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Das Promotionsgesuch wurde am 22. Januar 2019 eingereicht.
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Abstract

This thesis is focused on threshold resummation studies for high-pT inclusive-hadron pro-

duction in longitudinally polarized lepton-nucleon scattering µN → µ′hX at COMPASS.

The goal is to address threshold resummation effects to double-longitudinal spin asymme-

tries at COMPASS kinematics. At these kinematics, nearly all available energy is used for

the production of the high-pT parton and its recoiling counterpart. In that case, the phase

space for additional radiation of partons becomes small, resulting in large logarithmic QCD

corrections at every order in perturbation theory. These logarithmic contributions spoil

the perturbative expansion, and thus have to be resummed. Using threshold resumma-

tion techniques in Mellin momentum N space, we are able to deal with those logarithmic

corrections up to all perturbative orders in αs at a certain logarithmic level. In our calcu-

lations we choose next-to-leading logarithmic accuracy. Further, we develop a framework

to include subleading 1/N -suppressed logarithms into future calculations.

In our phenomenological results for COMPASS we present a detailed study of the im-

pact of next-to-leading logarithmic threshold resummation on the spin-dependent cross

section and on the corresponding double-longitudinal spin asymmetry ALL for the high-pT

photoproduction process µN → µ′hX. We include resummation for the direct, as well

as for the resolved-photon contribution. In a comparison of the spin-averaged with the

spin-dependent cross sections we find out that the latter receives smaller corrections from

resummation than the spin-averaged one, indicating that threshold corrections do not can-

cel in the double-spin asymmetry and rather tend to decrease it, yielding an overall better

agreement between experiment and theory.

Finally, we reveal that the parton-to-hadron fragmentation functions have a strong impact

on the size and shape of the predicted spin asymmetries.
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Nothing in life is to be feared, it is only to be understood. Now

is the time to understand more, so that we may fear less.

Marie Curie

1
Introduction

In the last 100 years knowledge of the proton structure has grown a lot. The story of

the proton and with that its discovery starts with Rutherford’s proof that the hydrogen

nucleus is present in other nuclei [1]. Then, 1922 the idea of spin was introduced through

the Stern-Gerlach experiment [2, 3] to construe the observations. That the proton is a

spin-1/2 fermion was concluded five years later [4]. A series of experiments started to

deepen the knowledge of the proton structure, and with that Hofstadter and McAllister

made first measurements of the RMS radius for the charge and magnetic moment of pro-

tons in 1955 [5]. Then, in the 1960s, Ne’eman [6] and Gell-Mann [7] classified hadrons

through the Eightfold Way, a SU(3) flavor symmetry. A quark model was introduced

by Gell-Mann and Zweig [8] stating that hadrons were consisting of three quark types,

named up, down and strange quarks, to which one referred properties as spin and electric

charge. The experimental breakthrough followed in 1968, when a deep inelastic scatter-

ing (DIS) experiment at the Stanford Linear Accelerator Center (SLAC) discovered that

protons and neutrons are indeed built up by smaller constituents called partons. All the

developments of experimental and theoretical work in the 1960’s and 1970’s led finally to

the theory of Quantum Chromodynamics (QCD) as we know it today. With that, one is

able to describe the dynamics of quark and gluon constituents in the hadrons. QCD, as

a non-abelian quantum field theory, describes the strong interaction using the concept of

color charged quarks and gluons. It is part of the standard model and exhibits the crucial

properties of asymptotic freedom and confinement, whereby quarks are bound strongly in

the hadrons at larger distances and behave asymptotically free at short distances. How-

ever, there are still open questions left.

A lot of effort has been applied to find answers to the question of how the gluon and quark

spins and orbital angular momenta combine to generate the nucleon spin of 1/2. The

familiar assumption that protons are made up of two u and one d quark constituents gen-

1



2 Chapter 1. Introduction

erate a naively expectation that the quarks carry about a third of the proton momentum.

However, the proton structure and momentum distribution is another one, as protons con-

tain additional gluons and low-momenta quarks and antiquarks called sea quarks. Lattice

QCD even states that the proton mass is largely determined by the binding energy of the

gluons. How the total proton spin is distributed among its quark, antiquark and gluon

constituents, among the polarizations and angular momenta, is still an outstanding ques-

tion. Measurements from the EMC experiment [9] in the 1980s mark the starting point

of the so-called “proton spin crisis”, where a series of experiments provided increasingly

precise results, revealing the surprising discovery that only about 30% of the nucleon spin

is built up from the polarization of quarks and anti-quarks combined. While lattice cal-

culations [10] give rise to the assumption that the missing 70% is not provided by the

quark orbital angular momentum alone, RHIC [11, 12], a polarized proton-proton collider,

even indicates that the gluon polarization contributes significantly to the total spin. The

proton helicity sum rule [13–15] reads

1

2
=

1

2
∆Σ + ∆G+ Lqz + Lgz , (1.1)

where 1/2∆Σ = 1/2
∫ 1

0 dx
[
∆u+ ∆ū+ ∆d+ ∆d̄+ ∆s+ ∆s̄

]
(x) denotes the quark spin

contribution and Lqz + Lgz labels the total orbital angular momenta of quarks and gluons.

Further, integrating the gluon distribution ∆g(x) over all momentum fractions x (and

summing over flavors), we obtain the gluon spin contribution ∆G =
∫ 1

0 dx∆g(x). This

highlights that ∆g is a key ingredient for solving the proton spin puzzle. One of the main

tools to gain information about the gluon distribution are the spin asymmetries, which are

directly sensitive to ∆g. The COMPASS experiment [16, 17], short for Common Muon

and Proton Apparatus for Structure and Spectroscopy, at the Super Proton Synchrotron

SPS, considers semi-inclusive hadron production of the type

µN → µ′hX . (1.2)

COMPASS has already presented results for the spin-averaged cross section a while ago [18]

and more recently also data for the corresponding double-longitudinal spin asymmetry

ALL [19, 20]. In these reactions the hard scale is set by the transverse momentum of the

produced hadron which is for COMPASS kinematics much smaller than for ∆g(x,Q2)

determinations by, e.g. inclusive jet and di-jet production at RHIC, see [12]. Both sets

of experiments are complementary as one needs a large kinematic reach to analyze the

evolution of polarized parton distributions. High precision is needed, as the systematic

theoretical uncertainties of the analyses has to be much smaller than the experimental

uncertainties. If the theoretical framework is adequate for describing the photoproduc-

tion γN → hX in the kinematic regime relevant at COMPASS, analyzing the data may

give reliable information on ∆g. Hard photoproduction processes are well understood,
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in particular the connection between direct and resolved photon contributions [21]. The

quasi-real photon can interact on the one hand as pointlike particle coupling directly with

a parton from the nucleon, on the other hand it can be resolved into its partonic content

and it can couple through quantum fluctuations containing quarks, antiquarks and gluons.

However, threshold resummation, which is required at COMPASS kinematics [22], is an

additional feature which is less standard. For large enough transverse momentum of the

observed hadron, perturbative methods and in particular threshold resummation tech-

niques can be applied. The theoretical calculations start at order O(ααs), which is thus

what we mean with Leading Order (LO), with the electromagnetic and strong coupling

constants α and αs, while next-to-leading order (NLO) means O(αα2
s). NLO QCD correc-

tions without resummation are presented for the double-spin asymmetry in Refs. [23–25].

However, for COMPASS kinematics whereat one is close to kinematic threshold, large

QCD corrections appear. The reason is that nearly all available energy is used for the

production of the high-pT parton and its recoiling counterpart. Then, the phase space

for additional radiation of partons becomes small, and after the incomplete cancelation of

infrared divergences between real and virtual diagrams large logarithmic corrections can

be observed at every order in perturbation theory [26, 27], starting at NLO. At n-th order

logarithmic corrections up to

αns

[
ln2n−1(1− z)

1− z

]
+

, (1.3)

appear and are accompanied by lower, subleading powers of logarithms. Here, z labels the

threshold region, hence when z → 1 no further energy is left for additional radiation.

In every higher order of perturbation theory two additional powers of these logarithms

emerge and spoil the perturbative expansion [28]. Thus, these threshold logarithms can-

not be neglected and require to be resummed to all orders of perturbation theory [29–36].

Using the techniques of threshold resummation we include logarithms in our following

calculations up to next-to-leading logarithmic (NLL) accuracy, containing the three lead-

ing “towers” αns
[
ln2n−1(1− z)/(1− z)

]
+

at leading-logarithmic (LL) accuracy, as well as

αks
[
ln2n−2(1− z)/(1− z)

]
+

, and further αns
[
ln2n−3(1− z)/(1− z)

]
+

at NLL.

With this technique at hand we want to study the semi-inclusive photoproduction process

µN → µ′hX with hadron production at high transverse momentum pT for both cases, di-

rect and resolved photons, calculating spin-dependent threshold resummed cross sections

involving longitudinally polarized nucleons and photons. This denotes an extension to the

calculations of Ref. [22], where the unpolarized cross sections have been calculated using

threshold resummation methods. There, one could find that the resummed cross section

shows a markedly better agreement with the experimental results than the next-to-leading

order one.

Although resolved subprocesses show an equivalent structure to hadronic scattering pp→
hX which has been already investigated even for the spin-dependent case, see Ref. [27],
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we will use a different framework. Ref. [27] integrates over all rapidities of the produced

hadron, and therefore the cross section takes, after a transformation into Mellin moment

space, the form of a complete convolution with parton distribution functions. Contrary

to that we will perform in the following threshold resummation at arbitrary fixed rapid-

ity, using techniques developed in [22, 37]. This implies that only the resummed cross

section convoluted with the fragmentation function is transformed into Mellin-N space,

however, the parton distribution functions stay in physical space. Our main goal is then

the study of the double-longitudinal spin asymmetry ALL at COMPASS kinematics, and

in this instance the investigation of the relevance of higher-order QCD threshold correc-

tions. For that we compare our theoretical calculations with the experimental results of

COMPASS [19, 20]. Note that there have been assumptions that higher-order perturba-

tive corrections cancel in the ratios of spin-dependent and spin-averaged cross sections,

i.e. for spin asymmetries,

ALL =
d∆σ

dσ
. (1.4)

However, as we will see, this assumption is incorrect and higher-order threshold correc-

tions cannot be neglected for the calculation of ALL.

The thesis is organized as follows. In Chap. 2 we give a short overview of the principles of

perturbative Quantum Chromodynamics. However, we refer to some standard textbooks

or reviews for more details. Then, as factorization is a main ingredient for our following

calculation, we will investigate in Chap. 3 the underlying ideas and illuminate further

parton distribution and fragmentation functions. With that we will also shed light on

the parton structure of the photon which will be needed for the resolved photon contri-

butions. After this we are ready to review the foundations of threshold resummation in

Chap. 4. We will start with an exponentiation formula for (non-)abelian gauge theories,

focusing first on photons and then on gluons. This is followed by an introduction into

the Mellin moment space, which is necessary for threshold resummation. We want then

proceed with an explicit derivation of the radiative resummation exponents. For that,

refactorization will be the underlying technique. These exponents will be needed in Chap.

5, when we arrive at the threshold resummation for single-inclusive hadron production at

COMPASS. In this chapter, the theoretical framework is given, and besides the formula of

the resummed hard-scattering function at next-to-leading logarithmic order, we will also

consider the fixed-order case. With the help of a matching procedure we will then include

full NLO results in our theoretical results, to provide highest available precision. While we

are restricting ourselves for our phenomenological studies at next-to-leading logarithmic

level neglecting 1/N -suppressed logarithms, we investigate in Chap. 6 a framework, how

to compute those subleading contributions and provide them explicitly for the fixed-order

calculation. Further we show which terms in the threshold resummed calculation could

generate lnN/N terms. Our phenomenological results for COMPASS will then be shown
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in Chap. 7 and our double-longitudinal spin asymmetries will be compared with the ex-

perimental data. We will compare our results for different fragmentation function sets

and consider protons and deuterons as targets. Studying the role of higher-order QCD

corrections at kinematic threshold and comparing the unpolarized with the polarized cal-

culated cross sections, we find important conclusions concerning the double-longitudinal

spin asymmetry. Finally, in Chap. 8 we finish the thesis with a conclusion and an outlook.

In addition to that, an appendix is available with further details.

Note that parts of our studies are already published and can be found in our papers [38]

and [39], however, the detailed calculations and many details are provided in the following.





Love of learning is the most necessary passion... in it lies our

happiness. It’s a sure remedy for what ails us, an unending

source of pleasure.

Émilie du Châtelet

2
Foundations of Perturbative Quantum

Chromodynamics

In this chapter we want to introduce the main basics of perturbative Quantum Chromo-

dynamics (QCD), serving as a starting point for the calculations in the following chapters.

As this overview will be rather short, we point to some standard text books [40–43] or

to Ref. [44] for further details. In the following we want to give a brief review of the

Lagrangian of QCD, which is essential to derive the Feynman rules given in the Appendix

A.

2.1. Lagrangian of Quantum Chromodynamics

Quantum Chromodynamics (QCD) is a non-abelian gauge theory describing the strong

force which is one of the four fundamental forces. It is part of the Standard Model

and describes the interaction between quarks and gluons, which carry color. The gauge

invariant Lagrangian,

L =

Nf∑
f

Ψ̄f,a

(
iγµ∂µδab − gγµtCabACµ −mfδab

)
Ψf,b −

1

4
FAµνF

Aµν + Lgf + LFP (2.1)

=

Nf∑
f

Ψ̄f

(
i /D −mf

)
Ψf −

1

4
FAµνF

Aµν

︸ ︷︷ ︸
Lcl

+Lgf + LFP ,

is invariant under Lorentz transformations and describes how quarks interact with each

other by exchanging gluons, the latter of which are massless gauge bosons building up an

octet in the adjoint representation of SU(3). It consists of the classical Lagrangian Lcl, a

7



8 Chapter 2. Foundations of Perturbative Quantum Chromodynamics

gauge-fixing part Lgf and a Faddeev-Popov ghost part LFP . In Lcl, Ψf,a denotes the field

spinors for quarks with flavor f , mass mf and color a, with a running from 1 to Nc = 3.

Further the covariant derivative is

Dµ = ∂µ − igtCACµ . (2.2)

Repeated indices are understood to be summed over and the Dirac matrices γµ satisfy the

Dirac algebra, an anti-commutation relation reading

{γµ, γν} = 2gµν . (2.3)

The field strength tensor,

FAµν = ∂µA
A
ν − ∂νAAµ − gfABCABµACν , (2.4)

is constructed from the gluon fields AAµ , where A runs from 1 to N2
c − 1 = 8. The term

−1
4F

A
µνF

Aµν describes their self-interaction as gluons carry color themselves, and differs

from the field strength tensor of QED by the last term gfABCA
B
µA

C
ν , which gives rise

to the three- and four-gluon interaction. The fABC are the structure constants of the

SU(3) group and g is the strong coupling constant. With fABC and the eight independent

generators tA of the SU(3) group, which correspond to 3 × 3 hermitian matrices, the Lie

algebra is defined through the commutation relation

[
tA, tB

]
= ifABCt

C . (2.5)

Gluon emission from a quark can be identified with the color factor CF ≡ (N2
c −1)/(2Nc) =

4/3, which is given by the relation tAabt
A
bc = CF δac. Further, gluon emission from a gluon is

associated with the color factor CA = Nc = 3, which can be found in fABCfBCD = CAδAD,

and finally we have the color factor TR = 1/2 when a gluon splits into a quark-antiquark

pair given in tAabt
B
ab = TRδAB. What is still missing is on the one side the gauge-fixing term

Lgf , and on the other side the ghost-field term LFP . The necessity for Faddeev–Popov

ghosts follows from the quantization of the classical Lagrangian. For the specific gauge

∂µA
Aµ = 0, the gauge fixing term is given by

Lgf = − 1

2ξ
(∂µA

Aµ)(∂νA
Aν) . (2.6)

Here, the parameter ξ can be chosen freely without changing the physical results, which

are independent of the gauge used in a calculation. A common choice is the Feynman

(or Feynman-t’Hooft) gauge, where the gauge parameter is ξ = 1. These additional ghost

fields χA have to be introduced to solve an overcounting issue in the quantization of the
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theory. Their Lagrangian reads for the gauge ∂µA
Aµ = 0:

LFP = gfABC χ̄
A∂µ(ACµχ

B)− χ̄A∂µ∂µχA . (2.7)

Note that Faddeev-Popov ghost fields do not describe physical particles and have their

own Feynman rules.

2.2. The Group SU(3)

Let us now go on to classify Quantum Chromodynamics in a bit more mathematical way.

It is a SU(3) gauge theory and part of the SU(3)× SU(2)×U(1) Standard Model, where

SU(2) × U(1) represents the unification of the weak interaction and the electromagnetic

interaction. In the former leptons interact via three massive gauge bosons (W± and Z0)

whereas the electromagnetic force is mediated by massless photons. In the case of the

group SU(3) = SU(3)color of QCD, one finds N2
c −1 = 8 massless gauge bosons, the gluons

which appear in different so called colors. In contrast to the photon in QED which is

a neutral spin-1 particle carrying no electrical charge, the gluons themselves carry color

charge and can thus interact with each other. The gluons are described by eight vectors AAµ
in the adjoint representation of SU(3) and are therefore said to make up an octet. Quarks

are described through spinors in the fundamental representation and build up a triplet.

The independent color states of the gluons are superpositions of different color-anticolor

states and read:

(rb̄+ br̄)/
√

2 , −i(rb̄− br̄)/
√

2 ,

(rḡ + gr̄)/
√

2 , −i(rḡ − gr̄)/
√

2 ,

(bḡ + gb̄)/
√

2 , −i(bḡ − gḡ)/
√

2 ,

(rr̄ + bb̄)/
√

2 , (rr̄ + bb̄− 2gḡ)/
√

6 . (2.8)

The eight generators of SU(3) are related to the Gell-Mann matrices, a set of hermitian,

traceless matrices collected in [43]:

tA =
λA

2
. (2.9)

The consequences of the gluon self-interaction will be discussed in the next section.

2.3. Asymptotic Freedom and the Running Coupling

Free partons that means quarks and gluons, have never been observed experimentally.

Unlike in QED where the elementary particles described by the Lagrangian can be observed

directly, quarks and gluons are always bound in color singlet states referred to as hadrons.
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QCD αs(Mz) = 0.1181 ± 0.0011

pp –> jets
e.w. precision fits (N3LO)  

0.1

0.2

0.3

αs (Q
2)

1 10 100
Q [GeV]

Heavy Quarkonia (NLO)

e+e–   jets & shapes (res. NNLO)

DIS jets (NLO)

April 2016

τ decays (N3LO)

1000

 (NLO

pp –> tt (NNLO)

)
(–)

Fig. 2.1.: The coupling constant αs(Q) at an energy scaleQ from different measurements. The used
perturbative order is declared in the brackets, with NLO standing for next-to-leading
order, and res. NNLO standing for next-to NLO matched with resummed next-to-leading
logarithms. The figure is taken from Ref. [44].

In the following this feature will be discussed a bit more detailed following Refs. [44–46].

The self-interaction of gluons yields a gluon vacuum polarization, resulting in asymptotic

freedom. This means that partons, which are confined inside the “colorless” hadron, are

treated to be asymptotically free in the asymptotic limit, so that perturbative methods

are applicable. There, the coupling constant g or αs = g2

4π , as one of the most fundamental

parameters of this theory, decreases as the distance between two fields decreases, or in

other words, decreases with increasing momentum transfer, see Fig. (2.1), taken from

Ref. [44]. More precisely, the coupling constant can be written as a running coupling in

terms of the β-function, satisfying the renormalization group equation (RGE):

µr
dαs(µr)

dµr
= β (αs(µr)) = −

(
b0α

2
s + b1α

3
s + b2α

4
s + ...

)
, (2.10)
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with the first three coefficients of the β-function collected in [45],

b0 =
11CA
12π

− NfTR
3π

=
33− 2Nf

12π
,

b1 =
1

24π2

(
17C2

A − 10TRCANf − 6TRCFNf

)
=

153− 19Nf

24π2
,

b2 =
77139− 15099Nf + 325N2

f

3456π3
. (2.11)

While the coefficients b0 and b1 are independent of the renormalization scheme, all higher-

order terms have a scheme-dependence. We adopt the MS scheme, where terms containing

γE and ln(4π) are subtracted, which appear together with the (1/ε)-poles in dimensional

regularization [40]. Note that the negative sign in the β-function in Eq. (2.10) reflects the

origin for asymptotic freedom: in hard processes, where the momentum transfer is large,

the strong coupling becomes weak. This remains true as long as Nf < 17, when b0 changes

its sign. Having a prediction for αs(µr) at a given scale µr, one is able to determine the

value of αs(µ) at any other scale. The behaviour described by Eq. (2.10) is an essential

feature of the theory which makes it possible to use perturbation theory for the calculation

of high energetic QCD processes. The main idea behind this is an expansion of physical

observables in terms of the strong coupling which becomes small at high energies such that

higher order terms can be neglected. Solving the differential equation in (2.10) exactly

and analytically can only be done by neglecting all terms in the β-function except b0 and

b1. This yields:

αs(µ
2) =

1

b0 ln(µ2/ΛQCD)
. (2.12)

Here, ΛQCD is an integration constant which can be thought of as marking the transition

between perturbative and non-perturbative scales. In particular at µ = ΛQCD Eq. (2.12)

diverges, marking the breakdown of perturbation theory. Approximate analytical solutions

can be found even at 5-loop order, including b5. A 3-loop solution, truncating all terms

higher than b3 is reviewed in [44],

αs '
1

b0L

(
1− b1

b20

lnL

L
+
b21(ln2 L− lnL− 1) + b0b2

b40L
2

−b
3
1

(
ln3 L− 5

2 ln2 L− 2 lnL+ 1
2

)
+ 3b0b1b2 lnL− 1

2b
2
0b3

b60L
3

)
+O

(
1

L5

)
, (2.13)

with L ≡ ln(µ2/ΛQCD). Then, we can also express the coupling at a given scale k2 in
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µ ν

k + q

k

q

Fig. 2.2.: Virtual electron-positron pair production from the vacuum polarization of a photon.

terms of the coupling at scale µ2, reading at first loop order:

αs(k
2) =

αs(µ
2)

1 + b0αs(µ2) ln
(
k2

µ2

)
1− b1

b0

αs(µ
2)

1 + b0αs(µ2) ln
(
k2

µ2

) ln

(
1 + b0αs(µ

2) ln

(
k2

µ2

)) .
(2.14)

2.4. Regularization and Renormalization

In the next section we want to introduce theoretical methods for higher-order calcula-

tions, in which unphysical divergent expressions appear. We distinguish between so called

infrared divergences (IR) appearing in the low-momentum range, when k → 0, and ultravi-

olet divergences in the high-momentum region, when k →∞. Further, there are collinear

singularities generated by collinear emissions. At this point we will briefly discuss how

these divergent contributions can be handled consistently and refer to Refs. [40–43, 47] for

more details.

Once an emitted parton has momentum k → 0, infrared or soft singularities appear. Those

divergences cancel when all contributions or diagrams of a given process or observable are

summed up, in particular they cancel against bremsstrahlung diagrams where additional

final photons or gluons with soft momentum are emitted. As soft radiation cannot be

observed, the cross section for soft emissions is typically added to the one without soft

radiation such that these soft singularities cancel, resulting in a divergence free, infrared

safe, cross section.

Collinear singularities arising from the collinear emission of partons off initial or final-state

partons are factorized into the bare parton distribution or fragmentation functions. We

will come later in Chap. 3 to this point.

Further, there are ultraviolet divergences, arising for example in the vacuum polarization

of a photon, see Fig. (2.2). A virtual electron-positron pair is produced, so that

iΠµν
2 (q) ∝

∫
d4k

(2π)4

1

(k2 −m2)((k + q)2 −m2)
. (2.15)
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The internal loop momentum is not fixed and can be of arbitrary size. Therefore one

integrates over the momentum and divergences appear in the upper ultraviolet integration

limit. These ultraviolet divergences can be removed order by order by a modification of

bare parameters called renormalization. However, before we can treat those contributions

with the right procedure, we first have to isolate them. This method is called regulariza-

tion. Introducing a regulator, we may regularize the divergences by a modification of the

momentum integrals yielding a finite result. This result reproduces the original divergences

in a certain limit. Afterwards we can perform renormalization, absorbing the divergent

part into the definitions of the respective parameters. We claim a regularization method

to respect Lorentz invariance and gauge symmetry, hence, a possible regularization scheme

is dimensional regularization, introduced by [48] and [49]. The main idea here is to extend

the usual four-dimensional space-time integral over loop momenta
∫
d4k/(2π)4, which is

divergent, into a D = 4 − ε dimensional integral
∫
dDk/(2π)D with a small parameter ε.

The latter integral is then finite, as the original exponent in the integrand is larger than

our new chosen spacetime dimension D = 4− ε, and thus the integral will be analytically

continued. Besides the finite result we receive for a pole 1
ε , so that the integral can be

separated into a finite and a pole part. This pole corresponds to a logarithmic divergence

and comes always together with ln(4π)− γE , where γE is the Euler-Mascheroni constant.

By choosing a renormalization scheme, these poles are subtracted by absorbing them into

redefined quantities in the Lagrangian, followed by taking the limit D → 4. Keeping

the dimension of the integrals unchanged, a new momentum scale µr arises to absorb the

dimensional changes.

Note that some other regularization schemes like the Pauli-Villars-, Cut-off-, or the Lattice-

Regularization are only named here, so for further details, we recommend [40]. As the bare

quantities appearing in the non-renormalized Lagrangian, like mass, charge or normaliza-

tion of the fields do not correspond to physical observables, a redefinition is necessary,

such that a finite number of renormalization constants can cancel against all appearing

divergences after inserting them into the Lagrangian. The redefined fields and parameters

read then:

Ψf,bare → Z
1/2
2 Ψf ,

AAbare,µ → Z
1/2
3 AAµ ,

χAbare → Z̃
1/2
3 χA ,

gbare → Zg g ,

mf,bare → Zmmf ,

ξbare → Z3ξ . (2.16)

The Z2, Z3, Z̃3, Zg and Zm denote the renormalization constants for the gluon, quark and

ghost fields, further for the coupling constant, the mass and the gauge fixing parameter.
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Note that the subtraction of terms is not restricted on infinities only, so that there exist

different renormalization schemes to absorb also finite contributions besides the UV pole.

A common renormalization scheme is the modified minimal subtraction (MS) scheme [50],

where the ε-poles are removed with the accompanying constants −γE + ln(4π),

1

ε
− γE + ln(4π) . (2.17)

This renormalization scheme will be used throughout this work. Note that the renor-

malized quantities and the renormalization constants Zi depend on µr, an introduced

renormalization scale. Including all orders of perturbation theory would yield a vanish-

ing of µr, so that the considered result would be a scale-independent physical observable.

However, as we are only able to calculate perturbative predictions at a certain order, we

have to handle and investigate the renormalization scale dependence, to which we will

come later in our phenomenological studies.

Finally, we want to make clear that despite the emergence of ultraviolet infinities Quan-

tum Field Theory does not lose its predictive power. Note that it is only a low energy

limit of a full theory including gravitational effects, which come into play at the Planck

scale Epl ≈ 1019 GeV. Thus, to include physics at or beyond the Planck scale we need

an unification of gravity with the strong, weak and electromagnetic forces [40], however,

as long as we consider physics at laboratory kinematics we should be allowed to neglect

infinities coming from the high momentum range.



Life need not be easy, provided only that it is not empty.

Lise Meitner

3
Parton Distribution and Fragmentation

Functions

In the following chapter we want to give a short overview of a main ingredient that enables

us to apply perturbative methods to the calculation of the lepton-nucleon scattering cross

section in this work. How to calculate high energy cross sections is reviewed in [51–55],

where it is shown that the calculation of a hadronic cross section has to cope with a

combination of both, short-distance and long-distance behaviour. In momentum space,

long-distance contributions correspond to those with low momentum transfer. Therefore, a

cross section of a certain hadronic process is not directly computable in perturbative QCD,

but has to be split up into the perturbative short-distance terms and the non-perturbative

long-distance parts. While we will see in Chap. 4 how to calculate the perturbative partonic

cross section with the help of threshold resummation, we dedicate ourselves in the following

section to the examination of parton distribution functions (PDFs) and the fragmentation

functions (FFs). For that purpose we first need to introduce a factorization theorem.

