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Summary 

Nanocontainers are being applied for many bioanalytical strategies, e.g. in bioassays, in chemosensors 

or for bioimaging and in vivo applications. They vary with respect to the materials used (such as 

mesoporous silica, polymers or proteins). These enable different unique characteristics mainly through 

their cavities or pores for the entrapment of numerous signaling molecules and their large surface area 

for the attachment of various surface tags. Of special interest is their signal amplification capability 

where the surface tags enable a specific analyte recognition as well as a controlled pore permeability. 

Among all the different types of nanocontainers, liposomes excel by their relatively simple preparation 

and surface functionalization, their large inner cavity and variety of possible entrapped molecules, 

short assay response times due to an efficient lysis of the membrane, promising multimodal 

approaches for clinical diagnosis and therapy as well as by their natural biocompatibility and are thus 

of major interest in the field of (bio)analysis (Chapter 1). 

For all applications in this area a careful control of the vesicle surface is necessary as it not only provides 

colloidal stability in complex aqueous solutions but also enables a specific binding to surfaces or the 

recognition of the analyte of interest. Therefore, the surface charge as well as methods for the 

introduction of specific functionalities were studied in detail in this thesis and the developed liposomes 

characterized and investigated towards their applicability as signal enhancers for the detection of 

bacteria or the preconcentration of DNA. 

Standard methods for the surface functionalization of liposomes via covalent coupling post synthesis 

or modification directly during synthesis using functionalized lipids result in the production of 

numerous functionalized liposomes suitable for many applications. However, due to the need for 

elevated temperatures and organic solvents, time-consuming preparation and purification steps, low 

coupling yields, crosslinking or the decoration of the inner and outer leaflet of the bilayer, these 

methods are accompanied by a comparatively high loss of functionalities and are often unsuitable for 

fragile moieties. Moreover, large variations in the insertion efficiency, high batch-to-batch differences, 

and an incorporation limit of 4 mol% in case of direct modification with DPPE-biotin during synthesis 

were observed. Therefore, an alternative strategy for the insertion of different anchor molecules into 

dye-loaded liposomes composed of DPPC, DPPG and cholesterol was developed, and the tested 

molecules studied for their ability to effectively insert into the lipid bilayer and their binding 

functionality. The best system (lipopeptide-biotin) provided a fast, concentration-controlled 

functionalization up to 10 mol% in aqueous solution at room temperature and a reliable and 

quantitative binding to streptavidin with no effect on the analytical properties of the vesicles. Thus, 
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the vesicles only differ by the type or concentration of the functional moiety on the liposome surface 

which provides a huge potential for applications in the development of bioanalytical assays or for 

multi-analyte detection but can also be extended to other lipid-based nanomaterials and general 

analytical or pharmaceutical applications (Chapter 3). 

Standard characterization of liposomes includes the determination of the vesicle size, ζ-potential and 

phospholipid concentration. However, there are several other parameters that can be investigated, 

such as the number of particles and surface tags or the specific binding of the vesicles to particles or 

surfaces. Therefore, ssDNA-tagged liposomes were prepared and characterized in detail using the 

standardly applied methods like DLS or ICP-OES as well as other optical methods. The number of 

liposomes was e.g. successfully determined via fluorescence correlation spectroscopy. Moreover, a 

hybridization assay with a fluorophore-tagged complementary oligonucleotide strand was developed 

to determine the number of ligands on the vesicle surface. In addition, fluorescence microscopy 

confirmed e.g. a successful purification, the specific binding of the functionalized vesicles to magnetic 

microparticles and enabled the imaging of the ideal lysis conditions for the applied liposomes (22 mM 

OG). Also the superior performance of liposomes over simple fluorophore-tagged oligonucleotides 

with respect to signal amplification was successfully demonstrated (Chapter 4). 

The ability of liposomes to strongly enhance signals has already been exploited for many different 

bioanalytical assays. Here, mainly anionic lipid vesicles are applied as they prevent non-specific binding 

to most biological molecules or surfaces. The use of cationic liposomes is mainly restricted to 

pharmaceutical applications, such as in gene delivery. Therefore, a different approach for the use of 

dye-loaded cationic liposomes has been developed which is based on their electrostatic binding to the 

negatively charged surface of the model bacterium E.coli. Two different assay concepts were 

investigated and optimized to exploit this interaction for the detection of E.coli. The first concept is 

based on centrifugation and the second one on the immobilization of the bacteria to Poly-L-Lysin-

coated microtiter plates. Sulforhodamine B-loaded liposomes enabled the analysis via fluorescence 

and yielded detection limits between 106 and 107 cfu ml-1. This was further improved by the 

entrapment of the chemiluminescent marker m-carboxy-luminol. Here, detection limits of                    

~105 cfu ml-1 were achieved using the centrifugation-based assay. As most bacteria provide a negative 

surface charge, this method offers the possibility for a simple and universal detection of gram-positive 

and gram-negative bacteria. However, further optimizations will be necessary to achieve lower limits 

of detection (Chapter 5). 

Besides their use for bacteria detection, preliminary studies also revealed the suitability of cationic 

liposomes for the preconcentration of genomic DNA. Preconcentration of analytes is a common tool 

in analytical chemistry and often described for DNA samples. Here, PCR, alcohol precipitation and 
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magnetic beads belong to the most common methods. As in case of bacteria also DNA is negatively 

charged due to its phosphate backbone. This enables the electrostatic attachment to the cationic 

vesicle surface. For separation two concepts were investigated. The first concept based on the 

separation via magnetic beads resulted in only low enrichment factors of ~2. The second concept was 

based on centrifugation. Here, an incubation time of only 5 min followed by centrifugation for 15 min 

at 15.000 g resulted in an efficient preconcentration of genomic DNA with enrichment factors up to 

75. Thus, these preliminary studies show that cationic liposomes are a promising material in the field 

of DNA preconcentration and may be able to overcome some of the disadvantages of other methods, 

such as the need for organic solvents or chaotropic salts (Chapter 6).  
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Zusammenfassung 

Nanocontainer werden für zahlreiche bioanalytische Strategien eingesetzt, z.B. in Bioassays, in 

Chemosensoren oder für die Bildgebung und in vivo Anwendungen. Sie variieren in Bezug auf die 

verwendeten Materialen (wie z.B. mesoporöses Siliziumdioxid, Polymere oder Proteine). Diese 

bestimmen die spezifischen Eigenschaften vor allem durch ihre Hohlräume und Poren für den 

Einschluss zahlreicher Signalmoleküle und ihre große Oberfläche für das Anbringen von 

Oberflächenfunktionalitäten. Ihre Fähigkeit zur Signalverstärkung ist hierbei von besonderem 

Interesse, wobei funktionelle Gruppen an der Oberfläche sowohl eine spezifische Erkennung des 

Analyten als auch eine kontrollierte Porendurchlässigkeit ermöglichen. Unter all den verschiedenen 

Arten von Nanocontainern stechen Liposomen durch ihre relative leichte Herstellung und 

Oberflächenmodifizierung, ihren großen inneren Hohlraum und die Vielzahl an einschließbaren 

Molekülen, kurze Assay-Antwortzeiten durch effizientes Lysieren der Membran, vielversprechende 

multimodale Ansätze für die klinische Diagnostik und Therapie, sowie durch ihre natürliche 

Biokompatibilität heraus. Sie sind daher von großem Interesse für die (Bio)analytik (Kapitel 1). 

Für alle Anwendungen auf diesem Gebiet ist eine sorgfältige Kontrolle der Vesikeloberfläche nötig, da 

sie nicht nur die kolloidale Stabilität in komplexen, wässrigen Lösungen, sondern auch die spezifische 

Bindung an Oberflächen oder die Erkennung des Ziel-Analyten ermöglicht. Daher wurde in dieser 

Arbeit sowohl die Ladung der Liposomoberfläche als auch das Einführen spezifischer Funktionalitäten 

im Detail untersucht, die entwickelten Liposomen charakterisiert und in Bezug auf ihre Anwendbarkeit 

als Signalverstärker für die Detektion von Bakterien oder für das Aufkonzentrieren von DNA analysiert. 

Standardmethoden für die Oberflächenfunktionalisierung über kovalente Kopplung nach der Synthese 

oder über direkte Modifizierung während der Synthese mit Hilfe von funktionalisierten Lipiden führt 

zur Herstellung von zahlreichen, funktionalisierten Liposomen, die für verschiedenste Anwendungen 

geeignet sind. Allerdings kommt es bei diesen Methoden durch die Notwendigkeit für erhöhte 

Temperaturen und organische Lösungsmittel, die zeitaufwendige Herstellung und Aufreinigung, 

niedrige Kopplungsraten, Quervernetzungen oder die Dekoration der äußeren und inneren 

Membranschicht zu einem verhältnismäßig großen Verlust an Funktionalitäten. Außerdem sind sie 

dadurch oft nicht für fragile Moleküle geeignet. Darüber hinaus wurden im Fall der direkten 

Modifizierung mit DPPE-biotin während der Synthese große Variationen in der Einbaueffizienz, hohe 

Unterschiede zwischen verschiedenen Ansätzen und eine Einbaugrenze von 4 mol% beobachtet. Daher 

wurde eine alternative Strategie für den Einbau unterschiedlicher Ankermoleküle in Farbstoff-

beladene Liposomen aus DPPC, DPPG und Cholesterol entwickelt und die untersuchten Moleküle in 
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Hinblick auf ihre Fähigkeit effektiv in die Lipiddoppelschicht zu insertieren und auf ihre 

Bindungsfunktionalität hin analysiert. Das beste System (Lipopeptid-biotin) ermöglichte eine schnelle, 

konzentrations-kontrollierte Funktionalisierung bis zu 10 mol% bei Raumtemperatur in wässriger 

Lösung und eine zuverlässige, quantitative Bindung an Streptavidin, ohne dabei die analytischen 

Eigenschaften der Vesikel zu beeinflussen. Daher unterscheiden sich die Vesikel ausschließlich durch 

die Art oder Konzentration des funktionellen Restes an der Liposomoberfläche, was ein großes 

Potential für Anwendungen im Bereich der Entwicklung von bioanalytischen Assays oder der Multi-

Analyt-Detektion ermöglicht. Darüber hinaus kann diese Methode auch auf andere Lipid-basierte 

Nanomaterialien oder auf allgemeine analytische oder pharmazeutische Anwendungen ausgeweitet 

werden (Kapitel 3). 

Die standardmäßige Charakterisierung von Liposomen beinhaltet die Bestimmung der Vesikelgröße, 

ihres ζ-Potentials und ihrer Phospholipidkonzentration. Es gibt allerdings zahlreiche andere Parameter, 

die ebenfalls untersucht werden können, sowie die Anzahl an Partikeln und 

Oberflächenfunktionalitäten oder die spezifische Bindung der Vesikel an Partikel oder Oberflächen. 

Dazu wurden ssDNA-markierte Liposomen hergestellt und im Detail charakterisiert, wobei sowohl 

Standardmethoden wie DLS oder ICP-OES zum Einsatz kamen als auch andere optische Methoden. Die 

Anzahl an Liposomen wurde beispielsweise erfolgreich über Fluoreszenzkorrelationsspektroskopie 

ermittelt. Darüber hinaus wurde ein Hybridisierungsassay mit einem Fluorophor-markierten, 

komplementären Oligonukleotidstrang entwickelt, um die Anzahl an Liganden auf der 

Vesikeloberfläche zu bestimmen. Außerdem bestätigte die Fluoreszenzmikroskopie beispielsweise 

eine erfolgreiche Aufreinigung, die spezifische Bindung der funktionalisierten Liposomen an 

magnetische Mikropartikel und ermöglichte die Bildgebung der idealen Lyse-Bedingungen für die 

angewendeten Liposomen (22 mM OG). Die überlegene Performance der Liposomen im Vergleich zu 

einfachen Fluorophor-markierten Oligonukleotiden in Bezug auf eine Signalverstärkung wurde 

ebenfalls erfolgreich gezeigt. (Kapitel 4). 

Die Fähigkeit von Liposomen, Signale kräftig zu verstärken, wurde bereits für eine Vielzahl an 

bioanalytischen Assays genutzt. Dazu wurden hauptsächlich anionische Lipidvesikel verwendet, da sie 

eine unspezifische Bindung an die meisten biologischen Moleküle und Oberflächen verhindern. Der 

Einsatz von kationischen Liposomen ist hauptsächlich auf pharmazeutische Anwendungen beschränkt, 

wie z.B. für den Gentransfer. Daher wurde ein anderer Ansatz für den Einsatz von Farbstoff-beladenen, 

kationischen Liposomen entwickelt, welcher auf der elektrostatischen Bindung an die negativ geladene 

Oberfläche des Modell-Bakteriums E.coli beruht. Es wurden zwei verschiedene Assay-Konzepte 

untersucht und optimiert, um diese Wechselwirkung für den Nachweis von E.coli zu verwenden. Das 

erste Konzept basiert auf Zentrifugation und das zweite auf der Immobilisierung der Bakterien an Poly-
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L-Lysin-überzogene Mikrotiterplatten. Sulforhodamin B-beladene Liposomen ermöglichten die Analyse 

über Fluoreszenz und erzielten Detektionsgrenzen zwischen 106 und 107 cfu ml-1. Das wurde weiter 

verbessert durch den Einschluss des chemilumineszenten Markers m-Carboxyluminol. Damit wurde 

mit Hilfe des Zentrifugation-basierten Assays eine Detektionsgrenze von ~105 cfu ml-1 erreicht. Da die 

meisten Bakterien eine negative geladene Oberfläche besitzen, bietet diese Methode die Möglichkeit 

für eine einfache und universelle Detektion sowohl von gram-positiven als auch von gram-negativen 

Bakterien. Allerdings werden weitere Optimierungen nötig sein, um noch niedrigere 

Detektionsgrenzen zu erreichen (Kapitel 5). 

Neben ihrer Verwendung für die Bakteriendetektion, zeigen erste Studien auch die Eignung von 

kationischen Liposomen für die Aufkonzentrierung von genomischer DNA. Das Aufkonzentrieren von 

Analyten ist ein weit verbreitetes Mittel in der analytischen Chemie und wird häufig für DNA-Proben 

beschrieben. Dabei gehören die PCR, die alkoholische Fällung und die Verwendung magnetischer 

Beads zu den bekanntesten Methoden. Wie im Fall von Bakterien ist auch DNA aufgrund ihres 

Phosphat-Rückgrats negativ geladen. Dies ermöglicht eine elektrostatische Bindung an die Oberfläche 

der kationischen Vesikel. Für die Abtrennung ungebundener DNA wurden zwei Konzepte untersucht. 

Das erste Konzept, welches auf der Abtrennung über magnetische Beads basiert, erzielte nur geringe 

Aufkonzentrierungsfaktoren von ~2. Das zweite Konzept basiert auf Zentrifugation. Dabei resultierten 

eine Inkubationszeit von nur 5 min, gefolgt von Zentrifugation für 15 min bei 15.000 g in einer 

effizienten Aufkonzentrierung genomischer DNA mit Aufkonzentrierungsfaktoren bis zu 75. Diese 

ersten Studien zeigen daher, dass kationische Liposomen ein vielversprechendes Material im Bereich 

der DNA-Aufkonzentrierung sind und möglicherweise einige Nachteile der anderen Methoden, wie z.B. 

die Notwendigkeit für organische Lösungsmittel oder chaotrope Salze, beseitigen können (Kapitel 6).  
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1 Nanocontainers for Analytical Applications 

 

Abstract 

Nanocontainers such as mesoporous silica particles and polymersomes are versatile structures 

containing holes or pores used for the entrapment of small molecules and the introduction of specific 

functionalities. They are widely applied in drug delivery, biomedicine, bioreactors and analytical 

applications. In the latter, nanocontainers usually serve as amplification system. They are hence 

synthesized to entrap signaling molecules and to bear functional moieties at the outer surface, which 

in turn enable specific analyte recognition and control of the nanocontainer pore permeability. This 

review outlines the most important nanocontainer materials, discussing their synthesis, surface 

chemistry modifications and strategies for molecule entrapment. Their advantages, challenges and 

limitations in light of (bio)analytical applications are critically discussed in view of other common signal 

amplification strategies for different assay formats and various detection methods. 

__________________________________________________________________________________ 

This chapter has been published. 

C. Hofmann, A. Duerkop, A. J. Baeumner, Angew. Chem. Int. Ed. 2019, 10.1002/anie.201811821. 

Author contributions:  

The literature search and writing of the manuscript was done by CH. AD and AJB revised the manuscript. AJB is 

corresponding author. 
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1.1. Introduction: General Information on Nanocontainers and Possible Applications 

Nanomaterials consisting of hollow structures, i.e. cavities or pores that are able to entrap small 

molecules are called nanocontainers. Liposomes are probably the most established type of 

nanocontainer to find successful application in analytical assays, drug delivery and skin care 

products.[1–5] Over the last couple of years, new concepts of nanocontainers have been proposed and 

successfully demonstrated in similar applications. These are made from a variety of materials such as 

mesoporous silica, polymers,[6] proteins,[7] DNA,[8] gold,[9] metal oxide[10] or carbon.[11] Common to all 

of these structures is their large surface area and inner volume, and their resulting superior ability to 

entrap molecules and enable various chemical surface functionalities. The pores and cavities enable 

the inclusion of molecules such as dyes, drugs, or nanoparticles but can also serve as confined 

environment for biological and chemical reactions. These unique features drive their application as 

nanoreactors,[12–15] nanostorage containers in batteries,[16] for environmental remediation[17] or waste 

water treatment,[18] as biomimetic structures,[19] for drug delivery,[6,20,21] bioimaging,[22,23] 

theranostics[9] and in analytical assays[11,24,25] and sensors.[26,27] 

Reviews on nanocontainers for sensor applications in the last 5 years are either specialized on one 

material [1,28] or cover only biomedical or nanoreactor applications, whereas a focus on analytical 

applications is either missing or kept to a minimum.[7,29] Earlier, in 2012, a more general overview on 

nanoporous materials for bioanalysis was published by Dai et al..[30] In general, for analytical 

applications, the cavities and pores are exploited for the entrapment of signaling molecules and the 

available large surface is functionalized for specific targeting toward the analyte of interest. 

This review discusses the applied materials, their syntheses, advantages provided in analytical assays 

and provides an overview of nanocontainers published between 2013 and 2018 within this topic. The 

reader is directed to other reviews for specialized overviews on liposomes,[1,4] hollow or mesoporous 

structures,[29,31] preparation or functionalization of specific nanocontainers[6,14,32] or on applications 

such as drug delivery,[20,33,34] theranostics,[9] biomimetics,[35] in biomedicine[7,36] and 

nanoreactors.[12,13,15] 

1.2. Synthesis and Surface Functionalization 

Analytically relevant nanocontainers and nanocages are discussed in this review and cover 

mesoporous silica particles, liposomes, and polymer, gold, carbon, protein and metal oxide 

nanocontainers, respectively. Each material requires specific synthesis, purification and 

characterization methods. Common to all are strategies for surface chemistry and functionalization to 

obtain biocompatibility and render the surfaces suitable for analytical applications. 
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1.2.1. Materials for Nanocontainers in (Bio)analysis – Synthesis and Characterization 

1.2.1.1. Liposomes 

Liposomes are prepared by various methods.[2] The most common techniques are thin film hydration 

and reverse phase evaporation which produce reliably large amounts of liposomes. Lately, also 

microfluidic based approaches have been described, however, large-scale production is limited.[4] 

Purification of liposomes is usually done by size exclusion chromatography or dialysis. For 

characterization of the vesicle morphology dynamic light scattering (DLS), zeta-potential 

measurements, transmission electron microscopy (TEM), scanning electron microscopy (SEM) can be 

applied. NMR, inductively coupled plasma-optical emission spectroscopy (ICP-OES), Bartlett assay or 

nanoparticle tracking analysis are used to obtain information on their molecular composition and 

overall concentration.[25,37–39] The size and lamellarity of liposomes depends on the method used for 

preparation and can be tuned via extrusion through polycarbonate membranes or sonication. Small 

lipid vesicles are around 50 nm in size, giant lipid vesicles can be as big as 1 µm.[3] Similarly, the nature 

of the lipids can tune the overall functionality and for example render liposomes cationic, anionic or 

non-ionic; can make them highly stable or include trigger molecules for lysis. Liposomes have been 

intensively studied as cell membrane models, for drug delivery and as signaling means in bioassays.[1] 

In all cases, their large hydrophilic cavity, suitable for entrapment of a large number of signaling 

molecules, the easy surface functionalization, and their inherent biocompatibility makes them highly 

useful. 

1.2.1.2. Mesoporous Silica Nanocontainers 

Mesoporous silica nanocontainers are hollow particles with regular, ordered tunable pores. Diameters 

of 50-180 nm have been reported, the pore sizes are usually in the range of 2.3 to 3.1 nm.[40–42] Larger 

pores of 25 nm can be found for the entrapment of larger compounds like nanoparticles.[43] Possible 

synthesis strategies include soft and hard templating routes,[29,31] but a modified Stöber method is the 

most reported method. Here, a cationic, quaternary ammonium surfactant like 

cetyltrimethylammoniumbromid (CTAB) is mixed with a silicate like tetraethylorthosilicate (TEOS) in a 

mixture of water/ ethanol and ammonia. The surfactant forms positively charged micelles and 

electrostatically forms assemblies with the negatively charged silicate molecules. For functionalization 

often (3-aminopropyl)triethoxysilane (APTES) is added to the initial mixture.[32] Purification of 

mesoporous silica is accomplished by simple centrifugation or filtration followed by reflux in a mixture 

of ethanol and ammonium nitrate or HCl for complete CTAB removal. For characterization of the 

vesicles’ morphology and composition DLS, zeta-potential measurements, TEM, SEM, atomic force 

microscopy (AFM), x-ray diffraction (XRD) and Fourier-transform infrared (FT-IR) spectra are used. 
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Furthermore, nitrogen adsorption-desorption isotherms are used to obtain information on the surface 

area, porosity and pore size.[24,41,42] 

1.2.1.3. Polymer Nanocontainers 

Polymer nanocontainers are vesicles consisting of an ordered polymer membrane and an aqueous 

inner cavity. If amphiphilic, non-branched, synthetic block copolymers are applied for the formation 

the nanocontainers are called polymersomes.[15] They exist in a broad size range of 30-500 nm[12] but 

for analytical applications they are usually below 400 nm.[44–47] There are several ways to synthesize 

polymersomes and polymeric capsules.[15] In the bottom up approach the vesicles are built by self-

assembly of block copolymers, which consist of a hydrophilic and a hydrophobic block. In the top down 

approach a thin polymer film is rehydrated to form the polymersomes. Another approach is based on 

the formation of vesicles during polymerization, which is often applied for polydiacetylene vesicles. 

Moreover, phase separation techniques or template-based polymerization have been reported. 

Purification of polymersomes is mostly done by dialysis, filtration or size exclusion chromatography. 

For characterization of the vesicles’ morphology again DLS, zeta-potential measurements, TEM, SEM 

or AFM are frequently used.[23,45,47,48] 

1.2.1.4. Protein-Based Nanocontainers 

The most interesting material for protein-based nanocontainers for analytical applications is ferritin. 

Ferritin is a spherically shaped protein with a diameter of 12 nm consisting of 24 subunits, which form 

an 8 nm big cavity suitable for the entrapment of signaling molecules. Of the two types of ferritin, the 

iron containing holoferritin and the iron free apoferritin,[20,49] the latter has been used most often for 

analytical applications.[49,50,51,52] Ferritin is commercially available and can be isolated, e.g. from horse 

spleen, some human organs, plants, fungi or bacteria.[20] Other protein-based nanocontainers or 

nanocages like heat-shock proteins, encapsulins or virus capsides have only seldomly been reported 

for analytical applications.[14] Purification and characterization methods rely heavily on standard 

biochemical approaches including dialysis, column chromatography, centrifugation, filtration, sodium 

dodecyl sulfate (SDS) polyacrylamide gel electrophoresis, absorbance measurements, HPLC, Bradford 

assay or Western blot analysis.[53] 

1.2.1.5. Gold Nanocages 

Gold nanocages are mostly cubic structures between 20 and 500 nm in size and consist of hollow 

interiors and porous walls with thicknesses between 2 and 10 nm. They are formed by galvanic 

replacement of Ag nanocubes with aqueous HAuCl4, and their hollow pores are created by dealloying 

of the Ag atoms.[9] Purification of gold nanocages is usually done by centrifugation. For characterization 

of the cage morphology TEM, SEM or energy-dispersive X-ray spectroscopy (EDS), is used as well as 

UV-vis for investigation of their optical properties.[26,54,55] In addition to using their entrapment 
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capabilities, gold nanocages are analytically also employed due to their localized surface plasmon 

resonance (LSPR) properties, which can be tuned from 600 to 1200 nm. These optical properties are 

influenced by the degree of HAuCl4 replacement, and additional incorporation of metals such as Pt or 

Pd into the walls of the nanocages.[9,20] 

1.2.1.6. Carbon-Based Nanocages 

Carbon nanocages can be cubic or spherical hollow structures with sizes up to 20 nm, shell thicknesses 

of 3-5 nm and pore sizes between 3 and ~14 nm.[11,56,57] For their synthesis carbon atom deposition, 

pyrolysis or hard and soft templating techniques have been described.[20] For example cage type 

mesoporous silica has been used as hard template and is removed after successful formation.[56,58] 

Purification is mostly accomplished using size exclusion chromatography. For characterization of the 

cage morphology and composition TEM and FT-IR spectra have been reported and absorbance and 

fluorescence spectra for investigation of the optical properties.[11] 

Also here, nitrogen adsorption-desorption isotherms are used to obtain information on the surface 

area, porosity and pore size.[57,59] Carbon nanocages are usually not applied for the entrapment of 

signaling molecules, instead, changes in the intrinsic fluorescence of the nanocage are exploited for 

sensing.[11,58] 

1.2.1.7. Metal Oxide Nanocontainers 

Metal oxide nanocontainers or nanocages are about 400 nm in size and consist e.g. of CuO, ZnO or 

Co3O4.[27,60,61] For synthesis the use of metal organic frameworks as template or precursor has been 

widely applied[61] mostly starting with zeolite imidazolate frameworks (ZIF).[60] After formation of the 

ZIF-templates core shell structures are formed using an etching and deposition method. By thermal 

annealing at 450 °C the final structures are formed.[60,62] Purification of metal oxide nanocages is 

usually done by centrifugation of the template before the final annealing. For characterization of the 

cage morphology and composition TEM, SEM, XRD, x-ray photoelectron spectroscopy (XPS) or FT-IR 

spectra are used, and again nitrogen adsorption-desorption isotherms to obtain information on the 

surface area, porosity and pore size.[10,27,61,63] Also metal oxide nanocontainers are usually not applied 

for the entrapment of signaling molecules, however, changes in the nanocontainer resistance are 

exploited for sensing. 

1.2.2. Surface Chemistry 

Stabilization under physiological conditions or even in simple aqueous buffer environment is a great 

challenge for nanoparticles and nanovesicles. In addition, the desirable surface chemistry of 

nanocontainers must be biocompatible and allow for targeted functionalization with tags or 

probes.[64,65] In some instances, such as with gatekeepers (see Chapter 1.2.2 below), modulating 
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surface tags also have to be added. Table 1.1 provides an overview of common surface 

functionalization strategies for the different nanocontainer categories. 

Table 1.1. Surface functionalization strategies for the different nanocontainer categories. 

 . 

Nanocontainer Biocompatibility/ 
stability in 
aqueous 
environment 

Introducing 
functionality 

Common 
functional 
groups 

Common reaction 
mechanisms 

Ref. 

Liposomes Naturally Functional lipids -COOH, -NH2, -
OH, -SH 

Covalent coupling [66], [22], [4] 

 Functional lipids Biotin, DNA, 
folic acid 

Non-covalent 
conjugation, e.g. 
biotin-
streptavidin 

[37], [4], [67] 

Polymeric Hydrophilic 
polymers 

Functional 
polymers 

-COOH, -NH2, -
SH 

Covalent coupling [68] 

  Stimuli 
responsive 
polymers 

- - [6], [14] 

Protein based Naturally Naturally 
occurring amino 
acids 

-COOH, -NH2, -
OH, -SH, -N3, 
alkine 

Covalent coupling [34] 

Mesoporous 
silica 

 Polycondensation 
with silanes 

-COOH, -NH2, -
OH, -SH, -N3 

Covalent coupling [14], [68] 

  Gatekeeper Aptamers; 
proteins; 
enzymes; 
antibodies; 
microspheres; 
NPs 

Electrostatic, 
covalent; Enzyme 
cofactor; 
Inhibitor(anchor);  

[43], [69] [70], [71], 
[72], [73]; [42] 

Carbon based Naturally  -COOH, -OH Covalent coupling [68] 

Gold based Coating with 
biocompatible 
polymers 

 -SH Covalent coupling [9] 

  Coating with 
functional 
polymers 

-COOH, -NH2, -
OH, -SH 

Covalent coupling [68] 

  Stimuli-
responsive 
polymers 

- - [20] 

  Gatekeeper Aptamers Electrostatic [55] 

 

Active groups on the nanocontainer surface like carboxyl, hydroxyl, sulfhydryl or amino groups can be 

used for the attachment of biological receptors. Common covalent coupling techniques include 1-

ethyl-3-(3-dimethylaminopropyl)-carbodiimide/N-hydroxysuccinimide (EDC/NHS) chemistry for 
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coupling of carboxyl and amino groups, Michael addition for the conjugation of thiol with maleimide 

groups, copper catalyzed click chemistry for conjugation of azide and alkyne groups or carbinolamine 

chemistry for the coupling of aldehyde and amine groups. Also, non-covalent conjugation is possible, 

e.g. by simple electrostatic interactions or a biotin-streptavidin system.[68] 

For the conjugation of gatekeepers, reversible attachment is necessary to enable controlled release of 

entrapped molecules. Therefore, only weak bonding or non-covalent conjugation is applied, which 

responds to an external stimulus. This can be a change in pH or temperature, an enzymatic reaction or 

non-covalent interaction, e.g. with the analyte of interest. As gatekeepers often aptamers,[43] 

proteins,[70] enzymes[71] or microspheres[74] are applied. 

1.3. Relevant Features Supporting Nanocontainer Applications in (Bio)analysis 

Nanocontainers consist of a hollow interior enabling the entrapment of small molecules and have a 

large surface area for the introduction of various functionalities. Some nanocontainers also possess 

pores for controlled mass transport in and out of the nanocontainer and in some instances gatekeepers 

that control this mass-flow. An overview of the features of nanocontainers can be found in Scheme 1.1. 

 

Scheme 1.1. Schematic overview of nanocontainer features, possible entrapment molecules and signalling techniques and 
principles. 
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These features have been exploited and widely applied for analytical applications ranging from 

bioassays and biosensors to chemosensors and imaging. In bioassays or sensors, the analyte of interest 

is recognized by a suitable biological recognition element, e.g. antibodies, antigens, enzymes, 

receptors, cells, or DNA. This recognition must be convertible into a measurable, concentration-

dependent signal.[75] Most sensitive bioassays employ hence a signal amplification strategy to obtain 

favorable signal-to-noise ratios at low analyte concentrations. Enzymes were the first highly successful 

signal enhancers used in immunoassays leading to the development of enzyme-linked immunosorbent 

assays (ELISAs) that are now gold standards in clinical diagnostics.[76] With the advancements in 

nanotechnology, various nanocontainers have been developed that significantly broadened and 

improved the possibilities of signal enhancement in bioassays. They have a large surface-to-volume 

ratio; their cavities or pores can be loaded with a huge amount of signaling molecules, and multiple 

receptors can be attached to their surface.[1,70] In contrast to enzymes they provide instantaneous 

signal amplification, can be more robust and can provide higher signal enhancement. An ideal 

nanocontainer must hence be stable under physiological conditions, not only during the bioassay but 

also for long-term storage, enable fast and simple surface functionalization and efficient loading with 

the desired signaling molecules. These can be e.g. small hydrophilic or hydrophobic molecules, 

proteins, enzymes, DNA probes, or nanoparticles.[1] For signal generation those molecules can either 

be released in a controlled manner using external stimuli[41] or the signal is generated without release 

of the entrapped molecules, e.g. in the case of enzymatic reactions inside the container, where the 

substrate can enter through permeable pores.[44] In literature most examples can be found for 

liposomes[25,37,66] and mesoporous silica nanocontainers[24,40,41] but also polymersomes,[45] protein,[49] 

carbon[11] and gold-based nanocages[55] have been reported. 

For bioimaging similar requirements have to be met. Here, the focus lies on the visualization and 

investigation of tissues, cells, tumor cells, subcellular structures, cellular processes, and interactions of 

molecules or quantification of ions or metabolites.[77] Therefore, the nanocontainers used for 

bioimaging usually carry contrast agents, which increase the signal in the areas of interest compared 

to the background.[78] Those contrast agents like fluorescent dyes, upconverting nanomaterials or 

magnetic iron oxide, find their applications in simple optical bioimaging, magnetic resonance imaging 

(MRI), computed chromatography, ultrasound or photoacoustic imaging.[78] Here, nanocontainers 

must demonstrate in vivo stability, biocompatibility, biodegradability and non-toxic properties,[33] 

which has been achieved primarily with liposomes[22] and polymersomes,[23] but also with mesoporous 

silica[79] and lanthanide-metal organic framework (Ln-MOF) structures.[80] 

Furthermore, the high surface-to-volume ratio of nanocontainers and hollow pores are exploited for 

gas sensing, mostly using metal oxides.[27,60,61] Gas diffusion and mass transport to the surfaces are 
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enhanced over non-porous macro surfaces[29] hence leading to increased sensitivity. Typically, reducing 

or oxidizing gases change the resistance of the nanomaterials, which is transduced into a concentration 

dependent electronic signal. Similarly, nanocontainers can be applied for metal ion sensing. Here the 

intrinsic properties of the nanocontainer changes upon contact with the analyte.[81] Most examples in 

literature can be found for hollow Ln-MOF[81] structures or gold nanocages.[82] 

1.3.1. Classes of Entrapped Signaling Molecules and Detection Techniques 

Nanocontainers can entrap several types of molecules. For analytical applications often signaling 

molecules like dyes, redox molecules or enzyme substrates are used, but also macromolecules such as 

proteins and DNA, or nanoparticles can be entrapped. Table 1.2 provides an overview of common 

entrapment molecules and their associated detection strategies. 

Table 1.2. Overview on common entrapment molecules, release mechanisms, and associated detection strategies. 

Nanocontainer Entrapped molecule/ 
concentration 

Release mechanism of 
entrapped molecules/ 
duration 

Detection technique Ref. 

