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Abstract

Information systems in organizations are regularly subject to cyber attacks
targeting confidential data or threatening the availability of the infrastruc-
ture. In case of a successful attack it is crucial to maintain integrity of the
evidence for later use in court. Existing solutions to preserve integrity of
log records remain cost-intensive or hard to implement in practice. In this
work we present a new infrastructure for log integrity preservation which
does not depend upon trusted third parties or specialized hardware. The
system uses a blockchain to store non-repudiable proofs of existence for all
generated log records. An open-source prototype of the resulting log auditing
service is developed and deployed, followed by a security and performance
evaluation. The infrastructure represents a novel software-based solution to
the secure logging problem, which unlike existing approaches does not rely
on specialized hardware, trusted third parties or modifications to the logging
source.
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1. Introduction

Log data is produced today by most information systems used in orga-
nizations. It provides information about regular events occurring on these
systems, but may also contain indicators for malicious behavior or attacks
such as denial of service attacks, malware activities and other types of at-
tacks on an organization’s infrastructure. Analysis of these logs helps prevent
security breaches, or enables detection and subsequent damage control when
an incident has taken place [1].

In case a breach is successful, it’s desirable to identify the perpetrator
in a forensic investigation and bring the responsible person to court. In
practice however intruders may attempt to alter or delete log entries docu-
menting the intrusion [2]. Besides being exposed to malicious modification,
log records are also often processed during analysis, for example by SIEM
systems [3]. To be successful in a trial, the organization must be able to
provide an indisputable proof of integrity for the log evidence. This proof
must guarantee that no modification occurred during processing, so that the
evidence remains admissible in court.

The primary requirements for legally admissible digital evidence are rel-
evance and authenticity [4, p. 658ff]. In order for a piece of evidence to be
relevant, there should be a persistent chain of custody. Reliable and veri-
fiable evidence generation, transmission and storage are part of this chain
of custody and prerequisites for authentication of evidence in court [5]. As
a result, verifiable generation procedures constitute a key requirement for
auditable logging infrastructures.

Prior research has already developed various approaches to create and
protect secure logs from intruders (see Section 2). A key aspect of these works
is integrity preservation of evidence using write-only or access-protected stor-
age. Recently developed blockchain technology provides a novel way to
achieve these goals. Blockchain systems are highly redundant data stores
with the purpose of maintaining an append-only log of transactions. Since
data is shared with other independent organizations based on distributed
consensus, it is tamper-resistant. If a majority of participants are honest,
availability and integrity of stored data is maintained. Of particular inter-
est to enterprise applications are permissioned blockchains, where the set of
participants is authenticated.

Based on a permissioned blockchain, we develop a secure infrastructure to
ensure integrity and non-repudiation of log events without a trusted service
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provider. It is designed to prove the existence of a log entry at the time of
generation by using integrity proofs stored in a distributed auditing layer.
The blockchain network storing the proofs is maintained by a consortium of
independent operators. Auditors can verify the integrity of previously sub-
mitted evidence by contacting any node in the network. Automated signing,
storage and integrity proof generation for each log event provide the necessary
authentication and non-repudiation. For evaluation, we create a prototype
as part of the DINGfest project [3]. DINGfest aims to create an open-source
SIEM infrastructure and currently consists of three main components: data
acquisition, data analysis and forensics & incident reporting. This work adds
a fourth data auditing component to ensure forensic auditability.

The paper is structured as follows: After explaining prior work and some
of its shortcomings, we propose a general design for secure logging based on a
permissioned blockchain. For evaluation, we then build the prototype within
the DINGfest infrastructure and describe our results regarding security and
performance.

2. Related Work

Specialized hardware or software is required to achieve the aforementioned
security goals of secure logging systems. Prior work on secure logging systems
can be grouped into three categories: append-only storage systems, forward-
secure evolving signatures and trusted third party (TTP) notary services [6].
Hardware-based write-only devices are a cost-intensive solution, especially
when there is a large amount of continuously generated log data. For this
reason we focus on software-based techniques hereafter.