3.1. Factorization Theorem

Factorization is a main ingredient for the calculations of this work, as well as for a lot

of other computations in Quantum Chromodynamics. With this tool at hand, we are

able to separate long-distance terms from short-distance terms and to apply perturba-

tive methods. Furthermore we have to deal with collinear singularities stemming from

collinear emission of massless partons coming from external state partons. These singular-

ities are removed from the partonic cross section by absorbing them into the bare parton

distribution or fragmentation functions. Note that all those PDFs and FFs extracted

from experimental data are already “renormalized” quantities which include these large

collinear contributions. Following Refs. [51–55], a factorized finite hadronic cross section

15
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dσ depending on a hard momentum scale Q can be generally written as a convolution (⊗)

of its partonic cross section dσ̂bare with the bare partonic distribution and fragmentation

functions, f bare and Dbare, of a parton in the initial or final-state hadron:

dσ(Q) = f bare ⊗ dσ̂bare(Q,µr, ε)⊗Dbare . (3.1)

The partonic counterpart to the hadronic cross section depends on a renormalization scale

µr, and reveals collinear divergences, labeled by ε. All further dependences are neglected

in the discussion here, like the fraction of the hadron’s momentum carried by the parton.

Assuming that further ultraviolet and infrared singularities are already subtracted, we

want to absorb all collinear singularities coming from the partonic cross section into the

bare PDFs f bare and FFs Dbare to obtain the renormalized but scale-dependent common

parton distribution and fragmentation functions f and D. As the collinear singularities

arise from parton emission off the initial and final lines, we separate those contributions

at the initial and final factorization scales µfi and µff from the partonic cross section

introducing the functions dσ̂ε, dσ̂
′
ε, so that we get:

dσ(Q) = f bare ⊗ dσ̂ε(µfi, ε)⊗ dσ̂(Q,µr, µfi, µff )⊗ dσ̂′ε(µff , ε)⊗Dbare . (3.2)

We use the modified minimal subtraction (MS) factorization scheme, introduced in Eq.

(2.17), where the ε-poles are subtracted together with some finite constants [50],

1

ε
− γE + ln(4π) . (3.3)

With this procedure partonic cross sections dσ̂ become finite. Although the physical

measurable cross section dσ is in principle independent from the arbitrary introduced

factorization scales, a dependence on µfi and µff remains in perturbation theory if we

truncate the perturbative series at a certain order in αs. The next step is to absorb the

collinear singularities into the bare functions f bare and Dbare, which result in PDFs and

FFs with dependences on the factorization scales:

f(µfi) = f bare ⊗ dσ̂ε(µfi, ε) , (3.4)

D(µff ) = Dbare ⊗ dσ̂′ε(µff , ε) . (3.5)

Finally, we arrive at the common factorized expression

dσ(Q) = f(µfi)⊗ dσ̂(Q,µr, µfi, µff )⊗D(µff ) , (3.6)
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serving as a starting point for the calculation of various processes. In the case of polarized

deep inelastic scattering lN → l′hX, the cross section can then be factorized into

p3
Td∆σ

dpTdη
∝
∑
abc

∆fa/`(x`, µfi)⊗∆fb/N (xn, µfi)⊗ dσ̂ab→cX(ŝ, µr, µfi, µff )⊗Dh/c (z, µff ) ,

(3.7)

with x`, xn and z being the momentum fractions carried by the considered parton coming

from the lepton and nucleon or fragmenting into the observed hadron. How the convolution

looks like in detail and which further inner arguments the partonic cross section has, will

be discussed in Chap. 5.

3.2. Parton Distribution and Fragmentation Functions

As we have seen in the previous section how to compose a hadronic cross section using the

factorization theorem, we want to focus ourselves in the following section on the parton

distribution and fragmentation functions. The parton distribution function fa/h(xh, µ =

µfi) describes a parton a in a hadron h carrying a momentum fraction xh. Further, a

fragmentation function Dh/c(z, µ = µff ) describes the hadronization of a parton c into a

hadron h, where the fraction z of the parton’s momentum is carried by the hadron. They

are specific to the considered hadron and universal, meaning that they are independent

from the underlying hard-scattering process. Moreover, they depend on the initial or final

factorization scales µfi and µff .

Further, the helicity parton distribution function of a quark or a gluon is defined by the

difference of a parton with positive and a parton with negative helicity in a nucleon with

positive helicity [56]:

∆f(x, µ) ≡ f+(x, µ)− f−(x, µ) . (3.8)

Once we have obtained the parton distribution functions at an initial scale µ0, we are able

to make use of the DGLAP evolution equations to determine them at a different scale µ.

These evolution equations are a set of differential equations deduced independently on the

one hand by Dokshitzer [57], Gribov and Lipatov [58], and on the other hand by Altarelli

and Parisi [59]:

µ
d

dµ

(
∆fq/h(x, µ)

∆fg/h(x, µ)

)
=
αs
2π

∫ 1

x

dy

y

(
∆Pqq(

x
y ) ∆Pqg(

x
y )

∆Pgq(
x
y ) ∆Pgg(

x
y )

)(
∆fq/h(y, µ)

∆fg/h(y, µ)

)
. (3.9)

The DGLAP equations are shown here for polarized splitting functions ∆Pij and parton

distribution functions ∆fa/h, however, the structure of the equation is also valid for the

unpolarized case. The splitting functions (∆)Pij describe the transition of a parton j to

a parton i and can be calculated perturbatively as a series in the strong coupling and
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depending on a momentum fraction ξ = x
y with 0 ≤ ξ ≤ 1:

∆Pij

(
x

y

)
= P

(0)
ij

(
x

y

)
+
αs
π
P

(1)
ij

(
x

y

)
+ ... . (3.10)

At LO, Eq. (3.9) describes for example the variation of a quark density to be the sum of on

the one hand the quark density at a higher energy scale y convoluted with the probability

of finding a quark in a quark with the momentum fraction x
y and on the other side the

gluon density at that scale y convoluted with the probability of finding a quark in a gluon

with the momentum fraction x
y . This works analogously for gluons.

Due to the rare amount of experimental data compared to the unpolarized ones, polarized

parton densities exhibit a lack of precision and positivity [60] is implemented for further

restriction:

|∆f(x, µ)| ≤ f(x, µ) . (3.11)

This constraint is only exact at LO, however, may be used beyond leading order if one

keeps in mind that this is no longer a strict upper limit. This is due to the case that

beyond leading order, PDFs can no longer be interpreted as physical probabilities.

The integral of the gluon helicity ∆g(x) over all gluon momentum fractions x, ∆G ≡∫ 1
0 dx∆g(x), is interpreted to be the gluon spin contribution to the proton and is a main

part of the proton helicity sum rule [61],

1

2
=

1

2
∆Σ + ∆G+ Lqz + Lgz . (3.12)

Hence, ∆g(x) of the proton is a fundamental ingredient to describe the inner structure of

the nucleon. Here, ∆Σ denotes the quark-antiquark spin combination and Lqz and Lgz are

the quark and gluon orbital angular momentum contributions. The helicity distribution of

quarks or gluons can be probed in high-energy scattering processes like the deep inelastic

scattering (DIS) of a lepton off a polarized nucleon [62]. It was found that only a small

amount of the proton spin is carried by quarks and antiquarks, so that it is crucial to gain

more information about the gluon spin. The spin structure of the nucleon can be examined

through the measurement on semi-inclusive double-spin asymmetries ALL in deep inelastic

scatterings,

ALL ≡
d∆σ

dσ
=
dσ++ − dσ+−

dσ++ + dσ+− , (3.13)

to which we will come in Chap. 7.

Fits of available data for a set of distribution functions are shown in Fig. 3.1, taken from

Refs. [56, 62]. Here, Ref. [56] has used DIS and semi-inclusive DIS (SIDIS) [63–67] data

and data from proton-proton collisions available at the BNL Relativistic Heavy Ion Col-

lider (RHIC) [68, 69], while Ref. [62] uses additionally new data from the RHIC’s 2009 run
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(a) (b)

Fig. 3.1.: Parton distribution functions xf(x) for ū d̄, and s̄ quarks and gluons for Q2 = 10 GeV2

from (a) the DSSV2008 set [56] and (b) the updated gluon helicity distributions ∆g(x)
of DSSV2014 [62]. The plots are taken from Refs. [56, 62].

[70, 71]. The figure shows the DSSV2008 [56] set in (a) and the updated gluon helicity

distribution ∆g(x) of DSSV2014 [62] in (b). As the distributions show a sharp peak for

very small x, the plots present xf(x) for all flavors.

Furthermore, we mention that since the proton is a bound state of uud quarks and ad-

ditional quark-antiquark pairs, the parton distribution functions have to be normalized

probabilities of finding various parton constituents [40]. For that we introduce the follow-

ing sum rules: ∫ 1

0
dx [fu(x)− fū(x)] = 2 , (3.14)∫ 1

0
dx [fd(x)− fd̄(x)] = 1 . (3.15)

In addition, the momentum has to be conserved, meaning that the total amount of the

parton’s momenta has to match the total momentum of the hadron, so that∫ 1

0
dxx [fu(x) + fd(x) + fs(x) + fū(x) + fd̄(x) + fs̄(x) + fg(x)] = 1 . (3.16)

As we have seen in Sec. 3.1, for a factorization of a semi-inclusive deep inelastic scat-

tering process we need, beside a hard partonic cross section and the parton distribution

functions, a precise knowledge of how quarks and gluons hadronize into identified hadrons.

This hadronization is described by the universal parton-to-hadron fragmentation functions
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Fig. 3.2.: Updated fragmentation functions zDK+/c(z,Q
2) at Q2 = 10 GeV2 for positively charged

kaons [75]. The updated FFs for the individual partons are compared with those of the
previous DSS07 sets [76]. The plot is taken from Ref. [75].

(FFs) [72, 73]. A general review over fragmentation functions is given in [74].

The momentum sum rule [73] is an important constraint on FFs and describes the fragmen-

tation of each parton in the final state into a hadron h. Since there are no free partons and

each parton in the final state is confined and assumed to fragment into a hadron, summing

over all produced hadrons h and integrating over the momentum fraction z gives:∫ 1

0
dz z

∑
h

Dh/c(z, µ) = 1 . (3.17)

Analogously to the evolution of parton densities, if once the fragmentation functions are

known at a certain initial scale µ0, the evolution at other scales is fixed through the

DGLAP equations [57–59]:

µ
d

dµ

(
∆Dh/q(z, µ)

∆Dh/g(z, µ)

)
=
αs
2π

∫ 1

z

dy

y

(
∆Pqq(

z
y ) ∆Pgq(

z
y )

∆Pqg(
z
y ) ∆Pgg(

z
y )

)(
∆Dh/q(y, µ)

∆Dh/g(y, µ)

)
. (3.18)

Note that now the matrix for the time-like splitting function is ∆Pji. It differs from the

space-like splitting functions ∆Pij which is relevant for the PDFs in Eq. (3.9). However,

the ∆Pji have a perturbative expansion as before in Eq. (3.10). Again, the explicit form

of the fragmentation functions has to be fitted to experimental data. In Fig. 3.2 the

updated fragmentation functions zDK+/c(z,Q
2) from the DSS17 set of [75] are shown

for positively charged kaons. They are compared with the previous kaon fragmentation
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functions of [76] (DSS07) at Q2 = 10 GeV2. The main differences between DSS17 and

DSS07 are coming from new data from Refs. [77–79]. There exists also an update [80] for

the pion fragmentation function of the DSS07 set taking new data from Refs. [81, 82] into

account. These are also the sets we will use in Chap. 7 for the calculation of the direct

and resolved photon contributions of the photoproduction process µN → µ′hX at the

COMPASS experiment [18, 19]. Note that besides the extraction of PDFs and FFs from

experimental data, remarkable successes have been achieved by lattice calculations [83].

Another ingredient which is still missing are photonic distributions, so that we can handle

the parton structure of the photon. We will come to this subject in the next section.

3.3. Parton Structure of the Photon

Photoproduction processes have leptons serving as a source for quasi-real photons which

are radiated according to the Weizsäcker-Williams spectrum [84]. The photons can then

interact either directly as elementary particles or as resolved-photons through their par-

tonic structure, so that partonic constituents then interact with the partons coming from

the scattering target. When the lepton beam is longitudinally polarized, the resulting

photon will also carry that polarization and for the resolved case, the spin-dependent par-

ton distributions ∆fγ(x,Q2) of the photon enter the theoretical framework. Therefore the

focus of this section is on the spin-dependent parton densities ∆fγ(x,Q2) of the longitu-

dinally polarized photon according to Refs. [85–91].

Considering the physical cross section, we have to take both photonic contributions into

account,

d∆σ = d∆σdir + d∆σres . (3.19)

Keep in mind that the polarized cross section is defined as the difference between the two

independent helicity combinations of the initial particles,

∆σ =
1

2
(σ++ − σ+−) , (3.20)

which is used to get directly access to the parton structure of the longitudinally polarized

photons. While the parton distribution functions for direct photons are trivial and read

∆fγ/γ = δ (1− xγ) , (3.21)

those for the resolved ones are more complicated. In the following, two models [86] will

be reviewed, namely the maximal and the minimal scenario. However, note that these

polarized photonic PDFs are not yet well investigated and are unmeasured so far. They
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are defined by

∆fγ(x, µ) ≡ f+
γ+(x, µ)− f−γ−(x, µ) , (3.22)

where f+
γ+ (f−γ+) denotes the density of a parton with positive (negative) helicity in a

photon with helicity ’+’. We start with a general investigation of the polarized photonic

distributions.

Analogously to the unpolarized ones, the ∆fγ , with f = q, q̄, g satisfy the inhomogeneous

evolution equations [85, 87, 92],

µ
d∆qγ(x, µ)

d lnµ
=
αs
π
{∆kq(x, µ) + [∆Pqq ⊗∆qγ + ∆Pqg ⊗∆gγ ]} ,

µ
d∆gγ(x, µ)

d lnµ
=
αs
π
{∆kg(x, µ) + ∆Pgq ⊗ [∆qγ + ∆q̄γ ] + ∆Pgg ⊗∆gγ} , (3.23)

with the standard notation for the convolution of the parton-to-parton splitting functions

∆Pij with the parton distributions,

∆Pij ⊗∆fγ =

∫ 1

x

dy

y
∆Pij(

x

y
, µ)∆fγ(x, µ) . (3.24)

Here, ∆ki describe the photon-to-parton splitting functions, and together with the ∆Pij

they can be calculated perturbatively and read at NLO [85, 92]:

∆ki(x, µ) =
αem
2π

∆ki(x)(0) +
αemαs(µ)

(2π)2
∆ki(x)(1) ,

∆Pij(x, µ) =
αs(µ)

2π
∆Pij(x)(0) +

(
αs(µ)

2π

)2

∆Pij(x)(1) . (3.25)

Taken as a whole, the ∆fγ are of order O(αem/αs). Considering the inhomogeneous

evolution equations in Eq. (3.23), we find inhomogeneous contributions describing the

pointlike photon-to-parton splitting. They determine the perturbative pointlike solution

(∆)fpl
γ , vanishing at Q2 = µ2. Finally, one finds for the structure of (∆)fγ the typical

decomposition, namely [87, 93]:

∆fγ(x,Q2) =∆fpl
γ (x,Q2) + ∆fhad

γ (x,Q2) ,

fγγ (x,Q2) =fpl
γ (x,Q2) + fhad

γ (x,Q2) . (3.26)

Additionally to the pointlike part, we have (∆)fhad
γ denoting the hadronic part, depending

on the hadronic input and evolving with the homogeneous evolution equations in Eq. (3.9).

The stated distribution has to be obtained non-perturbatively, for example extracted from

experimental data. Due to the lack of data we depend on models and assumptions.

Hence, the pionic parton distribution functions are necessary to describe the unpolarized

hadronic components of the photon, since we are using the vector meson dominance (VMD)
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model. In that model it is stated that the photon tends to fluctuate into other states with

identical quantum numbers, so that the hadronic ansatz is to write fγ(x,Q2) as a coherent

superposition of the lightest vector mesons [90, 91]. Because only the pion PDFs are well

known, the ansatz [87]

fγ(x, µ) = κ
4παem
f2
ρ

fπ(x, µ) , (3.27)

is usually used, with fπ(x, µ) being the valencelike input, f2
ρ/(4π) ' 2.2 and 1 / κ / 2.

The exact value of κ has to be determined from experiment and corresponds to ambiguities

appearing when including the ω, ρ and φ meson. More details can be found in [87].

When constructing a certain model for the polarized photonic PDFs, we can make use of

several theoretical constraints [86]. Positivity [60] of the helicity dependent cross sections,

see the r.h.s. of Eq. (3.20), yields directly |∆σ| ≤ σ, so that we have for the photonic

density at a given input scale (see, Eq. (3.11)):

|∆fγ(x, µ)| ≤ fγ(x, µ) . (3.28)

Further we have current conservation, demanding

∆qhad
γ,n=1 = 0 , (3.29)

i.e., the first moment of the photonic quark densities vanishes at the input scale. To deal

with the theoretical uncertainties in the polarized photon structure functions due to the

unknown hadronic input, we will consider two extreme models to obtain a conservative

prediction. For the first case, the maximal scenario, we saturate Eq. (3.28) using the

unpolarized GRV photon densities,

∆fhad
γ (x, µ2) = fhad

γ (x, µ2) , (3.30)

opposing to the other extreme input, the minimal scenario is used, which reads:

∆fhad
γ (x, µ2) = 0 . (3.31)

The chosen input scale is low. Furthermore, for higher scales the polarized and unpolarized

densities evolve in a different way.

Eq. (3.29) is only satisfied by the last scenario for the hadronic input, the minimal

one. As we are only interested here in the region of x > 0.01, the maximal input could

satisfy Eq. (3.29), too, for suitable contributions from smaller x which do not affect the

evolutions at larger x. [86]. To summarize, those two extreme hadronic input functions

give different sets for the photonic parton distribution functions, see Refs. [88, 89] and [87],

and are used in our following resolved calculations. Fig. 3.3 shows the difference between
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Fig. 3.3.: Comparison of the spin-dependent partonic sets of an u-quark (left) and a gluon (right)
in the photon received in [92] for the maximal and minimal scenario. The figures are
taken from Ref. [92].

the maximal and the minimal saturated polarized photon densities for an u-quark and a

gluon, by x∆uγ/αem and x∆gγ/αem, at LO and NLO [92]. We will adopt the maximal set

of distributions in case of the polarized cross section, however, it was shown in Ref. [25]

that the minimal set of [88, 89] will lead to rather similar results. This is so, because the

process γN → hX mostly probes the high-x region where the inhomogeneous term in the

photon evolution equations tends to dominate and the photonic PDFs become relatively

insensitive to the boundary condition applied for evolution.

Altogether detailed knowledge of the hadronic structure of the photon can only be obtained

from experimental data, however, until there are exact experimental photonic quark and

gluon densities available, those models have to satisfy our needs.

In the next chapter we want to apply our detailed knowledge of factorization and partonic

distribution functions, as well as fragmentation functions, and consider a single-particle

inclusive cross section to derive threshold resummation functions. For that we will start

with an exponentiation formula in QED and QCD and proceed with an examination of

the Mellin momentum space, before we consider the radiative exponents.



What we find is that if you have a goal that is very, very far out,

and you approach it in little steps, you start to get there faster.

Your mind opens up to the possibilities.

Mae Jemison

4
Foundations of Threshold Resummation

This chapter serves as a pedagogical introduction into threshold resummation. We want

to show the foundation for our future calculation, the basic concepts and the underlying

ideas for the reorganization of threshold corrections. Soft gluon emission, where the gluons

carry a total energy (1−z)ŝ, with z ≡ Q2/ŝ compared to the mass of the final-state partons

Q2, yield large logarithmic QCD corrections from the incomplete cancelation of infrared

divergences between real and virtual diagrams. In kinematical regions, where nearly all

of the available energy is used for the production of the final-state partons, only little

phase space is left for additional radiation. In this threshold region, hence when the total

available center-of-mass energy ŝ is only slightly larger than Q2, hence z → 1, logarithmic

corrections become large and spoil the perturbative expansion [28]. These logarithms

start at next-to-leading order and can be observed at every higher order in perturbation

theory [26, 27], so that we have at n-th order contributions up to

αns

[
ln2n−1(1− z)

1− z

]
+

, (4.1)

in form of plus distributions, to which we will come later. Subleading terms go down by

one or more powers of ln(1− z). Taking the Mellin moments, these distributions turn into

powers of logarithms in the Mellin variable N up to αks ln2kN , which are taken into account

by threshold resummation. Note that the threshold region z → 1 corresponds to large

N . Thus, logarithmic threshold corrections cannot be neglected and require an involved

treatment. Threshold resummation to all orders of perturbation theory [29–36] provides

an expedient. In the following, we implement threshold resummation at a certain level,

called next-to-leading logarithmic (NLL) order. In that case, the three leading “towers” are

included that means, αns
[
ln2n−1(1− z)/(1− z)

]
+

at leading-logarithmic (LL) accuracy, as

well as αks
[
ln2n−2(1− z)/(1− z)

]
+

, and αns
[
ln2n−3(1− z)/(1− z)

]
+

at NLL.

25
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The chapter is organized as follows. First we want to investigate an exponentiation formula

of soft photons and gluons, leading to the fact that threshold resummation takes place in

Mellin space. Then we will investigate the Mellin momentum space in more detail, finding

a way, how these threshold terms may be reorganized. Then, we want to derive radiative

exponents for single-particle inclusive cross sections explicitly, which gives the starting

point for the next chapter. For that we will use a technique based on refactorization.

4.1. Exponentiation for (Non-)Abelian Gauge Theories

In this section we want to demonstrate the exponentiation of soft large logarithms in QCD.

In [94] the exponentiation of large logarithmic contributions has been already proven for

QED. To make the idea clear, we want to review the main steps and results of the expo-

nentiation in QED briefly, based on [40]. Then, we are ready to generalize the framework

for non-abelian gauge theories.

4.1.1. Exponentiation of Soft Photons

We start with a hard scattering process with an outgoing electron line with momentum

p′, from which numerous soft photons with momenta k1, k2, ...kn are emitted. Not caring

whether these are real external photons or virtual photons connecting the electron lines

or vertices on other fermion lines, we get in the soft limit for the amplitude:

iM = ū(p′)

(
e
p′µ1

p · k1

)(
e

p′µ2

p′ · (k1 + k2)

)
· · ·
(
e

p′µn

p′ · (k1 + k2 + ...+ kn)

)
(iMhard) . (4.2)

While we cannot determine the ordering of the photon momenta k1, ..., kn, we have to sum

over all permutations and use the identity∑
π

1

p′ · kπ(1)

1

p′ · (kπ(1) + kπ(2))
· · · 1

p′ · (kπ(1) + kπ(2) + ...+ kπ(n))

=
1

p′ · k1

1

p′ · k2
...

1

p′ · kn
, (4.3)

so that we obtain

iM = ū(p′)en
(
p′µ1

p′ · k1

)(
p′µ2

p′ · k2

)
· · ·
(
p′µn

p′ · kn

)
(iMhard)

= ū(p′)en

(
n∏
i=1

p′µi

p′ · ki

)
(iMhard) . (4.4)

For the case of soft photon emission from an incoming electron line we get an additional

minus sign for each photon. As we can not distinguish from which electron line the

emitted photon comes, we have to sum over all possible diagrams. The amplitude reads



Chapter 4. Foundations of Threshold Resummation 27

...

p′

...

p

(a)

p

p′

hard
soft

(b)

Fig. 4.1.: (a) Soft photons coming from the initial and outgoing fermion. (b) The sum of all
diagrams, both real and virtual ones.

for n photons:

ū(p′)(iMhard)u(p)en
(
p′µ1

p′ · k1
− pµ1

p · k1

)(
p′µ2

p′ · k2
− pµ2

p · k2

)
· · ·
(
p′µn

p′ · kn
− pµn

p · kn

)
. (4.5)

From now on we want to distinguish whether the photons are real or virtual. We count

n real and m virtual ones. For virtual photons we connect the two fermion lines through

a photon propagator and set the momenta ki = −kj ≡ k - with a sign change as ki is

absorbed in the other fermion line - and integrate over k. Including a symmetry factor of

1/2 to avoid double counting, we have for each virtual photon:

e2

2

∫
d4k

(2π)4

−igµν
k2 + iε

(
p′µ

p′ · k −
pµ

p · k

)(
p′ν

−p′ · k −
pν

−p · k

)
≡ Xvirt . (4.6)

Summing over m, we need again a symmetry factor of 1/m! as interchanging the photons

with each other does not change the diagrams. Hence the full virtual matrix element for

m soft photon reads:

ū(p̄′)(iMhard)u(p)

∞∑
m=0

Xm
virt

m!
= ū(p̄′)(iMhard)u(p) exp(Xvirt) . (4.7)

Additionally, if we have a real photon, we multiply by its polarization vector εµii , sum

over polarizations and integrate the squared matrix element over the phase space of the

photon: ∫
d3k

(2π)3

1

2k0
e2(−gµν)

(
p′µ

p′ · k −
pµ

p · k

)(
p′ν

p′ · k −
pν

p · k

)
≡ Yreal . (4.8)

Again, for n radiated photons we include a symmetry factor of 1/n! and sum over n.

Combining then the real and the virtual contributions of the squared matrix elements, we
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then obtain our final result for the cross section with an arbitrary number of emitted and

absorbed virtual and real photons, see Fig. (4.1b):

dσ =

∞∑
n,m=0

dσ(0)
∞∑
n=0

Yreal

n!

( ∞∑
m=0

Xm
virt

m!

)2

= dσ(0) exp (Yreal) exp (2Xvirt) . (4.9)

Our result shows that only the single emission contribution is needed and that it exponen-

tiates completely. Further, the cross section factorizes into a hard-scattering contribution

and a soft exponentiated part. While this resummation formula was quite easy to construct

for soft photons, the case for soft gluons is more complicated.

4.1.2. Exponentiation of Soft Gluons

The exponentiation formalism for a cross section of soft emissions in a non-abelian gauge

theory like QCD is highly non-trivial. This is due to the self-interaction of gluons and

with that the three-gluon vertex. However, Gatheral [95] and Frenkel and Taylor [96] have

proven an exponentiation theorem for soft gluons in the eikonal approximation of QCD.

They stated that a cross section X with two external colored fermion lines can be written

as the exponential

X = expY, (4.10)

where Y fulfills the following properties:

(i) Y is calculated perturbatively from a series of terms, each corresponding to a single

Feynman diagram.

(ii) These diagrams are a subset of those diagrams contributing to X.

(iii) Each diagram of Y is connected to a color weight, which is in general different from

those color weights of the corresponding terms in X.

To proof this we have to consider the diagrammatic structures and derive the color weights.

Therefore we want to introduce some definitions first, all based on [95, 96].

A web is a set of gluon lines, crossed or directly connected. A special case is the c-web,

short for connected web, which is a connected set of gluon lines. The color factor C̃(W )

of a c-web W is in general not equal to the color factor C(D[W ]) of the corresponding

Feynman diagram D[W ]. Further, one can decompose every color diagram by using the

commutation relation of the Lie algebra,[
ta, tb

]
= ifabctc , (4.11)
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Fig. 4.2.: (a) The commutation relation and (b) the Jacobi identity illustrated through color dia-
grams [96].

and the Jacobi identity,

fadef bcd + f bdef cad + f cdefabd = 0 , (4.12)

into a sum of products of c-webs. The color structure of both identities is depicted in Fig.

(4.2). Hence,

C(D[W ]) =
∑
k

C(k) , (4.13)

where C(k) is also a sum with each term containing exactly k c-webs. Each term C(k)

is called a decomposition d. Further, the color factor C(d) of a decomposition into n(d)

c-webs Wi is the product of all color factors C̃(Wi) of the n(d) c-webs:

C(d) =

n(d)∏
i=1

C̃(Wi) . (4.14)

The modified color factor of a web W is defined through the normalized color factor of a

diagram D[W ], minus the sum of the color factors of all non-trivial decompositions Dec′

of W into i ≤ n(d) webs Wi , where Dec′ is a subset of all possible decompositions Dec:

C̃(W ) =
1

Tr 1
C(D[W ])−

∑
d∈Dec’

C(d)

=
1

Tr 1
C(D[W ])−

∑
d∈Dec’

n(d)∏
i=1

C̃(Wi) . (4.15)
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Fig. 4.3.: Diagrams contributing to O(α2

s); self-energies are neglected.

