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Abstract

In this thesis, we first give an introduction to the holographic principle by review-

ing the basics of bosonic and supersymmetric string theory. Afterwards, we will

motivate the holographic principle and give more details about its specific real-

ization in the context of AdS5/CFT4. The discussion of the physical relevance of

this thesis is then divided into two parts.

In the first part which is based on [1], we will make use of the holographic prin-

ciple to model Heavy Ion Collisions (HICs) by two colliding lumps of energy in

a Conformal Field Theory (CFT). Through the holographic principle, this is

mapped to the collision of gravitational shockwaves in an asymptotically Anti-de-

Sitter (AdS) spacetime. To reduce complexity we will consider shocks which are

infinitely extended in the transverse direction. We will motivate that this can be

seen as the first order in a gradient expansion of an off-center collision with finite

transverse extent. We find that the post-collision hydrodynamic flow is very well

described by appropriate averages of the symmetric collision. Chesler, Kilbertus

and van der Schee give an analytic expression for the proper energy density in [2].

In a similar manner, we found an approximation which models initial data for

hydrodynamic simulations without the need for cumbersome holographic calcula-

tions.

In the second part which is based on [3], we study entanglement entropy in SU(Nc)

Yang-Mills (YM) theory. One of the motivations for this was to test how fast the

Nc → ∞ limit is reached. Entanglement entropy, or to be more precise the en-

tropic C-function, can be calculated both in holography (for Nc → ∞) and in

lattice gauge theory (for finite Nc) which then allows a comparison for these the-

ories. Holography predicts a sharp jump for the entropic C-function in a slap

shaped geometry at some finite slap length lc. In lattice simulations we find a
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smooth transition from O(N2
c − 1) down to a value compatible with zero for this

observable. Within the statistics achieved in this work, the slope for SU(4) is

larger than for SU(3) supporting the holographic scenario.
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Zusammenfassung

In dieser Dissertation geben wir zunächst eine Einführung in die bosonische und

supersymmetrische String Theorie mit Hinblick auf die Erklärung des holographi-

schen Prinzipes. Anschließend werden wir uns genauer mit der Realisierung der

AdS5/CFT4 Dualität beschäftigen. Die physikalische Bedeutung der Arbeit ist

dann auf zwei Gebiete aufgeteilt.

Im ersten Teil, der auf [1] basiert, werden wir das holographische Prinzip auf die

Modellierung von Schwerionenstößen durch die Kollision von zwei Energievertei-

lungen in einer konformen Feldtheorie anwenden. Mithilfe des holographischen

Prinzipes kann diese Problemstellung in die Kollision von Schockwellen in ei-

ner asymptotischen Anti-de-Sitter (AdS) Raumzeit umgewandelt werden. Um die

Komplexität des Problems zu reduzieren, verwenden wir asymmetrische Schock-

wellen mit verschiedenen longitudinalen Dicken, die eine unendliche transversale

Ausdehnung besitzen. Wir werden zeigen, dass dies als erster Term einer Näherung

in Gradienten von dezentralen Stößen mit endlicher transversaler Ausdehnung ge-

sehen werden kann. Durch numerische Simulationen erkennen wir, dass der hydro-

dynamische Fluss nach der Kollision sehr gut durch entsprechende Mittelwerte von

symmetrischen Shockwellen approximiert werden kann. Somit verallgemeinern wir

das Ergebnis von Chesler, Kilbertus und van der Schee in [2], die eine analytische

Form für die Eigenenergie angeben. Folglich können Anfangswerte für hydrodyna-

mische Simulationen gefunden werden, ohne aufwendige numerische Simulationen

im Rahmen des holographischen Prinzipzs durchführen zu müssen.

Im zweiten Teil, der auf [3] basiert, beschäftigen wir uns mit Verschränkungsen-

tropie (Entanglement entropy) in SU(Nc) Yang-Mills (YM) Theorien. Verschrän-

kungsentropie kann sowohl im Rahmen des holographischen Prinzipes (für Nc →

∞) als auch mithilfe der Gittereichtheorie (für endliche Nc) berechnet werden.
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Die interessante Observable ist die entropische C-Funktion. Das holographische

Prinzip sagt hierfür einen Sprung bei einem endlichen Wert der Länge lc voraus.

Wir berechnen diese Observable mithilfe von Gittersimulationen. Wir finden, dass

diese anfangs von der Ordnung O(N2
c − 1) ist und dann in einer stetigen Kurve

gegen einen Wert, der innerhalb der Fehlergrenzen mit 0 kompatibel ist, abfällt.

Dies geschieht für Nc = 4 schneller als für Nc = 3, was das Szenario eines Sprunges

für Nc → ∞ unterstützt.
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1
Motivation

The aim of (theoretical) physics is to describe nature in the language of mathe-
matics, thereby reproducing existing observations and predicting new ones. Mod-
ern physics states that there exist four different types of fundamental interactions,
namely gravity, electromagnetism, the weak and the strong force plus possibly still
unknown ones. An ultimate goal is to combine these different forces, but there
are several reasons why General Relativity (GR) and the Standard Model (SM)
cannot be combined straightforwardly. Current experiments of interest for parti-
cle physics, which is subject of this thesis, are well below Planck energy and thus
gravity is suppressed such that we are left with the SM. Using the language of
group theory the SM can be written as the direct product of the gauge groups
SU(3) × SU(2) × U(1). In this motivation, we will further restrict ourselves to
the strong sector, i.e. Quantum Chromo Dynamics (QCD), whose Lagrangian is
given by

LQCD =
∑
ψ

ψi
(
iγµ

(
∂µδij − igAaµT

a
ij

)
−mψδij

)
ψj − 1

4
F a
µνF

µν
a . (1.1)

One important feature of gauge theories is the running coupling g which means
that the coupling itself is not constant due to quantum corrections and thus is
dependent on the considered energy scale Q. Usually one defines the β function
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Figure 1.1: Running of the coupling for QCD [4]. We see that for small energies
the coupling becomes strong and thus PT will fail while for large Q it will converge
(asymptotic freedom).

for a coupling g as

β(g) = ∂g

∂ logQ
. (1.2)

For QCD first order Perturbation Theory (PT), i.e. the one-loop calculation, gives

β(g) = −
(

11 − ns
3

− 2nf
3

)
g3

16π2 (1.3)

where ns is the number of scalar bosons and nf is the number of flavors. For QCD
this behavior is shown in figure 1.1. Since for PT a small coupling is assumed, we
can deduce that it will only give reliable results for large Q. If we are interested in
smaller Q (Q ≲ 1−2 GeV) we have to use non-perturbative techniques. A common
approach is Lattice QCD (LQCD) [5]. In this technique, one uses the path integral
formalism to calculate expectation values. This leads to an infinite dimensional
integral which is then discretized on a finite hypercube and is finally approximated
using Monte Carlo techniques. To be able to do so one has to perform a Wick ro-
tation, i.e. to go from real to imaginary time t → iτ . The Minkowski metric then
picks up a minus sign in the time direction such that we end up in flat Euclidean
spacetime. This has the disadvantage that we are no more able to calculate dy-
namical processes. If one is interested in dynamical, non-perturbative quantities,
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one has to think about different approaches. One very popular approach is to
use the holographic principle which we will explain in greater detail in chapter 2.
In 1997 Juan Maldacena made the probably most famous conjecture within the
last 30 years [6]. He conjectured that type IIB superstring theory is dynamically
equivalent to N = 4 Super Yang-Mills (SYM) theory. As we will see later-on this
statement is quite general. For now we will consider the weak form, i.e. the limit
of large gauge group Nc → ∞ and large ’t Hooft coupling λ ≡ g2

YMNc → ∞ in
SYM which results in Supergravity (SUGRA) on the Anti-de-Sitter (AdS) side of
the duality. It can be shown that the resulting Equations of Motion (EoM) are
Einstein’s equations in five dimensional AdS spacetime.
In chapter 3 we will use this approach to get insight into dynamics in Heavy
Ion Collisions (HICs) by solving Einstein’s equations numerically. We will use the
characteristic formulation to transform the system of coupled non-linear Einstein’s
equations in a set of nested Ordinary Differential Equations (ODEs). For the very
first time, we consider asymmetric shockwave collisions which can be seen as a
first approximation for off-center collisions. We analyze the results with respect
to hydrodynamization time since this is important for the starting time of hydro-
dynamic simulations and the formation of the Quark Gluon Plasma (QGP).1 In [2]
Chesler, Kilbertus and van der Schee found an analytic expression for the proper
energy density which is needed as initial data for hydrodynamic simulations. We
generalize these results to asymmetric shocks by using appropriate averages of
symmetric shockwaves. Hence, it is possible to bypass the numerically cumber-
some calculation in holography and start with a hydrodynamic time evolution
straight away.
Obviously, we made the real world, or – in this case – QCD, more symmetric than
it actually is. The holographic principle in its weak form, as we applied it, as-
sumes that the field theory is supersymmetric (N = 4), has infinitely many colors
(Nc → ∞), has conformal symmetry, and an infinite ’t Hooft coupling (λ → ∞).
But QCD is different and therefore it is also interesting to see how reliable these
results are. Calculating corrections to the holographic principle is feasible but te-
dious [7–16]. Another possibility to test this conjecture is to consider observables
which can be calculated on both sides of the duality. In chapter 4 we will consider
entanglement entropy which can be calculated both in holography, via minimal
surfaces, and in the boundary Conformal Field Theory (CFT). We will apply the
lattice approach to get results for SU(Nc), Nc ∈ {2, 3, 4}.

1Note that the definition of the QGP is not unique. In LQCD it is defined as the state
after thermalization. But here we refer to it as a perfect fluid and hence it is the state after
hydrodynamization. It is also shown that the hydrodynamization and the thermalization times
are not equal. One is not even sure if the QGP produced in realistic HICs thermalizes at all.
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2
Holographic Principle

In this chapter, we will review some basics about the holographic principle which
we will use in this thesis. We will start by giving an introduction into string theory,
especially starting with the purely bosonic one to get familiar with the concepts in
section 2.1. We will then extend these ideas to superstring theory which includes
fermionic degrees of freedom and also has a non-tachyonic and stable vacuum in
section 2.2 (in contrast to the bosonic case). Afterwards, we will discuss D-branes
which are the important objects to motivate the gauge/gravity duality since they
deform spacetime to have an AdS geometry and also a SU(Nc) gauge field lives on
them (cf. section 2.3). Combining these two facts will give rise to the holographic
principle which we introduce in section 2.4.
In section 2.5 we will introduce a topic which is not directly related to string the-
ory and the gauge/gravity duality, but which we will also consider in the analysis
of the colliding shockwaves, i.e. hydrodynamics.
This chapter is mainly based on the textbook by Ammon and Erdmenger [17]
which we recommend for further study. The introduction to string theory is par-
tially also based on the lecture notes [18]. The section about the holographic
principle also uses the introduction of [19] as reference.
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2.1 Bosonic String Theory

We will start this chapter by considering bosonic string theory. The main idea of
string theory is to extend the concept of point particles to one dimensional objects
which are then called strings. As an immediate consequence, the trajectory of the
point particle which is one dimensional, is called worldline and can be parametrized
by proper time τ , becomes a two dimensional object which is called worldsheet.
Obviously, we need two parameters to describe this. We use the proper time τ
and a spatial parameter σ. For brevity, we use several notations throughout this
chapter and it will be obvious from the context which one we mean, i.e. we write
σ = (σ0, σ1) = (τ, σ).

2.1.1 Nambu-Goto and Polyakov Action

To start with, we have to embed the two dimensional worldsheet Σ in a D dimen-
sional flat target space, we do this by introducing embedding functions Xµ(τ, σ).
The simplest parameterization invariant form is the Nambu-Goto (NG) action
given by

SNG = − 1
2πα′

∫
Σ
d2σ

√
− det γ. (2.1)

In this formula γab = ∂aX
µ∂bXµ is the induced metric which is the pull-back of

the spacetime metric on the worldsheet.1 The prefactor can be written as the
tension T of the string, i.e. T = 1

2πα′ . The parameter α′ is related to the string
length ls as α′ = l2s .
Due to the square root in this action, it is hard to perform computations. But it
is possible to circumvent this problem by introducing an auxiliary field, namely
the worldsheet metric hab. With this field, we arrive at the Polyakov action

SP = − 1
4πα′

∫
Σ
d2σ

√
−hhabγab. (2.2)

First of all, we want to show that these two equations are indeed the same and
thus look at the variation of the action with respect to the auxiliary worldsheet
metric hab, i.e.

δS

δhab
= − 1

4πα′

∫
Σ
d2σ

√
−h

(
γab − 1

2
habh

cdγcd

)
!= 0. (2.3)

1In this introduction to string theory we will label the worldsheet coordinates by Roman
letters a, b, ... while we denote the spacetime coordinates by Greek letters µ, ν, ... . Later in
this chapter we will also use Roman letters i, j, ... for labeling spatial directions in spacetime.

7



For further discussion, it is convenient to rewrite this in the following form

hab = 2f(σ)γab (2.4)

with the conformal factor f(σ) being defined by f(σ)−1 = hcdγcd. Inserting this in
the Polyakov action (2.2) we recover the NG action (2.1) by noting that we get a
factor of f(σ) from the determinant and a factor of f(σ)−1 from the inverse metric
which then cancels exactly. Thus these two actions (2.1) and (2.2) are the same
at classical level.
Since we introduced the worldsheet metric as an auxiliary field we have additional
constraints on the EoM which are the so-called Virasoro constraints and come
from the requirement that the worldsheet energy-momentum tensor vanishes, i.e.

Tab = 4πα′
√

−h
δS

δhab
= γab − 1

2
habh

cdγcd = 0. (2.5)

Let us next have a look at the symmetries of the Polyakov action.

D-dimensional Poincaré invariance Since we started in D dimensional Min-
kowski space and we did not change anything there, the embedding functions
Xµ(σ) are still invariant under Lorentz transformations Λµ

ν and translations
eµ while the worldsheet metric is kept fixed, i.e.

Xµ → Λµ
νX

ν + eµ, hab → hab. (2.6)

Reparametrization invariance/diffeomorphisms The action is also invari-
ant under reparametrizations of the worldsheet coordinates σ. If we consider
a coordinate change in the worldsheet σa → σ̃a = fa(σ), the embedding
functions transform as scalars while the worldsheet metric transform as a
rank 2 tensor, i.e.

Xµ(σ) → X̃µ(σ̃) = Xµ(σ), hab(σ) → h̃ab(σ̃) = ∂f c

∂σa
∂fd

∂σb
hcd(σ). (2.7)

Weyl invariance The worldsheet metric is also invariant under multiplication
by conformal factors, as we have already seen above when showing that the
Polyakov action coincides with the NG one, i.e. the factor f(σ) canceled.
We can write this as

Xµ(σ) → Xµ(σ), hab(σ) → Ω2(σ)hab(σ) = e2ω(σ)hab(σ). (2.8)
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Due to these local symmetries we can choose a gauge. We will use the conformal
gauge from now on, i.e. we choose

hab = e2ω(σ)ηab, ηab = diag(−1, 1). (2.9)

Remarkably we could further use the Weyl invariance to set ω ≡ 0 and hence end
up with a flat worldsheet metric with Minkowski signature. Using this gauge the
Polyakov action (2.2) simplifies to

SP = − 1
4πα′

∫
d2σ (− (∂τXµ) (∂τXµ) + (∂σXµ) (∂σXµ)) . (2.10)

We can apply the variational principle to arrive at the EoM

(
∂2
τ + ∂2

σ

)
Xµ(σ) = ∂+∂−X

µ = 0 (2.11)

where we introduced lightcone coordinates σ± = τ±σ and corresponding derivative
∂± = ∂

∂σ±
.

As usual for the application of the variational principle we pick up a boundary
term which vanishes for point particles, but for strings there are boundary terms in
the spatial dimension which do not vanish automatically, i.e. we have to demand
that a string spanning from 0 to σ0 satisfies

∂σX
µδXµ

∣∣∣σ0

0
= 0. (2.12)

Equation (2.11) is a simple wave equation but we must not forget that we have to
satisfy the Virasoro constraint (2.5), too. In the conformal gauge, this constraint
reads

T01 = Ẋµ ·X ′
µ = 0, T00 = T11 = 1

2
(
Ẋ2 +X

′2
)

= 0 (2.13)

or, in lightcone coordinates

T++ = ∂+X
µ∂+Xµ = 0, T−− = ∂−X

µ∂−Xµ = 0, T+− = T−+ = 0. (2.14)

2.1.2 Solving the Wave Equation

To solve the wave equation in lightcone gauge we see that we can split the solution
in a left- and right-moving part, i.e.

Xµ(σ) = Xµ
L(σ+) +Xµ

R(σ−). (2.15)
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We can write a general ansatz as a Fourier expansion, i.e.

Xµ
L(σ+) = x̃µ0

2
+ α′

2
p̃µσ+ + i

√
α′

2
∑
n ̸=0

1
n
α̃µne

−inσ+ , (2.16a)

Xµ
R(σ−) = xµ0

2
+ α′

2
pµσ− + i

√
α′

2
∑
n̸=0

1
n
αµne

−inσ− . (2.16b)

For later convenience we further define αµ0 =
√

α′

2 p
µ and α̃µ0 =

√
α′

2 p̃
µ. Since the

embedding functions Xµ(σ) have to be real, we can deduce that αµ−n = (αµn)∗ and
α̃µ−n = (α̃µn)∗.
With this ansatz for the solution of the wave equation (2.11), we can now continue
with the implementation of the boundary term (2.12). Obviously, there exist
several possibilities to satisfy this equation. First of all, we distinguish between
closed and open strings.

Closed strings For closed strings, we choose the endpoint of the string σ0 = 2π
for convenience. As the name suggests we identify the string start and end
point with each other, i.e.

Xµ(τ, 0) = Xµ(τ, 2π), ∂σX
µ(τ, 0) = ∂σX

µ(τ, 2π), (2.17a)
γab(τ, 0) = γab(τ, 2π). (2.17b)

In the ansatz (2.16) for the solution of the wave equation, this results in the
requirement that p̃µ = pµ. Furthermore, it is convenient to also identify x̃µ0
with xµ0 . The constraint (2.12) is then automatically satisfied.

Open strings The other possibility is that the endpoints of the string do not
coincide. To get simpler results, we choose σ0 = π in this case. In the case
of open strings, it is obvious that there are two possibilities to satisfy (2.12)
on each endpoint of the string independently. Let us further denote the
endpoint by σ, i.e. σ ∈ {0, π}.

Neumann boundary conditions

∂σX
µ(τ, σ) = 0. (2.18)

Dirichlet boundary conditions

δXµ(τ, σ) = 0. (2.19)

We are free to choose any of these boundary conditions in each dimension,
except for the time direction where we have to implement Neumann bound-
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ary conditions, since otherwise the string would not evolve in time. Again
the choice of boundary conditions gives constraints for the ansatz (2.16).

Let us, for example, have a look at open strings which satisfy Dirichlet boundary
conditions at both ends. This means that the endpoints of the string are fixed for
all τ , i.e. Xµ(τ, 0) = xµi and Xµ(τ, π) = xµf . With this choice, the ansatz (2.16)
reads

Xµ(τ, σ) = xµi + 1
π

(
xµf − xµi

)
+

√
2α′

∑
n̸=0

αµn
n
e−inτ sin(nσ). (2.20)

Defining the momentum as the integral over the canonical momentum, i.e.

pµ =
∫ π

0
dσΠµ(τ, σ) =

∫ π

0
dσ

∂τX
µ(τ, σ)

2πα′ , (2.21)

we see that this is not conserved. This can also already be seen by the fact that
by the choice of Dirichlet boundary conditions we explicitly broke the translation
invariance. This invariance is always related to momentum conservation through
the Noether theorem. Hence, it is reasonable to ask where the momentum goes.
As shown in figure 2.1 the string is attached to a hypersurface which is called
Dirichlet or short D-brane. Since the momentum of the string is not conserved
these hypersurfaces have to be dynamical and also contribute to the total momen-
tum. We will come back to these D-branes in section 2.3.
To continue we write down the Virasoro constraint (2.5) which has to be satisfied

Neumann

Dirichlet

Figure 2.1: String with different boundary conditions in different directions.
The directions orthogonal to directions with Dirichlet boundary conditions span
a hyperplane (D-brane). Along the directions of this D-brane Neumann boundary
conditions are implemented. In this setup Dirichlet boundary conditions where
applied such that xµi = xµf .
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for open strings

T−− = T++ = (∂+X
µ) (∂+Xµ) = α′

2
∑
m

∑
n

αµnαm,µe
−i(m+n)σ+

= α′∑
m

Lme
−inσ+ (2.22)

where we introduced the Virasoro numbers

Lm = 1
2
∑
n

αµnαm−n,µ ∀m. (2.23)

For closed strings both oscillation modes αµn and α̃µn survive and hence we have
two types of Virasoro numbers given by Ln and L̃n which have to vanish. Hence,
it follows that we have to implement Lm = 0 in the open string sector, while for
closed strings we have to require that L̃m = Lm = 0 for all m.

2.1.3 Quantizing Bosonic Strings

A theory can be quantized by promoting fields to operators and then requiring that
they satisfy certain commutation relations. For bosonic string theory, we require
that the standard canonical equal time commutation relations are satisfied, i.e.

[
X̂µ(τ, σ), Π̂ν(τ, σ′)

]
= iηµνδ(σ − σ′) (2.24)

where the conjugate momentum is given by Πν(τ, σ) = ∂τXµ(τ,σ)
2πα′ .

Let us quantize open strings as an example since we just have one Virasoro con-
straint to satisfy and hence the notation is shorter. We start by introducing
creation and annihilation operators like for the harmonic oscillator. We define

âµm = 1√
m
α̂µm, âµ†

m = 1√
m
α̂µ−m ∀ m > 0. (2.25)

From expansion (2.16) and the canonical commutation relation, we straightfor-
wardly see that

[
âµm, â

ν†
n

]
= ηµνδmn, [âµm, âνn] =

[
âµ†
m , â

ν†
n

]
= 0. (2.26)

Note that due to the Minkowski signature of the metric
[
â0
m, â

0†
m

]
= −1 and hence

we have negative norm states in the Hilbertspace. This results in the failure
of the probability interpretation of the norm. Such states also occur in other
gauge theories and one solves this by fixing the gauge symmetries. In this case,
the relevant symmetries are the reparametrization and Weyl invariance which we
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fixed by choosing the conformal gauge and finally, we ended up with the Virasoro
constraint (2.14). This constraint can be solved easily in lightcone coordinates
X± = X0 ±XD−1 and by setting

X̂+ = x̂+
0 + 2α′p̂+τ. (2.27)

With this, we can solve the Virasoro constraint (2.5) for X− as a function of
X i (i = 1, . . . , D − 2), X+ and a constant x−

0 . Hence the dynamical degrees of
freedom are given by p̂+, x̂−

0 , p̂i, âim and âi†m which satisfy the above commutation
relations. Next, we can label states by the eigenvalue of the number operator
N̂ = ∑D−2

i=1
∑∞
n=1 nâ

µ
nâ

†
n,µ and the momentum operator p̂µ, i.e. |N, k⟩. The vacuum

|0, k⟩ is then defined as

p̂µ |0, k⟩ = kµ |0, k⟩ , âim |0, k⟩ = 0. (2.28)

As usual for creation and annihilation operators, all excited states can then be
constructed by multiplying them with the appropriate number of creation opera-
tors

|N, k⟩ =

D−2∏
i=1

∞∏
n=1

(
âi†n
)Nin

√
Nin!

 |0, k⟩ . (2.29)

Here we introduce the occupation number for each mode Nin given by

âinâ
i†
n |N, k⟩ = Nin |N, k⟩ (no summation over i). (2.30)

Next we have to quantize the Virasoro constraint which is equivalent to construct
consistent operators for L̂m (cf. equation (2.23)). If m ̸= 0 we can simply replace
αim by the operators âim, but for L̂0 ordering ambiguities arise. To take care of
this we start with the naive ordering, i.e.