Software-based approaches use cryptographic mechanisms to detect mod-
ifications of log files. One of the earliest works on secure logging for forensic
investigations was published by Schneier and Kelsey [2]. Their proposed al-
gorithm is used for concatenating the sequence of log events and provides
forward security and verifiability. Ma and Tsudik [7] claim that the Schneier
and Kelsey scheme is vulnerable to a truncation attack, where an attacker
may delete entries starting with the most recent. To eliminate these flaws,
they introduce a new public-verifiable forward-secure aggregation scheme. It
removes the need for an additional server and reduces the storage overhead
introduced by the MAC and hash chain. While such forward-secure logging
schemes are tamper-evident regarding modification by intruders, they cannot
prevent deletion of the evidence. Accorsi [8] provides an overview of existing
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software-based secure logging protocols and highlights this weakness. The
work favorably emphasizes the author’s “BBox” secure logging approach,
which is claimed to be the only protocol to fulfill all security requirements
for transmission and storage. It relies on trusted computing modules [9],
which require special hardware and thus introduce additional cost. Finally,
all aforementioned software-based techniques require additional logging soft-
ware adjustments beyond transmission to a server, which may not be possible
in all organizational scenarios.

An example for a TTP-based timestamping solution is the Keyless Sign-
ing Infrastructure operated by the Estonian security firm Guardtime [10].
It is based on generating integrity proofs without cryptographic keys by ag-
gregating hashes from different sources [11]. Through several aggregation
layers, hashes of log records are aggregated in a binary Merkle tree. The sys-
tem operates in fixed time intervals and produces one aggregation tree per
round. The tree root hashes are stored in a custom data structure referred
to as a hash calendar. The calendar’s root hash is regularly published in Es-
tonian newspapers for public verifiability [12]. The KSI method is less prone
to attacks from quantum-computing based algorithms since it only relies on
hashing and uses no public-key cryptography [12]. Thanks to usage of sev-
eral aggregation layers the system is also highly scalable. However, besides
being closed-source and fee-based, the platform also has the disadvantage of
relying on the security of Guardtime’s infrastructure.

Other researchers have used blockchain to assure log integrity and au-
ditability. For example, a recent work proposed publishing the KSI root
hashes to the Bitcoin blockchain [13]. Cucurull et al. [6] developed a se-
cure logging approach that uses the permissionless Bitcoin network to record
checkpoints of local log chains. Sutton and Samavi [14] use a local graph
database to store logs and submit integrity proof digests to Bitcoin for au-
ditability. Since all these approaches rely on the Bitcoin blockchain, the
scalability is limited by its block size and throughput. Besides the Bitcoin
transaction fees, costs are also incurred through the requirement to maintain
a full copy of the blockchain.

Other approaches use the permissioned blockchain framework Hyper-
ledger Fabric1. Ahmad et al. [15] focus on tracking changes made to database
entries by storing change excerpts on Hyperledger Fabric. Shekhtman and

1https://www.hyperledger.org/projects/fabric
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Waisbard [16] store the contents of log files directly on Hyperledger Fabric.
They demonstrate the feasibility of auditable logging based on a permissioned
blockchain, but it is not clear whether their approaches are scalable, as no
throughput and storage scalability benchmarks are presented. However, scal-
ability is required to manage large volumes of logging data in practical secure
logging deployments.

In contrast to the works described above, our proposed approach does not
rely on specialized hardware, modification of the logging source or trusted
third parties. Instead it uses a combination of replicated local storage and a
permissioned blockchain to ensure availability and integrity. Using a permis-
sioned blockchain over a permissionless one comes with several advantages.
Permissioned blockchain systems allow for higher throughput on the order of
hundreds to thousands of transactions per second [17]. Additionally, trans-
action costs can be avoided due to the restricted set of participants, which
allows using deterministic consensus algorithms.

To summarize, we contribute to the literature by reducing cost and al-
leviating performance limitations of prior blockchain-based secure logging
approaches. To achieve this, we rely on a high-performance and low-latency
permissioned blockchain, with enhanced security provided by anchoring to a
permissionless blockchain.

3. System design

Following the design science research methodology by Peffers et al. [18],
we begin by elaborating requirements and objectives for the system. Based
on these requirements, we consider the available options for storing data
when using a blockchain system and describe a general architecture for a
blockchain-based auditable logging system. We also discuss two options for
operation of the blockchain network in practice.

3.1. Requirements and preliminaries

The overall objective of a secure logging system is maintaining availability
and integrity of log files. Records created by the system should also have the
property of non-repudiation, meaning that records verifiably correspond to
an event that occurred on a specific system. Onieva et al. [19] define five
phases of a non-repudiation service. We use four of these phases (shown in
Figure 1) to guide system design in the following chapter. In secure logging,
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verification occurs during dispute resolution, since tampered log records may
also contain valuable information about system compromise.

Figure 1: Phases of a non-repudiation service, adapted from Onieva et al. [19].

