
Regulation of the actin cytoskeleton in 

podocytes by the transcription factor 

LMX1B 

 

DISSERTATION ZUR ERLANGUNG DES DOKTORGRADES 

DER NATURWISSENSCHAFTEN (DR. RER. NAT.) DER 

FAKULTÄT FÜR BIOLOGIE UND VORKLINISCHE MEDIZIN 

DER UNIVERSITÄT REGENSBURG 

 

 

vorgelegt von 

Markus Setzer 

aus 

Neumarkt i. d. OPf. 

im Jahr 

2018  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Das Promotionsgesuch wurde eingereicht am: 

 

 

Die Arbeit wurde angeleitet von: 

Prof. Dr. Ralph Witzgall 

 

_____________________________ 

Markus Setzer 



TABLE OF CONTENT I 

 

Table of Content 

1. Introduction ..................................................................................................................... 1 

1.1. Nail-patella syndrome .............................................................................................. 1 

1.2. Structural composition of the kidneys ...................................................................... 2 

1.3. The renal corpuscle .................................................................................................. 3 

1.4. The glomerular filtration barrier .............................................................................. 4 

1.4.1. Endothelium ...................................................................................................... 4 

1.4.2. Glomerular basement membrane ...................................................................... 5 

1.4.3. Podocytes .......................................................................................................... 7 

1.5. The actin cytoskeleton ............................................................................................ 14 

1.5.1. Structure .......................................................................................................... 14 

1.5.2. Function .......................................................................................................... 15 

1.5.3. Important actin-binding proteins .................................................................... 15 

1.5.4. Key regulators: Rho family of GTPases ......................................................... 19 

1.5.5. Effect of cytochalasin D on the actin cytoskeleton ......................................... 21 

1.6. LMX1B .................................................................................................................. 22 

1.6.1. Linkage to nail-patella syndrome ................................................................... 22 

1.6.2. Structure and mutations .................................................................................. 22 

1.6.3. Overview of target genes ................................................................................ 23 

1.6.4. Influence of Lmx1b on the actin cytoskeleton of podocytes .......................... 24 

1.7. LMX1B regulated proteins .................................................................................... 24 

1.7.1. Abra ................................................................................................................ 24 

1.7.2. Arl4c ............................................................................................................... 26 

1.7.3. Transgelin ....................................................................................................... 27 

1.8. Mouse lines and the human podocyte cell line (hPCL) ......................................... 28 

1.8.1. Podocyte-specific Lmx1b knock-out ............................................................... 28 

1.8.2. Inducible podocyte-specific Lmx1b knock-out ............................................... 29 

1.8.3. Human podocyte cell line ............................................................................... 31 

1.9. Aim of this study .................................................................................................... 32 

2. Materials and Methods .................................................................................................. 34 



II TABLE OF CONTENT 
 

2.1. Materials ................................................................................................................ 34 

2.1.1. Consumables .................................................................................................. 34 

2.1.2. Chemicals and reagents .................................................................................. 35 

2.1.3. Buffers, solutions and media .......................................................................... 37 

2.1.4. Enzymes, kits and markers ............................................................................. 44 

2.1.5. Antibodies and peptides ................................................................................. 45 

2.1.6. Oligonucleotides for genotyping .................................................................... 47 

2.1.7. Plasmids and cell lines ................................................................................... 47 

2.1.8. Equipment and instruments ............................................................................ 48 

2.1.9. Software and tools .......................................................................................... 51 

2.2. Working with bacteria and recombinant protein purification ............................... 52 

2.2.1. Cultivation and recombinant protein expression ............................................ 52 

2.2.2. Plasmid DNA isolation ................................................................................... 52 

2.2.3. Recombinant protein purification using His•Bind columns ........................... 53 

2.3. Working with proteins ........................................................................................... 53 

2.3.1. Determination of protein mass concentration ................................................ 53 

2.3.2. Separation of proteins and peptides ............................................................... 54 

2.3.3. Western blotting ............................................................................................. 56 

2.3.4. CNBr-activated Sepharose 4B coupling ........................................................ 57 

2.3.5. Antibody affinity purification ........................................................................ 57 

2.4. Working with mice ................................................................................................ 58 

2.4.1. Mouse transgenes ........................................................................................... 58 

2.4.2. General handling and breeding ...................................................................... 59 

2.4.3. Genotyping ..................................................................................................... 59 

2.4.4. Collection and analysis of urine samples ....................................................... 61 

2.4.5. Induction of Lmx1b knock-out ....................................................................... 62 

2.5. Working with kidney sections ............................................................................... 63 

2.5.1. Kidney perfusion fixation ............................................................................... 63 

2.5.2. Embedding and slice preparation ................................................................... 63 

2.5.3. Staining of paraffin sections ........................................................................... 65 

2.5.4. Staining of cryosections ................................................................................. 66 



TABLE OF CONTENT III 

 

2.5.5. Contrasting of epon sections and quantification of filtration slits .................. 67 

2.6. Isolation of glomeruli and primary podocytes ....................................................... 67 

2.6.1. Isolation of glomeruli and outgrowth of primary podocytes .......................... 67 

2.6.2. Isolation of glomeruli and podocytes using enzymatic digestion ................... 68 

2.7. Working with glomeruli ......................................................................................... 70 

2.7.1. Rho family activation assays .......................................................................... 70 

2.8. Working with cells ................................................................................................. 73 

2.8.1. Mammalian cell culture .................................................................................. 73 

2.8.2. Transient transfection ..................................................................................... 74 

2.8.3. Coating with laminin-521 ............................................................................... 75 

2.8.4. Fixation and immunofluorescence / phalloidin staining ................................. 75 

2.8.5. Cell lysis ......................................................................................................... 76 

2.8.6. Random movement of primary podocytes ...................................................... 77 

2.8.7. Morphology of spreading and steady state podocytes .................................... 77 

2.8.8. Cytochalasin D treatment of primary podocytes ............................................ 78 

2.8.9. Analysis of -integrin activity of glomerular cells by flow cytometry ........ 80 

3. Results ........................................................................................................................... 81 

3.1. Validation of target gene expression ...................................................................... 81 

3.1.1. Affinity purification of rabbit antisera ............................................................ 81 

3.1.2. Quantification of target gene expression by western blotting ........................ 83 

3.2. Dysregulation of the actin cytoskeleton ................................................................. 83 

3.2.1. Mean phalloidin intensity ............................................................................... 85 

3.2.2. Random movement ......................................................................................... 86 

3.2.3. Morphology of spreading and steady state podocytes .................................... 87 

3.2.4. Effect of cytochalasin D treatment on podocytes ........................................... 90 

3.3. Dysregulation of signaling pathways regulating the actin cytoskeleton ................ 95 

3.3.1. Activity of Rho GTPases ................................................................................ 95 

3.3.2. Phosphorylation of the myosin light chain 2 .................................................. 97 

3.3.3. Influence of signaling cascades on the spreading of primary podocytes ........ 99 

3.4. Dysregulation of focal adhesions ......................................................................... 102 



IV TABLE OF CONTENT 
 

3.4.1. Activation of 1-integrin .............................................................................. 102 

3.5. Investigation of transgelin in Lmx1b knock-out podocytes and mice ................. 107 

3.5.1. Subcellular localization of transgelin in primary podocytes ........................ 107 

3.5.2. Phenotypic characterization of Lmx1b and Sm22 double knock-out mice ... 110 

3.5.3. Investigation of Lmx1b, Sm22 double knock-out mice 8 days postnatally .. 113 

4. Discussion .................................................................................................................. 120 

4.1. Investigation of Lmx1b and Lmx1b target gene expression on the protein level 121 

4.1.1. Validation of full-length Lmx1b deletion .................................................... 121 

4.1.2. Expression of homeodomain-lacking Lmx1b .............................................. 121 

4.1.3. Potential regulation of Abra expression by Lmx1b ..................................... 122 

4.1.4. Arl4c expression is regulated by Lmx1b ...................................................... 122 

4.1.5. Transgelin is expressed in Lmx1b knock-out podocytes .............................. 123 

4.2. Dysregulation of the actin cytoskeleton of primary Lmx1b-deficient podocytes 124 

4.2.1. Dysregulations observed in untreated cells .................................................. 125 

4.2.2. Dysregulation observed in cytochalasin D treated cells ............................... 126 

4.3. Influence of Lmx1b on actin-regulatory signaling pathways .............................. 128 

4.3.1. The activity of RhoA and Cdc42, but not Rac1, is influenced by Lmx1b ... 128 

4.3.2. Increased MLC activity in Lmx1b-deficient hPCL ...................................... 129 

4.3.3. LIMK, but not ROCK, is part of a dysregulated pathway ........................... 130 

4.3.4. Signaling relations of investigated proteins ................................................. 131 

4.4. Influence of Lmx1b on focal adhesions .............................................................. 133 

4.5. Effect of Sm22 deletion on Lmx1b knock-out podocytes and mice .................... 134 

4.5.1. Transgelin colocalizes with actin in steady state podocytes ........................ 134 

4.5.2. Survival and proteinuria of Sm22 / Lmx1b double knock-out mice ............. 135 

4.5.3. Effect of Sm22 deletion on Lmx1b knock-out kidney physiology ............... 135 

5. Summary .................................................................................................................... 137 

6. Bibliography ............................................................................................................... 140 

7. List of abbreviations ................................................................................................... 160 

8. Appendix .................................................................................................................... 165 

9. Acknowledgement ...................................................................................................... 172 



INTRODUCTION 1 

 

 

1. Introduction 

1.1. Nail-patella syndrome 

Nail-patella syndrome (NPS) is an autosomal-dominant hereditary disease with an 

incidence of approximately 1:50 000 (Bongers et al., 2002). While most patients suffer 

from dysplastic finger- and toenails (95 – 100%; Figure 1.1, A) and absent or hypoplastic 

patellae (74 - 93%; Figure 1.1, B), the occurrence of other symptoms is both interfamilial 

and intrafamilial quite diverse. These include iliac horns (68 – 81%), ocular symptoms like 

glaucoma (10 – 12%), ocular hypertension (4 – 7%) and iris hyperpigmentation (46 – 54%) 

and for the prognosis most important renal abnormalities (40%) (Witzgall, 2017). Renal 

symptoms often develop over years and range from mild proteinuria and hematuria to end-

stage renal disease (Sweeney et al., 2003). In most cases of NPS, mutations of a gene 

encoding the LIM homeobox transcription factor 1 beta (LMX1B) is associated to the 

disease (Dreyer et al., 1998; McIntosh et al., 1998; Vollrath et al., 1998). 

 

Figure 1.1: Photographs of nails and knees of NPS patients. [A] Dysplastic thumbnails. [B] 

Subluxation of the patellae on knee flexion (Sweeney et al., 2003). 
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1.2. Structural composition of the kidneys 

The kidneys are two bean-shaped organs located retroperitoneal on both sides of the body. 

They take part in control of electrolyte concentrations, osmolality, acid-base balance and 

regulation of blood pressure, but most importantly they are responsible for blood filtration. 

The functional unit of the kidney is the nephron, consisting of the renal corpuscle and a 

tubular system, subdivided into the proximal and distal tubule (Figure 1.2). The average 

nephron number per human kidney is around 1 million, but numbers of individuals can 

differ widely (Bertram et al., 2011). The renal corpuscle is the place of the initial blood 

filtration resulting in 180 L primary urine per day, which is subsequently concentrated by 

the adjacent tubular system to 2 – 3 L per day. Histologically the kidney can be divided into 

the two major parts cortex and medulla. While renal corpuscles and both proximal and 

distal tubular segments are present in the cortex, the medulla is void of renal corpuscles. 

 

Figure 1.2: Schematic overview of a kidney and more detailed illustrations of a kidney section 

and a nephron. The glomerulus is a part of the renal corpuscle, where the blood is filtered to 

produce primary urine, which is resorbed to large parts by the following tubular system [modified 

from (Wessely et al., 2014)]. 
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1.3. The renal corpuscle 

The blood is filtered within the renal corpuscles, which are also called Malpighian 

corpuscles. As in this work, the term glomerulus is often used synonymously, although it 

describes more precisely the capillary tuft in the center of a renal corpuscle, composed of 

capillaries and the mesangium (Figure 1.3, A). The mesangium, which consists of the 

mesangial matrix and mesangial cells, stabilizes the tuft, while the endothelium of the 

capillary wall is fenestrated allowing the blood to flow through. The capillaries are covered 

by podocytes at the exterior (Figure 1.3, B), assembling the inner, visceral layer of the 

Bowman’s capsule. The outer leaf of the Bowman’s capsule is called parietal layer and is 

composed of parietal cells, enclosing the whole structure. Located in-between the 

podocytes and the fenestrated endothelium is the glomerular basement membrane (GBM), 

an extracellular matrix compartment secreted from both cell types (Figure 1.3, C). The 

entity of the fenestrated endothelium, the GBM and the podocytes is called glomerular 

filtration barrier (GFB). The blood enters and leaves the glomerulus through afferent and 

efferent arterioles at the vascular pole, while the primary urine leaves the renal corpuscle at 

the opposing urinary pole (Figure 1.3, A). 

 

Figure 1.3: Composition of the renal corpuscle and the glomerular filtration barrier (GFB). 

[A] Schematic view of a renal corpuscle. Filtration takes place at the GFB composed of fenestrated 

endothelial cells (EC), the glomerular basement membrane (GBM, red) and interdigitating foot 
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processes extending from the podocyte bodies. Mesangial cells (MC) secrete the mesangial matrix, 

together forming a stabilizing backbone (Sugimoto et al., 2006). [B] SEM micrograph of 

interdigitating podocyte foot processes of a C57BL/6 mouse attached to the capillary loops; scale 

bar: 2 µm; (Burghardt et al., 2015) [C] TEM micrograph of a glomerular filtration barrier composed 

of the fenestrated endothelium (E), the glomerular basement membrane (GBM) and podocyte foot 

processes (FP). Slit diaphragms (SD) span the gap between adjacent foot processes. (BS), Bowman 

space; (CL), capillary lumen; (Mundel and Reiser, 2010) 

1.4. The glomerular filtration barrier 

The transition from blood to primary urine occurs at the glomerular filtration barrier within 

the renal corpuscle. It is composed of three layers: the fenestrated endothelium, the GBM 

and the podocytes (Figure 1.3, C). All three layers are thought to take part in blood 

filtration, but the exact mechanism is still unknown (Moeller and Tenten, 2013). Blood 

leaves the capillary lumen through the fenestrations and enters Bowman space after passing 

the GBM and the slit diaphragm of podocytes. Blood cells and most plasma proteins are not 

able to pass the size and charge selective filtration barrier (Jarad and Miner, 2009), but 

damage to any of these three layers can lead to protein and blood cell loss via the urine. 

1.4.1. Endothelium 

The fenestrated endothelium is the first part of the GFB (Figure 1.3, C). Fenestrations have 

a diameter of 60 - 80 nm, contain no diaphragm and occupy 30 – 40% of the capillary wall 

(Avasthi et al., 1980; Lea et al., 1989). As the diameter of fenestrations is by far larger than 

that of albumin, the most abundant plasma protein, it was long time thought that the 

endothelium does not contribute to blood filtration (Satchell, 2013). However, studies 

showing proteinuria without alterations of the GBM or the podocyte structure suggested an 

important role of the endothelium in blood filtration (Eremina et al., 2008; Friden et al., 

2011; Sugimoto et al., 2003). These findings can possibly be explained by the glycocalyx 

covering the endothelial cells, which is comprised of proteoglycans, glycoproteins and 

sialic acids anchored at the cell surface (Reitsma et al., 2007; Weinbaum et al., 2007). 

These components serve as a backbone for the adsorption of plasma proteins and excreted 

soluble proteins like hyaluronic acid, building up a gel-like dynamic structure called the 

endothelial surface layer (Pries et al., 2000). This layer extends not only into the capillary 

lumen but also into the fenestrations (Avasthi and Koshy, 1988). Additionally, parts of the 

endothelial surface layer are sulfated resulting in a net negative charge. As of its gel-like 

structure and negative charge it is thought to act as a size-selective sieve on the one hand 

and also as an electrostatic barrier on the other hand (Jeansson and Haraldsson, 2003). 
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1.4.2. Glomerular basement membrane 

The GBM is located between the fenestrated endothelium and the podocytes. Although the 

present extracellular matrix proteins can also be found in other basement membranes, its 

isoform composition is rather unique (Figure 1.4, B). The GBM is relatively thick, owed to 

the fact that it is excreted during nephrogenesis from both the endothelial cells and the 

podocytes (Abrahamson, 1985; St John and Abrahamson, 2001). The main components of 

the basement membrane are nidogen, heparin sulfate proteoglycans, laminin-521, collagen 

345(IV) and to a lesser extent collagen 112(IV) (Lennon et al., 2014a; Paulsson, 

1992). Ultra-resolution microscopy showed that the proteoglycan agrin and the C-terminal 

end of laminin-521 are located in the vicinity of podocytes, whereas collagen 112(IV) 

is located near the endothelial cells. Collagen 345(IV) and nidogen form the middle 

part of the membrane (Suleiman et al., 2013). Cell-matrix contacts of podocytes are 

mediated through 31-integrin binding to the C-terminal domain of laminin-521 (Figure 

1.4, A). 

In case of NPS patients, the GBM is thickened with both fibrillary deposits and electron-

lucent areas (Ben-Bassat et al., 1971; Del Pozo and Lapp, 1970). This might contribute to 

renal symptoms, as the importance of a proper GBM structure for GFB function is given by 

the fact of two hereditary glomerular diseases caused by mutations of basement membrane 

proteins. One of them is Pierson syndrome, which is caused by mutations of the LAMB2 

gene encoding for the 2 chain of laminin (Zenker et al., 2004). The symptoms of patients 

vary greatly, dependent on the nature of the mutation, but invariably leads to death in 

childhood. Truncation mutations result generally in more severe phenotype than missense 

mutations (Matejas et al., 2010). Mice with Lamb2 knock-out develop proteinuria and die 

within three weeks of age (Noakes et al., 1995). Interestingly, proteinuria is already present 

in week one, while the loss of slit diaphragms and changes in podocyte foot process 

structure appear in week two (Figure 1.4, C). This suggests a direct role of laminin-521 in 

blood filtration rather than a secondary effect (Jarad et al., 2006). Forced laminin-511 

deposition in the basement membrane prevents nephrotic syndrome in Lamb2 knock-out 

mice (Suh et al., 2011). The other hereditary GBM related disease, Alport syndrome, is 

caused by either mutations in the COL4A3, COL4A4 or COL4A5 gene coding for collagen 

type IV 3, 4 or 5 chains, respectively, leading to end-stage renal disease, hearing loss 

and lens defects (Chew and Lennon, 2018). During nephrogenesis initial collagen 

112(IV) is replaced by collagen 345(IV) to a great extent, which is not the case in 

Alport syndrome patients (Kalluri et al., 1997). The altered glomerular basement membrane 

composition leads to membrane thickening and splitting (Figure 1.4, D). As the glomerular 

disease develops after years, it is assumed that collagen 345(IV) is not necessary for 

blood filtration itself, but may play a role in signaling to podocytes (Gross et al., 2004)..  
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Figure 1.4: Schematic illustrations of the GBM structure and composition in health and 

disease. [A] Composition of the GBM and localization of its main components. Podocyte adhesion 

complexes are depicted on top. (Lennon et al., 2014b). [B] Pierson syndrome mice lack laminin-

521, which is partly replaced by other laminins leading to proteinuria and delayed foot process 

effacement. [C] Alport syndrome mice in turn lack collagen 345(IV), which is compensated by 

increased collagen 112(IV) deposits, resulting in a split and thickened basement membrane and 

proteinuria [modified from (Suh and Miner, 2013)]. Abbreviations: (ECM), extracellular matrix; 

(FP), foot processes; (GBM), glomerular basement membrane; (HSPG) heparan sulfate 

proteoglycan; (ILK), integrin-linked kinase; (PINCH), Particularly interesting new cysteine-

histidine-rich protein; 
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1.4.3. Podocytes 

Architecture 

Podocytes are specialized and terminally differentiated epithelial cells with a unique three-

dimensional structure, covering the exterior of the glomerular capillaries (Pavenstadt et al., 

2003). As these cells are not able to replicate by mitosis, dead or detached cells cannot be 

replaced. Compensation of podocyte loss may be achieved by hypertrophy of neighboring 

podocytes (Wiggins, 2007), but also parietal and progenitor cells may partly substitute 

podocytes (Appel et al., 2009; Shankland et al., 2014). Nowadays it is thought that 

podocytes play the most crucial role in renal filtration, as many mutations in podocyte 

genes lead to renal failure (Vivante and Hildebrandt, 2016), as summarized in Figure 1.5. 

Podocytes have also an impact on the other components of glomerular filtration barrier, as 

they excrete glomerular basement membrane proteins and also vascular endothelial growth 

factor (VEGF), a compound inducing the endothelial fenestrations (Sison et al., 2010). 

Primary processes extending from the floating podocyte cell body split up into secondary 

and tertiary so-called foot processes, anchoring the cell to the GBM (Figure 1.3, B). Those 

processes interdigitate and are always neighbored to processes from another podocyte, with 

the slit diaphragm located in-between (Burghardt et al., 2015; Tao et al., 2014). Slit 

diaphragms are specialized cell-cell junctions considered to play an important role in blood 

filtration. While primary processes are mainly stabilized by intermediate filaments and 

microtubules, the delicate foot processes are stabilized by a tightly regulated actin 

cytoskeleton (Andrews and Bates, 1984; Schell and Huber, 2017). 

Podocyte damage and foot process effacement 

There are different responses of podocytes to stress including hypertrophy and increased 

turnover of cell material, but the most general is the retraction of their foot processes to 

form a broad, uniform layer accompanied by loss of slit diaphragms. This retraction is 

termed as foot process effacement (FPE) and can be divided into two stages. First, the foot 

processes retreat to form short irregularly shaped cell protrusions without slit diaphragms. 

Second, the overall structure of the podocyte changes to form a disc-like cell without any 

processes covering the GBM (Kriz et al., 2013). It is described that FPE leads to proteinuria 

(Seefeldt et al., 1981). On the molecular level FPE is accompanied by a change in the 

expression of actin cytoskeleton-related proteins (Shirato et al., 1996; Smoyer et al., 1997) 

and by an altered actin cytoskeleton structure (Shirato, 2002). Additionally, genetic defects 

in actin-binding proteins like -actinin-4 (Kaplan et al., 2000), myosin heavy chain 9 

(Heath et al., 2001), and anillin (Gbadegesin et al., 2014) as well as genetic defects of actin-

regulating proteins like inverted formin 2 (Brown et al., 2010) and ARHGAP24 (Gee et al., 

2013) lead to podocyte defects und proteinuria (Figure 1.5). These findings underline the 

importance of the actin cytoskeleton for podocyte foot process structure and function. 
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Figure 1.5: Schematic localization of proteins encoded by genes which mutations cause 

monogenetic steroid-resistant nephrotic syndrome in a recessive (red) or dominant (blue) 

manner. Abbreviations: (ACTN4), actinin alpha 4; (ADCK4), AarF domain containing kinase 4; 

(ANLN), anillin actin-binding protein; (ARHGAP23), Rho GTPase activating protein 23; 

(ARHGDIA), Rho GDP dissociation inhibitor alpha; (CD2AP), CD2 associated protein; (CDC42), 

cell division cycle 42; (CFH), complement factor H; (COQ2), coenzyme Q2, polyprenyltransferase; 

(COQ6), coenzyme Q6, monooxygenase; (CRB2), crumbs 2, cell polarity complex component; 

(DGKE), diacylglycerol kinase epsilon; (EMP2), epithelial membrane protein 2; (FAT1), FAT 

atypical cadherin 1; (GBM), glomerular basement membrane; (INF2), inverted formin 2; (IQGAP), 

IQ motif containing GTPase activating protein; (ITGA3), integrin alpha 3; (ITGA4), integrin alpha 

4; (KANK1, 2, 4), KN motif and ankyrin repeat domains 1, 2, 4; (LAMB2), laminin beta 2; 

(LMX1B), LIM homeobox transcription factor 1 beta; (MTTL1), mitochondrially encoded TRNA 

leucine 1; (MYH9), myosin heavy chain 9; (MYO1E), myosin IE; (NUP93/107/205), nucleoporin 

93/107/205; (PDSS2), decaprenyl diphosphatase synthase subunit 2; (PLCE1), phospholipase C 

epsilon 1; (PTPRO), protein tyrosine phosphatase, receptor type O; (Rac), Ras-related C3 

botulinum toxin substrate; (Rho), Ras homology; (SCARB2), scavenger receptor class B member 2; 

(SMARCAL1), SWI/SNF related, matrix associated, actin dependent regulator of chromatin, 

subfamily A like 1; (TRPC6), transient receptor potential cation channel subfamily C member 3; 

(WDR73), WD repeat domain 73; (WT1), Wilms tumor 1; (XPO5), exportin 5;  [modified from 

(Vivante and Hildebrandt, 2016)]  
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Cell-cell contacts: slit diaphragm 

The slit diaphragms are unique cell-cell contacts exclusively established by podocytes 

between adjacent foot processes (Figure 1.6). Slit diaphragms are networks of 

transmembrane proteins originating from 40 nm distant adjacent foot processes forming 

pores of a size smaller than that of albumin (Wartiovaara et al., 2004). Originally thought to 

be organized in a zipper-like structure (Rodewald and Karnovsky, 1974), it has nowadays 

been shown by electron tomography that there is more than just one layer of cell-cell 

contacts (Burghardt et al., 2015; Grahammer et al., 2016). Although both studies show 

clearly that there are two types of cell-cell contacts at different basolateral positions, they 

are contrary to whether one of the contacts consists of a continuous layer or just single 

spots of filamentous structures. 

The importance of slit diaphragms for filtration is given by the fact that mutations in many 

slit diaphragm related proteins lead to podocyte foot process effacement and proteinuria 

(Figure 1.5). Main components are nephrin (Holzman et al., 1999; Kestila et al., 1998) and 

the shorter but structurally related neph1 (Donoviel et al., 2001) spanning the gap between 

neighboring podocyte foot processes (Figure 1.6). Knock-out of either gene in mice leads to 

FPE, proteinuria and early death. Besides interacting with each other these slit diaphragm 

constituents interact with and regulate many actin-related proteins (Figure 1.7, A) (Faul et 

al., 2007). Other transmembrane proteins which are also reported to locate to filtration slits 

are P-cadherin (Reiser et al., 2000) and FAT1 (Inoue et al., 2001). The slit diaphragm is 

bound to the actin cytoskeleton via the adaptor protein CD2AP (Lehtonen et al., 2002). 

Cd2ap knock-out studies in mice showed renal defects leading to death within 6 to 7 weeks 

(Shih et al., 1999). Another important protein at slit diaphragms is podocin, encoded by 

NPHS2 (Boute et al., 2000). It is almost exclusively expressed in podocytes and binds to 

nephrin (Huber et al., 2001), neph1 (Sellin et al., 2003) and CD2AP (Schwarz et al., 2001). 

Podocin is therefore important for signaling and slit diaphragm protein recruitment. Nphs2 

knock-out mice develop severe proteinuria and die within few days after birth from renal 

failure (Roselli et al., 2004). 

Cell-matrix contacts 

Podocytes anchor to the glomerular basement membrane via several transmembrane 

proteins located at their foot processes (Figure 1.6). As the podocyte body floats in the 

primary urine and podocyte foot processes are exposed to high shear stress at the exterior of 

the capillaries, decreased number or strength of cell-matrix contacts may lead to podocyte 

detachment and loss (Kriz et al., 2013). Additionally, disturbance of cell-matrix adhesions 

leads to altered signaling pathways and ultimately to foot process effacement and 

proteinuria (Sachs and Sonnenberg, 2013). The adhesion receptors are connected with the 

actin cytoskeleton via various adaptor and signaling proteins (Figure 1.7, B). The most 
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common adhesion proteins belong to the integrin family, which form  heterodimers. 

Podocytes express mainly 31-integrin (Sterk et al., 1998), but also low expression of 

other integrins is observed, e.g. v3-integrin (Wei et al., 2008). Other adhesion receptors 

expressed in podocytes are dystroglycan (Durbeej et al., 1998) and syndecan-4 (Pyke et al., 

1997) (Figure 1.6). 

 

Figure 1.6: Overview and localization of important podocyte cell junction proteins. Slit 

diaphragm proteins are depicted on the right-hand side. Abbreviations: (aPKC), atypical protein 

kinase C; (CASK), calcium/calmodulin-dependent serine protein kinase; (CD151), cluster of 

differentiation 151; (cd2ap), CD2-associated protein; (Glepp1), glomerular epithelial protein 1; 

(HSPG), heparan sulfate proteoglycan; (ILK), integrin-linked kinase, (jam4), junctional adhesion 

molecule 4; (Magi1-2), membrane-associated guanylate kinase, WW and PDZ domain-containing 

protein 1/2; (Nck1-2), non-catalytic region of tyrosine kinase adaptor protein; (Robo2), roundabout 

guidance receptor 2; (trpc6), transient receptor potential cation channel, subfamily C, member 6; 

(uPAR), urokinase-type plasminogen activator receptor; (ZO-1), zonula occludens-1; [modified 

from (Finne et al., 2014)]. 
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Figure 1.7: Interactions and signaling pathways between [A] slit diaphragms or [B] cell-matrix 

adhesion molecules and the actin cytoskeleton. Abbreviations: (CaMKII), Ca
2+

/calmodulin-

dependent protein kinase; (CapZ), capping protein (actin filament) muscle Z-line; (CD2AP), CD2-

associated protein, (FAK), focal adhesion kinase; (ILK), integrin-linked kinase; (JAM4), junctional 

cell adhesion molecule 4; (MAGI-1/2), membrane-associated guanylate kinase, WW and PDZ 

domain-containing protein 1/2; (NCK1/2), non-catalytic region of tyrosine kinase adaptor protein 

1/2; (N-Wasp), neural Wiskott-Aldrich syndrome protein; (PINCH-1), particularly interesting new 

cysteine-histidine-rich protein; (Synpo), synaptopodin; (TRPC6), transient receptor potential cation 

channel, subfamily C, member 6; (ZO-1), zonula occludens 1; [modified from (Faul et al., 2007)]. 
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The integrin family is composed of 18  and 8  subunits in vertebrates, assembling into 24 

different non-covalently bound heterodimers (Barczyk et al., 2010). The common structure 

of the  and  chains are depicted in Figure 1.8, but it has to be mentioned that only 9 out 

of 18  chains contain an I domain. In their function as adhesion receptors, integrins can 

bind to ligands at both the cytoplasmic and extracellular side and thus transmitting signals 

in both directions. On the cytoplasmic side binding to PTB domain-containing proteins 

(e.g. talin, kindlin) is mediated through two NPXY motifs of the  chain. Binding to 

extracellular ligands is mainly located at the I and I domains (Campbell and Humphries, 

2011). 

Distinct active and inactive states of heterodimers are known. In the bent conformation, 

access to the binding pocket is sterically hindered and the I / I domains are in an inactive 

conformation (Figure 1.8). Ligand binding to the cytoplasmic side induces an upright 

conformation and a conformational change in the binding pocket, enabling binding to 

extracellular matrix components (inside-out signaling). Binding to extracellular ligands and 

mechanical tension induces a conformational change in the I/I domains and a further 

“swing-out” of the hybrid domain, resulting in a clustering of integrins and formation of 

stable focal adhesions (outside-in signaling) (Askari et al., 2009). Antibodies recognizing 

active states mostly bind to epitopes on the  chain (Byron et al., 2009). 

Focal adhesions are clusters of proteins linking the extracellular matrix to the actin 

cytoskeleton. Although integrins and integrin clustering are essential for focal adhesions, 

more than 150 proteins are known to assemble to focal adhesions, underlining their 

importance not only in mechanical anchoring but also in signal transduction (Geiger and 

Yamada, 2011). 

The most important integrin heterodimer in podocytes is 31-integrin (Sachs and 

Sonnenberg, 2013), binding specifically to laminins (Barczyk et al., 2010). The 3 subunit 

does not contain an I domain. Depletion of either of the two chains leads to severe 

proteinuria, foot process effacement, glomerular basement membrane defects and renal 

failure (Kanasaki et al., 2008; Kreidberg et al., 1996; Pozzi et al., 2008). Talin, an 

important focal adhesion protein, mechanically links integrins to the actin cytoskeleton. 

Podocyte-specific deletion of talin leads to foot process effacement and proteinuria (Tian et 

al., 2014). Also, other focal adhesion proteins have been shown to be essential for podocyte 

function and renal filtration, e.g. vinculin (Lausecker et al., 2018), integrin-linked kinase 

(El-Aouni et al., 2006) and CD151 (Sachs et al., 2006). 
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Figure 1.8: Schematic illustration of the  and  subunits of integrin and their domains in 

different conformations. Only 9 out of 18  subunits contain an I domain. Extracellular matrix 

compounds bind to the I or I domain, intracellular ligands to the C-terminal tail of the -subunit. 

In the bent conformation (left side) the binding pocket is inactive. In the upright conformation (right 

side), integrin is ready to bind extracellular matrix proteins. Abbreviations: (aa), amino acids; (-T), 

-tail domain; (E1-4), epidermal growth factor modules 1-4; (Hyb), hybrid domain; (Psi), plexin-

semaphorin-integrin; [modified from (Campbell and Humphries, 2011)] 

The adhesion receptor dystroglycan is also expressed in podocytes besides integrins 

(Durbeej et al., 1998). It binds to extracellular laminin and links it to the actin cytoskeleton 

(Ervasti and Campbell, 1993). Dystroglycan is composed of a transmembrane  subunit and 

an extracellular  subunit, and the complex is connected to the actin cytoskeleton by 

dystrophin in muscle cells and utrophin in epithelial cells (Michele and Campbell, 2003). 

Although anchoring of the podocyte to the extracellular matrix is essential, dystroglycan is 

dispensable, as deletion in podocytes of mice does not result in any renal abnormalities 

both under normal conditions and stress (Jarad et al., 2011). 
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1.5. The actin cytoskeleton 

1.5.1. Structure 

The actin cytoskeleton is a dynamic network primarily composed of thin polymerized actin 

filaments (filamentous actin, F-actin) with a diameter of approximately 8 nm (Blanchoin et 

al., 2014). The actin monomer (globular actin, G-actin) is highly conserved among 

eukaryotic species (Gunning et al., 2015) and the most abundant protein in many eukaryotic 

cells. Actin locates all over the cytosol and also in the nucleus, but to a lesser extent (Belin 

and Mullins, 2013). It has a nucleotide-binding pocket for ATP/ADP, with ATP hydrolysis 

in filaments happening stochastically. ATP bound monomers associate with a higher 

binding constant to filaments than ADP bound actin does (Pollard, 2017). Actin assembles 

into double-helical filaments with all monomers orientated to the same direction, resulting 

in structural polarity with the more dynamic barbed (or plus) end and the less dynamic 

pointed (or minus) end. As a result of different binding constants at the filament ends and 

ATP hydrolysis, actin filaments can depolymerize at the pointed end and at the same time 

polymerize at the barbed end, a process termed “treadmilling”. There are a multitude of 

proteins binding to actin monomers or polymers, influencing actin filament nucleation, 

elongation, branching, capping, severing, bundling, cross-linking, etc. (Figure 1.9). While 

elongation of existing filaments is energetically favorable, nucleation is not and therefore 

only rarely happens spontaneously. Thus, the limiting step of nucleation is tightly regulated 

by nucleation factors (Siton-Mendelson and Bernheim-Groswasser, 2017). 

 

Figure 1.9: Overview of actin-binding protein groups. Actin monomers are depicted in yellow. 

Abbreviations: (B), barbed end; (FH1), formin homology 1; (P), pointed end; (Pollard, 2016) 
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1.5.2. Function 

Actin filaments fulfill numerous functions within eukaryotic cells. As a part of the 

cytoskeleton, actin takes part in stabilizing the morphology of a cell. Podocyte foot 

processes for example are stabilized by a central actin bundle and additionally cortical actin 

filaments (Ichimura et al., 2007), and reorganization leads to foot process effacement 

(Shirato, 2002). Actin is also important in the separation of two daughter cells as the last 

step of the cell division process. For that purpose an accumulation of actin and myosin-2 

filaments to a contractile ring applies force and constricts the cell membrane, which is 

essential for cytokinesis (Glotzer, 2005). The site for cleavage is marked by Rho GTPases 

(Chircop, 2014). As mentioned above, podocytes are not able to divide. Nevertheless, cell 

division is frequently observed in primary podocyte culture [unpublished observations]. 

Cell motility and protrusion generation is also dependent on the actin cytoskeleton. The 

force necessary to produce a protrusion is at least partly generated by actin filaments. A 

dense network of short and branched actin filaments nucleates at the cell edge, with each 

filament applying piconewton forces (Kovar and Pollard, 2004). Consecutive branch 

formation results in a front edge movement of up to 1 µm per second (Svitkina et al., 1997). 

Other cellular functions with participation of actin filaments are endocytosis, organelle 

transport and contraction of muscle cells (Pollard and Cooper, 2009). Nuclear actin is also 

described to take part in transcriptional regulation (Grosse and Vartiainen, 2013). 

1.5.3. Important actin-binding proteins 

Cofilin 

Cofilin is an actin-binding protein important for actin turnover. The cofilin family consists 

of three members in mammals, non-muscle cofilin-1, muscle cofilin-2 and actin-

depolymerizing factor (ADF, also known as destrin) (Poukkula et al., 2011). Cofilin 

preferably binds to ADP-F-actin, inducing a conformational twist resulting in cleavage of 

the actin filaments (Hawkins et al., 1993; Hayden et al., 1993; McGough et al., 1997). 

