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Abstract 

The adaption of a parallel-path poly(tetrafluoroethylene)(PTFE) ICP-nebulizer to an evaporative light 

scattering detector (ELSD) was realized. This was done by substituting the originally installed concentric 

glass nebulizer of the ELSD. The performance of both nebulizers was compared regarding nebulizer 

temperature, evaporator temperature, flow rate of nebulizing gas and flow rate of mobile phase of 

different solvents using caffeine and poly(dimethylsiloxane) (PDMS) as analytes. Both nebulizers showed 

similar performances but for the parallel-path PTFE nebulizer the performance was considerably better at 

low LC flow rates and the nebulizer lifetime was substantially increased. In general, for both nebulizers 

the highest sensitivity was obtained by applying the lowest possible evaporator temperature in 

combination with the highest possible nebulizer temperature at preferably low gas flow rates. Besides the 

optimization of detector parameters, response factors for various PDMS oligomers were determined and 

the dependency of the detector signal on molar mass of the analytes was studied. The significant 

improvement regarding long-term stability made the modified ELSD much more robust and saved time 

and money by reducing the maintenance efforts. Thus, especially in polymer HPLC, associated with a 

complex matrix situation, the PTFE-based parallel-path nebulizer exhibits attractive characteristics for 

analytical studies of polymers. 
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to improve separation performance. In this study, novel gradient protocols were investigated primarily 

based on gradient polymer elution chromatography (GPEC). Starting with linear gradients and stepwise 

gradients a new saw tooth gradient profile was developed and optimized. Optimum settings for the saw 

tooth gradient design were evaluated by design of experiments (DoE) based on Taguchi’s methodology 

for various types of stationary phases. The gain of peak resolution was dependent on the effective 

gradient step height. The optimized protocol enabled high-resolution polymer HPLC (HRP- HPLC) 

separations with common HPLC instruments. The quality of separation was evaluated by heart-cut 

fraction collection of HRP-HPLC and subsequent determination of the individual fractions by SEC or 

MALDI-ToF mass spectrometry. Finally, different types of polymers, such as PVC, PDMS, PMMA, or PPG, 

were studied with the new method and a universal applicability was shown. 

 

Separation of linear and cyclic poly(dimethylsiloxanes) with polymer high performance liquid 

chromatography 

Bernhard Durner, Thomas Ehmann, Frank-Michael Matysik 

Accepted in Monatshefte für Chemie – Chemical Monthly (2019) DOI:10.1007/s00706-019-02389-4. 

Abstract 

The growing importance of siloxanes in various industrial areas, e.g. health care, cosmetics, automotive 

and construction industries requires further method development of analysis techniques. In addition, and 

complementing gas chromatography analysis, a polymer liquid chromatography method for separation of 

linear and cyclic (poly)dimethylsiloxanes was developed and optimized. By an appropriate choice of 



List of publications  

VIII 
 

mobile and stationary phase combinations, separations up to 30 monomeric units are achieved. 

Therefore, various HPLC columns were investigated concerning physical and chemical properties, e.g. pore 

size, silica base material, and column functionality. Furthermore, solubility properties of siloxanes in 

adsorption and desorption promoting solvents were investigated and taking these results into account 

the separation was optimized applying a mixture of methanol: water (75:25, v/v) and acetone. The 

findings indicate, that precipitation / re-dissolution effects superimposed by adsorption chromatography 

result in the oligomer separation of up to 30 monomeric units. Besides method development on an 

analytical scale, linear poly(dimethylsiloxane) oligomers were separated with preparative polymer HPLC. 

These fractions of single oligomers allow further investigations of different material properties beyond 

polymer HPLC. 
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Abstract 

The recently introduced saw tooth gradient for high-resolution polymer HPLC was optimized and 

improved in terms of total runtime and separation performance. As a result, increased flow rates enabled 

reduced runtimes in combination with enhanced peak resolutions. Moreover, the saw tooth gradient 

profile was further investigated using a saw tooth gradient with a down-to-zero approach which 

corresponds to an increased height of the negative backward gradient step. Modifying the mobile phase 

composition allowed two further gradient protocols: a ternary and a three-dimensional setup. Thereby, a 

ternary saw tooth gradient is characterized by repeating the whole gradient elution with two adequate 

pairs of adsorption and desorption promoting solvents for mixtures containing diverse polymer 

components. A three-dimensional saw tooth gradient is determined by combining three different solvents 

in the gradient elution. In addition to mobile phase modifications, various stationary phases were 

compared and examined. Applying size exclusion chromatography (SEC) columns for saw tooth gradient 

polymer elution chromatography enabled the exploitation of two completely different separation 

mechanisms (SEC and high-resolution polymer HPLC) on one stationary phase. Thus, two-dimensional, 
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heart-cut coupling of SEC and high-resolution polymer HPLC with only one stationary phase could be 

achieved. The application of the above-mentioned concept is presented for a silicone oil with a viscosity 

of 350 mPa∙s by using a hybrid HPLC system consisting of a Thermo Fisher Scientific HPLC and an Agilent 

fraction collector. 

 

Comparison of Molar Mass Determination of Poly(dimethylsiloxanes) by Size Exclusion Chromatography 

and High-Resolution Polymer High Performance Liquid Chromatography Based on a Saw Tooth Gradient 

Bernhard Durner, Beate Scherer, Thomas Ehmann, Frank-Michael Matysik 

Accepted in ACS Applied Polymer Materials 

Abstract 

Polysiloxanes are used in a wide range of application fields and extensive research is currently done to 

enhance product quality and performance. Therefore, more sophisticated analysis methods are necessary 

to monitor and support the polymer product optimization. Based on different modes in polymer liquid 

chromatography, heart-cut two-dimensional polymer HPLC is one powerful analytical approach. Due to 

different distributions within polymer samples, separations according to chemical heterogeneities, 

molecular architecture or molar mass differences are possible. With the recently introduced saw tooth 

gradient protocol a new possibility for determining the polymer (micro-) structure on analytical scale has 

been developed. Hence, the effect of various stationary phases with different particle base material and 

chemical modifications were investigated in context of the separation of linear poly(dimethylsiloxane) in 

a molar mass range from 1000 g∙mol-1 to 300 000 g∙mol-1. The resulting chromatograms allowed a direct 

correlation between HPLC retention times and molar masses corresponding to separated peaks. 

Consequently, a detailed analysis of differences in the polymer structure, e.g. fingerprint analysis, is 

possible. 
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Abstract 

The age determination of elephant ivory provides necessary and crucial information for all criminal 

prosecution authorities enforcing the Convention on International Trade in Endangered Species of Wild 

Fauna and Flora. The knowledge of the age of ivory allows to distinguish between pre-convention, hence 

legal material and ivory deriving from recent, illegal poaching incidents. The commonly applied method 

to determine the age of ivory is radiocarbon dating in the form of bomb pulse dating, which however will 

fade out soon. This work provides an enhancement of the radiocarbon dating method by supplementary 

determination of the isotope profile of 90-Sr and the two thorium isotopes 228-Th and 232-Th. This 

combined analysis allows for a precise and unambiguous age determination of ivory. We provided 

calibration curves for all involved radionuclides by analyzing ivory samples with known age and 

investigated a new method for the extraction of strontium from ivory. 
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Abstract  

Ammonia-based selective catalytic reduction (SCR) systems are the most widely used technology for 

reduction of nitrogen oxide emissions from lean-burn engines such as diesel engines. However, at low 

exhaust temperatures, the SCR process is limited by difficulties in the decomposition of the ammonia 

precursor urea, which is carried on-board using an aqueous solution “AdBlue”. In this study, the 

decomposition of AdBlue urea induced by electrical current and the resulting associated pH shifts was 

investigated in a divided cell configuration in the liquid phase. The decomposition was found to be 

favoured in both electrochemical compartments, anodic and cathodic, at temperatures of 60 °C – 80 °C 

compared to a reference without electrochemical treatment. In addition to the determination of 

ammonia contents, IC/HPLC analyses were carried out for each sample. Different side products such as 

biuret, nitrate, cyanuric acid, ammelide and others were formed. In the anodic compartment, nitrate 

formation could be observed, due to oxidation of ammonia at the electrode surface. 
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Lösungsmittel (S2) für die Polymerprobe umfasst, dadurch gekennzeichnet, dass der Volumenanteil an S2 

in der mobilen Phase während des Elutionsprozesses stufenweise variiert wird und die Stufen 

abwechselnd auf- und absteigen. 
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 Introduction 

Responding issues connected to analytical chemistry, is an important aspect in science and industry. A lot 

of different quality and performance problems are solved through analytical chemistry by choosing the 

appropriate analysis techniques. Figure 1.1 gives an overview about the most important steps during the 

analysis of arbitrary substances. Therefore, it is important to know and control the analytical process [1], 

including sample collection and preparation, measurement, detection, and data evaluation as well as 

interpretation. Furthermore, suitable methods must be chosen and if necessary optimized. 

 

Figure 1.1: Development of an analytical method within and in context to the analytical process. 

Particularly, complex samples with high amounts of matrix or a lot of different constituents require 

chromatographic methods. Several molecular and vaporizable analytes can be separated with gas 

chromatography (GC). However, samples containing high amounts of matrix or high molecular weight 

compounds are not suited for GC separation and require liquid chromatography (LC) techniques. 

Consequently, the different steps in and around the analytical process are very important for polymer 

analysis. As previously described, the choice of a proper method usually is the starting point of research. 

Thus, if LC is required for polymer analysis, various modes, for example adsorption and size exclusion 

chromatography or chromatography under critical conditions, are possible [2]. Therefore, it is important 
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to know as much as possible about the polymer sample and demands of the customer in advance. A first 

important step during the analytical process is sampling and sample preparation. Particularly, the 

presence of polymer matrices and product heterogeneities has to be taken in account before or by 

collecting of the sample. Depending on the type of polymer, different techniques are crucial for a 

representative sample. Subsequent, polymer sample preparation requires plenty of expertise concerning 

solubility effects or extraction methods. Even if the sampling was representative and a homogenous 

sample was taken, the appropriate choice of solvent is important to dissolve the overall polymer. 

Moreover, even the distribution of the polymer in solution may be an important and error-prone 

procedure, if polymer chains are degraded by too much stirring because of shear degradation. For 

example, high molar mass polymers require a long time before being completely dissolved without chain 

scission [3]. In the next step of the analytical process of polymer liquid chromatography, the successful 

collected and dissolved polymer sample is separated according to specific macromolecular properties, like 

molar mass distribution, chemical functionality distribution or a different molecular architecture. In 

general, depending on physical and chemical interactions different LC modes are worth to be considered 

and have to be discussed in this study. Furthermore, current separation methods show some limitations 

making improvements and optimizations necessary. However, successful measurements strongly depend 

on the capability and properties of the applied detectors. Therefore, every type of detector has its own 

advantages and disadvantages and further research may be done in choosing the ideal device appropriate 

for the particular task. Afterwards, the obtained data have to be carefully evaluated and interpreted under 

considering quality management, robustness and significance. Additionally, after the analytical process is 

completed, a feedback on the applied method is important and for ensuring competitiveness.  

Emerging from the analytical process, robust and innovative polymer LC methods are crucial to analyze 

polymers. Therefore, various adjustments of stationary and mobile phases as well as instrumental 

optimizations were already done and have to be made. For example, based on sophisticated approaches 

of multi-linear or step-wise gradients [4,5] further optimization of the gradient profile will be presented. 

In each case, the resulting methods should be as simple as possible and give versatile improvements 

compared to the initial situation. 
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 Basics of polymer liquid chromatography 

2.1 Introduction 

Polymers are built of a high number of monomers and consequently are statistically distributed in several 

properties. These distributions cause main differences in the quality of polymer products. Therefore, it is 

essential to investigate, analyze, and optimize the polymerization reaction. Figure 2.1 gives an overview 

about the most important polymer distributions, i.e. molar mass (a), chemical composition (b), molecular 

architecture (c), and functionality (d). Depending on the polymerization reaction, polymers may be 

homogeneous in all distributed properties (monodisperse polymers), heterogeneous in only one property 

(polydisperse polymers) or heterogeneous in more than one property (complex polymers). 

 

Figure 2.1: Example for typical polymer heterogeneities: a) molar mass distribution, b) chemical composition distribution, 
c) molecular architecture differences, and d) chemical functionality distribution. 

At least all synthetic polymers are polydisperse in the molar mass. Thus, analyzing the molar mass 

distribution is an important issue in liquid chromatography. Besides, as far as two or more monomers with 

different chemical composition take part in polymerization, chemical heterogeneities appear. As a result, 

copolymers with defined blocks, alternating sequences or randomly distributed monomer units are built. 

The analysis of these polydisperse or complex polymers is a challenging task and often more than one 

separation technique have to be applied [1–5]. Before discussing several typical liquid chromatographic 

techniques for polymer analysis, a short overview of the investigated polymers of this study is given.  
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Today, poly(siloxanes) are a very important group of synthetic polymers and are used in various industrial 

areas, e.g. health care, cosmetics, automotive and construction industries. Since the first synthesis by 

Müller and Rochow [6], siloxanes are used in a broad variety of different applications, e.g. silicone 

dispersions, elastomers, resins or rubbers [7–12]. A great deal of research was done on the chemical 

structure and composition of various poly(siloxanes). The combination of silicon, oxygen, and carbon 

atoms lead to very specific properties in between inorganic and organic chemistry. As depicted in Figure 

2.2 the number of organic groups R in comparison to silicon – oxygen bonds cause the characteristics of 

the organo-poly(siloxanes). Furthermore, the number of silicon – oxygens bonds determine the 

functionality of the siloxane basic unit, from monofunctional for one Si-O bond to tetrafunctional for four 

Si-O bonds. The most important class of silicones is poly(dimethylsiloxane) (PDMS, compare the 

bifunctional poly(siloxane) in Figure 2.2), which contains only methylene groups as organic group and 

shows a two-dimensional linear structure [11,13].  

 

Figure 2.2: Chemical structure of poly(siloxanes) in between inorganic and organic chemistry, R = organic group. 

Based on their polymer structure, siloxane polymers show high temperature and weather resistance, good 

dielectric properties, a high film-forming capacity, physiological indifference, and anti-foaming effects. 

Therefore, poly(siloxanes) are used among other things as sealants, paint additives, marine coatings, 

cooling liquids in transformers or masonry water repellants. Moreover, various application areas for 

silicones, e.g. automotive-, energy-, health care-, and construction- industry, are depicted in Figure 2.3. 

Additional information about poly(siloxanes) can be found in [14–25]. 
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Figure 2.3: Overview about applications of silicone in industry (out of business unit presentation of Wacker Silicones, 2017). 

Moreover, in this study such homopolymers as poly(methylmethacrylate) (PMMA), poly(propylene glycol) 

(PPG), polystyrene (PS), and poly(vinylchloride) (PVC) whose structures are depicted in Figure 2.4, are 

investigated. 

 

Figure 2.4: Overview of additionally investigated homopolymers, a) PMMA, b) PPG, c) PS, and d) PVC. 
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2.2 Polymer liquid chromatography modes 

The heterogeneity of polymers requires different separation techniques in liquid chromatography. Based 

on molar mass, chemical composition, or molecular architecture distributions of the investigated polymer 

samples, the main purpose of polymer liquid chromatography is a separation or rather fractionation by 

molecular properties. Depending on the thermodynamic driving force, a differentiation in size exclusion 

chromatography, liquid chromatography under critical conditions and liquid adsorption chromatography 

can be made. For mostly entropy driven separations, size exclusion chromatography is the dominant 

mode, whereas for prevailing enthalpy effects liquid adsorption chromatography (LAC) is applied. In 

between both modes when entropic and enthalpic effects balance each other, liquid chromatography at 

critical conditions (LCCC) becomes possible [26–29]. An elugram showing all three different modes of 

polymer liquid chromatography is presented in Figure 2.5. In SEC mode the molar mass decreases with 

increasing elution volume and, vice versa, in LAC mode the molar mass increases with increasing elution 

volume. A more detailed theoretical description including a model for all three modes of polymer liquid 

chromatography can be found in [28]. In ideal LCCC, the elution of the polymer is independent of molar 

mass. A more detailed description of these three chromatography modes is given in the following 

chapters, in which LAC is summarized by the term polymer HPLC. 

 

Figure 2.5: Elugram, showing the three different modes of polymer liquid chromatography. 
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2.3 Size exclusion chromatography 

SEC is usually the method of choice for determination of the molar mass distributions of macromolecules. 

For synthetic polymers SEC is also called gel permeation chromatography (GPC) because of the 

permeation of the analyte molecules into the pores of the stationary phase. For biopolymers separated 

by aqueous mobile phases, SEC is also referred to as gel filtration chromatography (GFC).  

The separation mechanism is based on the size of the macromolecules in the eluent and thus on the 

hydrodynamic volume of the polymer. The stationary phase provides a packing material with different 

pore sizes and the mobile phase is ideally a strong solvent for the investigated polymer eliminating any 

chemical interactions between stationary phase and polymer. Under these conditions, the analytes are 

separated solely by their size, or to put it another way, the molar mass of the macromolecules. In SEC, 

high molar mass polymers which cannot penetrate the pores of the stationary phase elute first, or rather 

complete exclusion of these polymer molecules to the pores occurs (see Figure 2.6). At the end of the 

separation, the eluent which permeates all pores of the column elutes at the dead time. Thus, the 

separation of polymer samples must be done within the first and only passage through the SEC column. 

This leads to elevated column lengths and the coupling of more than one column to enhance the 

separation range and the peak resolution. In contrast to the total stationary phase permeation of the 

organic solvent, a complete exclusion from all column pores leads to an unseparated polymer mixture. 

Consequently, the separation range in SEC is primarily determined by the pore size distribution of the 

used column, the combination of columns with different pore size, and the resulting total length of the 

column [27,30,31].  



Basics of polymer liquid chromatography  Size exclusion chromatography 

9 
 

 

Figure 2.6: Mechanism in SEC in relation to a SEC elugram; with increasing retention time the molar mass of the eluting 
macromolecules decreases and at the end of separation the solvent molecules elute at the dead time. 

Additionally, any chemical interactions between analyte and the stationary phase must be avoided, and 

the mobile phase is solely the carrier transporting the macromolecules through the column. The relation 

between elution volume or rather retention time and molar mass is usually established by a calibration 

with monodisperse PS standards over the investigated molar mass range. Generally, it is assumed that the 

hydrodynamic volume of the PS standards used for calibration acts the same as that of the investigated 

polymer. Typically, refractive index (RI), multiangle laser light scattering (MALLS), diode array detectors 

or viscometers are used as detector(s). In case of simultaneous MALLS and RI detection an absolute molar 

mass determination is possible. Furthermore, combining multiple detectors as RI, MALLS detector and 

viscometer information about the polymer branching can be obtained by a Mark-Houwink-Sakurada plot 

[32,33]. The most prominent advantages of SEC include isocratic separation, fast and easy separation and 

handling, a common relation between molar mass and retention time and a large molar mass range up to 

400 million g∙mol-1. In contrast to that SEC shows only a low molar mass resolution, indirect determination 

of molar masses via the hydrodynamic volumes in the used eluent, and the possibility of secondary 

(chemical) interactions between analyte and stationary phase [34]. Further literature and information 

about operating SEC with polymers is given in [34–41]. 
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2.4 Liquid chromatography at critical conditions 

As already shown in Figure 2.5, LCCC exhibits a very unique elution behavior. At the point of critical 

conditions, the steric interactions of the SEC mode counterbalance with attractive adsorption forces of 

the LAC mode. Consequently, the separation of polymers is independent of the molar mass but depends 

on chemical modification or functionality. LCCC can be performed by isocratic and gradient elution. 

Moreover, LCCC is also known as elution at the critical point of adsorption (CPA). For separating block-

copolymers consisting of two and more blocks with different chemical functionality, LCCC is extremely 

valuable. However, adjusting the critical conditions in the separation system can be very tedious and may 

result in an only slightly robust chromatographic method [28,42,43]. In general, the determination of the 

CPA is done by adaption of the mobile phase composition and/ or the temperature of the separation 

system to critical conditions. A combination of CPA and SEC is favorable: The polymer of interest is 

separated at the CPA while all other components elute in the SEC mode. Combining CPA with LAC is not 

feasible because the non-polymeric components can irreversibly adsorb to the stationary phase due to 

the isocratic conditions. Several research groups describe different possibilities of adjusting the critical 

conditions [44,45].  

 

 

Figure 2.7 left side: Gradient program for finding the eluent composition for the LCCC; right side: Measurement series for 
determination of the critical conditions (e) of a isotactic polypropylene sample with the mobile phase 2-octanol/ 1,2-

dichlorobenzene at a Thermo Fisher Hypercarb (4.6 x 250 mm) column (both figures out of [44]). 
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Bhati et al [44,46] described a very elegant method to determine the CPA of isotactic polypropylene with 

a mobile phase combination of 2-octanol and 1,2-dichlorobenzene using a Thermo Fisher Hypercarb 

column (see Figure 2.7). Therefore, a high molar mass homopolymer was injected into different isocratic 

mobile phase combinations, until the complete sample amount eluted in one peak (compare Figure 2.7). 

At these conditions LCCC took place and could be used for separation of real samples. In [47] an overview 

of various polymers separated by LCCC is given. Some further examples for LCCC of linear and cyclic PDMS 

are given in [48], for PS and PDMS block copolymers in [49], for PS and poly(ethylene oxide) block 

copolymers in [50], and for the separation of diverse poly(ethylene glycols) in [51]. Comparing isocratic 

and gradient CPA, gradient CPA is advantageous because it is a more robust method, the risk of irreversible 

polymer adsorption is minimized, and the separation does not depend on the column pore size. 

Nevertheless, LCCC has some limitations, i.e. the lack of sample recovery, high susceptibility to variations 

of surrounding conditions or disturbance through polymer sample changes [2,28]. In the following, two 

special separation techniques using the advantages of LCCC are explained. 

2.4.1 Barrier techniques 

The application of solvent barriers exploiting the transition between two modes of polymer liquid 

chromatography, enables an isocratic separation according to LCCC. Berek et al [28,52–54] essentially 

differentiate between liquid chromatography at limiting conditions of adsorption (LC-LCA) and liquid 

chromatography at limiting conditions of desorption (LC-LCD). In LC-LCA, the mobile phase is composed 

of a solvent mixture slightly below the CPA (of the polymer) and the composition of the solvent barrier is 

slightly above the CPA. The injection of the polymer occurs within the solvent barrier. Thus, at the initial 

solvent composition within the solvent barrier SEC mode enables the polymer to pass the solvent barrier. 

As soon as critical conditions for the analyte polymer appear, elution in LCCC mode take place and a 

separation from other sample components is possible. In the second barrier mode LC-LCD, the initial 

mobile phase composition corresponds to SEC conditions (where the polymer is completely dissolved 

without the possibility of chemical interactions to the stationary phase) and the barrier composition 

corresponds to the LCA mode. The polymer injection in the initial mobile phase results in a SEC mechanism 

at the beginning as long as the macromolecules reach the solvent barrier. At the border area LCCC 

separates the macromolecules which reach the CPA from the polymer mixture. The complex arrangement 

of various solvent barriers limits the application of the barrier techniques and causes reproducibility 

issues [28]. 
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2.4.2 Gradient SEC 

Radke et al [54,55] introduced with gradient SEC a further alternative applying mixed polymer liquid 

chromatography. This approach is based on the previously described barrier techniques. Thus, the 

dissolved polymer sample is injected on a SEC column in a solvent composition providing LAC for all 

components. After the injection a solvent gradient towards SEC conditions is started. For each sample 

compound a suitable CPA is reached in between the transition from LAC to SEC solvent. More or less this 

separation technique provides an infinite number of solvent barriers for polymer separation. Compared 

to the barrier techniques an increased reproducibility and an increased system robustness are gained. 

Nevertheless, this approach is prone to system fluctuations and the small differences of the solvent 

gradient limits the application to complex real polymer samples. Furthermore, a combination of several 

SEC columns is necessary and extends the total runtime [28].  
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2.5 Polymer HPLC 

In comparison to a separation according to only one polymer distribution, like molar mass in SEC or 

chemical functionality in LCCC, polymer HPLC offers various interaction parameters between polymer and 

mobile/ stationary phase. Therefore, polymer HPLC is often termed as interactive chromatography [27] 

or interaction polymer (liquid) chromatography [28]. In this study, polymer HPLC is used as name and 

includes all types of LC shown in Table 2.1, except SEC. Liquid adsorption chromatography or gradient 

polymer elution chromatography (GPEC) are the most common types in polymer HPLC. In addition, 

precipitation- / re-dissolution chromatography (PLC) or temperature gradient interaction 

chromatography (TGIC) can also be used as separation techniques. A detailed discussion of LAC and PLC 

will be given in the subsequent chapters, but as previously discussed, a clear differentiation between both 

LC types is often sophisticated in practical application.  

Table 2.1: Different types of polymer HPLC compared to SEC, for more detailed information see [5] and [28]. 

Type of Liquid 
chromatography 

Separation according 
to… 

Information about 
molar mass distribution 

Information about 
chemical composition 

SEC 
… hydrodynamic 
volume or rather molar 
mass 

✓  

LAC, GPEC 

… adsorption and 
partition interactions 
between polymer and 
stationary/ mobile 
phases 

✓ ✓ 

LCCC,  
Gradient elution 
at the CPA 

… chemical 
composition at critical 
conditions (molar mass 
invisibility) 

 ✓ 

PLC 
… different solubilities 
of the macromolecules ✓ ✓ 

TGIC 
… changing system 
parameters through 
temperature gradients 

✓ ✓ 
 
Before any polymer HPLC techniques can be applied, dissolving the polymer sample is an important 

aspect. Thus, the choice of appropriate solvents for the corresponding polymer is crucial for introducing 

the complete polymer sample into the chromatographic system. Biopolymers or poly(ethylene glycols) 

are water soluble, but for PMMA, PVC, PDMS or PS stronger organic solvents as tetrahydrofuran (THF) are 

necessary to completely dissolve the polymer. In some cases, even elevated temperatures or very strong 

solvents like concentrated acids or protogenic alcohols (e.g. hexafluor-2-propanol) must be applied in 
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order to dissolve for example polyamides [3,5,56,57]. Moreover, especially polymers of high molecular 

masses require prolonged dissolution times before a representative sample injection becomes 

possible [58].  

In contrast to SEC, the elution mechanisms in ideal polymer HPLC separate the polymer components 

according to molar mass and chemical functionality, unaffected by pore size effects or hydrodynamic 

volume. Furthermore, unlike in SEC, the column dead time or solvent peak marks the starting point of the 

separation and much more than one column volume is crucial for an appropriate separation. Therefore, 

the analytes show a different elution order, from low to high molar mass compounds and different 

chemical functionalities or structures (Figure 2.8). In addition, different stationary phases with smaller 

column lengths and chemical modified silica particles are typically used. As in HPLC of small molecules, 

analytical columns are used with lengths between 50 and 250 mm and diameters between 2 and 5 mm. 

Moreover, the same chemical functionalized stationary phases are used in polymer HPLC [27,59–69]. 

 

Figure 2.8: Polymer-HPLC retention mechanism in relation to a chromatogram, the first peak is the dead time or solvent peak, 
afterwards macromolecules are separated according to molar mass and chemical functionality, whereby for homopolymers an 

increasing retention time corresponds to an increasing molar mass. 

Comparing isocratic and gradient elution techniques, in polymer HPLC gradients are preferred 

accelerating the measurement and improving the separation by minimizing band broadening effects 

[5,28,70,71]. Consequently, in the following section a typical gradient elution is summarized and 

discussed.  
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Based on the sample solvents, injection and gradient elution in polymer HPLC (GPEC) follow a different 

routine compared to HPLC of small molecules. Figure 2.9 depicts a schematic overview of the major steps 

in GPEC: Before any sample is introduced on the stationary phase (a) a suitable non-solvent or rather weak 

solvent, in the following referred to as adsorption promoting solvent, is used for conditioning the 

column (b). In this surrounding, the injected polymer sample precipitates or is strongly adsorbed on top 

of the column (c) and the solvent plug originally dissolving the polymer is flushed through the system. 

Then, a gradient with a second stronger polymer solvent, the desorption promoting solvent, is started to 

separate the different polymer components (d). After the separation the column is thoroughly flushed 

with a strong solvent (e) in order to remove remaining polymer components and in a last step the column 

is re-conditioned to the initial conditions (f) [72–74]. 

 

Figure 2.9: Schematic overview of the major steps in GPEC: a) dissolved polymer sample and unconditioned stationary phase; 
b) conditioning of stationary phase with weak or non-solvent (adsorption promoting solvent) concerning the investigated 

polymers; c) injection of the sample on the column – precipitation thereof on top of the column; d) gradient elution through 
programmed increase of a strong solvent for the polymer (desorption promoting solvent); e) flushing of the column with 100 % 

desorption promoting solvent; f) re-conditioning of the stationary phase to initial conditions (b). 

Similar to the above-mentioned stationary phases, classical HPLC detectors as diode array detectors (DAD) 

or fluorescence detectors (FLD) [75,76] are used in polymer HPLC, if the polymer contains chromophoric 

or fluorescent groups. Furthermore, for isocratic elution, RI detectors may also be used for polymer 

detection. If neither chromophore groups are present, nor isocratic elution is possible, further much more 

universal detection principles are inevitable [35]. Applying an Evaporative Light Scattering Detector (ELSD) 

to polymer analysis allows the use of a gradient protocol and the detection of macromolecules without 

any functional groups [77–80]. A detailed review of the operation principles and detector optimization is 
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given in chapter 5, and, thus only basic principles are discussed in this section. For an adequate light 

scattering detection, at first the LC effluent is nebulized and in a subsequent step the mobile phase is 

evaporated (Figure 2.10). These steps are decisive for the sensitivity and robustness of the whole 

detection process. Since its invention by Charlesworth [81], the ELSD was optimized to overcome the 

problems in the detection process and a broad variety of devices were developed by several 

manufacturers [77]. But nevertheless, some limitations applying ELS detection still remains, for example 

volatile, vaporable compounds are evaporated with the mobile phase and thus, cannot be detected or 

clog the concentric nebulizer. A major drawback of the ELSD is its non-linear response which can be 

approximated by a quadratic calibration curve or more precisely by log-log-transformation of a power 

function calibration but makes data evaluation tedious. Apart from this, the used mobile phase must be 

completely volatile within the instrumental settings of the ELSD [78]. 

 

Figure 2.10: Detection principle of an ELSD, based on three crucial steps – nebulization, evaporation, light scattering detection. 