L̂0 = α′p̂µp̂µ + 1
2

D−2∑
i=1

∞∑
n ̸=0

α̂µnα̂−n,µ

= α′p̂µp̂µ + 1
2

D−2∑
i=1

(∑
n>0

nâµnâ
†
n,µ +

∑
n<0

nâµ†
n ân,µ

)
. (2.31)

In the end, we want to have normal-ordering of the creation and annihilation
operator such that the action on the vacuum does not vanish, i.e. we have to
commute the operators in the last term

âµ†
n ân,µ = ân,µâ

µ†
n − δnn. (2.32)
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Hence we can write L0 as

L̂0 = α′p̂µp̂µ +
D−2∑
i=1

∞∑
n=1

nâµnâ
†
n,µ + D − 2

2

∞∑
n=1

n︸ ︷︷ ︸
a

. (2.33)

The term a seems to diverge in first place, but this can be regularized by removing
the leading divergence such that2

a = −D − 2
24

. (2.34)

By using the number operator N̂ introduced above we can finally write L̂0 as

L̂0 = α′p̂µp̂µ + N̂ + 2 −D

24
. (2.35)

Since for any physical state |ψ⟩ the Virasoro constraint has to be satisfied, i.e.
L̂0 |ψ⟩ = 0, we can calculate the mass squared eigenvalues via M2 = −kµkµ from
this requirement and eventually arrive at

M2 = 1
α′

(
N + 2 −D

24

)
. (2.36)

Let us briefly discuss the vacuum state for bosonic string theory, i.e. N = 0. We
see that for D > 2, M2 is negative and hence the vacuum is tachyonic. It is not
known up to now if a stable vacuum exists in bosonic string theory. In contrast,
one knows that for superstring theory using the GSO projection (cf. section 2.2)
a stable vacuum exists.
Let us continue by looking at the first excited states, i.e. N = 1. We see that
M2 = 26−D

α′ and the corresponding states are obtained by applying one creation
operator on the vacuum state, i.e. ai†1 |0, k⟩. Since the index i = 1, . . . , D − 2
this transforms under SO(D − 2) and not under the full group SO(D − 1) as
it should for a massive particle. The same phenomenon occurs in other gauge
theories like Quantum Electro Dynamics (QED) where the massless photon has
only two polarizations instead of three for a massive particle. This is because the
photon does not have a rest frame. Reverting this argument we can conclude that
the first excited state in bosonic string theory has to be massless and hence the

2This can be shown e.g. by considering
∑∞

n=1 n = limϵ→0
(
− ∂

∂ϵ

∑∞
n=1 e−ϵn

)
. We can then

use the geometric series and Taylor the expression to obtain
∞∑

n=1
n = lim

ϵ→0

(
1
ϵ2 − 1

12
+ O

(
ϵ2)) .
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dimension is fixed to be

D = 26. (2.37)

This argument is a bit hand-waving but one can show that the requirement of
Poincaré invariance at quantum level leads to the same dimensionality.
Analogous considerations are possible for closed strings where we have two Vira-
soro constraints to be satisfied (L̂m and ˆ̃Lm). We find that the vacuum is again
tachyonic and unstable. The first excited state and its mass squared are given by

M2 = 26 −D

6α′ , âi1ˆ̃aj1 |0, 0, k⟩ . (2.38)

In D = 26 this gives rise to a massless rank 2 tensor since we have two indices i, j.
This tensor can be decomposed in a traceless symmetric tensor which we can
identify with the graviton, an antisymmetric tensor identified with a Kalb-Ramond
field and a scalar to be identified with the dilaton. From this, we can conclude
that gravity emerges if we couple these excitations to fundamental strings.
We will show this by first identify the symmetric traceless part with the metric
gµν(X) which now can differ from the flat Minkowski metric, i.e. the Polyakov
action now reads

SP = − 1
4πα′

∫
Σ
d2σ

√
−hhab (∂aXµ) (∂bXν) gµν(X). (2.39)

Additionally, we have the Kalb-Ramond field and the dilaton whose action is given
by

SB,Φ = − 1
4πα′

∫
d2σ

√
−h

(
ϵab (∂aXµ) (∂bXν)Bµν(X) + α′R(h)Φ(X)

)
(2.40)

where R(h) is the Ricci scalar of the worldsheet. Of course, this action has to
be still Weyl invariant and hence we have to require that the worldsheet energy-
momentum tensor is traceless, i.e. T aa = 0. Calculating this tensor from the
action by variation with respect to the metric we arrive at the following equation

T aa = − 1
2α′β

g
µνh

ab (∂aXµ) (∂bXν) − 1
2α′β

B
µνϵ

ab (∂aXµ) (∂bXν) − 1
2
βΦR(h). (2.41)
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The β functions in order α′ are given by

βgµν = −α′
(
Rµν − 2∇µ∇ν − 1

4
HµρλH

ρλ
ν

)
, (2.42a)

βBµν = α′
(

−1
2

∇λHλµν +
(
∇λΦ

)
Hλµν

)
, (2.42b)

βΦ = α′
(
D − 26

6α′ − 1
2

∇2Φ + (∇µΦ) (∇µΦ) − 1
24
HµνλH

µνλ
)

(2.42c)

where we introduced the field strength H = dB for the Kalb-Ramond field given
by

Hµνλ = ∂µBνλ + ∂νBλµ + ∂λBµν . (2.43)

Since all the terms in (2.41) are linearly independent each of the β functions has
to vanish independently.
The interesting point here is that this all can be written down as an effective
action in the D dimensional target space. For bosonic string theory, this effective
action reads

S = 1
2κ̃2

∫
dDx

√
−ge−2Φ

(
R + 4 (∇µΦ) (∇µΦ) − 1

12
HµνλH

µνλ

− 2(D − 26)
3α′ + O (α′)

)
. (2.44)

This is an action only in target space for which we can derive EoM for all the fields
involved. This is valid if only massless closed strings contribute, i.e. for small α′.
This closes our review of bosonic string theory. In the next section, we will extend
this discussion to fermionic degrees of freedom and hence additionally require
Supersymmetry (SUSY).

2.2 Superstring Theory

In this section, we want to extend bosonic string theory as it has two disadvantages.
First of all, it has an unstable, tachyonic vacuum and there exist no fermions in the
spectrum. Hence, we additionally require SUSY in the string theory. In principle,
we will perform the same steps as before and therefore we will be quite brief in
this section.
SUSY is the extension of the Poincaré group and it equals the number of bosonic
and fermionic degrees of freedom. Hence, we start by introducing anti-commuting
fermionic fields ψµ on top of the bosonic ones. Therefore the generalization of the
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Polyakov action (2.2) in conformal gauge reads

S = − 1
4πa′

∫
d2σ ηab

(
(∂aXµ) (∂bXν) + iψ̄µγa∂bψ

ν
)
ηµν(X) (2.45)

where ψ̄µ = (ψµ)T γ0 and γ1 denote the worldsheet Dirac matrices

γ0 =

0 −i
i 0

 , γ1 =

0 i

i 0

 . (2.46)

Choosing the fermionic fields to be Majorana spinors, i.e. ψµ = (ψµ−, ψµ+) with real
components ψµ± the fermionic part of the action can be written as

Sf = i

4πα′

∫
d2σ (ψµ−∂+ψ−µ + ψµ+∂−ψ+µ) (2.47)

with ∂± = ∂τ ± ∂σ. For the bosonic part of the action, the same procedure as
described above in section 2.1 applies and thus we will focus on the fermionic part
from now on. As usual, we apply the variational principle to arrive at the EoM
for the fermionic fields given by

∂+ψ
µ
− = ∂−ψ

µ
+ = 0. (2.48)

Again we obtain a simple wave equation for the fermionic coordinate functions.
As in the bosonic case, we pick up a boundary term which we have to require that
it vanishes. It can be written as

δSf = i

4πα′

∫
dτ (ψµ−δψ−µ − ψµ+δψ+µ)

∣∣∣∣∣
σ=π

σ=0
. (2.49)

Once more there exist two kinds of strings, namely open and closed ones. We
will start to derive the spectrum for the open strings. In this case, the boundary
term (2.49) has to vanish for both ends independently. Setting again σ ∈ {0, π},
it follows

ψµ−δψ−µ − ψµ+δψ+µ

∣∣∣∣∣
σ=σ

= 0 ⇔ δ (ψµ−)2
∣∣∣∣∣
σ=σ

= δ (ψµ+)2
∣∣∣∣∣
σ=σ

. (2.50)

The overall sign of the fields does not matter and thus we are able to freely choose
ψµ−(τ, 0) = ψµ+(τ, 0). For the other end of the string (σ = π), we then have two
different possibilities leading to the Ramond (R) and the Neveu-Schwarz (NS)
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sector of superstring theory, i.e.

R : ψµ+(τ, π) = +ψµ−(τ, π), (2.51a)
NS : ψµ+(τ, π) = −ψµ−(τ, π). (2.51b)

As in the last section, the wave equation (2.48) can be solved by expanding the
fields in Fourier modes

R : ψµ±(τ, σ) = 1√
2
∑
n∈Z

dµne
−inσ+ , (2.52a)

NS : ψµ±(τ, σ) = 1√
2
∑

r∈Z− 1
2

bµr e
−irσ+ . (2.52b)

The nature of fermionic degrees of freedom is preserved by using Grassmanian
Fourier coefficients dµn and bµr . Hence, they satisfy the anti-commutation relations

{dµm, dνn} = ηµνδm,−n , {bµr , bνs} = ηµνδr,−s. (2.53)

As in the last section the next step is to quantize the theory. To do so, we promote
dµn and bµr to operators and require the canonical commutation relations as in the
bosonic case.
Afterwards, we can calculate the first excited state for example in the NS sector
bi− 1

2
|0⟩NS to obtain the mass squared operator

M2 = 1
α′

(1
2

− D − 2
16

)
. (2.54)

With the same reasoning as in the bosonic case, we can conclude that the first
excited state has to be massless and hence we fixed the dimension to be

D = 10 (2.55)

for superstring theory.
The vacuum in the NS sector is still tachyonic since M2 = − 1

2α′ and in the R sector
both chiralities are present. To circumvent these issues we use the GSO (Gliozzi,
Scherk and Olive) projection which projects out all tachyonic states and equals
the number of fermions and bosons in each state. This is done by introducing the
fermion number exp(iπF ) = ±1. The lowest lying states are displayed in table 2.1.
We have representations of the group SO(D− 2) = SO(8) since we have one open
index i = 1, . . . , D − 2 for the states bi− 1

2
|0⟩NS and di1 |0⟩R.

For closed strings, we can use right- and left-moving solutions both from the
Ramond and the Neveu-Schwarz sector independently. We have the following
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Sector exp(iπF ) SO(8) repr. M2

NS + 8v 0
NS − 1 − 1

2α′

R + 8 0
R − 8′ 0

Table 2.1: Lowest lying string states in superstring theory.

statistics for the spacetime coordinates: NS-NS/R-R are spacetime bosons and
NS-R/R-NS are spacetime fermions. From this, we can construct several string
theories. For the gauge/gravity duality two of them are important. They are
denoted by type IIA and type IIB and contain the following sectors

Type IIA : (NS+,NS+) , (R+,NS+) , (NS+,R−) , (R+,R−) (2.56a)
Type IIB : (NS+,NS+) , (R+,NS+) , (NS+,R+) , (R+,R+) (2.56b)

where ± denotes the fermion number eiπF . Coupling the lowest lying states for
each of the combinations can be written as a direct product of groups, which we
can then transform to direct sums. For example, the (NS+,NS+) term is given by

8v ⊗ 8v = 1 ⊕ 28 ⊕ 35. (2.57)

Doing this for all possibilities for the different types of string theories, we arrive
at

Type IIA : 1 ⊕ 8v ⊕ 28 ⊕ 56t ⊕ 35 ⊕ 8 ⊕ 8′ ⊕ 56 ⊕ 56′, (2.58a)
Type IIB : 12 ⊕ 282 ⊕ 35 ⊕ 35+ ⊕ 8′2 ⊕ 562. (2.58b)

As we did for bosonic string theory, we can write down an action which we require
to satisfy local SUSY. From this, we can read off that the worldsheet energy-
momentum tensor has to vanish, i.e. Tab = 0. Analogously we obtain β functions
which have to vanish. From this, we can then write down an effective low energy
action which is the SUGRA action. For type IIA one obtains in the string frame

SIIA = 1
2κ2

10

[ ∫
d10x

√
−g
(
e−2ϕ

(
R + 4 (∂µϕ) (∂µϕ) − 1

2
∣∣∣H(3)

∣∣∣2)

− 1
2
∣∣∣F(2)

∣∣∣2 − 1
2
∣∣∣F̃(4)

∣∣∣2 )− 1
2

∫
B ∧ F(4) ∧ F(4)

]
(2.59)

with

F̃(4) = dA(3) − A(1) ∧ F(3). (2.60)
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With the notation
∣∣∣F(p)

∣∣∣2 we mean

∫
d10x

√
−g

∣∣∣F(p)

∣∣∣2 = 1
p!

∫
d10x

√
−gF(p)µ1...µpF

µ1...µp

(p) . (2.61)

For type IIB the action reads

SIIB = 1
2κ2

10

[ ∫
d10x

√
−g
(
e−2ϕ

(
R + 4 (∂µϕ) (∂µϕ) − 1

2
∣∣∣H(3)

∣∣∣2) (2.62)

− 1
2
∣∣∣F(1)

∣∣∣2 − 1
2
∣∣∣F̃(3)

∣∣∣2 − 1
4
∣∣∣F̃(5)

∣∣∣2 )] (2.63)

− 1
2

∫
C(4) ∧H(3) ∧ F(3) (2.64)

with

F(p) = dC(p−1), H(3) = dB(2), F̃(3) = F(3) − C(0)H(3), (2.65)

F̃(5) = F(5) − 1
2
C(2) ∧H(3) + 1

2
B(2) ∧ F(3). (2.66)

Additionally the 5-form has to be self-dual, i.e.

∗F̃(5) = F̃(5) (2.67)

where ∗ is the Hodge star operator.
So we finally arrived at the low energy effective action for superstring theory.
This is an action which only has fields living in the target spacetime. In the next
section, we will consider D-branes which we already shortly touched in the context
of hypersurfaces where open strings end (cf. section 2.1.2).

2.3 D-branes

As we have already seen in bosonic string theory there exist dynamical objects
such as D-branes. These D-branes are p+1 dimensional objects. To have a precise
notation which represents the dimensionality, we will call them Dp-branes in this
section.
As we will elaborate on what follows, these objects have two faces. First of all,
open strings end on these branes and hence the strings deform them. On the other
hand, they are also massive and thus they will curve spacetime itself. They can
be considered to be soliton-like solutions to SUGRA.

20



2.3.1 Low Energy effective Action

We introduced the low energy effective action both for bosonic and superstring the-
ory above. The same can be done for the Dp-branes and again we have to demand
that the worldvolume energy-momentum tensor T ab vanishes. We parametrize the
Dp worldvolume by coordinates ξa (a = 1, . . . , p + 1). Finally, we can write an
action for a Dp-brane as

SDBI = − (2π)−p α′− p+1
2

∫
dp+1ξ e−ϕ

√
− det (P [g]ab + P [B]ab + 2πα′FabF ab)

(2.68)

where P [g] and P [B] are the pull-back of the target spacetime metric and the
Kalb-Ramond field to the worldvolume. The field Fab is the field strength tensor
of the gauge field Aa which is sourced by the string endpoint attached to the Dp-
brane. Due to the form of this action, it is also called Dirac-Born-Infeld (DBI)
action.
Let us consider this setup in flat spacetime, with vanishing Kalb-Ramond field
(B = 0) and constant dilaton (eϕ = gs). In the last expression, we used the fact
that the string coupling gs is given by the expectation value of the dilaton field.
We can use that det(1 +M) = 1 − 1

2trM2 + . . . and expand the DBI action as

SDBI = − (2π)2−p α′ 3−p
2

1
4gs

∫
dp+1ξ FabF

ab. (2.69)

This matches exactly the term in U(1) Yang-Mills (YM) theory, −1
4

1
g2

Y M
FabF

ab and
therefore we deduce that a U(1) gauge field lives on the Dp-brane. The relation
between the YM coupling g2

YM and the string coupling gs can easily be read off,

g2
YM = gs (2π)p−2 α′ p−3

2 . (2.70)

For N coincident Dp-branes we get an additional index which labels the different
branes. This is the so-called Chan-Paton factor. Due to this additional index, the
gauge field living on these branes satisfies a U(N) gauge symmetry.

2.3.2 Dp-branes in SUGRA

Besides considering the open string sector, we can also consider the closed sec-
tor. In this sector, we already showed that we can rewrite this sector as an
effective SUGRA action in 10 dimensional target spacetime (cf. equations (2.59)
and (2.62)). For Dp-branes, we can make the following ansatz for the solution of
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the EoM derived from this action

ds2 = Hp(r)− 1
2ηαβdx

αdxβ +Hp(r)
1
2 δijdy

idyj, (2.71a)
eϕ = gsHp(r)

3−p
4 , (2.71b)

C(p+1) =
(
Hp(r)−1 − 1

)
dx0 ∧ dx1 ∧ · · · ∧ dxp, (2.71c)

Bµν = 0 (2.71d)

where xα (α = 0, . . . , p) are coordinates on the worldvolume of the Dp-brane,
and xi (i = p + 1, . . . , 9) are transverse coordinates. Furthermore, we defined
the distance from the brane as r2 = ∑9

i=p+1 y
2
i . Plugging this ansatz in the EoM

derived from the SUGRA action we obtain

□Hp(r) = 0. (2.72)

Thus, Hp(r) has to be a harmonic function which can be written as

Hp(r) = 1 +
(
Lp
r

)7−p
(2.73)

where we chose the constant to be 1 such that we obtain flat Minkowski spacetime
far away from the Dp-branes (r → ∞).
It can be shown that for N coincident Dp-branes the constant Lp is given by

L7−p
p = (4π)

5−p
2 Γ

(7 − p

2

)
gsNα

′ 7−p
2 . (2.74)

Type IIA (IIB) string theory contains only odd (even) R-R gauge potentials C(p+1).
Since a Dp-brane couples to C(p+1) potential,s only even (odd) Dp-branes are
stable. Therefore, the following possibilities exist

IIA : D0, D2, D4, D6, D8 branes, (2.75a)
IIB : D−1, D1, D3, D5, D7 branes. (2.75b)

Note that for D3-branes which we will consider in the context of AdS5/CFT4, the
dilaton ϕ decouples and is constant, eϕ = gs. The constant L7−3

3 ≡ L4 is then
given by

L4 = 4πgsNα′2. (2.76)

Let us next have a glimpse towards the holographic principle by considering the
limit of r → 0, i.e. we go very close to the D3-branes. With this assumption, the
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Figure 2.2: Visualization of the holographic principle. Within the cylinder,
there lives a quantum gravity which is dual to a CFT living on the boundary.

constant term in Hp(r) can be neglected and we can write down the metric as

ds2 = r2

L2ηαβdx
αdxβ + L2

r2 dy
idyi

= L2

z2

(
ηαβdx

αdxβ + dz2
)

+ L2dΩ2
5 (2.77)

where we introduced spherical coordinates instead of yi, i.e. ds2
5 = dr2 + r2dΩ2

5,
and z = L2

r
in the last line. This is exactly the metric of AdS5 × S5.

Hence, we have seen the two faces of D3-branes. On the one hand, there lives
a U(N) gauge field on them. On the other hand, the near brane geometry is
AdS5 × S5.
As we will elaborate in more detail in the next section AdS/CFT can be motivated
in this manner.

2.4 Holographic Principle and AdS/CFT

Most generally speaking the holographic principle is a duality between a quantum
gravity on some AdSd+1 × M spacetime and a CFT living on its boundary. As
shown in figure 2.2 this can be visualized on a cylinder. In its volume lives the
quantum gravity and sources fields in the boundary CFT. From a mathematical
point of view, a duality means that two theories are dynamically equivalent but
can have different Lagrangians. AdS/CFT conjectured by Juan Maldacena in
1997 [6] is a specific example. AdS/CFT is also a strong-weak coupling duality
which makes it interesting, because we can map problems with strong coupling to
a dual problem which is weakly coupled and hence, we are able to apply PT.
In this section, we will focus on the AdS5/CFT4 duality which was the original
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conjecture by Maldacena [6]. From these considerations, it can be generalized to
other AdSd+1/CFTd dualities.
The so-called strongest form of the duality reads [17]:

N = 4 SU(N) SYM with coupling constant gYM
is dynamically equivalent to

type IIB superstring theory with string length ls =
√
α′ and

coupling gs on AdS5 × S5 with radius of curvature L and N units
of F(5) flux on S5.

The parameters are related as
g2
YM = 2πgs, 2g2

YMN = L4

α′2 .
(2.78)

From now on we will call the first part of the duality, i.e. the SYM theory, the
“CFT side” and the type IIB superstring theory side the “AdS side” for clear
terminology.
The strongest form is very interesting especially conceptually, but it is very hard
to compute anything due to the lack of mathematical tools. Therefore, we will
consider certain limits which will make it possible to perform computations.
String theory is best understood in the PT regime where the string coupling gs

is assumed to be small, gs ≪ 1 while keeping L√
α′ constant. The AdS side of the

duality then reduces to classical string theory where only tree-level diagrams are
considered. On the CFT side, this limit implies that gYM ≪ 1 while g2

YMN = λ

is kept finite. This means that we take the ’t Hooft limit N → ∞ with λ kept
finite [20]. This limit is called the strong form of AdS/CFT.
Finally, we are left with only one free parameter on each side of the duality. This
parameter is related as 2λ = L4

α′2 in the two dual theories. As already mentioned
above, we want to use the strong-weak coupling property of the duality to be
able to calculate strongly coupled processes in the CFT, i.e. we want to send the
’t Hooft coupling to infinity, λ → ∞. This implies that

√
α′

L
= ls

L
→ 0, and hence

we arrive at the point particle approximation of string theory. The EoM are then
determined by the type IIB SUGRA action (2.62) on AdS5 ×S5 spacetime.3 This

3For even Dp-branes we have to use type IIA superstring theory since only there these branes
are stable solutions. This is used e.g. in the Witten model where confinement can be imple-
mented [21].
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Figure 2.3: The two different perspectives for D-branes. The left panel shows
the open string perspective where the open strings end on the brane and source a
gauge field. While for the closed strings the near brane geometry is AdS5 × S5 as
indicated in the right picture.

is the weak form of the AdS/CFT duality which we will apply in chapter 3.
Let us now dig a bit deeper in the derivation and motivation for statement (2.78).
As already pointed out the D-branes from the last section are the important
objects. We have seen in the last sections that these D-branes are soliton-like
solutions of superstring theory. As already elaborated, these D-branes have two
different faces, i.e. we can have a look at the open strings and closed strings
perspective. The two ideas are displayed in figure 2.3.

