 6.8 this is not the case. Therefore we have listed both the
standard 6t result and the parameter values with the string tension constrained to its 32 value.

Vol.
K
e

Vp

l

&min
x2

NDF

P=60
32'

0.0513 (25)
0.275 (28)
0.636 (10)
0.64 (12)
0.041 (58)

2

0.816

p=6.4
32'

0.014 75 (29)
0.315 (15)
0.6013 (37)
0.564 (55)
0.075 (18)

v3
0.953

32'
0.005 33 (18)

0.311 (10)
0.5485 (24)
0.558 (35)
0.094 (13)

v3
0.937

P=68
16' x 64

0.005 45(27)
0.269 (22)
0.5412 (37)
0.725 (87)
0.037 (26)

v3
0.989

0.005 33
0.274 (18)
0.5426 (34)
0.710 (120)
0.043 (25)

~3
0.754

A test of the ansatz Eq. (8) implies that the "cor-
rected" data V(B) = V(R,) +6V(R) with

6V(R) = el[4vrGL, (R) —I/B] (10)

V=52', P = 64

are independent of the direction of R. The global situ-
ation is depicted for the 32 lattice at P = 6.4 in Fig. 1
where the corrected data points are plotted together with
the interpolating fit V(R) = Va+ KR —e/R+ f/Rs, with
fit parameters Va, K, e, and f as given in Table II. Our
potential fits yield y /NDF ( 1 as long as the first twos

data points are excluded. The stability of the string ten-
sion result with respect to cuts in R is displayed in Fig. 2
(for P = 6.4 and 6.8).

For P ) 6.4 the Coulomb coefficients e are definitely
different from the value ir/12 0.262 predicted by the
string vibrating picture [21] for large qq separations. The
self-energy contribution Va follows the leading-order ex-
pectation Va o( 1/P. We emphasize that for all P values
the parameter f is established to be positive as expected.
In fact, this parameter tends to increase with P, weaken-
ing the Coulomb coupling for small distances.

A more sensitive representation of the scatter of the
data points around the interpolating fit curve (obtained
on the 324 lattice) is shown in Fig. 3 (for P = 6.4). Note
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FIG. 1. The qq potential at P = 6.4 (in lattice units).
The data points have been corrected for the lattice Coulomb
propagator [Eq. (8)]. The fit parameters are contained in
Table II.

Three for P = 6.0.

4.8
I I I I I I I I I I I I I I I I I I j I I I I I I I I

7

R io

FIG. 2. The values for the string tension K at (a) P = 6.4
and (b) P = 6.8 are plotted against the smallest R separation
included for the corresponding Gt in order to visualize sta-
bility. The first two values (in each figure) have nonreliable
error bars since g & NDF.
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FIG. 3. The relative deviation between
the potential values and the corresponding
fit curve (taken from a fit to the 32 data)
is shown for the 16 x 32, 32, and 32 x 16
lattices for P = 6.4, respectively.
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that the deviations are within a 1% band for the largest
volume, once the first two data points are excluded. De-
creasing the lattice spatially or in the time direction by a
factor of 2 leaves the data points compatible with the in-
terpolating curve, i.e., the finite-size effects (FSE's) are
below our statistical accuracy. Nevertheless it pays to
work on a 324 lattice since the larger possible qq sep-
arations increase the lever arm needed to fix the long-
distance part of the potential.

At P = 6.8 we find indications of FSE's by comparing
results from the small lattice and the 324 lattice. As the
string tension appears not to suffer from these effects, we
have Axed its value to that measured on the larger lattice
in order to study FSE's on the remaining parameters
more directly. The largest FSE occurs for the lattice
correction parameter l. This may be due to the low-
momentum cutoff that starts to become visible on the
scale of a few lattice spacings. By choosing the form of
the one-gluon exchange [Eq. (9)] we have neglected this
cutoff in the integral bounds.

