Expression and Functional Significance of the Ca\(^{2+}\)-Activated Cl\(^{-}\) Channel ANO6 in Dendritic Cells

Kalina Szteyn\(^a\) Evi Schmid\(^a\) Meerim K. Nurbaeva\(^a\) Wenting Yang\(^a\)
Patrick Münzer\(^a\) Karl Kunzelmann\(^b\) Florian Lang\(^a\) Ekaterina Shumilina\(^a\)

\(^a\)Department of Physiology, University of Tübingen, Tübingen; \(^b\)Institut für Physiologie, Universität Regensburg, Regensburg

Key Words
Ano6 • ORCC • TMEM16F • Migration • CCR7

Abstract

Background/Aims: Migration of dendritic cells (DCs), antigen presenting cells that link innate and adaptive immunity, is critical for initiation of immune responses. DC migration is controlled by the activity of different ion channels, which mediate Ca\(^{2+}\) flux or set the membrane potential. Moreover, cell migration requires local volume changes at the leading and rear end of travelling cells, which might be mediated by the fluxes of osmotically active solutes, including Cl\(^{-}\). The present study explored the functional expression, regulation and role of Cl\(^{-}\) channels in mouse bone marrow-derived DCs. Methods/Results: In whole-cell patch clamp experiments we detected outwardly rectifying Cl\(^{-}\) currents which were activated by elevation of cytosolic Ca\(^{2+}\), triggered either by ionomycin in the presence of extracellular Ca\(^{2+}\) or mobilization of Ca\(^{2+}\) by IP\(_3\). Most importantly, Ca\(^{2+}\)-activated Cl\(^{-}\) channels (CaCCs) were activated by CCL21 (75 ng/ml), an agonist of the chemokine receptor CCR7. The currents showed sensitivity to Cl\(^{-}\) channel blockers such as tannic acid (10 µM), digallic acid (100 µM) and more specific CaCC blockers niflumic acid (300 µM) and AO1 (20 µM). According to RT-PCR and Western blot data, Anoctamin 6 (ANO6) is expressed in DCs. Knock-down of ANO6 with siRNA led to inhibition of CaCC currents in DCs. Moreover, chemokine-induced migration of both immature and LPS-matured DCs was reduced upon ANO6 knock-down. Conclusion: Our data identify ANO6 as a Ca\(^{2+}\)-activated Cl\(^{-}\) channel in mouse DCs, show its activation upon chemokine receptor ligation and establish an important role of ANO6 in chemokine-induced DC migration.
Introduction

Dendritic cells (DCs) are a heterogenic cell population of hematopoietic origin [1]. Homing of DCs to the tissues is controlled by different chemokines, such as CXCL12 (stromal cell-derived factor 1), a ligand of the receptor CXCR4, expressed by resident cells of normal tissues including mesenchymal, epithelial and endothelial cells [2]. Immature DCs are highly phagocytic and are constantly scanning peripheral tissues for pathogen products and other ‘danger’ signals, the recognition of which stimulates DC genetic reprogramming and maturation [3]. Upon maturation, DCs acquire a migratory phenotype associated with the upregulation of the chemokine receptor CCR7 and travel through the afferent lymphatics to the lymph nodes attracted by the ligands of CCR7 (chemokines CCL19 and CCL21) [4]. Chemotaxis requires polar differentiation of the cells into a lamellipodium and a cell rear, a process depending on the activity of ion channels and transporters which generate intracellular gradients of Ca\(^{2+}\) and H\(^+\) and fluxes of osmotically active Na\(^+\), K\(^+\) and Cl\(^{-}\) [5].

DC migration has been shown to require activity of several ion channels in the plasma membrane including store-operated Ca\(^{2+}\) channels [6, 7] and Ca\(^{2+}\)-permeable TRPV1 [8] channels, voltage-gated K\(^{+}\) channels [6, 7], Ca\(^{2+}\)-activated non-selective cation TRPM4 [9] and KCa3.1 [10] channels.

At least in theory, Cl\(^{-}\) channels, which are, in part, activated by increase of cytosolic Ca\(^{2+}\) concentrations, might contribute to the regulation of DC migration. Ca\(^{2+}\)-activated Cl\(^{-}\) channels (CaCCs) have been described for the first time in *Xenopus laevis* oocytes [11, 12]. In *Xenopus laevis*, sperm-egg fusion causes release of Ca\(^{2+}\) from the stores with subsequent activation of CaCCs, which produce a transient depolarization of the oocyte cell membrane, the so-called “fertilization potential”, to prevent polyspermy [13, 14]. In other cell types CaCCs have been shown to be responsible for a plethora of physiological functions. In olfactory [15], taste [16] and photo-receptors [17] they play a role in signal transduction. Additionally, CaCCs are implicated in neuronal [18-20] and cardiac [21-23] excitability as well as regulation of the myogenic tone [24-26] and agonist-stimulated contraction [27] of smooth muscle. Furthermore, CaCC activity in airways and intestinal epithelium participate in stimulation of secretion [28-30].