Open strings We have seen in section 2.3 that D-branes are hyperplanes where
open strings end. The strings source a U(1) gauge field Aµ transverse to
the plane. This description is only valid in the regime of decoupled closed
strings, i.e. gs ≪ 1. Furthermore, we want to ignore massive excitations
and thus we consider the low energy limit E ≪ α′− 1

2 .
In the case of N coincident D-branes, the gauge group becomes U(N) and
the effective coupling becomes gsN . Therefore, this perspective is applicable
if gsN ≪ 1. In this limit, the closed strings fully decouple due to the small
string coupling and they are described by type IIB SUGRA in flat Minkowski
space R9,1.

Closed strings We already know from section 2.3 that D-branes are also soliton-
like solutions to SUGRA in the low energy limit E ≪ α′− 1

2 . For this ap-
proximation to be valid the string length ls =

√
α′ has to be much smaller

than the radius of curvature, i.e. L4

α′2 ∼ gsN ≫ 1.
In section 2.3.2 we showed that close to the branes we have type IIB SUGRA
in an AdS5 × S5 background, while far away from the branes the action is
governed again by type IIB SUGRA but this time in flat Minkowski space-
time R9,1. So once more, we have two decoupled theories.
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Type IIB SUGRA
in R9,1

Type IIB SUGRA
in R9,1

N = 4 SYM Type IIB SUGRA
in AdS5 × S5

gsN ≫ 1gsN ≪ 1

++

Figure 2.4: Summary of the closed and open string perspective for D3-branes.
The type IIB SUGRA in flat Minkowski spacetime R9,1 always decouples in the
low energy limit E ≪ α′− 1

2 . Thus, Juan Maldacena conjectured that N = 4 SUSY
is equivalent to type IIB SUGRA in AdS5 × S5 [6].

To summarize we have seen that in both perspectives the type IIB SUGRA in flat
Minkowski spacetime R9,1 decouples from the rest of the theory which is either
N = 4 SYM or SUGRA in AdS5 × S5, depending on the value of gsN . This is
also depicted in figure 2.4.
The question which is left unanswered up to now is how to map observables in the
two theories. In principle, a bulk field ϕ is dual to a gauge invariant operator O
in the boundary CFT. Here we suppress any index such that ϕ can be a scalar,
vector, tensor,. etc. . The corresponding field operator maps can be derived by
symmetry considerations. The statement of the strongest form of AdS/CFT (2.78)
now is [22, 23]

⟨
ei
∫
d4xOϕ0

⟩
SYM

= ZIIB,String (ϕ → ϕ0) (2.79)

where ϕ0 is the value of the bulk field ϕ at the conformal boundary. This means
that we can obtain any expectation value for an operator by varying the type IIB
string partition function ZIIB,String with respect to the dual field ϕ and evaluate it
at the boundary. The problem here is that up to now there is no way to calculate
the (quantum) string partition function since we would have to perform a path
integral over all kinds of fields and also the metric which has poles at the boundary.
Nevertheless, going to the weakest form resolves this problem because the path
integral can be approximated by using the saddle point approximation and hence
we are left with the exponential of the classical string action, i.e.

⟨
ei
∫
d4xOϕ0

⟩
SYM

= eiSIIB,SUGRA(ϕ→ϕ0) (2.80)
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where ϕ is a solution of the SUGRA EoM. With this technique, we can then
calculate all required expectation values of fields, correlators, and so on. For
example, the boundary energy-momentum tensor is dual to the SUGRA metric.
We will use this in chapter 3 to extract physical quantities in shockwave collisions.
This ends the introduction of string theory and the holographic principle. In the
next section, we will introduce hydrodynamics which we will also use to analyze
the results of shockwave collisions in the following chapter.

2.5 Hydrodynamics

In this section, we will review some details of relativistic hydrodynamics which de-
scribes many aspects of high-energy HICs very well. We use the first order gradient
expansion in chapter 3 to judge from what time on the evolution of shockwaves is
well described by hydrodynamics. We will call this time hydrodynamization time.
This section is based on [17, 24].
Hydrodynamics is based on conservation laws which are related to continuous sym-
metries of the fundamental microscopic system as stated in the Noether Theorem.
In relativistic systems, the spacetime itself exhibits translation, rotation and boost
invariance. The corresponding conserved current is the energy-momentum tensor
T µν and thus the conservation law reads

∂µT
µν = 0. (2.81)

In this section, we further assume an additional conserved U(1) current, e.g. the
baryon number current, i.e.

∂µJ
µ = 0. (2.82)

In a general setup with d spatial dimensions, the symmetric energy-momentum
tensor has (d+1)(d+2)

2 independent components, while the current Jµ has d + 1
independent entries. But the conservation laws only provide d + 1 + 1 equations
and hence there exist more unknowns than equations. In hydrodynamics one
assumes that T µν and Jµ can be parametrized by the local temperature T (x),
the local fluid velocity v⃗(x) and the local chemical potential µ(x). With this
assumption, the number of unknowns equals the number of equations.
Taking any timelike vector uµ with uµuµ = −1 we can decompose T µν and Jµ in
transverse and longitudinal components with respect to uµ by first defining the
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projection operator

∆µν = gµν + uµuν , (2.83)

and then writing the decomposition as [25]

T µν = Euµuν + P∆µν + (qµuν + qνuµ) + tµν , (2.84a)
Jµ = Nuµ + jµ (2.84b)

where E , P and N are scalars, qµ and jµ are transverse vectors, i.e. uµq
µ =

uµj
µ = 0 and tµν is symmetric, traceless and transverse, i.e. uµtµν = 0. Counting

the degrees of freedom on both sides shows that we cover all these degrees.
The coefficients can be extracted from T µν and Jµ by using that ∆µνu

µ = 0 and
∆µν∆µν = d. We finally obtain

E = uµuνT
µν , P = 1

d
∆µνT

µν , N = −uµJµ, (2.85a)

qµ = −∆µαuβT
αβ, jµ = ∆µνJ

µ, (2.85b)

tµν = 1
2

(
∆µα∆νβ + ∆να∆µβ − 2

d
∆µν∆αβ

)
Tαβ. (2.85c)

The hydrodynamic approximation is that the scalars E , P and N are functions
of the scalars T , µ, ∂µuµ, uµ∂µT , ∂2µ, etc.. qµ and jµ are functions of transverse
vectors, e.g. ∆µν∂νT , ∆µν∂νµ, etc.. The equations (2.84) in terms of the hydro-
dynamic variables T , µ and uµ are called constitutive relations.
Hydrodynamics uses an expansion in derivatives, even though recent results show
that it also converges to attractor solutions for large gradients [26].

2.5.1 Zeroth-order Hydrodynamics

As we have already mentioned in the last section, qµ, jµ and tµν contain derivatives
and hence we immediately know that in lowest order they are zero, i.e.

qµ = jµ = tµν = 0. (2.86)

But E , P and N are functions of T and µ. Going to the local rest frame of the
fluid (labeled by tilde), we know the form of the energy-momentum tensor and
the current, i.e.

T̃ µν = diag (ϵ, p, . . . , p) , J̃µ =
(
n, 0⃗

)
(2.87)

28



where ϵ(T, µ) is the equilibrium energy density, p(T, µ) the equilibrium pressure
and n(T, µ) the equilibrium charge density. We can boost this to a frame moving
with velocity v⃗ by applying a Lorentz boost Λ(v⃗). The boosted energy-momentum
tensor and the boosted current then read

T µν =

−p+ γ2(ϵ+ p) −γ2(ϵ+ p)vi
−γ2(ϵ+ p)vi pδij + γ2(ϵ+ p)vivj

 , Jµ =

 n

γv⃗

 . (2.88)

Using the 4-velocity uµ = γ (1, v⃗) with u2 = −1 we can rewrite this as

T µν = ϵuµuν + p∆µν , Jµ = nuµ. (2.89)

The zeroth-order hydrodynamic equations can be written down in a nice form by
using the longitudinal component of the conservation equation (2.81) to give

uν∂µT
µν = uν∂µ [(ϵ+ p)uµuν + pgµν ] = −∂µ [(ϵ+ p)uµ] + uν∂νp = 0,

∂µ [(ϵ+ p)uµ] = uν∂νp (2.90)

where we used that

uν∂µu
ν = ∂µ(uνuν︸ ︷︷ ︸

−1

) − uν∂µuν = −uν∂µuν = 0. (2.91)

From current conservation we obtain

∂µ(nuµ) = 0. (2.92)

These are the zeroth-order hydrodynamic equations.

2.5.2 First-order Hydrodynamics

For zeroth-order hydrodynamics the expansion coefficients in (2.84) were unique
since the local temperature T (x), the local fluid velocity v⃗(x) and the local chem-
ical potential µ(x) are only well defined in equilibrium. In the first-order approx-
imation, these quantities can’t be defined uniquely any more, i.e. they are only
defined up to gradients which vanish in the equilibrium. Thus we can write them
as

E = ϵ(T, µ) + fE (∂T, ∂µ, ∂u) , (2.93a)
P = p(T, µ) + fP (∂T, ∂µ, ∂u) , (2.93b)
N = n(T, µ) + fN (∂T, ∂µ, ∂u) . (2.93c)
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The coefficients ϵ(T, µ), p(T, µ) and n(T, µ) are determined by the equation of
state in thermal equilibrium, while the form of the out-of-equilibrium functions
fE/P/N depends on the choice of the hydrodynamic variables. This choice is often
referred to as the choice of a frame, hence, we will adopt this nomenclature in
what follows. It is important to stress here that the hydrodynamic parameters
do not have a first-principle microscopic meaning. One has to understand them
as auxiliary parameters which are used to parameterize the microscopically well-
defined energy-momentum tensor and current. Therefore, we can change these
parameters at will as long as T µν(x) and Jµ(x) remain unchanged. We can write
an arbitrary frame transformation as

T (x) → T ′(x) = T (x) + δT (x), (2.94a)
µ(x) → µ′(x) = µ(x) + δµ(x), (2.94b)
uµ(x) → u′µ(x) = uµ(x) + δuµ(x) (2.94c)

with δT , δµ and δuµ being first-order in derivatives. From the normalization condi-
tion u2 = −1 we can conclude that uµδuµ = 0, i.e. δuµ is transverse. Using (2.85),
the fact that T µν and Jµ remain constant and that qµ, jµ and tµν are transverse,
we can calculate the effect on the parameters of (2.84) of such a transformation
to first order. They are given by

δE = 0, δP = 0, δN = 0, (2.95a)
δqµ = − (E + P) δuµ, δjµ = −N δuµ, (2.95b)
δtµν = 0. (2.95c)

As already mentioned above we can fix d + 3 components freely, since T , µ and
uµ(x) are not uniquely defined out-of-equilibrium.
One of the most common choices for δuµ is such that δjµ = 0 which is called the
Eckart frame [25]. This choice implies that there is no charge flow in the local rest
frame of the fluid.
Another possible choice is the so-called Landau frame [27] where δuµ is chosen
such that qµ = 0, i.e. there is no energy flow in the fluid rest frame. This is also
the frame which we will use from now on.
Since E , P and N are invariant under the transformations (2.94) it follows that,
e.g., ϵ(T, µ) + fE(∂T, ∂µ, ∂u) = ϵ(T ′, µ′) + f ′

E(∂T ′, ∂µ′, ∂u′). Hence the functions
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fE/P/N have to satisfy

f ′
E = fE −

(
∂ϵ

∂T

)
µ

δT −
(
∂ϵ

∂µ

)
T

δµ, (2.96a)

f ′
P = fP −

(
∂p

∂T

)
µ

δT −
(
∂p

∂µ

)
T

δµ, (2.96b)

f ′
N = fN −

(
∂n

∂T

)
µ

δT −
(
∂n

∂µ

)
T

δµ. (2.96c)

Additionally to the already chosen δuµ, we can freely choose δT and δµ and hence
we can set two of the three primed functions to zero. Usually one sets f ′

E and
f ′

N to zero, which means that the out-of-equilibrium temperature and chemical
potential are chosen such that E = ϵ and N = n.
After this choice we have fixed all freedoms, i.e. in the Landau frame we chose E =
ϵ , N = n and qµ = 0. Thus, we have to express P , jµ and tµν in hydrodynamical
variables. In first-order in a gradient expansion, there exist three scalars

uλ∂λT, uλ∂λµ, ∂λu
λ, (2.97)

three transverse vectors

∆µν∂νT, ∆µν∂νµ, ∆µνuλ∂λuνT, (2.98)

and one transverse, symmetric, and traceless tensor

σµν = ∆µα∆νβ
(
∂αuβ + ∂βuα − 2

d
gαβ∂λu

λ
)
. (2.99)

Having a look at the scalar P first we make the ansatz

P = p+ c1u
λ∂λT + c2u

λ∂λµ+ c3∂λu
λ + O

(
∂2
)

(2.100)

with coefficients ci, i ∈ {1, 2, 3}. We can use the zeroth-order hydrodynamic equa-
tions uµ∂νT µν = 0 and ∂µJ

µ = 0 (2.90) to eliminate two of the three coefficients.
Hence, we choose c1 = c2 = 0 to obtain

P = p− ζ∂λu
λ + O

(
∂2
)

(2.101)

with ζ being the bulk viscosity which has to be determined from the microscopic
theory.
Continuing with jµ we can write it with three constants and again make use of

31



the zeroth-order hydrodynamic equation ∆λν∂µT
µν = 0 to arrive at

jµ = −σT∆µν∂ν

(
µ

T

)
+ χT∆µν∂νT + O

(
∂2
)

(2.102)

where σ is the charge conductivity and χT has to be zero by requiring that entropy
production is positive [24].
For the tensor part there exist no zeroth-order hydrodynamic equations and, thus,
this part is written as

tµν = −η

2
σµν + O

(
∂2
)
. (2.103)

In this equation η is the shear viscosity. Note that we have an additional factor
of 1

2 here to be consistent with work in numerical AdS/CFT [1, 28–30].
With this parametrization, we can write down the energy-momentum tensor and
the current as

T µν = ϵuµuν + p∆µν − η

2
∆µα∆νβ

(
∂αuβ + ∂βuα − 2

d
gαβ∂λu

λ
)

− ζ∆µν∂λu
λ + O

(
∂2
)
, (2.104a)

Jµ = nuµ − σT∆µν∂ν

(
µ

T

)
+ χT∆µν∂νT + O

(
∂2
)
. (2.104b)

These are the first-order hydrodynamic equations for an arbitrary fluid.
Since we will deal with a CFT in chapter 3, the considered fluid will also be
conformal. One property of a conformal theory is the tracelessness of the energy-
momentum tensor, i.e. T µµ = 0. Since u2 = −1, ∆µ

µ = d and ϵ = p
d
, we can see

that ζ != 0. It is straightforward to show that one can write the energy-momentum
tensor also in the notation of [1, 28–30]

T µν =pgµν + (ϵ+p)uµuν − η
[
∂(µuν) + u(µuρ∂ρu

ν) − 1
3
∂λu

λ(gµν + uµuν)
]

+ O(∂2). (2.105)

Furthermore, in a thermal CFT, there is only one scale. Thus, we can express all
of the coefficients in terms of the proper energy ϵ, i.e. [31, 32]

T =
(

8ϵ
3π2N2

c

) 1
4

, η = 1
3πT

ϵ = ϵ3/4

33/4 4
√

8

√
Nc

π
, p = ϵ

3
. (2.106)

Hence, the first-order hydrodynamics in a conformal theory is determined by the
proper energy and the fluid 4-velocity which can be written as the normalized
(uµuµ = −1), future directed (u0 > 0) eigenvector and the eigenvalues of the full

32



energy-momentum tensor

T µνu
ν = −ϵuµ. (2.107)

This closes the discussion of hydrodynamics and also this introductory section.
We will continue by applying the gauge/gravity duality to the collision of lumps
of energies in a strongly coupled CFT in the next chapter.
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3
Shockwave Collisions

in AdS/CFT

In this chapter, we will use the holographic principle to get insight into HICs
mainly concerning the formation of the QGP. In HICs nuclei are accelerated and
collide with very high energies as it is done, e.g., at LHC (Large Hadron Collider)
or RHIC (Relativistic Heavy Ion Collider). This process can be thought of as
consisting of several stages indicated in figure 3.1. The whole process is described
by QCD but we cannot access solutions for all of these stages because of the lack
of mathematical techniques. In particular, non-perturbative, highly dynamical
processes far from thermal equilibrium cannot be treated reliably with present-
day QCD techniques.
Hence, we will use the holographic principle to model such situations. To do this
we follow the ideas of [28, 29, 33, 34] and collide two gravitational shockwaves in
5-dimensional AdS space which is related via the holographic dictionary to two
lumps of energy moving towards each other with the speed of light in the dual field
theory. Hence, we have to solve Einstein’s equations in AdS space numerically. We
will do this by using the characteristic, also called Bondi-Sachs formulation [35, 36]
pioneered for asymptotically AdS spaces by Chesler and Yaffe in [28, 33, 37]. In
these publications, the coupled non-linear Einstein’s equations are converted into
a set of nested ODEs by applying a null-slicing of the geometry. This will be
reviewed in section 3.2.
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Figure 3.1: This picture visualizes the different stages of HICs. The two beams
(or nuclei) meet each other at t = 0. After hydrodynamization τ0 a deconfined
QGP is formed. This plasma expands and cools down until it undergoes the QCD
phase transition to the confined phase at temperature T = Tc and a hadron gas
forms. After the freeze-out hadrons form and they reach the detectors. This figure
is adapted from [38].

Before describing this we will give a quite extensive introduction to numerical
methods to solve differential equations, focusing on pseudo-spectral methods which
we will use to solve the set of nested differential equations.1

Afterwards, we will move on to solve the differential equations for the collision
of shockwaves. To reduce the dimensionality of the (5 dimensional) problem,
which was already solved in [29] where they also included the transverse directions,
we will use planar shocks as an approximation instead of keeping the transverse
dependence. But in contrast to [29] we can go to thinner (and thus more realistic)
shock widths in the longitudinal directions. This approximation was also used
in [28, 34] for the planar case.
In [1] we considered asymmetric planar shocks as an approximation for off-center
collisions (cf. figure 3.8). This argument will be motivated in section 3.3. In
section 3.5 we will then show results of the simulations and analyze some aspects
which are of interest for particle physics and hydrodynamization of the QGP.

1This section is accompanied by a MATHEMATICA notebook which you can request from
the author via mail andreas.rabenstein@ur.de.
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3.1 Numerical Methods

We start this section by giving a brief overview of numerical methods for lin-
ear differential equations and the corresponding main ideas. Afterwards, we will
discuss interpolation and Gaussian quadrature as an approximation for needed in-
tegrals. In section 3.1.4 spectral methods will be introduced. Finally, we will solve
several types of differential equations. We apply various techniques including do-
main decomposition and the Newton-Raphson method for non-linear differential
equations.

3.1.1 Weighted Residual Methods

For a lot of problems we are interested in, the aim is to solve a linear differential
equation of the type

Lu = f (3.1)

where L is a linear differential operator. Most numerical methods used nowadays
are weighted residual methods where one approximates the solution u within a
vectorspace with some basis ϕi

u ≈ uN =
N∑
i=0

uiϕi (3.2)

and then defines the residual to be

R = LuN − f. (3.3)

Obviously, this residual has to be minimized. To do so one requires that the
(weighted) scalar product with a test function ξi vanishes, i.e.

(R, ξi)ω = 0. (3.4)

The different methods are then characterized by the choice of the test function
and we list the most common examples in what follows:

Subdomain method

ξi =

1 x ∈ Di

0 else
(3.5)

where Di is a subdomain.
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Collocation method

ξi = δ(x− xi). (3.6)

Least Squares method

ξi = ∂R

∂αi
. (3.7)

Galerkin method

ξi = ϕi. (3.8)

The pseudospectral method is a Galerkin method as we will see later on. In the
next section, we will discuss interpolation which is essential for numerical methods
in more detail.

3.1.2 Interpolation

As we have seen in the last section we have to interpolate the (unknown) exact
solution (c.f., equation (3.2)). For the interpolating polynomial

pN(x) = aNx
N + aN−1x

N−1 + · · · + a1x
1 + a0 (3.9)

we require that it coincides with the function u(x) at the grid-points which we
have to specify. The error for such a polynomial interpolation is given by [39]

max
x0≤x≤x1

|f(x) − pN(x)| ≤ 1
(N + 1)!

max
x0≤x≤x1

∣∣∣∣∣
N∏
k=0

(x− xk)
∣∣∣∣∣ max
x0≤x≤x1

∣∣∣f (N+1)
∣∣∣ . (3.10)

A theorem by Weierstrass states that there is always a polynomial arbitrarily close
to any continuous function [40]. Of course for an arbitrarily “good fit“ N has to
be sufficiently large. But for computational reasons, we want to keep N rather
small. Thus there are two possibilities to reduce the error on the interpolation:

1. Pick the grid-points such that they minimize the term ∏ (x− xk). It can be
shown that this is fulfilled by the zeros of the Chebyshev polynomials [39].

2. Use a local and piecewise fit. This is the case for the domain decomposition
we introduce later-on and also, e.g., for the widely used Finite Element
Methods (FEMs).

Note that due to practical reasons we will not use the zeros of the Chebyshev poly-
nomials as grid, but we will use the “extrema- and endpoints“ or Gauss-Lobatto-
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grid as it is then easier to implement boundary (and matching) conditions.
If we now consider an arbitrary basis of orthogonal polynomials ϕ we can write
the polynomial interpolation PNu as a projection of u on the orthogonal polyno-
mials ϕ [41]

PNu =
N∑
n=0

ûnϕn with ûn = (u, ϕn)ω
(ϕn, ϕn)ω

. (3.11)

Note that due to the fact that we mentioned orthogonality a scalar product with
weight function ω has to exist. To obtain the coefficients of the functions, integrals
of the form

(u, ϕn)ω =
∫ 1

−1
dxu(x)ϕn(x)ω(x) (3.12)

have to be performed. As their calculation is very expensive in general, we need
to approximate these integrals. We do this by using Gaussian quadrature and
generalizations thereof, which we will introduce in the next section.

