
PHYSICAL REVIEW D VOLUME 46, NUMBER 6 15 SEPTEMBER 1992

Static quark-antiquark potential: Scaling behavior and finite-size effects
in SU(3) lattice gauge theory
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We present results on the static qq potential from high-statistics simulations on 16, 24'X 32, and 32
lattices, using the standard Wilson action at p=6.0, 6.2, and 6.4 on the Connection Machine CM2. To
decrease noise and increase accuracy, we applied a suitable local smoothing technique on the spatial
parts of Wilson loop operators. As a result, we find a violation of asymptotic scaling of the string ten-
sion, as signaled by &o /Al =96.7(1.6)(2.6), 86.4(1.0)(1.9), 82.3(0.8)(1.7), for the three P values, with sta-
tistical and systematic errors. We observe a linear confining potential up to distances of 2 fm. A volume
of (1.5 fm) appears to be sufficient to avoid finite-size effects within our statistical accuracy ( = 1%).

PACS number(s): 11.15.Ha, 12.38.Aw, 12.38.Gc

I. INTRODUCTION

Much effort has been spent recently to push lattice
simulations of pure SU(2) gauge theory towards the con-
tinuum limit by increasing lattice sizes and P values to
the record 48 X 56 and 2.85, respectively [1]. Indeed, it
appears worthwhile to focus part of the present-day com-
puting power of parallel supercomputers, and the com-
puting techniques of today, on the verification of asymp-
totic scaling, one of the old issues that has been with us
ever since the pioneering paper of Creutz on the SU(2)
confining potential back in 1979 [2].

In the present work we extend the theme to pure SU(3)
gauge theory, to be more realistic with respect to QCD.
One of our goals is to increase the statistical accuracy of
string tension measurements to the 1% level in the region
6.0~/3~ 6.4, on appropriate lattices. This precision sets
the scale for the systematic effects as well, which is a
rather demanding goal.

Sooner or later, critical slowing down and increasing
lattice volumes will bar the view on long-distance phys-
ics. So far it has been widely believed that asymptotic
scaling sets in soon after @=6.2. We find that this is not
yet the case up to P=6.4.

The work was done as a "warmup" for our local Con-

nection Machine, which has sufficient memory (256
MByte) to handle 32 lattices. The CM slicetuise FOR-

TRAN compiler produces fast code; we reach 600 MFlops
for SU(3) matrix multiplications, and update times/link
of 22(13) psec for the 10-hit Metropolis (overrelaxation
[3]) algorithm on our 8K-CM2 system. Its programing
environment enables us to carry out the entire computer
experiment on one and the same machine.

In order to test the scaling behavior of SU(3) gauge
theory, both the lattice spacing a and the lattice volume
Ls XLT are varied over suitable range (T stands for the
time direction as well a.s for temporal separations). The
key parameters of our various computer runs are collect-
ed in Table I. This table contains, in addition, for ease of
orientation, the lattice resolutions and physical volumes,
as they emanated from the present investigations.

II. METHODS

A. Smoothing operators

Lattice gauge theory is known to be hampered by the
fact that physical quantities of interest such as masses,
potentials, and matrix elements are related to asymptotic
properties of exponentially decreasing correlation func-
tions in Euclidean time, and therefore prone to be

TABLE I. The simulated lattices. Physical units correspond to the choice &o.=420 MeV for the

string tension. Errors include statistical and systematic effects.

Ls XLT
a /fm
a '/GeV
V' =aLs /fm
T =(aLT ) '/MeV
Total No. of sweeps
Thermalization phase
No. of measurements
Off-axis measurements

164

P=6.0

324

0.106(5)
1.85(8)

1.70(7 ) 3.41( 15 )

116(3) 57(3)
36000 6100
1000 1000
140 102
Yes Yes

P=6.2

24 X32
0.0759(22)

2.60(7)
1.82(5)
81(2)
17000
1000
260
No

p=6.4

324

1.85(6)
107(3)

22000
2000
200
No

9000
2500

65
Yes

24'X 32
0.0577( 18 )

3.42( 10)
1.38(4)

2636 1992 The American Physical Society



46 STATIC QUARK-ANTIQUARK POTENTIAL: SCALING. . . 2637

II;(n) =
j=+1,. .. , 3

jWi

U. (n+i)U; (n+j )U~(n) . (2)

We apply a gauge-covariant, iterative smoothing algo-
rithm which replaces (in the same order as the Metropo-
lis update, but within the measuring process) U;(n)
~U (n) with the requirement that the local spatial ac-
tion S;(n)= —Re Tr[U;(n)II;(n)] is minimized. Contri-
butions from excited states become more and more
suppressed as we repeat this procedure. At P=6.0 (6.4),
this reduction reaches saturation after 8—12 (25—30) such
smoothing steps. The degree of the final ground-state
dominance can be quoted in terms of the overlap C(R).
We reach values of 95 (80)% for small (large) spatial sep-
arations R.