A prerequisite for all phases is the definition of what actually constitutes
evidence. For information system logs, any record may be possibly relevant
evidence. To separate availability and integrity preservation, we split log
records into of evidence data and an integrity proof. The evidence data
consists of the actual log event and associated metadata. Specifically, it
consists of log event information, a generating system identifier & signature
and a timestamp. The signature is generated by the source system or the
hypervisor, if the data was extracted using Virtual Machine Introspection.
The integrity proof is represented by a timestamped hash of the evidence
data that confirms the existence of the log event at a specified time. If this
information is stored immutably, it can later be used to prove that evidence
data has not been changed since creation of the proof.

Evidence generation takes place on log sources, for example systems
that are connected to external networks and vulnerable to intrusion. The
log files should include digital signatures signed with the private key of the
generating system. In our work, a unique public/private key pair is generated
for each system. Certificates issued by a public key management authority
enable attribution of log events to sources.

During the evidence transfer phase, the log event is then transferred
from its source to the storage system. Using an encrypted connection is im-
perative to maintain the chain of custody. In our solution, the transmission
is subject to a number of requirements established in prior work: confiden-
tiality, origin authentication, integrity, uniqueness and reliable delivery [8].

Evidence storage is the main focus of this work. Any log data in-
gested by the service should be stored in a way that preserves availability
and integrity for later use. This includes preventing deletion or modifica-
tion by an attacker seeking to erase traces. Confidentiality is also a concern
due to potentially sensitive information contained in log records. Prior so-
lutions described in Section 2 use specialized append-only hardware, third-
party providers or local storage combined with external notary systems. Our
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approach achieves immutability by storing integrity proofs on a blockchain
network consisting of independent nodes.

Dispute resolution occurs when an intrusion has taken place and has
been recorded in log files. Both intruder and victim may attempt to deny
the authenticity of the evidence. An auditor must then be able to verify that
the log was not modified by anyone since generation. This evidence verifi-
cation consists of signature and integrity proof verification. For signature
verification, the auditor must have access to the corresponding public key
certificates of the generating sources. The integrity proof is represented by
a hash and a corresponding timestamp in our work and must be stored in
provably unmodifiable storage. It ensures that the signed file already existed
at the claimed time.

3.2. Storage design considerations

To alleviate shortcomings of prior secure logging approaches discussed
in Section 2, we consider an architecture using a permissioned blockchain
network. The advantage of using a permissioned network is that it does
not rely on a paid third party service provider. Instead, the blockchain
node operators provide the immutability service for each other. Since the
operational cost is evenly shared by all members, no additional costs arise
besides operating the network.

We now discuss how a blockchain-based solution could help to store log
files in an integrity-preserving way. Data can be stored either on-chain or
off-chain in blockchain-based solutions. On-chain storage would imply repli-
cating the full log data across all blockchain nodes. Logging infrastructures
deal with considerable data volumes, so full replication to each node would
be inefficient and lead to high storage costs. An additional concern with on-
chain storage is loss of privacy. Log data may inadvertently contain sensitive
data like usernames or even password hashes. Since blockchain node oper-
ators are independent, they should not share potentially sensitive log data.
Off-chain storage maintains data in a separate local database to uphold pri-
vacy and confidentiality requirements. Off-chain data can be linked to the
corresponding on-chain transaction through its hash, provided that the data
has not been modified since its hash was included in the blockchain.

To accommodate the storage limitations of blockchains, we split the log
storage into on-chain and off-chain parts as suggested by Barger et al. [20].
Evidence data is stored in a local storage cluster and protected from unau-
thorized access to maintain confidentiality. Availability protection for the
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off-chain data is achieved through local replication. Commodity hardware
can be used to cheaply store log data while avoiding data loss. Apache
Kafka2 is one example for a suitable publish-subscribe system that maintains
a locally replicated and crash-tolerant log, while allowing other applications
to interact with the data [21]. To be able to detect potential corruption or
modification of the off-chain data, integrity proofs are stored in transactions
on the permissioned blockchain. The network is maintained by independent
operators to ensure the proofs cannot be modified by any one participant.
Since these operators are only semi-trusted, the network should be able to
tolerate some amount of arbitrary, even malicious, behavior. These types of
faults in distributed systems are also referred to as byzantine faults [22]. A
byzantine-fault tolerant (BFT) consensus algorithm is used in our solution
to tolerate up to f byzantine failures in a network of 3f + 1 nodes.

BFT state machine replication can be implemented without a blockchain
data structure to gain some throughput performance. However, secure log-
ging requires additional authenticity and integrity guarantees as mentioned
in Section 3.1. Permissioned blockchain frameworks provide these guarantees
and come with other beneficial features such as audit-only nodes and APIs
for external applications, so we build on them in our system architecture.

