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Zusammenfassung

Eine mögliche Beschreibung der elastischen Energie einer Biomembran ist durch den L2-Abstand
der mittleren Krümmung von einer spontanen Krümmung plus einer topologischen Konstante
gegeben. Ein solches Energiefunktional wird oft als Helfrich Energie bezeichnet.

Wir untersuchen eine Erweiterung dieser Modellierung, bei der die spontane Krümmung
durch die Oberflächendivergenz eines Vektorfeldes entlang der Fläche gegeben ist. Eine abstrakte
Formulierung für Immersionen von Mannigfaltigkeiten beliebiger Dimension wird hergeleitet.

Für Kurven in der euklidischen Ebene zeigen wir für dieses Funktional Existenz von globalen
Minimierern und Regularität von stationären Punkten unter den verschiedenen Nebenbedingun-
gen. Mögliche Nebenbedingungen sind die Länge der Kurve, der von der Kurve eingeschlossenen
Flächeninhalt und der Bildbereich des Vektorfeldes.

Außerdem leiten wir für Immersionen von Mannigfaltigkeiten beliebiger Raumdimension eine
Gradientenflussdynamik her, die auf ein gekoppeltes System partieller Differentialgleichungen
führt. Für dieses gekoppelte System zeigen wir lokale Wohlgestelltheit auch im Fall, dass der
Fluss die Nebenbedingungen erhält.

Weiterhin zeigen wir für das uneingeschränkte Funktional sowie unter Berücksichtigung
der Nebenbedingungen eine Łojasiewicz-Simon Gradientenungleichung, aus welcher man dann
Rückschlüsse auf das asymptotische Verhalten des Flusses nahe lokaler Minimierer ziehen kann.

Für Kurven und Vektorfelder in der Ebene geben wir eine geometrische Größe an, deren
Kleinheit Glattheit des Flusses garantiert. Durch Reskalieren erreichen wir, dass es bereits
ausreicht, dass diese Größe endlich ist, um Singularitäten auszuschließen.





Abstract

A possible description of the elastic energy of a biological membrane is given by the L2-distance
of its mean curvature from a spontaneous curvature plus a topological constant. Such energy
functional is often referred to as Helfrich energy.

We study a generalization of this model, where the spontaneous curvature arises as the
divergence of a vector field along the surface. An abstract formulation for immersions of
manifolds of arbitrary dimension is derived.

For plane curves we prove for this energy functional the existence of global minimizers and
regularity of stationary points subject to different constraints. The constraints we considered
are the length and enclosed signed area of the curve and the range of the vector field.

Furthermore, we derive a gradient-flow equation in the general situation of immersions of
manifolds of arbitrary space dimension which leads to a coupled system of partial differential
equations. For this coupled system we show local well-posedness even for a constraint preserving
adaption of the flow.

Moreover, we show a Łojasiewicz-Simon gradient inequality for the unrestricted functional
as well as in the presence of constraints. From this we draw conclusions about the asymptotic
behavior of the flow close to a local minimizer.

For curves and vector fields in the euclidean plane we introduce a geometric quantity whose
smallness guarantees smoothness of the flow. By a rescaling argument we achieve that even
finiteness of this quantity suffices to exclude the formation of singularities.
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Introduction

With the range of applications reaching from deep questions of topology and geometry to models
for complex physical processes and even image segmentation, geometric evolution equations
form a common basis of an extremely wide range of mathematical research areas.

Intrinsic geometric evolutions deform the metric of a Riemannian manifold in a smooth way,
without consideration of any embedding or immersion. Their most prominent instance is by all
accounts the Ricci flow, profoundly investigated by Hamilton. It was central in Perelman’s proof
of Thurston’s geometrization conjecture, which implies the Poincaré conjecture, and the proof
of the differentiable sphere theorem by Brendle and Schoen after 30 years of intensive research
(cf. [11, 45,74,75,86]).

Extrinsic evolutions smoothly vary mappings or immersions of a smooth manifold according
to a law involving geometric quantities of this immersion. A large variety of different flows of
this kind has been studied, including the harmonic-map heatflow, the Willmore flow and the
mean-curvature flow, the latter being the most famous example of a whole range of curvature
flows. Some of them have been introduced to improve the understanding of existence and
properties of solutions of stationary geometric problems, while others are part of models for
physical mechanisms, for example for phase transitions or biological membranes.

Roughly summarized, the setting of extrinsic geometric flows can be summarized as follows.
The word flow usually refers to a semi-group action. In analysis, a (local) flow is usually given
implicitly through an initial value problem. The actual flow is then the mapping that relates an
element x of a set—a subset of a euclidean space or some function space—to a solution of the
initial value problem, given for example by an ordinary or partial differential equation, for the
initial datum x. In this context, local means that the admissible parameter set—that commonly
is referred to as the time variable—depends on the element in question.

This concept generalizes to the setting of two Riemannian manifolds. When (M, g) is a
smooth closed and orientable Riemannian manifold of dimension d ∈ N and (N, ḡ) is another
smooth Riemannian manifold of dimension k ∈ N, then a geometric flow takes an initial map
ϕ0 : M → N and time t0 and maps it to a solution (ϕ, T ) ∈ {M × [t0, t0 + T )→ N} × (0,∞] of
an initial value problem of the form

∂tψ(p, t) = F (p, t, ψ(p, t),∇ψ(p, t), . . . ,∇mψ(p, t)) on M × [t0, t0 + T ) and
ψ(p, t0) = ϕ0(p) on M,

(1)

where F is a smooth function that takes for all p ∈M values in Tψ(p)N , and m ∈ N is called the
order of the equation. Observe that, in this context, the time of existence of the solution, if a
solution exists at all, is also to be determined. If T =∞, the solution is called a global solution.

This generic form of a partial differential equation also includes cases that are not well-posed
in the sense of Hadamard, i.e. that an initial value problem should have a unique solution that
depends continuously on the initial value. A specific class of equations that are well-behaved in
this sense are parabolic equations. Note that there is a whole range of notions of parabolicity
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(cf. [32, Chapter 7] and [77, Chapter 6]), the archetypical example being the heat equation. The
heat equation can also be seen as the flow in the direction of steepest descent, or gradient flow,
of the Dirichlet energy for functions u : Rd ⊃ Ω→ R reading

ED(u) =
∫

Ω
|Du|2 dx.

Here, the gradient of ED has to be taken with respect to the usual L2 scalar product. The
concept of L2-gradient flows is also central for many geometric flows. However, the scalar-product
that is used to identify the gradient may vary with the immersion, much as in Riemannian
geometry.

For every geometric flow—as in general for initial value problems—one is mainly interested
in the following questions.

• In what setting is the problem well-posed?

• What are possible obstructions to the existence of global solutions, i.e. singularities?

• Can these singularities be characterized and possibly overcome by a different notion of
solution?

• Can we determine the asymptotic behavior of global solutions as t tends to ∞?

The answer to the first and last question can be often treated by reformulating the problem
to a strictly parabolic evolution equation and adaption of special techniques from their theory.
We will follow this general approach for a specific geometric evolution equation also in this
work, as will be discussed later. Also the second and fourth question will be treated in this
thesis for a particular problem. With their introduction to the field of geometric evolutions
often attributed to Hamilton, typical techniques include integral and interpolation estimates,
maximum principles, and monotonicity formulae and constitute the heart of a large share of
theorems in geometric analysis. The third question requires techniques, that are different from
those used in this work. Overcoming of singularities without losing track of topological changes
or uniqueness of solutions led to famous theorems (see e.g. [74], [51]).

A large class of flows is also geometric in the more specific sense that the evolution is only
defined for immersions and is invariant under reparametrization of the manifold M . With the
exception of the harmonic-map heat flow, this is the case for all above-mentioned flows. Let us
now take a closer look on some specific evolution equations.

The mean-curvature flow arises for k > d when we define for immersions ϕ : M → N

the map F in (1) to be given by F = −→H , where −→H is the mean curvature vector at ϕ(p, t)
of the submanifold given by ϕ(·, t) around ϕ(p, t). It was suggested in the 1950s as a model
for the motion of interfaces in soap froth by von Neumann [89], and for the motion of grain
boundaries in an annealed, recrystallized metal by Mullins [71], who also formulated it as a
partial differential equation for closed curves in the plane and found some self-similar and a
translating solution, often called the grim reaper.

For compact surfaces the mean-curvature flow decreases the area of the given surface as fast
as possible. When the manifold M is immersed into N by an immersion ϕ, we pull back the
metric of N and obtain a surface measure dµϕ. The area functional A is then simply

A(ϕ) =
∫
M

1 dµϕ.

Comparison with the flow of a round sphere shows that any solution with compact initial datum
can only exist for finite time. Most results consider the case where N = Rd+1.

2
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For the case of the mean curvature flow of closed curves in R2, often referred to as the curve
shortening flow, Gage, Hamilton and Grayson were able to show that any embedded curve will
first become convex [42] and then asymptotically round while shrinking to a point in finite time,
that is proportional to the initially enclosed area [35,36,38].

Independently, for convex d ≥ 2 and d-dimensional hypersurfaces in Rd+1 Huisken showed that
solutions also become asymptotically round, before they disappear in a single point [48]. Relaxing
the condition of convexity to mean-convexity of the initial surface, Huisken and Sinestrari [51]
described a surgery procedure, that allows one to extend the flow beyond singularities, by
cutting out the parts of highest curvature, which turn out to be cylindrical, while controlling
the topology. This led to a topological classification result for two-convex hypersurfaces.

Of course, over a timespan of more than 30 years, a great number of authors has contributed
new results and new proofs. Therefore, for further reading on the subject we refer to introductory
works of Mantegazza [68] and Colding and Minicozzi [17] and the references therein.

The Willmore flow is the flow of immersions along the steepest descent of the Willmore
functional W [93], that was originally introduced for immersion of a 2-dimensional surface M in
R3. For ϕ : M → R3 it is given by

W (ϕ) = 1
2π

∫
M

|H|2 dµϕ,

with the mean curvature H of ϕ(M). Willmore was in particular interested in the infimum of
W among all possible immersions of surfaces of a fixed genus. The normalization factor is in
the literature mostly chosen according to the preferences of the respective author.

A study of the actual flow was initiated by Kuwert and Schätzle [56]. Denoting the Laplace
Beltrami operator, the second fundamental form and the choice of unit normal by ∆, A, ν,
respectively, the evolution law reads

∂tϕ = 1
π

(
∆H +H|A|2 − 1

2H
3)ν.

Kuwert and Schätzle gave a lower bound for the time of smooth existence of the flow in terms
of the initial spatial concentration of |A0|2, where A0 denotes the trace-free second fundamental
form. In two subsequent papers [55, 57], they proved for any codimension that if M is a sphere
and initially

∫
M
|A0|2 dµϕ < 16π,then the flow exists for all times and converges to a round

sphere. Moreover, they established a results on the structure of point singularities.

While Willmore was interested in topological invariants, for a regular curve γ in the plane
with curvature κ, parametrized over a real interval I, the one dimensional analogue of Willmore’s
functional, namely the quantity ∫

I

κ2 ds, (2)

was already discussed by Daniel Bernoulli and Euler [31] as an important quantity while aiming
to determine the shape of an elastic rod whose endpoints are fixed, but that can move freely
otherwise. This question is known as the problem of the elastica and the quantity (2) is—as
we will see—still an object of mathematical research. The report on the history of elasticae
by Levien [61] is a nice overview and includes historical drawings of Euler and Bernoulli of
astonishing precision.

The study of elastic properties of lipid bilayers [47] led Helfrich to a model for the elastic
energy of biological membranes. When the shape of the membrane is represented by an
embedding ϕ of a 2-dimensional closed manifold M to R3, its elastic energy is described by

E(ϕ) =
∫
M

1
2kc(H − c0)2 + k̄cK dµ, (3)

3
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where K is the Gauß curvature of the embedded surface, kc and k̄c are the relevant curvature-
elastic moduli and c0 is called spontaneous curvature and was originally introduced to allow for
chemically different sides of the bilayer. By the Gauß-Bonnet Theorem, the quantity

∫
K dµ is

a topological invariant and does not change, when ϕ varies continuously, that is in particular
in one topological class. Considering the flow in direction of the steepest descent for E, one
obtains an evolution law that is in highest order the same as that for of the Willmore flow.
However, the spontaneous curvature breaks the scaling symmetry of the energy. For immersions
of 2-dimensional manifolds this flow has been analytically studied by several authors [54, 65, 72].

The one-dimensional analogue, that is the gradient flow of (2), is often called the elastic
flow and has also been subject to recent investigations. For closed curves, even in arbitrary
co-dimension, the behavior of this flow is now well-understood. Dziuk, Kuwert and Schätzle [28]
proved global existence and convergence (up to subsequence) to a stationary point of (2), that
is an elastica.

The harmonic-map heat flow is of different nature, as it is not only depending on the
shape of the immersed manifold, but also takes the particular parametrization into account. It
was introduced by Eells and Sampson [29] in order to find stationary points of a generalized
Dirichlet energy. For a closed, smooth Riemannian manifold (M, g) and another smooth
Riemannian manifold (N,h) the energy of a smooth map u : M → N is given by

E(u) =
∫
M

|du|2 dµg.

In their work Eells and Sampson provide conditions on intrinsic curvature quantities of N under
which the flow converges indeed to a stationary point of E, called a harmonic map, independent
of the initial datum. Therefore, they concluded that under such suitable assumptions on N ,
every smooth map from M to N is homotopic to a harmonic map. For an introduction to the
theory of harmonic maps and their heat flow we refer to the book of Lin and Wang [63] who
also provide a great many useful references.

An augmentation of the usual setting of extrinsic geometric flows is the abandonment
of symmetries. Studying the evolution of immersions into a (non-flat) Riemannian manifold
is a first step in this direction. Interesting questions emerge when the target manifold has
non-trivial topology. For the curve-shortening flow, Grayson solved the case of curves in general
2-dimensional manifolds [43]. Huisken studied the mean-curvature flow of convex immersions of
higher dimensional manifolds [49]. To find suitable surgery procedures is subject of very recent
research [9,10]. The Willmore energy of immersions into spheres was considered by White [92]
showing that stationary points are preserved under stereographic projection. Lamm, Metzger
and Schulze [58] and Jachan [53] considered the Willmore energy and flow in manifolds that are
asymptotically Schwarzschild.

A further generalization is the concept of anisotropic flows. The Russian material scientist
Wulff [94] had, already at the beginning of the 20th century, evidence that the energy of the
boundary of a crystalline material depends on the direction of the surface normal to the lattice
structure of the crystal. He also gave a method how to determine the shape of minimal energy
for a given direction dependent energy density.

Models for interfaces often incorporate directional dependence of the surface energy density.
Such energies can be described by a positive, 1-homogenous function η : Rn → R. For a smooth
immersion ϕ : M → Rd+1 with a unit normal ν the energy is then defined as

E(ϕ) =
∫
M

η(ν) dµϕ.

Analogously to the mean curvature flow, the gradient flow of anisotropic energies has been

4
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subject of mathematical research since the 1970s. Taylor [82] distinguished between the case of
smooth and crystalline surface energies. The latter ones, arising from non convex anisotropies η,
lead to polyhedral minimizing surfaces. In the case that η is strictly convex and smooth, also
the minimizing shape, often referred to as the Wulff shape, is convex and smooth.

Ambient vector fields in Rd+1 were taken into account by Wheeler [91]. For d ∈ N, curves
γ : S1 → Rd+1, a vector field c : Rd+1 → Rd+1 and a function f : Rd+1 → R he generalized the
Helfrich energy (3) for curves by establishing the spontaneous curvature

c0 = c ◦ γ + (f ◦ γ)τ,

where τ is the unit tangent to γ. After a short discussion of general properties of this energy, he
proves that under suitable assumptions on c and f the gradient flow equation has a global solution
for all initial curves and that there is a sequence of times tj → ∞ such that the curves γ(tj)
converge to a stationary point of the energy after suitable translation and reparametrization.

In Chapter 2 of this work we will discuss, how the idea of an ambient vector field can be
used to construct an anisotropic and homogeneous energy for curves in the plane, and review
existing literature to ascertain existence of global solutions and their asymptotic behavior.

A different generalization of the Helfrich energy (3) is proposed by Bartels, Dolzmann,
Nochetto and Raisch [7]. They trace back the spontaneous curvature term to the local orientation
of the rod-shaped lipid molecules. This is modeled for two-dimensional membranes by the
introduction of a vector field n : M → R3. With a physical constant δ ∈ R the quantity

δ divn

is then interpreted as the spontaneous curvature. Here div is the divergence with respect to the
metric on M that is induced by the immersion ϕ : M → R3 that represents the membrane. This
situation is depicted in Figure 1 for a curve and vector field in R2. The energy for the whole
system also takes into account molecular forces between the lipid molecules and is given by

E(ϕ, n) = 1
2

∫
M

(divϕ νϕ − δ divϕ n)2 dµϕ + λ

2

∫
M

|∇ϕn|2 dµϕ, (4)

with another physical constant λ > 0. In their work, the L2-gradient flow of this energy is
derived which leads to a system of coupled partial differential equations. Moreover, they derive
a parametric finite elements scheme and present some numerical experiments.

The equation for the evolution of the immersion shares some structure with the Willmore
flow. Indeed, when δ = λ = 0 the flows coincide. But for λ positive while δ = 0 the equations
are coupled.

The evolution of the vector field n is governed by a law that shares its leading term with
the harmonic map heat flow. This relation is of additional importance, when a supplementary
length condition for n is imposed. Since ϕ represents a biological membrane, it is reasonable to
assume that the area of the represented surface and its enclosed volume are constant during the
evolution.

Figure 1: A plane curve with an attached vector field.

5
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The main topic of this thesis is the evaluation of the analytical properties of this
generalized Helfrich energy in combinations with the above-mentioned constraints

Fixed signed volume enclosed by ϕ(M):

Fixed surface area of ϕ(M):

Length constraint for n:

∫
M

ϕ · νϕ dµϕ = V0,∫
M

1 dµϕ = A0,

∀p∈M ‖n(p)‖Rd+1 = 1,

(5)

for suitable choices of A0 and V0 especially not violating the isoperimetric inequality.

Considering (4) for curves and vector fields with values in R2, inspired by arguments of [19,20],
we show existence and smoothness of minimizers of the energy (4) when a length penalization
term is added using variational techniques and elliptic regularity theory.

Theorem 1
For δ ≥ 0, λ > 0 the energy E given by

E(γ, n) =
∫
γ

1
2(κ+ δ div(n))2 + λ

2 |∂sn|
2 + 1 ds

has a smooth global minimizer. Furthermore, a global minimizer exists for any combination of
the constraints in (5) imposed.

For a closed orientable manifold of dimension d, we consider the gradient flow of the energy
(4) as derived by [7] for an immersion and a vector field with values in Rd+1. Due to the strong
coupling of the evolution equations and due to the fact that one of them is of fourth, the other
of second order, even the well-posedness of the evolution equation is not covered by standard
theory. We use energy methods to solve the corresponding linearized problem and employ a
typical parabolic approach to obtain a short-time existence result for initial data in a Sobolev
space of sufficient regularity.

Theorem 2
For d ∈ N let M be a closed d-dimensional smooth orientable manifold. Let k > d/2 + 3 be a
natural number, ϕ0 ∈ Hk(M,Rd+1) be an immersion and n0 ∈ Hk(M,Rd+1) be a vector field
with ‖n0‖Rd+1 ≡ 1.

Then, there is a T > 0, such that the area and volume preserving gradient-flow equation
of the energy (4) has a unique solution (ϕ, n) on M × [0, T ) and ‖n‖Rd+1 ≡ 1. Moreover, for
positive times the surface and the vector field are smooth in space and time.

The result remains valid, if we impose at most two of the three constraints in (5). If the
unit-length constraint is disregarded, the condition on n0 is obsolete.

For the questions concerning the development of singularities and the asymptotic properties
of the flow we provide first partial answers. In view of the very tame behavior of the elastic
flow and the harmonic map heat flow for curves, that both admit global solutions and converge
to stationary points, one might expect that a similar result can be established for the coupled
flow. However, the coupling terms make the situation rather involved. Using interpolation
and Sobolev inequalities we find a geometric quantity that cannot remain bounded, when a
singularity occurs.

6
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Theorem 3
Let (γ, n) : S1 × [0, T )→ R2 × R2 be a smooth gradient flow of the energy (4), that cannot be
smoothly extended beyond T . Then, for z = κ+ δ div(n) it holds that

lim
t→T

∫
S1
|∂sz|2 + |∂2

sn|2 ds =∞.

The Łojasiewicz-Simon inequality is a rather resilient tool for the analysis of global
solutions of evolution equations. In the 1960s, Łojasiewicz proved the following result [66,
Theorème 4; Proposition 1, p. 92].

Theorem 4 (Łojasiewicz gradient inequality)
Let U ⊂ Rd be open, f : U → R be real analytic, and let a ∈ U : Then there exist constants
θ ∈ (0, 1/2], c, σ > 0 such that for every z ∈ U , ‖z − a‖ ≤ σ

|f(a)− f(z)|1−θ ≤ c‖∇f(z)‖.

Note that the stated inequality holds in particular when ∇f(a) = 0. It can be used to
guarantee convergence to a local minimizer x∗ for solutions of gradient flow equations of the
form

d
dtu = ∇E(u)

for analytic energies E : Rd → R by considering d
dt |E(u(t))− E(x∗)|θ [67].

Simon [80] was able to extend this result to energies defined on Hilbert spaces and obtained
a convergence result for a class of parabolic or hyperbolic evolutions based on the gradient of
such energies. Thus, the result in the infinite dimensional setting is often referred to as the
Łojasiewicz-Simon inequality. Simon’s result however, cannot directly be applied to energies
involving curvature, since it assumes that the energy only depends on first derivatives with main
applications being the harmonic map heat flow and area minimizing submanifolds.

Only recently, different authors either contributed to the development of an abstract functional
analytic setting, in which Łojasiewicz-Simon-type gradient inequalities can be derived, or applied
this framework to geometric evolution equations to prove convergence of global solutions to
stationary points.

Wheeler [91] gave an argument how to adapt Simon’s methods to Helfrich-type energies
and obtained full convergence for global solutions of a Helfrich flow with externally given
spontaneous curvature. Chill [15] and Feehan and Maridakis [33] formalized the problem further
to energies on Banach spaces and showed that the analyticity assumption on the energy can
be relaxed. It suffices that it is analytic on a critical manifold that is finite dimensional in
applications. Formally, the resulting estimate looks very similar to the original estimate of
Łojasiewicz, however it is a delicate question in what norm the gradient has to be measured in
the Banach space setting.

Chill, Fasangova and Schätzle used this abstract framework to prove that Willmore blow-ups
are never compact [16]. For elastic curves in Rd subject to different boundary conditions Lin [62]
proved global existence of solutions and convergence up to translation of a subsequence to a
minimizer. Here, Dall’Acqua, Pozzi and Spener [22] were able to obtain smooth convergence of
the whole flow by means of Chill’s result on the Łojasiewicz-Simon inequality. For a Helfrich-type
model for 2-dimensional surfaces in R3, Lengeler [60] proved stability of local minimizers and
global existence for solutions starting close by.

7
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We discuss in Chapter 5 how constraints can be incorporated in this setting and use the
results of Feehan and Maridakis to obtain a Łojasiewicz-Simon inequality for the generalized
Helfrich energy E from (4) and infer stability of local minimizers of E.

Theorem 5
For d ∈ N let M be an orientable, d-dimensional, smooth, closed manifold. For dimension d = 1
we set k = 3, else let k > d/2 + 3 be an integer, and let (ϕ∗, n∗) ∈ C∞(M,Rd+1)×C∞(M,Rd+1)
be a smooth local minimizer of the energy (4) with respect to any combination of constraints
(5).Then there exists ε > 0 such that for all initial data (ϕ0, n0) ∈ Hk(m,Rd+1)×Hk(m,Rd+1)
with

‖(ϕ0 − ϕ∗, n0 − n∗)‖Hk(M,Rd+1)×Hk−1(M,Rd+1) < ε

the gradient flow has a global solution (ϕ, n) : M × [0,∞)→ Rd+1 × Rd+1, smooth away from
time 0, that converges smoothly to a possibly different local minimizer (ϕ̃, ñ) as t → ∞ and
E(ϕ∗, n∗) = E(ϕ̃, ñ).

To conclude this introduction to geometric evolution equations and the topic of this thesis,
we want to comment briefly on some other aspects of modern research in geometric evolution
equations, that however are beyond the scope of this work.

Weak notions and approximate solutions for geometric flows include approaches
based on techniques as level-set methods, varifolds, viscosity solutions and phase field approxi-
mations. The advantage of weak formulations lies in the easier treatment of singularities. The
main challenge consists in characterization of situations, where regularity of solutions can be
recovered and non-uniqueness avoided. Also one possible approach to numerical treatment of
geometric evolutions uses these weak notions of solutions. For hints on literature concerning
weak formulations we refer to the introductions of [68] and [40].

However, developing numerical methods for geometric flows is a very subtle and
challenging problem on its own. First efforts have been made e.g. by Dziuk [27]. Numerical
approaches that share the view on geometric evolutions of this work, are called parametric
methods, as they parametrize the evolving surface in each time step. One challenging question
is then to find an efficient way to redistribute the mesh points on the surface to avoid mesh
degeneration. Different ideas in this directions have been tested, among many other problems
the Willmore flow was numerically treated by Barrett, Garcke and Nürnberg [6]. A Recent
approach by Elliot and Fritz [30] used a trick, originally due to DeTurck [25], regularizing the
mesh with help of the harmonic map heat flow.
We mention this idea in particular, since it was also used in the numerical experiments presented
in Appendix of this work. To get a better feeling for the behavior of different geometric flows,
we used a very straight forward finite differences scheme and Matlab’s routines for ordinary
differential equations to simulate the flow of curves for different evolution equations. Since mesh
degeneracy becomes a problem almost immediately, we tried to account for it by the coupling to
the harmonic maps heat flow.

Problems with boundary and geometric flows of networks are already present in
the works of Mullins and von Neumann [71,89] and also an import component in Euler’s [31]
study of elasticae. Strict analytical treatment of this class of problem is a main subject of a
large number of recent research projects and the analogous of long-established results for closed
manifolds are still wide open in the case of manifolds with boundaries and networks. First
analytical results were obtained by Bronsard and Reitich [13] and Mantegazza, Novaga and
Tortorelli [69].
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Organization of this Work. In the first chapter we fix some notation and introduce
important mathematical concepts that appear at different points in the later chapters.

In the second chapter, we explore second-order flows that are derived from weighted surface
area functionals and couple to a vector field. This will lead to a discussion of results concerning
smooth anisotropic and inhomogeneous curvature flows.

In Chapter 3 we discuss important properties of the generalized Helfrich energy (3). We
prove Theorem 1 and recall the gradient flow equation.

The fourth chapter is dedicated to the proof the short-time existence result as stated in
Theorem 2. We start by considering the linearized equation and prove estimates for the non-
linear remainder term. Together these considerations suffice to prove a first local well-posedness
result. Afterwards we discuss the situation in the presence of constraints. Lastly, we employ
parabolic techniques to obtain smoothness of solutions away from the initial data.

The discussion of long-time behavior of solutions in the fifth chapter is split in two parts.
For curves we prove the blow-up result as stated in Theorem 3. In the general situation of the
short-time existence result, we deduce stability of local minimizers as stated in Theorem 5 by
the use of the Łojasiewicz-Simon inequality.

In the Appendix, we present some numerical experiments.
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1
Notation and Prerequisites

In this chapter, we will introduce notation and state important definitions and theorems from
geometry and analysis. Moreover, we will derive some results already tailored to the needs of
later chapters, the proofs being mostly adaptions of related results from the literature.

1.1 Analysis

We adapt the usual notations of (functional) analysis. When we consider a normed space E, we
denote the corresponding norm by ‖ · ‖E . If E,F are Banach space, we denote the space of linear
maps from E to F by L(E;F ) := {A : E → F linear and continuous} with the usual operator
norm, turning it into a Banach space as well. The dual space L(E,R) is usually denoted by E∗.
For x ∈ E and ϕ ∈ E∗ we use the notations ϕ(x) and 〈ϕ, x〉E∗×E to denote the application of
the linear map ϕ to the element x. For an operator A ∈ L(E,F ) we denote the range and kernel
of A by R(A) and ker(A), respectively. Moreover, for A ∈ L(E,F ) we introduce the adjoint
operator A∗ ∈ L(F ∗, E∗) given by ϕ 7→ ϕ ◦A.

If a map G : E → F has a Fréchet derivative it will be denoted by dG or simply G′. For
d, k ∈ N and Ω ⊂ Rd open, we denote the Jacobian of a continuously differentiable function
f : Ω→ Rk by Df .

For a sequence xn in E, we denote strong and weak convergence by → and ⇀, respectively,
and if H is a Hilbert space, we denote the scalar product by 〈·, ·〉H .

1.2 Basic Properties of Riemannian Manifolds and Hyper-
surfaces

LetM be a d-dimensional, orientable, smooth, closed manifold, that is compact without boundary.
As all manifolds in this work will be compact, we only consider connected manifolds, because
otherwise, we would do everything for all connected components separately. We denote its
tangent bundle by TM and for p ∈M we write TpM and T ∗pM for the tangent and cotangent
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space at p. For a vector bundle E over M we will denote the smooth sections of this bundle by
Γ(E). For open sets V ⊂M and U ⊂ Rd and a chart x : V → U we denote the canonical basis
vectors of TpM as ∂xi and that of T ∗pM by dxi. For k ∈ N and a smooth function f : M → Rk,
we write ∂f

∂xi
or shorter ∂if to denote the derivatives with respect to the chart x. That is,

∂

∂xi
f(p) = ∂if(p) := d

dt

∣∣∣∣
t=0

f(x−1(x(p) + tei))

and we write df = fidxi to denote the differential of f .

If g is a Riemannian metric on M , i.e. (M, g) is a Riemannian manifold, we denote the
volume element, gradient, divergence and Laplace-Beltrami operator as dµg,∇g,divg,∆g. In
particular we have for 1 ≤ p <∞ the Banach spaces

Lp(M) =
{
f : M → R

∣∣∣∣∣ f measurable and ‖f‖Lp(M) :=
(∫

M

|f |pdµg
)1/p

<∞

}
.

The Levi-Civita covariant derivative will be denoted by ∇ and for 1 ≤ i ≤ n we write ∇i to mean
∇∂xi and for k ∈ N we denote the k-th covariant derivative by ∇k. The Christoffel symbols are
denoted by Γrij and they are defined by ∇iXj = ΓijrXr.

For k, r, s ∈ N and an (r, s)-tensor field T the quantity ∇kT is, without further specification
of vector fields with respect to which the covariant derivative is taken, an (r, s+ k)-tensor. The
metric induces a scalar product and norm also for tensors by

〈T, S〉 = gi1k1 . . . girkrgj1`1 . . . gjs`sT
i1...ir
j1...js

Sk1...kr
`1...`s

and |T | =
√
〈T, T 〉 for (r, s)-tensors T and S. With this we can explain the Lp-norm also for a

section X of a tensor bundle E over M by

‖X‖Lp(M) :=
(∫

M

|X|pdµg
)1/p

<∞

as well as the L2 scalar product.

For two vectors u, v ∈ Rd+1, we will use the notation

u⊗ v := uvT .

Therefore, u ⊗ v is a matrix s with entries sij = uivj and corresponds to the linear map
Rd+1 → Rd+1 : x 7→ u〈v, x〉Rd+1 .

We will often consider the case that M is immersed to Rd+1 by ϕ : M → Rd+1. In this
case the tangent space to ϕ(M) at a point ϕ(p) ∈ Rd+1 is given by the image of the differential
Tϕ(p)ϕ(M) = dϕ(TpM) and we write

Xi := ∂iϕ

for the induced basis vectors and after choosing an orientation we write ν : M → Sd for the
positively oriented unit normal to ϕ(M). We can pull back the metric on Rd+1 via ϕ by setting

gij = 〈Xi, Xj〉Rd+1 .

That is, we consider the metric given by the pullback of the metric on Rd+1 via ϕ. The pullback
is usually denoted by a ∗ symbol, hence we might write g = ϕ∗〈·, ·〉Rd+1 . In this case, we will
also use the notation dµϕ,∇ϕ,divϕ,∆ϕ to mean the quantities related to the metric induced by
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the immersion. For immersions, we will consider the signed area functional A and the signed
volume functional V at various points of this work. They are given by

A(ϕ) =
∫
M

dµϕ and V (ϕ) =
∫
M

〈ϕ, νϕ〉dµϕ.

Since Tϕ(p)ϕ(M) and Tν(p)Sd consist of all vectors v ∈ Rd+1such that v ⊥ ν(p) and since
Tϕ(p)ϕ(M) ∼= TpM , we can identify these spaces. The second fundamental form is the map

A : TpM × TpM → R,

that is given in local coordinates by

hij = 〈 ∂
2ϕ

∂i∂j
, ν〉Rd+1 = −〈∂iν,Xj〉Rd+1 = −g(dνXi, Xj).

Working with Riemannian manifolds, we will in general use the Einstein summation convention.
For example a tangential vector field v ∈ Γ(TM) will be denoted in local coordinates as
v = vi∂xi .Finally we introduce the mean curvature

H = gijhij .

When M is immersed to Rd+1 via ϕ and v : M → Rd+1 is a smooth vector valued map, we
define ∇ϕv and ∆ϕv component-wise as

∇ϕv =
d+1∑
α=1

eα ⊗∇ϕvα and ∆ϕv =
d+1∑
α=1

eα ⊗∆ϕv
α .

The tangential divergence is defined as usual by

divϕ v = gij〈∂iv,Xj〉

yielding the important identity H = −divϕ ν.

1.3 Plane Curves

Following the conventions in related literature, we will use different notation when we discuss
curves. Let γ : S1 → R2 be a smooth map. We identify S1 with [0, 1] if convenient. The
parameter in [0, 1] will mostly be denoted by x and we write γ̇(x) := d

dxγ(x). The length of a
differentiable curve is given by L(γ) =

∫ 1
0 |γ̇(x)|dx.

Definition 1.1 (Regular curve)
The map γ is called a regular curve, if for all x ∈ [0, 1] we have γ̇(x) 6= 0.

In this case we denote the unit tangent vector by τ := γ̇
‖γ̇‖ and the unit normal by ν, where

we choose the direction of ν so that (τ, ν) has positive orientation. For plane curves, we denote
the curvature by κ.

If γ is regular, it is possible to reparametrize γ by arc length. That is, there exists a strictly
increasing, bijective, and smooth map α : [0, 1]→ [0, L] such that ‖ d

dsγ(α−1(s))‖ ≡ 1. We call
s the arc length parameter. For a function f : S1 → R smoothness means smooth in charts.
Moreover, for y ∈ S1 we define the arc length derivative as

d
dsf

∣∣∣∣
y

:= 1
‖γ̇‖

d
dxf

∣∣∣∣
y

13
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and observe
d2

ds2 f = 1
‖γ̇(x)‖

d
dx

(
1

‖γ̇(x)‖
d

dxf(y)
)

= 1
‖γ̇(x)‖2

d2

dx2 f −
〈γ̇, γ̈〉
‖γ̇(x)‖4

d
dxf. (1.1)

In this notation τ = d
dsγ and

κ = 〈 d
dsτ, ν〉 = 〈 d2

ds2 γ, ν〉.

The curvature κ, τ and ν are related by the Frenet equations
d
dsτ = κν,

d
dsν = −κτ.

In the manifold notation from Section 1.2 we have

X = d
dxγ = ‖γ̇‖τ,

g =〈X,X〉 = 〈 d
dxγ,

d
dxγ〉 = ‖γ̇‖2,

∇gf =g−1 d
dxfX = ( d

dsf)τ =: ∇sf.

If v : S1 → R2is a vector field, the divergence is given by

div(v) = 〈 d
dsv, τ〉.

Applying this to the tangential gradient of f we find

div(∇sf) = 〈 d
ds

[(
d
dsf

)
τ

]
, τ〉 = d2

ds2 f.

1.4 Function Spaces on Manifolds

Theory of Sobolev spaces on open domains in euclidean space is explained in the books by
Evans [32] or Adams [1] and the most important results carry over to the manifold setting that
is e.g. treated in the Books by Aubin [5], Hebey [46] and Taylor [83–85]. For the following
definitions and theorems we follow Hebey [46, Chapter 2].

Definition 1.2 (Sobolev and Hölder Spaces)
Let (M, g) be an orientable smooth closed Riemannian manifold of dimension d ∈ N. For
1 ≤ p <∞, k ∈ N and f ∈ C∞(M) we set

‖f‖Wk,p(M) =
k∑
j=0
‖∇jf‖Lp(M).

The spaces W k,p are defined as closures of C∞(M) with respect to these norms.

We write Hk(M) to denote the Hilbert spaces W k,2(M) with

〈f1, f2〉Hk(M) =
k∑
j=0
〈∇jf1,∇jf2〉L2(M).

Let dg : M ×M → R denote the geodesic distance on (M, g). For f ∈ C0(M), k ∈ Nand
α ∈ (0, 1) we set

‖f‖Ck,α(M) =
k∑
j=0

sup
p∈M
|∇jf(p)|+ sup

r 6=s∈M

|∇jf(r)−∇jf(s)|
dg(r, s)α

14
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and
Ck,α(M) =

{
f : M → R continuous

∣∣‖f‖Ck,α(M) <∞
}

For the definition of fractional Sobolev spaces on manifolds, i.e. Besov and Bessel-potential
spaces, we refer to the work of Triebel [87,88]. In the subsequent chapters we will also use the
embedding theorems of Sobolev and Morrey and the Rellich-Kondrakov theorem.

Theorem 1.3 (Theorems 2.6, 2.7, 2.8, and 2.9 from [46])
Let (M, g) be a smooth closed Riemannian manifold of dimension d ∈ N. Let k, ` ∈ N∪ {0} with
k ≥ `, 1 ≤ p, q <∞ and α ∈ (0, 1) be fixed. If k − d

p ≥ `−
d
q , then

W k,p(M) ↪→W `,q(M)

and if k − d
p ≥ `+ α, then

W k,p(M) ↪→ C`,α(M).

These embeddings are compact, if k − d
p > `− d

q or k − d
p > `+ α, respectively.

Since we assume M to have no boundary, we state the mean value version of Poincaré’s
inequality.

Theorem 1.4 (Theorem 2.10 from [46])
Let (M, g) be a smooth closed Riemannian manifold of dimension d ∈ N and fix 1 < p < ∞.
Then there is C > 0 such that for all f ∈W 1,p(M) setting f̄ := 1

Vol(M,g)
∫
fdµg it holds that(∫

M

|f − f̄ |pdµg
)1/p

≤ C
(∫

M

|∇f |pdµg
)1/p

.

We will often consider immersions of smooth manifolds. For them we introduce the following
notation.

Definition 1.5
Let M be a smooth, closed and orientable manifold of dimension d ∈ N, then the set of
immersions is open in C1(M,Rd+1),we denote it by

C1
imm(M,Rd+1) =

{
ϕ ∈ C1(M,Rd+1)

∣∣∀p ∈M the map dϕ(p) : TpM → Rd+1 is injective
}
.

Moreover, we have for 2 ≤ k ∈ N the Banach space

C1(M,Rd+1) ∩Hk(M,Rd+1)

which we equip with the usual norm ‖ · ‖C1∩Hk = ‖ · ‖C1 + ‖ · ‖Hk . Then, the set

Hk
imm(M,Rd+1) = Hk(M,Rd+1) ∩ C1

imm(M,Rd+1).

is open in C1 ∩Hk.

1.5 Moving Hypersurfaces

For studying the evolution of hypersurfaces, we will follow the usual approach as explained
by Huisken, Polden [50, 76] or Mantegazza [68]. In the following, let M be a d-dimensional,
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smooth, closed, orientable manifold and ϕ : M → Rd+1 a smooth immersion. We equip M with
a Riemannian metric by pulling back the metric of Rd+1 along ϕ as in Section 1.2. Thus, a
smooth family ϕt of immersions yields a smooth family of Riemannian manifolds (M, gt). In
the following we will discuss some formulas for the evolution of geometric quantities of (M, gt)
as ϕt varies in time. These formulas are well established in literature. Huisken and Polden [50]
consider the more general case where ϕ is an immersion to a higher dimensional manifold N
rather than Rd+1, Mantegazza [68] considers essentially the situation described here and Kuwert
and Schätzle [55,56] derive their formulas in the context of immersions in euclidean space but
arbitrary codimension.

Definition 1.6
Let ϕt be a smooth family of immersions and let Ψt := ∂tϕt denote its time derivative. We can
decompose Ψt in its normal and tangential parts as

Ψt = ΨN
t νt + Ψk

tXk,t.

We say that ϕt is a normal family of immersions if and only if the tangential part of Ψt vanishes,
i.e. for all k = 1, ..., d we have Ψk

t ≡ 0.

The next lemma is a slight modification of a well known result, we follow the proof of
Mantegazza [68, Proposition 1.3.4].

Lemma 1.7
For T1, T2 ∈ R let (ϕt)t∈[T1,T2] be a smooth family of immersions and let Ψt := ∂tϕt denote
its time derivative. Then, for every s ∈ [T1, T2] there exists a family Ft,s : M → M of
diffeomorphisms such that Fs,s = IdM and ∂t(ϕt ◦ Ft,s) is normal along ϕt(M), that is there
exists a family of functions Vt,s : M → R such that ∂t(ϕt ◦ Ft,s) = Vt,sνt ◦ Ft,s).

Proof. We split Ψt in its normal and tangential part setting Ψt = ΨN
t νt + Ψk

tXk,t. Hence,
Ψk
tXk,t is a tangential vector field along ϕt(M). Since ϕt are immersions, dϕt is invertible on

its image and therefore, we can define a smooth family of vector fields on M by

Yt = −[dϕt]−1Ψk
tXk,t.

Since M is compact, by the theory of ordinary differential equations [59, Theorem 9.12], for
every s ∈ [T1, T2] we find a smooth family of maps Ft,s : M →M satisfying

∂tFt,s(p) = Yt(F (p)), Fs,s = IdM .