A technicality: for an individual smoothing step, as for
the overrelaxation algorithm, one has to determine the
SU(3) matrix U that maximizes the expression
Re Tr[ UF], with a given complex 3 X 3 matrix F. In or-
der to satisfy this task, we apply a cyclic iterative scheme
in the spirit of the Cabibbo-Marinari algorithm [7]. Each
iteration consists of two steps: (1) Compute V;
(i = 1,2, 3 ) from the three diagonal SU(2) subgroups
of SU(3), that maximize, in their order of occur-

drowned in noise. Various improvement techniques have
been invented in the past, such as smoothing local (i.e.
link-related) fluctuations in observables or applying varia-
tional methods in order to achieve early asymptotics (in
T) of the transfer matrix.

We start from the relation between Wilson loops,
W(R, T), and the potential V(R),

W(R, T)=C(R)e ' '[+C'(R)e ' '] (1)
written in terms of its leading asymptotic and subleading
contributions. We call the former the "ground-state"
and the latter "excited-state" contribution. The aim of
optimization strategies is to enhance, for each value of R,
the weight of the ground-state term C (R ). A variational
technique has been applied to this end by the UKQCD
Collaboration in their recent high-statistics SU(2) project
[1]. These authors use a variety of fat spatial links (gen-
erated by up to 110APE recursive blocking iterations [4]
with the coefficient of the straight link set to ttuo) They.
observe an early ground-state dominance and extract the
potential from ratios of superimposed fuzzy loops up to
large spatial separations R, using exclusively low-T data.

In this paper, we follow a strategy which is comple-
mentary to the UKQCD approach in the sense that we
concentrate on reducing the ultraviolet noise rather than
smearing the operators over all length scales. ' In this
spirit, we attempt to improve the situation by smoothing
spatial links via a local procedure: consider a spatial link
variable U;(n) and the sum II;(n) of the four spatial sta-
ples connected to it:

rence, Re Tr[ V&(U„F)], Re TrI V2( V, U„F)], and
Re Tr[ V3( V2V, U„F)]; (2) replace U„+,= V3V2V, U„.
The initial value Uo is computed by Gram-Schmidt
orthonormalization of Ft. After three such iterations
this method is found to yield the exact value of U,„,
within numerical accuracy.

B. Sampling

1
0 0 Ocot

27
(3)

between the variance of an observable and its autocorre-
lation time, denoted ~ . 0. can be obtained by the block-
ing procedure described in Appendix A.

We display some of these characteristic quantities in
Table II. The errors quoted for ~;„, are obtained by bin-
ning the data sets into 10 subsarnples and computing
their variance. The values we find for ~z, reflect that a
direct measurement of the asymptotic decay rates is over-
ly difficult within our statistics (1600—3500 measure-
ments). Nevertheless we can conclude from the numbers
in Table II that Wilson loops are only weakly correlated
when separated by about 100 sweeps. We chose to per-
form measurements of smoothed Wilson loops about
every 100 sweeps as a reasonable balance between updat-
ing and observation.

C. Extraction of potential values

The overlaps and potential values C(R) and V(R) are
evaluated from the Wilson loop data according to Eq. (1).
For very low-T separations the data are contaminated by
contributions from excited states. For this reason a low-
T cut must be applied in the analysis to isolate the lead-
ing asymptotic term. High-T values are prerequisite,
however, to verify asymptotic behavior. This is particu-

In order to maintain an appropriate stochastic move-
ment of the gauge system through phase space with in-
creasing P, we have combined one 10-hit Metropolis
sweep with four successive overrelaxation sweeps. The
algorithms were tuned to achieve 99.5% acceptance for
an overrelaxation update and 50% acceptance for each
Metropolis hit. Measurements were started after
1000—2500 therrnalization sweeps.

For a proper sampling we want to keep control of au-
tocorrelations within the computer time series. Auto-
correlation times are extremely hard to determine. For
our purposes, we estimate "autocorrelation times" ~ by
three different methods: (1) decay rates from exponential
fits to the autocorrelation function, called rs, , (2) time-
integrated autocorrelations, labeled r;„,; (3) inversion of
the relation

'Our algorithm is reminiscent of lattice cooling techniques of
previous authors [5,6], yet it is different since we are "cooling"
only inside time slices.