Those severed filaments are subsequently either depolymerized to refresh the pool of actin 

monomers (Kiuchi et al., 2007), or they serve as new cores for nucleation and branching 

(Chen and Pollard, 2013; Ghosh et al., 2004). High cofilin concentrations are also 

considered to facilitate debranching (Blanchoin et al., 2000), and very high concentrations 

are considered to promote actin nucleation (Andrianantoandro and Pollard, 2006). On the 

other hand, inactivation of cofilin slows actin turnover and retrograde flow down (Ohashi et 

al., 2011). These findings underline the central role of cofilin in actin dynamics. 
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The activity of cofilin is mainly controlled by phosphorylation at Ser-3, with being inactive 

when phosphorylated (Moriyama et al., 1996). The most important kinases for cofilin 

phosphorylation are the members of LIM domain-containing protein kinase (LIMK) family, 

LIMK1 and LIMK2 (Figure 1.10), while dephosphorylation is mediated by the slingshot 

phosphatase family (SSH) (Ohashi, 2015). 

Mice with podocyte-specific deletion of Cfl1, encoding for cofilin-1, develop normally, but 

produce persistent proteinuria by 3 months and slight foot process effacement by 8 months 

of age. These mice are also more susceptible to protamine sulfate podocyte damage (Garg 

et al., 2010). Combined deletion of Cfl1 and Dstn, encoding destrin, results in strong kidney 

developmental defects, demonstrating the importance of cofilin-dependent actin turnover in 

kidney development (Kuure et al., 2010). 

Arp2/3 complex 

The Arp2/3 complex consists of seven subunits, including actin-related proteins 2 and 3 

(Arp2 and 3) and five scaffolding proteins named actin-related protein complex 1 - 5 

(ARPC1 - 5). The complex is highly conserved, expressed by almost all eukaryotes and is 

essential for cellular function (Goley and Welch, 2006). The activated complex binds to an 

existing mother filament and induces the nucleation of a new daughter filament at a ~70° 

angle to the barbed end of the mother filament (Figure 1.9) (Amann and Pollard, 2001; 

Mullins et al., 1998). To achieve branch formation, the Arp2 and Arp3 proteins mimic an 

actin-nucleation core, orientated with the pointed end towards the preexisting filament 

(Rouiller et al., 2008). The explosive Arp2/3 complex induced actin nucleation generates 

the force required for cell movement (Kovar and Pollard, 2004), lamellipodia formation 

(Svitkina and Borisy, 1999) and endocytosis (Ferguson et al., 2009). 

Arp2/3 initiated nucleation requires a conformational change of the complex achieved by 

binding of nucleation promoting factors (NPFs), such as Wiskott-Aldrich syndrome protein 

(WASP) or WASP-family verprolin homologous protein (WAVE) (Figure 1.10) as well as 

binding to an existing actin filament (Molinie and Gautreau, 2018; Rodnick-Smith et al., 

2016; Rouiller et al., 2008). 
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Formins 

Formins are a major class of homodimeric actin nucleators and elongators. They all share a 

formin homology 1 (FH1) and a formin homology 2 (FH2) domain. The FH2 domain 

resembles a doughnut-shaped structure binding to barbed ends of actin filaments and in 

case of some formins also to plus ends of microtubules. The FH1 domain binds to profilin-

actin complexes increasing the local concentration of actin at the barbed end (Chesarone et 

al., 2010). Profilin is a ubiquitous G-actin-binding protein associated with most actin 

monomers in cells (Kaiser et al., 1999). Nucleation is a feature of the FH2 domain (Pring et 

al., 2003; Sagot et al., 2002), while the FH1 domain regulates elongation speed. Once 

bound to a barbed end of filaments, formins assemble new monomers and move along the 

growing end (Figure 1.9), preventing barbed end capping by other actin regulatory proteins 

(Pruyne et al., 2002; Zigmond et al., 2003).  

Besides the FH1 and FH2 domains formins comprehend of varying additional domains, 

which are considered to be important for regulation of the formin activity (Chesarone et al., 

2010). The important and well-studied formin diaphanous-related formin 1 (mDia1), for 

example, is autoinhibitory regulated and activated by binding of RhoA to the Rho GTPase 

binding domain (GBD) (Figure 1.10) (Li and Higgs, 2003).  

In humans, mutations in the gene INF2, encoding for inverted formin 2, are reported to 

cause focal segmental glomerulosclerosis (FSGS) (Figure 1.5) (Brown et al., 2010). INF2 

binds to mDia1 and modulates its activation via RhoA (Sun et al., 2011). Normal function 

of Inf2 in mice is not necessary for glomerular development, but mice with Inf2 knock-out 

show impaired regeneration from protamine sulfate induced damage (Subramanian et al., 

2016). 

Myosin-2 

The class 2 myosins, also called conventional myosins, are motor protein complexes 

composed of six subunits. Two identical heavy chains dimerize, forming two head regions 

at the one end and the extended rod domain at the other end. Two different light chains, 

regulatory light chain (RLC; also named myosin light chain, MLC) and essential light chain 

(ELC), bind to the neck region situated between the head and the tail domain of each heavy 

chain. The rod domain is an association of the two heavy chains into a long, helical 

coiled coil (Preller and Manstein, 2013). The head regions bind to F-actin and generate 

ATP-dependent force resulting in movement of the filament or of the myosin alongside the 

filament (Houdusse and Sweeney, 2016; Toyoshima et al., 1987). Therefore, myosin-2 

takes part in multiple actions, including muscle contraction, cytokinesis, cell morphology 

and transport. 
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Smooth muscle and non-muscle myosin-2 are activated by phosphorylation of Ser-19 of the 

regulatory light chain (Newell-Litwa et al., 2015; Yu et al., 2016). Kinases phosphorylating 

RLC are p21-associated kinase (PAK) (Chew et al., 1998), myotonic dystrophy kinase-

related Cdc42-binding kinase (MRCK) (Leung et al., 1998) and Rho kinase (ROCK). 

ROCK activates myosin-2 indirectly by inactivating myosin phosphatase (Figure 1.10) as 

well as directly by phosphorylation (Totsukawa et al., 2000). 

Within the glomerulus, non-muscle myosin heavy chain IIA, encoded by MYH9, is mostly 

expressed in podocytes (Arrondel et al., 2002) and associated with FSGS (Figure 1.5) 

(Ghiggeri et al., 2003). Podocyte-specific deletion of Myh9 in different mouse strains does 

not result in glomerular defects but influences the susceptibility of mice to some, but not 

all, glomerular damage models (Johnstone et al., 2013). 

-Actinin 

-actinins are rod-like proteins forming antiparallel homodimers, which crosslink actin 

filaments to bundles via their actin-binding domain (ABD) at the end of each rod (Sjoblom 

et al., 2008). In addition, -actinins interact with numerous other proteins making them 

particularly important for cell adhesion, cell junction, and signaling (Figure 1.7) (Feng et 

al., 2015). In mammals, two (ACTN1, ACTN4) of the four ACTN genes are widely 

expressed in many different tissues, while expression of ACTN2 and ACTN3 is restricted to 

muscle tissues (Foley and Young, 2014). 

Mutations of ACTN4 / Actn4 lead to renal symptoms in humans (Figure 1.5) (Kaplan et al., 

2000) and mice (Henderson et al., 2008). Knock-out of Actn4 in mice results in progressive 

proteinuria and typically death within several months (Kos et al., 2003). Furthermore, 

-actinin-4 dysregulation is observed in several nephrotic syndromes (Goode et al., 2004; 

Smoyer et al., 1997).  

Synaptopodin 

Synaptopodin, encoded by the SYNPO gene, is a proline-rich actin-binding protein 

expressed in podocytes (Mundel et al., 1997). It has only little secondary and tertiary 

structure at physiological conditions (Chalovich and Schroeter, 2010). Synaptopodin 

interacts and regulates -actinin-4 activity and therefore influences actin cytoskeleton 

organization (Figure 1.7) (Asanuma et al., 2005; Kremerskothen et al., 2005). The Rho 

GTPases RhoA and Cdc42 are also influenced by synaptopodin in an indirect manner, 

inducing stress fiber formation and suppression of filopodia formation (Asanuma et al., 

2006; Yanagida-Asanuma et al., 2007).Synpo knock-out mice show normal ultrastructure of 

podocytes, but impaired recovery from protamine sulfate or liposaccharide-induced 

podocyte damage (Asanuma et al., 2005). 
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1.5.4. Key regulators: Rho family of GTPases 

Structure and function 

The Ras homologue (Rho) family of GTPases comprises a family of more than 22 small 

GTPases in humans (Chircop, 2014). Among them, the highly conserved RhoA, Rac1 and 

Cdc42 are best studied. Most Rho GTPases, including the three mentioned above, are 

active when bound to GTP and inactive when bound to GDP. The small GTPases have an 

intrinsic hydrolysis capacity but are moreover tightly regulated by guanine nucleotide 

exchange factors (GEFs), GTPase activating proteins (GAPs) and guanine nucleotide 

dissociation inhibitors (GDIs). While GEFs activate GTPases through promoting the 

exchange of GDP to GTP, GAPs and GDIs inactivate Rho GTPases by activating the 

intrinsic hydrolysis activity or sequestering the small GTPases in their inactive state, 

respectively (Tcherkezian and Lamarche-Vane, 2007). As GTPases can cycle between the 

active and inactive form, they are often referred to as molecular switches. Active, GTP 

bound Rho GTPases activate a variety of effectors, making them central players in 

regulating many cellular functions, such as cell morphology, adhesion, cytokinesis, cell 

polarity and membrane transport (Etienne-Manneville and Hall, 2002). 

Signaling pathways 

Rho GTPase signaling pathways are highly complex and yet not fully understood nor all 

interactions are discovered. Canonically, activation of RhoA leads to formation of 

actomyosin bundles called stress fibers, while Rac1 activation leads to formation of 

lamellipodia and Cdc42 activation to filopodia (Figure 1.10) (Nobes and Hall, 1995). GTP-

RhoA is a direct activator of the formin mDia1 (Li and Higgs, 2003) and it also activates 

myosin-2 (Totsukawa et al., 2000), but moreover inactivates cofilin over ROCK and 

LIMK, leading to the assembly of long, unbranched actin filaments and stress fibers 

(Maekawa et al., 1999). Active Rac1, on the other hand, counteracts stress fiber formation 

by inhibiting myosin-2 activity. This inhibition is achieved by phosphorylation and 

inactivation of myosin light chain kinase (MLCK) over the Rac1 effector p21-activated 

kinase 1 (PAK1) (Sanders et al., 1999). Rac1 activation additionally leads to direct 

activation of the nucleation-promoting factor (NPF) WAVE (Chen et al., 2010), which in 

turn activates the Arp2/3 complex resulting in a branched actin network and lamellipodia 

formation. Like RhoA, Rac1 activation also leads to phosphorylation and inactivation of 

cofilin (Edwards et al., 1999). GTP-Cdc42, in turn, activates another NPF, the neuronal 

Wiskott-Aldrich syndrome protein (N-WASP), leading to actin filament nucleation and 

branch formation (Rohatgi et al., 1999). Active Cdc42 interacts with PAK4, which 

phosphorylates LIMK, finally leading to cofilin phosphorylation and inactivation (Rane and 

Minden, 2014). 
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Figure 1.10: Scheme depicting a part of the complex signaling pathways of actin regulation by 

RhoA, Rac1 and Cdc42. Extracellular signals activate Rho GTPases via GEFs, which in turn 

regulate actin and microtubule dynamics. Abbreviations: (Arp2/3), actin related protein 2/3; 

(Cdc42), cell division control protein 42 homolog; (ECM), extracellular matrix; (GEF), guanine 

nucleotide exchange factor; (GPCR), G-protein coupled receptor; (IQGAP1), IQ motif-containing 

GTPase activating protein 1; (LIMK), LIM kinase; (LPA), lysophosphatidic acid; (mDia1/3), 

diaphanous related formin 1/3; (MLCK), myosin light chain kinase; (MLCP), myosin light chain 

phosphatase; (N-WASP), neuronal Wiskott-Aldrich syndrome protein; (PAK), p21-aktivated 

kinase; (Par6), partitioning defective 6 homolog; (Rac), Ras-related C3 botulinum toxin substrate 1; 

(Rho), Ras homologue; (ROCK), Rho kinase; (RTK), receptor tyrosine kinase; (WAVE), WASP-

family verprolin homologous protein; (Wnt), wingless-type MMTV integration site family; (Rao 

and Maddala, 2006) 
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Role of Rho GTPases for podocyte health 

Rac1 and Cdc42 are essential regulators, as knock-out of either encoding gene in mice 

leads to embryonic lethality (Chen et al., 2000; Sugihara et al., 1998). RhoA null mice, in 

turn, are not reported so far. Nevertheless, tissue-specific deletion of RhoA results in 

diverse abnormal phenotypes (Duquette and Lamarche-Vane, 2014), including embryonic 

lethality (Herzog et al., 2011). Podocyte-specific deletion of Rac1 and RhoA in mice does 

not result in any overt phenotype, but Cdc42 deletion in podocytes leads to foot process 

effacement, proteinuria and death (Blattner et al., 2013; Scott et al., 2012). Thus, Cdc42 

expression is necessary for podocyte foot process development and maintenance, while 

RhoA and Rac1 are not essential. On the other hand, activation of RhoA and Rac1 over 

basal levels is reported in different damage models, and inhibiting RhoA or Rac1 signaling 

pathways reduces podocyte damage and proteinuria (Babelova et al., 2013; Gojo et al., 

2007; Shibata et al., 2006). Moreover, podocyte-specific expression of constitutively active 

mutants of RhoA and Rac1 leads to podocyte damage and proteinuria (Robins et al., 2017; 

Wang et al., 2012a; Zhu et al., 2011). Additionally, mutations in ARHGAP24, encoding for 

a Rac1 inactivating GAP, are associated with familial FSGS in humans (Akilesh et al., 

2011). 

1.5.5. Effect of cytochalasin D on the actin cytoskeleton 

Cytochalasin D is a cell-permeable fungal metabolite interacting with the actin 

cytoskeleton, without any reports of other interactions (Cooper, 1987). It binds actin 

filaments at the barbed end (Kd = 2 nM) and inhibits both polymerization and 

depolymerization at this end, but does not bind to the pointed end (Cooper, 1987; Sampath 

and Pollard, 1991). Additionally, it binds to monomeric G-actin with lower affinity 

(Kd = 2 - 20 µM) and induces actin dimerization (Goddette and Frieden, 1985; Nair et al., 

2008). It is also reported to block cofilin binding to both actin monomers and filaments 

(Shoji et al., 2012). Treatment of cells with cytochalasin D leads to disruption of filament 

bundles and formation of actin filament aggregates, accompanied by a reduced cell stiffness 

(Wakatsuki et al., 2001). 
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1.6. LMX1B 

1.6.1. Linkage to nail-patella syndrome 

Genetical linkage of NPS to the ABO locus dates back to 1955 (Renwick and Lawler, 

1955). More than 40 years later mutations of LMX1B were found to cause the syndrome 

(Dreyer et al., 1998; McIntosh et al., 1998; Vollrath et al., 1998). Though, there are rare 

cases of NPS without LMX1B mutations (Ghoumid et al., 2016). LMX1B is known to be 

responsible for establishing the dorsoventral pattern in limb development (Riddle et al., 

1995; Vogel et al., 1995), which explains nail and skeletal abnormalities of NPS patients 

(Figure 1.1). Besides its importance in development LMX1B is also expressed in the 

anterior segment of the eye (Pressman et al., 2000), in the brain (Adams et al., 2000) and in 

the podocytes of the kidney (Dreyer et al., 1998; Morello et al., 2001). This expression 

pattern is reflected by NPS phenotypes (see chapter 1.1). 

1.6.2. Structure and mutations 

LMX1B contains two N-terminal LIM domains important for protein-protein interactions 

and a central homeodomain essential for DNA binding. The C-terminal glutamine- and 

serine-rich region is of unknown function (Bongers et al., 2002). On the genetic basis, 

LMX1B consists of 8 exons, whereof the LIM A domain is encoded by exon 2, LIM B by 

exon 3 and the homeodomain by exons 4, 5 and 6. In humans, two isoforms with a length 

of 395 and 402 aa are expressed by alternative splicing at the end of exon 7 (Witzgall, 

2017). To date, more than 180 mutations are known to cause NPS, and the number is still 

growing (Ghoumid et al., 2016; Harita et al., 2017). The spectrum of mutations comprise 

missense, nonsense and frameshift mutations and complete or partial deletions (Harita et 

al., 2017), and the pathogenic mechanism is thought to be haploinsufficiency (Jiang et al., 

2014). The vast majority of mutations are located within the two LIM domains and the 

homeodomain, raising the hypothesis that mutations within the conserved C-terminal 

region would lead to a distinct phenotype (Dunston et al., 2004). Genotype-phenotype 

correlation shows an increased frequency of renal symptoms of patients with mutations in 

the homeodomain, but no extra-renal correlation is observed (Bongers et al., 2005). In 

developing mice, Lmx1b is expressed in the kidney, brain, spinal cord, and the eye 

(Dunston et al., 2005). Within the kidney, Lmx1b is exclusively expressed in podocytes not 

only at embryonic stages but also in adult individuals (Morello and Lee, 2002). 
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1.6.3. Overview of target genes 

As a transcription factor LMX1B regulates the expression of specific genes by binding to 

their promoter or enhancer regions. DNA binding is mediated through the homeodomain, 

which specifically binds to FAR linked AT-rich (FLAT) sequences (German et al., 1992). 

In podocytes 

Only a few Lmx1b target genes have been reported to date in podocytes, including Col4a3, 

Col4a4 (chapter 1.4.2), Cd2ap, Nphs2 (chapter 1.4.3), Abra (chapter 1.7.1), and Arl4c 

(chapter 1.7.2). The 3 and 4 chains of collagen IV are missing in the glomerular 

basement membrane of conventional Lmx1b knock-out mice, and LMX1B binds to FLAT 

elements within the first intron to both human and murine COL4A4/Col4a4. Furthermore, 

LMX1B activates a reporter construct containing six concatemerized binding sites from the 

COL4A4 gene (Morello et al., 2001). In case of Cd2ap and podocin (encoded by Nphs2) 

both mRNA and protein levels are reduced in Lmx1b knock-out mice. LMX1B binds to 

promoter regions in vitro and activates transcription of a reporter construct containing 4 

repeats of the NPHS2 binding site and a minimal promoter in NIH 3T3 cells (Miner et al., 

2002; Rohr et al., 2002). On the other hand, the 3 and 4 chains of collagen IV, Cd2ap 

and podocin are still present in podocyte-specific Lmx1b knock-out mice (Suleiman et al., 

2007) and in human NPS patients (Heidet et al., 2003). The mRNA levels of Abra, Arl4c 

and Sm22 are elevated in a time-dependent manner following doxycycline treatment of 

inducible podocyte-specific Lmx1b knock-out mice. In case of ABRA and ARL4C, LMX1B 

binds to FLAT elements in the respective promoter regions, as confirmed by gel shift 

assays and chromatin immunoprecipitation. No such binding could be shown for the 

promoter region of SM22 (Burghardt et al., 2013). 

In other cell types 

Regulation of interleukin-6 (IL-6) and interleukin-8 (IL-8) by LMX1B was shown in HeLa 

cells stably transfected with an inducible LMX1B expression construct on the 

transcriptional level, and binding of LMX1B to the promoter regions was confirmed by 

chromatin immunoprecipitation (Rascle et al., 2009). A genome-wide analysis of Lmx1b 

binding to promoter regions of genes in the developing limbs of mice revealed several 

potential target genes by chromatin immunoprecipitation and next-generation sequencing. 

Promoter activity of growth differentiation factor 5 (Gdf5) was shown to overlap with 

Lmx1b expression in developing chick elbow, wrist, and digit joints (Haro et al., 2017). 
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1.6.4. Influence of Lmx1b on the actin cytoskeleton of podocytes 

Glomerular outgrown cells from mice with an inducible and podocyte-specific knock-out of 

Lmx1b show an altered actin cytoskeleton behavior. While the fluorescence of phalloidin 

staining is increased in knock-out cells, the movement of fibronectin-coated nanobeads 

attached to the surface is decreased. Additionally, the spreading rate of primary Lmx1b 

knock-out podocytes after cytochalasin D treatment is reduced compared to control 

podocytes. Thus, a stiffer, less dynamic actin cytoskeleton was proposed (Burghardt et al., 

2013). 

1.7. LMX1B regulated proteins 

1.7.1. Abra 

Structure and expression 

Actin-binding Rho-activating protein (Abra), also known as striated muscle activator of 

Rho signaling (STARS) or myocyte stress-1 (Ms1), is a 43 kDa protein expressed in 

cardiac, skeletal and smooth muscle (Arai et al., 2002; Mahadeva et al., 2002; Troidl et al., 

2009). The subcellular localization of Abra is dependent on the developmental stage. In 

primary cardiomyocytes it is located at the I-bands and Z-disks (Arai et al., 2002), but in 

neonatal cardiomyocytes Abra localized to the nucleus (Zaleska et al., 2015). Structurally 

Abra comprises of two actin-binding domains (ABD1/2), with a higher affinity of ABD1 

than ABD2 to bind F-actin (Fogl et al., 2012). ABD2, in conjunction with an AT-hook 

motif located in close proximity N-terminally of ABD2, is additionally able to bind to DNA 

(Zaleska et al., 2015). The expression of Abra is activated by the transcription factors 

estrogen-related receptor alpha (ERR(Wallace et al., 2011), serum response factor (SRF) 

(Chong et al., 2012) and myocyte enhancer factor 2 (MEF2) (Kuwahara et al., 2007). On 

the other hand, expression is restricted by the transcription factor GATA4 (Ounzain et al., 

2012) and the miRNA miR-628-5p (Russell et al., 2017). Abra expression in skeletal 

muscle is decreased in older individuals, but mRNA levels increase after stress independent 

of age (Russell et al., 2017). 
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Interaction partners and signaling 

Abra is an actin-associated protein inducing polymerization of actin, resulting in a 

reduction of the G-actin pool (Wallace and Russell, 2013). This, in turn, releases the 

transcriptional coactivator myocardin-related transcription factor-A (MRTF-A) from its 

inactive, G-actin bound state, followed by its translocation into the nucleus. As a final step 

of Abra signaling, the transcription factor SRF is activated by MRTF-A, leading to SRF-

dependent protein expression (Figure 1.11) (Kuwahara et al., 2005). SRF is a 

transcriptional activator of the SM22 gene, encoding for transgelin (Li et al., 1997). 

Downstream signaling of Abra is increased when a constitutively active mutant of RhoA is 

coexpressed, and inhibition of RhoA or ROCK partially blocks Abra signaling, leading to 

the assumption of a RhoA-dependent signaling pathway of Abra (Arai et al., 2002). 

However, evidence of the existence and nature of a direct interaction is missing. Abra 

interacts with actin-binding LIM protein-2 and -3 (ABLIM-2 and ABLIM-3), enhancing 

the downstream signaling of Abra (Barrientos et al., 2007). A negative regulator of the 

Abra pathway is calmodulin (CaM) in a Ca
2+

 dependent manner. The N-terminal region of 

Abra binds to CaM in the presence of Ca
2+

 ions, which in turn diminishes Abra signaling 

and SRF transcriptional activity (Furuya et al., 2016). 

 

Figure 1.11: Proposed model of Abra interactions and signaling [modified from (Barrientos et 

al., 2007)]. Abbreviations: (ABLIM), actin-binding LIM protein; (Abra), actin-binding Rho-

activating; (CaM), colmodulin; (MRTF), myocardin-related transcription factor; (RhoA), Ras 

homologue A; (SRF), serum response factor  
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1.7.2. Arl4c 

Structure and expression 

The small GTPase Arf-like 4c (Arl4c) is a member of the ADP-ribosylation factor (Arf) 

family and is also known as Arf-like 7 (Arl7). Like other small GTPases, Arl4c can cycle 

between an active GTP-bound state and an inactive GDP-bound state, but GEFs and GAPs 

are so far unknown (Matsumoto et al., 2017). In humans Arl4c has two isoforms, the 

shorter isoform comprises of 192 aa encoded by one exon and the longer isoform comprises 

of 201 aa encoded by two exons (Matsumoto et al., 2017). Arl4c expression is reported in 

human lung, brain, leukocytes, placenta, thymus, esophagus, stomach and intestine (Jacobs 

et al., 1999; Wei et al., 2009). In mouse embryos at embryonic day 15, Arl4c protein 

expression was observed in the brain, kidneys and in some epithelial rudiments (Matsumoto 

et al., 2014). Additionally, Arl4c is expressed in lung and colorectal cancer cells (Fujii et 

al., 2015). The subcellular localization is dependent on the activity state, as wild-type and 

constitutive active Arl4c are located at the plasma membrane, whereas a dominant negative 

form of Arl4c is distributed all over the cytosol (Engel et al., 2004; Hofmann et al., 2007). 

There are only few reports about the transcriptional regulation of Abra expression. 

Combined stimulation of cells with Wnt3a and epidermal growth factor (EGF) activates the 

-catenin and mitogen-activated protein kinase (MAPK) pathways, leading to the formation 

of an Ets1/T-cell factor 4 (Tcf4)/CREB-binding protein (CBP) complex at the 3' 

untranslated region (UTR) of the Arl4c gene, and finally induces Arl4c expression 

(Matsumoto et al., 2014). 

Interaction partners and signaling 

Arl4c binds to -tubulin independent of the GTP or GDP binding status, and active Arl4c 

accelerates the transferrin transport from early endosomes to recycling endosomes (Wei et 

al., 2009). Another function of Arl4c is the binding and recruitment of Arf nucleotide-

binding site opener (ARNO) to the plasma membrane when Arl4c is in its active state. 

ARNO in turn recruits and activates ADP-ribosylation factor 6 (Arf6) (Hofmann et al., 

2007). GTP-Arf6 then activates Rac1, potentially through kalirin and the dedicator of 

cytokinesis 1 (DOCK1)/engulfment and cell motility (ELMO) complex, followed by RhoA 

inhibition, leading to a reorganization of the actin cytoskeleton (Matsumoto et al., 2014). 

Arl4c additionally controls the actin cytoskeleton by the means of a distinct mechanism 

involving Cdc42. Active Arl4c binds to the actin regulator filamin-A (FLNa), which 

increases its association with the GEF FYVE, RhoGEF and PH domain-containing 6 

(FDG6). This finally activates the small GTPases Cdc42, inducing filopodia formation and 

cell migration (Chiang et al., 2017). Other cellular functions with Arl4c involvement are 

osteogenesis (Wang et al., 2018), cholesterol efflux (Engel et al., 2004), and migration and 

invasion of gastric cancer cells (Hu et al., 2018). 
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1.7.3. Transgelin 

Structure and expression 

Transgelin, also known as smooth muscle 22 (SM22), is a 22 kDa protein encoded by the 

SM22 gene. The gene comprises of 5 exons, while exon 1 and the first 12 base pairs of 

exon 2 and also the last 432 base pairs of exon 5 are not translated (Assinder et al., 2009; 

Camoretti-Mercado et al., 1998). The resulting 201 aa protein contains an N-terminal 

calponin homology domain (CH) and a C-terminal calponin like module (CLIK). In 

healthy, adult individuals transgelin is expressed mainly in smooth muscle cells (Shapland 

et al., 1988), but also in myofibroblasts and epithelial cells (Page et al., 1999; Yu et al., 

2008). Additionally, transgelin is expressed during embryogenesis in mesenchymal, 

skeletal and cardiac muscle cells (Lawson et al., 1997; Li et al., 1996). Transgelin is also 

expressed in various types of cancer cells (Dvorakova et al., 2014) and in podocytes after 

glomerular damage (Marshall et al., 2011). On the subcellular level transgelin localizes in 

the cytosol and is also associated with actin filaments (Fu et al., 2000; Han et al., 2009). 

The expression of transgelin is regulated by multiple pathways. For instance, SRF, co-

activated by MRTF-A, activates the Sm22 promoter downstream of RhoA signaling (Li et 

al., 1997; Liu et al., 2003; Mack et al., 2001). Additionally, transforming growth factor  

(TGF- signaling leads to an increase in Smad3 binding to the Sm22 promoter and induces 

transgelin expression in cooperation with myocardin (Qiu et al., 2003; Qiu et al., 2005). A 

negative regulator of transgelin expression is gut-enriched Krüppel-like factor (GKLF) 

(Adams et al., 2000). A regulation of transgelin expression by mechanical tensions was 

shown for cultured fibroblast cell lines (Liu et al., 2017). 

Interaction partners and function 

Transgelin binds to actin at its C-terminal region including the CLIK module (Fu et al., 

2000) at a ratio of one transgelin per six actin monomers and thereby bundles actin 

filaments in vitro and in vivo (Han et al., 2009; Shapland et al., 1993). Additionally, 

transgelin increases the ratio of F- to G-actin and the contractility of vascular smooth 

muscle cells (VSMC) (Han et al., 2009). On the other hand, transgelin inhibits calcium-

independent contraction in VSMC (Je and Sohn, 2007) and it plays also a role in nuclear 

factor kappa-light-chain-enhancer of activated B-cells (NF-B) signaling by binding to 

inhibitor of kappa B (IB) (Shu et al., 2015). Phosphorylation at serine residues inhibits 

transgelin binding to F-actin in vitro and in vivo (Fu et al., 2000; Rattan and Ali, 2015). In 

internal anal sphincter smooth muscle cells, the phosphorylation level is reduced after 

inhibition of ROCK in a dose-dependent manner (Rattan and Ali, 2015). Another 

interaction partner of transgelin, besides actin, is protein kinase C delta type (PKC), and 

this interaction is blocked by phosphorylation of transgelin (Lv et al., 2012). 
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Transgelin expression is not essential in mice, as Sm22 knock-out mice are fertile and 

develop normally (Kühbandner et al., 2000; Zhang et al., 2001). Nevertheless, Sm22 knock-

out leads to a reduced contractility and actin content in arterial smooth muscle cells (Zeidan 

et al., 2004). Following glomerular damage, transgelin is expressed in podocytes of both 

rodents and humans (Marshall et al., 2011; Wang et al., 2012b). In an experimental 

crescentic glomerulonephritis model de novo transgelin expression in podocytes negatively 

affected the disease progression (Marshall et al., 2011). 

1.8. Mouse lines and the human podocyte cell line (hPCL) 

1.8.1. Podocyte-specific Lmx1b knock-out 

Different mouse models are used to address the molecular pathways leading from knock-

out of the Lmx1b gene to podocyte foot process effacement and proteinuria. These mouse 

models have in common that heterozygous Lmx1b knock-out does not display any overt 

phenotype of mice, in harsh contrast to the situation in human NPS patients. One of these 

mouse models is the podocyte-specific Lmx1b knock-out, illustrated in Figure 1.12.  

 

Figure 1.12: Schematic illustration of the constructs leading to podocyte-specific inactivation 

of Lmx1b. [A] In tissue aside of podocytes the 2.5 kbp promoter fragment of the NPHS2 gene 

(named P2.5) is inactive, whereas full-length Lmx1b is transcribed and expressed (dependent on 

Lmx1b promoter activity). [B] The P2.5 promoter is active in podocytes, leading to Cre 

recombinase expression. Cre recombines the Lmx1b gene at loxP sites located in intron 3 and 6, 

leading to a cut-out of the exons 4 - 6 containing the homeobox. The deletion is in-frame, but 

whether the shortened protein is still expressed is not known. 
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A 2.5 kbp promoter fragment of the human NPHS2 gene (P2.5) encoding for podocin is 

cloned upstream of Cre recombinase, resulting in a Cre expression restricted to podocytes 

(Moeller et al., 2003). The Lmx1b gene is mutated to contain loxP sites for Cre-dependent 

recombination upstream of exon 4 and downstream of exon 6.  

As the Cre recombinase expression is restricted to podocytes, the expression of Lmx1b in 

other cell types remains unchanged (Figure 1.12, A). Cre expression in podocytes leads to 

recombination of the Lmx1b gene, resulting in a cut-out of exons 4 – 6, including the 

homeobox. The deletion is in-frame, but whether a shortened protein is still expressed is 

unknown (Figure 1.12, B). 

Mice containing loxP sites at both alleles (Lmx1b fl/fl) and P2.5 Cre show already some 

foot process effacement and proteinuria after 5 days of age, which progresses to heavy 

proteinuria and death at around an age of 14 days. The Col43, Col44 and Nphs2 genes 

are not downregulated in contrast to the situation in conventional Lmx1b knock-out mice 

(Suleiman et al., 2007). 

1.8.2. Inducible podocyte-specific Lmx1b knock-out  

“Quadruple transgenic mouse line” 

As LMX1B is not only expressed in the developing kidney, but also in mature podocytes, it 

consequently plays a role in maintaining podocyte function. The role of Lmx1b in podocyte 

maintenance is mainly investigated with an inducible, podocyte-specific Lmx1b knock-out 

mouse model (Figure 1.13), which is generated by crossing of the four single transgenic 

mouse lines P2.5 rtTA, LC-1, floxed Lmx1b, and mTmG. 

This model uses an enhanced version of the reverse tetracycline-controlled transcriptional 

transactivator (rtTA), which binds to tet operator sequences (TetO) in the presence of 

tetracycline/doxycycline (Tet-on system) (Urlinger et al., 2000). The tetracycline controlled 

regulatory system is derived from the Escherichia coli tetracycline-resistance operon 

(Gossen and Bujard, 1992). The rtTA gene is put under the control of the 2.5 kbp promoter 

fragment of NPHS2 (P2.5 rtTA), resulting in podocyte-specific expression (Shigehara et al., 

2003). The LC-1 construct contains seven TetO repeats flanked by two cytomegalovirus 

minimal promoters, resulting in a bidirectional promoter. This promoter controls the 

expression of Cre recombinase and firefly luciferase dependent on rtTA binding (Schönig 

et al., 2002). Two loxP sites are introduced to Lmx1b upstream of exon 4 and downstream 

of exon 6, leading to a cut-out of the respective exons through Cre recombinase. Lastly, the 

mTmG reporter construct contains a modified version of tdTomato (mT) under the control 

of a chicken -actin promoter and a cytomegalovirus enhancer (pCA) and a downstream 

polyadenylation sequence (pA), resulting in the ubiquitous expression of membrane-
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targeted tdTomato. The combined mT and pA sequence is flanked by two loxP sites, which 

leads to a cut-out of this sequence in presence of Cre recombinase and an expression of the 

downstream membrane-targeted EGFP (mG) (Muzumdar et al., 2007). 

 

Figure 1.13: Schematic overview of the inducible, podocyte-specific Lmx1b knock-out system 

in absence [A] and presence [B] of doxycycline. Red fluorescent protein mT (a membrane-

targeted tdTomato) is expressed in all cell types in absence of Cre recombinase. rtTA is under the 

control of the P2.5 promoter and thus only expressed in podocytes. Upon doxycycline treatment of 

the animal, rtTA is able to bind to and activate the TetO promoter to induce Cre and luciferase 

expression (luciferase is not depicted). Cre expression drives the recombination of Lmx1b and the 

mTmG reporter construct, leading to a cut-out of exons 4 – 6 and the mT sequence, respectively. 

This results in expression of green fluorescent protein exclusively in podocytes expressing Cre and 

in an in-frame deletion of the homeobox of Lmx1b. Whether expression of a shortened Lmx1b 

protein still containing the LIM domains occurs, is so far unknown. 
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This transgene system leads to rtTA, Lmx1b and mT expression in the absence of 

doxycycline (Figure 1.13, A). Upon doxycycline treatment, rtTA binds to TetO promoter 

resulting in Cre expression in podocytes and therefore mTmG and Lmx1b recombination. 

The membrane targeted EGFP and potentially a shortened version of Lmx1b are expressed 

in the same podocytes (Figure 1.13, B). However, only ~60% of podocytes show 

recombination events, as estimated by Lmx1b mRNA levels (Burghardt et al., 2013). 

Inducible podocyte-specific Lmx1b knock-out mice show an onset of proteinuria after 

5 days of doxycycline treatment over the drinking water, which progresses and peaks at 

around two weeks. Thereafter proteinuria declines, but does not disappear, at four weeks. 

Mice survive doxycycline treatment for at least four weeks (Burghardt et al., 2013). 

Coincident with the podocyte-specific Lmx1b knock-out, Col43, Col44 and Nphs2 genes 

are not downregulated after one week of treatment although albuminuria is already present 

(Burghardt et al., 2013). 

Green fluorescent podocytes 

This mouse model is also useful for the isolation of glomeruli and Lmx1b knock-out 

podocytes, as renal damage is dependent on doxycycline treatment and not on the age of 

mice. Glomeruli are isolated by magnetic bead perfusion, and podocytes can either be 

digested off the glomeruli by proteases, or glomeruli can be plated onto cell culture flasks 

resulting in a grow-out of podocytes (referred to as “primary podocytes”). Primary 

outgrown cells are a mixture of green (with recombination events) and red fluorescent 

podocytes and possibly endothelial and mesangial cells. They do not establish foot 

processes and dedifferentiate within few days, but they attach to surfaces, proliferate and 

are suitable for many experiments. Recently, a culture medium was reported to induce foot 

process formation of primary podocytes cultured on laminin-521 (Yaoita et al., 2018), 

which expands the usefulness of this cell type. Podocytes digested off glomeruli do not 

adhere to surfaces, but are readily available without dedifferentiation and can be purified by 

fluorescence assisted cell sorting (FACS). 