By uniqueness of solutions and smooth dependence on initial data for each t ∈ [T1, T2] the
map Ft,s is a smooth bijection. That it is indeed a diffeomorphism follows from the following
consideration analogous to the use of the Wronski determinant in the theory of ordinary
differential equations. We apply the rule for differentiation of determinants, that reads for A(t)
an invertible, time dependent matrix

d
dt det(A(t)) = det(A) tr(A−1∂tA(t)).
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Thus, using Fs,s = IdM and therefore det(dFs,s) = 1 we can calculate

d
dt det(dFt,s) = tr

(
dF−1

t,s

d
dtdFt,s

)
det(dFt,s)

= tr
(
dF−1

t,s d
( d

dtFt,s
))

det(dFt,s)

= tr
(
dF−1

t,s d
(
Y (Ft,s, t)

))
det(dFt,s)

= tr
(
dF−1

t,s

(
dY (Ft,s, t)dFt,s

))
det(dFt,s)

= tr
(
dY (Ft,s, t)

)
det(dFt,s)

and we conclude that

det(dFt,s) = det(Id) exp
(∫ t

s

tr
(
dY (Fτ,s, τ)

)
dτ
)
> 0.

Moreover, we see that

∂t(ϕt(Ft,s)) =Ψt(Ft,s) + dϕt(Ft,s)∂tFt,s
=Ψt(Ft,s)− dϕt(Ft,s)[dϕt(Ft,s)]−1Ψk

t (Ft,s)Xk,t(Ft,s)
=ΨN

t (Ft,s)νt(Ft,s),

that is ϕt ◦ Ft,s is normal along ϕt(M).

Definition 1.8
For T1, T2 ∈ R and a smooth family of smooth immersions (ϕt)t∈[T1,T2], we call

T :=
⋃

(p,t)∈M×[T1,T2]

{p} × {ϕt(p)} × {t}

the trajectory of ϕt. We say a function is a material function if its domain is M × [T1, T2] and
spatial if its domain is T .

Observe that with this definition the notion of a spatial function is well defined even if ϕt is
only a family of immersions rather than of embeddings.

For t ∈ R fixed, consider points x ∈ Rd+1 and p ∈ M such that x = ϕt(p). For a smooth
function f : Rd+1 × [T1, T2]→ R and a vector v ∈ Rd+1 we denote the directional derivative by
∂vf(x, t) := d

ds
∣∣
s=0 f(x+sv, t) and the tangential gradient by∇gtf(x, t) := gijt (p)∂Xi,tf(x, t)Xj,t.

This yields a splitting Df(x, t) = ∇gtf(x, t) + ∂νtf(x, t)ν ⊗ ν.

We have by the chain rule the identity

∂t [f(p, ϕt(p), t)] = ∂tf(p, ϕt(p), t) + ∂νtf(p, ϕt(p), t)ΨN
t (p) +∇gtf(p, ϕt(p), t) · (Ψk

tXk,t).

For a spatial function f that is defined on the trajectory T of ϕt it is not clear what the
expression ∂νtf(p, ϕt(p), t)ΨN

t (p) should mean. To that account, a useful notion of material
derivatives for quantities on trajectories is provided by Prüss and Simonett [77, §2.5.3].

Definition 1.9
Let ϕt be a family of immersions with trajectory T and let Ψt := ∂tϕt denote its time derivative.
Let Ft,s : M → M be a smooth two parameter family of diffeomorphisms of M such that
Ft,t = IdM and ηt,s = ϕt ◦Ft,s is normal along ϕt(M), whose existence is guaranteed by Lemma
1.7. For a spatial function g : T → R we call

D
Dtg

∣∣∣∣
(p,ϕ(p),t)

= ∂t (g(p, ϕt(p), t))
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the Lagrange (or material) derivative of g with respect to ϕt and

Dn

Dt g
∣∣∣∣
(p,ϕt(p),t)

= ∂s|s=0 (g(Ft+s,t(p), ηt+s,t(p), t+ s))

the normal derivative of g along ϕt.

To find the relation between the Lagrange and the normal derivative of a function on the
trajectory we cast the calculation Prüss and Simonett [77, §2.5.3] in a lemma.

Lemma 1.10
For T1, T2 ∈ R let (ϕt)t∈[T1,T2] be a family of immersions, T its trajectory, and f : T → R.Then,

D
Dtf = Dn

Dt f + 〈∇ϕt(M)f,Ψk
tXk,t〉.

Proof. First of all, we observe that since ϕt are immersions, around any (p, t) ∈ M × [T1, T2]
there is a neighborhood U , where the map (p, t) 7→ (ϕt(p), t) is a bijection. To prove the assertion
for all τ ∈ T , we may restrict our consideration to such a neighborhood. Therefore, we may
w.l.o.g. consider the situation exactly as discussed in [77, §2.5.3], where

T =
⋃

(p,t)∈M×[T1,T2]

{ϕt(p)} × {t},

and assume that f only depends on ϕt(p) ∈ Rd+1 and t.

Following the argument in [77, §2.5.3], we start by choosing an extension f̃ of f to an open
neighborhood of T in Rd+1 × [T1, T2].Using chain rule we see that in x = ϕt(p), we have

D
Dtf(x, t) = ∂t

(
f̃(ϕt(p), t)

)
= ∂tf̃(x, t) + 〈∇Rd+1 f̃(x, t),Ψt(p)〉

and
Dn

Dt f(x, t) = ∂s|s=0
(
f̃(ηt,t+s(p), t+ s)

)
= ∂tf̃(x, t) + ΨN

t 〈∇Rd+1 f̃(x, t), νt(p)〉.

Now splitting ∇Rd+1 f̃ = ∇ϕt f̃ + νt∂νt f̃ and ∂tϕt = ΨN
t νt + Ψk

tXk,t, we obtain the claimed
identity independent of the choice of the extension.

This lemma shows that in order to compute a material derivative of spatial quantities, it is
enough to compute the normal derivative and the surface gradient.

In order to study integral functionals on manifolds it is important to have a formula for
d
dt
∫
M
f(ϕ, t)dµϕt(M), when f : T → R. To find such formula, we need to calculate the evolution

of some geometric quantities associated to ϕ. We follow [77, §2.5.4] and [68, Sec. 1.2]. In the
following we drop the arguments of functions.

Lemma 1.11
Let ϕt : M → Rd+1 be a family of immersions with trajectory T and let Ψt := ∂tϕt denote its
time derivative. Let D

Dt denote the material time derivative along ϕt. For the canonical tangent
vectors Xi,t = ∂iϕt we find

∂tXi,t = ∂iΨt.

The metric changes according to

∂tgij,t = 2ΨN
t hij,t + gkj,t∂iΨk

t + gik,t∂jΨk
t .
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For the matrix gijt representing inverse of the matrix gij,t we find

∂tg
ij
t = −gi`t g

jk
t ∂tg`k,t.

Let f : T → R be a spatial quantity, then

d
dt

∫
M

fdµϕt =
∫
M

Dn

Dt f − fΨN
t Htdµϕt ,

where Ht is the mean curvature associated to ϕt That is, the time derivative of the integral only
depends on the normal derivative of f and the normal velocity of ϕt.

Proof. To keep the calculations as simple as possible, it is helpful to do them in the following
order and to use normal coordinates, i.e. we assume that in one point in space and time we
have 〈∂iXj , Xk〉 = Γkij = 0. Such coordinates can be constructed using the exponential map
exp : TpM →M . The first identity follows straight from the definitions,

D
DtXi,t = ∂iΨt.

For further calculations we split Ψt in a normal and a tangential part,

Ψt = ΨN
t νt + Ψk

tXk,t.

With this definition, we compute in normal coordinates and with help of the Weingarten equation

∂tgij,t =∂t〈Xi,t, Xj,t〉
=〈∂iΨt, Xj,t〉+ 〈Xi,t, ∂jΨt〉
=〈(∂iΨN

t )νt + ΨN
t ∂iνt + (∂iΨk

t )Xk,t + Ψk
t ∂iXk,t, Xj,t〉

+ 〈Xi,t, (∂jΨN
t )νt + ΨN

t ∂jνt + (∂jΨk
t )Xk,t + Ψk

t ∂jXk,t〉
=− 2ΨN

t hij,t + gkj,t∂iΨk
t + gik,t∂jΨk

t .

Differentiating
δik = gijt gjk,t

we find that
gjk,t∂tg

ij
t = −gij∂tgjk,t

and thus, multiplying with gk`t , summing up and renaming indices, we find

∂tg
ij
t = −gi`t g

jk
t ∂tg`k,t.

To find the derivative of the volume element, we apply the rule for differentiation of determinants,
that reads for A(t) an invertible, time dependent matrix

d
dt det(A(t)) = det(A) tr(A−1∂tA(t)).

Therefore, for gt = det(gij,t) we find

∂t
√
gt = 1

2√gt
gtδ

k
i g
ij
t ∂tgjk,t

=1
2
√
gt · δki g

ij
t (−2ΨN

t hjk,t + g`k,t∂jΨ`
t + gj`,t∂kΨ`

t

=−ΨN
t H + divϕt(M)(Ψk

tXk).
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We find using Gauß’ theorem

d
dt

∫
M

fdµϕt =
∫
M

∂t(f
√
gt)dx

=
∫
M

Dn

Dt f + 〈∇ϕt(M)f,Ψk
tXk,t〉 − f(ΨN

t Ht − divϕt(M)(Ψk
tXk,t))dµϕt

=
∫
M

Dn

Dt f − fΨN
t Htdµϕt .

We observe, that in this formula the right hand side does in particular not depend on the
tangential part of Ψt.

For curves, i.e. M = S1, the formulas above are, of course, still true, but can be simplified.
Moreover, we adapt the formulas to the notation explained in Section 1.3,so that it matches with
that of other authors (e.g. [21,28,91]) considering geometric evolution equations for curves. The
family of immersions is in the curve case denoted by γ, the metric tensor is simply g11 = |γ̇|2
and there is only one curvature quantity (up to orientation) that we denote by κ. We consider
a normal family γt = γ(·, t) with trajectory T and ∂tγ = V ν. The following formulas appear
almost verbatim in the literature (e.g. [28, (2.3)-(2.8)]). One finds

∂t∂s = ∂s∂t + V κ∂s,

∂tds = −V κds,
∂tτ = (∂sV )ν,
∂tν = −(∂sV )τ.

1.6 Multiplication and Composition in Sobolev Spaces

Dealing with non-linear partial differential equations one has to consider products of Sobolev
functions and their composition with classically differentiable functions. These topics are of
course closely related and we start with the first, the latter being an application then. The
results that are stated in the following can be found (in more general versions) in the Chapters 4
and 5 of the book by Runst and Sickel [79]. We state a simple version of their Theorems 4.8.2/1
and 4.8.2/2.

Theorem 1.12 (Multiplication in Sobolev spaces)
For m ∈ N0 and (M, g) a smooth, compact d-dimensional Riemannian manifold with empty or
C1 boundary, take 1 ≤ p, q, r <∞ such that r ≤ min(p, q) and

2m− d

p
− d

q
> m− d

r
.

Then, there exists C > 0 such that for all f ∈ Wm,p(M), g ∈ Wm,q(M) the product fg is in
Wm,r with the estimate

‖fg‖Wm,r(M) ≤ C‖f‖Wm,p(M)‖g‖Wm,q(M).

Remark 1.13 1. For p = q andm > d
p we haveWm,p(M) ↪→ C0(M) and 2m− d

p−
d
p > m− d

p .
Thus, Wm,p(M) is closed under multiplication. Banach spaces with such a multiplication
property are called Banach Algebras.

2. With the help of more advanced techniques one can prove that the theorem is also true
for Sobolev spaces of fractional order (e.g. [79, Theorem 4.8.2/1, 4.8.2/2]).
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3. There is the improved estimate

‖fg‖Wm,p(M) ≤ C
(
‖f‖Wm,p(M)‖g‖L∞(M) + ‖f‖L∞(M)‖g‖Wm,p(M)

)
. (1.2)

See [79, Theorem 4.6.4/2].

In view of Taylor series expansion one could expect that the Sobolev spaces which are
closed under multiplication are also closed under composition with sufficiently smooth functions.
Precisely, the following theorem [79, Theorem 5.5/2] holds.

Theorem 1.14
For m,N ∈ N and (M, g) a smooth compact Riemannian manifold of dimension d ∈ N with
empty or C1 boundary, take 1 ≤ p <∞ such that

m− d

p
> 0.

Then, for all f ∈ Cm(RN ) we have f(u) ∈Wm,p(M). If additionally f(0) = 0 holds, then for
R > 0 there is a constant C > 0 such that for all u ∈Wm,p(M)N with ‖u‖∞ ≤ R it holds

‖f(u)‖Wm,p(M) ≤ C(‖f‖Cm(B(0,R)))‖u‖Wm,p(M)(1 +Rm−1).

For f ∈ Cm+1(RN ), the induced composition operator is locally Lipschitz continuous, i.e. for all
R > 0 there is L > 0 such that for all u, v ∈ B(0, R) ⊂Wm,p(M)N

‖f(u)− f(v)‖Wm,p(M) ≤ L‖u− v‖Wm,p(M)N .

The Lipschitz constant L only depends on R and ‖f‖Cm+1(B(0,R)).

Applying this theorem to first variation of a composition operator shows that the operator is
Fréchet differentiable [79, Sec. 5.5.3].

Corollary 1.15
For d,m,N ∈ N k ∈ N0 and (M, g) a smooth compact d-dimensional Riemannian manifold with
empty or C1 boundary, take 1 ≤ p <∞ such that

m− d

p
> 0.

Then, for all f ∈ Cm+k+1(RN ) the map

F : Wm,p(M,RN )→Wm,p(M), u 7→ f(u)

is of class Ck
(
Wm,p(M,RN ),Wm,p(M)

)
and

DkF : Wm,p(M,RN )→ Lk
(
(Wm,p(M,RN )k,Wm,p(M)

)
is locally Lipschitz continuous, where Lk denotes the space of k-linear maps .

If f is analytic, so is F .

For spaces with continuous embedding to L∞ the non-autonomuous case follows immediately.
Theorem 1 in [79, Sec. 5.5.4] is even more general. We note the following.
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Corollary 1.16
For d,m,N ∈ N, k ∈ N0 and (M, g) a smooth compact d-dimensional Riemannian manifold with
empty or C1 boundary, let 1 ≤ p <∞ such that

m− d

p
> 0.

Then, for all f ∈ Cm+k+1(M × RN ) the map

F : Wm,p(M,RN )→Wm,p(M), u 7→ f(·, u(·))

is of class Ck
(
Wm,p(M,RN ),Wm,p(M)

)
and

DkF : Wm,p(M,RN )→ L
(
(Wm,p(M,RN )k,Wm,p(M)

)
is locally Lipschitz continuous.

If f is analytic, so is F .

We have the estimate

‖F (u)‖Wm,p(M) ≤ C(‖f‖Cm(M×B(0,‖u‖L∞(M))))‖u‖Wm,p(M)(1 + ‖u‖m−1
L∞(M))

+C‖f(·, 0)‖Wm,p(M).
(1.3)

The foregoing results tell us that the spaces Wm,p(M) for m > d/p inherit the properties
of C0. The statement of the next theorem is, that if m > d/p + 1, the spaces Wm,p also
have some properties of C1. Let M be a closed oriented manifold of dimension d, N a C∞-
manifold, and s an integer. We define the space Hs(M,N) of Sobolev maps between manifolds
and for s > d/2 + 1 the space of diffeomorphisms of M of Sobolev regularity s, denoted by
Ds(M) ⊂ Hs(M,M) ⊂ C1(M,M) as in [52, Chap. 1]. Then, the following theorem holds.

Theorem 1.17 (Theorem 1.2 from [52])
Let M be a closed oriented manifold of dimension d, N a C∞-manifold, and s an integer
satisfying s > d/2 + 1. Then for any r ∈ N0 ,

i) µ : Hs+r(M,N)×Ds(M)→ Hs(M,N), (f, ϕ) 7→ f ◦ ϕ

and

ii) inv : Ds+r(M)→ Ds(M), ϕ 7→ ϕ−1

are both Cr-maps.

We use this theorem to prove an approximation and reparametrization result for hypersurfaces.
For the approximation lemma we follow Prüss and Simonett [77, Sec. 2.3] and extend their
result on approximation of embedded hypersurfaces to immersed hypersurfaces.

Lemma 1.18
Let (M, g) be an orientable smooth closed Riemannian manifold of dimension d ∈ N and for
α ∈ (0, 1) let ϕ ∈ C1,α(M) be an immersion. Then, ϕ can be approximated in the sense that for
every ε > 0 there exists a smooth immersion ϕ∗, a function f∗ ∈ C1(M) and a reparametrization
Ψ ∈ C1(M,M) such that

ϕ ◦Ψ = ϕ∗ + f∗ν∗
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with ‖f∗‖C1(M) < ε. That is, we can write ϕ as a graph over ϕ∗. We call ϕ∗ a reference
immersion and ϕ∗(M)a reference surface for ϕ and f∗ the corresponding height function.

Moreover, if s ∈ N, s > d/2 + 1 and ϕ ∈ Hs(M,Rd+1), then Ψ ∈ Hs(M,M), ϕ ◦ Ψ ∈
Hs(M,Rd+1) and f∗ ∈ Hs(M).

Proof. Step 1: Approximation in C1(M)
Choosing a smooth partition of unity and arguing in local charts we follow e.g. the book by
Evans [32, Sec. 5.3, App. C.4] to find an approximating sequence ϕn ∈ C∞(M) by convolution
such that

ϕn → ϕ in C1(M).

We argue as follows. Let (Ui, xi)i∈I be a finite atlas for M with the following property: There
is r > 0 such that for all i ∈ I and p ∈ Ui with d(xi(p), ∂{xi(Ui)}) < r there exists j ∈ I such
that p ∈ Ui ∩ Uj . Let ξi be a subordinate partition of unity with the property that ξi(p) = 1 if
d(xi(p), ∂{xi(Ui)}) > r/2 and ξi(p) = 0 if d(xi(p), ∂{xi(Ui)}) < r/4. Moreover, let ζi be another
partition of unity with the property that ζi(p) = 1 if d(xi(p), ∂{xi(Ui)}) > r/8 and ζi(p) = 0 if
d(xi(p), ∂{xi(Ui)}) < r/16. That such specific collection of charts and subordinate partitions of
unity exists is guaranteed by the existence of compact exhaustions for manifolds.

Let η : Rd → R denote a symmetric convolution kernel such that supp η = B(0, 1) and∫
Rd ηdx = 1. For n ∈ N, n > 64

r we set ηn(x) = ndη(nx) and

ϕn =
∑
i∈I

ξi(·) ·
(
ηn ∗ (ζi · ϕ ◦ xi)

)
◦ x−1

i .

With this configuration, we need not consider the cut-off functions in the subsequent calculations.

Step 2: Parametrising one hypersurface over another
In general, let ϕ1 ∈ C1(M,Rd+1) and ϕ2 ∈ C2(M,Rd+1) be two immersions with associated
unit normals νi, let A2 be the second fundamental form associated to ϕ2 and set

A2,max = max
x∈M

|A2(x)|

and ε = 1
2(A2,max+1) . Following Prüss and Simonett [77, Section 2.3/3, pp. 67,68] we note that

‖ϕ1 − ϕ2‖C0(M) ≤ ε together with the condition ‖〈ν1, ν2〉‖C0(M) > 1/2 implies that there exists
Ψ ∈ C1(M,M) and f ∈ C1(M) such that for all p ∈M we have

ϕ1 ◦Ψ(p) = ϕ2(p) + f(p)ν2(p)

with f(p) = d(ϕ2(M), ϕ1 ◦Ψ(p)).

To use this argument to find a reference surface ϕ∗ for a C1 immersion ϕ, we have to control
the norms of the second fundamental forms of the approximating sequence.

Step 3: Estimates on the second fundamental form
The following argument is inspired by that of Conti, De Lellis and Székelyhidi [18, Proposition
1.6]. We consider the situation only in a single chart. Thus, let U ⊂ M be an open set,
x : U → Rd one chart as defined above and let η be asymmetricstandard convolution kernel.
Since ϕ ∈ C1,α(U) we have from Taylor expansion that for y1, y2 ∈ x(U) it holds

ϕ(x−1(y1))− ϕ(x−1(y2)) = D(ϕ ◦ x−1)(y1)(y1 − y2) + r(y1)(y1 − y2)
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with supy∈x(U) |r(y)(h)| ≤ C|h|1+α. Therefore, for p ∈ U and ϕn = (ηn ∗ (ϕ ◦ x−1)) ◦ x we have

|ϕn(p)− ϕ(p)| =

∣∣∣∣∣
∫
B(x(p),1/n)

ηn(x(p)− y)
(
ϕ(p)− ϕ(x−1(y))

)
dy

∣∣∣∣∣
=

∣∣∣∣∣
∫
B(x(p),1/n)

ηn(x(p)− y)
(
D(ϕ ◦ x−1)(x(p))(x(p)− y) + r(x(p))(x(p)− y)

)
dy

∣∣∣∣∣
and using the symmetry we conclude∫

B(x(p),1/n)
ηn(x(p)− y)D(ϕ ◦ x−1)(x(p))(x(p)− y)dy = 0.

Therefore, the asymptotic of the remainder r implies |ϕn(p)− ϕ(p)| ≤ Cn−1−α, establishing a
rate for the convergence of ϕn in C0. Conversely, considering ∂ijϕn we find

|∂ijϕn(p)| = |∂jηn ∗ ∂iϕ|

=

∣∣∣∣∣nd
∫
B(x(p),1/n)

n∂jη(n(x(p)− y))∂iϕ(y)dy

∣∣∣∣∣
≤ Cn.

Together these estimates imply that |Aϕn | ≤ Cn and |ϕn − ϕ| ≤ Cn−1−α. Inserting these
estimates in the C0 condition from step 2, we see that it is fulfilled for n > (4C)1/α. By
convergence of ϕn to ϕ in C1, for n large enough also the condition on the unit normals is
fulfilled. Then, we can parametrize ϕ over ϕn .

Step 4: The height function
Together, Step 1 and Step 2 imply the existence of diffeomorphisms Ψn and height functions
fn such that ϕ = ϕn ◦Ψn + (fnνn) ◦Ψn. We can derive the claimed C1-estimate for n large
enough with help of some explicit calculation, again following [77, Section 2.3/1, pp. 65,66].

The construction in Step 1 yields the following. For n large enough, such that the map
Λn : M × (−C/(n1+α), C/(n1+α))→ Rd+1, (x, r) 7→ ϕn(x) + rνn is smoothly invertible on its
image due to the curvature estimate, we denote the inverse map by (Πn, dn). Thus,

ϕ = ϕn ◦Πn ◦ ϕ+ (dn ◦ ϕ)(νn ◦Πn ◦ ϕ)

and fn = dn ◦ϕ. Hence, we have to show that ‖fn‖C1 → 0. Since |dn ◦ϕ| ≤ |ϕ−ϕn| ≤ Cn−1−α,
we see that fn → 0 in C0. We prove in the following that dfn → 0.

For y ∈ Λn
(
M, (−1/(n1+αC), 1/(n1+αC))

)
the derivative of dn is normal to ϕn(Πn(y)) and

given by Ddn(y) = νn(Πn(y)). Additionally, we have that y − ϕn(Πn(y)) = dn(y)νn(Πn(y)).
Differentiating this identity and justifying the invertibility of the first factor in the following we
have

DΠn(y) =
[
dϕn(Πn(y))− dn(y)dνn(Πn(y))

]−1(
IRd+1 − νn(Πn(y))⊗ νn(Πn(y))

)
.

Here,
(
IRd+1 − νn(Πn(y)) ⊗ νn(Πn(y))

)
is the projection onto dϕn(Πn(y))(TΠn(y)M), where

dϕn(Πn(y)) is invertible. Since |dνn| = |Aϕn | ≤ Cn and |dn| ≤ Cn−1−α we conclude that
|dn ◦ ϕdνn(Πn ◦ ϕ)| ≤ Cn−α and thus that also dϕn(Πn(y))− dn(y)dνn(Πn(y)) is invertible for
n large enough and |DΠn| is bounded.

Moreover, we have
∂ifn = νn ◦Πn ◦ ϕ · ∂iϕ.
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In a chart x : U → V ⊂ Rd around p ∈ M we analyze the expression Πn ◦ ϕ further. By the
formula for DΠn we find for y ∈ V that

|Πn(ϕ(x−1(y)))− y|
≤ |Πn(ϕn(x−1(y))) +DΠn(ϕn(x−1(y)))(ϕ(x−1(y))− ϕn(x−1(y)))− y|
≤ |DΠn(ϕn(x−1(y)))||ϕ(x−1(y))− ϕn(x−1(y))| ≤ Cn−1−α.

With the Cα regularity of ν and νn − ν we invoke again Taylor’s Theorem and furnish the
remainder terms r with an index indicating the function that is approximated. We infer

νn ◦Πn ◦ ϕ · ∂iϕ
= ν ◦Πn ◦ ϕ · ∂iϕ+ (νn − ν) ◦ (Πn ◦ ϕ) · ∂iϕ
= ν · ∂iϕ+ rν(Πn ◦ ϕ− Id) · ∂iϕ+ (νn − ν) · ∂iϕ+ r(νn−ν)(Πn ◦ ϕ− Id) · ∂iϕ.

This converges to 0 since ν · ∂iϕ = 0 and the asymptotics for the remainder terms. Thus we have

ϕn ◦Πn ◦ ϕ+ fnνn ◦Πn ◦ ϕ = ϕ.

By the chain rule, we observe that Πn ◦ ϕ : M → M converges to IdM in C1(M,M).
Therefore also the inverse map (Πn ◦ ϕ)−1 converges and fn ◦ (Πn ◦ ϕ)−1 converges to 0 in C1.
Therefore, for n large enough we set ϕ∗ = ϕn, ν∗ = νn, Ψ = (Πn ◦ ϕ)−1 and f∗ = fn ◦Ψ and
the claim

ϕ ◦Ψ = ϕ∗ + f∗ν∗

follows.

Step 5: Additional Sobolev regularity
Now assume ϕ ∈ Hs(M,Rd+1), then the Sobolev regularity of the compositions is preserved by
Theorem 1.17.

Remark 1.19
In Lemma 1.18 it would be pleasant to have an estimate that guarantees the smallness or at
least boundedness of the height functions also in the Sobolev norms. Unfortunately, to the
author’s knowledge, such estimate is not available in the literature.

A possible strategy of proof might consist in following the steps of the proof of Lemma 1.20,
applying the Banach space version of the implicit function theorem. However, it is not clear
to the author, how the non-linear operators can be estimated to obtain convergence without
imposing strong additional conditions on the regularity of the approximated immersion.

However, the next lemma shows that, when we are close enough to a fixed smooth immersion,
we can also control the Sobolev norm of the corresponding height function. The result is a
generalization of a lemma of Dall’Acqua, Pozzi, Spener [22, Lemma 4.1].

Lemma 1.20
Let (M, g) be an orientable smooth closed Riemannian manifold of dimension d ∈ N and let
ϕ∗ ∈ C∞(M,Rd+1) be a smooth immersion with normal ν∗ and fix k ∈ N, k > d/2 + 1. Then
for given σ > 0 there exists σ̃ > 0 such that for all ϕ ∈ Hk(M,Rd+1) with ‖ϕ−ϕ∗‖Hk(M,Rd+1) ≤
σ̃there exists a diffeomorphism Ψ ∈ Hk(M,M) and a function f ∈ Hk(M) with ‖f‖Hk(M) ≤ σ
such that

ϕ ◦Ψ = ϕ∗ + fν∗.
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Proof. We pursue a strategy similar to that of Dall’Acqua, Pozzi, Spener [22, Lemma 4.1].

In the following we consider M together with the pullback metric of the scalar product on
Rd+1 via ϕ∗ as a Riemannian manifold.Let πM denote the canonical projection TM →M and
let the space of vector fields on M with Sobolev regularity Hs be denoted by

Γs(TM) = {X ∈ Hs(M,TM)| πM (X) = IdM}.

Let U ⊂ Γs(TM) and V ⊂ Hs(M) denote open neighborhoods of the respective element 0. We
make use of the exponential maps for p ∈M denoted by expp : TpM →M to turn vector fields
into variations of diffeomorphisms. For IdM ∈ Hs(M,M) and X ∈ Γs(TM) we define IdM +X
by (IdM +X)(p) = expp(X(p)). We consider the map

F : U × V → Hs(M,Rd+1), (X, f) 7→ ϕ∗ ◦ (IdM +X) + fν∗ ◦ (IdM +X).

Since ϕ∗ is smooth, so is the exponential map, therefore yielding a smooth map of Sobolev
spaces. Thus, also the map F is smooth. In particular we use that by the definition of
expp we have d expp(0) = IdTpM , to find F ′(0, 0) = (dϕ∗, ν∗) which is a continuous bijection
Γs(TM)×Hs(M)→ Hs(M,Rd+1) and thus F is smoothly invertible in a neighborhood of ϕ∗
(see [95, Theorem 4.f, Corollary 4.37]). That is, for a sequence ϕk ∈ Hs(M,Rd+1) that converges
to ϕ∗ we conclude that there exist sequences fk ∈ Hs(M) and Xk ∈ Γs(M), fk, Xk → 0 such
that ϕk = ϕ∗ ◦ (IdM +Xk) + fkν

∗ ◦ (IdM +Xk). Since by Theorem 1.17 inversion is a continuous
operation onHs(M,M) and composition is continuous as a mapHs(M)×Hs(M,M)→ Hs(M),
we infer that fk ◦ (IdM +Xk)−1 → 0. Therefore, forσ > 0given, there exists σ̃ > 0such that for
all ϕ ∈ Hs(M,Rd+1) with ‖ϕ − ϕ∗‖Hs(M,Rd+1) ≤ σ̃ there is a diffeomorphism Ψ ∈ Hs(M,M)
and f ∈ Hs(M) with ‖f‖Hs(M) ≤ σ such that

ϕ ◦Ψ = ϕ∗ + fν∗.

1.7 Spaces for Parabolic Problems

For the treatment of parabolic problems, we need to apply the above results to Lebesgue-Bochner
spaces. In this section M is a smooth d-dimensional closed manifold, T0 ≥ T > 0 are real
numbers and p ∈ N, k ∈ Z are integers. We study the properties of spaces

H1(0, T ;Hk−2p(M)) ∩ L2(0, T ;Hk(M)).

Moreover, we fix T0 ∈ (0,∞) and it will be our main concern that the following estimates on
[0, T ) ⊂ [0, T0) are uniformin T < T0. We state some well known theorems.

Theorem 1.21 (Intermediate derivative theorem)
For all s ∈ (0, 1) there is a continuous embedding

H1(0, T ;Hk−2p(M)) ∩ L2(0, T ;Hk(M)) ↪→ Hs(0, T ;Hk−2ps(M)) .

Proof. The proof can be found for example in the books by Lions and Magenes [64, Theorem
2.3] or a paper of Denk, Saal and Seiler [24, Lemma 4.3].

Combining the intermediate derivative theorem with the usual embedding theorems for
Sobolev spaces (cf. Theorem 1.3) we obtain useful embedding results.
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Corollary 1.22
For p ∈ N, k ∈ Z, for all r ∈ [1,∞) with

1
r
≥ 2p+ d− 2k

4p+ 2d

there is an embedding

H1(0, T ;Hk−2p(M)) ∩ L2(0, T ;Hk(M)) ↪→ Lr(0, T ;Lr(M))

and for all α ∈ (0, 1) with
α ≤ 2k − 2p− d

4p+ 2
there is an embedding

H1(0, T ;Hk−2p(M)) ∩ L2(0, T ;Hk(M)) ↪→ Cα(0, T ;Cα(M)).

Proof. As stated in Theorem 1.21, for all s ∈ (0, 1) there is an embedding

H1(0, T ;Hk−2p(M)) ∩ L2(0, T ;Hk(M)) ↪→ Hs(0, T ;Hk−2ps(M)) .

To prove the embedding to the Lebesgue space we recall that the embeddings as stated in
Theorem 1.3 yield

Hs(0, T ;Hk−2ps(M))→ Lq(0, T ;Lr(M)),

for q, r ∈ [1,∞) satisfying 1/q ≥ 1−2s
2 =: 1

q∗ and 1/r ≥ d+4ps−2k
2d =: 1

r∗ . For s = k
2p+d we have

1
r∗

=d+ 4ps− 2k
2d =

d+ 4p k
2p+d − 2k
2d

=2p+ d− 2k
4p+ 2d =

1− 2k
2p+d

2 = 1− 2s
2 = 1

q∗
.

Moreover, the embedding results into Hölder spaces yield

Hs(0, T ;Hk−2ps(M))→ Cα(0, T ;Cβ(M))

for α, β ∈ (0, 1) satisfying α < 2s−1
2 =: α∗ and β < 2k−4ps−d

2 =: β∗. Thus, for s = 2k−d+1
2p+d we

have

2α∗ =4k − 2d+ 2
4p+ 2 − 1 = 4k − 4p− 2d

4p+ 2

=8kp+ 4k − 8kp+ 4pd− 4p− 4pd− 2d
4p+ 2 = 2k − 4p2k − d+ 1

4p+ 2 − d = 2β∗.

Even though there is no embedding H1/2(0, T ) → C0(0, T ), we have the following trace
theorem as stated by Amann [2, III.4.10.2] or again Denk, Saal, Seiler [24, Lemma 4.4]).

Theorem 1.23 (Trace spaces)
For p ∈ N, k ∈ Z there is a continuous embedding

H1(0, T ;Hk−2p(M)) ∩ L2(0, T ;Hk(M)) ↪→ BUC(0, T ;Hk−p(M)).

This yields continuity of the map

γ : H1(0, T ;Hk−2p(M)) ∩ L2(0, T ;Hk(M))→ Hk−p(M), f 7→ f(0).
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This map is surjective and has a continuous right-inverse. That is, for f0 ∈ Hk(M) we can find
a continuation f ∈ L2(0, T0;Hk) ∩H1(0, T0;Hk−2p) of f0 such that f(0) = f0 and

‖f‖L2(0,T0;Hk)∩H1(0,T0;Hk−2p) ≤ C‖f0‖Hk−p ,

In Corollary 1.25 we discuss how the dependence of the constants on T can be controlled.

As mentioned above, it will be important for the analysis of non-linear operators later on, to
control the constants for these embeddings.

Definition 1.24
On L2(0, T ;Hk) ∩H1(0, T ;Hk−2p) we define the norm ‖.‖XT by

‖f‖XT = ‖f‖L2(0,T ;Hk)∩H1(0,T ;Hk−2p) + ‖f(0)‖Hk−p .

This norm has the following useful property.

Corollary 1.25
The norm ‖.‖XT on L2(0, T ;Hk) ∩H1(0, T ;Hk−2p) is equivalent to the usual norm and for this
norm the constants C = C(T ) in the embeddings from Theorems 1.21 and 1.23 are uniformly
bounded for all T < T0.

Proof. The norm equivalence is implied by the trace theorem as stated in Theorem 1.23.

On X0
T :=

{
x ∈ L2(0, T ;Hk) ∩H1(0, T ;Hk−2p)|γ(x) = 0

}
we define the extension operator

E : X0
T → X0

T0
by

(Eg)(t) =


g(t) for t ≤ T,
g(T − t) for 2T ≥ t > T,

0 for t > 2T.

For this operator we have for u ∈ X0
T the estimate

‖Eu‖L2(0,T0;Hk)∩H1(0,T0;Hk−2p) ≤ 2‖u‖L2(0,T ;Hk)∩H1(0,T ;Hk−2p).

Let f ∈ L2(0, T ;Hk) ∩H1(0, T ;Hk−2p) be a function such that f(0) = f0 ∈ Hk−p. Then
we denote by fT0 ∈ L2(0, T0;Hk) ∩H1(0, T0;Hk−2p) a continuation of this f0 as in Theorem
1.23 and obtain for all s ∈ (0, 1) that

‖f‖Hs(0,T ;Hk−2ps) ≤ C
(
‖f − fT0‖Hs(0,T ;Hk−2ps) + ‖fT0‖Hs(0,T ;Hk−2ps)

)
.

Using the reflection E explained above we find

‖f‖Hs(0,T ;Hk−2ps) ≤‖E(f − fT0)‖Hs(0,T0;Hk−2ps) + ‖fT0‖Hs(0,T0;Hk−2ps)

≤C(T0)‖E(f − fT0)‖L2(0,T0;Hk)∩H1(0,T0;Hk−2p) + ‖fT0‖Hs(0,T0;Hk−2ps)

≤C(T0)(‖f‖L2(0,T ;Hk)∩H1(0,T ;Hk−2p) + ‖f(0)‖Hk−p)

and
‖f‖

C0,s− 1
2 (0,T ;Hk−2ps)

≤‖E(f − fT0)‖
C0,s− 1

2 (0,T ;Hk−2ps)
+ ‖fT0‖C0,s− 1

2 (0,T ;Hk−2ps)

≤C(T0)‖E(f − fT0)‖L2(0,T0;Hk)∩H1(0,T0;Hk−2p) + ‖fT0‖C0,s− 1
2 (0,T ;Hk−2ps)

≤C(T0)‖f‖L2(0,T ;Hk)∩H1(0,T ;Hk−2p) + ‖f(0)‖Hk−p),

with the constant C = C(T0) independent of T < T0.
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In the next lemma we use the intermediate derivative theorem in the following way. Philo-
sophically, if we consider some norm of a function not taking into account all the function’s
(space) regularity, we can trade the remaining (space) regularity for some time regularity. This
yields then, that for small times the deviation from the initial data will be small.

Lemma 1.26
For ` ∈ N satisfying ` ≤ 2p− 1, consider f ∈ L2(0, T ;Hk(M)) ∩H1(0, T ;Hk−2p(M)). We fix
τ ∈ (0, 1

2 ) and set

q =
{

2d
d+4pτ+2`−2k if d+ 4pτ + 2`− 2k > 0
q =∞ else.

Then, for all 1 < r < r∗ = 2
1−2τ there is s > 0 such that

‖∇`f‖Lr(0,T ;Lq(M)) ≤ CT s‖f‖XT

and there is s̃ such that
‖∇`f‖L2(0,T ;Hk−2p(M)) ≤ CT s‖f‖XT

If we have additionally that k − p− ` > d/2, then

‖∇`f‖BUC(0,T,C0(M)) ≤ CT s
(
‖f‖XT

)
+ C‖f(0)‖Hk−p(M). (1.4)

Proof. In the following, we do not denote the spatial domain M in the function spaces.
For f ∈ L2(0, T ;Hk) ∩ H1(0, T ;Hk−2p) as demanded in the statement of the theorem with
initial data

f(0, ·) ∈ Hk−p,

let f0,T ∈ L2(0, T ;Hk) ∩H1(0, T ;Hk−2p) be a continuation of f(0) with the property

‖f0,T ‖L2(0,T ;Hk)∩H1(0,T ;Hk−2p) ≤ C‖f0‖Hk−p ,

whose existence is guaranteed by the trace theorem as stated in Theorem 1.23. To generate a
factor Tα with α > 0, we use Hölders inequality in time, Sobolev embeddings (see Theorem 1.3)
in space and time, and Theorem 1.21. We calculate for 1 < r < r∗ = 2

1−2τ

‖∇`f‖Lr(0,T ;Lq) ≤T
1
r−

1
r∗ ‖∇`f‖Lr∗ (0,T ;Lq)

≤CT 1
r−

1
r∗ ‖∇`f‖Hτ (0,T ;Hk−2pτ )

≤CT 1
r−

1
r∗
(
‖∇`(f − f0,T )‖Hτ (0,T ;Hk−2pτ ) + ‖∇`f0,T ‖Hτ (0,T ;Hk−2pτ )

)
≤CT 1

r−
1
r∗
(
‖∇`(f − f0,T )‖XT + ‖f(0)‖Hk−p

)
≤CT 1

r−
1
r∗
(
‖f‖XT + ‖f(0)‖Hk−p

)
The other estimate is similar. We find with Theorem 1.21

‖∇`fT ‖BUC(0,T,C0)

≤Tα‖(fT − f0,T )‖C0,α([0,T ],C`) + ‖∇`f0,T ‖BUC(0,T,C0)

≤CTα‖fT − f0,T ‖XT + ‖∇`f0,T ‖BUC(0,T,C0)

≤CTα(‖fT ‖XT + ‖f0,T ‖L2(0,T ;Hk)∩H1(0,T ;Hk−2p)) + ‖∇`f(0)‖C0

≤CTα‖fT ‖XT + C‖f(0)‖Hk−p .

Here, any α ∈ (0, d/(4r)) is possible.
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We combine the previous results to study the mapping properties of composition operators
in the parabolic setting.

Lemma 1.27
For f ∈ Ck+2(M × [0, T )× R) and p, k ∈ N with k > d/2 + p the map

F : L2(0, T ;Hk) ∩H1(0, T ;Hk−2p)→ L2(0, T ;Hk) ∩H1(0, T ;Hk−2p),
u 7→ f(·, ·, u)

is well defined, of class Ck, and the k-th Fréchet derivative

DkF :L2(0, T ;Hk) ∩H1(0, T ;Hk−2p)→
Lk
(
(L2(0, T ;Hk) ∩H1(0, T ;Hk−2p))k, L2(0, T ;Hk) ∩H1(0, T ;Hk−2p)

)
is locally Lipschitz, where Lk denotes the space of k-linear maps.

Proof. For fixed t we infer by Theorem 1.14 that u 7→ f(·, t, u) is locally Lipschitz continuous in
Hk with Lipschitz constant L(t, R).Thus, for u1, u2 ∈ B(0, R) ⊂ L2(0, T ;Hk)∩H1(0, T ;Hk−2p)
we have

‖F (u1)− F (u2)‖L2(0,T ;Hk)∩H1(0,T ;Hk−2p) ≤ sup
t∈[0,T )

L(t, R)‖u1 − u2‖L2(0,T ;Hk)∩H1(0,T ;Hk−2p).

Here, supt∈[0,T ) L(t, R) is finite, since for all t ∈ [0, T ] the Lipschitz constant only depends
on R and ‖f‖Ck+2(B(0,R)) as stated in Corollary 1.15 in combination with the estimate (1.3).
Applying this to the derivatives of F yields the desired assertion.
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2
Curves and Vector Fields—an Anisotropic Approach

2.1 Vector Field in the Background

A firstapproach to study the interplay between evolving immersions and vector fields might
consist in adaption of the framework of Wheeler [91] to the mean curvature flow. Rather than a
spontaneous curvature, we interpret the ambient vector field as an additional weight in the arc
length measure.

Suppose M : R2 → R2 is a smooth vector field and γ : S1 → R2 is a regular smooth curve.
Let s be the arc length parameter of γ, τ and ν be the unit tangent and normal, respectively.
By κ we denote the curvature of γ. We consider the energy

EM (γ) =
∫
γ

1 + 〈M(γ(s)), τ(s)〉2ds.

