
 

Synthesis and Pharmacological 

Characterization of Subtype-Selective 

Ligands, Including Radio- and 

Fluorescence Labeled Ligands, for the 

Histamine H2 Receptor 

 

Dissertation 

zur Erlangung des Doktorgrades der Naturwissenschaften 

(Dr. rer. nat.) 

an der Fakultät für Chemie und Pharmazie der Universität Regensburg 

 

 

 

vorgelegt von 

Sabrina Biselli 

aus Friedrichshafen 

 

im Jahr 2019





Die vorliegende Arbeit entstand in der Zeit von Dezember 2013 bis Juli 2019 unter der Leitung 

von Prof. Dr. Günther Bernhardt (ehemals Prof. Dr. Armin Buschauer († 18.07.2017)) am Institut 

für Pharmazie der Fakultät für Chemie und Pharmazie der Universität Regensburg. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Das Promotionsgesuch wurde eingereicht am:  26.07.2019 

 

Tag der mündlichen Prüfung:    30.08.2019 

 

Vorsitzender des Prüfungsausschusses:   Prof. Dr. Dominik Horinek 

 

Erstgutachter:     Prof. Dr. Günther Bernhardt 

 

Zweitgutachter:    Prof. Dr. Sigurd Elz 

 

Drittprüfer:     Prof. Dr. Joachim Wegener 

 

 





 I 

PUBLICATIONS, POSTERS, ORAL PRESENTATIONS AND PROFESSIONAL 

TRAINING 

 

Publications (published results prior to the submission of this thesis): 

 

Keller, M.; Kuhn, K. K.; Einsiedel, J.; Hubner, H.; Biselli, S.; Mollereau, C.; Wifling, D.; 

Svobodova, J.; Bernhardt, G.; Cabrele, C.; Vanderheyden, P. M.; Gmeiner, P.; Buschauer, A. 

Mimicking of Arginine by Functionalized N(omega)-Carbamoylated Arginine as a New Broadly 

Applicable Approach to Labeled Bioactive Peptides: High Affinity Angiotensin, Neuropeptide Y, 

Neuropeptide FF, and Neurotensin Receptor Ligands As Examples. Journal of medicinal chemistry 

2016, 59, 1925-1945. 

 

Baumeister, P.; Erdmann, D.; Biselli, S.; Kagermeier, N.; Elz, S.; Bernhardt, G.; Buschauer, A. 

[3H]UR-DE257: Development of a Tritium-Labeled Squaramide-Type Selective Histamine H2 

Receptor Antagonist. ChemMedChem 2015, 10, 83-93. 

 

 

Poster Presentations: 

 

Biselli, S.; Alencastre, I.; Erdmann, D.; Maia, A.; Chen, M.; Lazaro, M.; Keller, M.; Bernhardt, G.; 

Lamghari, M.; Buschauer, A.  

Squaramide-type H2R Ligands as Molecular Tools. Emil Fischer School Research Day 2017, 

Erlangen, Germany.  

 

Biselli, S.; Alencastre, I.; Erdmann, D.; Maia, A.; Chen, M.; Lazaro, M.; Keller, M.; Bernhardt, G.; 

Lamghari, M.; Buschauer, A.  

Histamine H2 Receptor Binding of Fluorescence Labeled Piperidinomethylphenoxypropyl 
Squaramide-type Ligands. 8

th
 International Summerschool „Medicinal Chemistry“ 2016, 

Regensburg, Germany. 
 

Biselli, S.; Honisch, C.; Plank, N.; Bernhardt, G.; Buschauer, A.  

NG-Carbamoylated Hetarylalkylguanidines: Bioisosteric Replacement in Histamine H2 Receptor 
Agonists. GLISTEN Working Group Meeting 2016, Erlangen, Germany.  
 

Biselli, S.; Baumeister, P.; Erdmann, D.; Bernhardt, G.; Buschauer, A. 

Towards High Affinity Subtype-selective Antagonists as Radioligands for the Histamine H2 

Receptor. 7th
 International Summerschool „Medicinal Chemistry“ 2014, Regensburg, Germany. 

 

Biselli, S.; Baumeister, P.; Erdmann, D.; Bernhardt, G.; Buschauer, A. 

Towards High Affinity Subtype-selective Antagonists as Radioligands for the Histamine H2 

Receptor. EFMC-ISMC 2014 XXIII International Symposium on Medicinal Chemistry 2014, Lisbon, 

Portugal. 

 

 



II 

Oral Presentations: 

 

Squaramide-type Histamine H2 Receptor Ligands as Fluorescent Molecular Tools. Emil Fischer 

School Research Day 2017, Erlangen, Germany. 

 

Squaramide-type Histamine H2 Receptor Ligands as Fluorescent Molecular Tools. ChemPharm 

Colloquium 2017, Regensburg, Germany. 

 

 

Professional Training: 

 

12/2013 – 07/2019  Member of the Research Training Group (Graduiertenkolleg 1910)  

   “Medicinal Chemistry of selective GPCR Ligands”. Regensburg, Germany 

12/2013 – 07/2019 Member of the Emil Fischer Graduate School of Pharmaceutical Sciences 

   and Molecular Medicine. Erlangen, Germany 

03/2017  Gentechnikrecht: Staatlich anerkannte Fortbildungsveranstaltung zur  
   Erlangung der Sachkunde für Projektleiter gentechnischer Arbeiten und 
   Beauftragte für Biologische Sicherheit nach §§15 und 17 der  
   Gentechniksicherheitsverordnung. Regensburg, Germany 
 



 III 

ACKNOWLEDGEMENTS AND DECLARATION OF COLLABORATIONS 
 

An dieser Stelle möchte ich mich bedanken bei: 

Herrn Prof. Dr. Armin Buschauer († 18.07.2017) für die Möglichkeit der Mitarbeit an diesem 

interessanten Projekt, seine wissenschaftlichen Anregungen und seine Förderung, 

Herrn Prof. Dr. Günther Bernhardt für seine wissenschaftlichen Ratschläge, die gute 

Betreuung und die konstruktive Kritik bei der Durchsicht meiner Arbeit, 

Herrn Dr. Max Keller für die fachliche Unterstützung , die Durchführung der Radiosynthese von 

[3H]UR-SB69, seine Hilfe bei der Radiosynthese von [3H]UR-DE257, seine Hilfe bei den Synthesen 

sowie der Charakterisierung der Fluoreszenzliganden und die Organisation des Syntheseseminars, 

Frau Prof. Dr. Meriem Lamghari für die Möglichkeit in ihrem Labor Fluoreszenzligand-

Bindungsstudien mit dem ImageStream X und dem IN Cell Analyzer 2000 durchzuführen, 

Frau Dr. Inês Alencastre für die geduldige Einarbeitung in Porto, sowie die interessanten 

Diskussionen, Ratschläge und Ideen, insbesondere bei Zellkultur und ImageStream X, 

Herrn Dr. Andre Maia und Frau Dr. Maria Gomez Lazaro für die geduldige Einarbeitung am IN Cell 

Analyzer 2000 und ImageStream X und die Hilfe bei der Auswertung der Ergebnisse, 

Frau Mengya Chen für die Synthese der Vorstufe 5.3, des Farbstoffes Py-5 und der 

Fluoreszenzliganden 5.12 und 5.13 im Rahmen ihrer Masterarbeit,  

Frau Claudia Honisch für die Synthese der Vorstufen 6.13-6.18, der Carbamoylguanidine 6.47-

6.52 und die Durchführung der Stabilitätstests von 6.49, 6.50, 6.52, UR-Bit22, UR-Bit23 und UR-

Bit29 im Rahmen ihrer Masterarbeit, 

Frau Lisa Forster für die Durchführung der Radioligand-Bindungsexperimente an Dopamin 

Rezeptoren im Rahmen ihrer Doktorarbeit, 

Herrn Timo Littmann für seine Hilfe bei der Durchführung der Konfokalmikroskopie-Experimente, 

Frau Edith Bartole für die Durchführung der Stabilitätsmessung von [3H]UR-SB69 nach 15 

Monaten, 

Herrn Dr. Paul Baumeister für die geduldige Einarbeitung am Lehrstuhl und vielen fachlichen 

Tipps, 

Frau Maria Beer-Krön für die Herstellung von Membranpräparationen, sowie die tatkräftige 

Unterstützung bei der Durchführung von Radioligand-Bindungsexperimenten, funktionellen 

GTPγS Assays und Kultivierung der verschiedenen Zelllinien, 

Frau Dita Fritsch und Frau Elvira Schreiber für die tatkräftige Unterstützung bei der Durchführung 

verschiedener Assays, 

Frau Sieglinde Dechant für die Unterstützung bei der Synthese verschiedener Zwischenstufen, 



IV 

Meinen Forschungspraktikanten David Konieczny, Julia Mändl, Oliver Sarosi, Josef Hartl und 

Niklas Rosier für die Unterstützung bei diversen Synthesen,  

meiner langjährigen Laborkollegin und Freundin Edith Bartole für die unzähligen (nicht nur) 

wissenschaftlichen Diskussionen und ihre stete Hilfsbereitschaft und Geduld, 

den Synthesechemikern Jianfei Wan, Coco (Xueke She) ,Edith Bartole, Frauke Antoni, Andrea 

Pegoli und Jonas Buschmann für die zahlreichen wissenschaftlichen Diskussionen und die 

tatkräftige Unterstützung bei Syntheseproblemen, 

allen Mitgliedern des Lehrstuhls für ihre Kollegialität und das sehr gute Arbeitsklima. Mein 

besonderer Dank gilt Edith Bartole, Coco (Xueke She), Frauke Antoni, Jonas Buschmann, Jianfei 

Wan und Timo Littmann für die persönliche Unterstützung und die vielen aufmunternden 

Gespräche, 

der Deutschen Forschungsgemeinschaft für die finanzielle Unterstützung im Rahmen des 

Graduiertenkollegs 1910, 

und natürlich meinen Eltern, meiner Schwester Franziska und meinem Mann Attila für ihre stete 

Unterstützung, Liebe und unendliche Geduld, ohne die diese Arbeit niemals fertig geworden 

wäre. 

 



 V 

CONTENTS 

1 GENERAL INTRODUCTION .............................................................................. 1 

1.1 THE HISTAMINE H2 RECEPTOR AS A PROTOTYPIC AMINERGIC GPCR ....................................... 2 

1.2 G-PROTEIN ACTIVATION AND SIGNALING PATHWAYS ........................................................... 2 

1.3 G-PROTEIN INDEPENDENT SIGNALING, LIGAND CLASSIFICATION AND FUNCTIONAL SELECTIVITY ... 4 

1.4 H2R ANTAGONISTS ....................................................................................................... 4 

1.5 H2R AGONISTS ............................................................................................................. 6 

1.6 RECEPTOR LIGAND BINDING ASSAYS AND LABELED MOLECULAR TOOLS FOR GPCRS.................. 7 

1.7 REFERENCES ................................................................................................................ 9 

2 SCOPE AND OBJECTIVES .............................................................................. 15 

3 GUANIDINOTHIAZOLES: TOWARDS THE SQUARAMIDE-TYPE H2R RADIOLIGAND 

[
3
H]UR-SB69 ......................................................................................... 21 

3.1 INTRODUCTION .......................................................................................................... 22 

3.2 RESULTS AND DISCUSSION ............................................................................................ 24 

3.2.1 Chemistry .................................................................................................................. 24 

3.2.2 Biological Evaluation ................................................................................................. 28 

3.2.3 Chemical Stability of 3.25.......................................................................................... 32 

3.2.4 Radiosynthesis .......................................................................................................... 33 

3.2.5 Biological Evaluation of [3H]3.25 ............................................................................... 34 

3.2.6 Chemical Stability of [3H]3.25 ................................................................................... 37 

3.3 EXPERIMENTAL SECTION .............................................................................................. 38 

3.3.1 General Procedures .................................................................................................. 38 

3.3.2 Experimental Protocols and Analytical Data ............................................................. 39 
3.3.3 Pharmacological Methods ........................................................................................ 52 

3.3.4 Data Analysis ............................................................................................................. 55 

3.4 SUMMARY AND CONCLUSION ........................................................................................ 56 

3.5 REFERENCES .............................................................................................................. 57 

4 AMINOPOTENTIDINE DERIVATIVES AS HIGHLY POTENT AND SELECTIVE H2R 

ANTAGONISTS: SYNTHESIS AND PHARMACOLOGICAL CHARACTERIZATION OF AMINE 

PRECURSORS AND “COLD” FORMS OF POTENTIAL RADIOLIGANDS ......................... 61 

4.1 INTRODUCTION .......................................................................................................... 62 

4.2 RESULTS AND DISCUSSION ............................................................................................ 64 

4.2.1 Chemistry .................................................................................................................. 64 

4.2.2 Biological Evaluation ................................................................................................. 69 

4.3 EXPERIMENTAL SECTION .............................................................................................. 73 

4.3.1 General Procedures .................................................................................................. 73 

4.3.2 Experimental Protocols and Analytical Data ............................................................. 74 

4.3.3 Pharmalogical Methods ............................................................................................ 93 

4.3.4 Data Analysis ............................................................................................................. 94 

4.4 REFERENCES .............................................................................................................. 95 



VI 

5 FLUORESCENCE LABELED H2R LIGANDS WITH BMY25368 CORE STRUCTURE: 

SYNTHESIS, CHARACTERIZATION AND APPLICATION IN FLOW CYTOMETRY, CONFOCAL 

MICROSCOPY AND HIGH CONTENT IMAGING ................................................... 97 

5.1 INTRODUCTION ........................................................................................................... 98 

5.2 RESULTS AND DISCUSSION ........................................................................................... 100 

5.2.1 Chemistry ................................................................................................................ 100 

5.2.2 Fluorescence Properties of the Labeled Ligands..................................................... 102 

5.2.3 Biological Evaluation ............................................................................................... 104 

5.3 EXPERIMENTAL SECTION ............................................................................................. 123 

5.3.1 General Procedures ................................................................................................. 123 

5.3.2 Experimental Protocols and Analytical Data ........................................................... 124 

5.3.3 Pharmacological Methods....................................................................................... 132 

5.3.4 Data Analysis ........................................................................................................... 139 

5.4 SUMMARY AND CONCLUSION ...................................................................................... 140 

5.5 REFERENCES ............................................................................................................. 141 

6 CARBAMOYLGUANIDINE- TYPE H2R LIGANDS: EXPLORATION OF STABILITY AND 

SELECTIVITY COMPARED TO THE ACYLGUANIDINE- ANALOGUES .......................... 145 

6.1 INTRODUCTION ......................................................................................................... 146 

6.2 RESULTS AND DISCUSSION ........................................................................................... 148 

6.2.1 Chemistry ................................................................................................................ 148 

6.2.2 Chemical Stability of Monovalent Carbamoylguanidines Compared to 

Acylguanidines    ...................................................................................................... 151 

6.2.3 Biological Evaluation ............................................................................................... 154 

6.3 EXPERIMENTAL SECTION ............................................................................................. 165 

6.3.1 General Procedures ................................................................................................. 165 

6.3.2 Experimental Protocols and Analytical Data ........................................................... 166 

6.3.3 Pharmacological Methods....................................................................................... 186 

6.3.4 Data Analysis ........................................................................................................... 189 

6.4 SUMMARY AND CONCLUSION ...................................................................................... 190 

6.5 REFERENCES ............................................................................................................. 191 

7 SUMMARY ............................................................................................ 195 

APPENDIX 

 



 

 

 

 

CHAPTER 1 

 

GENERAL INTRODUCTION 

  



2 Chapter 1 

1.1 THE HISTAMINE H2 RECEPTOR AS A PROTOTYPIC AMINERGIC GPCR 

The histamine H2 receptor (H2R) belongs to the superfamily of G-protein coupled receptors 

(GPCRs).1 GPCRs are integral membrane receptors and are characterized by seven hydrophobic 

transmembrane (TM) domains with an extracellular amino terminus and an intracellular carboxyl 

terminus. The extracellular regions combined with the transmembrane regions are important for 

ligand binding.2 The intracellular regions are substantially involved in signaling and feedback 

mechanisms.2 With around 30% of the most prominent approved drugs targeting these 

membrane receptors, GPCRs are the most important drug targets.3,4 GPCRs are mediated by 

numerous endogenous ligands e.g. biogenic amines (aminergic GPCRs), amino acids, peptides, 

proteins, purins and lipids, to name only a few.1,5,6 

The H2R is one of currently four histamine receptor subtypes (H1R, H3R and H4R), which are all 

activated by binding the endogenous ligand histamine and therefore are aminergic GPCRs.7-10 All 

histamine receptors belong to the rhodopsin family of GPCRs.1 The H2R is primarily located on 

parietal cells in the stomach,11 in mammalian brain,12,13 on neutrophiles and eosinophiles14 as 

well as on smooth muscle cells15 (e.g. in the heart, airways and uterus). An essential physiological 

function of the H2R is the control of the gastric acid secretion.8,11 Furthermore, activation of H2R 

results in smooth muscle relaxation and positive inotropic and chronotropic effects.16  

The H2R species isoforms (e.g. human (hH2R), guinea pig (gpH2R), rat (rH2R), mouse (mH2R) and 

dog (cH2R)), like many GPCRs, interact similarily with their endogenous ligand, but quite 

differently with most synthetic ligands.17,18 The pharmacological differences between the hH2R 

and the gpH2R mainly concern agonists and not antagonists, which was very fortunate as the first 

potent antagonists for the treatment of gastroduodenal ulcers were developed relying on animal 

models.17 The cH2R exhibits an increased constitutive activity compared to hH2R and rH2R.18 

These findings show that for the development of highly potent and selective agonists it is crucial 

to study hH2R and not the orthologs. 

 

1.2 G-PROTEIN ACTIVATION AND SIGNALING PATHWAYS 

In the classical model the active receptor conformation (either stabilized by agonist binding or 

constitutively active) is functioning as a guanosine nucleotide exchange factor (GEF) on the Gα 

subunit of the heterotrimeric G-protein (Figure 1.1).5 The binding of the G-protein complex to the 

active receptor leads to conformational changes which result in the release of GDP from its 

binding site at the Gα subunit and the formation of the ternary complex.19 Subsequently, GTP is 

bound and the ternary complex dissociates into the Gα–GTP subunit, the Gβγ complex and the 

free receptor.19 Both subunits can interact with effector proteins resulting, through an increase 

or a decrease in the concentration of second messangers, in various cellular responses.19 After a 

certain period of time, the intrinsic GTPase activity of the Gα subunit converts GTP to GDP and 

phosphate.19 The Gα–GDP subunit re-associates with the Gβγ complex to the inactive 
heterotrimeric G-protein.19 

Based on their structures and signaling pathways, G-proteins are grouped in four families 

according to their Gα subunit: Gαi/o, Gαs, Gαq/11, Gα12/13.20,21 The H2R predominantly couples to 



Chapter 1 3 

Gαs proteins, resulting in an increase of the second messenger cAMP by stimulation of the 

isoforms of the effector protein adenylyl cyclase (Figure 1.1).22,23 By contrast, the H3R and the H4R 

signal mainly via Gαi/o proteins, which inhibit the adenylyl cyclase.24 The H1R preferentially 

couples to Gαq/11 leading to the activation of phospholipase C (PLC) and subsequent release of IP3 

and DAG.24,25 

 

Figure 1.1. Activation of the heterotrimeric G-protein by the agonist occupied receptor using the H2R as an example. R 

represents the inactive receptor conformation and R* the active receptor conformation. The dissociated subunits (Gαs 

and Gβγ complex) regulate effector proteins such adenylyl cyclase (AC), which is activated by Gαs. Modified from 

Rasmussen et al.26 

For analyzing GPCR-mediated guanine nucleotide exchange at G-proteins, a widely employed 

method is the [35S]GTPγS binding assay.27 This assay utilizes, like the closely related steady-state 

GTPase assay, the intrinsic GTPase activity of the Gα subunit. An advantage of the GTPγS binding 

assay (and GTPase assay) is that it assesses coupling at a proximal level, avoiding potential bias 

introduced by downstream events.27 For the H2R the usage of membranes of Sf9 insect cells, 

which are expressing mammalian H2R-Gsα fusion proteins is well established.17,28,29 GPCR-Gsα 

fusion proteins ensure a defined 1:1 stoichiometry of the signaling partners and efficient 

coupling.17,29,30 Therefore, the ternary complex formation is more efficient compared to the 

coexpression of H2R plus Gsα.28 In our workgroup, the H2R-Gsα fusion protein system is routinely 

employed for analyzing new ligands for the H2R in radioligand binding and functional studies 

(GTPγS binding assay and GTPase assay).31-36 
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1.3 G-PROTEIN INDEPENDENT SIGNALING, LIGAND CLASSIFICATION AND 

FUNCTIONAL SELECTIVITY 

Besides the signal transduction cascades mediated by G-proteins, GPCRs are reported to 

participate in numerous other protein-protein-interactions which initiate signaling pathways 

independent from G-protein activation.19,37,38 Most intriguing is the interaction with β-arrestins, 

which are mainly involved in receptor desensitization and internalization, but also act as 

alternative signal transducers.19,37 β-Arrestin recruitment is initiated by phosphorylation of the 

active conformation of the GPCR by G-protein coupled receptor kinases (GRK).38,39 The β-arrestin 

binds to the cytosolic surface of the phosphorylated receptor and sterically hinders an interaction 

with the G-proteins.40 Furthermore, β-arrestins were reported to be involved in the degradation 

of second messengers.41,42 These two effects effectively lead to the deactivation of the G-protein 

mediated signal transduction. Beyond desensitization, the bound β-arrestin also mediates 

internalization via clathrin-coated pits.38 

A classical “two state” model, which is often suitable for explaining the pharmacodynamic activity 
of ligands is the cubic ternary complex model.43-45 This model distinguishes between an active 

(R*) and inactive (R) receptor state, which are in equilibrium and are able to isomerize without 

agonist binding. This spontaneous activation of the receptor in the absence of an agonist is 

referred to as constitutive activity.46 The G-protein is able to bind to both states, albeit only the 

G-protein-active-receptor-complex (R*G) activates intra cellular signaling via a GDP-GTP 

exchange. Ligand binding can shift the equilibrium of the receptor state. Agonists bind with high 

affinitiy to R* and stabilize the active conformation. Inverse agonists prefer to bind to R and 

stabilize the inactive conformation. Neutral antagonists bind with the same affinity to both 

conformations and therefore do not alter the equilibrium. With regard to β-arrestin mediated 

signaling, along site with other mechanism such as phosphorylisation, internalization and 

oligomerisation, there is growing evidence that there are multiple active and inactive receptor 

conformations.47,48 Structurally different ligands stabilize distinct receptor conformations leading 

to an activation of only a subset of cellular effectors 48 This selective activation of only some of all 

possible signaling pathways has been referred to as ´functional selectivity´,49 ´biased agonism´50 

or ´differential receptor-linked effector actions´51. 

Recently, several monomeric and dimeric H2R ligands were investigated for biased agonism 

regarding G-protein activation and β-arrestin recruitment.52 The β-arrestin recruitment was 

measured by an enzyme fragment complementation assay using split luciferase fragments from 

P. termitilluminans, developed by Misawa et al.53 While all antagonists were unbiased, the 

investigated acyl- and carbamoyl guanidine agonists revealed varying degrees of G-Protein bias.52 

 

1.4 H2R ANTAGONISTS 

The classical H2R antagonists can be devided into two groups depicted in Figure 1.2: compounds 

comprising a flexible chain (group I) and compounds containing diaryl moiety (goup II).54 The 

antagonists consist of an aromatic system, which is linked to a polar, planar group (urea 

equivalent) by either a flexible chain (group I) or by a second aromatic system (group II). The 
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classification of the antagonists is made according to the aromatic system. Most H2R antagonists 

belong to one of four major structural classes: imidazole-, guanidinothiazole-, 

aminomethylfurane- and piperidinomethylphenoxy-containing compounds. 

 

Figure 1.2. Selected H2R antagonists and their classification into two groups: compounds with a flexible chain and 

compounds with a diaryl moiety.54  

The aminopotentidine derivatives as well as fluorescent ligands (e.g. compound II) showed that 

within the piperidinomethylphenoxy-containing compounds additional substituents at the urea 

equivalent are well tolerated or provided additional H2R binding affinity (Figure 1.3).55-57 Up to 

date, iodoaminopotentidine, a piperidinomethylphenoxy-containing cyanoguanidine (Figure 1.3), 

which was also synthesized in a radiolabeled form ([125I]iodoaminopotentidine), showed the 

highest affinity.13 This radioligand was used to map the H2R densities in human and mammalian 

brain.12,13 Recently, a series of piperidinomethylphenoxyalkylamine-containing ligands, coupled 

with various polar groups (“urea equivalents”) such as cyanoguanidine, nitroethenediamine, 

amide or squaric amide moieties, and a terminal amino group, connected via a linker of different 

length, was developed by our group.35 The squaramides, which also tolerated propionylation at 

the terminal amino-group showed the highest affinities. UR-DE257, which showed a high affinity 

(pKi value: 7.55), was also synthesized in radiolabeled form ([3H]UR-DE257) and is frequently used 

in competition binding experiments.35,36 
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Figure 1.3. Structures of exemplary piperidinomethylphenoxy-containing ligands. a: Hirschfeld et al and Ruat et al13,57; 

b: Malan et al58; c: Baumeister et al35. 

Whereas in the late 1970s to 1980s, the H2R antagonists (H2 blockers) revolutionized the 

treatment of peptic ulcers, former blockbuster drugs like cimetidine, ranitidine or famotidine are 

outdated. They were largely superseded by the more effective proton pump inhibitors (e.g. 

omeprazole). Nevertheless, H2R antagonists are valuable molecular tools to study the H2R, 

especially it´s role in the brain, which is still far from being completely understood. 

 

1.5 H2R AGONISTS 

The early agonists for the H2R were derived from histamine and consististed of an imidazole 

pharmakophore coupled to a guanidine by a flexible linker (e.g. impromidine and arpromidine, 

see Figure 1.4).59,60 Arpromidine and related compounds showed up to 400 times potency of 

histamine at the spontaneously beating guinea pig right atrium, but the strongly basic guanidine 

moiety led to poor oral bioavailability and CNS penetration.59 The bioisosteric replacement of the 

guanidine (pKa ~13) with an acylguanidine (pKa ~8) resulted in ligands with either retained or 

even increased agonistic potency (e.g. UR-PG80 and UR-AK24, see Figure 1.4).31,32 Modification of 

these NG-acylated imidazolylpropylguanidines, which lacked subtype selectivity (H3R and H4R), to 

NG-acylated aminothiazolylpropylguanidines led to highly potent and selective H2R agonists.34 

Surprisingly, the H2R potency was increased up to 4000-fold the potency of histamine by linking 

two acylguanidine moieties (e.g. UR-AK381, see Figure 1.4).33 The aminothiazole dimeric ligands 

are the most potent and selective H2R agonists known so far. Traditionally, dimeric (bivalent) 

ligands consist of two pharmacophoric moieties linked through a spacer and are designed to 

bridge two neighboring receptor protomers.61 Porthogese et al suggested a distance of about 22-

27 Å between the two orthosteric binding sites of a receptor dimer.62 Interestingly, the most 

active dimeric ligands have spacer of lengths insufficient to bridge the protomers of putative H2R 

dimers.33 The enormous gain in potency is speculated to result from an interaction with the 

orthosteric and an accessory binding site at the same protomer.33 Recently, it was shown that 

bioisosteric replacement of the acylguanidines with the more stable carbamoylguanidine led to 

dimeric ligands with retained potency and intrinsic activity (e.g. UR-NK22, see Figure 1.4).36  

So far, there is no H2R agonist for therapeutic use on the market, but H2R agonists are valuable 

molecular tools to study the H2R. Nonetheless, there are numerous possible indications e.g. as 

positive inotropic vasodilators for the treatment of congestive heart failure or as differentiation-

introducing agents for treatment of acute myeloid leukemia (AML). For the later, the endogenous 
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agonist histamine is used as an orphan drug in combination with interleukin 2. Histamine 

promotes the activation of T cells and natural killer cells by interleukin 2, which results in the 

killing of cancer cells.63 Given the effect of histamine is mediated via H2R, the application of highly 

selective H2R agonists might be beneficial in regard to potency and a reduction of adverse effects. 

Recently, investigation of the dimeric NG-carbamoylated aminothiazolylpropylguanidines on 

human monocytes revealed a high H2R agonist potency, suggesting that this class of compounds 

is a promising starting point for the development of H2R agonists for the treatment of AML.36 

 
Figure 1.4. Structures of selected H2R agonists. Agonism measured on aguinea pig right atrium32, bsteady-state GTPase 

assay31,33,34 or cGTPγS binding assay36. 

 

1.6 RECEPTOR LIGAND BINDING ASSAYS AND LABELED MOLECULAR TOOLS 

FOR GPCRS 

The initial step in every signaling cascade, that causes a receptor-mediated biological response, is 

the binding of a ligand to the receptor. There are multiple ways to utilize receptor-ligand-

interactions in research, e.g. as a tool for determining receptor distribution, for identification of 

receptor subtypes and for screening of new compounds.64 

The classical approach for the determination of ligand affinity is the radioligand binding assay, 

which has been unchallenged for a long time regarding sensity and reproducibility.64,65 

Radioligand binding experiments can be divided in three basic types: Saturation binding 

experiments are used to determine the affinity of the radioligand and the number of specific 

binding sites. In kinetic experiments, the rate constants of association and dissoviation of a 

radioligand can be determined. Competition binding experiments are widely used to identify 

unlabeled compounds, which bind to the receptor in question by displacement of a radioligand. 

The major disadvantages include that radioligands are potentially hazardous to human health, 
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produce high costs in production and waste disposal, require special licences and laboratory 

equippment, and separation of bound from unbound ligand is necessary.  

Today, new highly sensitive fluorescence and bioluminescence methods such as fluorescence 

polarization (FP),66 total internal reflection fluorescence (TIRF),67 fluorescence/bioluminescence 

resonance energy transfer (FRET/BRET),68 fluorescence recovery after photobleaching (FRAP),69 

high content imaging70 and flow cytometry71 became promising alternatives. Like radioligands, 

fluorescent ligands can be used in the basic types of binding experiments. Several peptidic and 

non-peptidic fluorescent ligands were identified for GPCRs, including NPY,72,73 muscarinic74 and 

histamine55,56,75 receptors. In general, a fluorescent ligand comprises of a pharmacophore, a 

linker and the fluorophore. A major challenge in the development of small-molecule fluorescent 

ligands is to retain affinity, when a, compared to the ligand, bulky fluorophore is attached. In 

comparison, a radiolabel, especially tritium, does not alter the affinity of the ligand. 

When selecting a radio- or fluorescent labeled ligand for binding experiments, several aspects 

have to be considered.65,76,77 Firstly, the ligand should be selective and bind with high affinity to 

the respective receptor. Secondly, high (radiochemical) purity and high specific activity 

(radioligand) or quantum yield (fluorescent ligand) is required. Thirdly, the labeled ligand should 

be chemically stable under assay conditions for at least the duration of the experiment 

performed. Furthermore, unspecific binding has to be considered, the choice of radio- or 

fluorescent label and, whether an agonist or an antagonist is desired as labeled ligand. Under 

unspecific binding all binding sites other than the receptor of interest are summarized. A 

competition binding assay, were only 50% of total radioligand binding is specific is considered 

adequate, 70% is good and 90% is excellent.76 Tritium is often considered as the radioisotope of 

choice. Compared to 125I or the occasionally used 32/33P or 35S, tritium has a longer half-life (14-87 

days vs. 12.3 years) and the tritiated compounds are more convenient in handeling with respect 

to safety precautions.76 When choosing a fluorophore, excitation and emission wavelengths, 

stoke shifts and quantum yields have to be considered. Generally, red-emitting (λem: > 600 nm) 

fluorophores with a long stoke shift and a high quantum yield are preferred. 77 Agonists label only 

an active conformation of the receptor and therefore, only a fraction of the total active receptor 

population.78 By contrast, antagonists bind to all receptor states with the same affinity according 

to the classical model described above.78  
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The Histamine H2 receptor, an aminergic GPCR, is primarily known for its physiological role in the 

control of gastric acid secretion.
1,2

 Additionally, activation of H2R results in positive inotropic and 

chronotropic effects and smooth muscle relaxation.
3
 The H2R is primarily located on parietal cells 

in the stomach,
2
 in mammalian brain,

4,5
 on human neutrophiles and eosinophiles

6
 as well as on 

smooth muscle cells
7
. Antagonists, which were intensively studied as antiulcer therapeutics in the 

1960s to 80s, play only a minor role today, but are still important. Although, there is no H2R 

agonist for therapeutic usage on the market, H2R agonists are valuable molecular tools to study 

the pharmacology of the H2R. Nonetheless, there are numerous possible indications e.g. as 

positive inotropic vasodilators for the treatment of congestive heart failure or as differentiation-

introducing agents for treatment of acute myeloid leukemia. The development of selective high 

affinity molecular tools for the H2R, including agonists as well as labeled molecules like 

radioligands and fluorescent ligands, is very important to identifiy new ligands, investigate 

receptor distribution and further unravel its (patho-)physiological role.  

The number of suitable high affinity radioligands for the H2R is very limited. [
3
H]Histamine, as 

well as several reported tritiated antagonists (e.g. [
3
H]cimetidine,

8,9
 [

3
H]ranitidine

10
 and 

[
3
H]tiotidine

11
) are less than ideal molecular tools to study the H2R. As [

3
H]cimetidine is reported 

to label an imidazole recognition site rather than the H2R
8
 and ranitidine as well as histamine 

suffer from low H2R affinity and potency.
5,11

 [
3
H]Tiotidine is frequently used as a radioligand, 

although it shows very high unspecific binding and is reported to address only a subpopulation of 

the H2R.
11

 [
125

I]Iodoaminopotentidine suffers from a short half-life of only 60 days, but shows the 

highest affinity to the H2R reported so far (gpH2R: Kd value: 0.34 nM).
5,12

 An tritated alternative 

presents the recently published high-affinity tritium-labeled H2R antagonist [
3
H]UR-DE257

13
 

(hH2R: Kd value: 31 nM), which is structurally related with the squaramide BMY25368
14

. This 

radioligand proved to be useful for the determination of pKi values, but turned out as an 

insurmountable antagonist in functional assays.
13

 One objective of this thesis was to design new 

ligands with a free terminal amino group and exploration of the applicability of them as 

precursors for the attachment of a radioactive (tritiated) moiety. Two reported classical 

antagonistic structures were used as scaffolds: the guanidinothiazoles and the 

aminopotentidines.  

The guanidinothiazole-moiety is a privileged structure for H2R antagonism. Previous functional 

studies identified guanidinothiazole-containing ligands, e.g. famotidine and ICI127032, as 

surmountable H2R antagonists.
15,16

 In this thesis, two different guanidinothiazole-precursors 

derived from famotidine and ICI127032 had to be combined with an “urea” equivalent. As a 

strategy to enable radiolabeling, the introduction of diaminoalkyl-linkers varying in length at the 

“urea” equivalent was envisaged. The resulting terminal amino group could be propionylated by 

succinimidyl propionate, to obtain ”cold forms” of the potential radioligands.  

Aminopotentidine and its derivatives are reported as high affinity H2R antagonists.
12

 Interestingly, 

iodination in the 3-position of the 4-aminobenzoic acid amide moiety resulted in an enormous 

gain in affinity (iodoaminopotentidine).
4,12

 Aminopotentidine and its analogs containing different 

substituents (e.g. iodine, bromine, chlorine, trifluoromethyl) in position 3 were synthesized as 

precursors for radiolabeling. The derivatization of the anilinic amino group of these precursors 

was performed with various reagents (e.g. N-succinimidyl propionate, propionic acid chloride, 

methyl iodide or acetyl chloride), which are also commercially available in tritiated form. Anilinic 
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amines show a reduced nucleophilicity which resulted in a reduced reactivity in the 

(radio-)labeling reaction. To overcome this challenge, the synthesis and characterization of a 

series of aminopotentidine derivatives, containing a functionalized (propionylated, acetylated or 

methylated) aminomethyl substituent in position 4 of the aromatic ring was considered.  

The availability of high affinity red-emitting H2R fluorescent ligands is very limited. Recently, a 

series of fluorescent ligands with a piperidinomethylphenoxypropylamino (potentidine) 

pharmacophore was reported.
17

 The most promising ligands within this series are the 

squaramide-type ligands UR-DE229 and UR-DE56.
17

 Both ligands consist of a BMY 2536
14

 

pharmacophore, which is linked to a fluorescent label (pyridinium or cyanine) by a n-alkyl linker. 

Another objective of this thesis was the synthesis and biological characterisation of fluorescent 

high affinity H2R antagonists with improved optical and physicochemical properties to gain access 

to a wide range of potential applications, in particular to confocal microscopy and to high 

throughput or/and high content imaging. Therefore, the fluorescent labeled antagonists UR-

DE229 and UR-DE56 were investigated in different assay/imaging systems. For the exploration of 

the impact of alkyl linker length and different net charges of fluorophores, a series of derivatives 

of UR-DE229 and UR-DE56 was considered. 

N
G
-acylated amino(methyl)thiazolepropylguanidines represent a class of potent and selective 

histamine H2R agonists.
18-20

 As it was reported that N
G
-acylguanidines undergo hydrolytic 

cleavage upon storage in aqueous solution, more stable analogues are needed.
21,22

 A bioisosteric 

approach, replacing the N
G
-acylguanidine structure with a N

G
-carbamoylguanidine, was planned 

in the final part of this thesis, aiming at N
G
-carbamoylated aminothiazole-containing compounds 

with high affinity and improved long term stability. Furthermore, structure-activity (H2R) and the 

structure-selectivity relationships (H2R versus H1R, H3R and H4R) of this class of compounds were 

considerd.  
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3.1 INTRODUCTION 

Over the years, the endogenous agonist histamine and several H2R antagonists were synthesized 

in a radiolabeled form (Figure 3.1). Nevertheless, [3H]histamine,1 [3H]cimetidine,2,3 [3H]ranitidine4 

and [3H]tiotidine5 are less than ideal molecular tools to study the H2R. As [3H]cimetidine is 

reported to label an imidazole recognition site rather than the H2R
2 and ranitidine as well as 

histamine suffer from low H2R affinity and potency,5,6 [3H]tiotidine is frequently used as a 

radioligand, although it shows very high unspecific binding and is reported to address only a 

subpopulation of the H2R.5 By contrast, the labeling of aminopotentidine with 125iodine resulted 

in a high affinity radioligand ([125I]iodoaminopotentidine, gpH2R: Kd value: 0.34 nM) which was 

used e.g. for autoradiography of the H2R in human and rodent brain and heart as well as for 

saturation and kinetic binding studies.6,7 Although 125iodine labeled ligands have, compared to 

tritium labeled ligands, the advantage of a higher specific activity, their preparation and usage 

require higher safety precautions and the ligands can only be used for 4-5 weeks after 

preparation.8 

 

Figure 3.1. Structures of the endogenous ligand histamine and selected standard H2R antagonists. 
a
Kelley et al

5
, 

b
Ruat 

et al
6
, 

c
Yellin et al

9
, 

d
Preuss et al

10
, 

e
Baumeister et al

11
. 

An alternative to [125I]iodoaminopotentidine is the recently published high-affinity tritium-labeled 

H2R antagonist [3H]UR-DE257 (Kd value: 31 nM)11, which is structurally related to the squaramide 

BMY25368.11,12 Although UR-DE257 was an insurmountable antagonist in functional assays, this 

radioligand proved to be very useful for the determination of pKi values.11 

Aiming at the development of high affinity tritium-labeled surmountable H2R antagonists, 

guanidinothiazole-containing amines were considerd promising precursors. In previous functional 

studies, the antagonists with guanidinothiazole sub-structure, namely famotidine and ICI127032 

were identified as surmountable H2R antagonists.9,13 

The 2-guanidino-4-[(2-aminoethyl)thiomethyl]thiazole precursor derived from famotidine and 

the 2-guanidino-4-(3-aminophenyl)thiazole precursor derived from ICI127032 were combined 

with the squaramide moiety (“urea” equivalent) of BMY25368 (general structure: Figure 3.2). In 



 Chapter 3 23 

order to enable radiolabeling, a terminal amino group connected to the squaramide via n-alkyl 

linker of different length, was introduced following the same strategy as in case of UR-DE257. The 

terminal amino group was propionylated using N-succinimidyl propionate to obtain ”cold forms” 
of the potential radioligands. Furthermore, the squaramide moiety was replaced by a 

cyanoguanidine moiety resulting in tiotidine-like compounds.  

 

Figure 3.2. General structure of the guanidinothiazoles as potential new radioligands. 

Interestingly, linking two amino(methyl)thiazolepropyl containing acyl or carbamoyl guanidines 

resulted in high affinity H2R agonists (e.g. UR-NK22).14,15 Therefore, this strategy was also adapted 

to the guanidinothiazoles: The replacement of the amino(methyl)thiazolepropyl moiety of UR-

NK22 with either 2-guanidino-4-[(2-aminoethyl)thiomethyl]thiazole or 2-guanidino-4-(3-

aminophenyl)thiazole resulted in two bivalent ligands (Figure 3.3). 

 

Figure 3.3. General structure of the dimeric guanidinothiazoles. 
a
Kagermeier et al

14
. 

The amine precursors and the “cold forms” of the potentional radioligands as well as the two 

bivalent ligands were characterized in binding and functional (GTPγS binding assay) studies on 

recombinant histamine receptors (preferentially hH2R and hH3R). Radiolabeling is accessible by 

coupling of the commercially available N-succinimidyl [2,3-3H]propionate with the respective 

amine precursor.   
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3.2 RESULTS AND DISCUSSION 

3.2.1 Chemistry 

The synthesis of the amine building block 2-guanidino-4-[(2-aminoethyl)thiomethyl]thiazole (3.3) 

according to published procedures is outlined in Scheme 3.1.16 Firstly, 2-guanidino-4-

chloromethylthiazole hydrochloride (3.2) was synthesized from amidinothiourea and 1,3-

dichloroacetone. Secondly, 3.2 was coupled with 2-aminoethanthiole in a substitution reaction in 

the presence of sodium ethanolate to obtain 3.3 in excellent yield. 

 

Scheme 3.1. Synthesis of 2-guanidino-4-[(2-aminoethyl)thiomethyl]thiazole 3.3. Reagents and conditions: i) acetone, 

RT, 24 h, 56%; ii) EtONa, EtOH, 0 °C to RT, 24 h, 84%. 

The conformationally constrained amine building block 3.7 was synthesized from 1-(3-

aminophenyl)ethan-1-one and amidinothiourea according to literature procedures (Scheme 

3.2).17 After phthalimide protection 3.4 was brominated in alpha position and subsequently 

treated with amidinothiourea in order to form the protected building block 3.6 in a good yield of 

70% (over two steps). Deprotection of the phthalimide group in a mixture of HCl and acetic acid 

afforded the conformationally constrained amine building block 3.7. 

 

Scheme 3.2. Synthesis of 2-guanidino-4-(3-aminophenyl)thiazole 3.7. Reagents and conditions: i) Acetic acid, reflux, 2.5 

h, 96%; ii) Br2, HBr, CH2Cl2, CHCl3, RT, 0.5 h, no purification; iii) CH3CN, EtOH, reflux, 5 h, 70%; iv) HCl, acetic acid, reflux, 

24 h, 52%. 

The synthetic route leading to the H2R antagonists 3.8 and ICI127032 (3.10) is depicted in Scheme 

3.3 as described in literature17 with minor modifications. The formation of the thiourea 3.8 

resulted from treatment of building block 3.7 with methylisothiocyanate. ICI127032 (3.10) was 

synthesized in two steps: Diphenylcyanocarbonimidate was first coupled with 3.7 and the 

resulting intermediate 3.9 was than treated with methylamine.  



 Chapter 3 25 

 

Scheme 3.3. Synthesis of the H2R antagonists 3.8 and ICI127032 (3.10).
17

 Reagents and conditions: i) 

methylisothiocyanate, acetone, RT, ON, 53%; ii) 2-propanol, RT, ON, no purification; iii) aq. methylamine solution, RT, 

ON, 55%. 

The synthesis of the cyanoguanidine-type guanidinothiazole 3.13 followed a three step route 

(Scheme 3.4). The building block 3.3 was treated with the cyanoguanidinylating reagent 

diphenylcyanocarbonimidate18 by analogy to published protocols.7,11 The resulting intermediate 

3.11 was treated with an excess of 1,8-diaminooctane in order to preferably form the 

monovalent ligand 3.12. The propionamide 3.13 were synthesized from 3.12 and N-succinimidyl 

propionate. 

 

Scheme 3.4. Synthesis of the cyanoguanidine-type guanidinothiazole 3.13. Reagents and conditions: i) TEA, MeOH, RT, 

ON, no purification; ii) MeCN, 50 °C, 3 h, 62%; iii) TEA, CH2Cl2, DMF, RT, 3 h, 22%. 

The synthesis of the squaramide-type guanidinothiazoles 3.24-3.26 was adopted from known 

procedures (Scheme 3.5).11,16 The reaction of precursor 3.3 and 3,4-diethoxycyclobut-3-ene-1,2-

dione gave the squaric acid ester amide 3.14 as an intermediate, which was treated with the 

respective mono-Boc protected diamine 3.15-3.17 to yield the tert-butyl carbamates 3.18-3.20. 

The mono-Boc protected amines were synthesized by treating an excess of the diamine with Di-

tert-butyl dicarbonate. Final cleavage of the protecting group with TFA afforded the amines 3.21-

3.23. The propionylated ligands 3.24-3.26 were accessible through acylation of the respective 

amine precursor 3.21-3.23 with N-succinimidyl propionate. 
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Scheme 3.5 Synthesis of the squaramide-type guanidinothiazoles 3.24-3.26. Reagents and conditions: i) TEA, EtOH, RT, 

ON, 87%; ii) Di-tert-butyl dicarbonate, CHCl3, 0 °C to RT, ON, 41-63%; iii) TEA, EtOH, 60-70 °C to RT, 6 h - 2 days, 63-

88%; iv) TFA, CH2Cl2, RT, 1.5 h, 57-97%; v) TEA, CH2Cl2, RT, ON, 33-72%. 

The conformationally constrained squaramide-type guanidinothiazole 3.30 was synthesized by 

following the same protocol as in case of the compounds 3.24-3.26 (Scheme 3.6). Starting from 

precursor 3.9, treatment with 3,4-diethoxycyclobut-3-ene-1,2-dione gave the squaric acid ester 

amide intermediate 3.27, which was reacted with tert-butyl N-(8-aminooctyl)carbamate (3.16) to 

obtain the tert-butyl carbamate 3.28. Deprotection led to the amine precursor 3.29 which was 

propionylated with N-succinimidyl propionate. 

 

Scheme 3.6 Synthesis of the conformationally constrained squaramide-type guanidinothiazole 3.30. Reagents and 

conditions: i) EtOH, RT, ON, no purification; ii) TEA, EtOH, 80 °C, ON, 34%; iii) TFA, CH2Cl2, RT, 5 h, 61%; iv) TEA, DMF, 

CH2Cl2, RT, ON, 12%. 

The synthetic route leading to the bivalent guanidinothiazole containing ligands 3.34 and 3.35 

was adopted from published protocols14 and is depicted in Scheme 3.7. Thiourea was methylated 

with methyl iodine and subsequently mono-Boc protected, resulting in the well-established 

guanidinylating reagent 3.32. Treatment of 3.32 with 1,6-diisocyanohexane afforded the bivalent 

guanidinylating reagent 3.33. The bivalent ligands 3.34 and 3.35 were prepared by reaction of 

3.33 with the respective guanidinothiazole building block (3.3 or 3.7) in the presence of a base, 

followed by preparative HPLC purification of the Boc-protected intermediates. The protecting 

group remained stable over the course of the purification, and deprotection was achieved by 

storage in the TFA consisting eluate for several hours, followed by a second preparative HPLC 



 Chapter 3 27 

purification. The addition of Hg(II) ions in guanidinylation reaction, as described in many 

published protocols14,19, led to many by-products and only traces of the desired product. 

 

Scheme 3.7. Synthesis of the bivalent guanidinothiazole containing ligands 3.34 and 3.35. Reagents and conditions: i) 

Methyliodide, MeOH, reflux, 1.5 h, 100%; ii) Di-tert-butyl dicarbonate, TEA, CH2Cl2, 0 °C to RT, ON, 73%; iii) TEA, CH2Cl2, 

Ar-atmosphere, RT, ON, 88%; iv)/v) DIPEA, MeOH, reflux, 5-48 h, deprotection after preparative HPLC in eluate 

consisting of H2O, MeCN and TFA, 3-11% over two steps. 
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3.2.2 Biological Evaluation 

H2R affinity, selectivity and antagonism 

The monovalent guanidinothiazole containing ligands 3.8, 3.10, 3.12, 3.13, 3.21-3.26, 3.29, 3.30, 

the bivalent guanidinothiazole containing ligands 3.34, 3.35 and exemplary published H2R ligands 

were investigated in equilibrium competition binding experiments on membrane preparations 

from Sf9 insect cells, expressing the hH2R-GsαS fusion protein, using either the antagonist [3H]UR-

DE25711 or [3H]tiotidine as radioligands. The selectivity of these compounds for the hH2R 

compared to hH3R was investigated by competition binding experiments using Sf9 insect cell 

membranes co-expressing the hH3R and Gαi2 and Gβ1γ2 proteins using [3H]Nα-methylhistamine as 

radioligand. The “cold” form of the radioligand 3.25, its precursor 3.22 and the bivalent ligands 

3.34 and 3.35 were additionally investigated on membrane preparations of Sf9 insect cells, co-

expressing either the hH1R-GsαS fusion protein (radioligand: [3H]mepyramine) and RGS4 or hH4R 

and Gαi2 and Gβ1γ2 proteins (radioligand: [3H]histamine or [3H]UR-PI294 20) in order to determine a 

“selectivity profile” at all four H2R subtypes. Selected displacement curves are shown in 

Figure 3.4 and the results are summarized in Table 3.1. 

The cyanoguanidine-type guanidinothiazole containing amine precursor 3.12 showed lower hH2R 

affinity with a pKi value of 6.5 than the structurally related H2R antagonist famotidine (pKi value: 

7.26). Propionylation was tolerated without any decrease of affinity (ligand 3.13). The hH2R 

affinity of the squaramide-type guanidinothiazole containing amine precursors 3.21-3.23 

increased with the chain length of the n-alkandiyl linker (pKi values: 5.94-8.42). The propionylated 

squaramide-type ligands 3.24-3.26 showed a high affinity at the hH2R (pKi values: 7.07-7.65). 

Interestingly, the affinities of 3.25 and 3.26 decreased and the affinity of 3.24 increased 

compared to the respective amine precursor. The conformationally constrained squaramide-type 

guanidinothiazole containing ligand 3.30 showed a decreased hH2R affinity (pKi value: 6.8) 

compared to the closely related, more flexible ligand 3.25 (pKi value: 7.65) and the 

cyanoguanidine-type analog ICI127032 (3.10) (pKi value: 7.70). The amine precursor 3.29 showed 

compared to 3.30 a clearly increased pKi value of 7.31. Within the series of propionylated ligands 

(“cold” forms of potential radioligands) 3.25 showed the highest hH2R affinity (pKi value: 7.65) 

which was comparable to the affinity of UR-DE257 (pKi value: 7.55). 

The ligands 3.8, 3.21-3.26, 3.29 and 3.30 showed a low affinity at the hH3R with pKi values of 

4.28-5.5 and 3.10 showed a very low affinity (pKi value <4). The precursor 3.22 and the “cold” 
form of the radioligand 3.25 showed a low affinity to the hH4R with pKi values of 4.3 and 4.4. 3.22 

bound with moderate affinity to the hH1R (pKi value: 6.12), whereas binding of the propionylated 

3.25 was not detectable up to a concentration of 100 µM. 

The replacement of the amino(methyl)thiazolyl propyl head group of the bivalent ligand UR-NK22 

with either a 2-guanidino-4-[(2-aminoethyl)thiomethyl]thiazole residue (3.34) or a 2-guanidino-4-

(3 aminophenyl)thiazole residue (3.35) resulted in high affinity hH2R ligands with pKi values of 7.3 

and 7.14. Compared to the bivalent agonist UR-NK22 the hH2R affinity (pKi value: 8.07)14 and 

subtype selectivity was decreased. 
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                   A                    B 

  
                   C                        hH2R                    D                        hH3R 

  
Figure 3.4. Displacement of the respective radioligand by amine precursor 3.22 (A) or ligand 3.25 (B) from membrane 

preparations of Sf9 insect cells co-expressing the hH1R-GsαS fusion protein and RGS4 (radioligand: [
3
H]mepyramine, c = 

5 nM, Kd = 4.5 nM), expressing the hH2R-GsαS fusion protein (radioligand: [
3
H]UR-DE257, c = 20 nM, Kd = 12.2 nM), co-

expressing the hH3R and Gαi2 plus Gβ1γ2 proteins (radioligand: [
3
H]N

α
-methylhistamine, c = 3 nM, Kd = 3 nM) or co-

expressing the hH4R and Gαi2 plus Gβ1γ2 proteins (radioligand: [
3
H]UR-PI294, c = 5 nM, Kd = 5.1 nM). Displacement of the 

respective radioligand from membrane preparations of Sf9 insect cells (C) expressing the hH2R-GsαS fusion protein 

(radioligand: [
3
H]UR-DE257, c = 20 nM, Kd = 12.2 nM or [

3
H]tiotidine, c = 10 nM, Kd = 12.75 nM) or co-expressing the 

hH3R and Gαi2 plus Gβ1γ2 proteins (radioligand: [
3
H]N

α
-methylhistamine, c = 3 nM, Kd = 3 nM) by exemplary 

guanidinothiazoles. Data represent mean values ± SEM of 2-3 experiments performed in triplicate. 
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Table 3.1. Affinities of standard H2R ligands, UR-DE257, UR-NK22, the monovalent guanidinothiazole containing ligands 

3.8, 3.10, 3.12, 3.13, 3.21-3.26, 3.29, 3.30 and the bivalent guanidinothiazole containing ligands 3.34, 3.35 to hH1-4R, 

obtained from equilibrium competition binding studies on membrane preparations from Sf9 insect cells, expressing the 

respective histamine receptor subtype. 

 hH1R
a
 hH2R

b 
hH3R

d 
hH4R

e 

No. pKi
 

N pKi
 

N pKi
 

N pKi
 

N 

His - - 6.53 ± 0.04 3 7.8 ± 0.1 3 7.65 ± 0.03 3 

UR-DE257 > 5.011 - 7.5511 - 5.4211 - > 5.011 - 

famotidine - - 7.26 ± 0.03 2 - - - - 

UR-NK22 6.0614 - 8.0714 - 5.9414  5.6914 - 

3.8 n.d. - 6.5 ± 0.1 3 4.28 ± 0.02 2 n.d. - 

3.10 n.d. - 7.70 ± 0.07 3 > 4.0 2 n.d. - 

3.12 n.d.  6.5 ± 0.3 3 n.d. - n.d. - 

3.13 n.d.  6.4 ± 0.2 3 n.d. - n.d. - 

3.21 n.d.  5.94 ± 0.05 3 4.95 ± 0.03 2 n.d. - 

3.22 6.12 ± 0.08 3 8.0 ± 0.2 3 4.87 ± 0.09 3 4.3 ± 0.1f 3 

3.23 n.d. - 8.42 ± 0.09c 4 5.5 ± 0.1 2 n.d. - 

3.24 n.d. - 7.07 ± 0.09 3 5.2 ± 0.1 2 n.d. - 

3.25  > 4.0 3 7.65 ± 0.02 3 5.3 ± 0.1 3 4.4 ± 0.1
 f
 3 

3.26 n.d. - 7.43 ± 0.02c 3 5.08 ± 0.09 3 n.d. - 

3.29 n.d. - 7.31 ± 0.07c 3 5.3 ± 0.2 2 n.d. - 

3.30 n.d. - 6.8 ± 0.1c 3 5.44 ± 0.07 3 n.d. - 

3.34 n.d. - 7.3 ± 0.1c 3 6.32 ± 0.02 4 6.21 ± 0.04 3 

3.35 n.d. - 7.14 ± 0.05 3 5.8 ± 0.1 3 6.09 ± 0.06 3 

Competition binding assay on membrane preparations of Sf9 insect cells: 
a
co-expression of the hH1R-GsαS fusion protein 

and RGS4 (radioligand: [
3
H]mepyramine, c = 5 nM, Kd = 4.5 nM), 

b
expression of the hH2R-GsαS fusion protein 

(radioligand: [
3
H]UR-DE257, c = 20 nM, Kd = 12.2 nM or 

c
[

3
H]tiotidine, c = 10 nM, Kd = 12.75 nM), 

d
co-expression of the 

hH3R and Gαi2 and Gβ1γ2 proteins (radioligand: [
3
H]N

α
-methylhistamine, c = 3 nM, Kd = 3 nM) or 

e
co-expression of the 

hH4R and Gαi2 plus Gβ1γ2 proteins (radioligand: [
3
H]histamine c = 10 nM, Kd = 15.9 nM or 

f
[

3
H]UR-PI294, c = 5 nM, Kd = 

5.1 nM). The incubation period was 60 min. Data were analyzed by nonlinear regression and were best fitted to four-

parameter sigmoidal concentration-response curves. Data shown are means ± SEM of N independent experiments, 

each performed in triplicate. The appreviation n.d. stands for not determined. 
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The monovalent guanidinothiazole containing ligands 3.8, 3.10, 3.12, 3.13, 3.21-3.26, 3.29, 3.30 

and the bivalent guanidinothiazole containing ligands 3.34, 3.35 were investigated for hH2R 

agonism in the GTPγS binding assay on membrane preparations from Sf9 insect cells expressing 

the hH2R-GsαS fusion protein. Ligands which exhibited no agonism were also investigated in the 

antagonistic mode versus histamine as agonist. Selected curves are shown in Figure 3.5 and the 

results are summarized in Table 3.2. 

The investigated monovalent and bivalent guanidinothiazole containing ligands were identified as 

antagonists or inverse agonists in the GTPγS assay. All ligands were able to completely displace 

histamine, but only the pKb values of the ligands 3.8, 3.30 and 3.35 were in good agreement with 

the pKi values. The pKb values of the ligands 3.10, 3.22-3.26, 3.29 and 3.34 were considerably 

lower compared to the corresponding pKi values. Interestingly, propionylation of the amine 

precursors 3.22 and 3.29 (pKb value: 6.95 and 6.68) was tolerated with nearly no change of the 

pKb values. Nonetheless, ligand 3.25 also showed the highest pKb value (7.04) within the series of 

propionylated ligands (“cold” forms of potential radioligands), which was only slightly decreased 

compared to UR-DE257 (pKb value: 7.42)11.  

                   A                    B 

  
Figure 3.5. Antagonism of the guanidinothiazole containing ligands (A) 3.22, 3.29, 3.34, 3.35 and (B) 3.24-3.26, 3.30 on 

hH2R determined in a GTPγS assay (antagonistic mode) on membrane preparations of Sf9 insect cells expressing the 

hH2R-GsαS fusion protein. Histamine (1 µM) was used for stimulation. Data represent mean values ± SEM of 2-4 

experiments performed in triplicate. 
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Table 3.2. hH2R antagonism and the calculated pKb values of UR-DE257, the monovalent guanidinothiazole containing 

ligands 3.8, 3.10, 3.12, 3.13, 3.21-3.26, 3.29, 3.30 and the bivalent guanidinothiazole containing ligands 3.34, 3.35 

determined by a GTPγS assay. 

 hH2R (GTPγS)   hH2R (GTPγS) 

No. pEC50 (pKb)
 

N α  No. pEC50 (pKb)
 

N α 

His 5.80 ± 0.06 9 1.0  3.24 (6.6 ± 0.2) 3 -0.16 

UR-NK22 8.0314 - 0.9214  3.25 (7.06 ± 0.03) 3 -0.30 

UR-DE257 (7.42)11 - 0.0811  3.26 (6.5 ± 0.1) 3 -0.11 

3.8 (6.9 ± 0.1) 4 -0.23  3.29 (6.68 ± 0.03) 2 -0.25 

3.10 (7.0 ± 0.2) 3 -0.33  3.30 (6.9 ± 0.2) 2 -0.18 

3.22 (6.95 ± 0.03) 3 -0.06  3.34 (7.0 ± 0.5) 2 -0.53 

3.23 (7.5 ± 0.2) 4 -0.07  3.35 (7.09 ± 0.08) 3 -0.21 

[
35S]GTPγS assay performed with membrane preparations of Sf9 insect cells expressing the hH2R-GsαS fusion protein. 

The intrinsic activity (α) of histamine was set to 1.00, and α values of investigated compounds were referred to this 

value. The pKB values of neutral antagonists were determined in the antagonist mode versus histamine (c = 1 µM) as 

agonist. Data represent mean values ± SEM of N experiments, each performed in triplicate. 

Discrepancies between pKi and pKb value of antagonists were observed by several groups.7,21 

Possible explanation are different experimental setups which led to varying access to the H2R 

(e.g. guinea pig striatal membranes vs. intact isolated guinea pig heart)7 or, when a very similar 

setup was used (e.g. membrane preparations in both binding and functional studies), the use of 

different competitors (histamine vs. radiolabeled antagonist).21 Agonists and antagonists may 

stabilize different receptor conformations that exhibit different affinities for the investigated 

agonists/antagonists/inverse agonists.21 The antagonistic radioligand [3H]tiotidine was reported 

to bind only to a fraction of the functionally active H2Rs.5  

 

3.2.3 Chemical stability of 3.25  

The ligand 3.25 showed the highest hH2R affinity and subtype selectivity and was a good 

candidate for radiolabeling. Therefore the chemical stability of the “cold” radioligand 3.25 was 

investigated under radioligand storage conditions (EtOH/H2O; 80:20; v/v) at a concentration of 15 

µM at room temperature in the dark (Figure 3.6). After 7 days RP-HPLC analysis showed no 

decomposition.  
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Figure 3.6. RP-HPLC analysis (λ: 273 nm) of 3.25 stock solution (tR= 15.0 min) in EtOH/H2O (80:20, v/v) after different 

times of incubation. 

 

3.2.4 Radiosynthesis 

Based on the pharmacological and chemical stability data presented, squaramide-type 

guanidinothiazole 3.25 was also synthesized with a tritium label ([3H]3.25/ [3H]UR-SB69) (Scheme 

3.8). For this purpuse, an excess of the amine precursor 3.22 was acylated with the commercially 

available N-succinimidyl [2,3-3H]propionate in the presence of DIPEA. After purification by HPLC, 

the radioligand [3H]3.25 was obtained in a radiochemical purity of 87% (Figure 3.7) with one 

impurity present. As the second peak (tR = 14.3 min, Figure 3.7B) is amounting to ca. 13% of the 

total peak area, determination of the specific activity of [3H]3.25 was not feasible. Therefore, the 

specific activity of [3H]3.25 was estimated based on the specific activity (2.41 TBq/mmol, 65.03 

Ci/mmol) of [3H]UR-MK30019 prepared on the same day from the same lot of N-succinimidyl [2,3-
3H]propionate. In order to prevent oxidation of the radioligand, the antioxidant ascorbinic acid 

was added to the radioligand stock solution (final concentration: 6.69 µmol/L [3H]3.25 and 76.9 

µmol/L ascorbinic acid in EtOH/ H2O 80:20). 

 

Scheme 3.8. Synthesis of the tritium-labeled squaramide-type guanidinothiazole [
3
H]3.25 ([

3
H]UR-SB69). Reagents and 

conditions: i) DIPEA, anhydrous DMF, RT, 80 min, radiochemical yield: 64%. 
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                  A                    B 

  
Figure 3.7. RP-HPLC analysis of the radioligand [

3
H]3.25 (A) before and (B) after purification by RP-HPLC (conditions, 

see Experimental Section). UV chromatogram of [
3
H]3.25 at 220 nm (black dashed line) and radiochromatogram of 

[
3
H]3.25 (red line).  

 

3.2.5 Biological Evaluation of [
3
H]3.25 

Determination of binding constants of [
3
H]3.25 

The radioligand [3H]3.25 was characterized by saturation binding experiments on membrane 

preparations from Sf9 insect cells expressing the hH2R-GsαS fusion protein as well as on HEK293T-

hH2R-qs5 and HEK293T-hH2R-βArr2 cells in suspension, both stably expressing the hH2R. 

Additionally, kinetic binding experiments were performed on membrane preparations from Sf9 

insect cells expressing the hH2R-GsαS fusion protein. The results are summarized in Table 3.3. 

[3H]UR-SB69 bound in a saturable manner to both membranes and HEK cells (Figure 3.8).  

 

   
                  
Figure 3.8. Representative saturation isotherms (red line) of specific hH2R binding of [

3
H]3.25 on (A) membrane 

preparations from Sf9 insect cells expressing the hH2R-GsαS fusion protein, (B) cell suspension of HEK293T-hH2R-qs5 

cells and (C) cell suspension of HEK293T-hH2R-βArr2 cells. Unspecific binding was determined in the presence of a 300 

fold excess of famotidine. Specific binding was analyzed by a one-site binding equation. Error bars of specific binding 

and error bars of the Scatchard plot represent propagated errors calculated according to the Gaussian law. Error bars 

of total and unspecific binding represent the SEM. Experiments were performed in triplicate. 

Unspecific binding was low when either membrane preparations or intact HEK293T-hH2R-qs5 

cells were used (<17% at the Kd value). Saturation binding studies performed with intact 

HEK293T-hH2R-βArr2 cells resulted in considerably higher unspecific binding (<42% at the Kd 

C B A 
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value). The specific binding versus [3H]3.25 concentration was best fitted by nonlinear regression 

to a one-site binding model and the unspecific binding to a linear curve. The determined Kd 

values (15-22 nM) were similar to the Ki value of 23 nM determined with [3H]UR-DE257 on 

membrane preparations of Sf9 cells. 

Table 3.3. hH2R binding characteristics of [
3
H]3.25 determined on membrane preparations from Sf9 insect cells 

expressing the hH2R-GsαS fusion protein, HEK293T-hH2R-qs5 or HEK293T-hH2R-βArr2 cells at 25 °C. 

 [
3
H]3.25 ([

3
H]UR-SB69) 

Receptor Ki
d  

[nM]  

Kd (sat)
e
  

[nM] 

Kd (kin)
f
  

[nM] 

kon
g 

[min-1∙nM-1] 

koff
h
  

[min-1] 

hH2R
 23 ± 1a 15 ± 1a/ 22 ± 4b/  

19 ± 4c 

26.0 ± 0.3 a 0.00108 ± 0.00001a 0.028 ± 0.002a 

Radioligand binding assay determined on 
a
membrane preparations from Sf9 insect cells expressing the hH2R-GsαS fusion 

protein or cell suspension of 
b
HEK293T-hH2R-qs5 or 

c
HEK293T-hH2R-βArr2 cells.

 d
Derived from

 
competition binding 

with [
3
H]UR-DE257, c = 20 nM, Kd = 12.2 nM (cf. Table 3.1). 

e
Equilibrium dissociation constant determined by saturation 

binding. 
f
Kinetically determined dissociation constant Kd (kin)= koff/kon. 

g
Association rate constant derived from nonlinear 

regression; calculated from kobs, koff and the radioligand concentration (c= 20 nM). 
h
Dissociation rate constant derived 

from nonlinear regression. Data represent means ± SEM from two to four independent experiments each performed in 

duplicate (association) or triplicate.  

The association and dissociation curves of [3H]3.25 determined on membrane preparations of Sf9 

insect cells expressing the hH2R-GsαS fusion protein are depicted in Figure 3.9. The association of 

the radioligand to the hH2R was complete after 80 min and could be described by a monophasic 

fit with a kon value of 0.00108 min-1∙nM-1. Also linearization of the association curve revealed a 

straight line (kob value of 0.055 min-1). The dissociation of [3H]3.25 (c = 20 nM, 90 min pre-

incubation) in the presence of famotidine was incomplete, reaching a plateau at 23% of the 

initially bound radioligand. These data suggested a (pseudo)irreversible binding.22,23 

Several GPCR ligands were reported to show a similar behavior in kinetic and functional 

experiments22-25 and several explanations were provided such as irreversible (covalent) binding to 

the receptor,26 a slow rate of dissociation from the receptor,22 a slow rate of interconversion 

between inactive and active receptor conformations,27 stabilization of an inactive ligand-specific 

receptor conformation,28,29 binding to a site distinct from the agonist binding site,30 

internalization of the ligand-receptor-complex25. Nevertheless, the equilibrium dissociation 

constant Kd(kin)= 26.0 nM, calculated from kinetics (nonlinear regression, Kd = koff/kon), were 

consistent with the Kd value obtained from saturation binding experiments (Table 3.3) and the 

pseudo-irreversible binding to the hH2R was far less pronounced compared to the radioligand 

[3H]UR-DE257 (plateau at 60-70%).11  
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                  A                   B 

  
Figure 3.9. Association (A) and dissociation (B) kinetics of [

3
H]3.25 determined at membrane preparations from Sf9 

insect cells expressing the hH2R-GsαS fusion protein at room temperature. Association (c = 20 nM) to the hH2R as a 

function of time (nonlinear regression: kobs = 0.049 min
-1

). Inset: ln[Beq/(Beq – Bt)] versus time, kobs = slope = 0.055 min
-1

. 

Dissociation (preincubation: 90 min, c = 20 nM) in the presence of famotidine (c = 3 µM) from the hH2R as a function of 

time, showing incomplete monophasic decline (nonlinear regression: koff = 0.028 min
-1

, t1/2 = 25 min, plateau = 23%), 

Inset: ln[(Bt-Bplateau)/(B0-Bplateau)] versus time, slope∙(-1) = koff = 0.027 min
-1

. Data represent means ± SEM from two 

independent experiments each performed either in duplicate (association) or triplicate (dissociation). 

 

Equilibrium competition binding experiments of [
3
H]3.25 

[3H]3.25 was used in equilibrium competition binding experiments with membrane preparations 

of Sf9 cells (Table 3.4). [3H]3.25 was completely displaceable by histamine and the standard H2R 

antagonists famotidine and ICI127032 (Figure 3.10). Interestingly, lamtidine could only displace 

75% of [3H]3.25, but completely displace the radioligand [3H]UR-DE257. The pKi values were 

consistently lower but the order remained the same compared to the ones determined with 

[3H]UR-DE257.  

 
Figure 3.10. Displacement of the radioligand [

3
H]UR-SB69 ([

3
H]3.25, c = 20 nM, Kd = 15 nM) from membrane 

preparations of Sf9 insect cells expressing the hH2R-GsαS fusion protein by standard H2R ligands. Data represent mean 

values ± SEM of 3 experiments performed in triplicate. 
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Table 3.4. Affinities of the standard H2R ligands to hH2R, obtained from equilibrium competition binding studies on 

membrane preparations from Sf9 insect cells, expressing the hH2R with the radioligands [
3
H]UR-DE257 and [

3
H]3.25. 

 pKi values 

 [
3
H]UR-DE257

a 
N [

3
H]UR-SB69 ([

3
H]3.25)

b 
N 

Histamine 6.53 ± 0.04 3 5.77 ± 0.08 3 

Famotidine 6.87 11 - 6.36 ± 0.03 3 

Lamtidine 6.8 ± 0.2 3 6.22 ± 0.07 3 

ICI127032 (3.10) 7.70 ± 0.07 3 7.26 ± 0.03 3 

Competition binding assay performed on membrane preparations of Sf9 insect cells expressing the hH2R-GsαS fusion 

protein. Radioligand: 
a
[

3
H]UR-DE257, c = 20 nM, Kd = 12.2 nM or 

b
[

3
H]3.25, c = 20 nM, Kd = 15 nM). The incubation 

period was 60 min. Data were analyzed by nonlinear regression and were best fitted to four-parameter sigmoidal 

concentration-response curves. Data shown are means ± SEM of N independent experiments, each performed in 

triplicate. 