Here, we have used the normalization Tr 1 = Nc. For instance, if a considered web W is a

c-web, then its trivial decomposition is the web itself and its color factor is given by the

first term of the sum in Eq. (4.13), C(1). Furthermore, a non-trivial decomposition Dec′

contains more than one c-web.

After introducing the color factors or color weights, the next step will be to deduce a

generalized eikonal identity, an analogue to the identity in Eq. (4.3) for QED. This

identity was stated and proven in [95]. In the following, Sd denotes the set of Feynman

diagrams F , whose color diagrams are decomposed into n(d) webs. F(Wi) is the Feynman

integral in the soft limit which corresponds to a web Wi. Then, the generalized eikonal

identity is given by

∑
F∈Sd

F =

n(d)∏
i=1

F(Wi) . (4.16)

What has changed for the non-abelian case compared to QED is that we have no more ra-

diation of numerous independent photons, but bundled gluons due to their self-interaction,

collected into a web. Now we have everything together to go on with the proof of the non-

abelian exponentiation formula, stated in Eq. (4.10). For that purpose we will follow the

formalism of [97] and start with an example. Consider the first non-trivial diagrams in

O(α2
s) for quark and antiquark eikonal lines, given in Fig. (4.3). Note that the order of

a web m corresponds to the order in the strong coupling constant, so that the web is of

order O(αms ). Self-energies are excluded as they vanish at one loop level if we work in

Feynman gauge. Using Eq. (4.15) we connect ordinary color factors with the correspond-

ing modified color weight of a web. This is crucial for the following exponentiation. We

use:

C
( )

= C
( )

− C
( )

= −CF
(
CF −

CA
2

)
,

C
( )

= C
( )2

= C2
F ,

C
( )

= CF
CA
2
, (4.17)
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and get:

C̃
( )

= C
( )

− C̃
( )2

= −C
( )

= −CF
CA
2
,

C̃
( )

= C
( )

− C̃
( )2

= 0 ,

C̃
( )

= C
( )

= CF
CA
2
. (4.18)

Further we need the eikonal identity for two gluons,

F
( )

+ F
( )

= F
( )∣∣∣∣

k1

×F
( )∣∣∣∣

k2

, (4.19)

so that we can now rewrite the considered diagrams in O(α2
s) of Fig. (4.3):

X(2) =C
( )

F
( )

+ C
( )

F
( )

+ C
( )[

F
( )

+ F
( )]

=
1

2

[
C̃
( )
F
( )]2

+ C̃
( )

F
( )

+ C̃
( )[

F
( )

+ F
( )]

. (4.20)

We have introduced a symmetry factor of 1/2 to avoid overcounting as we cannot distin-

guish two webs with the same structure, so for instance we have F (1)(k1)F (2)(k2, k3) =

F (1)(k2)F (2)(k1, k3). Now we want to include further order contributions and introduce

therefore an additional index for a web of order m, with 1 ≤ i ≤ m:

C̃(W (m)) =
1

Tr 1
C(D[W (m)])−

∑
d∈Dec’

n(d)∏
i=1

C̃(Wi) . (4.21)

Then we obtain the all-order expansion X

X =1 +
∑

all webs
of order 1

C̃(W (1))F(W (1))

+
1

2!

( ∑
all webs

of order 1

C̃(W (1))F(W (1))

)2

+
∑

all webs
of order 2

C̃(W (2))F(W (2)) + ... . (4.22)

With the example above it is now clear that any Feynman diagram with two external

eikonal lines can be decomposed into a sum of products of webs by using Eqs. (4.15)

and (4.16). According to [97], induction of the lower-order contribution yield for a set of
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Feynman diagrams of O(αms ):

F (m) =
∑

{ni}|∑i ini=m

∏
i

1

ni!

( ∑
all webs
of order i

C̃(W (i))F(W (i))

)ni
. (4.23)

We sum over all sets ni such that the condition
∑

i ini = m is fulfilled. Again, i labels the

order of the webs. As before, we require a factor of 1/ni! to avoid overcounting. Summing

over all possible orders in Eq. (4.23) gives us the full perturbative series

X =
∞∑
m=0

F (m) . (4.24)

We rewrite this as an exponential:

X =
∞∑
m=0

∑
{ni}

δm(
∑
i ini)

∏
i

1

ni!

( ∑
all webs
of order i

C̃(W (i))F(W (i))

)ni

=
∑

all possible
{ni}

∏
i

1

ni!

( ∑
all webs
of order i

C̃(W (i))F(W (i))

)ni

=
∏
i


∑
ni

1

ni!

( ∑
all webs
of order i

C̃(W (i))F(W (i))

)ni
=
∏
i

exp

( ∑
all webs
of order i

C̃(W (i))F(W (i))

)
. (4.25)

Here, we made use of the relation∑
all possible
{ni}

∏
i

f(ni, i) =
∏
i

∑
ni

f(ni, i) , (4.26)

valid for any function f(ni, i). Hence, we arrive at our desired exponentiation formula and

have proven the statement of Eq. (4.10):

X = expY = exp

(∑
i

∑
all webs
of order i

C̃(W (i))F(W (i))

)
. (4.27)

This means that only a subset of the full diagrammatic contributions enters the exponent,

connected with their color weights. What now is still missing for a complete exponentiation

formalism is an examination of the phase space of soft gluon radiation, which also has to

be exponentiated. For this we refer to the next section where this demand will be satisfied

with help of the Mellin-N momentum space.



Chapter 4. Foundations of Threshold Resummation 33

4.2. Phase Space Factorization in Mellin Moment Space

In this section we want to introduce the Mellin-N momentum space and investigate the

phase space for soft gluon radiation. In the last section the exponentiation for abelian and

non-abelian gauge theories was shown and with that, the exponentiation of soft gluons as

an ingredient for threshold resummation. Now we want to investigate if also the phase

space factorizes. As an introductory example, let us consider the Drell-Yan process, where

a quark-antiquark pair, carrying the momenta p1 and p2, annihilate into a photon of

momentum qγ∗ and into n additional radiated soft gluons, each with a momentum ki [98]:

dPγ∗,ng = (2π4)δ(4)

(
p1 + p2 − qγ∗ −

n∑
i=1

ki

)
d3q

(2π)32q0

n∏
i=1

d3ki
(2π)32 (ki)0

. (4.28)

The δ-function connects the gluon momenta with the initial partons and the produced

photon. Then, the kinematical threshold for z → 1 allows us to use the soft-gluon approx-

imation. After integrating over the photon’s phase space we obtain

dPγ∗,ng =
2π

ŝ
δ

(
1− z −

n∑
i=1

(ki)0

E

)
n∏
i=1

d3ki
(2π)32 (ki)0

. (4.29)

As several gluon momentum integrals are not independent from each other, an exponenti-

ation cannot be simply performed. The inverse Mellin (or Laplace) transformation helps

us out of this situation: Rewriting the δ-function,

δ

(
1− z −

n∑
i=1

zki

)
=

1

2πi

∫
C
dN eN(1−z−

∑n
i=1 zki ) , (4.30)

with the energy fraction of the i-th gluon zki = (ki)0/E = 2(ki)0/
√
ŝ, implies that when

z → 1 we get zki → 0. This means, soft gluon momenta give rise to large Mellin N [99].

Utilizing then the limit z → 1 or zki → 0, and the corresponding large N limit, we can

approximate eN(1−z) ≈ e−N ln z = z−N , so that we finally identify the delta-function as an

inverse Mellin transform:

δ

(
1− z −

n∑
i=1

zki

)
=

1

2πi

∫
C
dN z−N

n∏
i=1

e−Nzki . (4.31)

Combining the rewritten δ-function with the phase space gives

dPγ∗,ng =
2π

ŝ
δ

(
1− z −

n∑
i=1

zki

)
n∏
i=1

d3ki
(2π)32 (ki)0

=
2π

ŝ

1

2πi

∫
C
dN z−N

n∏
i=1

e−Nzki
d3ki

(2π)32 (ki)0

. (4.32)
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Transformed into Mellin moment space,∫ 1

0
dz zN−1dPγ∗,ng =

2π

ŝ

n∏
i=1

e−Nzki
d3ki

(2π)32 (ki)0

, (4.33)

we have found a factorization formula for the n-gluon phase space [98, 99] through exponen-

tiation. This is the reason, why threshold resummation takes place in Mellin momentum

space.

4.3. Threshold Resummation in Mellin Space

As we have introduced the Mellin-N transformation in the last section, we shortly show

its formalism: Transforming a function f into Mellin-N space gives

fN =

∫ 1

0
dxxN−1f(x) , (4.34)

accompanied by a Mellin inverse transformation of the form

f(x) =
1

2πi

∫
C
dN x−NfN , (4.35)

if we want to transform the function fN back into x-space. Note that the contour inte-

gration C =
∫ c+i∞
c−i∞ takes place in the complex-N space, and that the constant c is chosen

such that all singularities lie to the left of the integration contour, except for the Landau

poles, which lie to the far right. However, this will be examined later in Sec. 5.6 more

detailed.

Note that a Mellin transformation is connected to the Laplace transformation

fN =

∫ 1

0
dx e−Nxf(x) (4.36)

at threshold limit where x→ 0. Mellin techniques are quite useful besides the phase space

factorization, as one can simplify convoluted integrals very easily:∫ 1

0
dxxN−1

∫ 1

x

dy

y
h(y) g

(
x

y

)
=

∫ 1

0
dxxN−1

[∫ 1

0
dy

∫ 1

0
dz h(y)g(z)δ(x− zy)

]
=

∫ 1

0
dy yN−1h(y)

∫ 1

0
dz zN−1g(z) = hN × gN . (4.37)
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Further, large threshold logarithms appearing in Mellin space arise from plus distributions

in higher-order calculations [100]:∫ 1

0
dz zN−1

(
lnm(1− z)

1− z

)
+

=

∫ 1

0
dz
zN−1 − 1

1− z lnm(1− z)

=
(−1)m

m+ 1
lnm+1 N̄ +O(lnm−1N) , (4.38)

where N̄ = NeγE and with the definition of the plus-distribution,∫ 1

0
dw f(w) [g(w)]+ =

∫ 1

0
dw [f(w)− f(1)] g(w) . (4.39)

These logarithms appear at every higher order of perturbation theory with larger exponent,

so that we get at n-th order in the coupling constant:

αns

[
lnm(1− z)

1− z

]
+

↔ αns lnm+1 N̄ , for m ≤ 2n− 1 . (4.40)

These logarithms shall be reorganized into a typical resummation structure, which we want

to introduce in the following. Starting with a perturbative expansion of a cross section at

kinematic threshold, summing over each order in αs, we find that each further order gives

us two additionally powers in the N -logarithm [28]. With that, at n-th order the upper

limit of the sum over the logarithmic exponents reads m = 2n− 1:

dσN/σNB = 1 +
∞∑
n=1

αns

2n−1∑
m=0

cn,m lnm+1N , (4.41)

where we have normalized the cross section with the Born contribution σNB , so that the

LO contribution gives simply unity. Reorganizing the logarithmic contributions such that

we obtain an exponential form [101] gives rise to the functions h(i), including the leading-

logarithmic contributions of the form αns lnn+1N into the function lnNh(1) and all next-

to-leading logarithms αns lnnN in the function h(2):

dσN/σNB = 1 +

∞∑
n=1

αns

2n−1∑
m=0

cn,m lnm+1N

= exp

{ ∞∑
n=1

αns

n∑
m=0

c̃n,m lnm+1N

}
C(αs)

= exp

(
lnNh(1)(αs lnN)︸ ︷︷ ︸

LL

+h(2)(αs lnN)

︸ ︷︷ ︸
NLL

+αsh
(3)(αs lnN)

)
C(αs) . (4.42)
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LO 1

NLO αsL
2 αsL αs 1

NNLO α2
sL

4 α2
sL

3 α2
sL

2 α2
sL α2

s ...

N3LO α3
sL

6 α3
sL

5 α3
sL

4 α3
sL

3 α3
sL

2 ...

N4LO α4
sL

8 α4
sL

7 α4
sL

6 α4
sL

5 α4
sL

4 ...
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Fig. 4.4.: Schematic description of the reorganized perturbative structure in a perturbative cross
section up to k-th order in αs, with L ≡ lnN .

While in the exponentiation procedure the upper limit of the sum
∑

m changes from

2n − 1 to n, single-logarithmic behaviour takes place. For example, by exponentia-

tion of the lowest-order logarithms αsc̃n=1,m=1 ln2N we can take all double logarithms

αns cn,2n−1 ln2nN of Eq. (4.41) into account. The leading logarithms collected into lnNh(1)

are the most dominant terms, however, it is obvious that the expansion becomes more ac-

curate, the more lower order logarithms are taken into account. For an illustration of the

reorganization of the logarithmic contributions, see Fig. (4.4). Hence we conclude that

once one has calculated the functions h(i), we are able to treat soft-gluon radiation in the

region of large-N systematically and perturbatively. If one has at least the functions h(1),

h(2) and h(3) and the coefficient C(αs) up to the two-loop order on hand, then one is able

to control the first five logarithmic towers [102] shown in Fig. (4.4).

4.4. Threshold Corrections for Single-Particle Inclusive Cross

Section

In the following section we construct threshold resummation expressions for hadronic

single-inclusive cross sections and introduce a technique called refactorization. Following

the formalism of Refs. [26, 31, 32], we will derive radiative exponent formulas in moment

space for the initial- and final-state partons at next-to-leading logarithmic accuracy. Our

starting point will be the usual factorization theorem for di-jet cross sections.
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4.4.1. Refactorization

Consider the single-inclusive hadronic scattering,

hA(pA) + hB(pB)→ c(p) +X(kS + pX), (4.43)

with the initial-state hadrons hA and hB, the final-state particle c which will be observed,

and an unobserved part X. In this case, c denotes an observed photon or light jet. At

partonic level, the process corresponds to

a(pa) + b(pb)→ c(p) +X(kS + pX), (4.44)

where the parton a (and b) carry the momentum fraction xa = pa/pA (and analogously

for xb) of the incoming hadron hA (hB). Then, the factorized cross section can be written

as [26]

Ep
dσhAhB→c(p)+X

d3p
=

1

S2

∑
a,b=q,q̄,g

∫
dxadxb Φa/hA(xa, µ)Φb/hB (xb, µ)

× wab→c+X
(
ŝ4

µ2
,
t̂

µ2
,
û

µ2
, αs(µ

2)

)
, (4.45)

with Φa/hA and Φb/hB denoting the non-perturbative parton distribution functions, as

introduced in Section 3.1 and 3.2. We have introduced the kinematic invariant s4,

ŝ4 ≡ ŝ+ t̂+ û = p2 +M2
X ≈M2

X , (4.46)

describing the squared invariant mass of the observed final-state photon or jet, which may

be neglected plus the unobserved radiation recoiling against it. It is written in terms of

the partonic Mandelstam variables,

ŝ = (pa + pb)
2 , t̂ = (pa − p)2 , û = (pb − p)2 , (4.47)

with S = (pA + pB)2 being the hadronic counterpart to ŝ = xaxbS describing the overall

center of mass energy. Partonic threshold is reached for values of xa and xb, where ŝ4

vanishes [26]. As the cross section is organized at n-th order of perturbation theory in

terms of [
lnm(ŝ4/ŝ)

ŝ4

]
+

, m ≤ 2n− 1 , (4.48)
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integrals which are going down to ŝ4 = 0 lead to logarithmic corrections. Alternatively

one can express these logarithmic contributions in terms of the variable z,[
lnm(1− z)

1− z

]
+

, m ≤ 2n− 1 , (4.49)

where we have at kinematic threshold,

z ≡ M2
JJ

xaxbS
=

(p+ pX)2

ŝ
= 1 , (4.50)

so that there is just enough energy available to produce the observed final-state and its

recoiling counterpart, but no further energy is left for additional radiation. Then, only

phase space for soft gluon emission is left, so that the logarithmic corrections of Eq. (4.49)

become important and spoil the cross section. Hence, it is inevitable to resum those terms

to all orders of perturbation theory using threshold resummation.

For that, we want to refactorize the cross section at threshold and rely on further fac-

torization properties. We split it up into a hard scattering part HIL, some jet functions,

Ψi/i and Ji, describing collinear soft-gluon radiation off the initial- and final-state partons,

and a soft function SLI describing non-collinear, large-angle soft gluons coupling to the

incoming and outgoing partons, initiating color exchange. The contribution of the func-

tions to the refactorized cross section have to be weighted, so that we will connect them

with dimensionless weights wi which will vanish at threshold [31, 32]. Implying partonic

momentum conservation,

xapA + xbpB = p+ pX + kS , (4.51)

and neglecting terms of order ŝ2
4, one finds [31]:

S4 =(1− xa)2pA · pX + (1− xb)2pB · pX + 2kS · pX + p2
X + p2

≡
[
wa

(
û

t̂+ û

)
+ wb

(
t̂

t̂+ û

)
+ wS + wX + wp

]
S

=

[
(1− xa)

(
û

t̂+ û

)
+ (1− xb)

(
t̂

t̂+ û

)
+
ŝ4

S

]
S . (4.52)

We introduce the momentum vector pX of the unobserved jet recoiling against the observed

particle. At threshold, we get in the center of mass frame pµX = (p0,−~p) ≡
√
Sζµ. In the

second line of Eq. (4.52) the additive weights are introduced. The last line connects the

hadronic S4 with its partonic counterpart ŝ4 and corresponds to the standard factorized

form of Eq. (4.45), while the second line displays the new factorization procedure. Hence,

wi refers to the function Ψi/i, whereas xi refers to the parton distribution function Φi,

so that we cannot set wi and (1 − xi) equal. At partonic threshold, the dynamics of

the various functions becomes independent, and the partonic cross section reduces to a
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convolution.

Convoluting thus the soft, hard, and jet functions, we receive an expression for the total

partonic cross section in n ·A = 0 gauge [31]:

Ep
σ̂ab→c(p)+X

d3p
=
∑
IL

H
(f)
IL(t̂, û)

∫
dwa dwb dwp dwS dwX

× δ

S4

S
− wa

(
û

t̂+ û

)
− wb

(
t̂

t̂+ û

)
−

∑
i=p,S,X

wi


×Ψa/a(wa, pa, ζ, n)Ψb/b(wb, pb, ζ, n)

× Jc(wp, p, ζ, n)JX(wX , pX , ζ, n)S
(f)
LI

(
wSS

µ
, βi, ζ, n

)
. (4.53)

The integration over the δ-function enforces the requirements for threshold. Further, βi

denotes the four-velocity for a parton i , βµi =
√

2/ŝ pµi , and Ψi/i is the distribution of

parton i in parton i with fixed momentum. The indices of the hard scattering function

HIL label the color structure for the scattering amplitude and its complex conjugate, so

that we have for a given flavor f [32]:

H
(f)
IL

(
t̂, û, αs(µ

2)
)

= h
∗(f)
L

(
t̂, û, αs(µ

2)
)
h

(f)
I

(
t̂, û, αs(µ

2)
)
. (4.54)

Then, HILSLI is a matrix in the space of color exchange, except for the case of direct

photon production, where HIL and SLI are simply functions. For that case Jc=γ can be

replaced by unity. Note further that SLI is infrared safe due to the universality of collinear

singularities, which have been absorbed into the Ψi/i. The next step is the transformation

into Mellin moment space, which was introduced in Sec. 4.3. Starting with the hard-

scattering function in Eq. (4.45), we get in N -space:

wNab =

∫ S

0
d

(
ŝ4

S

)(
1− ŝ4

S

)N−1

wab

(
ŝ4

µ2
,
t̂

µ2
,
û

µ2
, αs(µ

2)

)
. (4.55)

Comparing now the different structure of the partonic cross sections in Eqs. (4.45) and

(4.53), where we have used different types of factorization, we obtain for the Mellin-

transformed hard scattering function at threshold:

wNab =

Ψ
N û
t̂+û

a/a (pa · ζ) Ψ
N t̂
t̂+û

b/b (pb · ζ)

Φ
N û
t̂+û

a/a (µ2) Φ
N t̂
t̂+û

b/b (µ2)

 JNc (p · ζ)JNX (pX · n)

×
∑
IL

H
(f)
IL(t̂, û)S

(f), S
Nµ2

LI (βi, ζ, n) +O
(

1

N

)
. (4.56)

For that we have set the initial-state partons A = a and B = b and have used Eq. (4.52) to

connect S4 and ŝ4. The term in the brackets containing the Ψi/i and the Φi/i is universal
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and depends only on the involved partons, but not on the process itself. It was first

calculated for the Drell-Yan cross section [29]. The jet functions Jc are universal, too, and

leading-logarithmic corrections are included in Jc and in Ψi/i/Φi/i, while next-to-leading

logarithmic corrections can then be found in Jc, Ψi/i/Φi/i and S.

By solving the evolution equations for each of the functions describing soft gluon emission

in Eq. (4.56), we arrive at an explicit resummation formula for the hard scattering function

wNab and find out that N -dependences exponentiate. The explicit forms of the refactorized

parton distribution functions Ψi/i are collected in [29, 32, 103] and read,

Ψq/q(x, p, ζ, ε) =
1

2Nc

p · ζ
2πp · v

∫ ∞
−∞

dy e−ixyp·ζ 〈q(p)| q̄(yζ)
1

2
v · γq(0) |q(p)〉 ,

Ψq̄/q̄(x, p, ζ, ε) =
1

2Nc

p · ζ
2πp · v

∫ ∞
−∞

dy e−ixyp·ζ 〈q̄(p)|Tr

[
1

2
v · γq(yζ)q̄(0)

]
|q̄(p)〉 ,

Ψg/g(x, p, ζ, ε) =
1

2(N2
c − 1)

p · ζ
4π(p · v)2

∫ ∞
−∞

dy e−ixyp·ζ 〈g(p)|Fµ⊥(yζ)[vµvνF
ν⊥(0) |g(p)〉 ,

(4.57)

in terms of matrix elements of composite operators. They are evaluated in the center-

of-mass frame using axial n · A = 0 gauge and differ from standard light-cone parton

distributions as they are defined at fixed energy, instead of at a light-like momentum

fraction. The light-like vector v points in the opposite direction from pµ, yielding v·γ = γ±.

The argument ε labels a collinear singularity which is absorbed by Ψ in the factorized

expression.

How we obtain now from Eq. (4.56) the resummed partonic cross section and how the

radiative exponents are constructed is shown in the next subsection.

4.4.2. Radiative Factors

In the last section we found an expression for the threshold resummed hard scattering

function in Mellin space in Eq. (4.56). Now we want to use the renormalization properties

of the jet and soft functions to find a treatment for the N -dependence in that refactorized

cross section. The matrices H and S act in a product, hence the renormalization takes

place multiplicatively, with separate renormalization constants for the amplitude and its

complex conjugate [32, 33],

H
(f)(0)

IL =
∏

i=a,b,c,X

Z−1
i

(
Z

(f)
S

−1
)
IC

HCD

[(
Z

(f)
S

†
)−1

]
DL

,

S
(f)(0)

LI =

(
Z

(f)
S

†
)
LB

SBAZ
(f)
S,AI . (4.58)

We differ between Zi, a renormalization constant of an incoming parton i, and Z
(f)
S,CD,

being a matrix of renormalization constants connected to the renormalization of the soft
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function S
(f)
IL. Then, by introducing Γ

(f)
S as the soft anomalous dimension matrix, S

(f)
IL

satisfies the renormalization group equation:(
µ
∂

∂µ
+ β(g)

∂

∂g

)
S

(f)
LI = −

(
Γ

(f)
S

†
)
LB

S
(f)
BI − S

(f)
LA

(
Γ

(f)
S

)
AI

. (4.59)

In MS, the modified minimal subtraction renormalization scheme, with ε = 4−D and D

the space-time dimension, Γ
(f)
S reads:

Γ
(f)
S (g) = −g

2

∂

∂g
Resε→0Z

(f)
S (g, ε) . (4.60)

The product of the hard scattering amplitude and the soft function is a trace taken in the

basis of color space,

H
(f)
ILS

(f),N
LI = Tr

{
H(f)S(f),N

}
. (4.61)

Then, solving the renormalization group equation in Eq. (4.59) yields:

Tr

{
H(f)

(
MJJ

µ
, αs(µ

2)

)
S(f),N

(
MJJ

Nµ
,αs(µ

2)

)}
=Tr

{
H(f)

(
MJJ

µ
, αs(µ

2)

)
× P exp

[∫ MJJ/N

µ

dµ′

µ′
Γ

(f)
S

†
(αs(µ

′2))

]

×S(f),N
(
1, αs(M

2
JJ/N

2)
)
× P exp

[∫ MJJ/N

µ

dµ′

µ′
Γ

(f)
S (αs(µ

′2))

]}
. (4.62)

Note that the path ordering operator P orders with respect to µ′ such that for instance

Γ
(f)
S (αs(µ

2)) is to the far right and Γ
(f)
S (αs(M

2
JJ/N

2)) is on the far left. Choosing a basis,

where Γ
(f)
S appears to be diagonal, Eq. (4.62) simplifies and becomes a sum of exponentials

[32].

Our next step is to obtain explicit expressions for the radiative exponents of resummation.

We follow the formalism presented in [32, 104], but use the notation based on [26] when it

comes to the radiative factors. Our starting point is Eq. (4.56), where the fraction of the

functions Ψf and Φf appears. As a composite operator, the center of mass distribution

Ψ does not need an overall renormalization [29]. Its renormalization behaviour is multi-

plicatively, as from its definition can be seen, where it is a matrix element [32] composed

of a product of renormalized operators. From that, the renormalization group equation

µ
dΨN

f/f (MJJ/µ, ε)

dµ
= 2γf (αs(µ

2))ΨN
f/f (MJJ/µ, ε) , (4.63)

is satisfied, with γf being the N-independent anomalous dimension of a field with flavor f .

For the light-cone distribution Φ we have to choose a certain factorization scheme, so that

we will choose again MS. Then, the renormalization group equation with the anomalous
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dimension of the color-diagonal splitting function is solved by

µ
dΦN

f/f (µ2, ε)

dµ
= 2γff (N,αs(µ

2))ΦN
f/f (µ2, ε) . (4.64)

Only color diagonal splitting functions are singular for x→ 1, so that only flavor-diagonal

evolution survives in the large-N region [32]. Up to one loop order, the anomalous di-

mensions γi of the quark- and gluon-fields and the corresponding terms of the diagonal

splitting functions γii read [26]:

γq(αs) =
3

4
CF

αs
π

, γqq(N,αs) = −
(

lnN − 3

4

)
CF

αs
π

,

γg(αs) = b0αs, γgg(N,αs) = − (CA lnN − πb0)
αs
π

. (4.65)

Remember, b0 = (11CA − 4TRNf )/(12π) with TR = 1/2 is the one-loop coefficient of the

β-function, see Eq. (2.11). Finally we have reached a point, where the factorization scale

dependence is determined by the evolution equations in Eqs. (4.63) and (4.64), so that

we are ready to obtain the prefactor of Eq. (4.56) in MS, describing jets:[
ΨN
f/f (MJJ/ν, ε)

ΦN
f/f (ν2, ε)

]
=R(f)

(
αs(M

2
JJ)
)

exp
[
E(f)(N,MJJ)

]
× exp

{
−2

∫ MJJ

µ

dµ′

µ′
[
γf (αs(µ

′2))− γff (N,αs(µ
′2))
]}

. (4.66)

The radiative exponent is given in MS by:

E(f)(N,M) =−
∫ 1

0
dz
zN−1 − 1

1− z

{∫ 1

(1−z)2

dt

t
Af
[
αs(tM

2)
]

+B̄f

(
νi,

M2

ŝ
, αs((1− z)2)M2

)}
. (4.67)

At zeroth-order we can normalize the N-independent function of the coupling R(f)(αs) to

unity. In here, we use the following perturbative expansions,

Af (αs) =
αs
π
A

(1)
f +

(αs
π

)2
A

(2)
f +O(α3

s) = Cf

(
αs
π

+
1

2
K
(αs
π

)2
)

+O(α3
s),

B̄f (αs) =
αs
π
B̄

(1)
f +O(α2

s) = Cf
αs
π

[
1− ln (2νf ) + ln

(
M2
f

ŝ

)]
+O(α2

s), (4.68)

where Nf denotes the number of flavors, Cf = CF labels an incoming quark and Cf = CA

an incoming gluon. Further,

K = CA

(
67

18
− π2

6

)
− 5

9
Nf , (4.69)
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and νf ≡ (βf ·n)2/(|n2|) is the parton velocity. Finally, we are able to present the definition

of the radiative soft-gluon exponent for initial-state partons [22] in MS scheme. In Mellin

moment space we have,

ln ∆Ni
f (M2

f , µ) = E(f)(Ni,Mf )− 2

∫ Mf

µ

dµ′

µ′
[
γf (αs(µ

′2))− γff (N,αs(µ
′2))
]
. (4.70)

with Ni defined for parton a as Na = (−û/ŝ)N , and for parton b as Nb = (−t̂/ŝ)N .