Some elementary calculations show that this energy cannotbe interpreted as the length of the
curve in the plane furnished with a suitable Riemannian metric. It can be interpreted however as
an inhomogeneous and anisotropic surface energy. A brief discussion of the historical background
can be found in the introduction of this work.

Now we calculate the first variation of this specific energy. Let φ : S1 → R be a smooth
function. As this energy is invariant under reparametrization, we consider a family of nor-
mal variations γε = γ + εφν to determine the L2 gradient flow of the energy. To compute
d
dε
∣∣
ε=0EM (γε) the following formulas are very useful. For a quantity fε depending on ε we

write f ′ to mean d
dε
∣∣
ε=0 fε. We find for ε = 0 the relations

∂ε∂s = ∂s∂ε + φκ∂s

ds′ = −φκds
τ ′ = (∂sφ)ν
ν′ = −(∂sφ)τ
M ′ = φDMν.
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Thus,

d
dε

∣∣∣∣
ε=0

EM (γε) =
∫
γ

2〈M, τ〉 (〈M ′, τ〉+ 〈M, τ ′〉) ds+
∫
γ

(
1 + 〈M(γ(s)), τ(s)〉2

)
ds′

=
∫
γ

2〈M, τ〉 (〈φDMν, τ〉+ 〈M,∂sφν〉) ds−
∫
γ

(
1 + 〈M(γ(s)), τ(s)〉2

)
φκds.

To get rid of the term involving derivatives of φ we integrate by parts. Since the curve is closed,
we do not pick up any boundary terms and find

d
dε

∣∣∣∣
ε=0

EM (γε) = −
∫
γ

2φ∂s (〈M, τ〉〈M,ν〉) ds+
∫
γ

2φ〈DMν, τ〉〈M, τ〉ds

−
∫
γ

(
1 + 〈M(γ(s)), τ(s)〉2

)
φκds.

We interpret this as
(∇L2EM , φ)L2

and thus the normal velocity of the corresponding gradient flow is given by

V =− 〈∇L2EM , ν〉
=(1 + 〈M, τ〉2)κ+ 2∂s (〈M, τ〉〈M,ν〉)− 2〈DMν, τ〉〈M, τ〉
=(1 + 〈M, τ〉2)κ− 2〈DMν, τ〉〈M, τ〉

+ 2 (〈DMτ, τ〉〈M,ν〉+ κ〈M,ν〉〈M,ν〉+ 〈M, τ〉〈DMτ, ν〉 − κ〈M, τ〉〈M, τ〉)
=(1− |M |2 + 3〈M,ν〉2)κ+ 2 (〈DMτ, τ〉〈M,ν〉+ 〈DMτ, ν〉〈M, τ〉 − 〈DMν, τ〉〈M, τ〉) .

(2.1)

We used the fact that ν and τ form an orthonormal basis of R2 and thus |M |2 = 〈M,ν〉2 +〈M, τ〉2.
We observe that this flow is parabolic under the assumption that |M | < 1 globally.

This equation fits in the following general framework developed by Angenent, Oaks and Zhu
generalising the results of Gage, Hamilton and Grayson.

In the early 1990s Angenent published two articles [3, 4] in which he gave a short-time
existence result for a very general class of anisotropic geometric evolution problems. For closed
curves γ : S1 →M in a 2-dimensional manifold M he considered flows of the form

∂tγ = V (τ, κ)ν,

where τ is the unit tangent to γ, κ is its curvature and V is a suitable map from the set of
all possible tangents—the sphere bundle S1(M)–and R. Imposing growth and smoothness
conditions on V he was able to prove well-posedness of the evolution equation for curves with
merely p-integrable curvature, for a suitable p [3, Theorem A]. He also studied the formation of
singularities and succeeded to characterize the possible behavior with the additional assumption
of symmetry V (−τ,−κ) = −V (τ, κ) [4, Section 6]. This condition means that the evolution
does not depend on the orientation of the curve and also allows to further enlarge the class of
admissible initial curves, so that it contains the class of possible (reduced) limit curves in the
case of singularities [4, Theorem C]. This allows to define the notion of a weak solution that
can pass through singularities, resembling the result of the surgery procedure of Huisken and
Sinestrari [51] for the mean curvature flow of two-convex hypersurfaces. Oaks [73] was able to
characterize the formation of singularities even further. When a singularity occurs, the curve
either shrinks to a point or it loses a self-intersection. This implies, that embedded curves can
only develop singularities, when they shrink to a point.
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At the same time Gage [37] and Gage, Li [39] considered for curves γ : S1 → R2 and a
smooth, strictly positive and symmetric function α : S1 → R the flow

∂tγ = V (τ, κ) = α(τ)κν (2.2)

motivated by the curve shortening problem in Minkowski geometry. The main theorem in
this paper of Gage is the natural extension of his and Hamilton’s [36, 38] work on the curve
shortening problem in euclidean geometry to Minkowski geometry. The gradient flow of the
Minkowski length functional is an evolution of the form (2.2) and an initially convex curve
will shrink to a point with its shape converging in Hausdorff distance to the solution of the
isoperimetric problem in the Minkowski geometry. Proving the existence of self-similar solutions
Gage and Li [39, Corollary 0.2] were able to show that every evolution of the form (2.2) is the
curve shortening flow of a uniquely determined Minkowski length functional.

Grayson’s theorem [42] for the mean curvature flow states, that any embedded curve will
become convex under the curve shortening flow before a singularity can occur. That this is also
true for curve shortening in Minkowski geometry was proven by Zhu [96] building up on the
work of Oaks [73]. Indeed, his result is even more general. For a 2-dimensional manifold M
maps Φ,Ψ : S1(M)→ R obeying three conditions

(H1): Φ, S1(M)→ R are smooth and bounded.

(H2): There exists λ > 0 such that λ ≤ Φ ≤ λ−1.

(H3): For all T ∈ S1(M) it holds Φ(T ) = Φ(−T ) and Ψ(T ) = −Ψ(−T )

he considered the flow

∂tγ = (Ψ(τ, γ)κ+ Φ(τ, γ))ν.

He shows [96, Section 4] that if a singularity occurs in finite time, then γ shrinks to a point
p∗ ∈M , the asymptotic shape is given by the Minkowski isoperimetrix of the Minkowski length
functional associated to Φ(·, p∗) and the rescaled curves converge in C∞.

In our case, condition (H1) is fullfilled whenever M is smooth. Condition (H2) corresponds
to the parabolicity of the system and is ensured by the prerequisite that |M | < 1. Condition
(H3) is fullfilled since a change of sign in τ also implies the same change in ν = Rτ . Therefore,
the asymptotic behavior of the gradient flow (2.1) is determined by the result of Zhu.

2.2 Vector Field on the Curve

As a next attempt in studying a system that couples the motion of a curve to a vector field we
consider a vector field along the curve, analogous to the ideas of Bartels, Dolzmann, Nochetto
and Raisch [7]. A possible Energy in this context is given by

E(γ,M) = L(γ) +
∫
γ

〈M(s), τ(s)〉2ds+ 1
2

∫
γ

|∂sM(s)|2ds.

In computing the variation of this energy we have to make a choice for the change of M under a
normal variation of γ. The easiest choice which we will adopt in the following is M ′ = 0. That
is, M is constant under normal variations of γ. We set γε = γ + εφν and Mε = M + εη, where
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η : S1 → R2 is an arbitrary variation of M . We obtain

d
dε

∣∣∣∣
ε=0

E(γε,M) =−
∫
γ

2φ∂s (〈M, τ〉〈M,ν〉) ds+
∫
|∂sM |2φκds

−
∫
γ

(
1 + 〈M(s), τ(s)〉2 + 1

2 |∂sM(s)|2
)
φκds

d
dε

∣∣∣∣
ε=0

E(γ,Mε) =
∫
γ

(−Mss + 2〈M, τ〉τ) · ηds.

Thus, for the gradient flow we deduce analogous to the derivation in (2.1) the normal velocity
V = 〈γt, ν〉 as

V = κ(1− |M |2 + 3〈M,ν〉2 − 1
2 |∂sM |

2) + 2 (〈∂sM, τ〉〈M,ν〉+ 〈∂sM,ν〉〈M, τ〉)

and

∂tM = ∂ssM − 2〈M, τ〉τ
(2.3)

as the evolution equation for M . Here, the term − 1
2 |∂sM |

2 has the wrong sign that might cause
the equation to be backward parabolic in some parts of the curve. Since this is very undesirable,
we will start with the assumption, that at least for the initial condition we have

(1− |M |2 + 3〈M,ν〉2 − 1
2 |∂sM |

2) > 0.

Analysis of Some Special Cases

When we start the flow with initial condition M(0) ≡ 0, we see that the flow coincides with
the curve shortening flow. If we start with a round circle of radius R and for the vector field
the initial configuration is a constant multiple of the unit normal M(0) = Sν, the solution will
preserve the symmetry due to uniqueness and we can reduce the problem to a coupled system
of ordinary differential equations. To achieve this reduction, we observe that in the case of such
spherical symmetry, we have

κ = 1/R, ∂sM = −Sκτ = −(S/R)τ,
∂ssM = (−S/R2)ν, |M | = S,

〈M,ν〉 = S, 〈M, τ〉 = 0,
V = −Ṙ.

We conclude

Ṙ = − 1
R

(1− S2 + 3S2 − S2

2R2 )− 2S
2

R
= − 1

R
(1− S2 1

2R2 ),

Ṡ = − S

R2 ,

S(0) = S0 > 0,
R(0) = R0 > 0.

(2.4)

In the following, we want to study the behavior of this coupled system of ordinary differential
equations.
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Proposition 2.1
For all S0 ∈ R\{0} and R0 > 0 the initial value problem (2.4) has a unique solution (R(t), S(t))
and there is a Tmax > 0 such that for all t ∈ [0, Tmax) we have R(t) > 0 and S(t) 6= 0 and

lim
t→Tmax

R(t) = lim
t→Tmax

S(t) = 0.

Proof. First, we infer by the Picard-Lindelöf theorem, that there is a unique solution, that exists
until either R or S diverges to ∞ or R becomes 0. W.l.o.g. we assume that S0 > 0. If S0 = 0
the system reduces to Ṙ = − 1

R for which our claim holds. If S0 < 0 we consider the equations
for R and −S.

Step 1: S and R are bounded from above.
We observe, that Ṡ < 0 for all S,R > 0 and thus S is strictly decreasing. Also R is decreasing,
whenever R2 > S2

2 . Therefore, R is bounded from above by Rmax := max{R0,
S2

0
2 }.

Step 2: S decreases at least exponentially.
We observe that

Ṡ = − S

R2 < −
S

2Rmax
2 .

Thus, due to a comparison principle for ordinary differential equations [90, §9], S(t) is bounded
from above by the solution of the ordinary differential equation

u̇ = − u

2R2
max

, u(0) = S0

which is solved by
u(t) = S0e

− 1
2R2

max
t
,

which becomes arbitrarily small as t→∞.

Step 3: R and S can only vanish simultanuously.
By inspection of the ordinary differential equation (2.4) R is increasing, if R2 < S2

2 . This implies,
that R can only go to zero, when S does. Next we show, that S is bounded from below by a
positive constant, whenever R is. This follows from comparing S to the solution of

u̇ = − 2u
R2

min
, u(0) = S0

which is solved by
u(t) = S0e

− 2
R2

min
t
.

Step 4: The interval of existence is finite.
We want to gain insights on the ratio of S and R. We can assume without loss of generality that

R2 >
S2

2 . (2.5)

If this condition does not hold from the beginning, the differential equation implies that R is
non-decreasing while S is decreasing exponentially. Thus, at a certain point t0, we will have
equality in (2.5). At this point Ṙ(t0) = 0 and Ṡ(t0) < 0. Comparing the difference quotients at
t0, for all h > 0 small enough we will have

R2(t0 + h) > S2(t0 + h)
2 .

If (2.5) is true for t1 ∈ [0, Tmax) it remains true for all t ∈ [t1, Tmax). To see this, let

tc = inf{t > t1, R
2(t) ≤ S2(t)/2}.
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By the differential equation we see that Ṙ(tc) ≥ 0 and Ṡ(tc) < 0. Again considering difference
quotients implies that for all h > 0 small enough R2(tc − h) < S2(tc − h)/2. But this is a
contradiction to the minimality of tc.

To conclude finite extinction time, we need a suitable upper bound for R. For α ∈ R, we
derive the equation

(RSα)· =ṘSα + αRSα−1Ṡ

=− Sα

R
(1− S2

2R2 )− αRSα−1 S

R2

=− Sα

R
(1− S2

2R2 )− αS
α

R

=− Sα

R
(1 + α− S2

2R2 ).

We observe, that this term is negative, when

1 + α− S2

2R2 > 0 ⇔ R2 >
S2

2 + 2α. (2.6)

We consider the special case α = −3/4. Our aim is to obtain an estimate of the form

RS−3/4 < C

and then to conclude
R2 < CS3/2.

We see that if RS−3/4 is non-decreasing, then from (2.6) we have R2 ≤ 2S2 and thus R2S−3/2 ≤
2S1/2 ≤ 2S1/2

0 . On the other hand, if RS−3/4 is decreasing, then it is bounded from above by the
initial value or its value at the last stationary point, where it started to decrease. But in this point
we have R2 = 2S2 ≤ 2S(0)2. This implies for all t ∈ [0, Tmax) that R2(t) < C(R0, S0)S3/2(t) for
a suitable constant C(R0, S0) > 0. We put this in the equation for Ṡ to see

Ṡ = − S

R2 <
S

CS3/2 = − 1
CS1/2 .

Therefore, comparing S to the solution of

u̇ = − 1
Cu1/2 , u(0) = S0

which has on [0, CS3/2
0 ) the solution

u(t) =
(
S

3/2
0 − t/C

)2/3
,

we see that the maximal time of existence is finite.

All steps together prove the proposition.

Numerical experiments reproduce the behaviour predicted by the above proposition. S and
R tend to zero in finite time and if we start with R0 <

S0√
2 we see that R reaches its maximum,

when R2 = S2

2 . For the plots in figures 2.1 and 2.2 Matlab’s ode45 routine was used.

Evolution of Important Quantities

Our first objective is to determine whether the equation remains parabolic, if the initial data is
suitable. We would like to apply a minimum principle to see that

1− |M |2 − 1
2 |Ms|2 + 3〈M,ν〉2.
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Figure 2.1: Plots for S0 = R0 = 1.
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Figure 2.2: Plots for S0 = 2, R0 = 1.

has a fixed sign. The formula for interchange of arc length and time derivatives yields

∂t∂sM =∂s∂tM + κV ∂sM

=∂2
ss(∂sM)− 2(〈∂sM, τ〉τ + κ〈M,ν〉τ + κ〈M, τ〉ν) + κV ∂sM.

Moreover,

∂t〈M,ν〉 =〈Mt, ν〉+ 〈M,νt〉
=〈Mss, ν〉 − ∂sV 〈M, τ〉

∂s〈M,ν〉 =〈Ms, ν〉 − κ〈ν, τ〉

For a smooth vector valued function u(s) iterated product rule yields

∂s|u|2 =2〈u, ∂su〉
∂2
ss|u|2 =2〈u, ∂2

ssu〉+ 2|∂su|2.

Thus, we have

∂t|M |2 =2〈Mss,M〉 − 4〈M, τ〉2,
∂ss|M |2 =2〈Mss,M〉+ 2|Ms|2,
∂t|Ms|2 =2〈∂2

ssMs − 2(〈Ms, τ〉τ + κ〈M,ν〉τ + κ〈M, τ〉ν) + κVMs,Ms〉,
∂ss|Ms|2 =2〈∂2

ssMs,Ms〉+ 2|Mss|2,
∂t〈M,ν〉2 =2〈M,ν〉(〈Mss, ν〉 − ∂sV 〈M, τ〉),
∂ss〈M,ν〉2 =2〈M,ν〉(〈Mss, ν〉 − 2κ〈Ms, τ〉 − κ2〈M,ν〉 − κs〈M, τ〉) + 2(∂s〈M,ν〉)2.

37



CHAPTER 2. CURVES AND VECTOR FIELDS—AN ANISOTROPIC APPROACH

We use these identities to obtain an equation for

|M |2 + 1
2 |Ms| − 3〈M,ν〉2

to show that this quantity cannot attain the value 1, what would imply loss of parabolicity. We
calculate

∂t〈M,ν〉2 = ∂ss〈M,ν〉2 − 2∂sV 〈M,ν〉〈M, τ〉+ 4κ〈M,ν〉〈Ms, τ〉
+2κ2〈M,ν〉2 + 2κs〈M,ν〉〈M, τ〉 − 2(∂s〈M,ν〉)2

and hence

∂t(|M |2 + 1
2 |Ms|2 − 3〈M,ν〉2)

= ∂ss(|M |2 + 1
2 |Ms|2 − 3〈M,ν〉2)

−4〈M, τ〉2 − 2|Ms|2 − |Mss|2 − 6(∂s〈M,ν〉)2 − 2〈Ms, τ〉2

−2κ〈M,ν〉〈τ,Ms〉 − 2κ〈M, τ〉〈ν,Ms〉+ κV |Ms|2 + 6κ2〈M,ν〉2

−6∂sV 〈M,ν〉〈M, τ〉+ 12κ〈Ms, τ〉〈M,ν〉+ 6κs〈M, τ〉〈M,ν〉.

Examining the signs of the involved terms it seems rather difficult rearrange them in a manner
that allows the application of a minimum principle. We present some numerical experiments in
the appendix of this work.
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3
A Helfrich-Type Model for Biomembranes

In his seminal work, Helfrich [47] discussed different types of elastic energies for models of bilipid
membranes. In the following we discuss the analytic properties of an energy for biomembranes-
taking into account the bending energy as well as a term stemming from a vector field on the
surface representing the orientation of the bilipid molecules the membrane consists of. This
model was introduced by Bartels, Dolzmann, Nochetto and Raisch [7] in 2011. It is a generalized
form of a Helfrich energy, that penalizes the deviation of the surface’s mean curvature from a
spontaneous curvature. There have been different approaches on how to choose this spontaneous
curvature. In some cases it is considered constant [21,28] or it is given by a vector field on the
surrounding space [91]. The approach of Bartels, Dolzmann, Nochetto and Raisch tries to take
the molecular structure of bio membranes into account explaining the spontaneous curvature by
the above mentioned vector field on the moving surface. The model is discussed in detail in the
following section.

Let M be a smooth, orientable manifold of dimension d ∈ N, then we recall for k ∈ N, k ≥ 2
the notation from Definition 1.5 introducing C1

imm(M,Rd+1) and Hk
imm(M,Rd+1).

Let ϕ : M → Rd+1 be a smooth immersion. We can pull back the metric of Rd+1 and the
unit normal ν via ϕ, to have a Riemannian manifold (M, g). For a map n : M → Rd+1 we can
calculate the gradient, divergence and Laplacian as explained in Section 1.2.

For physical constants λ > 0 and δ ≥ 0 we are interested in the analytic properties of the
energy functional E : H2

imm(M,Rd+1)×H1(M,Rd+1)→ R given by

E(ϕ, n) = 1
2

∫
M

(divϕ νϕ − δ divϕ n)2 dµϕ + λ

2

∫
M

|∇ϕn|2 dµϕ. (3.1)

Moreover, from a physical point of view one may want to impose additional constraints. Let
ωd+1 denote the volume of B(0, 1) ⊂ Rd+1. For V0, A0 ∈ R with A0 ≥ nV

d
d+1

0 ωd+1 we may
consider the constraints

Fixed signed volume enclosed by ϕ(M):

Fixed surface area of ϕ(M):

Length constraint for n:

V (ϕ) =
∫
M

ϕ · νϕ dµϕ = V0,

A(ϕ) =
∫
M

1 dµϕ = A0,

∀p ∈M : ‖n(p)‖Rd+1 = 1

(3.2)
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In the remainder of this chapter, we will discuss analytic properties of this energy functional.
We apply the direct method of calculus of variations and derive the Euler-Lagrange equations
to study existence and regularity of minimizers in the case of curves, i.e. d = 1. Furthermore,
from the Euler-Lagrange equations, we obtain an L2-gradient flow equation as a model for the
motion of a vesicle.

3.1 Scaling Properties

We want to address briefly the scaling properties of the energy introduced above. As the energy
is a combination of the Willmore energy with the Dirichlet energy it inherits their scaling
behavior.

LetM be a d-dimensional smooth manifold and ϕ : M → Rd+1 an immersion. For 0 < λ ∈ R,
also λϕ is an immersion and we can compare the induced metrics and mean curvature. Since

gij,ϕ = 〈∂iϕ, ∂jϕ〉Rd+1

we see that
gij,λϕ = λ2gij,ϕ.

As the tangent vectors Xi,λ = ∂i(λϕ) = λ∂iϕ are only scaled by the factor λ, it holds for all
i = 1, . . . , d and λ > 0 that ν ⊥ Xi,λ and thus the unit normal is invariant under scaling of the
immersion. Thus,

hij,λϕ = 〈∂ij(λϕ), νλ〉 = λhij,ϕ

and
Hλϕ = gijλϕhij,λϕ = λ−1Hϕ.

For the surface measure we find

dµλϕ =
√

det(gij,λϕ) = λd dµϕ.

Now let f : M → R be a C1 map, then

∇λϕf = gijλϕ∂ifXj,λϕ = λ−1∇ϕf

and for a not necessarily tangential vector field v : M → Rd+1 we have

divλϕ v = gijλϕ〈∂iv,Xj,λϕ〉 = λ−1 divϕ v.

Putting these formulas together we observe that the behavior of the energy (3.1) under a scaling
of the immersion depends on the dimension d of the manifold M . We find

E(λϕ, n) = λd−2E(ϕ, n).

That is, in the case d = 2 of surfaces the energy is invariant under scaling of the immersion,
whereas in the case of curves, that is d = 1, dilation with λ > 1 reduces the energy. In higher
dimensions, shrinking will decrease the energy.

3.2 An Adaption of the Energy for Curves

In view of the foregoing discussion, in the case M = S1 we add a penalization term for the length
of the curve. That is, for a regular curve γ : S1 → R2 and a vector field n : S1 → R2 we set

Eα(γ, n) = E(γ, n) + αL(γ). (3.3)
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Without loss of generality, we can restrict our analysis to the case α = 1, since for t > 0 we have

Eα(αtγ, n) = α−tE(γ, n) + α1+tL(γ)

and thus with t = − 1
2 we find

E1(γ, n) = α−1/2Eα(α−1/2γ, n)

after rearranging the terms. In the following, we will simply write E for curves and surfaces to
designate the penalized and non-penalized energy, respectively.

3.2.1 Existence of minimizers

With a bound on the length of curves along any minimizing sequence we can deduce the existence
of minimizers.

Theorem 3.1
For δ ≥ 0, λ > 0 and U = H2

imm(S1,R2)×H1(S1,R2) the energy E : U → R given by

E(γ, n) =
∫
γ

1
2(κ+ δ div(n))2 + λ

2 |∂sn|
2 + 1 ds

has a smooth global minimizer. There also exists a global minimizer if we impose any combination
of the constraints in (3.2).

Moreover, there is a constant C = C(δ, λ) > 0 such that for all (γ, n) ∈ U it holds
C

E(γ, n) ≤ L(γ) ≤ E(γ, n). (3.4)

Proof. We start with the study of the uncronstrained problem.Using the invariance of the energy
under translation and reparametrization we take steps along the usual concept of the direct
method, proving existence of a minimizer by showing weak convergence of a minimizing sequence
in H2(S1,R2)×H1(S1,R2). But since the open set H2

imm(S1,R2)×H1(S1,R2) is neither convex
nor closed, we have to show that the weak limit lies in U . Smoothness of the minimizer is then
guaranteed by Theorem 3.2.

We start by observing that by Young’s inequality with ε = 1
2 + λ

4δ2 for all (γ, n) ∈ U we have∫
γ

(κ+ δ div(n))2 + λ|∂sn|2 ds =
∫
γ

κ2 + 2δκdiv(n) + δ2 div(n)2 + λ|∂sn|2 ds

≥
∫
γ

λ

2δ2 + λ
κ2 + λ

2 |∂sn|
2 ds,

when we use that we can estimate ‖ div(n)‖L2 ≤ ‖∂sn‖L2 . Moreover, from Poincaré’s inequality
for ∂sγ (see [28, (2.18)]) we have

4π2 ≤ L(γ)
∫
γ

κ2 ds.

The exact value of the Poincaré constant can be seen by considering Fourier series expansions.
Together, these elementary estimates provide a non-trivial, global lower bound for E:

E(γ, n) = 1
2

∫
γ

(κ+ δ div(n))2 + λ|∂sn|2 ds+ L(γ)

≥ 1
2

λ

2δ2 + λ

∫
γ

κ2 ds+ L(γ)

≥ 2π2λ

2δ2 + λ
L−1(γ) + L(γ).
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From this, we obtain for all (γ, n) ∈ U that

E ≥ 2
√

2π2λ

2δ2 + λ
and L−1(γ) ≤ 2δ2 + λ

2π2λ
E(γ, n).

Let γi, ni, i ∈ N be a minimizing sequence. Since E is invariant under translations of γ and n
and under reparametrization of γ we can assume without loss of generality for all i ∈ N that γi
is parametrized proportional to arc length and that∫

γi

γi ds = 0 and
∫
γi

ni ds = 0. (3.5)

Therefore, along the minimizing sequence the energy reduces to

E(γi, ni) = L−1(γ)1
2

∫ 1

0

∣∣∂2
xγi + δ〈∂xni, ∂xγi〉R∂xγi

∣∣2 + λ|∂xni|2 dx+ L(γ).

We introduce R as the rotation with angle π/2 mapping τ to ν. Thus,

‖∂xni‖2L2 ≤
2
λ
L(γ)E(γi, ni)

and
‖∂2
xγi‖2L2 ≤ 2L(γ)E(γi, ni).

Hence, by Poincaré’s inequality the minimizing sequence is bounded in the reflexive space
H2(S1,R2)×H1(S1,R2) and therefore has a weakly convergent subsequence that we also refer
to as (γi, ni) ⇀ (γ∗, n∗) in H2(S1,R2)×H1(S1,R2). Since H2 ↪→ C1 compactly we have that
L(γi)→ L(γ∗) > 0 and that γ∗ is parametrized proportional to arc length and thus a regular
curve.Therefore we conclude that (γ∗, n∗) ∈ U .

Since norms are weakly sequentially lower semi-continuous and L(γi) are positive and
converging to a positive quantity, the energy is also lower semi-continuous and thus

E(γ∗, n∗) ≤ lim
i→∞

E(γi, ni),

i.e. (γ∗, n∗) is a global minimizer.

Considering suitably scaled ellipses of different eccentricity shows that the set of admissible
curves is non-empty for any combination of the constraints (3.2).Choosing a minimizing sequence
that fulfills the imposed constraints, it will have a weak limit by the arguments above. Observe
that the condition (3.5) of vanishing mean value for the components of n is only used to infer
boundedness of the minimizing sequence in L2. This condition is obsolete when ‖n‖∞ = 1 is
guaranteed already by the constraint.

Since the constraining maps L(γ), A(γ) and |n| are continuous on C1 and C0 respectively,
the constraints will be preserved under weak convergence due to the compact embedding of
H2(S1,R2)×H1(S1,R2) ↪→ C1(S1,R2)× C0(S1,R2).

3.2.2 Regularity of stationary points

Once we have established the existence of minimizers, we use the Euler-Lagrange equation to
prove their regularity. Indeed, the following result holds true for all stationary points of the
energy.

Theorem 3.2
If a regular closed plane curve γ ∈ H2

imm(S1,R2) together with a vector field n ∈ H1(S1,R2)
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is a stationary point of the energy E from (3.3) with constants δ ≥ 0, λ > 0 and with any
combination of the constraints (3.2), then there is a reparametrization Ψ : S1 → S1 such that
(γ, n) ◦Ψ is smooth.

Since we want to prove regularity of a stationary point with an equality constraint, we need
a ’Lagrange multiplier’ theorem for Banach space valued constraints. We cite the book by
Deimling.

Theorem 3.3 (Theorem 26.1 from [23])
Consider real Banach spaces X, Y and Br(x0) ⊂ X, E : Br(x0) → R and a continuously
differentiable map F : Br(x0)→ Y , with F (x0) = 0 and R(F ′(x0)) closed. Suppose also that

E(x0) = min{E(x)|x ∈ Br(x0) and F (x) = 0}.

Then there exist ’Lagrange multipliers’ λ ∈ R and ϕ ∈ Y ∗, not all zero, such that

λE′(x0) + (F ′(x0))∗ϕ = 0.

If R(F ′(x0)) = Y , then λ 6= 0.

With this tool, we can prove the regularity theorem.

Proof of Theorem 3.2. We adapt the proof by Dall’Acqua and Pluda [20] to our setting.

We observe that for a pair (γ, n) ∈ H2
imm × H1 we know that the curvature is square

integrable, i.e. κ ∈ L2(S1), and we can reparametrize the curve γ by arc length through a map
Ψ : S1 → S1. Moreover, we see that the set H2

imm ×H1 is open in H2 ×H1 since the embedding
H2 ↪→ C1 is continuous.

Step 1: We determine the Euler-Lagrange equation.
In a first step, we show that E is C1 as a map from H2 ×H1 → R in an open neighbourhood of
any point with finite energy and we identify the Fréchet derivative E′ of E, that is a map in
C(H2 ×H1, (H2 ×H1)′). For (γ, n) ∈ H2

imm ×H1, with γ parametrized by arc length, and an
arbitrary pair of functions (ϕ, η) ∈ H2 ×H1 we consider the first variation

d
dε

∣∣∣∣
ε=0

E(γ + εϕ, n+ εη).

For curves, we have a very explicit formula for the above expression. Let γε be given by

γε = γ + εϕ,

then
d
dε

∣∣∣∣
ε=0
|γ̇ε| =

〈ϕ̇, γ̇〉
|γ̇|

= 〈∂sϕ, ∂sγ〉|γ̇|

and thus, using the identity for the second arc length derivative (1.1) we obtain for the curvature
vector −→κ := ∂2

sγ the identity
d
dε

∣∣∣∣
ε=0

−→κ ε = d
dε

∣∣∣∣
ε=0

γ̈ε
|γ̇ε|2

− γ̇ε〈γ̇ε, γ̈ε〉
|γ̇ε|4

= ϕ̈

|γ̇|2
+ (−2) γ̈

|γ̇|3
〈∂sϕ, ∂sγ〉|γ̇|

−
[
ϕ̇〈γ̇, γ̈〉
|γ̇|4

+ γ̇〈ϕ̇, γ̈〉
|γ̇|4

+ γ̇〈γ̇, ϕ̈〉
|γ̇|4

+ (−4) γ̇〈γ̇, γ̈〉
|γ̇|5

〈∂sϕ, ∂sγ〉|γ̇|
]

= ∂ssϕ− 2−→κ 〈∂sϕ, ∂sγ〉 − γ̇
[
〈ϕ̇, γ̈〉
|γ̇|4

+ 〈γ̇, ϕ̈〉
|γ̇|4

− 6 〈γ̇, γ̈〉
|γ̇|4

〈∂sϕ, ∂sγ〉
]
.
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With the modeling assumption (cf. [7, p. 20]) nε ≡ n, yielding ∂εn = 0, and denoting by R the
rotation with angle π/2 mapping τ to ν, we find

d
dε

∣∣∣∣
ε=0

divε(n)νε = d
dε

∣∣∣∣
ε=0

1
|γ̇ε|3

〈ṅ, γ̇ε〉Rγ̇ε

= −3 1
|γ̇|3
〈∂sϕ, ∂sγ〉〈ṅ, γ̇〉Rγ̇ + 1

|γ̇|3
〈ṅ, ϕ̇〉Rγ̇ + 1

|γ̇|3
〈ṅ, γ̇〉Rϕ̇

= −3〈∂sϕ, ∂sγ〉〈∂sn, ∂sγ〉ν + 〈∂sn, ∂sϕ〉ν + 〈∂sn, ∂sγ〉R∂sϕ.

We use dominated convergence, the above identities, and the relation 〈ν, γ̇〉 = 0, to compute
d
dε

∣∣∣∣
ε=0

E(γε, n) = d
dε

∣∣∣∣
ε=0

∫
γε

1
2 |∂

2
sεγε + δ divε(n)νε|2 + λ

2 |∂sεn|
2 + 1 dsε

= d
dε

∣∣∣∣
ε=0

1
2

∫ 1

0

∣∣∣∣ γ̈ε|γ̇ε|2 − γ̇ε〈γ̇ε, γ̈ε〉
|γ̇ε|4

+
(
δ

1
|γ̇ε|3

〈ṅ, γ̇ε〉
)
Rγ̇ε

∣∣∣∣2 |γ̇ε|dx
+ d

dε

∣∣∣∣
ε=0

λ

2

∫ 1

0
| 1
|γ̇ε|

ṅ|2|γ̇ε|dx+
∫ 1

0
|γ̇ε|dx

=
∫
γ

〈
(κ+ δ div(n))ν, ∂2

sϕ− 2κ〈∂sϕ, ∂sγ〉ν
〉

ds

+
∫
γ

〈
(κ+ δ div(n))ν,−3δ〈∂sn, τ〉〈∂sϕ, τ〉ν + δ〈∂sn, ∂sϕ〉ν + δ〈∂sn, τ〉R∂sϕ

〉
ds

+ 1
2

∫
γ

(κ+ δ div(n))2〈∂sϕ, ∂sγ〉ds+ λ

2

∫
γ

−|∂sn|2〈∂sϕ, ∂sγ〉ds+
∫
γ

〈∂sϕ, ∂sγ〉ds.

The variation with respect to the vector field is easier to compute. For η ∈ H1(S1,R2) and
nε = n+ εη we find

d
dε

∣∣∣∣
ε=0

E(γ, nε) = d
dε

∣∣∣∣
ε=0

∫
γ

1
2 |∂

2
sγ + δ div(nε)ν|2 + λ

2 |∂snε|
2 + 1 ds

=
∫
γ

〈∂2
sγ + δ div(n)ν, δ div(η)ν〉+ 〈∂sn, ∂sη〉ds.

That the first variation is indeed the Fréchet derivative follows from the continuous embedding
H2 ↪→ C1 in one space dimension and Hölder’s inequality. By inspection of the L2 products
given above, we see that for all (γ, n) ∈ H2

imm ×H1 and (ϕ, η) ∈ H2 ×H1 the map

E′(γ, n)(ϕ, η) = d
dε

∣∣∣∣
ε=0

E(γ + εϕ, n+ εη) ≤ C(γ, n)‖(ϕ, η)‖H2×H1

is a continuous linear operator and that E′ depends continuously on γ and n.

For the maps

A : H2(S1,R2)×H1(S1,R2)→ R, (γ, n) 7→
∫
γ

1 ds,

V : H2(S1,R2)×H1(S1,R2)→ R, (γ, n) 7→
∫
γ

〈γ, ν〉ds,

G : H2(S1,R2)×H1(S1,R2)→ H1(S1), (γ, n) 7→ ‖n‖2R2 − 1,

realizing the constraints—observe that G maps to H1 as H1 is closed under multiplication in
dimension one—we obtain the derivatives

A′(γ, n)[ϕ, η] =
∫
γ

〈∂sϕ, ∂sγ〉ds,

V ′(γ, n)[ϕ, η] =
∫
γ

〈ϕ, ν〉+ 〈γ,R∂sϕ〉+ 〈γ, ν〉〈∂sϕ, ∂sγ〉ds,

G′(γ, n)[ϕ, η] = 2〈n, η〉R2 .
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Summarizing the above considerations we obtain the Euler-Lagrange equation with Lagrange
multipliers as a necessary condition that a minimizer must fulfill according to Theorem 3.3.
Observe, that A′ and V ′ are linearly independent if and only if γ∗ is not a round circle. In this
case, γ∗ is already smooth and the regularity of n∗ follows by the usual theory for the Laplace
equation. Thus, we can assume in the following that the differential of the constraining map is
surjective.That is, in the following we consider (γ∗, n∗) ∈ H2

imm(S1,R2)×H1(S1,R2) for which
there exist a, b ∈ R such that for all ϕ ∈ H2(S1,R2) we have[ ∂

∂γ
E(γ∗, n∗) + a

∂

∂γ
A(γ∗, n∗) + b

∂

∂γ
V (γ∗, n∗)

]
ϕ = 0.

Here we mean by ∂
∂γ the Frechét derivative with respect to the first component. We observe

that with the exception of the first term in ∂
∂γE, only the first derivative of ϕ is involved. We

rearrange the terms to obtain∫
γ∗

〈
(κ∗ + δ div(n∗))ν∗, ∂2

sϕ
〉

ds

=
∫
γ∗

((
(κ∗ + δ div(n∗)

)(
2κ∗ + 3δ div(n∗)

)
− 1

2
(
(κ∗ + δ div(n∗))2 − λ|∂sn∗|2

)
+ 1
)
〈∂sϕ, ∂sγ∗〉

−
(
(κ∗ + δ div(n∗)

)
(
(
δ〈∂sn∗, ∂sϕ〉+ δ div(n∗)〈ν∗, R∂sϕ〉

)
ds

+a
∫
γ∗
〈∂sϕ, ∂sγ∗〉ds+ b

∫
γ∗
〈ϕ, ν∗〉+ 〈γ∗, R∂sϕ〉+ 〈γ∗, ν∗〉〈∂sϕ, ∂sγ∗〉ds =: F (ϕ).

(3.6)

Step 2: The quantity κ∗ + δ div(n∗) is essentially bounded.
Since we know that κ∗, div(n∗) ∈ L2(S1) and τ, ν ∈ L∞(S1), we can estimate the right hand
side with

|F (ϕ)| ≤ C‖∂sϕ‖∞.

Thus,
|F (ϕ)| ≤ C‖ϕ‖W 1,∞(S1) ≤ C‖ϕ‖W 2,1(S1)

by the special embedding W 2,1(S1) ↪→W 1,∞(S1) that is only true in one space dimension. This
estimate shows that for a stationary point (γ∗, n∗) also∫

γ∗
(κ∗ + δ div(n∗))〈ν∗, ∂ssϕ〉ds ≤ C‖ϕ‖W 2,1(S1).

Still following the lines of [20, Proof of Proposition 4.1] let σ ∈ C∞(S1,R2) be a smooth map
and observe that we may assume that γ∗ is parametrized by arc length, i.e. |∂xγ∗| = L(γ∗) > 0
is constant. We set

ϕ̃(x) =
∫ x

0
|∂xγ∗(y)|2

∫ y

0
σ(t) dtdy.

For α(σ) := ∂sϕ̃(1)− 2ϕ̃(1), β(σ) := ϕ̃(1)− ∂sϕ̃(1) we set

ϕ(x) = ϕ̃(x) + αx+ βx2.

Consequently,

ϕ(0) = ϕ(1) = 0, ∂sϕ(0) = ∂sϕ(1) = 0 and ∂2
sϕ = σ + 2 β

|∂xγ∗|2

and thus ϕ ∈W 2,2(S1,R2), with

|α(σ)|, |β(σ)|, ‖∂sϕ‖∞ ≤ C‖σ‖L1(S1).
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Plugging this special test function into equation (3.6) we see that∫
γ∗

(
κ∗ + δ div(n∗)

)
〈ν∗, σ〉ds ≤ C‖σ‖L1 .

Therefore, for i = 1, 2 both maps σ 7→
∫
γ∗

(
κ∗ + δ div(n∗)

)
ν∗i σi ds can be extended to map

ξi ∈
(
L1(S1)

)∗ that is for all u ∈ L1(S1) represented by a function zi ∈ L∞(S1) via ξi(u) =∫
γ∗
ziuds. For all v ∈ C∞(S1) however, we know that

∫
γ∗

(
(κ∗ + δ div(n∗))ν∗i − zi

)
v ds = 0

and thus (κ∗ + δ div(n∗))ν∗i = zi in L2(S1). From this and ν∗ ∈ L∞ we conclude that
κ∗ + δ div(n∗) ∈ L∞(S1).

Step 3: We analyze the Lagrange multiplier for ‖n∗‖R2 ≡ 1.
We turn to the equation for the variation with respect to n. Here, the Lagrange multiplier is an
element ϕ ∈ H1(S1,R)′. In a point (γ∗, n∗) where the constraint G(γ∗, n∗) = 0 is satisfied, the
derivative

G′(γ∗, n∗) : H2 ×H1 → H1, (ϕ, u) 7→ 2〈n∗, u〉R2

is onto, since we can explicitly construct a right inverse as follows. When ‖n∗‖R2 ≡ 1, we define
a map H : H1(S1,R)→ H2(S1,R2)×H1(S1,R2) by

w 7→ (0, 1
2wn

∗)

that is well defined, linear and continuous since H1 is closed under multiplication for a one-
dimensional domain. As 〈n∗, n∗〉R2 ≡ 1 we conclude that

G′(γ∗, n∗) ◦H = IdH1(S1) .

To avoid confusion, in the following we will use the symbol † to denote an adjoint operator. The
Banach space version of the Lagrange multiplier theorem as stated in Theorem 3.3 now yields
the existence of ϕ ∈ H1(S1,R)∗ such that

∂E

∂n
(γ∗, n∗) + (G′)†(γ∗, n∗)ϕ = 0

Multiplying the equation by the dual operator H† we find

ϕ = −H† ∂E
∂n

(γ∗, n∗).

For an element u ∈ H1(S1,R) we use ϕ(u) = −H† ∂E∂n (γ∗, n∗)(u) = ∂E
∂n (γ∗, n∗)(Hu) and obtain

∂E

∂n
(γ∗, n∗)(Hu) =

∫
γ∗
〈∂sn∗, ∂s(n∗u)〉+ (κ∗ + δ div(n∗)) div(n∗u) ds

=
∫
γ∗
u〈∂sn∗, ∂sn∗〉+ (κ∗ + δ div(n∗))(udiv(n∗) + 〈n,∇u〉) ds

≤ C(‖u‖∞ + ‖u‖W 1,1(S1)).

Here we used that from 〈n∗, n∗〉R2 ≡ 1 we infer 〈n∗, ∂sn∗〉R2 = 0 and that we already know
κ∗ + δ div(n∗) ∈ L∞(S1).