 

3.2.6 Chemical stability of [
3
H]3.25 

The long-term stability of [3H]3.25 in stock solution was investigated by RP-HPLC (conditions, see 

experimental section). The radiochemical purity of [3H]3.25 after 15 month still amounted to 45% 

(Figure 3.11) with one major impurity present (tR= 12.6 min).  

                  A                   B 

  
Figure 3.11. RP-HPLC analysis of the (A) radioligand stock solution [

3
H]3.25 15 month after purification (UV 

chromatogram at 273 nm (black dashed line) and radiochromatogram (red line)) and (B) radioligand stock solution 

[
3
H]3.25 15 month after purification (black dashed line) and stock solution of “cold” 3.25 in DMSO (blue line) (UV-

chromatograms at 273 nm). 
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3.3 EXPERIMENTAL SECTION 

3.3.1 General procedures 

Chemicals and solvents were purchased from the following suppliers: Merck (Darmstadt, 

Germany), Acros Organics (Geel, Belgium), Sigma Aldrich (Munich, Germany) and TCI (Tokyo, 

Japan). All solvents were of analytical grade or distilled prior to use. Anhydrous solvents were 

stored over molecular sieve under protective gas. Deuterated solvents for NMR spectroscopy 

were purchased from Deutero (Kastellaun, Germany). For the preparation of buffers and HPLC 

eluents Millipore water was used throughout. Column chromatography was carried out using 

Merck silica gel 60 (0.040-0.063 mm). Reactions were monitored by thin layer chromatography 

(TLC) on Merck silica gel 60 F254 aluminium sheets, and compounds were detected with UV light 

at 254 nm and ninhydrin solution (0.8 g ninhydrin, 200 mL n-butanol, 6 mL acetic acid). Melting 

points were determined with a B-540 apparatus (BÜCHI GmbH, Essen, Germany) and are 

uncorrected. IR spectra were measured on a NICOLET 380 FT-IR spectrophotometer (Thermo 

Electron Corporation, USA). Nuclear Magnetic Resonance (1H NMR and 13C NMR) spectra were 

recorded on a Bruker Avance-300 (7.05 T, 1H: 300 MHz, 13C: 75.5 MHz), Avance-400 (9.40 T, 1H: 

400 MHz, 13C: 100.6 MHz), or Avance-600 (14.1 T; 1H: 600 MHz, 13C: 150.9 MHz; cryogenic probe) 

NMR spectrometer (Bruker BioSpin, Karlsruhe, Germany). Chemical shifts are given in δ (ppm) 

relative to external standards. Multiplicities are specified with the following abbreviations: s 

(singlet), d (doublet), t (triplet), q (quartet), qui (quintet), m (multiplet), br s (broad signal), as well 

as combinations thereof. In certain cases 2D-NMR techniques (COSY, HSQC, HMBC and NOESY) 

were used to assign 1H and 13C chemical shifts. High-resolution mass spectrometry (HRMS) was 

performed on an Agilent 6540 UHD Accurate-Mass Q-TOF LC/MS system (Agilent Technologies, 

Santa Clara, USA) using an ESI source. Preparative HPLC was performed with a system from 

Knauer (Berlin, Germany) consisting of two K-1800 pumps and a K-2001 detector. A Nucleodur 

100-5 C18 (250 x 21 mm, 5 µm, Macherey-Nagel, Dueren, Germany), a Kinetex XB-C18 100A 

(250 x 21.2 mm, 5 µm, Phenomenex, Aschaffenburg, Germany) and a YMC Triart C18 (150 x 20 

mm, 5 µm, YMC Europe GmbH, Dinslacken, Germany) served as RP-columns at a flow rate of 15 

ml/min at room temperature. In case of the cyanoguanidines 3.10, 3.12 and 3.13 the mobile 

phase consisted of mixtures of CH3CN and 0.1% aq. NH3. Mixtures of CH3CN and 0.05-0.1% aq. 

TFA were used as mobile phase for compounds 3.8, 3.21-3.26, 3.29, 3.30, 3.34, 3.35. A detection 

wavelength of 220 nm was used throughout. CH3CN was removed from the eluates under 

reduced pressure (final pressure: 80 mbar) at 45 °C prior to lyophilisation (Christ alpha 2-4 LD 

lyophilisation apparatus equipped with a vacuubrand RZ 6 rotary vane vacuum pump). Analytical 

HPLC analysis was performed on a system from Meck Hitachi, composed of a D-6000 interface, a 

L-6200A pump, a AS2000A auto sampler and a L-4000 UV-VIS detector. A Kinetex XB-C18 100A 

(250 x 4.6 mm, 5 µm, Phenomenex, Aschaffenburg, Germany) served as RP-column. Mixtures of 

0.05% TFA in CH3CN (A) and 0.05% aq. TFA (B) were used as mobile phase. Helium degassing, 

room temperature, a flow rate of 0.8 mL/min and a detection wavelength of 220 nm were used 

throughout. Solutions for injection (concentration: 100-500 µM) were either prepared from stock 

solution (10 mM in DMSO) in a mixture of CH3CN and H2O corresponding to the initial eluent 

composition, or as a one to one mixture of the eluate (preparative HPLC) with Millipore water. 

The following linear gradients were applied for analytical HPLC analysis: gradient 1: 0-30 min: A/B 

5:95-80:20, 30-32 min: 80:20-95:5, 32-42 min: 95:5 or gradient 2: 0-30 min: A/B 10:90-80:20, 30-
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32 min: 80:20-95:5, 32-42 min: 95:5 or gradient 3: 0-30 min: A/B 15:85-90:10, 30-35 min: 90:10. 

Microanalysis was performed on a Vario micro cube (Elementar, Langenselbold, Germany). 

 

3.3.2 Experimental protocols and analytical data 

The synthesis of amidinothiourea31 (3.1) and N-succinimidyl propionate32 were described 

elsewhere.  

 

2-Guanidino-4-chloromethylthiazole hydrochloride (3.2)
33

 

1,3-Dichloroacetone (1.08 g, 8.46 mmol, 1 eq) dissolved in acetone (4 mL) was added to a 

suspension of 3.1 (1.0 g, 8.46 mmol, 1 eq) in acetone (5 mL). After approximately 10 min most of 

the solid dissolved and the supernatant turned yellow. The reaction mixture was stirred over 

night at room temperature. The product precipitated as the HCl salt. Separation by filtration and 

washing with acetone (5 mL) afforded the product as a yellow solid (1.07 g, 56%). Mp: 176.9-

181.7 °C decomposition (Lit.33 mp: 191-193 °C). Rf = 0.58 (CH2Cl2/NH3in MeOH 9:1). 1H-NMR (300 

MHz, [D6]DMSO): δ (ppm) 4.74 (s, 2H), 7.41 (s, 1H), 8.39 (s, 4H), 12.83 (s, 1H). 13C-NMR (75.5 

MHz, [D6]DMSO): δ (ppm) 40.7, 113.4, 147.2, 154.2, 160.3. HRMS: (ESI): m/z [M+H]+ calcd. for 

C5H8ClN4S
+: 191.0153, found: 191.0151. C5H7ClN4S · HCl (190.65 + 36.46). 

 

2-Guanidino-4-[(2-aminoethyl)thiomethyl]thiazole (3.3)
33

 

2-Aminoethanthiole hydrochloride (500 mg, 4.41 mmol, 2 eq) dissolved in EtOH (5 mL) were 

added dropwise to a sodium ethanolate solution (prepared from 250 mg Na in 8 mL EtOH) at 0 

°C. The reaction mixture was stirred for 1.5 h at 0 °C. 3.2 (500 mg, 2.20 mmol, 1 eq) was added 

portion wise over 15 min at 0 °C. After stirring for overnight at room temperature, the solvent 

was evaporated under reduced pressure and the crude product was purified by column 

chromatography (eluent: CH2Cl2 / 3.5 M NH3 in MeOH 90:10 isocratic). Removal of the solvent in 

vacuo afforded the product as yellow oil (430 mg, 84%). Rf = 0.2 (CH2Cl2 / 7 N NH3 in MeOH 9:1). 
1H-NMR (400 MHz, [D6]DMSO): δ (ppm) 2.63-2.78 (m, 4H), 3.56 (s, 2H), 6.47 (s, 1H), 6.85 (br s, 

4H). 13C-NMR (100 MHz, [D4]MeOH): δ (ppm) 32.6, 35.2, 41.3, 106.8, 149.6, 159.0, 175.8. HRMS: 

(ESI) m/z [M+H]+ calcd. for C7H14N5S2
+: 232.0685, found: 232.0689. C7H13N5S2 (231.34). 

 

2-(3-Acetylphenyl)isoindoline-1,3-dione (3.4)
17

 

1-(3-Aminophenyl)ethan-1-one (1 g, 7.40 mmol, 1 eq) and phthalic anhydride (1.2 g, 8.14 mmol, 

1.1 eq) were suspended in acetic acid (20 mL). The reaction mixture was stirred under reflux for 

2.5 h and part of the solvent was evaporated under reduced pressure. Water (10 mL) was added 

and the resulting precipitate was filtered through a Buchner funnel. Removal of residual solvent 

in vacuo afforded the product as beige fine crystals (1.9 g, 96%). Mp: 180-184.5°C. Rf = 0.24 

(PE/EtOAc 3:1). 1H-NMR (300 MHz, CDCl3): δ (ppm) 2.62 (s, 3H), 7.58-7.68 (m, 2H), 7.77-7.83 (m, 
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2H), 7.92-8.00 (m, 3H), 8.03-8.05 (m, 1H). 13C-NMR (75.5 MHz, CDCl3): δ (ppm) 26.8, 124.0, 126.6, 

127.8, 129.5, 131.1, 131.6, 132.3, 134.7, 138.1, 167.1, 197.1. HRMS: (ESI): m/z [M+H]+ calcd. for 

C16H12NO3
+: 266.0812, found: 266.0814. C16H11NO3 (265.27). 

 

2-Guanidino-4-(3-phthalimidophenyl)thiazole hydrobromide (3.6)
17

 

To a solution of 3.4 (4.36 g, 16.44 mmol, 1 eq) in CHCl3 (50 mL) was added HBr solution in acetic 

acid (45 % w/v, 110 µL) under stirring. Bromine (5.52 g, 34.52 mmol, 2.1 eq) was added drop 

wise. The reaction mixture was stirred for 30 min at room temperature. Removal of the solvent in 

vacuo afforded the 3.5 as a white solid, which was applied to the next step without further 

purification. The crude 3.5 was dissolved in hot CH3CN (100 mL) and poured in a hot solution of 

3.1 (1.94 g, 16.44 mmol, 1 eq) in EtOH (100 mL). The reaction mixture was stirred under reflux for 

5 h. Removal of the solvent in vacuo afforded a beige solid, which was suspended in EtOAc and 

filtered through a Buchner funnel. 3.6 was afforded as a beige solid (5.12 g, 70%). Mp: 311.9-

315.4 °C decomposition (Lit.17 mp: >300 °C). Rf = 0.7 (CH2Cl2 / 7 N NH3 in MeOH 6:1). 1H-NMR (400 

MHz, [D6]DMSO): δ (ppm) 7.43-7.45 (m, 1H), 7.60 (t, 1H, J 7.83 Hz), 7.84 (s, 1H), 7.92-7.95 (m, 

2H), 7.97-8.00 (m, 2H), 8.03-8.05 (m, 2H), 8.25 (br s, 4H), 12.04 (br s, 1H). 13C-NMR (100 MHz, 

[D6]DMSO): δ (ppm) 109.3, 123.5, 125.2, 125.7, 127.5, 129.4, 131.5, 132.5, 133.8, 134.8, 148.9, 

153.8, 160.0, 167.0. HRMS: (ESI): m/z [M+H]+ calcd. for C18H14N5O2S
+: 364.0863, found: 364.0866. 

C18H13N5O2S ∙ HBr (363.40 + 80.91). 

 

2-Guanidino-4-(3-aminophenyl)thiazole (3.7)
17

 

3.6 (5.09 g, 11.46 mmol, 1eq) was suspended in a mixture of concentrated hydrochloric acid (75 

mL) and acetic acid (75mL) and the reaction mixture was stirred under reflux overnight. The 

solvent was removed under reduced pressure and the residue was suspended in aqueous NaOH 

solution (2.5 % w/w, 200 mL). The resulting precipitate was filtered through a Buchner funnel and 

washed with H2O (50 mL). Recrystallisation from CH3CN and removal of residual solvent in vacuo 

afforded the product as a brown solid (1.40 g, 52%). Mp: 219.3-223.1 °C decomposition (Lit.17 mp: 

223-224 °C). Rf = 0.4 (CH2Cl2 / 7 N NH3 in MeOH 9:1). 1H-NMR (400 MHz, [D6]DMSO): δ (ppm) 5.04 

(s, 2H), 6.47-6.50 (m, 1H), 6.92 (s, 1H), 6.95-6.97 (m, 1H), 7.00-7.02 (m, 1H), 7.03-7.04 (m, 1H). 

13C-NMR (100 MHz, [D6]DMSO): δ (ppm) 102.1, 111.2, 113.1, 113.4, 128.8, 135.4, 148.6, 150.0, 

156.9, 174.7. HRMS: (ESI): m/z [M+H]+ calcd. for C10H12N5S
+: 234.0808, found: 234.0807. 

C10H11N5S (233.29). 

 

2-Guanidino-4-[3-(3-methylthioureido)phenyl]thiazole hydrotrifluoracetate (3.8)
17

 

Methylisothiocyanate (32 mg, 0.43 mmol, 1 eq) was added to a stirring solution of 3.7 (100 mg, 

0.43 mmol, 1 eq) in acetone (2 mL). The reaction mixture was stirred overnight at room 

temperature. The solvent was removed in vacuo and the residue was purified by preparative 

HPLC (column: Nucleodur, gradient: 0-30 min: MeCN/0.05% aq. TFA 10:90-55:45, tR = 14.93 min). 

The TFA-salt was obtained as a white solid (70 mg; 53%). Mp: 204.2 °C decomposition (Lit.17 
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oxalate mp: 219-222°C, decomposition). Rf = 0.25 (CH2Cl2/7M NH3 in MeOH 9:1). RP-HPLC 

(gradient 2, 220 nm) (TFA-Salz): 95.8% (tR = 13.67 min, k = 3.7). 1H-NMR (600 MHz, [D6]DMSO): δ 

(ppm) 2.92-2.93 (m, 3H), 7.32-7.33 (m, 1H), 7.36-7.39 (m, 1H), 7.65-7.66 (m, 1H), 7.69 (s, 1H), 

7.81 (br s, 1H), 7.98 (s, 1H), 8.36 (br s, 4H), 9.65 (br s, 1H), 12.30 (br s, 1H). 13C-NMR (150 MHz, 

[D6]DMSO): δ (ppm) 31.3, 108.3, 120.6, 121.7, 123.1, 129.1, 133.5, 139.7, 149.5, 154.2, 158.6 (q, J 

34 Hz, TFA), 160.6, 181.3. HRMS: (ESI): m/z [M+H]+ calcd. for C12H15N6S2
+: 307.0794, found: 

307.0797. C12H14N6S2 · C2HF3O2 (306.41 + 114.02). 

 

4-[3-(2-Cyano-3-methylguanidino)phenyl]thiazole / ICI127032 (3.10)
17

 

Diphenylcyanocarbonimidate (112 mg, 0.47 mmol, 1.1 eq) was dissolved in 2-propanol (10 mL). 

3.7 (100 mg, 0.43 mmol, 1 eq) was added and the reaction mixture was stirred overnight at room 

temperature. The solvent was removed under reduced pressure, diethylether was added and 

solvent was again removed under reduced pressure. The solid (crude 3.9) was dissolved in 

aqueous methylamine solution (40% w/w, 5mL) and the reaction mixture was stirred overnight at 

room temperature. The solvent was removed in vacuo and the residue was purified by 

preparative HPLC (column: YMC Triart C18, gradient: 0-30 min: MeCN/0.1% aq. NH3 10:90-40:60, 

tR = 20.51 min). 3.10 was obtained as a white solid (74.5 mg; 55%). Mp: 167.4-192.4 °C. Rf = 0.25 

(CH2Cl2/7M NH3 in MeOH 9:1). RP-HPLC (gradient 3, 220 nm: 96.7% (tR = 10.32 min, k = 3.1). 1H-

NMR (300 MHz, [D6]DMSO): δ (ppm) 2.78 (d, 3H, J 4.48 Hz), 6.93 (br s, 4H), 7.16-7.21 (m, 3H), 

7.35 (t, 1H, J 7.97 Hz), 7.60-7.63 (m, 1H), 7.71 (s, 1H), 8.94 (br s, 1H). 13C-NMR (150 MHz, 

[D6]DMSO): δ (ppm) 28.8, 103.6, 117.5, 121.1, 122.0 122.8, 129.0, 135.6, 138.0, 148.8, 157.1, 

158.9, 175.2. HRMS: (ESI): m/z [M+H]+ calcd. for C13H15N8S
+: 315.1135, found: 315.1139. 

C13H14N8S (314.37). 

 

1-(8-Aminooctyl)-2-cyano-3-(2-[2-(diaminomethyleneamino)thiazol-4-

ylmethylthio]ethyl)guanidine (3.12)  

Triethylamine (200 mg, 1.97 mmol, 4 eq) was added to a suspension of 3.3 as hydrochloride (150 

mg, 0.49 mmol, 1 eq) in methanol (45 mL). Diphenyl-N-cyanocarbonimidate (118 mg, 0.49 mmol, 

1 eq) was added and the reaction mixture was stirred overnight at room temperature. The 

solvent was partially removed under reduced pressure and H2O (10 mL) was added. The product 

was extracted with EtOAc (3 x 15 mL), the organic layers were combined and dried over sodium 

sulfate. Removal of the solvent in vacuo afforded 3.11 as yellow oil which was directly used for 

the next step. The crude 3.11 and octan-1,8-diamine (285 mg, 1.97 mmol, 3 eq) were suspended 

in MeCN (1 mL) and the reaction mixture was stirred for 3 h at 50 °C. The solvent was removed in 

vacuo and the residue was purified by preparative HPLC (column: YMC Triart C18, gradient: 0-30 

min: MeCN/1% aq. NH3 15:85-65:35, tR = 16.7 min). 3.12 was obtained as white, highly 

hygroscopic solid (130 mg, 62.0%). Rf = 0.3 (CH2Cl2/7M NH3 in MeOH 6:1). RP-HPLC (gradient 2, 

220 nm): 95.7% (tR = 12.74min, k = 4.1). 1H-NMR (600 MHz, CD3OD): δ (ppm) 1.35 (br s, 8H), 1.51-

1.57 (m, 4H), 2.66-2.74 (m, 4H) 3.18 (t, 2H, J 7.1 Hz), 3.39 (t, 2H, J 6.97 Hz), 3.68 (s, 2H), 6.54 (s, 

1H). 13C-NMR (150 MHz, CD3OD): δ (ppm) 22.1, 27.6, 27.7, 30.2, 30.28, 30.33, 31.8, 32.7, 41.9, 
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42.0, 42.7, 107.0, 120.1, 149.5, 159.1, 161.1, 175.9. HRMS: (ESI): m/z [M+H]+ calcd. for 

C17H32N9S2
+: 426.2217, found: 426.2215. C17H31N9S2 (425.21). 

 

N-(8-[2-Cyano-3-(2-[2-(diaminomethylenamino)thiazol-4-ylmethylthio]ethyl)guanidine]-

octyl)propionamide (3.13) 

Triethylamine (79 mg, 0.78 mmol, 3 eq) and N-succinimidyl propionate (34 mg, 0.29 mmol, 1.1 eq) 

were added to a suspension of 3.12 (111 mg, 0.26 mmol, 1eq) in CH2Cl2 (1 mL) and DMF (1 

mL).The reaction mixture was stirred for 3 h at room temperature. The solvent was partially 

removed in vacuo and the residue was purified by preparative HPLC (column: YMC Triart C18, 

gradient: 0-30 min: MeCN/1% aq. NH3 15:85-80:20, tR = 19.0 min). 3.13 was obtained as white, 

hygroscopic solid (28 mg, 22.3%). Rf = 0.4 (CH2Cl2/7M NH3 in MeOH 6:1). IR (KBr): 3355, 3330, 

3180, 2930, 2850, 2160, 1635, 1585, 1555, 1460, 1355, 1250, 1170, 1000, 850, 640, 605 cm-1. 

RP‐HPLC (gradient 2, 220 nm): 95.9% (tR = 16.82 min, k = 5.7). 1H-NMR (400 MHz, CD3OD): δ 

(ppm) 1.12 (t, 3H, J 7.6 Hz), 1.34 (br s, 8H), 1.47-1.57 (m, 4H), 2.15-2.21 (q, 2H, J 7.7 Hz), 2.68 (t, 

2H, J 6.9 Hz), 3.13-3.19 (m, 4H), 3.38 (t, 2H, J 6.8 Hz), 3.68 (s, 2H), 6.54 (s, 1H). 13C-NMR (150 MHz, 

[D6]DMSO, COSY, HSQC, HMBC): δ (ppm) 10.6, 27.7, 27.9, 30.2, 30.26 (2C), 30.29, 30.4, 31.8, 32.7, 

40.4, 42.0, 42.8, 107.0, 120.1, 149.5, 159.1, 161.1, 175.9, 177.0. HRMS: (ESI): m/z [M+H]+, calcd. 

for C20H36N9S2O
+: 482.2479, found: 482.2484. Anal. calcd. for C20H35N9S2O: C 49.87, H 7.32, N 

26.17, S 13.31, found: C 49.56, H 7.19, N 26.24, S 12.88. C20H35N9S2O (481.58). 

 

2-(4-[2-(2-Ethoxy-3,4-dioxocyclobut-1-ene-1-ylamino)ethylthiomethyl]thiazol-2-yl)guanidine 

(3.14)
34

 

3,4-Diethoxycyclobut-3-ene-1,2-dione (246 mg, 1.45 mmol, 1.1 eq) was dissolved in EtOH (15 

mL). 3.3 as hydrochloride (400 mg, 1.32 mmol, 1 eq) and triethylamine (533 mg, 5.26 mmol, 4 eq) 

dissolved in EtOH (15 mL) were added drop wise under stirring. The reaction mixture was stirred 

over night at room temperature. The precipitated product was filtered off and washed with EtOH. 

Some product was still contained in the supernatant. EtOH was removed in vacuo and the residue 

was purified by column chromatography (eluent: CH2Cl2 / 7 M NH3 in MeOH 95:5 isocratic). The 

precipitated product and the column purified product were combined and the solvent was 

removed in vacuo. 3.14 was obtained as beige solid (408 mg, 87%). Mp: 187.5-189.9 °C 

decomposition (Lit.34 mp >135 °C decomposition). Rf = 0.5 (CH2Cl2/7M NH3 in MeOH 6:1).1H-NMR 

(400 MHz, [D6]DMSO, COSY, HSQC, HMBC): δ (ppm) 1.34-1.39 (m, 3H), 2.63-2.68 (m, 2H), 3.46-

3.48 (m, 1H), 3.61 (s, 2H), 3.67-3.68 (m, 1H), 4.63-4.68 (q, 2H, J 7.0 Hz), 6.47 (s, 1H), 6.83 (br s, 

3.7H), 8.66-8.85 (d, 1H, J 75.8 Hz). 13C-NMR (100 MHz, CD3OD): δ (ppm) 15.5 (-OCH2CH3), 31.0 (d, 

J 20 Hz, thiazolyl-CH2), 31.4 (d, J 34 Hz, -SCH2CH2NH-), 43.0 (d, J 68 Hz, -SCH2CH2NH-), 68.8 (d, J 9 

Hz, -OCH2CH3), 104.4 (d, J 10 Hz, C5 thiazolyl), 147.4 (d, J 11 Hz, C4 thiazolyl), 156.8 ((NH2)2C=N-), 

172.4 (d, J 32 Hz, cyclobutendion), 175.4 (C2 thiazolyl), 176.7 (d, J 21 Hz, cyclobutendion), 182.0 

(d, J 19 Hz, C=O cyclobutendion), 189.2 (d, J 31 Hz, C=O cyclobutendion). HRMS: (ESI): m/z [M+H]+, 

calcd. for C13H18N5S2O3
+: 356.0846, found: 356.0847. C13H17N5S2O3 (355.43). 
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General procedure for the synthesis of the Mono-Boc-protected diamines (3.15-3.17) 

The corresponding alkane diamine (2 eq) was dissolved in chloroform (30 mL). Di-tert-butyl 

dicarbonate (1 eq) was dissolved in chloroform (25 mL) and added drop wise over a period of 3 h 

under ice-cooling. The reaction mixture was allowed to warm up to room temperature while 

stirring overnight. Potentially precipitated alkane diamine was filtered off. The organic layer was 

washed with alkaline saturated NaCl solution (45 mL sat. aq. NaCl and 1 mL 1 M aq. NaOH), 

saturated NaCl solution (45 mL) and H2O (45 mL). The organic layer was dried over sodium 

sulphate and concentrated by evaporation under reduced pressure. The residue was purified by 

column chromatography (eluent: CH2Cl2 / 2 M NH3 in MeOH 97.5:2.5-90:10). 

 

tert-Butyl N-(2-aminoethyl)carbamate (3.15)
35-38

 

Ethylendiamine (1.5 g, 25.0 mmol, 2 eq) was treated with di-tert-butyldicarbonate (2.72 g, 12.5 

mmol, 1 eq) according to the general procedure. Removal of the solvent in vacuo afforded the 

product as slightly yellow oil (1.25 g, 62.5%). Rf = 0.5 (CH2Cl2/3 M NH3 in MeOH 5:1). 1H-NMR (400 

MHz, CDCl3): δ (ppm) 1.34 (s, 2H), 1.38 (s, 9H), 2.73 (t, 2H, J 5.6 Hz), 3.10 (m, 2H), 5.11 (br s, 1H,). 

HRMS (ESI): m/z [M+H]+ calcd. for C7H17N2O2
+: 161.1285, found: 161.1284. C7H16N2O2 (160.22). 

 

tert-Butyl N-(8-aminooctyl)carbamate (3.16)
38,39

 

Octane-1,8-diamine (2.0 g, 13.9 mmol, 2 eq) was treated with di-tert-butyldicarbonate (1.5 g, 7.0 

mmol, 1 eq) according to the general procedure. Removal of the solvent in vacuo afforded the 

product as colorless oil (700 mg, 41.2%). Rf = 0.3 (CH2Cl2/3.5 M NH3 in MeOH 9:1). 1H-NMR (400 

MHz, CDCl3): δ (ppm) 1.26 (br s, 8H), 1.30 (br s, 2H), 1.38-1.41 (m, 13H), 2.62-2.66 (t, 2H; J 7.0 Hz), 

3.04-3.09 (m, 2H), 4.58 (br s, 1H). 13C-NMR (100 MHz, CDCl3): δ (ppm) 26.8, 26.9, 28.5, 29.3, 29.5, 

30.1, 33.9, 40.7, 42.3, 79.0, 156.1. HRMS (ESI): m/z [M+H]+ calcd. for C13H29N2O2
+: 245.2224, 

found: 245.2225. C13H28N2O2 (244.38). 

 

tert-Butyl N-(10-aminodecyl)carbamate (3.17)
38

  

Decane-1,10-diamine (2.0 g, 11.6 mmol, 2 eq) was treated with di-tert-butyldicarbonate (1.3 g, 

5.8 mmol, 1 eq) according to the general procedure. Removal of the solvent in vacuo afforded 

the product as colorless oil (820 mg, 51.2%). Rf = 0.6 (CH2Cl2/7 M NH3 in MeOH 7: 1). 1H-NMR 

(400 MHz, CDCl3): δ (ppm) 1.26 (br s, 12H), 1.42-1.46 (m, 13H), 1.67 (br s, 2H), 2.67 (t, 2H, J 7.1 

Hz), 3.06-3.10 (m, 2H), 4.53 (br s, 1H). 13C-NMR (100 MHz, CDCl3): δ (ppm) 26.9, 27.0, 28.6, 29.4, 

29.55, 29.60, 29.62, 30.2, 33.7, 40.8, 42.3, 79.1, 156.1. HRMS (ESI): m/z [M+H]+ calcd. for 

C15H33N2O2
+: 273.2537, found: 273.2537. C15H32N2O2 (272.43). 
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tert-Butyl [2-(2-[2-(2-guanidinothiazol-4-ylmethylthio)ethylamino]-3,4-dioxocyclobut-1-ene-1-

ylamino)ethyl]carbamate (3.18) 

Compound 3.14 (150 mg, 0.42 mmol, 1 eq) was dissolved in EtOH (10 mL) and a solution of 3.15 

(74 mg, 0.46 mmol, 1.1 eq) in EtOH (10 mL) was added under stirring. The reaction mixture was 

stirred over night at room temperature. Due to incomplete conversion triethylamine (214 mg, 

2.11 mmol, 5 eq) was added and the reaction mixture was stirred at 70 °C for 6 h. The solution 

was allowed to cool to room temperature and stirred at this temperature over night. Removal of 

the solvent in vacuo and purification by column chromatography (eluent: CH2Cl2 / 7 M NH3 in 

MeOH 95:5- 80:20) afforded the product as white solid (158 mg, 79.2%). Mp: 187.7-195.6 °C 

decomposition. Rf = 0.2 (CH2Cl2/7 M NH3 in MeOH 9:1). 1H-NMR (400 MHz, [D6]-DMSO): δ (ppm) 

1.36 (s, 9H), 2.64-2.67 (t, 2H, J 6.7 Hz), 3.07-3.11 (q, 2H, J 5.9 Hz), 3.50 (br s, 2H), 3.66-3.70 (m, 

4H), 6.62 (s, 1H), 6.88-7.09 (br s, 5H), 7.58 (br s, 2H). HRMS: (ESI): m/z [M+H]+, calcd. for 

C18H28N7O4S2
+: 470.1639, found: 470.1643. C18H27N7O4S2 (469.58). 

 

tert-Butyl [8-(2-[2-(2-guanidinothiazol-4-ylmethylthio)ethylamino]-3,4-dioxocyclobut-1-ene-1-

ylamino)octyl]carbamate (3.19) 

3.14 (163 mg, 0.46 mmol, 1 eq), 3.16 (124 mg, 0.50 mmol, 1.1 eq) and triethylamine (232 mg, 

2.29 mmol, 5 eq) were dissolved in EtOH (20 mL). The reaction mixture was stirred for 6 h at 

70 °C. Removal of the solvent in vacuo and purification by column chromatography (eluent: 

CH2Cl2 / 7 M NH3 in MeOH 95:5- 90:10) afforded the product as white solid (224 mg, 88.1%). Mp: 

174.6-177.9 °C decomposition. Rf = 0.5 (CH2Cl2/3 M NH3 in MeOH 9:1). 1H-NMR (400 MHz, [D6]-

DMSO, COSY, HSQC, HMBC, NOESY): δ (ppm) 1.23-1.26 (m, 8H), 1.33-1.36 (m, 11H), 1.48-1.52 (m, 

2H), 2.65-2.68 (t, 2H, J 6.6 Hz), 2.85-2.90 (q, 2H, J 6.6 Hz), 3.48 (br s, 2H), 3.63 (s, 2H), 3.69-3.71 

(m, 2H), 6.50 (s, 1H), 6.72-6.75 (m, 1H), 6.84 (br s, 4H), 7.45 (br s, 2H). 13C-NMR (100 MHz, [D6]-

DMSO, COSY, HSQC, HMBC, NOESY): δ (ppm) 25.8, 26.2, 28.3, 28.6, 28.7, 29.4, 30.7, 31.1, 32.3, 

40.2, 42.6, 43.3, 77.3, 104.5, 147.5, 155.6, 156.9, 167.5, 167.8, 175.3, 182.3, 182.5. HRMS: (ESI): 

m/z [M+H]+, calcd. for C24H40N7O4S2
+: 554.2578, found: 554.2584. C24H39N7O4S2 (553.74). 

 

tert-Butyl [10-(2-[2-(2-guanidinothiazol-4-ylmethylthio)ethylamino]-3,4-dioxocyclobut-1-ene-1-

ylamino)decyl]carbamate (3.20)  

3.14 (155 mg, 0.41 mmol, 1 eq), 3.17 (124 mg, 0.45 mmol, 1.1 eq) and triethylamine (209 mg, 

2.06 mmol, 5 eq) were suspended in EtOH (20 mL). The reaction mixture was stirred overnight at 

60 °C. Removal of the solvent in vacuo and purification by column chromatography (eluent: 

CH2Cl2/3.5 M NH3 in MeOH 95:5 isocratic) afforded the product as white solid (150 mg, 63%). Mp: 

178.7-182.1 °C decomposition. Rf = 0.45 (CH2Cl2/7 M NH3 in MeOH 6: 1). 1H-NMR (300 MHz, 

[D6]DMSO): δ (ppm) 1.23-1.25 (m, 14H), 1.36 (s, 9H), 1.48-1.52 (m, 2H), 2.65 (t, 2H, J 6.26 Hz), 

2.84-2.91 (m, 2H), 3.48 (br s, 2H), 3.63 (s, 2H), 3.69-3.71 (m, 2H), 6.49 (s, 1H), 6.74-6.84 (m, 5H), 

7.47 (br s, 2H). 13C-NMR (300 MHz, [D6]DMSO): δ (ppm) 25.9, 26.3, 28.3, 28.67, 28.74, 28.96, 

29.00, 29.5, 30.8, 31.1 32.3, 1C under solvent peak (38.7-40.3), 42.6, 43.3, 77.3, 104.5, 147.5, 
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155.6, 156.9, 167.5, 167.9, 175.5, 182.3, 182.5. HRMS: (ESI): m/z [M+H]+, calcd. for C26H44N7O4S2
+: 

582.2891, found: 582.2895. C26H43N7O4S2 (581.80). 

 

General procedure for the Boc-deprotection of 3.18-3.20 to the free amines 3.21-3.23 

The Boc-protected amine 3.18, 3.19 or 3.20 (1 eq) was dissolved in a mixture of CH2Cl2 (2 mL) and 

TFA (0.3 mL) and stirred for 1.5 h at room temperature. The solvent was removed in vacuo, 

CH2Cl2 was added and then again removed. This process was repeated several times in order to 

remove residual TFA. Part of the product was directly used in the next step of the synthesis and a 

part was purified by preparative HPLC. 

 

1-[4-(2-[2-(2-Aminoethylamino)-3,4-dioxocyclobut-1-ene-1-ylamino]–ethylthiomethyl)thiazol-

2-yl]guanidine-tri(hydrotrifluoracetate) (3.21) 

3.18 (150 mg, 0.32 mmol, 1 eq) was treated according to the general procedure. The crude 

product was obtained as white hygroscopic solid (212 mg). Further purification of 100 mg by 

preparative HPLC (column: Nucleodur, gradient: 0-30 min: MeCN/0.1% aq. TFA 10:90-30:70, tR = 

10.6 min) afforded the product as white hygroscopic solid (54 mg, 50.4%). Rf = 0.3 (CH2Cl2/7 M 

NH3 in MeOH 7:1). RP‐HPLC (gradient 2, 220 nm): 91.0% (tR = 8.67 min, k = 2.4). 1H-NMR (400 

MHz, [D6]-DMSO, COSY, HSQC, HMBC): δ (ppm) 2.67 (t, 2H, J 6.8 Hz), 3.02 (br s, 2H), 3.69-3.71 (m, 

4H), 3.79 (s, 2H), 7.12 (s, 1H), 7.78-7.90 (br s, 5H), 8.40 (br s, 4H), 12.42 (br s, 1H). 13C-NMR (150 

MHz, [D6]-DMSO, COSY, HSQC, HMBC): δ (ppm) 30.0, 32.1, 39.6, 40.9, 42.6, 110.0, 148.5, 154.3, 

158.7 (q, J 32 Hz, TFA), 160.7, 167.9, 168.2, 182.4, 182.9. HRMS: (ESI): m/z [M+H]+, calcd. for 

C13H20N7O2S2
+: 370.1114, found: 370.1114. C13H19N7O2S2 · C6H3F9O6 (369.46 + 342.07). 

 

1-[4-(2-[2-(8-Aminooctylamino)-3,4-dioxocyclobut-1-ene-1-ylamino]ethylthiomethyl)thiazol-2-

yl]guanidine-tri(hydrotrifluoracetate) (3.22) 

3.19 (190 mg, 0.34 mmol, 1 eq) was treated according to the general procedure. The crude 

product was obtained as white hygroscopic solid (255 mg). Further purification of 148 mg by 

preparative HPLC (column: Nucleodur, gradient: 0-30 min: MeCN/0.1% aq. TFA 15:85-40:60, tR = 

11.0 min) afforded the product as white hygroscopic solid (91 mg, 57.3%). Rf = 0.2 (CH2Cl2/7 M 

NH3 in MeOH 7:1). RP‐HPLC (gradient 1, 220 nm): 95.4% (tR = 13.22 min, k = 4.3). 1H-NMR (600 

MHz, [D6]-DMSO, COSY, HSQC, HMBC): δ (ppm) 1.23-1.27 (br s, 8H), 1.49-1.52 (m, 4H), 2.66-2.68 

(t, 2H, J 6.8 Hz), 2.74-2.79 (m, 2H), 3.50 (br s, 2H), 3.70 (br s, 2H), 3.79 (s, 2H), 7.14 (s, 1H), 7.69 

(br s, 5H), 8.46 (br s, 4H), 12.44 (br s, 1H). 13C-NMR (150 MHz, [D6]-DMSO, COSY, HSQC, HMBC): δ 

(ppm) 25.7, 26.9, 27.0, 28.37, 28.41, 30.0, 30.7, 32.2, 38.7, 42.5, 43.2, 110.2, 116.7 (q, J 297 Hz, 

TFA), 148.6, 154.2, 158.6 (q, J 33 Hz, TFA), 160.2, 167.6, 167.7, 182.3, 182.4. HRMS: (ESI): m/z 

[M+H]+, calcd. for C19H32N7O2S2
+: 454.2053, found: 454.2049. C19H31N7O2S2 · C6H3F9O6 (453.62 + 

342.07). 
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1-[4-(2-[2-(10-Aminodecylamino)-3,4-dioxocyclobut-1-ene-1-ylamino]ethylthiomethyl)thiazol-

2-yl]guanidine-tri(hydrotrifluoracetate) (3.23) 

3.20 (50 mg, 0.086 mmol, 1 eq) was treated according to the general procedure. Purification by 

preparative HPLC (column: Nucleodur, gradient: 0-30 min: MeCN/0.1% aq. TFA 15:85-70:30, tR = 

11.5 min) afforded the product as white solid (60.4 mg, 85.4%). Mp: 98.1-100.8 °C. Rf = 0.2 

(CH2Cl2/7 M NH3 in MeOH 6:1). RP‐HPLC (gradient 2, 220 nm): 96.8% (tR = 13.82 min, k = 4.5). 1H-

NMR (300 MHz, [D6]-DMSO, COSY, HSQC, HMBC): δ (ppm) 1.24 (br s, 12H), 1.46-1.53 (m, 4H), 

2.64-2.68 (m, 2H), 2.72-2.79 (m, 2H), 3.48 (br s, 2H), 3.69-3.71 (m, 2H), 3.79 (s, 2H), 7.13 (s, 1H), 

7.76 (br s, 5H), 8.59 (s, 4H), 12.73 (br s, 1H). 13C-NMR (150 MHz, [D6]-DMSO, COSY, HSQC, HMBC): 

δ (ppm) 25.77, 25.84, 27.0, 28.5, 28.6, 28.77, 28.83, 30.0, 30.7, 32.2, 38.8, 42.5, 43.3, 110.1, 

116.4 (q, J 296Hz, TFA), 148.5, 154.4, 159.1 (q, J 34 Hz, TFA), 160.3, 167.6, 167.9, 182.3, 182.5. 

HRMS: (ESI): m/z [M+H]+, calcd. for C21H36N7O2S2
+: 482.2366, found: 482.2364. Anal. calcd. for 

C21H35N7O2S2 ∙ C6H3F9O6: C 39.37, H 4.68, N 11.90, S 7.78, found: C 39.16, H 4.86, N 11.86, S 7.76. 

C21H35N7O2S2 ∙ C6H3F9O6 (481.68+ 342.07). 

 

N-[2-(2-[2-(2-Guanidinothiazol-4-ylmethylthio)ethylamino]-3,4-dioxocyclobut-1-ene-1-

ylamino)ethyl]propionamide bis(hydrotrifluoracetate) (3.24) 

3.21 (100 mg, 0.17 mmol, 1 eq) and triethylamine (68 mg, 0.67 mmol, 4 eq) were suspended in 

CH2Cl2 (2.5 mL). After stirring for 5 min N-succinimidyl propionate (32 mg, 0.18 mmol, 1.1 eq) was 

added and the reaction mixture was stirred over night at room temperature. The conversion was 

incomplete due to the poor solubility of the educts in the solvent. DMF (2 mL) was added and the 

mixture was stirred for 10 min at 50°C to dissolve the educts. The reaction mixture was allowed 

to cool to room temperature while stirring for additional 2 h. Removal of the solvent in vacuo and 

purification by preparative HPLC (column: Nucleodur, gradient: 0-30 min: MeCN/0.1% aq. TFA 

10:90-45:55, tR = 9.5 min) afforded the product as white hygroscopic solid (48 mg, 52.8%). Rf = 0.3 

(CH2Cl2/7 M NH3 in MeOH 9:1). RP‐HPLC (gradient 2, 220 nm): 97.3% (tR = 10.80 min, k = 3.3). 1H-

NMR (400 MHz, [D6]-DMSO): δ (ppm) 0.97 (t, 3H, J 7.5 Hz), 2.03-2.09 (q, 2H, J 7.6 Hz), 2.67 (t, 2H, 

J 6.7 Hz), 3.19-3.21 (m, 2H), 3.52 (br s, 2H, interfering with the water signal), 3.69-3.70 (m, 2H, 

interfering with the water signal), 3.79 (s, 2H), 7.14 (s, 1H), 7.59 (br s, 2H), 7.92 (br s, 1H), 8.38 (br 

s, 4H), 12.29 (br s, 1H). 13C-NMR (150 MHz, [D6]-DMSO): δ (ppm) 9.8, 28.4, 30.0, 32.1, 39.7, 42.5, 

42.9, 110.2, 116.8 (q, J 298 Hz, TFA), 148.6, 154.1, 158.8(q, J 33 Hz,TFA), 160.2, 167.6, 168.1, 

173.3, 182.4, 182.6. HRMS: (ESI): m/z [M+H]+, calcd. for C16H24N7O3S2
+: 426.1377, found: 426.1377. 

C16H23N7O3S2 · C4H2F6O4 (425.53 + 228.04). 

 

N-[8-(2-[2-(2-Guanidinothiazol-4-ylmethylthio)ethylamino]-3,4-dioxocyclobut-1-ene-1-

ylamino)octyl]propionamide bis(hydrotrifluoracetate) (3.25) 

3.22 (100 mg, 0.15 mmol, 1 eq) and triethylamine (59 mg, 0.59 mmol, 4 eq) were suspended in 

CH2Cl2 (2.5 mL). After stirring for 5 min N-succinimidyl propionate (19 mg, 0.16 mmol, 1.1 eq) was 

added and the reaction mixture was stirred over night at room temperature. Removal of the 

solvent in vacuo and purification by preparative HPLC (column: Nucleodur, gradient: 0-30 min: 
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MeCN/0.1% aq. TFA 15:85-40:60, tR = 14.6 min) afforded the product as white hygroscopic solid 

(66 mg, 72%). Rf = 0.6 (CH2Cl2/7 M NH3 in MeOH 7:1). RP‐HPLC (gradient 2, 220 nm): 98.8% (tR = 

15.21 min, k = 5.1). 1H-NMR (400 MHz, [D6]-DMSO): δ (ppm) 0.97 (t, 3H, J 7.6 Hz), 1.19-1.31 (m, 

8H), 1.32-1.39 (m, 2H), 1.45-1.55 (m, 2H), 2.04 (q, 2H, J 7.6 Hz), 2.67 (t, 2H, J 6.7 Hz), 2.97-3.02 

(m, 2H), 3.49 (br s, 2H, interfering with the water signal), 3.70 (br s, 2H), 3.79 (s, 2H), 7.14 (br s, 

1H), 7.53 (br s, 2H), 7.68 (br s, 1H), 8.36 (br s, 4H), 12.24 (br s, 1H). 13C-NMR (150 MHz, [D6]-

DMSO, COSY, HSQC, HMBC): δ (ppm) 10.0, 25.8, 26.4, 28.5, 28.6, 28.7, 29.1, 30.0, 30.7, 32.2, 

38.4, 42.5, 43.3, 110.3, 116.6 (q, J 296 Hz, TFA), 148.6, 154.1, 158.7 (q, J 33 Hz, TFA), 160.2, 167.5, 

167.9, 172.6, 182.3, 182.4. HRMS: (ESI): m/z [M+H]+, calcd. for C22H36N7O3S2
+: 510.2316, found: 

510.2322. C22H35N7O3S2 · C4H2F6O4 (509.69 + 228.04). 

 

N-[10-(2-[2-(2-Guanidinothiazol-4-ylmethylthio)ethylamino]-3,4-dioxocyclobut-1-ene-1-

ylamino)decyl]propionamide-bis(hydrotrifluoracetate) (3.26) 

3.23 (144 mg, 0.20 mmol, 1 eq), N-succinimidyl propionate (26 mg, 0.22 mmol, 1.1 eq) and 

triethylamine (82 mg, 0.81 mmol, 4 eq) were dissolved in a mixture of CH2Cl2 (3.5 mL) and DMF (2 

mL). The reaction mixture was stirred for 2 h at room temperature. The conversion was 

incomplete due to the poor solubility of the educts in the solvent. The mixture was stirred for 1 h 

at 60°C to dissolve the educts. The reaction mixture was allowed to cool to room temperature 

while stirring for additional 48 h. Removal of the solvent in vacuo and purification by preparative 

HPLC (column: Nucleodur, gradient: 0-30 min: MeCN/0.1% aq. TFA 25:75-75:25, tR = 12.08 min) 

afforded the product as white fluffy solid (43 mg, 32.5%). Mp: 149.2-153.0 °C. Rf = 0.52 (CH2Cl2/7 

M NH3 in MeOH 6:1). RP‐HPLC (gradient 2, 220 nm): 98.8% (tR = 18.05 min, k = 6.2). 1H-NMR (400 

MHz, [D6]-DMSO): δ (ppm) 0.96 (t, 3H, J 7.60 Hz), 1.22-1.25 (m, 12H), 1.33-1.36 (m, 2H), 1.48-1.49 

(m, 2H), 2.02 (q, 2H, J 7.60 Hz), 2.65-2.67 (m, 2H), 2.97-3.00 (m, 2H), 3.48 (br s, 2H), 3.69 (br s, 

2H), 3.78(s, 2H), 7.11 (s, 1H), 7.59-7.67 (m, 3H), 8.39 (br s, 4H), 12.42 (br s, 1H). 13C-NMR (150 

MHz, [D6]-DMSO): δ (ppm) 10.0, 25.8, 26.4, 28.5, 28.6, 28.7, 28.90, 28.91, 29.1, 30.0, 30.7, 32.2, 

38.4, 42.5, 43.2, 110.0, 116.9 (q, J 298 Hz, TFA), 148.5, 154.2, 159.2 (q, J 32Hz, TFA), 160.6, 167.5, 

167.9, 172.6, 182.3, 182.4. HRMS: (ESI): m/z [M+H]+, calcd. for C24H40N7O3S2
+: 538.2629, found: 

538.2636. C24H39N7O3S2 · C4H2F6O4 (537.74 + 228.04). 

 

tert-Butyl [8-(2-[3-(2-guanidinothiazol-4-yl)phenylamino]-3,4-dioxocyclobut-1-ene-1-

ylamino)octyl]carbamate (3.28) 

3.7 (200 mg, 0.86 mmol, 1 eq) was dissolved in EtOH (7 mL) and poured into a solution of 3,4-

diethoxy-3-cyclobutene-1,2-dione in EtOH (7 mL). The reaction mixture was stirred over night at 

room temperature. The precipitated 3.27 was filtered off, washed with EtOH (2 mL) and dried 

under vacuo.  

3.27 (160 mg, 0.45 mmol, 1 eq), 3.16 (120 mg, 0.49 mmol, 1.1 eq) and triethylamine (227 mg, 

2.24 mmol, 5 eq) were suspended in EtOH (15 mL). The reaction mixture was stirred over night at 

80 °C and subsequently cooled to room temperature. The precipitated product was filtered off 

and residual solvent was removed in vacuo. 3.28 was afforded as a beige solid (160 mg, 33.6 % 
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over two steps). Mp: 262 °C decomposition. Rf = 0.5 (CH2Cl2/7 M NH3 in MeOH 6:1). 1H-NMR (300 

MHz, [D6]-DMSO): δ (ppm) 1.25-1.57 (m, 19H), 1.55-1.57 (m, 2H), 2.85-2.91 (m, 2H), 3.60-3.62 (m, 

2H), 6.76-6.79 (m, 1H), 6.9 (br s, 3.5H), 7.08-7.15 (m, 2H), 7.32 (t, 1H, J 7.84 Hz), 7.46-7.48 (m, 

1H), 7.70 (br s, 1H), 8.30 (s, 1H), 9.67 (s, 1H). 13C-NMR (150 MHz, [D6]-DMSO): δ (ppm) 25.8, 26.2, 

28.3, 28.6, 28.7, 29.5, 30.6, 30.7, 43.7, 77.3, 103.5, 115.2, 116.3, 119.2, 129.4, 136.1, 139.5, 

148.9, 155.6, 157.1, 163.4, 169.3, 174.9, 180.1, 183.9. HRMS: (ESI): m/z [M+H]+, calcd. for 

C27H38N7O4S
+: 556.2700, found: 556.2706. C27H37N7O4S (555.70). 

 

1-[4-(3-[2-(8-Aminooctylamino)-3,4-dioxocyclobut-1-ene-1-ylamino]phenyl)thiazol-2-

yl]guanidine- hydrotrifluoracetate (3.29) 

3.28 (140 mg, 0.25 mmol, 1eq) was suspended in CH2Cl2 (20 mL). TFA (689 mg, 6.05 mmol, 24 eq) 

was added and the reaction mixture was stirred for 5 h at room temperature. Removal of the 

solvent in vacuo afforded the crude product as an off-white solid (140 mg, 99%). 50 mg were 

further purified by preparative HPLC (column: Nucleodur, gradient: 0-30 min: MeCN/0.05% aq. 

TFA 15:85-65:35, tR = 12.5 min). 3.29 was obtained as a white fluffy solid (31 mg, 61.3%). Mp: 

210.0-217.6 °C decomposition. Rf = 0.2 (CH2Cl2/7 M NH3 in MeOH 6:1). RP‐HPLC (gradient 2, 220 

nm): 97.6% (tR = 14.76 min, k = 4.9). 1H-NMR (400 MHz, [D6]-DMSO, COSY, HSQC, HMBC): δ (ppm) 

1.23-1.32 (m, 8H), 1.48-1.52 (m, 2H), 1.55-1.60 (m, 2H), 2.74-2.77 (m, 2H), 3.59-3.63 (m, 2H), 

7.20-7.21 (m, 1H), 7.37 (t, 1H, J 7.86 Hz), 7.54-7.55 (m, 1H), 7.68 (br s, 3H), 7.74 (s, 1H), 8.12 (br s, 

1H), 8.46 (br s, 4H), 8.55 (s, 1H), 10.08 (s, 1H), 12.53 (br s, 1H). 13C-NMR (150 MHz, [D6]-DMSO, 

COSY, HSQC, HMBC): δ (ppm) 25.7, 27.0, 28.40, 28.41, 30.5, 30.7, 38.8, 43.7, 108.4, 115.5, 116.9 

(q, J 298 Hz, TFA), 117.2, 119.4, 129.8, 134.2, 139.9, 149.4, 154.2, 158.7 (q, J 32 Hz, TFA),160.2, 

163.2, 169.6, 180.2, 183.7. HRMS: (ESI): m/z [M+H]+, calcd. for C22H30N7O2S+: 456.2176, found: 

456.2175. C22H29N7O2S · C2HF3O2 (455.58 + 114.02). 

 

N-[8-(2-[3-(2-Guanidinothiazol-4-yl)phenylamino]-3,4-dioxocyclobut-1-ene-1-

ylamino)octyl]propionamide-hydrotrifluoracetate (3.30) 

3.29 (110 mg, 0.16 mmol, 1 eq) was dissolved in a mixture of triethylamine (65 mg, 0.64 mmol, 4 

eq), DMF (1 mL) and CH2Cl2 (1 mL). N-Succinimidyl propionate (21mg, 0.18 mmol, 1.1 eq) was 

added and the reaction mixture was stirred over night at room temperature. Removal of the 

solvent in vacuo and purification by preparative HPLC (column: Nucleodur, gradient: 0-30 min: 

MeCN/0.05% aq. TFA 25:75-70:30, tR = 13.1 min) afforded the product as white fluffy solid (12 

mg, 11.6%). Mp: 224-236.4 °C. Rf = 0.67 (CH2Cl2/7 M NH3 in MeOH 6:1). RP‐HPLC (gradient 2, 220 

nm): 98.5% (tR = 18.85 min, k = 6.5). 1H-NMR (400 MHz, [D6]-DMSO, COSY, HSQC, HMBC): δ (ppm) 

0.96 (t, 3H, J 7.62 Hz), 1.22-1.58 (m, 10H), 1.55-1.58 (m, 2H), 2.02 (q, 2H, J 7.62 Hz), 2.97-3.01 (m, 

2H), 3.60-3.61 (m, 2H), 7.13-7.15 (m, 1H), 7.37 (t, 1H, J 7.92 Hz), 7.54-7.55(m, 1H), 7.67-7.71(m, 

2H), 7.91 (br s, 1H), 8.29 (br s, 4H), 8.56 (s, 1H), 9.87 (s, 1H), 12.26 (br s, 1H). 13C-NMR (150 MHz, 

[D6]-DMSO, COSY, HSQC, HMBC): δ (ppm) 10.0, 25.8, 26.3, 28.48, 28.54, 28.6, 29.1, 30.5, 38.3, 

43.7, 108.3, 115.4, 117.1, 119.4, 129.8, 134.4, 139.8, 149.3, 154.2, 162.8, 163.1,169.5, 172.6, 

180.2, 183.8. HRMS: (ESI): m/z [M+H]+, calcd. for C25H34N7O3S
+: 512.2438, found: 512.2443. 

C25H33N7O3S · C2HF3O2 (511.65 + 114.02). 
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S-Methylthiouronium iodide (3.31)
40 

Methyliodide (9.30 g, 65.50 mmol, 1 eq) was added to a stirring solution of thiourea (5 g, 65.50 

mmol, 1 eq) in MeOH (50 mL). The reaction mixture was stirred under reflux for 1.5 h. The 

solvent was removed in vacuo and the residue was washed two times with diethyl ether (50 mL). 

3.31 was afforded as white solid (14.30 g, 99.9%). Mp: 117.2-118.1°C. Rf = 0.1 (PE/EtOAc 3:1). 1H-

NMR (300 MHz, [D6]-DMSO): δ (ppm) 2.56 (s, 3H), 8.89 (br s, 4H). 13C-NMR (75 MHz, [D6]-DMSO): 

δ (ppm) 13.2, 171.0. HRMS: (ESI): m/z [M+H]+, calcd. for C2H7N2S
+: 91.0324, found: 91.0327. 

C2H6N2S ∙ HI (90.14 + 127.91). 

 

N-tert-Butoxycarbonyl-S-methylisothiourea (3.32)
40 

3.31 (13.65 g, 62.45 mmol, 1 eq) and triethylamine (6.32 g, 62.45 mmol, 1 eq) were dissolved in 

CH2Cl2 (110 mL) and cooled to 0 °C. Di-tert-butyl dicarbonate (13.63 g, 62.45 mmol, 1 eq) 

dissolved in CH2Cl2 (30 mL) was added drop wise at 0 °C. The reaction mixture was allowed to 

warm to room temperature and was stirred over night. The organic layer was washed two times 

with water (200 mL). Product which passed in the aqueous layer was extracted two times with 

CH2Cl2 (100 mL). The combined organic layers were dried over sodium sulfate. Removal of the 

solvent in vacuo and purification by column chromatography (eluent: PE/EtOAc 6:1- 3:1) afforded 

the product as white solid (8.64 g, 72.6%). Mp: 88.4-90.3 °C. Rf = 0.45 (PE/EtOAc 3:1). 1H-NMR 

(300 MHz, CDCl3): δ (ppm) 1.44 (s, 9H), 2.38 (s, 3H), 7.50 (br s, 2H). 13C-NMR (75 MHz, CDCl3): δ 

(ppm) 13.4, 28.1, 79.9, 172.9. HRMS: (ESI): m/z [M+H]+, calcd. for C7H15N2O2S
+: 191.0849, found: 

191.0847. C7H14N2O2S (190.26).  

 

N
1
,N

6
-Bis([(tert-butoxycarbonylamino)(methylsulfanyl)methylene]aminocarbonyl)hexane-1,6-

diamine (3.33)
14 

3.32 (4.03 g, 21.1 mmol, 2.2 eq) and triethylamine (0.97 g, 9.62 mmol, 1) were dissolved in 

anhydrous CH2Cl2 (17 mL). 1,6-Diisocyanohexane (1.62 g, 9.6 mmol, 1 eq) was added under Ar-

atmosphere. The reaction mixture was stirred over night at room temperature. Removal of the 

solvent in vacuo and purification by column chromatography (eluent: PE/EtOAc 3:1- 1:3) afforded 

the product as white solid (4.65 g, 88.0%). Mp: 128.8-133.6 °C. Rf = 0.14 (PE/EtOAc 3:1). 1H-NMR 

(400 MHz, CDCl3): δ (ppm) 1.36-1.40 (m, 4H), 1.48 (s, 18H), 1.51-1.57 (m, 4H), 2.30 (s, 6H), 3.19-

3.24 (m, 4H), 5.53 (m, 2H), 12.30 (s, 2H). 13C-NMR (100 MHz, CDCl3): δ (ppm) 14.4, 26.7, 28.1, 

29.7, 40.1, 82.7, 151.2, 162.1, 167.4. HRMS: (ESI): m/z [M+H]+, calcd. for C22H41N6O6S2
+: 549.2524, 

found: 549.2526. C22H40N6O6S2 (548.72). 
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1-(Amino[2-(2-guanidinothiazol-4-ylmethylthio)ethylamino]methylene)-3-(6-[3-(amino[2-(2-

guanidinothiazol-4-ylmethylthio)ethylamino]methylene)ureido]hexyl)urea 

tetra(hydrotrifluoracetate) (3.34) 

The HCl salt of 3.3 (244 mg, 0.80 mmol, 2.2 eq), 3.33 (200mg, 0.36 mmol, 1 eq) and 

diisopropylethylamine (233 mg, 1.80 mmol, 5 eq) were suspended in MeOH (7 mL). The reaction 

mixture was stirred under reflux for 5 h. The solvent was removed under reduced pressure and 

the residue was purified by preparative HPLC (column: Nucleodur, gradient: 0-30 min: 

MeCN/0.05% aq. TFA 15:85-80:20, tR = 15.2 min). Removal of the MeCN in vacuo and 

lyophilisation afforded the Boc-deprotected 3.34 as a white solid. The residue was again purified 

by preparative HPLC (column: Nucleodur, gradient: 0-30 min: MeCN/0.05% aq. TFA 10:90-65:35, 

tR = 12.7 min). 3.34 was obtained as a white solid (45 mg, 10.7%). Mp: 59.1-61.9 °C. RP‐HPLC 

(gradient 2, 220 nm): 96.2% (tR = 12.95 min, k = 4.2). 1H-NMR (600 MHz, [D6]-DMSO, COSY, HSQC, 

HMBC): δ (ppm) 1.25-1.26 (m, 4H), 1.41-1.43 (m, 4H), 2.66 (t, 4H, J 6.78 Hz), 3.06-3.09 (m, 4H), 

3.44-3.47 (m, 4H, interfering with the water signal), 3.79 (s, 4H), 7.13 (s, 2H), 7.56(br s, 2H), 8.49 

(br s, 2H), 9.13 (br s, 2H), 10.34 (br s, 2H), 12.54 (br s, 2H). 13C-NMR (150 MHz, [D6]-DMSO, COSY, 

HSQC, HMBC): δ (ppm) 25.9, 28.8, 29.4, 30.0, 40.2, 53.5, 110.1, 116.9 (q, J 299 Hz, TFA), 148.5, 

153.7, 153.8, 154.3, 159.2 (q, J 32 Hz, TFA), 160.5. HRMS: (ESI): m/z [M+H]+, calcd. for 

C24H43N16O2S4
+: 715.2632, found: 715.2627. C24H42N16O2S4 · C8H4F12O8 (714.95 + 456.09). 

 

1-(Amino[3-(2-guanidinothiazol-4-yl)phenylamino]methylene)-3-(6-[3-(amino[3-(2-guanidino-

thiazol-4-yl)phenylamino]methylene)ureido]hexyl)urea tetra(hydrotrifluoracetate) (3.35) 

3.7 (280 mg, 1.21 mmol,2.2 eq) and 3.33 (300 mg, 0.55 mmol, 1 eq) were suspended in MeOH 

(15 mL). The reaction mixture was stirred under reflux for 48h. The solvent was removed under 

reduced pressure and the residue was purified by preparative HPLC (column: Nucleodur, 

gradient: 0-30 min: MeCN/0.05% aq. TFA 15:85-80:20, tR = 19.1 min). Removal of the MeCN in 

vacuo and lyophilisation afforded the Boc-deprotected 3.35 as a white solid. The residue was 

again purified by preparative HPLC (column: Nucleodur, gradient: 0-30 min: MeCN/0.05% aq. TFA 

15:85-45:55, tR = 15.3 min). 3.35 was obtained as a white solid (22 mg, 3.4%). Mp: 201.1 °C. 

RP‐HPLC (gradient 2, 220 nm): 98.5% (tR = 14.54 min, k = 4.8). 1H-NMR (600 MHz, [D6]-DMSO, 

COSY, HSQC, HMBC): δ (ppm) 1.26-1.29 (m, 4H), 1.42-1.45 (m, 4H), 3.10-3.13 (m, 4H), 7.30-7.32 

(m, 2H), 7.53-7.55 (t, 2H, J 7.85 Hz), 7.65 (br s, 2H), 7.82 (s, 2H), 7.92 (s, 2H), 7.96-7.97 (m, 2H), 

8.47-8.93 (m, 12H), 10.36 (br s, 2H), 10.81 (br s, 2H), 12.63 (br s, 2H). 13C-NMR (150 MHz, [D6]-

DMSO, COSY, HSQC, HMBC): δ (ppm) 25.9, 28.8, 1C under solvent peak (38.7-40.3), 109.1, 115.9, 

116.9 (q, J 297 Hz, TFA), 123.4, 125.3, 125.7, 130.3, 134.3, 134.8, 148.9, 153.6, 154.2, 159.3 (q, J 

31 Hz, TFA), 161.0. HRMS: (ESI): m/z [M+H]+, calcd. for C30H39N16O2S2
+: 719.2878, found: 719.2880. 

C30H38N16O2S2 · C8H4F12O8 (718.86 + 456.09). 

 

 

 



 Chapter 3 51 

N-[8-(2-[2-(2-Guanidinothiazol-4-ylmethylthio)ethylamino]-3,4-dioxocyclobut-1-ene-1-

ylamino)octyl]-[2,3-
3
H]propionamide-hydrotrifluoracetate ([

3
H]3.25) 

The radioligand [3H]3.25 was prepared by [3H]propionylation of the amine precursor 3.22 using 

reported protocols with minor modifications.11,19,24 A solution of N-succinimidyl [2,3-
3H]propionate (specific activity: 88 Ci/mmol, 1.5 mCi, 3.0 µg, 17.05 nmol, from American 

Radiolabeled Chemicals Inc., St. Louis, MO via Biotrend, Köln, Germany) in hexane/EtOAc 9:1 was 

transferred into a 1.5 mL reaction vessel with a screw cap. The solvent was evaporated in a 

vacuum concentrator at approx. 30 °C in 30 min. A solution of 3.22 (0.35 mg, 0.38 µmol, 22 eq) in 

a mixture of anhydrous DMF (50 µL) and DIPEA (0.8 µL) was added and the mixture was shaken at 

room temperature for 80 min. The analysis of the reaction mixture was performed with an RP-

HPLC system (cf. Figure 3.7) (Waters, Eschborn, Germany) consisting of two 510 pumps, a pump 

control module, a 486 UV/vis detector and a Flow-one Beta series A-500 radiodetector (Packard, 

Meriden; CT). A Luna C18 (3 µm, 150 mm x 4.6 mm) was used RP-column at a flow rate of 0.8 

mL/min. Mixtures of 0.04% TFA in CH3CN (A) and 0.05% aq. TFA (B) were used as mobile phase. 

The following linear gradient was applied: 0-20 min, A/B 14:86-32:68; 20-22min, 32:68-95:5; 22-

32min, 95:5 isocratic), (UV detection: 220 nm). 

For the isolation of [3H]3.25 (peak at tR = 18.8 min, cf. Figure 3.7) by analytical RP-HPLC 

(conditions as for the analysis of the reaction mixture, no radiometric detection), a H2O/TFA 

(96:4, v/v, 11.5 µL) was added to the reaction mixture. The eluates (three injections), containing 

[3H]3.25, were combined in a 2 mL reaction vessel with a screw cap and the volume was reduced 

in a vacuum concentrator to 200 µL. EtOH (800 µL) was added and the solution was transferred 

into a 3 mL borosilicate glass vial with conical bottom (Wheaton NextGen 3 mL V-vials). The 2 mL 

reaction vessel was rinsed twice with EtOH/H2O 80:20 (v/v, 2 x 200µL) and the wash solutions 

were transferred to the 3 mL glass vials yielding the tentative stock solution with a volume of 

1200 µL. 

As analysis of the tentative stock solution by radio-HPLC (4 µL dissolved in 126 µL of 0.05% aq 

TFA/MeCN 90:10; same conditions as for the isolation) revealed a second peak (tR = 14.3 min, cf. 

Figure 3.7B), amounting to ca. 13% of the total peak area, determination of the specific activity of 

[3H]3.25 was not feasible. Therefore, the specific activity of [3H]3.25 was estimated based on the 

specific activity (2.41 TBq/mmol, 65.03 Ci/mmol) of [3H]UR-MK30019 prepared on the same day 

from the same lot of N-succinimidyl [2,3-3H]propionate. The molarity of the tentative stock 

solution was calculated from the specific activity of [3H]UR-MK300 (2.41 TBq/mmol) and the 

activity concentration (determined with a LS 6500 liquid scintillation counter (Beckmann-Coulter, 

Munich, Germany)) of the tentative stock solution with respect to [3H]3.25 (2.47 ∙ 10-5 TBq/mL, 

87% of the total activity concentration). The final total activity concentration was adjusted to 

18.5 MBq/mL (0.5 mCi/mL) by the addition of EtOH/H2O (80:20 v/v) containing 0.22 mM 

ascorbinic acid (625 µL) resulting in the final stock solution with 6.69 µmol/L [3H]3.25 and 76.9 

µmol/L ascorbinic acid (radiochemical yield for [3H]3.25: 28.9 MBq, 64.3%). 
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Investigation of the chemical stability of 3.25 

The chemical stability of the “cold form” of the radioligand (3.25) was investigated in a mixture of 

EtOH/H2O (80:20, v/v) at room temperature. Initially, a solution of 3.25 (100 µM) in EtOH/H2O 

(80:20, v/v) was prepared. The incubation was started by dilution of this 100 µM solution of 3.25 

with a mixture of EtOH/H2O (80/20, v/v) resulting in a 15 µM solution of 3.25. After 0 h, 6 h, 12 h, 

24 h, 48 h, 72 h and 7 days a 8 µL aliquot was added to 192 µL of a mixture of CH3CN/ 0.05% aq. 

TFA (10:90, v/v). A sample (80 µL) was immediately analyzed by analytical HPLC (Gradient 2, 

detection wavelength of 273 nm).  

 

3.3.3 Pharmacological Methods 

Radioligand competition binding assay on Sf9 insect cell membranes 

Preparation of the membranes of Sf9 insect cells, expressing the hH2R-GsαS fusion protein or co-

expressing the hH1R + RGS4, the hH3R + Giα2 + β1γ2 or hH4R + Giα2 + β1γ2 proteins was described 

elsewhere.41  

Radioligand competition binding assays were performed as described previously with minor 

modifications, using the following radioligands: [3H]mepyramine (Hartmann Analytic, 

Braunschweig, Germany; hH1R, specific activity = 20 Ci/mmol, Kd = 4.5 nM, cfinal = 5 nM), [3H]UR-

DE25711 batch 04/2015 (hH2R, specific activity = 32.89 Ci/mmol, Kd = 12.2 nM, cfinal = 20 nM), 

[3H]tiotidine (Hartmann Analytic, Braunschweig, Germany; hH2R, specific activity = 78.42 

Ci/mmol, Kd = 12.75 nM, cfinal = 10 nM), [3H]Nα-methylhistamine (Hartmann Analytic, 

Braunschweig, Germany; hH3R, specific activity = 80 Ci/mmol, Kd = 3 nM, cfinal = 3 nM), 

[3H]histamine (Hartmann Analytic, Braunschweig, Germany; hH4R, specific activity = 25 Ci/mmol, 

Kd = 15.9 nM, cfinal = 10 nM).and [3H]UR-PI29420 (hH4R, specific activity = 93.3 Ci/mmol, Kd = 5.1 

nM, cfinal = 5 nM). 

On the day of the experiment, Sf9 membranes were thawed and sedimented by centrifugation at 

13,000 rpm at 4 °C for 10 min. The membranes were resuspended in ice cold binding buffer (12.5 

mM MgCl2, 1mM EDTA and 75 mM Tris/HCl, pH 7.4; in the following referred to as BB) and 

adjusted to a protein concentration of 2-4 µg/µL. 80 µL BB containing 0.2% BSA and the 

respective radioligand, followed by 10 µL of the investigated ligands at various concentrations 

(dissolved in H2O), were added to every well of a 96-well plate (PP microplates 96 well, Greiner 

Bio-One, Frickenhausen, Germany). Incubation was started by addition of the membrane 

suspension (10 µL). The plates were shaken for 60 min at room temperature in the dark. 

Subsequently, bound radioligand was separated from free radioligand by filtration through glass 

microfiber filters (Whatman GF/C, Maidstone, UK), treated with 0.3% polyethylenimine, using a 

96-well Brandel harvester (Brandel Inc., Unterföhring, Germany). The punched out filter pieces 

were transferred into clear, flexible 96-well PET microplate (round bottom, 1450-401, Perkin 

Elmer, Rodgau, Germany). Each well was supplemented with 200 µL scintillation cocktail 

(Rotiscint Eco plus, Roth, Karlsruhe, Germany) and incubated in the dark for at least 4 h. The 

radioactivity was measured with a MicroBeta2 1450 scintillation counter (Perkin Elmer, Rodgau, 

Germany). 
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Functional GTPγS assay on Sf9 insect cell membranes 

GTPγS assays were performed as described previously14 with minor modifications. [35S]GTPγS 
(specific activity = 1000 Ci/mmol) was purchased from Hartmann Analytic (Braunschweig, 

Germany). Sf9 membranes were prepared in the same manner as for radioligand competition 

binding and the protein concentration was adjusted to 0.5-1.5 µg/µL. 