CaCCs are activated by cytosolic Ca\(^{2+}\) with half maximal concentration ranging from 165 nM in Ehrlich ascites tumor cells [31] to 900 nM in *Xenopus* oocytes [26]. At lower Ca\(^{2+}\) concentrations CaCC currents show slow activation at positive potentials and fast inactivation at negative potentials [26, 32]. This behaviour results in current-voltage (I-V) relationship that is strongly outwardly rectifying. As the [Ca\(^{2+}\)]\(_i\) increases, the currents lose their time dependent component and the I-V relationship becomes linear [33, 34]. Depending on the membrane potential and Cl\(^{-}\) concentration gradient, opening of CaCCs can lead to Cl\(^{-}\) influx or cause depolarization or hyperpolarization, respectively [22].

The molecular identity of these channels is not precisely known and over the years several candidate proteins have been proposed. The CLCA family was the first CaCC candidate that has been cloned but even though CLCA channels have been shown to behave as CaCCs when incorporated into an artificial lipid bilayer [35], there are some differences in Ca\(^{2+}\)-and voltage-sensitivity, pharmacology and expression profile between CLCA channels and CaCCs [22]. Among other candidates were CIC-3, Tweety and Bestrophins [22]. CIC-3 is regulated by CaMKII [36], but CIC-3-deficient mice show only lack of CaMKII-dependent currents but not of Ca\(^{2+}\)-dependent Cl\(^{-}\) conductance [37]. Tweety has been shown to be a Ca\(^{2+}\)-regulated maxi Cl\(^{-}\) channel [38], and therefore it might only correspond to the maxi-Cl\(^{-}\) channels present in neurons [39] and skeletal muscle [40]. However, Tweety is not expressed in salivary glands and can not account for the small conductance CaCCs that are typical for acinar cells of secretory glands [38]. Although Bestrophine 1 overexpressed in HEK293 cells generated Ca\(^{2+}\) sensitive Cl\(^{-}\) currents [41], CaCC currents are still present in various tissues of bestrophine 1 knockout mice [42-44]. It has been suggested that bestrophins could function as multitask proteins. Besides forming Cl\(^{-}\) channels they could modulate endogenous CaCC activity and regulate other ion channels, for example, voltage-gated Ca\(^{2+}\) channels [45, 46].
The only proteins that are clearly CaCCs are members of the Anoctamin (or TMEM16) family [47-49]. The Anoctamin protein family consists of ten members that are expressed in a wide variety of mammalian epithelial tissues. ANO1 is essential for proper development, as ANO1-deficient mice present a severe phenotype and die shortly after birth because of underdeveloped airways [50]. The function of ANO1 and ANO2 as CaCCs is well documented [48, 51-54]. Increasing evidence shows that other members of the ANO family, such as ANO6 and ANO7, are similarly able to generate CaCC currents [50, 55, 56], though in a study on HEK293 cells heterologously expressing ANO proteins, an intracellular localization of ANOs 3-7 has been reported [57]. However, by mutating amino acids in the putative pore-forming domain of ANO6 and expressing ANO6 mutants in HEK293 cells we could show that ANO6 is a membrane channel conducting anions [57]. Moreover, we could demonstrate that ANO6 is a critical component of outwardly rectifying chloride channels (ORCC) in A549 and 9HTE airway epithelial cells and Jurkat T Lymphocytes. In those cells ANO6 is activated by membrane depolarization, proapoptotic stimuli, such as staurosporine or Fas ligand, and activation of ORCC/ANO6 is augmented in the presence of cystic fibrosis transmembrane conductance regulator (CFTR) [55].

In the present study we show for the first time functional expression of CaCCs in murine DCs. We analyze electrophysiological properties of CaCCs in DCs and demonstrate a physiological mechanism of their activation upon ligation of the chemokine receptor CCR7. We demonstrate that ANO6 accounts for detected CaCC conductances in DCs. Finally we show that ANO6 is required for the chemokine-induced migration of both immature and mature DCs.

Materials and Methods

Cell culture

Dendritic cells (DCs) were isolated from bone marrow of 7-12 weeks old mice of C57BL/6 or 129/Sv background as described [7]. Briefly, bone marrow derived cells were flushed out of the cavities from the femur and tibia with PBS. Cells were then washed twice with RPMI and seeded out at a density of 2 x 10^6 cells per 60-mm dish. Cells were cultured for 6 days in RPMI 1640 (GIBCO, Carlsbad) containing: 10 % FCS, 1 % penicillin/streptomycin, 1 % glutamine, 1 % non-essential amino acids (NEAA) and 0.05 % β-mercaptoethanol. Cultures were supplemented with GM-CSF (35 ng/mL, Preprotech Tebu, Germany) and fed with fresh medium containing GM-CSF on days 3 and 6. Experiments were performed on DCs at days 7-11.