1.8.3. Human podocyte cell line 

The human podocyte cell line (hPCL) is derived from a nephrectomy of a 3-year-old child 

with a unilateral antenatal obstructive/reflux nephropathy. Primary cells outgrown from 

glomeruli were infected with a simian virus large T antigen gene, selected and single clones 

were picked (Saleem et al., 2002). The resulting cells proliferate at permissive conditions 

(33 °C, 5% CO2) and differentiate to a more podocyte like phenotype at non-permissive 

conditions (37 °C, 5% CO2), as seen by expression of podocyte-specific proteins like 

nephrin and podocin (Saleem et al., 2002).  
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1.9. Aim of this study 

Defects in the gene coding for the transcription factor LMX1B have been identified to 

cause NPS about 20 years ago, but the exact molecular mechanisms leading to the renal 

symptoms observed in some NPS patients remain elusive. As a previous study suggested an 

involvement of the podocyte actin cytoskeleton in disease progression (Burghardt et al., 

2013), the main goal of this study was to identify and investigate possible links between the 

actin cytoskeleton, the transcription factor Lmx1b and renal defects. Therefore five 

different approaches were undertaken: 

1) Validation of Lmx1b regulated genes on the protein level 

Previously several genes were identified to be regulated by Lmx1b in murine glomeruli on 

the transcriptional level, among them Abra, Arl4c, and Sm22, encoding for actin 

cytoskeleton associated proteins (Burghardt et al., 2013). In order to validate the Lmx1b-

dependent transcriptional regulation of those genes also on the protein level, it was planned 

to compare protein levels of knock-out and wild-type podocytes by western blotting. 

Therefore primary murine podocytes of the inducible, podocyte-specific mouse line should 

be collected by FACS. 

2) Further investigation of a dysregulation of the actin cytoskeleton in Lmx1b-deficient 

podocytes 

The dysregulation of the actin cytoskeleton in primary outgrown, murine green fluorescent 

podocytes following Lmx1b knock-out should be further confirmed by direct methods like 

determination of the F-actin content, but also by indirect methods monitoring actin-

dependent processes like cell spreading and cell movement. 

3) Investigation of molecular pathways linking Lmx1b and its target genes to the actin 

cytoskeleton 

After confirming Lmx1b target genes and the involvement of the actin cytoskeleton in the 

disease, the signaling pathway(s) linking those should be discovered. This should be 

approached by investigation of the Lmx1b knock-out-dependent activity or phosphorylation 

of several well-known actin regulators and also by observation of the effect of inhibiting 

several actin-regulating pathways. 
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4) Determination of a potential dysregulation of focal adhesions in Lmx1b-deficient 

podocytes 

As primary murine Lmx1b knock-out podocytes adhered stronger to laminin-111 compared 

to wild-type cells (Burghardt et al., 2013), the role of focal adhesions and its possible 

impact on the actin cytoskeleton should be investigated. Therefore the amount, localization 

and activation of the 31-integrin of primary wild-type and knock-out podocytes should 

be compared. 

5) Investigation of the influence of the dysregulated protein transgelin on podocyte 

function and structure and on the actin cytoskeleton 

The effect of transgelin, which expression was highest dysregulated in respect of Lmx1b 

knock-out (Burghardt et al., 2013), on podocyte health should be determined in more detail. 

Therefore a new mouse model should be established by crossing global Sm22 knock-out 

mice with podocyte-specific Lmx1b knock-out mice. This mouse line should be 

investigated regarding survival, proteinuria, kidney histology and ultrastructure, and 

glomerular actin cytoskeleton organization. 
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2. Materials and Methods 

2.1. Materials 

2.1.1. Consumables 

Equipment/Instrument Source 

µ-Dish, 35 mm, high, glass bottom Ibidi 

Autoclave tape VWR 

Bottle top filter 0.22 µm Sarstedt 

Cell culture dish, 100 mm Sarstedt 

Cell culture flask (25 cm², 75 cm²) Sarstedt 

Cell culture plate, (12-well, 24-well) Sarstedt 

Cell scraper, 39 cm Sarstedt 

Cell strainer, 100 µm BD Falcon 

Chromatography paper Whatman 

Cover glasses, 24 x 60 mm Roth 

CryoPure tube, 1.8 ml Sarstedt 

Dialysis cassette, Slide-A-Lyzer MWCO 3.5 kDa Thermo Fisher 

Dispenser tips (1.25, 2.5, 5, 12.5 mL) VWR 

Filters, folded 90 mm Schleicher & Schull 

Glass coverslips, 12 mm  R. Langenbrinck 

Glass Pasteur pipettes VWR 

Gloves, latex Kimtech 

Gloves. nitrile Kimtech 

Gravity flow column Promega 

Hypodermic needles B. Braun 

Micro tube (0.2, 0.5, 1.5, 2.0 mL) Sarstedt 

Microscope slides Roth 

Microscope slides, SuperFrost® Plus Thermo Fisher 

Parafilm Pechiney Plastic  

Pipette filter tips Sarstedt 

Pipette tips Sarstedt 

Plate, 96-well Sarstedt 

PVDF transfer membrane, pore size 0.45 µm Merck 

Round bottomed tube with cell strainer, 35 µm BD Falcon 

Serological pipettes (5, 10, 25 mL) Sarstedt 

Syringes (1, 3 mL) B. Braun 

Task wipes Kimtech 

Tube (12, 15, 50 mL) Sarstedt 
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2.1.2. Chemicals and reagents 

Chemicals and reagents Source 

Acetic acid Merck 

Acrylamide, 30% / Bisacrylamide, 0.8% solution Serva 

Agarose, NEEO quality Roth 

Amido black 10B Merck 

Ampicillin sodium salt Roth 

Aprotinin Roth 

APS (Ammonium persulfate) Fluka 

Bacto agar Becton Dickinson 

Bacto tryptone Becton Dickinson 

Bacto yeast extract Becton Dickinson 

Bromophenol blue Serva 

BSA (Bovine serum albumim), fraction V Sigma-Aldrich 

Calcium chloride Roth 

Cantharidin Sigma-Aldrich 

Chloramphenicol Sigma-Aldrich 

Cyanogen bromide-activated Sepharose
®
 4B Sigma-Aldrich 

Cytochalasin D AppliChem 

DABCO (1,4 Diazabicyclo[2.2.2]octan) Roth 

DAPI (4’,6-Diamidin-2-phenylindol) Sigma-Aldrich 

DePeX Serva 

Dipotassium hydrogen phosphate Merck 

di-Sodium hydrogen phosphate Merck 

DMP-30 Roth 

DMSO (Dimethylsulfoxide) Sigma-Aldrich 

dNTPs (Deoxynucleotide triphosphates) Fermentas 

Doxycycline hyclate AppliChem 

Dynabeads M-450 tosylactivated Invitrogen 

EDTA, disodium salt (Ethylenediaminetetraacetic acid) Roth 

Eosin Agar scientific 

Epon embedding medium Sigma-Aldrich 

Epon hardener DDSA Sigma-Aldrich 

Epon hardener MNA Sigma-Aldrich 

Ethanol Sigma-Aldrich 

Ethidium bromide Sigma-Aldrich 

FCS (Fetal calf serum) PAN Biotech 

Ficoll
TM

 400 Serva 

Glucose Merck 

Glutaraldehyde, 25% Serva 

Glycerol Roth 

Glycine Sigma-Aldrich 
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Hematoxylin, Gill No. 3 Sigma-Aldrich 

HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) Roth 

His•Bind® resin Merck 

Hydrochloric acid, 1M Fluka 

Hydrochloric acid, 32% Merck 

Imidazole Merck 

Immersol 518 F Zeiss 

Immersol W2010 Zeiss 

IPTG (Isopropyl--D-1-thiogalactopyranoside) Fermentas 

Isopropanol Merck 

ITS-G (Insulin-Transferrin-Selenium, 100x) Gibco 

Kanamycin sulfate AppliChem 

Laminin-521 BioLamina 

Lead citrate, 3% (Ultrostain 2) Leica 

Leupeptin Serva 

LIM kinase Inhibitor I Calbiochem 

Magnesium chloride Merck 

Methanol Roth 

Narcoren Merial 

Nickel sulfate Merck 

Nonidet-P40 AppliChem 

Paraplast Plus® Leica 

PEI (Polyethylenimine) Polysciences Inc. 

Penicillin-streptomycin Sigma-Aldrich 

PFA (Paraformaldehyde) Merck 

PI (Propidium iodide) AppliChem 

PMSF (Phenylmethane sulfonyl fluoride) Sigma-Aldrich 

Potassium chloride Merck 

Potassium dihydrogen phosphate Merck 

Puromycin PAA 

PVA (Poly(vinyl alcohol)) Sigma-Aldrich 

Roti-Quant Roth 

SDS (Sodium dodecyl sulfate) Serva 

Skim milk powder Sucofin 

Sodium acetate Roth 

Sodium cacodylate trihydrate Fluka 

Sodium chloride Merck 

Sodium dihydrogen phosphate Roth 

Sodium hydroxide solution, 1 M Fluka 

Sucrose Merck 

SuperSignal West Pico Thermo Fisher 

TEMED (Tetramethylethylenediamine) Roth 

Thimerosal Sigma-Aldrich 
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Tissue-Tek® Sakura Finetek 

Tris base (Tris(hydroxymethyl)aminomethane) Sigma-Aldrich 

Trisodium citrate Merck 

Triton-X-100 Roth 

Tween 20 Roth 

Uranyl acetate dihydrate Merck 

Urea Merck 

WesternBright ECL advansta 

Xylene cyanol FF Serva 

Xylol Merck 

Y-27632 dihydrochloride Sigma-Aldrich 

-mercaptoethanol Merck 

2.1.3. Buffers, solutions and media 

Commercial buffers and media 

Buffer/Medium Source 

DMEM, high glucose Sigma-Aldrich 

DMEM / Ham’s F12 Sigma-Aldrich 

HBSS, premixed powder Sigma-Aldrich 

RPMI 1640 Sigma-Aldrich 

10x Thermopol® buffer NEB 

Media/solutions for work with bacteria 

Buffer/Solution Ingredients  

LB 10 g/L 

5g/L 

10 g/L 

Bacto tryptone 

Bacto yeast 

NaCl 

autoclaved 

Ampicillin stock solution 50 g/L Ampicillin sodium salt sterile filtrated 

Chloramphenicol stock solution 34 g/L Chloramphenicol sterile filtrated 

IPTG stock solution 1 M IPTG sterile filtrated, 

stored in the dark 
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Buffers/solutions for protein purification on Ni-NTA columns 

Buffer/Solution Ingredients  

2x Binding buffer 40 mM 

1 M 

10 mM 

0.2% 

Tris base 

NaCl 

Imidazole 

Triton-X-100 

pH 7.9, HCl 

Urea binding buffer 6 M Urea 

in 1x binding buffer 

pH 7.9, HCl 

2x Wash Buffer – His-Column 40 mM 

1 M 

120 mM 

0.2% 

Tris base 

NaCl 

Imidazole 

Triton-X-100 

pH 7.9, HCl 

2x Elution Buffer 40 mM 

1 M 

2 M 

0.2% 

Tris base 

NaCl 

Imidazole 

Triton-X-100 

pH 7.9, HCl 

2x Strip buffer 40 mM 

1 M 

200 mM 

Tris base 

NaCl 

Na2EDTA x 2 H 

pH 7.9, HCl 

8x Charge solution 400 mM NiSO4 x 6 H2O pH 7.9 

 

Buffers for protein coupling to CNBr beads 

Buffer/Solution Ingredients  

Coupling Buffer 100 mM 

500 mM 

NaHCO3 

NaCl 

pH 8.3 

Blocking buffer 0.2 M Glycine pH 8.0 

Wash buffer A 100 mM 

500 mM 

NaAc 

NaCl 

pH 4.0 

Wash buffer B 100 mM 

500 mM 

NaAc 

NaCl 

pH 8.0 

Storage buffer 0.4 g/L Thimerosal 

in 1x PBS 

pH 7.4 
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Buffers for antibody affinity purification 

Buffer/Solution Ingredients  

Wash buffer 1 10 mM 

170 mM 

Tris base 

NaCl 

pH 7.5, HCl 

Wash buffer 2 10 mM 

170 mM 

0.02% 

Tris base 

NaCl 

Tween 20 

pH 7.5, HCl 

Wash buffer 3 10 mM 

500 mM 

0.02% 

Tris base 

NaCl 

Tween 20 

pH 7.5, HCl 

Elution buffer 0.2 M 

0.2 M 

Glycine 

NaCl 

pH 2.0 

Neutralization buffer 1 M 

2.4 g/L 

Tris base 

Thimerosal 

pH 8.8 

Buffers/solutions for SDS-PAGE 

Buffer/Solution Ingredients  

4x Stacking gel buffer 0.5 M 

4 g/L 

Tris base 

SDS 

pH 6.8, HCl 

4x Separating gel buffer 1.5 M 

4 g/L 

Tris base 

SDS 

pH 8.8, HCl 

5x SDS sample buffer 625 mM 

125 g/L 

12.5 % 

0.5 g/L 

50% 

Tris base 

SDS 

-mercaptoethanol 

Bromophenol blue 

Glycerol 

pH 6.7, HCl 

10x SDS running buffer 0.25 M 

1.9 M 

10 g/L 

Tris base 

Glycin 

SDS 

 

Amido black staining solution 1.5 mM 

50% 

10% 

Amido black 10B 

Methanol 

Acetic acid 
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Buffers for western blotting 

Buffer/Solution Ingredients  

Transfer buffer 50 mM 

384 mM 

0.1 g/L 

20% 

Tris base 

Glycine 

SDS 

Methanol 

 

10x TBS 0.25 M 

1.4 M 

26.8 mM 

Tris base 

NaCl 

KCl 

pH 7.4, HCl 

autoclaved 

TBS-T 0.1% Tween 20 

in 1x TBS 

 

Blocking buffer 50 g/L 

0.1% 

Skim milk powder 

Tween 20 

in 1x TBS 

 

Solutions for mouse work 

Buffer/Solution Ingredients  

Induction solution 2 g/L 

50 g/L 

Doxycycline 

Sucrose 

 

Physiological saline solution 9 g/L NaCl  

Narcoren working solution 1:50 dilution of Narcoren  

in physiological saline solution 

 

Buffers/solutions for epon embedding 

Buffer/Solution Ingredients  

Epon 4.6 g 

2.85 g 

2,51 g 

0.15 g 

Epon embedding medium 

Hardener DDSA 

Hardener MNA 

Accelerator DMP-30 

Mix medium and hardeners 

and stir for 20 min, add DMP-

30 and stir for another 20 min 
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Buffers for DNA isolation and genotyping 

Buffer/Solution Ingredients  

Tail buffer 100 mM 

200 mM 

5 mM 

2 g/L 

Tris base 

NaCl 

Na2EDTA x 2 H2O 

SDS 

pH 8.0, HCl 

autoclaved 

TE buffer 10 mM 

1 mM 

Tris base 

Na2EDTA x 2 H2O 

pH 8.0, HCl 

autoclaved 

50x TAE buffer 2 M 

0.1 M 

Tris base 

Na2EDTA x 2 H2O 

pH 8.0, 

acetic acid 

5x DNA loading buffer 50 mM 

1.25 g/L 

 

1.5 g/L 

5 g/L 

Na2EDTA x 2 H2O 

Bromophenol blue 

or xylene cyanol FF 

Ficoll type 400 

SDS 

pH 8.0 

Buffers for tissue and cell fixation 

Buffer/Solution Ingredients  

4% PFA 40 g/L PFA 

solve in water with some drops 

of 1 mM NaOH added under 

heating to 60 °C; add 10x PBS 

after complete dissolving 

pH 7.4 

2% Glutaraldehyde 1:12.5 dilution of Glutaraldehyde, 

25% in Caco buffer 

pH 7.4 

Caco buffer 0.1 M Sodium cacodylate trihydrate pH 7.4 

Sucrose buffer 180 g/L Sucrose 

in 1x PBS 

pH 7.4 
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Buffers for immunofluorescence staining 

Buffer/Solution Ingredients  

Retrieval buffer 10 mM Na3C3H5(COO)3 x 2 H2O pH 6.0 

Histoblock buffer 20 g/L 

0.1% 

BSA 

Triton-X-100 

in 1x PBS 

pH 7.4 

3% BSA buffer 30 g/L BSA 

in 1x PBS 

pH 7.4 

Permeabilization buffer, cells 0.1% Triton-X-100 

in 1x PBS 

pH 7.4 

Permeabilization buffer, tissue 0.3% Triton-X-100 

in 1x PBS 

pH 7.4 

DAPI staining buffer 0.17 mg/L DAPI 

in 1x PBS 

pH 7.4 

Mounting buffer 0.1 M 

100 g/L 

25 g/L 

25% 

Tris base 

PVA 

DABCO 

Glycerol 

Mix PVA in 50% glycerol o/n; 

solve at 50 °C after adding an 

equivalent amount of 0.2 M 

tris base the next day. Add 

DABCO, centrifuge (3 000 g, 

15 min) and aliquot. 

pH 8.0, HCl 
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Buffers/solutions for podocyte isolation and FACS 

Buffer/Solution Ingredients  

Bead slurry 40 µL 

in 8 mL 

Dynabeads M-450 

HBSS per mouse 

pH 7.4 

Digestion buffer 4 mg  

4 mg  

200 U 

in 4 mL 

Pronase E 

Collagenase II 

DNase I stock solution 

HBSS per mouse 

pH 7.4 

Bead slurry in digestion buffer 10 µL 

in 2 mL 

Beads M-450 tosylactivated 

Digestion solution per mouse 

pH 7.4 

FACS buffer 0.2% FCS 

in 1x PBS 

pH 7.4 

PI stock solution 1 g/L Propidium iodide  

Buffers and media for work with cells and coatings 

Buffer/Solution Ingredients  

10x PBS 1.27 M 

27 mM 

14.7 M 

80.9 mM 

NaCl 

KCl 

KH2PO4 

Na2HPO4 x 2 H2O 

pH 7.4 

Primary podocyte growth 

medium 

90% 

10% 

10 mg/L 

5.5 mg/L 

0.67 ng/L 

1000 unit 

0.1 g/L 

DMEM/Ham’s F12 

FCS 

Insulin 

Transferrin 

Sodium selenite 

Penicillin 

Streptomycin 

 

1x PBS
++

 0.9 mM 

0.5 mM 

CaCl2 

MgCl2 x 6 H2O 

in 1x PBS 

pH 7.4 
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Buffers for cell lysis 

Buffer/Solution Ingredients  

Lysis buffer A 150 mM 

20 mM 

0.6% 

10 µg/mL 

10 µg/mL 

100 µM 

1 mM 

NaCl 

HEPES 

Nonidet-P40 

Aprotinin 

Leupeptin 

Cantharidin 

PMSF 

pH 7.9 

Lysis buffer B 690 mM 

80 mM 

3 mM 

10 µg/mL 

10 µg/mL 

100 µM 

1 mM 

50% 

NaCl 

HEPES 

MgCl2 x 6 H2O 

Aprotinin 

Leupeptin 

Cantharidin 

PMSF 

Glycerin 

pH 7.9 

Urea lysis buffer 6 M 

1% 

Urea 

Triton-X-100 

in 1x PBS 

pH 7.4 

2.1.4. Enzymes, kits and markers 

Enzymes 

Enzyme Source 

0:25% Trypsin-EDTA solution Sigma-Aldrich T4049 

Accutase Sigma-Aldrich A6964 

Collagenase IA Sigma-Aldrich C9891 

Collagenase Type II Worthington LS004176 

DNase I AppliChem A3778 

Pronase E Merck 1074330001 

Proteinase K Roth 7528.2 

Taq DNA Polymerase NEB M0267L 
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Kits 

Kit Source 

Plasmid Plus Midi Kit Qiagen 

RhoA/Rac1/Cdc42 G-LISA Activation Assay Bundle Cytoskeleton 

Markers 

Marker Source 

2-log DNA ladder NEB 

PageRuler prestained protein ladder Thermo Fisher 

2.1.5. Antibodies and peptides 

Primary antibodies and peptides 

Name Immunogen Species Dilution Source 

anti-Abra Abra m Rabbit 

polyclonal 

1:100 (WB) Own Lab 

anti-Arl4c Arl4c m Rabbit 

polyclonal 

1:100 (WB) Own Lab 

Cdc42 (P1) Cdc42 h, m, r Rabbit 

polyclonal 

1:100 (WB) Santa Cruz 

SC-87 

Alexa Fluor
TM

 

633 phalloidin 

F-actin  / 1:40 (IF) 

1:40 (IF-Cryo) 

Invitrogen 

A-22284 

Anti-GAPDH GAPDH h, m, r Rabbit 

polyclonal  

1:25000 (WB) Sigma-Aldrich 

G9545 

BMO8 Lmx1b m Rabbit 

polyclonal 

1:1000 (WB) Own Lab 

Phospho-Myosin 

Light Chain 2 

(Ser19) 

Phospho-

Myosin Light 

Chain 2 

(Ser19) 

h, m, r Rabbit 

polyclonal 

1:100 (IF) Cell Signaling  

#3671 

Podocin Podocin h, m, r Rabbit 

polyclonal 

1:500 (IF-P) Sigma-Aldrich 

P0372 

Rac1 (C-14) Rac1 h, m, r Rabbit 

polyclonal 

1:100 (WB) Santa Cruz 

SC-217 
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RhoA (67B9) RhoA h, m, r Rabbit 

monoclonal 

1:1 000 (WB) Cell Signaling 

#2117 

Anti-SM22 alpha Transgelin h, m, r Goat 

polyclonal 

1:500 (WB) 

1:100 (IF) 

1:200 (IF-P) 

abcam 

ab10135 

LEAF
TM

 Purified 

Rat IgG2a,  

isotype ctrl 

Trinitrophenol 

+ KLH 

/ Rat 

monoclonal 

IgG2a,  

1:320 (IF) 

1:200 (FC) 

BioLegend 

400516 

Anti-Integrin β1 

antibody, clone 

MB1.2 

1-integrin h, m, r Rat 

monoclonal 

1:200 (FC) Merck Millipore 

MAB1997 

Purified Rat Anti-

Mouse CD29 

(9EG7) 

1-integrin, 

active 

m Rat 

monoclonal 

IgG2a,  

1:50 (IF) 

1:100 (FC) 

BD Bioscience 

550531 

Secondary antibodies 

Immunogen Conjugate Species Dilution Source 

Goat IgG Alexa 488 Donkey 1:600 (IF) Invitrogen 

A-11055 

Goat IgG Alexa 568 Donkey 1:600 (IF) Invitrogen 

A-11057 

Goat IgG HRP Rabbit 1:80 000 (WB) Sigma-Aldrich 

A5420 

Rabbit IgG Alexa 568 Donkey 1:600 (IF) 

1:600 (IF-P) 

Invitrogen 

A-10042 

Rabbit IgG HRP Goat 1:200 000 (WB) Sigma-Aldrich 

A0545 

Rat IgG Alexa 568 Goat 1:200 (IF) Invitrogen 

A-11077 

Rat IgG Alexa 647 Goat 1:200 (FC) Invitrogen 

A-21247 
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2.1.6. Oligonucleotides for genotyping 

Gene Primer Sequence Amplicon 

Cre forward 

reverse 

TGGACATGTTCAGGGATCGC 

TCAGCTACACCAGAGACGGA 

 

613 bp 

Lmx1b, 

floxed 

forward 

reverse 

AGGCTCCATCCATTCTTCTC 

CCACAATAAGCAAGAGGCAC 

220 bp (WT) 

330 bp (TG) 

mTmG forward 

reverse wt 

reverse tg 

CTCTGCTGCCTCCTGGCTTCT 

TCAATGGGCGGGGGTCGTT 

CGAGGCGGATCACAAGCAATA 

 

330 bp (WT) 

250 bp (TG) 

P2.5 Cre forward 

reverse 

GGTTGGCACCCCTCTAGCATGACATTAGGA 

TCATCACTCGTTGCATCGACCGGTAATGCA 

 

364 bp 

rtTA forward 

reverse 

GCAAGACTTTCTGCGGAACA 

GAAAAGGAAGGCAGGTTCGG 

 

340 bp 

Transgelin 

(WT) 

forward 

reverse 

CTCAGAGTGGAAGGCCTGCTT 

CACACCATTCTTCAGCCACA 

 

276 bp 

Transgelin 

(KO) 

forward 

reverse 

CTCAGAGTGGAAGGCCTGCTT 

GGCGATCCCTGAACATGTCC 

 

220 bp 

2.1.7. Plasmids and cell lines 

Plasmids 

Plasmid Bacterial strain Resistance Source 

pcDNA3 DH5 Amp Invitrogen 

pcDNA3/mAbra DH5 Amp Own lab 

pcDNA3/mArl4c DH5 Amp Own lab 

pET21a/mAbra-His Rosetta pLysS Amp/Cam Own lab 

pET21a/mArl4c-His Rosetta pLysS Amp/Cam Own lab 
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Cell lines 

Cell line/ 

bacterial strain 

Description Source 

HEK239T human embryonic kidney cell line 

Expression of SV40 large T-antigen 

ATCC 

hPCL 

pInducer-LMX1B 

clone#1 

human podocyte cell line 

Transduced with pInducer-LMX1B in own lab; 

expression of Lmx1b upon doxycycline induction 

hPCL from M.A. 

Saleem (University 

of Bristol); (Saleem 

et al., 2002) 

DH5 Escherichia coli strain 

Competent strain used for mammalian plasmid 

reproduction 

DSMZ 

Rosetta (DE3) 

pLysS 

Escherichia coli strain 

Suitable for protein expression due to T7 polymerase, 

T7 lysozyme and rare tRNA expression 

Thermo Fisher 

2.1.8. Equipment and instruments 

Equipment / Instrument Source 

Absorbance microplate reader “Sunrise” TECAN 

Agarose gel electrophoresis chamber “Horizon 58” Gibco 

Agarose gel electrophoresis chamber “Owl
TM

 EasyCast
TM

 B2” Thermo Fisher 

Autoclave “2540 ML” Tuttnauer 

Autoclave “5050 ELV” Tuttnauer 

Blotting chamber “Tank Blot SE 600” Hoefer 

Bunsen burner Usbeck 

Cell separation  magnet “IMagnet
TM

” BD Bioscience 

Cell sorter “FACSAria II” BD Bioscience 

Centrifuge “Avanti
®
 J-26 XP” with rotor Ja-10 Beckman Coulter 

Centrifuge “Heraeus Pico 17” Thermo Fisher 

Centrifuge “Hitachi himac CT15RE” with rotor T15A61-1041 VWR 

Centrifuge “Multifuge 3 L-R” with rotor Ch. 2454 Heraeus 

Centrifuge “Sigma-Aldrich 3K20” with rotor 12158 Sigma 

Chemiluminescence system “Fusion-FX7" Vilber Lourmat 

CO2 incubator “CB210” Binder 

Cryostat “CM3050s” Leica 

Digital slide scanner “NanoZoomer-SQ“ Hamamatsu 

Freezers -20 °C Privileg 

Freezers -80 °C “Herafreeze
TM

” Thermo Fisher 

Gel documentation system “GelDoc
TM

 XR+” Bio-Rad 
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Gel electrophoresis cell “Mini Protean 3” Bio-Rad 

Glassware (beakers, bottles, flasks) Schott; VWR 

Heating plate with a magnetic stirrer “MR 2002" and “MR 3001" Heidolph 

Hybridization oven “HB-1000” UVP 

Hybridization oven “OV3” Biometra 

Ice machine Ziegra 

Incubator “Kelvitron t" Thermo Fisher 

Incubator “Multitron standard” Infors 

Inverted microscope “Eclipse TS100” Nikon 

Laboratory pH Meter “CG 842" Schott  

Laminar flow bench “Lamin Air HA 2448 GS" Heraeus 

Liquid nitrogen container “Arpege TP 170" Air Liquide Medical 

Microtome “RM2255" Leica 

Microwave “8016 G" Privileg 

Multi-dispenser “HandyStep
®
 electronic” BRAND 

Neubauer counting chamber (depth 0.1 mm) Marienfeld 

Paraffin embedding module “EG1150 H” Leica 

pH electrode “SenTix 60" WTW 

Pipettes Gilson 

Pipettor “IPS Pipetboy acu” Integra Bioscience 

Power supply “PS 608" life technologies 

Power supply “Standard Power Pack P25" Biometra 

Refrigerators SEG, Privileg 

Rocking platform shaker “Duomax 1030" Heidolph 

Rocking platform shaker “Polymax 2040” Heidolph 

Spectrophotometer “NanoDrop
TM

 2000” Thermo Fisher 

Spectrophotometer “U-2000" Hitachi 

Tissue processor “TP-1020” Leica 

Thermal cycler “Mastercycler gradient” Eppendorf 

Thermal cycler “MyCyclerTM” Bio-Rad 

Thermal cycler “T100” Bio-Rad 

Transmission electron microscope “EM Zeiss 902" Zeiss 

Ultrapure water unit “Seralpur PRO 90 CN” Seral 

Vacuum gas pump VWR 

Vertical gel electrophoresis cell “Mini Protean Tetra cell" Bio-Rad 

Vortexer  VWR 

Weighing scale “BL 1500 S” Sartorius 

Weighing scale “Kern 770” KERN & Sohn 
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Epifluorescence microscope 

 Name Source 

Microscope Axiovert 200M Zeiss 

Light source LEJ (HXP-120) Visitron Systems 

Objectives Ultrafluar, 40x/0.6 Zeiss 

Camera CoolSnap ES Visitron Systems 

Epifluorescence microscope with motorized x,y-stage 

 Name Source 

Microscope Observer.Z1 Zeiss 

Light source Colibri.2 Zeiss 

Objectives EC Plan-Neofluar 10x/0.30 Zeiss 

Camera Axiocam MR R3 Zeiss 

Confocal microscope 

 Name Source 

Microscope Observer.Z1 Zeiss 

Laser 405 nm, diode laser, LSM710 

488 nm, Argon multiline, LDN301 

561 nm, DPSS laser, LSM710 

633 nm, HeNe laser, LSM710 

Zeiss 

Lasos 

Zeiss 

Zeiss 

Objectives Plan-Apochromat 20x/0.8 

LD C-Apochromat 40x/1.1 W 

C-Apochromat 63x/1.20 W  

Zeiss 

Zeiss 

Zeiss 

Detection module LSM BiG Zeiss 

Additional 

equipment 

Active gas mixer “The Brick” 

Stage top incubator “HT 200” 

Ibidi 

Ibidi 
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2.1.9. Software and tools 

Software 

Software Version Purpose Company 

Bio 1D 15.07 WB quantification Vilber Lourmat 

EndNote X7.1 Citation and references Thomson Reuters 

Excel Office 2010 Data processing Microsoft 

FCS Express 6.05 Flow cytometry processing De Novo Software 

Fiji (ImageJ) 1.51s Image processing National Institutes 

of Health 

FileMaker Pro 6 Database FileMaker, Inc. 

Fusion 15.18 WB imaging Vilber Lourmat 

ImageLab 5.2 Gel documentation Bio-Rad 

Inkscape 0.92.2 Image processing / 

Magellan
TM

 7.2 Photometric measurement TECAN 

NanoDrop 2000/2000c 

Operating Software 

1.6 Photometric measurement / 

DNA quantification 

Thermo Fisher 

OriginPro  9.0.0 SR2 Data processing, diagrams OriginLab 

SnapGene Viewer 4.1 Gene/plasmid handling GSL Biotech, LLC 

VisiView 2.1.4 Image recording Visitron Systems 

Word Office 2010  Microsoft 

ZEN 2011 SP3 (black edition) 8.1 Image recording Zeiss 

MicroImaging  

ImageJ plugins 

Plugin Version Authors 

ADAPT 1.185 (Barry et al., 2015) 

JACoP 2.1.1 (Bolte and Cordelieres, 2006) 

NDPI Tools 1.7.2 (Deroulers et al., 2013) 

Scientifig 3.1 (Aigouy and Mirouse, 2013) 

Internet databases and tools 

Name Internet address 

BLAST https://blast.ncbi.nlm.nih.gov/Blast.cgi 

ensembl http://www.ensembl.org/index.html 

Primer 3 http://primer3.ut.ee/ 

PubMed https://www.ncbi.nlm.nih.gov/pubmed/ 

UCSC Genome Browser https://genome.ucsc.edu/ 
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2.2. Working with bacteria and recombinant protein purification 

2.2.1. Cultivation and recombinant protein expression 

Long-term storage of bacteria was achieved by freezing cells in LB medium with glycerol 

(6:1) at -80 °C. All media and glass vessels were autoclaved while antibiotics and IPTG 

were sterile filtered before use. Inoculation of cultures was carried out under sterile 

conditions near the flame. 

Cultures for plasmid isolation were directly inoculated with a small amount of bacteria and 

grown overnight at 37 °C under constant shaking in 50 mL LB medium supplemented with 

0.5 mg/mL ampicillin. 

In case of protein expression cultures, 5 mL of LB medium supplemented with appropriate 

antibiotics (0.5 mg/mL ampicillin, 34 µg/mL Chloramphenicol) was inoculated with a 

small amount of frozen bacteria and grown at 37 °C and constant agitation for approx. 5 h. 

Main cultures (450 mL) were inoculated with a dilution of 1:100 out of preparatory 

cultures. OD values were measured frequently with a spectrophotometer at 550 nm after 

diluting 0.5 mL of bacterial cultures 1:2 in LB medium. After reaching an OD of 0.5 the 

cultures were allowed to cool to RT and protein expression was induced by adding 1 mM 

IPTG. Protein expression was conducted at 37 °C (pET21a/mAbra-His) or 25 °C 

(pET21a/mArl4c-His) overnight. 

2.2.2. Plasmid DNA isolation 

Preparation of plasmid DNA was carried out with the Qiagen Plasmid Plus Midi Kit. At 

first, overnight cultures were centrifuged at 4 000 g for 15 min at 4 °C. The cell pellet was 

resuspended in 4 mL chilled buffer P1 by pipetting up and down. Afterwards, 4 mL of 

buffer P2 was added, mixed thoroughly and incubated for 3 - 5 min at RT. After adding 

buffer S3 (4 mL) and mixing, the lysate was immediately transferred into a sealed filter 

cartridge and incubated for 10 min. The lysate was filtered, 2 mL buffer BB was added and 

the clear solution was inverted several times. The solution was drawn through a spin 

column by applying vacuum. The bound DNA was washed with 0.7 mL buffer ETR and 

0.7 mL buffer PE by centrifugation (10 000 g, 1 min). After spinning the dry column once 

more, the plasmid DNA was incubated for 1 min with 200 µL buffer EB and eluted by 

centrifugation. The DNA concentration was measured with the NanoDrop 

spectrophotometer. 
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2.2.3. Recombinant protein purification using His•Bind columns 

After determination of the OD the cells were pelleted by centrifugation (4 000 g, 10 min, 

4 °C) and resuspended in a volume of ice-cold 1x binding buffer calculated by equation (1). 

 𝑉(𝑏𝑖𝑛𝑑𝑖𝑛𝑔 𝑏𝑢𝑓𝑓𝑒𝑟) =
𝑂𝐷550 × 𝑉(𝑐𝑢𝑙𝑡𝑢𝑟𝑒)

50
 (1) 

The cell suspension was lysed by five cycles of sonication (30 s each) and cooled in an ice 

bath between cycles. The lysate was centrifuged (10 000 g, 20 min, 4 °C), the supernatant 

was collected and stored. To dissolve the pellet, it was first washed 3x with 1x binding 

buffer and then resuspended in urea binding buffer with half the volume calculated with 

equation (1). The suspension was dissolved overnight while shaking on a rotating wheel at 

4 °C. Remaining insoluble material was removed by centrifugation (10 000 g, 30 min, 

4 °C). 

For protein purification a His•Bind column was freshly prepared. 2 mL of resin slurry was 

filled into a pre-wetted gravity flow column and allowed to settle down to yield 1 mL bed 

volume. The column was never allowed to dry out and washed with 3x bed volume H2O, 

activated with 5x bed volume charge solution and equilibrated with 3x bed volume urea 

binding buffer. To bind the His-tagged protein to the resin, the resin was removed from the 

column and incubated with the protein solution for 4 h at 4 °C on the rotating wheel. After 

centrifugation (1 000 g, 3 min, 4 °C) the resin pellet was resuspended in urea binding buffer 

and loaded again on the column. The column was washed with 10x bed volume urea 

binding buffer and 6x bed volume 1x wash buffer containing 6 M urea. Elution was carried 

out with 1x elution buffer supplemented with 6 M urea and six fractions were collected 

with 0.5x bed volume each. The column was washed and regenerated with 5x bed volume 

H2O and 3x bed volume strip buffer and stored in strip buffer at 4 °C. To analyze which 

fractions contain the purified recombinant protein, SDS-PAGE was performed. 

2.3. Working with proteins 

2.3.1. Determination of protein mass concentration 

Bradford assay was performed for fast estimation of whole protein content in solutions. The 

assay was conducted on 96-well plates. First, a BSA standard curve (160 mg/L, 80 mg/L, 

40 mg/L, 16 mg/L and 8 mg/L) was diluted in water using a 10 g/L BSA stock solution. 

Samples to be analyzed and blanks containing only the sample buffer were diluted in the 

range of 1:10 and 1:200 in water. 50 µL/well of BSA dilutions, protein samples and blanks 

(buffer and water only blank) were pipetted in doublets on the 96-well plate. The diluted 
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Roti-Quant reaction solution (1:4 dilution, 200 µL/well) was added in fast succession with 

a multi-dispenser, air bubbles were removed and the absorbance was measured with 

450 nm and 595 nm filters after a reaction time of 5 – 10 minutes. In case blank corrected 

450/595 ratios of samples were not in the range of the standard curve, dilution was adjusted 

accordingly. To receive the mass concentration ( of protein in the sample, ratios of 

absorbance at 450 nm to 595 nm was calculated and corrected by the respective blank ratio. 

Linear regression of the standard curve yielded a slope and y-intercept and the mass 

concentration could be obtained according to equation (2). 

