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Abstract

In this thesis we are concerned with the analysis of contact angle problems for
the free boundary in two-phase flows. In particular, we consider the Mullins-Sekerka
problem with a ninety degree angle condition at the points where the free interface
meets the boundary. Here, the domain in two or three space dimensions is smooth
and bounded. The main result is existence and uniqueness of local strong solutions.
We hereby develop a comprehensive Lp�Lq-maximal regularity theory for the linear
problem.

Furthermore, we are interested in qualitative properties of solutions. We show
global existence and nonlinear stability for flat interfaces in a cylindrical geometry
in two or three space dimensions, and provide a complete analysis of the linearized
stability properties of stationary solutions for general geometries in two dimensions.

Moreover we consider a sharp interface model given by the two-phase Navier-
Stokes equations with surface tension coupled to the Mullins-Sekerka problem. Again
we prove the existence and uniqueness of local-in-time strong solutions. Further-
more, global-in-time existence and stability for solutions starting close to equilibria
is obtained.

We then introduce a thermodynamically consistent model for the two-phase Navier-
Stokes/Mullins-Sekerka equations with gravity and prove the presence of a so called
Rayleigh-Taylor instability.

Zusammenfassung

Diese Arbeit behandelt die Analysis von Kontaktwinkelproblemen in Zwei-Phasen
Strömungen. Insbesondere betrachten wir das Mullins-Sekerka Problem mit einem
Kontaktwinkel von neunzig Grad am Rand des Gebietes. Das Gebiet hat zwei oder
drei Raumdimensionen, glatten Rand und ist beschränkt. Das Hauptresultat hier
ist Existenz und Eindeutigkeit starker Lösungen. Wir entwickeln hierbei eine um-
fassende Lp � Lq-Theorie und zeigen maximale Regularität des linearen Problems.

Ebenfalls werden Resultate über qualitatives Verhalten von Lösungen bewiesen.
Wir zeigen globale Existenz und nichtlineare Stabilität für flache Grenzschichten
in einer zylindrischen Geometrie. Ebenfalls geben wir eine umfassende lineare Sta-
bilitätsanalyse für allgemeine Gebiete in zwei Raumdimensionen.

Danach betrachten wir ein Zwei-Phasen Navier-Stokes/Mullins-Sekerka Modell
und zeigen Existenz und Eindeutigkeit von starken Lösungen für kurze Zeiten. Eben-
falls werden Stabilitätsresultate für Lösungen, die nahe an Equilibria starten, be-
wiesen.

Fernerhin leiten wir ein thermodynamisch konsistentes Zwei-Phasen Navier-Stokes/
Mullins-Sekerka Modell mit Gravitationskraft her und zeigen Rayleigh-Taylor-Instabi-
lität.



Für Mama und Papa.
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CHAPTER 1

Introduction

1.1. Moving interfaces, contact angles, and maximal Lp-regularity

The evolution of interfaces is a phenomenon arising in mathematics, physics,
and other natural sciences. The most prominent example might be the geometric
evolution law Mean Curvature Flow for a family of closed hypersurfaces. This prob-
lem is an example for a curvature driven geometric evolution equation. It states
that the normal velocity of the interface is given by its mean curvature, up to a sign
depending on the sign convention used. Here, the quantities which are responsible
for the flow are given explicitly on the interface: the normal velocity and the mean
curvature of the hypersurface representing the interface. There are also problems
which do not satisfy this local property. A problem which has been extensively stud-
ied is the so called Stefan problem. It it used for instance to describe the melting
process of an ice cube surrounded by water. In this two-phase problem one has to
solve an equation away from the interface, the solution of which then determines the
normal velocity of the interface. These two-phase problems are typically harder to
solve due to their nonlocal structure.

Interfaces appear also very naturally in the context of fluid dynamics. If one
considers a situation where two or more fluids are involved, the question on how these
fluids interact with each other and how their dynamical behaviour evolves in time
arises immediately. In a setting where the fluids are assumed to be immiscible, there
is no mixing zone and a sharp interface appears to separate the domains occupied
by the respective fluids. A prominent example to model this type of situation with
two di↵erent fluids are the two-phase Navier-Stokes equations with surface tension.
However, there are also models which allow for partial mixing by introducing a
di↵use interface layer in which the mixing takes place. This is also very reasonable,
but the sharp interface models are accepted as an idealized model.

In applications, one often has to deal with interfaces not being closed, but with
interfaces touching a part of the so called boundary: think of two fluids in a bounded
container. One can have the situation where a droplet of oil is completely sur-
rounded by water, but also two films of oil and water having a common interface
which touches the boundary of the container. These problems are called contact

angle problems. Compared to the evolution of closed interfaces, these problems are
analytically harder to solve since one has to take extra care for the boundary con-
dition which models the contact angle. These contact angles in general can range
from a static ninety degree angle, to angles di↵erent from ninety degrees, up to
dynamic contact angles depending on time. However, already the simplest case
of ninety degree contact angles can cause major di�culties in the analysis of the
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2 1. INTRODUCTION

respective problems. From a physical viewpoint, this condition may be seen as
somewhat of a idealization of the real behaviour observed in nature. In view of
the vast applications, these contact angle problems are of high interest. We refer
e.g. to DeSimone, Grunewald, Otto [15], Guo, Tice [28], Knüpfer, Masmoudi [37],
Otto [50], Pukhnachev, Solonnikov [59], and Wilke [64].

There are di↵erent possibilities to describe the free interface and its evolution in
time. One way is to pick a fixed reference frame and measure the distance of the free
boundary with respect to this reference geometry. This way one can think of reducing
the geometric problem for the free hypersurface to some, in general highly nonlinear,
evolution equation for the distance function. This ansatz is preferrably used when
the distance of the free interface to the fixed configuration is small. One can then
linearize the equations at the reference geometry and showmaximal regularity for the
linearized problem. For a given operator, this is usually a nontrivial task. Maximal
regularity roughly speaking means that there is an isomorphism between solution
and data space of the linearized operator. In case where the equations can be
reduced to a single abstract evolution equation in some Banach space, the concept
of maximal Lp-regularity has proven to be a very useful tool to obtain solvability of
the equation in a strong sense and deduce further results, e.g. stability or instability
properties. The literature on maximal Lp-regularity is vast. We therefore only want
to refer to the recent book by Prüss, Simonett [57] and the references therein for
further discussion. In [57] it is displayed in a great way that the abstract theory of
maximal Lp-regularity proves flexible and hence can be applied to a wide array of
problems arising in the local description of free boundaries and moving interfaces.

1.2. The Mullins-Sekerka problem

In this section we describe and collect results on the classical Mullins-Sekerka

problem. We follow the survey article [24].
The classical Mullins-Sekerka problem for closed interfaces has been widely stud-

ied. It describes the evolution of the spatial distribution of two phases in time. The
two phases occupy two regions, separated by a sharp interface. The motion is driven
by the reduction of interfacial area and limited by di↵usion. The area of the two
phases is conserved in time. The Mullins-Sekerka evolution law can be derived from
conservation laws and the principles of thermodynamics, cf. [17], [30], but also in
the context of gradient flows, cf. [23], [24], [49].

The classical model is the following. Let ⌦ ⇢ Rn denote a bounded domain
in Rn, where n 2 N is the dimension. For a time-dependent family of closed and
compactly embedded interfaces �(t) separating the two disjoint phases ⌦+(t) and
⌦�(t), the problem, given an initial surface �0, reads as

��µ = 0, in ⌦±(t),

V = �JrµK · ⌫, on �(t),

µ = H, on �(t),

supplemented by Neumann boundary conditions for µ on @⌦. Hereby, V denotes the
normal velocity and H the mean curvature of �(t) with respect to the unit normal ⌫
of �(t) pointing inside ⌦+(t). By J·K we denote the jump of a given quantity across
the interface in direction of ⌫. It now readily follows that the enclosed volume by



1.3. THE TWO-PHASE NAVIER-STOKES/MULLINS-SEKERKA EQUATIONS 3

�(t) is constant in time, whereas the area of �(t) is non-increasing,

d

dt
Area(�(t)) = �

Z

⌦
|rµ|

2
dx  0,

cf. Proposition 2 in [24]. In comparison to the classical Mean Curvature Flow, the
Mullins-Sekerka problem is nonlocal in space. The hypersurface �(t) determines the
domains in which we have to solve the Laplace equation, �µ = 0 in ⌦\�(t). At the
same time, the solution µ to the Laplace equation determines the normal velocity of
the evolving interface. In this way, the interface at time t is also an unknown and
has to be determined as part of the problem as well.

In order to formulate the problem in a suitable setting, one can transform the
equations defined on the time dependent domains ⌦\�(t) to a fixed reference con-
figuration. This ansatz goes back to Hanzawa [32]. Note that this transformation
naturally depends on the solution �(t). By this transformation, the equations have
to be transformed to the fixed reference geometry and a highly nonlinear problem
arises. Using this approach, local existence of unique strong solutions was obtained
by Chen, Hong, Yi [13], and Escher, Simonett [21]. In [13], the authors work in
classical Hölder spaces, whereas in [21] height functions in so-called little Hölder
spaces are considered. Both works [13] and [21] show that for positive times t > 0
the solution is smooth in the classical sense. In [5], Alikakos et al. consider the case
of ninety degree contact in two space dimensions in the case where the initial inter-
face is assumed to be smooth and close to a part of a circle. Their arguments rely
on an harmonic extension of the curvature and finding explicit formulas in complex
variables.

In general, classical or strong solutions to the Mullins-Sekerka problem only
exist for short times as topological changes and singularities may occur. For long-
time existence results one can turn to weak formulations, since this solution concept
can handle di↵erent scenarios where classical solutions break down. We refer to
Luckhaus [41], Luckhaus, Sturzenhecker [42], and Röger [60]. As a part of this thesis
we will consider the Mullins-Sekerka problem when the interface forms a contact
angle to the boundary of the domain.

1.3. The two-phase Navier-Stokes/Mullins-Sekerka equations

In this section we introduce the system given by the Mullins-Sekerka equations
coupled to the two-phase Navier-Stokes equations with surface tension. We follow
the introductory chapter of [4].

Consider the flow of two incompressible, viscous fluids inside a bounded domain
⌦ ⇢ Rn, n = 2, 3. We assume that the fluids are of Newtonian type, do not mix,
and possess a common sharp interface �(t). This interface separates the two regions
occupied by the fluids. In the model without boundary contact which we present
in this introduction, the inner phase is compactly embedded in the domain, that is,
has a positive distance to the boundary of the fixed domain for all times during the
evolution. The viscosities of the two fluids are constant but may be di↵erent from
each other. In particular, we model the case where surface tension at the common
interface is present. For simplicity in this introduction, we set the density equal to
one in both fluids.
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Let v be the velocity and p the pressure. The stress tensor is given by T (v, p) =
µ
±(Dv +Dv

>)� pI in the bulk regions ⌦\�(t). The model reads as

@tv + v ·rv � div T (v, p) = 0, in ⌦\�(t),

div v = 0, in ⌦\�(t),

�µ = 0, in ⌦\�(t),

�⌫ · JT (v, p)K = �H⌫, on �(t),

JvK = 0, on �(t),

V = v · ⌫ � JrµK · ⌫, on �(t),

µ = �H, on �(t),

subject to boundary and initial conditions. Here, � > 0 is a constant representing
the surface tension.

One motivation to consider this problem is that it appears as a sharp interface
limit of the Navier-Stokes/Cahn-Hilliard model

@tv + v ·rv � div(µ(c)Dv) +rp = �✏ div(rc⌦rc), in ⌦⇥ R+,

div v = 0, in ⌦⇥ R+,

@tc+ v ·rc = �µ, in ⌦⇥ R+,

µ = ✏
�1

f
0(c)� ✏�c, in ⌦⇥ R+,

equipped with boundary and initial conditions, cf. [4]. Here, c is the concentration
of one of the fluids, and f is a suitable double well potential. The small order
parameter ✏ > 0 is related to the interfacial thickness, where a partial mixing of
the fluids is allowed. We refer to Halperin [31], Gurtin, Polignone, Viñals [29], and
Abels, Garcke, Grün [2] for further discussion.

For local existence of strong solutions and stability results in the case of closed
interfaces we refer to [4]. In this thesis we consider the case where the free boundary
meets the solid wall of the container at a constant contact angle. For a similar
coupled problem between Navier-Stokes and Mean Curvature Flow we refer to Liu,
Sato, Tonegawa [40].

1.4. Rayleigh-Taylor Instability

Let us consider a fixed container filled with two incompressible, immiscible, and
viscous fluids. Again we assume that these two fluids are separated by a common and
sharp interface. Let us additionally consider the case where the two fluids possess
di↵erent densities. As an external force we consider gravity acting on the fluids.

When the heavier fluid is on top, one expects the upper fluid to sink down in the
lower phase. This e↵ect is well known as Rayleigh-Taylor-Instability. This appears
when the di↵erence of the densities is large enough compared to the surface tension
between these fluids. If the lighter fluid is on top and gravity acts in the downwards
direction, we expect a di↵erent behaviour, namely that the lighter fluid stays on top.

As before, we can model the flow of the two fluids by the two-phase Navier-
Stokes equations with surface tension, now additionally with gravity acting as an
external force. Rayleigh-Taylor-Instability for this model was first rigorously proven
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in an Lp-setting by Prüss and Simonett [54], in the case of a two-phase full space
problem. In this case the problem reads as

⇢
±(@tv + (v ·r)v)� µ

±�v +rp = �⇢
±gen, in ⌦\�(t),

div v = 0, in ⌦\�(t),

JvK = 0, on �(t),

�⌫ · JT (v, p)K = �H⌫, on �(t),

V = v · ⌫, on �(t),

subject to initial conditions. Hereby ⇢± > 0 denote the two constant densities in
the fluids and g > 0 is the gravitational acceleration constant. In particular we
point out that the gravitational force �⇢

±gen enters the momentum balance of the
Navier-Stokes equation.

For a result on Rayleigh-Taylor-Instability for the two-phase Navier-Stokes equa-
tions in a cylindrical domain we refer to Wilke [64]. As a part of this thesis we will
show linearized Rayleigh-Taylor-Instability for the two-phase Navier-Stokes/Mullins-
Sekerka equations in cylindrical domains, where �(t) forms a ninety degree angle at
the boundary.

1.5. Preliminaries and Function Spaces

1.5.1. Notation. Let N denote the set of all natural numbers 1, 2, 3, . . . and
N0 := N [ {0}. For two Banach spaces X and Y , we denote by B(X,Y ) the set
of all bounded, linear operators from X to Y . Given some Hilbert space H, we
denote the scalar product in H by (., .)H . For a given domain ⌦ ⇢ Rn, the set
of continuous functions on ⌦ is denoted by C

0(⌦). For k 2 N, the set of k-times
continuously di↵erentiable functions is denoted by C

k(⌦) and for ↵ > 0,↵ 62 N, we
denote by C

↵(⌦) the Hölder space with exponent ↵. BUC(⌦) is the space of all
functions which are bounded on ⌦ and uniformly continuous. The classical Lebesgue
spaces are denoted by Lp(⌦), 1  p  1, and the Lp-Sobolev spaces are denoted
by W

k

p
(⌦). Sometimes, for k = 1, p = 2, we also write H

1(⌦) only. By C
1(⌦) we

mean the set of smooth functions and C
1

0 (⌦) are smooth functions with compact
support in ⌦. In function spaces or inequalities with fractional exponents we simply
write e.g. 1 � 1/2q instead of 1 � 1/(2q) from time to time. This should make
complex expressions more readable while the meaning still should be very clear from
the context. The constant C > 0 usually is a generic constant and may change from
line to line. We also employ classical Vinogradov notation, that is, A . B means
there is a constant C > 0 independent of A and B, such that A  CB.

1.5.2. Interpolation theory. Let X,Y be two Banach spaces. We say that
(X,Y ) is an interpolation couple, if both X and Y are continuously embedded into
another topological Hausdor↵ vector space Z.

Let (X,Y ) be an interpolation couple and denote by (·, ·)✓,p the real interpolation
functor with respect to (✓, p) for 0 < ✓ < 1, 1  p  1, cf. Lunardi [44]. Then
(X,Y )✓,p is called the real interpolation space of X and Y with respect to (✓, p). It
is well known that

(X,Y )✓,p = (Y,X)1�✓,p, 0 < ✓ < 1, 1  p  1.
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Furthermore, for 0 < ✓ < 1, 1  p  q  1,

X \ Y ⇢ (X,Y )✓,p ⇢ (X,Y )✓,q ⇢ X + Y.

If now Y ⇢ X, for 0 < ✓1 < ✓2 < 1 we have that

(X,Y )✓2,1 ⇢ (X,Y )✓1,1.

Therefore (X,Y )✓2,p ⇢ (X,Y )✓1,q for all 0 < ✓1 < ✓2 < 1, 1  p, q  1. An
important estimate regarding interpolation theory is the following, cf. Corollary 1.7
in [44].

Lemma 1.1. Let (X,Y ) be an interpolation couple. For 0 < ✓ < 1 and 1  p 

1 there is a constant C = C(✓, p) > 0, such that

|z|(X,Y )✓,p  C|z|
1�✓

X
|z|

✓

Y
,

for all z 2 X \ Y . Hereby, | · |(X,Y )✓,p denotes the norm of (X,Y )✓,p, cf. Definition

1.2 in [44].

Let us also note the following well known result, cf. Theorem 1.6 in [44].

Lemma 1.2. Let (X1, Y1) and (X2, Y2) be interpolation couples. If now T 2

B(X1, X2) \ B(Y1, Y2), then T 2 B((X1, Y1)✓,p, (X2, Y2)✓,p), for any ✓ 2 (0, 1), p 2

[1,1]. In particular,

|T |B((X1,Y1)✓,p,(X2,Y2)✓,p)  |T |
1�✓

B(X1,X2)
|T |

✓

B(Y1,Y2)
.

For futher discussion we refer to Bergh, Löfström [11], and Lunardi [44].

1.5.3. Bessel-Potential and Besov spaces. As usual, we will denote the
classical Lp-Sobolev spaces on Rn by W

k

p
(Rn), where k is a natural number and

1  p  1. The well known Bessel-potential spaces will be denoted by H
s

p
(Rn) for

s 2 R. We will now introduce the so-called (nonhomogeneous) Besov spaces, as is
done in [1].

Let ('j), j 2 N0, be a dyadic partition of unity on Rn. This is a partition of
unity ('j), j 2 N0, on Rn with 'j 2 C

1

0 (Rn) such that each support satisfies

supp'j ⇢ {⇠ 2 Rn : 2j�1
 |⇠|  2j+1

}, j � 0,

and the support of '0 is contained in the closed ball B2(0). This can be realized
as follows. Choose a smooth bump function '0 2 C

1

0 (Rn) such that '0 = 1 for
|⇠|  1 and '0 = 0 for |⇠| � 2. Then let 'j , j 2 N, be defined by means of
'j(⇠) := '0(2�j

⇠)� '0(2�j+1
⇠).

For a smooth function f 2 C
1

0 (Rn) and j 2 N0, define the dyadic block �j of
f by means of �jf := F

�1('jFf). It is then well known that the dyadic blocks
can be extended to the space of tempered distributions S 0. We can then define the
Besov space as follows.

Definition 1.3. Let s 2 R and 1  p, q  1. Then the Besov space B
s

pq
(Rn)

is defined as
B

s

pq
(Rn) := {f 2 S

0(Rn) : |f |Bs
pq(Rn) < 1},

where, if q < 1,

|f |Bs
pq(Rn) :=

✓ 1X

j=0

2jsq|�jf |
q

Lp(Rn)

◆1/q

,
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and else

|f |Bs
p1(Rn) := sup

j2N0

2js|�jf |Lp(Rn).

It is well known that by Plancherel’s theorem B
s

22(Rn) = H
s

2(Rn), and the
simple relations

B
s

pq1
(Rn) ,! B

s

pq2
(Rn), B

s+"

p1
(Rn) ,! B

s

p1(Rn),

for all s 2 R, " > 0, 1  p  1, 1  q1  q2  1, hold true, cf. Lemma 6.5 in [1].
There is also a well known Sobolev-type embedding theorem for Besov spaces, cf.
Theorem 6.15 in [1].

Lemma 1.4. Let s, s1 2 R with s  s1, 1  q1  q  1, and 1  p1  p  1,

such that s� n/p  s1 � n/p1. Then B
s1
p1q1

(Rn) ,! B
s

pq
(Rn).

The following lemma is very well known and can easily be shown by using
paraproduct estimates, see Corollary 2.86 in [9].

Lemma 1.5. For any s > 0, 1 < p, q < 1,

|vw|Bs
pq(Rn) . |v|Bs

pq(Rn)|w|L1(Rn) + |v|L1(Rn)|w|Bs
pq(Rn) (1.1)

for all v, w 2 B
s

pq
(Rn) \ L1(Rn). In particular, the space B

s

pq
(Rn) \ L1(Rn) is a

Banach algebra under pointwise multiplication.

The above lemma also holds true for smooth, bounded domains ⌦ ⇢ Rn. To
see this consider the extension operator from B

s

pq
(⌦) to B

s

pq
(Rn). By a careful

inspection, e.g. formula (7) in Section 2.9.2 in [62], we see that the extension
operator is also bounded as a mapping [L1(⌦) ! L1(Rn)]. This way, we can first
extend to Rn and then use Lemma 1.5 to obtain also the case of bounded, smooth
domains ⌦ ⇢ Rn.

1.5.4. Triebel-Lizorkin spaces. Let ('j)j be the dyadic decomposition and
�j the dyadic blocks as before. We can then define the Triebel-Lizorkin spaces as
follows.

Definition 1.6. Let s 2 R and 1  p  1, 1  q < 1. Then the Triebel-
Lizorkin space F

s

pq
(Rn) is defined as

F
s

pq
(Rn) := {f 2 S

0(Rn) : |f |F s
pq(Rn) < 1},

where

|f |F s
pq(Rn) :=

������
(

1X

j=0

2jsq|�jf(.)|
q)1/q

������
Lp(Rn)

.

Note that with the usual modification one can also define F s

pq
for q = 1, cf. [62].

For further discussion we refer to [11], [1], [62], [57].
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1.5.5. Banach space valued function spaces. In this thesis we also need
the above function spaces in a Banach-valued version. Let X be a Banach space. It
is well known that one can define the so called vector-valued or Banach space-valued
Lebesgue spaces Lp(⌦;X), cf. Appendix A.4 in [1]. Let J = (0, T ), T > 0, or
J = (0,1) = R+. The Banach space-valued versions of the other function spaces
for functions defined on J with values in X are denoted by W

k

p
(J ;X), Hs

p
(J ;X),

W
s

p
(J ;X), Bs

pr
(J ;X), F s

pr
(J ;X), respectively. For precise definitions we refer to,

e.g. [48].

1.5.6. Sectorial operators and maximal regularity. We first define the
notion of sectorial operators as in Definition 3.1.1 in [57].

Definition 1.7. Let X be a complex Banach space and A be a closed linear
operator on X. Then A is called sectorial, if both domain and range of A are dense
in X, the resolvent set of A contains (�1, 0), and there is some C > 0 such that
|t(t+A)�1

|B(X)  C for all t > 0.

The concept of R-bounded families of operators is an important tool in modern
analysis. We refer to Definition 4.1.1 in [57].

Definition 1.8. Let X and Y be Banach spaces and T ⇢ B(X,Y ). We say
that T is R-bounded, if there is some C > 0 and p 2 [1,1), such that for each
N 2 N, {Tj : j = 1, ..., N} ⇢ T , {xj : j = 1, ..., N} ⇢ X, and for all indepen-
dent, symmetric, ±1-valued random variables "j on a probability space (⌦,A, µ) the
inequality ������

NX

j=1

"jTjxj

������
Lp(⌦;Y )

 C

������

NX

j=1

"jxj

������
Lp(⌦;X)

(1.2)

is valid. The smallest C > 0 such that (1.2) holds is called R-bound of T . We
denote it by R(T ).

We can now define R-sectoriality of an operator as is done in Definition 4.4.1
in [57].

Definition 1.9. Let X be a Banach space and A a sectorial operator on X.
Then A is R-sectorial, if RA(0) := R{t(t + A)�1 : t > 0} is finite. We can then
define the R-angle of A by means of 'R

A
:= inf{✓ 2 (0,⇡) : RA(⇡ � ✓) < 1}. Here,

RA(✓) := R{�(�+A)�1 : | arg �|  ✓}.

We now define the important class of operators which admit a bounded H
1-

calculus as in Definition 3.3.12 in [57]. For the well known Dunford functional
calculus and an extension of which we refer to Sections 3.1.4 and 3.3.2 in [57]. Let
0 < '  ⇡ and ⌃' := {z 2 C : | arg z| < '}. Let H(⌃') be the set of all holomorphic
functions f : ⌃' ! C and H

1(⌃') the subset of all bounded functions of H(⌃').
The norm in H

1(⌃') is given by

|f |H1(⌃') := sup{|f(z)| : z 2 ⌃'}.

Furthermore let
H0(⌃') :=

[

↵,�<0

H↵,�(⌃'),
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where H↵,�(⌃') := {f 2 H(⌃') : |f |
'

↵,�
< 1}, and |f |

'

↵,�
:= sup{|z↵f(z)| : |z| 

1}+ sup{|z��
f(z)| : |z| � 1}.

Definition 1.10. Let X be a Banach space and A a sectorial operator on X.
Then A admits a bounded H

1-calculus, if there is some ' > 'A and a constant
K' < 1, such that

|f(A)|B(X)  K'|f |H1(⌃') (1.3)

for all f 2 H0(⌃'). The class of operators admitting a bounded H
1-calculus on

X will be denoted by H
1(X). The H

1-angle of A is defined by the infimum of all
' > 'A, such that (1.3) is valid, that is, '1

A
:= inf{' > 'A : (1.3) holds}.

Let us recall the property of maximal Lp-regularity, cf. Definition 3.5.1 in [57].

Definition 1.11. Let X be a Banach space, J = (0, T ), 0 < T < 1 or J = R+

and A a closed, densely defined operator on X with domain D(A) ⇢ X. Then the
operator A has maximal Lp-regularity on J , if and only if for every f 2 Lp(J ;X)
there is a unique u 2 W

1
p
(J ;X) \ Lp(J ;D(A)) solving

d

dt
u(t) +Au(t) = f(t), t 2 J, u|t=0 = 0,

in an almost-everywhere sense in Lp(J ;X).

There is a wide class of results on operators having maximal regularity, we refer
to Sections 3.5 and 4 in [57] for further discussion. For results on R-boundedness
and interpolation we refer to [36].

There is a strong connection between maximal Lp-regularity and the so-called
semigroup theory. For an introduction to semigroups we refer to Engel, Nagel [19],
[20], Pazy [51], and Prüss, Simonett [57].

1.6. Overview over this thesis

This thesis deals with the analysis of free boundary problems for two-phase
flows with boundary contact, in particular the Mullins-Sekerka problem and the
two-phase Navier-Stokes/Mullins-Sekerka equations with surface tension. In these
problems we impose the condition of a constant ninety degree angle contact between
the free interface and the boundary of the domain. This condition is justified as an
idealization. One major tool of tackling these problems is the theory of maximal
Lp-regularity. Besides well-posedness and maximal regularity of these systems we
are also interested in long-time behaviour, that is, stability and instability results.
In particular we will present a first result on the so called Rayleigh-Taylor instability
for the coupled system of two-phase Navier-Stokes equations and Mullins-Sekerka
flow.

1.6.1. Mullins-Sekerka with ninety degree angle contact. The first part
of this thesis deals with the analysis of the Mullins-Sekerka equations in a bounded,
smooth domain in space dimension n 2 {2, 3} with a ninety degree contact angle
condition for the free interface. Since there were no results available involving a
contact line between interface and boundary of the domain we will start at the very
beginning and give a careful analysis of the underlying linear model problems.
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Several technical di�culties appear, such as the curved boundary of the domain,
as well as the necessity to treat the linear problem in an Lp �Lq-theory with p 6= q.
Hereby, q < 2 is needed for reflection techniques across the boundary and p > 6
for the Hanzawa transform to be a C

1-di↵eomorphism. First showing maximal
Lp � Lq-regularity for the model problems we are able to show well-posedness for
the nonlinear problem for cylindrical and general, curved domains by a localization
procedure and a fixed point argument.

We then consider nonlinear stability of solutions and global-in-time existence
in cylindrical domains. In this simpler geometry the ninety degree angle boundary
condition, which is in general highly nonlinear, reduces to a linear condition involving
only the gradient of the height function. Hence it allows for an application of the
generalized principle of linearized stability of Prüss, Simonett, and Zacher, cf. [58].

In the spirit of [25] we give a linearized stability analysis of stationary solutions
of the Mullins-Sekerka flow with ninety degree angle contact in two dimensions. Here
the domain and the stationary solution may both be curved. The relevant quantities
deciding on linear stability or instability are the length of the stationary solution, its
curvature, as well as the curvature of the boundary of the domain. We then obtain
di↵erent results on linear stability for the trivial solution depending on the values
of these quantities.

These results are also published in the preprints [3], [27].

1.6.2. Two-phase Navier-Stokes/Mullins-Sekerka with ninety degree
angle contact. We can also couple the Mullins-Sekerka problem with the ninety
degree angle contact condition to the two-phase Navier-Stokes equations with surface
tension. This model describes the flow of two immiscible, incompressible fluids inside
a bounded domain. The model without boundary contact has already been studied
by Abels and Wilke [4].

We first show local existence and uniqueness of strong solutions. Then we inves-
tigate the long-time behaviour of solutions starting close to certain equilibria. We
show that for two constant but maybe di↵erent densities these solutions exist glob-
ally in time, are stable, and converge to an equilibrium solution at an exponential
rate. Since the evolution equation for the height function is now however non-local
in time, the generalized principle of [58] cannot be applied directly.

1.6.3. Rayleigh-Taylor instability for Navier-Stokes/Mullins-Sekerka
with ninety degree contact and gravity. In this part we extend the Navier-
Stokes/Mullins-Sekerka system with ninety degree contact in the sense that we allow
for gravity to act on the fluids. This is interesting since the fluids may have di↵erent
densities. We then formulate a model which is thermodynamically consistent and
well-posed. The main result then is to show the presence of linearized Rayleigh-
Taylor instability whenever the heavier fluid lies on top. Rayleigh-Taylor instability
for two-phase Navier-Stokes equations with surface tension was already adressed by
Prüss, Simonett [55], and Wilke [64].



CHAPTER 2

The Mullins-Sekerka equations with ninety degree

angle boundary contact: well-posedness

2.1. Introduction

In this chapter we study the Mullins-Sekerka problem inside a bounded domain
⌦ ⇢ Rn

, n = 2, 3, where the interface separating the two materials meets the bound-
ary of ⌦ at a constant ninety degree angle. This leads to a free boundary problem
involving a contact angle problem as well. The domain ⌦ can here be either smooth
and bounded, or of cylindrical type. The latter means that there is some smooth,
bounded domain G ⇢ Rn�1, such that ⌦ = G ⇥ (a, b), for some a < b. Precise
assumptions will be made later.

Let us introduce the model. We assume that the domain ⌦ can be decomposed
as ⌦ = ⌦+(t)[̇�̊(t)[̇⌦�(t), where �̊(t) denotes the interior of �(t), an (n � 1)-
dimensional submanifold with boundary. We interpret �(t) to be the interface sepa-
rating the two phases, ⌦±(t), which will be assumed to be connected. The boundary
of �(t) will be denoted by @�(t). Furthermore we assume �(t) to be orientable, the
unit normal vector field on �(t) pointing from ⌦�(t) to ⌦+(t) will be denoted by
n�(t).

The precise model we study reads as

V�(t) = �Jn�(t) ·rµK, on �(t),

µ|�(t) = H�(t), on �(t),

�µ = 0, in ⌦\�(t),

n@⌦ ·rµ|@⌦ = 0, on @⌦,

�̊(t) ⇢ ⌦,

@�(t) ⇢ @⌦,

\(�(t), @⌦) = ⇡/2, on @�(t),

(2.1)

subject to the initial condition

�|t=0 = �0.

Here, V�(t) denotes the normal velocity and H�(t) the mean curvature of the free
interface �(t), which is given by the sum of the principal curvatures. By J·K we
denote the jump of a quantity across �(t) in direction of n�(t), that is,

JfK(x) := lim
"!0+

[f(x+ "n�(t))� f(x� "n�(t))], x 2 �(t).

11
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Equation (2.1)7 prescribes the angle at which the interface �(t) has contact with
the fixed boundary @⌦, which will be a constant ninety degree angle during the
evolution. We can alternatively write (2.1)7 as the condition that the normals are
perpendicular on the boundary of the interface,

n�(t) · n@⌦ = 0, on @�(t). (2.2)

We also pose, motivated by (2.2), a compatibility condition at time t = 0,

\(�0, @⌦) = ⇡/2 on @�0.

Let us first state some simple properties of this evolution. The volume of each of
the two phases is conserved in time,

d

dt
|⌦±(t)| = 0, t 2 R+. (2.3)

Here, ⌦±(t) denote the two di↵erent phases separated by the sharp interface �(t),
⌦ = ⌦+(t) [ �̊(t) [ ⌦�(t). Then (2.3) stems from

d

dt
|⌦+(t)| =

Z

�(t)
V�(t)dH

n�1 = �

Z

�(t)
Jn�(t) ·rµKdHn�1

=

Z

⌦+(t)
�µdx = 0,

cf. Theorem 5.4 in [17]. However, the energy given by the surface area of the free
interface �(t) satisfies

d

dt
|�(t)|  0, t 2 R+.

Indeed, an integration by parts and the ninety degree contact angle condition readily
give

d

dt
|�(t)| = �

Z

�(t)
H�(t)V�(t)dH

n�1 =

Z

�(t)
µ|�(t)Jn�(t) ·rµKdHn�1

= �

Z

⌦
|rµ|

2
dx  0,

cf. Theorem 2.32 in [10]. We are concerned with existence of strong solutions to
the Mullins-Sekerka problem (2.1). To this end we will later pick some reference
surface ⌃ inside the domain ⌦, also intersecting the boundary at a constant ninety
degree angle, and write the moving interface as a graph over ⌃ by a height function
h, depending on x 2 ⌃ and time t � 0. Pulling back the equations then to the time-
independent domain ⌦\⌃ we reduce the problem to a nonlinear evolution equation
for h. The corresponding linearization for the spatial di↵erential operator for h then
turns out to be a nonlocal pseudo-di↵erential operator of order three, cf. [22]. We
also refer to the introduction of Escher, Simonett [22] for further properties of the
Mullins-Sekerka problem.

In the following, we will be interested in height functions h with regularity

h 2 W
1
p
(0, T ;W 1�1/q

q
(⌃)) \ Lp(0, T ;W

4�1/q
q

(⌃)),



2.2. THE NEUMANN TRACE OF THE HEIGHT FUNCTION 13

where p and q are di↵erent in general. We will choose q < 2 and p finite but large,
to ensure that the real interpolation space

X� := (W 1�1/q
q

(⌃),W 4�1/q
q

(⌃))1�1/p,p = B
4�1/q�3/p
qp

(⌃) (2.4)

continuously embeds into C
2(⌃), cf. Amann [7]. This is needed to ensure that

the transformation mapping the problem to a fixed reference configuration is a C
1-

di↵eomorphism. By an ansatz where p = q < 2, this is not achievable, since h(t), t 2
[0, T ], will not be in C

2(⌃) in general. We need however the restriction q < 2
to avoid additional compatibility conditions for the elliptic problem and certain
reflection techniques, cf. also Section 2.5.1 and Section 2.3. However, the fact that
p 6= q in the solution space requires a maximal regularity result of type Lp � Lq of
the underlying linearized problem.

Let us give an overview of this chapter. We will first show local well-posedness
for the Mullins-Sekerka problem with ninety degree angle boundary contact. We will
hereby describe the motion of the moving interface by a height function over a fixed
reference surface and thus rewrite the free boundary problem of the moving interface
as a nonlinear problem for the height function parametrizing the interface. Using
the theory of maximal regularity together with a linearization of the equations and
a localization argument we will prove well-posedness of the full nonlinear problem
via the contraction mapping principle. Here one di�culty will lie in choosing the
right space for the Neumann trace of the height function and showing maximal
Lp � Lq-regularity for the linear problem. Section 2.5 is devoted to the analysis
of the underlying linear problem, where an extensive analysis is made on the half-
space model problems. This is needed since these model problems at the contact
line are not well-understood until now. The main result is then maximal Lp � Lq

regularity for the linear problem. We then use a fixed point argument to show that
the nonlinear problem is also well-posed.

2.2. The Neumann trace of the height function

In this section we characterize the optimal trace space for the Neumann trace of
the height function h and show that it is a Banach algebra with respect to pointwise
multiplication.

Theorem 2.1. Let n = 2, 3, 0 < T  1, 6 < p < 1 and q 2 (5/3, 2)\ (2p/(p+

1), 2p) and let ⌃ be the flat interface Rn

+ \ {x1 = 0}. Let again X0 := W
1�1/q
q (⌃)

and X1 := W
4�1/q
q (⌃). Then

0W
1
p
(0,T ;X0) \ Lp(0, T ;X1) 3 h 7! (2.5)

7! rh|@⌃ 2 0F
1�2/(3q)
pq

(0, T ;Lq(@⌃)) \ Lp(0, T ;B
3�2/q
qq

(@⌃))

is bounded, linear, and has a continuous right inverse E, such that @nEg|@⌃ = g for

all g 2 0F
1�2/(3q)
pq

(0, T ;Lq(@⌃))\Lp(0, T ;B
3�2/q
qq (@⌃)). Here, the subscript denotes

vanishing traces at t = 0, e.g. 0W
1
p
(0, T ;X0) := {f 2 W

1
p
(0, T ;X0) : f(0) = 0}.

Furthermore, there exists some constant C > 0 independent of the length of the

time interval T , such that

|rh|@⌃|
F

1�2/(3q)
pq (0,T ;Lq(@⌃))\Lp(0,T ;B3�2/q

qq (@⌃))
 C|h|W 1

p (0,T ;X0)\Lp(0,T ;X1),
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for all h 2 0W
1
p
(0, T ;X0) \ Lp(0, T ;X1) and

|Eg|W 1
p (0,T ;X0)\Lp(0,T ;X1)  C|g|

F

1� 2
3q

pq (0,T ;Lq(@⌃))\Lp(0,T ;B
3� 2

q
qq (@⌃))

,

for all g 2 0F
1�2/(3q)
pq

(0, T ;Lq(@⌃)) \ Lp(0, T ;B
3�2/q
qq (@⌃)).

Remark 2.2. The time trace at t = 0 in 0F
1�2/3q
pq

(0, T ;Lq(@⌃)) is well defined
since 1� 2/3q > 1/p is ensured, cf. [48].

Proof. We may use Propositions 5.37 and 5.39 in [35] to get an embedding

0W
1
p
(0, T ;X0) \ Lp(0, T ;X1) ,! 0F

1�1/(3q)
pq

(0, T ;W 1
q
(⌃)), (2.6)

where the embedding constant is independent of T . This can be seen as follows.
Since we restrict ourselves to functions with vanishing trace at t = 0, we may extend
the function to the half line R+ by reflection. We then apply the result of [35]
and restrict the extensions back to the finite time interval (0, T ). This way, we first
obtain by Proposition 5.37 in [35] that

0W
1
p
(0, T ;X0) \ Lp(0, T ;X1) ,! 0H

1
p
(0, T ;B1�1/q

qq
(⌃)) \H

1/2
p

(0, T ;B5/2�1/q
qq

(⌃)),

hence interpolating according to Proposition 5.39 in [35] gives

0H
1
p
(0, T ;X0) \H

1/2
p

(0, T ;B5/2�1/q
qq

(⌃)) ,! F
1�1/(3q)
pq

(0, T ;H1
q
(⌃)).

Hence (2.6) yields that for any h 2 0W
1
p
(0, T ;X0) \ Lp(0, T ;X1),

rh 2 0F
1�1/(3q)
pq

(0, T ;Lq(⌃)) \ Lp(0, T ;B
3�1/q
qq

(⌃)).

Concerning the traces of rh on the boundary @⌃, we use Proposition 5.23 in [35] to
write this intersection space on the right hand side as an anisotropic Triebel-Lizorkin
space F s,~a

~p,q
and use the trace theory developed in [35] for these particular spaces. For

a definition of F s,~a

~p,q
we refer to Definition 5.15 in [35]. By Proposition 5.23 in [35],

F
1�1/(3q)
pq

(0, T ;Lq(⌃)) \ Lp(0, T ;B
3�1/q
qq

(⌃)) ⌘ F
s,~a

~p,q
((0, T )⇥ ⌃),

where

s = 1, ~a =

✓
1

l
, ...,

1

l
,
1

t

◆
, ~p = (q, ..., q, p), t = 1�

1

3q
, l = 3�

1

q
,

and we take n� 1 copies of 1/l and q, respectively. Now, for taking traces in these
anisotropic Triebel-Lizorkin spaces we refer to [34]. With the notation used there in
equations (2.1) and (2.11) we use Corollary 2.7 in [34] to get that the trace operator
onto the boundary @⌃,

tr@⌃ : F s,~a

~p,q
((0, T )⇥ ⌃) ! F

s�
1
ql ,

~a00

~p00,q
((0, T )⇥ @⌃),

is bounded. Here ~a00 and ~p00 are used as introduced in the beginning of Section 2.1
in [34]. In our particular case,

~a00 =

✓
1

l
, ...,

1

l
,
1

t

◆
, ~p00 = (q, ..., q, p),
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taking now n � 2 copies of 1/l and q, respectively. We note at this point that by
the order of integration with respect to the di↵erent exponents in ~p as explained
in equation (3.1) in [34], we have to take traces in ”x1-direction” in the notation
of [34] and not in ”xn-direction” and therefore have to use Corollary 2.7 instead of
Corollary 2.8 in [34].

Again using Proposition 5.23 in [35],

F
s�

1
ql ,

~a00

~p00,q
((0, T )⇥ @⌃) = F

(s� 1
ql )t

pq (0, T ;Lq(@⌃)) \ Lp(0, T ;B
(s� 1

ql )l
qq (@⌃)).

Clearly, ✓
s�

1

ql

◆
t =

✓
1�

1

3q � 1

◆✓
1�

1

3q

◆
= 1�

2

3q
,

as well as ✓
s�

1

ql

◆
l = 3

✓
s�

1

ql

◆
t = 3�

2

q
.

Hence

F
s�

1
ql ,

~a00

~p00,q
((0, T )⇥ @⌃) = F

1�2/(3q)
pq

(0, T ;Lq(@⌃)) \ Lp(0, T ;B
3�2/q
qq

(@⌃)).

Concludingly we have shown so far that the mapping [h 7! tr@⌃ rh] between the
spaces in (2.5) is bounded.

It remains to construct a continuous right inverse. We use again Corollary 2.7
in [34] for j = 1 to get a bounded right inverse E of

F
s,~a

~p,q
((0, T )⇥ ⌃) ! F

s�a1�
a1
p1

, ~a00

~p00,p1
((0, T )⇥ @⌃), h 7! tr@⌃ rh. (2.7)

Note that by restriction we then get an inverse also on the spaces with vanishing
time trace. Now, let s̃ = s� a1 � a1/p1. If we choose s̃, t and l to satisfy

s̃t = 1�
2

3q
, s̃l = 3�

2

q
,

for instance by choice of

s̃ = 1, t = 1�
2

3q
, l = 3�

2

q
,

we obtain

s = 1 +
1

l
+

1

lq
=

4q � 1

3q � 2
,

whence, by characterization of anisotropic Triebel-Lizorkin spaces, (2.7) reads as

0F

4
3�

1
3q

pq (0, T ;Lq(⌃)) \ L
p(0, T ;B

4� 1
q

qq (⌃)) 3 h 7!

tr |@⌃rh 2 0F
1� 2

3q
pq (0, T ;Lq(@⌃)) \ L

p(0, T ;B
3� 2

q
qq (@⌃)).

So in other words for given Neumann data

b 2 0F
1� 2

3q
pq (0, T ;Lq(@⌃)) \ L

p(0, T ;B
3� 2

q
qq (@⌃)),
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there exists some h = E(b) 2 0F

4
3�

1
3q

pq (0, T ;Lq(⌃)) \ L
p(0, T ;B

4� 1
q

qq (⌃)), such that
rh|@⌃ = b and

khk
F

4
3
� 1

3q
pq (0,T ;Lq(⌃))\Lp(0,T ;B

4� 1
q

qq (⌃))
. kbk

F

1� 2
3q

pq (0,T ;Lq(@⌃))\Lp(0,T ;B
3� 2

q
qq (@⌃))

.

An application of Proposition 5.38 in [35] with

� =
1

4
3 �

1
3q

=
3q

4q � 1
2 (0, 1)

gives 0F

4
3�

1
3q

pq (0, T ;Lq(⌃)) \ L
p(0, T ;B

4� 1
q

qq (⌃)) ,! 0W
1
p
(0, T ;B

1� 1
q

qq (⌃)). Conclud-
ingly,

kE(b)k
0W

1
p(0,T ;X0)\Lp(0,T ;X1) . kbk

0F
1� 2

3q
pq (0,T ;Lq(@⌃))\Lp(0,T ;B

3� 2
q

qq (@⌃))
,

and the theorem is shown. We again point out that the constant is only independent
of T since we restrict ourselves to functions having vanishing trace at t = 0. ⇤

The boundedness of the Neumann trace operator can easily be generalized to
the case of a curved interface by a standard argument involving a partition of unity
and a localization argument.

Theorem 2.3. Let ⌦ ⇢ Rn
, n = 2, 3, bounded and smooth and ⌃ a smooth in-

terface of dimension n� 1 in the sense that ⌃ is a submanifold with interior inside

⌦ meeting the boundary at a ninety degree angle. Then the Neumann trace tr@⌃ r⌃ is

bounded as a mapping from 0W
1
p
(0, T ;X0)\Lp(0, T ;X1) to 0F

1�2/(3q)
pq

(0, T ;Lq(@⌃))\

Lp(0, T ;B
3�2/q
qq (@⌃)).

The next result states that the Neumann trace space is a Banach algebra under
pointwise multiplication. We need this for contraction estimates in the nonlinear
problem later.

Theorem 2.4. Let n = 2, 3, 0 < T  1, 6 < p < 1 and q 2 (3/2, 2)\ (2p/(p+
1), 2p). Then the Neumann trace space with vanishing time trace at t = 0 above is a

Banach algebra, that is, the product estimate

kfgk
F

1� 2
3q

pq (0,T ;Lq(@⌃))\Lp(0,T ;B
3� 2

q
qq (@⌃))

. (2.8)

. kfk
F

1� 2
3q

pq (0,T ;Lq(@⌃))\Lp(0,T ;B
3� 2

q
qq (@⌃))

kgk
F

1� 2
3q

pq (0,T ;Lq(@⌃))\Lp(0,T ;B
3� 2

q
qq (@⌃))

holds for all f, g 2 0F
1�2/(3q)
pq (0, T ;Lq(@⌃)) \ Lp(0, T ;B

3�2/q
qq (@⌃)). In particular,

the constant in (2.8) is independent of the length of the time interval.

Proof. We first show that

0F
1�2/(3q)
pq

(0, T ;Lq(@⌃)) \ Lp(0, T ;B
3�2/q
qq

(@⌃)) ,! L1(0, T ;L1(@⌃)). (2.9)

Using Proposition 5.38 in [35] and a standard reflection argument in time and lo-
calization argument in space, we obtain a continuous embedding

0F
1�2/(3q)
pq

(0, T ;Lq(@⌃)) \ Lp(0, T ;B
3�2/q
qq

(@⌃))

,! 0H
(1� 2

3q )✓
p (0, T ;B(3�2/q)(1�✓)

qq
(@⌃))
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for any ✓ 2 (0, 1), where the embedding constant is independent of T since the
functions have vanishing trace at t = 0. Note that if ✓ is so small such that the
space on the right hand side does not have a well defined time trace at t = 0, we
simply replace it with

H
(1� 2

3q )✓
p (0, T ;B(3�2/q)(1�✓)

qq
(@⌃)).

Now, since n = 2 or 3, the boundary @⌃ has at most Hausdor↵ dimension 1,
whence the latter space on the right hand side surely embeds into L1(0, T ;L1(@⌃)),
if

(1� 2/(3q)) ✓ � 1/p > 0, (3� 2/q) (1� ✓)� 1/q > 0.

These both equations are equivalent to finding some ✓ 2 (0, 1) such that

1

p

3q

3q � 2
< ✓ < 1�

1

3q � 2
.