Thus, for (γ∗, n∗) we have for all η ∈ H1(S1,R2) that

0 =
∫
γ∗
〈∂sn∗, ∂sη〉+ (κ∗ + δ div(n∗)) div(η) ds− ϕ(G′η)

=
∫
γ∗
〈∂sn∗, ∂sη〉+ (κ∗ + δ div(n∗)) div(η) ds

−
∫
γ∗
〈n∗, η〉〈∂sn∗, ∂sn∗〉+ (κ∗ + δ div(n∗))(〈n∗, η〉div(n∗) + 〈n∗,∇〈n∗, η〉〉) ds.
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Using again (κ∗ + δ div(n∗)) ∈ L∞(S1) and that W 1,1(S1) is a Banach algebra, we estimate∫
γ∗
〈∂sn∗, ∂sη〉ds

=
∫
γ∗

(κ∗ + δ div(n∗)) div(η) ds

−
∫
γ∗
〈n∗, η〉〈∂sn∗, ∂sn∗〉+ (κ∗ + δ div(n∗))(〈n∗, η〉div(n∗) + 〈n∗,∇〈n∗, η〉〉) ds

≤ C‖η‖W 1,1(S1).

(3.7)

For σ ∈ C∞(S1,R2) we plug the test function

η(x) =
∫ x

0
|γ(t)|σ(t) dt−

(∫ 1

0
|γ(t)|σ(t) dt

)
x

into (3.7) and conclude again by duality that ∂sn∗ ∈ L∞(S1) and hence also κ∗ ∈ L∞(S1).

Step 4: We establish regularity for distributional derivatives.
Examining F further we can exploit the additional regularity of κ∗ and n∗ to estimate

|F (ϕ)| ≤ C‖ϕ‖W 1,1(S1).

Integrating by parts in the left hand sides of (3.6) and (3.7), we observe that the distributional
derivatives of κ∗ + δ div(n∗) and ∂sn∗ are indeed in L∞, which yields (κ∗ + δ div(n∗)) ∈W 1,∞.
Integrating by parts in the equation for n∗, we obtain n∗ ∈ W 2,∞ and hence κ∗ ∈ W 1,∞.
Interpreting (3.6) and (3.7) as weak formulations of elliptic partial differential equations with
L2 right hand sides, we can use L2 regularity theory for elliptic equations [83, Ch. 5, Theorem
11.1]for a bootstrap procedure and inductively improve the regularity of κ∗ and n∗. From this
we conclude (γ∗, n∗) ∈ C∞(S1).

Remark 3.4
One is now tempted to conjecture what the minimizing shape might look like. Looking at
the calculations in Section 3.5 one could assume that the symmetric configuration of a circle
together with a multiple of the unit normal is optimal in the unconstrained setting. But as soon
as constraints come into play, the situation becomes rather involved and numerical experiments
show a variety of different and potentially rather wild, at least numerically stable, configurations.

3.3 The L2-Gradient Flow

We return to the general setting of immersions ϕ of a d-dimensional manifold M to Rd+1 and
vector fields n on M . We obtain a geometric evolution equation to model the motion of a
membrane that is not an equilibrium point of the energy E(ϕ, n) from (3.1) as a gradient flow.
To that account we take the first variation of the energy under normal perturbations of ϕ and
arbitrary perturbations of n. Then, we can apply the theory from Section 1.5. Following the
calculations of Bartels, Dolzmann, Nochetto and Raisch in [7] and integrating by parts we obtain
a gradient flow dynamic for ϕ and n.

Proposition 3.5
For a smooth immersion ϕ : M → Rd+1 and a smooth vector field n : M → Rd+1 the first
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variation of the energy (3.1) for smooth functions Ψ : M → Rand η : M → Rd+1 is given by

δE

δϕ
(ϕ, n)(Ψνϕ) = 〈Hϕ + δ divϕ n,∆ϕΨ + Ψ|∇ϕνϕ|2 − δΨ∇ϕn : ∇ϕν + δ(νTϕ∇ϕn) · ∇ϕΨ〉L2

− 1
2 〈(Hϕ + δ divϕ n)2 + λ|∇ϕn|2, HϕΨ〉L2 − λ〈(∇ϕn)T :

[
∇ϕνϕ(∇ϕn)T

]
,Ψ〉L2

and

δE

δn
(ϕ, n)(η) = δ〈Hϕ + δ divϕ n,divϕ η〉L2 + λ〈∇ϕn,∇ϕη〉L2 .

The gradient flow equation for a time dependent family of immersions ϕ : M × [0, T )→ Rd+1

and vector fields n : M × [0, T )→ Rd+1 with respect to the L2 scalar product is given by

∂tϕ =
[
−∆ϕ(Hϕ + δ divϕ n)− (Hϕ + δ divϕ n)|∇ϕνϕ|2 + δ(Hϕ + δ divϕ n)∇ϕn : ∇ϕνϕ

+ δ divϕ((Hϕ + δ divϕ n)νTϕ∇ϕn) + λ(∇ϕn)T :
[
∇ϕνϕ(∇ϕn)T

]
+ 1

2(Hϕ + δ divϕ n)2Hϕ + λ

2 |∇ϕn|
2Hϕ

]
νϕ,

∂tn =λ∆ϕn+ δ∇ϕ(Hϕ + δ divϕ n) + δ(Hϕ + δ divϕ n)Hϕνϕ.

(3.8)

Proof. We consider the family of immersions given by ϕε = ϕ+ εΨν0 which is normal at ε = 0.
In view of Lemma 1.11 the time derivative of a surface integral of a spatial function does not
depend on the tangential part of the time derivative of the family of immersions. Therefore, it
is sufficient to consider only a normal variation of ϕ. We furnish all geometric quantities that
depend on ε with the respective index and write f ′ to mean ∂ε|ε=0 fε for such a quantity fε.
Lemma 1.11 already provides some formulas, we continue the calculation following e.g. Nochetto
and Dŏgan [26]. Differentiating

1 = 〈νε, νε〉 and 0 = 〈νε, Xj,ε〉

we see that ∂ενε is tangential. Thus,

〈ν′, Xj〉 = −〈ν,X ′j〉 = −〈ν, ∂j(Ψν)〉 = −〈ν, ∂jΨν〉 = −∂jΨ.

For a tangential vector v ∈ TpM we have the representation v = gij〈v,Xi〉Xj . We find

ν′ = −gij∂iΨXj = −∇Ψ.

We compute the evolution of the mean curvature

H ′ = ∂ε|ε=0 divϕε(νε) = − ∂ε|ε=0 (gijε (∂iνε) ·Xj,ε)
=2Ψhijhij + divϕ(∇Ψ)− (gij∂iν · ((∂jΨ)ν + Ψ∂jν)
=∆ϕΨ + Ψ|Aϕ|2.

Here, Aϕ is the second fundamental form of ϕ. The only terms that require additional effort
are ∂ε|ε=0 divϕε(n) and ∂ε|ε=0 |∇ϕεn|2. We follow [7] and recall, that for a map v : M → Rd+1

the expression ∇ϕv is short for the matrix
∑
α eα ⊗ ∇ϕvα. The rows of this matrix are the

tangential gradients of the components of v. Thus, for two such vector fields v, w, we find the
following identities. For the matrix scalar product we have

∇ϕv : ∇ϕw = gij〈∂iv, ∂jw〉.

For a function f : M → R we have

∇ϕv∇ϕf =
∑
α

eα(gijϕ ∂ivα∂jf)
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and for matrix multiplication

∇ϕv(∇ϕw)T =
∑
α,β

eα ⊗ eβ(gijϕ ∂ivα∂jwβ) =
∑
β

∇ϕv∇ϕwβ .

From here, we suppress the index ϕ. Observe that it was a modeling assumption in [7, p. 20] to
set nε ≡ n and thus have n′ = 0, which we will adopt in the following. Using these formulas
and the Weingarten relation ∇νXi = ∂iν = −hikgk`X` we calculate

∂ε|ε=0 divε(nε) = ∂ε|ε=0
(
gijε 〈∂inε, Xj,ε〉

)
=2Ψhk`gkig`j〈∂in,Xj〉+ gij〈∂in, ν∂jΨ + ΨhkjXk〉
=− 2Ψ∇ν : ∇n+ νT∇n · ∇Ψ + Ψ∇ν : ∇n

and

∂ε|ε=0 |∇εnε|
2 = ∂ε|ε=0

∑
α

gijε ∂in
α
ε ∂jn

α
ε

=
∑
α

2Ψhk`gkig`j∂inα∂jnα

=− 2Ψ
∑
α

∇nα · ∇ν∇nα

=− 2Ψ(∇n)T :
[
∇ν(∇n)T

]
.

For sufficiently regular ϕ and n repeatedly integrating by parts yields an L2-gradient-like
structure for this first variation that constitutes the gradient flow equation (3.8).

The proof of well-posedness of this flow is given in Chapter 4, where we follow Huisken and
Polden [50, Chap. 7] and Mantegazza [68, Chap. 1, App. A], including the cases of area and
volume constraints as well as additional lower order components in the energy.

We will construct a solution, that solves equation (3.8) only up to tangential motion away
from time 0. This can be corrected by reparametrizing M by solving an ordinary differential
equation as in the proof of Proposition 1.3.4 in Mantegazza’s book [68]. In our case, however,
we have to take into account what happens to n under reparametrization of M .

Lemma 3.6 (Reparametrization of solutions)
For T > 0, let ϕ : M × [0, T )→ Rd+1 and n : M × [0, T )→ Rd+1 be an immersion and a vector
field. Given a tangential vector field X : M × [0, T )→ Rd+1 with X(p, t) ∈ dϕ(p, t)[TpM ], i.e.
X ∈ Γ(ϕ∗TM), if (ϕ, n) is a smooth solution of the system

∂tϕ =
[
−∆ϕ(Hϕ + δ divϕ n)− (Hϕ + δ divϕ n)|∇ϕν|2 + δ(Hϕ + δ divϕ n)∇ϕn : ∇ϕνϕ

+ δ divϕ((Hϕ + δ divϕ n)νTϕ∇ϕn) + λ(∇ϕn)T :
[
∇ϕνϕ(∇ϕn)T

]
+ 1

2(Hϕ + δ divϕ n)2Hϕ + λ

2 |∇ϕn|
2Hϕ

]
νϕ +X,

∂tn =λ∆ϕn+ δ∇ϕ(Hϕ + δ divϕ n)− δ(Hϕ + δ divϕ n)Hϕνϕ +∇ϕnX,

then there is a family of diffeomorphisms Ψ : M × [0, T )→M such that

(ϕ̃(p, t), ñ(p, t)) := (ϕ(Ψ(p, t), t), n(Ψ(p, t), t))

solves the original equation (3.8).
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Proof. Let Ψ : M × [0, T ) → M be the family of diffeomorphisms constructed in Lemma 1.7
and set

(ϕ̃(p, t), ñ(p, t)) := (ϕ(Ψ(p, t), t), n(Ψ(p, t), t)),

then dϕ(Ψ(p, t), t)∂tΨ(p, t) = −X(p, t) and by the chain rule

∂tϕ̃(p, t) =∂tϕ(Ψ(p, t), t) + dϕ(Ψ(p, t), t)∂tΨ(p, t),
∂tñ =∂tn(Ψ(p, t), t) +∇ϕn(Ψ(p, t), t)dϕ(Ψ(p, t), t)∂tΨ(p, t).

That is, (ϕ̃(p, t), ñ(p, t)) is a solution of the original equation (3.8).

In Chapter 5 we will mainly consider the evolution of geometric quantities during the flow
for curves. Therefore, we state the evolution equation for curves explicitly.

Remark 3.7
Let γ : S1× [0, T )→ R2 be a family of planar curves with tangent τ , unit normal ν and curvature
κ and let n : S1 × [0, T ) → R2 be a time dependent vector field. Then, we can also slightly
simplify the evolution equation using the formulas from Section1.3 yielding

∇n : ∇ν = (∂snτT ) : (∂sντT ) = −κdivn

and
∇nT : ∇ν(∇n)T = −κ|∂sn|2.

Thus, the equation for curves reads

〈∂tγ, ν〉 =− ∂2
s (κ+ δ divn)− κ2(κ+ δ div(n))

− δ(κ+ δ divn)κdivn+ δ div
(
(κ+ δ div(n))νT∇n

)
+ 1

2κ(κ+ δ div(n))2 − λ

2κ|∇n|
2 + κ

∂tn =λ∂2
sn+ δ∇(κ+ δ divn) + δ(κ+ δ divn)κν + 〈∂tγ, τ〉∇nτ.

(3.9)

3.4 The Projected L2-Gradient Flow

In this section, we compute the projection of the full L2-gradient of E on the tangent space of
the set fulfilling some of the constraints stated in (3.2). This projected gradient flow will still
decrease the energy but obey the imposed constraints during the evolution. We remark the
following about gradient flows with constraints: For k,m ∈ N and given an energy functional
E : Rk → R and a smooth function g : Rk → Rm, m < k, we can consider the gradient flow of E
subject to the constraint of g being constant. As long as the derivative of g has full rank, meaning
that the gradients of the component functions gi, i = 1, . . . ,m are linearly independent, for
c ∈ Rm the level set g = c is a smooth submanifold of Rk of codimension m or empty.Let Ng(x)
denote the linear subspace spanned by the gradients of gi(x). This space is then orthogonal to
the tangent space of the level set g = c at the point x. Then we consider the flow

ẋ(t) = − grad E(x(t)) + PNg(x(t))(grad E(x(t))) = −PTg(x(t))(grad E(x(t))),

where PNg(x(t)) and PTg(x(t)) are the orthogonal projections onNg(x(t)) and Tg(x(t)), respectively.
Since the gradient of a function on a submanifold can be obtained by projecting the full gradient
of an extension of the function to the surrounding space, it is reasonable to consider this flow as
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the gradient flow of E with respect to the constraint g(x(t)) = g(x(0)).Using that orthogonal
projections are idempotent and self-adjoint we obtain from

d
dtE(x(t)) = −〈grad E(x(t)), PTg(x(t))(grad E(x(t)))〉 ≤ 0

and
d
dtgi(x(t)) = 〈grad gi(x(t)),− grad E(x(t)) + PNg(x(t))(grad E(x(t)))〉 = 0

that the energy still decreases during the flow and the condition g = c is preserved during the
flow. In our setting, g has three components: One is the area functional, the second is the
enclosed volume and the third is the Hilbert space valued length condition for the vector field.
Projecting onto the normal spaces yields corresponding correction terms.

Hence, if one considers a geometric flow for an immersion ϕ : M × [0, T )→ Rd+1 with normal
velocity v(ϕ), that is 〈∂tϕ, νϕ〉 = v(ϕ), an area and volume preserving version is obtained by
choosing the new normal velocity

vconstrained(ϕ) = v(ϕ)−
∫
M

v(ϕ) dµϕ
1∫

M

1 dµϕ
−
∫
M

v(ϕ)(Hϕ −Hϕ) dµϕ
(Hϕ −Hϕ)∫

M

(Hϕ −Hϕ)2 dµϕ
.

(3.10)
Here, Hϕ denotes the mean value of the mean curvature on the surface

Hϕ = 1∫
M

1 dµϕ

∫
M

Hϕ dµϕ.

We calculated the derivative of the length constraint earlier in the proof of Theorem 3.2. Also
in the theory of the harmonic map heat flow it is important to have an evolution of a map
with image in a fixed submanifold [63]. In our case the length is rather easy to control. Let
m : M × [0, T ) → Rd+1 be a time dependent family of vector fields, then |m|2 ≡ 1 implies
∂t|m|2 = 0 and 〈∂tm,m〉 = 0. Thus, when the evolution for m is given by ∂tm = F (m) then a
length preserving evolution is given by ∂tm = F (m)− 〈F (m), m|m| 〉.

3.5 Analysis of Some Special Cases

To get a better feeling for the behavior of this flow, we start by considering situations of high
symmetry.

Example 3.8
For R,S ∈ R, R > 0, consider the initial configuration M = S1, ϕ0 : S1 → R2, p 7→ Rp,
n0 : S1 → R2, p 7→ Sν(p). Inspecting the evolution law, we can explicitly determine an
immersion ϕ and a vector field n that are solutions of equation (3.9). By existence and uniqueness
of solutions (that we prove in the next chapter, cf. Theorem 4.24), the flow will preserve the
symmetry of this initial configurationand we get a solution ϕt(p) = R(t)p, nt = S(t)ν. In this
case we have curves with constant curvature κ(p, t) = 1/R(t) and div(n(t)) = −S(t)/R(t). The
evolution equation reduces to a system of ordinary differential equations for S and R that reads

d
dtR = + 1− δS

R3 − δ (1− δS)S
R3 − 1

2
(1− δS)2

R3 + λ

2
S2

R3 −
1
R
,

=
1
2 (1− δS)2 + λ

2S
2 −R2

R3

d
dtS =− λ S

R2 + δ
1− δS
R2 = − λS − δ(1− δS)

R2 .
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This system has the stationary point S = δ
λ+δ2 , R2 = λ

2(λ+δ2) , which is linearly stable, as the
Jakobi matrix of the corresponding map R2 → R2 in the critical point is(

− 1
4R2 0
0 −λ+δ2

R2

)
.

We can impose the length constraint ‖n‖R2 = 1, that is here S = 1. In this case, we do no longer
need an equation for S and the equation is then

d
dtR =

1
2
(
(1− δ)2 + λ

)
−R2

R3

which still has the stationary point R2 = 1
2
(
(1− δ)2 + λ

)
. Moreover, we can fix the enclosed

area or the length of the curve, both resulting in a fixed value for R.

We can also apply similar considerations in the case of 2 dimensions.

Example 3.9
For 2-dimensional surfaces, we take the energy without penalization of surface area or enclosed
volume. In this case a little more care is needed when calculating the matrix valued gradients.

For the symmetric configuration

ϕ = R IdS2 and n = Sν

we find
H = 2

R
, ∇ν(p) = − 1

R
IdTpS2 , and ∆ν = 2

R2 ν.

From this we see that here n and ∂tn are co-linear and thus we can derive an ordinary differential
equation for S and R. Since the energy in two dimensions is invariant under scaling of the
surface, the radius R is stationary and we get an equation only for S reading

d
dtS = 1

R2

(
4δ − (4δ2 + 2λ)S

)
.

The solution of this equation can be written down explicitly. We find for the initial condition
S(0) = S0 the solution

S(t) =
(
S0 −

4δ
4δ2 + 2λ

)
e−

4δ2+2λ
R2 t + 4δ

4δ2 + 2λ

From this we infer that for n being a constant length multiple of the unit normal, every round
sphere is stationary.

One might hope that these stationary solutions will turn out to be at least local minimizers
of the original energy. We will discuss general stability questions in Chapter 5. The following
calculation shows that, at least in the presence of constraints,depending on the parameter δ, the
symmetric configuration for curves discussed in Example 3.8 above is not stable.

Example 3.10
We fix the parameter δ of the energy (3.1) as δ > 1 and consider the stationary point from
Example 3.8 with fixed length |n| = 1.That is, for

R =
√

1
2
(
(1− δ)2 + λ

)
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we consider ϕ : S1 → R2 : p 7→ Rp. We identify S1 with the interval [0, 2π], then the inner unit
normal ν at

ϕ(θ) = R

(
cos(θ)
sin(θ)

)
for θ ∈ [0, 2π] is given by

ν(θ) =
(
− cos(θ)
− sin(θ)

)
.

We can calculate the energy of this configuration, we obtain

E(ϕ, ν) =
∫ (

κ+ δ div(ν)
)2 ds+ λ

2

∫
|∇sν|2 ds+ L(ϕ) = 2πR

( (1− δ)2

R2 + λ

2R2 + 1
)
.

For ε > 0 we consider the unit vector field

nε(θ) =
(
− cos(θ + ε)
− sin(θ + ε)

)
which forms a fixed small angle ε with ν. The tangential divergence of nε is given by

divs(nε) =∂snε · τ

= 1
R

(
sin(θ + ε)
− cos(θ + ε)

)
·
(
− sin(θ)
cos(θ)

)
=− 1

R
(sin(θ + ε) sin(θ) + cos(θ + ε) cos(θ)) = −cos(ε)

R
.

The norm of the tangential gradient is still

|∇snε|2 = |∂snε|2 = 1
R2

and thus

E(ϕ, nε) =
∫ (

κ+ δ div(nε)
)2 ds+ λ

2

∫
|∇snε|2 ds+ L(ϕ)

= 2πR
( (1− δ cos(ε))2

R2 + λ

2R2 + 1
)
.

Since δ > 1 and the cosine has a strict local maximum in 0, we see that for 0 < |ε| ≤ arccos( 1
δ )

the energy E(ϕ, nε) is strictly decreasing in ε. This intuition is complemented by the following
calculation.

d
dε (1− δ cos(ε))2

∣∣∣∣
ε=0

= 0

and
d2

dε2 (1− δ cos(ε))2
∣∣∣∣
ε=0

= d
dε2δ sin(ε)(1− δ cos(ε))

∣∣∣∣
ε=0

= 2δ cos(ε)(1− δ cos(ε)) + 2δ2 sin2(ε)
∣∣
ε=0

=2δ(1− δ) < 0.

This consideration shows that for δ > 1 the stationary configuration (ϕ, ν) is not a local
minimizer subject to the constraint |n| = 1.

Our next observation is that the circle of radius
√

1
2
(
(1− δ)2 + λ

)
together with the vector

field narccos( 1
δ ) is not stationary either. Since the curvature part of the energy is zero now, the

radius of the circle given by the immersion ϕ will also change. The optimal radius is now given
by the minimum R =

√
λ/2 of

E(ϕ, nε) = 0 + λ

2
2π
R

+ 2πR.
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4
Short-Time Existence for the Generalized Helfrich
Flow

Our main objective in this chapter is the proof of local well-posedness of the geometric evolution
problem (3.8). To this end, there is a variety of possible strategies with different advantages.
A detailed exposition can be found in Mantegazza’s book [68, Sec. 1.5]. Hamilton uses
anintegrability criterium [45], DeTurck [25] considered a flow with a special tangent component.
Our approach relies on Huisken’s and Polden’s idea [50, Sec. 7] of using Fermi coordinates
and height functions as it generalizes best to higher order equations. Then, one can apply the
standard approach to quasilinear parabolic equations, which is to linearize and then solve an
equivalent fixed-point problem. Then, it is determined by the specific structure of the problem,
what part of the proof is the most challenging. Often, it is the boundary values or making sense
of the problem for very weak initial regularity. In our case the main issue will be the non-trivial
coupling of equations of different order yielding a non-homogeneous symbol of the differential
operator. We will tackle this problem with energy methods.

4.1 The Evolution Equation for the Height Function

Given d ∈ N, a d-dimensional orientable compact smooth manifold M without boundary, an
immersion ϕ : M → Rd+1, and a vector field n : M → Rd+1, by inspection of the evolution law
(3.8), we can already interpret this equation as a partial differential equation for ϕ and n. Due
to the reparametrization invariance of the geometric quantities, this system is degenerate in
tangential directions. This problem and one way to deal with it was described by Huisken and
Polden [50, Section 3]. For a smooth initial immersion ϕ0 : M → Rd+1, they observe that a
smoothly evolving hypersurface given by a family of immersions ϕ : M × [0, T )→ Rd+1 can be
represented for small T > 0 by a smooth scalar function f : M × [0, T )→ R as

ϕ(p, t) = ϕ0(p) + f(p, t)ν0(p). (4.1)

In this section, we adapt this strategy to our setting and reformulate the geometric evolution
problem (3.8) from the previous chapter as equations in the variables f and n. The next
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lemmagathers important identities from Mantegazza’s book and the work by Huisken and
Polden.

Lemma 4.1
Given d ∈ N, a d-dimensional orientable compact manifold M without boundary and a smooth
immersion ϕ∗ : M → Rd+1, let A∗ denote the second fundamental form of the immersed surface
and A∗max = maxp∈M |A∗(p)|. For a smooth scalar function f : M → (− 1

2A∗max
, 1

2A∗max
) the map

ϕf , p 7→ ϕ∗(p) + f(p)ν∗(p) is an immersion and one can express the metric and curvature of
the corresponding surface in terms of the same on the surface associated to ϕ∗ and derivatives
fi = ∇∗i f of f . We use the star ∗ to indicate that a geometric object only depends on the
immersion ϕ∗. We find

Xi = X∗i + fiν
∗ − fhk,∗i X∗k ,

for the tangent vectors and

ν = ν∗ − figijXj

|ν∗ − figijXj |
for the unit normal. The perturbed metric is given by

gij = g∗ij − 2fh∗ij + f2h∗ikg
kl,∗h∗lj + fifj ,

and with a smooth tensor pij we get

hij = 〈ν, fijν∗〉+ pij(p, f,∇∗f).

This yields
H = 〈ν, ν∗〉gijfij + r(p, f,∇∗f)

for the curvature, where r is a suitable smooth function. Moreover, for another function
u : M → R we find with a smooth remainder term r′ the identity

∆fu = gijuij + r′(p, u,∇∗u, f,∇∗f,∇∗2f)

for the Laplace-Beltrami operator on the evolving surface.

If n : M → Rd+1 is a non-tangential vector field, then

divf n = gij〈∂in,Xj〉

depends linearly on n with coefficients depending on f and ∇∗f .

Proof. First off, we observe that it can be seen from Lemma 1.18, that ϕf is an immersion.
The order of the formulas is chosen in a way that they follow from each other. A very detailed
discussion can be found in the work by Huisken and Polden [50, Sec. 7.5] and in Mantegazza’s
book [68, Section 1.5].

We cast the above considerations in the following proposition that relates the geometric
evolution problem to a quasilinear partial differential equation problem.

Proposition 4.2
For natural numbers d, r ∈ N, r > d/2 + 3 let ϕ0 : M → Rd+1 be an immersion of Sobolev
regularity Hr(M,Rd+1) and n0 : M → Rd+1 be a vector field of Sobolev regularity Hr(M,Rd+1).
Then, there exists a smooth immersion ϕ∗ : M → Rd+1 and f0 ∈ Hr(M) such that ϕ0 =
ϕ∗ + f0ν

∗. To solve the geometric initial value problem (3.8) is equivalent to finding T > 0
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and a solution (f, n) on M × [0, T ) of the quasilinear evolution equation that is given in local
coordinates by

∂tf = −gijgk`∇∗i∇∗j∇∗k∇∗`f − δ
gij∇∗i∇∗j divf n
〈νf , ν∗〉

+b1(p, t, f,∇∗f,∇∗2f,∇∗3f, n,∇∗n,∇∗2n),
∂tn = λgij∇∗i∇∗jn+ δgk`∇∗k(gij∇∗i∇∗jf + δ divf n)X`

+b2(p, t, f,∇∗f,∇∗2f, n,∇∗n) + gij∇∗in⊗Xjν
∗∂tf,

f(·, 0) = f0,

n(·, 0) = n0.

(4.2)

Here b1 and b2 are the functions arising when we write the lower order geometric expressions in
terms of f and n rather than in terms of the evolving geometric quantities. They are smooth in
their arguments at least in a neighborhood of the initial data.

Proof. The existence of ϕ∗ and f0 is guaranteed by Lemma 1.18 and in view of Lemma 3.6, it is
enough to find a solution of the system

〈∂tϕ, νϕ〉 = −∆ϕ(Hϕ + δ divϕ n)− (Hϕ + δ divϕ n)|∇ϕνϕ|2

+δ(Hϕ + δ divϕ n)∇ϕn : ∇ϕνϕ + δ divϕ((Hϕ + δ divϕ n)νTϕ∇ϕn)

+λ(∇ϕn)T :
[
∇ϕνϕ(∇ϕn)T

]
+ 1

2(Hϕ + δ divϕ n)2Hϕ + λ

2 |∇ϕn|
2Hϕ,

∂tn = λ∆ϕn+ δ∇ϕ(Hϕ + δ divϕ n)− δ(Hϕ + δ divϕ n)Hϕνϕ +∇ϕn∂tϕ

and then to reparametrize M in order to obtain a solution of the original equation (3.8). Since
we aim to construct a strong solution in the sense that it is given by a continuous family of
C2 surfaces, we can assume that for the first short period of its existence it is given as in
equation (4.1) as a graph over the smooth reference surface associated to ϕ∗. We calculate for
ϕ = ϕ∗ + fν∗

〈∂tϕ, νϕ〉 = 〈ν∗, νϕ〉∂tf.

Then the assertion follows from the identities in Lemma 4.1.

4.2 The Linearized Problem

In order to solve the quasilinear problem, we need an optimal existence and regularity result for
the linearized problem. We consider the highest order terms of the equation (4.2) with frozen
coefficients for f = 0 and thus representing the geometric quantities induced by ϕ∗. In this
section, we work on the manifold M with fixed metric g∗ij and all geometric quantities and
differential operators such as div, grad and ∆ are meant to be those induced by ϕ∗. The linear
problem with frozen coefficients which we want to solve for T ∈ (0,∞] reads

∂tf + ∆2f + δ∆ divn = x on M × (0, T ),
∂tn− λ∆n− δ∇(∆f + δ divn) = y on M × (0, T ),

f(·, 0) = f0 on M,

n(·, 0) = n0 on M.

(4.3)
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4.2.1 Weak solutions

Following the strategy of Huisken and Polden [50, Sec. 7.2], wefind a weak solution with help of
a version of the Lax-Milgram lemma due to Friedman and then show a priori estimates. We use
estimates for difference quotients to get higher differentiability and prove that the weak solution
is a strong solution. These notions will be made precise along with the introduction of function
spaces suitable for the treatment of this system later on. This method will yield a solution that
exists for all positive times. To solve the non-linear problem, we will have to work on finite time
intervals. So we will have to adapt our results later.

Definition 4.3
For f, g ∈ C∞c (M × [0,∞)), m,n ∈ C∞c (M × [0,∞))d+1, a > 0 we define

(f, g)LLa(M) =
∫ ∞

0
e−2at

∫
M

fg dµdt,

(m,n)LLa(M,Rd+1) =
∫ ∞

0
e−2at

∫
M

m · n dµdt.

and for s ∈ N we set

〈f, g〉LHsa(M) =
∫ ∞

0
e−2at〈f(·, t), g(·, t)〉Hs(M) dt ,

〈m,n〉LHsa(M,Rd+1) =
∫ ∞

0
e−2at〈m(·, t), n(·, t)〉Hs(M,Rd+1) dt ,

and

〈(f,m), (g, n)〉Wa(0,∞,M) = 〈∂tf, ∂tg〉LLa(M) + 〈∂tm, ∂tn〉LLa(M,Rd+1)

+〈m,n〉LH1
a(M,Rd+1) + 〈f, g〉LLa(M)

+〈∆f + δ div(m),∆g + δ div(n)〉LLa(M).

Now LLa(M), LLa(M,Rd+1), LHs
a(M,R), and LHs

a(M,Rd+1) are the closures of C∞c (M ×
[0,∞)) and C∞c (M × [0,∞))d+1, respectively, in the norm induced by the inner products given
above. That is, we set

LHs
a(M,R) := C∞c (M × [0,∞))

‖.‖LHsa(M,R)
,

LHs
a(M,Rd+1) := C∞c (M × [0,∞),Rd+1)

‖.‖
LHsa(M,Rd+1)

and similarly

Wa(0,∞,M) := C∞c (M × [0,∞))× C∞c (M × [0,∞))d+1‖.‖Wa(0,∞,M)
,

Wa,0(0,∞,M) := C∞c (M × (0,∞))× C∞c (M × (0,∞))d+1‖.‖Wa(0,∞,M)
.

By a little abuse of notation, we will from now on often suppress the target space (and
sometimes also the domain) in the notation if they are clear from context. So we write ‖n‖LHsa(M)
or 〈n,m〉LHsa even for vector valued functions.

Remark 4.4
Considering these spaces involving time weights one might wonder whether the regularity of
an element of such space can be characterized, when it is considered on a finite time interval.

58



4.2. THE LINEARIZED PROBLEM

Indeed, when f ∈ LHk
a then f |[0,T ) ∈ L2(0, T ;Hk), since the weight is uniformly bounded from

above and below, as for all t ∈ [0, T ) we have e−2aT ≤ e−2at ≤ 1.

To illustrate the advantage of an exponential time weight, consider the heat equation

∂tu = ∆u on M × [0,∞).

The solution of this equation for the initial condition u(·, 0) = 1 on M is given by u = 1 on
M × [0,∞), which is perfectly smooth, but not an element of L2(0,∞;H2(M)). However, it is
an element in LH2

a(M) for any a > 0. We will see that the exponential weighting enables us
to treat problems on M × [0,∞), where the solution grows exponentially in time, in a proper
functional analytic setting and to derive a priori estimates as in the case of finite time intervals.

For functions in the space Wa(0,∞,M) we can infer some more properties.

Lemma 4.5
If a pair (f, n) is in Wa(0,∞,M), we may conclude f ∈ LH2

a(M), n ∈ LH1
a(M), and

∂tf, ∂tn ∈ LLa(M). Moreover, for T > 0 fixed, it holds that f, n ∈ C([0, T ], L2(M)) and
we have the estimate

‖f‖LH2
a(M) + ‖∂tf‖LLa(M) + ‖n‖LH1

a(M) + ‖∂tn‖LLa(M)

+‖f(·, 0)‖L2(M) + ‖n(·, 0)‖L2(M) ≤ C‖(f, n)‖Wa(0,∞,M)

with a constant C = C(M,T ) independent of f and n.

Proof. Partially, this is directly seen from the definition, only the assertion f ∈ LH2
a(M) and

the estimate require additional effort. We find that the reverse triangle inequality yields as
n ∈ LH1

a(M) the estimate

‖∆f‖a + δ‖divn‖a ≤ max{1, 2δ}(‖n‖LH1
a(M) + ‖∆f + δ div(n)‖LLa(M).

From elliptic regularity theory (see e.g. the book by Taylor [83, Ch. 5, Theorem 11.1]) we infer
that whenever

∆f ∈ L2(M),

then
‖f‖H2(M) ≤ C‖∆f‖L2(M) + C‖f‖L2(M). (4.4)

Since ∆f ∈ L2(M) and f ∈ L2(M) for almost every t ∈ [0,∞), we may conclude that f ∈ H2(M)
for almost every t. Integration in t then shows

‖f‖LH2
a
≤ C

(
‖∆f‖LLa(M) + ‖f‖LLa(M)

)
.

In combination with the trace theorem 1.23 we have the asserted estimate.

We introduce the following notion of weak solutions to equation (4.3).

Definition 4.6
Consider x ∈ LLa, y ∈ (LH1

a)d+1 and f0 ∈ C∞(M), n0 ∈ C∞(M)d+1. A pair of functions

(f, n) ∈Wa(0,∞,M)

is called a weak solution of (4.3) if

(f − f0, n− n0) ∈Wa,0(0,∞,M)
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and for any
(ϕ, η) ∈ C∞c (M × (0,∞))× C∞c (M × (0,∞))d+1

we have

〈∂tf, ϕ〉LLa(M) + 〈∂tn, η〉LLa(M) + λ〈∇n,∇η〉LLa(M)

+〈∆f + δ div(n),∆ϕ+ δ div(η)〉LLa(M) = 〈x, ϕ〉LLa(M) + 〈y, η〉LLa(M).

Lemma 4.7
If (f, n) ∈Wa(0,∞,M) is a weak solution of equation (4.3) in the sense of Definition 4.6, then
for all (ϕ, η) ∈ LW 2

a (M)× LW 1
a (M) the identity

〈∂tf, ϕ〉LLa(M) + 〈∂tn, η〉LLa(M) + λ〈∇n,∇η〉LLa(M)

+〈∆f + δ div(n),∆ϕ+ δ div(η)〉LLa(M) = 〈x, ϕ〉LLa(M) + 〈y, η〉LLa(M).

holds.

Proof. For (f, n) ∈Wa(0,∞,M) the map

(ϕ, η) 7→
(

〈∂tf, ϕ〉LLa(M) + 〈∂tn, η〉LLa(M) + λ〈∇n,∇η〉LLa(M)
+〈∆f + δ div(n),∆ϕ+ δ div(η)〉LLa(M) − 〈x, ϕ〉LLa(M) − 〈y, η〉LLa(M)

)
is continuous in the LW 2

a (M)× LW 1
a (M) topology. Therefore, the assertion holds by density of

C∞c (M × (0,∞))× C∞c (M × (0,∞))d+1 in LW 2
a (M)× LW 1

a (M).

Before we prove the existence of weak solutions we can a priori derive the follwing estimate.

Lemma 4.8
Let (f, n) ∈Wa(0,∞,M) be a weak solution of equation (4.3) in the sense of Definition 4.6 for
x ∈ LLa, y ∈ LH1

a and smooth initial values f0, n0. Then, we have the a priori estimate

‖f‖LH2
a

+ ‖n‖LH1
a
≤ C(‖(x, y)‖LLa(M) + ‖f0‖L2(M) + ‖n0‖L2(M)). (4.5)

Proof. In view of Lemma 4.7 we may use test functions with non-vanishing initial data in the
weak formulation. Using the solution as a test function yields

〈∂tf, f〉LLa(M) + 〈∂tn, n〉LLa(M) + 〈∇Mn,∇Mn〉LLa(M)

+〈∆Mf + δ div(n),∆Mf + δ div(n)〉LLa(M) = 〈x, f〉LLa(M) + 〈y, n〉LLa(M) .

Since the weak solution has also one weak time derivative we can use integration by parts in
time, yielding

〈∂tf, f〉LLa(M) =
∫ ∞

0
e−2at 1

2
d
dt

∫
M

f2 dµdt = a

∫ ∞
0

e−2at
∫
M

f2 dµdt− 1
2

∫
M

f(·, 0)2 dµ.

The second boundary term
lim
T→∞

e−2at
∫
M

f2(·, T ) dµ

exists and vanishes, since e−atf ∈ H1(0,∞;L2(M)). We will use this very often in subsequent
calculations. With Young’s inequality we infer

‖f‖a + ‖n‖LH1
a

+ ‖∆f + δ div(n)‖a ≤ C
(
‖(x, y)‖a + ‖f0‖L2(M) + ‖n0‖L2(M)

)
.

Using Lemma 4.5 we may conclude ‖∇2
Mf‖a ≤ C‖∆Mf‖a ≤ C(‖(x, y)‖+ ‖f0‖+ ‖n0‖), as the

norm of the second derivative is controlled by the norm of the Laplacian.

60



4.2. THE LINEARIZED PROBLEM

Proposition 4.9
Let x ∈ L2(0, T ;L2(M)), y ∈ L2(0, T ;H1(M))d+1 be two functions and consider smooth initial
data f0 ∈ C∞(M) and n0 ∈ C∞(M)d+1. Then, for all a > 0 equation (4.3) has a unique weak
solution in the sense of Definition 4.6.

To find a weak solution of our parabolic problem, we follow Polden [76, Sec. 2.2] and
Friedman’s version of Lax-Milgram [34, Chapter 10, Theorem 16] is one main ingredient for the
proof.

Lemma 4.10
Let H be a Hilbert space and Φ a (not necessarily complete) space with a scalar product
continuously embedded in H. Moreover, let P : H × Φ→ R be a bilinear form such that

i) the linear map h 7→ P (h, ϕ) is continuous for every fixed ϕ ∈ Φ,

ii) P |Φ×Φ is coercive. That is, there exists C > 0 such that P (ϕ,ϕ) ≥ C‖ϕ‖2H , for every
ϕ ∈ Φ.

Then, for every K ∈ Φ∗ there exists u ∈ H such that for every ϕ ∈ Φ it holds that

P (u, ϕ) = K(ϕ).

With this, we are in a position to establish existence of weak solutions to equation (4.3).

Proof of Proposition 4.9. First, assume f0 = 0 and n0 = 0. Furthermore, we observe that
finding a solution to equation (4.3) is equivalent to finding (f̃ , ñ) ∈W 0

a (0,∞,M) solving

∂t(f̃ , ñ)− (L− Id)(f̃ , ñ) = (x, y)e−t. (4.6)

This spectral shift will give coercivity of the bilinear form used later. For simplicity we write
f and n instead of f̃ and ñ in the sequel. The solution to the original equation can then be
obtained by multiplication with et. If (e−tf, e−tn) ∈Wa(0,∞,M), then (f, n) ∈Wa+1(0,∞,M).
To fit in the setting of Lemma 4.10 we set

H = (Wa,0(0,∞,M), 〈·, ·〉Wa,0(0,∞,M))
Φ = ((C∞c (M × (0,∞))× C∞c (M × (0,∞))d+1), 〈·, ·〉Wa,0(0,∞,M))

and we define the bilinear map

P : Wa,0(0,∞,M)× (C∞c (M × (0,∞))× C∞c (M × (0,∞))d+1) = H × Φ→ R

and the functional

K : C∞c (M × (0,∞))× C∞c (M × (0,∞))d+1 = Φ→ R

by

P ((f, n), (ϕ, η)) = 〈∂tf, ∂tϕ〉LLa(M) + 〈∂tn, ∂tη〉LLa(M) + λ〈∇n,∇∂tη〉LLa(M) + 〈n, ∂tη〉LLa(M)

+〈f, ∂tϕ〉LLa(M) + 〈∆f + δ divn,∆∂tϕ+ δ div(∂tη)〉LLa(M)

and

K((ϕ, η)) = 〈x, ∂tϕ〉LLa(M) + 〈y, ∂tη〉LLa(M) .
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Basically, K and P emerge from testing equation (4.6) with time derivatives of test functions.
The terms 〈n, ∂tη〉LLa(M) and 〈f, ∂tϕ〉LLa(M) arise due to the spectral shift. Integration by
parts in time shows that P is coercive for any positive a and continuous in the first argument
for any fixed (ϕ, η) ∈ C∞c (M × (0,∞))× C∞c (M × (0,∞))d+1. We use that for ϕ we find∫ ∞

0
e−2at

∫
M

ϕ∂tϕdµdt =
∫ ∞

0
e−2at 1

2
d
dt

∫
M

ϕ2 dµdt

= a

∫ ∞
0

e−2at
∫
M

ϕ2 dµdt,

since ϕ has compact support in (0,∞). We see

P ((ϕ, η), (ϕ, η)) = 〈∂tϕ, ∂tϕ〉LLa(M) + 〈∂tη, ∂tη〉LLa(M) + λ〈∇η,∇∂tη〉LLa(M) + 〈η, ∂tη〉LLa(M)

+〈ϕ, ∂tϕ〉LLa(M) + 〈∆ϕ+ δ div η,∆∂tϕ+ δ div(∂tη)〉LLa(M)

= ‖(∂tϕ, ∂tη)‖2LLa(M) + a‖η‖2LLa(M) + aλ‖∇η‖2LLa(M)

+a‖ϕ‖2LLa(M) + ‖∆ϕ+ δ div η‖2LLa(M)

≥ min{aλ, a, 1}‖(ϕ, η)‖2Wa,0(0,∞,M)

and by Cauchy Schwarz inequality

P ((f, n), (ϕ, η)) ≤ C(ϕ, η)‖(f, n)‖Wa,0(0,∞,M)

the map (f, n)→ P ((f, n), (ϕ, η)) is continuous for every fixed (ϕ, η) as required in Lemma 4.10.
Hence, by Lemma 4.10 we may conclude that there exists (f, n) ∈Wa,0(0,∞,M) such that

P ((f, n), (ϕ, η)) = K((ϕ, η))

for all (ϕ, η) ∈ C∞c (M × (0,∞)) × C∞c (M × (0,∞))d+1. That is, (f, n) satisfies the weak
formulation of equation (4.6) when testing with time derivatives. To see that (f, n) is in-
deed a weak solution we employ the exponential weighting. For a pair of test functions
(ϕ, η) ∈ C∞c (M × (0,∞))× C∞c (M × (0,∞))d+1, which we extend by zero to the whole real
line, we set for 0 < S ∈ R

(ϕ̃(x, t), η̃(x, t)) = (ϕ(x, t), η(x, t))− (ϕ(x, t− S), η(x, t− S)),

which has compact support and zero mean value in time. Thus, it has a compactly supported
anti-derivative and is therefore the time derivative of a test function. Hence,

P ((f̃ , ñ), (ϕ̃, η̃)) = K((ϕ̃, η̃)).

