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1 Introduction 

 

The demand of efficient and more compact microelectronic devices causes a continuous process of 

miniaturization in the semiconductor industry. Consequently, new materials and processes are developed 

and introduced to the manufacturing steps in order to achieve these requirements. Recently, copper (Cu) 

has become increasingly important as metallization material due to its good electrical and thermal 

conductivity and its higher resistance to electromigration in comparison to aluminum (Al). The Cu 

metallization in the semiconductor industry can be formed by different deposition techniques such as 

physical vapor deposition (PVD), chemical vapor deposition (CVD), or electrochemical deposition (ECD). 

Due to its cost-effectiveness ECD is commonly used for Cu deposition on the wafer scale level [1]. In the 

ECD process, Cu is usually deposited by galvanic electroplating from an acidic copper electrolyte containing 

various bath additives on a Cu seed layer [2]. This conductive thin film acts as starting layer for the ECD 

process and is formed by a PVD, a CVD or an ALD technique. Prior to seed layer coating, deposition of a 

thin barrier film is carried out to prevent the diffusion of copper into the surrounding dielectric and to 

enhance the adhesion of the seed film on the substrate. These thin films are typically based on tantalum 

(Ta), titanium (Ti), or tungsten (W) and may have a nitrogen (N) content [3]. As structure dimensions 

continue to shrink, the deposition of a thin and conformal Cu seed layer into structured surfaces such as 

trenches or vias is challenging with the abovementioned techniques [4]. Accordingly, alternative concepts 

are under investigation to address this issue. One promising approach is the direct electrochemical 

deposition of Cu onto the thin film barrier as it was shown for Ru, TaN, TiN, WxN, Os or Ir in laboratory 

scale [5–10]. Based on these results, characterization of these direct electroplating procedures has to be 

carried out in terms of process integrability in semiconductor manufacturing to get further insight into the 

Cu growth process as well. For this purpose, dedicated laboratory equipment is required, which is capable 

of simulating wafer scale processes on miniaturized laboratory level without any complex sample 

preparation steps to reduce the risk of damaging the deposited thin films prior to the characterization 

step. In addition, such equipment should also be connectable and capable of being integrated with 

scanning probe techniques to obtain local information of the sample surface. Thereby, scanning 

electrochemical microscopy (SECM) has proven to be a powerful electroanalytical tool to investigate the 

electrochemical activity of a surface of interest and is promising for the application in semiconductor 

industry due to its strength to gain local electrochemical information on nucleation [11], corrosion [12–

14], dissolution of metals [15], and the chemical stability of inhibitor thin films [16–18]. Applying this 
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analytical method can give complementary information to typically applied characterization procedures in 

semiconductor manufacturing. 

The following objectives were the basis of this thesis: 

 Development and characterization of a multipurpose cell for electrochemical surface modification 

and electrochemical surface characterization of thin film materials on a silicon substrate 

 Examination of applicability of SECM for electrochemical surface characterization for typically 

used thin films in semiconductor industry 

 Development of a SECM concept to study structured conductive semiprecious thin film materials 

with high contrast and spatial resolution 

 Characterization of the influence of electrolyte composition on the nucleation process and 

growth behavior of electrochemically deposited copper on a suitable barrier material 
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2  Theory 

 

The theoretical fundamentals of this work are presented in this chapter, divided into three subsections. In 

the first part, an introduction to voltammetry is given. A detailed overview on electrode processes and 

commonly used voltammetric techniques is shown. Next, the scanning electrochemical microscopy will be 

introduced based on these fundamental aspects. On this occasion, a description of the experimental setup 

and the working modes of this electrochemical characterization technique is given. In the third part the 

focus is set on the electrochemical deposition process of copper. Here, an overview of industry scaled Cu 

deposition and the theoretical aspects of electrochemical nucleation and growth will be presented. Based 

on these fundamentals, an introduction of a rather new approach of direct electrochemically copper 

deposition on barrier films will be given.  

 

2.1 Voltammetry 

 

The onset of voltammetry began with the discovery of polarogaphy by Jaroslav Heyrovský, awarded with 

the Nobel Prize in 1922 [1]. In voltammetry, the current I is measured in dependence of the potential E in 

presence of an electrochemically convertible analyte. 

 

2.1.1 Fundamentals of voltammetry 

 

From the I-E curves qualitative and quantitative information of the studied system can be obtained. 

Voltammetry is usually performed in a three electrode configuration with a working electrode WE, a 

reference electrode RE and a counter electrode CE [2]. A schematic layout of an electrochemical cell in 

three electrode configuration and the corresponding equivalent circuit diagram are depicted in Fig. 2.1.  
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Figure 2.1: Schematic representation of an electrochemical cell. (a) Schematic layout of the three electrode 

configuration with working electrode (WE), counter electrode (CE) and reference electrode (RE). The 

potential (E) of the WE is measured and controlled versus the RE and the current (I) is measured versus CE 

with a potentiostat. (b) Equivalent circuit diagram of the electrochemical cell with the ohmic resistance of 

the solution Rsol, the capacity of the double layer at the electrolyte/electrode interface CDL and the Faraday 

impedance ZF representing material conversion. The corresponding current I can be divided in the charging 

current IC and the faradaic current IF. Adapted from [2]. 

 

As it can be seen in the schematic layout in Fig. 2.1, the applied potential E at the WE is measured versus 

RE and the corresponding current I is measured versus CE with a potentiostat. The measurement of E 

should preferably be carried out currentless versus RE as otherwise a proportion of the applied potential 

E is lost at the resistance of the solution Rsol. The effective applied potential Eeff at the WE is therefore 

described as: 

 

Eeff = E − I ∙ Rsol (1) 

 

Accordingly, electrochemical measurements should be performed in electrolytes with a low resistivity to 

reduce this parasitic effect (IR-drop) on the measurement results. From Fig. 2.1 b) it is evident that I is the 
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sum of two superimposed and inseparable current components, consisting of the charging current IC and 

the faradaic current IF.  

 

I = IC + IF (2) 

 

Here, IC represents the charging of the double layer at the electrolyte/substrate at a potential step. The 

double layer can therefore be illustrated as a capacity element CDL in the equivalent circuit. Consequently, 

Ic is a time dependent function in dependence of CDL and Rsol at a potential step from E1 to E2.  

 

IC =
E2 − E1
Rsol

∙ exp (
−t

Rsol ∙ CDL
) (3) 

 

Contrary, IF is a result of the electrochemical conversion of the active species at the WE and starts at the 

characteristic half-wave potential of a reaction. This process is represented as the Faraday impedance ZF 

in the equivalent circuit diagram [3]. Since the information of the reaction is only represented by IF, a large 

ratio IF/IC is favorable. This can be achieved by exploiting the time dependency of both current components 

by using pulsed techniques [4] or by utilizing microelectrodes (chapter 2.1.3.2). The process of the 

electrochemical conversion of the active species consists of three major steps and will representatively be 

explained for a reduction process. The overall process can be described schematically as: 

 

Obulk →Osurface
n∙e−

↔  Rsuface→Rbulk (4) 

 

In the first step, the oxidized form of the active species O is transported towards the electrode surface at 

a diffusion-controlled rate DO. This mass transport can be described by the mass transport coefficient mT 

in dependence of DO and the corresponding diffusion layer thickness δ: 
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mT =
D0
δ

 (5) 

 

In the second step, the electrons are transferred at the electrode surface, whereas the species O is reduced 

to its reduced form R. The reaction is kinetically controlled by the potential dependent reaction rate 

constant k. In the third step, the conversed species R is transported away from the electrode, controlled 

jointly by thermodynamics and diffusion DR of the reduced species. Each of the three steps contributes to 

IF by their partial currents of Idif, Ikin and It/d. Consequently, the measured faradaic current is expressed by 

the reciprocal formula [5]: 

 

1

IF
=
1

Idif
+
1

Ikin
+
1

It/d
 (6) 

 

As it can be seen in (6), electrochemical conversion can be limited by one of the steps mentioned before. 

Therefore, this process can basically be limited by mass transport or kinetics. Accordingly, an 

electrochemical conversion process can be categorized into reversible (fast kinetics) or irreversible (slow 

kinetics) processes by comparing mT with k [6]: 

 

k ≫ mT (reversible) (7) 

k ≪ mT (irreversible) (8) 

 

For the following theoretical considerations, it is assumed that the electrode processes are reversible. As 

previously described, electrochemical conversion is dependent on mass transport towards the surface in 

this case. A more detailed description of the process of mass transfer will be given in the next chapter 

which is required to understand the behavior of macro- and microelectrodes.  
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2.1.2 Mass transfer towards the electrode surface 

 

Mass transport is defined as the flux J of a mass or a species from one place to another place in the solution. 

The flux is the result of a change of chemical potential or electrical potential between two locations or the 

movement of a volume element in this solution. It can be described by the Nernst-Planck equation in 

dependence of the aforementioned factors. For the one-dimensional stationary transport towards the 

electrode in x-direction J can be expressed in dependence of the active species i with diffusion coefficient 

Di, concentration ci, number of electrons transferred zi, electric potential Φ and velocity υ, the faraday 

constant F, universal gas constant R and temperature T as [7]: 

 

Ji(x) = −Di ∙
∂ci(x)

∂x
−
zi ∙ F

R ∙ T
∙ Di ∙ ci ∙

∂Φ(x)

∂x
+ ci ∙ υ(x) (9) 

 

One can see that J is the result of three independent terms. The first term of equation (9) describes the 

influence of diffusion on J. It is based on a concentration gradient arising from a difference in chemical 

potential. The second term of eq. 9 shows the impact of migration on the basis of the movement of 

charged particles in an electric field. The third term of eq. 9 characterizes the effect of natural or forced 

convection on J. Since these three terms are independent from each other, a simplification of eq. 9 is 

possible by suppression of one or two of the contributing terms. On this occasion, influence of migration 

can be eliminated by using a supporting electrolyte and the effect of convection can be suppressed by 

working in quiescent solution. Accordingly, mass transfer can be restricted to diffusive flux. In this case 

eq. 9 is simplified to the one-dimensional stationary Fick’s first law: 

 

−Ji(x) = Di ∙
∂ci(x)

∂x
 (10) 

 

Considering mass conservation without any chemical reactions in eq. 10, Fick’s second law can be 

obtained. This partial differential equation describes the diffusion dependent change of the concentration 

gradient with time.  



 

10 

∂ci(x, t)

∂t
= Di ∙ (

∂2ci(x, t)

∂𝑥2
) (11) 

 

Or the general form of Fick’s second law for any geometry with the Laplacian operator ∇2: 

 

∂ci
∂t
= Di ∙ ∇

2 ci (12) 

 

This Laplacian operator has to be modified dependent on electrode geometry. The corresponding Laplace 

operators are depicted in table 2.1.  

Table 2.1: Laplacian operator for various electrode geometries. Adapted from [8].  

Type Variables Laplacian operator ∇2 Example 

Linear x 
∂2

∂x2
 Shielded disk electrode 

Spherical r 
∂2

∂r2
+
2

r
∙ (
∂

∂r
) Hanging drop electrode 

Cylindrical (axial) r 
∂2

∂r2
+
1

r
∙ (
∂

∂r
) Wire electrode 

Disc r, z 
∂2

∂r2
+
1

r
∙ (
∂

∂r
) +

∂2

∂z2
 

Inlaid disk 

ultramicroelectrode  

Band x, z 
∂2

∂x2
+
∂2

∂z2
 Inlaid band electrode 

 

By solving the general form of Fick’s second law, the time dependent current response at a fixed potential 

can be obtained in the case of diffusion limited processes. In the next chapter, a more detailed description 

of the current response of different planar electrodes will be presented.  
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2.1.3 Voltammetric behavior of macroelectrodes and microelectrodes 

 

The solution of the general form of the partial equation of Fick’s second law is strongly dependent on the 

boundary conditions [8] and the Laplacian operator for the corresponding electrode geometry as it can be 

seen in table 2.1. Consequently, the current response of macro- and microelectrodes are not identical and 

have to be derived separately.  

 

2.1.3.1 Macroelectrodes 

 

The active area of a planar macroelectrode is large in comparison to the edges of aforementioned surface. 

Accordingly, it can be assumed that the flux towards the electrode surface is controlled by linear diffusion 

since boundary effects at these edges are negligible. Due to this simplification, the one-dimensional form 

of Fick’s second law (eq. 11) can be used for calculation. This partial differential equation is solved by the 

Cottrell equation [6]: 

 

I(t) =
n ∙ F ∙ A ∙ √Di

√π ∙ t
∙ ci
0 (13) 

 

The Cottrell equation describes the time dependent decrease of current based on the consumption of 

initial concentration of the active species ci
0 on an electrode area A and the amount of substance n. This 

equation can be used to predict the faradaic current response of a potential step experiment from E1 (no 

electrode reaction) to E2 (reaction at a diffusion-controlled rate) and is used to describe current transients 

in chronoamperometry (chapter 2.1.4.2). Since this equation is based on eq. 11, it is only valid for diffusion 

limited electrochemical conversion. The depletion of the active species at the electrode surface can be 

prevented by applying forced convection to the system for example by stirring or using a rotating disc 

electrode (RDE). Due to the enhancement of mass transfers (eq. 9), a time-independent stable diffusion 

layer is formed, and a constant faradaic current is obtained which does not follow the predicted Cottrellian 

behavior.  

 



 

12 

2.1.3.2 Microelectrodes 

 

In the case of microelectrodes, boundary effects cannot be neglected since they provide a significant share 

to the mass transport. Accordingly, diffusion from the edges of the electrode surface has to be considered 

in eq. 12 by adapting the Laplacian operator according to table 2.1. Thus, Fick’s second law can be written 

in spherical coordinates for microelectrodes with an insulating mantle of infinite thickness as depicted in 

Fig. 2.2: 

 

∂ci(r, z, t)

∂t
= Di ∙ [

∂2ci(r, z, t)

∂r2
+
1

r
∙
∂ci(r, z, t)

∂r
+
∂2ci(r, z, t)

∂z2
] (14) 

 

 

Figure 2.2: Schematic representation of an inlaid microelectrode with radius r and spherical coordinates. 

Adapted from [5].  

The time dependent current response for inlaid microelectrodes of a radius r with infinite mantle thickness 

is obtained by solving eq. 14 [5]. Since the solution is derived from Fick’s law, it is only valid for diffusion-

controlled process: 

 

I(t) =
n ∙ F ∙ π ∙ r2 ∙ √Di

√π ∙ t
∙ ci
0 + 4 ∙ n ∙ F ∙ Di ∙ r ∙ ci

0 (15) 
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As it can be seen, the current response of microelectrodes is described by two independent terms. The 

first term represents the time dependent current response based on linear diffusion. This term shows a 

Cottrellian behavior analogous to macroelectrodes (eq. 13). The second term is time independent due to 

the formation of a time independent spherical diffusion field at the edges of the electrode. Thus, the 

current response of this term represents a steady-state current behavior. Both terms are schematically 

depicted in Fig. 2.3.  

 

 

Figure 2.3: Schematic representation of diffusion fields at a disc electrode with infinite mantle thickness. 

(a) linear diffusion field and (b) spherical diffusion field of a microelectrode with radius r. Adapted from [5].  

 

Since the Cotrellian term shows a quadratic dependency on electrode radius (I ∝ r2), its influence on the 

current response diminishes with decreasing electrode size in comparison to the second term (I ∝ r). Thus, 

for very small electrodes with r ≪ 50 µm, also referred to as ultramicroelectrodes (UME), the linear 

diffusion term approaches zero and the term for the spherical diffusion represents the significant fraction. 

Consequently, the current response of microelectrodes in an insulating mantle of infinite thickness is 

described by a steady state current Iss, since the mass transport of the reactive species is controlled by a 

constant spherical diffusion layer formed around the microelectrode: 

 

Iss = 4 ∙ n ∙ F ∙ Di ∙ ci
0 ∙ r (16) 

 

For microelectrodes with finite mantle thickness, the flux from behind the electrode surface has to be 

considered as otherwise Iss will strongly differ from the value predicted by eq. 16. The mantle thickness rg 

is usually normalized on the corresponding electrode radius r in order to be able to compare different 

microelectrodes sizes. Thus, the RG-value is calculated from the ratio between rg and r: 
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RG =
rg

r
 (17) 

 

Accordingly, the influence of the mantle thickness on Iss can be expressed by a β-function in dependence 

of RG with an error of less than 0.3% for RG > 1 [9].  

 

Iss = 4 ∙ n ∙ F ∙ Di ∙ ci
0 ∙ r ∙ β(RG) (17) 

 

With the β-function [9]: 

 

β(RG) = 1 +
0.23

(RG3 − 0.81)0.36
 (18) 

 

Besides their steady-state behavior, the usage of microelectrodes has further advantages in comparison 

to macroelectrodes. Since the electrode radius is proportional to the RC element (r ∝ RC, [5]), the 

utilization of smaller electrodes will minimize IC according to eq. 3. Consequently, a high IF/IC ratio can be 

obtained, which is advantageous for studying fast reactions. Moreover, the impact of IR-drops on Eeff is 

significantly reduced.  Since the measured current for microelectrodes is usually in the range of nA to pA, 

the IR-drop is much lower according to eq. 1. Consequently, it can be assumed that Eeff ≈ E. For that reason, 

it is possible to work in high resistive solutions without the addition of a conductive salt. Furthermore, 

experimental studies can be carried out in two electrode configuration without the presence of a reference 

electrode when using microelectrodes. In the next chapter, common techniques in voltammetry are 

described. The impact of electrode sizes of macro- and microelectrodes in these methods are discussed.  
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2.1.4 Voltammetric techniques 

 

There is a broad range of voltammetric techniques for quantitative and qualitative characterization in 

different application areas [7]. Since only cyclic voltammetry and chronoamperometry were used in this 

work, the focus is set on these techniques in the following chapter. 

 

2.1.4.1 Cyclic voltammetry 

 

In cyclic voltammetry a saw tooth voltage profile is applied to the working electrode. The saw tooth voltage 

is thereby defined by a low and high vortex potential as initial/end potential. The selection of the vortex 

potentials is dependent on the conversion process of the redox active species.  A cycle contains a linear 

increase of voltage from the initial potential to the end potential followed by linear decrease until the 

initial potential is reached by a predefined scan rate. The cycles are repeated as often as desired. During 

controlled potential cycling, the current at the WE is monitored. The logged current during measurement 

is plotted versus the applied potential, which is called a cyclic voltammogram. This diagram can be used 

to obtain electrochemical properties of a redox active species [6]. A representative measurement with 

ferrorecenemethanol (FcMeOH) as electroactive species is shown in Fig. 2.4.  
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Figure 2.4: Different data parts of a measurement in cyclic voltammetry. (a) Applied saw tooth potential E 

at the working electrode in dependence of time. (b) Measured current I due to potential change in 

dependence of time and (c) plot of cyclic voltammogramm I vs E resulting from the data of (a) and (b) with 

a Pt-macroelectrode (r = 1 mm) in a 1.5 mM FcMeOH and 0.2 M KNO3  mediator.    

 

In cyclic voltammetry, different current responses are obtained based on electrode size. As shown in 

chapter 2.1.3, current response is dependent of the geometrical size of the active electrode area in the 

case of a diffusion limited reaction. Accordingly, current response for macroelectrodes and 

microelectrodes differs strongly as can be seen in Fig. 2.5 for a) a macroelectrode with r = 1 mm and b) an 

ultramicroelectrode with r = 12.5 µm (RG = 10).  
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Figure 2.5: Comparison of cyclic voltammograms at different electrodes. (a) Pt-macroelectrode (r = 1mm) 

and (b) Pt-microelectrode (r = 300 nm, RG = 10) in 1.5 mM FcMeOH and 0.2 M KNO3. 

 

As can be seen, FcMeOH is oxidized at a heterogenous reaction rate at a certain starting potential. For the 

macroelectrode, a peak shaped response is obtained due to its Cottrellian behavior predicted by eq. 13. 

The observed peak during potential increase is consequently the result of the current decay ( I ∝ 1 √t⁄  ) 

on the basis of the depletion of the surface concentration of FcMeOH. Furthermore, an offset between 

forward- and backward scan is observable. This effect can be attributed to the influence of Ic on the 

measured current due to the double layer charging during potential sweep as explained in chapter 2.1.1. 

In contrast to the macroelectrode, a steady-state current response is obtained for microelectrodes. The 

plateau of the sigmoidal steady state voltammogram corresponds to the steady state current response of 

microelectrodes according to eq. 17. No offset between forward- and backward scan can be observed as 

the influence of Ic is strongly reduced for microelectrodes due to dependence of the RC element on tip size 

(chapter 2.1.3.2).  

 

 

 

 

 



 

18 

2.1.4.2 Chronoamperometry 

 

In chronoamperometry, the potential of the working electrode is set to a fixed value and the current 

response is logged during measurement time. The obtained current responses are also referred to as 

current transients. This technique can be used to study nucleation processes, kinetics and diffusion 

processes [10]. Typical current transients for a diffusion limited reaction are plotted in Fig. 2.6.  