Simple calculations show that for any q 2 (3/2, 2),

1�
1

3q � 2
>

3

5
,

3q

3q � 2
<

9

5
,

whence p � 3 ensures ✓ = 3/5 is a solid choice. Therefore we know for sure that
the Neumann trace space embeds continuously into L1(0, T ;L1(@⌃)). Using para-
product estimates, cf. Lemma 1.5,

|fg|
Lp(0,T ;B3�2/q

qq (@⌃))




���|f(t)|L1 |g(t)|
B

3�2/q
qq

���
Lp(0,T )

+
���|f(t)|

B
3�2/q
qq

|g(t)|L1

���
Lp(0,T )

 |f |L1(L1)|g|Lp(B
3�2/q
qq )

+ |f |
Lp(B

3�2/q
qq )

|g|L1(L1).

From Proposition 5.7 in [48] we get

|fg|
F

1� 2
3q

pq (0,T ;Lq(@⌃))
. |f |

F

1� 2
3q

pq (0,T ;Lq(@⌃))
|g|L1(0,T ;L1(@⌃))

+ |f |L1(0,T ;L1(@⌃))|g|
F

1� 2
3q

pq (0,T ;Lq(@⌃))
.

These two estimates and (2.9) finish the proof. ⇤
Remark 2.5. Note that the above proof even shows that the Neumann trace

space embeds into C([0, T ]⇥ @⌃).

We now give a product estimate in the Triebel-Lizorkin part of the norm if one
of the functions is time-independent.

Lemma 2.6. Let 1 < p, q < 1, f 2 0F
1� 2

3q
pq (0, T ;Lq(@⌃)) and g 2 L

1(@⌃)

independent of the time variable. Then gf 2 0F
1� 2

3q
pq (0, T ;Lq(@⌃)) and

kgfk
F

1� 2
3q

pq (0,T ;Lq(@⌃))
 CkgkL1(@⌃)kfk

F

1� 2
3q

pq (0,T ;Lq(@⌃))

for some constant C > 0 independent of f, g, and T .

Proof. This estimate is a consequence of Proposition 5.4 in [48]. Indeed, we
choose � = 1, s = 1 � 2/(3q) and X = Y = Lq(@⌃) and directly get the claimed
estimate. It also easily follows from Theorem 2.7 below. ⇤
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The following theorem gives a characterization of the Triebel-Lizorkin norm on
the half line R+ via di↵erences. It will be used to gain estimates with regards to the
trace space norm of h.

Theorem 2.7. Let s 2 (0, 1). Define �hf(t) := f(t+ h)� f(t) for all t, h > 0.
Furthermore, let

[f ]F s
pq(0,1;Lq(@⌃)) :=

������

 Z
1

0
t
�(s+1)q

 Z

|h|z

k�hf(.)kLq(@⌃)dh

!q

dz

z

!1/q
������
Lp(0,1)

.

(2.10)
Then

k.kF s
pq(R+;Lq(@⌃)) ' k.kLp(R+;Lq(@⌃)) + [.]F s

pq(R+;Lq(@⌃))

are equivalent up to a constant, where the expression on the left hand side is the

F
s

pq
(R+;Lq(@⌃)) norm.

Proof. Since 0 < s < 1, we may choose m = 1 in Proposition 2.3 in [47] and
get the result. ⇤

Remark 2.8. For every q 2 (5/3, 2), we obtain that 1� 2/(3q) 2 (0, 1). Hence
the result above is applicable to the trace space of the Neumann trace of h in our
setting.

Lemma 2.9. Let G : R ! R be smooth, 0 < T
0
< 1, 0 < T < T

0
, and

R0 > r0 > 0. Then there is a constant C = C(R0) > 0 independent of T > 0 and

r0 > 0, such that

|G(f)�G(g)|
F

1�2/3q
pq (0,T ;Lq(@⌃))\Lp(0,T ;B3�2/q

qq (@⌃))

 C(R0)|f � g|
F

1�2/3q
pq (0,T ;Lq(@⌃))\Lp(0,T ;B3�2/q

qq (@⌃))
,

for all functions

f, g 2 0W
1
p
(0, T ;X0) \ Lp(0, T ;X1) \ {u : |u|W 1

p (0,T ;X0)\Lp(0,T ;X1)  r0}. (2.11)

Here, the subscript zero denotes vanishing traces at t = 0.

Proof. First note that [G(f) � G(g)]|t=0 = 0 for all functions f, g in (2.11).
Also, f, g 2 C

0([0, T ]⇥ @⌃). Hence we can deduce the following pointwise estimate.
Pick some (x, t) 2 @⌃⇥ [0, T ]. Since G is smooth,

G(f(x, t))�G(g(x, t)) =

Z 1

0
G

0(g(x, t) + ⌧(f(x, t)� g(x, t)))d⌧(g(x, t)� f(x, t)).

Since G
0(0) is not necessarily zero, we rewrite this equality as

G(f(x, t))�G(g(x, t))

=

Z 1

0
G

0(g(x, t) + ⌧(f(x, t)� g(x, t)))�G
0(0)d⌧(g(x, t)� f(x, t))

+G
0(0)(g(x, t)� f(x, t)).
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Note that this holds for any (x, t) 2 @⌃⇥[0, T ]. We can now apply triangle inequality

and the product estimate of Theorem 2.4, since
R 1
0 G

0(g + ⌧(f � g)) � G
0(0)d⌧ has

vanishing trace at t = 0. This entails

|G(f)�G(g)|
0F

1�2/3q
pq (0,T ;Lq(@⌃))\Lp(0,T ;B3�2/q

qq (@⌃))



Z 1

0
|G

0(g + ⌧(f � g))�G
0(0)|

0F
1�2/3q
pq (0,T ;Lq(@⌃))\Lp(0,T ;B3�2/q

qq (@⌃))
d⌧⇥

⇥ |f � g|
0F

1�2/3q
pq (0,T ;Lq(@⌃))\Lp(0,T ;B3�2/q

qq (@⌃))

+ |G
0(0)||f � g|

0F
1�2/3q
pq (0,T ;Lq(@⌃))\Lp(0,T ;B3�2/q

qq (@⌃))
.

Note that for any ⌧ 2 [0, 1], g + ⌧(f � g) belongs to (2.11). We now show that the
map [u 7! G̃(u) � G̃(0)] satisfies the following: for any given smooth G̃ : R ! R,
we show that for any R0 > 0, there is a constant C(R0) > 0 independent of u, such
that

|G̃(u)� G̃(0)|
0F

1�2/3q
pq (0,T ;Lq(@⌃))\Lp(0,T ;B3�2/q

qq (@⌃))
 C(R0), (2.12)

provided only that u belongs to (2.11), in particular, |u|W 1
p (0,T ;X0)\Lp(0,T ;X1)  R0.

Let us start with the following result on the trace operator. The trace onto the
boundary as a mapping

tr@⌃ : 0W
1
p
(0, T ;X0) \ C

0([0, T ];C2(⌃))

! 0F
1�2/3q
pq

(0, T ;Lq(@⌃)) \ Lp(0, T ;B
3�2/q
qq

(@⌃)),
(2.13)

is bounded with constant independent of T . Hence

|G̃(u)� G̃(0)|
0F

1�2/3q
pq (0,T ;Lq(@⌃))\Lp(0,T ;B3�2/q

qq (@⌃))

 C|G̃(u)� G̃(0)|
0W

1
p(0,T ;X0)\C0([0,T ];C2(⌃)).

Let us show (2.13) later.
We now take a function u in (2.11) with |u|W 1

p (0,T ;X0)\Lp(0,T ;X1)  R0. By the

embedding 0W
1
p
(0, T ;X0) \ Lp(0, T ;X1) ,! C

0([0, T ];X�) ,! C
0([0, T ];C2(⌃)), we

see that
|u|C0([0,T ];C2(⌃))  C1R0,

where C1 is independent of R0 and T . Now,

|G̃(u)� G̃(0)|C0([0,T ];C2(⌃))

 |G̃(u)� G̃(0)|C0([0,T ];C0(⌃)) + |G̃
0(u)ru|C0([0,T ];C0(⌃))

+ |G̃
00(u)ruru|C0([0,T ];C0(⌃)) + |G̃

0(u)r2
u|C0([0,T ];C0(⌃))

 C(R0),

since G̃ is smooth and |u|C0([0,T ]⇥⌃)  C1R0. Moreover,

|G̃(u)� G̃(0)|W 1
p (0,T ;X0)

 |G̃(u)� G̃(0)|Lp(0,T ;X0) + |G̃
0(u)@tu|Lp(0,T ;X0)

 |G̃(u)� G̃(0)|C0([0,T ];C1(⌃)) + |G̃
0(u)|C0([0,T ];C1(⌃))|@tu|Lp(0,T ;X0)

 C(R0).
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Altogether, this shows (2.12). It remains to prove the embedding (2.13). Let us first
show that the trace is bounded as a mapping

[u 7! u|@⌃], 0W
1
p
(0, T ;X0) \ C

0([0, T ];C2(⌃)) ! Lp(0, T ;B
3�2/q
qq

(@⌃)). (2.14)

Clearly, 0W
1
p
(0, T ;X0) \ C

0([0, T ];C2(⌃)) ,! L
p(0, T ;H2

q̃
(⌃)), for any 1 < q̃ < 1.

The trace operator [u 7! u|@⌃] is now bounded as a mapping [H2
q̃
(⌃) ! B

2�1/q̃
q̃q̃

(@⌃)],
by classical results. Given q < 2, we may choose q̃ = q̃(q) < 1 large enough to satsify

2 � 1/q̃ > 3 � 2/q. Then, since q̃ � q, we have B
2�1/q̃
q̃q̃

(@⌃) ,! B
3�2/q
qq (@⌃). This

proves (2.14).
It remains to show boundedness of

[u 7! u|@⌃], 0W
1
p
(0, T ;X0) \ C

0([0, T ];C2(⌃)) ! 0F
1�2/3q
pq

(0, T ;Lq(@⌃)).

Clearly, 0W
1
p
(0, T ;X0) \C

0([0, T ];C2(⌃)) ,! 0W
1
p
(0, T ;X0) \ Lp(0, T ;W

2�1/q
q (⌃)).

Interpolating according to Proposition 5.39 in [35],

0W
1
p
(0, T ;X0) \ Lp(0, T ;W

2�1/q
q

(⌃)) ,! 0F
1�2/3q
pq

(0, T ;H1�1/3q
q

(⌃)).

Since 1� 1/3q � 1/q > 0, [u 7! u|@⌃] is bounded from H
1�1/3q
q (⌃) to Lq(@⌃). The

proof of (2.13) is complete. ⇤
Based on this proof we need to show a more involved estimate for functions with

time trace di↵erent from zero.

Lemma 2.10. Let G : R ! R be smooth, 0 < T
0
< 1, 0 < T < T

0
, and

R0 > R > 0. Assume

f, g 2 0W
1
p
(0, T ;X0) \ Lp(0, T ;X1) \ {u : |u|W 1

p (0,T ;X0)\Lp(0,T ;X1)  R},

and f̃ := f + h⇤, g̃ := g + h⇤, where h⇤ 2 E(T ) is a given function satisfying

|h⇤|E(T ) + |h⇤|C0([0,T ];C2(⌃))  1. Then

|G(f̃)�G(g̃)|
0F

1�2/3q
pq (0,T ;Lq(@⌃))\Lp(0,T ;B3�2/q

qq (@⌃))

 C(R0)|f̃ � g̃|
0F

1�2/3q
pq (0,T ;Lq(@⌃))\Lp(0,T ;B3�2/q

qq (@⌃))
,

for a constant C = C(R0) > 0 independent of f, g, h⇤, R, and T > 0.

Proof. Note that f̃(t = 0) = g̃(t = 0) = h⇤(t = 0). Let h0 := h⇤(t = 0). We
can show that pointwise

G(f̃(x, t))�G(g̃(x, t)) = G
0(h0(x))(g̃(x, t)� f̃(x, t))

+

Z 1

0
G

0(g̃(x, t) + ⌧(f̃(x, t)� g̃(x, t)))�G
0(h0(x))d⌧(g̃(x, t)� f̃(x, t)).

Now,
R 1
0 G

0(g̃ + ⌧(f̃ � g̃)) �G
0(h0)d⌧ has vanishing trace at t = 0, whence we may

apply the same product estimate argument as before. Note that we can also use the
boundedness of the embedding (2.13) if we apply it to G

0(g̃ + ⌧(f̃ � g̃)) � G
0(h0).

Since f̃ = f + h⇤ and f itself has vanishing trace,

|f̃ |E(T )  |f |E(T ) + |h⇤|E(T )  R0 + 1,

|f̃ |C0([0,T ];C2(⌃))  |f |C0([0,T ];C2(⌃)) + |h⇤|C0([0,T ];C2(⌃))  C1R0 + 1.
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Here, C1 is as before independent of T since the embedding constant in

0W
1
p
(0, T ;X0) \ Lp(0, T ;X1) ,! C

0([0, T ];X�)

is independent of T 2 (0, T 0). Therefore mimicking the proof of Lemma 2.9 gives
the desired estimate. ⇤

2.3. Reflection operators

We denote the upper half space of Rn by Rn

+ := {x 2 Rn : xn > 0}. We will
denote by R the even reflection of a function defined on Rn

+ across the boundary @Rn

+

in xn-direction, that is, we define R as an extension operator via Ru(x1, ..., xn) :=
u(x1, ...,�xn) for all xn < 0. Note that R admits a bounded operator R : Lq(Rn

+) !
Lq(Rn). The following theorems state that even more is true.

Theorem 2.11. Let 1 < q < 1. The even reflection in xn-direction R induces

a bounded linear operator from W
1+↵

q
(Rn

+) to W
1+↵

q
(Rn), whenever 0  ↵ < 1/q.

Proof. It is straightforward to verify that for a given u 2 W
1+↵

q
(Rn

+),

@jRu(x1, ..., xn) = @ju(x1, ...,�xn), j = 1, ..., n� 1, xn < 0,

and @nRu(x1, ..., xn) = �@nu(x1, ...,�xn). Hence R : W
1
q
(Rn

+) ! W
1
q
(Rn) is a

bounded operator. To show the claim for the mapping [W 1+↵

q
(Rn

+) ! W
1+↵

q
(Rn)],

it remains to show that the odd reflection of Du 2 W
↵

q
(Rn

+), that is, say TDu, is
again W

↵

q
(Rn) and that the corresponding bounds hold true.

We first note that TDu(x1, ..., xn) = e0Du(x1, ..., xn)�e0Du(x1, ...,�xn), where
e0 denotes the extension by zero to the lower half plane. Let W

1
q,0(Rn

+) := {u 2

W
1
q
(Rn

+) : u = 0 on @Rn

+}. Note that by real interpolation method,

W
↵

q
(Rn

+) =
�
Lq(Rn

+),W
1
q,0(Rn

+)
�
↵,q

, W
↵

q
(Rn) =

�
Lq(Rn),W 1

q
(Rn)

�
↵,q

,

since 0 < ↵ < 1/q, cf. [62]. Now, both zero extension operators

e0 : Lq(Rn

+) ! Lq(Rn), e0 : W 1
q,0(Rn

+) ! W
1
q
(Rn),

are bounded and linear. From Theorem 1.1.6 in [44] we obtain that e0 is therefore
also a bounded, linear operator between the corresponding interpolation spaces,
hence the theorem is proven. ⇤

Note that the above proof makes essential use of the fact that the derivative of
u 2 W

1+↵

q
(Rn

+) has no trace on @Rn

+ for ↵ < 1/q. If one has a trace it needs to be
zero to reflect appropriately, which is the statement of the next theorem.

Theorem 2.12. Let q and R be as above. Then R induces a bounded linear

operator

W
1+�

q
(Rn

+) \ {u : @xnu|xn=0 = 0} ! W
1+�

q
(Rn)

for all � 2 (1/q, 1).

Proof. We modify the proof of Theorem 2.11. We already have that R induces
bounded linear operators

L
q(Rn

+) ! L
q(Rn), W

1
q
(Rn

+) ! W
1
q
(Rn).
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Given a function u 2 W
1+�

q
(Rn

+)\{u : @xnu|xn=0 = 0}, it now remains to show that

the odd reflection, again say T , of the derivative Du 2 W
�

q
(Rn

+) is now W
�

q
(Rn).

This follows now again as in the proof of Theorem 2.11, since

T@xnu(x1, ..., xn) = e0@xnu(x1, ..., xn)� e0@xnu(x1, ...,�xn),

and the fact that the zero extension operator

e0 : W 1
q
(Rn

+) \ {f : f |xn=0 = 0} ! W
1
q
(Rn)

is bounded. Using W
1
q
(Rn

+) \ {f : f |xn=0 = 0} = W
1
q,0(Rn

+) and the interpolation
argument in Theorem 2.11 completes the proof. ⇤

We can also reflect the initial data. The result reads as follows.

Theorem 2.13. The even reflection R induces a bounded linear operator

W
3+↵

q
(Rn

+) \ {u : @xnu|xn=0 = 0} ! W
3+↵

q
(Rn)

for all ↵ 2 (0, 1/q), q 2 (3/2, 2). In particular, R also induces a bounded linear

operator

B
4�1/q�3/p
qp

(Rn

+) \ {u : @xnu|xn=0 = 0} ! B
4�1/q�3/p
qp

(Rn)

for all q 2 (3/2, 2) and p > 3/(2� 3/q).

Proof. The second statement follows from the first one for ↵ = 1�1/q�3/p <

1/q since q < 2. The first claim is shown as in the proof of Theorem 2.11, using
additionally that @xn@xnRu = R@xn@xnu. ⇤

2.4. Transformation to a fixed Reference Surface

In this section we transform the problem (2.1) to a fixed reference configuration.
To this end we construct a suitable transformation, taking into account the possibly
curved boundary of @⌦, by locally introducing curvilinear coordinates. The idea of
these transforms goes back to Hanzawa [32], curvilinear coordinates go back to the
work of Vogel [63].

Let ⌃ ⇢ ⌦ be a smooth reference surface and @⌦ smooth at least in a neigh-
bourhood of @⌃. Furthermore, let \(⌃, @⌦) = ⇡/2 on @⌃. From Proposition 3.1
in [63] we get the existence of so called curvilinear coordinates at least in a small
neighbourhood of ⌃, that is, there is some possibly small a > 0 depending on the
curvature of ⌃ and @⌦, such that

X : ⌃⇥ (�a, a) ! Rn
, (p, w) 7! X(p, w),

is a smooth di↵eomorphism onto its image and X(., .) is a curvilinear coordinate
system. One feature of these coordinates is that points on the boundary @⌃ only
get transported along the boundary of the domain, X(p, w) 2 @⌦ for all p 2 @⌃, w 2

(�a, a). We need to make use of these coordinates since the boundary @⌦ may be
curved. Therefore a transport only in normal direction of n⌃ is not su�cient here.

The curvilinear coordinates X in [63] are of form

X(p, w) = p+ wn⌃(p) + ⌧(p, w)~T (p), p 2 ⌃, r 2 (�a, a), (2.15)

where ⌧ ~T is responsible for the tangential correction. More precisely, n⌃ denotes
the unit normal vector field on ⌃ with fixed orientation and ~T is a smooth vector
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field defined on the closure of ⌃ with the following properties: it is tangent to ⌃,
normal to @⌃, of unit length on @⌃, and vanishing outside a neighbourhood of @⌃.
In particular, ~T is bounded. Furthermore, ⌧ = ⌧(p, w) is a smooth scalar function
such that X(p, w) lies on @⌦ whenever p 2 @⌃. It satisfies ⌧(p, 0) = 0 for all p 2 ⌃.
In particular then, X(p, 0) = p for all p 2 ⌃. For more details we refer to [63].

2.4.1. Hanzawa transform. With the help of these coordinates we may pa-
rametrize the free interface as follows. We assume that at time t � 0, the free
interface is given as a graph over the reference surface ⌃, that is, there is some
h : ⌃⇥ [0, T ] ! (�a, a), such that

�(t) = �h(t) := {X(p, h(p, t)) : p 2 ⌃}, t 2 [0, T ], (2.16)

for small T > 0, at least. With the help of this coordinate system we may construct
a Hanzawa-type transform as follows.

Let � 2 C
1

0 (R) be a fixed bump function satisfying �(s) = 1 for |s|  1/3,
�(s) = 0 for |s| � 2/3, and |�

0(s)|  4 for all s 2 R. Let ⌃a := X(⌃ ⇥ (�a, a)).
Then for a given height function h : ⌃ ! (�a, a) describing an interface �h we define

⇥h(x) :=

(
x, x 62 ⌃a,

(X � Fh �X
�1)(x), x 2 ⌃a,

(2.17)

where

Fh(p, w) := (p, w � �((w � h(p))/a)h(p)) , p 2 ⌃, w 2 (�a, a).

Recall that by properties of the curvilinear coordinate system we have that ⌃ =
{x 2 Rn : x = X(p, 0), p 2 ⌃}. Let X� be as in (2.4) and define

U := {h 2 X� : |h|L1(⌃) < a/5}.

Then we have the following result.

Theorem 2.14. For fixed h 2 U , the transformation ⇥h : ⌦ ! ⌦ is a C
1
-

di↵eomorphism satisfying ⇥h(�h) = ⌃.

Proof. Let h 2 U . We begin with the second identity. Pick x 2 �h. Then, in
curved coordinates, x = X(p, h(p)) for some uniquely determined p 2 ⌃. Therefore,

⇥h(x) = X � Fh �X
�1(X(p, h(p)))

= X � Fh(p, h(p))

= X(p, h(p)� �(0)h(p))

= X(p, 0),

since the coordinates X are a di↵eomorphism on ⌃a and �(0) = 1. Therefore
⇥h(x) 2 ⌃, since X(p, 0) 2 ⌃. To show surjectivity, let x 2 ⌃. Then x = X(x, 0)
and y := X(x, h(x)) satisfies ⇥h(y) = x.

Now we show next that ⇥h : ⌦ ! ⌦ is bijective. Clearly, ⇥h : ⌦\⌃a ! ⌦\⌃a is
bijective since it is simply the identity map there. Now, becauseX : ⌃⇥[�a, a] ! ⌃a

is bijective, we only have to show that Fh : ⌃⇥ [�a, a] ! ⌃⇥ [�a, a] is bijective.
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We first show injectivity of Fh. Let Fh(p1, w1) = Fh(p2, w2) for some p1, p2 2

⌃, w1, w2 2 [�a, a]. From the definition of Fh we directly get p1 = p2 and therefore

w1 � �

✓
w1 � h(p1)

a

◆
h(p1) = w2 � �

✓
w2 � h(p1)

a

◆
h(p1).

Consider the function f : R ! R, defined by

r 7! f(r) := r � �

✓
r � h(p1)

a

◆
h(p1).

By showing d

dr
f(r) > 0 for all r 2 [�a, a], we readily get w1 = w2. This however

easily follows from

d

dr
f(r) = 1� �

0

✓
r � h(p1)

a

◆
1

a
h(p1),

combined with the estimate
�����

0

✓
r � h(p1)

a

◆
1

a
h(p1)

����  k�
0
k1

1

a
khk1 

4

5
, (2.18)

since |�0
|  4 and h 2 U . Surjectivity of Fh : ⌃⇥ [�a, a] ! ⌃⇥ [�a, a] easily follows

since Fh is continuous and

Fh(p, a) = (p, a), Fh(p,�a) = (p,�a), (2.19)

for every p 2 ⌃. Hereby (2.19) follows from

(Fh(p, a))2 = a� �

✓
a� h(p)

a

◆
h(p) = a,

since |a� h(p)| /a = |1� h(p)/a| � 2/3. Note that we used |h(p)/a|  1/5, since
h 2 U . Concludingly, we have shown that ⇥h : ⌦ ! ⌦ is bijective.

To show that ⇥h and its inverse are in fact C1-mappings, we need to know that
⇥h is C1 and D⇥h is regular in every point. Then the claim follows by the inverse
function theorem. Clearly, by chain rule,

D⇥h|x = DX|Fh�X
�1(x)DFh|X�1(x)DX

�1
|x.

We can easily compute

DFh(p, w) =
 

idTp⌃ 0

�
0

⇣
w�h(p)

a

⌘
1
a
h(p)@ph(p)� �

⇣
w�h(p)

a

⌘
@ph(p) 1� �

0

⇣
w�h(p)

a

⌘
1
a
h(p)

!
,

hence by (2.18) we readily see that DFh is invertible in every point (p, w). The proof
is complete. ⇤

2.4.2. Transformed mean curvature operator. The following lemma gives
a decomposition of the transformed curvature operator K(h) := H�h �⇥h for h 2 U .
The result and proof are an adpation of the work in Lemma 2.1 in [4] and Lemma
3.1 in [22]. However, since we have boundary contact we need a new proof which
takes into account the curved boundary of the domain.
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Lemma 2.15. Let n = 2, 3, q 2 (3/2, 2), 3/(2 � 3/q) < p < 1, and U ⇢ X� as

before. Then there are functions

P 2 C
1(U ,B(W 4�1/q

q
(⌃),W 2�1/q

q
(⌃))), Q 2 C

1(U ,W 2�1/q
q

(⌃)),

such that

K(h) = P (h)h+Q(h), for all h 2 U \W
4�1/q
q

(⌃).

Moreover,

P (0) = ��⌃,

where �⌃ denotes the Laplace-Beltrami operator with respect to the surface ⌃.

Remark 2.16. Note that the orthogonality relations (3.2) in [22] do not hold if
we take X to be curvilinear coordinates, since in X we not only have a variation in
normal direction but also in tangential directions. Therefore we have to modify the
proofs in [4], [22].

Proof. We recall, cf. (2.15), that the curvilinear coordinates X are of form

X(s, r) = s+ rn⌃(s) + ⌧(s, r)~T (s), s 2 ⌃, r 2 (�a, a), (2.20)

where n⌃, ⌧ , and ~T are as before. In particular we recall that ⌧(s, 0) = 0 for all
s 2 ⌃. Moreover, since ⌃ and @⌦ form a ninety degree contact angle, we have that

@r⌧(s, 0) = 0, s 2 @⌃. (2.21)

Hence we may choose ⌧ in [63] to satisfy (2.21) for all s 2 ⌃. Let us give a proof of
(2.21).

The ninety degree contact angle condition means that for every s 2 @⌃, the
tangent vector which is given by

n⌃(s) + @r⌧(s, 0)~T (s)

is a multiple of n⌃(s). Since n⌃(s) and ~T (s) are orthogonal and ~T is of unit length
on @⌃, in particular ~T (s) is not zero, (2.21) follows. Then, in the proof of [63], we
simply choose the extension of ⌧ to satisfy (2.21) for all s 2 ⌃.

We will now derive a formula for the transformed mean curvature operator K(h)
in local coordinates. We follow the arguments of [22].

The surface �h(t) is the zero level set of the function

'h(x, t) := (X�1)2(x)� h((X�1)1(x), t), x 2 ⌃a, t 2 R+,

whence we define

�h(s, r) := 'h(X(s, r), t) = r � h(s, t), s 2 ⌃, r 2 (�a, a).

We obtain that since X : ⌃ ⇥ (�a, a) ! Rn is a smooth di↵eomorphism onto its
image, it induces a Riemannian metric gX on ⌃ ⇥ (�a, a). We denote the induced
di↵erential operators gradient, Laplace-Beltrami and the Hessian with respect to
(⌃⇥ (�a, a), gX) by rX ,�X and hessX . As in equation (3.1) in [22] we find that

K(h)|s =
1

krX�hkX

✓
�X�h �

[hessX �h](rX�h,rX�h)

krX�hk
2
X

◆ ��
(s,h(s))

,
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for all s 2 ⌃, where krX�hkX := (gX(rX�h,rX�h))1/2. Note at this point that
since X induces also a variation in tangential directions, the orthogonality relations
(3.2) in [22] do not hold in general. However,

@nX = n⌃ + @r⌧
~T ,

hence we get in local coordinates that

(@jX|@nX) = (@jX|n⌃) + @r⌧(@jX|~T ), j 2 {1, ..., n� 1},

and

(@nX|@nX) = (n⌃|n⌃) + 2@r⌧(n⌃|
~T ) + (@r⌧)

2(~T |~T )

= 1 + (@r⌧)
2(~T |~T ).

In particular we see that on the surface ⌃ the relations (3.2) in [22] still hold, but
not away from ⌃ in general.

Let us now make the following observation. Denote the first fundamental form
with respect to X by (wij)i,j=1,...,n, that is,

wij := (@iX|@jX), 1  i, j  n, (2.22)

where we surpress the dependence of (s, r). Its inverse is given by (wij)i,j=1,...,n

as usual. Recall that (wij) and therefore its inverse are symmetric. Note at this
point that in contrary to [22], wjn = �jn does not hold in general. In particular,
also w

nn
6= 1. However, we are able to show that w

nn is not ”too far away” from
1. Indeed, note that the matrix (wij)1i,jn at a point X(s, r) as is given by (2.22)
converges to ✓�

w
⌃
ij
|s

�
1i,jn�1

0

0 1

◆

in any matrix norm as (r, |@r⌧ |L1) ! 0. Hereby (w⌃
ij
) denotes the first fundamental

form of ⌃. This is an easy consequence, since (@jX|@nX) ! 0 and (@nX|@nX) ! 1
as (r, |@r⌧ |L1) ! 0. Note that all coe�cients are smooth and depend smoothly on
their parameters. Hence, since then inversion is smooth by the implicit function
theorem, we have convergence

(wij)1i,jn !

0

@
⇣
w

ij

⌃

⌘�1

1i,jn�1
0

0 1

1

A ,

as (r, |@r⌧ |L1) ! 0. Therefore there exists some possibly small � > 0, such that if
|r|+ |@r⌧ |1  �,

w
nn

|(s,r0) �
1

2
> 0 (2.23)

for all |r0|  |r|, s 2 ⌃. Note that since @⌦ is smooth and ⌃ intersects @⌦ at a ninety
degree angle,

⌧(s, 0) = 0, @r⌧(s, 0) = 0,

for all s 2 ⌃, see the considerations for (2.21). Hence we can choose, say, |r| +
k⌧kL1(⌃,C1((�a,a)))  a + k⌧kL1(⌃,C1((�a,a))), to be arbitrarily small, simply by
choosing a > 0 small enough. Therefore we can assume without loss of generality
that estimate (2.23) holds true.
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We now derive the formula for the mean curvature operator K in local coordi-
nates. We will use well-known representation formulas for rX , �X , and hessX in
local coordinates, cf. [22]. By definition,

rX�h =
X

i,j=1,...,n

w
ij
@i�h@jX.

Recall that since gX is a Riemannian metric,

gX(@iX, @jX) = wij , i, j = 1, ..., n.

Therefore,

gX(rX�h,rX�h) = gX

0

@
X

i,j

w
ij

X
@i�h@jX,

X

l,m

w
lm

X
@l�h@mX

1

A

=
X

i,j,l,m

w
ij

X
w

lm

X
@i�h@l�hgX(@jX, @mX)

=
X

i,j,l,m

w
ij

X
w

X

jm
w

lm

X
@i�h@l�h

=
X

i,l

w
il

X
@i�h@l�h,

where we used that
P

j
w

ij

X
w

X

jm
= �im. Clearly,

@j�h = �@jh, j = 1, ..., n� 1, @n�h = 1.

Hence,

@j@k�h = �@j@kh, j, k = 1, ..., n� 1, @j@n�h = 0, j = 1, ..., n. (2.24)

Therefore,

`X(h) := krX�hkX =

vuut
n�1X

i,l=1

w
li

X
@ih@lh� 2

n�1X

l=1

wln@lh+ w
nn

X
,

where we remind ourselves of (2.23). Recall the well known formulas

�X�h =
nX

j,k=1

w
jk

X
@i@k�h �

nX

j,k,l=1

w
jk

X
�l

jk,X
@l�h,

and

hessX �h(rX�h,rX�h) =

=
nX

i,j=1

 
@i@j�h �

nX

k=1

�k

ij,X
@k�h

!
[dxi ⌦ dxj ] (rX�h,rX�h) ,

where �i

jk,X
as usually denote the Christo↵el symbols with respect to gX . We also

have that

�i

jk,X
=

nX

m=1

w
mi

X
(@j@kX|@mX).
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Again writing the expressions in local coordinates,

[dxi ⌦ dxj ] (rX�h,rX�h) =

= [dxi ⌦ dxj ]

 
nX

p,q=1

w
pq

X
@q�h@pX,

nX

r,s=1

w
rs

X
@s�h@rX

!

=
nX

p,q,r,s=1

w
pq

X
w

rs

X
@q�h@s�h[dx

i
⌦ dxj ] (@pX, @rX)

=
nX

p,q,r,s=1

w
pq

X
w

rs

X
@q�h@s�h�ip�jr

=
nX

q,s=1

w
iq

X
w

js

X
@q�h@s�h,

where we used that [dxi ⌦ dxj ](@pX, @rX) = �ip�jr. Hence,

hessX�h(rX�h,rX�h) =

=
nX

i,j=1

(@i@j�h �

nX

k=1

�k

ij,X
@k�h)[dx

i
⌦ dxj ](rX�h,rX�h)

=
nX

i,j,q,s=1

w
iq

X
w

js

X
@q�h@s�h@i@j�h

�

nX

i,j,k,q,s=1

�k

ij,X
w

iq

X
w

js

X
@k�h@q�h@s�h.

Therefore

`X(h)2�X�h � hessX �h(rX�h,rX�h) = I + II + III,

where

I := `X(h)2

0

@
nX

j,k=1

w
jk

X
@j@k�h �

nX

j,k,l=1

�l

jk,X
w

jk

X
@l�h

1

A ,

II := �

nX

i,j,q,s=1

w
iq

X
w

js

X
@i@j�h@q�h@s�h,

III :=
nX

i,j,k,q,s=1

�k

ij,X
w

iq

X
w

js

X
@k�h@q�h@s�h,
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as well as K(h) = 1
`X(h)3 (I + II + III). A straightforward calculation using (2.24)

gives

I = �`X(h)2
n�1X

j,k=1

w
jk

X
@j@kh+ `X(h)2

n�1X

l=1

nX

j,k=1

w
jk

X
�l

jk,X
@lh

� `X(h)2
nX

j,k=1

w
jk

X
�n

jk,X
,

as well as

II =
n�1X

s,q,i,j=1

w
iq

X
w

js

X
@qh@sh@i@jh�

n�1X

s,i,j=1

w
in

X
w

js

X
@sh@i@jh

�

n�1X

q,i,j=1

w
iq

X
w

jn

X
@qh@i@jh+

n�1X

i,j=1

w
in

X
w

jn

X
@i@jh.

A careful splitting of the sums entails

III = �

n�1X

s,q,k=1

nX

i,j=1

�k

ij
w

iq
w

js
@kh@qh@sh+

n�1X

s,q=1

nX

i,j=1

�n

ij,X
w

iq
w

js
@qh@sh

+
n�1X

s,k=1

nX

i,j=1

�k

ij
w

in
w

js
@k@sh�

n�1X

s=1

nX

i,j=1

�n

ij
w

in
w

js
@sh

+
n�1X

q,k=1

nX

i,j=1

�k

ij
w

iq
w

jn
@kh@qh�

n�1X

q=1

nX

i,j=1

�n

ij
w

iq
w

jn
@qh

�

n�1X

k=1

nX

i,j=1

�k

ij
w

in
w

jn
@kh+

nX

i,j=1

�n

ij
w

in
w

jn
.

We sort now the terms by appearance of derivatives in h. We find, in local coordi-
nates,

K(h)|s =

0

@
n�1X

j,k=1

ajk(h)@j@kh+
n�1X

j=1

aj(h)@jh+ a(h)

1

A |(s,h(s)),

where

ajk(h) =
1

`X(h)3

✓
� `X(h)2wjk + w

jn
w

kn
�

X

l=1

g
jl
g
kn
@lh

�

n�1X

l=1

g
jn
g
kl
@lh+

n�1X

l,m=1

g
jm

g
kl
@lh@mh

◆
,
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as well as

aj(h) =
1

`X(h)3

✓
`X(h)2

nX

l,k=1

�j

lk
w

lk
�

n�1X

q,k=1

nX

i,l=1

�k

il
w

iq
w

lj
@kh@qh

+
n�1X

q=1

nX

i,l=1

�n

il
w

iq
w

lj
@qh+

n�1X

k=1

nX

i,l=1

�k

il
w

in
w

lj
@kh�

nX

i,l=1

�n

il
w

in
w

lj

+
n�1X

k=1

nX

i,l=1

�k

il
w

ij
w

ln
@kh�

nX

i,l=1

�n

il
w

ij
w

ln
�

nX

i,l=1

�j

il
w

in
w

ln

◆
,

and

a(h) = �
1

`X(h)

nX

j,k=1

�n

jk
w

jk +
1

`X(h)3

nX

i,j=1

�n

ij
w

in
w

jn
.

Let

P (h)|s =

0

@
n�1X

j,k=1

ajk(h)@j@k +
n�1X

j=1

aj(h)@j

1

A |(s,h(s)), (2.25)

Q(h)|s = a(h)|(s,h(s)),

in local coordinates. We will show that K(h) = P (h)h+Q(h) is the desired decom-
position of K. Let us recall that

w
X

jk
|(s,h(s)) =

@
X

@j
·
@
X

@k
|(s,h(s)), �i

jk,X
|(s,h(s)) =

nX

m=1

w
mi

X
@j
@
X

@k
·
@
X

@m
|(s,h(s)).

Note that since ⌃ is smooth, also @
X

@j
, w

X

ij
and w

ij

X
are smooth. Therefore the

evaluation at the point (s, h(s)) in the above formulas is a composition of a smooth
function with h.

We briefly recall useful results on composition operators, as found in Section 2.1
in [4] and [61]. For a smooth function G 2 C

1(R) with G(0) = 0, we have that

G(f) 2 B
s

pq
(Rn) (2.26)

for any function f 2 B
s

pq
(Rn), provided that s � n/p > 0, 1  p, q  1. This in

particular implies that f
�1

2 B
s

pq
(A) for all f 2 B

s

pq
(A) such that |f |1 � c0 >

0 if A is a bounded Lipschitz domain. Note that s > n/p ensures B
s

pq
(A) ,!

L
1(A). Moreover, if the previous conditions are satisfied, the mapping [f 7! G(f)]

is bounded as a map from B
s

pq
(Rn) to B

s

pq
(Rn). Furthermore, c.f. Section 2.1 in [4],

G(.) 2 C
1(Bs

p,q
(Rn)) (2.27)

for any G 2 C
1(R) such that G(0) = 0, provided s > n/p. Again we mention as in

Section 2.1 in [4] that these results carry over directly if one replaces Rn by a finite
dimensional smooth compact manifold. Then G(0) = 0 is no longer required. For
further discussion we refer to Section 2.1 in [4].

Recall that U := {h 2 X� : khkL1 < a/5} ⇢ X� and X� = B
4�1/q�3/p
qp (⌃).

Now, for h 2 U , by (2.26),

w
X

jk
(h) 2 X� .
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This follows from the fact that

s := 4�
1

q
�

3

p
>

n

q
, for n = 2, 3.

Note that for n = 3 (which is su�cent to consider) this is equivalent to p >
3

4�4/q ,

which is easily satisfied since even p >
3

3�4/q by assumption. Arguing as in [4],

det[(wjk)jk] � c0 > 0, hence also

w
jk

X
(h) 2 X� .

As the regularity index of Besov spaces behaves well under di↵erentiation,

@jh 2 B
3�1/q�3/p
qp

(⌃), j 2 1, ..., n� 1,

whence

w
jk
@jh@kh 2 B

3�1/q�3/p
qp

(⌃). (2.28)

Note at this point that we used the fact that since p >
3

3�4/q ,

3� 1/q � 3/p >
n

q
, n = 2, 3,

therefore the space B
3�1/q�3/p
qp (⌃) is a Banach algebra under pointwise multipli-

cation and we have a product estimate. More generally speaking, for s > n/q,
B

s

q,q0
,! L

1 and

kfgkBs
q,q0

. kfkBs
q,q0

kgkBs
q,q0

,

for all f, g 2 B
s

q,q0
, see Lemma 1.5. Note that this lemma also holds true on

B
s

q,q0
(⌃) since the extension operator [Bs

q,q0
(⌃) ! B

s

q,q0
(Rn�1)] is also bounded

from [L1(⌃) ! L1(Rn�1)], cf. [62]. By (2.28), the composition result (2.26),
h 2 U , and w

nn

X
�

1
2 ,

`X(h) 2 B
3�1/q�3/p
qp

(⌃).

As in [4], we proceed this way to get

ajk(h), aj(h), a(h) 2 B
3�1/q�3/p
qp

(⌃),

for all h 2 U . By the product estimate

kfgk
W

2�1/q
q

. kfk
B

3�1/q�3/p
q,p

kgk
W

2�1/q
q

for all f 2 B
3�1/q�3/p
q,p (Rn), g 2 W

2�1/q
q (Rn), we readily obtain

P 2 C
1(U ,B(W 4�1/q

q
(⌃),W 2�1/q

q
(⌃))), Q 2 C

1(U ,W 2�1/q
q

(⌃)).

Indeed, the operators are compositions of C1-mappings, cf. (2.27). Moreover we
have the estimates

kQ(h)k
W

2�1/q
q

. ka(h)k
B

3�1/q�3/p
q,p

k1k
W

2�1/q
q

. ka(h)k
B

3�1/q�3/p
q,p

,
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for all h 2 U , as well as

kP (h)h̃k
W

2�1/q
q

.
n�1X

j,k=1

kajk(h)@j@kh̃k
W

2�1/q
q

+
n�1X

j=1

kaj(h)@j h̃k
W

2�1/q
q

.
n�1X

j,k=1

kajk(h)k
B

3�1/q�3/p
q,p

k@j@kh̃k
W

2�1/q
q

+

+
n�1X

j=1

kaj(h)k
B

3�1/q�3/p
q,p

k@j h̃k
W

2�1/q
q

.

0

@
n�1X

j,k=1

kajk(h)kX0
p,q

k+
n�1X

j=1

kaj(h)kX0
p,q

1

A kh̃k
W

4�1/q
q

,

for all h 2 U , h̃ 2 W
4�1/q
q (⌃).

Now we investigate the operator P (0). From (2.25), in local coordinates,

P (0)|s =

0

@
n�1X

j,k=1

ajk(0)@j@k +
n�1X

j=1

aj(0)@j

1

A |(s,0).

Firstly,
@nX|(s,0) = @rX(s, 0) = ⌫⌃(s), s 2 ⌃,

as well as
@jX|(s,0) = @

⌃
j
|s, j = 1, ..., n� 1, s 2 ⌃.

Hence,
w

X

jn
|(s,0) = �jn, j = 1, ..., n,

where �jn denotes the Kronecker delta. Inversion formula for block type matrices
implies

w
jn

X
|(s,0) = �jn, j = 1, ..., n.

In particular,

`X(0) =
q
w

nn

X
|(s,0) = 1.

From the general formulas for ajk and aj we obtain that

ajk(0) = �w
jk

⌃ ,

as well as

aj(0) =
nX

l,k=1

w
lk

⌃ �j

lk,⌃ �

nX

i,l=1

�n

il,⌃w
in

⌃ w
lj

⌃

�

nX

i,l=1

�n

il,⌃w
ij

⌃w
ln

⌃ �

nX

i,l=1

�j

il,⌃w
in

⌃ w
ln

⌃ ,

for all j, k = 1, ...n� 1. Now, using w
mn

⌃ = �mn for all m = 1, ..., n,

aj(0) =
n�1X

l,k=1

w
lk

⌃ �j

lk,⌃ + �j

nn,⌃ +D1 +D2 +D3,
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where

D1 := �

nX

i,l=1

�n

il,⌃w
in

⌃ w
lj

⌃ , D2 := �

nX

i,l=1

�n

il,⌃w
ij

⌃w
ln

⌃ , D3 := �

nX

i,l=1

�j

il,⌃w
in

⌃ w
ln

⌃ .

Now, again using w
mn

⌃ = �mn for all m = 1, ..., n and that the Christo↵el symbols
are symmetric in the lower two indices, we get

D1 = D2 = �

nX

l=1

�n

nl,⌃w
lj

⌃ , D3 = �j

nn,⌃.

Since 1  j  n� 1, we again use w
nj

⌃ = 0 to deduce

D1 = D2 = �

n�1X

l=1

�n

nl,⌃w
lj

⌃ .

Now by characterization of the Christo↵el symbols via the first fundamental form,

�n

in,⌃ =
1

2

nX

k=1

w
nk

⌃

✓
@wnk

@xi

+
@wik

@xn

�
@win

@xk

◆
, i = 1, ..., n.

Using once more w
nk

⌃ = �nk,

�n

in,⌃ =
1

2

✓
@wnn

@xi

+
@win

@xn

�
@win

@xn

◆
=

1

2

@wnn

@xi

, i = 1, ..., n.

Now we claim that

@w
⌃
nn

@xi

= 0, i = 1, ..., n� 1.

Note that this would imply that D1 = D2 = 0. So let 1  i  n� 1. Then

@siw
⌃
nn

(s, r) =
⇣
2@sj (@rt(s, r)~T (s)), @rt(s, r)~T (s)

⌘
, s 2 ⌃, r 2 (�", ✏),

for " > 0 su�ciently small, whenceforth,

@siw
⌃
nn

(s, r) = 0.

Hence

aj(0) =
n�1X

l,k=1

w
lk

⌃ �j

lk,⌃.

Since

�⌃ =
n�1X

j,k=1

w
jk

⌃ @j@k �

n�1X

j=1

n�1X

l,k=1

w
lk

⌃ �j

lk,⌃@j

in local coordinates, we have P (0) = ��⌃. The proof is complete. ⇤
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2.4.3. Transformation to a fixed domain. We assume that the free inter-
face is given as a graph of a function h, �(t) = �h(t) := {X(p, h(p, t)) : p 2 ⌃}, t � 0,
cf. (2.16). Using the Hanzawa-type transformation ⇥t

h
:= ⇥h(t) : ⌦ ! ⌦, cf. (2.17),

we transform system (2.1) to a fixed time-independent reference configuration.
Introduce a new variable ⌘ by

⌘
�
⇥t

h
(x), t

�
= µ(x, t), x 2 ⌦, t 2 R+.

Chain rule entails

rµ(x, t) = [D⇥t

h
]T (x)r⌘(⇥t

h
(x), t).

We also have

�µ(x, t) =
nX

j,l=1

↵
h

j,l
(x)@j@l⌘(⇥

t

h
(x), t) +

nX

l=1

↵
h

l
(x)@l⌘(⇥

t

h
(x), t), (2.29)

where the coe�cients are given by

↵
h

j,l
(x) =

nX

k=1

@k(⇥
t

h
)j(x)@k(⇥

t

h
)l(x), ↵

h

l
(x) =

nX

k=1

@k@k(⇥
t

h
)l(x).

Let us economize notation. Define transformed di↵erential operators

rh := (D⇥t

h
)Tr, divh u := Tr(rhu), �h := divh rh.

Is is then easy to check thatrµ(x, t) = rh⌘(⇥t

h
(x), t) and�µ(x, t) = �h⌘(⇥t

h
(x), t).

Let us introduce

n
h

@⌦ := n@⌦ �⇥t

h
.

Since the Hanzawa transformation maps points from ⌃ = {p = X(p, 0) : p 2 ⌃} to
points on �h = {p = X(p, h(p, t)) : p 2 ⌃} and vice versa, also the normals change
since the boundary points are moving.

Let us deduce a formula for the normal velocity of the free interface �h(t) = �h(t)

in terms of the height function h. By Hanzawa transformation, ⇥t

h
(�h(t)) = ⌃, in

other words, the inverse mapping

⌅t

h
:= (⇥t

h
)�1 : ⌃ ! �h(t)

is a parametrization of �h(t) over the fixed reference surface ⌃. By equation (2.79)
in [57], the normal velocity satisfies

V�h(t, p) =
�
@t⌅

t

h
(x)|⌫�h(t, p)

�
, p = ⌅t

h
(x), x 2 ⌃.

On the reference surface, we have that

⌅t

h
|⌃ = X � (F t

h
)�1

�X
�1

|⌃,

where X denotes the curvilinear coordinates in a neighbourhood of ⌃,

X(s, r) = s+ r⌫⌃(s) + ⌧(r, s)~T⌃(s), s 2 ⌃, r 2 (�a, a),

for a > 0 small enough. Then, picking a point s 2 ⌃, we have that X(s, 0) = s,
whence

⌅t

h
(s) = X � (F t

h
)�1

�X
�1(s) = X � (F t

h
)�1(s, 0) = X(s,�(�h(s, t)/a)h(s, t)).
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In particular, if we choose h small enough, say |h(t)|L1(⌃) < a/3, we may use that
�(x) = 1 for all |x| < 1/3 to conclude that

⌅t

h
(s) = X(s, h(s, t)), s 2 ⌃, |h(t)|L1(⌃) < a/3.

Hence

@t⌅
t

h
(s) = @rX(s, h(s, t))@th(s, t), s 2 ⌃.

At this point note that, cf. (2.20),

@rX(s, r) = ⌫⌃(s) + @r⌧(s, r)~T (s), s 2 ⌃, r 2 (�a, a).

Hence

V�h =
�
@t⌅

t

h
|⌫�h

�
= @th(⌫⌃ + @r⌧(h)~T |⌫�h).