Agonist mode: 80 µL of BB containing BSA (0.05% final), GDP (1 µM final) and [35S]GTPγS (20 nCi 
final), followed by 10 µL of the investigated ligands at various concentrations (dissolved in H2O) 

were added to every well of a 96-well plate (PP microplates 96 well, Greiner Bio-One, 

Frickenhausen, Germany). Incubation was started by addition of the membrane suspension (10 

µL). The plates were shaken for 60 min at room temperature in the dark. Subsequently, bound 

radioligand was separated from free radioligand by filtration through glass microfiber filters 

(Whatman GF/C, Maidstone, UK) using a 96-well Brandel harvester (Brandel Inc., Unterföhring, 

Germany). 

Antagonist mode of the GTPγS assay was performed in the same way as the agonist mode, but in 
the presence of the agonist histamine (1 µM final). 

 

Radioligand binding assays with [
3
H]UR-SB69 on Sf9 insect cell membranes 

The radioligand binding experiments were performed as described for competition binding 

assays on Sf9 insect cell membranes with minor adjustments. 

Saturation binding: For the determination of total binding 10 µL of H2O, followed by 70 µL BB 

containing 0.2% BSA, were added to every well of a 96-well plate (Primaria clear flat bottom 

microplates, Corning, New York, USA). For the determination of unspecific binding 10 µL 

famotidine (300 fold excess compared to the radioligand concentration, 3-600 µM) in H2O was 

added. 10 µL of [3H]3.25 in concentrations of 1-200 nM in H2O (for economic reasons the 

radioligand was mixed 1:4 with the cold form) were added to every well and the incubation was 

started by addition of the membrane suspension (10 µL). The plates were shaken for 90 min at 

room temperature in the dark. 

Competition binding: [3H]3.25 (specific activity = 65.03  Ci/mmol, KD = 15 nM) was used in a final 

concentration of 20 nM. The incubation time was 90 min. 

Association: 70 µL BB containing 0.2% BSA, followed by 10 µL of membrane suspension, were 

added to every well of a 96-well plate (Primaria clear flat bottom microplates, Corning, New York, 

USA). 10 µL [3H]3.25 (final concentration: 20 nM) in H2O and either 10 µL H2O (total binding) or 

10 µL famotidine (300-fold excess, unspecific binding) in H2O were added at different time points 

(0-180 min) at 25 °C. After the last addition the bound radioligand was separated from the free 

radioligand. The last time point (last addition of the radioligand) represented the shortest 

incubation time (0 min) and the first time point the longest incubation time (180 min). 

Dissociation: 70 µL BB containing 0.2% BSA, followed by 10 µL of membrane suspension, were 

added to every well of a 96-well plate (Primaria clear flat bottom microplates, Corning, New York, 
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USA). 10 µL [3H]3.25 (final concentration: 20 nM) in H2O and either 10 µL H2O (total binding) or 

10 µL famotidine (300-fold excess, unspecific binding) in H2O were added at different time points 

(0-180 min). Every time point was preincubated for 60 min at 25 °C. After the incubation time 

was over 100 µL famotidine (final concentration: 3 µM) in BB was added. After the last addition 

the bound radioligand was separated from the free radioligand. The last time point (last addition 

of the radioligand) represented the shortest dissociation time (0 min) and the first time point the 

longest dissociation time (180 min). 

 

Cell culture 

The preparation of stably transfected HEK cells (HEK293T-hH2R-qs542 and HEK293T-hH2R-

βArr243,44) was described elsewhere. 

Cells were cultivated at 37 °C in a water saturated atmosphere containing 5% CO2. Dulbecco´s 

Modified Eagle Medium, containing 4.5 g/L glucose, 3.7 g/L NaHCO3, 110 mg/L sodium pyruvate 

(DMEM, Sigma-Aldrich Munich, Germany) and supplemented with 0.584 g/L L-glutamine (L-

glutamine solution, Sigma-Aldrich Munich, Germany), 1% (v/v) Penicillin-Streptomycin (P/S, 

10,000 U/mL, Sigma-Aldrich Munich, Germany), 10% (v/v) fetal calf serum (FCS, Biochrom GmbH, 

Merck, Berlin, Germany) were used as a culture medium. Additionally, 100 µg/mL hygromycin B 

(A.G. Scientific, Inc., San Diego, CA) and 400 µg/mL G418 (Biochrom GmbH, Merck, Berlin, 

Germany) were added to the culture medium of HEK293T-hH2R-qs5 cells, and 400 µg/mL zeocin 

(InvivoGen, San Diego,USA) and 600 µg/mL G418 were added to the culture medium of HEK293T-

hH2R-βArr2 cells. 

 

Radioligand saturation binding assays with [
3
H]UR-SB69 on intact HEK293T-hH2R-qs5 and 

HEK293T-hH2R-βArr2 cells 

HEK293T cells were seeded in a 175-cm2 culture flask 5-7 days prior to the experiment. On the 

day of the experiment, cells were trypsinized and detached with fresh culture medium (5 mL). 

After centrifugation (250 g, 10 min) the cell pellet was resuspended in Leibovitz´s L-15 culture 

medium (L-15 medium, Gibco/Life Technologies, Carlsbad, USA) and the concentration was 

adjusted to 0.25-0.5 ∙ 106 cells/mL. 80 µL cell suspension was added to every well of a 96-well 

plate (Primaria clear flat bottom microplates, Corning, New York, USA). 10 µL of [3H]3.25 in 

concentrations of 1-200 nM in H2O (for economic reasons the radioligand was mixed 1:4 with the 

cold form) and either 10 µL H2O (total binding) or 10 µL famotidine (300 fold excess, unspecific 

binding) in H2O were added to every well. The plates were shaken for 90 min at room 

temperature in the dark. The separation of bound from free radioligand was performed as 

described for membranes. 
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3.3.4 Data analysis 

Retention factors k were calculated according to k = (tR- t0)/ t0 (t0 = dead time). Corrected counts 

per minute (ccpm) from the GTPγS assay (agonist mode) were plotted against the 

log(concentration of the test compound), and data were analyzed by a four parameter logistic 

equation (GraphPad Prism Software 5.0, GraphPad Software, San Diego, CA), followed by 

normalization (0%  = water value (basal activity), 100% = “top” histamine equation) and analysis 
by four-parameter logistic equation (log(agonist) vs. response – variable slope, GraphPad Prism). 

Data of the GTPγS assay (antagonist mode) were analysed by a four parameter logistic equation 

(GraphPad Prism), followed by normalization (100%  = “top” of the four-parameter logistic fit, 0% 

= unspecifically bound radioligand (ccpm) determined in the presence of famotidine at 100 µM) 

and analysis by four-parameter logistic equation (log(inhibitor) vs response – variable slope, 

GraphPad Prism). pIC50 values were converted into pKB values according to the Cheng-Prusoff 

equation45. Specific binding data from saturation binding experiments were plotted against the 

total radio labeled ligand concentration (approximately equivalent to the “free” ligand 
concentration) and analyzed by a two-parameter equation describing hyperbolic binding (one 

site – specific binding, GraphPad Prism) and unspecific binding data was analyzed by linear 

regression. Specific binding data from association binding experiments were analyzed by a two 

parameter equation describing an exponential rise to a maximum (one-phase association, 

GraphPad Prism) to obtain the observed association constant kobs. Specific binding data from 

dissociation binding experiments were analyzed by a three parameter equation (one phase 

decay, GraphPad Prism) to obtain the dissociation rate constant koff. Kinetic dissociation 

constants Kd (kin) were calculated from kon and koff (kon = (kobs – koff)/[L]; Kd (kin) = koff/ kon). Specific 

binding data from association and dissociation binding experiments were normalized (100% = 

Ymax (association) or Y0 (dissociation)). Total binding data from radioligand competition binding 

experiments were plotted against log(concentration competitor) and analyzed by a four-

parameter logistic equation (log(inhibitor) vs response – variable slope, GraphPad Prism), 

followed by normalization (100%  = “top” of the four-parameter logistic fit, 0% = unspecifically 

bound radioligand ligand determined in the presence of famotidine at 100 µM). Normalized data 

from competition binding experiments were again analyzed by a four-parameter logistic equation 

and obtained pIC50 values were converted into pKi values according to the Cheng-Prusoff 

equation45. 
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3.4 SUMMARY AND CONCLUSION 

The combination of the 2-guanidino-4-[(2-aminoethyl)thiomethyl]thiazole structure derived from 

famotidine or the guanidino-4-(3-aminophenyl)thiazole structure derived from ICI127032 with 

the derivatized squaramide moiety of BMY25368 led to propionylated H2R high affinity 

antagonists (3.24-3.26 and 3.30, pKi values: 6.8-7.65). The linking of two guanidinothiazole 

pharmacophores by a carbamoyl guanidine linker resulted in the high affinity bivalent 

antagonists 3.34 and 3.35 (pKi values: 7.3 and 7.14). The ligand 3.25 showed a high affinity to the 

hH2R (pKi value: 7.65) and selectivity over the other subtypes (no affinity to the hH1R, hH3R: pKi 

value of 5.3 and hH4R: pKi value of 4.4). The radiolabeled form [3H]3.25 (radiochemical purity of 

87%) bound in a saturable manner to membrane preparations of Sf9 cells and intact HEK293T 

cells, both expressing recombinant hH2Rs and the specific binding was best fitted by nonlinear 

regression to a one-site binding model. The determined Kd values (15-22 nM) were similar to the 

Ki value of 23 nM determined with [3H]UR-DE257 on membrane preparations of Sf9 cells. 

Although a part of [3H]3.25 bound in (pseudo)irreversible manner (plateau at 23%), the kinetic Kd 

value of 26 nM was comparable to the equilibrium one and the radioligand was completely 

displacable by histamine, famotidine and ICI127032. Lamtidine, by contrast, could only displace 

75% of [3H]3.25.  

However, the results of the biological evaluation of [3H]3.25 should be looked at critically, as the 

radiochemical puritiy of the radioligand was only moderate to begin with (87%) and stability 

studies showed that the radiochemical purity was further decreasing over a period of 15 month 

to 45%. Furthermore, only one major impurity, with unknown H2R affinity and potency, was 

formed. This was all very surprising, as the squaramide radioligand [3H]UR-DE257 was stable in 

EtOH for at least 24 month.11 As such one can well assume that the 2-guanidino-4-[(2-

aminoethyl)thiomethyl]thiazole structure is the part vulnerable for decomposition. Most 

propably the impurity was formed by oxidation of the sulfide linker to either the sulfoxide or 

sulfone. For unequivocal identification of the impurity, a solution of the radioligand containing 

the impurity should be spiked with either the sulfoxide or the sulfone compound and be analyzed 

by RP-HPLC. For this purpose both compounds have to be specifically synthesized. Depending on 

the structure of the impurity, this results may also question the stability of previously described 

H2R radioligands like [3H]ranitidine, [3H]cimetidine and [3H]tiotidine which contain the same 

sulfide linker.  

Nevertheless, [3H]3.25 could be a valuable molecular tool provided that purity and stability under 

storage conditions are improvable. Alternatively, it should also be considered to further optimize 

the derivatives of ICI127032 (e.g. 3.30) in order to obtain more stable ligands suitable for 

radiolabelling with high affinity.  
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4.1 INTRODUCTION 

The piperidinomethylphenoxypropylamine (potentidine) moiety is a privileged structure for H2R 

antagonism and part of many high affinity ligands. Some of the most important representatives 

are aminopotentidine and its derivatives (Figure 4.1).1,2 It was reported that aminopotentidine 

shows a high antagonistic activity (pKb value: 7.28) and a second or even a third substituent at 

the aromatic ring of the residue is well tolerated (e.g. iodoaminopotentidine: pKb value: 7.52 and 

diiodoaminopotentidine: pKb value: 7.79).1 Also compounds with only one substituent in 3-

position (e.g. Compound I) or even compounds with an aromatic heterocycle as aromatic ring 

(e.g. Compound II) showed a similar or slightly lower activity.1 Interestingly, the 125Iodine labeled 

iodoaminopotentidine was a very high affinity ligand at the hH2R (Kd value of 0.32 nM) and the 

pKi values of aminopotentidine, iodoaminopotentidine and iodoazidopotentidine obtained with 

the afore mentioned radioligand were considerably higher than the corresponding pKb values.1,3 

[125I]Iodoaminopotentidine was used to map the H2R densities in human and mammalian brain.3,4 

 

Figure 4.1. Structures of aminopotentidine, selected aminopotentidine derivatives, tiotidine and UR-DE257. 
a
Hirschfeld 

et al.
1
 
b
Traiffort et al.

4
 
c
Kelley et al.

5
 
d
Baumeister et al.

6
 

Although 125iodine labeled ligands have, compared to tritium labeled ligands, the advantage of a 

higher specific activity, their preparation and usage require higher safety precautions and the 

ligands can only be used for 4-5 weeks after preparation.7 In our workgroup tritiated compounds 

are highly preferred due to their longer half-life. The published tritiated radioligands showed a 

100-fold lower H2R affinity (e.g. [3H]tiotidine and [3H]UR-DE257) compared to 

[125I]iodoaminopotentidine.5,6  

Here, the synthesis and pharmacological characterization of aminopotentidine and its analogs 

with different substituents (e.g. iodine, bromine, chlorine, trifluoromethyl) in the 3-position as 

precursors for potential tritiated ligands and synthesis of the “cold” form of potential 
radioligands are reported. The derivatisation of the terminal anilinic amino group of these 
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precursors was performed with different acylating reagents e.g. N-hydroxy succinimidyl 

propionate or propionic acid chloride, which are also available in tritiated form. Furthermore, a 

series of aminopotentidine derivatives containing a functionalized (propionylated, acetylated or 

methylated) aminomethyl substituent in 4-position of the aromatic ring was synthesized and 

characterized. In order to enable radiolabeling, the substituents of the amino-group were chosen 

with regard to commercially available labeling reagents such as tritiated N-hydroxy succinimidyl 

propionate, propionic acid chloride, acetyl chloride or methyl iodide.  
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4.2 RESULTS AND DISCUSSION 

4.2.1 Chemistry 

The intermediate 1-(2-aminoethyl)-2-cyano-3-(3-[3-(1-piperidinylmethyl)phenoxy]-

propyl)guanidine 4.5 was prepared in a five step synthesis as described before1,2,8 with minor 

modifications (Scheme 4.1). Starting from 3-hydroxybenzaldehyde a reductive amination with 

piperidine in the presence of formic acid (Leuckart-Wallach reaction) led to 4.1. Addition of 

acrylonitrile to intermediate 4.1 led to 4.2 (variation of the Michael-addition reaction). The 

resulting cyanine 4.2 was reduced to the amine 4.3 by LiAlH4. Coupling of diphenyl-N-

cyanocarbonimidate with 4.3 and subsequently with ethylene diamine resulted in the 

cyanoguanidine 4.5. 

 

 

Scheme 4.1. Synthesis of 1-(2-Aminoethyl)-2-cyano-3-(3-[3-(1-piperidinylmethyl)phenoxy]propyl)guanidine 4.5. 

Reagents and conditions: i) formic acid, 110° C, 3 h, 87%; ii) benzyltrimethylammonium hydroxide, reflux, 24 h, 55%; iii) 

LiAlH4, anhydrous diethyl ether, RT, 4 h, 99.6%; iv) diphenyl-N-cyanocarbonimidate, 2-propanol, RT, 3 h, no purification; 

v) ethylene diamine, CH3CN, 150° C, 15 min under microwave radiation, 60% over two steps. 

The initial step of the synthesis of the aminopotentidine derivatives was the amide coupling of 

4.5 and the respective benzoic acid derivatives, resulting in either the amine-precursors (4.30-

4.34), amine-protected precursors (4.39, 4.45) or directly in the final products (4.42-4.44, 4.49 

and 4.50). 

The benzoic acid derivatives 4.15-4.17 were prepared in a four step synthesis (Scheme 4.2). 

Starting from 4-methyl benzoic acid derivatives, substituted with trifluoromethyl, chlorine, or 

bromine in 3-position, a side chain bromination using N-bromosuccinimide and AIBN were 

performed. The 4-bromomethyl benzoic acid derivatives 4.6-4.8 were transferred to the 

corresponding ethyl esters 4.9-4.11 using thionyl chloride and ethanol. A substitution reaction 

with sodium azide converted the ethyl esters 4.9-4.11 into the corresponding azides 4.12-4.14. 

The 4-aminomethyl benzoic acid ethylesters 4.15-4.17 were synthesized from 4.12-4.14 by a 

Staudinger Reaction using triphenylphosphine.  

The phthalimide protected (4-Aminomethyl)benzoic acid (4.19) was synthesized from 4.18 and 

phthalic anhydride in the presence of acetic acid according to published protocols (Scheme 

4.2).9,10 4-(Aminomethyl)-3-bromobenzoic acid (4.21) was synthesized from 4.14 by first 
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saponification of the ester and second Staudinger reaction of the azide with triphenylphosphine 

to the amine (Scheme 4.2). The phthalimide protection of 4.21 under the same conditions as of 

4.19 failed. This could be due to steric hindrance of the substituent in 3-position. 

 

Scheme 4.2. Synthesis of benzoic acid derivatives 4.15-4.17 and 4.19-4.21. Reagents and conditions: i) N-

Bromosuccinimide, AIBN, CHCl3, 75° C, 3-5 h, no purification; ii) thionyl chloride, EtOH, 65° C, 2-24 h, 43-52% over two 

steps; iii) NaN3, anhydrous DMF, RT, 24 h, 49-91%; iv) PPh3, THF/H2O (1:2, v/v), RT, 24 h, 66-80%; v) phthalic anhydride, 

AcOH, reflux, 3.5 h, 84%; vi) NaOH, THF, RT, 24 h, 93%; vii) PPh3, THF and H2O, RT, 24 h, 27%. 

The 4-(Propionamidomethyl)benzoic acids 4.25-4.27 were synthesized from 4.15-4.17 by amide 

coupling with succinimidyl propionate followed by saponification of the ethyl ester (Scheme 4.3).  

 

Scheme 4.3. Synthesis of benzoic acid derivatives 4.25-4.27. Reagents and conditions: i) TEA, succinimidyl propionate, 

CH2Cl2, RT, ON, no purification; ii) Aq. NaOH, THF, RT, ON, 49-84% over two steps. 

4-[(Dimethylamino)methyl]benzoic acid (4.28) and 3-bromo-4-[(dimethylamino)methyl]benzoic 

acid (4.29) were synthesized by Eschweiler-Clarke-Methylation of the corresponding amino acid 

4.18 or 4.21 with formaldehyde in the presence of formic acid (Scheme 4.4).11 

 

Scheme 4.4. Synthesis of benzoic acid derivatives 4.28 and 4.29. Reagents and conditions: i) Aqueous formaldehyde, 

formic acid, reflux, ON, 94-100%. 

In scheme 4.5 the synthesis of the propionylated aminopotentidine derivatives 4.35-4.38 is 

depicted. Aminopotentidine1 (4.30), iodoaminopotentidine1,3 (4.34) and its derivatives 4.31-4.33 

were synthesized from 4.5 by amide coupling with the corresponding 4-amino benzoic acid using 

TBTU as coupling reagent and DIPEA as base. The anilinic amino group of 4.30-4.34 showed a 

reduced nucleophilicity which made the labeling by amide coupling a challenge. The classical 
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reaction with succinimidyl propionate in the presence of triethylamine (see synthesis of 4.22-

4.24, Scheme 4.3) failed. The propionylation by an excess of propionyl chloride in the presence of 

DMAP and TEA resulted in the desired products 4.35-4.38 in very low yields 11-23%. 

 

Scheme 4.5. Synthesis of the aminopotentidine derivatives 4.35-4.38. Reagents and conditions: i) TBTU, DIPEA, CH2Cl2, 

RT, ON, 34-68%; ii) propionyl chloride, DMAP, TEA, CH2Cl2, RT, ON, 11-23%.  

The aminopotentidine derivative 4.41 was synthesized in three steps starting by amide coupling 

of 4.5 and 4.19 using same conditions by analogy with 4.30-4.34 (Scheme 4.6). The resulting 4.39 

was first phthalimide deprotected by hydrazine and then propionylated using succinimidyl 

propionate. 

 

Scheme 4.6. Synthesis of the aminopotentidine derivative 4.41. Reagents and conditions: i) TBTU, DIPEA, CH2Cl2, RT, 

ON, 74%; ii) Hydrazinium hydroxide, EtOH, RT, 4 h, 68%; iii) TEA, CH2Cl2, RT, ON, 81%. 

In case of the aminopotentidine derivatives 4.42-4.44 the final step was the amide coupling of 

the amine precursor 4.5 with the respective benzoic acids 4.25-4.27 using the same conditions as 

for the preparation of 4.30-4.34 (Scheme 4.7). 

 

Scheme 4.7. Synthesis of the aminopotentidine derivatives 4.42-4.44. Reagents and conditions: i) TBTU, DIPEA, CH2Cl2, 

RT, ON, 6-44%. 

The synthesis of the acetylated aminopotentidine derivatives 4.47 and 4.48 is depicted in 

Scheme 4.8. The amide coupling of 4.5 and 4.20, followed by a Staudinger Reaction and 
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acetylation of the resulting amine 4.46 with acetyl chloride resulted in the product 4.48. The 

acetylation of 4.40 under similar conditions led to 4.48. 

 

Scheme 4.8. Synthesis of the aminopotentidine derivatives 4.47 and 4.48. Reagents and conditions: i) HBTU, DIPEA, 

CH2Cl2, RT, ON, 44%; ii) PPh3, THF/H2O (1:2, v/v), RT, ON, 19%; iii) acetyl chloride, DIPEA, CH2Cl2, RT, ON, 20%; iv) acetyl 

chloride, DMAP, DIPEA, CH2Cl2, RT, 2 days, 25%. 

The dimethylated aminopotentidine derivatives 4.49 and 4.50 were synthesized by coupling of 

4.5 with the respective benzoic acid using HBTU as coupling reagent and DIPEA as base 

(Scheme 4.9). 

 

Scheme 4.9. Synthesis of the aminopotentidine derivatives 4.49 and 4.50. Reagents and conditions: i) HBTU, DIPEA, 

CH2Cl2, RT, ON, 28-32%. 

 

Adaptation of the synthetic route to radiosynthetic requirements 

Radiosynthesis makes special demands on synthesis planning and reaction conditions. The 

labeling reaction is the key-step of the synthesis and should be the last step. In general, for 

radiosynthesis an excess of precursor compared to radioactive labeling reagent is used. This 

facilitates handling with respect of safety precautions and reduces the costs of the overall 

synthesis. Within the series of the “cold” forms of potential radioligands the propionylated 
ligands 4.37 and 4.38 showed the highest hH2R affinity (see biological evaluation) and were 

therefore considered for radiolabeling.  

However, the reaction conditions for the synthesis of 4.37 and 4.38 were not suitable for 

radiosynthesis due to the necessary high excess of the “cold” labeling reagent propionic chloride 
and the low yields. In order to adjust the reaction conditions to radiosynthesis standards, a test 

reaction was carried out in small scale and with an excess of 4.33 (6.98 µg, 10 eq). HRMS analysis 

of the reaction mixture showed no 4.37 was formed. This preliminary test showed that the 
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radiosynthesis of 4.37 (and 4.38) will be a challenge. An alternative could be the synthesis of 

radiolabeled 4.50. Comound 4.50 showed high hH2R affinity in the range of UR-DE257 and 

tiotidine (see Biological evaluation). Dimethylation of 4.46 with methyliodide should be easily 

adaptable to radiosynthetic requirements. The main challenge will be to minimize formation of 

monomethylated and/or trimethylated by-product and the separation of 4.50 from the amine 

precursor and these by-products.  
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4.2.2 Biological Evaluation 

H2R affinity, selectivity compared to H3R and antagonism 

The aminopotentidine derivatives 4.30-4.38, 4.40-4.44 and 4.46-4.50 were investigated in 

equilibrium competition binding experiments on membrane preparations from Sf9 insect cells 

expressing the hH2R-GsαS fusion protein using the antagonist [3H]UR-DE2576 as radioligand. The 

selectivity of several compounds for the hH2R over the hH3R was investigated by competition 

binding experiments using membranes of Sf9 insect cells co-expressing the hH3R and Gαi2 and 

Gβ1γ2 proteins using [3H]Nα-methylhistamine as radioligand. Additionally, representative 

compounds were examined for hH2R agonism in the GTPγS binding assay on membrane 

preparations from Sf9 insect cells expressing the hH2R-GsαS fusion protein. Ligands which 

exhibited no agonism were also investigated in antagonist mode versus histamine as agonist. 

Selected curves are depicted in Figure 4.1 and the results are summarized in Table 4.1. 

Within the aminopotentidine derivatives iodoaminopotentidine (4.34) showed the highest hH2R 

affinity. The pKi value of 9.51 was in good agreement with the literature (gpH2R: pKi value of 9.151 

and hH2R: Kd value of 0.32 nM4). Also the 3-brominated aminopotentidine 4.33 showed a high 

hH2R affinity with a pKi value of 8.58. While the introduction of a bromine or iodine substituent in 

3-position of the benzoic acid moiety (4.33 or 4.34) led to an increase in affinity compared to 

aminopotentidine (4.30, pKi value of 7.7), a trifluoromethyl or chlorine substituent (4.31 or 4.32) 

retained the hH2R affinity (pKi value of 7.57-7.7). Likewise, the exchange of the anilinic amino 

group in 4-position with an aminomethyl group (4.40) was tolerated with almost no change in 

affinity (pKi value of 7.6) compared to 4.30. The 4-(propionamidomethyl)-3-bromobenzamide 

containing ligand 4.46 showed with a pKi value of 7.71 a decreased affinity compared to the 3-

brominated aminopotentidine 4.33. 

Within the target compounds (“cold” forms of potential radioligands) the propionylated 
iodoaminopotentidine 4.38 and the propionylated 3-bromo aminopotentidine 4.37 showed the 

highest hH2R affinities with pKi values of 8.18 and 8.5. The propionylation of the 3-halogenated 

aminopotentidines 4.35, 4.36 and 4.38 resulted in a decrease of hH2R affinity by one order of 

magnitude. By contrast, in case of 4.37, the propionylated analog of 4.33, the hH2R affinity was 

retained (pKi value of 8.5). The 4-(propionamidomethyl)benzamide containing ligands 4.41-4.44 

showed only moderate affinity to hH2R with pKi values of 6.58-7.2. The acetylation (4.48: pKi 

value of 6.4 and 4.47: pKi value of 7.09) as well as the propionylation (4.41: pKi value of 6.58 and 

4.44: pKi value of 6.9) of the 4-aminomethyl benzamide-containing amine precursors 4.40 and 

4.46 resulted in a decrease of hH2R affinity. The dimethylated analog of 4.40 (4.49) showed a low 

hH2R affinity with a pKi value of 5.61. In contrast, 4.50, the dimethylated 4.46, showed a high 

hH2R affinity with a pKi value of 7.54. 

The ligands 4.30, 4.31, 4.33-4.38, 4.40, 4.41, 4.43 and 4.44 showed a low hH3R affinity with pKi 

values of 4.5-5.22. Iodoaminopotentidine (4.34) showed with a 32000-fold higher affinity for the 

hH2R compared to hH3R the highest selectivity. Also the propionylated ligands 4.37 and 4.38 

showed a lower but still excellent selectivity (6900- or 2500-fold). 

All investigated ligands (4.30, 4.31, 4.33-4.35, 4.37, 4.38, 4.40, 4.41 and 4.44) were antagonists or 

inverse agonists in the GTPγS binding assay. Except for the pKb values of 4.40 and 4.44 (pKb value: 
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7.5 and 6.5), the calculated pKb values, obtained in the antagonistic mode, were considerably 

lower compared to the pKi values. Especially bromoaminopotentidine (4.33) and 

iodoaminopotentidine (4.34), which were high affinity hH2R antagonists in binding experiments 

(pKi values of 8.58 and 9.51), showed only low activities in the GTPγS binding assay (pKb values of 

6.5 and 6.7). With a pKb value of 7.6, the propionylated 3-bromo aminopotentidine 4.37 showed 

the highest activity among the investigated ligands. 

Antagonism of aminopotentidine (4.30) and iodoaminopotentidine (4.34) (pKb values of 6.0 and 

6.7) measured with a GTPyS binding assay on membrane preparations from Sf9 insect cells 

expressing the hH2R-GsαS fusion protein were lower than described in literature (pKb values of 

6.63 and 7.46, obtained by steady-state GTPase assay).5,12 Discrepancies between pKi values of 

aminopotentidine (4.30) and iodoaminopotentidine (4.34) from radioligand binding and pKb 

values from functional experiments were also described for the gpH2R by Hirschfeld et al (gpH2R: 

pKi values of 8.01 and 9.15 vs. pKb values of 7.28 and 7.52)1. Hirschfeld et al gave as possible 

explanation the different experimental setups which led to varying access to the H2R (e.g. guinea 

pig striatal membranes vs. intact isolated guinea pig right atrium). When a very similar 

experimental setup was used (in our study membrane preparations in both binding and 

functional studies), the use of different competitors (histamine vs. radiolabeled antagonist) could 

lead to the different results13. Agonists and antagonists may stabilize different receptor 

conformations that exhibit different affinities for the investigated agonists/antagonists/inverse 

agonists.13 For the antagonistic radioligand [3H]tiotidine it was already shown that it binds only to 

a fraction of the functionally active H2Rs.5  
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                 A                  B 

  
                 C                  D 

  
Figure 4.1. Displacement of the radioligand [

3
H]UR-DE257 (c = 20 nM, Kd = 12.2 nM) by (A) compounds 3.35-3.38 and 

(B) compounds 4.44, 4.46, 4.47, 4.50 and antagonism of (C) compounds 4.35, 4.37, 4.38 and (D) compounds 4.40, 

4.41,4.47 on hH2R determined in a GTPγS assay (antagonistic mode). Histamine (1 µM) was used for stimulation. Both 

determined on membrane preparations of Sf9 insect cells expressing the hH2R-GsαS fusion protein. Data represent 

mean values ± SEM of 2-4 experiments performed in triplicate. 
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Table 4.1. Affinities of the aminopotentidine derivatives 4.30-4.38, 4.40-4.44 and 4.46-4.50 to hH2,3R, obtained from 

equilibrium competition binding studies and hH2R antagonism expressed in the calculated pKb values determined by a 

GTPγS assay. 

 hH2R
 

hH3R
  

 

Compound 

Binding
a 

pKi
 

 

N 

GTPγSc 

pEC50 (pKB) 

 

N 

Binding
d 

pKi
 

 

N 

Selectivity
e 

hH2R:hH3R 

His 6.53 ± 0.04 3 5.80 ± 0.06 9 7.8 ± 0.1 3 19:1 

4.30 (APT) 
7.7 ± 0.1/ 

gpH2R: 8.011 
3 

(6.0 ± 0.4)/ 

(6.63)5  
3 4.92 ± 0.08 3 1:600 

4.31 7.7 ± 0.2b 3 (6.6 ± 0.4) 4 5.03 ± 0.07 3 1:470 

4.32 7.57 ± 0.01 3 n.d. - n.d. - n.d. 

4.33 8.58 ± 0.05 2 (6.5 ± 0.4) 4 4.8 ± 0.1 3 1:6000 

4.34 (IAPT) 
9.51 ± 0.06/ 

gpH2R: 9.151 
3 

(6.7 ± 0.1)/ 

(7.46)12 
3 5.0 ± 0.1 4 1:32000 

4.35 6.60 ± 0.08 3 (5.9 ± 0.2) 2 4.50 ± 0.09 4 1:130 

4.36 6.7 ± 0.1 3 n.d. - 4.7 ± 0.1 3 1:100 

4.37 8.5 ± 0.3 3 (7.6 ± 0.1) 3 4.66 ± 0.07 4 1:6900 

4.38 8.18 ± 0.07 3 (6.6 ± 0.4) 3 4.82 ± 0.09 4 1:2500 

4.40 7.6 ± 0.2b 2 (7.5 ± 0.2) 4 5.22 ± 0.09 2 1:240 

4.41 6.58 ± 0.04 3 (5.4 ± 0.3) 3 4.75 ± 0.06 3 1:68 

4.42 6.98 ± 0.08 3 n.d. - n.d. - n.d. 

4.43 7.2 ± 0.1 3 n.d. - 4.96 ± 0.03 2 1:170 

4.44 6.9 ± 0.1 3 (6.5 ± 0.1) 4 5.04 ± 0.08 2 1:72 

4.46 7.71 ± 0.07 3 n.d. - n.d. - n.d. 

4.47 7.09 ± 0.09 3 n.d. - n.d. - n.d. 

4.48 6.4 ± 0.1 4 n.d. - n.d. - n.d. 

4.49 5.61 ± 0.07 3 n.d. - n.d. - n.d. 

4.50 7.54 ± 0.09 3 n.d. - n.d. - n.d. 

Competition binding assay on membrane preparations of Sf9 insect cells: 
a
expression of the hH2R-GsαS fusion protein 

(radioligand: [
3
H]UR-DE257, c = 20 nM, Kd = 12.2 nM or 

b
[

3
H]tiotidine, c = 10 nM, Kd = 12.75 nM), 

d
co-expression of the 

hH3R and Gαi2 and Gβ1γ2 proteins (radioligand: [
3
H]N

α
-methylhistamine, c = 3 nM, Kd = 3 nM). 

c
[

35S]GTPγS assay 
determined on membrane preparations of Sf9 insect cells expressing the hH2R-GsαS fusion protein. The intrinsic activity 

(α) of histamine was set to 1.00, and α values of investigated compounds were referred to this value. The pKB values 

were determined in the antagonist mode versus histamine (c = 1 µM) as agonist. 
e
Selectivity represents the ratio of the 

corresponding Ki values. Data represent mean values ± SEM of N experiments performed in triplicate. Data were 

analyzed by nonlinear regression and were best fitted to four-parameter sigmoidal concentration-response curves. 

Data shown are means ± SEM of N independent experiments, each performed in triplicate.  
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4.3 EXPERIMENTAL SECTION 

4.3.1 General procedures 

Chemicals and solvents were purchased from the following suppliers: Merck (Darmstadt, 

Germany), Acros Organics (Geel, Belgium), Fluka (Buchs, Swiss), Alfa Aesar (Karlsruhe, Germany), 

Sigma Aldrich (Munich, Germany) and TCI (Tokyo, Japan). All solvents were of analytical grade or 

distilled prior to use. Anhydrous solvents were stored over molecular sieve under protective gas. 

Deuterated solvents for NMR spectroscopy were purchased from Deutero (Kastellaun, Germany). 

For the preparation of buffers and HPLC eluents Millipore water was used throughout. Column 

chromatography was carried out using Merck silica gel 60 (0.040-0.063 mm). Microwave assisted 

synthesis was performed with an Initiator 2.0 (Biotage, Uppsala, Sweden) using microwave 

reaction vials (Biotage, Uppsala, Sweden) combined with caps and septa. Automated flash 

chromatography was performed with a 971-FP flash-purification system (Agilent Technologies, 

Santa Clara, CA). Pre-packed columns (SuperFlash SF10-4 g, SF12-8 g, SF 15-12 g und SF15-24 g, 

Agilent Technologies, Santa Clara, CA) were used throughout. Reactions were monitored by thin 

layer chromatography (TLC) on Merck silica gel 60 F254 aluminium sheets, and compounds were 

detected with UV light at 254 nm and ninhydrin solution (0.8 g ninhydrin, 200 mL n-buthanol, 6 

mL acetic acid). Melting points were determined with a B-540 apparatus (BÜCHI GmbH, Essen, 

Germany) and are uncorrected. IR spectra were measured on a NICOLET 380 FT-IR 

spectrophotometer (Thermo Electron Corporation, USA). Nuclear Magnetic Resonance (1H NMR, 
13C NMR and 19F NMR) spectra were recorded on a Bruker Avance-300 (7.05 T, 1H: 300 MHz, 13C: 

75.5 MHz, 19F: 282 MHz), Avance-400 (9.40 T, 1H: 400 MHz, 13C: 100.6 MHz), or Avance-600 (14.1 

T; 1H: 600 MHz, 13C: 150.9 MHz; cryogenic probe) NMR spectrometer (Bruker BioSpin, Karlsruhe, 

Germany). Chemical shifts are given in δ (ppm) relative to external standards. Multiplicities are 

specified with the following abbreviations: s (singlet), d (doublet), t (triplet), q (quartet), qui 

(quintet), m (multiplet), br s (broad signal), as well as combinations thereof. In certain cases 2D-

NMR techniques (COSY, HSQC, HMBC and NOESY) were used to assign 1H and 13C chemical shifts. 

Low-resolution mass spectrometry (MS) was performed on a Finnigan ThermoQuest TSQ 7000 

instrument using an electrospray ionization (ESI) source or on a Finnigan SSQ 710A instrument 

(EI-MS, 70 eV). High-resolution mass spectrometry (HRMS) was performed on an Agilent 6540 

UHD Accurate-Mass Q-TOF LC/MS system (Agilent Technologies, Santa Clara, USA) using an ESI 

source. Preparative HPLC was performed with a system from Knauer (Berlin, Germany) consisting 

of two K-1800 pumps and a K-2001 detector. A YMC Triart C18 (150 x 20 mm, 5 µm, YMC Europe 

GmbH, Dinslacken, Germany) served as RP-column at a flow rate of 15 mL/min at room 

temperature. A detection wavelength of 220 nm and mixtures of CH3CN and 0.1% aq. NH3 as 

mobile phase were used throughout. CH3CN was removed from the eluates under reduced 

pressure (final pressure: 80 mbar) at 45 °C prior to lyophilisation (Christ alpha 2-4 LD 

lyophilisation apparatus equipped with a Vacuubrand RZ 6 rotary vane vacuum pump). Analytical 

HPLC analysis was performed on a system from Meck Hitachi, composed of a D-6000 interface, a 

L-6200A pump, a AS2000A auto sampler and a L-4000 UV-VIS detector. A Kinetex XB-C18 100A 

(250 x 4.6 mm, 5 µm, t0 = 2.9 min, Phenomenex, Aschaffenburg, Germany) served as RP-column 

for acidic runs (flow rate of 0.8 mL/min) and mixtures of 0.05% TFA in CH3CN (A) and 0.05% aq. 

TFA (B) were used as mobile phase. A YMC Triart C18 (150 x 2 mm, 5 µm, t0 = 1.63 min; YMC, 

Japan) served as RP-column for basic runs (flow rate of 0.35 mL/min) and mixtures of 0.1% NH3 in 
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CH3CN (A) and 0.1% aq. NH3 (B) were used as mobile phase. Helium degassing, room temperature 

and a detection wavelength of 220 nm were used throughout. Solutions for injection 

(concentration: 100-500 µM) were either prepared from stock solution (10 mM in DMSO) in a 

mixture of CH3CN and H2O corresponding to the initial eluent composition, or as a one to one 

mixture of the eluate (preparative HPLC) with Millipore water. The following linear gradients 

were applied for analytical HPLC analysis: gradient 1: 0-30 min: A/B 5:95-80:20, 30-32 min: 80:20-

95:5, 32-42 min: 95:5 or gradient 2: 0-30 min: A/B 10:90-80:20, 30-32 min: 80:20-95:5, 32-42 

min: 95:5 or gradient 3 (basic conditions, YMC Triat): 0-30 min: A/B 10:90-90:10, 30-32 min: 

90:10-95:5, 32-42 min: 95:5. Microanalysis was performed on a Vario micro cube (Elementar, 

Langenselbold, Germany). 

 

4.3.2 Experimental protocols and analytical data  

3-(Piperidin-1-ylmethyl)phenol (4.1)
2,6  

Piperidine (4.18 g, 49.1 mmol, 2 eq) and formic acid (98%, 3,3 g, 71,3 mmol, 2,6 eq) were added 

under ice cooling to 3-hydroxybenzaldehyde (3.00 g, 24.6 mmol, 1 eq) and the reaction mixture 

was stirred at 110 °C for 3 h. After cooling to room temperature, the reaction mixture was 

poured in H2O (15 mL). The aqueous solution was alkalized using ammonia solution (25%, w/w). 

The precipitated white solid product was filtered off and dried in vacuo (4.06 g, 87%). Mp: 134-

138 °C (Lit.2 mp. 136-137 °C). Rf = 0.2 (EtOAc/PE 85:15). 1H-NMR (400 MHz, [D6]DMSO, COSY): δ 

(ppm) 1.37-1.40 (m, 2H), 1.45-1.50 (m, 4H), 2.29 (br s, 4H), 3.31 (s, 2H), 6.59-6.62 (m, 1H), 6.67-

6.68 (d, 1H, J 7.4 Hz), 6.70-6.71 (m, 1H), 7.05-7.09 (t, 1H, J 7.7 Hz), 9.23 (s, 1H). 13C-NMR (100 

MHz, [D6]DMSO, COSY): δ (ppm) 24.0, 25.6, 53.9, 62.9, 113.7, 115.4, 119.3, 128.9, 140.1, 157.2. 

MS (LC-MS, CI, NH3, tR = 11.7 min): m/z (%) 192.1 (100) [M+H]+. C12H17NO (191.13). 

 

3-[3-(Piperidin-1-ylmethyl)phenoxy]propanenitrile hydrochloride (4.2)
2,6

 

4.1 (4.00 g, 20.9 mmol, 1 eq) was suspended in acrylonitrile (14 mL, 210 mmol, 10 eq) and a 

catalytic amount of benzyltrimethylammonium hydroxide (40% in MeOH, 0.2 mL) was added. The 

reaction mixture was stirred over night under reflux. The excess of acrylonitrile was removed 

under reduced pressure and the oily residue was dissolved in diethyl ether (25 mL). The organic 

layer was washed with sodium hydroxide solution (5%, w/w, 20 mL) and H2O (20 mL). The 

combined aqueous layers were extracted with diethyl ether (20 mL). The organic layers were 

combined and dried over Na2SO4. The product was precipitated as HCl salt with HCl in 2-propanol 

(5-6 M). Removal of the solvent in vacuo afforded the product as white solid (3.25 g, 55%). Mp: 

163.5-165.7 °C (Lit. 2 Mp: 161-162 °C). Rf = 0.2 (EtOAc/PE 85:15). 1H-NMR (400 MHz, [D6]DMSO, 

HSQC, NOESY): δ (ppm) 1.28-1.39 (m, 1H), 1.66-1.88 (m, 5H), 2.76-2.85 (m, 2H), 3.03-3.06 (t, 2H, J 

5.9 Hz), 3.22-3.25 (d, 2H, J 11.8 Hz), 4.20-4.24 (m, 4H), 7.02-7.05 (dd, 1H,4
J

 2.0 Hz, 3
J 8.3 Hz), 7.18-

7.20 (d,1H, J 7.7 Hz), 7.35-7.39 (m, 2H), 10.92 (br s, 1H). 13C-NMR (100 MHz, [D6]DMSO, HSQC, 

NOESY): δ (ppm) 17.9, 21.4, 22.0, 51.5, 58.6, 62.8, 115.6, 117.3, 118.8, 124.1, 129.9, 131.4, 157.7. 

MS (LC-MS, CI, NH3, tR= 13.5 min): m/z (%) 245.2 (100) [M+H]+. C15H20N2O · HCl (244.34 + 36.46). 
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3-[3-(Piperidin-1-ylmethyl)phenoxy]propan-1-amine (4.3) 2,6
 

4.2 (3.00 g, 10.71 mmol, 1 eq) was slowly added to a suspension of lithium aluminium hydride 

(609 mg, 16.90 mmol, 1.6 eq) in anhydrous diethyl ether (30 mL) and the reaction mixture was 

stirred for 4 h at room temperature. After the remaining lithium aluminium hydride was 

hydrolyzed with sodium hydroxide solution (5%, w/w, 35 mL), diethyl ether (50 mL) was added 

and the insoluble material was filtered off. The two layers were separated and the organic layer 

was dried over Na2SO4. Removal of the solvent in vacuo afforded the product as colorless oil 

(2.59 g, 99.6%). Rf = 0.1 (EtOAc/MeOH + 1-3 drops TEA 80:20). 1H-NMR (400 MHz, CDCl3): δ (ppm) 

1.36 (br s, 2H), 1.39-1.45 (m, 2H), 1.54-1.59 (m, 4H), 1.88-1.95 (qui, 2H, J 6.5 Hz), 2.36 (m, 4H), 

2.90 (t, 2H, J 6.7 Hz), 3.43 (s, 2H), 4.04 (t, 2H, J 6.2 Hz), 6.76-6.78 (m, 1H), 6.87-6.89 (m, 2H), 7.19 

(m, 1H). 13C-NMR (100 MHz, CDCl3): δ (ppm) 24.5, 26.1, 33.3, 39.4, 54.6, 63.9, 65.9, 113.0, 115.3, 

121.6, 129.1, 140.5, 159.1. HRMS (ESI): m/z [M+H]+ calcd. for C15H25N2O
+: 249.1961, found: 

249.1961. C15H24N2O (248.37). 

 

Phenyl-N'-cyano-N-(3-[3-(piperidin-1-ylmethyl)phenoxy]propyl)carbamimidate (4.4) 
8 

4.3 (600 mg, 2.42 mmol, 1 eq) was added to a solution of diphenyl-N-cyanocarbonimidate (633 

mg, 2,66 mmol, 1,1 eq) in 2-propanol (90 mL) and the reaction mixture was stirred for 3 h at 

room temperature. The solvent was removed under reduced pressure and the product was 

recristallized in diethylether. 4.4 obtained as a white solid (877 mg, 93%) which still contained the 

by-product phenol and was directly used for the next step. Rf = 0.9 (CH2Cl2 / 7 N NH3 in MeOH 

90:10). MS: (LC-MS, ESI, tR = 5.2 min): m/z (%) 393,1 (100) [M+H]+. C23H28N4O2 (392.22). 

 

1-(2-Aminoethyl)-2-cyano-3-(3-[3-(1-piperidinylmethyl)phenoxy]propyl)guanidine (4.5)
1
 

Ethylendiamine (307 mg, 5.10 mmol, 20 eq) was added to a stirring solution of 4.4 (100 mg, 0.26 

mmol, 1 eq) in CH3CN (5 mL). The reaction mixture was stirred for 15 min at 150 °C under 

microwave radiation. The solvent was removed under reduced pressure and the residue was 

dissolved in CH2Cl2 (7 mL). The organic layer was washed three times with H2O (7 mL) and three 

times with aqueous sodium hydroxide solution (5 M, 7 mL). The organic layer was dried over 

Na2SO4. Removal of the solvent in vacuo afforded the product as colorless oil (55 mg, 60%). Rf = 

0.3 (CH2Cl2 / 7 N NH3 in MeOH 90:10).1H-NMR (400 MHz, CDCl3, COSY, HSQC, HMBC): δ (ppm) 

1.39-1.41 (m, 2H), 1.50-1.56 (m, 4H), 1.97-2.03 (qui, 2H, J 6.2 Hz), 2.33 (br s, 4H), 2.80 (t, 2H, J 5.2 

Hz), 3.18 (t, 2H, J 5.2 Hz), 3.39 (m, 4H), 4.00 (t, 2H, J 5.8 Hz), 6.20 (br s, 0.8H), 6.74-6.76 (m, 1H), 

6.85-6.88 (m, 2H), 7.17 (t, 1H, J 7.7 Hz). 1H-NMR (400 MHz, CD3OD): δ (ppm) 1.46-1.48 (m, 2H), 

1.57-1.63 (m, 4H), 2.02-2.08 (m, 2H), 2.42 (br s, 4H), 2.72-2.75 (t, 2H, J 6.3 Hz), 3.23-3.26 (t, 2H, J 

6.3 Hz), 3.41-3.44 (t, 2H, J 6.7 Hz), 3.47 (s, 2H), 4.05-4.08 (t, 2H, J 5.8 Hz), 6.86-6.90 (m, 2H), 6.95-

6.96 (m, 1H), 7.20-7.25 (t, 1H, J 7.8 Hz). 13C-NMR (100 MHz, CDCl3, COSY, HSQC, HMBC): δ (ppm) 

24.4, 26.0, 28.9, 39.1, 41.8, 45.3, 54.6, 63.8, 65.4, 112.9, 115.1, 119.2, 122.0, 129.2, 140.5, 158.6, 

161.3. HRMS: (ESI): m/z [M+H]+, calcd. for C19H31N6O+: 359.2554, found: 359.2552. C19H30N6O 

(358.49). 
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General procedure for the synthesis of the ester protected benzoic acid derivatives 4.9-4.11 

In order to remove residual water and the stabilisator from the CHCl3, the solvent was filtered 

through extra dry AlO3 (50 g for 100 mL). The 4-methyl benzoic acid derivative (1 eq) and AIBN 

(0.1 eq) were suspended in CHCl3 (15-20 mL). N-bromosuccinimide (1.5 eq) was added portion 

wise and under stirring to the hot (75 °C) suspension. The reaction mixture was stirred for 3-5 h 

at 75 °C. Removal of the solvent under reduced pressure afforded the 4-(bromomethyl)benzoic 

acid derivatives 4.6-4.8 which were used for the next step without further purification. The crude 

4.6, 4.7 or 4.8 was suspended in EtOH (10 mL) and thionyl chloride (2-3 eq) was added drop wise. 

The reaction mixture was stirred for 2-24 h at 65 °C. The product was purified by automated flash 

chromatography. Varying amounts of the respective ethyl 4-(chloromethyl) benzoate derivative 

were formed as by-product and couldn´t be separated by flash chromatography.  

 

Ethyl 4-(bromomethyl)-3-(trifluoromethyl)benzoate (4.9)
14

  

4.9 was prepared from 4-methyl 3-(trifluoromethyl) benzoic acid (500 mg, 2.45 mmol, 1 eq), AIBN 

(40 mg, 0.24 mmol, 0.1 eq), N-bromosuccinimide (654 mg, 3.67 mmol, 1.5 eq) in CHCl3 (20 mL) 

and ester formation with thionyl chloride (583 mg, 4.90 mmol, 2 eq) in EtOH (10 mL) according to 

the general procedure. Purification by automated flash chromatography (PE/EtOAc 100:0-97:3 in 

20 min) and removal of the solvent in vacuo afforded the product as colourless oil (280 mg, 43%). 

Rf = 0.45 (PE/EtOAc 95:5).1H-NMR (300 MHz, CDCl3, COSY, HSQC, HMBC): δ (ppm) 1.41 (t, 3H, J 

7.14 Hz), 4.38-4.45 (q, 2H, J 7.14 Hz), 4.78 (s, 2H), 7.74-7.77 (m, 1H), 8.22-8.25 (m, 1H), 8.33 (m, 

1H). 13C-NMR (100 MHz, CDCl3, COSY, HSQC, HMBC): δ (ppm) 14.3, 41.4, 61.7, 123.6 (q, 1C, JC,F 

275.25 Hz), 127.35 (q, 1C, JC,F 5.85 Hz), 128.5 (q, 1C, JC,F 31.52 Hz), 130.8, 131.9, 133.2, 140.13 (q, 

1C, JC,F 1.40 Hz), 164.9. 19F-NMR (282 MHz, CDCl3): δ (ppm) -60.24. HRMS: (ESI): m/z [M+H]+, calcd. 

for C11H11BrF3O2
+: 310.9889, found: 310.9892. HRMS: (ESI): m/z [M+H]+, calcd. for C11H11ClF3O2

+: 

267.0394, found: 267.0395. C11H10BrF3O2 (311.10). 

 

Ethyl 4-(bromomethyl)-3-chlorobenzoate (4.10)
15

 

4.10 was prepared from 3-chloro 4-methyl benzoic acid (380 mg, 2.23 mmol, 1 eq), AIBN (37 mg, 

0.22 mmol, 0.1 eq), N-bromosuccinimide (595 mg, 3.34 mmol, 1.5 eq) in CHCl3 (15 mL) and ester 

formation with thionyl chloride (691 mg, 6.69 mmol, 3 eq) in EtOH (10 mL) according to the 

general procedure. Purification by automated flash chromatography (PE/EtOAc 100:0-97.5:2.5 in 

25 min) and removal of the solvent in vacuo afforded the product as colourless oil (320 mg, 52%). 

Rf = 0.74 (PE/EtOAc 6:1).1H-NMR (300 MHz, CDCl3): δ (ppm) 1.40 (t, 3H, J 7.14 Hz), 4.35-4.42 (q, 

2H, J 7.14 Hz), 4.72 (s, 2H), 7.56 (d, 1H, J 8.14 Hz), 7.92-7.95 (m, 1H), 8.06-8.07 (m, 1H). 13C-NMR 

(100 MHz, CDCl3): δ (ppm) 14.3, 43.0, 61.6, 128.2 130.6, 130.8, 132.1, 134.1, 139.5, 165.0. HRMS: 

(ABCI): m/z [M+H]+, calcd. for C10H11BrClO2
+: 276.9625, found: 276.9626. HRMS: (ABCI): m/z 

[M+H]+, calcd. for C10H11Cl2O2
+: 233.0131, found: 233.0131. C10H10BrClO2 (277.54). 
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Ethyl 4-(bromomethyl)-3-bromobenzoate (4.11)
16,17

 

4.11 was prepared from 3-bromo 4-methyl benzoic acid (2.00 g, 9.30 mmol, 1 eq), AIBN (153 mg, 

0.93 mmol, 0.1 eq), N-bromosuccinimide (2.48 g, 13.95 mmol, 1.5 eq) in CHCl3 (150 mL) and ester 

formation with thionyl chloride (2.21 g, 18.60 mmol, 2 eq) in EtOH (50 mL) according to the 

general procedure. The crude product was purified first by column chromatography (PE/EtOAc 

100:0-90:10) and then by automated flash chromatography (PE/EtOAc 100:0-85:15 in 40 min). 

Removal of the solvent in vacuo afforded the product as a slightly yellow oil (1.39 g, 46%). Rf = 

0.60 (PE/EtOAc 5:1).1H-NMR (400 MHz, CDCl3): δ (ppm) 1.40 (t, 3H, J 7.19 Hz), 4.36-4.42 (q, 2H, J 

7.19 Hz), 4.72 (s, 2H), 7.57 (d, 1H, J 8.01 Hz), 7.98-8.00 (m, 1H), 8.25 (m, 1H). 13C-NMR (100 MHz, 

CDCl3): δ (ppm) 14.3, 45.5, 61.5, 123.8, 128.9, 130.6, 132.1, 134.1, 141.1, 164.8. HRMS: (ESI): m/z 

[M+H]+, calcd. for C10H11Br2O2
+: 320.9120, found: 320.9114. HRMS: (ESI): m/z [M+H]+, calcd. for 

C10H11BrClO2
+: 276.9626, found: 276.9624. C10H10Br2O2 (322.00). 

 

General procedure for the synthesis of the azide derivatives 4.12-4.14 

Sodium azide (4 eq) was added to a solution of 4.9-4.11 (1 eq) in anhydrous DMF (5-10mL). The 

reaction mixture was stirred for 24 h at room temperature. H2O (80 mL) was added and the 

product was extracted three times with CH2Cl2 (60 mL). The organic layers were combined and 

the solvent was removed under reduced pressure. The residue was dissolved in EtOAc (80 mL) 

and the organic layer was washed three times saturated CaCl2 solution (50 mL), one time with 

brine (50 mL) and was then dried over Na2SO4. Removal of the solvent afforded the desired 

product. 

 

Ethyl 4-(azidomethyl)-3-(trifluoromethyl)benzoate (4.12) 

4.12 was prepared from 4.9 (490 mg, 1.84 mmol, 1 eq) and sodium azide (1478 mg, 7.35 mmol, 4 

eq) according to general procedure. Removal of the solvent in vacuo afforded the product as a 

slightly yellow oil (430 mg, 83%). Rf = 0.5 (PE/EtOAc 95:5).1H-NMR (300 MHz, [D6]DMSO): δ (ppm) 

1.34 (t, 3H, J 7.10 Hz), 4.32-4.39 (q, 2H, J 7.10 Hz), 4.76 (s, 2H), 7.85-7.88 (m, 1H), 8.20 (m, 1H), 

8.26-8.29 (m, 1H). 13C-NMR (75 MHz, [D6]DMSO): δ (ppm) 13.9, 49.86 (q, 1C, JC,F 2.08 Hz), 61.4, 

123.4 (q, 1C, JC,F 274.04 Hz), 126.35 (q, 1C, JC,F 5.81 Hz), 127.2 (q, 1C, JC,F 30.85 Hz), 130.1, 131.7, 

133.3, 138.70 (q, 1C, JC,F 1.46 Hz), 164.1. 19F-NMR (282 MHz, [D6]DMSO): δ (ppm) -58.39. HRMS: 

(ESI): m/z [M+H]+, calcd. for C11H11F3N3O2
+: 274.0798, found: 274.0797. C11H10F3N3O2 (273.22). 

 

Ethyl 4-(azidomethyl)-3-chlorobenzoate (4.13) 

4.13 was prepared from 4.10 (260 mg, 1.12 mmol, 1 eq) and sodium azide (290 mg, 4.46 mmol, 4 

eq) according to general procedure. Removal of the solvent in vacuo afforded the product as 

colorless oil (130 mg, 49%). Rf = 0.44 (PE/EtOAc 95:5).1H-NMR (300 MHz, CDCl3): δ (ppm) 1.40 (t, 

3H, J 7.12 Hz), 4.35-4.42 (q, 2H, J 7.13 Hz), 4.68 (s, 2H), 7.54-7.57 (d, 1H, J 8.00 Hz), 8.00-8.03 (m, 

1H), 8.50-8.51 (m, 1H). 13C-NMR (75 MHz, CDCl3): δ (ppm) 14.4, 50.5, 61.7, 98.87, 129.91, 129.95, 



78 Chapter 4 

132.02, 140.9, 144.4, 164.7. HRMS: (ESI): m/z [M+H]+, calcd. for C10H11ClN3O2
+: 240.0534, found: 

240.0538. C10H10ClN3O2 (239.66). 

 

Ethyl 4-(azidomethyl)-3-bromobenzoate (4.14) 

4.14 was prepared from 4.11 (290 mg, 1.05 mmol, 1 eq) and sodium azide (272mg, 4.18 mmol, 4 

eq) according to general procedure. Removal of the solvent in vacuo afforded the product as 

yellow oil (270 mg, 91%). Rf = 0.33 (PE/EtOAc 95:5).1H-NMR (400 MHz, CDCl3): δ (ppm) 1.40 (t, 

3H, J 7.12 Hz), 4.36-4.42 (q, 2H, J 7.12 Hz), 4.55 (s, 2H), 7.48-7.50 (d, 1H, J 7.96 Hz), 8.00-8.02 (m, 

1H), 8.26 (m, 1H). HRMS: (ESI): m/z [M+H]+, calcd. for C10H11BrN3O2
+: 284.0029, found: 284.0032. 

C10H10BrN3O2 (284.11). 

 

General procedure for the synthesis of the amine derivatives 4.15-4.17 

4.12, 4.13 or 4.14 (1 eq) and triphenylphosphine (1.12 eq) were dissolved in a mixture of THF and 

H2O (5/1, v/v, 4 mL). The reaction mixture was stirred over night at room temperature. The THF 

was removed under reduced pressure and the residue was diluted with H2O (1-7 mL). The pH 

value was adjusted to two by adding aqueous HCl solution (0.5 M). The aqueous layer was 

washed three times with EtOAc (10-20 mL). Removal of the H2O afforded the desired product as 

HCl salt. 

 

Ethyl 4-(aminomethyl)-3-(trifluoromethyl)benzoate (4.15) 

4.15 was prepared from 4.12 (170 mg, 0.62 mmol, 1 eq) and triphenylphosphine (183 mg, 0.70 

mmol, 1.12 eq) dissolved in a mixture of THF and H2O (5/1, v/v, 4 mL) according to general 

procedure. Removal of the solvent in vacuo afforded the product as yellow solid (140 mg, 80%). 

Rf = 0.36 (CH2Cl2 / 2 N NH3 in MeOH 95:5).1H-NMR (300 MHz, [D6]DMSO): δ (ppm) 1.34 (t, 3H, J 

7.11 Hz), 4.24 (br s, 2H), 4.33-4.40 (q, 2H, J 7.12 Hz), 8.02-8.05 (d, 1H, J 8.17 Hz), 8.21 (m, 1H), 

8.29-8.32 (m, 1H), 8.99 (br s, 3H). 13C-NMR (75 MHz, [D6]DMSO): δ (ppm) 13.9, 38.3(q, 1C, JC-F 

3.40 Hz), 61.4, 123.4 (q, 1C, JC-F 274.35 Hz), 126.06 (q, 1C, JC-F 5.56 Hz), 127.3 (q, 1C, JC-F 30.57 Hz), 

130.1, 131.0, 133.0, 137.1 (q, 1C, JC-F 1.41 Hz), 164.0. 19F-NMR (282 MHz, [D6]DMSO): δ (ppm) -

58.24. HRMS: (ESI): m/z [M+H]+, calcd. for C11H13F3NO2
+: 248.0893, found: 248.0895. C11H12F3NO2 

(247.22). 

 

Ethyl 4-(aminomethyl)-3-chlorobenzoate (4.16)  

4.16 was prepared from 4.13 (920 mg, 3.84 mmol, 1 eq) and triphenylphosphine (1128 mg, 4.30 

mmol, 1.12 eq) dissolved in a mixture of THF and H2O (5/1, v/v, 20 mL) according to general 

procedure. Removal of the solvent in vacuo afforded the product as white solid (630 mg, 66%). Rf 

= 0.5 (CH2Cl2 / 2 N NH3 in MeOH 95:5). 1H-NMR (400 MHz, [D6]DMSO): δ (ppm) 1.33 (t, 3H, J 7.08 

Hz), 4.19 (br s, 2H), 4.31-4.37 (q, 2H, J 7.10 Hz), 7.81-7.83 (m, 1H), 7.96-7.98 (m, 2H), 8.85 (br s, 
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3H). 13C-NMR (100 MHz, [D6]DMSO): δ (ppm) 14.0, 39.7, 61.3, 127.7, 129.4, 130.6, 131.4, 133.0, 

136.7, 164.1. HRMS: (ESI): m/z [M+H]+, calcd. for C10H13ClNO2
+: 214.0629, found: 214.0631. 

C10H12ClNO2 (213.66). 

 

Ethyl 4-(aminomethyl)-3-bromobenzoate (4.17) 

4.17 was prepared from 4.14 (730 mg, 2.51 mmol, 1 eq) and triphenylphosphine (755 mg, 2.88 

mmol, 1.12 eq) dissolved in a mixture of THF and H2O (5/1, v/v, 15 mL) according to general 

procedure. Removal of the solvent in vacuo afforded the product as white solid (550 mg, 73%). 

Mp: 212-213 °C. Rf = 0.5 (CH2Cl2 / 3.5 N NH3 in MeOH 95:5). 1H-NMR (400 MHz, [D6]DMSO): δ 

(ppm) 1.34 (t, 3H, J 7.12 Hz), 4.18 (br s, 2H), 4.31-4.37 (q, 2H, J 7.11 Hz), 7.77-7.79 (d, 1H, J 8.11 

Hz), 8.01-8.03 (m, 1H), 8.15 (m, 1H), 8.78 (br s, 3H). 13C-NMR (100 MHz, [D6]DMSO): δ (ppm) 14.0, 

41.8, 61.3, 123.1, 128.2, 130.3, 131.4, 132.6, 138.3, 164.0. HRMS: (ESI): m/z [M+H]+, calcd. for 

C10H13BrNO2
+: 258.0124, found: 258.0127. C10H12BrNO2 (258.12). 

 

4-((1,3-Dioxoisoindolin-2-yl)methyl)benzoic acid (4.19)
9,10

 

(4-Aminomethyl)benzoic acid (4.18) (200 mg, 1.32 mmol, 1 eq) and phthalic anhydride (212 mg, 

1.46 mmol, 1.1 eq) were suspended in acetic acid (1 mL) and the reaction mixture was stirred 

under reflux for 3.5 h. The solvent was removed under reduced pressure and the residue was 

suspended in H2O (2 mL). The product was filtered off and dried in vacuo. 4.19 was obtained as 

white solid (312 mg, 84%). Mp: 262-266 °C (Lit. mp9: 267-270 °C). Rf = 0.8 (CH2Cl2 / MeOH + 2 

drops TFA 95:5). 1H-NMR (300 MHz, [D6]DMSO): δ (ppm) 4.84 (s, 2H), 7.42 (d, 2H, J 8.22 Hz), 7.85-

7.94 (m, 6H), 12.95 (br s, 1H). 13C-NMR (100 MHz, [D6]DMSO): δ (ppm) 40.6, 123.3, 127.4, 129.6, 

129.9, 131.6, 134.6, 141.5, 167.0, 167.7. HRMS: (ESI): m/z [M+H]+, calcd. for C16H12NO4
+: 282.0761, 

found: 282.0764. C16H11NO4 (281.27). 

 

4-(Azidomethyl)-3-bromobenzoic acid (4.20) 

4.14 (1.29 g, 4.54 mmol, 1 eq) was suspended in THF (50 mL). Aqueous NaOH solution (1 mol/L, 

23 mL, 5 eq) was added and the reaction mixture was stirred over night at room temperature. 

The pH value was adjusted with aqueous HCl solution (0.5 mol/L) to two. The THF was removed 

under reduced pressure and the product was extracted with EtOAc (3 x 40 mL). The organic 

layers were combined, washed with brine (40 mL) and dried over Na2SO4. Removal of the solvent 

in vacuo afforded the product as beige solid (1.08 g, 93%). Mp: 124 °C. Rf = 0.1 (PE / EtOAc 95:5). 
1H-NMR (400 MHz, [D6]DMSO): δ (ppm) 4.64 (s, 2H), 7.64 (d, 1H, J 7.92 Hz), 7.95-7.98 (m, 1H), 

8.12 (m, 1H). 13C-NMR (100 MHz, [D6]DMSO): δ (ppm) 53.8, 123.6, 129.3, 131.2, 133.1, 133.7, 

140.0, 166.2. HRMS: (ESI): m/z [M+H]+, calcd. for C8H7BrN3O2
+: 255.9716, found: 255.9719. 

C8H6BrN3O2 (256.06). 

 

 



80 Chapter 4 

4-(Aminomethyl)-3-bromobenzoic acid (4.21)
18

 

4.20 (280 mg, 1.09 mmol, 1 eq) and triphenylphosphine (321 mg, 1.22 mmol, 1.12 eq) were 

dissolved in a mixture of THF and H2O (5/1, v/v, 6 mL). The reaction mixture was stirred over 

night at room temperature. The yellow precipitate was filtered off and washed with CH2Cl2 (1 

mL). Removal of residual solvent in vacuo afforded the product as yellow solid (67 mg, 27%). 1H-

NMR (400 MHz, [D6]DMSO + 3 drops of TFA): δ (ppm) 4.20-4.22 (m, 2H), 7.66 (d, 1H, J 8.06 Hz), 

8.00-8.03 (m, 1H), 8.15 (m, 1H), 8.44 (br s, 3H). 13C-NMR (100 MHz, [D6]DMSO + 3 drops of TFA): δ 

(ppm) 42.6, 123.6, 129.1, 130.5, 133.2, 133.6, 138.3, 166.1. HRMS: (ESI): m/z [M+H]+, calcd. for 

C8H9BrNO2
+: 229.9811, found: 229.9811. C8H8BrNO2 (230.06). 

 

General procedure for the synthesis of the benzoic acid derivatives 4.25-4.27 

4.15, 4.16 or 4.17 (1 eq) and TEA (3 eq) were dissolved in CH2Cl2 (3 mL). Succinimidyl propionate 

(1.5 eq) was added and the reaction mixture was stirred over night at room temperature. The 

mixture was diluted with CH2Cl2 (5 mL) and the organic layer was washed three times with 

aqueous HCl solution (0.5 mol/L, 10 mL), two times with H2O (10 mL) and with brine (10 mL). The 

organic layer was dried over Na2SO4 and the solvent was removed under reduced pressure to 

afford the intermediates 4.22-4.24. These intermediates were ester deprotected subsequently. 

4.22, 4.23 or 4.24 was suspended in THF (3-5 mL). Aqueous NaOH solution (1 mol/L, 5 eq) was 

added and the reaction mixture was stirred over night at room temperature. The pH value was 

adjusted with aqueous HCl solution (0.5 mol/L) to 2-7. The THF was removed under reduced 

pressure and the product was extracted with EtOAc (3 x 5-20 mL). The organic layers were 

combined and dried over Na2SO4. Removal of the solvent under reduced pressure afforded the 

desired product. 

 

4-(Propionamidomethyl)-3-(trifluoromethyl)benzoic acid (4.25) 

4.25 was prepared from 4.15 (80 mg, 0.28 mmol, 1 eq), TEA (86 mg, 0.84 mmol, 3 eq) and 

succinimidyl propionate (72 mg, 0.42 mmol, 1.5 eq) dissolved in CH2Cl2 (3 mL) according to 

general procedure. 4.22 was obtained as a yellow oily solid (90mg, 99.9%). Removal of the ester 

protecting group by aqueous NaOH solution (1 mol/L, 1.4 mL) afforded 4.25 as slightly pink solid 

(50 mg, 66%). Rf = 0.2 (PE / EtOAc +2 drops TFA 1:2). 1H-NMR (400 MHz, [D6]DMSO): δ (ppm) 1.10 

(t, 3H, J 7.59 Hz), 2.27 (q, 2H, J 7.58 Hz), 4.53-4.54 (m, 2H), 7.66 (d, 1H, J 8.28 Hz), 8.21-8.24 (m, 

2H), 8.49 (t, 1H, J 5.70 Hz). 13C-NMR (100 MHz, [D6]DMSO): δ (ppm) 9.7, 28.3, 38.5 (q,1C, JC-F 2.89 

Hz), 123.9 (q, 1C, JC-F 273.79 Hz), 126.1 (q. 1C, JC-F 5.68 Hz), 126.3 (q, 1C, JC-F 30.78 Hz), 128.9, 

130.1, 133.1, 142.6 (q,1C, JC-F 1.46 Hz), 165.9, 173.2. 19F-NMR (282 MHz, [D6]DMSO): δ (ppm) -

59.5. HRMS: (ESI): m/z [M+H]+, calcd. for C12H13F3NO3 
+: 276.0842, found: 276.0843. C12H12F3NO3 

(275.23). 
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3-Chloro-4-(propionamidomethyl)benzoic acid (4.26) 

4.26 was prepared from 4.16 (200 mg, 0.80 mmol, 1 eq), TEA (243 mg, 2.40 mmol, 3 eq) and 

succinimidyl propionate (205 mg, 1.20 mmol, 1.5 eq) dissolved in CH2Cl2 (8 mL) according to 

general procedure. 4.23 was obtained as a white oily solid (230 mg). Removal of the ester 

protecting group by aqueous NaOH solution (1 mol/L, 4.1 mL) afforded 4.26 as white solid (150 

mg, 84%). Rf = 0.2 (PE / EtOAc +2 drops TFA 1:2). 1H-NMR (300 MHz, [D6]DMSO): δ (ppm) 1.04 (t, 

3H, J 7.58 Hz), 2.21 (q, 2H, J 7.58 Hz), 4.35-4.37 (m, 2H), 7.42 (d, 1H, J 7.85 Hz), 7.86-7.89 (m, 2H), 

8.40 (t, 1H, J 5.72 Hz), 13.26 (s, 1H). 13C-NMR (75 MHz, [D6]DMSO): δ (ppm) 9.8, 28.2, 39.9, 127.9, 

128.6, 129.5, 131.0, 132.0, 141.4, 165.9, 173.2. HRMS: (ESI): m/z [M+H]+, calcd. for C11H13ClNO3 
+: 

242.0579, found: 242.0581. C11H12ClNO3 (241.67). 