3.3. System architecture

The full architecture is shown in Figure 2. Evidence is generated and
signed by different sources like containerized applications, firewalls or intru-
sion detection systems. The generated evidence data is securely transferred
to a log verification system. Existing protocols based on reliable syslog (IETF
RFC 3195 [23]) fulfill the requirements for secure transmission [8] and can
be used for this purpose.

Newly arriving data in the storage cluster is monitored by a separate
application. For each new entry, a transaction is generated containing a hash
and the current timestamp. The transaction is included in a block together
with transactions arriving from other nodes in the distributed system. A
new block is appended to the blockchain as soon as enough transactions
are available, or when a timeout is reached. The timeout ensures that the
delay between log generation and inclusion in the blockchain remains low.
The other participating organizations also add transactions containing hashes

2https://kafka.apache.org/
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Figure 2: Proposed design for a secure and auditable logging infrastructure.

from their own logging infrastructures.
Any auditor is able to verify evidence at a later date. The actual evidence

data remains in the replicated local storage and can be provided to the au-
ditor at request. To verify the integrity of the evidence data, the auditor
first verifies its signature against valid public key certificates from the PKI.
This step ensures the log file can be mapped to its source. Afterwards the
data’s hash is submitted to a blockchain node for verification. The server
then compares the hash values stored in blockchain transactions with the
hash value of the proposed evidence. If an identical hash is found, there is
non-repudiable proof that identical data was submitted at an earlier time. To
tolerate possibly corrupted blockchain nodes, the proof can also be requested
from multiple blockchain nodes independently.

3.4. Formal logging procedure

Figure 3 details the data flows that occur when each log entry is pro-
cessed. Two processing steps S1, S2 occur, with an optional verification
step S3. To describe these steps, we define the following formal notation.
Each organization j ∈ {1..n} has an identifier IDj, a private signing key Zj

and a corresponding public key Kj.
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Figure 3: Sequence diagram of log entry processing data flows.

S1: Client application processing. We first define a log counter
k ∈ 1..l and a transaction counter i ∈ 1..m. Each newly arriving log entry
Ljk is parsed to create a transaction payload Pji, which is included in a new
transaction Tji. Initially, i = k, as one transaction is generated per log entry.
hash() refers to a preimage-resistant hash function, while sign() is shorthand
for a public-key signature function. It is assumed that Tji is transmitted from
client application to blockchain node via an encrypted channel, preventing
man-in-the-middle attacks.

Tji = (Pji, Hji, Sji) where

Pji = (IDj, Kj, Ljk),

Hji = hash(Ljk),

Sji = sign(Zj, Pji)

S2: Blockchain node processing. After the transaction was propa-
gated to the network and proposed as part of a block by the current consensus
leader, the actual processing takes place on each node. A timestamp based on
distributed consensus is included with each transaction and the uniqueness
of the log entry is verified by each node:

i > 1 : Hji /∈ {Hj1..Hj(i−1)} ∀j ∈ 1..n
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If this condition fails, no changes to the persistent state occur as a result
of the transaction. Two identical log entries with the same hash value can
not be part of the system. If the condition passes and the entry is unique,
a mapping of content hash to blockchain transaction hash is added to a dic-
tionary: (Hji, hash(Tji)). This permits efficient lookups during verification.
After more than two-thirds of all nodes have successfully processed the trans-
action, it is irreversibly committed to the ledger. We omit consensus protocol
message exchanges for clarity in Figure 3.

S3: Verification. To verify, a user may optionally submit a log entry to
the client application, which requests a proof from the blockchain network by
sending hash(Ljk). If the corresponding transaction is found and returned,
only its signature and hash must be verified:

verify(Kj, Pji, Sji) ∧ Kj ∈ {K1..Kn} ∧ Hji
!

= hash(Ljk)

verify() is the verification function corresponding to sign(), returning 1
for a correct signature and 0 otherwise.

3.5. Blockchain network operation

For illustrative purposes only three nodes are shown in Figure 2. An
actual deployment in practice must consist of n ≥ 4 nodes to be able to tol-
erate at least one byzantine node (see Section 5.2 for optimal node counts).
Nodes should be operated by separate organizations to make it harder for
both the organization and attackers to modify data on the blockchain. If a
single party controls the supermajority of nodes, it could simply replace and
fabricate data, forfeiting the immutability benefits of a blockchain system.
The blockchain network consortium could be coordinated by industry associ-
ations. In that case independent organizations within the association would
jointly maintain a network of blockchain nodes, as illustrated in Figure 2.

