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Enhancement of many-body quantum interference in chaotic bosonic systems
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Although highly successful, the truncated Wigner approximation (TWA) leaves out many-body
quantum interference between mean-field Gross-Pitaevskii solutions as well as other quantum ef-
fects, and is therefore essentially classical. Turned around, this implies that if a system’s quantum
properties deviate from TWA, they must be exhibiting some quantum phenomenon, such as local-
ization, diffraction, or tunneling. Here, we consider in detail a particular interference effect arising
from discrete symmetries, which can lead to a significant enhancement of quantum observables with
respect to the TWA prediction, and derive an augmented version of the TWA in order to incorpo-
rate them. Using the Bose-Hubbard model for illustration, we further show strong evidence for the
presence of dynamical localization due to remaining differences between the TWA predictions and
quantum results.

For an ultracold bosonic system sufficiently isolated
from its environment, a host of fascinating many-body
quantum phenomena can be explored. Effects such as
various aspects of quantum tunneling [1, 2], quantum re-
vivals of coherent states that have initially dispersed [3],
and the more subtle coherent backscattering in Fock
space [4, 5], are all significant examples.

In the context of single particle or few-body systems,
some phenomena have their most striking manifestation
in a system’s time evolution, such as the aforementioned
revivals [6, 7], but others, such as localization in its var-
ious forms, have unique signatures in the time domain
as well [8–12]. The onsets of these signatures typically
begin beyond an Ehrenfest time scale [13, 14] in which
even the most localized initial states must disperse. For
bounded, strongly chaotic dynamical systems, this time
scale is logarithmically-short-in-~.

The high density limit of ultracold bosonic many-body
systems has a deep formal similarity to the semiclassi-
cal limit of few- (single) body systems, with the inverse
filling factor playing the mathematical role of ~, and
the classical mean-field solutions (of the Gross-Pitaevskii
equation or its discrete version) the role of classical tra-
jectories [4]. A complete semiclassical theory includes
interference, diffraction, and tunneling, and thus, gen-
erally speaking, quantum phenomena identified in sin-
gle particle systems are expected to have their analogs
in many-body systems as well. This, in particular, im-
plies a breakdown beyond the Ehrenfest time scale of the
“naive” classical mean-field approximation. It is far from
evident though how such post-Ehrenfest processes can be
employed in practice for exploring genuinely quantum ef-
fects associated with bosonic many-body systems, such as
interferences in Fock space. Indeed, although these inter-
ferences are supposed to manifest themselves sensitively
in the form of rapid oscillations within the time evolution
of the quantum many-body wavefunction describing the
system, the observable impacts of these rapid oscillations

become, under many circumstances, effectively washed
out as soon as the detailed information contained in the
many-body wavefunctions is projected onto the expecta-
tion value of a generic single-particle operator.

This actuality, which is discussed below in greater
detail, lies at the heart of the success of the essen-
tially classical phase-space method known as the trun-
catedWigner approximation (TWA) [15–17]. In practice,
TWA amounts to performing a Monte-Carlo sampling
of the time evolution of a quantum many-body state in
terms of Gross-Pitaevskii (GP) trajectories, i.e., classi-
cal fields that evolve according to a GP equation, whose
initial values are randomly chosen such that they cor-
rectly sample the phase space distribution of the initial
quantum state under consideration [15, 16]. The pos-
sible occurrence of quantum interference between those
GP trajectories is completely neglected within the TWA
(as are diffractive or classically prohibited trajectories),
more or less as though the systems were weakly, but just
sufficiently, coupled to a decohering environment.

As long as some effective time average is performed
when comparing with experimental data, there is a gen-
eral expectation that the above reasoning remains valid
also for the expectation values of more sophisticated
many-body observables, such as the detection probabil-
ity of a given Fock state with respect to a single-particle
basis. On the other hand, a significant deviation of a
system’s time-averaged behavior with respect to the the
TWA prediction is a sensitive indicator of some special
many-body quantum phenomenon.