 

 

Figure 2.6: Current transients of a Pt-microelectrode (r = 6.25 µm, RG = 3) and a Pt-macroelectrode 

(r = 1 mm) at E = 0.5 V in 1.5 mM FcMeOH and 0.2 M KNO3. 

 

As theoretically predicted in chapter 2.1.3, the current response is dependent on the size of the electrode. 

For the macroelectrode, a decay of current is observed due to the Cottrellian behavior ( I ∝ 1 √t⁄  ) at the 

large active electrode according to eq. 13. The current is steadily decreasing due to the depletion of the 

active species at the electrode surface until the reaction is limited by diffusion of the species from the bulk 

solution. Contrary, a steady-state current response is obtained for microelectrodes due to the diffusion 

limited transport of the active species caused by the spherical diffusion field as predicted by eq. 17. Due 

to this steady state behavior as well as the fast response times according to chapter 2.3.1.2, it is possible 

to obtain electrochemical information in small spots of the solution with microelectrodes. These 
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advantageous properties are applied in the scanning electrochemical microscope (SECM). This measuring 

technique will be presented in the following chapter.  

 

2.2 Scanning electrochemical microscopy 

 

Scanning electrochemical microscopy (SECM) was developed and characterized by Bard and coworkers in 

1989 [11]. SECM belongs to the class of scanning probe microcopy (SPM). In SPM a small probe is scanned 

across the surface whereby an image of the surface is obtained through the interaction of the probe with 

the surface. Using SECM, local information of the electrochemical behavior at the liquid/solid, liquid/gas 

and liquid/liquid interface can be obtained through the interaction of an ultramicroelectrode with the 

interface of interest. Consequently, insight into surface reactivity, chemical kinetics, and the local 

concentration of reactants can be obtained [11]. An introduction into this versatile electrochemical 

characterization tool will be presented in the following chapter.  

 

2.2.1 Measurement setup of scanning electrochemical microscopy 

 

A schematic illustration of the SECM setup is depicted in Fig. 2.7. The electrochemical measurement cell 

(SECM cell) contains the counter- and reference electrode, a mounting platform for a substrate, and the 

mediator. The design of the SECM cell is dependent of the substrate of interest. Measurements are usually 

performed in a four-electrode configuration with an UME as probe (WE1), a counter electrode (CE), a 

reference electrode (RE), and the substrate of interest as the second working electrode (WE2). The control 

of the electrode potentials and the data acquisition is achieved with a bipotentiostat [11].  
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Figure 2.7: (a) Schematic illustration of a scanning electrochemical microscope setup. (b) Geometry of a tip 

electrode with characterizing parameters: tip radius rtip, radius of insulating mantle rg and distance 

between tip and substrate d. Adapted from [12].  

 

The position of the ultramicroelectrode is controlled with a stepper motor for large movements and a 

piezoelectric motor for very fine movements in three orthogonal directions. Thus, one can approach to 

the interaction range of the UME in z-direction and scan in the xy-plane for surface imaging. Data 

acquisition and probe movement is simultaneously controlled by software.  

 

2.2.2 Electrochemical mediators 

 

The choice of the mediator system is strongly dependent on the investigated substrate of interest (redox 

potential, pH condition, concentration). A mediator is basically characterized by a kinetically rapid one-

electron reversible transfer reaction which is selective for the substrate of interest. Consequently, both 

mediator species, the reduced form R and an oxidized form O, have to be stable in solution. The solvent is 

usually water but other organic solvents like acetonitrile can also be used. In order to prevent the influence 

of dissolved oxygen on measurement results at the electrodes, the mediator solution is usually deaerated 

before measurement [11]. In this study, ferrocenemethanol (FcMeOH), hexamineruthenium (III) chloride 
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(Ru(NH3)6Cl3) and potassium octacyanotungstate (IV) dihydrate (K4W(CN)8∙2H2O) were used for surface 

characterization with SECM. Their half-cell reaction is depicted in table 2.2. 

Table 2.2: Half-cell reaction of selected mediators. Adapted from [11].  

Mediator Half cell reaction Standard potential (vs. NHE) 

Octacyanotungstate (IV) dihydrate [W(CN)8]
4−/3−   0.49 V 

Ferrocenemethanol (FcMeOH) [C11H12FeO]
0/1+   0.44 V 

Hexaamineruthenium (III) chloride [Ru(NH3)6]
2+/3+     0.05 V 

 

 

2.2.3 Working modes in scanning electrochemical microscopy    

 

In this chapter the basic working modes of SECM are covered. Since the presented studies are based on 

amperometric methods, a short overview of the major amperometric SECM techniques will be provided: 

the feedback mode, the generation/collection modes and the competition mode. The choice of working 

mode is usually strongly dependent on the field of application. These working modes of SECM can be 

utilized for the characterization of surface reactivity of solid-state materials, electrocatalytic materials and 

enzyme activity in biochemistry [13].  

 

2.2.3.1 Feedback mode 

 

The feedback mode is the most commonly used working mode in SECM. This mode can be utilized in either 

a four-electrode or a three-electrode configuration in the case where biasing of the substrate at a fixed 

potential is not necessary. This technique allows for the precise positioning of the tip at a defined distance 

with respect to the substrate. The UME is set on a fixed potential E where the reactive species of the 

mediator is oxidized or reduced. As already shown in chapter 2.1.3.2, the electrochemical conversion at 

the UME tip is mass transport limited. Thus, the steady-state current in the bulk solution IT,∞ can be 

measured at the electrode tip according to eq. 17. Approaching the UME towards a substrate will result in 

a change of the measured tip current IT. In order to be able to compare the results of UME with different 

sizes, IT is normalized to IT,∞ and the tip-to-substrate distance d is normalized to rtip.  
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IL =
IT
IT,∞

 (19) 

 

L =
d

rtip
 (20) 

 

In feedback mode, there are two limiting cases dependent on the surface conductivity. If the tip is 

approached towards an insulating surface (e.g. PTFE or glass) the diffusion of the reactive species towards 

the UME is blocked by the substrate, resulting in a decrease in measured current IT < IT,∞. The measured 

current reaches IT = 0 as the tip-to-substrate distance d reaches d = 0. This effect of current decrease is 

called a negative feedback. If the tip approaches a conductive surface (e.g. platinum or gold) the tip-

generated species is regenerated at the substrate and diffuses back to the UME. As a result, the measured 

current will increase IT > IT,∞ due to an increase of the reactive species at the UME. The current can reach 

large values as the tip-to-substrate distance moves toward zero. The effect of current increase is called a 

positive feedback. Feedback is strongly dependent on rtip and and rg due to additional flux of mediator 

from the backside of the electrode. Accordingly, the influence of the RG-value on feedback has to be taken 

into account. Thus, the normalized tip current response for negative feedback IL
ins and positive feedback 

IL
C  can be described in dependence of L and RG for a diffusion controlled reaction according to [14,15]. 

Since these analytical equations can be correlated with experimental approach curves, UME 

characterization (rtip, rg) in a known mediator solution is possible. 

 

IL
ins(L, RG) =

2.08
RG0.358

∙ (L −
0.145
RG ) + 1.585

2.08
RG0.358

∙ (L + 0.0023 ∙ RG) + 1.57 +
ln(RG)
L

+
2

π ∙ RG
∙ ln (1 +

π ∙ RG
2 ∙ L

)
 (21) 

 

IL
C(L, RG) = α +

π

4 ∙ β ∙ arctan(L)
+ (1 − α −

1

2 ∙ β
) ∙
2

π
∙ arctan(L) (22) 
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with α and β in dependence of RG: 

 

α(RG) = ln(2) + ln(2) ∙ (1 −
2

π
∙ arccos (

1

RG
)) − ln(2) ∙ (1 − (

2

π
∙ arccos (

1

RG
))

2

) (23) 

 

β(RG) = 1 + 0.639 ∙ (1 −
2

π
∙ arccos (

1

RG
)) − 0.186 ∙ (1 − (

2

π
∙ arccos (

1

RG
))

2

) (24) 

 

For positive feedback a simplified approximation can be used as feedback is less influenced by mediator 

flux from the backside of the UME. The accuracy of IL
C fits within 1% for 1.1 ≤ RG ≤ 10 [16]. 

 

IL
C(L, RG) = A +

B

L
+ C ∙ exp (

D

L
) (25) 

 

The empirical parameters A, B, C, and D in dependence of the RG-value are depicted in table 2.3. 

Table 2.3: Parameter values for eq. 25, adapted from [16]. 

RG A B C D 

1.1 0.5882629 0.6007009 0.3872741 -0.869822 

1.5 0.6368360 0.6677381 0.3581836 -1.496865 

2.0 0.6686604 0.6973984 0.3218171 -1.744691 

5.1 0.72035 0.75128 0.26651 -1.62091 

10  0.7449932 0.7582943 0.2353042 -1.683087 

 

A schematic illustration of the feedback modes with the corresponding tip reactions is depicted in Fig. 2.8. 

The approach curves were recorded in 1.5 mM FcMeOH and 0.2 M KNO3 with an UME of rtip = 13µm 

(RG > 10) towards insulating glass (red) and conductive platinum (blue) as substrate. The measured data 

are fitted with eq. 21 for negative feedback and eq. 25 for positive feedback.   
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Figure 2.8: Schematic representation of feedback. Steady state current far away from surface due to 

spherical diffusion at normalized distance L = 15. Positive feedback (blue) in close proximity to a conductive 

surface due to regeneration of tip-generated species. Negative feedback (red) near insulating surface due 

to blockage of diffusion. Experimental conditions: 1.5 mM FcMeOH/0.2 M KNO3 at Etip = 0.4 V with an UME 

of rtip = 13 µm (RG = 10). Adapted from [17]. 

 

2.2.3.2 Generation/Collection modes and Competition mode 

 

In contrast to feedback mode, four electrodes are required for this technique with the UME placed in 

interaction proximity of the substrate electrode. In the generation/collection modes the electroactive 

species is in situ generated at one of these electrodes and is collected at the other electrode after diffusion 

through the tip-substrate-gap. Since both, the substrate and the UME can act as the generator or the 

collector electrode, two generation/collection modes are existing. In the first case, the substrate is used 

as the generator electrode and the tip as the collector electrode (SG/TC mode) as illustrated in Fig. 2.9 a). 

In this technique, the resolution as well as the screening area are limited due to the increasing background 

current over measurement time by the continuous formation of the active species at the substrate 

electrode. In the second case the tip is used to generate the active species and the substrate electrode for 
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collection of this species (TG/SC mode) as depicted in Fig. 2.9 b). The advantage of TG/SC is its small 

background signal due to the local generation of the active species at the UME tip. Therefore, TG/SC mode 

is only suited for small substrates since its sensitivity decreases with substrate electrode area [18].  

 

 

Figure 2.9: Schematic representation of different generation modes. a) Substrate generation/tip collection 

mode (SG/TC mode), b) tip generation/substrate collection mode (TG/SC mode) and c) both electrodes as 

generation electrodes (Competition mode).  

 

The collection efficiency η for the generation/collection modes can be quantified by calculating the current 

ratio between the substrate current IS and the tip current IT.  

 

η =
IS
IT

 (26) 

 

The efficiency is strongly dependent on the tip-to-substrate distance and is usually approximately η ≈ 1 

for TG/SC mode and η ≪ 1 for SG/TC mode. Both modes are applicable methods for studying 

electrocatalysts, for example in the field of hydrogen evolution reaction (HER) or in oxygen evolution 

reaction processes [19]. In contrast to the generation/collection modes, substrate and tip electrode are 

both used as generator electrodes in the competition mode as it can be seen in Fig 2.9 c). Since both 

electrodes are competing for the same species, the decrease in measured tip current represents the local 

catalytic activity of the substrate surface. Thus, the sensitivity is not affected by the substrate area in 
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competition mode in contrast to the TG/SC mode. As a consequence, the resolution can be further 

increased in competition mode by the usage of smaller UMEs [20]. 

 

2.2.4 Imaging process 

 

Imaging describes the process in which the surface is scanned by the tip in the XY plane. Thus, local 

information about the electrochemical activity and topography of the substrate can be obtained due to 

surface interaction of the tip in the scanning process. The resolution is dependent on rtip, RG-value, scan 

speed, and the tip-to-substrate distance. Accordingly, the tip must be brought into working distance 

before the imaging process [17]. This can be achieved by approaching the UME in feedback mode in a 

defined mediator solution as described in chapter 2.2.3.1. Two common imaging modes are applicable as 

it can be seen in Fig 2.10. 

 

 

Figure 2.10: Schematic illustration of imaging modes. (a) Constant height and (b) constant distance. 

Adapted from [21].    

 

In constant height mode the UME is scanned in XY plane at a fixed distance L between tip and substrate. 

This mode is commonly used for substrates with smooth surfaces and can be utilized in feedback, SG/TC, 

TG/SC, and competition mode. When scanning in fixed L, problems can arise with surface topography. If 

the roughness is too large, it is possible that the tip crashes into the substrate at topographic hills or that 

the surface interaction is lost in topographic valleys (see red crosses in Fig. 2.10). In constant distance 

mode, the gap between tip and substrate is kept at a constant level by adjusting the z-position of the tip 

in dependence of the measured tip signal [22]. This mode is limited by the response speed of the distance 
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control mechanism at strong changes in topography. Since the measured signal in SECM is strongly 

dependent on the distance between tip and substrate in both modes, local information on topography 

and electrochemical activity cannot be obtained independently in the imaging process. Accordingly, 

surface topography can only be obtained in pure negative or pure positive feedback from homogenous 

materials.    

 

2.3 Electrochemical deposition of copper 

 

2.3.1 Electroplating of copper in semiconductor industry  

 

Electroplating of copper (Cu) was introduced in the semiconductor industry by IBM in 1997 due to good 

electrical and thermal conductivity as well as the higher resistance to electromigration of copper in 

comparison to aluminum (Al) [23]. Electrochemical Cu deposition is usually carried out from an acidic Cu 

electrolyte on a Cu seedlayer (PVD) deposited prior to electroplating.  

 

2.3.1.1 Copper electrolyte 

 

A conventional acidic bath contains inorganic and organic compounds for void free filling of structured 

surfaces. The inorganic compounds consist of copper(II) sulfate (CuSO4) as Cu source with c(Cu2+) > 10 g/l, 

sulfuric acid (H2SO4) for conductivity increment of the solution and to prevent the precipitation of the Cu 

salt. Further, small amounts of hydrochloric acid (HCl) (c(Cl-) < 100 ppm) are needed to ensure the surface 

interaction of the organic compounds during the electrochemical deposition process. The organic bath 

compounds consist usually of three additives which are selectively influencing Cu deposition. The first 

organic component, the accelerator, is locally enhancing Cu electrodeposition due to its capability to 

reduce surface potential and to facilitate ion transfer to the surface. Molecules with a thiol-group, for 

example sulfopropyl-disulfide (SPS) can be used as accelerator. The second organic component, the 

suppressor, inhibits the Cu deposition locally by the formation of a stable complex with Cu(I) ions and Cl 

ions at the Cu surface such as polyethylenglycol (PEG). The third organic component, the leveler, facilitates 

selective filling of trenches and vias due to the accumulation of this additive on edges and corners with 

high electric field strength. Thus, the local difference between recessed areas and bumps can be balanced. 
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Usually coloring agents are used as leveler additives, for example Janus Green B (JGB) or 

polyvinylpyrrolidone (PVP) [24]. Via a suitable concentration ratio of these three additives, it is possible to 

achieve homogeneous galvanic copper deposition on wafer level scale.  

 

2.3.1.2 Electroplating tool 

 

Electrodeposition from this Cu electrolyte is performed in a two-electrode setup with the structured wafer 

as cathode and solid copper as anode material. A schematic illustration of a commercial plating tool is 

depicted in Fig. 2.11.  

 

Figure 2.11: Schematic illustration of a commercial plating tool in semiconductor industry. The electrolyte 

tank is separated in two compartments by a semipermeable membrane. The electrolytes in both chambers 

are continuously circulated. The anode chamber contains the anode and the anolyte (CuSO4, H2SO4, HCl). 

The cathode chamber is constructed as an overflow tank and includes the rotatable mounting platform for 

the wafer as well as the catholyte (CuSO4, H2SO4, HCl, leveler L, accelerator A, suppressor S).  

 

In order to be able to act as the cathode, the Cu seedlayer on the wafer is electrically contacted and sealed 

from the edges in a mounting platform prior to immersion in the overflow tank. To stabilize the Cu bath, 

the interaction of the inorganic compounds with the Cu anode is prevented (US6126798A, [25]). Therefore, 

the electrolyte tank is divided into two separate individually circulated compartments by a semipermeable 

membrane. Thus, the cathode chamber contains the catholyte with the inorganic and organic compounds 

of the electrolyte and the anode chamber includes the anolyte with only the inorganic compounds. The 
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concentration of Cu in the catholyte is maintained by the diffusion of Cu ions from the anolyte to the 

catholyte due to the concentration gradient during deposition according to eq. 27 and eq. 28. In order to 

simulate this wafer scaled deposition process on the laboratory level, a dedicated miniaturized plating cell 

is utilized for the experimental studies as described in chapter 4.1. 

 

Cathode Cu2+ + 2e− → Cu (27) 

 

Anode Cu → Cu2+ + 2e− (28) 

 

2.3.1.3 Deposition rate of galvanic copper 

 

The galvanic deposition process is carried out in direct current or in a pulsed technique at a predefined 

deposition rate [24]. This deposition rate is based on Faraday’s laws of electrolysis which describe the 

relationship between flowed charge Q, the valency number of ions z, the Faraday constant F and the 

amount of substance n. Here, n can be expressed as a function of mass m and molar mass M as depicted 

in eq. 29.  

 

Q = n ∙ z ∙ F =
m

M
∙ z ∙ F (29) 

 

Utilizing the relationship between Q, the applied current I and the deposition time t in eq. 30, Faraday’s 

law can be expressed as a function of flowed current.  

Q = I ∙ t (30) 

 

Furthermore, implementing the correlation between m, density ρD, and volume V, which is the product of 

deposited area ADep and thickness d as described by eq. 31, the deposition rate d/t can be expressed as a 

function of the above-mentioned variables by assuming 100% current efficiency (32): 
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m = ρ ∙ V = ρ ∙ ADep ∙ d (31) 

 

 

d

t
=

M

ρ ∙ z ∙ F
∙
I

ADep
= const ∙

I

ADep
= const ∙ j (32) 

 

As can be seen in eq. 32, d/t is only dependent on the ratio of I and ADep and therefore on current density j. 

Consequently, the deposition rate can be adjusted by changing the applied current density in the galvanic 

Cu deposition process. 

 

2.3.2 Barrier films for copper  

 

Since Al was replaced by Cu metallization as interconnect material [23], barrier films (also referred as liner 

materials) became mandatory to prevent the diffusion of Cu (DCu = 3 ∙ 10
4m2 s⁄ , [26]) into the 

surrounding dielectrics and Si. It is known that Cu has a strong impact on the function of active elements 

due to their capability to form silicides like Cu3Si or deep trap states on the basis of agglomeration. For this 

reason, the complete encapsulation of Cu structures in a barrier material is necessary. Moreover, these 

barrier layers have to fulfill several further requirements such as sufficient mechanical stability, good 

adhesion between dielectric and interconnect, immiscibility with Cu, and the capability to act as etch-stop 

on top of interconnects. There are a variety of different deposition techniques to achieve the full 

embedment of Cu in liner materials. Commonly used techniques are physical vapor deposition (PVD) for 

bottom and side walls, atomic layer deposition (ALD) for conformal deposition in high aspect ratios, 

chemical vapor deposition (CVD) for contact level, and plasma enhanced chemical vapor deposition 

(PECVD) for coverage of the top of the interconnects [26]. A schematic cross section of a Cu interconnect 

with the corresponding barriers films is depicted in Fig. 2.12.  
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Figure 2.12: Schematic Cu interconnect encapsulated in a barrier thin film surrounded by dielectric material 

(single damascene process, after subsequent planarization process). Adapted from [26]. 

 

The suitability of a material for acting as a liner is given by an empirical rule. This rule states that the 

activation energy for the diffusion process (mainly grain boundary diffusion) scales with the material 

melting temperature TM. Consequently, the property to effectively inhibit diffusion of Cu is given by a high 

melting point of the material. Therefore, refractory metals with TM > 2000°C such as Cr, Ti, Mo, W, Ta, Nb 

as well as their thermodynamically stable compounds are suitable liner candidates. A compilation of 

common metal-based (Me-X) barrier materials is shown below [26]: 

1. Polycrystalline and amorphous Me-N, Me-C, Me-O, Me-B compounds: 

TiNx, VNx, ZrNx, NbNx, MoNx, HfNx, WNx, TaNx, WCx, TaCx, MoOx, TaOx, TiB2  

2. Polycrystalline and amorphous Me-Si compounds: 

MoSix, WSix, TaSix 

3. Polycrystalline and amorphous Me alloys: 

TiWx, TaCox, TaFex, TaWx, NiNbx, CuZrx 

In industrial applications Ta-based, W-based and Ti-based barrier materials are commonly used since they 

can be deposited by PVD in combination with a Cu seedlayer without breaking the vacuum in order to 

avoid liner oxidation. The copper interconnect is subsequently enhanced by an electrochemical deposition 

process of copper from an acidic electrolyte with additives enabling large scale homogenous deposition as 

described in chapter 2.3.1.  
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2.3.3 Nucleation process 

 

In this chapter a more detailed description of the nucleation process will be given. Atomistic and 

thermodynamic models will not be presented as their prediction differs strongly from experimental 

observations in electrochemical nucleation studies due to the simplified assumptions in the calculation 

process [27].    