Liposomes 150 mM SRB (~1.1 million 
molecules/ liposome) 

Detergent lysis, fast Fluorescence [38]; 
[83]; 
[84] 

 Squaraine no Fluorescence [22] 

 17 mM m-carboxy luminol Detergent lysis, 
complete, fast 

ECL[b] [37] 

 0.16 M enediol ligands (~7.09 
106 ligands/ liposome) 

Detergent lysis, 
complete, fast 

Photoelectrochemistry 
[a] 

[66] 

 ~1.48 107 Cu nanoclusters/ 
liposome 

Detergent lysis, 
complete, fast 

Photoelectrochemistry[a] [39] 

 30 mg mL-1 UCNPs no Luminescence [85] 

 - no FRET[f], FCM[h] [86] 

 0.1 M dopamine Detergent lysis, 
complete, fast 

Photoelectrochemistry[a] [87] 

 100 mM cysteine Enzymatic, 
concentration-
dependent, slow (1 h) 

Absorbance [25] 

 Polymer dots no Fluorescence [67] 

 Carboxyfluoresceine-C12 no Fluorescence [88] 

 Cationic conjugated 
polyfluorene 

no Fluorescence [89] 

Mesoporous silica Rhodamine 6G and 
Fluorescein 

no CL[c] [40] 
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 1.2 mM rhodamine B Gatekeeper, 
concentration-
dependent, slow 
(90 min) 

Fluorescence [90] 

 0.2 mg mL-1 rhodamine B Gatekeeper, 
concentration-
dependent, slow 
(90 min) 

Absorbance [70] 

 1 mM methylene blue;              
60 mg mL-1 methylene blue 

Gatekeeper, complete, 
slow (120 min); 
Gatekeeper, 
concentration-
dependent, slow 
(80 min) 

SWV[d] [41]; 
[73] 

 80 µM Cy754 (~256 
molecules/ particle) 

no Fluorescence; 
Photoacoustic 

[91] 

 Glucose Gatekeeper, 
concentration-
dependent, slow 
(80 min) 

Fluorescence [24] 

 1 M glucose; 350 mg mL-1 
glucose 

Gatekeeper, 
concentration-
dependent, medium 
(20 min); Gatekeeper, 
concentration-
dependent, medium 
(25 min) 

Glucometer [42]; 
[74] 

 150 mM N,N-phenylenebis-
(salicylideneimine)dicarboxylic 
acid 

no Fluorescence [79] 

 50 mM CuSO4 Gatekeeper, 
concentration-
dependent, medium 
(30 min) 

Photoelectrochemistry[a] [92] 

 0.08 mM [Ru(bpy)3]2+ Gatekeeper, 
concentration-
dependent, slow (2 h) 

ECL[b] [43] 

 0.16-0.5 mmol rhodamine B Gatekeeper, 
concentration-
dependent, medium 
(30-35 min) 

Fluorescence [93], 
[69] 

 0.32 mmol rhodamine B Gatekeeper, 
concentration-
dependent, slow 
(60 min) 

Fluorescence [94] 

 BODIPY no Fluorescence [95] 

 Rhodamine 6G no Fluorescence [96] 

AuNCs 100 µM rhodamine B Gatekeeper, 
concentration-
dependent, slow (1 h) 

Fluorescence [55] 

 [Ru(bpy)3]2+ no ECL[b] [54] 

 - no LSPR[e] [82] 
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 - no Voltammetry [26]; 
[97] 

Polymer e.g. 50 mM CF, 50 mM SRB, 
100 mM calcein, 330 mM 
sodium azide, 3 mM nile red 

Enzymatic, complete, 
medium (30 min) 

Fluorescence [45] 

 30 µM conjugated polymer no Fluorescence [44] 

 50 µg mL-1 nile red; 40 µg mL-1 
nile red 

no; no FRET[f] [23]; 
[46] 

 0.4-1.5 mg mL-1 (~2400 
UCNPs/ capsule) 

no Luminescence [47] 

 5 mM pyranine Redox-responsive, slow 
(2 h) 

Fluorescence [48] 

 PDA[g] polymer no Fluorescence [98] 

 PDA[g] polymer no Absorbance [99] 

 1,8-naphthalimide-PDA[g]-
conjugate 

no Fluorescence [100] 

 52 mg mL-1 Cresol red Competitive 
replacement, fast 

Absorbance [101] 

Carbon NCs - no Fluorescence quenching [11] 

 - no QCM[g] [58] 

Apoferritin 10 mM metal phosphates pH-responsive, no 
release 

Square wave anodic 
stripping voltammetry 

[52] 

 Lead/ cadmium phosphate Acidic, complete, fast 
(5 min) 

Voltammetry [49] 

 1 mM CuSO4*5 H2O (~1200 
CuNPs/ apoferritin) 

Acidic, complete, 
medium (20 min) 

DPV[h] [51] 

Metal oxide - no Conductometric [27] 

 - no Conductometric [61] 

 - no Conductometric [62] 

 - no Conductometric [63] 

Ln-MOF - no Luminescence [81] 

[a] Photoelectrochemistry: electrochemical current is produced by electron transfer from photoactive materials to 
semiconductor electrodes via light irradiation. [b] ECL: electrochemiluminescence. [c] CL: chemiluminescence. [d] SWV: 
square wave voltammetry. [e] LSPR: localized surface plasmon resonance. [f] FRET: fluorescence resonance energy 
transfer. [g] QCM: quartz crystal microbalance. [h] DPV: differential pulse voltammetry. [g] PDA: polydiacetylene. [h] FCM: 
fluorescence correlation microscopy. 

Successful entrapment of the signaling molecules is only possible if properties like size or hydrophilicity 

match with the nanocontainers’ pores or cavities. The aqueous core of apoferritin can for example 

only be used for the entrapment of water-soluble compounds. For this the pH dependency of the 
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protein is exploited. At pH 2 it dissociates into its subunits and can be mixed with the entrapment 

molecules. Upon a rise in pH to 8.5 the protein reassembles into its native structure and encapsulation 

of the signaling molecules takes place.[1,7,51] 

Liposomes provide naturally the possibility to be loaded with both hydrophobic and hydrophilic 

components due to their bifunctional structure.[38,67,68] Specifically, aqueous marker molecules can be 

entrapped in high concentrations within the inner cavity, while the membrane layer itself can be 

intercalated with hydrophobic components. Furthermore, the surface of the lipid bilayer can be 

functionalized with markers via covalent or adsorptive strategies.[1] The hydrophilicity of the cavity of 

polymersomes depends on the polymeric membrane. In case of di-block polymeric membranes 

hydrophobic molecules can be entrapped and hydrophilic molecules in the case of tri-block polymeric 

membranes.[13] In these cases the entrapment molecules are already added during vesicle formation. 

In the case of liposomes and polymersomes, their larger cavities in comparison to other 

nanocontainers (with pore sizes mostly below 10 nm) enable the entrapment of large numbers of 

signaling molecules, and even larger molecules (proteins, DNA) or nanoparticles can be loaded. In all 

instances, entrapment conditions play a crucial role for efficiency, yield and maintaining nanocontainer 

and entrapped molecule integrities. This is most critical for the entrapment of proteins where 

denaturation, unfolding and aggregation must be avoided.[102] Therefore, mostly emulsion or 

rehydration methods under minimized harsh conditions have been applied for efficient protein 

encapsulation.[102,103] In the case of nanoparticle entrapment into aqueous compartments, surface 

modification of the particles is necessary to render their usually hydrophobic surface hydrophilic.[85] 

Moreover, the hydrodynamic diameter of nanoparticles restrict their overall number to be included in 

the inner cavity of a nanocontainer so that most nanoparticles used are smaller than 10 nm.[47,85] 

In the case of mesoporous silica nanocontainers the pore size and geometry can be tuned and can also 

be designed to bear either hydrophilic or hydrophobic characteristics.[12] For example, the addition of 

MTMS to the formulation during synthesis provides an ideal environment for loading hydrophobic dyes 

such rhodamine 6g and fluorescein.[40] Entrapment is usually conducted after synthesis either non 

covalently inside the pores or via covalent conjugation on the surface using e.g. dye-APS ((3-

aminopropyl)triethoxysilane). The often occurring leakage of non-covalently loaded molecules[91] can 

be avoided by using gatekeepers.[24,41,42] These physically prevent the encapsulated material from 

leaking, and interestingly can also serve as target-responsive release systems. Here, the nanocontainer 

pores need to be big enough for the entrapment of the signaling molecules but at the same time small 

enough for a successful blocking of the pores.[41] Such analytically highly interesting gatekeepers have 

also been successfully adapted to gold nanocontainers.[55] 
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1.3.2. Signal Generation Through Controlled Release of Entrapped Molecules  

Signal amplification of controlled release systems are based on the large amount of signal generating 

molecules entrapped inside the cavities or pores of a nanocontainer. Upon release, a signal is either 

obtained immediately or after reaction with molecules in the vicinity of the nanocontainer. For 

example, fluorescent dyes entrapped in self-quenching concentrations will emit fluorescence upon 

dilution in the outer media; electrochemical markers can react on electrode surfaces, enzymes can 

catalyze reactions etc.  

Different mechanisms have been described for controlled release strategies. For example, the 

nanocontainers can react to external stimuli like temperature, pH or light irradiation.[6] Bushan et al. 

demonstrated that by changing the pH from neutral and slightly basic conditions to acidic conditions 

the disassociation of apoferritin into its subunits takes place, which leads to  the release of entrapped 

molecules.[7] In addition to the same external stimuli,[6] in case of polymeric nanocontainers also 

enzymes such as hyaluronidase have been used, which degrades specifically hyaluronic acid containing 

block copolymers.[45] While liposomes also react to external stimuli as described above, detergents are 

mostly applied in bioassays to lyse the lipid bilayer.[37,84] Somewhat slower release is obtained through 

enzymatic degradation using sphingomyelinase [25] or phospholipase.[104] For mesoporous silica and 

gold nanocontainers gatekeepers block the hollow pores. Here, the external stimulus is usually the 

target analyte, to which the gatekeeper binds more specifically than to the nanocontainer pores 

resulting in a concentration dependent release of signaling molecules.[42,55] A detailed review on this 

topic was published by the group of Sancenón et al. in 2016.[105] 

1.3.3. Release-Independent Signal Generation Strategies 

If no controlled release mechanism is applied, signal amplification is achieved by various strategies. In 

the case of liposomes, non-quenching concentrations of fluorescent dyes, absorption and refractive 

index can be detected optically, and size or weight acoustically or via impedance. Also here, the large 

surfaces and the larger inner cavities provide ultimate advantages. Gao et al. demonstrated that 

receptors are bound on outer and inner pore surfaces of gold nanocages and hence significantly 

enhance obtainable signals.[54] Yildiz et al. showed that enzymes bound inside permeable pores of the 

nanocontainers can react with substrates diffusing into the pores.[44] Similarly, in gas and metal ion 

sensing analyte molecules penetrate all pores of the metal oxide nanocontainers causing a change in 

resistance,[27] a change in the luminescence properties of Ln-MOF structures,[81] shifts in the LSPR 

spectrum of Ag/Au nanocages,[82] or quench the fluorescence of carbon-based nanocontainers.[11] 
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1.4. Analytical Applications of Nanocontainers 

1.4.1. Bioassays 

Table 1.3 provides an overview of analytes detected in recent years with the help of nanocontainers. 

Assay types, detection methods and corresponding detection limits are provided as well in order to 

allow a comparison between the analytical performance of nanocontainers described. The sheer 

number and breadth of analytes studied signify that general bioassay-related challenges have been 

overcome in the last decade and that nanocontainers can further develop into new standard strategies 

also applied in commercial products. 

1.4.1.1. Heterogenous, Controlled Release Bioassays 

In heterogeneous assays nanocontainers are used similar to enzyme labels,[38,51] providing shorter 

assay times due to instant signal generation and in many instances enable very low limits of detection, 

as convincingly shown for liposomes, mesoporous silica particles and protein nanocages. For example, 

1-methyl-1H-benzimidazole functionalized mesoporous silica nanocontainers were used for the 

development of a sandwich immunoassay for the detection of squamous cell carcinoma antigen. 

Under neutral conditions, β-cyclodextrin functionalized AuNPs serve as gatekeeper for the entrapment 

of a large amount of methylene blue molecules in the nanocontainer pores. After sandwich formation 

with the specific antigen on a gold electrode the pH is lowered to acidic conditions, which results in 

gate opening and release of the signaling molecules. Square wave voltammetry (SWV) was applied for 

analysis and a detection limit of 0.25 pg mL-1 was achieved. This signal amplification strategy can 

compete e.g. with immunoassays based on chemiluminescent (CL) labeled antibodies and achieves 

even lower detection limits than enzymatic amplification.[41] Similarly, magnetic, mannose-

functionalized mesoporous silica particles were used for the detection of aflatoxin B1 (AFB1). 

rhodamine B was entrapped inside the pores and capped with concanavalin A (ConA) via weak 

interactions with mannose. The mesoporous silica particles were also used for the attachment of 

capture antibodies. AuNPs were functionalized with the enzyme invertase and the analyte AFB1. A 

competitive reaction between free analyte and the functionalized AuNPs took place. For signal 

generation, sucrose was enzymatically converted to glucose, which can also bind to ConA. This resulted 

in the displacement of mannose gatekeepers and release of the fluorescent dye. A limit of detection 

(LOD) of 8 pg mL-1 was achieved, which is up to 30 times lower than with commercially available ELISA 

kits.[90]  

Although low detection limits can be achieved using such setups, heterogenous assays using 

gatekeepers for signal generation can be very time-consuming as the reported release times range 

from 90 to 120 minutes to ensure complete release of the guest molecules. Thus, careful evaluation 

of the perceived improvements over standard materials needs to be considered. 
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External stimuli often provide faster signal release. For example, Wang et al. developed a sandwich 

immunoassay for the detection of an avian leukosis virus subgroup. A dual signal amplification strategy 

was applied here for further signal enhancement through a large number of electroactive copper 

nanoparticles inside apoferritin and by using quantum dot (QD) coated magnetic particles. These were 

also used for the attachment of multiple reporter antibodies and apoferritin. For the assay, a glassy 

carbon electrode (GCE) coated also with graphene quantum dots was used for the covalent attachment 

of the capture antibodies. After the immunocomplex formation acidic release of the entrapped copper 

nanoparticles was initiated and the virus subgroup was quantified using the oxidation peak in 

differential pulse voltammetry analysis. This resulted in a limit of detection of 115 TCID50 mL-1 (tissue 

culture infection dose), which outperforms single signal amplification strategies.[51] Ge et al. used the 

apoferritin cavity for the formation of lead and cadmium phosphate for the simultaneous detection of 

different phosphorylation sites in phosphorylated p53 via a voltammetric sandwich immunoassay 

(Figure 1.1). For further signal amplification SiO2/Au nanocomposites were applied for                                  

Figure 1.1. (A) Synthesis illustration of apoferritin templated metal phosphates; (B) Schematic illustration of simultaneous 

immune-detection of multiple phosphorylated proteins: sandwich-like immunoreaction with phospho-p5315 (a), phospho-

p5315 and phospho-p53392 (b), phospho-p5392 (c). (C) The electrochemical measurement of multiple analytes. Reprinted from 

Ref. [49], with permission. Copyright 2016 Elsevier. 
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co-immobilization of the apoferritin signal reporters and the detection antibodies. After 

immunocomplex formation on magnetic beads the metal phosphates were released and quantified 

using square wave voltammetry. The different peaks could clearly be distinguished enabling the 

simultaneous detection of phospho- p5315 with a LOD of 0.05 ng mL-1 and phospho-p53392 with a LOD 

of 0.02 ng mL-1.[49] In the case of liposomes, instantaneous lysis can be achieved via detergent addition. 

Mayer et al. employed carboxy-luminol entrapping liposomes for the detection of C. parvum via a DNA 

sandwich hybridization assay. The release of the 100.000s of marker molecules and quantification via 

electrochemiluminescence (ECL) resulted in a detection limit of 3.2 pM, which is 150 times lower than 

the corresponding fluorescence approach.[37] Similarly, Edwards et al. developed various liposome-

based bioassays, e.g. for the detection of myoglobin in a simple immunoassay format using 

sulforhodamine B encapsulating liposomes. With fluorescence detection, a limit of detection of 

11.3 pg mL-1 was achieved, which was reported to be 1.5 times better than with enzymatic 

amplification.[84] Similarly, such fluorescent liposomes were applied for thiamine detection. Here, the 

liposomal surface was functionalized with a periplasmatic binding protein specific to thiamine. A 

polyethylene glycol modified (PEGylated) thiamine analogue was immobilized on a 96 well plate to 

compete with free thiamine for binding to the functionalized liposomes. Fluorescence analysis of the 

lysed liposomes resulted in a limit of detection of 0.5 nM, which is about 10 times lower than with a 

commercially available ELISA kit for thiamine detection.[83] For further improvement of the assay 

sensitivity with respect to resolution and LOD, Edwards et al. developed fluorescent, magnetic DNA-

tagged liposomes. This was demonstrated in a sandwich hybridization assay. Here, binding of the 

liposomes to the target DNA should be faster and more directed as in case of non-magnetic liposomes 

enabling a more sensitive detection. Signal amplification using magnetic, fluorescent liposomes 

resulted in a limit of quantification of 35 pM that was 15 times better than without directed magnetic 

attraction.[38] 

Mei et al. demonstrated recently that liposomes can successfully substitute enzymes and improve 

photoelectrochemical detection strategies which is an emerging and rapidly advancing field in 

bioanalyses.[39,66,106] Here, large amounts of electron donors such as ascorbic acid are entrapped inside 

liposomes (Figure 1.2). An immune sandwich assay was conducted on electrodes coated with TiO2 

nanoparticles. Upon release of enediol ligands from the liposomes a chelate complex was formed with 

the uncoordinated Ti atoms on the surface of the TiO2 nanoparticles. Irradiation with visible light leads 

to an electron transfer from the enediol ligands to the vacant conduction band of the TiO2 

nanoparticles, which enables the successful photoelectrochemical detection of the model analyte IgG 

with a LOD of 0.1 pg mL-1.[66] Similarly, dopamine encapsulating liposomes were applied for the 

detection of aflatoxin B1 (AFB1). The liposome surface was functionalized with AFB1 resulting in a 

competitive reaction with free analyte for binding to antibody functionalized magnetic beads. The 



Nanocontainers for Analytical Applications 
__________________________________________________________________________________ 

25 
 

loaded dopamine was released and served as electron donor to increase the photocurrent of            

Mn2+-doped nanobelt electrodes. AFB1 could be detected down to 0.3 pg mL-1, which is up to 1000 

times lower than with commercially available ELISA kits.[87] Another example for a 

photoelectrochemical based immunoassay relies on photocurrent inhibition (Figure 1.3). Here, indium 

tin oxide (ITO) electrodes coated with CdS quantum dots are applied, which gives a 

photoelectrochemical signal. Cu nanoclusters are entrapped inside liposomes and after immune 

sandwich formation the entrapped material is released and converted to Cu2+ using HNO3. The free 

Cu2+-ions interact with the electrode and form CuxS, which inhibits the photocurrent. A LOD of 

0.03 pg mL-1 was achieved for the detection of the model antigen human cardiac troponin T, which is 

4.5 times lower than reported for piezoelectric detection and even 3000 times lower than with surface 

plasmon resonance (SPR) spectroscopy.[39] 

1.4.1.2. Homogenous Controlled Release Bioassays 

Homogenous assays usually enable simpler and faster assays since no washing steps are needed. 

However, higher background caused by the interference of unbound material often results in a less 

sensitive detection. Smart signal amplification strategies are therefore required which can be offered 

by nanocontainers, especially as the concentration dependent release of marker molecules can be 

realized through gatekeepers sensitive to analyte binding. Various nanocontainer strategies have 

hence been demonstrated. 

For example, photoelectrochemical based bioassays have been reported such as with Cu2+-loaded 

mesoporous silica nanocontainers. Here, pore blocking was achieved using capture RNA functionalized 

AuNPs, which are complementary to the target analyte, microRNA-21. Thus, a concentration-

dependent release of Cu2+-ions takes place upon binding of microRNA-21. An array of TiO2 nanorods 

Figure 1.2. Schematic illustration of the enediol-ligands chelation against surface Ti atom with the charge transfer processes 

upon visible light irradiation and the corresponding energy-level diagram. Reprinted from Ref. [66], with permission. Copyright 

2017 American Chemical Society. 
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and of α-Fe2O3 shells was applied as photoelectrode. The generated photoelectrons can be accepted 

by the released Cu2+ ions, which are reduced to Cu0 at the counter electrode. The obtained 

photocurrent allowed the detection of microRNA-21 down to 0.74 fM.[92] This result is comparable to 

other photoelectrochemical assays and even superior to some electrochemical approaches. The signal 

amplification here was attributed to the efficient charge separation of the hierarchical nanorod array 

in addition to the high loading capacity of the nanocontainers.[92] Zhang et al. report on methylene blue 

encapsulating mesoporous silica nanocontainers that are functionalized with antibodies and applied 

to the detection of biotoxins. Aminated polystyrene microspheres were applied as gatekeeper by 

binding nonspecifically to the antibodies and blocking the pores. Upon binding of the analyte, the 

microspheres are replaced, the pores opened, methylene blue is released and can be used for analysis 

by square wave voltammetry. Biotoxins could be detected down to 6 pg mL-1, which is a ~8 times lower 

LOD than with a commercially available ELISA kit.[73] Such polystyrene-gated nanocontainers have also 

been applied for the detection of brevetoxin B. Here, entrapped glucose molecules were released upon 

replacement of the polystyrene particles by the analyte. The concentration-dependent release of 

glucose molecules was monitored using a glucometer. A LOD of 0.01 ng mL-1 was achieved, which was 

5 times lower than with a commercially available ELISA kit.[74] The simplicity and low-cost features of a 

glucometer readout was also exploited for aflatoxin detection. Here, antibody-functionalized gold 

nanoparticles are electrostatically attached to the nanocontainers to block the pores. Upon addition 

of the analyte, the gold nanoparticles are removed and monitoring of the concentration-dependent 

release of glucose molecules by a glucometer resulted in a LOD of 0.005 µg kg-1, which is well below 

the allowed limit of 2 µg AFB1 in foodstuff (EU) and shows a comparable LOD as commercially available 

ELISA kits.[42] Aptamer-gated glucose loaded mesoporous silica nanocontainers have also been 

Figure 1.3. Illustration of the Cu nanocluster-loaded liposomal photoelectrochemical immunoassay accompanied by a 

complementary fluorescent detection. Reprinted from Ref. [39], with permission. Copyright 2018 American Chemical Society. 
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described for the detection of carcinoembryonic antigen (Figure 1.4). Here, a paper-based 

homogenous assay using a centrifuge tube was applied. For detection the lid of this tube contains 

glucose oxidase modified CdTe/CdSe quantum dots immobilized on paper. The enzyme catalyzes the 

reaction of the released glucose to gluconic acid and H2O2 quenches the emission of the quantum dots. 

This yields a quantitative response with a detection limit of 6.7 pg mL-1, which is 30-150 times lower 

than for most commercially available ELISA kits.[24] 

Also, the group of Félix Sancenón and Ramón Martínez-Máñez has published a number of bioassays 

and sensors using gated mesoporous silica nanocontainers.[69] While other groups mainly report on 

electrostatic attachment of gatekeepers, they also investigated the effect of covalent attachment as 

for example for the detection of Ochratoxin A. Here, the nanocontainers were loaded with rhodamine 

B and the pores capped with aptamers using two different approaches, either by covalent blocking by 

hybridization with a short DNA sequence attached to the nanocontainer surface or by electrostatic 

blocking exploiting the aminopropyl functionalization of the nanocontainer surface. Although a faster 

dye release was observed in case of the covalent approach, a detection limit of only 0.5 nM was 

achieved here, whereas a 10 times lower LOD was observed for the electrostatic approach. This can 

be assigned to the weaker interaction between the gatekeeper and the nanocontainer surface. Both 

detection limits are comparable to reported LC-MS or HPLC-fluorescence approaches or even lower 

than those of many other reported aptasensors for ochratoxin A detection. Moreover, the assay 

provided good results with high accuracy with real samples.[69] The same principle was applied to 

several other analytes by simply using a different aptamer. This enabled for example also the detection 

of genomic DNA down to 50 DNA copies µL-1, which is similar to PCR-based approaches but enables a 

faster detection with less sources of error due to the omission of analyte amplification.[94] Apart from 

the detection of biological molecules these nanocontainers also enable the quantification of chemical 

Figure 1.4. Schematic illustration of paper-based analytical device for the visual fluorescence detection of target 

carcinoembryonic antigen (CEA) biomarker in a 0.5 mL centrifugal tube based on CEA aptamer/complementary DNA-gated 

mesoporous silica nanocontainers loaded with glucose molecules by coupling with target-induced cargo release and cargo-

promoted enzymatic amplification. Reprinted from Ref. [24], with permission. Copyright 2017 American Chemical Society. 
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substances. For example, bisphenol A (BPA) was successfully detected down to 3.5 µM. This is 

comparable to other setups based on aptamer recognition and sufficient to detect hazardous amounts 

of BPA in water, but electrochemical sensors based on rGO electrodes have been reported to work 

down to nM levels.[93] 

Similar approaches have also been reported with capped gold nanocages. The group of Wang et al. 

designed positively charged gold nanocages entrapping rhodamine B for adenosine triphosphate (ATP) 

detection. ATP-binding aptamers are electrostatically bound to the nanocages capping their pores. 

Upon ATP binding, the conformational changes of the aptamers lead to an opening of the pores and 

release of entrapped fluorescent cargo. The obtained LOD of 1 nM[55] is ~50 times more lower than 

e.g. reported for a competitive aptamer bioassay using fluorescent gold nanoclusters, which in turn 

was reported to be comparable to electrochemical detection and even better than most fluorescence-

based approaches.[107] 

If the analyte causes the degradation of a nanocontainer shell, homogeneous assays are equally 

straightforward to design. For example, Holme et al. designed a liposome-based assay for the 

detection of sphingomyelinase (Figure 1.5), which serves as biomarker for several diseases.[25] The 

liposomes contained sphingomyelin lipids in their bilayer and cysteine molecules in their inner cavity. 

Upon addition of sphingomyelinase the phosphate-oxygen bonds of the sphingomyeline molecules are 

enzymatically hydrolysed to form phosphocholine and ceramide. The resulting change in the lipid 

bilayer composition causes a change in the membrane phase leading to leakage of the encapsulated 

Figure 1.5. Assay schematic. (Top) Hydrolysis of the phosphate-oxygen bond of sphingomyelin (SM) by sphingomyelinase 

(SMase) to produce ceramide and phosphocholine (not shown). (Bottom) Action of SMase on BSM:Chol liposomes 

encapsulating cysteine leads to a composition-driven membrane phase change with the formation of ceramide-rich gel 

domains and partitioning of cholesterol into remaining SM domains. This causes cysteine leakage and aggregation of 

subsequently added gold nanoparticles by formation of hydrogen bonds between cysteine molecules on adjacent 

nanoparticles. Adapted from Ref. [25] with permission, https://pubs.acs.org/doi/10.1021/acsnano.8b03308, contact 

American Chemical Society for further permissions. 

https://pubs.acs.org/doi/10.1021/acsnano.8b03308
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cysteine molecules. These can induce aggregation of AuNPs, which enabled bare eye detection of the 

enzyme activity down to 0.08 mU mL-1 (5.5 pM) and down to 0.02 mU mL-1 (1.4 pM) using absorbance 

spectra for quantification. The obtained LODs are lower than with commercially available colorimetric 

assays.[25] Also, other encapsulants can be envisioned for fluorescence and electrochemical 

approaches. 

In a slightly different approach, the enzyme hyaluronidase, which is a biomarker for S. aureus in 

wounds, was quantified via polymersomes formed by block-copolymers containing hyaluronic acid. 

The fluorogenic substrate 7-amino-4-methylcoumarin was entrapped inside the container. In the 

presence of hyaluronidase, the polymersomes were enzymatically degraded, the cargo was released 

and detected after cleavage of its peptide bond by α-chymotrypsin. Again, other entrapment 

molecules can easily lead to other read-out systems and strengthen the ability to create fast in situ 

sensors for bacterial infections.[45] 

1.4.1.3. Release-Independent Bioassays 

In comparison to bioassays relying on the release of marker molecules for signal enhancement only 

few examples can be found for non-release bioassays. Here, signal enhancement is for example 

achieved by entrapping a large amount of dye molecules as described by the group of Tao et al. They 

used mesoporous silica particles loaded with rhodamine 6G and fluorescein for the detection of 

staphylococcal enterotoxin C1 in a classical sandwich immunoassay. However, due to the semi-hollow 

structure of the silica particles, the bis(2,4,6-trichlorophenyl)oxalate (TCPO)-H2O2-imidazole reagent 

can enter the pores, react with the entrapped dyes and initiate a chemiluminescent reaction. With 

this, a limit of detection of 0.019 ng mL-1 was achieved, which is up-to 100 times lower than other 

reported methods using e.g. CL, fluorescence or electrochemical detection methods and also ~25 times 

lower then with an ELISA.[40] 

Another popular strategy for non-release bioassays is the use of polydiacetylene (PDA) vesicles. These 

polymeric structures exhibit a change in color from blue to red as well as an emergence of fluorescence 

upon changes in their environment. This has for example been exploited for the detection of surfactin 

producing bacteria. The negatively charged surfactin is able to interact with amine functionalized PDA 

vesicles. This induces conformational changes of the bilayer and a specific shift in absorbance, which 

also creates a strong fluorescence signal that enables detection down to 1.8 103 cfu mL-1. This enables 

an effective detection of bacteria classes, that e.g. all secrete the same molecule, without the need for 

a specific receptor.[98] A dual signal amplification strategy can be achieved using an array of PDA 

vesicles in combination with an enzymatic reaction as shown for the detection of hIgE (human IgE). 

Here, a sandwich immunoassay was conducted on PDA vesicles. Each binding event causes a slight shift 

in color. Upon addition of the substrate and after binding of the horseradish peroxidase (HRP)-labeled 
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detection antibody, precipitation of the insoluble product of the enzymatic reaction takes place, which 

causes an enormous shift in absorbance. This results in a LOD of 0.01 ng mL-1, which is a 1000 times 

lower than without the use of an enzyme-labeled detection antibody.[99] 

Moreover, vesicle fusion can be exploited for the design of release-independent assays. Here, mostly 

FRET-based approaches have been reported, e.g. by incorporation of membrane dyes like DiI or DiD 

into two different liposomes functionalized with dsDNA. For one type of liposome the sticky end of the 

liposome is blocked using a hairpin DNA to prevent fusion with the other vesicles by hybridization with 

the complementary DNA strands. In the presence of the target RNA hybridization with the hairpin DNA 

takes place, which causes its detachment from the sticky end and thus fusion of the two differently 

labeled liposomes. The resulting close proximity of the DiD and DiI dyes results in the emergence of 

FRET. This was applied for microRNA-29a quantification down to 18 nM using a simple microplate 

reader and could be further improved to 1.2 nM using two color fluorescence correlation microscopy 

in combination with intensity fluctuation analysis.[86] 

Table 1.3. Overview of analytes that have been detected using different nanocontainers and assay types. 

Analyte  Nanocontainer Detection/assay type Assay type LOD Ref. 

Pathogens Carcinoembryonic 
antigen 

Mesoporous 
silica 

Fluorescence  Homogenous 6.7 pg mL-1 [24] 

Cell carcinoma 
antigen 

SWV[a] Sandwich 
immunoassay 

0.25 pg mL-1 [41] 

C.parvum Liposomes ECL[c] Sandwich 
hybridization 

3.2 pM [37] 

Human cardiac 
troponin T 

 Photoelectrochemistry[b] Sandwich 
immunoassay 

0.03 pg mL-1 [39] 

 IgG  Photoelectrochemistry[b] Sandwich 
immunoassay 

0.1 pg mL-1 [66] 

 ssDNA   Fluorescence Sandwich 
hybridization 

35 pM [38] 

 hIgG PDA[f] Absorbance Sandwich 
immunoassay 

0.01 ng mL-1 [99] 

 Surfactin producing 
bacteria 

 Fluorescence Homogenous 1.8 103 cfu 
mL-1 

[98] 

Proteins Myoglobin Liposomes Fluorescence Sandwich 
immunoassay 

11.3 pg mL-1 [84] 

Nucleic 
acids 

MicroRNA-21 Mesoporous 
silica 

Photoelectrochemistry[b] Homogenous 0.74 fM [92] 

 Genomic DNA  Fluorescence Homogenous 50 copies µL-1 [94] 

 MicroRNA-29a Liposomes FRET, FCM[g] Homogenous 18 nM; 
1.2 nM 

[86] 
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Toxins AFB1 Mesoporous 
silica 

Fluorescence Competitive 
immunoassay 

8 pg mL-1 [90] 

 aflatoxins  Glucometer Homogenous 0.005 µg kg-1 [42] 

 BrevetoxinB  Glucometer Homogenous 0.01 ng mL-1 [74] 

 Biotoxin  SWV[a] Homogenous 6 pg mL-1 [73] 

 Staphylococcal 
enterotoxin C1 

 Fluorescence Homogenous 0.019 ng mL-1 [40] 

 Ochratoxin A  Fluorescence Homogenous 0.05 nM [69] 

 AFB1 Liposomes Photoelectrochemistry[b] Competitive 
immunoassay 

0.3 pg mL-1 [87] 

Viruses Avian leukosis virus 
subgroup 

Apoferritin DPV[d] Sandwich 
immunoassay 

115 TCID50  
mL-1 

[51] 

Enzymes Sphingomyelinase Liposomes Absorbance Homogenous 1.4 pM [25] 

 Hyaluronidase 
(S.aureus) 

Polymersomes Fluorescence Homogenous - [45] 

ATP ATP AuNC[e] Fluorescence Homogenous 1 nM [55] 

Bisphenol 
A 

Bisphenol A Mesoporous 
silica 

Fluorescence Homogenous 3.5 µM [93] 

Vitamins Thiamine Liposomes  Fluorescence Competitive 
immunoassay 

0.5 nM [83] 

Protein 
biomarker 

Phosphorylation 
sites in p53 

Apoferritin SWV[a] Sandwich 
immunoassay, 
multiplexing 

0.02 ng mL-1 
and 
0.05 ng mL-1 

[49] 

[a] SWV: square wave voltammetry. [b] Photoelectrochemistry: electrochemical current is produced by electron transfer 
from photoactive materials to semiconductor electrodes via light irradiation. [c] ECL: electrochemiluminescence. [d] DPV: 
differential pulse voltammetry. [e] AuNC: gold nanocage. [f] PDA: polydiacetylene. [g] FCM: fluorescence correlation 
microscopy 
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1.4.2. Chemosensors 

Nanocontainers can also improve the sensitivity of chemosensors due to the large active surface area 

of their porous nanostructures,[108] although these improved chemosensors don’t approach 

sensitivities yet as achieved with ICP-MS, AAS and GC (gas chromatography) analyses. The overview in 

Table 1.4 shows that mainly gas and metal ion sensing have been reported recently. Most reported 

concepts are based on nanocages made from metal oxides, gold or carbon, but a few examples can 

also be found for mesoporous silica, polymer and lipid based nanocontainers. Oxidizing and reducing 

gases such as acetone and benzene can easily be detected using metal oxide nanocontainers,[10] which 

often offer semiconductor properties. The gas sensing principle is based on the adsorption and 

oxidation of oxygen on the nanocontainer surface (Figure 1.6). Ionized oxygen species like O-, O2- or O2
- 

are formed by capturing free electrons from the valence band of the nanostructure, which in turn 

results in the formation of a depletion layer on its surface. Thus, the electron concentration is 

decreased leading to an increase in resistance. Upon addition of an oxidizing or reducing gas, 

interaction with the adsorbed oxygen takes place, electrons are either released to the valence band 

resulting in a decreased resistance or more electrons are removed from the valence band. This results 

in a change in the depletion layer thickness and thus a concentration dependent change in 

resistance.[61] This mechanism was for example exploited to detect the oxidizing gas acetone down to 

1 ppm using ZnO/ZnFe2O4 nanocontainers prepared via a metal organic framework (MOF) strategy. 