Ahead, survival probabilities of coherent states, i.e. the
absolute square of the overlap of an evolved coherent
state with it’s initial self, are considered as an especially
interesting class of measures. The coherent states have
minimum uncertainty and are initially the most classi-
cal possible [18]. Furthermore, the survival probability
with some time averaging that eliminates the “generic”
rapid interference oscillations contains a great deal of in-
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formation about the various other surviving and more
robust forms of quantum effects. Discrete symmetries,
which have a long history, e.g. from Bragg scattering [19],
molecular spectroscopy [20], electronic transport [21], to
topological materials [22], lead to such surviving con-
structive interferences. In this letter we show how to
incorporate those effects into the TWA, and how such
symmetry-related interferences emerge after the Ehren-
fest time. We also argue that the further deviations af-
ter time averaging between the TWA and certain Bose-
Hubbard model cases shown ahead are signatures of dy-
namical localization due to quantum interference in a
many-body context.
Clearly, for the survival probability an excess of con-

structive interference for any reason would lead to the
TWA underestimating the quantum results, and con-
versely an excess of destructive interference would lead to
the TWA overestimating them. It is not immediately ob-
vious how to incorporate dynamical effects into the TWA
such as scarring [10], dynamical localization in systems
with classical transport barriers [12] or diffusive dynam-
ics [8], or tunneling, although such effects would create
telltale signals in the behavioral differences between the
TWA and quantum results [23]. However, it is possible
to derive an enhanced version of the TWA accounting for
discrete symmetry quantum interference effects.
Indeed, as illustrated in Fig. 1, if both the Hamilto-

nian and the survival probability are symmetric individ-
ually with respect to some group of symmetry operations
(e.g., reflection, permutation, discrete rotation), then the
usual TWA calculation underestimates the mean value of
such an observable beyond the Ehrenfest time by a time-
dependent mean symmetry factor 〈g〉; this factor can be
arbitrarily large depending on the symmetry group. The
unaccounted for enhancement is due to systematic con-
structive many-body interferences that arise between the
contributions of symmetry-related GP trajectories.
The TWA can be obtained from a semiclassical van

Vleck-Gutzwiller description of the time evolution of ul-
tracold bosonic system by applying the so-called diagonal
approximation [25–28]. To make this point clear, assume
that the time evolution can be well represented within a
finite discrete one-body basis containing L single-particle
wavefunctions. In the case of a Bose-Einstein condensate
that is confined within an optical lattice, those single-
particle wavefunctions would most naturally be given by
the Wannier orbitals associated with the individual sites
of the lattice. The quantum system is then most gen-
erally described by a Bose-Hubbard Hamiltonian of the
form

Ĥ =

L
∑

l,l′=1

Hl,l′ b̂
†
l b̂l′ +

1

2

L
∑

l=1

Ulb̂
†
l b̂

†
l b̂lb̂l (1)

with Hl,l′ = H∗
l′,l the one-body Hamiltonian matrix ele-

ments and Ul the on-site interaction energies.
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FIG. 1. (Color online) (a) Survival probability of an initial
condensate coherent state, |Φ0〉, versus scaled time Jτ . The
time averaged [24] quantum calculation, dark (blue) line, is
done for an initial coherent state centered at (

√
9, 1,

√
9, 1)

for an L = 4-site Bose-Hubbard ring (hopping and on-site
interaction energies, J and U , respectively, and N = 20 the
mean total number of particles) with NU/LJ = 0.5. Con-
ventional TWA simulations, noisy (green) line, significantly
underestimate the quantum result. The symmetry enhanced
TWA, noisy (red) line with its time average [24] (yellow line)
on top, is much closer. The insert shows the ratio of the
two TWA calculations, 〈g〉. (b) Similar to (a) except for the

coherent state centered at (
√
18,

√
2,
√
18,

√
2) for which ~̃ is

half as large. The agreement improves and 〈g〉 is seen to ap-
proach the maximum possible, L = 4, unlike in (a) where it
approaches ≈ 3.2 (see insets).