 

2.3.3.1 Definition  

 

Nucleation is defined as the formation of a new crystalline phase from a solution or gas phase. In this 

process, the molecules and/or atoms are organizing themselves in a thermodynamic stable accumulation 

phase which can subsequently grow irreversibly into a macroscopic structure. This accumulation phase is 

defined as nucleus or critical nuclei. The nucleus formation process can be categorized into primary 

nucleation and secondary nucleation. Primary nucleation refers to the formation process wherein either 

no crystal (homogeneous nucleation) or a foreign crystal or particle (heterogeneous nucleation) is 

involved. Consequently, nucleus formation on the crystal of the same substance is denoted as secondary 

nucleation [28,29].  

 

2.3.3.2 Electrochemical nucleation 

 

Electrochemical nucleation belongs to the category of primary heterogeneous nucleation or secondary 

nucleation in the case of a type-identical substrate. Since the electrochemical nucleation is based on the 

conversion of an electroactive species, the nucleation process can be monitored directly by the faradaic 

current IF (chapter 2.1.1). As a result, insight into the nucleation and growth process can be obtained by 

comparing the in situ measured data to theoretical models. These models are based on the description of 

the kinetics of adatom incorporation on nucleation centers in the early stage of electrocrystallization [30]. 

The number of nucleation centers N depends on the active sites N0 of the substrate, the nucleation rate 

constant A’, and deposition time t.  
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N(t) = N0 ∙ [1 − exp(−A′ ∙ t)] (33) 

 

Based on the equation, electrochemical nucleation can be divided into two limiting cases [10]. If the 

product in the exponential term is much larger than 1, eq. 33 can be simplified to eq. 34.  

 

For A′ ∙ t ≫ 1 N(t) = N0 (34) 

 

This limiting case is called instantaneous nucleation. Accordingly, all nuclei are initially formed at the start 

of the deposition process. The nuclei are subsequently growing equally with increasing deposition time 

until coalescence. On the other hand, if the product is much smaller than 1, eq. 33 becomes eq. 35. 

 

For A′ ∙ t ≪ 1 N(t) = N0 ∙ (A′ ∙ t) (35) 

 

This limiting case is called progressive nucleation. In contrast to instantaneous nucleation, the formation 

of nucleation centers is continuous with each nucleus growing at an individual rate until all active sites N0 

are depleted [31]. Based on these two nucleation types, different theoretical models were developed to 

describe the early stage of potential-controlled electrocrystallization as depicted in table 2.4 with the  

cross-section L2, coverage θ, and nuclei height h [32]. Consequently, insight in the nucleation process can 

be obtained by comparing these theoretical models with measured current density transients during 

potentiostatic deposition.     
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Table 2.4: Theoretical models for potentiostatic electrocrystallization. Adapted from [32]. 

Expression Nucleation type Growth type Reaction regime 

j = 2 ∙ z ∙ F ∙ A ∙ L2 ∙ k ∙ t  progressive 1D needle kinetic 

j = (z ∙ F ∙ h ∙ ρ ∙ π ∙ θ2 ∙ D ∙ A ∙ t) M⁄   progressive 2D diffusion 

j = (2 ∙ z ∙ F ∙ π ∙ M ∙ h ∙ N0 ∙ k
2 ∙ t) ρ⁄   instantaneous 2D kinetic 

j = (z ∙ F ∙ π ∙ M ∙ h ∙ A ∙ k2 ∙ t2) ρ⁄   progressive 2D kinetic 

j = 2 ∙ z ∙ F ∙ π ∙ M2 ∙ N0 ∙ k
3 ∙ t2 ∙ ρ2  instantaneous 3D kinetic 

j = (2 ∙ z ∙ F ∙ π ∙ M2 ∙ h ∙ A ∙ k3 ∙ t3) 3/ρ2⁄   progressive 3D kinetic 

j = (8 ∙ z ∙ F ∙ N0 ∙ M
2 ∙ c3 ∙ D3/2 ∙ t1/2) ρ2⁄   instantaneous 3D diffusion 

j = (16 ∙ z ∙ F ∙ π ∙ A ∙ M2 ∙ c3 ∙ D3/2 ∙ t3/2) 3/ρ2⁄   progressive 3D diffusion 

 

 

In order to determine the nucleation type without the knowledge of the elusive factor N0, Scharifker and 

Hills [33] have developed simplified expressions for this purpose. They are based on diffusion-controlled 

3D instantaneous (eq. 36) and progressive nucleation (eq. 37) models, which are considering the overlap 

of hemispherical diffusion fields during growth and the consequential inhibition of nuclei formation.  

 

I(t) =
z ∙ F ∙ D1/2 ∙ c

π1/2 ∙ t1/2
∙ {1 − exp [−N0 ∙ D ∙ t ∙ (

8 ∙ π ∙ c ∙ M

ρ
)
1 2⁄

]}  (36) 

 

I(t) =
z ∙ F ∙ D1/2 ∙ c

π1/2 ∙ t1/2
∙ {1 − exp [−

2

3
∙ A ∙ N0 ∙ π ∙ D ∙ t

2 ∙ (
8 ∙ π ∙ c ∙ M

ρ
)
1 2⁄

]}  (37) 
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Normalizing eq. 36 and eq. 37 to the peak current Imax and the corresponding time tmax results in 

expressions which are free of N0 and other constants for instantaneous nucleation (eq. 38) and progressive 

nucleation (eq. 39) [33]. 

I2

Imax
2 = 1.9542 ∙ (

tmax
t
) ∙ [1 − exp (−1.2564 ∙

t

tmax
)]
2

 (38) 

 

I2

Imax
2 = 1.2254 ∙ (

tmax
t
) ∙ [1 − exp (−2.3367 ∙

t

tmax
)]
2

 (39) 

 

Consequently, the classification of the nucleation type can simply be accomplished by comparing the 

normalized measured current transients with the previously described expressions. In contrast to that, 

determination of nucleation type in galvanic deposition is rather complicated. Here, ex situ techniques 

must be used such as a SEM or AFM based surface characterization methods at defined deposition times 

[34].  

 

2.3.4 Electrochemical deposition of copper on barrier films 

 

In the process of downscaling device geometry to the sub 30 nm node technology, the filling of nanoscale 

damascene structures is becoming increasingly difficult. As feature dimensions are comparable with the 

thickness, a defect-free filling and conformal coating is challenging using conventional deposition methods 

[35,36]. Consequently, new deposition techniques are investigated to address this topic. A promising 

approach is the electrochemical deposition of copper on the liner material without using a Cu seedlayer. 

This strategy is also referred to as direct electroplating, direct electrodeposition or seedless 

electrodeposition [37]. For defect-free filling of trench structures in direct plating the empirical correlation 

between the film coalescence at a predefined layer thickness dcoal and the nuclei density Nd has to be 

fulfilled as depicted in eq. 40 [38]. 
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dcoal =
1

2√Nd
 (40) 

 

Therefore, a high initial nucleus density is a prerequisite for the conformal filling of nm-scaled structures. 

If a conventional acidic electrolyte (chapter 2.3.1) is utilized for direct deposition, the formation of a 

surface passivation on the liner material in aqueous solution has to be considered. These metal oxides  

Me-O have a negative influence on nucleation and can completely prevent electrochemical deposition if 

an insulating layer is formed [35]. Consequently, liner materials which form more unstable oxides than 

those of Cu should be selected for electroplating with acidic electrolytes. Based on a comparison of Gibbs 

free energy of formation per nonmetal of the metal oxide ∆GMe−O
a  and those of Cu ∆GCu−O

a  as a criteria 

(eq. 41), a selection of suitable barriers can be made [39].  

 

|∆GMe−O
a | ≤ |∆GCu−O

a | (41) 

 

Accordingly, the platinum-group metals (PGM) Pt, Pd, Ru, Ir and the metals Rh, Te, Tc, Ag are suitable liners 

for direct deposition in combination with a standard acidic electrolytes [40]. Alternatively, the bath 

chemistry and process handling can be modified, if other liner materials (chapter 2.3.2) are utilized for 

direct plating [37]. Both approaches in direct electrodeposition have been investigated by different 

working groups since 1995. An overview of the literature sources on direct plating sorted by barrier groups 

is shown in table 2.5. A detailed description of the procedures is presented in the following chapters based 

on the associated groups.  
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Table 2.5: Overview of literature on direct plating of Cu sorted by barrier material 

group barrier material references 

Ti-based Ti [42, 45-48] 

TiN [43,44,49,50-52] 

W-based W [56-58] 

W2N [55] 

Ta-based Ta [38,59,63-65] 

TaN [38, 59-62] 

PGM-based Ru [71-79] 

Ru:Ta(N) [35, 80-84] 

Ir [70] 

Os [34] 

 

 

2.3.4.1 Titanium-based barrier materials 

 

It is known that Ti based barriers, such as Ti or TiN, are forming a semiconductive oxide TiO2 in ambient air 

and also in aqueous solution [41]. Electron transport through TiO2 is based on pipe tunneling along 

dislocation cores during electrochemical deposition. Consequently, poor surface coverage and bad 

adhesion is obtained due to the poor nucleation and the favored grain growth in the plating process on 

TiO2 [42–44]. For this reason, it is important to remove the natively formed oxide to achieve a dense Cu 

deposition with strong adhesion [45]. Here, different methods are known to remove oxide for Ti and TiN. 

In the case of a Ti barrier, the oxide can simply be removed with a pre-cleaning step in diluted HNO3 or 1% 

HF solution [42,46,47]. Afterwards, a standard acidic Cu electrolyte or a complexed Cu electrolyte can be 

used [48] for the electrochemical deposition. The utilization of a complexed Cu electrolyte is advantageous 

for thin-film applications due to its large nucleation density in the early stages of deposition according to 

eq. 40. The electrocrystallization process from complexed Cu baths is characterized by an enhanced 

nucleation process since grain growth is inhibited due to the blockage of active sites by complexing agents 

like EDTA or citric acid [45–47]. In contrast to the procedure for Ti interfaces, the TiO2 removal and 

electrochemical Cu deposition on TiN can only be carried out by proper plating chemistry and deposition 

parameters [49–51]. Since TiO2 is unstable below pH = 8 and potentials lower than E = -1.8 V vs SHE [41], 
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the reduction to metallic Ti during electrodeposition is possible in complexed Cu electrolytes. These baths 

usually consist of a significant fraction of citric acid [49–51] or pyrophosphate [52] which leads to the shift 

of the onset point of Cu reduction towards more negative potentials due to the complexation of Cu ions. 

The composition of such a complexed Cu bath is shown in table 2.6. The usage of these complexed Cu 

electrolytes is also suitable for deposition of adherent Cu layer on untreated Ti [46,47].  

Table 2.6 Complexed Cu electrolytes for direct electroplating on TiN barriers with references 

Components Molar ratio pH value Complexed Copper Reference 

CuSO4*5H2O, (NH4)2C6H7O7  1:1 pH = 3.5 to 6.0 copper citrate [49–51] 

Cu2P2O7, K4P2O7  1:10 pH = 8.5  copper pyrophosphate [52] 

 

2.3.4.2 Tungsten-based barrier materials 

 

For the deposition of adherent and dense Cu layers on W barriers it is crucial to remove the natively formed 

oxides of WO2, WO3 or W2O5 in aqueous solution [41,53,54]. Since WO2 and W2O5 will not be formed under 

cathodic potentials for pH > 5 and WO3 being thermodynamically unstable at pH > 4 according to eq. 42, 

the deposition of Cu on oxide free W can be achieved with a proper bath chemistry.  

 

WO3 + 2OH
− ⇌ WO4

2− + H2O (42) 

 

Accordingly, a suitable Cu electrolyte for direct electroplating on W must have a pH > 4, contain a source 

for the generation of OH- and a complexing agent for Cu ions to prevent Cu precipitation at this pH value. 

An electrolyte consisting of copper sulfate CuSO4, ammonium citrate (NH4)2HC6H5O7 and ammonia NH3 

with a molar ratio of CuSO4 : (NH4)2HC6H5O7 = 1 : 1 is able to fulfill these requirements. Here, CuSO4 is used 

as Cu source, (NH4)2HC6H5O7 is utilized as complexing agent and NH3 is used to generate OH- according to 

eq. 43 and to adjust the pH value.  
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NH3 + H2O → NH4
+ + OH− (43) 

 

Using such a bath composition, it is possible to electrochemically deposit Cu with a high nucleation density 

of N = 2.0 ∙ 1010
N

cm2
 and good adhesion on W under potential control in comparison to standard acidic 

Cu baths [55–57]. Moreover, organic bath additives can be used in order to further increase nuclei density 

and decrease surface roughness [58].  

 

2.3.4.3 Tantalum-based barrier materials 

 

Ta is known for its fast formation of native oxides in ambient air on pure Ta and TaN with the stoichiometry 

of TaO, TaO2, Ta2O5 and Ta2O7. In aqueous solution, only Ta2O5 is stable without any dependency on pH 

value [41]. Accordingly, Ta2O5 is the reason for the low adhesion, poor nucleation and inhomogeneity of 

electroplated Cu on Ta and TaN [38,59,60]. As a result, a pre-cleaning step is required for direct plating. 

Here, two methods are applicable for oxide removal on Ta-based surfaces. The first method is based on 

an anodic pre-cleaning step in alkaline solution. On this occasion, the oxide is stripped in potassium 

hydroxide solution (0.948 M KOH, pH = 13.51) at a high anodic potential for a very short period of time. 

Time control in this process is crucial as otherwise the Ta barrier is etched which can result in roughening 

or barrier removal since the thickness of Ta2O5 is only d = 2.5 nm [61–63]. After a wet transfer into the Cu 

electrolyte, electrodeposition of a Cu layer on metallic Ta can be carried out. The drawback of this method 

is the emergence of large internal stress, which only allows thin layers with a maximum thickness of 

d = 150 nm to be deposited without crack formation [59,64]. The second method is based on a cathodic 

removal of Ta2O5 in an alkaline solution. In this process, the native oxide is reduced to metallic Ta in a 

pyrophosphate solution (K4P2O7, pH = 10) at a potential near the onset of hydrogen evolution. In order to 

prevent the formation of a new native oxide layer in aqueous solution, a part of the Cu electrolyte is added 

to the pre-cleaning solution before the end of the pre-cleaning step. Thus, a complexed Cu electrolyte is 

mandatory as otherwise Cu will precipitate from the alkaline solution during this process. Due to the 

addition of the Cu electrolyte, the formation of a large number of nuclei is triggered which can 

subsequently grow to a dense thin Cu layer as potential is stepped to a less negative value [64,65]. After 

this “seeding” process, a wet transfer into a Cu electrolyte can be carried out safely to increase the Cu 

layer. Furthermore, complexed Cu electrolytes are advantageous for electrochemical thin film deposition 
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on Ta based barriers due to their high nucleus density during the initial deposition phase in comparison to 

copper sulfate or copper fluoroborate electrolytes according to eq. 40 [38]. Suitable complexed Cu 

electrolytes for direct plating on Ta based barriers for the aforementioned methods are listed in table 2.7.  

Table 2.7: Complexed Cu electrolytes for direct electroplating on Ta based barriers with references 

Components Molar ratio pH value Reference 

CuSO4*5H2O, (NH4)2C6H7O7 1:1 pH = 2.5 to 13.2 [38,51,61–63,66–68] 

Cu2P2O7, K4P2O7  1:10 pH = 8.5 to 10.1 [64,65] 

CuSO4*5H2O, EDTA 1:2 pH = 9.5 to 13.8 [38] 

 

2.3.4.4 Platinum-group metal barrier materials 

 

Platinum-group metals, also referred to as platinoids, are noble and precious metallic elements, which are 

resistant to corrosion and cannot be easily attacked by acids [69]. As already explained in this chapter, 

commercial acidic electrolytes can be utilized for direct deposition [34,70–72]. Especially Ru has shown to 

be an important candidate for direct plating because of its highly adhesive interface with Cu (good 

electromigration performance) and low solubility in Cu (low impact on Cu resistivity). Furthermore, Ru can 

be deposited with CVD and ALD techniques, which allows a conformal coverage of high aspect ratio 

structures. Thus, very thin films, for example d = 5 nm Ru (ALD) can be used for direct electroplating [73]. 

Since it is known that Ru forms a conductive oxide RuO in ambient air, a pre-cleaning step has to be carried 

out prior to deposition to prevent the negative influence of the oxide on the nucleation process and layer 

adhesion [74]. Moreover, this oxide also inhibits the surface interaction of organic bath additives (PEG, 

SPS) preventing the defect-free filling of structured surfaces [75,76]. As a result, the electrodeposition of 

copper on Ru should be carried out in a two-step process. In the first step, the native oxide is removed by 

reducing the oxide to a metallic surface in an acidic medium of H2SO4 or HBF4 at a cathodic potential or 

under current control. In the second step the substrate is wet-transferred into the Cu electrolyte for 

deposition [74,75,77]. This process enables the deposition of very thin Cu layers according to eq. 40 due 

to the high nucleus density. The nucleus density can be further increased by adding a Fe(II)/Fe(III) redox 

couple (for example: Fe(II)SO4*5H2O/Fe2(SO4)3) or conducting salts (K2SO4, Na2SO4, MgSO4) to the acidic Cu 

electrolyte [78,79]. In the case that the Ru layer should simultaneously act as a diffusion barrier and an 

electroplatable thin film, a polycrystalline metal alloy like RuTa(10%) [35,80–82] can be used instead. The 

same two-stage procedure is applicable for this alloy [83,84]. 
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Ritala, M. Leskelä, D. Josell, Electrodeposition of Cu on Ru Barrier Layers for Damascene 

Processing, J. Electrochem. Soc. 153 (2006) C37. doi:10.1149/1.2131826. 



 

47 

[76] M.L. Walker, L.J. Richter, D. Josell, T.P. Moffat, An in situ ellipsometric study of Cl- induced 

adsorption of PEG on Ru and on underpotential deposited Cu on Ru, J. Electrochem. Soc. 153 

(2006) C235--C241. 

[77] T.N. Arunagiri, Y. Zhang, O. Chyan, M. El-Bouanani, M.J. Kim, K.H. Chen, C.T. Wu, L.C. Chen, 5 nm 

ruthenium thin film as a directly plateable copper diffusion barrier, Appl. Phys. Lett. 86 (2005) 

83104. 

[78] F. Qiao, A.C. West, The impact of cations on nucleus density during copper electrodeposition, 

Electrochim. Acta. 150 (2014) 8–14. doi:10.1016/j.electacta.2014.10.135. 

[79] F. Qiao, B.B. O’Brien, K. a. Dunn, A.C. West, The Effect of Fe(III)/Fe(II) Redox Couple on Nucleus 

Density during Cu Electrodeposition Process, J. Electrochem. Soc. 160 (2013) D271–D278. 

doi:10.1149/2.142306jes. 

[80] M. Nagar, A. Radisic, K. Strubbe, P.M. Vereecken, The effect of polyether suppressors on the 

nucleation and growth of copper on RuTa seeded substrate for direct copper plating, Electrochim. 

Acta. 127 (2014) 315–326. 

[81] S. Kumar, D. Greenslit, E. Eisenbraun, Development of manufacturable solutions for the direct 

plating of copper on robust ALD-grown barriers, ECS Trans. 6 (2007) 77–88. 

[82] M. Nagar, A. Radisic, K. Strubbe, P.M. Vereecken, The effect of cupric ion concentration on the 

nucleation and growth of copper on RuTa seeded substrates, Electrochim. Acta. 92 (2013) 474–

483. 

[83] M. Nagar, A. Radisic, K. Strubbe, P.M. Vereecken, The Effect of the Substrate Characteristics on 

the Electrochemical Nucleation and Growth of Copper, J. Electrochem. Soc. 163 (2016) D3053--

D3061. 

[84] A. Radisic, M. Nagar, K. Strubbe, S. Armini, Z. El-Mekki, H. Volders, W. Ruythooren, P.M. 

Vereecken, Copper Plating on Resistive Substrates, Diffusion Barrier and Alternative Seed Layers, 

ECS Trans. 25 (2010) 175–184. doi:10.1149/1.3318516. 

 

 



 

48 

3 Experimental 

 

In this section, a general introduction to the chemicals, materials and instruments which were used in this 

research will be given. In some cases, tailored solutions were employed. The description of these cases 

can be found in the corresponding experimental section of each chapter in the result and discussion part 

of chapter 4.  