We concentrate our interest here on short-distance
physics where the linear term is not yet dominating the
potential. In the case of P = 6.4 the latter happens at
R = 5. From Fig. 3 we conclude that reliable results
can be extracted from a lattice as small as 16s for this P
value. In physical units this corresponds to a 273 lattice
at P = 6.8. So a volume of 32s (or even smaller) appears
to be sufficiently large for our purpose.

A synopsis of data for P = 6.0, 6.4, and 6.8, in physi-
cal units, is displayed in Fig. 4 with logarithmic ordinate
ranging from 0.03 fm up to 1.9 fm. The three data sets
collapse to a universal potential. The two curves cor-
respond to a linear-plus-Coulomb parametrization, with
the string tension a = Ka =(440 MeV)z, and the
strength of the Coulomb term determined by our fit to
the P = 6.4 data (e = 0.315, solid curve), and fixed to
the Luscher value (e = vr/12, dashed curve), respectively.
The plot demonstrates the incompatibility of the data
points with a pure Coulomb behavior for short distances,
and the necessity of additional terms such as f/Rz.

B. Running coupling

Our lattice analysis for the running coupling nqq(R)
closely follows the procedure suggested in Ref. [3]. We
start from the symmetric discretization in terms of the
force F:

aqq(R) = —s4RyR2F(R)
3 V(Ry) —V(R2)

1 24 Ry —R2

) 2

1 .5O

Q

V=32'

0.5

—0.5

—1.5

10
Ra/fm

FIG. 4. All "corrected" potential data for the 32 lattices
at P = 6.0, 6.4, and 6.8 are scaled to a universal curve by sub-
tracting Vo, and measuring energies and distances in physical
units, exploiting the relation ~a = ~Ka = 440 MeV. The
dashed curve corresponds to V(R) = KR —~2n, the solid line
represents V(R) = KR —0.315/R.
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with R = (Ri + Rz)/2. We take the corrected poten-
tial V(R;) = V(R, ) + 6'V(R, ) with bV(R, ) as given in
Eq. (10). Unlike Ref. [3], however, we use all possib e
combinations Ri, Rq with IRi —R2li &1.5.

The resulting data points are contained in Fig. 5(a).
In order to exhibit both the global behavior, and the

rithmic ordinate (in units of cr / ). The latter region is
expanded in e inse .d d

' th ' t We omitted all values with errors
An~q(R) ) a.~q(R)/3 in order not to clutter the grap .
In addition to the statistical error of the force F(R) we
allow for a systematic error

)- 1/2
(~'il + r~.

hl lbF(R)l (12)EF&yet (R)

Rj — ' ' . AF, & is typically of thewith 6F Rj = R ~ . ,y, t
order of 10% of the lattice correction bF(R).

Now we can proceed to analyze our aqq data in terms
of the continuum large-momentum expecta

'

running coupling:

n~q(R) = [bp ln (RaAR) + bi/bp ln ln (RaA~) ]

with

expansion of the SU(N~) Callan-Symanzik P function
[Eq. (25) below]. In order to extract A~ we base our fits
exclusively on data points at P = 6.8 with Ri, R & 3
on the right-hand side of Eq. (11). This is done in or-
der to avoid the danger of "pollution" from discretization
errors.

We now ask the question, within which B region our
data are compatible, if at all, with the asymptotic behav-
ior of Eq. (13). We find that as long as R~K ( 0.173
our fits yield results with reasonable yz/NDF. This upper
limit in R corresponds to 2.5 GeV. Fitting the P = 6.8
data over this region we obtain

A~ = (0.562 + 0.020 + 0.010)~cr
= (247 + 10) MeV. (15)

The first error stems from the fit just described, while the
second relates to the statistical uncertainty of the string
tension within our lattice analysis. The corresponding
fit curve with error bands is plotted in Fig. 5. As the
data appear to osculate the asymptotic curve one finds
a systematic dependence on the R cut: AR tends to be
larger if more (low-energy) data points are included and
vice versa. In this sense one might consider our value as
an upper limit.