Introducing the quadrature operators (q̂j , p̂j) defined
as

b̂j =
q̂j + ip̂j
√

2~̃
, b̂†j =

q̂j − ip̂j
√

2~̃
. (2)

where here ~̃ equals the inverse of the mean filling fac-
tor, i.e. ratio of the site number to mean total particle
number, L/N , and following Ref. [27], the semiclassical
propagator is most conveniently represented in the |q〉
basis associated with q̂ ≡ (q̂1, . . . , q̂L). For a large total
number of particles, the matrix elements of the time evo-
lution operator can be expressed within the quadrature
basis as a sum over mean-field trajectories,

〈qf |e−iτĤ/~̃|qi〉 =
∑

γ

Aγ(qf ,qi)e
iRγ (qf ,qi)/~̃−iκγπ/2

(3)
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which go from qi to qf in the scaled time τ = ~̃t/~.
For the Hamiltonian of Eq. (1) such a trajectory would
correspond to a solution of the GP equation

i~̃
∂

∂τ
ψl(τ) =

L
∑

l′=1

Hl,l′ψl′ (τ) + Ul(|ψl(τ)|2 − 1)ψl(τ) (4)

satisfying the boundary conditions Re[ψl(0)] = qli/
√

2~̃

and Re[ψl(τ)] = qlf/
√

2~̃. Rγ(qf ,qi) represents its as-
sociated principal function or action integral, the integer
Morse index κγ counts the number of conjugate points
along the trajectory (see supplementary materials for fur-
ther details).

Any generic single- or many-particle observable in this
bosonic system can be expressed in terms of the quadra-
ture operators as f̂ ≡ f(q̂, p̂) yielding, e.g., b̂†l b̂l =

(q̂2l + p̂
2
l − ~̃)/2~̃ for the occupancy on site l. Given an ini-

tial many-body state |Φ0〉, the time evolution 〈f̂〉(τ) ≡
Tr[f̂ ρ̂τ ] of the mean value of such an observable, with

ρ̂τ ≡ |Φτ 〉〈Φτ | and |Φτ 〉 ≡ e−iτĤ/~̃|Φ0〉, is then expressed
as a double sum over trajectories (γ′ : q′ → q, γ′′ : q′′ →
q):

〈f̂〉(τ) =
∫

dq′
idq

′′
i dq

′
fdq

′′
fΦ

∗
0(q

′
i)Φ0(q

′′
i )〈q′

f |f̂ |q′′
f 〉

×
∑

γ′,γ′′

A∗
γ′(q′

f ,q
′
i)Aγ′′(q′′

f ,q
′′
i ) (5)

× exp

[

i

~̃
(Rγ′′(q′′

f ,q
′′
i )−Rγ′(q′

f ,q
′
i))− i(κγ′′ − κγ′)

π

2

]

,

where Φ0(q) represents the initial quantum many-body
wavefunction in the q-quadrature basis.

For an averaging process that suppresses oscillating
terms, the main contributions to this integral are ex-
pected to be given by the diagonal approximation. This
implies two crucial assumptions: (i) that in the double
sum over trajectories, all terms for which the two action
integrals Rγ′ and Rγ′′ correspond to different orbits can-
cel out; and (ii) only short chords [29], i.e. points such
that q′

i ≃ q′′
i and q′

f ≃ q′′
f are going to contribute sig-

nificantly to the integrals. If so, one may transform the
double sum in Eq. (5) into a single sum over mean field
trajectories and expand in the small parameter associ-
ated with the chord. This leads to