Let

a(h) := (⌫⌃ + @r⌧(h)~T |⌫�h). (2.30)

Observe a(0) = 1. Employing Hanzawa transform then yields a nonlinear system on
a fixed reference configuration,

a(h)@th = �Jn�h ·rh⌘K, on [⌃⇥ {t > 0}],

⌘|⌃ = K(h), on [⌃⇥ {t > 0}],

�h⌘ = 0, in [⌦\⌃⇥ {t > 0}],

n
h

@⌦ ·rh⌘|@⌦ = 0, on [@⌦\@⌃⇥ {t > 0}],

n
h

@⌦ · n�h = 0, on [@⌃⇥ {t > 0}],

h|t=0 = h0, at t = 0.

(2.31)

Here K(h) is the transformed mean curvature operator, nh

@⌦ := n@⌦ � ⇥t

h
, and h0

a suitable description of the initial configuration such that ⌦±(t = 0) = ⌦±

0 . Note
that we have the compatibility condition n@⌦ · n�h0

= 0 at time t = 0.

2.4.4. Di↵erentiability properties of transformed operators. We now
prove di↵erentiability of the transformed di↵erential operators

rh := (D⇥t

h
)Tr, divh u := Tr(rhu), �h := divh rh,

and the transformed normals nh

@⌦, n�h .

Lemma 2.17. Let n = 2, 3, q 2 (3/2, 2), p > 3/(3� 4/q) and U ⇢ X� as before.

Then

[h 7! �h] 2 C
1(U ;B(W 2

q
(⌦\⌃);Lq(⌦))),

[h 7! rh] 2 C
1(U ;B(W k

q
(⌦\⌃);W k�1

q
(⌦\⌃))), k = 1, 2,

[h 7! n
h

⌃], [h 7! n
h

@⌦] 2 C
1(U ;C1(⌃)).

Proof. The proof follows the lines of Section 4 in [4], since the trace space
satisfies X� ,! C

2(⌃) by choice of p and q. Indeed, going back to equation (2.29),
we see that the transformed Laplace operator can be written as

�h =
nX

j,l=1

a
h

j,l
@j@l +

nX

l=1

a
h

l
@l,
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where

a
h

j,l
(x) =

nX

k=1

@k(⇥
t

h
)j((⇥

t

h
)�1(x))@k(⇥

t

h
)l((⇥

t

h
)�1(x)),

a
h

l
(x) =

nX

k=1

@k@k(⇥
t

h
)l((⇥

t

h
)�1(x)).

The coe�cients depend on h itself and up to two derivatives of h,

a
h

j,k
= aj,k(x, h,rh,r

2
h), a

h

j
= aj(x, h,rh,r

2
h),

and the dependence of aj,k and aj of (x, h,rh,r
2
h) is smooth. This together with

X� ,! C
2(⌃) allows us to follow the lines of [4]. For the di↵erentiability properties

of the transformed normals we refer to (2.27) and [61]. Note that the derivative
satisfies rh 2 C

1(⌃) for h 2 X� and the transformed normals depend smoothly on
(x, h,rh) as well. ⇤

2.5. Linearization and model problems

The main result of this chapter is maximal regularity in Lp�Lq for the principal
linearization. We start with maximal regularity for the model problems and then
apply a localization procedure.

2.5.1. The shifted model problem on the half space. Let n = 2, 3. In
this section we will be concerned with the principal linearization on the whole upper
half space Rn

+ with a flat interface ⌃ := {x 2 Rn

+ : x1 = 0}. More precisely, we will
consider

@th+ !
3
h+ Jn⌃ ·rµK = g1, on ⌃,

µ|⌃ +�x0h = g2, on ⌃,

!
2
µ��µ = g3, on Rn

+\⌃,

en ·rµ|@Rn
+
= g4, on @Rn

+,

en ·rx0h|@⌃ = g5, on @⌃,

h|t=0 = h0, on ⌃,

(2.32)

where x
0 = (x2, ..., xn). Here ! > 0 is a fixed shift parameter we need to introduce

to get maximal regularity results on the unbounded time-space domain R+ ⇥ Rn

+.
Let us discuss the optimal regularity classes for the data. We search for a

solution h of this evolution equation in the space

W
1
p
(R+;W

1�1/q
q

(⌃)) \ Lp(R+;W
4�1/q
q

(⌃)),

where p and q are specified below. In particular, µ 2 Lp(R+;W 2
q
(Rn

+\⌃)). Let

X0 := W
1�1/q
q

(⌃), X1 := W
4�1/q
q

(⌃),

and the real interpolation space

X� := (X0, X1)1�1/p,p = B
4�1/q�3/p
qp

(⌃).
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By simple trace theory, cf. [62], we may deduce the necessary conditions

g1 2 Lp(R+;X0), g2 2 Lp(R+;W
2�1/q
q

(⌃)), (2.33)

g3 2 Lp(R+;Lq(Rn

+)), g4 2 Lp(R+;W
1�1/q
q

(@Rn

+)), h0 2 X� .

It is now a delicate matter to find the optimal regularity condition for g5, which
turns out to be

g5 2 F
1�2/(3q)
pq

(R+;Lq(@⌃)) \ Lp(R+;W
3�2/q
q

(@⌃)), (2.34)

cf. Theorem 2.1. Note that g5 has a time trace at t = 0, whenever 1�2/(3q)�1/p >

0. Hence there is a compatibility condition inside the system whenever this inequality
is satisfied, namely

g5|t=0 = en ·rx0h0|@⌃ = @nh0|@⌃, on @⌃. (2.35)

Note that there is no compatibility condition stemming from (2.32)2 and (2.32)4 on
@⌃, whenever q < 2. The following theorem now states that these conditions are
also su�cient. Note that the assumptions in Theorem 2.18 imply that q < 2 and
1� 2/(3q)� 1/p > 0 hold.

Theorem 2.18. Let p 2 (6,1), q 2 (3/2, 2) \ (2p/(p + 1), 2p), and ! > 0.
Then (2.32) has maximal Lp � Lq-regularity on R+. More precisely, for every

(g1, g2, g3, g4, g5, h0) satisfying the regularity conditions (2.33),(2.34), and the com-

patibility condition (2.35), there is a unique solution

(h, µ) 2 (W 1
p
(R+;X0) \ Lp(R+;X1))⇥ Lp(R+;W

2
q
(Rn

+\⌃))

of the shifted half space problem (2.32).
Furthermore,

|h|W 1
p (R+;X0)\Lp(R+;X1) + |µ|Lp(R+;W 2

q (Rn
+\⌃))

is bounded by

|g1|Lp(R+;X0) + |g2|
Lp(R+;W 2�1/q

q (⌃))
+ |g3|Lp(R+;Lq(Rn

+))+

|g4|
Lp(R+;W 1�1/q

q (@Rn
+))

+ |g5|
F

1�2/(3q)
pq (R+;Lq(@⌃))\Lp(R+;W 3�2/q

q (@⌃))
+ |h0|X� ,

up to a constant C = C(!) > 0, which may depend on ! > 0.

Proof. We first reduce to a trivial initial value by extending h0 to ⌃̃ = {0}⇥
Rn�1 using standard extension results of [62] and solving an Lp � Lq auxiliary
problem on Rn�1 using results of Section 4 in [58] to find some hS 2 W

1
p
(R+;X0)\

Lp(R+;X1) such that hS |t=0 = h0, cf. problem (2.39). Then define g̃5 := g5 �

@nhS |@⌃. Clearly,

g̃5|t=0 = g5|t=0 � @nh0|@⌃ = 0, on @⌃,

by the compatibility condition (2.35). This allows us to use Theorem 2.1 to find
some h̃ 2 0W

1
p
(R+;X0) \ Lp(R+;X1) such that

@nh̃|@⌃ = g̃5, on @⌃.



38 2. MULLINS-SEKERKA EQUATIONS WITH NINETY DEGREE CONTACT ANGLE

By simple trace theory, cf. [62], we may find µ4 2 Lp(R+;W 2
q
(Rn

+\⌃)) such that

@nµ4|@Rn
+

= g4 on @Rn

+. Let ⌃̃ := R⌃ := {x 2 Rn : x1 = 0}. We then solve the
elliptic auxiliary problem

!
2
µ̃��µ̃ = Rg3 �R(!2

��)µ4, on Rn
\⌃̃,

µ̃|⌃̃ = �R�x0 h̃�R�x0hS +Rg2 �Rµ4|⌃̃, on ⌃̃,
(2.36)

by a unique µ̃ 2 Lp(R+;W 2
q
(Rn

\⌃̃)), cf. [6]. Note at this point that we used that

�R�x0 h̃�R�x0hS +Rg2 �Rµ4|⌃̃ 2 Lp(R+;W
2�1/q
q

(⌃̃)),

by Theorem 2.11 since q < 2. By construction µ̃ is even in xn-direction since both
the data in (2.36) are. Hence

@nµ̃ = 0, on @Rn

+.

We have reduced the problem to the case where (g2, g3, g4, g5, h0) = 0, that is, we
are left to solve

@th+ !
3
h+ Jn⌃ ·rµK = g1, on ⌃,

µ|⌃ +�x0h = 0, on ⌃,

!
2
µ��µ = 0, on Rn

+\⌃,

en ·rµ|@Rn
+
= 0, on @Rn

+,

en ·rx0h|@⌃ = 0, on @⌃,

h|t=0 = 0, on ⌃,

(2.37)

for possibly modified g1 not to be relabeled in an Lp � Lq-setting. We reflect the
problem once more across the boundary @Rn

+ using the even reflection in xn-direction
R. We obtain a full space problem with a flat interface and that the conditions
(2.37)4 and (2.37)5 are fulfilled automatically. We obtain the problem

@th+ !
3
h+ Jn⌃ ·rµK = Rg1, on ⌃̃,

µ|⌃̃ +�x0h = 0, on ⌃̃,

!
2
µ��µ = 0, on Rn

\⌃̃,

h|t=0 = 0, on ⌃̃,

(2.38)

where Rg1 2 Lp(R+;W
1�1/q
q (⌃̃)). Let us denote by S(h) the unique solution of the

elliptic problem (2.38)2,3. We can then write the system as an abstract evolution

equation as follows. DefineAh := Jn⌃·rS(h)K+!3
h and its realization inW

1�1/q
q (⌃̃)

by A : D(A) ! W
1�1/q
q (⌃̃) with domain D(A) := W

4�1/q
q (⌃̃). Then we can modify

the results of [58] to obtain that the operator A has the property of maximal Lq-
regularity on the whole half line R+. A general principle of maximal regularity going
back to Dore [16] and Bourgain [12] now gives that A has also maximal Lp-regularity
on R+, since 1 < p < 1, cf. [57]. We give the full details below. Having this at
hand we can solve the initial value problem

d

dt
h(t) +Ah(t) = f̃(t), t 2 R+,

h(0) = h̃0,

(2.39)
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for any f̃ 2 Lp(R+;W
1�1/q
q (⌃̃)) and h̃0 2 B

4�1/q�3/p
qp (⌃̃) by a unique function

h 2 W
1
p
(R+;W

1�1/q
q (⌃̃)) \ Lp(R+;W

4�1/q
q (⌃̃)). By choosing

f := RJn⌃ ·r(µ̃+ µ4)K �R@t(h̃+ hS) +Rg1, h̃0 := 0,

we obtain a unique solution (h, S(h)) of the problem (2.38) in the proper Lp �

Lq-regularity classes on R+ ⇥ Rn�1. The estimate easily follows and the proof is
complete.

Let us give the details on how we obtain maximal Lq-regularity for A on R+.
We take Fourier transform with respect to (x2, ..., xn) 2 Rn�1 to obtain a system

!
3
ĥ+ @tĥ+ J@1⇡̂K = f̂ , ⇠ 2 Rn�1

,

!
2
⇡̂ + |⇠|

2
⇡̂ � @

2
1 ⇡̂ = 0, (x1, ⇠) 2 Ṙ⇥ Rn�1

,

⇡̂|x1=0 + |⇠|
2
ĥ = 0, ⇠ 2 Rn�1

,

ĥ|t=0 = 0, ⇠ 2 Rn�1
,

where ⇡̂ = ⇡̂(t, x1, ⇠), ĥ = ĥ(t, ⇠), and f̂ = f̂(t, ⇠) denote the Fourier transforms of
⇡, h, and f with respect to the last n� 1 variables (x2, ..., xn) 2 Rn�1. We can now
solve the second order di↵erential equation for ⇡̂ to the result

⇡̂(x1, ⇠) = �|⇠|
2
ĥ(⇠) exp

⇣
�

p
!2 + |⇠|2|x1|

⌘
, x1 2 R, ⇠ 2 Rn�1

.

We can easily compute the jump to be

J@1⇡̂K = 2|⇠|2
p
!2 + |⇠|2ĥ,

whence we obtain a modified version of the evolution equation in [58], namely

(@t + !
3)ĥ+

⇣
2|⇠|2

p
!2 + |⇠|2

⌘
ĥ = f̂ , t 2 R+,

ĥ(t = 0) = 0.

Let now B1 be the negative Laplacian on Lq(Rn�1) with domain W
2
q
(Rn�1). It

is now well known that B1 admits an R-bounded H
1-calculus on Lq(Rn�1) with

corresponding RH
1-angle zero, 'RH

1

B1
= 0, cf. the proof of Proposition 8.3.1

in [57]. Let furthermore B2 be the operator given by (!2
��)1/2 on Lq(Rn�1) with

natural domain W
1
q
(Rn�1). Then by Example 4.5.16(i) in [57] we know that B2 is

invertible, admits a bounded H
1-calculus on Lq(Rn�1), and the H

1-angle is zero,
'
1

B2
= 0. We now apply Corollary 4.5.12(iii) in [57] to get that P := 2B1B2 is a

closed, sectorial operator which itself admits a bounded H
1-calculus on Lq(Rn�1)

as well and that the H
1-angle of P is zero. The fact that B1 and B2 commute

stems from the fact that these are given as Fourier multiplication operators.
We now show that P admits a bounded H

1-calculus also on W
s

q
(Rn�1) for all

0 < s < 1, in particular for s = 1 � 1/q. To this end we show the claim for s = 1
and use real interpolation method. We will use the fact that (I��)1/2 is a bounded
isomorphism from W

1
q
(Rn�1) to Lq(Rn�1) with inverse (I ��)�1/2.
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Let ' > 0 and ⌃' := {z 2 C : | arg z| < '}. Since P admits a bounded
H

1-calculus on Lq(Rn�1), there is a constant K' > 0, such that

|h(P )|B(Lq(Rn�1);Lq(Rn�1))  K'|h|H1(⌃')

for all h 2 H0(⌃'). Let u 2 C
1

0 (Rn�1). Taking Fourier transform just as in the
proof of Theorem 6.1.8 in [57] gives

F [h(P )u](⇠) = h(P(⇠))Fu(⇠),

where P(⇠) = 2|⇠|2
p
!2 + |⇠|2 is the corresponding symbol of P . Whence we have

the representation formula

h(P )u = F
�1[h(P(⇠))Fu]

for all u 2 C
1

0 (Rn�1), in other words, the symbol of h(P ) is in fact h(P(⇠)). Since
h(P ) and the shift operators (I � �)±1/2 commute we easily see that P admits a
bounded H

1-calculus on W
1
q
(Rn�1). Indeed,

h(P )u = h(P )(I ��)�1/2(I ��)1/2u = (I ��)�1/2
h(P )(I ��)1/2u,

for all u 2 C
1

0 (Rn�1), which implies

|h(P )u|W 1
q (Rn�1) = |(I ��)�1/2

h(P )(I ��)1/2u|W 1
q (Rn�1)

. |h(P )(I ��)1/2u|Lq(Rn�1)

. |h(P )|B(Lq(Rn�1);Lq(Rn�1))|(I ��)1/2u|Lq(Rn�1)

. |h(P )|B(Lq(Rn�1);Lq(Rn�1))|u|W 1
q (Rn�1),

for all u 2 C
1

0 (Rn�1), h 2 H0(⌃'). By density this also holds true for all u 2

W
1
q
(Rn�1), whence P also admits a bounded H

1-calculus on W
1
q
(Rn�1) and the

corresponding constantK 0

'
is bounded by a multiple ofK'.Now by real interpolation

method, W s

q
(Rn�1) = (Lq(Rn�1),W 1

q
(Rn�1))s,q, s 2 (0, 1), whence

|h(P )|B(W s
q (Rn�1);W s

q (Rn�1)) . |h(P )|s
B(Lq(Rn�1);Lq(Rn�1))|h(P )|1�s

B(W 1
q (Rn�1);W 1

q (Rn�1))

for all h 2 H0(⌃'), which implies

|h(P )|B(W s
q (Rn�1);W s

q (Rn�1)) . |h(P )|B(Lq(Rn�1);Lq(Rn�1)) . K'|h|H1(⌃')

for all h 2 H0(⌃'). In other words, P also admits a bounded H
1-calculus on

W
s

q
(Rn�1) for all s 2 (0, 1).
The canonical extension to Lp(R+;W s

q
(Rn�1)), which we will also denote by P ,

then admits a bounded H
1-calculus on Lp(R+;W s

q
(Rn�1)) for all 0 < s < 1 with

angle zero.
We now apply a version of Dore-Venni theorem, cf. [52]. To this end let B be

the operator on Lp(R+;W
1�1/q
q (Rn�1)) defined by B = d

dt
+ !

3 with domain

D(B) = 0W
1
p
(R+;W

1�1/q
q

(Rn�1)).

Then B is sectorial and admits a bounded H
1-calculus on Lp(R+;W s

q
(Rn�1)) of

angle ⇡/2, cf. [57]. Furthermore, B : D(B) ! Lp(R+;W s

q
(Rn�1)) is invertible. Let



2.5. LINEARIZATION AND MODEL PROBLEMS 41

as above P be the operator on Lp(R+;W
1�1/q
q (Rn�1)) with domain

D(P ) = Lp(R+;W
4�1/q
q

(Rn�1)),

given by its symbol 2|⇠|2(!2 + |⇠|
2)1/2. By the Dore-Venni theorem, the sum

B + P with domain D(B + P ) = D(B) \ D(P ) is closed, sectorial, and invert-
ible. In other words, the evolution equation Bu + Pu = f posesses for every

f 2 Lp(R+;W
1�1/q
q (Rn�1)) a unique solution u 2 D(B) \D(P ), hence the proof of

maximal regularity is complete. ⇤

2.5.2. Dependence of the maximal regularity constant on the shift
parameter. Note that at this point it is a-priori not clear how the maximal regu-
larity constant depends on the shift parameter ! > 0. However, we will need a good
understanding of this dependence later on when we want to solve the bent halfspace
problems.

We will now introduce suitable !-dependent norms in both data and solution
space and show that the maximal regularity constant is then independent of ! with
respect to these norms.

To this end we will proceed with a scaling argument. Fix ! > 0 and let (h, µ)
be the solution on R+ ⇥ Rn

+ of the !-shifted half space problem (2.32). Define new
functions

h̃(x, t) := !
2
h(x/!, t/!3), µ̃(x, t) := µ(x/!, t/!3), x 2 Rn

+, t 2 R+.

It is then easy to check that (h̃, µ̃) solves

@th̃+ h̃+ Jn⌃ ·rµ̃K = g̃1, on ⌃,

µ̃|⌃ +�x0 h̃ = g̃2, on ⌃,

µ̃��µ̃ = g̃3, on Rn

+\⌃,

en ·rµ̃|@Rn
+
= g̃4, on @Rn

+,

en ·rx0 h̃|@⌃ = g̃5, on @⌃,

h̃|t=0 = h̃0, on ⌃,

(2.40)

where

g̃1(x, t) := !
�1

g1(x/!, t/!
3), g̃2(x, t) := g2(x/!, t/!

3),

g̃3(x, t) := !
�2

g3(x/!, t/!
3), g̃4(x, t) := !

�1
g4(x/!, t/!

3),

g̃5(x, t) := !g5(x/!, t/!
3), h̃0(x) := !

2
h0(x/!), x 2 Rn

+, t 2 R+.

Since the operator on the left hand side of (2.40) is now independent of !, we get
by the previous theorem that there is some constant M > 0 independent of !, such
that

|h̃|W 1
p (R+;X0)\Lp(R+;X1) + |µ̃|Lp(R+;W 2

q (Rn
+\⌃)) (2.41)

is bounded by

M
�
|g̃1|Lp(R+;X0) + |g̃2|

Lp(R+;W 2�1/q
q (⌃))

+ |g̃3|Lp(R+;Lq(Rn
+))+

+ |g̃4|
Lp(R+;W 1�1/q

q (@Rn
+))

+ |g̃5|
F

1�2/(3q)
pq (R+;Lq(@⌃))\Lp(R+;W 3�2/q

q (@⌃))
+ |h̃0|X�

�
.
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Clearly, the !-dependence is now hidden in the norms. We now have to analyze how
the norms transform in !. Since we need to transform norms of h and µ, we proceed
in a general setting as follows. For ↵ 2 {0, 2}, Z 2 {Rn

+, @Rn

+,⌃, @⌃}, we consider a
function u = u(x, t) defined on Z ⇥ R+ and consider a transformation via

ũ(x, t) := !
↵
u(x/!, t/!3), x 2 Z, t 2 R+

.

Note that all spaces in Z are invariant under this scaling. For � 2 {0, 1} and � 2 Nn

0 ,
we calculate

@
�

t
D

�

x
ũ(x, t) = !

↵�3��|�|
@
�

t
D

�

x
u(x/!, t/!3), x 2 Z, t 2 R+

.

Hereby Dx denotes the derivative with respect to x 2 Z. We need this distinction
to keep track on how the norm depends on ! with respect to the dimension of Z.
We calculate

k@
�

t
D

�
ũkLp(0,1;Lq(Z)) =

✓Z
1

0
k@

�

t
D

�
ũ(t)kp

Lq(Z)dt

◆1/p

=

 Z
1

0

✓Z

Z

|@
�

t
D

�
ũ(x, t)|qdx

◆p/q

dt

!1/p

= !
↵�3��|�|

 Z
1

0

✓Z

Z

����@
�

t
D

�
u

✓
x

!
,
t

!3

◆����
q

dx

◆p/q

dt

!1/p

= !
↵�3��|�|

 Z
1

0

✓Z

Z

����@
�

t
D

�
u

✓
x,

t

!3

◆����
q

dx!
dimZ

◆p/q

dt

!1/p

= !
↵�3��|�|+ dimZ

q

 Z
1

0

✓Z

Z

���@�t D�
u (x, t)

���
q

dx

◆p/q

dt!
3

!1/p

= !
↵�3��|�|+ dimZ

q + 3
p k@

�

t
D

�
ukLp(0,1;Lq(Z)),

where we used chain rule and transformation formula. For the Sobolev-Slobodeckij
seminorms we have, for � 2 (0, 1),

[@�
t
D

�
ũ(t)]W�

q (Z)

=

 Z

Z

Z

Z

|@
�

t
D

�
ũ(x, t)� @

�

t
D

�
ũ(y, t)|q

|x� y|dimZ+�q
dxdy

!1/q

= !
↵�3��|�|

 Z

Z

Z

Z

|@
�

t
D

�
u( x

!
,

t

!3 )� @
�

t
D

�
u( y

!
,

t

!3 )|q

|x� y|dimZ+�q
dxdy

!1/q

= !
↵�3��|�|

 Z

Z

Z

Z

|@
�

t
D

�
u(x, t

!3 )� @
�

t
D

�
u(y, t

!3 )|q

|!x� !y|dimZ+�q
dxdy!

2 dimZ

!1/q

= !
↵�3��|�|+ dimZ

q ��[@�
t
D

�
u(

t

!3
)]W�

q (Z).
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Integration in time gives

k[@�
t
D

�
ũ(t)]W�

q (Z)kLp(0,1) = !
↵�3��|�|+ dimZ

q ��
k[@�

t
D

�
u(

t

!3
)]W�

q (Z)kLp(0,1)

= !
↵�3��|�|+ dimZ

q ��+ 3
p k[@�

t
D

�
u(t)]W�

q (Z)kLp(0,1),

again by transformation formula. Now, we have

kh̃kW 1
p (0,1;X0)\Lp(0,1;X1) + kµ̃kLp(0;1;W 2

q (Rn
+\⌃)) '

kh̃kLp(0,1;Lq(⌃)) + kDh̃kLp(0,1;Lq(⌃)) + kD
2
h̃kLp(0,1;Lq(⌃))+

+ kD
3
h̃kLp(0,1;Lq(⌃)) + k@th̃kLp(0,1;Lq(⌃)) + k[@th̃]X0kLp(0,1)+

+ k[D3
h̃]X0kLp(0,1) + kµ̃kLp(0,1;Lq(Rn

+\⌃)) + kDµ̃kLp(0,1;Lq(Rn
+\⌃))+

+ kD
2
µ̃kLp(0,1;Lq(Rn

+\⌃)).

Using the above results now for h̃ and µ̃, we readily get

kh̃kLp(0,1;Lq(⌃)) = !
2+n�1

q + 3
p khkLp(0,1;Lq(⌃)),

kDh̃kLp(0,1;Lq(⌃)) = !
1+n�1

q + 3
p kDhkLp(0,1;Lq(⌃)),

kD
2
h̃kLp(0,1;Lq(⌃)) = !

n�1
q + 3

p kD
2
hkLp(0,1;Lq(⌃)),

kD
3
h̃kLp(0,1;Lq(⌃)) = !

�1+n�1
q + 3

p kD
3
hkLp(0,1;Lq(⌃)),

k@th̃kLp(0,1;Lq(⌃)) = !
�1+n�1

q + 3
p k@thkLp(0,1;Lq(⌃)),

k[@th̃]X0kLp(0,1) = !
�2+n�1

q + 1
q+

3
p k[@th̃]X0kLp(0,1),

k[D3
h̃]X0kLp(0,1) = !

�2+n�1
q + 1

q+
3
p k[D3

h̃]X0kLp(0,1),

kµ̃kLp(0,1;Lq(Rn
+\⌃)) = !

n
q + 3

p kµkLp(0,1;Lq(Rn
+\⌃)),

kDµ̃kLp(0,1;Lq(Rn
+\⌃)) = !

�1+n
q + 3

p kDµkLp(0,1;Lq(Rn
+\⌃)),

kD
2
µ̃kLp(0,1;Lq(Rn

+\⌃)) = !
�2+n

q + 3
p kD

2
µkLp(0,1;Lq(Rn

+\⌃)).

For the terms on the right hand side we have

kg̃1kLp(0,1;X0) = !
�1+n�1

q + 3
p kg1kLp(0,1;Lq(⌃)) + !

�2+n�1
q + 1

q+
3
p k[g1]X0kLp(0,1),

as well as

kg̃2k
Lp(0,1;W 2�1/q

q (⌃))
= !

n�1
q + 3

p kg2kLp(0,1;Lq(⌃)

+ !
�1+n�1

q + 3
p kDg2kLp(0,1;Lq(⌃)

+ !
�2+ 1

q+
n�1
q + 3

p k[Dg2]X0kLp(0,1),

kg̃3kLp(0,1;Lq(Rn
+\⌃)) = !

�2+n
q + 3

p kg3kLp(0,1;Lq(Rn
+\⌃),

kg̃4k
Lp(0,1;W 1�1/q

q (@Rn
+))

= !
�1+n�1

q + 3
p kg4kLp(0,1;Lq(@Rn

+))

+ !
�2+ 1

q+
n�1
q + 3

p k[g4]X0kLp(0,1).
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For the Triebel-Lizorkin norm on the boundary @⌃ we proceed as follows. Note that
since q < 2, 3� 2/q < 2. Moreover, 1� 2/(3q) < 1. Hence

kg̃5k
F

1� 2
3q

pq (0,1;Lq(@⌃))\Lp(0,1;B
3� 2

q
qq (@⌃))

' kg̃5kLp(0,T ;Lq(@⌃)) + kDg̃5kLp(0,T ;Lq(@⌃))

+k[Dg̃5]
W

2�2/q
q (@⌃)

kLp(0,T ) + [g̃5]
F

1� 2
3q

pq (0,1;Lq(@⌃))
,

where the Triebel-seminorm [.]
F

1� 2
3q

pq (0,1;Lq(@⌃))
is defined as in (2.10). Now,

kg̃5kLp(0,1;Lq(@⌃)) = !
1+n�2

q + 3
p kg5kLp(0,1;Lq(@⌃)),

kDg̃5kLp(0,1;Lq(@⌃)) = !
n�2
q + 3

p kDg5kLp(0,1;Lq(@⌃)),

k[Dg̃5]
W

2�2/q
q (@⌃)

kLp(0,1) = !
�2+n

q + 3
p k[Dg5]

W
2�2/q
q (@⌃)

kLp(0,1),

[g̃5]
F

1� 2
3q

pq (0,1;Lq(@⌃))
= !

�2+n
q + 3

p [g5]
F

1� 2
3q

pq (0,1;Lq(@⌃))
. (2.42)

Here, (2.42) follows from the following observations. From (2.10) we get a charac-
terization of the seminorm via di↵erences, namely

[g̃5]F s
pq(0,1;Lq(@⌃)) =

������

 Z
1

0
z
�(s+1)q

 Z

|h|z

k�hg̃5(.)kLq(@⌃)dh

!q

dz

z

!1/q
������
Lp(0,1)

,

where s = 1� 2
3q . Now,

k�hg̃5(t)kLq(@⌃) =

✓Z

@⌃
|g̃5(x, t+ h)� g̃5(x, t)|

q
dx

◆1/q

= !

✓Z

@⌃
|g5(

1

!
x,

1

!3
(t+ h))� g5(

1

!
x,

1

!3
t)|qdx

◆1/q

= !
1+ dim @⌃

q

✓Z

@⌃
|g5(x,

1

!3
t+

1

!3
h)� g5(x,

1

!3
t)|qdx

◆1/q

= !
1+n�2

q k� 1
!3 h

g5

✓
1

!3
t

◆
kLq(@⌃).

Furthermore,

Z

|h|z

k� 1
!3 h

g5

✓
1

!3
t

◆
kLq(@⌃)dh = !

3

Z

|h|
z
!3

k�hg5

✓
1

!3
t

◆
kLq(@⌃)dh.
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By transformation formula,

Z
1

0
z
�(s+1)q�1

 Z

|h|z/!3

k�hg5

✓
1

!3
t

◆
kLq(@⌃)dh

!q

dz

= !
3

Z
1

0
(!3

z)�(s+1)q�1

 Z

|h|z

k�hg5

✓
1

!3
t

◆
kLq(@⌃)dh

!q

dz

= !
�3(s+1)q

Z
1

0
z
�(s+1)q�1

 Z

|h|z

k�hg5

✓
1

!3
t

◆
kLq(@⌃)dh

!q

dz.

Therefore,

[g̃5]F s
pq(0,1;Lq(@⌃))

=

������

 Z
1

0
z
�(s+1)q

 Z

|h|z

k�hg̃5(.)kLq(@⌃)dh

!q

dz

z

!1/q
������
Lp(0,1)

= !
1+n�2

q

������

 Z
1

0
z
�(s+1)q

 Z

|h|z

k�h/!3g5(
.

!3
)kLq(@⌃)dh

!q

dz

z

!1/q
������
Lp(0,1)

= !
4+n�2

q

������

 Z
1

0
z
�(s+1)q

 Z

|h|z/!3

k�hg5(
.

!3
)kLq(@⌃)dh

!q

dz

z

!1/q
������
Lp(0,1)

= !
4+n�2

q �3(s+1)

������

 Z
1

0
z
�(s+1)q

 Z

|h|z

k�hg5(
.

!3
)kLq(@⌃)dh

!q

dz

z

!1/q
������
Lp(0,1)

= !
1+(n�2)/q+3/p�3s

������

 Z
1

0
z
�(s+1)q

 Z

|h|z

k�hg5(.)kLq(@⌃)dh

!q

dz

z

!1/q
������
Lp(0,1)

= !
�2+n/q+3/p[g5]F s

pq(0,1;Lq(@⌃)),

which gives (2.42).

Now, X� = B
4�1/q�3/p
qp (⌃) = (W 1�1/q

q (⌃),W 4�1/q
q (⌃))1�1/p,p via the real in-

terpolation method. Recall that h̃0 = !
2(h0 � F!), where F!(x) = x/!. Define

T! : W k

p
(⌃) ! W

k

p
(⌃), k 2 N, by T!h0 := !

2(h0 � F!). Then T! is a bounded,
linear operator for every k 2 N by chain rule, hence by real interpolation method
also on every W

s

p
(⌃), s > 0. Since X� is naturally an interpolation space, there is a

constant C = C(p) > 0, such that

|T!|B(X� ;X�)  C|T!|
1�p

B(W 1�1/q
q (⌃);W 1�1/q

q (⌃))
|T!|

p

B(W 4�1/q
q (⌃);W 4�1/q

q (⌃))
.

Hence

|T!h0|X� = |h̃0|X�  C(p, q,!)|h0|X� . (2.43)
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Define K(!) = K(p, q,!) := C(p, q,!) to be the constant from (2.43). We then
obtain from (2.41) that

!
4�1/q

|h|Lp(R+;Lq(⌃)) + !
3�1/q

|Dh|Lp(R+;Lq(⌃)) + !
2�1/q

|D
2
h|Lp(R+;Lq(⌃))+

+ !
1�1/q

|D
3
h|Lp(R+;Lq(⌃)) + |[@th]X0 |Lp(R+) + |[D3

h]X0 |Lp(R+)+

+ !
2
|µ|Lp(R+;Lq(Rn

+\⌃)) + !|Dµ|Lp(R+;Lq(Rn
+\⌃)) + |D

2
µ|Lp(R+;Lq(Rn

+\⌃)) 

 M

✓
!
1�1/q

|g1|Lp(R+;Lq(⌃)) + |[g1]X0 |Lp(R+) + !
2�1/q

|g2|Lp(R+;Lq(⌃))+

+ !
1�1/q

|Dg2|Lp(R+;Lq(⌃)) + |[Dg2]X0 |Lp(R+) + |g3|Lp(R+;Lq(Rn
+\⌃))+

+ !
1�1/q

|g4|Lp(R+;Lq(@Rn
+)) + |[g4]

W
1�1/q
q (@Rn

+)
|Lp(R+)+

+ !
3�2/q

|g5|Lp(R+,Lq(@⌃)) + !
2�2/q

|Dg5|Lp(R+,Lq(@⌃))

+ |[Dg5]
W

2�2/q
q (@⌃)

|Lp(R+) + [g5]
F

1� 2
3q

pq (R+;Lq(@⌃))
+K(!)|h0|X� .

◆
,

We now define norms as follows. Let

|h|E,1,! := !
4�1/q

|h|Lp(R+;Lq(⌃)) + !
3�1/q

|Dh|Lp(R+;Lq(⌃))

+ !
2�1/q

|D
2
h|Lp(R+;Lq(⌃)) + !

1�1/q
|D

3
h|Lp(R+;Lq(⌃))

+ |[@th]X0 |Lp(R+) + |[D3
h]X0 |Lp(R+),

|µ|E,2,! := !
2
|µ|Lp(R+;Lq(Rn

+\⌃)) + !|Dµ|Lp(R+;Lq(Rn
+\⌃)) + |D

2
µ|Lp(R+;Lq(Rn

+\⌃)),

|g1|F,1,! := !
1�1/q

|g1|Lp(R+;Lq(⌃)) + |[g1]X0 |Lp(R+),

|g2|F,2,! := !
2�1/q

|g2|Lp(R+;Lq(⌃)) + !
1�1/q

|Dg2|Lp(R+;Lq(⌃)) + |[Dg2]X0 |Lp(R+),

|g3|F,3,! := |g3|Lp(R+;Lq(Rn
+\⌃)),

|g4|F,4,! := !
1�1/q

|g4|Lp(R+;Lq(@Rn
+)) + |[g4]

W
1�1/q
q (@Rn

+)
|Lp(R+),

|g5|F,5,! := !
3�2/q

|g5|Lp(R+,Lq(@⌃)) + !
2�2/q

|Dg5|Lp(R+,Lq(@⌃))

+ |[Dg5]
W

2�2/q
q (@⌃)

|Lp(R+) + [g5]
F

1� 2
3q

pq (R+;Lq(@⌃))
,

and |h0|F,6,! := K(!)|h0|X� . This way we obtain that |h|E,1,! + |µ|E,2,! is bounded
by

M(|g1|F,1,! + |g2|F,2,! + |g3|F,3,! + |g4|F,4,! + |g5|F,5,! + |h0|F,6,!),

where we point out that M > 0 is independent of ! > 0. Note that this estimate
also holds true on bounded intervals J = (0, T ) ⇢ R+, as can be seen as follows.
First again reduce to trivial initial data as in the proof of Theorem 2.18. Then we
can simply extend the data (g1, g2, g3, g4) to the half line R+ by zero. Regarding g5

we note that after the reduction procedure, g5|t=0 = 0, whence we may use Section
3.4.3 in [62] and Corollary 5.12 in [35] to extend g5 to a function on the half line
R+. Then on J the same estimate holds true if we replace M by 2M .

2.5.3. Bent half space problems. In this section we consider the shifted
model problem (2.32) on a bent half space Rn

�
:= {x 2 Rn : xn > �(x1, ..., xn�1)},

where � : Rn�1
! R is a su�ciently smooth function with su�ciently small norm
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in C
1(Rn�1). Since also the reference surface may be curved, we consider a slightly

bent interface ⌃� := {x 2 Rn
�
: x1 = �(x2, ..., xn)}. Again, � : Rn�1

! R is suitably
smooth and the C

1(Rn�1)-norm is su�ciently small. The bent half space problem
reads as

@th+ !
3
h+ Jn⌃� ·rµK = g1, on ⌃� ,

µ|⌃� +�⌃�h = g2, on ⌃� ,

!
2
µ��xµ = g3, on Rn

�
\⌃� ,

n� ·rµ|@Rn
�
= g4, on @Rn

�
,

n� ·r⌃�h|@⌃� = g5, on @⌃� ,

h|t=0 = h0, on ⌃� ,

where n� denotes the outer unit normal of Rn

�
. The smallness assumption on |�|C1 +

|�|C1 implies that the bent domain and interface are only a small perturbation of
the half space and the flat interface. We will now solve this problem on the bent
half space by transforming it back to the regular half space.

Lemma 2.19. Let k 2 N and �, � 2 C
k(Rn�1). Then there is some F 2

C
k(Rn;Rn), such that F : Rn

! Rn
is a C

k
-di↵eomorphism and such that ad-

ditionally the restriction F |Rn
�
: Rn

�
! Rn

+ is a C
k
-di↵eomorphism as well. Fur-

thermore, F maps ⌃� to the flat interface Rn
+ \ {x1 = 0}. We also have that

|I �DF |Cl(Rn) . |�|Cl+1(Rn�1) + |�|Cl+1(Rn�1), for all l = 0, ..., k � 1.

Proof. To economize notation, let n = 3. We first transform in x3-direction
via �1 : R3

! R3
, x 7! (x1, x2, x3��(x1, x2)). It is then easy to see that the surface

�1(⌃�) is given by the set

�1(⌃�) = {(�(x2, x3), x2, x3 � �(�(x2, x3), x2)) : x2 2 R} \ R3
+.

Note that this is equivalent to

�1(⌃�) = {(�(x2, x3), H(x2, x3)) : (x2, x3) 2 R2
} \ R3

+,

where

H : R2
! R2

, (x2, x3) 7! (x2, x3 � �(�(x2, x3), x2)).

Now note that whenever |(�, �)|C1 is su�ciently small, |H � idR2 |C1 is small. Then
| detDH| � 1/2 on R2 and H : R2

! R2 is globally invertible. Hence the surface
�1(⌃�) can be parametrized by � �H

�1,

�1(⌃�) = {(�(H�1(x2, x3)), x2, x3) : (x2, x3) 2 R2
} \ R3

+.

Note that by the inverse function theorem, H�1 is C1(R2
,R2). Then we transform

via �2 : R3
! R3

, x 7! (x1���H
�1(x2, x3), x2, x3). We easily check that F := �2�1

satisfies the desired properties. ⇤

To pull back the equations to the regular upper half space Rn

+\⌃, we define now
new functions G1, G2, G3, G4, G5 and G6 via

gj(x, t) = Gj(t, F (x)), j = 1, ..., 5, h0(x) = G6(F (x)), x 2 Rn

�
, t 2 R+,
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cf. [33]. We also introduce (h̄, µ̄) := (h, µ) � F�1. This way, the functions (h̄, µ̄) are
defined on the regular upper half space. Then the problem for (h, µ) is equivalent
to the upper half space problem for (h̄, µ̄) reading as

@th̄+ !
3
h̄+ Jn⌃ ·rµ̄K = B1(µ̄) � F

�1 +G1, on ⌃,

µ̄|⌃ +�⌃h̄ = B2(h̄) � F
�1 +G2, on ⌃,

!
2
µ̄��xµ̄ = B3(µ̄) � F

�1 +G3, on Rn

+\⌃,

en ·rµ̄|@Rn = B4(µ̄) � F
�1 +G4, on @Rn

+,

en ·r⌃h̄|@⌃ = B5(h̄) � F
�1 +G5, on @⌃,

h̄|t=0 = G6, on ⌃,

where the perturbation operators are given by

B1(µ̄) = Jn⌃� ·r(µ̄ � F )K � J(n⌃ � F ) · (rµ̄ � F )K,
B2(h̄) = �⌃� (h̄ � F )��⌃h̄ � F,

B3(µ̄) = �x(µ̄ � F )��µ̄ � F,

B4(µ̄) = en · (rµ̄ � F )� n� ·r(µ̄ � F ),

B5(h̄) = en · (r⌃h̄ � F )� n� ·r⌃� (h̄ � F ).

Define B := (B1,B2,B3,B4,B5, 0). We will now show that the operator norm of
B is as small as we like in terms of the !-dependent norms by choosing ! > 0
large enough and the time interval and |�|C1 + |�|C1 small enough. By a reduction
argument, we can again reduce to the case where G6 = 0.

Let

0E(T ) := [0W
1
p
(0, T ;X0) \ Lp(0, T ;X1)]⇥ Lp(0, T ;W

2
q
(Rn

+\⌃), (2.44)

and

0F(T ) := Lp(0, T ;X0)⇥ Lp(0, T ;W
2�1/q
q

(⌃))⇥ Lp(0, T ;Lq(Rn

+))⇥ (2.45)

⇥ Lp(0, T ;W
1�1/q
q

(@Rn

+))⇥

⇥ [0F
1�2/(3q)
pq

(0, T ;Lq(@⌃)) \ Lp(0, T ;W
3�2/q
q

(@⌃))]⇥X� .

We equip 0E(T ) and 0F(T ) with the !-weighted norms of Section 2.5.2. Then we
can show the following estimate.

Lemma 2.20. There is some small ↵ = ↵(p) > 0, such that

|B|B(0E(T );0F(T ))  C(�, �)(!�1/q + !
�1) + "C(!,�, �, F ) + T

↵
C(!,�, �) (2.46)

for some constants C(�, �), C(!,�, �, F ), C(!,�, �) > 0, whenever |�|C1+|�|C1  ".

Note that by first choosing ! > 0 su�ciently large and then " > 0 and T > 0
su�ciently small, the right hand side gets as small as we like.

Hereby, the norm in B(0E(T ); 0F(T )) in (2.46) is taken with respect to the !-

weighted norms of Section 2.5.2.

Let us postpone the proof of the estimate to a later point. Having this estimate
at hand, we can show maximal regularity for the bent half space problem by a
Neumann series argument.
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Theorem 2.21. Let �, � be smooth curves. Then there exists some possibly

large !0 > 0, some small T > 0, and some small " > 0, such that if ! � !0,

|�|C1 + |�|C1  ", the bent half space problem has maximal Lp � Lq-regularity. To

be more precise, this means that if we replace ⌃ by ⌃� and Rn

+ by Rn

�
in (2.44) and

(2.45), there is for every (g1, g2, g3, g4, g5, 0) 2 F(T ) a unique solution (h, µ) 2 0E(T ).
Furthermore, |h|E,1,! + |µ|E,2,! is bounded by

2M(|g1|F,1,! + |g2|F,2,! + |g3|F,3,! + |g4|F,4,! + |g5|F,5,!),

where M > 0 is as in (2.41) and in particular independent of !.

Proof. Denote by L! be the linear operator defined by the left hand side of
(2.40). Let M > 0 be as in (2.41). By (2.46) there exist some !0 > 0, " > 0, and
T0 > 0, such that

|B|B(E(T0);F(T0)) 
1

2M
.

Then a Neumann series argument shows that L! + B = L!(I + L
�1
!

B) is invertible
between the spaces equipped with the (!-weighted) norms, since

|L
�1
!

B |B(E(T0);E(T0))  |L
�1
!

|B(F(T0);E(T0))|B |B(E(T0);F(T0))  M
1

2M
=

1

2
.

Furthermore,

|(L! + B)�1
|B(E(T0);E(T0))  |L

�1
!

|B(F(T0);E(T0))

1X

k=0

|L
�1
!

B |
k

B(E(T0);E(T0))
 2M,

where the right hand side is independent of !. This way, we can draw back the bent
half space problem to Rn

+\⌃ and the theorem is proven. ⇤
It remains to show Lemma 2.20.

Proof of Lemma 2.20. We first need to write each Bi in such a way that we
can give suitable estimates. For convenience we drop the bars. Now, for x 2 Rn

�
,

Jn� ·r(µ � F )K � Jn⌃(F ) ·rµ(F )K
= J(n� � n⌃ � F ) ·rµ � F K + Jn� · (DF

T
� I)rµ(F )K.

For the Laplacian on Rn, a straightforward calculation using chain rule entails

�(µ � F ) =
nX

j,k,l=1

(@j@lµ � F )@kFj@kFl +
nX

k,l=1

(@lµ � F )@k@kFl.

Therefore,

�(µ � F )��µ � F =
nX

j,l=1

(@j@lµ � F )[
nX

k=1

@kFj@kFl � �jl] +
nX

k,l=1

(@lµ � F )@k@kFl.

Let us briefly recall the definition of surface gradient and Laplace-Beltrami operator,
see Section 2.1 in [57]. For a su�ciently regular scalar valued function f : ⌃� ! R,
we define the surface gradient in local coordinates via

r⌃�f = (r⌃�f)i, (r⌃�f)i =
n�1X

j=1

g
ij
@jf,
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where g = (gij)ij denotes the first fundamental form and (gij)ij its inverse with
respect to the surface ⌃� . For a given su�ciently smooth vector field, say, v : ⌃� !

Rn�1, we define the surface divergence in local coordinates by

div⌃� v =
n�1X

i=1

1
p
det g

@i

⇣p
det gvi

⌘
.

Now, we can define the Laplace-Beltrami operator in local coordinates,

�⌃� := div⌃� r⌃� .

Hence

�⌃� =
n�1X

i,j=2

g
ij
@i@j +

1
p
det g

@i

⇣p
det ggij

⌘
@j ,

in local coordinates. Let us now deduce a formula for gij and g
ij in terms of �.

Since ⌃� is given by a parametrization,

Rn�1
! Rn

, (x2, ..., xn) 7! (�(x2, ..., xn), x2, ..., xn),

we have
gij = �ij + @i�@j�, 2  i, j  n.

Therefore,

g = (gij)ij = In�1 + (@i�@j�)ij ,

where In�1 denotes the (n � 1) ⇥ (n � 1) identity matrix. Now, a straightforward
application of chain rule gives

@j(h � F ) =
nX

l=2

(@lh � F )@jFl,

as well as

@i@j(h � F ) =
nX

k,l=2

(@l@kh � F )@iFk@jFl +
nX

l=2

(@lh � F )@i@jFl.

Again by chain rule,

@i

⇣p
det ggij

⌘
=

1

2

1
p
det g

@i(det g)g
ij +

p
det g@ig

ij
.

Altogether,

�⌃� (h � F ) =
nX

i,j,k,l=2

g
ij(@k@lh � F )@iFk@jFl +

nX

l=2

@l(h � F )Tl,

where

Tl =
nX

i,j=2

g
ij
@i@jFl +

✓
1

2

@i(det g)
p
det g

g
ij + @ig

ij

◆
@jFl.

Altogether,

�⌃� (h � F )��⌃h � F =
nX

k,l=2

(@k@lh � F )Sk,l +
nX

l=2

(@lh � F )Tl,
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where

Sk,l =

✓ nX

i,j=2

g
ij
@iFk@jFl

◆
� �kl.

Let us discuss the boundary equations. We clearly have

en·(rµ � F )� n� · (DF
T (rµ � F ))

= (en � n�) · (rµ � F ) + n� · ((DF
T
� I)(rµ � F )).

Furthermore,

r⌃� (h � F ) =
n�1X

j=1

g
ij
@j(h � F ) =

n�1X

j,l=1

g
ij(@lh � F )@jFl.