Adapted from principles of ELSD, a Charged Aerosol Detector (CAD) was invented using a corona discharge 

needle for transferring charge on dried aerosol particles (Figure 2.11). Nitrogen ions are generated by a 

N2 gas flow at the corona needle. Afterwards, the nitrogen ions collide with the dried analyte particles in 

a mixing chamber and a charge transfer to the analyte particle occurs [78,82,83]. Finally, the charged 

analyte ions hit a perforated plate and are counted by an electrometer measuring the resulting current 

flow as signal. Compared to ELSD, CAD showed an increased sensitivity and therefore an improved 

detection limit. However, CAD is more affected by polymer matrix effects and interferences by 

inappropriate mobile phases, e.g. high amounts of semi- or non-volatile buffer [78]. A further 

development of the ELSD setup is the condensation nucleation light scattering detector (CNLSD) applying 
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dried aerosol particles as nucleation sites for liquid condensation. In this process, the aerosol particle size 

can increase from several nanometers up to 10 µm and, thus, allow a more sensitive light scattering 

measurement. The major constraints of this detector type are the limited commercial availability of the 

device and the lack of software drivers for chromatography data systems [78,79]. 

 

Figure 2.11: Overview of the main functional aspects of a CAD. 

Aside from these particle detectors, mass spectrometry can also be applied for detecting synthetic 

macromolecules. Several applications for polymer LC-MS detections are published in [84,85], but 

unfortunately uncharged polymers can only be analyzed up to molar masses of 4,000 g∙mol-1. Another 

possibility is matrix assisted laser desorption ionization (MALDI)- MS. One major constraint thereof is the 

limited possibility in direct coupling to heart cut HPLC because the elution volume of a single peak is 

normally much larger than the volume which can be directly pipetted on a MALDI target. However, MALDI- 

MS allows oligomer resolved polymer detection up to a m/ z- ratio of 30,000 [86–88]. 

Summarizing, Figure 2.12 shows the most important influencing factors on a successful separation of 

macromolecules with polymer HPLC. The interaction of mobile phase, stationary phase, and the specific 

polymer determine the prevailing separation mechanism. For this reason, in the following sections the 

three main operation modes of polymer HPLC are presented: LAC and PLC are compared with each other 

and a short overview about gradient temperature interaction chromatography (TGIC) is given which can 

be an interesting alternative to common LC techniques. 

 



 

 
 

 

 

Figure 2.12: Overview of influence influencing factors for a successful separation in polymer HPLC. 

.
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2.5.1 Liquid adsorption chromatography 

Most of the applications of LAC are performed by gradient elution, because when applying isocratic 

separation mode, the polymer can irreversibly be adsorbed to the stationary phase. Consequently, LAC is 

usually performed with mobile phases containing at least two different solvents: an adsorption promoting 

solvent which is itself a weak or even non-solvent for the polymer and a desorption promoting solvent 

dissolving the complete polymer sample. In general, with increasing retention time, the molar mass of the 

oligomers or rather the polymers increase. Particularly for low molecular weight macromolecules, a 

separation of single oligomers can be achieved by appropriately adjusting of mobile and stationary phases 

while polymers with increasing molar mass are more or less unresolved or results in broad peaks (Figure 

2.13). Varying the gradient slope enables the adjustment of the adsorption area to the separation 

problem. Depending on the CPA, gradient LAC can be performed up to 10 kDa, 100 kDa or 1 MDa. Hence, 

in contrast to LCCC, reaching the CPA should be avoided for improving the separation [4,5,28].  

 

Figure 2.13: Degree of oligomer separation in LAC in relation to molar mass. 

Compared to HPLC of small molecules, several differences, i.e. small diffusion coefficients of dissolved 

polymers and nearly the same dimensions of the polymers to the pore sizes of the stationary phase, 

completely change the chromatographic process resulting in different retention characteristics for 

macromolecules. Moreover, as long as at least one repetition unit of the polymer backbone is adsorbed 

to the column the entire polymer is adsorbed. Compared to typical biomolecules in HPLC of small 

molecules, the polymer solubility is considerably increased and therefore secondary interactions as well 
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as peak broadening effects through delayed desorption occur [2,3]. Moreover, in LAC the impact of the 

stationary phase on the separation is significant: Changing the column has an effect on the retention of 

the polymer. In general, various separation mechanisms (cf. Figure 2.12) superimpose each other in real 

chromatographic systems. Therefore, one further very important mechanism is discussed in the 

subsequent section. 

2.5.2 Precipitation-/ re-dissolution chromatography 

The influence of precipitation-/ re-dissolution effects on the separation of polymers was introduced as 

high performance precipitation liquid chromatography (HPPLC) and applied by Glöckner et al [3,89–95]. 

As generally described for the injection in GPEC (Figure 2.9), in HPPLC or precipitation-/ re-dissolution 

chromatography (PLC) the polymer precipitates on top of the column. In contrast to LAC, the gradient 

elution is driven by sequential precipitation and re-dissolution of different polymer components while 

increasing the content of the stronger solvent for the polymer. The whole process is exclusively driven by 

solubility effects of the macromolecules (”similia similibus solvuntur”) with changing mobile phase 

compositions. Staal [72] described the relation between polymer cloud points and the critical elution 

conditions for the macromolecular sample compounds by reversed phase liquid chromatography. 

Therefore, the elution order is the same as in LAC: The molar mass increases with increasing retention 

times. Furthermore, depending on the solubility of the polymer in the appropriate composition of the 

mobile phase, polymer retention times are independent of the stationary phase [28,72]. As a result 

thereof, elution at the CAP is impossible in LPC and cannot restrict the separation in the high molecular 

range [28]. A detailed discussion by German et al [96–98] shows the difficulty in differentiating between 

LAC and PLC in real chromatography systems. Therefore, they analyzed polyester resins with various 

stationary phases and showed that, except for crystalline polyester, adsorption chromatography is the 

dominating effect on separation. Concluding, a true precipitation-/ re-dissolution mechanism occurs 

rarely in real chromatographic systems [98]. Consequently, polymer HPLC is often operated by a 

combination of PLC and LAC, while sorption effects predominate in most cases.  
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2.5.3 Temperature gradient interaction chromatography 

A further alternative of polymer HPLC method is called TGIC and was introduced by Chang et al [99,100] 

by applying a temperature gradient. They separated a mixture of 10 PS standards over a molar mass range 

from 1,700 to 2,890,000 g∙mol-1 with a temperature gradient from 0 to 44 °C. Hence, they used a water 

bath circulator for temperature programming of the column. Moreover, the application to other polymers 

like PMMA was demonstrated in [101] by a temperature gradient from 10 to 60 °C. With this particular 

technique, copolymer mixtures or polymers exclusively differing in their molecular architecture are 

separated [102–104]. The applicability to star shaped or branched PS [105–108] was also demonstrated 

and even coupling to MALDI mass spectrometry was reported [109–111]. Hutchings [107] reviewed the 

application of TGIC to byproduct analysis of polymer reactions and summarized miscellaneous examples 

of the capability of TGIC for microstructure analysis in comparison to SEC. Furthermore, temperature 

programming can be used to skip between the three main LC modes, LAC, LCCC, and SEC without changing 

other system parameters [112]. Therefore, TGIC represents an additional powerful alternative in polymer 

HPLC analysis [28,35]. However, one major drawback is the need to use additional equipment for accurate 

temperature control and suitable hard- and software implementation.  
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 Experimental 

3.1 Chemicals and materials 

All used solvents were HPLC grade. Acetone, acetonitrile (ACN), 2-butanol, methanol (MeOH), ethanol, 

isopropanol, toluene, n-hexane and non-stabilized tetrahydrofuran (THF) were purchased from Merck 

(Darmstadt, Germany) and used without further purification. Water of a Milli-Q-Advantage A10 water 

system (Merck Millipore) was used. As cationization reagent sodium trifluoroacetate (Sigma-Aldrich, 

Darmstadt, Germany) was used and trans-2-[3-(4-tert-Butylphenyl)-2-methyl-2-propenylidene] 

malononitrile (DCTB) (Sigma-Aldrich) was used as MALDI matrix. All used stationary phases and polymer 

standards, or samples are separately stated in the appropriate chapters. 

3.2 Measurements 

For all measurements, a detailed description is given in each chapter. All used instruments were 

maintained regularly and passed the operational and performance quality control as recommended from 

the manufacturers.  

3.2.1 HPLC 

All measurements were performed with the chromatography software package Chromeleon (version 7.2, 

Thermo Fisher Scientific, Waltham, USA) except from the preparative fractionation of linear and cyclic 

PDMS in chapter 4, where Open Lab CDS C.01.08 (Agilent, Waldbronn, Germany) was used as software. A 

part of the investigations on analytical scale was performed on a 1100 series LC System of Agilent with a 

tetrahydrofuran-resistant 3215α degasser from ERC (Riemerling, Germany) and a 385 ELSD of Agilent 

equipped with an enhanced parallel-path MiraMist® poly(tetrafluoroethylene) (PTFE) nebulizer from 

Burgener Research (Mississauga, Ontario, Canada) at optimized conditions of 40 °C evaporator 

temperature, 90 °C nebulizer temperature and 1.2 SLM (standard liter per minute) gas flow (see chapter 

5), unless otherwise mentioned. The other part of the measurements was performed with an Ultimate 

3000 HPLC system (Thermo Fisher Scientific) equipped with a diode array detector and a modified (PTFE 

nebulizer) 385 ELSD of Agilent. Preparative HPLC measurements based on linear gradients were 

performed on an Agilent 1260 Infinity II LC system equipped with a TCC 6000 PSS (Mainz, Germany) 

column oven, a tetrahydrofuran-resistant PSS degasser, and an Agilent 35900 E analogue/ digital 

converter and a PL ELS 1000 as detector, unless otherwise mentioned. For fraction collection an Agilent 
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1260 Infinity II fraction collector equipped with a 40-Funnel-tray (Agilent) and a self-made bottle 

connector container (Figure 3.1) was used. 

 

Figure 3.1: Self-made bottle connector container for up to 40 bottles with various individual bottle volumes. The upturned small 
tubes are connectable to an Agilent 40-Funnel-tray. 

 

3.2.2 SEC 

All SEC measurements were performed with the software package WinGPC UniChrom (version 8.2, 

Polymer Standard Services, Mainz, Germany). For all analytical measurements PSS SECcurity GPC1200 

systems equipped with RI detectors or coupled to a Shodex (Munich, Germany) RI101 detector. For 

preparative analysis a PSS SECcurity GPC1200 system equipped with an Agilent 1260 fraction collector or 

an Agilent 385 ELSD was used. 

3.2.3 MALDI-ToF-MS 

For polymer analysis a Shimadzu Axima Performance MALDI-ToF-MS (Kratos, Manchester, UK) was used. 

Measurement control and data evaluation were performed with the software package Shimadzu Biotech 

MALDI MS (version 2.9, Kratos, Manchester, UK).  
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 Separation of linear and cyclic poly(dimethylsiloxanes) 

4.1 Separation of linear and cyclic poly(dimethylsiloxanes) with polymer high 

performance liquid chromatography – Part I 
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4.1.1 Abstract 

Due to their attractive properties, siloxanes have found many applications in various industrial areas, e.g. 

cosmetics, health care or construction industries are present in recent years. Therefore, a method for 

separation of linear and cyclic PDMS, applying liquid chromatographic techniques was developed and 

optimized. By interactive chromatography, oligomer resolution and separation of linear from cyclic PDMS 

could be achieved for PDMS with up to 30 monomeric units. Results of investigations of the underlying 

separation mechanism pointed out that a combination of fractionated-re-dissolution and adsorption 

effects primarily depending on the adequate choice of the eluent system was essential. 
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4.1.2 Introduction 

Siloxanes are used in a broad variety for different application areas. In general, siloxanes consist of 

alternating silicone-oxygen bonds in the backbone and different types of functional groups. An important 

class of siloxanes is poly(dimethylsiloxane) (PDMS) containing only methyl and methylene groups 

bounded to the polymer backbone. The basic notation of PDMS depends on the nominal number of 

oxygens bonded to silicon: The basic building blocks M, D, T and Q present one, two, three or four 

oxygen(s) bonded to silicone, respectively. Therefore, the molecular architecture is clearly defined by the 

nomenclature, e.g. D4 stands for the cyclic tetramer [1–4]. 

The unique characteristics of siloxanes, like high flexibility in their backbone, low intermolecular forces 

between methyl groups or low surface energies make applications in cosmetics, medicine as well as in 

construction industries very attractive. Especially in case of PDMS, the usage in release agents, antifoams, 

heat transfer liquids or coatings demonstrate the importance of this type of polymer [5,6]. Concerning 

applications in pharmaceuticals or medical care products, comprehensive analytical methods are 

necessary. Therefore, investigations of low molecular weight oligomer, linear and cyclic PDMS are mainly 

done with gas chromatography [7,8]. Moreover, linear and cyclic PDMS can also be separated with liquid 

chromatography at critical conditions (LCCC), where the separation only depends on chemical 

functionalities [9]. A major drawback of LCCC is the high susceptibility to small changes in analytical 

conditions, e.g. mobile phase composition, temperature changes or small variations of the investigated 

polymer sample [10]. Apart from LCCC, interactive chromatography, focusing on differences in the 

chemical structure of macromolecules, is an appropriate alternative. Compared to conventional HPLC, 

peculiarities like small diffusion coefficients in solution, reduced solubility or a more complex retention 

mechanism on the stationary phase, occur. Thus, polymer elution is controlled by different types of 

interactions of various separation mechanisms, caused by adsorption, partition or solubility effects. 

Consequently, optimizing various parameters in method development, e.g. choice of mobile and 

stationary phase, LC flow rate, temperature, are necessary for explaining the main separation mechanism 

[11–13]. The present contribution is concerned with corresponding method developments. 
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4.1.3 Material and methods 

4.1.3.1 Reagents and chemicals 

All solvents used were HPLC grade. Acetonitrile, acetone, methanol, ethanol, isopropanol, and non-

stabilized tetrahydrofuran (THF) were purchased from Merck (Darmstadt, Germany) and used without 

further purification. Water of a Milli-Q-Advantage A10 water system (Merck Millipore) was used. All used 

analytical stationary phases applied in this study are summarized in Table 4.1. For fraction collection of 

single linear and cyclic oligomers a Thermo-Fisher (Waltham, USA) Accucore C30 (150x4.6 mm, 2.6 µm) 

was used. The used linear and cyclic PDMS samples were obtained from Wacker Chemie AG (Burghausen, 

Germany). As reference material for linear PDMS a silicone oil with a viscosity of 10 mPa∙s and for cyclic 

PDMS a mixture of D8 – D17 was used. 

4.1.3.2 Instrumentation 

The investigations were performed on a 1100 series LC system of Agilent (Waldbronn, Germany) with a 

THF-resistant 3215α degasser from ERC (Riemerling, Germany) and a 385 ELSD of Agilent equipped with 

an enhanced parallel-path MiraMist® poly(tetrafluoroethylene) nebulizer from Burgener Research Inc. 

(Mississauga, Ontario, Canada) at 40 °C evaporator temperature, 90 °C nebulizer temperature and 1.2 SLM 

(standard liter per minute) gas flow. All test measurements were done with a linear gradient from 100 % 

A to 100 % B in 40 min, unless otherwise stated. Changing column dimensions, the gradient parameters 

were adapted to obtain the same effective linear gradient. The final method development was done on 

an Accucore C30 (50x4.6 mm, 2.6 µm) at a LC flow rate of 2 mL∙min-1 starting at (methanol: water (75/25, 

v/v)): acetone 50:50 and ending at 100 % acetone in 160 min. Applying silica beads the stepwise gradient 

was performed with 5 % step height, 5 min step length with water and acetone as eluent system. 
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Table 4.1: Overview of investigated stationary phases for the separation of PDMS; columns were purchased by Agilent 
(Waldbronn, Germany), Macherey-Nagel (Düren, Germany), MicroSolv Technology Corporation (Leland, USA), Thermo-Fisher 

(Waltham, USA), Phenomenex (Aschaffenburg, Germany) and YMC (Dinslaken, Germany). 

No. Manufacturer Name Particle type Dimensions 

1 Thermo-Fisher Accucore C18 2.6 µm, 80 Å 100 x 4.6 mm 

2 Thermo-Fisher Accucore C8 2.6 µm, 80 Å 100 x 4.6 mm 

3 Thermo-Fisher Accucore C30 2.6 µm, 150 Å 50 x 4.6 mm 

4 Phenomenex Kinetex PFP 2.6 µm, 100 Å 100x4.6 mm 

5 YMC Carotenoid C30 3 µm, 80 Å 100x4.6 mm 

6 Thermo-Fisher Accucore C18 aQ 2.6 µm 100x4.6 mm 

7 Agilent Eclipse C18 5 µm, 80 Å 150x4.6 mm 

8 Phenomenex EVO C18 2.6 µm, 100 Å 100x4.6 mm 

9 
MicroSolv 

Technology 
Cogent Bidentate C18 4.2 µm, 100 Å 150x4.6 mm 

10 Macherey-Nagel Nucleosil 100 C18 5 µm, 100 Å 125x4 mm 

11 Macherey-Nagel Nucleodur Pyramid C18 5 µm, 110 Å 150x4.6 mm 

12 Thermo-Fisher Hypersil BDS C18 2.4 µm, 120 Å 100x4.6 mm 

13 Phenomenex HyperClone BDS C18 5 µm, 130 Å 150x4.6 mm 

14 Thermo-Fisher HyPurity C18 5 µm, 190 Å 150x4.6 mm 

15 Macherey-Nagel Nucleosil C18 EC 5 µm, 50 Å 100x4.6 mm 

16 Macherey-Nagel Nucleosil C18 EC 5 µm, 100 Å 100x4.6 mm 

17 Macherey-Nagel Nucleosil C18 EC 5 µm, 300 Å 150x4.6 mm 

18 Macherey-Nagel Nucleosil C18 EC 7 µm, 1000 Å 150x4.6 mm 

19 Self-prepared Silica beads 75 µm 50x7.0 mm 
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4.1.4 Results and discussion 

4.1.4.1 Optimization of stationary phase 

According to common literature for PDMS separation [9] with RP-Polymer-HPLC, acetonitrile as 

adsorption promoting solvent and THF as desorption promoting solvent were chosen in preliminary 

experiments. Thus, a C8 stationary phase was selected separating linear and cyclic PDMS (Figure 4.1).  

 

Figure 4.1: Separation of linear and cyclic PDMS with a) acetonitrile/ THF on an Accucore C8 column (100x4.6 mm, 2.6 µm) and 
with b) methanol: water (75:25)/ acetone on a Kinetex PFP column (100x4.6 mm, 2.6 µm); cyclic PDMS is annotated as D plus 

monomoric number and linear PDMS is annotated as Si plus monomeric number. 

The separation performance of this system is limited by repeated peak overlap of linear and cyclic 

siloxanes. Following a classical HPLC approach, different stationary phases (cf. Table 4.1) were tested for 

improving the separation performance. With a pentafluorophenyl (PFP) column an improvement of the 
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separation could be achieved by replacing the adsorption promoting solvents from acetonitrile to an 

adequate mixture of methanol: water (75:25) – the triple bond of acetonitrile prevents the interaction of 

analyte and stationary phase. Finally, the determination could considerably be improved when using an 

Accucore C30 stationary phase in combination with the eluent system methanol: water/ acetone (see 

Figure 4.2). 

 

Figure 4.2: Optimized separation of PDMS applying an Accucore C30 (50x4.6 mm, 2.6 µm) a LC flow rate of 2.0 mL∙min-1, 
methanol: water (75:25) as adsorption promoting solvent and acetone as desorption promoting solvent, the chromatogram in 

detail highlights the oligomeric separation of linear and cyclic oligomers up to 30 repetition units. 

 

4.1.4.2 Optimization of mobile phase composition 

Using acetonitrile, methanol or water as adsorption promoting solvent and acetone, ethanol, isopropanol 

or THF as desorption promoting solvent and mixtures thereof, allowed the investigation of various solvent 

combinations while optimizing the stationary phase for separating PDMS. The choice of an appropriate 

mobile phase composition interfered with separation improvement in terms of polymer solubility in 

stationary and mobile phase. Consequently, the originally used eluent system for the PFP column 

considerably improved the analysis method on other more robust stationary phases, too, e.g. Accucore 

C30 (cf. Figure 4.2). This particular combination of stationary and mobile phases enabled an extended 

separation range, mainly caused by precipitation-re-dissolution and adsorption of the polymer at the 

column. 

9 12 15 18 21 24 27 30

10

20

30

40

50

25 30 35 40 45 50

12

14

16

18

20

30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

11

12

13

14

15

16

 real sample containing

         linear and cyclic PDMS

 D11-D17

s
ig

n
a

l 
[m

V
]

time [min]

a)

0

20

40

60

80

100

ra
ti
o

 a
c
e

to
n

e
 [
%

]

b)

s
ig

n
a

l 
[m

V
]

time [min]

0

20

40

60

80

100

ra
ti
o

 a
c
e

to
n

e
 [
%

]

D16

D17

Si15

Si29

Si28
Si27

Si26
Si25

Si24

Si23

Si22Si21

Si20

Si19
Si18

Si17

Si16

D30D29D28D27D26D25D24D23D22D21
D20D19

s
ig

n
a

l 
[m

V
]

time [min]

D18

60

70

80

90

100

ra
ti
o

 a
c
e

to
n

e
 [
%

]



Separation of linear and cyclic poly(dimethylsiloxanes)  

40 
 

4.1.4.3 Explanation of separation mechanism 

According to the aforementioned findings, a more detailed description of the predominant separation 

mechanism was possible. Particularly, when investigating low molecular weight PDMS  (up to 

3000 g∙mol-1) liquid adsorption chromatography is the prominent separation mode because separation 

efficiency was highly depending on the applied stationary phase. Apart from this, the significance of well-

defined mobile phase composition suggested that an adsorption mechanism is superimposed by a 

mechanism of precipitation and re-dissolving. Further measurements were performed with a silica beads 

column (cf. Figure 4.3), which showed no useful HPLC separation due to absence of stationary phase 

modifications. Applying a stepwise gradient, the PDMS (viscosity of 10 mPa∙s) polymeric distribution was 

measured primarily to fraction re-dissolution mechanism. Fractionated re-dissolving elution overlaying 

HPLC adsorption effects indicated the significance of mobile phase composition. With ideal settings, 

resolving various molecular weight oligomers become possible. 

 

Figure 4.3: Separation of a silicone oil with a viscosity of 10 mPa∙s, containing only linear PDMS oligomers, when applying a 
stepwise gradient (step length 5 min and step height 5 %) using water and acetone as mobile phase on a silica beads (75 µm) 

column excluding HPLC adsorption effects of the stationary phase. 
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4.2 Separation of linear and cyclic poly(dimethylsiloxanes) with polymer high 

performance liquid chromatography – Part II 

 

 

 

Graphical Abstract: Separation of linear and cyclic PDMS. 
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4.2.1 Abstract 

The growing importance of siloxanes in various industrial areas, e.g. health care, cosmetics, automotive 

and construction industries requires further method development of analysis techniques. In addition, and 

complementing gas chromatography analysis, a polymer liquid chromatography method for separation of 

linear and cyclic (poly)dimethylsiloxanes was developed and optimized. By an appropriate choice of 

mobile and stationary phase combinations, separations up to 30 monomeric units are achieved. 

Therefore, various HPLC columns were investigated concerning physical and chemical properties, e.g. pore 

size, silica base material, and column functionality. Furthermore, solubility properties of siloxanes in 

adsorption and desorption promoting solvents were investigated and taking these results into account 

the separation was optimized applying a mixture of methanol: water (75:25, v/v) and acetone. The 

findings indicate, that precipitation / re-dissolution effects superimposed by adsorption chromatography 

result in the oligomer separation of up to 30 monomeric units. Besides method development on an 

analytical scale, linear poly(dimethylsiloxane) oligomers were separated with preparative polymer HPLC. 

These fractions of single oligomers allow further investigations of different material properties beyond 

polymer HPLC. 
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4.2.2 Introduction 

Siloxanes show a broad variety of application areas, because of their exceptional polymer structure. 

Various applications in cosmetics, medicine, automotive or construction industry depend on low 

intermolecular forces between methyl groups, high flexibility in the polymer backbone or low surface 

energies. The usage in antifoams, shock absorbers or release agents only depicts some examples [1, 2]. In 

this study, the important class of poly(dimethylsiloxanes) (PDMS) are separated according to its molecular 

architecture. The PDMS nomenclature depends on the nominal number of oxygen atoms bonded to 

silicon: the basic building blocks M, D, T, and Q represent one, two, three or four oxygen(s) bonded to 

silicon, respectively. Consequently, cyclic PDMS are unambiguously described by the amount of [D]-

building blocks, e.g. D4 stands for the cyclic tetramer octamethylcyclotetrasiloxane [3, 4]. Additionally, in 

this publication the short cut “Si” is used with the appropriate number of oligomers as label for linear 

PDMS oligomers.  

Especially for low molecular weight (up to 8 [D]-blocks) linear and cyclic PDMS analysis is predominantly 

performed with gas chromatography [5, 6]. But with increasing molecular weight liquid chromatographic 

techniques such as size exclusion chromatography (SEC), liquid chromatography at critical conditions 

(LCCC) or polymer HPLC become more favorable. SEC provides separation according to hydrodynamic 

volume or rather molar mass of the investigated polymers. This analytical method is primarily based on 

changes of entropic interactions of the polymer with the separation system. Therefore, typical SEC 

stationary phases consist of particles with different pore diameters for achieving successful separation 

due to differences in molecular size, but any chemical interaction between polymer and stationary phase 

must be prevented [7–9]. In LCCC, separations solely according to chemical functionalities of polymers are 

possible. Therefore, enthalpic and entropic energy changes must balance each other for a separation 

independent of molar mass effects. However, this technique is typically applied for higher molecular 

weight masses in contrast to the separation of linear and cyclic PDMS oligomers up to 30 [D]-block units 

as required in this study. Moreover, LCCC compromises some challenges, as e.g. high susceptibility to 

small changes in analytical conditions or small variations of the investigated polymer sample [12].  

In polymer HPLC, the separation is generally based on molar mass differences as well as on variation of 

chemical functionalities. Compared to HPLC of small molecules, the major differences are small diffusion 

coefficients and reduced solubility of polymers in solution. Apart from this, polymer elution may occur 

due to several different separation mechanisms, like adsorption or precipitation / re-dissolution 

chromatography. The main distinctive feature is the injection of a polymer sample: Assuming an impaired 
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polymer solubility, the well dissolved sample is injected at a stationary phase pre-conditioned with a 

typically very weak (or so-called adsorption promoting) solvent. Thus, subsequent to polymer injection, 

precipitation or at least very strong adsorption on top of the column takes place. Consequently, a 

programmed gradient is usually used to elute the withheld sample, driven by increasing amounts of 

desorption promoting solvent [7, 14–17].   

The choice of a suitable detector for PDMS is limited because of the lack of chromophores and the need 

of gradient elution. Therefore, an evaporative light scattering detector (ELSD) is a good choice, permitting 

gradient elution and a universal detection. Mojsiewicz-Pieńkoswka [22] already described the application 

of this detection technique for the analysis of PDMS with SEC. Based on these investigations, Durner et al. 

[13] optimized the detector performance for linear and cyclic PDMS. In this study, method development 

and optimization for separation of linear and cyclic PDMS oligomers with polymer HPLC is shown. 
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4.2.3 Material and methods 

4.2.3.1 Polymer standards, mobile and stationary phases 

All solvents used were HPLC grade. Acetonitrile, acetone, 2-butanol, methanol, and non-stabilized 

tetrahydrofuran were purchased from Merck (Darmstadt, Germany) and used without further 

purification. Water were obtained from a Milli-Q-Advantage A10 water system (Merck Millipore). All 

applied poly(dimethylsiloxane) standards were obtained from Wacker Chemie AG (Burghausen, 

Germany). The used stationary phases for method development and analytical as well as preparative 

measurements are summarized in Table 4.2. For preparative analysis a mixture of silicone oils with 

viscosities of 5:10:20 mPa∙s at a mixing ratio of 1:1:4 without any solvent dilution, was used. 

Table 4.2: Overview of examined stationary phases for PDMS separation; as annotated the columns were purchased from 
Agilent (Waldbronn, Germany), Macherey-Nagel (Düren, Germany), MicroSolv Technology Corporation (Leland, USA), Thermo-

Fisher (Waltham, USA), Phenomenex (Aschaffenburg, Germany) and YMC (Dinslaken, Germany). 

Manufacturer Name Particle type Dimensions 

Thermo-Fisher Accucore C4 2.6 µm, 150 Å 100 x 4.6 mm 
Thermo-Fisher Accucore C8 2.6 µm, 80 Å 100 x 4.6 mm 
Thermo-Fisher Accucore C18 2.6 µm, 80 Å 100 x 4.6 mm 
Thermo-Fisher Accucore C30 2.6 µm, 150 Å 50 x 4.6 mm 
Phenomenex Kinetex PFP 

Series: 619128-6 
Series: 532053-72 
Series: 525802-13 

2.6 µm, 100 Å 100 x 4.6 mm 

Phenomenex Kinetex F5 
Series: 761360-10 

Series: H16-372649 
2.6 µm, 100 Å 100 x 4.6 mm 

Phenomenex Luna PFP (2) 5 µm, 100 Å 150 x 4.6 mm 
Agilent Poroshell PFP 2.7 µm, 120 Å 100 x 4.6 mm 

YMC Carotenoid C30 3 µm, 80 Å 100 x 4.6 mm 
Thermo-Fisher Accucore C18 aQ 2.6 µm, 80 Å 100 x 4.6 mm 

Agilent Eclipse C18 5 µm, 80 Å 150 x 4.6 mm 
Phenomenex EVO C18 2.6 µm, 100 Å 100 x 4.6 mm 

MicroSolv Technology Cogent Bidentate C18 4.2 µm, 100 Å 150 x 4.6 mm 
Macherey-Nagel Nucleosil 100 C18 5 µm, 100 Å 125 x 4 mm 
Macherey-Nagel Nucleodur Pyramid C18 5 µm, 110 Å 150 x 4.6 mm 
Thermo-Fisher Hypersil BDS C18 2.4 µm, 120 Å 100 x 4.6 mm 
Phenomenex HyperClone BDS C18 5 µm, 130 Å 150 x 4.6 mm 

Thermo-Fisher HyPurity C18 5 µm, 190 Å 150 x 4.6 mm 
Macherey-Nagel Nucleosil C18 EC 5 µm, 50 Å 100 x 4.6 mm 
Macherey-Nagel Nucleosil C18 EC 5 µm, 100 Å 100 x 4.6 mm 
Macherey-Nagel Nucleosil C18 EC 5 µm, 300 Å 150 x 4.6 mm 
Macherey-Nagel Nucleosil C18 EC 7 µm, 1000 Å 150 x 4.6 mm 
Thermo-Fisher Accucore C30 2.6 µm, 100 Å 150 x 4.6 mm 
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4.2.3.2 Instrumentation 

All investigations on analytical scale were performed on a 1100 series LC System of Agilent (Waldbronn, 

Germany) with a tetrahydrofuran-resistant 3215α degasser from ERC (Riemerling, Germany) and a 385 

ELSD of Agilent equipped with an enhanced parallel-path MiraMist® poly(tetrafluoroethylene) nebulizer 

from Burgener Research (Mississauga, Ontario, Canada) at optimized conditions [13] of 40 °C evaporator 

temperature, 90 °C nebulizer temperature and 1.2 SLM (standard liter per minute) gas flow, unless 

otherwise mentioned. Chromeleon 7.2 was used as chromatography software for all measurements. All 

optimization measurements were performed from 100 % A to 100 % B in a linear gradient of 40 min and 

a LC flow rate of 1.0 mL∙min-1 for column dimensions of 100x4.6 mm, 2.6 µm particles, unless otherwise 

mentioned. For all analytical stationary phases with different dimensions, the gradient settings were 

adapted to obtain the same effective linear gradient (40 min at 100x4.6 mm column). The optimized 

method for analytical separation of linear and cyclic PDMS was performed on an Accucore C30 

(50x4.6 mm, 2.6 µm) with a linear gradient starting at (methanol: water (75:25, v/v)): acetone 50:50 and 

ending at 100 % acetone in 160 min and a LC flow rate of 2.0 mL∙min-1.  