Simple metal oxide films or nanostructures like rod-shaped nanoparticles or hollow microspheres 

could not provide such low LODs.[61] In the case of the reducing gas xylene, ZnO/ZnCo2O4 hollow core-

shell nanocontainers were used by Qu et al. They could demonstrate that not only the enlarged surface 

area of the pores but also electronic effects of the core-shell structures influenced the sensitivity of 

the gas sensor when compared to simple ZnCo2O4 shells or ZnO nanocages.[62] Similarly, for toluene 

Figure 1.6. Schematic diagram of acetone sensing mechanism in ZnO/ZnFe2O4 hollow nanocages. Reproduced from Ref. [61], 

with permission Copyright 2017 Elsevier. 
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sensing cubic SnO2 nanocontainers loaded with the catalyst Pd are described providing a LOD of only 

0.1 ppm toluene.[63] Due to synergistic effects, further signal enhancement can be achieved by the 

additional entrapment of metal catalysts. For example, Co3O4 nanocages functionalized with a PdO 

catalyst have been described for the sensing of acetone (Figure 1.7). The structure of the Co3O4 

containers is again derived from a metal organic framework, which consists of small cavities for the 

entrapment of small metal nanoparticles. Preparation of these hollow structures is very simple as 

formation can be conducted simultaneously with nanoparticle functionalization using MOFs as 

template.[27] For sensing, the hollow nanostructures were drop-coated in Al2O3 substrates consisting 

of two parallel gold electrodes for electrochemical analysis and Pt for heating the samples to 250-

400 °C. High selectivity towards acetone was found and the ratios of the resistances Rgas/Rair were used 

for the quantitative analysis of acetone down to 100 ppb.[27] 

 

Figure 1.7. Sensing characteristics under highly humid condition (90% RH) at 350 °C. (a) Dynamic acetone sensing transient 

properties of Co3O4 powders, Co3O4 hollow nanocages (HNCs), PdO-Co3O4 powders and PdO-Co3O4 HNCs in the concentration 

range pf 0.4-5.0 ppm. (b) Response values to 1 ppm of interfering analytes. (c) Cyclic sensing transient of PdO-Co3O4 HNCs 

toward 1 ppm acetone. (d) Dynamic resistance transition toward 5 ppm of acetone molecules. (e) Schematic illustration of 

acetone sensing mechanism for PdO-Co3O4 HNCs. Reprinted from Ref. [27], with permission. Copyright 2017 American 

Chemical Society. 
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The group of Liu et al. investigated Ln-MOF-based nanocage chemosensors (Figure 1.8 and 1.9) for the 

detection of the metal ions Fe3+ and Cr2O7
2-. Eu3+ and Tb3+ were introduced as lanthanoid ions. The 

ligand of the framework contains a triazolyl group, which presents potential nitrogen binding sites. 

These enhance the polarity of the framework and the sensing properties due to possible host-guest 

interactions. The framework is formed by M12L8-nanocages with a diameter of 1.7 nm. Each of these 

nanocages is connected to four other cages building a highly porous 3D structure consisting of 

nanocages and channels. The introduced lanthanoid ions Eu3+ and Tb3+ exhibit specific emission peaks 

that change upon addition of different metal ions. For example, Cr2O7
2- is able to strongly quench the 

Eu luminescence and Fe3+, in addition, significantly reduces the fluorescence lifetime. For Fe3+, a 

detection limit of 18 µM was achieved. The detection limit is similar or even better compared to other 

Ln-MOF based sensing approaches but cannot compete with carbon or gold NP approaches, yet.[81] 

Figure 1.8. (a) 3D pores of Ln-metal organic framework structure (1-Tb), and (b) the (4,4,8)-connected topology (L4-: green 

balls; Tb2 clusters (SBU1 and SBU2), SBU1: orange balls; SBU2: purple balls). Reproduced from Ref. [81], with permission. 

Copyright 2016, Wiley-VCH Verlag GmbH & Co. KGaA. 

Figure 1.9. Luminescence intensity at 615 nm of Ln-MOF structure (1-Eu) treated with different metal cations (a) and anions 

(c) (10-2 M) in DMF solutions, and luminescence spectra of 1-Eu in DMF solutions with Fe(NO3)3 (b) and Cr2O7
2- (d) at different 

concentrations. Reproduced from Ref. [81], with permission. Copyright 2016, Wiley-VCH Verlag GmbH & Co. KGaA. 
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Metal ion sensing using carbon nanocages usually exploits the intrinsic fluorescence of the material. 

The nanocages offer good binding ability to metal ions, which are able to quench the nanocontainer 

fluorescence. The group of Bi et al. for example developed a sensor using fluorescent carbon 

nanocages for the detection of ascorbic acid. Here, Fe3+-ions are applied, which could be detected 

down to 3.96 µM. Moreover, in the presence of ascorbic acid Fe3+ is reduced to Fe2+, which interacts 

not as strongly as with the carbon nanocages. Thus, fluorescence is turned on and can be used for the 

quantification of ascorbic acid. This resulted in a detection limit of 97.2 nM, which is comparable with 

fluorescence detection using graphene quantum dots and even lower than HPLC-based detection or 

electrochemical detection using Ni(OH)2 nanoboxes.[11] 

Kosaki et al. describe the synthesis of carbon nanocages using mesoporous silica as template. To 

further increase available sensing surface area, the nanocages were mixed with 

polymethylmethacrylat (PMMA) and electrospun to create a thin fibrous film on the surface of quartz 

crystal microbalance (QCM) electrodes.[58] Aniline could be selectively detected in ppm levels, which is 

comparable e.g. to amperometric sensing using nanoporous gold electrodes.[58,109] The selective 

response to aniline vs. other aromatic molecules such as benzene can be ascribed to the presence of 

alcohol, carbonyl or carboxyl groups in the nanocages, which interact stronger with aromatic 

amines.[58] 

Finally, also Ag/Au nanocages have been proposed for the detection of metal ions replacing fluorescent 

probes such as rhodamine and fluorescein. The chelation with metal ions changes the LSPR spectrum 

and enables highly sensitive measurements that don’t suffer from photobleaching as observed with 

most fluorescent approaches.[82,110] A LSPR-based sensing approach for the detection of mercury ions 

has for example been reported by the group of Huang et al. Ag/Au nanocages were synthesized by 

depositing AgNPs onto an ITO electrode followed by the growth of thin porous gold shells. This resulted 

in a framework containing a partial hollow center and multiple pinholes. The authors detect mercury 

ions, which are reduced while at the same time Ag atoms in the Ag/Au nanocages are oxidized and a 

shell of mercury is formed on the surface of the cages. This results in a blue shift in the LSPR spectrum, 

which can be used for mercury quantification providing a detection limit of 5 ppb Hg2+, which is 

comparable to other reported optical sensors.[82] Bi et al. use the large surface area and 

electrochemical properties of gold for the enzyme-free detection of hydrogen peroxide. They designed 

25 nm small gold nanocages, which were deposited on GCE electrodes for voltammetric quantification 

of H2O2. This resulted in a limit of detection of 11 µM, which is not significantly low but comparable to 

other H2O2 sensors based on gold nanocaged structures.[26] With a similar approach, the group of Zhang 

et al. was able to reach a LOD of only 0.1 µM, which is comparable to H2O2 sensing with simple Prussian 

blue-coated electrodes.[97,111] 
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Moreover, the use of mesoporous silica nanocontainers has been reported for chemosensing. For 

example, boron-dipyrromethene (BODIPY) can be covalently attached to the inner walls of 

mesoporous silica particles to prevent aggregation of the dye. In the presence of phosph(on)ate 

substrates a reaction to phosph(on)ate esters takes place via acylation of the hydroxyl group of 

BODIPY, which results in intramolecular N-alkylation and thus the formation of a bicyclic ring. This 

bicyclic product is non-fluorescent. This mechanism enables the quantification of chemical warfare 

agents containing phosph(on)ate groups such as Sarin, Soman or Tabun using the fluorescence 

quenching of BODIPY. The 3 analytes were quantified in the pM range, which is in all cases below the 

maximum permitted concentrations in drinking water.[95] Another example can be found, where 

rhodamine 6G has been attached to a mesoporous silica particle surface. Rhodamine 6G consists of a 

spirolactam ring, which opens in the presence of Fe3+ forming a complex with the metal ion. Due to 

the chelation of rhodamine 6G and Fe3+ a strong fluorescence enhancement can be observed, which 

allows for the quantitative analysis of Fe3+ down to low ppb levels, which is slightly below the 

recommended level in drinking water. Reversibility of the sensor was demonstrated by the addition of 

EDTA, which resulted in a quenching of the emission due to detachment of the Fe3+ ions from 

rhodamine 6G.[96] 

Recently, several concepts have been proposed that also improve the sensitivity of PDA vesicle-based 

sensors. Frequently, the additional incorporation of a fluorophore creates a sensor that is independent 

of incomplete photopolymerization of the vesicles. For example, a 1,8-naphthalimide derivative has 

been reported, whose emission is quenched in the blue phase of the vesicles via a Förster energy 

transfer. Conversion to the red phase in the presence of cationic surfactants results in a decrease in 

quenching and concentration-dependent re-occurrence of the fluorophore emission. This enabled a 

detection of CTAB down to 0.18 µM which is up to 10 times lower than with conventional PDA vesicles 

and comparable to other reported methods based on fluorometric analysis.[100] A different concept is 

based on the attachment of the deprotonated form of cresol red molecules to the surface of polymer 

vesicles functionalized with tertiary amine alcohol groups. These vesicles exhibit a purple color. 

Competitive binding between cresol red and the analytes SO2 or HSO3
- results in the attachment of the 

analyte to the vesicle surface while at the same time the protonated form of cresol red is detached. 

This causes a color shift from purple to yellow, which enables colorimetric detection of SO2 and HSO3
- 

down to 25 nM. This LOD is comparable or even lower than other reported SO2 probes, which are 

typically in the range of 5 µM to 3 nM.[101] 

A smart surface design is also crucial for liposome-based chemosensors. Here, the group of B. König 

has synthesized different receptors that enable the recognition of various analytes. For example, a 
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thiolated bis-Zn2+-cyclen receptor attached to the liposomes has been reported to be suitable for the 

detection of phosphate moieties.[88] 

Table 1.4. Overview of analytes that have been detected using chemosensors based on different nanocages. 

Analyte Nanocage Detection LOD Ref. 

Acetone Co3O4 Conductometry 100 ppb [27] 

ZnO/ZnFe2O4 Conductometry 1 ppm [61] 

Xylene ZnO/ZnCo2O4 Conductometry - [62] 

Toluene SnO2 Conductometry 0.1 ppm [63] 

Aniline Carbon NCs[c] QCM[a] ppm level [58] 

Cations/Anions Ln-MOF[d]  Luminescence 0.018 mM (Fe3+) [81] 

Mercury Ag/AuNCs[e] LSPR[b] 5 ppb [82] 

Chemical warfares Mesoporous silica Fluorescence 0.12-90.8 pM [95] 

PO4
3- Liposomes Fluorescence 52 µM [89] 

 Liposomes Fluorescence - [88] 

SO2/HSO3
- Polymersomes Absorbance 25 nM [101] 

Fe(III) Mesoporous silica Fluorescence ppb level [96] 

H2O2 AuNCs[e] Voltammetry 11 µM [26] 

 AuNCs[e] Voltammetry 0.1 µM [97] 

Cationic surfactants PDA Fluorescence 0.18 µM [100] 

Ascorbic acid Carbon NCs[c] Fluorescence 97.2 nM [11] 

[a] QCM: quartz crystal microbalance. [b] LSPR: localized surface plasmon resonance. [c] carbon NC: carbon nanocage. [d] 
Ln-MOF: lanthanoid- metal organic framework. [e] AuNC: gold nanocage. 

 

Moreover, they developed a template-assisted post-functionalization strategy to introduce two-

dimensional receptors via molecular imprinting, enabling the design of various receptors and thus the 

recognition of a large variety of analytes. The sensor principle relies on the co-embedding of the 

amphiphilic reporter dyes and receptor moieties close to each other in the lipid bilayer, which 

quenches the emission of the fluorescent probe. Target binding induces a restructuring of the 

membrane, which increases the distance of receptor and dye and thus enhances the emission.[88] 

Phosphate quantification has also been reported with liposomes embedding a cationic conjugated 

polyfluorene in the vesicle membrane. The blue emission of the polymer can be quenched by p-

nitrophenol (PNP), which is the product of the enzymatic degradation of p-nitrophenylphosphate 
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(PNPP) by alkaline phosphatase. PO4
3- can inhibit this conversion resulting in the emergence of a strong 

vesicle emission. This enables the detection of PO4
3- down to 52 µM, which is comparable to 

conductometric sensors based on alkaline phosphatase inhibition but cannot compete with standard 

methods for ion analysis.[89] 

1.4.3. Bioimaging and in vivo Applications 

Nanocontainers can bring their full range of capabilities to bear in in vivo applications, where fully 

reversible and long-term stable signaling means are necessary that function in homogeneous assays 

under physiological conditions. Also, here gated mesoporous silica nanocontainers have been 

successfully applied. They can for example be doped with black hole quenchers and simultaneously 

loaded with the fluorescent dye rhodamine B. Due to the high quenching efficiency of the 

nanocontainers, the rhodamine B fluorescence is turned on only upon dye-release triggered by specific 

binding of the analyte to the gatekeeper anti-GSH (glutathione). In vitro tests proved the ability to 

sense free glutathione as well as protein S-glutathionylation (PSSG) down to 52 pM and 0.03 pM, 

respectively. After coating the surface of the nanocontainers also with cell penetrating poly(disulfide)s, 

they could successfully be delivered into live mammalian cells, which enables live intracellular imaging 

of the target analytes.[72] However, the use of fluorescent dyes like rhodamine B. for bioimaging is not 

ideal. Typically, near infrared (NIR) fluorophores are preferred as interferences by absorption of water 

or lipids, scattering of tissue and autofluorescence is low and hence high tissue penetration depth can 

be achieved. A common strategy has hence been to entrap large amounts of NIR probes inside 

nanocontainers to enhance the contrast between area of interest and background compared to single 

fluorophores.[78] Mesoporous silica nanocontainers for example have been applied for the imaging of 

sentinel lymph nodes. The containers were loaded with the NIR dye Cy754 enabling fluorescent and 

Figure 1.10. Construction of pH-responsive HPSN-Salphdc-FA system: drug-loaded HPSN-Salphdc-FA system for tumor therapy 

and bioimaging in vivo. Adapted from Ref. [79], with permission. Copyright 2015 American Chemical Society. 
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photoacoustic in vivo imaging of regional lymph nodes in a dual modality imaging mode.[91] Silica 

nanoparticles with hierarchical pores (HPSNs) are also very well suited for such applications. They serve 

as nanocontainers with unique mesoporous characteristics as their pore sizes decrease from surface 

to center. Dai et al. use a N,N-phenylenebis(salicylideneimine)dicarboxylic acid (Salphdc) complex as 

gatekeeper to entrap the model drug doxorubicin (DOX) but can also be applied as autofluorescent 

probe for bioimaging (Figure 1.10). Folic acid was attached to the particle surface as targeting unit for 

tumor cells. Under acidic pH values, the Salphdc complex is dissolved, which results in the release of 

the entrapped drug molecules. At physiological pH, the Salphdc complex stays intact.[79] 

Also liposomes have been applied for the imaging of cancer cells. For example, folic acid-modified 

liposomes entrapping an amphiphilic fluorescent squaraine dye have been designed by Dong et al. 

Squaraine is embedded in the hydrophobic membrane to prevent fluorescence quenching otherwise 

caused by aggregation in an aqueous environment. Those liposomes are able to bind to cancer cells, 

which overexpress folate receptors. The squaraine dye emits light in the red region (640-665 nm), 

which minimizes the interference with biological cells or tissues and enhances the tissue penetration 

depth and results in a good contrast suitable for imaging applications.[22] 

A different bioimaging approach is described using self-assembled amphiphilic polyesters (formed by 

π-π stacking of oligo-phenylenevinylene (OPV) and L-aspartic acid) that form OPV-coated polyester 

nanocontainers smaller than 200 nm in size. By entrapping Nile Red in their interior, a fluorescence 

resonance energy transfer (FRET) couple is obtained, i.e. the blue luminescence of the nanocage serves 

as FRET donor, Nile Red as FRET acceptor. Thus, while the nanocontainers are intact FRET occurs. The 

nanocontainers are taken up by cancer cells through endocytosis, accumulate in the cytoplasm and 

are degraded in the presence of lysosomal enzymes. This concept not only allows imaging of the 

cellular uptake but also of its successful degradation and hence removal from the body, which is crucial 

for biomedical applications.[23] Another possibility for in vivo imaging is the use of fluorescence 

quenching. Here, e.g. polymeric nanocontainers have been applied for the imaging of ATP degradation. 

The di-block-copolymer used to form the polymersomes gives the vesicles a membrane, which is 

permeable for small molecules such as ATP. A conjugated polymer served as fluorescent reporter 

probe and the ATP degrading enzyme alkaline phosphatase was entrapped inside the polymersomes. 

ATP can passively diffuse through the permeable pores of the membrane and induce conformational 

changes of the fluorescent probe causing quenching of its emission. The enzymatic ATP degradation 

can then be quantified by fluorescence recovery of the quenched probe.[44] 

Also the entrapment of upconverting nanoparticles for bioimaging is gaining in interest as they can 

overcome some of the disadvantages of simple fluorophores. They provide low autofluorescence 

background, no photobleaching, no phototoxicity, long luminescence lifetime and deep tissue 
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penetration due to excitation in the NIR region.[65,78]. However, as water quenches the emission of the 

upconversion nanoparticles, surface design is mandatory which is also needed to obtain colloidal 

stability under physiological conditions and to provide functional groups for tagging. Here, embedding 

the particles within shells, nanocontainers, fibers etc. has been suggested.[47] For example, 

multifunctional liposomes have been designed by co-loading them with Er3+ and Yb3+ doped NaGdF4 

upconverting nanoparticles in their aqueous core and the drug doxorubicin (DOX) in their hydrophobic 

membrane (Figure 1.11). DOX quenches the nanoparticle emission when excited at 980 nm, which 

allows the monitoring of drug loading and release. This makes them promising candidates for 

theranostic applications.[85] 

Similarly, multimodal liposomes for theranostic applications have been designed by the group of Ma 

et al. They synthesized folic acid functionalized liposomes entrapping DOX and conjugated polymer 

dots simultaneously in the lipid bilayer. The liposomes were specifically taken up by the tumor cells 

and drug accumulation could be observed enabling cancer diagnosis and drug release at the same 

time.[67] 

1.5. Conclusion, Future Perspectives and Challenges 

Over the course of the last five years a variety of nanocontainers were created, characterized and 

applied in bioanalysis, in chemosensors, and for in vitro and in vivo imaging. In all cases, their two 

distinguishing characteristics of a high functional surface area and often a large inner cavity are 

exploited for surface functionalization and signal amplification. Thus, limits of detection were 

demonstrated in many cases competing and outperforming commercially available gold standard 

detection strategies. Here, mainly liposomes and ferritin nanocages gave excellent results in 

Figure 1.11. Schematic representation showing the structures of the blank liposome, Lipo-UCNPs, Lipo-DOX, and Lipo-UCNPs-

DOX. Reprinted from Ref. [85], with permission. Copyright 2016 American Chemical Society. 
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heterogenous assays with detection limits up-to 1000 times lower than those achieved with 

commercially available ELISAs. In homogenous assays especially gatekeeper-based approaches with 

mesoporous silica particles and gold nanocages have been superior, which also outperformed the 

detection limits of commercially available assays by up -to 100 times. However, for many other 

instances, the use of nanocontainers is not convincing. For example, H2O2 sensing using gold nanocage-

modified electrodes show no improvement over already implemented sensors based on quite 

traditional mechanisms, e.g. Prussian blue-coated electrodes. In the case of sensing of ions, gases and 

volatile substances, nanocontainer-based approaches rarely can compete with gold standard analytical 

techniques such as ICP-OES/MS, GC or GC-MS, which may not be too surprising considering the 

difference in device complexity employed. A typical example is mercury detection, with a maximum 

concentration allowed by WHO of 6 ppb,[112] which can barely be achieved by the nanocontainer-based 

mercury sensor in this review. Hence, much emphasis should focus in the future on combining these 

types of sensors as small arrays with appropriate read-out algorithms and artificial intelligence in order 

to overcome their often inherent non-specific responses and perceived limited sensitivity. Then, 

detection ranges comparable to spectrophotometry may soon be reached and the device and assay 

simplicity of the sensing approach can be taken advantage of. 

In contrast, nanocontainers developed for imaging are not only very successful but also hold much 

promise especially in clinical diagnostics and therapy. Multimodal and theranostic strategies can easily 

be implemented such as for drug delivery and photodynamic therapy, as the nanocontainers can 

provide imaging through inherent material characteristics and also enable localized treatment through 

release of drugs or catalysis of reactions on their surface.[80] The biggest hurdle for nanocontainers 

here may only be biocompatibility and possible toxicity, which is part of overall toxicological studies 

on nanomaterials that include not only other types of materials than those used for nanocontainers, 

but also investigates hazards caused by their production and disposal. 

For applications such as point-of-care diagnosis parameters like long-term stability, simple assay 

setups, short assay times, possible miniaturization and integration into chips play an important role. 

Many nanocontainer-based bioassays pay attention to these requirements, such as liposome stability 

of over 1 year by Edwards et al.,[84] yet the practicality of some examples is questionable. Long 

operation times don’t seem feasible for example with marker release via gatekeepers. In other 

instances, low limits of detection were only achieved through a series of cumbersome assay setups, 

and compatibility with sample matrices is doubtful and not demonstrated. 

Thus, nanocontainers serve an important role in (bio)analytical chemistry and can ameliorate 

challenging tasks such as those described in biosensors and imaging, however, their usefulness should 

always be critically assessed to warrant that they only solve a problem and don’t create a new one. 



Nanocontainers for Analytical Applications 
__________________________________________________________________________________ 

42 
 

Acknowledgements 

We would like to thank Vanessa Tomanek for the drawing of the frontispiece and TOC graphic. 

References 

[1] Q. Liu, B. J. Boyd, Analyst 2013, 138, 391. 

[2] A. Gómez-Hens, J. Manuel Fernández-Romero, TrAC, Trends Anal. Chem. 2005, 24, 9. 

[3] A. Jesorka, O. Orwar, Annu. Rev. Anal. Chem. 2008, 1, 801. 

[4] K. A. Edwards, A. J. Baeumner, Talanta 2006, 68, 1421. 

[5] A. Graff, S. M. Benito, C. Verbert, W. Meier, Polymer Nanocontainers in Nanobiotechnology: 

Concepts, Applications and Perspectives (Eds.: C. M. Niemeyer, C. A. Mirkin), Wiley-VCH, Weinheim, 

2007, pp. 168–184. 

[6] A. Feng, J. Yuan, Macromol. Rapid Commun. 2014, 35, 767. 

[7] B. Bhushan, S. U. Kumar, I. Matai, A. Sachdev, P. Dubey, P. Gopinath, J. Biomed. Nanotechnol. 

2014, 10, 2950. 

[8] A. R. Chandrasekaran, O. Levchenko, Chem. Mater. 2016, 28, 5569. 

[9] Y. Xia, W. Li, C. M. Cobley, J. Chen, X. Xia, Q. Zhang, M. Yang, E. C. Cho, P. K. Brown, Acc. Chem. 

Res. 2011, 44, 914. 

[10] W. Li, X. Wu, N. Han, J. Chen, X. Qian, Y. Deng, W. Tang, Y. Chen, Sens. Actuators, B 2016, 225, 

158. 

[11] J. Bi, H. Wang, T. Kamal, B.-W. Zhu, M. Tan, RSC Adv. 2017, 7, 30481. 

[12] M. Misson, H. Zhang, B. Jin, J. R. Soc. Interface 2015, 12, 20140891. 

[13] P. Broz, S. Driamov, J. Ziegler, N. Ben-Haim, S. Marsch, W. Meier, P. Hunziker, Nano Lett. 2006, 

6, 2349. 

[14] K. T. Kim, S. A. Meeuwissen, R. J. M. Nolte, van Hest, Jan C M, Nanoscale 2010, 2, 844. 

[15] J. Gaitzsch, X. Huang, B. Voit, Chem. Rev. 2016, 116, 1053. 

[16] J. Li, S. Lu, H. Huang, D. Liu, Z. Zhuang, C. Zhong, ACS Sustainable Chem. Eng. 2018, 6, 10021. 

[17] a) E. Petala, Y. Georgiou, V. Kostas, K. Dimos, M. A. Karakassides, Y. Deligiannakis, C. Aparicio, 

J. Tuček, R. Zbořil, ACS Sustainable Chem. Eng. 2017, 5, 5782; b) S. Dib, M. Boufatit, S. Chelouaou, F. 

Sadi-Hassaine, J. Croissant, J. Long, L. Raehm, C. Charnay, J.-O. Durand, RSC Adv. 2014, 4, 24838. 



Nanocontainers for Analytical Applications 
__________________________________________________________________________________ 

43 
 

[18] a) Y. Wang, G. Wang, H. Wang, C. Liang, W. Cai, L. Zhang, Chem. - Eur. J. 2010, 16, 3497; b) Y. 

Zhang, S. Xu, Y. Luo, S. Pan, H. Ding, G. Li, J. Mater. Chem. 2011, 21, 3664. 

[19] a) L. Messager, J. R. Burns, J. Kim, D. Cecchin, J. Hindley, A. L. B. Pyne, J. Gaitzsch, G. Battaglia, 

S. Howorka, Angew. Chem. Int. Ed. 2016, 55, 11106; b) T. Trantidou, M. Friddin, Y. Elani, N. J. Brooks, 

R. V. Law, J. M. Seddon, O. Ces, ACS Nano 2017, 11, 6549; c) L. Otrin, N. Marušič, C. Bednarz, T. 

Vidaković-Koch, I. Lieberwirth, K. Landfester, K. Sundmacher, Nano Lett. 2017, 17, 6816. 

[20] P. Sahandi Zangabad, M. Karimi, F. Mehdizadeh, H. Malekzad, A. Ghasemi, S. Bahrami, H. Zare, 

M. Moghoofei, A. Hekmatmanesh, M. R. Hamblin, Nanoscale 2017, 9, 1356. 

[21] B. Iyisan, J. Kluge, P. Formanek, B. Voit, D. Appelhans, Chem. Mater. 2016, 28, 1513. 

[22] S. Dong, J. D. W. Teo, L. Y. Chan, C.-L. K. Lee, K. Sou, ACS Appl. Nano Mater. 2018, 1, 1009. 

[23] S. Saxena, M. Jayakannan, Biomacromolecules 2017, 18, 2594. 

[24] Z. Qiu, J. Shu, D. Tang, Anal. Chem. 2017, 89, 5152. 

[25] M. N. Holme, S. Rana, H. M. G. Barriga, U. Kauscher, N. J. Brooks, M. M. Stevens, ACS Nano 

2018, 12, 8197. 

[26] H. Li, Y. Li, S. Wang, CrystEngComm 2015, 17, 2368. 

[27] W.-T. Koo, S. Yu, S.-J. Choi, J.-S. Jang, J. Y. Cheong, I.-D. Kim, ACS Appl. Mater. Interfaces 2017, 

9, 8201. 

[28] a) F. Sancenón, L. Pascual, M. Oroval, E. Aznar, R. Martínez-Máñez, ChemistryOpen 2015, 4, 

418; b) A. Mirzaei, S. G. Leonardi, G. Neri, Ceram. Int. 2016, 42, 15119; c) T. Wagner, S. Haffer, C. 

Weinberger, D. Klaus, M. Tiemann, Chem. Soc. Rev. 2013, 42, 4036. 

[29] X. Wang, J. Feng, Y. Bai, Q. Zhang, Y. Yin, Chem. Rev. 2016, 116, 10983. 

[30] Z. Dai, H. Ju, TrAC, Trends Anal. Chem. 2012, 39, 149. 

[31] Y. Li, J. Shi, Adv. Mater. (Weinheim, Ger.) 2014, 26, 3176. 

[32] S.-H. Wu, C.-Y. Mou, H.-P. Lin, Chem. Soc. Rev. 2013, 42, 3862. 

[33] F. Tang, L. Li, D. Chen, Adv. Mater. (Weinheim, Ger.) 2012, 24, 1504. 

[34] L. Schoonen, van Hest, Jan C M, Nanoscale 2014, 6, 7124. 

[35] M. Marguet, C. Bonduelle, S. Lecommandoux, Chem. Soc. Rev. 2013, 42, 512. 

[36] A. B. T. Ghisaidoobe, S. J. Chung, Nanomedicine (London, U. K.) 2015, 10, 3579. 



Nanocontainers for Analytical Applications 
__________________________________________________________________________________ 

44 
 

[37] M. Mayer, S. Takegami, M. Neumeier, S. Rink, A. Jacobi von Wangelin, S. Schulte, M. Vollmer, 

A. G. Griesbeck, A. Duerkop, A. J. Baeumner, Angew. Chem. Int. Ed. 2018, 57, 408. 

[38] K. A. Edwards, A. J. Baeumner, Anal. Chem. 2014, 86, 6610. 

[39] L.-P. Mei, X.-Y. Jiang, X.-D. Yu, W.-W. Zhao, J.-J. Xu, H.-Y. Chen, Anal. Chem. 2018, 90, 2749. 

[40] L. Tao, C. Zhang, J. Zhang, Y. Sun, X. Li, K. Yan, B. Jin, Z. Zhang, K. Yang, Microchim. Acta 2016, 

183, 2163. 

[41] H. Ma, Y. Wang, D. Wu, Y. Zhang, J. Gao, X. Ren, B. Du, Q. Wei, Sci. Rep. 2016, 6, 19797. 

[42] D. Tang, Y. Lin, Q. Zhou, Y. Lin, P. Li, R. Niessner, D. Knopp, Anal. Chem. 2014, 86, 11451. 

[43] X. Yang, A. Wang, J. Liu, Talanta 2013, 114, 5. 

[44] U. H. Yildiz, H.-P. M. de Hoog, Z. Fu, N. Tomczak, A. N. Parikh, M. Nallani, B. Liedberg, Small 

2014, 10, 442-7, 441. 

[45] S. Haas, N. Hain, M. Raoufi, S. Handschuh-Wang, T. Wang, X. Jiang, H. Schönherr, 

Biomacromolecules 2015, 16, 832. 

[46] B. Kulkarni, M. Jayakannan, ACS Biomater. Sci. Eng. 2017, 3, 2185. 

[47] U. Bazylińska, D. Wawrzyńczyk, J. Kulbacka, R. Frąckowiak, B. Cichy, A. Bednarkiewicz, M. 

Samoć, K. A. Wilk, Sci. Rep. 2016, 6, 29746. 

[48] W. C. de Vries, D. Grill, M. Tesch, A. Ricker, H. Nüsse, J. Klingauf, A. Studer, V. Gerke, B. J. Ravoo, 

Angew. Chem. Int. Ed. 2017, 56, 1. 

[49] X. Ge, A. Zhang, Y. Lin, D. Du, Biosens. Bioelectron. 2016, 80, 201. 

[50] a) A. Chen, Y. Bao, X. Ge, Y. Shin, D. Du, Y. Lin, RSC Adv. 2012, 2, 11029; b) N. Liao, Y. Zhuo, Y. 

Chai, Y. Xiang, Y. Cao, R. Yuan, J. Han, Chem. Commun. (Cambridge, U. K.) 2012, 48, 7610; c) S. 

Kashanian, F. Abasi Tarighat, R. Rafipour, M. Abbasi-Tarighat, Mol. Biol. Rep. 2012, 39, 8793. 

[51] X. Wang, L. Chen, X. Su, S. Ai, Biosens. Bioelectron. 2013, 47, 171. 

[52] A. Abbaspour, A. Noori, Biosens. Bioelectron. 2012, 37, 11. 

[53] J. P. Laulhere, A. M. Lescure, Briat J F, J. Biol. Chem. 1988, 263, 10289. 

[54] C. Gao, M. Su, Y. Wang, S. Ge, J. Yu, RSC Adv. 2015, 5, 28324. 

[55] W. Wang, C. Chen, X. Li, S. Wang, X. Luo, Chem. Commun. (Cambridge, U. K.) 2015, 51, 9109. 



Nanocontainers for Analytical Applications 
__________________________________________________________________________________ 

45 
 

[56] A. Vinu, M. Miyahara, V. Sivamurugan, T. Mori, K. Ariga, J. Mater. Chem. 2005, 15, 5122. 

[57] H. Zhang, O. Noonan, X. Huang, Y. Yang, C. Xu, L. Zhou, C. Yu, ACS Nano 2016, 10, 4579. 

[58] Y. Kosaki, H. Izawa, S. Ishihara, K. Kawakami, M. Sumita, Y. Tateyama, Q. Ji, V. Krishnan, S. 

Hishita, Y. Yamauchi et al., ACS Appl. Mater. Interfaces 2013, 5, 2930. 

[59] H. Zhang, M. Yu, H. Song, O. Noonan, J. Zhang, Y. Yang, L. Zhou, C. Yu, Chem. Mater. 2015, 27, 

6297. 

[60] F. Qu, B. Zhang, X. Zhou, H. Jiang, C. Wang, X. Feng, C. Jiang, M. Yang, Sens. Actuators, B 2017, 

252, 649. 

[61] X. Wang, S. Zhang, M. Shao, J. Huang, X. Deng, P. Hou, X. Xu, Sens. Actuators, B 2017, 251, 27. 

[62] F. Qu, H. Jiang, M. Yang, Nanoscale 2016, 8, 16349. 

[63] L. Qiao, Y. Bing, Y. Wang, S. Yu, Z. Liang, Y. Zeng, Sens. Actuators, B 2017, 241, 1121. 