But since P ((f, n), (ϕ(·, · − S), η(·, · − S))) and K((ϕ(·, · − S), η(·, · − S))) tend to zero as we
send S →∞, we have

〈∂tf, ϕ〉LLa(M) + 〈∂tn, η〉LLa(M) + 〈∇Mn,∇Mη〉LLa(M)

+〈∆Mf + δ div(n),∆Mϕ+ δ div(η)〉LLa(M) = 〈x, ϕ〉LLa(M) + 〈y, η〉LLa(M).

That is, (f, n) is a weak solution of equation (4.6). Thus, we find a weak solution of (4.3) by
multiplication with et.

To find a solution when the initial data (f0, n0) do not vanish, we introduce the operator L
by

L(f, n) =
(

−∆2f − δ∆ divn
+∆n+ δ∇(∆f + δ divn)

)
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and consider the problem

∂t(f̃ , ñ)− L(f̃ , ñ) = (x, y) + L(f0, n0),
f̃(0) = 0,
ñ(0) = 0.

Observe, that up to now we only consider smooth initial data, on which we can apply any
differential operators and which is integrable in time with respect to our weighted measure.
Therefore (x, y) + L(f0, n0) is an admissible right-hand side. The arguments above imply that a
weak solution (f̃ , ñ) of this new problem exists and that (f, n) = (f̃ + f0, ñ+ n0) then solves
the original equation with smooth non-zero initial data.

Uniqueness of the solution follows from the a priori estimate in Lemma 4.8

4.2.2 Regularity

To show that such weak solution is indeed a strong solution and to derive estimates for the
higher order derivatives we use difference quotients. This technique is well established in the
literature, e.g. in Evans’ book [32, Sec 5.8.2, Sec 6.3]. In the context of geometric evolution
equations it was used by Polden in his thesis [76, Sec 2.3] and in the overview article with
Huisken [50, Sec 7.3]. The main strategy is to exploit the coercivity of the elliptic operator to
obtain a Gårding type inequality and Caccioppoli estimates. Firstly, we define suitable function
spaces and borrow the notation of Huisken and Polden.

Definition 4.11
For f, g ∈ C∞c (M × [0,∞)), m,n ∈ C∞c (M × [0,∞))d+1 we define

〈(f,m), (g, n)〉Pka (0,∞,M) = 〈∂tf, ∂tg〉LHka + 〈f, g〉LH4+k
a

+ 〈∂tm, ∂tn〉LH1+k
a

+ 〈m,n〉LH3+k
a

and the space P ka (0,∞,M) as the closure of C∞c (M × [0,∞)) × C∞c (M × [0,∞))d+1 in the
induced norm. Instead of P 0

a we just write Pa.

Lemma 4.12
Let (f, n) ∈Wa(0,∞,M) be a weak solution of equation (4.3) in the sense of Definition 4.6 for
x ∈ LLa, y ∈ LH1

a and smooth initial values f0, n0. Then,

(f, n) ∈ Pa(0,∞,M)

and moreover we have the a priori estimate

‖(f, n)‖Pa(0,∞,M) ≤ C(‖x‖LLa(M) + ‖y‖LH1
a

+ ‖f0‖H2 + ‖n0‖H2)

The key elements of the proof are localization and the use of difference quotients. Therefore,
we make a short comment here on how to use difference quotients on manifolds and give two
important formulas. We choose a system of charts (Ui, xi)i for M and let u : M → R be a
smooth function with compact support in only a single set Uj . Then the difference quotient in a
direction v ∈ Sd−1 is defined for |h| < 1

2 dist(∂ supp(u ◦ x−1), ∂Uj) as

Dv
hu(p) =

u(x−1
j (xj(p) + vh))− u(p)

h
.
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In the following, by abuse of notation we mean u ◦ x−1
j whenever we write just u. Let φ be

a second smooth function with its support contained also in Uj . Then, we have the following
chain rule

Dv
h(u · φ) = Dv

huφ(·+ hv) + uDv
hφ

that implies a rule for integration by parts for difference quotients that reads∫
M

uDv
hφ dµ =

∫
xj(Uj)

uDv
hφ
√
g dx

=−
∫
xj(Uj)

Dv
−huφ

√
g dx−

∫
xj(Uj)

uφ(· − hv)Dv
−h
√
g dx.

In the following we denote the signed measure Dv
h

√
g dx by dDhµ. Now we can prove the lemma.

Proof of Lemma 4.12. Let ξ ∈ C∞c (V ) be a smooth cut-off function compactly supported in
an open set V ⊂ M and ξ ≡ 1 in U ⊂⊂ V where V is contained in a single chart. Then we
take difference quotients in space. Since the estimates have to hold for an arbitrary v ∈ Sd−1

we do not denote v explicitly in the following. By virtue of Lemma 4.7,a pair of functions
(D−h(ξ2Dhf), D−h(ξ2Dhn)) may be put in the weak formulation of the equation

〈x,D−h(ξ2Dhf)〉LLa + 〈y,D−h(ξ2Dhn)〉LLa
= 〈∂tf,D−h(ξ2Dhf)〉LLa + 〈∂tn,D−h(ξ2Dhn)〉LLa + λ〈∇Mn,∇MD−h(ξ2Dhn)〉LLa

+〈∆Mf + δ div(n),∆MD−h(ξ2Dhf) + δ div(D−h(ξ2Dhn)〉LLa .
(4.7)

We integrate by parts in time first and use the formula for integration by parts for difference
quotients in space to find

〈∂tf,D−h(ξ2Dhf)〉LLa

= −
∫ ∞

0
e−2at

∫
M

(ξDh∂tf)(ξDhf) dµdt−
∫ ∞

0
e−2at

∫
M

ξ2∂tf(·+ vh)Dhf dDhµdt

= −a
∫ ∞

0
e−2at

∫
M

(ξDhf)2 dµdt+ 1
2

∫
M

(ξDhf(·, 0))2 dµ

−
∫ ∞

0
e−2at

∫
M

ξ2∂tf(·+ vh)Dhf dDhµdt.

The difference quotient on the volume element can be estimated since the metric onM is smooth.
Using Young’s inequality with ε on the left-hand terms in (4.7) and the terms involving the
time derivatives we get

‖ξDh∇Mn‖2LLa + ‖ξDh(∆Mf + δ divM n)‖2LLa

≤ C

ε
(‖f‖2LH2

a
+ ‖n‖2LH1

a
+ ‖f0‖2H1(M) + ‖n0‖2H1(M) + ‖x‖2LLa + ‖y‖2LH1

a
)

+ε(‖ξ∂tf‖2LLa + ‖ξ∂tn‖2LLa)

for a positive constant C depending on the manifold (M, g), but not on f, n or h. Terms, where
derivatives or difference quotients fall on ξ or √g are of lower order and can be treated by
interpolation. For the terms involving n we do the exact same estimates as for those in f with
the only difference that we use integration by parts to shift one difference quotient on y.

We use this estimate and the estimate for the Laplace operator (4.4) to see that

‖ξDhf‖LH2
a
≤ C

ε
(‖f‖LH2

a
+ ‖n‖LH1

a
+ ‖f0‖H1 + ‖n0‖H1 + ‖x‖LLa + ‖y‖LH1

a
)

+ε(‖ξ∂tf‖LLa + ‖ξ∂tn‖LLa).
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Using the a priori estimate (4.5) for ‖f‖LH2
a

+ ‖n‖LH1
a
we find

‖f‖LH3
a

+ ‖n‖LH2
a
≤ C

ε
(‖f0‖H1 + ‖n0‖H1 + ‖x‖LLa + ‖y‖LH1

a
) + ε(‖ξ∂tf‖LLa + ‖ξ∂tn‖LLa).

We observe that this means, we can consider the second equation of the system in an LLa sense.
That is,

∂tn = ∆n+ δ∇(∆f + δ divn) + y in LLa.

The same computations for all mixed difference quotients D2
−h(ξ2D2

hf) and D2
−h(ξ2D2

hn) yield

‖ξDhf‖LH3
a

+ ‖ξDhn‖LH2
a

≤ C

ε
(‖f0‖H2 + ‖n0‖H2 + ‖x‖LLa(M) + ‖y‖LH1

a
) + ε(‖ξ∂tf‖LLa + ‖ξDh∂tn‖LLa).

That is, we have to control the difference quotient of the time derivative of n. But

〈ξDh∂tn, ξDh∂tn〉LLa = 〈ξDh(∆n+ δ∇(∆f + δ divn)), ξDh(∆n+ δ∇(∆f + δ divn))〉LLa
≤ C(‖ξDhf‖2LH3

a
+ ‖ξDhn‖2LH2

a
).

Thus, we can absorb the term Cε(‖ξDhf‖LH3
a

+ ‖ξDhn‖LH2
a
). This allows us to conclude that

also the first equation of the system holds in a strong LHa sense. As a next step, we need
estimates for ‖∂tf‖LLa and ‖∂tn‖LH1

a
. This can now be obtained by using the equation. We

find

〈ξ∂tf, ξ∂tf〉LLa + 〈ξDh∂tn, ξDh∂tn〉LLa
= 〈ξ∆(∆f + δ divn) + ξx, ξ∆(∆f + δ divn) + ξx〉LLa

+〈ξDh(λ∆n+ δ∇(∆f + δ divn)) + ξy, ξDh(λ∆n+ δ∇(∆f + δ divn)) + ξy〉LLa

≤ C

ε
(‖f0‖2H2 + ‖n0‖2H2 + ‖x‖2a + ‖y‖2LH1

a
) + ε(‖ξ∂tf‖2LLa + ‖ξDh∂tn‖2LLa),

which yields the final local estimate

‖ξ(f, n)‖Pa(0,∞,M) ≤
C

ε
(‖f0‖H2 + ‖n0‖H2 + ‖x‖LLa(M) + ‖y‖LH1

a
).

To get the global estimates from the local ones we only use that we may cover M by finitely
many charts.

By approximating the initial data in the trace space, we can now prove existence of strong
solutions.

Theorem 4.13
For k ≥ 2, (f0, n0) ∈ Hk × (Hk)d+1, x ∈ LHk−2

a , and y ∈ (LHk−1
a )d+1 equation (4.3) has a

solution (f, n) ∈ P ka with an a priori estimate

‖(f, n)‖Pka ≤ C(‖f0‖Hk−2 + ‖n0‖Hk−1 + ‖x‖LHk−2
a

+ ‖y‖LHk−1
a

),

Proof. Assume for k ∈ N that

(f0, n0) ∈ Hk+2(M)× (Hk+2)d+1

(x, y) ∈ LHk
a × (LHk+1

a )d+1,

then we use
(Dk+2
−h ξ

k+2Dk+2
h f,Dk+2

−h ξ
k+2Dk+2

h n)
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as a test function. We do the same calculations as above in (4.7) but we have to exploit
the regularity of x and y by putting k or k + 1, respectively, difference quotients on them.
Approximating f0, n0 by smooth functions together with the a priori estimates completes the
proof, since a Hk Cauchy sequence of initial values gives a P ka Cauchy sequence of solutions.

In order to prove a short time existence result for the full equation we have to adapt our
result to finite time intervals and spaces without weighting in time.

Definition 4.14
Let k ≥ 2 be a real number, then define

X1
T =H1(0, T ;Hk−2) ∩ L2(0, T,Hk+2)

X2
T =(H1(0, T ;Hk−1) ∩ L2(0, T,Hk+1))d+1

with norms

‖f‖X1
T

=‖∂tf‖L2(0,T,Hk−2) + ‖f‖L2(0,T,Hk+2) + ‖f0‖Hk ,

‖n‖X2
T

=‖∂tn‖L2(0,T,Hk−1) + ‖n‖L2(0,T,Hk+1) + ‖n0‖Hk ,

and set
XT = X1

T ×X2
T

with ‖ · ‖XT = ‖ · ‖X1
T
×X2

T
. Moreover, we consider

Y 1
T = L2(0, T,Hk−2)
Y 2
T = (L2(0, T,Hk−1))d+1

YT = Y 1
T × Y 2

T ,

with the usual product norm. Finally, we set

Xγ = Hk × (Hk)d+1,

which is the right space for the trace according to Theorem 1.23, and

XT,imm = X1
T,imm ×X2

T ,

where
X1
T,imm = H1(0, T ;Hk−2

imm(M,Rd+1)) ∩ L2(0, T ;Hk+2
imm(M,Rd+1)).

as the space for solutions of the full flow equation.

In this setting we deduce the following result.

Theorem 4.15
For any T > 0, k ∈ R, k ≥ 2, (f0, n0) ∈ Hk × (Hk)d+1, and x, y ∈ YT equation (4.3) has a
solution (f, n) ∈ XT with an a priori estimate

‖(f, n)‖XT ≤ C(‖(f0, n0)‖Xγ + ‖(x, y)‖YT ),

where the constant C remains bounded, when T tends to zero.
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Proof. Firstly, we consider the case, where k is an integer number. Since YT and the LHa spaces
do not imply any time regularity for their elements, we can interpret x and y as LHk−2

a and
LHk−1

a functions, just by setting them to zero on (T,∞). Then we use Theorem 4.13 to get a
solution (f, n) in P ka . But

‖(f, n)‖XT ≤ e2aT ‖(f, n)‖Pka + ‖(f0, n0)‖Xγ

and thus
‖(f, n)‖XT ≤ C(‖(f0, n0)‖Xγ + ‖(x, y)‖YT ).

It remains to show that C does not blow up for T → 0. This can be seen as follows. Fix
an arbitrary T0 > 0 and take T < T0. Now YT ⊂ YT0 in the sense that we can again extend
functions by zero on (T, T0). Moreover if (f, n) ∈ XT and (f̃ , ñ) ∈ XT0 such that (f, n) = (f̃ , ñ)
on [0, T ), then

‖(f, n)‖XT ≤ ‖(f̃ , ñ)‖XT0
.

If ((x̃, ỹ) ∈ YT0 is the extension of (x, y) to [0, T0) by zero, then we have

‖(x, y)‖YT = ‖(x, y)‖YT0
.

Now let (f, n) be the solution of equation (4.3) on [0, T ) for right hand side (x, y) and (f̃ , ñ)
be the solution on [0, T0) for right hand side (x̃, ỹ). The functions (f, n) and (f̃ , ñ) coincide on
[0, T ) and we have

‖(f, n)‖XT ≤ ‖(f̃ , ñ)‖XT0
≤ C(T0)(‖((x̃, ỹ)‖+ ‖(f0, n0)‖Xγ ) = C(T0)(‖(x, y)‖+ ‖(f0, n0)‖Xγ )

as claimed.

If k ∈ R is not an integer, we can now employ interpolation. The maximal regularity result
above implies that the stationary operator that we denote in the following by A generates an
analytic semi group, which is equivalent to sectoriality (see Theorem 4.4.4 together with Remark
4.1.3 and Chapter 6, Section 1.4 in the book of Prüss and Simonett [77]). Consider Hilbert
spaces X1 ⊂ X and an unbounded operator A : X → X with domain D(A) ⊂ X. Now let
Σθ = {z ∈ C\{0}

∣∣|arg z| < θ} denote a sector of the complex plain. If the set

{A(λ+A)−1 : λ ∈ Σθ}

is bounded in L(X,X) and
{A(λ+A)−1 : λ ∈ Σθ}

is bounded in L(X1, X1), too, then

{A(λ+A)−1 : λ ∈ Σθ}

is also bounded in L(Xα, Xα) for any Xα which is an interpolation space of X and X1. Hence,
A has maximal regularity in Xα.

4.3 The Full Equation

In this section we consider the full equation which is quasilinear as a system. But under further
inspection there turns out to be a difference between f and n. The coefficients in front of the
highest order term of f and n only depend on the derivatives of f . So somehow the equation is
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only semi-linear in n. We define the operators

Q1(f, n) : = ∂tf + gijgk`∇∗i∇∗j∇∗k∇∗`f +
δgij∇∗i∇∗j divf n
〈ν(p, t,∇∗f), ν0(p)〉

+b1(p, t, f,∇∗f,∇∗2f,∇∗3f, n,∇∗n,∇∗2n)
Q2(f, n) : = ∂tn− gij∇∗i∇∗jn− δgk`∇∗k(gij∇∗i∇∗jf + δ divf n)X` + gij∇∗im⊗Xjν

∗∂tf

+b2(p, t, f,∇∗f,∇∗2f, n,∇∗n)

Q(f, n) : =
(
Q1(f, n)
Q2(f, n)

)
(4.8)

with b1 and b2 smooth functions as in (4.2). Moreover, we set

L(f, n) :=
(

∂tf + ∆2f + δ∆ divn
∂tn−∆n− δ∇(∆f + δ divn)

)
. (4.9)

Remark 4.16
The definition of XT in Definition 4.14 depends on the number k, which we do not explicitly
denote. The following arguments are valid for all k > d

2 + 3.

The key ingredient of the short time existence proof is the following result.

Lemma 4.17
For ε,R > 0, the map

XT → YT : F (f, n) := Q(f, n)− L(f, n)

is Lipschitz on a closed subset

Uε = BXT (0, R) ∩ {‖(f, n) ∈ XT | ‖f(0, ·)‖C1 ≤ ε}

in XT with Lipschitz constant
CL(T,R, ε)→ cε (4.10)

for T → 0.

Proof. For each summand in F , we have to estimate the Y 1
T and Y 2

T norms of differences. In
the following we suppress the ∗ at the differential operator ∇.

We start with the analysis of b1 and b2. We observe that since k > d/2 + 3, we have
∇3f ∈ BUC(0, T ;Hk−3) and ∇2n ∈ BUC(0, T ;Hk−2). Thus, we apply Lemma 1.27 to
establish Lipschitz continuity in a larger space and Lemma 1.26 to obtain the assertedscaling of
the Lipschitz constant and thus the claimed estimate.

For the term involving the highest order derivatives, we make use of the additional linear
terms introduced by the operator L.We observe that the coefficients in front of the highest
order terms only depend on f and ∇f , but not on higher derivatives. Therefore, the following
calculation applies to all the highest order terms. Thus, the following generic computation can
be adapted to all the highest order terms

gij(∇f)gk`(∇f)∇4
ijk`f −∆2f, gij(∇f)gk`〈∇3

ijkn,X`(∇f)〉 − δ div(n),
gij(∇f)∇2

ijn−∆n, gij(∇f)gk`(∇f)∇3
ik`fXj(∇f)−∇(∆f),

gij(∇f)gk`(∇f)〈∇2
ikn,X`(∇f)〉Xj(∇f)−∇ div(n).
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For a smooth coefficient function (or tensor) a, we have

‖a(∇f1)∇4f1 − a(∇f2)∇4f2 − a(0)∇4(f1 − f2)‖Y 1
T

≤ C‖[a(∇f1)− a(0)](∇4f1 −∇4f2)‖Y 1
T

+ ‖[a(∇f1)− a(∇f2)]∇4f2‖Y 1
T
.

Then, we use the Leibnitz rule for one such summand and obtain

‖[a(∇f1)− a(0)](∇4f1 −∇4f2)‖Y 1
T

≤ C
∑

`≤r,r≤k−2
‖∇r−`[a(∇f1)− a(0)]∇4+`(f1 − f2)‖L2(0,T ;L2).

We only do the estimates for r = k − 2, since then the cases with fewer derivatives follow
immediately. Now we want to see in what spaces the factors can be estimated. For every
t ∈ [0, T ], we have by the trace theorem as stated in Theorem 1.23, Corollary 1.15 and our
assumption k > d/2 + 3 that

a(∇fi) ∈ B(0, LR) ⊂ H1(0, T ;Hk−2−1(M)) ∩ L2(0, T ;Hk+2−1(M)).

Moreover, by Corollary 1.22 we have for s ∈ Z embedding

H1(0, T ;Hs−4(M)) ∩ L2(0, T ;Hk(M))→ Lp(0, T ;Lp)

for all p ∈ [1,∞) satisfying
1/p ≥ 4 + d− 2s

2d+ 8 .

The embedding is continuous for every p ∈ [1,∞) if 4 + d− 2s ≤ 0. For 4 + d− 2s < 0, we even
have

H1(0, T ;Hs−4(M)) ∩ L2(0, T ;Hs(M))→ C0,α([0, T ];C0,α)

for suitable α > 0. Thus, for k > d/2 + 3, we see that

∇k−`−2a(∇fi) ∈ H1(0, T ;H`−1(M)) ∩ L2(0, T ;H`+3(M))→ Lp(0, T ;Lp)

for all 1/p ≥ 1/p∗ := max{0, d− 2`− 2
2d+ 8 }

and

∇`+4fi ∈ H1(0, T ;Hk−6−`(M)) ∩ L2(0, T ;Hk−2−`(M))→ Lq(0, T ;Lq)

for all 1/q ≥ 1/q∗ := max{0, d+ 8 + 2`− 2k
2d+ 8 }.

There are four different cases for 1
p∗ + 1

q∗ .

1.) If 1
p∗ > 0 and 1

q∗ > 0 we can simply add them to discover

1
p∗

+ 1
q∗

= d− 2`− 2
2d+ 8 + d+ 6 + 2`− 2k

2d+ 8 = 2d+ 4− 2k
2d+ 8

and
2d+ 4− 2k

2d+ 8 <
1
2 ⇔ k ≥ d/2,

which is true since k > d/2 + 3.

2.) If 1
p∗ = 0 we have

1
q∗

= d+ 6 + 2`− 2k
2d+ 8 ≤ 1

2 ⇔ k > `+ 2,

which is true when ` < r = k − 2.
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3.) If 1
q∗ = 0 we have see that

1
p∗

= d− 2`− 2
2d+ 8 <

1
2 ⇔ 2` > −6,

which is always true since ` is non-negative.

4.) Finally, if 1
q∗ = 1

p∗ = 0 there is nothing to show.

These considerations justify the following computation, whenever we can choose p and q such
that 1/p+ 1/q = 1/2and either p < p∗ or q < q∗, leaving space to create a factor Tα by using
Hölder’s inequality or directly by Lemma 1.26. Then, we find

‖∇k−2−`[a(∇f1)− a(∇f0)]∇4+`(f1 − f2)‖L2(0,T ;L2)

≤ ‖∇k−2−`[a(∇f1)− a(∇f0)]‖Lp(0,T ;Lp)‖∇4+`(f1 − f2)‖Lq(0,T ;Lq)

≤ CTα‖∇k−2−`[a(∇f1)− a(∇f0)]‖Lp∗ (0,T ;Lp∗ )‖∇4+`(f1 − f2)‖Lq∗ (0,T ;Lq∗ )

≤ CTα‖f1 − f2‖X1
T
‖f1 − f2‖X1

T

≤ CRTα‖f1 − f2‖X1
T

The remaining case is ` = k − 2 which yields q∗ = 2 and forces us to set p = ∞. Then, we
need to employ equation (1.4) from Lemma 1.26 and use that then d − 2k − 2 < 0 and thus
a(∇fi) ∈ Cα(0, T ;Cα(M)) for α > 0. From this originates the scaling invariant part of the
Lipschitz constant depending on ε.The term gij∇∗im⊗Xjν

∗∂tf is treated also by exactly this
argument together with the initial smallness of 〈Xj , ν

∗〉.

Then the calculation above in the setting of Y 2
T yields the analogous result and we obtain

the Lipschitz continuity of F , with small constant for small T .

Proposition 4.18
For d ∈ N let M be a d-dimensional, smooth, orientable closed manifold. Let k > d/2 + 3 be
a natural number and let Xγ , XT be as in Definition 4.14 depending on k. Let c denote the
constant from equation (4.10) and fix 0 < ε < 1

8c .

Then, for all (f0, n0) ∈ Hk(M,Rd+1) such that ‖f0‖C1 < ε, there is a T > 0, such that
equation (4.2) has a unique solution (f, n) ∈ XT , which depends continuously on the initial data.

Proof. With the help of the above lemmata, we can follow the strategy of [77][ch. 5.1].

Step 1: Existence
We observe the following. The coefficients are only smooth for small values of the arguments
and contain for example fractions where we might end up dividing by zero, for some large values
of f or its derivatives. But this problem can be overcome. We can assume without loss of
generality that the coefficients are globally smooth in their arguments. This can be seen as
follows. We modify the coefficients to be globally smooth and agree with the original coefficients
on a neighborhood of zero. Then we solve the equation. Now by Sobolev embeddings derivatives
of f are continuous in space and time up to ∇3f . Hence, at least for a short period of time they
stay in the area where the modified and the original coefficients are the same. So we restrict our
solution to this interval and have a solution to the original problem.

Looking at our equation, we see that finding a solution is equivalent to finding a solution of
a fixed point problem. Recall Q and L as given by equations (4.8) and (4.9), respectively. We
introduce the operator L−1 : YT ×Xγ → XT , which maps a combination of right-hand side and
initial data to the unique solution of problem (4.3). This operator is continuous by Theorem
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4.15. Then finding a fixed point of the map

L−1(Q(·)− L·, f0, n0) : XT → XT

is equivalent to finding a solution of equation (4.2).

We want to apply the contraction mapping principle. Therefore, we have to show that
L−1(Q(·)− L·, f0, n0) is a contraction on a suitable closed subset of XT and maps this set to
itself. We take R > ‖(f0, n0)‖Hk such that the Ball B(0, R) ⊂ XT contains functions with the
given initial data.

We have seen in Theorem 4.15 and Lemma 4.17 that Q− L is a Lipschitz map on subsets

Uε = B(0, R) ∩ {‖(f, n) ∈ XT | ‖f(0, ·)‖Hk ≤ ε} ⊂ XT → YT

and the Lipschitz constant tends to cε if T and is sufficiently small.

We start with T0 > 0 and take an arbitrary element x in XT0 with the right initial data and
take y = L−1(Q(x)− Lx). Now choose R > 2 max{‖x‖XT0

, ‖y‖XT0
}. For any time T < T0 we

get an element x ∈ XT by restricting x to the shorter time intervall. The same is true for y.
Moreover, it will be still true that y = L−1(Q(x)− Lx) and we have

‖x‖XT ≤ ‖x‖XT0
, ‖y‖XT ≤ ‖y‖XT0

.

In addition, for all z ∈ Uε we have

‖z − x‖XT < 2R.

Now we choose T so that the Lipschitz constant CL of L−1(Q(z)− Lz, f0, n0) is smaller than
1/4. This is possible since ε < 1/8 and CL is of the form C(R)Tα + ε. Hence, we have

‖L−1(Q(z)− Lz, f0, n0)− y‖XT < R/2.

Since L−1(·, f0, n0) does not change the time trace at t = 0, this implies that for T small enough
L−1(Q(·) − L·, f0, n0) maps Uε to itself. Thus, by the Banach fixed point theorem, the map
L−1(F ) has a fixed point in Uε and this means we have a solution to our equation.

Step 2: Uniqueness Suppose the solution found in step 1 is not unique. Then, we choose
R big enough, that both solutions lie in some Uε.

For T small enough L−1(F ) is a contraction also on this set. Thus, there is a unique fixed
point. But both solutions give a fixed point of L−1(F ) in Uε, which is a contradiction.

Step 3: Continuous dependence on the initial data Suppose (f1, n1) ∈ Xγ and
(f2, n2) ∈ Xγ are suitable initial data, that is ‖f1‖C1 , ‖f2‖C1 ≤ ε. With Uε as above, we
calculate for x1, x2 ∈ Uε

‖L−1(Q(x1)− Lx1, (f1, n1))− L−1(Q(x2)− Lx2, (f2, n2))‖XT
≤ C(‖(Q− L)(x1)− (Q− L)(x2)‖YT + ‖(f1 − f2, n1 − f2)‖Xγ )

≤ 1
2‖x1 − x2‖XT + C‖(f1 − f2, n1 − f2)‖Xγ .

(4.11)

Here we used again, that Q− L is Lipschitz on Uε with small Lipschitz constant. Suppose for
i = 1, 2 the functions xi are solutions of (4.2) for initial data (fi, ni), then

xi = L−1(Q(xi)− Lxi, (fi, ni)).

Thus, by (4.11) we conclude

‖x1 − x2‖XT ≤ C‖(f1 − f2, n1 − n2)‖Xγ .
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Theorem 4.19
For d ∈ N let M be a d-dimensional, smooth, orientable closed manifold. Let k > d/2 + 3 be
a natural number and let XT,imm be as in Definition 4.14 depending on k. Let an immersion
ϕ0 ∈ Hk

imm(M,Rd+1) and a vector field n0 ∈ Hk(M,Rd+1) be given.

Then, there is a T > 0, such that the gradient flow equation (3.8) of the energy (3.1) has a
unique solution (ϕ, n) ∈ XT,imm, which depends continuously on the initial data.

Proof. As a first step, we write ϕ0 as the graph of a function f0 ∈ Hk(M) over a smooth
immersion ϕ∗. We have seen in Proposition 4.2 that this leads to a quasilinear system of
equations for functions f, n given by (4.2). Following Lemma 1.18 the C1-norm of the initial
data f0 can be made arbitrarily small by taking better approximations of ϕ. Let c denote the
constant from equation (4.10), then we fix 0 < ε < 1

8c and arrange that ‖f0‖C1 < ε.

Existence, uniqueness and continuous dependence on the initial datum of a solution for the
equation (4.2) is guaranteed by Proposition 4.18. A solution (ϕ, n) of can then be obtained by
setting ϕ̃ = ϕ0 + fν0 and reparametrization by Lemma 3.6.

4.4 Some Non-Local Constraints

Since in the model the image of the immersion ϕ represents the shape of a membrane, it is
reasonable, to consider some additional constraints as given in (3.2). In Section 3.4 it was
discussed what correction terms are necessary to obtain a flow equation whose solution preserves
the constrained quantities and still decreases the energy.Our aim is now to show that for the
flow (3.8) the correction terms for volume and area preservation are of lower order. We therefore
have to calculate them in terms of n and the height function f . It will turn out to be useful to
have at hand a rather general estimate on the difference of integral terms in Bochner spaces.

Lemma 4.20
For k, p ∈ N satisfying k > n/2 and p ≤ k let a ∈ Ck+2(R × [0, T ]) be a real valued function.
Then the map

A : L2(0, T ;Hk+p(M)) ∩H1(0, T ;Hk−p(M))→ L2(0, T )

f 7→
∫
M

a(f, t) dµ

is well defined, of class Ck and the k-th Fréchet derivative DkA is locally Lipschitz continuous.

Proof. First off, we recall that Lemma 1.27 states that f 7→ a(f, t) is a well-defined map
from L2(0, T ;Hk+p(M)) ∩H1(0, T ;Hk−p(M)) to itself and differentiable. For two functions
f1, f2 ∈ L2(0, T ;Hk+p(M)) ∩H1(0, T ;Hk−p(M)) Hölder’s inequality gives∫ T

0
|
∫
M

a(f1, t)− a(f2, t) dµ|2 dt ≤ |M |
∥∥a(f1, t)− a(f2, t)

∥∥2
L2(0,T ;L2(M)),

but this norm can be estimated by Lemma 1.26 in combination with Theorem 1.14

With this basic observation, we can analyze the correction terms for volume and area
constraints and obtain local well-posedness of the constrained flow.
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Theorem 4.21
For d ∈ N let M be a d-dimensional, smooth, orientable, closed manifold. Let k > d/2 + 3 be a
natural number and let XT,imm be as in Definition 4.14 depending on k. Let ϕ0 ∈ Hk

imm(M,Rd+1)
be an immersion satisfying A(ϕ0) = A0 and V ol(ϕ0) = V0 for A0, V0 as in (3.2) and let
n0 ∈ Hk(M,Rd+1) be a vector field.

Then, there is a T > 0, such that the area and volume preserving gradient flow equation
(3.10) of the energy (3.1) has a unique solution in XT,imm, which depends continuously on the
initial data. The result remains valid, if we only impose one of the two constraints.

Proof. First off, we observe that when volume and area preservation are enforced and ϕ0(M) is
a round sphere, ϕ will be stationary due to isoperimetric restrictions. The result then follows
from short-time existence for the harmonic map heat flow. Thus, in the following, when we
enforce area and volume preservation, we can assume that ϕ(M) is not a round sphere and the
mean value free mean curvature is not identically 0. Thus, we can safely divide its L2-norm.

To prove this result, we show that the proof of Theorem 4.19 can be generalized. We deduce
that the correction that is necessary to preserve area and/or volume is of lower order, in the
sense that it can be absorbed in the bi terms in equation (4.2), when we formulate the problem
in terms of the height function. First off, we remark that for (M, g) with finite volume, we have
an embedding R→ Hk(M), since the constant functions are integrable.

We have seen in Lemma 4.1 that if the evolving immersion ϕ is given as ϕ = ϕ∗ + fν∗, then
the normal velocity v = 〈∂tϕ, ν〉 in terms of the height function f is

v = ∂tf〈ν∗, ν〉.

Hence, v in terms of f and n is given by the right-hand side of equation (4.2) times 〈ν∗, ν(t)〉.
We set

R(f, n) = gijgk`∇∗i∇∗j∇∗k∇∗`f +
δgij∇∗i∇∗j divf n

〈ν, ν∗〉
+b1(f,∇∗f,∇∗2f,∇∗3f, n,∇∗n,∇∗2n),

hence,
v = 〈ν∗, ν〉R(f, n)

then we end up with the equation

∂tf = R(f, n)−

∫
M

v dµ

〈ν∗, ν〉
∫
M

dµ
−

∫
M

v(H −H) dµ

〈ν∗, ν〉
∫
M

(H −H)2 dµ
(H −H).

Observe that also dµ has a dependence on f and also v and H depend on f and n. Since we
see from equation (3.8) that the main part of v is a divergence, we find∫

M

v dµ =
∫
M

−∆ϕ(Hϕ + δ divϕ n) + b1(ν,∇ϕν,H,∇ϕH,n,∇ϕn,∇2
ϕn) dµ

=
∫
M

b1(ν,∇ϕν,H,∇ϕH,n,∇ϕn,∇2
ϕn) dµ.

To establish Lipschitz continuity of the correction terms we have to estimate their difference.
Since the volume element depends also on the integrands it is useful to perform a change of
variables and obtain all integrals with respect to dµ∗. Thus, for a function φ on M we find that∫

M

φ dµ =
∫
M

φJ dµ∗,
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where J is in local coordinates given as

J =
√
g

√
g∗
.

Hence, for R, ε > 0 setting again Uε = BXT (0, R) ∩ {‖(f, n) ∈ XT | ‖f(0, ·)‖C1 ≤ ε} we have
to compute for two pairs of functions (f1, n1), (f2, n2) ∈ Uε the difference∫

M

B1 dµ

〈ν∗, ν1〉
∫
M

1 dµ
−

∫
M

B2 dµ

〈ν∗, ν2〉
∫
M

1 dµ
.

Here Bi = b1(p, t, fi,∇∗fi,∇∗2fi,∇∗3fi, ni,∇∗ni,∇∗2ni) for i = 1, 2 and b1 from equation (3.8)
which is smooth in its arguments. Moreover, let Ji = J(fi) denote the change of volume elements.
Then, ∫

M

B1 dµ

〈ν∗, ν1〉
∫
M

1 dµ
−

∫
M

B2 dµ

〈ν∗, ν2〉
∫
M

1 dµ

=

∫
M

B1J1 dµ∗

〈ν∗, ν1〉
∫
M

J1 dµ∗
−

∫
M

B2J2 dµ∗

〈ν∗, ν2〉
∫
M

J2 dµ∗

=

∫
M

B1J1 dµ∗
∫
M

J2 dµ∗〈ν∗, ν2〉 −
∫
M

B2J2 dµ∗
∫
M

J1 dµ∗〈ν∗, ν1〉

〈ν∗, ν1〉〈ν∗, ν2〉
∫
M

J1 dµ∗
∫
M

J2 dµ∗

=

∫
M

B1J1 dµ∗
[
〈ν∗, ν2〉

∫
M

J2 dµ∗ − 〈ν∗, ν1〉
∫
M

J1 dµ∗
]

〈ν∗, ν1〉〈ν∗, ν2〉
∫
M

J1 dµ∗
∫
M

J2 dµ∗

−
〈ν∗, ν1〉

∫
M

J1 dµ∗
[ ∫

M

B2J2 dµ∗ −
∫
M

B1J1 dµ∗
]

〈ν∗, ν1〉〈ν∗, ν2〉
∫
M

J1 dµ∗
∫
M

J2 dµ∗

We consider these two terms separately. After calculating∫
M

B1J1 dµ∗
[
〈ν∗, ν2〉

∫
M

J2 dµ∗ − 〈ν∗, ν1〉
∫
M

J1 dµ∗
]

〈ν∗, ν1〉〈ν∗, ν2〉
∫
M

J1 dµ∗
∫
M

J2 dµ∗

=
∫
M

B1J1 dµ∗
〈ν∗, ν2〉

( ∫
M

J2 − J1 dµ∗
)

+
∫
M

J1 dµ∗
(
〈ν∗, ν2〉 − 〈ν∗, ν1〉

)
〈ν∗, ν1〉〈ν∗, ν2〉

∫
M

J1 dµ∗
∫
M

J2 dµ∗

=
∫
M

B1J1 dµ∗

∫
M

J2 − J1 dµ∗

〈ν∗, ν1〉
∫
M

J1 dµ∗
∫
M

J2 dµ∗
+
∫
M

B1J1 dµ∗ 〈ν∗, ν2〉 − 〈ν∗, ν1〉

〈ν∗, ν1〉〈ν∗, ν2〉
∫
M

J2 dµ∗
,
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we set

I :=
∫
M

B1J1 dµ∗

∫
M

J2 − J1 dµ∗

〈ν∗, ν1〉
∫
M

J1 dµ∗
∫
M

J2 dµ∗
,

II :=
∫
M

B1J1 dµ∗ 〈ν∗, ν2〉 − 〈ν∗, ν1〉

〈ν∗, ν1〉〈ν∗, ν2〉
∫
M

J2 dµ∗

and

III :=
〈ν∗, ν1〉

∫
M

J1 dµ∗
[ ∫

M

B2J2 dµ∗ −
∫
M

B1J1 dµ∗
]

〈ν∗, ν1〉〈ν∗, ν2〉
∫
M

J1 dµ∗
∫
M

J2 dµ∗

=

( ∫
M

B2J2 dµ∗ −
∫
M

B1J1 dµ∗
)

〈ν∗, ν2〉
∫
M

J2 dµ∗
.

We have to calculate ‖I‖Y 1
T
, ‖II‖Y 1

T
, and ‖III‖Y 1

T
. We observe that since J(0) = 1 and by

continuity J > 1/2 in a neighborhood of 0 and as ‖∇fi‖BUC(0,T,C0) ≤ ε+ C(R)Tα, the terms
〈ν∗, νi〉 and 1∫

Ji dµ∗
are bounded from below by 1/4 for ε and T sufficiently small. Thus,

‖I‖Y 1
T

=
∥∥∥∥∥∫

M

B1J1 dµ∗

∫
M

J2 − J1 dµ∗

〈ν∗, ν1〉
∫
M

J1 dµ∗
∫
M

J2 dµ∗
∥∥
Hk−2

∥∥∥
L2(0,T )

=
∥∥∥∥∥ 1
〈ν∗, ν1〉

∥∥
Hk−2

∫
M

B1J1 dµ∗

∫
M

J2 − J1 dµ∗∫
M

J1 dµ∗
∫
M

J2 dµ∗

∥∥∥
L2(0,T )

=
∥∥∥ 1
〈ν∗, ν1〉

∥∥∥
BUC(0,T,Hk−2)

∥∥∥∣∣ ∫
M

J2 − J1 dµ∗

∫
M

B1J1 dµ∗∫
M

J1 dµ∗
∫
M

J2 dµ∗
∣∣∥∥∥
L2(0,T )

≤ C(R, ε)‖J1 − J2‖L2(0,T,L2)

≤ C(R, ε)Tα‖(f1 − f2, n1 − n2)‖XT

by Lemma 1.26 and 4.20.

Analogously, we can find estimates for II and III, leaving us with an estimate for the
Lipschitz constant of the first non-local term reading∥∥∥∥∥∥∥∥

∫
M

B1 dµ∫
M

1 dµ
−

∫
M

B2 dµ∫
M

1 dµ

∥∥∥∥∥∥∥∥
YT

≤ C(R, ε)Tα‖(f1 − f2, n1 − n2)‖XT .

The calculation for the area preserving correction is a little more involved, since H depends on
the evolution of the surface. Moreover, by using Gauß’ theorem the highest order term does not
simply vanish but produces a third order term involving the gradient of the curvature. That is,
with the gradient vector field Z = Z(f, n) = gradf (Hf + δ divf (n)) and all lower order terms
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collected in B = B(f, n) we integrate by parts to find∫
M

v(H −H) dµ

〈ν∗, ν〉
∫
M

(H −H)2 dµ
(H −H)

=

∫
M

〈Z, gradf H〉+B(H −H) dµ

〈ν∗, ν〉
∫
M

(H −H)2 dµ
(H −H)

=

∫
M

(
〈Z, gradf H〉+B(H −H)

)
J dµ∗

〈ν∗, ν〉
∫
M

(H −H)2J dµ∗
(H −H),

since H is constant in space. We take (f1, n1), (f2, n2) ∈ Uε again and calculate, denoting the
dependence of a quantity on fi and ni only by an index.∫

M

(
〈Z1, gradf1 H1〉+B1(H1 −H1)

)
J1 dµ∗

〈ν∗, ν1〉
∫
M

(H1 −H1)2J1 dµ∗
(H1 −H1)

−

∫
M

(
〈Z2, gradf2 H2〉+B2(H2 −H2)

)
J2 dµ∗

〈ν∗, ν2〉
∫
M

(H2 −H2)2J2 dµ∗
(H2 −H2)

=

∫
M

(
〈Z1, gradf1 H1〉+B1(H1 −H1)

)
J1 dµ∗

〈ν∗, ν1〉
∫
M

(H1 −H1)2J1 dµ∗
(H1 −H1 − (H2 −H2))

+
(∫

M

(
〈Z1, gradf1 H1〉+B1(H1 −H1)

)
J1 dµ∗

〈ν∗, ν1〉
∫
M

(H1 −H1)2J1 dµ∗

−

∫
M

(
〈Z2, gradf2 H2〉+B2(H2 −H2)

)
J2 dµ∗

〈ν∗, ν2〉
∫
M

(H2 −H2)2J2 dµ∗
)
(H2 −H2).