Exploiting the relation AR = 30.19AI, [22] we get

2ll N~ 34 f Nc i
(14)16~2 ' 3 (167rz)

being the first two coefIicients of the weak-coupling

Ag = (18.6*0.7 + 0.3) x 10 ~o
—(8.19 + 0.33) MeV.

This corresponds to the ratio

(16)

3 2 — 0.4
0.35

0.3
24 025

2 — 0.2
0.15

0. 1

p=6.8
& P=68
~ p=6. 4

/=6. 4

o

1.2 0.05
0

0.8

0.4

2

Y"
—1

'I 0

(b)

R/K' '

FIG. 5. The running coupling a« is plot-
ted versus (a) the qq separation and (b) the
corresponding energy scale. The circles and
triangles might be "polluted" by lattice arti-
facts (criterion from Sec. III B).The fit curves
correspond to the two-loop formula equa-
tion (13) with the value A~ = 0.562(20) Vo =
247(9) MeV. If we exclude data points on the
large-R (small-q) side of the dashed vertical
lines we obtain y /NDF ( 1 values.

l.6
Lj

1 ~ 2

04

q/GeV
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= 53.7 6 2.1.
L

In Fig. 5(b) we have plotted n versus the energy. At
the largest realized energy scale we find n~q(5 GeV)
0.150(3).

Returning to the global structure of the data displayed
in Fig. 5 we make three observations. (1) The small-
R contributions (circles and triangles) follow very neatly
the asymptotic perturbative prediction equation (13), in-
dicating very little discretization efFects. (2) Over the
whole R range the data sets for P = 6.4 and P = 6.8
coincide very nicely, giving evidence for scaling. (3) The
deviations of the data from the asymptotic behavior re-
main fairly small up to q

—1 GeV or o,qq 0.4.
We conclude that lattice simulations can indeed make

contact to the perturbative regime. Moreover, it is very
satisfying to observe that the two-loop formula describes
the lattice data down to a scale as small as 1 GeV—
at least in the quenched approximation of @CD. One
would expect that the situation in full @CD is fairly
similar, concerning this property. In the infrared regime
(q ( ~o) the differences between both theories will be
considerable. Because of the linear-confining potential
our expectation for the pure gauge sector is nz~(q) oc

1/qz. This has to be confronted with the expression
a~~(q) oc e &«/qz for /CD with fermionic degrees of
freedom where p, stands for the screening mass.

C. Scaling

Normally one speaks of asymptotic scaling when the
ratio ~o/Al. remains constant on varying P where

We attempt to extrapolate Al to the continuum
limit by the use of a parametrization that takes into ac-
count the leading-order expectation for scaling violations
O(1/ ln a):

(So)= ).i
1—

6V

A~'(a) = A~'(0) + C
(»)

We find the data compatible with this logarithmic behav-
ior, with D —1—2, and C 20—80. The fit parameters
are not particularly stable with respect to a variation of
the number of data points. The bandwith of extrapo-
lations to the continuum limit is illustrated in Fig. 6(a)
where we have plotted the extreme cases of a fit to our
four low-a data points, and all seven data points (open
circles). If we average the values obtained from these fits,
and take the upmost and the lowest possible numbers as
error bandwidth, we estimate the asymptotic value to be
~oAL, (0) = 54+&s (solid circle). We would like to men-
tion that a naive linear extrapolation to the continuum
limit yields the value v oAI, (0) = 63.6 (2.4) with (ob-
viously) underestimated error. We take this as a warning
for purely phenomenological continuum extrapolations.

In view of the uncertainty of the above number it would
be highly desirable to improve the situation by develop-
ing a scheme within which the a dependence of Ar, (a) is
reduced. Parisi suggested many years ago a more "nat-
ural" expansion parameter g~ [8], based on a mean field
argument. His scheme was elaborated in Refs. [9—11]. It
works as follows. Let c„be the coefncients of the weak-
coupling expansion of the average plaquette:

ReTrUo
I)

1 t' 1
Al, = —exp

~

—
~

(bogz)a ( 2bogz)
(18) (20)

(with g = 2N~/P) denotes the integrated two-loop P
function [Eq. (25) below]. In Table III we have compiled
our new results on the string tension together with pre-
vious results from Refs. [6, 23]. As can be seen we are
still far away from the asymptotic scaling region up to
P = 6.8.