Regarding the boundary condition for h we note that

en·(r⌃h � F )� n� ·r⌃� (h � F )

= (en � n�) · (r⌃h � F ) + n� · (r⌃h � F �r⌃� (h � F )),

By comparing components,

[r⌃� (h � F )�r⌃h � F ]i =
n�1X

j=1

g
ij

n�1X

l=1

(@lh � F )@jFl � @ih � F (2.47)

for every i = 1, ..., n� 1. Now,

@ih � F =
n�1X

j,l=1

�ij�jl(@lh � F ).

Hence (2.47) is equivalent to

n�1X

j=1

n�1X

l=1

�
g
ij
@jFl � �ij�jl

 
(@lh � F ).

Conclusively, in short notation,

B1(µ) = J(n� � n⌃) ·rµK + Jn� · ((DF
T
� I)rµ)K,

B2(h) =
nX

k,l=2

@k@lhSk,l +
nX

l=2

@lhTl,

B3(µ) =
nX

l,j=1

@j@lµ

 
nX

k=1

@kFj@kFl � �jl

!
+

nX

l=1

@lµ

 
nX

k=1

@k@kFl

!
,

B4(µ) = (en � n�) ·rµ+ n� · ((DF
T
� I)rµ),

B5(h) = (en � n�) ·r⌃h+ n� · (r⌃h � F �r⌃� (h � F )).

We estimate each Bi seperately. We start with B1. Firstly,

|B1(µ)|!,T = !
1�1/q

kB1(µ)kLp(0,T ;Lq(⌃)) + k[B1(µ)]X0kLp(0,T )

 2!1�1/q
kB1(µ)kLp(0,T ;X0).
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Extend the normal vector fields n� , n⌃ defined on ⌃ to functions ñ� , ñ⌃ on Rn

+\⌃
by a bounded extension operator, cf. [62]. Then

kB1(µ)kLp(0,T ;X0)  |(ñ� � ñ⌃) ·rµ|Lp(0,T ;W 1
q (Rn

+\⌃))

+ |ñ� · ((DF
T
� I)rµ)|Lp(0,T ;W 1

q (Rn
+\⌃)).

Hence

|B1(µ)|!,T . !
1�1/q

|(ñ� � ñ⌃) ·rµ|Lp(0,T ;Lq(Rn
+\⌃))+

+ !
1�1/q

|r(ñ� � ñ⌃) ·rµ|Lp(0,T ;Lq(Rn
+\⌃))+

+ !
1�1/q

|(ñ� � ñ⌃) ·r
2
µ|Lp(0,T ;Lq(Rn

+\⌃))+

+ !
1�1/q

|ñ� · ((DF
T
� I)rµ)|Lp(0,T ;Lq(Rn

+\⌃))+

+ !
1�1/q

|rñ� · ((DF
T
� I)rµ)|Lp(0,T ;Lq(Rn

+\⌃))+

+ !
1�1/q

|ñ� · (r(DF
T
� I)rµ)|Lp(0,T ;Lq(Rn

+\⌃))+

+ !
1�1/q

|ñ� · ((DF
T
� I)r2

µ)|Lp(0,T ;Lq(Rn
+\⌃)).

The right hand side can be controlled by

!
1�1/q

|rµ|Lp(Lq(Rn
+\⌃)) (|ñ� � ñ⌃|C1 + |ñ� |C1)

�
1 + |DF � I|L1 + |D

2
F |L1

�

+ !
1�1/q

|r
2
µ|Lp(Lq(Rn

+\⌃)) (|ñ� � ñ⌃|L1 + |ñ� |L1 |DF � I|L1) .

It easily follows that

|B1(µ)|!,T . !
�1/q (1 + |�̃|C2 + |�|C2) |µ|1,!,T

+ C(!)|µ|1,!,T (|�|C1 + |�|C1) (1 + |�|C1) .

Now we concern B2. Firstly,

|B2(h)|!,T . �
2�1/q

|B2(h)|
Lp(0,T ;W 2�1/q

q (⌃)
.

Furthermore,

|B2(h)|
Lp(0,T ;W 2�1/q

q (⌃))


X

k,l

|@k@lhSkl|
Lp(0,T ;W 2�1/q

q (⌃))

+
X

l

|@lhTl|
Lp(0,T ;W 2�1/q

q (⌃))
.

Recall that for all s > 0, 1  p1, r1  1,

kfgkBs
p1,r1

. kfkBs
p1,r1

kgkL1 + kfkL1kgkBs
p1,r1

for all f, g 2 B
s

p1r1
\ L

1, see Lemma 1.5. Note that Skl is independent of time.
Hence

k@k@lhSklk
Lp(0,T ;W 2�1/q

q (⌃))
. k@k@lhk

Lp(0,T ;W 2�1/q
q (⌃))

kSklkL1(⌃)

+ kSklk
W

2�1/q
q (⌃)

k@k@lhkLp(0,T ;L1(⌃)).
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Let us analyse the terms Skl. We can write

Skl =

8
><

>:

(gkk � 1)@kFk@kFk + (@kFk � 1)(@kFk + 1)+

+
P

j 6=k
g
jj
@jFk@jFk +

P
j 6=j0 g

jj
0
@jFk@j0Fk, k = l,

P
i,j
(gij � �ij)@iFk@jFl +

P
j
@jFk@jFl, k 6= l.

If k = l, we get

kSkkkL1  kg
kk

� 1kL1kDFk
2
L1 + kDF � IkL1kDF + IkL1+

+
X

j 6=k

kg
jj
kL1k@jFkk

2
L1 +

X

j0 6=j

kg
j
0
j
kL1k@j0FkkL1k@jFkkL1 .

(2.48)

Clearly,
kgij � �ijkL1 + kg

ij
� �ijkL1 . k�kC1

for all 1  i, j  n� 1. In the first sum in (2.48), j 6= k, hence

k@jFkkL1  kDF � IkL1 .

In the second sum in (2.48), either j or j0 is not equal to k, hence

k@j0FkkL1k@jFkkL1  kDF � IkL1kDFkL1 .

If now k 6= l,

kSklkL1 

X

i,j

kg
ij
� �ijkL1kDFk

2
L1 +

X

j

k@jFkkL1k@jFlkL1 .

In the second sum j can not be k and l at the same time, hence

kSklkL1 .
�
1 + kDFkL1 + kDFk

2
L1

�
k�kC1 .

Since the first fundamental form g and DF depend only on at most one derivative
of � and �,

kSklk
W

2�1/q
q

. kSklkC2 . k�kC3 + k�kC3 .

By Hölder inequality,

|@k@lh|Lp(0,T ;L1(⌃))  T
1/p

|h|L1(0,T ;X�) . T
1/p

|h|Lp(0,T ;X1)\W 1
p (0,T ;X0),

since h 2 E(T ). By paraproduct estimates, cf. Lemma 1.5,

|@lh(t)Tl|
W

2�1/q
q (⌃)

. |@lh(t)|
W

2�1/q
q (⌃)

|Tl|L1(⌃) + |@lh(t)|L1(⌃)|Tl|
W

2�1/q
q (⌃)

,

for almost every t 2 (0, T ). Furthermore,

kTlkL1(⌃) + kTlk
W

2�1/q
q

. kTlkC2 . k�kC4 + k�̃kC4 ,

as well as
|@lh(t)|L1(⌃) + |@lh(t)|

W
2�1/q
q (⌃)

. |h(t)|
W

3�1/q
q (⌃)

,

for almost every t 2 (0, T ), since W
3�1/q
q (⌃) ,! W

1
1
(⌃). By Lemma 2.23,

|h|
Lp(0,T ;W 3�1/q

q (⌃)
. T

1/(3p)
|h|Lp(0;T ;X1)\W 1

p (0,T ;X0).

Hence

|@lhTl|
Lp(0,T ;W 2�1/q

q (⌃))
. T

1
3p |h|Lp(0;T ;X1)\W 1

p (0,T ;X0) (k�kC4 + k�kC4) .
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Altogether,

kB2(h)k
Lp(0,T ;W 2�1/q

q (⌃))

.
�
1 + kDFkL1 + kDFk

2
L1

�
k�kC1khkLp(0,T ;X1)\W 1

p (0,T ;X0)

+ T
1/p (k�kC3 + k�kC3) khkLp(0,T ;X1)\W 1

p (0,T ;X0)

+ T
1
3p (k�kC4 + k�kC4) khkLp(0,T ;X1)\W 1

p (0,T ;X0).

Hence

|B2(h)|�,T . C(�)
�
1 + kD�kL1 + kD�k2

L1
�
k�̃kC1 |h|1,�,T

+ C(�)T 1/p (k�kC3 + k�̃kC3) |h|1,�,T

+ C(�)T
1
3p (k�kC4 + k�̃kC4) |h|1,�,T .

Now let us consider B3. We write

B3(µ) =
X

l,j

Rjl@l@jµ+
X

l

R̃l@lµ, (2.49)

where

Rj,l :=

(
@j�j@j�j � 1 +

P
k 6=j

@k�j@k�j , j = l,
P

k
@k�j@k�l, j 6= l,

R̃l :=
X

k

@k@k�l. (2.50)

Now if j = l, we have Rj,l = (@j�j + 1)(@j�j � 1) +
P

k 6=j
@k�j@k�j . Clearly for

k 6= j, also @k�j = (D�� I)jk. Hence if j = l,

kRj,jkL1 . kDF + IkL1kDF � IkL1 + kDFkL1kDF � IkL1

. (1 + |�|C1 + |�|C1) (|�|C1 + |�|C1) .

The argument if j 6= l is completely the same since j and l can not be k at the same
time. Clearly,

kR̃lkL1 . 1 + k�kC2 + k�̃kC2 .

Now, by taking norms in (2.49),

kB3(µ)kLp(Lq) 

X

l,j

k@xl@xjµkLp(Lq)kRj,lkL1 +
X

l

k@xlµkLp(Lq)kR̃lkL1 .

Now this yields

|B3(µ)|�,T = kB3(µ)kLp(Lq) . |µ|1,�,T

X

j,l

kRj,lkL1 +
1

�
|µ|1,�,T

X

l

kR̃lkL1 ,

whence

|B3(µ)|�,T . |µ|1,�,T (1 + k�kC1 + k�̃kC1) (k�kC1 + k�̃kC1)

+
1

�
|µ|1,�,T (1 + k�kC2 + k�̃kC2) .

Let us be concerned with B4. Clearly,

|B4(µ)|�,T . �
1�1/q

kB4(µ)k
Lp(0,T ;W 1�1/q

q (⌃))
.
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We use a similar strategy as before. We extend n� to Rn

+ using a bounded extension
operator, cf. [62]. The extension is denoted by ñ� . We obtain

|B4(µ)|
Lp(0,T ;W 1�1/q

q (@Rn
+))

 |(ñ� � en) · (DF
T
rµ)|Lp(0,T ;W 1

q (Rn
+))

+ |en · ((DF
T
� I)rµ)|Lp(0,T ;W 1

q (Rn
+)).

The right hand side is bounded by

|(ñ� � en) · (DF
T
rµ)|Lp(0,T ;Lq(Rn

+))

+ |r(ñ� � en) · (DF
T
rµ)|Lp(0,T ;Lq(Rn

+))

+ |(ñ� � en) · (rDF
T
rµ)|Lp(0,T ;Lq(Rn

+))

+ |(ñ� � en) · (DF
T
r

2
µ)|Lp(0,T ;Lq(Rn

+))

+ |en · ((DF
T
� I)rµ)|Lp(0,T ;Lq(Rn

+))

+ |en · (r(DF
T
� I)rµ)|Lp(0,T ;Lq(Rn

+))

+ |en · ((DF
T
� I)r2

µ)|Lp(0,T ;Lq(Rn
+)).

Hence

|B4(µ)|!,T . !
1�1/q

krµkLp(Lq) (1 + kñ�kC1)
�
1 + kDFkL1 + kD

2
FkL1

�

+ (kDF � IkL1 + kñ� � enkL1) kr2
µkLp(Lq).

This entails

|B4(µ)|!,T . �
�1/q (1 + k�kC2)

�
1 + kDFkL1 + kD

2
FkL1

�
|µ|1,�,T

+ (k�kC1 + k�kC1) |µ|1,�,T .

Let us give the estimates for B5. Recall

B5(h) = (en � n�) ·r⌃h+
X

i

(n�)i
X

j,l

(gij@jFl � �ij�jl)@lh.

Note that the normals, the first fundamental form, and the transformation F are
time-independent. Therefore, by Lemma 2.6,

|B5(h)|
F

1� 2
3q

pq (0,T ;Lq(@⌃))
.
✓
|n� � en|L1(@⌃) + |n� |L1(@⌃)|g

ij
� �ij |L1(@⌃)|DF |L1

+ |n� |L1(@⌃)|g
ij
|L1 |DF � I|L1

◆
|r⌃h|

F

1� 2
3q

pq (0,T ;Lq(@⌃))
.

Up to a constant, the right hand side is bounded by

(1 + |�|C1 + |�|C1)(|�|C1 + |�|C1)|h|W 1
p (0,T ;X0)\Lp(0,T ;X1).
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It remains to estimate |B5(h)|
Lp(0,T ;B3�2/q

qq (@⌃))
. We have, for almost every t 2 (0, T ),

|B5(h)(t)|
B

3�2/q
qq (@⌃)

 |(n� � en) ·r⌃h|
B

3�2/q
qq (@⌃)

+
X

i,j,l

|(n�)i(g
ij
� �ij)@jFl@lh|

B
3�2/q
qq (@⌃)

+
X

i,j,l

|(n�)i�ij(@jFl � �jl)@lh|
B

3�2/q
qq (@⌃)

.

By paraproduct estimates (1.1),

|B5(h)(t)|
B

3�2/q
qq (@⌃)

. |n� � en|
B

3�2/q
qq (@⌃)

|r⌃h|L1(@⌃)

+ |n� � en|L1(@⌃)|r⌃h|
B

3�2/q
qq (@⌃)

+
X

i,j,l

|n
�

i
(gij � �ij)@jFl|

B
3�2/q
qq (@⌃)

|@lh|L1(@⌃)

+
X

i,j,l

|n
�

i
(gij � �ij)@jFl|L1(@⌃)|@lh|B3�2/q

qq (@⌃)

+
X

i,j,l

|n
�

i
�ij(@jFl � �jl)|

B
3�2/q
qq (@⌃)

|@lh|L1(@⌃)

+
X

i,j,l

|n
�

i
�ij(@jFl � �jl)|L1(@⌃)|@lh|B3�2/q

qq (@⌃)
,

for almost every t 2 (0, T ). By Theorem 2.1,

|rh|
Lp(0,T ;B3�2/q

qq (@⌃))
. |h|W 1

p (0,T ;X0)\Lp(0,T ;X1).

Hölder inequality entails

|rh|Lp(0,T ;L1(@⌃))  T
1/p

|rh|L1(0,T ;L1(@⌃)) . T
1/p

|h|W 1
p (0,T ;X0)\Lp(0,T ;X1),

since h 2 E(T ). Furthermore,

|g
ij
� �ij |L1 + |DF � I|L1 . |�|C1 + |�|C1 ,

|n� � en|
B

3�2/q
qq

+ |g
ij
� �ij |

B
3�2/q
qq

+ |DF |
B

3�2/q
qq

. 1 + |�|C3 + |�|C3 .

Hence

|B5(h)|
Lp(0;T ;B3�2/q

qq (@⌃))

. (1 + |�|C3 + |�|C3)(|�|C1 + |�|C1 + T
1/p)|h|W 1

p (0,T ;X0)\Lp(0,T ;X1).

whence readily altogether

kB5(h)k
F

1� 2
3q

pq (0,T ;Lq(@⌃))\Lp(0;T ;B3�2/q
qq (@⌃))

. (1 + k�kC3 + k�̃kC3)⇥

⇥ (k�kC1 + k�̃kC1 + T
1/p)khkW 1

p (0,T ;X0)\Lp(0,T ;X1).

Hence, since the norms are equivalent up to a constant C(�) > 0,

|B5(h)|�,T  C(�)(k�kC1 + k�̃kC1 + T
1/p)|h|1,�,T .

The proof is complete. ⇤
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2.5.4. Localization. Let us now be concerned with the shifted problem in a
bounded smooth domain ⌦ ⇢ Rn, where ⌃ is a perpendicular smooth surface inside.
More precisely, the system reads as

@th+ !
3
h+ Jn⌃ ·rµK = g1, on ⌃,

µ|⌃ +�⌃h = g2, on ⌃,

!
2
µ��µ = g3, on ⌦\⌃,

n@⌦ ·rµ|@⌦ = g4, on @⌦,

n@⌃ ·r⌃h|@⌃ = g5, on @⌃,

h|t=0 = h0, on ⌃,

(2.51)

where ! � !0 and !0 > 0 is as in Theorem 2.21. Let again X0 := W
1�1/q
q (⌃),

X1 := W
4�1/q
q (⌃), X� := B

4�1/q�3/p
qp (⌃),

E(T ) := [W 1
p
(0, T ;X0) \ Lp(0, T ;X1)]⇥ Lp(0, T ;W

2
q
(⌦\⌃)),

and
F(T ) := Lp(0, T ;X0)⇥ Lp(0, T ;W

2�1/q
q

(⌃))⇥ Lp(0, T ;Lq(⌦))⇥

⇥ Lp(0, T ;W
1�1/q
q

(@⌦))⇥

⇥ [F 1�2/(3q)
pq

(0, T ;Lq(@⌃)) \ Lp(0, T ;W
3�2/q
q

(@⌃))]⇥X� .

The main result reads as follows.

Theorem 2.22. Let n = 2, 3, ⌦ ⇢ Rn
be a bounded, smooth domain, ! �

!0, 6  p < 1, q 2 (3/2, 2) \ (2p/(p + 1), 2p) and ⌃ be a smooth surface inside

intersecting @⌦ at a constant ninety degree angle.

Then there is some T > 0, such that for every (g1, g2, g3, g4, g5, h0) 2 F(T )
satisfying (2.35) there is a unique solution (h, µ) 2 E(T ) of (2.51).

Proof. We can reduce the system to the case where (g2, g3, g4, h0) = 0 by
solving auxiliary problems first, cf. the proof of Theorem 2.18 and Theorem A.7.
We are then left to solve

@th+ !
3
h+ Jn⌃ ·rµK = g1, on ⌃,

µ|⌃ +�⌃h = 0, on ⌃,

!
2
µ��µ = 0, on ⌦\⌃,

n@⌦ ·rµ|@⌦ = 0, on @⌦,

n@⌃ ·r⌃h|@⌃ = g5, on @⌃,

h|t=0 = 0, on ⌃,

(2.52)

for possibly modified right hand sides which we do not relabel.
We will now show existence and uniqueness of the solution of this system via the

localization method, cf. [57]. To this end let ('j)j=0,...,N ✓ C
1

0 (Rn) be a smooth
partition of unity with respect to ⌦ and the open sets (Uj)j=0,...,N ✓ Rn, that is,
the support of 'j is contained in Uj for each j = 0, ..., N and ⌦ ✓

S
j=0,...,N Uj .

Furthermore, let ( j)j=0,...,N ✓ C
1

0 (Rn) be smooth functions with compact support
in Uj such that  j ⌘ 1 on supp 'j for every 0  j  N.
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Now, by choosing N finite but su�ciently large and, corresponding to that,
the open sets Uj su�ciently small, we can assume that, up to a rotation, for each
j = 0, ..., N there exist smooth curves �j ,�j such that

Uj \ ⌦ = Rn

�j
\ ⌦, Uj \ ⌃ = Rn

�j
\ ⌃�j .

Furthermore, again by a smallness argument, we can choose �j and �j such that the
C

1-norm is as small as we like.
We now assume for a moment that we have a solution (h, µ) of (2.52) to derive

an explicit representation formula. We therefore multiply every equation with 'j

and get corresponding equations for the localized functions (hj
, µ

j) := 'j(h, µ). By
doing so, we obtain

!
3
h
j + @th

j + Jn⌃ ·rµ
jK = 'jg1 � µ|⌃jr'j · n⌃, on ⌃j ,

µ
j +�⌃h

j = (�⌃'j)h+ 2
P

lm
g
lm
@l'j@mh, on ⌃j ,

!
2
µ
j
��µ

j = (�'j)µ+ 2r'j ·rµ, on ⌦j\⌃j ,

n@⌦ ·rµ
j
|@⌦j = n@⌦ ·r'jµ|@⌦j , on @⌦j ,

n@⌃ ·r⌃h
j
|@⌃j = 'jg5 + n@⌃ ·r⌃'jh|@⌃j , on @⌃j ,

h
j
|t=0 = 0, on ⌃j ,

where ⌃j := ⌃�j , ⌦j := Rn

�j
, (glm) is the first fundamental form of ⌃j with respect

to the surface ⌃ and (glm) its inverse. This way, we obtain a finite number of bent
half space problems. Denote by L

j = L
j

!
the linear operator on the right hand side

of the above system. Moreover let Gj := ('jg1, 0, 0, 0,'jg5, 0), and the perturbation
operator R

j be such that the right hand side equals G
j + R

j(h, µ). We can write
the system of localized equations as

L
j(hj

, µ
j) = G

j +R
j(h, µ), j = 0, ..., N.

Since each L
j is invertible, this is equivalent to

(hj
, µ

j) = (Lj)�1[Gj +R
j(h, µ)], j = 0, ..., N.

Since ('j)j=0,...,N is a partition of unity and  j = 1 on the support of 'j ,

(h, µ) =
NX

j=0

(hj
, µ

j) =
NX

j=0

 j(h
j
, µ

j).

This way, we may derive the representation formula

(h, µ) =
NX

j=0

 j(L
j)�1

G
j +

NX

j=0

 j(L
j)�1

R
j(h, µ). (2.53)

Since now R :=
P

N

j=0  j(Lj)�1
R

j is of lower order, we can show that if T > 0 is
small enough,

|R|B(E(T );E(T ))  1/2. (2.54)
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Hence a Neumann series argument then yields that I � R is invertible if T > 0 is
small enough, hence we can rewrite (2.53) as

(h, µ) = (I �R)�1
NX

j=0

 j(L
j)�1

G
j
. (2.55)

We will show (2.54) below.
Let L be the linear operator from the left hand side of (2.52). We obtain from

(2.55) that L is injective, has closed range and a left inverse. It remains to show
that L : E(T ) ! F(T ) has a right inverse. To this end let z 2 F(T ) be arbitrary.
Define

S := (I �R)�1
NX

j=0

 j(L
j)�1

'j . (2.56)

Let u := Sz. Then

u = (I �R)�1
NX

j=0

 j(L
j)�1

'jz.

Applying I �R to both sides of (2.56) yields

u�Ru =
NX

j=0

 j(L
j)�1

'jz.

Therefore

u =
NX

j=0

 j(L
j)�1

R
j
u+

NX

j=0

 j(L
j)�1

'jz. (2.57)

Applying L to both sides of (2.57) and using that L = L
j on Uj ,

Lu =
NX

j=0

L j(L
j)�1

R
j
u+

NX

j=0

L j(L
j)�1

'jz

=
NX

j=0

L
j
 j(L

j)�1
R

j
u+

NX

j=0

L
j
 j(L

j)�1
'jz

=
NX

j=0

L
j
 j(L

j)�1
R

j
u+

NX

j=0

[Lj
, j ](L

j)�1
'jz +

NX

j=0

 jL
j(Lj)�1

'jz

=
NX

j=0

L
j
 j(L

j)�1
R

j
u+

NX

j=0

[Lj
, j ](L

j)�1
'jz +

NX

j=0

 j'jz

=
NX

j=0

L
j
 j(L

j)�1
R

j
u+

NX

j=0

[Lj
, j ](L

j)�1
'jz +

NX

j=0

'jz

=
NX

j=0

L
j
 j(L

j)�1
R

j
u+

NX

j=0

[Lj
, j ](L

j)�1
'jz + z.
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Since u = Sz,

LSz = z +
NX

j=0

L
j
 j(L

j)�1
R

j
Sz +

NX

j=0

[Lj
, j ](L

j)�1
'jz, z 2 F(T ).

Let SR :=
P

N

j=0 L
j
 j(Lj)�1

R
j
S+

P
N

j=0[L
j
, j ](Lj)�1

'j . We can show, using again
a Neumann series argument involving the fact that the commutator is lower order,
that I + S

R is invertible if T > 0 is small enough. Indeed, below we will show that

|S
R
|B(F(T );F(T ))  1/2, (2.58)

if T > 0 is su�ciently small. The right inverse of L is therefore given by S(I+S
R)�1.

This then concludes the proof.
Let us show (2.54). To show that R

j gets small when T > 0 is small enough,
we need to extract more time regularity for µ. For almost every time t, µ(t) is also
a weak solution of

!
2
µ(t)��µ(t) = 0, in ⌦\⌃,

µ(t)|⌃ = �⌃h(t), on ⌃,

n@⌦ ·rµ(t) = 0, on @⌦.

Hence, cf. (A.6) in the Appendix,

|µ(t)|W 1
q (⌦\⌃)  C(!)|�⌃h(t)|

W
1�1/q
q (⌃)

,

for almost every t 2 (0, T ). Using Hölder inequality, we can extract more time
regularity for µ:

Lemma 2.23. Let T > 0. Under the assumptions on p and q from above, there

exists some r > p, such that h 2 Lr(0, T ;W
3�1/q
q (⌃)), whenever h 2 E(T ). In

particular, we can choose r = 3p/2. Furthermore,

|h|
Lp(0,T ;W 3�1/q

q (⌃))
 T

1/(3p)
|h|

L3p/2(0,T ;W 3�1/q
q (⌃))

,

as well as

|h|
L3p/2(0,T ;W 3�1/q

q (⌃))
 C|h|E(T ),

for some constant C > 0 independent of h, for all h 2 E(T ). When restricting to

functions with vanishing trace at t = 0, the constant C is independent of T .

Proof. By real interpolation method,

W
3�1/q
q

(⌃) = (W 4�1/q
q

(⌃),W 1�1/q
q

(⌃))✓,q,

for ✓ = 1/3. Choosing r = 3p/2, we obtain r(1� ✓) = 2r/3 = p. Hence

khk
r

Lr(0,T ;W 3�1/q
q )

=

Z
T

0
kh(t)kr

W
3�1/q
q

dt

.
Z

T

0
kh(t)kr✓

W
1�1/q
q

kh(t)kr(1�✓)

W
4�1/q
q

dt

. khk
r✓

L1(0,T ;W 1�1/q
q )

khk
p

Lp(0,T ;W 4�1/q
q )

.
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Hence

khk
Lr(0,T ;W 3�1/q

q )
. khk

✓

L1(0,T ;W 1�1/q
q )

khk
1�✓

Lp(0,T ;W 4�1/q
q )

,

since p/r = 1� ✓. In particular,

khk
Lr(0,T ;W 3�1/q

q )
. khk

✓

W 1
p (0,T ;W 1�1/q

q )
khk

1�✓

Lp(0,T ;W 4�1/q
q )

. khkE1,T .

This shows h 2 L
r(0, T ;W 1�1/q

q (⌃)) for r = 3p/2 and the second estimate. The first
one then easily follows from Hölder inequality. Indeed,

khk
p

Lp(0,T ;W 3�1/q
q )



 Z
T

0
kh(t)k

p
r
p

W
3�1/q
q

dt

! p
r
 Z

T

0
1dt

! r�p
r

.

Hence

khk
Lp(0,T ;W 3�1/q

q )
 T

r�p
rp khk

Lr(0,T ;W 3�1/q
q )

,

so using r�p

rp
= 1

3p completes the proof of the lemma. ⇤

Having this at hand, we can give the estimates for Rj . Clearly,

|R|B(E(T );E(T ))  C sup
j=0,...,N

|R
j
|B(E(T );F(T )).

We estimate each component in the corresponding norm. By Lemma 2.23,

|r'j · n⌃JµK|
Lp(0,T ;W 1�1/q

q (⌃))
. |r'j · n⌃|C1(⌃)kJµKk

Lp(0,T ;W 1�1/q
q (⌃))

. |r'j · n⌃|C1(⌃)|µ|Lp(0,T ;W 1
q (⌦\⌃))

. |r'j · n⌃|C1(⌃)T
1/(3p)

|h|E(T ).

Furthermore,

|(�⌃'j)h+ 2
P

kk0 g
kk

0
@k'j@k0h|

Lp(0,T ;W 2�1/q
q (⌃))

. (|�⌃'j |C2 + |g|C2 |'j |C3) |h|
Lp(0,T ;W 3�1/q

q (⌃))

. (|'j |C4 + |g|C2 |'j |C3)T 1/(3p)
|h|E(T ).

Also,

|�'jµ+ 2r'j ·rµ|Lp(Lq)  (|�'j |L1 + |r'j |L1) |µ|Lp(W 1
q )

. |'j |C2T
1/(3p)

|h|E(T ),

as well as

|n@⌦ ·r'jµ|@⌦|
Lp(0,T ;W 1�1/q

q (@⌦))
. |n@⌦ ·r'j |C1 |µ|@⌦|

Lp(0,T ;W 1�1/q
q (@⌦))

. |n@⌦ ·r'j |C1 |µ|Lp(0,T ;W 1
q (⌦\⌃))

. |'j |C2T
1/(3p)

|h|E(T ).

By paraproduct estimates of Lemma 1.5,

|n@⌦ ·r⌃'jh|@⌃|
Lp(0,T ;W 3�2/q

q (@⌃))
. |n@⌦ ·r⌃'j |C2 |h|

Lp(0,T ;W 3�1/q
q (⌃))

. |'j |C3T
1/(3p)

|h|E(T ).
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Since the partition of unity is time-independent, Lemma 2.6 renders

kn@⌦ ·r⌃'jh|@⌃k
F

1� 2
3q

pq (0,T ;Lq(@⌃))
. kn@⌦ ·r'jkL1kh|@⌃k

F

1� 2
3q

pq (0,T ;Lq(@⌃))
.

Lemma 2.24 below entails there is some ✏ > 0 such that

|h|@⌃|
F

1�2/(3q)
pq (0,T ;Lq(@⌃))

. T
✏
|h|E(T ),

since h 2 E(T ) with vanishing time trace. Concludingly, we have shown (2.54).
Let us now show (2.58). Recall that

S
R :=

NX

j=0

L
j
 j(L

j)�1
R

j
S +

NX

j=0

[Lj
, j ](L

j)�1
'j ,

S = (I �R)�1
P

N

j=0  j(Lj)�1
'j , and R =

P
N

j=0  j(Lj)�1
R

j . By maximal regular-

ity of Lj ,

|L
j
 j(L

j)�1
R

j
Sz|F(T ) . | j(L

j)�1
R

j
Sz|E(T )

. |(Lj)�1
R

j
Sz|E(T )

. |R
j
Sz|F(T )

. T
✏
|Sz|E(T ),

up to a harmless constant also depending on !0. Using that I � R : E(T ) ! E(T )
has a bounded inverse,

|Sz|E(T ) .
NX

j=0

|(Lj)�1
'jz|E(T ) .

NX

j=0

|'jz|E(T ) . |z|E(T ).

We have therefore shown that

|L
j
 j(L

j)�1
R

j
S|B(0E(T );0F(T )) ! 0,

as T ! 0. Now, for the second sum in S
R, we first comment on the commutator.

Since [Lj
, j ]v = L

j( jv) �  jL
j
v, we easily see that the commutator is of lower

order and actually takes the form of Rj with  j replacing 'j . More precisely, for
v = (v1, v2),

[Lj
, j ]v =

0

BBBBBB@

�r j · n⌃[v2]
�(�⌃ j)v1 � 2

P
lm

g
lm
@l j@mv1

(� j)v2 + 2r j ·rv2

n@⌦ ·r jv2|@⌦

n@⌦ ·r⌃ jv1|@⌃

0

1

CCCCCCA
.

Hence, by the same arguments as before, the commutator satisfies

|[Lj
, j ]|B(0E(T );0F(T )) ! 0,

as T ! 0. This entails

|[Lj
, j ](L

j)�1
'j |B(0F(T );0F(T )) ! 0,

as T ! 0. This shows that |S
R
|B(0F(T );0F(T )) ! 0 as T ! 0, hence the proof is

complete.
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⇤

Lemma 2.24. Let T
0
2 (0,1), T 2 (0, T 0), p 2 (6,1), and q 2 (5/3, 2) \

(2p/(p+ 1), 2p). Then there is ✏ > 0, such that

|ru|@⌃|L1(0,T ;L1(@⌃)) . T
✏
|u|W 1

p (0,T ;X0)\Lp(0,T ;X1),

as well as

|u|@⌃|
F

1�2/(3q)
pq (0,T ;Lq(@⌃))\Lp(0,T ;W 3�2/q

q (@⌃))
. T

✏
|u|W 1

p (0,T ;X0)\Lp(0,T ;X1),

both for all u 2 0W
1
p
(0, T ;X0) \ Lp(0, T ;X1). The constants in . are independent

of the length of the time interval (0, T ).

Proof. Let p 2 (6,1) and q 2 (5/3, 2) \ (2p/(p + 1), 2p). Choose some p1 2

(6, p), such that q 2 (5/3, 2) \ (2p1/(p1 + 1), 2) and

1/p1 � 1/p < 1/3q. (2.59)

Note that by choosing p1 < p close enough to p this is possible due to the assumption
on q. Since p1 < p, Hölder inequality gives

|u|W 1
p1

(0,T ;X0)\Lp1 (0,T ;X1)  T
(p�p1)/(pp1)|u|W 1

p (0,T ;X0)\Lp(0,T ;X1),

for all u 2 W
1
p
(0, T ;X0) \ Lp(0, T ;X1). From Theorem 2.1 we obtain that the

Neumann trace is bounded as a mapping

tr@⌃ r⌃ :0W
1
p1
(0, T ;X0) \ Lp1(0, T ;X1)

! 0F
1�2/3q
p1q

(0, T ;Lq(@⌃)) \ Lp1(0, T ;B
3�2/q
qq

(@⌃)).

Since the functions have time trace zero at t = 0, the operator norm is independent

of T > 0. It remains to show 0F
1�2/3q
p1q (0, T ;Lq(@⌃)) \ Lp1(0, T ;B

3�2/q
qq (@⌃)) ,!

L1(0, T ;L1(@⌃)), with an embedding constant independent of T > 0. This can
be seen by using Proposition 5.38 in [35]. Choose � 2 (0, 1) such that � >

1
p1

3q
3q�2 ,

� < 1� 1
3q�2 . Note that such a choice is possible. Then,

0F
1�2/3q
p1q

(0, T ;Lq(@⌃)) \ Lp1(0, T ;B
3�2/q
qq

(@⌃))

,! 0H
�(1�2/3q)
p1

(0, T ;B(1��)(3�2/q)
qq

(@⌃)),

where we note that �(1�2/3q) > 1/p1 > 1/p, hence the trace at t = 0 is well-defined
in the space on the right hand side. For this �, we obtain

0H
�(1�2/3q)
p1

(0, T ;B(1��)(3�2/q)
qq

(@⌃)) ,! L1(0, T ;L1(@⌃))

and the proof of the first statement is complete.
Regarding the second inequality, by Lemma 2.23,

|u|@⌃|
Lp(0,T ;W 3�2/q

q (@⌃))
. |u|

Lp(0,T ;W 3�1/q
q (⌃))

. T
1/(3p)

|u|W 1
p (0,T ;X0)\Lp(0,T ;X1).

The constant is independent of T since u has vanishing trace at t = 0. By (2.6),

0W
1
p1
(0, T ;X0) \ Lp1(0, T ;X1) ,! 0F

1�1/(3q)
p1q

(0, T ;W 1
q
(⌃)).
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Choose now p1 < p, such that 1/(3q) > 1/p1 � 1/p. Then by (2.59) and Theorem

1.2 in [46], 0F
1�1/(3q)
p1q (0, T ;W 1

q
(⌃)) ,! 0F

1�2/(3q)
pq (0, T ;W 1

q
(⌃)). The embedding

constant is independent of T . Hence

|u|@⌃|
0F

1�2/(3q)
pq (0,T ;Lq(@⌃))

. |u|
0F

1�1/(3q)
p1q (0,T ;W 1

q (⌃))

. |u|
0W

1
p1

(0,T ;X0)\Lp1 (0,T ;X1)

. T
(p�p1)/(pp1)|u|

0W
1
p (0,T ;X0)\Lp(0,T ;X1).

The proof is complete. ⇤
2.5.5. The non-shifted linear problem on bounded domains. In this

section we are concerned with problem (2.51) for ! = 0. The main result is the
following.

Theorem 2.25. Let n = 2, 3, ⌦ ⇢ Rn
be a bounded, smooth domain, p 2 (6,1),

q 2 (3/2, 2) \ (2p/(p + 1), 2p), and ⌃ be a smooth submanifold with boundary @⌃
such that ⌃̊ is inside ⌦ and ⌃ meets @⌦ at a constant ninety degree angle.

Then there is some T > 0, such that for every (g1, g2, g3, g4, g5, h0) 2 F(T )
satisfying the compatibility condition (2.35) there is a unique solution (h, µ) 2 E(T )
of (2.51) for ! = 0. Furthermore, the solution map is continuous between these

spaces.

Proof. As in the previous section we may reduce to the case (g2, g3, g4, h0) = 0.
It is also clear that the !3-shift in equation (2.51) can easily be resolved to the case
! = 0 by an exponential shift in solution and data. We are therefore left to solve

@th+ Jn⌃ ·rT0�⌃hK = g1, on ⌃,

n@⌃ ·r⌃h|@⌃ = g5, on @⌃,

h|t=0 = 0, on ⌃,

(2.60)

where T0g is defined as the unique solution of the two-phase elliptic problem

��u = 0, in ⌦\⌃,

u|⌃ = g, on ⌃,

n@⌦ ·ru|@⌦ = 0, on @⌦,

cf. Appendix A. Also from Appendix A we obtain that

T0�⌃h = T⌘�⌃h+ ⌘(⌘ ��)�1
T0�⌃h,

for all ⌘ � ⌘0. This implies that problem (2.60) is equivalent to

@th+ Jn⌃ ·rT⌘�⌃hK = g1 + B⌘(h), on ⌃,

n@⌃ ·r⌃h|@⌃ = g5, on @⌃,

h|t=0 = 0, on ⌃,

(2.62)

provided ⌘ � ⌘0, where

B⌘(h) = ⌘Jn⌃ ·r(⌘ ��)�1
T0�⌃hK.

Now choose large enough ⌘ to render the left hand side of (2.62) to be an invertible
operator. We now fix this ⌘ > 0 and show that the perturbation operator B⌘ satisfies

|B⌘(h)|Lp(0,T ;X0)  C(⌘)T 1/(3p)
|h|E(T ), h 2 E(T ), (2.63)
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from which it follows that |B⌘|B(0E(T );Lp(0,T ;X0)) ! 0 as T ! 0. Choosing T > 0
su�ciently small, a standard Neumann series argument completes the proof.

Let us show (2.63). For almost every time t 2 (0, T ),

kB⌘(h)(t)kX0  C⌘kr(⌘ ��)�1
T0�⌃h(t)kW 1

q (⌦\⌃)

 C⌘k(⌘ ��)�1
T0�⌃h(t)kW 2

q (⌦\⌃)

 C(⌘)kT0�⌃h(t)kLq(⌦)

 C(⌘)k�⌃h(t)k
W

1�1/q
q (⌃)

 C(⌘)kh(t)k
W

3�1/q
q (⌃)

,

cf. (A.6) in the Appendix. Integration in time gives

kB⌘(h)kLp(0,T ;X0)  C(⌘)khk
Lp(0,T ;W 3�1/q

q (⌃))
.

Therefore Hölder inequality in time, see also the proof of Lemma 2.23, gives the
claimed estimate and the proof is complete. ⇤

Two remarks are in order.

Remark 2.26. We remark that, see Theorem III.4.10.2 in [7],

E(T ) = W
1
p
(0, T ;W 1�1/q

q
(⌃)) \ Lp(0, T ;W

4�1/q
q

(⌃)) ,! C([0, T ];X�).

Under the assumptions on p and q above, E(T ) ,! C([0, T ];C2(⌃)). Indeed, there
exists some " > 0 such that

X� = B
4�1/q�3/p
qp

(⌃) ,! B
2+"

11
(⌃) ,! C

2+"(⌃) ,! C
2(⌃),

by classical Besov embedding, cf. [62].

Remark 2.27. Note that the maximal regularity constant, or in other words
the operator norm of the solution map, in general depends on T > 0. Regarding
contraction estimates in the nonlinear problem it is now an important feature that
the constant stays bounded as T ! 0, if we consider the problem with initial value
zero, h0 = 0. This is due to the fact that whenever h0 = 0, we can first extend
the data to the half line by reflection and then solve the problem on a larger time
interval. This way, the operator norm of the solution map between spaces with
vanishing traces at t = 0, say [0F(T ) ! 0E(T )], stays bounded as T ! 0.

2.6. Nonlinear well-posedness

In this section we will show local well-posedness for the full nonlinear (trans-
formed) system (2.31). We will use the maximal Lp � Lq regularity result for the
underlying linear problem and a contraction argument via Banach’s fixed point

principle, cf. e.g. Zeidler [65]. Let again X0 := W
1�1/q
q (⌃), X1 := W

4�1/q
q (⌃),

X� := B
4�1/q�3/p
qp (⌃),

E(T ) := [W 1
p
(0, T ;X0) \ Lp(0, T ;X1)]⇥ Lp(0, T ;W

2
q
(⌦\⌃)),
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and

F(T ) := Lp(0, T ;X0)⇥ Lp(0, T ;W
2�1/q
q

(⌃))⇥ Lp(0, T ;Lq(⌦))⇥

⇥ Lp(0, T ;W
1�1/q
q

(@⌦))⇥

⇥ [F 1�2/(3q)
pq

(0, T ;Lq(@⌃)) \ Lp(0, T ;W
3�2/q
q

(@⌃))]⇥X� ,

as well as the spaces with vanishing traces at t = 0,

0E(T ) := E(T ) \ {(h, µ) 2 E(T ) : h|t=0 = 0},

0F(T ) := F(T ) \ {(g1, g2, g3, g4, g5, g6) 2 F(T ) : g5|t=0 = 0}.

2.6.1. Main result. The main result reads as follows.

Theorem 2.28. Let p 2 (6,1), q 2 (5/3, 2) \ (2p/(p + 1), 2p), and h0 2 X� .

Then there is some ⌧0 > 0, such that for every 0 < ⌧ < ⌧0, there is some � = �(⌧) >
0, such that (2.31) has a unique strong solution on (0, ⌧), that is, there are

h 2 W
1
p
(0, ⌧ ;X0) \ Lp(0, ⌧ ;X1), µ 2 Lp(0, ⌧ ;W

2
q
(⌦\⌃)),

solving (2.31) on (0, ⌧), whenever h0 satisfies the initial compatibility condition

n
h0
@⌦ · n

h0
� = 0, on @⌃,

and the smallness condition |h0|X�  �(⌧).

Proof. Define the linear operator L : E(T ) ! F(T ) by

L(h, µ) =

0

BBBBBB@

@th+ Jn⌃ ·rµK
µ|⌃ � P (0)h

�µ

n@⌦ ·rµ|@⌦

n@⌃ ·r⌃h|@⌃

h|t=0

1

CCCCCCA
.

We now reduce to trivial initial data as follows, cf. [39], [64]. We can not directly
solve the linear problem with right hand side (0, 0, 0, 0, 0, h0), since h0 does not
satisfy n@⌃ · r⌃h0 = 0 on @⌃. However, by a standard extension argument and
solving an auxiliary problem, cf. [58], we may find h̃ 2 W

1
p
(R+;X0) \ Lp(R+;X1),

such that h̃(t = 0) = h0. We may then solve

Lz⇤ = (0, 0, 0, 0, b⇤, h0), (2.64)

by some z⇤ = (h⇤, µ⇤) 2 E(T ), where b
⇤ := n@⌃ ·r⌃h̃|@⌃ � n

h̃

@⌦ · n
h̃

�. Note that the
necessary compatibility condition for (2.64) is satisfied,

n@⌃ ·r⌃h0|@⌃ = b
⇤(t = 0),

cf. the analysis of the linear problem in Section 2.5. Then the problem (2.31) is
equivalent to finding some z = (h, µ) 2 0E(T ) solving

L(z) = N(z + z⇤)� Lz⇤ =: Ñ(z), in 0F(T ),
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where the nonlinear part is given by

N(z + z⇤) :=

0

BBBBBB@

Jn⌃ ·r(µ+ µ⇤)K � 1
a(h+h⇤)

Jnh+h⇤
⌃ ·rh+h⇤(µ+ µ⇤)K

K(h+ h⇤)� P (0)(h+ h⇤)
(���h+h⇤)(µ+ µ⇤)

n@⌦ ·r(µ+ µ⇤)|@⌦ � n
h+h⇤
@⌦ ·rh+h⇤(µ+ µ⇤)|@⌦

n@⌃ ·r⌃(h+ h⇤)|@⌃ � n
h+h⇤
@⌃ · n

h+h⇤
⌃

h0

1

CCCCCCA
.

We may now define K : 0E(T ) ! 0E(T ) by [z 7! L
�1

Ñ(z) = L
�1(N(z+ z⇤)�Lz⇤)].

By restricting to functions with vanishing trace at time zero, we get that the operator
norm |L

�1
|B(0F(T );0E(T )) stays bounded as T ! 0.

Lemma 2.29. Let T > 0, � > 0, r0 > 0, and |h0|X�  �. The mapping N :
E(T ) ! F(T ) is well-defined and bounded. Furthermore, N allows for contraction

estimates in a neighbourhood of zero, that is,

|N(z1 + z⇤)�N(z2 + z⇤)|0F(T )

 C(r0)(T
1/p + r + C(T )�)|z1 � z2|0E(T ),

(2.65)

for all z1, z2 2 B(r; 0) ⇢ 0E(T ), if 0 < r  r0 and T = T (r) > 0, � = �(T ) > 0 are

su�ciently small. Here, B(r; 0) denotes the closed ball around 0 with radius r > 0.

Let now � > 0, such that |h0|X�  �. Note at this point that |z⇤|E(T ) 

C(T )|h0|X�  C(T )�. By choosing r > 0, T = T (r) > 0 and � = �(T ) > 0
su�ciently small, we ensure K to be a 1/2-contraction on B(r, 0) ⇢ 0E(T ). Indeed,
by Lemma 2.29,

|K(z1)� K(z2)|0E(T ) = |L
�1[Ñ(z1)� Ñ(z2)]|0E(T )

 |L
�1

|B(0F(T );0E(T ))|N(z1 + z⇤)�N(z2 + z⇤)|0F(T )

 C(T 1/p + |z1|0E(T ) + |z2|0E(T ) + |z⇤|E(T ))|z1 � z2|0E(T )

 C(T 1/p + 2r + C(T )�)|z1 � z2|0E(T ),

if z1, z2 2 B(r, 0) ⇢ 0E(T ), and r > 0, T = T (r) > 0 su�ciently small. By choosing
r > 0, T = T (r) > 0 and � = �(T ) > 0 even smaller, we see that K is a 1/2-
contraction on B(r, 0) ⇢ 0E(T ).

Let us note that

Ñ(0) = N(z⇤)� Lz⇤, K(0) = L
�1

Ñ(0).

Furthermore, Ñ(0) 2 0F(T ), whence

|K(0)|
0E(T )  |L

�1
|B(0F(T );0E(T ))|Ñ(0)|

0F(T ).

Now we note that Ñ(0) has quadratic growth in z⇤ = (h⇤, µ⇤) at zero, except for the
term Q(h⇤) in Ñ(0)2. By Lemma 2.15,

|Q(h⇤)|
Lp(0,T ;W 2�1/q

q (⌃))

 T
1/p

|Q(h⇤)�Q(0)|
L1(0,T ;W 2�1/q

q (⌃))
+ T

1/p
|Q(0)|

L1(0,T ;W 2�1/q
q (⌃))

 C(T )|z⇤|E(T ) + CT
1/p

,
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if |h⇤|E(T ) is small. Moreover,

|z⇤|E(T )  |L
�1

|B(F(T );E(T ))|h0|X�  C(T )�.

Hence, if z1 2 B(r, 0), r > 0 su�ciently small,

|K(z1)|0E(T )  |K(z1)�K(0)|
0E(T ) + |K(0)|

0E(T )

 |z1|0E(T )/2 + |K(0)|
0E(T )

 |z1|0E(T )/2 + C|Ñ(0)|
0F(T )

 |z1|0E(T )/2 + C(|z⇤|
2
E(T ) + |Q(h⇤)|

Lp(0,T ;W 2�1/q
q (⌃))

)

 |z1|0E(T )/2 + C(C(T )2�2 + C(T )� + T
1/p).

This entails that K maps B(r, 0) ⇢ 0E(T ) to B(r, 0) ⇢ 0E(T ) again, provided first
r > 0, T = T (r) > 0, and then � = �(T ) > 0 are chosen small enough. Note that we
can further decrease r > 0, T > 0, and � > 0 and K still is self-map and contraction
on B(r, 0) ⇢ 0E(T ). Hence the Banach fixed point principle yields the existence of a
unique fixed point z̄ 2 B(r, 0) ⇢ 0E(T ).