Another alternative is operating the network within a single organization
and spreading the nodes across multiple locations or organizational units. In
that case the organization is in control of all nodes and an intruder would have
to subvert nodes in multiple locations to remove traces. The organization
itself could however initiate a coordinated replacement of blockchain data.
This might be a concern in investigations where organizations try to hide
a breach of their infrastructure. Adding an anchoring mechanism to the
permissioned blockchain mitigates this possibility. Anchoring includes the
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latest block hash of the permissioned blockchain network in a transaction
on a permissionless system like Bitcoin. These checkpoint transactions are
submitted in regular intervals and cost a small fee. This allows external
auditors to publicly verify the state of the private blockchain at the time of
anchoring.

The advantage of this approach is that the entire logging infrastructure
remains within the organization. At the same time it also incurs transaction
fees similar to the permissionless blockchain approach [6]. Depending on the
anchoring frequency this cost can add up to a substantial amount. While
lowering the frequency decreases cost, it also widens the time window for
possible replacement of blockchain data by the organization. To prevent
this entirely, the time between checkpoints must be lower than the time an
internally coordinated blockchain replacement would take.

4. Prototype

For demonstration and evaluation purposes, we create a prototype based
on a SIEM reference architecture. We build on the DINGfest infrastructure
created in prior work, which implements some parts of the design described
above, like the storage cluster. It however currently lacks a way to ensure
end-to-end integrity, auditability and non-repudiation of the original log evi-
dence. The prototype adds this capability in the form of a blockchain-based
distributed log auditing service. The service is then evaluated for security
concerns and throughput/storage scalability.

The extended architecture is shown in Figure 4. A hashing application
fetches log records from the data stream and computes the SHA256 hash
for each record. The input data for the hash includes the log data and its
signature. The hash is then submitted to the blockchain system in a signed
transaction. The receiving blockchain node validates the hash against exist-
ing hashes in the database to prevent duplicates. A timestamp is obtained in
consensus with other validators and included with the transaction. Finally,
a separate proof application provides a web interface, where auditors can
submit evidence for validation (see also Figure 5).

We evaluate various open source permissioned blockchain frameworks for
our prototype. The evaluation criteria we deem essential for secure logging
are shown in Table 1. First, we examine whether the framework currently
offers a production-ready BFT consensus implementation. For performance
reasons, we also want to avoid the virtualization overhead of smart contracts
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Figure 4: The DINGfest SIEM architecture extended with an auditing layer (based on
Menges et al. [3]).

Table 1: Comparison of open source blockchain framework properties.

Fabric Sawtooth Corda Ethereum Exonum

BFT consensus (3) (3) (3) (3) 3

Native contract execution - 3 - - 3

Consensus-based anchoring - - - (3) 3

Deployment effort high medium high low low

3 built-in (3) custom implementation required/experimental - not available

and thus look for frameworks offering native execution of custom logic. To
protect against collusion manipulation of the permissioned blockchain, we
include consensus-based anchoring to a permissionless blockchain as a cri-
terion. To ensure a low barrier to entry, deployment effort is assessed by
analyzing the number of different services and containers needed for running
the framework.

We conclude that there are several advantages to using Exonum3 over
other permissioned frameworks. Firstly, other frameworks do not yet offer

3https://exonum.com
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ready-for-use BFT consensus implementations or consensus-based anchoring.
Additionally, Exonum does not use conventional smart contracts running
in a virtualized execution environment. Instead, it uses natively executed
services to implement custom logic. Similar to smart contracts, services are
invoked by transactions and executed on every blockchain node, but service
code must be final at compile-time and cannot be deployed dynamically at
runtime. Services include the Exonum framework as a dependency and are
compiled to a single binary containing both application and framework. For
this reason there is no performance overhead due to virtualization. The
binary can also be deployed easily without the need to maintain multiple
separate containers (like in Fabric/Sawtooth/Corda).