3.1.3 Gauss Quadrature

Due to finite computational resources, we approximate the needed integrals for
interpolation. The Gaussian quadrature theorem basically states that, given a
weight ω(x), there exist N + 1 positive real numbers ωi and N + 1 real numbers
xi ∈ [−1, 1] such that [41]

∀u ∈ P2N+δ :
∫ 1

−1
u(x)ω(x)dx =

N∑
n=0

u(xn)ωn (3.13)

where P2N+δ are polynomials of order 2N + δ and different δ refer to different
quadratures:

• Gauss quadrature: δ = 1

• Gauss-Radau quadrature: δ = 0 and x0 = −1

• Gauss-Lobatto quadrature: δ = −1 and x0 = −1, xn = 1

Obviously, one loses accuracy if one specifies some of the grid-points. We will
use Gauss-Lobatto quadrature to be able to implement boundary (and matching)
conditions in a straight-forward manner. The weights and the grid-points are
calculated by requiring that the integrals of the basis functions are exact (one
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could also use any other orthogonal basis to do so), i.e.

∀n ∈ {0, 1, . . . , 2N + δ} :
∫ 1

−1
ϕn(x)ω(x)dx !=

N∑
i=0

ϕi(x)ωi(x). (3.14)

To be precise with nomenclature we have to specify the polynomials we use as
well as the grid-points. For the spectral methods we introduce later we will use
the Chebyshev-Gauss-Lobatto quadrature where the points of the grid are given
by

xi = cos
(
iπ

N

)
i = 0, . . . , N and ωi = π

ciN
(3.15)

where ci = 2 for i = 0, N and ci = 1 elsewhere.
How to interpolate the solution was discussed in the last two sections.

3.1.4 Spectral Methods

As mentioned in the previous section the spectral method is a Galerkin method,
i.e. the test functions ξ are equal to the basis functions ϕ. Depending on the
symmetries of the problem these functions have to be chosen suitably. Boyd states
in [42] that one should mostly use Chebyshev polynomials unless the solution is
periodic where one should use Fourier series. Furthermore, it is advantageous to
modify the basis functions such that they satisfy

ϕi(xj) = δij. (3.16)

These functions are referred to as Cardinal functions. As mentioned in the last
section we will use Gauss-Lobatto grid-points (3.15). Because the Cardinal func-
tions satisfy (3.16) they are also often called Lagrange polynomials as they are of
the form ∏ (x−xi)/(xj−xi). For the Chebyshev polynomials

Tk(x) = cos(k arccos(x)) (3.17)

and Gauss-Lobatto grid-points (3.15) the Cardinal functions Cj(x) are given by [43]

Cj(x) = (−1)j+1 (1 − x2)
cjN2(x− xj)

dTN(x)
dx

. (3.18)

The limit x → xj can be taken easily by using L’Hôspital’s theorem. Let us
now consider the example of a (linear) M -th order differential equation with
different coefficient functions pp(x), i.e. the differential operator is given by
L =

M∑
p=0

pp(x) dp

dxp . Then equation (3.4) with the approximated solution can be
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written as

M∑
p=0

N∑
n=0

∫ 1

−1
dx

(
pp(x) d

p

dxp
unCn(x) − f(x)

)
︸ ︷︷ ︸

R=LuN −f

Cm(x)︸ ︷︷ ︸
ξm

ω(x) = 0 (3.19)

where we used Cm(x) as a test function. This integral can be approximated by
using Chebyshev-Gauss-Lobatto quadrature to yield

M∑
p=0

N∑
n=0

N∑
l=0

unpp(xl)
dpCn
dxp

∣∣∣
x=xl

δml =
N∑
l=0

f(xl)δml. (3.20)

The Kronecker-δ’s occur due to (3.16). Evaluating them gives

M∑
p=0

N∑
n=0

unpp(xm)d
pCn
dxp

∣∣∣
x=xm

= f(xm). (3.21)

The Cardinal functions can be written down in analytical form and thus the deriva-
tives occurring in the above formula can be calculated straightforwardly and then
be evaluated at the grid-points with arbitrary precision. Expressions can be found,
e.g. in appendix F of [42].
Thus, we have transformed the differential equation to the matrix equation (3.21)
which we can solve using standard routines.
Hence, we have presented the basic principle of the spectral method. In what
follows we will explain some technical details.

3.1.5 Applications

In this section, we will apply the spectral methods to several model differential
equations. We will furthermore explain the different techniques which are applied.

3.1.5.1 Ordinary Differential Equation

To begin with, we consider an ODE

u′′(x) − x6u(x) = x (3.22)

with boundary conditions u(0) = a, u(1) = b. In the provided Mathematica
notebook we use a = b = 1, but this can be changed arbitrarily. To compare the
result we use the inbuilt DSolve or NDSolve functions to solve the equation.
In this and the following subsections, we will first solve the equation without and
then with domain decomposition.
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Figure 3.2: Comparison between the Mathematica solution (red) and the
solution obtained by application of spectral methods (black). The left plot shows
the results for (3.22) without domain decomposition while the right graph shows
the one with domain decomposition.

Single Domain
For the single domain example, the implementation is straightforward. We write
equation (3.21) as a matrix equation, implement the boundary conditions by re-
placing the first and the last row by the corresponding requirements and then solve
the resulting system of equations. The comparison between the obtained solution
and the Mathematica solution is shown in the left panel of figure 3.2.

Domain Decomposition
For more sophisticated problems where the solution varies very rapidly, we need
to put more effort into solving the differential equation. As can be found in lit-
erature the error decreases exponentially with the number of grid-points N for
spectral methods [42]. One important fact for this proof is the global definition of
the basis functions. Higher accuracy can be obtained by increasing the number of
basis functions N . With finite computational resources only finite computational
accuracy is reached. Let us consider the differentiation matrix from appendix F
of [42]. For larger N the elements of the matrix, we want to invert, span a larger
range of numbers. There is an element on the diagonal of the differentiation matrix
− xi

2(1−xi)2 which is very small for xi ≈ 0 (this is always the case as the grid-points
are chosen in [−1, 1]). On the other hand, the first entry of the matrix is (1+2N2)/6

and thus increases quadratically with N . Computational errors from the matrix
inversion become more and more significant with increasing N . Thus we need to
think about other methods to improve the accuracy without increasing N . This
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is why we apply domain decomposition where we split the computational domain
into M subdomains. In principle, it is possible to have subdomains of different
size which is, e.g., used in adaptive FEM, but we only consider equal subdomains
in this work.
In the case of an ODE we can apply the method of homogeneous solutions (nomen-
clature from [41], see also chapter 22 of [42]). In this method, one uses the fact
that we can add arbitrary solutions of the homogeneous problem to the solution
of the inhomogeneous one and it still solves the ODE. If we consider the equation
Lu = f again we solve the following three problems in each subdomain

Lul = 0 ul(xl) = 1 & ul(xr) = 0, (3.23a)
Lur = 0 ur(xl) = 0 & ur(xr) = 1, (3.23b)
Lup = f up(xl) = 0 & up(xr) = 0 (3.23c)

where xl and xr denote the left and the right edge respectively. Then

u(x) = up(x) + Alul(x) + Arur(x) (3.24)

also solves the ODE. Thus it is left over to determine the coefficients Al and Ar

such that the solution is C1 (2M−2 conditions) and satisfies the boundary condi-
tions (2 conditions). This argumentation only holds for a second order differential
equation as we have 2M degrees of freedom representing the boundary conditions
in each subdomain. For an arbitrary order differential equation the number of
equations we solve in the subdomains varies (c.f., section 3.1.5.5). Hence all coef-
ficients are set by these requirements. To satisfy Dirichlet boundary conditions it
is obvious that

A
(0)
l = a and A(M−1)

r = b. (3.25)

while continuity requires that

A(j)
r = A

(j+1)
l j = 0, . . . ,M − 2. (3.26)

For a continuous derivative we have to require that

A
(j)
l u

(j)
l

′(x) + A
(j+1)
l

[
u(j)
r

′(x) − u
(j+1)
l

′(x)
]

− A
(j+2)
l u(j+1)

r
′(x)

= u(j+1)
p

′(x) − u(j)
p

′(x) (3.27)

for j = 0, . . . ,M − 2. From these constraints, we can derive a system of linear
equations which is represented by a band diagonal matrix. Solving this yields the
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coefficients for the wanted solution.
This method is implemented in the Mathematica notebook. The obtained so-
lution is shown in the right panel of figure 3.2.

3.1.5.2 Coupled linear Differential Equations

Let us now turn to coupled linear equations. In this section, we consider the
following system of coupled equations

y′
1 − 4y1 − 7y2 = 0,

y′
2 + 2y1 + 5y2 = 0 (3.28)

with boundary conditions

y1(0) = 1 and y1(1) = 2. (3.29)

For coupled linear differential equations we write the two equations in the form

L

y1

y2

 =

L11 L12

L21 L22

y1

y2

 =

f1

f2

 (3.30)

and both solutions (y1, y2) are expanded in basis functions to obtain a larger
[2(N + 1)] × [2(N + 1)] matrix system which we can solve. In the example above
the differential operators are given by

L11 = d

dx
− 4, L12 = −7, (3.31)

L21 = 2, L22 = d

dx
+ 5. (3.32)

Each submatrix Lij is calculated as in the last section and afterwards the matrix
L is formed. This procedure is also implemented in the Mathematica notebook
and the results are visualized in the left plot of figure 3.3.

Domain Decomposition
For the domain decomposition, we construct the matrix from the corresponding
submatrices and then determine the coefficients as in the last section, i.e. we use
the method of homogeneous solutions again. Note that for this specific example
we only had to implement two boundary conditions as we have two first order
equations. The results are shown in the left panel of figure 3.3.
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Figure 3.3: Comparison for the coupled linear equations (3.28). The solution y1
is visualized in red while the solution y2 is visualized in blue. The left plot again
shows the results for a single domain while the right plot shows the outcome for
domain decomposition.

3.1.5.3 Non-linear Equation

In this section, we will deal with non-linear equations. We will present two different
methods each with and without domain decomposition. Both methods are based
on the Newton-Raphson method which is a well-known tool to find the roots of a
function. We denote a non-linear equation by

N (u) = f. (3.33)

Throughout the current section, we will use the following equation as example

u′′ − u2 = 1 (3.34)

with boundary conditions u(0) = u(1) = 1.

Newton-Raphson Single Domain Method
As mentioned before the Newton-Raphson method is a tool to find the roots of a
function. Thus we rewrite the equation as N (u) − f = 0. To find the zeros of a
function g⃗(x1, . . . , xN) with the Newton-Raphson method, we start with an initial
guess x⃗ which we assume to be close to a zero x⃗+ δ⃗, δ⃗ ≪ 1. As we assume to be
close to the zero we can perform a Taylor series in each component gi to obtain

gi(x⃗+ δ⃗) = gi(x⃗) +
∑
j

Jijδj + O
(
|δ⃗|2

)
(3.35)
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with the Jacobian

Jij = ∂gi
∂xj

∣∣∣
x⃗
. (3.36)

Neglecting O(|δ⃗|2) contributions we can solve for δ⃗ to obtain

δ⃗ = −J−1g⃗(x⃗). (3.37)

Then the new guess for the zero is given by

x⃗new = x⃗old + δ⃗ = x⃗old − J−1g⃗(x⃗old). (3.38)

This is performed iteratively until some specified criterion is reached. One natural
choice for this is to calculate g⃗(x⃗new) (which has to be done anyway for the next
step) and require that a specified norm is below a certain value. We chose the
maximum norm in the accompanying Mathematica notebook.
To apply the Newton-Raphson method to solve non-linear differential equations
we start with choosing a trial function t⃗ which satisfies the boundary condition
and is close enough to a zero for convergence. For the example considered here
we chose t(x⃗i) ≡ ti = 1 ∀i. Next, we define θ⃗ as the spectral representation of the
differential equation. For the example we consider here, this is given by

θi =
∑
j

D2
ijtj − t2i − 1 (3.39)

where Dij is the differentiation matrix. The Jacobian J for this reads

Jij = D2
ij − 2δijti. (3.40)

Afterwards, we can construct the next trial function according to equation (3.38).
In doing so we use θ(0) = θ(1) = 0 as boundary conditions. Then we calculate θ
for the new trial function and afterwards we check if the maximum norm

θmax = max |θi| (3.41)

is below a specified value. The results are shown in the left panel of figure 3.4.

Newton-Raphson with Domain Decomposition
Let us now use domain decomposition again. It is obvious that we cannot apply
the method of homogeneous solutions as the sum of it does not necessarily give
a solution to the non-linear problem any more. We have to solve the problem in
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Figure 3.4: Comparison of the results of (3.34) with the inbuilt NDSolve
function (red) and the solution obtained with the spectral method (black). The
left plot shows the results with a single domain while the right plot depicts the
outcome with multiple domains.

total and not only in each subdomain separately. Therefore we start by denoting
the non-linear operator in each subdomain by N (i) for i = 0, . . . ,M − 1 (where
M is the number of subdomains). The matrix representation of the differential
equation is then block-diagonal and given by

N =


N (0) 0 . . . 0

0 N (1) . . . 0
...

...
. . .

...

0 0 . . . N (M−1)

 . (3.42)

To ensure a certain continuity we need to add additional constraints. This is done
as for the boundary conditions, i.e. we replace certain rows by conditions. The
first and the last row of N are replaced by boundary conditions. The requirement
for continuity, i.e. the requirement that the coefficients at the boundary of the
domains coincide results effectively in an overlapping of the different matrices as
depicted in figure 3.5. This can be seen straightforwardly by writing down the
corresponding lines explicitly.
For the continuity of the derivative, a row of the matrix is replaced by the require-
ment that

∑
j

D
(k)
Nju

(k)
j =

∑
j

D
(k+1)
0j u

(k+1)
j . (3.43)
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. . .
...

...
...

...
...

...
... . .

.

. . . N (k−1)
N,N + N (k)

0,0 . . . N (k)
N,0 0 . . . 0 . . .

. . .
...

. . .
... 0 . . . 0 . . .

. . . N (k)
0,N

... N (k)
N,N + N (k+1)

0,0 . . . N (k+1)
N,0 0 . . .

. . . 0 . . .
...

. . .
... 0 . . .

. . . 0 . . . N (k+1)
0,N

... N (k+1)
N,N + N (k+2)

0,0 0 . . .

. .
. ...

...
...

...
...

...
...
. . .




Figure 3.5: Sketch of effect for the requirement of continuity. The submatri-
ces are overlapped such that the result of the matrix equation is continuous by
removing coefficients of the solution which have to match.

Note that we have to take care that u(k)
N = u

(k+1)
0 . Once this matrix is constructed

we can use the Newton-Raphson method as described in the previous subsection.
The results for the example are shown in the right plot of figure 3.4.

Newton-Kantorovich
Another method which is also based on the Newton-Raphson method is the
Newton-Kantorovich method (c.f., Appendix C of [42]). In this method, one lin-
earizes the non-linear differential equation. To do so we rewrite the equation (3.33)
in the form

u(p) = F (x, u(0), . . . , u(p−1)︸ ︷︷ ︸
:=U

) (3.44)

where the superscripts denote the corresponding derivative. Assuming we have
a trial solution ui which is close to the exact solution we can perform a Taylor
expansion to obtain

u(p) = F (x, Ui) +
p−1∑
k=0

∂F (x, U)
∂u(k)

∣∣∣∣∣
U=Ui

[
u(k) − u

(k)
i

]
+ O

(
[u− ui]2

)
. (3.45)

For the iteration we set u → ui+1 and parametrize ui+1 = ui + ∆ to obtain

∆(p) −
p−1∑
k=0

∂F (x, U)
∂u(k)

∣∣∣∣∣
U=Ui

∆(k) = F (x, Ui) − u
(p)
i . (3.46)
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Figure 3.6: Comparison of the results of the inbuilt NDSolve function (red)
and the Newton-Kantorovich method (black). The left plot is the result with a
single domain while the right plot shows the results for multiple domains.

This is indeed a linear differential equation for ∆ from which we can derive the
next iteration

ui+1 = ui + ∆. (3.47)

This linear equation can be solved with the methods described in the paragraphs
above.
For the example (3.22), the linearized equation for ∆ is given by

∆′′ − 2ui∆ = 1 + u2
i − u′′

i . (3.48)

The results for this method are shown in figure 3.6 for single domain (left) and for
multi domain (right). The clear advantage of this method is that one can apply the
method of homogeneous solutions which can be easily parallelized. Additionally,
we have to solve 3M times a system of size (N + 1) × (N + 1) and once a system
of (M +1)× (M +1) for each iteration. Thus they are always smaller than for the
Newton-Raphson method. Hence, this is computationally cheaper even though we
have more equations to solve per iteration.

3.1.5.4 Coupled non-linear Equations

In this section, we combine the methods used in the last sections to solve a set
of coupled non-linear differential equations. We will use the Newton-Kantorovich
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Figure 3.7: Comparison of the solution for the coupled non-linear differen-
tial equations with the NDSolve function (red,blue) and the pseudospectral
method(red). The left plot shows the result with a single domain covering the
whole computational domain while the right plot depicts the solution for domain
decomposition.

method to linearize the problem. The example set of equations is given by

u′′
1 − u2

2 + u1 + 1
64

(x+ 1)6 + π2 sin(πx) − sin(πx) = 0,

u′′
2 − u2

3 − xu1 + 1
512

(x+ 1)9 − 3(x+ 1)
4

+ x sin(πx) = 0 (3.49)

with boundary conditions u1(0) = u1(1) = u2(0) = 0 and u2(1) = 1.
First we derive the equations for ∆1 and ∆2 to obtain

∆′′
1 + ∆1 − 2u2∆2 = u2

2 − u1 − 1
64

(x+ 1)6 − π2 sin(πx) + sin(πx) − u′′
1,

∆′′
2 − 3u2

2∆2 − x∆1 =

u3
2 + xu1 − 1

512
(x+ 1)9 + 3(x+ 1)

4
− x sin(πx) − u′′

2. (3.50)

Then we apply the techniques from the previous sections to solve this equation
for ∆1/2 to obtain the next iterate. The results are shown in figure 3.7.

3.1.5.5 Differential Equations of other Orders

For most of the problems mentioned above, to be precise for all but the one for
the coupled linear equations, we considered a second order differential equation.
For any other order only the method of homogeneous solutions changes by the
number of the homogeneous solution in each subdomain. If we have M domains

49



and we have a P -th order derivative, we can specify P degrees of freedom in each
subdomain, i.e. P ·M in total. Thus we write the solution as

u(x) = up(x) +
P∑
i=1

ui(x)Ai. (3.51)

P of the coefficients Ai are then determined by the boundary conditions and
another P · (M − 1) for the matching conditions if we require that u(x) ∈ CP−1.
For example for a first order differential equation, we get

u(x) = up(x) + ul/r(x)A. (3.52)

It is arbitrary if we chose the function ul/r to be 1 at the left or the right side of
the subdomain. But it is obvious that this decision should be made dependent on
which end of the computational domain the boundary conditions are provided. If
we assume that the boundary condition is given by u(0) = a and the computational
domain is [0, 1] we would use ul. In this case, the requirement for u ∈ C0 would
read

A(i)u
(i)
l − Ai+1u

(i+1)
l︸ ︷︷ ︸
=1

= u(i+1)
p − u(i)

p . (3.53)

Indeed this gives us M − 1 constraints and together with the boundary conditions
all coefficients are fixed.
This closes the discussion about the numerical solution methods for ODEs. In
the next section we will apply these methods to solve Einstein’s equations in
asymptotically AdS spacetime.