 𝛽(𝑝𝑟𝑜𝑡𝑒𝑖𝑛) = 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 ×
𝑐𝑜𝑟𝑟.  𝑟𝑎𝑡𝑖𝑜 × 𝑦 − 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

𝑠𝑙𝑜𝑝𝑒
 (2) 

2.3.2. Separation of proteins and peptides 

Separation of proteins and peptides was achieved by SDS-PAGE. Different sizes and 

polyacrylamide concentrations were used according to the size and amount of the protein of 

interest. Small proteins < 20 kDa were separated on 15% gels, proteins between 20 and 

50 kDa with 12% gels and larger proteins with 10% gels. Gels were cast at least one day 

before electrophoresis according to Table 2.1 for mini gels and Table 2.2 for maxi gels. 

TEMED and APS were added at last to the mixtures and separation gel was then 

immediately poured into the apparatus and covered with a small line of isopropanol. The 

gel was allowed to polymerize at least 45 min before isopropanol was decanted and 

stacking gel was added on top followed by insertion of a comb. After 45 min, gel was 

wrapped into wet paper towels and aluminum foil and stored at 4 °C. 

Gels were mounted into separation chambers and filled with 1x running gel buffer. One 

part 5x loading buffer was added to four parts of protein solution and boiled for 10 - 15 min 

afterwards. After short cooling and centrifugation, a maximum of 30 µL for mini gels and 

80 µL for maxi gels were loaded into gel pockets. For estimation of protein sizes 2 – 4 µL 

of pre-stained protein marker was used. Separation was conducted by applying a voltage of 

150 V for mini gels and 500 V for maxi gels while stirring and in the case of maxi gels 

cooling to 10 °C. After the run, stacking gel was removed and gel was either used for 

western blotting or stained with amido black staining solution for 10 min. Destaining was 

conducted with water by several cycles of heating in the microwave and mild shaking for 

approx. 30 min. Gels were digitalized with a scanner. 
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Table 2.1: Amounts for the casting of mini gels. For separation gels, 7.2 mL was used and 2.5 mL 

for stacking gels. 

Gel Ingredients 

4% stacking gel 0.75 mL 

1.82 mL 

0.40 mL 

2.25 µL 

22.5 µL 

4x stacking gel buffer 

H2O 

Acrylamide, 30% / Bisacrylamide, 0.8% solution 

TEMED 

APS, 100 g/L solution 

10% separation gel 2.50mL 

4.10 mL 

3.33 mL 

5 µL 

50 µL 

4x separation gel buffer 

H2O 

Acrylamide, 30% / Bisacrylamide, 0.8% solution 

TEMED 

APS, 100 g/L solution 

15% separation gel 2.50mL 

2.44 mL 

5.00 mL 

5 µL 

50 µL 

4x separation gel buffer 

H2O 

Acrylamide, 30% / Bisacrylamide, 0.8% solution 

TEMED 

APS, 10% solution 

Table 2.2: Volumes of components used for casting maxi gels. 25 mL were used for separation gels 

and 10 mL for stacking gels. 

Gel Ingredients 

4% stacking gel 3.00 mL 

7.30 mL 

1.6  mL 

9 µL 

90 µL 

4x stacking gel buffer 

H2O 

Acrylamide, 30% / Bisacrylamide, 0.8% solution 

TEMED 

APS, 100 g/L solution 

12% separation gel 7.50mL 

10.33 mL 

12 mL 

15 µL 

150 µL 

4x separation gel buffer 

H2O 

Acrylamide, 30% / Bisacrylamide, 0.8% solution 

TEMED 

APS, 100 g/L solution 

15% separation gel 7.50mL 

7.33 mL 

15 mL 

15 µL 

150 µL 

4x separation gel buffer 

H2O 

Acrylamide, 30% / Bisacrylamide, 0.8% solution 

TEMED 

APS, 100 g/L solution 
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2.3.3. Western blotting 

Quantification of the relative amount of specific proteins was carried out by western 

blotting. Western blotting was carried out using wet blotting technique and a 0.45 µm pore 

size PVDF membrane. SDS-PAGE gel and six pieces of cropped Whatman 3MM papers 

were equilibrated in transfer buffer for 15 min. PVDF membrane was activated 1 min in 

pure methanol and afterwards also equilibrated. To transfer protein, a stack of 3 Whatman 

papers, the gel, the PVDF membrane and again 3 Whatman papers was build and air 

bubbles were removed. The stack was then put between porous sponges and mounted into 

the transfer chamber with the membrane orientated towards the anode. 

The transfer was achieved under stirring of transfer buffer and cooling to 10 °C with a 

current of 1 A for 2:20 h. After the run, the membrane was cropped into several pieces if 

desired and marked at the right top edge of each fragment. For reduction of unspecific 

binding blocking was performed for 30 min with skim milk blocking buffer at RT. The 

primary antibody was diluted in blocking buffer and incubated with the membrane under 

constant agitation overnight. The next day membrane was swilled 2x and washed 4x with 

TBS-T (2x 5 min and 2x 10 min). The appropriate secondary antibody-HRP-conjugate was 

diluted in blocking buffer and incubated for 45 min at RT under constant agitation. After 

again 2x swilling and 4x washing (5 min) with TBS-T the blot was finally washed with 1x 

TBS for 5 min. 

Protein was detected using chemiluminescence reactions catalyzed by HRP. Luminophore 

and oxidation reagent were freshly mixed 1:1 and incubated 1 min with the membrane. 

Afterwards, signal was measured with appropriate resolution and exposure time in the 

“Fusion-FX7” chamber. Signal was quantified with the software Bio 1D by measuring the 

intensity of bands within a defined area. After blank correction signals were normalized to 

glyceraldehyde-3-phosphate dehydrogenase (Gapdh) as an internal standard. In case the 

membrane was probed with several antibodies, chemiluminescent reagents were washed 

out with TBS-T and the next primary antibody was incubated for 2 h at RT followed by 

washing and incubation with secondary antibody as described above. 
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2.3.4. CNBr-activated Sepharose 4B coupling 

Before proteins were covalently bound to CNBr-activated Sepharose 4B beads, interfering 

small molecules were washed out by dialysis. A dialysis cassette was wetted 2 min in H2O 

and protein solution was injected with a syringe afterwards. After removing air bubbles the 

proteins were dialyzed three times against 0.4 L coupling buffer for 2 h, 4 h and overnight 

at 4 °C. The next day the dialyzed sample was transferred into a micro tube. As proteins at 

least partly precipitated, an appropriate amount of 100 g/L SDS in coupling buffer was 

added to yield 5 g/L SDS and boiled until all of the protein was dissolved. The solutions 

were allowed to cool down to RT. 

A proper amount of beads was swollen in 10 mL HCl (1 mM) solution for 30 min and 

loaded into a gravity flow column. 1 mL bed volume of beads was used for 5 – 10 mg of 

protein. After washing beads 6x with 10 mL HCl (1 mM) solution and 1x with 2 mL 

coupling buffer supplemented with 5 g/L SDS, they were immediately mixed with the 

protein solution and put on the rotating wheel overnight at 4 °C. The next day bound 

protein was washed with 10 mL 1x coupling buffer containing 5 g/L SDS and afterwards 

with 10 mL coupling buffer without SDS. Remaining unreacted groups were blocked with 

blocking buffer for 2 h at RT. The column was washed in 3 cycles with 10 mL wash buffer 

A and 10 mL wash buffer B, followed by washing with 10 mL coupling buffer and 10 mL 

1x PBS. Finally, the column was stored in 0.4 g/L thimerosal in 1x PBS at 4 °C. 

2.3.5. Antibody affinity purification 

For affinity purification of antibodies rabbit sera and the antigen bound CNBr sepharose 

columns were used. Both 9 mL of anti-Abra and anti-Arl4c serum was purified. The 

column was washed with 10x bed volume 1x PBS and mixed with the antibody serum. 

After incubation on the rotating wheel overnight at 4 °C unbound material was washed out 

with 10x bed volume buffer 1, 10x bed volume buffer 2, 10x bed volume buffer 3 and 

finally 10x bed volume buffer 1. The antibody was eluted in five cycles with 1x bed 

volume elution buffer into micro cups containing 0.2x bed volume neutralization buffer and 

stored at -20 °C. The column was washed with 10x bed volume 1x PBS and stored in 

0.4 g/L thimerosal in 1x PBS at 4 °C. Elution fractions were analyzed by SDS-PAGE. 
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2.4. Working with mice 

2.4.1. Mouse transgenes 

LC-1 

LC-1 is a transgene with direct control of luciferase and Cre recombinase expression under 

the promoter Ptetbi-1 (Schönig et al., 2002). This bidirectional promoter consists of seven 

tetO repeats flanked by two hCMV derived minimal promoters and is activated upon rtTA 

binding. 

Lmx1b, floxed 

In this transgenic mouse line, two loxP sites were introduced into introns downstream of 

exon 4 and upstream of exon 6 of the endogenous murine Lmx1b (Suleiman et al., 2007). 

Cre recombinase expression results in an in-frame deletion of exons 4 – 6, containing the 

homeobox sequence. Mice were kindly provided by R. Johnson. 

mTmG 

The reporter construct mTmG comprises of membrane-targeted versions of tdTomato (mT) 

and an EGFP (mG) under the control of a chicken -actin core promoter with a CMV 

enhancer (Muzumdar et al., 2007). tdTomato and a downstream polyadenylation (pA) 

signal are flanked by loxP sites. This construct results in mT expression in all kinds of 

tissue under normal conditions. In case Cre recombinase is expressed, mT and the pA 

signal are cut-out and expression of mG starts. This construct enables to mark specific cell 

types with green fluorophores by specific promoter controlled Cre expression. Mice were 

kindly provided by T. B. Huber. 

P2.5 Cre 

The expression cassette for P1 bacteriophage Cre recombinase is regulated by a 2.5 kbp 

promoter fragment of the human NPHS2 gene (Moeller et al., 2003) encoding the protein 

podocin. The NPHS2 promoter is exclusively active in podocytes. The Cre recombinase 

excises flanked by loxP (floxed) gene sequences and for this reason, podocyte-specific gene 

deletions can be obtained. 
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P2.5 rtTA 

The rtTA gene (reverse tetracycline-controlled transcriptional transactivator) is derived and 

modified from the E. coli tetracycline-resistance operon. The encoded protein is able to 

bind to tetO and activate transcription only if tetracyclines (e.g. doxycycline) are present. 

The gene was put under the regulatory control of a 2.5 kbp fragment of the human NPHS2 

promoter (Shigehara et al., 2003). 

SM-CreER
T2

(ki) 

A construct encoding for the CreER
T2

, an SV40 polyadenylation signal and a neomycin-

resistance gene was integrated into the Sm22 locus resulting in a Sm22 promoter driven 

CreER
T2

 expression while transgelin expression is abolished (Kühbandner et al., 2000). 

CreER
T2

 is a Cre recombinase fused to a mutant estrogen ligand binding domain, resulting 

in an inactive protein in the absence of tamoxifen. In this work this mouse line was used as 

a knock-out mouse model, the CreER
T2

 protein was never activated with tamoxifen. 

2.4.2. General handling and breeding 

The mice are bred in euro standard type II and III cages in a conventional animal laboratory 

of the University of Regensburg. Offspring was marked by footpad tattoos and tail biopsied 

4 – 21 days after birth and separated from the mother at 19 – 28 days of age. Animals had 

unlimited access to drinking water and complete food in a 12 h day/night cycle. 

2.4.3. Genotyping 

DNA isolation 

Mouse biopsies were digested with 0.2 g/L proteinase K in 700 µL tail buffer overnight in a 

hybridization oven at 50 °C under rotation. The next day samples were vortexed and 

centrifuged (10 000 g, 30 min, 4 °C) to remove remaining insoluble material. Thereafter, 

600 µL isopropanol was added to the supernatant in a fresh micro vial and it was 

vigorously inverted to precipitate DNA. After centrifugation (10 000 g, 30 min, 4 °C) 

supernatant was sucked off and 70% ethanol (500 µL) was added. The vial was inverted 

several times and centrifuged (10 000 g, 15 min, 4 °C) again. Finally, ethanol was 

discarded, DNA was completely dried at 40 °C for at least 30 min and resolved in 

30 - 200 µL TE buffer overnight in a hybridization oven at 50 °C. 
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PCR 

Mouse genotyping for all six transgenes was realized by PCR. In all cases, 0.5 µL DNA 

was diluted with DNA free water to 20 µL in a 0.2 mL micro tube. Additionally, a positive 

control of a known sample and a water control were also prepared. The master mix 

containing the appropriate primers was freshly prepared according to Table 2.3 and 5 µL 

was added to every sample. Immediately after a quick mix samples were put into a thermal 

cycler and the PCR program was started (Table 2.4 and Table 2.5). After the program 

finished samples were kept at 4 – 12 °C. A complete list of the primers can be found in 

chapter 2.1.6. 

Table 2.3: Master mixes for genotyping mouse transgenes Cre, Lmx1b floxed, mTmG, P2.5 Cre, 

rtTA, and Sm22 (KO). 

Ingredients Volume for all transgenes 

except P2.5 Cre 

Volume for transgene 

P2.5 Cre 

10x Thermopol buffer 2.5 µL 2.5 µL 

DMSO / 0.75 µL 

Primer (100 µM), each 0.15 µL 0.1 µL 

dNTPs (10 mM) 0.5 µL 1.0 µL 

Taq polymerase 0.25 µL 0.25 µL 

H2O ad 5 µL ad 5 µL 

 

Table 2.4: PCR protocols for all transgenes except P2.5 Cre 

Step T t   Comments 

Melting DNA 94 °C 5 min   

Melting amplicon 94 °C 30 s 

3
5

 c
y

cl
es

 

 

Annealing variable 1 min 58 °C: Lmx1b floxed, rtTA  

61 °C: mTmG, Cre 

63 °C: Sm22 (WT), Sm22 (KO) 

Elongation 72 °C variable 45 s: Lmx1b floxed, rtTA 

60 s: mTmG, Cre 

20 s: Sm22 (WT), Sm22 (KO) 

Final elongation 72 °C 5 min   
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Table 2.5: PCR protocol for P2.5 Cre 

Step T t   Comments 

Melting DNA 94 °C 3 min   

Melting amplicon 94 °C 45 s 

3
0

 c
y

cl
es

  

Annealing 55 °C 45 s  

Elongation 72 °C 2 min  

Final elongation 72 °C 10 min   

Agarose gel electrophoresis 

5x DNA loading buffer was added to PCR samples and mixed well. In case the desired 

PCR amplicon was < 300 bp, xylene cyanol FF was used as a dye, for amplicons > 300 bp 

bromophenol blue. A 2% agarose gel was made by solving 3 g agarose in 150 mL 1x TAE 

buffer by heating in a microwave oven. For DNA visualization the intercalation dye 

ethidium bromide (60 µL/gel) was added. The liquid was cast in the apparatus, the combs 

were added and remaining air bubbles removed. After approx. 30 min of cooling at RT gel 

became solid and 12 µL PCR product with loading buffer was added per well. The 2-log 

DNA ladder was used for size estimation. Electrophoresis was conducted in 1x TAE buffer 

at a constant voltage of 150 V. DNA bands were visualized and documented by ultraviolet 

illumination in the GelDoc
TM

 system. 

2.4.4. Collection and analysis of urine samples 

Collection of urine 

Urine samples of animals younger than 21 days and samples taken on the day of mouse 

perfusion were spontaneously voided urine samples (spot urine). At all other occasions, 

urine was taken over 24 h by keeping animals separately in a specialized cage for one day. 

Spot urine samples from animals tested for survival were taken (if possible) on day 4, 10 

and 21 after birth. Additionally, 24 h urine was taken at the age of 6 and 13 weeks. Spot 

urine at the day of perfusion was taken from all animals regardless of experimental series. 

Qualitative and quantitative urine analysis 

For qualitative determination of urinary proteins, SDS-PAGE with 1 µL spot urine or a 

1:500 volume dilution in water of 24 h urine was conducted. For a rough estimation of 

urine albumin content, different BSA amounts (1, 3, 10 and 30 µg) were loaded on the first 

four lanes. The protocol for SDS-PAGE is described in chapter 2.3.2. 
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The quantitative protein content was measured using the Bradford test with a sample 

dilution of 1:20, as described in chapter 2.3.1. 

The urine creatinine mass concentration was determined by the Jaffe reaction. Because of 

urine volume limitations, urine creatinine was measured only once with 5 µL/well in a 96-

well plate. Urine was diluted to 50 µL with water (1:10), whereas water blank (50 µL) and 

a creatinine standard curve (30, 15, 7.5 and 3.75 mg/L) were pipetted in doublets. 150 µL 

of the master mix (Table 2.6) was added in fast succession. After 10 min reaction time, the 

colorimetric product was measured spectrophotometrically at 540 nm. To calculate the 

mass concentration of samples, linear regression of the standard curve was calculated and 

mass concentration was obtained using equation (3). 

 𝛽(𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒) = 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 ×
𝑐𝑜𝑟𝑟. 𝐴520 × 𝑦 − 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

𝑠𝑙𝑜𝑝𝑒
 (3) 

Table 2.6: Master mix for Jaffe reaction for one urine sample 

Volume Ingredients  

50 µL 

50 µL 

50 µL 

1.2 M 

35 mM 

1.6 M 

Trichloroacetic acid 

Picric acid 

Sodium hydroxide solution 

 

 

2.4.5. Induction of Lmx1b knock-out 

The inducible podocyte-specific Lmx1b knock-out mouse line received 2 g/L doxycycline 

in the drinking water to induce Cre expression. Normal drinking water was replaced by 

induction solution containing doxycycline and sucrose in the morning 7 days before animal 

perfusion. The solution was freshly prepared every two days and administered in lightproof 

bottles in excess. 
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2.5. Working with kidney sections 

2.5.1. Kidney perfusion fixation 

Mice were first weighed and spot urine was taken before anesthetizing by two 

intraperitoneal injections (0.07 -0.12 mg per gram body weight for 8-day old animals, 

0.12 -0.15 mg per gram body weight for adult animals) of Narcoren working solution. Tail 

biopsies were taken for re-genotyping. After opening the peritoneum, arteria and vena 

iliaca communis and also the aorta below renal arteries were clamped. Abdominal aorta 

was cut horizontally halfway and the tubing was inserted and tightly fixed with a string. 

Finally, vena cava inferior was cut, the aorta clamp was removed and perfusion fixation 

was carried out with 4% PFA in 1x PBS at a constant pressure of 180 – 200 mbar for 3 min. 

Afterwards, the fixation tubing was removed and flushed with heparin. Kidneys were taken 

out and cut into two halves vertically to the longitudinal axis and further processed 

depending on embedding technique. 

2.5.2. Embedding and slice preparation 

Paraffin embedding and slice preparation 

Kidney halves for paraffin embedding were additionally immersion fixed in 4% PFA in 

1x PBS for 1 – 2 days at constant agitation. After fixation, the tissue was washed two times 

with 1x PBS and an alcohol series was conducted using an automated tissue processor with 

liquids and timings listed in Table 2.7. Paraffin-embedding was performed on a heated 

paraffin dispensing module with the cutting edge orientated towards the bottom of the 

block. Paraffin blocks were stored at RT. Tissue slices were prepared with a microtome at a 

thickness of 6 µm and relaxed in a 40 °C water bath. Two slices were taken up on one 

microscope slide and slice quality was controlled with a light microscope after drying on a 

heated plate at 40 °C. If slices should be used for immunofluorescence stainings, 

Superfrost
TM

 Plus microscope slides were used. Finally, the slices were dried overnight at 

37 °C.  
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Table 2.7: Liquids equipped and program of the automated tissue processor. 

Liquid Timings 

Isopropanol, 50% 90 min 

Isopropanol, 70% 90 min 

Isopropanol, 80% 90 min 

Isopropanol, 96% 90 min 

Isopropanol, 100% 90 min 

Isopropanol, 100% 90 min 

Isopropanol, 100% 90 min 

Xylol, 100% 90 min 

Xylol, 100% 90 min 

Melted paraffin (60 °C) 240 min 

Melted paraffin (60 °C) 240 min 

Melted paraffin (60 °C) 240 min 

Cryo embedding and slice preparation 

Perfusion-fixed kidney halves were processed in 18% sucrose in 1x PBS for 4 h under 

constant agitation. Afterwards, they were washed twice with 1x PBS, put into a cryomold® 

with the cutting edge orientated towards the bottom and embedded in Tissue-Tek®. After 

removing air bubbles the embedding medium was frozen in the gas phase above liquid 

nitrogen and stored at -80 °C. Tissue slices were taken with a cryostat at a thickness of 

7 µm, dried at RT for 20 min and stored at -80 °C for a maximum of two weeks. 

Table 2.8: Procedure for epon embedding of glutaraldehyde-fixed kidney pieces. 

Liquid Timings 

0.1 M sodium cacodylate buffer 3x, 20 min 

10 g/L Osmium tetroxide in 0.1 M sodium cacodylate buffer 2 h 

0.1 M sodium cacodylate buffer 4x, 5 min 

Ethanol, 50% 30 min 

Ethanol, 70% 30 min 

Ethanol, 90% 30 min 

Ethanol, 96% 30 min 

Ethanol, 100% 30 min 

Acetone, 100% 3x, 15 min 

Acetone / epon (1:1 mixture) overnight 

Epon 3 h (30 °C) and 2 d (60 °C) 
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Epon embedding and slice preparation 

Perfused kidneys were post-fixed in 2% glutaraldehyde in 0.1 M sodium cacodylate buffer 

(pH 7.4) for at least 2 days at 4 °C under constant agitation. Thereafter, kidneys were cut 

into small chunks with a maximum edge length of 2 mm. Kidney pieces were washed with 

0.1 M sodium cacodylate buffer and processed with osmium tetroxide at RT for better 

contrast and tissue conservation during dehydration. After another washing step samples 

were dehydrated in ethanol and acetone. Tissue was when treated with an acetone / epon 

mixture and finally with freshly made epon. Polymerization at 60 °C was finally conducted 

over two days. The complete procedure is listed in Table 2.8. Tissue slices were cut with an 

ultramicrotome at a thickness of 50 – 70 nm and placed on a grid for TEM examination. 

2.5.3. Staining of paraffin sections 

Deparaffinization and rehydration 

To eliminate paraffin and to rehydrate the tissue section, slices were treated with a 

descending alcohol series according to Table 2.9. Thereto microscope slides were put into a 

glass holder and moved from one reservoir to the other. Slides were shortly stored in water 

until all slides were rehydrated.  

Table 2.9: Descending alcohol series for deparaffinization and rehydration of paraffin sections and 

ascending alcohol series for dehydration after H&E staining. 

Liquid Timings Timings 

Xylol, 100% 10 min 10 min 

Xylol, 100% 10 min 10 min 

Isopropanol, 100% 2 min 2 min 

Isopropanol, 100% 2 min 2 min 

Isopropanol, 96% 2 min 2 min 

Isopropanol, 80% 2 min 8 s 

Isopropanol, 70% 2 min 3 s 

Isopropanol, 50% 2 min  

bidest. H2O > 1 min  

H&E staining of paraffin sections 

Prior to basophilic staining of deparaffinized and rehydrated sections with hematoxylin, the 

staining solution was filtered through a folded filter. Staining was conducted for 3 min at 

RT followed by short tap washing with H2O. Afterwards, sections were differentiated 2x 

with 0.1% HCl in 70% isopropanol for few seconds to remove excess color followed by an 

additional tap water wash for 10 min. For acidophilic staining, a 1 g/L eosin solution was 

freshly prepared and a drop of acetic acid was added per 100 mL staining solution. Staining 
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was conducted for 40 s at RT and slides were washed with H2O afterwards. To remove any 

water from the sections, an ascending alcohol series was performed according to Table 2.9. 

Fully dehydrated and stained sections were mounted with DePeX embedding medium. 

Slides were digitalized with a slide scanner equipped with a 40x objective. 

Immunofluorescence staining of paraffin sections 

To unmask epitopes of the desired proteins, sections were autoclaved in retrieval buffer for 

10 min. After cooling down for 20 min, the container with the slides was removed from the 

autoclave and further cooled down at the bench for additional 20 min. Afterwards, slides 

were washed 1x with tissue permeabilization buffer in a glass reservoir. Before blocking 

with 30 µL histoblock buffer for 30 min at RT, a water-repellent circle was drawn around 

the sections with a pen. For incubation with primary antibodies the histoblock buffer was 

sucked off the slide and 25 µL antibody solution was added and incubated in a humidity 

chamber at 4 °C overnight. The antibody solution contained a dilution of all primary 

antibodies used in histoblock buffer. The next day slides were washed 3x with tissue 

permeabilization buffer in a glass reservoir. Subsequently, the water-repellent circle was 

dried carefully with a task wipe and sections were incubated with the 25 µL of secondary 

antibodies diluted in histoblock buffer for 45 min at RT in a humidity chamber in the dark. 

After incubation, the slides were washed 3x with 1x PBS and thereafter the liquid was 

removed from the slides by tapping. The sections were permeabilized with 30 µL tissue 

permeabilization buffer, stained with 25 µL DAPI for 5 min at RT and washed 3x with 

1x PBS. Finally, sections were mounted air bubble free with mounting buffer and the 

viscous buffer was allowed to solidify overnight at 4 °C. Slides were examined using a 

confocal microscope. 

2.5.4. Staining of cryosections 

Phalloidin staining 

Cryosections were used to stain F-actin with phalloidin conjugates. First, sections were 

washed 1x with tissue permeabilization buffer and subsequently slides were dried with task 

wipes before a water-repellant circle around each section was drawn. The cryosections 

were blocked with 30 µL histoblock buffer and after removing the blocking buffer, 25 µL 

phalloidin dilution was incubated for 20 min in a humidity chamber at RT. The slides were 

washed 3x with tissue permeabilization buffer in a glass reservoir and the water-repellent 

circle was dried with a task wipe thereafter. Nuclei were stained with 25 µL DAPI staining 

buffer and washed again 3x with 1x PBS. For better permanency sections were mounted 

with mounting buffer containing DABCO and kept at least overnight at 4 °C before 

inspection under the confocal microscope.  
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Quantification of phalloidin signal 

The mean phalloidin intensity within a glomerulus was measured using ImageJ. The 

fluorescence picture was background subtracted by the “rolling ball” algorithm. 

Subsequently, the outline of the glomerulus was drawn by hand and the mean intensity of 

the phalloidin signal within the outlined glomerulus was measured. The complete 

procedure is listed in Appendix 8.1. 

2.5.5. Contrasting of epon sections and quantification of filtration slits 

The sections placed in the grid were washed with filtered double distilled H2O (ddH2O), 

negative stained with 1% uranyl acetate solution for 30 min in the dark, and washed again 

10x with filtered ddH2O. Finally, additional contrasting with 3% lead citrate solution for 

1 min was conducted and sections were washed again 10x with filtered ddH2O. TEM 

pictures of two glomeruli per mouse were taken at magnifications of 400x, 700x, 3 000x, 

7 000x and 20 000x. To quantify the frequency of filtration slits, blinded 20 000x magnified 

micrographs were examined. The length of the basal membrane was measured at the border 

to neighboring podocytes using the software ImageJ and gaps between podocyte foot 

processes were counted to calculate the ratio slits/µm. 

2.6. Isolation of glomeruli and primary podocytes 

2.6.1. Isolation of glomeruli and outgrowth of primary podocytes 

Isolation of glomeruli 

Isolation of glomeruli by magnetic bead perfusion utilizes that beads perfused through the 

arteria renalis get stuck in the capillary loops of the glomeruli. After digestion glomeruli 

can be separated from other tissue with a magnet. Before perfusion, 50 µL bead stock slurry 

(2x10
7
 beads) per mouse was washed 4 – 6 times with 1 mL HBSS using a magnet and 

beads are finally added to 10 mL warm HBSS and kept at 37 °C until perfusion. For 

podocyte isolation mice at the age of 3 – 5 months were used only. Mice were weighed and 

spot urine was collected, thereafter mice were anesthetized with two intraperitoneal 

injections of Narcoren working solution (0.12 -0.15 mg per gram body weight). A tail 

biopsy was taken for regenotyping before the peritoneum was opened to dissect kidneys. 

Kidneys were shortly washed in warm HBSS and subsequently perfused with tubing 

connected to a syringe over the arteria renalis with 1 mL HBSS followed by 2x 2.5 mL 

bead slurry each. The capsule was removed and the kidneys were cut into small pieces, split 

into two equal amounts and digested in two round bottomed 2 mL micro tubes prefilled 

with 1 mL collagenase IA (1 g/L) at 1200 rpm and 37 °C for 30 min. The following steps 

were all carried out on ice. The digested suspension was then filtered through a 100 µm cell 
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strainer into a 50 mL tube and rewashed with 7x 1 mL HBSS. The filtered solution was 

transferred to a 12 mL round-bottomed tube, rewashed with 2x 1.5 mL HBSS and 

glomeruli were collected with a magnet. The supernatant was carefully discarded and the 

remaining glomeruli were resuspended in 10 mL HBSS. After another washing step and 

resuspension in 6 mL HBSS, the suspension was filtered through a 100 µm cell strainer into 

a 12 mL round-bottomed tube and rewashed with 3x 2 mL HBSS. The glomeruli were then 

washed several times with 10 mL HBSS until the supernatant contained no more than 3 

tubular fragments (7 – 9 washing steps). Isolated glomeruli were either lysed for Rho 

family activation assays or plated on culture flasks for outgrowth of podocytes. 

Outgrowth of podocytes and podocyte harvesting 

Glomeruli were resuspended in 6 mL pre-warmed primary podocyte growth medium and 

seeded on a cell culture flask. After four days of incubation at 37 °C and 5% CO2 the 

medium was renewed. At this time point most glomeruli attached to the surface surrounded 

by outgrown glomerular cells, which are for the most part podocytes. The following day 

cells were washed 2x with 5 mL 1x PBS, incubated with 2 mL accutase for 10 min at 37 °C 

and vigorously tapped to detach all cells. To stop the enzymatic reaction 2 mL of primary 

podocyte medium was added. The suspension was filtered through a 35 µm cell strainer 

into a 15 mL tube. After rewashing 2x with 4 mL medium the cell suspension was 

centrifuged (260 g, 5 min, RT), the supernatant was discarded and the cells were 

resuspended in 3 mL primary podocyte growth medium. Cell amount was counted using a 

Neubauer chamber and cells were further processed depending on the planned experiment. 

2.6.2. Isolation of glomeruli and podocytes using enzymatic digestion 

Isolation of glomeruli 

Podocytes detached from glomeruli by enzymatic digestion were exclusively used for 

FACS sorting followed by cell lysis, as they are not capable of attaching to surfaces in cell 

culture. The principle of glomeruli isolation is identical to the one described in chapter 

2.6.1. Mice transgene for mTmG, which additionally expressed Cre recombinase podocyte-

specific, were weighed and anesthetized with two intraperitoneal injections of Narcoren 

working solution (0.12 -0.15 mg per gram body weight) after spot urine collection. A tail 

biopsy was taken and kidneys were dissected and washed in warm HBSS. Each kidney was 

perfused over the arteria renalis with 1 mL HBSS, 2x 2 mL bead slurry and 1 mL digestion 

solution containing beads (2x10
7
 beads in total per mouse). The capsule was removed and 

the kidneys were minced into small pieces. Thereafter, the tissue was transferred to a 

3.5 mm cell culture dish and suspended in 2 mL digestion solution. The suspension was 

then incubated at 37 °C for 5 min under soft agitation, pipetted several times up and down 

and incubated for another 5 min. The digested suspension was filtered twice through 
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100 µm cell strainer and rewashed with approx. 20 mL ice-cold HBSS each. Tissue was 

pelleted by centrifugation (1500 rpm, 5 min, 4 °C) and the supernatant was decanted. 

Afterwards, the pellet was resuspended in 2 mL HBSS on ice, transferred into two round 

bottomed 2 mL micro tubes and rewashed with 2 mL HBSS. The glomeruli were washed 

3 – 5 times to remove most of non-glomeruli tissue by collecting glomeruli with a magnet, 

removing the supernatant carefully and resuspending the remainder in ice-cold HBSS. 

Detachment of podocytes by enzymatic digestion 

Podocytes were detached from glomeruli by resuspending those in 1 mL digestion solution 

each round-bottomed micro tube, followed by incubation at 37 °C for 45 min in a 

thermomixer shaking at 1200 rpm. During incubation, the samples were treated according 

to Table 2.10. After digestion, green fluorescent podocytes and red fluorescent cells 

including podocytes without Cre expression, mesangial and endothelial cells were kept on 

ice. To remove the remaining glomerular and tubular fragments from the cell suspension 

the digestion was placed in the magnetic collector. The supernatant containing podocytes 

was collected and pooled, followed by a filtration through a 35 µm cell strainer and 

rewashing with HBSS. After centrifugation (1500 rpm, 5 min, 4 °C) the cell pellet was 

resuspended in 712 µL FACS buffer. 

Table 2.10: Handling of glomeruli during incubation with digestion solution to detach podocytes. 

Time Procedure 

5 min Pipetted up and down with a glass pipet 

10 min Shortly vortexed, pipetted up and down with a glass pipet 

15 min Passed 3 - 5 times through a 27G needle 

20 min Shortly vortexed, pipetted up and down with a glass pipet 

25 min Pipetted up and down with a glass pipet 

30 min Shortly vortexed, passed through 200 µL pipette tip stuck on 1 mL pipette tip 

35 min Pipetted up and down with a glass pipet 

40 min Vigorously vortexed, passed through 200 µL pipette tip stuck on 1 mL pipette tip 

45 min Passed 3 - 5 times through a 27G needle 
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FACS sorting of green fluorescent podocytes 

Immediately prior to FACS sorting the suspension was filtered again through a cell strainer 

and 38 µL PI stock solution was added to a final concentration of 50 mg/L. FACS sorting 

was carried out at the Department for Internal Medicine III, University Hospital 

Regensburg, Regensburg with the help of Jaqueline Dirmeier at a FACSAria II sorter (BD 

Biosciences). Green fluorescent podocytes were sorted using four gates listed in Table 2.11. 

Sorted cells were pelleted by centrifugation (260 g, 5 min, 4 °C), the supernatant was 

discarded and the dry pellet was snap frozen in liquid N2 and stored at -80 °C. 

Table 2.11: Gates and their description for FACS sorting of green fluorescent podocytes. 

Gate x-Axis y-Axis Purpose 

1 FSC-A SSC-A Exclude debris 

2 FSC-A FSC-W Exclude cell aggregates 

3 FSC-A PI Exclude damaged or dead cells 

4, 5 tdTomato EGFP Separation of green fluorescent (podocytes) and red fluorescent 

cells (glomerular and tubular cells) 

2.7. Working with glomeruli 

2.7.1. Rho family activation assays 

For determination of the amount of active, GTP-bound RhoA, Rac1 and Cdc42 the G-LISA 

kits (cytoskeleton) were used. The kits utilize the specificity of Rho GTPase effectors to the 

active state. Effector domains are immobilized on the bottom of the wells to capture active 

GTPases, which themselves can be recognized by specific primary antibodies. Secondary 

antibody conjugates catalyze a chromogenic reaction which is then read out with a 

microplate spectrophotometer. The experiment was performed following the 

manufacturer’s instructions. 

Lysis of glomeruli 

Freshly isolated glomeruli were pelleted and the supernatant was completely discarded. Ice 

cold lysis buffer (210 – 240 µL) included in the kit was added, glomeruli were resuspended 

and transferred to a pre-chilled micro tube. The suspension was immediately centrifuged 

(1 000 g, 1 min, 4 °C) and portions of the supernatant were aliquoted and snap frozen in 

liquid nitrogen. Afterwards, 20 µL of the remaining supernatant was transferred to a 1 mL 

cuvette. For protein content quantification Precision Red
TM

 (1 mL) was added and the 

solution was well mixed. The absorbance at 600 nm was measured after 7 min and 
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corrected by blank (20 µL lysis buffer with 1 mL Precision Red
TM

). The mass concentration 

could be calculated by a modified version of Beer-Lambert law (4) where A600 is the 

absorbance at 600 nm, l is the length of the solution the light passes in cm and  is the 

extinction coefficient in mL/(mg × cm). 

 
𝛽 = 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 ×

𝐴600

𝜀 × 𝑙
= 50 ×

𝐴600

10 
𝑚𝐿

𝑚𝑔 × 𝑐𝑚 × 1 𝑐𝑚 
= 5

𝑚𝑔

𝑚𝐿
× 𝐴600 

(4) 

As GTP bound to GTPases hydrolyzes rapidly only samples lysed in less than 7:30 min and 

with a protein mass concentration above 0.4 g/L were used for the G-LISA assays. Only 

one G-LISA assay per lysate could be carried out because of limited protein amounts. 

G-LISA assay 

Protocols for RhoA, Rac1 and Cdc42 G-LISA differ slightly (Table 2.12). Samples were 

kept on ice and processed rapidly until GTPases were bound to immobilized effector 

domains to limit GTP hydrolysis. All sample measurements were realized in duplicates. 

First, blanks and positive controls were diluted and cooled in an ice bath. G-LISA wells 

were cooled and 100 µL ice cold water was added each well to dissolve included powder. 

Glomerular lysates were rapidly thawed to 2/3 in an RT water bath, immediately put on ice 

thereafter and diluted with ice-cold lysis buffer to equalize lysate concentrations. In case of 

RhoA G-LISA, 60 µL of diluted samples were mixed with 60 µL ice-cold binding buffer. 