The Exonum framework and log auditing service are implemented in
Rust, a functional systems programming language focused on memory safety,
concurrency and performance [24]. The framework uses a byzantine fault-
tolerant consensus algorithm based on PBFT (see [22]) and supports through-
put rates of up to 7,000 transactions per second [25]. High throughput is
important to ensure timely inclusion of each log record’s integrity proof in
the blockchain. The Exonum framework also provides built-in services for
distributed timestamps and Bitcoin anchoring. Anchoring to the permis-
sionless Bitcoin blockchain increases security by providing publicly verifiable
checkpoints (also discussed in Section 5.1). By using a permissioned block-
chain, the process of deciding on the next candidate block for anchoring is
based on consensus and avoids a single points of failure [25]. Since BFT con-
sensus is the key argument for using blockchain in our architecture, we also
choose Exonum for its low overhead approach to blockchain. The features
it adds apart from PBFT consensus are all useful to the proposed solution.
Encrypted node connections maintain confidentiality, consensus-based dis-
tributed timestamps ensure non-repudiation of log creation time and block
grouping of transactions improves consensus performance.

The prototype consists of an Exonum backend service and a light client
web application, as shown in Figure 5. The backend service runs on version
0.11 of the Exonum framework4.

The frontend client provides interfaces for blockchain inspection, mon-
itoring and verification of log data. It retrieves data from the blockchain us-
ing the server-side backend, which redirects the read requests to the Exonum

4https://github.com/exonum/exonum/releases/tag/v0.11.0
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Figure 5: Client-server architecture of the application prototype.

blockchain API. The server also runs a separate background application writ-
ten in Rust, which continuously receives new log events from the distributed
storage cluster based on Apache Kafka. The signed log data is hashed and
submitted to the blockchain in a transaction. The blockchain’s log audit-
ing service verifies that the hash does not already exist in the blockchain
and groups arriving transactions into blocks. New blocks are appended to
the blockchain by the framework after establishing consensus with the other
nodes.

The backend service runs on Exonum blockchain nodes and specifies the
transaction data model and the available API endpoints for the light client
to interact with. Our prototype reuses the timestamping service example
provided by the framework, which meets all requirements of the system design
and formal specification.

In practice, each network participant would deploy an instance of the
blockchain node and client application on a local server. To deploy the
blockchain node, participants must agree on a shared configuration file, which
includes parameters like block proposal timeout and transactions per block
(further described in Section 5.2). Each node’s individual configuration file is
then generated locally based on its private key and IP address and public key
of the other nodes. The node binary, which includes both the framework and
the log auditing service, is then started and ready to receive transactions.
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Finally, the client application must be configured to continuously receive log
records from the local storage cluster. After every participant has finished
the setup phase, the system may begin operation.

5. Evaluation

Crucial aspects of the design that should be evaluated are security and
performance. System security is important since vulnerabilities to attacks
may question the very purpose of the infrastructure. Performance consid-
erations are important as well to ensure scalability for larger organizations,
especially since blockchain systems are known for their scalability limitations.
The security evaluation is based on a structured analysis of threats, while
the performance evaluation focuses on throughput and storage metrics in a
cloud-based deployment of the prototype.

5.1. Security

There are four fundamental security threats to consider in a distributed
system: interception, interruption, modification and fabrication [26].

Interception could lead to delays in committing timestamps to the block-
chain. Intercepting a node’s connection is impeded by setting up authenti-
cated and encrypted communication channels between nodes.

Interruption could be achieved for example with a denial of service attack.
By preventing the node on the target network from communicating with other
nodes, an attacker can delay outstanding log transactions. Alternatively, an
intruder could attempt to gain control of blockchain nodes. Once enough
nodes are compromised, it becomes possible to stall consensus or fully control
the network. The exact number of nodes depends on the number of validators
in the network. With a byzantine fault-tolerant (BFT) consensus algorithm,
a minimum of 1/3 of all nodes is required to stall consensus and > 2/3 to
gain network control by adding/removing validator nodes. These bounds
are based on the fact that more than two-thirds of validators must agree to
commit a transaction in BFT consensus [22]). Anchoring to a permissionless
blockchain would prevent this type of attack entirely. The permissioned
blockchain’s contents can then be verified against checkpoints published on
the public blockchain to detect manipulations.

Data modification is the most significant threat to log evidence. An
intruder could attempt to modify the original log record to obscure traces.
As noted by Schneier and Kelsey [2], once an attacker has control of the log
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source, the integrity of new logs cannot be protected. The goal of secure
logging is therefore to protect log data generated prior to intrusion. Our
proposed two-layer approach protects availability using the replicated storage
cluster and integrity with proofs on the blockchain. To void availability of
the original log records stored on the local storage cluster, the attacker would
have to corrupt or delete all copies. To modify the integrity proofs on the
blockchain, the attacker has to subvert or convince more than two-thirds
of all nodes due to the properties of BFT consensus [22]. Both scenarios
require significant penetration of the organization’s infrastructure and are
rather unlikely in practice.