We write the second term as

(∫
M

(
〈Z1, gradf1 H1〉+B1(H1 −H1)

)
J1 dµ∗

〈ν∗, ν1〉
∫
M

(H1 −H1)2J1 dµ∗

−

∫
M

(
〈Z2, gradf2 H2〉+B2(H2 −H2)

)
J2 dµ∗

〈ν∗, ν2〉
∫
M

(H2 −H2)2J2 dµ∗

)
(H2 −H2)

=
(∫

M

(
〈Z1, gradf1 H1〉+B1(H1 −H1)

)
J1 dµ∗〈ν∗, ν2〉

∫
M

(H2 −H2)2J2 dµ∗

−
∫
M

(
〈Z2, gradf2〉+B2(H2 −H2)

)
J2 dµ∗〈ν∗, ν1〉

∫
M

(H1 −H1)2J1 dµ∗
)
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× H2 −H2

〈ν∗, ν1〉
∫
M

(H1 −H1)2J1 dµ∗〈ν∗, ν2〉
∫
M

(H2 −H2)2J2 dµ∗

=
(∫

M

(
〈Z1, gradf1 H1〉+B1(H1 −H1)

)
J1 dµ∗

×
[
〈ν∗, ν2〉

∫
M

(H2 −H2)2J2 dµ∗ − 〈ν∗, ν1〉
∫
M

(H1 −H1)2J1 dµ∗
]

+〈ν∗, ν1〉
∫
M

(H1 −H1)2J1 dµ∗

×
( ∫

M

(〈Z2, gradf2 H2〉+B2(H2 −H2))J2 dµ∗

−
∫
M

(〈Z1, gradf1 H1〉+B1(H1 −H1))J1 dµ∗
))

× H2 −H2

〈ν∗, ν1〉
∫
M

(H1 −H1)2J1 dµ∗〈ν∗, ν2〉
∫
M

(H2 −H2)2J2 dµ∗

Thus, we have split the term ∫
M

v(H −H) dµ

〈ν∗, ν〉
∫
M

(H −H)2 dµ
(H −H)

into several parts, each of which we can estimate from above by the Lemmas 1.26 and 4.20.
This shows that the correction terms arising from area and volume preservation are Lipschitz
continuous as operators on the solution space. That is, they do not affect the strategy to prove
short-time existence.

4.5 The Unit-Length Constraint for n

In the following we will consider the case, where the length of n is fixed and equal to one. The
necessary correction term was already discussed in Section 3.4. We denote the identity on Rd+1

by Ed+1, then the adjusted equation reads

∂tn =
(
Ed+1 − n⊗ n

)[
λgij∇∗i∇∗jn+ δgk`∇∗k(gij∇∗i∇∗jf + δ divf n)X`

+b2(p, t, f,∇∗f,∇∗2f, n,∇∗n) + gij∇∗in⊗Xjν
∗∂tf

]
.

(4.12)

That this correction does the trick and guaranties that n is a map to the unit sphere can be seen
by differentiating ‖n‖2 in time. This gives d

dt‖n‖
2 = 2〈∂tn, n〉.Now, since ∂tn is by construction

orthogonal to n, we see that the length of n is constant. Hence, n maps to the unit sphere, if
the initial data maps to the unit sphere.

This however, changes the coefficients of the highest order terms. This kind of correction
is also needed if one studies the harmonic map heat flow. The crucial observation is, that the
normal component of the Laplace Beltrami operator is of lower order (see e.g. [63, Ch. 1]). This
means we may interchange Ed+1 − n⊗ n and gij∇2

ijn only producing a lower order term which
is covered by a modification of b2. Nevertheless, we have to adjust the linear system,as there is
still another change in the highest order terms.

If we want to solve the flow equation with initial datum n0 ∈ Hk(M,Sd), we approximate
n0 by a ∈ C∞(M,Sd) in Hk. Since k > d/2, this is possible by standard approximation
results [8, Sec. 1]. Therefore, we have n0 = a+ ñ0
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We linearize the whole system (4.2) with the equationfor n replaced by (4.12) around a. The
new linear problem that we obtain is therefore in ñ from which n is reconstructed by n = a+ ñ.
We find the system

∂tf + ∆(∆f + δ div ñ) = x on M × (0, T ),
∂tñ− λ∆ñ− (Ed+1 − a⊗ a) δ∇(∆f + δ div ñ) = y on M × (0, T ),

f(·, 0) = f0 on M,

ñ(·, 0) = ñ0 on M.

(4.13)

In the following we write n instead of ñ

We want to use the method of continuity to solve this equation. The following propositionand
a proof can e.g. be found in the textbook by Gilbarg and Trudinger [41, Theorem 5.2]

Proposition 4.22 (Method of continuity)
Let X and Y be Banach spaces and {Lt}t∈[0,1] a continuous family of operators from X to Y ,
such that there is a uniform a priori estimate

‖x‖X ≤ C‖Ltx‖Y

for all t ∈ [0, 1]. Then L1 is surjective if and only if L0 is surjective.

With help of this result, we prove maximal regularity for the new linear operator.

Theorem 4.23
For

(
(x, y), (f0, n0)

)
∈ YT ×Xγ and δ < 2

√
λ the equation (4.13) has a unique solution in XT

and

‖(f, n)‖XT ≤ C(‖(x, y)‖YT + ‖(f0, n0)‖Xγ ).

Proof. We apply the method of continuity to the family of operators

Lθ(f, n) =
((

∂tf + ∆2f + δ∆ divn
∂tn− λ∆n− (Ed+1 − θa⊗ a)δ∇(∆f + δ divn)

)
,

(
f(0)
n(0)

))
.

Hence, we have to show an a priori estimate. Suppose (f, n) are smooth and the functions ζ
form a partition of unity subordinate to a covering of M with charts. Let α = (α1, . . . , αn) be a
multiindex of order 2 ≤ ` ≤ k. Again, k is related to the regularity of functions in XT as in
Definition 4.14. Then, we take the L2(M) scalar product of Lθ(f, n) with

(−1)|α|Dα
(
ζ2|α|+2Dα(f, n)

)
.

In the following calculation, where derivatives went onto the cut-off functions, we denote the
resulting lower order terms only by “+L.O.T.”These terms may be ignored since they can be
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bounded by some interpolation inequality.

d
dt‖ζ

|α|+1Dαf‖2L2(M) + d
dt‖ζ

|α|+1Dαn‖2L2(M) + (λ− θδ
√
λ

2 )‖ζ |α|+1∇Dαn‖2L2(M)

+(1− θδ

2
√
λ

)‖ζ |α|+1∆Dαf + ζ |α|+1δ div(Dαn)‖2L2(M)

≤ d
dt‖ζ

|α|+1Dαf‖2L2(M) + d
dt‖ζ

|α|+1Dαn‖2L2(M)

+‖ζ |α|+1∆Dαf + δζ |α|+1 div(Dαn)‖2L2(M) + λ‖ζ |α|+1∇Dαn‖2L2(M)

−θδ〈ζ |α|+1∆Dαf + ζ |α|+1δ div(Dαn), ζ |α|+1 div(a⊗ aDαn)〉L2(M) + L.O.T.

= 〈(−1)|α|Dα[ζ2|α|+2Dαf ], ∂tf + ∆2f + δ∆ divn〉L2(M)

+〈(−1)|α|Dα[ζ2|α|+2Dαn], ∂tn− λ∆n− (Ed+1 − θa⊗ a)δ∇(∆f + δ divn)〉L2(M) + L.O.T.
(4.14)

We integrate by parts and use Schwarz’and Young’s inequality to obtain

〈x,DαζDαf〉L2(M) + 〈y,DαζDαn〉L2(M)

≤ Cε‖Dα−βx‖2L2(M) + ε‖ζDβDαf‖2L2(M) + Cε‖Dα−γy‖2L2(M) + ε‖DγζDαn‖2L2(M),

with β, γ ≤ α and |β| = 2 and |γ| = 1.We note, that we have to move one more derivative in
the term involving f , due to its higher differentiability. Setting x = ∂tf + ∆2f + δ∆ divn and
y = ∂tn− λ∆n− (Ed+1 − θa⊗ a)δ∇(∆f + δ divn) we discover by integrating (4.14) in time

‖ζ |α|+1]f‖L2(0,T ;H`+2(M)) + ‖ζ |α|+1]n‖L2(0,T ;H`+1(M))

≤ C
[

sup
t∈[0,T ]

‖ζ |α|+1Dαf‖2L2(M) + sup
t∈[0,T ]

‖ζ |α|+1Dαn‖2L2(M)

+‖ζ |α|+1∆Dαf + δζ |α|+1 div(Dαn)‖2L2(0,T ;L2(M)) + ‖ζ |α|+1∇Dαn‖2L2(0,T ;L2(M))
]

≤ C(‖Dα−β(∂tf + ∆2f + δ∆ divn)‖2L2(0,T ;L2(M)) + L.O.T.

+‖Dα−γ(∂tn− λ∆n− (Ed+1 − θa⊗ a)δ∇(∆f + δ divn))‖2L2(0,T ;L2(M))

+‖ζ |α|+1Dαf(0)‖2L2(M) + ‖ζ |α|+1Dαn(0)‖2L2(M)) + L.O.T.

This can be done for all ` from 2 up to k. Next, we replace in

(−1)|α|Dα
(
ζ2|α|+2Dα(f, n)

)
four space derivatives of f and two of n each by one time derivative, that is we test with

(−1)|α|Dα
(
ζ2|α|+2Dα−η1∂tf, ζ

2|α|+2Dα−η2∂tn
)

for η1, η2 < α and |η1| = 4, |η2| = 2. This provides us with analogous estimates for

‖ζ |α|+1f‖H1(0,T (H`−2(M)) + ‖ζ |α|+1n‖H1(0,T (H`−1(M)).

Finally, we can sum up the results from all charts to get

‖(f, n)‖XT ≤ C‖Lθ(f, n)‖YT×Xγ

as desired. Now the claim follows directly from the application of Proposition 4.22.

That means, we have an optimal result for this linear problem, hence we are now able to
treat the quasilinear problem.
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Theorem 4.24
For d ∈ N let M be a d-dimensional, smooth, orientable, closed manifold. Let k > d/2 + 3 be a
natural number and let XT,imm be as in Definition 4.14 depending on k. Let ϕ0 ∈ Hk(M,Rd+1)
be an immersion satisfying A(ϕ0) = A0 and V ol(ϕ0) = V0 for A0, V0 as in (3.2) and let
n0 ∈ Hk(M,Rd+1) be a vector field with ‖n0‖Rd+1 ≡ 1.

Then, there is a T > 0, such that the gradient flow equation of the energy (3.1), with
constants δ > 0, λ > 0satisfying 2

√
λ > δ, preserving any combination of the constraints (3.2)

has a unique solution (ϕ, n) ∈ XT,imm, which depends continuously on the initial data. If the
unit-length constraint is neglected, also the condition on n0, δ, and λ are obsolete.

Proof. Again, we observe that when volume and area preservation are enforced and ϕ0(M) is
a round sphere, ϕ will be stationary due to isoperimetric restrictions. The result then follows
from short-time existence for the harmonic map heat flow. Thus, in the following, when we
enforce area and volume preservation, we can assume that ϕ(M) is not a round sphere.

We have shown in the foregoing section and Theorem 4.23, how the modified equation is
linearized and how to solve the linearized problem. Thus the proof of Theorem 4.19 is still
valid.

4.6 The Parameter Trick and Implications of Maximal
Regularity

In this last section of this chapter, we will use the so called parameter trick and exploit
some general results about maximal Lp-regularity to obtain smooth solutions and parabolic
regularization. We introduce time weighted spaces. They are relatively common in this context
and we follow the definitions given in the book of Prüss and Simonett [77, ch. 3.2], that gives
an overview on state of the art techniques for parabolic problems in the Sobolev setting.

Definition 4.25
For a Banach space Y , 1 < p <∞, and 1/p < µ ≤ 1, we define

Lpµ(0, T ;Y ) := {u : (0, T )→ Y, t1−µu(t) ∈ Lp(0, T ;Y )}

with the norm
‖u‖Lpµ(0,T ;Y ) =

( ∫ T

0
|t1−µu(t)|pY dt

)1/p
.

Accordingly, we set

H1,p
µ (0, T ;Y ) := {u ∈ Lpµ(0, T ;Y ) ∩H1,1(0, T ;Y )|u̇ ∈ Lpµ(0, T ;Y )}

and equip it with the norm

‖u‖H1,p
µ (0,T ;Y ) =

(
‖u‖p

Lpµ(0,T ;Y ) + ‖u̇‖p
Lpµ(0,T ;Y )

)1/p
.

With these norms, the above spaces turn into Banach spaces. We denote the Hilbert spacesHk,2
µ

by Hk
µ , since we only consider the case p = 2 in this work.

As for the unweighted spaces, the problem of the right trace space is very important. We
state the following result, again from [77, Theorem 3.4.8].
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Theorem 4.26
There is a continuous and surjective trace map

Lpµ(0, T ;Hk+p) ∩H1
µ(0, T ;Hk−p)→ Hk−p+2p(µ− 1

2 ),

u 7→ u(0).

Proof. To identify the objects in the original formulation in Theorem 3.4.8 of [77], it is very
helpful to study their Example 3.4.9. Especially the operator A appearing in their Theorem
3.4.8 can in our case be set to (1 + ∆)p and α = 1.

We remark, that for positive times, the space regularity is the same as in the unweighted
case since we can divide by the weighting function. Moreover, there is a correspondence between
results for weighted and unweighted spaces. We state the following theorem [77, Theorem 3.5.4].

Theorem 4.27
Let X be a Banach space, p ∈ (1,∞), and 1/p < µ ≤ 1. Then anoperator L has maximal
Lp-regularity if and only if it has maximal Lpµ regularity.

In our case p = 2, X = Hk−2 × (Hk−1)d+1 and L is the operator

L(f, n) =
(

∆2f + δ∆ divn,
−∆n− (Ed+1 − a⊗ a)δ∇(∆f + δ divn)

)
.

In the foregoing sections, we have shown, that the operator has the property of maximal
regularity in L2. We adapt the definition of our spaces to the weighted setting.

Definition 4.28
For 1/2 < µ ≤ 1 and k ≥ 2 − 4(1 − µ) we define the weighted spaces XT,µ and YT,µ exactly
analougusly to the unweighted case. The natural trace space is now denoted by

Xγ,µ = Hk+4(µ−1) × (Hk+2(µ−1))d+1

in consistence with Theorem 4.26. Moreover, we introduce XT,µ,imm in anology to Definition
4.14.

With this, we can adapt the short-time existence result to the new setting.

Theorem 4.29
For d ∈ N let M be a d-dimensional smooth closed orientable manifold. Let k > d/2 + 3 be a
natural number and choose µ ∈ (1/2, 1) such that k− 4(1−µ) > d/2 + 3. Let ϕ0 ∈ Hk(M,Rd+1)
be an immersion and n0 ∈ Hk(M,Rd+1) a vector field with ‖n0‖Rd+1 ≡ 1.

Then, there is a T > 0, such that the area and volume preserving gradient flow equation of
the energy (3.1) with δ < 2

√
λ has a unique solution (ϕ, n) ∈ XT,µ,imm and n : M × [0, T )→ Sd.

The result remains valid, if we impose no or only one or two of the three constraints. If the unit
length constraint is abolished, the condition on the initial datum and δ, λ is obsolete. Moreover,
for positive times the surface and the vector field are smooth in space and time.

Proof. Again, we observe that when volume and area preservation are enforced and ϕ0(M) is
a round sphere, ϕ will be stationary due to isoperimetric restrictions. The result then follows

81



CHAPTER 4. SHORT-TIME EXISTENCE FOR THE GENERALIZED HELFRICH FLOW

from short-time existence for the harmonic map heat flow. Thus, in the following, when we
enforce area and volume preservation, we can assume that ϕ(M) is not a round sphere.

We consider again equation (4.2).The strategy is as in the unweighted setting. We first
linearize the equation and then use the contraction mapping principle to find a solution for the
non-linear problem.

Firstly, the mapping properties of the linearized operator are determined by Theorem 4.27.

Secondly, we have to prove results analogous to Lemma 1.26 and Lemma 1.27 in the weighted
setting. Our choices of k and µ ensure that ∇3f and ∇2n are still C0 and even a little bit more
regular. The weighted version of Lemma 1.26 is again proven by a direct calculation making use
of the trace theorem for weighted spaces as stated in this work in 4.26, the intermediate derivative
theorem for weighted parabolic spaces as proven by Meyries and Schnaubelt [70, Theorem 4.2]
and repeated use of Hölder’s inequality as in the proof of the unweighted version.

In order to control the non-linearities, one can either determine them explicitly and estimate
them one-by-one as demonstrated e.g. by Prüss and Simonett [77, Sec. 9.1 and 9.5]. Alternatively,
one can prove a weighted version of Lemma 1.27 yielding a rather general result, potentially
leaving space for further optimization in terms of necessary regularity of the initial datum. The
proof is as in the unweighted case, since the crucial estimate is done at every point in time,
making use of the trace space and Theorem 1.14.

Thus, the usual technique for quasilinear equations as described in [77, chap. 5 and 9] applies,
that is the proof of Theorem 4.24 generalizes.

To show the claimed regularization property, we argue as follows. For positive times, we
can simply divide by the weighting and the trace space is given by XT,1. So at time t1 > 0
we use the short-time existence theorem for k increased by 1/2 and µ decreased by 1/4 and
obtain improved regularity for t > t1. At t2 > t1 we increase k again. Inductively, we see that
for any time t > 0 the solution is in (Hk)d+2 for all k ∈ N and thus is smooth in space. As we
can choose ti as small as we please, the solution is regular for any positive time.

For the regularity in time, we employ Angenent’s parameter trick. To explain this trick,
we use the following notation. We set u = (f, n) ∈ XT,µ, A(u)u = Q(f, n) − ∂t(f, n) and
F (u) = Q(u) − Lu from equations (4.8) and (4.9). The result is formulated by Prüss and
Simonett [77, theorem 5.2.1], we only sketch the proof. The crucial idea is to consider for ε > 0
the family of functions

uλ(t) := u(λt), λ ∈ (1− ε, 1 + ε), t ∈ Jε := [0, T/(1 + ε)).

Since ∂tuλ(t) = λ∂tu(λt) we have

∂tuλ + λA(uλ)u = λF (u).

Now we consider the map

H : (1− ε, 1 + ε)×BXγ,µ(u0, r0)×XTε,µ → YTε,µ ×Xγ,µ

defined by
H(λ, v, w) = (∂tw + λA(w)w − λF (w), w(0)− v).

If u∗ is a solution of equation (4.2) for initial data u0, thenH(1, u0, u
∗) = 0. By the considerations

in Corollary 1.15, H is C` for all ` ∈ N and we calculate the Fréchet derivatives of H. We
see, that H satisfies the prerequisites of the implicit function theorem. It turns out, that the
parametrization of the level set of 0 just corresponds to uλ(t, v) for u(t, v) being a solution of
equation (4.2) for initial data v. Since this parametrization is C`, also

(λ, v) 7→ uλ(·, v)
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is smooth. But smoothness in λ implies smoothness in t.

Weremark that there is also a way to recover parabolic regularization avoiding the use of
time-weighted spaces and the parameter trick. Since the short-time existence result Theorem 4.24
holdson a whole range of spaces, we can argue as follows. When the initial datum is of classHk the
solution (f, n) will be in an intersection of spaces L2(0, T ;Hk+2×Hk+1)∩H1(0, T ;Hk−2×Hk−1).
From this we infer that for ε > 0 arbirary, at almost every time t ∈ [0, ε) the function (f, n)(t)
has a representative in Hk+2 ×Hk+1 but without control of the norm. to this representative
we apply the short-time existence result with initial Hk+1 regularity. We see inductively that
the solution is smooth in space for positive time since ε was arbitrary. Now differentiating the
equation in time or using the parameter trick yields also regularity for the time derivatives.

The advantage of the time-weighted setting is that it also provides an estimate on the
stronger norm. This will be in particular important for the application of the Łojasiewicz-Simon
inequality in Theorem 5.32. However, such estimate can also be derived by integral estimates.
To make this work self-contained in this point, this is done in the next section.

4.7 Some Useful A Priori Estimates

To complement the short-time existence result, we derive a priori estimates that quantify the
regularization of the solution that we observed in the foregoing section. To simplify notation,
we use the symbol # to denote metric contraction of tensors in some indices.

Theorem 4.30
Let M be a smooth, closed manifold of dimension d ∈ N without boundary.For T > 0, k ∈ N
with k ≥ d/2 + 3 let (f, n) ∈ C∞(0, T, C∞(M)) be a smooth solution of the system (4.2) and set
R = ‖(f, n)‖XT . Then for j ∈ N we have∫

M

|∇k+jf(p, t)|2 + |∇k+jn(p, t)|2 dµ ≤ C(R, j)
tj

.

Proof. First we introduce Ai ∈ C∞(TM∗, (TM)d+1), the tensor corresponding to coefficients of
the divergence of a vector field n as

Ai(∇f)∇in :=
d+1∑
α=1

Ai;α(∇f)∇inα = gim(∇f)〈∇in,Xm(∇f)〉

and Gi(∇f) corresponding to the gradient for a function u as

Gi(∇f)∇iu = gim(∇f)∇iuXm(∇f).

We recall from (4.2) that

∂tf = −gim(∇f)gk`(∇f)∇i∇m∇k∇`f −
gim(∇f)∇i∇mδAi(∇f)∇in)

〈ν(∇f), ν∗〉 + b1(∇3f,∇2n)

and
∂tn = λgim∇i∇mn+ δGk∇k(gim∇i∇mf + δAi∇in) + b2(∇2f,∇n)

For sake of shortness and readability, we suppress from here on the dependence of the tensors
Ai, Gi and gim and the normal ν on ∇f . Now we calculate

d
dt

∫
M

|∇rf |2 + |∇rn|2 dµ
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for r ≥ k. In a first step we simply use the equation and integrate by parts. Moreover, we
collect the terms where no derivatives go on the coefficient functions. Those terms come with a
minus sign after intergrating by part once or twice, respectively, due to the parabolicity of the
equation. We introduce tensors Ti, i = 1, . . . , 4 where we collect all terms emerging, when a
derivative falls on a coefficient function. The estimate reads then

d
dt

∫
M

|∇rf |2 + |∇rn|2 dµ

=
∫
〈∇rf,∇r

(
− gimgk`∇i∇m∇k∇`f −

gim∇i∇mδAi∇in)
〈ν, ν∗〉

+ b1(∇3f,∇2n)
)
〉dµ

+
∫
〈∇rn,∇r

(
λgim∇i∇mn+ δGk∇k(gim∇i∇mf + δAi∇in) + b2(∇2f,∇n)

)
〉dµ

≤ −
∫
|gim∇i∇m∇rf + δAi∇i∇rn|2 + λgim∇i∇rn∇m∇rn dµ

+
∫
〈∆2∇r−2f,∇r−3(∇T1(∇f)∇2f#∇4f +∇T2(∇f)∇2f#∇3n

)
〉dµ

+
∫
〈∆∇r−1n,∇r−2(∇T3(∇f)∇2f#∇2n+∇T4(∇f)∇2f#∇3f

)
〉dµ

+
∫
〈gim∇i∇m∇rf,∇r

(
(δAi∇in)( 1

〈ν, ν∗〉
− 1)

)
〉dµ

+
∫
〈∆2∇r−2f,∇r−2b1(∇3f,∇2n)

)
〉dµ+

∫
〈∆∇r−1n,∇r−1b2(∇2f,∇n)〉dµ.

We use the parabolicity of the coefficients, Hölder’s and Young’s inequality to find

d
dt

∫
M

|∇rf |2 + |∇rn|2 dµ

≤ −
∫

λ

4δ2 + 2λ |∇
r+2f |2 + 1

4 |∇
r+1n|2 dµ+ cε

∫
|∇r+2f |2 + |∇r+1n|2 dµ

+ 1
4ε

∫
|∇r−3(∇T1(∇f)∇2f#∇4f

)
|2 + |∇r−3(∇T2(∇f)∇2f#∇3n

)
|2

+|∇r−2(∇T3(∇f)∇2f#∇2n
)
|2 + |∇r−2(∇T4(∇f)∇2f#∇3f

)
|2 dµ

+ 1
4ε

∫
|∇r−2b1(∇3f,∇2n)|2 + |∇r−1b2(∇2f,∇n)|2 + |∇r

(
(δAi∇in)( 1

〈ν, ν∗〉
− 1)

)
|2 dµ.

At this point we employ the theory of multiplication and Nemitsky operators in Sobolev spaces
as developed by Runst and Sickel [79] and stated in Section 1.6 of this work. Estimates (1.2)
and (1.3) imply

d
dt

∫
M

|∇rf |2 + |∇rn|2 dµ

≤ −1
2

∫
λ

4δ2 + 2λ |∇
r+2f |2 + 1

4 |∇
r+1n|2 dµ+ C(R)(‖f‖2Hr + ‖n‖2Hr )

≤ −1
2

∫
λ

4δ2 + 2λ |∇
r+2f |2 + 1

4 |∇
r+1n|2 dµ+ C(R)

∫
M

|∇rf |2 + |∇rn|2 dµ+ C(R)R2

(4.15)

From this we can immediately deduce Caccioppoli inequalities by integration in time. For
t ∈ (0, T ) they read∫

M

|∇rf |2 + |∇rn|2 dµ(t) + 1
2

∫ t

0

∫
λ

4δ2 + 2λ |∇
r+2f |2 + 1

4 |∇
r+1n|2 dµds

≤
∫
M

|∇rf |2 + |∇rn|2 dµ(0) + C(R)
∫ t

0

∫
M

|∇rf |2 + |∇rn|2 dµds+
∫ t

0
C(R)R2 ds.
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4.7. SOME USEFUL A PRIORI ESTIMATES

Applying Gronwall’s Theorem, these inequalities imply in particular that a smooth solution will
remain smooth as long as the Hk-norm is bounded. Until now, we have shown that there is no
regularity loss in parabolic equations. Theorem 4.29 even yields an improvement of regularity,
but not yet an estimate. For parabolic equations it is a useful strategy to use a sequence of
cut-off functions χj : [0, T ]→ [0, 1] in time, to weaken the restriction on regularity due to the
initial data. In the context of geometric evolution equations such strategy is carried out e.g. by
Kuwert and Schätzle [55, Theorem 3.5]. There are different choices for the cut-off functions.
The important properties are

χ0 ≡ 1, χj(T ) = 1 and χ̇j ≤
c(j)
T

χj−1.

Kuwert and Schätzle give a piecewise defined sequences. For m ∈ N and j ≤ m they set

χj(t) =


0 for t ≤ (j − 1) Tm
m
T (t− (j − 1) Tm ) in between
1 for t ≥ j Tm .

But also χj(t) = tj

T j is possible. Following their argument we set

ej(t) := χj(t)
∫
M

|∇k+jf(t)|2 + |∇k+jn(t)|2 dµ

and use (4.15) to calculate

d
dtej = −cχj(t)

∫
|∇k+j+2f |2 + |∇k+j+1n|2 dµ

+χ̇j(t)
∫
M

|∇k+jf(t)|2 + |∇k+jn(t)|2 dµ+
(
C(R)ej(t) + 1

)
.

We integrate both sides in time to see

ej(T ) + c

∫ T

0
χj

∫
M

|∇k+j+2f(t)|2 + |∇k+j+1n(t)|2 dµdt

≤
∫ T

0
χ̇j(t)

∫
M

|∇k+jf(t)|2 + |∇k+jn(t)|2 dµdt+
∫ T

0
C(R)ej(t) dt+

∫ T

0
C(R) dt

≤
∫ T

0
C(R)

(
1 + ej(t)

)
dt+ c

T

∫ T

0
χj−1(t)

∫
M

|∇k+jf(t)|2 + |∇k+jn(t)|2 dµdt.

We show by induction that

ej(T ) + c

∫ T

0
χj

∫
M

|∇k+j+1f(t)|2 + |∇k+j+1n(t)|2 dµdt

≤ C(R, j)
T j

,

the case j = 0 being (4.15). At this point, it is useful to observe the following implication
of Gronwall’s lemma. Let f, g : [0, T ] → R denote continuous functions with g > 0 and
0 < a, 0 < b ∈ R positiv constants. Moreover, let f and g fulfill the inequality

f(t) + g(t) ≤ a+
∫ t

0
bf(t) dt.

Since g > 0 we conclude that

f(t) ≤ a+
∫ t

0
ab exp(b(t− s)) ≤ a+ aC(T )bt ≤ aC(b, T ).

85



CHAPTER 4. SHORT-TIME EXISTENCE FOR THE GENERALIZED HELFRICH FLOW

Putting this in the original inequality, we see

f(t) + g(t) ≤ a+
∫
bC dt ≤ aC(b, T ).

We emphasize that the estimate depends linearly on the constant a. We apply this to

ej(T ) + c

∫ T

0
χj

∫
M

|∇k+j+2f(t)|2 + |∇k+j+1n(t)|2 dµdt

≤
∫ T

0
C(R)

(
1 + ej(t)

)
dt+ c

T

∫ T

0
χj−1(t)

∫
M

|∇k+jf(t)|2 + |∇k+jn(t)|2 dµdt

to conclude

ej(T ) + c

∫ T

0
χj

∫
M

|∇k+j+2f(t)|2 + |∇k+j+1n(t)|2 dµdt

≤ C(R)
(
1 + c

T

∫ T

0
χj−1(t)

∫
M

|∇k+jf(t)|2 + |∇k+jn(t)|2 dµdt
)

≤ C(R, j)
T j

by the induction hypothesis. By the Gagliardo-Nirenberg interpolation inequality we conclude
that ∫

M

|∇k+j+1f(t)|2 dµ ≤ C(
∫
M

|∇k+j+2f(t)|2 dµ+
∫
M

|∇kf(t)|2 dµ)

≤ C(
∫
M

|∇k+j+2f(t)|2 dµ+ C(R))

and thus∫ T

0
χj

∫
M

|∇k+j+1f(t)|2 dµdt ≤
∫ T

0
χjC(

∫
M

|∇k+j+2f(t)|2 dµ+ C(R)) dµdt ≤ C(R, j)
T j

.

Since all estimates are invariant under decrease of T , we can simply rename it into t and this
concludes the proof.

Remark 4.31
Since the proof of Theorem 4.30 relies essentially on the coercivity of the main part and the
remainder terms are estimated with a very general approach, we assume in the following that
the assertion of Thereom 4.30 also holds in the presence of constraints, when the prerequesites
for the respective short-time existence result are satisfied.
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5
Long-Time Behavior for Solutions of the Gradient-
Flow Equation

In this chapter, we analyze the coupled Helfrich Flow in greater detail. For the flow of curves as
explained in Section 3.2, we give a global geometric quantity that has to become unbounded
in the case of a singularity. Moreover, we discuss stability of local minimizers in arbitrary
dimension.

5.1 A Criterion Granting Global Existence for the Flow
of Curves

Let γ : S1 → R2 be a smooth immersion yielding a plane closed curve. We parametrize γ by arc
length and consider a vector field n : S1 → R2. We recall that in the curve case we examine for
δ, λ ∈ R>0 the energy

E(γ, n) = 1
2

∫
γ

(κ+ δ divn)2 ds+ λ

2

∫
γ

|∇sn|2 ds+
∫
γ

1 ds. (5.1)

In the following, we want to find conditions under which the L2-gradient flow of this energy exists
globally. To this end, we will use integral estimates and Gagliardo-Nirenberg-type interpolation
inequalities. We recall from (3.4) that the energy (5.1) suffices to control the length of the curve
from below and above during the flow. So constants may depend on positive or negative powers
of L still yielding uniform in time estimates.

In the following we assume that (γ, n) ∈ C∞(S1 × [0, T ),R2 × R2) is a smooth solution of
equation (3.8).Using the dependent variable z := κ+ δ divn, we recall from Remark 3.7 that
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the normal velocity V of the flow is given for curves by (3.9) reading

V = −∂2
s (κ+ δ divn)− κ2(κ+ δ div(n))

+δκ∇n : ∇ν + δ div(κνT∇n) + δ2 div(n)(∇n : ∇ν) + δ2 div(div(n)νT∇n)

+1
2κ(κ+ δ div(n))2 + λ∇nT : (∇ν(∇n)T ) + λ

2κ|∇n|
2 + κ

= −∂2
sz − κ2z + δ∇n : ∇νz + δ div(zνT∇n) + 1

2κz
2

+λ∇nT : (∇ν(∇n)T ) + λ

2κ|∇n|
2 + κ.

We also have an equation for n which reads

nt = λ∂2
sn+ δ∇z + δzκν, (5.2)

since γt = V ν.As a first step we analyze the scaling properties of these equations.

Lemma 5.1
Let (γ(x, t), n(x, t)) : S1 × [0, T ) → R2 × R2 be a smooth solution of the evolution given by
(3.8), then for 0 < α the rescaled functions (α−1γ(x, α4t), n(x, α4t)) are a smooth solution on
S1 × [0, Tα−4) for the system of equations

〈γt, ν〉 = −∂2
sz − κ2z + δ∇n : ∇νz + δ div(zνT∇n) + 1

2κz
2

+λ∇nT : ∇ν(∇n) + λ

2κ|∇n|
2 + α−2κ

nt = α2
(
λ∂2

sn+ δ∇z + δzκν
) (5.3)

Proof. We note that for a function f : S1 × [0, T )→ R we have

∂s,αf = 1
|∂xγα|

∂xf = α∂sf.

and recall div(·) = 〈∂s·, τ〉 and ∇ (·) = ∂s(·) ⊗ τ .The assertion follows from chain rule and the
considerations in Section 3.1.

For the motion of curves, we obtain evolution equations for κ and ∂sn with help of the
formulas

∂tκ = ∂2
sV + V κ2, (5.4)

∂t∂sf = ∂s∂tf + κV ∂sf, (5.5)

where f : S1 × [0, T ) → Ris meant to be an arbitrary smooth function. They follow from
differentiating

√
〈∂xγ, ∂xγ〉 and are well established in the literature (e.g. [28, Lemma 2.1]).

In the remainder of this section, we find parabolic evolution equations for κ and n and their
derivatives. After a suitable testing procedure, we will gather the highest order terms on one
side leaving the lower order but non-linear terms on the other side. We will estimate those terms
by Gagliardo-Nirenberg-type inequalities. Absorbing the highest order terms, we inductively get
bounds on all the derivatives of κ and n.

Definition 5.2
For σ, µ ∈ N, γ : S1 → R2 a smooth regular curve and a function f : S1 → R, we denote by
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Pµσ (f) any linear combination of products of derivatives of f , such that each product has σ
factors and µ derivatives distributed over the single factors. For tensors φ1, . . . , φk, k ∈ N we
mean by

Pµσ (φ1, . . . φk)

any linear combination of products∏
i

Pµiσi (φi) with
∑
i

µi = µ,
∑
i

σi = σ.

Moreover,we will use the notation
Pµ(φ1 . . . φk)

to mean any linear combination of terms

∂µ1
s φ1 ∗ . . . ∗ ∂µks φk with

∑
i

µi = µ

denoting by ∗ any metric contraction. However, such expression may still be vector valued.
Lastly, we use scaling invariant norms for functions on curves. We set

‖f‖k,p =
k∑
i=0

L(γ)i−
1
p

(∫
γ

|∂isf |p ds
)1/p

and

‖f‖p = L(γ)−
1
p

(∫
γ

|f |p ds
)1/p

.

For these norms, too, the following Gagliardo-Nirenberg-type interpolation inequalities hold
as stated in [28, Lemma 2.4] and [21, Appendix C].

Theorem 5.3 (Interpolation inequalities)
Let γ : S1 → R2 be a smooth regular curve and f : S1 → R a smooth function. Then for any
k ∈ N, p ≥ 2 and 0 ≤ j < k we have

‖f‖j,2 ≤ C‖f‖1−βp ‖f‖βk,2 (5.6)

for 0 < j < k, β = (j + 1
2 −

1
p )/k and C = C(k).

Proof. See [21, Appendix C].

For the integral estimates it will be of importance that we can deduce an estimate for κ from
estimates for z and n.

Lemma 5.4
Let γ : S1 → R2 be a smooth curve with curvature κ and n : S1 → R2 a smooth vector field. We
have for suitable γ1 > 1 that

‖div(n)‖k,2 ≤ C(‖∂sn‖k,2 + ‖∂sn‖∞‖τ‖k,2),
‖τ‖k,2 ≤ C

(
‖κ‖k−1,2 + ‖κ‖∞ + ‖κ‖γ1

∞ + 1
)

and for δ > 0 we find γ2 > 1 such that

‖κ‖k,2 ≤ C
(
‖z‖k,2 + ‖∂sn‖k,2 + ‖z‖∞ + ‖∂sn‖∞ + ‖z‖γ2

∞ + ‖∂sn‖γ2
∞
)

for a constant C depending only on k and L(γ).
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Proof. Since div(n) = 〈∂sn, τ〉, it follows by equation (1.2) that

‖ div(n)‖k,2 = ‖〈∂sn, τ〉‖k,2 ≤ C(‖τ‖∞‖∂sn‖k,2 + ‖∂sn‖∞‖τ‖k,2)

and ‖τ‖∞ = 1. Moreover, we make repeated use of estimate (1.2) and the interpolation inequality
(5.6)to see that

‖τ‖k,2 = ‖κν‖k−1,2 + 1 ≤ C(‖κ‖∞‖ν‖k−1,2 + ‖κ‖k−1,2) + 1
≤ C(‖κ‖∞(‖κτ‖k−2,2 + 1) + ‖κ‖k−1,2) + 1
≤ C(‖κ‖2∞‖τ‖k−2,2 + ‖κ‖∞ + ‖κ‖∞‖κ‖k−2,2 + ‖κ‖k−1,2) + 1

≤ C(‖κ‖2∞‖τ‖
β1
k,2 + ‖κ‖∞ + ‖κ‖2−β2

∞ ‖κ‖β2
k−1,2 + ‖κ‖k−1,2) + 1

≤ ε‖τ‖k,2 + C‖κ‖k−1,2 + C
1
ε

(‖κ‖∞ + ‖κ‖γ1
∞ + 1)

for suitable exponents γ1 > 0 and β1, β2 ∈ (0, 1). We use this and interpolation to calculate

‖κ‖k,2 = ‖κ+ δ div(n)− δ div(n)‖k,2 ≤ ‖z‖k,2 + δ‖div(n)‖k,2
≤ ‖z‖k,2 + Cδ‖∂sn‖∞‖τ‖k,2 + C‖∂sn‖k,2
≤ ‖z‖k,2 + Cδ‖∂sn‖∞C

(
‖κ‖k−1,2 + ‖κ‖∞ + ‖κ‖γ1

∞ + 1
)

+ C‖∂sn‖k,2

≤ ‖z‖k,2 + Cδ‖∂sn‖∞C
(
ε‖κ‖k,2 + C

ε
(‖κ‖∞ + ‖κ‖γ1

∞ + 1)
)

+ C‖∂sn‖k,2.

Since the assertion is trivial when n is constant, setting ε = 1
4 min{1,‖∂sn‖∞} we conclude

‖κ‖k,2 ≤ C(‖z‖k,2 + ‖∂sn‖k,2 + ‖z‖∞ + ‖∂sn‖∞ + ‖z‖γ2
∞ + ‖∂sn‖γ2

∞)

for a suitable exponent γ2.

Remark 5.5
We recall that for n ∈ N and positive real numbers a1, . . . , an iteration of Young’s inequality
yields for p1, . . . , pn ∈ (1,∞) with

∑ 1
pi

= 1 that∏
ai ≤

∑ apii
pi
.

The following interpolation inequalities will be important tools to derive integral estimates.

Proposition 5.6 (Proposition 2.5 from [28])
Let γ : S1 → R2 be a smooth regular curve and f : S1 → R a smooth map. Then for k ∈ N and
r ∈ R, r ≥ 1 and any term Pµσ (f) with σ ≥ 1 which contains only derivatives of f of order at
most k − 1, we have ∫

γ

|Pµσ (f)|r ds ≤ CL1−rµ−rσ‖f‖rσ−β2 ‖f‖βk,2,

where β = (rµ+ rσ/2− 1)/k and C > 0 is a positive constant. Moreover, if rµ+ rσ/2 < 2k+ 1,
then β < 2 and we have for all ε > 0 and a constant c > 0 the estimate∫

γ

|Pµσ (f)|r ds ≤ ε
∫
γ

|∂ks f |2 ds+ cε−
β

2−β

(∫
γ

f2 ds
) rσ−β

2−β

+ c

(∫
γ

f2 ds
)rµ+rσ−1

.

Proof. The proof of Dziuk, Kuwert and Schätzle uses Hölder’s and Young’s inequality and the
Gagliardo-Nirenberg inequality (5.6) on S1.The original assertion of Proposition 2.5 from [28]
covers only the case r = 1. But for r > 1 the proof generalizes by using the Hölder’s inequality
with exponents rσ instead of σ and taking the r-th power of the whole estimate.
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From this result, we derive an estimate for products of up to three different functions.

Proposition 5.7 (Interpolation for mixed products)
Let γ : S1 → R2 be a smooth curve and n, κ, z be smooth maps as specified above. Let
k, σn, σz, σκ, µn, µz, µκ ∈ N be natural numbers, such that the expression condensed in the
expression Pµnσn (∂2

sn)Pµκσκ (∂sκ)Pµzσz (∂sz) does only contain derivatives of n and z of order at
most k − 1 and derivatives of κ of order at most k − 2. We set kz = k and kn = kκ = k − 1.
Then, we find for pn, pκ and pz with 1

pn
+ 1

pκ
+ 1

pz
= 1 and ϑκ = µκ+σκ/2−1

kκ
, ϑn = µn+σn/2

kn
,

ϑz = µz+σz/2
kz

and a constant C(L) > 0 an estimate∫
γ

|Pµnσn (∂2
sn)||Pµzσz (∂sz)||Pµκσκ (∂sκ)|ds

≤ C(L)‖∂sn‖σn−ϑn/pn1,2 ‖∂sn‖ϑn/pnkn,2 ‖z‖
σz−ϑz/pz
1,2 ‖z‖ϑz/pzkz,2 ‖κ‖

σκ−ϑκ/pκ
1,2 ‖κ‖ϑκ/pκkκ,2 .