The solution from the G-LISA wells was removed by a series of vigorous pats onto paper 

towels, and immediately thereafter 50 µL of equalized lysates, blanks and positive controls 

there pipetted into duplicates. Samples were incubated on an orbital shaker (400 rpm, 4 °C) 

for a certain period stated in Table 2.12. Afterwards, wells were washed 2x with 200 µL 

wash buffer followed by incubation with 200 µL antigen presenting buffer for exactly 

2 min at RT. After washing 3x with 200 µL wash buffer, primary antibody dilution (50 µL 

per well) was incubated on the orbital shaker (400 rpm, RT). Thereafter samples were 

washed 3x with 200 µL wash buffer and incubated with 50 µL secondary antibody dilution 

on the orbital shaker (400 rpm, RT). After another washing step (3x, 200 µL wash buffer) 

HRP detection mixture was freshly prepared by mixing equal volumes of reagent A and B 

and incubated in G-LISA wells. After the incubation time listed in Table 2.12 reaction was 

stopped by adding HRP stop solution. Absorption of bubble-free wells was measured at 

490 nm using a microplate spectrophotometer. The blank corrected means of duplicates are 

proportional to the number of active GTPase species. 
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Table 2.12: Listing of volumes, mass concentrations, incubation times and antibody dilutions in 

which RhoA, Rac1 and Cdc42 G-LISA assays differ. 

Step RhoA Rac1 Cdc42 

Blanks 60 µL lysis buffer  

+ 60 µL binding buffer 

120 µL lysis buffer 120 µL lysis buffer 

Positive controls 12 µL control protein  

+ 48 µL lysis buffer 

+ 60 µL binding buffer 

36 µL control protein  

+ 84 µL lysis buffer 

24 µL control protein  

+ 96 µL lysis buffer 

Sample mass 

concentration 

after equalization 

0.4 mg/mL 0.5 mg/mL 0.4 mg/mL 

Addition of 

binding buffer 

60 µL equalized samples 

+ 60 µL binding buffer 

/ / 

Sample 

incubation on 

orbital shaker 

30 min 30 min 15 min 

Primary antibody 

diluted in 

antibody dilution 

buffer 

1:250 1:50  1:20 

Primary antibody 

incubation 

45 min 45 min 30 min 

Secondary 

antibody diluted 

in antibody 

dilution buffer 

1:62.5 1:100 1:62.5 

Secondary 

antibody 

incubation 

45 min 45 min 30 min 

Chromogenic 

reaction 

50 µL detection reagent 

37 °C, 13 min 

50 µL detection reagent 

RT, 15 min 

70 µL detection reagent 

37 °C, 15 min 

HRP stop buffer 50 µL 50 µL 140 µL 
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2.8. Working with cells 

2.8.1. Mammalian cell culture 

General handling 

Aside from working in a laminar flow bench cells cultures were kept at 33 or 37 °C with 

5% CO2 and 95% relative humidity in a CO2 incubator. For cultivation cell culture flasks 

with a filter cap at a size of 25 cm
2
 or 75 cm

2
 were used with 5 mL or 15 mL medium, 

respectively. All equipment was sterilized with 70% ethanol before putting into the bench, 

self-made liquids were autoclaved or sterile filtered before use. Consumables were bought 

sterile. Cell concentrations were determined by counting cells in all four quarters of a 

Neubauer chamber. 

Subculture 

Cells were passaged when they reached approx. 80% confluency estimated by light 

microscopy. For sub-culturing, cells were washed twice with 1x PBS and detached 

thereafter with 1 mL (T25 cell culture flask) or 2 mL (T75 cell culture flask) 

Trypsin/EDTA solution for 6 – 10 min. After full detachment of cells judged by light 

microscopy, at least 4 mL culture medium with FCS was added and cells were split 

1:5 - 1:20 depending on cell growth rate and density. 

Cell freezing 

For freezing, cells were grown to 80% confluency, trypsinized and counted. After 

centrifugation (260 g, 5 min, 4 °C) the cell pellet was resuspended in 90% FCS and 10% 

DMSO as a cryoprotectant (1.8 mL per 1 – 2 million cells). The suspension was transferred 

to 1.8 mL cryovials and placed into polystyrene containers at -80 °C to ensure slow 

freezing at a rate of approx. 1 °C/min. For short-term storage cells were kept at -80 °C, for 

long-term storage cells were transferred to the gas phase of liquid nitrogen. 

Cell thawing 

Frozen cells were kept on ice until they were thawed by pipetting culture medium several 

times on top of the ice. The resulting cell suspension was diluted in culture medium to 

10 mL and then immediately centrifuged (260 g, 5 min, 4 °C). Afterwards, the supernatant 

was discarded and the cell pellet was resuspended in the appropriate growth medium and 

plated in cell culture flasks. 
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HEK293T 

HEK293T cells were cultured in DMEM supplemented with 10% FCS at 37 °C. Culture 

medium was exchanged twice a week and cells were passaged 1 or 2 times a week, 

depending on cell density. 

hPCL pInducer-LMX1B clone#1 

This cell line was cultured under permissive conditions at 33 °C and 5% CO2 with RPMI 

1640 medium supplemented with 10% FCS, 1x ITS-G and puromycin antibiotic (1 µg/mL). 

Cell culture medium was exchanged three times a week and passaging was carried out once 

a week. For differentiation, cells were seeded at a density of 7200 cells/cm
2
 and kept at 

33 °C for one day. Afterwards, they were shifted to 37 °C to induce differentiation for a 

total of 14 days. In the period of differentiation, the incubator was only opened for medium 

exchange three times a week and the medium contained no puromycin. Induction of 

LMX1B expression was performed by supplementing culture medium with 1 µg/mL 

doxycycline five days prior to the experiment. All experiments were performed with cells 

plated on laminin-521-coated coverslips placed in a 24 well cell culture dish. 

Primary murine podocytes 

Isolation of primary murine podocytes is described in chapter 2.6.1. Cells were cultivated 

in DMEM/Ham’s F12 medium supplemented with 10% FCS, 1x ITS-G and 

penicillin (1000 units)/streptomycin (1 g/L) at 37 °C. After detachment with accutase and 

separation from glomeruli, cells were either directly stained for flow cytometry or seeded 

on laminin-521-coated glass substrates and subjected to experiments. Primary murine 

podocytes were not sub-cultured as differentiation markers diminish with cultivation 

duration. 

2.8.2. Transient transfection 

HEK293T cells were transiently transfected with polyethylenimine (PEI) as a polycationic 

DNA packaging agent. 1 million cells were plated on 100 mm cell culture dishes. The next 

day 6 µg plasmid DNA and 18 µg PEI were diluted in 1 mL DMEM without FCS and the 

mixture was incubated for 30 min at RT after vigorous vortexing. Shortly before 

transfection, the growth medium was exchanged with 4.6 mL fresh medium. The 

transfection mixture was pipetted dropwise evenly distributed over the culture dish. After 

6 h of incubation at 37 °C and 5% CO2, the transfection medium was replaced by 10 mL 

growth medium. Cells were lysed 24 h after transfection. 

  



MATERIALS AND METHODS 75 

 

 

2.8.3. Coating with laminin-521 

Coating with laminin-521 was conducted the evening before usage. The laminin-521 stock 

solution was slowly thawed in an RT water bath and diluted in PBS
++

 to a concentration of 

5 µg/mL or 10 µg/mL. A volume of 300 µL was added to cover slides placed in 24-well 

plates and 400 µL was added to glass-bottomed µ-dishes. Thereafter culture plates or dishes 

were put in a refrigerator overnight to ensure even coating. Cells were seeded on coated 

surfaces after removal of PBS
++

 without washing. Coated surfaces were never allowed to 

dry out. 

2.8.4. Fixation and immunofluorescence / phalloidin staining 

Fixation and staining 

Immunofluorescence staining was conducted on immortalized human and primary murine 

podocytes plated on laminin-521-coated cover slides in 24-well plates. First, cells were 

fixed by adding an equal volume of 4% PFA in 1x PBS to growth medium. After 15 min 

fixation at RT cells were washed 3x with 1 mL 1x PBS and permeabilized with 0.5 mL 

histoblock buffer for 30 min at RT. Primary antibodies diluted in histoblock buffer were 

pipetted on top of the cover slides placed on Parafilm® (20 µL/slide) and incubated for 2 h 

at RT in a humidity chamber. After washing 3x with 1 mL cell permeabilization buffer, 

cells were incubated with secondary antibodies or phalloidin diluted in histoblock buffer, 

for 30 min at RT in a humidity chamber. Thereafter, cells were washed again 3x with 1 mL 

cell permeabilization buffer and nuclei were stained with 0.5 mL DAPI staining buffer for 

5 min at RT in the dark. After final washing steps with 3x 1 mL cell permeabilization 

buffer cover slides were mounted with mounting buffer on microscopy slides. The viscous 

buffer hardened at least overnight at 4 °C before confocal pictures were taken. Only in the 

case of pMLC stained hPCL pInducer-LMX1B clone#1 cells a conventional 

epifluorescence microscope was used. 

Quantification of mean intensities of green fluorescent primary podocytes 

Mean intensities of phalloidin, transgelin and active 1-integrin were quantified using 

ImageJ macros listed in Appendix 8.2 and Appendix 8.3. Pictures were only taken from 

podocytes without contact to other cells or the picture border. Cell borders were first 

determined using the green fluorescence of podocytes. Thereto the command “Find Edges” 

and a median filter were applied to the green channel to obtain a better signal to noise ratio. 

Signal was auto thresholded using “Triangle”, and “EDM Binary Operations” were 

performed to fill small gaps within signals. The cell edges were finally recorded by the 

command “Analyze Particles”. The mean intensity of stained protein within the cell 

boundary was measured in the corresponding channel after background subtraction.  
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Quantification of mean intensities in hPCL pInducer-LMX1B clone#1 cells 

As hPCL cells do not express EGFP in contrast to primary podocytes the cells had to be 

stained. Transgelin is highly expressed in this cell type all over the cell and hence was used 

as a cell border marker. The mean intensity of pMLC was measured with ImageJ. Cells 

with contact to other cells or the picture edge were excluded from quantification. First, a 

median filter was used on the transgelin staining to sharpen cell borders and background 

was subtracted by the rolling ball algorithm. After thresholding with the auto threshold “Li” 

the cell boundary was extracted with the command “Analyze particles”. Finally, the mean 

intensity of the pMLC signal was measured after background subtraction in the 

corresponding channel. The macro used is listed in Appendix 8.4. 

Quantification of colocalization (Pearson correlation coefficient) 

Colocalization of transgelin and phalloidin staining was quantified by calculating the 

Pearson correlation coefficient with the Costes’ automatic threshold method. Both channels 

were background corrected by subtraction of the mean intensity of a background area. 

Pearson coefficient was calculated with the ImageJ plugin JACoP with the option “Costes’ 

automatic threshold” enabled. 

2.8.5. Cell lysis 

HEK293T 

For lysis of HEK293T cells, two buffers were subsequently used. Lysis buffer A contains 

the mild, nonionic and non-denaturing detergent Nonidet P-40 to break cell membranes 

open at low salt concentration. Lysis buffer B is a high salt buffer for nuclear protein 

extraction. Cultured cells were washed 24 h after transfection with 1x PBS and harvested 

with a cell scraper in 4 mL 1x PBS. After pelleting by centrifugation (300 g, 7 min, 4 °C), 

cells were resuspended in 50 µL ice-cold lysis buffer A and incubated 10 min on ice. 

Afterwards, the lysate was vortexed and 50 µL ice-cold lysis buffer B was added. This 

mixture was incubated for 20 min on ice and centrifuged (3 300 g, 15 min, 4 °C) to remove 

insoluble material. The supernatant was aliquoted, snap frozen in liquid nitrogen, and 

stored at -80 °C. 

Primary murine podocytes 

FACS sorted green fluorescent primary podocytes were lysed with high concentrations of 

urea and Triton X-100. Ice cold urea lysis buffer (70 µL) was added to snap-frozen cell 

pellets and incubated for 15 min on ice, vortexed, and incubated for further 10 min. 

Insoluble material was removed by centrifugation (10 000 g, 10 min, 4 °C) and the 

supernatant containing the denaturized proteins was snap frozen in liquid nitrogen.  
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2.8.6. Random movement of primary podocytes 

Experimental procedure 

Primary, green fluorescent murine podocytes were used to quantify random movement on 

laminin-521-coated dishes. Outgrown primary podocytes were harvested after five days as 

described in chapter 2.6.1 and plated on laminin-521-coated glass bottom µ-dishes at a 

density of 950 cells/cm
2
. The next day the µ-dish was placed on the confocal microscope 

stage with heating (37 °C) and active gas regulation (5% CO2) and equilibrated for 30 min. 

Thereafter a 5x4 tile scan (20x objective, 0.6 zoom) with 488 nm argon laser illumination 

was taken every 150 s over a period of 10 h. Tile scans were stitched using ZEN black 

software. 

Quantification of mean velocity 

Quantification of the mean velocity was realized using the ADAPT ImageJ plugin. Only 

the first 200 tiles (500 min) were analyzed due to RAM limitations. First, stitched time 

series were lateral drift corrected by aligning with the MultiStackReg (Transformation: 

Translation) command. After using the filter “despackle”, drift corrected time series were 

then loaded into the ADAPT plugin and analysis was started with the options “Generate 

Morphology Data”, “Auto Threshold (Li)” and “Minimum Object Size (1000)” enabled. 

The plugin calculates mean velocities for every green fluorescent specimen detected as a 

cell. To exclude artifacts only velocities of cells present at every time point were finally 

used for quantification. 

2.8.7. Morphology of spreading and steady state podocytes 

Experimental procedure 

For examination of cell shape and area, green fluorescent primary podocytes were plated on 

laminin-521-coated cover slides (10 mm) placed in a 24-well plate (10 000 cells/well). 

Cells were allowed to settle at 37 °C and 5% CO2 and fixed exactly after 20, 40 and 60 min 

(spreading cells) or after overnight growth (steady state cells) in an incubator. Nuclei of 

fixed cells were stained with DAPI and cells were mounted with mounting buffer on 

microscope slides. Fluorescence pictures of DAPI and the green channel were made by a 

tile scan of the whole cover slide with 30% overlap on an Observer.Z1 microscope and 

stitching with ZEN blue software. 
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Quantification of cell area, circularity and roundness 

Quantification was achieved using a self-written macro for ImageJ (Appendix 8.5). As cells 

at the edge of the cover slides were often distorted, only the middle part (7 146 x 7 146 px, 

centered) was quantified. To reduce background and to sharpen cell edges a median filter 

and unsharpen mask was used. After background correction using the “rolling ball” 

algorithm the picture was converted to a binary using the auto threshold “triangle”. Small 

holes in cells were closed by “EDM Binary Operations” followed by analyses of cell 

circularity, roundness or area with the command “Analyze Particles”. Only signals with an 

area of at least 950 µm
2
 and in case of area measurements with a circularity between 

0.6 - 1.0 (0.1 – 1.0 in case of cells fixed after overnight incubation) were counted as a cell. 

Signals of remaining glomeruli, cells touching each other, and remaining artifacts were 

removed manually. 

2.8.8. Cytochalasin D treatment of primary podocytes 

Primary podocytes were treated with cytochalasin D to estimate the rate of F-actin 

depolymerization and subsequent polymerization by measuring the cell area. To examine 

the impact of specific signal pathways, cells were additionally incubated with inhibitors in 

some cases. 

Shrinking of podocytes after cytochalasin D treatment 

Outgrown green fluorescent podocytes were seeded on laminin-521-coated (10 µg/mL) 

glass bottom µ-dishes at a density of 3800 cells/cm
2
. The next day cells were placed on the 

microscope stage equipped with a heating system (37 °C) and an active gas mixing unit 

(5% CO2). After equilibrating 15 – 25 min growth medium was exchanged by warm 

(37 °C) growth medium supplemented with 10 µM cytochalasin D. Measurement was 

immediately started after focusing and the time between cytochalasin D treatment and 

begin of measurement was noted. A 5x4 tile scan with 20% overlap was recorded every 

minute over a period of 121 min. Resulting pictures were stitched using ZEN black edition. 

Spreading of podocytes after wash-out of cytochalasin D 

Outgrown green fluorescent podocytes plated on laminin-521-coated glass bottom µ-dishes 

(density: 3800 cells/cm
2
) were treated with cytochalasin D (10 µM) six days after glomeruli 

isolation. After 23 h of cytochalasin D incubation growth medium was renewed including 

cytochalasin D and possibly an inhibitor. Addition of inhibitors is shown in Table 2.13. The 

µ-dish was placed 20 – 30 min prior cytochalasin D wash-out onto the heated (37 °C) and 

gas controlled (5% CO2) microscope stage for equilibration. Exactly 24 h after the begin of 

cytochalasin D treatment, it was washed out twice with 2 mL growth medium possibly 

supplemented with an inhibitor and live cell imaging was started. Tile scans (5x4) with 

20% overlap of the EGFP fluorescence were taken every minute over a period of 121 min. 
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Time between wash-out and start of the measurement was noted. Stitching was performed 

using the software ZEN black edition. 

Table 2.13: Experimental setups for podocyte spreading experiments after cytochalasin D treatment 

Experiment Inhibitor name Concentration Inhibition target 

Podocyte spreading / / / 

Podocyte spreading with ROCKi Y-27632 5 µM ROCK1 + ROCK2 

Podocyte spreading with LIMKi LIMKi 3 10 µM LIMK1 + LIMK2 

Quantification of the relative EGFP positive cell area 

Stitched time series were corrected for lateral drift with the ImageJ tool “MultiStackReg” 

with the option “Transformation” set to “Translation”. Thereafter a median filter was used 

to reduce noise and the background was corrected by the “rolling ball” algorithm. After 

contrast enhancement, pictures were tresholded with the auto threshold “Li”. The 

EGFP-positive area was then measured within four non-overlapping ROIs with equal 

dimensions (Appendix 8.6). The macro to calculate EGFP positive areas is shown in 

Appendix 8.7. The resulting areas were then designated with the respective timespan past 

wash-out of cytochalasin D. As some focus fluctuations occurred mainly in the first few 

minutes of the experiment, EGFP positive area was normalized to the area at 10 min after 

wash-out. 

Cytochalasin D treatment of podocytes for phalloidin staining 

To show the effect of cytochalasin D on the actin cytoskeleton of podocytes outgrown 

primary podocytes were plated on laminin-521-coated cover slides (10 mm) placed in 

24-well plates at a density of 3800 cells/cm
2
. The next day, cells were treated with 10 µM 

cytochalasin D over a period of 24 h. After exactly 24 h half of the cover slides were fixed 

by adding an equal amount of 4% PFA in 1x PBS to the growth medium. After fixation for 

15 min at RT cells were washed 3x with 1x PBS. The other half of cover slides was washed 

twice with growth medium. At exactly 2 h after the wash-out of cytochalasin D cells were 

fixed as described above. Podocytes were stained as described in chapter 2.8.4. 
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2.8.9. Analysis of -integrin activity of glomerular cells by flow cytometry 

Freshly isolated glomeruli from 3 – 4 mice per genotype were resuspended in 6 mL 

podocyte growth medium and transferred to T25 cell culture flasks and incubated at 37 °C 

and 5% CO2. After four days growth medium was renewed and podocytes were detached 

seven days past glomeruli isolation. To detach outgrown cells they were washed twice with 

1x PBS (37 °C) and then incubated with 2 mL accutase (10 min, 37 °C). Enzymatic 

digestion was stopped by adding 4 mL growth medium and cells from mice with identical 

genotype were pooled. Cells and remaining glomeruli were pelleted by centrifugation 

(260 g, 5 min, 4 °C). Afterwards, the pellet was resuspended in 3.6 mL 1x PBS and split 

into three parts with equal volume. After another centrifugation step (260 g, 5 min, 4 °C) 

each third was incubated with 200 µL of a primary antibody (anti-active -integrin, anti-

-integrin or isotype control) diluted in BSA blocking buffer (30 g/L BSA in 1x PBS) on 

a rotating wheel (30 min, 4 °C). Cells were washed twice with 1 mL ice-cold 1x PBS and 

incubated afterwards with 200 µL Alexa633-conjugated secondary antibody dilution on a 

rotating wheel (30 min, 4 °C). Thereafter, cells were pelleted and washed twice with ice 

cold 1x PBS and one time with FACS buffer. Finally, glomeruli and cell aggregates were 

sieved out by a 35 µm cell strainer, PI was added (50 µg/mL) and stained cells were 

immediately analyzed by flow cytometry. Flow cytometry was carried out at the 

Department for Internal Medicine III, University Hospital Regensburg, Regensburg with 

the help of Jaqueline Dirmeier at a FACSAria II sorter (BD Biosciences). Both green and 

red fluorescent glomerular cells were analyzed regarding Alexa633 signal intensity after 

gating out debris, cell aggregates and PI positive cells. Gates are depicted in Appendix 8.8. 
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3. Results 

3.1. Validation of target gene expression 

A previous study revealed several potential Lmx1b target genes in mouse glomeruli 

(Burghardt et al., 2013). The gene with the highest upregulation at the mRNA level 

following Lmx1b inactivation was Sm22, encoding for transgelin. Two additional promising 

candidates with mRNA upregulation were Abra and Arl4c, and binding of human LMX1B 

to the respective promoter regions could be confirmed for both (Burghardt et al., 2013). 

Although increased transgelin protein content could be shown by immunofluorescence 

staining in Lmx1b knock-out glomeruli, there were no data available regarding Abra and 

Arl4c regulation on the protein level. To address the question whether the amount of those 

proteins is increased specifically in green fluorescent Lmx1b knock-out podocytes, western 

blotting of FACS sorted murine podocytes was performed. 

3.1.1. Affinity purification of rabbit antisera 

Generation of specific antibodies against Arl4c and Abra was the first step towards protein 

expression validation. In case of transgelin, a commercial antibody was available. 

Antibodies were generated by injecting purified full-length mAbra or a peptide containing 

the C-terminal region of mArlc comprising of 60 aa in rabbits, as reported previously 

(Stepanova, 2016). In order to eliminate non-specific binding rabbit antisera were subjected 

to affinity purification. To generate affinity purification columns, E. coli strains (Rosetta 

pLysS) transfected with bacterial expression plasmids pET21a/mAbra-His or 

pET21a/mArl4c-His (containing the partial Arl4c sequence from 396 to 576 bp) were used 

to express recombinant mAbra and mArl4c. Recombinant proteins were purified on Ni
2+

 

charged His•Bind columns. SDS-PAGE revealed protein elution mainly in fractions 2, 3 

and 4 in case of mAbra (Figure 3.1, A) and in fractions 2 and 3 in case of mArl4c (Figure 

3.1, B). After dialysis purified mAbra or mArl4c was coupled to CNBr Sepharose 4B beads 

and 9 mL rabbit antisera was affinity purified each. 

In order to test the specificity of the affinity-purified antibodies and to determine the most 

suitable antibody dilution, western blotting using different antibody dilutions was 

performed. Therefore, lysates of HEK293T cells transfected with pcDNA3/mAbra, 

pcDNA3/mArl4c or control pcDNA3 plasmid were used. Western blotting showed specific 

binding of both anti-mAbra (Figure 3.2, A) and anti-mArl4c (Figure 3.2, B) in the full 

dilution range, but the highest signal was detected at a dilution of 1:100 in case of anti-

mAbra and 1:300 in case of anti-mArl4c. 
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Figure 3.1: SDS-PAGE showing different steps of the generation and purification of 

recombinant full-length mAbra [A] and the C-terminal 60 aa region of mArl4c [B]. Both 

constructs contained a C-terminal T7-tag and an N-terminal His-tag. The predicted molecular 

weights are 43.2 kDa (mAbra) and 8.5 kDa (mArl4c). The samples loaded on respective lanes were 

(from left to right): bacterial lysates before and after overnight induction with IPTG; the complete 

lysate, the supernatant and the pellet fraction after bacterial lysis. The elution fractions of the pellet 

purification on His•Bind columns were loaded right-hand side of the molecular weight marker. 

Marker weight is given in kDa. 

 

Figure 3.2: Titration of the affinity purified anti-mAbra [A] and anti-mArlc [B] antibodies by 

western blotting. Lysates of pcDNA3/mAbra, pcDNA3/mArl4c or control plasmid pcDNA3 

transfected HEK293T cells were used (40 µg each lane) and probed with different dilutions of 

affinity purified antibodies. The predicted molecular weights are 42.4 kDa for HA-tagged mAbra 

and 22.2 kDa for HA-tagged mArl4c. Marker bands are depicted on the left in kDa. 
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3.1.2. Quantification of target gene expression by western blotting 

To isolate podocytes, male inducible podocyte-specific Lmx1b knock-out and control mice 

at an age of 3 to 5 months were induced with doxycycline for one week. Primary podocytes 

were obtained by enzymatic digestion of freshly isolated glomeruli and FACS sorted (see 

chapter 2.6.2) to receive a fraction of podocytes with definite Cre expression and DNA 

recombination. Fewer podocytes per mouse could be obtained from Lmx1b fl/fl animals 

(~60 000 cells/mouse) compared to Lmx1b +/fl (~119 000 cells/mouse) and Lmx1b +/+ 

(~121 000 cells/mouse) animals. A total of 24 Lmx1b fl/fl, 16 Lmx1b +/fl and 11 

Lmx1b +/+ mice were perfused with magnetic beads to gain a minimum of 1.3 million 

podocytes. Lysis of the podocytes resulted in at least 160 µg total protein each genotype, 

and two western blots with 80 µg protein each were carried out. 

The knock-out of full-length Lmx1b could be confirmed on the protein level (Figure 3.3, B 

and C), but interestingly the shortened, homeodomain-lacking Lmx1b was still expressed 

and was not degraded (Figure 3.3, B and D). Incubation with the affinity purified Abra 

antibody resulted in only weak signals. Upon long exposure times two bands were 

identified, one stronger around 65 kDa and one weaker at around 39 kDa. The lower band 

might represent Abra protein with a predicted molecular weight of 43 kDa, but may also be 

of unspecific origin. Therefore, the signal was not quantified. Moreover, a 6-fold increase 

of the Arl4c protein content in Lmx1b knock-out podocytes compared to wild-type could be 

revealed, and also heterozygous Lmx1b knock-out podocytes showed a 2-fold increase 

(Figure 3.3, B and E). Transgelin was expressed in Lmx1b fl/fl podocytes, but not in 

Lmx1b +/fl or Lmx1b +/+ controls (Figure 3.3, A and F), as previously indicated by 

glomerular mRNA content and immuno-fluorescence staining (Burghardt et al., 2013). 

3.2. Dysregulation of the actin cytoskeleton 

Besides the identification of Lmx1b target genes in glomeruli Burghardt et al. also 

presented data indicating an involvement of the actin cytoskeleton in the progression of 

podocyte damage after Lmx1b knock-out. These data were: (I) increased phalloidin staining 

of glomerular knock-out cells, (II) decreased spreading rate of primary Lmx1b knock-out 

podocytes after 24 h cytochalasin D treatment and (III) reduced movement of fibronectin-

coated nanobeads attached to the surface of glomerular knock-out cells (Burghardt et al., 

2013). However, these data are mainly based on cell mixtures of glomerular origin and not 

specifically on podocytes. Moreover, the GBM protein laminin-521 was not available at 

this time. Different experiments with green fluorescent podocytes were conducted to further 

examine the role of the actin cytoskeleton in podocytes following Lmx1b inactivation. 
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Figure 3.3: Western blots using lysates of FACS sorted green fluorescent primary podocytes 

isolated from mice without (Lmx1b +/+) or with heterozygous (Lmx1b +/fl) and homozygous 

(Lmx1b fl/fl) podocyte-specific Lmx1b knock-out. Lysates were generated from a total of 11 

(Lmx1b +/+), 16 (Lmx1b +/fl) and 24 (Lmx1b fl/fl) mice, and two western blots with 80 µg protein 

each lane were conducted. [A] Western blot against Arba (~43 kDa), Gapdh (~36 kDa) and 

transgelin (~22 kDa). The blot shows also an unspecific band of unknown nature. [B] Western blots 

showing Lmx1b (~42 kDa), Gapdh (~36 kDa), shortened Lmx1b (~29 kDa) and Arl4c (~21 kDa) 

expression. The band above that of the shortened Lmx1b corresponds to Gapdh. 
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[C - F] Quantification of the western blots. Signals were normalized to Gapdh and are presented as 

fold changes to wild-type. Arl4c was analyzed on both plots, shown are the mean values and SDs. 

3.2.1. Mean phalloidin intensity 

To analyze the amount of F-actin of primary podocytes, glomeruli were isolated from two 

3 – 5-month-old male mice per genotype after doxycycline treatment for one week (see 

chapter 2.6.1). After 5 days of outgrowth, glomerular cells were plated on laminin-521-

coated coverslips and fixed exactly 40 min after plating (spreading) or the next day (steady 

state). Fixed cells were stained with phalloidin to visualize F-actin, and the mean phalloidin 

fluorescence intensity per green fluorescent podocyte was analyzed on confocal images 

(see chapter 2.8.4). 

The increased F-actin content of steady state Lmx1b knock-out podocytes could be 

confirmed (Figure 3.4) by analyzing exclusively Cre expressing podocytes seeded on 

laminin-521. Additionally, increased F-actin was already present on roundish spreading 

Lmx1b fl/fl cells fixed 40 min after plating, raising the possibility that a dysregulated actin 

cytoskeleton could impact dynamic actin-dependent processes like cell spreading. 

 

Figure 3.4: Mean phalloidin intensity of green fluorescent primary podocytes isolated from 

two male mice per genotype of the inducible podocyte-specific Lmx1b knock-out line. After 5 

days of grow-out, the podocytes were plated on laminin-521-coated cover slides and fixed after the 

indicated time points and stained for F-actin. A total of 31 – 36 cells were analyzed per time point 

and genotype, and shown are mean values and SDs. *P < 0.05. 

  

* 

* 
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3.2.2. Random movement 

As the actin cytoskeleton plays an important role in the cellular movement, the random 

movement of primary green fluorescent podocytes was another parameter of interest. 

Female inducible podocyte-specific Cre expressing mice were treated with doxycycline for 

one week, followed by isolation of glomeruli (see chapter 2.6.1). After 5 days outgrowth, 

glomerular cells were seeded on laminin-521-coated dishes and analyzed the following day 

by live cell imaging. Fluorescence pictures of the green channel were taken every 2.5 min 

over a period of 600 min (see chapter 2.8.6). 

The membrane-targeted EGFP variant (mG), which is expressed only in induced podocytes, 

showed an even fluorescence signal throughout the cytosol and also in small cell 

protrusions (Figure 3.5, A). Therefore, it was suitable as a cell boundary marker. The mean 

velocity of primary podocytes of at least 3 mice per genotype was quantified using the 

ImageJ plugin ADAPT (Figure 3.5, B). There was no significant difference in the random 

movement of Lmx1b knock-out compared to wild-type podocytes. 

 

Figure 3.5: Random movement of green fluorescent primary podocytes measured 6 days after 

the isolation of glomeruli. Four female Lmx1b +/+ and three Lmx1b fl/fl mice were treated with 

doxycycline for one week, and primary podocytes were plated on laminin-521-coated culture dishes 

after 5 days of outgrowth. The next day cells were mounted on a live cell imaging stage with 

heating (37 °C) and CO2 regulation (5%) and pictures were taken every 150 s over a period of 10 h. 

[A] Time series of a green fluorescent Lmx1b +/+ podocyte, visualizing the shape changes and 

random movement of the cell. [B] Quantification of the mean velocities of green fluorescent 

podocytes within 500 min. A total of 166 Lmx1b +/+ and 115 Lmx1b fl/fl podocytes were analyzed 

(gray dots), and shown are the median (middle line), the middle 50% percentile (box) and bars 

reaching to the last point within the range of 1.5 times the height of the box. n. s. not significant. 

n. s. 
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3.2.3. Morphology of spreading and steady state podocytes 

The cytoskeleton is the backbone of the cells defining the cellular morphology. Particularly 

important is the actin cytoskeleton, as it applies the force to the membrane necessary for 

protrusion generation and cell movement (Pollard and Cooper, 2009). For this reason, the 

cell area, circularity and roundness of primary podocytes were determined at defined time 

points after cell plating. Therefore, three to four male mice each group were treated with 

doxycycline for 7 days, followed by the isolation of glomeruli and outgrowth of primary 

green fluorescent podocytes for 5 days (see chapter 2.6.1). Outgrown glomerular cells were 

plated on laminin-521-coated cover slides and fixed after 20, 40 and 60 min and on the next 

day. The green fluorescence, which marks primary podocytes expressing Cre recombinase, 

was used to examine the cell area, circularity and roundness (see chapter 2.8.7). 

Primary podocytes attached already after 20 min to the laminin-521-coated cover slides and 

spread in the following time course on the surface (Figure 3.6). Attachment and spreading 

within the first 60 min showed no differences between murine Lmx1b knock-out and 

control podocytes regarding the cell area, as previously reported for glomerular cells on 

BSA- and fibronectin-coated surfaces (Burghardt et al., 2013). Nevertheless, steady state 

primary Lmx1b knock-out podocytes grown overnight were significantly larger 

(7 093 µm
2
 ± 5 481 µm

2
, 975 cells) than control podocytes (6 038 µm

2
 ± 5 286 µm

2
, 

766 cells). 

Circularity and roundness are two parameters both describing the shape of cells, but with 

different definitions. The values of the circularity range from 0 to 1, with 1 describing a 

perfectly circular cell. Circularity is defined as described in equation (5). 

 𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟𝑖𝑡𝑦 = 4𝜋
𝑎𝑟𝑒𝑎

(𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟)2
 (5) 

As the area is divided by the square of the perimeter, any cell protrusions extending from 

the cell body lowers the circularity, but the shape of the cell body (round vs oblong) has 

low impact on that parameter. On the other hand, the roundness of a cell is a good 

parameter to characterize the shape of the cell body, as the cell area is divided by the square 

of the length of the major axis (equation (6)). 

 𝑅𝑜𝑢𝑛𝑑𝑛𝑒𝑠𝑠 = 4 ×
𝑎𝑟𝑒𝑎

𝜋 × (𝑚𝑎𝑗𝑜𝑟 𝑎𝑥𝑖𝑠)2
 (6) 

Small protrusions like filopodia have low impact on the roundness, as they don’t affect the 

length of the major axis. Just like the circularity, the maximum value of the roundness is 1 

for a perfectly round cell and the minimum is 0.   
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Figure 3.6: Cell area of adherent green fluorescent podocytes at different discrete time points 

after plating on laminin-521-coated coverslips. Glomerular cells were obtained by 5-day 

outgrowth of glomeruli isolated from doxycycline-induced quadruple transgenic mice. Cells were 

derived from 3 to 4 mice of each genotype, except for Lmx1b +/+ at 60 min, where cells from only 

2 mice could be used. A minimum of 370 (maximum 1 099) cells were analyzed (gray dots) using 

the green fluorescence as a cell boundary marker. The data are presented in a box blot displaying 

the median (middle line), the lower and upper quartile (box) and the bars marking the last points 

within the range of 1.5 times the box height. n. s. not significant; ***P<0.001. 

Primary green fluorescent podocytes were circular and round after attaching to the 

laminin-521-coated surface and in the early phase of cell spreading, regardless of the 

Lmx1b genotype (Figure 3.7). Within the course of the experiment, both circularity and 

roundness decreased. Already 60 min after plating of the cells, the cell shape differed 

between the two groups. Primary green fluorescent Lmx1b fl/fl podocytes showed a 

significantly higher circularity (0.80 ± 0.10) and roundness (0.86 ± 0.10, 1 220 cells) 

compared to Lmx1b +/+ podocytes (0.78 ± 0.10 and 0.84 ± 0.10, 555 cells). This difference 

was even higher in steady state podocytes, where both circularity (0.47 ± 0.21) and 

roundness (0.53 ± 0.22; 959 cells) of Lmx1b knock-out podocytes were significantly 

increased compared to control cells (0.37 ± 0.18 and 0.46 ± 0.20; 747 cells). 

  

*** n. s. n. s. n. s. 
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Figure 3.7: Circularity [A] and roundness [B] of primary green fluorescent podocytes at 

different time points after plating on laminin-521-coated cover slides. To isolate primary 

podocytes, at least 3 male quadruple transgenic mice (exception: Lmx1b +/+ podocytes at 60 min 

after plating were derived from only 2 mice) were induced with doxycycline for 7 days, followed by 

the isolation of glomeruli and outgrowth of podocytes for 5 days. The value of every single cell is 

depicted as a gray dot, while the box represents the lower and upper quartile. The median is shown 

as the horizontal line, and the bars reach to the furthest points within the range of 1.5 times the box 

height. n. s. not significant; *P<0.05; **P<0.01; ***P<0.001. 

Taken together, the spreading rate of primary podocytes was not affected by Lmx1b knock-

out, although some differences in the cell shape were observed in the late spreading phase. 

However, large morphological changes were present in steady state knock-out podocytes. 

Lmx1b-deficient podocytes were larger and exhibited a higher degree of circularity and 

roundness, arguing for less cellular protrusions maintained by the actin cytoskeleton.  

n. s. ** *** 

n. s. * *** 
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3.2.4. Effect of cytochalasin D treatment on podocytes 

A well-known and widely used toxin to depolymerize the actin cytoskeleton is 

cytochalasin D. As described in chapter 1.5.5, cytochalasin D has low side effects, but does 

not directly depolymerize F-actin, instead it rather caps the growing barbed end. 

Cytochalasin D was applied to primary podocytes to further investigate the dynamics of the 

actin cytoskeleton with respect to Lmx1b knock-out. Owing to the indirect mechanism of 

cytochalasin D induced F-actin depolymerization, the toxin was used to investigate the 

depolymerization by endogenous proteins. Moreover, F-actin polymerization following 

cytochalasin D wash-out was also examined. 