〈f̂〉diag(τ) =
∫

dQidPi

(2π~̃)L
[ρ0]W (Qi,Pi) [f ]W (Qf ,Pf ) ,

(6)
where (Qf ,Pf ) has to be understood as the final point
in phase space at time τ of the trajectory initiated at
(Qi,Pi), and with the Wigner transform of an operator
Ô defined as

[O]W (Q,P) ≡
∫

dδqe(i/~̃)P·δq〈Q+
δq

2
|Ô|Q− δq

2
〉 . (7)

Provided the observable f is a rather smooth and well-
behaved function of q and p, the Wigner transform
[f ]W (Qf ,Pf ) can, to within small ~̃ corrections, further-
more be approximated by f(Qf ,Pf ), and the integral
in Eq. (6) can be evaluated by means of a Monte-Carlo
method, this becomes the TWA.

The above reasoning normally would be valid as long
as either the expectation value itself, or some further
temporal or configuration averages, removes the contri-
butions of the non-diagonal terms in Eq. (5). However,
if there exists some discrete symmetry, more care must
be exercised. Consider an initial condensate wavefunc-
tion that is symmetric with respect to a given parity ex-
hibited by the Hamiltonian and a many-body observable
f̂ . Within the phase space there is a subspace of points
that are their own parity partners. Denote it the sym-
metry subspace. At long times nearly every trajectory
γ that significantly contributes to the semiclassical ex-
pression, Eq. (5), for the mean value of this observable
leaves the neighborhood of the symmetry subspace and
has a symmetry-related partner trajectory γ̃, which is ob-
tained by applying the parity operator onto γ and which
exhibits the same action integral as γ. In particular,
partner trajectories satisfy Rγ̃(q̃f , q̃i) = Rγ(qf ,qi) and
thus also Aγ̃(q̃f , q̃i) = Aγ(qf ,qi). The contributions of
those two trajectories therefore interfere constructively
within Eq. (5). As a consequence, Eq. (6), which entirely
neglects those interferences, underestimates the true ex-
pectation value of the considered observable f̂ by a factor
two.

To account for this effect in a quantitatively correct
manner within TWA, each trajectory must be associated
with its particular symmetry factor, gγ , that correctly
counts the number of other symmetry-related trajecto-
ries with which constructive interference will arise. A
naive way to approach that problem would be to per-
form the Monte-Carlo calculation implied by Eq. (6) and
multiply each contribution by its number of existing dis-
tinct symmetry related orbits. However, since the num-
ber of orbits that are symmetric under an element of the
symmetry group is of measure zero, this would lead to
multiplying the TWA result by a global factor gmax (the
number of elements of the symmetry group), which en-
tirely misses the transient shift from unity to maximum
at relatively short dynamical times, and misses the fact
that due to coherent state spread, the long time 〈g〉 can
saturate below gmax; see Fig. 1a where gmax = 4.

A less intuitive and more precise picture for why this
approach cannot succeed is that the correct enhancement
factor gγ is not the symmetry of the orbit itself, but that
of its family of orbits defined by the neighborhood of
a “saddle trajectory” [30]. This aspect appears when
some of the integrals of Eq. (5) are performed within
the stationary phase approximation (hence, “saddle tra-
jectory”), and the contributions of orbit families (sad-
dle trajectory neighborhoods) are naturally grouped to-
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gether. This alternative approach involves locating com-
plex saddle trajectories [28, 30–34] in order to evaluate
the mean value of observables, and lacks the simplicity
of the “initial value” formulation of the TWA, Eq. (6).
The conventional implementation of the TWA can be