 

3-Bromo-4-(propionamidomethyl)benzoic acid (4.27) 

4.27 was prepared from 4.17 (260 mg, 1.01 mmol, 1 eq), TEA (204 mg, 2.02 mmol, 2 eq) and 

succinimidyl propionate (258 mg, 1.51 mmol, 1.5 eq) dissolved in CH2Cl2 (5 mL) according to 

general procedure. 4.24 was obtained as a white oily solid (220 mg, 70%). Removal of the ester 

protecting group by aqueous NaOH solution (1 mol/L, 3.2 mL) afforded 4.27 as white solid (90 

mg, 49%). Rf = 0.2 (PE / EtOAc +2 drops TFA 1:2). 1H-NMR (400 MHz, [D6]DMSO): δ (ppm) 1.05 (t, 

3H, J 7.58 Hz), 2.22 (q, 2H, J 7.58 Hz), 4.33 (d, 2H, J 5.87 Hz), 7.39-7.41 (m, 1H), 7.90-7.93 (m, 1H), 

8.06-8.07 (m, 1H), 8.39 (t, 1H, J 5.86 Hz), 13.23 (br s, 1H). 13C-NMR (100 MHz, [D6]DMSO): δ (ppm) 

9.8, 28.3, 42.4, 122.0, 128.4, 128.5, 131.2, 132.8, 143.0, 165.8, 173.2. HRMS: (ESI): m/z [M+H]+, 

calcd. for C11H13BrNO3
+: 288.0052, found: 288.0055. C11H12BrNO3 (286.13). 

 

General procedure for the methylation of 4.19 and 4.21 (synthesis of 4.28 and 4.29) 

4.19 or 4.21 was dissolved in formic acid (1 mL) under heating. Aqueous formaldehyde solution 

(37%, 1 mL) was added and the reaction mixture was stirred over night under reflux. The mixture 

was cooled to room temperature and aqueous HCl solution (20%, 1mL) was added. Removal of 

the solvent in vacuo afforded the desired product. 

 

4-[(Dimethylamino)methyl]benzoic acid hydrochloride(4.28) 
11

 

4.28 was prepared from 4.19 (400 mg, 2.65 mmol, 1 eq) according to general procedure. The 

product was obtained as white solid (570 mg, 100%). 1H-NMR (400 MHz, MeOD + 3 drops of TFA): 

δ (ppm) 2.88 (s, 6H), 4.42 (s, 2H), 7.65-7.67 (m, 2H), 8.11-8.13 (m, 2H). 13C-NMR (100 MHz, MeOD 

+ 3 drops of TFA): δ (ppm) 41.8, 60.1, 130.2, 130.8, 132.3, 134.3, 167.4. HRMS: (ESI): m/z [M+H]+, 

calcd. for C10H14NO2 
+: 180.1019, found: 180.1022. C10H13NO2 ∙ HCl (179.22 + 36.46). 
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3-Bromo-4-[(dimethylamino)methyl]benzoic acid hydrochloride (4.29) 

4.29 was prepared from 4.21 (50 mg, 0.22 mmol, 1 eq) according to general procedure. The 

product was obtained as yellow hygroscopic solid (60 mg, 94%). 1H-NMR (400 MHz, MeOD + 3 

drops of TFA): δ (ppm) 2.96 (s, 6H), 4.60 (s, 2H), 7.81 (d, 1H, J 7.99 Hz), 8.07-8.09 (m, 1H), 8.30-

8.31 (m, 1H). 13C-NMR (100 MHz, MeOD + 3 drops of TFA): δ (ppm) 42.4, 59.8, 125.3, 129.1, 

133.1, 133.8, 134.28, 134.30, 165.9. HRMS: (ESI): m/z [M+H]+, calcd. for C10H13BrNO2
+: 258.0124, 

found: 258.0145. C10H12BrNO2 ∙ HCl (258.12 + 36.46). 

 

General procedure for the synthesis of the aminopotentidine derivatives 4.30-4.34 

4-Aminobenzoic acid, 4-amino-3-(trifluoromethyl)benzoic acid, 4-amino-3-chlorobenzoic acid, 4-

amino-3-bromobenzoic acid or 4-amino-3-iodobenzoic acid (1-1.5 eq) and DIPEA (3 eq) were 

dissolved in CH2Cl2 (5-100 mL). O-(Benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium-

tetrafluoroborate (TBTU, 1.2-1.5 eq) was added and the mixture was stirred for 10-30 min. 

Subsequently, 4.5 (1eq) was added and the reaction mixture was stirred over night at room 

temperature. The organic layer was further diluted with CH2Cl2 (10-100 mL) and washed three 

times with H2O (10-100 mL) and three times with aqueous NaOH solution (5%, w/w, 10-100 mL). 

The organic layer was dried over Na2SO4 and the solvent was removed in vacuo. The resulting 

crude product was either directly used in the next synthesis step or purified by preparative HPLC. 

 

4-Amino-N-(2-(2-cyano-3-(3-(3-(piperidin-1-

ylmethyl)phenoxy)propyl)guanidino)ethyl)benzamide (Aminopotentidine, 4.30)
1,3

 

4.30 was prepared from 4-aminobenzoic acid (29 mg, 0.21 mmol, 1.5 eq), DIPEA (54 mg, 0.42 

mmol, 3 eq), TBTU (67 mg, 0.21 mmol, 1.5 eq) and 4.5 (50 mg, 0.14 mmol, 1 eq) according to 

general procedure. Purification by preparative HPLC (column: YMC Triart C18, gradient: 0-30 min: 

MeCN/0.1% aq. NH3 33:67-70:30, tR = 10.6 min) afforded the product as white solid (23 mg, 34%). 

Mp: 66-80 °C (Lit.1,3 Mp: 92-95 °C). Rf = 0.5 (CH2Cl2/3 M NH3 in MeOH 7:2). RP‐HPLC (gradient 2, 

220 nm): 98% (tR = 13.61 min, k = 3.7). 1H-NMR (400 MHz, CDCl3): δ (ppm) 1.47-1.49 (m, 2H), 

1.63-1.71 (m, 4H), 2.02-2.09 (qui, 2H, J 6.1 Hz), 2.59 (br s, 4H), 3.38-3.55 (m, 6H), 3.63 (br s, 2H), 

4.03-4.07 (m, 4H), 6.59-6.64 (d, 2H, J 8.7 Hz), 6.84-6.92 (m, 2H), 7.01 (br s, 1H), 7.07 (br s, 1H), 

7.22 (t, 1H, J 7.9 Hz), 7.57-7.60 (d, 2H, J 8.6 Hz). 1H-NMR (600 MHz, CD3OD, COSY, HSQC, HMBC): 

δ (ppm) 1.50 (br s, 2H), 1.62-1.66 (m, 4H), 2.02-2.06 (qui, 2H, J 6.2 Hz), 2.61 (br s, 4H), 3.37-3.39 

(m, 2H), 3.42-3.47 (m, 4H), 3.65 (br s, 2H), 4.06 (t, 2H, J 5.8 Hz), 6.63-6.65 (d, 2H, J 8.6 Hz), 6.90-

6.93 (m, 2H), 6.98 (br s, 1H), 7.25 (t, 1H, J 7.9 Hz), 7.56-7.59 (d, 2H, J 8.9 Hz). 13C-NMR (150 MHz, 

CD3OD, COSY, HSQC, HMBC): δ (ppm) 24.5, 25.8, 29.9, 40.4, 40.5, 42.7, 55.0, 63.9, 66.8, 114.7, 

115.3, 117.5, 119.9, 122.7, 123.7, 130.0, 130.6, 137.6, 153.4, 160.4, 161.5, 171.1. HRMS: (ESI): 

m/z [M+H]+, calcd. for C26H36N7O2
+: 478.2925, found: 478.2927. C26H35N7O2 (477.61). 
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4-Amino-3-trifluoromethyl-N-(2-(2-cyano-3-(3-(3-(piperidin-1-ylmethyl)phenoxy)propyl)-

guanidino)ethyl)benzamide (Trifluoromethylaminopotentidine, 4.31) 

4.31 was prepared from 4-amino-3-trifluoromethylbenzoic acid (172 mg, 0.84 mmol, 1 eq), DIPEA 

(325 mg, 2.51 mmol, 3 eq), TBTU (323 mg, 1.00 mmol, 1.2 eq) and 4.5 (300 mg, 0.84 mmol, 1 eq) 

according to general procedure. The solvent was removed under reduced pressure and the 

residue was purified by column chromatography (CH2Cl2/3.5 M NH3 in MeOH 97.5:2.5-95:5). 

Removal of the solvent in vacuo afforded the product as yellow solid (267 mg, 68%). 70 mg was 

further purified by preparative HPLC (column: YMC Triart C18, gradient: 0-30 min: MeCN/0.1% aq. 

NH3 30:70-60:40, tR = 14.4 min). 4.31 was obtained as white solid (49 mg, 66%). Mp: 62-88 °C. Rf = 

0.4 (CH2Cl2/7 M NH3 in MeOH 97:3). RP‐HPLC (gradient 2, 220 nm): 96% (tR = 17.83 min, k = 5.2). 

1H-NMR (400 MHz, CD3OD): δ (ppm) 1.43-1.44 (m, 2H), 1.54-1.60 (m, 4H), 2.00-2.06 (m, 2H), 2.39 

(br s, 4H), 3.38-3.48 (m, 8H), 4.04 (t, 2H, J 5.87 Hz), 6.81-6.88 (m, 3H), 6.92 (m, 1H), 7.19 (t, 1H, J 

7.88 Hz), 7.72-7.74 (m, 1H), 7.93-7.94 (m, 1H). 13C-NMR (100 MHz, CD3OD): δ (ppm) 25.2, 26.5, 

30.0, 40.4, 40.6, 42.6, 55.4, 64.7, 66.7, 112.7 (q, 1C, JC-F 30.35 Hz), 114.7, 117.0, 117.4, 120.0, 

122.1, 123.5, 126.4 (q, 1C, JC-F 271.34 Hz), 127.6 (q, 1C, JC-F 5.39 Hz), 130.3, 133.0, 139.8, 150.5 (q, 

1C, JC-F 1.63 Hz), 160.3, 161.6, 169.7. HRMS: (ESI): m/z [M+H]+, calcd. for C27H35F3N7O2
+: 546.2799, 

found: 546.2802. C27H34F3N7O2 (545.61). 

 

4-Amino-3-chloro-N-(2-(2-cyano-3-(3-(3-(piperidin-1-ylmethyl)phenoxy)propyl)-

guanidino)ethyl)benzamide (Chloroaminopotentidine, 4.32) 

4.32 was prepared from 4-amino-3-chlorobenzoic acid (96 mg, 0.56 mmol, 1 eq), DIPEA (216 mg, 

1.67 mmol, 3 eq), TBTU (215 mg, 0.67 mmol, 1.2 eq) and 4.5 (200 mg, 0.56 mmol, 1 eq) according 

to general procedure. The solvent was removed under reduced pressure and the residue was 

purified by automated flash chromatography (CH2Cl2/MeOH 100:0-75:25 in 53 min). Removal of 

the solvent in vacuo afforded the product as white solid (140 mg, 49%). 90 mg was further 

purified by preparative HPLC (column: YMC Triart C18, gradient: 0-30 min: MeCN/0.1% aq. NH3 

30:70-70:30, tR = 20.6 min). 4.32 was obtained as white solid (60 mg, 33%). Mp: 100-103 °C. Rf = 

0.4 (CH2Cl2/1.7 M NH3 in MeOH 90:10). RP‐HPLC (gradient 1, 220 nm): 97.2% (tR = 17.74 min, k = 

5.1). 1H-NMR (600 MHz, [D6]DMSO, COSY, HSQC, HMBC): δ (ppm) 1.35 (br s, 2H), 1.45-1.47 (m, 

4H), 1.89-1.93 (m, 2H), 2.27 (br s, 4H), 3.23-3.35 (m, 8H, interfering with the water signal), 3.95 (t, 

2H, J 6.13 Hz), 5.88 (s, 2H), 6.76-6.77 (m, 2H), 6.82-6.83 (m, 2H), 7.07-7.19 (m, 3H), 7.53-7.55 (m, 

1H), 7.73 (m, 1H), 8.30 (m, 1H). 13C-NMR (150 MHz, [D6]DMSO, COSY, HSQC, HMBC): δ (ppm) 

24.0, 25.5, 28.6, 38.4, 38.8, 41.0, 53.9, 62.8, 65.0, 112.7, 114.1, 114.6, 116.1, 118.0, 120.9, 122.2, 

127.2, 128.4, 129.0, 140.3, 147.4, 158.5, 159.5, 165.7. HRMS: (ESI): m/z [M+H]+, calcd. for 

C26H35ClN7O2
+: 512.2535, found: 512.2544. C26H34ClN7O2 (512.06). 

 

4-Amino-3-bromo-N-(2-(2-cyano-3-(3-(3-(piperidin-1-ylmethyl)phenoxy)propyl)-

guanidino)ethyl)benzamide (Bromoaminopotentidine, 4.33) 

4.33 was prepared from 4-amino-3-bromobenzoic acid (121 mg, 0.56 mmol, 1 eq), DIPEA (216 

mg, 1.67 mmol, 3 eq), TBTU (215 mg, 0.67 mmol, 1.2 eq) and 4.5 (200 mg, 0.57 mmol, 1 eq) 
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according to general procedure. The crude product was obtained as sticky yellow solid (315 mg). 

215 mg was purified by preparative HPLC (column: YMC Triart C18, gradient: 0-30 min: 

MeCN/0.1% aq. NH3 40:60-80:20, tR = 13.1 min). 4.33 was obtained as white solid (115 mg, 54%). 

Mp: 94 °C. Rf = 0.5 (CH2Cl2/3 M NH3 in MeOH 90:10). IR (KBr): 3325, 2935, 2165, 1585, 1500, 

1300,1255, 1160, 755 cm-1. RP‐HPLC (gradient 2, 220 nm): 98.7% (tR = 16.76 min, k = 4.8). 1H-NMR 

(400 MHz, CDCl3): δ (ppm) 1.42-1.43 (m, 2H), 1.54-1.60 (m, 4H), 2.00-2.07 (qui, 2H, J 6.1 Hz), 2.41 

(br s, 4H), 3.38-3.52 (m, 8H), 4.02 (t, 2H, J 5.7 Hz), 4.53 (s, 2H), 6.35 (br s, 1H), 6.64 (br s, 1H), 6.68 

(d, 1H, J 8.4 Hz), 6.79-6.82 (dd, 1H, J 8.1 Hz, J 2.1 Hz), 6.88 (d, 1H, J 7.6 Hz), 6.92 (br s, 1H), 7.19 (t, 

1H, J 7.8 Hz), 7.44 (br s, 0.9H), 7.51-7.54 (dd, 1H, J 8.4 Hz, J 2.0 Hz), 7.91 (d, 1H, J 2.0 Hz). 1H-NMR 

(400 MHz, CD3OD): δ (ppm) 1.42-1.44 (m, 2H), 1.53-1.59 (m, 4H), 1.99-2.05 (qui, 2H, J 6.4 Hz), 

2.37 (br s, 4H), 3.35-3.46 (m, 8H), 4.03 (t, 2H, J 5.8 Hz), 6.78 (d, 1H, J 8.6 Hz), 6.81-6.87 (m 2H), 

6.90-6.91 (m, 1H), 7.19 (t, 1H, J 7.9 Hz), 7.54-7.56 (dd, 1H, J 8.5 Hz, J 2.1 Hz), 7.89 (d, 1H, J 2.1 Hz). 

13C-NMR (100 MHz, CD3OD): δ (ppm) 25.1, 26.4, 30.0, 40.3, 40.5, 42.6, 55.4, 64.7, 66.6, 108.3, 

114.6, 115.3, 116.9, 119.9, 123.4, 124.1, 128.8, 130.2, 133.3, 139.8, 150.3, 160.2, 161.5, 169.5. 

HRMS: (ESI): m/z [M+H]+, calcd. for C26H35BrN7O2
+: 556.2030, found: 556.2032. C26H34BrN7O2 

(556.51). 

 

4-Amino-N-(2-(2-cyano-3-(3-(3-(piperidin-1-ylmethyl)phenoxy)propyl)guanidino)ethyl)-3-

iodobenzamide (Iodoaminopotentidine, 4.34)
1
  

4.34 was prepared from 4-amino-3-iodobenzoic acid (147 mg, 0.56 mmol, 1 eq), DIPEA (216 mg, 

1.67 mmol, 3 eq), TBTU (215 mg, 0.67 mmol, 1.2 eq) and 4.5 (200 mg, 0.57 mmol, 1 eq) according 

to general procedure. The crude product was obtained as yellow oil (419 mg). 319 mg was 

purified by preparative HPLC (column: YMC Triart C18, gradient: 0-30 min: MeCN/0.1% aq. NH3 

40:60-80:20, tR = 14.0 min). 4.34 was obtained as white solid (166 mg, 65%). Mp: 94 °C (Lit.1 Mp: 

114-117 °C decomposition). Rf = 0.5 (CH2Cl2/7 M NH3 in MeOH 90:10). IR (KBr) 3320, 2935, 2165, 

1590, 1490, 1300, 1260, 1150 cm-1. RP‐HPLC (gradient 2, 220 nm): 98.3% (tR = 17.46 min, k = 

5.0).1H-NMR (400 MHz, CD3OD): δ (ppm) 1.43-1.44 (m, 2H), 1.54-1.60 (m, 4H), 2.00-2.06 (qui, 2H, 

J 6.3 Hz), 2.39 (br s, 4H), 3.35-3.46 (m, 8H), 4.03 (t, 2H, J 5.8 Hz), 6.74 (d, 1H, J 8.5 Hz), 6.82-6.88 

(m, 2H), 6.91 (m, 1H), 7.20 (t, 1H, J 7.9 Hz), 7.56-7.59 (dd, 1H, J 8.5 Hz, J 2.1 Hz), 8.11 (d, 1H, J 2.1 

Hz). 13C-NMR (100 MHz, CD3OD): δ (ppm) 25.2, 26.5, 30.1, 40.4, 40.6, 42.6, 55.4, 64.8, 66.7, 82.3, 

114.2, 114.7, 117.0, 120.0, 123.5, 124.7, 129.8, 130.3, 139.8, 139.9, 153.0, 160.3, 161.6, 169.4. 

HRMS: (ESI): m/z [M+H]+, calcd. for C26H35IN7O2
+: 604.1891, found: 604.1896. Anal. calcd. for 

C26H34IN7O2: C 51.75, H 5.68, N 16.25, found: C 51.25, H 5.66, N 16.19. C26H34IN7O2 (603.51). 

 

General procedure for the propionylation of the aminopotentidine derivatives 

The respective aminopotentidine derivative 4.30-4.34, 4-(dimetylamino)pyridine (DMAP, 0.1-1.1 

eq) and triethylamine (2-5 eq) were dissolved in CH2Cl2 (2-3 mL). The mixture was stirred for 

several minutes and propionyl chloride (3 eq) was added. The reaction mixture was stirred over 

night at room temperature. The organic layer was further diluted with CH2Cl2 (3 mL), washed 

three times with aqueous NaOH solution (5%, w/w, 5 mL) and then dried over Na2SO4. The 

product was purified by preparative HPLC. 
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N-(2-[2-Cyano-3-(3-[3-(piperidin-1-ylmethyl)phenoxy]propyl)guanidino]ethyl)-4-

(propionamido)benzamide (4.35) 

4.35 was prepared from 4.30 (100 mg, 0.21 mmol, 1 eq), 4-(dimethylamino)pyridine (28 mg, 0.23 

mmol, 1.1 eq), triethylamine (106 mg, 1.05 mmol, 5 eq) and propionyl chloride (58 mg, 0.63 

mmol, 3 eq) according to general procedure. Due to incomplete conversion additional propionyl 

chloride (116 mg, 1.26 mmol, 6 eq) and triethylamine (212 mg, 2.1 mmol, 10 eq) were added. The 

reaction mixture was stirred for 17 h at room temperature. Purification by preparative HPLC 

(column: YMC Triart C18, gradient: 0-30 min: MeCN/0.1% aq. NH3 40:60-70:30, tR = 11.3 min) 

afforded the product as white solid (26 mg, 23%). Mp: 171-176 °C. Rf = 0.3 (CH2Cl2/7 M NH3 in 

MeOH 95:5). IR (KBr): 3295, 2935, 2160, 1665, 1590, 1525, 1440, 1375, 1345, 1310, 1260, 1205, 

845, 770, 690, 580 cm-1. RP‐HPLC (gradient 2, 220 nm): 97.9% (tR = 15,71 min, k = 4.4). 1H-NMR 

(400 MHz, CD3OD): δ (ppm) 1.18-1.22 (t, 3H, J 7.6 Hz), 1.45-1.46 (m, 2H), 1.56-1.61 (m, 4H), 2.01-

2.07 (qui, 2H, J 6.2 Hz), 2.38-2.44 (m, 6H), 3.40-3.44 (m, 4H), 3.48-3.51 (m, 4H), 4.04 (t, 2H, J 5.9 

Hz), 6.84-6.90 (m, 2H), 6.93 (br s, 1H), 7.21 (t, 1H, J 7.8 Hz), 7.65 (d, 2H, J 8.7 Hz), 7.77 (d, 2H, J 8.7 

Hz). 13C-NMR (100 MHz, CD3OD): δ (ppm) 10.1, 25.1, 26.4, 30.0, 31.2, 40.4, 40.7, 42.5, 55.3, 64.6, 

66.7, 114.8, 117.1, 120.3, 123.5, 129.3, 130.2, 130.3, 139.4, 139.5, 143.5, 160.3, 161.6, 170.3, 

175.6. HRMS: (ESI): m/z [M+H]+, calcd. for C29H40N7O3
+: 534.3187, found: 534.3189. C29H39N7O3 

(533.68). 

 

N-(2-[2-Cyano-3-(3-[3-(piperidin-1-ylmethyl)phenoxy]propyl)guanidino]ethyl)-3-

(trifluoromethyl)-4-(propionamido)benzamide (4.36) 

4.36 was prepared from 4.31 (183 mg, 0.34 mmol, 1 eq), 4-(dimethylamino)pyridine (45 mg, 0.37 

mmol, 1.1 eq), triethylamine (172 mg, 1.70 mmol, 5 eq) and propionyl chloride (94 mg, 1.02 

mmol, 3 eq) according to general procedure. Due to incomplete conversion additional propionyl 

chloride (94 mg, 1.02 mmol, 3 eq) were added after stirring over night. The reaction mixture was 

stirred overnight at room temperature. Purification by preparative HPLC (column: YMC Triart C18, 

gradient: 0-30 min: MeCN/0.1% aq. NH3 35:65-55:45, tR = 24.2 min) afforded the product as white 

solid (31 mg, 15%). Mp: 137-138 °C. Rf = 0.3 (CH2Cl2/7 M NH3 in MeOH 97:3). RP‐HPLC (gradient 2, 

220 nm): 96.4% (tR = 17.86 min, k = 5.2). 1H-NMR (600 MHz, CD3OD, COSY, HSQC, HMBC, NOESY): 

δ (ppm) 1.22 (t, 3H, J 7.57 Hz), 1.45 (br s, 2H), 1.56-1.60 (m, 4H), 2.02-2.06 (m, 2H), 2.41-2.48 (m, 

6H), 3.41-3.45 (m, 6H), 3.51-3.53 (m, 2H), 4.04-4.06 (m, 2H), 6.84-6.88 (m, 2H), 6.94 (s, 1H), 7.20 

(t, 1H, J 7.84 Hz), 7.72-7.73 (m, 1H), 8.03-8.05 (m, 1H), 8.18 (s, 1H). 13C-NMR (150 MHz, CD3OD, 

COSY, HSQC, HMBC, NOESY): δ (ppm) 10.0, 25.1, 26.4, 30.0, 30.4, 40.3, 40.7,42.3,55.3, 64.7, 66.6, 

114.7, 116.9, 119.8, 123.4, 124.8 (q, 1C, JC-F 272.45 Hz), 126.0 (q, 1C, JC-F 30.42 Hz), 126.8 (q, 1C, 

JC-F 5.27 Hz), 130.2, 130.4, 132.5, 133.4, 139.4, 139.8, 160.2, 161.5, 168.5, 176.3. HRMS: (ESI): m/z 

[M+H]+, calcd. for C30H39F3N7O3
+: 602.3061, found: 602.3065. Anal. calcd. for C30H38F3N7O3 ∙ H2O: C 

58.15, H 6.51, N 15.82, found: C 57.82, H 6.21, N 15.30. C30H38F3N7O3 (601.68). 
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N-(2-[2-Cyano-3-(3-[3-(piperidin-1-ylmethyl)phenoxy]propyl)guanidino]ethyl)-3-bromo-4-

(propionamido)benzamide (4.37) 

4.37 was prepared from 4.33 (100 mg, 0.18 mmol, 1 eq), 4-(dimethylamino)pyridine (2.2 mg, 0.02 

mmol, 0.1 eq), triethylamine (36 mg, 0.36 mmol, 2 eq) and propionyl chloride (25 mg, 0.27 mmol, 

1.5 eq) according to general procedure. Due to incomplete conversion additional propionyl 

chloride (25 mg, 0.27 mmol, 1.5 eq), 4-(dimethylamino)-pyridine (2.2 mg, 0.018 mmol, 0.1 eq) 

and triethylamine (36 mg, 0.36 mmol, 2 eq) were added after 3 h of stirring. The reaction mixture 

was stirred over night at room temperature. Purification by preparative HPLC (column: YMC 

Triart C18, gradient: 0-30 min: MeCN/0.1% aq. NH3 40:60-60:40, tR = 17.6 min) afforded the 

product as white solid (12 mg, 11%). Mp: 155-159 °C decomposition. Rf = 0.6 (CH2Cl2/7 M NH3 in 

MeOH 95:5). IR (KBr): 3310, 2935, 2165, 1600, 1540, 1510, 1465, 1275, 1195, 700, 565 cm-1. 

RP‐HPLC (gradient 2, 220 nm): 95.1% (tR = 17.34 min, k = 5.0). 1H-NMR (400 MHz, CD3OD): δ 

(ppm) 1.22 (t, 3H, J 7.6 Hz), 1.44 (m, 2H), 1.55-1.59 (qui, 4H, J 5.6 Hz), 2.01-2.05 (qui, 2H, J 6.2 Hz), 

2.40 (br s, 4H), 2.47-2.51 (q, 2H, J 7.6 Hz), 3.40-3.42 (m, 4H), 3.45 (br s, 2H), 3.47-3.49 (m, 2H), 

4.03-4.05 (t, 2H, J 5.9 Hz), 6.83-6.85 (dd, 1H, J 8.1 Hz, J 2.0 Hz), 6.87 (d, 1H, J 7.6 Hz), 6.92 (m, 1H), 

7.19 (t, 1H, J 7.8 Hz), 7.75-7.77 (dd, 1H, J 8.5 Hz, J 2.0 Hz), 7.90 (d, 1H, J 8.5 Hz), 8.08 (d, 1H, J 2.0 

Hz). 13C-NMR (100 MHz, CD3OD): δ (ppm) 10.0, 25.1, 26.4, 30.0, 30.7, 40.3, 40.7, 42.3, 55.3, 64.7, 

66.6, 114.7, 116.9, 117.5, 119.8, 123.4, 126.2, 128.0, 130.2, 133.1, 133.2, 139.7, 140.4, 160.2, 

161.5, 168.6, 175.5. HRMS: (ESI): m/z [M+H]+, calcd. for C29H39BrN7O3
+: 612.2292, found: 

612.2295. C29H38BrN7O3 (612.57). 

 

N-[2-(2-Cyano-3-(3-[3-(piperidin-1-ylmethyl)phenoxy]propyl)guanidino)ethyl]-3-iodo-4-

(propionamido)benzamide (4.38) 

4.38 was prepared from 4.34 (100 mg, 0.17 mmol, 1 eq), 4-(dimethylamino)pyridine (22 mg, 0.18 

mmol, 1.1 eq), triethylamine (84 mg, 0.83 mmol, 5 eq) and propionyl chloride (46 mg, 0.5 mmol, 

3 eq) according to general procedure. Due to incomplete conversion additional propionyl 

chloride (46 mg, 0.50 mmol, 3 eq) was added after 5 hours of stirring. The reaction mixture was 

stirred over night at room temperature. Purification by preparative HPLC (column: YMC Triart C18, 

gradient: 0-30 min: MeCN/1% aq. NH3 40:60-80:20, tR = 13.7 min) afforded the product as white 

solid (24 mg, 22%). Mp: 148-150 °C. Rf = 0.3 (CH2Cl2/7 M NH3 in MeOH 95:5). IR (KBr): 3310, 2935, 

2160, 1645, 1595, 1540, 1510, 1315, 1275, 1200, 1155, 1120, 785, 695, 570 cm-1. RP‐HPLC 

(gradient 2, 220 nm): 97.2% (tR = 17.50 min, k = 5.0). 1H-NMR (400 MHz, CD3OD): δ (ppm) 1.25 (t, 

3H, J 7.6 Hz), 1.44-1.45 (m, 2H), 1.55-1.60 (m, 4H), 2.01-2.07 (qui, 2H, J 6.2 Hz), 2.40 (br s, 4H), 

2.45-2.50 (q, 2H, J 7.6 Hz), 3.39-3.44 (m, 6H), 3.47-3.50 (m, 2H), 4.05 (t, 2H, J 5.9 Hz), 6.83-6.88 

(m, 2H), 6.93 (m, 1H), 7.20 (t, 1H, J 7.8 Hz), 7.68 (d, 1H, J 8.4 Hz), 7.78-7.81 (dd, 1H, J 8.4 Hz, J 2.0 

Hz), 8.33 (d, 1H, J 2.0 Hz). 13C-NMR (100 MHz, CD3OD): δ (ppm) 10.2, 25.2, 26.5, 30.0, 30.8, 40.4, 

40.7, 42.4, 55.4, 64.7, 66.7, 114.7, 117.0, 119.9, 123.5, 126.7, 128.9, 130.3, 132.3, 134.0, 139.7, 

139.9, 143.5, 160.3, 161.6, 168.5, 175.5. HRMS: (ESI): m/z [M+H]+, calcd. for C29H39IN7O3
+: 

660.2154, found: 660.2160. C29H38IN7O3 (659.57). 
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N-(2-(2-Cyano-3-(3-(3-(piperidin-1-ylmethyl)phenoxy)propyl)guanidino)ethyl)-4-((1,3-

dioxoisoindolin-2-yl)methyl)benzamide (4.39) 

4.19 (390 mg, 1.39 mmol, 1 eq) and DIPEA (538 mg, 4.16 mmol, 3 eq) were dissolved in CH2Cl2 

(120 mL) and TBTU (534 mg, 1.66, 1.2 eq) was added. The mixture was stirred for 10 min at room 

temperature. 4.5 (497 mg, 1.39 mmol, 1 eq) dissolved in CH2Cl2 (2 mL) was added and the 

reaction mixture was stirred over night at room temperature. The organic layer was washed two 

times with H2O (100 mL), aqueous NaOH solution (5%, w/w, 100 mL) and brine (100 mL). The 

organic layer was dried over Na2SO4. The solvent was removed under reduced pressure and the 

residue was purified by column chromatography (CH2Cl2/3.5 M NH3 in MeOH 97.5:2.5-95:5). 

Removal of the solvent in vacuo afforded the product as light yellow solid (640 mg, 74%). Mp: 70-

72 °C. Rf = 0.3 (CH2Cl2/7 M NH3 in MeOH 90:10). 1H-NMR (400 MHz, [D6]DMSO): δ (ppm) 1.35-

1.37 (m, 2H), 1.46-1.47 (m, 4H), 1.87-1.94 (m, 2H), 2.28 (br s, 4H), 3.26-3.36 (m, 8H), 3.94-3.97 

(m, 2H), 4.82 (s, 2H), 6.77-6.84 (m, 3H), 7.08-7.20 (m, 3H), 7.38 (d, 2H, J 8.27 Hz), 7.79 (d, 2H, J 

8.30 Hz), 7.86-7.92 (m, 2H), 8.57 (t, 1H, J 5.36 Hz). 13C-NMR (100 MHz, CDCl3): δ (ppm) 19.6, 24.3, 

25.8, 28.9, 39.85, 39.94, 41.3, 54.5, 63.7, 65.7, 113.3, 115.3, 119.0, 122.1, 123.6, 127.8, 128.6, 

129.3, 132.1, 133.2, 134.3, 139.8, 140.1, 158.6, 160.3, 168.0, 168.6. HRMS: (ESI): m/z [M+H]+, 

calcd. for C35H40N7O4
+: 622.3136, found: 622.3149. C35H39N7O4 (621.74). 

 

4-(Aminomethyl)-N-(2-(2-cyano-3-(3-(3-(piperidin-1-ylmethyl)phenoxy)propyl)guanidino)-

ethyl)benzamide (4.40) 

4.39 (360 mg, 0.58 mmol, 1 eq) and hydrazinium hydroxide (145 mg, 2.9 mmol, 5 eq) were 

dissolved in EtOH (20 mL). The reaction mixture was stirred for 4 h at room temperature and 

subsequently cooled down in the freezer for 30 min. The precipitated by-product 2,3-

dihydrophthalazine-1,4-dione was filtered off and washed with EtOH (5 mL). The organic layers 

were combined and the solvent was removed under reduced pressure. Purification by column 

chromatography (CH2Cl2/3.5 M NH3 in MeOH 95:5 isocratic) afforded the product as white solid 

(193 mg, 68%). 70 mg of 4.40 were further purified by preparative HPLC (column: YMC Triart C18, 

gradient: 0-30 min: MeCN/0.1% aq. NH3 30:70-60:40, tR = 14.4 min). The product was obtained as 

white solid (49 mg, 47%). Mp: 62-88 °C. Rf = 0.75 (CH2Cl2/6 M NH3 in MeOH 80:20). RP‐HPLC 

(gradient 2, 220 nm): 98.9% (tR = 11.84 min, k = 3.1). 1H-NMR (600 MHz, [D6]DMSO, COSY, HSQC, 

HMBC): δ (ppm) 1.35 (br s, 2H), 1.44-1.48 (m, 4H), 1.91 (qui, 2H, J 6.49 Hz), 2.28 (br s, 4 H), 3.25-

3.29 (m, 4H, interfering with the water signal), 3.34-3.37 (m, 4H, interfering with the water 

signal), 3.76 (s, 2H), 3.95 (t, 2H, J 6.20 Hz), 6.77-6.78 (m, 1H), 6.83-6.84 (m, 2H), 7.08-7.12 (m, 

2H), 7.18 (t, 1H, J 7.98 Hz), 7.39 (d, 2H, J 8.16 Hz), 7.77 (d, 2H, J 8.18 Hz), 8.52 (t, 1H, J 5.45 Hz). 
13C-NMR (150 MHz, [D6]DMSO, COSY, HSQC, HMBC): δ (ppm) 24.0, 25.6, 28.6, 38.4, 38.9, 40.8, 

45.1, 53.9, 62.8, 65.0, 112.7, 114.6, 118.0, 120.9, 126.8, 127.1, 129.0, 132.3, 140.3, 147.0, 158.5, 

159.5, 166.7. HRMS: (ESI): m/z [M+H]+, calcd. for C27H38N7O2
+: 492.3081, found: 492.3085. 

C27H37N7O2 (491.64). 
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N-(2-(2-Cyano-3-(3-(3-(piperidin-1-ylmethyl)phenoxy)propyl)guanidino)ethyl)-4-

(propionamidomethyl)benzamide (4.41) 

4.40 (118 mg, 0.24 mmol, 1 eq), triethylamine (49 mg, 0.48 mmol, 2 eq) and succinimidyl 

propionate (62 mg, 0.36 mmol, 1.5 eq) were dissolved CH2Cl2 (5 mL). The reaction mixture was 

stirred over night at room temperature. Removal of the solvent in vacuo and purification by 

preparative HPLC (column: YMC Triart C18, gradient: 0-30 min: MeCN/0.1% aq. NH3 35:65-70:30, 

tR = 11.8 min) afforded the product as white solid (106 mg, 81%). Mp: 166-170 °C. Rf = 0.5 

(CH2Cl2/7 M NH3 in MeOH 90:10). RP‐HPLC (gradient 2, 220 nm): 96.6% (tR = 14.87 min, k = 4.1). 
1H-NMR (600 MHz, [D6]DMSO, COSY, HSQC, HMBC): δ (ppm) 1.02 (t, 3H, J 7.59 Hz), 1.36 (br s, 

2H), 1.46-1.47 (m, 4H), 1.91 (qui, 2H, J 6.47 Hz), 2.14 (q, 2H, J 7.60 Hz), 2.29 (br s, 4H), 3.25-3.29 

(m, 2H, interfering with the water signal), 3.33-3.36 (m,4H, interfering with the water signal), 

3.95 (t, 2H, J 6.15 Hz), 4.28 (d, 2H, J 5.94 Hz), 6.78-6.79 (m, 1H), 6.83-6.84 (m, 2H), 7.07-7.12 (m, 

2H), 7.17-7.20 (m, 1H), 7.29 (d, 2H, J 8.07 Hz), 7.77 (d, 2H, J 8.22 Hz), 8.30 (t, 1H, J 5.88 Hz), 8.53 

(t, 1H, J 5.46 Hz). 13C-NMR (150 MHz, [D6]DMSO, COSY, HSQC, HMBC): δ (ppm) 10.0, 24.0, 25.5, 

28.5, 28.6, 38.4, 38.9, 40.8, 41.7, 53.9, 62.7, 65.0, 112.7, 114.7, 118.0, 121.0, 126.9, 127.2, 129.1, 

132.7, 140.3, 143.1, 158.5, 159.5, 166.6, 173.0. HRMS: (ESI): m/z [M+H]+, calcd. for C30H42N7O3
+: 

548.3344, found: 548.3349. Anal. calcd. for C30H41N7O3: C 65.79, H 7.55, N 17.90, found: C 65.50, 

H 7.43, N 17.84. C30H41N7O3 (547.70). 

 

General procedure for the synthesis of the aminopotentidine derivatives 4.42-4.44 

4.25, 4.26 or 4.27 (1 eq) and DIPEA (3 eq) were dissolved in CH2Cl2 (15-35 mL). O-(Benzotriazol-1-

yl)-N,N,N′,N′-tetramethyluronium-tetrafluoroborate (TBTU, 1.2 eq) was added and the mixture 

was stirred for 10-15 min. Subsequently, 4.5 (1 eq) was added and the reaction mixture was 

stirred over night at room temperature. The organic layer was washed three times with H2O (30 

mL), two times with aqueous NaOH solution (5%, w/w, 15-30 mL) and 1-2 times with brine (15-30 

mL). The organic layer was dried over Na2SO4 and the solvent was removed in vacuo. The 

resulting crude product was purified by preparative HPLC. 

 

N-(2-(2-Cyano-3-(3-(3-(piperidin-1-ylmethyl)phenoxy)propyl)guanidino)ethyl)-4-

(propionamidomethyl)-3-(trifluoromethyl)benzamide (4.42) 

4.42 was prepared from 4.25 (80 mg, 0.29 mmol, 1 eq), DIPEA (109 mg, 0.84 mmol, 3 eq), TBTU 

(105 mg, 0.34 mmol, 1.2 eq) and 4.5 (104 mg, 0.29 mmol, 1 eq) according to general procedure. 

Removal of the solvent in vacuo and purification by preparative HPLC (column: YMC Triart C18, 

gradient: 0-30 min: MeCN/0.1% aq. NH3 25:75-65:35, tR = 24.2 min) afforded the product as white 

solid (10 mg, 6%). Mp: 94-96 °C. Rf = 0.3 (CH2Cl2/MeOH 90:10). RP‐HPLC (gradient 2, 220 nm): 

95.0% (tR = 17.77 min, k = 5.1). 1H-NMR (600 MHz, [D6]DMSO, COSY, HSQC, HMBC): δ (ppm) 1.03 

(t, 3H, J 7.45 Hz), 1.37 (br s, 2H), 1.48 (br s, 4H), 1.88-1.92 (m, 2H), 2.20 (q, 2H, J 7.59 Hz), 2.33 (br 

s, 3H), 2.88 (br s, 1H), 3.24-3.44 (8H, interfering with the water signal), 3.95 (t, 2H, J 6.20 Hz), 4.45 

(d, 2H, J 5.72 Hz), 6.80-6.85 (m, 3H), 7.09-7.10 (m, 2H), 7.18-7.21 (m, 1H), 7.55 (d, 1H, J 8.17 Hz), 

8.07 (d, 1H, J 8.19 Hz), 8.14 (s, 1H), 8.40 (t, 1H; J 5.87 Hz), 8.80 (t, 1H, J 5.59 Hz). 13C-NMR (150 
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MHz, [D6]DMSO, COSY, HSQC, HMBC): δ (ppm) 9.8, 23.8, 25.4, 28.3, 28.5, 38.4, 38.5, 38.9, 40.6, 

53.7, 62.6, 65.0, 112.9, 114.8, 118.0, 121.0, 124.1 (q, 1C, JC-F 274.40 Hz), 124.6 (q, 1C, JC-F 5.95 Hz), 

125.0, 126.1 (q, 1C, JC-F 30.83 Hz), 128.7, 129.1, 131.2, 133.2, 141.0, 158.5, 159.4, 165.1, 173.3. 

HRMS: (ESI): m/z [M+H]+, calcd. for C31H41F3N7O3
+: 616.3217, found: 616.3223. C31H40F3N7O3 

(615.70). 

 

3-Chloro-N-(2-(2-cyano-3-(3-(3-(piperidin-1-ylmethyl)phenoxy)propyl)guanidino)ethyl)-4-

(propionamidomethyl)benzamide (4.43) 

4.43 was prepared from 4.26 (120 mg, 0.50 mmol, 1 eq), DIPEA (193 mg, 1.49 mmol, 3 eq), TBTU 

(191 mg, 0.60 mmol, 1.2 eq) and 4.5 (178 mg, 0.50 mmol, 1 eq) according to general procedure. 

Removal of the solvent in vacuo and purification by preparative HPLC (column: YMC Triart C18, 

gradient: 0-30 min: MeCN/0.1% aq. NH3 25:75-70:30, tR = 20.9 min) afforded the product as white 

solid (138 mg, 48%). Rf = 0.7 (CH2Cl2/2 M NH3 in MeOH 90:10). RP‐HPLC (gradient 2, 220 nm): 

99.3% (tR = 16.61 min, k = 4.7). 1H-NMR (600 MHz, [D6]DMSO, COSY, HSQC, HMBC): δ (ppm) 1.02 

(t, 3H, J 7.61 Hz), 1.36 (br s, 2H), 1.48 (br s, 4H), 1.91 (qui, 2H, J 6.55 Hz), 2.23 (q, 2H, J 7.56 Hz), 

2.32 (br s, 4H), 3.24-3.39 (m, 8H, interfering with the water signal), 3.95 (t, 2H, J 6.12 Hz), 4.33 (d, 

2H, J 5.82 Hz), 6.78-6.80 (m, 1H), 6.84-6.85 (m, 2H), 7.07-7.11 (m, 2H), 7.20 (t, 1H, J 7.75 Hz), 7.37 

(d, 1H, J 7.99 Hz), 7.75-7.76 (m, 1H), 7.87 (m, 1H), 8.33 (t, 1H; J 5.94 Hz), 8.65 (t, 1H, J 5.53 Hz). 
13C-NMR (150 MHz, [D6]DMSO, COSY, HSQC, HMBC): δ (ppm) 9.9, 23.8, 25.4, 28.4, 28.6, 30.7, 

38.4, 39.9 (1C under solvent peak (38.7-40.3)), 40.6, 53.7, 62.6, 65.0, 112.8, 114.8, 118.0, 121.1, 

126.0, 127.7, 128.5, 129.1, 131.9, 134.6, 139.7, 140.2, 158.5, 159.4, 165.1, 173.2. HRMS: (ESI): 

m/z [M+H]+, calcd. for C30H41ClN7O3
+: 582.2954, found: 582.2960. C30H40ClN7O3 (582.15). 

 

3-Bromo-N-(2-(2-cyano-3-(3-(3-(piperidin-1-ylmethyl)phenoxy)propyl)guanidino)ethyl)-4-

(propionamidomethyl)benzamide (4.44) 

4.44 was prepared from 4.27 (62 mg, 0.22 mmol, 1 eq), DIPEA (84 mg, 0.65 mmol, 3 eq), TBTU 

(84 mg, 0.26 mmol, 1.2 eq) and 4.5 (78 mg, 0.22 mmol, 1 eq) according to general procedure. 

Removal of the solvent in vacuo and purification by preparative HPLC (column: YMC Triart C18, 

gradient: 0-30 min: MeCN/0.1% aq. NH3 35:65-70:30, tR = 16.2 min) afforded the product as white 

solid (60 mg, 44%). Mp: 165 °C decomposition. Rf = 0.7 (CH2Cl2/3.5 M NH3 in MeOH 90:10). 

RP‐HPLC (gradient 2, 220 nm): 99.5% (tR = 16.51min, k = 4.7). 1H-NMR (600 MHz, [D6]DMSO, 

COSY, HSQC, HMBC): δ (ppm) 1.03 (t, 3H, J 7.63 Hz), 1.35 (br s, 2H), 1.44-1.48 (m, 4H), 1.90 (qui, 

2H, J 6.48 Hz), 2.20 (q, 2H, J 7.63 Hz), 2.27 (br s, 4H), 3.24-3.29 (m, 4H), 3.33-3.36 (m, 4H, 

interfering with the water signal), 3.95 (t, 2H, J 6.11 Hz), 4.30 (d, 2H, J 5.82 Hz), 6.76-6.78 (m, 1H), 

6.82-6.83 (m, 2H), 7.07-7.11 (m, 2H), 7.17-7.20 (m, 1H), 7.34 (d, 1H, J 8.11 Hz), 7.79-7.81 (m, 1H), 

8.04-8.05 (m, 1H), 8.34 (t, 1H; J 5.89 Hz), 8.65 (t, 1H, J 5.56 Hz). 13C-NMR (150 MHz, [D6]DMSO, 

COSY, HSQC, HMBC): δ (ppm) 9.9, 24.0, 25.5, 28.4, 28.6, 38.4, 38.9, 40.6, 42.4, 53.9, 62.8, 65.0, 

112.7, 114.6, 118.0, 120.9, 122.0, 126.5, 128.3, 129.0, 130.9, 134.7, 140.3, 141.2, 158.4, 159.4, 

165.0, 173.2. HRMS: (ESI): m/z [M+H]+, calcd. for C30H41BrN7O3
+: 626.2449, found: 626.2454. 

C30H40BrN7O3 (626.60). 
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4-(Azidomethyl)-3-bromo-N-(2-(2-cyano-3-(3-(3-(piperidin-1-

ylmethyl)phenoxy)propyl)guanidino)ethyl)benzamide (4.45) 

4.20 (400 mg, 1.56 mmol, 1.4 eq) and DIPEA (433 mg, 3.35 mmol, 3 eq) were dissolved in CH2Cl2 

(100 mL). O-(Benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium-hexafluorophosphate (HBTU, 508 

mg, 1.56 mmol, 1.4 eq) was added and the mixture was stirred for 30 min. Subsequently, 4.5 (400 

mg, 1.12 mmol, 1 eq) was added and the reaction mixture was stirred over night at room 

temperature. The organic layer was washed two times with saturated aqueous NaHCO3 solution 

(100 mL) and with brine (100 mL). Purification by column chromatography (CH2Cl2/MeOH 95:5-

90:10) and removal of the solvent in vacuo afforded the product as yellow oil (290 mg, 44%). Rf = 

0.2 (CH2Cl2/2 M NH3 in MeOH 90:10). 1H-NMR (400 MHz, CD3OD): δ (ppm) 1.57-1.59 (m, 2H),1.72-

1.78 (m, 4H), 2.01-2.07 (m, 2H), 2.94 (br s, 4H), 3.40-3.45 (m, 4H), 3.49-3.52 (m, 2H), 3.99 (s, 2H), 

4.07 (t, 2H, J 5.78 Hz), 4.54 (s, 2H), 6.96-7.00 (m, 2H), 7.09-7.10 (m, 1H), 7.30 (t, 1H, J 7.94 Hz), 

7.51 (d, 1H, J 7.94 Hz), 7.80-7.82 (m, 1H), 8.07-8.08 (m, 1H). 13C-NMR (100 MHz, CD3OD): δ (ppm) 

22.1, 23.4, 28.4, 39.2, 39.3, 40.9, 53.0, 53.7, 61.2, 65.7, 114.9, 116.7, 122.8, 123.3, 126.4, 128.3, 

129.7, 130.0, 131.6, 132.8, 135.6, 138.7, 159.1, 160.1, 167.2. HRMS: (ESI): m/z [M+H]+, calcd. for 

C27H35BrN9O2
+: 596.2092, found: 596.2114. C27H34BrN9O2 (596.53). 

 

4-(Aminomethyl)-3-bromo-N-(2-(2-cyano-3-(3-(3-(piperidin-1-

ylmethyl)phenoxy)propyl)guanidino)ethyl)benzamide (4.46) 

4.45 (390 mg, 0.65 mmol, 1 eq) was dissolved in a mixture of THF and H2O (1/2, v/v, 7.5 mL). 

Triphenylphosphine (427 mg, 1.63 mmol, 2.5 eq) dissolved in mixture of THF and H2O (5/2, v/v, 7 

mL) was added dropwise and the reaction mixture was stirred over night at room temperature. 

The solvent was partially removed under reduced pressure and the residue was purified by 

column chromatography (CH2Cl2/MeOH 90:10 - CH2Cl2/0.1% NH3 in MeOH 90:10). The product 

was obtained as yellow oil (200 mg, 54%). Further purification by preparative HPLC (column: YMC 

Triart C18, gradient: 0-30 min: MeCN/1% aq. NH3 10:90-91:9, tR = 19.9 min) afforded the product 

as white fluffy solid (70 mg, 19%). Mp: 73-77 °C. Rf = 0.4 (CH2Cl2/0.2% NH3 in MeOH 95:5). 

RP‐HPLC (gradient 3, 220 nm): 98.4% (tR = 28.19 min, k = 16.3). 1H-NMR (600 MHz, CD3OD, COSY, 

HSQC, HMBC): δ (ppm) 1.46 (br s, 2H), 1.57-1.61 (m, 4H), 2.02-2.06 (m, 2H), 2.44 (br s, 4H), 3.41-

3.43 (m, 4H), 3.48-3.50 (m, 4H), 3.90 (s, 2H), 4.05 (t, 2H, J 5.82 Hz), 6.85-6.89 (m, 2H), 6.94 (s, 1H), 

7.21 (t, 1H, J 7.92 Hz), 7.53 (d, 1H, J 7.99 Hz), 7.78-7.80 (m, 1H), 8.04 (m, 1H). 13C-NMR (150 MHz, 

CD3OD, COSY, HSQC, HMBC): δ (ppm) 25.0, 26.3, 30.0, 40.4, 40.7, 42.3, 46.7, 55.3, 64.6, 66.6, 

114.7, 117.0, 119.8, 123.5, 124.3, 127.7, 130.1, 130.3, 132.7, 135.8, 139.5, 146.1, 160.3, 161.5, 

168.9. HRMS: (ESI): m/z [M+H]+, calcd. for C27H37BrN7O2
+: 570.2187, found: 570.2183. 

C27H36BrN7O2 (570.54). 

 

4-(Acetamidomethyl)-3-bromo-N-(2-(2-cyano-3-(3-(3-(piperidin-1-

ylmethyl)phenoxy)propyl)guanidino)ethyl)benzamide (4.47) 

4.46 (70 mg, 0.12 mmol, 1 eq) and DIPEA (32 mg, 0.25 mmol, 2 eq) were dissolved in CH2Cl2 (5 

mL). Acetyl chloride (14 mg, 0.18 mmol, 1.5 eq) dissolved in CH2Cl2 (5 mL) was added drop wise 
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over a period of 2 h and the reaction mixture was stirred over night at room temperature. The 

organic layer was further diluted with CH2Cl2 (10 mL) and washed two times with aqueous NaOH 

solution (5%, w/w, 20 mL) and with brine (20 mL). Removal of the solvent in vacuo and 

purification by preparative HPLC (column: YMC Triart C18, gradient: 0-30 min: MeCN/0.1% aq. NH3 

20:80-91:9, tR = 16.05 min) afforded the product as white fluffy solid (30 mg, 40%). The purity 

determined by analytical HPLC was under 95% and therefore the product was again purified by 

preparative HPLC (column: YMC Triart C18, gradient: 0-30 min: MeCN/0.1% aq. NH3 10:90-70:30, 

tR = 23.7 min). The product was obtained as white fluffy solid (15 mg, 20%). Mp: 89-95 °C. Rf = 0.3 

(CH2Cl2/0.2% NH3 in MeOH 90:10). RP‐HPLC (gradient 3, 220 nm): 99.0% (tR = 28.01 min, k = 16.2). 

1H-NMR (600 MHz, CD3OD, COSY, HSQC, HMBC): δ (ppm) 1.45 (br s, 2H), 1.56-1.60 (m, 4H), 2.01-

2.05 (m, 5H), 2.43 (br s, 4H), 3.40-3.42 (m, 4H), 3.47-3.49 (m, 4H), 4.04 (t, 2H, J 5.81 Hz), 4.44 (s, 

2H), 6.84-6.88 (m, 2H), 6.93 (m, 1H), 7.20 (t, 1H, J 7.90 Hz), 7.39 (d, 1H, J 8.04 Hz), 7.74-7.76 (m, 

1H), 8.03 (m, 1H). 13C-NMR (150 MHz, CD3OD, COSY, HSQC, HMBC): δ (ppm) 22.5, 25.0, 26.3, 

30.0, 40.3, 40.7, 42.3, 44.5, 55.3, 64.6, 66.6, 114.8, 117.0, 119.8, 123.5, 124.1, 127.5, 130.1, 

130.3, 132.8, 136.1, 142.4 (2C), 160.3, 161.5, 168.8, 173.4. HRMS: (ESI): m/z [M+H]+, calcd. for 

C29H39BrN7O3
+: 612.2292, found: 612.2298. C29H38BrN7O3 (612.57). 

 

4-(Acetamidomethyl)-N-(2-(2-cyano-3-(3-(3-(piperidin-1-

ylmethyl)phenoxy)propyl)guanidino)ethyl)benzamide (4.48) 

4.40 (70 mg, 0.14 mmol, 1 eq), 4-(dimethylamino)-pyridine (17 mg, 0.14 mmol,1 eq) and DIPEA 

(28 mg, 0.21 mmol, 1.5 eq) were dissolved in CH2Cl2 (5 mL). Acetyl chloride (12 mg, 0.16 mmol, 

1.1 eq) dissolved in CH2Cl2 (2 mL) was added drop wise and the reaction mixture was stirred over 

night at room temperature. Additional acetyl chloride (12 mg, 0.16 mmol, 1.1 eq) and DIPEA (28 

mg, 0.21 mmol, 1.5 eq) were added and mixture was again stirred over night at room 

temperature. The organic layer was further diluted with CH2Cl2 (40 mL) and washed with H2O (50 

mL), aqueous NaOH solution (1 M, 50 mL) and brine (50 mL). The solvent was removed under 

reduced pressure and the residue was purified by column chromatography (CH2Cl2/MeOH 100:0-

90:10). The product was obtained as colourless oil (40 mg, 53%). Further purification by 

preparative HPLC (column: YMC Triart C18, gradient: 0-30 min: MeCN/0.1% aq. NH3 20:80-91:9, tR 

= 14.02 min) afforded the product as white fluffy solid (19 mg, 25%). Mp: 75-85 °C. Rf = 0.2 

(CH2Cl2/1.5 N NH3 in MeOH 90:10). RP‐HPLC (gradient 3, 220 nm): 99.8% (tR = 25.91 min, k = 14.9). 
1H-NMR (600 MHz, CD3OD, COSY, HSQC, HMBC): δ (ppm) 1.45 (br s, 2H), 1.56-1.60 (m, 4H), 2.00 

(s, 3H), 2.02-2.06 (qui, 2H, J 6.22 Hz), 2.41 (br s, 4H), 3.41-3.43 (m, 4H), 3.46 (s, 2H), 3.49-3.51 (m, 

2H), 4.05 (t, 2H, J 5.87 Hz), 4.40 (s, 2H), 6.84-6.89 (m, 2H), 6.94 (m, 1H), 7.21 (t, 1H, J 7.87 Hz), 

7.35 (d, 2H, J 8.40 Hz), 7.77 (m, 2H). 13C-NMR (150 MHz, CD3OD, COSY, HSQC, HMBC): δ (ppm) 

22.5, 25.1, 26.4, 30.0, 40.3, 40.7, 42.4, 43.8, 55.3, 64.7, 66.6, 114.7, 116.9, 119.9, 123.4, 128.58, 

128.60, 130.2, 134.2, 139.8, 144.1, 160.3, 161.6, 170.5, 173.2. HRMS: (ESI): m/z [M+H]+, calcd. for 

C29H40N7O3
+: 534.3187, found: 534.3191. C29H39N7O3 (533.68). 
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N-(2-(2-Cyano-3-(3-(3-(piperidin-1-ylmethyl)phenoxy)propyl)guanidino)ethyl)-4-

((dimethylamino)methyl)benzamide (4.49) 

4.28 (33 mg, 0.15 mmol, 1.1 eq) and DIPEA (90 mg, 0.70 mmol, 5 eq) were dissolved in CH2Cl2 (10 

mL). O-(Benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium-hexafluorophosphate (HBTU, 74 mg, 

0.20 mmol, 1.4 eq) was added and the mixture was stirred for 30 min. Subsequently, 4.5 (50 mg, 

0.14 mmol, 1 eq) was added and the reaction mixture was stirred over night at room 

temperature. The organic layer was diluted with CH2Cl2 (40 mL) and washed with H2O (50 mL), 

aqueous NaOH solution (1 M, 50 mL) and brine (50 mL). Purification by automated flash 

chromatography (CH2Cl2/MeOH 100:0-80:20 in 20 min) and removal of the solvent in vacuo 

afforded the product as colourless oil (40 mg, 56%). Further purification by preparative HPLC 

(column: YMC Triart C18, gradient: 0-30 min: MeCN/0.1% aq. NH3 10:90-91:9, tR = 21.50 min) 

afforded the product as white fluffy solid (20 mg, 28%). Mp: 62-68 °C. Rf = 0.2 (CH2Cl2/2 M NH3 in 

MeOH 95:5). RP‐HPLC (gradient 3, 220 nm): 99.0% (tR = 30.29 min, k = 17.6). 1H-NMR (600 MHz, 

CD3OD, COSY, HSQC, HMBC): δ (ppm) 1.45 (br s, 2H), 1.57-1.61 (m, 4H), 2.02-2.06 (qui, 2H, J 6.20 

Hz), 2.24 (s, 6H), 2.43 (br s, 4H), 3.41-3.43 (m, 4H), 3.48-3.51 (m, 6H), 4.05 (t, 2H, J 5.87 Hz), 6.85-

6.89 (m, 2H), 6.94-6.95 (m, 1H), 7.21 (t, 1H, J 7.85 Hz), 7.40 (d, 2H, J 8.22 Hz), 7.78-7.79 (m, 2H). 
13C-NMR (150 MHz, CD3OD, COSY, HSQC, HMBC): δ (ppm) 25.1, 26.4, 30.0, 40.3, 40.6, 42.4, 45.3, 

55.3, 64.5, 64.6, 66.6, 114.7, 117.0, 119.9, 123.4, 128.4, 130.3, 130.7, 134.5, 139.6, 142.9, 160.3, 

161.6, 170.5. HRMS: (ESI): m/z [M+H]+, calcd. for C29H42N7O2
+: 520.3395, found: 520.3394. 

C29H41N7O2 (519.69). 

 

3-Bromo-N-(2-(2-cyano-3-(3-(3-(piperidin-1-ylmethyl)phenoxy)propyl)guanidino)ethyl)-4-

((dimethylamino)methyl)benzamide (4.50) 

4.29 (60 mg, 0.20 mmol, 1.1 eq) and DIPEA (120 mg, 0.93 mmol, 5 eq) were dissolved in CH2Cl2 

(10 mL). O-(Benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium-hexafluorophosphate (98 mg, 0.26 

mmol, 1.4 eq) was added and the mixture was stirred for 30 min. Subsequently, 4.5 (66 mg, 0.19 

mmol, 1 eq) was added and the reaction mixture was stirred over night at room temperature. 

The organic layer was diluted with CH2Cl2 (40 mL) and washed with H2O (50 mL), aqueous NaOH 

solution (1 M, 50 mL) and brine (50 mL). Purification by column chromatography (CH2Cl2 100% - 

CH2Cl2/1 M NH3 in MeOH 90:10) and removal of the solvent in vacuo afforded the product as 

colourless oil (50 mg, 45%). Further purification by preparative HPLC (column: YMC Triart C18, 

gradient: 0-30 min: MeCN/0.1% aq. NH3 10:90-91:9, tR = 22.38 min) afforded the product as white 

fluffy solid (36 mg, 32%). Mp: 105-115 °C. Rf = 0.3 (CH2Cl2/1.5 M NH3 in MeOH 90:10). RP‐HPLC 

(gradient 3, 220 nm): 99.6% (tR = 33.11 min, k = 19.3). 1H-NMR (600 MHz, CD3OD, COSY, HSQC, 

HMBC): δ (ppm) 2.06 (br s, 2H), 1.56-1.60 (m, 4H), 2.02-2.06 (qui, 2H, J 6.21 Hz), 2.29 (s, 6H), 2.41 

(br s, 4H), 3.41-3.45 (m, 6H), 3.49-3.51 (m, 2H), 3.61 (s, 2H), 4.05 (t, 2H, J 5.87 Hz), 6.84-6.89 (m, 

2H), 6.93 (m, 1H), 7.20 (t, 1H, J 7.85 Hz), 7.53 (d, 1H, J 8.04 Hz), 7.76-7.78 (m, 1H), 8.05 (d, 1H, J 

1.80 Hz). 13C-NMR (150 MHz, CD3OD, COSY, HSQC, HMBC): δ (ppm) 25.1, 26.4, 30.0, 40.3, 40.7, 

42.3, 45.6, 55.3, 63.6, 64.7, 66.6, 114.7, 116.9, 119.8, 123.4, 125.9, 127.3, 130.2, 132.4, 132.9, 

136.1, 139.8, 142.4, 160.2, 161.5, 168.9. HRMS: (ESI): m/z [M+H]+, calcd. for C29H41BrN7O2
+: 

598.2500, found: 598.2502. C29H40BrN7O2 (598.59). 
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4.3.3 Pharmacological Methods 

Radioligand competition binding assay on Sf9 insect cell membranes 

Preparation of the membranes of Sf9 insect cells expressing the hH2R-GsαS fusion protein or co-

expressing the hH3R + Giα2 + β1γ2 proteins was described elsewhere.19 

Radioligand competition binding assays were performed as described previously with minor 

adjustments using the following radioligands: [3H]UR-DE2576 (hH2R: specific activity = 32.89 

Ci/mmol, Kd = 12.2 nM, cfinal = 20 nM) or [3H]Nα-methylhistamine (Hartmann Analytic, 

Braunschweig, Germany; hH3R: specific activity = 80 Ci/mmol, Kd = 3 nM, cfinal = 3 nM). 

On the day of the experiment Sf9 membranes were thawed and sedimented by centrifugation at 

13,000 rpm at 4 °C for 10 min. The membranes were resuspended in ice cold binding buffer (75 

mM Tris/HCl, pH 7.4 containing 12.5 mM MgCl2, 1mM EDTA and; in the following referred to as 

BB) and adjusted to a protein concentration of 2-4 µg/µL. 80 µL BB containing 0.2% BSA and the 

respective radioligand, followed by 10 µL of the investigated ligands at various concentrations 

(dissolved in H2O or 10 mM HCl, prepared less than 10 min prior), were added to every well of a 

96-well plate (Primaria clear flat bottom microplates, Corning, New York, USA). Incubation was 

started by addition of the membrane suspension (10 µL). The plates were shaken for 60 min at 

room temperature in the dark. Subsequently, bound radioligand was separated from free 

radioligand by filtration through glass microfiber filters (Whatman GF/C, Maidstone, UK), treated 

with 0.3% polyethylenimine (PEI), using a 96-well Brandel harvester (Brandel Inc., Unterföhring, 

Germany). The punched out filter pieces were transferred into clear, flexible 96-well PET 

microplate (round bottom, 1450-401, Perkin Elmer, Rodgau, Germany). Each well was 

supplemented with 200 µL scintillation cocktail (Rotiscint Eco plus, Roth, Karlsruhe, Germany) 

and incubated in the dark for at least 4 h. The radioactivity was measured with a MicroBeta2 

1450 scintillation counter (Perkin Elmer, Rodgau, Germany). 

 

Functional GTPγS assay on Sf9 insect cell membranes 

GTPγS assays were performed as described previously20 with minor modifications. [35S]GTPγS 
(specific activity = 1000 Ci/mmol) was purchased from Hartmann Analytic (Braunschweig, 

Germany). Sf9 membranes were prepared in the same manner as for radioligand competition 

binding and the protein concentration was adjusted to 0.5-1.5 µg/µL. 

Agonist mode: 80 µL of BB containing BSA (0.05% final), GDP (1 µM final) and [35S]GTPγS (20 nCi 
final), followed by 10 µL of the investigated ligands at various concentrations (dissolved in H2O) 

were added to every well of a 96-well plate (Primaria clear flat bottom microplates, Corning, New 

York, USA). Incubation was started by addition of the membrane suspension (10 µL). The plates 

were shaken for 60 min at room temperature in the dark. Subsequently, bound radioligand was 

separated from free radioligand by filtration through glass microfiber filters (Whatman GF/C, 

Maidstone, UK) using a 96-well Brandel harvester (Brandel Inc., Unterföhring, Germany). 

Antagonist mode of the GTPγS assay was performed in the same way as the agonist mode, but in 
the presence of the agonist histamine (1 µM final). 
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4.3.4 Data analysis 

Retention factors k were calculated according to k = (tR- t0)/ t0 (t0 = dead time; tR = retention 

time). Corrected counts per minute (ccpm) from the GTPγS assay (agonist mode) were plotted 

against the log(concentration of the test compound), and data were analyzed by a four 

parameter logistic equation (GraphPad Prism Software 5.0, GraphPad Software, San Diego, CA), 

followed by normalization (0%  = water value (basal activity), 100% = “top” histamine equation) 
and analysis by four-parameter logistic equation (log(agonist) vs. response – variable slope, 

GraphPad Prism). Data of the GTPγS assay (antagonist mode) were analysed by a four parameter 

logistic equation (GraphPad Prism), followed by normalization (100%  = “top” of the four-

parameter logistic fit, 0% = unspecifically bound radioligand (ccpm) determined in the presence 

of famotidine at 100 µM) and analysis by four-parameter logistic equation (log(inhibitor) vs 

response – variable slope, GraphPad Prism). pIC50 values were converted into pKB values 

according to the Cheng-Prusoff equation21. Total binding data from radioligand competition 

binding experiments were plotted against log(concentration competitor) and analyzed by a four-

parameter logistic equation (log(inhibitor) vs response – variable slope, GraphPad Prism), 

followed by normalization (100%  = “top” of the four-parameter logistic fit, 0% = unspecifically 

bound radioligand ligand determined in the presence of famotidine at 100 µM). Normalized data 

from competition binding experiments were again analyzed by a four-parameter logistic equation 

and obtained pIC50 values were converted into pKi values according to the Cheng-Prusoff 

equation21. 
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Fluorescence Labeled H2R Ligands with 
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Flow Cytometry, Confocal Microscopy 

and High Content Imaging 

 

 

Note: Prior to the submission of this thesis, parts of this chapter (the synthesis of 5.2, 5.7 and 

5.10) were published in cooperation with partners: 

Baumeister, P.; Erdmann, D.; Biselli, S.; Kagermeier, N.; Elz, S.; Bernhardt, G.; Buschauer, A. 

[3H]UR-DE257: Development of a Tritium-Labeled Squaramide-Type Selective Histamine H2 

Receptor Antagonist. ChemMedChem 2015, 10, 83-93. 

 

The synthesis of 5.3, 5.12, 5.13 and Py-5 were performed by Mengya Chen during her Master 

Thesis 2015. 
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5.1 INTRODUCTION 

Fluorescence labeled GPCR ligands have become an attractive alternative to radiotracers for the 

investigation of ligand-receptor interactions. Besides advantages with respect to safety issues 

and waste disposal, fluorescent ligands are a prerequisite for the application of a plethora of 

optical techniques (confocal microscopy, FRET,1 FRAP,2 TIRF,3 high content imaging,4 fluorescence 

polarization5). In general, a fluorescent ligand consists of a pharmacophore, a linker and the 

fluorophore. A major challenge in the development of fluorescent ligands for aminergic GPCRs is 

to retain affinity, when a bulky fluorophore is attached to a relatively small ligand. It is important 

to consider that the attachment site, the type and length of the linker as well as the nature of the 

fluorophore (size, net charge and lipophilicity) might affect receptor affinity as well as selectivity 

and can lead to unfavorable physicochemical properties (high unspecific binding, aggregation, 

internalization, etc.).6 Nonetheless, various fluorescent ligands for aminergic GPCRs have been 

reported, for example for muscarinic,7-9 α and β adrenergic,10-12 dopamine,13 histamine H1
14,15 and 

H3
16-18 receptors. In the H2R field, most of the reported fluorescent ligands are emitting at 

wavelengths below 550 nm (common fluorophores: fluorescein, acridine, 5-

(dimethylamino)naphthalin-1-sulfonic acid amide (dansyl), N-methylanthranilic acid amide and 1-

cyanoisoindol-2-yl).19,20 The majority of the fluorescent ligands consist of a 

piperidinomethylphenoxypropylamino (potentidine) pharmacophore, derived either from 

roxatidine or iodoaminopotentidine, which is linked to the fluorophore by an alkyl chain (Figure 

5.1).  

 

Figure 5.1. Structures of the standard H2R antagonists roxatidine acetate and iodoaminopotentidine
21

 as well as 

fluorescently labeled derivatives
19,20

. pA2 values were 
a
determined on the isolated guinea pig right atrium

19
 and pKi 

values and the pKd value were 
b
determined on membranes of guinea pig striatum

21,22
 and 

c
determined on 

homogenates of COS-7 cells transiently expressing the rH2R
20

. 

Labeling with relatively small chromophores such as the N-methylanthranilic acid amide or a 

7-nitrobenzo[c][1,2,5]oxadiazol-4-yl moiety resulted in fluorescent ligands (Compound III-V) with 

high H2R affinity (pA2 or pKi values: >7.0) (Figure 5.1).19,20 However, the reported ligands were 

inapplicable for cell-based methods like confocal microscopy and flow cytometry due to the high 

cellular autofluorescence at the emission wavelength which resulted in low signal-to-noise ratios. 

In order to expand the range of applications and avoid the high cellular autofluorescence, 
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fluorescent ligands labeled with red-emitting fluorophores (emission wavelength > 600 nm) are 

required.  