[64] a) W. Zhao, T. M. H. Lee, S. S. Y. Leung, I.-M. Hsing, Langmuir 2007, 23, 7143; b) A. P. Stevenson, 

D. Blanco Bea, S. Civit, S. Antoranz Contera, A. Iglesias Cerveto, S. Trigueros, Nanoscale Res. Lett. 2012, 

7, 151; c) D. J. A. Crommelin, van Bommel, E. M. G., Pharm. Res. 1984, 1, 159; d) B. S. Pattni, V. V. 

Chupin, V. P. Torchilin, Chem. Rev. 2015, 115, 10938. 

[65] V. Muhr, S. Wilhelm, T. Hirsch, O. S. Wolfbeis, Acc. Chem. Res. 2014, 47, 3481. 

[66] L.-P. Mei, F. Liu, J.-B. Pan, W.-W. Zhao, J.-J. Xu, H.-Y. Chen, Anal. Chem. 2017, 89, 6300. 

[67] M. Ma, M. Lei, X. Tan, F. Tan, N. Li, RSC Adv. 2016, 6, 1945. 

[68] G. Chen, I. Roy, C. Yang, P. N. Prasad, Chem. Rev. 2016, 116, 2826. 

[69] À. Ribes, S. Santiago-Felipe, A. Bernardos, M. D. Marcos, T. Pardo, F. Sancenón, R. Martínez-

Máñez, E. Aznar, ChemistryOpen 2017, 6, 653. 

[70] X. Yang, F. Pu, C. Chen, J. Ren, X. Qu, Chem. Commun. (Cambridge, U. K.) 2012, 48, 11133. 

[71] M. Chen, C. Huang, C. He, W. Zhu, Y. Xu, Y. Lu, Chem. Commun. (Cambridge, U. K.) 2012, 48, 

9522. 

[72] X. Mao, P. Yuan, C. Yu, L. Li, S. Q. Yao, Angew. Chem. Int. Ed. 2018, 130, 10414. 

[73] B. Zhang, B. Liu, J. Liao, G. Chen, D. Tang, Anal. Chem. 2013, 85, 9245. 

[74] Z. Gao, D. Tang, M. Xu, G. Chen, H. Yang, Chem. Commun. (Cambridge, U. K.) 2014, 50, 6256. 



Nanocontainers for Analytical Applications 
__________________________________________________________________________________ 

46 
 

[75] M. Holzinger, A. Le Goff, S. Cosnier, Front. Chem. 2014, 2, 63. 

[76] F. Mazur, M. Bally, B. Städler, R. Chandrawati, Adv. Colloid Interface Sci. 2017, 249, 88. 

[77] a) R. Weissleder, U. Mahmood, Radiology 2001, 219, 316; b) T. Yamaoka, Bioimaging Materials 

in Encyclopedia of Polymeric Nanomaterials (Eds.: S. Kobayashi, K. Müllen), Springer Berlin Heidelberg, 

Berlin, Heidelberg, 2016, pp. 1–6. 

[78] Q. Le Trequesser, H. Seznec, M.-H. Delville, Nanotechnol. Rev. 2013, 2, 125. 

[79] L. Dai, Q. Zhang, J. Li, X. Shen, C. Mu, K. Cai, ACS Appl. Mater. Interfaces 2015, 7, 7357. 

[80] J. Jia, Y. Zhang, M. Zheng, C. Shan, H. Yan, W. Wu, X. Gao, B. Cheng, W. Liu, Y. Tang, Inorg. 

Chem. 2018, 57, 300. 

[81] J.-Q. Liu, G.-P. Li, W.-C. Liu, Q.-L. Li, B.-H. Li, R. W. Gable, L. Hou, S. R. Batten, ChemPlusChem 

2016, 81, 1299. 

[82] D. Huang, T. Hu, N. Chen, W. Zhang, J. Di, Anal. Chim. Acta 2014, 825, 51. 

[83] K. A. Edwards, W. J. Seog, L. Han, S. Feder, C. E. Kraft, A. J. Baeumner, Anal. Chem. 2016, 88, 

8248. 

[84] K. A. Edwards, K. J. Meyers, B. Leonard, A. J. Baeumner, Anal. Bioanal. Chem. 2013, 405, 4017. 

[85] Y. Huang, E. Hemmer, F. Rosei, F. Vetrone, J. Phys. Chem. B 2016, 120, 4992. 

[86] C. Jumeaux, O. Wahlsten, S. Block, E. Kim, R. Chandrawati, P. D. Howes, F. Höök, M. M. Stevens, 

ChemBiochem 2018, 19, 434. 

[87] Y. Lin, Q. Zhou, D. Tang, Anal. Chem. 2017, 89, 11803. 

[88] A. Müller, B. König, Org. Biomol. Chem. 2015, 13, 1690. 

[89] Z. Kahveci, M. J. Martínez-Tomé, R. Mallavia, C. R. Mateo, ACS Appl. Mater. Interfaces 2017, 9, 

136. 

[90] D. Tang, B. Liu, R. Niessner, P. Li, D. Knopp, Anal. Chem. 2013, 85, 10589. 

[91] Z. Liu, P. Rong, L. Yu, X. Zhang, C. Yang, F. Guo, Y. Zhao, K. Zhou, W. Wang, W. Zeng, Mol. Pharm. 

2015, 12, 3119. 

[92] Y. Wang, H. Shi, K. Cui, L. Zhang, S. Ge, M. Yan, J. Yu, Biosens. Bioelectron. 2018, 117, 515. 

[93] À. Ribes, E. Aznar, A. Bernardos, M. D. Marcos, P. Amorós, R. Martínez-Máñez, F. Sancenón, 

Chem. - Eur. J. 2017, 23, 8581. 



Nanocontainers for Analytical Applications 
__________________________________________________________________________________ 

47 
 

[94] E. Climent, L. Mondragón, R. Martínez-Máñez, F. Sancenón, M. D. Marcos, J. R. Murguía, P. 

Amorós, K. Rurack, E. Pérez-Payá, Angew. Chem. Int. Ed. 2013, 52, 8938. 

[95] E. Climent, M. Biyikal, K. Gawlitza, T. Dropa, M. Urban, A. M. Costero, R. Martínez-Máñez, K. 

Rurack, Sens. Actuators, B 2017, 246, 1056. 

[96] H. Kim, B. A. Rao, J. Jeong, S. Angupillai, J. S. Choi, J.-O. Nam, C.-S. Lee, Y.-A. Son, Sens. 

Actuators, B 2016, 224, 404. 

[97] Y. Zhang, Y. Sun, Z. Liu, F. Xu, K. Cui, Y. Shi, Z. Wen, Z. Li, J. Electroanal. Chem. 2011, 656, 23. 

[98] J. Park, S. K. Ku, D. Seo, K. Hur, H. Jeon, D. Shvartsman, H.-K. Seok, D. J. Mooney, K. Lee, Chem. 

Commun. (Cambridge, U. K.) 2016, 52, 10346. 

[99] J. U. Lee, J. H. Jeong, D. S. Lee, S. J. Sim, Biosens. Bioelectron. 2014, 61, 314. 

[100] D.-E. Wang, L. Zhao, M.-S. Yuan, S.-W. Chen, T. Li, J. Wang, ACS Appl. Mater. Interfaces 2016, 

8, 28231. 

[101] T. Huang, Z. Hou, Q. Xu, L. Huang, C. Li, Y. Zhou, Langmuir 2017, 33, 340. 

[102] M. X. L. Tan, M. K. Danquah, Chem. Eng. Technol. 2012, 35, 618. 

[103] a) I. Petrikovics, K. Hong, G. Omburo, Q. Z. Hu, L. Pei, W. D. McGuinn, D. Sylvester, C. Tamulinas, 

D. Papahadjopoulos, J. C. Jaszberenyi et al., Toxicol. Appl. Pharmacol. 1999, 156, 56; b) D. Brady, J. 

Jordaan, Biotechnol. Lett. 2009, 31, 1639. 

[104] H. Xing, C. L. Zhang, G. Ruan, J. Zhang, K. Hwang, Y. Lu, Anal. Chem. 2016, 88, 1506. 

[105] E. Aznar, M. Oroval, L. Pascual, J. R. Murguía, R. Martínez-Máñez, F. Sancenón, Chem. Rev. 

2016, 116, 561. 

[106] W.-W. Zhao, J.-J. Xu, H.-Y. Chen, Chem. Soc. Rev. 2015, 44, 729. 

[107] J.-M. Liu, X.-P. Yan, Biosens. Bioelectron. 2012, 36, 135. 

[108] S. Sharma, M. Madou, Philos. Trans. R. Soc. A 2012, 370, 2448. 

[109] B. T. P. Quynh, J. Y. Byun, S. H. Kim, Sens. Actuators, B 2014, 193, 1. 

[110] J. Zhang, F. Cheng, J. Li, J.-J. Zhu, Y. Lu, Nano Today 2016, 11, 309. 

[111] M. P. O'Halloran, M. Pravda, G. G. Guilbault, Talanta 2001, 55, 605. 

[112] Z. Abrego, N. Unceta, A. Sánchez, A. Gómez-Caballero, L. M. Berrio-Ochoa, M. Aranzazu 

Goicolea, R. J. Barrio, Analyst 2017, 142, 1157. 



Nanocontainers for Analytical Applications 
__________________________________________________________________________________ 

48 
 

 



Introduction and Structure of the Thesis 
__________________________________________________________________________________ 

49 
 

2 Introduction and Structure of the Thesis 

This thesis focuses on the preparation, the controlled surface design and characterization of colloidally 

stable liposomes to serve as analytical tools such as for signal enhancement for the detection of 

bacteria or for the preconcentration of DNA. 

The contamination of food or drinking water by pathogens or hazardous substances like heavy metal 

ions can cause serious diseases or even death.[4,5] Therefore, the fast and early detection of such 

hazards is very important. Various (bio)analytical assays and sensors have for example been developed 

to solve this problem.[5] To achieve the required sensitivity of such tests mostly signal enhancement is 

necessary. Common strategies include amplification via enzymes or PCR, which already find their 

application in clinical diagnosis or point-of-care devices.[3,6] In the last years also the use of 

nanomaterials has become more interesting as they often provide an excellent sensitivity.[1] The use 

of gold or polymer (nano)particles is for example well established for the development of lateral flow-

based devices,[2] but also other nanomaterials like quantum dots or up-converting phosphor have been 

successfully applied as optical labels.[3] Among the various types of nanomaterials, nanocontainers 

have been shown to be ideal signal amplification tools. Here, signal enhancement is usually achieved 

by the entrapment of a large number of signaling molecules in their hollow interior or pores. Chapter 

1 gives an overview of the most important nanocontainers and their applications in (bio)assays, 

chemosensors and in vitro and in vivo imaging and provides a critical discussion of the different 

applications, challenges and restrictions regarding the nanocontainer-based analytical assays. 

Liposomes combine all the features of nanocontainers that are relevant for (bio)analytical applications, 

such as their relatively simple preparation and surface functionalization, their large inner cavity and 

variety of possible entrapped molecules, short assay response times due to an efficient lysis of the 

membrane as well as their natural biocompatibility. 

Liposomes were discovered by Bangham et al. in 1964 and originally used as models for biological 

membranes.[16] These artificial spherical vesicles consist of a lipid bilayer that is formed by the 

hydrophobic tails of the lipids while the polar headgroups are pointing towards the big hydrophilic 

inner cavity and the extravesicular solution.[7,8] Liposomes can be composed of a variety of lipids. 

However, often phospholipids build the main component.[8] Phospholipids are available with different 

chain lengths and polar headgroups.[9,10] While chain length and the degree of saturation influence the 

phase transition temperature of the lipids and thus also the characteristics of the vesicle membrane, 

the polar headgroups are responsible for the stability of the vesicle dispersions in aqueous solutions 

or provide functionalities for the attachment of surface modifications.[9] Charged headgroups improve 
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e.g. the colloidal stability due to electrostatic repulsion between the liposomes.[11] Cholesterol is also 

a common component of the lipid bilayer and reduces the permeability of the membrane and thus 

leakage of molecules that can be entrapped inside the big, hydrophilic inner cavity of the liposomes.[12] 

At the same time it increases the headgroup spacing between charged lipids and therefore the 

membrane stability due to a reduced repulsion between the lipids.[13] Molecules that can be entrapped 

inside the inner cavity of the liposomes are salts or dyes, biomolecules like enzymes or DNA but also 

nanoparticles or drugs.[8] The ability of liposomes to encapsulate molecules in their interior has made 

them a versatile tool for a variety of applications, e.g. in the cosmetic industry,[14] for therapeutic or 

diagnostic applications,[15] as delivery vehicles for vaccines and drugs, in gene therapy[17] or in the field 

of (bio)analytical assays.[8,18] 

For most applications like targeted delivery to specific cells or tissues not only the entrapment of 

molecules is important but also the functionalization of the vesicles surface with specific recognition 

elements. Receptors on the vesicle surface not only allow for targeted drug delivery but also for specific 

binding to surfaces or analytes, which is crucial for most (bio)analytical tests. Surface functionalization 

can be achieved by several methods. The challenges and limitations of the different standard 

techniques, which are based on the incorporation of functionalized lipids during synthesis or on post-

modifications via covalent coupling, are discussed in Chapter 3. In this chapter also an alternative 

method is developed for the modification of liposomes based on the insertion of a biotinylated 

lipopeptide into preformed vesicles. The method was optimized with respect to incubation parameters 

like time and temperature and in view of the vesicle stability regarding dye leakage and the loss of 

membrane material. Size, ζ-potential and binding functionality of the obtained vesicles were directly 

compared to standard modified liposomes and proved the superior performance of liposomes 

prepared via insertion of the lipopeptide. Functionalization of the vesicle surface is not limited to biotin 

as applied in Chapter 3. A variety of molecules can serve as receptors, e.g. enzymes, antibodies or 

ssDNA (Chapter 4).[8] 

A common application of DNA-functionalized vesicles is their use in sandwich hybridization assays,[19] 

where e.g. the analyte C.parvum could be detected down to 3.2 pM.[20] The sensitive detection can be 

ascribed to the large amount of marker molecules that can be entrapped in the vesicle interior.[8] 

However, before applying such vesicles to analytical problems, a detailed characterization of the 

vesicles and their surface functionalization is crucial. For the characterization of the standard 

parameters such as vesicle size, ζ-potential or the phospholipid concentration well-established 

methods exist, e.g. dynamic light scattering, the Bartlett assay or ICP-based methods.[21,22] In Chapter 

4 the vesicles are not only characterized by these standard methods. This chapter also provides an 

insight into several possibilities for the optical characterization of DNA-tagged liposomes ranging from 
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simple fluorescence measurements to fluorescence correlation spectroscopy and imaging techniques. 

Thereby, also information on the particle number, DNA surface coverage and functionality of the 

vesicles can be obtained. 

The surface of liposomes cannot only be tuned via ligands and receptors but also by the surface 

charge.[10] In bioanalysis mostly anionic liposomes are applied as they prevent non-specific binding to 

most surfaces and analytes.[22] However, by introduction of positively charged lipids or amphiphiles 

into the lipid bilayer also the preparation of cationic liposomes is possible.[23] These have been widely 

applied to form lipoplexes with DNA which renders them suitable e.g. for gene delivery.[24] Their 

application in bioanalysis has seldomly been reported as the positive surface charge causes 

interference with most biological molecules. However, this can also be exploited to create very simple 

assays based on electrostatic interactions as for example for the detection of bacteria as in case of 

chitosan-coated Fe3O4 particles in combination with a magnetoelastic sensor[25] or in case of PDA 

vesicles.[26] Chapter 5 discusses the preparation of cationic liposomes and how their electrostatic 

properties can be exploited for the detection of bacteria cells with E.coli as model analyte. The 

liposomes were loaded either with sulforhodamine B or m-carboxy-luminol to enable the analysis via 

fluorescence or chemiluminescence, respectively. Different lipid compositions, assay setups and 

readout mechanisms were investigated and optimized and the capability of these cationic liposomes 

to serve as analytical tool for the detection of bacteria was critically discussed with respect to 

remaining challenges and limitations. 

Besides their use in bioanalysis the electrostatic interactions of nanovesicles or -particles have also 

been reported for other applications. For example, the bactericidal action of some nanomaterials can 

be ascribed to electrostatic interactions such as in case of some cationic liposomes or chitosan 

nanoparticles.[27] Moreover, the electrostatic interactions can be used for the assembly of building 

blocks based for the formation of peptide- or protein-based nanomaterials[28] or for the attachment of 

surface coatings or gatekeepers to nanoparticles.[29] A very popular application is the use of DNA for 

the attachment to liposomes. Due to the negative charge of the phosphate backbone of DNA, cationic 

liposomes can electrostatically bind to the DNA molecules which has been widely applied in gene 

therapy.[17] However, also other applications can be envisioned such as the extraction, purification and 

preconcentration of DNA which is necessary in several cases to enable a reliable analysis, e.g. via PCR 

which has a low tolerance towards impurities.[30] This is often achieved via alcohol precipitation or 

magnetic beads which suffer from drawbacks like the need for organic solvents or chaotropic salts.[30,31] 

In Chapter 6 a fast and simple method for the preconcentration of DNA has been developed which is 

based on the use of cationic liposomes. The method was optimized and critically discussed regarding 
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the influences caused by the incubation time, temperature, centrifugation speed and liposome 

concentration and remaining challenges were addressed. 

Finally, the main results and insights of this thesis are discussed in Chapter 7 with respect to the 

advantages and disadvantages of liposomes and the influence of the vesicle surface design on 

applications in the field of bioanalysis. Moreover, this chapter addresses the challenges and future 

perspectives of applications of liposomes within this field. 
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3 Tethering Functionality to Lipid Interfaces by a Fast, Simple and 

Controllable Post Synthesis Method 

 

Abstract 

Hypothesis: Liposomes require careful control of the surface design to ensure colloidal stability in 

complex matrices and target-specific binding to desired receptor units. Ideally, surface 

functionalization should be smart and controllable in terms of composition which is seldomly achieved 

by conventional methods. Therefore, a new strategy (insertion method) was developed and compared 

to the standard method (modification post-synthesis) using the model receptor biotin.  

Experiments: Dipalmitoylphosphatidylethanolamine-biotin (DPPE-biotin) was used in both 

procedures, lipopeptide-biotin and cholesterol-biotin were tested additionally for insertion into the 

intact lipid bilayer. The insertion method was optimized regarding incubation time, temperature and 

vesicle stability. The biotinylated vesicles of both functionalization methods were characterized with 

respect to their size, ζ-potential and binding functionality.  

Findings: Standard incorporation resulted in large variations in insertion-efficiency, high batch-to-

batch differences, and an incorporation limit of 4 mol%. Best results were obtained through effortless 

insertion of the lipopeptide-biotin at room temperature. The concentration-controlled 

functionalization of liposomes (up to 10 mol%) could easily be monitored by the ζ-potential, resulted 

in reliable, quantitative binding to streptavidin and did not affect the analytical properties of the 

nanomaterial. This offers the possibility for a general modification strategy for lipid-based 

nanomaterials ideal for assay optimizations or multi-analyte detection 
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This chapter contains paragraphs that were in part already described in Carola Figalist’s master’s 

thesis. This includes paragraphs within the introduction or the experimental part regarding the 

liposome preparation and characterization. The master’s thesis is entitled “Positively Charged 

Liposomes for Signal Enhancement via Electrostatic Interactions” and was submitted to the Faculty of 

Chemistry and Pharmacy at the University of Regensburg in December 2014. Sections that are identical 

or similar to the master’s thesis are listed here in detail and are indicated in this chapter by the 

citation “M”: 

- p.56, subchapter 3.1., sentence 2 (introduction) 

- p.60, subchapter 3.2.2.1.1. (experimental) 

- p.61, subchapter 3.2.2.2., 3.2.2.2.1., 3.2.2.2.2. (experimental) 

3.1. Introduction 

Liposomes are membrane-based nanovesicles that can be used as model membranes for studying 

membrane interactions, or are applied as nanoreactors or functional components in medicine for 

therapeutic and diagnostic reasons, such as in delivery systems for drugs or vaccines, gene therapy or 

diagnostic imaging.[1,2] They are commonly used in the cosmetic industry[3] and are also well-

established in the field of bioanalytical assays.[4,M] All of these different application areas take benefit 

of the ability to encapsulate molecules within the aqueous cavity formed by a lipid bilayer membrane 

which can be varied in composition and functionalities. Liposome synthesis protocols can be optimized 

to entrap a variety of marker or drug molecules with high yield[5] and their membrane surface can be 

modified to bear e.g. specific lipids, receptors, markers or recognition molecules to ensure specific 

binding and targeting capabilities. This surface modification is then exploited for specific targeting as 

in drug delivery[6] and in vivo medical diagnostics[7] as well as for specific analyte binding in bioanalytical 

assays.[8] 

In these cases, the membrane surface becomes a critical feature of each liposome as it not only needs 

to afford specific binding or targeting but also needs to render liposomes colloidally stable over a long 

period of time in various buffer systems. In order to obtain stable liposome dispersions, the vesicle 

membranes are usually composed of a mixture of lipids. Charged phospholipids are for example 

applied to increase the colloidal stability by electrostatic repulsion of the vesicles.[9] The addition of 

cholesterol favors the stability of the liposomal membrane by decreasing the membrane permeability 

which prevents leakage of entrapped molecules.[10] PEGylation of liposomes, which finds its application 

mainly in drug delivery due to its ability to increase their blood circulation time, also leads to a higher 

steric stabilization.[11] Nevertheless, it is challenging to find the ideal composition to control non-

specific binding, spontaneous fusion or cellular uptake of liposomes. Thus, the interplay of the 
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membrane lipid composition and modification with specific recognition molecules require special 

attention in the design and synthesis of liposomes. 

For the use of functionalized liposomes in classical bioassays, as e.g. described for microtiter plates,[12] 

microfluidic lab on chip systems[13] or lateral flow assays,[14] two standard methods have mostly been 

reported; (i) direct modification during synthesis (Scheme 3.1, standard method with receptor moiety) 

using receptor modified lipids like biotinylated phospholipids,[15] DNA-probes with cholesterol tags,[12] 

gangliosides,[16] or dye-coupled phospholipids[17] or (ii) post modifications by covalent coupling. In the 

first case, the main advantage is the formation of a large amount of readily functionalized liposomes 

without the need for further coupling reactions and purification steps. This is very beneficial when 

liposomes and their surface tags have been optimized and are used in larger quantities for assay 

development or performance. This method is very cumbersome and wasteful when different tags and 

different tag concentrations are being studied. Furthermore, variations between liposome lots like the 

efficiency of the incorporation of receptor tags or signaling molecules may overlay effects caused by 

variations to the modification itself. In the case of post modifications by covalent coupling commonly 

lipids with functionalized headgroups like phosphatidylethanolamines, N-glutaryl-PE or cholesterol are 

added to the initial lipid composition during synthesis (Scheme 3.1, standard method with coupling 

moiety).[18,19] Subsequently, these are used for conjugation to a desired biorecognition element, 

hapten or functional moiety. However, post-modifications via covalent coupling often suffer from low 

coupling yields, can cause leakage of entrapped marker molecules and require additional separation 

from by-products and blocking steps to cover remaining active groups on the vesicle surface. In 

general, both standard methods yield a large number of liposomes readily available for many 

applications but suffer from distinct disadvantages that cannot always be compensated for. 

Specifically, the preparations are time-consuming and require elevated temperatures during liposome 

formation. This renders these methods unsuitable for fragile functional moieties. Furthermore, 

preparations are accompanied by a loss of material during the many synthesis and purification steps 

as well as the loss of half of the functional moieties due to decoration of the outer and inner layer of 

the liposome membrane. 

A third method for liposome surface modification takes advantage of the insertion ability of certain 

molecules into the membranes of liposomes (Scheme 3.1, insertion). This method is especially 

interesting as only the outer leaflet is functionalized without the need for chemical coupling reactions. 

Therefore, side reactions like crosslinking are avoided and no by-products are formed which enables 

easy purification. Also, insertion lends itself very well to optimization procedures as many different 

modifications of liposomes from the same synthesis batch can be studied. The main challenge here is 

to find amphiphilic molecules consisting of a hydrophobic part which efficiently inserts into the 
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membrane and a hydrophilic part which renders them water soluble to preserve the preformed 

liposomes from being ruptured during insertion. Successful strategies for this insertion-method have 

used modified fatty acids,[20] distearoylphosphoethanolamine (DSPE)-derivatives,[21] and pH-low 

insertion peptides[22] or self-designed peptides.[23] However, a common problem reported with the use 

of peptides for insertion-based modification of liposomes is a resulting fusion of the vesicles.  

Another interesting class of molecules are therefore lipopeptides that show the ability to successfully 

insert into phospholipid membranes.[24] According to the group of Lin and Grossfield, who investigated 

the mechanism and thermodynamics of some lipopeptides, the fatty acid part is mainly responsible 

for the interaction with membranes.[25] Steinhäuser et al. used this effect of Lipobiotin and a Pam3Cys-

biotin for the successful labeling of gram-positive and gram-negative bacteria and subsequent isolation 

via magnetic beads.[26] Such a labeling can also be achieved using cholesterol-derivatives.[27] Kuhn et 

al. applied this ability of cholesterol-PEG-biotin for simple immobilization strategy of vesicles and cells 

onto surfaces in microfluidic channels.[28] 

However, the insertion-method has not been reported and studied with respect to their bioanalytical 

functionality so far. Therefore, we investigated another approach for the design of functionalized 

Scheme 3.1. Overview of different methods for the surface modification of liposomes. Standard modification either by 

incorporation of receptor modified phospholipids (method 1; e.g. biotin, green) or by phospholipids with functional moieties 

for covalent coupling (method 2; e.g. carboxyl groups, light blue). The statistical coverage of the inner liposome surface is 

also indicated for method 1 and 2. Method 3: Modification via insertion of functionalized amphiphilic molecules (e.g. biotin-

lipopeptide) which exclusively covers the outside surface of the liposome. 



Tethering Functionality to Lipid Interfaces by a Fast, Simple and Controllable Post Synthesis Method 
__________________________________________________________________________________ 

59 
 

vesicles suitable for bioassays. We developed an insertion strategy for the surface modification of 

marker encapsulating liposomes composed of DPPC, DPPG and cholesterol. For this, different anchor 

molecules were investigated with respect to their ability to effectively insert into the vesicle 

membrane. The best system for insertion was then compared to liposomes prepared via the standard 

method in terms of zeta potential, binding capability and encapsulation efficiency of entrapped marker 

molecules. It was found that insertion is possible up to 10 mol% without affecting the liposome 

stability. It can be conducted very fast under gentle conditions; all receptor moieties are distributed 

on the outer vesicle surface and also the loss of material is minimized as there is no need for complex 

purification steps. 

3.2. Experimental 

3.2.1. Materials 

1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-[phosphor-rac-

(1-glycerol)] (DPPG), 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(biotinyl) (biotin-DPPE), 

cholesterol and the extrusion kit and membranes were purchased from Avanti Polar Lipids 

(www.avantilipids.com). The dialysis membrane spectra/por 4 with a MWCO of 12-14 kDa was 

purchased from spectrum labs (www.spectrumlabs.com). Cholesterol-PEG-biotin was purchased from 

nanocs (www.nanocs.net). Lipopeptide-biotin is a Pam3Cys-SK4 (N-Palmitoyl-S-[2,3-bis(palmitoyloxy)-

(2RS)-propyl]-[R]-cysteinyl]-seryl-lysyl-lysyl-lysyl-lysine(beta-alanyl-beta-alanyl-epsilon-aminocaproyl-

epsilon-aminocaproyl-biotinyl)-NH2) kindly supplied by Guenter Roth from the ZBSA, University of 

Freiburg and synthesized at EMC microcollections GmbH, Tübingen (http://www.microcollections.de). 

The Lipopeptide-biotin is structurally related to Lipobiotin and Pam3Cys-biotin[26] but shows higher 

solubility at lesser tendency to vesicle building. Sulforhodamine B monosodium salt (SRB), 4‐(2‐

Hydroxyethyl)piperazine‐1‐ethanesulfonic acid (HEPES) and sodium azide were bought from Sigma 

Aldrich (www.sigmaaldrich.com). n-Octyl-β-D-glucopyranoside (OG) was purchased from Roth 

(www.carlroth.com). For binding experiments either white streptavidin coated microtiterplates C96 

from Kaivogen (kaivogen.com) were used or black MaxiSorp plates from Nunc 

(www.sigmaaldrich.com) were self-coated with streptavidin from Invitrogen 

(www.thermofisher.com). All other chemicals were of analytical grade and purchased from VWR 

(de.vwr.com). Millipore water (≥ 18.2 M cm) was used for the preparations of all buffers and aqueous 

solutions. 

http://www.avantilipids.com/
http://www.nanocs.net/
http://www.microcollections.de/
http://www.sigmaaldrich.com/
http://www.carlroth.com/
file:///D:/Dokumente/Studium/Masterstudium/Masterarbeit/kaivogen.com
file:///D:/Dokumente/Studium/Masterstudium/Masterarbeit/de.vwr.com
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3.2.2. Methods 

3.2.2.1. Liposome Preparations 

3.2.2.1.1. Preparation of Liposomes by Reverse Phase Evaporation 

DPPC (30 mg), DPPG (15 mg) and cholesterol (20 mg) were dissolved in chloroform (3 mL) and 

methanol (0.5 mL) and sonicated with a bath sonicator (Bandelin Sonorex Digitec, DT 255 H) at 45 °C 

for 1 minute. 2 mL of SRB-solution (150 mM, dissolved in 0.02 M HEPES) were added and the mixture 

sonicated at 45 °C for 4 minutes. The organic solvent was removed by using a rotary evaporator at 45 

°C and a pressure of 380 mbar for 40 minutes. The solution was vortexed for 30 s and another 2 mL of 

the SRB-solution were added. After vortexing again, the solution was rotated at 45 °C and 380 mbar 

for 20 minutes and then again at 45 °C and 280 mbar for 20 minutes. The solution was being extruded 

through polycarbonate membranes (1 µm and 0.4 µm) at 50 °C by pushing the syringes back and forth 

21 times for each membrane. Excess of SRB was removed by size exclusion chromatography with a 

Sephadex G-50 column (24x2 cm) and HSS buffer as eluent (10 mM HEPES, 200 mM NaCl, 200 mM 

sucrose, 0.01 % NaN3, pH 7.5) followed by dialysis against HSS buffer (800 mL) for 24 h.[M] 

3.2.2.1.2. Insertion Method  

A solution of anionic SRB encapsulating liposomes (25 µL) and a solution of biotinylated lipopeptide, 

DPPE-biotin or cholesterol-biotin (1-8 mol% phospholipid) were mixed in a 1.5 mL Eppendorf vial and 

shaken at elevated times (1, 2, 4 and 8 h) at 25 °C or at elevated temperatures (25, 30, 40, 50 °C) for 

2 h. Then the mixture was diluted in HSS buffer to a total volume of 2 mL. To remove an excess of 

biotinylated molecules dialysis against HSS buffer (250 mL) was applied for 24 h. 

3.2.2.1.3. Direct Modification 

Liposomes were prepared by reverse phase evaporation at 60 °C and purified as described above. The 

desired amount of DPPE-biotin was added to the lipid composition prior to synthesis in order to obtain 

biotin modified liposomes. 

3.2.2.2. Characterization 

All measurements were performed at room temperature and ultrapure water (≥ 18.2 M cm) was 

used for all experiments unless stated otherwise.[M] 

3.2.2.2.1. Dynamic Light Scattering and -Potential 

Dynamic light scattering (DLS) and -potential measurements were carried out with a Malvern 

Zetasizer Nano-ZS (www.malvern.com). For all measurements the temperature was set to 25 °C. Semi-

micro PMMA cuvettes were used for size determinations, disposable folded capillary cells for the -

potential measurements. The samples were diluted 1:100 prior to the measurements. The following 

settings were applied for the material liposomes: 𝑛𝐷
20 = 1.34 and Abs = 0.000 and HSS buffer as 

http://www.malvern.com/
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dispersant: 𝑛𝐷
20  = 1.342, viscosity = 1.1185 kg·m−1·s−1, dielectric constant: 78.5. An equilibration time 

of 60 s was applied before each measurement.[M] DLS spectra were plotted as intensity size 

distributions with the relative % of light scattered by the particles in a size class on the y-axis vs. the 

diameter of the particles on the x-axis. 

3.2.2.2.2. Determination of Phospholipid Concentration 

The phospholipid concentration was determined by using a Spectroflame-EOP inductively coupled 

plasma optical emission spectrometer (ICP-OES) from Spectro (www.spectro.com). Therefore, 20 µL 

of the liposome sample was diluted in 2980 µL 0.5 M HNO3 and could then be used for the 

measurement. 0.5 M HNO3 and a solution of 100 µM of PO4
3- in 0.5 M HNO3 were used for calibration 

before each measurement.[M] 

3.2.2.2.3. Microtiterplate Coating with Streptavidin 

Streptavidin (100 µL/well, 10 µg/mL in PBS) was added to the wells of a MaxiSorp microtiterplate 

(Nunc) and incubated overnight at 4 °C. After the coating step, the streptavidin solution was removed 

and the wells were washed with PBS buffer (2x200 µL). Blocking was conducted by incubating a 

solution of BSA/Tween 20 (0.1%/0.05% in PBS, 200 µL/well) for 1 h at room temperature. Before using 

the plates, the wells were washed twice with PBS buffer (200 µL) and once with HSS buffer (200 µL). 

3.2.2.2.4. Fluorescence Measurements of Liposomes Immobilized in Streptavidin Coated Plates 

The liposome dispersions (100 µL/well, c(phospholipid) = 5 µM, in HSS) were incubated on a 

streptavidin coated microtiter plate for 30 minutes at room temperature. After washing twice with 

HSS-buffer (200 µL) the fluorescence signal was read out with a FLUOStar OPTIMA microplate reader 

at wavelengths of λex =544 nm and λem=575 nm and a gain of 1500 before (in 100 μL HSS) and after 

lysis with 30 mM n-octyl-β-D-glucopyranoside (OG, 100 μL). Triplicates were applied for each 

concentration. 

3.2.2.2.5. Fluorescence Measurements to Determine the Retained Sulforhodamine B 

For characterization liposome dispersions were diluted to 5 µM phospholipid once in HSS buffer and 

once in 30 mM OG solution. The fluorescence intensities were read out on a FLUOStar OPTIMA 

microplate reader at wavelengths of λex=544 nm and λem=575 nm and a gain of 1500. Triplicates were 

applied for each concentration. For analysis the signal obtained in HSS buffer was subtracted from the 

corresponding signal in the OG solution to calculate the SRB concentration contained inside the 

liposomes. Therefore, also a SRB standard curve between 0 and 8 µM was recorded. 

http://www.spectro.com/
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3.3. Results and Discussion 

3.3.1. Insertion Method – Preparation and Characterization 

Liposomes are formed by self-assembly of either one phospholipid or a mixture of lipids which can be 

achieved by several techniques.[1] This study focuses on large unilamellar vesicles, which are most 

commonly prepared using the reverse-phase evaporation strategy. This method leads to a large 

amount of liposomes sufficient e.g. for hundreds to thousands of bioassays. 