We verified, that the topological susceptibility needs an order
of magnitude more efFort to decorrelate at P= 6.4.
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Observable Estimate p= 6.2

8 (2,2) +int

4.9+1.0
5.4+1.2
4.0

2.3+ l.2
15.2+3.8

14.1 30.6

8'(4, 2) +int

3.2+0.5

4.9+1.3
3.3

2.9+0.6
6.2+1.2

50.5 67.0

8 (4,4)

8'(6, 6)

8'(8, 8) 7g

2.4

2.6

30.1

14.5

35.5

29.9

62.5

28.6

TABLE II. Estimates of "autocorrelation times" (in Monte
Carlo sweeps). The values were measured on the 16 and
24'X 32 lattices every 10 sweeps. yt p stands for the topological
susceptibility (measured every 250, 100 sweeps, respectively).

Since we aim at a 1% statistical error on the string ten-
sion, a careful analysis both of statistical and systematic
effects is required. A statistical error estimate must in-

corporate correlation effects within the Monte Carlo
times series of configurations and between measurements
of different operators on individual configurations. Sys-
tematic effects originate from the lattice geometry (finite
volume and finite a) as well as from biases introduced by
the fitting procedures. In the present investigation we
make a particular effort to deal with all these error
sources.

We vary the volume, at fixed a, by a factor 2. Finite-a
effects are estimated from off-axis potentials as well as by
variation of P. The elimination of possible systematic er-
rors due to R and T cuts and our statistical error analysis
methods are discussed in Appendix A.

III. STRING TENSION RESULTS
Stop 105 139 1177

larly important for the long-distance part of the poten-
tial, which goes along with a smaller gap between excited
states and ground-state contributions [8]. We measure up
to T =10 (T=8 on the 16 lattice) and observe stability
of results in the region T~ 3. In order to be on the safe
side of bias reduction, we only include data for
T~ T;„+1=4 into our analysis. Measurements run
over spatial distances up to R =L&/2 for the on-axis case
and up to It =i/2Ls/2 and It =v'3Ls/2 (in two and
three spatial diinensions, respectively) for the off-axis [9]
geometries.

Results are presented from five different lattices with
linear spatial extent between 1.4 and 3.4 fm and lattice
spacings a ranging from 0.058 to 0.106 fm. As one can
see from Table I, three of our lattices are of nearly equal
physical size, but different resolution. The off-axis mea-
surements have been carried out on all 16 and 32 lat-
tices.

Finite volume sects We lo. ok for finite volume effects
at P=6.0, where we dispose, with the 32 and 16 lat-
tices, of the largest lever arm in volume variation. The
sensitivity of the potential towards this variation is visu-
alized in Fig. 1. To enhance details, the relative devia-
tions between the two data sets and a given reference
curve (fitted to 32 data) are plotted in Fig. 1. There ap-

0.1

0.05
L= 16

-0.05

-0.1

0.1
L=32

0.05

-0.05

oX o@e I

-0.1

-0.15
10 12 16

FIG. 1. The relative deviation between the potential values and the corresponding fit curve (taken from a fit to the 32 data) is

shown for the 32 and 16 lattices, respectively.
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0.06-

0.055

0.05

0.045

0.04
2 3 4

No. of R values excluded

FIG. 2. The corresponding value for the string tension E for the 32 lattice at P=6.0 is plotted against the number of small R
values excluded in the fitting procedure. The quality of each fit (y /N») is indicated next to the data point. The first two values
have unreliable error bars since y /NDF & 1.

pears to be no systematic difference in the potential, as
we vary the lattice extent from 1.7 to 3.4 fm. We note in
passing that in the region R (2&2 the data sets exhibit
identical incompatibility with the reference curve, i.e.,
with the underlying parametrization. This is due to
strong lattice artifacts. Similar observations pertain to
the comparison of potentials from the 24 X32 and 32
lattices at P=6.4: for the string tension we find no indi-
cation of systematic volume effects.

Coulomb strength and string tension. The potential is
fitted to the rotationally invariant ansatz

V(R)= Vo+ER —e/R .

R denotes the Euclidean distance between the quark and
antiquark. In the instance of our off-axis measurements,
the allowed R vectors are multiples of (1,1,0), (2, 1,0),
(1,1,1), (2,1,1), and (2,2, 1).

The above parametrization does not incorporate the
lattice geometry. Lattice corrections become important
for small R, and therefore we are forced to exclude some
of these values from the fit. We demonstrate the impact
of such cuts on the resulting value of the string tension E
for P=6.0 in Fig. 2. The small-R data induces poor y
fits and instability of results. The fit parameters become
stable as soon as the data points responsible for large y
are removed. For the following analysis we apply the
minimal cut R ~2&2.

Our fitting procedure and error analysis implies four
steps that take into account possible systematic errors

due to R and T cuts as well as R-T correlations and auto-
correlations within the Monte Carlo times series. The de-
tails are elaborated in Appendix A.