Recently, with the squaramide-type radioligand [3H]UR-DE257 our group developed a high-

affinity and highly subtype selective hH2R antagonist (Kd value: 31 nM)23 (Figure 5.2) consisting of 

the pharmacophore of BMY 253624, which is linked to the tritium labeled propionic acid amide by 

a hexyl linker. Replacing the radiolabeled propionic acid amide by red-emitting fluorophores was 

the starting point for the development of high affinity hH2R fluorescent ligands.25 The most 

promising results were achieved by the pyridinium (Py-5) labeled ligand UR-DE229 and the 

cyanine labeled ligand (S0536) UR-DE56 (Figure 5.2).25,26 Both ligands were antagonists in the 

GTPase assay with pKb values of 7.06-7.66 and showed a low unspecific binding in flow 

cytometric binding assays and confocal microscopy.  

 

Figure 5.2. Chemical structures of the H2R radioligand [
3
H]UR-DE257, the parent compound BMY 2536, as well as of the 

pyridinium labeled H2R antagonist UR-DE229 and the cyanine labeled H2R antagonist UR-DE56. Binding affinities 

(radioligand binding assay, Kd value)
23

 and antagonism (steady-state GTPase assay, pKb value)
23,25

 were determined on 

membranes of Sf9 insect cells expressing the hH2R-GsαS fusion protein. 

The present study is aiming at fluorescent high affinity H2R antagonists with improved optical and 

physicochemical properties to gain access to a wide range of potential applications, in particular 

to confocal microscopy and to high throughput or/and high content imaging systems. Therefore, 

the fluorescent labeled antagonists UR-DE229 and UR-DE56 were investigated in different assay 

systems. Furthermore, a small library of fluorescent ligands were synthesized for the exploration 

of the impact of length of the alkyl linker and the variation of the net charge of the fluorophores 

by coupling the positively charged pyrilium dye (Py-5) or differently charged cyanine dyes 

(positive: S2197, neutral: S0536 or negative: S0586, succinimidyl esters) with various amine 

precursors (Figure 5.3). 

 

Figure 5.3. Chemical structures of the fluorescent dyes used for the preparation of the fluorescent H2R ligands. 
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5.2 RESULTS AND DISCUSSION 

5.2.1 Chemistry 

Starting from 3-[3-(piperidin-1-ylmethyl)phenoxy]propan-1-amine (4.3) the amine precursors 

were prepared in a three step synthesis (Scheme 5.1) as described before.27 4.3 was treated with 

3,4-diethoxycyclobut-3-ene-1,2-dione (5.1) to form the corresponding squaric acid ester amide 

5.2, before a second amidation with mono-boc protected alkanediamines (5.3-5.5) was 

performed. The intermediates 5.3-5.5 were accessible by reaction of di-tert-butyl dicarbonate 

(Boc2O) with an excess of the alkanediamines. The resulting tert-butyl carbamates 5.6-5.8 were 

cleaved with either TFA or HCl and the products were purified by preparative HPLC to afford the 

amine precursors 5.9-5.11 as TFA-salts. 

 

Scheme 5.1. Synthesis of the amine precursors 5.9, 5.10, 5.11. Reagents and conditions: i) EtOH, RT, 2 h, 78%; ii) Boc2O, 

CHCl3, 0 °C to RT, ON, 44-92%; iii) EtOH, RT, ON, 42-83%; iv) TFA or HCl, CH2Cl2, RT, ON, 65-93%. 

BMY 25368 was synthesized from 5.2 by treatment with ammonia in MeOH (Scheme 5.2) 

according to published protocols.24,28 

The pyridinium labeled fluorescent ligands 5.12-5.14 were synthesized by direct coupling of the 

pyrilium dye Py-5 (chameleon label) with the respective amine precursor 5.9-5.11 under basic 

conditions (Scheme 5.3).29 The reaction progresses rapidly accompanied by a change in color 

from blue to red. The cyanine labeled fluorescent ligands 5.15-5.20 were derived from the amine 

precursors 5.9-5.11 by amide coupling with the succinimidyl ester of the fluorescent dyes (S2197, 

S0536, S0586). 

 

Scheme 5.2. Synthesis of the parent compound BMY 25368. Reagents and conditions: i) EtOH, RT, ON, 74%. 
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Scheme 5.3. Synthesis of the fluorescent compounds 5.12-5.20. Reagents and conditions: i) DMF, TEA or DIPEA, RT, 90-

120 min, 24-32%; ii) DMF, DIPEA, RT, 45-90 min, 18-44%. 
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5.2.2 Fluorescence properties of the labeled ligands  

The fluorescence properties of representative compounds (5.13, 5.14, 5.16, 5.18, 5.20) were 

determined in PBS at pH 7.4 and PBS containing 1% (w/v) of BSA. The excitation and corrected 

emission spectra of the pyridinium labeled compound 5.14 and the cyanine labeled compounds 

(5.16, 5.18, 5.20) are depicted in Figure 5.4. The Stoke’s shift was much more pronounced for the 

Py-5 labeled compounds (Figure 5.4, Table 5.1). These compounds (5.12-5.14) can be excited 

with the argon laser at 488 nm. The cyanine labeled compounds showed a considerably lower 

Stoke’s shift, allowing excitation by the red diode laser at 635 nm. 

            A             B 

  

            C             D 

  

Figure 5.4. Excitation and corrected emission spectra of A: Py-5 (5.14), B: S0223 (5.16), C: S0436 (5.18) and D: S0387 

(5.20) labeled compounds dissolved in PBS containing 1% BSA. Ligand concentration: 1.5-6 µM. Excitation and emission 

spectra were recorded with an excitation slit of 10 nm and an emission slit of 10 nm. The excitation wavelength was 

chosen as close to the absorption maximum as possible (5.14) or at an inflection point (5.16, 5.18 and 5.20). The 

emission wavelength was chosen close to the emission maximum (5.14) or at an inflection point (5.16, 5.18 and 5.20). 

The quantum yields (Table 5.1) were determined in PBS and in PBS containing 1% (w/v) of BSA. 

For the pyridinium labeled compounds 5.13 and 5.14 the quantum yields were very low in PBS 

alone (less than 4%), whereas the addition of BSA increased the quantum yield up to 24% (7-

fold). In case of the investigated cyanine labeled compounds 5.16, 5.18, 5.20 the quantum yields 

were significantly higher in PBS (19-27%) and increased (38-45%) in the presence of BSA. This 

effect was described for several cyanine and pyridinium labeld ligands primarily resulting from 

intermolecular hydrophobic and electrostatic interactions of the fluorophores with the 

protein.30,31 
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Table 5.1. Fluorescence properties of compounds 5.13, 5.14, 5.16, 5.18 and 5.20 in PBS (pH 7.4) and PBS containing 1% 

BSA: excitation/emission maxima and fluorescent quantum yields ɸ (reference: cresyl violet perchlorate). 

Compound Dye
a 

PBS  PBS + 1% BSA  

  λex/λem ɸ (%)  λex/λem ɸ (%)  

5.13 Py-5 457/706 3.2  481/646 22.9  

5.14 Py-5 458/705 3.7  481/646 24.4  

5.16 S0223 646/663 26.5  663/672 44.6  

5.18 S0436 648/669 19.3  667/676 41.7  

5.20 S0387 649/669 24.2  656/670 38.3  

a
Fluorescent dye used for the preparation of the fluorescent ligand. 
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5.2.3 Biological Evaluation 

H2R affinity, selectivity and antagonism 

The fluorescent H2R antagonists 5.12-5.20 as well as the parent compound BMY2536 and the 

amine precursors 5.9-5.11 were investigated in equilibrium competition binding experiments on 

membrane preparations from Sf9 insect cells expressing the hH2R-GsαS fusion protein using the 

antagonist [3H]UR-DE25723 as radioligand. The selectivity of the compounds for the hH2R 

compared to hH3R and, for selected ligands, to hH4R was investigated by competition binding 

experiments using Sf9 insect cell membranes co-expressing either the hH3R or the hH4R and Gαi2 

and Gβ1γ2 proteins with [3H]histamine as radioligand. Representative radioligand binding curves 

are depicted in Figure 5.5 and the results are shown in Table 5.2. 

Radioligand competition binding experiments revealed that most of the fluorescent labels were 

tolerated with no or a slight decrease in affinity (Table 5.2). Exceptions were the cyanine labeled 

ligands 5.19 and 5.20 in which the introduction of the S0387 fluorophore with a negative net 

charge resulted in a decrease in hH2R affinity (5.19: pKi value: 5.69, 5.20: pKi value: 5.88) 

compared to the corresponding amine-precursors (5.9: pKi value: 6.52, 5.10: pKi value: 7.87). The 

pyridinium labeled ligands 5.12-5.14 showed, independent of linker length, high hH2R affinities 

(pKi values: 7.71-7.76) in the same range as the parent compound BMY 25368 (pKi value: 7.80). In 

case of 5.12, the hH2R affinity even increased with the labeling (amine precursor 5.9: pKi value: 

6.52 compared with 5.12: pKi value: 7.75). In the cyanine series, ligand 5.16, labeled with 

fluorophore S0223 (positive net charge), and ligand 5.18, labeled with fluorophore S0436 (neutral 

net charge), showed the highest hH2R affinity (5.16: pKi value: 7.67 and 5.18: pKi value: 7.11).  

            A             B 

  

Figure 5.5. Displacement of the radioligand [
3
H]UR-DE257 (c = 20 nM, Kd = 12.2 nM) by the fluorescent ligands 5.14, 

5.16, 5.18 and 5.20 determined on membrane preparations of Sf9 insect cells expressing the hH2R-GsαS fusion protein 

(A). Displacement of the respective radioligand from membrane preparations of Sf9 insect cells expressing the hH2R-

GsαS fusion protein (radioligand: [
3
H]UR-DE257, c = 20 nM, Kd = 12.2 nM), co-expressing the hH3R and Gαi2 plus Gβ1γ2 

proteins (radioligand: [
3
H]histamine c = 15 nM, Kd = 12.1 nM) or co-expressing the hH4R and Gαi2 plus Gβ1γ2 proteins 

(radioligand: [
3
H]histamine c = 10 nM, Kd = 15.9 nM) by the fluorescent ligand 5.14 (B). Data represent mean values ± 

SEM of 2-3 experiments performed in triplicate. 
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Interestingly, labeling with Py-5, S0223 and S0436 led to an increase in hH3R receptor affinity up 

to two orders of magnitude compared to the corresponding amine precursors (Table 5.2). The 

pyridinium labeled ligands 5.12-5.14 and the cyanine labeled ligands 5.16 and 5.18 showed slight 

selectivity for the hH2R over hH3R (pKi values: 6.4 - 7.18). In case of the cyanine labeled ligands 

5.15 and 5.17, the selectivity even changed in favour of the hH3R (pKi value: 7.0 and 6.8).  

Table 5.2. Affinities of the parent compound BMY2536, the amine precursors 5.9-5.11 and fluorescent ligands 5.12-

5.20 to hH2-4R, obtained from equilibrium competition binding studies on membrane preparations from Sf9 insect cells, 

expressing the respective histamine receptor subtype. 

   hH2R
c 

hH3R
d 

hH4R
e 

Compound Dye
a 

n
b 

pKi
 

N pKi
 

N pKi
 

N 

His - - 6.53 ± 0.04 3 7.8 ± 0.1 3 7.65 ± 0.03 3 

BMY 25368 - - 7.80 ± 0.0123 3 4.66 ± 0.01  3 n.d. - 

5.9 - 4 6.52 ± 0.04 4 4.96 ± 0.07 3 n.d. - 

5.10 - 6 7.87 ± 0.02 3 5.08 ± 0.03 3 n.d. - 

5.11 - 7 7.86 ± 0.02 3 5.12 ± 0.05 3 n.d. - 

5.12 Py-5 4 7.75 ± 0.02 3 6.4 ± 0.1 3 n.d. - 

5.13 Py-5 6 7.71 ± 0.04 3 7.11 ± 0.08 4 5.64 ± 0.06 3 

5.14 Py-5 7 7.763 ± 0.008 3 7.01 ± 0.04 3 5.57 ± 0.07 3 

5.15 S0223 4 6.57 ± 0.02 3 7.0 ± 0.1 3 n.d. - 

5.16 S0223 6 7.67 ± 0.07 3 7.18 ± 0.03 2 n.d. - 

5.17 S0436 4 6.49 ± 0.04 3 6.8 ± 0.1 3 n.d. - 

5.18 S0436 6 7.105 ± 0.003 3 6.59 ± 0.03 2 n.d. - 

5.19 S0387 4 5.69 ± 0.08 3 5.45 ± 0.04 3 n.d. - 

5.20 S0387 6 5.88 ± 0.09 3 n.d. - n.d. - 

a
Dye used for the preparation of the fluorescent ligand. 

b
Length of the linker between the squaric acid amide and the 

fluorescent dye given as the number of carbon atoms. Competition binding assay on membrane preparations of Sf9 

insect cells: 
c
expression of the hH2R-GsαS fusion protein (radioligand: [

3
H]UR-DE257, c = 20 nM, Kd = 12.2 nM), 

d
co-

expression of the hH3R and Gαi2 and Gβ1γ2 proteins (radioligand: [
3
H]histamine c = 15 nM, Kd = 12.1 nM) or 

e
co-

expresson of the hH4R and Gαi2 plus Gβ1γ2 proteins (radioligand: [
3
H]histamine c = 10 nM, Kd = 15.9 nM). The incubation 

period was 60 min. Data were analyzed by nonlinear regression and were best fitted to four-parameter sigmoidal 

concentration-response curves. Data shown are means ± SEM of N independent experiments, each performed in 

triplicate. 

  



106 Chapter 5 

Compounds 5.13 and 5.14 were also investigated for hH4R affinity. These ligands showed a high 

preference for the hH2R over hH4R. The impaired hH2R selectivity with respect to the hH3R limited 

the application of the fluorescent ligands to recombinant systems in which the hH2R was 

expressed. 

The amine precursors 5.9, 5.10, 5.11 as well as representative fluorescent ligands (5.13, 5.14, 

5.16, 5.18) were investigated for hH2R antagonism in a GTPγS assay on membrane preparations 
of Sf9 insect cells expressing the hH2R-GsαS fusion protein.32 The results are summarized in Table 

5.3 and representative concentration-response curves derived from GTPγS assays performed in 
antagonist mode are depicted in Figure 5.6A. 

The parent compound BMY 25368, the amine precursors 5.9-5.11 as well as the investigated 

fluorescent ligands 5.13, 5.14, 5.16 and 5.18 were antagonists at hH2R in a GTPγS assay. In 

general, the pKb values were in good agreement with the pKi values from radioligand competition 

binding. Only the amine intermediates 5.9 and 5.10 as well as the cyanine labeled ligand 5.18 

showed significally lower pKb values compared to the pKi values (difference up to one order of 

magnitude). Furthermore, representative fluorescent ligands (5.13, 5.14, 5.16 and 5.19) were 

investigated for hH2R agonism in a β-arrestin2 recruitment assay (split luciferase 

complementation) on HEK293T-hH2R-βArr2 cells.33 All investigated ligands were antagonists in 

the β-arrestin2 recruitment assay, indicating that no β-arrestin2 mediated internalization of the 

receptor-ligand-complex took place (Figure 5.6B). 

            A             B 

  

Figure 5.6. Antagonism of the fluorescent ligands 5.13, 5.14, 5.16 and 5.18 on hH2R determined in a GTPγS assay 
(antagonistic mode) on membrane preparations of Sf9 insect cells expressing the hH2R-GsαS fusion protein (A). In the 

antagonist mode histamine (1 µM) was used for stimulation. Concentration-response curves of histamine, the 

fluorescent ligands 5.13, 5.14, 5.16 and 5.19 on hH2R determined by a luciferase complementation assay measuring β-

arrestin2 recruitment on HEK293T-hH2R-βArr2 cells (B). Data represent mean values ± SEM of 2-3 experiments 

performed in duplicate (β-arrestin2) or triplicate (GTPγS). 
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Table 5.3. hH2R antagonism and the calculated pKb values of histamine, BMY 25368, the amine-precursors 5.9-5.11 and 

the fluorescent ligands 5.13, 5.14, 5.16 and 5.18 determined by a GTPγS assay. 

   hH2R (GTPγS)c 

No. Dye
a 

n
b 

pKb (pEC50)
 

N α 

His - - (5.80 ± 0.06) 9 1.0 

BMY 25368 - - 7.03 ± 0.02 2 -0.011 ± 0.007 

5.9 - 4 5.8 ± 0.2 2 -0.040 ± 0.003 

5.10 - 6 6.73 ± 0.08 3 -0.025 ± 0.005 

5.11 - 7 7.1 ± 0.1 3 -0.011 ± 0.006 

5.13 Py-5 6 7.21 ± 0.04 3 -0.016 ± 0.002 

5.14 Py-5 7 7.9 ± 0.1 3 -0.038 ± 0.006 

5.16 S0223 6 7.73 ± 0.04 3 -0.026 ± 0.003 

5.18 S0436 6 6.49 ± 0.03 3 -0.015 ± 0.005 

a
Dye used for the preparation of the fluorescent ligand. 

b
Length of the linker between the squaric acid amide and 

fluorescent dye given as the number of carbon atoms. 
c
[

35S]GTPγS assay determined on membrane preparations of Sf9 
insect cells expressing the hH2R-GsαS fusion protein. The intrinsic activity (α) of histamine was set to 1.00, and α values 

of investigated compounds were referred to this value. The pKB values of neutral antagonists were determined in the 

antagonist mode versus histamine (c = 1 µM) as agonist. Data represent mean values ± SEM of 2-3 experiments 

performed in triplicate. 

  



108 Chapter 5 

Confocal microscopy 

The hH2R binding of the fluorescently labeled ligands 5.14, 5.16 and 5.18 was also investigated by 

confocal microscopy (Figure 5.7). All investigated ligands were localized at the cell membrane of 

HEK293T-hH2R-qs5 cells. The ligands 5.14 and 5.18 showed a low unspecific binding at a 

concentration of 100 nM in the presence of a 300-fold excess of famotidine, whereas 5.16 

showed a higher unspecific binding. 
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Figure 5.7. Localization of the fluorescent H2R ligands 5.14 (100 nM), 5.16 (100 nM) and 5.18 (100 nM) at the 

membrane of HEK293T-hH2R-qs5 cells determined by confocal microscopy after 20 min of incubation (25 °C). 

Unspecific binding was determined in the presence of famotidine (300-fold excess). All images were acquired with a 

Zeiss Axiovert 200 M microscope equipped with the LSM 510 Laser scanner. A 63x/1.40 oil immersion objective was 

used. 

 

Flow cytometric hH2R binding studies on HEK293T-hH2R-qs5 cells 

Fluorescent ligands 5.12-5.18, which showed moderate to high hH2R affinity (pKi values > 6.0) 

were used for binding studies by flow cytometry on HEK293T-hH2R-qs5 cells26. Representative 

saturation binding curves are depicted in Figure 5.8 and the results are summarized in Table 5.4. 

All investigated ligands afforded Kd values which were in good agreement with the Ki values 

obtained from competition binding experiments with [3H]UR-DE257 on membranes of Sf9 insect 

cells. Within the pyridinium labeled ligands 5.12-5.14 the carbon linker length (n = 4-7) had no 

significant influence on affinity (Kd value: 14.9 – 27.9 nM), and unspecific binding was low (under 

10% relative to total binding around the Kd).  

The cyanine labeled ligand 5.16 (positive charge of the fluorophore) showed the highest affinity 

(Kd value: 13.9 nM) within the cyanine series, but a higher unspecific binding (20% relative to 

20 µm 20 µm 20 µm 

20 µm 20 µm 20 µm 
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total binding around the Kd value). The introduction of a sulfonic acid group into the cyanine 

moiety and the associated change of fluorophore charge to neutrality (compound 5.18) resulted 

in a slight decrease in affinity (Kd value: 48.2 nM), but had a positive effect regarding unspecific 

binding (around 10% relative to total binding around the Kd value). 

            A             B 

  

 
            C             D 

  
Figure 5.8. Representative flow cytometric saturation binding experiments on HEK293T-hH2R-qs5 cells with the 

fluorescent ligands (A) 5.12, (B) 5.14, (C) 5.16 and (D) 5.18. Unspecific binding was determined in the presence of 

famotidine (300-fold excess). Cells were incubated with the fluorescent ligands at RT in the dark for 90 min. Error bars 

of specific binding represent propagated errors calculated according to the Gaussian law. Error bars of total and 

unspecific binding represent the SEM. Experiments were performed in dublicate. 
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Table 5.3. hH2R saturation binding data of fluorescent ligands 5.12-5.18 determined by flow cytometry on HEK293-

hH2R-qs5 cells in comparison with competition binding data determined on membrane preparations from Sf9 insect 

cells, expressing the hH2R. 

No Dye
a
 n

b 
Kd (nM)

c 
Ki (nM)

d 

5.12 Py-5 4 27.9 ± 2.0 18 ± 1 

5.13 Py-5 6 14.9 ± 2.3 20 ± 2 

5.14 Py-5 7 19.7 ± 4.4 23.6 ± 0.4 

5.15 S0223 4 289 ± 29 270 ± 14 

5.16 S0223 6 13.9 ± 2.2 22 ± 4 

5.17 S0436 4 684 ± 95 328 ± 28 

5.18 S0436 6 48.2 ± 2.3 78.5 ± 0.5 

a
Dye used for the preparation of the fluorescent ligand. 

b
Length of the linker between the squaric acid amide and 

fluorescent dye given as the number of carbon atoms. 
c
Flow cytometric saturation binding experiments on HEK293T-

hH2R-qs5 cells. Unspecific binding was determined in the presence of famotidine (300-fold excess). Cells were 

incubated with the fluorescent ligands at RT in the dark for 90 min. Data represent mean ± SEM from three 

independent experiments (each performed in duplicate). Specific binding data were analyzed by an equation 

describing one-site (monophasic) binding. 
d
Competition binding assay on membrane preparations of Sf9 insect cells 

hH2R-GsαS fusion protein (radioligand: [
3
H]UR-DE257, c = 20 nM, Kd = 12.2 nM), cf. results from Table 5.2 here shown as 

Ki values to facilitate comparison. 

The association and dissociation kinetics of 5.14, 5.16 and 5.18 were determined on HEK293T-

hH2R-qs5 cells at 37 °C using flow cytometry (cf. Figure 5.9). The Py-5 labeled ligand 5.14 (c = 50 

nM) showed a fast association i. e. the plateau was reached after approx. 20 min. The 

dissociation of 5.14 (c = 50 nM, 90 min pre-incubation) in the presence of famotidine was 

incomplete. After 150 min, the residual specific binding of the fluorescent ligand amounted to 

approximately 60% (curve plateau at 57%). The investigated cyanine dyes 5.16 and 5.18 (c = 15 

nM and 25 nM) showed much slower association, i. e. the plateau was reached after 140 min. 

The association is strongly concentration dependent which resulted in the differences in 

association rate between 5.14 (c = 50 nM) and 5.16 (c = 15 nM) or 5.18 (c = 25 nM). A comparison 

of the association rate constants (kon) which are concentration independent, revealed that Py-5 

ligand 5.14 (kon value: 0.0043 min-1 nM-1) associated two times faster than 5.16 (kon value: 0.002 

min-1 nM-1) and 4 times faster 5.18 (kon value: 0.00093 min-1 nM-1) (Table 5.5). The dissociation of 

the ligands 5.16 and 5.18 (90 min pre-incubation) was incomplete after 150 min, reaching a 

plateau at 22% (5.16) and 67% (5.18) of initially bound ligand. These data suggested a 

(pseudo)irreversible binding34,35 of 5.14, 5.16 and 5.18.  
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                A                 B 

  
                C                 D 

  
                E                 F 

  
Figure 5.9. Association and dissociation kinetics of 5.14 (A, B), 5.16 (C, D) and 5.18 (E, F) determined at intact HEK293T-

hH2R-qs5 cells at 37 °C by flow cytometry. (A) Association of 5.14 (c = 50 nM) to the hH2R as a function of time 

(nonlinear regression: kobs = 0.24 min
-1

). Inset: ln[Beq/(Beq – Bt)] versus time, kobs = slope = 0.23 min
-1

. (B) Dissociation of 

5.14 (preincubation: 90 min, c = 50 nM) in the presence of famotidine (c = 15 µM) from the hH2R as a function of time, 

showing incomplete monophasic decline (nonlinear regression: koff = 0.027 min
-1

, t1/2 = 26 min, plateau = 57%), Inset: 

ln[(Bt-Bplateau)/(B0-Bplateau)] versus time, slope∙(-1) = koff = 0.023 min
-1

. (C) Association of 5.16 (c = 15 nM) to the hH2R as a 

function of time (nonlinear regression: kobs = 0,061 min
-1

). Inset: ln[Beq/(Beq – Bt)] versus time, kobs = slope = 0.045 min
-1

. 

(D) Dissociation of 5.16 (preincubation: 90 min, c = 15 nM) in the presence of famotidine (c = 4.5 µM) from the hH2R as 

a function of time, showing incomplete monophasic decline (nonlinear regression: koff = 0.011 min
-1

, t1/2 = 64 min, 

plateau = 22%), Inset: ln[(Bt-Bplateau)/(B0-Bplateau)] versus time, slope∙(-1) = koff = = 0.012 min
-1

. (E) Association of 5.18 (c = 

25 nM) to the hH2R as a function of time (nonlinear regression: kobs = 0,038 min
-1

). Inset: ln[Beq/(Beq – Bt)] versus time, 

kobs = slope = 0,035 min
-1

. (D) Dissociation of 5.18 (preincubation: 90 min, c = 25 nM) in the presence of famotidine (c = 

7.5 µM) from the hH2R as a function of time, showing incomplete monophasic decline (nonlinear regression: koff = 

0.015 min
-1

, t1/2 = 75 min, plateau = 67%), Inset: ln[(Bt-Bplateau)/(B0-Bplateau)] versus time, slope∙(-1) = koff = 0.012 min
-1

. 

Data represent means ± SEM from two to three independent experiments (each performed in duplicate). 
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Nevertheless, the equilibrium dissociation constants of 5.14 (Kd(kin) value: 6.7 nM), 5.16 (Kd(kin) 

value: 6.3 nM) and 5.18 (Kd(kin) value: 16.7 nM), calculated from kinetics (nonlinear regression, 

Kd(kin) = koff/kon), were consistent with the Kd values obtained from saturation binding experiments 

(Table 5.5).  

Pseudo-irreversible binding to the human, rat and mouse H2R was also observed in case of the 

closely related radioligand [3H]UR-DE257 using either Sf9 insect cell membranes or HEK293T-

hH2R-CreLuc cells.23 Squaramides, such as BMY25368 and the amine precursor 5.10, were 

described as insurmountable H2R antagonists.23 Unlike standard the antagonist famotidine, both 

compounds caused a concentration-dependent depression of the maximal agonist response of 

the guinea pig right atrium. 

Several GPCR ligands were reported to show a similar behavior in kinetic and functional 

experiments34-37 and several explanations were provided such as irreversible (covalent) binding to 

the receptor,38 a slow rate of dissociation from the receptor,34 a slow rate of interconversion 

between inactive and active receptor conformations,39 stabilization of an inactive ligand-specific 

receptor conformation,40,41 binding to a site distinct from the agonist binding site42 or 

internalization of the ligand-receptor-complex37.  

Table 5.4. hH2R binding characteristics of 5.14, 5.16 and 5.18 determined by flow cytometry on HEK293T-hH2R-qs5 

cells at 37 °C. 

 Binding Kinetics Saturation Binding 

 koff
a 

kon
b 

koff/kon
c 

Kd (sat)
d 

No (min
-1

) (min
-1

 nM
-1

) Kd (kin.) (nM) (nM) 

5.14 0.027 ± 0.002 0.0043 ± 0.001 6.7 ± 1.7 19.7 ± 4.4 

5.16 0.011 ± 0.003 0.0020 ± 0.0009 6.3 ± 2.7 13.9 ± 2.2 

5.18 0.015 ± 0.013 0.00093 ± 0.00021 16.70 ± 3.3 48.2 ± 2.3 

a
Dissociation rate constant derived from nonlinear regression. 

b
Association rate constant derived from nonlinear 

regression; calculated from kobs, koff and the fluorescent ligand concentration (cf. Figure 5.9 and experimental section). 
c
Kinetically determined dissociation constant. 

d
Equilibrium dissociation constant determined by saturation binding. 

Data represent means ± SEM from two to three independent experiments (each performed in duplicate). 

Regardless of the slow dissociation, the pyridinium labeled ligand 5.14 and the cyanine labeled 

ligand 5.18 were selected for equilibrium competition binding experiments with HEK293T-hH2R-

qs5 cells. The results are summarized in Table 5.6 and the competition binding curves are 

depicted in Figure 5.10. Both ligands were completely displaceable by histamine and standard 

H2R antagonists like famotidine and ICI127032.  
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            A             B 

  

Figure 5.10. Displacement of (A) the fluorescent ligand 5.14 (c = 50 nM, Kd = 19.7nM) or [B) the fluorescent ligand 5.18 

(c = 25 nM, Kd = 48.2 nM) by histamine, famotidine and ICI 127032 determined on HEK293T-hH2R-qs5 cell by flow 

cytometry. Cells were incubated with the fluorescent ligands and the test compounds at RT in the dark for 90 min. Data 

represent means ± SEM from three independent experiments (each performed in duplicate). 

The pKi values of the standard H2R antagonists famotidine and ICI127032 determined by flow 

cytometric equilibrium competition binding with the fluorescently labeled ligand 5.14 or 5.18 

were in good agreement with data derived from radioligand equilibrium binding experiments 

with [3H]UR-DE257 at sf9 insect cell membranes. However, the pKi value of the endogenous 

ligand histamine determined by flow cytometry with either 5.14 or 5.18 was considerably lower 

compared to radioligand binding at sf9 insect cell membranes. This could be explained by the 

different receptor-G-protein-complexes used. In the Sf9-system a hH2R-GsαS fusion protein was 

utilized, which was reported to have a high affinity (pKih value: 7.10) and a low affinity binding 

site (pkil value: 5.08) for histamine when [3H]tiotidine was used as a radioligand (shallow biphasic 

competition binding curve).43 In case [3H]UR-DE257 was used as radioligand, the resulting dose-

response curve of histamine was best fitted by a four-parameter logistic fit (shallow monophasic 

competition binding curve). The corresponding pKi value of 6.53 was between the ones of the 

high affinity and low affinity binding site, which indicates, together with the shallow curve slope, 

that the high affinity and low affinity binding site are also available but not resolved in this 

experimental set up. In the HEK293T-hH2R-qs5 cells the hH2R was stably co-expressed with the 

chimeric Gα protein qs5-HA. It was reported, that these cells showed no high affinity binding site 

for histamine in radioligand equilibrium competition binding experiments with [3H]tiotidine 

which resulted in monophasic competition binding curves and a pKi value of 3.95.26 This pKi value 

was in good agreement with the results determined by flow cytometry using fluorescent ligand 

5.14 or 5.18 as competitor and the same cell type (Table 5.5). 
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Table 5.5. hH2R binding (pKi values) of histamine, famotidine and ICI127032 determined by radioligand competition 

binding ([
3
H]UR-DE257

a
 or [

3
H]tiotidine

b
) and by displacement of fluorescent ligands 5.14

c
 and 5.18

d
, respectively. 

 Radioligand Binding
 

Flow Cytometry (5.14)
c 

Flow Cytometry (5.18)
d 

No pKi  pKi  pKi  

Histamine 6.53 ± 0.04a (3.93b)26 4.30 ± 0.04 4.61 ± 0.05 

Famotidine 7.25 ± 0.03a 7.90 ± 0.02 7.58 ± 0.04 

ICI127032 7.70 ± 0.07a 7.73 ± 0.02 7.73 ± 0.03 

a,b
Determined by competition binding with 

a
[

3
H]UR-DE257 (c = 20 nM) at membrane preparations of sf9 insect cells 

expressing hH2R-GSαs or with 
b
[

3
H]tiotidine (c = 5 nM) at intact HEK293T-hH2R-qs5 cells. 

c,d
Determined by competition 

binding with 
c
5.14 (c = 50 nM) or 

d
5.18 (c = 25 nM) at intact HEK293T-hH2R-qs5 cells. Data were analyzed by nonlinear 

regression and were best fitted to four-parameter sigmoidal concentration-response curves. Data shown are means ± 

SEM of 3 independent experiments, each performed in 
a,b

triplicate or 
c,d

duplicate. 
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High content imaging on adherent and suspended HEK293T-hH2R-qs5 cells 

The fluorescent ligands 5.12, 5.14-5.18 and 5.20 were also applied to high content imaging hH2R 

binding assays enabling measurement on live and adherent HEK293T-hH2R-qs5 cells in the 96-

well plate format. The fluorescent ligands were incubated with the cells for 60 min at room 

temperature, washed with PBS, and images were obtained by an IN Cell Analyzer 2000 plate 

reader. Figure 5.11 shows representative images after incubation with the fluorescent ligands 

5.14 (250 nM), 5.16 (75 nM), 5.18 (75 nM) and 5.20 (500 nM) for 60 min, followed by a washing 

step. All fluorescent ligands were localized at the cell membrane and there was a clear difference 

between total and unspecific binding. 

 5.14 5.16 5.18 5.20 
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Figure 5.11. Localization of the fluorescent H2R ligands A) 5.14 (250 nM), B) 5.16 (75 nM), C) 5.18 (75 nM) and D) 5.20 

(500 nM) at the membrane of HEK293T-hH2R-qs5 cells determined by high content imaging after 60 min of incubation 

(RT). Hoechst 33342 was used as a nuclear stain. Unspecific binding of 5.14 (E), 5.16 (F), 5.18 (G) and 5.20 (H) were 

determined in the presence of famotidine (300-fold excess). All images were acquired with a INCell Analyzer 2000. 

Scale bar: 20 µm. 

The acquired images were transformed into saturation binding curves (representative curves are 

shown in Figure 5.12). The Kd values determined by high content imaging at adherent HEK cells 

(Table 5.7) were generally in good agreement with the ones obtained by flow cytometry 

A B C D 

E F G H 
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(Table 5.4). The pyridinium labeled ligands 5.12 and 5.14 showed a slightly lower affinity for the 

hH2R (Kd values: 74.6 nM and 90.9 nM) compared to flow cytometry and radioligand competition 

binding. In contrast the cyanine labeled ligands 5.15-5.18 and 5.20 showed a similar or slightly 

higher affinity for the hH2R. Within the series the ligands 5.16 and 5.18 showed the highest 

affinity with Kd values of 16.2 nM and 17.9 nM. 

            A             B 

  

 
            C             D 

  
Figure 5.12. High content imaging: saturation binding experiments on adherent HEK293T-hH2R-qs5 cells with 

fluorescent ligands (A) 5.14, (B) 5.16, (C) 5.18 and (D) 5.20. Unspecific binding was determined in the presence of 

famotidine (300-fold excess). Cells were incubated with the fluorescent ligands at RT in the dark for 60 min. Error bars 

represent mean ± SEM from at least two independent experiments (each performed in duplicate). 
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Table 5.6. hH2R saturation binding data of fluorescent ligands 5.12, 5.14-5.18 and 5.20 determined by high content 

imaging on adherent HEK293-hH2R-qs5 cells. 

   Adherent Cells 

No Dye
a
 n

b 
Kd (nM) N 

5.12 Py-5 4 74.6 ± 0.5 2 

5.14 Py-5 7 90.9 ± 8.0 3 

5.15 S0223 4 105 ± 21 5 

5.16 S0223 6 16.2 ± 4.1 2 

5.17 S0436 4 179 ± 44 3 

5.18 S0436 6 17.9 ± 5.6 3 

5.20 S0387 6 446 ± 41 2 

a
Dye used for the preparation of the fluorescent ligand. 

b
Length of the linker between the squaric acid amide and the 

fluorescent dye given as the number of carbon atoms. 
c
Saturation binding experiments on adherent cells determined 

by high content imaging. Unspecific binding was determined in the presence of famotidine (300-fold excess). Cells 

were incubated with the fluorescent ligands at RT in the dark for 60 min. Error bars represent mean ± SEM from N 

independent experiments (each performed in duplicate). Specific binding data were analyzed by an equation 

describing one-site (monophasic) binding.  

Additionally, the association and dissociation kinetics of 5.18 were determined on adherent 

HEK293T-hH2R-qs5 cells at 37 °C using high content imaging. The fluorescent ligand (50 nM) was 

added to the cells and the images of the same well were acquired at different time points (no 

washing step necessary). Figure 5.13 (A-D) shows the binding of 5.18 after increasing perids of 

incubation. The dissociation of 5.18 (50 nM) was determined in the presence of famotidine (300-

fold excess) after 60 min pre-incubation with the fluorescent ligand. Sample images at different 

time points are shown in Figure 5.13 (E-H). The resulting association and dissociation binding 

curves are depicted in Figure 5.14. Association and dissociation rate of 5.18 (kon value: 0.0098 

min-1 nM-1 and koff value: 0.091 min-1, cf. Table 5.7) were ten times faster compared to flow 

cytometry. In high content imaging 5.18 (c = 50 nM) showed a fast association which was 

completed after approximately 10 min. The dissociation of 5.18 (c = 50 nM) in the presence of 

famotidine was incomplete. After 25 min, the residual specific binding of the fluorescent ligand 

reached a plateau at approximately 78%, suggesting (pseudo)irreversible binding, which was in 

good agreement with the results determined by flow cytometry. The images of the dissociation 

showed that the residual fluorescent ligand was preferentially located at the cell membrane and 

there was only low fluorescence in the cytoplasm. It is a matter of speculation why the 

association and dissociation kinetics were ten times faster compared to the kinetics determined 

by flow cytometry. Presumably, this was attributable to the different experimental conditions 

(adherent cells in monolayer vs cellsuspension, cell concentration: 3 ∙ 109 cells/mL vs 0.5 - 1 ∙ 106 

cells/mL in assay, fluorescent ligand concentration: 50 nM vs 25 nM). 
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Figure 5.13.Time-dependent binding of fluorescent ligand 5.18 (50 nM) at HEK293T-hH2R-qs5 cells measured after 0 

min (A), 5 min (B), 10 min (C) and 20 min (D) and replacement of 5.18 (50 nM) with famotidine (300-fold excess) after 

pre-incubation for 60 min measured after 0 min (E), 5 min (F), 10 min (G) and 50 min (H). Cells were incubated with 

fluorescent ligand at 37 °C and images were acquired with high content imaging (INCell Analyzer 2000), scale bar: 20 

µm. 

 

            A             B 

  
Figure 5.14. Association (A) and dissociation (B) kinetics of 5.18 at adherent HEK293T-hH2R-qs5 cells at 37 °C 

determined by high content imaging. (A) Association of 5.18 (c = 50 nM) to the hH2R as a function of time (nonlinear 

regression: kobs = 0.40 min
-1

). Inset: ln[Beq/(Beq – B)] versus time, kobs = slope = 0,41 min
-1

. (B) Dissociation of 18 

(preincubation: 60 min, c = 50 nM) in the presence of famotidine (c = 15 µM) from the hH2R as a function of time, 

showing incomplete monophasic decline (nonlinear regression: koff = 0.091 min
-1

, t1/2 = 13 min, plateau = 78%), inset 

left: magnification of the first 60 min, inset right: ln[(Bt-Bplateau)/(B0-Bplateau)] versus time, slope∙(-1) = koff = 0.099 min
-1

. 

Data represent means ± SEM from two independent experiments (each performed in duplicate). 

Nevertheless, the dissociation constant of 5.18 (Kd(kin) value: 9.3 nM), calculated from kinetics 

(nonlinear regression, Kd = koff/kon), was consistent with the Kd value obtained from saturation 

binding experiments (Table 5.8). 

A B C D 
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Table 5.7. hH2R binding characteristics of 5.18 determined by high content imaging on adherent HEK293T-hH2R-qs5 

cells (37 °C) 

 koff
a 

kon
b 

koff/kon
c 

Kd (sat)
d 

No (min
-1

) (min
-1

 nM
-1

) Kd (kin.) (nM) (nM) 

5.18 (IN Cell) 0.091 ± 0.084 0.0098 ± 0.0004 9.3 ± 0.4 17.9 ± 5.6 

a
Dissociation rate constant derived from nonlinear regression. 

b
Association rate constant derived from nonlinear 

regression; calculated from kobs, koff and the fluorescent ligand concentration (cf. Figure 5. and experimental section). 
c
Kinetically determined dissociation constant. 

d
Equilibrium dissociation constant determined by saturation binding. 

Data represent means ± SEM from two independent experiments (each performed in duplicate). 

By high content imaging (96 well format) it was also possible to perform competition binding 

experiments with the cyanine labeled ligand 5.18 on HEK293T-hH2R-qs5 cells. The results are 

summarized in Table 5.9 and the competition binding curves are depicted in Figure 5.15. Ligand 

5.18 was completely displaceable by histamine and the standard H2R antagonists lamtidine and 

ICI127032. The pKi values of lamtidine and ICI127032 were in good agreement with the results 

from radioligand competition binding. The pKi value of the endogenous ligand histamine 

determined by high content imaging with 5.18 was considerably lower compared to radioligand 

binding at sf9 insect cell membranes, but in good agreement with the results from flow 

cytometry, when using HEK293T-hH2R-qs5 cells. 

  

Figure 5.15. Displacement of the fluorescent ligand 5.18 (c = 50 nM, Kd = 17.9 nM) by histamine, lamtidine and ICI 

127032 determined on adherent HEK293T-hH2R-qs5 cells by high content imagig. Cells were incubated with the 

fluorescent ligands and the test compounds at RT in the dark for 60 min. Data represent means ± SEM from three 

independent experiments (each performed in duplicate or triplicate). 
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Table 5.8. hH2R binding (pKi values) of histamine, lamtidine and ICI127032 determined by radioligand binding ([
3
H]UR-

DE257) and by fluorescent ligand binding (5.18). 

 Radioligand Binding
a 

Fluorescent Ligand 5.18
b 

No pKi  pKi 

Histamine 6.53 ± 0.04 4.54 ± 0.26 

Lamtidine 6.8 ± 0.2 7.23 ± 0.03 

ICI127032 7.70 ± 0.07 7.59 ± 0.09 

a
Determined by competition binding with [

3
H]UR-DE257 (c = 20 nM) at membrane preparations of sf9 insect cells 

expressing hH2R-GSαs. 
b
Determined by competition binding with 5.18 (c = 50 nM) at adherent HEK293T-hH2R-qs5 cells. 

Data were analyzed by nonlinear regression and were best fitted to four-parameter sigmoidal concentration-response 

curves. Data represent means ± SEM of 3 independent experiments, each performed in triplicate or duplicate. 

The pyridinium labeled ligands 5.12 and 5.14 were also applied to binding studies on suspended 

HEK293T-hH2R-qs5 cells using an imaging flow cytometer. This cytometer acquires multiple high-

resolution images of every cell in the flow. The fluorescent ligands were incubated with the cells 

for 60 min at room temperature. The fluorescent ligands 5.12 and 5.14 were mainly localized at 

the cell membrane. Exemplary images of cells incubated with 5.12 (500 nM) are shown in Figure 

5.16A. Only focused single cells were included in the data analysis and masks of the cell 

membrane and the whole cell were superimposed, enabling the determination of the fluorescent 

intensity in the region of interest.(Figure 5.16B and 5.16C). 

  A   B                          

 

 
 

  C 

 
Figure 5.16. Typical images of focused single cells after 60 min of incubation with pyridinium labeled ligand 5.12 (c = 

500 nM). Ch01: bright field, Ch05: emission at 702/85 nm, Ch01/Ch05: merged channels. Light blue coloring: (B) cell 

membrane mask and (C) cell mask. 

The resulting saturation binding curves are shown in Figure 5.17 and the results are summarized 

in Table 5.10. The Kd values of 5.12 (88.3 nM) and 5.14 (64.9 nM) were by approx. a factor of 3 

higher than the Kd values obtained by flow cytometry (Table 5.4). By contrast, the respective 
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dissociation constants were consistent with those (Kd values: 74.6 nM and 90.9 nM) determined 

by high content imaging (Table 6), irrespective of the data processing procedure.  

                  A                   B 

 
 

 
Figure 5.17. Imaging flow cytometric saturation binding experiments on adherent HEK293T-hH2R-qs5 cells with 

pyridinium labeled ligands (A) 5.12 and (B) 5.14. For the evaluation of the cell images the cell membrane mask was 

used. Unspecific binding was determined in the presence of famotidine (300-fold excess). Cells were incubated with 

the fluorescent ligands at RT in the dark for 60 min. Error bars represent mean ± SEM from at least two independent 

experiments (each performed in duplicate). 

 

Table 5.9. hH2R saturation binding data of fluorescent ligands 5.12 and 5.14 determined by imaging flow cytometry  on 

HEK293T-hH2R-qs5 cells. 

 Imaging Flow Cytometry
 

No Kd (nM) whole cell mask
a 

Kd (nM) cell membrane mask
b 

5.12 87.9 ± 2.0 88.3 ± 5.5 

5.14 62.1 ± 2.0 64.9 ± 4.6 

For the evaluation of cell images either (A) the whole cell mask or (B) the cell membrane mask was used. Unspecific 

binding was determined in the presence of famotidine (300-fold excess). Cells were incubated with the fluorescent 

ligands at RT in the dark for 60 min. Error bars represent mean ± SEM from three independent experiments (each 

performed in duplicate). Specific binding data were analyzed by an equation describing one-site (monophasic) binding.  

Additionally, histamine and ICI127032 were investigated by equilibrium competition binding 

experiments with fluorescent ligand 5.14 on HEK293T-hH2R-qs5 cells using the imaging flow 

cytometer. The resulting pKi values were in good agreement with the results from flow cytometry 

and high content image analysis (Table 5.11). 
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Table 5.10. hH2R binding (pKi values) of histamine and ICI127032 determined fluorimetrically on HEK293T-hH2R-qs5 

cells using different systems: flow cytometry (5.14), high content imaging on adherent cells (5.18) and imaging flow 

cytometry (5.14). 

 Flow Cytometry 

(5.14)
a 

IN Cell Analyzer  

(5.18)
b 

ImageStream X 

(5.14)
c 

No pKi  pKi pKi 

Histamine 4.30 ± 0.04 4.54 ± 0.26 4.73 ± 0.08 

ICI127032 7.73 ± 0.02 7.59 ± 0.09 7.81 ± 0.05 

a
Determined by displacement of 5.14 (c = 50 nM) in the presence of increasing concentrations of the respective H2R 

ligand at intact cells by flow cytometry.
 b

Determined by displacement of 5.18 (c = 50 nM) in the presence of increasing 

concentrations of the respective H2R ligand at adherent cells. 
c
Determined by competition binding of 5.14 (c = 70 nM) 

in the presence of increasing concentrations of the respective H2R ligand at intact cells by imaging flow cytometry, for 

the evaluation of cell images the cell membrane mask was used. Data were analyzed by nonlinear regression and were 

best fitted to four-parameter sigmoidal concentration-response curves. Data represent means ± SEM of 3 independent 

experiments, each performed in triplicate or duplicate. 
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5.3 EXPERIMENTAL SECTION 

5.3.1 General procedures 

Chemicals and solvents were purchased from the following suppliers: Merck (Darmstadt, 

Germany), Acros Organics (Geel, Belgium), Sigma Aldrich (Munich, Germany) and TCI (Tokyo, 

Japan). The active esters of the cyanine dyes (S0586, S0536, S2197) were obtained from FEW 

Chemicals (Bitterfeld-Wolfen, Germany). All solvents were of analytical grade or distilled prior to 

use. Anhydrous solvents were stored over molecular sieve under protective gas. Deuterated 

solvents for NMR spectroscopy were purchased from Deutero (Kastellaun, Germany). For the 

preparation of buffers and HPLC eluents Millipore water was used throughout. Column 

chromatography was carried out using Merck silica gel 60 (0.040-0.063 mm). Reactions were 

monitored by thin layer chromatography (TLC) on Merck silica gel 60 F254 aluminium sheets, and 

compounds were detected with UV light at 254 nm and ninhydrin solution (0.8 g ninhydrin, 200 

mL n-buthanol, 6 mL acetic acid). Melting points were determined with a B-540 apparatus (BÜCHI 

GmbH, Essen, Germany) and are uncorrected. IR spectra were measured on a NICOLET 380 FT-IR 

spectrophotometer (Thermo Electron Corporation, USA). Nuclear Magnetic Resonance (1H NMR 

and 13C NMR) spectra were recorded on a Bruker Avance-300 (7.05 T, 1H: 300 MHz, 13C: 75.5 

MHz), Avance-400 (9.40 T, 1H: 400 MHz, 13C: 100.6 MHz), or Avance-600 (14.1 T; 1H: 600 MHz, 13C: 

150.9 MHz; cryogenic probe) NMR spectrometer (Bruker BioSpin, Karlsruhe, Germany). Chemical 

shifts are given in δ (ppm) relative to external standards. Multiplicities are specified with the 

following abbreviations: s (singlet), d (doublet), t (triplet), q (quartet), qui (quintet), m (multiplet), 

br s (broad signal), as well as combinations thereof. In certain cases 2D-NMR techniques (COSY, 

HSQC and HMBC) were used to assign 1H and 13C chemical shifts. Low-resolution mass 

spectrometry (MS) was performed on a Finnigan ThermoQuest TSQ 7000 instrument using an 

electrospray ionization (ESI) source or on a Finnigan SSQ 710A instrument (EI-MS, 70 eV). High-

resolution mass spectrometry (HRMS) was performed on an Agilent 6540 UHD Accurate-Mass Q-

TOF LC/MS system (Agilent Technologies, Santa Clara, USA) using an ESI source. Preparative HPLC 

was performed with a system from Knauer (Berlin, Germany) consisting of two K-1800 pumps 

and a K-2001 detector. A Nucleodur 100-5 C18 (250 x21 mm, 5 µm, Macherey-Nagel, Dueren, 

Germany) and a Kinetex XB-C18 100A (250 x 21.2 mm, 5 µm, Phenomenex, Aschaffenburg, 

Germany) served as RP-columns at a flow rate of 15 ml/min at room temperature. Mixtures of 

CH3CN and 0.1% aq. TFA were used as mobile phase and a detection wavelength of 220 nm was 

used throughout. CH3CN was removed from the eluates containing BMY 25368, 5.9 and 5.10 

under reduced pressure (final pressure: 80 mbar) at 45 °C prior to lyophilisation (Christ alpha 2-4 

LD lyophilisation apparatus equipped with a vacuubrand RZ 6 rotary vane vacuum pump). In case 

of the fluorescently labeled ligands, the eluates were directly used for lyophilisation. Analytical 

HPLC analysis was performed on a system from Meck Hitachi, composed of a D-6000 interface, a 

L-6200A pump, a AS2000A auto sampler and a L-4000 UV-VIS detector. A Kinetex XB-C18 100A 

(250 x 4.6 mm, 5 µm, Phenomenex, Aschaffenburg, Germany) served as RP-column. Mixtures of 

0.05% TFA in CH3CN (A) and 0.05% aq. TFA (B) were use as mobile phase. Helium degassing, room 

temperature, a flow rate of 0.8 mL/min and a detection wavelength of 220 nm were used 

throughout. Solutions for injection (concentration: 100-500 µM) were either prepared from stock 

solution (5-10 mM in DMSO or DMSO/20 mM HCL 50:50) in a mixture of A and B corresponding 

to the initial eluent composition of the run, or as a one to one dilution of the eluate with 
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Millipore water. The following linear gradients were applied for analytical HPLC analysis: gradient 

1: 0-30 min: A/B 5:95-80:20, 30-32 min: 80:20-95:5, 32-42 min: 95:5 or gradient 2: 0-30 min: A/B 

10:90-80:20, 30-32 min: 80:20-95:5, 32-42 min: 95:5. 

 

5.3.2 Experimental protocols and analytical data 

The synthesis of the compound 4.3
23,27 was described in chapter 4 and the tetrafluoroborate salt 

of Py-529,44 was synthesized by Mengya Chen during her master thesis.  

 

3-Ethoxy-4-(3-[3-(piperidin-1-ylmethyl)phenoxy]propylamino)cyclobut-3-ene-1,2-dione (5.2)
23 

3,4-Diethoxycyclobut-3-ene-1,2-dione (226 mg, 1.33 mmol, 1.1 eq) was dissolved in EtOH (10 mL) 

and added to a solution of compound 4.3 (300 mg, 1.21 mmol, 1 eq) in EtOH (10 mL). The 

reaction mixture was stirred for 2 h at room temperature. After removal of the solvent under 

reduced pressure, the residue was dissolved in EtOAc (30 mL). The organic layer was washed with 

H2O (3 x 20 mL) and dried over Na2SO4. The solvent was evaporated under reduced pressure and 

the crude product was purified by column chromatography (eluent: CH2Cl2 / 7 M NH3 in MeOH 

100:0-95:5). Removal of the solvent in vacuo afforded the product as yellow oil (350 mg, 78%). Rf 

= 0.5 (CH2Cl2 / 7 N NH3 in MeOH 95:5). 1H-NMR (400 MHz, CDCl3, COSY, HSQC, HMBC): δ (ppm) 

1.38-1.42 (m, 5H), 1.52-1.58 (m, 4H), 2.06-2.12 (m, 2H), 2.36 (br s, 4H), 3.42 (s, 2H), 3.66 (br s, 

1.5H), 3.86 (br s, 0.6H), 4.00 (br s, 2H), 4.66-4.71 (q, 2H, J 7.3 Hz), 6.50 (br s, 0.2H), 6.72-6.75 (m, 

1H), 6.86-6.89 (m, 2H), 7.16-7.20 (t, 1H, J 7.7 Hz), 7.27 (br, 0.7H); 13C-NMR (100 MHz, CDCl3, 

COSY, HSQC, HMBC): δ (ppm) 15.8, 24.3 , 25.9, 30.1, 42.4, 54.5, 63.7, 64.8, 69.7, 112.9, 115.1, 

122.0, 129.1, 140.3, 158.5, 172.6, 177.5, 182.7, 189.6. HRMS: (ESI) m/z [M+H]+ calcd. for 

C21H29N2O4
+: 373.2122, found: 373.2146. C21H28N2O4 (372.20). 

 

3-Amino-4-[(3-[3-(piperidin-1-ylmethyl)phenoxy]propyl)amino]cyclo-but-3-ene-1,2-dione-

hydrotrifluoracetate (BMY 25368)
24

  

Compound 5.2 (180 mg, 0.48 mmol, 1 eq) was dissolved in EtOH (20 mL) and a solution of NH3 in 

MeOH (7 N, 10 mL) was added. The reaction mixture was stirred over night at room temperature. 

The solvent was evaporated under reduced pressure and the residue was purified by column 

chromatography (eluent: CH2Cl2 / 7 M NH3 in MeOH 95:5-90:10). Removal of the solvent in vacuo 

afforded the product as light yellow solid (123 mg, 74.1%). Mp: 199 °C decomposition (Lit.24 mp 

HCl-salt: 254-257 °C). IR (KBr): 3295, 3135, 2930, 1805, 1645, 1570, 1530, 1260, 695 cm-1. 50 mg 

of the product were further purified by preparative HPLC (column: Nucleodur, gradient: 0-30 

min: MeCN/0.1% aq. TFA 15:85-75:25, tR = 8.8 min). Removal of the solvent from eluate by 

evaporation and lyophilisation afforded the product as a hygroscopic white solid (53 mg). Rf = 0.4 

(CH2Cl2 /7  N NH3 in MeOH 7:1). RP-HPLC (gradient 2, 220 nm) (TFA-Salz): 99% (tR = 11.38 min, k = 

2.9). 1H-NMR (400 MHz, [D6]DMSO) (TFA-Salz): δ (ppm) 1.33-1.39 (m, 1H), 1.57-1.70 (m, 3H), 

1.80-1.83 (m, 2H), 1.98-2.01 (m, 2H), 2.82-2.89 (m, 2H), 3.29-3.32 (m, 2H), 3.67 (br s, 2H, 

interfering with the water signal), 4.04-4.07 (t, 2H, J 6.0 Hz), 4.22-4.24 (d, 2H, J 4.9 Hz), 7.02-7.09 
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(m, 3H), 7.35-7.39 (t, 1H, J 7.9 Hz), 7.55 (br s, 1.8H), 7.68 (br s, 1H), 9.48 (br s, 1H). 1H-NMR (400 

MHz, CDCl3, COSY, HSQC, HMBC) (TFA-Salz): δ (ppm) 1.46-1.56 (m, 1H), 1.70-1.83 (m, 3H), 1.91-

1.95 (m, 2H), 2.07-2.17 (qui, 2H, J 6.2 Hz), 2.90-2.97 (m, 2H), 3.42-3.45 (m, 2H, J 12.6 Hz), 3.84 (br 

s, 2H), 4.11-4.14 (t, 2H, J 5.9 Hz), 4.23 (s, 2H), 7.01-7.04 (m, 3H), 7.34-7.38 (m, 1H). 13C-NMR (100 

MHz, CDCl3, COSY, HSQC, HMBC) (TFA-Salz): δ (ppm) 22.7, 24.1, 31.6, 42.5, 54.1, 61.7, 66.3, 117.1, 

118.3, 124.4, 131.4, 131.7, 160.7, 170.6, 170.8, 184.1, 184.4. HRMS (ESI) (TFA-Salz): m/z [M+H]+, 

calcd. for C19H26N3O3
+: 344.1969, found: 344.1973. C19H25N3O3 · C2HF3O2 (343.19 + 114.02). 

 

General procedure for the synthesis of the Mono-Boc-protected diamines  

The corresponding alkane diamine (2 eq or 6 eq in case of butane-1,4-diamine) was dissolved in 

chloroform (30-35 mL). Di-tert-butyl dicarbonate (1 eq) was dissolved in chloroform (25-60 mL) 

and added dropwise over a period of 3 h under ice-cooling. The reaction mixture was allowed to 

warm up to room temperature while stirring overnight. Potentially precipitated alkane diamine 

was filtered off. The organic layer was washed with alkaline saturated NaCl solution (45 mL sat. 

aq. NaCl and 1 mL 1 M aq. NaOH), saturated NaCl solution (45 mL) and H2O (45 mL). The organic 

layer was dried over sodium or magnesium sulphate and concentrated by evaporation under 

reduced pressure. The residue was purified by column chromatography on silica gel. 

 

tert-Butyl N-(4-aminobutyl)carbamate (5.3)
45

 Mengya Chen master thesis 

Butane-1,4-diamine (2.42 g, 27.4 mmol, 6 eq) was treated with di-tert-butyl dicarbonate (1 g, 

4.57 mmol, 1 eq) according to the general procedure. The product was purified by column 

chromatography (eluent: CH2Cl2/1% aq.NH3 in MeOH 25:1-7:1). Removal of the solvent in vacuo 

afforded the product as beige hygroscopic solid (790 mg, 92%). Rf = 0.2 (CH2Cl2/NH3in MeOH 

10:1) 1H-NMR (400 MHz, CDCl3): δ (ppm) 1.42 (s, 9H), 1.52 (m, 4H), 2.76 (br s, 2H), 3.11 (br s, 2H), 

4.77 (br s, 0.8H). 13C-NMR (100 MHz, CDCl3): δ (ppm) 27.30, 28.44, 29.22, 40.28, 41.06, 79.08, 

156.14. MS (LC-MS, ESI): m/z (%) 189 (100) [M+H]+. C9H20N2O2 (188.15). 

 

tert-Butyl N-(6-aminohexyl)carbamate (5.4)
45

 

Hexane-1,6-diamine (1.5 g, 12.9 mmol, 2 eq) was treated with di-tert-butyldicarbonate (1.4 g, 6.5 

mmol, 1 eq) according to the general procedure. The product was purified by column 

chromatography (eluent: CH2Cl2 / 2 M NH3 in MeOH 97.5:2.5-90:10). Removal of the solvent in 

vacuo afforded the product as colorless oil (620 mg, 44.3%). Rf = 0.8 (CH2Cl2/7M NH3 in MeOH 

5:1). 1H-NMR (400 MHz, CDCl3): δ (ppm) 1.29-1.33 (m, 4H), 1.40-1.48 (m, 13H), 1.53 (br s, 2H), 

2.67 (t, 2H, J 6.9 Hz), 3.07-3.11 (t, 2H, J 6.5 Hz), 4.55 (br s, 1H). MS (LC-MS, ESI, tR = 1.2 min): m/z 

(%) 217.2 (100) [M+H]+, 161.1 (28) [M-C4H8]
+. HRMS (ESI): m/z [M+H]+ calcd. for C11H25N2O2

+: 

217.1911, found: 217.1931. C11H24N2O2 (216.33). 
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tert-Butyl N-(7-aminoheptyl)carbamate (5.5)
45

 

Heptan-1,7-diamine (2.0 g, 15.4 mmol, 2 eq) was treated with di-tert-butyldicarbonate (1.7 g, 7.7 

mmol, 1 eq) according to the general procedure. The product was purified by column 

chromatography (eluent: CH2Cl2 / 2 M NH3 in MeOH 97.5:2.5-90:10) Removal of the solvent in 

vacuo afforded the product as colorless, oily solid (950 mg, 53.7%). Rf = 0.2 (CH2Cl2/2M NH3 in 

MeOH 5:1). 1H-NMR (400 MHz, CDCl3): δ (ppm) 1.25 (br s, 6H), 1.31 (br s, 2H), 1.37-1.42 (m, 13H), 

2.61 (t, 2H, J 6.9 Hz), 3.00-3.05 (m, 2H), 4.67 (br s, 1H). MS (LC-MS, ESI, tR = 1.4 min): m/z (%) 

231.2 (100), [M+H]+, 175.1 (23) [M-C4H8]
+. HRMS (ESI): m/z [M+H]+ calcd. for C12H27N2O2

+: 

231.1067, found: 231.2066. C12H26N2O2 (230.35). 

 

General procedure for the synthesis of Boc-protected squaramides with alkylamine spacers  

Compound 5.2 (1 eq) was dissolved in EtOH (15-25 mL) and added to the respective mono-Boc-

protected diamine (1.1 eq) in EtOH (15-25 mL). The reaction mixture was stirred over night at 

room temperature. The solvent was evaporated under reduced pressure and the product was 

crystallized from EtOAc (2 mL), NH3 in MeOH (7 M, 50 µL) and n-hexane (3 mL). The precipitate 

was purified by column chromatography on silica gel. 

 

tert-Butyl [4-([3,4-dioxo-2-[(3-[3-(piperidin-1-ylmethyl)phenoxy]propyl)amino]cyclobut-1-en-1-

yl]amino)butyl]carbamate (5.6) 

Compound 5.6 was synthesized from 5.2 (2.8 g, 7.63 mmol, 1 eq) and 3 (1.58 g, 8.39 mmol, 1.1 

eq) according to the general procedure. The product was purified by column chromatography 

(eluent: CH2Cl2/1% aq. NH3 in MeOH 40:1-20:1). Removal of the solvent in vacuo afforded the 

product as light yellow hygroscopic solid (1.66 g, 42%). Rf = 0.2 (CH2Cl2/2M NH3 in MeOH 5:1). 
1H-NMR (400 MHz, CDCl3): δ (ppm) 1.41 (s, 9H), 1.49-1.73 (m, 6H), 1.88 (br s, 4H), 2.00-2.19 (m, 

2H), 2.95 (br s, 4H), 3.09-3.15 (m, 2H), 3.65 (q, J 6.3 Hz, 2H), 3.80 (q, J 6.2 Hz, 2H), 3.94 (s, 2H), 

4.15 (t, J 6.3 Hz, 2H), 4.87 (br s, 1H), 6.85-6.91 (m, 2H), 7.22-7.26 (m, 2H), 7.99 (br s, 1.8H). 13C-

NMR (100 MHz, CDCl3): δ (ppm) 22.6, 23.5, 26.9, 28.5, 30.4, 40.1, 41.1, 44.1, 53.4, 53.8, 62.2, 

65.4, 79.1, 116.2, 116.7, 122.9, 129.9, 141.8, 156.2, 159.3, 168.0, 168.6, 182.4, 182.5. HRMS (ESI): 

m/z [M+H]+ calcd. for C28H43N4O5
+: 515.3228, found: 515.3230. C28H42N4O5 (514.32). 

 

tert-Butyl (6-[(3,4-dioxo-2-[(3-[3-(piperidin-1-ylmethyl)phenoxy]propyl)amino]cyclobut-1-en-1-

yl)amino]hexyl)carbamate (5.7)
23

 

Compound 5.7 was synthesized from 5.2 (160 mg, 0.43 mmol, 1 eq) and 5.4 (102 mg, 0.47 mmol, 

1.1 eq) according to the general procedure. The product was purified by column chromatography 

(eluent: CH2Cl2 / 3.5 M NH3 in MeOH 97.5:2.5-95:5). Removal of the solvent in vacuo afforded the 

product as light yellow solid (193 mg, 83%). Mp: 115.9-118.7 °C. Rf = 0.8 (CH2Cl2 / 7 M NH3 in 

MeOH 90:10). 1H-NMR (400 MHz, CDCl3): δ (ppm) 1.30-1.47 (m, 17H), 1.59-1.62 (m, 6H), 2.08-

2.14 (qui, 2H, J 6.3 Hz), 2.46 (br s, 4H), 3.03-3.08 (m, 2H), 3.48 (s, 2H), 3.60-3.65 (m, 2H), 3.79-
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3.84 (m, 2H,), 4.02-4.05 (t, 2H, J 6.0 Hz), 5.13 (br s, 1H), 6.76-6.78 (dd, 1H, J 8.1 Hz, J 1.9 Hz), 6.84-

6.89 (m, 2H), 7.16-7.20 (t, 1H, J 7.8 Hz), 7.36 (br s, 1.5 H). HRMS (ESI): m/z [M+H]+ calcd. for 

C30H47N4O5
+: 543.3541, found: 543.3562. C30H46N4O5 (542.72). 

 

tert-Butyl (7-[(3,4-dioxo-2-[(3-[3-(piperidin-1-ylmethyl)phenoxy]propyl)amino]cyclobut-1-en-1-

yl)amino]heptyl)carbamate (5.8) 

Compound 5.8 was synthesized from 5.2 (260 mg, 0.70 mmol, 1 eq) und 5.5 (177 mg, 0.77 mmol, 

1.1 eq) according to the general procedure. The product was purified by column chromatography 

(eluent: CH2Cl2 / 3.5 M NH3 in MeOH 97.5:2.5-95:5). Removal of the solvent in vacuo afforded the 

product as light yellow solid (204 mg, 48%). Mp: 109.8-112.9 °C. Rf = 0.9 (CH2Cl2 / 7 M NH3 in 

MeOH 7:1). 1H-NMR (400 MHz, CDCl3): δ (ppm) 1.25-1.43 (m, 19H), 1.52-1.59 (m, 6H), 2.08-2.14 

(qui, 2H, J 6.3 Hz), 2.37 (br s, 4H), 3.01-3.06 (m 2H), 3.40 (s, 2H), 3.60-3.64 (m, 2H), 3.82-3.84 (m, 

2H), 4.01-4.04 (t, J 6.1 Hz, 2H), 5.15 (br s, 0.7H), 6.73-6.75 (m, 1H), 6.85-6.87 (m, 2H), 7.16 (t, 1H, J 

7.8 Hz), 7.42 (br s, 0.7H), 7.50 (br s, 1H). 13C-NMR (100 MHz, CDCl3): δ (ppm) 24.4, 26.0, 26.5, 

26.6, 28.6, 28.8, 30.0, 30.9, 31.0, 40.5, 41.7, 44.8, 54.7, 64.0, 64.9, 79.3, 113.4, 115.3, 122.1, 

129.2, 140.1, 156.6, 158.8, 168.4, 182.6, 182.7. HRMS (ESI): m/z [M+H]+ calcd. for C31H49N4O5
+: 

557.3697, found: 557.3713. C31H48N4O5 (556.75). 

 

3-((4-Aminobutyl)amino)-4-((3-(3-(piperidin-1-ylmethyl)phenoxy)propyl)amino)cyclobut-3-ene-

1,2-dione bis(hydrotrifluoracetate) (5.9)
23

 

Compound 5.6 (100 mg, 0.11 mmol, 1 eq) was stirred for 24 h at room temperature in a mixture 

of CH2Cl2 (25-30 mL) and TFA (1 mL). Removal of the solvent in vacuo afforded the product as a 

yellow hygroscopic solid (118 mg, 94%). For pharmacological characterization 57 mg of 9 were 

further purified by preparative HPLC (column: Kinetex, gradient: 0-30 min: MeCN/0.1% aq. TFA 

5:95-60:40, tR = 12.8 min). The TFA-salt was obtained as white sticky solid (40 mg; 65%).Rf = 0.1 

(CH2Cl2/1.8M NH3 in MeOH 90:10). RP-HPLC (gradient 2, 220 nm): 98% (tR = 10.66 min, k = 2.7). 
1H-NMR (600 MHz, [D4]MeOH): δ (ppm) 1.47-1.54 (1H, m), 1.70-1.83 (7H, m), 1,92-1.94 (2H, m), 

2.10 (2H, qui, J 6.3 Hz), 2.91-2.97 (4H, m), 3.42-3.44 (2H, m), 3.62 (2H, br s), 3.83 (2H, br s), 4.12 

(2H, t, J 6.0 Hz), 4.22 (2H, s), 7.02-7.04 (2H, m), 7.08 (1H, br s), 7.36 (1H, t, J 7.9 Hz). 13C-NMR (150 

MHz, [D4]MeOH) (TFA-Salz): δ (ppm) 22.7, 24.1, 25.3, 29.1, 31.7, 40.2, 42.4, 44.3, 54.1, 61.7, 66.2, 

118.4, 124.5, 131.4, 131.7, 160.8, 162.5 (q, J 40 Hz, TFA), 169.5, 169.7, 183.6 (2C). HRMS (ESI): 

m/z [M+H]+ calcd. for C23H35N4O3
+: 415.2709, found: 415.2709. C23H34N4O3 · C4H2F6O4 (414.26 + 

228.05).  

 

General procedure for the Boc-deprotection of the amine precursors  

The corresponding Boc-protected squaramide derivative (5.7 or 5.8) was stirred for 4-24 h at 

room temperature in a mixture of CH2Cl2 (25-30 mL) and HCl in 2-propanol (5-6 M, 13-15 mL). 

Removal of the solvent in vacuo afforded the product as HCl salt. Part of the product was further 

purified by preparative HPLC. 
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3-((6-Aminohexyl)amino)-4-((3-(3-(piperidin-1-ylmethyl)phenoxy)propyl)amino)cyclobut-3-ene-

1,2-dione bis(hydrotrifluoracetate) (5.10)
23 

Compound 5.10 was synthesized from 5.7 (185 mg, 0.34 mmol, 1 eq) according to the general 

procedure. Removal of the solvent in vacuo afforded the product as yellow hygroscopic solid (188 

mg). For pharmacological characterization 40 mg of 5.10 were purified by preparative HPLC 

(column: Nucleodur, gradient: 0-30 min: MeCN/0.1% aq. TFA 15:85-75:25, tR = 8.4 min). The TFA-

salt was obtained as highly hygroscopic sticky solid (45 mg; 93%). Rf (TFA-Salz) = 0.1 (CH2Cl2/7M 

NH3 in MeOH 7:1). RP-HPLC (gradient 2, 220 nm) (TFA-Salz): 98% (tR = 12.17 min, k = 3.2). 1H-NMR 

(400 MHz, [D4]MeOH) (TFA-Salz): δ (ppm) 1.42-1.44 (m, 4H), 1.48-1.57 (m, 1H), 1.62-1.68 (m, 4H), 

1.70-1.84 (m, 3H), 1.91-1.96 (m, 2H), 2.07-2.14 (qui, 2H, J 6.3 Hz), 2.90-2.98 (m, 4H), 3.43-3.46 (m, 

2H), 3.60 (br s, 2H), 3.83 (br s, 2H), 4.13 (t, 2H, J 5.9 Hz), 4.23 (s, 2H), 7.02-7.07 (m, 3H), 7.37 (t, 

1H, J 7.9 Hz). 13C-NMR (100 MHz, [D4]MeOH) (TFA-Salz): δ (ppm) 22.7, 24.1, 26.77, 26.85, 28.4, 

31.6, 32.0, 40.6, 42.4, 45.0 , 54.1, 61.7, 66.3, 117.2, 118.3, 124.5, 131.4, 131.7, 160.8, 162.2 (q, J 

41 Hz, TFA), 169.7 (2C), 183.6, 183.9. HRMS (TFA-Salz): (ESI): m/z [M+H]+ calcd. for C25H39N4O3
+: 

443.3017, found: 443.3019. C25H38N4O3 · C4H2F6O4 (442.60 + 228.05). 