Patch clamp

Patch clamp experiments were performed at room temperature in voltage-clamp, fast-whole-cell mode according to Hamill et al. [58]. The cells were continuously superfused through a flow system inserted into the dish. The bath was grounded via a bridge filled with NaCl Ringer solution. Borosilicate glass pipettes (1-3 MΩm tip resistance; GC 150 TF-10, Clark Medical Instruments, Pangbourne, UK) manufactured by a microprocessor-driven DMZ puller (Zeitz, Augsburg, Germany) were used in combination with a MS314 electrical micromanipulator (MW, Märzhäuser, Wetzlar, Germany). The currents were recorded by an EPC-9 amplifier (Heka, Lambrecht, Germany) using Pulse software (Heka) and an ITC-16 Interface (Instrutech, Port Washington, N.Y., USA). Currents were elicited by 200 ms square wave voltage pulses from -50 to +50 mV in 10 mV steps delivered from a holding potential of -30 mV. The currents were recorded with an acquisition frequency of 10 kHz and 3 kHz low-pass filtered. The liquid junction potential ∆E between the pipette and the bath solutions and between the salt bridge and the bath solutions were estimated as described earlier [59]. Data were corrected for the estimated ∆E values.

DCs were superfused with a ‘NaCl bath solution’ containing: 145 mM/l NaCl, 5 mM/l KCl, 2 mM/l CaCl2, 2 mM/l MgCl2, 20 mM/l glucose, 10 mM/l HEPES/NaOH, pH 7.4. To study the Ca2+ sensitivity of the measured current a ‘NaCl, 0 Ca2+ bath solution’ was used, which contained 10 mM/l EGTA and 0 CaCl2. In other experiments extracellular Na+ was substituted by NMDG+ and the ‘NMDG-Cl’ bath solution contained: 145 mM/l NMDG-Cl, 2 mM/l MgCl2, 2 mM/l CaCl2, 20 mM/l glucose, 10 mM/l HEPES/NMDG, pH 7.4. To determine the Cl- permeability of the outward current all chloride salts were isoosmotically replaced by
respective gluconate salts (‘Na-gluconate bath solution’ or ‘NMDG-gluconate bath solution’). In order to induce the Ca\(^{2+}\)-activated Cl\(^{-}\) currents, ionomycin (1 µM, Calbiochem, Germany) was applied in ‘NMDG-Cl’ bath. To prove the Ca\(^{2+}\) sensitivity of ionomycin-induced currents ‘NMDG-Cl, 0 Ca\(^{2+}\) bath solution’ was used, which contained 10 mM/l EGTA and 0 CaCl\(_2\).

The patch clamp pipettes were filled with either ‘CsCl pipette solution’ containing: 120 mM/l CsCl, 35 mM/l NaCl, 1 mM/l MgATP, 10 mM/l EGTA, 40 µM/l D-my-o-inositol-1,4,5-triphosphate (Enzo, Life Sciences), 10 mM/l HEPES/CsOH, pH 7.4; or ‘NMDG-Cl pipette solution’ containing: 180 mM/l NMDG-Cl, 1 mM/l Mg-ATP, 1 mM/l EGTA, 10 mM/l HEPES, pH 7.2.

Where indicated tannic acid (10 µM, Sigma), AO1 (20 µM, Sygnature Chemical Services Ltd, Nottingham, UK), niflumic acid (300 µM, Sigma) or digallic acid (100 µM, Santa Cruz) were added to the bath solution.

RT-PCR

Total RNA was extracted from mouse DCs in Trizol (Peqlab, Erlangen, Germany) according to the manufacturer’s instructions. After DNase digestion reverse transcription of total RNA was performed using random hexamers (Roche Diagnostics, Penzberg, Germany) and SuperScriptII reverse transcriptase (Invitrogen, Carlsbad, CA, USA). Polymerase chain reaction (PCR) amplification of the respective genes were set up in a total volume of 20 µl using 40 ng of cDNA, 500 nM forward and reverse primer and 2x iTaq Fast SYBR Green (Bio-Rad, Hercules, CA, USA) according to the manufacturer’s protocol. Cycling conditions were as follows: initial denaturation at 95°C for 2 min, followed by 40 cycles of 95°C for 15 sec, 55°C for 15 sec and 68°C for 20 sec. For the amplification the following primers were used (5’->3’ orientation):