In Table III, we list the fitted values for Vo, e, and E
from the on-axis data (on five lattices) as well as the
weighted average obtained on the six (one on- and five
off-axis) parameter sets (on three lattices). The scatter of
the fit parameters is indicative for the remaining violation
of rotational symmetry on our lattices. Therefore, we
will use their variance to estimate the systematic errors of
our results.

We find the following values for the string tension
E (P)=o a (P), obtained from the on-axis potentials:

E (6.0)=0.0511(17), E (6.2)=0.0262(6),

E (6.4)=0.0147(3) .
These values change little if the off-axis data are incor-
porated in the described fashion:

E (6.0}=0.0515(17}(28),

E(6.2)=0.0262(6)(10),

E (6.4)=0.0151(3)(5) .

The first error is the smallest statistical error of the
different parameters (1 on and 5 off axis); the second one
is the scatter, called the systematic error. Note that the
Coulomb term tends to increase with P, but remains close
to m. /12. The perimeter term Vo, on the other hand, ap-
pears to be fairly independent of P.

We point out that the larger error bars for the 16 lattice are
due to the smaller available T range ( T ~ 8). 4At P= 6.2 we estimate the systematic error by interpolation.
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TABLE III. Fit results. The average is taken over all on- and off-axis fits to the data. The error of the average is the weighted
variance of the fit parameters. The error for the on-axis parameters is the statistical error.

Vol.
Axis

K
e

~o
X/&DF

On axis
0.0534( 18)
0.267(6)
0.625(8)

0.99

164

p=6.0

On axis
0.0511(17)
0.278(31)
0.635( 15 )

0.77

Average
0.0515(34)
0.254( 10)
0.632(23 )

324

Average
0.0515(28 )

0.240( 36)
0.626( 21 )

13=6.2

24-' X 32
On axis

0.0262(6)
0.303( 8)
0.635(5 )

0.84

24 X32
On axis

0.0145(4)
0.303(6)
0.610(4)

0.94

p= 6.4

On axis
0.0147( 3 )

0.297(4)
0.608(2)

0.92

324

Average
0.0151(5 )

0.277( 28 )

0.603(7}

In Fig. 3, we illustrate the quality of our data and of
the potential fits with the example of the 32 lattice at
P=6.4. The various off-axis entries are indicated by
different symbols. The error bars refer to statistical er-
rors only, while the dashed error band incorporates both
statistical and systematic errors (added linearly). For
convenience, we include tables of all potential values
V(R ) and overlaps C(R ) in Appendix B.

We find very good scaling of the potential data within
our P region. In Fig. 4, the data are scaled to a universal
curve by subtracting Vo and measuring energies and dis-
tances in appropriate units of &K. The dashed curve
corresponds to R —m/12R. If we inject for the string
tension the value v'o =420 MeV, we gain the physical
scales for R and V: note that we reach an horizon of 2
fm.

IV. DISCUSSION AND OUTLOOK

Asymptotic scaling of the string tension is tested by the
dimensionless quantity c =&cr /AL, where we use the

standard two-loop expansion for a(P)AI. In Fig. 5 our
results for the on-axis string tension are shown together
with previous high-statistics results from the MTc Colla-
boration [10] and Ref. [11]. The error bars to our points
refer to statistical errors from the full correlation analysis
as elaborated in Appendix A. Since previous authors
have been less stringent about correlations, we refrain
from quoting their error estimates.

We find that asymptotic scaling is not reached up to
13=6.4, but there is a definite fiattening out of the P
dependence. Under the assumption that the string ten-
sion approaches the asymptotic scaling region from
above we might convert our last data point at P=6.4 into
a lower bound for AL, which turns out to be
AI ~5. 10(.05)(.28) MeV, where the systematic error
reflects both violation of rotational invariance and the
uncertainty of the experimental string tension. This can
be translated into other renormalization schemes such as
the modified minimal subtraction (MS) scheme in the
four-fiavor sector [12]:

0.9

0.8

0.7

0.6

0.5

0.4

0.3
10

R
15

FIG. 3. The potential V(R) for the 32 lattice at P=6.4. The various off axis entries are indicated by diff'erent symbols. The error
bars refer to statistical errors only, while the dashed error band incorporates both statistical and systematic errors.
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Scaling plot
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RK

B= 6.0, L=16
B= 6.0, L=32
B= 6.2, L=24
B = 6.4, L-24
B = 6.4, L=32

3.5

~ 'V

~ ~

I ~

A
I

4 2'
FIG. 4. All potential data of the five lattices have been scaled to a universal curve by subtracting Vo and measuring energies and

distances in appropriate units of &E. The dashed curve correspond to V(R) =R —~/12R. Physical units are calculated by exploit-
ing the relation &cr =420 MeV.