The last step is to find some expressions for the still missing final-state jet function JNf
in Eq. (4.56). For that we want to skip the derivation and refer to Ref. [32], as the

calculation is shown very detailed there and follows in an analogous way to the initial-

state contributions. It reads at NLL accuracy:

ln JNf (M2
JJ) =

∫ 1

0
dz
zN−1 − 1

1− z

{∫ (1−z)

(1−z)2

dt

t
Af
[
αs(tM

2
JJ)
]
− γf

[
αs((1− z)M2

JJ)
]

− B̄f
[
νf , 1, αs((1− z)2M2

JJ)
]}

+ 2

∫ MJJ

µ

dµ′

µ′
γf (αs(µ

′2)). (4.71)

Comparing the exponents for incoming and outgoing partons, see Eqs. (4.70) and (4.71),

we find that leading logarithmic contributions, which emerge from the functions Af of

Eq. (4.68), are connected with opposite overall sign for the both soft gluon exponents. This

results into an enhancement of the cross section from the LL contributions of the initial-

state partons, and a suppression from the LL contributions of the final-state radiation

The amount of an overall suppression or enhancement depends on the partonic subprocess

[32, 105].

Let us now put all terms together, the soft function, as well as the initial- and final-state

jet functions, to arrive at the resummed partonic cross section in MS:

wNab→cX =∆Na
a (ŝ, µfi) ∆Nb

b (ŝ, µfi) J
N
c (ŝ) JNX (ŝ)

× Tr

{
H(f)

(√
ŝ

µ
, αs(µ

2)

)
× P exp

[∫ √ŝ/N
µ

dµ′

µ′
Γ

(f)
S

†
(αs(µ

′2))

]

×S(f),N
(
1, αs(ŝ/N

2)
)
× P exp

[∫ √ŝ/N
µ

dµ′

µ′
Γ

(f)
S (αs(µ

′2))

]}
, (4.72)

where we have Na = (−û/ŝ)N and Nb = (−t̂/ŝ)N . As we will distinguish in the following

between direct and resolved subprocesses, we have to modify the resummed cross section

slightly. If one of the incoming or outgoing particles is a photon, the exponent is simply

replaced by unity. Moreover, if we consider a final-state parton c, which fragments into

the observed hadron h rather than a photon or a jet as final-state c, we get collinear

singularities, which are absorbed into the fragmentation functions. Analogously to the

initial-state partons we get thus an exponent ∆N
c as in Eq. (4.70) [22], depending on the
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final-state factorization scale µff . However, the details of the construction of a resummed

cross section for hadron-inclusive high-pT lepton-nucleon scattering are shown in the next

chapter. This case then pictures exactly the needed framework for COMPASS.
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5
Threshold Resummation for Single-Inclusive

Hadron Production

In the following chapter we want to address soft-gluon resummation to lepton-nucleon scat-

tering as it takes place at COMPASS. This process is chosen due to different reasons. The

question, how the nucleon spin of 1/2 is composed of the gluon and quark spins and orbital

angular momenta, is still much debated. Improved experimental results from high-energy

scattering including longitudinally polarized nucleons were claimed, and the COMPASS

experiment at CERN provides such data, namely for semi-inclusive hadron photoproduc-

tion γN → hX. Corresponding to the spin-averaged cross sections [18], COMPASS has

presented results for the double-longitudinal spin asymmetry ALL [19, 20]. This asymme-

try is directly sensitive to the spin-dependent gluon distribution ∆g, which in turn yields

information on the gluon spin contribution to the proton spin.

This requires, however, high precision, implying the demand that the theoretical uncer-

tainty of the analyses has to be much smaller than the experimental uncertainties. On the

other hand, the kinematics at COMPASS for the chosen process is relatively close to the

kinematic threshold, what means that nearly all available energy of the incoming partons

is used to produce the high-pT final-state parton and its recoiling counterpart. Then,

the phase space for radiation of additional partons becomes small, and the cancelation of

infrared singularities between real and virtual diagrams leave behind large logarithmic cor-

rections to the cross section. These logarithms start at NLO and show up at every higher

order in perturbation theory. In the threshold region, these logarithmic corrections may be

resummed to all perturbative orders [29–36]. Threshold resummation to all orders is there-

fore an essential ingredient for the calculation of the cross sections and double-longitudinal

spin asymmetries of lepton-nucleon scattering in these kinematic regions. Here, we com-

plement the calculation of Ref. [22], where the spin-averaged resummed cross section has

been investigated. Now we consider the polarized cross section, threshold resummed and

45
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compare the NLO one, and afterwards use the polarized and unpolarized cross sections

to obtain theoretical predictions for the double-longitudinal spin asymmetry. Besides di-

rect contributions, for which the photon interacts in the usual point-like manner in the

hard scattering, we also include resolved-photon contributions, where the photon reveals

its partonic structure and interacts like a hadron. Note that the resolved subprocesses

of γN → hX are structurally equivalent to pp → hX scattering, for which relevant tech-

niques have been presented in Refs. [31–35]. In these investigations spin-averaged cross

sections were considered. Spin-polarized hadronic scattering pp → hX, was considered

in the framework of threshold resummation in Ref. [27], however, only integrated over all

rapidities of the produced hadron. In the following, we perform resummation at arbitrary

fixed rapidity, using the techniques developed in Refs. [22, 26, 37, 106].

The chapter starts with the general theoretical framework in Sec. 5.1, followed by a dis-

cussion of the transformation into Mellin momentum space in Sec. 5.2, so that we can then

come to the resummed hard-scattering function in Sec. 5.3. For that we will need hard-

and soft-matrices, which will be examined in Sec. 5.3.2. We follow then with an investiga-

tion of the NLO calculation in Sec. 5.4 and how the fixed-order calculation can be used to

extract matching-coefficients in Sec. 5.5. Finally we apply an inverse Mellin transforma-

tion in Sec. 5.6 to the resummed cross section and match it to the NLO one. We conclude

the chapter with a sketchy introduction of the double-longitudinal spin asymmetry in Sec.

5.7. Parts of this chapter are already published in Refs. [38, 39].

5.1. Theoretical Framework

We consider the hadron production process (see Fig. 5.1)

`N → `′hX , (5.1)

in which an initial lepton ` scatters off a nucleon N , both with longitudinal polarization.

A (semi-inclusively) produced parton c hadronizes then into the charged hadron h with

high transverse momentum pT , ensuring the demanded large momentum transfer. As the

scattered lepton `′ is required to have a small scattering angle with respect to the initial

one, the underlying process can be treated as photoproduction process γN → hX, for

which the main contributions come from almost on-shell photons exchanged between the

lepton and the nucleon. Then, if the transverse momentum pT of the observed hadron is

sufficiently large, perturbative-QCD techniques can be applied.

We use factorization to write the differential spin-dependent cross section d∆σ as func-
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µ

µ′

h

XN

γ

Fig. 5.1.: Single-inclusive high-pT hadron production in lepton scattering (direct contribution).

tion of pT and the hadron’s pseudorapidity η as [24, 25]:

p3
Td∆σ

dpTdη
=
∑
abc

∫ 1

xmin
`

dx`

∫ 1

xmin
n

dxn

∫ 1

x
dz
x̂4
T z

2

8v

ŝd∆σ̂ab→cX(v, w, ŝ, µr, µfi, µff )

dv dw

×∆fa/`(x`, µfi) ∆fb/N (xn, µfi)Dh/c(z, µff ) , (5.2)

where the sum runs over all possible partonic channels ab → cX. ∆fa/` (x`, µfi) and

∆fb/N (xn, µfi) label the polarized parton distribution functions for the lepton and the

nucleon, respectively, depending on the momentum fractions x` and xn, carried by the

partons a and b, and on the initial-state factorization scale µfi. They can be written as

differences of distributions for positive and negative helicity in a parent nucleon of positive

helicity,

∆fb/N (x, µ) ≡ f+
b/N (x, µ)− f−b/N (x, µ) . (5.3)

TheDh/c(z, µff ) are the parton-to-hadron fragmentation functions describing the hadroniza-

tion of parton c into the observed hadron h, with z being the fraction of the parton’s mo-

mentum taken by the hadron. Further they depend on the final-state factorization scale

µff . Finally, the d∆σ̂ab→cX are the differential spin-dependent partonic hard-scattering

cross sections, and can be obtained as well as the spin-averaged cross sections as difference

and sum of helicity cross sections, analogously to Eq. (5.3),

d∆σ̂ab→cX ≡
1

2

[
(dσ̂ab→cX)++ − (dσ̂ab→cX)+−] ,

dσ̂ab→cX ≡
1

2

[
(dσ̂ab→cX)++ + (dσ̂ab→cX)+−] , (5.4)

where the superscripts denote the helicities of the initial states. We have implied parity

conservation, i.e. dσ+− ≡ dσ−+ and dσ++ ≡ dσ−−. In the case of spin-averaged hadronic
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cross sections, we also need spin-averaged distribution functions. Both cross sections are

at high energies and thus can be expanded in terms of the coupling constant αs:

d∆σ̂ab→cX = d∆σ̂
(0)
ab→cX +

αs
π
d∆σ̂

(1)
ab→cX + ... . (5.5)

Besides their dependence on the factorization scales µfi and µff , a renormalization scale

µr is introduced, where one chooses them all to be equal, typically µfi = µff = µr = pT .

Further the cross section varies with the kinematic variables introduced in Eq. (5.2):

v ≡ 1 +
t̂

ŝ
= 1− x̂T

2
e−η̂ , and w ≡ −û

ŝ+ t̂
=

1

v

x̂T
2
eη̂ , (5.6)

with the partonic Mandelstam variables

ŝ =(pa + pb)
2 = x`xnS ,

t̂ =(pa − pc)2 = − ŝx̂T
2
e−η̂ ,

û =(pb − pc)2 = − ŝx̂T
2
eη̂ , (5.7)

and where pa, pb, pc are the four-momenta of the participating partons. Furthermore,

S = (p` + pn)2, with the lepton (nucleon) momentum p` (pn). Moreover, we have

x̂T ≡
xT

z
√
x`xn

, and η̂ ≡ η − 1

2
ln
x`
xn

, (5.8)

where xT ≡ 2pT /
√
S, with

√
S and η being the hadronic center-of-mass energy and ra-

pidity, respectively, the latter counted positive in the lepton forward direction. The lower

integration bounds in Eq. (5.2) are given by

xmin
` =

xT e
η

2− xT e−η
,

xmin
n =

x`xT e
−η

2x` − xT eη
,

x =
xT cosh η̂√

xnx`
. (5.9)

An important aspect of photoproduction is that the quasi-real photons can interact in two

different ways. On the one hand, it participates as a pointlike photon directly (see Fig. 5.1),

i.e. electromagnetically, coupling to the parton b in the nucleon. This contribution is called

the direct part of the cross section ∆σdir. On the other hand, the photon reveals its own

partonic structure: Photons couple to quantum fluctuations containing quarks, antiquarks

and gluons. For a quasi-real photon these contributions are not suppressed by additional,

strongly virtual propagators and the physical photon eigenstate contains an appreciable
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QCD part. This behaviour is described by photonic parton distribution functions just as

for normal hadrons, see Fig. 5.2. The resulting contribution is called resolved photon

contribution. The physical cross section is the sum of both parts together:

d∆σ = d∆σdir + d∆σres . (5.10)

The corresponding parton density can thus be written by introducing a suitable “parton-

in-lepton” distribution [24, 25]:

∆fa/`(x`, µfi) =

∫ 1

x`

dy

y
∆Pγ`(y)∆fa/γ

(
xγ =

x`
y
, µfi

)
. (5.11)

It is a convolution of the probability density ∆Pγ`(y) of having a polarized “Weizsäcker-

Williams” photon with lepton momentum fraction y accompanying the initial-state lepton,

with the probability density ∆fa/γ(xγ , µfi) of finding a polarized parton a with momentum

fraction xγ in this photon. One can write the direct photon case, see Fig. 5.1, in the same

manner as the resolved one by setting

∆fγ/γ = δ (1− xγ) . (5.12)

∆fa/γ is dominated at high xγ by the perturbative “pointlike” contribution and at low-

to-mid xγ by the non-perturbative “hadronic” piece. The hadronic contribution has the

same quantum numbers as the photon, i.e. it is of vector meson type. In a popular

approximation it is assumed to have a hadronic structure similar to the ρ meson. The

probability density ∆Pγ`(y) is given by [107]

∆Pγ`(y) =
α

2π

[
1− (1− y)2

y
ln

(
Q2

max(1− y)

m2
`y

2

)
+ 2m2

`y
2

(
1

Q2
max

− 1− y
m2
`y

2

)]
. (5.13)

Here α is the fine structure constant, m` the lepton mass, and the virtuality Q2 is restricted

by an upper limitQ2
max determined by experimental conditions on the small-angle scattered

lepton. At leading order there are three different direct subprocesses,

γq → g(q) , γq → q(g) , γg → q(q̄) , (5.14)

where the final-state particle in brackets is understood to be unobserved and is fully phase-

space integrated, while the other fragments into the detected high-pT hadron. The first

and second subprocesses describe Compton scattering, the third one describes photon-

gluon-fusion, which is symmetric under exchange of q and q̄. The direct cross sections

start at lowest order (LO) at O(ααs)[23] and read:

ŝd∆σ̂
(0)
γq→g(q)(v, w)

dv dw
= 2πααse

2
qCF

1− v2

v
δ(1− w) ,
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Fig. 5.2.: Resolved-photon contribution to high-pT hadron production in lepton scattering.

ŝd∆σ̂
(0)
γq→q(g)(v, w)

dv dw
= 2πααse

2
qCF

1− (1− v)2

1− v δ(1− w) ,

ŝd∆σ̂
(0)
γg→q(q̄)(v, w)

dv dw
= −2πααse

2
qTR

v2 + (1− v)2

v(1− v)
δ(1− w) , (5.15)

with CF = 4/3, TR = 1/2 and the fractional electromagnetic charge of the quark eq.

For the resolved contributions, all 2→ 2 QCD partonic processes contribute to LO:

q q′ → q q′ , q q̄′ → q q̄′ , q q̄ → q′ q̄′ , q q → q q , q q̄ → qq̄ ,

q q̄ → g g , g q → q g , g g → g q , g g → g g , g g → q q̄ , (5.16)

where one of the final-state partons fragments into the observed hadron. The cross section

is of order O(α2
s). Since, however, the photon’s parton distributions ∆fa/γ are of order

α/αs [21], the resolved contribution is of the same perturbative order as the direct one.

For the `N cross section they are of order α2αs and for the γN one they are of order ααs.

This is true to all orders. As one can see in Eq. (5.15), the LO partonic cross section is

proportional to δ(1− w) [28],

ŝd∆σ̂
(0)
γb→cd (v, w)

dvdw
=
ŝd∆σ̂

(0)
γb→cd (v)

dv
δ (1− w) , (5.17)

accounting for the fact that one has 2 → 2 kinematics, hence w ≡ 1 and therefore

xT cosh η̂ ≡ 1. The reason for this is that (1 − w) measures the invariant mass of the

partonic recoil. Hence, from (5.6) follows that the invariant mass squared of the final

state that recoils against the fragmenting parton is given by

ŝ4 = ŝ+ t̂+ û = ŝv(1− w) = ŝ(1− x̂T cosh η̂) . (5.18)
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The structure of the NLO cross section is more complicated. NLO (O(αα2
s)) QCD cor-

rections to polarized high-pT photoproduction of hadrons can be found in [23–25]. Now

various types of distributions in (1−w) arise, and analytical expressions are presented in

Refs. [23, 24, 108–111]. They can be cast into the form

ŝd∆σ̂
(1)
ab→cX(v, w)

dv dw
= A(v)δ(1− w) +B(v)

(
ln(1− w)

1− w

)
+

+ C(v)

(
1

1− w

)
+

+ F (v, w) ,

(5.19)

with the plus-distributions defined as∫ 1

0
dw f(w) [g(w)]+ ≡

∫ 1

0
dw [f(w)− f(1)] g(w) . (5.20)

A(v), B(v), C(v), F (v, w) in (5.19) are well-known functions and depend on the partonic

process under consideration. F (v, w) collects all terms without distributions in (1 − w).

Then, the terms with plus-distributions give rise to the large double-logarithmic threshold

corrections which recur with higher logarithmic power at every higher order of αs. They

arise from soft-gluon radiation and will be addressed by threshold resummation. At k-th

order we have leading corrections proportional to αks [ln
2k−1(1−w)/(1−w)]+ (not counting

the overall power of the partonic process in αs), and subleading terms down by one or

more powers of ln(1 − w). We resum these logarithmic corrections on next-to-leading

logarithmic (NLL) level, so that we take the three “towers” αks [ln
2k−1(1 − w)/(1 − w)]+,

αks [ln
2k−2(1− w)/(1− w)]+ and αks [ln

2k−3(1− w)/(1− w)]+ into account to all orders in

αs. The framework for that will be described in the following.

5.2. Transformation to Mellin Moment Space

As we have seen in Sec. 4.2, a transformation into Mellin moment space is suitable due

to different reasons, so that we will perform our calculations in Mellin space. We need an

exponentiation and hence factorization of the phase space factor, which is only provided

in Mellin space. This has the advantage that a convolution of distribution functions and

the partonic cross section turn then into an ordinary product of moments. However, we

will not transform the complete expression, i.e. the partonic cross section is convoluted

with parton distribution functions and fragmentation function. Only a part of it will be

transformed yielding to rapidity dependence in the resummed cross section. Afterwards we

take the Mellin inverse of the corresponding products of Mellin moments, see [22, 37]. We

transform only the fragmentation functions convoluted with the partonic hard scattering

cross section, in the following the scaling variable x2:∫ 1

0
dx2(x2)N−1

∫ 1

x
dz
x̂4
T z

2

8v
Dh/c(z, µff )

ŝd∆σ̂ab→cX
dv dw

≡ D2N+3
h/c (µff )∆w̃2N

ab→cX (η̂) . (5.21)
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∆w̃(N, η̂) is the hard scattering function in Mellin-N moment space

∆w̃Nab→cX(η̂) = 2

∫ 1

0
d

(
ŝ4

ŝ

)(
1− ŝ4

ŝ

)N−1 x̂4
T z

2

8v

ŝd∆σ̂ab→cX
dv dw

, (5.22)

written as an integration over ŝ4/ŝ = v(1− w) and depending further without additional

listing on ŝ, µr, µfi and µff by having its origin in d∆σ̂ab→cX . DN
h/c are the fragmentation

functions transformed in z

DN
h/c(µff ) =

∫ 1

0
dz zN−1Dh/c(z, µff ) . (5.23)

Their presence is important for making the Mellin-inverse well-behaved yielding good

numerical convergence, as they fall off rapidly at large N , typically as 1/N4 or faster, and

thus tame the logarithms in N . The integration contour C of the Mellin inverse goes in

a tilted line from C − i∞ to C + i∞, with C being a positive real number and chosen in

such a way that all singularities of the integrand lie to the left of the contour C, except

the Landau pole. We will come later to this point. After performing the inverse Mellin

transform we are ready to receive the cross section in Eq. (5.2):

p3
Td∆σ̂

dpT dη
=
∑
a,b,c

∫ 1

0
dxl

∫ 1

0
dxn∆fa/l (xl, µfi) ∆fb/N (xn, µfi)

×
∫
C

dN

2πi
(x2)−ND2N+3

h/c (µff )∆w̃2N
ab→cX (η̂) . (5.24)

At all times we keep the parton distribution functions in x-space. Now the threshold

region w → 1 comes along with large Mellin moments in N and soft-gluon corrections

appearing through plus-distributions, see Eq. (5.19), are transferred into powers of lnN .

In more detail, the “towers” αks [ln
2k−1(1 − w)/(1 − w)]+, αks [ln

2k−2(1 − w)/(1 − w)]+

and αks [ln
2k−3(1 − w)/(1 − w)]+ mentioned before, turn into the NLL terms αks ln2kN ,

αks ln2k−1N , and αks ln2k−2N in Mellin space.

5.3. NLL-Resummed Hard-Scattering Function

In the previous section we have seen that resummation has to take place in Mellin momen-

tum space. Let us now consider the resummed hard-scattering function at NLL accuracy

and the functions it is composed of in more detail. We found out in Chap. 4 that the

resummed cross section in Mellin space factorizes into functions describing soft gluon emis-

sion off each parton, a function describing the hard scattering process, and a soft function.

However, we have investigated in that chapter single-inclusive resummed cross sections

for a final observed photon or jet. Now our final state is a parton fragmenting into an

observed hadron with high transverse momentum pT . We get final-state collinear singu-

larities, which are absorbed into the fragmentation functions and yield analogously to the
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initial-state partons an exponent of the form ∆N
c as in Eq. (4.70). Thus, the resummed

hard-scattering function reads [22, 26, 31, 32]:

∆w̃resum,N
ab→cd (η̂) =∆Na

a (ŝ, µfi, µr)∆
Nb
b (ŝ, µfi, µr)∆

N
c (ŝ, µff , µr)J

N
d (ŝ, µr)

× Tr
{

∆HS†NSSN
}
ab→cd

, (5.25)

with Na = (−û/ŝ)N and Nb = (−t̂/ŝ)N . The dynamics of soft radiated gluons is de-

scribed for each interacting initial- and final-state parton by a specific function, namely

the functions ∆
(−û/ŝ)N
a , ∆

(−t̂/ŝ)N
b and ∆N

c in (5.25), which describe soft radiation collinear

to the initial-state parton a, b and the final and fragmenting parton c, respectively. They

are spin-independent exponentials and given in the MS scheme by [31]

ln ∆N
i (ŝ, µf , µr) =−

∫ 1

0
dz
zN−1 − 1

1− z

∫ 1

(1−z)2

dt

t
Ai (αs(tŝ))

− 2

∫ √ŝ
µr

dµ′

µ′
γi(αs(µ

′2)) + 2

∫ √ŝ
µf

dµ′

µ′
γii(N,αs(µ

′2)) , (5.26)

where the functions Ai, γi and γii, for i = q, g describing a quark or a gluon, are pertur-

bative series in the strong coupling. The function JNd describes soft and hard collinear

emission off the unobserved recoiling parton d. We have [31]

ln JNd (ŝ, µr) =

∫ 1

0
dz
zN−1 − 1

1− z

{∫ (1−z)

(1−z)2

dt

t
Ad (αs(tŝ))− γd (αs((1− z)ŝ))

}
+ 2

∫ √ŝ
µr

dµ′

µ′
γd
(
αs(µ

′2)
)
. (5.27)

The first terms of the perturbative function Ai are given by

Ai (αs) =
αs
π
A

(1)
i +

(αs
π

)2
A

(2)
i +O(α3

s) = Cf

(
αs
π

+
1

2
K
(αs
π

)2
)

, (5.28)

with

K = CA

(
67

18
− π2

6

)
− 5

9
Nf , (5.29)

Nf being the number of flavors,

Cf=q = CF =
N2
c − 1

2Nc
= 4/3 (5.30)

for a quark and Cf=g = CA = Nc = 3 for a gluon. The quark and gluon field anomalous

dimensions are γi and the γii correspond to the constant and logarithmic terms of the
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moments of the diagonal splitting functions, reading to one-loop order [26, 31]:

γq(αs) =
3

4
CF

αs
π

, γqq(N,αs) = −
(

lnN − 3

4

)
CF

αs
π

,

γg(αs) = b0αs , γgg(N,αs) = − (CA lnN − πb0)
αs
π

, (5.31)

where b0 is the one-loop coefficient of the β-function, b0 = (11CA − 4TRNf )/(12π), with

TR = 1/2. Generally, γii can be expressed through the anomalous dimension at lowest

order:

γii = − lnNA
(1)
i

αs
π

+ γi(αs) . (5.32)

Next, we consider the trace in Eq. (5.25), being comprised of functions which are ma-

trices in the space of color exchange operators. The trace has to be taken also in this

space [32, 33, 37] and is the only part of the hard-scattering function which carries an η̂-

dependence. Spin-dependence is taken explicitly into account through the hard-scattering

function ∆Hab→cd and Sab→cd is a soft function. One can expand each of the functions

perturbatively [37], so that the hard-scattering function reads,

∆Hab→cd(η̂, αs) = ∆H
(0)
ab→cd(η̂) +

αs
π

∆H
(1)
ab→cd(η̂) +O(α2

s)) , (5.33)

and analogously the soft function describing large-angle gluons,

Sab→cd(η̂, αs) = S
(0)
ab→cd+

αs
π
S

(1)
ab→cd

(̂
η, αs,

√
ŝ

N

)
+O(α2

s)) , (5.34)

both approximated by their lower order contributions. In the latter the N dependence

of the NLO term enters the hard-scattering function only at next-to-next-to-leading loga-

rithmic level (NNLL). At LO, the soft terms S
(0)
ab→cd are independent of η̂. Wide-angle soft

gluons interchanged between the partons are taken into account by the functions SN,ab→cd
and S†N,ab→cd. These functions are path- and antipath-ordered exponentials in terms of

the soft anomalous dimension matrices Γab→cd [32, 33, 37]:

SN,ab→cd (η̂, αs) = P exp

[∫ √ŝ/N
µr

dµ′

µ′
Γab→cd(η̂, αs(µ

′))

]
. (5.35)

Starting at O(αs), the soft anomalous dimension matrices read:

Γab→cd(η̂, αs) =
αs
π

Γ
(1)
ab→cd(η̂) +O(α2

s) . (5.36)

We will consider later in Sec. 5.3.2 the hard, soft and Γ-matrices in more detail and will

distinguish between the direct- and the resolved-photon contributions. We will summarize

them in Appendix B.
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5.3.1. Exponents at NLL

Before we have introduced the hard-scattering function. It consists of hard and soft

matrices and various functions, all exponentials, describing the dynamics of soft radiated

gluons collinear to the initial- or final-state partons. Their structure is shown in Eq. (5.26)

and (5.27), where we have several integrations to solve. In this part of the work we will

show how to receive the exponents in Mellin space at next-to-leading logarithmic accuracy.

The calculation will take place at threshold limit implying large N .