For insertion, unmodified standard liposomes were synthesized consisting of DPPC, DPPG and 

cholesterol. As many assays are based on biotin as recognition element, this functionality was chosen 

as a model moiety. Here commercially available DPPE-biotin (Chart 3.1b) was tested for its ability to 

efficiently insert into phospholipid bilayers. Cholesterol-biotin (Chart 3.1a) was commercially obtained 

with a PEG linker ensuring good water solubility, which is desirable as the insertion process takes place 

in an aqueous environment. As a third modifying agent for insertion a lipopeptide-biotin (Chart 3.1c) 

was chosen. This molecule is known for its ability to insert into DPPC membranes and contains a 

hydrophilic linker to ensure good water solubility. 

Insertion is simply performed by mixing and incubating vesicle dispersion and solutions of different 

modifying agents in an Eppendorf shaker (Scheme 3.2). After functionalization, all preparations 

resulted in liposomes with average diameters of 160 nm. Also, as the vesicle diameter didn’t change 

after insertion, no aggregation was observed, and the ζ-potentials were all < -13 mV. Thus, the 

obtained modified liposomes remain colloidally stable (Figure 3.1a, Table 3.1). Interestingly, the ζ-

potential decreases with increasing number of inserted molecules (Figure 3.1b). Such a change after 

insertion can be observed for all modifications (Table 3.1). Obviously, the extent of this decrease 

strongly depends on the size and nature of the headgroups of the inserted molecule as they shield the 

overall negative charge of the liposome surface. 

Chart 3.1. Chemical structures of investigated insertion molecules. a) cholesterol-(PEG)2000-biotin, b) DPPE-biotin, c) lipo-

peptide- biotin. 
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Scheme 3.2. Schematic overview on the preparation of biotin-functionalized liposomes via the insertion-method. 

Consequently, as cholesterol-biotin and lipopeptide-biotin both have a rather long spacer, higher 

decreases in the zeta-potential were observed, whereas the zeta potential of DPPE-modified liposomes 

does not change significantly. It can be concluded that this change in the zeta potential can serve as a 

quick and simple indication for the successful insertion of molecules. 

Table 3.1. Characterization of liposome dispersions before and after modification with biotinylated molecules by DLS and ζ-

potential measurements (n=4). The DLS data presented are for 10 mol% biotin inserted in all cases. The ζ-potential data show 

10 mol% inserted DPPE-biotin and cholesterol-biotin and 7 mol% inserted lipopeptide-biotin. Errors are given as standard 

deviation. 

 

 Unmodified Lipopeptide-biotin Cholesterol- biotin DPPE-biotin 

Diameter [nm] 156 178 169 161 

PdI 0.07 0.17 0.19 0.18 

ζ-potential [mV] -29 ± 1 -20 ± 3 -13 ± 1 -25 ± 3 

Figure 3.1. Characterization of liposome dispersions before and after modification with biotinylated lipopeptide by a) DLS 

and b) ζ-potential measurements. Error bars display the standard deviation, n=4. 

1 10 100 1000

0

5

10

15

20

 

 

in
te

n
s

it
y

 [
%

]

hydrodynamic diameter [nm]

 unmodified

 insertion-method

a)

-40

-35

-30

-25

-20

-15

-10

-5

0
 

7%5%3%0%
 


-p

o
te

n
ti

a
l 

[m
V

]

content (biotin) [%]

b)



Tethering Functionality to Lipid Interfaces by a Fast, Simple and Controllable Post Synthesis Method 
__________________________________________________________________________________ 

64 
 

3.3.2. Optimization of Insertion Conditions  

Insertion of the three molecules was optimized with respect to incubation time and temperature. Here, 

the successful surface modifications were characterized with respect to their effective biological 

targeting functionality by binding to streptavidin-coated microtiter plates. The fluorescence intensity 

of sulforhodamine B (SRB) entrapped inside the liposomes was quantified after removal of unbound 

vesicles before and after lysis with octyl glucopyranoside (OG) (Scheme 3.3).  

Scheme 3.3. Measurement setup for the biotin-streptavidin binding assay on streptavidin coated 96 well plates. 

It was expected that the more efficient the insertion is, the more liposomes are able to bind to the 

plate and thus a higher signal is obtained. The plotted data were normalized to the lowest insertion 

time or temperature. As shown in Figure 3.2a an increase in the insertion time had no influence on the 

insertion efficiency in all cases suggesting a very fast process, an even shorter incubation time could 

be investigated in the future. The high standard deviations observed for insertion of DPPE-biotin are 

likely due to experiments being performed at 25 °C instead of at elevated temperatures. In general, 

due to higher membrane mobility at insertion temperatures above the phase transition temperature 

also a higher insertion efficiency should be achieved as was observed for cholesterol-biotin and DPPE-

biotin modified liposomes (Figure 3.2b). 

Here 40 °C and 50 °C showed an improved insertion. In case of DPPE-biotin the signal increased 25-

fold when applying 50 °C during insertion. This is likely due to a decreased presence of DPPE-micelles 

in solution because of its enhanced solubility at higher temperatures. At the same time, the still 

significantly higher standard deviations indicate an unreliable insertion. Interestingly, for the insertion 

of lipopeptide-biotin neither the insertion time nor the temperature had any influence on the insertion 

efficiency. So, functionalization using this modifying agent is not only very fast but can also be 

conducted simply at room temperature without any loss in insertion efficiency. In subsequent 

experiments respective optimal conditions were used, i.e. an insertion time of 1 h in all cases and an 

insertion temperature of 25 °C for lipopeptide-biotin, 40 °C for cholesterol-biotin and 50 °C for        

DPPE-biotin. 
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3.3.3. Binding Behaviour of Functionalized Liposomes 

Finally, liposomes with varying contents of biotin (from 0-8 mol% with respect to the phospholipid 

concentration) were prepared for each of the modifying agents. An increase in the binding ability to 

streptavidin-modified surfaces was expected with increasing biotin surface loads as known from other 

studies investigating surface-tag concentrations.[12] This direct correlation was found for DPPE-biotin 

and lipopeptide-biotin modified liposomes, but not for cholesterol-biotin (Figure 3.3). Overall, the 

lipopeptide-modified liposomes had a superior performance providing double the signal intensity in 

comparison to DPPE-biotin (Figure 3.3). We assume that this is in part due to a better insertion 

Figure 3.3. Binding capability of SRB-encapsulating, anionic liposomes (150 mM SRB, HSS buffer) modified by insertion of 

either lipopeptide-biotin, DPPE-biotin or cholesterol-biotin under optimized conditions. Error bars display the standard 

deviation, n=3. The content of biotin refers to the provided amount of biotin. 
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efficiency but also due to the less stringent preparation conditions at room temperature. In the case 

of DPPE-biotin incubation is done at 50 °C and 10% ethanol is required for a better dissolution of the 

molecule. While the addition of ethanol did not affect the liposome stability as determined by DLS, it 

caused an increase in dye leakage of 7%. Also, incubation at 50 °C resulted in a lower concentration of 

entrapped SRB after modification (Figure 3.4). Moreover, DPPE-biotin tends to form micellar structures 

in aqueous solutions with a similar diameter as the modified liposomes as confirmed by DLS 

measurements (data not shown). Thus, unloaded DPPE-micelles may still be present in addition to the 

modified liposomes in the final dispersion which will block some binding sites on the microtiter plate 

and hinder the loaded functionalized liposomes from binding. In the case of cholesterol-biotin, minimal 

binding was observed which was essentially independent of the amount of tag used. DLS spectra of 

cholesterol-biotin dispersions showed a peak around 20 nm which suggests that no micellar structures 

are present and rather corresponds to the lipid molecules themselves with their long PEG spacer. As 

after insertion only the liposome peak can be observed in the DLS spectra the molecules either inserted 

completely or were successfully removed during purification and thus do not interfere with the binding 

of the functionalized liposomes. Also, we had chosen a PEG linker to increase the tags solubility, 

however, in the end, this long linker may sterically hinder the cholesterol moiety’s insertion resulting 

in only few molecules to anchor into the liposomal membrane. 

Figure 3.4. Effect of different shaking times (1, 2, 4, 8 h, 25 °C incubation temperature; a)) and temperatures (25, 30, 40, 50 °C, 

2 h incubation time each; b)) on the concentration of sulforhodamine B contained within the liposomes during insertion of 

biotin-lipopeptide, DPPE-biotin and cholesterol-biotin into SRB-encapsulating liposomes (150 mM SRB, HSS buffer) , n=3. 

Unmodified liposomes were treated the same way as negative control. 

The dye leakage during insertion was investigated for all three anchor molecules. Due to the insertion 

of the receptor tags into the tightly packed membrane of the liposomes their stability may be affected. 

This was determined by measuring the concentration of entrapped SRB before insertion and after 

different insertion times and temperatures (Figure 3.4). As negative control, unmodified liposomes 

without the addition of a modifying agent were treated alongside. The initial drop in signal intensity 
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after insertion is most probably due to the fact that the liposomes before insertion were not freshly 

dialyzed, so that also some free dye molecules were present. However, in almost all cases a further 

decrease in the SRB concentration was observed with increasing insertion time and temperature 

(Figure 3.4). 

This was also the case for the negative control liposomes, which leads to the conclusion that this loss 

is not caused by the insertion process itself but mainly due to the subsequent purification by dialysis. 

Also, a decrease in the phospholipid concentration could be observed after incubation at different 

shaking times and temperatures (Figure 3.5). This would indicate a simple loss of liposomes through 

the process. In the end, since longer incubation times and higher temperatures did increase the loss 

of dye molecules to a certain extent, an incubation time of 1 h was used for the following preparations 

and the optimized incubation temperatures of 25, 40 and 50 °C for lipopeptide-biotin, cholesterol-

PEG-biotin and DPPE-biotin, respectively. 

Figure 3.5. Phospholipid concentration before and after insertion of biotin-lipopeptide, DPPE-biotin and cholesterol-biotin into 

SRB-encapsulating, anionic liposomes (150 mM SRB, HSS buffer) for different shaking times (1, 2, 4, 8 h) and temperatures 

(25, 30, 40, 50 °C), determined by ICP-OES, n=3. Unmodified liposomes were treated the same way as negative control. 

In conclusion, lipopeptide insertion was the most promising of these three systems due to its fast and 

controllable execution under gentle conditions. This enables the efficient functionalization of the 

vesicle surface even with temperature-sensitive or otherwise fragile biological molecules, which can 

either be attached to such a lipopeptide or a different suitable lipophilic anchor molecule. 

The reliability of the lipopeptide insertion was proven by repeating the insertion of different amounts 

of lipobiotin into a second lot of liposomes consisting of the same formulation and dye concentration 

and by analyzing the binding behavior of the two different batches to streptavidin on different plates. 

As shown in Figure 3.6 the binding behavior is very similar, proving a very good reproducibility of the 

insertion of lipobiotin into the liposomes used in this work. 
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Figure 3.6. Reproducibility of the insertion of lipopeptide-biotin for 2 different batches of SRB-encapsulating, anionic liposomes 

(150 mM SRB, HSS buffer), n=3. 

3.3.4. Comparison of Lipopeptide-Insertion and Standard Modification 

The insertion-method using the lipopeptide-biotin, which performed best in this study, was then 

compared to the standard modification method with DPPE-biotin which is commonly used for the 

functionalization of liposomes.[18] Here, different batches with varying DPPE-biotin contents (0 to 

16 mol% regarding the total phospholipid concentration) were prepared by adding it directly to the 

lipid mixture prior to liposome synthesis. As it is assumed that biotin will be statistically distributed 

between inner and outer liposome surface, double the amount of biotin moieties were used for 

preparation. This enables the comparison of similar biotin amounts available for binding in both 

methods, as in case of insertion all moieties will be at the outer surface due to an unlikely flip-flop of 

the large peptide headgroups between outer and inner membrane.[29]  

All separately synthesized liposome batches resulted in colloidally stable vesicle dispersions with 

average diameters of 200 nm and ζ-potentials below -20 mV (Figure 3.7, Table 3.2). 

Moreover, the long-term stability of the liposomes was tested and no change in vesicle diameter or 

colloidal stability was observed (Figure 3.8 and Figure 3.9). Non-modified liposomes showed highest 

stability (as expected),[30] liposomes with DPPE-biotin made through the direct method showed 14-

16% dye leakage after 5 months, and liposomes prepared via the insertion method showed similar 

leakage after 3 months of storage (17% lipopeptide, 30% cholesterol, 23% DPPE) (Table 3.3 and 

Table 3.4). 

 

0 2 4 6 8

0

1000

2000

3000

4000

 

 

 lipopeptide-biotin 1

 lipopeptide-biotin 2

fl
u

o
re

s
c

e
n

c
e

 i
n

te
n

s
it

y
 [

a
.u

.]

content(biotin) [%]



Tethering Functionality to Lipid Interfaces by a Fast, Simple and Controllable Post Synthesis Method 
__________________________________________________________________________________ 

69 
 

Figure 3.7. Characterization of liposome dispersions by DLS (a)) and -potential measurements (b), n=4). Lipopeptide-biotin 

was used for insertion and DPPE-biotin for standard modification. 

Table 3.2. Characterization of liposomes prepared by standard modification using DPPE-biotin. 

Table 3.3. Dye leakage of liposomes modified via the insertion method using lipopeptide-biotin, DPPE-biotin and cholesterol-

biotin, n=3. 

Table 3.4. Dye leakage of unmodified liposomes and liposomes modified via the direct method using DPPE-biotin, n=3. 

Further studies are needed, however, to determine whether this trend continues with longer storage 

or can be avoided by shortening the insertion incubation periods. As the DPPE-biotin headgroup is so 

Content (biotin) [%] Diameter [nm] PdI ζ-potential [mV] 

0 156 ± 44 0.07 -29.2 ± 0.9 

3 162 ± 48 0.13 -31.4 ± 0.8 

5 184 ± 70 0.18 -32.5 ± 2.4 

7 196 ± 64 0.20 -26.8 ± 2.5 

12 240 ± 126 0.23 -18.5 ±v 2.4 

16 216 ± 89 0.24 -22.6 ± 3.5 

 Lipopeptide-Biotin Cholesterol-Biotin DPPE-Biotin 

Day 1 2 ± 0.10% 7± 0.08% 2 ± 0.12% 

After 3 months 17 ± 0.04% 30 ± 0.05% 23 ± 0.07% 

 Unmodified DPPE-biotin/3% DPPE-biotin/7% 

Day 1 4 ± 0.13% 12 ± 0.05 6 ± 0.08 

After 5 months 4 ± 0.12% 16 ± 0.06% 14 ± 0.05 
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small, the zeta-potential could not be used as indicator for a successful incorporation of the modifying 

agent. Biological targeting functionality was again proven using binding assays to streptavidin-coated 

microtiter plates and directly compared to the lipopeptide-modified liposomes (Figure 3.10). In the 

case of standard-modified liposomes only the contents of available biotin groups on the outer surface 

of the liposomes were plotted which were estimated to be half of the total biotin content. In case of 

the insertion method all biotin molecules are expected to be on the outer surface. While the 

lipopeptide-modified liposomes provided expected signals, i.e. increasing signal with increasing 

amount of available biotin groups on the surface, no such relationship was found for liposomes 

prepared by the standard method using DPPE-biotin. Here, amounts above 4 mol% of total DPPE-biotin 

are not effectively incorporated into the lipid bilayer during the synthesis anymore because even the 

Figure 3.8. DLS spectra of unmodified liposomes and liposomes modified via insertion after 3 months. 
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Figure 3.9. DLS spectra of liposomes right after the preparation and after 5 months. a) Direct modification using DPPE-biotin, 

b) Insertion-method using lipopeptide-biotin. 
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addition of 16 mol% of total DPPE-biotin showed no increase in the binding capability compared to 

4 mol%. Thus, the incorporation of DPPE-biotin by direct modification at higher concentrations doesn’t 

seem to be successful. We also observed that the presence of higher amounts of DPPE-biotin has a 

negative impact on the yield of liposome preparations as well as on the encapsulation efficiency as 

shown in Chapter 3.3.5. However, the insertion of lipopeptide-biotin shows that a decoration of the 

surface with more biotin groups is possible and also results in a higher binding capability. For the 

lipopeptide-insertion even 10 mol% can still be incorporated and a direct correlation between the 

biotin content and the signal intensity can be observed which makes this method much more reliable 

than standard modification with DPPE-biotin. The observed higher error bars at 10 mol% and the 

saturation of the signal indicate that higher concentrations are less likely to be useful. We assume that 

this is due to steric hindrance in the insertion process. 

In addition to this determination of biological functionality of the biotin-modified liposomes, it was 

tried to determine the actual biotin concentration in the liposomes via orthogonal approaches. 

However, no approach provided reliable data, specifically, the HABA/Avidin assay, which is commonly 

used for characterization of biotinylated proteins, led to a crosslinking of the liposomes and prevented 

correct data acquisition. ICP-OES was studied for the quantification of the total sulfur contained in 

biotin. However, the emission spectral lines of sulfur overlap with those of phosphorus. In the future, 

Figure 3.10. Insertion efficiency as obtained from fluorescence measurements of biotinylated liposomes functionalized either 

by direct modification or by the insertion-method with different biotin concentrations. Error bars display the standard 

deviation, n=3. The content of biotin refers to the provided amount of biotin. In the case of standard-modified liposomes only 

the contents of available biotin groups on the outer surface of the liposomes were plotted, which were estimated to be half 

of the total biotin content. In case of insertion all biotin molecules are expected to be on the outer surface. 
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the use of labeled monomeric streptavidin or radiolabels might be a possible alternative to provide an 

answer to this question. 

3.3.5. Influence of the Preparation Methods on Liposome Signaling Capability - Effect of Dye Loading 

The insertion method has shown to be a significantly more reliable and reproducible method for the 

surface modification of liposomes than the standard method. It will have highest impact during the 

development of liposome reagents with new surface modification groups, as during these optimization 

efforts ideally large numbers of variants are being investigated. The second most important impact it 

will have on the development of multi-analyte and multi-modal liposomes to generate the same type 

of liposome for any surface tag. In both scenarios not only the effective surface tag concentration is of 

utmost importance but also the signaling power through the entrapped marker molecules. We 

therefore compared entrapment efficiencies between the standard and insertion methods. They were 

determined and calculated using equation 3.1. 

𝐸𝐸(%) =
𝑐𝑎𝑓𝑡𝑒𝑟 𝑙𝑦𝑠𝑖𝑠(𝑆𝑅𝐵)−𝑐𝑏𝑒𝑓𝑜𝑟𝑒 𝑙𝑦𝑠𝑖𝑠(𝑆𝑅𝐵)

𝑐0(𝑆𝑅𝐵)
∙ 100%      (3.1) 

In case of the insertion method, all liposome variations are derived from the same original liposome 

preparation. No changes in encapsulation efficiency are therefore expected, which was also confirmed 

by our measurements (Table 3.5). However, in case of liposomes prepared by the standard 

modification method, a functionalized lipid is already present during liposome formation. This impacts 

the vesicle formation during the preparation process. As it is based on self-assembly of the lipids the 

efficiency of the vesicle formation and the entrapment of molecules are directly influenced. As shown 

in Table 5 varying encapsulation efficiencies were observed for the direct modification with DPPE-

biotin. It is known that the encapsulation efficiency can vary significantly with changing lipid 

compositions[31] and is evidenced here as increasing amounts of DPPE-biotin in the lipid mixture had a 

negative effect on the encapsulation efficiency (Table 3.5). 

Table 3.5. Encapsulation efficiencies determined by fluorescence measurements of different preparations of biotinylated 

liposomes prepared either by direct modification or insertion-method. Errors are given as standard deviation, n=3. This table 

shows the total content of biotin in both cases. 

Total content(biotin) [%] EE(direct modification) [%] EE(insertion-method) [%] 

0 3.8 ± 0.2 

3 1.6 ± 0.1 3.5 ± 0.2 

5 0.80 ± 0.04 3.6 ± 0.4 

7 0.85 ± 0.04 3.3 ± 0.4 
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This in turn has a direct effect on the overall suitability of liposomes as signaling reagents in binding 

assays. As lower dye entrapment leads to less signaling power, comparison between varying surface 

tag concentrations becomes even more complex, if not the exact same liposome population can be 

used. It is therefore mandatory to be able to optimize surface modification of liposomes with a reliable 

method, as is enabled by the insertion method. 

3.4. Conclusions 

Modification of the liposome surface using the insertion method was demonstrated to be a highly 

efficient method depending on the type of the insertion molecule used. The high solubility, 

independency of insertion temperature and fast and effective insertion ability of the biotinylated 

lipopeptide makes it superior to simple cholesterol-PEG and DPPE-moieties. Up to 10 mol% of 

lipopeptide-biotin can easily be inserted without any negative impact on vesicle size or membrane 

stability. In case of the standard modification an increase in the surface tag concentration resulted in 

lower incorporation yields and lower signaling power due to decreased encapsulation efficiencies of 

the marker molecules. This suggests that concentrations above 4 mol% of total DPPE-biotin are not 

useful for binding assays. Most interesting for future applications is the fact that lipopeptide-inserted 

liposomes keep their analytical characteristics and only differ by the tag concentration used. This 

feature is of utmost importance to analytical applications of liposomes, e.g. as signal enhancers in 

bioassays, for assay development or multi-analyte detection. Furthermore, this surface modification 

strategy can be used for the functionalization of any lipid-bilayer surface or micellar structure and this 

expands its importance beyond liposome-based bioanalysis to general analytical and drug delivery 

applications. 
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4 Optical Characterization of DNA-tagged Fluorescent Liposomes  

 

Abstract 

DNA-tagged nanoparticles or vesicles are important analytical and biomedical tools and find their 

application e.g. in hybridization assays, targeted imaging, targeted drug delivery or in the isolation and 

purification of proteins. For all applications a detailed characterization of the functionalized particles 

or vesicles is important to ensure the suitability for each application. In this chapter, phospholipids 

were functionalized with different concentrations of ssDNA and the vesicle properties characterized 

via DLS, zeta-potential, ICP-OES, fluorescence spectroscopy, imaging and fluorescence correlation 

spectroscopy (FCS). A hybridization assay with complementary dye-tagged oligonucleotides followed 

by centrifugation confirmed the successful functionalization and allows an estimation of the DNA 

concentration on the vesicle surface. Control experiments using oligo-tagged magnetic particles and 

fluorescence microscopy proved a sufficient purification via centrifugation. Moreover, no quenching 

of oligo-A647 could be observed after hybridization with the complementary strand. After 

hybridization, also fluorescence correlation spectroscopy (FCS) was applied to determine the particle 

numbers and concentrations. Concentrations of around 4 nM and a loss during purification of 80-90% 

are in agreement with the theoretical calculations. Moreover, fluorescence imaging of dye-loaded 

liposomes showed that the DNA-tagged liposomes bind specifically to magnetic particles bearing the 

complementary strand. For some applications also lysis of the liposomes is crucial, and it was found 

that a concentration of 22 mM OG is sufficient for complete lysis of the liposomes. 
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This chapter contains paragraphs that were in part already described in Carola Figalist’s master’s 

thesis. This includes paragraphs within the experimental part regarding the liposome preparation and 

characterization. The master’s thesis is entitled “Positively Charged Liposomes for Signal Enhancement 

via Electrostatic Interactions” and was submitted to the Faculty of Chemistry and Pharmacy at the 

University of Regensburg in December 2014. Sections that are identical or similar to the master’s thesis 

are listed here in detail and are indicated in this chapter by the citation “M”: 

- p.80, subchapter 4.2.1., paragraph 2 (experimental) 

- p.81, subchapter 4.2.2.1., 4.2.2.2. (experimental) 

- p.82, subchapter 4.2.2.3. 

4.1. Introduction 

Surface functionalization of nanoparticles or vesicles is a widespread analytical and biomedical tool as 

it allows the specific binding to analytes, cells or tissues. Thus, such materials can e.g. be applied for 

targeted drug delivery, imaging, the development of bioassays or for the separation or 

preconcentration of analytes. Several examples can be found for AuNPs. Here often thiolated ssDNA 

is applied for modification, which can be covalently attached to the particles.[1] Bioanalytical 

applications of DNA-functionalized gold nanoparticles include e.g. colorimetric assays that exploit the 

change in the optical properties of the particles upon aggregation.[2] Also DNA functionalized magnetic 

particles or microbeads can be found. In bioanalysis, they often serve as solid support for modification 

with the capture DNA and have been applied for several DNA hybridization assays.[3,4] Their magnetic 

properties make them ideal materials for simple separation or purification means.[4] Also the 

preconcentration of analytes using such magnetic particles has been reported.[5] Another material that 

is often found in combination with DNA functionalization are silica nanoparticles as they also provide 

a simple surface chemistry for modifications. They find their application in controlled release 

mechanisms for drug delivery,[6] for nucleic acid extraction and purification or in bioanalysis.[7] Here, 

they can e.g. serve as label bearing the probe DNA on the particle surface as in case of sandwich 

hybridization assays,[8] or the DNA is attached to block the pores of mesoporous silica particles and 

serves as gate-keeper.[9] Such applications can also be found for liposomes, which provide more natural 

properties as they usually consist of phospholipids. For functionalization with oligonucleotides often 

cholesterol-tagged ssDNA is applied and added to the lipid composition of the lipid bilayer.[10] This has 

for example been exploited for the FRET-based detection of micro-RNA[11] or in classical sandwich 

hybridization assays.[12] Also the formation of so-called lipoplexes has been intensively studied. Here 

the liposomes serve as DNA carrier by forming a complex with the DNA molecules.[13] This can e.g. be 

applied for DNA vaccination or gene therapy.[14] 
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However, before application to bioassays or drug delivery systems such functionalized materials need 

to be characterized carefully to ensure the suitability for each application. Here, factors like the size, 

morphology, colloidal stability or biocompatibility of particles or vesicles are important but also the 

number of surface tags and their functionality. Especially the determination of the amount of surface 

tags often remains a challenge. In case of biotin modifications e.g. a HABA/avidin assay can be 

applied.[15] However, its application is restricted to problems with crosslinking and a low sensitivity as 

observed e.g. for liposomes.[16] For the quantification of carboxyl groups on particle surfaces often 

conductometric titration is applied.[17] The group of Resch-Genger also developed a simple method for 

the quantification of PEG maleimide ligands on polymeric microparticles based on the use of the 

Ellman’s reagent.[18] Also the use of FT-IR, XPS, solid state NMR, fluorescence labeling or dye adsorption 

assays can help to assess the number of functional groups on the surface of particles.[19] 

In this chapter a hybridization assay using fluorophore-tagged oligonucleotides was applied for the 

quantification of available ssDNA on the surface of liposomes. Several control experiments were 

conducted to proof the reliability of this method and the specific binding of the functionalized 

liposomes to their complementary DNA strand. Moreover, the DNA-tagged liposomes were 

characterized in detail with respect to their hydrodynamic diameter, zeta-potential, ICP-OES, 

fluorescence spectroscopy, imaging and fluorescence correlation spectroscopy (FCS). 

4.2. Experimental 

4.2.1. Materials 

1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-[phosphor-rac-

(1-glycerol)] (DPPG), cholesterol and the extrusion kit and membranes were purchased from Avanti 

Polar Lipids (www.avantilipids.com). The cholesterol and dye-tagged oligonucleotides were either 

purchased from metabion (www.metabion.com) or from Integrated DNA Technologies 

(www.idtdna.com). The dialysis membrane spectra/por 4 with a MWCO of 12-14 kDa was purchased 

from spectrum labs (www.spectrumlabs.com). Sulforhodamine B monosodium salt (SRB), 4‐(2‐

Hydroxyethyl)piperazine‐1‐ethanesulfonic acid (HEPES), sodium azide and black 96 well plates from 

Nunc were bought from Sigma Aldrich (www.sigmaaldrich.com). n-Octyl-β-D-glucopyranoside (OG) 

was purchased from Roth (www.carlroth.com). Magnetic microparticles and microtiter plate with glass 

bottom were provided by Abbott Diagnostics. 

All other chemicals were of analytical grade and purchased from VWR (de.vwr.com). Millipore water 

(≥ 18.2 M cm) was used for the preparations of all buffers and aqueous solutions.[M] 

http://www.avantilipids.com/
http://www.metabion.com/
http://www.sigmaaldrich.com/
http://www.carlroth.com/
file:///D:/Dokumente/Studium/Masterstudium/Masterarbeit/de.vwr.com
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4.2.2. Methods 

4.2.2.1. Preparation of Liposomes by Reverse Phase Evaporation 

Liposomes were prepared via a modified protocol by Edwards et al..[10] DPPC (40.3 µmol), DPPG 

(21 µmol) and cholesterol (51.7 µmol) were dissolved in chloroform (3 mL) and methanol (0.5 mL).[M] 

Then the cholesterol-tagged oligo (sequence: 5’ AAT CCA CCT TAG AGT ACA  AAC GGA ACA CGA GAA 

AAG 3’- cholesterol) was dissolved in a MeOH:water mixture (1:4) added to the lipids and the mixture 

sonicated for 1 min. Table 4.1 shows the different liposome batches with varying amounts of the added 

cholesterol-tagged oligo. 

Table 4.1. Overview of the different batches of DNA-tagged liposomes. 

Next, 2 mL encapsulant (either 150 mM NaCl or 150 mM NaCl+1 mM SRB, dissolved in 7.5 mM HEPES, 

pH 7.5) were added and the mixture sonicated for 4 min. The organic solvent was removed by using a 

rotary evaporator at 45 °C and a pressure of 380 mbar for 40 minutes. The solution was vortexed and 

another 2 mL of encapsulant were added. After vortexing again the solution was rotated at 45 °C and 

380 mbar for 20 minutes and then again at 45 °C and 280 mbar for 20 minutes. The solution was being 

extruded through polycarbonate membranes (1 µm, 0.4 µm) at 50 °C by pushing the syringes back and 

forth 21 times for each membrane. Excess of encapsulant was removed by size exclusion 

chromatography with a Sephadex G-50 column followed by dialysis against HEPES buffer (10 mM 

HEPES, 200 mM NaCl, pH 7.5).[M] 

4.2.2.2. Dynamic Light Scattering and ζ-Potential 

Dynamic light scattering (DLS) and -potential measurements were carried out with a Malvern 

Zetasizer Nano-ZS (www.malvern.com). For all measurements the temperature was set to 25 °C. Semi-

micro PMMA cuvettes were used for size determinations, disposable folded capillary cells for the -

potential measurements. The samples were diluted 1:100 prior to the measurements. The following 

settings were applied for the material liposomes: 𝑛𝐷
20 = 1.34 and Abs = 0.000 and HSS buffer as 

dispersant: 𝑛𝐷
20  = 1.342, viscosity = 1.1185 kg·m−1·s−1, dielectric constant: 78.5. An equilibration time 

of 60 s was applied before each measurement.[16,M] 

 ACF#1 ACF#2 ACF#7 ACF#9 

c(chol-oligo) 350 pmol µl-1 350 pmol µl-1 350 pmol µl-1 1 nmol µl-1 

V [µl] 50 50 250 204 

xDNA 1x 1x 5x 25x 

Encapsulant 150 mM NaCl 150 mM NaCl +  

1 mM SRB 

150 mM NaCl 150 mM NaCl +  

1 mM SRB 

http://www.malvern.com/


Optical Characterization of DNA-tagged Fluorescent Liposomes 
__________________________________________________________________________________ 

81 
 

4.2.2.3. Phospholipid Determination by ICP-OES 

The phospholipid concentration was determined by using a Spectroflame-EOP inductively coupled 

plasma optical emission spectrometer (ICP-OES) from Spectro (www.spectro.com). Therefore, 20 µL 

of the liposome sample was diluted in 2980 µL 0.5 M HNO3 and could then be used for the 

measurement. 0.5 M HNO3 and a solution of 100 µM of PO4
3- in 0.5 M HNO3 were used for calibration 

before each measurement.[16,M] 

4.2.2.4. Determination of ssDNA Content on the Liposomal Surface Using Cy5-Labeled Oligonucleotides 

The liposome dispersions (200 μL in HEPES buffer) were mixed with an aqueous solution of Cy5-labeled 

oligonucleotide strands complementary to the strands incorporated in the liposomal membrane 

(12 µL, 300 pmol/µL, sequence: Cy5- 3’ TTA GGT GGA ATC TCA TGT TTG  5’). The mixture was shaken 

for 1 h at 23 °C and 300 rpm using an Eppendorf shaker. Excess of non-hybridized oligonucleotides was 

removed by centrifugation at 10000 g for 1 h at 25 °C. The pellet was resuspended in 200 µL HEPES 

buffer and centrifuged again for 1 h at 10000 g and 25 °C. After washing twice with HEPES buffer the 

pellet was again resuspendend in HEPES buffer (200 µL) and diluted 1:3 for fluorescence 

measurements. 100 µL of the diluted dispersions was added to the wells of a black microtiter plate. 

The fluorescence signal of Cy5 was read out with a FLUOStar OPTIMA microplate reader at wavelengths 

of λex=640 nm and λem=675 nm and a gain of 2900. To determine the corresponding Cy5 concentration 

a calibration curve of the Cy5-labeled DNA strand was recorded under the same conditions with 

concentrations ranging from 0-2 µM. All measurements were conducted in quadruplicates. 

4.2.2.5. Estimation of ssDNA Content on the Liposomal Surface Using Alexa647-Labeled 

Oligonucleotides 

The liposome dispersions (50 µl) were mixed with an aqueous solution of A647-labeled oligonucleotide 

strands complementary to the strands incorporated in the liposomal membrane (30 µM, 15 µl for 

ACF#1 and 2, 50 µl for ACF#7). The mixture was incubated for 30 min at room temperature under 

shaking at 300 rpm and purified via centrifugation as described in Chapter 4.2.2.4. Finally, the pellet 

was resuspended in 100 µl HEPES buffer and diluted 1:50 for fluorescence analysis. 

Spectra of liposomes hybridized with oligoA647 were recorded on a Fluorolog (Horiba Scientific) 

between 660 and 800 nm at λex=650 nm. The peak maxima at 666 nm were taken for analysis and 

background correction was conducted. 

4.2.2.6. Absorbance Spectra 

Absorbance spectra were recorded between 250 and 800 nm on a Cary4000 (Agilent Technologies). 