AM~a=46. 1A~ &235(2)(13) MeV .

Needless to say, this value does not necessarily apply to
full QCD.

In addition to the long-range behavior of the confining
potential it is of considerable interest to investigate its ul-

traviolet structure. As we proceed into the weak cou-
pling regime lattice simulations are expected to meet per-

turbative results. Although we are aware that our lattice
resolution is not yet really suScient, we might dare to
previe~ the continuum behavior of the Coulomb-like
term from our results. In Fig. 6(a) [6(b)] we visualize the
confidence regions in the K-e plane from fits to various
on- and off-axis potentials on the 32 lattices at P=6.0
[6.4]. We observe that the impact of lattice discretization
on e decreases by a factor 2, as we step up from P=6.0 to

150

140

Barkai '84 o
MTC '90
Our results:---

130-

120-

110-

100-

80—

5.6 5.8 6.2 6.4

FIG. 5. The on-axis string tension [in units of the quantity c =&E /(a AL ) ] as a function of P. Our results are combined with pre-
vious values obtained by the MTc collaboration [10]and Barkai, Moriarty, and Rebbi [11].
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1,0,0
1,1,0
1,1,1
2, 1,0
2,1,1
2,2, 1

(bj
I

\

I
'h

I
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'~

I

I

/'
I

\

0.14 0,16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32
e

tions. Second decide on T cuts. Third calculate T corre-
lations and determine operators with best ground state
overlaps C(R). Finally fit the Wilson loop data to the
potential ansatz V(R)=VO+ER —e/R taking into ac-
count R -T and autocorrelations.

Step 1: estimate autocorrelatjons. We estimate an ob-
servable by its average value {W) over a finite time
series W, = W, (R, T). The naive variance

(A 1)

(g Wlm) )2—
N/m

(
Wlm) {W) )2

N N——1
m m

(A2)

where the data are partitioned into blocks of length m

and 8 ' is defined to be the average over the ith block.
We vary m =1, ~mmax with v&&mmax N and con-
servatively correct the naive error estimate by the multi-
plicative factor

fzr=max[b, W' '/b, W'"} . (A3)

will lead to an underestimated error, as a consequence of
autocorrelations. The latter are taken into account by a
straightforward blocking procedure. Consider

0.014 I I I I I I I I I

0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31
e

FIG. 6. Confidence regions (g =y;„+1) in the K-e plane
are shown for various on- and off-axis potentials on the 32 lat-

tices at p=6.0 (a) and p=6.4 (b).

p=6.4 [note, that the scale of the e axis is expanded by
this factor between Figs. 6(a) and 6(b)j. Second, there is

some weak indication that the coupling e increases with

p. It can be seen, that the coupling results still suffer

from marked anisotropy effects, while the string tension
as an infrared quantity behaves rather isotropic. It would
be of interest to develop an improved analysis of the cou-

pling by more sophisticated unfolding techniques of lat-
tice effects with the help of perturbative methods, al-

though the lattice resolution at p=6.4 still seems to be
too coarse to allow for significant quantitative results.

Step 2: choose T cuts. Local masses are computed ac-
cording to

{W(R, T+1))
& W(R, T))

(A4)

N

Cr r = g (W;(R, T, )
—{W(R,Tl)))

i=1

For a given value of R, the T-cut T;„(R)is determined
from the stability requirement that M(R, T) is constant
within errors over the region T ~ Tm„(R ). We only used
T~ T;„(R)+1to avoid a bias in the estimate of the re-
sults. The typical value for T;„came out to be three.

Step 3: T correlations, optimized operators, and poten-
tial values. The determination of fit parameters to a
correlated data set over T requires knowledge of the co-
variance matrix of the uncorrelated time series:
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APPENDIX A: FITTING PROCEDURES AND
ERROR ANALYSIS

We determine the potential values V(R ), overlaps

C(R), and potential parameters Vo, K, and e as well as

their errors and y 's from our smoothed, Wilson loop
operators in four steps: First estimate correction factors
to the naive errors in order to incorporate autocorrela-

(A5)

Cr, r, =Cr, r,fRr, fRr, .(R) (R) (A6)

The overlap and potential are fitted for each value of R
from the form

lLl( T; C(R ), V(R) }=C(R ) exp f
—TV(R ) }

by rninirnizing

(A7)

As we have autocorrelations, this matrix is corrected by
the ansatz
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TABLE IV. The potential values V(R) (in lattice units a '), ground-state overlaps C(R), number of
smoothing steps N„„and y iso„ for P=6.0( V = 16,32 ).