 

3.1 Materials 

 

Chemicals and Probes 

Ammonia 28% (NH3) Analytical grade, BASF (Ludwigshafen, Germany) 

Ammonium citrate ((NH4)3C6H5O7) Analytical grade, VWR Chemicals (Radnor, 

Pennsylvania) 

Ammonium sulfate ((NH4)2SO4) Analytical grade, Merck (Darmstadt, Germany) 

Citric acid (C6H8O7) Analytical grade, Sigma-Aldrich (St. Louis, Missouri) 

Copper sulfate pentahydrate (CuSO4*5H2O) Analytical grade, Merck (Darmstadt, Germany) 

Different thin films on silicon 8-inch wafer  Infineon Technologies AG (Regensburg, Germany) 

Ferrocenemethanol (FcMeOH) 99%, ABCR (Karlsruhe, Germany) 

Hexaammineruthenium(III) chloride 

(Ru(NH3)6Cl3) 

98%, Sigma-Aldrich (St. Louis, Missouri) 

Hydrochloric acid 0.1M (HCl) Analytical grade, Merck (Darmstadt, Germany) 

Potassium hydroxide (KOH) Analytical grade, Honeywell Chemicals 

(Morristown, New Jersey) 

Potassium nitrate (KNO3) Analytical grade, Merck (Darmstadt, Germany) 

Potassium octacyanotungstate(IV) dihydrate 

(K4W(CN)8)*2H2O) 

In-house production 

Sulfuric acid 1M (H2SO4) Analytical grade, Merck (Darmstadt, Germany) 

Ultrapure water (resistivity > 18MΩ/cm)   Milli- Q Advantage A10 system, Merck Millipore, 

(Darmstadt, Germany) 
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Consumable materials 

Copper cable Leonische Drahtwerke AG (Nürnberg, Germany) 

Lapping foils (30, 10, 3, 0.3 micron) Sigma-Aldrich (Seelze, Germany) 

PDMS kit Sylgrad® 184 Sigma-Aldrich (Seelze, Germany) 

Plastic paraffin film Parafilm M Pechiney Plastic Packaging Inc. (Chicago, Illinois) 

Platinum wire (d = 25 µm) Goodfellow (Cambridge, Great Britain) 

PTFE syringe filter (poresize: 0.05 micron) Carl Roth, GmbH & Co. KG (Karlsruhe, Germany) 

Soda lime glass capillaries 

(dinner = 1.1 mm, douter = 1.8 mm) 

Glaswerke Ilmenau (Ilmenau, Germany) 

Various syringes B. Braun Injekt (Melsungen, Germany) 

Two-component epoxide adhesive glue Uhu (Bühl, Germany) 

 

Instrumentation 

Autolab PGST302N  Metrohm (Herisau, Switzerland) 

Bullseye level (model 1034, diameter 14 mm, 

sensitivity: 5’) 

Glas- und Meßtechnik GmbH (Wächtersbach, 

Germany) 

LEXT OLS4000 3D laser measuring microscope Olympus (Tokyo, Japan) 

pH-meter 827 pH Lab Meter Metrohm (Herisau, Switzerland) 

Reference electrode Ag/AgCl/3M KCl (model 

6.0728.130) 

Metrohm (Herisau, Switzerland) 

Scanning electron microscope Zeiss Gemini  

Ultra 55 

Zeiss (Oberkochen, Germany) 

Smart cell 1000w plating tool Yamamoto MS (Tokyo, Japan) 

Soldering equipment WE CP-20 Weller, Wetzlar, Germany 

Wide stand microscope x100 PEAK (Bornheim-Roisdorf, Germany) 

Faradaic cage laboratory constructed 
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Software 

Origin 2017 OriginLab Corporation, Inc. (Northampton, 

Massachusetts) 

LEXT OLS4000 software Olympus (Tokyo, Japan) 

Microsoft Office 2016 Microsoft (Redmond, Washington) 

SECM software CHI920C CH Instruments (Austin, Texas) 

DIPS Point electronic (Halle, Germany) 

ImageJ open source 

NOVA 2.0 Metrohm (Herisau, Switzerland) 

 

3.2 Mediators 

 

Three different mediators and one mediator-free solution were used in the studies. The composition of 

the solutions is shown in table 3.1. For the preparation of stable mediators, the deionized water was 

deaerated at T = 80 °C by nitrogen bubbling for 1 hour prior to the fabrication process. After cooling, the 

mediator species and the conducting salt were dissolved at T = 45 °C under sonication for 30 min in a 50 ml 

conical flask. To prevent the dissolution of oxygen from ambient air in the prepared solutions, the flasks 

were sealed using a parafilm sealing film. After cooling, the solutions were stored for 24 h at room 

temperature to reach equilibrium state. The solutions were filtered twice after cooling with a PTFE syringe 

filter with a pore size of 0.05 micron to remove precipitates. The stability of the mediator was tested by 

recording cyclic voltammograms with an ultramicroelectrode in a three-electrode configuration. A 

mediator was defined as stable when the measured cycles were reproducible.  

Table 3.1: Mediator composition 

Mediator Active species  Supporting electrolyte 

Ferrocenemethanol 1.5 mM FcMeOH 0.2 M KNO3 

Potassium octacyanotungstate(IV) dihydrate 1.5 mM (K4W(CN)8)*2H2O 0.2 M KNO3 

Hexaammineruthenium(III) chloride 1 mM Ru(NH3)6Cl3 0.2 M KNO3 

Mediator-free - 0.2 M KNO3, 1.4 mM HCl 
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3.3 Copper electrolytes 

 

Different electrolytes were used to deposit copper potentiostatically or under current control on selected 

barrier films with good adhesion. The choice of bath composition is based on chapter 2.3.4. Four different 

Cu electrolytes were used for the direct deposition studies. Their composition is shown in table 3.2. All 

electrolytes were prepared by dissolving the components in deionized water. The pH value was adjusted 

with H2SO4 or NH3 if required. The virgin-make up solution electrolyte (VMS) was used for potentiostatic 

or galvanic deposition on Ru and Pt. The complexed bath was used for direct plating on TiN under potential 

control. The alkaline bath was applied for Cu deposition on TaN following a special protocol described in 

chapter 4.3.2. The low acidic bath has been employed for galvanic deposition on Ru.  

Table 3.2: Cu electrolyte composition for direct electroplating on barrier with references 

Type Copper source Supporting electrolyte pH value Barrier 

VMS bath [1] 0.63M CuSO4 0.3M H2SO4, 1.4 mM HCl pH < 1 Ru, Pt 

Complexed bath [2] 0.08 M CuSO4 0.1M (NH3)3C6H5O7 5 < pH < 6 TiN 

Alkaline bath [3] 0.08 M CuSO4 0.4M (NH3)3C6H5O7 pH > 10 TaN 

Low acidic bath [4] 0.4 M CuSO4 0.38M (NH4)2SO4, 0.03 C6H8O7 1.9 < pH < 2.5 Ru 
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3.4 SECM probe fabrication and characterization 

 

3.4.1 Fabrication of ultramicroelectrodes 

 

Pt-ultramicroelectrodes were prepared based on the protocol of Lee et al. [5]. A schematic overview of 

the process steps is represented in Fig. 3.1. 

 

 

Figure 3.1: Fabrication process of an ultramicroelectrode. (a) removal of isolation of Cu wire, (b) soldering 

of Pt wire on Cu wire, (c) fabrication of tapering from a soda lime glass by local heating, (d) insertion of 

wire into glass capillary, (e) positioning of Pt wire in the clipped glass capillary, (f) local heating of capillary 

tip, (g) sealed Pt wire in glass capillary, (h) tip polishing with abrasive paper, (i) fixation of Cu wire in glass 

capillary with two-component glue and characterization of the electrode tip.  

 

In the first step, the insulation of a 4 cm long Cu wire was removed at both ends for subsequent processing. 

Afterwards, a 5 mm long Pt wire was soldered on one end of the exposed Cu wire. The radius of the used 

Pt wire does correspond to the final electrode size. Here, commercially available Pt wires with rPt = 12.5 µm 

or rPt = 6.25 µm were used for fabrication of standard UME’s of rtip = 12.5 µm or rtip = 6.25 µm, respectively. 

For smaller electrode diameters the Pt-wires were electrochemically etched to obtain sharpened wires [6]. 

In this process, the tip of the Pt wire has to be immersed in a solution of 60% CaCl2 and 4% HCl and etched 
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by applying potential pulses of ±2 V at a frequency of 50 Hz in a two-electrode configuration with a Pt-

wire as RE/CE. In the next step of the fabrication procedure, the Cu wire with the attached Pt wire is 

inserted into a previously pulled and cropped soda lime glass capillary with the Pt tip protruding from the 

conical end of the capillary. Afterwards, the Pt wire was sealed and mechanically stabilized by locally 

melting the tip of the soda lime glass capillary at T ≈ 1200 K with a torch or heating coil. Followingly, the 

melted tip was carefully polished with lapping foils of different grain sizes until the electrode area with a 

defined RG value was exposed. In the last step, the Cu wire was fixed inside the glass capillary to relieve 

the Pt-wire mechanically by a small droplet of a two-component glue at the upper end of the glass 

capillary. 

 

3.4.2 Characterization of ultramicroelectrodes 

 

The sealing of the glass mantle was checked utilizing steady-state voltammograms in a mediator of 1.5 mM 

FcMeOH and 0.2 M KNO3 in a three-electrode configuration with a Pt wire as counter electrode and an 

Ag/AgCl/3M KCl reference electrode. Potential controlled cycling was carried out between 0 V and 0.5 V 

with a scan rate of 50 mV/s. A dense sealing is expressed by reproducible cycles and almost no offset 

between the forward and the reverse scan. The characteristic sizes of the UME were determined from 

negative feedback curves towards a planar Teflon surface in the previously described setup. The probe 

scan curves were recorded at a scan rate of 2.5 µm/s (zincr = 0.5 µm, tincr = 0.2 s) at Etip = 0.45 V. The 

measured curves can be correlated with the analytical expression of eq. 21, whereby the determination of 

rtip and the RG value can be achieved with a software based numerical method. However, since the 

distance between the tip and the substrate d is unknown during probe approach, a correlation factor z’ 

between d and step length z is required for fitting as can be seen in Fig. 3.2 a). Consequently, using this 

correlation factor z’, eq. 20 is modified to eq. 44.    

 

L =
d

rtip
=
z′ − z

rtip
 (44) 
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Utilizing eq. 21, the measured tip current IT can be expressed independently of L: 

 

IT =
(

 
 2.08

(
rg
rtip
)
0.358 ∙ (

z′ − z
rtip

−
0.145

(
rg
rtip
)
)+ 1.585

)

 
 
∙ IT,∞

2.08

(
rg
rtip
)
0.358 ∙ (

z′ − z
rtip

+ 0.0023 ∙ (
rg
rtip
)) + 1.57 +

ln((
rg
rtip
))

(
z′ − z
rtip

)
+

2

π ∙ (
rg
rtip
)
∙ ln(1 +

π ∙ (
rg
rtip
)

2 ∙ (
z′ − z
rtip

)
)

 (45) 

 

With the help of a nonlinear fitting algorithm, such as the Levenberg Marquardt iteration algorithm the 

characteristic paramaters rtip, rg, IT,∞and z’ can be determined simultaneously from one single 

measurement curve. In this thesis, the software Origin 2017 was selected for computation. The software-

based characterization matches the optical inspection well as can be seen by comparing the results of  

Fig 3.2 a) and Fig. 3.2 c). 

 

 

Figure 3.2: Determination of characteristic sizes of an ultramicroelectrode. (a) Schematic diagram of the 

relationship between correlation factor z’, tip-to-substrate distance d and step length z, (b) characterization 

of an UME by fitting of eq. 45 into raw data of a probe approach curve (rtip = 13.3 µm, RG = 18.3) and (c) 

characterization of the same UME with a microscope image (rtip = 13.7 µm, RG = 18.5).  
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3.5 Multipurpose cell 

 

A special cell for thin-film materials on silicon substrates was developed for electrochemical surface 

characterization and surface modification studies presented in this work. Accordingly, the electrical 

connection had to be located directly on the thin film, due to the fact that silicon is a semiconductor. 

Furthermore, the requirements listed below should also be fulfilled: 

 Defined exposed area 

 Homogenous current and potential distribution across exposed area with negligible ohmic drop 

 Simple wafer specimen transfer without further preparation steps 

 No contact of the electrical connection points of the cell with the solution 

 Suitable for various applications 

Based on these requirements, a special mounting platform for wafer-based samples was developed and 

constructed. In the following, this platform is referred to as multipurpose cell. A schematic illustration of 

this multipurpose cell is depicted in Fig. 3.3.  

 

 

Figure 3.3: Schematic representation of the multipurpose cell. (a) frontside, (b) backside without back plate 

and (c) backside with sealed wafer specimen.  

 

Fig. 3.3 a) shows that the multipurpose cell consists of a structured metal plate with a small circular 

opening (r = 4.26 mm) inserted and sealed into a peek body. The electrical contact and a clamping screw 

for attachment of the cell are located on the top side. The frontside of the metal plate is coated with a 
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polymeric Teflon-like coating in order to inhibit the interaction of the surface with the surrounding 

solution. The metal plate has a cavity where a sample of size 4 cm x 4 cm can be placed as it can be seen 

in Fig 3.3 b). This silicon wafer specimen is placed in the multipurpose cell from the backside, with the thin 

film pointing in the direction of the metal plate to ensure electrical contact. Sample attachment and sealing 

is carried out simultaneously using two silicon sealing rings, a back plate and 8 PEEK screws. The described 

mounting procedure for the silicon specimen is vividly illustrated and explained in Fig. 3.4. As shown in  

Fig. 3.4 d), the thin film is only exposed to the solution in the circular opening of the metal plate. The 

presented multipurpose cell was the basis for all experiments carried out in this work. The obtained results 

are explained and discussed in the following chapter.  

 

 

Figure 3.4: Mounting steps of thin film materials on a silicon specimen in the multipurpose cell. (a) Cell 

without sample, (b) silicon specimen is placed into the cavity of the metal plate, (c) silicon sealing rings are 

placed above the wafer specimen and on the sealing section of the PEEK plate and (d) wafer specimen is 

fixed and sealed by a back plate and 8 peek screws (left backside, right cross-section). 
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Abstract 

In this report a versatile experimental concept for electrochemical deposition and subsequent surface 

characterization studies is presented. This concept can be utilized to perform semiconductor plating 

processes at laboratory scale followed by scanning electrochemical microscopy (SECM). The same sample 

holder used for electroplating experiments could be integrated into the SECM instrument. Conductive 

thin-film barrier materials were deposited on planar silicon wafers. The substrate samples were fixed in 

the multipurpose sample holder ensuring a large electrical contact area to minimize ohmic drop across the 

sample surface with a small circular area of the substrate material of 16 mm2 exposed to electrolyte 

solution. In order to investigate the capabilities of the electrochemical cell configuration, a potentiostatic 

copper deposition on ruthenium was carried out. Thus, information on film coalescences, grainsize and 

growth mode could be derived. SECM was used to study the effect of biasing during probe approach curves 

on a titanium surface. Furthermore, microstructured copper layers were imaged using ferrocenemethanol 

(FcMeOH) as mediator. The results show that biasing the substrate is essential for nondestructive and 
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interaction-free measurements of semiprecious thin-film materials and copper structures, if FcMeOH is 

used as electrochemical mediator. 

 

4.1.1 Introduction 

 

Copper (Cu) plating plays an essential role in the semiconductor industry. The Cu metallization on wafer 

level is usually done by electrochemical deposition from an acidic copper electrolyte containing various 

additives on a Cu seed layer. The Cu seed layer, commonly deposited by physical vapor deposition (PVD), 

atomic layer deposition (ALD) or chemical vapor deposition (CVD), acts as the starting layer for the 

electrolytic deposition due to its good conductivity. In order to prevent the diffusion of the deposited Cu 

into the dielectric, a thin barrier layer of tantalum (Ta), tantalum nitride (TaN), titanium nitride (TiN) or 

tungsten nitride (WN) is deposited prior to the Cu seed layer formation [1]. As feature sizes continue to 

shrink, the deposition of a thin conformal and void-free Cu seed layer in the trenches and vias is 

challenging. Hence, new approaches are investigated in order to deposit the Cu metallization layer directly 

onto the barrier material like ruthenium (Ru) [2–5], TaN [6, 7], TiN [8–10], tungsten nitride (W2N) [11], 

osmium (Os) [12] or iridium (Ir) [13]. Ru based barriers are the most promising materials for direct plating 

due to their good conductivity and strong adhesion of the electrodeposited Cu layer [14]. Furthermore the 

Cu deposition from a standard acidic Cu plating bath is possible which is advantageous in terms of process 

integration in semiconductor industry on wafer scale [4, 15]. In order to study the nucleation and the 

growth of these directly plated Cu layers, special plating equipment with high laminar agitation is needed 

to simulate the wafer scale process on a miniaturized laboratory level. For deposition experiments a front 

side contacting is required since the Cu is deposited on the metallized silicon substrate surface. Hence, an 

areal electrical contact is advantageous in order to reduce the ohmic drop associated with the thin-film 

layers on the silicon surface. Ohmic drop effects on thin-film substrates can lead to varying results on 

different locations of the sample [2, 7]. The above-mentioned requirements should be feasible without 

any sample preparation in order to prevent the disruption of a subsequent process step, for example an 

annealing process or the deposition of a passivation layer. In addition, it should be possible to obtain time-

resolved information during deposition [16] and to couple the deposition cell with different devices in 

order to examine the sample surface. Scanning electrochemical microscopy (SECM), for example has 

proven to be a promising electroanalytical tool for the application in semiconductor industry due to the 

possibilities to study not only the nucleation [17], corrosion [18–20] and dissolution of metals [21], but 
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also the chemical stability of inhibitor films [22–28]. In this paper we introduce a versatile experimental 

concept for electrochemical deposition which can be coupled to SECM and other characterization 

techniques. First results of electrochemical nucleation studies and SECM investigations with commonly 

used semiconductor materials are presented. 

 

4.1.2 Experimental 

 

4.1.2.1 Reagents and Materials 

 

All experiments were performed using 4 x 4 cm² silicon wafer specimens with a thermally grown silicon 

oxide (SiO2). For copper nucleation experiments and SECM measurements thin layers of Ru (50 nm, PVD), 

Ti (50 nm, PVD), SiN (50 nm, CVD) and Cu (300 nm with 50 nm TiW adhesion layer, PVD) were deposited 

on these substrates. For SECM imaging experiments structures of a chemically polished dual damascene 

metallization layer were chosen. Thus, the Cu structures are embedded planar into a SiO2 matrix with a 

very smooth surface. This enables the comparison of SECM based measurements with microscope images 

taken with a LEXT OLS4000 3D laser measuring microscope (Olympus, Tokyo, Japan). For electrochemical 

deposition studies an electrolyte consisting of 0.63 M CuSO4, 0.3 M H2SO4, and 1.4 mM HCl with pH < 1 

was used. The specified electrolyte is commonly known as virgin make up solution in semiconductor 

application and is subsequently denoted as VMS [29]. No further additives were added to this bath 

composition. SECM experiments were performed with a mediator consisting of 1.5 mM 

ferrocenemethanol (99%, ABCR, Karlsruhe, Germany) and 0.2 M KNO3 (analytical grade, Merck, 

Darmstadt, Germany). The aqueous solution was prepared with ultrapure water with a resistivity higher 

than 18 MΩ/cm. All potentials of the electrochemical deposition experiments as well as the SECM studies 

refer to an Ag/AgCl/3 M KCl reference electrode. The ultramicroelectrodes were fabricated using a 25 µm 

Pt-wire (99.99%, Goodfellow, Huntingdon, England) and a soda-lime glass capillary (Technische Glaswerke 

Illmenau, Illmenau, Germany) following a previously described protocol [30]. The Pt wires were sharpened 

with the method of Zhang et al. [31] and were sealed and polished with the procedure adapted from Lee 

et al. [32]. The electrode dimensions were determined afterwards from steady-state voltammograms and 

negative feedback approach curves on a Teflon surface for the imaging experiments with SECM. 
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4.1.2.2 Sample holder and sample preparation 

 

The sample holder for silicon wafer based specimen was developed and adapted according to previous 

reports [8, 33, 34]. The mounting device enables the areal electrical contact of a thin film material 

deposited on a semiconductor substrate with an exposed circular opening (diameter d = 4.5 mm). Thus, in 

comparison to a single point electrical contact, the ohmic drop across the surface is reduced, leading to a 

more homogenous potential and current distribution of the exposed surface area. This enables a well-

controlled electrochemical deposition on the active electrode surface. In order to inhibit any contact of 

the electrical connection with the solution, the surface of the holder is coated with a passivating polymeric 

film. The 4 x 4 cm² silicon wafer specimen with the deposited thin layer is placed from the backside into 

the sample holder with the surface of interest pressed onto the electrical contact plate with the circular 

opening. The samples are subsequently sealed and fixed with a back plate and 8 PEEK screws in order to 

prevent any contact of the solution except of the exposed area. After this procedure no further sample 

preparation is required. The sample holder with the sealed silicon wafer specimen can be transferred 

between the electroplating cell and the SECM system without any risk of damaging the thin film and 

electrodeposited structures due to further sample preparation steps. Furthermore, no additional process 

step in SECM integration is necessary since a customized mounting platform was specially developed for 

this sample holder. 