To determine the concentration of oligo-A647 in the stock solution the absorbance maximum at 

650 nm with and ε=267mmol-1cm-1 was used. 

http://www.spectro.com/
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4.2.2.7. Determination of Free Oligo-A649 After Purification by Centrifugation 

Streptavidin coated, magnetic polystyrene particles (5 µm, 0.1%, 50 µL) were mixed with an aqueous 

solution of biotinylated oligo (same as on liposomes, 1 µM, 50 µL) and incubated for 1 h at room 

temperature. Magnetic separation was applied, the supernatant containing unbound oligos was 

removed and the pellet resuspended in HEPES buffer (100 µL). This washing was repeated several 

times. A 96 well plate with glass bottom was prepared for the microscopic studies. A 100 µL of HEPES 

buffer was applied to each of the wells. Then 100 µL of 50fold diluted liposomes that had been 

hybridized with oligo-A647 before and purified by centrifugation was added to row A of the plate. A 

3.8 nM solution of oligo-A647 was added to create a standard curve. Serial dilutions of 2 fold each 

were conducted by removing 100 µL and adding it to the row below. Then 1 µL of the oligo tagged 

microparticles was added to each of the wells and the mixtures incubated for 30 min at 30 °C and 

shaking at 750 rpm on a BioShake iQ. Then washing was conducted using a magnetic plate washer 

(BioTek ELx50). An Olympus Ix81 fluorescence microscope at 20x magnification was used to read out 

the signal intensity/particle. Four images of each well were taken and pixel analysis was automatically 

conducted by the software. 

4.2.2.8. Fluorescence Correlation Spectroscopy 

After hybridization with A647, 40 µL of ACF#1 and 2 were added to the wells of a 384 well plate. ACF#7 

was diluted 1:5 before adding it to the wells. A solution of oligo-A647 was measured as control. 

Measurements were conducted on an ISS Alba fluorescence correlation spectrometer with an A402 

scanning mirrors module, a fianium laser module and a Nikon confocal microscope with a 20x water 

objective. To detect liposomes labeled with oligoA647 an excitation wavelength of 640 nm, 20 kHz and 

25% power were applied. 

4.2.2.9. Hybridization of Liposomes to Microparticles 

A solution of SRB liposomes (1:1000 dilution, 200 µL) was added to the wells of a black 96well plate 

with glass bottom. A dilution series with 2-fold dilution each was conducted (From row A-H). Magnetic 

polystyrene microparticles coated with a strand complementary to the liposome strand (0.1% solid 

particles, 2 µL) was added and the mixture incubated for 30 min at 30 °C and shaking at 750 rpm on a 

BioShake iQ. Then washing was conducted using a magnetic plate washer (BioTek ELx50). An Olympus 

Ix81 fluorescence microscope at 20x magnification was used to read out the signal intensity/particle. 

Four images of each well were taken and pixel analysis was automatically conducted by the software. 

4.2.2.10. Hybridization of Liposomes to Antibody-Microparticle Conjugate 

A solution of mouse antibody (200 µL, pM range) was added to the wells of a black 96 well plate with 

glass bottom. A dilution series with 2fold dilution each was conducted (From row A-H). Magnetic goat-

anti-mouse-particles (GAM-particles) (0.1% solid particles, 1 µL) were added to each well. Then 10 µL 
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of a liposome stock solution were added to one column of the plate and 10 µL of Cap03oligo (300 nM) 

to a second column. The mixture was incubated for 30 min at 30 °C and shaking at 750 rpm on a 

BioShake iQ.  Then washing was conducted using a magnetic plate washer (BioTek ELx50). An Olympus 

Ix81 fluorescence microscope at 20x magnification was used to read out the signal intensity/particle. 

Four images of each well were taken and pixel analysis was automatically conducted by the software. 

4.2.2.11. Imaging of Liposome Lysis 

Liposomes (1:20 dilution) were hybridized with the antibody-microparticle conjugate (0.1% solid 

particles) as described above. One column was used as control, varying concentrations of OG (6-50 mM 

in the well) were applied to a second column containing the mixture. The mixture was shaken for 1 min 

at 750 rpm and room temperature. To check if lysis affects protein interactions this experiment was 

also conducted with oligoA546. Readout was conducted before and after removal of the released dye 

by washing with a magnetic plate washer (BioTek ELx50). An Olympus Ix81 fluorescence microscope at 

20x magnification was used to read out the signal intensity/particle. Four images of each well were 

taken and pixel analysis was automatically conducted by the software. 

4.3. Results and Discussion 

4.3.1. Liposome Preparation and General Characterization 

DNA-tagged liposomes were prepared via reverse phase evaporation using cholesterol to anchor the 

DNA onto the liposomal surface.[10] This was done for DNA contents between 0.013 and 0.065 mol% 

of the phospholipid content. All liposomes were characterized with respect to their phospholipid and 

DNA concentration, ζ-potential and hydrodynamic diameter. The recorded DLS spectra of the obtained 

vesicles revealed diameters of 150-180 nm with PdIs well below 0.1 suggesting the formation of 

monodisperse liposome mixtures (Figure 4.1). A summary of all other characterizations can be found 

in Table 4.2. The ζ-potential was always negative in the range of -22 to -25 mV, which is low enough to 

provide colloidally stable liposome dispersions. The phospholipid concentrations were determined via 

ICP-OES and resulted in concentrations between 6 and 10 mM and good yields up to 22 µmol 

(Table 4.2). 

In order to proof the successful incorporation of the oligonucleotides and to quantify the amount of 

DNA on the surface a complementary strand tagged with the fluorescent dye Cy5 was used. After 

hybridization of the DNA-tagged liposomes with the complementary strand, centrifugation was 

applied for purification and the DNA concentration on the surface of the liposomes estimated using 

fluorescence measurements. The determined DNA concentrations for ACF#1 and ACF#2 yielded 67% 

and 69% of the expected DNA concentration on the liposome surface. Thus, some of the DNA 

molecules do not get incorporated into the vesicles and are removed during purification. The yields for 
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a higher initial DNA input are even lower as shown for ACF#7 and ACF#9 with only 59 and 56%, 

respectively. However, ACF#7, which should contain five times more DNA on the liposomal surface, 

reached even 7 times more DNA as ACF#1 and 2 and ACF#9 reached 23 of the expected 25 times more 

DNA on the surface. Thus, it is possible to incorporate such high concentrations of DNA in the liposomal 

membrane as proven by these measurements. 

 

Figure 4.1. Hydrodynamic diameter of DNA-tagged liposomes encapsulating either sodium chloride (150 mM) or sodium 

chloride (150 mM) and sulforhodamine B (1 mM) determined by dynamic light scattering in HEPES buffer (10 mM HEPES, 

200 mM NaCl, 0.01% NaN3, pH 7.5), n=3.  

Table 4.2. ζ-potentials, phospholipid and DNA concentrations of ssDNA-tagged liposomes encapsulating either sodium 

chloride (150 mM) or sodium chloride (150 mM) and sulforhodamine B (1 mM). ζ-potentials were determined in HEPES buffer 

(10 mM HEPES, 200 mM NaCl, 0.01% NaN3, pH 7.5) using a zetasiser nano (Malvern), n=4. Phospholipid concentrations were 

determined using ICP-OES, n=3. DNA concentrations were determined using a hybridization assay with Cy5-tagged oligos. 

Fluorescence intensities were read out on a Fluostar Optima at λex = 640 nm, λem = 675 nm and a gain of 1200, n=4. 
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Yield [µmol] c(DNA) [µM] 

150 mM NaCl (ACF#1) -23 ± 1 6.1 ± 0.3 14.0 ± 0.7 0.5 ± 0.05 

150 mM NaCl + 1 mM 
SRB (ACF#2) 

-22 ± 1 6.3 ± 0.2 15.8 ± 0.5 0.5 ± 0.05 

150 mM NaCl (ACF#7) -23 ± 2 10.0 ± 0.2 22.0 ± 0.4 3.6 ± 0.2 

150 mM NaCl + 1 mM 
SRB (ACF#9) 

-25 ± 2 6.8 ± 0.04 17.0 ± 0.1 11.6 ± 0.9 
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4.3.2. Theoretical Calculations 

In order to determine not only the concentration of DNA on the vesicle surface, but also the actual 

number of DNA molecules, calculations were conducted using the following equations: 

𝑁𝑡𝑜𝑡 = (
𝜋

𝑎𝐿
) ∗ [𝑑2 ∗ (𝑑 − 2𝑡)2]         (4.1) 

with Ntot: number of lipids per liposome, d: hydrodynamic diameter, t: bilayer thickness and aL: average 

headgroup surface area.[20] 

𝑐(𝑙𝑖𝑝𝑜𝑠𝑜𝑚𝑒𝑠) =
𝑐(𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑙𝑖𝑝𝑖𝑑)

𝑁𝑡𝑜𝑡
         (4.2) 

The values for the hydrodynamic diameter were determined by DLS as shown above, the bilayer 

thickness was estimated to be 4 nm and a headgroup surface area of 42 nm2 was used. The average 

headgroup surface area was calculated using the molar ratios of the applied lipids (see Chapter 

4.2.2.1.) and the values for the surface area of 0.71 (DPPC), 0.45 (DPPG) and 0.19 nm2 (cholesterol).[20] 

The small molar fraction of the DNA-tagged cholesterol was neglected. By using equation 4.1 it was 

possible to calculate the number of lipids per liposome. In combination with the phospholipid 

concentration as determined by ICP-OES a concentration of liposomes was calculated as shown in 

equation 4.2.[20] This was further applied to calculate the number of ssDNA molecules per liposome, 

that are positioned on the outer surface of the vesicles. The results of the calculations are presented 

in Table 4.3. 

Table 4.3. Liposome concentration and the number of external ssDNA/liposome for all batches shipped to Abbott. 

Also, these calculations show the successful incorporation of different concentrations of ssDNA. Here, 

ACF#7 reaches about three times as many DNA molecules per liposome and ACF#9 only 17 times as 

many DNA molecules. However, the slight deviations from the expected values may be caused by the 

used approximations as in case of the bilayer thickness or the headgroup surface area. 

Batch Ntot c(phospholipid) [mM] c(liposomes)  

[nM] 

c(oligos) [nM] ssDNA/liposome 

ACF#1 4.54*105 6.1 ± 0.3 13.4 ± 0.7 502 ± 48 37 ± 4 

ACF#2 4.44*105 6.3 ± 0.2 14.2 ± 0.5 532 ± 50 37 ± 4 

ACF#7 3.25*105 10.0 ± 0.2 30.8 ± 0.6 3585 ± 185 116 ± 6 

ACF#9 3.61*105 6.8 ± 0.04 18.8 ± 0.1 11636 ± 943 618 ± 50 
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4.3.3. Control Experiments and Imaging 

As the control experiments were conducted with Alexa647 tagged oligonucleotides hybridization with 

the liposomes was first tested also with this molecule. Finally, fluorescence spectra were recorded to 

quantify the amount of bound fluorescent oligonucleotides, which should directly correspond to the 

amount of DNA on the liposomal surface.  

4.3.3.1. Estimation of the DNA Concentration on the Liposomal Surface 

Figure 4.2 shows the fluorescence spectra for three different batches of liposomes, ACF#1, 2 and 7. A 

concentration of 7.6 nM of the pure dye-tagged oligonucleotide was used as standardization for the 

concentration determination. 

 

Figure 4.2. Fluorescence spectra of ACF#1, ACF#2 and ACF#7 after hybridization of oligoA647 and purification by 

centrifugation to determine DNA concentration on liposome surface. Spectra were recorded on a Fluorolog (Horiba Scientific) 

between 660 and 800 nm with λex=650 nm. 

The concentrations in the samples were estimated to be 1 µM for the low concentrated DNA liposomes 

and 3.7 µM for the liposomes with higher DNA content (Table 4.4, Chapter 4.3.3.3.). In order to 

investigate the efficiency of the purification by centrifugation, a control experiment was conducted to 

estimate the amount of liposomes that are lost during centrifugation (Figure 4.3). 

Therefore, fluorescence spectra of oligonucleotide tagged SRB liposomes were recorded before and 

after centrifugation. The corresponding spectra are shown in Figure 4.3. The spectra clearly show that 

after centrifugation only about 10% of the initial signal is left. Which suggests that about 90% of the 

liposomes is lost during centrifugation either by insufficient pelleting of all liposomes or by disruption 

of the liposomes during the harsh purification. 
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Figure 4.3. Fluorescence spectra of ACF#2 before and after hybridization of oligoA647 followed by purification by 

centrifugation. Spectra were recorded on a Fluorolog (Horiba Scientific) between 540 and 800 nm with λex=520 nm. 

4.3.3.2. Quenching of Oligo-A647 After Hybridization 

In order to see if the fluorescence of the dye-tagged oligonucleotide is quenched during hybridization, 

fluorescence spectra were recorded of the free ssDNA, right after mixing with the liposomes and after 

a 1h hybridization. The spectra are shown in Figure 4.4. 

 

Figure 4.4. Influence of hybridization with complementary strand on fluorescence intensity of oligoA647. Spectra were 

recorded on a Fluorolog (Horiba Scientific) between 660 and 800 nm with λex=650 nm. 
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In the beginning, most of the ssDNA is expected to be free in solution, thus no quenching is expected, 

which can also be seen in the fluorescence spectrum. Even after 1 h of incubation, thus after 

hybridization with the DNA-tagged liposomes, no quenching can be observed. Therefore, hybridization 

with a fluorophore-tagged oligonucleotide is well suited for quantification of the DNA concentration 

on the liposomal surface. 

4.3.3.3. Determination of Free Oligo-A647 After Purification by Centrifugation 

Another control experiment was conducted to determine the concentration of free dye-tagged ssDNA 

that may still be present after centrifugation. For this magnetic microparticles bearing the 

complementary DNA strand on their surface were mixed with the solution, which may still contain dye-

tagged oligonucleotides that are not bound to the liposomes. The free oligonucleotides are then able 

to bind to the microparticles, which can be observed via microscopic images as shown in Figure 4.5. 

For quantification a calibration curve with free oligo-A647 was applied. The results of the quantification 

are shown in Table 4.4. 

   

   

Figure 4.5. Microscopic images of residual oligoA647 bound to oligo-tagged microparticles. Top: ACF#1,2,7 (left to right), 

bottom: oligoA647 15,30 and 60 pM (left to right). Scale 103-2500. 

After centrifugation only about 3-4% of free oligonucleotides can still be found in the sample, which is 

very low. However, the concentrations of the ssDNA on the liposome surface was corrected by the 

number of free oligonucleotides left. The concentrations of DNA in the liposome stock solution was 

then compared to the measurements conducted with the Cy5-tagged oligonucleotides. In both cases 

the quantified DNA lies in the expected range. In case of the low DNA concentrated liposomes the 
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Alexa647-tagged oligonucleotides yielded slightly higher concentrations. For quantification of ssDNA 

on the liposome surfaces only one concentration of oligo-A647 was used for standardization, not a 

complete calibration curve. This may have caused these slight deviations. 

Table 4.4. Results of analysis of fluorescence measurements of ACF#1, ACF#2 and ACF#7 after hybridization of oligoA647 and 

purification by centrifugation to determine DNA concentration on liposome surface. Background correction was applied and 

a 7.6 nM solution of oligoA647 was measured for standardization. 

4.3.4. Fluorescence Correlation Spectroscopy of Liposomes 

Fluorescence correlation spectroscopy is a method that is commonly used e.g. for the investigation of 

diffusion coefficients, the kinetics of chemical reactions or the quantification of fluorescent molecules 

or particles.[21,22] Here, the fluorescence of particles as a function of the time is measured while 

Brownian motion of the particles leads to fluctuations in the fluorescence intensity.[21] The excitation 

light is focused on a diluted sample using a dichroic mirror and a confocal microscope.[22] The focal 

volume is very small (fl) and contains ideally only a few molecules.[22,23] If a fluorescent particle passes 

this focal spot it gets excited by the laser beam and emits light that can be detected.[21] The 

fluorescence fluctuations caused by diffusion of the particles can be expressed via a autocorrelation 

function[21–23] as shown in Figure 4.6. The smaller the particles are, the faster is the diffusion, which 

results in higher fluctuations and a shift of the autocorrelation towards shorter correlation times 

(Figure 4.6, oligo-A647). 

This also allows an estimation of the hydrodynamic radius. By fitting of the autocorrelation function 

the determination of diffusion coefficients and the G(0) value is possible. As this value is indirectly 

proportional to the number of particles, it can be used for the determination of the particle 

concentration.[22] 

 c(oligoA647) ACF#1 ACF#7 ACF#2 

c(sample) [nM] 7.6 1.0 3.7 1.0 

c(oligoA647 stock after centrifugation) 
[nM]  50 184 51 

Free oligo A647 in stock after 
centrifugation [nM]  2.1 ± 0.15 6.5 ± 0.31 1.4 ± 0.07 

c(oligoA647 stock after centrifugation) 
corrected [nM]  48 ± 0.15 178 ± 0.31 49 ± 0.07 

     

c(oligoA647 stock) estimated [µM]  0.96 ± 0.003 3.6 ± 0.006 0.98 ± 0.001 

c(oligoCy5 stock) [µM]  0.50 ± 0.05 3.6 ± 0.19 0.53 ± 0.05 
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Fluorescence correlation spectroscopy was applied for the three different batches of liposomes after 

hybridization with an Alexa647 oligonucleotide and purification by centrifugation. In addition, a known 

concentration of an Alexa647-tagged oligonucleotides was analyzed for standardization. The 

corresponding autocorrelation functions were normalized to (0,1) and are shown in Figure 4.6. 

 

Figure 4.6. Autocorrelation function of FCS measurements of ACF#1, ACF#2 and ACF#7 after hybridization with oligoA647 and 

purification by centrifugation. A 3.8 nM solution of oligoA647 was used for standardization. Curves are normalized to (0;1). 

G(0) values were calculated by the software as listed in Table 4.5 and enable the determination of the 

particle number NP: 

𝑁𝑃 =
1

𝐺(0)
           (4.3) 

The liposome concentration was calculated using the number of A647-tagged oligonucleotides with a 

known concentration of 3.8 nM: 

𝑐(𝑙𝑖𝑝𝑜𝑠𝑜𝑚𝑒𝑠) =
𝑁𝑃(𝑙𝑖𝑝𝑜𝑠𝑜𝑚𝑒𝑠)∗𝑐(𝑜𝑙𝑖𝑔𝑜𝐴647)

𝑁𝑃(𝑜𝑙𝑖𝑔𝑜𝐴647)
       (4.4) 

The liposome concentrations in the samples obtained via FCS range from 2-4 nM (Table 4.5). However, 

about 80-90% of liposomes are lost during purification via centrifugation that is done before the 

measurements (Figure 4.3). Therefore, the liposome concentration in the stock solution is estimated 

to be 5-10 times higher than the one determined by FCS. Moreover, these numbers correlate well with 

the theoretically calculated liposome concentrations from Chapter 4.3.2. 

Thus, fluorescence correlation spectroscopy is well suited for the analysis of liposomes and enables 

the quantification of the actual number and concentration of liposomes and not only the lipid 
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concentration. As the diffusion coefficient is related to the hydrodynamic diameter of the vesicles, it 

can be calculated using the Stokes-Einstein equation:[22] 

𝐷 =
𝑘𝐵𝑇

6𝜋𝜂𝑟
 , 𝑠𝑜 𝑟 =

𝑘𝐵𝑇

6𝜋𝜂𝐷
          (4.5) 

with kB=1.28E-23, T=298 K and η=0.891 cP. The corresponding diffusion coefficients D were 

determined by the software and are listed in Table 4.5 as well as all other values determined by 

fluorescence correlation spectroscopy. 

However, the values obtained for the hydrodynamic diameter slightly differ from the DLS analysis. DLS 

analysis was applied before hybridization with the fluorophore-tagged oligonucleotide. Thus, a slightly 

higher diameter after hybridization is also expected. 

Table 4.5. Results of FCS data of ACF#1, ACF#2 and ACF#7 after hybridization with oligoA647 and purification by centrifugation 

measured at 640 nm, 20 kHz and 25% power. G(0) and D were obtained by a fit of the software. The radius was calculated 

using the Stokes Einstein equation. 

4.3.5. Imaging of DNA-Tagged SRB Liposomes 

The properties of the liposomes were not only analyzed by simple fluorescence measurements and 

fluorescence correlation spectroscopy but also by fluorescence imaging on a confocal microscope. For 

this, liposomes encapsulating 1 mM SRB and bearing 10 times as many DNA molecules as ACF#1 were 

applied. 

 ACF#7 (x5 dilution) ACF#1 ACF#2 oligoA647 

G(0) 0.4 0.05 0.09 0.06 

cps 119665 138375 215462 26470,7 

cpp 47866 6780 18961 1482 

     

N(particles) 2.5 20.4 11.4 17.9 

c(liposomes, sample) [nM] 2.7 4.3 2.4 3.8 

c(liposomes, calculated) [nM] 30.8 ± 0.6 13.4 ± 0.7 14.2 ± 0.5  

D [µm2/s] 1.8 1.2 1.9 100 

r [nm] 136 204 129 2.5 

d [nm] 272 408 258 5 

d[nm] by DLS 123 ± 31 177 ± 46 179 ± 46  
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4.3.5.1 Specificity of Binding 

In order to see if the ssDNA-tagged liposomes bind specifically to the complementary DNA strand they 

were incubated with magnetic microparticles bearing the corresponding sequence. Unbound 

liposomes were separated magnetically. Figure 4.7 shows the imaging analysis. 

   

Figure 4.7. Binding of liposomes to oligo-tagged microparticle. Intensity not very high, but specific binding to the particles is 

observed. 

On the left image only the microparticles are visible, the image in the middle shows the fluorescent 

liposomes. On the right image an overlay of these two images is shown, which clearly shows that the 

fluorescent liposomes overlap with the spots of the microparticles. This suggests a specific binding of 

the liposomes to the complementary strand on the microparticles. This was not only tested for one 

concentration of liposomes but for a series of 2-fold dilutions of liposomes as shown in Figure 4.8. The 

more liposomes are present, the more should be able to bind to the microparticles, which in turn leads 

to a higher fluorescence intensity, which is also shown in Figure 4.8. 

 

Figure 4.8. Dose response curve of liposomes binding to oligo-tagged microparticle, n=4. Liposome concentrations of 1-8 are 

arbitrary units with 1 as highest concentration followed by serial dilutions (2-fold). 
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4.3.5.2. Signal Enhancement Using Liposomes 

The binding behavior was also compared to free dye-tagged oligonucleotides. The free 

oligonucleotides consist of the same sequence as the ssDNA on the liposomal surface. This time 

magnetic goat-anti-mouse microparticles were applied bearing the complementary DNA sequence for 

binding to the free oligonucleotides and the liposomes. To enable a direct comparison, concentrations 

were adjusted to the expected number of oligonucleotides present. The left image shows the 

fluorescence intensity of the free dye-tagged oligonucleotides, whereas the intensity of the liposomes 

is shown on the right (Figure 4.9). 

  

Figure 4.9. Binding of oligoA546 and SRB liposomes to antibody-particle conjugate. Scale 300-15.000. 

As expected, a much higher signal is obtained in case of the liposomes. In case of the free 

oligonucleotides more molecules are able to bind to the particle conjugate whereas only one or two 

oligonucleotides on the liposomal surface probably participate in the binding due to steric hindrance. 

However, liposomes can entrap thousands of dye molecules in their interior, which overcomes this 

drawback and results in a significantly higher signal for the same amount of available ssDNA molecules. 

This can also be seen in Figure 4.10. 

Here, a dose response curve is shown for an increasing concentration of available oligonucleotides for 

both, the free dye-tagged oligonucleotides and the ssDNA-tagged liposomes. In both cases the signal 

increases with a higher amount of ssDNA. The increase is significantly higher in case of the liposomes. 
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Figure 4.10. Serial 2fold dilutions of oligo-tagged SRB liposomes and oligoA546strand bound to complementary oligo-tagged-

antibody-particle conjugate, n=4. 

4.3.5.3. Lysing Conditions 

The applied fluorescent liposomes entrap sulforhodamine B at a concentration of 1 mM. At this 

concentration part of the fluorescence is quenched due to self-quenching effects. By lysis of the 

liposomes the entrapped dye is released and diluted in the surrounding buffer, which can be observed 

via a strong increase in the fluorescence signal. This effect was investigated via fluorescence images at 

different concentrations of the detergent OG, which is commonly applied for liposome lysis. For this, 

the liposomes were again attached to magnetic microparticles to enable the analysis, which is shown 

in Figure 4.11. 

The dispersion on the left image contains no detergent. Here, the fluorescence of the intact liposomes 

is still located on the particles. The image in the middle contains 17 mM OG. Here, the fluorescence 

intensity on the particles is already decreased, suggesting that some of the vesicles already rupture. At 

a detergent concentration of 22 mM as shown on the right image the fluorescence intensity drops to 

0 suggesting complete lysis of the liposomes. In addition, strong background fluorescence can be 

observed due to the high concentration of released dye molecules. 
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Figure 4.11. Effect of addition of OG (0, 17 and 22 mM) before removal of released dye. Scale 600-20.000 (for A,B) and 600-

1000 for C. 

Fluorescence analysis was again conducted after removal of the released dye molecules, which is 

shown in Figure 4.12 for detergent concentrations between 0 and 50 mM. 

 

Figure 4.12. Effect of addition of OG (0-50 mM) after removal of released dye, n=4. At 20 mM OG intensity on particles drops 

to zero, suggesting complete lysis of the liposomes. 

 

0 10 20 30 40 50

0

5000

10000

15000

 

 

fl
u

o
re

s
c

e
n

c
e

 i
n

te
n

s
it

y
 [

c
p

p
]

c(OG) [mM]



Optical Characterization of DNA-tagged Fluorescent Liposomes 
__________________________________________________________________________________ 

96 
 

High fluorescence intensities can be measured for low detergent concentrations up to 12 mM followed 

by a sudden drop at 17 mM, which is reduced to 0 at detergent concentrations of 22 mM or more. At 

low detergent concentrations no lysis of the liposomes takes place, thus no or only a few dye molecules 

are released and removed, which explains the high fluorescence intensities. The more liposomes are 

lysed, the more dye is released, which can be removed. At detergent concentrations of 22 mM or more 

no residual fluorescence can be measured suggesting a complete lysis of the liposomes. 

4.4. Conclusions 

It was shown that the synthesis of DNA-tagged liposomes is possible up to 0.65 mol% of introduced 

cholesterol-tagged ssDNA, while all preparations showed similar characteristics regarding the 

diameter and ζ-potential. The incorporation of higher DNA concentrations may also be possible but 

could affect the functionality of the liposomes due to steric hindrance caused by the multiple DNA 

strands on the liposome surface. Moreover, quantification of the surface available ssDNA via 

hybridization with a fluorophore-tagged oligonucleotide was successful and revealed values in the 

expected range. It could also be shown that hybridization of the complementary strand doesn’t affect 

the fluorescence signal and almost no free dye-tagged oligonucleotides could be found after 

centrifugation. However, the loss of 80-90% of liposomes during purification via centrifugation is 

extremely high. Therefore, improvements regarding the purification are essential to provide a more 

efficient assay. Here, chromatography-based approaches may be a good alternative. Also, FCS 

measurements were successfully applied to the labeled liposomes and enabled the calculation of 

vesicle concentrations which correlate well with theoretical calculations. Functionality of the DNA-

tagged liposomes was proven by specific binding to oligo-tagged microparticles as shown by 

fluorescence imaging. A similar experiment also clearly shows the superior performance of DNA-

tagged liposomes over simple fluorophore-tagged oligonucleotides regarding signal enhancement. 

Moreover, these experiments are well suited to image the ideal lysis conditions for the release of the 

entrapped fluorophores from the inner cavity of the liposomes and therefore provides an ideal 

platform for the development of liposome-based bioassays with fluorescence imaging readout. 
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5 Electrostatic Interactions of Cationic Liposomes for Pathogen 

Detection 

 

Abstract 

Many infections are caused by bacteria and can lead to serious diseases or even death. Thus, early 

detection of such infections is important. However, conventional techniques for bacteria 

quantification like cell culturing can be very time-consuming. Also, nanomaterial-based assays often 

suffer from long response times, low sensitivity or unsatisfying limits of detection. Thus, there is need 

for a fast and simple detection of bacteria. Therefore, highly stable cationic liposomes entrapping 

either sulforhodamine B or a water-soluble luminol derivative were developed to enable fluorescent 

or chemiluminescent analysis of bacteria. The positive surface charge of these vesicles can be exploited 

for electrostatic interactions with the negatively charged surface of bacteria. Successful interaction 

with E.coli as model analyte was shown by the formation of pink aggregates visible by bare eye. For 

quantification two different assay types were investigated and optimized. Separation of unbound 

material was either based on simple centrifugation or on the immobilization of the bacteria on Poly-L-

Lysin coated 96 well plates. With fluorescence analysis of bound SRB encapsulating liposomes 

detection limits of 107-106 cfu ml-1 were achieved depending on the assay type. The centrifugation 

assay in combination with chemiluminescence analysis using m-carboxy-luminol encapsulating 

liposomes enabled a detection of E.coli even down to 105 cfu ml-1. If limitations like limited 

immobilization efficiency on the 96 well plates or the high blank values in case of centrifugation can 

be overcome, this method offers the possibility for a simple and universal detection of gram-positive 

and gram-negative bacteria without the need for vesicle surface functionalization. 
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This chapter contains sections that were in part already described in Carola Figalist’s master’s thesis. 

This includes paragraphs within the experimental part regarding the liposome preparation and 

characterization. The master’s thesis is entitled “Positively Charged Liposomes for Signal Enhancement 

via Electrostatic Interactions” and was submitted to the Faculty of Chemistry and Pharmacy at the 

University of Regensburg in December 2014. Sections that are identical or similar to the master’s thesis 

are listed here in detail and are indicated in this chapter by the citation “M”: 

- p.104, subchapter 5.2.1., paragraph 2 (experimental) 

- p.104-105, subchapter 5.2.2.1, 5.2.2.2.1., 5.2.2.2.2. (experimental) 

- p.107, subchapter 5.2.2.8., paragraph 2 (experimental) 

5.1. Introduction 

Pathogenic bacteria like E.coli, Salmonella or S.aureus cause numerous infections each year which can 

lead to serious diseases and in some cases even to death.[1,2] Thus, an early, fast and accurate detection 

of the pathogens is very important and remains a huge challenge, especially in the area of food safety 

and clinical diagnosis.[1,3] Conventional techniques for pathogen detection include mainly culture and 

colony counting, immunological assays and polymerase chain reaction (PCR)-based methods.[4] 

Although they usually provide a high specificity and sensitivity, they also suffer from several 

drawbacks. Quantification by culturing techniques for example often takes at least two days to obtain 

an initial result and is restricted to culturable bacteria.[4] ELISAs are less time-consuming and widely 

applied in clinical laboratories but still require multiple incubation steps and several hours of 

runtime.[4,5] Moreover, PCR-based methods require expensive specialized equipment and reagents and 

are prone to interferences by non-pathogenic genetic material which can cause false-positive 

results.[4,5] 

Therefore, various other methods for the detection of bacteria have been proposed in the last years, 

whereby many of them include the use of nanomaterials. Here, for example the use of gold, silica or 

magnetic nanoparticles or polydiacetylene (PDA) vesicles has been reported.[4,6] However, issues 

regarding the detection limit, operation time and the toxicity of some materials often remain 

unsolved.[3] Moreover, liposomes have been widely applied for pathogen detection. DNA-tagged 

liposomes have for example been reported for the picomolar detection of C.parvum.[7] Cystein-loaded 

liposomes in combination with gold nanoparticles enabled even an attomolar detection of Salmonella, 

Listeria and E.coli O157.[8] Usually these methods are based on specific receptor moieties on their 

surface, e.g. carbohydrates, antibodies, oligonucleotides or peptides, for the specific recognition of the 

analyte.[3,7] However, also some biosensors based on electrostatic interactions have been reported, 

e.g. for amine-functionalized PDA vesicles which respond to bacteria that secrete the negatively 
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charged surfactin.[9] In addition, not only released substances can be exploited for sensing, but also the 

surface potential of the bacteria themselves. 

Bacteria usually exhibit an anionic surface charge caused by the thick negatively charged peptidoglycan 

layer in case of gram-positive bacteria and by the presence of lipopolysaccharides and porins on the 

outer membrane of gram-negative bacteria.[5] The surface charge of liposomes can e.g. be tuned by 

the introduction of lipids or amphiphiles with charged headgroups. DOTAP, DC-chol or 

ethylphosphocholines are e.g. commonly applied for the preparation of cationic liposomes.[10] As 

liposomes can be loaded with a variety of molecules they have also been studied as carriers for 

antibiotics.[11] Therefore, also the electrostatic interaction between cationic liposomes and the 

respective bacteria is of major importance. Several studies confirm the successful interaction of 

cationic liposomes with bacteria like Pseudomonas aeruginosa, E.coli, Salmonella or S.aureus.[11–13] 

However, these studies focus on the bactericidal action of cationic liposomes whereas only few studies 

have been reported that exploit this property for the direct detection of bacteria. Petaccia et al. for 

example introduced a fluorescent, surface potential sensitive probe into the lipid bilayer which 

responds to the presence of some bacterial strains.[3] 

This study aimed to exploit the high loading capacity of the liposomes with dye molecules to develop 

an assay for the detection of the model analyte E.coli based on simple electrostatic interactions. 

Therefore, the cationic liposomes were either loaded with the fluorescent dye sulforhodamine B (SRB) 

or the chemiluminescent dye m-carboxy-luminol and investigated for their suitability in different assay 

setups. 

5.2. Experimental 

5.2.1. Materials 

1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-ethylphospho-

choline (EDPPC), cholesterol and the extrusion kit and membranes were purchased from Avanti Polar 

Lipids (avantilipids.com). The dialysis membrane spectra/por 4 with a MWCO of 12-14 kDa was 

purchased from spectrum labs (www.spectrumlabs.com). E.coli was purchased from the DSMZ 

(www.dsmz.de). 4‐(2‐Hydroxyethyl)piperazine‐1‐ethanesulfonic acid (HEPES), sodium azide, 

Sephadex-G50, phosphate buffered saline, sulforhodamine B monosodium salt (SRB), poly-l-lysin, 

hemin and black microtiter plates from Nunc were bought from Sigma Aldrich 

(www.sigmaaldrich.com). White microtiter plates were bought from Greiner Bio-One 

(www.gbo.com/de). Glycine and carboxylated, magnetic beads (PureProteomeTM) were purchased 

from Merck (www.merckmillipore.com) and n-Octyl-β-D-glucopyranoside (OG) was bought from Roth 

(www.carlroth.com). m-carboxy-luminol was synthesized and kindly provided by the group of Prof. Dr. 

http://www.spectrumlabs.com/
http://www.sigmaaldrich.com/
http://www.gbo.com/de
http://www.carlroth.com/
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Jacobi von Wangelin (University of Hamburg). LB broth was purchased from Alfa Aesar 

(www.alfa.com/de/). Bacteriological agar, hydrogen peroxide, potassium hydrogen carbonate as well 

as all other chemicals were of analytical grade and purchased from VWR (de.vwr.com).  