Path
164

V(R)
324 164

C(R)
324

N, ,
16 32

X'~&DF
16 32

1.00
1.41
1.73
2.00
2.24
2.45
2.83
3.00
3.00
3.46
4.00
4.24
4.47
4.90
5.00
5.20
5.66
6.00
6.00
6.71
6.93
7.00
7.07
7.35
8.00
8.49
8.66
8.94
9.00
9.00
9.80
9.90

10.00
10.39
11.00
11.18
11.31
12.00
12.00
12.12
12.25
12.73
13.00
13.42
13.86
14.00
14.70
15.00
15.00
15.56
15.65
16.00
17.15
17.89

0.4108(8)
0.5249(41)
0.5803(34)
0.5962(27)
0.6363(22)
0.6608(30)
0.6701(88)
0.6978(32)

0.7525(72)
0.7722( 58)
0.7891(62)
0.8109(52)

0.8536(90)
0.865( 12)
0.8805(83)
0.8882(91)

0.929( 11 )

0.949(20)
0.9492(99)
0.954( 14)
0.988( 13 )

1.019(16)
1.064( 19)
1.009(27)
1.048(18)

1.088(21)
1.112(24)

1.170(39)

1.224(38)

1.224( 65 )

1.272(73 )

0.4111(3)

0.5277(7)
0.5836( 14)
0.5987(10)
0.6320( 14)
0.6481(81)
0.6934(30)
0.6978(17)
0.7087(23)
0.7296(40)
0.7697(26)
0.7852(39)
0.8020( 30)
0.8347(38)
0.8331(31)
0.8511(70)
0.8844(61)
0.8895(45)
0.9052( 80)
0.9449(66)
0.948( 13 )

0.9515(63)

0.9650(92)
0.9668(91)
1.011(10)
1.019(18)
1.057(22)
1.066( 14)
1.054( 13)
1.051( 18)
1.097( 18)
1.079(21)
1.123(14)
1.137(32)
1.144(22)
1.171(24)

1.255(26)
1.185(30)
1.314(95)

1.208( 32)
1.286( 55 )

1.285(48)
1.324(35 )

1.346(99)
1.317(53)

1.333(63)

1.383(92)
1.46(11)
1.40(12)
1.435(94)
1.38(13)
1.45(16)
1.52(23)

0.936(2)
0.630( 10)
0.908(9)
0.900(8)
0.917(6)
0.910(8)
0.805(27)
0.874(9)

0.910(20)
0.821( 14)
0.889(16)
0.884( 14)

0.741( 15 )

0.894(33)
0.877(22)
0.822(23)

0.846(29)
0.825(49)
0.862(26)
0.868(35 )

0.895(37)
0.882(41)
0.934(56)
0.774(63)
0.816(44)

0.788( 50)
0.860(64)

0.92(10)

0.95(11)

0.83(17)

0.74(27)

0.936(1)
0.935(3)
0.918(5)
0.900(4)
0.902(5)
0.271( 12)
0.752(9)
0.894(6)
0.900(8)
0.841( 13)
0.859(9)
0.873( 13)
0.864(11)
0.866( 13)
0.861(11)
0.877(25)
0.885(22)
0.834( 16)
0.875(27)
0.891(24)
0.838(44)
0.862(23 )

0.905( 34)
0.835(30)
0.855(35)
0.797(56)
0.892(77)
0.844(46)
0.821(43)
0.794(57)
0.791(58)
0.763(65)
0.845(47)
0.84(11)
0.731(66)
0.817(81)

0.94(10)
0.711(87)
0.82(33)
0.667(87)
0.92(21)
0.78(15)
0.88(12)
0.82(37)
0.80(17)
0.73(19)
0.62(23)
0.77(39)
0.81(46)
0.87(35)
0.44(24)
0.57(42)
0.59(41)

4
0
6

11
6
8

17
3

9
3

10
9

3
6

11
6

12
19
11
11
15
13
13
17
10

17
11

17

12

17

3
5

4
3
5
0
1

6
8
8
6
9
7
9
7
9

10
9

14
9

11
9

10
12
9

10
17

8
9

10
11
14
9

16
8

12

10
12
4
7
9
7
9
8

13
12

5

5

12
20

5

8
6

0.84
0.34
0.51
0.99
0.51
0.60
0.97
0.25

0.83
0.95
0.54
0.62
0.44
0.30
0.72
0.75
0.98

0.35
0.62

0.98

0.87

0.79

0.94

0.58
0.52
0.99
0.94
0.48
0.67
0.85
0.95
0.54
0.32
0.28
0.68
0.16
0.93
0.31
0.32
0.64
0.69
0.99
0.69
0.50
0.59
0.80
0.87
0.82
0.81
0.19
0.33
0.21
0.29
0.36
0.88
0.95
0.70
0.56
0.97

0.998
0.65
0.84
0.23
0.86
0.31
0.54
0.90
0.64
0.86
0.90
0.35
0.39
0.22
0.62
0.68
0.87
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TABLE V. Same as Table IV for P= 6.2, V =24'X 32.