We now show that the solution is unique in the sense that if there is another
solution, it exists on (0, T ) and coincides there with the above fixed point. Assume
therefore that there is a second solution given as z⇤ + z2 for z2 2 0E(T2), with norm
maybe bigger than r > 0 and time of existence T2 di↵erent from T . Note that this
is no contradiction to the uniqueness argument stemming from Banach’s fixed point
theorem above. We now show that z2 exists at least on (0, T ) and coincides with z̄

on (0, T ). Assume that
|z2|0E(T2) = R2, (2.66)

for some T2 > 0, R2 < 1. Since the norm in (2.66) is an integral norm,

|z2|0E(T2) ! 0, as T2 ! 0.

Hence there exists T̃2 = T̃2(z2) > 0, such that

|z2|0E(T̃2)
 r.

Performing the above fixed point argument on the closed ball B(r, 0) in the space

0E(min(T, T̃2)) we see that by uniqueness z̄ and z2 coincide on (0,min(T, T̃2)). Let

T⇤ := sup{t � 0 : z̄(s) = z2(s), 0  s  t}.

By the above arguments, T⇤ > 0. Assume that T⇤ < T , otherwise there is nothing to
prove. We now want to solve the full nonlinear problem with initial value (z⇤+z̄)(T⇤).
Clearly, this belongs to the interpolation spaceX� and satisfies the relevant nonlinear
compatibility condition since z⇤ + z̄ solves the nonlinear problem on (0, T⇤). It
remains to verify the smallness condition. We have

|(z⇤ + z̄)(T⇤)|X�  |z⇤|L1(0,T ;X�) + |z̄|L1(0,T ;X�)

 C(T )|h0|X� + C
0
|z̄|

0E(T ), (2.67)

where C 0 is explicitly independent of T since z̄ has vanishing time trace. By decreas-
ing |h0|X� and the radius of the ball in the fixed point argument where the fixed
point is unique, we can achieve that the right hand side of (2.67) is again bounded
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by � > 0. Hence we may restart the flow of the nonlinear problem with initial value
(z⇤ + z̄)(T⇤) at time T⇤ to conclude that there is a unique solution on the time in-
terval (0, T⇤+ ✏⇤), for some ✏⇤ > 0. This contradicts the definition of T⇤, whence the
claim is shown. ⇤

Proof of Lemma 2.29. To economize notation, z1 = (h1, µ1), z2 = (h2, µ2).
We want to estimate N(z1+z⇤)�N(z2+z⇤). We write down every component seper-
ately. Recall that for functions with vanishing time trace at t = 0, the embedding
constant in 0E(T ) ,! L1(0, T ;X�) is independent of T .

Estimates for N1. We have

N1(z1 + z⇤)�N1(z2 + z⇤)

= Jn⌃ ·r(µ1 + µ⇤)K �
1

a(h1 + h⇤)
Jnh1+h⇤

⌃ ·rh1+h⇤(µ1 + µ⇤)K

� Jn⌃ ·r(µ2 + µ⇤)K +
1

a(h2 + h⇤)
Jnh2+h⇤

⌃ ·rh2+h⇤(µ2 + µ⇤)K.

(2.68)

Recall, cf. (2.30), that a depends smoothly on h and a(0) = 1. If h is small, a�1

is well-defined and also depends smoothly on h. Moreover n
h

⌃ = n⌃ and rh = r

for h = 0. Moreover we recall the properties of nh

⌃ and rh stated in Lemma 2.17.
Using the product estimate

|a
�1(g1)Jng2

⌃ ·rg3 µ̃K|Lp(0,T ;X0)

 |a
�1(g1)|L1(0,T ;C1(⌃))|n

g2

⌃ |L1(0,T ;C1(⌃))|rg3 µ̃|Lp(0,T ;W 1
q (⌦

+)),

for g1, g2, g3 2 [E(T )]1, µ̃ 2 [E(T )]2, gives estimates of form (2.65) for N1 using the
structure of N1 in (2.68).

Estimates for N2. Recall that by Lemma 2.15,

N2(z1 + z⇤)�N2(z2 + z⇤) = [P (h1 + h⇤)� P (0)](h1 � h2)

+ [P (h1 + h⇤)� P (h2 + h⇤)](h2 + h⇤)

+Q(h1 + h⇤)�Q(h2 + h⇤).

By Lemma 2.15,

|Q(h1(t) + h⇤(t))�Q(h2(t) + h⇤(t))|
W

2�1/q
q (⌃)

. |h1(t)� h2(t)|X� ,

for almost every t 2 (0, T ). Integration in time gives

|Q(h1 + h⇤)�Q(h2 + h⇤)|
Lp(0,T ;W 2�1/q

q (⌃))
. T

1/p
|h1 � h2|L1(0,T ;X�).

Also for almost every t 2 (0, T ),

|[P (h1(t) + h⇤(t))� P (0)](h1(t)� h2(t))|
W

2�1/q
q (⌃)

.|P (h1(t) + h⇤(t))� P (0)|
B(W 4�1/q

q (⌃);W 2�1/q
q (⌃))

|h1(t)� h2(t)|
W

4�1/q
q (⌃)

.

Inferring di↵erentiability of P from Lemma 2.15,

|[P (h1 + h⇤)� P (0)](h1 � h2)|
Lp(0,T ;W 2�1/q

q (⌃))

.|h1 + h⇤|L1(0,T ;X�)|h1 � h2|
Lp(0,T ;W 4�1/q

q (⌃))
.

The other term is estimated in the same way.
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Estimates for N3. We have

N3(z1 + z⇤)�N3(z2 + z⇤)

= (���h1+h⇤)(µ1 � µ2) + (�h2+h⇤ ��h1+h⇤)(µ2 + µ⇤).

Hence

|N3(z1 + z⇤)�N3(z2 + z⇤)|Lp(0,T ;Lq(⌦))

. (|h1|L1(0,T ;X�) + |h⇤|L1(0,T ;X�))|µ1 � µ2|Lp(0,T ;W 2
q (⌦\⌃))

+ |h1 � h2|L1(0,T ;X�)(|µ2|Lp(0,T ;W 2
q (⌦\⌃)) + |µ⇤|Lp(0,T ;W 2

q (⌦\⌃))),

which gives estimates for N3.

Estimates for N4. Note

N4(z1 + z⇤)�N4(z2 + z⇤) = n
h2+h⇤
@⌦ · (rh2+h⇤ �r)(µ2 � µ1)

+ n
h2+h⇤
@⌦ · (rh2+h⇤ �rh1+h⇤)(µ1 + µ⇤)

+ (nh2+h⇤
@⌦ � n

h1+h⇤
@⌦ ) · (rh1+h⇤ �r)(µ1 + µ⇤)

+ (nh2+h⇤
@⌦ � n

@⌦) ·r(µ2 � µ1)

+ (nh2+h⇤
@⌦ � n

h1+h⇤
@⌦ ) ·r(µ1 + µ⇤).

Lemma 2.17 together with the product estimate

|fg|
W

1�1/q
q (@⌦)

. |f |C1(@⌦)|g|W 1�1/q
q (@⌦)

, (2.69)

for all f 2 C
1(@⌦), g 2 W

1�1/q
q (@⌦), give estimates for N4. For a proof of (2.69) we

refer to [62].

Estimates for N5. The estimates for N5 are more involved. Firstly,

N5(z1 + z⇤)�N5(z2 + z⇤)

= n@⌃ ·r⌃(h1 � h2)� [nh1+h⇤
@⌃ · n

h1+h⇤
⌃ � n

h2+h⇤
@⌃ · n

h2+h⇤
⌃ ].

(2.70)

Linking now the surface gradient to the normal of the interfaces is now a complicated
matter due to the curved boundary of the domain. For better readability we dedicate
the next subsection to the proof of contraction estimates for (2.70). ⇤

Remark 2.30. We point out that the proof of Theorem 2.28 also gives well-
posedness of (2.31) in the case where ⌦ = G ⇥ (L1, L2) is a bounded, cylindrical
container in Rn, n = 2, 3. Hereby G ⇢ Rn�1 is a smooth, bounded domain. In
this case there is another model problem in the localization procedure for the linear
problem stemming from when the top and bottom of the container G ⇥ {L1, L2}

intersect the walls @G ⇥ (L1, L2). This elliptic problem, although being a problem
on a domain with corners, admits full regularity for the solution, cf. the Appendix
in Section A.2.
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2.6.2. Contraction estimates for the 90�-angle condition. To start with,
we recall the basic situation of a cylindrical domain ⌦ = G ⇥ (L1, L2), where the
free interface is given as a graph over the flat reference surface G⇥ {0} ⇢ Rn. Here,
the surface is given as the set {(x1, ..., xn�1, f(x1, ..., xn�1)) : (x1, ..., xn�1) 2 G},
for some su�ciently regular function f . If n = 2, the normal direction is given as a
rotation of the tangent vector (1, f 0(x1)), namely (�f

0(x1), 1). If n = 3, the normal
direction is given as the cross product of the two tangent vectors (1, 0, @1f(x1, x2))
and (0, 1, @2f(x1, x2)), which is well known to be (�rf(x1, x2), 1). In this simple
geometry, the connection between the gradient of the height function, here f , and
the normal to the graph of f is obvious. The important ingredient here is the fact
that there is no need for tangential correction and curvilinear coordinates. In the
situation of a smooth, curved domain with curved reference surface we now establish
a similar correspondence.

So let us consider the case where ⌦ ⇢ Rn, n = 2, 3, is a bounded, smooth
domain. Recall that for a suitable height function h, the free surface is given as
�h(t) = {x 2 Rn : x = X(s, h(s, t)) : s 2 ⌃}, where X denotes the curvilinear
coordinate system in a neighbourhood of ⌃, cf. [63]. The boundary condition then
reads as

n@⌦(q̄) · n�h(t)
(q̄) = 0, q̄ 2 @�h(t). (2.71)

Note that we can replace the unit normal n�h(t)
with any normal direction vector of

�h(t) in (2.71). Let us also remark that the linearization of the boundary condition
(2.71) with respect to the unit normal vector was already calculated in [14]. In our
case it will later turn out to be convenient to replace the unit normal vector with
a suitable normal direction vector. To then account for this change and be able to
deduce contraction estimates for (2.70), we will modify the curvilinear coordinates
X in the following way.

Consider a smooth function f : ⌃ ! R, with the property that either 0 <

c0  f(p)  C0, or �C0  f(p)  �c0 < 0, for all p 2 ⌃ and some constants
c0, C0 > 0. Then, X̃(p, w) := p + wf(p)n⌃(p) + t̃(w, p)~T (p) is also a curvilinear
coordinate system in the sense of [63], with the properties X̃(p, 0) = p, for all p 2 ⌃,
and @wX̃(p, 0) = f(p)⌫⌃(p). Compared to the case where f ⌘ 1, the correction
function t̃(w, p) changes, the ninety degree angle condition of ⌃ and @⌦ however
ensures that @w t̃(p, 0) = 0, for any p 2 @⌃. Basically, this approach amounts to
the construction of curvilinear coordinates in Proposition 3.2 in [63] by pointwise
solving a di↵erential equation in normal direction to the interface. For readability,
we refer to X̃ again as X.

For readability, we consider the involved case where n = 3. Then ⌃ is a two-
dimensional surface, which may be parametrized locally by ' : U ⇢ R2

! ⌃. At a
point on the surface ⌃, the two tangent vectors are given by ⌧j(p) := ⌧

⌃
j
(p) := @j'(s),

s = '
�1(p), p 2 ⌃, j = 1, 2. Note that the parametrization of the free interface �h(t)

then is given as [s 7! X('(s), h('(s), t))]. Di↵erentiating with respect to sj gives a
tangential vector to �h(t),

[DpX('(s), h('(s), t)Ds'(s)]ej + @wX('(s), h('(s), t))rh('(s), t) · @j'(s).
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For readability, we surpress the dependence of p and defineWj(h) := [DpX(h)Ds']ej ,
j = 1, 2, as well as

⌧
h

j
:= Wj(h) + @wX(h)@~⌧jh, j = 1, 2.

The normal direction at the free interface in terms of h is therefore given by

⌧
h

1 ⇥ ⌧
h

2 , (2.72)

the normal direction to the reference surface ⌃ by ⌧1 ⇥ ⌧2. We now want to remark
that

Wj(0) = ⌧
⌃
j
, j = 1, 2.

This follows from the fact that DpX is the identity on Tp⌃, which in turn stems from
di↵erentiating the initial condition X(p, 0) = p with respect to p. Concludingly, the
boundary equation (2.71) is equivalent to

n
h

@⌦(q̄) · (⌧
h

1 ⇥ ⌧
h

2 )(q̄) = 0, q̄ 2 @⌃. (2.73)

We can therefore replace the unit normals in N5 with the corresponding normal
direction vector of (2.73). We now rewrite the surface gradient in a suitable way.
Firstly,

r⌃h =
X

i,j

g
ij(@⌧jh)⌧i,

where (gij) is the first fundamental form of ⌃,

gij =

✓
⌧1 · ⌧1 ⌧1 · ⌧2

⌧1 · ⌧2 ⌧2 · ⌧2

◆
,

and (gij) its inverse,

g
ij =

1

det g

✓
⌧2 · ⌧2 �⌧1 · ⌧2

�⌧1 · ⌧2 ⌧1 · ⌧1

◆
.

Using the well known vector identities

a⇥ (b⇥ c) = (a · c)b� (a · b)c, (a⇥ b)⇥ c = (a · c)b� (b · c)a, a, b, c 2 R3
,

we readily obtain

(⌧1 ⇥ ⌧2)⇥ ⌧2 = (⌧1 · ⌧2)⌧2 � (⌧2 · ⌧2)⌧1, ⌧1 ⇥ (⌧1 ⇥ ⌧2) = (⌧1 · ⌧2)⌧1 � (⌧1 · ⌧1)⌧2.

In particular,

r⌃h = (g11⌧1 + g
12
⌧2)@⌧1h+ (g12⌧1 + g

22
⌧2)@⌧2h

= (det g)�1[(⌧2 · ⌧2)⌧1 + (�⌧1 · ⌧2)⌧2]@⌧1h

+ (det g)�1[(�⌧1 · ⌧2)⌧1 + (⌧1 · ⌧1)⌧2]@⌧2h

= (det g)�1[�(⌧1 ⇥ ⌧2)⇥ ⌧2]@⌧1h

+ (det g)�1[�⌧1 ⇥ (⌧1 ⇥ ⌧2)]@⌧2h.

Choose the curvilinear coordinates X in such a way that

@wX(p, 0) = �
(⌧1 ⇥ ⌧2)(p)

det g(p)
, p 2 ⌃.
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Note that this is possible since (⌧1 ⇥ ⌧2)(p) is a multiple of n⌃(p), for every p 2 ⌃.
In short notation, we may rewrite the surface gradient as

r⌃h = [@wX(0)⇥ ⌧2]@1h+ [⌧1 ⇥ @wX(0)]@2h. (2.74)

As shown before,

⌧
h

1 ⇥ ⌧
h

2 = [W1(h)⇥W2(h)]+ [@wX(h)⇥W2(h)]@1h+[W1(h)⇥@wX(h)]@2h. (2.75)

Going back to (2.70), where the unit normals at the free surface are replaced by the
direction vectors of (2.72),

N5(z1 + z⇤)�N5(z2 + z⇤)

= n@⌃ ·r⌃(h1 � h2)� [nh1+h⇤
@⌃ · (⌧h1+h⇤

1 ⇥ ⌧
h1+h⇤
2 )� n

h2+h⇤
@⌃ · (⌧h2+h⇤

1 ⇥ ⌧
h2+h⇤
2 )].

(2.76)
We now have to give estimates for the right hand side of (2.76). For readability,
h̃j := hj + h⇤, j = 1, 2. By (2.75),

n
h̃j

@⌃ · (⌧
h̃j

1 ⇥ ⌧
h̃j

2 ) = n
h̃j

@⌃ · [W1(h̃j)⇥W2(h̃j)]

+ n
h̃j

@⌃ · [@wX(h̃j)⇥W2(h̃j)]@1h̃j

+ n
h̃j

@⌃ · [W1(h̃j)⇥ @wX(h̃j)]@2h̃j .

Hence
N5(z1 + z⇤)�N5(z2 + z⇤) = n@⌃ ·r⌃(h̃1 � h̃2)

+ n
h̃2
@⌃ · [W1(h̃2)⇥W2(h̃2)]

� n
h̃1
@⌃ · [W1(h̃1)⇥W2(h̃1)]

+ n
h̃2
@⌃ · [@wX(h̃2)⇥W2(h̃2)]@1h̃2

� n
h̃1
@⌃ · [@wX(h̃1)⇥W2(h̃1)]@1h̃1

+ n
h̃2
@⌃ · [W1(h̃2)⇥ @wX(h̃2)]@2h̃2

� n
h̃1
@⌃ · [W1(h̃1)⇥ @wX(h̃1)]@2h̃1.

By (2.74),

N5(z1 + z⇤)�N5(z2 + z⇤) = n
h̃2
@⌃ · [W1(h̃2)⇥W2(h̃2)]

� n
h̃1
@⌃ · [W1(h̃1)⇥W2(h̃1)]

+ n
h̃2
@⌃ · [@wX(h̃2)⇥W2(h̃2)]@1h̃2

� n
h̃1
@⌃ · [@wX(h̃1)⇥W2(h̃1)]@1h̃1

+ n@⌃ · [@wX(0)⇥ ⌧2]@1(h̃1 � h̃2)

+ n
h̃2
@⌃ · [W1(h̃2)⇥ @wX(h̃2)]@2h̃2

� n
h̃1
@⌃ · [W1(h̃1)⇥ @wX(h̃1)]@2h̃1

+ n@⌃ · [⌧1 ⇥ @wX(0)]@2(h̃1 � h̃2).
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Define

N5,1 := n
h̃2
@⌃ · [W1(h̃2)⇥W2(h̃2)]� n

h̃1
@⌃ · [W1(h̃1)⇥W2(h̃1)],

N5,2 := n
h̃2
@⌃ · [@wX(h̃2)⇥W2(h̃2)]@1h̃2 � n

h̃1
@⌃ · [@wX(h̃1)⇥W2(h̃1)]@1h̃1

+ n@⌃ · [@wX(0)⇥ ⌧2]@1(h̃1 � h̃2),

N5,3 := n
h̃2
@⌃ · [W1(h̃2)⇥ @wX(h̃2)]@2h̃2 � n

h̃1
@⌃ · [W1(h̃1)⇥ @wX(h̃1)]@2h̃1

+ n@⌃ · [⌧1 ⇥ @wX(0)]@2(h̃1 � h̃2).

We estimate each term seperately. Remark that since h1, h2 2 0E(T ), h̃1(t = 0) =
h̃2(t = 0) = h⇤(t = 0) = h0. Therefore we need to be careful when applying the
product estimate of Theorem 2.4 or the contraction estimate of Lemma 2.10. By
Lemma 2.10,

|N5,1|
0F

1�2/3q
pq (0,T ;Lq(@⌃))\Lp(0,T ;B3�2/q

qq (@⌃))

 C(r)|h̃2 � h̃1|
0F

1�2/3q
pq (0,T ;Lq(@⌃))\Lp(0,T ;B3�2/q

qq (@⌃))

 C(r)|h2 � h1|
0F

1�2/3q
pq (0,T ;Lq(@⌃))\Lp(0,T ;B3�2/q

qq (@⌃))
.

By Lemma 2.24, there is some ✏ > 0 independent of r and T , such that

|N5,1|
0F

1�2/3q
pq (0,T ;Lq(@⌃))\Lp(0,T ;B3�2/q

qq (@⌃))
 T

✏
C(r)|h2 � h1|0E(T ).

Let us now estimate N5,2. Define F̃ (ũ) := n
ũ

@⌃ · [@wX(ũ)⇥W2(ũ)]. We rewrite

N5,2 = (F̃ (h̃2)� F̃ (h̃1))@1h̃2 + (F̃ (0)� F̃ (h̃1))@1(h̃1 � h̃2).

Recall that h̃j(t = 0) = h0. We rewrite the first term as

(F̃ (h̃2)� F̃ (h̃1))@1h̃2 = (F̃ (h̃2)� F̃ (h̃1))@1h2 + (F̃ (h̃2)� F̃ (h̃1))@1h⇤.

Hence

|(F̃ (h̃2)� F̃ (h̃1))@1h̃2|
0F

1�2/3q
pq (0,T ;Lq(@⌃))\Lp(0,T ;B3�2/q

qq (@⌃))

 |(F̃ (h̃2)� F̃ (h̃1))@1h2|
0F

1�2/3q
pq (0,T ;Lq(@⌃))\Lp(0,T ;B3�2/q

qq (@⌃))

+ |(F̃ (h̃2)� F̃ (h̃1))@1h⇤|
0F

1�2/3q
pq (0,T ;Lq(@⌃))\Lp(0,T ;B3�2/q

qq (@⌃))

 C|(F̃ (h̃2)� F̃ (h̃1))|
0F

1�2/3q
pq (0,T ;Lq(@⌃))\Lp(0,T ;B3�2/q

qq (@⌃))
⇥

⇥ |@1h2|
0F

1�2/3q
pq (0,T ;Lq(@⌃))\Lp(0,T ;B3�2/q

qq (@⌃))

+ C(T )|(F̃ (h̃2)� F̃ (h̃1))|
0F

1�2/3q
pq (0,T ;Lq(@⌃))\Lp(0,T ;B3�2/q

qq (@⌃))
⇥

⇥ |@1h⇤|
F

1�2/3q
pq (0,T ;Lq(@⌃))\Lp(0,T ;B3�2/q

qq (@⌃))

 CC(r0)|h2 � h1|0E(T )|h2|0E(T ) + C(T )C(r0)|h2 � h1|0E(T )|h⇤|E(T )

 CC(r0)|h2 � h1|0E(T )|h2|0E(T ) + C(T )C(r0)|h2 � h1|0E(T )|h0|X�

 CC(r0)r|h2 � h1|0E(T ) + C(T )C(r0)|h2 � h1|0E(T )�.
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Similarly we rewrite

(F̃ (0)�F̃ (h̃1))@1(h̃1�h̃2) = (F̃ (h⇤)�F̃ (h̃1))@1(h̃1�h̃2)+(F̃ (0)�F̃ (h⇤))@1(h̃1�h̃2).

Hence

|(F̃ (0)� F̃ (h̃1))@1(h̃1 � h̃2)|
0F

1�2/3q
pq (0,T ;Lq(@⌃))\Lp(0,T ;B3�2/q

qq (@⌃))

 CC(r0)|h̃1 � h⇤|0E(T )|h1 � h2|0E(T ) + CC(T )|h⇤|0E(T )|h1 � h2|0E(T )

 CC(r0)|h1|0E(T )|h1 � h2|0E(T ) + CC(T )|h0|X� |h1 � h2|0E(T )

 CC(r0)r|h1 � h2|0E(T ) + CC(T )�|h1 � h2|0E(T ).

Altogether,

|N5,2|
0F

1�2/3q
pq (0,T ;Lq(@⌃))\Lp(0,T ;B3�2/q

qq (@⌃))
 C(r0)(r + C(T )�)|h2 � h1|0E(T ).

By choosing r > 0 small, then T = T (r) > 0, and then � = �(T ) > 0 small,
C(r0)(r + C(T )�) gets arbitrarily small. Since N5,3 obeys the same structure as
N5,2, we also obtain estimates for N5,3. The proof of contraction estimates for N5

is complete.





CHAPTER 3

The Mullins-Sekerka equations with ninety degree

angle boundary contact: qualitative behaviour

3.1. Introduction

In this chapter we study the long-time behaviour of solutions to the Mullins-
Sekerka problem with ninety degree contact angle which start close to equilibria.

This chapter consists of two major results. In the first part we consider a cylin-
drical domain in two or three space dimensions and show a result on nonlinear
stability. We will prove that solutions starting close to certain equilibria exist glob-
ally in time, are stable, and converge to an equilibrium solution at an exponential
rate. The simpler geometry of a bounded cylinder reduces the nonlinear boundary
angle condition to a linear one. In a way, it allows to recast the problem as one
single abstract evolution equation for the height function and for an application of
the generalized principle of linearized stability. In the second part we consider a
general, bounded, smooth domain in two space dimensions and give a complete lin-
earized stability analysis around stationary solutions. Here, both the domain at the
contact points and the stationary solution may be curved. We will show that the
relevant quantities deciding on stability or instability are the length of the curve of
the stationary solution, its constant curvature, and the curvature of the domain at
the two contact points. These results are published in the articles [3], [27].

Let us recall the Mullins-Sekerka problem with ninety degree contact angle,

V�(t) = �Jn�(t) ·rµK, on �(t),

JµK = 0, µ|�(t) = H�(t), on �(t),

�µ = 0, in ⌦\�(t),

n@⌦ ·rµ|@⌦ = 0, on @⌦,

�̊(t) ⇢ ⌦, @�(t) ⇢ @⌦,

\(�(t), @⌦) = ⇡/2, on @�(t),

�|t=0 = �0.

(3.1)

Again we recall that equation (3.1)6 fixes the contact angle to be constant ninety
degrees.

3.2. Nonlinear stability and convergence to equilibria in cylindrical
domains

This section is devoted to the long-time behaviour of solutions to (3.1) in a cylin-
drical geometry, starting close to equilibria. We will characterize the set of equilibria,

77
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study the spectrum of the linearization of the transformed Mullins-Sekerka equations
around an equilibrium and apply the generalized principle of linearized stability to
show that solutions starting su�ciently close to certain equilibria converge to an
equilibrium solution at an exponential rate in X� .

We note that the potential µ can always be reconstructed by �(t) by solving the
elliptic two-phase problem

µ|�(t) = H�(t), on �(t),

�µ = 0, in ⌦\�(t),

n@⌦ ·rµ|@⌦ = 0, on @⌦.

(3.2)

Whence we may concentrate on the set of equilibria for �(t).
It can now easily be shown that for a stationary solution � of (3.1) with V� = 0

the corresponding chemical potential µ is constant, since then µ and rµ have no
jump across the interface � and µ 2 W

2
q
(⌦) solves a homogeneous Neumann problem

on ⌦. By (3.2)1, the mean curvature H� is constant. The set of equilibria for the
flow �(t) is therefore given by

E = {� : H� = const.}.

Let us now consider the case where ⌦ ⇢ Rn, n = 2, 3, is a bounded cylinder, that
is, ⌦ := ⌃ ⇥ (L1, L2), where �1 < L1 < 0 < L2 < 1 and ⌃ ⇢ Rn�1

⇥ {0} is a
bounded domain and @⌃ is smooth.

Note that flat interfaces are equilibria. Arcs of circles intersecting @⌦ at a ninety
degree angle also belong to E , since then (3.1)6 is also satisfied.

If we now additionally assume that the contact points between � and @⌦ are only
on the walls of the cylinder and � is given as a graph over ⌃, we may even deduce
that H� = 0, that is, � is a flat interface described by a constant height function
over the reference surface. This follows from two facts. Note that the normal to
the boundary of the domain n@⌦ at the walls of the cylinder is independent of h.
Furthermore, the last entry of n@⌦ is zero. Hence the boundary equation can be
recast as

n@⌦ · (�rh, 0) = 0, on @⌃. (3.3)

Also, we have the well-known formula

H� = div

✓
rhp

1 + |rh|2

◆
(3.4)

for the mean curvature of a graph. This together with the boundary condition (3.3)
on @⌃ renders H� = 0. Indeed, assume that � = �h is a graph of h over ⌃. We
may assume that h has mean value zero. Otherwise we consider h� 1

|⌃|

R
⌃ hdx. This

shift leaves the mean curvature of the interface and the boundary condition for the
height function invariant. We already know H� is constant, but may be di↵erent
from zero. An integration by parts entails

0 = H�

Z

⌃
hdx =

Z

⌃
hH�dx = �

Z

⌃

|rh|
2

p
1 + |rh|2

dx. (3.5)

The boundary integral vanishes due to (3.3) and renders rh to be zero in ⌃, hence
h is constant. This implies H� = 0.
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We will now study the problem for the height function in an Lp-setting. We
rewrite the geometric problem (3.1) as an abstract evolution equation for the height
function h, cf. [4], [58], [22]. As seen before in Section 2.4, by means of Hanzawa
transform, the full system reads as

@th = �(⌫⌃|⌫�h)
�1Jnh

⌃ ·rhµK, on ⌃,

µ|⌃ = H�(h), on ⌃,

�hµ = 0, in ⌦\⌃,

n@⌦ ·rhµ|@⌦ = 0, on @⌦,

n@⌃ ·r⌃h|@⌃ = 0, on @⌃,

h|t=0 = h0, on ⌃.

(3.6)

Let us note that due to working in a cylinder, the nonlinear angle condition reduces
to a linear one, condition (3.6)5. Define now B(h)g := (⌫⌃|⌫�h)

�1Jnh

⌃ · rhgK and
S(h)g as the unique solution of the elliptic problem

µ|⌃ = g, on ⌃,

�hµ = 0, in ⌦\⌃,

n@⌦ ·rhµ|@⌦ = 0, on @⌦.

Recalling Lemma 2.15, we may rewrite (3.6) as an abstract evolution equation,

d

dt
h(t) +A(h(t))h(t) = F (h(t)), t 2 R+,

h(0) = h0,

(3.7)

where A(h)g := B(h)S(h)P (h)g, equipped with domain

D(A(h)) := W
4�1/q
q

(⌃) \ {g : n@⌃ ·r⌃g = 0 on @⌃},

and F (g) := �B(g)S(g)Q(g). We now want to study (3.7) in an Lp-setting. Define

X0 := W
1�1/q
q

(⌃), X1 := W
4�1/q
q

(⌃), X� := (X0, X1)1�1/p,p.

We now interpret problem (3.7) as an evolution equation in Lp(R+;X0), fitting in
the setting of Prüss, Simonett, and Zacher [58]. Regarding the linearization we have
the following result.

Lemma 3.1. Let p 2 (6,1), q 2 (5/3, 2) \ (2p/(p+ 1), 2p). Then the following

statements are true.

(1) The derivative of H� at h = 0 is given by [h 7! �⌃h].
(2) There is an open neighbourhood of zero V ⇢ X� , such that

(A,F ) 2 C
1(V ;B(X1;X0)⇥X0).

(3) The linearization of A at zero is given by A0 = A(0), where A0 : D(A0) !
X0, A0h = �Jn⌃ · T�⌃hK, with domain

D(A0) = X1 \ {h : n@⌃ ·r⌃h|@⌃ = 0 on @⌃}.
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Here, T : W 2�1/q
q (⌃) ! W

2
q
(⌦\⌃), g 7! �, is the solution operator for the

elliptic two-phase problem

�� = 0, in ⌦\⌃,

�|⌃ = g, on ⌃,

n@⌦ ·r�|@⌦ = 0, on @⌦.

(3.8)

(4) In a neighbourhood of zero in X� , the set of equilibria, that is, the solutions

to A(h)h = F (h), is given by E = {h = const.}.

(5) A0 has maximal Lp-regularity.

(6) The kernel of A0 are the constant functions, N(A0) = {h = const.}.

(7) N(A0) = N(A2
0).

Proof. (1) This stems from linearizing (3.4) at h = 0, cf. also [14].
(2) Again by Lemma 2.15, there is a small neighbourhood of zero V ⇢ X� , such

that P 2 C
1(V ;B(X1;W

2�1/q
q (⌃)) and Q 2 C

1(V ;W 2�1/q
q (⌃)). Following the lines

of [4] using Lemma 2.17, we now show that

S 2 C
1(V ;B(W 2�1/q

q
(⌃);W 2

q
(⌦\⌃))).

By Lemma 2.17, [h 7! �h] 2 C
1(V ;B(W 2

q
(⌦\⌃);Lq(⌦))), as well as [h 7! rh] 2

C
1(V ;B(W 2

q
(⌦\⌃);W 1

q
(⌦\⌃))). Hence by trace theory,

[h 7! rh|@⌦] 2 C
1(V ;B(W 2

q
(⌦\⌃);W 1�1/q

q
(@⌦))),

since q < 2. Again by Lemma 2.17, [h 7! n
h

@⌦] 2 C
1(V ;C1(@⌦)), therefore the

product estimate of (2.69) gives

[h 7! n
h

@⌦ ·rh|@⌦] 2 C
1(V ;B(W 2

q
(⌦\⌃);W 1�1/q

q
(@⌦))).

Hence [h 7! (�h, tr⌃, nh

@⌦ ·rh|@⌦)] belongs to

C
1(V ;B(W 2

q
(⌦\⌃);Lq(⌦)⇥W

2�1/q
q

(⌃)⇥W
1�1/q
q

(@⌦))).

Since inversion is smooth and S(h)g = (�h, tr⌃, nh

@⌦ ·rh|@⌦)�1(0, g, 0),

S 2 C
1(V ;B(W 2�1/q

q
(⌃);W 2

q
(⌦\⌃))).

Regarding B we may write B(h) =
P

n�1
j=1 b

h

j
tr⌃ @j , where the coe�cients b

h

j
=

bj(x, h,rh) depend smoothly on (x, h,rh). This yields bj(·, h,rh) 2 C
1(⌃), since

the derivatives of h belong to B
3�1/q�3/p
qp (⌃) ,! C

1(⌃). Hence,

[h 7! b
h

j
tr⌃ @j ] 2 C

1(V ;B(W 2
q
(⌦\⌃);W 1�1/q

q
(⌃))),

as well as
B 2 C

1(V ;B(W 2
q
(⌦\⌃);W 1�1/q

q
(⌃))).

This shows that (A,F ) 2 C
1(V ;B(X1;X0)⇥X0).

(3) This stems from the fact that A0 = A(0) and Lemma 2.15.
(4) Let h 2 D(A) satisfy A(h)h = F (h). It then follows that B(h)S(h)H�(h) = 0

on ⌃, that is,
Jnh

⌃ ·rh[S(h)H�(h)]K = 0, on ⌃.

Note that S(h)H�(h) is the solution of an h-perturbed elliptic problem with homo-
geneous Neumann boundary conditions. Therefore S(h)H�(h) has to be constant, if
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|h|X� is small enough by a perturbation argument. Since S(h)H�(h) equals H�(h)
on ⌃, also H�(h) is constant. We then obtain that the mean curvature H� of the
interface given as a graph of h over ⌃ is constant. As in (3.5) we may even deduce
using formula (3.4) that H� = 0 and h is constant.

(5) This stems from Theorem 2.25.
(6) Clearly, every constant function is an element of N(A0). For the converse,

let h 2 D(A0), such that A0h = 0. Hence � := T�⌃h is constant, where T is
the solution operator of (3.8). Therefore �⌃h is constant. Since h 2 D(A0), an
integration by parts shows �⌃h = 0 on ⌃. Again since h 2 D(A0), h has to be
constant.

(7) We only need to show N(A2
0) ⇢ N(A0). Pick some h 2 N(A2

0). Then
A0h 2 D(A0)\N(A0). Hence A0h is constant. Also, A0h is in the range of A0. Let
us show that every element in the range of A0 has mean value zero. Having this at
hand it follows that A0h = 0, hence h 2 N(A0).

Let g 2 R(A0). Pick some h̄ 2 D(A0), such that A0h̄ = g. Then
Z

⌃
gdx =

Z

⌃
A0h̄dx = �

Z

⌃
Jn⌃ ·r�Kdx,

where � := T�⌃h̄ and T is the solution operator stemming from (3.8). Then
Z

⌃
Jn⌃ ·r�Kdx = 0,

since �� = 0 in ⌦\⌃ and the Neumann boundary condition for �. Hence g is mean
value free. The proof is complete. ⇤

The following theorem enables us to apply the generalized principle of linearized
stability of Prüss, Simonett, and Zacher [58] to the evolution equation (3.7).

Theorem 3.2. Let p 2 (6,1), q 2 (5/3, 2) \ (2p/(p + 1), 2p). Then the trivial

equilibrium h⇤ = 0 is normally stable.

More precisely:

(1) Near h⇤ = 0, the set of equilibria E is a C
1
-manifold in X1 of dimension

one.

(2) The tangent space of E at h⇤ = 0 is given by the kernel of the linearization,

T0E = N(A0).
(3) Zero is a semi-simple eigenvalue of A0, i.e. X0 = N(A0)�R(A0).
(4) The spectrum �(A0) satisfies �(A0)\{0} ⇢ C+ := {z 2 C : Re z > 0}.

Proof. (1) Around h⇤, the set of equilibria only consists of constant functions,
hence is a one-dimensional linear subspace of X1.

(2) This stems from Lemma 3.1.

(3) Since D(A0) compactly embeds into W
1�1/q
q (⌃), the operator A0 has a

compact resolvent and the spectrum �(A0) only consists of eigenvalues, cf. [19].
Furthermore, every spectral value in �(A0) is a pole of finite algebraic multiplicity.
By using N(A0) = N(A2

0) and Proposition A.2.2 and Remark A.2.4 in [43] we
may conclude that the range of A0 is closed in X0 and that there is a spectral
decomposition X0 = N(A0)�R(A0). Hence � = 0 is semi-simple.

(4) Pick � 2 �(A0) with corresponding eigenfunction h 2 D(A0), in other words

�h�A0h = 0, in X0. (3.9)
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By definition of A0, A0h = �Jn⌃ ·T�⌃hK. Testing this equality in L2(⌃) with �⌃h

yields
0 = |r�|

2
L2(⌦) + (A0h|�⌃h)L2(⌃),

where � := T�⌃h. Note that since q > 3/2, W 1�1/q
q (⌃) ,! L2(⌃). Testing the

resolvent equation (3.9) now with �⌃h in L2(⌃) finally yields

�|rh|
2
L2(⌃) = |r�|

2
L2(⌦).

This shows that � is real and � � 0. In particular, �(A0)\{0} ⇢ (0,1). Hence h⇤

is normally stable. ⇤
The following theorem is the main result on stability of solutions.

Theorem 3.3. The trivial equilibrium h⇤ = 0 is stable in X� , and there is some

� > 0 such that the evolution equation

d

dt
h(t) +A(h(t))h(t) = 0, t > 0, h(0) = h0,

with initial value h0 2 X� satisfying |h0 � h⇤|X�  � has a unique global in-time

solution on R+,

h 2 W
1
p
(R+;X0) \ Lp(R+;D(A0)),

which converges at an exponential rate in X� to some h1 2 E as t ! +1.

Proof. It is an application of the generalized principle of linearized stability of
Prüss, Simonett, and Zacher [58] to the evolution equation (3.7). ⇤

Theorem 3.4 (Geometrical version). Suppose that the initial surface �0 is given

as a graph, �0 = {(x, h0(x)) : x 2 ⌃} for some function h0 2 X� . Then, for

each " > 0 there is some �(") > 0, such that if the initial value h0 2 X� satisfies

|h0|X�  �("), there exists a global-in-time strong solution h on R+ of the evolution

equation, h 2 Lp(R+;D(A0)) \W
1
p
(R+;X0). The solution satisfies |h(t)|X�  " for

all t � 0.
Moreover, there is some constant h1, such that �h ! �h1 in the sense of

h(t) ! h1 in X� . The convergence is at an exponential rate.

Note that by the following theorem we can characterize the limit. It is a priori
not clear to which equilibrium the solution converges to by the generalized principle
of linearized stability.

Theorem 3.5. The limit h1 from above has the same mean value as h0, in

other words, h1 = 1
|⌃|

R
⌃ h0dx.

Proof. The theorem is a consequence of the fact that the Mullins-Sekerka
system conserves the measure of the domains separated by the interface in time.
Hence the solution h from Theorem 3.3 satisfies

d

dt

Z

⌃
h(t, x)dx = 0, t > 0.

In particular, Z

⌃
h(t, x)dx =

Z

⌃
h0(x)dx, t > 0.

Since h(t) ! h1 as t ! 1 in X� ,! L1(⌃), we get the result. ⇤
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3.3. Linearized stability analysis in curved domains

In this chapter we study the two-phase Mullins-Sekerka problem inside a bounded,
smooth domain in two space dimensions with boundary contact.

Let us precisely state the model. We consider a fixed, smooth, and bounded
domain in two space dimensions ⌦ ⇢ R2. As before, we assume that the domain can
be decomposed as ⌦ = ⌦+(t)[̇�̊(t)[̇⌦�(t), where �̊(t) denotes the interior of �(t),
here a smooth one-dimensional curve with two boundary points @�(t) on @⌦.

Again we consider the Mullins-Sekerka problem with ninety degree contact angle,

V� = �Jn� ·rµK, on �(t),

µ|� = H�, on �(t),

�µ = 0, in ⌦\�(t),

n@⌦ ·rµ|@⌦ = 0, on @⌦\@�(t),

n� · n@⌦ = 0, on @�(t),

�(0) = �0.

(3.10)

Hereby, V� denotes again the normal velocity and H� the (mean) curvature of �(t)
with respect to n�, where we use the sign convention that H is negative for convex
spheres. In particular, the sphere of radius R > 0 and center x0 2 R2 has negative
curvature �1/R.

Using curvilinear coordinates and a Hanzawa type transformation, cf. Section
2.4, we can pull back the equations to the fixed reference configuration ⌦\⌃ by
means of the Hanzawa transform ⇥h, cf. also [3], [64], [57], [22]. Recall that ⌃ may
be any smooth curve intersecting the boundary perpendicularly at the two contact
points. For convenience, we recall that the transformed system reads as

@th = �a
�1(h)Jn�h ·rh⌘K, on ⌃,

⌘|⌃ = K(h), on ⌃,

�h⌘ = 0, in ⌦\⌃,

n
h

@⌦ ·rh⌘|@⌦ = 0, on @⌦,

n
h

@⌦ · n�h = 0, on @⌃,

h|t=0 = h0, on ⌃.

Hereby, K(h) is the transformed (mean) curvature operator, cf. Section 2.4, nh

@⌦ :=
n@⌦ �⇥t

h
, and the transformed di↵erential operators are given by

rh := (D⇥t

h
)>r, divh := Trrh, �h := divh rh.

Furthermore, h0 is a suitable description of the initial configuration at time t = 0
and a

�1(h)(t) depends only on h(t). Also a
�1(0) = 1 and a

�1(h) depends smoothly
on h.

3.3.1. The linearized problem. Let ⌃⇤ be a stationary solution to the Mullins-
Sekerka problem with boundary contact (3.10). In particular, the (mean) curvature
of ⌃⇤ is constant and ⌃⇤ is a flat surface or part of a circle intersecting @⌦ perpen-
dicularly. We now consider the full linearization of (3.10) at any stationary solution
⌃⇤.
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Referring to [14], given an equilibrium solution ⌃⇤, the linearization of the
transformed mean curvature operator at h = 0 is given by

K
0(0) = �⌃⇤ + |⇤|

2
,

where ⇤ is the constant curvature of ⌃⇤. Furthermore, the linearization of the
nonlinear ninety degree angle condition at the boundary at h = 0 is given by

r⌃⇤h · n@⌃⇤ = �S@⌦(n⌃⇤ , n⌃⇤)h, on @⌃⇤,

where S@⌦(n⌃⇤ , n⌃⇤) is the second fundamental form of @⌦ with respect to the outer
unit normal n@⌦, cf. [14]. In particular, we have the formula

S@⌦(n⌃⇤ , n⌃⇤)h = �(n⌃⇤ · @n⌃⇤n@⌦)h = �(n⌃⇤ · [Dn@⌦n⌃⇤ ])h,

cf. the proof of Lemma 3.7 in [14]. Note that if e.g. ⌦ is a convex sphere, S@⌦ < 0.
The linearized problem around a stationary solution ⌃⇤ now reads as

@th = �Jn⌃⇤ ·rµK, on ⌃⇤,

µ|⌃⇤ = �⌃⇤h+ 
2
⇤
h, on ⌃⇤,

�µ = 0, in ⌦\⌃⇤,

n@⌦ ·rµ|@⌦ = 0, on @⌦\@⌃⇤,

r⌃⇤h · n@⌃⇤ = �S@⌦(n⌃⇤ , n⌃⇤)h, on @⌃⇤,

h(0) = h0, on ⌃⇤.

(3.11)

Regarding the stationary solution we note that ⇤ is constant and either equal
to zero or �1/R, because ⌃⇤ is flat or part of a circle with radius R > 0, respectively.

To identify relevant quantities in the stability analysis, let us formally consider
the corresponding eigenvalue problem

�h = �Jn⌃⇤ ·rµK, on ⌃⇤,

µ|⌃⇤ = �⌃⇤h+ 
2
⇤
h, on ⌃⇤,

�µ = 0, in ⌦\⌃⇤,

n@⌦ ·rµ|@⌦ = 0, on @⌦\@⌃⇤,

r⌃⇤h · n@⌃⇤ = �S@⌦(n⌃⇤ , n⌃⇤)h, on @⌃⇤,

(3.12)

for some � 2 C. Multiplying (3.12)1 with �⌃⇤ h̄+ 
2
⇤
h̄ in L2(⌃⇤) gives

�

Z

⌃⇤

h(�⌃⇤ h̄+ 
2
⇤
h̄)dH1 =

Z

⌦
|rµ|

2
dx.

Here, dHd denotes the d-dimensional Hausdor↵ measure, d 2 N0. An integration by
parts invoking the boundary conditions formally entails

�

Z

⌃⇤

|r⌃⇤h|
2
dH

1 +

Z

@⌃⇤

S@⌦(n⌃⇤ , n⌃⇤)|h|
2
dH

0
� 

2
⇤

Z

⌃⇤

|h|
2
dH

1

�
+

+

Z

⌦
|rµ|

2
dx = 0.

(3.13)

We now note that the term in brackets may change its sign in dependence of the
curvature ⇤, the values of the form S@⌦(n⌃⇤ , n⌃⇤) on the two boundary points of
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@⌃⇤, and the length of the curve ⌃⇤. The last dependence is somewhat hidden and
stems from the scaling properties of the first term involving the gradient of h.

Referring to [26], we want to introduce a bilinear functional by

I⇤(h, h) :=

Z

⌃⇤

|r⌃⇤h|
2
dH

1 +

Z

@⌃⇤

S@⌦(n⌃⇤ , n⌃⇤)|h|
2
dH

0
� 

2
⇤

Z

⌃⇤

|h|
2
dH

1
.

Note that for � 6= 0, integrating (3.12)1 over ⌃⇤ yields that necessarily
R
⌃⇤

hdH
1 = 0,

for any eigenfunction h to the eigenvalue � 6= 0.
Hence it stems from (3.13) that positivity of I⇤ on mean value free functions

gives �  0 for any possible eigenvalue �. Hence studying the sign of I⇤ for mean
value free functions is the crucial point in our stability analysis.

As a trivial consequence we want to point out that if ⇤ = 0 and S is identically
zero on @⌃⇤, we obtain that �  0. This corresponds to the geometrical situation
of a flat solution ⌃⇤ and flat, perpendicular walls, which was already investigated in
Section 3.2.

3.3.2. Flat stationary solutions. Let us start with the simpler case when the
stationary solution is flat, ⇤ = 0. Then by rotation, we can assume that ⌃⇤ = (0, L)
for some L > 0. Let us rewrite (3.11) as an abstract evolution equation in the setting
of Chapter 2. Let 3/2 < q < 2 and

X0 := W
1�1/q
q

(⌃⇤), X1 := W
4�1/q
q

(⌃⇤).

Define a linear operator A : D(A) ⇢ X1 ! X0 as follows. Let Bu := Jn⌃⇤ ·ruK and
T0v be the unique solution of the two-phase elliptic problem

JµK = 0, µ|⌃⇤ = v, on ⌃⇤,

�µ = 0, in ⌦\⌃⇤,

n@⌦ ·rµ|@⌦ = 0, on @⌦\@⌃⇤.

(3.14)

Then we define A by Ah := BT0(�⌃⇤h), with domain

D(A) := X1 \ {h : r⌃⇤h · n@⌃⇤ = �S@⌦(n⌃⇤ , n⌃⇤)h, on @⌃⇤}.

We can then rewrite (3.11) as

ḣ(t) +Ah(t) = 0, t > 0, h(0) = h0. (3.15)

The main benefit of this formulation is now the fact that A has maximal regularity.
More precisely, let p 2 (6,1), q 2 (19/10, 2) \ (2p/(p + 1), 2), and J = (0, T ),
0 < T < 1. Then, by a perturbation argument, the operator A has maximal Lp-
regularity on J with respect to the base space X0, cf. Section 2.5. Define the trace

space as X� := B
4�1/q�3/p
qp (⌃⇤). Then it holds that

X� = (X0, X1)1�1/p,p.

We now want to apply the generalized principle of linearized stability to deduce
stability or instability results for (3.15), cf. [57], [58].

Let us simplify notation first. Since @⌃⇤ = {0, L}, we may rewrite the boundary
conditions as

@xh(0) = �!1h(0), @xh(L) = !2h(L),

where
!1 := �S@⌦(n⌃⇤ , n⌃⇤)(0), !2 := �S@⌦(n⌃⇤ , n⌃⇤)(L).