Let us start with the function describing radiation off the observed partons a, b or c. We

start with the first part of the expression in Eq. (5.26). The t-integration can be solved

by using the NLO solution of the renormalization group equation to express the running

coupling αs(k
2) ≡ αs(tŝ) in terms of αs(µ

2) [44, 45]:

αs(k
2) =

αs(µ
2)

1 + b0αs(µ2) ln
(
k2

µ2

)
1− b1

b0

αs(µ
2)

1 + b0αs(µ2) ln
(
k2

µ2

) ln

(
1 + b0αs(µ

2) ln

(
k2

µ2

))

+O
(
α2
s(µ

2)

(
αs(µ

2) ln

(
k2

µ2

))n)]
. (5.37)

Using the approximation [30],

zN−1 − 1 ' −Θ

(
1− 1

sN
− z
)
, (5.38)

where N̄ ≡ NeγE , we get for the first NLL expanded integral,

−
∫ 1

0
dz
zN−1 − 1

1− z

∫ 1

(1−z)2

dt

t
Ai[αs(tŝ)]

=

∫ 1

0
dz

1

1− zΘ

(
1− z − 1

N̄

)∫ 1

(1−z)2

dt

t
Ai[αs(tŝ)]

=− A
(2)
i

2π2b20
[2λ+ ln (1− 2λ)] +

A
(1)
i

2πb20αs
[2λ+ (1− 2λ) ln (1− 2λ)]

+
A

(1)
i b1

2πb30

[
2λ+ ln (1− 2λ) +

1

2
ln2 (1− 2λ)

]
+
A

(1)
i

2πb0
[2λ+ ln (1− 2λ)] ln

(
ŝ

µ2
r

)
− A

(1)
i γE
πb0

ln(1− 2λ) , (5.39)

depending on λ,

λ ≡ b0αs lnN . (5.40)

As was pointed out in Eq. (5.24) for a NLL resummed cross section, we need the hard

scattering function shifted in its Mellin moments, this means in dependence of 2N . Further

we have seen the various Mellin-dependences in Eq. (5.25). This means, instead of the
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usual exponent ln ∆N
i we need the one depending on 2Ni to calculate the appropriate hard

scattering function. Therefore, we have to shift N → 2Ni ≡ aiN , with Na = (−û/ŝ)N ,

Nb = (−t̂/ŝ)N for the initial-state partons a and b, and with Nc = N for the final-state

parton c. This gives us an additional term in the exponent,

−A
(1)
i ln(ai)

b0π
ln(1− 2λ) . (5.41)

The integration of the anomalous dimensions γi in form of the second integral gives no

contribution at all to a NLL-expanded exponent. However, the third integration in Eq.

(5.26) does:

2

∫ √ŝ
µfi

dµ′

µ′
γii(N,αs(µ

′2)) = −A
(1)
i λ

πb0
ln

ŝ

µ2
fi

. (5.42)

Here, a shift N → 2Ni does not change the NLL contribution. Remember, in a NLL

expanded exponent at k-th order only the leading terms of order αks lnk+1N and the

next-to-leading logarithmic terms of order αks lnkN contribute. We have used expansions

like

ln(1− 2αsb0 ln(aiN)) = ln
(
1− 2λ− 2αsb0 ln ai

)
= ln(1− 2λ)−

∞∑
k=1

(2αsb0 ln ai)
k

k(1− 2λ)k
≈ ln(1− 2λ)− 2αsb0 ln ai

1− 2λ
,

(5.43)

and we sort by the final contributions towards their logarithmic order. Analogously we

solve the integration in Eq. (5.27) and cut all terms beyond NLL accuracy. Hence, we

get for the universal next-to-leading logarithmic expansions, which coincide with those

in [22, 26, 101] and which were recalculated here:

ln ∆N
i (ŝ, µf , µr) = lnN h

(1)
i (λ) + h

(2)
i

(
λ,

ŝ

µ2
r

,
ŝ

µ2
f

)
− A

(1)
i γE
πb0

ln(1− 2λ) , (5.44)

and

ln JNi (ŝ, µr) = lnN f
(1)
i (λ) + f

(2)
i

(
λ,

ŝ

µ2
r

)
− A

(1)
i γE
πb0

[ln (1− λ)− ln (1− 2λ)] , (5.45)

where the factorization scale µf stands either for µfi for an initial parton, or for µff

for an outgoing parton. The functions h
(1)
i and f

(1)
i collect all leading logarithmic terms

αks lnk+1N in the exponent, while the h
(2)
i and f

(2)
i produce next-to-leading logarithms
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αks lnkN . They read

h
(1)
i (λ) =

A
(1)
i

2πb0λ
[2λ+ (1− 2λ) ln (1− 2λ)] , (5.46)

h
(2)
i

(
λ,
Q2

µ2
r

,
Q2

µ2
f

)
=− A

(2)
i

2π2b20
[2λ+ ln (1− 2λ)]

+
A

(1)
i b1

2πb30

[
2λ+ ln (1− 2λ) +

1

2
ln2 (1− 2λ)

]

− A
(1)
i

πb0
λ ln

Q2

µ2
f

+
A

(1)
i

2πb0
[2λ+ ln (1− 2λ)] ln

Q2

µ2
r

, (5.47)

with b1 = (17C2
A − 5CANf − 3CFNf )/(24π2). Furthermore,

f
(1)
i (λ) =h

(1)
i (λ/2)− h(1)

i (λ) ,

f
(2)
i

(
λ,
Q2

µ2
r

)
=2h

(2)
i

(
λ

2
,
Q2

µ2
r

, 1

)
− h(2)

i

(
λ,
Q2

µ2
r

, 1

)

+
B

(1)
i

2πb0
ln (1− λ) , (5.48)

where B
(1)
i = −2γ

(1)
i . In more detail, the functions for the unobserved final parton reads:

f
(1)
i (λ) =− A

(1)
i

2πb0λ
[(1− 2λ) ln (1− 2λ)− 2 (1− λ) ln (1− λ)] , (5.49)

f
(2)
i

(
λ,
Q2

µ2
r

)
=− A

(1)
i b1

2πb30

[
ln (1− 2λ)− 2 ln (1− λ) +

1

2
ln2 (1− 2λ)− ln2 (1− λ)

]
+
B

(1)
i

2πb0
ln (1− λ)− A

(2)
i

2π2b20
[2 ln (1− λ)− ln (1− 2λ)]

+
A

(1)
i

2πb0
[2 ln (1− λ)− ln (1− 2λ)] ln

Q2

µ2
r

. (5.50)

Again, we need to calculate the shift N → 2N for the hard scattering function, which

leads to an additional contribution in the exponent:

−A
(1)
i

πb0
ln 2

[
ln(1− λ)− ln(1− 2λ)

]
. (5.51)

5.3.2. Hard- and Soft-Matrices

Let uns consider now the soft and hard matrices in the trace of Eq. (5.25) in more detail.

We have to distinguish between the direct- and the resolved-photon case. We identify the

Born cross sections with Tr
{
H(0)S(0)

}
ab→cd. Following [37] we expand the trace up to
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first order of αs and find:

Tr
{
HS†NSSN

}
ab→cd

=Tr
{
H(0)S(0)

}
ab→cd

+
αs
π

Tr

{
−
[
H(0)(Γ(1))†S(0) +H(0)S(0)Γ(1)

]
ln N̄

+H(1)S(0) +H(0)S(1)

}
ab→cd

+O(α2
s) . (5.52)

Taking the trace above would require higher-order contributions from the hard and soft

functions, H(1) and S(1), which can be obtained by performing the NLO calculation near

threshold in terms of a color decomposition. However, we can make use of the simplified

formalism using the approximation at NLL [28, 37]

Tr
{
HS†NSSN

}
ab→cd

≈ (1 +
αs
π

∆C
(1)
ab→cd)Tr

{
H(0)S†NS(0)SN

}
ab→cd

, (5.53)

which becomes exact for the direct photon case, where only one color configuration con-

tributes. The spin-dependent coefficient ∆C(1) is given by

∆C
(1)
ab→cd(η̂) =

Tr
{
H(1)S(0) +H(0)S(1)

}
ab→cd

Tr
{
H(0)S(0)

}
ab→cd

. (5.54)

and is in general part of the N -independent perturbative expansion [27],

∆Cab→cd(η̂) = 1 +
αs
π

∆C
(1)
ab→cd(η̂) +O(α2

s) . (5.55)

Their origin lies in virtual corrections at NLO and match the resummed cross section to

the NLO one, so that they can be calculated through a comparison of the exact NLO

calculation with the first-order expanded resummed cross section. Considering the direct

partonic subprocess γb → cd, we are dealing with a special case among the multiparton

configurations where only one color-singlet state appears [101], constructed by combining

the interacting partons. Due to color conservation soft gluonic radiation cannot induce

further color transitions. Then, the hard-scattering function Hγb→cd, the soft function

Sγb→cd, and the anomalous dimensions Γγb→cd are no longer matrices but scalars in color

space. The trace in Eq. (5.53) simplifies by using Eq. (5.35) and gives

Tr
{
H(0)S†NS(0)SN

}
ab→cd

= ∆σ̂
(0)
γb→cd(N, η̂) exp

[∫ √ŝ/(N)

µr

dµ′

µ′
2ReΓγb→cd(η̂, αs(µ

′))

]
,

(5.56)
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leading to the direct resummed hard-scattering function

∆w̃resum,2N
γb→cd (η̂) =

(
1 +

αs
π

∆C
(1)
γb→cd

)
∆2Nb
b (ŝ, µfi) ∆2N

c (ŝ, µff ) J2N
d (ŝ)

×∆σ̂
(0)
γb→cd(2N, η̂) exp

[∫ √ŝ/(2N)

µr

dµ′

µ′
2ReΓγb→cd(η̂, αs(µ

′))

]
. (5.57)

Also the Born cross section has to be transformed into Mellin space

∆σ̂
(0)
γb→cd (2N, η̂) ≡ 2

∫ 1

0
d

(
ŝ4

ŝ

)(
1− ŝ4

ŝ

)2N−1 x̂4
T z

2

8v

ŝd∆σ̂
(0)
γb→cd

dvdw
, (5.58)

which then can be simplified by using Eq. (5.17) and Eq. (5.18), so that

∆σ̂
(0)
γb→cd (2N, η̂) = 2

∫ 1

wmin

dw (1− v(1− w))2N−1 x̂
4
T z

2

8

ŝd∆σ̂
(0)
γb→cd
dv

δ (1− w)

=
x̂4
T z

2

4

ŝd∆σ̂
(0)
γb→cd
dv

. (5.59)

Performing the integral in Eq. (5.57) and expanding the solution to NLL gives then

2 lnSN,ab→cd(η̂, αs) =

∫ √ŝ/(2N)

µr

dµ′

µ′
2ReΓγb→cd(η̂, αs(µ

′))

=
ln(1− 2λ)

πb0
Γ

(1)
ab→cd(η̂) . (5.60)

The first order contributions of the anomalous dimensions

Γ(1)
γq→qg (η̂) =CF ln

(−û
ŝ

)
+
CA
2

[
ln

(
t̂

û

)
− iπ

]
, (5.61)

Γ(1)
γq→gq (η̂) =Γ(1)

γq→qg (η̂) |t̂↔û , (5.62)

Γ
(1)
γg→qq̄ (η̂) =CF iπ +

CA
2

[
ln

(
t̂û

ŝ2

)
+ iπ

]
, (5.63)

are given by those contributions for the prompt-photon production processes, qq̄ → γg

and qg → γq [26, 31, 101, 112].

Going now on with the resolved calculation, the formalism is rather different. The anoma-

lous dimensions Γab→cd, see Eq. (5.36), are now matrices and are listed at lowest-order in

[32, 33, 105, 113]. Consider again the hard functions in Eq. (5.33). Polarized expressions

are presented in [27], and unpolarized ones are give in [32, 105, 114], as well as the LO

terms of the soft matrices in Eq. (5.34). For completeness these lowest-order matrices,

∆H
(0)
ab→cd, S

(0)
ab→cd and Γ

(0)
ab→cd, which are needed for the polarized calculation, are listed in
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Appendix B. The hard-scattering function reads then:

∆w̃resum,2N
ab→cd (η̂) =∆2Na

a (ŝ, µfi, µr)∆
2Nb
b (ŝ, µfi, µr)∆

2N
c (ŝ, µff , µr)J

2N
d (ŝ, µr)

× (1+
αs
π

∆C
(1)
ab→cd)Tr

{
∆H(0)S†NS(0)SN

}
ab→cd

. (5.64)

5.4. NLO Calculation

In the last sections we have seen the general structure of the hadron production process at

hadronic level and also at partonic level, taking place in Mellin space. In case of threshold

resummation, we found out how the hard scattering function appears and is composed

of. In this section we want to consider the NLO cross section and its transformation into

Mellin space. This enables us to compare the first-order expanded threshold resummed

result with the fixed-order contribution, what gives us the coefficients ∆C
(1)
ab→cd of Eq.

(5.64). Recall Eq. (5.19), where the analytical NLO expressions [23, 24, 108–111] were

cast into the form

ŝd∆σ̂
(1)
ab→cX(v, w)

dv dw
= A(v)δ(1− w) +B(v)

(
ln(1− w)

1− w

)
+

+ C(v)

(
1

1− w

)
+

+ F (v, w) .

(5.65)

We transform the expression in Mellin space according to the hard scattering function in

Eq. (5.22),

∆w̃ (2N, η̂) = 2

∫ 1

0
d

(
ŝ4

ŝ

)(
1− ŝ4

ŝ

)2N−1 x̂4
T z

2

8v

ŝd∆σ̂ab→cX
dv dw

= 2

∫ 1

0
dmm2N−1 x̂

4
T z

2

8v

ŝd∆σ̂ab→cX
dv dw

=
1

4 cosh4 η̂

∫ 1

0
dmm2N+3 ẑ

2

v

ŝd∆σ̂ab→cX
dv dw

. (5.66)

rewriting the NLO expression in terms of the variable m

m := 1− ŝ4

ŝ
= 1− v(1− w) . (5.67)

In this case we are interested in terms with distributions in threshold limit only and as

we are neglecting F (v, w) in the extractions of the coefficients ∆C
(1)
ab→cd, we can simplify

the whole investigation and fix v according to w and η̂. Note that the hard scattering

function is normally also a function with respect to w or m. Hence, if we are interested

in the functions F (v, w) in Mellin space, or if we want to calculate the whole expression

without threshold-approach, we have to proceed slightly differently. However, for now it is

sufficient to transform functions in w into functions with respect to m and v independently

and integrate over m.
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We start with the plus distributions, which can be rewritten by using the expansion

(1− x)−1−ε = −1

ε
δ(1− x) +

(
1

1− x

)
+

− ε
(

ln (1− x)

1− x

)
+

+O(ε2) , (5.68)

so that we can compute:

(v(1− w))−1−ε =− 1

ε
δ (v(1− w)) +

(
1

v(1− w)

)
+

− ε
(

ln (v(1− w))

v(1− w)

)
+

+O(ε2)

!
=v−1−ε

[
−1

ε
δ(1− w) +

(
1

1− w

)
+

− ε
(

ln (1− w)

1− w

)
+

+O(ε2)

]
=

{
1

v

(
1− ε ln v +

ε2

2
ln2 v − ε3

3
ln3 v + ...

)}
×
[
−1

ε
δ(1− w) +

(
1

1− w

)
+

− ε
(

ln (1− w)

1− w

)
+

+O(ε2)

]
=

1

v

[
−1

ε
δ(1− w) +

(
1

1− w

)
+

+ ln v × δ(1− w)

−ε
{(

ln (1− w)

1− w

)
+

+ ln v

(
1

1− w

)
+

+
1

2
ln2 v × δ(1− w)

}
+O(ε2)

]
.

(5.69)

First, we apply the expansion on the whole expression, and then we consider only the inner

term of the brackets, (1 − w). Expanding v−1−ε and collecting terms according to their

ε-dependence, we compare now at O(ε) the corresponding contributions proportional to
1
ε or ε and find:

δ(1− w) = v δ (v(1− w)) = v δ (1−m) ,(
ln(1− w)

1− w

)
+

= v

{(
ln (v(1− w))

v(1− w)

)
+

− ln v

(
1

v(1− w)

)
+

+
1

2
ln2 v δ (v(1− w))

}
= v

{(
ln (1−m)

1−m

)
+

− ln v

(
1

1−m

)
+

+
1

2
ln2 v δ (1−m)

}
,(

1

1− w

)
+

= v

{(
1

v(1− w)

)
+

− ln v δ (v(1− w))

}
= v

{(
1

1−m

)
+

− ln v δ (1−m)

}
. (5.70)
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Therefore, the integrations of the plus- and δ-distributions of Eq. (5.65) can be rewritten

in terms of m with the following leading solutions:∫ 1

0
dmm2N+3

(
ln (1−m)

1−m

)
+

=
1

12
π2 +

1

2
(H2N+3)2 − 1

2
ψ(1)(2N + 4) ,

=
1

12
π2 +

1

2
ln2 (2N̄) +O

(
1

N

)
,∫ 1

0
dmm2N+3

(
1

1−m

)
+

= −H2N+3 = − ln (2N̄) +O
(

1

N

)
∫ 1

0
dmm2N+3δ(1−m) = 1 . (5.71)

To extract the coefficients ∆C
(1)
ab→cd in Eq. (5.25), we neglect terms proportional to O

(
1
N

)
and consider only N -logarithmic contributions and N -independent terms. Moreover, in

Eq. (5.71), where N̄ = NeγE , the harmonic number Hn appears, which simplifies for large

n according to

Hn =

n∑
k=1

1

k
= lnn+ γE +

1

2n
+O

(
1

n2

)
. (5.72)

Further,

Hn+1 = Hn +
1

n+ 1
. (5.73)

The polygamma function of order n is defined as

ψ(n)(z) =
dn

dzn
ψ(z) =

dn+1

dzn+1
ln (Γ(z)) ,

ψ(0)(z) = ψ(z) =
Γ′(z)

Γ(z)
, (5.74)

with the gamma function Γ(z) = (z − 1)!. Its first order is given by:

ψ(1)(z) =
1

z2
+

∞∑
k=1

1

(k + z)2
, (5.75)

and it is linked to the (n− 1)-th harmonic number Hn through

ψ(0)(n) =
n−1∑
k=1

1

k
− γE . (5.76)
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5.5. Extraction of the Coefficients

Let us now come back to Eq. (5.54), where we have seen the first-order contribution of the

coefficients ∆C
(1)
ab→cd, expressed through hard and soft matrices. They are N -independent,

spin-dependent hard-scattering coefficients and originate from virtual corrections at NLO.

As they match the resummed cross section to the next-to-leading order one, we can extract

them by comparing the first-order expanded threshold resummed partonic cross section

with the exact NLO one, which can be found in Ref. [108].

Using then the formalism presented in Sec. 5.4 to transform the partonic NLO cross

section, see Eq. (5.65), into Mellin moment space following Eq. (5.66), we are able to

compare the fixed-order result with the resummed one. The final missing step is then

the expansion of the soft-gluon resummed partonic cross section to first order. We have

checked that all single- and double-logarithmic terms of the exact NLO partonic cross

sections are reproduced, in both cases, direct and resolved. Then, the terms constant in

N also match provided we use the coefficients, which we have extracted. Those for the

direct subprocesses, ∆C
(1)
γb→cd, are given in Appendix C. As our results for the resolved

coefficients ∆C
(1)
ab→cd are rather lengthy, one can obtain them upon request.

5.6. Inverse Mellin Transform and Matching Procedure

After the calculation of the resummed hard scattering function, we need to perform an

inverse Mellin transform of the result convoluted with the fragmentation functions in

Mellin space, see Eq. (5.24). In the course of that we have to deal with singularities

appearing in the soft-gluon exponents at NLL accuracy, at λ = 1/2 and λ = 1, see

Eqs. (5.44) and (5.45), where λ = αsb0N . These singularities are a consequence of the

Landau pole in the perturbative strong coupling due to the sensitivity of the resummed

expression to it. They correspond to the Mellin moments NL = exp (1/(2αsb0)) and

N ′L = exp (1/(αsb0)) and lie on the positive real axis in the complex-N plane, see Fig.

5.3. They signal the onset of non-perturbative phenomena in the kinematic region close

to threshold [26]. Therefore we will follow the Minimal Prescription formula introduced

in [115], which is based on several requirements. On the one hand we have to use the

NLL expanded exponents, which is already fulfilled. On the other hand we have to choose

a reasonable contour in the complex-N plane for the inverse Mellin transformation, see

Fig. 5.3. More precisely, it has to be chosen such that all singularities, originating e.g.

from the fragmentation function or the LO cross section, have to lie to the left of the

integration contour, except the Landau poles NL, which lie to the far right. Hence, the

contour intersects the real axis at a value CMP that lies to the left of NL, satisfying

b0αs lnCMP < 1/2, with CMP being real and positive. The Mellin integral, defined in Eq.
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(5.24) as ∫ CMP+i∞

CMP−i∞

dN

2πi
(x2)−ND2N+3

h/c (µff )∆w̃resum,2N (η̂) , (5.77)

has support for both x2 < 1 and x2 ≥ 1. Note that the latter range arises only because

of the way the Landau poles are treated in the Minimal Prescription. It is unphysical in

the sense that the cross section at any finite order of perturbation theory must not receive

any contributions from x2 ≥ 1. Mathematically, however, those unphysical contributions

are needed to make sure that the expansions of the resummed cross section to higher

orders in αs converge to the fully resummed result. Contributions for x2 ≥ 1 decrease,

however, exponentially with x2, so that its numerical impact is suppressed. As one can

see in Fig. 5.3, we tilt the contour with respect to the real axis into the negative real

half-plane by using the parametrization

N = CMP + zeiφ , (5.78)

with 0 ≤ z ≤ ∞, as described in [22, 38]. This helps to improve the numerical convergence

of the Mellin integral. The restriction for the angle φ valid at x2 < 1 reads π/2 < φ < π,

and for x2 ≥ 1 the angle fulfills φ2 < π/2, such that the factor (x2)−z exp(iφ) dampens the

integral. For numerics, we have chosen the angles explicitly to be φ1 = 3
4π and φ2 = 7

16π.

To make sure that the exact NLO calculation is fully included in the theoretical predic-

tions, as well as all soft-gluon contributions beyond NLO to NLL accuracy, we match our

resummed cross section to the NLO one. This is done by subtracting all NLO contributions

that are present in the resummed result, adding instead the full NLO cross section:

p3
T∆dσ̂matched

dpT dη
=
p3
Td∆σNLO

dpT dη
+
∑
bc

∫ 1

0
dx`

∫ 1

0
dxn ×∆fγ/`(x`, µfi)∆fb/N (xn, µfi)

×
∫
C

dN

2πi
(x2)−ND2N+3

h/c (µff )
[
∆w̃2N,resum

γb→cd (η̂)− ∆w̃2N,resum
γb→cd (η̂)

∣∣∣
NLO

]
,

(5.79)

Double-counting of perturbative terms can be avoided through this procedure, as well as

we can guarantee the highest available precision of our theoretical results.

5.7. Double-Spin Asymmetry

As our theoretical framework for the spin-dependent and spin-averaged cross sections is

now complete, we are ready to come to the double-longitudinal spin asymmetry. It is

given by the ratio of the polarized and the unpolarized cross sections,

ALL =
d∆σ

dσ
, (5.80)
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NL

Re N

Im N

C1,x2<1 C2,x2>1

φ2

φ1

Fig. 5.3.: Our choices for the contours of the inverse Mellin transform: C1 with φ1 > π/2 for
x2 < 1 and C2 with φ2 < π/2 for x2 ≥ 1.

where these cross sections are defined through

dσ`N ≡
1

2

[
dσ++

`N + dσ+−
`N

]
, (5.81)

d∆σ`N ≡
1

2

[
dσ++

`N − dσ+−
`N

]
. (5.82)

Here, the superscripts (++), (+−) label the helicities of the incoming lepton and nucleon.

As the cross sections under consideration are hadronic, we can rewrite the asymmetries in

a factorized form as

ALL =
d∆σ

dσ
=

∑
a,b,c ∆fa,` ⊗∆fb/N ⊗∆σ̂ab→cX ⊗Dh/c∑

a,b,c fa,` ⊗ fb/N ⊗ σ̂ab→cX ⊗Dh/c
. (5.83)

As it was often claimed that higher perturbative order corrections and with that threshold

logarithms may cancel when considering the ratio of the cross sections, we will investigate

this situation in Chap. 7 in more detail. However, we want to mention already at this point

that these assumptions do not remain valid within further examination of the threshold

corrections.





Understand well as I may, my comprehension can only be an

infinitesimal fraction of all I want to understand.

Ada Lovelace

6
Subleading Contributions

As discussed in Chap. 4 and Chap. 5 we want to resum large logarithmic corrections ap-

pearing at threshold limit. Besides the leading logarithmic contributions we also have

considered next-to-leading logarithms. However, as we will see, an even higher level of

theoretical precision will be needed for example for an upcoming EIC. Therefore, we want

to investigate some basic ideas for certain subleading effects, however, for our phenomeno-

logical examination we will restrict ourselves to threshold resummation at NLL without

subleading contributions. This chapter is intended to give a short overview only on how a

subleading framework could work.

In Fig. 6.1 various subleading contributions for large N are compared and it shows that

lnN/N contributes the most compared with other subleading contributions. Therefore we

will focus on these terms only.

We will calculate explicitly lnN/N -contributions for the NLO cross section and provide

these terms, supposing that these terms should be included in a future resummation cal-

culation. This could be for example when investigating the matching-coefficients ∆C
(1)
γb→cd

of Sec. 5.5. Furthermore, a future project could be to extend the radiative exponents for

resummation with the lnN/N contributions. In the following, we will sketch how these

contributions may be generated.

6.1. Formalism to Calculate Subleading Mellin-Contributions

The first step is to rewrite the integrand weight
(
zN−1 − 1

)
in Eqs. (5.26) and (5.27) into

a new form, where subleading contributions can be included. The formalism we are using

is based on Refs. [116] and [30]. Calculating soft gluon functions in the large-N limit, it

67



68 Chapter 6. Subleading Contributions

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50
𝑁

ln(𝑁)/𝑁
ln(𝑁)/𝑁2

1/𝑁
1/𝑁2

Fig. 6.1.: Comparison of different subleading contributions for large N .

is sufficient to use the approximation [30]

zN−1 − 1 ' −Θ

(
1− 1

NeγE
− z
)
. (6.1)

This prescription can be generalized, so that we get any logarithmic order including sub-

leading contributions. In the following we want to extend this formalism up to 1/N

suppressed NLL logarithms, starting with the Mellin transformation of the plus distribu-

tion,

In(N) =

∫ 1

0
dz zN−1

(
lnn(1− z

1− z

)
+

=

∫ 1

0
dz
(
zN−1 − 1

) lnn(1− z)
1− z

= lim
ε→0

(
∂

∂ε

)n ∫ 1

0
dz
(
zN−1 − 1

) (1− z)ε
1− z

= lim
ε→0

(
∂

∂ε

)n 1

ε

[
Γ(N)Γ(ε+ 1)

Γ(ε+N)
− 1

]
, (6.2)

where we have used the definition
∫ 1

0 dz f(z) [g(z)]+ ≡
∫ 1

0 dz [f(z)− f(1)] g(z) for plus

distributions, as well as the identity

lnn(1− z) = lim
ε→0

(
∂

∂ε

)n
(1− z)ε . (6.3)

With

Γ(N)

Γ(ε+N)
= N−ε

(
1 +

1

2N

(
ε− ε2

)
+O

(
1

N2

))
, (6.4)
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and

e−ε lnNΓ(1 + ε) = Γ

(
1− ∂

∂ lnN

)
e−ε lnN , (6.5)

where the function Γ
(
1− ∂

∂ lnN

)
can be expanded as

Γ

(
1− ∂

∂ lnN

)
= 1 + γE

∂

∂ lnN
+

1

2

(
γ2
E + ζ(2)

)( ∂

∂ lnN

)2

+O
(

∂

∂ lnN

)3

, (6.6)

and where e−ε lnN can be rewritten as a series, follows:

In(N) = lim
ε→0

(
∂

∂ε

)n 1

ε

[
e−ε lnN

(
1 +

1

2N

(
ε− ε2

)
+O

(
1

N2

))
Γ(ε+ 1)− 1

]
= lim
ε→0

(
∂

∂ε

)n [(1

ε
+

1

2N
(1− ε) +O

(
1

N2

))
Γ

(
1− ∂

∂ lnN

) ∞∑
i=0

(− lnN)iεi

i!

− 1

ε
Γ

(
1− ∂

∂ lnN

)]

= lim
ε→0

(
∂

∂ε

)n [
Γ

(
1− ∂

∂ lnN

) ∞∑
i=1

(− lnN)iεi−1

i!

+
1

2N
Γ

(
1− ∂

∂ lnN

) ∞∑
i=0

(− lnN)i(εi − εi+1)

i!

]
+O

(
1

N2

)
. (6.7)

Now we perform the n-th derivative in ε and get

In(N) = lim
ε→0

Γ

(
1− ∂

∂ lnN

)[ ∞∑
i=n+1

(− lnN)iεi−1−n(i− 1)!

i! (i− 1− n)!
+

∞∑
i=n

(− lnN)iεi−ni!

i! (i− n)! 2N

−
∞∑

i=n−1

(− lnN)iεi+1−n(i+ 1)!

i! (i+ 1− n)! 2N

]
+O

(
1

N2

)
= Γ

(
1− ∂

∂ lnN

)[
(− lnN)n+1

n+ 1
+

(− lnN)n

2N
− n(− lnN)n−1

2N

]
+O

(
1

N2

)
.