Structure of the actin cytoskeleton after cytochalasin D treatment 

In order to investigate the effect of cytochalasin D on the actin cytoskeleton of primary 

podocytes, F-actin was stained with phalloidin both after cytochalasin D treatment and after 

subsequent recovery for 2 h. Primary green fluorescent podocytes were obtained by 

outgrowth of podocytes from glomeruli isolated from 7 day induced female quadruple 

transgenic mice (see chapter 2.6.1). After 5 days of outgrowth, glomerular cells were plated 

on laminin-521-coated cover slides and treated with 5 µM cytochalasin D the next day for a 

period of 24 h. Thereafter, cells were fixed immediately or after wash-out of cytochalasin D 

and recovery for 2 h (see chapter 2.8.8). Five to six podocytes were investigated per mouse, 

and podocytes originated from two mice per genotype. 

Treatment with cytochalasin D resulted in shrinkage of the cell body of primary podocytes, 

but many thin protrusions remained and did not retreat (Figure 3.8, A and B). Additionally, 

the actin cytoskeleton was in large parts destroyed, but some F-actin rich spots were located 

in proximity of the nucleus and at the base of cell protrusions, consistent with previous 

reports (Wakatsuki et al., 2001). No overt differences in the F-actin localization between 

Lmx1b fl/fl podocytes and Lmx1b +/+ controls were apparent judging from at least 11 

confocal pictures. 

Two hours past wash-out of cytochalasin D, the cells were spread again and showed a more 

typical podocyte structure with multiple broad and also some thin cell protrusions (Figure 

3.8, C and D). The phalloidin staining revealed some actin fibers throughout the cell, 

mostly extending from F-actin-rich spots mentioned above. Those spots were neither seen 

in untreated spreading nor in steady state podocytes (see Figure 3.16). Again, the phalloidin 

staining showed no apparent differences regarding structure and localization between 

Lmx1b knock-out and control podocytes. Multiple nuclei in primary podocytes as seen in 

Figure 3.8 were frequently observed, but there was no difference in the nucleus count per 

podocyte after 5 days of outgrowth between Lmx1b fl/fl and Lmx1b +/+ podocytes (data 

not shown). 
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Taken together, cytochalasin D treatment resulted in shrinkage of primary podocytes and 

accumulation of short F-actin fibers into few aggregates, and wash-out of cytochalasin D 

led to a spreading of the cells, although the actin cytoskeleton remained structurally 

disturbed 2 h post wash-out. 

 

 

Figure 3.8: Representative confocal pictures of primary green fluorescent podocytes stained 

with phalloidin to visualize F-actin. Cells were treated with 5 µM cytochalasin D over a period of 

24 h prior phalloidin staining [A, B] or were stained after subsequent wash-out of cytochalasin D 

and recovery for 2 h [C, D]. The primary podocytes originated from glomeruli of 7-day 

doxycycline-induced female quadruple transgenic mice. Two mice per genotype were investigated, 

and 5 - 6 confocal pictures of primary podocytes per mouse were taken.  
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Cytochalasin D induced cell shrinkage and post-cytochalasin D spreading 

The capping of the barbed end of actin filaments drastically reduces the dynamic actin 

turnover and is therefore suitable to investigate the actin depolymerization or 

polymerization. Cytochalasin D was applied to primary green fluorescent podocytes to 

induce cell shrinkage and the podocyte area was taken as a parameter for F-actin 

depolymerization, as the direct observation of single actin filaments in live cell imaging 

experiments was not possible. Moreover, removal of cytochalasin D was taken as a starting 

point for newly actin filament growth and again the cell area was taken as an indicator of 

actin polymerization. 

Female mice at an age between 3 and 5 months were induced with doxycycline for 7 days, 

followed by the isolation of glomeruli and the outgrowth of primary green fluorescent 

podocytes for 5 days (see chapter 2.6.1). The cells were plated on laminin-521-coated 

culture dishes. The next day fully expanded podocytes were treated with 5 µM 

cytochalasin D or solvent as a control. In shrinkage experiments, the green fluorescent 

surface area was immediately analyzed by taking fluorescence pictures every 60 s over a 

period of 121 min in a live cell imaging setup. For spreading experiments, cells were 

induced with cytochalasin D for a total of 24 h, and cytochalasin D was renewed 1 h prior 

wash-out (see chapter 2.8.8). Fluorescence pictures were taken immediately after the wash-

out in the same way as described above. In both cases, 4 fields of view (FOVs) per 

experiment were analyzed regarding the green fluorescent surface area, and the value at 

10 min after the start of the experiment was taken as 100%. The podocytes originated from 

one mouse per experiment, and a total of 24 FOVs (6 mice) were analyzed for every 

setting, except only 8 FOVs (2 mice) were used in the control experiments of cell 

shrinkage. 

Following cytochalasin D treatment primary podocytes shrank slowly but constantly 

(Figure 3.9, A), while podocytes treated with ethanol shrank only within the first 30 min 

and regained their initial size within the course of the experiment. The reason for the initial 

cell shrinkage of control cells could either be the toxicity of the solvent ethanol or the cell 

stress accompanied by medium exchange. There was no difference in the cell area between 

Lmx1b fl/fl and Lmx1b +/+ podocytes after 121 min cytochalasin D treatment (Figure 3.9, 

C). This finding indicates that the depolymerization processes of the actin cytoskeleton are 

not influenced by Lmx1b knock-out. Nevertheless, as live visualization of the actin 

cytoskeleton was not possible, cell shrinkage could also be limited by focal adhesion 

disassembly. Although the difference between the control groups was significant, the 

number of experiments was in this case maybe too low for statistical analysis (8 FOVs). 
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Figure 3.9: Changes of the surface area covered with green fluorescent podocytes following 

cytochalasin D treatment or wash-out. Outgrown primary podocytes were derived from female 

quadruple transgenic mice. The cells were plated on laminin-521-coated culture dishes and 

n. s. * n. s. * 
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subjected to live cell imaging experiments. Pictures of the green mG fluorescence were taken every 

60 s over a period of 121 min. The area covered with green fluorescent podocytes was analyzed 

within 4 non-overlapping fields of view (FOVs) per mouse and the value at 10 min was defined as 

100%. [A] Primary podocytes were treated with 5 µM cytochalasin D or solvent (ethanol) to induce 

cell shrinking. Shown are the mean values ± SD of 24 FOVs (cytochalasin D experiments) or 8 

FOVs (ethanol controls). [B] Primary podocytes were incubated with 5 µM cytochalasin D or 

solvent for 24 h, and the spreading after wash-out of the toxin is depicted. Shown are the mean 

values ± SD of 24 FOVs per experiment. [C, D] Box plots of the relative EGFP positive area after 

121 min cytochalasin D treatment [C] or after 121 min recovery post cytochalasin D wash-out [D]. 

The values are presented as gray dots, the median as the horizontal line and the box marks the lower 

and upper quartile. The bars reach to the last point within the range of 1.5 times the box height. n. s. 

not significant; *P<0.05. 

After wash-out of cytochalasin D both Lmx1b knock-out and wild-type podocytes started to 

spread, while the spreading rate decreased over the course of the experiment (Figure 3.9, 

B). The wash-out of ethanol had no impact on the size of the podocytes, proving that cell 

spreading was a consequence of cytochalasin D wash-out. Interestingly, Lmx1b knock-out 

podocytes spread slower compared to wild-type podocytes, and the difference was 

significant at 121 min after removal of the toxin (Figure 3.9, D). As the actin cytoskeleton 

provides the force necessary for pushing the cell membrane, it is very likely that the 

assembly of actin filaments was disturbed or the number of assembling filaments was 

decreased. 

Taken together, some actin-dependent processes like random movement, spreading of 

untreated cells and cytochalasin D induced cell shrinkage are not influenced by Lmx1b 

knock-out. Nevertheless, the cell area, circularity, and roundness of knock-out podocytes 

were increased, while the spreading after wash-out of cytochalasin D was decreased. 

Moreover, direct investigation of the actin cytoskeleton showed an increased F-actin 

staining in Lmx1b knock-out podocytes, arguing for an Lmx1b-dependent regulation of the 

actin cytoskeleton. 
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3.3. Dysregulation of signaling pathways regulating the actin 

cytoskeleton 

The increased phalloidin intensity, cell area and roundness of Lmx1b knock-out podocytes 

and moreover the reduced spreading after removal of cytochalasin D demonstrated a 

dysregulation of the actin cytoskeleton. As the transcription factor Lmx1b is located within 

the nucleus, these observations cannot result from a direct interaction. It is more likely that 

Lmx1b regulated target genes impact the actin cytoskeleton. Indeed, Abra and transgelin 

are reported to directly interact with actin filaments (Arai et al., 2002; Fu et al., 2000), and 

furthermore, Arl4c influences Rho GTPases (Chiang et al., 2017; Matsumoto et al., 2014). 

For this reason, signaling pathways upstream of the actin cytoskeleton were investigated. 

For instance, the activation of Rho GTPases in glomerular lysates was checked, and 

additionally the phosphorylation of the myosin light chain in LMX1B expressing hPCL 

cells. Furthermore, the impact of different inhibitors on the spreading of podocytes was 

investigated. 

3.3.1. Activity of Rho GTPases 

As the Rho GTPases are master regulators of the actin cytoskeleton (Sadok and Marshall, 

2014), the activities of the family members RhoA, Rac1 and Cdc42 were examined. Rho 

GTPases are active when bound to GTP and inactive when bound to GDP. Active Rho 

GTPases are short-lived species, as the intrinsic hydrolysis activity leads to GTP hydrolysis 

which is further catalyzed by GTPase activating proteins (GAPs). With this in mind, it was 

decided to analyze freshly isolated glomeruli and not FACS sorted detached podocytes or 

partly dedifferentiated outgrown glomerular cells. 

Female podocyte-specific Lmx1b knock-out (Lmx1b fl/fl) mice and heterozygous controls 

(Lmx1b +/fl) were induced with doxycycline for 7 days before glomeruli were isolated (see 

chapter 2.6.1). Pure glomeruli fractions were immediately lysed in less than 8 min and snap 

frozen until the Rho GTPase activity was analyzed using G-LISA assays. Total protein 

content of glomerular lysates was equalized beforehand. Glomerular lysates from 5 mice 

per genotype were used in case of RhoA and Cdc42, and 4 in case of Rac1 G-LISA. The 

amount of active Rho-GTPases was detected by absorption measurements of a 

chromogenic reaction catalyzed by HRP-coupled antibodies (see chapter 2.7.1). 
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Figure 3.10: Amount of active GTP-bound Rho GTPases as discovered by G-LISA assays. 

Glomeruli were isolated from female quadruple transgenic mice induced with doxycycline for 7 

days. The assays were conducted with equalized glomerular lysates after rapid lysis. Active Rho-

GTPases were detected by HRP coupled antibodies catalyzing a chromogenic reaction. 

[A, C, E] Shown are the blank corrected means of doublets + SD per glomerular lysate for RhoA, 

Rac1 and Cdc42. [B, D, F] Shown are the mean Rho GTPase activity per genotype + SD. n. s. not 

significant; *P<0.05.  

* 

n. s. 

* 
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A statistically significant difference in the amount of active RhoA and Cdc42 between 

Lmx1b fl/fl and Lmx1b +/fl glomeruli was found. The amount of GTP-bound RhoA was 

decreased to 76% (Figure 3.10, B) and GTP-bound Cdc42 was decreased to 69% (Figure 

3.10, F) in Lmx1b-deficient glomeruli compared to heterozygous knock-outs. The amount 

of active Rac1 was not dysregulated in respect to Lmx1b knock-out (Figure 3.10, D). A 

higher variance within Lmx1b +/fl controls was detected in all cases (Figure 3.10, A, C and 

E). Although these data show glomerular activity levels, podocytes were the only cells 

within the glomerulus with Cre expression and genomic recombination following 

doxycycline treatment, leading to the assumption that mostly podocytes contributed to 

changes in activity levels. 

In summary, Lmx1b knock-out led to decreased levels of active RhoA and Cdc42, which 

might contribute to a dysregulation of the actin cytoskeleton of podocytes. 

3.3.2. Phosphorylation of the myosin light chain 2 

Myosin-2 is an actin-binding hexamer important for force generation alongside actin 

filaments which is activated by phosphorylation of Ser-19 of myosin light chain 2 (MLC) 

(see chapter 1.5.4). Rho GTPases regulate MLC phosphorylation, for instance, RhoA 

induces MLC phosphorylation over ROCK (Totsukawa et al., 2000) . This makes pMLC to 

an interesting target for deeper analyses regarding the influence of Rho GTPase signaling 

pathways on the actin cytoskeleton. 

The hPCL pInducer-LMX1B cell line was used to investigate the amount of pMLC by 

immunofluorescence staining. As the hPCL cell line showed no LMX1B expression in 

proliferating and differentiated cells, the hPCL pInducer-LMX1B cell line was created by 

lentiviral transduction of hPCL cells. This cell line expressed human LMX1B after 

induction with doxycycline, as shown in Figure 3.11. Proliferating as well as differentiated 

cells showed low LMX1B protein in the absence of doxycycline, while induction with 

doxycycline for 5 days resulted in strong nuclear expression of LMX1B in nearly all 

proliferating cells. In differentiated cells, there was also LMX1B protein stained but to a 

lesser extent. The nuclei and cell area of differentiated cells were larger compared to 

proliferating hPCL pInducer-LMX1B. 

To quantify the amount of pMLC in proliferating hPCL pInducer-LMX1B cells, cells were 

grown 5 days in the presence or absence of 1 mg/L doxycycline and were replated on 

laminin-521-coated cover slides thereafter. hPCL pInducer-LMX1B differentiation was 

conducted by culturing at 37 °C for 14 days. Within the last five days of differentiation 

some cells were additionally treated with doxycycline to induce LMX1B expression. 

Differentiated cells were replated on laminin-521-coated cover slides. Both proliferating 
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and differentiated cells were fixed 20, 40 and 60 min after replating and stained for pMLC 

and transgelin. The cell area was in both cases determined by immunofluorescence staining 

against transgelin, which located throughout the cytosol. Interestingly, transgelin was 

highly expressed both in induced and non-induced hPCL pInducer-LMX1B cells, at least 

after 5 days of doxycycline treatment. 

 

Figure 3.11: LMX1B expression of the hPCL pInducer-LMX1B cell line in the presence or 

absence of doxycycline. [A] Proliferating cells were plated on laminin-521-coated cover slides and 

stained for LMX1B after 5 days. [B] Proliferating cells induced with 1 mg/L doxycycline for 5 

days. [C] Cells were plated on laminin-coated cover slides and differentiated over 14 days at 37 °C. 

[D] Differentiating cells were induced with 1 mg/L doxycycline the last five days of differentiation. 

For better visibility brightness of pictures C and D was increased compared to pictures A and B. 

The expression of LMX1B influenced the amount of phosphorylated myosin light chain 2 

in spreading hPCL pInducer-LMX1B cells. Proliferating podocytes showed significantly 

decreased pMLC fluorescence in doxycycline-induced LMX1B expressing cells both 20 

and 40 min after plating (Figure 3.12, A). However, there was no difference after 60 min of 

cell spreading. A similar result was obtained when using differentiated cells (Figure 3.12, 

B). LMX1B expressing cells stained 40 min after plating had significantly reduced amounts 

of pMLC, while the difference at 60 min after plating was nearly significant. Nevertheless, 

there was again no difference at one time point, in this case at 20 min after plating. 
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Figure 3.12: Mean pMLC intensity of proliferating and differentiated hPCL pInducer-

LMX1B cells in respect to doxycycline-induced LMX1B expression. Proliferating and 

differentiated cells were fixed 20, 40 and 60 min after replating on laminin-521-coated cover slides 

and stained for pMLC and transgelin. Transgelin staining was used as a cell boundary marker.  

[A] Proliferating cells were treated with 1 mg/L doxycycline for five days prior replating. At least 

10 cells were analyzed. [B] hPCL-pInducer-LMX1B cells were differentiated at 37 °C for 14 days 

and additionally induced with doxycycline within the last five days of differentiation. At least 8 

cells were analyzed per setting. n. s. not significant; **P<0.01. 

In summary, LMX1B expressing podocytes had reduced or equal levels of pMLC 

compared to control cells, but the pMLC amount was never increased. These data further 

hint towards a role of LMX1B in the regulation of the actin cytoskeleton, but the data are 

only preliminary as the experiment was performed only one time before the end of this 

thesis. 

3.3.3. Influence of signaling cascades on the spreading of primary podocytes 

It was shown in chapter 3.2.4 that primary Lmx1b-deficient podocytes spread slower after 

the removal of cytochalasin D. This experiment was used to narrow down the nature of the 

dysregulation of the actin cytoskeleton. The experimental setup and procedure remained 

unchanged, except for the addition of an inhibitor 1 h prior to the wash-out of 

cytochalasin D, and the inhibitor was also supplemented to the washing medium (see 

chapter 2.8.8). The effect of the inhibitor on the spreading of Lmx1b +/+ and Lmx1b fl/fl 

podocytes was then analyzed in comparison to untreated podocytes. Two inhibitors were 

used so far, Y-27632 (5 µM) and LIMKi 3 (10 µM), which inhibit the kinases ROCK1/2 

and LIMK1/2, respectively. These kinases play an important role in the regulation of the 

actin cytoskeleton and act downstream of Rho GTPases.  

** 

** 

n. s. 

n. s. 

** n. s. 
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The resulting spreading curves were interpreted as follows: In case the inhibited kinases are 

not part of the dysregulated signaling pathway, the inhibitor should act on the spreading of 

knock-out and wild-type podocytes in the same way. That means the spreading of 

Lmx1b fl/fl podocytes should remain slower. In case the inhibited kinases are dysregulated 

following Lmx1b knock-out, the inhibitor should nullify the differences in the actin 

regulation and in the spreading, at least as long as only one pathway is to most parts 

responsible for the dysregulation of the actin cytoskeleton. 

Involvement of ROCK in the dysregulation of the actin cytoskeleton 

When treated with ROCK inhibitor (ROCKi) Y-27632, the relative cell area of Lmx1b fl/fl 

podocytes 121 min after wash-out of cytochalasin D was significantly decreased (Figure 

3.13, C). Unfortunately, there was only a slight and not significant difference in the 

spreading of control podocytes treated with the solvent of the inhibitor (H2O), possibly 

because only half as many animals (3 mice, 12 FOVs) compared to the initial spreading 

experiment (Figure 3.9, B) were used. Nevertheless, the significant difference of ROCKi 

treated podocytes indicates that the kinase ROCK is not involved in the dysregulation of 

the actin cytoskeleton. 

Involvement of LIMK in the dysregulation of the actin cytoskeleton 

The spreading of green fluorescent Lmx1b fl/fl and Lmx1b +/+ podocytes treated with 

LIMKi was almost identical (Figure 3.13, B), and there was no difference in the relative 

EGFP positive area after 121 min of spreading (Figure 3.13, D). A marked difference in the 

spreading of control podocytes treated with solvent (DMSO) was noticeable, although it 

was not significant 121 min after wash-out of cytochalasin D. Again, the animal number 

was lower (3 mice, 12 FOVs) compared to the initial experiment, which explains this 

statistical finding. As the spreading curves of LIMKi treated podocytes were at the same 

level, it is hypothesized that LIMK is dysregulated in Lmx1b knock-out podocytes. 

Moreover, the spreading of knock-out podocytes in the presence or absence of LIMKi was 

similar, indicating that LIMK activity in Lmx1b fl/fl podocytes was already at a low level 

and therefore not influenced by the inhibitor. 

Taken together, these results point towards a decreased activity of LIMK in Lmx1b knock-

out podocytes, whereas the activity of ROCK is not affected.  
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Figure 3.13: Spreading of primary green fluorescent podocytes after wash-out of 

cytochalasin D in the presence or absence of inhibitors. Primary podocytes derived from female 

quadruple transgenic mice after doxycycline induction for 7 days and were obtained by glomerular 

n. s. 

 

** n. s. n. s. 
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outgrowth over 5 days. Podocytes were treated with cytochalasin D for 24 h and cell spreading was 

analyzed after wash-out of the toxin by live cell imaging (one picture every 60 s, 121 min 

observation time). The inhibitor treatment started 1 h before wash-out and continued in the course 

of the experiment. Data are presented as the green fluorescent cell area relative to the area 10 min 

post wash-out. Cells from one mouse per genotype were used per experiment, and 4 fields of view 

(FOVs) were analyzed per experiment. [A] Spreading of primary podocytes treated with 5 µM 

ROCK inhibitor or solvent (H2O). Shown are the means and SDs from 3 experiments (12 FOVs). 

[B] Spreading of podocytes in the presence of 10 µM LIMK inhibitor or solvent (DMSO). Shown 

are the means and SDs from 3 experiments (12 FOVs). [C, D] Box plots of the relative podocyte 

area 121 min after cytochalasin D wash-out. Gray dots represent values of single FOVs, the boxes 

the lower and upper quartiles and the horizontal line the respective medians. Bars reach to the 

furthest points within 1.5 times the box height. n. s. not significant; **P<0.01. 

3.4. Dysregulation of focal adhesions 

The regulation of the actin cytoskeleton is influenced by extracellular signals, which are 

recognized by transmembrane receptors leading to an activation of signaling cascades. Two 

transmembrane compartments especially important in podocytes are focal adhesions and 

slit diaphragms (see chapter 1.4.3). Both are mechanically linked to the actin cytoskeleton 

and additionally regulate the actin cytoskeleton over signaling cascades (Faul et al., 2007). 

As the possibility to induce foot process and potentially slit diaphragm formation of 

cultured primary podocytes was reported only at the end of this thesis (Yaoita et al., 2018), 

the contribution of slit diaphragms to actin cytoskeleton dysregulation could not be 

investigated. On the other hand, some previous data hinted towards dysregulation of focal 

adhesions after Lmx1b knock-out. For instance, Lmx1b knock-out podocytes adhered 

stronger to laminin-111 (Burghardt et al., 2013) and FRAP experiments revealed slower 

recovery of -actinin-1 and actin at focal adhesions in primary knock-out podocytes 

(Stepanova, 2016). Additionally, defects of focal adhesion proteins are known to cause 

podocyte damage and foot process effacement (Vivante and Hildebrandt, 2016). Focal 

adhesions were investigated to answer the question if dysregulation of the actin 

cytoskeleton in Lmx1b knock-out podocytes is already caused by dysregulated focal 

adhesions. 

3.4.1. Activation of 1-integrin 

Integrins are extracellular matrix receptors and the central proteins of focal adhesions. 

Within podocytes, the heterodimeric 31-integrin is the most abundant integrin (Sachs 

and Sonnenberg, 2013). Integrins are activated either to extracellular stimuli (outside-in 

signaling) or by intercellular binding of proteins (inside-out signaling) (Askari et al., 2009). 
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Owing to its importance for focal adhesions the activity of 1-integrin was investigated by 

fluorescence staining with an activation-state recognizing antibody. 

Investigation by immunofluorescence staining of adherent podocytes 

In a first experiment primary adherent podocytes were stained against active 1-integrin to 

visualize the localization and amount of active 1-integrin. To obtain primary podocytes, 

male quadruple transgenic mice were induced with doxycycline for 7 days, followed by 

isolation of glomeruli and outgrowth of podocytes for 5 days (see chapter 2.6.1). Outgrown 

podocytes were plated on laminin-521-coated cover slides and fixed after exactly 40 min or 

at the next day and stained against active 1-integrin. At least 26 green fluorescent primary 

podocytes originating from two male mice per genotype were analyzed. 

The staining revealed the typical localization and shape of focal adhesions in spreading and 

steady state podocytes (Figure 3.14, A - H). This pattern was also frequently observed by 

paxillin staining of primary podocytes (data not shown). In roundish spreading podocytes, 

focal adhesions were commonly arranged in a ring near to the cell edge, but no difference 

between Lmx1b +/+ and Lmx1b fl/fl podocytes was visible. The localization of active 

1-integrin in steady state podocytes was more heterogeneous and was dependent on the 

cell shape, but again no overt differences between the two genotypes were recognizable. 

Isotype controls revealed some unspecific fluorescence signal primarily in the vicinity of 

the nucleus, especially in spreading cells. Quantification of the mean fluorescence intensity 

per cell showed equal levels of 1-integrin activation both in spreading and steady state 

podocytes when comparing Lmx1b fl/fl to Lmx1b +/+ podocytes (Figure 3.14, I). 

Investigation by flow cytometry 

To reveal potential small differences in the activation of 1-integrin, a greater number of 

cells were investigated by flow cytometry. Female quadruple transgenic mice were induced 

with doxycycline for 7 days followed by isolation of glomeruli and podocyte outgrowth for 

additional 7 days (see chapter 2.6.1). Glomerular outgrown cells were detached from the 

surface and split into three equal parts. Each part was incubated either with anti-active 

1-integrin, anti-total 1-integrin or isotype control antibodies (see chapter 2.8.9). As 

glomerular cells comprehended green fluorescent Cre expressing podocytes as well as red 

fluorescent podocytes without Cre expression and possibly red fluorescent endothelial and 

mesangial cells, an antibody coupled to the far-red fluorescent dye Alexa633 was chosen as 

a secondary antibody. Both green and red fluorescent cells were analyzed by flow 

cytometry regarding the Alexa633 intensity per cell. Total cell numbers are listed in Table 

3.1, originating from 11 mice per genotype. 
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Figure 3.14: Localization and quantification of the amount of active 1-integrin in primary 

green fluorescent podocytes. Male quadruple transgenic mice were induced with doxycycline for 7 

days followed by isolation of glomeruli and outgrowth of podocytes for 5 days. Outgrown cells 

were plated on laminin-521-coated cover slides and fixed after 40 min or the next day. 

n. s. 

 

n. s. 
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[A – H] Confocal pictures of spreading (top panels) and steady state (bottom panels) green 

fluorescent podocytes, stained for active 1-integrin. [I] Quantification of the mean fluorescence 

intensity within a cell. At least 26 cells isolated from 2 mice per genotype were analyzed. n. s. not 

significant. 

A slight increase of active 1-integrin of green fluorescent Lmx1b fl/fl podocytes compared 

to Lmx1b +/+ podocytes was found, while the amount of total 1-integrin remained at the 

same level (Figure 3.15, A). The data were not compromised by unspecific binding of 

antibodies, judging from the low isotype control intensities. 

Red fluorescent cells showed a different signal distribution (Figure 3.15, B). There were 

two peaks of active 1-integrin regardless of their origin, arguing for at least two different 

1-integrin-expressing cell types. The right peak most likely corresponds to non-induced 

red fluorescent podocytes, as it showed similar fluorescence intensities compared to green 

fluorescent podocytes. Although there were differences in relative cell numbers of red 

fluorescent primary podocytes, the amount of active 1-integrin was at the same level 

between red fluorescent podocytes isolated from podocyte-specific Lmx1b knock-out and 

wild-type animals. The amount of total 1-integrin was increased in cells from Lmx1b 

knock-out animal origin. However, the broad signal argues again for overlapping signals 

from different cells types. 

Taken together, green fluorescent but not red fluorescent podocytes from podocyte-specific 

Lmx1b knock-out mouse origin showed slightly increased 1-integrin activity, indicating 

that this difference was rather caused by intracellular processes than extracellular 

glomerular basement membrane alterations. On the other hand, the amount of total 1-

integrin remained unchanged, at least in green fluorescent podocytes. 

Table 3.1: Numbers of cells analyzed by flow cytometry regarding their active 1-integrin, 

total 1-integrin and isotype control staining intensity. 

Primary antibody Genotype EGFP positive cells tdTomato positive cells 

active 1-integrin Lmx1b +/+ 107 193 196 206 

 Lmx1b fl/fl 92 060 238 252 

total 1-integrin Lmx1b +/+ 95 529 157 770 

 Lmx1b fl/fl 76 532 243 888 

isotype control Lmx1b +/+ 94 115 233 472 

 Lmx1b fl/fl 92 788 250 893 
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Figure 3.15: Amount of active and total 1-integrin of green fluorescent podocytes and red 

fluorescent glomerular cells determined by flow cytometry. Glomerular cells were obtained by 

7-day lasting outgrowth from glomeruli isolated from a total of 11 female quadruple transgenic 

mice per genotype. Cells were incubated with monoclonal antibodies against active 1-integrin, 

total 1-integrin and an isotype control. An Alexa633 coupled secondary antibody was used and the 

Alexa633 intensity per cell was analyzed by flow cytometry. Red and orange color denotes curves 

of cells from Lmx1b fl/fl mouse origin and black and blue was used for curves of cells from 

Lmx1b +/+ mouse origin. The cell count was normalized for better comparability. [A] Alexa633 

intensity histogram of green fluorescent podocytes with known Cre recombinase expression and 

activity. [B] Alexa633 intensity histogram of red fluorescent glomerular cells. 
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3.5. Investigation of transgelin in Lmx1b knock-out podocytes and 

mice 

Transgelin revealed the strongest mRNA upregulation in podocyte-specific Lmx1b knock-

out glomeruli identified by DNA microarray studies (Burghardt et al., 2013). Additionally, 

de novo transgelin expression in freshly isolated green fluorescent Lmx1b fl/fl podocytes 

was confirmed in chapter 3.1.2 at the protein level. Although upregulation of transgelin 

seems to be a common reaction of podocytes to damage, it is however an interesting study 

target owed to the observation that deletion of transgelin had beneficial effects in a 

crescentic glomerulonephritis model in mice (Marshall et al., 2011). The effect of 

transgelin in the progression of renal damage caused by Lmx1b homeobox deletion was 

mainly studied using a podocyte-specific Lmx1b knock-out mouse line crossed with a 

global transgelin deletion mouse line. Additionally, the subcellular localization and 

expression of transgelin in outgrown green fluorescent primary podocytes was investigated. 

3.5.1. Subcellular localization of transgelin in primary podocytes 

Transgelin localizes to the actin cytoskeleton in smooth muscle cells (Fu et al., 2000), but 

its localization in spreading and steady state podocytes was not reported so far. For this 

reason, primary podocytes were obtained from male 7 day induced quadruple transgenic 

mice by glomerular outgrowth for 5 days (see chapter 2.6.1). Those cells were replated on 

laminin-521-coated cover slides and fixed after exactly 40 min or at the next day and 

stained against transgelin. Confocal pictures of at least 31 green fluorescent podocytes per 

group were taken, and the cells originated from two male mice per genotype (see chapter 

2.8.4). 

Although transgelin was expressed only in freshly isolated Lmx1b fl/fl, but not in 

Lmx1b +/+ podocytes (see chapter 3.1.2), there was a strong transgelin expression in 

outgrown spreading and steady state podocytes of both genotypes (Figure 3.16). As the 

expression of transgelin in outgrown Lmx1b +/+ podocytes was unexpected, the mean 

transgelin intensity per cell was also quantified (Figure 3.17, B). Although there was no 

significant difference in spreading podocytes, steady state Lmx1b +/+ podocytes analyzed 

6 days after isolation from mice had significantly lower levels of transgelin protein 

compared to Lmx1b fl/fl podocytes. 
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Figure 3.16: Localization of transgelin and colocalization with actin in spreading and steady 

state podocytes. The pictures show primary podocytes obtained by glomerular outgrowth for 5 

days, which were replated on laminin-521-coated cover slides and fixed after 40 min [A, B] or the 

next day [C, D]. The podocyte sources were two male quadruple transgenic mice per genotype 

induced with doxycycline for 7 days. On the right-hand side are magnifications of the areas marked 

in the merge pictures displaying stress fibers and the leading edge.  



RESULTS 109 

 

 

 

Figure 3.17: Quantifications of actin-transgelin correlation and the amount of transgelin. 

[A] Pearson correlation coefficient illustrating the colocalization of F-actin and transgelin. The 

coefficient was calculated by Costes’ automatic threshold method for 4 control and 6 sample 

podocytes (gray dots) per genotype and time point. Controls were processed like sample cells apart 

from skipped anti-transgelin antibody incubation. The box represents the lower and upper quartile, 

the horizontal line within the box the median, and bars reach to the last points within 1.5 times the 

box height. [B] Mean transgelin intensity of at least 31 outgrown spreading and steady state 

podocytes. n. s. not significant; ***P<0.001. 

In spreading podocytes, transgelin was localized throughout the cytosol (Figure 3.16, A and 

B). An increased fluorescence signal was noticed at the cell edge and at the perinuclear 

region, but not at phalloidin stained actin fibers. Actin fibers located in a belt between the 

nucleus and the cell edge similar to the localization of active 1-integrin stained focal 

adhesions (see Figure 3.14). No difference in the localization between knock-out and wild-

type podocytes was obvious. In steady state podocytes, transgelin localized to the leading 

n. s. 

*** 
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edges of lamellipodia and to actin fibers regardless of the podocyte genotype (Figure 3.16, 

C and D), although the transgelin fluorescence in Lmx1b +/+ podocytes seemed to be 

weaker. Phalloidin staining was most prominent at stress fibers, but also weak staining of 

cortical actin was detectable. 

Colocalization of transgelin and actin was quantified with the Pearson correlation 

coefficient (Figure 3.17, A). A value of 1 represents total positive correlation 

(colocalization), while 0 represents no correlation and -1 total negative correlation 

(exclusion). Cells treated with phalloidin and the secondary antibody, but without the 

primary antibody against transgelin served as controls. The coefficient was calculated for 6 

cells per sample group and 4 cells per controls. The Pearson coefficient confirmed the 

finding of phalloidin and actin colocalization in steady state podocytes, but there was no 

colocalization in spreading podocytes. Colocalization was not influenced by Lmx1b knock-

out. 

In summary, transgelin colocalized with F-actin in steady state, but not in spreading 

podocytes. Transgelin was furthermore enriched at the leading edges and was generally 

expressed in dedifferentiated primary podocyte culture, although to a higher extent in 

Lmx1b knock-out podocytes. 

3.5.2. Phenotypic characterization of Lmx1b and Sm22 double knock-out 

mice 

Podocyte-specific Lmx1b knock-out mice die from renal failure after around 14 days 

(Suleiman et al., 2007). Mice with global Sm22 knock-out are healthy, fertile and show no 

overt abnormal phenotype (Kühbandner et al., 2000). To examine the effect of transgelin on 

the survival and proteinuria of Lmx1b-deficient mice, these mouse lines were crossed. As 

the probability of offspring of the desired genotype was low owing to three different 

transgenes, mice were bred in two different crossing schemes. Mice of both crossing 

schemes were of mixed C57BL/6 / 129/Sv genetic background. 

The crossing schemes and frequencies of birth of the investigated genotypes are listed in 

Table 3.2. As the tail biopsies for genotyping were taken four days after birth, animals 

dying earlier were not included in statistics. As it was not possible to discriminate between 

hemizygous and homozygous P2.5 Cre mice by PCR genotyping, the expected 

probabilities are given as ranges. The birth rate of mice with both podocyte-specific Lmx1b 

knock-out and hetero- or homozygous Sm22 knock-out were reduced, while the birth rate 

of Lmx1b +/+, P2.5 Cre +, Sm22 -/- mice was slightly increased. On the other hand, 

podocyte-specific Lmx1b knock-out mice had a birth rate similar to what was expected. The 

reason for the lower birth rate of double knock-out animals remained unclear. 
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Table 3.2: Frequencies of birth of mice with the denoted genotypes. Animals were obtained 

by two different crossing schemes, and a total of 367 mice in the upper and 130 mice in the 

lower case were genotyped 4 days after birth. Animal numbers are given in brackets. 

Genotype Expected offspring Actual offspring 

Lmx1b +/fl, P2.5 Cre +, Sm22 +/-  x  Lmx1b +/fl, P2.5 Cre +, Sm22 -/- 

Lmx1b +/+, P2.5 Cre +, Sm22 -/- 9.4 - 12.5% 14.2% (52) 

Lmx1b fl/fl, P2.5 Cre +, Sm22-/- 9.4 - 12.5% 6.0% (22) 

Lmx1b fl/fl, P2.5 Cre +, Sm22 +/- 9.4 - 12.5% 4.4% (16) 

Lmx1b +/fl, P2.5 Cre +, Sm22 +/+  x  Lmx1b +/fl, P2.5 Cre +, Sm22 +/+ 

Lmx1b fl/fl, P2.5 Cre +, Sm22 +/+ 18.8% 20.0% (26) 

 

Nevertheless, Kaplan-Meier survival analysis (Figure 3.18, A) revealed a prolonged 

lifetime of a subset of double knock-out animals beyond 14 days. However, there was also 

one podocyte-specific Lmx1b knock-out mouse with comparable prolonged lifetime. The 

survival of Lmx1b +/+, P2.5 Cre +, Sm22 +/- mice was indistinguishable from podocyte-

specific Lmx1b knock-out mice. Control Sm22 knock-out mice showed no abnormal 

survival, at least within the observed time span of 17 weeks. Interestingly, most podocyte-

specific Lmx1b-deficient mice died at around 14 days regardless of additional Sm22 knock-

out, but few mice survived longer. A possible explanation for this finding is the mixed 

genetic background, leading to birth of mice with different susceptibilities to renal damage 

caused by absent Lmx1b. But still, there was a higher degree of mice with a prolonged 

lifespan when Sm22 was knocked-out. Unfortunately, there was no statistically significant 

influence of transgelin on the survival of podocyte-specific Lmx1b knock-out mice 

(P = 0.189, log-rank test) and also a direct comparison of the survival of double knock-out 

and podocyte-specific Lmx1b knock-out mice was not significant (P = 0.105, log-rank test). 