86 3. MULLINS-SEKERKA EQUATIONS WITH NINETY DEGREE CONTACT ANGLE

In particular again if ⌦ is a convex sphere, !1,!2 > 0 since S@⌦ < 0. We now
want to analyse di↵erent geometries and their respective stability properties. Let us

⌃⇤⌃⇤⌃⇤
@⌦@⌦ @⌦

Figure 1. Di↵erent signs of !1,!2. Left: !1 = !2 < 0. Middle:
!1 = !2 = 0. Right: !1 = !2 > 0.

discuss stability and instability results in the case of flat stationary solutions. We
start with the left hand side case, where we can show stability of h⇤ = 0 for (3.15).

Theorem 3.6. Let !1,!2  0. Then h⇤ = 0 is normally stable, that is,

(1) The set of equilibria of (3.15) is the kernel of A, which is one-dimensional.

(2) The eigenvalue zero is semi-simple, X0 = N(A)�R(A).
(3) The spectrum satisfies �(�A)\{0} ⇢ C� := {z 2 C : Re z < 0}.

In particular, h⇤ = 0 is stable in X� and there is some � > 0, such that if |h0|X�  �,

the unique solution h of (3.15) exists globally in time, belongs to W
1
p
(R+;X0) \

Lp(R+;D(A)), and converges to some equilibrium solution in X� at an exponential

rate.

Proof. Consider some � 2 �(�A) ⇢ C and the corresponding eigenvalue prob-
lem for the eigenfunction h 2 D(A),

8
>>>>>>>><

>>>>>>>>:

�h = �Jn⌃⇤ ·rµK, on ⌃⇤,

JµK = 0, µ|⌃⇤ = @x@xh, on ⌃⇤,

�µ = 0, in ⌦\⌃⇤,

n@⌦ ·rµ|@⌦ = 0, on @⌦\@⌃⇤,

@xh(0) = �!1h(0),

@xh(L) = !2h(L).

(3.16)

Multiplying equation (3.16)1 with @x@xh̄, an integration by parts invoking the bound-
ary conditions yields

�

"Z
L

0
|@xh|

2
dx� !1h(0)

2
� !2h(L)

2

#
+

Z

⌦
|rµ|

2 = 0. (3.17)

Let us characterize the kernel of A. Pick some h 2 N(A). Then (3.17) for � = 0
entails that µ has to be constant, whence @x@xh = c on (0, L) for some c 2 R. In
particular, by the fundamental theorem of calculus,

h(s) = h(0) + s@xh(0) +

Z
s

0

Z
⌧

0
@x@xh(⌧

0)d⌧ 0d⌧, s 2 [0, L],

whence invoking the boundary condition gives

h(s) = h(0)� !1h(0)s+ cs
2
/2, s 2 [0, L]. (3.18)

Let us start now with the case where !1,!2 < 0. By di↵erentiating (3.18) and
invoking the boundary condition at x = L we obtain that

@xh(L) = �!1h(0) + cL = !2h(L).
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Also from (3.18) we obtain that h(L) = [1� !1L]h(0) + cL
2
/2. The linear system


h(0)
h(L)

�
=


0 �!2/!1

1� !1L 0

� 
h(0)
h(L)

�
+


cL/!1

cL
2
/2

�
(3.19)

now has a unique solution since 1+(1�!1L)!2/!1 � 1 for any !1 < 0,!2 < 0, L > 0.
Explicitly solving the linear system gives

h(0) =
c(L� !2L

2
/2)

!1 + !2 � !1!2L
,

which gives in combination with (3.18) a unique solution h which depends linearly
on c. Hence the kernel of A is truly one-dimensional.

With this at hand we may now prove that zero is a semi-simple eigenvalue. Since
D(A) compactly embeds into X0, the resolvent of A0 is compact and the spectrum
only consists of at most countably many isolated eigenvalues. Furthermore, every
spectral value in �(A) is a pole of finite algebraic multiplicity. Using Remark A.2.4
in [43] it su�ces to show that N(A) = N(A2). Then the range of A is closed and
X0 = N(A) � R(A). So pick some h 2 N(A2). Then h1 := Ah 2 R(A) \ N(A).
Then h1 is mean value free on (0, L) and there is some c1 2 R such that

h1(x) = c1


(L� !2L

2
/2)(1� !1x)

!1 + !2 � !1!2L
+

x
2

2

�
, x 2 [0, L].

A straightforward integration gives
Z

L

0
h1(x)dx = c1

6L2 + !1!2L
4
/2� 2(!1 + !2)L3

6(!1 + !2 � !1!2L)
.

Now for any L > 0,!1,!2 < 0 the right hand side can only be zero if c1 = 0. But
then h1 = 0 and Ah = 0. Hence h belongs to the kernel of A. Then N(A) = N(A2)
and zero is semi-simple. Furthermore, equation (3.17) yields that necessarily � is
real and �  0. Hence the third assertion is proved. The rest of the statement is
a consequence of the generalized principle of linearized stability of Prüss, Simonett,
and Zacher [58].

For completeness we shall show that zero is also semi-simple in the simpler
case where !1 = 0,!2 < 0. The case !1 < 0,!2 = 0, follows the same lines. In
the case !1 = 0,!2 < 0, the kernel of A consists of functions h of form hc(s) =
c(L/!2 � L

2
/2 + s

2
/2) for c 2 R. Then the same arguments give that zero is semi-

simple. Note that in the case !1 = !2 = 0, the kernel of A consists of the constant
functions, cf. Lemma 3.1. ⇤

Let us now be concerned with the case when !1,!2 > 0, cf. Figure 1. We will
show the following result for (3.15). For simplicity we will assume that !1 = !2 =:
!+ > 0.

Theorem 3.7. (1) For fixed L > 0, there exists some � = �(L) > 0, such
that if !+  �, the solution h⇤ = 0 is stable in X� . Furthermore, there

exists some ⌘ > 0, such that if |h0|�  ⌘, the solution to the initial value

h0 exists on R+ and converges to the equilibrium point h1 := 1
L

R
L

0 h0dx

in X� at an exponential rate.

(2) For fixed L > 0, there exists some K = K(L) > 0, such that if !+ � K,

the solution h⇤ = 0 is normally hyperbolic and unstable in X� .
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(3) For fixed !+ > 0, there is some � > 0 such that if L0  �, the interface

⌃ = (0, L0) corresponding to h⇤ = 0 is stable in X� . Moreover, the second

statement of (1) holds.

(4) For fixed !+ > 0, there is some K > 0, such that if L � K, the interface

⌃⇤ = (0, L) corresponding to h⇤ = 0 is normally hyperbolic and unstable in

X� .

Proof. Let L,!+ > 0 and ⌃⇤ = (0, L). Let A be the linear operator of (3.15).
Let us be concerned with the kernel of A. Again if Ah = 0, the corresponding
chemical potential µ = T0@x@xh is constant and therefore @x@xh = c for some c 2 R.
As before, h can be written as h(s) = (1 � !+s)h(0) + cs

2
/2 for all s 2 [0, L]. The

corresponding linear system for [h(0), h(L)] 2 R2 in (3.19) can be uniquely solved
whenever 2 � L!+ 6= 0. Note that for either fixed L > 0 or !+ > 0, this can be
ensured by choosing � > 0 su�ciently small or K > 0 su�ciently large. In any case,

h(s) = h(0)[1� !+s] + cs
2
/2, s 2 [0, L], h(0) = c

L� !+L
2
/2

!+(2� !+L)
. (3.20)

Arguing as in the proof of Theorem 3.6 we can show that the kernel of A is truly one
dimensional, given by functions of type (3.20) for c 2 R. Hence, X0 = N(A)�R(A)
and the eigenvalue zero is semi-simple.

(1) For some 0 6= � 2 �(�A) ⇢ C and a corresponding eigenfunction h 2 D(A),
the eigenvalue problem again reads as

�h = �Jn⌃⇤ ·rµK, on ⌃⇤,

JµK = 0, µ|⌃⇤ = @x@xh, on ⌃⇤,

�µ = 0, in ⌦\⌃⇤,

n@⌦ ·rµ|@⌦ = 0, on @⌦\@⌃⇤,

@xh(0) = �!+h(0),

@xh(L) = !+h(L).

(3.21)

Necessarily,

�

"Z
L

0
|@xh|

2
dx� !+h(0)

2
� !+h(L)

2

#
+

Z

⌦
|rµ|

2 = 0.

We aim to show that the term in brackets is still positive if !+  � and � > 0 is
small. Integrating (3.21)1 over (0, L) yields that h is mean value free. Hence we can
use Poincaré-Wirtinger inequality to deduce

Z
L

0
|@xh|

2
dx� !+h(0)

2
� !+h(L)

2

� c0(L)|h|
2
H

1
2 (0,L) � !+h(0)

2
� !+h(L)

2

� c̃0(L)|h|
2
C0([0,L]) � !+h(0)

2
� !+h(L)

2
,

(3.22)

for some c0, c̃0 > 0, since H
1
2 (0, L) ,! C

0([0, L]). Hence the first claim follows if
� > 0 is su�ciently small.

(2) Again we fix L > 0. We need to show that if !+ � K for K > 0 large,
there is a positive eigenvalue � > 0 of �A. For � > 0 we can rewrite the eigenvalue
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problem (3.21) as
�h�DMS�̃h = 0, (3.23)

where �̃ : D(�̃) ⇢ X1 ! X0 is given by �̃h := @x@xh with domain D(�̃) :=

W
4�1/q
q (⌃⇤)\ {@xh(0) = �!+h(0), @xh(L) = !+h(L)}. Furthermore, we define the

Dirichlet-to-Neumann operator DMS as follows. For given g 2 W
2�1/q
q (0, L), we

solve the two-phase elliptic problem

�✓ = 0, in ⌦\⌃⇤,

J✓K = 0, ✓|⌃⇤ = g, on ⌃⇤,

n@⌦ ·r✓|@⌦ = 0, on @⌦\@⌃⇤,

uniquely by ✓ 2 W
2
q
(⌦\⌃⇤) and define DMSg := �Jn⌃⇤ ·r✓K. The inverse Neumann-

to-Dirichlet operator

NMS = [DMS ]
�1 : W 1�1/q

q,(0) (⌃⇤) ! W
2�1/q
q,(0) (⌃⇤)

then admits a compact, selfadjoint extension to L2,(0)(⌃⇤), cf. Lemma 5.5. It is also
shown there that NMS is injective on L2,(0)(⌃⇤). Note however that @x@xh is not
mean value free on ⌃⇤, even though h is. We may however rewrite (3.23) as

�h�DMS(I � P0)�̃h = DMSP0�̃h,

where P0v is the mean value of v. Next note that DMSP0�̃h = 0, since P0�̃h is
constant. Applying NMS then gives that (3.23) is equivalent to

�NMSh� (I � P0)�̃h = 0.

Hereby we understand �̃ as the natural extension to H
2
2 (⌃⇤). We may now follow

the lines of [64], [57]. Define B� := �NMS � (I � P0)�̃ with natural domain
D(B�) := H

2
2,(0)(⌃⇤) \ {@xh(0) = �!+h(0), @xh(L) = !+h(L)}. We will now show

that

B� is

(
positive definite, if � � �0 for some �0 > 0,

not positive definite, if � > 0 is su�ciently small.
(3.24)

Since NMS is positive definite on L2,(0)(⌃), cf. the proof of Lemma 5.4, there is
some d0 > 0 such that

(B�h|h)2 = �(NMSh|h)2 � (@x@xh|h)2 + (P0@x@xh|h)2

� �d0|h|
2
2 + |@xh|

2
2 � !+[h(0)

2 + h(L)2],

since (P0@x@xh|h)2 = 0. It remains to show that

(�� 1)d0|h|
2
2 + |@xh|

2
2 � !+[h(0)

2 + h(L)2] � 0, (3.25)

if only � � �0 for �0 > 0 su�ciently large. Then B� is positive definite for � � �0.
We now claim the following Young-type inequality. Note that the following lemma
immediately implies (3.25).

Lemma 3.8. For every � > 0 there is a constant C� > 0, such that

h(j)2  �|@xh|
2
2 + C�|h|

2
2, j = 0, L,

for any h 2 H
1
2 (⌃⇤).
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Proof. The proof follows the lines of [25]. Assume there is some � > 0 such
that the statement is not true. Then there is a sequence (hn)n ⇢ H

1
2 (⌃⇤), such that

1 = hn(0)
2
> �|@xhn|

2
2 + n|hn|

2
2, for all n 2 N. (3.26)

In particular, |@xhn|
2
2 < 1/� and |hn|

2
2 < 1/n for each n. Hence (hn)n is bounded

in H
1
2 and there is a subsequence again denoted by (hn)n converging weakly to

some h in H
1
2 . Furthermore, hn converges strongly to zero in L2. By uniqueness, hn

converges weakly to zero inH
1
2 . By the compact embeddingH1

2 (⌃⇤) ,!,! C
0([0, L]),

hn converges strongly in C
0-norm to zero as n ! 1. This implies hn(0) ! 0 as

n ! 1, which is a contradiction to (3.26). ⇤
We now show the second part of (3.24). Note that

lim
�!0,�>0

(B�h|h)2 = �(@x@xh|h)2 = |@xh|
2
2 � !+[h(0)

2 + h(L)2], h 2 D(B�),

since lim�!0,�>0 �(NMSh|h)2 = 0 for any fixed h 2 D(B�). It now remains to
construct a function h̄ 2 D(B�) such that

|@xh̄|
2
2 � !+[h̄(0)

2 + h̄(L)2] < 0. (3.27)

We start with the following construction. Let " > 0 and define

ḡ(s) :=

8
><

>:

1� !+s, s 2 [0, "],

1� !+"� (1� !+")(s� ")/(L/2� "), s 2 [", L/2],

�ḡ(L� s), s 2 [L/2, L],

(3.28)

cf. Figure 2. Then ḡ satisfies the boundary conditions @xḡ(0) = �!+ḡ(0) and

x

ḡ(x)

" L/2

L� "

L

�1�1�1

1

Figure 2. Construction of ḡ.

@xḡ(L) = !+ḡ(L). Clearly, g 2 H
1
2,(0)(⌃⇤). Furthermore a direct calculation shows

|@xḡ|
2
L2(0,L/2) � !+ḡ(0)

2 =

Z
"

0
!
2
+dx+

Z
L/2

"

(1� !+")2

(L/2� ")2
dx� !+

= "!
2
+ +

(1� !+")2

L/2� "
� !+.

In particular, the first two terms converge to 2/L as " ! 0. If now !+ > 2/L, the
right hand side will be negative whenever " = "(!+) > 0 is small enough. Note that
the critical value for !+ is 2/L, which is exactly the degeneracy of the linear system
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for [h(0), h(L)] 2 R2 in (3.19): 2 � L!+ = 0. By approximating ḡ with a smoother
function in D(B�) we have shown (3.27). Following [64] using (3.24) we obtain that
there is indeed a positive eigenvalue � > 0 as claimed.

(3) Fix now !+ > 0. We now need to understand the dependence on L in esti-
mate (3.22). Let us calculate the embedding constant of H1

2,(0)(0, L) ,! C
0([0, L]).

Firstly,

h(t) = h(s) +

Z
t

s

@xh(⌧)d⌧, s, t 2 [0, L].

Integrating in s 2 [0, L] and using that h is mean value free on (0, L) gives

h(t) =
1

L

Z
L

0

Z
t

s

@xh(⌧)d⌧ds, s, t 2 [0, L].

Hence

sup
t2[0,L]

|h(t)| 

Z
L

0
|@xh(⌧)|d⌧.

Using Hölders inequality gives

sup
t2[0,L]

|h(t)|2  L

Z
L

0
|@xh(⌧)|

2
d⌧.

In particular, Z
L

0
|@xh|

2
dx� !+h(0)

2
� !+h(L)

2

�
1

L
|h|

2
C0([0,L]) � !+[h(0)

2 + h(L)2].

Again we see that if L = L(!+) > 0 is su�ciently small,
Z

L

0
|@xh|

2
dx� !+[h(0)

2 + h(L)2] � (
1

L
� 2!+)|h|

2
C0([0,L]) � 0.

Hence (3) follows.
(4) We fix !+ > 0. Following the lines of the proof of (2), we only need to justify

(3.24)2, where B� is defined as before. In particular, we need to show that there is
a function h̄ 2 D(B�) such that

|@xh̄|
2
L2(0,L) � !+[h̄(0)

2 + h̄(L)2] < 0,

where now !+ > 0 is fixed, if we only choose L > 0 large enough. Let us consider
the function ḡ defined in (3.28). Again for " > 0,

|@xḡ|
2
L2(0,L/2) � !+ḡ(0) = "!

2
+ +

(1� !+")2

L/2� "
� !+.

Since !+ > 0 is fixed, we may choose " > 0 so small, such that "!2
+  !+/2. Then

choosing L = L(!+) > 0 su�ciently large we obtain that |@xḡ|2L2(0,L/2)�!+ḡ(0) < 0.

We can then follow the lines of the proof of (2) to conclude (4). ⇤

Remark 3.9. For monotonicity considerations of the spectral properties we refer
to [25].
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3.3.3. Curved stationary solutions. In this section we consider stationary
solutions ⌃⇤ with constant curvature ⇤ = �1/R, for some R > 0. In particular, ⌃⇤

is part of a circle. We can therefore introduce a parametrization by arc length,

 : (0, l) ! ⌃⇤, � 7!  (�),

where l > 0 is the length of the curve and � the arc length parameter. Note that
l < 2⇡R = 2⇡/|⇤|. Note that this induces an extra restriction on ⇤ and l,

|⇤|l < 2⇡. (3.29)

Corresponding to (3.11) we now want to make a linear stability analysis for

@t⇢ = �Jn⌃⇤ ·rµK, on ⌃⇤,

µ|⌃⇤ = @�@�⇢+ 
2
⇤
⇢, on ⌃⇤,

�µ = 0, in ⌦\⌃⇤,

n@⌦ ·rµ|@⌦ = 0, on @⌦\@⌃⇤,

@�⇢(0) = �!1⇢(0),

@�⇢(l) = !2⇢(l),

⇢(0) = ⇢0, on ⌃⇤.

(3.30)

Note that by some abuse of notation we may identify � 2 (0, l) and  (�) 2 ⌃⇤, since
there is no danger of confusion.

Let us rewrite (3.30) again as an abstract evolution equation. Let 3/2 < q < 2,

X0 := W
1�1/q
q (0, l), and X1 := W

4�1/q
q (0, l). Define now a linear operator A :

D(A) ⇢ X1 ! X0 by means of A⇢ := BT0(@�@�⇢ + 
2
⇤
⇢), where Bu := Jn⌃⇤ ·ruK

and T0v is the unique solution of the two-phase elliptic problem (3.14).
The domain of A is thereby given by

D(A) := X1 \ {⇢ : @�⇢(0) = �!1⇢(0), @�⇢(l) = !2⇢(l)}. (3.31)

We can then rewrite (3.30) as the abstract evolutionary problem

⇢̇(t) +A⇢(t) = 0, t > 0, ⇢(0) = ⇢0. (3.32)

Let again p 2 (6,1), q 2 (19/10, 2) \ (2p/(p+ 1), 2), and X� := B
4�1/q�3/p
qp (0, l).

We start with a positive result on stability for (3.32) of the trivial solution
⇢⇤ = 0.

Theorem 3.10. Let l > 0 be fixed. Then there is some � = �(l) > 0, such

than whenever |⇤| 2 (0, �) and !1,!2 2 (�1, �), the trivial equilibrium ⇢⇤ = 0 is

normally stable, that is,

(1) A has maximal Lp-regularity.

(2) The set of equilibria of (3.32) is the kernel of A, which has finite dimension

m 2 N [ {0},m < 1.

(3) The eigenvalue zero is semi-simple, X0 = N(A)�R(A).
(4) The spectrum satisfies �(�A)\{0} ⇢ C� := {z 2 C : Re z < 0}.

In particular, ⇢⇤ = 0 is stable in X� and there is some �1 > 0, such that if |⇢0|X�  �1

the unique solution ⇢ to (3.32) with respect to the initial value ⇢0 exists globally in

time,

⇢ 2 W
1
p
(R+;X0) \ Lp(R+;D(A)),
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and converges to some equilibrium solution in X� at an exponential rate.

Proof. For any ⇤ constant we note that the term ⇤⇢ is a compact perturba-

tion of @�@�⇢ inW
2�1/q
q (0, l), whence A has maximal Lp-regularity by a perturbation

argument, cf. Section 2.5. Let us now characterize the kernel of A. Since the do-
main D(A) compactly embeds into X0, the resolvent of A is compact. The spectrum
then consists solely of isolated eigenvalues of finite multiplicity. In particular, the
kernel, if it is nontrivial, has finite dimension m < 1, cf. [19], [43], [44]. Pick some
⇢ 2 D(A) such that A⇢ = 0. Then the solution of the corresponding elliptic problem
is constant, hence @�@�⇢ + 

2
⇤
⇢ is constant. Hence the kernel of A is given by the

solutions ⇢ of

@�@�⇢+ 
2
⇤
⇢ = c, on (0, l),

@�⇢(0) = �!1⇢(0),

@�⇢(l) = !2⇢(l),

where c is any constant c 2 R. The next thing we show is that zero is semi-simple.
By Remark A.2.4 in [43] it su�ces to prove that N(A2) = N(A). To this end pick
some ⇢ 2 N(A2). Let ⇢1 := A⇢. Then A⇢1 = 0 and hence ⇢1 2 N(A) \R(A). Note

that then necessarily ⇢1 is mean value free,
R
l

0 ⇢1 = 0. This stems from integrating
⇢1 = A⇢ over ⌃⇤ and an integration by parts. Since ⇢1 also belongs to the kernel of
A,

@�@�⇢1 + 
2
⇤
⇢1 = c1, on (0, l),

@�⇢1(0) = �!1⇢1(0),

@�⇢1(l) = !2⇢1(l),

(3.33)

for some constant c1. Note that c1 is determined by ⇢1. Since ⇢1 is mean value free,
we can test (3.33)1 with ⇢1 to the result

Z
l

0
@�@�⇢1⇢1 + 

2
⇤

Z
l

0
⇢1⇢1 = c1

Z
l

0
⇢1 = 0.

An integration by parts then gives

�

Z
l

0
|@�⇢1|

2 + 
2
⇤

Z
l

0
|⇢1|

2 + !1⇢1(0)
2 + !2⇢1(l)

2 = 0.

Since ⇢1 is mean value free, we can use Poincaré-Wirtinger inequality to find some
constant c0 = c0(l) > 0, such that

�c0|⇢1|
2
H1 + 

2
⇤
|⇢1|

2
L2 + !1⇢1(0)

2 + !2⇢1(l)
2
� 0.

In particular, if 2
⇤
is su�ciently small and !1,!2 are negative or positive but small,

the second, third and fourth term may be absorbed by the first one and we obtain

�c̃0|⇢1|
2
H1 � 0,

for some c̃0 > 0. Hence ⇢1 = 0, which implies A⇢ = ⇢1 = 0 and ⇢ 2 N(A). This
shows zero is a semi-simple eigenvalue.
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Let us now consider the general eigenvalue problem �⇢ = �A⇢ for some ⇢ 2

D(A), which reads as

�⇢ = �Jn⌃⇤ ·rµK, on ⌃⇤,

µ|⌃⇤ = @�@�⇢+ 
2
⇤
⇢, on ⌃⇤,

�µ = 0, in ⌦\⌃⇤,

n@⌦ ·rµ|@⌦ = 0, on @⌦\@⌃⇤,

@�⇢(0) = �!1⇢(0),

@�⇢(l) = !2⇢(l).

(3.34)

Multiplying (3.34)1 with @�@�⇢̄+2⇤⇢̄ and invoking boundary and transmission con-
ditions gives

�
⇥
|@�⇢|

2
L2 � 

2
⇤
|⇢|

2
L2 � !1⇢(0)

2
� !2⇢(l)

2
⇤
+ |rµ|

2
L2 = 0. (3.35)

If � 6= 0, any eigenfunction ⇢ associated to some eigenvalue � is necessarily mean
value free, whence again Poincaré-Wirtinger inequality gives that

⇥
|@�⇢|

2
L2 � 

2
⇤
|⇢|

2
L2 � !1⇢(0)

2
� !2⇢(l)

2
⇤
� 0,

provided |⇤| 2 [0, �) and !1,!2 2 (�1, �) for � > 0 su�ciently small. Equation
(3.35) then gives that � is real and �  0. Hence (3) follows. The generalized
principle of linearized stability of Prüss, Simonett, and Zacher [58] then gives the
result. ⇤

Let us show instability results for the evolution equation (3.32).

Theorem 3.11. Let A,X0, X� , X1 be as above in (3.31).

(1) For fixed l > 0 and any small ⇤, there is some K = K(l,⇤) > 0 such

that if !1 = !2 � K, the trivial solution ⇢⇤ = 0 is unstable in X� .

(2) For fixed l > 0 and any !1 = !2 small, there is some K = K(l,!1) > 0
such that if 

2
⇤
� K, the trivial solution ⇢⇤ = 0 is unstable in X� .

(3) For any ⇤ and !1 = !2 small, there is some K = K(⇤,!1) > 0 such that

if l � K, the trivial solution ⇢⇤ = 0 is unstable in X� .

(4) In (2) and (3) the constant K is not too large to violate the geometric

condition between length and curvature of a circle (3.29), that means there

are (⇤, l) fulfilling (2) or (3) which at the same time fulfil |⇤|l < 2⇡.

In particular, in any of these cases, �(�A) \ [⇣ + iR] = ; and �(�A) \ {z 2 C :
Re z > ⇣} 6= ; for some ⇣ 2 R, ⇣ � 0.

Proof. By the compact embedding D(A) ,!,! X0 we know that A has a
compact resolvent. Hence the spectrum of A is isolated, consists only of eigenvalues
and each eigenvalue has finite multiplicity. Furthermore, any eigenvalue � is real
and satisfies

�
⇥
|@�⇢|

2
L2 � 

2
⇤
|⇢|

2
L2 � !1⇢(0)

2
� !2⇢(l)

2
⇤
+ |rµ|

2
L2 = 0,

cf. (3.35), where µ = T0(@�@�⇢+ 
2
⇤
⇢) and ⇢ is a corresponding eigenfunction to �.
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We now follow the lines of the proof of Theorem 3.7,(2). For � > 0 we can
rewrite the eigenvalue problem �⇢ = A⇢ as

�⇢�DMS(I � P0)S⇢ = 0, (3.36)

where DMS is as before the corresponding Dirichlet-to-Neumann operator with in-
verse NMS = [DMS ]�1, P0f the mean value of f , and S⇢ := @�@�⇢ + 

2
⇤
⇢ with

domain D(S) := D(A). We can then extend the operators in a natural way and
rewrite (3.36) as

�NMS⇢� (I � P0)S⇢ = 0.

Define B� := �NMS�(I�P0)S with natural domain D(B�) := H
2
2 (0, l)\{⇢ :

R
l

0 ⇢ =
0, @�⇢(0) = �!1⇢(0), @�⇢(l) = �!1⇢(l)}.

Let us show that there is some �0 > 0 such that B� is positive definite on L2,(0)

for all � � �0. Since NMS is positive definite on L2,(0), cf. Lemma 5.5, and ⇢ is
mean value free,

(B�⇢|⇢)2 = �(NMS⇢|⇢)2 � ((I � P0)(@�@�⇢+ 
2
⇤
⇢)|⇢)2

= �(NMS⇢|⇢)2 � (@�@�⇢+ 
2
⇤
⇢|⇢)2

� �d0|⇢|
2
2 + |@�⇢|

2
2 � !1⇢(0)

2
� !2⇢(l)

2
� 

2
⇤
|⇢|

2
2,

for some d0 > 0, for any ⇢ 2 D(B�). Lemma 3.8 then gives that for any !1,!2, and
⇤, the last three terms may be absorbed if � � �0 for some �0 = �0(!1,!2,⇤) > 0.
Hence B� is positive definite on L2,(0) for all � � �0.

It remains to construct a function ⇢̄ 2 D(B�), such that (B�⇢̄|⇢̄)2 < 0, if � > 0
is su�ciently small. Since �(NMS⇢|⇢)2 ! 0 as � ! 0, it is enough to find some
⇢̄ 2 D(B�) such that

|@�⇢̄|
2
2 � !1⇢̄(0)

2
� !2⇢̄(l)

2
� 

2
⇤
|⇢̄|

2
2 < 0. (3.37)

We now want to find such ⇢̄ in all three cases stated in the theorem. To this end
we start again with the prototype introduced in (3.28). Let "1 > 0 small. Define
ḡ : [0, l] ! R,� 7! ḡ(�) by means of

ḡ(�) :=

8
><

>:

1� !1�, � 2 [0, "1],

1� !1"1 � (1� !1"1)(� � "1)/(l/2� "1), � 2 ["1, l/2],

�ḡ(l � �), � 2 [l/2, l].

Note that ḡ(0) = 1, ḡ(l) = �1, ḡ fulfils the boundary conditions, is mean value
free, and piecewise smooth and continuous, hence in H

1
2 (0, l). We then explicitly

calculate

|@� ḡ|
2
L2(0,l/2)

� !1ḡ(0)
2
� 

2
⇤
|ḡ|

2
L2(0,l/2)

=

= "1!
2
1 +

(1� !1"1)2

l/2� "1
� !1 � 

2
⇤


"1

3
(3� 3!1"1 + !

2
1"1) +

1

6
(1� !1"1)

2(l � 2"1)

�
.

Note that by symmetry it su�ces to calculate the expressions on (0, l/2). We now
let formally "1 ! 0. The expression on the right hand side then converges to

2

l
� !1 � 

2
⇤

l

6
. (3.38)

We now distinguish the three cases in the theorem.
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(1) Here we fix l > 0 and ⇤. It is clear that there is some K > 0 such that
the expression in (3.38) gets strictly negative if !1 � K. It even holds that
2/l � !1 � 

2
⇤
l/6 ! �1 if !1 ! 1.

(2) Here we fix l > 0 and |!1| small. Note that in this case there is a geometric
condition, |⇤|l < 2⇡, so we can not choose |⇤| arbitrarily large. However,
taking the limit as |⇤| ! 2⇡/l of expression (3.38), we obtain

lim
|⇤|!2⇡/l


2

l
� !1 � 

2
⇤

l

6

�
=

2

l


1�

⇡
2

3

�
� !1 < 0,

provided |!1| is small enough.
(3) In this case we fix ⇤ and |!1| small. Again we have to fulfil the relation

|⇤|l < 2⇡. Taking limits l ! 2⇡/|⇤|,

lim
l!2⇡/|⇤|


2

l
� !1 � 

2
⇤

l

6

�
= |⇤|


1

⇡
�
⇡

3

�
� !1 < 0,

provided again |!1| is small.

This way we now obtain the following result in all three cases: By choosing "1 >

0 very small, we can construct ḡ as above such that the strict inequality (3.37)
holds true. Since ḡ is only H

1
2 and not H

2
2 we need to approximate ḡ by a more

regular function ⇢̄, which then belongs to the domain D(B�) and also fulfils the
strict inequality (3.37). This then shows that (B�⇢̄|⇢̄)2 < 0 for some ⇢̄ 2 D(B�) if
� > 0 is su�ciently small, whence B� is not positive definite for this small � > 0.
Following the proof of [64], we then obtain the existence of a positive eigenvalue.

The fact that then ⇢⇤ = 0 is unstable inX� follows from the generalized principle
of linearized stability, cf. [57]. ⇤

3.3.4. Summary on linearized stability and instability. In this section
we shall summarize the results on linearized stability and provide representative
figures.

⌃⇤⌃⇤⌃⇤

@⌦@⌦ @⌦

Figure 3. ⇤ = 0. Stability for all !1,!2  0 regardless of L > 0.

⌃⇤
@⌦ ⌃⇤

@⌦

Figure 4. ⇤ = 0 and fixed !1 = !2 > 0. Stability for small L > 0,
instability for large L > 0.
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⌃⇤
@⌦ ⌃⇤

@⌦

Figure 5. ⇤ = 0 and fixed L > 0. Stability for small !1 = !2 > 0,
instability for large !1 = !2.

⌃⇤

@⌦

⌃⇤

@⌦

Figure 6. Fixed l > 0 and small ⇤ 6= 0. Stability for !1,!2  0.

⌃⇤

@⌦

⌃⇤

@⌦

Figure 7. Fixed l > 0 and small ⇤ 6= 0. Stability for !1,!2 > 0
small. Instability for !1,!2 > 0 large.

⌃⇤

@⌦

⌃⇤

@⌦

Figure 8. Fixed l > 0 and !1,!2 = 0. Stability for 2
⇤
small.

Instability for 2
⇤
large.

⌃⇤

@⌦

⌃⇤

@⌦

Figure 9. Fixed ⇤ 6= 0 and !1,!2 = 0. Stability for l > 0 small.
Instability for l > 0 large.
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Remark 3.12. Proving nonlinear stability for general geometries even in two
space dimensions is an involved task. For a first result on nonlinear stability we refer
to Section 7 in the article together with Harald Garcke [27].



CHAPTER 4

The two-phase Navier-Stokes/Mullins-Sekerka

equations with ninety degree contact angle

4.1. Introduction

In this chapter we study the two-phase Navier-Stokes equations with surface
tension coupled to the Mullins-Sekerka problem inside a bounded domain in two or
three space dimensions. In our model, the interface separating the two fluids meets
the boundary of the domain at a constant ninety degree angle. Let us introduce the
precise model and its assumptions. We assume that the domain ⌦ ⇢ Rn, n = 2, 3,
can be decomposed as ⌦ = ⌦+(t)[̇�̊(t)[̇⌦�(t), where �̊(t) denotes the interior of
�(t), an (n�1)-dimensional submanifold with boundary. We interpret �(t) to be the
interface separating the two phases, ⌦+(t) and ⌦�(t), which both will be assumed
to be connected. The boundary of �(t) will be denoted by @�(t). Furthermore we
assume �(t) to be orientable, the unit normal vector field on �(t) pointing from
⌦�(t) into ⌦+(t) will be denoted by ⌫�(t).

Let us introduce some notation. Let V�(t) denote the normal velocity and H�(t)

the mean curvature of the free interface �(t). By J·K we denote the jump of a quantity
across �(t) in direction of ⌫�(t), that is,

JfK(x) := lim
"!0+

[f(x+ "⌫�(t))� f(x� "⌫�(t))], x 2 �(t).

Furthermore, a⌦b is defined by [a⌦b]ij := aibj for vectors a, b 2 Rn and A
> denotes

the transposed matrix of A.
We assume that ⌦ is filled by two immiscible, incompressible fluids with respec-

tive constant densities ⇢± > 0 in the two phases. Their respective constant viscosities
are denoted by µ

±
> 0 and � > 0 is a given surface tension constant. To economize

our notation, we let ⇢ := ⇢
+
�⌦+(t)+⇢

�
�⌦�(t) and µ := µ

+
�⌦+(t)+µ

�
�⌦�(t), where

�M is the indicator function of a set M . In our model, u is the velocity of the fluids,
p the pressure, ⌘ the chemical potential, and �(t) the free interface at time t � 0.

Let us consider the case where the domain is a cylindrical container ⌦ = ⌃ ⇥

(L1, L2), where �1 < L1 < 0 < L2 < 1, and ⌃ ⇢ R2 is bounded and has smooth
boundary. We denote the walls of the cylinder ⌦ by S1 := @⌃⇥(L1, L2), and bottom
and top by S2 := ⌃⇥ {L1, L2}. As usual, ⌫@⌦ denotes the unit normal vector field
pointing outwards of ⌦ and ⌫S1 = ⌫@⌦ on the walls S1. The projection is defined as
PS1 := I � ⌫S1 ⌦ ⌫S1 .

We naturally impose that �̊(t) ⇢ ⌦ and @�(t) ⇢ S1 for all t � 0, that is, the
interface stays inside the domain for positive times and the boundary of the interface
is contained in the boundary of the domain as well.

99
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In a cylindrical domain the full problem for two possibly di↵erent, constant
densities ⇢± > 0 and viscosities µ±

> 0 reads as

⇢@tu� µ�u+ div[(⇢u+ J⇢Kr⌘)⌦ u] +rp = 0, in ⌦\�(t),

div u = 0, in ⌦\�(t),

�Jµ(Du+Du
>)K⌫�(t) + JpK⌫�(t) = �H�(t)⌫�(t), on �(t),

JuK = 0, on �(t),

V�(t) � u|�(t) · ⌫�(t) = �J⌫�(t) ·r⌘K, on �(t),

⌫�(t) · ⌫S1 = 0, on @�(t),

�⌘ = 0, in ⌦\�(t),

⌘|�(t) = �H�(t), on �(t),

⌫@⌦ ·r⌘|@⌦ = 0, on @⌦\�(t),

PS1

�
µ(Du+Du

>)⌫S1

�
= 0, on S1\@�(t),

u · ⌫S1 = 0, on S1\@�(t),

u = 0, on S2,

u(0) = u0, on ⌦\�(0),

�(0) = �0.

(4.1)

Note that in (4.1), individual masses are conserved, i.e.,

d

dt
|⌦±(t)| = 0, t 2 R+,

where we used �⌘ = 0 and div u = 0 in the bulk phases ⌦\�(t) and the boundary
conditions for ⌘ and u.

In this model (4.1) which is itself derived as a sharp interface limit by Abels,
Garcke, and Grün in [2], the momentum balance (4.1)1 contains an extra term
involving the chemical potential ⌘ since the densities in the two phases are di↵erent.
This term however is needed to get an energy structure for the system, cf. Section
5 in [2]. It is shown there that the energy

E(t) :=

Z

�(t)
�dH

n�1 +
1

2

Z

⌦
⇢(t)u(t)2dx

satisfies the energy-dissipation relation

d

dt
E(t) = �D(t) := �

Z

⌦
µ|Du(t)|2dx�

Z

⌦
|r⌘(t)|2dx.

Hereby, Du is the symmetric part of the gradient Du.
There is a remark in order regarding this extra term in (4.1)1. Since div u = 0

and �⌘ = 0 in the bulk phases ⌦\�(t), we obtain

div[(⇢u+ (⇢+ � ⇢
�)r⌘)⌦ u] = ⇢(u ·r)u+ (⇢+ � ⇢

�)(r⌘ ·r)u, in ⌦\�(t).
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In the case of equivalent densities, say for simplicity ⇢ = 1, the extra term div[(⇢+�

⇢
�)rµ⌦ u] vanishes and the system reduces to

@tu� µ
±�u+ (u ·r)u+rp = 0, in ⌦\�(t),

�⌘ = 0, div u = 0, in ⌦\�(t),

�Jµ±(Du+Du
>)K⌫�(t) + JpK⌫�(t) = �H�(t)⌫�(t), on �(t),

V�(t) � u|�(t) · ⌫�(t) = �J⌫�(t) ·r⌘K, on �(t),

⌫�(t) · ⌫S1 = 0, on @�(t),

JuK = 0, ⌘|�(t) = �H�(t), on �(t),

⌫@⌦ ·r⌘|@⌦ = 0, on @⌦\�(t),

PS1

�
µ
±(Du+Du

>)⌫S1

�
= 0, on S1\@�(t),

u · ⌫S1 = 0, on S1\@�(t),

u = 0, on S2,

u(0) = u0, �(0) = �0.

Let us comment on the boundary conditions for u. To be able to use the reflec-
tion techniques of [64] we can not pose Dirichlet boundary conditions on the walls
S1. The next natural step is then to pose Navier boundary conditions. In a cylin-
drical container though, we need to resolve compatibility conditions on the ninety
degree edges between the walls and the bottom/top part of the container, cf. [64].

However, if the domain ⌦ ⇢ Rn, n = 2, 3, is bounded and has smooth boundary,
we can also show local well-posedness for a system involving full Navier boundary
conditions with positive friction coe�cient. To prove this statement, we again start
a localization procedure, this time even involving only the model problem with the
contact line. Since there is no Dirichlet boundary anymore, we do not need the
respective compatibility conditions. By performing a perturbation argument, we
can include full Navier boundary conditions. However, since the reference surface
might be curved, we need to introduce curvilinear coordinates in a neighbourhood
of ⌃ and consider a more complicated transformed mean curvature operator, cf.
Section 2.4, see also [63], [3], [4], [22].

This way, we can also deal with the problem

⇢@tu� µ�u+ div[(⇢u+ J⇢Kr⌘)⌦ u] +rp = 0, in ⌦\�(t),

�⌘ = 0, div u = 0, in ⌦\�(t),

�Jµ(Du+Du
>)K⌫�(t) + JpK⌫�(t) = �H�(t)⌫�(t), on �(t),

V�(t) � u|�(t) · ⌫�(t) = �J⌫�(t) ·r⌘K, on �(t),

⌫�(t) · ⌫S1 = 0, on @�(t),

JuK = 0, ⌘|�(t) = �H�(t), on �(t),

⌫@⌦ ·r⌘|@⌦ = 0, on @⌦\�(t),

PS1(µ(Du+Du
>)⌫S1) + ↵u = 0, on @⌦\@�(t),

u · ⌫@⌦ = 0, on @⌦\@�(t),

u(0) = u0, �(0) = �0,
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where ↵ > 0 is a constant friction coe�cient. For a further discussion on boundary
conditions, we also refer to the introduction of [38].

Let us give an overview of this chapter. We rewrite the free boundary problem of
the moving interface as a nonlinear problem for the height function parametrizing the
interface. We then deal with the analysis of the underlying linear problem, proving
maximal regularity in an Lp � Lq scale for the height function and an Lr scale
for the velocity. A fixed point argument then renders that the nonlinear problem
is also well-posed. The last part finally deals with qualitative behaviour, stability
properties, and convergence to equilibrium solutions.

4.2. Reduction to a flat interface

In this section we transform the equations defined on the time-dependent domain
⌦\�(t) and the moving interface �(t) to a fixed reference frame. We follow the ideas
of [64]. Note that in this cylindrical geometry the transformation also takes a simpler
form compared to a general domain, cf. Section 2.4. To simplify notation let n = 3,
the modifications for n = 2 are obvious.

We now assume that the interface at time t is given as a graph over the fixed
flat reference surface ⌃ := ⌦ \ {x3 = 0}. More precisely, we assume that there is a
height function h : ⌃⇥ [0,1) ! (L1, L2), such that

�(t) = �h(t) := {x 2 ⌃⇥ (L1, L2) : x3 = h(x0
, t), x0 = (x1, x2) 2 ⌃}, t � 0.

We will now construct a Hanzawa-type transformation, which is an isomorphism on
⌦ and maps the moving interface �(t) to the reference surface ⌃ for every t � 0. To
this end pick some smooth bump function � 2 C

1

0 (R; [0, 1]) such that �(s) = 1 for
|s|  �/2 and �(s) = 0 for |s| � �, where �  min{�L1, L2}/3. It is easy to check
that such a function � does exist. Define now a mapping

⇥h : ⌦⇥ R+ ! ⌦, ⇥h(x, t) := x+ �(x3)h(x
0
, t)e3 =: x+ ✓h(x, t),

where x = (x0
, x3). Then

D⇥h =

0

@
1 0 0
0 1 0

@1h� @2h� 1 + h�
0

1

A .

It clearly follows that D⇥h is a regular matrix and hence ⇥h is invertible, if h�0 is
su�ciently small. For instance, this is the case whenever

|h|L1(L1) 
1

2|�0|L1(R)
.

Note that |�
0
|1 can be bounded by a constant depending on � only. Then, given

invertibility, one easily computes the inverse to the result

(D⇥h)
�1 =

1

1 + h�0

0

@
1 + h�

0 0 0
0 1 + h�

0 0
�@1h� �@2h� 1

1

A .

For the sequel we fix the bump function � and choose 0 < d0 < 1/(2|�0
|1) su�ciently

small and assume that |h|1,1  d0. This way we ensure that the inverse ⇥�1
h

: ⌦ !

⌦ is well defined and maps the free interface �(t) to the fixed reference surface ⌃.
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We will now calculate how the equations behave under this transformation.
Define the transformed quantities

w(x, t) := u(⇥h(x, t), t), q(x, t) := p(⇥h(x, t), t), #(x, t) := ⌘(⇥h(x, t), t), (4.2)

for x 2 ⌦, t 2 R+. We now determine the equations which (w, q,#) solve. Define
D⇥�>

h
:= ((D⇥h)�1)>, as well as the transformed quantities

rh := D⇥�>

h
r, rhu := (rhu

>

k
)3
k=1, divh := Tr(rh), �h := divh rh.

With this it is straightforward to check that

ru(⇥h(x, t), t) = rhw(x, t), [(u ·r)u](⇥h(x, t), t) = [(w ·rh)w](x, t),

�u(⇥(x, t), t) = �hw(x, t), div u(⇥(x, t), t) = divh w(x, t), x 2 ⌦, t 2 R+.

(4.3)
Furthermore,

@tu(⇥h(x, t), t) = @tw(x, t) +Dw(x, t)@t⇥
�1
h

(⇥h(x, t), t), x 2 ⌦, t 2 R+.

The upper unit normal at the free interface �(t) and the normal velocity of which
can both be expressed in terms of h by

⌫�(t) =
(�rh, 1)>p
1 + |rh|2

, V�(t) =
@thp

1 + |rh|2
, x

0
2 ⌃, t 2 R+. (4.4)

We are now able to transform the two-phase Navier-Stokes/Mullins-Sekerka system
(4.1) to the fixed reference frame, the transformed system reads as

⇢
±
@tw � µ

±�w +rq = a
±(h;Dx, D

2
x
)(w, q) + ā(h,w,#), in ⌦\⌃,

divw = Gd(h,w), in ⌦\⌃,

�Jµ±(Dw +Dw
>)� qIK⌫⌃ = ��x0h⌫⌃ +GS(h,w, q), on ⌃,

JwK = 0, on ⌃,

@th = w · ⌫⌃ � J@3#K +G⌃(h,w,#), on ⌃,

(�rx0h, 1)> · ⌫S1 = 0, on @⌃,

�# = Gc(h,#), in ⌦\⌃,

#|⌃ � ��x0h = G(h), on ⌃,

⌫@⌦ ·r#|@⌦ = GN (h,#), on @⌦\⌃,

PS1

�
µ
±(Dw +Dw

>)⌫S1

�
= G

±

P
(h,w), on S1\@⌃,

w · ⌫S1 = 0, on S1\@⌃,

w = 0, on S2,

w(0) = w0, on ⌦\⌃,

h(0) = h0, on ⌃,

(4.5)
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where ⌫⌃ = e3, and

a
±(h;Dx, D

2
x
)(w, q) := µ

±(�h ��)w + (r�rh)q,

ā(h,w,#) := Dw · @t⇥
�1
h

� (w ·rh)w � (⇢+ � ⇢
�)(rh# ·rh)w+

+ div((J⇢K(rh �r)#)⌦ u),

Gd(h,w) := (div� divh)w,

GS(h,w, q) := Jµ±
�
(D⇥h � I)Dw +Dw

>(D⇥h � I)>)
�
K⌫�h+

+ J
�
µ
±(Dw +Dw

>)� qI
�
(e3 � ⌫�h)K + �(K(h)⌫�h ��x0he3),

G⌃(h,w,#) := w · (�rx0h, 0)> � Je3 · (rh �r)#K � J(�rx0h, 0)> ·rh#K,
Gc(h,#) := (���h)#,

G(h) := �(K(h)��x0h),

GN (h,#) := ⌫@⌦ · (r�rh)#,

G
±

P
(h,w) := PS1

�
µ
±
�
(D⇥h � I)Dw +Dw

>(D⇥h � I)>)
�
⌫S1

�
.

Here, cf. [22],

K(h) = H(�h) = div

 
rhp

1 + |rh|2

!
, x 2 ⌃, t 2 R+.

Let us briefly explain how we transformed the equations. For instance, pick the
evolution equation (4.1)5 for the free interface, V�(t) = u|�(t) · ⌫�(t) � J⌫�(t) ·rµK on
�(t). By employing (4.3) and (4.4), this reads as

@thp
1 + |rx0h|2

= w ·
(�rx0h, 1)>p
1 + |rx0h|2

�
J(�rx0h, 1)> ·rh⌘Kp

1 + |rx0h|2
, x

0
2 ⌃, t 2 R+,

where w is as in (4.2). Hence we obtain

@th = w · (�rx0h, 1)> � J(�rx0h, 1)> ·rh⌘K, x
0
2 ⌃, t 2 R+,

or equivalently,

@th� w · e3 + J@3⌘K =
= w · (�rx0h, 0)> � Je3 · (rh �r)⌘K � J(�rx0h, 0)> ·rh⌘K, x

0
2 ⌃, t 2 R+.

Furthermore, we want to point out that we used the fact that in the deduction of
(4.5) the normal ⌫S1 is independent of x3 and that the transformation ⇥h leaves the
Dirichlet-boundary S2 invariant.

Since ⌫⌃ = e3, one can also easily decompose the stress tensor condition (4.5)3
into tangential and horizontal parts, cf. [64]. Then, (4.5)3 reads as

�Jµ±
@3(w1, w2)K � Jµ±

rx0w3K = (GS(h,w, q))1,2, on ⌃,

�2Jµ±
@3w3K + JqK � ��x0h = (GS(h,w, q))3, on ⌃.