3.2 Characteristic Formulation in Asymptotically AdS

In this section, we will show how we can write down the non-linear coupled Ein-
stein’s equations as a set of nested ODEs. This is the so-called characteristic
formulation or Bondi-Sachs formulation [35, 36] which was pioneered by Chesler
and Yaffe for asymptotically AdS spacetimes [28, 33, 37]. This technique is not
very popular in the numerical GR community since the required null slices should
not form caustics. In standard problems of GR, like black hole collisions and grav-
itational lensing, this happens quite generally [30]. On the other hand in problems
in asymptotically AdS spacetimes, the formation of caustics is unlikely or at least
hidden behind the horizon. In the numerical GR community a constant time
slicing is mainly used which leads to the ADM formalism named after Richard
Arnowitt, Stanley Deser and Charles W. Misner [44].
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3.2.1 Characteristic Formulation

This review about the Bondi-Sachs or characteristic formalism is based on [28,
30, 45]. We start with Bondi-Sachs-coordinates2 (X) = (r, x) = (r, x0 = t, xi)
and require that t = const. defines a null-hypersufaces. That means the normal
co-vector kA = −∇At satisfies kAkA = 0. Hence, we can conclude

gAB (−∂Bt) (−∂At) = gABδtBδ
t
A = gtt = 0. (3.54)

Additionally, the xi are chosen such that they are constant along the null rays,
i.e. they satisfy kA∂Axi = 0. Therefore, we get a second condition for the inverse
metric, i.e.

gAB (−∂Bt) ∂Axi = −gABδtBδiA = −git = 0. (3.55)

Since the components gtt and gti of the inverse vanish, there are also constraints
for the metric itself. These are given by

0 = δtr = gtAgAr = gtrgrr + gttgtr + gtigir = gtrgrr, (3.56a)
0 = δti = gtAgAi = gtrgri + gttgti + gtjgji = gtrgri (3.56b)

and hence we conclude that grr = gri = 0. This choice of coordinates leads to the
ansatz

ds2 = 2dt
[
β(X)dr − A(X)dt− Fi(X)dxi

]
+ Σ(X)2ĝij(X)dxidxj. (3.57)

We require in the last term that the matrix ĝ has unit determinant, det (ĝij) = 1.
This metric is still invariant under reparametrizations in r and thus we have to
fix this to obtain a well-posed initial-value problem. Bondi and Sachs did this by
fixing Σ(X) ≡ r suitable for spherical symmetry [35, 36]. We follow Chesler and
Yaffe and set β(X) ≡ 1 [28, 33, 37] to arrive at the following metric ansatz

ds2 = 2dt
[
dr − A(X)dt− Fi(X)dxi

]
+ Σ(X)2ĝij(X)dxidxj. (3.58)

2In this chapter, we use the following coordinate conventions. (X) = (r, x) = (r, x0 = t, xi)
is a vector in AdS spacetime, r is the radial AdS coordinate and x0 = t is the time component.
We label the AdS coordinates with capital Latin letters A, B, . . . , the boundary coordinates are
labeled by lower case Greek letters α, β, . . . and the spatial boundary coordinates are labeled by
lower case Latin letters a, b, . . . .
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It is obvious that the form of this metric is still invariant under radial shifts, given
by

r → r = r + δλ(x). (3.59)

Inserting this in the metric ansatz (3.58) we can read off the transformation be-
haviors of the metric functions which are given by

A(x, r) → A(x, r) = A(x, r − δλ) + ∂tδλ(x),

Fi(x, r) → F i(x, r) = Fi(x, r − δλ) + ∂iδλ(x),

Σ(x, r)2 ĝij(x, r) → Σ(x, r)2 ĝij(x, r) = Σ(x, r − δλ)2 ĝij(x, r − δλ). (3.60)

The transformation of A and Fi immediately reminds of gauge-invariant deriva-
tives and thus, in analogy to gauge theories, we make this invariance manifest by
defining ”gauge-like” derivatives as

d+ = ∂t + A(X)∂r, (3.61)
di = ∂i + Fi(X)∂r. (3.62)

The modified temporal derivative d+ points along outgoing null geodesics, while
the modified spatial derivatives di are orthogonal to the plane spanned by the
tangents of outgoing and ingoing null geodesics.
With the ansatz (3.58) and by replacing temporal and spatial derivatives with
these modified derivatives (d+, di), we can write Einstein’s equations

RAB + 1
2
RgAB − Λ gAB = 0 (3.63)

as a set of nested ODEs in radial direction. They are of the form

(
∂2
r +QΣ[ĝ]

)
Σ = 0, (3.64a)(

δij∂
2
r + PF [ĝ,Σ]ji∂r +QF [ĝ,Σ]ji

)
Fj = SF [ĝ,Σ]i, (3.64b)(

∂r +Qd+Σ[Σ]
)
d+Σ = Sd+Σ[ĝ,Σ, F ], (3.64c)(

δk(iδ
l
j)∂r +Qd+ĝ[ĝ,Σ]klij

)
d+ĝkl = Sd+ĝ[ĝ,Σ, F, d+Σ]ij, (3.64d)

∂2
rA = SA[ĝ,Σ, F, d+Σ, d+ĝ], (3.64e)(

δji ∂r +Qd+F [ĝ,Σ]ji
)
d+Fj = Sd+F [ĝ,Σ, F, d+Σ, d+ĝ, A]i, (3.64f)

d+ (d+Σ) = Sd2
+Σ[ĝ,Σ, F, d+Σ, d+ĝ, A]. (3.64g)
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In each of these equations, the square brackets indicate on which fields these terms
depend. For planar shockwaves, the full forms of these equations can be found in
appendix A.1.
With these equations in mind, we see that, once we know the initial ĝij, we can
solve (3.64a) by integrating it with respect to r. Afterwards, we can use this
solution to solve (3.64b). We can continue like this until we have solved all of the
equations and then perform a time step to the next time slice as we will describe
below. To solve these equations we use pseudospectral methods as described in
section 3.1.4.
To get unique solutions we have to specify boundary conditions encoding physics
in the dual gauge theory in addition to the initial spatial metric tensor ĝij.
To obtain the needed boundary conditions for differential equations (3.64) we
analyze the near-boundary behavior of the different fields. This is obtained by
solving equations (3.64) order by order in r. Doing so we obtain [28]

A = 1
2

(r + λ)2 − ∂tλ+ a(4)r−2 + O
(
r−3

)
, (3.65a)

Fi = −∂iλ+ f
(4)
i r−2 + O

(
r−3

)
, (3.65b)

Σ = r + λ+ O
(
r−7

)
, (3.65c)

ĝij = δij + ĝ
(4)
ij r

−4 + O
(
r−5

)
, (3.65d)

d+Σ = 1
2

(r + λ)2 + a(4)r−2 + O
(
r−3

)
, (3.65e)

d+ĝij = −2ĝ(4)
ij r

−3 + O
(
r−4

)
. (3.65f)

Using the AdS/CFT dictionary the non-determined coefficients a(4), f (4)
i and ĝ

(4)
ij

can be mapped to the energy-momentum tensor of the dual gauge theory. For
Eddington-Finkelstein (EF) coordinates this relation is given by [28, 46, 47]

2π2

N2
c

⟨Tµν⟩ ≡
⟨
T̂µν

⟩
= g(4)

µν + 1
4
g

(4)
00 ηµν (3.66)

where Nc is the number of colors in the dual field theory. The 4 dimensional metric
gµν in this equation is related to parametrization (3.58) via

g00 = − 2
r2A, g0i = − 1

r2Fi, gij = 1
r2 Σ2ĝij. (3.67)

Inserting the near-boundary expansion of the metric we arrive at

⟨
T̂00

⟩
= −3

2
a(4),

⟨
T̂0i
⟩

= −f (4)
i ,

⟨
T̂ij
⟩

= ĝ
(4)
ij − 1

2
a(4). (3.68)
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The radial shift parameter λ ≡ λ(x) is completely undetermined in the above near
boundary expansion. We are free to set it to an arbitrary value and could, e.g.
require that λ(x) ≡ 0. It turns out that there is a better choice. To cover the
whole physics in the boundary theory we have to integrate from the boundary
down to the horizon of the geometry. For general problems, this horizon can vary
rapidly and thus we have a non-rectangular computational domain, which can
cause numerical trouble. But using the freedom to arbitrarily choose λ(x) we can
require that the horizon lies at a fixed radial position

rh(x) = rh = const. (3.69)

Obviously, this results in a rectangular computational domain.
To see how to set the horizon at a constant radial position we follow [48]. The
apparent horizon can be defined as the position where the expansion θ = ∇ · k
vanishes, where k is a null congruence. We start with an ansatz for the congruence

kA = µ(X)∂Aϕ(X) (3.70)

with arbitrary scalar functions µ(X) and ϕ(X). Since we are looking for a null
congruence this ansatz has to satisfy

kAkA = 0 ⇒ ∂tϕ = Kϕ (∂iϕ, ∂rϕ) (3.71)

where Kϕ is a function independent of ∂tϕ. In this calculation we used that
gtt = gti = 0 in EF coordinates. We also require that k is affinely parametrized,
i.e.

kB∇BkA = 0 ⇒ ∂tµ = Kµ (∂iµ, ∂rµ) . (3.72)

With these two relations and our ansatz (3.58) we can write down the expansion
θ = ∇ · k and demand that it vanishes on a surface ϕ(X) = const. This surface
defines then an apparent horizon [48]. We want this surface to be at rh ≡ const

and thus set ϕ(X) ≡ r. Finally, we obtain a condition for d+Σ given by

d+Σ
∣∣∣
rh

= −1
2
∂rΣF 2 − 1

3
Σ∇ · F. (3.73)

The position of the horizon should be fixed at any time and thus this condition
has to hold at all times, i.e.

∂td+Σ
∣∣∣
rh

= ∂t

(
−1

2
∂rΣF 2 − 1

3
Σ∇ · F

)
. (3.74)
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field asymptotic homogeneous solution(s) boundary behavior
Σ r1 and r0 Σ ∼ r + λ

Fi r2 and r−2 Fi ∼ −∂iλ+ f
(4)
i r−2

d+Σ r−2 d+Σ ∼ 1
2 (r + λ)2 + a(4)r−2

d+ĝij r−3/2 d+ĝij ∼ 0
A r1 and r0 A ∼ 1

2 (r + λ)2 − ∂tλ

Table 3.1: Homogeneous solutions and asymptotic behavior of the different
fields.

The full form of equations (3.73) and (3.74) with expanded covariant derivative
for planar shockwaves can be found in appendix A.1.
In this section, we outlined how we can use the characteristic formulation to rewrite
the coupled non-linear Einstein’s equations (3.63) in a set of nested ODEs (3.64)
which we can then solve using pseudospectral methods described in section 3.1.

3.2.2 Solving Strategy

We want to solve the set of nested ODEs (3.64) using pseudospectral methods. But
to get a uniquely determined solution we have to implement boundary conditions.
These conditions can be obtained by matching the near boundary analysis (3.65)
with the homogeneous solutions of the differential equations. This is done in
table 3.1 where we can read off the boundary conditions directly. As already
mentioned the radial shift parameter λ(x) is chosen such that the horizon lies at
a fixed radial position. Once we fixed the radial shift parameter, we can solve
the differential equations on the first time slice and then evolve the initial and
boundary conditions {ĝij, f (4)

i , a(4), λ} to the next time slice.
For the time evolution, we use a Runge-Kutta (RK) time stepper. The time
evolution equations are derived in what follows.
We can use the definition of the modified temporal derivative d+ to get the time
evolution for the spatial metric ĝij

∂tĝij = d+ĝij − A∂rĝij. (3.75)

With a similar procedure, we can get the time evolution of the radial shift param-
eter λ

∂tλ = lim
r→∞

(d+Σ − A) . (3.76)

We could go on like this for f (4)
i and a(4), but we can also use physical input, namely

that the boundary energy-momentum tensor is conserved, i.e. ∇µ
⟨
T̂µν

⟩
= 0.
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Using (3.66) we can express the time evolution as

∂ta
(4) = 3

2
∂if

(4)
i , ∂tf

(4)
i = 1

2
∂ia

(4) − ∂iĝij. (3.77)

This turns out to be numerically more stable [28]. With this, we know how to
transform the problem of solving coupled non-linear Einstein’s equations (3.63) to
the problem of solving a set of nested ODEs by using EF coordinates.
The initial setup we have in mind are colliding gravitational shockwaves. Unfortu-
nately there exist no analytic solutions to Einstein’s equations in EF coordinates,
which we would need as initial conditions. There is a solution in Fefferman-
Graham (FG) coordinates [29, 49, 50]

ds2 = ρ̃−2
(
−dt̃ 2 + dx̃2

⊥ + dz̃2 + dρ̃2 +H±(x̃⊥, x̃∓, ρ̃)dx̃2
±

)
(3.78)

with x̃± = t̃ ± z̃. Plugging this into Einstein’s equations (3.63) we obtain a
constraint for the function H± given by

(
∂2
ρ̃ − 3

ρ̃
∂ρ̃ + ∇2

⊥

)
H± = 0. (3.79)

For a general solution to this equation, one can use a Fourier transformation as it
was done in [29]. We will later drop the transverse x̃⊥ dependence and hence we
will be able to analytically solve the differential equation for H±.
Once this H± is fixed we have to perform a coordinate transformation to EF
coordinates to be able to use the method proposed above.
To obtain the equations for the coordinate transformation we demand that the
resulting metric has the required EF form (3.58). Alternatively, we can proceed
as follows: A path along r in EF coordinates satisfies the geodesic equation. Since
coordinate transformations are isometries, the same path in FG coordinates also
satisfies the equations. The needed equation then reads

d2Ỹ A

dr2 + Γ̃ABC
dỸ B

dr

dỸ C

dr
= 0 (3.80)

where Γ̃ABC are the Christoffel symbols evaluated in FG coordinates. These non-
linear coupled equations can then be solved using the methods described in sec-
tion 3.1. Explicit expressions for the case of planar shocks can be found in ap-
pendix A.2 and a more detailed description of the procedure is given in section 3.4.
The discussion of this section is valid for 5 dimensional asymptotically AdS space-
time, but can be arbitrarily extended to any other dimension in a straightforward
manner by changing just some factors [28].
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After this general treatment of the characteristic formulation in asymptotically
AdS space, we will restrict ourselves from now on to planar shocks and thus ne-
glect transverse spatial dependence of the incoming shocks, i.e we assume that the
shocks have an infinite extent in the transverse directions. The clear advantage is
that we can reduce the dimensionality and thus reduce complexity and computa-
tional costs for numerically solving the differential equations.
We will argue in the next section why this still allows to get physical insight into
off-center HICs in a leading order approximation. Afterwards, we will provide
details of the performed calculation for asymmetric planar shockwaves.

3.3 Motivation for Planar Asymmetric Shocks

From now on, we will restrict ourselves to planar shocks with no transverse spatial
dependence. Thus we can solve the differential equation (3.79) analytically to
obtain

H±(x̃±, ρ̃) = ρ̃4h±(x̃±) (3.81)

with arbitrary h±. Furthermore, for the sake of numerical stability, we restrict
ourselves to Gaussian shockwaves, i.e. we choose

h±(x̃±) = µ3
±

1√
2πω2

±
e− 1

2 x̃
2
±/ω

2
± . (3.82)

The energy scale µ± characterizes the transverse energy density of each incoming
shock and is defined by the integrated energy density of the incoming shock

µ± =
∫
dz T̂ 00(t± z)incoming. (3.83)

For the simulations, we choose to work in the Center-of-Momentum (CM) frame
in which the energy densities of the incoming shocks are equal, i.e.

µ ≡ µ+ = µ−. (3.84)

In this frame physical results only depend on two independent dimensionless com-
binations which we choose to be µω+ and µω−.
As shown in figure 3.1 HICs go through different stages. We are interested in
the hydrodynamization and formation of a QGP. We will argue in what follows
that considering planar asymmetric shocks are a leading order approximation for
off-center collisions. In principle, the following argument is the leading term in an
expansion in transverse gradients (ω ≪ δ ≪ L).
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δ = 1
Qs

L

ω

jp+
z (j) p−

z (j)

Figure 3.8: Visualization why the asymmetric planar shocks are the leading
order in an expansion in transverse gradients. Assuming ω ≪ δ ≪ L, the planar
approximation gives reliable results.

The following argument is illustrated in figure 3.8.

Step 1 Decompose the incoming projectiles in subregions in the transverse plane.
We call them “pixels” and we require that they have size δ = 1

Qs
which is

small compared to the transverse extent (δ ≪ L), but large compared to the
longitudinal width of the shock (δ ≫ ω). Qs is the so-called “saturation”
scale which is roughly 1 GeV and hence δ = 1

Qs
∼ 0.2 fm. At the LHC

the longitudinal extent ω is about 10 fm
γ

∼ 0.01 fm ≪ 0.2 fm where we used
γ ≈ 7460.

Step 2 Let j label independent transverse-plane pixels, with p±
z (j) the portion of

the longitudinal momentum of each the incident projectile.

Step 3 For each pixel j, transform to the CM frame in which the total longitudi-
nal momentum within the pixel vanishes, and evaluate the resulting energy
scale µ(j) and incident projectile widths w±(j) for this pixel. Explicitly,
µ(j)6 = 4 p+

z (j) p−
z (j)/δ4.

Step 4 We can use the results which we will describe in section 3.5 to model the
energy-momentum tensor T µν(j) at the initial proper time τinit.

Step 5 Transform each pixel’s energy-momentum tensor T µν(j) from its CM
frame back to the original (lab) frame.
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Figure 3.9: Sketch of off-center HICs. The almond-shaped overlap region forms
a QGP, not the spectator portions (grey). The hydrodynamization time increases
rapidly as one approaches the boundary of the overlap region.

Putting all different pixels together we have the full energy-momentum tensor on
the initial proper time surface τinit for off-center collisions. These data can then
be used as initial data for hydrodynamic simulations. The advantage of this ap-
proximation is that one does not need to perform the full (5d) simulations which
are numerically very demanding [29].
Pixels near the periphery of the overlap region of the colliding nuclei (cf. fig-
ure 3.9), will have decreasing CM frame transverse energy density µ3. Since the
hydrodynamization time scales inversely with µ, this implies that pixels near the
periphery of the overlap region (shown in orange) enter the hydrodynamic regime
later than pixels in the middle of the overlap region.
In this section, we motivated the usage for planar asymmetric shockwave collisions.
In the next section, we will describe in detail how to write computer software to
apply the characteristic method described in section 3.2.

3.4 Computational Details for Planar Shockwave
Collisions

As we have already mentioned in section 3.2 we can write the coupled non-linear
Einstein’s equations (3.63) as a set of nested differential equations (3.64). This is
only possible in EF coordinates with the metric ansatz (3.58). Hence, we have to
perform the coordinate transformation from FG to EF coordinates also described
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in section 3.2. We start with the metric (3.78) and we have already seen that for
a vanishing transverse dependence this reduces to (3.81). For the parametrization
of the coordinate transformation equations, we follow [28] and choose

t̃ = t+ u+ α(t− z, u), x̃⊥ = x⊥, (3.85a)
z̃ = z − γ(t− z, u), ρ̃ = u+ β(t− z, u) (3.85b)

where u ≡ 1
r

is the inverted radial coordinate. As already mentioned above, there
exist two ways to obtain the equations for the coordinate transformation. As
in [28] we will combine both of them and furthermore introduce the fields

α = −γ + β + δ, β = − u2ζ

1 + uζ
(3.86)

to be able to decouple one of the equations. Finally, we arrive at

1
u2

∂

∂u

(
u2 ∂ζ

∂u

)
+ 2uH

(1 + uζ)5 = 0, ∂δ

∂u
− u2

(1 + uζ)2
∂ζ

∂u
= 0,

∂γ

∂u
− u2

(1 + uζ)2
∂ζ

∂u
+ u4

2(1 + uζ)2

(
∂ζ

∂u

)2

+ u4H

2(1 + uζ)6 = 0 (3.87)

with H = h+ (t− z + u+ δ − u2ζ/(1 + uζ)). To get more accurate results it is
essential to exploit the near boundary asymptotics. Again this asymptotics can
be found by solving the equations order by order in u. The expansion for β0 = 0
is given by

β̃|β̃0=0 = u3
∞∑
i=0

biu
i, α̃|β̃0=0 = u4

∞∑
i=0

aiu
i, γ̃|β̃0=0 = u

∞∑
i=0

giu
i (3.88)

and for arbitrary β0 is reads

β̃ =
∞∑
i=1

(−u)i−1β̃i0 − u3
∞∑
i=0

biu
i

∞∑
j=−1

(
5 + j + i

1 + j

)
β̃1+j

0 (−u)1+j, (3.89a)

α̃ =
∞∑
i=1

(−u)iβ̃i0 − u4
∞∑
i=0

aiu
i

∞∑
j=−1

(
5 + j + i

1 + j

)
β̃1+j

0 (−u)1+j, (3.89b)

γ̃ = u
∞∑
i=0

giu
i

∞∑
j=−1

(
5 + j + i

1 + j

)
β̃1+j

0 (−u)1+j. (3.89c)

The series coefficients can be found in appendix A.3.
We need a solution for the differential equations (3.87) from the boundary u ≡ 0
down to the horizon. A priori we do not know where the horizon lies and thus we
solve the differential equations to a coordinate value which we hope to lie behind
the horizon. This requires some trial and error. The point u = 0 is a regular
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singular point and thus standard integrators as RK fail to give accurate results
there. Therefore, we apply spectral methods described in section 3.1. This method
can easily cope with this regular singular point. Going deeper into the bulk and
thus coming closer to or even behind the horizon the functions parameterizing
the coordinate transformation will grow very fast. Hence, spectral methods which
cover the whole computational domain will fail. To deal with this difficulty we
solve to a fixed depth using spectral methods and switch to an adaptive integrator
afterwards.
Adding an additional background energy density which pushes the horizon to-
wards the boundary stabilizes the numerical procedure.
Once equations (3.87) are solved, we can use the characteristic formulation de-
scribed in 3.2 to solve Einstein’s equations. To do so we will further parameterize
the spatial metric ĝij by the anisotropy function B(u, t± z) as

ĝij =


eB 0 0
0 eB 0
0 0 e−2B

 . (3.90)

To read off the anisotropy function we have to look at the dz2 component of the
transformed metric. For this, we have a look at the following transformations

dt̃ → (∂zα) dz + . . . (3.91a)
dρ̃ → (∂zβ) dz + . . . (3.91b)
dz̃ → (1 − ∂zγ) dz + . . . (3.91c)

where the dots refer to components which are not ∝ dz. Writing down the
metric for a shock moving in +z direction and inserting the above transformations
together with (3.85) we obtain

[
− (∂zα)2 + (1 − ∂zγ)2 + (∂zβ)2

(u+ β)2 + (u+ β)2 H (1 − ∂zα− ∂zγ)2
]
dz2. (3.92)

From this, we can simply take the logarithm and read off the anisotropy function B

B = 1
3

log
[

− (∂zα)2 + (1 − ∂zγ)2 + (∂zβ)2

(u+ β)2 + (u+ β)2 H (1 − ∂zα− ∂zγ)2
]
.

(3.93)

A similar exercise with the corresponding near boundary asymptotics (3.65) gives

a
(4)
+ = −2

3
h+, f

(4)
z+ = h+, λ+ = −1

2
∂2
uβ
∣∣∣
u=0

. (3.94)
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The discussion above holds for shocks in +z direction. For colliding shocks we
have to do the same for shocks moving in opposite −z direction. This can be
simply achieved by using the following relation

B(u, t− z) → B(u, t+ z), (3.95a)
a(4)(t− z) → a(4)(t+ z), (3.95b)
f (4)(t− z) → −f (4)(t+ z), (3.95c)
λ(t− z) → λ(t+ z). (3.95d)

To obtain starting configurations we separate the shocks by a distance ∆z. As
shown in [28] there will always be a region for which a right moving and a left
moving shock overlap inside the bulk no matter how far they are separated on
the boundary. Inside this region, a simple superposition of spatially separated
shocks will not give a correct solution to Einstein’s equations. However, in [28] it
is pointed out that this region lies inside the horizon for a sufficiently large spatial
separation of the two shocks on the boundary. Therefore it is allowed to set

Btotal(u, t0, z) = B(u, t0 − z) +B(u, t0 + z), (3.96a)
a

(4)
total(t0, z) = a(4)(t0 − z) + a(4)(t0 + z), (3.96b)
f

(4)
total(t0, z) = f (4)(t0 − z) − f (4)(t0 + z), (3.96c)
λtotal(t0, z) = λ(t0 − z) + λ(t0 + z) (3.96d)

for the total functions corresponding to two shocks moving towards each other
with the speed of light, separated by ∆z = −2t0. One problem with this starting
configuration remains to be fixed: The overlap of the shift functions λ± of the
left and right moving shocks in the region close to z = 0 is significant. All other
functions have negligible overlap. Since we choose the shocks on the first time
slice well separated, we can assume that the geometry in between is pure AdS,
which justifies to modify λtotal close to z = 0, without changing Btotal, a

(4)
total, f

(4)
total.