Proteinuria was additionally determined for most animals (Figure 3.18, B). Urine samples 

were taken from mice at the age of 4, 10 and 21 days and 6, 13 and 17 weeks and analyzed 

by SDS-PAGE. As it was expected, Sm22 -/- mice had no proteinuria, including the two 

animals dying within the analyzed lifespan, hinting towards other causes of death apart 

from renal failure. All other animals, which could be analyzed for proteinuria at the last 

sample time point before death, had developed proteinuria. In general, mice which died at 

around 14 days showed proteinuria already at the age of 4 days, whereas mice with a 

prolonged lifespan had no proteinuria at that age. All podocyte-specific Lmx1b knock-out 

mice had developed proteinuria by 6 weeks, irrespective of additional Sm22 knock-out.  
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Figure 3.18: Survival and onset of proteinuria of mixed C57BL/6 / 129/Sv mice with various 

combinations of podocyte-specific Lmx1b knock-out and global Sm22 knock-out. Mice were 

genotyped four days after birth, individuals dying earlier were excluded. A total of 27 Lmx1b +/+, 

P2.5 Cre +, Sm22 -/-, 14 Lmx1b fl/fl, P2.5 Cre +, Sm22 -/-, 13 Lmx1b fl/fl, P2.5 Cre +, Sm22 +/- 

and 18 Lmx1b fl/fl, P2.5 Cre +, Sm22 +/+ mice were analyzed up to an age of 17 weeks. 

[A] Kaplan-Meier survival analysis. [B] Illustration of the survival and onset of proteinuria of each 

mouse. Proteinuria was determined by SDS-PAGE at the age of 4, 10, 21 days and 6, 13 and 17 

weeks (dashed vertical lines). The lifetime until the last observation of no proteinuria is depicted in 

green and the lifetime after the first observations of proteinuria in red. The time span lying in-

between is illustrated as orange, as proteinuria must have developed in this time frame. For some 
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mice it was not possible to obtain urine samples, and few mice died without any observation of 

proteinuria. Those times are depicted in gray, as proteinuria could potentially have developed 

before death.  

In summary, a higher degree of double knock-out mice had a delayed onset of proteinuria 

and a prolonged lifespan compared to podocyte-specific Lmx1b knock-out mice, indicating 

that transgelin is one of multiple factors defining renal susceptibility to damage. 

3.5.3. Investigation of Lmx1b, Sm22 double knock-out mice 8 days 

postnatally 

To further investigate the potential negative effect of de novo transgelin expression on 

podocyte health of Lmx1b knock-out mice, the kidneys of double knock-out mice and 

controls were perfusion fixed at the age of 8 days. Fixed kidneys were analyzed regarding 

kidney histology and ultrastructure in addition to immunofluorescence staining of selected 

proteins. As heterozygous Sm22 inactivation had no effect on survival and proteinuria of 

podocyte-specific Lmx1b knock-out mice, those mice were excluded from further analyses. 

Quantification of proteinuria, body weight and the density of filtration slits 

Urine samples were taken and the weight was determined immediately prior to perfusion. 

The number of filtration slits per micrometer basement membrane was determined using 

electron micrographs of two glomeruli per mouse. 

As expected, none of the 7 control mice (Lmx1b +/+, P2.5 Cre +, Sm22 -/-) showed any 

sign of proteinuria, while all 6 podocyte-specific Lmx1b knock-out mice had developed 

proteinuria (Figure 3.19, A). Surprisingly, the protein to creatinine ratio of most double 

knock-out mice was increased compared to podocyte-specific Lmx1b knock-out animals. 

Nevertheless, one of the eight double knock-out mice showed no proteinuria 8 days after 

birth. 

Consistent with those observations, the weight of some double knock-out mice was already 

markedly decreased, while the one without proteinuria (double-KO mouse 1) had a weight 

similar to controls (Figure 3.19, B). Again, the weight of podocyte-specific Lmx1b knock-

out mice at the age of 8 days was still close to controls, indicating a milder phenotype. 

Those observations were reflected on the subcellular level by the number of filtration slits 

per micrometer (Figure 3.19, C). Every gap between adjacent foot processes was counted as 

a filtration slit. The number of filtration slits was drastically reduced of both podocyte-

specific Lmx1b knock-out and double knock-out animals, with the exception of the double-

KO mouse 1. 
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Figure 3.19: Proteinuria, weight and filtration slits per micrometer basement membrane of 8-

day old mice with combined podocyte-specific Lmx1b knock-out and global Sm22 knock-out. 

The values for individual animals are depicted, and every column represents one animal. [A] Urine 

protein to creatinine ratio determined by Bradford protein assay and Jaffe reaction. [B] Weight of 

individual mice at the time of perfusion. [C] Filtration slits per micrometer glomerular basement 

membrane. Slits were counted in electron micrographs of two glomeruli per mouse, and every gap 

between adjacent foot processes was counted as a filtration slit. 



RESULTS 115 

 

 

Glomerular expression of transgelin and podocin 

To prove that transgelin is indeed absent in Sm22 knock-out podocytes, paraffin embedded 

kidney sections were stained for transgelin and costained with podocin as a podocyte 

marker (Figure 3.20). Only juxtamedullary glomeruli were examined. Transgelin was 

solely expressed in the podocyte cell body of podocyte-specific Lmx1b knock-out mice 

without Sm22 knock-out, confirming the successful deletion. Some remaining erythrocytes, 

visible as green spots, were located within the capillary loops central of the podocin stained 

foot processes. 

Interestingly, the podocin expression in glomeruli of damaged kidneys was reduced, but 

still detectable. The pattern of podocin expression in healthy control glomeruli was a 

continuous line marking the foot processes at the exterior of the capillaries, while 

glomeruli, where only the shortened variant of Lmx1b was expressed, showed disruptions 

of this line. Staining of the kidney sections of the double-KO mouse 1 (Figure 3.20, C) 

revealed no alterations in the pattern of podocin expression. 

Kidney histology 

Kidney sections were investigated on the light microscopic level by hematoxylin / eosin 

staining of 6 µm thick paraffin sections (Figure 3.21). Kidneys of double knock-out 

animals, as well as podocyte-specific Lmx1b knock-out animals, appeared histological 

normal except for some tubular dilation and occasional eosinophilic casts within Bowman 

space and tubules (Figure 3.21, B and D). The eosinophilic casts were probably plasma 

proteins which were not adequately filtered by the glomerular filtration barrier and were 

therefore detectable in tubular segments and the urine. No overt abnormalities within 

glomeruli were detectable by light microscopy. The kidney of the double-KO mouse 1 was 

structurally normal without tubular dilations or protein casts (Figure 3.21, C). 

Kidney ultrastructure 

Kidney sections were further analyzed by electron microscopy to investigate glomerular 

ultrastructure and foot process effacement. Electron micrographs of control mice showed a 

regular glomerular filtration barrier with the fenestrated endothelium, the glomerular 

basement membrane and delicate foot processes (Figure 3.22, A). A broadening of foot 

processes in control animals was only rarely detectable. As expected, the double-KO 

mouse 1 showed no ultrastructural abnormalities (Figure 3.22, C). Podocyte-specific Lmx1b 

knock-out mice both with and without additional global Sm22 deletion (Figure 3.22, B and 

D) showed markedly broadened foot processes accompanied by loss of filtration slits 

(quantified in Figure 3.19, C). In addition, kidneys of both genotypes frequently showed 

small segments of glomerular basement membrane splitting, with a bump always directing 

to the podocyte side.  
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Figure 3.20: Immunofluorescence staining against transgelin and podocin of paraffin-

embedded kidney sections. Mice were perfusion fixed 8 days postnatally and only juxtamedullary 

glomeruli were analyzed. Besides specific staining, the background fluorescence of some remaining 

erythrocytes was visible in the green channel. Shown are representative glomeruli of control 

animals [A], double knock-out animals with proteinuria [B], the double-KO mouse 1 [C] and 

podocyte-specific Lmx1b knock-out mice [D]. 
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Figure 3.21: Hematoxylin / eosin staining of 6 µm thick paraffin sections of kidneys from mice 

with combined podocyte-specific Lmx1b and global Sm22 knock-out. Boxes mark the magnified 

juxtamedullary glomeruli depicted in the bottom panel. Shown are representative pictures of control 

mice [A], double knock-out mice [B], the double-KO mouse 1 [C] and podocyte-specific Lmx1b 

knock-out mice [D]. 
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Figure 3.22: Electron micrographs of the glomerular filtration barrier showing foot processes, 

the glomerular basement membrane and the fenestrated endothelium. Shown are 

representative micrographs from global Sm22 knock-out mice [A], podocyte-specific Lmx1b and 

global Sm22 double knock-out mice [B], the double-KO mouse 1 which showed no renal 

abnormalities [C] and podocyte-specific Lmx1b knock-out mice [D]. Two animals per subgroup are 

depicted with 2 pictures each, except for C, which is only one animal. Arrows indicate sites of 

glomerular basement membrane splitting. 
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Structure and amount of filamentous actin within glomeruli 

As transgelin binds and bundles actin filaments and also increases the F- to G-actin ratio 

(Han et al., 2009), structure and amount of F-actin were next investigated by phalloidin 

staining. On the light microscopic level no differences regarding the structure of actin was 

detectable (Figure 3.23, A – D). Strong staining aside from glomeruli was visible in the 

brush border of the proximal tubules. Quantification of the mean phalloidin intensity within 

glomeruli revealed no differences between the different genotypes (Figure 3.23, E), with 

the exception of one control animal. 

 

Figure 3.23: Amount and structure of F-actin within glomeruli of 8-day old mice visualized by 

phalloidin staining of cryosections. [A – D] From left to right: Sm22 knock-out, podocyte-specific 

Lmx1b and Sm22 knock-out, double-KO mouse 1 and podocyte-specific Lmx1b knock-out. 

[E] Quantification of the mean phalloidin intensity per glomerulus of 10 glomeruli per mouse. 

Values are means ± SD. 

Taken together, no prominent differences of kidney physiology of most double knock-out 

mice compared to podocyte-specific Lmx1b knock-out mice were observed. Proteinuria and 

animal weight tended to be even a bit worse. But, on the other hand, there was one double 

knock-out animal which showed no sign of glomerular damage at all. The F-actin amount 

of whole glomeruli was not influenced by Lmx1b or Sm22 knock-out. 
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4. Discussion 

Nail-patella syndrome (NPS) is an autosomal-dominant hereditary disease, which incidence 

is frequently quoted as 1:50 000 (Bongers et al., 2002; Witzgall, 2017). The manifestation 

of the disease is heterogeneous, with skeletal, renal and ocular phenotypes. The renal 

phenotypes are most important for the prognosis of the patients. Around 40% of NPS 

patients suffer from renal symptoms (Witzgall, 2017), ranging from mild proteinuria and 

hematuria to end-stage renal disease (Sweeney et al., 2003). Mutations in a gene coding for 

the transcription factor LMX1B cause NPS (Dreyer et al., 1998; McIntosh et al., 1998; 

Vollrath et al., 1998). 

Within the kidney, LMX1B is exclusively expressed in both developing and mature 

podocytes (Morello and Lee, 2002). In order to understand the molecular mechanisms and 

pathways leading from a mutated LMX1B gene to podocyte and renal dysfunction, three 

different Lmx1b knock-out mouse models were generated so far. Conventional Lmx1b 

knock-out mice died at the day of birth and exhibited a thickened glomerular basement 

membrane and reduced amounts of podocin, Cd2ap and the3 and 4 chains of collagen 

IV (Chen et al., 1998; Miner et al., 2002; Morello et al., 2001). In contrast, there was no 

downregulation of those proteins in podocyte-specific Lmx1b knock-out mice, which died 

two weeks postnatally (Suleiman et al., 2007). In adult inducible podocyte-specific Lmx1b 

knock-out mice, the mRNA levels of Abra, Arl4c and Sm22 were upregulated. Binding of 

LMX1B to the promoter regions of ABRA and ARL4C was demonstrated, and Sm22 

upregulation in murine glomeruli was also shown on the protein level. Moreover, first hints 

of a dysregulation of the actin cytoskeleton were evident in the same study (Burghardt et 

al., 2013). In the present study, further analyses of Lmx1b regulated genes, the actin 

cytoskeleton and actin regulatory pathways were conducted to establish a molecular linkage 

between LMX1B mutations and renal symptoms of NPS patients. 

  



DISCUSSION 121 

 

 

4.1. Investigation of Lmx1b and Lmx1b target gene expression on 

the protein level 

As Lmx1b is a transcription factor, the identification of Lmx1b target genes is crucial for 

the discovery of the molecular pathways involved in renal dysfunction of NPS patients. 

Therefore, an inducible, podocyte-specific Lmx1b knock-out mouse line was used in a 

previous (Burghardt et al., 2013) and also in the present study (see chapter 1.8.2). In this 

mouse line Lmx1b knock-out is achieved by Cre/lox techniques, but although 

recombination of the floxed Lmx1b gene resulting in an in-frame deletion was already 

shown by PCR, it was so far unknown whether the homeodomain-lacking variant of Lmx1b 

is expressed on the protein level. 

Abra, Arl4c and transgelin were previously identified to be upregulated on the 

transcriptional level in murine glomeruli following Lmx1b knock-out (Burghardt et al., 

2013). Although binding of human LMX1B to FLAT elements upstream of ABRA and 

ARL4C could be shown (Burghardt et al., 2013), attempts to show an increased protein 

expression in murine podocytes via immunofluorescence staining failed (Stepanova, 2016). 

Hence, it was decided to investigate protein expression by western blotting using lysates 

from isolated and FACS sorted green fluorescent primary murine podocytes of quadruple 

transgenic mice (see chapter 3.1.2). 

4.1.1. Validation of full-length Lmx1b deletion 

The expression of endogenous Lmx1b protein (~42 kDA; see chapter 1.6) could be shown 

in wild-type and heterozygous, but not in homozygous Lmx1b knock-out podocytes (Figure 

3.3), confirming the successful deletion of full-length Lmx1b. The quantification of a low 

amount of Lmx1b in knock-out podocytes might rather be a consequence of uneven 

background than remaining, full-length protein. This result additionally proves the 

reliability of the green fluorescence following mTmG recombination as a marker of Lmx1b 

recombination. The observed double band pattern of the Lmx1b protein might represent 

two different phosphorylation states. The unexpected detection of an increased amount of 

Lmx1b in Lmx1b +/fl compared to Lmx1b +/+ podocytes might be explained by a negative 

feedback loop or a negative autoregulation of Lmx1b expression. Indeed, a cis-regulatory 

binding site of Lmx1b upstream of its gene was reported (Haro et al., 2017), although the 

authors argue for a positive autoregulation. 

4.1.2. Expression of homeodomain-lacking Lmx1b 

The homeodomain-lacking Lmx1b variant has a predicted molecular weight of ~29 kDa, 

and expression was indeed demonstrated in both Lmx1b +/fl and Lmx1b fl/fl, but not in 
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Lmx1b +/+ podocytes (Figure 3.3). This shows for the first time that the shortened variant 

lacking the homeodomain is still expressed. As there are no structural data, it is unclear 

whether the remaining domains of the shortened protein are correctly folded. Binding to 

DNA mediated by the homeodomain is certainly essential for Lmx1b to act as a 

transcription factor, but there might still be protein-protein interactions. Additionally, the 

C-terminal region of unknown function is also still present. This finding should be 

considered when comparing data of conventional Lmx1b knock-out mice with deletions of 

exons 3 - 7 (Chen et al., 1998) and transgene mice utilizing a the floxed Lmx1b construct 

with loxP sites flanking exons 4 – 6. 

4.1.3. Potential regulation of Abra expression by Lmx1b 

In case of the actin-regulating protein Abra (see chapter 1.7.1), a band with increased 

intensity in Lmx1b knock-out podocytes compared to wild-type podocytes was detected by 

the Abra antibody at around ~39 kDa (Figure 3.3). As the predicted molecular weight of 

Abra is slightly higher (~43 kDa) and the antibody produced also other unspecific bands, it 

is uncertain if the detected band represents Abra protein. Interestingly, the signal is 

increased following Lmx1b knock-out, which would be coincident with previous mRNA 

data. Abra was upregulated at the transcriptional level in glomeruli after Lmx1b knock-out, 

and binding of LMX1B to the promoter region could be shown (Burghardt et al., 2013). 

Additionally, Abra protein was detected in glomeruli by immunofluorescence staining of 

paraffin-embedded kidney sections of both Lmx1b +/+ and Lmx1b fl/fl mice, but the 

expression pattern of Abra in glomeruli did not resemble the typical podocyte pattern 

(Stepanova, 2016). With these data in mind there are two possibilities. Firstly, the detected 

bands correspond to Abra protein, and the expression of Abra in podocytes is repressively 

controlled by Lmx1b. Nevertheless, the resulting weak bands either indicate very low 

protein expression or low antibody affinity. Secondly, the detected bands do not represent 

Abra protein meaning that there is no Abra expression in podocytes but in other glomerular 

cells. Thus, upregulation of Abra expression could be a secondarily induced in endothelial 

or mesangial cells by an altered podocyte behavior, and Abra is not a target gene of Lmx1b. 

4.1.4. Arl4c expression is regulated by Lmx1b 

The small GTPase Arl4c (see chapter 1.7.2) could be confirmed as a target gene of Lmx1b 

(Figure 3.3). Expression of Arl4c in podocytes was not reported so far, but low expression 

in wild-type cells was detectable. Arl4c expression was 6-fold increased in Lmx1b fl/fl 

podocytes compared to Lmx1b +/+ podocytes. The observation of a slightly increased 

Arl4c expression in heterozygous knock-out podocytes isolated from mice without any 

renal phenotype further supports the theory of a direct regulation of Arl4c by Lmx1b. 

Binding of LMX1B to a FLAT element upstream of ARL4C was shown previously by ChIP 
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and gel shift experiments (Burghardt et al., 2013). In the case of Arl4c, Lmx1b acts as a 

transcriptional suppressor, which is in contrast to previous assumptions (Dreyer et al., 

2000; Haro et al., 2017; Morello et al., 2001). Different modulating (activating or 

suppressing) mechanisms of Lmx1b can be explained by different cofactors and interaction 

partners. Indeed, a synergistic effect of the transcription factors Lmx1b and FoxC was 

reported to enhance nphs2 promoter activity in zebrafish (He et al., 2014). On that basis, it 

is also imaginable that Lmx1b might inhibit other transcription factors by direct interaction 

or by blocking respective DNA-binding sites. 

4.1.5. Transgelin is expressed in Lmx1b knock-out podocytes 

Transgelin, an actin-binding protein mainly expressed in smooth muscle cells (see chapter 

1.7.3), was not expressed in healthy Lmx1b +/+ and Lmx1b +/fl podocytes, but a high 

expression was detected in Lmx1b fl/fl podocytes (Figure 3.3). Unlike Arl4c, transgelin 

expression is not increased in Lmx1b +/fl podocytes, hinting towards a secondary 

upregulation following podocyte damage. This observation is consistent with previous 

reports, which revealed high transgelin expression in human and rodent podocytes after 

glomerular damage (Marshall et al., 2011; Miao et al., 2009; Ogawa et al., 2007). 

Additionally, there is no FLAT element within 6 000 bp upstream of the SM22 gene 

(Burghardt et al., 2013). Taken together, transgelin expression seems to be a general 

response of podocytes to damage, independently of Lmx1b. Transgelin expression is 

controlled by mechanical tension (Liu et al., 2017) and podocytes at the exterior of 

capillaries are constantly exposed to mechanical tension. Therefore, changes of the 

podocyte morphology (e.g. foot process effacement), the actin cytoskeleton or the focal 

adhesions may potentially trigger transgelin expression. Transgelin expression could also 

be more directly related to Lmx1b knock-out. The Lmx1b regulated protein Abra is 

reported to activate the transcription factor SRF via actin polymerization and translocation 

of MRTF-A to the nucleus (Figure 1.11) (Kuwahara et al., 2005), and SRF is reported to 

activate transgelin expression (Li et al., 1997). On the other hand, Abra expression in 

podocytes remains uncertain, and changes of the actin cytoskeleton independent of Abra 

may also activate this pathway (Mack et al., 2001). SRF is an important transcription factor 

for proper podocyte function and structure (Guo et al., 2018).  
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4.2. Dysregulation of the actin cytoskeleton of primary Lmx1b-

deficient podocytes 

An intact regulation of the actin cytoskeleton is important for podocyte structure and 

function (Perico et al., 2016). Mutations in genes coding for several proteins interacting 

with actin or regulating actin dynamics are known to cause pathological renal phenotypes 

(Schell and Huber, 2017). Evidence of a dysregulated actin cytoskeleton in primary, 

Lmx1b-deficient podocytes was previously reported (Burghardt et al., 2013). Knock-out 

glomerular cells had an increased F-actin content visualized by phalloidin staining, beads 

attached to the cell surface moved significantly slower and cells spread slower after 

removal of the toxin cytochalasin D from the culture medium. This finally led to the 

assumption of a stiffer and less dynamic actin cytoskeleton in Lmx1b knock-out podocytes 

(Burghardt et al., 2013). 

This assumption was further investigated by several experiments with direct (F-actin 

staining) and indirect (shape and area of podocytes, random movement, cytochalasin D 

treatment) observation of the actin cytoskeleton. In comparison to the previous study 

(Burghardt et al., 2013), three experimental improvements were made described in the 

following. Firstly, the inducible, podocyte specific Lmx1b knock-out mouse line was 

crossed with the mTmG mouse line, allowing the exclusively investigation of podocytes 

with definite recombination and excision of the Lmx1b homeobox (see chapter 1.8.2). 

Secondly, all experiments were carried out with cells plated on laminin-521-coated 

substrates, which is a major glomerular basement membrane protein (Lennon et al., 2014a) 

and a ligand of the podocyte 31-integrin (Barczyk et al., 2010; Sterk et al., 1998). 

Finally, most experiments were carried out not only with steady state but also with 

spreading podocytes for a better understanding of the relevance of the findings in dynamic 

processes. 
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4.2.1. Dysregulations observed in untreated cells 

Steady state as well as spreading Lmx1b fl/fl primary podocytes had a significantly higher 

mean phalloidin staining intensity compared to Lmx1b +/+ podocytes (Figure 3.4), as 

illustrated in Figure 4.1. This result does not only confirm previous findings with 

glomerular cells (Burghardt et al., 2013), it also shows that the dysregulation is already 

present in spreading podocytes 40 min after plating, making the finding relevant for 

dynamic cellular processes like cell spreading and migration. Nevertheless, the spreading of 

untreated podocytes within the first 60 min after plating on laminin-coated dishes is not 

affected by Lmx1b knock-out (Figure 3.6). This is in agreement with previous spreading 

experiments with glomerular cells plated on gold electrodes, where the spreading rate was 

analyzed by impedance sensing (Burghardt et al., 2013). Additionally, Lmx1b knock-out 

did not alter the mean velocity of random moving primary podocytes (Figure 3.5). 

Although the amount of F-actin is significantly increased in primary induced Lmx1b fl/fl 

podocytes, this does not affect the cell spreading rate and random movement. As the 

leading edge movement is controlled by many proteins and processes, the dysregulation of 

the actin cytoskeleton is possibly not the rate-limiting step. 

 

Figure 4.1: Schematic view of adherent primary podocytes at different time points after 

plating on laminin-521-coated surfaces at a focal plane close to the growth surface. The 

scheme illustrates the cell area which is increased only in steady state knock-out podocytes, the 

increased roundness and circularity of Lmx1b knock-out podocytes already 60 min after replating 

and the increased F-actin content of both Lmx1b-deficient spreading and steady state podocytes. 
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Even though the spreading rate was not affected, the cell area of adherent primary Lmx1b 

knock-out podocytes was highly significant increased after overnight growth (Figure 3.6), 

but not while spreading, also illustrated in Figure 4.1. As detached cells are round, a greater 

volume of cells would result in a greater cellular area right after attachment to the growth 

surface. The observation of identical cell areas early after plating argues for identical cell 

sizes. Moreover, primary podocytes, which were FACS sorted after 7 days of glomerular 

outgrowth, showed similar forward scatter (FSC) histograms independent of Lmx1b knock-

out (data not shown). The forward scattered light is considered to be a measure of cell size 

(Herzenberg et al., 2002). This leads to the theory, that Lmx1b fl/fl knock-out does not 

affect the volume and spreading rate of untreated podocytes, whereas the endpoint of 

spreading is altered resulting in larger and flatter cells. 

Aside from the cell area, two parameters describing the cell morphology were measured, 

circularity and roundness. The circularity is a good measure for small protrusions extending 

from the cell body. The roundness, on the other hand, is more robust to protrusions and is 

rather influenced by the shape of the cell body itself. As expected, both parameters had 

equally high values early after plating (Figure 3.7), as cells are nearly perfectly round soon 

after attachment. But already 60 min after plating Lmx1b knock-out podocytes had elevated 

values compared to wild-type podocytes, and this difference was even more evident after 

overnight growth (Figure 4.1). The morphological changes further hint towards a 

dysregulation of the actin cytoskeleton, as the cellular shape and structure are defined by 

the cytoskeleton (Fletcher and Mullins, 2010). Furthermore, differences in the cellular 

shape are already detectable in late spreading podocytes, indicating that podocyte spreading 

is more evenly distributed in knock-out podocytes, while the spreading rate of wild-type 

podocytes is locally different. 

Summing up, the F-actin content, cell area, circularity, and roundness of murine primary 

podocytes were increased following on Lmx1b knock-out (Figure 4.1), whereas spreading 

and random movement are independent of Lmx1b. Since stress fiber, lamellipodia and 

filopodia formation are controlled by the Rho GTPases RhoA, Rac1 and Cdc42, 

respectively (Nobes and Hall, 1995; Ridley and Hall, 1992; Ridley et al., 1992), these 

results hint towards a dysregulation of those small GTPases. 

4.2.2. Dysregulation observed in cytochalasin D treated cells 

Treatment of primary podocytes with the toxin cytochalasin D resulted in cell shrinkage 

and accumulation of short F-actin bundles to spots near the nucleus and at the base of 

remaining cellular extensions (Figure 3.8). A multitude of small protrusions extended from 

the cell bodies, possibly because of remaining stable focal adhesions, which did not 

dissemble. The cytochalasin D induced shrinking rate was independent of Lmx1b knock-out 
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within two hours (Figure 3.9), and prolonged experiments indicated the same result for four 

hours (data not shown). The retraction of the cell membrane requires reorganization of the 

actin filaments (Cramer, 2013) and focal adhesion disassembly. This leads to the 

assumption that either depolymerization, severing and debranching of actin filaments is not 

influenced by Lmx1b knock-out, or another Lmx1b-independent step is rate-limiting. 

However, the spreading of Lmx1b knock-out podocytes after wash-out of cytochalasin D 

was significantly slower compared to wild-type podocytes (Figure 3.9), again hinting 

towards a dysregulation of the actin cytoskeleton. This result is in contrast to what was 

observed in cell spreading after replating experiments (Figure 3.6). This discrepancy can be 

explained by different initial conditions, as the cell states at the beginning of the 

experiments differ substantially. Cytochalasin D treated cells are adherent and exhibit 

remaining focal adhesions, possibly even within the small cell protrusions, while detached 

cells are not adherent and void of focal adhesions. Furthermore, the actin cytoskeleton is 

differently organized. While F-actin is accumulated to dense spots in cytochalasin D treated 

cells (Figure 3.8), the F-actin in spreading podocytes early after plating is organized as a 

belt between the nucleus and the cell edge (Figure 3.16). Interestingly, two hours after 

wash-out of cytochalasin D the actin cytoskeleton still shows an unusual F-actin pattern 

(Figure 3.8), with spots of dense F-actin and stress fibers extending from them. It seems 

like the initial F-actin rich spots, which are a result of the cytochalasin D treatment 

(Wakatsuki et al., 2001), remain and serve as starting points for stress fiber formation. 

However, it is unknown to what extent this observation affects cell spreading, as branched 

filaments and not stress fibers are responsible for generating the pushing force (Pollard and 

Cooper, 2009). Nevertheless, the accumulation of F-actin might also influence the cellular 

distribution of the G-actin pool and associated proteins, and therefore affect actin 

nucleation and branching at the leading edges. 

Taken together, there are several data demonstrating a dysregulation of the actin 

cytoskeleton in primary Lmx1b-deficient podocytes, but the exact nature of the 

dysregulation still remains unclear. The actin cytoskeleton is regulated by numerous 

different proteins fulfilling many different functions, like nucleation, branching, capping, 

severing, bundling, crosslinking and force generation (Figure 1.9) (Pollard, 2016). Each of 

the observed differences can be explained by dysregulation of more than one of these 

functions, for example spreading is dependent on nucleation and branching, but also on 

G-actin availability and actin turnover (Gardel et al., 2010). Therefore, the next aim was the 

identification of one or several dysregulated actin regulatory pathways causing these 

observations.  
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4.3. Influence of Lmx1b on actin-regulatory signaling pathways 

For a better understanding of the nature of the dysregulation of actin cytoskeleton following 

the excision of the Lmx1b homeobox, different signaling pathways controlling the actin 

cytoskeleton were analyzed within this study. The master regulators of the actin 

cytoskeleton are the Rho GTPases (see chapter 1.5.4) (Steffen et al., 2017), controlling 

many important actin-dependent functions like cell morphology, polarization, migration 

and adhesion (Heasman and Ridley, 2008). 

4.3.1. The activity of RhoA and Cdc42, but not Rac1, is influenced by Lmx1b 

The activities of the best studied Rho GTPases RhoA, Rac1 and Cdc42 were analyzed 

using lysates of freshly isolated glomeruli. A significantly decreased amount of GTP-bound 

RhoA and Cdc42 was detected in Lmx1b fl/fl glomeruli, while the activity of Rac1 was at 

the same level (Figure 3.10). RhoA is known to induce F-actin polymerization and stress 

fiber formation, and a reduced activity would result in less phalloidin staining, which is in 

contrast to what was observed in podocytes (Figure 4.2). On the other hand, reduction of 

Cdc42 activity was more prominent. The role of Cdc42 in stress fiber formation is 

controversial. The Cdc42 effector protein family PAK induces MLC activation and stress 

fiber formation in neuronal cells, while it inactivates MLC and dissembles stress fibers in 

fibroblasts, endothelial and epithelial cells via a distinct pathway (Rane and Minden, 2014). 

Additionally, the myotonic dystrophy kinase-related Cdc42-binding kinases (MRCKs), 

another protein family activated by Cdc42, are also reported to induce stress fiber formation 

via MLC phosphorylation (Zhao and Manser, 2015). On this basis, it is hard to estimate if a 

reduced activity of Cdc42 could contribute to increased stress fiber formation in podocytes 

(Figure 4.2). 

Active Cdc42 induces the generation of filopodia while depletion of Cdc42 abolishes 

filopodia generation (Nobes and Hall, 1995; Yang et al., 2006), and therefore the observed 

increased circularity and roundness of Lmx1b fl/fl podocytes may be a result of the reduced 

Cdc42 activity (Figure 4.2). Rho GTPases also impact cell spreading, more precisely, Rac1 

and Cdc42 enhance cell spreading, while RhoA counteracts cell spreading (Arthur and 

Burridge, 2001; Price et al., 1998). The reduced spreading rate of Lmx1b knock-out 

podocytes after removal of cytochalasin D might thus also be a consequence of the reduced 

Cdc42 activity (Figure 4.2). Moreover, podocyte-specific knock-out studies in mice 

revealed that RhoA and Rac1 are dispensable for a proper function, while Cdc42 knock-out 

resulted in severe proteinuria, foot process effacement and death (Blattner et al., 2013; 

Scott et al., 2012). This further underlines the relevance of the finding of reduced Cdc42 

activity. 



DISCUSSION 129 

 

 

The Lmx1b target gene Arl4c encodes for a small GTPase, which was reported to act 

upstream of Rho GTPases (see chapter 1.7.2). In IEC-6 cells, Arl4c overexpression 

increased epidermal growth factor (EGF) induced activation of Rac1, while RhoA activity 

was decreased. Moreover, depletion of Arl4c by siRNA abolished EGF induced Rac1 

activation and partly rescued RhoA activation (Matsumoto et al., 2014). In contrast, in a 

more recent study, it was shown that Arl4c interacts with filamin-A (FLNa) and activates 

Cdc42 and not Rac1 in HeLa cells (Chiang et al., 2017). The impact of Arl4c on Rho 

GTPase activity might be dependent on the cell type and in case of EGF treatment on 

additional, synergistically or antagonistically activated pathways. None of the studies 

examined the effect of constitutively active Arl4c on the activity of Rho GTPases. 

Therefore, the effect of Arl4c on Rho GTPases remains unclear in primary podocytes, and 

moreover it is unknown how the increased Arl4c expression in Lmx1b-deficient podocytes 

impacts Arl4c signaling, as downstream signaling pathways are dependent on Arl4c 

GTPase activation (Figure 4.2). 

Abra was also reported to influence GTPase activities (see chapter 1.7.1). Abra and RhoA 

synergistically induced actin polymerization and SRF activation, and inhibition of RhoA 

blocked Abra induced SRF activation. For that reason, it was assumed that Abra acts 

upstream of RhoA (Arai et al., 2002). Nevertheless, the precise mechanism remains 

unclear. RhoA activation by Abra does not seem to play an important role in primary 

Lmx1b knock-out podocytes, as RhoA activity was decreased in glomeruli, although Abra 

protein expression is possibly increased (see chapter 4.1.3). 

4.3.2. Increased MLC activity in Lmx1b-deficient hPCL 

Myosin-2 is an actin-binding motor protein and together with actin a main constituent of 

stress fibers (see chapter 1.5.3). The increased phalloidin staining of Lmx1b-deficient 

podocytes pointed towards a higher amount of stress fibers compared to controls. The 

activity of myosin-2 is controlled by phosphorylation of its subunit MLC (Umemoto et al., 

1989), and phosphorylation is controlled by a variety of kinases and phosphatases, many of 

them acting downstream of Rho GTPases (Newell-Litwa et al., 2015). 

There is a clear tendency of decreased phosphorylation of MLC in both proliferating and 

differentiated, spreading hPCL cells when de novo Lmx1b expression was induced (Figure 

3.11), although the data are only preliminary as the experiment was only done once. This 

result indicates that Lmx1b reduces MLC phosphorylation, and vice versa Lmx1b knock-

out in podocytes leads to increased phosphorylation of MLC and therefore, to an increased 

amount of stress fibers, which is consistent with the observation of increased phalloidin 

staining (Figure 4.2). 
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4.3.3. LIMK, but not ROCK, is part of a dysregulated pathway 

As the spreading of Lmx1b knock-out primary podocytes after the removal of 

cytochalasin D was decreased (Figure 3.9), this experiment was suitable to investigate 

different actin-dependent pathways. Cell spreading was analyzed in the presence of an 

inhibitor, and in case the inhibitor blocked the major pathway dysregulated by Lmx1b 

knock-out, the difference in the spreading was expected to be abolished. Following the 

assumption of a stiffer and less dynamic actin cytoskeleton in Lmx1b knock-out podocytes 

(Burghardt et al., 2013), a well-studied pathway controlling cofilin activity was 

investigated (Figure 1.10). Cofilin is an actin severing-protein and important for actin 

turnover and treadmilling (Kiuchi et al., 2007), and therefore is crucial for actin dynamics 

(see chapter 1.5.3). Cofilin is inactivated by phosphorylation via LIMK (Arber et al., 1998; 

Yang et al., 1998), and LIMK is activated by ROCK (Maekawa et al., 1999). 

In the presence of LIMKi 3, a specific inhibitor of LIMK1 and LIMK2, the spreading 

curves of knock-out and wild-type podocytes were reproducible at the same level (Figure 

3.13), arguing for a dysregulation of LIMK1/2 following Lmx1b knock-out. On the 

contrary, the specific ROCK1/2 inhibitor Y-27632 did not abolish the difference in the 

spreading rate. LIMK is not only phosphorylated and thereby activated by ROCK, but also 

by PAK (Edwards et al., 1999). While ROCK, in turn, is activated by RhoA (Nakagawa et 

al., 1996), PAK is an effector of Rac1 and Cdc42 (Edwards et al., 1999). Taken together, 

these results argue for a dysregulation of LIMK via PAK and not ROCK, indicating that 

Cdc42 rather than RhoA plays an important role in downstream signaling of Lmx1b and its 

target genes (Figure 4.2). 

Moreover, inhibition of LIMK, resulting in decreased phosphorylation of cofilin and 

thereby increased activity, reduced the spreading of wild-type podocytes compared to 

DMSO treated cells, albeit not significantly due to a limited number of experiments (Figure 

3.13). This was unexpected, as actin turnover by cofilin is important for replenishing the G-

actin pool and therefore, spreading (Pollard and Borisy, 2003). This finding also contradicts 

the assumption that the reduced spreading of Lmx1b knock-out podocytes is a result of 

decreased actin cytoskeleton dynamics in podocytes, as this assumption implies that 

increased actin turnover leads to increased spreading. 
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4.3.4. Signaling relations of investigated proteins 

The observed dysregulations following the inactivation of Lmx1b in mature podocytes are 

summarized in Figure 4.2 and are put into context of known signaling pathways. Green 

lines mark relationships that are consistent with the presented data, while red lines depict 

relations that are not coincident with observations made. Gray lines link observations where 

contrary or unspecified signaling connections were reported in the literature. 

Nearly all actin-related dysregulations found in this thesis can be explained by the reduced 

Cdc42 activity in Lmx1b knock-out podocytes, but not by decreased RhoA activity. 

Moreover, podocyte-specific Cdc42 null mice suffer from renal defects, while podocyte-

specific RhoA-deficient mice are healthy (Scott et al., 2012), underlining the importance of 

this finding. The reduced activity of RhoA may potentially be a response of the cell to 

counteract the reduction of Cdc42 activity, as both GTPases have often contrary effects on 

the actin cytoskeleton. But still, it has to be considered that GTPase activity data accord to 

glomeruli with potential side effects of endothelial and mesangial cells, as FACS sorting 

was not an option as the enzymatic detachment and sorting procedure would impact 

GTPase activity. There is a recent report of re-differentiation of primary outgrown 

podocytes back to a more physiological state under specific conditions (Yaoita et al., 2018). 