- Ano1, fw AGGAATATGAGGGCAACCTG; rev CGACACCATGGATTTTGGTA;
- Ano 2, fw ATCCAGCCACCGTCTTCTT; rev ATCCAGCCACCGTCTTCTT;
- Ano 3, fw TGATAAAAAAGGACATTGGAAAAGA; rev AACATGATATCAGGCTGTTG;
- Ano 4, fw TGGCTTCTATTTTGGCTTCT; rev CTCGCTTTATTTTATCGATCC;
- Ano 5, fw CAGGGACACAGTGACCTTT; rev CAGGGCTATATGAGGATGG;
- Ano 6, fw GTATGAGGGCCAGTGCAATC; rev TTCACACAGTTGTAATGG;
- Ano 7, fw TT6GAATCCGAATTGAG; rev GAGCCTCCTGGCTCAGCT;
- Ano 8, fw CTTGAGGACACAGCCTC; rev TGAACCTGGGACATCCTGT;
- Ano 9L, fw CATGACCGCCACATTGCC; rev CTGGGAACTCATCCTCCT;
- Ano 9L/S, fw GTTCCTCGCAAGGCTAAGG; rev CCAGCACTCCAATGGTCTCT;
- Ano 10, fw CTGATTGTGGTGGCCGTAG; rev TGGCAAATGCGAGTATGAAC;
- TATA binding protein (Tbp): fw CAAGCTGGAGGTGATCATCG, rev TCCACAGTGCTTGAATGG.

Specificity of PCR products was confirmed by analysis of a melting curve. Real-time PCR amplifications were performed on a CFX96 Real-Time System (Bio-Rad), and all experiments were done in duplicates. Amplification of the housekeeping gene Tbp was performed to standardize the amount of sample RNA. Relative quantification of gene expression was achieved with the ∆∆Ct method (where Ct is threshold cycle) as described previously [60]. In addition, PCR products were analysed by agarose gel electrophoresis.

Western blotting

Protein lysates were separated by SDS page 10% gel electrophoresis and transferred onto nitrocellulose membrane. Membrane containing the immobilized proteins was incubated for 1 h in room temperature with 10% non fat milk in Tris-buffered saline-0.1% Tween 20 (TBS-T), followed by over night incubation (4°C) with ANO6 primary antibody (1:300 dilution in 5% non fat milk in TBS-T; Davids, Regensburg). We also used ANO6 antibody (1:200 in BSA, Santa Cruz) and observed similar results (data not shown). The following day membrane was washed 3 times in TBS-T and incubated for 1 h in room temperature with antirabbit (Cell Signalling) secondary antibody and washed again in TBS-T. For detection membrane was blotted with ECL reagent (Amersham, Freiburg, Germany), exposed to X-ray film (GE Healthcare) and developed.

Silencing of ANO6

Specific siRNA sequences for ANO6 (CCUCCAUCAUCAGCUUUUAUUAAU, Invitrogen) and negative control (Silencer® GAPDH siRNA, Ambion, USA) were synthesized and annealed by the manufacturer. siRNA transfection was carried out using the GeneSilencer siRNA transfection reagent (Genlantis, San Diego, CA, USA). 2 x 10⁶ cells were washed and plated in 6-well plates in 2 ml of serum-free RPMI 1640. The ANO6 siRNA and the negative control (1000 ng/ml) were incubated with GeneSilencer reagent following the
manufacturer’s protocol. Transfection mixture was then added to the wells and incubated over night. The efficiency of silencing was assessed with RT-PCR.

Immunofluorescence

5x10^4 DCs were pipetted onto poly-L-Lysine (Sigma-Aldrich) coated microscope slides and incubated at 37°C for 24 h. DCs were fixed by incubating the cells for 20 min at room temperature in 4% paraformaldehyde for 10 min. After blocking for 1 hour with 5% BSA/PBS in room temperature, the cells were incubated overnight at 4°C with ANO6 primary antibodies (1:50). DC slides were incubated with the secondary anti-rabbit-FITC antibody (1:1000, BD Pharmingen), simultaneously, nuclei were stained with DRAQ-5 dye (1:2000, Biostatus, Leicestershire, UK) for 1h at room temperature. The slides were mounted with ProLong Gold antifade reagent (Invitrogen). Images were taken on a Zeiss LSM 5 EXCITER Confocal Laser Scanning Microscope (Carl Zeiss MicroImaging GmbH, Germany) with a water immersion Plan-Neofluar 63_/1.3 NA DIC.