If in addition
∑
i
ϑi
pi
< 2, there exists β > 0 such that for any ε > 0 we have an estimate∫

γ

|Pµnσn (∂2
sn)||Pµzσz (∂sz)||Pµκσκ (∂sκ)|ds

≤ ε
∫
γ

|∂ksn|2 + |∂ks z|2 ds+ C(L) (‖∂sn‖1,2 + ‖z‖1,2) + C(ε, L)
(
‖∂sn‖β1,2 + ‖z‖β1,2

)
.

Proof. We employ Hölder’s inequality with pz, pn and pκ with 1
pz

+ 1
pn

+ 1
pκ

= 1 and the
interpolation estimate Proposition 5.6 to find∫

γ

|Pµnσn (∂2
sn)||Pµzσz (∂sz)||Pµκσκ (∂sκ)|ds

≤
(∫

γ

|Pµnσn (∂2
sn)|pn ds

) 1
pn
(∫

γ

|Pµzσz (∂sz)|pz ds
) 1
pn
(∫

γ

|Pµκσκ (∂sκ)|pκ ds
) 1
pκ

≤ C(L)‖∂sn‖σn−ϑn/pn1,2 ‖∂sn‖ϑn/pnkn,2 ‖z‖
σz−ϑz/pz
1,2 ‖z‖ϑz/pzkz,2 ‖κ‖

σκ−ϑκ/pκ
1,2 ‖κ‖ϑκ/pκkκ,2

with ϑi = piµi+ 1
2piσi−1
ki−1 .

Concerning the second part of the assertion, when ϑ :=
∑
i
ϑi
pi
< 2, we can use Young’s

inequality to obtain the integral estimate. We also use that for a function f : S1 → R we have
‖f‖k,2 ≤ c(k)(‖f‖2 + Lk‖∂ks f‖2). We calculate

C(L)‖∂sn‖σn−ϑn/pn1,2 ‖∂sn‖ϑn/pnkn,2 ‖z‖
σz−ϑz/pz
1,2 ‖z‖ϑz/pzkz,2 ‖κ‖

σκ−ϑκ/pκ
1,2 ‖κ‖ϑκ/pκkκ,2

≤ C(L)
(
‖∂sn‖

σnpnϑ
ϑn

−ϑ
1,2 ‖∂sn‖ϑkn,2 + ‖z‖

σzpzϑ
ϑz
−ϑ

1,2 ‖z‖ϑkz,2 + ‖κ‖
σκpκϑ
ϑκ

−ϑ
1,2 ‖κ‖ϑkκ,2

)
≤ C(L)

(
‖∂sn‖

σnpnϑ
ϑn

1,2 + C(ε, L)‖∂sn‖
(σnpnϑϑn

−ϑ) 2
2−ϑ

1,2 + εC(L)−1‖∂kn+1
s n‖22

+‖z‖
σzpzϑ
ϑz

1,2 + C(ε, L)‖z‖(
σzpzϑ
ϑz
−ϑ) 2

2−ϑ
1,2 + εC(L)−1‖∂kzs z‖22

+‖κ‖
σκpκϑ
ϑκ

1,2 + C(ε, L)‖κ‖(
σκpκϑ
ϑκ

−ϑ) 2
2−ϑ

1,2 + εC(L)−1‖∂kκs κ‖22
)

≤ ε
(∫

γ

|∂kn+1
s n|2 ds+

∫
γ

|∂kzs z|2 ds+
∫
γ

|∂kκs κ|2 ds
)

+C(L) (‖∂sn‖1,2 + ‖z‖1,2 + ‖κ‖1,2) + C(ε, L)
(
‖∂sn‖β1,2 + ‖z‖β1,2 + ‖κ‖β1,2

)
.

Using Lemma 5.4 we can eliminate κ from the right hand side and the assertion follows.
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Remark 5.8
We keep the notation from Proposition 5.7. The observations in this remark give useful conditions
on µi and σi that imply

∑
ϑi/pi < 2.

If we choose 1
pn

= 1
pκ

= 1/2 and pz =∞ and µi, σi fulfill

µn + 1
2σn + µκ + 1

2σκ − 1
kn − 1 +

µz + 1
2σz

kz − 1 < 2

then by slightly increasing pn and pκ we obtain a finite value for pz and the inequality is still
valid.

Moreover, if σz ≥ 1 then

∑
ϑi/pi <

µn + 1
2σn + µκ + 1

2σκ + µz + 1
2σz − 1

kn − 1

as kn = kz − 1.

Lastly, for a smooth function f : S1 → R, if we want to estimate
∫
γ
Pµσ (f) ds interpolating

between ‖f‖1,2 and ‖f‖k,2 the following observation is useful. Depending on the number of
terms on that the µ derivatives are distributed, there is a number r ∈ N, 2 ≤ r ≤ σ such that
Pµσ (f) = fσ−rPµ−rr (∂sf) and thus∫

γ

Pµσ (f) ds ≤ ‖f‖σ−r∞
∫
γ

|Pµ−rr (∂sf)|ds ≤ ‖f‖r∞‖f‖
1−β
1,2 ‖f‖

β
k,2 ≤ ‖f‖

1−β+r
1,2 ‖f‖βk,2

with β = µ−r+r/2−1
k−1 ≤ µ−2

k−1 .

We calculate the evolution equations of the geometric quantities under the scaled evolution
(5.3).

Lemma 5.9
For T > 0, a family of curves γ : S1 × [0, T )→ R2 that evolves according to the law ∂tγ = V ν

for smooth V : S1 × [0, T ) → R, and for a time dependent vector field n : S1 × [0, T ) → R2

evolving according to the second equation in the scaled system (5.3) we have for m ∈ N0 the
evolution equations

∂t∂
m
s κ = ∂m+2

s V + Pm(κ2V )

and

∂t∂
m
s n = α2

(
λ∂m+2

s n+ δ∂ms (τ∂sz + zκν)
)

+ Pm−1(κ∂snV ).

Moreover,

∂t div(n) = ∂t(∂sn · τ) = div(∂tn) + κV ∂sn · τ + ∂sV ∂sn · ν,
∂t∂

m
s div(n) = ∂ms (div(∂tn) + ∂sV ∂sn · ν) + Pm(κV ∂sn · τ)

and for z = κ+ δ div(n) we have

∂t∂
m
s z = ∂m+2

s V + Pm(κ2V ) + δ
(
∂ms (div(∂tn) + ∂sV ∂sn · ν) + Pm(κV ∂sn · τ)

)
.
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For the normal velocity given by (5.3) a representation in the generic P notation is given by

V = −∂2
sz − κ2z + δ∇n : ∇νz + δ div(zνT∇n) + 1

2κz
2

+λ∇nT : ∇ν(∇n) + λ

2κ|∇n|
2 + α−2κ

= −∂2
sz + P 0

3 (κ, z, ∂sn) + P 1
3 (ν, z, ∂sn) + α−2κ.

(5.7)

Proof. By formulas (5.4) and (5.5) the assertions follow by induction.

For the flow the occurrence of a singularity, means that the norm of some derivative of
the curve γ or of the vector field n goes to infinity. The parabolicity of the equation allows
usto deduce Caccioppoli inequalities for the higher derivatives of z and n. The next theorem
introduces a quantity that necessarily must blow up, when a singularity develops.

Theorem 5.10
Let γ, n : S1 × [0, T ) → R2 × R2 be a smooth solution of the scaled flow equation (5.3) with
α > 0. Then there exists ε1 > 0 and C(L,α) > 0 with the following significance. If for t ∈ [0, T )
and z = κ+ δ div(n) we have

F (γ(t), n(t)) : = L−1[γ(t)]
∫
γ(t)
|z|2 ds+ L[γ(t)]

∫
γ(t)
|∂sz|2 ds

+α−2L−3[γ(t)]
∫
γ(t)
|∂sn|2 ds+ α−2L−1[γ(t)]

∫
γ(t)
|∂2
sn|2 ds < ε1,

then T − t > C(L,α) and for all m ∈ N, m ≥ 1 there exists r > 0 such that the estimate
d
dt

∫
γ(t)
|∇mz|2 + α−2|∇m+1n|2 ds+

∫
γ(t)
|∇m+2z|2 + λ|∇m+2n|2 ds

≤ C(L) (‖∂sn(t)‖1,2 + ‖z(t)‖1,2) + C(L)
(
‖∂sn(t)‖r1,2 + ‖z(t)‖r1,2

)
holds.

Proof. Step 1: We show the claimed a-priori estimates under the assumption that F is small.
We set V` = V + ∂2

sz and using the generic P -notation from Definition 5.2 and the formulas
from Lemma 5.9 we integrate by parts in the highest order terms to find

α−2 1
2

d
dt

∫
|∂m+1
s n|2 ds+ 1

2
d
dt

∫
(∂ms z)2 ds+ λ

∫
|∂m+2
s n|2 ds+

∫
(∂m+2
s z)2

=
∫
〈∂m+1
s n,

(
(δ∂m+1

s (τ∂sz + zκν) + α−2Pm(κ∂snV )
)
〉 − α−2

2 |∂
m+1
s n|2κV ds

+
∫
∂ms z(∂m+2

s V` + Pm(κ2V )) ds− 1
2

∫
(∂ms z)2κV ds

+δ
∫
∂ms z(∂ms (α2 div(∂2

sn+∇z) + ∂sV ∂sn · ν) + Pm(κV ∂sn · τ)) ds.

(5.8)

Using the representation of V in the generic P -notation from (5.7) we find integrating by parts
if necessary∫

〈∂m+1
s n, (α−2Pm(κ∂snV ))〉ds

= α−2
∫
P 2m+2

4 (κ, ∂sn, z) + P 2m
6 (κ, ∂sn, z)

+P 2m+1
6 (ν, κ, ∂sn, z) + α−2P 2m

4 (∂sn, κ) ds,

(5.9)
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and ∫
〈∂m+1
s n, (δ∂m+1

s (τ∂sz + zκν)〉ds

=
∫
P 2m+2

3 (n, τ, z) + P 2m+2
4 (n, ν, κ, z) ds

and

α−2
∫
|∂m+1
s n|2κV ds

= α−2
∫
P 2m+2

4 (κ, ∂sn, z) + P 2m
6 (κ, ∂sn, z)

+P 2m+1
6 (ν, κ, ∂sn, z) + α−2P 2m

4 (κ, ∂sn) ds

(5.10)

for the terms arising from the time derivative of n. Furthermore, we obtain∫
∂ms z(∂m+2

s V` + Pm(κ2V )) ds

≤
∫
P 2m+2

4 (κ, ∂sn, z) + P 2m+3
4 (ν, κ, ∂sn, z) + α−2|∂m+1

s z||∂m+1
s κ|

+P 2m+2
4 (κ, z) + P 2m+1

6 (ν, κ, ∂sn, z) + P 2m
6 (κ, ∂sn, z) + α−2P 2m

4 (κ, z) ds,

(5.11)

from the time derivative of κ as a part of z,∫
(∂ms z)2κV ds

=
∫
P 2m

6 (κ, ∂sn, z) + P 2m+1
4 (ν, κ, ∂sn, z) + P 2m+2

4 (κ, z) + α−2P 2m
4 (κ, z) ds,

(5.12)

from the time derivative of ds,∫
∂ms z(∂ms (α2 div(∂2

sn+∇z) + ∂sV ∂sn · ν) ds

=
∫
α2P 2m+2

3 (ν, ∂sn, z) + α2P 2m+2
4 (ν, z) + P 2m+3

4 (ν, ∂sn, z)

+P 2m+1
6 (ν, κ, ∂sn, z) + P 2m+2

6 (ν, κ, ∂sn, z) + α−2P 2m+1
4 (ν, κ, ∂sn, z) ds,

(5.13)

from the time derivative of divn as a part of z and lastly∫
∂ms zP

m(κV ∂sn · τ) ds

=
∫
P 2m+2

5 (ν, κ, ∂sn, z) + P 2m
7 (ν, κ, ∂sn, z)

+P 2m+1
6 (ν, κ, ∂sn, z) + α−2P 2m

5 (ν, κ, ∂sn, z) ds.

(5.14)

We apply the conditions from Proposition 5.7 and Remark 5.8. First we exploit that we are
looking for estimates between highest and first derivatives of κ, ∂sn and z and then we observe
in what terms z appears in a non-trivial way. Thus, we find interpolation estimates for all terms
of the form Pµν with µ ≤ 2m+ 2 and ν arbitrary, as long as we can arrange integrating by parts,
that not more than m+ 1 derivative falls on z or n. But there are a few terms where this is
inevitable and two, where µ = 2m+ 3. We analyse these terms one-by-one in the following. In
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(5.9), when all m derivatives fall on z, there is a term to that we apply Hölder’s and Young’s
inequality, to obtain ∫

〈∂m+1
s n, κ∂sn∂

m+2
s z〉ds

≤ ε
∫
|∂m+2
s z|2 ds+ 1

2ε

∫
|∂m+1
s nκ∂sn|2 ds

= ε

∫
|∂m+2
s z|2 ds+ 1

2ε

∫
P 2m

6 (κ, ∂sn) ds.

The second term can now be estimated by Proposition 5.7 again and Young’s inequality with ε2.
Also in (5.9) there is the term from the coupling, where m + 2 derivatives fall on n. We use
Hölder and Young again to find∫

∂m+1
s n ∗ κ ∗ ∂sn ∗ ν ∗ z ∗ ∂m+2

s nds

≤ ε
∫
|∂m+2
s n|2 ds+ 1

2ε

∫
|∂m+1
s nκz∂sn|2 ds

= ε

∫
|∂m+2
s n|2 ds+ ‖κ‖

2
∞‖z‖2∞‖∂sn‖2∞

2ε

∫
|∂m+1
s n|2 ds,

denoting contraction again by ∗. This can be estimated directly by interpolation and Young’s
inequality.

The next critical term is P 2m+3
4 (ν, κ, ∂sn, z) from (5.11) which originates from∫

∂ms z∂
m+2
s div(νz∂sn) ds.

We integrate by parts to have a term ∂m+2
s z. If not all the remaining derivatives fall on n we use

Hölder’s and Young’s inequality and Proposition 5.7 exactly as before. Thus, the most critical
case is, when all derivatives fall on n. Here we have to use the smallness assumption on the
quantity F that controls in particular the L∞-norm of z. We estimate∫

∂m+2
s zνT z∂m+2

s nds ≤ ‖z‖∞
(

1
2

∫
|∂m+2
s z|2 ds+ 1

2

∫
|∂m+2
s n|2 ds

)
≤ C
√
ε1

(
1
2

∫
|∂m+2
s z|2 ds+ 1

2

∫
|∂m+2
s n|2 ds

)
.

The term ∫
∂ms z∂

m
s div(∂2

sn) ds

from (5.13) can be estimated as those from (5.9) with Hölder, Young and interpolation after
intergration by parts. This applies as well to the P 2m+3

4 and P 2m+2
6 terms. Putting everything

together we obtain for suitable r > 1 the estimates

α−2 1
2

d
dt

∫
(∂m+1
s n)2 ds+ 1

2
d
dt

∫
(∂ms z)2 ds+ λ

∫
(∂m+2
s n)2 ds+

∫
(∂m+2
s z)2

≤ (Nε+ Cε1)
∫
λ|∂m+2

s n|2 + |∂m+2
s z|2 ds+ C(L) (‖∂sn‖1,2 + ‖z‖1,2)

+C(ε, L)
(
‖∂sn‖r1,2 + ‖z‖r1,2

)
.

Here, N is the number of terms estimated by interpolation, each contributing one ε. Choosing
ε < 1

4N and ε1 <
1

4C small enough, we can absorb these highest order terms and the claimed
estimate is proven. Thus, as long as F is small, the second derivative of n and the first derivative
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of z are sufficient to control the flow. Moreover,
∫
|∂sz|2 + |∂2

sn|2 is finite as long F is finite.
Thus, by short-time existence and the argument of Dziuk, Kuwert and Schätzle [28] completing
the proof of their Theorem 3.1, we can continue the flow as long as F < ε1.

Step 2: We show a suitable upper bound for the time derivative of F . That is, when F
is small initially, it remains so for a controlled period of time. We use the standard Sobolev
embedding and Hölder’s inequality to obtain

d
dtL[γ] =

∫
−κV ds =

∫
κ∂2

sz + P 0
4 (κ, ∂sn, z) + P 1

4 (ν, κ, ∂sn, z)− κ2 ds

≤ L−1‖κ‖1,2‖z‖1,2 + L‖κ‖31,2‖z‖1,2 + L‖κ‖21,2‖z‖1,2‖∂sn‖1,2
+L2‖κ‖1,2‖z‖21,2‖∂sn‖21,2 + L‖κ‖21,2‖z‖21,2 + L‖κ‖21,2‖∂sn‖21,2.

Therefore, the evolution of L is controlled by lower order quantities. Since it is not exactly
covered by the estimates for the higher space derivatives we calculate

1
2

d
dt

∫
|z|2 ds =

∫
z(∂2

sV + κ2V + α2 div(∂2
sn+ δ∇z) + κV ∂sn · τ

+∂sV ∂sn · ν)− κV |z|2 ds

and
α−2 d

dt

∫
|∂sn|2 ds =

∫
〈∂sn,

(
λ∂3

sn+ δ∂s(τ∂sz + zκν)
)

+ 2α−2κ∂snV 〉ds.

We split these terms as above. We have∫
〈∂sn, (α−2κ∂snV )〉ds = α−2

∫
P 2

4 (κ, ∂sn, z) + P 0
6 (κ, ∂sn, z)

+P 1
6 (ν, κ, ∂sn, z) + α−2P 0

4 (∂sn, κ) ds,
(5.15)

α−2
∫

(∂sn)2κV ds = α−2
∫
P 2

4 (κ, ∂sn, z) + P 0
6 (κ, ∂sn, z)

+P 1
6 (ν, κ, ∂sn, z) + α−2P 0

4 (κ, ∂sn) ds,
(5.16)

∫
z(∂2

sV` + κ2V ) ds ≤
∫
P 2

4 (κ, ∂sn, z) + P 3
4 (ν, κ, ∂sn, z) + α−2|∂1

sz||∂m+1
s κ|

+P 2
4 (κ, z) + P 1

6 (ν, κ, ∂sn, z) + P 0
6 (κ, ∂sn, z) + α−2P 0

4 (κ, z) ds,
(5.17)∫

z2κV ds =
∫
P 0

6 (κ, ∂sn, z) + P 1
4 (ν, κ, ∂sn, z) + P 2

4 (κ, z) + α−2P 0
4 (κ, z) ds,

(5.18)∫
z(α2 div(∂2

sn+∇z) + ∂sV ∂sn · ν) ds

=
∫
α2P 2

3 (ν, ∂sn, z) + α2P 2
4 (ν, z) + P 3

4 (ν, ∂sn, z)

+P 1
6 (ν, κ, ∂sn, z) + P 2

6 (ν, κ, ∂sn, z) + α−2P 1
4 (ν, κ, ∂sn, z) ds,

(5.19)

and ∫
zκV ∂sn · τ ds =

∫
P 2

5 (ν, κ, ∂sn, z) + P 0
7 (ν, κ, ∂sn, z)

+P 1
6 (ν, κ, ∂sn, z) + α−2P 0

5 (ν, κ, ∂sn, z)
(5.20)
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Inspecting these expressions term by term we find that some of them can simply be bounded by
products of L, ‖z‖1,2 and ‖∂sn‖1,2. For the remaining terms we employ again Proposition 5.7.
When we apply Young’s inequality, we take care to generate the right power of L in front of the
term we would like to absorb.

To calculate d
dtF (γ, n) we use the estimates (5.9)-(5.13) and (5.15)-(5.20) to find again an

exponent r > 0 such that

d
dtF (γ, n) = −3α−2L−4 dL

dt

∫
|∂sn|2 ds+ α−2L−3 d

dt

∫
|∂sn|2 ds

−L−2 dL
dt

∫
|z|2 ds+ L−1 d

dt

∫
|z|2 ds

−α−2L−2 dL
dt

∫
|∂2
sn|2 ds+ α−2L−1 d

dt

∫
|∂2
sn|2 ds

+ dL
dt

∫
|∂sz|2 ds+ L

d
dt

∫
|∂sz|2 ds

≤ −L
∫
|∂2
sz|2 ds− L−1

∫
|∂3
sn|2 ds

+C(L,α, ε)
(
‖∂sn‖1,2 + ‖z‖1,2 + ‖∂sn‖r1,2 + ‖z‖r1,2

)
≤ −L

∫
|∂2
sz|2 ds− L−1

∫
|∂3
sn|2 ds+ C(L,α, ε) (F (γ, n) + F (γ, n)r) .

For t ∈ (0, T ) assume F (γ(t), n0) < ε1/2 < 1. We conclude for s > 0 that

F (γ(t+ s), n(t+ s)) ≤ F (γ(s), n(s)) +
∫ s

0

d
dtF (γ(t), n(t)) dt

≤ F (γ0, n0) + C(L,α)sε1.

Thus, F (γ(t+ s), n(t+ s)) < ε1 for s < C(L,α)
2 . Therefore we may conclude that T − t > C(L,α)

2
and this completes the proof.

Corollary 5.11
For T > 0 let (γ, n) : S1 × [0, T )→ R2 × R2 be a smooth solution of equation (3.8), that cannot
be smoothly extended beyond T . Then, for z = κ+ δ div(n) one has

lim
t→T

∫
γ(t)
|∂sz|2 + |∂2

sn|2 ds =∞.

Proof. We set

Fmax = sup
t∈[0,T )

L−3[γ0]
∫
|∂sn|2 ds+ L−1[γ0]

∫
|z|2 ds

+ L[γ0]
∫
|∂sz|2 ds+ L−1[γ0]

∫
|∂2
sn|2 ds

and α = ε1/Fmax and consider (γα, nα) = (α−1γ(x, α4t), n(x, α4t)) that is a solution of equation
(5.3) on S1× [0, Tα−4). Due to the scaling properties of F we know that supt∈[0,T ) F (γα, nα) < ε1.
Thus by Theorem 5.10 we conclude that we can find a smooth extension of (γα, nα) to [0, T1α

−4)
with T1 > T . Scaling back, we have a smooth solution (γ, n) : S1 × [0, T1) → R2 × R2 in
contradiction to the maximality of T .

Remark 5.12
In the proof of Theorem 5.10 we only make use of smallness of z in an L∞-sense. Observing

97



CHAPTER 5. LONG-TIME BEHAVIOR FOR SOLUTIONS OF THE GRADIENT-FLOW
EQUATION

this, one might conjecture that this is already enough to extend the flow. An L∞-bound for z
is however a still surprisingly strong prerequisite as for curves it is often sufficient to control
the L2 or even any Lp-norm of the curvature for p > 1 to continue the flow [3,14, 28, 38]. For a
class of second order flows, Angenent [4] was even able to extend the flow as long the curves are
locally Lipschitz.

Since we cannot a priori rule out the occurrence of singularities, a next step in the analysis
of this flow could consist in the construction of a blow-up limit in this case. To that account,
it would be necessary to show that a strong enough quantity with suitable rescaling behavior
concentrates in any singular point. Parabolic rescaling then often allows the construction of a
limit object and reveals more insights or even allows to extend the flow. This strategy is subject
to recent research and lies in the heart of many famous theorems of geometric Analysis [44,51,55].
In the case of the mean curvature flow, Mantegazza [68] gives a good introduction to the analysis
of singularities, including Huisken’s monotonicity formula.

In our case any non-trivial blow-up would already be a contradiction to finite energy of the
limit curve. However, it proved to be difficult to find the right quantity and rescaling due to the
different scaling regimes of the coupled equations.

5.2 A Łojasiewicz-Simon Inequality in the Unconstrained
Case

In this and the following sections we derive a Łojasiewicz-Simon inequality in the framework
of Feehan and Maridakis. We use it together with the short-time existence result and the
smoothness of stationary points to obtain global existence for solutions that start close to a
local minimizer and convergence to a local minimizer for global solutions. Our approach is
inspired by works of different authors that applied a Łojasiwicz-Simon inequality in the context
of Willmore or Helfrich flow.

As already noted in the introduction of this work, Chill, Fasangova and Schätzle used this
abstract framework to prove that Willmore blow-ups are never compact [16]. For elastic curves
in Rd subject to different boundary conditions Lin [62] proved global existence of solutions and
convergence up to translation of a subsequence to a minimizer. Here, Dall’Acqua, Pozzi and
Spener [22] were able to obtain smooth convergence of the whole flow by means of Chill’s result
on the Łojasiewicz-Simon inequality. For a Helfrich-type model for 2-dimensional surfaces in R3,
Lengeler [60] proved stability of local minimizers and global existence for solutions starting close
by.

In the following we will make repeated use of the concepts of analytic maps between Banach
spaces and Fredholm operators. For the convenience of the reader, we state the important
definitions and properties. The following definition is taken from the book of Zeidler.

Definition 5.13 (Analytic maps between Banach spaces [95, § 8.2])
For real Banach spacesX and Y let F denote a map F : D → Y , D ⊂ X open. For k ∈ N consider
a continuous, symmetric, and k-linear operator T . We introduce the norm (cf. [95, Definition
4.15])

‖T‖ = sup
‖x1‖X ,...,‖xk‖X≤1

‖T (x1, . . . , xk)‖Y

for such multilinear operators and for x ∈ X we write Txk to denote T (x, . . . , x). Note that we
use these notations also for “0-linear” operators—that are simply elements in Y—to improve
readability.
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Now, F is called analytic in x0 ∈ X if and only if there exists a collection (Tk)k∈N0 , where
Tk is a k-linear operator, and r > 0 such that for all x with ‖x− x0‖X < r the series

∞∑
k=0
‖Tk‖‖x− x0‖kX

converges and

F (x) =
∞∑
k=0

Tk(x− x0)k.

Moreover, F is called analytic in D, if and only if F is analytic in every x ∈ D.

Concerning Fredholm operators, we recall the following definition and theorem that can be
found in Zeidler’s book as well.

Definition 5.14 (Fredholm operator [95, Definition 8.13])
Let X and Y be real Banach spaces. A linear operator A : X → Y is called a Fredholm
operator if A is continuous and dim(kerA) and codim(R(A)) are both finite. The number
ind(A) = dim(kerA)− codim(R(A)) is called index of A.

We will make repeated use of the fact that the Fredholm property and the index are invariant
under compact perturbations.

Theorem 5.15 ( [95, Theorem 8.14(3)])
Let X and Y be real Banach spaces. For a Fredholm operator A ∈ L(X,Y ) and a compact
operator C ∈ L(X,Y ) it is true that

ind(A) = ind(A+ C).

To prove a Łojasiewicz-Simon inequality we apply the following result by Feehan and
Maridakis [33, Theorem 3]. First, we need the concept of a gradient map (cf. [33, Definition 1.5]
and the reference therein).

Definition 5.16 (Gradient map)
Let K, K̃ be Banach spaces such that there are continuous embeddingsK ⊂ K̃ ⊂ K∗. In the
following we consider K to be a subset of K̃ and K̃ to be a subset of K∗ via these embeddings
without writing them down explicitly.Let U denote an open subset of K. A continuous map,
M : U → K̃ is called a gradient map if there exists a C1-function E : U → R, such that for all
x ∈ U and for all v ∈ K it holds that

E′(x)v = 〈M(x), v〉K∗×K ,

where 〈·, ·〉K∗×K is the canonical bilinear form on K∗ ×K.The real-valued function E is called
a potential for the gradient mapM.

Moreover, we note the following. On a Banach space E we call a bilinear form b : E×E → R
definite if b(x, x) 6= 0 for all x ∈ E \ {0}. For a continuous map ι : E → E∗ we say that
ι is definite,if the bilinear form (x, y) 7→ 〈ι(y), x〉E∗×E is definite. As Feehan and Maridakis
note, this is e.g. the case when there is a continuous embedding J : E → H of E into a
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Hilbert space H. Indeed, the adjoint operator J∗ then embeds E∗ into H and we have for
all x, y ∈ E that〈ι(y), x〉E∗×E = 〈J(y), J(x)〉H and thus 〈ι(x), x〉E∗×E = 0 implies x = 0. See
also [12, Remark 3, p.136] for details.

Theorem 5.17 (Theorem 3 from [33])
Let K and K̃ be Banach spaces with continuous embeddings K ⊂ K̃ ⊂ K∗ and such that the
embedding K ⊂ K∗ is definite. Let U ⊂ K be an open subset, E : U → R be an analytic function,
and x∞ ∈ U be a critical point of E, that is E′(x∞) = 0. Assume that there are Banach spaces
G and G̃ and continuous embeddings of Banach spaces K ⊂ G ⊂ G̃ and K ⊂ K̃ ⊂ G̃, such
that the compositions K ⊂ G ⊂ G̃ and K̃ ⊂ G̃ ⊂ K∗induce the same embedding K ⊂ G̃. Let
M : U → K̃ be an analytic gradient map for E in the sense of Definition 5.16. Suppose that for
each x ∈ U the bounded, linear operator,

M′(x) : K → K̃

has an extension
M1(x) : G→ G̃

such that the map U 3 x 7→ M1(x) ∈ L(G, G̃) is continuous. If M′(x∞) : K → K̃ and
M1(x∞) : G→ G̃ are Fredholm operators with index zero, then there are constants c ∈ (0,∞),
σ ∈ (0, 1], and θ ∈ [1/2, 1), with the following significance. If x ∈ U obeys ‖x− x∞‖K < σ, then

‖M(x)‖G̃ ≥ c|E(x)− E(x∞)|θ.

Remark 5.18 (Embeddings and identifications)
We will apply this theorem in the case where all the spaces are L2-based Sobolev spaces. For
k, ` ∈ N0, k ≥ ` we embed Hk → H` and H−` → H−k by inclusion and Hk → H−` via
Hk → L2 ∼= (L2)∗ → H−`. Therefore, we will also use the term L2-gradient map.

For d ∈ N let M be a smooth, orientable, closed d-dimensional manifold. We will analyze
the stability of local minimizers of the energy E : H2

imm(M,Rd+1) × H1(M,Rd+1) → R as
introduced in Chapter 3 with help of a Łojasiewicz-Simon inequality. To do so, we have to study
its smoothness properties. It is continuous with respect to the H2

imm ×H1 topology, but we will
also identify prerequisites under which it has two proper Fréchet derivatives and when it is even
analytic. Moreover, we will address the Fredholm property of its second derivative.

As in the proof of short-time existence, the geometric invariance of the energy causes a
degeneracy of the corresponding differential operators. The solution is again to parametrize
the evolving surfaces over a fixed reference surface. With this strategy also constraints can be
incorporated, as done for a problem related to the Helfrich flow by Lengeler [60] and nicely
presented for the harmonic map heat flow by Feehan and Maridakis [33, Section 3]. Fix
(ϕ, η) ∈ C∞imm(M,Rd+1)× C∞(M,Rd+1) and let ν denote a unit normal associated to ϕ, then
there is an open neighborhood U of (0, 0) in (H2(M) ∩ C1(M))×H1(M,Rd+1) such that for
(f, n) ∈ U the map ϕ+ fν is still an immersion. We define F : U → R by

F (f, n) := E(ϕ+ fν, η + n). (5.21)

In the following we will examine the properties of F , when restricted to spaces of higher regularity.
It is especially important that F has a gradient mapM and F andM are analytic on Sobolev
spaces of enough regularity. A corresponding result can therefore be found in every work
employing a Łojasiewicz-Simon inequality, see e.g. [16, Lemma 3.2], [22, Lemma 3.4], [60, Lemma
1.1].
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Lemma 5.19
For d ∈ N let M be a smooth, orientable, closed d-dimensional manifold and ϕ : M → Rd+1

a smooth immersion. For d = 1 we set k = 3, else we set k > d/2 + 3. Set K = Hk(M) ×
Hk−1(M,Rd+1), K̃ = Hk−4(M) × Hk−3(M,Rd+1) with properties as asserted in Theorem
5.17and let U ⊂ K be an open neighborhood of (0, 0) such that for (f, n) ∈ U the map ϕ+ fν is
still an immersion. Then, the map F from equation (5.21) has a gradient mapM : U → K̃ in
the sense of Definition 5.16. Moreover, the map

F : U → R and the gradient map M : U → K̃

are real analytic.

Proof. First, we recall from Proposition 3.5 and Lemma 1.11 that for all

ψ,m ∈ Hk
imm(M,µϕ;Rd+1)×Hk−1(M,µϕ;Rd+1)

the map
dE : Hk(M,µϕ;Rd+1)×Hk−1(M,µϕ;Rd+1)→ K∗

is given by

dψE(ψ,m) =
[
−∆ψ(Hψ + δ divψm)− (Hψ + δ divψm)|∇ψνψ|2

+ δ(Hψ + δ divψm)∇ψm : ∇ψνψ + δ divψ((Hψ + δ divψm)νTψ∇ψm)

+ λ(∇ψm)T :
[
∇ψν(∇ψm)T

]
+ 1

2(Hψ + δ divψm)2Hψ + λ

2 |∇ψm|
2Hψ

]
νψ,

dmE(ψ,m) = λ∆ψm+ δ∇ψ(Hψ + δ divψm)− δ(Hψ + δ divψm)Hψν,

when we set for (ξ, µ) ∈ K

〈dE(ψ,m), (ξ, µ)〉K∗×K = 〈ι1(dEψ(ψ,m)), ξ〉(Hk)∗×Hk + 〈ι2(dEm(ψ,m)), µ〉(Hk−1)∗×Hk−1 ,

where ι is the inclusion K̃ → K∗. We infer that the first variation of F around (f, n) is given by

dF (f, n)[(g,m)] = dE(ϕ+ νϕf, η + n)[(νϕg,m)].

The sought mapM now has to satisfy for all (f, n), (g,m) ∈ U the relation

〈M(f, n), (g,m)〉K∗×K = dF (f, n)[(g,m)].

Observe that in all prior descriptions of the expression dE(ϕ+νϕf, η+n)[(νϕg,m)] we integrated
with respect to the measure µϕ+fνϕ that is in local coordinates given by the density √gϕ+fνϕ .
But here, it is important that we use the L2(M,µϕ) scalar product to represent dF (f, n) byM.
Thus, we have to introduce the correction term

Jf =
√
gϕ+fνϕ√
gϕ

.

In Lemma 4.1 we discussed, how to write the geometric quantities in terms of derivatives of
f and n. For readability we furnish the quantities depending on ϕ only with a ∗-symbol and
replace the index ϕ+ fνϕ simply by the index f . Applying the formulas from Lemma 4.1 again,
we find

M(f, n) =



Jf

(
− 〈νf , νϕ〉gijf gk`f ∇∗4ijk`f − δg

ij
f ∇∗2ij divf n

+b1(p, t, f,∇∗f,∇∗2f,∇∗3f, n,∇∗n,∇∗2n)
)

Jf

(
λgijf ∇∗2ij n+ δgk`f ∇∗k(gij∇∗2ij f + δ divf n)X`

+b2(p, t, f,∇∗f,∇∗2f, n,∇∗n)
)


(5.22)
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with suitable functions b1, b2 as in equation (4.2) To complete the proof we have to show
analyticity of two kinds of maps. Firstly, multiplication and secondly composition. Fortunately,
we can treat both issues by citations from literature. We proceed along the lines of the proofs
of [16, Lemma 3.2], [22, Lemma 3.4], [60, Lemma 1.1]. That is, we apply repeatedly Theorem 4
of [79, Sec. 5.5.3] to obtain analyticityof the composition operators and the results from [79, Sec.
4.4.3 and 4.4.4] (that are stated as Theorems 1.14 and 1.12 in this work) to determine the
regularity of products. In the curve case d = 1, the highest order term involves the distribution
∂4
xf . It can be treated by [79, Sec. 4.4.3], since the other factors are multipliers for the space of

respective test functions.

Lemma 5.20
For d ∈ N let M be a d-dimensional closed orientable manifold. For d = 1 we set k = 3, else
we set k > d/2 + 3. Set K = Hk(M) × Hk−1(M,Rd+1), K̃ = Hk−4(M) × Hk−3(M,Rd+1),
G = H3(M)×H2(M,Rd+1) and G̃ = H−1(M)× L2(M,Rd+1). For (ϕ, η) ∈ C∞imm(M,Rd+1)×
C∞(M,Rd+1) as in equation (5.21) let ν be a unit normal associated to ϕ and let U ⊂ K be a
neighbourhood of (0, 0) such that for all (f, n) ∈ U the maps (ϕ, η) + (fν, n) are still immersions.
For F as in equation (5.21), letM∈ Cω(U, K̃) be the gradient map from Lemma 5.19. Then
for each (f, n) ∈ U the bounded, linear operator,

M′(f, n) : K → K̃

has an extension
M1 : G→ G̃

such that the map for U 3 (f, n) 7→ M1(f, n) ∈ L(G, G̃) is continuous and M′(0) and M1(0)
are both Fredholm of index 0.

Proof. The proof consists of two major steps. First we compute the second variation of F , then
we discuss the regularity of coefficients of the associated differential operator.

We start with the calculation of the second derivative. With Aϕ+tfν we denote the second
fundamental form of the perturbed surface and by ∇ϕ+tfν the covariant derivative with respect
to the varying metric.

Lemma 5.19 gives an expression forM andM′ ∈ Cω(U,L(K, K̃)) andM′ is a differential
operator with coefficients of Sobolev regularity depending smoothly on f and n, that are in
particular continuous. Thus, for all (f, n) ∈ U the operatorM′(f, n) ∈ L(K, K̃) extends to an
operatorM1(f, n) ∈ L(G, G̃) and the map U 3 (f, n) 7→ M1(f, n) is continuous.

The exact form of the differential operatorM′(0) is now given by

M′(0)(f, n) =


−∆ϕ(∆ϕf + δ divϕ n)

+a1∇3
ϕf + a2∇2

ϕf + a3∇ϕf + a4f + a5∇2
ϕn+ a6∇ϕn+ a7n

∆ϕn+ δ∇ϕ(∆ϕf + δ divϕ n)
+b1∇2

ϕf + b2∇ϕf + b3∇ϕn+ b4n


with smooth coefficient tensors ai = ai(ϕ, η), i = 1, . . . , 7 and bj = bj(ϕ, η), j = 1, . . . 4 that
are contracted with the derivatives of f and n. Due to the regularity of ϕ and η we see that
M′(0) ∈ L(K, K̄) can be extended to a mapM1 ∈ L(G, Ḡ). Since the Fredholm property and
index are stable under compact perturbations it is sufficient to consider the main parts ofM′(0)
andM1(0) with a spectral shift if necessary. As in the proof of short-time existence in Chapter
4 we invoke the theory of the Laplace equation on manifolds [83, Chap. 5]. Moreover we split the
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system by the introduction of a new dependent variable ζ = ∆f + δ div(η). This was useful for
a numerical approximation scheme [7] and also in Chapter 4. That is, we consider for (x, y) ∈ Ḡ
the system

L

 ζ

f

n

 =

 −∆ζ + ζ

−∆f + f − ζ + δ div(η)
−∆n+ n+ δ∇ζ

 =

 x

0
y

 .

This system has a unique solution (f, n) ∈ G with a priori estimates

‖(f, n)‖G ≤ C
(
‖(x, y)‖Ḡ

)
.

Thus, the operator L is an isomorphism of Hilbert spaces and therefore Fredholm of index 0.
Since the Fredholm index is invariant under compact perturbations, we obtain that alsoM1
is Fredholm of index 0 as it is a compact perturbation of L. Application of higher regularity
theory for the Laplacian shows that with the same argumentM′(0) ∈ L(K, K̄) is Fredholm of
index 0, too.

In Lemma 5.19 and Lemma 5.20 we have checked all assumptions of Theorem 5.17 and
can therefore infer the validity of a Łojasiewicz inequality for the energy F . We do this by
application of the result of Feehan and Maridakis stated in Theorem 5.17.

Theorem 5.21 (Łojasiewicz inequality for F .)
For d ∈ N let M be a smooth, orientable, closed d-dimensional manifold. For d = 1 we set
k = 3, else we set k > d/2 + 3 and let (ϕ∗, n∗) ∈ C∞(M,Rd+1) × C∞(M,Rd+1) be a critical
point of the energy functional E : Hk

imm(M,Rd+1) × Hk−1(M,Rd+1) → R as introduced in
Chapter 3. Let ν∗ denote a unit normal associated to ϕ∗ and let U be a neighborhood of (0, 0)
in Hk(M)×Hk−1(M) such that for (f, n) ∈ U the map (ϕ, η) + (fν, n) is still an immersion.
Then, for F : Hk(M) × Hk−1(M) → R given by F (f, n) = E(ϕ + fν, η + n) with gradient
map M given by equation (5.22), there exists θ ∈ [ 1

2 , 1),C > 0 and σ > 0 such that for every
(f, n) ∈ Hk(M)×Hk−1(M,Rd+1) with ‖(f, n)‖Hk(M)×Hk−1(M,Rd+1) ≤ σ the inequality

‖F (f, n)− F (0)‖θ ≤ C‖M(f, n)‖H−1(M)×L2(M,Rd+1)

is satisfied.

Proof. The proof follows from Theorem 5.17 in this work. The conditions there are fulfilled by
Lemma 5.19 and Lemma 5.20 above.

To prove a Łojasiewicz inequality for E we need to find a normal reparametrization for
every regular immersion that is Hk close to a stationary point. In the following, we identify the
differential dE with the gradient map of E.