Fabrication of log entries is a concern and may invalidate authentication of
the evidence. An intruder could fabricate false log entries to lead investigators
astray. To that end it is necessary to gain control of the system first and
compromise its private key for log generation. As recognized in Schneier et
al. [2], no security measure can protect log files generated after a system
has been compromised. Log files generated prior to intrusion should allow to
identify the time of compromise, after which logs can no longer be considered
authentic. Additionally, the organization maintaining the log infrastructure
could also attempt to fabricate entries to falsely blame an adversary. This
cannot be prevented, since the organization is in control of its private keys
and can submit arbitrary data at any point in time signed with these keys.
This possibility of organizational fabrication instead has to be excluded by
legal means.

Regarding correctness of the verification, there is a non-zero probabil-
ity that a fake log submitted for verification has the same hash as another
valid log entry included in the blockchain. This type of hash collision can
be neglected in practice however. There are 2256 possible hash outputs for
the SHA256 algorithm used in the prototype, for which no computationally
feasible collision has been found [27].

From a privacy perspective, the log contents remain confidential since
only a hash of the data is stored on the blockchain. For preimage resistant
hash functions like SHA256 it is (by current standards) impossible to find
the content of the original log file.

Additionally there are some operational security concerns regarding the
prototype’s blockchain framework. Exonum has not received any security
audits, so independent validation of framework security is not yet available.
Another limitation is the lack of built-in authentication and authorization
for service endpoints. By default, anyone can query both private and public
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endpoints. This is not a critical problem for our infrastructure. If the hashing
application is deployed to a separate system or container, it can be whitelisted
as the only external system to use the port of the public blockchain API.
Similarly, the system administrator’s IP should be the only IP allowed to
access the private port, since it could be used to add new peers or shut
down the node. Whitelisting can be done by using the AWS security groups,
iptables on Linux or a different firewall solution.

5.2. Performance

The three main concerns regarding the performance of the logging infras-
tructure are transaction throughput, node scalability and storage require-
ments. The bottleneck of the system is clearly the blockchain-based auditing
layer due to its limited transaction throughput spread across all participants.
Thus we set up blockchain networks of varying sizes on the DigitalOcean
cloud to benchmark the prototype. We used droplet instances with 4 ded-
icated virtual CPU cores and 8GB of RAM. All virtual machines are set
up within the same data center location. We deploy both the blockchain
node and the hashing application on the same server. Consequentially, the
overhead from signing and submitting transactions to the blockchain is in-
cluded in the performance measurements. After some experimentation with
consensus parameters we settled on a default configuration to a maximum
of 10,000 transactions per block and a proposal timeout of 1 second. These
parameters seemed to alleviate any bottlenecks related to system configu-
ration. For stress testing we submit 5,000 log transactions per second for
20, 30 and 40 seconds at a time. The transaction load is evenly distributed
across all nodes. Higher loads did not increase throughput and only resulted
in increased processing time after the end of transaction submission. The
average observed throughput rates are shown in Figure 6a.

The results show that overall system performance varies between 3,000
and 3,500 transactions per second on average, yielding between 250 and 800
processed transactions per node and second. Per-node performance continu-
ally decreases, while overall performance remains fairly stable even for a large
number of nodes. The per-node performance can be interpreted as limits on
the average transaction load that the system should be exposed to in each
organization.

Given the per-node performance thresholds between 250 and 800 trans-
actions per second, it is not unlikely that the log event rate exceeds system
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(a) Transactions per second for varying node
counts.

(b) Storage requirements for varying average
throughput and node counts.

Figure 6: Prototype performance benchmark results.

capacity. In that case a possible solution is to group log records in transac-
tions. In step S1 from Section 3.4, the hash Hji is then computed using r
concatenated log records Ljk as input:

Hji = hash(Lj[(i−1)r+1] | .. | Lj[(i−1)r+r])

The resulting load on the blockchain is reduced by a factor of 1
r
. However,

hash verification in step S3 changes accordingly to also require r records as
input. The sequence number of the log entry may not be known to the ver-
ifier, requiring r verification requests and 2(r − 1) additional log entries for
verification (before and after the log at hand). This highlights the disad-
vantage to this solution: grouped records are now treated as one integrity
unit. If one of the records in the unit is corrupted or no longer available, it
becomes impossible to prove the integrity of all the records in the unit.

Fault tolerance maxima are achieved when the node count is equal to
3f + 1, tolerating f byzantine or failing nodes. As a result, node counts
of 4/7/10 nodes can be considered efficient in Figure 6a, tolerating 1/2/3
byzantine nodes respectively.