As in [28] we set

λtotal(t0, z) = θ(−z)λ(t0 − z) + θ(z)λ(t0 + z) (3.97)

with

θ(z) = 1
2

(
1 − erf

(
−z√
2w

))
. (3.98)
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In practice, we add a uniform background energy density to increase the numerical
stability. To do so we follow [28, 29] and modify the superposition (3.96b) with

a
(4)
total(t0, z) = a(4)(t0 − z) + a(4)(t0 + z) − 2

3
ϵ0. (3.99)

This added background energy means physically that the colliding shocks will
propagate through a thermal medium. But the chosen background energies are
small enough that the background is very cold compared to the energy scale µ
of the shocks. Hence the dissipation in the medium is small. For the presented
results in section 3.5 we will linearly extrapolate to a vanishing background energy
density, ϵ0 = 0.
As already mentioned the integration depth is arbitrary up to now, we just have
to ensure that it reaches behind the horizon such that we can solve equation (3.73)
which for planar shocks reads

d+Σ
∣∣∣
r=rh

= −e2B

3

(
3F 2

2Σ2 ∂rΣ + ∂zF

Σ
+ F

Σ2 (2Σ∂zB + ∂zΣ)
) ∣∣∣∣∣

r=rh

. (3.100)

With this equation we want to find the radial shift δλ(t, z) such that for

u = u

1 + uδλ
(3.101)

where u(umax) is the radial position of the horizon. Finally, this results in a
planar horizon and a rectangular computational domain. To solve the non-linear
differential equation (3.100) we linearize it in δλ to be able to apply a Newton-
Raphson root-finding algorithm to determine δλ. As already mentioned adding a
background energy density will push the horizon towards the boundary. We found
it advantageous to start with a rather big value of about 10%, find the horizon and
then use the obtained δλ as the starting point for a smaller background energy
density. During the time evolution, the stationary requirement (3.74) keeps the
radial position of the horizon fixed, but due to numerical uncertainties, it is also
necessary to correct the shift every 10−100 time steps depending on the parameters
of the simulation.
Once we have the initial conditions {B, a(4), f (4), λ}, we can solve the nested set of
differential equations (3.64). As can be seen from the near boundary analysis (3.65)
some fields diverge at the boundary (r → ∞ or u ≡ 1

r
= 0). To avoid numerical
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precision loss, we use the following redefinitions

B(u, z, t) =
(

u

1 + uλ(t, z)

)3

b(u, z, t), (3.102a)

Σ(u, z, t) = 1
u

+ λ(t, z) +
(

u

1 + uλ(t, z)

)4

σ(u, z, t), (3.102b)

F (u, z, t) = −∂zλ(t, z) +
(

u

1 + uλ(t, z)

)2

f(u, z, t), (3.102c)

d+Σ(u, z, t) = 1
2

(
1
u

+ λ(t, z)
)2

+
(

u

1 + uλ(t, z)

)2

d+σ(u, z, t), (3.102d)

d+B(u, z, t) =
(

u

1 + uλ(t, z)

)2

d+b(u, z, t), (3.102e)

A(u, z, t) = 1
2

(
1
u

+ λ(t, z)
)2

+ a(u, z, t). (3.102f)

After replacing the fields in (3.64) we solve the equations one after another for
the functions σ, f , d+σ, d+b and a. The boundary conditions which we have to
implement can be deduced from table 3.1 and are given by

σ
∣∣∣
u=0

= 0, ∂uσ
∣∣∣
u=0

= 0, (3.103a)

f
∣∣∣
u=0

= f (4), ∂uf
∣∣∣
u=0

= 8b(4)

3
, (3.103b)

d+σ
∣∣∣
u=0

= a(4), ∂ud+σ
∣∣∣
u=0

= ∂zf
(4)

3
, (3.103c)

d+b
∣∣∣
u=0

= 0, ∂ud+b
∣∣∣
u=0

= −2b(4), (3.103d)

a
∣∣∣
u=0

= 0, ∂ua
∣∣∣
u=0

= 0. (3.103e)

After we used these initial conditions we can solve equations (3.64) on the first
time slice and then use the time evolution equations (3.75), (3.76), and (3.77) and
a RK stepper to evolve the initial conditions to the next time slice.
In this section, we gave details on how to write software to solve Einstein’s equa-
tions in asymptotically AdS spacetime. In the following section, we will show
results for symmetric and asymmetric shockwave collisions and we will also ana-
lyze them with respect to hydrodynamization.

3.5 Numerical Results

In this section, we review the results we obtained in [1] by applying the techniques
described in the last sections. We solved the shockwave setup for several param-
eters which we list in table 3.2.
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run w+ w− (ϵ0)1 (ϵ0)2 Nz

1 0.35 0.35 0.055 0.066 720
2 0.25 0.25 0.039 0.045 480
3 0.1 0.25 0.015 0.017 660
4 0.1 0.1 0.015 0.017 600
5 0.075 0.35 0.012 0.015 660
6 0.075 0.25 0.012 0.015 660
7 0.075 0.075 0.012 0.015 600

Table 3.2: Configurations calculated for the result section 3.5. We display the
width of the incoming shocks ω±, the background energy densities ϵ0 and the
number of grid-points in z direction Nz.

Figure 3.10: Initial conditions b (left) and λ (right) for ω+ = 0.075, ω− = 0.25
and with background energy density ϵ0 = 0.015 (run #6). a(4) and f (4) are directly
given by the shock function h(x±) via equations (3.94).

We apply periodic boundary conditions in the spatial z direction and use a uni-
formly spaced Fourier grid with up to 720 grid-points in that direction. The
period Lz in z direction is 10, 11 and 12 for narrow, asymmetric and wide shocks
respectively. We partition the radial direction in M = 22 subdomains of uniform
size in the inverted radial coordinate u ≡ 1

r
. In each of these subdomains, a

Chebyshev-Gauss-Lobatto grid (3.15) with Nu = 13 grid-points is used. For the
time evolution we use a fourth-order RK time stepper with stepsize δt = 0.002 to
a final time ranging from t ∈ [4/µ, 20/µ].
Let us illustrate some intermediate results for an example setup. For this purpose
we use run #6, i.e. (ω+, ω−) = (0.075, 0.25) and the added background energy
density is given by ϵ0 = 0.015. In figure 3.10 we plot the initial conditions {b, λ}
for this configuration.
These conditions are obtained by numerically solving the coordinate transforma-
tion equations (3.87) and then extracting the corresponding values. These initial
conditions are then time evolved. The (rescaled) energy density T̂ 00 for an exam-
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Figure 3.11: (Rescaled) energy-momentum tensor T̂ 00 for asymmetric (left)
and symmetric (right) shock collisions. For the asymmetric shock we have
(ω+, ω−) = (0.075, 0.35) while for the symmetric one we have ω± = 0.075.

ple setup is shown in figure 3.11 for asymmetric and symmetric shock collisions.
The right plot shows a very long time evolution and thus we see artefacts form the
imposed periodicity. That we are able to see these wrap-around artefacts proves
the good stability of our code.
In figure 3.12 we plot the local maxima in the energy density. They lie on the
forward light cone but outside the hydrodynamic regime which we will discuss
below. For the symmetric shocks, we confirm the results published in earlier
works [28, 30, 34] and reproduce that in the late time regime this local maximum
decreases with t−0.9. For asymmetric shocks, this local maximum coincides with
the symmetric results after a very short time period and then also results in the
same power law fall-off.
Similar results are obtained for all other configurations which we studied.

3.5.1 Hydrodynamic Flow

We want to calculate the hydrodynamization time in this holographic setup. The
QGP is almost a perfect fluid and thus it is very well described by hydrodynamics
which we reviewed in section 2.5. In this section, we will see at what times the
post-collision energy-momentum tensor is well described by hydrodynamics. We
will also extend the result of [2] to asymmetric shocks.
To be able to judge the quality of the hydrodynamic approximation we first cal-
culate the proper energy density and the fluid 4-velocity as the eigenvalue and
the real, normalized (uµuµ = −1) future-directed (u0 > 0) eigenvector of the full
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Figure 3.12: Maxima of the energy density for symmetric (ω± = 0.075) and
asymmetric ((ω+, ω−) = (0.075, 0.35)) collisions. We see that after a short time
t ∼ 0.5 the amplitude for both setups coincides more or less. Furthermore we
see that the late time behavior can be expressed by t−0.9 as it was found in early
results [28].

energy-momentum tensor, which we obtain from our simulation3

T µνu
ν = −ϵ uµ. (3.104)

After we extracted these parameters we can calculate the hydrodynamic energy-
momentum tensor T µνhydro using equation (2.105) and then define the residual as
in [29]

R = 1
p

√
∆Tµν∆T µν , ∆T µν = T µν − T µνhydro. (3.105)

This residual measures the difference between the hydrodynamic energy-momentum
tensor and the one calculated using holography. As it was done in previous
work [2, 28] we define the region where hydrodynamics is applicable by R < 15%.
The result for symmetric and asymmetric shockwave collisions is shown in fig-
ure 3.13 for an example configuration. The profile of the boundary is well approx-
imated by a hyperbola (blue, solid line) given by

τ∗ =
√

(t− ∆t)2 − z2 (3.106)

3There exist regions were a real-valued eigenvector fails to exist, but this is outside of the
hydrodynamic regime and hence not an issue in this analysis [51].
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Figure 3.13: Spacetime region where the residual R (3.105) is less than
15%. The left panel shows the corresponding region for ω± = 0.075 while the
right one displays (ω+, ω−) = (0.1, 0.25). The blue line shows the hyperbola
(t− ∆t)2 − z2 = τ 2

∗ with ∆t = 0.5 and τ∗ = 1.5 (cf. (3.106)). For both setups the
hydrodynamization time is given by thydro ≈ 2.

with ∆t = 0.5 and τ∗ = 1.5. For symmetric shocks, this reproduces the results
from [2, 28]. For asymmetric shocks, we can see that the influence of the asymme-
try is of minor importance and hence the hydrodynamization time is still almost
Lorentz-invariant.
As already mentioned in section 2.5 for a conformal fluid, hydrodynamics is fully
encoded in the proper energy density ϵ and the corresponding fluid 4-velocity uµ.
To continue the analysis we first introduce proper time τ and rapidity ξ coordi-
nates by

t = τ cosh ξ, z = τ sinh ξ. (3.107)

Chesler, Kilbertus and van der Schee found in [2] that on a Cauchy surface with
τinit = 3.5 the fluid 4-velocity is very well described by boost invariant flow, i.e.

uτ = 1, uξ = u⃗⊥ = 0. (3.108)

We are able to confirm this behavior for symmetric shocks. This generalizes to
asymmetric shocks where the violation of this condition is of order O (10−3). This
is shown in figure 3.14 for different configurations of colliding shockwaves. Another
key result of [2] is that the proper energy density is well described by a Gaussian

ϵ(ω, τ) = A(ω)e− 1
2

ξ2

σ(ω)2 (3.109)
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Figure 3.14: Violation of the boost invariant flow constraint, uτ − 1, at proper
time τ = 2 for two asymmetric shocks and the corresponding symmetric ones. In
the left panel (ω+, ω−) = (0.075, 0.25) is displayed while the right panel shows
(ω+, ω−) = (0.075, 0.35). As in [2] we find that the violation is just of order
O (10−3).

where for τinit = 3.5 the amplitude and width of the function are given by [2]

A(ω) ≈ 0.14 + 0.15ω − 0.025ω2, (3.110a)
σ(ω) ≈ 0.96 − 0.49ω + 0.13ω2. (3.110b)

In figure 3.15 we also display the proper energy density for asymmetric shocks and
find that they are again given by a Gaussian. This time they are not centered at
vanishing rapidity ξ but they are shifted by ξ̄. Hence, we write down the proper
energy density as

ϵ(ξ, τ) = A(ω+, ω−; τ)e− 1
2

(ξ−ξ̄(ω+,ω−;τ))2

σ(ω+,ω−;τ) . (3.111)

The shift for several configurations of asymmetric shockwave collisions is shown
in figure 3.16. From this graph we can read off, that the shift is given by

ξ̄(ω+, ω−; τ) = Ξ(τ) ω+ − ω−

ω+ + ω−
(3.112)

to a good approximation. As can be seen from figure 3.16 the coefficient Ξ is
approximately 0.07 and ,thus, constant for τ > 2. The rapidity distribution of the
proper energy density is sufficiently well approximated by the shifted geometric
mean of the corresponding symmetric collisions, i.e.

ϵ(ξ, τ ;ω+, ω−) ≈
[
ϵ(ξ − ξ̄(ω+, ω−; τ), τ ;ω+, ω+)

× ϵ(ξ − ξ̄(ω+, ω−; τ), τ ;ω−, ω−)
]1/2

. (3.113)
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Figure 3.15: Proper energy density ϵ for shocks with (ω+, ω−) = (0.075, 0.35).
The top left panel displays this observable for all t and z, while the red lines
correspond to lines parametrized by (3.107) for τ ∈ {2, 2.5, 3}. The other panels
display the energy density along these curves (red lines), while the blue dashed
lines indicate the mean (3.113). We can see that for |ξ| < 1 this is a very good
approximation, while for |ξ| > 1 slight deviations occur.
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Figure 3.16: In these two plots we plot the τ dependence of the rapidity shift
ξ̄ from equation (3.112) for asymmetric collisions with (ω+, ω−) = (0.075, 0.25)
(dashed red), (ω+, ω−) = (0.1, 0.25) (solid blue) and (ω+, ω−) = (0.075, 0.35) (dot-
ted black) in the left panel. In the right panel we plot the coefficient function Ξ(τ)
which is almost constant for τ > 2.
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This approximation is displayed in figure 3.15. It works well for |ξ| < 1 while for
|ξ| > 1 tiny deviations become visible. In [1] we suggest an improved model for
the means of the proper energy densities.

3.6 Conclusion

This chapter and, hence, also [1] was first of all intended to give a pedagogical
introduction to numerically solving Einstein’s equations for planar shocks. This
has to be seen as supplementing material to [28]. On the other hand, it is, of
course, also motivated from a physical point of view. It is an attempt to close the
gap between the very early stage of HICs and the hydrodynamic regime (QGP)
by providing initial data for further hydrodynamic simulations which require the
initial proper energy density for a conformal fluid.
In this chapter, we presented an extension of the “universal” flow for planar
shocks [2]. This allows us to compute initial hydrodynamic data for off-center col-
lisions provided that transverse gradients are small compared to longitudinal ones
(cf. section 3.3). To access these data one can now simply use equation (3.113)
and the result from [2] without performing any costly and numerically challenging
simulations.
In [1] we verified the result from [2, 28] that the hydrodynamization time thydro ≈ 2
and we find that this result also holds for asymmetric shockwaves. Considering
the asymmetric shockwave collisions as pixels within an off-center collision (cf.
figure 3.8), our results imply that hydrodynamization time, measured in the lab
frame, increases towards the periphery of the overlap region that forms a QGP.
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4
Entanglement Entropy

This chapter on entanglement entropy is based on the work which led to [3] and
therefore the structure of this chapter follows this publication.
As mentioned in chapter 1, one of the motivations for this study was to probe the
applicability of the holographic principle to QCD to some extent by considering an
observable which can be calculated using both theories. The observable of interest
is entanglement entropy which we will introduce in section 4.1.
Entanglement entropy has become a heavily studied field of research in recent years
since it is widely applied in all kind of fields. For example, it is of great interest in
quantum information theory, where many related entanglement measures, as e.g.
mutual entropy, exist [52]. As we will show in section 4.2 there is also a relation
to the holographic principle via minimal surfaces [53]. Entanglement entropy can
also be used as a universal order parameter of quantum phase transitions for, e.g.,
2 + 1 dimensional topological field theories. This is done by relating entanglement
entropy to the quantum dimension [54].
We start this chapter by defining entanglement entropy and Rényi entropies and
showing some basic properties thereof in section 4.1. Afterwards, we review the
holographic calculation of entanglement entropy in section 4.2 to get an idea of
what we can expect from that point of view [55, 56]. We will compare these results
with the ones obtained on the lattice later on.
In section 4.3 we will show how to calculate entanglement entropy (or to be more
precise, Rényi entropies) on the lattice. This was already done for SU(2) and
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SU(3) in earlier works [57, 58]. We follow this line of research to repeat the SU(2)
and SU(3) calculations but with much higher statics and to present SU(4) data for
the first time [3]. We will also discuss the results with the holographic expectation
in mind. Finally, we will conclude and give some possible future directions.

4.1 Entanglement and Rényi Entropy

In this section, we will define entanglement entropy and Rényi entropies as a
generalization thereof and show some basic properties. This introduction is based
on [59].
To obtain intuition on entanglement, we start with a simple example, namely a
two-qubit system, i.e. two spin-1/2-particles where each of them can be in the
state |↑⟩ or |↓⟩. It is straightforward to write down the Hilbert space and a basis
thereof, since it is just the product space of the two individual particles,

H = Hqubit ⊗ Hqubit = span {|↑↑⟩ , |↑↓⟩ , |↓↑⟩ , |↓↓⟩} . (4.1)

It is obvious that these basis states are separable, i.e. if we measure the first
qubit in any state, we do not know in which state the second qubit is. We call
these states not-entangled. On the other hand, due to the quantum-nature of the
system, we can consider states as the Einstein-Podolsky-Rosen (EPR) state [60]
given by

1√
2

(|↑↓⟩ + |↓↑⟩) (4.2)

which is clearly not separable. We call this state entangled because if we measure
the first spin to be in any state, we immediately know the state in which the
second particle is.
With this introductory example in mind, we want to formalize the idea of entan-
glement by considering a lattice of points labeled by α. On each of the lattice sites
live degrees of freedom with a Hilbert space Hα. The total Hilbert space is then
given by the product space as before, i.e.

H = ⊗αHα. (4.3)

Next we bipartite the systems in two regions A and A as is shown in the left
panel of figure 4.1. The boundary ∂A is called entangling surface. For the lattice
system, it is obvious that we can factorize the Hilbert space as

H = HA ⊗ HA. (4.4)
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Σt A

A ∂A

Figure 4.1: The left figure shows the bipartition of a fixed time slice Σt in regions
A and A. The boundary between the two regions ∂A is called entangling surface.
The right figure shows the maximally gauge invariant way of how to factorize the
Hilbert space for a gauge theory [61]. The bipartition is chosen such that we cut
along the links (solid line) because other possibilities (dashed line) would cut links
and thus violate gauge invariance.

Afterwards, we can define the density matrix in the usual way, i.e. ρ = |ψ⟩ ⟨ψ|.
With this bipartition and factorization, we can construct an operator which acts
only on one of the factors, e.g. HA, by tracing out the complement (HA). This
operator is called the reduced density matrix and can be written down formally
as

ρ̂A = trA (ρ̂) = trA (|ψ⟩ ⟨ψ|) . (4.5)

This definition can be interpreted as follows. We capture the state of degrees of
freedom in A by complete ignorance of A. If the state |ψ⟩ can be factorized, then
we have a pure state in HA. On the other hand due to quantum entanglement
and the ignorance of HA, we can end up with a non-diagonal density matrix, i.e.
a list of possibilities for various states |ψ⟩ in HA.
To quantify this operator we define entanglement entropy as the von-Neumann
entropy of the reduced density matrix

SEE = −trA (ρ̂A log (ρ̂A)) . (4.6)

This definition can be generalized to so-called Rényi entropies which are defined
as the moments of the entanglement entropy [62, 63]

S(q) = 1
1 − q

log (trA (ρ̂qA)) ∀ q ∈ N, q ≥ 2. (4.7)

These Rényi entropies are very useful to explore the purity of a state. Let us
first recall that for a pure state the density matrix is just a projection operator
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ρ̂ = |ψ⟩ ⟨ψ|. Thus (with a proper normalization) tr (ρ̂) = 1, and due to the pro-
jection property tr (ρ̂2) = 1 holds again. On the other hand for a mixed state, we
expect that tr (ρ̂2) < 1 and thus Rényi entropies provide a measure for quantum
purity [59].
For most systems, as for the system we will consider, this definition can be ana-
lytically continued to q ∈ R+ and then one can show that

lim
q→1

S(q) = SEE. (4.8)

Up to now we only considered a field theory on a lattice. If we want to take the
continuum a → 0 limit the factorization of the Hilbert space (4.4) causes trouble
for gauge theories. This is best seen by considering the lattice formulation of gauge
theories, where the links are the gauge transporters and thus responsible for gauge
invariance. As it can be seen from the right panel of figure 4.1, gauge invariance is
lost if we cut any link. There are several possibilities to cope with this issue. One
possibility is the so-called maximally gauge invariant way [61, 64], where one cuts
along the links and then decides to which region the degree of freedom belongs to
(cf. figure 4.1).
In section 4.3 we will consider a slab-shaped geometry with slab length l (cf.
figure 4.4). We will use the limit (4.8) to approximate entanglement entropy.
Calculating SEE directly is hard in Monte Carlo simulations due to the logarithm,
whereas S(q) is relatively cheap for q ∈ N, q ≥ 2.
Indeed, in the actual numerical calculation in section 4.3, we will approximate
SEE ≈ S(2).1 This approximation can also be motivated by looking at the q de-
pendence of the Rényi entropy in simplified models [67, 68] where free massive
fields were considered. In these studies, the l-dependent terms in the Rényi en-
tropy S(q) differ from corresponding terms in the entanglement entropy by a factor
q+1
2q (c.f,. equation (86) in [68]). For the second Rényi entropy S(2) this gives a

factor of 3
4 . Higher Rényi entropies differ even more from entanglement entropy.