Theorem 5.22 (Łojasiewicz inequality for E.)
For d ∈ N let M be a smooth, orientable, closed d-dimensional manifold. For d = 1 we
set k = 3, else we set k > d/2 + 3 and let (ϕ∗, n∗) ∈ C∞(M,Rd+1) × C∞(M,Rd+1) be a
critical point of the energy functional E : Hk

imm(M,Rd+1)×Hk−1(M,Rd+1)→ R as introduced
in Chapter 3. Then, there exists θ ∈ [ 1

2 , 1),C > 0 and σ > 0 such that for every (ϕ, n) ∈
Hk(M,Rd+1)×Hk−1(M,Rd+1) with ‖(ϕ, n)‖Hk(M,Rd+1)×Hk−1(M,Rd+1) ≤ σ the inequality

‖E(ϕ, n)− E(ϕ∗, n∗)‖θ ≤ C‖dE(ϕ, n)‖H−1(M,Rd+1)×L2(M,Rd+1) (5.23)

is satisfied.
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Proof. We apply the same argument as [60, Theorem 1.4], [16, Theorem 3.1], [22, Lemma 4.1]. We
write ϕ as a graph over ϕ∗ after reparametrization ofM by Φ : M →M with ϕ = ϕ∗◦Ψ+fν∗◦Ψ.
This is possible with Lemma 1.18 and yields ‖f‖Hk(M) ≤ C‖ϕ− ϕ∗‖Hk(M,Rd+1). Now we see by
the parametrization invariance of E and the equivalence of the metrics gϕ∗ and gϕ that

‖E(ϕ, n)− E(ϕ∗, n∗)‖θ ≤ C‖F (f, n)− F (0)‖θ

≤ C‖F ′(f, n)‖H−1(M)×L2(M,Rd+1)

= C‖E′(ϕ, n)‖H−1(M,Rd+1)×L2(M,Rd+1,µϕ∗ )

≤ C‖E′(ϕ, n)‖H−1(M,Rd+1)×L2(M,Rd+1,µϕ)

and this concludes the proof.

Due to the scaling properties of E we will not find stationary points in dimension d > 2
without any further restrictions. But when we demand that the immersion must include a
certain area or have a fixed volume, we cannot decrease the energy by scaling.

5.3 A Łojasiewicz-Simon Inequality in the Presence of
Constraints

It will be our aim to establish a Łojasiewicz-Simon inequality also for constrained functionals. For
the Helfrich flow coupled to a fluid dynamical system such result was developed by Lengeler [60],
Simons original work [80] and also a part of the work by Feehan and Maridakis [33, Chapter 3]
derivea gradient inequality for the harmonic map heat flow. Here, the image of the flow has to
stay on the embedded target manifold. This condition can also be treated as a constraint in our
sense. We will adapt the arguments of these authors to our coupled problem.

Definition 5.23
For Banach spaces K,C, let E : K → R and Θ : K → C be C1 maps. Let xS ∈ K be a point
in K such that Θ(xS) = 0,Θ′(xS) is surjective and ker Θ′(xS) is a complemented subspace of K
with projection π. We call xS a stationary point with respect to the constraint Θ = 0, if for all
y ∈ ker Θ′(xS) it holds that

〈E′(xS), y〉K∗×K = 0

which is equivalent to π∗E′(xS) = 0.

A condition that allows us to draw conclusions about the existence of a gradient map in the
constrained case is the following.

Definition 5.24 (Admissible constraints)
In the situation of Theorem 5.17 let C denote another Banach space let U ⊂ K be an open
neighborhood of 0. We call a constraint map Θ : U → C with Θ(0) = 0 admissible for the
functional E, if and only if the following conditions hold.

1. Θ is analytic.

2. Θ′(0) is surjective and X := ker Θ′(0) is a closed complemented subspace of K with
projection π.

3. The adjoint projection π∗ : K∗ → K∗ leaves the spaces K̃ and G̃ invariant.
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4. There exists an open (in the trace topology of X) neighborhood V ⊂ X with 0 ∈ V and
an analytic map γ : V → K such that for all x ∈ V it holds that Θ(x + γ(x)) = 0 and
additionally γ(0) = 0 and dγ(0) = 0

5. For all x ∈ V the adjoint map
(
dγ(x)

)∗ : K∗ → X∗ leaves K̃ and G̃ invariant.

Proposition 5.25
In the situation of Theorem 5.17 let U ⊂ K be an openneighborhood of 0. Given another Banach
space C and Θ : U → C a constraint function that is admissible for F , we set X = ker Θ′(0),
V = U ∩X and define the functional F̃ : V → R by F̃ (x) = F (x+ γ(x)). With π : K → X we
denote the projection on X that exists by the admissibility of Θ. Then, F̃ admits a gradient
map M̃ : U → X̃ with X̃ = π∗K̃ that is given by π∗(M(x+ γ(x)) + dγ(x)∗M(x+ γ(x))). For
GX = πG and G̃X = π∗G̃, for each x ∈ V the operator M̃′(x) ∈ L(X, X̃) has an extension
M̃1(v) ∈ L(GX , G̃X) and the map v 7→ M̃1(v) is continuous. Moreover, if M̃(0) = 0 the
operator M̃′(0) : X → X̃ is given by π∗

(
M′(0) + d(dγ∗)M(0)

)
.

Proof. We consider the functional F̃ : ker Θ′ → R given by F̃ (x) = F (x+ γ(x)) and calculate
by chain rule dF̃ = dF (Id +γ) ◦ (Id +dγ). We know that there is a function M : K → K̃

fulfilling for all v, h ∈ K that
dF (v)h = 〈M(v), h〉K∗×K .

Therefore, we conclude that for all x, h ∈ X ⊂ K we have

dF̃ (x)h = dF (x+ γ(x))(h+ dγ(x)h)
= 〈M(x+ γ(x)), (h+ dγ(x)h)〉K∗×K
= 〈M(x+ γ(x)) + dγ(x)∗M(x+ γ(x)), πh〉K∗×K
= 〈π∗(M(x+ γ(x)) + dγ(x)∗M(x+ γ(x))), h〉X∗×X

From the assumption of admissibility we conclude that

π∗(M(x+ γ(x)) + dγ(x)∗M(x+ γ(x))) ∈ K̃

and set X̃ = π∗K̃. This shows that M̃ = π∗(M(x+ γ(x)) + dγ(x)∗M(x+ γ(x))) is the desired
analytic gradient map of F̃ . In the next step we consider the map M̃′(0) : X → X̃. Using that
dγ(0) = 0 we see that

M̃′(0) = π∗
(
M′(0) + d(dγ∗)M(0)

)
. (5.24)

The next lemma shows that real-valued constraint functions that admit an L2-gradient of
sufficient regularity are admissible for the functional F from (5.21).

Lemma 5.26 (Real valued constraints)
For d ∈ N let M be a d-dimensional closed orientable manifold. For d = 1 we set k = 3, else
we set k > d/2 + 3. Set K = Hk(M) × Hk−1(M,Rd+1), K̃ = Hk−4(M) × Hk−3(M,Rd+1),
G = H3(M)×H2(M,Rd+1) and G̃ = H−1(M)× L2(M,Rd+1). For a smooth pair of functions
(ϕ, η) ∈ C∞imm(M,Rd+1)×C∞(M,Rd+1) let ν be a unit normal associated to ϕ and let let U ⊂ K
be an open neighborhood of (0, 0) such that for (f, n) ∈ U the map ϕ+ fν is still an immersion.
For F as in equation (5.21), let M ∈ Cω(U, K̃) be the gradient map from Lemma 5.19. For
` ∈ N let Θ : K → R`, given through analytic maps (f, n) 7→ Θi(f), be an analytic map that has
gradient mapsMΘi : K → K̃, i = 1, . . . , `, that fulfill for all ψ ∈ K the relations

〈MΘi(f), ψ〉K∗×K = 〈Θ′i(f), ψ〉K∗×K .
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Suppose Θ(0) = 0,MΘi(0) ∈ C∞(M) and are linearly independent. Then, Θ is admissible for
the functional F from equation (5.21).

Proof. We have to check the different assumptions of admissibility. We set X = ker Θ′(0) and
Y = span{MΘi(0)} which are complementary subspaces of K. The linear independence of the
gradient vectors guarantees the surjectivity of Θ′(0). Since we assumed that the gradient map
at 0 is represented by smooth functionsMΘi(0), there is a smooth L2-orthonormal basis of Y
and we can use the L2-orthogonal projection onto X and this projection is regularity preserving.
Therefore, its adjoint leaves K̃ and G̃ invariant. Moreover, there exists U ⊂ X a neighborhood of
0 and analytic functions γi : U → R such that for all f ∈ U we have Θ(f +

∑
i γi(f)MΘi(0)) = 0

by the implicit function theorem [95, Theorem 4.B]. That the assumptions of this theorem are
satisfied is easier to see, when we consider Θ̃ : U × R` → R` : (f, s) 7→ Θ(f +

∑
i siMΘi(0)).

Surely, Θ̃ is differentiable, as it is analytic, and the partial Fréchet derivative DsΘ̃(0, 0) is an
isomorphism of R`since the vectorsMΘi(0) are linearly independent. For f ∈ U and g ∈ X we
calculate

0 = d
dt

∣∣∣∣
t=0

Θi(f + tg +
∑
j

γj(f + tg)MΘj (0))

= 〈Θ′i
(
f +

∑
j

γj(f)MΘj (0)
)
, g +

∑
j

〈γ′j(f), g〉K∗×KMΘj (0)〉K∗×K

= 〈MΘi
(
f +

∑
j

γj(f)
)
, g +

∑
j

〈γ′j(f), g〉K∗×KMΘj (0)〉K∗×K ,

and thus, since γ′j(f)g are real numbers, we find∑
j

〈γ′j(f), g〉K∗×K
〈
MΘi

(
f +

∑
k

γk(f)MΘk(0)
)
, MΘj (0)

〉
K∗×K

= −〈MΘi
(
f +

∑
j

γj(f)MΘj (0)
)
, g〉K∗×K .

From the continuity of the vectorsMΘi we infer that the matrices m(f) ∈ R`×` with

mij(f) = 〈MΘi
(
f +

∑
k

γk(f)MΘk(0)
)
,MΘj (0)〉K∗×K

are invertible in a neighborhood of 0. We denote the entries of the inverse matrices by mij(f)
and we can compute

γ′i(f)g = −
∑
j

mij(f)〈MΘj (f +
∑
k

γk(f)MΘk(0)), g〉K∗×K .

Since X = ker(Θ′(0)) we have γ′i(0) = 0. Defining γ : X → K̃ by γ(f) = γi(f)MΘi(0) we have
dγ(f)g =

∑
i γ
′
i(f)gMΘi(0). Thus, for g ∈ X, h ∈ Hk−4(M) we have

〈dγ(f)g, h〉K∗×K = −
∑
i

∑
j

mij(f)〈MΘj
(
f +

∑
k

γk(f)MΘk(0)
)
, g〉K∗×K〈MΘi(0), h〉K∗×K

= −〈g,−
∑
i

∑
j

MΘj
(
f +

∑
k

γk(f)MΘk(0)
)
mji(f)〈MΘi(0), h〉K∗×K〉K∗×K

= 〈g,dγ(f)∗h〉K∗×K ,
(5.25)

showing that dγ(f)∗ : Hk(M)∗ → Hk(M)∗ indeed maps K̃ and G̃ to K ⊂ K̃ ⊂ G̃ and thus
leaves them invariant.
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Remark 5.27
In the proof of Lemma 5.26 we did not use the fact that Θ does not depend on the second
variable n. Indeed, it seems possible to adapt the proof to the general situation of Theorem
5.17. A subtle point is then that we used that span{MΘi(0)} ⊂ K, which is an additional
prerequisite. Moreover, in the Banach space case, we cannot use an orthogonal projection.

Lemma 5.28 (The unit length constraint)
For d ∈ N let M be a d-dimensional closed orientable manifold. For d = 1 we set k =
3, else we set k > d/2 + 3. We set K = Hk(M) × Hk−1(M,Rd+1), K̃ = Hk−4(M) ×
Hk−3(M,Rd+1), G = H3(M)×H2(M,Rd+1) and G̃ = H−1(M) × L2(M,Rd+1). Moreover,
we set C = Hk−1(M). For (ϕ, η) ∈ C∞imm(M,Rd+1)×C∞(M,Rd+1) with |η|Rd+1 = 1, let ν be a
unit normal associated to ϕ and let U ⊂ K be a neighborhood of (0, 0) such that for all (f, n) ∈ U
the maps (ϕ, η) + (fν, n) are still immersions. For F as in equation (5.21), letM∈ Cω(U, K̃) be
the gradient map from Lemma 5.19. Then, the constraint map Θ : K → C, (f, n) 7→ |η + n|2 − 1
is admissible for F .

Proof. We see that for X := {n ∈ K|〈n, η〉Rd+1 = 0} the kernel of Θ′(0) is given by ker Θ′(0) =
Hk(M)×X this space is complemented by the space Y = {0} × (η ·Hk−1(M,Rd+1)) and we
consider the projection π : (f, n) 7→ (0, n− η〈n, η〉Rd+1) that is self-adjoint with respect to the
L2 scalar product and maps K̃ to itself, due to the regularity of η. We observe that

|n+ (1− |η + n|)n+ η

|η + n|
| = 1

and thus we choose γ : X → K as

γ(n) = n+ η

|η + n|
− n

with derivative dγ, that is for s ∈ X given by

dγ(n)s = s

|η + n|
+ η + n

|η + n|3
〈η + n, s〉 − s, (5.26)

vanishing at n = 0. For a function r ∈ Hk−2(M,Rd+1) we see that

〈dγ(n)s, r〉L2(M,Rd+1) = 〈s,dγ(n)r〉L2(M,Rd+1),

that is dγ(n)∗ maps K̃ to itself.

To establish a Łojasiewicz inequality in the presence of constraints it is necessary to prove
the Fredholm property of the respective derivative of the gradient map that we denoted by
M̃′(0) in the preceding computations.

Proposition 5.29
In the situation of Lemma 5.20 with |η| = 1 on M , for C = R×R×Hk−1(M), A0 = A(ϕ) and
V0 = V (ϕ), we set

Θ : K → C, (f, n) 7→ (A(ϕ+ fνϕ)−A0, V (ϕ+ fϕϕ)− V0, |η + n|Rd+1 − 1),

where A and V are the area and volume functionals as in (3.2) and we assume additionally
that ϕ is not a round sphere.

Then, Θ is an admissible constraint and with X = ker Θ′(0) ⊂ K, πX : K → K the
L2-orthogonal projection onto X as introduced in Lemma 5.26 and Lemma 5.28.Moreover, for
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X̃ = πXK̃, GX = πG, and G̃X = πXG̃, for each x ∈ X the operator M̃′(x) : X → X̃ has an
extension M̃1(x) ∈ L(GX , G̃X) and M̃′(0) and M̃1(0) are Fredholm of index 0.

Proof. We recall that the gradient maps of Ã : (f, n) 7→ (A(ϕ+fνϕ) and Ṽ : (f, n) 7→ V (ϕ+fνϕ)
in a neighborhood of 0. The full gradients of A and V are given by −Hν and −ν, respectively.
In this parametrized setting, we obtain by the same reasoning as in Lemma5.19 the analytic
gradient maps

MÃ(f, n) = −Jf 〈νf , νϕ〉Hf , MṼ (f, n) = −Jf 〈νf , νϕ〉.

Moreover they take values in the right spaces since Hf involves only two and Jf , νf only one
derivative.

Therefore, it follows from Lemma 5.26 and Lemma 5.28 that Θ is admissible and we can
characterize

ker Θ′(0) =
{

(f, n) ∈ K
∣∣∣∣∫
M

f dµϕ =
∫
M

fHϕ dµϕ = 0 and 〈n, η〉Rd+1 ≡ 0
}
.

With X = ker Θ′(0) and

H̄ϕ = 1∫
M

1 dµϕ

∫
M

Hϕ dµϕ, f̄ = 1∫
M

1 dµϕ

∫
M

f dµϕ

the orthogonal L2-projection onto X is given by

πX(f, n) =
(
f − f̄ − (Hϕ − H̄ϕ)∫

M
(Hϕ − H̄ϕ dµϕ

∫
M

f(Hϕ − H̄ϕ) dµϕ, n− η〈n, η〉Rd+1
)

Together with the considerations in the proof of Lemma 5.20 it follows that for all x ∈ X the
operator M̃′(x) is a differential operator X → X̃ that has an extension M̃1(x) : GX → G̃X
depending continuously on x.

In the following we prove the Fredholm property of M̃(0) and M̃1(0). We follow the ideas
of Chill, Fasangova and Schätzle [16, Lemma 3.3] and recall from equation (5.24) that these
operators are given by

π∗X
(
M′(0) + d(dγ∗)M(0)

)
By inspection of the representations of dγ∗ in equation (5.25) and equation (5.26), we observe
that the operator π∗X ◦ d(dγ∗)M(0) maps X and GX to themselves and therefore it is compact
as an operator X → X̃ and GX → G̃X . Since compact perturbations leave the Fredholm index
invariant (cf. Theorem 5.15), we only have to show that the operator π∗X ◦M′(0) is Fredholm
of index 0. We introduce π1

X and π2
X to denote the two components of πX Thus, we have to

consider for
L(f, n) =

(
π1
X∆(∆f + δ divn) + f,

π2
X (−∆n− δ∇(∆f + δ divn)) + n

)
the differential equation

L(f, n) = (x, y) (5.27)

for (x, y) ∈ X̃ and (x, y) ∈ G̃X . To that account, we introduce a notion of weak solution and find
such by the Lax-Milgram theorem. Afterwards, we employ regularity theory for the Laplacian.
We introduce the space

Y = πX
(
H2(M)×H1(M,Rd+1)

)
,

the bilinear operator

B : Y × Y →R

B[(f, n), (g,m)] =
∫

(∆f + δ divn)(∆g + δ divm) + λ〈∇n,∇m〉+ fg + 〈n,m〉dµ
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and for (x, y) ∈ Y ∗ ⊂ (H2)∗ × (H1)∗ the functional

K : Y → R, K(f, n) = 〈x, f〉H2∗×H2 + 〈y, n〉H1∗×H1 .

We call (f, n) a weak solution of equation (5.27) if for all (ψ, ρ) ∈ Y it holds that

B[(f, n), (ψ, ρ)] = K(ψ, ρ).

The functional K and the operator B are continuous on Y and B satisfies the coercivity condition

B[(f, n), (f, n)] ≥ C‖(f, n)‖2Y .

Thus, by the Lax-Milgram theorem, for all (x, y) ∈ Y ∗ there exists a unique weak solution
(f, n) ∈ Y and ‖(f, n)‖Y ≤ C‖(x, y)‖Y ∗ .

To apply regularity theory for the Laplacian [83, Ch. 5, Theorem 11.1], we have to calculate
the commutator of πX and ∆. For u ∈ π1

XC
∞(M) we calculate

π1
X∆u =∆u− 1

|M |

∫
∆udµ− H − H̄

‖H − H̄‖2L2

∫
(H − H̄)∆udµ

=∆u− H − H̄
‖H − H̄‖2L2

∫
u∆(H − H̄) dµ

using Gauß’ theorem. Extending the Laplacian to an operator H1 → (H1)∗ by density, yielding

〈∆f, g〉(H1)∗×H1 = 〈∇f,∇g〉L2 ,

we see that for all f ∈ H1(M) we have π1
X∆f = ∆f − H−H̄

‖H−H̄‖2
L2

∫
f∆(H − H̄) dµ.But the map

f 7→ H̄
‖H̄‖L2

∫
f∆H̄ dµ is compact on H1 since its image is one-dimensional. Moreover, the image

is contained in C∞(M) since H − H̄ is smooth. Also for π2
X∆ the projection induces only a

lower order perturbation. To see this, we take n ∈ π2
XH

1(M,Rd+1) and then by definition we
have 〈η, n〉Rd+1 = 0 on M . Using this we calculate

0 = η∆〈η, n〉 = η

d∑
i=1

∆(ηini) = η

d∑
i=1

ni∆ηi + ηi∆ni + 2〈∇ηi,∇ni〉

thus

η〈η,∆n〉 = −η〈∆η, n〉 − 2η
d∑
i=1
〈∇ni,∇ηi〉

which only involves first derivatives of n and is therefore for all k ∈ N an operator Hk → Hk−1.
For all k ∈ N ∪ {0}, we denote this perturbations by

p1(f) = H̄

‖H̄‖L2

∫
f∆H̄ dµ

and

p2(n) = η〈∆η, n〉+ 2η
d∑
i=1
〈∇ni,∇ηi〉

as maps π1
X(Hk(M))→ H̄ · R and π2

X(Hk+1(M,Rd+1))→ ×Hk(M,Rd+1). Therefore, if

L(f, n) = (x, y)

109



CHAPTER 5. LONG-TIME BEHAVIOR FOR SOLUTIONS OF THE GRADIENT-FLOW
EQUATION

for (x, y) ∈ πX(H1 ∗ ×L2), we proceed in the same way as in the parabolic case in Section 4.2.2,
Improving the regularity of ∆f + δ divn, then that of n and lastly that of f . First, we examine
the equation

∆(∆f + δ div(n)) = x− f + p1(∆f + δ div)

and conclude that ∆f + δ divn ∈ H1(M) and

‖∆f + δ divn‖H1 ≤ C(‖x− f‖H1∗ + ‖∆f + δ divn‖L2) ≤ C‖(x, y)‖H1∗×L2

by elliptic regularity theory and the a priori estimate for the weak solution. Secondly, we look
at the second equation to find

−∆n+ n = y − p2(n) + δπ2
X∇(∆f + δ divn)

and infer n ∈ H2 with ‖n‖H2 ≤ C‖(x, y)‖H1∗×L2 . Using this, we can improve the regularity of
f to f ∈ H3 and finally have the estimate

‖(f, n)‖GX ≤ C‖(x, y)‖G̃X

For more regular x and y, we can repeat this bootstrapping procedure. This shows that the
operator L is an isomorphism of Hilbert spaces and thus the original operators M̃′(0) and M̃1,
that differ from L only by compact perturbations, are Fredholm of index 0.

Proposition 5.30 (Łojasiewicz-Simon inequality for F̃ )
In the situation of Lemma 5.29 assume that M̃(0) = 0. Then, the map F̃ : U → R given by
F̃ (x) = F (x + γ(x)) satisfies a Łojasiewicz-Simon inequality around 0. That is there exists
θ ∈ [ 1

2 , 1),C > 0 and σ > 0 such that for every (f, n) ∈ X with ‖(f, n)‖X ≤ σ the inequality

‖F̃ (f, n)− F̃ (0)‖θ ≤ C‖M̃(f, n)‖G̃X

is satisfied.

Proof. The assertion follows again from the result of Feehan and Maridakis stated in Theorem
5.17 in this work applied to the spaces X ⊂ X̃, GX ⊂ G̃X that satisfy also X ⊂ GX and
X̃ ⊂ G̃X , since K, K̃,G, G̃ from Lemma 5.20 have this property. These spaces are closed
complemented subspacesof K, K̃,G, G̃ and turn into Banach spaces when we equip them with
the trace topology. The further conditions in Theorem 5.17 are then fulfilled by Lemma 5.19,
Proposition 5.25 and Lemma 5.29 above.

To prove a Łojasiewicz inequality for E subject to constraints we argue exactly as in the
unconstrained case. For d ∈ N letM be a smooth, orientable, closed d-dimensional manifold. For
d = 1 we set k = 3, else we set k > d/2 + 3. Let A and V denote the area and volume functionals
as in Definition (3.2). For (ϕ∗, n∗) ∈ C∞(M,Rd+1) × C∞(M,Rd+1) such that |n∗| ≡ 1 and
ϕ∗(M) is not a round sphere let U be an open neighborhood of (ϕ∗, n∗) in Hk

imm × Hk−1.
Moreover, we denote for ε > 0 by

Γ =
{

(ϕ, n) ∈ B((ϕ∗, n∗), ε) ⊂ Hk
imm ×Hk−1∣∣ A(ϕ) = A(ϕ∗), V (ϕ) = V (ϕ∗), |n| ≡ 1

}
the set of immersions and vector fields in a neighborhood of (ϕ∗, n∗) fulfilling the constraints.
We equip Γ ⊂ Hk

imm(M,Rd+1)×Hk−1(M,Rd+1) with the trace topology and set Ẽ = E|Γ. We
observe that the map Θ : U → R× R×Hk given by

Θ(ϕ, n) =
(
A(ϕ)−A(ϕ∗), V (ϕ)− V (ϕ∗), |n| − 1

)
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has the Frechét derivative

Θ′(ϕ, n)[(ψ, η)] = 〈Hϕνϕ + νϕ, ψ〉L2 + 〈n, η〉Rd+1

which is surjective. The kernel ker Θ′(ϕ, n) is given by

ker Θ′(ϕ, n) =
{

(ψ, η) ∈ Hk ×Hk−1∣∣ ∫ 〈ψ,Hϕνϕ + νϕ〉dµϕ = 0, 〈n, η〉 = 0
}

which is the image of the projection π(ϕ,n) : Hk ×Hk−1 → Hk ×Hk−1 given by

π(ϕ,n)(ψ, η) =
(
ψ − νϕ

|M |

∫
〈ψ, νϕ〉dµϕ −

H̄ϕνϕ∫
|H̄ϕ|2

∫
〈ψ, H̄ϕνϕ〉dµϕ, η − n〈η, n〉

)
for H̄ = H − 1

|M |
∫
H dµϕ. Thus, according to Definition 5.23 the differential of Ẽ in (ϕ, n) is

given by
dẼ(ϕ, n) = π(ϕ,n)E

′(ϕ, n).

With this notation, we can state the following theorem.

Theorem 5.31 (Łojasiewicz-Simon inequality for Ẽ)
For d ∈ N let M be a smooth, orientable, closed d-dimensional manifold. For d = 1 we set k = 3,
else we set k > d/2 + 3. For A and V the area and volume functionals as in Definition (3.2).
let (ϕ∗, n∗) ∈ C∞(M,Rd+1)× C∞(M,Rd+1) be a critical point with respect to the constraints

Θ(ϕ, n) =
(
A(ϕ)−A(ϕ∗), V (ϕ)− V (ϕ∗), |n| − 1

)
= 0

of the energy functional E : Hk
imm(M,Rd+1)×Hk−1(M,Rd+1) → R as introduced in Chapter

3. Moreover, assume that ϕ∗(M) is not a round sphere. Then, there exists θ ∈ [ 1
2 , 1),C > 0

and σ > 0 such that for every (ϕ, n) ∈ Hk(M,Rd+1) ×Hk−1(M,Rd+1) with Θ(ϕ, n) = 0 and
‖(ϕ, n)− (ϕ∗, n∗)‖Hk(M,Rd+1)×Hk−1(M,Rd+1) ≤ σ the inequality

|E(ϕ, n)− E(ϕ∗, n∗)|θ ≤ C‖dẼ(ϕ, n)‖H−1(M,Rd+1)×L2(M,Rd+1) (5.28)

is satisfied.

Proof. We write ϕ as a graph over ϕ∗ after reparametrization of M by Ψ : M → M with
ϕ = ϕ∗ ◦Ψ + fν∗ ◦Ψ. This is possible by Lemma 1.18 which yields the existence of such f

together with an estimate ‖f‖Hk(M) ≤ C‖ϕ − ϕ∗‖Hk(M,Rd+1). Moreover, observe that the
projection π onto X from Lemma 5.29 is the inverse of the map x 7→ x + γ(x) from the
admissibility of Θ for F in Lemma 5.29. We write again F̃ = F (Id +γ). Now we see by
Proposition 5.30 and the parametrization invariance of E that

|E(ϕ, n)− E(ϕ∗, n∗)|θ = |F̃ (π(f, n))− F̃ (0)|θ

≤ C‖M̃′(π(f, n))‖H−1(M)×L2(M,Rd+1)

= C‖dẼ(ϕ, n)‖H−1(M,Rd+1,µϕ∗ )×L2(M,Rd+1,µϕ∗ )

≤ C‖dẼ(ϕ, n)‖H−1(M,Rd+1,µϕ)×L2(M,Rd+1,µϕ),

and this concludes the proof.

5.4 Stability of Minimizers

In this section we apply the Łojasiewiczinequalities from the previous section to show stability
of minimizers.
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Theorem 5.32
For d ∈ N, let M be an orientable d-dimensional smooth, closed manifold. For d = 1 we set
k = 3, else let k > d/2 + 3 be an integer, and let (ϕ∗, n∗) ∈ C∞(M,Rd+1)× C∞(M,Rd+1) be a
smooth local minimizer of E : Hk(M,Rd+1)×Hk−1(M,Rd+1)→ R as introduced in Chapter 3,
including the length penalization in the case d = 1,with respect to any combination of constraints
(3.2). When we impose the unit-length constraint on n for the physical constants λ > 0, δ > 0in
E it has to hold δ < 2

√
λ.

Then there exists ε > 0 such that for all initial data (ϕ0, n0) ∈ Hk(M,Rd+1)×Hk(M,Rd+1)
with

‖(ϕ0 − ϕ∗, n0 − n∗)‖Hk(M,Rd+1)×Hk−1(M,Rd+1) < ε

the gradient flow (3.8) has a global solution (ϕ, n) : M × [0,∞)→ Rd+1 × Rd+1, smooth away
from time 0, that converges smoothly to a possibly different local minimizer (ϕ̃, ñ) as t→∞ and
E(ϕ∗, n∗) = E(ϕ̃, ñ).

This is the analogue for the energy E from Chapter 3 of the results of Chill, Fasangova, and
Schätzle [16, Lemma 4.1], Dall’Acqua, Pozzi and Spener [22, Theorem 1.2] and Lengeler [60,
Theorem 2.2]. Thus, the method of proof is very similar. The use of the Łojasiewiczinequality
was already proposed by Łojasiewicz himself [67] for ordinary differential equations in Rn, we
have to adapt the argument to the infinite dimensional setting.

Proof of Theorem 5.32. First we observe, that in the case where volume and area are fixed
and the initial immersion is a round sphere, it will remain so and not move at all. Then the
convergence in n follows from the analogous result for the harmonic map flow [33, Section 3].
Therefore, we can assume in the following that ϕ∗ is not a round sphere, when the volume
and area are fixed. In the following calculations we write E to mean either E or Ẽ since the
argument is identical in both cases.

Choose σ > 0 such that an immersion ϕ ∈ Hk can be written as a graph over ϕ∗ whenever
‖ϕ − ϕ∗‖Hk ≤ σ. Let (ϕ, n) : M × [0, T ∗) → Rd+1 × Rd+1 be a smooth solution of the flow
equation (3.8) with

T ∗ = max
t∈R
{∀s ≤ t| ‖

(
(ϕ, n)− (ϕ∗, n∗)

)
(s)‖Hk(M,Rd+1)×Hk(M,Rd+1) ≤ σ}.

That such a solution exists, can be seen from short-time existence Theorem 4.19. As long as
the solution is bounded in the phase space Hk, it can be continued. In the following, we prove
T ∗ =∞.

Observe that the smoothness of the solution justifies the following calculation. In particular
it allows us to use a chain rule to determine the time derivative of E(ϕ, n) and grants the
necessary regularity of the L2 gradient map denoted by ∇E given by equation (5.2).Using the
gradient flow property and the Łojasiewicz-Simon inequalities (5.23) and (5.28) we find

− d
dt |E(ϕ, n)− E(ϕ∗, n∗)|θ = −θ|E(ϕ, n)− E(ϕ∗, n∗)|θ−1〈∇E(ϕ, n), (∂tϕ, ∂tn)〉L2

= θ|E(ϕ, n)− E(ϕ∗, n∗)|θ−1‖∇E(ϕ, n)‖L2‖(∂tϕ, ∂tn)‖L2

≥ θ

C
‖(∂tϕ, ∂tn)‖L2 .

(5.29)
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Hence, we can estimate

‖(ϕ(t), n(t))− (ϕ∗, n∗)‖L2

= ‖(ϕ(0), n(0)) +
∫ t

0
(∂tϕ(s), ∂tn(s))ds− (ϕ∗, n∗)‖L2

≤ ‖(ϕ(0), n(0))− (ϕ∗, n∗)‖L2 +
∫ t

0
‖(∂tϕ(s), ∂tn(s))‖L2ds

≤ ‖(ϕ(0), n(0))− (ϕ∗, n∗)‖L2 − C
∫ t

0

d
dt |E(ϕ(s), n(s))− E(ϕ∗, n∗)|θds

≤ ‖(ϕ(0), n(0))− (ϕ∗, n∗)‖L2

−C
(
|E(ϕ(t), n(t))− E(ϕ∗, n∗)|θ − |E(ϕ(0), n(0))− E(ϕ∗, n∗)|θ

)
≤ ‖(ϕ(0), n(0))− (ϕ∗, n∗)‖L2 + C|E(ϕ(0), n(0))− E(ϕ∗, n∗)|θ

≤ C‖(ϕ(0), n(0))− (ϕ∗, n∗)‖θC2×C1 .

This means that the solution will remain inside a small enough L2-ball around a local minimizer.
This, however, does not exclude a blow up of some higher derivative. At this point, we employ
the short-time existence result from Theorem 4.19 and the parabolic smoothing effect explained
in Theorem 4.30 to show that the solution will also remain in a small Hk-ball around (ϕ∗, n∗),
in particular with radius small than σ/2.

Now, we use Lemma 1.20 to reformulate the problem again in terms of a height function f as
for the proof of short-time existence. Observe that then the stationary immersion corresponds
to f = 0.For σ̃ sufficiently small, there exists a reparametrization Ψ of M and a function
f ∈ Hk(M) with ‖f‖Hk(M) ≤ σ such that

ϕ ◦Ψ = ϕ∗ + fν∗.

From Theorem 4.30 (observe Remark 4.31 in the presence of constraints, where we need
δ < 2

√
λ)we know that as long as f is small in Hk, it will also be bounded in stronger norms.

By interpolation, we obtain the following estimate for the Hk norm,

‖(f, n)‖Hk ≤ C‖(f, n)‖βL2‖(f, n)‖1−β
Hk+1

≤ ‖(f, n)‖1−β
Hk+1‖(f(0), n(0))− (0, n∗)‖βθC2×C1 ≤ C(σ, k)εβθ ≤ σ

2

on [T ∗/2, T ∗) for ε small enough. Therefore, T ∗ =∞ and the flow exists globally.

Now we prove convergence to a local minimizer. From (5.29) we infer

(∂tf, ∂tn) ∈ L1(0,∞;L2(M)× L2(M,Rd+1)
)

and thus (f, n)→ (f̃ , ñ) in L2. Theorem 4.30 gives boundedness in all Hk(M)×Hk(M,Rd+1).
By weak compactness and compact embeddings we conclude for any k ∈ N convergence
in Hk(M)×Hk(M,Rd+1) and hence smooth convergence. Moreover it holds then, that
E(ϕ∗, n∗) = E(ϕ∗ + f̃ν∗, n∗ + ñ) by application of the Lojasiewicz-Simon inequality (cf. the
proof of Lemma 4.1 in [16, pp. 359-362]).

Remark 5.33
In the results of this section, we assumed throughout the smoothness of stationary points. In the
curve case, this is justified by Theorem 3.1. In space dimension d = 2 there are results [78,81]
concerning the regularity of minimizers of the Willmore functional. But it is by no means clear,
if and how such proof could be adapted. In higher space dimensions the situation becomes even
more involved.
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Employing elliptic and parabolic estimates for partial differential equations with non-smooth
coefficients, one might be able to weaken the assumption of smoothness along the lines of [33,
Section 3]. The minimal regularity needed for the proof would then probably be comparable to
the minimal regularity of initial data for the short-time existence result in Theorem 4.29.
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A
Numerical Experiments

In this chapter we discuss numerical computations that approximate the behavior of curves and
vector fields under geometric evolution equations. Of course, Bartels, Dolzmann, Nochetto and
Raisch [7] present a finite element method for the flow of two dimensional surfaces and it is by
no means the aspiration of this chapter to improve their techniques, we rather aim for a flexible
method to visualize different curvature flows, relying on Matlab’s built-in solvers for ordinary
differential equations. Observe that the functionality of Matlab and Octave concerning ordinary
differential equations is slightly different.

We approximate all derivatives by simple difference quotients, to obtain an approximation of
the normal velocity. Then, we follow the idea of Elliottand Fritz [30] and add tangential motion
according to the harmonic map heat flow, to avoid mesh degeneracy. This is fairly simple for
curves, since the reference manifold is S1 which is intrinsically flat.

For the presented simulations the parameters λ and δ in the energy (3.1) were chosen as
follows. While λ was always set to 1 playing with different values of δ and different combinations
of the constraints from(3.2) we explore the behavior of the flow. Observe that the depicted
curves are all scaled to the same size.

In Figure A.1, we do not impose constraints and start with a randomly perturbed circle.
The energy decreases very rapidly and a round shape is approached.

In Figures A.2 and A.3, we start with ellipses. Without constraints a circular shape is
approached. When volume and area are constrained a dumbbell-like shape is attained.

In Figure A.4 also the length of the vector field is restricted and we start with a randomly
perturbed initial configuration.

In Figure A.5 we start with a perturbed curve. The unperturbed curve is parametrized by
γ(t) = (4 sin(t), cos(3t)− cos(t)).

A particularly interesting evolution is presented in Figure A.6. For δ = 3 with all constraints
imposed and initial random perturbation of the symmetric configuration it takes comparably
long until the symmetry is broken entirely.



APPENDIX A. NUMERICAL EXPERIMENTS

We include the code for the curve diffusion flow of closed curves. The essential steps can be
seen already here and the reader might adapt it.

main.m
% We start by generating an initial curve
J=128;
h=1/J;
x = 0:h:1-h;
c = [sin(2*pi*x),(cos(6*pi*x) - cos(2*pi*x))/4];
SIZE = size(c)/2;
N = int16(numel(c)/2);

% It is useful to provide events to the ODE routine,
% e.g. when the curve vanishes or a singularity occurs.
% Moreover, we fix a maximal time-step size.
options = odeset(’Events’, @CurvatureBlowUp, ’MaxStep’, 1e-2);

% The evolution law is prescribed in cdf.m
EvoFun = @(t,X) cdf(X.’,h);
T_max = 1;

% ode15s is a special routine for stiff problems that uses an implicit method,
% observe that the initial value has to be a column vector.
[t, y] = ode15s(EvoFun, [0 T_max], c.’, options);

% The following loop draws the evolving curve
%after a certain number of time steps
f = figure;
set(f, ’Units’, ’normalized’, ’Position’, [0.2, 0.1, 0.7, 0.7]);
axis equal;
for ITER = 1:ceil(numel(t)/30):numel(t)
plot(y(ITER,1:N), y(ITER,(N+1):2*N),’-x’);
xlim([-1.5 1.5]);
axis equal
pause(0.2);
end;
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cdf.m
% This function implements the actual CDF with tangential correction
function [ Vec ] = cdf(c , h)
% An index must be an integer
N = int16(numel(c)/2);

% the elements in c are rearranged,
% so that they correspond to x and y-coordinates
c = [c(1:N); c((N+1):2*N)];

% the derivative of c is approximated by difference quotients
c_t = ([c(:,2:N),c(:,1)] - [c(:,N),c(:,1:N-1)])/(2*h);

% We calculate the necessary geometric quantities
v = sqrt(c_t(1,:).^2 + c_t(2,:).^2);
v2 = v.^2;
tang = [c_t(1,:)./v;c_t(2,:)./v];
norm = [-tang(2,:); +tang(1,:)];
c_tt = ([c(:,2:N),c(:,1)] + [c(:,N),c(:,1:N-1)] - 2*c)/h/h;
H = (c_t(1,:).*c_tt(2,:) - c_tt(1,:).*c_t(2,:))...
./((c_t(1,:).^2 + c_t(2,:).^2).^(3/2));
H_t = ([H(:,2:N),H(:,1)] - [H(:,N),H(:,1:N-1)])/(2*h);
H_tt = ([H(:,2:N),H(:,1)] + [H(:,N),H(:,1:N-1)] - 2*H)/h/h;
H_ss = H_tt./(v2) - H_t.*((c_t(1,:).*c_tt(1,:)...
+ c_t(2,:).*c_tt(2,:))./(v2.^2));

% The normalspeed for the cdf is given by
normalspeed = -H_ss;

% We add the tangential correction c_tt - v2*H*norm.
Vec = [((normalspeed - v2.*H).*norm(1,:) + c_tt(1,:));...
((normalspeed - v2.*H).*norm(2,:)+ c_tt(2,:))];
Vec = reshape(Vec.’,[2*N,1]);
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CurvatureBlowUp.m
% This event tells ode15s to stop, based on a blow-up criterion for the CDF
function [CurvEn, isterminal, direction] = CurvatureBlowUp(t,y)
SIZE = size(y);
c = reshape(y.’, [SIZE(1)/2, 2]).’;
SIZE = size(c);
N = int16(numel(c)/2);
c_t = ([c(:,2:N),c(:,1)] - [c(:,N),c(:,1:N-1)])/2;
v = sqrt(c_t(1,:).^2 + c_t(2,:).^2);
v2 = v.^2;
tang = [c_t(1,:)./v;c_t(2,:)./v];
norm = [-tang(2,:); +tang(1,:)];
c_tt = ([c(:,2:N),c(:,1)] + [c(:,N),c(:,1:N-1)] - 2*c);
H = (c_t(1,:).*c_tt(2,:) - c_tt(1,:).*c_t(2,:))...
./((c_t(1,:).^2 + c_t(2,:).^2).^(3/2));
dE = H.^2.*v;
CurvEn = 1e2 - sum(dE);
isterminal = 1;
direction = 0;

The pictures in Figure A.7 have been generated with the above code. With the necessary
adaptions also the curve shortening flow can be implemented as depicted in Figure A.8. Observe
that due to the use of events the ODE-routine stops automatically, when a singularity occurs.
The code for the implementation of the generalized Helfrich flow is essentially the same, with
the necessary changes due to the additional variable n.

A simulation of the flow according to equation (2.3) is depicted in Figure A.9. From the
initial dumbbell shape it becomes circular before it shrinks to a point.
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Figure A.1: The generalized Helfrich flow with volume and unit-length constraint. An initial
random perturbation is smoothed out corresponding to an initially rapid decrease of the energy.
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Figure A.2: Without constraints the generalized Helfrich flow evolves an ellipse into a circle and
the vector field to the normal.

Figure A.3: With volume and area constraint the ellipse evolves into a dumbbell. The vector
field changes most in the part of the curve where the curvature is large.
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Figure A.4: The generalized Helfrich flow preserving length and enclosed volume of the curve and
with fixed length of the vector field. The energy decreases very fast in the beginning smoothing
out the initial random perturbation.

Figure A.5: The generalized Helfrich flow for δ = 1 subject to length, area and unit-length
constraint. The initial perturbation is smoothed out and the symmetry is preserved.
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Figure A.6: The generalized Helfrich flow for δ = 3 subject to length, area and unit-length
constraint. The initial perturbation is smoothed out almost immediately, but it takes long until
an apparently stable configuration is reached.
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Figure A.7: The curve diffusion flow reduces the length but preserves the enclosed volume.
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Figure A.8: The curve shortening flow is the L2-gradient flow of the length.
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Figure A.9: The flow according to equation (2.3). Observe that the last picture is scaled by a
factor 103.
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