The idea, now, is to introduce an efFective coupling in
terms of the Monte Carlo generated average plaquette,

(So)
g@ =

Cy

+ —g + —g +&(g )~ (21)
C] C]

TABLE III. The lattice spacing a and cutofF parameters AL„calculated from the
two-loop-expansion equation (18) in units of the string tension a. AL, is obtained by inserting
the bare lattice coupling. For Az' the Pz' l effective couplings were used. A naive linear extrap-
olation to a = 0 leads to the results displayed in the second to last row. Logarithmic extrapolations
yield the values in the last row.

5.7
5.8
5.9
6.0
6.2
6.4
6.8

Lin.
Log.

a~+
0.4099 (24)
0.3302 (30)
0.2702 (37)
0.2265 (55)
0.1619 (19)
0.1215 (12)
0.0730 (12)

0
0

124.7 (0.7)
112.4 (1.0)
102.9 (1.4)
96.5 (2.3)
86.4 (1.0)
81.3 (0.8)
76.9 (1.3)
63.6 (2.4)

54+18-15

63.3 (0.4)
63.0 (0.6)
61.2 (0.8)
60.0 (1.5)
56.9 (0.7)
55.7 (0.5)
55.7 (0.9)
53.1 (1.6)
532+ '

70 3

55.7 (0.3)
55.6 (0.5)
54.3 (0.7)
53.4 (1.3)
50.8 (0.6)
50.0 (0.5)
50.4 (0.8)
48.3 (1.4)
49 1+—5.9
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cg = (Nc —I)/(8'),
c2 = (Nc —1)[0.020 427 7 —I/(32'� )]/4,
cs ——(Nc2 —1)Nc ( 0.006 659 9 —0.020 411/Nc

+0.034 339 9/Nc )/6.

(22)

(23)

(24)

for which the first-order expansion is exact. The hope is
that the nonperturbative (or higher-order perturbative)
contributions that are resummed in the effective coupling
gz may compensate high-order terms in the P function
which are responsible for the scaling violations. Support
for this expectation comes from the observed scaling of
ratios of physical quantities (Figs. 4 and 5) within the
same P region.

The coefficients cq and c2 have been calculated previ-
ously [24], and cs has recently been calculated by Alles
et al. [25]. The numerical values are:

(&o) = cgg2'+ c,g,'. (28)

This amounts to truncating the weak coupling expansion
equation (20) after the second term. A short calculation
yields

P(g2) = —bpa2 b&92 b292 3bp g2 + O(92).
C]

(29)

scheme. As one can see from Fig.6(a) (open squares)
and Table III this kind of (numerical) resummation of
the asymptotic series equation (20) leads to considerably
reduced logarithmic corrections (C = 2.5).

As an additional check of this improvement technique
we consider in the following an "alternative" effective
coupling scheme Pz . Our idea is to introduce a cou-(2)

pling g2 by inverting the relation

P(a) = —
dl„,

g ) b g2n+3 (25)

of the P function, one rewrites

The plaquette values needed for the conversion into the
effective coupling schemes are collected in Table IV. The
numbers for P & 5.9 were taken from the collection in
Ref. [11].Starting from the expansion

130

120

110

100

90

80

70

60

bare coupling (o )

P,"' scheme

PE scheme
o A L

O

d

dlna dlna g@ dg

bp g —b—g ga —b2g@
2(c21 cs c2+ 36p 2 — ———2 y

—g@ + g@(cl ) cl Cy

(26)

The first two terms in this weak-coupling expansion
remain unchanged under the substitution. Therefore, an
integration again leads to Eq. (18), but with a redefined
integration constant