(6.8)

Note that

(− lnN)n+1

n+ 1
= −

∫ 1− 1
N

0
dz

lnn(1− z)
1− z . (6.9)
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This yields, neglecting O
(

1
N2

)
:

In(N) =

=− Γ

(
1− ∂

∂ lnN

)∫ 1− 1
N

0
dz

[
lnn(1− z)

1− z +
n

2N

lnn−1(1− z)
1− z − n(n− 1)

2N

lnn−2(1− z)
1− z

]
=− Γ

(
1− ∂

∂ lnN

)∫ 1

0
dzΘ

(
1− z − 1

N

)
×
[

lnn(1− z)
1− z +

n

2N

lnn−1(1− z)
1− z − n(n− 1)

2N

lnn−2(1− z)
1− z

]
. (6.10)

We have arrived at our all-order generalization including subleading logarithms up to

O
(

1
N

)
, again neglecting terms of order O

(
1
N2

)
,

zN−1 − 1 =

=− Γ

(
1− ∂

∂ lnN

)
Θ

(
1− z − 1

N

)[
1 +

n

2N
ln−1(1− z)− n(n− 1)

2N
ln−2(1− z)

]
.

(6.11)

This generalization has to be applied on any logarithmic term of the form lnn(1 − z)

with n = 0, 1, 2, ... . Moreover, adopted on contributions without logarithms in z, we have

n = 0 and with that the second and third contributions in the squared brackets in Eq.

(6.11) vanish. For n = 1 the third term vanishes and the second yields a 1/N -suppressed

contribution, and so on. Note further that lower-order contributions are additionally

represented with the help of the derivatives in the Γ-function:

Γ

(
1− ∂

∂ lnN

)
lnn+1N =

= lnn+1N + γE(n+ 1) lnnN +
1

2

(
γ2
E + ζ(2)

)
n(n+ 1) lnn−1N + ... .

(6.12)

Adopted for leading logs, the first term in Eq. (6.12) reproduces the very same, the second

the next-to-leading logs, then we get the next-to-next-to-leading logs and so on. Depending

on when we cut the series, we have to dismantle our result after using Eq. (6.11). In the
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following example we are using Eq. (6.12) at NNLL order, so that the solution reads:∫ 1

0
dz
(
zN−1 − 1

) lnn(1− z)
1− z

=Γ

(
1− ∂

∂ lnN

)(− lnN)n+1

n+ 1︸ ︷︷ ︸
LL

+
(− lnN)n

2N︸ ︷︷ ︸
NLL

−n(− lnN)n−1

2N︸ ︷︷ ︸
NNLL


=

(− lnN)n+1

n+ 1
+ (− lnN)n

[
1

2N
− γE

]
+ (− lnN)n−1

[
− n

2N
− nγE

2N
+
n

2

(
γ2
E + ζ(2)

)]
+O

(
N3LL

)
. (6.13)

6.2. Subleading Logarithms for NLO Cross Sections

Now we proceed with the partonic NLO cross section. In this section we want to focus

on subleading 1/N -suppressed logarithms for the next-to-leading order result in Mellin

moment space, since we have neglected those terms before. For that we consider each

Mellin transformation again. We have seen that the analytical expression for the cross

section can be brought into the structure of Eq. (5.19),

ŝd∆σ̂
(1)
ab→cX(v, w)

dv dw
= A(v)δ(1− w) +B(v)

(
ln(1− w)

1− w

)
+

+ C(v)

(
1

1− w

)
+

+ F (v, w) ,

(6.14)

which will be Mellin transformed in the following with the help of the Mellin transformation

for the hard scattering function in Eq. (5.66). Contrary to the calculation before, we will

not neglect the function describing terms without distributions, F (v, w). In that case we

cannot fix v according to w and η̂, hence v is also a function of m and has to be taken

into account in the Mellin transformation, using the relation m = 1 − v(1 − w). Bear in

mind that now also v is a function of m, as we have

v = 1− x̂T
2
e−η̂ , w =

1

v

x̂T
2
eη̂ . (6.15)

Hence, when performing the integration of F (v, w), we cannot fix v as before in the

calculation of the coefficients in Chap. 5. This is only allowed in the threshold region.

However, as we are interested in the subleading contributions and consider particularly

also the terms without any distributions in w, i.e. F (v, w), we will calculate the whole

NLO contribution without the threshold-approximation as before. Therefore we rewrite

F (v, w) = F (v(m), w(m)) and so on. We find for the δ-function and plus-distributions,

see Eq. (5.70),

δ(1− w) = vδ (v(1− w)) = vδ (1−m) ,
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(
ln(1− w)

1− w

)
+

= v

{(
ln (1−m)

1−m

)
+

− ln
(

1− m

2
(1 + tanh η̂)

)( 1

1−m

)
+

+
1

2
ln2
(

1− m

2
(1 + tanh η̂)

)
δ (1−m)

}
,(

1

1− w

)
+

= v

{(
1

1−m

)
+

− ln
(

1− m

2
(1 + tanh η̂)

)
δ (1−m)

}
. (6.16)

Let us now come to the corresponding integration. We want to use the replacement from

the section before and bring therefore the Mellin integral into the suitable structure by

splitting it up into two contributions:∫ 1

0
dmm2N+3B(m)

(
ln(1−m)

1−m

)
+

=

=

∫ 1

0
dmm2N+3 [B(m)−B(1)]

(
ln(1−m)

1−m

)
+

+

∫ 1

0
dmm2N+3B(1)

(
ln(1−m)

1−m

)
+

=

∫ 1

0
dm

∞∑
k=1

∞∑
`=1

m2N+3+k+` (−1)`

`
[B(m)−B(1)] +

∫ 1

0
dm

[
m2N+3 − 1

]
B(1)

ln(1−m)

1−m

=

∞∑
k=1

∞∑
`=1

(−1)`

`

{[
m2N+4+k+`

2N + 4 + k + `
B(m)

]1

0

−
∫ 1

0
dm

m2N+4+k+`

2N + 4 + k + `
B′(m)

−B(1)

[
m2N+4+k+`

2N + 4 + k + `

]1

0

}
+

∫ 1

0
dm

[
m2N+3 − 1

]
B(1)

ln(1−m)

1−m

=

∫ 1

0
dm

[
m2N+3 − 1

]
B(1)

ln(1−m)

1−m −
∞∑
k=1

∞∑
`=1

(−1)`

`

∫ 1

0
dm

m2N+4+k+`

2N + 4 + k + `
B′(m) .

(6.17)

We have used that the Mellin moments N are large and that m ∈ [0, 1]. Using then the

replacement of Eq. (6.11) for n = 1 yields:∫ 1

0
dmm2N+3B(m)

(
ln(1−m)

1−m

)
+

=

=−
∫ 1

0
dmΓ

(
1− ∂

∂ ln(2N + 4)

)
Θ

(
1−m− 1

2N + 4

)[
1 +

1

2(2N + 4)
ln−1(1−m)

]
×

×B(1)
ln(1−m)

1−m
=B(1)

[
1

2
ln2N + lnN

(
7

4N
+ ln 2 + γE

)
+

7

4N
(ln 2 + γE)

+
1

2
ln2 2 + γE ln 2 +

γ2
E + ζ(2)

2
+O

(
1

N2

)]
−
∞∑
k=1

∞∑
`=1

(−1)`

`

∫ 1

0
dm

m2N+4+k+`

2N + 4 + k + `
B′(m) . (6.18)
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For F (m) the Mellin integral is trivial as long as F (1) is well defined. While this is not

always the case, and as we will also have terms proportional to ln(1−m), we define F̃ (m)

regarding to

F (m) ≡ ln(1−m)F̃ (m). (6.19)

We define further

H(m) ≡
∫
dmm2N+3 ln(1−m) =

m2N+4

2N + 4
H̃(m),∫ 1

0
dmm2N+3 ln(1−m) = −H2N+4

2N + 4
,

with lim
m→0

H̃(m) = 0, lim
m→1

H̃(m) = −H2N+4 . (6.20)

Then, the Mellin transform gives:∫ 1

0
dmm2N+3 ln(1−m)F̃ (m) =

[
H(m)F̃ (m)

]1

0
−
∫ 1

0
dmH(m)F̃ ′(m)

=− H2N+4

2N + 4
F̃ (1)−

∫ 1

0
dm

m2N+4

2N + 4
F̃ ′(m) = −H2N+4

2N + 4
F̃ (1)

=− F̃ (1)

2N
(ln(2N) + γE) +O

(
1

N2

)
. (6.21)

Finally, we conclude for all integrations with distributions and without, and find the

following contributions with respect to large N and of order O
(

1
N

)
neglecting higher

order terms, which are suppressed:∫ 1

0
dmm2N+3A (m) δ(1−m) = A(1) ,∫ 1

0
dmm2N+3B (m)

(
ln(1−m)

1−m

)
+

=

=B(1)

[
1

2
ln2N + lnN

(
7

4N
+ ln 2 + γE

)
+

7

4N
(ln 2 + γE)

+
1

2
ln2 2 + γE ln 2 +

γ2
E + ζ(2)

2
+O

(
1

N2

)]
−
∞∑
k=1

∞∑
`=1

(−1)`

`

∫ 1

0
dm

m2N+4+k+`

2N + 4 + k + `
B′(m) ,

∫ 1

0
dmm2N+3C (m)

(
1

1−m

)
+

= −C(1)

[
lnN +

2

N
+ γE + ln 2

]
+O

(
1

N2

)
,∫ 1

0
dmm2N+3F (m) =

F (1)

2N
+O

(
1

N2

)
, if F (1) is well defined ,∫ 1

0
dmm2N+3 ln(1−m)F̃ (m) = − F̃ (1)

2N
(ln(2N) + γE) +O

(
1

N2

)
, (6.22)
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with ζ(2) = π2/6. Calculating the exact NLO cross sections in Mellin moment space

gives the following subleading lnN/N -contributions named w̃NLO
ab→cd

∣∣
lnN/N

for the various

subprocesses. As we have transformed their v- and w-dependence into a dependence with

respect to m and η̂, the latter dependence will be preserved. We start with the direct

ones. For γq → q(g) we have

w̃NLO
γq→q(g)

∣∣∣∣
lnN/N

(2N, η̂) =
e2
qαα

2
s lnN

cosh4 η̂ N

2 + e2η̂

16C2
A(e4η̂ + e6η̂)

× [14e6η̂ + 7C4
Ae

6η̂ + 2C3
ACF e

4η̂
(

2 + 2e2η̂ + e4η̂
)

− 2CACF

(
−2− 4e2η̂ + e4η̂ + 3e6η̂ + 2e8η̂

)
+ C2

A

(
−21e6η̂ + CF

(
−2− 4e2η̂ − 6e4η̂ + e8η̂

))]

−
∞∑
k=1

∞∑
`=1

(−1)`

`

∫ 1

0
dm

m2N+4+k+`

2N + 4 + k + `
B′γq→q(g)(m) , (6.23)

further for γq → g(q) we obtain

w̃NLO
γq→g(q)

∣∣∣∣
lnN/N

(2N, η̂) =
e2
qαα

2
s lnN

cosh4 η̂ N

1

64C2
Ae

2η̂

× [21 + 2CACF + C2
A

(
−126 + 105C2

A − 58CACF
)

+ 4CACF cosh(2η̂)
(
5− 19C2

A

)
− 4CACF sinh(2η̂)(C2

A − 3)

+ tanh η̂ (C2
A − 1)

(
−7 + 35C2

A + 2CACF
) ]

−
∞∑
k=1

∞∑
`=1

(−1)`

`

∫ 1

0
dm

m2N+4+k+`

2N + 4 + k + `
B′γq→g(q)(m) , (6.24)

and finally for γg-fusion we receive:

w̃NLO
γg→q(q̄)

∣∣∣∣
lnN/N

(2N, η̂) =
e2
qαα

2
s lnN

cosh4 η̂ N

1

16CA

×
[
− 1− 6C2

A + cosh(2η̂)(7− 42C2
A)− sinh(2η̂)(2− 19C2

A)

+ sinh(4η̂)(1− 9C2
A)

]

−
∞∑
k=1

∞∑
`=1

(−1)`

`

∫ 1

0
dm

m2N+4+k+`

2N + 4 + k + `
B′γg→q(q̄)(m) . (6.25)

We proceed with the resolved contributions, where the last parton in ab → cd stays

unobserved. Further we note that the unobserved part only consists of a single parton
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recoiling against the observed one. We have ten such partonic channels. qq̄ → qq̄ gives

w̃NLO
qq̄→qq̄

∣∣∣∣
lnN/N

(2N, η̂) =
α3
s lnN

cosh4 η̂ N

CF
32C3

A(1 + e2η̂)2

×
[

6CA(−1 + 3C2
A) + e8η̂(4CA − 2)

(
−2− 2CA + C2

A

)
+ e2η̂

(
18− 9CA + 23C3

A + C2
A(−34 + 280CF )

)
+ 4e4η̂ (9 + CA (−6− 35CF + CA [−17 + 9CA + 70CF ]))

+ e6η̂
(
22 + 23C3

A + 4C2
A[−11 + 35CF ]− CA[17 + 140CF ]

) ]

−
∞∑
k=1

∞∑
`=1

(−1)`

`

∫ 1

0
dm

m2N+4+k+`

2N + 4 + k + `
B′qq̄→qq̄(m) , (6.26)

for qq̄ → q′q̄′ we have

w̃NLO
qq̄→q′q̄′

∣∣∣∣
lnN/N

(2N, η̂) =− α3
s lnN

cosh4 η̂ N

CF e
2η̂

16C2
A(1 + e2η̂)2

×
[
− 1 + 3C2

A + cosh(2η̂)
(
−4− 4C2

A + 70CACF
)

+ cosh(4η̂)(1− C2
A) + 2 sinh(2η̂)(−1 + 4C2

A)

]

−
∞∑
k=1

∞∑
`=1

(−1)`

`

∫ 1

0
dm

m2N+4+k+`

2N + 4 + k + `
B′qq̄→q′q̄′(m) , (6.27)

and for qq̄′ → qq̄′ we find:

w̃NLO
qq̄′→qq̄′

∣∣∣∣
lnN/N

(2N, η̂) =
α3
s lnN

cosh4 η̂ N

CF
32C2

Ae
2η̂

×
[

1− C2
A + 2e2η̂

(
−1 + 4C2

A + 35CACF
)

+ 2e4η̂
(
−4 + 7C2

A + 70CACF
)

+ 4e6η̂(C2
A − 1)

]

−
∞∑
k=1

∞∑
`=1

(−1)`

`

∫ 1

0
dm

m2N+4+k+`

2N + 4 + k + `
B′qq̄′→qq̄′(m) . (6.28)
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Moreover, qq → qq gives

w̃NLO
qq→qq

∣∣∣∣
lnN/N

(2N, η̂) =
α3
s lnN

cosh4 η̂ N

CF
32C2

Ae
4η̂

×
[

2(1 + e2η̂)2
(
−8 + 5e2η̂ + 2e4η̂

)
+ C3

A

(
−16− 23e2η̂ + 4e4η̂ + 17e6η̂ + 4e8η̂

)
− CA

(
−16 + e2η̂[−17 + 140CF ] + 8e4η̂[2 + 35CF ]

+e6η̂[23 + 140CF ] + 4e8η̂
)

− 2C2
A

(
−5− 7e2η̂[1 + 10CF ] + e4η̂[6− 70CF ]

+e6η̂[13− 70CF ] + 5e8η̂
)]

−
∞∑
k=1

∞∑
`=1

(−1)`

`

∫ 1

0
dm

m2N+4+k+`

2N + 4 + k + `
B′qq→qq(m) , (6.29)

and qq′ → qq′ yields

w̃NLO
qq′→qq′

∣∣∣∣
lnN/N

(2N, η̂) =
α3
s lnN

cosh4 η̂ N

CF
32C2

Ae
2η̂

×
[

1− C2
A + 2e2η̂(−9 + 6C2

A + 35CACF )

+ 2e4η̂(−12 + 9C2
A + 70CACF ) + 4e6η̂(C2

A − 1)

]

−
∞∑
k=1

∞∑
`=1

(−1)`

`

∫ 1

0
dm

m2N+4+k+`

2N + 4 + k + `
B′qq′→qq′(m) . (6.30)

We proceed with those subprocesses, where also gluons are involved. Starting with qq̄ →
gg, we receive

w̃NLO
qq̄→gg

∣∣∣∣
lnN/N

(2N, η̂) =
α3
s lnN

cosh6 η̂ N

CF
16C2

A

7(3C2
A − 2) cosh(2η̂) [CA − 2CF − 2CF cosh(2η̂)]

−
∞∑
k=1

∞∑
`=1

(−1)`

`

∫ 1

0
dm

m2N+4+k+`

2N + 4 + k + `
B′qq̄→gg(m) , (6.31)
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and for gg → qq̄ we get:

w̃NLO
gg→qq̄

∣∣∣∣
lnN/N

(2N, η̂) =
α3
s lnN

cosh4 η̂ N

CF e
2η̂

16CA(1− C2
A)2(1 + e2η̂)2

×
[
− 2− 40C2

A + 90C4
A − 14CACF + 126C3

ACF

+ 2 cosh(2η̂)(−1− 25C2
A + 9C4

A − 14CACF + 126C3
ACF )

+ 2CA cosh(4η̂)(−8CA + 21C3
A − 7CF + 63C2

ACF )

+ 5 sinh(2η̂)− 46C2
A sinh(2η̂) + 9C4

A sinh(2η̂) + 4 sinh(4η̂)

− 40C2
A sinh(4η̂) + 36C4

A sinh(4η̂) + sinh(6η̂)

− 10C2
A sinh(6η̂) + 9C4

A sinh(6η̂)

]

−
∞∑
k=1

∞∑
`=1

(−1)`

`

∫ 1

0
dm

m2N+4+k+`

2N + 4 + k + `
B′gg→qq̄(m) . (6.32)

For quark-gluon scattering qg → qg we have

w̃NLO
qg→qg

∣∣∣∣
lnN/N

(2N, η̂) =
α3
s lnN

cosh5 η̂ N

CF
64C2

A(C2
A − 1)e5η̂

×
[
− 4− CA + 14C2

A + C3
A − 10C4

A

− 2e2η̂(5− 20C2
A + 13C4

A + C3
A(5− 42CF ) + CA(2 + 28CF ))

+ 4e10η̂
(
−2 + 6C4

A + C2
A[1− 2CFNf ]

)
+ 2e8η̂

(
−38 + 84C4

A − 56CACF + 84C3
ACF + C2

A[11− 10CFNf ]
)

+ 2e6η̂
(
−80 + 63C4

A + CA[6− 140CF ] + C3
A[−8 + 210CF ] + C2

A[91− 8CFNf ]
)

+ 2e4η̂
(
−37 + 3C4

A + CA[3− 112CF ] + 8C3
A[21CF − 1] + C2

A[63− 2CFNf ]
) ]

−
∞∑
k=1

∞∑
`=1

(−1)`

`

∫ 1

0
dm

m2N+4+k+`

2N + 4 + k + `
B′qg→qg(m) , (6.33)



78 Chapter 6. Subleading Contributions

and when the gluon is observed, qg → gq, we receive

w̃NLO
qg→gq

∣∣∣∣
lnN/N

(2N, η̂) =
α3
s lnN

cosh4 η̂ N

CF
32C2

A(C2
A − 1)e4η̂(1 + e2η̂)

×
[
− 76C4

A + 2C2
Ae

2η̂
(
−14 + 31C2

A

)
+ 2C2

Ae
4η̂
(
−31 + 105C2

A

)
+ 2e6η̂

(
9− 95C2

A + 100C4
A

)
+ e8η̂

(
11− 94C2

A + 57C4
A

)
+ e10η̂

(
1− 10C2

A + 9C4
A

) ]

−
∞∑
k=1

∞∑
`=1

(−1)`

`

∫ 1

0
dm

m2N+4+k+`

2N + 4 + k + `
B′qg→gq(m) . (6.34)

Finally, gg → gg yields

w̃NLO
gg→gg

∣∣∣∣
lnN/N

(2N, η̂) =− α3
s lnN

cosh4 η̂ N

C3
Ae

2η̂

243(−1 + C2
A)2(1 + e2η̂)2

×
[
− 122958 + 562Nf + cosh(2η̂)(−172044 + 1039Nf )

+ 81 cosh(4η̂)(−732 + 7Nf ) + 162 cosh(6η̂)(24 +Nf )

− 43740 sinh(2η̂)− 38880 sinh(4η̂)− 9720 sinh(6η̂)

]

−
∞∑
k=1

∞∑
`=1

(−1)`

`

∫ 1

0
dm

m2N+4+k+`

2N + 4 + k + `
B′gg→gg(m) . (6.35)

Beyond these ten partonic resolved subprocesses, we receive additional subleading lnN/N -

contributions by including virtual corrections, hence they appear for the first time at next-

to-leading order. These channels have three partons in the final state, giving rise to six

reactions reading

qq′ → gX , qq̄′ → gX , qq → gX ,

qg → q′X , qg → q̄′X , qg → q̄X . (6.36)
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They initiate the following subleading contributions for gluon production:

w̃NLO
qq′→gX

∣∣∣∣
lnN/N

(2N, η̂) =− α3
s lnN

cosh4 η̂ N

CF
16C2

A

×
[
− 9 + 13C2

A + 8 cosh(2η̂)(2C2
A − 1) + cosh(4η̂)(C2

A − 1)

]
−
∞∑
k=1

∞∑
`=1

(−1)`

`

∫ 1

0
dm

m2N+4+k+`

2N + 4 + k + `
B′qq′→gX(m) ,

w̃NLO
qq̄′→gX

∣∣∣∣
lnN/N

(2N, η̂) =− α3
s lnN

cosh4 η̂ N

CF
16C2

A

×
[
7 + 9C2

A + 14C2
A cosh(2η̂) + (C2

A − 1) cosh(4η̂)

]
−
∞∑
k=1

∞∑
`=1

(−1)`

`

∫ 1

0
dm

m2N+4+k+`

2N + 4 + k + `
B′qq̄′→gX(m) ,

w̃NLO
qq→gX

∣∣∣∣
lnN/N

(2N, η̂) =
α3
s lnN

cosh4 η̂ N

CF
16C3

A

×
[
− 4 cosh(2η̂)(1− 2CA − 3C2

A + 4C3
A)− 2 + 9CA

+ 10C2
A − 13C3

A + cosh(4η̂)(−2 + CA + 2C2
A − C3

A)

]

−
∞∑
k=1

∞∑
`=1

(−1)`

`

∫ 1

0
dm

m2N+4+k+`

2N + 4 + k + `
B′qq→gX(m) . (6.37)

Finally, considering quark or antiquark production, we get:

w̃NLO
qg→q′X

∣∣∣∣
lnN/N

(2N, η̂) =− α3
s lnN

cosh4 η̂ N

CF
32CA(C2

A − 1)e4η̂(1 + e2η̂)

×
[

1− C2
A + 2e2η̂(2 + 5CA)2 + 2e4η̂(8C2

A − 3) + 4e6η̂(4C2
A − 3)

]

−
∞∑
k=1

∞∑
`=1

(−1)`

`

∫ 1

0
dm

m2N+4+k+`

2N + 4 + k + `
B′qg→q′X(m) ,

w̃NLO
qg→q̄′X

∣∣∣∣
lnN/N

(2N, η̂) =
α3
s lnN

cosh4 η̂ N

CF
32CA(C2

A − 1)e4η̂(1 + e2η̂)

×
[
C2
A − 1− 2e4η̂(1 + 7C2

A + 12C2
A cosh(4η̂) + 4 sinh(4η̂))

]

−
∞∑
k=1

∞∑
`=1

(−1)`

`

∫ 1

0
dm

m2N+4+k+`

2N + 4 + k + `
B′qg→q̄′X(m) ,
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w̃NLO
qg→q̄X

∣∣∣∣
lnN/N

(2N, η̂) =
α3
s lnN

cosh4 η̂ N

CF
32C2

A(C2
A − 1)e4η̂(1 + e2η̂)

×
[

2− CA − 2C2
A + C3

A + 8e3η̂ cosh η̂(1 + C2
A)

− 2CAe
4η̂(1 + 7C2

A + 12C2
A cosh(2η̂) + 4 sinh(2η̂))

]

−
∞∑
k=1

∞∑
`=1

(−1)`

`

∫ 1

0
dm

m2N+4+k+`

2N + 4 + k + `
B′qg→q̄X(m) . (6.38)

6.3. Subleading Logarithms for Threshold Resummation

It is not yet clear how to construct resummation exponents with subleading lnN/N con-

tributions. As resummation exponents were derived, there was no focus on subleading

logarithms. Therefore it is not yet clear in what extent a procedure yields the right

exponents, when extending these exponents afterwards to O(lnN/N). However, in the

following we want to collect various possible roots of those contributions, and allude that

these parts may not be complete nor sufficient. We explicitly encourage to investigate this

in greater detail in a future work.

Hence, in the following section we want to set our focus on subleading contributions for

the radiative resummation exponents. Our consideration will contain three parts: First,

we will adopt the generalized integrand weight on integrations within the exponents, then

we will consider subleading contributions coming from the splitting functions and finally

we will investigate the shift of the Mellin moments N → aiN + bi in a convolution of the

hard-scattering function with the fragmentation function.

Introduced in Sec. 5.1, we start with the functions for soft radiation collinear to the

initial-state parton i, with factorization scale µfi, (or final-state parton with factorization

scale µff ), see Eq. (5.26),

ln ∆N
i (ŝ, µfi) =−

∫ 1

0
dz
zN−1 − 1

1− z

∫ 1

(1−z)2

dt

t
Ai[αs(tŝ)]

− 2

∫ √ŝ
µr

dµ′

µ′
γi(αs(µ

′2)) + 2

∫ √ŝ
µfi

dµ′

µ′
γii(N,αs(µ

′2)) , (6.39)

and further, the function JNd , describing soft and hard collinear emission, off the unob-

served recoiling parton d, reads, see Eq. (5.27):

ln JNd (ŝ, µr) =

∫ 1

0
dz
zN−1 − 1

1− z

{∫ (1−z)

(1−z)2

dt

t
Ad (αs(tŝ))− γd (αs((1− z)ŝ))

}

+ 2

∫ √ŝ
µr

dµ′

µ′
γd
(
αs(µ

′2)
)
. (6.40)
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The perturbative function Ai was given before in Eq. (5.28) and the anomalous dimen-

sions γi and the constant and logarithmic terms of the moments of the diagonal splitting

functions, γii, can be found in Eq. (5.31). We have used for the integration over t in

Eq. (6.38) and (6.39) the NLO solution of the RGE to rewrite αs(tŝ) in dependence of

αs(µ
2), see Eq. (5.37). Adopting now the generalized formalism of Sec. 6.1 on the first

double-integral of Eq. (6.38) leads to:

−
∫ 1

0
dz
zN−1 − 1

1− z

∫ 1

(1−z)2

dt

t
Ai[αs(tŝ)]

=

∫ 1− 1
N

0
dz

1

1− zΓ

(
1− ∂

∂ lnN

)(
1 +

n

2N
ln−1(1− z)− n(n− 1)

2N
ln−2(1− z)

)
×
∫ 1

(1−z)2

dt

t
Ai[αs(tŝ)]

=Γ

(
1− ∂

∂ lnN

)[
1

N

A
(1)
i ln (1− 2λ)

2πb0
− A

(2)
i

2π2b20
[2λ+ ln (1− 2λ)]

+
A

(1)
i

2πb20αs
[2λ+ (1− 2λ) ln (1− 2λ)]

+
A

(1)
i b1

2πb30

[
2λ+ ln (1− 2λ) +

1

2
ln2 (1− 2λ)

]
+
A

(1)
i

2πb0
[2λ+ ln (1− 2λ)] ln

(
ŝ

µ2
r

)]
.

(6.41)

Together with the further integrations and the contribution coming from Eq. (5.42), for

which nothing changes when including subleading Mellin moments, we get:

ln ∆N
i (ŝ, µfi)

∣∣
sublead.

