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ABSTRACT: The carboxylation of sp3-hybridized C−H
bonds with CO2 is a challenging transformation. Herein,
we report a visible-light-mediated carboxylation of
benzylic C−H bonds with CO2 into 2-arylpropionic
acids under metal-free conditions. Photo-oxidized triiso-
propylsilanethiol was used as the hydrogen atom transfer
catalyst to afford a benzylic radical that accepts an electron
from the reduced form of 2,3,4,6-tetra(9H-carbazol-9-yl)-
5-(1-phenylethyl)benzonitrile generated in situ. The
resulting benzylic carbanion reacts with CO2 to generate
the corresponding carboxylic acid after protonation. The
reaction proceeded without the addition of any sacrificial
electron donor, electron acceptor or stoichiometric
additives. Moderate to good yields of the desired products
were obtained in a broad substrate scope. Several drugs
were successfully synthesized using the novel strategy.

Environmental concerns and the quest for chemical energy
storage have boosted the search for new applications of

carbon dioxide (CO2) beyond its current use for the
production of industrial chemicals. Obviously, utilization of
CO2 would provide an ideal, but challenging renewable one-
carbon (C1) building block in organic synthesis.1 In particular,
one of these intriguing transformations of CO2 is the
carboxylation of carbon nucleophiles, offering a straightforward
access to carboxylic acid derivatives.2 Compared to using
prefunctionalized starting materials, direct activation of C−H
bonds and subsequent carboxylation represents an attractive
and promising strategy for such CO2 reactions as the number
of steps to the target molecules is reduced, resulting in lower
cost and less waste. Due to their inherent acidity, carboxylation
of sp C−H bonds with CO2 is well developed via C−Cu or C−
Ag intermediates in the presence of a suitable base.3 Likewise,
sp2 C−H bonds were carboxylated with CO2 via deprotonation
of heterocycles with low pKa values for subsequent Au or Cu
metalation,4 or via the coordination with a directing-group to
generate C−Rh or C−Pd intermediates.5,6

Although significant progress has been made for sp and sp2

C−H bonds, direct carboxylation of sp3 C−H bonds with CO2
remains to be less explored.7 Murakami and co-workers
initially reported the direct carboxylation of benzylic sp3 C−H
bonds by using ortho-carbonyl directing groups, which can be
excited with UV light (Scheme 1, eq 1).7a Later, they disclosed
the carboxylation of an allylic C−H bond of simple alkenes
catalyzed by a ketone and a copper complex under UV
irradiation and high temperature. However, catalyst turnover
numbers were low (Scheme 1, eq 2).7b Jamison and co-
workers employed a photoredox strategy to realize carbox-

ylation of α-amino sp3 C−H bonds through the cross-coupling
between an α-amino radical and a radical anion CO2

•−,
affording an excellent approach to the synthesis of α-amino
acids (Scheme 1, eq 3).7c Notably, UV irradiation was
necessary for the above presented systems and some require
the addition of stoichiometric amounts of additives. To the
best of our knowledge, visible-light-mediated direct carbox-
ylation of sp3 C−H bonds has not been reported to date.
Herein, we disclose a novel way for the carboxylation of
benzylic sp3 C−H bonds with CO2 under visible light
irradiation and a catalytic amount of photosensitizer and
hydrogen atom transfer (HAT) catalyst (Scheme 1, eq 4).
Recently, we reported the carboxylation of (pseudo)halides

and the hydrocarboxylation of styrenes with CO2 by dual
visible-light-nickel catalysis.8 Considering the fact that an alkyl
radical can be captured by a Ni0 species9 affording a NiI

intermediate, which has been proposed as an active species for
carboxylation with CO2,

10 we envisioned a photoredox strategy
involving hydrogen atom transfer (HAT) to realize C−H bond
carboxylation with CO2. We selected 2,4,5,6-tetra(carbazol-9-
yl)isophthalonitrile (4CzIPN) and LNiBr2 (L = neocuproine)
as the photosensitizer and catalyst, respectively. Triisopropyl-
silanethiol (HAT1) was added as the HAT catalyst and
ethylbenzene was used as the model substrate, because the
product structural motif is found in some bioactive molecules,
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Scheme 1. Direct Carboxylation of sp3 C−H Bond with CO2
by Photocatalysis
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such as Ibuprofen, Naproxen and Flurbiprofen. Although an
initial attempt did not yield the desired product, encouragingly
we found that 2-phenylpropionic acid was formed in the
absence of LNiBr2 (L = neocuproine), albeit in low yield
(Table 1, entry 1). Next, different thio HAT catalysts were
investigated, where (3-mercaptopropyl)trimethoxysilane
(HAT6) showed comparable catalytic efficiency to HAT1,
while other HAT catalysts were not effective (Table 1, entries
1−9). Solvent screening revealed that dimethylformamide
(DMF) was the best choice for the formation of 2-