40
0 0. 1 0.2

130
C4

12O
to

110

100

90

80

70

0.3 0.4
i/2

CI O

bare coupling

P, ' sc heme

P,"' scheme

A@ = Ar, exp
l l

—2.0756AI, [for SV(3)].
( C2

(2cqbp p
(27)

This factor is due to a shift of the efFective P by a con-
stant in the continuum limit: ga ——g —c2/cq+O(g ).
In the following we will refer to this scheme as the P&

(1)

TABLE IV. The average plaquette action (So), measured
on large lattice volumes. The values for P & 5.9 are taken
from the collection in Ref. [11] while the other numbers are
our new results, obtained on 32 lattices, and one 24 x 32
lattice (P = 6.2).

60

50

40
5.6

CI

p

I i r t & I i I i r I r» I I i i « I

6.2 6.4 6.6 6.85.8

FIG. 6. The parameter A~, as calculated from Eq. (18),
versus (a) the lattice spacing a and (b) the inverse bare cou-
pling P for the different effective coupling schemes. The values
for P & 5.9 were obtained by the MTc Collaboration [23]. In
Fig. 6(a) the extrapolated continuum values (solid symbols),
and difFerent fit curves are plotted additionally. The solid line
in Fig. 6(b) corresponds to vro = 51.9+,'sAI. .

5.7
5.8
5.9
6.0
6.2
6.4
6.8

(~o)
0.451 00 (80)
0.43236 (5)
0.418 25 (6)

0.406 262(17)
0.386 353 (8)
0.369 353 (5)
0.340 782 (5)

One can generalize this scheme by truncating in higher or-
ders n This is of li.ttle interest, however (unless one is in-
terested in numerical studies of the impact of a particular
higher-loop contribution on the observed scaling violations),
since the P function has only been calculated up to O(g ).
Moreover, one would retrieve the bare coupling scheme at n
suKciently large.
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Because of gz
——g s+ 0(g2) the integration constant

AL, remains unchanged in respect to the original bare
coupling scheme.

If we compare the third-order terms of the two effective
schemes [Eqs. (26) and (29)], we find, explicitly,

P(g) =P(g (g))+53 x 10 g +O(g )
= p(g2(g)) +4.02 x 10 sg7+ O(gs). (30)

This means that the correction of the P function throu h
the three-loop contribution is much larger for the P 2&

than for the P~~) scheme. s Nevertheless, at least within
the investigated P region, the qualitative behavior of both

schemes is the same as can be seen in Fig. 6(a). For the
P( & scheme the correction coefficient (C 0.9) of the
continuum extrapolation equation (19) is even smaller

than for the P& scheme. In Fig. 6(a) we have included
the estimates for the asymptotic A& values (and the Az
from the running coupling) as solid symbols.

The extrapolated values for both eEective schemes are,
respectively,

~~ = 53.2+2 ssA,"'

—49.1 s sA~ .+~,3 (2)

TABLE V. The potential values V(R) (in lattice units a '), "corrected" values V(R), and
ground-state overlaps |(R) for P = 6.8, V = 32 .

1.00

1.41

1.73

2.00

2.24

2.45

2.83

3.00

3.00

3.46

4.00

4.24

4.47

4.90

5.00

5.20

5.66

6.00

6.00

6.71

6.93

7.00

7.07

7.35

8.00

8.49

8.66

8.94

9.00

Path V(R)
0.3107 (6)
0.3855 (11)
0.4188 (19)
0.4236 (14)
0.4428 (13)
0.4559 (15)
0.4696 (20)

0.4725 (14)

0.4751 (18)
0.4906 (31)
0.5000 (18)
0.5079 (23)

0.5105 (22)

0.5178 (28)

0.5193 (19)
0.5230 (32)

0.5312 (29)

0.5325 (25)

0.5357 (29)

0.5421 (27)

0.5469 (42)

0.5463 (27)

0.5474 (36)

0.5504 (32)

0.5568 (34)

0.5623 (44)

0.5644 (47)

0.5663 (37)

0.5671 (36)