 

3-((7-Aminoheptyl)amino)-4-((3-(3-(piperidin-1-ylmethyl)phenoxy)propyl)amino)cyclobut-3-

ene-1,2-dione bis(hydrotrifluoracetate) (5.11)  

Compound 5.11 was synthesized from 5.8 (187 mg, 0.33 mmol, 1 eq) according to the general 

procedure. Removal of the solvent in vacuo afforded the product as yellow hygroscopic solid (197 

mg). For pharmacological characterization 85 mg of 5.11 were further purified by preparative 

HPLC (column: Nucleodur, gradient: 0-30 min: MeCN/0.1% aq. TFA 15:85-75:25, tR = 9.1 min). The 

TFA-salt was obtained as white hygroscopic solid (84 mg, 76%). Rf (TFA-Salz) = 0.5 (CH2Cl2/7M NH3 

in MeOH 5:1). RP-HPLC (gradient 2, 220 nm) (TFA-Salz): 98% (tR = 12.83 min, k = 3.4). 1H-NMR 

(400 MHz, [D6]DMSO) (TFA-Salz): δ (ppm) 1.28-1.39 (m, 7H), 1.51 (br s, 4H), 1.61-1.68 (m, 3H), 

1.79-1.82 (m, 2H), 1.97-2.03 (qui, 2H, J 6.3 Hz), 2.72-2.89 (m, 4H), 3.29-3.32 (m, 2H), 3.48 (br s, 

2H), 3.67-3.68 (br s, 2H), 4.05 (t, 2H, J 6.2 Hz), 4.23 (d, 2H, J 5.0 Hz), 7.00-7.05 (m, 2H), 7.09 (br s, 

1H), 7.36 (t, 1H, J 7.9 Hz), 7.76-7.82 (br s, 5H), 9.68 (br s, 0.9H). 1H-NMR (400 MHz, [D4]MeOH, 

COSY, HSQC, HMBC) (TFA-Salz): δ (ppm) 1.39 (br s, 6H), 1.48-1.67 (m, 5H), 1.71-1.82 (m, 3H), 

1.90-1.94 (m, 2H), 2.07-2.13 (qui, 2H, J 6.2 Hz), 2.89-2.98 (m, 4H), 3.42-3.45 (m, 2H), 3.59 (br s, 

2H), 3.83 (br s, 2H), 4.12 (t, 2H, J 5.9 Hz), 4.23 (s, 2H), 7.01-7.07 (m, 3H), 7.35 (t, 1H, J 7.8 Hz). 13C-

NMR (100 MHz, [D4]MeOH, COSY, HSQC, HMBC) (TFA-Salz): δ (ppm) 22.7, 24.0, 27.0, 27.2, 28.4, 

29.6, 31.6, 32.0, 40.6, 42.4, 45.1, 54.0, 61.7, 66.2, 117.3, 117.8 (q, J 291 Hz, TFA), 118.2, 124.5, 

131.3, 131.7, 160.7, 162.2 (q, J 37 Hz, TFA), 169.5 (2C), 183.3, 183.5. HRMS (TFA-Salz): (ESI): m/z 

[M+H]+ calcd. for C26H41N4O3
+: 457.3173, found.: 457.3178. C26H40N4O3 · C4H2F6O4 (456.63 + 

228.05). 

 

General procedure for the synthesis of pyridinium-labeled fluorescent ligands 

The respective amine-precursor 5.9, 5.10 or 5.11 (1 eq) was dissolved in anhydrous DMF (200-

400 µL) and DIPEA (10 eq) or TEA (2-3 drops). The pyrylium dye Py-5 (3-8 eq) in anhydrous DMF 
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(180-200 µl) was added portion wise (50 µL) every 20-30 min. Subsequent to the last addition, 

the reaction mixture was incubated for additional 30 min at RT in the dark. The reaction was 

stopped by addition of TFA (10 % in H2OmilliQ, 50-200 µL). After dilution with a mixture of H2OmilliQ 

with 5% MeCN and 0.1% TFA (2 mL) the respective fluorescently labeled ligand was isolated as 

TFA-salt by preparative HPLC. After lyophilisation of the eluate the product was obtained as a red 

highly hygroscopic solid. 

 

Compound 5.9 labeled with Py-5 (5.12)
25

 Mengya Chen master thesis 

5.9 (1.95 mg, 4 μmol, 1 eq), Py-5 (4.41 mg, 12 μmol, 3 eq) and TEA (2-3 drops) were applied 

according to the general procedure. Purification by preparative HPLC (column: Kinetex, gradient: 

0-30 min: MeCN/0.1% aq. TFA 5:95-90:10, tR = 15.5 min) and removal of the solvent by 

lyophilisation afforded 5.12 as a highly hygroscopic, red solid (1.17 mg, 32%). RP-HPLC (gradient 

2, 220 nm): 96.9% (tR = 16.4 min, k = 4.7). HRMS (ESI): m/z [M]+ calcd. for C42H54N5O3
+: 676.4221, 

found: 676.4227. C42H54N5O3
+·C4HF6O4 (676.42+ 227.04). 

 

Compound 5.10 labeled with Py-5 (5.13) Mengya Chen master thesis 

5.10 (2.21 mg, 5.00 μmol, 1 eq), Py-5 (11.02 mg, 30.00 μmol, 6 eq) and TEA (2-3 drops) were 

applied according to the general procedure. Purification by preparative HPLC (column: Kinetex, 

gradient: 0-30 min: MeCN/0.1% aq. TFA 10:90-90:10, tR = 16.4 min) and removal of the solvent by 

lyophilisation afforded 5.13 as a highly hygroscopic, red solid (1.46 mg, 31%). RP-HPLC (gradient 

2, 220 nm): 95.1% (tR = 18.1 min, k = 5.2). 1H-NMR (600 MHz, [D4]MeOH): δ (ppm) 1.48-1.59 (m, 

5H), 1.65-1.70 (m, 2H), 1.72-1.80 (m, 2H), 1.82-1.88 (m, 3H), 1.93-1.95 (m, 2H), 2.08-2.13 (qui, 

2H, J 6.3 Hz), 2.80 (s, 6H), 2.92-2.97 (m, 2H), 3.03 (s, 6H), 3.42-3.45 (m, 2H), 3.62 (br s, 2H), 3.83 

(br s, 2H), 4.13 (t, 2H, J 6.0 Hz), 4.23 (s, 2H), 4.36-4.38 (m, 2H), 6.58 (d, 1H, J 15.3 Hz), 6.77 (d, 2H, 

J 8.8 Hz), 6.93-6.97 (m, 1H), 7.00-7.07 (m, 4H), 7.37 (t, 1H, J 8.2 Hz), 7.44 (d, 2H, J 8.9 Hz), 7.63-

7.68 (m, 1H), 7.71 (s, 2H). HRMS (ESI): m/z [M]+ calcd. for C44H58N5O3
+: 704.4534, found: 

704.4542. C44H58N5O3
+·C4HF6O4 (704.45+ 227.04). 

 

Compound 5.11 labeled with Py-5 (5.14)  

5.11 (5 mg, 7.30 μmol, 1 eq), Py-5 (21.4 mg, 58.42 μmol, 8 eq) and DIPEA (12.8 µL, 73.03 µmol, 10 

eq) were applied according to general procedure. Purification by preparative HPLC (column: 

Kinetex, gradient: 0-30 min: MeCN/0.1% aq. TFA 5:95-45:55, tR = 28.9 min) and removal of the 

solvent by lyophilisation afforded 5.14 as a highly hygroscopic, red solid (1.59 mg, 24%). RP-HPLC 

(gradient 2, 220 nm): 96% (tR = 18.4 min, k = 5.4). HRMS (ESI): m/z [M]+ calcd. for C45H60N5O3
+: 

718.4691, found: 718.4698. C45H60N5O3
+·C4HF6O4 (718.47+ 227.04). 
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General procedure for the synthesis of cyanine-labeled fluorescent ligands 

A solution of the activated fluorescent dye (1 eq) in anhydrous DMF (30-100 µl) was added to the 

respective amine-precursor 5.9 or 5.10 (2.0-3.3 eq) dissolved in anhydrous DMF (100 µL) and 

DIPEA (8-10 eq). The reaction mixture was incubated for 45-90 min at RT in the dark. The reaction 

was stopped by addition of TFA (10 % in H2OmilliQ, 45-60 µL). After dilution with a mixture of 

H2OmilliQ with 5% MeCN and 0.1% TFA (150-250 µL) the respective fluorescently labeled ligand was 

isolated as TFA-salt by preparative HPLC. After lyophilisation of the eluate the product was 

obtained as a blue fluffy solid. 

 

Compound 5.9 labeled with S0223 (5.15) 

5.9 (8.88 mg, 13.12 µmol, 2.5 eq), S2197 (3.65 mg, 4.84 µmol, 1 eq) and DIPEA (7.7 µL, 44.20 

µmol, 8 eq) were applied according to the general procedure. Purification by preparative HPLC 

(column: Kinetex, gradient: 0-30 min: MeCN/0.1% aq. TFA 15:85-70:30, tR = 24.1 min) and 

removal of the solvent by lyophilisation afforded 5.15 as a hygroscopic, blue fluffy solid (1.13 mg, 

18%). RP-HPLC ( gradient 1, 220 nm): 96% (tR = 25.3 min, k = 7.7). HRMS (ESI): m/z [M]+ calcd. for 

C55H71N6O4
+: 879.5531, found: 879.5533. C55H71N6O4

+ ∙ C4HF6O4
- (880.21 + 227.04). 

 

Compound 5.10 labeled with S0223 (5.16) 

5.10 (11.0 mg, 17.03 µmol, 3 eq), S2197 (3.75 mg, 5.68 µmol, 1 eq) and DIPEA (9.9 µL, 56.76 

µmol, 10 eq) were applied according to the general procedure. Purification by preparative HPLC 

(column: Kinetex, gradient: 0-30 min: MeCN/0.1% aq. TFA 15:85-70:30, tR = 24.9 min) and 

removal of the solvent by lyophilisation afforded 5.16 as a hygroscopic, blue fluffy solid (2.49 mg, 

39%). RP-HPLC (gradient 2, 220 nm): 99% (tR = 25.6 min, k = 7.8). HRMS (ESI): m/z [M]+ calcd. for 

C57H75N6O4
+: 907.5844, found: 907.5839. C57H75N6O4

+ ∙ C4HF6O4
- (908.26 + 227.04). 

 

Compound 5.9 labeled with S0436 (5.17)
25

 

5.9 (7.78 mg, 12.11 µmol, 2.5 eq), S0536 (3.40 mg, 4.84 µmol, 1 eq) and DIPEA (6.8 µL, 38.75 

µmol, 8 eq) were applied according to general procedure. Purification by preparative HPLC 

(column: Kinetex, gradient: 0-30 min: MeCN/0.1% aq. TFA 10:90-65:35, tR = 22.6 min) and 

removal of the solvent by lyophilisation afforded 5.17 as a hygroscopic, blue fluffy solid (1.49 mg, 

25%). RP-HPLC (gradient 1, 220 nm): 97% (tR = 23.8 min, k = 7.2). HRMS (ESI): m/z [M+H]+ calcd. 

for C58H77N6O7S
+: 1001.5569, found: 1001.5573. C58H76N6O7S ∙ C4H2F6O4 (1001.34 + 228.05). 

 

Compound 5.10 labeled with S0436 (5.18)
25

 

5.10 (8.0 mg, 11.93 µmol, 3.3 eq), S0536 (2.55 mg, 3.63 µmol, 1 eq) and DIPEA (5.1 µL, 29.01 

µmol, 8 eq) were applied according to the general procedure. Purification by preparative HPLC 

(column: Kinetex, gradient: 0-30 min: MeCN/0.1% aq. TFA 5:95-65:35, tR = 27.0 min) and removal 
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of the solvent by lyophilisation afforded 5.18 as a hygroscopic, blue fluffy solid (1.53 mg, 34%). 

RP-HPLC (gradient 2, 220 nm): 97% (tR = 23.1 min, k = 7.0). 1H-NMR (600 MHz, [D4]MeOH): δ 

(ppm) 1.33-1.36 (5H, m), 1.43-1.52 (5H, m), 1.58-1.61 (2H, m), 1.67-1.84 (18H, m), 1.90-1.94 (4H, 

m), 1.96-2.02 (2H, m),2.04-2.08 (2H, m), 2.20 (2H, t, J 7.1 Hz), 2.87-2.95 (4H, m), 3.14 (2H, t, J 6.8 

Hz), 3.40-3.42 (2H, m), 3.56 (2H, br s), 3.78 (2H, br s), 4.08-4.14 (6H, m), 4.20 (2H, s), 6.26 (1H, d, J 

13.7 Hz), 6.32 (1H, d, J 13.7 Hz), 6.60 (1H, J 12.7 Hz), 6.98-7.01 (2H, m), 7.08 (1H, s), 7.23-7.34 

(5H, m), 7.40 (2H, t, J 7.7 Hz), 7.47 (2H, t, J 7.0 Hz), 8.22 (2H, t, J 13.1 Hz). HRMS (ESI): m/z [M+H]+ 

calcd. for C60H81N6O7S
+: 1029.5882, found: 1029.5883. C60H80N6O7S ∙ C4H2F6O4 (1029.40 + 228.05). 

 

Compound 5.9 labeled with S0387 (5.19).  

5.9 (5.1 mg, 7.93 µmol, 2.5 eq), S0586 (2.6 mg, 3.17 µmol, 1 eq) and DIPEA (4.4 µL, 25.38 µmol, 8 

eq) were applied according to general procedure. Purification by preparative HPLC (column: 

Kinetex, gradient: 0-30 min: MeCN/0.1% aq. TFA 5:95-55:45, tR = 22.6 min) and removal of the 

solvent by lyophilisation afforded 5.19 as a hygroscopic, blue fluffy solid (1.82 mg, 44%). RP-HPLC 

(gradient 1, 220 nm): 98% (tR = 18.6 min, k = 5.4). HRMS (ESI): m/z [M+H]+ calcd. for 

C58H77N6O10S2
+: 1081.5137, found: 1081.5140. C58H76N6O10S2 ∙ C4H2F6O4 (1081.40 + 228.05). 

 

Compound 5.10 labeled with S0387 (5.20) 

5.10 (4.76 mg, 7.09 µmol, 2 eq), S0586 (2.85 mg, 3.54 µmol, 1 eq) and DIPEA (4.8 µL, 27.61 µmol, 

8 eq) were applied according to the general procedure. Purification by preparative HPLC (column: 

Kinetex, gradient: 0-30 min: MeCN/0.1% aq. TFA 5:95-55:45, tR = 23.5 min) and removal of the 

solvent by lyophilisation afforded 5.20 as a hygroscopic, blue fluffy solid (0.91 mg, 19%). RP-HPLC 

(gradient 2, 220 nm): 99% (tR = 17.6 min, k = 5.1). HRMS (ESI): m/z [M+H]+ calcd. for 

C60H81N6O10S2
+: 1109.5450, found: 1109.5447. C60H80N6O10S2 ∙ C4H2F6O4

- (1109.45 + 228.05). 

 

Fluorescence spectroscopy and determination of quantum yields
30 

The recording of fluorescence spectra and the determination of quantum yields were performed 

with a Cary Eclipse spectrofluorometer (Varian Inc., Mulgrave, Victoria, Australia). The 

photomultiplier voltage of the spectrofluorimeter was set to 400 V throughout. Depicted 

excitation and emission spectra were recorded with an excitation slit of 10 nm and an emission 

slit of 10 nm. Appropriate concentrations of the fluorescent ligands, with absorbances between 

0.1 and 0.2 at the respective excitation wavelength, were determined with a Cary 100 UV/VIS 

(Varian Inc., Mulgrave, Victoria, Australia) photometer. Absorption spectra were recorded within 

a concentration range of 1.5-6 µM. The excitation wavelength was chosen as close to the 

absorption maximum as possible (5.13, 5.14) or at an inflection point (5.20, 5.18, 5.16 and cresyl 

violet perchlorate). For the determination of quantum yields, cresyl violet perchlorate (Acros 

Organics, Geel, Belgium), with a reported quantum yield of 54% in EtOH46, was used as a 

standard. All spectra were recorded in acryl cuvettes (10 x 10 mm, Ref. 67.755, Sarstedt, 

Nümbrecht, Germany). 



132 Chapter 5 

Solutions of the fluorescent ligands in PBS and PBS containing 1% BSA (both pH 7.4) were 

prepared from 5 mM stock solutions in DMSO. Spectra of the cresyl violet standard were 

recorded in EtOH. The pure solvents with the same DMSO content were used as reference. The 

absorption spectra were immediately recorded at 22 °C. The emission spectra were recorded 

within 15-20 min after preparation of the solutions at a temperature of 22 °C using a ‘medium 
scan rate’. The filter settings were ‘auto’ for the excitation and ‘open’ for the emission filter. 
Fluorescence spectra were recorded at two different slit adjustments (excitation/emission): 

10/10 nm and 10/5 nm. The emission starting point was set 15 nm above the excitation 

wavelength. From every emission spectrum the corresponding reference spectrum was 

subtracted and the resulting net spectrum was multiplied with the corresponding lamp 

correction spectrum. These corrected net spectra were integrated up to 850 nm. From every raw 

absorption spectrum the corresponding reference spectrum was subtracted to afford the net 

absorption spectra. The absorbance at the excitation wavelength was obtained from the net 

absorption spectra. The quantum yield was calculated according to the following equation: 

ɸF(X) = (As/Ax)(Fx/Fs)(nx/ns)
2ɸF(S) 

As is the absorbance and Fs the integral of the corrected net emission spectrum of the cresyl 

violet standard solution. Ax and Fx are the absorbance and the integral of the corrected net 

emission spectrum of the fluorescent ligand. The refractive indices of the solvents for the 

fluorescent ligands and the cresyl violet standard are denoted nx and ns (fluorescent ligands: nPBS 

= 1.33; BSA content was neglected and cresyl violet: nEtOH = 1.36). The reported quantum yield of 

cresyl violet perchlorate (in this case 54%) is referred to as ɸF(X). 

 

5.4.3 Pharmacological Methods 

Radioligand competition binding assay on Sf9 insect cell membranes 

Preparation of the membranes of Sf9 insect cells expressing the hH2R-GsαS fusion protein or co-

expressing the hH3R + Giα2 + β1γ2 or hH4R + Giα2 + β1γ2 proteins was described elsewhere.47  

Radioligand competition binding assays were performed as described previously with minor 

adjustments using the following radioligands: [3H]UR-DE25723 (specific activity = 32.89 Ci/mmol, 

hH2R: Kd = 12.2 nM, cfinal = 20 nM) and [3H]histamine (Hartmann Analytic, Braunschweig, 

Germany; specific activity = 25 Ci/mmol; hH3R: Kd = 12.1 nM, cfinal = 15 nM, hH4R: Kd = 15.9 nM, 

cfinal = 10 nM). 

On the day of the experiment Sf9 membranes were thawed and sedimented by centrifugation at 

13,000 rpm at 4 °C for 10 min. The membranes were resuspended in ice cold binding buffer (12.5 

mM MgCl2, 1mM EDTA and 75 mM Tris/HCl, pH 7.4; in the following referred to as BB) and 

adjusted to a protein concentration of 2-4 µg/µL. 80 µL BB containing 0.2% BSA and the 

respective radioligand, followed by 10 µL of the investigated ligands at various concentrations 

(dissolved in H2O), were added to every well of a 96-well plate (in case of fluorescent ligands: 

Primaria clear flat bottom microplates, Corning, New York, USA; for other ligands: PP microplates 

96 well, Greiner Bio-One, Frickenhausen, Germany). Incubation was started by addition of the 
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membrane suspension (10 µL). The plates were shaken for 60 min at room temperature in the 

dark. Subsequently, bound radioligand was separated from free radioligand by filtration through 

glass microfiber filters (Whatman GF/C, Maidstone, UK), treated with 0.3% polyethylenimine 

(PEI), using a 96-well Brandel harvester (Brandel Inc., Unterföhring, Germany). The punched out 

filter pieces were transferred into clear, flexible 96-well PET microplate (round bottom, 1450-

401, Perkin Elmer, Rodgau, Germany). Each well was supplemented with 200 µL scintillation 

cocktail (Rotiscint Eco plus, Roth, Karlsruhe, Germany) and incubated in the dark for at least 4 h. 

The radioactivity was measured with a MicroBeta2 1450 scintillation counter (Perkin Elmer, 

Rodgau, Germany). 

 

Functional GTPγS assay on Sf9 insect cell membranes 

GTPγS assays were performed as described previously48 with minor modifications. [35S]GTPγS 
(specific activity = 1000 Ci/mmol) was purchased from Hartmann Analytic (Braunschweig, 

Germany). Sf9 membranes were prepared in the same manner as for radioligand competition 

binding and the protein concentration was adjusted to 0.5-1.5 µg/µL. 

Agonist mode: 80 µL of BB containing BSA (0.05% final), GDP (1 µM final) and [35S]GTPγS (20 nCi 
final), followed by 10 µL of the investigated ligands at various concentrations (dissolved in H2O) 

were added to every well of a 96-well plate (in case of fluorescent ligands: Primaria microplates; 

for other ligands: PP microplates). Incubation was started by addition of the membrane 

suspension (10 µL). The plates were shaken for 60 min at room temperature in the dark. 

Subsequently, bound radioligand was separated from free radioligand by filtration through glass 

microfiber filters (Whatman GF/C, Maidstone, UK) using a 96-well Brandel harvester (Brandel 

Inc., Unterföhring, Germany). 

Antagonist mode of the GTPγS assay was performed in the same way as the agonist mode, but in 
the presence of the agonist histamine (1 µM final). 

 

Cell culture 

The preparation of stably transfected HEK cells (HEK293T-hH2R-qs526 and HEK293T-hH2R-

βArr233,49) was described elsewhere. 

Cells were cultivated at 37 °C in a water saturated atmosphere containing 5% CO2. Dulbecco´s 

Modified Eagle Medium, containing 4.5 g/L glucose, 3.7 g/L NaHCO3, 110 mg/L sodium pyruvate 

(DMEM, Sigma-Aldrich Munich, Germany) and supplemented with 0.584 g/L L-glutamine (L-

glutamine solution, Sigma-Aldrich Munich, Germany), 1% (v/v) Penicillin-Streptomycin (P/S, 

10,000 U/mL, Sigma-Aldrich Munich, Germany), 10% (v/v) fetal calf serum (FCS, Biochrom GmbH, 

Merck, Berlin, Germany) were used as a culture medium. Additionally, 100 µg/mL hygromycin B 

(A.G. Scientific, Inc., San Diego, CA) and 400 µg/mL G418 (Biochrom GmbH, Merck, Berlin, 

Germany) were added to the culture medium of HEK293T-hH2R-qs5 cells, and 400 µg/mL zeocin 

(InvivoGen, San Diego,USA) and 600 µg/mL G418 were added to the culture medium of HEK293T-

hH2R-βArr2 cells. 
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Flow cytometric binding assays 

All flow cytometric binding studies were performed with a FACS CaliburTM flow cytomter (Becton 

Dickinson, Heidelberg, Germany), equipped with an argon laser (488 nm) and a red diode laser 

(635 nm) according to general protocols26,50 with minor adjustments. The following instrument 

settings were used: FSC: E-1, SSC: 280 V, Fl-3: 600 V and Fl-4: 420-550 V. All samples were 

prepared in duplicate and recorded either in channel Fl-3 (pyridinium dyes, excitation: 488 nm, 

emission filter: >670 nm) or in Fl-4 (cyanine dyes, excitation: 635 nm, emission filter: 

661 ± 18 nm). Sample measurement was complete after 30-45 s (this corresponds to approx. 

20,000-90,000 gated events). 

HEK293T-hH2R-qs5 cells were seeded in a 175-cm2 culture flask 5-7 days prior to the experiment. 

On the day of the experiment, cells were trypsinized and detached with fresh culture medium (5 

mL). After centrifugation (250 g, 10 min) the cell pellet was resuspended in Leibovitz´s L-15 

culture medium (L-15 medium, Gibco/Life Technologies, Carlsbad, USA) and the concentration 

was adjusted to 0.5-1.0 ∙ 106 cells/mL.  

Saturation binding: 500 µL of the cell suspension were either added to 5 µL of DMSO/H2O (30/70, 

v/v, total binding) or to 5 µL of famotidine in DMSO/H2O (30/70, v/v, unspecific binding, 300-fold 

excess to the fluorescent ligand). Incubation was started by the addition of 5 µL of fluorescent 

ligand in DMSO/H2O (30/70, v/v, 100-fold concentrated) in intervals of 1 min (measuring time per 

sample = one concentration) starting with the lowest concentration of total binding. After 90 min 

of shaking in the dark at 25 °C, the samples were transferred to 5 mL polystyrol FACS tubes 

(Sarstedt, Nümbrecht,Germany) and immediately measured. 

Competition binding: To 500 µL of cell suspension, 5 µL of competitor in DMSO/H2O (30/70, v/v); 

100-fold concentrated) were added at increasing concentrations and 5 µL of fluorescent ligand 

(concentration in the assay: 50 nM (5.14) or 25 nM (5.18)) in DMSO/H2O (30/70, v/v, 100-fold 

concentrated) in intervals of 1 min (measuring time per sample). The incubation time was 90 min 

at 25 °C. 

Association: 500 µL of the cell suspension were either added to 5 µL of DMSO/H2O (30/70, v/v, 

total binding) or to 5 µL of famotidine in DMSO/H2O (30/70, v/v, unspecific binding, 300-fold 

excess to the fluorescent ligand). Incubation started by addition of 5 µL of fluorescent ligand in 

DMSO/H2O (30/70, v/v, 100-fold concentrated, final concentration: 50 nM (5.14), 15 nM (5.16) or 

25 nM (5.18)). The incubation at 37 °C was stopped after different periods of time (0-120 min) by 

measuring the samples. 

Dissociation: 500 µL of the cell suspension were either added to 5 µL DMSO/H2O (30/70, v/v, 

total binding) or to 5 µL famotidine in DMSO/H2O (30/70, v/v, unspecific binding, 300-fold excess 

to the fluorescent ligand). 5 µL of fluorescent ligand in DMSO/H2O (30/70, v/v, 100-fold 

concentrated, final concentration of the fluorescent ligands: 50 nM (5.14), 15 nM (5.16) or 25 nM 

(5.18)) were added to every vessel and the samples were incubated at 25 °C for 90 min. The 

samples were centrifuged (250 g, 3.5 min,) and the supernatant, containing excess fluorescent 

ligand was aspirated. 500 µL pf L-15 medium containing famotidine (300-fold excess to the final 

fluorescent ligand concentration, 15 µM, 4.5 µM or 7.5 µM) were added to the cell pellet, before 
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the cells were resuspended. The incubation at 37 °C was stopped after different periods of time 

(0-150 min) by measuring the samples. 

For data analysis the software FlowJo V10 (FlowJo, LLC, Ashland, USA) was used throughout. The 

geometrical mean values of Fl-3 or Fl-4 were obtained for a subpopulation of the gated cells 

which exhibited a high receptor density.  

 

High content Imaging 

Fluorescent ligand binding experiments with adherent HEK293T-hH2R-qs5 cells (IN Cell 

Analyzer) 

For high content imaging of adherent cells, a wide-field cell imaging system, the IN Cell Analyzer 

2000 (GE Healthcare, Little Chalfont, UK), was used. An objective with a 20-fold magnification and 

a numerical aperture of 0.45, combined with a polychroic mirror (QUAD1), was used throughout. 

For imaging, two channels with different excitation/emission filters were applied: Cy5 channel 

(for cyanine dyes, excitation filter: 645/30 nm, emission filter: 705/72 nm, exposure time: 1,000 

ms) or Cy3 channel (pyridinium dyes, excitation filter: 543/22 nm, emission filter: 605/64 nm, 

exposure time: 1,000 ms) and DAPI channel (H33342, excitation filter: 350/50 nm, emission filter: 

455/50 nm, exposure time: 90 ms). 2.5-D images (imaging modality, the system uses the 

camera´s CCD/sCMOS chip to integrate the signal over the specified Z section and then 

deconvolves the result for a pseudo 3-D projection) were obtained throughout. In some cases a 

brightfield channel (excitation filter: 473/10 nm, emission filter: 455/50 nm, exposure time: 50 

ms, imaging modality: 2-D images, the system acquires a standard two-dimensional image) was 

additionally applied. In every channel, 4 images were obtained per well. Binding experiments 

were performed in duplicate and were repeated at least twice. 

One day prior to the experiment, HEK293T-hH2R-qs5 cells were trypsinized and detached with 

DMEM medium (high glucose without phenol red (Gibco/Life Technologies, Carlsbad, USA) 

containing 1% (v/v) Penicillin-Streptomycin (P/S, 10,000 U/mL, Gibco/Life Technologies, Carlsbad, 

USA) and 10% (v/v) FCS (in the following referred to as DMEM w/o medium). The cell suspension 

was adjusted to 0.6-0.75 ∙ 106 cells/mL and 200 µl (120,000 - 150,000 cells/well) were seeded in 

every well of a µ-slide-96-well plate (Ibidi, Martinsried, Germany) using an automated reagent 

dispenser (Multidrop, Thermo Fisher Scientific, Waltham, USA). The cells were cultivated at 37 °C 

overnight in a water saturated atmosphere containing 5% CO2. 

On the day of the experiment, the medium was removed and cells (concentration approximately 

3 ∙ 108 cells/well) were covered with 80 µl fresh DMEM w/o medium additionally containing 0.1% 

BSA (Albumin bovine fraction V, SERVA, Heidelberg, Germany) and H33342 (1 µg/mL in H2O, 

Sigma Aldrich, Munich, Germany).  

Saturation binding: For determination of total binding, DMEM w/o medium (10 µL) and for 

unspecific binding DMEM w/o medium (10 µL) and famotidine as competitor (300-fold referring 

to the fluorescent ligand) were added. Incubation was started by addition of DMEM w/o medium 

(10 µL) containing the respective concentrations of the fluorescent ligand (10-fold concentrated) 

to every well.  
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Competition binding: DMEM w/o medium (10 µL) containing the investigated ligands at  various 

concentrations (10-fold concentrated) was added. For determination of unspecific binding 

famotidine (100 µM final) was used. Incubation time started by addition of DMEM w/o medium 

(10 µL) containing the fluorescent ligand 18 (10-fold concentrated, 50 nM final) to every well. 

After incubation at room temperature in the dark for 60 min, the medium was removed and the 

cells were washed with PBS (100 µL) and covered with DMEM w/o medium (100 µL) followed by 

immediate acquisition of images at 37 °C. 

For kinetic studies the cells were seeded in a 96-well plate one day prior to the experiment as 

described before. For one association or dissociation experiment only four wells of the plate (two 

wells for total binding and unspecific binding respectively) were required. The remaining wells 

were used for other experiments like saturation or competition binding experiments. On the day 

of the experiment the medium was removed and cells were incubated with 100 µl DMEM w/o 

medium containing 0.1% BSA and H33342 (1 µg/mL, Sigma Aldrich, Munich, Germany) for 1 h. 

The medium was carefully aspirated, the cells were washed with PBS (100 µL) and covered with 

100 µl DMEM w/o medium. Either 10 µL (total binding) or 20 µL (unspecific binding) medium 

were removed from the wells. DMEM w/o medium (10 µL) containing famotidine (10-fold 

concentrated, 15 µM final) was added to the two wells of unspecific binding. 

Association: DMEM w/o medium (10 µL) containing the fluorescent ligand 18 (10-fold 

concentrated, 50 nM final) was added to every well, and the plate was immediately transferred 

to the IN Cell Analyzer 2000. Images at different time points between 0 h and 1 h were acquired 

at 37 °C. 

Dissociation: DMEM w/o medium (10 µL) containing the fluorescent ligand 18 (10-fold 

concentrated, 50 nM final) was added to every well, and the plate was incubated in the dark for 1 

h. The medium was aspirated and DMEM w/o medium (100 µL) containing famotidine (15 µM) 

was added. Immediately, images at different time points between 0 h and 1 h were acquired at 

37 °C. 

For data analysis, the software Developer Toolbox 1.9.2 (IN Cell Investigator, GE Healthcare, Little 

Chalfont, UK) was used. For counting the nuclei per image a segmentation algorithm was applied 

to the images of the DAPI-channel (nuclei staining) to define the targets (nuclei) and the measure 

“count” (output: number of targets contained within the region of interest) was applied to the 
images. For the quantification of bound ligand an object segmentation algorithm was applied to 

the images of Cy3/Cy5 channel to define the targets (areas where the fluorescent ligand is 

bound). In case of the pyridinium labeled ligands, the density measure “density level” (measures 

the gray level intensity within the targets; uncalibrated intensity unit for IN Cell images, the 

higher the value, the brighter the pixel) was applied to the targets. As statistical function “sum” 
(output: sum of the density levels of all identified targets within one image) was chosen and the 

result was divided through the nuclei count. In case of the cyanine labeled ligands the density 

measure “Density x Area” (mean density within the target outline multiplied by its area, i.e. total 
density within the target outline) was applied to the targets. As statistical function “sum” 
(output: sum of the Density x Area of all identified targets within one image) was chosen and the 

result was divided through the nuclei count.  
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Imaging Flow Cytometry (ImageStreamX) 

Imaging flow cytometry was performed with an ImageStreamX Imaging Cytometer (Amnis/Merck 

Millipore, Darmstadt, Germany), equipped with an objective with 40-fold magnification and a 

numerical aperture of 0.75. For imaging, an argon laser (488 nm, excitation wavelength) and a 

diode laser (785 nm, side scatter) were used, instrument settings were 488 nm laser: 75-85 mW, 

785 nm laser: 13 mW and velocity 60 mm/s. Images were obtained in channel CH5 (emission 

filter: 702/85 nm). Measurement was completed after counting 1,000 to 1,500 cells within the 

defined area limits (bright field, upper limit: 250 and lower limit: 100, measuring time 1.5 to 2.0 

min per sample). Binding experiments were performed in duplicate and were repeated at least 

twice. 

HEK293T-hH2R-qs5 cells were detached with DMEM w/o medium. After centrifugation (300 g, 5 

min) the cell pellet was resuspended in fresh DMEM w/o medium. The cell suspension was 

adjusted to 2 ∙ 106 cells/mL. 

Saturation binding: For determination of total binding DMEM w/o medium (20 µL) containing  1% 

BSA (Albumin bovine fraction V, SERVA, Heidelberg, Germany) and for unspecific binding DMEM 

w/o medium (20 µL) containing 1% BSA and famotidine as competitor (300-fold referring to the 

fluorescent ligand) were added to 1.5 ml reaction vessels (Sarstedt, Nümbrecht, Germany). The 

cell suspension (160 µL) was transferred to the vessels and DMEM w/o medium (20 µL) 

containing 1% BSA and the fluorescent ligand in different concentrations (10-fold concentrated) 

was added. Samples were prepared at intervals of 2 min (measuring time per sample) starting 

with the highest concentration. After incubation for 60 min at room temperature in the dark, 

samples were filtered through a 70 µm nylon cell strainer (Falcon/Corning Inc., New York, USA) 

and images of the suspended cells were acquired with an ImageStreamX Imaging cytometer. 

Competition binding: DMEM w/o medium (210 µL) containing the investigated ligands in various 

concentrations (10-fold concentrated) was added to 1.5 ml reaction vessels. For determination of 

unspecific binding, famotidine (100 µM final) was used. The cell suspension (160 µL) was 

transferred to the vessels and DMEM w/o medium (10 µL) containing the fluorescent ligand 14 

(10-fold concentrated, 70 nM final) was added. All following steps were carried out as described 

for saturation binding.  

For data analysis, the software IDEAS 6.0 (Amnis/Merck Millipore, Darmstadt, Germany) was 

used. From the gated cells only focused single cells were included in the data analysis. 

Furthermore, cells with high fluorescence intensity in the cytoplasm (dead or dying cells) were 

excluded. Then a mask for the cell membrane was created, allowing analysis of the fluorescent 

intensity in the area of the cell membrane. Additionally, the fluorescent intensity of the whole 

cell was analyzed. 
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Confocal Microscopy 

Confocal microscopy was performed with a Zeiss Axiovert 200 M microscope equipped with the 

LSM 510 Laser scanner. A 63x/1.40 oil immersion objective was used. 

Two days prior to the experiment, HEK293T-hH2R-qs5 cells were trypsinized and seeded in a 

ibiTreat µ-slide 8-well chambered coverslip (Ibidi, Planegg, Germany) in DMEM (0.6 ∙ 106 cells/mL, 

250 µL per well) containing 10% FCS and 1% P/S (10,000 U/mL, Sigma-Aldrich Munich, Germany). 

On the day of the experiment, the confluency of the cells was approximately 80-90%. The culture 

medium was replaced with L-15 containing 5% FCS and 1% P/S (120 µL). For the determination of 

total binding, blank L-15 medium (40 µL) and L-15 medium containing the respective fluorescent 

ligand (40 µL, 5-fold concentrated, 100 nM final) were added. Unspecific binding was determined 

by analogy; with the exception that blank medium was replaced with L-15 medium containing 

famotidine (40 µL, 5-fold concentrated, 30 µM final). Images of total and unspecific binding were 

acquired after an incubation period of 20 min at room temperature. Table 5.12 shows the 

settings for the detection of the investigated fluorescent ligands. 

Table 5.11. Settings of the confocal microscope for the detection of the fluorescent ligands 5.14, 5.16 and 5.18. 

Compounds Excitation (laser intensity) Filter  Pinhole (µm) 

5.14 488 nm (10%) LP 560 106 

5.16 633 nm (10%) LP 650 122 

5.18 633 nm (10%) LP 650 122 

 

Βeta-Arrestin2 recruitment assay 

The -Arrestin2 recruitment assays were performed as described previously for the H1R using 

HEK293T-hH2R-βArr2 cells, stably expressing the hH2R-ElucC and βArr2-ElucNfusion constructs.49
 

One day prior to the experiment, HEK293T-hH2R-βArr2 cells were trypsinized and detached with 

DMEM medium (high glucose without phenol red (Sigma Aldrich, Munich, Germany) containing 

1% (v/v) P/S and 5% (v/v) FCS. The cell suspension was adjusted to 1.1 ∙ 106 cells/mL and 90 µl 

(100,000 cells/well) were seeded in every well of a sterile, luciferase assay compatible, F-bottom 

96-well plate (Cellstar®, Greiner Bio-One, Kremsmünster, Österreich). The cells were cultivated at 

37 °C overnight in a water saturated atmosphere containing 5% CO2. The investigated ligands 

were added at increasing concentrations (10 µL), and the plate was incubated at 25 °C for 60 min 

under shaking. 50 µL of the medium were removed, and 50 µL of Bright-Glo reagent (Promega, 

Madison, USA) were added. Bioluminescence was immediately measured for 1 s per well using a 

GENios Pro microplate reader (Tecan, Salzburg, Austria). 
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5.3.4 Data analysis 

Retention factors k were calculated according to k = (tR- t0)/ t0 (t0 = dead time; tR = retention 

time). Corrected counts per minute (ccpm) from the GTPγS assay (agonist mode) were plotted 

against the log(concentration of the test compound), and data were analyzed by a four 

parameter logistic equation (GraphPad Prism Software 5.0, GraphPad Software, San Diego, CA), 

followed by normalization (0%  = water value (basal activity), 100% = “top” histamine equation) 

and analysis by four-parameter logistic equation (log(agonist) vs. response – variable slope, 

GraphPad Prism). Data of the GTPγS assay (antagonist mode) were analysed by a four parameter 

logistic equation (GraphPad Prism), followed by normalization (100%  = “top” of the four-

parameter logistic fit, 0% = unspecifically bound radioligand (ccpm) determined in the presence 

of famotidine at 100 µM) and analysis by four-parameter logistic equation (log(inhibitor) vs 

response – variable slope, GraphPad Prism). pIC50 values were converted into pKB values 

according to the Cheng-Prusoff equation51. The luminescence (RLU) from the βArrestin2 

recruitment assay (agonist mode) were plotted against log(concentration of the test compound) 

and analyzed by a four parameter logistic equation (GraphPad Prism) followed by normalization 

(0%  = water value (basal activity), 100% = “top” histamine equation) and analysis by four-

parameter logistic equation (log(agonist) vs. response – variable slope, GraphPad Prism). Specific 

binding data from saturation binding experiments were plotted against the “free” fluorescently 
labeled ligand concentration and analyzed by a two-parameter equation describing hyperbolic 

binding (one site – specific binding, GraphPad Prism). Specific binding data from association 

binding experiments were analyzed by a two parameter equation describing an exponential rise 

to a maximum (one-phase association, GraphPad Prism) to obtain the observed association 

constant kobs. Specific binding data from dissociation binding experiments were analyzed by a 

three parameter equation (one phase decay, GraphPad Prism) to obtain the dissociation rate 

constant koff. Kinetic dissociation constants Kd (kin) were calculated from kon and koff (kon = (kobs – 

koff)/[L]; Kd (kin) = koff/ kon). Specific binding data from association and dissociation binding 

experiments were normalized (100% = Ymax (association) or Y0 (dissociation)). Total binding data 

from radioligand and fluorescent ligand competition binding experiments were plotted against 

log(concentration competitor) and analyzed by a four-parameter logistic equation (log(inhibitor) 

vs response – variable slope, GraphPad Prism), followed by normalization (100%  = “top” of the 
four-parameter logistic fit, 0% = unspecifically bound radioligand/ fluorescent ligand determined 

in the presence of famotidine at 100 µM). Normalized data from competition binding 

experiments was analyzed by a four-parameter logistic equation (log(inhibitor) vs response – 

variable slope, GraphPad Prism) and obtained pIC50 values were converted into pKi values 

according to the Cheng-Prusoff equation.51
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5.4 SUMMARY AND CONCLUSION 

The introduction of different fluorophores by derivatization of amino-functionalized precursors, 

structurally related to BMY 2536, led to fluorescently labeled H2R antagonists. The highest 

affinities on the hH2R (pKi values > 7.0) in radioligand competition assays were obtained by the 

pyridinium labeled ligands 5.12-5.14 and the cyanine labeled ligands 5.16 (positively charged 

fluorophore, net charge: 2+) and 5.18 (electroneutral fluorophore, net charge: 1+). Interestingly, 

labeling with S0387, the cyanine dye with the negative net charge, led to a decrease in hH2R 

affinity (pKi values < 6.0). While the linker length (4-7 carbon atoms) had no significant influence 

on the hH2R affinity within the pyridinium ligands, the cyanine ligands with the hexyl linker (5.16 

and 5.18) showed an increased hH2R affinity compared to the butyl linker derivatives. Even 

though the low selectivity towards the hH3R limited the application to recombinant systems, the 

investigated fluorescent ligands proved to be useful tools for binding studies using different 

techniques (flow cytometry and high content imaging). The ligands 5.12-5.18 and 5.20 bound in a 

saturable manner to the hH2R (flow cytometry) and the determined Kd values (best results: 5.12: 

27.9 nM, 5.13: 14.9 nM, 5.14: 19.7 nM, 5.16: 13.9 nM and 5.18: 48.2 nM) were in good 

agreement with the corresponding Ki values. The Kd (kin) values of 5.14, 5.16 and 5.18, calculated 

from kinetic experiments (nonlinear regression, flow cytometry) were consistent with the Kd 

values determined in saturation binding experiments. This indicates that the investigated 

fluorescent ligands follow in part the law of mass action even though they showed an incomplete 

dissociation (insurmountable antagonism). A similar behavior has been reported for several 

closely related ligands like the radioligand [3H]UR-DE257. Its amine precursor 5.10 as well as 

related squaramide type derivatives were reported as insurmountable antagonists, which caused 

a concentration-dependent depression of the maximal response to the agonist relative to 

investigated standard ligands (guinea pig right atrium)23. Investigation of the association and 

dissociation kinetics of the cyanine labeled ligand 5.18 with high content imaging (INcCell 

Analyzer) revealed also incomplete dissociation and showed that the residual bound ligand is still 

located in the cell membrane. A possible explanation for the (pseudo-)irreversible binding of the 

fluorescent ligands 5.14, 5.16 and 5.18 is a slow rate of dissociation from the receptor as also 

suggested for the radioligand [3H]UR-DE257.23 Nonetheless, the fluorescent ligands 5.14 and 5.18 

can be used for the determination of binding affinities of unlabeled ligands in competition 

binding assays (shown for flow cytometry and two high content imaging systems: IN Cell Analyzer 

and imaging flow cytometry).  

The high affinity fluorescent H2R ligands 5.12-5.14, 5.16 and 5.18 are an attractive nonradioactive 

alternative to the structurally related radioligand [3H]UR-DE25723 with similar pharmacological 

properties. Additionally these fluorescent ligands can be versatile molecular tools giving access to 

a plethora of optical techniques such as confocal microscopy, FRET, FRAP, TIRF, high content 

imaging and fluorescence polarization.  
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6. CARBAMOYLGUANIDINE- TYPE H2R 

LIGANDS: EXPLORATION OF STABILITY AND 

SELECTIVITY COMPARED TO THE 

ACYLGUANIDINE- ANALOGUES 
 

 

 

Note: the synthesis of the intermediates 6.13-6.18 and the cabamoylguanidines 6.47-6.52 as well 

as the investigation of the chemical stability of 6.49, 6.50, 6.52, UR-Bit22, UR-Bit23 and UR-Bit29 

were performed by Claudia Honisch during her Master Thesis 2015. 

The radioligand binding experiments at the dopamine receptors were performed by Lisa Forster 

during her doctoral thesis (ongoing). 
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6.1 INTRODUCTION 

NG-acylated hetarylpropylguanidines represent a class of potent histamine H2R agonists.1-3 The 

first generation NG-acylguanidine ligands with an imidazole mojety lacked subtype selectivity, 

especially over the H3R and H4R (e.g. UR-AK24, Figure 6.1).3 The bioisosteric replacement of the 

imidazole with a amino(methyl)thiazole moiety resulted in ligands with improved selectivity for 

the H2R and retained H2R potency (Figure 6.1 and Figure 6.2).1,4 Investigation of optically active 

acylguanidine-type compounds (e.g. UR-AK24 and UR-PG267, Figure 6.1) in the GTPase assay 

revealed eudismic ratios from 1.1 to 3.2, indicating that stereochemistry plays only a minor role, 

if any.4  

 
Figure 6.1. Monovalent N

G
-acylated 3-(imidazol-4-yl)propylguanidine UR-AK24 and the corresponding N

G
-acylated 3-(2-

amino-4-methylthiazol-5-yl)propylguanidine UR-PG267. Potencies were determined in a steady-state GTPase assay on 

membrane preparations of Sf9 insect cells expressing the respective receptor. 

Interestingly, a broad variety of aliphatic and aromatic hydrocarbon residues was well tolerated 

in this class of H2R agonists (Figure 6.2). An increase in H2R potency was achieved by linking two 

acylguanidine pharmacophores together via alkyl spacer.2 Bivalent ligands with an n-octyl linker 

(e.g. UR-AK381, Figure 6.2), showed the highest potency (pEC50: 8.11, α: 0.53), although spacer 

length is too short to bridge the two orthosteric binding pockets of the individuals protomers of a 

putative receptor dimer.2 The increased potency compared to that of the corresponding 

monovalent ligands seems to result from binding to an additional (allosteric) binding site of the 

same receptor.2  

 

Figure 6.2. Representative H2R agonists: monomeric and bivalent N
G
-acylated 3-(2-amino-4-methylthiazol-5-

yl)propylguanidines and the bivalent carbamoylguainidine UR-NK22.
1,2,5 Potencies were determined in a steady-state 

GTPase assay on membrane preparations of Sf9 insect cells expressing the hH2R-GsαS fusion protein. 

As it was reported that NG-acylguanidines undergo hydrolytic cleavage upon storage in aqueous 

solution, more stable analogues are needed.5,6 A bioisosteric approach replacing the NG 

acylguanidine structure with a carbamoylguanidine has proven useful.5,7,8 This was successfully 
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applied in case of the bivalent NG-acylated hetarylpropylguanidine H2R agonists leading to highly 

potent ligands with improved long term stability (e.g. UR-NK22 (Figure 6.2), no decomposition 

after 7 days in PBS, PH 7.4 at RT). 5 

The aminothiazole moiety is a privileged structure for dopamine receptors. The most prominent 

example is the nonselective D2-4R agonist pramipexole (Figure 6.3). But also bulkier pramipexole 

derivatives such as CJ-1639 with high D2-4R affinity were reported.9 In preliminary binding studies 

on the hD2longR and hD3R variants, UR-NK22 and other bivalent amino(methyl)thiazole containing 

ligands showed in part moderate to high affinity towards these receptors (ongoing Dissertation 

Lisa Forster). 

 

Figure 6.3. D2-4R ligands pramipexole and CJ-1639. 

For exploration of the structure-activity relationship (H2R) and the structure-selectivity 

relationships (H2R versus H1R, H3R and H4R) of this class of compounds, in addition to bivalent 

ligands, a series of carbamoylguanidines with various aminothiazole-based substructures, i.e., the 

3-(2-amino-4-methylthiazol-5-yl)propyl moiety, a conformationally constrained (amino-

thiazolyl)phenyl and a 2-amino-4,5,6,7-tetrahydrobenzothiazol-6-yl portion were synthesized 

(Figure 6.4) in this doctoral project. Additionally, two homobivalent ligands were prepared by 

replacement of the amino(methyl)thiazolepropyl moiety in UR-NK22 with either a 

(aminothiazolyl)phenyl or a pyrazolylpropyl moiety.  

The synthesized monovalent and bivalent ligands were investigated in competition binding and 

functional assays (GTPγS binding and β-arrestin2 recruitment assay). In addition, selected 

compounds were investigated for D2/3R binding affinity on homogenates of HEK cells stably 

expressing the hD2longR or hD3R.  

 

Figure 6.4. Bioisosteric replacement of the N
G
-acylguanidine in H2R agonists by a carbamoylguanidine and conformal 

restriction by replacement of the 3-(2-amino-4-methylthiazol-5-yl)propyl moiety by either an (aminothiazolyl)phenyl or 

an 2-amino-4,5,6,7-tetrahydrobenzothiazol-6-yl moiety.  
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6.2 RESULTS AND DISCUSSION 

6.2.1 Chemistry 

The synthesis of the Boc-protected amine building block 3-(2-amino-4-methylthiazol-5-yl) 

propylamine (6.5) is outlined in Scheme 6.1 according to published procedures.1 Starting from 6-

chlorohexan-2-one, a Gabriel reaction led to the phthalimide 6.1. Subsequent bromination at 

room temperature resulted in the thermodynamically more stable intermediate 6.2. After 

evaporation of the solvent, the residue was treated with thiourea to give the 2-amino-4-

methylthiazole derivative 6.3 in a substitution/ring closure reaction. Protection of the free amino 

group by a tert-butoxycarbonyl function and subsequent hydrazinolysis led to the amine 

intermediate 3-(2-amino-4-methylthiazol-5-yl) propylamine (6.5). 

 

Scheme 6.1. Synthesis of the Boc-protected aminothiazole 6.5. Reagents and conditions: i) phthalimide, K2CO3, DMF, 

80 °C, 24 h, 70%; ii) Br2, CH2Cl2, 1,6-dioxane, RT, 1 h, no purification; iii) DMF, 100 °C to RT, ON, 86%; iv) di-tert-

butyldicarbonate, triethylamine, 4-(dimethylamino)-pyridine, CHCl3, RT, ON, 20%; v) hydrazine-monohydrate, EtOH, RT, 

ON, 83%. 

The synthesis of the second amine building block 6.7 was carried out by analogy with the 

synthesis of 2-guanidino-4-(3-phthalimidophenyl)thiazole hydrobromide (3.6) and is outlined in 

Scheme 6.2.10 The ketone 3.4 was treated with bromine and subsequently with thiourea in order 

to form the protected aminothiazole building block 6.6 in a good yield of 78% over two steps. 

Deprotection of the phthalimide group in a mixture of HCl and acetic acid afforded the 

conformationally constrained amine building block 6.7. 

 

Scheme 6.2. Synthesis of 2-amino-4-(3-aminophenyl)thiazole (6.7). Reagents and conditions: i) Br2, HBr in AcOH, CHCl3, 

RT, 1h, no purification; ii) EtOH, MeCN, reflux, 3 h, 78%; iii) HCl, AcOH, reflux, ON, 60%. 

The synthetic route of the third amine building block was adopted from the synthesis of 

pramipexole (Scheme 6.3).11 4-Amino cyclohexanol was amino protected using 
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N-(ethoxycarbonyl)phthalimide; then the hydroxy group was oxidized by pyridinium 

chlorochromate. The resulting ketone 6.9 was brominated in alpha position and subsequently 

treated with thiourea to afford the phthalimide protected aminothiazole building block 6.11. 

4,5,6,7-tetrahydrobenzo[d]thiazole-2,6-diamine (6.12) was obtained by refluxing 6.11 in a 

mixture of hydrochloric acid and acetic acid. 

 

Scheme 6.3. Synthesis of the 4,5,6,7-tetrahydrobenzo[d]thiazole-2,6-diamine (6.12). Reagents and conditions: i) K2CO3, 

H2O, RT, 30 min, 98%; ii) pyridinium chlorochromate, anhydrous CH2Cl2, RT, 3.5 h, 71%; iii) Br2, 1,6-dioxane, CH2Cl2, RT, 

1.5 h, no purification; iv) DMF, 100 °C, 2 h, 92%; v) HCl, AcOH, reflux, ON, 73%. 

The NG-carbamoylated guanidines were synthesized by guanidinylation of the amine building 

blocks 6.5, 6.7 and 6.12. S-methylcarbamoyl thiourea derivatives were used as guanidinylating 

reagents. These S-methylcarbamoyl thiourea derivatives (6.13-6.25) were synthesized by 

treatment of N-tert-butoxycarbonyl-S-methylisothiourea (3.32, synthesis in chapter 3) with the 

respective isocyanate (Scheme 6.4) in the presence of TEA at room temperature. The isocyanates 

were either commercially available (synthesis of 6.13-6.18) or were prepared by Curtius 

rearrangement from the carboxylic acid (see synthesis of 6.19-6.25). The branched carboxylic 

acids, which were previously synthesized in our group,1,12 were treated with oxalyl chloride and 

the resulting acid chloride was converted into acyl azide by treatment with sodium azide. 

Thermal decomposition of the acyl azide led to the isocyanate, which was used for the synthesis 

of the corresponding S-methylcarbamoyl thiourea derivative (Scheme 6.4). The NG-

carbamoylated guanidines 6.47-6.67 were prepared by treating the amine building blocks 6.5, 6.7 

or 6.12 with the respective S-methylcarbamoyl thiourea derivative 6.13-6.25 in the presence of 

HgCl2 and base. The resulting protected carbamoylguanidine-type intermediates 6.26-6.46 were 

treated with TFA to obtain the NG-carbamoylated guanidines 6.47-6.67 in a yield of 16-75%. after 

purification by preparative HPLC. 
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Scheme 6.4. Synthesis of the S-methylcarbamoyl thiourea derivatives 6.13-6.25 and the N
G
-carbamoylated guanidines 

6.47-6.67. Reagents and conditions: i) TEA, CH2Cl2, RT, ON, 57-85%; ii) Oxalylchloride, DMF, CH2Cl2, 0 °C-RT, 25 min, no 

purification; iii) Sodium azide in H2O, acetone, ice bath, 30 min, no purification; iv) CH2Cl2, reflux, 30 min, no 

purification; v) TEA, CH2Cl2, RT, ON, 38-77% over four steps; vi) HgCl2, TEA, anhydrous CH2Cl2, Ar-atmosphere, RT, ON, 

35-97%; vii) TFA, CH2Cl2, RT, ON, 16-75% 

The bivalent carbamoylguanidine-type compounds 6.70 and 6.71 were synthesized using 

established protocols (Scheme 6.5).5,13 The amine precursor 6.7 or 3-(1-trityl-1H-pyrazol-4-

yl)prop-1-yl-amine was treated with guanidinylating reagent 3.33 in the presence of HgCl2 and 

base. Subsequent treatment of the protected intermediates 6.68 and 6.69 with TFA afforded the 

bivalent NG-carbamoylated guanidines 6.70 and 6.71. 
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Scheme 6.5. Synthesis of the bivalent N
G
-carbamoylated guanidines (6.70, 6.71). Reagents and conditions: i) HgCl2, 

TEA, anhydrous CH2Cl2, Ar-atmosphere, RT, ON, 81-91%; ii) TFA, CH2Cl2, RT, ON, 52-67%. 

 

6.2.2 Chemical stability of monovalent carbamoylguanidines compared to 

acylguanidines  

NG-Carbamoylguanidines are reported to show higher stability in basic solution compared to the 

respective NG-acylguanidines.6 Previous investigations on stability (assay conditions: PBS pH 7.4) 

of bivalent aminothiazole-containing carbamoylguanidines compared to their acylguanidine 

counterparts showed that after 7 days 55% of the acylated guanidine decomposed while the 

carbamoylated guanidine remained intact.5  

In order to compare the chemical stability of the monovalent thiazole containing carbamoylated 

guanidines with the corresponding acylated guanidines, and to investigate the influence of 

various hydrocarbon residues, the compounds 6.49, 6.50 and 6.52 as well as the acylguanidines 

UR-Bit22, UR-Bit23 and UR-Bit29 were dissolved in PBS (pH 7.4), incubated at RT for 7 days and 

analysed by analytical HPLC (conditions see experimental section). Whereas the carbamoylated 

guanidines remained stable over this period of time (Figure 6.5), decomposition of the acylated 

guanidines was highly dependent on the nature of hydrocarbon residue (Figure 6.6). After 7 days 

approximately 62% of the acylguanidine UR-Bit23 was decomposed. However, only 51% of UR-

Bit29 and only 33% of UR-Bit22 was decomposed after the same time. The formation of a 

decomposition product (tR: 1.97 min) could be observed over a period 7 days (Figure 6.6). 
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A 

 
B 

 
C  

 
Figure 6.5. HPLC chromatograms (λ: 220 nm) of the N

G
-carbamoylated guanidines after different time of incubation in 

PBS (pH 7.4): (A) 6.49, tR: 9.14min; (B) 6.50, tR: 8.23 min; and (C) 6.52, tR: 9.52 min.  
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A 

 
B 

 
C  

 
Figure 6.6. HPLC chromatograms (λ: 220 nm) of the N

G
-acylated guanidines after different time of incubation in PBS 

(pH 7.4): (A) UR-Bit22 (tR: 6.78min), Inset: reduced scaling, decomposition product (tR: 1.97); (B) UR-Bit23, tR: 7.71 min, 

Inset: reduced scaling, decomposition product (tR: 1.96); and (C) UR-Bit29, tR: 10.38 min, Inset: reduced scaling, 

decomposition product (tR: 1.97).  
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6.2.3 Biological Evaluation 

hH2R affinities and subtype selectivities 

The aminothiazole containing ligands 6.47-6.67, the bivalent ligands 6.70 and 6.71, histamine, 

UR-NK22, UR-Bit23 and pramipexole were investigated in equilibrium competition binding 

experiments on membrane preparations from Sf9 insect cells expressing the hH2R-GsαS fusion 

protein using the antagonist [3H]UR-DE25714 as radioligand. Selected displacement curves are 

shown in Figure 6.7 and the results are summarized in Table 6.1. The selectivity of representative 

compounds for the hH2R compared to hH1R, hH3R and hH4R was investigated by competition 

binding experiments using membrane preparations from Sf9 insect cells co-expressing either the 

hH1R-GsαS fusion protein and RGS4 ([3H]Mepyramine as radioligand) or the hH3/4R and Gαi2 and 

Gβ1γ2 proteins ([3H]histamine or [3H]UR-PI294 as radioligand).  

The monovalent NG-carbamoylated amino(methyl)thiazolyl propylguanidines 6.47-6.59 showed 

moderate to high hH2R affinity (Table 6.1). In general, aliphatic as well as aromatic residues were 

well tolerated, only ligand 6.50 which contains a phenyl residue showed a low affinity with a pKi 

value of 5.50. The highest hH2R affinities showed the compounds 6.55 (pKi value: 7.40) and 6.48 

(pKi value: 7.54) which contain a branched cyclic or a linear aliphatic residue, respectively. In a 

similar manner as the bivalent NG-acylated amino(methyl)thiazolylpropylguanidines, bivalent NG-

carbamoylated amino(methyl)thiazolyl propylguanidines (e.g. UR-NK22)5 showed a higher affinity 

to the hH2R (pKi value: 8.02) compared to the monovalent ligands (6.47-6.59). In comparison, 

ligand 6.51 showed a considerably higher hH2R affinity (pKi value: 7.16) than the corresponding 

acylguanidine UR-Bit23 (pKi value: 6.3). Incorporation of an aminothiazolylphenyl (compounds 

6.60-6.65) or a 2-amino-4,5,6,7-tetrahydrobenzothiazol-6-yl (compounds 6.66 and 6.67) moiety 

resulted in a decrease in hH2R affinity by one to two order(s) of magnitude. In comparison with 

the D2/3R ligand pramipexole (pKi value: 4.86), which also contains a 2-amino-4,5,6,7-

tetrahydrobenzothiazol-6-yl head group, the ligands 6.66 and 6.67 showed increased affinity for 

the hH2R with pKi values of 5.95 and 6.29. The replacement of the amino(methyl)thiazolyl propyl 

head group of the bivalent ligand UR-NK22 with either an aminothiazolylphenyl residue (6.70) or 

a pyrazolylpropyl residue (6.71) resulted in a strong decrease of hH2R affinity (pKi value: 5.98 and 

6.75). 

The monovalent NG-carbamoylated amino(methyl)thiazolyl propylguanidines 6.47-6.59 showed a 

clear preference for the hH2R over the other subtypes. In case of the 

aminothiazolylphenylguanidines 6.60-6.65 and the bivalent ligands (6.70 and 6.71) the affinity for 

the hH4R was low (pKi values 4-5) and, except for 6.63, a slight preference for the hH2R was 

obtained. While 2-amino-4,5,6,7-tetrahydrobenzothiazol-6-yl containing ligand 6.66 showed a 

similar affinity to hH1R, hH2R, hH3R with pKi values of 5.71-5.95 and a lower affinity to the hH4R, 

ligand 6.67 showed a preference for hH2R over the other subtypes of around one order of 

magnitude. 
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                   A                       hH1R                    B                       hH2R 

  
                   C                       hH3R                    D                       hH4R 

  
Figure 6.7. Displacement of the respective radioligand from membrane preparations of Sf9 insect cells (A) co-

expressing the hH1R-GsαS fusion protein and RGS4 (radioligand: [
3
H]mepyramine, c = 5 nM, Kd = 4.5 nM), (B) expressing 

the hH2R-GsαS fusion protein (radioligand: [
3
H]UR-DE257, c = 20 nM, Kd = 12.2 nM), (C) co-expressing the hH3R and Gαi2 

plus Gβ1γ2 proteins (radioligand: [
3
H]UR-PI294 c = 2 nM, Kd = 1.1 nM) or (D) co-expressing the hH4R and Gαi2 plus Gβ1γ2 

proteins (radioligand: [
3
H]histamine c = 10 nM, Kd = 15.9 nM) by exemplary monovalent carbamoylated guanidines. 

Data represent mean values ± SEM of 2-3 experiments performed in triplicate. 
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Table 6.1. Affinities of histamine, pramipexole, UR-NK22, UR-Bit23, the monovalent carbamoylated guanidines 6.47-

6.67 and the bivalent carbamoylated guanidines 6.70-6.71 to hH1-4R, obtained from equilibrium competition binding 

studies on membrane preparations from Sf9 insect cells, expressing the respective histamine receptor subtype. 

Compound hH1R
a
 hH2R

b 
hH3R

c 
hH4R

e 

 pKi
 

N pKi
 

N pKi
 

N pKi
 

N 

Histamine n.d. - 6.53 ± 0.04 3 7.8 ± 0.1 3 7.65 ± 0.03 3 

Pramipexole n.d. - 4.86 ± 0.07 5 n.d. - n.d. - 

UR-NK22 6.06 ± 0.055 2 8.07 ± 0.055 3 5.94 ± 0.165 4 5.69 ± 0.075 3 

UR-Bit23 n.d. - 6.3 ± 0.4 2 n.d. - n.d. - 

6.47 4.54 ± 0.02 3 6.98 ± 0.11 3 4.35 ± 0.01d 3 4.06 ± 0.06 2 

6.48 5.11 ± 0.03 3 7.54 ± 0.07 4 5.25 ± 0.02d 3 5.09 ± 0.02 2 

6.49 4.61 ± 0.09 3 6.77 ± 0.27 3 n.d. - 4.50 ± 0.06 2 

6.50 n.d. - 5.50 ± 0.08 3 n.d. - 4.65 ± 0.05 2 

6.51 5.21 ± 0.02 3 7.16 ± 0.05 3 n.d. - 4.72 ± 0.09 2 

6.52 n.d. - 6.8 ± 0.2 4 n.d. - 4.83 ± 0.06 2 

6.53 5.8 ± 0.1 3 7.14 ± 0.08 2 5.49 ± 0.01d 3 5.44 ± 0.02f 3 

6.54 5.87 ± 0.09 3 7.20 ± 0.04 3 5.04 ± 0.04 3 5.49 ± 0.08f 3 

6.55 5.63 ± 0.06 3 7.40 ± 0.01 2 5.00 ± 0.08 3 5.72 ± 0.05f 3 

6.56 5.31 ± 0.02 3 6.83 ± 0.08 3 5.10 ± 0.02 3 5.58 ± 0.01 3 

6.57 5.23 ± 0.03 3 6.99 ± 0.05 3 4.93 ± 0.03 3 5.23 ± 0.03f 3 

6.58 5.10 ± 0.08 3 7.11 ± 0.03 3 4.78 ± 0.03 3 5.17 ± 0.02f 3 

6.59 5.42 ± 0.07 3 7.15 ± 0.02 4 5.13 ± 0.01 3 5.43 ± 0.01f 3 

6.60 n.d. - 5.28 ± 0.06 4 n.d. - <4.0 2 

6.61 n.d. - 6.16 ± 0.07 4 4.96 ± 0.07d 3 5.02 ± 0.06 2 

6.62 n.d. - 5.35 ± 0.02 3 n.d. - 4.87 ± 0.03 2 

6.63 n.d. - 3.43 ± 0.07 3 n.d. - 4.2 ± 0.1 2 

6.64 n.d. - 5.7 ± 0.1 3 n.d. - 4.46 ± 0.01 2 

6.65 n.d. - 5.40 ± 0.05 3 n.d. - 4.5 ± 0.1 2 

6.66 5.71 ± 0.02 3 5.95 ± 0.06 4 5.82 ± 0.03d 3 4.78 ± 0.05 2 

6.67 5.92 ± 0.02 3 6.29 ± 0.08 3 5.48 ± 0.06d 3 4.52 ± 0.01 2 

6.70 n.d. - 5.98 ± 0.06 3 n.d. - 5.0 ± 0.2 2 

6.71 n.d. - 6.75 ± 0.04 3 n.d. - 5.02 ± 0.07 3 

Competition binding assay on membrane preparations of Sf9 insect cells 
a
co-expression of the hH1R-GsαS fusion protein and RGS4 (radioligand: 

[
3
H]mepyramine, c = 5 nM, Kd = 4.5 nM), 

b
hH2R-GsαS fusion protein (radioligand: [

3
H]UR-DE257, c = 20 nM, Kd = 12.2 nM), 

c
co-expression of the hH3R and 

Gαi2 and Gβ1γ2 proteins (radioligand: [
3
H]histamine c = 15 nM, Kd = 12.1 nM or 

d
[

3
H]UR-PI294 c = 2 nM, Kd = 1.1 nM) or 

e
co-expresson of the hH4R andGαi2 

plus Gβ1γ2 proteins (radioligand: [
3
H]histamine c = 10 nM, Kd = 15.9 nM or 

f
[

3
H]UR-PI294 c = 5 nM, Kd = 5.1 nM). The incubation period was 60 min. Data 

were analyzed by nonlinear regression and were best fitted to four-parameter sigmoidal concentration-response curves. Data shown are means ± SEM of 

N independent experiments, each performed in triplicate.  
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hH2R agonism or antagonism in the GTPγS binding assay and βArrestin2 recruitment assay 

The NG-carbamoylated guanidines 6.47-6.71, histamine, UR-NK22, UR-AK421, UR-Bit22, UR-Bit23, 

UR-Bit24, UR-Bit29 and pramipexole were examined for hH2R agonism in the GTPγS binding assay 

on membrane preparations from Sf9 insect cells expressing the hH2R-GsαS fusion protein. Ligands 

which exhibited no agonism were also investigated in the antagonistic mode versus histamine as 

agonist. All identified agonists and selected antagonists were additionally investigated for 

agonism in the βArrestin2 recruitment assay on HEK293T-hH2R-βArr2 cells, stably expressing the 
hH2R-ElucC and βArr2-ElucNfusion constructs.15 Prior studies suggested only minor differences 

between βArrestin1 and βArrestin2 recruitment15 and therefore the βArrestin1 was not 

considered. Representative concentration response curves are depicted in Figure 6.8 (GTPγS 

binding assay) and Figure 6.9 (βArrestin2 recruitment assay). The results from these experiments 

are summarized in Table 6.2. 

The monovalent NG-carbamoylated amino(methyl)thiazolylpropylguanidines 6.47-6.59 were 

partial to full agonists in the GTPγS binding assay and showed moderate to high hH2R potencies 

(up to 80 fold the potency of histamine; pEC50 values of 6.3-7.7) generally in good accordance to 

the acylguanidines (results from the GTPase assay)1,16 (Table 6.2). At high concentrations ( 10-

100 µM) the signal decreased again resulting in nearly bell-shaped concentration response curves 

(Figure 6.8). Compound 6.51 (α: 0.91, pEC50: 7.5) showed the highest potency combined with full 

agonism, whereas the corresponding acylguanidine UR-Bit23 (α: 0.68, pEC50: 6.59).was a partial 

agonist with only moderate potency. 

Interestingly, the aminothiazolylphenyl containing monovalent ligands 6.60-6.65 and bivalent 

ligand 6.70 showed weak antagonism or inverse agonism at the hH2R with pKb values in good 

accordance to the pKi values. 

Incorporation of the less flexible 2-amino-4,5,6,7-tetrahydrobenzothiazol-6-yl (compounds 6.66 

and 6.67) moiety resulted in partial agonism (6.67, α: 0.57, pEC50: 6.7) or in weak partial agonism 

(6.66, α: 0.16, pEC50: 5.57) due to bell-shaped concentration response curves. In the antagonist 

mode of the GTPγS assay, 6.66 and 6.67 act as antagonists with pKb values of 5.57 and 4.33. Also 

the structurally related dopamine receptor agonist pramipexole was a weak partial agonist at the 

hH2R (α: 0.66, pEC50: 5.07) with a sigmoidal curve. Although 6.67 was a racemic mixture, it was 

more potent than the enantiomerically pure pramipexole. 