Migration assay

For migration assays transwell inserts (BD Falcon 353097) and BD BioCoatTM MatrigelTM Invasion Chambers (BD Biosciences 354480) were used with a pore diameter size of 8 µm. The transwells were placed in a 24-well cell culture plate containing cell culture medium (750 µl) with or without either CXCL12 (50 ng/ml, Peprotech, for immature DCs) or CCL21 (25 ng/ml, Peprotech, for mature DCs) in the lower chamber. The upper chambers were filled with 500 µl cell culture medium containing immature or LPS (1 µg/ml; 24 h)-matured DCs which were either transfected with a negative control or siRNA for ANO6 in a concentration of 50000 cells/ml. The chamber was placed in a 5% CO_2_ 37°C incubator for 4 h. In the following step, the transwells were placed in 4% PFA for over night incubation in 4°C, to allow the cells to fix on the membrane. Unattached cells were gently removed with cotton swab, the membrane was then mended on a slide and stained with ProLong® Gold antifade reagent with DAPI (Invitrogen). Cells from five representative areas of each membrane were counted. Spontaneous migration was substracted from the chemokine-induced migration.

Statistics

Data are provided as means ± SE, n represents the number of independent experiments. All data were tested for significance using Student’s unpaired two-tailed t-test or ANOVA and only results with p < 0.05 were considered statistically significant.

Results

Ca^{2+}-activated Cl⁻ channel (CaCC) currents in mouse DCs

In whole-cell patch clamp experiments we studied Ca^{2+}-dependent conductances in mouse bone marrow-derived dendritic cells (DCs) in response to an elevation of cytosolic Ca^{2+} ([Ca^{2+}]_i). We first permeabilized the cells with the CsCl-based pipette solution containing IP_3 (40 µM) in order to trigger Ca^{2+} release from the intracellular stores and the subsequent entry of extracellular Ca^{2+} through the store-operated Ca^{2+} (SOC) channels in the plasma membrane. With this pipette solution we observed a fast activation (within 1-2 min following membrane disruption) of outwardly rectifying current with a slope outward conductance of 0.37 ± 0.03 nS and the reversal potential (E_{rev}) of about 0 mV (n = 60) under symmetrical Cl⁻ solutions (Fig. 1A, C). Replacement of Cl⁻ in the bath by gluconate (‘Na-gluconate bath solution’) in paired experiments resulted in a strong reduction of the outward current and a shift of E_{rev} to about +40 mV (n = 22, Fig. 1A, C), demonstrating the Cl⁻ selectivity of the activated current. The activated current was sensitive to a panel of Cl⁻ channel inhibitors of a broad spectrum, such as tannic acid (10 µM) and digallic acid (100 µM) and specific inhibitors of Ca^{2+}-activated Cl⁻ channels (CaCCs) [61]: AO1 (20 µM) and niflumic acid (300 µM) (Fig 1B, D, E). We then removed Ca^{2+} from the bath solution in order to test whether Ca^{2+} released from internal stores was sufficient to induce CaCC currents when no extracellular Ca^{2+} entered the cells. The outwardly rectifying current was induced within 4-5 min following achievement of...
Fig. 1. Cl- currents are activated by IP\textsubscript{3} in DCs. A. Current tracings from a dendritic cell (DC) recorded with inositol-1,4,5-triphosphate (IP\textsubscript{3}, 40 µM)-containing CsCl pipette solution immediately after reaching the whole-cell mode (start, left), in 2 min upon full current activation (middle) in NaCl bath solution containing 2 mM/l CaCl\textsubscript{2} and then after substitution of bath NaCl with Na-gluconate (right). Currents were obtained in fast whole-cell voltage-clamp mode. The membrane potential was held at -30 mV and currents were elicited by 200-ms square pulses to test potentials between -50 and +50 mV in 10 mV steps; zero current is indicated by a dashed line. B. Representative current tracings recorded from DCs with IP\textsubscript{3}-containing CsCl pipette and NaCl bath solutions upon full current activation (left) and after application of Cl- channel blockers: tannic acid (10 µM), AO1 (20 µM), niflumic acid (300 µM) and digallic acid (100 µM). Currents were recorded as in A. C. Mean current-voltage (I-V) relations (± SE, n = 22-26) of DCs (recorded as in A) immediately after reaching the whole-cell mode (NaCl start, closed squares), in 1-2 min upon full current activation in NaCl (NaCl activation, open almonds) and in Na-gluconate (open triangles) bath solutions. D. Mean I-V relations (± SE, n = 26) of DCs recorded as in B upon full current activation (open almonds) and after application of the Cl- channel blocker AO1 (20 µM). E. Mean outward (left) and inward (right) conductances (± SE) calculated from the individual I-V relations (as in D) by linear regression of outward current between +10 and +50 mV and of inward current between -10 and -50 mV, respectively, in DCs upon full current activation (NaCl) and after application of Cl- channel blockers: tannic acid (10 µM, n = 15), AO1 (20 µM, n = 26), niflumic acid (300 µM, n = 7) and digallic acid (100 µM, n = 12). ** (p<0.01), ANOVA, Dunnett test. F. Mean current-voltage (I-V) relations (± SE, n = 6-8) of DCs recorded with IP\textsubscript{3}-containing CsCl pipette solution and Ca2+-free NaCl bath solution immediately after reaching the whole-cell mode (NaCl start, closed squares), in 4 min upon full current activation (NaCl activation, open almonds) and then upon inhibition of the current with niflumic acid (300 µM, open triangles).