To economize notation, let G
k

S
(h,w, q) := (GS(h,w, q))1,2 and G

?

S
(h,w, q) :=

(GS(h,w, q))3.
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4.3. Maximal regularity for the linear problem

The main goal of this section is to derive a maximal regularity result for the
linearized problem.

4.3.1. Linearization, regularity and compatibility conditions. In this
section we consider the linear part of the two-phase Navier-Stokes/Mullins-Sekerka
system, which reads as

⇢
±
@tu� µ

±�u+r⇡ = g1, in ⌦\⌃,

div u = g2, in ⌦\⌃,

�Jµ±
@3(u1, u2)K � Jµ±

rx0u3K = g3, on ⌃,

�2Jµ±
@3u3K + J⇡K � ��x0h = g4, on ⌃,

JuK = g5, on ⌃,

@th� (u+
3 + u

�

3 )/2 + J@3⌘K = g6, on ⌃,

(�rx0h, 0)> · ⌫S1 = g7, on @⌃,

�⌘ = g8, in ⌦\⌃,

⌘|⌃ � ��x0h = g9, on ⌃,

⌫@⌦ ·r⌘|@⌦ = g10, on @⌦\⌃,

PS1

�
µ
±(Du+Du

>)⌫S1

�
= PS1g11, on S1\@⌃,

u · ⌫S1 = g12, on S1\@⌃,

u = g13, on S2,

u(0) = u0, on ⌦\⌃,

h(0) = h0, on ⌃.

(4.6)

Here we take (u+
3 + u

�

3 )/2 instead of the trace of u in equation (4.6)6, since u is
allowed to have a jump across ⌃. Hereby u

±

3 denote the directional traces of u3 with
respect to {x3 ? 0}.

4.3.2. Regularity of the solution. The question of function spaces is now
a very delicate matter. The main idea already used by Abels and Wilke in the
case of no boundary contact [4] is to treat the Navier-Stokes part of the evolution
as lower order compared to the Mullins-Sekerka part. They consider some height
function h as given and solve the two-phase Navier-Stokes equations in dependence
of h by a function u = u(h). Afterwards plugging in the solution u(h) into the
evolution equation for h they obtain a problem only dependent on h. If now u is
su�ciently more regular as the other terms in the evolution equation for @th, the
Navier-Stokes equations can be seen as a lower order perturbation of Mullins-Sekerka
in the coupled problem. By choosing the time interval su�ciently small one gets
well-posedness for the coupled system, stemming from the unique solvability of the
pure Mullins-Sekerka evolution of h.

Let us begin by recalling the maximal regularity class for h of the pure Mullins-
Sekerka system with boundary contact, cf. Section 2.5. For p 2 (6,1) and q 2
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(5/3, 2) \ (2p/(p+ 1), 2), T > 0, we obtained a unique local in time strong solution

h 2 W
1
p
(0, T ;W 1�1/q

q
(⌃)) \ Lp(0, T ;W

4�1/q
q

(⌃)),

and ⌘ 2 Lp(0, T ;W 2
q
(⌦\⌃)), of the linearized Mullins-Sekerka with boundary con-

tact, cf. Section 2.5.
We now need to make sure of two things: to be later able to treat the Navier-

Stokes part as lower order perturbation, we have to have that u|⌃ has better time
regularity and at least as much space regularity as the other terms in (4.6)6, namely

Lp(0, T ;W
1�1/q
q

(⌃)).

On the other hand, the linearized curvature term �x0h has to be at least admissible
data in the Stokes-part, that is, �x0h has to be at least of the same regularity as
Du|⌃, cf. (4.6)4. By choosing a setting where u is too regular, �x0h fails to be
admissible data, and by choosing u not regular enough, u|⌃ may not be treated as
a lower order perturbation. In the following lines we want to explain a setting of
function spaces, in which the coupling is of lower order and u is still regular enough
to control the nonlinear terms.

One possible choice would be an Lp �Lp-ansatz, where p as above is large. The
vector field u would then be very regular, hence making the nonlinearities easy to
handle since in particular p > 5. In this ansatz we search for

u 2 W
1
p
(0, T ;Lp(⌦)) \ Lp(0, T ;W

2
p
(⌦\⌃)),

whence by classical theory, u 2 BUC([0, T ];W 2�2/p
p (⌦\⌃)). Taking traces yields

u|⌃ 2 BUC([0, T ];W 2�3/p
p (⌃)). Clearly this is more regularity and hence it can be

seen as a lower order perturbation in Lp(0, T ;W
1�1/q
q (⌃)). However,

�x0h 2 W
2/3�1/(3q)
p

(0, T ;Lq(⌃)) \ Lp(0, T ;W
2�1/q
q

(⌃)),

on the other hand,

Du|⌃ 2 W
1/2�1/(2p)
p

(0, T ;Lp(⌃)) \ Lp(0;T ;W
1�1/p
p

(⌃)).

It is now a consequence of Sobolev-type embedding theorems to see that W 2�1/q
q (⌃)

does not embed into W
1�1/p
p (⌃) in general, due to 5/3 < q < 2 and p > 6. Hence

this Lp � Lp ansatz with large p does not work.
Alternatively, one can make an Lq � Lq ansatz, searching for some

u 2 W
1
q
(0, T ;Lq(⌦)) \ Lq(0, T ;W

2
q
(⌦\⌃)),

where 5/3 < q < 2. Clearly, the function u possesses way less regularity in this
ansatz. It is then easy to check that �x0h is admissible data by comparing the
regularity classes of �x0h and Du|⌃. Also,

u|⌃ 2 L2q/(2�q)(0, T ;W
1�1/q
q

(⌃)).

Note that as q ! 2, the time integral exponent 2q/(2� q) tends to +1. Hence the
Stokes part may be treated as lower order whenever q < 2 is close to 2. However
we want to point out that handling the nonlinearities may be more di�cult since
certain Sobolev embeddings fail since q < 2.
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By choosing an Lp � Lq approach one may get better regularity for u, however
if one takes any trace of u on the boundary, for instance in the simplest case of the
Dirichlet conditions on top and bottom of the container, one ends up with Triebel-
Lizorkin spaces for the time regularity. It is well known that the optimal regularity
for the trace of a function

u 2 W
1
p
(0, T ;Lq(⌦)) \ Lp(0, T ;W

2
q
(⌦\⌃))

on the boundary, e.g. on S2, is

u|S2 2 F
1�1/(2q)
pq

(0, T ;Lq(S2)) \ Lp(0, T ;W
2�1/q
q

(S2)).

It is particularly hard to treat this problem in a mixed Lp�Lq setting, since even in
the model problems it is not clear how to generalize for instance the results of Prüss
and Simonett in [56] regarding the Dirichlet-to-Neumann operator. This operator
is well understood in an Lp �Lp setting, however the proof of Proposition 3.3 given
in [56] is not easily generalizable to a mixed setting where p 6= q, since it heavily
relies on real interpolation method and Triebel-Lizorkin spaces do not naturally
appear as real interpolation spaces in general.

These approaches above motivate our introduction of a third integration scale.
We will show that for given q < 2 su�ciently close to 2 and 6 < p < 1 finite but
large, there is some exponent 3 < r = r(p, q) < 7/2 < 1 such that the following
is true: �x0h is admissible data in the Stokes part, and u|⌃ is lower order in the
evolution equation for h. This Lr�Lr approach with r > 3 circumvents the problem
of Triebel-Lizorkin data spaces in the Stokes part completely and hence makes the
problem a lot easier to tackle. Also it allows to make use of known results of Prüss
and Simonett in [56] and makes the nonlinearities easier to handle in the contraction
estimates. We will give the precise choice of r below in Theorem 4.1 and prove the
above assertions rigorously.

Theorem 4.1. Let n = 3, that is, dim⌃ = n � 1 = 2. Let 5/3 < q < 2 and

6 < p < 1. Furthermore, let 0 < T  T0 for some fixed T0 < 1. Let

2  r <
7

6/q � 1
.

Then, for any h 2 W
1
p
(0, T ;W 1�1/q

q (⌃)) \ Lp(0, T ;W
4�1/q
q (⌃)), we have that

�x0h 2 W
1/2�1/(2r)
r

(0, T ;Lr(⌃)) \ Lr(0;T ;W
1�1/r
r

(⌃)).

Furthermore, there is some C = C(T ) > 0, such that

|�x0h|
W

1/2�1/(2r)
r (0,T ;Lr(⌃))\Lr(0;T ;W 1�1/r

r (⌃))

 C(T )|h|
W 1

p (0,T ;W 1�1/q
q (⌃))\Lp(0,T ;W 4�1/q

q (⌃))
.

(4.7)

Furthermore, if 9/5 < q < 2, we can choose r to satisfy 3 < r < 7/2. If 3 < r < 7/2,
we have

W
1
r
(0, T ;Lr(⌦)) \ Lr(0, T ;W

2
r
(⌦\⌃)) ,!

,! L1(0, T ;L1(⌦)) \ L1(0, T ;W 1
r
(⌦\⌃)) \ Lr(0, T ;W

1
1
(⌦\⌃)).

(4.8)

Moreover,

tr±⌃ : W 1
r
(0, T ;Lr(⌦

±)) \ Lr(0, T ;W
2
r
(⌦±)) ! L1(0, T ;W 1�1/q

q
(⌃)),
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is bounded. By restricting to height functions h with initial time trace zero, h(t =
0) = 0, the embedding constant in (4.7) can be chosen to be independent of T and

only depending on T0. In particular, the embedding does not degenerate and the

embedding constant stays bounded as T ! 0.
Restricting to vanishing traces at t = 0 in (4.8), the embedding constant is also

independent of T 2 (0, T0].
Moreover, we can choose r to satisfy 3 < r < 7/2 and additionally, for this r,

every

u 2 W
1
r
(0, T ;Lr(⌦)) \ Lr(0, T ;W

2
r
(⌦\⌃))

has a gradient Du 2 Lr̃(0, T ;L1(⌦)) for some r̃ > r. The mapping [u 7! Du]
is bounded between these spaces. Restricted to functions u with vanishing trace at

t = 0, the operator norm is independent of T 2 (0, T0].

Proof. Let 2  r  p and 0 < T  T0. Note that due to p � r, we have that
Lp(0, T ;Z) ,! Lr(0, T ;Z) for a Banach space Z. The embedding constant here only
depends on T0, which stems from Hölder’s inequality,

|f |Lr(0,T ;Z)  T
(p�r)/(pr)

|f |Lp(0,T ;Z)  T
(p�r)/(pr)
0 |f |Lp(0,T ;Z), f 2 Lp(0, T ;Z).

Due to Sobolev’s embedding theorem, cf. [1], [62], W 2�1/q
q (⌃) ,! W

1�1/r
r (⌃), for

2� 3/q > 1� 3/r. This gives an upper restriction on r,

r <
3q

3� q
. (4.9)

Summing up, Lp(0, T ;W
2�1/q
q (⌃)) ,! Lr(0, T ;W

1�1/r
r (⌃)), provided r  p and (4.9)

holds.
Since we want to use the results of [35] on the half line, we now consider some

h 2 W
1
p
(R+;W

1�1/q
q

(⌃)) \ Lp(R+;W
4�1/q
q

(⌃)).

Firstly, using Proposition 5.37 in [35] on the half line,

h 2 H
✓

p
(R+;W

1�1/q+3(1�✓)
q

(⌃)),

whenever ✓ 2 (0, 1). It follows that

�x0h 2 H
✓

p
(R+;W

2�1/q�3✓
q

(⌃)), ✓ 2 (0, 1).

Let ✏ > 0 small. By choosing ✓ := 2/3� 1/q + 2/(3r)� ✏ 2 (0, 1), we obtain

�x0h 2 H
2/3�1/q+2/(3r)�✏

p
(R+;W

2/q�2/r+3✏
q

(⌃)).

By Sobolev embeddings for Besov spaces,

�x0h 2 H
2/3�1/q+2/(3r)�✏

p
(0, T ;Lr(⌃)),

for any small ✏ > 0.
Assume for a moment that

2/3� 1/q + 2/(3r) > 1/2� 1/(2r). (4.10)

Then we may choose ✏ > 0 so small, such that

2/3� 1/q + 2/(3r)� ✏ > 1/2� 1/(2r).
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Then �x0h 2 W
1/2�1/(2r)
p (0, T ;Lr(⌃)) ,! W

1/2�1/(2r)
r (0, T ;Lr(⌃)). Inequality

(4.10) however is equivalent to r < 7/(6/q � 1) since q < 2. Estimate (4.7) is a
direct consequence of these considerations. Furthermore, whenever h has vanishing
trace at t = 0, a standard extension argument allows to see that the estimate does
not degenerate as T ! 0, that is, C(T ) stays bounded as T ! 0 since it only depends
on T0.

Note that 7/(6/q � 1) ! 7/2 as q ! 2. In particular, choosing q > 9/5 gives
7/(6/q � 1) > 3, hence we can choose r > 3. Now let u 2 W

1
r
(0, T ;Lr(⌦)) \

Lr(0, T ;W 2
r
(⌦\⌃)) for r > 3. We may use the embedding

W
1
r
(0, T ;Lr(⌦)) \ Lr(0, T ;W

2
r
(⌦\⌃)) ,! BUC([0, T ];W 2�2/r

r
(⌦\⌃)),

cf. [6], to see that Du 2 BUC([0, T ];W 1�2/r
r (⌦\⌃)), which then in turn yields

Du 2 L1(0, T ;Lr(⌦)). It also follows that Du 2 Lr(0, T ;L1(⌦)). Regarding the
trace operator, we note that

BUC([0, T ];W 2�2/r
r

(⌦\⌃)) ,! L1(0, T ;W 1
q
(⌦\⌃)),

whenever r � 5q/(q + 3), which is surely satisfied since r > 3 and q < 2. Let
again u 2 W

1
r
(0, T ;Lr(⌦)) \ Lr(0, T ;W 2

r
(⌦\⌃)) for 3 < r < 7/2. Then by standard

interpolation,

Du 2 Lr̃(0, T ;L1(⌦)), for all 1 < r̃ <
1

1
r
�
�
1
2 �

3
2r

� . (4.11)

If now q > 99/50, we obtain 7/(6/q � 1) > 17/5, hence we can in particular choose
r = 17/5. By (4.11) we now see that r̃ = 4 is possible. Hence we have proven that,
provided q > 99/50, we can choose r = 17/5 and Du 2 L4(0, T ;L1(⌦)). ⇤

Remark 4.2. (1) We can choose from now on p 2 (6,1), q 2 (99/50, 2)\
(2p/(p+1), 2), and r = 17/5. In particular, the set of admissible indices is
not empty.

(2) Let us explain the relations between p, q, and r a bit further. Note that
for given q 2 (5/3, 2), we basically obtained the upper restriction r <

min(3q/(3 � q); 7/(6/q � 1)). If we let now q ! 2, we see that formally
this reduces to r < min(6; 7/2) = 7/2. If we now take the limit as r ! 7/2
in the constraint of (4.11), we obtain again formally the bound r̃ < 14/3.
Again, the main idea of the proof of the last part is to choose q < 2 close
enough to 2 such that these arguments are valid. We want to point out
however that our proof gives exponents (p, q, r) with restrictions which do
not depend on each other.

This motivates to choose the following setting for the solutions to the two-phase
Navier-Stokes/Mullins-Sekerka system and its principal linearization (4.6).

Let T 2 (0,1) and p 2 (6,1), q 2 (99/50, 2) \ (2p/(p+ 1), 2), and r = 17/5 as
in Theorem 4.1. From now on, we will fix the integration scales p, q, and r. We are
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looking for solutions (u,⇡, h, µ) of (4.6) with

u 2 W
1
r
(0, T ;Lr(⌦)) \ Lr(0, T ;W

2
r
(⌦\⌃)), ⇡ 2 Lr(0, T ; Ḣ

1
r
(⌦)),

J⇡K 2 W
1/2�1/(2r)
r

(0, T ;Lr(⌃)) \ Lr(0, T ;W
1�1/r
r

(⌃)),

h 2 W
1
p
(0, T ;W 1�1/q

q
(⌃)) \ Lp(0, T ;W

4�1/q
q

(⌃)), µ 2 Lp(0, T ;W
2
q
(⌦\⌃)).

(4.12)

4.3.3. Regularity of the data. To be able to derive a maximal regularity
result, we will now deduce optimal regularity classes for the data in problem (4.6).
Given a solution (u,⇡, J⇡K, h, µ) in the classes of (4.12), we derive by standard trace
theory the following necessary conditions for the data,

g1 2 Lr(0, T ;Lr(⌦)),

g2 2 Lr(0, T ;W
1
r
(⌦\⌃)),

g3 2 W
1/2�1/(2r)
r

(0, T ;Lr(⌃)) \ Lr(0;T ;W
1�1/r
r

(⌃)),

g4 2 W
1/2�1/(2r)
r

(0, T ;Lr(⌃)) \ Lr(0;T ;W
1�1/r
r

(⌃)),

g5 2 W
1�1/(2r)
r

(0, T ;Lr(⌃)) \ Lr(0, T ;W
2�1/r
r

(⌃)),

g6 2 Lp(0, T ;W
1�1/q
q

(⌃)),

g7 2 F
1�2/(3q)
pq

(0, T ;Lq(@⌃)) \ Lp(0, T ;W
3�2/q
q

(@⌃)),

g8 2 Lp(0, T ;Lq(⌦)),

g9 2 Lp(0, T ;W
2�1/q
q

(⌃)),

g10 2 Lp(0, T ;W
1�1/q
q

(@⌦)),

PS1g11 2 W
1/2�1/(2r)
r

(0, T ;Lr(S1)) \ Lr(0;T ;W
1�1/r
r

(S1)),

g12 2 W
1�1/(2r)
r

(0, T ;Lr(S1)) \ Lr(0, T ;W
2�1/r
r

(S1)),

g13 2 W
1�1/(2r)
r

(0, T ;Lr(S2)) \ Lr(0, T ;W
2�1/r
r

(S2)),

u0 2 W
2�2/r
r

(⌦\⌃),

h0 2 B
4�3/p�1/q
qp

(⌃).

(4.13)

For the regularity of g7 we refer to Section 2.2. At this point we note that in (4.13)
the function g2 does not have to have the time regularity of Du in ⌦\⌃. This is
due to the fact that there is some compatibility condition hidden in the system
stemming from the divergence equation, which inherits a certain time regularity for
(g2, g5, g12, g13). This will be discussed in the next section regarding compatibility
conditions. However we clearly want to point out that g2 being Lr(0, T ;W 1

r
(⌦\⌃))

alone is a necessary but not a su�cient condition.

4.3.4. Compatibility conditions. We now shall discuss all the compatibil-
ity conditions for the data ((gj)13j=1, u0, h0) of system (4.6). In Lemma 4.3 below
we rigorously show these conditions all occur and are well-defined. The following
observations have already been made in Section 2.4 and [64].
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At the starting point of the evolution at time t = 0 we have to have that

div u0 = g2|t=0, �Jµ±
@3(u0)1,2K � Jµ±

rx0(u0)3K = g3|t=0,

Ju0K = g5|t=0, u0 · ⌫S1 = g12|t=0, u0|S2 = g13|t=0,

(�rx0h0, 1)
>
· ⌫S1 = g7|t=0, PS1(µ

±(Du0 +Du
>

0 )⌫S1) = PS1g11|t=0.

(4.14)

These conditions follow by evaluating the respective equations at time zero. Here,
(u0)1,2 denotes the vector in R2 with the first two entries of u0, similarly (u0)3
denotes the last component of u0.

Since @⌃ ⇢ S1 6= ; and bottom, top and walls of the container have a common
boundary, @S1 \ @S2 6= ;, there are additional compatibility conditions. Simply by
comparing equations we get

Jg12K = g5 · ⌫S1 , on @⌃,

J(g11 · e3)/µ±
� @3g12K = @⌫S1

(g5 · e3), on @⌃,

P@⌃[(Dx0⇧g5 + (Dx0⇧g5)
>)⌫@⌃] = JP@⌃⇧g11/µ

±K, on @⌃,

g3 · (⌫S1)1,2 = �Jg11 · e3K, on @⌃,

g13 · ⌫S1 = g12, on @S2,

P@⌃[µ
±(Dx0⇧g13 + (Dx0⇧g13)

>)⌫@⌃] = P@⌃⇧g11, on @S2,

µ
±
@⌫S1

(g13 · e3) + µ
±
@3g12 = g11 · e3, on @S2.

(4.15)

Here, ⇧v := (v1, v2) 2 R2 for v = (v1, v2, v3) 2 R3 and ⌫@⌃ := ⇧⌫S1 . The projection
then is given by P@⌃ := I � ⌫@⌃ ⌦ ⌫@⌃. For further discussion we refer to [64].

We want to point out that there is no additional compatibility condition for @tg7
on @⌃ as there is in [64], since g7 does not have a well defined time derivative on
@⌃ in our regularity class. This is due to the fact that we have a di↵erent maximal
regularity class for h as in [64].

Finally we turn to the divergence equation and want to point out that there
is another compatibility and regularity condition hidden in the system, which has
already been investigated in [64]. For completeness we explain it here briefly.

Consider the divergence equation div u = g2 and multiply this equation with
a testfunction ' 2 W

1
r0(⌦), where r

0 = r/(r � 1) is the conjugate exponent. An
integration by parts on the two Lipschitz domains ⌦ \ {x3 ? 0} and using the
equations entails that

Z

⌦\⌃
g2'dx�

Z

S1

g12'|S1dS1 �

Z

S2

(g13 · ⌫S2)'|S2dS2

+

Z

⌃
(g5 · ⌫⌃)'|⌃d⌃ = �

Z

⌦\⌃
u ·r'dx,

(4.16)

see also Proposition A.14 in [64]. Hence the functional ' 7! h(g2, g5, g12, g13),'i de-
fined by the left hand side of (4.16) is continuous on W

1
r0(⌦) with respect to the semi-

norm |r · |Lr0 (⌦). Since C
1

0 (⌦) ✓ W
1
r0(⌦) is dense in the homogeneous space Ḣ1

r0(⌦)
with respect to this seminorm, it follows that ' 7! h(g2, g5, g12, g13),'i defines a
functional on Ḣ

1
r0(⌦). In other words, (g2, g5, g12, g13) 2 Ĥ

�1
r

(⌦) := (Ḣ1
r0(⌦))

0
. The
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norm of (g2, g5, g12, g13) in Ĥ
�1
r

(⌦) is then given by

|(g2, g5, g12, g13)|Ĥ�1
r (⌦) := sup{h(g2, g5, g12, g13),'i/|r'|Lr0 (⌦) : ' 2 W

1
r0(⌦)}.

We now turn again to the equations. Since u 2 W
1
r
(0, T ;Lr(⌦)), it follows from

(4.16) that d

dt
(g2, g5, g12, g13) is well defined and is in Lr(0, T ; Ĥ�1

r
(⌦)). Conse-

quently,
(g2, g5, g12, g13) 2 W

1
r
(0, T ; Ĥ�1

r
(⌦)) (4.17)

is another necessary compatibility and regularity condition.
We close this subsection by showing that the compatibility conditions we have

deduced above are all well-defined conditions.

Lemma 4.3. Let r > 3. Then all appearing traces and hence the compatibility

conditions are all well-defined.

Proof. For the compatibility condition stemming from the divergence equation
we refer to the above discussion and (4.17). For gj , j = 3, 5, 7, 12, 13, and PS1g11

we note that all functions have a well-defined trace at t = 0 since r > 3. Indeed,
the condition for g7 is independent of r (and fulfilled by choice of p and q) and the
rest easily follow by trace theory. Pick for instance g3. Then g3 surely has a trace
at t = 0 whenever 1/2 � 1/(2r) � 1/r > 0. This is however equivalent to r > 3.
By taking traces in the spatial variables one easily sees that all the other traces are
well-defined. ⇤

4.3.5. Maximal regularity. Let us consider the linear problem

⇢
±
@tu� µ

±�u+r⇡ = g1, in ⌦\⌃,

div u = g2, in ⌦\⌃,

�Jµ±
@3(u1, u2)K � Jµ±

rx0u3K = g3, on ⌃,

�2Jµ±
@3u3K + J⇡K � ��x0h = g4, on ⌃,

JuK = g5, on ⌃,

@th� (u+
3 + u

�

3 )/2 + J@3µK = g6, on ⌃,

(�rx0h, 1)> · ⌫S1 = g7, on @⌃,

�µ = g8, in ⌦\⌃,

µ|⌃ � ��x0h = g9, on ⌃,

⌫@⌦ ·rµ|@⌦ = g10, on @⌦\⌃,

PS1

�
µ
±(Du+Du

>)⌫S1

�
= PS1g11, on S1\@⌃,

u · ⌫S1 = g12, on S1\@⌃,

u = g13, on S2,

u(0) = u0, on ⌦\⌃,

h(0) = h0, on ⌃.

(4.18)

The main result on maximal regularity for (4.18) is the following.

Theorem 4.4. Let µ
±
, ⇢

±
,� > 0 be constant, �1 < L1 < 0 < L2 < 1, (p, q, r)

as in Theorem 4.1 and ⌃ ⇢ R2
be open, bounded and smooth. Let ⌦ := ⌃⇥ (L1, L2),
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S1 := @⌃ ⇥ (L1, L2), and S2 := ⌃ ⇥ {L1, L2}. Let 0 < T < 1. The coupled linear

system (4.18) then admits a unique solution (u,⇡, J⇡K, h, µ) with regularity (4.12),
if and only if the data satisfy the regularity and compatibility conditions (4.13),
(4.14), (4.15), and (4.17). Furthermore, the solution map [((gj)j=1,...,13, u0, h0) 7!

(u,⇡, J⇡K, h, µ)] between the above spaces is continuous.

Proof. First we reduce to trivial initial data by solving an auxiliary ninety
degree angle linear Mullins-Sekerka problem of type

@th̄+ J@3µ̄K = g6, on ⌃,

(�rx0 h̄, 1)> · ⌫S1 = g7, on @⌃,

�µ̄ = g8, in ⌦\⌃,

µ̄|⌃ � ��x0 h̄ = g9, on ⌃,

⌫@⌦ ·rµ̄|@⌦ = g10, on @⌦\⌃,

h̄(0) = h0, on ⌃,

by functions

h̄ 2 W
1
p
(0, T ;W 1�1/q

q
(⌃)) \ Lp(0, T ;W

4�1/q
q

(⌃)), µ̄ 2 Lp(0, T ;W
2
q
(⌦\⌃)).

Then we solve an auxiliary two-phase Stokes problem

⇢
±
@tū� µ

±�ū+r⇡̄ = g1, in ⌦\⌃,

div ū = g2, in ⌦\⌃,

�Jµ±
@3(ū1, ū2)K � Jµ±

rx0 ū3K = g3, on ⌃,

�2Jµ±
@3ū3K + J⇡̄K = g4 � ��x0 h̄, on ⌃,

JūK = g5, on ⌃,

PS1

�
µ
±(Dū+Dū

>)⌫S1

�
= PS1g11, on S1\@⌃,

ū · ⌫S1 = g12, on S1\@⌃,

ū = g13, on S2,

ū(0) = u0, on ⌦\⌃,

(4.20)

using Theorem A.11 in [64] by functions

ū 2 W
1
r
(0, T ;Lr(⌦)) \ Lr(0, T ;W

2
r
(⌦\⌃)), ⇡̄ 2 Lr(0, T ; Ḣ

1
r
(⌦\⌃)),

with

J⇡̄K 2 W
1/2�1/(2r)
r

(0, T ;Lr(⌃)) \ Lr(0, T ;W
1�1/r
r

(⌃)).

Here we want to point out two things: �x0 h̄ has su�cient regularity to be admissible
data and that there is no compatibility condition stemming from (4.20)4. Hence
g4 � ��x0 h̄ is admissible data for the problem. Having now (ū, ⇡̄, h̄, µ̄) at hand, we
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are left to solve

⇢
±
@tu� µ

±�u+r⇡ = 0, in ⌦\⌃,

div u = 0, in ⌦\⌃,

�Jµ±
@3(u1, u2)K � Jµ±

rx0u3K = 0, on ⌃,

�2Jµ±
@3u3K + J⇡K � ��x0h = 0, on ⌃,

JuK = 0, on ⌃,

@th� u3|⌃ + J@3µK = (ū+
3 + ū

�

3 )/2, on ⌃,

(�rx0h, 1)> · ⌫S1 = 0, on @⌃,

�µ = 0, in ⌦\⌃,

µ|⌃ � ��x0h = ���x0 h̄, on ⌃,

⌫@⌦ ·rµ|@⌦ = 0, on @⌦\⌃,

PS1

�
µ
±(Du+Du

>)⌫S1

�
= 0, on S1\@⌃,

u · ⌫S1 = 0, on S1\@⌃,

u = 0, on S2,

u(0) = 0, on ⌦\⌃,

h(0) = 0, on ⌃.

We do this as follows. Define the linear Mullins-Sekerka operator LMS : 0EMS,T !

0FMS,T by

LMS(h, µ) :=

0

BBBB@

@th� J@3µK
�µ

µ|⌃ � ��x0h

n@⌦ ·rµ|@⌦

(�rx0h|@⌃, 1)> · ⌫S1

1

CCCCA
,

where

0EMS,T := [0W
1
p
(0, T ;W 1�1/q

q
(⌃)) \ Lp(0, T ;W

4�1/q
q

(⌃))]⇥ Lp(0, T ;W
2
q
(⌦\⌃)),

and

0FMS,T := Lp(0, T,W
1�1/q
q

(⌃))⇥ Lp(0, T ;Lq(⌦))⇥ Lp(0, T ;W
1�1/q
q

(⌃))

⇥ Lp(0, T ;W
1�1/q
q

(@⌦))⇥ [0F
1�2/(3q)
pq

(0, T ;Lq(@⌃)) \ Lp(0, T ;W
3�2/q
q

(@⌃))].

In Section 2.5 we have shown that [LMS : 0EMS,T ! 0FMS,T ] is boundedly invertible.
Define the linear Stokes operator

LS : 0EMS,T ! [0W
1
r
(0, T ;Lr(⌦)) \ Lr(0, T ;W

2
r
(⌦\⌃))]
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by LS(h) := u, where (u,⇡) is the unique solution of

⇢
±
@tu� µ

±�u+r⇡ = 0, in ⌦\⌃,

div u = 0, in ⌦\⌃,

�Jµ±
@3(u1, u2)K � Jµ±

rx0u3K = 0, on ⌃,

�2Jµ±
@3u3K + J⇡K = ��x0h, on ⌃,

JuK = 0, on ⌃,

PS1

�
µ
±(Du+Du

>)⌫S1

�
= 0, on S1\@⌃,

u · ⌫S1 = 0, on S1\@⌃,

u = 0, on S2,

u(0) = 0, on ⌦\⌃,

cf. Theorem A.11 in [64]. It then stems from Theorem 4.1 that LS is well defined,
linear and bounded. Define B : 0EMS,T ! 0FMS,T and G(ū, h̄) 2 0FMS,T by

B(h) := (�LS(h)|⌃, 0, 0, 0, 0)
>
, G(ū, h̄) := ((ū+

3 + ū
�

3 )/2, 0,���x0 h̄, 0, 0)>.

We can hence rewrite the problem as

LMS(h, µ) = �B(h) +G(ū, h̄), in 0FMS,T .

We now solve this equation by a Neumann series argument. Clearly this equation is
equivalent to

(I + L
�1
MS

B)(h, µ) = L
�1
MS

G(ū, h̄), in 0FMS,T ,

hence it remains to show that |L�1
MS

B|B(0EMS,T ) 
1
2 , if T > 0 is small enough. Then

by a Neumann series argument, (I +L
�1
MS

B) is invertible and the theorem is shown.
Since we now have that LMS is boundedly invertible and the norm of the inverse
is independent of T since we only consider functions with vanishing time trace at
t = 0, the claim follows from Theorem 4.1. Indeed,

|B(h)|0FMS,⌧
= |LS(h)|

Lp(0,⌧ ;W
1�1/q
q (⌃))

 ⌧
1/p

|LS(h)|
L1(0,⌧ ;W 1�1/q

q (⌃))

 ⌧
1/p

|h|0EMS,⌧ , ⌧ > 0.

Note that again since h has vanishing time trace, all embeddings in Theorem 4.1
are time-independent. In particular, by choosing ⌧ > 0 su�ciently small, we get a
unique solution (h, µ) in the proper regularity class on (0, ⌧). Solving then the two-
phase Stokes system for this particular h gives a proper (u,⇡) in the Lr-regularity
scale, again on (0, ⌧).

Shifting back the equations via ũ(t) := u(t�⌧), ⇡̃(t) := ⇡(t�⌧), h̃(t) := h(t�⌧),
and µ̃ := µ(t � ⌧) we can again apply this argument and solve again on the same
length time interval (0, ⌧), which in turn gives us now a solution on (0, 2⌧) in fact.
Repeating the steps we can solve then the problem on (0, T ), cf. Section 2.3 in
[64]. ⇤

4.4. Nonlinear Well-Posedness

In this section we show local well-posedness for the full nonlinear problem (4.5).
The main result is the following.
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Theorem 4.5. Let µ
±
, ⇢

±
,� > 0 be constant, �1 < L1 < 0 < L2 < 1, (p, q, r)

satisfy

p 2 (6,1), q 2 (99/50, 2)\ (2p/(p+1), 2), r = 17/5, 1/r > 1/4+1/p. (4.23)

Let ⌃ ⇢ R2
be a bounded domain with smooth boundary. Let ⌦ := ⌃ ⇥ (L1, L2),

S1 := @⌃ ⇥ (L1, L2) be the walls and S2 := ⌃ ⇥ {L1, L2} bottom and top of the

cylinder. Furthermore let

(u0, h0) 2 W
2�2/r
r

(⌦\⌃)⇥B
4�1/q�3/p
qp

(⌃)

satisfy the compatibility conditions

div u0 = Gd(h0, u0), in ⌦\⌃,

�Jµ±
@3(u0)1,2K � Jµ±

rx0(u0)3K = G
k

S
(h0, u0), Ju0K = 0, on ⌃,

PS1(µ
±(Du0 +Du

>

0 )⌫S1) = 0, u0 · ⌫S1 = 0, on S1,

u0|S2 = 0, on S2, (�rx0h0, 1)
>
· ⌫S1 = 0, on @⌃.

(4.24)

Then the full nonlinear (transformed) problem (4.5) admits a unique local-in-

time strong solution, that is, there is some T0 > 0, such that for every 0 < T  T0

there is some " = "(T ) > 0, such that whenever the smallness condition

|u0|
W

2�2/r
r (⌦\⌃)

+ |h0|
B

4�1/q�3/p
qp (⌃)

 " (4.25)

is satisfied there is a unique strong solution (u,⇡, J⇡K, h, µ) of (4.5) on (0, T ) with

regularity (4.12).

Proof. We first again reduce the problem to (u0, h0) = 0. This can be done
by first solving an auxiliary Stokes problem as in Section 3.2 in [64] to reduce to
u0 = 0, and then a linearized Mullins-Sekerka problem, cf. Section 2.5, to reduce to
h0 = 0. Note that the respective compatibility conditions are satisfied by(5.5). The
reference solution (u⇤,⇡⇤, h⇤, µ⇤) resolving the initial conditions then belongs to the
proper regularity classes.

Let us now introduce notation. Let

0Eu(T ) := 0W
1
r
(0, T ;Lr(⌦)) \ Lr(0, T ;W

2
r
(⌦\⌃)),

E⇡(T ) := Lr(0, T ; Ḣ
1
r
(⌦\⌃)),

0Eq(T ) := 0W
1/2�1/(2r)
r

(0, T ;Lr(⌃)) \ Lr(0, T ;W
1�1/r
r

(⌃)),

0Eh(T ) := 0W
1
p
(0, T ;W 1�1/q

q
(⌃)) \ Lp(0, T ;W

4�1/q
q

(⌃)),

Eµ(T ) := Lp(0, T ;W
2
q
(⌦\⌃)),

and

0E(T ) := 0Eu(T )⇥E⇡(T )⇥ 0Eq(T )⇥ 0Eh(T )⇥Eµ(T )\ {(u,⇡, q, h, µ) : q = J⇡K}.
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Moreover, let

F1(T ) := Lr(0, T ;Lr(⌦)),

F2(T ) := Lr(0, T ;W
1
r
(⌦\⌃)),

F3(T ) := 0W
1/2�1/(2r)
r

(0, T ;Lr(⌃)) \ Lr(0;T ;W
1�1/r
r

(⌃)),

F4(T ) := 0W
1/2�1/(2r)
r

(0, T ;Lr(⌃)) \ Lr(0;T ;W
1�1/r
r

(⌃)),

F5(T ) := 0W
1�1/(2r)
r

(0, T ;Lr(⌃)) \ Lr(0, T ;W
2�1/r
r

(⌃)),

F6(T ) := Lp(0, T ;W
1�1/q
q

(⌃)),

F7(T ) := 0F
1�2/(3q)
pq

(0, T ;Lq(@⌃)) \ Lp(0, T ;W
3�2/q
q

(@⌃)),

F8(T ) := Lp(0, T ;Lq(⌦)),

F9(T ) := Lp(0, T ;W
2�1/q
q

(⌃)),

F10(T ) := Lp(0, T ;W
1�1/q
q

(@⌦)),

F11(T ) := 0W
1/2�1/(2r)
r

(0, T ;Lr(S1)) \ Lr(0;T ;W
1�1/r
r

(S1),

F12(T ) := 0W
1�1/(2r)
r

(0, T ;Lr(S1)) \ Lr(0, T ;W
2�1/r
r

(S1)),

F13(T ) := 0W
1�1/(2r)
r

(0, T ;Lr(S2)) \ Lr(0, T ;W
2�1/r
r

(S2)).

Let

0F(T ) := ⇥
13
j=1Fj(T ) \ {(g2, g5, g12, g13) 2 W

1
r
(R+; Ĥ

�1
r

(⌦))}.

Define a linear operator by the left hand side of (4.5), that is define L : 0E(T ) !

0F(T ) via

L(u,⇡, q, h, µ) :=

0

BBBBBBBBBBBBBBBBBBBB@

⇢
±
@tu� µ

±�u+r⇡

div u
�Jµ±

@3(u1, u2)K � Jµ±
rx0u3K

�2Jµ±
@3u3K + q � ��x0h

JuK
@th� u3|⌃ + J@3µK
(�rx0h, 1)>|@⌃ · ⌫S1

�µ

µ|⌃ � ��x0h

⌫@⌦ ·rµ|@⌦

PS1

�
µ
±(Du+Du

>)⌫S1

�

u|S1 · ⌫S1

u|S2

1

CCCCCCCCCCCCCCCCCCCCA

.
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We collect the right hand side in the operator R : E(T ) ! F(T ), defined by

R(u,⇡, q, h, µ) :=

0

BBBBBBBBBBBBBBBBBBBB@

a
±(h;D2

x
)(u,⇡) + ā(h, u)
Gd(u, h)

GS(u,⇡, h)1,2
GS(u,⇡, h)3

0
G⌃(u, h, µ)

0
Gc(h, µ)
G(h)

GN (h, µ)
G

±

P
(u, h)
0
0

1

CCCCCCCCCCCCCCCCCCCCA

.

Hereby E(T ) and F(T ) are defined similarly as above but without the trace properties
at t = 0.

It is now clear that for h 2 0E(T ) (which is a function having vanishing time
trace) the compatibility condition (�rx0h(t = 0), 1)>|@⌃ · ⌫S1 = 0 is satisfied. Re-
garding the compatibility conditions for the Stokes system we refer to Section 3.1
in [64]. Therefore both operators are well defined.

Let z := (u,⇡, q, h, µ) and z⇤ := (u⇤,⇡⇤, J⇡⇤K, h⇤, µ⇤) the reference solution as
above. We can now rewrite the problem abstractly as

L(z + z⇤) = R(z + z⇤), z 2 0E(T ).
Note that we already know that L is invertible from 0E(T ) to 0F(T ) with norms
independent of T . This renders the fixed point equation

z = L�1(R(z + z⇤)� Lz⇤), in 0E(T ).
Define K : 0E(T ) ! 0E(T ) by means of [z 7! L�1(R(z+ z⇤)� Lz⇤)]. We now need to
establish contraction estimates for R.

Lemma 4.6. There are r0, T0 > 0, such that

|R(z1+z⇤)�R(z2+z⇤)|0F(T )  C(T↵+ |z⇤|E(T )+ |z1|0E(T )+ |z2|0E(T ))|z1�z2|0E(T ),

for some ↵ > 0 and for all z1, z2 2 B(r, 0) ⇢ 0E(T ), if r  r0 and T  T0.

Having these estimates at hand we proceed as in the proof of Theorem 2.28 to
obtain a fixed point of K by Banach’s contraction mapping principle by choosing
"(T ) > 0 in (4.25) small enough. The uniqueness of h is understood in the sense of
the proof of Theorem 2.28. This finishes the proof. ⇤

Proof of Lemma 4.6. Let us first note that

[h 7! �h] 2 C
1(U ;B(W 2

r
(⌦\⌃);Lr(⌦))), (4.26)

[h 7! rh] 2 C
1(U ;B(W k

r
(⌦\⌃);W k�1

r
(⌦\⌃))), k = 1, 2, (4.27)

where U ⇢ B
4�1/q�3/p
qp (⌃) is a su�ciently small neighbourhood of zero. This can

be shown as in Lemma 2.17.
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We estimate every nonlinearity separately. Let h 2 W , where W is a su�ciently
small neighbourhood of zero in Eh(T ). We recall that a

±(h;Dx)(u,⇡) = µ
±(�h �

�)u� (r�rh)⇡. Clearly,

|(�h ��)u|Lr(0,T ;Lr(⌦))  |�h ��|L1(0,T ;B(W 2
r (⌦\⌃);Lr(⌦)))|u|Lr(0,T ;W 2

r (⌦\⌃)).

Using (4.26) this gives

|(�h ��)u|Lr(0,T ;Lr(⌦))  C|h|
0E(T )|u|Lr(0,T ;W 2

r (⌦\⌃)), h 2 W.

The same arguments give

|(rh �r)⇡|Lr(0,T ;Lr(⌦))  C|h|
0E(T )|⇡|Lr(0,T ;Ḣ1

r (⌦\⌃)), h 2 W,

since (4.27) is also true for the homogeneous counterparts Ḣ
k

r
replacing W

k

r
. Note

that these estimates and the C
1-dependence of h and the linear structure in (u,⇡)

of a±(h)(u,⇡) then automatically give rise to a contraction estimate of form

|a
±(h1)(u1,⇡1)� a

±(h2)(u2,⇡2)|Lr(0,T ;Lr(⌦))  (4.28)

 C|h1 � h2|0E(T )

⇣
|u1 � u2|Lr(0,T ;W 2

r (⌦\⌃)) + |⇡1 � ⇡2|Lr(0,T ;Ḣ1
r (⌦\⌃))

⌘
,

valid for all h1, h2 2 W,u1, u2 2 Lr(0, T ;W 2
r
(⌦\⌃)),⇡1,⇡2 2 Lr(0, T ; Ḣ1

r
(⌦\⌃)).

Indeed, we have that a± 2 C
2 (W ⇥ Eu(T )⇥ E⇡(T );Lr(0, T ;Lr(⌦))) , and a

±(0) =
0, Da

±(0) = 0. Alternatively, one can explicitly estimate the di↵erence and end up
with (4.28). Before we estimate ā(u, h, ⌘) := Du ·@t⇥

�1
h

+(u ·rh)u+(⇢+�⇢
�)(rh⌘ ·

rh)u, some remarks are in order. Firstly, Du · @t⇥
�1
h

= ��@th(1 + h�
0)�1

@3u,
see [57].

Contracting the (transformed) convection term (u ·rh)u is easy due to the fact
that Eu(T ) ,! L1(0, T ;L1(⌦)) \ L1(0, T ;W 1

r
(⌦\⌃)). More precisely,

|(u ·rh)u|Lr(0,T ;Lr(⌦)) 

T
1/r

|u|L1(0,T ;L1(⌦))|rh|L1(0,T ;B(W 1
r (⌦\⌃);Lr(⌦)))|u|L1(0,T ;W 1

r (⌦\⌃)).

Regarding the other terms we recall that Du 2 L4(0, T ;L1(⌦)) by Theorem 4.1.
We then get by Hölder inequality that

|Du · @t⇥
�1
h

|Lr(0,T ;Lr(⌦)) 

|�(1 + h�
0)�1

|L1(0,T ;L1(⌦))|Du|Lp1 (0,T ;L1(⌦))|@th|Lp(0,T ;Lr(⌃))|1|Lp0 (0,T ;L1(⌦)),

where 1 < p0, p1 < 1 are such that

1

r
=

1

p1
+

1

p
+

1

p0
. (4.29)

Choose p1 = 4. By choice of q < 2 and 3 < r < 7/2, we have W
1�1/q
q (⌃) ,! Lr(⌃)

by Sobolev’s embedding theorem. Since 1/r > 1/4 + 1/p, r = 17/5, cf. (4.23),
we find finite 1 < p0 < 1 such that (4.29) is fulfilled. Note that these estimates
may not optimal but su�cient in our case. We then obtain that there is some
" = "(p, q, r) > 0 such that

|Du · @t⇥
�1
h

|Lr(0,T ;Lr(⌦))  CT
"
|u|Eu(T )|h|Eh(T ), h 2 W.

Furthermore,

|(rh⌘·rh)u|Lr(0,T ;Lr(⌦))  |rh⌘|Lp(0,T ;Lr(⌦))|rhu|Lp1 (0,T ;L1(⌦))|1|Lp0 (0,T ;L1(⌦)),
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where p0, p1 are as above. Again by Sobolev embedding,W 1
q
(⌦\⌃) ,! Lr(⌦), whence

|(rh⌘·rh)u|Lr(0,T ;Lr(⌦))  |rh⌘|Lp(0,T ;W 1
q (⌦\⌃))|rhu|Lp1 (0,T ;L1(⌦))|1|Lp0 (0,T ;L1(⌦)).

In view of (4.27), these estimates together with the smooth dependence of ā 2

C
1(Eu(T ) ⇥ W ;F1(T )), as well as ā(0, 0, 0) = 0 and Dā(0, 0, 0) = 0 give rise to

contraction estimates for ā.
For Gd(u, h) := (div� divh)u, the estimate in F2(T ) is straightforward,

|Gd(u, h)|Lr(0,T ;W 1
r (⌦\⌃))  |r�rh|L1(0,T ;B(W 2

r (⌦\⌃);W 1
r (⌦)))|u|Lr(0,T ;W 2

r (⌦\⌃)),

where we used that Gd(u, h) = Tr(r�rh)u.
The contraction estimates for Gc(h, ⌘) := (���h)⌘ = (divr� divh rh)⌘ and

GN (h, ⌘) := ⌫@⌦ ·(r�rh)⌘ easily stem from (4.26)-(4.27) with q replacing r. Recall
that in this graph situation, K(h) = divx0(rx0h(1 + |rx0h|

2)�1/2), whence

G(h) =

 
1�

1p
1 + |rx0h|2

!
�x0h+rx0h ·rx0

 
1p

1 + |rx0h|2

!
, x

0
2 ⌃.

(4.30)
Again using the product estimate

|rh ·r
2
h|F9(T )  C|rh|

L1(0,T ;B3�1/q�3/p
qp (⌃))

|r
2
h|F9(T )  C|h|

2
0Eh(T )

and the fact that G 2 C
1(W ;F9(T )), G(0) = 0, DG(0) = 0, ensure the contrac-

tion property of G.
Regarding G

±

P
(u, h) it is shown in Section 3.1 in [64], that

G
±

P
(u, h) = PS1


1

1 + �0h

✓
�@3u((�rx0h, 1)> · ⌫S1) +

✓
�rx0h

�
0
h

◆
@3(u · ⌫S1)

◆�
.

Therefore, due to the fact that u · ⌫S1 = 0 on S1\@⌃ and (�rx0h, 1)> · ⌫S1 = 0 on
@⌃⇥ (L1, L2), the nonlinearity G

±

P
(u, h) vanishes for the fixed point we obtain later.

Hence we may replace G
±

P
(u, h) by zero in the definition of R.

Now, for GS(h, u,⇡) we split GS(h, u,⇡) = G
S

S
(h, u,⇡) +G



S
(h), where

G
S

S
(h, u,⇡) := Jµ±

�
(D⇥h � I)Du+Du

>(D⇥h � I)>)
�
K⌫⌃h+

+ J
�
µ
±(Du+Du

>)� ⇡I
�
(e3 � ⌫⌃h)K,

G


S
(h) := �(K(h)⌫⌃h ��x0he3).

Regarding the estimates of GS

S
(h, u,⇡) we refer to [56]. Note that due to Remark 1.2.