amended to incorporate the impact of discrete symme-
tries in an automated manner. First, note that “sym-
metric” trajectories with respect to a given symmetry
operation must remain during their entire evolution in
the neighborhood of the relevant symmetry subspace,
and that non-symmetric ones do not. Hence, in order
to discriminate between those possibilites, it is sufficient
to introduce an ~̃ distance scale d in phase space through
which the notion of “closeness” to a symmetry subspace
can be properly defined. A trajectory that is computed
within the framework of Eq. (6) is symmetric with respect
to a given symmetry subspace if its distance to that sub-
space (defined through a standard norm in phase space)
remains below d for its entire evolution time. Otherwise,
it is non-symmetric with respect to that subspace, and in
that case its contribution is multiplied by the associated
enhancement factor. Up to the Ehrenfest time, trajecto-
ries cannot leave a symmetric subspace and return. The
mean value of f is then provided by symmetric trajec-
tories, i.e., pairs, both of whose members are included
within the short chord approximation: their γ does not
give rise to a distinct γ̃ (γ = γ̃). Thus, the the dynamics
need time to explore phase space sufficiently to manifest
the symmetry’s existence, and this leads to time scales
associated with increasing multiplicities, depending on
the symmetry group.
The “symmetry-enhanced” curves in Fig. 1 have been

constructed following this approach. It shows a homo-
geneous 1D Bose-Hubbard chain with L = 4 sites and
periodic boundary conditions. This system is modeled
by Eq. (1) with the specific choices Ul = U > 0 for all l
and Hll′ = −J < 0 if l′ = l ± 1 (mod L) and zero oth-
erwise. Furthermore, consider an initial coherent state
for a perfect BEC centered about the field amplitudes

ψ
(0)
l = (q

(0)
l + ip

(0)
l )/

√

2~̃ [35], which is equivalent to a
wave packet up to a global phase [28]

Φ0(q) =
1

(π~̃)
L
4

exp

[

− (q− q(0))2

2~̃
+
i

~̃
p(0) · (q− q(0))

]

.

(8)
More specifically, consider the coherent state density

waves: (a) (
√
9, 1,

√
9, 1) and (b) (

√
18,

√
2,
√
9,
√
2) as

initial states, and the many-body observable of interest
given by f̂ = |Φ0〉〈Φ0| = ρ̂0, whose expectation value
is the survival probability, |〈Φ0|Φτ 〉|2, after a given evo-
lution time τ , where we perform a time average [24] in
order to filter out rapid oscillations arising due to the
generic quantum interferences. The symmetry group in
this example is larger than the one associated with sim-
ple parity. As a consequence, the enhancement factor,
which depends on the group, is larger than two. Indeed,

for a Bose-Hubbard ring with equal on-site interaction
energies (all Ul = U) and only equal nearest neighbor
one-body terms, the full discrete group includes cyclic
permutations and a clockwise-counterclockwise equiva-
lence (like reverse site ordering). The maximum possible
enhancement factor for such a system, before account-
ing for the symmetry of the initial state and observable,
is twice the number of sites in the ring, 2L. However,
the density wave partially breaks the full system dynam-
ical symmetry as only even cyclic permutations leave it
invariant. Thus, the maximum symmetry enhancement
factor is reduced by a factor two to L, which equals 4 in
our figures.

The curve thus obtained accounting for gγ (noisy red
line) is seen in Fig. 1 to perfectly follow the smoothed
exact quantum result. Evidently, this approach can
straightforwardly be generalized to account for the pres-
ence of larger symmetry groups in the Hamiltonian and
the initial state. In calculations not shown with L = 6,
the enhanced TWA saturated at a factor 〈g〉 = 6, and
the agreement with the smoothed exact quantum result
is excellent. Note that this factor could be much larger.
For the fully connected Bose-Hubbard model studied in
Ref. [37], the maximum enhancement factor for a density
wave survival probability would be (L/2)!2.