Preparative HPLC measurements were performed on an Agilent 1260 Infinity II LC system equipped with 

a TCC 6000 PSS (Mainz, Germany) column oven, a tetrahydrofuran-resistant PSS degasser, and an Agilent 

35900 E analogue/ digital converter and a PL ELS 1000 as detector. For fraction collection an Agilent 1260 

Infinity II fraction collector was used. Open Lab CDS C.01.08 was used as chromatography software. A 

mixture of methanol: water (75:25, v/v) was used as adsorption promoting solvent and acetone as 

desorption promoting solvent. The used gradient settings are summarized in Table 4.3. For monitoring 

the purity of the collected fractions, a Bruker (Bremen, Germany) amazon SL ion trap liquid 

chromatography mass spectrometer, equipped with an electrospray ionization interface, was used. 

Table 4.3: Gradient program for preparative separation of a 1:1:4 mixture of linear PDMS with viscosities of 5, 10, and 20 mPa∙s 
on an Accucore C30 (150x4.6 mm) with methanol: water (75:25, v/v) as solvent A, acetone as solvent B, and THF as flush 

solvent C. 

time/ min solvent A/ % solvent B/ % solvent C/ % LC flow rate/ mL∙min-1 

0.00 50.0 50.0 0.0 2.0 
40.00 17.0 83.0 0.0 2.0 
90.00 7.0 93.0 0.0 2.0 
90.50 0.0 0.0 100.0 2.0 
96.00 0.0 0.0 100.0 2.0 
96.01 50.0 50.0 0.0 1.0 
97.00 50.0 50.0 0.0 2.0 

103.00 50.0 50.0 0.0 2.0 
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4.2.4 Results and discussion 

Alkyl chain stationary phases in combination with acetonitrile as adsorption promoting and 

tetrahydrofuran (THF) as desorption promoting solvent are used for PDMS analysis, based on common 

reversed phase polymer HPLC [10, 11]. Hence, method development was started comparing four 

stationary phases with different alkyl chain length (C4 (a), C8 (b), C18 (c), C30 (d), see Figure 4.4). 

 

Figure 4.4: Method development for separating cyclic (orange) from linear (blue) PDMS based on a linear gradient of 40 min 
with starting from 100 % acetonitrile to 100 % THF on alkyl chain columns: a) C4 column, b) C8 column, c) C18 column, and 

d) C30 column. 
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Apart from the C30 column, all other stationary phases showed at least partial separation of several linear 

and cyclic oligomers. However, the separation performance in all cases was insufficient. Aside from this, 

ELS detection of the measurement series (Figure 4.4 a) – d)) was performed over a period of three weeks 

using a concentric glass nebulizer. During this time, a continuous decrease in signal intensity was observed 

comparing the initially used C4 column and the finally used C30 column. The improvement of ELSD 

performance was already published elsewhere [13] and as described there, especially for PDMS analysis, 

the use of an enhanced poly(tetrafluoroethylene) (PTFE) parallel path nebulizer is useful.  

 

Figure 4.5: Comparison of three batches of Phenomenex PFP columns (100x4.6 mm) with methanol: water (75:25, v/v) as 
adsorption promoting solvent and acetone as desorption promoting solvent: a) series 619128-6, b) series 532053-72, and 

c) series 528502-13; cyclic PDMS orange and linear PDMS blue. 
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Consequently, for all further measurements an enhanced PTFE nebulizer was used improving the detector 

long-term stability and signal intensity. As shown in [18], for PDMS analysis an optimization in oligomer 

separation could be achieved by applying a C8 column and by using a convex gradient with extended total 

runtime. Whereby, even this improvement showed repeated changes in the elution order of linear and 

cyclic oligomers. For this reason, a change in the separation system concerning stationary and mobile 

phase was necessary. Applying a pentafluorophenyl column seemed appropriate because of its very 

different selectivity and the possibility of stereoisomer separation [19]. Beside electron donor / acceptor 

interactions, presumably the π-π interactions of the aromatic pentafluorophenyl group led to a change of 

the separation of linear and cyclic PDMS oligomers (Figure 4.5).  

Acetonitrile with its triple bond blocks this π-π stacking effects and had to be replaced with a different 

proper adsorption promoting solvent. Thus, a mixture of methanol and water (75/25, v/v) was used to 

adjust a similar elution strength as pure acetonitrile [20, 21]. Furthermore, in place of THF, acetone was 

found to be a suitable desorption promoting solvent when using pentafluorophenyl columns. These 

modifications of the separation system showed increased separation performance without crossed 

elution of linear and cyclic PDMS up to 17 [D] repetition units. Beside the improved separation result, a 

major drawback using a Phenomenex Kinetex PFP column was the stationary phase’s batch-to-batch 

reproducibility (see Figure 4.5 a) - c)). Applying other pentafluorophenyl columns from other 

manufactures, e.g. Agilent Poroshell PFP, Phenomenx Luna PFP (2) or Phenomenex Kinetex F5 resulted in 

a decreased separation performance. Thus, further optimization had to be done and the lack of separation 

performance comparing various pentafluorophenyl columns showed that presumably not only the 

modification of the stationary phase determined the separation. Because of these findings, modifications 

of the mobile phase components were investigated applying linear alkyl chain columns. 

Furthermore, the LC flow rate was increased from 1.0 mL∙min-1 to 2.0 mL∙min-1 decreasing run time 

without losing separation performance. This change showed a substantial improvement in peak 

separation when using an Accucore C30 column (see Figure 4.6 b) and c)). Figure 4.6 b) and c) only differ 

in the gradient slope of acetone (i.e. the acetone volume ratio change per minute) from 12.5∙10-3 min-1 

for b) to 3.125∙10-3 min-1 for c). Consequently, beside the increase in separation performance, the 

flattening of the gradient slope led to an increased measurement time. Nevertheless, an effective gradient 

runtime of 160 min (Figure 4.6 c)) was a good compromise between total runtime and separation 

performance. 
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Figure 4.6: Comparison of two C30 columns with methanol : water (75:25, v/v) as adsorption promoting solvent and acetone as 
desorption promoting solvent: a) YMC carotenoid C30 (100x4.6 mm) and b) Accucore C30 (50x4.6 mm) with an effective linear 

gradient of 40 min duration; c) Accucore C30 with an effective linear gradient of 160 min and a LC flow rate of 2.0 mL∙min-1. 

The comparison to another C30 column (YMC Carotenoid C30, 100x4.6 mm, Figure 4.6 a)) showed no 

separation of cyclic and linear oligomers at all. This result revealed, that apart from the chemical 

modification of the stationary phase, presumably the manufacturing process itself and the type of 

particles may have an important impact. 

Consequently, additional stationary phases (Figure 4.7, Table 4.2) were compared to investigate 

separation differences and dependencies on further column characterizing parameters, e.g. particle 

diameter or C18 base silica material. Each subsequent measurement was carried out with methanol: 
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water (75:25, v/v) as adsorption promoting solvent, acetone as desorption promoting solvent, and an 

effective linear gradient of 40 min (on a column with 50x4.6 mm, 2.6 µm) adapted to the different column 

dimensions, respectively. As quality criterion for separation, the last baseline separated cyclic and linear 

PDMS oligomer was used. The comparison of C18 columns showed no considerable tendencies regarding 

particle diameter or other column specific parameters - only larger column pore sizes seemed to be having 

an effect (e.g. Hypersil BDS C18, HyPurity C18, Accucore C30). Even the comparison of various C18 

columns with Accucore C30, Accucore C4 or a pentafluorophenyl column showed no direct correlation. 

As consequence, minor differences in the physics and chemistry of the column could result in major 

differences in the separation of polymer HPLC. Beside this, three stationary phases – Hypersil BDS C18 

(100x4.6 mm), HyPurity C18 (150x4.6 mm) and Accucore C30 (50x4.6 mm) showed the best separation 

results. Comparing these three stationary phases with each other regarding total runtime, the Accucore 

C30 was shorter in length and, consequently, offered shorter runtimes. Nonetheless, all three stationary 

phases provided a good separation performance for linear and cyclic PDMS oligomers. 

 

Figure 4.7: Separation performance of various stationary phases, assessed according to the last separated pair of cyclic and 
linear PDMS oligomers, all measurements were performed applying an effective linear gradient of 40 min with methanol: water 

(75:25, v/v) as adsorption promoting solvent and acetone as desorption promoting solvent. 
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For further investigations of the influence of column pore size on separation quality, an additional 

measurement series was performed using four C18 columns from the same manufacturer (Macherey-

Nagel) while only varying mean pore sizes from 50 up to 1000 Å (see Table 4.4). 

Table 4.4: Extended overview of tested columns from Macherey-Nagel concerning pore size effects; all columns were purchased 
in April 2017. 

Column name 
mean pore 

size/ Å 
Carbon 

content/ % 
surface area 
silica/ m2∙g-1 

binding density/ 
µmol∙m-2 

Nucleosil C18 EC 50 14.5 420 1.70 
Nucleosil C18 EC 100 15.0 350 2.11 
Nucleosil C18 EC 300 6.5 100 3.20 
Nucleosil C18 EC 1000 1.0 25 1.97 

 
Except of mean pore size, the column’s carbon content C%, silica surface area S and binding density db 

were under investigation, too. Calculation of the binding density was done according to equation (1) [23] 

taking the molar mass M and number of carbon atoms per ligand nc into account. 

𝑑𝑏[µ𝑚𝑜𝑙/𝑚2] =
106 𝐶%

1200 𝑛𝑐 − 𝐶% (𝑀 − 1)
∙

1

𝑆
 (1) 

 

 

Figure 4.8: Dependence of the retention time of cyclic PDMS oligomers (D11-D17) on the mean pore size; the right y-axis depicts 
the characteristics of carbon content in context to mean pore size. The measurements were done with methanol: water (75:25, 

v/v) as adsorption promoting solvent and acetone as desorption promoting solvent and an effective linear gradient of 40 min on 
four different Nucleosil C18 EC columns described in Table 4.4. 
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Equation (1) showed that mean pore size, carbon content, and surface area were depending on each other 

for different columns. Figure 4.8 depicts a plot comparing the retention times of cyclic PDMS with respect 

to the mean pore size. Generally, with increasing pore size the retention times of the oligomers decreased, 

while the separation performance in case of 1000 Å was found insufficient for cyclic oligomers. Thus, the 

separation performance decreased with increasing pore size. However, it was not possible to determine 

whether the separation quality was affected by pore size or other parameters. 

Like the choice of stationary phase, as already discussed, the optimization of the mobile phase 

composition had decisive influence on the separation quality. Therefore, the combination of various 

common HPLC solvents were investigated. Using pure solvents, like acetonitrile as adsorption promoting 

solvent or THF as desorption promoting solvent, led to insufficient separation of linear and cyclic PDMS 

oligomers, as depicted in Figure 4.4. For the examined low molecular weight PDMS samples, methanol 

was a partial solvent and therefore, using pure methanol as adsorption promoting solvent was not an 

option. Furthermore, water was a too strong non-solvent and resulted in longer retention times for PDMS 

in combination with a minimization of the elution range. Taking these results and the aforementioned 

constraints of pentafluorophenyl columns for acetonitrile into account, a solvent mixture of methanol and 

water with a mixing ratio of 75:25 (v/v) was found considerably improving the separation quality (see 

Figure 4.6). Additionally, the desorption promoting solvent THF showed overtightened dissolving 

properties so that a less stronger solvent was needed for low molecular mass PDMS. For PDMS with up to 

30 [D-] repetition units, acetone was found to be an appropriate compromise. Substituting acetone with 

the next higher homologue 2-butanone (containing one methyl group more) showed a considerable 

decrease in separation of oligomers (see Figure 4.9 c)). 

All subsequently discussed data referring to pre-mixed mobile phase components present the best 

separation result for the appropriate pair of solvent mixtures. Figure 4.9 a) depicts an inadequate 

separation quality by using a mixture of acetonitrile and water (50:50, v/v) in combination with acetone. 

Substituting the acetonitrile- water- mixture with acetone and water (75:25, v/v) in combination with pure 

acetone as desorption promoting solvent resulted in a partial separation of linear and cyclic PDMS 

oligomers (Figure 4.9 c)). However, none of these modifications of the mobile phase composition could 

improve the performance compared to methanol: water (75:25, v/v) and acetone at a C30 column. 
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Figure 4.9: Variation of mobile phase components (adsorption promoting solvent | desorption promoting solvent) on a Accucore 
C30 (50x4.6 mm) column: a) acetonitrile: water (50:50, v/v) | acetone, b) acetone: water (75:25, v/v) | acetone, c) methanol: 

water (75:25, v/v) | 2-butanone; cyclic PDMS orange, mixture of linear and cyclic PDMS green. 

Regarding the separation mechanism, polymer liquid chromatography provides various interactions 

between polymer and stationary phase, e.g. size exclusion effects, adsorption chromatography or 

precipitation / re-dissolution chromatography [17]. Based on the comparison of column pore size and the 

parameters carbon content and surface area, the influence of actual size exclusion effects should be 

circumstantial. As mentioned in [17, 24–26] an unambiguous differentiation between adsorption and 

precipitation / re-dissolution effects was difficult for the investigated low molecular weight PDMS 

oligomers. In ideal precipitation / re-dissolution chromatography altering the stationary phase should not 

result in different retention times for a polymer. As shown by comparing various stationary phases, the 



Separation of linear and cyclic poly(dimethylsiloxanes)  

56 
 

separation performance remarkably differs for cyclic and linear PDMS oligomers. Thus, adsorption 

chromatography had a major impact on oligomer separation of PDMS. However, the superordinate 

influence of the mobile phase composition indicated a slight overlay with precipitation / re-dissolution 

effects.  

In addition to analytical separation of PDMS oligomers, preparative polymer HPLC was used to fractionate 

pure linear PDMS oligomers. Therefore, a mixture of silicone oils, containing linear oligomers only, with 

viscosities of 5:10:20 mPa∙s at a mixing ratio of 1:1:4, without any solvent was directly injected on an 

Accucore C30 column (150x4.6 mm). Again, a mixture of methanol: water (75:25, v/v) was used as 

adsorption promoting solvent and THF as desorption promoting solvent with a multi-linear gradient 

shown in Table 4.3. After injecting 1.0 mL of the PDMS mixture, linear PDMS oligomers from Si9 up to Si48 

(depicted in Table 4.5) were obtained by fraction collection. The purity of each fraction was analyzed with 

LC-MS and for most fractions purities above 95 or 99 % were found. The major impurities were hydroxy 

terminated linear PDMS and low amounts of cyclic silicones. The results of semi-preparative studies 

showed a good applicability of the analytical separation approach. Moreover, combining preparative 

polymer HPLC with other analytical methods may improve the understanding of varying behaviors of 

different linear PDMS oligomers in future investigations. 
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Table 4.5: Amount of linear PDMS oligomers fractionated by preparative HPLC on an Accucore C30 column (150x4.6 mm) and 
the corresponding purity determined by LC-MS. 

Name Amount/ mg LC-MS purity/ % 

Si9 7.2 > 99 
Si10 15.5 > 99 
Si11 20.2 > 99 
Si12 24.6 > 99 
Si13 29.9 50 
Si14 28.9 > 99 
Si15 24.9 > 99 
Si16 22.4 > 99 
Si17 19.9 > 99 
Si18 18.4 > 99 
Si19 16.5 50 
Si20 17.5 50 
Si21 17.7 75 
Si22 15.5 90 
Si23 19.2 95 
Si24 17.7 > 95 
Si25 17.2 > 95 
Si26 16.2 > 95 
Si27 15.5 > 99 
Si28 15.0 > 95 
Si29 14.1 > 95 
Si30 13.1 > 95 
Si31 13.0 > 95 
Si32 12.1 > 95 
Si33 12.5 > 99 
Si34 9.9 > 99 
Si35 9.9 > 99 
Si36 9.5 > 99 
Si37 8.9 > 99 
Si38 7.9 > 99 
Si39 8.1 > 99 
Si40 7.2 > 99 
Si41 7.2 > 99 
Si42 5.3 > 99 
Si43 5.9 > 99 
Si44 5.7 > 99 
Si45 4.7 > 99 
Si46 4.4 > 99 
Si47 4.6 > 99 
Si48 4.3 > 99 
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4.2.5 Conclusion 

A polymer HPLC method for separation of linear and cyclic PDMS was developed and optimized. The new 

method offers complementary information to gas chromatography for low molecular weight PDMS 

oligomers and expanded the analytical range of baseline separated linear and cyclic oligomers up to 

30 [D-] block units. Therefore, stationary phase and mobile phase were optimized investigating several 

parameters. On the one hand, the chemical and physical properties, like pore size, carbon content, silica 

basis material or phase modification of the stationary phase were adjusted achieving an efficient 

separation system. On the other hand, various mobile phase compositions showed the dependence on 

oligomer separation regarding minor changes in polymer solubility and elution strength. Taking all 

parameters together, the separation mechanism may be primarily driven by adsorption effects 

superimposed with solubility or rather precipitation / re-dissolution effects. In addition to the analytical 

method development, preparative separation of linear PDMS oligomers was investigated and the 

appropriate oligomers were isolated for the first time. Fractions containing only a single oligomer were 

obtained allowing further investigations of these isolated species with other analytical techniques, such 

as mass spectrometry and nuclear magnetic resonance spectrometry. 
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5.1 Abstract 

The adaption of a parallel-path poly(tetrafluoroethylene)(PTFE) ICP-nebulizer to an evaporative light 

scattering detector (ELSD) was realized. This was done by substituting the originally installed concentric 

glass nebulizer of the ELSD. The performance of both nebulizers was compared regarding nebulizer 

temperature, evaporator temperature, flow rate of nebulizing gas and flow rate of mobile phase of 

different solvents using caffeine and poly(dimethylsiloxane) (PDMS) as analytes. Both nebulizers showed 

similar performances but for the parallel-path PTFE nebulizer the performance was considerably better at 

low LC flow rates and the nebulizer lifetime was substantially increased. In general, for both nebulizers 

the highest sensitivity was obtained by applying the lowest possible evaporator temperature in 

combination with the highest possible nebulizer temperature at preferably low gas flow rates. Besides the 

optimization of detector parameters, response factors for various PDMS oligomers were determined and 

the dependency of the detector signal on molar mass of the analytes was studied. The significant 

improvement regarding long-term stability made the modified ELSD much more robust and saved time 

and money by reducing the maintenance efforts. Thus, especially in polymer HPLC, associated with a 

complex matrix situation, the PTFE-based parallel-path nebulizer exhibits attractive characteristics for 

analytical studies of polymers. 
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5.2 Introduction 

With evaporative light scattering detectors (ELSD), it is possible to detect analytes without chromophores. 

Therefore, this universal HPLC detector, exhibiting good suitability for gradient elution protocols, is an 

attractive alternative to the typically used diode array detector in HPLC or refractive index detector in size 

exclusion chromatography (SEC). An important field of application is the investigation of polymers [1,2]. 

The use of ELSD for studies of carbohydrates [3], poly(dimethylsiloxane) [4] or poly(ethylene glycol) [5,6] 

is already well established. Nevertheless, the ELSD also has some constraints, i.e. the non-linear 

dependence of the ELSD signal on sample concentration and restriction to volatile or semi volatile mobile 

phases and correspondingly to analytes which are not vaporable through the detection process [7,8]. For 

understanding the potentials and limitations of the device a detailed analysis of the process associated 

with this detection principle is necessary. The signal generation is determined by the following three steps: 

Initially the liquid effluent from liquid chromatography is nebulized, followed by evaporation of the mobile 

phas and finally the remaining analyte particles are transferred to a measurement cell where a light beam 

is scattered by the latter and detected with a photomultiplier [9–12].  

Mojsiewicz-Pienkowska [13] classified four groups of factors which influence the signal response of an 

ELSD: (i) parameters determining the separation procedure (e.g. flow and composition of mobile phase); 

(ii) parameters which can be modified by the user without influencing the actual separation in liquid 

chromatography (e.g. detector temperatures, nebulizer type); (iii) chemical and physical properties of the 

investigated analyte (e.g. molecular weight, vapor pressure) and (iv) types of different nebulization gases 

(e.g. different heat conductivities [14]). The most important parameters which can be varied for 

optimization of the detector response are factors one and two. Thus, the nebulizer and evaporator 

temperature, ELSD gas flow, type of nebulizer and the detection parameters of the scattered light are the 

aspects the analytical chemist should properly adjust because the complexity of the detector is mostly 

determined by these interactions [15,16]. Additionally, parameters like the choice of mobile phase and 

flow rate also affect the ELSD response significantly.  

In the initial detection step, the effluent of the LC system gets nebulized to a primary aerosol, which shows 

a narrow polydispersity and particle distribution [11]. The amount of nebulization gas has to be adjusted 

carefully to generate an ideal aerosol, consisting of the majority of analyte particles and adequate amount 

of mobile phase. Furthermore, the aerosol formation should be robust and thus generate a flat baseline 

with low noise. For organic solvents, a low gas flow is usually preferred. As soon as the mobile phase 

contains small amounts of water, a higher gas flow or evaporator temperature is necessary for complete 
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nebulization of the droplets. An appropriate and uniform aerosol is an important prerequisite for a robust 

detector performance. After nebulization, the remaining mobile phase in the primary aerosol is 

evaporated in a heated drift tube. In ideal case only analyte particles pass the drift tube. Small aerosol 

droplets facilitate an efficient evaporation because of their larger surface-to-volume ratio [7] compared 

to large droplets.  

Apart from this, special attention needs to be paid to prevent the evaporation of easily vaporizable 

analytes. For these substances, it might be advisable to decrease the evaporation temperature if possible 

in order to obtain sufficient detector response. After evaporation of the mobile phase, the primary aerosol 

is essentially changed to an aerosol containing only large analyte particles that ideally scatter light. In 

general, three different kinds of light scattering are considered: reflection-refraction, Rayleigh and Mie 

scattering. The entire scattering process is dominated by the wavelength of the incident light beam and 

the particle diameter d. Rayleigh scattering occurs from particles which are much smaller than the 

wavelength of the incident light while scattering by reflection and refraction is dominated by larger 

particles. In between, Mie scattering, which is slightly asymmetric in comparison to Rayleigh scattering, 

occurs. The asymmetry in direction of propagation leads to decreased light intensity in the light measuring 

angle [15]. At a ratio of d/ of about 3.5 the detector sensitivity is in an optimum [17]. A further 

comprehensive theoretical discussion is beyond the scope of this work and can be found elsewhere [15–

18]. An unfavorable ratio of surface area to volume results in a reduced detector performance. 

Monochromatic light sources, like LED or laser with a short wavelength radiation are used in the most 

cases to obtain an appropriate detector signal. In conclusion, scattering processes due to particle 

distributions result in a non-linear behavior of the ELSD [7,8,17].  

In addition to parameters discussed above, the mobile phase also affects the detection process. Thus, 

different optimizations for improvement of the signal intensity are described. Stolyhwo et al. [14] and 

Mathews et al. [19] proposed an adaption of ELSD parameters during gradient elution, due to the change 

of mobile phase composition. The complex process of signal generation leads to various optimized settings 

for different solvents, but to our knowledge, it is not completely understood yet which solvent parameter 

is significant for an alteration in sensitivity. Viscosity, density, surface tension, vapor pressure or boiling 

point (summarized in Table 5.1) might influence the detection process [12].  
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The investigation of analytes like PDMS is commonly done with ELSD and could be used as typical model 

substance in polymer HPLC, and thus a detailed analysis of these species shows the influences of molar 

mass and polymer matrix. In the recent years, applications of PDMS in various areas, e.g. in cosmetics, 

medicine or pharmacy showed increasing importance. Siloxanes are used as detergents, coating 

excipients in various pharmaceuticals or as implants [22–24]. 

Table 5.1: Overview of selected data of relevant solvents; *) data taken from [20], all other data out of [21]. 

Solvent 
Viscosity 
(T=25 °C) 
[mPa∙s] 

Density 
(T=30 °C) 
[g∙mL-1] 

Vapor pressure 
(T=25 °C) [kPa] 

Boiling 
temperature 

[°C] 

Surface tension 
(T=25°C) 
[mN∙m-1] 

Acetonitrile 0.369 0.7707 11.9 81.6 28.66 
Tetrahydrofuran 0.456 0.8833 21.6 66.0 26.4 *) 

Acetone 0.306 0.7796 30.8 56.1 22.71 
Methanol 0.544 0.7815 16.9 64.5 22.17 

 
With polymer HPLC, a detailed analysis of silicone oils and a separation of several particular oligomers are 

possible. Furthermore, detailed information about the influence of molar mass and polymer matrix on the 

detection process is obtained. In a recent publication, Mojsiewicz-Pienkowska [13] analyzed linear 

siloxanes of different viscosities with SEC and investigated the influence of flow rate of nebulizer gas, 

temperature of drift tube and flow rate of mobile phase on the ELSD signal. Based on these results, further 

investigations can contribute to a more detailed understanding of this polymer type.  

Since its invention by Charlesworth [15], various types of ELSDs were investigated. As each manufacturer 

uses a slightly different setup of the detector, it is difficult to compare different detector models. Reports 

on comparative characterization are very rare [2,7,8]. The nebulization step is a very crucial point and 

especially in case of polymer analysis the issue of decreasing signal occurs, when high amounts of sample 

matrix prevail. In this case, polymer matrix includes both, other polymers than the analyte polymer and 

high molecular weight constituents of the investigated polymer. The challenge of these types of matrices 

occurs at the tip of the nebulizer where small amounts thereof remain as fragments and may lead to 

nebulizer clogging after several measurement series. Especially in case of a concentric glass nebulizer 

which is installed in some commercially available ELSDs, polymer sample components can clog the tip of 

the thin capillary within the nebulizer. In order to overcome these problems, a more robust type of 

nebulizer is desirable. The comparison with different nebulization-based techniques, as for example 

inductively coupled plasma mass spectrometry (ICP-MS), shows similar concerns regarding high amounts 

of matrix. For ICP-based techniques, it is recommended to use a parallel-path poly(tetrafluoroethylene) 

(PTFE) nebulizer in place of a concentric glass nebulizer to avoid capillary clogging [26–29]. For the 
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compatibility with ELSD, the given dimensions of the nebulizer have to be considered as well as its shape, 

diameter and range of flow rate. These constraints were fulfilled by a parallel path PTFE nebulizer 

developed by Burgener [30–32]. In the present work, a comparison of both nebulizers is done with 

caffeine as model analyte and PDMS as an important practical application in the field of polymer analysis. 

Detector parameters were optimized for both ELSD configurations. Furthermore, the application of the 

parallel-path PTFE nebulizer for PDMS analysis and ELSD response factors concerning different molar mass 

oligomers were determined. 
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5.3 Material and methods 

5.3.1 LC system and ELSD 

All used solvents were HPLC grade. Acetonitrile (ACN), acetone, methanol (MeOH) and non-stabilized 

tetrahydrofuran (THF) were purchased from Merck (Darmstadt, Germany) and used without further 

purification. Water of a Milli-Q-Advantage A10 water system (Merck Millipore) was used. The 

measurements were performed on an 1100 series LC system of Agilent (Waldbronn, Germany) with a THF-

resistant 3215α degasser from ERC (Riemerling, Germany) and diode array detector at 272 nm detection 

wavelength for caffeine. An Agilent 385 evaporative light scattering detector was used. Nitrogen was used 

as carrier gas and the gas flow was set to 1.2 SLM (standard liter per minute) unless otherwise mentioned. 

Two different types of nebulizer, the Agilent concentric glass nebulizer (Figure 5.1 a) and an enhanced 

parallel-path MiraMist® PTFE nebulizer (Figure 5.1 b) from Burgener Research Inc. (Mississauga, Ontario, 

Canada), purchased from AHF Analysentechnik AG (Tübingen, Germany), were used. The signal generation 

of the ELSD could be tuned regarding three parameters: (i) evaporator temperature from 10 to 80 °C, (ii) 

nebulizer temperature from 25 to 90 °C and (iii) a gas flow from 0.9 to 3.25 SLM. 

 

Figure 5.1: Schematic overview of nebulizer configurations used in this study: a) concentric glass nebulizer and b) parallel-path 
PTFE nebulizer, designed with software package Blender based on pictures of the nebulizers. 
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5.3.2 Stationary phases 

A restriction capillary (15 m length and 0.18 mm ID from OQ/PQ Kit) from Thermo Fisher Scientific 

(Waltham, USA) was used for all measurements with caffeine and the ELSD optimization with PDMS. The 

use of a capillary simulated real polymer measurement conditions concerning pressure and peak width. 