the whole cell configuration (Fig. 1F), however the slope outward conductance was only 0.10 ± 0.03 nS (n = 8) which was significantly lower (P = 0.0028) than in Ca2+-containing bath. The current was inhibited by niflumic acid (300 µM, Fig. 1F).

To further explore the Ca2+ dependence of detected currents, we exposed DCs to the Ca2+ ionophore ionomycin in Ca2+-containing and Ca2+-free extracellular solutions (Fig. 2).
These and following patch-clamp experiments were performed using pipette and bath solutions containing NMDG as a Na⁺ and K⁺ replacement, and Cl⁻ as the major permeable ion (‘NMDG-Cl pipette and bath solutions’). In the presence of extracellular Ca²⁺, ionomycin (1 µM) induced fast outwardly rectifying current activation (Fig. 2). After full current activation was reached, the Ca²⁺ containing extracellular solution was replaced in paired experiments with a nominally Ca²⁺ free solution (0 Ca²⁺, 10 mM EGTA, Fig. 2). The Ca²⁺ removal was followed by a significant decline, in both, outward and inward currents (Fig. 2), indicating that elevated intracellular Ca²⁺ via the Ca²⁺ ionophore was responsible for the Cl⁻ current activation. Readdition of Ca²⁺ into the bath solution led to reactivation of the current which was subsequently inhibited with niflumic acid (300 µM, Fig. 2A, C). Therefore, mouse DCs express functional CaCCs.

To explore whether CaCCs are activated by physiological stimuli, additional experiments were performed with the chemokine CCL21, a ligand of CCR7 chemokine receptor expressed on DC cell membrane and triggering chemotactic responses and guiding mature DCs to the T zones of secondary lymphoid organs [62]. It has been shown that CCR7 stimulation leads to an increase of [Ca²⁺] in DCs [9]. According to patch clamp experiments, CCL21 applied to the bath solution in the concentration of 75 ng/ml, which is known to activate Ca²⁺ entry in DCs [9] activated CaCCs in 75% of measured cells. The currents were rapidly activated by CCL21, showed a very strong outward rectification and a fast rundown (Fig. 3). Upon stabilization of currents after primary activation, Cl⁻ in the bath was substituted by gluconate, which resulted in a strong decrease of the outward currents and a shift of Erev towards positive potentials, indicating Cl⁻ selectivity of CCL21-activated current (Fig. 3). The outward currents were restored on return to Cl⁻ bath solution to the levels at which they stabilized after primary activation (Fig. 3A).
Expression of Anoctamins in DCs

Some of the members of the Anoctamin (ANO) protein family have been identified as Ca2+-activated Cl- channels [47-49, 53, 54]. The ANO protein family consists of ten members with tissue specific patterns of expression [50]. To explore whether ANO channels are expressed in DCs and could contribute to or account for the detected CaCC conductances, we performed RT-PCR analysis with primers specific for all ten members of the ANO family. RT-PCR revealed mRNA expression of ANO6, ANO8 and ANO10 in mouse DCs with ANO6 having the highest expression level (Fig. 4A, B). Among these ANO members only ANO6 has been shown to generate a Ca2+-activated Cl- channel [50]. Accordingly, western blotting was performed with ANO6 antibodies and demonstrated that ANO6 protein was indeed expressed in mouse DCs (Fig. 4C).

ANO6 dependence of AO1-sensitive outwardly-rectifying currents

Next we performed whole-cell patch clamp experiments in DCs in which ANO6 was silenced with ANO6-siRNA. Knock-down efficiency was about 58% as tested with real-time RT-PCR (Fig. 5B) and confirmed by immunofluorescent staining of the cells (Fig. 5C). Within 1-2 min following membrane disruption in experiments using IP\textsubscript{3}-containing pipette solution, about 80% of control cells demonstrated outwardly-rectifying currents sensitive to AO1 (Fig. 5A). In contrast about 70% of DCs (15 out of 22 cells) with silenced ANO6 showed no development of AO1-sensitive outwardly-rectifying currents within 5-10 min of...
Fig. 4. Expression of Anoctamins in mouse DCs. A. Agarose gel with PCR products specific for Anoctamins 1-10 amplified from cDNA isolated from mouse DCs. B. ANO1-10 mRNA levels (± SE, n = 3) determined after isolation from mouse DCs and assessed by real-time PCR using TBP mRNA as a reference gene. C. Western Blot analysis of ANO6 expression in whole cell protein lysates extracted from mouse DCs.