phenylpropionic acid (Table S1, entries 1−4). Increasing the
amount of photosensitizer slightly promoted the conversion of
the starting material, as well as the generation of the final
product (Table 1, entries 10−15), while a further increase
proved to be not beneficial (Table 1, entry 16). In comparison
with 4CzIPN, no better results were obtained when Ir
photosensitizers or other derivatives of 4CzIPN were examined
(Table S1, entries 5−11). To our delight, lowering the reaction
temperature increased the yield to 40% (Table 1, entry 17).
Importantly, 48% yield of product was generated when high
power blue light-emitting diodes (LEDs) were used (Table 1,
entry 18). Further experiments were conducted to examine the
influence of the CO2 pressure. Improved yields were obtained
when the reaction vial was pressurized to 4 atm of CO2 by
injection (Table 1, entries 19−22). Finally, control experi-
ments in the absence of HAT1, 4CzIPN and light, respectively,
gave no detectable products, confirming that each component
is essential to the success of this transformation (Table 1,
entries 23−25).
With the optimized reaction conditions in hand, we then

explored the carboxylation of other benzylic C−H bonds using
our catalytic system. As shown in Table 2, a variety of 2-
arylpropionic acids with moderate to higher yields was
obtained. Compared to para-substituted starting materials,
the same substituents at meta- or ortho-position gave higher
yields of the desired products (2b−2f). It is noteworthy that
4CzIPN (E1/2

red = −1.21 V vs SCE)11 should be replaced by
3DPAFIPN (E1/2

red = −1.59 V vs SCE)12 when 4-ethyltoluene
was used as the substrate, which can be explained by an
increased reduction potential of the benzylic radical due to the
methyl group in para-position (2d). Similarly, we employed
3DPA2FBN (E1/2

red = −1.92 V vs SCE)12 as the photosensitizer
for the carboxylation of 4-ethylanisole (2f). A range of
functional groups including fluoro (2g), chloro (2h), amide
(2i), ester (2j) and acetal (2k) are tolerated, providing the
basis for subsequent conversion of the corresponding products
into more complex compounds. Particularly, substrates bearing
2-phenyl, 4-phenyl or 4-pyrazolyl react with CO2 effectively
and afford carboxylic acids in good to excellent yields (2l, 2m
and 2n). However, aldehydes and ketones and substrates
containing bromo or iodo substituents are not compatible with
the present protocol (Table S2). The reaction gave comparable
product yields regardless of the alkyl chain length (2o, 2p and
2q). In the presence of more than one benzylic C−H site
within the substrate, monocarboxylated acids were formed
exclusively, where reactions using bibenzyl and 9,10-
dihydroanthracene performed better than reactions employing
acenaphthene and 9,10-dihydroohenanthrene (2r, 2s, 2t and
2u). The carboxylation at the benzylic position of heteroarenes
also proceeded well: 42% yield of 2-(thiophen-2-yl)propanoic
acid were isolated by using 3DPAFIPN as the photosensitizer,
while 4CzIPN promoted the carboxylation of 2-ethylbenzofur-
an to give 85% yield of 2-(benzofuran-2-yl)propanoic acid (2v
and 2w). Furthermore, we examined the carboxylation of
saturated oxygen heterocycles. It is obvious that chromane
showed higher efficiency than 2,3-dihydrobenzofuran (2x and
2y). Finally, we applied our protocol to synthesize several
drugs that contain the structure of 2-phenylpropionic acid.
Gratifyingly, Fenoprofen and Flurbiprofen were obtained in
53% and 76% yields, respectively (2aa and 2ab). For the
substrate 1-ethyl-4-isobutylbenzene, the highly selective
formation of Ibuprofen was observed; we attribute this

Table 1. Optimization of Conditionsa

Entry Catalyst
Amount of
4CzIPN CO2

Conversion
(%)b

Yield
(%)c

1d HAT1 1 mol % balloon 18 11
2 HAT2 1 mol % balloon 0 0
3 HAT3 1 mol % balloon 0 0
4 HAT4 1 mol % balloon 3 1
5 HAT5 1 mol % balloon 0 0
6 HAT6 1 mol % balloon 13 6
7 HAT7 1 mol % balloon 0 0
8 HAT8 1 mol % balloon 0 0
9 HAT9 1 mol % balloon 0 0
10e HAT1 1 mol % balloon 18 14
11e HAT1 2 mol % balloon 29 20
12e HAT1 3 mol % balloon 35 23
13e HAT1 4 mol % balloon 43 27
14e HAT1 5 mol % balloon 45 31
15e HAT1 6 mol % balloon 48 32
16e HAT1 7 mol % balloon 49 30
17e,f HAT1 6 mol % balloon 59 40
18e,f,g HAT1 6 mol % balloon 89 48
19e,f,g HAT1 6 mol % 2 atm. 90 52
20e,f,g HAT1 6 mol % 3 atm. 91 54
21e,f,g HAT1 6 mol % 4 atm. 92 57 (53)
22e,f,g HAT1 6 mol % 5 atm. 92 57
23f,g − 6 mol % 4 atm. 0 0
24e,f,g HAT1 − 4 atm. 0 0
25e,f,h HAT1 6 mol % 4 atm. 0 0