Further, a Thermo Fisher Scientific (Waltham, USA) Accucore C30 column (50 x 4.6 mm and 2.6 µm particle 

size superficially porous particles) was used for all analytical studies of PDMS and an Accucore C4 column 

(100 x 4.6 mm and 2.6 µm particle size) was used for the endurance tests of the investigated nebulizers. 

The column oven temperature was set to 30 °C. 

5.3.3 Caffeine analysis 

Caffeine of HPLC-grade quality was purchased from Sigma-Aldrich (Darmstadt, Germany) and used as a 

500 µg∙mL-1 solution in the respective solvent. The injection volume was 2 µL for all measurements and 

the verification with DAD showed uncertainties (n=5) below 0.5 %. 

5.3.4 PDMS analysis 

PDMS samples of different viscosities (5, 10, 20, 50, 100, 1000 and 10000 mPa∙s) were obtained from 

Wacker Chemie AG (Burghausen, Germany). All measurements with the restriction capillary were done 

with 3 µL injection volume at a sample concentration of 0.5 mg∙mL-1 in THF. For gradient separation on 

the C30 column, eluent A consisted of 75 % methanol and 25 % water and eluent B was 100 % acetone. 

The gradient started at 50 % B with a gradient slope of 3.125∙10-3 min-1. The calibration standard Si16 (see 

Table 5.2) was a fraction of silicone oil with a viscosity of 10 mPa∙s and a purity higher than 99 % was 

determined with LC-MS. The analyzed oligomers Si12 to Si50 were part of three PDMS samples with 

viscosities of 10, 20 and 50 mPa∙s. 

Table 5.2: Calibration data for Si16, concentrations and corresponding signal areas; RSD for calibration 2.5 %. 

concentration 
[µg∙mL-1] 

signal area 
[mV∙min] 

RSD (n=3) 
[%] 

6.6 0.0460 2.14 
23.1 0.2948 1.48 
45.3 0.7651 1.64 
73.0 1.3861 1.73 

217.7 6.6052 1.32 
473.6 22.9891 1.58 
811.3 55.1592 1.28 
920.1 68.1832 1.17 
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5.4 Results and discussion 

Two different types of nebulizer (illustrated in Figure 5.1) were studied and the responses of the 

respective ELSD configurations were optimized and compared. The conventional concentric glass 

nebulizer showed good performance at low amounts of sample matrix, but for polymer samples, the signal 

decreased. It was expected that a parallel-path PTFE nebulizer should be less affected by matrices in long-

term usage [29]. This is especially important for polymer analysis, where high amounts of sample matrix 

are present as explained above. Comparison and evaluation of both types of nebulizer are important 

because to our knowledge this is the first time that the integration of a parallel-path PTFE nebulizer into 

an Agilent ELSD is reported. Therefore, at first caffeine, which is easily available, readily soluble in various 

solvents and used for operational and performance qualification of Agilent ELSDs, was used to compare 

general, analyte independent, performance characteristics. Second, PDMS in high amount of polymer 

matrix was investigated concerning long term stability of the detector response and detector 

optimization. All presented data points were measured in triplicate and presented as mean value unless 

otherwise stated. In addition to the two types of nebulizer, three detector parameters namely evaporator 

temperature, nebulizer temperature and gas flow as well as the effect of various solvents and LC flow 

rates on the detector response were studied. 
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5.4.1 Caffeine measurements 

The effect of flow rate of the nebulizer gas on the signal response of caffeine is depicted in Figure 5.2 a) 

for THF. A similar behavior is observed for other organic solvents, e. g. acetone. The result that the peak 

area or signal-to-noise ratio decreases with increasing flow rate of the nebulizer gas is in accordance with 

published data [6,13,14]. In this respect, the investigated parallel-path PTFE nebulizer and the concentric 

glass nebulizer showed similar performances.  

 

 

Figure 5.2: a) Influence of flow rate of nebulizer gas on the peak area of caffeine with THF as mobile phase for concentric glass 
and parallel-path PTFE nebulizer; influence of flow rate of nebulizer gas on the peak area of PDMS of 10 mPa∙s, 100 mPa∙s, and 
1000 mPa∙s for b) concentric glass nebulizer and c) parallel-path PTFE nebulizer; error bars (n=5) are indicated; TE = 30 °C, TN = 

60 °C, and the LC flow rate was 1 mL∙min-1. 



Optimization of an ELSD 

72 
 

For all subsequent measurements (of caffeine and later PDMS) the flow rate of the nebulizer gas was set 

to 1.2 SLM (standard liter per minute) because higher gas flow rates generated smaller aerosol particles 

and therefore a reduced scattering signal. Lower gas flow rates prevented the formation of a proper 

aerosol by changing the detector temperatures in extreme (low evaporator and high nebulizer 

temperature) regions.  

More complicated results were expected for the variation of evaporator and nebulizer temperatures, 

because both temperatures are not independent from each other. The results for acetone (a), 

methanol (b), tetrahydrofuran (c), and acetonitrile (d) are presented in Figure 5.3 and showed generally 

very similar trends.  

 

Figure 5.3: Dependence of caffeine peak area on different settings for nebulizer- and evaporator-temperature for a) acetone, 
b) methanol, c) THF, and d) acetonitrile; cubes and spheres represent the glass nebulizer and PTFE nebulizer, respectively; 

different settings for nebulizer temperature TN are color-coded and connected by dotted lines (red: TN = 20 °C, pink: TN = 40 °C, 
green: TN = 60 °C, blue: TN = 90 °C); LC flow rate was 1 mL∙min-1 and gas flow rate was 1.2 SLM. 
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For each set of different nebulizer temperatures one color was chosen and the orientation of the 3D 

diagrams was adapted to give a better overview. A more detailed overview of the diagrams is given as 

separate contour plots (Figure 5.4 for parallel-path PTFE nebulizer and Figure 5.5 for concentric glass 

nebulizer). 

 

 

Figure 5.4: Dependence of caffeine peak area on different settings for nebulizer- and evaporator-temperature for a) acetone, 
b) methanol, c) THF, and d) acetonitrile for parallel-path PTFE nebulizer shown as a contour plot; LC flow rate was 1 mL∙min-1 

and gas flow rate was 1.2 SLM. 
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Figure 5.5: Dependence of caffeine peak area on different settings for nebulizer- and evaporator-temperature for a) acetone, 
b) methanol, c) THF, and d) acetonitrile for concentric glass nebulizer shown as a contour plot; LC flow rate was 1 mL∙min-1 and 

gas flow rate was 1.2 SLM. 

The maximum peak area for methanol and acetonitrile was slightly different from THF and acetone, where 

the maximum signal was obtained for the lowest evaporator temperature and the highest nebulizer 

temperature. But these are only general trends. Considering absolute values, there are significant 

differences regarding the kind of solvent. Acetone and methanol showed considerably larger signals than 

acetonitrile and THF. This result emphasizes the importance of choice of a proper mobile phase or mobile 

phase composition for optimum detector performance. According to Table 5.1 it can be assumed that the 

differences of various solvents are caused by differences in the surface tension. Nevertheless, reducing 

the solvent composition to only one parameter seems to be an oversimplified approach when considering 

comprehensive publications concerning the effect of the mobile phase on response of the ELSD [11,18,19]. 

Thus, further research will be necessary to understand the complex behavior. According to the present 
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investigations there are no significant differences in the behavior of concentric glass nebulizer and 

parallel-path PTFE nebulizer concerning detector temperature settings. These findings showed that in 

case of molecules like caffeine there are no disadvantages of the investigated parallel-path PTFE nebulizer 

in comparison to the original concentric glass nebulizer.  

In further experiments the LC flow rate was modified in a range from 0.1 to 2.0 mL min−1. For both 

nebulizers, the results for caffeine were very similar to the measurements with the later discussed PDMS 

samples (see section 5.4.2.1). The parallel-path PTFE nebulizer showed the most sensitive peak signal for 

a flow rate of 0.1 mL min−1 at the minimum detector response of the concentric glass nebulizer. For both 

nebulizers a similar behavior was observed in the range from 1.0 to 2.0 mL min−1. Replacing the concentric 

glass nebulizer with a parallel-path PTFE nebulizer, low LC flow rates led to a much-improved detector 

response and therefore the application in miniaturized devices might be possible. 
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5.4.2 PDMS measurements 

In analogy to the measurements of caffeine described above, evaporator temperature, nebulizer 

temperature and ELSD gas flow were optimized. Furthermore, the influences of LC flow rate and different 

PDMS viscosities on the detector signal were determined. Finally, the separation of different PDMS 

oligomers and long-term performance of both nebulizers were studied. 

5.4.2.1 ELSD optimization 

Based on the results of caffeine measurements, the detector optimization was done in a similar way. Only 

two solvents (acetone and THF) were tested, because of a reduced solubility of the used PDMS (viscosity 

10 mPa s) in comparison to caffeine. Variation of the ELSD gas flow showed the same tendencies for PDMS 

(Figure 5.2 b) and c)) as for caffeine, which is in further accordance to literature. Thus, a low gas flow is 

usually recommended for good detector performance. Figure 5.6 represents an overview of different 

temperature settings. Compared to caffeine, PDMS again showed very similar tendencies, so that a low 

evaporator temperature in combination with a high nebulizer temperature resulted in the largest peak 

area. In detail, acetone as mobile phase again showed a slightly better performance than THF. The 

comparison between caffeine and PDMS led to a similar analyte-independent, but solvent-dependent 

behavior for the ELSD and both types of nebulizers.  

 

Figure 5.6: Dependence of PDMS peak area on different settings for nebulizer and evaporator temperature for acetone (left) 
and THF (right); different settings for nebulizer temperature are color-coded (see Figure 5.3) and connected by dotted lines; LC 

flow rate was 1 mL∙min-1 and gas flow rate was 1.2 SLM. 
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Figure 5.7: Dependence of PDMS peak area on different settings for nebulizer and evaporator temperature for acetone (left) 
and THF (right) for parallel-path PTFE nebulizer; LC flow rate was 1 mL∙min-1 and gas flow rate was 1.2 SLM. 

The additional contour plots (Figure 5.7 for parallel-path PTFE nebulizer and Figure 5.8 for concentric glass 

nebulizer) show these conclusions in a more detailed way. Operating the detector near its limits of 

nebulizer and evaporator temperature showed some combinations for THF (TN = 90 °C, TE = 10 °C and 

TN = 60 °C, TE = 10 °C) where the generation of a proper aerosol was not possible due to large effluent 

solvent droplets. These limitations showed that beside a good detector response a proper aerosol 

formation was of particular importance for a robust detector performance. 

 

Figure 5.8: Dependence of PDMS peak area on different settings for nebulizer and evaporator temperature for acetone (left) 
and THF (right) for concentric glass nebulizer; LC flow rate was 1 mL∙min-1 and gas flow rate was 1.2 SLM. 
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Similar to the measurements with caffeine, the LC flow rates had a different effect on parallel-path PTFE 

and concentric glass nebulizer, which resulted in a better signal of the former for low flow rates below 

0.3 mL min−1 (Figure 5.9). As mentioned above, miniaturized LC systems would be ideally suited for 

combinations with a detector offering high sensitivity at low flow rates, but on the other hand LC flow 

rate is in a category of parameters which are not freely adjustable in all analyses. The ideal parameters in 

case of acetone as mobile phase were TE = 10 °C and TN = 90 °C and in case of THF TE = 20 °C and TN = 90 °C. 

 

Figure 5.9: Dependence of the ELSD signal for PDMS with viscosity of 10 mPa∙s (left side) and with viscosity of 100 mPa∙s (right 
side) on LC flow rate of THF using a concentric glass nebulizer and a parallel-path PTFE nebulizer, respectively. ELSD settings: 

evaporator temperature 25 °C, nebulizer temperature 40 °C and gas flow rate 1.2 SLM. 

Beside variations of detector settings and solvents, PDMS samples with different viscosities (Figure 5.2 b) 

and c) and Table 5.3) were used to study the influence of molecular weight on the detector response. For 

viscosities ranging from 5 to 100 mPa s the signal intensity increased continuously, which originated from 

a decreasing content of vaporable PDMS. Above a viscosity of 100 mPa s the slight decrease of the 

detector signal can be attributed to a reduced number of particles for light scattering. Furthermore, as 

mentioned in the introduction, the variation of particle diameter is associated with different type of light 

scattering. For the study of PDMS a molar mass-dependent detector response was found over a broad 

molar mass range. Therefore, the detection with comparable response characteristics over an extended 

mass range is challenging, and universal calibration is not possible. Consequently, detailed studies 

concerning separated oligomer PDMS species and their corresponding ELSD responses were undertaken. 

Apart from these considerations, the comparison of both nebulizer types showed a better performance 

for the parallel-path PTFE nebulizer, except in the case of silicone oil of viscosity of 5 mPa s. Thus, for 
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polymer samples the use of a parallel-path PTFE nebulizer was found an advantageous alternative to a 

concentric glass nebulizer due to the improved sensitivity. 

Table 5.3: The influence of PDMS viscosity on the ELSD signal and type of nebulizer, sample concentration of each type of 
silicone oil (in THF) was 500 µg∙mL-1, ELSD settings: evaporator temperature = 25 °C and nebulizer temperature = 40 °C and 

gas flow = 1.2 SLM, LC flow rate 1.0 mL∙min-1. 

  Signal area [mV∙min] 
Viscosity 
[mPa∙s] 

Mean molar 
Mass [g∙mol-1] 

Glass 
nebulizer 

RSD (n=5) 
PTFE 

nebulizer 
RSD (n=5) 

5 1100 22.48 ± 1.93 17.62 ± 1.68 
10 1700 32.61 ± 1.58 37.37 ± 1.57 

100 9700 34.82 ± 1.24 44.17 ± 1.21 
1000 31900 27.88 ± 2.16 41.53 ± 2.11 

10000 69300 25.3 ± 1.88 38.67 ± 2.48 
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5.4.2.2 Comparison of nebulizer long-term stability 

Investigations regarding the long-term stability of both nebulizer types were done under continuous 

operation and typical requirements of polymer HPLC. Therefore, aliquots of the same sample were 

measured after different time intervals. In Figure 5.10, repeated chromatographic recordings of PDMS 

separations are shown for the concentric glass nebulizer after 280 h and for parallel-path PTFE nebulizer 

after 2000 h operation hours between the two depicted chromatograms.  

 

Figure 5.10: Long-term stability of concentric glass (above) and parallel-path PTFE (below) nebulizer in polymer HPLC, 
separation of a silicone oil with viscosity of 10 mPa∙s; ELSD settings: evaporator temperature 25 °C, nebulizer temperature 40 °C 

and gas flow rate 1.2 SLM; LC flow rate 1 mL∙min-1. 
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In case of the parallel-path PTFE nebulizer almost no loss in performance was found after this extended 

period of operation. In contrast, measurements with the concentric glass nebulizer led to clearly reduced 

response behavior after a much shorter time interval. The concentric glass nebulizer could be reactivated 

temporarily by flushing and washing the dismounted nebulizer with strong organic solvents and 

peroxyacetic acid. But this cleaning method was not always successful and required considerable efforts. 

The parallel-path PTFE nebulizer was in continuous use over a period of three months without any loss in 

detection performance independently from molecular mass of the used PDMS samples and might be 

operated even longer. The strongly diminished performance of the concentric glass nebulizer was a 

consequence of partial clogging of the sample capillary within the tip of the nebulizer. The alternate spray 

technology with two different paths for LC flow and gas flow of the parallel path PTFE nebulizer in 

combination with a change of basis material from glass to PTFE led to an increased robustness of the ELSD. 

Thus, especially in case of polymer samples this adaption of the ICP parallel-path PTFE nebulizer to an 

ELSD device is a promising instrumental development for the field of polymer HPLC. According to these 

findings, the improvement of long-term stability of the ELSD is attributed by the exchange of the nebulizer 

type. It can be assumed that a) the material exchange from glass to PTFE and b) the different spray 

technology lead to this enhancement. 
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5.4.2.3 PDMS oligomer analysis 

For detailed analysis of PDMS an Accucore C30 column was used to separate individual oligomers with a 

mobile phase combination of methanol: water (75:25, v/v) and acetone. Therefore, it was important to 

consider influences of small amounts of water on the nebulization and evaporation processes of the ELSD. 

Ideal settings for pure organic solvents prevent a robust detection with proper sensitivity. To adapt the 

settings for use with water, the manufacturer [9] advised an increase of evaporator temperature or an 

increase of gas flow. In this work, the evaporator temperature was optimized for aqueous conditions and 

the use of the parallel-path PTFE nebulizer in analogy to the above described procedure. Thus, for a proper 

ELSD performance an evaporator temperature of 40 °C and a gas flow of 1.2 SLM was found suitable in 

combination with a nebulizer temperature of 90 °C. 

To assign the individual PDMS species, the number of monomer units was indicated along with the symbol 

“Si” representing the linear structure of the PDMS oligomers. In a first measurement series, the isolated 

pure Si16 was used for detector calibration in a concentration range from 10 g mL−1 up to 1000 g mL−1. 

The expected nonlinear calibration plot with a second degree polynomial fit is shown in Figure 5.11. 

According to the regression model and the six-sigma method, relative standard deviation for the 

calibration curve was 2.5 %, the limit of detection was 10 g mL−1 and the limit of quantification (LOQ) was 

40 g mL−1.  

 

Figure 5.11: Calibration plot for Si16, left side second degree polynomial fit over the whole concentration range of calibration 
and right side extracted linear area for response factor determination. 
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For determination of the response factors for the respective analytes, the slope of the linear regression 

of a small linear dynamic detector range from the LOQ up to 180 g mL−1 was used (see right side Figure 

5.11). Other possible fits such as using the power function or approaches to determine the response 

factors from the quadratic calibration curve showed higher uncertainties than this simple method. With 

these criteria, the determination of all response factors from Si11 to Si50 (Figure 5.12) were determined 

to compare detector sensitivity for this range of PDMS oligomers. The narrowing of the dynamic range to 

these concentrations was done according to aspects of trace analysis and for reasons of comparability.  

 

Figure 5.12: Response factors for different PDMS oligomers from Si11 to Si50. Error bars (n=3) are calculated from linear 
regression; the red fit is a forth order polynomial fit curve (y = 8.3∙10-8 x4+ 8.0∙10-6 x3+ 1.5∙10-4 x2+ 1.5∙10-2 x - 4.7∙10-2). 

The evaluation of determined response factors (Figure 5.12) showed an increase in sensitivity from Si11 

to Si22. For higher oligomers a more or less equal response factor was found. This behavior agreed with 

the results for non-oligomer separated PDMS of different viscosities shown above (Table 5.3). This molar 

mass-independent response allowed a universal calibration and therefore lesser complexity in the molar 

mass range from Si24 to Si50. Furthermore, these observations showed that a universal calibration curve 

for ELSD is not ideal because of different detector sensitivity particular for analytes which are highly 

vaporable. Beside this, different light scattering phenomena depending on particle size and diameter 

might change the signal intensities of different molecular weight samples as mentioned above. 
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5.5 Conclusion 

Various factors influencing the signal response of an Agilent ELSD, i.e. evaporator temperature and 

nebulizer temperature, flow rate of ELSD gas, LC flow rate and different mobile phases were investigated. 

In general, temperature and gas flow settings of the ELSD showed similar trends for various solvents. The 

analytes caffeine as model system and PDMS as real sample were studied and showed similar behavior 

regarding the optimization of detector parameters. The highest signal intensity could be obtained when 

applying the highest possible nebulizer temperature at lowest possible evaporator temperature with a 

low gas flow rate for the nebulizer.  

Comparison of a concentric glass nebulizer and a parallel-path PTFE nebulizer showed a similar 

performance concerning the optimization of the above-mentioned parameters. However, for LC flow 

rates below 0.3 mL min−1 the parallel-path PTFE nebulizer exhibited an improved sensitivity. In addition, 

ELSD with an integrated parallel-path PTFE nebulizer enabled much better long-term stability in case of 

studies of PDMS samples with complex matrices than the concentric glass nebulizer. Thus, the use of a 

parallel-path PTFE nebulizer increased the robustness of the detector in daily operation. An increase of 

evaporator temperature was necessary in presence of low amounts of water in the mobile phase. PDMS 

samples with various viscosities (and thus differing regarding the mean molar masses) showed that the 

volatility of the compounds in the detection process had a superordinate effect on peak area. Only if the 

analyte remained in the aerosol, other influencing factors like mobile phase composition or nebulizer type 

became more important.  

The newly introduced parallel-path PTFE nebulizer showed quite good results in case of polymer matrices 

and for the first time individual response factors for various PDMS oligomers were determined. PDMS 

oligomers had a nearly constant response factor for species above Si22 which allowed a universal 

calibration in this molar mass range. In contrast, it was necessary to perform calibrations for PDMS 

oligomers of lower molecular weight separately. The same conclusion has to be drawn for samples 

containing large amounts of (compared to the investigated oligomers) of PDMS with very high molecular 

mass, where different physical aspects of light scattering predominate. In summary, it can be concluded 

that the substitution of a concentric glass nebulizer of a conventional Agilent ELSD by a parallel-path PTFE 

nebulizer originally developed for ICP applications by Burgener enables attractive performance 

characteristics for polymer analysis. The main advantage is the superior long-term stability, especially in 

presence of complex sample matrices. 
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 High-resolution polymer HPLC 

6.1 High-Resolution Polymer High Performance Liquid Chromatography: 

Application of a saw tooth gradient for the separation of various polymers 
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6.1.1 Abstract 

Currently, a lot of research effort in polymer analysis by liquid chromatographic techniques, including size 

exclusion chromatography (SEC), polymer HPLC or liquid chromatography at critical conditions, is done 

aiming to improve separation performance. In this study, novel gradient protocols were investigated 

primarily based on gradient polymer elution chromatography (GPEC). Starting with linear gradients and 

stepwise gradients a new periodic saw tooth gradient profile was developed and optimized. Optimum 

settings for the saw tooth gradient design were evaluated by design of experiments (DoE) based on 

Taguchi’s methodology for various types of stationary phases. The gain of peak resolution was dependent 

on the effective gradient step height. The optimized protocol enabled high-resolution polymer HPLC (HRP-

HPLC) separations with common HPLC instruments. The quality of separation was evaluated by heart-cut 

fraction collection of HRP-HPLC and subsequent determination of the individual fractions by SEC or 

MALDI-ToF mass spectrometry. Finally, different types of polymers, such as PVC, PDMS, PMMA, or PPG, 

were studied with the new method and a universal applicability was shown. 
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6.1.2 Introduction 

The investigation of polymers, with heterogeneous composition in more than one distribution property, 

is a challenging task. Applying various types of liquid chromatographic techniques, separations according 

to molar mass, chemical composition or polymeric architecture can be achieved. In recent years, different 

approaches for the separation of complex polymeric materials were used, e.g. isocratic or gradient SEC as 

well as liquid chromatography at critical conditions (LCCC) [1,2]. The connection between these different 

modes of polymer separation techniques can be explained by thermodynamic treatment [3–6]: Under 

ideal SEC conditions the separation depends on entropy changes only, while under ideal liquid adsorption 

chromatography (LAC) conditions the separation only depends on enthalpy changes. In SEC, polymers are 

separated due to their different hydrodynamic volumes in a solvent and, thus, a molecular mass 

distribution can be obtained. Therefore, no interaction between the polymer and the stationary phase 

should occur or virtually be minimized. In LAC, polymer analysis is mainly determined by interactions 

between analyte, mobile and stationary phase. Therefore, a variety of different parameters must be 

adjusted. If enthalpic and entropic energy changes equalize each other and thus the change of free Gibbs 

energy becomes zero critical conditions are realized. At critical conditions, LCCC for isocratic elution or 

critical point of adsorption (CPA) for gradient elution, molar mass does not contribute to retention 

volume, enabling separations solely based on differences in chemical composition. Compared to LCCC, 

applying gradient elution for separation of polymers at critical conditions provides a separation system 

which is not terminated by pore size of the stationary phase [1,4,6]. However, each method has its own 

advantages and disadvantages. The constraints of SEC include for example secondary enthalpy driven 

interactions or indirect molar mass determination by measuring the hydrodynamic volume of the 

polymer. Furthermore, depending on the pore volume and molecular weight of investigated samples, low 

separation performance with broad peaks may occur [6]. Nevertheless, SEC provides an enhanced 

resolution especially in the high molecular mass range of polymers, compared to gradient LAC where at 

the critical point of adsorption no separation due to molar mass differences is possible [1].  

As well as in SEC, liquid chromatography at critical conditions, shows disadvantages in reproducibility, 

susceptibility to fluctuations, sample recovery or overall application to minor changes of the sample 

matrices. Beside this, in polymer HPLC, optimizing the parameters of measurement is often difficult 

concerning the choice of proper stationary and mobile phase combinations, e.g. adsorption promoting 

and desorption promoting solvents or a retention promoting column for the investigated polymer. 

Furthermore, the diversity of various separation parameters makes method development challenging and 

time consuming [6–9].  
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Compared to HPLC of small molecules, polymer HPLC especially differs in terms of small diffusion 

coefficients of the constituents in solution and a different retention mechanism of polymers on the 

stationary phase.  A further difference between macromolecules and small molecules is the objective of 

the chromatographic separation, whereby in HPLC of small molecules, the exact identification and 

quantification is in focus and in polymer HPLC, the fractionation of macromolecules based on various 

polymer characteristics, e.g. molar mass distribution, size in diluted solution, chemical distribution, or 

chain structure, prevails. In addition, polymer retention lasts as long as at least one repetition unit of the 

polymer is adsorbed to the stationary phase. Unlike in HPLC of small molecules, polymers must be 

dissolved in very strong solvents, e.g. THF or toluene, considering reversed phase polymer HPLC. 

Consequently, solubility effects become important in addition to adsorption and partition phenomena. 

The injection of the dissolved polymers at the (usually strong adsorption promoting) initial conditions in 

gradient polymer elution chromatography (GPEC) result in precipitation or strong adsorption of the 

analytes on the head of the column [1,10–12]. With increasing amounts of desorption promoting solvent, 

the (homo-)polymers elute in reversed elution order compared to SEC, from low to high molar masses, at 

least as long as the critical point of adsorption is not reached. Therefore, it is not only sufficient that a 

solvent is a strong solvent for the investigated polymer. Additionally, the separation system (mobile and 

stationary phase) must provide desorption promoting characteristics for the used strong polymer solvent. 

Apart from molar mass differences, chemical functionalities cause an additional separation, especially 

dominating in the low molecular mass region [3,13]. The separation occurs predominantly according to 

adsorption effects to the stationary phase and precipitation effects depending only on the solubility in the 

mobile phase. In addition to LAC, Glöckner et al [7] termed separations without adsorption effects to the 

stationary phase high performance precipitation liquid chromatography (HPPLC). Staal [14] showed the 

similarities between cloud point determination by turbidimetric titration and the precipitation- / re-

dissolution processes in the different steps of the chromatographic separation for reversed phase 

systems. In the first step, the polymer is dissolved in a strong solvent (1), and then the precipitation of the 

dissolved polymer on the column head occurs (2) in combination with the adsorption to the stationary 

phase (3). By attaining a suitable solvent combination between solvent and non-solvent, e.g. the cloud-

point of polymer, the precipitated polymer is re-dissolved (4) but remains adsorbed to the stationary 

phase (5). In the final step, the complete elution of the fully dissolved polymer occurs from the stationary 

phase (6). German et al [13,15,16] showed in a series of papers the differences between precipitation- / 

re-dissolution and adsorption mechanisms by analyzing polyesters. For crystalline polyester, a clear 
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dependence on precipitation- / re-dissolution mechanism could be shown, as for all other studies 

adsorption effects dominated or at least supported the separation. 

An overview of different possible setups for gradient elution is shown by Deyl [17] and Jandera [18]. For 

a first approach, the slope variation of a linear gradient is a good choice and may sometimes lead to 

multilinear gradients enhancing the separation. Therefore, Nikitas et al [19–23] presented various 

approaches for optimizing multilinear gradients. Moreover, software packages such as DryLab or PREGA 

use similar theoretical concepts [24]. As a consequence, concave and convex gradient shapes might also 

be a useful alternative [25]. Furthermore, especially for various types of macromolecules, a step gradient 

improves peak resolution and separation performance. The analysis of azeotropic and low-conversion 

poly(styrene-stat-2-methoxyethyl methacrylate) [26], styrene acrylonitrile copolymers [27], lignin [28] or 

humic like substances [29,30] was improved through different types of step gradients. Applying a step 

gradient, various isocratic steps result in an improved peak resolution, which cannot usually be achieved 

by a linear gradient. A further improvement of this gradient profile was presented by Kajdan et al [31] for 

ion chromatographic separation of recombinant proteins and by Spranger et al [32] for the separation of 

humic like substances with RP-HPLC. They used a kind of spiked gradient profile, where in an additional 

step the elution promoting solvent was reduced at the end of the original gradient step. This modification 

results in a much better separation performance than in previously described gradient profiles. Beside 

this, Morris et al [33] optimized with a saw tooth like gradient the separation of complex protein mixtures.  

As the application of step gradients in polymer separation showed pretty good results [27,34], further 

investigations concerning the shape of the gradient profile are promising for improving the separation.  In 

this report, a novel gradient protocol for the separation of polymers, which allows each individual solvent 

composition to perform its unique re-dissolution ability, is evolved. With a saw tooth gradient protocol, 

the separation performance significantly increased. Therefore, the aim of this work was the development 

of a preferably universal saw tooth gradient protocol which allows high-resolution polymer HPLC (HRP-

HPLC) of different types of polymers over a broad molecular weight range. 
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6.1.3 Material and methods 

6.1.3.1 Software 

The programming of the saw tooth gradient was possible over the entire gradient range from 0 to 100 % 

desorption promoting solvent with the chromatographic data system Chromeleon (Thermo-Fisher 

Scientific, version 7.2), as other investigated chromatographic software packages are limited in the 

number of possible entries of the gradient table. Moreover, currently, a complete saw tooth gradient 

ranging from 0 to 100 % with the corresponding steps can be achieved in combination with Thermo Fisher 

Scientific (Waltham, USA) HPLC pumps. The Agilent driver module of Chromeleon limits the gradient 

entries to 69 and Agilent ChemStation Version C limits the gradient entries to 100 for an Agilent 

(Waldbronn, Germany) HPLC system, while the limitation of WinGPC UniChrom 8.2 (Polymer Standard 

Service) is 161 entries. These limitations made it difficult to use the full potential of the saw tooth profile 

and, therefore, using an Agilent fraction collector only a small region of interest could be fractionated. 
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6.1.3.2 Hardware 

6.1.3.2.1 LC systems and detectors 

The optimization of the saw tooth gradient with design of experiments (DoE) by Taguchi was done on a 

Thermo Fisher Scientific (Waltham, USA) Vanquish UHPLC with UV detection at 215 nm and a 385 ELSD, 

equipped with an enhanced parallel-path MiraMist® poly(tetrafluoroethylene) nebulizer from Burgener 

Research Inc. (Mississauga, Ontario, Canada) at 40 °C evaporator temperature, 90 °C nebulizer 

temperature, and a gas flow of 1.2 SLM (standard liter per minute, see [35]). The investigated parameters 

for the optimization of the saw tooth gradient profile by DoE are given in Table 6.1 and were performed 

from 0 % THF (100 % methanol) to 100 % THF (0 % methanol) considering different types of stationary 

phases. The other analytical measurements of different types of polymers were performed on an 

Ultimate 3000 HPLC of Thermo Fisher Scientic with the modified 385 ELSD. 