=Γ

(
1− ∂

∂ lnN

)[
lnNh

(1)
i + h

(2)
i +

1

N

A
(1)
i ln (1− 2λ)

2πb0
+
A

(1)
i λ

πb0
ln

ŝ

µ2
fi

]

− A
(1)
i λ

πb0
ln

ŝ

µ2
fi

. (6.42)

Adopting the first derivative of the power series expansion of Γ
(
1− ∂

∂ lnN

)
on leading logs

gives a contribution to NLL, adopting the second derivative gives a contribution to NNLL

and so on. Adopting derivatives on next-to-leading logs give terms that do not contribute

anymore on our NLL expanded calculation. Therefore it is sufficient to examine the
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following derivation, noting that λ = b0αs lnN :

Γ

(
1− ∂

∂ lnN

)
lnNh

(1)
i = Γ

(
1− ∂

∂ lnN

)
A

(1)
i

2πb20αs
[2λ+ (1− 2λ) ln (1− 2λ)]

=
A

(1)
i

2πb20αs

(
1 + γEαsb0

∂

∂λ
+

1

2

(
γ2
E + ζ(2)

)
(αsb0)2

(
∂

∂λ

)2

+ ...

)[
2λ− (1− 2λ)

∞∑
k=1

(2λ)k

k

]

= lnNh
(1)
i +

A
(1)
i γE
2πb0

[
2−

∞∑
k=1

2(2λ)k−1 +
∞∑
k=1

2(k + 1)
(2λ)k

k

]

+
A

(1)
i

(
γ2
E + ζ(2)

)
4π

αs

[
−
∞∑
k=1

4(k − 1)(2λ)k−2 +

∞∑
k=1

4(k + 1)(2λ)k−1

]
+O

(
α2
sλ

k
)

= lnNh
(1)
i −

A
(1)
i γE
πb0

ln(1− 2λ) +O
(
αsλ

k
)
. (6.43)

Note that the γE-contribution, which is at next-to-leading order and was missing before,

is reproduced again through adopting the second order in the power series expansion

of Γ
(
1− ∂

∂ lnN

)
on a leading-logarithmic contribution. Finally we note that besides the

normal contributions of the exponent, see Eq. (5.44) and (5.47), which could be reproduced

fully, an additional subleading term appears:

1

N

A
(1)
i ln (1− 2λ)

2πb0
. (6.44)

Analogously we get for the outgoing parton d, starting with Eq. (6.39), the new subleading

contribution

1

N

A
(1)
d (ln(1− λ)− ln(1− 2λ))

2πb0
. (6.45)

Another root of subleading contributions lies in the splitting functions, which also take

place in the calculation of the exponents. The diagonal splitting functions read in x-space

[59]:

Pqq = CF

[
1 + x2

(1− x)+
+

3

2
δ(1− x)

]
+O(αs)

Pgg = 2CA

[
1− x
x

+ x(1− x) +
x

(1− x)+

]
+ 2πb0δ(1− x) +O(αs) . (6.46)

Transforming into Mellin moment space gives for the quark-quark splitting function

PNqq =

∫ 1

0
xN−1Pqq(x, αs) = CF

[ −2N − 1

N(N + 1)
− 2HN−1 +

3

2

]
= −2CF

[
ln N̄ +

1

2N
− 3

4

]
+O

(
1

N2

)
, (6.47)
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and for the gluon-gluon case:

PNgg =

∫ 1

0
xN−1Pgg(x, αs) = 2CA

[
1

N − 1
− 1

N
+

1

N + 1
− 1

N + 2
−HN

]
+ 2πb0

= −2CA

[
ln N̄ +

1

2N

]
+ 2πb0 +O

(
1

N2

)
. (6.48)

The 1/N contributions have been neglected in the usual calculations for the resummation

exponents, therefore we want to incorporate these terms now to calculate their subleading

contributions. We realize that in both cases, see Eq. (6.46) and (6.47), the logarithmic

contribution ln N̄ inherits subleading terms 1/(2N). To calculate 1/N -suppressed loga-

rithms coming from the splitting functions, we consider a slightly different form for the

resummed exponents [117], where logarithms generated by the splitting functions can be

isolated from the rest,

ln ∆Ni
i =

∫ √ŝ
√
ŝ/N̄i

dµ

µ
Ai(αs(µ

2)) ln
µ2N̄2

i

ŝ
+ ln(N̄i)

∫ µ2fi

√
s

dµ2

µ2
Ai(αs(µ

2)) ,

JNid =−
∫ √ŝ/N̄i
√
ŝ/N̄i

dµ

µ
Ad(αs(µ

2)) ln
µ2N̄2

i

ŝ
+

∫ √ŝ
√
ŝ/N̄i

dµ

µ

[
Ad(αs(µ

2)) ln
µ2

ŝ
− 2B̂d(αs(µ

2))

]
.

(6.49)

The first integral of both radiative exponents contain the logarithms coming from the

splitting function, hence we separate them from the rest. Since we are only interested

in additional subleading terms, we replace then ln N̄ with 1/(2N), and proceed with the

integrations. Solving the integrals at NLL, we receive

∫ √ŝ
√
ŝ/N̄i

dµ

µ
2
αs(µ

2)

π
A

(1)
i

1

2Ni
= −A

(1)
i ln(1− 2λ)

2b0πNi
+O

(
1

N2

)
,

−
∫ √ŝ/N̄i
√
ŝ/N̄i

dµ

µ
2
αs(µ

2)

π
A

(1)
i

1

2Ni
=

A
(1)
i

2b0πNi
[ln(1− 2λ)− ln(1− λ)] +O

(
1

N2

)
. (6.50)

These are the subleading results from our second consideration. However, they are comple-

mentary to the first ones and cancel against each other. This shows that the construction

of exponents containing lnN/N terms is not clearly understood yet. Maybe the cancela-

tion shows that an afterwards adjustment of the exponents is not the end of the story.

However, our last suggestion how to receive subleading contributions uses a slightly other

method. We have seen in Sec. 5.3.1 that the exponents contribute with different moments,

since we had Na = (−û/ŝ)N , Nb = (−t̂/ŝ)N and Nc = N for exponents ∆Ni
i . However,

in that case we have been interested in NLL exponents without subleading contributions.

Now, as Ref. [118] shows, we should regard the full moments including the appropriate
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shift, so that we get e.g. for a direct subprocess:

∆2Nb+1
b , ∆2N+3

c , J2N
d . (6.51)

Thus, by rewriting N → aiN + bi and expanding the integrals in Eq. (6.38) and (6.39) at

NLL accuracy including lnN/N terms, we get

ln ∆N→aiN+bi
i (ŝ, µfi, µr)→ ln ∆N

i (ŝ, µfi, µr)−
A

(1)
i

πb0

(
bi
aiN

+ ln ai

)
ln(1− 2λ) +O

(
1

N2

)
,

ln JN→aiNd (ŝ, µr)→ ln JNd (ŝ, µr)−
A

(1)
i ln ai
πb0

(ln(1− λ)− ln(1− 2λ)) +O
(

1

N2

)
.

(6.52)

However, in what way the final radiative exponents including subleading logarithms are

composed is still an open question and has to be further investigated.



We want to explore. We’re curious people. [...] Now it’s time to

go.

Eileen Collins

7
Phenomenological Results for COMPASS

Again, we refer to Refs. [38, 39] where parts of this chapter have already been published

in.

We want to apply our theoretical predictions for the resummed polarized cross section and

the double-longitudinal spin asymmetries of the photoproduction process µN → µ′hX to

the COMPASS experiment [18, 19]. The interest in this experiment is based on the

following: Since the gluon distribution ∆g(x) is a key ingredient for solving the proton

spin puzzle, one places special emphasis on spin asymmetries which are directly sensitive

to ∆g. These are examined and measured at the COMPASS experiment, taking place

at the Super Proton Synchrotron (SPS) at CERN. The process under consideration is

semi-inclusive hadron production µN → µ′hX, for which the theoretical framework was

provided in Chap. 5. There and before, we found out that for kinematics like at COM-

PASS, we are in the threshold region where the resummation of soft logarithms has to be

performed.

Hence, we want to investigate the impact of next-to-leading logarithmic threshold resum-

mation on the spin-dependent cross sections and on the corresponding double-longitudinal

spin asymmetry in the following.

Using COMPASS kinematics implies a mean beam energy of Eµ = 160 GeV for the lon-

gitudinally polarized muon beam corresponding to a center-of-mass energy of
√
S = 17.4

GeV. COMPASS is a fixed-target experiment and we have either a solid-state polarized

lithium-deuterid (6LiD) target from the run between 2002 to 2006, or an ammonia (NH3)

target from 2007 on. On a more hadronic level, the targets are protons and deuterons

and a highly virtual photon is exchanged. Then, a charged hadron is detected at high

transverse momentum pT , which we choose to be equals to the renormalization and fac-

torization scales that means µr = µfi = µff ≡ µ = pT , if not mentioned otherwise. This

is the critical point since nearly all of the available center-of-mass energy is used for the

85
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production of a high-pT parton and its recoiling counterpart. In this threshold region, the

phase space for additional parton radiation becomes small and restricts real gluon emission

on soft and collinear gluons [26, 27]. The incomplete cancelation of infrared divergences

between real and virtual diagrams leave then large logarithmic corrections behind, appear-

ing at every order in perturbation theory. These logarithms may be taken into account

by threshold resummation, which leads to large corrections to the NLO calculation. This

was shown already for the unpolarized case [22]. As a consequence, an investigation of

the longitudinal polarized cross section should follow. With that at hand, we are able to

calculate the double-longitudinal spin asymmetries which will then be compared with the

COMPASS data. Due to experimental conditions, the maximal virtuality of the exchanged

photon used in the Weizsäcker-Williams spectrum in Eq. (5.13), is Q2
max = 1 GeV2. Fur-

thermore, we introduce the cut for the energy fraction of the virtual photon carried by

the hadron, 0.2 ≤ z ≤ 0.8 and the cut for the lepton’s momentum fraction carried by

the photon, 0.1 ≤ y ≤ 0.9. Scattered hadrons can be detected within a scattering angle

between 10 ≤ θ ≤ 120 mrad, corresponding to the pseudorapidity range −0.1 ≤ η ≤ 2.38.

We consider this full rapidity range as well as several rapidity bins, [−0.1, 0.45], [0.45, 0.9]

and [0.9, 2.4], when we come to the asymmetries. For the calculations of the unpolarized

NLL resummed cross section, we follow Ref. [22] and use the updated numerical code of

that work. Although experimental data are available down to pT=0.7 GeV, we require

the hadron’s transverse momentum to be at least pT=1.75 GeV. With that we can en-

sure our perturbative methods to be valid. We use the DSSV2014 helicity dependent

parton distribution functions [62] as well as the unpolarized parton distributions MSTW,

see Ref. [119], as standard sets. Calculating the resolved photon processes we adopt the

polarized and unpolarized photonic parton distributions of Refs. [87] and [88]. For the

helicity dependent ones, we choose the “maximal” set of distributions, as described in Sec.

3.3. This corresponds to the assumption that the spin-dependent and spin-averaged pho-

tonic parton distributions start at the same point at some low initial scale. Considering

the fragmentation functions, the situation is a bit more involved. The COMPASS data

do not distinguish between the different detected hadron species and are specified only by

charge. The DSS07 set of Ref. [76] provides fragmentation functions for such “unidenti-

fied” hadrons. However, there exist updated sets for pions in [80] (DSS14) and for kaons

in [75] (DSS17). An updated proton set is, however, still missing. It is important to keep

in mind that in the COMPASS analysis in Ref. [19] only DSS14 was used, neglecting heav-

ier hadrons since there were no further updated sets available like the kaon fragmentation.

However, this was expected to catch the dominant effects. In the following we will study

the impact of various fragmentation functions on the size and the shape of the predicted

spin asymmetries. On the one hand, we will use the set DSS07 for those various uniden-

tified hadrons, on the other hand, we will also adopt the recent sets for combined pions

and kaons since those constitute by far the largest fraction of produced charged hadrons.

We expect this approximation to be accurate at the 90%-level for absolute cross sections



Chapter 7. Phenomenological Results for COMPASS 87

and even better for spin asymmetries.

7.1. Polarized and Unpolarized Resummed Cross Sections

Investigating the LO and NLO cross sections, polarized and unpolarized, at kinematics

used in the COMPASS experiment, it is revealed that there is a huge gap going from

the lowest order to the next-leading one. Thus, NLO cannot be the end of the story and

we have to find a more precise way to calculate the main contributing parts of the cross

sections. This is the point where threshold resummation becomes relevant, giving rise

to some further logarithmic corrections. We will verify how these threshold corrections

reproduce the main contributions from the fixed-order calculation, as we will compare the

first-order expanded resummed results with those at NLO. If the first-order expansion

of the next-to-leading logarithmic resummation formula coincides with NLO, our assump-

tions are confirmed and threshold resummation is a useful method to calculate higher-order

corrections precisely without knowing the exact fixed-order contributions like NNLO and

higher. If not stated otherwise, the resummed cross section will, in the following, always

be with implemented matching, which was introduced in Sec. 5.6.

7.1.1. Polarized Unidentified Hadron Production from a Deuteron

We start with the cross sections for unidentified hadron production, using the DSS07 set,

for a first general consideration. Fig. 7.1 shows the direct and resolved photon parts of the

spin-dependent cross sections for µd→ µ′h±X at leading order (LO), next-to-leading order

(NLO) and resummed with matching implemented as described in Sec. 5.6. The symbols

show the NLO-expansions of the non-matched resummed cross sections. We sum over the

charges of the produced hadrons. Going from LO to NLO reveals a large enhancement

to the resolved contribution. This can also be perceived when threshold corrections are

included. This happens especially at high transverse momentum pT when the threshold

is more closely approached. Furthermore, the matched resolved resummed cross section

gives the greatest amount to the full polarized resummed cross section, which means that

resolved-photon contributions cannot be neglected. This stands in contrast to the impact

of these contributions to the unpolarized calculation, see Fig. 7.2. There, for pT ≥ 3.25

GeV, the direct cross sections dominate.

Let us now come to the direct case in Fig. 7.1. Here, the NLO prediction is slightly lower

than the LO one at pT . 2.5 GeV but higher for regions with larger pT . Including re-

summation effects only gives a small change of the predictions. The first-order expansions

of the resummed cross section reproduces the full NLO result faithfully, especially for the

resolved contributions and for the direct ones at high-pT .

These opposing observations for the direct and resolved cross sections shall be examined

in more detail later when the full cross sections are split up into its particular subpro-
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Fig. 7.1.: Direct and resolved parts of the spin dependent LO, NLO and matched resummed dif-
ferential cross sections for µd→ µ′h±X with the DSS07 set of fragmentation functions.
We also show the NLO expansions of the resummed results (symbols) and consider the
full rapidity range −0.1 ≤ η ≤ 2.38, here and in the following if not stated otherwise.

cesses. But first we want to compare the polarized with the unpolarized full theoretical

predictions, see Fig. 7.3. Going from LO to NLO, both unpolarized, reveals huge correc-

tions. In addition the difference between the NLO and the unpolarized resummed cross

section is similarly sizeable. The unpolarized outcome is very similar to the plot shown

in [22], except for our use of the more recent parton distribution functions and some

kinematic settings. Considering now the polarized cross sections, we again observe that

the next-to-leading-order cross section gives a big correction to the LO one in the fully

depicted kinematic range. However, logarithmic corrections from threshold resummation

only give large adjustments close to threshold limit. The first-order expansions of the

resummed cross section reveal in both cases, polarized and unpolarized, that they agree

well with the full NLO result. This illustrates that threshold logarithms reproduce the

dominant parts of the fixed-order cross section correctly. Just as for the resolved polar-

ized part of the cross section in Fig. 7.1, this happens explicitly at high pT when the

kinematics approach the threshold region. We conclude that although threshold effects

are important for the spin-dependent cross sections due to the resolved contributions, the

influence of resummation on the spin-averaged prediction is more dominant. This means

that threshold corrections do not cancel in the spin asymmetries. We further explore the
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Fig. 7.2.: Comparison of the different impact of direct and resolved photon contributions in the
spin-averaged and spin-dependent cross sections.

reliability of perturbative methods by analyzing the dependence of the calculated cross

sections on the arbitrary chosen and unphysical factorization and renormalization scales

µfi, µff and µr. The truncation of perturbation series at some fixed order of αs results in

the dependence on these scales. Thus, one expects these effects to decrease by including

higher-order terms. To what extent this can be confirmed is going to be studied in the

following. In Fig. 7.4 we examine the scale dependence of the spin-dependent cross section,

which contains the full direct and resolved contributions. We vary the scales within the

range pT /2 ≤ µfi = µff = µr ≤ 2pT . However, we note that all scales can be varied

independently. A large scale uncertainty can be observed. There is a clear improvement

when going from LO to NLO. However, as for the resummed case, one has to consider

the results in more detail. At lower pT and considering the scale at µ = pT /2, the NLO

expansion of the resummed results does not comply with the full NLO result, as it does

for the mid-to-high pT region and for all other scales. Therefore, the matching procedure

where we subtract the NLO expanded contributions and add instead the full NLO cross

section, yield the small scale dependence for pT = 1.75 GeV. As this problem appears,

we intend to compare the scale dependence of the direct and resolved contributions in

Fig. 7.5 (a) and (b) independently. In contrast to the resolved case, where the resummed

first order expansion is mostly consistent with NLO, except for µ = pT /2 at low pT , the
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Fig. 7.3.: Spin-dependent and spin-averaged cross sections at LO, NLO and matched resummed
cross sections for unidentified hadrons. Again, and as in the following, the symbols
denote the NLO expansions of the resummed results.

direct first order expansion does not reproduce the full NLO result at any scale for low-pT .

Nevertheless, the most remarkable deviation can be found again for the upper band with

µ = pT /2. This behaviour diminishes when changing to the mid-pT range. Again, close to

the threshold region, the first order expansions of the resummed resolved and direct cross

sections reproduce the NLO-bands perfectly, except for the direct case at µ = pT /2.

To analyze the improvement of the scale-dependence by including logarithmic corrections,

we consider the threshold momentum range where the NLO predictions can be repro-

duced perfectly by the first order expansion of the resummed cross sections. Contrary

to the resolved case, where including threshold logarithms improves the scale dependence

considerably, the direct scale dependence is increasing. All these features that we ob-

serve in the direct part of the polarized cross section can be understood by investigating

the individual subprocesses, which contribute to the full direct cross section, see Fig. 7.6.

Thereby, we note that the two competing subprocesses γq → qg and γg → qq̄ enter with

opposite sign and thus cancel to some extent. As already observed in the context of the

NLO calculation [25], it was discussed that the cancelation may be responsible for the

fact that polarized resolved contributions computed with the “maximal” set of [88] are

more important for the full amount of the cross section than in the unpolarized case, as is
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Fig. 7.4.: Scale dependence of the full spin-dependent cross section at LO, NLO, and for the
resummed case. We vary the scale µ = µr = µfi = µff in the range pT /2 ≤ µ ≤ 2pT .
The upper ends of the bands correspond to µ = pT /2, the lower ones to µ = 2pT . To
justify perturbative methods, we show results only when the scale µ exceeds 1 GeV.

evident from the curves in Fig. 7.2. Furthermore, also the resolved subprocesses contribute

with different sign, see Fig. 7.7. Another feature in terms of the subprocesses is that the

resummed first-order expansion of the direct and resolved processes γg → qq̄, qj q̄j → qkq̄k

and gg → qq̄ cannot reproduce the NLO prediction as exactly as before, especially at low

pT . We notice that we have threshold resummation for some subprocesses not as good

under control, as in the unpolarized case. This is due to subleading NLO contributions

which are formally suppressed by 1/N . However, in these subprocesses they are no longer

insignificant at low-to-mid transverse momentum. Nevertheless, the numerical amount of

these channels is assessable when summing over all subprocesses, over direct and resolved

parts. This is confirmed by Fig. 7.3 where the total resummed cross section reveals that

the first order expansion perfectly agrees with the NLO prediction. However, we should

keep in mind that there are subleading contributions, introduced in Chap. 6, having a

larger impact than anticipated.
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Fig. 7.7.: Contributions to the polarized resolved cross section from the individual resolved sub-
processes.
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7.1.2. Pion and Kaon Production

As already indicated, we now consider produced kaons and pions. To do so we use the

DSS14 and DSS17 fragmentation functions and sum over contributions from produced

pions and kaons. Please note that parts of the results are already published in our Ref.

[39].

We start with the comparison of the polarized and unpolarized cross sections for µd →
µ′(π,K)±X in Fig. 7.8. Again, we show results at next-to-leading order, the resummed

case including the matching procedure as described in Eq. (5.79), and the first order ex-

pansions to NLO of the corresponding non-matched resummed cross sections. Considering

the spin-averaged cross section, we observe again that the difference between the fixed-

order results and the resummed ones are sizeable, especially at high pT when we are close

to kinematic threshold. Comparing the NLO expansion of the resummed cross section

with the full NLO one, we detect a very good accordance, illustrating that threshold re-

summation reproduces the dominant parts of the cross section correctly. Note that the

unpolarized plot for unidentified hadrons in Fig. 7.3, decline when the updated fragmen-

tation functions are used so that only kaons and pions are identified in the final state, see

Fig. 7.8. However, there are no further apparent changes. In terms of the polarized case,

we again detect that the resummed expansions to NLO describe the full NLO cross section

somewhat less accurately than in the unpolarized case. Nevertheless it is described still

well. Further investigations and explanations for this can be found in Chap. 7.1.1. Ad-

ditionally, we would like to mention that the shape of the polarized plots have somewhat

changed compared to Fig. 7.3. While the logarithmic corrections had a huge influence

close to threshold when the fragmentation function DSS07 was used, we now observe only

a modest enhancement over NLO for the mid-pT range up to pT . 3.75 GeV. Furthermore,

we find an approach towards NLO for high pT . There, the resummed cross section falls

slightly below NLO. This clearly demonstrates the impact of the chosen fragmentation

functions.

Fig. 7.9 shows the amount of the direct and resolved parts of the spin-dependent resummed

cross sections with implemented matching. The resolved plot shows further NLO and the

first-order expansions (symbols), however, for the direct part we only show the matched-

resummed cross section, since the NLO one starts negative and grows to become positive

within the depicted kinematic range. We examine that the full spin-dependent direct re-

summed cross section is negative when the DSS14 and DSS17 fragmentation functions are

used. The resummed resolved contribution turns out to be positive and dominant for our

choice of polarized parton distributions of the photon, which yields a positive polarized

full cross section. It may perhaps be expected that in the presence of such partial cance-

lations between the direct and the resolved-photon contributions the expanded resummed

cross section will not trace the full NLO one too faithfully. For the same reason, the po-

larized cross section could be expected to be quite sensitive to higher-order perturbative
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Fig. 7.8.: Unpolarized and polarized NLO and resummed (matched) cross sections for combined
pion and kaon production in µd→ µ′hX in the full rapidity range −0.1 ≤ η ≤ 2.38. The
symbols compare the NLO expansions of the (non-matched) resummed cross sections to
the full NLO results and we sum over the charges of the produced hadron.

corrections. Nonetheless, threshold resummation turns out to offer only relatively small

corrections to the polarized NLO results. As a consequence of this different behaviour

of polarized and unpolarized higher-order threshold effects, they will not cancel in the

double-longitudinal spin asymmetries, as we will discern in the next section. The fact that

the various spin-dependent subprocesses conspire to produce overall relatively small QCD

corrections is an important outcome of our threshold resummation study.

Analogously to the fragmentation function set DSS07, we intend to estimate the sensitiv-

ity of the polarized cross section to the chosen renormalization and factorization scales

µ ≡ µr = µfi = µff . We vary within the range pT /2 ≤ µ ≤ 2pT although all scales can

be varied independently. In Figs. 7.10 (a) we show our results for the “pion-plus-kaon”

fragmentation functions of DSS14 and DSS17 compared to the results for charged-hadron

production of DSS07 in (b), which were already shown in Fig. 7.4. Again, the scale depen-

dence for kaon and pion production remains unpleasantly large when including threshold

logarithms. Comparing both cases, we see that the first order expansions do neither re-

produce the NLO results for kaon and pion production at µ = pT /2 nor the results for

the unidentified-hadron DSS07 fragmentation. This different behaviour at µ = 2pT and

µ = pT /2 may be explained by the fact that we are closer to threshold at µ = 2pT ,
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and grows to become positive within the shown kinematic range.

whereas perturbative methods are less suitable at low pT . Moreover, we find at LO that

the scale uncertainty is larger by one order of magnitude, clearly demonstrating the need

for higher-order calculations.

7.2. Double-Spin Asymmetry

In the section before, we have examined the polarized and unpolarized cross sections

for semi-inclusive high-pT photoproduction processes with various fragmentation func-

tions used for the detected hadron. We have compared next-to-leading order results with

threshold resummation corrections. We anticipate from the results presented in Fig. 7.3

and Fig. 7.8 that threshold corrections to NLO do not cancel in the double-longitudinal

spin asymmetry ALL. Furthermore, we found out that the choice of fragmentation func-

tion influences the cross sections considerably. The direct resummed cross section has a

positive sign for DSS07 and a negative one for DSS14 and DSS17, combined. Moreover,

the logarithmic threshold contribution at high pT is for DSS07 much more pronounced

than for kaon and pion production. These effects of the fragmentation functions we found

have been proven in the section before when we examined the deuteron within the full

rapidity bin −0.1 ≤ η ≤ 2.38. However, we will demonstrate in the following that the

choice of the fragmentation function has an increased impact when the three rapidity bins

[−0.1, 0.45], [0.45, 0.9] and [0.9, 2.4] are studied and also the process µp → µ′hX with a

proton as target.

The double-longitudinal spin asymmetry is given by the ratio of the spin-dependent and
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Fig. 7.10.: (a) Scale dependence of the spin-dependent “pion-plus-kaon” production cross section
in µd scattering at LO, NLO, and for the resummed case, again matched, using the
DSS14+DSS17 fragmentation functions. We vary the scales µ = µr = µfi = µff in the
range pT /2 ≤ µ ≤ 2pT . The upper borders of the bands correspond to µ = pT /2, the
lower ones to µ = 2pT . We only present the results for scales µ ≥ 1 GeV. The rapidity
lies between the range −0.1 ≤ η ≤ 2.38. (b) Due to comparison reasons, we show the
plot for unidentified hadrons again using the DSS07 fragmentation functions.
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the spin-averaged cross sections,

ALL =
d∆σ

dσ
, (7.1)

where these cross sections are defined through

dσ`N ≡
1

2

[
dσ++

`N + dσ+−
`N

]
, (7.2)

d∆σ`N ≡
1

2

[
dσ++

`N − dσ+−
`N

]
, (7.3)

with the superscripts (++), (+−) denoting the helicities of the incoming particles. In the

following we are going to present results of ALL for single-inclusive charged hadron pro-

duction for both targets, a deuteron and a proton, compared to the COMPASS data [19].

But first, we intend to investigate the impact of the changes made for the most recent

parton-to-pion fragmentation function DSS14. The stand-alone set was used by COM-

PASS [19] for the comparison of their experimental data with the theoretical NLO pre-

diction. It was stated that asymmetries for hadron production are almost identical to

those for pion production, therefore one is safe to use the parton-to-pion fragmentation

functions when analyzing hadron production. As the influence of the chosen fragmen-

tation function can be large, especially for protons, we want to proof this statement for

COMPASS conditions at NLO and compare thus in Fig. 7.11 the proton asymmetries for

DSS07 for positively or negatively charged pions and hadrons. Although the pion clearly

dominates the whole DSS07 prediction for unidentified hadrons, we find out that, contrary

to the assumptions, there is indeed a discrepancy between the asymmetries with DSS07

pion and hadron sets. In nearly each of the cases this deviation increases with growing pT .