Millipore water (≥ 18.2 M cm) was used for the preparations of all buffers and aqueous solutions 

needed for liposome preparation.[M] 

5.2.2. Methods 

5.2.2.1. Synthesis of Cationic Liposomes by Reverse Phase Evaporation 

DPPC (17.3 mg), EDPPC (4.5 mg) and cholesterol (0.6 mg) were dissolved in chloroform (3 ml) and 

methanol (0.5 ml) and sonicated at 60 °C for 1 minute. 2 ml of an aqueous solution containing either 

sulforhodamine B (10 mM, dissolved in 210 mM NaCl, 0.02 M HEPES, pH 7.5) or m-carboxy-luminol 

(25 mM, dissolved in 0.2 M HEPES, pH 8.5) was added and the mixture sonicated at 60 °C for 4 minutes. 

The organic solvent was removed by using a rotary evaporator at 60 °C and a pressure of 750 mbar for 

40 minutes. The solution was vortexed, and another 2 ml of the aqueous solution was added. After 

vortexing again the solution was rotated at 60 °C and 750 mbar for 20 minutes and then again at 60 °C 

and 400 mbar for 20 minutes. The dispersion was being extruded through polycarbonate membranes 

(1µm and 0.4 µm) at 60 °C by pushing the syringes back and forth 21 times for each membrane. Excess 

of the marker molecules was removed by size exclusion chromatography with a Sephadex G-50 column 

followed by dialysis against HSS (10 mM HEPES, 200 mM NaCl, 200 mM sucrose, 0.01% NaN3, pH 7.5, 

in case of sulforhodamine B) or Glycin-NaOH buffer (10 mM Glycin, 200 mM NaCl, 114 mM sucrose, 

0.01% NaN3, pH 8.6, in case of m-carboxy-luminol).[M] 

5.2.2.2. Characterization of Liposomes 

5.2.2.2.1. Determination of Size and ζ-Potential 

Dynamic light scattering (DLS) and ζ-potential measurements were carried out on a Malvern Zetasizer 

Nano-ZS (www.malvern.com). For all measurements the temperature was set to 25 °C. Semi-micro 

PMMA cuvettes were used for size determinations, disposable folded capillary cells for the ζ-potential 

measurements. Before the measurements the samples were diluted 1:100. As setting for liposomes, a 

nD
20 of 1.34 and an Abs of 0.000 was selected and HSS buffer (nD

20 = 1.342, viscosity = 1.1185 kg·m−1·s−1, 

dielectric constant: 78.5) was used as dispersant. An equilibration time of 60 s was applied before each 

measurement.[M] 

5.2.2.2.2. Determination of Phospholipid Concentration 

The phospholipid concentration was determined by using a Flame-EOP inductively coupled plasma 

optical emission spectrometer (ICP-OES) from Spectro (www.spectro.com). Therefore, 20 µl of the 

liposome sample was diluted in 2980 µl 0.5 M HNO3 and could then be used for the measurement. 

file:///D:/Dokumente/Studium/Masterstudium/Masterarbeit/de.vwr.com
http://www.malvern.com/
http://www.spectro.com/
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0.5 M HNO3 and a solution of 100 µM of PO4
3- in 0.5 M HNO3 were used for calibration before each 

measurement.[M] 

5.2.2.3. Preparation of E.coli Culture 

E.coli was cultivated in LB-medium (10 ml) over night at 37 °C under continuous shaking. 1 ml of the 

bacteria solution was then centrifuged for 5 min at 1500 rcf and the pellet resuspended in PBS buffer. 

For colony counting this stock solution was diluted 1:106 and 50 µl of this solution spread onto an Agar 

plate and incubated overnight at 37 °C. This was done for 3 different plates and the grown colonies 

were counted the next morning. 

5.2.2.4. Bactericidal Effect of Cationic Liposomes 

The E.coli stock solution was diluted 1:106 in LB-medium and subsequently mixed with different 

concentrations of cationic liposomes (0-200 µM in the final mixture). The dispersion was incubated for 

1 h at room temperature followed by plating on Agar plates (50 µl/plate, 2 plates/concentration). The 

plates were incubated overnight at 37 °C and the grown colonies counted the next morning. 

5.2.2.5. Bead Experiments 

Liposomes (0-200 µM) were diluted in phosphate buffer (10 mM, pH 6) and added to the wells of a 96 

well plate (100 µl/well). Then a 1:10 dilution of carboxy-magnetic beads was added (10 µl/well, 

10 mg ml-1 stock solution). After incubation at 23 °C, 500 rpm for 30 min, the bead-liposome 

aggregates were separated using a magnetic plate. The supernatant was removed, and the residual 

aggregates washed twice with HEPES buffer (200 µl/well). The fluorescence signal was read out with a 

FLUOStar OPTIMA microplate reader at wavelengths of λex=544 nm and λem=575 nm and a gain of 1500 

before (in 100 μl HSS) and after lysis with 30 mM n-octyl-β-D-glucopyranoside (OG, 100 μl). Three 

individual measurements of each dilution were made. 

5.2.2.6. Microtiter Plate Coating with Poly-L-Lysin 

Poly-L-Lysin (200 µl/well, 50 µg ml-1 in PBS) was added to the wells of a white (for chemiluminescence 

analysis) or black MaxiSorp microtiterplate (for fluorescence analysis) and incubated overnight at 4 °C. 

Before using the plate, the Poly-L-Lysin solution was removed and the wells washed twice with PBS 

buffer. 

5.2.2.7. Bacteria Assay 

5.2.2.7.1. Bacteria Assay on Poly-L-Lysin Coated Microtiter Plates 

The E.coli stock solution was transferred into PBS buffer and diluted to concentrations between 0 and 

108 cfu ml-1. The dispersions were then incubated in the wells of a Poly-L-Lysin coated microtiterplate 

at room temperature for 1 h. After washing twice with PBS buffer cationic liposomes (50 µM in PBS) 

were added and incubated for 1 h at room temperature. The wells were then washed twice with PBS 
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buffer (200 µl/well). For fluorescence analysis PBS buffer (100 µl/well) was added and the fluorescence 

read out before and after lysis of the liposomes with n-Octyl-β-D-glucopyranoside solution (OG, 

300 mM, 10 µl/well). Three individual measurements of each dilution were made. For 

chemiluminescence analysis carbonate buffer (0.1 M, 100 mM NaCl, pH 10.5, 186 µl/well), OG 

(300 mM, 10 µl/well) and Hemin (10 µM, 2 µl/well) were added after washing with PBS. H2O2 (2 mM, 

4 µl/well) was added right before the measurement. Four individual measurements of each dilution 

were made. 

5.2.2.7.2. Bacteria Assay with Centrifugation 

5.2.2.7.2.1. Fluorescence Analysis 

The E.coli stock solution was transferred into PBS buffer. Six different dilutions (1 ml each; 1:10, 1:100, 

1:1000, 1:104, 1:105, and 1:106) of the E.coli solutions were made in phosphate buffer (10 mM, pH 6) 

and cationic liposomes were added to them (50 µM). The mixture was centrifuged at 1500 rcf for 

10 min). After removal of the supernatant the pellet was redispersed in 1 ml n-Octyl-β-D-

glucopyranoside solution (30 mM). Fluorescence spectra were recorded between 560 and 654 nm with 

λex=544 nm, λem=575 nm and a detector voltage of 550 V. Three individual measurements of each 

dilution were made. 

5.2.2.7.2.2. Chemiluminescence Analysis 

The E.coli stock solution was transferred into PBS buffer and diluted to concentrations between 0 and 

108 cfu ml-1. The dispersions were then incubated with cationic liposomes (50 µM) for 4 h at room 

temperature. Then the mixture was centrifuged for 30 min at 1500 rcf, the supernatant removed, and 

the residuum resuspended in PBS buffer (500 µl). This step was repeated twice, after the last 

centrifugation the residuum was resuspended in carbonate buffer (0.1 M, 100 mM NaCl, pH 10.5, 

500 µl) containing 30 mM OG. For the measurement the mixture was added to the wells of a white 

microtiter plate (100 µl/well). Hemin (10 µM, 1 µl/well) was added as catalyst for chemiluminescence 

analysis. H2O2 (2 mM, 2 µl/well) was added right before the measurement. Three individual 

measurements of each dilution were made. 

5.2.2.7.3. Bacteria Assay with Magnetic Beads 

The E.coli stock solution was transferred into PBS buffer and diluted to concentrations between 0 and 

108 cfu ml-1. The dispersions were then incubated with magnetic beads (50 µg ml-1) for 2 h at room 

temperature. After magnetic separation, the supernatant was removed, and the residuum was washed 

twice with PBS buffer (500 µl). After the second washing step the pellet was resuspendend in PBS 

buffer containing the cationic m-carboxy-luminol liposomes (50 µM) and the mixtures incubated for 

2 h at room temperature. Then unbound liposomes were removed by magnetic separation, the 

supernatant was removed, and the residuum washed twice with PBS buffer (500 µl). After the last 



Electrostatic Interactions of Cationic Liposomes for Pathogen Detection 
__________________________________________________________________________________ 

105 
 

washing step, the pellet was resuspended in carbonate buffer (0.1 M, 100 mM NaCl, pH 10.5, 500 µl) 

containing 30 mM OG. For the measurement the mixture was added to the wells of a white microtiter 

plate (100 µl/well). Hemin (10 µM, 1 µl/well) was added as catalyst for chemiluminescence analysis. 

H2O2 (2 mM, 2 µl/well) was added right before the measurement. Three individual measurements of 

each dilution were made. 

5.2.2.8. Fluorescence Measurements 

Fluorescence spectra of SRB encapsulating liposomes were recorded with an Aminco Bowman 2 

spectrofluorometer between 560 and 650 nm with λex=544 nm, λem=575 nm and a detector voltage of 

550 V. 

A FLUOStar OPTIMA microplate reader from BMG LABTECH (www.bmglabtech.com) was used for the 

fluorescence measurements of SRB encapsulating liposomes. The emission was read out at 

wavelengths of λex=544 nm and λem=575 nm.[M] The gain was adjusted before each measurement and 

was always between 1200 and 1500. 

5.2.2.9. Chemiluminescence Measurements 

A BioTek microplate reader was used for the chemiluminescence measurements with m-carboxy-

luminol containing liposomes. Before chemiluminescence analysis Hemin (10 µM, 1 µl/well) was 

added to the lysed liposome dispersions. H2O2 (2 mM, 2 µl/well) was added right before the 

measurement, the read height was adjusted to 6 mm. The gain was adjusted before each 

measurement and was always between 60 and 80. 

5.3. Results and Discussion 

5.3.1. Liposome Preparation and Characterization 

The cationic liposomes used in this work were synthesized by reverse phase evaporation. Preparation 

parameters and lipid composition have been optimized with respect to vesicle diameter, colloidal 

stability and minimized dye leakage in a previous study.[14] The optimized lipid composition is shown 

in Figure 5.1. The membrane is mainly composed of DPPC, which is a common zwitterionic 

phospholipid applied in liposome formulations. The addition of cholesterol helps to prevent leakage of 

entrapped molecules as this lipid is able to influence the membrane fluidity. EDPPC is a synthetic 

cationic phospholipid with an ethylated phosphate group. This lipid gives the vesicles an overall 

positive surface charge. 

http://www.bmglabtech.com/


Electrostatic Interactions of Cationic Liposomes for Pathogen Detection 
__________________________________________________________________________________ 

106 
 

 

Figure 5.1. Optimized lipid composition for the preparation of cationic liposomes. 

Liposomes prepared with this composition are between 160 and 250 nm in size with PdIs usually below 

0.2 which suggests a mostly monodisperse vesicle mixture (Figure 5.2). ζ-potentials recorded in HSS 

buffer are usually above +15 mV which guarantees the colloidal stability of the liposome dispersions. 

5.3.2. Electrostatic Interaction with Magnetic Beads 

Moreover, these vesicles have been demonstrated to be able to bind electrostatically to negatively 

charged surfaces and liposomes of similar size as shown by DLS, SPR, electrochemical and fluorescence 

measurements.[14] Due to the fact that most bacteria, gram-positive and gram-negative, exhibit a 

negative surface charge, the liposomes should be able to bind to the cells and enable a simple 

detection method for bacteria. At first 1 µm big magnetic beads bearing carboxy groups on their 
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Figure 5.2. Hydrodynamic diameter of cationic SRB-encapsulating liposomes in HSS buffer determined by DLS. 
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surface were applied as model for bacteria cells. For this, different concentrations of cationic 

liposomes entrapping the fluorescent dye sulforhodamine B were simply mixed with the beads in a 

microtiter plate and unbound material separated magnetically after an incubation of 30 minutes at 

room temperature. As negative control, the same was done for liposomes only without the addition 

of magnetic beads. Then, the fluorescence intensity of the bound liposomes was analyzed after lysis 

of the vesicles, which is shown in Figure 5.3. 

 

Figure 5.3. Different concentrations of liposomes bound to magnetic carboxy beads. Fluorescence intensities were read out 

on a FluostarOPTIMA microplate reader at λex=544 nm and λem=575 nm and a gain of 1500, n=3. 

As expected, no signal was obtained in case of the negative control experiment but a significant 

increase in the fluorescence intensity was observed with an increasing concentration of initially 

supplied liposomes. Thus, the more liposomes are present in the beginning, the more are able to bind 

to the negatively charged magnetic beads. This proofs that these cationic liposomes are not only able 

to bind to similarly sized vesicles but also to bigger particles with negative surface charge, which exhibit 

a similar size as e.g. an E.coli cell. Thus, also a successful interaction with the anionic bacteria surface 

should be possible. 
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5.3.3. Bacteria Quantification via Fluorescence Readout 

To proof the negative surface charge of the applied E.coli cells, ζ-potential measurements were 

conducted in phosphate buffer for a pH range from 4-9. Cationic liposomes were investigated in the 

same range to find the optimum pH for all further measurements. The results are shown in Figure 5.4. 

Figure 5.4. ζ-potentials of E.coli cells and cationic liposomes dispersed in phosphate buffer in a pH range of 4-9, n=4. 

The ζ-potential values for the E.coli cells are always in the range of -40 to -50 mV with no significant 

influence of the pH. In contrast, the ζ-potential of the cationic liposomes decreases with increasing pH 

from +55 to +20 mV. However, as too acidic conditions may affect the stability of the liposomes and 

the E.coli cells during incubation, pH values between 6 and 7 were used for all further experiments. 

Moreover, these opposite surface potentials suggest that an electrostatic interaction between the 

vesicles and the E.coli cells is possible and a resulting agglomeration may be exploited for detection of 

the bacteria. Therefore, different concentrations of E.coli cells were mixed with cationic liposomes in 

a cuvette. After a 2 h incubation the formation of pink agglomerates was observed on the bottom of 

the cuvette for a bacteria concentration of 108 cfu ml-1 (Figure 5.5, left). For lower concentrations 

(105 cfu ml-1, Figure 5.5, right) this agglomeration was not visible by bare eye anymore. 
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5.3.3.1. Centrifugation Assay 

For separation of the vesicle-bacteria agglomerates from unbound liposomes centrifugation was 

applied. This resulted in the formation of pink pellets, which were washed and finally redispersed in 

OG. A decrease in color intensity was already observed by bare eye as shown in Figure 5.6. 

Then, also the fluorescence intensity of the lysed liposomes was determined. The more E.coli cells are 

present, the more liposomes should be able to bind and stronger agglomeration should take place. 

Thus, it was expected to see an increase in the fluorescence intensity with an increasing number of 

bacteria. Above E.coli concentrations of 106 cfu ml-1 the peak maxima can clearly be distinguished as 

shown in Figure 5.7. However, for lower concentrations the signals lie closely together and cannot be 

distinguished from each other anymore. Moreover, the formed pellets in case of the lower E.coli 

concentrations are much smaller und and also less stable, which makes a reliable and complete 

removal of the supernatant almost impossible. 

 

Figure 5.5. Mixtures of cationic liposomes and different concentrations of E.coli after a 2 h incubation at room temperature. 

108 cfu ml-1 105 cfu ml-1 

Figure 5.6. Left: formation of pink pellet after centrifugation. Right: liposome-E.coli agglomerates after centrifugation and 

redispersion in 30 mM OG. 
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5.3.3.2. Microtiter Plate Assay 

Therefore, a different way for separation was tested. Here, black microtiterplates were coated with 

Poly-L-Lysin first. This polymer is positively charged, thus E.coli cells should be able to attach to the 

coated plate and at the same time it prevents the cationic liposomes from binding to the plate when 

no bacteria are present. After coating, different concentrations of E.coli were incubated in the wells 

and after removal of unbound cells, cationic liposomes were added to bind to the captured bacteria. 

Unbound liposomes were also removed by washing and the fluorescence intensity of the lysed 

liposomes was used for analysis. First, this was tested for different buffer systems, LB-medium and 

water as shown in Figure 5.8. 

 

Figure 5.8. Microtiterplate assay in different solvents. Fluorescence was read out on a FluostarOPTIMA microplate reader at 

λex=544 nm and λem=575 nm and a gain of 1500, n=3. Fluorescence intensities were normalized to the blank value. 
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Figure 5.7. Fluorescence spectra and the corresponding intensities at the peak maximum of lysed liposomes after incubation 

with E.coli cells and separation via centrifugation. Fluorescence spectra were recorded between 560 and 650 nm using an 

Aminco Bowman 2 spectrofluorometer at λex=544 nm and λem=575 nm and a detector voltage of 550 V, n=3. 
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The best results were obtained for standard PBS buffer and a 10 mM phosphate buffer at pH 6 without 

any additives. Here, the fluorescence signal significantly increases above concentrations of                      

104 cfu ml-1. The addition of 200 mM sodium chloride shows a weaker increase in fluorescence 

intensity. A reason for this may be that high salt concentrations also affect the electrostatic 

interactions. It is assumed that the electrostatic attraction is reduced at higher salt concentrations. 

The salt concentration, which is present in the PBS buffer still seems to be low enough to enable strong 

interactions. The presence of LB-medium however, seems to disturb the electrostatic interaction 

between the liposomes and the E.coli cells probably due to interferences by tryptone or yeast extract, 

which are both present in the medium. Here, no signal increase for higher bacteria concentrations was 

observed. The same holds for the presence of sucrose. Incubation in water leads to disruption of the 

vesicles, thus no fluorescence signal can be detected anymore. Therefore, PBS buffer was chosen as 

buffer for all further experiments. 

In order to see if the liposome concentration influences the assay sensitivity three different 

concentrations between 10 and 100 µM were tested. The results are shown in Figure 5.9. For a 

liposome concentration of only 10 µM almost no fluorescence can be detected, even for very high 

bacteria concentrations. In case of 100 µM liposomes an increase in intensity can be observed for 

106 cfu ml-1 or more. However, the obtained standard deviations are very high. The significant increase 

in signal can also be observed for 50 µM liposomes. In this case only low standard deviations are 

observed, suggesting that this vesicle concentration is completely sufficient for the microtiter plate 

assay. In addition, some cationic liposomes have also been reported for their bactericidal action which 

is based on the neutralization of the bacteria surface charge via the positively charged vesicles.[13] 

Therefore, also the cationic liposomes in this study were tested for bactericidal effect. After an 1 h 

incubation of different concentrations of cationic liposomes between 0 and 200 µM with E.coli cells, 

the mixture was plated onto agar plates. Table 5.1 presents the colonies grown after incubation at 

37 °C overnight. 

Table 5.1. Colonies of E.coli grown overnight after a 1 h incubation with cationic liposomes. 

c (cationic liposomes) [µM] Counted colonies 

0 121 ± 18 

10 115 ± 19 

50 108 ± 20 

100 91 ± 14 

200 96 ± 1 
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As only viable bacteria are able to multiply, these results indicate the viability of the E.coli cells after 

incubation with the cationic liposomes. Up to a concentration of 50 µM no significant decrease in the 

counted colonies were observed. Higher concentrations, however, seem to be able to kill some of the 

cells. This also explains the observed higher standard deviations for 100 µM liposomes in the microtiter 

plate assay in Figure 5.9. Thus, no more than 50 µM of liposomes were applied for all further 

investigations. 

 

Figure 5.9. Microtiterplate assay for different liposomes concentrations in PBS buffer. Fluorescence was read out on a 

FluostarOPTIMA microplate reader at λex=544 nm and λem=575 nm and a gain of 1200, n=3. 

The obtained detection limit of about 106 cfu ml-1 as achieved with 50 µM liposomes in the microtiter 

plate assay does still not meet the expectations. Also, variations of other parameters like incubation 

time, temperature or shaking did not lead to an improvement. Therefore, changes in the lipid 

composition were investigated, i.e. the EDPPC content of the vesicle membrane was increased to yield 

a higher positive charge on the liposome surface. This may be able to enhance the interaction with the 

bacteria and may thus result in lower limits of detection.  

Figure 5.10 shows the ζ-potential measurements of the freshly synthesized liposomes. 18 mol% is the 

standard amount of EDPPC, which had been applied for the previous experiments. In addition, 30, 40 

and 50 mol% of EDPPC were mixed with DPPC. It is clearly visible that the surface potential increases 

from +15 mv to +25 mV with increasing amount of the cationic phospholipid. It was possible to 

increase the ζ-potential even more, above 30 mV, when creating a 50:50 mixture with cholesterol and 

no DPPC at all. Both of the 50 mol% variations were then applied to the centrifugation assay for 

bacteria detection. 
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Figure 5.11 shows the dose response curve for both types of liposomes. In both cases no improvement 

in the assay sensitivity was observed. Thus, the higher positive surface charge did not improve the 

interaction but may have led to an increase colloidal stability of the vesicles that rather prevents 

Figure 5.11. Centrifugation assay with SRB encapsulating liposomes either composed of EDPPC/DPPC (1:1) or 

EDPPC/cholesterol (1:1). Fluorescence was read out on a FluostarOPTIMA microplate reader at λex=544 nm and λem=575 nm 

and a gain of 1200, n=4. 
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Figure 5.10. ζ-potentials of SRB containing liposomes with different mixtures of EDPPC and DPPC and EDPPC and cholesterol, 

n=4. 
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agglomeration with other particles. Therefore, the standard cationic liposomes seem to be the better 

choice. 

5.3.4. Bacteria Quantification via Chemiluminescence Readout 

As none of the optimizations resulted in a significant improvement in sensitivity the reason may be the 

detection method. A recent project in our group showed that anionic liposomes loaded with m-

carboxy-luminol instead of SRB were able to lower the LOD in a sandwich hybridization assay by the 

factor of 150. Here, ECL readout was applied.[7] Moreover, this dye shows excellent chemiluminescence 

properties.[15] Due to the simpler handling of CL measurements in comparison with ECL, the bacteria 

assay was modified to enable chemiluminescence readout instead of fluorescence. Therefore, new 

cationic liposomes were synthesized with m-carboxy-luminol as encapsulant. As shown in Figure 5.12a 

the DLS spectrum of the new liposomes revealed a diameter of 142 nm with a low PdI of only 0.13 and 

the ζ-potential of the vesicles was positive with +15 mV. 

In order to proof the successful incorporation of m-carboxy luminol, chemiluminescence 

measurements of the intact and lysed liposomes were conducted. Hemin and H2O2 were used as co-

reagents. As shown in Figure 5.12b only a low chemiluminescence intensity could be observed before 

lysis of the liposomes. After addition of a detergent a strong increase in chemiluminescence was 

observed, which shows that the incorporation of the dye was successful. 

Figure 5.12. Left: DLS spectrum of cationic m-carboxy-luminol containing liposomes in HSS buffer, n=3. Right: 

Chemiluminescence intensities of intact and lysed cationic m-carboxy-luminol liposomes in carbonate buffer (0.1 M, pH 10.5). 

Chemiluminescence measurements were conducted on a BioTek microplate reader with Hemin and H2O2 as co-reagents, a 

read height of 6 mm and a gain of 60, n=4. 
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5.3.4.1. Magnetic Bead-Based Assay 

As both assay types that have been tested so far are restricted either by insufficient capturing of 

bacteria on the 96 well plate or by insufficient separation as in case of centrifugation a third assay type 

was tested to further improve the sensitivity. Here, cationic magnetic beads serve as separators. For 

this, the beads were first incubated with the E.coli cells and afterwards unbound bacteria were 

separated magnetically. Then, the cationic liposomes were applied, and unbound liposomes also 

removed by magnetic separation. Chemiluminescence readout was used for analysis. Here, a similar 

dose response curve as in case of the fluorescence-based assays was obtained (Figure 5.13). A 

significant signal increase can only be observed above bacteria concentrations of 106 cfu ml-1. A reason 

for this may be the presence of the magnetic beads. After incubation with the cells they already cover 

part of the bacteria surface and may even form agglomerates with other bacteria. This not only limits 

the space on the surface of the cells for the liposomes to bind to but also causes steric hindrance, 

which explains the high limit of detection. 

5.3.4.2. Microtiter Plate Assay 

The new liposomes were then also applied to the microtiter plate and the centrifugation assay that 

was already tested for fluorescence analysis. The result for the microtiterplate assay is shown in Figure 

5.14. The dose response curve is again very similar to the assay with fluorescence readout. Also here, 

the expected decrease in the LOD was not achieved. In this case, the limiting factor does not seem to 

be the detection method but rather the insufficient capturing of the E.coli cells on the Poly-L-Lysin 

coated wells of the microtiter plate. 

Figure 5.13. Magnetic bead assay with cationic m-carboxy-luminol containing liposomes. Chemiluminescence measurements 

were conducted in 30 mM OG in carbonate buffer (0.1 M, pH 10.5) on a BioTek microplate reader with Hemin and H2O2 as co-

reagents, a read height of 6 mm and a gain of 80, n=4. 
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5.3.4.3. Centrifugation Assay 

In contrast, an improvement in the LOD was observed in case of the centrifugation assay. Here, the 

LOD could be lowered to ~105 cfu ml-1, which is almost 100 times lower as achieved with fluorescence 

readout (Figure 5.15). 

Figure 5.15. Centrifugation assay with cationic m-carboxy-luminol containing liposomes. Chemiluminescence measurements 

were conducted in 30 mM OG in carbonate buffer (0.1 M, pH 10.5) on a BioTek microplate reader with Hemin and H2O2 as co-

reagents, a read height of 6 mm and a gain of 80, n=4. 

Figure 5.14. Microtiterplate assay with cationic m-carboxy-luminol containing liposomes. Chemiluminescence measurements 

were conducted in 30 mM OG in carbonate buffer (0.1 M, pH 10.5) on a BioTek microplate reader with Hemin and H2O2 as co-

reagents, a read height of 6 mm and a gain of 80, n=4. 
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However, careful handling is indispensable in case of separation via centrifugation to obtain reliable 

results. Therefore, a complete removal of the supernatant without destroying the relatively unstable 

liposome-bacteria pellet must be ensured. 

5.4. Conclusions 

Interactions between cationic liposomes and E.coli cells were successfully demonstrated by 

agglomeration visible by bare eye, fluorescence and chemiluminescence measurements. 

Quantification of E.coli cells using fluorescence readout resulted in detection limits of 106-107 cfu ml-1 

dependent on the assay type. The detection limit could be further reduced to 105 cfu ml-1 using 

chemiluminescence readout, here a centrifugation-based assay showed the most promising results. 

However, the LOD seems to be limited by the investigated assay types. Either by insufficient bacteria 

immobilization on the microtiterplate surface, by steric hindrance using magnetic beads or by reliable 

separation using centrifugation. Thus, for the future the capturing of E.coli cells on other surfaces may 

be interesting to yield a more efficient immobilization and separation. Moreover, the use of a cationic 

lipid consisting of a linker may enable better availability for the bacteria and may thus increase the 

binding efficiency of the liposomes to the cells. Also preculturing of low concentrated bacteria samples 

may help to decrease the detection limit for E.coli quantification. If these challenges and limitations 

can be overcome direct detection of E.coli cells based on electrostatic interactions using dye loaded 

cationic liposomes offers a fast and simple alternative for the quantification of bacteria. 
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6 Cationic Liposomes for DNA Preconcentration 

 

Abstract 

Common methods for the extraction, purification and concentration of genomic DNA include solid 

phase extraction, end point PCR or the use of magnetic silica beads. These techniques are e.g. time-

consuming, prone to impurities, or require the use of organic solvents or chaotropic salts, which often 

causes interferences during DNA quantification e.g. by qPCR. Here, cationic liposomes were tested for 

their ability to preconcentrate genomic DNA extracted from E.coli. The DNA can simply be captured 

via electrostatic interactions with the phospholipid vesicles and purified via centrifugation. 

Quantification of the concentrated DNA was done via picogreen analysis. Short incubation times of 

only 5 min at room temperature followed by a 15 min centrifugation at 15.000 g resulted in good DNA 

recoveries up to 75%. Thus, cationic liposomes in combination with centrifugation enables a fast and 

efficient method for the concentration of genomic DNA without the need for high temperatures or 

organic solvents. 
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This chapter contains paragraphs that were in part already described in Carola Figalist’s master’s 

thesis. This includes paragraphs within the experimental part regarding the liposome preparation and 

characterization. The master’s thesis is entitled “Positively Charged Liposomes for Signal Enhancement 

via Electrostatic Interactions” and was submitted to the Faculty of Chemistry and Pharmacy at the 

University of Regensburg in December 2014. Sections that are identical or similar to the master’s thesis 

are listed here in detail and are indicated in this chapter by the citation “M”: 

- p.125, subchapter 6.2.1., paragraph 2 (experimental) 

- p.125-126, subchapter 6.2.2.4., 6.2.2.5.1. (experimental) 

6.1. Introduction 

One of the simplest methods for the quantification of double stranded DNA is the use of UV/vis 

spectroscopy. DNA shows a specific peak at 260 nm which can be used for quantification.[1] Typically, 

1 OD corresponds to 50 µg ml-1 DNA.[2] The absorbance ratio A260/A280 can also give information on the 

purity of the DNA sample and should lie between 1.7 and 2.0.[1] Unfortunately, impurities caused by 

ssDNA or RNA cannot be detected by absorbance measurements as they also absorb at 260 nm.[1,2] 

Moreover, analysis via UV/vis spectroscopy is limited to DNA samples between 5-50 mg ml-1.[2] Another 

possibility is the use of polymerase chain reaction (PCR) techniques. PCR can selectively amplify DNA. 

While end point PCR can only provide semi-quantitative information, qPCR allows real time analysis of 

the samples and quantification down to low DNA levels.[3] Here, a fluorescent dye, e.g. SYBR Green I 

or EvaGreen, binds to the dsDNA and PCR cycles are conducted until enough DNA is present to be 

detected via fluorescence during the extension phase of the PCR cycle.[3,4] However, PCR-based 

methods are expensive and extremely sensitive towards impurities. Thus, only very pure DNA samples 

can provide reliable data.[2] Ideally, other methods for the quantification of DNA stocks should be 

conducted beforehand to serve as template for PCR analysis.[1] Here, fluorescence techniques have 

been proposed as they enable a more sensitive quantification of dsDNA than absorbance 

measurements. Fluorescent dyes like Hoechst 33258 or picogreen are the most prominent 

examples.[1,5] A calibration curve using a DNA standard enables the quantification of dsDNA from 

1 µg ml-1 down to 25 pg ml-1.[2] In case of the Hoechst dye selectivity towards dsDNA can be influenced 

via high or low salt concentrations.[2] In contrast, picogreen is highly selective towards dsDNA but 

sensitive to interferences by some detergents and salts.[1,2] 

One of the mostly applied techniques for DNA isolation includes the phenol-chlorophorm extraction, 

where hydrophobic cell components in the organic phase are separated from the extracted DNA in the 

aqueous phase.[6] However, the use of organic solvents cannot only be hazardous to health and the 

environment but also a thorough removal of the solvents is necessary to enable the suitability for 
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further DNA analysis.[2,7] Another common technique relies on solid phase extraction. After disruption 

of the cell, DNA is adsorbed e.g. onto spin columns consisting of a silica matrix, glass particles or anion 

exchange carriers and eluted after several washing steps which can become very time-consuming.[7,8] 

Here, no toxic organic solvents are necessary, however, often the addition of high salt concentrations 

or chaotropic salts is necessary which interfere e.g with picogreen or qPCR analysis if not sufficiently 

removed.[2,9]  

For the concentration of DNA after isolation simple methods like the precipitation with alcohol can be 

applied. However, this can lead to shearing of the DNA, especially in case of high molecular weight 

DNA.[10] DNA extraction and concentration using magnetic beads offer a fast and simple alternative. 

These beads usually consist of a magnetic core surrounded by polymer or silica shells which can either 

be applied without or with specific surface receptors.[6] The DNA can be adsorbed onto the bead 

surface and separated from other components via magnetic forces.[3] However, sedimentation or 

aggregation of the microparticles often result in lower extraction efficiencies.[3] Moreover, magnetic 

bead-based approaches often require the use of chaotropic salts like guanidine HCl or organic solvents 

that need to be efficiently removed before further DNA analysis.[2,8] Recently, also the use of magnetic 

ionic liquids has been reported which overcome some of the problems using magnetic beads like 

sedimentation or aggregation.[3,9] 

Another material that is known to interact well with DNA are cationic liposomes. Here, usually the 

formation of lipoplexes is exploited for applications in gene therapy or DNA vaccination.[11] This study 

investigates the applicability of cationic liposomes for DNA preconcentration via electrostatic 

adsorption to the surface of the vesicles without the need for chaotropic salts or organic solvents. 

6.2. Experimental 

6.2.1. Materials 

1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-ethylphospho-

choline (EDPPC), cholesterol and the extrusion kit and membranes were purchased from Avanti Polar 

Lipids (avantilipids.com). The dialysis membrane spectra/por 4 with a MWCO of 12-14 kDa was 

purchased from spectrum labs (www.spectrumlabs.com). E.coli was purchased from the DSMZ 

(www.dsmz.de). 4‐(2‐Hydroxyethyl)piperazine‐1‐ethanesulfonic acid (HEPES), sodium azide, 

phosphate buffered saline and black microtiter plates from Nunc were bought from Sigma Aldrich 

(www.sigmaaldrich.com) as well as the GenEluteTM Genomic DNA kit for DNA extraction. The 

InvitrogenTM Quant-iTTM PicoGreenTM assay kit containing the picogreen reagent, DNA standard and a 

10xTE buffer was purchased from fisher scientific (www.fishersci.de). The phosphorus standard for 

ICP-MS measurements was bought from Perkin Elmer (www.perkinelmer.com). LB broth was 

http://www.spectrumlabs.com/
http://www.sigmaaldrich.com/
http://www.perkinelmer.com/
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purchased from Alfa Aesar (www.alfa.com/de/). Bacteriological agar as well as all other chemicals 

were of analytical grade and purchased from VWR (de.vwr.com).  

Millipore water (≥ 18.2 M cm) was used for the preparations of all buffers and aqueous solutions 

needed for liposome preparation.[M] 

DNAse free water was applied for the preparation of all aqueous solutions needed for DNA extraction, 

preconcentration or picogreen analysis. 