 

4.1.2.3 Electroplating experiments 

 

The electrochemical experiments were performed using a modified Smart Cell 1000w (Yamamoto MS, 

Tokyo, Japan) laboratory plating cell. A schematic drawing of the plating setup is shown in Fig. 4.1a. The 

convection inside the deposition cell is generated by the overflow function through stirring with a 

magnetic stirrer. It can be further increased with a rocking paddle positioned close to the cathode surface. 

Furthermore, in order to prevent the interaction of the additives with the counter electrode, the anodic 

compartment can be separated from the plating bath utilizing a Nafion® N424 membrane. A three 

electrode setup is used for deposition experiments consisting of the sample holder, an Ag/AgCl/3 M KCl 

reference electrode and a phosphorous Cu plate as counter electrode. The electroplating experiments 

were performed with a potentiostat Autolab PGST302N (Metrohm, Herisau, Switzerland). The additive-

free VMS electrolyte was used as received. A separation of the anode by a Nafion® membrane was not 
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required. It is assumed that no passivation layer is formed under the applied conditions and that no 

pretreatment is required as the measured open circuit potential of the Ru coated specimen in the plating 

bath is -2 mV. The deposition potential for nucleation studies was derived from a preliminary test with 

linear sweep voltammetry starting at the open circuit potential and sweeping with a scan rate of 50 mV/s 

to a final potential of -0.7 V. A suitable potential with a slow Cu deposition rate was found at -0.02 V. 

Potentiostatic Cu deposition at fixed times of 0.5 s, 1.0 s, 2.5 s, 3.5 s, 5.0 s, and 10 s was carried out and 

Cu nucleation was examined with a scanning electron microscope Zeiss Gemini Ultra 55 (Zeiss, 

Oberkochen, Germany) after carefully cleaning of the samples with isopropanol and drying them with 

nitrogen. 

 

4.1.2.4 Scanning electrochemical microscopy studies 

 

For SECM studies the sample holder was used in combination with a commercially available SECM,  

CH Instruments CHI920C (Austin, Texas) in a homemade Faraday cage which is placed on a damped 

working bench. The sample holder is horizontally placed and fixed on a customized mounting platform for 

levelling in the SECM setup without any further preparation step of the integrated wafer specimens. The 

measuring cell for SECM studies consists of a 4 mL homemade Teflon cell placed on top of the exposed 

sample area. Separate drillings are integrated to keep for the reference- and counter electrodes in place. 

The bottom of the Teflon cell body which is in contact with the sample holder is coated with a thin silicone 

film preventing leakage of internal solution. A schematic drawing is depicted in Fig. 1b. The holder with 

the wafer specimen was leveled with the help of an integrated circular level prior to each experiment. The 

SECM was operated in a four electrode configuration with a Pt-wire as counter-, the UME as probe, the 

sample holder as substrate- and an Ag/AgCl/3 M KCl as reference electrode. A potential of 0.5 V was 

applied to the UME for the probe approach curves (PACs). They were recorded with an approach rate of 

0.5 µm/s (20 nm/0.04 s) without and with biasing (-0.5 V) of the substrate, respectively. Surface imaging 

was performed at a scan speed of 5 µm/s (1 µm/0.2 s) with a tip-to-surface distance corresponding to a 

current increase between 130% and 140% compared to the measured current in bulk solution. 
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Figure 4.1: Schematic drawing of (a) three-electrode electrodeposition setup. The anodic compartment can 

be separated with a membrane from the cathodic one to prevent interaction of additives; convection is 

generated by overflow through magnetic stirring and can be furthermore increased with a rocking paddle 

near the cathode surface and (b) SECM with 4-electrode setup with detailed view of shield type sample 

holder with the passivating polymeric coating (green) and the Teflon cell (white) placed above the holder 

using a PDMS sealing film (yellow). 

 

4.1.3 Result and discussion 

 

4.1.3.1 Application of the electrodeposition cell to nucleation studies of copper on silicon samples 

with thin layers of ruthenium 

 

In order to characterize the performance of electroplating experiments based on the use of the shield type 

substrate holder, the nucleation of Cu on Ru was chosen as a model system as it was previously studied by 

different working groups [2, 3]. The copper deposition and surface examination was carried out as 

described in the experimental section. Fig. 4.2 shows that Cu nucleation on the untreated Ru surface is 

characterized by a Volmer-Webber (3D) island growth.  
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Figure 4.2: Tilted view (angle 70°) of deposited Cu after (a) 1 s and (b) 2.5 s deposition time at -0.02 V vs 

Ag/AgCl/3 M KCl. Three dimensional grain growth and coalescence can be observed. No closed Cu layer is 

formed as there are still exposed surface regions of ruthenium. 

 

At the beginning of the deposition Cu nuclei of 100 nm in diameter have emerged, which subsequently 

grew showing a hemispherical shape. During the grain growth further Cu seeds are continuously formed 

until a closed Cu layer has developed by coalescence after about 5 seconds deposition time under the 

applied experimental conditions. After coalescence, the deposition of the Cu layer is dominated by a two 

dimensional layer growth (Fig. 4.3). Thus, the growth of Cu nuclei can be described as a mixed form of 

instantaneous and progressive growth. The adhesion of the Cu layer on the sputtered Ru was examined 

performing a tape test with the sample after 10 seconds deposition time. No peeling was observed which 

is in good agreement with comparable protocols described in literature [14]. The characteristics of the 

copper deposition were very uniform and homogeneous across the exposed electrode area of the wafer 

specimen fixed in the novel sample holder. 
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Figure 4.3: Potentiostatic deposition at -0.02 V vs Ag/AgCl/3 M KCl of Cu from VMS electrolyte on thin 

layers of Ru on silicon at fixed deposition times. Coalescence of the Cu layer can be observed. All images 

have the same magnification. 

 

4.1.3.2 Scanning electrochemical microscopy - approach curves on thin layer films 

 

In order to examine the versatility of the experimental setup various thin layer materials typically used in 

semiconductor manufacturing were chosen for SECM studies. Thereby, Cu und Ti were used as conductive 

and SiN as non-conductive thin layer materials for the recording of PACs. The parameters for the PACs can 

be found in the experimental section. The probe dimensions of the UME were determined from the 

negative feedback of the approach curve on SiN in 1.5 mM FcMeOH solution based on the theoretical 

negative feedback model developed by Galceran et al. [35]. In this study the tip radius rtip of the platinum 

microdisk and the RG value (ratio between rtip and the radius of glass mantle) were calculated by fitting 

the theoretical negative feedback into the measured feedback curve. The determined electrode 

dimensions (rtip = 14 µm and RG = 5.3) were subsequently used to calculate the positive feedback with a 

parameter setting of RG = 5.1 according to [36]. Since an interaction of the unbiased metal surfaces and 

the mediator is possible [37] the Cu and Ti substrates were biased at -0.5 V in order to prevent a local 

surface modification of the thin layer material. Fig. 4.4 shows that the theoretically calculated positive 
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feedback is in good agreement with the normalized approach curves on the biased semiprecious metals. 

Since no difference between the positive approach curves and the theoretical model was found, it is 

assumed that no “pure material contrast” between Cu and Ti will be observable in the SECM imaging 

mode. In order to investigate the interaction of the mediator and the metal interface, a second approach 

curve on the same spot of the Ti without biasing was recorded after the tip was retracted to a tip-to-

substrate distance of 350 µm. A weak positive feedback response was recorded during the initial period 

of the approach procedure (see Fig. 4.4b) which then turns to a negative feedback as the tip-to-substrate 

distance reaches the tip dimensions of d = 20 µm (insert of Fig. 4.4b). This behavior can be explained by 

the formation of an insulating titanium oxide (TiO2) layer, which is the result of the local oxidation of the 

Ti surface by the oxidized FcMeOH (FcMeOH+) species generated at the tip. The oxidation of the surface is 

thereby triggered locally as the tip-to-substrate distance reaches tip dimensions and the local surface 

potential is shifted to a more positive potential. Alternatively, the change of the feedback behavior could 

also be explained by the presence of an ensemble of active regions dispersed on a conductive but non-

active surface. In addition, effects of kinetically controlled regeneration of FcMeOH+ at the substrate might 

play a role. 

 

 

Figure 4.4: Approach curves with an ultramicroelectrode (rtip=14 µm, RG=5.3) moved towards the surface 

of thin layers of Cu, SiN, and Ti on silicon substrates. Experimental conditions: mediator solution, 1.5 mM 

ferrocenemethanol/0.2 M KNO3 on (a) unbiased SiN () and biased Cu () at -0.5 V vs Ag/AgCl/3 M KCl 

and (b) on biased () -0.5 V and unbiased () Ti surface. The theoretical (positive and negative) feedback 

responses are plotted as dashed curves. Insert graphic in Figure b shows the approach curve for an unbiased 

Ti surface without current normalization. 
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4.1.3.3 Scanning electrochemical microscopy - imaging of structured thin copper layer 

 

Imaging experiments were performed as described in the experimental section with a sample of a dual 

damascene metallization layer in order to test the applicability of SECM as a non-destructive 

electrochemical characterization method on microstructured samples. It is well known from literature that 

surface etching of the thin film of copper by the tip-generated oxidized species will occur at open circuit 

potential, however, for the use of other mediator systems than in the present work [37, 38]. Thus, the 

structured dual damascene metallization layer was imaged without and with biasing at -0.5 V, in order to 

study the impact of surface etching during SECM measurements. Microscopic images of the scanned area 

were taken after the measurements to compare them with the SECM images. The surface imaging at a tip-

to-substrate distance corresponding to 130% current increase is illustrated in Fig. 4.5. From the SECM 

measurement shown in Fig. 4.5b, it can be observed that the mediator is regenerated at the Cu surface 

leading to a positive feedback on the Cu structures. As expected the Cu surface was locally etched during 

SECM measurements by FcMeOH+ species generated at the ultramicroelectrode tip and the microstructure 

was partially destroyed exposing the silicon interface (Figure 5a).  

 

 

Figure 4.5: (a) Optical micrograph of a Cu microstructure after imaging with SECM without biasing of the 

sample, (b) SECM image in feedback mode using ferrocenemethanol as mediator and an 

ultramicroelectrode with rtip = 2.5 µm, RG = 13, IT/IT,∞ = 130%. Cu structures show a positive feedback in 

contrast to the negative feedback of SiO2. 

 

In contrast to the unbiased sample the biased surface with an applied potential of -0.5 V did not show any 

damage during SECM imaging. Fig. 6a illustrates an optical micrograph after SECM imaging of a biased 

sample and Fig. 6b shows a well-defined SECM image recorded at a distance corresponding to a current 
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increase of 140%. The imaged surface of the embedded copper structures in the SiO2 matrix as obtained 

in the SECM measurements was in good agreement with the microscopic picture (Figure 6b). 

 

 

Figure 4.6(a) Optical micrograph of a Cu structure after SECM imaging with biasing of the substrate at -

0.5 V vs Ag/AgCl /3 M KCl. (b) SECM image in feedback mode using ferrocenemethanol as mediator and an 

ultramicroelectrode with rtip = 2.0 µm, RG = 22, IT/IT,∞ = 140%, the structured Cu substrate was biased at  

-0.5 V. 

 

With the biased sample a stable positive feedback behavior was found over copper structures and etching 

of copper could be avoided. In contrast to optical microscopy SECM has the potential to indicate surface 

deactivation due to adsorbed films. It can be concluded that no insulating film has formed on the copper 

structures since no change in surface reactivity has been observed in the imaged area. On the other hand, 

the regeneration of mediator at the insulating SiO2 matrix is not possible leading to a decrease in current 

over the quadratic structures (negative feedback). The resolution of the square geometry of the SiO2 

surface was limited due to diffusive broadening but could be improved by using probes with smaller tip 

radii. 

 

4.1.4 Conclusion 

 

A versatile experimental concept for electrochemical deposition studies is presented. The multipurpose 

cell configuration can be utilized to perform semiconductor plating processes at laboratory scale as well 

as film characterizations with SECM or other techniques. The electrochemical cell enabled the study of 

nucleation phenomena of Cu on a Ru thin film on a silicon substrate whereas the deposition parameters 

and the convection inside the cell could be varied in a broad range without any complex sample 
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preparation. The sample holder of the electrodeposition cell can easily be implemented in a 

correspondingly modified SECM cell configuration for further surface characterization. The SECM studies 

presented in this work have shown that in the case of semi-precious metals and using FcMeOH as mediator 

it is important to bias the substrate. Applying a suitable potential to the substrate surface prevents the 

interaction of the oxidized mediator species generated at the UME tip with the substrate material by 

inhibiting the local oxide formation and etching. The presented experimental concept facilitates both, a 

versatile operation of electrodeposition experiments using relevant wafer specimen from the 

semiconductor industry and a straightforward complementary characterization of electrodeposited films 

by SECM. 
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4.2 Probe approach curves on barrier films on semiconductor substrates 

 

4.2.1 Introduction 

 

Since the introduction of the damascene process by IBM in 1997, copper (Cu) plating has become an 

integral part for the production of metallization layers in semiconductor industry. These conductive layers 

are formed by electrodeposition from an acidic Cu electrolyte containing various organic additives on a 

previously deposited Cu seed layer as starting layer. The seed layer is usually deposited in combination 

with a thin barrier layer by physical vapor deposition (PVD), chemical vapor deposition (CVD) or atomic 

layer deposition (ALD). This barrier layer of tantalum (Ta), tantalum nitride (TaN), tungsten nitride (WxN) 

or titanium nitride (TiN) has the protective function of inhibiting the Cu diffusion into the surrounding 

dielectric and oxides [1]. With the continuous process of miniaturization of feature sizes, it is more and 

more difficult to obtain a defect-free and homogenous seed layer in trenches or vias with the 

aforementioned techniques [2]. Hence, new methods are developed to address this topic. One promising 

approach is the direct electrodeposition of Cu on the barrier thin film. In order to gain insight into the early 

stages of this of electrocrystallization process, current transients are evaluated [3]. The disadvantage of 

this procedure is that only areal electrochemical information of the growth process can be obtained. In 

this context, it was successfully demonstrated that scanning electrochemical microscopy (SECM) is a 

promising electroanalytical tool for the local characterization of semiconductor industry relevant materials 

[4]. In order to assess the capability of this technique for such an application, suitable thin film barrier 

materials for direct plating and commonly used substrates in SECM are being examined. First results on 

electrochemical surface characterization with different mediator systems in conventional feedback mode 

are presented.  
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4.2.2 Experimental 

 

4.2.2.1 Reagents and materials  

 

All the experiments were carried out using 4 x 4 cm2 silicon wafer specimen with a thermal grown oxide 

(SiO2). Thin films of Pt (50 nm with 30 nm Ti adhesion layer, PVD), Ru (50 nm, PVD), TaN (50 nm, PVD), 

W (50 nm, CVD), Cu (300 nm with 50 nm TiW adhesion layer, PVD) and TiN (50 nm, PVD) were deposited 

on the substrates. SECM measurements were performed with three different mediators systems:  

1.5 mM ferrocenemethanol (FcMeOH, 99%, ABCR, Karlsruhe, Germany) with 0.2 M potassium nitrate 

(KNO3, Analytical grade, Merck, Darmstadt, Germany), 1 mM hexaammineruthenium(III) chloride 

(Ru(NH3)6Cl3, 98%, Sigma-Aldrich, St. Louis, Missouri, USA) with 0.2 M KNO3, and 1.5 mM potassium 

octacyanotungstate(IV) dihydrate ((K4W(CN)8)*2H2O, self-synthesis, University Regensburg, Germany) 

with 0.2 M KNO3. The aqueous solutions were prepared using deaerated ultrapure water with a 

resistivity > 18 MΩ∙cm. All experimental potentials refer to an Ag/AgCl/3 M KCl reference electrode. The 

ultramicroelectrodes (UME) with an electrode diameter of 25 µm and RG = 10 were fabricated from Pt 

wires with the same size (99.99%, Goodfellow, Huntingdon, England) and soda lime glass capillaries 

following the method described in [5]. Electrode dimensions were determined from negative feedback 

curves towards a glass slide utilizing the theoretical feedback model of [6].  

 

4.2.2.2 Recording of approach curves 

 

SECM studies were performed with a special multipurpose cell for wafer-based samples with a Teflon cup 

placed above its opening in combination with a commercial SECM CH Instruments CHI920C (Austin, Texas). 

The measurements were carried out in a four-electrode configuration with the UME as probe, an 

Ag/AgCl/3 M KCl as reference electrode, a Pt wire as counter electrode and the multipurpose cell 

containing the thin film as substrate electrode as published in [4]. The setup was placed in a laboratory 

constructed Faraday cage. Before each measurement session, the substrate electrode was levelled with 

an integrated circular bubble. For the acquisition of reproducible approach curves, a defined scan length 

was set by carefully placing the UME on the substrate and retracting the UME by 400 µm in z-direction 

before placing the mediator in the cell. Since the interaction between the mediator and the surface of the 

thin films on the silicon wafer specimen was unknown, the approach curves were recorded with a constant 
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scan rate of 2.5 µm/s (zincr = 0.5 µm, tincr = 0.2 s). All measurements were carried out without substrate 

biasing with Etip = 0.45 V in FcMeOH mediator, Etip = 0.5 V in Ru(NH3)6Cl3 mediator and Etip = -0.2 V in 

(K4W(CN)8)*2H2O mediator. Each measurement was carried out with a new substrate in order to reduce 

the risk of a mediator-based modification of the surface influencing the measurement results and was 

repeated two times. The tip-to-substrate distance was calculated from the signal change arising from the 

contact of the tip with the substrate.  

 

4.2.3 Result and discussion 

 

Approach curves towards thin films of Pt, Ru, TaN, W, Cu, TiW, TiN and SiO2 thin films on Si wafer specimen 

were recorded in FcMeOH, Ru(NH3)6Cl3 and (K4W(CN)8)*2H2O mediator. These three mediators were 

selected due to their different interaction with the surface. During this process, the tip-generated oxidized 

species of FcMeOH and (K4W(CN)8)*2H2O are reduced and the tip-generated reduced species of 

Ru(NH3)6Cl3 is oxidized on the conductive thin film surface. The normalized approach curves and 

theoretical negative [6] and positive [7] feedback curve (rtip = 12.5 µm, RG = 10) are plotted in Fig. 4.7.  
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Figure 4.7: Approach curves towards the surface of various thin films on a Si substrate recorded with an 

ultramicroelectrode (rtip = 12.5 µm, RG = 10) using different mediator solutions. Thin films: Pt (red), Ru 

(green), TaN (blue), W (pale blue), Cu (orange), TiW (dark green), TiN (pink) and SiO2 (cobalt). Experimental 

conditions: (a) 1.5 mM FcMeOH/0.2 M KNO3 (Etip = 0.45 V), (b) 1.5 mM K4[W(CN)8]/0.2 M KNO3 

(Etip = 0.5 V) and (c) 1 mM Ru(NH3)6Cl3/0.2 M KNO3 (Etip = -0.2 V) The theoretical (positive and negative) 

feedback are plotted in black.  

 

As it is observable from the approach curves, the obtained feedback responses on the thin film materials 

differ significantly between the utilized mediators. In order to be able to distinguish between the 

electrochemical information and measuring-related surface interactions in feedback mode, a systematic 

classification of the measured current responses was performed. On this occasion, the current curves are 

categorized into positive (pos) and negative (neg) feedback responses for current increase and current 

decrease towards the surface, respectively. Furthermore, a classification into diffusion-controlled (dif) and 

kinetically controlled (kin) reaction regimes was carried out. Here, a kinetically controlled interaction of 

the mediator is given, when the measured approach curve is deviating from the calculated approach curve 
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for diffusion-controlled feedback. The classification is illustrated in table 4.1. The results will be discussed 

separately for each thin film material.  

Table 4.1: Categorization of measured current responses on various thin films for different mediators. The 

obtained feedback of the FcMeOH, K3[W(CN)8] and Ru(NH3)6Cl3 mediators on Pt, Ru, TaN, W, Cu, TiW, TiN 

and SiO2 of Fig. 4.7 were classified into positive (pos) or negative (neg) feedback and were divided in 

diffusion (dif) or kinetically (kin) controlled reaction regime. 

Material  FcMeOH K4[W(CN)8] Ru(NH3)6Cl3 

Pt pos, dif pos, dif pos, dif 

Ru pos, dif pos, dif pos, dif 

TaN neg, dif neg, dif pos, dif 

W pos, dif pos, dif pos, dif 

Cu pos, dif pos, kin pos, dif 

TiW neg, kin neg, kin pos, dif 

TiN pos, dif pos, kin pos, dif 

SiO2 neg, dif neg, dif neg, dif 

 

Platinum and silicone oxide  

Pt and SiO2 thin films were chosen as conductive and isolating reference materials in this study. 

Accordingly, the approach curves match the calculated positive and negative feedback for all mediators 

due to the excellent inert properties of both materials.  