Fig. 5. Knock-down of ANO6 inhibits CaCC currents in DCs. A. Current tracings recorded with IP$_3$-containing CsCl pipette and NaCl bath solutions immediately after reaching the whole-cell mode (start, left), upon full current activation (activation, middle) and after application of CaCC blocker AO1 (20 µM) in control DCs (upper panel, representative for 80% (17 out of 21) measured cells) and in siANO6-DCs (lower panel, representative for 69% (15 out of 22) measured cells). Zero current is indicated by a dashed line. B. ANO6 mRNA levels (± SE, n = 4) determined in control DCs (empty vector-transfected, open bars) and siANO6-DCs (closed bars) and assessed by real-time PCR using GAPDH mRNA as a reference gene. ** (p<0.01), one sample t-test. C. Confocal microscopy of ANO6 abundance in DCs transfected with empty vector (control) and siANO6-DCs. The nuclei are stained with DRAQ5 (blue) and ANO6 with FITC-conjugated secondary antibody (green).

recording (Fig. 5A). In 7 out of 22 measured DCs with silenced ANO6 normal CaCC currents indistinguishable from control DCs were observed.

ANO6 dependent migration of DCs

Since CaCCs are activated upon ligation of the chemokine receptor CCR7, we further analyzed migration of immature and mature DCs upon silencing of ANO6. To induce DC maturation, cells were incubated with LPS (1 µg/ml) for 24h prior to assay performance. Migration was tested in both, the absence and presence of the chemokines CXCL12 (50 ng/ml) in immature DCs and CCL21 (25 ng/ml) in LPS-matured cells. In a transwell migration assay chemokine-induced migration of both immature and mature DCs was strongly impaired by siRNA for ANO6 (Fig. 6).
Discussion

The current study is the first to identify Ca\(^{2+}\)-activated Cl\(^{-}\) channel (CaCC) ANO6 in DCs and to examine its role in DC function. In whole-cell patch clamp experiments performed on mouse DCs, we demonstrated outwardly rectifying Cl\(^{-}\) currents activated by elevation of cytosolic Ca\(^{2+}\), triggered either by the ionophore ionomycin in the presence of extracellular Ca\(^{2+}\), or by IP\(_3\)-dependent Ca\(^{2+}\) mobilization. Moreover, we detected a physiological mechanism of CaCC activation in DCs upon stimulation of the chemokine receptor CCR7. Recorded currents show all the hallmarks of endogenous CaCCs. Like in neurons [63], cardiomyocytes [64] and Xenopus laevis oocytes [26, 65] both, Ca\(^{2+}\) entry from extracellular environment and Ca\(^{2+}\) release from intracellular stores, were able to activate CaCCs in DCs.

When Ca\(^{2+}\)-activated Cl\(^{-}\) currents were induced by the chemokine CCL21, the current-voltage (I-V) relationship showed stronger outward rectification, if compared to more linear I-V curves when the trigger was the Ca\(^{2+}\) ionophore ionomycin or IP\(_3\) in the pipette solution. This was consistent with previously described features of CaCCs, that the outward rectification is lost with higher [Ca\(^{2+}\)]\(_i\) [22, 26, 33, 65], as extracellular ionomycin or IP\(_3\) in the pipette would induce much higher and/or more prolonged increase of [Ca\(^{2+}\)]\(_i\) than CCL21. Even though specificity of CaCC inhibitors is limited, the currents detected in DCs showed sensitivity to most commonly used Cl\(^{-}\) channel blockers, including AO1, a specific inhibitor of the anoctamin CaCC family [61].

The molecular identity of CaCCs stirred up, over the years, a lot of controversy but since identification of ANO1 as Ca\(^{2+}\)-activated Cl\(^{-}\) channel by three independent groups in 2008 [47-49], the mystery seems to be, at least partly, solved. We detected expression of three members of the Anoctamin family ANO6, ANO8, ANO10 in mouse DCs. Among those, only ANO6 has previously been shown to generate Ca\(^{2+}\)-activated Cl\(^{-}\) currents whereas ANO8 has not produced any detectable current, when expressed in FTR cells. ANO10 has even suppressed baseline Cl\(^{-}\) conductance and its co-expression with ANO1 caused decrease of the ANO1-generated currents [50]. In the present study knock-down of ANO6 with siRNA abrogated CaCC currents in almost 70% of measured cells, which was consistent with the efficiency of knock-down, that was about 58% in our experiments. In the light of those observations we suggest that ANO6 is responsible for Ca\(^{2+}\)-activated Cl\(^{-}\) currents detected in DCs.