V(R)
0.3210 (10)
0.3794 (12)
0.4098 (20)

0.4266 (14)
0.4397 (14)

0.4509 (15)
0.4656 (20)

0.4709 (14)

0.4705 (19)
0.4861 (31)
0.4970 (19)
0.5039 (23)

0.5068 (22)

0.5139 (28)

0.5159 (20)

0.5190 (32)

0.5273 (30)

0.5289 (25)

0.5317 (30)
0.5383 (27)

0.5430 (42)

0.5426 (27)

0.5436 (37)
0.5466 (32)

0.5531 (34)

0.5584 (44)

0.5605 (47)

0.5625 (37)

0.5633 (36)

C(R)
0.950 (3)
0.951 (4)

0.946 (8)
0.929 (5)
0.934 (5)
0.936 (6)
0.923 (8)

0.931 (6)

0.924 (7)

0.923 (12)

0.916 (7)

0.939 (9)
0.916 (9)
0.913 (11)
0.924 (8)
0.929 (13)
0.920 (12)
0.907 (10)
0.918 (12)

0.917 (11)
0.916 (16)
0.921 (11)
0.928 (15)
0.923 (13)
0.910 (13)
0.911 (17)
0.930 (19)
0.911 (15)
0.920 (14)

Note that the difference between the P functions for both effective schemes is independent of c3 to this order.
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9.00

9.80

9.90

10.00

10.39

11.00

11.18

11.31

12.00

12.00

12.12

12.25

12.73

13.00

13.42

13.86

14.00

14.14

14.70

15.00

15.00

15.56

15.59

15.65

16.00

16.97

17.15

17.32

17.89

18.00

18.39

19.05

19.60

19.80

20.79

21.00

21.21

22.52

22.63

24.00

24.25

25.98

27.71

Path

TABLE V. (Conti nued. )
V(R)

0.5651 (37)

0.5733 (41)

0.5745 (48)

0.5743 (44)

0.5777 (53)

0.5830 (49)

0.5818 (49)

0.5841 (50)

0.5887 (55)

0.5900 (55)

0.5941 (60)

0.5918 (53)

0.5962 (64)

0.5987 (56)

0.5998 (61)
0.6031 (75)

0.6055 (62)

0.6052 (73)
0.6096 (70)

0.6097 (68)

0.6102 (69)

0.6139 (81)
0.6163 (81)
0.6144 (73)

0.6151 (74)

0.6246 (88)

0.6248 (78)

0.6258 (94)

0.6296 (90)

0.6312 (88)

0.6337 (99)
0.6394(109)

0.6402 (95)

0.6440(105)

0.6486(117)

0.6496(108)

0.6526(118)

0.6610(131)
0.6545(128)

0.6688(123)

0.6694(142)

0.6791(151)
0.6908(162)

V(R)
0.5612 (37)

0.5695 (41)
0.5707 (48)

0.5705 (44)

0.5739 (53)
0.5792 (49)

0.5780 (49)

0.5803 (50)

0.5849 (55)

0.5862 (55)

0.5902 (60)

0.5879 (53)

0.5923 (64)

0.5949 (56)

0.5960 (61)
0.5993 (75)

0.6017 (62)

0.6014 (73)

0.6058 (70)

0.6059 (68)

0.6064 (69)

0.6101 (81)
0.6125 (81)
0.6106 (73)

0.6113 (74)

0.6209 (88)

0.6210 (78)

0.6220 (94)

0.6258 (90)
0.6274 (88)

0.6299 (99)

0.6357(109)

0.6364 (95)

0.6402(105)

0.6448(117)

0.6458(108)

0.6489(118)

0.6573(131)

0.6508(128)

0.6650(123)

0.6657(142)

0.6753(151)

0.6871(162)

C(R)
0.911 (15)
0.908 (16)
0.925 (19)
0.904 (17)
0.905 (21)
0.913 (19)
0.903 (20)

0.898 (20)

0.895 (21)
0.901 (22)

0.928 (24)

0.912 (21)