In a second example shown in Fig. 2, a different initial
coherent state is chosen, other parameters the same as
before, for which just beyond the Ehrenfest time there is
rough agreement between the symmetry enhanced TWA
and the smoothed quantum survival probability. How-
ever, with increasing time there is a decrease in the TWA
indicating that new regions of phase space are opening up
with time, and yet the quantum average does not follow
this decrease. This demonstrates that the system is un-
dergoing additional quantum interference effects, which
in this case strongly suggests a dynamical localization
process. One for which there are time scales beyond the
Ehrenfest time in which the classical trajectories are con-
tinuing to access new regions of phase space that the
quantum system cannot.
In summary, the very successful TWA approximation

can be extended to account quantitatively for basic con-
structive interference effects enforced by the existence of
discrete symmetries, which can involve large enhance-
ment factors. In the time domain, discrete symmetries re-
veal themselves over time and depending on the dynamics
incorporate multiple time scales. For example, the L = 8
ring has subspaces with factors, 1, 2, 4, 8. For some ini-
tial condensate coherent states and values ofNU/LJ , the
Lyapunov exponent in the direction of the double degen-
eracy symmetry subspace is much greater than that for
4 or 8. The factor 2 then enters the dynamics well before
the higher degeneracy factors.

In addition, deviations between the TWA and quan-
tum behaviors of the survival probability indicate the
presence of some genuine quantum effect such as local-
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FIG. 2. (Color online) Same as Fig. 1 for the initial
condensate coherent state centered at (

√
19, 1,

√
19, 1) with

NU/LJ = 0.5. The slow decay of classical survival probabil-
ity after Jτ ≈ 10 is not followed by the quantum time aver-
aged survival probability. This behavior strongly suggests a
dynamical localization process.

ization, diffraction, or tunneling. In the case shown here,
the initial agreement followed by a divergence appears to
be due to a quantum interference effect leading to dynam-
ical localization. This is distinctly different from a clas-
sical localization in which the GP solutions are trapped
or fail to explore phase space regions common in mixed
phase space systems, for example, the macroscopic self-
trapping discussed in Ref. [37]. More work is needed to
separate signals of the various forms of localization from
each other or from tunneling and diffraction effects, and
is left for the future.
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SUPPLEMENTARY MATERIAL

In this supplementary material we provide some of the
details leading to Eq. (6). First, note that the prefactor
can be written as

Aγ(qf ,qi) =
eiπα/4

(2π~̃)L/2
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(9)
with α the index of inertia of −∂qi/∂pi [? ]. Next,
starting from Eq. (5), assume that the contributions of
non-identical pairs of orbits cancel out because of the
time average, and that only short chords, i.e. points such

that q′
i ≃ q′′

i and q′
f ≃ q′′

f contribute significantly. In
such a case, the variables Qf,i ≡ (q′′

f,i + q′
f,i)/2 and

δqf,i ≡ (q′′
f,i − q′

f,i) can be introduced. The key is
to expand in the “small” variables δqf,i, which means
more specifically keeping only the zero’th order term for
the smooth function Aγ but expanding the action Rγ to
first order. With γ′ = γ′′ = γ, and using the property

p
(γ)
f = ∂Rγ/∂qf ; p

(γ)
i = −∂Rγ/∂qi (with p

(γ)
i and p

(γ)
f

the initial and final “momenta” of the trajectory γ), gives

〈f̂〉(t)diag =

∫

dQidQfdδqfdδqi 〈q′′
i |ρ̂0|q′

i〉 〈q′
f |f̂ |q′′

f 〉.

×
∑

γ

|Aγ(QfQi)|2 exp
[
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(

p
(γ)
f δqf − p

(γ)
i δqi

)

]

=

∫

dQidQf

∑

γ

|Aγ(QfQi)|2[ρ0]W (Qi,p
(γ)
i )

×[f ]W (Qf ,p
(γ)
f ) , (10)

with ρ̂0 ≡ |Φ0〉〈Φ0| the initial density. Note that
−∂2Rγ/∂Qf∂Qi = ∂Pi/∂Qfγ . Therefore, the determi-

nant in Eq. (9) is just the Jacobian of the transformation
from the final “position” Qf to the initial “momentum”

Pi. Thus,
∑

γ

∫

dQf |Aγ |2 7→ (2π~̃)L
∫

dPi leading to
Eq. (6).