Table 6.1: Investigated parameters for the design of experiment according to Taguchi’s L16 (45) approach. 

 Group 1 2 3 4 5 

  

Poroshell 
C18 

50x4.6 mm, 
2.7 µm 

Poroshell 
C18 

100x4.6 mm, 
2.7 µm 

Hypersil BDS 
C18 

100x4.6 mm, 
2.4 µm 

Luna C18 
100x4.6 mm, 

5 µm 

Hypersil 
Gold C18 

aQ 
100x10 mm, 

5 µm 

Label Parameter Level 1 Level 2 Level 3 Level 4 

A 
height of the 

negative backward 
gradient step [%] 

3.0 6.0 9.0 12.0 

B 
effective step 

height [%] 
0.2 0.5 0.8 1.0 

C 
retardation of 
negative slope 

0.5 1.0 2.0 3.0 

D lower plateau 0.5 1.0 2.0 3.0 

E 
retardation of 
positive slope 

0.1 0.5 1.0 2.0 
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6.1.3.2.2 Studies of the real shape of the gradient profile 

The actual gradient profile was measured with an Ultimate 3000 diode array detector at 265 nm, following 

the recommendation of Thermo Fisher Scientific for operational/ performance qualification (OQ/PQ) for 

gradient accuracy with 100 % pure water as starting condition against 0.1 % acetone in water [36]. As test 

columns an Agilent Poroshell C18 EC (50x4.6 mm, 2.7 µm), an Agilent Poroshell C18 SB (150x4.6 mm, 

2.7 µm), and a restriction capillary of 15 m length and 0.18 mm ID from OQ/PQ Kit of Thermo Fisher 

Scientific were used. 

6.1.3.2.3 Semi preparative LC systems 

Fraction collection of PVC was performed on an Agilent 1100 series LC system with a THF resistant 3115α 

degasser from ERC (Riemerling, Germany) equipped with an Agilent fraction collector. For adjusting the 

separation pattern at an Agilent Poroshell C18 EC (50x4.6 mm), a 385 ELSD modified with an enhanced 

parallel-path MiraMist® poly(tetrafluoroethylene) nebulizer from Burgener Research Inc. (Mississauga, 

Ontario, Canada) was used at 40 °C evaporator temperature, 90 °C nebulizer temperature and 1.2 SLM 

gas flow. The LC flow rate was set to 1.0 mL∙min-1, and the injection volume was 10 µL (1 mg absolute 

sample amount). The saw tooth gradient was started at 26 % THF and 74 % methanol and ended at 56 % 

THF and 44 % methanol with an effective step height of 2 % and a height of the negative backward 

gradient step of 9 %. After each separation, the column was flushed with 100 % THF for 8 min in order to 

remove not eluted polymer from the column. For sufficient amount of sample per fraction, 50 injections 

were performed. The SEC measurements were performed with an Agilent 1260 SEC system and a Shodex 

(Munich, Germany) RI101 detector on a set of four Styragel® columns (HR1, HR3, HR4 and HR5, Waters, 

Eschborn, Germany) and THF as eluent at 1.2 mL∙min-1.  

Fraction collection of PS was performed on a 1260 series LC system of Agilent with a THF resistant 3115α 

degasser from ERC (Riemerling, Germany). UV detection was performed at a wavelength of 215 nm. A 

Poroshell C18 EC (50x4.6 mm) was used as stationary phase. The gradient profile was started at 0 % THF 

and 100 % methanol, within 15 min a linear gradient was set to 31 % THF and then the actual saw tooth 

gradient started with an effective step height of 0.2 % and 9 % height of the negative backward gradient 

step up to a final concentration of 39 % THF and 61 % methanol. After each separation, the column was 

flushed with 100 % THF for 8 min in order to remove not eluted polymer from the column. A flow rate of 

1.0 mL∙min-1 and an injection volume of 15 µL (0.75 mg absolute sample amount) were applied. To get 

sufficient sample amount per fraction 100 runs were performed. For evaluation of the collected fractions 

MALDI-ToF-MS measurements were performed on a Shimadzu Axima Performance MALDI-ToF-MS 
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(Kratos, Manchester, UK). As cationization reagent a solution of 100 mol∙L-1 sodium trifluoroacetate 

(Sigma-Aldrich, Darmstadt, Germany) in THF was used and 10 mg∙mL-1 trans-2-[3-(4-tert-butylphenyl)-2-

methyl-2-propenylidene] malononitrile (DCTB) (Sigma-Aldrich) was used as MALDI matrix. Various mixing 

ratios between sample solution: matrix solution: cationization solution of 10:10:1, 10:20:10, 10:50:1 and 

10:100:1 (v/v/v) were used in order to obtain an appropriate spectrum because the actual concentrations 

of the collected fractions were unknown. 

Fraction collection of PDMS with a viscosity of 350 mPa∙s was performed on a 1260 series LC system from 

Agilent with a THF resistant 3115α degasser from ERC. For adjusting the separation pattern, a 385 ELSD 

modified with an enhanced parallel-path MiraMist® poly(tetrafluoroethylene) nebulizer from Burgener 

Research Inc. was used at 40 °C evaporator temperature, 90 °C nebulizer temperature and 1.2 SLM gas 

flow. An Accucore C18 (50x4.6 mm) column was used, the LC flow rate was set to 1.0 mL∙min-1 and 0.4 mg 

sample amount were injected 100 times, to get sufficient amount of sample per fraction, for separation 

with a saw tooth gradient (effective step height 1.0 %, effective step length 1.50 min) and a linear gradient 

with methanol and THF as mobile phase components, respectively. The multilinear gradient was started 

at 100 % methanol and reached 30 % THF after 15 min, 65 % THF after 78 min, and 100 % THF after 79 min. 

Each fraction (16 fractions, starting from 37 min up to 61 min) was collected within 1.50 min intervals, for 

both gradients. For fractionation evaluation, MALDI-ToF-MS measurements were performed according to 

the above-mentioned protocol, but in place of sodium trifluoroacetate, silver trifluoroacetate was used 

as cationization reagent. 
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6.1.3.3 Stationary phases 

For preparative fraction collection of PS and PVC, an Agilent Poroshell C18 EC (50x4.6 mm, 2.7 µm) was 

used. For the DoE approach (see Table 6.2) an Agilent Poroshell C18 EC (50x4.6 mm, 2.7 µm), an Agilent 

Poroshell C18 EC (100x4.6 mm, 2.7 µm), a Thermo Fisher Scientific Hypersil BDS C18 (100x4.6 mm, 

2.4 µm), a Thermo Fisher Scientific Hypersil Gold C18 aQ (100x10 mm, 5 µm), and a Phenomenex 

(Torrance, USA) Luna C18 (100x4.6 mm, 5 µm) were used as superimposed group for the parameters of 

the saw tooth gradient profile. The investigations of various polymer standards were done under 

optimized gradient conditions on a Thermo Fisher Scientific Accucore C18 (50x4.6 mm, 2.6 µm) and an 

Agilent Poroshell HILIC (50x4.6 mm, 2.7 µm). 

Table 6.2: DoE confirmation experiments for different stationary phases for the optimum shape settings of the saw tooth 
gradient. 

Column A [%] B [%] C D E 

Poroshell C18 50x4.6 mm, 2.7 µm 6.0 0.2 1.0 3.0 2.0 
Poroshell C18 100x4.6 mm, 2.7 µm 6.0 0.2 0.5 2.0 2.0 

Hypersil BDS C18 100x4.6 mm, 2.4 µm 6.0 0.2 1.0 3.0 2.0 
Luna C18 100x4.6 mm, 5 µm 6.0 0.2 1.0 3.0 2.0 

Hypersil Gold C18 aQ 100x10 mm, 5 µm 6.0 0.2 0.5 0.5 2.0 

ideal settings independently of column type 6.0 0.2 1.0 3.0 2.0 
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6.1.3.4 Polymer samples and chemicals 

All solvents used were HPLC grade. Acetone, acetonitrile (ACN), methanol (MeOH), toluene, n-hexane, 

and non-stabilized tetrahydrofuran (THF) were purchased from Merck (Darmstadt, Germany) and used 

without further purification. Water of a Milli-Q-Advantage A10 water system (Merck Millipore) was used. 

The analyzed polymer standards and samples are summarized in Table 6.3. PS 19 600 standard was 

purchased from PSS (Mainz, Germany), PDMS standards were obtained from Wacker Chemie AG 

(Burghausen, Germany), PPG standards were purchased from American Polymer Standards Corporation 

(Mentor, OH, USA) and all other standards listed in Table 6.3 were purchased from Agilent (Church 

Stretton, UK). 

Table 6.3: Overview of used polymer standards. 

Polymer Mp [g∙mol-1] Polydispersity 

PS 8995 8995 1.03 
PS 19600 19600 1.02 

PVC 23900 23900 1.21 
PVC 45400 45400 1.30 
PVC 92100 92100 1.32 

PVC 202000 202000 1.34 

PDMS 1300 1300 1.34 
PDMS 2000 2000 1.42 
PDMS 5400 5400 1.67 
PDMS 8300 8300 1.83 

PDMS 20700 20700 3.02 
PDMS 36500 36500 2.98 
PDMS 71200 71200 4.35 

PDMS 130000 130000 6.09 
PDMS 250000 250000 10.94 

PMMA 19700 19700 1.09 
PMMA 107000 107000 1.1 
PMMA 690000 690000 1.09 

PMMA 1600000 1600000 1.33 

PPG 4850 4850 1.10 
PPG 13300 13300 1.14 
PPG 19600 19600 1.25 
PPG 27100 27100 1.61 
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6.1.4 Results and discussion 

Beginning with linear and stepwise gradients, the development of a saw tooth like gradient profile was 

done for improving separation performance of polymer HPLC. For optimization of the new gradient 

profile, design of experiments (DoE) according to Taguchi’s approach were applied. Additionally, the 

limitations of the concept regarding laminar flow profiles and therefore mixing accuracy were evaluated. 

The separation performance of the saw tooth gradient was studied by heart-cut fraction collection with 

subsequent MALDI-ToF-MS or SEC measurements of each fraction. Finally, the universal application of this 

high-resolution polymer HPLC (HRP-HPLC) approach to various types of polymers, e.g. PS, PVC, PMMA, 

PDMS, and PPG, was demonstrated. 

 

6.1.4.1 Fundamental studies of the saw tooth gradient 

6.1.4.1.1 Development – from linear gradient to saw tooth gradient 

As aforementioned, the resolution of HPLC for polymer analysis especially in the high molecular mass 

region is limited. In adsorption dominated gradient separation, no separation according to molecular mass 

is achievable above the point of critical adsorption. Only by means of a dominating precipitation- / re-

dissolution mechanism or by absence of a point of critical adsorption further separation in this higher 

molecular mass range are possible [1]. Our current research is primarily directed to the yet unresolved, or 

rather poorly resolved molecular mass range above low molecular oligomer separation. In case of the 

investigated PVC standards (molar masses in peak maximum from 23,900 g∙mol-1 up to 202,000 g∙mol-1, 

see Table 6.3) with linear gradients in polymer HPLC, a poorly resolved peak could be measured. The 

multimodalities in the peak were also present on other stationary phases, other solvent combinations or 

at injecting lower sample amounts. Therefore, even by optimizing mobile and stationary phases, no 

significant improvements were possible. Comparing a high-resolution stepwise gradient with 0.2 % step 

height with a linear gradient starting from 100 % MeOH to finally 100 % THF did not show any appreciable 

differences (see Figure 6.1 a) + b) for PVC 45,400).  
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Figure 6.1: Development of saw tooth gradient profile for the separation of PVC 45400 on an Accucore C18 (50x4.6 mm, 2.6 µm) 
column with MeOH as weaker or rather non-solvent and THF as desorption promoting solvent; detection with ELSD; 

chromatograms corresponding to a) a linear gradient, b) a stepwise gradient with step length of 1.5 min and step height of 
0.2 %, and c) a saw tooth gradient with effective step length of 1.5 min and effective step height of 0.2 %. 
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Applying the saw tooth gradient, where in an additionally step a negative gradient slope interrupts the 

elution of the polymer, resolution was significantly improved. The back and forth strategy of the gradient 

profile led to repeated fractionated elution steps, enabling selective elution of different polymer fractions. 

Therefore, the improvement of resolution, which was highly reproducible (compare, e.g. the set of 

measurements described in chapter 6.1.4.2.1 for preparative studies), was achieved to get a more 

detailed overview of the investigated polymer samples. An actual oligomer separation was not the 

primary target. According to these experimental results, two main questions arose:  

1) Was this a real separation result or the recording of artefacts corresponding to the chosen 

gradient profile? 

2) What is the optimum adjustment of the saw tooth profile and where are the limitations? 

A detailed answer to the first question will be given in chapter 6.1.4.2.1 and briefly, it is a HPLC-like 

separation from low to high molecular masses. For the second question, further considerations were 

necessary which were regarded in a DoE by gradient specific parameters. Furthermore, the accuracy of 

mixing system and gradient profiles were examined. 
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6.1.4.1.2 Investigation of the gradient profile of the saw tooth approach 

6.1.4.1.2.1 Design of experiments according to the methodology of Taguchi 

The optimization measurements were carried out with a PS standard of molar mass at peak maximum of 

19 600 g mol-1. Methanol was used as weaker or rather non-solvent and THF as strong or desorption 

promoting solvent with a gradient range from 0.0 to 100.0 % THF (100.0 to 0.0 % MeOH). Five different 

types of C18 columns were used varying in length, internal diameter, particle size and total porous 

particles as well as superficially porous particles (see Table 6.1). 

Using DoE, instead of one-factor-at-a-time offers the advantage of simultaneously varying several 

parameters and, thus, reducing the number of necessary experiments [37,38]. According to Taguchi’s 

transformation of the response value into a signal-to-noise value, the variability of the different types of 

columns was included in the evaluation resulting in a higher reliability and optimization. Particularly, the 

advantage of Taguchi’s approach is the reduced number of experiments necessary for considering the 

investigated parameters at different levels when compared to other approaches used in chemometrics. 

Furthermore, in Taguchi’s approach the influence of a disturbance on the system is minimized without 

eliminating its reason. Further information of Taguchi’s methodology is given in [39–41].  

 

Figure 6.2: Scheme of a general saw tooth gradient protocol, presented at one explicit effective step length and described by the 
amounts of column volumes (CV). Parameter A [in %] represents the height of the negative backward gradient step for the drop 
of the mobile phase composition, B [in %] represents the effective step height of the saw tooth gradient; the variation in several 

regions of the saw tooth shape is described by parameters C, D and E, as retardation of the height of the negative backward 
step, duration of the lower plateau, and retardation of the positive slope, respectively. 
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Figure 6.2 gives an overview of the investigated and optimized parameters. The parameters A and B 

describe the ratio of desorption promoting solvent THF in the different steps of the saw tooth profile: A 

depicts the height of the negative backward gradient step, and B the effective step height between the 

consecutive upper plateaus. Initially, the experiments started based on interstitial column volumes using 

the column volume (CV) as scale up / down factor. The parameters C, D, and E determine the step length 

of the retardation of the height of the negative backward step, the one of the lower plateau and the one 

of the retardation of the positive slope, respectively. The investigated parameters and corresponding 

levels of Taguchi’s L16 (45) are summarized in Table 6.1. Data evaluation based on number of peaks 

detected by the experiment, lowest peak resolution, asymmetry and peak width at half height of the 

highest peak. The confirmation experiments considering the five investigated stationary C18 phases are 

presented in Table 6.2. The confirmation experiments considered each column alone as well as all 

columns together resulting in a set of parameters, which are independent of column dimension, particle 

size, or type. These observations were in good agreement with the literature [1,13]. The prominent 

response factors for the saw tooth gradient profile are number of discriminable peaks, the larger the 

better, peak resolution, also larger the better because the inherent limited resolution of polymer peaks, 

and peak asymmetry, which should be around one. As depicted in Table 6.2 the height of the negative 

backward gradient step (parameter A), effective step height (parameter B) and retardation of positive 

slope (parameter E) show the same behavior at all investigated columns. Parameter B, the effective step 

height alone, dominates the number of peaks and the peak height while parameter A accounts for 

asymmetry and resolution. Furthermore, the retardation of the positive slope (parameter E) was ideal at 

its highest investigated level of one column volume while the retardation of the height of the negative 

backward step (parameter C) should be one column volume. The length of the lower plateau 

(parameter D) shows the greatest variability, especially in considering analytical and semi-preparative 

columns. However, due to the analyses of variances (ANOVA), this parameter is only of minor significance 

for the saw tooth gradient profile and, thus, can be arbitrarily chosen. Although not considered by the 

DoE, the time of measurement should always be kept as short as possible maintaining a reasonable peak 

resolution. The number of steps applied in the saw tooth gradient directly affects the run time: If high 

resolution with maximum number of peaks is sought, the corresponding run time will be rather long. For 

the investigated types of columns, a set of parameters can be chosen being independent of the type of 

particles and column dimensions allowing a nearly universal approach. Based on these results, it is 

assumed that the back- and forth change in solvent composition, which caused the fractionated elution, 

is in general the most effective parameter for the enhancement of the separation. 
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6.1.4.1.2.2 Constraints by sample loading per injection 

The saw tooth gradient basically depends on consistency of the programmed gradient profile to the actual 

gradient because of mixing accuracy and the system diffusion. The actual gradient profile was evaluated 

by measurements based on 0.1 % acetone in water against pure water at 265 nm detection wavelength. 

In a first approach, the effect of various column dimensions compared to a restriction capillary of 15 m x 

180 µm was studied concerning the actual gradient profile. On basis of a very symmetric (which means 

each gradient step is of equal duration) saw tooth gradient a pretty good correlation or rather similar 

shape between calculated and effective profile was found, independently of the column dimensions or 

pathway within the LC system (Figure 6.3 a)). The major drawback of such a saw tooth gradient was its 

very poor separation performance. If the parameter settings obtained in a DoE are optimal, a more 

asymmetric gradient profile is necessary for a better separation performance. Applying a generic optimal 

gradient setting (Figure 6.3 b) + c)) by only varying the effective step length (cf. Figure 6.1) the overlay 

between calculated and actual gradient showed distinct deviations. Figure 6.3 b) + c) depict the impact of 

effective step height on the match or mismatch between both curves. No considerable dependence of the 

effective step height was noticeable between both measurement series (Figure 6.3 b) vs. Figure 6.3 c)). 

At effective step lengths above 0.60 min (chromatograms IV – VI) the alignment between actual and 

calculated gradient curve at the right edge (at increasing positive slope) improved as well as the separation 

performance. Besides an appropriate congruence of theoretical and practical gradient profile, the analysis 

time should possibly be shortened. Thus, the gradient setup IV in Figure 6.3 represented a good 

compromise between profile alignment and analysis time.  
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Figure 6.3: Comparison between programmed saw tooth profile and real gradient shape at different columns and step lengths 
of the saw tooth profile; a) shows the overlay of the programmed almost symmetric (each step of similar length) saw tooth 

gradient with a restriction capillary, a 50x4.6 mm column, a 150x4.6 mm column and without column, the distinctions depended 
on the effective step length between the programmed and the actual gradient profile are shown for b) 0.2 % and c) 1.0 % 

effective step height; measurements were done according to the PQ/OQ of Thermo Fisher Scientific [36] for gradient accuracy. 
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A further important influencing factor on peak resolution is the amount of polymer sample. In Figure 6.4 

the impact of injection volume and, thus the sample amount of PDMS is shown. Similar results were found 

while varying sample concentration at constant injection volume. The height of the small double-headed 

arrow in Figure 6.4 represents a qualifier of separation performance. For injection volumes up to 5 µL or 

absolute sample amounts up to 100 µg nearly baseline resolved polymer peaks were obtained on the 

investigated stationary phase, while for higher sample amounts a prolonged effective step length would 

be necessary.  

As conclusion, sample concentration or respectively absolute sample amount had to be adjusted carefully 

to the saw tooth gradient profile to achieve a good separation performance in the shortest possible 

analysis time. In addition to general overloading effects, caused by oversized injection volumes or 

absolute sample amounts with respect to stationary or mobile phase, it is important to avoid mass 

overloading and volume overloading with respect to the gradient profile. 
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Figure 6.4: Variation of sample amount and influence on the separation performance of the saw tooth gradient, showed for 
PDMS of viscosity of 1000 mPa∙s and an injected sample concentration of 20 mg∙mL-1; Measurements were done with MeOH as 

weaker or rather non-solvent and THF as desorption promoting solvent on a Poroshell HILIC (50x4.6 mm, 2.6 µm). 
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6.1.4.2 Application to polymer samples 

With the developed and optimized saw tooth gradient, several polymer standards, e.g. PS, PVC, PMMA, 

PDMS, and PPG were studied. PS, PVC, and PDMS were further investigated by fraction collection 

evaluating the degree of separation of the applied saw tooth gradient profile while for the other polymers 

just the applicability was demonstrated. Methanol and THF were used as eluents; acetonitrile as weak or 

rather non-solvent did not show any significant advantage compared to methanol. Substituting THF as 

desorption promoting solvent was not investigated because of extraordinary dissolving properties of THF 

for the used polymers. 

6.1.4.2.1 Preparative HRP-HPLC 

For fraction collection by heart-cut technique, polymeric standards were chosen with a polydispersity of 

about 1.1. to 1.5. Re-analyzing each single fraction showed that separation depended on molecular mass 

differences: The low molecular mass analytes elute first and with elution time the molar masses increase. 

6.1.4.2.1.1 Heart-cut HRP-HPLC + SEC for PVC analysis 

As depicted in Figure 6.5 PVC was fractionated on a Poroshell C18 EC with methanol and THF as eluents. 

The effective step height of the saw tooth gradient was 2.0 %, simplifying the gradient profile and reducing 

the necessary time as well as overcoming the restraints due to limited entries in the gradient timetable 

for the used LC system.  

 

Figure 6.5: Chromatogram and cutting pattern for preparative PVC analysis, PVC 23900 (c= 115 mg∙mL-1) was analyzed with a 
saw tooth gradient of 2.0 % effective step height, because of the limitation to only 69 gradient time table entries for the used 

HPLC pump; analysis was done with MeOH as weaker or rather non-solvent and THF as desorption promoting solvent on a 
Poroshell 50x4.6 mm Poroshell C18 EC; fractions 1 to 15 were analyzed with SEC. 
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Afterwards, the 15 collected fractions were investigated by SEC and the results are presented in Table 6.4. 

Compared to the original PVC sample of a specified molar mass of Mp = 23,900 g∙mol-1, the polydispersity 

of all fractions became narrower from fraction 1 up to fraction 15. These results proved that the HRP-

HPLC separation of the investigated homopolymer only depended on the molecular weight. As 

consequence, the separation using the saw tooth gradient profile is a real separation and not caused by 

artefacts (to answer question 1 from section 6.1.4.1.1). This novel approach to the analysis of synthetic 

polymers considerably improved the separation performance for polymeric samples. 

Table 6.4: Results of SEC measurements after fraction collection with the saw tooth gradient of PVC 23 900 (determined on a set 
of Waters Styragel® (HR1, HR3, HR4 and HR5) with THF as eluent at 1.2 mL∙min-1). 

Sample name Mw [g∙mol-1] Mn [g∙mol-1] Polydispersity Mz [g∙mol-1] Mp [g∙mol-1] 

PVC 23900 26 000 20 600 1.26 30 500 28 100 
F1 18 600 17 100 1.08 19 900 18 400 
F2 20 300 18 500 1.10 21 900 20 700 
F3 22 900 20 600 1.11 24 800 23 800 
F4 24 900 22 200 1.12 27 400 26 100 
F5 26 400 23 200 1.14 29 300 27 000 
F6 27 000 23 600 1.14 30 100 27 600 
F7 27 700 24 200 1.15 30 900 28 200 
F8 28 400 24 700 1.15 31 700 29 000 
F9 28 800 25 100 1.15 32 300 29 300 

F10 29 400 25 600 1.15 33 000 30 200 
F11 29 900 25 800 1.16 33 700 30 700 
F12 29 900 25 700 1.16 33 800 30 700 
F13 30 500 26 300 1.16 34 400 31 300 
F14 30 600 26 400 1.16 34 500 31 300 
F15 31 600 27 200 1.16 36 200 32 500 
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6.1.4.2.1.2 Heart-cut HRP-HPLC + MALDI-ToF-MS for poly(styrene) analysis 

For the separation of PS, an extended saw tooth gradient with an effective step height of 0.2 % was 

chosen. Throughout 20 injections of PS with molar mass of Mp = 8995 g∙mol-1, (50 mg∙mL-1, 15 µL) a 

continuous increase of column backpressure occurred. Flushing the column with THF, toluene, or 

n-hexane as well as flushing the column in reversed direction overnight did not reduce the high 

backpressure. Thus, it was assumed that the analytical stationary phase was not an ideal choice for semi-

preparative HPLC measurements with such high sample loads on the column. The same characteristics 

were observed for the later (chapter 6.1.4.2.2) mentioned PDMS sample with an analytical Accucore C18 

column. Therefore, further research will be done with different types of stationary phases, which are more 

suitable for preparative separation. Figure 6.6 depicts the chromatogram obtained with the 

corresponding saw tooth gradient and the collected fractions, which were measured by MALDI-ToF-MS 

(Table 6.5 and Figure 6.7 to Figure 6.10).  

 

Figure 6.6: Chromatogram and cutting pattern for preparative PS analysis, PS 8995 (c= 50 mg∙mL-1) was analyzed with a saw 
tooth gradient of 0.2 % effective step height, limited by the given mixing accuracy of the used HPLC pump; analysis was done 

with MeOH as weaker or rather non-solvent and THF as desorption promoting solvent on a Poroshell C18 EC (50x4.6 mm, 
2.7 µm); fractions 1 to 30 were analyzed with MALDI-ToF-MS. 

Compared to the SEC measurements for PVC analysis, where polydispersity might be overestimated 

through band broadening effects, MALDI-ToF-MS often leads to under estimating polydispersity due to 

discrimination by the ionization process [42]. In this study, beside these differences, both techniques led 

to the same conclusion of decreasing polydispersities by fractionation with a saw tooth gradient. 

Beginning from fraction one to twenty the molar mass continuously increased, while this was not found 

for higher fraction numbers. Presumably, the separation performance was reduced because of the use of 
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the analytical stationary phase, which was not ideal for semi-preparative separation with the applied 

system. Especially the used high sample amounts may have caused these problems. Nevertheless, by 

heart-cut fraction collection it was proven that PVC and PS were separated due to their differences in 

molar mass caused by the same principle of separation. 

Table 6.5: MALDI-ToF-MS-Results of fraction collection of PS8995 after HRP-HPLC. 

Sample name 
Mw 

[g∙mol-1] 
Mn 

[g∙mol-1] 
Poly-

dispersity 
Mz 

[g∙mol-1] 
Mp 

[g∙mol-1] 

FC01 7427 7385 1.0057 7469 7453 

FC02 7589 7550 1.0051 7627 7662 

FC03 7726 7690 1.0048 7763 7664 

FC04 7873 7838 1.0045 7910 7873 

FC05 8044 8009 1.0043 8079 7975 

FC06 8214 8180 1.0042 8249 8183 

FC07 8272 8241 1.0038 8303 8186 

FC08 8404 8374 1.0035 8434 8290 

FC09 8497 8467 1.0035 8528 8288 

FC10 8709 8681 1.0033 8738 8497 

FC11 8844 8816 1.0031 8871 8600 

FC12 8860 8833 1.0031 8888 8704 

FC13 9077 9051 1.0029 9103 9019 

FC14 9166 9136 1.0033 9197 9125 

FC15 9370 9340 1.0031 9398 9331 

FC16 9499 9468 1.0032 9528 9644 

FC17 9639 9604 1.0036 9671 9855 

FC18 9713 9669 1.0046 9754 9956 

FC19 9912 9860 1.0053 9961 10270 

FC20 10009 9944 1.0065 10069 10478 

FC21 10073 9994 1.0079 10146 10374 

FC22 9799 9689 1.0114 9905 9643 

FC23 9882 9753 1.0131 10003 9643 

FC24 9629 9504 1.0131 9753 9122 

FC25 9426 9311 1.0123 9541 9331 

FC26 9160 9070 1.0099 9249 8917 

FC27 9174 9090 1.0092 9258 9125 

FC28 9307 9216 1.0099 9396 9226 

FC29 9146 9064 1.0091 9227 9123 

FC30 9244 9154 1.0098 9331 9120 

PS 8995 8939 8855 1.0094 9020 8914 



 

 
 

 

Figure 6.7: MALDI-ToF-MS spectra of PS 8895 fractions FC 01 – 09 from HRP-HPLC separation, compared to the original PS 8895 standard (PS 9k). 



 

 
 

 

Figure 6.8: MALDI-ToF-MS spectra of PS 8895 fractions FC 10 – 18 from HRP-HPLC separation, compared to the original PS 8895 standard (PS 9k). 



 

 
 

 

Figure 6.9: MALDI-ToF-MS spectra of PS 8895 fractions FC 19 – 27 from HRP-HPLC separation, compared to the original PS 8895 standard (PS 9k). 



 

 
 

 

Figure 6.10: MALDI-ToF-MS spectra of PS 8895 fractions FC 28 – 30 from HRP-HPLC separation, compared to the original PS 8895 standard (PS 9k). 
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6.1.4.2.2 Application to various polymer types 

All measurements of Figure 6.11 and Figure 6.12 were performed with a reduced resolution associated 

with choosing 1 % effective step height in the saw tooth gradient reducing the runtime. An economical 

approach is first to apply a saw tooth gradient with low resolution for obtaining an overview and then 

applying a gradient with higher resolution if necessary. For several polymers, e.g. PVC (Figure 6.11 a)), 

PMMA (Figure 6.11 b)), PDMS (Figure 6.11 c)) and PPG (Figure 6.11 d)), screening measurements were 

performed.  