 

Ruthenium  

The obtained current responses on Ru thin film are in good correspondence with the theoretically 

calculated positive feedback independent of the utilized mediator. The formation of a native conductive 

oxide RuO [8,9] does not have an influence on the observed feedback. Consequently, it can be said that 

the regeneration of the mediator at the surface is diffusion controlled on thin film Ru.  
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Tantalum nitride 

Comparing the current responses between the mediators on TaN thin film in Table 4.1, it is observable 

that a diffusion controlled negative feedback is achieved for FcMeOH and K4[W(CN)8]. This measured 

feedback response does not match with the high conductivity of TaN films. The observed effect can be 

attributed to the formation of a native insulating oxide Ta2O5 in aqueous solution [10,11]. Accordingly, the 

mediators cannot be regenerated at the substrate surface, which leads to the observed negative feedback. 

Contrary to FcMeOH and K4[W(CN)8], a diffusion controlled positive feedback is obtained for Ru(NH3)6Cl3. 

In this case, the tip-generated reduced species can be regenerated by oxidation at the substrate due to 

the local reduction of the formed Ta2O5 layer. 

 

Tungsten  

The feedback responses on W are in good correspondence with the calculated theoretical positive 

feedback independent of the active mediator species. The formation of a native WO2 oxide in aqueous 

solution in the pH range of 2 to 6 [9,12] at open circuit potential has no impact on the measurement due 

to its good conductivity. As a result, the mediators can be regenerated at the substrate interface in contrast 

to the case of the insulating Ta2O5 surface on TaN thin films. 

 

Copper 

The current responses measured in FcMeOH and Ru(NH3)6Cl3 on thin film Cu are in good correspondence 

with the theoretical positive feedback under diffusion control. In this process, it cannot be completely 

ruled out that the Cu surface may be locally etched by the regeneration of the tip-generated oxidized 

FcMeOH species as already observed in a previous work [4]. In contrast, the measured current for 

K3[W(CN)8] is much larger than predicted by the theoretical model and does not fit to a kinetically or 

diffusion-controlled reaction regime. This deviation already starts at a distance of L = 20, where no 

interaction of the mediator with the surface is expected by the theoretical model as shown in Fig. 4.8 a). 

It can be noted that this effect is associated with a strong areal corrosion of the Cu surface which is 

depicted in the inlet of Fig. 4.8 b). This effect is not fully understood and a more focused study concerning 

this topic is required. Therefore, it is not recommended to use K4[W(CN)8] for imaging of Cu containing 

surfaces at open circuit potential due to its strong oxidative properties.  
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Figure 4.8: (a) Normalized approach curve in K3[W(CN)8 towards thin film of Cu on a silicon substrate. 

Experimental parameters: Etip = 0.5 V, Esubstrate = OCP, scan rate 0.5 µm/s (rtip = 12.5 µm, RG = 10), mediator: 

1.5 mM K4[W(CN)8]/0.2 M KNO3. (b) Embedded graph: Cu thin film after measurement. Strong corrosion of 

the mediator exposed Cu surface at the center of the sample.  

 

Titanium tungsten 

The approach curves towards the conductive TiW thin films show a similar behavior as the curves recorded 

towards the TaN thin film. Again, negative feedback is obtained with FcMeOH and K4[W(CN)8] and a 

positive feedback with Ru(NH3)6Cl3. The only difference between the results lies in the fact that the 

negative current responses are slightly differing from the theoretical calculated curves for TiW thin films. 

Accordingly, it can be assumed that the regeneration of the active species of FcMeOH and K3[W(CN)8] 

mediator at the TiW surface are under kinetical control. This observed effect can be explained with the 

help of Pourbaix-diagrams for Ti [9,13,14]. Due to the formation of a semiconductive TiO2 layer in aqueous 

solution, the electron transfer is partially hindered causing the effect observed in the negative feedback 

curves [15]. The positive feedback for Ru(NH3)6Cl3 follows the same explanation as in the case of the TaN 

thin film.  
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Titanium nitride 

The obtained approach curves with FcMeOH and Ru(NH3)6Cl3 towards the TiN surface are consistent with 

the theoretical calculation for the positive feedback. Therefore, it can be said that the regeneration of 

these mediators is diffusion controlled without any interfering influences of an oxide formation in aqueous 

solution. In contrast, the current response obtained with K4[W(CN)8] mediator deviates significantly from 

the theoretical predictions. This effect can be explained by using the previously obtained results for thin 

film Cu. In this context, the presented investigations have shown that K3[W(CN)8] has strong oxidative 

properties that cause the surface of Cu to corrode. Consequently, it is possible that the surface of TiN may 

become oxidized in K3[W(CN)8] mediator [14]. As in the case of TiW thin film, the formation of TiO2 is 

limiting the electron transfer. As a result, the regeneration of the active mediator species is under kinetic 

control at the substrate interface [15].  

 

4.2.4 Conclusion 

 

Electrochemical surface characterization of relevant thin film materials in semiconductor industry in 

classical feedback mode is presented. Based on the obtained results, it can be concluded that surface oxide 

formation in aqueous solution has a significant impact on the current response obtained in feedback 

mode. Additionally, it must be considered that a mediator-based modification of the surface can occur 

during measurements which is expressed by the formation of a metal oxide or surface corrosion. 

Consequently, it is recommended to bias the semi-precious metal thin films during measurement in 

feedback mode to avoid the effects described above. After elimination of these disrupting influences, the 

regeneration of the active mediator species will be under diffusion-control.  
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Abstract 

In this paper a mediator-free scanning electrochemical microscopy (SECM) imaging concept is presented, 

which is capable of generating high electrochemical contrast and high spatial resolution between two 

conductive materials. The methodical approach is based on the hydrogen evolution reaction which shows 

potential dependent material selectivity. Various conductive thin films deposited on silicon substrates 

were studied. The investigated materials included copper, ruthenium, platinum, tantalum nitride, and 

titanium nitride. The hydrogen evolution was studied with chronoamperometry (Esubstrate = -1 V vs. 

Ag/AgCl/3 M KCl) to characterize the material selectivity of this reaction for the above listed thin films. 

SECM imaging in the substrate generation-tip collection (SG/TC) mode was carried out and applied to study 

the boundary regions of thin copper films in combination with the aforementioned thin film materials. In 
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addition, the spatial resolution of hydrogen based SG/TC SECM imaging was characterized using 

lithographically fabricated platinum/copper structures as test substrates. For comparison, the common 

feedback mode was also applied for SECM imaging of the conducting thin film combinations. It was found, 

that only the hydrogen based SG/TC mode enabled SECM imaging with clear material contrast between 

different conductive materials which was not possible in the feedback mode. 

 

4.3.1 Introduction 

 

In semiconductor manufacturing copper (Cu) based metallization is typically realized by electrochemical 

deposition from an acidic electrolyte with various additives on a Cu seed layer. This conductive seed layer 

acts as a starting layer for the electrolytic deposition and is formed by chemical vapor deposition (CVD) or 

physical vapor deposition (PVD) on a silicon substrate. A deposition of a thin barrier layer of tungsten 

nitride (WxN), titanium nitride (TiN), tantalum (Ta), or tantalum nitride (TaN) is carried out prior to the Cu 

seed coating [1] to inhibit the Cu diffusion into the surrounding dielectric. With the ongoing trend of 

downscaling feature sizes, a conformal and defect-free seed layer coating of structured surfaces is 

challenging when applying conventional methods [2,3]. Consequently, new deposition techniques are 

under evaluation for direct electroplating of the Cu metallization on barrier films like ruthenium (Ru) [4-

6], TaN [7,8], TiN [9–11], W2N [12], osmium (Os) [13] or iridium (Ir) [14]. Even though various approaches 

are investigated for direct electrochemical deposition of Cu on these barriers [15], the absence of studies 

on local electrochemical surface characterization by scanning electrochemical microscopy (SECM) of such 

conductive reactive materials is identifiable. One possible reason is the fact that the measuring mode most 

commonly used in SECM, the feedback mode, has its strength in the high local contrast between 

conductive and insulating surfaces [16–18]. This can be attributed to the measurable conductivity 

dependent surface interaction of the electrochemical active species. In this process, a signal increase is 

obtained over conductive surfaces as the species can be regenerated. Contrary, a signal decrease is 

received over insulating areas which act as blocking sites. As a consequence, this mode of operation 

reaches its limit in resolution as materials with similar conductivity are studied. Hence, a measurable 

material selective reaction is required to distinguish between the electrochemical activities of different 

conductive materials in surface characterization with SECM. One approach is the usage of the material 

selective hydrogen evolution reaction (HER) [19,20] to generate the reactive species. Furthermore, using 

such a mediator-free system is advantageous in terms of prevention of a mediator-based surface 
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interaction. HER as measurable reaction in SECM is realizable with the generation collection operation 

mode. Thereby, hydrogen can be either generated at the tip and collected at the substrate (TG/SC) [21–

25] or in converse direction (SG/TC) [26,27]. Comparing both modes, SG/TC is more promising because 

biasing the substrate on a reductive potential for hydrogen evolution is simultaneously inhibiting thin film 

corrosion and oxide formation during measurement. Concerning this topic, it was already shown that HER 

SG/TC is an applicable method for electrochemical surface characterization at very high hydrogen 

evolution rates with forced convection applied to the system [28]. In this paper, we introduce an imaging 

concept based on HER SG/TC mode, which is capable of generating high contrast between different 

conductive thin film materials on a silicon substrate. First results on material selectivity, electrochemical 

contrast and spatial resolution for semiconductor manufacturing relevant materials are presented. 

 

4.3.2 Experimental 

 

4.3.2.1 Reagents and materials 

 

For all experiments 4 x 3 cm² silicon wafer specimen with a thermally grown oxide (SiO2) were used. Thin 

layers of TiN (50 nm, PVD), TaN (50 nm, PVD), Ru (50 nm, PVD), Pt (50 nm with 30 nm Ti adhesion layer, 

PVD) and Cu (300 nm with 50 nm TiW adhesion layer, PVD) were deposited on these substrates. 

Electrochemical Cu deposition on the above mentioned materials and the composition of the utilized 

mediators for electrochemical characterization were based on the reagents described in Table 4.2. The 

aqueous solutions were prepared using ultrapure water with a resistivity > 18 MΩ cm. 
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Table 4.2: Reagents for electroplating and electrochemical surface characterization with SECM.  

Reagent Manufacturer 

copper sulfate pentahydrate (CuSO4∙5H2O) analytical grade, Merck 

ammonium citrate ((NH4)3C6H5O7) analytical grade, VWR Chemicals 

ammonium sulfate ((NH4)2SO4) analytical grade, Merck 

ammonia (NH3) 28%, analytical grade, BASF 

sulfuric acid (H2SO4) analytical grade, Merck 

hydrochloric acid (HCl) analytical grade, Merck 

potassium hydroxide (KOH) analytical grade, Honeywell Chemicals 

ferrocenemethanol (FcMeOH) 99%, ABCR 

hexaammineruthenium(III) chloride 

(Ru(NH3)6Cl3) 
98%, Sigma-Aldrich 

potassium nitrate (KNO3) analytical grade, Merck 

 

All potentials of the electrochemical deposition as well as the SECM studies refer to an Ag/AgCl/3 M KCl 

reference electrode. The ultramicroelectrodes (UME) were fabricated from soda-lime glass capillaries and 

25 µm Pt wire (99.99%, Goodfellow, Huntingdon, England) resulting in an electrode radius of the tip of rtip 

of 12.5 µm following the procedure described in [29]. Since the ratio between the electrode radius and 

the surrounding glass mantle (RG value) has a large impact on the measurement results, the utilized UME’s 

were characterized before the investigations. The electrode dimensions were determined from negative 

feedback approach curves towards a glass slide. The UMEs used for the recording of the approach curves 

had a RG value of 10. In the case of imaging experiments, UMEs with a RG value of 2 were used.  

 

4.3.2.2 Electroplating experiments for sample preparation 

 

Electrochemical deposition of Cu on thin films of Ru, Pt, TiN, and TaN was carried out with a multipurpose 

cell as published in [30]. Using this special sample holder, the thin films on the silicon wafer specimen are 

simultaneously sealed and electrically contacted. Accordingly, only a small circular opening with a 

diameter d = 4.52 mm was exposed to the electrolyte. The electroplating experiments were performed in 

three electrode configuration consisting of the multipurpose cell, an Ag/AgCl/3 M KCl reference electrode 
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and an iridium coated Ti plate as counter electrode. Potentiostatic deposition was carried out without 

agitation in a Smart Cell 1000w (Yamamoto MS, Tokyo, Japan) using an Autolab PGST302N potentiostat 

(Metrohm, Herisau, Switzerland) and the copper electrolytes described in Table 4.3. The target Cu film 

thickness was dCu = 200 nm ± 50 nm. The thickness of the deposited film was determined using a laser 

microscope LEXT OSL400 (Olympus, Tokyo, Japan).  

Table 4.3 Composition of the electrolytes for thin film Cu electroplating based on [4,31,32,33]. 

Copper electrolyte Components pH value 

Standard acidic copper bath 

 

0.63 M CuSO4, 0.3 M H2SO4,  

1.4 mM HCl 

pH < 1 

 

Neutral complexed copper 

bath 

0.08 M CuSO4, 0.1 M (NH3)3C6H5O7 pH = 5.5 (with NH4OH) 

Alkaline copper bath 0.08 M CuSO4, 0.4 M (NH4)2SO4 pH = 10 (with NH4OH) 

 

Large area copper depositions on Ru, Pt, TiN, and TaN were performed with the multipurpose cell 

according to the following protocols. Electroplating on thin film Ru was carried out following the two-step 

procedure described in [4]. According to this process, the native oxide layer was removed at -0.3 V for 60 

s in 1.8 M H2SO4 with a subsequent deposition in the standard acidic copper bath at -0.05 V for 10 s. 

Electrochemical deposition of Cu on the Pt thin film was carried out without any further sample 

preparation at -0.3 V for a time of 5 s using the same copper bath. Cu deposition on TiN was adapted from 

[31] using the neutral complexed copper bath. Cu deposition was carried out without any pretreatment in 

this electrolyte at -1.3 V for 15 s. Deposition on TaN was based on the method of Starosvetsky et al. [32,33] 

utilizing an alkaline Cu bath. In this multiple bath process, the native oxide on TaN was removed at -1.9 V 

for 60 s in 0.9 M KOH. To prevent the formation of a new oxide layer, 1.5 ml of the alkaline Cu bath was 

added with 57 s pre clean time and the potential was shifted to -1.2 V for 5 s in order to obtain a 

continuous Cu thin film. Subsequently, the wafer specimen was transferred into the alkaline Cu bath for 

Cu deposition at -1.2 V for 5 s. Samples with a structured surface were prepared with a lithographic step 

prior to the electrochemical deposition. The wafer specimen with a Pt thin film were coated with a 

Microposit S1805 photoresist (DOW Electronic Materials Semiconductor Technologies, Midland, 

Michigan) in a WS-650MZ-8NPPB spin coater (Laurell Technologies Corporation, North Wales, 
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Pennsylvania). Textures of a photomask were transferred to the photoresist using a MA56 mask aligner 

(Süss Microtec AG, Garching, Germany). The exposed resist was subsequently developed in a AZ726MIF 

developer (MicroChemicals, Ulm, Germany). Cu electroplating on this lithographic patterned Pt surface 

was carried out with the procedure of the above mentioned large area deposition from the standard acidic 

copper bath. After deposition, the photoresist was carefully removed with acetone. The patterned Cu thin 

film consisted of circular structures with varying spot sizes (d1 = 150 µm, d2 = 110 µm, d3 = 75 µm, 

d4 = 30 µm, spacing l = 700 µm) on Pt and also the inverse structures of Pt inlets in a Cu film exhibited the 

same pattern layout. 

 

4.3.2.3 Scanning electrochemical microscopy studies 

 

SECM studies were performed with a measuring cell consisting of a customized Teflon tub placed above 

the opening of the multipurpose cell in conjunction with a commercially available SECM CH Instruments 

CHI920C (Austin, Texas) as already described in [30]. The setup was used in a four electrode configuration 

with the multipurpose cell containing the substrate electrode, the UME as probe, a Pt wire as counter 

electrode and an Ag/AgCl/3 M KCl as reference electrode. The measuring configuration was placed on a 

damped working bench inside a laboratory constructed Faraday cage. Prior to each measurement the 

substrate was leveled with an integrated circular level. The composition of the utilized mediators are 

summarized in Table 4.4. 

Table 4.4: Composition of the mediators for electrochemical surface characterization. 

Mediator Active species Supporting electrolyte 

FcMeOH 1.5 mM FcMeOH 0.2 M KNO3 

Ru(NH3)6Cl3 1 mM Ru(NH3)6Cl3 0.2 M KNO3 

Mediator-free solution - 0.2 M KNO3, 1.4 mM HCl 

 

Probe scan curves in z-direction were carried out with the substrate at open circuit potential in deaerated 

FcMeOH at an electrode potential of the UME of Etip = 0.45 V or in deaerated Ru(NH3)6Cl3  solution at 

Etip = -0.2 V with a scan rate of 2.5 µm s-1 using an UME of rtip = 12.5 µm and RG = 10. The tip-to-substrate 
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distance was calculated based on the signal change during contact of the tip with the substrate. For 

chronoamperometric measurements the multipurpose cell was used as working electrode 1 and set to a 

substrate potential of Esubstrate = -1.0 V for 600 s in the mediator-free solution. Imaging experiments were 

carried out after probe approach to a predefined distance towards the substrate. This distance is related 

to the ratio between the measured tip current and the measured value in bulk solution far away from the 

substrate as IT/IT,∞. The UME was approached to IT/IT,∞ = 140% at Etip = 0.45 V in FcMeOH mediator which 

corresponds to a tip to substrate distance of d = 15.6 µm. Subsequently, imaging in SG/TC mode was 

carried out in the mediator-free solution at Etip = -0.1 V and Esubstrate = -1.0 V with an idle time of tidle = 600 s 

if not specified otherwise. Afterwards, imaging in feedback mode was performed in FcMeOH mediator at 

Etip = 0.45 V and Esubstrate = -0.5 V. The substrate was biased on this negative potential to prevent interaction 

of the species generated at the tip with the surface of the substrate [34].  

 

4.3.3 Result and discussion 

 

4.3.3.1 Approach curves on conductive thin film layers in feedback mode 

 

Prior to the imaging experiments, the thin films on the Si substrate were electrochemically characterized 

with SECM in feedback mode. For this reason approach curves were recorded in order to obtain and 

compare the local electrochemical surface reactivity of the studied materials. These probe scan curves 

were recorded in FcMeOH and Ru(NH3)6Cl3 mediator for unbiased thin films of Ru, Pt, Cu, TiN, TaN, and 

SiO2 as described in the experimental section and were compared to theoretical feedback. These two 

mediator systems were selected due to their difference in surface interaction in feedback mode on 

conductive surfaces: The tip generated oxidized form of FcMeOH is reduced whereas the tip generated 

reduced form of Ru(NH3)6Cl3 is oxidized. As depicted in Fig. 4.9, the measured approach curves were in 

good agreement with the calculated negative [35] and positive [36] feedback curve (rtip = 12.5, RG = 10) 

proving that the reaction of the active species was diffusion controlled. Accordingly, pure positive 

feedback was observed for both mediator systems on Ru, Pt, Cu, and TiN due to their high conductivity. In 

contrast to the other thin films, a significant difference in feedback response between FcMeOH and 

Ru(NH3)6Cl3 was observed at the TaN film. For FcMeOH the feedback was negative and for Ru(NH3)6Cl3 a 

positive feedback response was found. This behavior can be attributed to the surface interaction of the 

active species of the mediators with the Ta2O5 surface oxide natively formed at open circuit potential in 
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aqueous solution. This insulating layer inhibited the regeneration of the tip generated oxidized species 

generated at the tip, which resulted in a negative feedback during probe approach. In contrast to FcMeOH, 

the regeneration of the Ru(NH3)6Cl3 species generated at the tip led to a local Ta2O5 oxide reduction, 

resulting in a positive feedback. Nevertheless, the obtained results revealed that no electrochemical 

“material contrast” between the aforementioned conductive materials was to be expected while imaging 

in feedback mode at a fixed distance L.  

 

Figure 4.9: Approach curves towards the surface of various thin films on a Si substrate recorded with an 

ultramicroelectrode (rtip = 12.5 µm, RG = 10). Thin films: Ru (green), Pt (red), Cu (orange), TiN (magenta), 

TaN (blue). Experimental conditions: (a) 1.5 mM FcMeOH/0.2 M KNO3 (Etip = 0.45 V) and (b) 

1 mM Ru(NH3)6Cl3/0.2 M KNO3 (Etip = -0.1 V). The theoretical (positive and negative) feedback responses 

are plotted in black. 

 

4.3.3.2 Chronoamperometric transients 

 

According to the approach curves, a measurable material selective reaction is required to distinguish 

between the electrochemical activities of different conductive materials in surface imaging with SECM. 