This opens up the possibility of FACS sorting primary outgrown podocytes with 

subsequent re-differentiation and GTPase analysis. 
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Figure 4.2: Schematic overview of the observations made regarding the condition of the actin 

cytoskeleton and its regulation. These observations are put into context of known signaling 

pathways, ranging from Lmx1b target genes to the actin cytoskeleton. Green lines show 

relationships, where the data are in agreement with reported signaling pathways. Red lines depict, 

on the other hand, relationships where the data cannot be explained by reported signaling pathways, 

and grey lines mark existing relations of unknown nature. Transgelin, Arl4c and possibly Abra are 

upregulated after Lmx1b knock-out in podocytes. Arl4c, in turn, is reported to influence the 

GTPases RhoA, Rac1 and Cdc42, but reports are contrary. The activity of the Rho GTPases RhoA 

and Cdc42, which are key regulators of the actin cytoskeleton, was found to be decreased in 

glomerular Lmx1b knock-out lysates. According to the literature, decreased RhoA activity should 

lead to decreased MLC phosphorylation, stress fiber formation and spreading (after cytochalasin D 

wash-out), but the opposite was observed. Moreover, ROCK, a direct effector of RhoA, does not 

seem to be dysregulated in knock-out cells. Decreased Cdc42 activity, on the other hand, can 

readily explain the decreased spreading and the increased circularity and roundness of podocytes. 

Additionally, the dysregulation of LIMK can be explained by decreased Cdc42 activity. Reports of 

the impact of Cdc42 on the phosphorylation of MLC are contrary.  
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4.4. Influence of Lmx1b on focal adhesions 

Focal adhesions are aggregates of a multitude of proteins anchoring cells and the actin 

cytoskeleton to the extracellular matrix (see chapter 1.4.3). The most important proteins of 

focal adhesions are the integrin family of heterodimeric transmembrane proteins. Proper 

adhesion of podocytes is essential for regular blood filtration at the glomerular filtration 

barrier (Pozzi et al., 2008; Sachs et al., 2006). A loss of adhesion strength potentially 

results in podocyte detachment and loss, as the cell body itself is floating in the primary 

urine (Kriz et al., 2013). Focal adhesions are tightly connected with the actin cytoskeleton 

(Faul et al., 2007). Moreover, glomerular cells isolated from Lmx1b knock-out mice 

adhered stronger to laminin-111 (Burghardt et al., 2013), and the turnover of -acintin-1 

and actin was reduced at focal adhesions measured by FRAP (Stepanova, 2016). This made 

focal adhesions to an interesting target of investigation within the present work. The 31-

integrin is the highest abundant and most important integrin in podocytes (Sachs and 

Sonnenberg, 2013; Sterk et al., 1998) and a selective laminin receptor (Nishiuchi et al., 

2003). For this reason, the activity of integrin was analyzed with the help of the 9EG7 

antibody selective for active 1-integrin (Lenter et al., 1993). 

Immunofluorescence staining of adherent spreading and steady state primary podocytes 

visualized by confocal microscopy revealed no difference in the amount of active 1-

integrin compared to control (Figure 3.14). Additionally, there was no abnormal pattern of 

focal adhesion localization. This is coincident with the observation of equal focal adhesion 

to cell area ratios visualized by paxillin staining (Burghardt et al., 2013). 

The integrin activity was further analyzed by flow cytometry with increased cell numbers, 

and a slight increase in 1-integrin activation of Lmx1b-deficient cells was identified 

(Figure 3.15). The amount of total 1-integrin remained unchanged, further arguing for a 

constant amount and structure of focal adhesions. The slightly increased activity in knock-

out cells is consistent with the previously reported increased adhesion to laminin-111 

(Burghardt et al., 2013). A part of the podocytes did not show recombination of Lmx1b 

despite doxycycline treatment. Those and other glomerular cells exhibited 1-integrin 

activity independent of doxycycline-induced renal damage (Figure 3.15). This leads to the 

assumption that rather intracellular signaling pathways following Lmx1b knock-out cause 

increased 1-integrin activity than extracellular stimuli like an altered extracellular matrix 

composition or structure. 
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Taken together, a slightly increased activation of 1-integrin could be detected in Lmx1b-

deficient podocytes, probably resulting in increased adhesion, while the amount and 

localization of focal adhesions remained unchanged. Actin is regulated downstream of 

integrin (Lawson and Burridge, 2014), but may also indirectly influence integrin activity 

via mechanical tension (Friedland et al., 2009). 

4.5. Effect of Sm22 deletion on Lmx1b knock-out podocytes and 

mice 

Transgelin, encoded by the gene Sm22, is highly expressed in Lmx1b-deficient podocytes, 

but not in wild-type control cells (Figure 3.3). Although it is unlikely that Sm22 is directly 

regulated by Lmx1b (see chapter 4.1.5), transgelin remained an interesting target of 

investigation as it associates with the actin cytoskeleton (Han et al., 2009) and may have a 

negative effect on the progression of renal symptoms (Marshall et al., 2011). For these 

reasons the localization of transgelin in primary outgrown podocytes was initially analyzed. 

4.5.1. Transgelin colocalizes with actin in steady state podocytes 

Surprisingly, transgelin was not only expressed in Lmx1b knock-out podocytes but also in 

wild-type controls, although to a lower extent (Figure 3.17). On the other hand it is known 

that outgrown podocytes do not assemble foot processes or slit diaphragms, and moreover 

lose expression of diverse podocyte-specific proteins, including Lmx1b (unpublished data). 

Therefore, de novo transgelin expression in outgrown podocytes may have various reasons, 

including Lmx1b depletion upon dedifferentiation or altered mechanical tension (Liu et al., 

2017). Transgelin colocalized with actin in steady state podocytes at stress fibers and at the 

cell cortex (Figure 3.16). A strong association with actin stress fibers was previously 

reported (Shapland et al., 1993). Interestingly, there was no colocalization with actin in 

spreading podocytes, indicating that the increased amount of actin fibers (Figure 3.4) in 

spreading podocytes does not result from the actin bundling activity of transgelin. 

Taken together, the significantly increased amount of transgelin and its localization to the 

actin cytoskeleton in steady state podocytes raises the possibility of an involvement of 

transgelin in actin dysregulation of Lmx1b-deficient podocytes, although its localization in 

spreading podocytes questions such an involvement in dynamic processes. 
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4.5.2. Survival and proteinuria of Sm22 / Lmx1b double knock-out mice 

To further elucidate the effect of transgelin on the progression of renal symptoms of NPS 

patients, a mouse line with podocyte-specific Lmx1b knock-out as well as global Sm22 

knock-out was created. As the podocyte-specific knock-out of Lmx1b in mice leads to early 

death at the age of two weeks (Suleiman et al., 2007), while deletion of Sm22 results in no 

abnormal phenotype (Kühbandner et al., 2000), those double knock-out mice were firstly 

analyzed in terms of survival and proteinuria. 

Consistent with previous reports, Sm22-deficient mice were phenotypically normal, while 

most P2.5 Cre +, Lmx1b fl/fl control mice developed proteinuria early in life and died at 

around two weeks (Figure 3.18). Interestingly, there was the exception of two podocyte-

specific Lmx1b knock-out mice which showed no proteinuria 4 days postnatally, resulting 

in a prolonged lifetime. Similar observations were made when Sm22 was additionally 

deleted. There was one population of mice with early onset of proteinuria and death, while 

the onset of proteinuria and death was delayed in another population. This high variance 

within experimental groups indicates that the prolonged lifetime is caused by additional 

genetic variances. Indeed, mice were of mixed C57BL/6 / 129/Sv genetic background, and 

influence of the genetic background on the severity of renal damage is reported in the 

literature (Lu et al., 2012; Sasaki et al., 2015). Nevertheless, there was a markedly 

increased percentage of double knock-out mice with prolonged survival compared to 

podocyte-specific Lmx1b knock-out mice. 

4.5.3. Effect of Sm22 deletion on Lmx1b knock-out kidney physiology 

As additional Sm22 knock-out led to an increased percentage of mice with prolonged 

lifetime (see chapter 4.5.2) and Sm22 was identified to be detrimental in a model of 

crescentic glomerulonephritis (Marshall et al., 2011), Sm22 / Lmx1b double knock-out mice 

were further investigated regarding proteinuria, body weight, kidney histology and 

ultrastructure at the age of 8-days. 

At first, the expression of transgelin in podocyte-specific Lmx1b knock-out podocytes was 

confirmed (Figure 3.20), which was abolished by additional Sm22 knock-out (Kühbandner 

et al., 2000). Interestingly, the expression pattern of podocin in both Lmx1b-deficient and 

double knock-out podocytes was altered compared to Sm22 -/- controls 8 days postnatally 

(Figure 3.20). This is in contrast to a previous report of comparable podocin expression 

11 days postnatally (Suleiman et al., 2007), but may result from different genetic 

backgrounds, as the previous study used C57BL/6 mice. 
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Again, there was a great discrepancy of renal function within the Lmx1b and Sm22 double 

knock-out group, but this time not in the podocyte-specific Lmx1b knock-out group (Figure 

3.19). Except of one animal, all other double knock-out and Lmx1b knock-out mice 

exhibited strong proteinuria. This is consistent with the initial experiment, where also less 

podocyte-specific Lmx1b knock-out mice showed the phenomenon of delayed onset of 

proteinuria (Figure 3.18). The proteinuria of mice with combined Sm22 and podocyte-

specific Lmx1b knock-out tended to be stronger, while the body weight of some individuals 

was reduced compared to podocyte-specific Lmx1b knock-out animals (Figure 3.19). 

No differences regarding the histology could be demonstrated, as dilated tubules and 

eosinophilic casts were present to comparable amounts in both genotypes (Figure 3.21). 

Electron microscopy led to the identification of GBM splitting found in both genotypes 

(Figure 3.22), which is characteristic for Alport syndrome (see chapter 1.4.2). Alport 

syndrome is caused by mutations of either 3, 4 or 5 chains of collagen type IV (Miner, 

2012), but the observed splitting is not limited to this disease (Craver et al., 2014). 

Furthermore, the density of filtration slits was drastically reduced in animals exhibiting 

proteinuria, but again no difference between animals with or without additional Sm22 

knock-out was detected (Figure 3.19). 

Phalloidin staining of frozen kidney sections revealed similar mean glomerular phalloidin 

intensities (Figure 3.23), but potential differences within podocytes might be masked by 

other glomerular cells. 

Taken together, the additional knock-out of Sm22 tended to worsen the disease progression 

in terms of proteinuria and body weight within the population of mice with early onset of 

proteinuria. This is at first glance in conflict with a previous report (Marshall et al., 2011). 

But although Marshall et al. reported detrimental effects of transgelin in a model of 

crescentic glomerulonephritis, the proteinuria of Sm22 -/- mice was also significantly 

increased early after disease induction, arguing for a beneficial effect of transgelin on the 

actin cytoskeleton of podocytes. In the later progression of the disease, transgelin had 

detrimental effects possibly via impairment of proliferation pathways (Marshall et al., 

2011). This leads to the hypothesis that transgelin is beneficial for individual podocytes via 

its action on the actin cytoskeleton at an early stage, but has also detrimental effects on 

proliferation and repopulation of the glomerular basement membrane at a later stage. 
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5. Summary 

Mutations of LMX1B lead to the hereditary disease NPS, which is associated with renal 

symptoms (Witzgall, 2017). Within the kidney, the transcription factor LMX1B is 

exclusively expressed in podocytes and plays an essential role in the maturation and 

maintenance of the cell. Previous studies revealed not only the putative Lmx1b target genes 

Abra, Arl4c and Sm22, but also evidence of an impact of Lmx1b on the regulation of the 

podocyte actin cytoskeleton and focal adhesions (Burghardt et al., 2013; Stepanova, 2016). 

Therefore, the main purpose of the present work was to identify and investigate pathways 

linking Lmx1b and its target genes to the actin cytoskeleton and focal adhesions and to 

clarify the nature of actin and focal adhesion dysregulation in disease. 

By the use of an inducible podocyte-specific Lmx1b knock-out mouse line with an mTmG 

reporter construct, knock-out of Lmx1b could be induced at a desired time point in 

podocytes of mature mice, and those podocytes could be separated from other glomerular 

cells. Analysis of the protein expression in podocytes by western blotting confirmed an 

increased expression of Arl4c and transgelin following Lmx1b knock-out. While Arl4c is 

most likely a direct target of Lmx1b, transgelin expression seems to be a general response 

to podocyte damage (Marshall et al., 2011). The expression of Abra in wild-type or knock-

out podocytes could not be confirmed free of doubt. 

Primary murine podocytes were used to clarify the impact of Lmx1b on the actin 

cytoskeleton. To better resemble the physiological conditions, cells were plated on 

laminin-521 in all of those experiments. As some effects of Lmx1b knock-out might only be 

visible during cell stress and not in the steady state, many experiments were performed with 

both spreading and also full-grown, steady state podocytes. 

The knock-out of Lmx1b led to an increased F-actin staining in both spreading and steady 

state podocytes. Moreover, the circularity and roundness in the late phase of spreading and 

also at steady state were increased. The cell area of spreading podocytes and also the cell 

size measured by forward light scatter in FACS experiments was independent of Lmx1b 

knock-out, but the cell area of Lmx1b-deficient steady state podocytes was markedly 

increased. Thus, primary Lmx1b knock-out podocytes are flatter and rounder and contain 

more actin fibers.  

Untreated podocytes revealed similar random movement velocities and spreading rates 

independent of Lmx1b expression. Treatment of podocytes with cytochalasin D induced 

cell shrinkage at similar rates and accumulation of short actin fibers at spots near the 

nucleus and at the base of small cell extensions. Removal of cytochalasin D, in turn, led to 
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cell spreading, which was reduced in the absence of Lmx1b. The cytoskeleton remained 

atypically organized two hours after wash-out of cytochalasin D in knock-out cells as well 

as wild-type controls. The different observations of cell spreading with or without prior 

cytochalasin D treatment can be explained by different initial states of the actin 

cytoskeleton and focal adhesions at the beginning of the experiment. Thus, only some 

actin-dependent dynamic processes are influenced by Lmx1b and its target genes. 

As the impact of Lmx1b on the actin cytoskeleton was obvious, one of the main goals was 

to identify the signaling pathways involved. Therefore, two different strategies were carried 

out. One possibility was to examine the activities of proteins involved in signaling 

cascades. This was achieved either by specific binding of activated proteins to effectors or 

by analyzing the amount of phosphorylation utilizing specific antibodies. The other 

possibility was the investigation of the podocyte spreading after the removal of 

cytochalasin D in the presence of inhibitors blocking specific signaling proteins. In case the 

inhibitor would block a dysregulated protein, the spreading curves of knock-out and wild-

type podocytes were expected to converge. 

The Rho GTPases are key actin regulators (Sadok and Marshall, 2014) and therefore, were 

subject of investigation. The activity of RhoA and Cdc42 was significantly reduced in 

glomerular lysates of podocyte-specific Lmx1b knock-out mice, while the activity of Rac1 

was equal to controls. Additionally, the phosphorylation of the myosin light chain and 

thereby activation of myosin-2 was decreased after de novo expression of LMX1B in a 

human podocyte cell line (hPCL). By the use of inhibitors in spreading experiments, LIMK 

but not ROCK could be identified to be dysregulated in primary murine Lmx1b knock-out 

podocytes. Many of the actin cytoskeleton related dysregulations of podocytes can be 

explained by the reduced activity of Cdc42, but not RhoA, including increased circularity 

and roundness, decreased spreading after removal of cytochalasin D and the dysregulation 

of LIMK. Nevertheless, further investigation of the Cdc42 pathway is required to prove this 

connection. 

As Lmx1b knock-out podocytes revealed increased adhesion to laminin-111 (Burghardt et 

al., 2013), the potential role of focal adhesions downstream of Lmx1b was investigated. 

Moreover, outside-in signaling at focal adhesions impacts the actin cytoskeleton. Focal 

adhesions are accumulations of a multitude of proteins, which anchor cells to the 

extracellular matrix and establish a mechanical as well as a signaling link to the actin 

cytoskeleton. Transmembrane integrins are the most important proteins within focal 

adhesions, and 31-integrin is the most abundant integrin in podocytes (Sachs and 

Sonnenberg, 2013). 
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Staining with an antibody specific for active 1-integrin revealed no differences between 

Lmx1b knock-out and wild-type control podocytes by confocal microscopy. On the other 

hand, a slightly increased activation of 1-integrin in knock-out podocytes was detectable 

by flow cytometry. The amount of total 1-integrin in podocytes and also the activity of 

1-integrin in other glomerular cells remained unchanged, thus indicating primary 

intracellular rather than secondary extracellular causes for increased 1-integrin activation 

in podocytes. Further investigations regarding the pathway of increased integrin activation 

are of interest, for instance, talin or kindlin-2 expression and localization (Askari et al., 

2009) as well as measurement of the mechanical tension at focal adhesions with FRET-

based biosensors (Grashoff et al., 2010). 

Transgelin is an actin-binding protein previously shown to be highly expressed in Lmx1b-

deficient podocytes, but not in wild-type controls. Transgelin is localized to the cell cortex 

in both spreading and steady state podocytes, but colocalization with actin bundles was 

only observed in steady state podocytes. Surprisingly, podocyte outgrowth led to transgelin 

expression in wild-type controls, although to a lower extent when compared to steady state 

Lmx1b knock-out podocytes. To address the impact of de novo transgelin expression on the 

podocyte and on renal health, a double Sm22 and Lmx1b (podocyte-specific) knock-out 

mouse line was created. Investigation of the survival and proteinuria of those mice revealed 

a strong dependence on the genetic background, but also an increased percentage of mice 

with prolonged lifetime and delayed onset of proteinuria compared to podocyte-specific 

Lmx1b knock-out control mice. A deeper analysis of double knock-out mice 8 days 

postnatally, on the other hand, demonstrated worse proteinuria of most mice, except for one 

animal without any pathological phenotype. No influence of additional Sm22 knock-out on 

kidney histology, kidney ultrastructure, filtration slit density and glomerular phalloidin 

staining could be revealed. The body weight of some, but not all, double knock-out mice 

was reduced compared to controls. Supported by a previous report (Marshall et al., 2011), 

this led to the assumption of beneficial aspects of transgelin expression in early podocyte 

damage and detrimental effects in the later disease progression. 
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7. List of abbreviations 

In general, abbreviations of proteins and genes of human origin are written in capital letters, 

while murine genes and proteins start with a capital letter. Genes are moreover written in 

italics. 

 

A 
A Absorbance 

aa Amino acid 

ABD Actin-binding domain 

ABLIM Actin-binding LIM protein 

Abra Actin-binding Rho-activating 

ACTN -actinin 

ADCK AarF domain containing 

kinase 

ADF Actin-depolymerizing factor 

ADP Adenosine -5'-diphosphate 

ANLN Anillin actin-binding protein 

aPKC Atypical protein kinase C 

APS Ammonium persulfate 

Arf ADP-ribosylation factor 

ARHGAP Rho GTPase activating 

protein 

ARHGDIA Rho GDP dissociation 

inhibitor alpha 

Arl4c Arf-like 4c 

Arl7 Arf-like 7 

Synonym: Arl4c 

ARNO Arf nucleotide-binding site 

opener 

ARP Actin-related protein 

ARPC Actin-related protein 

complex 

ATP Adenosine-5'-triphosphate 

 

B 
B Barbed end 

 Mass concentration 

-T -tail domain 

bp Base pairs 

BS Bowman space 

BSA Bovine serum albumin 

  

C 
CaCl2 Calcium chloride 

CaM Calmodulin 

CaMKII Ca
2+

/calmodulin-dependent 

protein kinase 

CapZ Capping protein (actin 

filament) muscle Z-line 

CASK Calcium/calmodulin-

dependent serine protein 

kinase 

CBP CREB-binding protein 

CD151 Cluster of differentiation 151 

CD2AP CD2 associated protein 

Cdc42 Cell division cycle 42 

CFH Complement factor H 

CH Calponin homology 

CL Capillary lumen 

CLIK Calponin like module 

CNBr Cyanogen bromide 

CO2 Carbon dioxide 

COL4 Collagen type IV 

COQ2 Coenzyme Q2, 

polyprenyltransferase 

COQ6 Coenzyme Q6, 

monooxygenase 

CRB2 crumbs 2, cell polarity 

complex component 

Cyto D Cytochalasin D 
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D 
DABCO 1,4 Diazabicyclo[2.2.2]octan 

DAPI 4’,6-Diamidin-2-phenylindol 

dd Double distilled 

DGKE diacylglycerol kinase epsilon 

DMEM Dulbecco’s modified eagle 

medium 

DMSO Dimethylsulfoxide 

DNA Deoxyribonucleic acid 

dNTP Deoxynucleotide 

triphosphate 

DOCK1 dedicator of cytokinesis 1 

Dox Doxycycline 

DSTN Destrin 

Synonym: ADF 

 

E 

 Extinction coefficient 

E1-4 Epidermal growth factor 

modules 1-4 

EC Endothelial cells 

ECM Extracellular matrix 

EDTA Ethylenediaminetetraacetic 

acid 

EGF Epidermal growth factor 

EGFP Enhanced green fluorescent 

protein 

ELC Essential light chain 

ELMO Engulfment and cell motility 

EMP Epithelial membrane protein  

ER Estrogen receptor  

ERR Estrogen-related receptor 

alpha 

et al. latin: et alia 

and others 

etc. latin et ceterea 

and so on 

EtOH Ethanol 

  

  

  

  

F 
FACS Fluorescence assisted cell 

sorting 

F-actin Filamentous actin 

FAK Focal adhesion kinase 

FAT1 FAT atypical cadherin 1 

FC Flow cytometry 

FCS Fetal calf serum 

FDG6 FYVE, RhoGEF and PH 

domain-containing 6 

FH Formin homology 

FLAT FAR linked AT-rich 

FLNa Filamin-A 

floxed / fl Flanked by loxP 

FOV Field of view 

FP Foot processes 

FPE Foot process effacement 

FRAP Fluorescence recovery after 

photobleaching 

FSC Forward scatter 

FSGS Focal segmental 

glomerulosclerosis 

 

G 
G-actin Globular actin 

GAP GTPase activating protein 

Gapdh Glyceraldehyde 3-phosphate 

dehydrogenase 

GBM Glomerular basement 

membrane 

Gdf Growth differentiation factor  

GDI Guanine nucleotide 

dissociation inhibitor 

GDP Guanosine-5'-diphosphate 

GEF Guanine nucleotide exchange 

factor 

GFB Glomerular filtration barrier 

GKLF Gut-enriched Krüppel-like 

factor 

Glepp glomerular epithelial protein 

GPCR G-protein coupled receptor 

GTP Guanosine-5'-triphosphate 
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H 
h Human (homo sapiens) 

H2O Water 

HA Human influenza 

hemagglutinin 

HBSS Hanks’ balanced salt solution 

HCl Hydrogen chloride 

hCMV Human cytomegalovirus 

HEPES 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid 

hPCL Human podocyte cell line 

HRP Horseradish peroxidase 

HSPG Heparan sulfate proteoglycan 

Hyb Hybrid domain 

  

I 
-i -inhibitor 

IF (Cryo/P) Immunofluorescence 

(cryosections/paraffin) 

IL Interleukin 

ILK Integrin linked kinase 

INF2 Inverted formin 2 

IPTG Isopropyl--D-1-

thiogalactopyranoside 

IQGAP IQ motif containing GTPase 

activating protein 

ITGA integrin alpha 

ITS Insulin-transferrin-selenium 

IB Inhibitor of kappa B 

 

J 
JAM4 Junctional cell adhesion 

molecule 4 

 

K 
KANK KN motif and ankyrin repeat 

KCl Potassium chloride 

KD Dissociation constant 

KH2PO4 Potassium dihydrogen 

phosphate 

KO knock-out 

L 
l Length 

LAMB2 Laminin, beta 2 

LB Lysogeny broth 

LC-1 Luciferase-Cre-1 

LIMK LIM domain-containing 

protein kinase 

LMX1A LIM homeobox transcription 

factor 1 alpha 

LMX1B LIM homeobox transcription 

factor 1 beta 

LPA Lysophosphatidic acid 

  

M 
m Murine (mus musculus) 

MAGI Membrane-associated 

guanylate kinase, WW and 

PDZ domain-containing 

protein 

MAPK Mitogen-activated protein 

kinase 

MC Mesangial cells 

mDia1 Diaphanous-related formin 1 

MEF2 Myocyte enhancer factor 2 

mG Membrane-targeted EGFP 

MgCl2 Magnesium chloride 

MLC Myosin light chain 

MLCK Myosin light chain kinase 

MLCP Myosin light chain 

phosphatase 

MRCK Myotonic dystrophy kinase-

related Cdc42-binding kinase 

MRTF-A Myocardin-related 

transcription factor-A 

Ms1 Myocyte stress-1 

Synonym: Abra 

mT Membrane-targeted 

tdTomato 

MTTL1 Mitochondrially encoded 

TRNA leucine 1 

MYH9 Myosin heavy chain 9 

MYO1E Myosin IE 
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N 
n. s. Not significant 

Na2HPO4 Disodium hydrogen 

phosphate 

Na3C3H5(COO)3 Trisodium citrate 

NaAc Sodium acetate 

NaCl Sodium chloride 

NaHCO3 Sodium hydrogen 

carbonate 

NaOH Sodium hydroxide 

NCK Non-catalytic region of 

tyrosine kinase adaptor 

protein 

NF-B Nuclear factor kappa-

light-chain-enhancer of 

activated B-cells 

NiSO4 Nickel sulfate 

NPF Nucleation promoting 

factor 

NPHS2 Nephrosis 2, idiopathic, 

steroid-resistant (Podocin) 

NPS Nail-patella syndrome 

NUP Nucleoporin 

N-Wasp Neural Wiskott-Aldrich 

syndrome protein 

 

O 
o/n Over night 

OD Optical density 

 

P 
P Pointed end 

p- Plasmid- 

Phospho- 

pA Polyadenylation sequence 

PAGE Polyacrylamide gel 

electrophoresis 

PAK p21-associated kinase 

Par6 Partitioning defective 6 

homolog 

PBS Phosphate buffered saline 

PBS
++

 Phosphate buffered saline, 

supplemented with Mg
2+

 and 

Ca
2+

 

pCA Cytomegalovirus enhancer 

PCR Polymerase chain reaction 

PDSS2 Decaprenyl diphosphatase 

synthase subunit 2 

PEI Polyethylenimine 

PFA Paraformaldehyde 

PI Propidium iodide 

PINCH Particulary interesting new 

cysteine-histidine-rich protein 

PKC Protein kinase C delta type 

PLCE1 Phospholipase C epsilon 1 

PMSF Phenylmethane sulfonyl 

fluoride 

Psi Plexin-semaphorin-integrin 

PTB Phosphotyrosine binding  

PTPRO Protein tyrosine phosphatase, 

receptor type O 

PVA Poly(vinyl alcohol) 

PVDF Polyvinylidene fluoride 

 

R 
r Rat (rattus norvegicus) 

Rac Ras-related C3 botulinum toxin 

substrate 

Rac Ras-related C3 botulinum toxin 

substrate 

Rho Ras homology 

RLC Regulatory light chain 

RNA 

   m- 

   mi- 

   si- 

Ribonucleic acid 

   messenger 

   micro 

   small interfering 

Robo2 Roundabout guidance receptor 

2 

ROCK Rho kinase 

RT Room temperature 

RTK Receptor tyrosine kinase 

rtTA Reverse tetracycline-controlled 

transcriptional transactivator 
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S 
SCARB2 Scavenger receptor class B 

member 2 

SD Slit diaphragm 

standard derivation 

SDS Sodium dodecyl sulfate 

SEM Scanning electron 

microscopy 

Sm22 Smooth muscle 22 

Synonym: transgelin 

Smad3 Mothers against 

decapentaplegic homolog 3 

SMARCAL

1 

SWI/SNF related, matrix 

associated, actin dependent 

regulator of chromatin, 

subfamily A like 1 

SRF Serum response factor 

SSH Slingshot phosphatase 

STARS Striated muscle activator of 

Rho signaling 

Synonym: Abra 

SV40 Simian virus 40 

SYNPO Synaptopodin 

 

T 
TAE Tris, acetic acid, EDTA 

TBS Tris buffered saline 

TBS-T Tris buffered saline, 

supplemented with 0.1 % 

Tween 20 

Tcf4 Ets1/T-cell factor 4 

tdtomato Tandem dimer tomato protein 

TE Tris-EDTA 

TEM Transmission electron 

microscopy 

TEMED Tetramethylethylenediamine 

TetO Tet operon 

TG Transgene 

TGF- Transforming growth factor  

Tris base Tris(hydroxymethyl)aminom

ethane 

 

TRPC6 Transient receptor potential 

cation channel subfamily C 

member 3 

 

U 
uPAR Urokinase-type plasminogen 

activator receptor 

UTR untranslated region 

  

V 
V Volume 

VEGF Vascular endothelial growth 

factor 

VSMC Vascular smooth muscle cells 

 

W 
WASP Wiskott-Aldrich syndrome 

protein 

WAVE WASP-family verprolin 

homologous protein 

WB Western blot 

WDR73 WD repeat domain 73 

Wnt Wingless-type MMTV 

integration site family 

WT Wild-type 

WT1 Wilms tumor 1 

 

X 
XPO5 Exportin 5 

 

Z 
ZO-1 Zonula occludens-1 
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8. Appendix 

Appendix 8.1: ImageJ macro for measuring mean phalloidin intensity within an outlined 

glomerulus. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

title = getTitle(); 

run("Set Measurements...", "area mean limit display redirect=None decimal=0"); 

run("Stack to Images"); 

selectWindow("Ch2-T3"); 

rename("Intensity - "+title+""); 

run("Subtract Background...", "rolling=500"); 

run("Grays"); 

setTool("polygon"); 

waitForUser("Outline Glomerulus"); 

run("Measure"); 

run("Add Selection..."); 

selectWindow("ChS1-T2"); 

rename("Area - "+title+""); 

run("Enhance Contrast...", "saturated=0.01 normalize"); 

run("Restore Selection"); 

run("Add Selection..."); 

run("Images to Stack", "name=+title+ title=[] use"); 

run("Grays"); 

saveAs("Tiff", "[Path]/"+title+""); 

close(); 
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Appendix 8.2: ImageJ macro for parallel quantification of mean phalloidin and mean transgelin 

intensities within green fluorescent podocytes 

1 

2 

3 

 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

title = getTitle(); 

run("Options...", "iterations=1 count=1 black"); 

run("Set Measurements...", "area mean modal min limit display scientific redirect=None 

decimal=0"); 

run("Input/Output...", "jpeg=85 gif=-1 file=.tsv use_file copy_row save_column save_row"); 

run("Stack to Images"); 

selectWindow("Ch1-T1"); 

close(); 

selectWindow("ChS1-T2"); 

rename("Area - "+title+""); 

run("Find Edges"); 

run("Median...", "radius=3"); 

run("8-bit"); 

run("Auto Threshold", "method=Triangle white"); 

run("EDM Binary Operations", "iterations=2 operation=open"); 

run("EDM Binary Operations", "iterations=5 operation=close"); 

run("Analyze Particles...", "size=1000-Infinity display exclude include add"); 

close(); 

selectWindow("ChS2-T3"); 

run("Subtract Background...", "rolling=1000"); 

rename("Transgelin - "+title+""); 

roiManager("Measure"); 

close(); 

selectWindow("Ch2-T4"); 

run("Subtract Background...", "rolling=1000"); 

rename("Phalloidin - "+title+""); 

roiManager("Measure"); 

close(); 

roiManager("Save", "[Path]/RoiSet - "+title+".zip"); 

roiManager("Delete"); 
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Appendix 8.3: ImageJ macro for quantification of mean active 1-Integrin intensity within green 

fluorescent podocytes. 

1 

2 

3 

 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

title = getTitle(); 

run("Options...", "iterations=1 count=1 black"); 

run("Set Measurements...", "area mean modal min limit display scientific redirect=None 

decimal=0"); 

run("Input/Output...", "jpeg=85 gif=-1 file=.tsv use_file copy_row save_column save_row"); 

run("Stack to Images"); 

selectWindow("Ch1-T1"); 

close(); 

selectWindow("ChS1-T2"); 

rename("Area - "+title+""); 

run("Find Edges"); 

run("Median...", "radius=3"); 

run("8-bit"); 

run("Auto Threshold", "method=Triangle white"); 

run("EDM Binary Operations", "iterations=2 operation=open"); 

run("EDM Binary Operations", "iterations=2 operation=close"); 

run("Analyze Particles...", "size=800-Infinity display exclude include add"); 

close(); 

selectWindow("Ch2-T3"); 

rename("9EG7 - "+title+""); 

run("Subtract Background...", "rolling=1000"); 

roiManager("Measure"); 

close(); 

roiManager("Save", "[Path]/RoiSet - "+title+".zip"); 

roiManager("Delete"); 
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Appendix 8.4: ImageJ macro for quantification of mean pMLC intensity within transgelin-marked 

hPLC cells. 

1 

2 

3 

 

4 

5 
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7 

8 

9 

10 
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12 
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14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

title = getTitle(); 

run("Options...", "iterations=1 count=1 black"); 

run("Set Measurements...", "area mean modal min limit display scientific redirect=None 

decimal=0"); 

run("Input/Output...", "jpeg=85 gif=-1 file=.tsv use_file copy_row save_column save_row"); 

run("Stack to Images"); 

selectWindow("c:3/3 - mCherry/EGFP/Dapi"); 

close(); 

selectWindow("c:2/3 - mCherry/EGFP/Dapi") 

rename("Area - "+title+""); 

run("Median...", "radius=3"); 

run("Subtract Background...", "rolling=400"); 

run("8-bit"); 

run("Auto Threshold", "method=Li white"); 

run("Analyze Particles...", "size=50000-Infinity pixel exclude include add"); 

close(); 

selectWindow("c:1/3 - mCherry/EGFP/Dapi"); 

run("Properties...", "channels=1 slices=1 frames=1 unit=µm pixel_width=0.1612500 

pixel_height=0.1612500 voxel_depth=1.0000000"); 

rename("pMLC - "+title+""); 

run("Subtract Background...", "rolling=250"); 

roiManager("Measure"); 

close(); 

roiManager("Delete"); 
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Appendix 8.5: Macro for determination of primary podocyte circularity and roundness.  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

title = getTitle(); 

run("Options...", "iterations=1 count=1 black"); 

run("Set Measurements...", "area shape limit redirect=None decimal=2"); 

run("Specify...", "width=7146 height=7146 x=5180 y=4267 slice=1 centered"); 

run("Duplicate...", "title=1"); 

run("Select None"); 

run("Median...", "radius=4"); 

run("Subtract Background...", "rolling=100"); 

run("Unsharp Mask...", "radius=2 mask=0.50"); 

run("8-bit"); 

run("Duplicate...", " "); 

run("Auto Threshold", "method=Triangle white"); 

run("EDM Binary Operations", "iterations=1 operation=close"); 

run("Analyze Particles...", "size=950-Infinity show=Nothing display exclude clear add"); 

selectWindow("1"); 

run("Enhance Contrast...", "saturated=0.1 normalize"); 

run("From ROI Manager"); 

run("Flatten"); 

saveAs("Tiff", "[Path]\\Overlay - "+title+""); 

saveAs("Results", "[Path]\\Results -"+title+".csv"); 

roiManager("Save", "[Path]\\Roi - "+title+".zip"); 

selectWindow("1"); 

close(); 

selectWindow("1-1"); 

close(); 

selectWindow(""+title+""); 

close(); 

roiManager("Delete"); 

} 

 

Please note that the macro for determination of the cell area is identical except that line 14 

is replaced by run("Analyze Particles...", "size=950-Infinity circularity=0.60-1.00 display 

exclude clear add"); or run("Analyze Particles...", "size=950-Infinity circularity=0.10-1.00 

display exclude clear add"); in case of fixation after overnight incubation. 
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Appendix 8.6: ROIs used for quantification of the EGFP positive area in cytochalasin D time series 

experiments. 

Width Height Center x Center y 

2000 1500 1100 1000 

2000 1500 3100 1000 

2000 1500 1100 2500 

2000 1500 3100 2500 

 

Appendix 8.7: Macro to obtain the EGFP positive area of certain ROIs used for cytochalasin D 

experiments. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

macro "Spreading/Shrinking [1]" { 

title = getTitle(); 

run("Options...", "iterations=1 count=1 black"); 

run("Median...", "radius=2 stack"); 

run("Subtract Background...", "rolling=360 sliding stack"); 

run("Enhance Contrast...", "saturated=0.02 process_all"); 

run("Set Measurements...", "area limit redirect=None decimal=0"); 

run("Auto Threshold", "method=Li white stack"); 

roiManager("Open", "[Path]/RoiSet.zip"); 

roiManager("Multi Measure"); 

saveAs("Results", "[Path]\\Results -"+title+".csv"); 

run("Close"); 

roiManager("Delete"); 

close(); 

} 
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Appendix 8.8: Gate setup used for flow cytometric analysis of active 1-integrin of glomerular cells 
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Overlay 

#
Filename Gate

# of 

Events

X 

Geometric 

Mean

Y 

Geometric 

Mean

% of 

gated 

cells

% of all 

cells

1 A-WT-Merge.fcs None 985387 76765,31 57740,43 100,00 100,00

1 A-WT-Merge.fcs Debris 576683 85172,00 46913,37 58,52 58,52

1 A-WT-Merge.fcs Aggregates 537608 83939,71 45740,64 54,56 54,56

1 A-WT-Merge.fcs PI negative 489806 85795,51 45226,76 49,71 49,71

1 A-WT-Merge.fcs EGFP 107193 95763,86 44561,36 10,88 10,88

1 A-WT-Merge.fcs tdTomato 196206 85171,44 46582,91 19,91 19,91
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