 

Figure 6.11: Application of screening saw tooth gradients (effective step length of 0.6 min, effective step height 1.0 %) for 
separation of various polymer types over a broad molecular weight range, the picture-in-picture chromatogram shows the 

separation with application of a standard linear gradient; HRP-HPLC applied to a) PVC, b) PMMA, c) PDMS, and d) PPG on an 
Accucore C18 (50x4.6 mm, 2.6 µm) column with MeOH as weaker or rather non-solvent and THF as desorption promoting 

solvent. 
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- Figure 6.11 continued - 

 

In each case, the determination was done on an Accucore C18 column with methanol as weak or rather 

non-solvent and THF as desorption promoting solvent. In future measurement series, the influence of 

different adsorption promoting solvents with respect to the dissolving property of the investigated 

polymers will be further investigated. For comparison, the inset on the left-hand side of Figure 6.11 shows 

the separation performance of a linear gradient, respectively.  
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Figure 6.12: Application of screening saw tooth gradient for separation of various polymer types over a broad molecular weight 
range, the picture-in-picture chromatogram shows the separation with application of a standard linear gradient; HRP-HPLC 

applied to a) PVC, b) PMMA, and c) PDMS on a Poroshell HILIC (50x4.6 mm, 2.7 µm) column with MeOH as adsorption 
promoting solvent and THF as desorption promoting solvent. 
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Evaluating the performance of preparative linear and saw tooth gradients on analytical columns, PDMS 

with an average molar mass of 20,800 g∙mol-1 was fractionated with a screening saw tooth gradient of 

1.0 % effective step height and a corresponding linear gradient. Subsequent analysis of the fractions at 

the maximum of the original PDMS distribution (about Mp= 22,000 g∙mol-1) with MALDI-ToF-MS showed 

even for the screening saw tooth gradient an improved separation performance (fraction 13, Figure 6.13). 

Apart from a more symmetric polymer distribution, the saw tooth gradient resulted in a better separation, 

particularly at the boundaries (compare the inlets in Figure 6.13) of the polymer distribution. For the 

fraction of the linear gradient, the mass resolution was decreased over the whole mass spectrum. 

Furthermore, in the mass range between 24,000 and 25,000 g∙mol-1 a shoulder in the distribution 

occurred. This might be caused by a more unprecise fractionation at the linear gradient compared to the 

saw tooth gradient. Based on these results, further research with semi-preparative equipment is planned 

to show further applicability of the combination of saw tooth gradient and heart-cut two-dimensional 

liquid chromatography. 

 

Figure 6.13: MALDI-ToF-MS spectra of fractionated PDMS samples with mean molecular weights of 22 000 g∙mol-1 for 
separation with a linear gradient (above) and for separation with a saw tooth gradient (below), both mass spectra show the 
same fraction 13; the inlets give a detailed overview about the boundaries of the polymer distribution; silver trifluoroacetate 
was used as cationization agent in a DCTB matrix. The comparison shows a broader polymer distribution from 18 000 up to 

27 000 g∙mol-1 for the linear gradient. 
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The main contribution of the stationary phase is primarily its capability of retention of the analyte. 

Replacing a C18 column by a Poroshell HILIC column (c.f. Figure 6.12) PVC, PMMA and PDMS showed the 

same separation behavior. Interestingly, PPG could not be separated on a HILIC column applying the same 

conditions because of missing retention. However, comparing C18 with HILIC for HRP-HPLC, peak 

resolution of various polymers corresponded to each other and showed the minor significance of 

stationary phase in HRP-HPLC. Adapting an appropriate separation system, e.g. eluent combination, 

nearly each homopolymer can be separated in a distinct peak distribution. In fractionating polymers of 

the same kind, the distribution can be simplified for further investigations with other techniques such as 

mass spectrometry or size exclusion chromatography. Particularly, for the molar mass range greater than 

200,000 g mol-1 an unprecedented separation performance regarding peak resolution was achieved by 

HRP-HPLC (cf. Figure 6.14). 

 

Figure 6.14: High-resolution saw tooth gradient applied to PMMA 1 600 000 on an Accucore C18 (50x4.6 mm, 2.6 µm) with 
methanol as weaker or rather non-solvent and THF as desorption promoting solvent. 
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6.1.5 Conclusion 

Based on GPEC and HPPLC a novel technique termed high-resolution polymer HPLC (HRP-HPLC) was 

introduced. The HRP-HPLC is based on the application of a saw tooth gradient profile, which was 

developed, optimized, and validated for analysis of polymers. The profile of an optimum saw tooth 

gradient was evaluated by design of experiments. Special attention has to be taken choosing the 

appropriate sample amount for injection because peak resolution and effective step length of the gradient 

profile depend on the sample concentration. Regarding analysis time, a screening approach with reduced 

run time and resolution or a high-resolution approach with an extended run time can be chosen by only 

adjusting the effective step height of the gradient profile. Compared to common liquid chromatographic 

methods such as SEC, HRP-HPLC is characterized by a superior resolution especially in the high molecular 

mass range. Despite the highly increased resolution, the new gradient technique currently does not allow 

a separation of single oligomers. However, the number of oligomers per single saw tooth gradient step 

could be considerably reduced through the fractionated elution. A major constraint of typical 

chromatographic software packages is the possibility of generating gradient tables with up to 2000 entries 

for exploitation of the entire potential of this technique – from 100 % weaker or non-solvent to 100 % 

stronger or desorption promoting solvent with 0.2 % effective step height. Presently, this approach for 

example is possible with Chromeleon 7.2.2 in combination with HPLC systems from Thermo Fisher 

Scientific. Preparative HRP-HPLC on analytical columns showed some limitations concerning sample 

amount, runtime, and column overloading. Therefore, further improvements of the preparative 

measurements are in progress. The universal applicability of HRP-HPLC was demonstrated by the 

separation of various types of polymers, e.g. PVC, PDMS, PMMA, or PPG, using a conventional “ordinary” 

HPLC system. In conclusion, the newly developed HRP-HPLC paves the way for comprehensive studies of 

polymeric materials. 
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6.2 High-Resolution Polymer High Performance Liquid Chromatography: 

Optimization of the saw tooth gradient profile for various stationary 

phases and separations on preparative scale 

 

 

Graphical Abstract: One column – two separation mechanisms; SEC vs. HRP-HPLC. 
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6.2.1 Abstract 

The recently introduced saw tooth gradient protocol for high-resolution polymer HPLC was further 

improved and optimized in terms of total runtime and separation performance. As a result, increased flow 

rates enabled drastically reduced runtimes in combination with enhanced peak resolutions. Moreover, 

the saw tooth gradient profile was further investigated using a saw tooth gradient with a down-to-zero 

approach concerning the height of the negative backward gradient step. Modifying the mobile phase 

composition enabled two further gradient protocols: a ternary, and a three-dimensional approach, 

respectively. Thereby, a ternary saw tooth gradient was realized by repeating the whole gradient elution 

with two adequate pairs of adsorption and desorption promoting solvents for mixtures containing diverse 

polymer components. A three-dimensional saw tooth gradient was established by combining three 

different solvents in the gradient elution. In addition to mobile phase modifications, various stationary 

phases were compared and examined. Applying size exclusion chromatography (SEC) columns for saw 

tooth gradient polymer elution chromatography enabled the exploitation of two completely different 

separation mechanisms (SEC and high-resolution polymer HPLC) on one stationary phase. Thus, two-

dimensional, heart-cut coupling of SEC and high-resolution polymer HPLC with only one stationary phase 

could be achieved. The application of the above-mentioned concept and its highly attractive performance 

characteristics are demonstrated for a silicone oil with a viscosity of 350 mPa∙s by using a hybrid HPLC 

system coupled to a fraction collector.  
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6.2.2 Introduction 

The application of polymers in various areas, like in pharmaceutical or in medical care products, 

automotive industry, and construction business, depicts their relevance. Considering liquid 

chromatographic separation techniques, particularly size exclusion chromatography (SEC) is used for the 

determination of molecular weight distributions. Apart from this mainly entropy-controlled separation 

technique avoiding any chemical interactions between polymer and stationary phase, the field of 

interaction polymer chromatography provides different separation interactions [1–6]. At the critical point 

of adsorption, enthalpy and entropy changes equalize each other and enable the separation of polymer 

mixtures according to their chemical functionalities without molar mass influences. The method of liquid 

chromatography at critical conditions (LCCC) shows a high potential for separation of copolymers [7–9] 

and enables subsequent separation techniques as barrier technique or gradient SEC [1, 10]. These 

techniques provide a high separation performance if the chromatographic system is properly adjusted 

and perturbations on the sensitive system can be minimized. Apart from SEC and LCCC, polymer HPLC 

[13–15], which is primarily driven by enthalpic interactions, enables the separation based on molar mass 

and chemical functionality distributions or differences in polymer architecture within a single 

chromatographic system [16]. In general, the interaction of these different separation mechanisms may 

complicate the choice of a suitable combination of stationary and mobile phases. Consequently, most 

separations in polymer HPLC are performed as gradient polymer elution chromatography (GPEC) by using 

at least one adsorption promoting solvent and one desorption promoting solvent. In our recent work [11], 

we developed and optimized a new gradient concept based on a saw tooth gradient (see Figure 6.15). The 

application of a saw tooth gradient protocol allowed an enhanced peak resolution and improvement of 

separation quality. The optimization of the gradient profile was achieved by design of experiments (DoE) 

[19–21]. Based on these results, several aspects like the choice of stationary and mobile phase, LC flow 

rate or measurements on a (semi-) preparative scale required additional investigation.  
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Figure 6.15: Scheme of a saw tooth gradient design; the predominant parameters effective step height, step length and the 
height of the negative backward gradient step are annotated. 

The up-scaling from analytical to semi-preparative columns provides the possibility of heart-cut two 

dimensional liquid chromatographic separations with subsequent analysis of the collected fractions. In 

polymer analysis, particularly the coupling with MALDI mass spectrometry [12] or NMR spectroscopy [17] 

enhance the information about (micro-)structure and composition of the analyzed polymers or polymer 

mixtures. Up-scaling from analytical to preparative polymer HPLC often requires long runtimes and 

expensive, time-consuming method development. Thus, additional investigations of high-resolution 

polymer HPLC applying saw tooth gradients may result in protocols simplifying the overall process. 
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6.2.3 Material and methods 

As reported recently [11], programming a saw tooth gradient over a range from 0 to 100 % desorption 

promoting solvent was possible without any limitations with the chromatographic data system 

Chromeleon (Thermo Fisher Scientific, version 7.2), in contrast to other investigated software packages 

limited in the number of possible entries in the gradient time table. Furthermore, comparing the driver 

configuration between Agilent and Thermo Fisher Scientific HPLC pumps, gradient programming without 

limited number of entries in the gradient time table was only possible for pumps from Thermo Fisher 

Scientific. 

 

6.2.3.1 Mobile phase components and polymer standards 

All used solvents were HPLC grade. Acetone, acetonitrile, methanol, non-stabilized tetrahydrofuran (THF), 

and toluene were purchased from Merck (Darmstadt, Germany) and used without further purification. 

Water of a Milli-Q-Advantage A10 water system (Merck Millipore) was used. Poly(dimethylsilioxane) 

(PDMS) standards with viscosities of 350 mPa∙s and 1000 mPa∙s were obtained from Wacker Chemie AG 

(Burghausen, Germany). The used poly(methyl methacrylate) (PMMA), poly(vinyl chloride) (PVC) and 

poly(propylene glycol) (PPG) were purchased from Agilent (Church Stretton, UK). All used polymer 

standards were dissolved in THF. 

 

6.2.3.2 Optimization of LC flow rate 

The effect of various LC flow rates was measured with a Thermo Fisher Scientific (Waltham, USA) 

Ultimate 3000 HPLC system equipped with a binary pump. For detection, an Agilent (Waldbronn, 

Germany) 385 ELSD modified with an enhanced parallel-path MiraMist® poly(tetrafluoroethylene) 

nebulizer from Burgener Research Inc. (Mississauga, Ontario, Canada) at 40 °C evaporator temperature, 

90 °C nebulizer temperature and 1.6 SLM (standard liter per minute) gas flow was used [18]. The 

measurements were done with an Agilent Poroshell HILIC (50x4.6 mm, 2.7 µm) and a silicone oil of 

1000 mPa∙s (Wacker Chemie AG, Burghausen, Germany). The saw tooth gradient was programmed with 

an effective step height of 0.2 % and a height of the negative backward gradient step of 6.0 % 

(compare [11]) and LC flow rates of one, two, and three mL∙min-1. 
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6.2.3.3 Evaluation measurements of various saw tooth gradient profiles 

For comparison of three different discussed saw tooth profiles, a Thermo Fisher Scientific Ultimate 3000 

HPLC system equipped with a quaternary pump, the above-mentioned modified Agilent 385 ELSD and a 

Thermo Fisher Scientific Accucore C18 (50x4.6 mm, 2.6 µm) were used. In each case the saw tooth 

gradients were performed with an effective step height of 1.0 % and an effective step length of 0.2 min. 

The height of the negative backward gradient step was 6.0 % or the maximally possible value of 100 % 

and for the three-dimensional saw tooth gradient in each step during the height of the negative backward 

gradient step the mobile phase composition was changed to water instead of methanol followed by a 

reconditioning step back to a mixture of THF and methanol before switching to the positive slope. A 

PMMA standard with an average molecular weight of 107,000 g∙mol-1 at a concentration of 20 mg∙mL-1 

was used as analyte. 

The setup of the ternary saw tooth gradient setup separating PMMA (19,700 g∙mol-1), polypropylene 

glycol (PPG, 18,000 g∙mol-1), and PDMS (18,600 g∙mol-1) at a concentration of 20 mg∙mL-1 respectively, 

consisted of two different saw tooth gradient approaches: Starting at 100 % methanol (adsorption 

promoting solvent) a first saw tooth gradient with an effective step length of 0.6 min, an effective step 

height of 1.0 % and a height of the negative backward gradient step of 6.0 % were performed with acetone 

as desorption promoting solvent (elution of PMMA und PPG). Subsequently, at 100 % acetone the same 

saw tooth gradient was used but with THF as a stronger desorption promoting solvent (elution of PDMS) 

while acetone acted as an adsorption promoting solvent. 

 

6.2.3.4 Comparison of different LC columns 

Various types of liquid chromatographic stationary phases were compared in terms of separating PMMA, 

PDMS, PVC, and PPG at a concentration of 20 mg∙mL-1 respectively. Table 6.6 gives an overview of the 

specific data. The measurements were performed on a Thermo Fisher Scientific Ultimate 3000 HPLC 

system equipped with a quaternary pump and a modified Agilent 385 ELSD. Each polymer was separately 

measured on each column with a linear gradient starting from 100 % methanol and finishing at 100 % THF. 
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Table 6.6: Overview of used LC columns separating PMMA, PVC, PDMS, and PPG with an average  molecular mass of 
approximately 20 kDa, the categories are an indicator for elution order of the different polymers: category 1 - PMMA-PPG-
PDMS-PVC, category 2 - PMMA-PPG-PVC-PDMS, category 3 - PPG-PMMA-PDMS-PVC, category 4 - PDMS-PMMA-PPG (PVC 

irreversibly remained at the column), and category 5 -  PPG-PDMS-PMMA-PVC. 

Category Manufacturer Name 
Dimensions, 
particle type 

Evaluation 

1 ZirChrom 
Diamond Bond 

C18 

150x4.6 mm, 
5 µm, 

fully porous 

zircon based, carbon coated, 
extended pH range 

1 Phenomenex 
Luna Omega PS 

C18 

150x4.6 mm, 
5 µm, fully 

porous, 100 Å 

mixed mode C18 with positive 
charge for additional ionic 

interactions 

1 Tosoh 
TSK Gel 

Boronate 5PW 

75x7.5 mm, 
10 µm, 

Polymer 

polymer based, m-
aminophenylboronate coated, 

for affinity chromatography 

2 Merck 
Chromolith 

Performance RP 
C18 

100x4.6 mm, 
monolithic 

column 
monolithic column 

2 
Microsolv 

Technology 
Cogent 

Bidentate C18 

150x4.6 mm, 
4.2 µm, fully 

porous, 100 Å 

no silanol activity, C18 chain 
directly to Silica-hydrid surface 

bonded 

3 Agilent PLRP-S 

50x4.6 mm, 
10 µm, 

polymer, 
4000 Å 

polymer based, for biomolecule 
separation 

3 Thermo-Fisher 
Omnipac Pax-

500 

250x4.6 mm, 
8.5 µm, 
polymer 

mixed mode polymer phase with 
anion exchange interactions 

3 Thermo-Fisher Accucore C18 
50x4.6 mm, 
2.6 µm, core 

shell, 80 Å 

typical C18 column, non-polar 
interactions 

3 Phenomenex Kinetex F5 
50x4.6 mm, 
2.6 µm, core 
shell, 100 Å 

pentafluorophenyl column for 
steric separations 

3 Phenomenex 
Kinetex 

Biphenyl 

50x4.6 mm, 
2.6 µm, core 
shell, 100 Å 

hydrophobic, aromatic and polar 
interactions 

3 Phenomenex 
Luna 

Phenylhexyl 

50x4.6 mm, 
5 µm, fully 

porous 

hydrophobic, aromatic 
interactions 

4 Thermo- Fisher Hypercarb 

100x4.6 mm, 
porous 

graphitic 
carbon 

graphitic carbon 

5 Agilent PL gel Mixed C 
300x7.5 mm, 

5 µm, polymer 
SEC column, molar mass range 

200 to 2,000,000 g∙mol-1 
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6.2.3.5 HRP-HPLC using a SEC column 

SEC measurements were performed with a Polymer Standards Service (Mainz, Germany) 

SECcurity GPC 1200 system equipped with a refractive index detector. Data evaluation was done with the 

SEC software package WinGPC UniChrom 8.2. For polymer HPLC, a Thermo Fisher Scientific Ultimate 3000 

HPLC system equipped with a quaternary pump and the modified Agilent 385 ELSD was used. An Agilent 

PL gel Mixed C column (300x7.5 mm, 5 µm) was used for the separation of PMMA standards with an 

average molecular weight of 19,700 g∙mol-1, 107,700 g∙mol-1, 690,000 g∙mol-1, and 1,600,000 g∙mol-1, with 

THF as eluent in SEC mode and acetonitrile as adsorption promoting solvent and THF as desorption 

promoting solvent in polymer HPLC mode. 

6.2.3.6 Preparative HRP-HPLC 

Preparative HRP-HPLC within the entire gradient range was achieved by coupling a Thermo Fisher 

Scientific Ultimate 3000 HPLC (with a binary pump (1), autosampler (2) and column oven (3)) to an Agilent 

1260 fraction collector (5) equipped with an Agilent LAN Interface Card as depicted in Figure 6.16. 

 

Figure 6.16: Instrumental setup of a preparative LC system by coupling a Thermo Fisher Scientific HPLC consisting of a binary 
pump (1), an autosampler (2) and a column oven (3) either with an Agilent ELSD (4) for measurement of the cutting pattern or 
an Agilent fraction collector (5) in combination with an Agilent pump (6) and autosampler (7) for preparative separation. The 

whole installation is controlled by the software package Chromeleon (8). 
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Additionally, a proper communication of both LC systems via the chromatographic software package 

Chromeleon had to be established. For receiving a trigger signal from the Thermo Fisher Scientific HPLC 

necessary for the Agilent fraction collector, the entire configuration required an additional 

Agilent pump (6) and an additional Agilent autosampler (7). Regarding software control (8), two 

autosampler caused problems and thus the Agilent autosampler could easily be “deactivated” in the script 

editor of Chromeleon by allocating the value “1” using the command: “LCSystem.ALS.Position”. 

Furthermore, the flow rate of the Agilent pump was set to 0.0 mL∙min-1 and the acquisition of the pump 

pressure had to be activated. Further details referring to this hybrid HPLC are given in the results and 

discussion part. 

Preparative HPLC of a silicone oil with viscosity of 350 mPa∙s required in the first step, a fraction collector 

offset corrected detection run, with the ELSD (4) for determining an adequate cutting pattern. In a second 

step, instead of the ELSD, the fraction collector was connected to the column outlet and the fraction 

collection was started without detection. For these measurements, methanol was used as adsorption 

promoting solvent and THF as desorption promoting solvent. The saw tooth gradient had an effective step 

height of 1.0 %, an effective step length of 6 min and a height of the negative backward gradient step of 

100 % (saw tooth gradient down-to-zero). A Thermo Fisher Scientific Hypersil Gold C18 aQ (100x10 mm, 

5 µm) was used as stationary phase. After the preparative separation, each single fraction was measured 

with a Polymer Standards Service SECcurity GPC 1200 system equipped with a refractive index detector 

applying a set of three Agilent PlGel MiniMIX-C columns (250x4.6 mm, 5 µm) at a eluent flow rate of 

0.3 mL∙min-1. 
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6.2.4 Results and discussion 

Based on the previously reported results [11] further optimization of high-resolution polymer HPLC using 

a saw tooth gradient was performed. Therefore, the influence of varying LC flow rates and modified saw 

tooth gradient profiles on the separation quality were investigated. Furthermore, various types of 

LC columns were tested, resulting in a comparison of two separation mechanisms (SEC and HRP-HPLC) on 

the same SEC stationary phase. To overcome the constraints in preparative HRP-HPLC, like limited entries 

in the gradient time table of Agilent pumps (see [11]), an optimized configuration of a preparative 

LC system for PDMS analysis was applied. 

 

6.2.4.1 Optimization of LC flow rate 

As stated in [11], employing a saw tooth gradient with a low effective step height required long runtimes 

for high peak resolutions. Apart from the actual shape of the single gradient steps as an important 

parameter in saw tooth gradient design, the optimization of the effective step length could shorten total 

runtime without deteriorating peak resolution. Consequently, increasing the LC flow rate was a good 

compromise between short runtime and high peak resolution (see Figure 6.17). As far as the actual peak 

separation is retained by the saw tooth gradient, no significant decline in peak resolution was observed. 

Thus, an increase of the flow rate by a factor of three reduced the runtime to one third – for the shown 

example of PDMS from 165 min to 55 min – without changing the peak resolution. The disadvantage of 

increasing backpressure could easily be managed, because particle and column dimensions showed only 

minor impact on the separation efficiency and thus the application of short columns with suitable 

diameters was possible [11]. 
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Figure 6.17: HRP-HPLC measurement of PMMA with average molecular weight of 107,000 g∙mol-1 on a Poroshell HILIC 
(50x4.6 mm, 2.7 µm) using methanol as adsorption promoting solvent and THF as desorption promoting solvent and a saw tooth 
gradient with an effective step height of 0.2 % and a height of the negative backward gradient step of 6.0 %; the figure depicts 
the effect of varying flow rate of a) 1 mL∙min-1, b) 2 mL∙min-1, and c) 3 mL∙min-1 on the total runtime and peak separation. 
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6.2.4.2 Development and evaluation of various saw tooth gradient profiles 

Apart from a standard saw tooth approach, the number of used solvents and the variation of the height 

of the negative backward gradient step to higher values allowed different “critical” mobile phase 

compositions when reaching the elution point of the polymer. 

6.2.4.2.1 Saw tooth gradient down-to-zero 

In accordance with design of experiments (DoE) due to Taguchi’s approach for optimizing the gradient 

shape in our previous research [11], an additional response optimization combining different integration 

modes was performed to analyze the influence of the height of the negative backward gradient step on 

separation performance. Therefore, the tallest peak height difference in between the integration mode 

of perpendicular line dropping and valley-to-valley integration mode was calculated for the entire DoE 

(see Table 6.7). 

Table 6.7: Calculated values for peak height difference between the integration modes of perpendicular line dropping and 
valley-to-valley setting; the DoE number refers to the DoE described in [11]. 

Number in 
DoE 

height of the negative 
backward gradient step [%] 

Peak height difference 
[mAU] 

1 3.0 624.2 

2 3.0 1090.0 

3 3.0 1226.0 

4 3.0 873.4 

5 6.0 0.2 

6 6.0 277.6 

7 6.0 335.2 

8 6.0 578.9 

9 9.0 0.2 

10 9.0 135.8 

11 9.0 8.6 

12 9.0 14.9 

13 12.0 0.2 

14 12.0 0.2 

15 12.0 0.2 

16 12.0 0.4 
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Figure 6.18: Chromatogram (black curve) of measurement PS 19,600, V11 of DoE cf. [11] for comparison of two integration 
modes: “drop perpendicular” (blue line) and “valley-to-valley” (red line); For this measurement a Poroshell C18 (50x4.6 mm, 

2.7 µm) with methanol as adsorption promoting solvent and THF as desorption promoting solvent was used while detecting at 
215 nm. 

Figure 6.18 depicts an example chromatogram used for data evaluation. In summary, minimizing peak 

height differences indicated the best baseline separation. The DoE evaluation showed that an increasing 

height of the negative backward gradient step reduced the peak height difference and therefore resulted 

in an improved baseline separation of the peaks.  

Based on these results, the height of the negative backward gradient step was further investigated and 

maximized to a value of 100.0 % corresponding to an amount of 0.0 % desorption promoting solvent, 

termed as “saw tooth gradient down-to-zero”, in the backward direction of the saw tooth profile. 

Figure 6.19 a) shows the difference between a saw tooth gradient with 6.0 % height of the negative 

backward gradient step (blue line) and a down-to-zero saw tooth gradient (pink line) for investigating a 

PMMA standard of an average molecular weight of 107,000 g∙mol-1 at an Accucore C18 column. The latter 

showed an enhanced peak resolution and an increased retention time, even though the effective step 

length remained the same. Furthermore, the pink chromatogram depicts an increased peak tailing, which 

might be a consequence of a highly shortened equilibration time after reaching the next higher plateau. 

Thus, changing the height of the negative backward gradient step additionally to flow rate and effective 

step height is an important opportunity for improving separation efficiency. Nevertheless, further 

research will be necessary to further optimize the gradient setup with these parameters. 
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6.2.4.2.2 3D saw tooth gradient 

Besides the aforementioned technical parameters, a change in the dissolution power of the mobile phase 

composition also could be realized by using a third solvent during the gradient setup. Therefore, water 

was used as an additional, much stronger adsorption promoting solvent than methanol and as desorption 

promoting solvent THF was used for analysis of PMMA with an average molecular weight of 

107,000 g∙mol-1 (Figure 6.19 a), green line). This 3D gradient setup is characterized by an additional step 

in gradient programming, whereby the backward direction of desorption promoting solvent is fortified by 

simultaneously increasing the water content as stronger adsorption promoting solvent compared to 

methanol (Table 6.8). 

Table 6.8: Explanation of a three-dimensional gradient setup combining water, methanol, and THF as mobile phase 
components, the first column describes the appropriate step during the gradient programming. 

Gradient step 
Ratio water 

[%] 
Ratio methanol 

[%] 
Ratio THF yn 

[%] 

upper plateau 0.0 100-y1 y1 
height of the negative backward gradient step ↑ 0.0 ↓ 

first half of lower plateau 100-y2 0.0 y2 
second half of lower plateau 0.0 100-y2 y2 

positive slope 0.0 100-y3 y3 
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Figure 6.19: a) Comparison of different saw tooth profiles with effective step height of 1.0 % effective step length of 0.2 min and 
flow rate of 3.0 mL∙min-1 for separating PMMA with an average molecular weight of 107,000 g∙mol-1; the gradients differ 

concerning a height of the negative backward gradient step of 6.0 % (blue curve), the maximum height of the negative 
backward gradient step of 100.0 % (pink curve) and a three dimensional saw tooth gradient with a mobile phase combination of 
water, methanol and THF (green curve); b) ternary saw tooth gradient separating PMMA with an average molecular weight of 

19,700 g∙mol-1, PPG with an average molecular weight of 18,000 g∙mol-1, and PDMS with an average molecular weight of 
18,600 g∙mol-1, and a concentration of 20 mg∙mL-1 respectively, at an Accucore C18 (50x4.6 mm, 2.6 µm); from 0 to 30 min 

methanol was used as adsorption promoting solvent in combination with acetone as desorption promoting solvent and then 
acetone was used as adsorption promoting solvent in combination with THF as desorption promoting solvent. 

 

6.2.4.2.3 Ternary saw tooth gradient 

A further option using more than two mobile phase components is depicted in Figure 6.19 b) for 

simultaneously separating PMMA, PPG, and PDMS (each with an average molecular weight of 20 kDa) 

with an Accucore C18 column. Therefore, in the first half of the analysis (0 – 30 min) a combination of 

methanol as adsorption promoting solvent for all three investigated polymers and acetone as desorption 

promoting solvent for PMMA and PPG was used. As soon as 100 % of acetone was reached, THF was used 

as desorption promoting solvent for the remaining PDMS. Using this ternary saw tooth gradient setup, a 

change in the solvent strength of the mobile phase enabled an enhanced separation of the examined 

polymers within a single analysis. For analysis of complex polymer mixtures, the repeated application of 

a saw tooth gradient might considerably shorten the runtime. 
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6.2.4.3 Application of HRP-HPLC to different LC stationary phases 

Additionally to an optimized gradient profile, changing the stationary phase affected the polymer 

adsorption and thus the polymer elution. In contrast to classical HPLC separations, previous 

measurements showed that a change of particle size and column dimensions had only minor effects on 

separation efficiency. Hence, various liquid chromatographic columns with great differences in the 

stationary phase chemistry were evaluated for separating PMMA, PDMS, PVC, and PPG with similar 

average molecular weights. Table 6.6 gives a detailed overview of the used stationary phases. Unless 

otherwise mentioned, methanol was used as adsorption promoting solvent and THF as desorption 

promoting solvent in an ordinary linear gradient reducing total runtime. 

6.2.4.3.1 Comparison of classical HPLC stationary phases 

As aforementioned, for columns used in HRP-HPLC the most important factor is the adsorption of the 

polymer and therefore the retention of the investigated polymers. For this reason, the columns were 

categorized due to the elution order of the polymers as main differentiating factor (Table 6.6). Columns 

of category 1 showed an elution order of PMMA-PPG-PDMS-PVC, category 2 of PMMA- PPG-PVC-PDMS, 

category 3 of PPG-PMMA-PDMS-PVC, category 4 of PDMS-PMMA-PPG and category 5 of PPG-PDMS-

PMMA-PVC. In addition to peak position in the chromatogram, the peak shape was a further key 

parameter when comparing various stationary phases. 