This denotes that calculating hadron production asymmetries with pion fragmentation

functions alone may distort the outcome. The next investigation examines to what extent

the pion fragmentation set has changed when going from DSS07 to DSS14. Hence, we

consider in Fig. 7.12 the NLO asymmetries for pion production, again for a proton target

while there is the influence of the choice of fragmentation function at its largest. There

is only a minor change between the pion sets for positively charged pions within a range

of η ∈ [0.45, 2.4], but when switching to η ∈ [−0.1, 0.45] the difference grows. It increases

when negatively charged pions within η ∈ [0.9, 2.4] are considered. Then, when going into

lower rapidity ranges, the deviation becomes huge. This indicates that the discrepancy

between a possible future updated all-hadron fragmentation set and a from COMPASS

used updated pion set DSS14 is smaller than the discrepancy between the older pion frag-

mentation to the newest one. Additionally our presented theoretical predictions should be

much more valid because it also contains the most recent kaon fragmentation set.

Finally, we consider our final NLO and resummed results of ALL for identified pions and

kaons by using the updated fragmentation sets of DSS14 [80] and DSS17 [75] in Figure 7.13.

We investigate the proton and the deuteron target for the three rapidity bins [−0.1, 0.45],
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Fig. 7.11.: Comparison of the double-longitudinal spin asymmetries ALL at NLO considering an
unidentified hadron and an identified pion using the DSS07 fragmentation set for a
proton target, splitting up the rapidity range in three bins [−0.1, 0.45], [0.45, 0.9] and
[0.9, 2.4]. We show positively and negatively charged hadrons.

[0.45, 0.9] and [0.9, 2.4]. The symbols in the figure show the results of the asymmetry when

the (non-matched) resummed polarized and spin-averaged cross sections are expanded to

first order. The resummed cross sections are matched as demonstrated before. While we

have summed over the charges of the produced hadrons in Sec. 7.1.1 and Sec. 7.1.2, we

intend to study positively and negatively charged hadrons separated from now on. In-

cluding logarithmic corrections to NLO, changes the predictions especially for positively

charged hadrons. The impact grows accordingly to the increasing of the rapidity range.

Comparing the first-order expansions of the non-matched resummed asymmetries to the

NLO plots, we discover a very well agreement for positively charged hadrons and a not so

well agreement for negatively charged ones, particularly for the proton. In any case, as

anticipated, threshold corrections do not cancel out in the asymmetries and rather tend

to decrease the asymmetry when going from NLO to the resummed case. This demon-

strates clearly that threshold logarithms beyond NLO cannot be ignored and have to be

resummed to all orders of perturbation theory. Furthermore, we observe an overall fair

agreement between the theoretical resummed results and the COMPASS data within the

rather large experimental uncertainties. However, we may find some discrepancy between

experiment and theoretical results for the production of positively charged hadrons off a

proton target at lower rapidities. Resummation tends to improve the description of the

experimental results. As the different fragmentation functions describing the observed

hadron influence the cross sections a lot, we are going to investigate now the sensitivity
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Fig. 7.12.: Comparison of the NLO asymmetries considering pion production with different frag-
mentation sets, DSS07 and DSS14, again distinguishing within the rapidity bins
[−0.1, 0.45], [0.45, 0.9] and [0.9, 2.4] and positive and negative charges.

to the choice of the fragmentation set of the asymmetries. In Figure 7.14, the results

from Fig. 7.13 are compared with those obtained for the DSS07 set [76]. The more recent

fragmentation functions lead to a significantly better agreement with the COMPASS data,

particularly in the case of negatively charged hadrons produced off a proton target. This

improvement arises from an interplay between several features. By and large, the cross

sections for negatively charged hadrons µp → µ′h−X are expected to be more sensitive

to fragmentation functions than the one for positively charged ones. With the help of

more data taken from semi-inclusive deep inelastic scattering processes, these functions

are now better determined. However, there is still some information missing, for example,

an updated fragmentation set for produced protons. Additionally, on the subprocess level,

there are several competing cross sections contributing with opposite sign. This leads to

sizeable effects for even relatively small differences in the fragmentation functions. Like-

wise, the gluon fragmentation plays a role here as it is smaller in DSS14 than in DSS07.

As a general conclusion, one can say that resummation is vital if high precision is needed.

On the theory side, the very significant dependence of the asymmetries on the used frag-

mentation functions reiterates the need of pinning the latter down with better accuracy,

in particularly with respect to future high luminosity experiments at JLab and BNL.
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Fig. 7.13.: Double-longitudinal spin asymmetries ALL for (a) µd → µ′hX and (b) µp → µ′hX
in three rapidity bins, compared to the COMPASS data [19]. We show positive and
negative charged hadrons and compare the NLO and resummed (matched) results using
the combined “pion-plus-kaon” fragmentation functions of DSS14 and DSS17. The
symbols denote the results for the asymmetry when the (non-matched) resummed cross
sections are expanded to first order.



102 Chapter 7. Phenomenological Results for COMPASS

0

0.1

0.2

u�
u� u�

u�

u� ∈ [−0.1, 0.45]

ℎ+

u� ∈ [0.45, 0.9]

ℎ+

u� ∈ [0.9, 2.4]

ℎ+

-0.1

0

0.1

1.5 2 2.5 3 3.5

u�
u� u�

u�

u�u� (GeV)

ℎ−

1.5 2 2.5 3 3.5

u�u� (GeV)

ℎ−

1.5 2 2.5 3 3.5

u�u� (GeV)

ℎ− resum, DSS14/17
resum, DSS07

NLO, DSS14/17
NLO, DSS07

(a)

0

0.1

0.2

u�
u� u�

u�

u� ∈ [−0.1, 0.45]

ℎ+

u� ∈ [0.45, 0.9]

ℎ+

u� ∈ [0.9, 2.4]

ℎ+

-0.1

0

0.1

1.5 2 2.5 3 3.5

u�
u� u�

u�

u�u� (GeV)

ℎ−

1.5 2 2.5 3 3.5

u�u� (GeV)

ℎ−

1.5 2 2.5 3 3.5

u�u� (GeV)

ℎ− resum, DSS14/17
resum, DSS07

NLO, DSS14/17
NLO, DSS07

(b)

Fig. 7.14.: Same as in Fig. 7.13, but now also showing the results compared to the DSS07 set of
charged-hadron fragmentation functions.



I’ve always been more interested in the future than in the past.

Grace Hopper

8
Conclusion and Outlook

This thesis was focused on threshold resummation studies for high-pT inclusive-hadron

production at COMPASS in longitudinally polarized lepton-nucleon scattering. The aim

was to address threshold resummation effects to double-longitudinal spin asymmetries

presented in Ref. [19] for which the investigation of spin-dependent cross sections for

µN → µ′hX at next-to-leading logarithmic accuracy was still missing. The process was

studied before at next-to-leading order [25] and for the unpolarized case in the threshold-

resummed NLL framework [22]. We have extended the previous studies with the polarized

calculation and studied the impact of various fragmentation functions for unpolarized and

polarized photoproduction cross sections.

The work was organized as follows. We started with a general introduction of the main

ideas of perturbative Quantum Chromodynamics, as a starting point for following calcu-

lations. As the calculation of a hadronic cross sections is always a combination of short-

distance and long-distance behaviour, we went on with the factorization framework and

an examination of the parton distribution and the fragmentation functions. Factorization

is a powerful tool with which we were able to separate perturbative from non-perturbative

parts. This is necessary to calculate threshold resummation corrections to the perturba-

tive hard-scattering function. We investigated the framework for resolved-photon contri-

butions, where the photon interacts through its partonic structure. For that we discussed

various models for the so far unmeasured photonic distribution functions, adopting in our

phenomenological results the maximal saturated set of distributions. Then we elaborated

the techniques of threshold resummation, summing over large logarithmic contributions,

which yield huge corrections to the fixed-order calculation. These logarithms appear for

the first time at next-to-leading order and can be observed at every higher order in per-

turbation theory. Their origin lies in an incomplete cancelation of infrared divergences

between real and virtual diagrams and at kinematic threshold these logarithms spoil the
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perturbative expansion. Therefore, threshold resummation is required at fixed-target en-

ergies like at COMPASS kinematics, where nearly all available center-of-mass energy is

used for the production of the high-pT parton fragmenting into the observed hadron and

its recoiling counterpart. Using resummation techniques we were able to deal with those

logarithmic corrections up to all perturbative orders in αs at a certain level, choosing for

our calculations next-to-leading logarithmic accuracy. To make the idea clear, we had

showed explicitly how soft-gluon contributions exponentiate in Mellin momentum space,

and afterwards we derived explicitly the radiative exponents for initial- and final-state

partons at NLL accuracy. Then we had all relevant theoretical techniques at hand to

address soft-gluon resummation to single-inclusive hadron production in spin-dependent

lepton-nucleon scattering at COMPASS. This process was chosen due to the still open

question, how the nucleon spin is composed of the gluon and quark spins and orbital

angular momenta. Results for the double-longitudinal spin asymmetry ALL are directly

sensitive to the spin-dependent gluon distribution ∆g, which in turn yields information of

the proton spin contribution of the gluon. To receive theoretical predictions for the thresh-

old resummed spin asymmetries, we extended the framework for the previous investigated

unpolarized resummed cross sections [22] to the case of spin-dependence. While threshold

resummation takes place in Mellin-N space, we only transformed the convolution of the

partonic hard-scattering cross section with the fragmentation function into Mellin space,

keeping the convolution with the parton distribution functions in physical space. This

was established in the work of [22], yielding the rapidity-dependent resummed cross sec-

tion. To make sure that we include the full fixed-order contributions as well as soft-gluon

contributions beyond NLO at NLL accuracy, we implemented a matching procedure and

calculated matching-coefficients. Further, as our phenomenological results were focused

on leading- and next-to-leading logarithmic accuracy neglecting 1/N suppressed contribu-

tions, we provided additionally lnN/N subleading NLO contributions and a framework to

derive possibly additional subleading threshold contributions. However, this can be useful

for a future project.

In our phenomenological results for COMPASS we have presented a detailed study of the

impact of next-to-leading logarithmic threshold resummation on the spin-dependent cross

section and on the corresponding double-longitudinal spin asymmetry ALL for the high-pT

photoproduction process µN → µ′hX . We have included resummation for the direct,

as well as the resolved-photon contribution. In a comparison of the spin-averaged with

the spin-dependent cross sections we found out that the latter receives smaller correc-

tions from resummation than the spin-averaged one. This clearly indicates that threshold

corrections do not cancel in the double-spin asymmetry, as anticipated, and rather tend

to decrease the asymmetry yielding an overall better agreement between experiment and

theory. This contradicts an often claimed assumption, which says that higher order per-

turbative corrections cancel in ratios of spin-dependent and spin-averaged cross sections,

i.e. for spin asymmetries, and in fact, they do not. Therefore, if threshold resummation
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is not performed, the systematic uncertainties remain large, which demonstrates clearly

that an inclusion of threshold logarithms is vital for phenomenology at COMPASS kine-

matics. We expect this to remain true also for a future Electron Ion Collider (EIC) where

lepton-nucleon scattering could be explored with unprecedented precision and kinematic

reach [120]. These processes with polarized beams at an EIC would e.g. yield access to

the so far totally unknown polarized photon distributions. Further, larger data samples

will provide better statistics, especially in the gluon-dominated regime. At high energies

in an upcoming EIC, threshold effects are assumed to be smaller, however, due to the high

luminosity also small effects are important to be investigated.

Our present calculation marks the state of the art for theoretical studies of `N → `′hX,

however, at an EIC an even higher level of theoretical precision will be needed to match

experimental accuracy. This may be achieved, for example, by an extension of our re-

summation studies to next-to-next-to-leading logarithmic accuracy or by an inclusion of

subleading 1/N logarithms.

Further, we found out that the parton-to-hadron fragmentation functions have a strong

impact on the size and shape of the predicted spin asymmetries. Although the most re-

cent sets, which contain much more up-to-date experimental information than the previous

ones, help to improve the theoretical description of the COMPASS data, they arguably

remain a primary source of systematic theoretical uncertainties. With that, continued

improvements of these distributions are necessary. Promising avenues in this direction are

perhaps offered by studies of hadron fragmentation inside jets [121–125].

Finally all these efforts will surely shed light on the unsolved questions of the proton spin

to reach a further key point in the knowledge about the proton.





A
Feynman Rules

Feynman rules are diagrams visualizing mathematical expressions which describe the be-

haviour of bosons and fermions intuitively, and have been introduced in 1948 by Richard

Feynman. As they are necessary to calculate matrix elements in perturbative QCD, we

provide them in this Appendix, however, for more details we refer to standard text books

like Ref. [40].

As usual, solid, curly and dashed lines represent quarks, gluons and ghosts. Momentum

conservation is imposed at each vertex and we integrate over undetermined loop momenta.

Fermion loops are supposed to receive an additional factor of (−1). Further, we have im-

plemented the notation pµγ
µ = pµγµ ≡ /p.

Feynman Rules for Quantum Electrodynamics:

photon propagator
q

µ ν =
−i

q2 + iε

(
gµν − (1− ξ)q

µqν

q2

)

fermion propagator
p

a b = i
/p+m

p2 −m2 + iε
δab

photon vertex µ = −ieqeγµ

Note that ξ labels the chosen gauge, hence for Feynman gauge we have ξ = 1 and for

Landau gauge we have ξ = 0. eqe labels the charge of the considered fermion given in

units of the electron charge e. The Feynman rules for the vertices describe the interaction

between the fermions with photons (in QED), gluons and ghosts (in QCD).
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Feynman Rules for Quantum Chromodynamics:

Propagators

gluon propagator
p

a, µ b, ν =
−i

p2 + iε

(
gµν − (1− ξ)p

µpν

p2

)
δab

ghost propagator
p

a b =
i

p2 + iε
δab

Vertices

quark-gluon vertex c, µ

i

j

=igγµtcij

ghost-gluon vertex b, µ

c

a p

=− gfabcpµ

3-gluon vertex c, ρ

b, ν

a, µ
k

p

q
=gfabc

[
gµν(k − p)ρ

+ gνρ(p− q)µ

+ gρµ(q − k)ν
]

4-gluon vertex

c, ρ

a, µ

d, σ

b, ν

=− ig2
[
fabef cde (gµρgνσ − gµσgνρ)

+ facef bde (gµνgρσ − gµσgνρ)

+ fadef bce (gµνgρσ − gµρgνσ)
]
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We follow with the rules describing external particles, expressing them through spinors

like us(p) in dependence of the momentum p and the spin s:

Dirac Spinor Rules for External Lines:

incoming fermion
← p

= us(p)

outgoing fermion
p →

= ūs(p)

incoming antifermion
← p

= v̄s(p)

outgoing antifermion
p →

= vs(p)

incoming vector = εµ∗λ (k)

outgoing vector = εµλ(k)

Quarks are described by the fermion-rules, and photons and gluons by the vector-rules.

Note that the spinors us(p) and vs(p) obey the Dirac equation:

0 =(/p−m)us(p) = ūs(p)(/p−m)

=(/p+m)vs(p) = v̄s(p)(/p+m) , (A.1)

and describe fermions and antifermions with mass m. The energy is positive and reads

p0 ≡ Ep =
√
p2 +m2 and the normalization of the spinors and antispinors is such that

ūr(p)us(p) = 2mδrs , (A.2)

v̄r(p)vs(p) = −2mδrs . (A.3)

In the evaluation of Feynman diagrams, we often need to sum over spin polarizations,

for example when calculating unpolarized cross sections. Then, the relevant completeness
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relations are given by: ∑
s

us(p)ūs(p) = /p+m, (A.4)∑
s

vs(p)v̄s(p) = /p−m. (A.5)

The projection operators are defined through(
1 + γ5

2

)
,

(
1− γ5

2

)
, (A.6)

and project onto right- and left-handed spinors. In the basis of

γµ =

(
0 σµ

σ̄µ 0

)
, γ5 =

(
−1 0

0 1

)
, (A.7)

with σµ = (1, ~σ) and ξ, η being two-component spinors, the normalized Dirac spinors can

be written:

us(p) =

( √
p · σ ξs
√
p · σ̄ ξs

)
, vs(p) =

( √
p · σ ηs

−√p · σ̄ ηs

)
. (A.8)



B
Hard, Soft and Γ-Matrices

In this Appendix all the matrices needed for the polarized calculation of the resummed

cross section are collected from Refs. [27, 32, 33, 105, 113, 114]. In the following we are

using the notation of [105],

T ≡ ln
−t̂
ŝ

+ πi , U ≡ ln
−û
ŝ

+ πi . (B.1)

Further we have CANc = 3 and CF = (N2
c − 1)/(2Nc) = 4/3. When writing a process

with q and q′, as in q q̄ → q′ q̄′ we have a different flavor constellation of both quarks.

B.1. Soft Matrices

The soft matrices are lowest-order expanded, so that

Sab→cd(η̂, αs) = S
(0)
ab→cd +O(αs)) . (B.2)

The first soft matrix reads,

Sqq̄→qq̄ =

(
N2
c 0

0 N2
c−1
4

)
. (B.3)

This soft matrix is valid for qq̄ → qq̄, qq̄ → q′q̄′ and qq̄′ → qq̄′. Valid for the subprocesses

qq → qq and qq′ → qq′ is

Sqq→qq =

(
N2
c−1
4 0

0 N2
c

)
, (B.4)

further we have for qq̄ → gg and gg → qq̄:

Sqq̄→gg = Sgg→qq̄ =

 Nc(N
2
c − 1) 0 0

0 (N2
c−4)(N2

c−1)
2Nc

0

0 0 Nc(N2
c−1)

2

 . (B.5)

111



112 Appendix B. Hard, Soft and Γ-Matrices

For qg → qg we have the same,

Sqg→qg =

 Nc(N
2
c − 1) 0 0

0 (N2
c−4)(N2

c−1)
2Nc

0

0 0 Nc(N2
c−1)

2

 . (B.6)

and finally for gg → gg:

Sgg→gg =

(
S3×3
gg→gg 03×5

05×3 S5×5
gg→gg

)
, (B.7)

consisting of

S3×3
gg→gg =

 5 0 0

0 5 0

0 0 5

 , and S5×5
gg→gg =


1 0 0 0 0

0 8 0 0 0

0 0 8 0 0

0 0 0 20 0

0 0 0 0 27

 . (B.8)

B.2. Anomalous Dimension Matrices

The Γ-matrices are expanded regarding to the perturbative expansion of Eq. (5.36). The

corresponding matrix for the subprocesses qq̄ → qq̄, qq̄ → q′q̄′ and qq̄′ → qq̄′ reads:

Γqq̄→qq̄ =
αs
π

(
2CFT −CF

Nc
U

−2U −T−2U
Nc

)
. (B.9)

Next we have for qq → qq and qq′ → qq′

Γqq→qq =
αs
π

(
−T+U

Nc
+ 2CFU 2U

CF
Nc
U 2CFT

)
, (B.10)

and for qq̄ → gg and gg → qq̄:

Γqq̄→gg = Γgg→qq̄ =
αs
π

 0 0 U − T
0 CA

2 (T + U) CA
2 (U − T )

2(U − T ) N2
c−4

2Nc
(U − T ) CA

2 (T + U)

 . (B.11)

For qg → qg the anomalous dimension gets

Γqg→qg =
αs
π

 (CF + CA)T 0 U

0 CFT + CA
2 U

CA
2 U

2U N2
c−4

2Nc
U CFT + CA

2 U

 , (B.12)
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and finally the matrix reads for the last subprocess, gg → gg:

Γgg→gg =
αs
π

(
Γ3×3
gg→gg 03×5

05×3 Γ5×5
gg→gg

)
, (B.13)

consisting of

Γ3×3
gg→gg =

 3T 0 0

0 3U 0

0 0 3(T + U)

 , (B.14)

and

Γ5×5
gg→gg =


6T 0 −6U 0 0

0 3T + 3U
2 −3U

2 −3U 0

−3U
4 −3U

2 3T + 3U
2 0 −9U

4

0 −6U
5 0 3U −9U

5

0 0 −2U
3 −4U

3 −2T + 4U

 . (B.15)

B.3. Hard Matrices

Let us consider now the hard matrices for longitudinally polarized scattering. Remember

that color-connected Born cross sections given for a color basis appear as a matrix, called

“hard matrix. To receive them we combine the color structure of a diagram with the color-

decomposition of the complex conjugated amplitude, average over the color of the incoming

partons and include also the kinematics. The techniques to gain the color structure are

described in Ref. [126]. Then we have for the lowest order expansion of Eq. (5.33) the

following matrices:

∆Hqq̄→qq̄ = α2
s

(
h11 h12

h12 h22

)
, with

h11 = −2C2
F

N4
c

t̂2+û2

ŝ2
,

h12 = −2CF
N3
c

(
− t̂2+û2

Ncŝ2
+ û2

ŝt̂

)
,

h22 = 1
N2
c

(
− 2
N2
c

t̂2+û2

ŝ2
+ 2 ŝ

2−û2
t̂2

+ 4
Nc

û2

ŝt̂

)
,

(B.16)

∆Hqq̄→q′q̄′ = −α2
sh

(
C2
F

N2
c
−CF
N2
c

−CF
N2
c

1
N2
c

)
, with h =

2

N2
c

t̂2 + û2

ŝ2
. (B.17)

Furthermore we have for qq̄′ → qq̄′ the hard matrix,

∆Hqq̄′→qq̄′ = α2
s

(
0 0

0 2 ŝ
2−û2
N2
c t̂

2

)
. (B.18)



114 Appendix B. Hard, Soft and Γ-Matrices

Going on with those matrices contributing to q q → q q, we have

∆Hqq→qq = α2
s

(
h11 h12

h12 h22

)
, with

h11 = 2
N2
c

(
ŝ2−û2
t̂2

+ 1
N2
c

ŝ2−t̂2
û2
− 2

Nc
ŝ2

t̂û

)
,

h12 = 2CF
N4
c

(
Nc

ŝ2

t̂û
− ŝ2−t̂2

û2

)
,

h22 =
2C2

F
N4
c

ŝ2−t̂2
û2

,

(B.19)

and

∆Hqq′→qq′ = α2
s

(
2 ŝ

2−û2
N2
c t̂

2 0

0 0

)
. (B.20)

Let us now come to those subprocesses where also gluons are involved. We have for

q q̄ → g g and g g → q q̄:

∆Hqq̄→gg = −α2
s

 h11 h12 h13

h12 h22 h23

h13 h23 h33

 , and ∆Hgg→qq̄ = − N2
c

N2
c−1

α2
s

 h11 h12 h13

h12 h22 h23

h13 h23 h33


(B.21)

with

h11 =
1

2N4
c

(
û

t̂
+
t̂

û

)
,

h12 =Nch11 ,

h22 =N2
c h11 ,

h13 =− 1

2N3
c

û2 − t̂2
t̂û

− 1

N3
c

û− t̂
ŝ

,

h23 =Nch13 ,

h33 =
1

2N2
c

ŝ2

t̂û
+

4

N2
c

t̂û

ŝ2
− 3

N2
c

. (B.22)

Further we have quark-gluon scattering with

∆Hqg→qg = ŝ2−û2
ŝ2+û2

α2
s

 h11 h12 h13

h12 h22 h23

h13 h23 h33

 , with

h11 = − 1
2N3

c (N2
c−1)

(
t̂2

ŝû − 2
)
,

h12 = Nch11 ,

h22 = N2
c h11 ,

h13 = 1
N2
c (N2

c−1)

(
−1− 2ŝ

t̂
+ û

2ŝ − ŝ
2û

)
,

h23 = Nch13 ,

h33 = 1
Nc(N2

c−1)

(
3− 4ŝû

t̂2
− t̂2

2ŝû

)
.

(B.23)



Appendix B. Hard, Soft and Γ-Matrices 115

Finally we end up with the last process, gluon-gluon scattering g g → g g, and as this

matrix is rather lengthy, we directly set Nc = 3, so that we get

∆Hgg→gg =
ŝ4 − t̂4 − û4

ŝ4 + t̂4 + û4
α2
s

(
03×3 03×5

05×3 h5×5

)
, (B.24)

with the 5× 5 matrix

h5×5 =
1

16


9h1

9
2h1

9
2h2 0 −3h1

9
2h1

9
4h1

9
4h2 0 −3

2h1

9
2h2

9
4h2 h3 0 −3

2h2

0 0 0 0 0

−3h1 −3
2h1 −3

2h2 0 h1

 , (B.25)

where we have:

h1 =1− t̂û

ŝ2
− ŝt̂

û2
+
t̂2

ŝû
,

h2 =
ŝt̂

û2
− t̂û

ŝ2
+
û2

ŝt̂
− ŝ2

t̂û
,

h3 =
27

4
− 9

(
ŝû

t̂2
+

1

4

t̂û

ŝ2
+

1

4

ŝt̂

û2

)
+

9

2

(
û2

ŝt̂
+
ŝ2

t̂û
− 1

2

t̂2

ŝû

)
. (B.26)





C
Coefficients

In this part we want to present only polarized coefficients for direct-photon subprocesses.

We calculated and presented them already in Ref. [38]. To give our results for the

coefficients ∆Cγb→cX in a compact form, we define

ρ(A)
qγ = 4γE + 4 ln 2 ,

ρ(F )
qγ = −3 + 4γE + 4 ln (2(1− v)) ,

ρ(A)
gγ = 4γE + 4 ln (2(1− v)) ,

ρ(F )
gγ = −3 + 4γE + 4 ln 2 , (C.1)

with γE as the Euler constant. For the Compton process γq → qg we then have

∆Cγq→qg=b0π ln
µ2
r

ŝ
+
CF
4

ln
µ2
ff

ŝ

(
ρ(A)
qγ − 3

)
+
CF
4

ln
µ2
fi

ŝ
ρ(F )
qγ +

1

18
(2CA − 5Nf ) +

7

4CA

+
1

4
b0πρ

(A)
qγ +

C2
A − 2

32CA

(
ρ(A)
qγ

)2
+

ln v

4CA

(
ρ(A)
qγ − ln v

)
+

π2

4CA

2v − 1

v(v − 2)
+
π2CF

3

+
ln (1− v)

2CAv(v − 2)

{
ln

(√
1− v
v

)(
4v − v2 − 1

)
+

1

2

[
1− 3C2

A + 2v + ρ(A)
qγ

(
2v − v2

)]}
, (C.2)

where CF = 4/3, CA = 3. For the process γq → gq with an observed gluon, the coefficient

reads

∆Cγq→gq=b0π ln
µ2
r

ŝ
+ ln

µ2
ff

ŝ

(
CA
4
ρ(A)
qγ − b0π

)
+
CF
4
ρ(F )
qγ ln

µ2
fi

ŝ
+

(
CF
2

+ CA

)(
ρ

(A)
qγ

4

)2

+
π2
(
v2 − 6v + 2

)
12CA (v2 − 1)

+
1

12

{3CF
4

(3ρ(A)
qγ − 28) + π2(4CA + CF )

}
+

ln v

4

{
CF (2 ln v + 3)− CA

(
2 ln(1− v) + ρ(A)

qγ

)
− 1

CA (v2 − 1)

[
− v(v − 2) ln v

+ 3CACF (v2 + 1) + 2 ln(1− v)(1− 2v) + 2v
]}

+
CA
4

ln (1− v)
[
ρ(A)
qγ + ln (1− v)

]
. (C.3)
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Finally, for photon-gluon fusion γg → qq̄, we find

∆Cγg→qq̄=b0π ln
µ2
r

µ2
fi

+ ln
µ2
fi

ŝ

CA
4
ρ(A)
gγ +

CF
4

ln
µ2
ff

ŝ
ρ(F )
gγ +

CA
6

[
3

8

(
ρ(F )
gγ + 3

)2
+π2

]
+
CF
6

[
9

8

(
ρ(F )
gγ −

19

3

)
+

5

2
π2

]
− ln2 v

4CA

{
1 + v2

v2 + (1− v)2
− C2

A

}
+

ln v

8CA

{
3C2

A (1− 2v) + 2v (1 + 2v)− 3

v2 + (1− v)2
− 2C2

Aρ
(A)
gγ + 6CACF

}
+ ln (1− v)

{
3C2

Av
2 − v(v + 2)

v2 + (1− v)2
+ C2

A

(
ρ(F )
gγ + 3

)}
− ln2 (1− v)

4CA

{
1 + (1− v)2

v2 + (1− v)2
− C2

A

}
. (C.4)

We note that ∆Cγg→qq̄ is identical to the corresponding coefficient Cγg→qq̄ in the unpo-

larized subprocess, which was already given in [22].

The polarized coefficients for resolved-photons are rather lengthy and one can obtain

them on request, as we have noted in our Ref. [39].
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