Based on [19], the usage of HER is promising as a material selective reaction. Since hydrogen evolution 

depends strongly on thin film metals it is suitable to generate local contrast in SECM imaging. For this 

reason, chronoamperometric measurements were carried out with Ru, Pt, Cu (ECD), Cu (PVD), TiN, and 

TaN thin films on Si substrates to characterize the material selectivity of this reaction. A suitable substrate 

potential of Esubstrate = -1 V was identified by preliminary experiments. Applying this potential reduced the 

risk of hydrogen embrittlement of metals due to small evolution rates while still providing sufficient 
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hydrogen formation rates on all investigated semiprecious thin films. The obtained current curves were 

normalized to the exposed area of the multipurpose cell and were plotted as current density vs time 

transients in Fig. 4.10. Comparing the transients of the investigated substrates, it can be seen that at a 

fixed potential the hydrogen evolution rate is strongly dependent on the thin film material specified 

before. Ru shows the strongest hydrogen evolution followed by Pt, Cu, TiN, and TaN with the lowest signal. 

Moreover, it was possible to distinguish between Cu (PVD) and Cu (ECD) since the hydrogen evolution was 

slightly increased on Cu (ECD) in comparison to Cu (PVD). It should be annotated, that the measured 

current signal was changing until t = 400 s due to growth of the diffusion layer. Consequently, an idle time 

of t > 400 s was necessary before imaging with SECM to obtain reproducible results. 

 

 

Figure 4.10: Chronoamperometric current transients for various thin films on a Si substrate. Thin films: Ru 

(green), Pt (red), Cu (ECD) (orange, star symbol), Cu (PVD) (orange, diamond symbol), TiN (magenta), TaN 

(blue) with a circular exposed area of r = 2.26 mm. Experimental conditions: Esubstrate = -1.0 V in 0.2 M 

KNO3/1.4 mM HCl.  
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4.3.3.3 Imaging with SECM 

 

Based on the chronoamperometric current transients, material contrast studies were carried out by 

imaging the boundary region between a thin Cu layer and various semiprecious thin films in HER SG/TC 

mode. For this reason, a very thin Cu film was electrochemically deposited on Ru, Pt, TiN, and TaN as 

described in the experimental section. The Cu coated 4 x 3 cm2 silicon wafer specimen were mounted in 

the multipurpose cell exposing the boundary region between the thin films to the mediator solution. Since 

imaging was carried out at a tip to substrate distance of d = 15.6 µm (IT/IT,∞ = 140%, rtip = 12.5 µm , RG = 2), 

it was assumed that the influence of the thin Cu film of dCu = 200 nm ± 50 nm on the topography during 

imaging is negligible and a superimposition of the local height and the electrochemical activity during 

imaging was nonexistent. Consequently, the measured local currents represented the activity of the 

materials during imaging in HER SG/TC and classical feedback mode.  

 

4.3.3.3.1 Comparison of feedback mode and HER SG/TC mode 

 

The boundary region between Ru and Cu was imaged both in HER SG/TG mode at Etip = -0.1 V and 

Esubstrate = -1.1 V in mediator-free solution and in feedback mode using FcMeOH as the mediator at 

Etip = 0.45 V and Esubstrate = -0.5 V applying a scan rate of 105 µm s-1. Comparing the optical micrograph (a) 

with the imaged area in HER SG/TC mode (b) and in feedback mode (c) in Fig. 4.11, it can be seen that the 

boundary region between Cu and Ru was well resolved in SG/TC mode. It was observable, that the 

measured local current above Cu differed by a factor of 2 from the signal above the Ru surface at 

Esubstrate = -1.1 V. This is in good agreement with the transients at t > 400 s depicted in Fig. 2 with a larger 

current density observed on Ru in comparison to Cu. No contrast was visible in feedback mode as expected 

from the results of the probe approach curves presented in Fig. 4.9. 
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Figure 4.11: SECM image of the boundary region of a Cu thin film on Ru thin film on a Si substrate (a) Optical 

micrograph of the imaged area, (b) SECM imaging in SG/TC in 0.2 M KNO3/1.4 mM HCl (Etip = -0.1 V, 

Esubstrate = -1.1 V, scan rate: 105 µm s-1), and (c) SECM imaging in feedback mode in 1.5 mM FcMeOH/0.2 M 

KNO3 (Etip = 0.45 V, Esubstrate = -0.5 V, scan rate: 105 µm s-1). 

 

The same SG/TC mode experiments were carried out for different conductive metal combinations of 

Ru/Cu, Pt/Cu, TiN/Cu, and TaN/Cu at Esubstrate = -1.0 V. The deposition procedure for this Cu (ECD) thin films 

is described in the experimental section. In Fig. 4.12 it can be seen that for all imaged layer combinations 

a clear “material contrast” was achievable with HER SG/TC, which is in good agreement with the current 

transients in Fig. 4.10. 
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4.3.3.3.2 Material contrast of different conductive thin films in HER SG/TC mode 

 

The same SG/TC mode experiments were carried out for different conductive metal combinations of 

Ru/Cu, Pt/Cu, TiN/Cu, and TaN/Cu at Esubstrate = -1.0 V. The deposition procedure for this Cu (ECD) thin films 

is described in the experimental section. In Fig. 4.12 it can be seen that for all imaged layer combinations 

a clear “material contrast” was achievable with HER SG/TC, which is in good agreement with the current 

transients in Fig. 4.10.  

 

 

Figure 4.12: SECM image of the boundary region of Cu film on various thin film materials on a Si substrate. 

Thin films: (a) Ru, (b) Pt, (c) TiN and (d) TaN. Experimental conditions: Etip = -0.1 V, Esubstrate = -1.0 V in 0.2 M 

KNO3/1.4 mM HCl, scan rate 105 µm s-1. 

 

A quantification of the electrochemical material contrast can be expressed by adapting the interferometric 

visibility (Michelson visibility) [37] to the SECM measurements in SG/TC mode. Using equation 46, the 

material contrast Cm between two materials can be calculated using the measured current above the first 

material im1 and the second material im2. The obtained contrast value is independent of total current. 



 

95 

Cm =
|Im1 − Im2|

(Im1 + Im2) 2⁄
 (46) 

 

Thus, the material contrast was calculated from the HER TG/SC measurements of Fig. 4.12. A high contrast 

is expressed by a large value and a contrast free situation by zero. The obtained results are depicted in 

Table 4.2. 

Table 4.2: Material contrast Cm of thin film combinations calculated with equation 46 based on the 

imaging studies in HER SG/TC of Fig. 4.12. 

Material combination Cm(HER SG/TC) 

TaN/Cu 1.76 

Ru/Cu 1.44 

TiN/Cu 0.88 

Pt/Cu 0.72 

 

Comparing the calculated Cm values, there is an obvious a trend is observable with TaN/Cu exhibiting the 

highest contrast and Pt/Cu the lowest one. This result is in good agreement with the results of the 

chronoamperometric studies in Fig. 4.10. Accordingly, HER SG/TC is a viable option to image local 

electrochemical activity of different conductive semiprecious thin film materials.  

 

4.3.3.3.3 Characterization of resolution in HER SG/TC mode  

 

In order to evaluate the resolution capabilities of imaging in HER SG/TC mode, defined structures of Cu 

and Pt thin films were investigated. Surface structuring was carried out by electrochemical Cu deposition 

using a lithographic process step as described before. For this study the Pt/Cu system was used as it 

showed the lowest “electrochemical” contrast of the material combinations presented in Table 4.2. 

Sample preparation and imaging of these structures both in HER SG/TC and in feedback mode was carried 

out as described in the experimental section. As can be seen in Fig. 5, the circular Pt inlets in the Cu thin 

film were well resolved in HER SG/TC recordings (b) at a scan rate of 416 µm s-1. The circular structures 

with a diameter of d1 = 150 µm, d2 = 110 µm and d3 = 75 µm were in good agreement with the microscopic 

image (a). The resolution was not influenced by diffusive broadening effects because the hydrogen 
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evolution on Pt and Cu was in the same current range. The smallest Pt spot with d4 = 30 µm could barely 

be resolved as the structure size was in the range of the tip dimension rtip = 12.5 µm (RG = 2). Furthermore, 

streaks of contaminations were observable, which were not visible in the microscopic image. Hence, HER 

SG/TC is very sensitive to surface impurities as these spots are acting as blocking sites for hydrogen 

generation. The impurities could be attributed to the removal step of the photoresist in the sample 

preparation process. In contrast to SG/TC mode, the structures could not be resolved in feedback mode 

(c) due to the similar conductivity of Pt and Cu as already indicated in Fig. 4.9. 

 

Fig. 4.13: SECM image of a Cu thin film with lithographically formed Pt inlets of varying diameters on a Si 

substrate. (a) Optical micrograph of the imaged area, (b) SECM imaging in SG/TC in 0.2 M KNO3/1.4 

mM HCl (Etip = -0.1 V, Esubstrate = -1.0 V, scan rate: 416.6 µm s-1) and (c) SECM imaging in feedback mode in 

1.5 mM FcMeOH/0.2 M KNO3 (Etip = 0.45 V, Esubstrate = -0.5 V, scan rate: 100 µm s-1) 

 

Subsequently, HER SG/TC and feedback mode were used to image the inverted thin film pattern with the 

same structure sizes as depicted in Fig. 4.14. These pattern of lithographically formed Cu spots on a Pt 

surface were selected to study the impact of structure shape on spatial resolution. In comparison to Fig. 

4.13, imaging in HER SG/TC was carried out at Esubstrate = -0.7 V due to strong hydrogen generation above 
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the Cu thin film spots. No sharp resolution of the structures could be obtained at more negative potentials 

as the tip movement caused some distortion during surface imaging. Consequently, the previously 

described effect can still be observed at the much lower potential of Esubstrate = -0.7 V.  

 

 

Fig. 4.14: SECM image of lithographically formed thin film Cu spots with varying diameters on a thin film 

Pt surface on Si substrate. (a) Optical micrograph of the imaged area, (b) SECM imaging in SG/TC in 0.2 M 

KNO3/1.4 mM HCl (Etip = -0.1 V, Esubstrate = -0.7 V, scan rate: 416.6 µm s-1) and (c) SECM imaging in feedback 

mode in 1.5 mM FcMeOH/0.2 M KNO3 (Etip = 0.45 V, Esubstrate = -0.5 V, scan rate: 100 µm s-1). 

 

Comparing the measured current above both materials in Fig. 4.14 (a) it can be concluded that hydrogen 

evolution is 10 times more intense on Cu in comparison to Pt. Furthermore, the strong hydrogen evolution 

on the Cu surface was responsible for the distortion of the imaged patterns in SG/TC mode. The circular 

Cu structures were enlarged due to diffusive broadening of hydrogen towards the Pt surface with a much 

lower hydrogen evaluation rate. The effect was most pronounced at the smallest Cu spot with d4 = 30 µm 

in comparison to the microscopic image in Fig. 4.14 (a). Nonetheless, contrast between Cu and Pt was 
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possible in HER SG/TC in contrast to feedback mode, shown in Fig. 4.14 (c). Comparing Fig. 4.13 (b) and 

Fig. 4.14 (b), it can be concluded that hydrogen evolution is not merely dependent on the surface potential 

but also on material combination (Ru on Cu, Cu on Ru).  

 

4.3.3.4 Conclusion 

 

A mediator-free SECM concept with clear contrast between materials with similar conductivity is 

presented. This methodical approach is necessary since the conventional feedback mode shows limited 

resolution. Based on chronoamperometric investigations on Ru Cu, Pt, TiN, and TaN, it was shown that 

hydrogen evolution is a suitable material selective reaction. Thus, imaging of the boundary region between 

Cu and the aforementioned thin films in HER SG/TC resulted in a sharp contrast between various 

conducting materials. In addition, lithographically structured conductive surfaces with defined pattern 

have been studied to characterize the attainable resolution. It was found that high spatial resolution and 

high electrochemical contrast is simultaneously achievable with HER SG/TC in contrast to conventional 

feedback mode.  
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4.4 Nucleation studies on ruthenium from various electrolytes 

 

4.4.1 Introduction 

 

Copper (Cu) is slowly replacing aluminum as metallization in semiconductor industry due to its higher 

electrochemical and thermal conductivity and resistance against electromigration [1]. These Cu layers are 

usually deposited by electrochemical deposition from an acidic electrolyte with additives on a Cu seed 

layer. The seed layer acts as conductive starting layer for the electroplating process and is formed by 

physical vapor deposition (PVD), chemical vapor deposition (CVD) or atomic layer deposition (ALD). In 

order to inhibit the diffusion of copper into the surrounding dielectrics, a thin barrier film is deposited 

prior to the seed layer. This barrier layer typically consists of tungsten nitride (WxN), titanium nitride (TiN), 

tantalum (Ta), or tantalum nitride (TaN) [2]. Due to the ongoing trend of scaling down feature sizes, it is 

demanding to conformally coat trenches and vias with a seed layer using the previously described methods 

[3]. As a result, alternative approaches are under evaluation to address this issue. One promising strategy 

is the direct electrochemical deposition of Cu on the barrier thin film in order to fill the aforementioned 

structures without a seed layer [4]. In this case, ruthenium (Ru) based barriers are most promising due to 

their immiscibility with Cu, good adhesion to Cu and their capability to act as a barrier layer even at very 

thin layer thicknesses of 5 nm [5]. For successful void-free filling of sub-µm range structures by direct 

electroplating, the formation of a continuous Cu film inside the trenches and vias is crucial. This critical 

layer thickness formed by coalescence dcoal is dependent on the nucleation density Nd in the early stages 

of electrocrystallization. Consequently, it is favorable to have a high initial nucleation density for fast film 

formation according to the correlation dcoal = 1 2√Nd⁄   [6]. Recently, it was shown that it is possible to 

increase nucleation density by adding small amounts of citric acid to the Cu electrolyte [7,8]. 
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Contemporaneously, such grain-refined layers exhibit an increased mechanical stability based on the Hall-

Petch relation [9]. Up to now, the electrochemical deposition of such a grain refined copper was only 

shown on a Cu seed layer [10]. In order to verify that this effect is also obtainable in galvanic direct 

deposition, electrochemical copper nucleation from a citric acid containing electrolyte is studied and is 

compared to a commercially available acidic copper electrolyte. First results on the nucleation behavior of 

galvanically deposited Cu on Ru thin films are presented. 

 

4.4.2 Experimental 

 

4.4.2.1 Materials and chemicals 

 

For all studies 4 x 4 cm2 wafer specimen with thermally grown oxide were used. A thin layer of Ru (50 nm, 

PVD) or Cu (300 nm with 50 nm Ti adhesion layer, PVD) was deposited on these substrates. For 

electroplating experiments two Cu electrolytes were used. The first bath was a standard acidic bath [11] 

of 0.63 M copper sulfate pentahydrate (CuSO4*5H2O, analytical grade, Merck, Darmstadt), 0.3 M sulfuric 

acid (H2SO4, analytical grade, Merck, Darmstadt, Germany), 1.4 mM hydrochloric acid (HCl, analytical 

grade, Merck, Darmstadt, Germany), further denoted as virgin make up solution (VMS) with and without 

commercial additives. The second bath was adapted from [7] and contained 0.4 M CuSO4*5H2O, 0.38 M 

ammonium sulfate ((NH4)2SO4 analytical grade, Merck, Darmstadt, Germany), and 0.03 M citric acid 

(C6H8O7, Analytical grade, Sigma-Aldrich, St. Louis, Missouri). This electrolyte is denoted as low acidic 

electrolyte and was used with and without adding 1.4 mM HCl. The pH of this bath was varied by adding 

H2SO4 or ammonia (NH3, 28%, analytical grade, BASF, Ludwigshafen, Germany). 

 

4.4.2.2 Electrochemical deposition experiments 

 

Electrochemical deposition was carried out with a special multipurpose cell for wafer-based samples in 

conjunction with a Smart Cell 1000w (Yamamoto MS, Tokyo, Japan) and an Autolab PGST302N 

potentiostat (Metrohm, Herisau, Switzerland) as described in [12]. Using this cell, the thin films on the 

silicon substrate are areal contacted and sealed at the same time. Therefore, a homogenous current and 

potential distribution for homogenous electrochemical deposition was obtained in the small exposed 
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circular opening of d = 4.52 mm. Linear sweep voltammetry studies were carried out in three electrode 

configuration with the multipurpose cell containing the sample as working electrode, an Ag/AgCl/3 M KCl 

as reference electrode and an iridium coated titanium plate as counter electrode at a scan rate of 0.05 V/s 

from open circuit potential EOCP to E = -1 V. The obtained current responses were subsequently normalized 

to the active deposition area and were plotted as current density vs potential. Galvanic Cu deposition was 

performed in a two-electrode configuration with the multipurpose cell including the wafer specimen as 

cathode and an iridium coated titanium plate as counter electrode at a current density of cathodic 

j = 30 mA/cm2 at fixed deposition times tdep of 1 s, 1.5 s, 2 s, 5 s and 15 s. In order to remove the natively 

formed RuO, a pre-cleaning step at cathodic j = 0.25 mA/cm2 for t = 180 s in 1.8 M H2SO4 was carried out 

prior to Cu deposition using the same setup with subsequent wet-transfer into the Cu electrolyte for 

electroplating. After deposition, the samples were carefully cleaned with isopropanol and dried with 

nitrogen gas.  

 

4.4.2.3 Evaluation of nucleation 

 

Evaluation of Cu nucleation was carried out with SEM images of a Zeiss Gemini Ultra 55 (Zeiss, Oberkochen, 

Germany). All pictures were taken at the same magnification and working distance (10000 x, 

WD = 6.9 mm) during recording. The nuclei size and their distribution were characterized with the 

software ImageJ (open source). In this process, the two-dimensional area of all nuclei was determined and 

their counts nx were plotted in a histogram in dependence of their area size A. Subsequently, the mean 

area of these nuclei Am ± σA was gained by fitting the obtained results with a Gauss-function in Origin 

2017G (OriginLab Corporation Inc., Northampton, Massachusetts). The mean radius rm ± σr can be derived 

by assuming all nuclei are circularly shaped. A visual presentation of this procedure is depicted in Fig 4.15. 

Moreover, nuclei density Nd and Cu coverage ACu% were also obtained utilizing ImageJ. Here, Nd is the 

amount auf nuclei N normalized to one picture section with the unit µm-2 and ACu% is the percentual Cu 

area coverage of the same section. For the cases where no software-based evaluation with ImageJ was 

possible, a manual determination of rm ± σr was performed with DIPS 2.9 (Point electronic, Halle, Germany) 

as can be seen in Fig 4.17. Furthermore, adhesion of the deposited Cu was tested with a galvanic tape with 

the samples of t = 15 s deposition time. A good adhesion was achieved if no peeling of Cu from the Ru 

surface was observed. 



 

105 

 

Figure 4.13: Visual presentation of the evaluation process of nuclei size distribution determination. (a) 

original SEM image, (b) software-based detection and labeling of nuclei with ImageJ, (c) histogram of the 

counts nx in dependence of nucleus area A and (d) determination of mean area Am and standard deviation 

σA of the histogram by fitting of a Gauss function with Origin 2017G.  

 

 

Figure 4.14: Manual determination of nuclei radii with software DIPS 2.9. Mean radius and standard 

deviation are calculated based on average diameter of the nuclei. 
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4.4.3 Result and discussion 

 

4.4.3.1 Linear sweep voltammetry 

 

In advance to the nucleation studies, the potential dependent deposition of Cu was electrochemically 

characterized with linear sweep voltammetry using the electrolytes described in the experimental section. 

Experiments were carried out using the wafer specimen with a Cu-seed layer to analyze the deposition 

potential without the superposition of direct deposition-based phenomena. As the effect of grain growth 

suppression and nucleation enhancement is dependent on the pH dependent complexation between Cu 

ions and citric acid [13], the initial pH value of the low acidic electrolyte of pH = 2.2 was adjusted to pH = 1 

and pH = 2.5 for the characterization with linear sweep voltammetry. The scan curves are depicted in  

Fig 4.17.  

 

 

Figure 4.15: Linear sweep voltammetry of different copper electrolytes on a Cu thin film on Si. (a) 

Comparison of VMS (0.63 M CuSO4, 0.3 M H2SO4, 1.4 mM HCl), VMS with commercially available bath 

additives and low acidic electrolyte (0.4 M CuSO4, 0.38 M (NH4)2SO4, 0.03 M C6H8O7) and (b) low acidic 

electrolyte with varying pH value of pH = 1, pH = 2.2 and pH = 2.5. 

 

As can be seen in Fig. 4.17 a), the current responses of the studied electrolytes differed significantly 

between each other. On this occasion, the suppressor component of the commercial additive system is 

strongly hindering copper deposition in the lower potential regime between EOCP and E = -0.3 V in 
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comparison to the additive-free VMS solution. This ability to restrain copper deposition decreases with 

increasing overpotential as the effect of surface interaction of the additives is potential dependent. 