The pyrazole containing bivalent ligand 6.71 (α: 0.38, pEC50: 7.0) was a partial agonist with low 

potency compared to the corresponding amino(methyl)thiazole containing full agonist UR-NK22 

(α: 0.92, pEC50: 8.03)5. 

All full or partial agonists identified in the GTPγS assay (6.47-6.49, 6.71) showed a lower potency 

and efficacy in the βArrestin2 recruitment assay. The agonistic NG-carbamoylated guanidine-type 

ligands exhibited some functional bias towards G-protein activation. This is in agreement with the 

findings for acylguanidines and bivalent carbamoylguanidines.15 The bias was most pronounced 

in case of 6.53, which was a full agonist in the GTPγS assay (α: 0.91) and a weak partial agonist in 

the βArrestin2 recruitment assay (α: 0.33). Nearly similar bias was determined for 6.53, 6.57 and 

6.58 which were partial agonists in the GTPγS assay (α: 0.52-0.68) and very weak partial agonists 

in the βArrestin2 recruitment assay (α: 0.10-0.16). Also in the βArrestin2 recruitment assay of the 
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ligands 6.53-6.59 the signal decreased again at high concentrations ( 30-100 µM) resulting in 

nearly bell-shaped concentration response curves. Interestingly, the 2-amino-4,5,6,7-

tetrahydrobenzothiazole containing compounds 6.66 and 6.67, which showed the most 

pronounced bell-shaped curves in the GTPyS assay, didn´t show a decreased signal at high 

concentrations in the βArrestin2 recruitment assay. Ligand 6.66 and two selected antagonists 

(6.63 and 6.65) identified in the GTPyS exhibited no βArrestin2 recruitment, too. 

Bell shaped (or u-shaped) concentration response curves were described at several GPCRs such 

as muscarinic receptors,17 β2-adrenergic receptors18 and serotonin receptors19. Some reasons for 

such a curve shape could be cytotoxicity,20 binding to multiple binding sites,21 multiple targets, 

receptor oligomers,22 agonist-induced desensitization18 or even due to physical properties like 

self-association of ligands into colloidal particals23. 

In case of the GTPγS assay plausible explanations would be binding to multiple binding sites or 

direct interaction with the GsαS subunit of the fusion protein due to the use of membrane 

preparations from Sf9 insect cells expressing the hH2R-GsαS fusion protein instead of live cells. 

While in the GTPγS assay all agonists (6.47-6.59, 6.66 and 6.67) showed more or less pronounced 

bell-shape curves, in the βArrestin2 recruitment assay only the agonists 6.53-6.59 showed a 

similar behavior. Interestingly, the ligands 6.48, 6.50, 6.52, 6.66 and 6.67 with a distinguished 

bell-shaped curve in the GTPγS assay showed in the βArrestin2 recruitment assay a sigmoidal 
concentration response curve indicating that a different mechanism (e.g. cytotoxicity) is leading 

to the curve shape in the βArrestin2 recruitment assay. Moreover, it should be mentioned that all 

chiral compounds (6.53-6.59, 6.66 and 6.67) were racemic mixtures. Therefore, the bell shaped 

curve could also be due to opposite effects of the enantiomers. However, investigation of 

enantiomeric pure acylguanidine-type compounds in the GTPase assay revealed only low 

eudismic ratios (1.1-3.2), indicating the stereochemistry of the acyl residue plays only a minor 

role.4 However, according to the current state of knowledge this is all just speculation. 
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                  A                    B  

  
                  C                    D  

  
                  E                   F 

  
Figure 6.8. Concentration-response curves of representative monovalent carbamoylated guanidines on hH2R 

determined by [
35S]GTPγS binding assay on membrane preparations of Sf9 insect cells expressing the hH2R-GsαS fusion 

protein. (A) Ligands 6.48, 6.51, 6.64, 6.66 and 6.67. (B) Ligands 6.47, 6.49 and 6.55. (C) Ligands 6.50, 6.52-6.54. (D) 

Ligands 6.56-6.59. (E) and (F) Exemplary ligands measured in the antagonist mode; histamine (1 µM) was used for 

stimulation. Data represent mean values ± SEM of 2-5 experiments performed in triplicate. 
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                  A                   B 

  
                  C                   D 

  
Figure 6.9. Concentration-response curves of representative monovalent carbamoylated guanidines on hH2R 

determined by a luciferase complementation assay measuring β-arrestin2 recruitment on HEK293T-hH2R-βArr2 cells. 
(A) and (B): Ligands with sigmoidal dose-response-curves. (C) and (D): Ligands with bell-shaped dose-response-curves. 

Data represent mean values ± SEM of 3 experiments performed in duplicate. 
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Table 6.2. hH2R agonism or antagonism and the calculated pEC50 or pKb values of histamine, pramipexole, UR-NK22, 

UR-AK421, UR-Bit22, UR-Bit23, UR-Bit24, UR-Bit29, the monovalent carbamoylated guanidines 6.47-6.67 and the 

bivalent carbamoylated guanidines 6.70-6.71 determined by a GTPγS assay and βArrestin2 recruitment assay. 

Compound hH2R (GTPγS)a 
hH2R (βArrestin2 Recruitment)

b 

 pEC50 (pKb)
 

N α pEC50
 

N α 

Histamine 5.80 ± 0.06 9 1.0 5.38 ± 0.04 19 1.0 

Pramipexole 5.07 ± 0.06 5 0.66 ± 0.08 4.4 ± 0.1 4 0.35 ± 0.03 

UR-NK22 8.03 ± 0.025 2 0.92 ± 0.015 7.1915 - 0.3015 

UR-AK421 7.61c 1 - 0.42c 1 n.d. - n.d. 

UR-Bit22 5.83 c 16 - 0.56 c 16 n.d. - n.d. 

UR-Bit23 
6.59 ± 0.06/  

7.02c 1 

3 

- 

0.68 ± 0.13/  

0.68c 1 
n.d. - n.d. 

UR-Bit24 7.65c 1 - 0.79c 1 7.7215 - 0.1415 

UR-Bit29 7.30 c 1 - 0.71 c 1 n.d. - n.d. 

6.47 6.75 ± 0.06 3 0.79 ± 0.09 6.77 ± 0.04 3 0.32 ± 0.01 

6.48 7.41 ± 0.07 3 0.60 ± 0.09 7.07 ± 0.02 3 0.28 ± 0.03 

6.49 6.8 ± 0.2 3 0.96 ± 0.07 6.41 ± 0.03 3 0.43 ± 0.06 

6.50 6.3 ± 0.2 2 0.59 ± 0.02 5.47 ± 0.06 3 0.25 ± 0.02 

6.51 7.5 ± 0.1 4 0.91 ± 0.07 7.00 ± 0.08 3 0.33 ± 0.03 

6.52 7.4 ± 0.2 3 0.72 ± 0.06 6.78 ± 0.03 3 0.29 ± 0.02 

6.53 7.2 ± 0.1 5 0.68 ± 0.07 6.9 ± 0.1 3 0.10 ± 0.01 

6.54 7.53 ± 0.06 3 0.69 ± 0.02 6.45 ± 0.06 3 0.20 ± 0.02 

6.55 7.66 ± 0.08 3 0.65 ± 0.03 6.65 ± 0.09 3 0.40 ± 0.06 

6.56 7.46 ±0.03 3 0.59 ± 0.02 6.55 ± 0.02 3 0.25 ± 0.03 

6.57 7.51 ± 0.06 3 0.52 ± 0.03 6.8 ± 0.1 3 0.11 ± 0.01 

6.58 7.5 ± 0.1 3 0.60 ± 0.04 6.57 ± 0.08 3 0.16 ± 0.02 

6.59 7.76 ± 0.04 3 0.60 ±0.07 6.52 ± 0.07 3 0.22 ± 0.01 

6.60 (4.91 ± 0.09) 3 -0.037 n.d. - n.d. 

6.61 (6.14 ± 0.03) 3 -0.54 n.d. - n.d. 

6.62 (5.40 ± 0.02) 3 -0.47 n.d. - n.d. 

6.63 (4.8 ± 0.1) 3 -0.20 ± 0.02 - - 0.018 ± 0.009 

6.64 (5.44 ± 0.02) 3 -0.62 n.d. - n.d. 

6.65 (5.52 ± 0.05) 3 -0.28 ± 0.04 - - 0.043 ± 0.009 

6.66 
6.83 ± 0.06/  

(5.57 ± 0.04) 

3 

3 
0.16 ± 0.07 - - 0.045 ± 0.005 
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Table 6.2 continued. 

Compound hH2R (GTPγS)a 
hH2R (βArrestin2 Recruitment)

b 

 pEC50 (pKb)
 

N α pEC50 (pKb)
 

N α 

6.67 
6.7 ± 0.3/ 

(4.33 ± 0.09) 

3 

3 
0.53 ± 0.05 5.36 ± 0.05 3 0.31 ± 0.03 

6.70 (5.98 ± 0.06) 3 -0.46 n.d. - n.d. 

6.71 7.0 ± 0.8 2 0.38 ± 0.03 5.75 ± 0.07 3 0.26 ± 0.08 

a
[

35S]GTPγS assay determined on membrane preparations of Sf9 insect cells expressing the hH2R-GsαS fusion protein. 
bβArrestin2 recruitment assay determined on HEK293T-hH2R-βArr2 cells, stably expressing the hH2R-ElucC and βArr2-

ElucNfusion constructs. The incubation period was 60 min. The intrinsic activity (α) of histamine was set to 1.00, and α 

values of investigated compounds were referred to this value. The pKB values of neutral antagonists were determined 

in the antagonist mode versus histamine (c = 1 µM) as agonist. Data represent mean values ± SEM of N independent 

experiments performed in triplicate (GTPγS assay) or duplicate (βArrestin2 recruitment assay). 
c
Steady-state GTPase 

assay determined on membrane preparations of Sf9 insect cells expressing the hH2R-GsαS fusion protein. 
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hD2longR and hD3R affinities of carbamoylated guanidines 

Aminothiazole containing ligands such as pramipexole and its derivatives are described as high 

affintiy dopamine receptor ligands (preferred D2R, D3R and D4R).24 Therefore, haloperidol, 

selected NG-carbamoylated guanidines containing an aminothiazole moiety (6.53, 6.55, 6.58, 

6.59, 6.61, 6.66, 6.67) and the bivalent ligand 6.71 were investigated in equilibrium competition 

binding experiments on homogenates of HEK293T-CRE-Luc-hD2longR and/or HEK293T-CRE-Luc-

hD3R cells using [³H]N-methylspiperone as radioligand. The results are summarized in Table 6.3. 

For the standard agonist pramipexole biphasic displacement curves were reported at hD2longR and 

hD3R with pKi values for high (pKH value) and low affinity binding (pKL value).25 The standard 

antagonist haloperidol and the investigated ligands 6.53, 6.55, 6.58, 6.59, 6.61, 6.66, 6.67 and 

6.71 showed monophasic displacement curves. The pKi values of haloperidol at the hD2longR and 

hD3R were in good accordance with literature results.26  

The amino(methyl)thiazolylpropyl (6.53, 6.55, 6.58 and 6.59), aminothiazolylphenyl (6.61) and 2-

amino-4,5,6,7-tetrahydrobenzothiazol-6-yl (6.66 and 6.67) containing ligand(s) showed a weak to 

moderate affinity for the hD2longR (pKi value 5.6-6.6). The bivalent ligand (6.71) showed a 

moderate affinity with a pKi value of 6.97. The amino(methyl)thiazolylpropyl containing ligands 

6.53, 6.55, 6.58 and 6.59 clearly preferred the hH2R over the hD2longR. The 2-amino-4,5,6,7-

tetrahydrobenzothiazol-6-yl containing ligands (6.66 and 6.67) and the bivalent ligand 6.71 

showed a comparable affinity to the hH2R and the hD2longR. 

The ligands 6.53, 6.55, 6.58, 6.59 and 6.71 showed a moderate affinity for the hD3R with pKi 

values between 6.9 and 7.6. The ligands 6.61, 6.66 and 6.67 showed a low affinity for the hD3R 

with pKi values between 5.3 and 5.9. The NG-carbamoylated amino(methyl)thiazolyl-

propylguanidines 6.53, 6.55, 6.58 and 6.66 bound non-selectively to both the hH2R and hD3R 

receptors. The 2-amino-4,5,6,7-tetrahydrobenzothiazol-6-yl moiety containing ligand 6.67 

showed a preference towards hH2R and hD2longR over the hD3R. In contrast, the bivalent ligand 

6.71 showed a preference towards hD3R over the hD2longR and hH2R.  

                   A                   hD2longR                    B                   hD3R 

  
Figure 6.10. Displacement of [³H]N-methylspiperone from homogenates of (A) HEK293T-CRE-Luc-hD2longR cells 

([³H]N-Methylspiperone: Kd = 0.014 nM, c = 0.05 nM) or (B) HEK293T-CRE-Luc-hD3R cells ([³H]N-methylspiperone: Kd = 

0.026 nM, c = 0.05 nM) by selected monomeric carbamoylated guanidines. Data represent mean values ± SEM of 3 

experiments performed in triplicate.  
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Table 6.3. Affinities of haloperidole, pramipexole and the monovalent carbamoylated guanidines 6.53, 6.55, 6.58, 6.59, 

6.61, 6.66, 6.67 and 6.71 to the dopamine receptors hD2longR and hD3R, obtained from equilibrium competition binding 

studies. 

 hD2longR
a 

hD3R
b 

Compound pKi
 

N pKi
 

N 

Haloperidol 
9.60c 26/ 

9.3 ± 0.2 

- 

3 

8.64c 26/ 

8.7 ± 0.1 

- 

3 

Pramipexole (pKH: 7.40 / pKL: 5.44)d 25 - (pKH: 9.06 / pKL: 7.36)d 25 - 

6.53 6.3 ± 0.1 3 7.07 ± 0.06 3 

6.55 6.58 ± 0.03 3 7.36 ± 0.04 3 

6.58 6.28 ± 0.08 3 7.19 ± 0.06 3 

6.59 6.32 ± 0.08 3 6.88 ± 0.04 3 

6.61 5.6 ± 0.2 3 5.89 ± 0.05 3 

6.66 5.9 ± 0.1 3 5.9 ± 0.2 3 

6.67 6.26 ±  1 5.3 ± 0.1 3 

6.71 6.97 ± 0.06 3 7.6 ± 0.2 3 

Determined by displacing [³H]N-methylspiperone (
a
hD2longR: Kd = 0.0149 nM, c = 0.05 nM or 

b
hD3R: Kd = 0.0258 nM, c = 

0.05 nM) by increasing concentrations of the respective ligand at homogenates of 
a
HEK293T-CRE-Luc-hD2longR or 

b
HEK293T-CRE-Luc-hD3R cells. 

c
determined on CHO cells stably expressing the hD2shortR or hD3R. 

d
High/low affinity 

binding determined on CHO cells stably expressing the hD2shortR or hD3R. Data were analyzed by nonlinear regression 

and were best fitted to four-parameter sigmoidal concentration-response curves. Data shown are means ± SEM of N 

independent experiments, each performed in triplicate. 
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6.3 EXPERIMENTAL SECTION 

6.3.1 General procedures 

Chemicals and solvents were purchased from the following suppliers: Merck (Darmstadt, 

Germany), Acros Organics (Geel, Belgium), Fluka (Buchs, Swiss), Alfa Aesar (Karlsruhe, Germany), 

Sigma Aldrich (Munich, Germany) and TCI (Tokyo, Japan). All solvents were of analytical grade or 

distilled prior to use. Anhydrous solvents were stored over molecular sieve under protective gas. 

Deuterated solvents for NMR spectroscopy were purchased from Deutero (Kastellaun, Germany). 

For the preparation of buffers and HPLC eluents Millipore water was used throughout. Column 

chromatography was carried out using Merck silica gel 60 (0.040-0.063 mm). Automated flash 

chromatography was performed with a 971-FP flash-purification system (Agilent Technologies, 

Santa Clara, CA). Pre-packed columns (SuperFlash SF10-4 g, SF12-8 g, SF 15-12 g und SF15-24 g, 

Agilent Technologies, Santa Clara, CA) were used throughout. Reactions were monitored by thin 

layer chromatography (TLC) on Merck silica gel 60 F254 aluminium sheets, and compounds were 

detected with UV light at 254 nm and ninhydrin solution (0.8 g ninhydrin, 200 mL n-buthanol, 6 

mL acetic acid). Melting points were determined with a B-540 apparatus (BÜCHI GmbH, Essen, 

Germany) and are uncorrected. IR spectra were measured on a NICOLET 380 FT-IR 

spectrophotometer (Thermo Electron Corporation, USA) or on a FTS 3000 MX spectrometer 

(Excalibur Series, Bio-Rad, Hercules, CA) equipped with an ATR unit ( Specac Golden Gate 

Diamond Single Reflection ATR system). Nuclear Magnetic Resonance (1H NMR and 13C NMR) 

spectra were recorded on a Bruker Avance-300 (7.05 T, 1H: 300 MHz, 13C: 75.5 MHz), Avance-400 

(9.40 T, 1H: 400 MHz, 13C: 100.6 MHz), or Avance-600 (14.1 T; 1H: 600 MHz, 13C: 150.9 MHz; 

cryogenic probe) NMR spectrometer (Bruker BioSpin, Karlsruhe, Germany). Chemical shifts are 

given in δ (ppm) relative to external standards. Multiplicities are specified with the following 

abbreviations: s (singlet), d (doublet), t (triplet), q (quartet), qui (quintet), m (multiplet), br s 

(broad signal), as well as combinations thereof. In certain cases 2D-NMR techniques (COSY, 

HSQC, HMBC and NOESY) were used to assign 1H and 13C chemical shifts. High-resolution mass 

spectrometry (HRMS) was performed on an Agilent 6540 UHD Accurate-Mass Q-TOF LC/MS 

system (Agilent Technologies, Santa Clara, USA) using an ESI source. Preparative HPLC was 

performed with a system from Knauer (Berlin, Germany) consisting of two K-1800 pumps and a K-

2001 detector. A Nucleodur 100-5 C18 (250 x 21 mm, 5 µm, Macherey-Nagel, Dueren, Germany), 

a Kinetex XB-C18 100A (250 x 21.2 mm, 5 µm, Phenomenex, Aschaffenburg, Germany) and a 

Interchim Puriflash PF15 C18 HQ (120 g, 15 µm, Interchim S. A., Montluçon, France) served as RP-

columns at a flow rate of either 15 mL/min (Kinetex and Phenomenex column) or 30 mL/min 

(Interchim column) at room temperature. A detection wavelength of 220 nm and mixtures of 

CH3CN and 0.05-0.1% aq. TFA as mobile phase were used throughout. CH3CN was removed from 

the eluates under reduced pressure (final pressure: 80 mbar) at 45 °C prior to lyophilisation 

(Christ alpha 2-4 LD lyophilisation apparatus equipped with a vacuubrand RZ 6 rotary vane 

vacuum pump). Analytical HPLC analysis was performed on a system from Meck Hitachi, 

composed of a D-6000 interface, a L-6200A pump, a AS2000A auto sampler and a L-4000 UV-VIS 

detector. A Kinetex XB-C18 100A (250 x 4.6 mm, 5 µm, t0 = 2.9 min, Phenomenex, Aschaffenburg, 

Germany) served as RP-column. Mixtures of 0.05% TFA in CH3CN (A) and 0.05% aq. TFA (B) were 

used as mobile phase. Helium degassing, room temperature, a flow rate of 0.8 mL/min and a 

detection wavelength of 220 nm were used throughout. Solutions for injection (concentration: 
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100-500 µM) were either prepared from stock solution (10 mM in 20 mM aqueous HCl solution 

or 10 mM in a mixture of DMSO/ in 20 mM aqueous HCl solution 1:1) in a mixture of A and B 

corresponding to the initial eluent composition of the run, or as a one to one dilution of the 

eluate (preparative HPLC) with Millipore water. The following linear gradients were applied for 

analytical HPLC analysis: gradient 1: 0-30 min: A/B 5:95-80:20, 30-32 min: 80:20-95:5, 32-42 min: 

95:5 or gradient 2: 0-30 min: A/B 10:90-80:20, 30-32 min: 80:20-95:5, 32-42 min: 95:5 or gradient 

3: 0-30 min: A/B 15:85-90:10, 30-35 min: 90:10. Microanalysis was performed on a Vario micro 

cube (Elementar, Langenselbold, Germany). 

 

6.3.2 Experimental protocols and analytical data 

The branched carboxylic acids (3-methyl 4-(4-methylphenyl)butanoic acid, 3-methyl 5-phenyl 

pentanoic acid, 3-cyclohexyl butanoic acid, 3-(4-prop-2-yl phenyl) butanoic acid, 4-methyl 3-

phenyl pentanoic acid, 3-phenyl pentanoic acid, 4-cyclohexyl 3-methyl butanoic acid) were 

synthesized by Anja Kraus 12. The amine precursor 3-(1-trityl-1H-pyrazol-4-yl)prop-1-yl-amine was 

synthesized according to published protocols 13. 

 

2-(5-Oxohexyl)isoindoline-1,3-dione (6.1)
1,16

  

A solution of phthalimide (1.29 g, 8.74 mmol, 1 eq), 6-chlorohexan-2-one (2 g, 14.86 mmol, 1.7 

eq) and K2CO3 (1.39 g, 10.05 mmol, 1.15 eq) in DMF (17 mL) were stirred at 80 °C for 24 h to 

obtain a white suspension. Ice cold water (60 mL) was added and the product was extracted with 

CHCl3 (3 x 50 mL). The organic layers were combined and washed with brine (50 mL). The solvent 

was removed under reduced pressure. The crude product was dissolved in CHCl3 (100 mL) and 

washed with water (2 x 50 mL) and brine (50 mL). The organic layer was dried over Na2SO4 and 

the solvent was removed under reduced pressure and the residue was purified by column 

chromatography (eluent: PE/EtOAc 90:10 - 70:30). Removal of the solvent in vacuo afforded the 

product as a white solid (1.5 g, 70%). Mp: 68.5 °C (Lit.16 mp: 73-75 °C). Rf = 0.3 (PE/EtOAc 7:3). 1H-

NMR (400 MHz, CDCl3): δ (ppm) 1.51-1.67 (m, 4H), 2.07 (s, 3H), 2.43 (t, 2H, J 7.15 Hz), 3.63 (t, 2H, 

J 6.94 Hz), 7.63-7.67 (m, 2H), 7.75-7.80 (m, 2H). 13C-NMR (100 MHz, CDCl3): δ (ppm) 20.8, 27.9, 

29.9, 37.5, 42.9, 123.2, 132.1, 133.9, 168.4, 208.3. HRMS (ESI): m/z [M+H]+ calcd. for C14H16NO3
+: 

246.1125, found: 246.1128. C14H15NO3 (245.28). 

 

2-[3-(2-Amino-4-methylthiazol-5-yl)propyl]-1,3-dihydro-2H-isoindol-1,3-dione hydrobromide 

(6.3)
1,16

 

6.1 (5.00 g, 20.38 mmol, 1 eq) was dissolved in dioxane (100 mL). A solution of bromine (3.91 g, 

24.46 mmol, 1.2 eq) in CH2Cl2 (60 mL) was added drop wise and the reaction mixture was stirred 

for 1 h at room temperature. Removal of the solvent in vacuo afforded 6.2 as a brown oil. The 

crude intermediate was dissolved in DMF (100 mL) and thiourea (1.55 g, 20.38 mmol, 1 eq) was 

added. The reaction mixture was stirred at 100 °C for 3 h and then over night at room 

temperature. The solvent was removed under reduced pressure and the residue was suspended 
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in EtOAc (100 mL). Subsequently, the precipitate was filtered off and washed with EtOAc (100 

ml). Removal of residual solvent in vacuo afforded 6.3 as a beige solid (6.71 g, 86%). Mp: 211.0 °C 

(Lit.16 mp: 242 °C). Rf= 0.30 (CH2Cl2 / 1.75 N NH3 in MeOH 9:1). 1H-NMR (400 MHz, [D6]DMSO) δ 

(ppm): 1.78-1.91 (m, 2H), 2.08-2.14 (m, 3H), 2.61-2.73 (m, 2H), 3.59-3.63 (m, 2H), 7.81-7.88 (m, 

4H). HRMS (ESI) m/z (M+H)+ calcd. for C15H16N3O2S
+: 302.0958, found: 302.0963. C15H15N3O2S ∙ 

HBr (301.09 + 80.91). 

tert-Butyl 4-methyl-5-[3-(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)propyl]thiazol-2-ylcarbamate 

(6.4)
1,16

  

6.3 (3.58 g, 9.40 mmol, 1 eq), di-tert-butyldicarbonate (2.46 g, 11.28 mmol, 1.2 eq), triethylamine 

(1.43 g, 14.09 mmol, 1.5 eq) and 4-(dimethylamino)-pyridine (105 mg, 0.94 mmol, 0.1 eq) were 

dissolved in CHCl3 (40 ml). The mixture was stirred overnight at room temperature. The 

precipitate was filtered off. The product containing supernatant was washed with hydrochloric 

acid (0.25 M, 2 x 100 mL), brine (100 mL) and H2O (100 mL). The organic layer was dried over 

Na2SO4 and the solvent was removed under reduced pressure. The residue was purified by 

automated flash chromatography (PE/EA 100:0 – 55:45 in 45 min). Removal of the solvent under 

reduced pressure afforded the product as yellow foam (750 mg, 20%). Mp: 81.5 °C (Lit.16 mp: 70-

72 °C). Rf= 0.3 (PE/EA 60:40). 1H-NMR (400 MHz, CDCl3): δ (ppm) 1.51 (s, 9H), 1.95-2.02 (m, 2H), 

2.22 (s, 3H), 2.71 (t, 2H, J 7.80 Hz), 3.74 (t, 2H, J 7.15 Hz), 7.69-7.72 (m, 2H), 7.83-7.85 (m, 2H). 
13C-NMR (100 MHz, CDCl3): δ (ppm) 14.4, 23.7, 28.3, 30.2, 37.5, 82.4, 123.1, 123.3, 132.1, 134.0, 

141.5, 152.5, 157.6, 168.3. HRMS (ESI) m/z (M+H)+ calcd. for C20H24N3O4S
+: 402.1482, found: 

402.1489. C20H23N3O4S (401.48). 

 

tert-Butyl 5-(3-aminopropyl)-4-methylthiazol-2-ylcarbamate (6.5)
1,16

  

To a suspension of 6.4 (710 mg, 1.77 mmol, 1 eq) in EtOH (7 ml) hydrazine-monohydrate (443 

mg, 8.84 mmol, 5 eq) was added. The reaction mixture was stirred over night at room 

temperature. The precipitated phthalhydrazide (by-product) was filtered off. The product which 

was dissolved in the supernatant was purified by automated flash chromatography (CH2Cl2 / 1.75 

N NH3 in MeOH 100:0 – 90:10 in 35 min). Removal of the solvent in vacuo afforded the product as 

yellow oil (400 g, 83%). Rf= 0.56 (CH2Cl2 / 1.75 N NH3 in MeOH 80:20). 1H-NMR (400 MHz, 

[D6]DMSO): δ (ppm) 1.46 (s, 9H), 1.54-1.61 (m, 2H), 2.11 (s, 3H), 2.55 (t, 2H, J 6.83 Hz), 2.63 (t, 2H, 

J 7.44 Hz). 13C-NMR (75 MHz, CDCl3): δ (ppm) 14.5, 23.3, 28.3, 34.9, 41.2, 82.1, 123.8, 141.6, 

152.8, 157.5. HRMS (ESI) m/z (M+H)+ calcd. for C12H22N3O2S
+: 272.1427, found: 272.1433. 

C12H21N3O2S (271.38). 

 

2-Amino-4-(3-phthalimidophenyl)thiazole hydrobromide (6.6) 

To a solution of 3.4 (2 g, 7.54 mmol, 1 eq) in CHCl3 (20 mL) was added HBr solution in acetic acid 

(45 % w/v, 1 mL) under stirring. Bromine (1.2 g, 7.54 mmol, 1 eq) in CHCl3 (10 mL) was added 

drop wise. The reaction mixture was stirred for 1 h at room temperature. Removal of the solvent 

in vacuo afforded the 3.5 as a white solid, which was applied to the next step without further 

purification. The crude 3.5 was dissolved in hot CH3CN (30 mL) and poured in a hot solution of 
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thiourea (574 mg, 7.54 mmol, 1 eq) in EtOH (30 mL). The reaction mixture was stirred under 

reflux for 3 h. Removal of the solvent in vacuo afforded a beige solid, which was recristallized in 

EtOAc (100 mL) and filtered through a Buchner funnel. 6.6 was afforded as a white solid (2.35 g, 

78%). Mp: 269-279°C, decomposition. Rf = 0.7 (CH2Cl2 / 1.75 N NH3 in MeOH 9:1). 1H-NMR (400 

MHz, [D6]DMSO, COSY, HSQC, HMBC): δ (ppm) 7.26 (s, 1H), 7.51-7.54 (m, 1H), 7.66 (t, 1H, J 7.90 

Hz), 7.81-7.85 (m, 2H), 7.93-7.96 (m, 2H), 7.98-8.01 (m, 2H), 8.94 (br s, 3H). 13C-NMR (100 MHz, 

[D6]DMSO): δ (ppm) 104.3, 124.0, 125.3, 125.9, 128.7, 130.1, 130.6, 131.9, 133.0, 135.4, 139.7, 

167.3, 170.6. HRMS: (ESI): m/z [M+H]+ calcd. for C17H12N3O2S+:  322.0645, found: 322.0650. 

C17H11N3O2S ∙ HBr (321.35 + 80.91). 

 

2-Amino-4-(3-aminophenyl)thiazole (6.7)
27

 

6.6 (1.69 g, 4.20 mmol, 1eq) was suspended in a mixture of concentrated hydrochloric acid (30 

mL) and acetic acid (30 mL) and the reaction mixture was stirred under reflux overnight. The 

solvent was removed under reduced pressure and the residue was suspended in aqueous NaOH 

solution (0.03 M, 30 mL). The resulting precipitate (by-product: phthalic acid) was filtered 

through a Buchner funnel and washed with H2O (20 mL). Aqueous layers were combined and part 

of the solvent was removed under reduced pressure. Aqueous NH3 solution (25%, 5 mL) was 

added and the resulting precipitate was filtered off. The solid was washed with H2O (40 mL) and 

the residual solvent was removed under reduced pressure. 6.7 was afforded as a yellow solid 

(560 mg, 60%). Mp: 177-178 °C. Rf = 0.6 (CH2Cl2 / 1.75 N NH3 in MeOH 9:1). 1H-NMR (300 MHz, 

[D6]DMSO): δ (ppm) 5.05 (br s, 2H), 6.43-6.47 (m, 1H), 6.77 (s, 1H), 6.91-7.03 (m, 5H). 13C-NMR 

(100 MHz, [D6]DMSO): δ (ppm) 101.1, 111.9, 113.5, 114.0, 129.3, 136.0, 149.1, 151.2, 168.3. 

HRMS: (ESI): m/z [M+H]+ calcd. for C9H10N3S
+: 192.0590, found: 192.0590. C9H9N3S (191.25). 

 

2-((1r, 4r)-4-hydroxycyclohexyl)isoindoline-1,3-dione (6.8)
28

  

K2CO3 (10.50 g, 75.97 mmol, 1.75 eq) was added to a solution of trans-4-aminocyclohexanol (5.00 

g, 43.41 mmol, 1 eq) in H2O (50 mL). Under stirring N-(ethoxycarbonyl)phthalimide (10.24 g, 

49.92 mmol, 1.15 eq) was added and the reaction mixture was stirred for 30 min at room 

temperature. The resulting precipitate was filtered off and washed with H2O (50 mL). Removal of 

the residual solvent in vacuo afforded the product as a beige solid (4.94 mg, 98%). %). Mp: 183-

185 °C (Lit.28 mp: 177-178 °C). Rf = 0.2 (PE /EtOAc 3:1). 1H-NMR (400 MHz, [D6]DMSO): δ (ppm) 

1.21-1.32 (m, 2H), 1.66-1.69 (m, 2H), 1.90-1.93 (m, 2H), 2.08-2.19 (m, 2H), 3.41-3.49 (m, 1H), 

3.91-3.99 (m, 1H), 4.64 (d, 1H, J 4.26 Hz), 7.80-7.85 (m, 4H). 13C-NMR (100 MHz, [D6]DMSO): δ 

(ppm) 27.8, 35.1, 49.9, 68.5, 123.4, 131.9, 134.8, 168.3. HRMS: (ESI): m/z [M+H]+ calcd. for 

C14H16NO3
+: 246.1125, found: 246.1126. C14H15NO3 (245.28). 

 

2-(4-oxocyclohexyl)isoindoline-1,3-dione (6.9)
28,29

 

6.8 (2.6 g, 10.61 mmol, 1 eq) was dissolved in anhydrous CH2Cl2 (70 mL). Under Ar-atmosphere 

first two spoons of Celite® were added followed by pyridinium chlorochromate (5.58 g, 25.88 
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mmol, 2.44 eq). The reaction mixture was stirred for 3.5 h at room temperature. 2-Propanol (2 

mL) was added and after stirring for additional 30 min the solvent was removed under reduced 

pressure. The residue was purified by automated flash chromatography (EtOAc 100:0 isocratic for 

10 min). Removal of the solvent afforded the product as light beige solid (1.82 g, 71%). Mp: 144-

145 °C. Rf = 0.4 (PE /EtOAc 1:1). 1H-NMR (300 MHz, CDCl3): δ (ppm) 2.02-2.10 (m, 2H), 2.48-2.54 

(m, 4H), 2.65-2.79 (m, 2H), 4.57-4.68 (m, 1H), 7.69-7.75 (m, 2H), 7.80-7.87 (m, 2H).  13C-NMR (75 

MHz, CDCl3): δ (ppm) 28.6, 39.9, 48.3, 123.3, 131.8, 134.1, 168.1, 209.0. HRMS: (ESI): m/z [M+H]+ 

calcd. for C14H14NO3
+: 244.0968, found: 244.0973. C14H13NO3 (243.26). 

 

2-(2-Amino-4,5,6,7-tetrahydrobenzo[d]thiazol-6-yl)isoindoline-1,3-dione (6.11)
11,29

 

6.9 (1.93 g, 7.93 mmol, 1 eq) was dissolved in a mixture of dioxane (22 mL) and CH2Cl2 (14 mL). 

Bromine (1.40 g, 8.73 mmol, 1.1 eq) dissolved in CH2Cl2 (24 mL) was added drop wise and the 

reaction mixture was stirred for 1.5 h at room temperature. The solvent was removed under 

reduced pressure and the residue (crude 6.10) was dissolved in DMF (60 mL). After the addition 

of thiourea (0.60 g, 7.93 mmol, 1 eq) the reaction mixture was stirred for 2 h at 100 °C. The 

solvent was removed under reduced pressure and the residue was suspended in EtOAc (50 mL). 

The precipitate was filtered off and the residual solvent was removed in vacuo to afford the 

product as a beige solid (2.77 g, 92%). Mp: >300 °C decomposition (Lit.11 mp: 244-246 °C 

decomposition). Rf= 0.90 (CH2Cl2 / 1.75 N NH3 in MeOH 9:1). 1H-NMR (400 MHz, [D6]DMSO): δ 

(ppm) 1.99-2.05(m, 1H), 2.60-2.77 (m, 3H), 2.88-2.93 (m, 1H), 3.11-3.36 (m, 1H), 4.41-4.49 (m, 

1H), 7.84.7.90 (m, 4H). HRMS: (ESI): m/z [M+H]+ calcd. for C15H14N3O2S
+: 300.0801, found: 

300.0817. C15H13N3O2S (299.35). 

 

4,5,6,7-Tetrahydrobenzo[d]thiazole-2,6-diamine (6.12)
29

 

6.11 (200 mg, 0.53 mmol, 1 eq) was suspended in a mixture of hydrochloric acid (37%, w/v, 5 mL) 

and acetic acid (5mL). The reaction mixture was stirred over night at 100 °C. The solvent was 

removed under reduced pressure and the residue was dissolved in H2O (5 mL). The pH value was 

adjusted to 6 by addition of NaOH solution (1 M, 2 mL). The aqueous layer was washed three 

times with CH2Cl2 in order to remove by-products. Then additional NaOH solution (5mL) was 

added until a pH value of 9 was reached. The aqueous layer was extracted with CH2Cl2 (10 mL) 

and six times with EtOAc (10 mL). In order to extract remaining product from the aqueous layer 

NaCl (1 spoon) was dissolved in the mixture and the layer was again extracted three times with 

EtOAc (10 mL). Water was partly removed under reduced pressure and the aqueous layer was 

again extracted five times with EtOAc (100 mL). All organic layers were combined and dried over 

Na2SO4. Removal of the solvent in vacuo afforded the product as a yellow hygroscopic solid (65 

mg, 73%). Rf= 0.13 (CH2Cl2 / 1.75 N NH3 in MeOH 9:1). 1H-NMR (300 MHz, [D6]DMSO): δ (ppm) 

1.40-1.53 (m, 1H), 1.78-1.82 (m, 1H), 2.13-2.21 (m, 1H), 2.31-2.41 (m, 2H), 2.60-2.67 (m, 1H), 

2.94-3.03 (m, 1H), 6.60 (br s, 2H). HRMS: (ESI): m/z [M+H]+ calcd. for C7H12N3S
+: 170.0746, found: 

170.0747. C7H11N3S (169.25). 
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General procedure for the synthesis of S-methylcarbamoyl thiourea derivatives (6.13-6.18) 

from isocyanates 

The respective isocyanate (1 eq) and triethylamine (2.25 eq) were added to a solution of 3.32 (1.5 

eq) in CH2Cl2 (17-20 mL). The reaction mixture was stirred overnight at room temperature. The 

organic layer was washed with three times with water (30 mL) and subsequently with brine (30 

mL). The organic layer was dried over Na2SO4 and the solvent was removed under reduced 

pressure. The crude product was purified by flash chromatography.  

 

S-Methyl-(N-(tertbutoxycarbonyl))-(N'-propylcarbamoyl)thiourea (6.13) Claudia Honisch master 

thesis 

6.13 was prepared from propylisocyanate (149 mg, 1.75 mmol), 3.32 (500 mg, 2.63 mmol) and 

triethylamine (400 mg, 3.94 mmol) according to the general procedure. Purification by 

automated flash chromatography (PE/EtOAc 100:0-85:15 in 30 min) and removal of the solvent in 

vacuo afforded the product as a white solid (0.31 g, 64%). Mp: 56.1-60.2 °C. Rf= 0.72 (PE/EtOAc 

3:1). 1H-NMR (400 MHz, CDCl3): δ (ppm) 0.94 (t, 3H, J 7.4 Hz), 1.47 (s, 9H), 1.56 (m, 2H), 2.31 (s, 

3H), 3.18 (q, 2H, J 6.9 Hz), 12.34 (s, 1H). 13C-NMR (100 MHz, CDCl3): δ (ppm) 11.4, 14.3, 22.9, 28.0, 

41.9, 82.6, 151.1, 161.9, 167.5. HRMS (ESI) m/z (M+H)+ calcd. for C11H22N3O3S
+: 276.1376, found: 

276.1379. C11H21N3O3S (275.37). 

 

S-Methyl-(N-(tertbutoxycarbonyl))-(N'-hexylcarbamoyl)thiourea (6.14) Claudia Honisch master 

thesis 

6.14 was prepared from hexylisocyanate (223 mg, 1.75 mmol), 3.32 (500 mg, 2.63 mmol) and 

triethylamine (400 mg, 3.94 mmol) according to general procedure. Purification by automated 

flash chromatography (PE/EtOAc 100:0-85:15 in 35 min) and removal of the solvent in vacuo 

afforded the product as a white solid (0.45 g, 81%). Mp: 56.4-59.2 °C. Rf=0.67 (PE/EtOAc 3:1). 1H-

NMR (400 MHz, CDCl3): δ (ppm) 0.85-0.90 (m, 3H), 1.26-1.37 (m, 6H), 1.47 (s, 9H), 1.49-1.59 (m, 

2H), 2.31 (s, 3H), 3.19-3.24 (m, 2H), 12.35 (br s, 1H). 13C-NMR (100 MHz, CDCl3): δ (ppm) 14.0, 

14.3, 22.6, 26.6, 28.0, 29.7, 31.5, 40.2, 82.6, 151.1, 161.8, 167.7. HRMS (ESI) m/z (M+H)+ calcd. for 

C14H28N3O3S
+: 318.1846, found: 318.1851. C14H27N3O3S (317.45). 

 

S-Methyl-(N-(tertbutoxycarbonyl))-(N'-cyclohexylcarbamoyl)thiourea (6.15) Claudia Honisch 

master thesis 

6.15 was prepared from cyclohexylisocyanate (219 mg, 1.75 mmol), 3.32 (500 mg, 2.63 mmol) 

and triethylamine (2.25 eq., 400 mg, 3.94 mmol) according to general procedure. Purification by 

automated flash chromatography (PE/EtOAc 100:0-85:15 in 35 min) and removal of the solvent in 

vacuo afforded the product as a white solid (0.47 g, 85%). Mp: 149.5-152.3 °C. 1H-NMR (400 MHz, 

CDCl3): δ (ppm) 1.12-1.26 (m, 3H), 1.31-1.42 (m, 2H), 1.47 (s, 9H), 1.59-1.66 (m, 1H), 1.71-1.76 (m, 

2H), 1.93-1.97 (m, 2H), 2.34 (s, 3H), 3.53-3.63 (m, 1H), 12.43 (br , 1H). 13C-NMR (100 MHz, CDCl3): 
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δ (ppm) 14.4, 24.9, 25.5, 28.0, 33.1, 49.1, 82.7, 151.0, 160.9, 167.6. HRMS (ESI) m/z (M+H)+ calcd. 

for C14H26N3O3S
+: 316.1689, found: 316.1700. C14H25N3O3S (315.43). 

 

S-Methyl-(N-(tert-butoxycarbonyl))-(N’-(phenylcarbamoyl)thiourea) (6.16) Claudia Honisch 

master thesis  

6.16 was prepared from phenylisocyanate (210 mg, 1.75 mmol), 3.32 (500 mg, 2.63 mmol) and 

triethylamine (400 mg, 3.9 mmol) according to general procedure. Purification by automated 

flash chromatography (PE/EtOAc 100:0-90:10 in 25 min) and removal of the solvent in vacuo 

afforded the product as a white solid (0.31 g, 57%). Mp: 126.3-129.6 °C. Rf= 0.66 (PE/EtOAc 3:1). 
1H-NMR (400 MHz, CDCl3): δ (ppm) 1.50 (s, 9H), 2.40 (s, 3H), 7.08-7.12 (m, 1H), 7.31-7.35 (m, 2H), 

7.42 (br s, 1H), 7.49-7.51 (m, 2H), 12.22 (br s, 1H). 13C-NMR (100 MHz, CDCl3): δ (ppm) 14.6, 28.0, 

83.1, 119.4, 124.0, 129.1, 137.9, 151.0, 159.3, 169.2. HRMS (ESI) m/z (M+H)+ calcd. for 

C14H20N3O3S
+: 310.1220, found: 310.1228. C14H19N3O3S (309.38) 

 

S-Methyl-(N-(tertbutoxycarbonyl))-(N'-benzylcarbamoyl)thiourea (6.17) Claudia Honisch master 

thesis  

6.17 was prepared from benzylisocyanate (234 mg, 1.75 mmol), 3.32 (500 mg, 2.63 mmol) and 

triethylamine (400 mg, 3.94 mmol) according to general procedure. Purification by automated 

flash chromatography (PE/EtOAc 100:0-85:15 in 35 min) and removal of the solvent in vacuo 

afforded the product as a white solid (0.45 g, 80%). Mp: 103.8-106.6 °C. Rf= 0.77 (PE/EtOAc 3:1). 
1H-NMR (400MHz, CDCl3): δ (ppm) 1.49 (s, 9H), 2.34 (s, 3H), 4.43 (d, 2H, J 6.09 Hz), 6.09 (br s, 1H), 

7.27-7.37 (m, 5H), 12.38 (br s, 1H). 13C-NMR (100 MHz, CDCl3): δ (ppm) 14.5, 28.0, 44.2, 83.0, 

127.56, 127.64, 128.8, 138.2, 151.0, 155.3, 168.5. HRMS (ESI) m/z (M+H)+ calcd. for C15H22N3O3S
+: 

324.1376, found: 324.1384. C15H21N3O3S (323.41). 

 

S-Methyl-(N-(tertbutoxycarbonyl))-(N'-(2-phenylethyl)carbamoyl)thiourea (6.18) Claudia 

Honisch master thesis 

6.18 was prepared from phenethylisocyanate (258 mg, 1.75 mmol), 3.32 (500 mg, 2.63 mmol) 

and triethylamine (400 mg, 3.94 mmol) according to general procedure. . Purification by 

automated flash chromatography (PE/EtOAc 100:0-85:15 in 35 min) and removal of the solvent in 

vacuo afforded the product as a white solid (0.43 g, 73%). Mp: 101.8-103.7 °C. Rf= 0.73 (PE/EtOAc 

3:1). 1H-NMR (400 MHz, CDCl3): δ (ppm) 1.49 (s, 9H), 2.29 (s, 3H), 2.86 (t, 2H, J 7.18 Hz) 3.47-3.52 

(m, 2H), 7.17-7.34 (m, 5H), 12.32 (br s, 1H). 13C-NMR (100 MHz, CDCl3): δ (ppm) 14.4, 28.1, 35.9, 

41.4, 82.8, 126.5, 128.6, 128.8, 138.8, 151.1, 161.7, 168.9. HRMS (ESI) m/z (M+H)+ calcd. for 

C16H24N3O3S
+: 338.1533, found: 338.1546. C16H23N3O3S (337.44). 
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General procedure for the synthesis of S-methylcarbamoyl thiourea derivatives (6.19-6.25) 

from carbonic acids  

The respective carbon acid (1 eq) was dissolved in CH2Cl2 (2.5-4.5 mL) and cooled with an ice 

bath. DMF (25-45 µL) and oxalyl chloride (1.5 eq) were added under Ar-atmosphere. The reaction 

mixture was stirred for 10 min under cooling. The ice bath was removed and stirring was 

continued for another 15 min at room temperature. The solvent was carefully removed under 

reduced pressure (water bath temperature under 30 °C). The residue was dissolved in anhydrous 

acetone (2.5-4.5 mL) and added drop wise under cooling to an ice cold solution of sodium azide 

(2.4 eq) in H2O (1-3 mL). The reaction mixture was stirred for 30 min under cooling. Brine (5-10 

mL) was added and the acyl azide was extracted three times with CH2Cl2 (10 mL). The organic 

layers were combined and dried over Na2SO4. Molecular sieve was added and the solvent was 

partially removed under reduced pressure. The resulting yellow solution was stirred for 30 min 

under reflux conditions to afford the isocyanate. The solution was cooled to room temperature 

and 3.32 (1 eq) and triethylamine (5 eq) were added. The reaction mixture was stirred over night 

at room temperature. The molecular sieve was filtered off and the organic layer was washed 

three times with H2O (10 mL) and three times with brine (10 mL). The organic layers were 

combined and dried over Na2SO4. The crude product was purified by either automated flash 

chromatography or column chromatography.  

 

S-Methyl-(N-(tertbutoxycarbonyl))-(N'-[2-methyl 3-(4-methylphenyl)propyl]carbamoyl)thiourea 

(6.19) 

6.19 was prepared from 3-methyl 4-(4-methylphenyl)butanoic acid (100 mg, 0.52 mmol, 1 eq), 

oxalyl chloride (99 mg, 0.75 mmol, 1.5 eq), sodium azide (85 mg, 1.30 mmol, 2.4 eq), 3.32 (100 

mg, 0.52 mmol, 1 eq) and triethylamine (263 mg, 2.60 mmol, 5 eq) according to general 

procedure. Purification by automated flash chromatography (PE/EtOAc 100:0-85:15 in 20 min) 

and removal of the solvent in vacuo afforded the product as colourless oil (140 mg, 71%). Rf= 0.80 

(PE/EtOAc 3:1). 1H-NMR (400 MHz, CDCl3): δ (ppm) 0.92 (d, 3H, J 6.5 Hz), 1.48 (s, 9H), 1.92-2.04 

(m, 1H), 2.31-2.33 (m, 6H), 2.39-2.44 (m, 1H), 2.63-2.68 (m, 1H), 3.08-3.22(m, 2H), 7.04-7.10 (m, 

4H), 12.36 (br s, 1H). 13C-NMR (75 MHz, CDCl3): δ (ppm) 14.3, 17.7, 21.0, 28.0, 35.7, 40.8, 46.0, 

82.6, 128.9, 129.0, 135.5, 137.1, 151.2, 162.0, 167.2. HRMS (ESI) m/z (M+H)+ calcd. for 

C19H30N3O3S
+: 380.2002, found: 380.2009. C19H29N3O3S (379.52). 

 

S-Methyl-(N-(tertbutoxycarbonyl))-[N'-(2-methyl 4-phenylbutyl)carbamoyl]thiourea (6.20) 

6.20 was prepared from 3-methyl 5-phenyl pentanoic acid (150 mg, 0.78 mmol, 1 eq), oxalyl 

chloride (149 mg, 1.17 mmol, 1.5 eq), sodium azide (122 mg, 1.87 mmol, 2.4 eq), 3.32 (148 mg, 

0.78 mmol, 1 eq) and triethylamine (395 mg, 3.90 mmol, 5 eq) according to general procedure. 

Purification by column chromatography (PE/EtOAc 3:1 isocratic) and removal of the solvent in 

vacuo afforded the product as colourless oil (220 mg, 74%). Rf= 0.66 (PE/EtOAc 3:1). 1H-NMR (300 

MHz, CDCl3): δ (ppm) 1.01 (d, 3H, J 6.57 Hz), 1.43-1.51 (m, 10H), 1.62-1.78 (m, 2H), 2.35 (br s, 3H), 

2.55-2.77 (m, 2H), 3.05-3.25(m, 2H), 7.15-7.31 (m, 5H), 12.40 (br s, 1H). 13C-NMR (100 MHz, 
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CDCl3): δ (ppm) 14.4, 17.7, 28.2, 33.3, 33.4, 36.3, 46.1, 82.7, 125.9, 128.46, 128.49, 142.5, 151.3, 

162.2, 167.4. HRMS (ESI) m/z (M+H)+ calcd. for C19H30N3O3S
+: 380.2002, found: 380.2025. 

C19H29N3O3S (379.52). 

 

S-Methyl-(N-(tertbutoxycarbonyl))-[N'-(2-cyclohexyl propyl)carbamoyl]thiourea (6.21) 

6.21 was prepared from 3-cyclohexyl butanoic acid (150 mg, 0.88 mmol, 1 eq), oxalyl chloride 

(168 mg, 1.32 mmol, 1.5 eq), sodium azide (137 mg, 2.11 mmol, 2.4 eq), 3.32 (167 mg, 0.88 

mmol, 1 eq) and triethylamine (446 mg, 4.41 mmol, 5 eq) according to general procedure. 

Purification by column chromatography (PE/EtOAc 3:1 isocratic) and removal of the solvent in 

vacuo afforded the product as colourless oil (210 mg, 67%). Rf= 0.81 (PE/EtOAc 3:1). 1H-NMR (300 

MHz, CDCl3): δ (ppm) 0.89 (d, 3H, J 6.91 Hz), 0.97-1.30 (m, 6H), 1.48 (s, 9H), 1.62-1.76 (m, 6H), 

2.37 (br s, 3H), 2.99-3.09 (m, 1H), 3.22-3.30 (m, 1H), 12.43 (br s, 1H). 13C-NMR (100 MHz, CDCl3): 

δ (ppm) 14.4, 14.5, 26.67, 26.74, 26.8, 28.1, 28.6, 30.9, 38.7, 40.6, 44.1, 82.6, 151.3, 162.2, 167.2. 

HRMS (ESI) m/z (M+H)+ calcd. for C17H32N3O3S
+: 358.2159, found: 358.2199. C17H31N3O3S (357.51). 

 

S-Methyl-(N-(tertbutoxycarbonyl))-[N'-(2-(4-prop-2-yl phenyl) propyl)carbamoyl]thiourea (6.22) 

6.22 was prepared from 3-(4-prop-2-yl phenyl) butanoic acid (150 mg, 0.73 mmol, 1 eq), oxalyl 

chloride (138 mg, 1.09 mmol, 1.5 eq), sodium azide (114 mg, 1.75 mmol, 2.4 eq), 3.32 (138 mg, 

0.73 mmol, 1 eq) and triethylamine (368 mg, 3.64 mmol, 5 eq) according to general procedure. 

Purification by column chromatography (PE/EtOAc 3:1 isocratic) and removal of the solvent in 

vacuo afforded the product as colourless oil (220 mg, 77%). Rf= 0.74 (PE/EtOAc 3:1). 1H-NMR (300 

MHz, CDCl3): δ (ppm) 1.24-1.30 (m, 9H), 1.48 (s, 9H), 2.29 (br s, 3H), 2.85-2.99 (m, 2H), 3.24-3.33 

(m, 1H), 3.44-3.53 (m, 1H), 7.12-7.21 (m, 4H), 12.37 (br s, 1H). 13C-NMR (100 MHz, CDCl3): δ 

(ppm) 14.4, 19.4, 24.1, 28.15, 28.23, 33.8, 39.6, 47.1, 82.7, 126.8, 127.2, 141.5, 147.3, 151.2, 

162.1, 167.5. HRMS (ESI) m/z (M+H)+ calcd. for C20H32N3O3S
+: 394.2159, found: 394.2159. 

C20H31N3O3S (393.55). 

 

S-Methyl-(N-(tertbutoxycarbonyl))-[N'-(3-methyl 2-phenyl butyl)carbamoyl]thiourea (6.23) 

6.23 was prepared from 4-methyl 3-phenyl pentanoic acid (150 mg, 0.78 mmol, 1 eq), oxalyl 

chloride (149 mg, 1.17 mmol, 1.5 eq), sodium azide (122 mg, 1.87 mmol, 2.4 eq), 3.32 (148 mg, 

0.78 mmol, 1 eq) and triethylamine (395 mg, 3.90 mmol, 5 eq) according to general procedure. 

Purification by column chromatography (PE/EtOAc 3:1 isocratic) and removal of the solvent in 

vacuo afforded the product as colourless oil (130 mg, 44%). Rf= 0.81 (PE/EtOAc 3:1). 1H-NMR (300 

MHz, CDCl3): δ (ppm) 0.75 (d, 3H, J 6.71 Hz), 1.02 (d, 3H, J 6.71 Hz), 1.48 (s, 9H), 1.85-1.97 (m, 

1H), 2.24 (s, 3H), 2.50-2.58 (m, 1H), 3.25-3.37 (m, 1H), 3.79-3.88 (m, 1H), 7.10-7.35 (m, 5H), 12.36 

(br s, 1H). 13C-NMR (100 MHz, CDCl3): δ (ppm) 14.4, 20.5, 20.9, 28.0, 31.5, 43.1, 52.6, 82.8, 126.7, 

128.48, 128.54, 141.6, 151.0, 161.4, 167.7. HRMS (ESI) m/z (M+H)+ calcd. for C19H30N3O3S
+: 

380.2002, found: 380.2034. C19H29N3O3S (379.52). 
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S-Methyl-(N-(tertbutoxycarbonyl))-[N'-(2-phenyl butyl)carbamoyl]thiourea (6.24) 

6.24 was prepared from 3-phenyl pentanoic acid (150 mg, 0.84 mmol, 1 eq), oxalyl chloride (160 

mg, 1.26 mmol, 1.5 eq), sodium azide (131 mg, 2.02 mmol, 2.4 eq), 3.32 (160 mg, 0.84 mmol, 1 

eq) and triethylamine (426 mg, 4.21 mmol, 5 eq) according to general procedure. Purification by 

automated flash chromatography (PE/EtOAc 3:1 isocratic) and removal of the solvent in vacuo 

afforded the product as colourless oil (190 mg, 62%). Rf= 0.71 (PE/EtOAc 3:1). 1H-NMR (300 MHz, 

CDCl3): δ (ppm) 0.82 (t, 3H, J 7.37 Hz), 1.48-1.85 (m, 11H), 2.37 (br s, 3H), 2.66-2.76 (m, 1H), 3.25-

3.33 (m, 1H), 3.56-3.65 (m, 1H), 7.15-7.36 (m, 5H), 12.53 (br s, 1H). 13C-NMR (100 MHz, CDCl3): δ 

(ppm) 12.0, 14.4, 26.8, 28.2, 45.7, 47.8, 82.7, 126.8, 128.0, 128.8, 142.6, 151.3, 162.0, 167.5. 

HRMS (ESI) m/z (M+H)+ calcd. for C18H28N3O3S
+: 366.1846, found: 366.1895. C18H27N3O3S (365.49). 

 

S-Methyl-(N-(tertbutoxycarbonyl))-[N'-(3-cyclohexyl 2-methyl propyl)carbamoyl]thiourea (6.25) 

6.25 was prepared from 4-cyclohexyl 3-methyl butanoic acid (150 mg, 0.76 mmol, 1 eq), oxalyl 

chloride (144 mg, 1.13 mmol, 1.5 eq), sodium azide (118 mg, 1.82 mmol, 2.4 eq), 3.32 (144 mg, 

0.76 mmol, 1 eq) and triethylamine (383 mg, 3.78 mmol, 5 eq) according to general procedure. 

Purification by column chromatography (PE/EtOAc 3:1 isocratic) and removal of the solvent in 

vacuo afforded the product as colourless oil (110 mg, 38%). Rf= 0.72 (PE/EtOAc 3:1). 1H-NMR (300 

MHz, CDCl3): δ (ppm) 0.79-0.95 (m, 5H), 0.99-1.06 (m, 1H), 1.14-1.34 (m, 5H), 1.49-1.83 (m, 16H), 

2.68 (br s, 2H), 2.97-3.24 (m, 2H), 13.08 (br s, 1H). 13C-NMR (75 MHz, CDCl3): δ (ppm) 14.6, 17.9, 

26.3, 26.4, 26.7, 28.0, 30.3, 32.9, 34.2, 34.8, 42.4, 46.6, 83.6, 150.9, 162.0, 168.2. HRMS (ESI) m/z 

(M+H)+ calcd. for C18H34N3O3S
+: 372.2315, found: 372.2321. C18H33N3O3S (371.54). 

 

General procedure for the synthesis of the N
G
-carbamoylated guanidines 

The respective S-methylcarbamoyl thiourea derivative 6.13-6.25 or 3.33 (1 eq) and the amine 6.5, 

6.7, 6.12 (1-1.5 eq) or 3-(1-trityl-1H-pyrazol-4-yl)prop-1-yl-amine (3 eq) were dissolved in 

anhydrous CH2Cl2 (5-25 mL). Triethylamine (2.25-5 eq) and HgCl2 (2-2.2 eq) were added under Ar-

atmosphere. The reaction mixture was stirred over night at room temperature. The resulting 

suspension was filtered through Celite® in order to remove the mercury salt and the crude 

product was purified by either automated flash chromatography or column chromatography. 

Removal of the solvent in vacuo afforded the Boc-protected products 6.26-6.46, 6.68 and 6.69. 

Subsequently, the deprotection was performed by stirring the intermediate in a mixture of CH2Cl2 

and TFA over night at room temperature. The solvent was removed in vacuo and the product was 

purified by preparative HPLC. 

 

4-Methyl-5-(3-(3-(propylcarbamoyl)guanidino)propyl)-2-aminothiazole 

bis(hydrotrifluoroacetate) (6.47) Claudia Honisch master thesis 

6.47 was prepared from 6.13 (150 mg, 0.54 mmol, 1 eq), 6.5 (148 mg, 0.54 mmol, 1 eq), HgCl2 

(293 mg, 1.08 mmol, 2 eq) and triethylamine (164 mg, 1.62 mmol, 3 eq) dissolved in CH2Cl2 (25 
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mL) according to the general procedure. Purification by automated flash chromatography 

(PE/EtOAc 100:0-85:15 in 30 min) afforded the Boc-protected intermediate 6.26 as a glassy 

colourless solid (250 mg, 93%). 230 mg (0.46 mmol) of 6.26 were dissolved in a mixture of TFA (1 

mL) and CH2Cl2 (5 mL) and stirred over night at room temperature. Removal of the solvent in 

vacuo and purification by preparative HPLC (column: Interchim, gradient: 0-30 min: MeCN/0.05% 

aq. TFA 15:85-37:63, tR = 12.6 min) afforded the product as white fluffy solid (140 mg, 58%). Mp: 

72.4-73.2 °C. Rf= 0.62 (CH2Cl2 / 1.75 N NH3 in MeOH 9:1). IR (KBr): 602.13 660.12 697.18 726.78 

761.84 797.25 844.40 1144.09 1197.67 1242.49 1269.25 1391.01 1439.56 1467.73 1545.20 

1697.45 2882.67 2972.53 3122.82 3288.70 cm-1. RP-HPLC (gradient 2, 220 nm): 99.23% (tR =10.92 

min, k = 2.8). 1H-NMR (600 MHz, [D6]DMSO, COSY, HSQC, HMBC, NOESY): δ (ppm) 0.85 (t, 3H, J 

7.36 Hz), 1.42-1.48 (m, 2H), 1.72 (qui, 2H, J 7.23 Hz), 2.07 (s, 3H), 2.59 (t, 2H, J 7.47 Hz), 3.04-3.07 

(m, 2H), 3.22-3.26 (m, 2H, interfering with the water signal), 7.49 (br s, 1H), 8.49 (br s, 2H), 8.87 

(br s, 2H), 8.99 (br s, 1H), 10.22 (br s, 1H). 13C-NMR (150 MHz, [D6]DMSO, COSY, HSQC, HMBC, 

NOESY): δ (ppm) 11.1, 11.6, 22.0, 22.2, 28.9, 1C under solvent peak (38.7-40.3), 40.9, 116.3, 

132.6, 153.7, 153.8, 167.6. HRMS (ESI) m/z (M+H)+ calcd. for C12H23N6OS+: 299.1649, found: 

299.1651. C12H22N6OS ∙ C4H2F6O4 (298.16 + 228.05). 

 

4-Methyl-5-(3-(3-(hexylcarbamoyl)guanidino)propyl)-2-aminothiazole 

bis(hydrotrifluoroacetate) (6.48) Claudia Honisch master thesis 

6.48 was prepared from 6.14 (150 mg, 0.47 mmol, 1 eq), 6.5 (128 mg, 0.47 mmol, 1.5 eq), HgCl2 

(257 mg, 0.95 mmol, 2 eq) and triethylamine (144 mg, 1.42 mmol, 2.25 eq) dissolved in CH2Cl2 (25 

mL) according to the general procedure. Purification by automated flash chromatography 

(PE/EtOAc 100:0-85:15 in 30 min) afforded the Boc-protected intermediate 6.27 as a glassy 

colourless solid (90 mg, 35%). 85 mg (0.16 mmol) of 6.27 were dissolved in a mixture of TFA (1 

mL) and CH2Cl2 (10 mL) and stirred over night at room temperature. Removal of the solvent in 

vacuo and purification by preparative HPLC (column: Interchim, gradient: 0-30 min: MeCN/0.05% 

aq. TFA 24:76-46:54, tR = 13.0 min) afforded the product as white hygroscopic solid (50 mg, 56%). 

Rf= 0.56 (CH2Cl2 / 1.75 N NH3 in MeOH 9:1). RP-HPLC (220 nm, gradient 2): 99.1% (tR =16.70 min, k 

= 4.8). 1H-NMR (600 MHz, [D6]DMSO, COSY, HSQC, HMBC, NOESY): δ (ppm) 0.84-0.86 (m, 3H), 

1.24-1.28 (m, 6H), 1.39-1.43 (m, 2H), 1.71 (qui, 2H, J 7.27 Hz), 2.05 (s, 3H), 2.58 (t, 2H, J 7.44 Hz), 

3.06-3.09 (m, 2H), 3.22-3.25 (m, 2H, interfering with the water signal), 6.57 (br s, 1H), 7.49 (br s, 

1H), 8.50 (br s, 2H), 8.73 (br s,2H), 9.00 (br s, 1H), 10.39 (br s, 1H). 13C-NMR (150 MHz, [D6]DMSO, 

COSY, HSQC, HMBC, NOESY): δ (ppm) 11.8, 13.8, 21.98, 22.03, 25.8, 28.8, 29.0, 30.8, 2Cs under 

solvent peak (38.7-40.3), 116.3, 133.5, 153.7, 153.8, 167.4. HRMS (ESI) m/z (M+H)+ calcd. for 

C15H29N6OS+: 341.2118, found: 341.2127. C15H28N6OS ∙ C4H2F6O4 (340.49 + 228.05). 

 

4-Methyl-5-(3-(3-(cyclohexylcarbamoyl)guanidino)propyl)-2-aminothiazole 

bis(hydrotrifluoroacetate) (6.49) Claudia Honisch master thesis 

6.49 was prepared from 6.15 (150 mg, 0.47 mmol, 1 eq), 6.5 (129 mg, 0.47 mmol, 1.5 eq), HgCl2 

(258 mg, 0.95 mmol, 2 eq) and triethylamine (144 mg, 1.43 mmol, 2.25 eq) dissolved in CH2Cl2 (25 

mL) according to the general procedure. Purification by automated flash chromatography 
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(PE/EtOAc 100:0-85:15 in 30 min) afforded the Boc-protected intermediate 6.28 as a glassy 

colourless solid (0.14 g, 55%). 140 mg (0.26 mmol) of 6.28 were dissolved in a mixture of TFA (1 

mL) and CH2Cl2 (5 mL) and stirred over night at room temperature. Removal of the solvent in 

vacuo and purification by preparative HPLC (column: Interchim, gradient: 0-30 min: MeCN/0.05% 

aq. TFA 19:81-42:58, tR = 13.9 min) afforded the product as white fluffy solid (99 mg, 67%). Mp: 

69.6-71.8°C. Rf= 0.82 (CH2Cl2 / 1.75 N NH3 in MeOH 9:1). FT-ATR: 723, 798, 839, 895, 1129, 1178, 

1315, 1435, 1543, 1654, 2858, 2937, 3086, 3280 cm-1. RP-HPLC (gradient 2, 220 nm): 99.10% (tR = 

14.55 min, k = 4.0). 1H-NMR (600 MHz, [D6]DMSO, COSY, HSQC, HMBC, NOESY): δ (ppm) 1.11-

1.32 (m, 5H), 1.51-1.54 (m, 1H), 1.63-1.77 (m, 6H), 2.08 (s, 3H), 2.59 (t, 2H, J 7.51 Hz), 3.23 (q, 2H, 

J 6.25 Hz), 3.44-3.46 (m, 1H), 7.47 (br s, 1H), 8.47 (br s, 2H), 8.96 (br s, 1H), 9.12 (br s, 2H), 10.06 

(br s, 1H). 13C-NMR (150 MHz, [D6]DMSO, COSY, HSQC, HMBC, NOESY): δ (ppm) 11.3, 21.9, 24.1, 

24.9, 28.7, 32.0, 1C under solvent peak (38.7-40.3), 48.3, 116.3, 131.4, 152.8, 153.7, 167.9. HRMS 

(ESI) m/z (M+H)+ calcd. for C15H27N6OS+: 339.1962, found: 339.1970. C15H26N6OS ∙ C4H2F6O4 

(338.47 + 228.05). 

 

4-Methyl-5-(3-(3-(phenylcarbamoyl)guanidino)propyl)-2-aminothiazole 

bis(hydrotrifluoroacetate) (6.50) Claudia Honisch master thesis 

6.50 was prepared from 6.16 (100 mg, 0.32 mmol, 1 eq), 6.5 (88 mg, 0.32 mmol, 1.5 eq), HgCl2 

(175 mg, 0.65 mmol, 2 eq) and triethylamine (98 mg, 0.97 mmol, 2.25 eq) dissolved in CH2Cl2 (25 

mL) according to the general procedure. Purification by automated flash chromatography 

(PE/EtOAc 100:0-85:15 in 30 min) afforded the Boc-protected intermediate 6.29 as a glassy 

colourless solid (110 mg, 64%). 100 mg (0.19 mmol) of 6.29 were dissolved in a mixture of TFA (5 

mL) and CH2Cl2 (1 mL) and stirred over night at room temperature. Removal of the solvent in 

vacuo and purification by preparative HPLC (column: Interchim, gradient: 0-30 min: MeCN/0.05% 

aq. TFA 19:81-42:58, tR = 12.4 min) afforded the product as white hygroscopic solid (63 mg, 60%). 

Rf= 0.80 (CH2Cl2 / 1.75 N NH3 in MeOH 9:1). FT-ATR: 693, 719, 753, 798, 835, 1126, 1178, 1316, 

1446, 1498, 1551, 1640, 1595, 2363, 3094, 3276 cm-1. RP-HPLC (gradient 2, 220 nm): 98.98% (tR = 

14.75 min, k = 4.09). 1H-NMR (600 MHz, [D6]DMSO, COSY, HSQC, HMBC, NOESY): δ (ppm) 1.75 

(qui, 2H, J 7.21 Hz), 2.09 (s, 3H), 2.61 (t, 2H, J 7.50 Hz), 3.28 (q, 2H, J 6.47 Hz), 7.08-7.12 (m, 1H), 

7.32-7.36 (m, 2H), 7.43-7.45 (m, 2H), 8.56 (br s, 2H), 8.93 (br s, 1H), 9.05 (br s, 2H), 10.47 (br s, 

1H). 13C-NMR (150 MHz, [D6]DMSO, COSY, HSQC, HMBC, NOESY): δ (ppm) 11.4, 21.9, 28.7, 1C 

under solvent peak (38.7-40.3), 116.3, 119.6, 123.9, 129.0, 133.8, 137.5, 153.4 (2C), 167.8. HRMS 

(ESI) m/z (M+H)+ calcd. for C15H21N6OS+: 333.1492, found: 333.1496. C15H20N6OS ∙ C4H2F6O4 

(332.43 + 228.05). 

 

4-Methyl-5-(3-(3-((phenylmethyl)carbamoyl)guanidino)propyl)-2-aminothiazole 

bis(hydrotrifluoroacetate) (6.51) Claudia Honisch master thesis 

6.51 was prepared from 6.17 (150 mg, 0.464 mmol, 1 eq), 6.5 (126 mg, 0.464 mmol, 1.5 eq), 

HgCl2 (252 mg, 0.928 mmol, 2 eq) and triethylamine (141 mg, 1.392 mmol, 2.25 eq) dissolved in 

CH2Cl2 (25 mL) according to the general procedure. Purification by automated flash 

chromatography (PE/EtOAc 100:0-85:15 in 30 min) afforded the Boc-protected intermediate 6.30 
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as a glassy colourless solid (170 mg, 67%). 90 mg (0.16 mmol) of 6.30 were dissolved in a mixture 

of TFA (1 mL) and CH2Cl2 (5 mL) and stirred for 6 h at room temperature. Removal of the solvent 

in vacuo and purification by preparative HPLC (column: Interchim, gradient: 0-30 min: 

MeCN/0.05% aq. TFA 19:81-42:58, tR = 12.2 min) afforded the product as white hygroscopic solid 

(49 mg, 52%). Rf= 0.73 (CH2Cl2 / 1.75 N NH3 in MeOH 9:1). FT-ATR: 723.1, 797.7, 834.9, 1129.4, 

1177.8, 1252.4, 1431.3, 1543.1, 1640.0, 3090.0, 3276.3 cm-1. RP-HPLC (gradient 2, 220 nm): 

97.4% (tR = 14.89 min, k =4.1). 1H-NMR (600 MHz, [D6]DMSO, COSY, HSQC, HMBC, NOESY): δ 

(ppm) 1.72 (qui, 2H, J 7.22 Hz), 2.07 (s, 3H), 2.58 (t, 2H, J 7.49 Hz), 3.23 (q, 2H, J 6.66 Hz), 4.30 (d, 

2H, J 5.83 Hz), 7.25-7.28 (m, 3H), 7.32-7.35 (m, 2H), 7.98 (br s, 1H), 8.52 (br s, 2H), 9.01 (br s, 1H), 

9.10 (br s, 2H), 10.35 (br s, 1H). 13C-NMR (150 MHz, [D6]DMSO, COSY, HSQC, HMBC, NOESY): δ 

(ppm) 11.3, 21.9, 28.7, 40.0, 42.7, 116.3, 127.1, 127.2, 128.4, 131.6, 138.6, 153.7, 153.8, 167.8. 