aReaction conditions: Unless otherwise noted, all reactions were
carried out with ethylbenzene (0.2 mmol), 4CzIPN, thiol catalyst
(0.02 mmol) in DMF (2 mL), irradiation with blue LEDs at 25 °C
under CO2 atmosphere for 24 h. bGas chromatography−flame
ionization detector conversion using 1,3,5-trimethoxybenzene as an
internal standard. c1H nuclear magnetic resonance yield using 1,3,5-
trimethoxybenzene as an internal standard; yield of isolated product is
given in parentheses. dWhen 0.04 mmol LNiBr2 (L = neocuproine)
was added, no desired product was observed. e0.04 mmol iPr3SiSH
was added. fThe reaction was carried out at 0 °C. gHigh power blue
LEDs were used. hThe reaction was carried out in the dark.
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outcome to steric effects (2ac). In addition, using 3DPAFIPN
promoted the generation of Naproxen in 38% yield (2ad).

To obtain mechanistic insights, we initially carried out
radical inhibition experiments. No product was formed when
2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) or butylated
hydroxytoluene was added to the reaction, suggesting the
presence of radical intermediates during the process (Scheme
S1). When d7-DMF or 1m-d2 was used, there was no H/D
scrambling within the product, as well as in the recycled
starting material, which indicates that hydrogen atoms of DMF
do not take part in the reaction and the deprotonation of the
starting material is irreversible (Scheme 2, eqs 1 and 2).

Moreover, a kinetic isotope effect was observed in the
intramolecular and intermolecular competition experiments,
demonstrating that the C−H bond cleavage is involved in the
rate-determining step (Scheme 2, eqs 3 and 4).13

Investigating the photocatalytic decarboxylation for benzy-
lation of aliphatic aldehydes, we found that one cyano (CN)
group of 4CzIPN was substituted by a benzyl (Bn) moiety to
generate 3-benzyl-2,4,5,6-tetra(9H-carbazol-9-yl)benzonitrile
(4CzBnBN), which was proposed as the main active catalyst
for carbanion generation.14 Similarly, when ethylbenzene was
used as the starting material, the formation of 2,3,4,6-tetra(9H-
carbazol-9-yl)-5-(1-phenylethyl)benzonitrile (4CzPEBN) was
detected. Considering the above-mentioned observations, a
catalytic cycle for the carboxylation of benzylic C−H bonds is
proposed. The reductive quenching of the visible-light excited
4CzPEBN* (E1/2(P

+/P*) = +1.19 V vs SCE, Figure S1 and
S2) by triisopropylsilanethiol (E1/2

ox = +0.28 V vs SCE)15 via
single electron transfer gives rise to a thiol radical cation R-
SH•+ (R = iPr3Si) together with the reduced form of the
photosensitizer, i.e., 4CzPEBN•−. Subsequently, R-SH•+ is
deprotonated to yield an electrophilic thiyl radical R-S•

(BDE(S-H) = 88.2 kcal·mol−1),15 which further abstracts a
hydrogen atom from the benzylic position of ethylbenzene
(BDE(C-H) = 85.4 kcal·mol−1)16 to close the organocatalytic
cycle and produce a benzylic radical. The previously formed
4CzPEBN•− (E1/2(P/P

•−) = −1.69 V vs SCE, Figure S1)
should be able to reduce the benzylic radical (E1/2

red = −1.60 V
vs SCE for the phenylethyl radical)17 to accomplish the
photoredox catalytic cycle and afford the carbanion of
ethylbenzene. It is well-known that this anion can be readily
captured by CO2,

18 generating the final product after
protonation. Overall, CO2 formally inserts into the benzylic

Table 2. Scope of Carboxylation of Benzylic C−H bond
with CO2

a

aAll reactions were carried out with ethylbenzene derivatives (0.2
mmol), iPr3SiSH (0.04 mmol), 4CzIPN (0.012 mmol), and 4 atm of
CO2 in anhydrous DMF (2 mL), irradiation with blue LEDs at 0 °C
for 24 h. b4CzIPN was replaced by 3DPAFIPN. c4CzIPN was
replaced by 3DPA2FBN. 3DPAFIPN: 2,4,6-tris(diphenylamino)-5-
fluoroisophthalonitrile. 3DPA2FBN: 2,4,6-tris(diphenylamino)-3,5-
difluorobenzonitrile.

Scheme 2. Deuterium-Labeling Experiments
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C−H bond without the addition of any sacrificial reagent
(Scheme 3).

To summarize, we have designed a novel and atom-
economic strategy for the carboxylation of C−H bonds with
CO2. An unprecedented visible-light-mediated benzylic C−H
bond carboxylation was achieved via the synergistic merger of
photoredox and organocatalysis. It is noteworthy that this
reaction proceeds smoothly without adding any metal reagent,
sacrificial electron donor, electron acceptor or stoichiometric
additive, affording the desired carboxylic acids in moderate to
excellent yields with a broad substrate scope. Particularly, our
protocol is applicable to the synthesis of several drugs, such as
Fenoprofen, Flurbiprofen and Naproxen. Further studies
aiming to achieve other types of C−H bond carboxylation
by this strategy are currently under investigation.
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