Consequently, the influence of the additives on deposition decreased and the current responses were 

almost identical in the potential range of E = -0.3 V to E = -0.6 V for the additive-free and additive-

containing VMS electrolyte. A similar hindering effect was also observable for the low acidic electrolyte in 

the lower potential regime between EOCP and E = -0.2 V. This behavior can be assigned to Cu grain growth 

suppression due to the pH dependent complex formation of citric acid at the Cu surface [8]. This model is 

further supported by the scan curves of the low acidic electrolyte recorded at different pH values of pH = 1, 

pH = 2.2 and pH = 2.5, represented in Fig. 4.17 b). As it can be seen, the inhibition effect increased with 

higher pH values and is nearly non-existent at strong acidic pH values. In contrast to VMS, deposition was 

also strongly inhibited at potentials lower than E = -0.3 V, indicating that (NH4)2SO4 had a strong potential-

independent influence on Cu deposition due to the formation of a shielding, positively charged NH4
+ ion 

film at the substrate electrolyte interface [14]. Consequently, it can be assumed that the studied 

electrolytes will show different nucleation behavior as the obtained current responses were strongly 

influenced by bath composition.  

 

4.4.3.2 Characterization of nucleation behavior 

 

Since high nucleation rate is required for defect free filling of structures and the nuclei formation is 

dependent on overpotential [15], a high deposition potential is favorable for application-oriented direct 

plating of Cu. Based on the results of linear sweep voltammetry, galvanic deposition studies are carried 

out at a fixed current density of j = 30 mA/cm2 with the parameters described in the experimental section. 

At this current density, electrochemical Cu deposition is not diffusion limited and subsequently the risk of 

hydrogen formation during the galvanic process is reduced. Cu nucleation is studied on Ru thin film on 

silicon substrates which is a promising candidate as a plateable thin film barrier in the semiconductor 

industry. In comparison to other barriers, corrosion or oxide formation is not present across the whole pH 

range which is crucial for electroplating of adherent Cu films [16]. Nucleation behavior on Ru thin film was 

studied from the VMS electrolyte without additives and the low acidic electrolyte. Furthermore, 

1.4 mM HCl was added to the low acidic electrolyte to study the influence of chloride on nucleation. It is 

crucial to understand these effects, since the surface interaction of additives requires the presence of 

chloride in the electrolyte [17]. As it is known that Ru forms a native conductive oxide RuO [18], the impact 
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of oxide removal on nuclei formation and layer growth were also studied. Therefore, deposition 

experiments were carried out with untreated and pre-cleaned Ru thin films at the same deposition 

parameters.  

 

Copper nucleation on untreated thin film ruthenium  

 

In the first step untreated Ru thin films on silicon substrate were used for galvanic deposition studies at 

j = 3 mA/cm2 at fixed deposition times of t = 1 s, 1.5 s, 2 s, 5 s and 15 s. The SEM images of the 

corresponding deposition times are depicted in Fig. 4.18. As the illustration shows, the growth of the Cu 

layer is dominated by island formation and 3D grain growth in the early electrocrystallization stages with 

different nucleation types dependent on electrolyte composition. For all electrolytes no dense layer was 

formed at t = 15 s.  

 

 

Figure 4.16: Galvanic Cu nucleation on untreated Ru thin film on Si substrate from different electrolytes at 

fixed deposition times. (a) VMS (0.63 M CuSO4, 0.3 M H2SO4, 1.4 mM HCl), (b) low acidic electrolyte (0.4 M 

CuSO4, 0.38 M (NH4)2SO4, 0.03 M C6H8O7) and (c) low acidic electrolyte with HCl (0.4 M CuSO4, 0.38 M 

(NH4)2SO4, 0.03 M C6H8O7, 1.4 mM HCl). Deposition parameters: j = 30 mA/cm2 at t = 1 s, 1.5 s, 2 s, 5 s and 

15 s. All SEM images are recorded with the same magnification. 
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In order to characterize the underlying nucleation mechanism, the mean nuclei radius rm, the nucleation 

density Nd and the Cu coverage of the surface ACu% were evaluated using the SEM images as described in 

the experimental section. Using the obtained information, the growth mechanism can be categorized in 

progressive nucleation, instantaneous nucleation or a mixed form of both types. Here, instantaneous 

nucleation is characterized by the formation of all nuclei at the initial deposition stage and a subsequent 

uniform growth of these nuclei until coalescence. Consequently, this mechanism is expressed by a 

constant Nd value and a linear increase of rm during deposition time. Contrary, progressive nucleation 

describes continuous formation and individual growth of nuclei across deposition time. Therefore, this 

mechanism is described by an increase of Nd and an increase of scattering of the rm value with deposition 

time. Comparing the software-based evaluation results in Fig 4.19, the growth mechanism at j = 3 mA/cm2 

can be derived for each electrolyte.  

 

 

Figure 4.17: Characterization of Cu nucleation on an untreated Ru surface from different electrolytes in 

dependence of deposition time. (a) Nucleus density Nd, (b) nuclei mean radius rm and (c) surface coverage 

ACu%. Electrolytes: VMS (black, 0.63 M CuSO4, 0.3 M H2SO4, 1.4 mM HCl), low acidic electrolyte (red, 0.4 M 

CuSO4, 0.38 M (NH4)2SO4, 0.03 M C6H8O7) and low acidic electrolyte with HCl (blue, 0.4 M CuSO4, 0.38 M 

(NH4)2SO4, 0.03 M C6H8O7, 1.4 mM HCl). Deposition parameters: j = 3 mA/cm2 at t = 1 s, 1.5 s, 2 s, 5 s and 

15 s.  

 

Based on Fig. 4.19 a) and Fig. 4.19 b), it can be said that Cu nucleation from the VMS electrolyte is 

progressive as Nd and the scattering of rm are increasing with deposition time before coalescence. In 

contrast, electrochemical deposition of Cu from the low acidic electrolyte is dominated by instantaneous 

nucleation since nearly no change of Nd as well as a linear increase of rm were observed. Therefore, it can 

be concluded, that citric acid is actively inhibiting nuclei formation on the untreated Ru surface and favors 

grain growth at the early deposition stage. Despite the different growth mechanism, ACu% is nearly equal 
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for both electrolytes as it can be seen in Fig. 4.19 c). Hence, the larger Nd value achieved with the VMS 

electrolyte is counterbalanced by the overall larger nuclei of the low acidic electrolyte in the deposition 

time of t ≤ 5 s. The addition of 1.4 mM HCl to the low acidic electrolyte had a large impact on the 

nucleation behavior as well as on ACu% in the early deposition stages. Here, Nd was heavily shifted towards 

larger values and was no longer constant with deposition time. Furthermore the rm value was halved. It 

can be deducted that chloride counteracts the effect of citric acid on Cu nucleation because nucleation 

behavior showed a more progressively pronounced growth mechanism. Thus, faster coalescence was 

achieved as it can be seen in Fig 4.19 c). The adhesion of the formed Cu layer was tested with the samples 

of t = 15 s deposition time using an adhesive tape. Complete peeling of the Cu film from the untreated Ru 

surface was observed, indicating that adhesion is rather poor independent of the used electrolyte.  

 

Copper nucleation on pre-cleaned ruthenium thin film 

 

In the second step, a pre-cleaning step at cathodic j = 0.25 mA/cm2 in 0.8 M H2SO4 for t = 180 s was carried 

out prior to galvanic deposition to remove the native oxide from the Ru surface. The same galvanic 

deposition experiments were performed with the pre-cleaned samples at j = 3 mA/cm2 at deposition times 

of t = 1 s, 1.5 s, 2 s, 5 s and 15 s. The corresponding SEM images are depicted in Fig 4.20.  

 

 



 

111 

 

Figure 4.18: Galvanic Cu nucleation on pretreated Ru thin film on Si substrate from different electrolytes at 

fixed deposition times. (a) VMS (0.63 M CuSO4, 0.3 M H2SO4, 1.4 mM HCl), (b) low acidic electrolyte (0.4 M 

CuSO4, 0.38 M (NH4)2SO4, 0.03 M C6H8O7) and (c) low acidic electrolyte with HCl (0.4 M CuSO4, 0.38 M 

(NH4)2SO4, 0.03 M C6H8O7, 1.4 mM HCl). Pre-cleaning step: cathodic j = 0.25 mA/cm2 for t = 180 s in 1.8 mM 

H2SO4. Deposition parameters: j = 30 mA/cm2 for t = 1 s, 1.5 s, 2 s, 5 s and 15 s. All SEM images are 

recorded with the same magnification. 

 

Comparing Fig. 4.18 with Fig. 4.20, it is evident that oxide removal has a large impact on nucleation. Here, 

nucleation on oxide-free Ru is dominated by two-dimensional layer growth. In the case of the VMS 

electrolyte, 2D layer formation is further superimposed by 3D island growth. These results are in good 

agreement with the observed layer by layer growth of Cu on Ru in potentiostatic deposition studies 

described in literature [19]. Since the Cu nuclei are hardly distinguishable from the Ru surface in the SEM 

images, a software-based determination of Nd and Adep is not possible. Consequently, characterization of 

the deposition mechanism cannot be achieved. Correspondingly, a manual evaluation of rm on the samples 

with the deposition time of t = 1 s, 1.5 s and 2 s were carried out as described in the experimental section. 

The characterization procedure was not conducted for t = 5 s and 15 s samples, since the formation of 

dense Cu layer was already observable. The results are depicted in Fig. 4.21. 
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Figure 4.19: Characterization of Cu nuclei radius on pretreated Ru surface from different electrolytes in 

dependence of deposition time at j = 3 mA/cm2. Electrolytes: VMS (black, 0.63 M CuSO4, 0.3 M H2SO4, 

1.4 mM HCl), low acidic electrolyte (red, 0.4 M CuSO4, 0.38 M (NH4)2SO4, 0.03 M C6H8O7) and low acidic 

electrolyte with HCl (blue, 0.4 M CuSO4, 0.38 M (NH4)2SO4, 0.03 M C6H8O7, 1.4 mM HCl). Pre-cleaning step: 

j = 0.25 mA/cm2 for t = 180 s in 1.8 mM H2SO4. Deposition parameters: cathodic j = 3 mA/cm2. 

 

Comparing rm at the early deposition stage, it is evident that rm of the VMS-deposited Cu as well as its 

scattering were significantly larger than the obtained values for the low acidic electrolyte. Simultaneously, 

it is observable that rm of the citric acid containing electrolytes was only increasing slightly with deposition 

time. This can be attributed to the inhibition of grain growth and consequently the enhancement of nuclei 

formation by surface interaction of citric acid [8]. The mean radius rm is obviously not influenced by the 

addition of 1.4 mM HCl to the low acidic electrolyte as the obtained values are almost identical within the 

accuracy of analysis. Therefore, influencing effects of chloride on the surface interaction of citric acid 

during electrocrystallization can be ruled out. Cu adhesion on pretreated Ru was also characterized with 

the samples of t = 15 s deposition time following the same protocol as for the untreated Ru samples. No 

peeling of the Cu layer was observed, indicating that adhesion between the thin film Cu and the pre-

cleaned Ru is independent of electrolyte composition.  
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Nucleation characteristics in dependence of Ru surface condition 

 

Comparing the results from Fig. 4.19 with Fig. 4.21, it is evident that the wetting behavior of Cu in the early 

nucleation phase is heavily dependent on the condition of the Ru surface. On this occasion, 

electrochemical Cu nucleation on untreated Ru occurred as a three-dimensional island growth. Therefore, 

it can be concluded that Cu deposition is electrochemically preferred on Cu and not on the RuO surface. 

Furthermore, grain growth inhibition of citric acid could not be detected in this case, which was shown by 

the comparison of the nuclei sizes of citric acid containing electrolytes and the acidic VMS copper bath in 

Fig 4.19 b). One plausible reason for this observed effect is a stronger interaction of citric acid with the 

natively formed conductive oxide compared to the copper surface. In contrast to this result, a two-

dimensional layer by layer Cu growth was observable on the pre-cleaned oxide-free Ru surface. This 

indicates that Cu preferentially attaches to pure Ru rather than to the Cu nuclei. This is also the reason 

that causes the Cu nuclei on pure Ru to be 10 times smaller than on the RuO surface. Contrary to the case 

of untreated Ru, Cu grain growth inhibition was observed from the citric acid containing electrolytes 

independent of chloride concentration. Here, small nuclei sizes of rm = 10 nm were obtained in comparison 

to rm = 40 nm for the acidic VMS bath as it can be seen in Fig. 4.21. Surface pretreatment does not only 

affect the nucleation behavior but also the adhesion of the Cu nuclei on the Ru surface. Hence, removal of 

the oxide is crucial for electrochemical deposited Cu thin films with good adhesion to the substrate 

independent of electrolyte composition.  

 

4.4.4 Conclusion 

 

Investigations on electrochemical nucleation and growth of Cu on Ru thin film on a silicon substrate were 

performed to study the grain growth inhibition effect of citric acid in the early deposition stage in a direct 

plating process. Based on galvanic Cu deposition experiments with a commercial acidic plating bath and a 

low acidic electrolyte containing citric acid, it could be shown that Cu grain refinement and a high nuclei 

density is achievable with a citric acid electrolyte. The deposition of nanocrystalline Cu with good adhesion 

was only possible on pure Ru, indicating that the removal of natively formed RuO is crucial for galvanic 

thin film coating. Since the addition of chloride to the citric acid containing electrolyte had not affected 

grain growth suppression, organic additives for direct Cu deposition on Ru can be utilized. Consequently, 
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defect-free conformal filling of structures in the sub-µm ranges should be feasible with a citric acid as grain 

refiner.  
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5 Summary 

 

In this work, evaluation of the applicability of electrochemical scanning microscopy (SECM) for 

semiconductor industry-relevant thin film materials was carried out. These investigations were focused on 

the local electrochemical characterization of electrodeposited copper layers and their growth behavior on 

a variety of barrier materials such as Pt, Ru, TiN, TaN, Ta, Ti, W, and TiW. A special holding device for wafer-

based samples was developed to be able to handle this combined task on a laboratory scale. This 

multipurpose cell provided electrical contact for the thin films deposited on the silicon substrate while 

simultaneously sealing the sample with only a small exposed area without any complex sample 

preparation. Based on preliminary studies, it could be shown that local surface characterization by means 

of SECM as well as electrochemical copper deposition in a commercial laboratory tool on the 

aforementioned materials with this cell was feasible. Consequently, deposition protocols for electroplating 

of dense Cu films with good adhesion on various barrier materials were developed for surface 

characterization studies with SECM. It became apparent that conventional commercial acidic copper 

electrolytes were only suitable for deposition of dense and adherent films on Cu or platinoids such as Ru 

or Pt. In contrast, direct electroplating on Ta-, Ti- and W-based barrier thin films had shown that the 

deposition of dense and adherent layers was heavily dependent on potential, on electrolyte composition 

and process handling and was therefore inappropriate for galvanic coating on a wafer scale. On the other 

side, implementation of the multipurpose cell into the SECM setup revealed that the local surface 

characterization of semi-precious metals in conventional feedback mode was strongly restricted. It could 

be shown, that oxide formation and corrosion of the thin film surface on the basis of surface interaction 

effects in aqueous solution had a strong influence on the measurement results. Moreover, the local 

resolution of this technique is limited, since materials with similar conductivity cannot be distinguished as 

shown by approach curves studies on different metallic thin films such as Ru, Pt, Cu, TiN, TiW, W and TaN. 

Based on these results a non-destructive measuring concept was developed which would ensure a high 

electrochemical contrast between different metallic materials without mediator-based surface 

interferences on the measured signal. It was demonstrated that the hydrogen evolution reaction had the 

necessary material selectivity according to the results of chronoamperometric studies on different barrier 

thin films. Therefore, a mediatorless SECM concept in SG/TC mode was characterized from these findings, 

which showed that the aforementioned requirements were achieved. In the next step, the measurement 

concept was used for the electrochemical characterization of the growth of direct electroplated Cu on Ru 

thin films. This model system was selected since Ru did not restrict the composition of the Cu electrolyte. 
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Therefore, it was possible to study the influence of a grain refiner such as citric acid on the early 

electrocrystallization stage of Cu on Ru. In a preliminary SEM-supported study, it was shown that citric acid 

had a strong impact on the nucleation since it effectively inhibited grain growth in the deposition process. 

Thus, nanocrystalline and adherent Cu layers with a grain radius of 10 nm could be formed on pure Ru 

surface. Since the local resolution of the SECM is dependent on the probe size, ultramicroelectrodes with 

a size of rtip < 10 nm are required. The fabrication of electrodes of this dimensions cannot be accomplished 

with existing methods. In order to electrochemically characterize the nucleation behavior of Cu on foreign 

substrates electrochemically, new manufacturing processes for ultramicroelectrodes in the lower 

nanometer range have to be developed. 
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6 Zusammenfassung in deutscher Sprache 

 

Im Rahmen dieser Arbeit wurden die Analysemöglichkeiten von relevanten Materialien aus der 

Halbleiterindustrie mittels elektrochemischer Rastermikroskopie (SECM) evaluiert. Im Fokus dieser 

Untersuchungen stand die lokale Oberflächencharakterisierung von elektrochemisch abgeschiedenen 

Kupferschichten und deren Wachstumsverhalten auf unterschiedlichen Barrierematerialien (Direct 

Copper Plating, DCP). Um diese gekoppelte Aufgabenstellung im Labormaßstab ohne komplexe 

Probenpräparation bewältigen zu können, wurde eine spezielle Haltevorrichtung für Wafer-basierte 

Proben entwickelt. Die Bauweise dieser sogenannten Multifunktionszelle ermöglicht die elektrische 

Kontaktierung der Dünnschichten auf dem Siliziumträgersubstrat bei gleichzeitiger Versiegelung der 

Probe. Hierdurch wurde die lokale Oberflächencharakterisierung mittels SECM als auch die 

elektrochemische Kupferabscheidung in einem kommerziellen Labortool ermöglicht. Um das 

elektrochemische Wachstumsverhalten von Kupfer auf vorab eigeschränkten Barrierematerialien 

untersuchen zu können, wurden geeignete Cu Abscheideprotokolle mithilfe der Multifunktionszelle 

erstellt und getestet. Es konnte hierfür gezeigt werden, dass konventionelle schwefelsäurehaltige 

Kupferelektrolyte nur für die Abscheidung auf Kupfer oder Platinoide geeignet sind. Die direkte 

elektrochemische Abscheidung von dichten und haftenden Kupferfilmen auf Ta-, Ti- und W-basierende 

Barrieren war hingegen stark Potential abhängig, benötigte spezielle Elektrolytzusammensetzung sowie 

Abscheideprotokolle und war folglich für eine galvanische Beschichtung im Wafer-Maßstab ungeeignet. 

Implementiert man die Multifunktionszelle in das SECM zur Untersuchung der vorab genannten 

Materialien, so zeigt sich, dass die lokale Oberflächencharakterisierung von Halbedelmetallen mittels 

SECM im konventionellen Feedback Modus nur unter Einschränkungen verwendbar ist. Die Messresultate 

werden hierbei stark von Oberflächenwechselwirkungseffekten wie etwa Oxidbildung oder Korrosion in 

der wässrigen Lösung beeinflusst. Das Auflösungsvermögen war weiterhin stark limitiert, da Materialien 

mit ähnlichen elektrischen Eigenschaften mit dieser Messmethode nicht differenziert werden konnten. 

Dies konnte mit Hilfe von Annährungskurven auf unterschiedlichen metallischen Dünnschichten wie Ru, 

Pt, Cu, TiN, TiW, W und TaN gezeigt werden. Aufgrund dieser Erkenntnisse wurde ein zerstörungsfreies 

Messkonzept entwickelt, welches einen hohen Kontrast zwischen unterschiedlichen metallischen 

Materialien ohne Störeffekte durch mediatorbasierte Oberflächenwechselwirkungseffekte gewährleisten 

sollte. Mithilfe von chronomamperometrischen Studien an unterschiedlichen metallischen Dünnfilmen 

konnte demonstriert werden, dass die Wasserstoffentwicklungsreaktion die nötige Materialselektivität 

besitzt. Basierend auf diesen Resultaten wurde ein Mediator-freier experimenteller SECM-Ansatz im 
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SG/TC Modus entwickelt, welcher die zuvor genannten Anforderungen erfüllte. Das entwickelte 

Messkonzept sollte im nächsten Schritt zur elektrochemischen Charakterisierung des Nukleations- und 

Wachstumsverhaltens von galvanisch aufwachsendem Cu auf Ru eingesetzt werden. Dieses Modellsystem 

wurde gewählt, da Ru die Zusammensetzung des Cu-Elektrolyten nicht einschränkt und folglich der Einfluss 

von Zusatzstoffen wie etwa des Kornverfeinerers Zitronensäure, auf die Direktabscheidung untersucht 

werden kann. In einer REM-gestützten Vorabstudie konnte gezeigt werden, dass Zitronensäure das 

Kornwachstum aktiv hemmt und sehr feinkristalline und gut haftende Cu-Schichten mit einem Kornradius 

von 10 nm auf reinem Ru abgeschieden werden konnten. Da das lokale Auflösungsvermögen des SECM 

von der Sondengröße abhängig ist, werden Ultramikroelektroden mit einer Größe von rtip < 10 nm zur 

Oberflächencharakterisierung benötigt. Die Herstellung von Elektroden dieser Dimensionen ist mit 

bekannten Verfahren nicht möglich. Um das Nukleationsverhalten von Cu auf artfremden Substraten 

elektrochemisch charakterisieren zu können, müssen folglich neue Herstellungsprozesse für 

Ultramikroelektroden im unteren Nanometerbereich entwickelt werden.  
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