1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

10.00
11.00
12.00

Path V{R)

0.3770(2)
0.5366{9)
0.6118(12 )

0.6671{19)
0.7038( 16)
0.7431{22)
0.7748( 25 )

0.8044(35)
0.8312(41)
0.8614(49)
0.8974( 61 )

0.9260(59)

C{R)

0.941{1)
0.613{2)
0.893{4)
0.766(5)
0.891(6)
0.880(8)
0.872(9)
0.842( 12 )

0.824( 13 )

0.801( 15 )

0.815( 19 )

0.788( 18 )

&oL I

4
0
4

10
10
10
10
10
10
10
10

X'/'&DF

0.39
0.38
0.26
0.48
0.55
0.91
0.30
0.60
0.85
0.42
0.36
0.89

2
+(R)

L
' ') min

(w(T, ) —( W(R, T, )) )(Ci '
)T T (w(T2) —( W(R, T2)) } .

Fitting is done after each smoothing step. Finally, for a given R, the optimal number of steps N, , is chosen to maxi-
mize the overlap C(R ) under the constraint of y /ND„( l.

Step 4: R-T correlations, potential parameters, and R cuts. For the final fit that takes into account all possible correla-
tions between the data, we start from an estimate of the full correlated covariance matrix,

R, g,CT'T'= g (W(R„T, ) —( W(R„T)))(W(R2, T2}—(W(R2, T2))),
i =1

and fit to the dependency

$(R, T;C, , . . . , Cz, Vo, E,e)=C~ expI —(Vo+ICR —e/R)T I

with different "overlap" parameters Cz by minimizing

($(R „T,) —( W(R i, T, ) ) )(C ')T'T'($(R~, T2) —( W(R2, T2) ) ) .
RL, R2 8 „
TL, T2 T

(A9)

(A 10)

(Al 1)

Note that the inverse of the covariance matrix in each case is computed after application of the T and R cuts. Starting
values of the parameters Vo, E, and e are required for the minimization procedure that are taken from a "naive" fit of
the potential data to the parametrization

V(R)= Vo+KR —e/R . (A12)

The initial values of Ca are chosen from the T-correlation analysis [Eqs. (A7) and (A8)].
As a final result, we obtain Vo, E, and e together with their errors, including all possible correlation effects. Stability

of these parameters has been checked by discarding data for R = 1,2, . . . successively.

TABLE VI. Same as Table IV for P=6.4, V=24'X 32.

1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

10.00
11.00
12.00

Path V(R)

0.3512(2)
0.4882(6)
0.5537(9)
0.5926( 10)
0.6189(14)
0.6465( 17)
0.6734( 21 )

0.6846(21 )

0.7068(23 )

0.7264(28 )

0.7408( 32)
0.7628( 34)

C(R)

0.945( 1)
D.921(2)
0.925(3)
0.904(4)
0.895(5)
0.896(6)
0.836(7)
0.870(7)
0.885(8)
0.874(9)
0.864( 10)
0.863(11)

14
10
15
17
20
20

7
20
20
20
20
20

X'i&DF

0.25
0.66
0.87
0.999
0.70
0.78
0.29
0.81
D.95
0.29
0.44
0.99
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TABLE VII. Same as Table IV for P=6.4, V =32 .

1.00
1.41
1.73
2.00
2.24
2.45
2.83
3.00
3.00
3.46
4.00
4.24
4.47
4.90
5.00
5.20
5.66
6.00
6.00
6.71
6.93
7.00
7.07
7.35
8.00
8.49
8.66
8.94
9.00
9.00
9.80
9.90

10.00
10.39
11.00

Path V(R)

0.3511(3)

0.4400(6)
0.4828( 11)
0.4887(7)
0.5127(8)
0.5298( 11)
0.5493( 14)
0.5541(9)
0.5581( 10)
0.5751(22)
0.5910(12)
0.5976( 17)
0.6076( 13)
0.6193(13)
0.6211(12)
0.6271(31)
0.6364(21)
0.6451( 14)
0.6464(21 )

0.6615( 18)
0.6621(35)
0.6667(16)
0.6782( 39)
0.6753(28)
0.6895(21)
0.7028(30)
0.7030(40)
0.7054(20)
0.7064(20)
0.7146(31)
0.7174(33)
0.7195(31)
0.7256(25 )

0.7345(45 )

0.7492(30)