6.2.2. Methods 

6.2.2.1. Cultivation of E.coli 

Two E.coli colonies grown on Agar plates were suspended in LB-medium (10 mL) and used for 

cultivation of E.coli for 4-5 h at 37 °C under continuous shaking. The obtained stock solution was then 

applied for the extraction of genomic DNA. For colony counting this stock solution was diluted 1:106 

and 50 µL of this solution spread onto an Agar plate and incubated overnight at 37 °C. This was done 

for 2 different plates and the grown colonies were counted the next morning. Usually E.coli cultures of 

~109 cfu ml-1 were obtained. 

6.2.2.2. Extraction of Genomic DNA 

The GenElute kit by Sigma Aldrich was applied for the extraction of genomic DNA from E.coli following 

the instructions of the kit. 1.5 ml of the E.coli stock solution were applied for extraction and two elution 

steps in TE buffer were applied to increase the yield. The extracted genomic DNA was stored in aliquots 

at -18 °C. 

6.2.2.3. Characterization of Genomic DNA 

For characterization absorbance spectra were recorded between 200-400 nm on a Cary 

spectrophotometer. Background correction was conducted using TE buffer as blank solution. The 

peaks at 260 and 280 nm were analyzed to obtain information on the quality of the extracted DNA and 

to estimate its concentration. 

Moreover, picogreen analysis was applied to determine the concentration of double-stranded DNA in 

the solution. For this the stock solution was diluted 1:25 in TE buffer. 10 µl of this dilution were then 

mixed with 490 µl of TE buffer and 500 µL of the picogreen reagent. A calibration curve between 0 and 

250 ng ml-1 was used for analysis. 

6.2.2.4. Preparation of Liposomes 

DPPC (17.3 mg), EDPPC (4.5 mg) and cholesterol (0.6 mg) were dissolved in Chloroform (3 mL) and 

Methanol (0.5 mL) and sonicated at 60 °C for 1 minute. 2 mL of a sodium chloride solution (300 mM, 

dissolved in 0.2 M HEPES, pH 8.5) was added and the mixture sonicated at 60 °C for 4 minutes. The 

file:///D:/Dokumente/Studium/Masterstudium/Masterarbeit/de.vwr.com
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organic solvent was removed by using a rotary evaporator at 60 °C and a pressure of 750 mbar for 40 

minutes. The solution was vortexed, and another 2 mL of the sodium chloride solution was added. 

After vortexing again the solution was rotated at 60 °C and 750 mbar for 20 minutes and then again at 

60 °C and 400 mbar for 20 minutes. The solution was being extruded through polycarbonate 

membranes (1µm and 0.4 µm) at 60 °C by pushing the syringes back and forth 21 times for each 

membrane. Excess of sodium chloride was removed by size exclusion chromatography with a Sephadex 

G-50 column followed by dialysis against HSS buffer (10 mM HEPES, 200 mM NaCl, 200 mM sucrose, 

0.01% NaN3, pH 7.5).[M] 

6.2.2.5. Characterization of Liposomes 

6.2.2.5.1. Determination of Size and ζ-potential 

Dynamic light scattering (DLS) and ζ-potential measurements were carried out on a Malvern Zetasizer 

Nano-ZS (www.malvern.com). For all measurements the temperature was set to 25 °C. Semi-micro 

PMMA cuvettes were used for size determinations, disposable folded capillary cells for the ζ-potential 

measurements. Before the measurements the samples were diluted 1:100. As setting for liposomes a 

nD
20 of 1.34 and an Abs of 0.000 was selected and HSS buffer (nD

20 = 1.342, viscosity = 1.1185 kg·m−1·s−1, 

dielectric constant: 78.5) was used as dispersant. An equilibration time of 60 s was applied before each 

measurement.[M] 

6.2.2.5.2. Determination of Phospholipid Concentration 

The phospholipid concentration was determined by using the ELAN 9000 inductively coupled plasma 

mass spectrometer (ICP-MS) from Perkin Elmer (www.perkinelmer.com). For this, the liposome 

samples were diluted 1:600 in 5% HNO3 (15 ml) and could then be used for the measurement. For 

calibration a standard curve between 0 and 500 ppb was measured using dilutions of a phosphorus 

standard in 5% HNO3. Scandium was added to the calibration solutions and the samples as internal 

standard. 

6.2.2.6. DNA Preconcentration Using Magnetic Beads 

10 µl of a liposome stock solution were added to 990 µl of genomic DNA (diluted 1:250 in 1x TE buffer). 

The mixture was incubated at room temperature for 15 min under continuous shaking at 300 rpm. 

Then, 1 µl of a 1:1000 dilution of magnetic beads (1 µM, carboxy functionalized, 1 µm) was added and 

the mixture incubated for another 15 min at room temperature under continuous shaking at 300 rpm. 

Separation of unbound DNA was done magnetically. After complete removal of the supernatant the 

pellet was resuspendend in 10 µl 1xTE buffer and vortexed vigorously. The 10 µL was used completely 

for DNA quantification via picogreen analysis. As negative control samples containing only DNA and 

only liposomes were treated the same way. 

http://www.perkinelmer.com/
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6.2.2.7. DNA Preconcentration Using Centrifugation 

10 µl of a liposome stock solution were added to 990 µl of genomic DNA (diluted 1:250 in 1x TE buffer). 

The mixture was incubated at room temperature for 15 min under continuous shaking at 300 rpm. 

Separation of unbound DNA was done via centrifugation at 15.000 g for 15 min. After complete 

removal of the supernatant the pellet was resuspendend in 10 µl 1xTE buffer and vortexed vigorously. 

The 10 µL was used completely for DNA quantification via picogreen analysis. As negative control 

samples containing only DNA and only liposomes were treated the same way. 

Experiments were either conducted in standard Eppendorf tubes or in DNA LoBind Eppendorf tubes. 

The following incubation parameters were varied for optimization experiments (Table 6.1): 

Table 6.1. Incubation parameters for optimization experiments. Only one parameter was varied in each experiment. The 

others were kept constant at incubation for 15 min at 25 °C in TE buffer with a liposome concentration of 80 µM and a 

centrifugation speed of 15.000 g for 15 min. 

6.2.2.8. Picogreen Analysis 

After mixing 10 µl of the sample with 490 µl TE buffer, 500 µl of the picogreen reagent (1:200 dilution 

in TE buffer) are added vortexed vigorously. The mixture is incubated for 5 min and then transferred 

to the wells of a black microtiter plate (200 µl/well). The fluorescence intensity was read out on a 

BioTek microplate reader at λex=480 nm and λem=520 nm. The gain was adjusted before each 

measurement and was usually between 90 and 121. Three replicates of each sample are measured. 

For calibration the DNA standard (100 µg ml-1) was diluted to a concentration of 500 ng ml-1 in TE 

buffer. The diluted standard was then applied for preparation of the standard solutions according to 

the protocol in Table 6.2. 

Before the measurement the DNA dilutions were mixed with 500 µl of the picogreen reagent and then 

treated the same way as the samples as described above. The standard solutions were used to create 

a calibration curve, which was then applied for quantitative analysis of the samples. 

Incubation time 
[min] 

Incubation temperature 
[°C] 

c(liposomes) 
[µM] 

Centrifugation speed 
[g] 

Buffer 

5 25 8 2.500 HSS 

15 30 80 5.000 TE 

30 40 400 7.500 SSC 

60 50 800 10.000 HSS+guanidin 
HCl 

   15.000 TE+guanidin HCl 

    SSC+guanidin HCl 
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Table 6.2. Volumes of TE buffer and DNA standard to create the calibration curve. 

6.3. Results and Discussion 

6.3.1. Liposome Preparation and DNA Extraction 

Cationic liposomes were prepared via reverse phase evaporation using DPPC, cholesterol and the 

cationic phospholipid EDPPC. This resulted in the formation of colloidally stable vesicles with diameters 

of ~300 nm and a positive ζ-potential of +14 mV (Figure 6.1). The hydrophilic inner cavity of the 

liposomes entrapped a solution of 300 mM sodium chloride to yield colorless liposome dispersions 

that do not interfere with any optical characterization of genomic DNA as for example with the 

picogreen dye which was used for DNA quantification in this chapter. 

 

Figure 6.1. Hydrodynamic diameter of cationic liposomes encapsulating sodium chloride (300 mM) determined by dynamic 

light scattering in HSS buffer. 

Genomic DNA was extracted from E.coli cells using the commercially available GenElute Kit from Sigma 

Aldrich. The DNA was eluted in TE buffer and stored at -18 °C. Absorbance spectra of the extracted 

DNA show a broad peak at 260 nm which is typical for genomic DNA (Figure 6.2).[12] Ideally, the ratio 
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of A260/A280 should be between 1.7 and 2.0.[1] Here, values of 1.4 were obtained. Therefore, the 

extracted DNA still suffers from some impurities like proteins. The intensity at 260 nm also allows an 

estimation of the DNA concentration. However, absorbance is not very precise and prone to 

interferences by impurities that also absorb at 260 nm. This may falsify these results. Therefore, 

quantification of genomic DNA was done via a picogreen assay. The picogreen dye interacts specifically 

with double-stranded DNA while interferences by single-stranded DNA or RNA are minimized. A 

calibration curve using a DNA standard between 0 and 250 ng ml-1 enables a more precise 

quantification of the extracted genomic DNA and usually resulted in concentrations in the range of      

5-17 µM. 

 

Figure 6.2. Absorbance spectrum between 220 and 400 nm of the extracted genomic DNA recorded on a Cary 

spectrophotometer. 

6.3.2. Concepts for DNA Preconcentration with Cationic Liposomes 

Two different concepts were investigated for preconcentration of genomic DNA via cationic liposomes. 

In both cases the cationic surface charge of the liposomes is used to electrostatically bind the DNA to 

the vesicles. In a next step unbound DNA must be separated from the DNA-liposome complexes. In the 

first concept, magnetic beads are applied to bind to these complexes. This enables a simple magnetic 

separation from unbound DNA. The second concept uses centrifugation of the DNA-liposome 

complexes for separation. In both cases picogreen analysis was used for quantification of the genomic 

DNA after preconcentration. 

6.3.2.1. Separation via Magnetic Beads 

In combination with DNA, buffer plays an important role. EDTA containing buffers like TE buffer have 

a stabilizing effect regarding the long-term storage of DNA as EDTA chelated Mg2+-ions and therefore 
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serves as DNase inhibitor.[10] For hybridization purposes, specific hybridization buffers are developed 

that provide the correct stringent conditions for a successful hybridization.[10] The commercially 

available magnetic beads that have been widely applied for DNA preconcentration usually need 

chaotropic salts like guanidine HCl in their buffer composition to achieve a successful concentration.[13] 

Therefore, also different buffers were investigated for preconcentration using cationic liposomes for 

both strategies. The osmolality of the HSS buffer is adjusted to the encapsulant of the liposomes. 

Ideally, it should be 50-100 mOsmol kg-1 higher than the osmolality of the encapsulant.[14] This provides 

excellent stability for the liposomes as shown in earlier studies.[15] TE buffer stabilizes the DNA and SSC 

buffer is a hybridization buffer commonly used in liposome-based hybridization assays.[10,16] These 

three buffers were once investigated with and once without the addition of the chaotropic salt 

guanidine HCl. Samples containing only DNA or only liposomes were treated alongside as negative 

control. Figure 6.2 shows the enrichment factors for preconcentration using cationic liposomes and 

magnetic beads. Enrichment factors were determined using equation 6.1. 

𝑒𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 (𝐸𝐹) =
𝑐(𝐷𝑁𝐴)𝑎𝑓𝑡𝑒𝑟 𝑝𝑟𝑒𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛

𝑐(𝐷𝑁𝐴)𝑏𝑒𝑓𝑜𝑟𝑒 𝑝𝑟𝑒𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛
       (6.1) 

It can be seen that DNA preconcentration using cationic liposomes and magnetic beads for separation 

works in principle (Figure 6.3). 

 

Figure 6.3. Enrichment factors for DNA preconcentration in different buffers using magnetic beads for separation. The DNA 

stock solution was diluted 1:250 before mixing with the liposomes. DNA concentrations were determined using a picogreen 

assay kit, the fluorescence was read out at a BioTek microplate reader at λex=480 nm and λem=520 nm and a gain of 121, n=3. 

However, only enrichment factors up to 3 can be reached which is not very efficient. Incubation in 

hybridization buffer seems to work best while almost no enrichment can be observed for HSS and TE 
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buffer. SSC buffer may have an influence on the 3D structure (folding) of the DNA which favors the 

attachment to the liposomal surface. The addition of the chaotropic salt guanidine HCl even decreases 

the efficiency of preconcentration. In case of the commercially available kits based on magnetic beads 

these salts are necessary to overcome the electrostatic repulsion between anionic beads and DNA.[13] 

This is not necessary here. Moreover, the negative control sample, which doesn’t contain any cationic 

liposomes or beads also yielded enrichment factors of around 2. Thus, a high amount of DNA does not 

seem to be concentrated by the liposomes but by unwanted binding to the walls of the Eppendorf 

tubes. 

6.3.2.2. Separation via Centrifugation 

The same experiment was conducted using cationic liposomes and centrifugation for the 

concentration of DNA (Figure 6.4). Here, overall higher enrichment factors of 20-25 were achieved. 

Surprisingly, the hybridization buffer gave the lowest DNA recovery in this case, whereas TE buffer 

worked best. Again, the addition of guanidine HCl showed no improvement. However, also in this case 

similar or only slightly lower enrichment factors were also obtained although no liposomes were 

present for capturing the DNA. Thus, the DNA molecules seem to stick to the walls of the Eppendorf 

cups. In this case also the centrifugation speed of 21.000 g for separation may have been too fast. 

As separation by centrifugation seems to be the more promising concept all further optimizations were 

only conducted for this method. 

 

Figure 6.4. Enrichment factors for DNA preconcentration in different buffers using centrifugation at 21.000 g for separation. 

The DNA stock solution was diluted 1:250 before mixing with the liposomes. DNA concentrations were determined using a 

picogreen assay kit, the fluorescence was read out at a BioTek microplate reader at λex=480 nm and λem=520 nm and a gain 

of 121, n=3. 
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6.3.3. Optimization of DNA Preconcentration Using Centrifugation 

As 21.000 g results in high DNA recoveries for the negative control samples slower centrifugation 

speeds between 2.500 and 15.000 g were investigated to see if this value can be minimized. It was 

found that 7.500 g results already in a good enrichment factor of ~35 with only low interference by 

unbound DNA molecules (Figure 6.5). A similar result was achieved using 15.000 g. Below 7.500 g a 

significant decrease in the enrichment factors was observed. However, these lower centrifugation 

speeds showed no improvement regarding the samples without liposomes and are therefore not ideal 

for DNA preconcentration. Moreover, the same experiment was conducted using a lower DNA 

concentration (1:25.000 dilution) for mixing with the liposomes. Unfortunately, the obtained signals 

were below the detection limit of the picogreen assay which was applied for quantification of the DNA. 

Here, the use of a more sensitive method for DNA quantification of DNA, like qPCR, will be necessary. 

 

Figure 6.5. Enrichment factors for DNA preconcentration using centrifugation at different speeds. The DNA stock solution was 

diluted 1:250 before mixing with the liposomes. DNA concentrations were determined using a picogreen assay kit, the 

fluorescence was read out at a BioTek microplate reader at λex=480 nm and λem=520 nm and a gain of 90, n=3. 

The experiment was also conducted for three different batches of liposomes containing different 

concentrations of phospholipid in their stock solution (3-9 mM, Table 6.3 Figure 6.6a). 

Again, a centrifugation speed of 7.500 g and 15.000 g resulted in similar enrichment factors. The assay 

worked with all liposome batches and the batches of liposomes did not have a definite effect as 

expected. They only slightly differ in the phospholipid concentration but are identical regarding the 

lipid composition, preparation and surface charge. Overall, the values for the negative control vary 

significantly from measurement to measurement and may not be a consequence of the centrifugation 

speed alone but may also be caused by differences in the handling of the samples. 
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Table 6.3. Characterization of cationic liposomes encapsulation 300 mM sodium chloride via ICP-MS analysis, n=3. 

 

Figure 6.6. Enrichment factors for DNA preconcentration using centrifugation at different speeds. The DNA stock solution was 

diluted 1:250 before mixing with the liposomes. The assay was conducted either in a) standard 2 mL Eppendorf Cups or in b) 

DNA LoBind 2 mL Eppendorf Cups. DNA concentrations were determined using a picogreen assay kit, the fluorescence was 

read out at a BioTek microplate reader at λex=480 nm and λem=520 nm and a gain of 90, n=3. 

The experiments so far have all been conducted in standard Eppendorf tubes. Due to the large values 

in case of the samples without liposomes it was assumed that a large amount of DNA is also able to 

stick to the walls of these Eppendorf tubes and can therefore not be separated sufficiently. 

In order to see, if the standard Eppendorf tubes do really have an effect on the negative control values, 

the same experiment was conducted in DNA LoBind cups (Figure 6.6b). Here, binding of free DNA to 

the walls of the tubes should be minimized and enable a more sufficient separation. Surprisingly, 

similar results were obtained for a centrifugation speed of 2.500 and 7.500 g. However, in case of 

15.000 g interference by free DNA is significantly lower. Thus, a centrifugation speed of 15.000 g and 

DNA LoBind cups were applied for all further experiments. 

Apart from the centrifugation speed, also other factors may influence the efficiency of the DNA 

preconcentration. Therefore, DNA preconcentration was performed under different conditions by 

varying the incubation time, temperature and the liposome concentration. Variations in the incubation 

temperature showed that 25 or 50 °C work best, whereas in case of 40 °C a loss in the efficiency can 

be observed (Figure 6.7a). Also the phase transition temperature of the lipid bilayer is supposingly at 
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~40 °C and may be responsible for this effect. Variations in the liposome concentration show similar 

enrichment factors for all tested liposome concentrations (0.8 mM, Figure 6.7b). 

 

Figure 6.7. a) Enrichment factors for DNA preconcentration using centrifugation at 15.000 g. Incubation was done at different 

temperatures between 25 and 50 °C. The DNA stock solution was diluted 1:250 before mixing with the liposomes. The assay 

was conducted in DNA LoBind 2 mL Eppendorf Cups. DNA concentrations were determined using a picogreen assay kit, the 

fluorescence was read out at a BioTek microplate reader at λex=480 nm and λem=520 nm and a gain of 90, n=3. b) Enrichment 

factors for DNA preconcentration using centrifugation at 15.000 g. Incubation was done with different liposome 

concentrations between 8 and 800 µM. The DNA stock solution was diluted 1:250 before mixing with the liposomes. The assay 

was conducted in DNA LoBind 2 mL Eppendorf Cups. DNA concentrations were determined using a picogreen assay kit, the 

fluorescence was read out at a BioTek microplate reader at λex=480 nm and λem=520 nm and a gain of 90, n=3.  

As also low liposome concentrations are sufficient for preconcentration this assay is not only fast but 

also requires only a low amount of material which also reduces the costs of the assay. However, huge 

differences in the negative control values can be observed (factors between 5 and 60%). 

Moreover, an increase in the incubation time does not have a significant effect on the efficiency of the 

DNA concentration (Figure 6.8). As already observed in the measurements before, high variations for 

the negative control samples were obtained, e.g. a 15 min incubation results in a significantly higher 

negative control. This may however not be caused by the incubation time but for example by 

insufficient removal of the supernatant after centrifugation or other handling effects. Here, more 

studies will be necessary to find the cause of this phenomenon. However, 5 min seem to be completely 

sufficient to obtain good DNA recoveries, which enables DNA preconcentration based on cationic 

liposomes and centrifugation in a very short time. 
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Figure 6.8. Enrichment factors for DNA preconcentration using centrifugation at 15.000 g. Incubation was done for different 

times between 5 and 60 minutes. The DNA stock solution was diluted 1:250 before mixing with the liposomes. The assay was 

conducted in DNA LoBind 2 mL Eppendorf Cups. DNA concentrations were determined using a picogreen assay kit, the 

fluorescence was read out at a BioTek microplate reader at λex=480 nm and λem=520 nm and a gain of 90, n=3.  

6.4. Conclusions 

The two investigated concepts for DNA preconcentration revealed that magnetic separation results in 

limited DNA recoveries whereas separation by centrifugation results in good DNA recoveries up to 

80%. The use of different buffers had a significant effect on the efficiency in both cases. Optimizations 

of the assay parameters in case of centrifugation revealed that short incubation and centrifugation 

times of only 5 and 15 minutes, respectively, are already sufficient for an effective preconcentration. 

Moreover, only low concentrations of liposomes are necessary. The developed assay is therefore not 

only very simple and fast, but also economical regarding the required materials. However, 

quantification via picogreen is only possible for high starting concentrations of DNA. The signal 

intensity of the picogreen assay is prone to interferences by several components like some salts, 

organic solvents, detergents or proteins which can impact the sensitivity of this assay significantly. 

Therefore, real-time PCR experiments will be necessary to verify the results obtained by picogreen 

quantification and to enable the detection of lower DNA concentrations. In addition, more 

experiments are necessary to understand the high differences in the negative control samples between 

the measurements and to reduce the effects caused by differences in the handling of the samples. 

Moreover, the development of magnetic, cationic liposomes will be interesting to avoid the rather 

harsh separation via centrifugation. 
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7 Conclusions and Future Perspectives 

The government as well as health organizations like the WHO recommend and demand very low limits 

of hazardous substances in food, drinking water or the environment. The quantification of such low 

concentrations of hazardous substances requires sensitive analytical techniques which includes 

efficient signal amplification strategies. In addition, the demand for point-of-care devices that can be 

used on-site is strongly increasing, especially in 3rd world regions.[1,2] This complicates the use of 

standard analytical techniques like ICP, GC or HPLC-based methods that require expensive and often 

large equipment. Thus, there is an increasing need for the development of chemical sensors and 

bioassays that meet these new requirements. Here, mainly simple assay setups, short analysis times, 

low cost, a possible miniaturization and integration into chips as well as long-term stability and 

robustness of the used materials are crucial and can often be accomplished using nanomaterials.[2,6] 

The applicability of a variety of nanocontainers, including liposomes, as efficient signal amplification 

tool in (bio)analysis was demonstrated in this thesis. While still major improvements are necessary 

regarding the sensitivity of nanocages and -containers for chemosensors, their unique characteristics 

render them ideal for being used as signal amplification tools in several bioassays or imaging 

applications. Some of them are even capable to outperform gold standard techniques like ELISAs that 

are based on enzymatic signal amplification and offer promising approaches regarding multimodal and 

theranostic strategies for imaging applications. Thus, nanocontainers will hold an important role for 

the development of sensitive detection techniques and point-of-care devices in the area of food safety 

and environmental analysis as well as in the field of clinical diagnosis and therapy. For almost all of 

these applications, the surface design and signal amplification via loading of marker molecules into the 

nanocontainer are indispensable. This was also demonstrated by the other results of this thesis, which 

focus on liposomes. Here, the importance of the surface design of liposomes to render them suitable 

for versatile applications in the field of bioanalysis is shown. This includes solutions regarding the 

tunability of the surface charge, the controlled introduction of specific surface tags and the 

quantification of the membrane-bound receptors. The developed liposomes have been shown to be 

promising tools as signal enhancers for the detection of bacteria, for imaging applications as well as 

for the preconcentration of DNA. This is not only achieved via a controlled surface design but also by 

the loading of small molecules into the inner cavity of the vesicles. In this thesis, the fluorescent dye 

sulforhodamine B, the chemiluminescent dye m-carboxyluminol and high concentrated sodium 

chloride solutions were successfully entrapped and adapted to their application. 

Anionic liposomes loaded with marker molecules have been reported as signal amplification tools in a 

variety of bioassays while cationic liposomes have been intensively studied for drug delivery 
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applications.[3,4] The positively charged surface of the lipid vesicles can however also be beneficial for 

analytical applications as shown in this thesis for the direct detection of E.coli without the use of a 

receptor unit. Here, the electrostatic interaction between dye-loaded, cationic liposomes and E.coli 

was successfully demonstrated and applied for the quantitative analysis of the analyte via different 

assay setups. However, limitations caused by these assay setups as well as unsatisfying detection limits 

require further optimizations. This includes the investigation of other surface coatings for a more 

efficient immobilization of the bacteria as well as the investigation of other cationic lipids or 

amphiphiles to achieve an enhanced interaction with the cell surface. Here, a linker unit between the 

hydrophobic anchor and the cationic headgroup may be advantageous to enable a better availability 

and more efficient binding to the bacteria. One important aspect in the development of all analytical 

assays is selectivity.[5] In case of liposomes, this is usually achieved by the attachment of receptors to 

the vesicle surface that are able to specifically bind to the analyte of interest.[4] For sensitivity reasons, 

also the reduction of non-specific binding is crucial. The non-specific-binding of anionic liposomes to 

surfaces has for example been intensively studied via SPR.[7] However, due to the fact that cationic 

liposomes have barely been applied in bioanalysis, further investigations towards their non-specific 

binding will be necessary. Selectivity as well as non-specific binding will also play an important role for 

the direct detection of bacteria from real samples. As most bacteria and other biological molecules like 

proteins exhibit a negative surface charge,[7] the cationic liposomes will not be able to differ between 

the species but enable a quantification of the overall bacterial contamination. To introduce specificity, 

the capturing of bacteria via specific antibodies may be a possibility. Alternatively, purification of the 

sample before analysis needs to be conducted to prevent non-specific binding to other interfering 

bacteria or proteins. Another possibility is the use of a strongly diluted sample solution. Under ideal 

growth conditions only bacteria are multiplied and can thus be detected via the liposomes while 

interferences by proteins and other substances can be neglected. Other concepts rely on the specific 

rupture of the vesicle membrane caused by bacteria. Here, e.g. bacteria that secrete sphingomyelinase 

or phospholipase are of great interest,[8] but also some Listeria strains have been reported to 

successfully cause dye leakage from liposomes.[9] This enables the specific quantification of bacteria 

classes and may also be a promising concept regarding the detection via cationic liposomes. Here, the 

ability of different bacteria towards their ability to lyse these vesicles needs to be studied. Due to the 

close proximity after mixing the cationic liposomes with the E.coli cells, also energy-transfer related 

assays may be an elegant alternative. This would however require the labeling of the bacteria cells 

prior to mixing with the vesicles, e.g. via membrane staining dyes.[10] The cationic liposomes can be 

loaded with the suitable FRET donor or receptor either in the membrane or the inner cavity of the 

vesicle to enable the development of a FRET-based bioassay. If limitations caused by the selectivity can 

be overcome, dye loaded cationic liposomes will also have great potential for the imaging of bacteria. 
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This is commonly achieved using gram-staining or nucleic acid binding dyes for the visualization of all 

bacterial cells.[10] The advantage of liposomes for imaging applications is their strong signal 

enhancement compared to single dye molecules which provides a much better contrast.[11] This was 

also supported by the results in this thesis. Here, DNA-tagged liposomes clearly outperformed the 

corresponding fluorophore-tagged oligonucleotide. In addition, liposomes have been proven to be 

ideal for tools for multimodal imaging.[11] By simultaneous loading of dye molecules and an 

antimicrobial agent this feature could also be applied for the quantification of bacteria via cationic 

liposomes as proposed in this thesis followed by an instantaneous killing of the cells. 

Besides their use as signal amplification tool for bacteria detection, also the applicability of cationic 

liposomes for the preconcentration of genomic DNA has been demonstrated in this thesis. In order to 

avoid optical interferences with other dyes used for analysis, cationic, colorless sodium chloride 

liposomes have been prepared for the development of an assay for the preconcentration of genomic 

DNA. Preliminary studies for the preconcentration of genomic DNA via cationic liposomes proved the 

general capability of the lipid vesicles in this area. DNA quantification via picogreen allowed first 

optimizations regarding assay parameters like different buffers, incubation times or temperatures. 

However, the limited sensitivity of the picogreen assay as well as interferences by detergents or high 

salt concentrations requires a more precise analysis via qPCR which is commonly used for DNA 

quantification.[12,13] As also qPCR is sensitive to many interfering substances, detailed studies will be 

necessary to find the ideal conditions.[12] One question is e.g. if the intact liposomes interfere with this 

method. In this case, lysis conditions must be optimized regarding interferences by applied detergents. 

Finally, a dose-response curve and the direct comparison to other DNA preconcentration methods like 

commercially available magnetic beads or alcohol precipitation will be necessary to enable a statement 

on the performance of the liposome-based assay. Another big challenge will be the preconcentration 

of DNA from real samples. As this assay relies on the electrostatic interaction of the genomic DNA with 

cationic liposomes, interferences via other negatively charged substances like proteins or RNA will be 

hard to avoid. Thus, an efficient purification of the samples will be crucial for this type of assay. 

In general, the optimization of assay parameters is usually a very time-consuming process. In case of 

liposomes for example, a completely new batch of liposomes needs to be synthesized, if different 

conditions like the type or concentration of surface tag needs to be varied. At the same time, it cannot 

be guaranteed that all of the synthesized vesicles exhibit the same analytical characteristics with 

respect to size, number of surface tags or dye-loading. Here, the insertion of the biotinylated 

lipopeptide has been shown to be a fast and simple alternative. It not only provides a concentration-

controlled functionalization of liposome surfaces but also the production of vesicles that only differ by 

the surface tag and otherwise exhibit exactly the same analytical characteristics. This feature may also 
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be of great interest for multi-analyte detection and can be expanded to other lipid bilayer-based 

nanomaterials. In addition, the insertion of such anchor molecules can serve a useful tool for the 

development of asymmetric liposomes which is often achieved by reverse emulsification via droplet 

emulsion transfer techniques.[14] Asymmetric liposomes are intensively studied to provide e.g. more 

realistic cell membrane models or to improve the biocompatibility and delivery capacity in case of drug 

delivery vehicles.[15] But also analytical applications can be envisioned, like e.g. FRET-based sensor 

approaches across the lipid bilayer. 

To ensure however a wide applicability of the lipopeptide, also the design with other functional groups 

than biotin is crucial. A carboxyl-tagged lipopeptide could for example be exploited for the attachment 

of various biological molecules like proteins or DNA before insertion into the liposomes. Also other 

functionalities like -NH2 or -SH can provide this feature. Surface functionalization via the direct method 

revealed dramatic batch-to-batch differences regarding the yield and signaling power. In addition, the 

incorporation of DPPE-biotin seems to be limited to 4 mol%. Here, further studies will be necessary to 

find the cause of this phenomenon. The formation of liposomes is mainly influenced by the operation 

temperature, hydration medium and miscibility of the lipids in the lipid composition.[16,17] Thus, 

variations in the composition, e.g. a reduction in the cholesterol content or the use of other 

phospholipids to increase the miscibility may be a promising approach. As DPPE belongs to the poorly 

hydrating phospholipids also the investigation of other hydration solutions should be considered. Here, 

especially the ionic strength influences e.g. the tendency for the formation of a hexagonal phase.[16] 

Moreover, studies regarding the quantification of the surface functional groups will be necessary to 

enable a better interpretation of the obtained data. Commonly, a HABA/avidin assay is applied for the 

quantification of biotin moieties on protein surfaces.[18] The HABA dye forms a weak complex with 

streptavidin which absorbs light at 500 nm. Biotinylated samples are able to displace the dye which 

leads to a decreased absorbance proportional to the amount of sample.[19] Unfortunately, it was found 

to be unsuitable for the quantification of biotin on the liposomes used in this thesis. Crosslinking and 

limited sensitivity resulted in unreliable data. HPLC-based approaches have been reported to enable 

the quantitative analysis of some lipid compositions.[20] This may also be an interesting approach to 

obtain information on the exact membrane composition of the liposomes used in this study. However, 

this method will give information on the total biotin content and not on the outer surface content only. 

A promising alternative may be the use of a fluorophore-labeled, monomeric streptavidin. This could 

provide information on the surface bound biotin only, without the drawbacks of crosslinking caused 

by normal streptavidin. Here, the challenge will be to find an appropriate way for separation. For 

fluorescently labeled liposomes also the use of fluorescence correlation spectroscopy may offer the 

possibility for a quantification of the surface ligands. The results of this thesis already show the 

suitability of this method for the quantitative analysis of the vesicle number, concentration and 
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diffusion coefficients. In combination with liposomes, this FCS has moreover been reported to study 

membrane dynamics like fluidity or the lipid phase.[21] Recently, also the release of molecules, such as 

drugs has been analyzed.[22] But also interactions with molecules like proteins or peptides can be 

studied due to the large changes in the diffusion correlation times.[23] This may also be a promising 

approach for mechanistic studies regarding the insertion of fluorophore-tagged anchors into 

liposomes. Moreover, several studies describe the quantification of some proteins as well as the 

quantification of receptor densities on live cells.[24] Thus, it should also be possible to adapt these 

information and apply FCS for the quantification of any type of fluorescent ligand attached to 

liposomes. 

In case of DNA-tagged liposomes a possibility for the quantification of surface tags was shown in this 

thesis by using fluorophore-tagged oligonucleotides. Several control experiments and theoretical 

calculations confirmed the suitability of this assay. However, challenges regarding the purification and 

separation from the unbound oligonucleotides remains. While in general, the separation from 

unwanted material via centrifugation worked well in case of the quantification of ssDNA on the vesicle 

surface, it was found that up to 90% of the liposomes are lost either due to membrane disruption or 

insufficient pelleting. Also in other assays developed in this thesis, a sufficient purification and 

separation was found to be a common challenge. In case of E.coli quantification via cationic liposomes, 

the separation was limited by insufficient bacteria immobilization, steric hindrance caused by magnetic 

beads or sometimes irregular and unreliable separation via centrifugation. Moreover, the high 

variations in the negative control values in case of DNA preconcentration can in part be ascribed to an 

irregular and insufficient pelleting of the liposomes. One possible strategy to overcome this problem 

is the development of magnetic liposomes that are magnetic enough to enable a sufficient separation 

similar to magnetic beads. For this, an efficient incorporation of magnetic nanoparticles into liposomes 

is crucial. So far, magnetic liposomes have mainly been reported for drug delivery applications, where 

a magnetic field is used to trigger the controlled release from liposomes.[25] In the field of bioanalysis, 

the focus lies on the improvement of diffusion-controlled assays.[26] For these applications mainly the 

encapsulation of magnetite nanoparticles has been reported either in the lipid bilayer or the large 

inner cavity of the vesicles.[25] However, also the incorporation of other magnetic nanoparticles can be 

envisioned. The main challenge will be to render the liposomes strongly magnetic, which is in turn 

affected by the type, size and number of the entrapped nanoparticles. Thus, there is still need for 

detailed investigations regarding the development of magnetic liposomes that are suitable for 

magnetic separation means while properties like their analytical performance and their colloidal long-

term stability are not affected. 
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Nevertheless, advantages like the strong signaling power and biocompatibility of liposomes outweigh 

the remaining problems and challenges and will thus hold a promising future for liposomes as versatile 

tool in bioanalysis. As demonstrated by the discussed strategies as well as the findings obtained within 

this thesis, the relatively simple tunability of the surface via charges or ligands and the variety of 

molecules that can be entrapped render these vesicles suitable for numerous possible applications. 
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