On the other hand, the relative difference between S(2) and S(3) is around 10%
which is the order of the numerical error in our simulations.
These considerations make it apparent that the gain of calculating higher Rényi
entropies in order to improve the q = 1 extrapolation is overwhelmed by the nu-
merical cost due to the mild dependence of S(q) on q for larger q. Hence, we have
to accept a systematic error of at least 25% due to using second Rényi entropy
instead of entanglement entropy itself.
Nevertheless, calculations in free field theories suggest that the functional depen-

1Studies of the impact of that approximation in [65] showed that for SU(3) these errors are
well below the statistical error. In the talk [66] a corresponding plot is shown on slide 38.
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dence on l is the same for both entropies [67, 68].
It should be noted that the alternative formula used in [57, 58]

SEE = − lim
q→1

∂

∂q
log tr (ρ̂qA) (4.9)

gives the same result once the derivative is approximated using the finite difference
formula f ′(q = 1) = f(q = 2) − f(q = 1) on the lattice, i.e. one also measures S(2)

precisely.
The Rényi and entanglement entropy contains non-universal UV-divergent terms
that have to be removed carefully in order to access the low energy properties of the
theory. This removing process has been most carefully worked out for finite and
scalable entangled regions, such as the interior of a sphere [69]. For such regions,
characterized by a single dimensionful size parameter l, the universal UV-finite
contribution C(l) to the entanglement entropy can be extracted as

C(l) = l∂l(l∂lSEE(l) − 2SEE(l)). (4.10)

For a realistic lattice gauge theory on a square lattice, such spherical geometries
are practically impossible, since the smooth surface could only be approximated
by polygons with a lot of surface edges. These edges would result in a lot of
additional contributions [70]. In the following, we will, therefore, restrict ourselves
to a bipartition of the three dimensional time slice Σt into a slab of width l and its
complement. This geometry of entangling region A was also considered in most
previous simulations [55, 57, 58] and theoretical works [55, 68, 71]. Due to the
periodic boundary conditions in spatial directions, the corresponding entangling
surface consists of two parallel planes and thus has neither extrinsic curvature
nor sharp corners. For such a slab-shaped entangling region with a large enough
spatial extent L the entanglement entropy per unit area in d = 3 + 1 dimensions
diverges as

SEE/L
2 = A′

a2 − C

l2
+ (finite), (4.11)

where a is the lattice spacing which sets the UV cutoff scale ΛUV ≡ a−1 and
(finite) denotes UV-finite terms which do not diverge as a → 0 or l → 0. For
quantum field theories with a mass gap, at large l SEE should approach a constant
value. This result was derived in [55, 68, 71] by dimensional analysis and semi-
analytic estimates.
The coefficient C in (4.11) is believed to be universal and similar to the A-function
(in the terminology of [72–74]), a higher-dimensional generalization of central
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charge of 2D CFTs which serves as a counter of the number of effective degrees of
freedom in a theory. In particular, it is expected to decrease monotonically along
the renormalization group flow, similarly to Zamolodchikov’s c-function [75].
To extract C from the entanglement entropy (4.11), one can apply the differential
operator l3∂l to the entanglement entropy

C(l) = l3

2L2
∂SEE(l)
∂l

. (4.12)

At l ∼ a, C(l) counts the number of degrees of freedom at the UV cutoff scale
(such as, e.g., asymptotically free gluons in QCD). However, at intermediate val-
ues of l, when finite terms in (4.11) become important, the coefficient C(l) defined
by (4.12) acquires a nontrivial l-dependence and can be interpreted as a counter of
the number of degrees of freedom at scale l. By analogy with higher-dimensional
generalizations of Zamolodchikov’s c-theorem [72–74] one expects that C(l) would
monotonically decrease with l.
For slab-shaped entangled regions, such an interpretation has been confirmed by
explicit calculations in free field theories [68, 71] and in holographic models [55].
In this thesis, we follow [55, 68, 71] and consider C as being approximately pro-
portional to the effective number of degrees of freedom, referring to C(l) as an
entropic C-function [56–58]. We will see that our numerical results support such
an interpretation.
Dimensional arguments suggest that at small slab width l the Rényi entropies
(and in particular the second Rényi entropy, which we actually measure) should
also behave similarly to (4.11), however, with coefficient C which is in general
different from the one for the entanglement entropy. As discussed above, for free
field theory the relative error in C is as large as 25% [68].
Let us note that a wealth of results exist for the scaling behavior of Rényi and en-
tanglement entropies in lower, in particular 2D, gapless field theories. The general
lesson to be drawn from these studies is to be careful with the naive C-function
definition (4.11) and the usage of the second Rényi entropy as an approximation
for the entanglement entropy. As mentioned before, the coefficient C may vary
between the entanglement entropy and the second Rényi entropy in explicit ex-
amples (e.g. [76, 77]) and logarithmically diverging terms may occur (e.g. [78]).
Additionally, so-called “unusual corrections” were found [79, 80], including oscil-
lations in l. The necessity to go to large lattices sizes and large l to obtain a good
match with CFT results was pointed out in [81]. In general, accurate results can
only be expected when all of the above corrections are considered [82]. With this
in mind, let us note that gapless lower-dimensional systems are very special and
may or may not reflect the physics of four-dimensional YM theory with a finite
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mass gap that we are considering in this thesis. Due to a lack of analytic results
concerning the entanglement and Rényi entropies in this case, we are forced to
simply test the prescription (4.12) with our numerical data. A qualitative analy-
sis of the entanglement entropy for a slab-shaped region (see e.g. equation (4.5)
in [71]) suggests that the term −C

l2
in (4.11) might also contain an additional

logarithmic factor:

SEE/L
2 = A′

a2 − C

l2
− C ′

l2
ln(l) + (finite). (4.13)

In practice, however, it is difficult to extract a relatively small ln(l) correction
to the l−2 scaling law. While one can construct a formal expression C ′(l) =
l ∂
∂l

(
l3

2L2
∂SEE(l)
∂l

)
similar to (4.12) and (4.10) yielding the coefficient C ′ in (4.13), it

yields a very noisy signal upon the replacement of a second derivative by finite
differences, and is therefore not practical. We thus neglect possible ln(l) correction
and use the expression (4.12) to extract the entropic C-function numerically. As
already mentioned, the entropic C-function can be calculated both in holography
and on the lattice. We will explain what we are expecting from a holographic
point of view in the next section.

4.2 Holographic Entanglement Entropy

In this section, we will recapitulate the derivation of the holographic entropic C-
function. The holographic principle was described in chapter 2 where we discussed
that a strongly coupled problem in a CFT can be converted into a weakly coupled
gravitational one.
Ryu and Takayanagi found a prescription for entanglement entropy using the
gauge/gravity dictionary [83] and derived the formula [53]

Shol
EE = Amin

4GNℏ
for Nc → ∞ and λ large. (4.14)

In this formula, Amin represents the minimal surface whose boundary coincides
with the boundary of the entangling surface ∂A. This was generalized to Rényi
entropies in [84] where it has been argued that one has to replace the minimal
surfaces by cosmic branes in AdS.
In the weak form of AdS/CFT, the field theory is conformal and does not show
confinement which is an important feature of YM theories. One possibility to
see confinement in a theory is to consider the Wilson loop W which is related to
the quark-antiquark potential as ⟨W⟩ ∝ e−tV (r) for infinite quark masses. For a
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l ≪ lcrit l ≫ lcrit

Figure 4.2: Entanglement entropy in a confining background. The geometry
is deformed such that the Wilson loop satisfies an area law. In this figure, the
black solid line represents the boundary which we bipartite in A(l) and A. The
bipartition is parametrized by the length l. The confining background is depicted
as the black dashed line which serves as a maximal penetration depth for geodesics.
For l ≪ lcrit the minimal solution is a connected one while for l ≫ lcrit. the
disconnected surface is minimal. It is straightforward to see that the connected
solution depends on l while the disconnected one is l-independent, i.e. ∂lSEE = 0.
Since these two solutions do not intersect smoothly, the derivative of SEE has a
jump as shown in figure 4.3.

confining theory as, e.g., QCD, the potential is of Cornell from, i.e.

V (r) = a

r
+ σr. (4.15)

The term proportional to r ensures confinement since for increasing distance the
potential increases and at some point, enough energy is available that a new quark-
antiquark pair is formed. This phenomenon is called (QCD) string breaking.
Due to that fact, there are no free color charges below a critical temperature Tc.
Therefore we see that for a confining theory the Wilson loop has to satisfy an area
law.
On the other hand, the holographic dictionary tells us that the Wilson loop is
given by ⟨W⟩ = exp (−S) where S is the action. In the ’t Hooft limit, the action
S simplifies to the NG action and thus we are left with the computation of a
geodesic starting from the quark and ending at the anti-quark. Having this in
mind and just considering pure AdS space, we see that due to the factor 1

z2 in the
metric (2.77), increasing the distance between the quark and the antiquark at the
boundary results in a geodesic penetrating deeper and deeper into the bulk. Thus
the Wilson loop does not satisfy the required area law.
Therefore we modify the spacetime and introduce a finite penetration depth, as,
e.g., a soft wall [85] or by an additional compactified dimension whose radius
shrinks to zero at this depth as in the Witten model [21].2

2As it is mentioned in [55] for the hard wall model [86] this transition is not present since the
disconnected solutions, which are essential for the behavior of entanglement entropy as we will
see below, are not well defined.
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C(l)

Figure 4.3: Expectation for the entropic C-function (4.12) from the holographic
principle (figure adapted from [56]). It exhibits a jump at some critical length lcrit
from a finite value to zero.

The basic idea is depicted in figure 4.2. It can be shown that there are always
two solutions to the EoM for the minimal surface Amin in (4.14), a disconnected
and a connected one [55]. Obviously, one always has to consider both of them
and then take the minimum. The connected solution depends on the length l

while the disconnected does not. Since the intersection of the connected and the
disconnected solution is not smooth, the entropic C-function exhibits a jump at
some critical value lcrit. At l < lcrit the entropic C-function scales as N2

c (to the
leading order in the 1/Nc expansion) while at l > lcrit it is of order unity as it
could be expected due to the confinement at large scales. These results were first
published in [55, 56] and we show the corresponding plot in figure 4.3.
In the next section, we will show how we can calculate the entropic C-function on
the lattice and we will also show results and discuss them.

4.3 Entanglement Entropy from the Lattice

In this section, we will describe how we can calculate Rényi entropy on the lat-
tice. As already mentioned it is computationally hard to calculate entanglement
entropy directly and thus we use the limit in (4.8) to approximate entanglement
entropy. This has already been done for SU(2) and SU(3) pure YM theory in
previous works [57, 58]. We extend this study by having larger statistics for these
two gauge groups and for the first time doing calculations in SU(4) pure YM the-
ory.
By looking at the definition of Rényi entropies (4.7) we see that we have to cal-
culate powers of the reduced density matrix trA (ρ̂qA). In [67] a strategy to tackle
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this problem using the path integral formalism was proposed. We will review this
method in a graphical way adapted to the lattice. To get familiar to this graphical
notation we start by calculating matrix elements of the density matrix ρ̂ which we
can write as

⟨ψ1| ρ̂ |ψ2⟩ = 1
Z

⟨ψ1| e−βĤ |ψ2⟩ =

⟨ψ1|

⟨ψ2|

. (4.16)

In this work, we always refer to the density matrix of the groundstate, i.e. ρ̂ =
|0⟩ ⟨0|, which we obtain in the limit β → ∞. The picture in the formula has
to be understood as follows. We have to integrate over all field configurations
from Euclidean time τE = −∞ to τE = ∞ with

∣∣∣ψ1/2
⟩

as boundary conditions.
Obviously, this integral is infinite dimensional, but in the lattice approach it is
discretized to give a finite (but very large) dimensional integral, which is then
evaluated using Monte Carlo techniques.
Having introduced this graphical visualization we can calculate matrix elements
of the reduced density matrix by tracing over region A, i.e.

⟨ψ1| ρ̂A |ψ2⟩ =
∑
⟨ψ|

⟨ψ1|

⟨ψ2|

⟨ψ|

⟨ψ|

=

⟨ψ1|

⟨ψ2|

=

. (4.17)

In the last step, we deformed the lattice such that we automatically get rid of
the sum by identifying corresponding states |ψ⟩. It is important to note that
the same number of degrees of freedom label a regular lattice and a deformed
lattice. In particular, the diagonal link in the deformed lattice carries the same
group element as the middle lower link (as indicated by the equal sign). This
feature will later allow computing the derivative in the holographic C-function
by comparing different cut lengths l obtained from the same underlying lattice
configurations. Furthermore this also has the technical advantage, that we can use
standard methods to store the lattice data in memory. After these considerations,
we can compute powers of the reduced density matrix by gluing copies of reduced
density matrix lattices together. This holds true because we can insert a unity
operator

⟨ψ1| ρ̂2
A |ψ2⟩ =

∑
⟨ψ|

⟨ψ1| ρ̂A |ψ⟩ ⟨ψ| ρ̂A |ψ2⟩ (4.18)
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2T

T

T

Ā A

Figure 4.4: Visualization of the deformed geometry as it was already shown
in [58]. The periodicity in region A (right, red) is 2T while in A (left,blue) we
have two copies with periodicity T . The crosses, squares and triangles indicate
the identifications which have to be made.

and then replace the sum by an identification as before. Taking the trace over A
afterwards results in the identification of the corresponding open states ⟨ψ1| and
|ψ2⟩, i.e.

trA
(
ρ̂2

A

)
=

=

=

. (4.19)

This easily generalizes to arbitrary powers q of the reduced density matrix as

trA (ρ̂qA) = Z[A, q, T ]
Zq[T ]

(4.20)

where Z[T ] is the partition function of a normal lattice and the partition function
Z[A, q, T ] refers to a lattice which has a temporal period of q × T in A and there
are q subsystems with period T in Ā. We show an alternative graphical way, which
was also used in [58], to depict this geometry in figure 4.4.
Using (4.7) and (4.20) we can write the Rényi entropies as

S(q) = 1
q − 1

F [A, q, T ] − q

q − 1
F [T ] (4.21)

where we used the relation F = − logZ between the free energy F and the par-
tition function Z. As already mentioned we will approximate the entanglement
entropy by the second Rényi entropy. Our aim is to calculate the entropic C-
function and therefore we have to calculate the derivative with respect to l. We
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approximate this by using the central finite difference approximation for q = 2

∂

∂l
SEE(l − a/2) ≈ F [l − a, 2, T ] − F [l, 2, T ]

a
. (4.22)

The term ∼ F [T ] in (4.21) vanishes since it does not depend on l. At this point,
we see that for the first Rényi entropy there is no cut and hence the derivative
of the first Rényi entropy will always vanish. Therefore, the best we can do with
this method is to calculate the second Rényi entropy.
So far we have achieved to rewrite the problem of calculating the entropic C-
function to measuring differences of free energies on the deformed lattice geometry
defined above. Calculating such differences was first developed in [87, 88] and we
will briefly review the method in what follows.
Assuming we want to calculate the difference of two arbitrary free energies F1 and
F2, we can first use the relation between the free energy and the partition function
Fi = − log(Zi) again and then use the Fundamental Theorem of Calculus, i.e.

F2 − F1 = − logZ2 + logZ1 = −
∫ 1

0
dα

∂

∂α
logZ(α) (4.23)

where the equality in the last step obviously only holds if Z(1) = Z2 and Z(0) = Z1.
The simplest partition function satisfying these requirements is given by a linear
interpolation

Z(α) =
∫
D[U ] exp (−(1 − α)S1[U ] − αS2[U ]) (4.24)

where
∫
D[U ] refers to the path integral over all gauge links U . Then we can

analytically calculate the derivative with respect to α to arrive at

F2 − F1 =
∫ 1

0
dα ⟨S2[U ] − S1[U ]⟩α (4.25)

where ⟨·⟩α denotes the average with weight of the interpolating partition function
Z(α) defined above.
With this procedure, we can finally calculate the entropic C-function by the fol-
lowing steps:

Step 1 Generate gauge configurations with interpolating action

Sint = (1 − α)Sl[U ] + αSl+1[U ] (4.26)

on the deformed lattice (see figure 4.4). The subscripts l and l + 1 refer to
the length of the cut.
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Step 2 Measure Sl+1 − Sl on these configurations for several values of α.

Step 3 Integrate over α by using cubic spline interpolation and then analytically
integrate the interpolation. Other numerical methods turn out to give the
same results within statistics.

Step 4 Calculate the entropic C-function using the formula

C(l − a/2) = (l − a/2)3

aL2

∫ 1

0
dα ⟨Sl+1 − Sl⟩α . (4.27)

4.4 Numerical Results

In the previous section, we have reviewed how to calculate entanglement entropy
or to be more precise Rényi entropies, on the lattice. In this section, we will first
discuss the details of our lattice calculation and afterwards, we are going to present
results for the entropic C-function in SU(2), SU(3) and SU(4) pure YM theory.
To implement the method described in the last section we use the standard Wilson
action given by

S[U ] = β

Nc

∑
Uµν

Re tr (1 − Uµν) . (4.28)

We are using a pseudo-heatbath algorithm to update the gauge configurations.
Doing this we have to calculate the closing plaquettes for the link which we want
to update. It is crucial in this step that we carefully choose the nearest neighbors
of the lattice sites, since there are several points at the end of the cut which are
non-trivial to reach.
To generate random SU(Nc) matrices we use the Cabbibo-Marinari algorithm [89],
where one updates all SU(2) subgroups of the SU(Nc) matrix one after another.
To avoid autocorrelation we wait 100 sweeps between successive measurements
and we also checked the autocorrelation time. For all sets of parameters, we use a
lattice of size N3

s × (q ×Nt) = 163 × (2 × 16). Since the resolution of the entropic
C-function in l would be very poor if we only considered one single β value we
have to set the scale on the lattice to be able to compare several different lattice
spacings. We do this by using the string tension

√
σ determined in [90] and then

measure everything in units of
√
σ.

The number of configurations for SU(2), SU(3) and SU(4) pure YM theory are
given in table 4.1. The numbers in these tables are the configurations we gathered
for each α value.
As mentioned in the last section (cf. equation (4.27)) we have to integrate the
interpolating action over α. Therefore we have to study the convergence of the
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Configurations for SU(2)

β
a
√

σ
l 2 3 4 5 6 7

2.420 0.245 414, 720 414, 720 1, 708, 280 1, 437, 288 1, 432, 656
2.440 0.228 276, 480 1, 928, 208 1, 808, 640 1, 763, 604
2.450 0.220 172, 800 1, 013, 760 1, 642, 921 2, 582, 780 2, 583, 793 2, 561, 809
2.460 0.213 276, 480 1, 840, 128 1, 826, 752 1, 750, 272
2.500 0.184 172, 800 172, 800 449, 280 829, 440 1, 720, 584 1, 723, 629

Configurations for SU(3)

β
a
√

σ
l 2 3 4 5 6 7

5.700 0.391 44, 976 44, 976 130, 656 253, 056 218, 328 230, 568
5.720 0.374 34, 728
5.740 0.357 34, 728
5.750 0.350 34, 728 34, 728 34, 728 120, 408 208, 080 134, 640
5.770 0.335 34, 728
5.780 0.328 34, 728
5.800 0.314 34, 728 34, 728 34, 728 120, 408 255, 048 134, 640

Configurations for SU(4)

β
a
√

σ
l 2 3 4 5 6 7

11.000 0.215 24, 480 70, 560 93, 600 93, 600 69, 120 184, 320
11.004 0.214 57, 600
11.008 0.214 30, 744
11.058 0.203 26, 650
11.075 0.200 160, 221 115, 200
11.100 0.195 253, 440 253, 440 253, 440
11.112 0.193 30, 744
11.156 0.186 57, 600
11.192 0.180 33, 961
11.200 0.179 103, 680 103, 680 149, 760 357, 120 357, 120
11.300 0.164 11, 520 11, 520 126, 720 126, 720 264, 960
11.398 0.152 31, 704

Table 4.1: SU(2), SU(3) and SU(4) configurations for the used β values and cut
lengths l. The numbers are the configurations simulated for each value of α. To
get the total number of configurations one has to multiply the SU(2) and SU(3)
configurations by 11 and the SU(4) ones by 21.
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Nc c χ2/d.o.f.

2 0.054(1) 0.24
3 0.173(5) 1.14
4 0.417(6) 0.44

Table 4.2: Fit to a constant and corresponding χ2/d.o.f. for the first few data
points in figure 4.5.

integral value with respect to the number of discretization points carefully. As
in [58] we find that we need 11 interpolating points for SU(3) but we need 21 for
SU(4). For SU(2) we also use 11 interpolating points instead of the 6 which were
used in [57]. The increased number of α values can be explained by the larger
lattice volume and the, therefore, larger integrand compared to [57]. Besides the
increased computational cost due to larger color matrices, this gives an additional
factor of ∼ 2 in computation time. Which makes it computationally almost im-
possible to go to really larger Nc with present-day computational resources.
The entropic C-function which we obtain from the lattice simulations are shown in
figure 4.5. In these plots, the different markers and colors correspond to different
lattice couplings β.
We see that for sufficiently small values of l the entropic C-function is constant
within statistical errors for Nc = 2, 3, 4. This behavior can be expected since
entropy is saturated by weakly interacting massless gluons in the short-distance
asymptotic freedom regime and the entropic C-function is defined such that it is
constant for non-interacting conformal fields. To get access to these constants we
fit a constant to the first data points where l

√
σ is less than lmax = 1.1, 1.3 and 0.7

for SU(2), SU(3) and SU(4) respectively. To verify these results we also varied
the fit range and found only a mild dependence. We also summarize the fit results
in table 4.2.
Above lmax the data for SU(2) and SU(Nc ̸= 2) are qualitatively different and
will, therefore, be discussed separately.
Let us start with SU(2) data. We find that above lmax there is no clear trend,
but remarkably the data for a

√
σ = 0.220 (red data points in figure 4.5) show the

expected transition at l
√
σ ≳ 1. We have two different explanations in mind.