C(R)

0.946(1)
0.945(2)
0.500(2)
0.922(2)
0.927(3)
0.724(3)
0.918(5)
0.881(3)
0.919(3)
0.903(8)
0.901(4)
0.903(6)
0.901(5)
0.895(5)
0.907(4)
0.909( 10)
0.888(7)
0.890(5)
0.880(7)
0.900(6)
0.871( 11)
0.893(6)
0.589(9)
0.895(9)
0.894(7)
0.853( 10)
0.904( 14)
0.881(7)
0.888(7)
0.848( 10)
0.860( 11)
0.883( 11)
0.878(8)
0.886( 15 )

0.864( 10)

5
9
0

11
13

1

16
3

17
17
18
12
23
23
23
27
24
25
14
28
24
27

2
20
30
11
30
30
30
11
25
30
25
30
15

y /ND

0.53
0.33
0.55
0.84
0.74
0.32
0.26
0.30
0.81
0.38
0.37
0.26
0.86
0.91
0.44
0.77
0.35
0.55
0.98
0.46
0.50
0.36
0.83
0.99
0.42
0.99
0.79
0.72
0.64
0.99
0.26
0.47
0.26
0.83
0.92

11.18
11.31
12.00
12.00
12.12
12.25
12.73
13.00
13.42
13.86
14.00
14.14
14.70
15.00
15.00
15.56
15.59
15.65
16.00
16.97
17.15
17.32
17.89
18.00
18.39
19.05
19.60
19.80
20.79
21.00
21.21
22.52
22.63
24.00
24.25

Path V(R)

0.7490(25 )

0.7495(38)
0.7705(29)
0.7606(45 )
0.7678( 53 )

0.7573(41)
0.7721(55 )

0.7778(41)
0.7836(39)
0.7880( 57)
0.7890(46)
0.7961(56)
0.8031(47)
0.8084(52)
0.8064(60)
0.8091(72)
0.8236(86)
0.8216(49)
0.8287(54)
0.8399(72)
0.8505(70)
0.8391(93)
0.8546(62)
0.8578(68)
0.8681(74)
0.869( 12)
0.8811(93)
0.8787(88)
0.893( 13 )

0.8974(94)
0.9198(99)
0.953(17)
0.938( 13 )

0.954(11)
0.995(23)

C(R)

0.899(9)
0.879( 13)
0.846( 10)
0.871( 15 )

0.911(19)
0.858( 14)
0.886(20)
0.883( 14)
0.868( 13 )

0.853(20)
0.852( 15)
0.868( 18)
0.846( 15)
0.861( 17)
0.847( 19)
0.843(23)
0.872(30)
0.869( 16)
0.834( 18)
0.836(23)
0.874(24)
0.789(29)
0.835(21)
0.818(22)
0.867(25)
0.829(41)
0.815(29)
0.801(28)
0.795(42)
0.798(29)
0.849(33)
0.902(62)
0.827(42)
0.806(36)
0.904( 85 )

30
30
14
30
30
30
30
30
30
30
30
30
30
30
28
30
26
30
22
30
30
23
30
25
30
30
30
30
30
30
25
30
30
30
26

X'/&DF

0.89
0.65
0.98
0.44
0.84
0.74
0.37
0.27
0.46
0.73
0.62
0.88
0.36
0.53
0.26
0.50
0.26
0.34
0.99
0.79
0.71
0.25
0.26
0.998
0.54
0.57
0.55
0.50
0.37
0.33
0.45
0.77
0.83
0.92
0.99

APPENDIX B: POTENTIAL VALUES

We measured on-axis potentials as well as 5 different off-axis potentials constructed from Wilson loop operators with
smoothed spatial insertions along the following paths:

Path No.

Path (X, Y, Z)

Elementary distance D

(1,0,0) (1,1,0)

1.41

(2, 1,0)

2.24

(1,1, 1)

1.73

(2, 1, 1)

2.45

(2,2, 1)

The results for the potential V(R) (in lattice units), the
corresponding ground state overlaps C(R), and the
chosen number of smoothing steps N, , are collected in
Tables IV—VII. The corresponding data points are plot-
ted in Figs. 3 and 4.

In Table IV some 16 entries are missing because mea-
surements were only done for R ~DLz/2. We also did
not measure path 6 on the 16 lattice. The other data

points left out correspond to y /ND„values greater than
one In som. e cases (e.g. , R =+2, V = 16, and
R =U'6, V =32 in Table IV as well as R =2 in Table V)
the overlaps C(R) quoted are small, as they could only be
increased at the expense of a large y /NDF. Note that
the overlaps in many cases do not sensitively depend on
the precise values of N, „which explains the fluctuations
inN, ,
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