0.918 (26)

0.912 (22)

0.894 (24)

0.895 (29)

0.899 (24)

0.893 (29)

0.895 (27)

0.895 (27)

0.895 (27)

0.904 (32)

0.910 (32)

0.895 (29)
0.878 (29)

0.886 (34)

0.895 (31)
0.883 (36)

0.880 (35)
0.885 (34)

0.899 (39)
0.900 (43)

0.874 (36)

0.882 (41)
0.875 (44)

0.879 (42)

0.891 (46)
0.889 (51)
0.847 (48)

0.863 (47)
0.862 (53)
0.866 (57)
0.848 (60)
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We average these numbers, and estimate the error from
the combined yz distributions, taking into account the
fact that they are correlated. This leads to ~o
50.8+s's Ag. The result is in nice agreement with the ratio
extracted from the running coupling [~o = 53.7(2.1)Ai,
Eq. (17)]. Using this additional information we obtain

~cr = 51.9+ '
AL, . (33)

This result may be converted into any continuum renor-
malization scheme such as the modified minimal subtrac-
tion (MS) scheme. By exploiting the relation AMs ——

28.81Ar, [26] we get

Ms 0 555+0.019 (34)o'

Let us Bnally comment that the two approaches pre-
sented in this paper for the determination of the @CD
scale parameter A, namely, to analyze (a) g~(AaR) and
(b) its inverse Aa(g ) in terms of the two-loop predic-
tions, Eqs. (13) and (18), are complementary and sup-
portive to each other because higher-order corrections to
methods (a) and (b) are anticorrelated. In our running
coupling (string tension) analysis we observe the "effec-
tive" Ai to decrease (increase) with the energy scale.
Since the central value of our "upper limit" Ar is smaller
than that of our "lower limit" AL we are in the position
to state relatively small errors for AMs.

In Fig. 6(b) we have plotted the AL data versus P in
order to visualize the slow approach of the bare coupling
data toward the asymptotic value, and the improvement
achieved by the use of effective couplings.

continuum extrapolation. We might say that we have
been lucky to get hold of asyrnptotia within our means.
This is due to the discovery that the running coupling
constant is well described within this theory by the two-
loop formula down to a scale of about 1 GeV.

If nature continues to be nice to us, and the inclusion
of dynamical quarks results only in a P shift of quenched
predictions it is possible to predict experimental numbers
like a!s(Mz), as explained in Ref. [2]. Obviously, it is
preferable to repeat this study in full @CD on the level of
teraHops power. In the meantime, further improvements
of lattice techniques are of great interest. A promising
route has been proposed by Liischer et aL [27], and tested
on SU(2) Yang-Mills theory. These authors start from a
volume-dependent coupling g(L) which allows them to
reach large energies on small lattices.

After completion of this work we received a paper by
Booth, Michael, and collaborators [28] that contains a
running coupling study for SU(3) gauge theory up to P =
6.5. Their results are fully consistent with ours.
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IV. DISCUSSION

We have demonstrated that medium-scale computer
experiments are able to determine the A parameter of
SU(3) Yang-Mills theory within a reasonable accuracy
(that can compete with @CD experiments). For this re-
sult, it has been important to study both infrared and
ultraviolet aspects in order to verify the reliability of the

I

APPENDIX A: POTENTIAL VALUES

In this appendix we are stating the potential values
measured on a 32 lattice at P = 6.8. The corresponding
numbers for the other P values can be found in Ref. [6].
The on- and off-axis paths are numbered in the following
way:

Path (Ã, 1,Z)
Elementary distance M

Path No.
1 2 3 4 5 6

(1,0, 0) (1, 1, 0) (2, 1,0) (1,1, 1) (2, 1, 1) (2, 2, 1)
1 1.41 2.24 1.73 2.45 3

The results for the potential V(R) (in lattice units), as well as for the "corrected" V(R), and the corresponding
ground-state overlaps C(R) are collected in Table V. The data is plotted (among the other curves) in Fig. 4.
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