First of all these effects might well be lattice artifacts. In the lattice approach, one
discretizes continuous spacetime by some finite lattice with a lattice spacing a and
therefore one automatically picks up discretization errors (from the non-zero lattice
spacing a) and finite volume effects (from the finite physical volume (qTa)(La)3).
To get reliable results one has to be sure that both errors are under control. It is
known that the finite volume effects are only suppressed by a power law in SU(2)
gauge theory, while they are suppressed exponentially for SU(Nc > 2). There-

86



0.4 0.6 0.8 1.0 1.2 1.4 1.6

l
√
σ

−0.05

0.00

0.05

0.10

0.15

C
(l

)

0.054(1)
0.24

a
√
σ = 0.245

a
√
σ = 0.228

a
√
σ = 0.220

a
√
σ = 0.213

a
√
σ = 0.184

0.5 1.0 1.5 2.0 2.5

l
√
σ

−0.1

0.0

0.1

0.2

C
(l

)

0.173(5)
1.14

a
√
σ = 0.391

a
√
σ = 0.374

a
√
σ = 0.357

a
√
σ = 0.350

a
√
σ = 0.335

a
√
σ = 0.328

a
√
σ = 0.314

0.4 0.6 0.8 1.0 1.2 1.4

l
√
σ

−0.4

−0.2

0.0

0.2

0.4

C
(l

)

0.411(6)
0.68

a
√
σ = 0.215

a
√
σ = 0.214

a
√
σ = 0.214

a
√
σ = 0.203

a
√
σ = 0.200

a
√
σ = 0.195

a
√
σ = 0.193

a
√
σ = 0.186

a
√
σ = 0.180

a
√
σ = 0.179

a
√
σ = 0.164

a
√
σ = 0.152

Figure 4.5: Entropic C-functions for SU(2), SU(3) and SU(4) (from top to
bottom) lattice gauge theories. The black dashed line with the blue error band
is a fit to a constant for the first data points where l

√
σ is less than 1.1, 1.3 and

0.7 for SU(2), SU(3) and SU(4) respectively. The numerical value with error is
given on the very right of each plot. The value below gives the χ2/d.o.f. for this fit.
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fore larger finite volume effects are expected for SU(2) YM theories. This is also
supported by the fact, that with our lattice size, (2 × 16 × 163), we are already
at half of the critical temperature for a

√
σ ≈ 0.18 [91, 92]. On the other hand, if

we go to larger a
√
σ to get a larger physical volume, we suffer from discretization

effects. Therefore for the chosen lattice size, we only have a small window around
a
√
σ ≈ 0.22 where we have both effects under control. We emphasize that this

discussion is only qualitative so far and the lattice artifacts have to be studied
with more care on larger lattices. Due to the limited computational resources,
this was not feasible within this work.
Beside these lattice artifacts, this difference might also originate in the different or-
der of finite-temperature deconfinement phase transition in SU(2) (second-order)
and SU(Nc > 2) (first-order) gauge theories. It is reasonable to conjecture that
the behavior near the critical cut length lmax might be related to thermal entropy
close to the finite-temperature phase transition since both transitions look qualita-
tively similar for theories with a Hagedorn-type spectrum of states [55]. Therefore
we can expect an enhancement of entanglement entropy and its fluctuations in
the vicinity of the second-order thermal phase transition in SU(2) gauge theory
due to the divergence of the correlation length [93]. This is absent for first-order
phase transitions in SU(Nc > 2) gauge theories.
For the SU(Nc ̸= 2) case, we find an expected monotonic decrease (within statis-
tical errors) of the entropic C-function for l > lmax. It reaches a value which is
compatible with zero. We have seen in section 4.2 that we expect a discontinuous
transition from the holographic computation [55], while we observe a smooth tran-
sition. Nevertheless, this behavior can be expected for a finite lattice and finite
Nc.
Additionally, holography makes several assumptions which do not hold true in the
YM theory considered here, and thus it is also not very puzzling that we get not
exactly the same results. The parameter which we did vary here was the number
of colors Nc, which is assumed to be ∞ in the holographic prediction. Therefore
we want to compare the different gauge groups. In the short l regime, the theory is
fairly well described by free gluons which have N2

c −1 degrees of freedom and thus
we rescale the entropic C-function by this number. The resulting graph is shown
in figure 4.6. In this plot, we only distinguish between different gauge groups and
do not display the lattice spacings. Obviously, the SU(2) data is still qualitatively
different and thus we will leave them out from the discussion from now on. We
can see that the SU(3) and SU(4) data are shifted but besides that, they have a
similar shape. Since we finally want to see if the number of colors has a visible
influence of the validity of the gauge/gravity prediction, i.e. that the slope for
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Figure 4.6: The entropic C-function for SU(2), SU(3) and SU(4) rescaled by
the gluon degrees of freedom N2

c − 1. The fits to these data are according to a
regularized step function (4.29). The first three red points (SU(3)) were excluded
from the fit due to large discretization errors, but these points show a trend towards
the fit in the continuum limit.

large Nc becomes steeper we fit the data to a regularized step function given by

A
[1
2

+ 1
π

arctan
(
x− C

B

)]
. (4.29)

The resulting fit with error bands is visualized in figure 4.6 by the black lines and
the fit parameters are given by

Nc A B C

3 0.030 ± 0.003 −0.328 ± 0.112 1.422 ± 0.068
4 0.029 ± 0.001 −0.132 ± 0.044 0.997 ± 0.029

From these results, we can calculate the maximal slope mmax = A
Bπ

which gives

mSU(3)
max = −0.030 ± 0.013, (4.30)

mSU(4)
max = −0.070 ± 0.025. (4.31)

Due to limited statistics, the errors are quite large and thus it is hard to give a
definite conclusion, but we observe a trend towards a steeper slope for Nc = 4.
This is consistent with the scenario of a discontinuous transition in the large Nc

limit.
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4.5 Discussion

In this chapter, we have calculated the entropic C-function corresponding to sec-
ond Rényi entropy S(2) as an approximation for entanglement entropy as a func-
tion of the width l of the slab-like entangled region in pure SU(Nc) YM theory
for Nc = 2, 3, 4 using lattice methods.
We have shown that the UV-finite entropic C-function is proportional to the num-
ber of gluon states (N2

c −1) for short distances. At larger values of l, this quantity
is consistent with zero, which is in agreement with the absence of colorful states
in the low-energy confinement regime. We also found an indication that this tran-
sition is steeper for Nc = 4 than for Nc = 3 which would support the holographic
prediction of a jump in the Nc → ∞ limit [55]. Let us note that for finite Nc a
phase transition on a finite lattice cannot be discontinuous. Thus, there are two
possible scenarios of how to interpret this. One possibility is, that the entropic
C-function undergoes a discontinuous transition for any Nc, but this can only
be seen by working on sufficiently larger lattices and taking the proper infinite
volume limit. Another possibility is, that the discontinuity occurs only in the
Nc → ∞ limit, since the predictions of [55] based on the holographic principle and
a Hagedorn-type spectrum are strictly speaking only valid in this limit.
Obviously, the facts that the holographic principle assumes SUSY, large ’t Hooft
coupling λ, and so one also may be responsible for these differences. Also, the
fact that [55] calculates the entropic C-function of entanglement entropy and we
calculated the one related to the second Rényi entropy might be an explanation
for this difference.
Possible future projects can involve both sides. First of all in the lattice approach,
one would like to increase statistics further to decrease the error bars. Going to
larger Nc may reveal a steeper slope and thus a more abrupt transition. But as
already mentioned this results in large computational cost, not only due to the ob-
vious Nc dependence but also due to the finer lattice of α-values for the integrand.
For Nc = 3, 4 this already resulted in an additional factor of 2Nc in computational
cost. Hence, it is questionable if this is feasible in the near future.
On the other hand, the holographic calculations can also be brought closer to
the lattice simulations by considering corrections due to finite ’t Hooft coupling.
Also, the result of [84] using Rényi instead of entanglement entropy in the holo-
graphic setup is interesting and might be closer to the results which we observed
numerically.
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5
Summary and Conclusion

In this thesis, we used AdS/CFT which we reviewed in chapter 2 to be able to
map strongly coupled problems in a CFT to weakly coupled gravity, i.e. Einstein
gravity.
In chapter 3 we used this duality to collide lumps of energy in a CFT which can be
translated to solving classical Einstein’s equations in asymptotically AdS space-
time. This collision in the CFT can be seen as an approximation for the early stage
of a HIC and the formation of the QGP which is an almost perfect fluid. We chose
the latter property as a benchmark of how fast the two incoming projectiles are
well described by hydrodynamics after the collision. We used infinitely extended
shocks in the transverse directions which reduced the dimension of the problem
and hence, resulted in less numerical instabilities and lower computational costs.
We argued in section 3.3 that this can be seen as the first-order in a gradient
expansion for off-center collisions (cf. figure 3.8). In [2] Chesler, Kilbertus and
van der Schee found an expression for the post-collision proper energy density.
This is needed as initial data for hydrodynamic simulations which are much less
cumbersome than going through the whole holographic numerics. We were able
to generalize this result to asymmetric shocks by using appropriate averages of
symmetric collisions (cf. equation (3.113)). This helps a lot in the understanding
of the early phase of HIC since there are not really any other tools to study this
sector, because in this regime QCD is strongly coupled and thus PT fails. On the
other hand, this is also a dynamical, out-of-equilibrium process which cannot be
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analyzed with the most common tool, i.e. LQCD. Hence, the AdS/CFT approach
is very promising, even though it assumes a supersymmetric, infinitely strongly
coupled CFT with an infinite number of colors.
Additionally, confinement is not present in this formulation of AdS/CFT which
can be seen from the quark anti-quark potential since it does not satisfy an area
law as we sketched in section 4.2. But there are other models, like the already
mentioned Witten model [21] which include confinement. Hence, it would be in-
teresting to perform calculations in this model, which uses the AdS6/CFT5 duality
and then wraps up one coordinate to break parts of the CFT SUSY. But to con-
tinue the numerical studies in that direction a lot of pioneering work has to be
redone for the D4-brane setup in type IIA superstring theory. E.g., one would
have to redo the calculation from [94] for the relation between the near boundary
metric of AdS spacetime and the energy-momentum tensor in the boundary CFT
for type IIA string theory. Overcoming these difficulties would be very interesting
because then one could also observe the confinement-deconfinement phase transi-
tion in these model HICs.
As already mentioned there are other differences between the CFT side and QCD.
In chapter 4 we studied entanglement entropy which can be calculated both us-
ing holography and for pure YM theory. Thus we can probe the dependence of
this observable on the number of colors Nc at least to some extent. We used a
slab-shaped geometry for which the holographic calculation predicts a jump of the
entropic C-function (4.12) at some finite size of the slab (cf. figure 4.2). This
computation uses the Ryu-Takayangi formula (4.14) derived in [53]. We calcu-
lated the entropic C-function corresponding to the second Rényi entropy on the
lattice for SU(Nc), Nc ∈ {2, 3, 4}. We found a smooth transition instead of a
jump which can be expected for a finite lattice. To make a very precise statement
one would have to consider the proper infinite volume limit. Assuming that also
in the infinite volume limit we still do not find a jump but a smooth transition,
we also found that the slope of this transition is larger for Nc = 4 than for Nc = 3
which supports the holographic prediction in the Nc → ∞ limit. As can be seen
from table 4.1 this was a high-statistics study and hence computationally quite
costly. Therefore, going to larger lattices (to study the infinite volume limit) or
to go to larger Nc (to test if the slope increases further) are out of scope in the
near future. A very promising idea from the holographic side was proposed in [84]
which gives formulas for calculating Rényi entropies which bring the holographic
setup closer to the scenario considered in this work.
To sum up, the AdS/CFT duality is a tool to study the early phase of HICs
even though differences between supersymmetric CFT and QCD are significant.
Nevertheless, there are ways to lower the differences between these theories, e.g.
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the Witten model [21] or the Sakai-Sugimoto model [95, 96]. This will enlarge
the spectrum of observables which are universal enough to give similar results for
holographic models and strongly coupled, dynamical QCD processes.
The applicability of AdS/CFT to QCD can be estimated by having a look at
observables in both theories, as we did for entanglement entropy. Further inves-
tigations in this direction could strengthen this approach.

93



A
Explicit equations for

Planar Shocks

A.1 Einstein’s Equations for Planar Shocks

In this section, we write down explicit forms for Einstein’s equations (3.64a)-
(3.64g) for planar shocks. We parametrize the spatial metric ĝ as

ĝ =


eB 0 0
0 eB 0
0 0 e−2B

 , (A.1)

with an anisotropy function B(u, t, z) and u = 1/r. For the case of planar shocks
where we do not have a transverse (x, y) dependence, the functions Fx and Fy can
also be set to zero. From now on we name the Fz component F for brevity. With
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these simplifications Einstein’s equations in EF coordinates read

(
∂2
r +QΣ[B]

)
Σ = 0 , (A.2a)(

∂2
r + PF [B,Σ]∂r +QF [B,Σ]

)
F = SF [B,Σ] , (A.2b)(

∂r +Qd+Σ[Σ]
)
d+Σ = Sd+Σ[B,Σ, F ] , (A.2c)(

∂r +Qd+B[B,Σ]
)
d+B = Sd+B[B,Σ, F, d+Σ] , (A.2d)

∂2
rA = SA[B,Σ, F, d+Σ, d+B] , (A.2e)(

∂r +Qd+F [B,Σ]
)
d+F = Sd+F [B,Σ, F, d+Σ, d+B,A] , (A.2f)

d+ (d+Σ) = Sd2
+Σ[B,Σ, F, d+Σ, d+B,A] . (A.2g)

Now we write down the source terms whereby we omit the dependencies in the
square brackets.

QΣ = 1
2B

′2 , (A.3a)
PF = 2B′ + Σ′ Σ−1 , (A.3b)
QF = 2B′′ + (6B′ Σ′ + 4Σ′′) Σ−1 + 3B′2 − 4Σ′2 Σ−2 , (A.3c)
SF = 2B′

,z + (4Σ′
,z + 6B′ Σ,z) Σ−1 + 3B,z B

′ − 4Σ′ Σ,z Σ−2 , (A.3d)
Qd+Σ = 2Σ′ Σ−1 , (A.3e)

Sd+Σ = −2Σ + e2B

12Σ3

{
8Σ
[
F
(
2Σ′

,z + F ′ Σ′
)

+ F 2 Σ′′ + F,z Σ′ + Σ,zz

]
+ 2Σ (F Σ′ + Σ,z)

(
8(F B′ +B,z) + F ′

)
− 4

(
FΣ′ + Σ,z

)2

+ Σ2
[
2F
(
4B′

,z +B′ (7B,z + 4F ′) + F ′′
)

+ 2F ′
,z + 4B′F,z

+ F 2
(
4B′′ + 7B′2

)
+ 4B,zF

′ + 7B2
,z + 4B,zz + F ′2

]}
, (A.3f)

Qd+B = 3
2Σ′ Σ−1 , (A.3g)

Sd+B = 3
2B

′ d+Σ Σ−1 − e2B

6Σ4

{
Σ2
(
2F ′

,z +B′F,z +B,zF
′ +B2

,z +B,zz + F ′2
)

+ F
[
Σ(4Σ′

,z +B′ Σ,z +B,z Σ′ − 2F ′ Σ′) + 2Σ2
(
B′
,z +B′(B,z + F ′) + F ′′

)
− 8Σ′Σ,z

]
+ F 2

[
Σ
(
B′Σ′ + 2Σ′′

)
+ Σ2

(
B′′ +B′2

)
− 4Σ′2

]
+ Σ

(
BzΣ,z − 4F ′Σ,z + 2F,zΣ′ + 2Σ,zz

)
− 4Σ2

,z

}
, (A.3h)

SA = +3
2d+BB′ − 6d+Σ Σ′ Σ−2 + 2 + e2B

4Σ4

{
− 8Σ

[
F (Σ′

,z + F ′ Σ′ + FΣ′′)

+ FΣ′
,z + F,z Σ′ + Σ,zz + 2(F B′ +B,z)(F Σ′ + Σ,z)

]
+ 4

(
FΣ′ + Σ,z

)
2
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+ Σ2
[

− 7(F B′ +B,z)2 + F ′2 − 4
(
F
(
2B′

,z +B′ F ′
)

+ F 2 B′′ +B′ F,z +B,zz

)]}
,

(A.3i)

Qd+F = 2B′ − 2Σ′ Σ−1 , (A.3j)
Sd+F = −2(A′

,z + F A′′ + A′ F ′) − 2(B′ − Σ′ Σ−1)(FA′ + A,z) + A′F ′

− 3d+B
[
F B′ +B,z + 2(FΣ′ + Σ,z) Σ−1

]
− 2

(
F (d+B)′ + (d+B),z

)
+ d+Σ

(
3ΣF ′ + 4(FΣ′ + Σ,z)

)
Σ−2 − 4

(
F (d+Σ)′ + (d+Σ),z

)
Σ−1 , (A.3k)

Sd2
+Σ = − e2B

3Σ2

{
Σ
[
FA′

,z + F
(
A′
,z + FA′′ + A′F ′

)
+ 2

(
FA′ + A,z

)(
FB′ +B,z

)
+ A′ F,z + A,zz − 2d+F (F B′ +B,z) − (d+F ),z − F (d+F )′

]
+
(
FΣ′ + Σ,z

)(
FA′ + A,z − d+F

)}
− A′ d+Σ + 1

2Σ d+B
2 . (A.3l)

Here primes denote radial derivatives, f ′ ≡ ∂f/∂r, while f,z ≡ ∂f/∂z, etc. The
conditions for the horizon at a fixed radial position (3.73) can be written down as

d+Σ
∣∣∣∣∣
r=rh

= −e2B

3

(
− F 2

2Σ3
,z

+ F,z
Σ

+ F

Σ2 (2ΣB,z + Σ,z)
)∣∣∣∣∣

r=rh

. (A.4)

The stationary horizon equation derived from (3.74) can be written as

0 = A,zz + A,z

[
−F ′ − 2F

(
B′ − Σ′

Σ

)
+ 2B,z + Σ,z

Σ

]

+ 1
4A

{
F ′2 − 2F ′

,z − 2F ′
(

2B,z + Σ,z

Σ

)
− 4F,z

(
B′ − 3Σ′

Σ

)
+ F 2

[(
B′ − 4Σ′

Σ

)2

− 6Σ′′

Σ

]

+ 4FF ′
(
B′ − Σ′

Σ

)
− 4F

(
B′
,z + 2B′B,z − 6B,z

Σ′

Σ
+B′ Σ,z

Σ
−

Σ′
,z

Σ
− 2Σ,zΣ′

Σ2

)

+ 4B,zz + 7(B,z)2 + 16B,z
Σ,z

Σ
+ 8Σ,zz

Σ
− 4(Σ,z)2

Σ2 + 24 e−2B
(
Σ′ d+Σ − Σ2

)}

+ F,z

(
2d+B − d+Σ

Σ

)
− 3

2F
2
(
d+BB′ − (d+Σ)′

Σ
+ 4 − 2d+Σ

Σ

(
B′ + Σ′

Σ

))

− F

(
3(d+Σ),z

Σ
+ d+B

(
B,z − 4Σ,z

Σ

)
− d+Σ

Σ

(
3F ′ − 2B,z + 2Σ,z

Σ

))

+ e2B

4Σ2

−6 (d+B)2 Σ4 + F 4
(
B′ + 2Σ′

Σ

)2

+ 2F 3
(
B′ + 2Σ′

Σ

)(
2F ′ +B,z + 2Σ,z

Σ

)

+F 2
(
F ′2 + 4B,z F

′ + (B,z)2 + (2F ′ +B,z)
4Σ,z

Σ
+ 4(Σ,z)2

Σ2

)}
. (A.5)
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A.2 Equations for the Transformation from FG to EF

In this section, we derive the equations for the coordinate transformation from FG
to EF coordinates.
We start with the metric for a shock moving in +z̃ direction in FG coordinates
which is given by

ds2
FG = ρ̃−2

(
−dt̃ 2 + dx̃2

⊥ + dz̃2 + dρ̃2
)

+ ρ̃2h(x̃−)dx̃2
+. (A.6)

for an arbitrary shock function h(x̃+) and x̃− ≡ t̃ − z̃. The desired form in EF
coordinates with inverted radial coordinate (r ≡ 1/u) is given by

ds2
EF = −2dt

[ 1
u2du+ Adt+ Fdz

]
+ Σ2ĝijdx

idxj. (A.7)

From this, we can read off that the fixed metric coefficients are

gEFuu = 0, gEFuz = 0, gEFut = − 1
u2 . (A.8)

We parametrize the FG coordinates according to

t̃ = t+ u+ α(t− z, u), x̃⊥ = x⊥,

z̃ = z − γ(t− z, u), ρ̃ = u+ β(t− z, u). (A.9)

Calculating the transformation of the FG metric to EF coordinates, i.e.

gEFAB = ∂x̃C

∂xA
∂x̃D

∂xB
gFGCD (A.10)

and using the fixed coefficients (A.8) we arrive at the following equations

gEFuu : 0 = − α′ (α′ + 2) + β′ (β′ + 2) + γ′2

+H(β + u)4 (α′ + γ′ + 1)2
, (A.11a)

gEFuz : 0 = H(β + u)4 (α′ + γ′ + 1) (α,z + γ,z − 1) − (α′ + 1)α,z
+ (β′ + 1) β,z − γ′ (−γ,z + 1) , (A.11b)

gEFut + gEFuz : 0 = γ′ (2γ,z+1) + β2/u2 + 2β/u− α′ − γ′ , (A.11c)

where the prime ′ denotes radial derivatives, the subscript z denotes derivatives
in z direction and H ≡ h (t+ u− z + α + γ). The dependence of α, β and γ on
(t− z, u) is suppressed for brevity.
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Following [28] it is helpful to redefine α and β such that

α = −γ + β + δ, β = − u2ζ

1 + uζ
. (A.12)

Inserting this in equations (A.11) and taking appropriate linear combinations we
can decouple one of the three differential equations, while the other two remain
coupled. The equations read

∂δ

∂u
− u2

(1 + uζ)2
∂ζ

∂u
= 0 , 1

u2

(
u2 ∂ζ

∂u

)
+ 2uH

(1 + uζ)5)
= 0 , (A.13)

and

∂γ

∂u
− u2

(1 + uζ)2
∂ζ

∂u
+ u4

2(1 + uζ)2

(
∂ζ

∂u

)2

+ u4H

2(1 + uζ)6 = 0 . (A.14)

Alternatively, it is easy to see that curves along the radial direction in EF coor-
dinates (A.7) satisfy the geodesic equation. Since coordinate transformations are
isometries the same curves written down in FG coordinates have to satisfy the
geodesic equation, i.e.

d2Ỹ A

dr2 + Γ̃ABC
dỸ B

dr

dỸ C

dr
= 0 (A.15)

where Γ̃ are the Christoffel symbols evaluated in FG coordinates. Parameteriz-
ing the coordinate transformation again by (A.9) we arrive at three non-trivial
equations, i.e.

α′′ = −2 (α′+1)
u

+ 2(α′+1)(β′+1)
β+u

+ 1
2

[
H ′(β+u)4(α′+γ′+1)2 + 8H(β′+1)(β+u)3(α′+γ′+1)

]
, (A.16a)

γ′′ = −γ′ 2(β − uβ′)
(u(β + u))

− 1
2

[
H ′(β+u)4 (α′+γ′+1)2

+ 8H(β′+1)(β+u)3(α′+γ′+1)
]
, (A.16b)

β′′ = −2
u
β′ − 2

u
+ 1
β

[
H(β + u)4(α′ + γ′ + 1)2 + (α′(α′ + 2)

+ β′2 − γ′2 − uβ′′)
]
. (A.16c)

It is possible to solve any of these sets of equations leading to the same initial
data.
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A.3 Near Boundary Expansions

The coefficients {ai}i of the near boundary expansion (3.89b) of α̃ are given by

a0 =
2
√

2
π
e− z2

2w2

15w
, (A.17a)

a1 = 11ze− z2
2w2

60
√

2πw3
, (A.17b)

a2 = 37ze− z2
2w2 (z2 − 3w2)

2016
√

2πw7
, (A.17c)

a3 = e− z2
w2 (768w7 + 23

√
2πe

z2
2w2 (3w4 − 6w2z2 + z4))

12096πw9 , (A.17d)

a4 = ze− z2
w2 (1896w7 + 7

√
2πe

z2
2w2 (15w4 − 10w2z2 + z4))

21600πw11 , (A.17e)

a5 = e− z2
w2 (−48456w9 + 89736w7z2 − 67

√
2πe

z2
2w2 (15w6 − 45w4z2 + 15w2z4 − z6))

1425600πw13 .

(A.17f)

The coefficients {bi}i of the near boundary expansion (3.89a) of β̃ are given by

b0 = − e− z2
2w2

6
√

2πw
, (A.18a)

b1 = − ze− z2
2w2

10
√

2πw3
, (A.18b)

b2 = e− z2
2w2 (w2 − z2)
30

√
2πw5

, (A.18c)

b3 = ze− z2
2w2 (3w2 − z2)
126

√
2πw7

, (A.18d)

b4 = e− z2
w2 (−116w7 − 3

√
2πe

z2
2w2 (3w4 − 6w2z2 + z4))

4032πw9 , (A.18e)

b5 = −ze− z2
w2 (312w7 +

√
2πe

z2
2w2 (15w4 − 10w2z2 + z4))

8640πw11 . (A.18f)

The coefficients {gi}i of the near boundary expansion (3.89c) of γ̃ are given by

g0 = − e− z2
2w2

5
√

2πw
, (A.19a)

g1 = − 3ze− z2
2w2

20
√

2πw3
, (A.19b)
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g2 = 5e− z2
2w2 (w2 − z2)
84

√
2πw5

, (A.19c)

g3 = −11ze− z2
2w2 (z2 − 3w2)

672
√

2πw7
, (A.19d)

g4 = e− z2
w2 (−32w7 −

√
2πe z2 2w2

(3w4 − 6w2z2 + z4))
576πw9 , (A.19e)

g5 = −ze− z2
w2 (3408w7 + 13

√
2πe

z2
2w2 (15w4 − 10w2z2 + z4))

43200πw11 . (A.19f)
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