Figure 6.20 summarizes the stationary phases of each column category with the best overall peak shape 

and peak separation. For PDMS and PVC, the separation efficiency of the ZirChrom Diamond Bond C18 

(Figure 6.20 a)) was quite impressive compared to all other investigated columns. Comparing the 

performance of a Luna Omega PS C18 and a TSK Gel Boronate to the Diamond Bond C18, the separation 

between the polymers and the peak shapes declined. Figure 6.20 b)) depicts the polymer separation using 

a monolithic Chromolith Performance RP C18 column with a partial co-elution of PDMS and PVC. Applying 

a Cogent Bidentate C18 column, the separation efficiency further decreased. Most of the examined 

stationary phases featured an elution order of category 3 of which the Agilent PLRP-S polymer-based 

column showed the best separation performance (Figure 6.20 c)). Comparing elution order and 

separation power of the examined C18 columns a broad variety occurred within the similar modified alkyl 

chain stationary phases. These results show that the stationary base material and fabrication of the 

particles had a larger impact on the polymer separation than the modification of the phases.  
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Figure 6.20: Separations of PMMA (blue line), PVC (orange line), PDMS (green line), and PPG (pink line) with an average 
molecular mass of approximately 20 kDa and a concentration of 20 mg∙mL-1 respectively, methanol as adsorption promoting 

solvent, THF as desorption promoting solvent (linear gradient) at a) a Diamond Bond C18 (150x4.6 mm, 5 µm), b) a Chromolith 
RP C18 (100x4.6 mm, monolithic), c) a PLRP-S (50x4.6 mm, 10 µm, polymer material),d) a Hypercarb (100x4.6 mm, porous 

graphitic carbon), and e) a PLgel Mixed C (300x7.5 mm, 5 µm, SEC column). 
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Using a Hypercarb, a porous graphitic carbon column, the elution order was inverted, so that the polar 

PPG elutes last (Figure 6.20 d)). Furthermore, PVC irreversibly remained on the stationary phase and even 

intense flushing with THF at elevated temperatures (up to 60 °C) could not desorb the polymer. In 

comparison to columns of categories 1 to 3, porous graphitic carbon offered a significantly different 

polymer elution. Another interesting application of polymer HPLC is shown in Figure 6.20 e), applying a 

PL gel Mixed C SEC column as stationary phase. Apart from a very broad polymer distribution of PDMS, 

PMMA, PVC, and PPG could also be separated. Moreover, the separation of three different polymer types 

with similar molecular masses with gradient HPLC allowed the application of a further separation 

mechanism without using another stationary phase in combination with conventional SEC. 
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6.2.4.3.2 One column – two separation mechanisms 

For a more detailed investigation of the two separation mechanisms employing a SEC column, e.g. PL gel 

Mixed C, 300x7.5 mm, a set of four PMMA standards with average molecular weights of 19,700 g∙mol-1, 

107,000 g∙mol-1, 690,000 g∙mol-1, and 1,600,000 g∙mol-1 were analyzed. SEC measurements were 

performed with THF as eluent (Figure 6.21 a)) and for HRP-HPLC acetonitrile was used as adsorption 

promoting solvent and THF as desorption promoting solvent (Figure 6.21 b)). 

 

Figure 6.21: a) SEC elugrams of various PMMA standards at a flow rate of 1.0 mL∙min-1 and THF as mobile phase; b) HRP-HPLC 
chromatograms of the same PMMA standards employing a saw tooth gradient of 6.0 % height of the negative backward 

gradient step, 1.2 min effective step length, and 0.2 % effective step height with acetonitrile as adsorption promoting solvent 
and THF as desorption promoting solvent. 
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In normal SEC mode the polymers were separated due to their solvation volume, i.e. average molar mass 

distributions, while the elution order is from high molecular weight to low molecular weight polymer in 

accordance with size exclusion mechanism [22]. In contrast when applying HRP-HPLC, the polymer 

distributions were divided in several distinct peaks for each sample. Furthermore, molar mass increased 

with increasing retention time. Comparing both separation modes, HRP-HPLC gave a more detailed insight 

to the polymer distribution, while SEC offered the molar mass distribution of a polymer applying e.g. 

conventional calibration by polystyrene standards. Combining both techniques yields more information 

about the chemical composition and/ or the molar mass distribution of polymer samples and, especially 

for complex polymer mixtures (see the preceding section), a more detailed overview by applying only one 

stationary phase becomes possible. 
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6.2.4.4 Optimization of preparative HRP-HPLC 

For an evaluation of separation performance and for coupling with other analytical methods, a two-

dimensional approach employing a saw tooth gradient in the first dimension would be beneficial. One 

major drawback was the limited number of gradient steps being allowed in the gradient table of 

chromatographic software packages. This was overcome by coupling a Thermo Fisher Scientific pump with 

an Agilent faction collector using Chromeleon as chromatographic software. For a proper control, two 

HPLC systems, one from Thermo Fisher Scientific and one from Agilent were integrated as one instrument 

in the software. Whereby, neither the Agilent pump nor the Agilent autosampler had to be work active in 

the actual separation nor had to be fully functional. The only request to these additional components was 

a proper electronic signal for the software. Running two autosamplers within one configuration was 

possible without any problems if in the script editor of Chromeleon the command for the Agilent 

autosampler “LCSystem.ALS.Position” was set to “1”. The flow rate of the Agilent pump was set to 

0.0 mL·min-1 but the pressure signal had to be recorded for a proper run control. Additional care had to 

be taken in the sequence table of Chromeleon: No entry specified as “blank” was allowed and the 

instrument could not be automatically set in standby condition. When considering these peculiarities, an 

Agilent fraction collector can be combined with a Thermo Fisher Scientific LC system employing gradient 

tables with more than 2000 entries. By this hybrid HPLC system and a down-to-zero saw tooth gradient, 

preparative separations and fraction collection could be achieved. For this purpose, a Hypersil Gold 

C18 aQ (100x10 mm, 5 µm) was employed with methanol as adsorption promoting solvent and THF as 

desorption promoting solvent separating a silicone oil with a viscosity of 350 mPa∙s. The pattern used for 

fraction collection was determined by ELS detection and is depicted in Figure 6.22. 

 

Figure 6.22: Measurement for preparative separation of PDMS with a viscosity of 350 mPa∙s (absolute sample amount 165 mg 
per run, fraction collection of two runs) on a Hypersil Gold C18 aQ column (100x10 mm, 5 µm) with methanol as adsorption 

promoting and THF as desorption promoting solvent; the added numbers correspond to the collected fractions. 
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Forty-four fractions were collected and afterwards the molar mass distribution of each fraction was 

determined by SEC. Table 6.9 gives an overview about the collected weight of each fraction, its number 

average molar mass, weight average molar mass, average molar mass at peak maximum and the 

polydispersities. The molar masses rose with increasing number of fraction collection. The polydispersities 

of the fractions were all approximately 1.10 compared to 2.01 as the polydispersity of the original PDMS 

sample. Figure 6.23 depicts the corresponding elugrams of SEC measured on a set of three 

PL gel MiniMIX-C (250x4.6 mm, 5 µm) columns using toluene as eluent and the RI signals were normalized. 

The plotted peak widths correspond not only to the polydispersity (cf. Table 6.9) but also to the intensity 

of the signal which do not affect peak position. A set of 10 fractions was converted by color encoding for 

a better overview in Figure 6.23 including the original, non-fractionated silicone oil of a viscosity of 

350 mPa·s as black elugram. Based on heart cut fraction collection by HRP-HPLC employing a saw tooth 

gradient and subsequent measurement by SEC an exceptional peak resolution could be achieved in the 

first dimension. 

 

Figure 6.23: SEC elugrams of PDMS fractions 1 – 44 using three PL gel MiniMIX-C (250x4.6 mm, 5 µm) columns at a flow rate of 
0.3 mL∙min-1 with toluene as eluent and a normalization of the RI signal, the different fractions are color encoded from red to 

blue with increasing molar mass or fraction number; the black curve shows the elugrams of the non-fractionated PDMS with a 
viscosity of 350 mPa∙s. 
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Table 6.9: SEC results of the preparative HRP-HPLC separation of PDMS with viscosity of 350 mPa∙s, the values for the number 
average molar mass Mn, weight average molar mass Mw, and average molar mass at peak maximum Mp were measured with 

an RI detector and calculated with the software WinGPC Unichrom 8.2; the fraction number refers to those of Figure 6.22. 

 weight of 
fraction [mg] 

Mn [g∙mol-1] Mw [g∙mol-1] Mp [g∙mol-1] 
Poly-

dispersity 

original sample ---- 9460 19000 18600 2.01 
FC 1 0.1 2390 2580 2880 1.08 
FC 2 0.1 2460 2660 2990 1.08 
FC 3 0.2 2630 2770 3060 1.05 
FC 4 0.3 2690 2850 3150 1.06 
FC 5 0.3 2690 2900 3210 1.08 
FC 6 0.5 2780 2980 3310 1.07 
FC 7 0.5 2790 3030 3380 1.09 
FC 8 0.1 2910 3120 3450 1.07 
FC 9 0.7 3050 3260 3570 1.07 

FC 10 0.1 3110 3340 3670 1.07 
FC 11 0.5 3290 3510 3850 1.07 
FC 12 0.0 3420 3630 3990 1.06 
FC 13 1.0 3540 3760 4130 1.06 
FC 14 0.9 3670 3910 4300 1.07 
FC 15 1.1 3840 4070 4410 1.06 
FC 16 1.2 3970 4230 4630 1.07 
FC 17 1.2 4170 4420 4820 1.06 
FC 18 1.7 4360 4620 5030 1.06 
FC 19 1.5 4550 4820 5220 1.06 
FC 20 1.5 4690 5040 5500 1.07 
FC 21 1.7 5020 5320 5780 1.06 
FC 22 2.0 5210 5580 6040 1.07 
FC 23 2.0 5550 5900 6450 1.06 
FC 24 2.8 5860 6220 6810 1.06 
FC 25 2.6 6250 6660 7230 1.07 
FC 26 1.8 6620 7050 7740 1.06 
FC 27 3.4 7090 7560 8220 1.07 
FC 28 3.8 7530 8050 8870 1.07 
FC 29 4.3 8040 8610 9470 1.07 
FC 30 5.3 8650 9280 10200 1.07 
FC 31 5.8 9340 10000 11000 1.07 
FC 32 6.3 10200 10900 12000 1.07 
FC 33 10.1 11100 11900 13100 1.07 
FC 34 8.7 12200 13100 14300 1.07 
FC 35 8.0 13400 14400 15800 1.07 
FC 36 11.6 15000 16000 17600 1.07 
FC 37 13.2 16800 18000 19800 1.07 
FC 38 14.8 19000 20500 22300 1.08 
FC 39 21.7 21700 23500 25800 1.08 
FC 40 19.5 25400 27600 30300 1.09 
FC 41 17.7 30300 33200 36300 1.10 
FC 42 21.8 38000 41300 44600 1.09 
FC 43 20.4 48000 53000 57300 1.10 
FC 44 15.2 60100 70200 76200 1.17 
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6.2.5 Conclusion 

The application of a saw tooth gradient for gradient polymer elution chromatography showed additional 

promising results. Optimization of flow rate, gradient profile, and mobile phase compositions revealed 

further peculiarities and benefits of the recently introduced saw tooth gradient profile. Based on these 

results, fingerprint analysis of complex polymer mixtures becomes possible with a high peak resolution. 

Employing preparative fraction collection further investigations of polymers by SEC, MALDI-ToF-MS or 

NMR are possible while simplifying complex polymer samples. Due to the high-resolution power of HRP-

HPLC using a saw tooth gradient, analyses of polymer (micro-) structures and complex mixtures are 

comprehensively realized. 

Furthermore, a comparison of various stationary phases gave an overview over associated separation 

performance and elution orders, which are an important basis for an optimal polymer separation. As 

recently shown [11], the column length had only minor impact on the performance of the saw tooth 

gradient and especially in combination with elevated LC flow rates, the use of shorter columns became 

favorable. Therefore, further research with short monolithic columns, as presented by 

Maksimova et al. [23] for the analysis of various polymers, would presumably be a good combination to 

HRP-HPLC. 

Choosing a SEC column as stationary phase for high-resolution polymer HPLC allowed the application of 

two completely different separation mechanisms on the same chromatography column, i.e. SEC and HRP-

HPLC mode. In this way two-dimensional liquid chromatography was enabled with one column. As an 

exemplary application, the highly resolved separation of PDMS was demonstrated. Finally, the optimized 

saw tooth gradient concept constitutes a robust alternative to common polymer liquid chromatography 

techniques and represents a good basis for the analysis of various polymers and complex polymer 

mixtures. 

 



High-resolution polymer HPLC                                       Applications of a saw tooth gradient 

150 
 

6.2.6 References 

[1] Y. Brun, C.J. Rasmussen, Interaction polymer chromatography, in: S. Fanali, P.R. Haddad, C.F. Poole, 

M.-L. Riekkola (Eds.), Liquid chromatography: Fundamentals and instrumentation, 2nd ed., Elsevier, 

Amsterdam, Netherlands, Oxford, United Kingdom, Cambridge, MA, United States, 2017, pp. 275–

318. 

[2] H. Pasch, B. Trathnigg, Multidimensional HPLC of polymers, Springer, Berlin, Heidelberg, 2013. 

[3] H. Pasch, B. Trathnigg, HPLC of polymers, Springer, Berlin [u.a.], 1998. 

[4] D. Berek, Polymer HPLC, in: D. Corradini (Ed.), Handbook of HPLC, 2nd ed., Taylor & Francis, Boca 

Raton, FL, 2010, pp. 447–504. 

[5] G. Glöckner, Gradient HPLC of copolymers and chromatographic cross-fractionation, Springer, 

Berlin, Heidelberg, New York, London, Paris, Tokyo, u.a., 1991. 

[6] E. Uliyanchenko, S. van der Wal, P.J. Schoenmakers, Challenges in polymer analysis by liquid 

chromatography, Polym. Chem. 3 (2012) 2313. https://doi.org/10.1039/c2py20274c. 

[7] A. Abe, A.-C. Albertsson, H.-J. Cantow, K. Dusek, S. Edwards, H. Höcker, J.F. Joanny, H.-H. Kausch, S. 

Kobayashi, K.-S. Lee, I. Manners, O. Nuyken, S.I. Stupp, U.W. Suter, G. Wegner, R. Bhargava (Eds.), 

Liquid Chromatography / FTIR Microspectroscopy / Microwave Assisted Synthesis, Springer Berlin 

Heidelberg; Springer, Berlin, Heidelberg, 2003. 

[8] M.I. Malik, G.W. Harding, H. Pasch, Two-dimensional liquid chromatography of PDMS-PS block 

copolymers, Anal. Bioanal. Chem. 403 (2012) 601–611. https://doi.org/10.1007/s00216-012-5838-

5. 

[9] M.I. Malik, B. Trathnigg, K. Bartl, R. Saf, Characterization of polyoxyalkylene block copolymers by 

combination of different chromatographic techniques and MALDI-TOF-MS, Anal. Chim. Acta 658 

(2010) 217–224. https://doi.org/10.1016/j.aca.2009.11.017. 

[10] M. Schollenberger, W. Radke, SEC-Gradients, an alternative approach to polymer gradient 

chromatography: 1. Proof of the concept, Polymer 52 (2011) 3259–3262. 

https://doi.org/10.1016/j.polymer.2011.05.047. 

[11] H.J.A. Philipsen, B. Klumperman, A.L. German, Characterization of low-molar-mass polymers by 

gradient polymer elution chromatography I. Practical parameters and applications of the analysis of 

polyester resins under reversed phase conditions, Journal of Chromatography A 746 (1996) 211–

224. https://doi.org/10.1016/0021-9673(96)00361-5. 

[12] G. Glöckner, Polymercharakterisierung durch Flüssigkeits-Chromatographie: Chromatographische 

Methoden, Hüthig, Heidelberg, 1982. 

https://doi.org/10.1039/c2py20274c
https://doi.org/10.1007/s00216-012-5838-5
https://doi.org/10.1007/s00216-012-5838-5
https://doi.org/10.1016/j.aca.2009.11.017
https://doi.org/10.1016/j.polymer.2011.05.047
https://doi.org/10.1016/0021-9673(96)00361-5


High-resolution polymer HPLC                                       Applications of a saw tooth gradient 

151 
 

[13] Y. Brun, THE MECHANISM OF COPOLYMER RETENTION IN INTERACTIVE POLYMER 

CHROMATOGRAPHY. I. CRITICAL POINT OF ADSORPTION FOR STATISTICAL COPOLYMERS, Journal of 

Liquid Chromatography & Related Technologies 22 (1999) 3027–3065. https://doi.org/10.1081/JLC-

100102075. 

[14] W.J. Staal, Gradient polymer elution chromatography: A qualitative study on the prediction of 

retention times using cloud-points and solubility parameters, Technische Universiteit Eindhoven, 

Eindhoven, 1996. 

[15] B. Durner, T. Ehmann, F.-M. Matysik, High-resolution polymer high performance liquid 

chromatography: Application of a saw tooth gradient for the separation of various polymers, J. 

Chromatogr. A (2019). https://doi.org/10.1016/j.chroma.2018.11.075. 

[16] G. Taguchi, S. Chowdhury, Y. Wu, S. Taguchi, H. Yano (Eds.), Taguchi’s quality engineering 

handbook, John Wiley & Sons, Hoboken, N.J, Livonia, Mich, 2011. 

[17] T. Mori (Ed.), Taguchi methods: Benefits, impacts, mathematics, statistics, and applications, 

American Society of Mechanical Engineers, New York, N.Y. (ASME, Three Park Avenue. New York, 

NY 10016), 2011. 

[18] R. Brereton, Applied Chemometrics for Scientists, John Wiley & Sons, Chichester, 2007. 

[19] L. Li (Ed.), MALDI mass spectrometry for synthetic polymer analysis, Wiley, Hoboken, N.J, 2010. 

[20] N.C. Gonnella, LC-NMR: Expanding the limits of structure elucidation, Taylor & Francis, Boca Raton, 

Fla, 2013. 

[21] B. Durner, T. Ehmann, F.-M. Matysik, Adaption of a parallel-path poly(tetrafluoroethylene) 

nebulizer to an evaporative light scattering detector: Optimization and application to studies of 

poly(dimethylsiloxane) oligomers as a model polymer, J. Chromatogr. A (2018). 

https://doi.org/10.1016/j.chroma.2018.06.008. 

[22] A.M. Striegel, W.W. Yau, J.J. Kirkland, D.D. Bly, Modern Size-Exclusion Liquid Chromatography: 

Practice of Gel Permeation and Gel Filtration Chromatography, 2nd ed., John Wiley & Sons, 2009. 

[23] E. Maksimova, E. Vlakh, E. Sinitsyna, T. Tennikova, HPLC analysis of synthetic polymers on short 

monolithic columns, J. Sep. Sci. 36 (2013) 3741–3749. https://doi.org/10.1002/jssc.201300852. 

 

https://doi.org/10.1081/JLC-100102075
https://doi.org/10.1081/JLC-100102075
https://doi.org/10.1016/j.chroma.2018.11.075
https://doi.org/10.1016/j.chroma.2018.06.008
https://doi.org/10.1002/jssc.201300852


High-resolution polymer HPLC                                       Applications of a saw tooth gradient 

152 
 

6.3 Comparison of Molar Mass Determination of Poly(dimethylsiloxanes) by 

Size Exclusion Chromatography and High-Resolution Polymer High 

Performance Liquid Chromatography Based on a Saw Tooth Gradient  

 

 

Graphical Abstract: Correlation between polymer molar masses and retention times in HRP-HPLC. 
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6.3.1 Abstract 

Polysiloxanes are used in a wide range of application fields and extensive research is currently done to 

enhance product quality and performance. Therefore, more sophisticated analysis methods are necessary 

to monitor and support the polymer product optimization. Based on different modes in polymer liquid 

chromatography, heart-cut two-dimensional polymer HPLC is one powerful analytical approach. Due to 

different distributions within polymer samples, separations according to chemical heterogeneities, 

molecular architecture or molar mass differences are possible. With the recently introduced saw tooth 

gradient protocol a new possibility for determining the polymer (micro-) structure on analytical scale has 

been developed. Hence, the effect of various stationary phases with different particle base material and 

chemical modifications were investigated in context of the separation of linear poly(dimethylsiloxane) in 

a molar mass range from 1000 g∙mol-1 to 300 000 g∙mol-1. The resulting chromatograms allowed a direct 

correlation between HPLC retention times and molar masses corresponding to separated peaks. 

Consequently, a detailed analysis of differences in the polymer structure, e.g. fingerprint analysis, is 

possible. 
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6.3.2 Introduction 

Since their first synthesis by Müller and Rochow [1], siloxanes are applied in a broad variety of different 

application areas, e.g. automotive, electronic, construction or health care industries. The versatile use of 

siloxanes stem from their inorganic and organic character of the polymer backbone, depending on 

modification of the number and type of organofunctional groups at the side chains. Based on the 

microscopic conditions and the crosslinking density, siloxanes are distinguished in silicone dispersions, 

elastomers, resins or rubbers [2–7]. One of the most important representatives of this polymer class is 

poly(dimethylsiloxane) (PDMS) containing silicon and oxygen atoms as well as methylene groups in the 

backbone. Therefore, PDMS are used as release agents, heat transfer liquids, antifoams, coatings or in the 

pharmaceutical or medical industry [8]. Further information about siloxane polymers and their 

applications are given in [9–15].  

As most synthetic polymers, siloxanes vary in some properties like molecular weight, chemical 

composition and chain architecture. Therefore, it is necessary to obtain detailed information about these 

characteristics [16]. Various analytical methods can be applied including size exclusion 

chromatography (SEC), liquid chromatography at critical conditions (LCCC), and polymer HPLC [17,18]. 

Regarding thermodynamics, SEC is ideally dominated by entropic effects without any impact of chemical 

interactions. In polymer HPLC or more specifically liquid adsorption chromatography (LAC), the separation 

is driven by enthalpic interactions. For LCCC, enthalpic and entropic interactions equalize each other and 

allow a separation independent of the molar mass of the investigated polymer. Each technique has its 

own advantages and disadvantages; however, this study is focused comparing SEC and polymer HPLC. 

Further information concerning LCCC can be found in [19–22]. Typical detectors used in SEC and polymer 

HPLC are refractive index (RI) or/ and multi angle laser light scattering (MALLS) detectors in isocratic 

elution or evaporative light scattering detectors (ELSD) for gradient elution [23–26]. Moreover, the 

coupling to matrix assisted laser desorption ionization time of flight mass spectrometry can also be 

performed [27,28].  

In SEC the hydrodynamic volume is assumed to be proportional to the molecular weight enabling the 

determination of molar mass distributions. SEC is performed either isocratically [29,30] which is the more 

common case or by applying a solvent gradient [31]. One drawback of SEC is the low resolution due to the 

pore volume of the separation column resulting in broad peaks. Furthermore, enthalpic interactions 

cannot often be completely excluded tending to inaccurate molecular weight-distributions. Nevertheless, 

SEC can offer enhanced resolution especially in the high-molecular mass range when compared to liquid 
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adsorption chromatography (LAC) [26,32,33]. In order to enhance the performance of polymer HPLC, we 

recently introduced a newly developed saw tooth gradient protocol [34]. Applying a saw tooth gradient 

profile to polymer separations allows highly resolved analytical and (semi-) preparative measurements. 

Therefore, the back and forth of the saw tooth gradient enables a very detailed characterization of various 

polymer samples. 

Often a combination of the above modes of polymer liquid chromatography is used for an enhanced 

separation, especially in case of polymer HPLC. Therefore, heart-cut techniques of e.g. polymer HPLC or 

LCCC coupled to SEC are a powerful approach [32]. Combining with high-resolution polymer HPLC (HRP-

HPLC), a very powerful preparative fractionation is achieved. Compared to classical preparative HPLC 

approaches [35,36], the method upscale based on a saw tooth gradient is simplified. Therefore, the 

optimized gradient profile can be used similar in analytical and (semi-) preparative systems, only the 

effective step length must be adjusted. Furthermore, concentration and volume overloading can easily be 

adapted to the separation system, as far as for gradient polymer elution chromatography (GPEC) the 

injection always occurs in 100 % adsorption promoting or rather non-solvent. Thus, peak broadening 

effects can be avoided. Therefore, we recently [37] optimized a hybrid HPLC system which allowed the 

overall application of the saw tooth gradient and analyzed a PDMS sample with a mean molar mass of 

approximately 20 000 g∙mol-1. In this study, the investigated molar mass range is extended and the impact 

of different stationary phases on separation performance was analyzed. Additionally, after fraction 

collection of a polydisperse PDMS sample, the molar masses of the single fractions were correlated to 

retention times in polymer HPLC. 
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6.3.3 Material and methods 

6.3.3.1 Mobile phase compounds and polymer standards 

All used solvents were HPLC grade, except from toluene (analytical grade > 99.9 %). Acetonitrile, 

methanol, non-stabilized tetrahydrofuran (THF), and toluene were purchased from Merck (Darmstadt, 

Germany) and were used without further purification. All poly(dimethylsiloxane) (PDMS) standards with 

viscosities of 5 mPa∙s, 20 mPa∙s, 200 mPa∙s, 8000 mPa∙s, and 1 000 000 mPa∙s, were obtained from 

Wacker Chemie AG (Burghausen, Germany). The mixtures of various PDMS for preparative HRP-HPLC 

contained 5 mPa∙s, 20 mPa∙s, 200 mPa∙s, 8000 mPa∙s, and 1 000 000 mPa∙s in a ratio of 1:3:4:4:4 dissolved 

in THF with an overall PDMS concentration of 100 mg∙mL-1 resulting in a molar mass distribution of a 

polydispersity of 18. The linear PDMS oligomers of Si10, Si22, Si30, and Si40 were isolated as described 

previously [38]. In this study, a concentration of 1 mg∙mL-1 for each in THF dissolved linear PDMS oligomer 

was used. 
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6.3.3.2 Preparative HRP-HPLC based on a saw tooth gradient 

Preparative HRP-HPLC was performed by coupling a Thermo Fisher Scientific (Waltham, USA) 

Ultimate 3000 HPLC (with binary pump, autosampler, and column oven) to an Agilent (Waldbronn, 

Germany) 1260 fraction collector equipped with an Agilent LAN Interface Card. For determination of the 

cutting pattern an Agilent 385 evaporative light scattering detector (ELSD) modified with a parallel path 

poly(tetrafluoroethylene) (PTFE) nebulizer was used (40 °C evaporator temperature, 90 °C nebulizer 

temperature and a gas flow rate of 1.6 SLM [25]). For fraction collection, an additional (but inactive) 

Agilent 1100 HPLC pump and autosampler were necessary. The Agilent autosampler had to be deactivated 

in the script editor of the chromatographic data system Chromeleon (Thermo Fisher Scientific, version 7.2) 

by using the command “LCSystem.ALS.Position” set to value of “1”.  

For the preparative separations, acetonitrile was used as adsorption promoting or rather non-solvent (in 

the following referred to as adsorption promoting solvent independently of influences of precipitation 

and re-dissolution effects) and THF as desorption promoting solvent. The first set of fraction collection 

was performed on a Hypersil Gold C18 aQ (100x10 mm, 5 µm) with an overall fractionated amount of 

1200 mg PDMS (24 injections at 50 mg). Thus, the injection volume was 100 µL. The used saw tooth 

gradient had an effective step length of 2.25 min, an effective step height of 1.0 %, a height of the negative 

backward gradient step of 40 %, and a LC flow rate of 4.0 mL∙min-1. The second set of fraction collection 

was performed on an Agilent PL Gel Mixed C SEC column (300x5 mm, 5 µm) with an overall fractionated 

amount of 800 mg PDMS (16 injections at 50 mg). The injection volume again was 100 µL. The used saw 

tooth gradient had an effective step length of 3.0 min, an effective step height of 1.0 %, a height of the 

negative backward gradient step of 100 %, and a LC flow rate of 3.0 mL∙min-1.  
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6.3.3.3 SEC equipment and measurements 

For conventional calibration by a refractive index (RI) detector a set of Agilent polystyrene standards 

between 580 and 2 698 000 g∙mol-1 was used with a concentration of 0.50 % w/v. All SEC measurements 

were performed according to ISO 16014-3 and ISO 16014-5 [39,40]. A chromatography system Agilent 

Series 1260 Infinity equipped with an isocratic pump, a 4-channel degasser (PSS, Mainz, Germany), an 

autosampler, and a column oven (T = 45 °C, Waters, Eschborn, Germany) was used. The RI detector 

Optilab Tr-EX and the multi-angle laser light scattering (MALLS) detector Dawn HELEOS II were 

manufactured by Wyatt Technologies (Santa Barbara, USA). The Optilab Tr-EX detector was set to 45 °C. 

All SEC measurements and data evaluation were performed by using ASTRA 7 and HPLC Manager software 

(Wyatt Technologies, Santa Barbara, USA). The light scattering measurements and the measurements for 

the conventional calibration were performed with an injection volume of 20 µL, a flow rate of 

0.3 mL·min-1, toluene as eluent, and a sample concentration of 3 mg·mL-1. An Agilent PL Gel MiniMIX-C 

Guard column (50x4.6 mm, 5 µm) and three Agilent PL Gel MiniMIX C columns (250x4.6 mm, 5 µm) were 

used as stationary phase. 

 

6.3.3.4 Analytical HRP-HPLC based on a highly resolved saw tooth gradient 

The analytical HRP-HPLC measurements were performed on a Thermo Fisher Scientific Ultimate 3000 

HPLC (quaternary pump, autosampler, column oven) equipped with an Agilent 385 ELSD modified with a 

parallel path PTFE nebulizer (see above). Methanol was used as adsorption promoting solvent and THF as 

desorption promoting solvent. The saw tooth gradient (for methodical details see ref. [34]), with an 

effective step height of 0.2 %, an effective step length of 0.3 min, a height of the negative backward 

gradient step of 40 %, and a LC flow rate of 3.0 mL∙min-1, started at 100 % methanol and ended at 100 % 

THF. The measurements were performed on a Thermo Fisher Scientific Accucore C18 (50x4.6 mm, 2.6 µm) 

and a ZirChrom (Anoka, USA) Diamondbond C18 (150x4.6 mm, 5 µm). The injection volumes were 8 µL 

for each analyzed sample. 
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6.3.4 Results and discussion 

In addition to the previously reported results [34], further investigations with preparative high-resolution 

polymer HPLC (HRP-HPLC) based on a saw tooth gradient were performed. With a model mixture of linear 

PDMS composed of silicone oils with different viscosities and thus molar masses, the separation capability 

of the saw tooth gradient is discussed. Furthermore, re-analysis of samples fractionated by a high-

resolution saw tooth gradient on two appropriate stationary phases (refer to [37]) allowed the correlation 

of average molar mass at peak maximum to retention times of HRP-HPLC. 