Figure 6b illustrates blockchain database growth per month, based on
the measured average size of 800 bytes per transaction. Since the size of the
data fields is fixed, all transactions have approximately the same size. The
database grows linearly with both throughput and node count. To avoid
excessive storage usage, log record transactions on the blockchain may be
discarded after d days, as defined by the organizational log retention policy.
The ideal technical solution would be a rolling blockchain, configured to
discard blocks once they are d days old. The log retention period must then
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be agreed upon by all node operators in advance. A rolling blockchain system
has been proposed in Dennis et al. [28], but no open source implementation
is currently available. For this reason we leave this issue for future research.

5.3. Comparison with other blockchain-based secure logging approaches

Table 2: Comparison with other blockchain-based approaches.

Paper Blockchain Permissioned BFT Benchmarks Proof/data sep. Per-entry imm.

Cucurull and Puigalli [6] Bitcoin - n.a. - 3 -
Sutton and Samavi [14] Bitcoin - n.a. - 3 3

Ahmad et al. [15] Fabric 3 - - - 3

Shekthman and Waisbard [16] Fabric 3 - - - 3

Present work Exonum 3 3 3 3 (3) a

awithout log grouping from Section 5.2

To validate our results, we compare them with similar blockchain-based
logging approaches. Prior works on blockchain-based secure logging have
used both permissionless (Bitcoin) and permissioned (Fabric) blockchains,
but none of them have proposed an integrated approach based on anchor-
ing. While our solution is primarily based on the permissioned blockchain
Exonum, it also provides the option for consensus-based anchoring to the
Bitcoin blockchain to increase tamper-resistance.

With regard to evaluation, none of the other works thus far have included
benchmarks for throughput and storage constraints. Since these constraints
are crucial for high frequency logging infrastructures, we have addressed them
in Section 5.2. Besides conducting benchmarks, we also proposed avenues for
increasing scalability by grouping log records or using a rolling blockchain.

Due to limited storage space in Bitcoin transactions, both Bitcoin-based
approaches separate the integrity proof and the log data. The works based on
Hyperledger Fabric include partial [15] or full [16] log data on the blockchain,
leading to limited scalability. Our approach is also based on a permissioned
blockchain and focuses on storing a minimal amount of data on-chain.

Per-entry immutability refers to generating one blockchain transaction
per log event. Sutton and Samavi [14] follow this approach, but use the Bit-
coin blockchain, which leads to very high transaction costs and throughput
limitations. These cost constraints lead Cucurull and Puigalli [6] to publish
checkpoints instead of individual log entries. However, between checkpoints
logs exist only on the local machine, which enables truncation attacks during
the checkpoint interval. Mitigation is possible by reducing the checkpoint
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interval, but at the same time increases transaction costs. Permissioned sys-
tems do not suffer from this constraint and offer per-entry immutability, as
evident from the works using Hyperledger Fabric [15, 16]. Our solution com-
bines the advantages of both solutions: it gains per-entry immutability by
using a permissioned blockchain and public non-repudiation by publishing
checkpoints to a permissionless blockchain, witnessed by hundreds of inde-
pendent nodes.

6. Conclusion

This paper presents an infrastructure for log auditing using a permis-
sioned blockchain to store integrity proofs. It is based on legal requirements
for admissible evidence and represents an on-premise alternative to third-
party solutions and specialized write-only hardware. Even without a third-
party service provider, the solution achieves immutability through cooper-
ation and data sharing between independent nodes. It permits processing
of evidence for security analytics purposes while ensuring auditability of the
original log record.

The security analysis shows that the system withstands attempts to in-
tercept, interrupt or modify its processed log data. While fabrication is a
concern, it cannot be completely ruled out with technical measures. Perfor-
mance benchmarks show that the blockchain implementation is able to cope
with very high log event frequencies of 3,000 to 3,500 transactions per sec-
ond, depending on the number of nodes. Storage requirements are substantial
however due to full replication and retention of all historical data.

In future research, an enhanced prototype could implement log rotation
to reduce storage costs, as outlined in Section 5.2. While we firmly believe
that Exonum currently offers the best performance for our secure logging
approach, this might change in the future. In that case the prototype could
also be implemented in other frameworks to see if scalability can be further
improved. Practical deployments by organizations would be useful to assess
adequacy of system throughput in practice. Use case studies to compare
the cost structure of the proposed logging infrastructure with third-party
solutions like the KSI [10] would also be valuable.
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