Even though the molecular identity of representatives of CaCCs has been defined only recently [47-49], their functions in many cells and tissue models have been investigated for almost three decades. In cells of hematopoietic origin, CaCC currents have been characterized in neutrophils [66], macrophages [67], Jurkat lymphocytes [68] and human mast cell line HMC-1 [69]. In these studies CaCCs were activated by Ca\(^{2+}\) ionophore or by dialyzing the cell.
with high concentrations of Ca\(^{2+}\) in the patch pipette. We have recently shown an important function of ANO6 as an essential component of the outwardly rectifying chloride channel (ORCC) in airway epithelial cells and Jurkat T lymphocytes [55]. ANO6/ORCC is activated upon membrane depolarization and apoptosis. In addition the cystic fibrosis transmembrane conductance regulator (CFTR) in presence of cAMP augments ANO6/ORCC currents [55].

Our present study provides another physiological mechanism of ANO6 activation in DCs, through the stimulation of the chemokine receptor CCR7.

In contrast to our present investigation on DCs, ANO6/ORCC in airway epithelial cells and Jurkat T lymphocytes is not Ca\(^{2+}\)-dependent [55]. This discrepancy may result from ANO6 forming variable oligomeric complexes and/or associating with variable accessory proteins in different cell types. As we have previously shown, ANO6 is able to generate the Ca\(^{2+}\)-activated Cl\(^{-}\) currents in ANO6-overexpressing FRT cells [50, 56].

Migration is one of the essential functions of DCs. The process is induced by chemoattractants present at infection/inflammation sites as well as expressed by secondary lymphoid organs [62]. Our results show that the chemokine-induced migration of both immature (towards the chemokine CXCL12) and mature (towards the chemokine CCL21) DCs requires activity of ANO6. A possible mechanism of ANO6-regulated DC migration may include ANO6-mediated local volume changes required for lamellipodium growth and/or cell rear end retraction by uptake and/or efflux of osmotically active Cl. As a matter of fact, hypotonic stimulus has been shown to cause the [Ca\(^{2+}\)], rise in mouse astrocytes in the immediate vicinity of open Ca\(^{2+}\)-permeable channels, so called Ca\(^{2+}\) nanodomains, which generation is triggered by an autocrine action of ATP [70]. This [Ca\(^{2+}\)], rise in Ca\(^{2+}\) nanodomains induces ORCC channel activation [70]. Moreover in astrocytes, inflammatory chemical mediator, bradykinin [71] and extracellular ATP [70] lead to ORCC activation by [Ca\(^{2+}\)], rise in Ca\(^{2+}\) nanodomains without cell swelling.

ANO6 may further provide a positive feedback to store-operated Ca\(^{2+}\) influx, which is required for DC migration [7]. The resting membrane potential of mouse DCs has been estimated as ~ -20 mV [7] that is most probably more positive than the equilibrium Cl potential. Thus opening of ANO6 channels would lead to hyperpolarization of the cell membrane, providing electrical driving force for Ca\(^{2+}\) entry through the store-operated Ca\(^{2+}\) channels, which are steeply inwardly rectifying [72]. CaCCs supporting Ca\(^{2+}\) influx have been also demonstrated in pulmonary arterial smooth muscle [73] and Cajal [74] cells.

In summary, we identified novel Ca\(^{2+}\)-activated Cl channels in bone marrow derived murine DCs. We demonstrated that these channels are activated upon ligation of the chemokine receptor CCR7. By siRNA knock-down approach we could show that ANO6 isoform of the anoctamin protein family accounts for the measured currents. Moreover, ANO6 played an important role in the chemokine-induced migration of both immature and mature DCs.

Acknowledgements

This study was supported by the contract grant sponsor: Deutsche Forschungsgemeinschaft; Contract grant number: SFB699A7.

References

Szteyn/Schmid/Nurbaeva et al.: Ca\(^{2+}\) Activated Cl\(^{-}\) Channels in DCs

10 Shao Z, MADEE TO, Agrawal DK: Calcium-activated potassium channel kca3.1 in lung dendritic cell migration. Am J Physiol Cell Physiol 2011;300:C1205-1214.

Szteyn/Schmid/Nurbaeva et al.: Ca$^{2+}$-Activated Cl$^{-}$ Channels in DCs

31 Papassotiropoulos, Eggertmont J, Droogmans G, Nilius B: Ca$^{2+}$-activated Cl$^{-}$ channels in ehrlich ascites tumor cells are distinct from mclca1, 2 and 3. Pflugers Arch 2001;442:273-279.

Szteyn/Schmid/Nurbaeva et al.: Ca2+ Activated Cl− Channels in DCs