6.3.4.1 Preparative HRP-HPLC for PDMS fractionation and SEC data evaluation 

Comparing two completely different stationary phases, the separation efficiency of the used saw tooth 

gradients is discussed. Initially, a Hypersil Gold C18 aQ (100x10 mm, 5 µm) was used to separate the PDMS 

mixture specified above in 22 consecutive fractions (Figure 6.24). Therefore, acetonitrile was used as 

adsorption promoting or rather non-solvent for the investigated PDMS mixture and THF as desorption 

promoting solvent. The polymer sample was introduced in the separation system by multiple injection 

(5 times) of 100 µL of the above PDMS mixture at a low flow rate of 0.2 mL∙min-1 in 100 % of adsorption 

promoting solvent. The advantage of this injection procedure is that the injection loop had not to be 

changed. Thus, volume overloading effects were reduced, and the peak width remained small because 

the sample precipitated or was strongly adsorbed on the column head. This procedure was very beneficial 

for scaling up from analytical [34] to (semi-) preparative saw tooth gradients. 

 

Figure 6.24: Measurement for preparative separation of a linear PDMS sample mixture containing silicone oils with viscosities of 
5 mPa∙s, 20 mPa∙s, 200 mPa∙s, 8000 mPa∙s, 1 000 000 mPa∙s, dissolved in THF with a mixing ratio of 1:3:4:4:4 and an overall 

PDMS concentration of 100 mg∙mL-1. A Hypersil Gold C18 aQ column (100x10 mm, 5 µm), acetonitrile as non-solvent, and THF as 
desorption promoting solvent were used with a saw tooth gradient of 40 % height of the negative backward gradient step, 1 % 

effective step height, and 2.25 min effective step length. The collected fractions are numbered from 1 to 22. 
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The sample amount per fraction is depicted in Table 6.10. Furthermore, an overview of the number 

average molecular weight Mn, the weight average molecular weight Mw, the average molar mass at peak 

maximum Mp, and the polydispersity (Mw/Mn) of fractions 1 to 22 is also given. Elugrams of each fraction 

were evaluated by means of conventional calibration as equivalents of polystyrene standards using only 

the refractive index detector and retention times (see Table 6.10). Moreover, the absolute masses were 

determined by using multi-angle laser light scattering (MALLS) detection with RI detection for determining 

the concentration for each fraction. These results are also given in Table 6.10 as MALLS results. Therefore, 

100 % recovery is assumed for calculating the distinct refractive index increments dn/dc from the RI 

signals. In calculating the absolute molar mass dn/dc is used as square in the corresponding equation 

emphasizing the importance of reliable values for dn/dc. In general, SEC measurements show a 

continuous increasing molar mass with increasing fraction number. But by evaluation based on absolute 

molar mass determination the number and weight average molecular masses do not consistently 

increased from fractions 1 up to 22. Referring to the average molecular masses the polydispersity index 

also fluctuated. However, the Mp values of MALLS and RI increased throughout from fraction 1 up to 

fraction 22 with just one exception of fraction 2 when assessed by MALLS detection. One possible reason 

why the molar masses obtained by MALLS were not monotonously increasing, e.g. at fraction 2, 9, 10, 12, 

and 19, could be caused by the inappropriate assumption of 100 % mass recovery and its impact on the 

dn/dc calculation. Nevertheless, values evaluated by conventional calibration show continuous increase 

of Mw, Mn und Mp values. Regarding polydispersity fractions 1 up to 17 are highly monodisperse with 

values ranging from 1.04 to 1.07. While polydispersity indices of fraction 18, 19, 20, and 21 showed a 

remarkable increase followed by the more than doubled polydispersity index of fraction 22 compared to 

21. This could be seen as indicator that the column used for fraction collection probably had to be 

optimized to achieve an ideal separation.  

The RI detector is the most common detector in SEC as most of the polymers can be detected. If standards 

for mass calibration of the respective polymer are available, the assessed molar masses directly refer to 

the investigated polymer. If not, the molar mass averages are determined as equivalents of certain 

available polymer standards e.g. polystyrene or polymethylmethacrylate. For PDMS toluene is used as 

eluent because THF and PDMS are nearly isorefractive resulting in a very poor signal [41]. In Figure 6.25 

the normalized signals obtained by MALLS (a) and RI-detection (b) are depicted. Each fraction is color 

coded. The peak maxima of lower fractions are located directly next to each other. The peak maxima of 

the first fractions are very close to each other and with increasing fraction number the distance slightly 

increases. But fraction 21 and 22 showed an atypical behavior. Therefore, for subsequent measurements 
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only the RI detector was used assessing the molar mass distributions. The large distance between the 

peak maximum of fraction 20 and fraction 21 could be explained by the failure of the applied stationary 

phase in appropriately separating the high molecular mass components of the sample by the saw tooth 

gradient approach. It could be assumed that fraction 21 and 22 eluted very close to the point of critical 

adsorption. This limiting condition for the application of a preparative saw tooth gradient could be 

overcome by applying a different stationary phase. Additionally, for the analyzed PDMS mixture RI 

detection was sufficient and was solely used in subsequent measurements. 

Table 6.10: Results of the SEC measurements of the first set of fraction collection (compare Figure 6.24), SEC was performed 
with 3 MiniMix C SEC columns (250x4.6 mm) and toluene as eluent; the values for the weight average molar mass Mw, the 
number average molar mass Mn, and the average molar mass at peak maximum Mp were evaluated by an RI and a MALLS 

detector. 

Fraction 
number 

Weight of 
fraction 

[mg] 

Mw [g·mol-1] Mn [g·mol-1] Mp [g·mol-1] Polydispersity 

MALLS RI MALLS RI MALLS RI MALLS RI 

FC1 5.5 4,600 4,300 4,500 4,200 4,400 4,600 1.02 1.04 

FC2 5.8 4,300 5,200 4,200 4,900 4,300 5,500 1.01 1.05 

FC3 5.8 4,600 5,400 4,600 5,200 4,600 5,800 1.01 1.04 

FC4 6.2 4,800 5,600 4,800 5,400 5,000 6,000 1.01 1.04 

FC5 6.1 4,900 5,900 4,800 5,600 5,100 6,300 1.01 1.05 

FC6 6.4 5,000 6,100 4,900 5,900 5,200 6,600 1.02 1.04 

FC7 6.7 5,600 6,500 5,600 6,200 5,600 7,000 1.00 1.04 

FC8 7.0 6,700 6,800 6,300 6,400 6,200 7,300 1.08 1.05 

FC9 7.4 6,600 7,200 6,400 6,900 6,500 7,800 1.04 1.05 

FC10 8.0 6,200 7,800 5,900 7,500 6,600 8,400 1.05 1.05 

FC11 8.8. 8,000 8,300 7,800 7,900 7,600 9,100 1.04 1.06 

FC12 9.3 7,400 9,000 7,100 8,500 7,900 9,800 1.04 1.06 

FC13 10.1 8,000 9,700 7,800 9,100 8,400 10,500 1.02 1.06 

FC14 11.4 8,600 10,600 8,300 9,900 9,200 11,500 1.03 1.07 

FC15 12.4 9,900 11,700 9,700 11,000 10,400 12,600 1.02 1.06 

FC16 13.9 10,700 12,700 10,000 11,900 11,600 13,800 1.07 1.07 

FC17 15.3 12,100 14,000 11,000 13,100 13,200 15,200 1.10 1.07 

FC18 17.2 15,500 15,500 15,000 13,200 15,300 17,100 1.03 1.18 

FC19 19.0 14,700 17,600 13,200 16,000 16,300 19,300 1.11 1.10 

FC20 21.2 20,100 20,100 19,800 15,100 20,300 22,400 1.01 1.34 

FC21 83.0 162,700 161,700 119,600 102,800 125,800 125,600 1.36 1.57 

FC22 81.4 335,000 269,000 128,400 82,100 499,100 392,900 2.61 3.27 
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Figure 6.25: SEC results of the preparative separation depicted in Figure 6.24, each elugram shows a standardized y axis for 
a) the RI signal and b) the MALLS signal; the fraction numbers are shown and are color coded in the legend. 

In a following preparative HRP-HPLC separation (Figure 6.26) a PL gel Mixed C (300x5 mm) SEC column 

was used with acetonitrile and THF as mobile phase components again. The different base material of the 

stationary phase increased the working range for the separation based on the saw tooth gradient. As 

already depicted in [37], operating a saw tooth gradient on a SEC column worked pretty well. Fraction 

collection was performed for 37 fractions, with several time jumps covering certain ranges of the total 

distribution of the synthetic PDMS mixture. Additionally, a saw tooth gradient down-to-zero (with 100 % 

height of the negative backward gradient step) was applied to enhance the separation performance. 

Compared to the aforementioned fraction collection, more peaks could be resolved and collected.  

 

Figure 6.26: Chromatogram of preparative separation of a synthetic mixture of linear PDMS containing silicone oils with 
viscosities of 5 mPa∙s, 20 mPa∙s, 200 mPa∙s, 8000 mPa∙s, 1 000 000 mPa∙s, dissolved in THF with a mixing ratio of 1:3:4:4:4 and 
an overall PDMS concentration of 100 mg∙mL-1. A PL gel Mixed C SEC column (300x5 mm), acetonitrile as non-solvent, and THF 
as desorption promoting solvent were used with a saw tooth gradient of 100 % height of the negative backward gradient step, 

1 % effective step height, and 3.0 min effective step length. The collected fractions are assigned from 1 to 37 over the 
chromatogram. 
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The molar mass distribution of SEC (Figure 6.27) showed the same gaps in the molar mass distribution as 

depicted in the cutting pattern (Figure 6.26). Similar to the first set of fraction collection, the molar masses 

increased with increasing fraction number, but with an improved peak resolution for high molecular 

components. Particularly, for fraction numbers 27 to 37 the Mixed C column showed an enhanced 

separation performance suggesting that the critical point of adsorption was shifted to even higher 

molecular masses. In summary, a Mixed C SEC column offered an improved separation range compared 

to Hypersil Gold C18 aQ for applying a saw tooth gradient on extremely polydisperse synthetic PDMS 

mixtures. 

 

Figure 6.27: SEC results for the preparative separation depicted in Figure 6.26, the y axis shows the standardized RI signal and 
the fraction numbering correlates to the numbers in Figure 6.26. 

The results for weight average molar mass Mw, the number average molar mass Mn, and the average molar 

mass at peak maximum Mp are presented in Table 6.11. Compared to the Hypersil Gold C18 aQ, the values 

for Mw, Mn, and Mp showed a monotonous rise with the fraction number. Mp starts from 3400 g∙mol-1 at 

fraction 1 and ends at 311000 g∙mol-1 for fraction 37, Mw from 2900 g∙mol-1 to 231000 g∙mol-1 and Mn from 

2500 g∙mol-1 to 170 400 g∙mol-1. 
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Table 6.11: Results of the SEC measurements of the second fraction collection (compare Figure 6.26), SEC was performed with 
3 MiniMix C SEC columns (250x4.6 mm) and toluene as eluent; the values for the weight average molar mass Mw, the number 

average molar mass Mn, and the average molar mass at peak maximum Mp were evaluated by an RI detector. 

Fraction 
number 

Weight of 
fraction [mg] 

Mw 

[g∙mol-1] 
Mn 

[g∙mol-1] 
Mp 

[g∙mol-1] 

FC1 1.6 2900 2500 3400 

FC2 1.5 3000 2500 3500 

FC3 1.6 3100 2600 3600 

FC4 1.9 3100 2700 3600 

FC5 1.7 3200 2700 3700 

FC6 2.1 3300 2800 3800 

FC7 1.7 3400 2800 3900 

FC8 1.5 3500 2900 4000 

FC9 2.4 3500 2900 4100 

FC10 2.3 3600 3000 4200 

FC11 3.0 4400 3500 5100 

FC12 4.9 4600 3700 5300 

FC13 4.5 4600 3700 5300 

FC14 5.4 4900 3800 5500 

FC15 2.7 5000 3900 5700 

FC16 1.9 5200 4000 5900 

FC17 3.3 5400 4200 6100 

FC18 2.3 5500 4400 6300 

FC19 2.7 5700 4600 6500 

FC20 2.6 6000 4900 6800 

FC21 2.7 6200 5000 7100 

FC22 4.4 10000 7700 12000 

FC23 4.4 10800 8600 12800 

FC24 5.3 11500 9500 13800 

FC25 4.4 12400 10200 14800 

FC26 4.3 13200 10300 15900 

FC27 7.0 25500 20600 25800 

FC28 5.8 26500 21800 29500 

FC29 8.5 29100 23900 34100 

FC30 9.5 33100 25700 40200 

FC31 9.7 39600 29600 48100 

FC32 9.8 47600 36800 58400 

FC33 10.6 63300 47800 71900 

FC34 11.7 73800 56700 91100 

FC35 11.7 99700 77300 120000 

FC36 11.8 144800 110700 184000 

FC37 17.2 231000 170400 311000 
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6.3.4.2 Correlation of average molar masses to HRP-HPLC retention times 

Based on the measurement series on the PL gel Mixed C column, re-analysis of the fractionated PDMS 

samples by applying a high resolution saw tooth gradient (0.2 % effective step height) was performed on 

a ZirChrom Diamondbond C18 column (Figure 6.28) showing a good separation performance for PDMS 

over a broad molar mass range in previous measurements [37]. Under these conditions, no 

chromatography under critical conditions occurred in the investigated molar mass range. Thus, even the 

highest masses of PDMS (up to 300 000 g∙mol-1) could be separated with good resolution. 

 

 

Figure 6.28: Correlation of average molar masses of the fractionated PDMS sample to retention times in HRP-HPLC by 
performing a saw tooth gradient (effective step height: 0.2 %, effective step length: 0.3 min, height of the negative backward 

gradient step: 40 %) with methanol as adsorption promoting solvent and THF as desorption promoting solvent applying a 
ZirChrom Diamondbond C18 column (150x4.6 mm, 5 µm). 
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In addition to this high molar mass separation, an Accucore C18 column (Figure 6.29) was chosen in order 

to analyze the low molar mass PDMS which were insufficient separated (extremely broad distribution) on 

the Diamondbond C18. For all fractionated samples down to fraction 1 a good separation was achievable. 

Furthermore, linear PDMS oligomer standards Si10, Si22, Si30, and Si40 were used to show the limits of 

the separation based on the applied saw tooth gradient. Furthermore, applying these oligomer standards 

with exactly defined molar masses to the separation were in very good accordance with the average molar 

mass corresponding to peak maximum values obtained from SEC. However, peak splitting of the pure 

oligomer samples showed the limitation of the saw tooth gradient for low molar mass compounds. Peak 

splitting originated from mass overloading of the single gradient steps. Consequently, either a saw tooth 

gradient with an extended effective step length or with a reduced sample amount would be necessary. 

Apart from that, referring to the single oligomers the molar masses of HRP-HPLC correlated pretty good 

to these of SEC, even for the lower mass range. Generally, for molar masses up to 2000 g mol-1 other 

separation techniques are preferred as shown in the separation of cyclic from linear PDMS [38,42]. 

 

Figure 6.29: Correlation of average molar masses of the fractionated PDMS sample and linear PDMS oligomers Si10, Si22, Si30, 
and Si40 to HRP-HPLC retention times by applying a saw tooth gradient (effective step height: 0.2 %, effective step length: 
0.3 min, height of the negative backward gradient step: 40 %) with methanol as adsorption promoting solvent and THF as 

desorption promoting solvent using a Thermo Fisher Scientific Accucore C18 column (50x4.6 mm, 2.6 µm). 
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Based on analytical HRP-HPLC applying a high-resolution saw tooth gradient, the molar masses of each 

PDMS fraction was correlated to retention times in HRP-HPLC. Thus, the molar mass at peak maximum 

obtained by SEC was related to the highest peak of the peak distribution and the corresponding retention 

time was determined. Table 6.12 summarizes molar masses at peak maximum and the retention times. 

Employing an Accucore C18 and a Diamondbond C18 as stationary phases, the mass range between 

6000 g∙mol-1 and 16000 g∙mol-1 overlapped, thus, by combining both stationary phases a molar mass range 

from < 1000 g∙mol-1 up to 300 000 g∙mol-1 could be covered. 

Table 6.12: Correlation of HRP-HPLC retention time to average molar mass at peak maximum Mp for several fractionated PDMS 
samples and linear PDMS oligomers Si10, Si22, Si40, and Si48 isolated as described in [38]. For covering the complete molar 
mass range two HPLC columns, Accucore C18 (50x4.6 mm) and Diamondbond C18 (150x4.6 mm), were used for analytical 

measurements. 

HPLC Column Sample name Mp [g∙mol-1] Retention time [min] 

A
cc

u
co

re
 C

1
8

 

Si10 755 0.65 

Si22 1645 10.12 

Si30 2238 35.60 

Si40 2979 61.96 

Si48 3572 70.95 

FC1 3400 67.66 

FC7 3900 71.85 

FC12 5300 83.54 

FC18 6300 89.53 

FC22 12000 97.62 

FC26 15900 100.92 

D
ia

m
o

n
d

b
o

n
d

 C
1

8
 

FC18 6300 64.42 

FC22 12000 73.71 

FC26 15900 77.60 

FC28 29500 85.99 

FC30 40200 90.48 

FC32 58400 93.78 

FC34 91100 100.94 

FC35 120000 103.93 

FC36 184000 106.62 

FC37 311000 108.71 
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Based on the values of Table 6.12 a calibration model for the Diamondbond C18 (Figure 6.30 a) and for 

the Accucore C18 (Figure 6.30 b) was established correlating the retention times to molar masses. For the 

Diamondbond C18 column, the best fit was an exponential curve with the following equation 

(Mp = 8.62∙exp(0.0928∙t)), and for the Accucore C18 column a fifth-order polynomial equation 

(Mp = 3.1∙10-5∙t5 + 6.5∙10-3∙t4 + 0.5∙t3 - 16.5∙x2 + 237.4∙x + 567.5) was an appropriate fit model. Based on 

these models, a more thorough characterization of investigated PDMS samples could be generated. For 

instance, small differences in the polymer distributions of various samples could be compared with 

respect to the exact molar masses. However, as shown by employing two different stationary phases, the 

shape and the type of the fitting curve highly depends on the type of the stationary phase. Presumably, 

changes in the composition of the mobile phase and the temperature setting also influence the fit 

function. Therefore, choosing the overall separation system in advance is helpful to keep the efforts as 

small as possible. Comparing the molar mass determination in SEC and HRP-HPLC, the major advantage 

of SEC is the nearly polymer independent conventional calibration when applying the polymer equivalent 

approach. But with HRP-HPLC an essentially improved resolution of the polymer distribution is achieved 

facilitating the distinction of small differences within polymer samples. For correlating molar mass to 

retention time in HRP-HPLC, the type of the polymer has to be known as well as the chemical functionality. 

Anyway, the measurements in HRP-HPLC are highly reproducible and only showed minor uncertainties in 

determining the retention times. 

 

Figure 6.30: Calibration curves for average molar mass correlation to retention time in HRP-HPLC. a) exponential fit 
[Mp = 8.62∙exp(0.0928∙t)] in the high molar mass range on a Diamondbond C18 column, b) fifth order polynomial fit 

[Mp = 3.1∙10-5∙t5 + 6.5∙10-3∙t4 + 0.5∙t3 - 16.5∙x2 + 237.4∙x + 567.5] in the low molar mass range on an Accucore C18 column; the 
uncertainties and the resulting error bars for each data point (3 repetitions) are smaller than the data symbols. 
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6.3.5 Conclusion 

Two sets of preparative HRP-HPLC measurements for PDMS were compared with respect to separation 

performance of the used saw tooth gradient and impact of the used stationary phases. Therefore, based 

on heart-cut preparative HRP-HPLC, using a PL gel Mixed C column allowed a considerably improved 

separation result. By re-analyzing the collected fractions with SEC, a consecutive increase of molar mass 

with the fraction number was observable. Molar masses obtained by absolute molar mass evaluation 

applying a MALLS detector showed some deviation from a monotonous increase presumably due to 

uncertainties in calculation dn/dc for each fraction. When assessing the molar masses by an RI detector 

and conventional calibration as equivalents of polystyrene the results steadily increased from fraction to 

fraction. Consequently, for the second set of fraction collection by the saw tooth gradient only RI 

detection and evaluation was applied for re-analyzing with SEC. A constant increase of molecular weight 

due to the fraction number and a correlation between molecular weights and retention times were 

obtained.  

Re-analysis with a high resolution saw tooth gradient showed good results over the whole investigated 

molar mass range. Consequently, two different stationary phases, an Accucore C18 and a 

Diamondbond C18, were used for covering either the low or the high molar mass range. The 

Diamondbond C18 column showed a superior separation performance for the high molar mass range 

because the CPA did not affect the separation. The correlation between molar masses and retention times 

in HRP-HPLC enabled an enhanced characterization of polymers. Based on the calibration model, 

information about the polymer (micro-) structure was measurable and comparable especially for high 

molar mass polymer samples. Comparing with SEC one drawback is the susceptibility of HRP-HPLC to 

simultaneous changes of chemical and molar mass distribution of the investigated polymers. Thus, for 

each kind of polymer differing in more than one molecular distribution property, a proprietary 

optimization is necessary. Nevertheless, the high resolution of HRP-HPLC up to molar masses of 

300 000 g∙mol-1 and the possibility to generated quantitative results at molecular level make this 

technique very attractive. 
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 Conclusion and Outlook 

In this study, PDMS was intensely investigated with different methods of polymer HPLC. In chapter 4, the 

separation of low molar mass linear and cyclic PDMS was optimized by adjusting the mobile and stationary 

phases. Hence, the predominant impact of an appropriate mobile phase revealed the importance of 

solubility and adsorption-/ desorption promoting solvents on separation of PDMS with varying molecular 

architecture. Thus, the separation from eight up to 30 monomer units or corresponding to a molar mass 

range from 600 g∙mol-1 to 2,500 g∙mol-1, was successfully adjusted in the low molar mass regime. For 

higher molar mass of PDMS or of other polymers, only broad distributed peaks were obtained by the same 

approach. Thus, the separation of higher molar mass polymer required a different proceeding 

(cf. Figure 7.1). 

 

Figure 7.1: Analysis of PDMS with polymer HPLC over a broad molar mass range. 

As discussed in the introduction, evaluating the analytical process (cf. Figure 1.1) in combination with 

continuous method optimization, allowed the development of a new gradient technique. For this reason, 

a saw tooth gradient (chapter 6) was introduced for obtaining high resolved polymer peaks, depending 

on the polymer type, up to a molar mass of 1,600,000 g∙mol-1. Figure 7.2 provides an overview of the 

complete range of PDMS with viscosities from 10 to 1,000,000 mPa∙s which can be analyzed. Compared 

to the common application of SEC for analysis of these polymer samples, it could be demonstrated that 

with an appropriate adjustment of the profile shape, effective step length, step height, the height of the 

negative backward step, stationary phase, and mobile phase composition a universal applicable technique 

was invented.  
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Figure 7.2: Comparison of PDMS silicone oils with viscosities of a) 10 mPa∙s, b) 1,000 m Pa∙s, c) 20,000 m Pa∙s, d) 60,000 m Pa∙s, 
and e) 1,000,000 m Pa∙s (self-captured pictures). 

Apart from method development, a powerful and robust detector is an important prerequisite for the 

analytical process (cf. Figure 1.1). Therefore, the optimization of ELSD (chapter 5) was an essential step 

for these investigations. Replacing the originally installed concentric glass nebulizer by a parallel-path PTFE 

nebulizer substantially improved the detector performance and long-term stability. Particularly for PDMS 

analysis this was decisive in order to prevent clogging of the capillary within the concentric glass nebulizer. 

Based on this optimization of the detector further improvements concerning the measurement could be 

achieved. Concluding, the separation of low molar mass PDMS oligomers as well as the analysis of high 

molar mass PDMS by applying HRP-HPLC based on a saw tooth gradient was achieved in this study.  

Nevertheless, several aspects should be further investigated: The results when applying different 

stationary phases supposed to couple various short columns with different phase selectivity for enhancing 

the separation of complex polymer formulations. For preparative HRP-HPLC, a mathematical model for 

calculating the optimum saw tooth profile depending on the geometry of the applied stationary phase 

considerably simplifies the result transfer from analytical to (semi-)preparative columns. Applying the saw 

tooth gradient to more than one SEC column with different pore size distribution should be an interesting 

extension of the technique regarding peak resolution. Moreover, the direct coupling of HRP-HPLC to 
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MALDI-ToF-MS or the off-line combination of both techniques could improve the detection of high molar 

mass polymers; the more monodisperse a higher molar mass polymeric sample is the higher is the 

probability that MALDI-ToF-MS can detect the sample as resolved oligomers. Finally, the saw tooth 

approach should be applied to other types of polymers which are not investigated in this study and should 

be transferred to other chromatographic techniques, i.e. GC, ion chromatography, or micro- or 

nano-HPLC. 
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 Summary 

Polymers are used versatile and ubiquitous as raw material for plastics, fibers, elastomers, rubbers, 

textiles, adhesives, and packaging. In this study, the determination of these materials with polymer liquid 

chromatographic techniques was applied, improved, and optimized. Beginning from the analysis of low 

and high molar mass poly(siloxanes) or silicones, the findings were also applied to various other polymers, 

e.g. poly(vinylchloride) or poly(methylmethacrylate). For low molar mass poly(dimethylsiloxanes) (PDMS), 

a baseline resolved separation of linear and cyclic oligomers up to 30 monomer units was developed and 

optimized by adapting mobile and stationary phases. For high molar mass PDMS (up to 250,000 g∙mol-1), 

a new saw tooth gradient design was invented, enabling high-resolution measurements. In addition to 

and as enhancement to size exclusion chromatography, the new high-resolution polymer HPLC (HRP-

HPLC) allows the assignment of retention times to the corresponding molar masses in HPLC for single 

resolved peaks of (complex) polymer samples. The shape of the saw tooth gradient and further significant 

parameters as effective step length and height are optimized by Design of Experiments (DoE). Various 

other polymers, e.g. poly(vinylchloride), poly(styrene), poly(methylmethacrylate), and poly(propylene 

glycol) were investigated with HRP-HPLC by only adapting the stationary and mobile phase. Additionally, 

the performance of an evaporative light scattering detector (ELSD) was improved by implementing a new 

parallel-path poly(tetrafluoroethylene) nebulizer instead of the originally used concentric glass nebulizer. 

Thus, a significant improvement of the long-term stability and sensitivity was achieved for polymer 

analysis. Particularly, the invention, development, and optimization of the sawtooth gradient design 

results to a substantial improvement in (micro) structure elucidation of especially high molar mass 

polymers. Moreover, (semi) preparative fraction collection of various polymers enable the off- and online 

coupling to other powerful analytical techniques like MALDI mass spectrometry or NMR spectroscopy.  
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 Zusammenfassung in deutscher Sprache 

Die vielfältige und ubiquitäre Anwendung von Polymeren als Rohstoffe für Kunststoffe, Fasern, 

Elastomere, Kautschuke, Textilien, Klebstoffen oder Verpackungen zeigt die Wichtigkeit dieser Stoffklasse. 

In der vorliegenden Arbeit wurden deshalb flüssigchromatographische Verfahren zur Verbesserung und 

Vereinfachung der Analyse dieser Werkstoffe weiterentwickelt und optimiert. Ausgehend von der Gruppe 

der Poly(siloxane) bzw. Silicone wurden Untersuchungen mit Polymer HPLC sowohl im niedermolekularen 

als auch im hochmolekularen Massenbereich durchgeführt. Für cyclische und lineare niedermolekulare 

Poly(dimethylsiloxane) (PDMS) -Oligomere ist eine Methode ausgearbeitet worden, die durch Anpassung 

von stationärer und mobiler Phase eine basisliniengetrennte Oligomeren- Auftrennung, bis zu 30 

Wiederholeinheiten ermöglicht. Durch die Entwicklung eines neuartigen Sägezahngradienten-Profils 

konnte auch im hochmolekularen Massenbereich – für PDMS bis zu 250.000 g∙mol-1 eine hohe Auflösung 

der Polymerverteilung erreicht werden. Ergänzend zur Größenausschlusschromatographie (SEC) können 

mit dieser neuen Gradiententechnik auch in der HPLC den einzelnen dezidierten Polymerpeaks 

Retentionszeiten und Molmassen zugeordnet werden und somit detailliertere Aussagen über die 

Zusammensetzung komplexer Polymerproben gewonnen werden. Mit statistischer Versuchsplanung 

wurde die Form des Sägezahngradienten-Profils sowie die effektive Stufenhöhe und effektive Stufenlänge 

optimiert. Die universelle und vielseitige Anwendbarkeit der hochaufgelösten Polymer HPLC (HRP-HPLC) 

ist dadurch gezeigt worden, dass durch Anpassung der stationären und der mobilen Phase auch weitere 

Polymere, wie z.B. Poly(vinylchlorid), Poly(styrol), Poly(methylmethacrylat) oder Poly(propylenglykol) 

untersucht werden konnten. Darüber hinaus ist der verdampfende Lichtstreudetektor (ELSD) optimiert 

worden, so dass dieser als universell einsetzbarer und robuster Detektor für die Polymer HPLC zur 

Verfügung steht. Dazu wurde der vom Hersteller verbaute konzentrische Glaszerstäuber durch einen 

Parallelfluss- Poly(tetrafluoroethylen)- Zerstäuber ersetzt und anschließend wurden die einzelnen 

Detektorparameter optimiert. Dadurch konnten Langzeitstabilität und Empfindlichkeit entscheidend 

verbessert werden. Besonders durch die Entwicklung und Optimierung des Sägezahngradienten können 

die analytische Trennung von hochmolekularen Polymeren verbessert und auch Messungen im (semi-) 

präparativen Maßstab durchgeführt werden, die eine Kopplung mit weiteren Methoden wie MALDI 

Massenspektrometrie oder NMR Spektroskopie ermöglichen. Dadurch können insbesondere die (Mikro) 

Strukturen komplexer Polymerproben detaillierter untersucht werden. 
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Appendix A: Separation of linear and cyclic PDMS 
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Appendix B: Optimization of the saw tooth gradient 
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Appendix C: Applications of a saw tooth gradient 
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