HRMS (ESI) m/z (M+H)+ calcd. for C16H23N6OS+: 347.1649, found: 347.1653. C16H22N6OS ∙ C4H2F6O4 

(346.45 + 228.05). 

 

4-Methyl-5-(3-(3-((2-phenylethyl)carbamoyl)guanidino)propyl)-2-aminothiazole 

bis(hydrotrifluoroacetate) (6.52) Claudia Honisch master thesis 

6.52 was prepared from 6.18 (150 mg, 0.444 mmol, 1 eq), 6.5 (120 mg, 0.444 mmol, 1 eq), HgCl2 

(241 mg, 0.888 mmol, 2 eq) and triethylamine (135 mg, 1.332 mmol, 3 eq) dissolved in CH2Cl2 (25 

mL) according to the general procedure. Purification by automated flash chromatography 

(PE/EtOAc 100:0-85:15 in 30 min) afforded the Boc-protected intermediate 6.31 as a glassy 

colourless solid (190 mg, 76%). 190 mg (0.34 mmol) of 6.31 were dissolved in a mixture of TFA (1 

mL) and CH2Cl2 (5 mL) and stirred for 6 h at room temperature. Removal of the solvent in vacuo 

and purification by preparative HPLC (column: Interchim, gradient: 0-30 min: MeCN/0.05% aq. 

TFA 19:81-46:54, tR = 13.2 min) afforded the product as white hygroscopic solid (11 mg, 53%). Rf= 

0.89 (CH2Cl2 / 1.75 N NH3 in MeOH 9:1). RP-HPLC (220 nm, gradient 2): 98.6% (tR = 15.0 min, k = 

4.2) 1H-NMR (600 MHz, [D6]DMSO, COSY, HSQC, HMBC, NOESY): δ (ppm) 1.71 (qui, 2H, J 7.19 Hz), 

2.08 (s, 3H), 2.58-2.60 (m, 2H), 2.75 (t, 2H, J 7.24 Hz), 3.24 (br s, 2H), 3.32-3.33 (m, 2H), 7.19-7.22 

(m, 3H), 7.28-7.30 (m, 2H), 7.60 (br s, 1H), 8.52 (br s, 2H), 9.04 (br , 3H), 10.29 (br s, 1H). 13C-NMR 

(150 MHz, [D6]DMSO, COSY, HSQC, HMBC, NOESY): δ (ppm) 11.5, 21.9, 28.8, 35.0, 40.0, 40.7, 

116.3, 126.2, 128.4, 128.6, 131.7, 138.9, 153.6, 153.7, 167.7. HRMS (ESI) m/z (M+H)+ calcd. for 

C17H25N6OS+: 361.1805, found: 361.1812. C17H24N6OS ∙ C4H2F6O4 (360.48 + 228.05). 

 

4-Methyl-5-(3-[3-([2-methyl 3-(4-methylphenyl)propyl]carbamoyl)guanidino]propyl)-2-

aminothiazole bis(hydrotrifluoroacetate) (6.53) 

6.53 was prepared from 6.19 (84 mg, 0.22 mmol, 1 eq), 6.5 (60 mg, 0.22 mmol, 1 eq), HgCl2 (120 

mg, 0.44 mmol, 2 eq) and triethylamine (67 mg, 0.66 mmol, 3 eq) dissolved in CH2Cl2 (5 mL) 

according to the general procedure. Purification by column chromatography (PE/EtOAc 3:1 - 1:1) 

afforded the Boc-protected intermediate 6.32 as a yellow oil (90 mg, 68%). 90 mg of 6.32 were 

dissolved in a mixture of TFA (1 mL) and CH2Cl2 (5 mL) and stirred over night at room 

temperature. Removal of the solvent in vacuo and purification by preparative HPLC (column: 

Kinetex, gradient: 0-30 min: MeCN/0.1% aq. TFA 0:100-65:35, tR = 16.9 min) afforded the product 
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as white hygroscopic solid (30.1 mg, 32%). Rf= 0.73 (CH2Cl2 / 1.75 N NH3 in MeOH 4:1). RP-HPLC 

(gradient 2, 220 nm): 97.9% (tR = 20.21 min, k = 5.97). 1H-NMR (600 MHz, [D6]DMSO, COSY, HSQC, 

HMBC, NOESY): δ (ppm) 0.78 (d, 3H, J 6.69 Hz), 1.72 (qui, 2H, J 7.20 Hz), 1.82-1.88 (m, 1H), 2.07 

(s, 3H), 2.25 (s, 3H),2.28-2.31 (m, 1H), 2.55-2.60 (m, 3H), 2.89-2.93 (m, 1H), 3.05-3.09 (m, 

1H),3.23 (q, 2H, J 6.50 Hz), 7.03-7.07 (m, 4H), 7.53 (br s, 1H), 8.51 (br s, 2H), 8.99 (br s, 1H), 9.14 

(br s, 2H), 10.49 (br s, 1H). 13C-NMR (150 MHz, [D6]DMSO, COSY, HSQC, HMBC, NOESY): δ (ppm) 

11.3, 17.0, 20.6, 21.9, 28.8, 34.9, 2Cs under solvent peak (38.7-40.3), 44.6, 116.3, 128.76, 128.79, 

131.6, 134.7, 137.0, 153.77, 153.78, 167.9. HRMS (ESI) m/z (M+H)+ calcd. for C20H31N6OS+: 

403.2275, found: 403.2277. C20H30N6OS ∙ C4H2F6O4 (402.56 + 228.05). 

 

4-Methyl-5-(3-[3-([2-methyl 4-phenylbutyl]carbamoyl)guanidino]propyl)-2-aminothiazole 

bis(hydrotrifluoroacetate) (6.54) 

6.54 was prepared from 6.20 (90 mg, 0.24 mmol, 1 eq), 6.5 (64 mg, 0.24 mmol, 1 eq), HgCl2 (129 

mg, 0.47 mmol, 2 eq) and triethylamine (72 mg, 0.71 mmol, 3 eq) dissolved in CH2Cl2 (5 mL) 

according to the general procedure. Purification by column chromatography (PE/EtOAc 3:1 

isocratic) afforded the Boc-protected intermediate 6.33 as a colourless oil (90 mg, 63%). 90 mg 

(0.15 mmol) of 6.33 were dissolved in a mixture of TFA (1 mL) and CH2Cl2 (5 mL) and stirred over 

night at room temperature. Removal of the solvent in vacuo and purification by preparative HPLC 

(column: Kinetex, gradient: 0-30 min: MeCN/0.1% aq. TFA 10:90-70:30, tR = 18.22 min) afforded 

the product as white hygroscopic solid (30.0 mg, 32%). Mp: 61-68 °C. Rf= 0.35 (CH2Cl2 / 1% NH3 in 

MeOH 9:1). RP-HPLC (gradient 2, 220 nm): 99.8% (tR = 18.49 min, k = 5.38). 1H-NMR (600 MHz, 

[D6]DMSO, COSY, HSQC, HMBC, NOESY): δ (ppm) 0.89 (d, 3H, J 6.45 Hz), 1.33-1.39 (m, 1H), 1.56-

1.63 (m, 2H), 1.71 (qui, 2H, J 7.21 Hz), 2.05 (s, 3H), 2.51-2.65 (m, 4H), 2.96-3.01 (m, 1H), 3.05-3.09 

(m, 1H), 3.21-3.25 (m, 2H, interfering with the water signal), 7.14-7.19 (m, 3H), 7.24-7.26 (m, 2H), 

7.51(br s, 1H), 8.49 (br s, 2H), 8.82 (br s, 2H), 8.98(br s, 1H), 10.32 (br s, 1H). 13C-NMR (150 MHz, 

[D6]DMSO, COSY, HSQC, HMBC, NOESY): δ (ppm) 11.7, 17.2, 22.0, 28.9, 32.4, 32.5, 35.6, 1C under 

solvent peak (38.7-40.3), 44.8, 116.3, 125.6, 128.20, 128.23, 132.9, 142.2, 153.7, 153.8, 167.5. 

HRMS (ESI) m/z (M+H)+ calcd. for C17H25N6OS+: 403.2275, found: 403.2277. C20H30N6OS ∙ C4H2F6O4 

(402.56 + 228.05). 

 

4-Methyl-5-(3-[3-([2-cyclohexylpropyl]carbamoyl)guanidino]propyl)-2-aminothiazole 

bis(hydrotrifluoroacetate) (6.55) 

6.55 was prepared from 6.21 (90 mg, 0.25 mmol, 1 eq), 6.5 (68 mg, 0.25 mmol, 1 eq), HgCl2 (137 

mg, 0.50 mmol, 2 eq) and triethylamine (76 mg, 0.76 mmol, 3 eq) dissolved in CH2Cl2 (5 mL) 

according to the general procedure. Purification by column chromatography (PE/EtOAc 3:1 

isocratic) afforded the Boc-protected intermediate 6.34 as a colourless oil (130 mg, 89%). 130 mg 

(0.22 mmol) of 6.34 were dissolved in a mixture of TFA (1 mL) and CH2Cl2 (5 mL) and stirred over 

night at room temperature. Removal of the solvent in vacuo and purification by preparative HPLC 

(column: Kinetex, gradient: 0-30 min: MeCN/0.1% aq. TFA 10:90-70:30, tR = 18.8 min) afforded 

the product as white hygroscopic solid (80.0 mg, 59%). Mp: 51-57 °C. Rf= 0.34 (CH2Cl2 / 1.75 N 

NH3 in MeOH 9:1). RP-HPLC (gradient 2, 220 nm): 99.0% (tR = 18.61 min, k = 5.42). 1H-NMR (600 



 Chapter 6 179 

MHz, [D6]DMSO, COSY, HSQC, HMBC, NOESY): δ (ppm) 0.78 (d, 3H, J 6.8 Hz), 0.90-1.22 (m, 6H), 

1.43-1.47 (m, 1H), 1.55-1.61 (m, 3H), 1.67-1.74 (m, 4H), 2.07 (s, 3H), 2.58-2.60 (m, 2H), 2.90-2.94 

(m, 1H), 3.10-3.14 (m, 1H), 3.22-3.25 (m, 2H), 7.44 (br s, 1H), 8.49 (br s, 2H), 8.98-9.07 (m, 3H), 

10.34 (br s, 1H),13.55 (br s, 1H). 13C-NMR (150 MHz, [D6]DMSO, COSY, HSQC, HMBC, NOESY): δ 

(ppm) 11.4, 14.0, 22.0, 26.06, 26.16, 26.23, 27.9, 28.8, 30.3, 37.8, 2Cs under solvent peak (38.7-

40.3), 42.9, 116.3, 131.8, 153.70, 153.74, 167.8. HRMS (ESI) m/z (M+H)+ calcd. for C18H33N6OS+: 

381.2431, found: 381.2436. C18H32N6OS ∙ C4H2F6O4 (380.56 + 228.05). 

 

4-Methyl-5-(3-[3-([2-(4-prop-2-ylphenyl)propyl]carbamoyl)guanidino]propyl)-2-aminothiazole 

bis(hydrotrifluoroacetate) (6.56) 

6.56 was prepared from 6.22 (90 mg, 0.23 mmol, 1 eq), 6.5 (62 mg, 0.23 mmol, 1 eq), HgCl2 (124 

mg, 0.46 mmol, 2 eq) and triethylamine (69 mg, 0.69 mmol, 3 eq) dissolved in CH2Cl2 (5 mL) 

according to the general procedure. Purification by column chromatography (PE/EtOAc 3:1 

isocratic) afforded the Boc-protected intermediate 6.35 as a colourless oil (120 mg, 85%). 120 mg 

(0.19 mmol) of 6.35 were dissolved in a mixture of TFA (1 mL) and CH2Cl2 (5 mL) and stirred over 

night at room temperature. Removal of the solvent in vacuo and purification by preparative HPLC 

(column: Kinetex, gradient: 0-30 min: MeCN/0.1% aq. TFA 10:90-70:30, tR = 19.1 min) afforded 

the product as white hygroscopic solid (80.0 mg, 64%). Mp: 59-64 °C. Rf= 0.34 (CH2Cl2 / 1.5 N NH3 

in MeOH 9:1). RP-HPLC (gradient 2, 220 nm): 96.3% (tR = 19.33 min, k = 5.67). 1H-NMR (600 MHz, 

[D6]DMSO, COSY, HSQC, HMBC, NOESY): δ (ppm) 1.16-1.18 (m, 9H), 1.72 (qui, 2H, J 7.14 Hz), 2.08 

(s, 3H), 2.58-2.61 (m, 2H), 2.82-2.89 (m, 2H), 3.22-3.25 (m, 4H), 7.14-7.18 (m, 4H), 7.38 (br s, 1H), 

8.51 (br s, 2H), 9.01 (br s, 1H), 9.23 (br s, 2H), 10.36 (br s, 1H). 13C-NMR (150 MHz, [D6]DMSO, 

COSY, HSQC, HMBC, NOESY): δ (ppm) 11.2, 19.1, 21.9, 23.9, 28.7, 33.0, 38.6, 1C under solvent 

peak (38.7-40.3), 46.0, 116.3, 126.3, 127.0, 131.3, 141.5, 146.4, 153.68, 153.71, 168.0. HRMS 

(ESI) m/z (M+H)+ calcd. for C21H33N6OS+: 417.2431, found: 417.2435. C21H32N6OS ∙ C4H2F6O4 

(416.59 + 228.05). 

 

4-Methyl-5-(3-[3-([3-methyl 2-phenylbutyl]carbamoyl)guanidino]propyl)-2-aminothiazole 

bis(hydrotrifluoroacetate) (6.57) 

6.57 was prepared from 6.23 (90 mg, 0.24 mmol, 1 eq), 6.5 (64 mg, 0.24 mmol, 1 eq), HgCl2 (129 

mg, 0.47 mmol, 2 eq) and triethylamine (72 mg, 0.71 mmol, 3 eq) dissolved in CH2Cl2 (5 mL) 

according to the general procedure. Purification by column chromatography (PE/EtOAc 3:1 

isocratic) afforded the Boc-protected intermediate 6.36 as a colourless oil (110 mg, 77%). 110 mg 

(0.18 mmol) of 6.36 were dissolved in a mixture of TFA (1 mL) and CH2Cl2 (5 mL) and stirred over 

night at room temperature. The solvent was removed in vacuo and the residue was purified by 

preparative HPLC (column: Kinetex, gradient: 0-30 min: MeCN/0.1% aq. TFA 10:90-70:30, tR = 

17.9 min). The resulting product (80 mg) showed an insufficient purity and was purified a second 

time by preparative HPLC (column: Kinetex, gradient: 0-30 min: MeCN/0.1% aq. TFA 5:95-65:35, 

tR = 20.2 min). Lyophilisation afforded the product as white hygroscopic solid (40.0 mg, 17%). Mp: 

59-64 °C. Rf= 0.34 (CH2Cl2 / 1.5 N NH3 in MeOH 9:1). RP-HPLC (gradient 2, 220 nm): 98.6% (tR = 

18.31 min, k = 5.31). 1H-NMR (600 MHz, [D6]DMSO, COSY, HSQC, HMBC, NOESY): δ (ppm) 0.66 (d, 
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3H, J 6.73 Hz), 0.91 (d, 3H, J 6.72 Hz), 1.69 (qui, 2H, J 7.17 Hz), 1.83-1.88 (m, 1H), 2.06 (s, 3H), 

2.52-2.57 (m, 3H), 3.19-3.20 (m, 2H), 3.31-3.36 (m, 1H), 3.56-3.60 (m, 1H), 7.11-7.16 (m, 3H), 

7.19-7.22 (m, 1H), 7.28-7.30 (m, 2H), 8.45 (br s, 2H), 8.93 (br s, 1H), 9.16 (br s, 2H), 10.08 (br s, 

1H). 13C-NMR (150 MHz, [D6]DMSO, COSY, HSQC, HMBC, NOESY): δ (ppm) 11.3, 20.0, 20.7, 21.9, 

28.7, 30.4, 1C under solvent peak (38.7-40.3), 42.0, 51.5, 116.3, 126.4, 128.1, 128.4, 131.3, 141.4, 

153.51, 153.54, 167.9. HRMS (ESI) m/z (M+H)+ calcd. for C20H31N6OS+: 403.2275, found: 403.2282. 

C20H30N6OS ∙ C4H2F6O4 (402.56 + 228.05). 

 

4-Methyl-5-(3-[3-([2-phenylbutyl]carbamoyl)guanidino]propyl)-2-aminothiazole 

bis(hydrotrifluoroacetate) (6.58) 

6.58 was prepared from 6.24 (90 mg, 0.25 mmol, 1 eq), 6.5 (67 mg, 0.25 mmol, 1 eq), HgCl2 (134 

mg, 0.50 mmol, 2 eq) and triethylamine (75 mg, 0.74 mmol, 3 eq) dissolved in CH2Cl2 (5 mL) 

according to the general procedure. Purification by column chromatography (PE/EtOAc 3:1 

isocratic) afforded the Boc-protected intermediate 6.37 as a colourless oil (110 mg, 76%). 110 mg 

(0.19 mmol) of 6.37 were dissolved in a mixture of TFA (1 mL) and CH2Cl2 (5 mL) and stirred over 

night at room temperature. Removal of the solvent in vacuo and purification by preparative HPLC 

(column: Kinetex, gradient: 0-30 min: MeCN/0.1% aq. TFA 10:90-70:30, tR = 16.1 min) afforded 

the product as white hygroscopic solid (80.0 mg, 69%). Mp: 55-60 °C. Rf= 0.34 (CH2Cl2 / 1.5 N NH3 

in MeOH 9:1). RP-HPLC (gradient 2, 220 nm): 97.5% (tR = 16.71 min, k = 4.76). 1H-NMR (600 MHz, 

[D6]DMSO, COSY, HSQC, HMBC, NOESY): δ (ppm) 0.71 (t, 3H, J 7.32 Hz), 1.46-1.54 (m, 1H), 1.64-

1.73 (m, 3H), 2.06 (s, 3H), 2.56-2.58 (m, 2H), 2.62-2.67 (m, 1H), 3.20-3.29 (m, 3H), 3.34-3.38 (m, 

1H), 7.18-7.21 (m, 3H), 7.28-7.31 (m, 3H), 8.50 (br s, 2H), 8.98 (br s, 1H), 9.08 (br s, 2H), 10.37 (br 

s, 1H). 13C-NMR (150 MHz, [D6]DMSO, COSY, HSQC, HMBC, NOESY): δ (ppm) 11.4, 11.7, 22.0, 

25.8, 28.8, 1C under solvent peak (38.7-40.3), 44.6, 46.7, 116.3, 126.4, 127.7, 128.4, 132.0, 142.5, 

153.67, 153.69, 167.8. HRMS (ESI) m/z (M+H)+ calcd. for C19H29N6OS+: 389.2118, found: 389.2118. 

C19H28N6OS ∙ C4H2F6O4 (388.53 + 228.05). 

 

4-Methyl-5-(3-[3-([3-cyclohexyl 2-methylpropyl]carbamoyl)guanidino]propyl)-2-aminothiazole 

bis(hydrotrifluoroacetate) (6.59) 

6.59 was prepared from 6.25 (80 mg, 0.22 mmol, 1 eq), 6.5 (59 mg, 0.22 mmol, 1 eq), HgCl2 (117 

mg, 0.43 mmol, 2 eq) and triethylamine (66 mg, 0.65 mmol, 3 eq) dissolved in CH2Cl2 (5 mL) 

according to the general procedure. Purification by column chromatography (PE/EtOAc 3:1 

isocratic) afforded the Boc-protected intermediate 6.38 as a colourless oil (140 mg, 97%). 140 mg 

(0.23 mmol) of 6.38 were dissolved in a mixture of TFA (1 mL) and CH2Cl2 (5 mL) and stirred over 

night at room temperature. Removal of the solvent in vacuo and purification by preparative HPLC 

(column: Kinetex, gradient: 0-30 min: MeCN/0.1% aq. TFA 10:90-70:30, tR = 19.9 min) afforded 

the product as white hygroscopic solid (110.0 mg, 75%). Mp: 61-66 °C. Rf= 0.34 (CH2Cl2 / 1 N NH3 

in MeOH 9:1). RP-HPLC (gradient 2, 220 nm): 99.7% (tR = 20.10 min, k = 5.93). 1H-NMR (600 MHz, 

[D6]DMSO, COSY, HSQC, HMBC, NOESY): δ (ppm) 0.73-0.88 (m, 5H), 0.93-0.97 (m, 1H), 1.07-1.23 

(m, 4H), 1.26-1.31 (m, 1H), 1.59-1.75 (m, 8H), 2.08 (s,3H), 2.58-2.61 (m, 2H), 2.84-2.89 (m, 1H), 

3.02-3.06 (m, 1H), 3.23-3.26 (m, 2H), 7.47 (br s,1H), 8.51 (br s, 2H), 9.00-9.06 (m, 3H), 10.42 (br s, 
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1H). 13C-NMR (150 MHz, [D6]DMSO, COSY, HSQC, HMBC, NOESY): δ (ppm) 11.4, 17.7, 22.0, 25.7, 

25.8, 26.2, 28.8, 29.6, 32.5, 33.5, 34.2, 1C under solvent peak (38.7-40.3), 41.7, 45.3, 116.3, 

131.9, 153.77, 153.78, 167.8. HRMS (ESI) m/z (M+H)+ calcd. for C19H35N6OS +: 395.2588, found: 

395.2590. C19H34N6OS ∙ C4H2F6O4 (394.58 + 228.05). 

4-(3-(3-(Propylcarbamoyl)guanidino)phenyl)-2-aminothiazole bis(hydrotrifluoroacetate) (6.60) 

6.60 was prepared from 6.13 (80 mg, 0.29 mmol, 1 eq), 6.7 (56 mg, 0.29 mmol, 1 eq), HgCl2 (158 

mg, 0.58 mmol, 2 eq) and triethylamine (88 mg, 0.87 mmol, 3 eq) dissolved in CH2Cl2 (5 mL) 

according to the general procedure. Purification by automated flash chromatography (PE/EtOAc 

100:0-50:50 in 25 min) afforded the Boc-protected intermediate 6.39 as a yellow oil (70 mg, 

57%). 70 mg (0.17 mmol) of 6.39 were dissolved in a mixture of TFA (2 mL) and CH2Cl2 (5 mL) and 

stirred over night at room temperature. Removal of the solvent in vacuo and purification by 

preparative HPLC (column: Kinetex, gradient: 0-30 min: MeCN/0.1% aq. TFA 15:85-45:55, tR = 

10.3 min) afforded the product as white hygroscopic solid (40.0 mg, 44%). Rf= 0.10 (PE /EtOAc 

2:1). RP-HPLC (gradient 1, 220 nm): 99.2% (tR = 13.87 min, k = 3.78). 1H-NMR (600 MHz, 

[D6]DMSO, COSY, HSQC, HMBC): δ (ppm) 0.86 (t, 3H, J 7.50 Hz), 1.43-1.49 (m, 2H), 3.06-3.10 (m, 

2H), 7.15 (s, 1H), 7.23-7.24 (m, 1H), 7.49 (t, 1H, J 7.74 Hz), 7.60 (t, 1H, J 5.56 Hz), 7.72-7.73 (m, 

1H), 7.78-7.80 (m, 1H), 8.62 (br s, 1H), 8.97 (br s, 1H), 10.15 (s,1H), 10.74 (s, 1H). 13C-NMR (150 

MHz, [D6]DMSO, COSY, HSQC, HMBC): δ (ppm) 11.2, 22.2, 41.0, 103.0, 123.0, 124.81, 124.84, 

130.1, 134.0, 135.5, 147.0, 153.5, 153.6, 168.7. HRMS (ESI) m/z (M+H)+ calcd. for C14H19N6OS+: 

319.1336, found: 319.1346. C14H18N6OS ∙ C4H2F6O4 (318.40 + 228.05). 

 

4-(3-(3-(Hexylcarbamoyl)guanidino)phenyl)-2-aminothiazole bis(hydrotrifluoroacetate) (6.61) 

6.61 was prepared from 6.14 (90 mg, 0.28 mmol, 1 eq), 6.7 (54 mg, 0.28 mmol, 1 eq), HgCl2 (154 

mg, 0.57 mmol, 2 eq) and triethylamine (86 mg, 0.85 mmol, 3 eq) dissolved in CH2Cl2 (5 mL) 

according to the general procedure. Purification by automated flash chromatography (PE/EtOAc 

100:0-55:45 in 25 min) afforded the Boc-protected intermediate 6.40 as a yellow solid (110 mg, 

84%). 110 mg (0.24 mmol) of 6.40 were dissolved in a mixture of TFA (2 mL) and CH2Cl2 (5 mL) 

and stirred over night at room temperature. Removal of the solvent in vacuo and purification by 

preparative HPLC (column: Kinetex, gradient: 0-30 min: MeCN/0.1% aq. TFA 20:80-70:30, tR = 

13.4 min) afforded the product as white hygroscopic solid (60.0 mg, 43%). Rf= 0.10 (PE /EtOAc 

2:1). RP-HPLC (gradient 1, 220 nm): 99.2% (tR = 19.25 min, k = 5.64). 1H-NMR (600 MHz, 

[D6]DMSO, COSY, HSQC, HMBC): δ (ppm) 0.84-0.87 (m, 3H), 1.22-1.30 (m, 6H), 1.41-1.44 (m, 2H), 

3.09-3.13 (m, 2H), 7.15 (s, 1H), 7.23-7.24 (m, 1H), 7.49 (t, 1H, J 7.93 Hz), 7.59 (t, 1H, J 5.50 Hz), 

7.73 (m, 1H), 7.79 (d, 1H ,7.89 Hz), 8.65 (br s, 1H), 8.97 (br s, 1H), 10.26 (s, 1H), 10.80 (s, 1H). 13C-

NMR (150 MHz, [D6]DMSO, COSY, HSQC, HMBC): δ (ppm) 13.9, 22.0, 25.9, 28.8, 30.9, 1C under 

solvent peak (38.7-40.3), 102.9, 122.9, 124.76, 124.80, 130.1, 134.0, 135.5, 147.0, 153.4, 153.6, 

168.7. HRMS (ESI) m/z (M+H)+ calcd. for C17H25N6OS+: 361.1805, found: 361.1813. C17H24N6OS ∙ 
C4H2F6O4 (360.48 + 228.05). 

 



182 Chapter 6 

 

4-(3-(3-(Cyclohexylcarbamoyl)guanidino)phenyl)-2-aminothiazole bis(hydrotrifluoroacetate) 

(6.62) 

6.62 was prepared from 6.15 (90 mg, 0.29 mmol, 1 eq), 6.7 (55 mg, 0.29 mmol, 1 eq), HgCl2 (155 

mg, 0.57 mmol, 2 eq) and triethylamine (87 mg, 0.86 mmol, 3 eq) dissolved in CH2Cl2 (5 mL) 

according to the general procedure. Purification by automated flash chromatography (PE/EtOAc 

100:0-50:50 in 25 min) afforded the Boc-protected intermediate 6.41 as a yellow oil (90 mg, 

69%). 90 mg (0.20 mmol) of 6.41 were dissolved in a mixture of TFA (2 mL) and CH2Cl2 (5 mL) and 

stirred over night at room temperature. Removal of the solvent in vacuo and purification by 

preparative HPLC (column: Kinetex, gradient: 0-30 min: MeCN/0.1% aq. TFA 20:80-50:50, tR = 

11.8 min) afforded the product as white hygroscopic solid (70 mg, 61%). Mp: 80-84 °C. Rf= 0.05 

(PE /EtOAc 2:1). RP-HPLC (gradient 2, 220 nm): 99.5% (tR = 16.34 min, k = 4.6). 1H-NMR (600 MHz, 

[D6]DMSO, COSY, HSQC, HMBC): δ (ppm) 1.14-1.32 (m, 5H), 1.51-1.54 (m, 1H), 1.63-1.66 (m, 2H), 

1.77-1.80 (m, 2H), 3.45-3.51 (m, 1H), 7.15 (s, 1H), 7.23-7.25 (m, 1H), 7.50 (t, 1H, J 7.91 Hz), 7.59 

(d, 1H, J 7.58 Hz), 7.73 (m, 1H), 7.79-7.81 (m, 1H), 8.65 (br s, 1H), 8.96 (br s, 1H), 9.93 (s, 1H), 

10.74 (s, 1H). 13C-NMR (150 MHz, [D6]DMSO, COSY, HSQC, HMBC): δ (ppm) 24.6, 25.4, 32.5, 48.9, 

103.5, 123.6, 125.3, 125.5, 130.6, 134.4, 136.0, 147.4, 153.1, 154.1, 169.2. HRMS (ESI) m/z 

(M+H)+ calcd. for C17H23N6OS+: 359.1649, found: 359.1649. C17H22N6OS ∙ C4H2F6O4 (358.46 + 

228.05). 

 

4-(3-(3-(Phenylcarbamoyl)guanidino)phenyl)-2-aminothiazole bis(hydrotrifluoroacetate) (6.63) 

6.63 was prepared from 6.16 (81 mg, 0.26 mmol, 1 eq), 6.7 (50 mg, 0.26 mmol, 1 eq), HgCl2 (142 

mg, 0.52 mmol, 2 eq) and triethylamine (79 mg, 0.78 mmol, 3 eq) dissolved in CH2Cl2 (5 mL) 

according to the general procedure. Purification by automated flash chromatography (PE/EtOAc 

100:0-50:50 in 30 min) afforded the Boc-protected intermediate 6.42 as a yellow oil (30 mg, 

25%). 30 mg (0.07 mmol) of 6.42 were dissolved in a mixture of TFA (2 mL) and CH2Cl2 (5 mL) and 

stirred over night at room temperature. Removal of the solvent in vacuo and purification by 

preparative HPLC (column: Kinetex, gradient: 0-30 min: MeCN/0.1% aq. TFA 15:85-70:30, tR = 

13.0 min) afforded the product as white hygroscopic solid (27 mg, 71%). Rf= 0.4 (CH2Cl2 / 1.75 N 

NH3 in MeOH 9:1). RP-HPLC (gradient 1, 220 nm): 99.4% (tR = 16.70 min, k = 4.76). 1H-NMR (600 

MHz, [D6]DMSO, COSY, HSQC, HMBC): δ (ppm) 7.10-7.14 (m, 2H), 7.26-7.28 (m, 1H), 7.34-7.37 

(m, 2H), 7.45-7.46 (m, 2H), 7.51 (t, 1H, J 7.84 Hz), 7.77-7.78 (m, 1H), 7.81-7.83 (m, 1H), 8.76-8.92 

(m, 3H), 9.92 (s, 1H), 10.10 (br s, 1H), 10.70 (s, 1H). 13C-NMR (150 MHz, [D6]DMSO, COSY, HSQC, 

HMBC): δ (ppm) 102.9, 119.5, 122.9, 124.0, 124.6, 124.8, 129.1, 130.1, 134.0, 136.1, 137.3, 148.0, 

151.1, 153.3, 168.5. HRMS (ESI) m/z (M+H)+ calcd. for C17H17N6OS+: 353.1179, found: 353.1180. 

C17H16N6OS ∙ C4H2F6O4 (352.41 + 228.05). 

 

4-(3-(3-((Phenylmethyl)carbamoyl)guanidino)phenyl)-2-aminothiazole 

bis(hydrotrifluoroacetate) (6.64) 

6.64 was prepared from 6.17 (85 mg, 0.26 mmol, 1 eq), 6.7 (50 mg, 0.26 mmol, 1 eq), HgCl2 (142 

mg, 0.52 mmol, 2 eq) and triethylamine (79 mg, 0.78 mmol, 3 eq) dissolved in CH2Cl2 (8 mL) 
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according to the general procedure. Purification by automated flash chromatography (PE/EtOAc 

100:0-60:40 in 30 min) afforded the Boc-protected intermediate 6.43 as a yellow oil (110 mg, 

90%). 100 mg (0.21 mmol) of 6.43 were dissolved in a mixture of TFA (1 mL) and CH2Cl2 (5 mL) 

and stirred for 12 h at room temperature. Removal of the solvent in vacuo and purification by 

preparative HPLC (column: Kinetex, gradient: 0-30 min: MeCN/0.1% aq. TFA 15:85-70:30, tR = 

13.1 min) afforded the product as white hygroscopic solid (90 mg, 70%). Rf= 0.1 (PE/EtOAc 2:1). 

RP-HPLC (gradient 1, 220 nm): 99.1% (tR = 16.57 min, k = 4.71). 1H-NMR (600 MHz, MeOD, COSY, 

HSQC, HMBC): δ (ppm) 4.41 (s, 2H), 7.25-7.28 (m, 1H), 7.32-7.35 (m, 4H), 7.40-7.41 (m, 1H), 7.60 

(t, 1H, J 7.81 Hz), 7.71-7.72 (m, 1H), 7.75-7.77 (m, 1H). 13C-NMR (150 MHz, MeOD, COSY, HSQC, 

HMBC): δ (ppm) 44.6, 104.7, 124.8, 127.1, 127.9, 128.5, 128.6, 129.7, 132.3, 133.3, 135.4, 139.4, 

142.1, 155.3, 155.9, 172.6. HRMS (ESI) m/z (M+H)+ calcd. for C18H19N6OS+: 367.1336, found: 

367.1341. C18H18N6OS ∙ C4H2F6O4 (366.44 + 228.05). 

 

4-(3-(3-((2-Phenylethyl)carbamoyl)guanidino)phenyl)-2-aminothiazole 

bis(hydrotrifluoroacetate) (6.65) 

6.65 was prepared from 6.18 (88 mg, 0.26 mmol, 1 eq), 6.7 (50 mg, 0.26 mmol, 1 eq), HgCl2 (142 

mg, 0.52 mmol, 2 eq) and triethylamine (79 mg, 0.78 mmol, 3 eq) dissolved in CH2Cl2 (5 mL) 

according to the general procedure. Purification by automated flash chromatography (PE/EtOAc 

100:0-60:40 in 30 min) afforded the Boc-protected intermediate 6.44 as a yellow solid (80 mg, 

63%). 80 mg (0.17 mmol) of 6.44 were dissolved in a mixture of TFA (2 mL) and CH2Cl2 (5 mL) and 

stirred over night at room temperature. Removal of the solvent in vacuo and purification by 

preparative HPLC (column: Kinetex, gradient: 0-30 min: MeCN/0.1% aq. TFA 15:85-70:30, tR = 

13.9 min) afforded the product as white hygroscopic solid (50 mg, 50%). Rf= 0.3 (CH2Cl2 / 1.75 N 

NH3 in MeOH 9:1). RP-HPLC (gradient 1, 220 nm): 99.8% (tR = 17.32 min, k = 4.97). 1H-NMR (600 

MHz, [D6]DMSO, COSY, HSQC, HMBC): δ (ppm) 2.77 (t, 2H, J 7.16 Hz), 3.36-3.39 (m, 2H), 7.13 (s, 

1H), 7.20-7.23 (m, 4H), 7.29-7.31 (m, 2H), 7.48 (t, 1H, J 7.95 Hz), 7.58 (t, 1H, J 5.59 Hz), 7.72-7.73 

(m, 1H), 7.79-7.80 (m, 1H), 8.62 (br s, 1H), 8.96 (br s, 1H), 10.06 (s, 1H), 10.67 (s, 1H). 13C-NMR 

(150 MHz, [D6]DMSO, COSY, HSQC, HMBC): δ (ppm) 34.9, 40.7, 102.9, 122.9, 124.7, 124.8, 126.3, 

128.4, 128.7, 130.1, 133.9, 135.9, 138.8, 147.6, 153.40, 153.44, 168.5. HRMS (ESI) m/z (M+H)+ 

calcd. for C19H21N6OS+: 381.1492, found: 381.1493. C19H20N6OS ∙ C4H2F6O4 (380.47 + 228.05). 

 

6-(3-(Hexylcarbamoyl)guanidino)-2-amino-4,5,6,7-tetrahydrobenzo[d]thiazole 

bis(hydrotrifluoroacetate) (6.66) 

6.66 was prepared from 6.14 (140 mg, 0.44 mmol, 1 eq), 6.12 (90 mg, 0.53 mmol, 1.2 eq), HgCl2 

(239 mg, 0.88 mmol, 2 eq) and triethylamine (134 mg, 1.32 mmol, 3 eq) dissolved in CH2Cl2 (11 

mL) according to the general procedure. Purification by automated flash chromatography (CH2Cl2 

/MeOH 100:0-85:15 in 30 min) afforded the Boc-protected intermediate 6.45 as a yellow solid 

(110 mg, 57%). 110 mg (0.25 mmol) of 6.45 were dissolved in a mixture of TFA (2 mL) and CH2Cl2 

(5 mL) and stirred over night at room temperature. Removal of the solvent in vacuo and 

purification by preparative HPLC (column: Kinetex, gradient: 0-30 min: MeCN/0.1% aq. TFA 10:90-

60:40, tR = 12.0 min) afforded the product as white hygroscopic solid (46 mg, 33%). Mp: 121-
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122 °C.  Rf= 0.2 (CH2Cl2 / 1.7 N NH3 in MeOH 9:1). RP-HPLC (gradient 1, 220 nm): 95.3% (tR = 17.10 

min, k = 4.90). 1H-NMR (600 MHz, [D6]DMSO, COSY, HSQC, HMBC): δ (ppm) 0.84-0.86 (m, 3H), 

1.24-1.29(m, 6H), 1.39-1.42 (m, 2H), 1.83-1.97 (m, 2H), 2.51-2.60 (m, 3H), 2.86-2.89 (m, 1H), 3.06-

3.09 (m, 2H), 4.04-4.05 (m, 1H), 7.50 (s, 1H), 8.67 (br s, 4H), 9.07 (s,1H), 10.17 (s, 1H). 13C-NMR 

(150 MHz, [D6]DMSO, COSY, HSQC, HMBC): δ (ppm) 14.3, 21.7, 22.5, 26.3, 26.8, 28.4, 29.3, 31.3, 

1C under solvent peak (38.7-40.3), 46.9, 112.0, 136.5, 153.7, 154.2, 168.9. HRMS (ESI) m/z (M+H)+ 

calcd. for C15H27N6OS +: 339.1962, found: 339.1962. C15H26N6OS ∙ C4H2F6O4 (338.47 + 228.05). 

6-(3-((Phenylmethyl)carbamoyl)guanidino)-2-amino-4,5,6,7-tetrahydrobenzo[d]thiazole 

bis(hydrotrifluoroacetate) (6.67) 

6.67 was prepared from 6.17 (192 mg, 0.59 mmol, 1 eq), 6.12 (110 mg, 0.65 mmol, 1.1 eq), HgCl2 

(320 mg, 1.18 mmol, 2 eq) and triethylamine (180 mg, 1.77 mmol, 3 eq) dissolved in CH2Cl2 (16 

mL) according to the general procedure. Purification by automated flash chromatography 

(CH2Cl2/MeOH 100:0-85:15 in 30 min) afforded the Boc-protected intermediate 6.46 as a yellow 

solid (80 mg, 34%). 80 mg (0.18 mmol) of 6.46 were dissolved in a mixture of TFA (2 mL) and 

CH2Cl2 (5 mL) and stirred over night at room temperature. Removal of the solvent in vacuo and 

purification by preparative HPLC (column: Kinetex, gradient: 0-30 min: MeCN/0.1% aq. TFA 15:85-

60:40, tR = 11.2 min) afforded the product as white solid (16 mg, 16%). Mp: 140-145 °C. Rf= 0.2 

(CH2Cl2 / 1.7 N NH3 in MeOH 9:1). RP-HPLC (gradient 1, 220 nm): 97.0% (tR = 14.40 min, k = 3.97). 
1H-NMR (600 MHz, [D6]DMSO, COSY, HSQC, HMBC): δ (ppm) 1.83-1.89 (m, 1H), 1.95-1.97 (m, 1H), 

2.53-2.60 (m, 3H), 2.86-2.89 (m, 1H), 4.03-4.05 (m, 1H), 4.30 (d,2H, J 5.70 Hz), 7.24-7.28 (m, 3H), 

7.32-7.34 (m, 2H), 8.02 (br s, 1H), 8.74 (br s, 4H), 9.07 (br s, 1H), 10.36 (br s, 1H). 13C-NMR (150 

MHz, [D6]DMSO, COSY, HSQC, HMBC): δ (ppm) 21.2, 26.3, 27.9, 42.7, 46.4, 111.5, 127.1, 127.2, 

128.4, 138.6, 140.2, 153.2, 153.8, 168.5. HRMS (ESI) m/z (M+H)+ calcd. for C16H21N6OS+: 345.1492, 

found: 345.1485. C16H20N6OS ∙ C4H2F6O4 (344.44 + 228.05). 

 

1-(Amino[3-(2-aminothiazol-4-yl)phenylamino]methylene)-3-(6-[3-(amino[3-(2-aminothiazol-4-

yl)phenylamino]methylene)ureido]hexyl)urea tetra(hydrotrifluoracetate) (6.70) 

6.70 was prepared from 3.33 (130 mg, 0.24 mmol, 1 eq), 6.7 (136 mg, 0.71 mmol, 3 eq), HgCl2 

(143 mg, 0.53 mmol, 2.2 eq) and DIPEA (155 mg, 1.20 mmol, 5 eq) dissolved in CH2Cl2 (5 mL) 

according to the general procedure. Purification by automated flash chromatography (PE/EtOAc 

80:20-20:80 in 30 min) afforded the Boc-protected intermediate 6.68 as a yellow foam (180 mg, 

91%). 160 mg (0.19 mmol) of 6.68 were dissolved in a mixture of TFA (2 mL) and CH2Cl2 (5 mL) 

and stirred over night at room temperature. Removal of the solvent in vacuo and purification by 

preparative HPLC (column: Kinetex, gradient: 0-30 min: MeCN/0.1% aq. TFA 15:85-45:55, tR = 

13.4 min) afforded the product as white solid (140 mg, 67%). Mp: 128-133 °C. Rf= 0.1 (PE/EtOAc 

2:1). RP-HPLC (gradient 1, 220 nm): 97.3% (tR = 14.99 min, k = 4.17). 1H-NMR (600 MHz, MeOD, 

COSY, HSQC, HMBC): δ (ppm) 1.38-1.41 (m, 2H), 1.56-1.58 (m, 2H), 3.24 (t, 2H, J 7.03 Hz), 7.35-

7.41 (m, 1H), 7.60 (t,1H, J 7.95 Hz), 7.71 (m, 1H), 7.75-7.76 (m, 1H). 13C-NMR (150 MHz, MeOD, 

COSY, HSQC, HMBC): δ (ppm) 27.4, 30.3, 40.7, 104.6, 124.7, 127.0, 127.9, 132.1, 133.2, 135.5, 

142.0, 155.3, 155.9, 172.6. HRMS (ESI) m/z (M+H)+ calcd. for C28H35N12O2S2
+: 635.2442, found: 

635.2443. C28H34N12O2S2 ∙ C4H2F6O4 (634.78 + 228.05). 
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1-(Amino[3-(1H-pyrazol-4-yl)propylamino]methylene)-3-(6-[3-(amino[3-(1H-pyrazol-4-

yl)propylamino]methylene)ureido]hexyl)urea tetra(hydrotrifluoracetate) (6.71) 

6.71 was prepared from 3.33 (129 mg, 0.24 mmol, 1 eq), 3-(1-trityl-1H-pyrazol-4-yl)prop-1-yl-

amine (260 mg, 0.71 mmol, 3 eq), HgCl2 (143 mg, 0.53 mmol, 2.2 eq) and DIPEA (155 mg, 1.20 

mmol, 5 eq) dissolved in CH2Cl2 (5 mL) according to the general procedure. Purification by 

automated flash chromatography (PE/EtOAc 100:0-70:30 in 20 min) afforded the Boc-protected 

intermediate 6.69 as a white foam (230 mg, 81%). 190 mg (0.16 mmol) of 6.69 were dissolved in 

a mixture of TFA (2 mL) and CH2Cl2 (10 mL) and stirred over night at room temperature. Removal 

of the solvent in vacuo and purification by preparative HPLC (column: Nucleodur, gradient: 0-30 

min: MeCN/0.1% aq. TFA 10:90-55:45, tR = 13.8 min) afforded the product as white solid (80 mg, 

52%). Mp: 84-88 °C. Rf= 0.1 (CH2Cl2 / 1.7 N NH3 in MeOH 9:1). RP-HPLC (gradient 2, 220 nm): 

97.3% (tR = 12.84 min, k = 3.43). 1H-NMR (600 MHz, [D6]DMSO, COSY, HSQC, HMBC): δ (ppm) 1.26 

(br s, 4H), 1.41-1.43 (m, 4H), 1.76 (qui, 4H, J 7.25 Hz), 2.46 (t, 4H, J 7.60 Hz), 3.06-3.09 (m, 4H), 

3.21-3.24 (m, 4H), 7.49 (s, 6H), 8.47 (br s, 4H), 9.00 (br s, 2H), 10.34 (br s, 2H). 13C-NMR (150 MHz, 

[D6]DMSO, COSY, HSQC, HMBC): δ (ppm) 20.5, 25.9, 28.9, 29.2, 1C under solvent peak (38.7-

40.3), 40.4, 118.7, 132.2, 153.78, 153.82. HRMS (ESI) m/z (M+H)+ calcd. for C22H39N12O2
+: 

503.3313, found: 503.3309. C22H38N12O2 ∙ C4H2F6O4 (502.63 + 228.05). 

 

Investigation of the chemical stability Claudia Honisch Master Thesis 

The chemical stability of the compounds 6.49, 6.50 and 6.52 as well as the acylguanidines UR-

Bit22, UR-Bit23 and UR-Bit29 was investigated in PBS (pH = 7.4) at room temperature. The 

incubation was started by dilution of a 10 mM solution of the compound in aqueous HCl (20 mM) 

with PBS (pH 7.4), resulting in a 100 µM solution. After 0 h, 72 h and 7 days a 20 µL aliquot was 

added to 20 µL of a mixture of aqueous TFA solution (1%)/H2Omillipore/MeCN (6:3:1, v:v:v). A 

sample (20 µL) was immediately analyzed by analytical HPLC. A system from Agilent 

Technologies, composed of a 1290 Infinity binary pump equipped with a degasser, a 1290 Infinity 

autosampler, a 1290 Infinity thermostated column compartment and a 1260 Infinity diode array 

was used. A Kinetex XB-C18 100A (100 x 3 mm, 2.6 µm, Phenomenex, Aschaffenburg, Germany) 

served as RP-column. Mixtures of CH3CN (A) and 0.05% aq. TFA (B) were used as mobile phase. 

Helium degassing, 25 °C, a flow rate of 0.5 mL/min and a detection wavelength of 220 nm were 

used throughout. The following linear gradient was applied for the HPLC analysis: 0-15 min: A/B 

5:95-35:65, 15-18 min: 35:65-95:5, 18-23 min: 95:5 (isocratic). 
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6.3.3 Pharmacological Methods 

Radioligand competition binding assay on Sf9 insect cell membranes 

Preparation of the membranes of Sf9 insect cells expressing the hH2R-GsαS fusion protein or co-

expressing the hH1R + RGS4, the hH3R + Giα2 + β1γ2 or hH4R + Giα2 + β1γ2 proteins was described 

elsewhere.30 

Radioligand competition binding assays were performed as described previously with minor 

adjustments using the following radioligands: [3H]mepyramine (Hartmann Analytic, 

Braunschweig, Germany; specific activity = 20 Ci/mmol; hH1R: Kd = 4.5 nM, cfinal = 5 nM), [3H]UR-

DE25714 (hH2R: specific activity = 32.89 Ci/mmol, Kd = 12.2 nM, cfinal = 20 nM), [3H]UR-PI29431 

(specific activity = 93.3 Ci/mmol; hH3R: Kd = 1.1 nM, cfinal = 2 nM; hH4R: Kd = 5.1 nM, cfinal = 5 nM) 

and [3H]histamine (Hartmann Analytic, Braunschweig, Germany; specific activity = 25 Ci/mmol; 

hH3R: Kd = 12.1 nM, cfinal = 15 nM; hH4R: Kd = 15.9 nM, cfinal = 10 nM). 

On the day of the experiment Sf9 membranes were thawed and sedimented by centrifugation at 

13,000 rpm at 4 °C for 10 min. The membranes were resuspended in ice cold binding buffer (12.5 

mM MgCl2, 1mM EDTA and 75 mM Tris/HCl, pH 7.4; in the following referred to as BB) and 

adjusted to a protein concentration of 2-4 µg/µL. 80 µL BB containing 0.2% BSA and the 

respective radioligand, followed by 10 µL of the investigated ligands at various concentrations 

(dissolved in H2O), were added to every well of a 96-well plate (PP microplates 96 well, Greiner 

Bio-One, Frickenhausen, Germany). Incubation was started by addition of the membrane 

suspension (10 µL). The plates were shaken for 60 min at room temperature in the dark. 

Subsequently, bound radioligand was separated from free radioligand by filtration through glass 

microfiber filters (Whatman GF/C, Maidstone, UK), treated with 0.3% polyethylenimine (PEI), 

using a 96-well Brandel harvester (Brandel Inc., Unterföhring, Germany). The punched out filter 

pieces were transferred into clear, flexible 96-well PET microplate (round bottom, 1450-401, 

Perkin Elmer, Rodgau, Germany). Each well was supplemented with 200 µL of scintillation 

cocktail (Rotiscint Eco plus, Roth, Karlsruhe, Germany) and incubated in the dark for at least 4 h. 

The radioactivity was measured with a MicroBeta2 1450 scintillation counter (Perkin Elmer, 

Rodgau, Germany). 

 

Functional GTPγS assay on Sf9 insect cell membranes 

GTPγS assays were performed as described previously5 with minor modifications. [35S]GTPγS 
(specific activity = 1000 Ci/mmol) was purchased from Hartmann Analytic (Braunschweig, 

Germany). Sf9 membranes were prepared in the same manner as for radioligand competition 

binding and the protein concentration was adjusted to 0.5-1.5 µg/µL. 

Agonist mode: 80 µL of BB containing BSA (0.05% final), GDP (1 µM final) and [35S]GTPγS (20 nCi 
final), followed by 10 µL of the investigated ligands at various concentrations (dissolved in H2O) 

were added to every well of a 96-well plate (PP microplates 96 well, Greiner Bio-One, 

Frickenhausen, Germany). Incubation was started by addition of the membrane suspension (10 

µL). The plates were shaken for 60 min at room temperature in the dark. Subsequently, bound 

radioligand was separated from free radioligand by filtration through glass microfiber filters 
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(Whatman GF/C, Maidstone, UK) using a 96-well Brandel harvester (Brandel Inc., Unterföhring, 

Germany). 

Antagonist mode of the GTPγS assay was performed in the same way as the agonist mode, but in 
the presence of the agonist histamine (1 µM final). 

 

Cell culture 

The preparation of stably transfected HEK293T-hH2R-βArr215,32 cells was described elsewhere.  

Cells were cultivated at 37 °C in a water saturated atmosphere containing 5% CO2. Dulbecco´s 

Modified Eagle Medium, containing 4.5 g/L glucose, 3.7 g/L NaHCO3, 110 mg/L sodium pyruvate 

(DMEM, Sigma-Aldrich Munich, Germany) and supplemented with 0.584 g/L L-glutamine (L-

glutamine solution, Sigma-Aldrich Munich, Germany), 1% (v/v) penicillin-streptomycin (P/S, 

10,000 U/mL, Sigma-Aldrich Munich, Germany), 10% (v/v) fetal calf serum (FCS, Biochrom GmbH, 

Merck, Berlin, Germany) were used as a culture medium. Additionally, 400 µg/mL zeocin 

(InvivoGen, San Diego,USA) and 600 µg/mL G418 were added to the culture medium of HEK293T-

hH2R-βArr2 cells.  

 

β-Arrestin2 recruitment assay 

The -Arrestin2 recruitment assays were performed as described previously for the H1R using 

HEK293T-hH2R-βArr2 cells, stably expressing the hH2R-ElucC and βArr2-ElucNfusion constructs32. 

One day prior to the experiment, HEK293T-hH2R-βArr2 cells were trypsinized and detached with 

DMEM medium (high glucose without phenol red (Sigma Aldrich, Munich, Germany) containing 

1% (v/v) P/S and 5% (v/v) FCS. The cell suspension was adjusted to 1.1 ∙ 106 cells/mL and 90 µl 

(100,000 cells/well) were seeded in every well of a sterile, luciferase assay compatible, F-bottom 

96-well plate (Cellstar®, Greiner Bio-One, Kremsmünster, Österreich). The cells were cultivated at 

37 °C overnight in a water saturated atmosphere containing 5% CO2. The investigated ligands 

were added at increasing concentrations (10 µL), and the plate was incubated at 25 °C for 60 min 

under shaking. 50 µL of the medium were removed, and 50 µL of Bright-Glo reagent (Promega, 

Madison, USA) were added. Bioluminescence was immediately measured for 1 s per well using a 

GENios Pro microplate reader (Tecan, Salzburg, Austria). 

 

Radioligand competition binding assay on homogenates from HEK293T cells expressing the 

hD2longR or hD3R  

The preparation of the cells (HEK293T-CRE-Luc-hD2longR and HEK293T-CRE-Luc-hD3R cells), their 

cultivation, the preparation of the homogenates and radioligand competition binding assays 

were performed by Lisa Foster as a part of her ongoing dissertation. 

Radioligand competition binding assays were performed as described for Sf9 cell membranes 

with some adjustments using the radioligand [³H]N-methylspiperone (specific activity of 77 
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Ci/mmol, Novandi Chemistry AB, Södertälje, Sweden; hD2longR: Kd = 0.014 nM, cfinal = 0.05 nM; 

hD3R: Kd = 0.026 nM, cfinal = 0.05 nM). 

Cell lines expressing the human D2longR and D3R were grown in 150 mm dishes to 80-90% 

confluency. Cells were rinsed with ice-cold PBS- and scraped from the dishes using a cell scraper 

in the presence of harvest buffer (10 mM Tris·HCl, 0.5 mM EDTA, 5.5 mM KCl, 140 mM NaCl; pH 

7.4) supplemented with protease inhibitors. After centrifugation (500g, 5 min), the D2longR 

expressing cells were resuspended in homogenate buffer (50 mM Tris·HCl, 5 mM EDTA, 1.5 mM 

CaCl2, 5 mM MgCl2, 5 mM KCl, 120 mM NaCl; pH 7.4) and the D3R expressing cells were 

resuspended in Tris-MgSO4 buffer (10 mM Tris·HCl, 5 mM MgSO4; pH 7.4) and stored at -80°C. 

After thawing, the cells were resuspended in homogenate buffer or Tris-MgSO4 buffer 

respectively and homogenized using an Ultraturrax (5 times for 5 s on ice). The homogenate was 

centrifuged (50 000 g, 6 °C, 15 min), the pellet resuspended in binding buffer (50 mM Tris·HCl, 

pH, 7.4, containing  1mM EDTA, 5 mM MgCl2, 100 µg/mL bacitracin;) and homogenized using a 

syringe and needle. The homogenate was stored in small aliquots at -80°C.  

For radioligand binding, to 80 µL of the homogenate suspension, 10 µL of radioligand and 10 µL 

of the ligand at various concentrations (dissolved in binding buffer), were added to every well of 

a 96-well plate (PP microplates 96 well, Greiner Bio-One, Frickenhausen, Germany). Unspecific 

binding was determined using (+)-butaclamol at a final concentration of 2 µM, instead of the 

ligand. The plates were shaken for 60 min at room temperature in the dark. Subsequently, bound 

radioligand was separated from free radioligand by filtration through glass microfiber filters 

(Whatman GF/C, Maidstone, UK), treated with 0.3% polyethylenimine (PEI), using a 96-well 

Brandel harvester (Brandel Inc., Unterföhring, Germany). The punched out filter pieces were 

transferred into clear, flexible 96-well PET microplate (round bottom, 1450-401, Perkin Elmer, 

Rodgau, Germany). Each well was supplemented with 200 µL of scintillation cocktail (Rotiscint 

Eco plus, Roth, Karlsruhe, Germany) and incubated in the dark for at least 4 h. The radioactivity 

was measured with a MicroBeta2 1450 scintillation counter (Perkin Elmer, Rodgau, Germany). 
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6.3.4 Data analysis 

Retention factors k were calculated according to k = (tR- t0)/ t0 (t0 = dead time).  

Total binding data from radioligand competition binding experiments were plotted against 

log(concentration competitor) and analyzed by a four-parameter logistic equation (log(inhibitor) 

vs response – variable slope, GraphPad Prism Software 5.0, San Diego, CA), followed by 

normalization (100%  = “top” of the four-parameter logistic fit, 0% = unspecifically bound 

radioligand/ fluorescent ligand determined in the presence of famotidine at 100 µM). Normalized 

data from competition binding experiments was again analyzed by a four-parameter logistic 

equation (log(inhibitor) vs response – variable slope, GraphPad Prism) and obtained pIC50 values 

were converted into pKi values according to the Cheng-Prusoff equation33. 

Data of the GTPγS assay (agonist mode) were processed by plotting the corrected counts per 

minute (ccpm) against log(concentration). In most cases data analysis by bell-shaped fit was 

ambiguous due to lack of data points at high concentrations (>100 µM). The data points at high 

concentrations ( 10-100 µM), where the signal decreased again, were excluded in the analysis 

by a four parameter logistic equation (GraphPad Software). The concentration response curve 

was normalized (0%  = water value (basal activity), 100% = “top” histamine equation) and again 
analyzed by a four-parameter logistic equation (log(agonist) vs. response – variable slope, 

GraphPad Prism). 

Data from the GTPγS assay (antagonist mode) were processed by plotting the ccpm against 

log(concentration) and analysis by a four parameter logistic equation (GraphPad Prism), followed 

by normalization (100%  = “top” of the four-parameter logistic fit, 0% = unspecifically bound 

[35S]GTPγS (ccpm) determined in the presence of famotidine at 100 µM) and analysis by four-

parameter logistic equation (log(inhibitor) vs response – variable slope, GraphPad Prism). pIC50 

values were converted into pKB values according to the Cheng-Prusoff equation33.  

Data of the beta-Arrestin2 recruitment assay (agonist mode) were processed by plotting the 

luminescence (RLU) against log(concentration). In all cases data analysis by bell-shaped fit was 

ambiguous due to lack of data points at high concentrations (>300 µM). The data points at high 

concentrations ( 10-100 µM), where the signal decreased again, were excluded in the analysis 

by a four parameter logistic equation (GraphPad Prism). The concentration response curve was 

normalized (0%  = water value (basal activity), 100% = “top” histamine equation) and again 
analyzed by a four-parameter logistic equation (log(agonist) vs. response – variable slope, 

GraphPad Prism).  
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6.4 SUMMARY AND CONCLUSION 

The bioisosteric replacement of the acylguanidine moiety in the monomeric NG-acylated 

amino(methyl)thiazolylpropylguanidines by a carbamoylguanidine moiety resulted in ligands with 

retained or even improved hH2R potency with pEC50 values of 6.3-7.76 (ligands 6.47-6.59). A 

variety of aliphatic and aromatic residues were well tolerated. Compounds containing an 

amino(methyl)thiazolyl propyl moiety achieved up to 80 fold the potency of histamine and partial 

to full agonistic activities with more or less pronounced bell-shaped concentration-response 

curves. Additionally, the ligands 6.53, 6.55, 6.58 and 6.59 were investigated for dopamine 

receptor affinity (hD2longR and hD3R). These ligands showed affinity to the hD2longR (pKi: 6.28-6.58) 

and hD3R (pKi: 6.88-7.36). There was a clear preference for the hH2R over the hD2longR. But only 

ligand 6.59 showed a clear preference towards the hH2R over the hD3R and the ligands 6.53, 6.55 

and 6.58 bound non-selective to both receptors. Incorporation of the less flexible 2-amino-

4,5,6,7-tetrahydrobenzothiazol-6-yl moiety, derived from pramipexole, resulted in partial (6.67, 

Emax: 0.53, pEC50: 6.7) or in weak partial agonism (6.66, Emax: 0.16, pEC50: 6.83) and bell-shaped 

concentration-response curves. Interestingly, these two ligands showed a decreased hD2longR and 

hD3R affinity compared to pramipexole. Incorporation of an aminothiazolylphenyl moiety 

(compounds 6.60-6.65) resulted in weak antagonism at the hH2R (pKb: 4.8-6.14). Replacement of 

the amino(methyl)thiazolepropyl moiety of UR-NK22 with either a (aminothiazolyl)phenyl (6.70) 

or a pyrazolylpropyl moiety (6.71) resulted in strongly decreased hH2R affinity and antagonistic or 

partial agonistic activity. 

All full or partial agonists identified in the GTPγS assay showed a lower potency and efficacy in 

the βArrestin2 recruitment assay. The ligands 6.53-6.59 also showed in the βArrestin2 

recruitment assay more or less pronounced bell-shaped concentration-response curves. While in 

case of the GTPγS assay plausible explanations would be binding through multiple binding sites or 

direct interaction with the GsαS subunit of the fusion protein, in the βArrestin2 recruitment assay 

also cytotoxicity could be the reason. 

High affinity ligands like 6.48, 6.51 and 6.55 were highly selective for hH2R over the other 

subtypes (Figure 6.11). The investigation of the binding affinity of aminothiazole containing 

ligands like 6.55 to the hD2longR and the hD3R showed that achieving selectivity over these 

dopamine receptors might be a challenge. Notwithstanding, the monomeric NG-carbamoylated 

amino(methyl)thiazolyl propylguanidines represent a good alternative to monomeric 

acylguanidines and dimeric ligands with high stability against hydrolytic cleavage. However, 

according to the current state of knowledge this is just speculation. 

 

Figure 6.11. N
G
-Carbamoylated 3-(2-amino-4-methylthiazol-5-yl)propylguanidines 6.48, 6.51 and 6.55 as high potency 

H2R agonists. 
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The H2R, an aminergic GPCR, is one of four receptor subtypes (H1R, H2R, H3R, H4R) which mediate 

the action of the biogenic amine histamine. Activation of H2R results e. g. in gastric acid 

secretion,
1,2

 positive inotropic and chronotropic effects
3
. In humans, the H2R is located on parietal 

cells in the stomach,
2
 in the brain,

4,5
 on neutrophiles and eosinophiles

6
 as well as on smooth 

muscle cells
7
. However, the (patho-) physical role of the H2R, especially in the brain, is still far 

from being understood. Therefore this work aimed at the development of selective high affinity 

molecular tools for the H2R, including agonists, antagonists and radiolabeled as well as 

fluorescent H2R ligands. 

The number of high affinity tritiated radioligands for the H2R is very limited. Guanidinothiazole 

containing ligands such as famotidine or ICI127032 represent a class of surmountable H2R 

antagonists.
8,9

 The combination of the 2-guanidino-4-[(2-aminoethyl)thiomethyl]thiazole 

structure derived from famotidine or the guanidino-4-(3-aminophenyl)thiazole structure derived 

from ICI127032 with a derivatized squaramide or a cyanoguanidine moiety (“urea equivalent”) 
led to propionylated high affinity H2R antagonists. N-[8-(2-[2-(2-guanidinothiazol-4-

ylmethylthio)ethylamino]-3,4-dioxocyclobut-1-ene-1-ylamino)octyl]propionamide (3.25) showed 

a pKi value of 7.65 at the hH2R and selectivity over the other subtypes (no affinity at the hH1R, 

hH3R: pKi value of 5.3 and hH4R: pKi value of 4.4). The radiolabled form [
3
H]3.25 bound in a 

saturable manner (Kd values of 15-22 nM) to membrane preparations of Sf9 cells and intact Hek 

cells both recombinantly expressing hH2Rs. Although a part of [
3
H]3.25 bound in 

(pseudo)irreversible manner (plateau at 23%), the kinetic Kd value of 26 nM was comparable to 

that determined at equilibrium, and the radioligand 
3
H]3.25 was completely displacable by 

histamine, famotidine and ICI127032. However, the radioligand showed a radiochemical purity of 

only 87% and low stability in stock solution (radiochemical purity: <45% after 15 month). 

Nevertheless, [
3
H]3.25 can be a valuable molecular tool provided that purity and stability under 

storage conditions are improvable. 

Aminopotentidine and it´s derivatives are reported as high affinity H2R antagonists. Iodination in 

3 position of the 4-aminobenzoic acid amide moiety results in an enormous gain in affinity 

(iodoaminopotentidine).
4,5

 Aminopotentidine and its analogs with different substituents (e.g. 

iodine, bromine, chlorine, trifluoromethyl) in position 3, were prepared and propionylated. 

Within the series of propionylated derivatives the brominated ligand (4.37) and the iodinated 

ligand (4.38) showed the highest hH2R affinities (pKi values of 8.5 and 8.18) along with excellent 

selectivities over the hH3R (6900- or 2500-fold). In general, for radiosynthesis an excess of 

precursor compared to radioactive labeling reagent is used. However, an adjustment of the 

reaction conditions for radiosynthesis might be challenging due to the necessary high excess of 

the “cold” labeling reagent propionic chloride and the low yields in the “cold” reaction. A test 

reaction under radiosynthesis conditions failed. To overcome this problem, a series of 

aminopotentidine derivatives containing a functionalized (propionylated, acetylated or 

methylated) aminomethyl substituent in 4-position of the aromatic ring was prepared. The 

dimethylated 3-bromo substituted ligand 4.50 showed the highest affinity within the series with 

a pKi value of 7.54. The synthesis of radiolabeled 4.50 is accessible by dimethylation of 4.46 with 

[
3
H]methyl iodide. 

Fluorescent ligands have become an attractive alternative to radioligands for the investigation of 

ligand-receptor interactions. Besides advantages with respect to safety issues and waste disposal, 
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fluorescent ligands are a prerequisite for the application of a plethora of optical techniques 

(confocal microscopy, FRET,
10

 FRAP,
11

 TIRF,
12

 high content imaging,
13

 fluorescence polarization
14

). 

In order to expand the range of applications and avoid the high cellular autofluorescence, 

fluorescent ligands labeled with red-emitting fluorophores (emission wavelength > 600 nm) are 

required. Recently, a series of fluorescent ligands with a piperidinomethylphenoxypropylamino 

(potentidine) pharmacophore was reported.
15

 The most promising ligands within this series were 

the squaramide-type ligands UR-DE229 and UR-DE56 which contained pyridinium or a cyanine 

fluorophore. Aiming at fluorescent high affinity H2R antagonists with improved optical and 

physicochemical properties to gain access to a wide range of potential applications, the 

fluorescent labeled antagonists UR-DE229 (5.12) and UR-DE56 (5.18) were prepared and 

investigated in different assay systems (radioligand competition binding assay, GTPγS binding 

assay, flow cytometric binding assay and high content imaging). Furthermore, a small library of 

fluorescent ligands was synthesized for the exploration of the impact of length of the alkyl linker 

and the net charge of the fluorophores by coupling the positively charged pyrilium dye (Py-5) or 

differently charged cyanine dyes with amine precursors by linkers, differing in length (number of 

atoms). The highest affinities to the hH2R (pKi values > 7.0) in radioligand competition assays 

were obtained in case of the pyridinium labeled ligands 5.12-5.14 and the cyanine labeled ligands 

5.16 (positively charged fluorophore, net charge: 2
+
) and 5.18 (electroneutral fluorophore, net 

charge: 1
+
). While the linker length (4-7 carbon atoms) had no significant influence on the hH2R 

affinity in case of the pyridinium ligands, the cyanine ligands with a hexyl linker (5.16 and 5.18) 

showed an increased hH2R affinity compared analogs, containing a butyl linker. Despite the low 

selectivity towards the hH3R the investigated fluorescent ligands proved to be useful tools for 

binding studies using different techniques (flow cytometry, high content imaging and confocal 

microscopy), when genetically engineered cells, expressing the H2R were used. Investigated 

ligands bound in a saturable manner to the hH2R (flow cytometry and high content imaging) and 

the determined Kd values were in good agreement with the corresponding Ki values from 

radiolligand binding experiments. Kd (kin) values calculated from kinetic experiments (flow 

cytometry or high content imaging) were consistent with the Kd values determined in saturation 

binding experiments even though they showed an incomplete dissociation (insurmountable 

antagonism). High content imaging and confocal microscopy showed that residual bound ligand 

was still located in the cell membrane. Nonetheless, the fluorescent ligands 5.14 and 5.18 also 

proved to be useful for the determination of binding affinities of unlabeled ligands in competition 

binding assays (flow cytometry and high content imaging). 

N
G
-acylated amino(methyl)thiazolepropylguanidines are reported as a class of potent and 

selective histamine H2R agonists, but the acylguanidine group is prone to hydrolytic cleavage 

upon storage in aqueous solution
16,17

. A bioisosteric approach, replacing the N
G
-acylguanidine 

structure with a N
G
-carbamoylguanidine, led in many cases to more stable compounds.

17-19
 For 

exploration of the structure-activity (H2R) and the structure-selectivity relationships of this class 

of compounds, in addition to dimeric ligands, a series of carbamoylguanidines with various 

aminothiazole-based substructures, i.e., the 3-(2-amino-4-methylthiazol-5-yl)propyl moiety, a 

conformationally constrained (aminothiazolyl)phenyl and a 2-amino-4,5,6,7-

tetrahydrobenzothiazol-6-yl portion were prepared. Compounds containing the conformationally 

constrained aminothiazolylphenyl moiety were antagonists with only a weak affinity to the hH2R 

and compounds containing the less flexible 2-amino-4,5,6,7-tetrahydrobenzothiazol-6-yl moiety, 
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derived from pramipexole, showed partial (6.67, α: 0.53, pEC50 value: 6.7) or weak partial 

agonism (6.66, α: 0.16, pEC50 value: 6.83) and bell-shaped concentration-response curves. 

Amino(methyl)thiazolyl propyl containing compounds achieved up to 80-fold the potency of 

histamine (pEC50 values of 6.3-7.76) and partial to full agonistic activities with more or less 

pronounced bell-shaped concentration-response curves. A variety of aliphatic and aromatic 

residues was well tolerated and the agonistic N
G
-carbamoylated guanidine-type ligands exhibited 

some functional bias towards G-protein activation. Additionally, representative ligands were 

investigated for dopamine receptor affinity (hD2longR and hD3R). These ligands showed affinity to 

the hD2longR (pKi value: 5.6-6.97) and hD3R (pKi value: 5.3-7.6). 

In conclusion, this work afforded new radiolabeled and fluorescence labeled molecular tools for 

the hH2R and showed that N
G
-carbamoylated amino(methyl)thiazolepropylguanidines are G-

Protein biased, high affinity hH2R agonists with good longterm stability. 
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