(c) in [56] we may use these results since r > 3 and Eh(T ) ,! BUC([0, T ];C2(⌃)).
Considering G



S
(h) we may write G



S
(h) = G(h)e3 + K(h)(⌫⌃h � e3) and es-

timate each term separately. In particular, we have to control terms of the form

rh ·r
2
h in the norm of F3(T ) = 0W

1/2�1/(2r)
r

(0, T ;Lr(⌃)) \ Lr(0, T ;W
1�1/r
r (⌃)).

This stems from the observation in (4.30). Now, by Theorem 4.1 we already know
that the space in which second derivatives of h live in embeds into F3(T ).

We may now use the product estimate of Proposition 5.7 in [48] to obtain

|rh ·r
2
h|

W
1/2�1/(2r)
r (0,T ;Lr(⌃))

. |rh|L1(0,T ;L1(⌃))|r
2
h|

W
1/2�1/(2r)
r (0,T ;Lr(⌃))

+

+ |rh|
W

1/2�1/(2r)
r (0,T ;L1(⌃))

|r
2
h|L1(0,T ;Lr(⌃)).
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Furthermore,

|rh ·r
2
h|

Lr(0,T ;W 1�1/r
r (⌃))

. |rh|L1(0,T ;C1(⌃))|r
2
h|

Lr(0,T ;W 1�1/r
r (⌃))

.

These estimates show that the product terms of form rh ·r
2
h are well defined in

F3(T ).
These observations allow us to conclude contraction estimates for G

S
since again

G


S
(0) = 0, DG



S
(0) = 0.

RegardingG⌃(u, h, µ) = u|⌃·(�rx0h, 0)>�Je3·(r�rh)µK�J(�rx0h, 0)>·rhµK,
the last two terms can be controlled as before. Clearly the first term is smooth in
(u, h) and quadratic and the bound

|u|⌃ · (�rx0h, 0)>|
Lp(0,T ;W 1�1/q

q (⌃))
 T

1/p
|u|L1(0,T ;W 1

q (⌦\⌃))|rh|L1(0,T ;C1(⌃))

renders contraction estimates also for G⌃. This concludes the proof of the contrac-
tion estimates. ⇤

Remark 4.7. We need the technical assumption (4.23) for the contraction esti-
mates. Note that if p 2 (23,1), the last inequality in (4.23) is fulfilled automatically.

4.5. Qualitative behaviour

In this section we investigate the long-time behaviour of solutions starting close
to equilibria. By a study of the spectrum of the linearization we will show that
solutions starting close to certain equilibria converge to an equilibrium solution at
an exponential rate.

Let us again consider the case of a cylindrical container ⌦ = ⌃⇥ (L1, L2), where
�1 < L1 < 0 < L2 < 1 and ⌃ ⇢ R2 is open, bounded and has smooth boundary.
We want to study stability properties of

⇢@tu� µ�u+ div[(⇢u+ J⇢Kr⌘)⌦ u] +rp = 0, in ⌦\�(t),

div u = 0, in ⌦\�(t),

�Jµ(Du+Du
>)K⌫�(t) + JpK⌫�(t) = �H�(t)⌫�(t), on �(t),

JuK = 0, on �(t),

V�(t) � u|�(t) · ⌫�(t) = �J⌫�(t) ·r⌘K, on �(t),

⌫�(t) · ⌫S1 = 0, on @�(t),

�⌘ = 0, in ⌦\�(t),

⌘|�(t) = �H�(t), on �(t),

⌫@⌦ ·r⌘|@⌦ = 0, on @⌦\�(t),

PS1

�
µ(Du+Du

>)⌫S1

�
= 0, on S1\@�(t),

u · ⌫S1 = 0, on S1\@�(t),

u = 0, on S2,

u(0) = u0, on ⌦\�(0),

�(0) = �0.

(4.31)

We recall that ⇢ := ⇢
+
�⌦+(t) + ⇢

�
�⌦�(t) and µ := µ

+
�⌦+(t) + µ

�
�⌦�(t).



122 4. TWO-PHASE NAVIER-STOKES/MULLINS-SEKERKA WITH 90� ANGLE

4.5.1. Equilibria and spectrum of the linearization. We note that the
pressure p as well as the chemical potential µ may be reconstructed by the semiflow
(u(t),�(t)) as follows. For given �(t) we can solve the two-phase elliptic problem

8
><

>:

�⌘ = 0, in ⌦\�(t),

⌘|�(t) = �H�(t), on �(t),

n@⌦ ·r⌘|@⌦ = 0, on @⌦,

and the weak transmission problem
8
><

>:

([1/⇢]rp|r')L2(⌦)

= ([µ/⇢]�u� [1/⇢] div[(⇢u+ J⇢Kr⌘)⌦ u]|r')L2(⌦), for all ' 2 W
1
r0(⌦),

JpK = Jµ(Du+Du
>)⌫�(t) · ⌫�(t)K + �H�(t), on �(t),

where r
0 = r/(r � 1), cf. Lemma A.7 in [64]. Therefore we may concentrate on the

set of equilibria E for the semiflow (u(t),�(t)). Note that the set of equilibria for
(4.31) is given by

E = {(u,�) : u = 0, H� = const.}.

In particular, also µ is constant, p is constant in the two phases of ⌦\� and also the
jump JpK is constant on �.

Remark 4.8. We want to point out that in the special case when � is a C
2-

graph of a function h over ⌃, we can even deduce that H� = 0 and h is constant. A
proof of this can be found in Section 3.2.

We now work again in the graph situation, that is, we assume the free interface
�(t) is the graph of a height function h over ⌃.

The linearization of the transformed two-phase Navier-Stokes/Mullins-Sekerka
problem (4.31) around the trivial equilibrium (0,⌃) 2 E induces us to study the
problem

⇢@tu� µ�u+rp = fu, in ⌦\⌃,

div u = 0, in ⌦\⌃,

�Jµ(Du+Du
>)Ke3 + JpKe3 + ��x0he3 = 0, on ⌃,

JuK = 0, on ⌃,

@th� u3 + J@3⌘K = fh, on ⌃,

(rx0h,�1)> · ⌫S1 = 0 on @⌃,

�⌘ = 0, in ⌦\⌃,

⌘|⌃ + ��x0h = 0, on ⌃,

⌫@⌦ ·r⌘|@⌦ = 0, on @⌦\⌃,

PS1

�
µ(Du+Du

>)⌫S1

�
= 0, on S1\@⌃,

u · ⌫S1 = 0, on S1\@⌃,

u = 0, on S2,

u(0) = u0, in ⌦\⌃,

h(0) = h0, on ⌃,

(4.32)
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where fh is assumed to be mean value free. Let us note the following observations.
Integrating equation (4.32)5 over ⌃ yields

R
⌃ h(t)dx =

R
⌃ h0dx for all t 2 R+. In

other words, whenever h0 and fh are mean value free, the solution h will stay mean
value free for all times. Furthermore, applying P⌃ = I � e3 ⌦ e3 to equation (4.32)3
directly yields that P⌃(Jµ±(Du+Du

>)Ke3) = 0 on ⌃.
We want to write system (4.32) as an abstract evolution equation. To this end

let

X0 := Lr,�(⌦)⇥W
1�1/q
q

(⌃), X1 := (Lr,�(⌦) \W
2
r
(⌦\⌃))⇥W

4�1/q
q

(⌃),

and define a linear operator A : D(A) ⇢ X1 ! X0 by

A(u, h) := (�[µ/⇢]�u+rp/⇢,�u3 + J@3⌘K)
with domain

D(A) := {(u, h) 2 X1 : JuK = 0 on ⌃, PS1

�
µ
±(Du+Du

>)⌫S1

�
= 0 on S1\@⌃,

u · ⌫S1 = 0 on S1\@⌃, u = 0 on S2,

P⌃(Jµ±(Du+Du
>)Ke3) = 0 on ⌃, (rx0h,�1)> · ⌫S1 = 0 on S1}.

Here, p 2 Ḣ
1
r
(⌦\⌃) solves the weak transmission problem

(rp/⇢|r')L2(⌦) = ([µ/⇢]�u|r')L2(⌦), for all ' 2 W
1
r0(⌦),

JpK = ��x0h+ (Jµ±(Du+Du
>)Ke3|e3)L2(⌃), on ⌃,

cf. Lemma A.7 in [64] and ⌘ 2 W
2
q
(⌦\⌃) solves the elliptic problem

�⌘ = 0, in ⌦\⌃,

⌘|⌃ + ��x0h = 0, on ⌃,

@⌫⌘ = 0, on @⌦.

As in [4] and [64], we will sometimes make use of the notation via solution operators
T1 and T2 for the pressure, that is,

rp/⇢ = T1[(µ/⇢)�u] + T2[��x0h+ (Jµ(Du+Du
>)Ke3|e3)L2(⌃)], (4.34)

cf. Lemma A.7 in [64]. Note that �x0h 2 W
2�1/q
q (⌃) ,! W

1�1/r
r (⌃) for h 2

W
4�1/q
q (⌃) by Sobolev embedding, since r < 3q/(3� q).
We can then rewrite problem (4.32) in a more compact form as

ż(t) +Az(t) = f(t), t 2 R+, z(0) = z0,

where z := (u, h), f := (fu, fh) and z0 := (u0, h0). We can now show a similar result
as in [4] about properties of the operator A.

Lemma 4.9. Let n = 2, 3, (p, q, r) as in Theorem 4.1, ⇢
±
, µ

±
,� > 0 constant

and X0 and A as above. Then the following statements are true.

(1) The linear operator �A generates an analytic C0-semigroup e
�At

in X0.

(2) The spectrum �(�A) consists of countably many eigenvalues with finite

algebraic multiplicity.

(3) � = 0 is a semi-simple eigenvalue with multiplicity 1 and X0 = N(A) �
R(A).

(4) �(�A)\{0} ⇢ C� := {z 2 C : Re z < 0}.
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(5) The kernel N(A) is isomorphic to the tangent space T(0,⌃)E of E at the

trivial equilibrium (0,⌃) 2 E and is given by N(A) = {(u, h) : u = 0, h =
const.}.

(6) The restriction of e
�At

to R(A) is exponentially stable.

Proof. The first assertion follows from Theorem 4.4 and the proof of Propo-
sition 1.2 in [53]. Since D(A) compactly embeds into X0, the resolvent of A is
compact and therefore the spectrum of A consists only of countably many eigen-
values with finite multiplicity. By classical results, it does not depend on q and r,
cf. [8], [19]. So let � 2 �(�A) be an eigenvalue with eigenfunctions (u, h) 2 D(A).
The corresponding eigenvalue problem reads as

�⇢u� µ�u+rp = 0, in ⌦\⌃,

div u = 0, in ⌦\⌃,

JuK = 0, on ⌃,

�Jµ(Du+Du
>)Ke3 + JpKe3 � ��x0he3 = 0, on ⌃,

�h� u3 + J@3⌘K = 0, on ⌃,

(rx0h,�0)> · ⌫S1 = 0 on @⌃,

�⌘ = 0, in ⌦\⌃,

J⌘K = 0, ⌘|⌃ + ��x0h = 0, on ⌃,

⌫@⌦ ·rµ|@⌦ = 0, on @⌦\⌃,

PS1

�
µ(Du+Du

>)⌫S1

�
= 0, on S1\@⌃,

u · ⌫S1 = 0, on S1\@⌃,

u = 0, on S2.

(4.35)

Testing equation (4.35)1 with u in L2(⌦) and invoking boundary and transmission
conditions yields

�|⇢
1/2

u|
2
L2(⌦) + |µ

1/2(Du+Du
>)|2

L2(⌦) + ��̄|rx0h|
2
L2(⌃) + |r⌘|

2
L2(⌦) = 0. (4.36)

Let � = 0. Then u = 0 by Korn’s inequality and ⌘ = const., whence �x0h is
constant on ⌃. An integration over ⌃ together with the boundary condition (4.35)6
yields that �x0h = 0 on ⌃. Hence h has to be constant. We obtain that the kernel
N(A) is one-dimensional and N(A) = {(u, h) : u = 0, h = const.}. Taking real parts
in (4.36) yields Re�  0. We also easily obtain that �(�A) \ iR = {0}, hence
�(�A)\{0} ⇢ C�. Next we show that the eigenvalue � = 0 is semi-simple. Pick
z = (u, h) 2 N(A2). Then z1 := Az 2 N(A), hence z1 = (0, h1) and h1 is constant.
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The problem for z = (u, h) now reads as

�µ�u+rp = 0, in ⌦\⌃,

div u = 0, in ⌦\⌃,

�Jµ(Du+Du
>)Ke3 + JpKe3 � ��x0he3 = 0, on ⌃,

JuK = 0, on ⌃,

�u3 + J@3⌘K = h1, on ⌃,

(rx0h,�1)> · ⌫S1 = 0, on @⌃,

�⌘ = 0, in ⌦\⌃,

⌘|⌃ + ��x0h = 0, on ⌃,

⌫@⌦ ·rµ|@⌦ = 0, on @⌦\⌃,

PS1

�
µ(Du+Du

>)⌫S1

�
= 0, on S1\@⌃,

u · ⌫S1 = 0, on S1\@⌃.

u = 0, on S2.

(4.37)

Integrating (4.37)5 over ⌃ and using the fact that h1 is constant yields

�

Z

⌃
u3dx

0 +

Z

⌃
J@3⌘Kdx0 = h1

Z

⌃
1dx0

.

Note that due to the boundary conditions in (4.37),
R
⌃ u3dx

0 =
R
⌦+ div u = 0 andR

⌃J@3⌘Kdx0 =
R
⌦ �⌘dx = 0. Hence h1 = 0 and therefore (u, h) 2 N(A), whence

N(A2) ⇢ N(A). Since A has compact resolvent, R(A) is closed in X0 and � = 0 is a
pole of (��A)�1. Therefore � = 0 is semi-simple, cf. [43], and X0 = N(A)�R(A).
Since also �(A|R(A)) ⇢ C+ we obtain that the restricted semigroup e

�At
|R(A) is

exponentially stable. ⇤

Define now a linear operator L : D(L) ⇢ X1 ! P
⌃
0 X0 by L(u, h) := A(u, h),

where

D(L) := D(A) \ {(u, h) 2 X1 : (h, 1)L2(⌃) = 0},

and P
⌃
0 X0 := X0 \ {(u, h) 2 X0 : P⌃

0 h = 0}. Hereby, P⌃
0 h := (h|1)L2(⌃)/|⌃|.

Then L is well-defined and �(�L) ⇢ {� 2 C : Re�  � < 0} for some  > 0,
since the spectrum is discrete.

4.5.2. Parametrization of the nonlinear phase manifold. We recall, cf.
(4.5), that the transformed equations around the trivial equilibrium (0,⌃) 2 E read
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as

⇢@tu� µ�u+rp = Fu(h, u, p), in ⌦\⌃,

div u = Gd(h, u), in ⌦\⌃,

�Jµ(Du+Du
>)� pIKe3 = ��x0he3 +GS(h, u, p), on ⌃,

JuK = 0, on ⌃,

@th = u3 � J@3⌘K +G⌃(h, u, ⌘), on ⌃,

(�rx0h, 0)> · ⌫S1 = 0, on @⌃,

�⌘ = Gc(h, ⌘), in ⌦\⌃,

⌘|⌃ � ��x0h = G(h), on ⌃,

⌫@⌦ ·r⌘|@⌦ = GN (h, ⌘), on @⌦\⌃,

PS1

�
µ(Du+Du

>)⌫S1

�
= 0, on S1\@⌃,

u · ⌫S1 = 0, on S1\@⌃,

u = 0, on S2,

u(0) = u0, on ⌦\⌃,

h(0) = h0, on ⌃,

where Fu(h, u, p) := a
±(h;Dx)(u, p) + ā(h, u), cf. (4.5). The nonlinear phase mani-

fold is given by

PM := {(u, h) 2 W
2�2/r
r

(⌦\⌃) \B
4�1/q�3/p
qp

(⌃) : div u = Gd,

P⌃(µ
±(Du+Du

>)e3) = ((GS)1,2, 0), JuK = 0, (rx0h|n@⌃) = 0,

(h|1)L2(⌃) = 0, PS1

�
µ
±(Du+Du

>)⌫S1

�
= 0, u · ⌫S1 = 0, u|S2 = 0}.

as a subset of X� := W
2�2/r
r (⌦\⌃) \ B

4�1/q�3/p
qp (⌃). The linear phase manifold is

given by

PM0 := {(u, h) 2 W
2�2/r
r

(⌦\⌃) \B
4�1/q�3/p
qp

(⌃) : div u = 0,

P⌃(µ
±(Du+Du

>)e3) = 0, JuK = 0, (rx0h|n@⌃) = 0,

(h|1)L2(⌃) = 0, PS1

�
µ
±(Du+Du

>)⌫S1

�
= 0, u · ⌫S1 = 0, u|S2 = 0}.

Following the lines of Section 4.2 in [64], we obtain that there is a local parametriza-
tion of PM over PM0 around zero. More precisely, there is a small r > 0, such that
for every (u0, h0) 2 B(r, 0) ⇢ PM there is a C

2-function ' and a decomposition

(u0, h0) = (ũ0, h̃0) + ('(ũ0, h̃0), 0), (ũ0, h̃0) 2 PM0. (4.39)

For details we refer to Proposition 4.3 and Section 4.2 in [64].

4.5.3. Convergence to equilibria. We now state and prove the main result.

Theorem 4.10. The trivial equilibrium (0,⌃) 2 E is stable in the following

sense. For each " > 0 there exists some � = �(") > 0 such that for all initial values

(u0, h0) 2 X� \ PM satisfying

|u0|
W

2�2/r
r (⌦\⌃)

+ |h0|
B

4�1/q�3/p
qp (⌃)

 �("), (4.40)



4.5. QUALITATIVE BEHAVIOUR 127

there exists some global in time solution

u 2 W
1
r
(R+;Lr(⌦)) \ Lr(R+;W

2
r
(⌦\⌃)),

h 2 W
1
p
(R+;W

1�1/q
q

(⌃)) \ Lp(R+;W
4�1/q
q

(⌃)),

such that

|u(t)|
W

2�2/r
r (⌦\⌃)

+ |h(t)|
B

4�1/q�3/p
qp (⌃)

 ", t 2 R+.

Moreover,

h
|u(t)|

W
2�2/r
r (⌦\⌃)

+ |h(t)� P
⌃
0 h0|

B
4�1/q�3/p
qp (⌃)

i
!t!1 0,

where P
⌃
0 h0 := 1

|⌃|
(h0|1)L2(⌃) is the mean value of h0. The convergence is at an

exponential rate.

Proof. We follow the lines of [4] and [64]. Let " > 0 be given and (u0, h0) 2
X�\PM such that the smallness condition (4.40) holds for some � > 0 to be specified
later. By (4.39), we can decompose the initial data

(u0, h0) = (0, P⌃
0 h0) + (ũ0, h̃0) + ('(ũ0, h̃0), 0),

where (ũ0, h̃0) + ('(ũ0, h̃0), 0) 2 PM and (ũ0, h̃0) 2 PM0.
We now want to decompose the solution (u(t), h(t)) suitably and write

(u(t), h(t)) = (0, P⌃
0 h0) + (ũ(t), h̃(t)) + (ū(t), h̄(t)), t 2 R+,

where (ũ(t), h̃(t)) 2 PM0 for t 2 R+, and estimate each term separately. We consider
the two coupled systems

!⇢ū+ ⇢@tū� µ
±�ū+r⇡̄ = Fu(P

⌃
0 h0 + h̃+ h̄, ũ+ ū, ⇡̃ + ⇡̄), in ⌦\⌃,

div ū = Gd(P
⌃
0 h0 + h̃+ h̄, ũ+ ū), in ⌦\⌃,

�P⌃(Jµ±(Dū+Dū
>)e3K) = G

k

S
(P⌃

0 h0 + h̃+ h̄, ũ+ ū), on ⌃,

�2Jµ±
@3ū3K + J⇡̄K � ��x0 h̄ = G

?

S
(P⌃

0 h0 + h̃+ h̄, ũ+ ū), on ⌃,

JūK = 0, on ⌃,

!h̄+ @th̄� ū3 + J@3⌘̄K = G⌃(P
⌃
0 h0 + h̃+ h̄, ũ+ ū, ⌘̃ + ⌘̄), on ⌃,

(�rx0 h̄, 0)> · ⌫S1 = 0, on @⌃,

�⌘̄ = Gc(P
⌃
0 h0 + h̃+ h̄, ⌘̃ + ⌘̄), in ⌦\⌃,

⌘̄|⌃ � ��x0 h̄ = G(P
⌃
0 h0 + h̃+ h̄), on ⌃,

⌫@⌦ ·r⌘̄|@⌦ = GN (P⌃
0 h0 + h̃+ h̄, ⌘̃ + ⌘̄), on @⌦\⌃,

PS1

�
µ
±(Dū+Dū

>)⌫S1

�
= 0, on S1\@⌃,

ū · ⌫S1 = 0, on S1\@⌃,

ū = 0, on S2,

ū(0) = '(ũ0, h̃0), on ⌦\⌃,

h̄(0) = 0, on ⌃,

(4.41)
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where ! > 0, and

⇢@tũ� µ
±�ũ+r⇡̃ = !⇢(I � T1)ū, in ⌦\⌃,

div ũ = 0, in ⌦\⌃,

�P⌃(Jµ±(Dũ+Dũ
>)e3K) = 0, on ⌃,

�2Jµ±
@3u3K + J⇡̃K � ��x0 h̃ = 0, on ⌃,

JũK = 0, on ⌃,

@th̃� ũ3 + J@3⌘̃K = !(h̄� P
⌃
0 h̄), on ⌃,

(�rx0 h̃, 0)> · ⌫S1 = 0, on @⌃,

�⌘̃ = 0, in ⌦\⌃,

⌘̃|⌃ � ��x0 h̃ = 0, on ⌃,

⌫@⌦ ·r⌘̃|@⌦ = 0, on @⌦\⌃,

PS1

�
µ
±(Dũ+Dũ

>)⌫S1

�
= 0, on S1\@⌃,

ũ · ⌫S1 = 0, on S1\@⌃,

ũ = 0, on S2,

ũ(0) = ũ0, on ⌦\⌃,

h̃(0) = h̃0, on ⌃.

(4.42)

Let us note a few things here. T1 in (4.42)1 is the solution operator stemming from
(4.34). The right hand side of (4.42)1 can equivalently be written as !⇢(I � T1)ū =
!⇢ū � !⇢rq̄, where q̄ 2 Ḣ

1
r
(⌦\⌃) is the unique solution of the weak transmission

problem

(rq̄|r )L2(⌦) = (ū|r )L2(⌦), for all  2 W
1
r0(⌦),

Jq̄K = 0, on ⌃.

Furthermore, the initial value h̃0 in (4.42) is mean value free. Note that the right
hand side of (4.42)6 is mean value free as well, hence an integration of (4.42)6 over

⌃ yields that h̃ stays mean value free for all times t > 0. In particular, we can
equivalently rewrite (4.42) in the projected base space P

⌃
0 X0 as

d

dt
z̃(t) + Lz̃(t) = R(z̄)(t), t > 0, z(0) = z̃0 := (ũ0, h̃0). (4.44)

Here, z̃ := (ũ, h̃), z̄ := (ū, h̄) and R(z̄) := (!(I � T1)ū, (I � P
⌃
0 )h̄).

Note that by Lemma 4.9, the spectral bound of �L satisfies s(�L)  � < 0
and the restricted semigroup e

�Lt is exponentially stable on P
⌃
0 X0.

We now solve this evolution equation in exponentially time-weighted spaces to
get suitable decay estimates, cf. [4] and [64].

Let us introduce notation. Let Eu(R+) := H
1
r
(R+;Lr(⌦)) \ Lr(R+;H2

r
(⌦\⌃))

and Eh(R+) := W
1
p
(R+;W

1�1/q
q (⌃)) \ Lp(R+;W

4�1/q
q (⌃)). For � 2 [0,�s(�L))
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define

e
��tEu(R+) := {w 2 Lr(R+;Lr(⌦)) : e

�t
w 2 Eu(R+)},

e
��tEh(R+) := {w 2 Lp(R+;Lq(⌦)) : e

�t
w 2 Eh(R+)}.

In a similar way we define e
��t

Lr(R+;Lr(⌦)). Since 0  � < �s(�L), we obtain
that for every

(fu, fh) 2 e
��t[Lr(R+;Lr(⌦))⇥ Lp(R+;W

1�1/q
q

(⌃))],

and (û0, ĥ0) 2 X� there is a unique solution (u, h) 2 e
��t[Eu(R+)⇥ Eh(R+)] of the

linear evolution problem

@t(u, h) + L(u, h) = (fu, fh), t 2 R+, (u, h)|t=0 = (û0, ĥ0),

by maximal regularity in exponentially time-weighted spaces. Furthermore, there is
some M > 0 such that

|(u, h)|e��t[Eu(R+)⇥Eh(R+)]  M |(fu, fh, û0, ĥ0)|
e��t[Lr(R+;Lr(⌦))⇥Lp(R+;W 1�1/q

q (⌃))]⇥X�
.

In particular, we may then easily solve (4.44) in dependence of z̄ = (ū, h̄),

(ũ, h̃) =

✓
d

dt
+ L, tr |t=0

◆�1

(!(I � T1)ū, (I � P
⌃
0 )h̄, ũ0, h̃0). (4.45)

Let us now discuss problem (4.41). For given ! > 0, let L! be given by the left hand
side of (4.41) and N the collection of nonlinearities on the right hand side. Then we
can rewrite problem (4.41) in the shorter form

L!w̄ = N(w1 + w̃ + w̄), (ū, h̄)(0) = ('(ũ0, h̃0), 0),

where w̄ := (ū, h̄, ⇡̄, ⌘̄), w̃ := (ũ, h̃, ⇡̃, ⌘̃) and w1 := (0, P⌃
0 h0, 0, 0). Note at this

point that w1 is constant and N does not explicitly depend on w1. Furthermore,
due to the first part of the proof, w̃ depends only on (ũ0, h̃0, ū, h̄), cf. (4.45).

In order to solve problem (4.41) we need to resolve the initial data and the
compatibility conditions at t = 0 properly. By solving certain auxiliary problems in
exponentially weighted spaces, we may construct an extension operator

ext� : X̄� ! e
�� [Eu(R+)⇥ Eh(R+)],

satisfying ext�(v, g)|t=0 = (v, g) for all (v, g) 2 X̄� , where

X̄� := {(u, h) 2 X� :u|S2 = 0, (u|⌫S1) = 0, PS1(µ
±(Du+Du

>)⌫S1) = 0,

JuK = 0, (rx0h|⌫@⌃) = 0},

cf. [64]. Now define

M(ũ0, h̃0, w̄) := N(w1 + w̃ + w̄ + ext� [('(ũ0, h̃0), 0)� (ū(0), h̄(0))]).

By construction, M(ũ0, h̃0, w̄)|t=0 = N(u0, h0, 0, 0). This allows us to solve the prob-
lem

L!w̄ = M(ũ0, h̃0, w̄), (w̄1, w̄2)|t=0 = ('(ũ0, h̃0), 0),

by the implicit function theorem, since all relevant compatibility conditions at t = 0
are satisfied. Following the lines of [4], we obtain that there is some small ⇢ > 0
and a ball B(0, ⇢) ⇢ X� \ PM0, such that there is a � 2 C

1(B(0, ⇢); e��t[Eu(R+)⇥
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Eh(R+)⇥E⇡(R+)⇥E⌘(R+)]) satisfying w̄ = �(ũ0, h̃0). By construction, w̄ is the so-
lution of (4.41). Here, E⇡(R+) := Lr(R+; Ḣ1

r
(⌦\⌃)), E⌘(R+) := Lp(R+;W 2

q
(⌦\⌃)).

We then obtain that the convergence (u(t), h(t)) ! (0, P⌃
0 h0) in X� is at an

exponential rate. The proof is complete. ⇤



CHAPTER 5

Rayleigh-Taylor instability for the two-phase

Navier-Stokes/Mullins-Sekerka equations with

ninety degree contact angle

5.1. Introduction

In this chapter we study the two-phase Navier-Stokes equations with surface
tension coupled to a Mullins-Sekerka problem for two immiscible, incompressible
Newtonian fluids inside a bounded domain under the e↵ects of gravitational ac-
celeration. The gravitational force is hereby constant and acts only in one space
direction. In our model the interface separating the two fluids meets the boundary
of the domain at a constant ninety degree angle. This leads to a free boundary
problem for the interface involving a contact angle problem at the boundary as well.
We are especially interested in stability and instability properties of the problem,
depending on the surface tension and the two di↵erent densities of the fluids.

Rayleigh-Taylor instability for the two-phase Navier-Stokes equations with sur-
face tension was first studied in [54], where a full space problem in Rn was considered
and the interface is a small perturbation of a flat (n�1)-dimensional plane. The case
of a two-phase Navier-Stokes problem in a capillary domain with boundary contact
was treated in [64]. The two-phase Navier-Stokes/Mullins-Sekerka equations were
also studied in [4], for equal densities, no gravity, and without boundary contact. In
this chapter we continue the investigation of the two-phase Navier-Stokes/Mullins-
Sekerka equations in a capillary with boundary contact. For further discussion on
two-phase Navier-Stokes and Mullins-Sekerka we also refer to [22], [56], and [58].

We assume that the domain ⌦ ⇢ Rn, n = 2, 3, can be decomposed as ⌦ =
⌦+(t)[̇�̊(t)[̇⌦�(t), where �̊(t) denotes the interior of �(t), a (n � 1)-dimensional
submanifold with boundary. We interpret �(t) to be the interface separating the two
phases, ⌦+(t) and ⌦�(t), which will be assumed to be connected. The boundary of
�(t) will be denoted by @�(t). Furthermore we assume �(t) to be orientable, the
unit normal vector field on �(t) pointing from ⌦�(t) into ⌦+(t) will be denoted by
⌫�(t).

We denote by V�(t) the normal velocity and by H�(t) the mean curvature of the
free interface �(t). By J·K we mean the jump of a quantity across �(t) in direction
of ⌫�(t), that is,

JfK(x) := lim
"!0+

[f(x+ "⌫�(t))� f(x� "⌫�(t))], x 2 �(t).

Let us discuss relevant quantities of our model. We assume ⇢± > 0 are the two
positive constant densities of the fluids in the two phases, µ±

> 0 their respective

131
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constant viscosities, and � > 0 is a given surface tension constant. The gravitational
acceleration constant will be denoted by g > 0. To economize our notation, we let
⇢ := ⇢

+
�⌦+(t)+⇢

�
�⌦�(t) and µ := µ

+
�⌦+(t)+µ

�
�⌦�(t), where �M is the indicator

function of a given set M .
We shall denote by u the velocity of the fluids, p the pressure, ⌘ the chemical

potential, and �(t) the free interface at time t � 0.
Let us consider the case where the domain is a cylindrical container ⌦ = ⌃ ⇥

(L1, L2), where �1 < L1 < 0 < L2 < 1 and ⌃ ⇢ R2 is a bounded domain with
smooth boundary. We denote the walls of the cylinder by S1 := @⌃⇥ (L1, L2) and
bottom and top by S2 := ⌃ ⇥ {L1, L2}. As usual, ⌫@⌦ denotes the unit normal
vector field pointing outwards of ⌦ and ⌫S1 = ⌫@⌦ on the walls S1. The projection
is defined as PS1 := I � ⌫S1 ⌦ ⌫S1 .

In a cylindrical domain the full problem reads as

⇢@tu� µ�u+ div[(⇢u+ J⇢Kr⌘)⌦ u] +rp = �⇢gen, in ⌦\�(t),

div u = 0, in ⌦\�(t),

�Jµ(Du+Du
>)K⌫�(t) + JpK⌫�(t) = �H�(t)⌫�(t), on �(t),

JuK = 0, on �(t),

V�(t) � u|�(t) · ⌫�(t) = �J⌫�(t) ·r⌘K, on �(t),

⌫�(t) · ⌫S1 = 0, on @�(t),

�⌘ = 0, in ⌦\�(t),

J⌘K = 0, ⌘|�(t) = �H�(t) + J⇢Kgxn, on �(t),

⌫@⌦ ·r⌘|@⌦ = 0, on @⌦\�(t),

PS1

�
µ(Du+Du

>)⌫S1

�
= 0, on S1\@�(t),

u · ⌫S1 = 0, on S1\@�(t),

u|S2 = 0, on S2,

u(0) = u0, on ⌦\�(0),

�(0) = �0.

(5.1)
Here we want to mention that we implicitly impose that

�̊(t) ⇢ ⌦, @�(t) ⇢ S1, t � 0.

Note that the gravitational force in (5.1)1 is given by �⇢gen. Without gravita-
tional e↵ects, that is, g = 0, this model was proposed by Abels, Garcke, and Grün
in [2]. We want to note a few things here. The momentum balance (5.1)1 contains
an extra term involving the chemical potential ⌘ if the densities in the two phases
are di↵erent. This term is already needed to get an energy structure for the system
without gravitational e↵ects, cf. Section 5 in [2]. Furthermore, we have to modify
the equation for the chemical potential ⌘, equation (5.1)8.

We will below show that the energy

E(t) :=

Z

�(t)
�dH

n�1 +
1

2

Z

⌦
⇢(x, t)u(x, t)2dx+

Z

⌦
⇢(x, t)gxndx
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satisfies the energy-dissipation relation

d

dt
E(t) = �D(t) := �2

Z

⌦
µ|Du(t)|2dx�

Z

⌦
|r⌘(t)|2dx  0, (5.2)

cf. Lemma 5.1. Again, Du is the symmetric part of the gradient Du, 2Du =
Du + Du

>. There is a remark in order regarding this extra term in (5.1)1. Since
div u = 0 and �⌘ = 0 in the bulk phases ⌦\�(t), we obtain

div[(⇢u+ (⇢+ � ⇢
�)r⌘)⌦ u] = ⇢(u ·r)u+ (⇢+ � ⇢

�)(r⌘ ·r)u, in ⌦\�(t).

In the case of equal densities, say for simplicity ⇢ = 1, the extra term div[(⇢+ �

⇢
�)rµ⌦ u] vanishes. We also note that individual masses are conserved,

d

dt
|⌦±(t)| = 0, t 2 R+,

due to the boundary conditions and �⌘ = 0 and div u = 0 in the bulk phases ⌦\�(t).
Note that it is convenient to introduce the modified pressure p̃ := p + ⇢gxn. This
leads to the problem

⇢@tu� µ�u+ div[(⇢u+ J⇢Kr⌘)⌦ u] +rp̃ = 0, in ⌦\�(t),

div u = 0, in ⌦\�(t),

�Jµ(Du+Du
>)K⌫�(t) + Jp̃K⌫�(t) = �H�(t)⌫�(t) + J⇢Kgxn⌫�(t), on �(t),

JuK = 0, on �(t),

V�(t) � u|�(t) · ⌫�(t) = �J⌫�(t) ·r⌘K, on �(t),

⌫�(t) · ⌫S1 = 0, on @�(t),

�⌘ = 0, in ⌦\�(t),

J⌘K = 0, ⌘|�(t) = �H�(t) + J⇢Kgxn, on �(t),

⌫@⌦ ·r⌘|@⌦ = 0, on @⌦\�(t),

PS1

�
µ(Du+Du

>)⌫S1

�
= 0, on S1\@�(t),

u · ⌫S1 = 0, on S1\@�(t),

u|S2 = 0, on S2,

u(0) = u0, on ⌦\�(0),

�(0) = �0.

(5.3)
It is also noteworthy that the di↵erence of the densities enters the equation for the
chemical potential, (5.3)8, since we now let gravity act on the system, g > 0. This
is indeed needed and meaningful to obtain an energy structure for the system as we
shall show below. For further discussion of the free energy we refer to [2]. We now
close this introduction by showing that the system (5.3) is physically meaningful
and thermodynamically consistent.

Lemma 5.1. Suppose (u, p̃,�, ⌘) is a su�ciently smooth solution to (5.3). Then

d

dt

"Z

⌦
⇢
|u|

2

2
dx+

Z

�(t)
�dH

n�1 +

Z

⌦
⇢gxndx

#
= �2

Z

⌦
µ|Du|2dx�

Z

⌦
|r⌘|

2
dx.
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Proof. By well known transport identities, cf. [2],

d

dt

Z

⌦
⇢
|u|

2

2
dx =

Z

⌦
⇢@tu · udx�

Z

�(t)
J⇢K |u|

2

2
V�dH

n�1
.

By equation (5.3)1,

d

dt

Z

⌦
⇢
|u|

2

2
dx =

=

Z

⌦
u [2µ divDu� div[(⇢u+ j)⌦ u]�rp̃] dx�

Z

�(t)
J⇢K |u|

2

2
V�dH

n�1
,

where j := J⇢Kr⌘. Note that since div u = 0 and div j = 0 in the bulk phases
⌦\�(t),

u · div[(⇢u+ j)⌦ u] = u · [(⇢u+ j) ·r]u =
1

2
r|u|

2
· (⇢u+ j), in ⌦\�(t).

Hence,

d

dt

Z

⌦
⇢
|u|

2

2
dx = �2

Z

⌦
µ|Du|2dx+

Z

�(t)

1

2
|u|

2 (J⇢K(u · ⌫� � V�)� JjK · ⌫�) dHn�1

+

Z

�(t)
u · (�2JµDuK⌫� + Jp̃K⌫�)dHn�1

.

We obtain by equations (5.3)3 and (5.3)5 that

d

dt

Z

⌦
⇢
|u|

2

2
dx = �2

Z

⌦
µ|Du|2dx+

Z

�(t)
(u · ⌫�)(�H� + J⇢Kgxn)dH

n�1
.

We may now use d

dt

R
�(t) � = �

R
�(t) �H�V� to the result

d

dt

"Z

⌦
⇢
|u|

2

2
dx+

Z

�(t)
�dH

n�1

#
= �2

Z

⌦
µ|Du|2dx+

+

Z

�(t)
(�H� + J⇢Kgxn)(u · ⌫� � V�)dH

n�1 +

Z

�(t)
J⇢KgxnV�dH

n�1
.

We haveZ

�(t)
(�H�+J⇢Kgxn)(u ·⌫��V�)dH

n�1 =

Z

�(t)
⌘|�Jr⌘K ·⌫�dHn�1 = �

Z

⌦
|r⌘|

2
dx,

whence using Z

�(t)
J⇢KgxnV�dH

n�1 = �
d

dt

Z

⌦
⇢gxndx

consequently gives the desired equality and the proof is complete. ⇤
Let us give an overview of this chapter. We reduce the problem to a fixed

reference geometry and a nonlinear problem for the height function by means of
Hanzawa transform. Then we show local well-posedness and characterize spectral
properties of the linearization around the trivial equilibrium. The main result is then
proving presence of linearized Rayleigh-Taylor instability for the nonlinear problem.
Moreover, we discuss a thermodynamically relevant Mullins-Sekerka problem in a
cylidrical domain with gravitational force.
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5.2. Reduction to a flat interface and well-posedness

In this section we transform the equations (5.3) defined on the time-dependent
domain ⌦\�(t) with free boundary �(t) to a fixed reference frame. We follow the
same strategy as in Section 4.2. Again this is based on the ideas of [57], [64]. To
simplify notation, let n = 3.

We again assume that the interface at time t is given as a graph over the fixed
reference surface ⌃ := ⌦ \ {x3 = 0}, that is, there is some height function h :
⌃⇥ [0,1) ! (L1, L2), such that

�(t) = �h(t) := {x 2 ⌃⇥ (L1, L2) : x3 = h(x0
, t), x0 = (x1, x2) 2 ⌃}, t � 0.

Following the lines of Section 4.2, we transform the two-phase Navier-Stokes/Mullins-
Sekerka system with gravity (5.1) to the fixed reference frame, the transformed sys-
tem reads as

⇢
±
@tw � µ

±�w +rq = Ff (w, q, h,#), in ⌦\⌃,

divw = Fd(h,w), in ⌦\⌃,

�Jµ±(Dw +Dw
>)� qIK⌫⌃ = ��x0h⌫⌃ + J⇢Kgh⌫⌃ + FS(h,w, q), on ⌃,

JwK = 0, on ⌃,

@th = w · ⌫⌃ � J@3#K + F⌃(h,w,#), on ⌃,

(�rx0h, 0)> · ⌫S1 = 0, on @⌃,

�# = Fc(h,#), in ⌦\⌃,

#|⌃ � ��x0h� J⇢Kgh = F(h), J#K = 0, on ⌃,

⌫@⌦ ·r#|@⌦ = FN (h,#), on @⌦\⌃,

PS1

�
µ
±(Dw +Dw

>)⌫S1

�
= FP (h,w), on S1\@⌃,

w · ⌫S1 = 0, on S1\@⌃,

w = 0, on S2,

w(0) = w0, on ⌦\⌃,

h(0) = h0, on ⌃,
(5.4)

where ⌫⌃ = e3, and

Ff (w, q, h,#) := µ(�h ��)w + (r�rh)q+

+ ⇢Dw · @t⇥
�1
h

� ⇢(w ·rh)w � (⇢+ � ⇢
�)(rh# ·rh)w,

Fd(h,w) := (div� divh)w,

FS(h,w, q) := Jµ±
�
(D⇥h � I)Dw +Dw

>(D⇥h � I)>)
�
K⌫�h+

+ J
�
µ
±(Dw +Dw

>)� qI
�
(e3 � ⌫�h)K+

+ �(K(h)⌫�h ��x0he3) + J⇢Kgh(e3 � ⌫�h),

F⌃(h,w,#) := w · (�rx0h, 0)> � Je3 · (rh �r)#K � J(�rx0h, 0)> ·rh#K,
Fc(h,#) := (���h)#,

F(h) := �(K(h)��x0h),



136 5. RAYLEIGH-TAYLOR INSTABILITY FOR TWO-PHASE NAV.-ST./MUL.-SEKERKA

as well as

FN (h,#) := ⌫@⌦ · (r�rh)#,

FP (h,w) := PS1

�
µ
±
�
(D⇥h � I)Dw +Dw

>(D⇥h � I)>)
�
⌫S1

�
.

Recall that in this graph situation,

K(h) = H(�h) = divx0

 
rx0hp

1 + |rx0h|2

!
.

Furthermore, we want to point out that we used the fact that the normal ⌫S1 is
independent of x3 and that the transformation ⇥h leaves the Dirichlet-boundary S2

invariant.
Let us discuss local well-posedness of this transformed system. We again work

with the same function spaces as in the case without gravitational e↵ects, which were
discussed and introduced in Section 4.3.2. Since the terms stemming from gravity
only induce a lower order perturbation, we obtain that the principal linearization of
(5.4) has maximal regularity using Theorem 4.4. Indeed, J⇢Kgh is of lower order with
respect to �x0h in (5.4)3,8. We then may follow the lines of the proof of Theorem
4.5 to obtain local well-posedness for (5.4). For completeness, let us state the precise
result.

Theorem 5.2. Let µ
±
, ⇢

±
,�, g > 0 be constant, �1 < L1 < 0 < L2 < 1, and

(p, q, r) satisfy

p 2 (6,1), q 2 (99/50, 2) \ (2p/(p+ 1), 2), r = 17/5, 1/r > 1/4 + 1/p.

Moreover let ⌃ ⇢ R2
be a bounded domain with smooth boundary @⌃. Let ⌦ :=

⌃⇥ (L1, L2), S1 := @⌃⇥ (L1, L2), and S2 := ⌃⇥ {L1, L2}. Furthermore let

(w0, h0) 2 W
2�2/r
r

(⌦\⌃)⇥B
4�1/q�3/p
qp

(⌃),

satisfy the compatibility conditions

divw0 = Fd(h0, w0), in ⌦\⌃,

�Jµ±
@3(w0)1,2K � Jµ±

rx0(w0)3K = F
k

S
(w0, h0), on ⌃, Jw0K = 0, on ⌃,

PS1(µ
±(Dw0 +Dw

>

0 )⌫S1) = 0, on S1, w0 · ⌫S1 = 0, on S1,

w0|S2 = 0, on S2, (�rx0h0, 1)
>
· ⌫S1 = 0, on @⌃.

(5.5)

Then (5.4) admits a unique local-in-time strong solution, that is, there is some

T0 > 0, such that for every 0 < T  T0 there is some " = "(T ) > 0, such that

whenever the smallness condition

|(w0, h0)|
W

2�2/r
r (⌦\⌃)⇥B

4�1/q�3/p
qp (⌃)

 "

is satisfied there is a unique strong solution on (0, T ),

w 2 W
1
r
(0, T ;Lr(⌦)) \ Lr(0, T ;W

2
r
(⌦\⌃)), q 2 Lr(0, T ; Ḣ

1
r
(⌦\⌃)),

JqK 2 W
1/2�1/(2r)
r

(0, T ;Lr(⌃)) \ Lr(0, T ;W
1�1/r
r

(⌃)),

h 2 W
1
p
(0, T ;W 1�1/q

q
(⌃)) \ Lp(0, T ;W

4�1/q
q

(⌃)), # 2 Lp(0, T ;W
2
q
(⌦\⌃)).
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5.3. Rayleigh-Taylor instability

5.3.1. Equilibria and spectrum of the linearization. In this section we
characterize the equilibria of (5.3) and analyze the spectrum of the linearization
around the trivial equilibrium.

As in the model without gravity we may note that the pressure ⇡ as well as the
chemical potential ⌘ may be reconstructed by the semiflow (u(t),�(t)) by solving
the two-phase elliptic problem

�⌘ = 0, in ⌦\�(t),

J⌘K = 0, ⌘|�(t) = �H�(t) + J⇢Kgxn, on �(t),

n@⌦ ·r⌘|@⌦ = 0, on @⌦,

cf. Section A.2, and the weak transmission problem

(r⇡|r')L2(⌦) = (µ�u� div[(⇢u+ J⇢Kr⌘)⌦ u]|r')L2(⌦), for all ' 2 W
1
r0(⌦),

J⇡K = Jµ(Du+Du
>)⌫�(t) · ⌫�(t)K + �H�(t) + J⇢Kgxn, on �(t),

where r
0 = r/(r � 1), cf. Lemma A.7 in [64].

Assume that we have a time-independent solution (u,⇡, ⌘,�) of (5.3). By the
energy-dissipation equality (5.2) we directly obtain that

|
p
µ(Du+Du

>)|2
L2(⌦) + |rµ|

2
L2(⌦) = 0.

From this we deduce by Korn’s inequality that u has to be constant. Since u vanishes
on S2 we obtain that u = 0. We also obtain that µ is constant.

Hencer⇡ = 0 in ⌦\� and hence also ⇡ is constant in ⌦\�, with possibly di↵erent
values in the two phases. Furthermore, since also the trace of µ on � is constant, we
obtain

�H� + J⇢Kgxn = const.

In particular if H� = 0, then xn is constant on the interface. Hence flat interfaces
belong to the set of equilibria. Assuming that � is the graph of a height function h

over ⌃, we obtain that h solves the elliptic quasilinear problem

� divx0

 
rx0hp

1 + |rx0h|2

!
+ J⇢Kgh = c, x

0
2 ⌃,

(n@⌃|rx0h) = 0, x
0
2 @⌃,

(5.8)

where c := J⇢Kg 1
|⌃|

R
⌃ hdx

0. Note that c is determined by integrating (5.8) over ⌃
and invoking the boundary condition. All admissible height functions solving this
quasilinear problem belong to the set of equilibria.
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We are interested in stability properties of the trivial equilibrium (0,⌃). We
consider now the linear problem

⇢@tu� µ�u+r⇡ = fu, in ⌦\⌃,

div u = 0, in ⌦\⌃,

�Jµ(Du+Du
>)� ⇡IKe3 = ��x0he3 + J⇢Kghe3, on ⌃,

JuK = 0, on ⌃,

@th = u3 � J@3⌘K + fh, on ⌃,

(�rx0h, 1)> · ⌫S1 = 0, on @⌃,

�⌘ = 0, in ⌦\⌃,

J⌘K = 0, ⌘|⌃ � ��x0h� J⇢Kgh = 0, on ⌃,

⌫@⌦ ·r⌘|@⌦ = 0, on @⌦\⌃,

PS1

�
µ(Du+Du

>)⌫S1

�
= 0, on S1\@⌃,

u · ⌫S1 = 0, on S1\@⌃,

u = 0, on S2,

u(0) = u0, on ⌦\⌃,

h(0) = h0, on ⌃,

(5.9)

where h0 and fh are assumed to be mean value free. Note that the system conserves
this property during the evolution. This motivates to study problem (5.9) in the
following setting, where h is mean value free. Let

X0 := Lr,�(⌦)⇥W
1�1/q
q

(⌃) \ {(u, h) : (h|1)L2(⌃) = 0, (n@⌃|rx0h) = 0 on @⌃},

and

X1 := W
2
r
(⌦\⌃)⇥W

4�1/q
q

(⌃).

Here, Lr,�(⌦) denotes the closure of C
1

0 (⌦) functions with vanishing divergence
with respect to the Lr(⌦)-norm, as usual. Let L : D(L) ⇢ X1 ! X0 be given as

L(u, h) :=

✓
(µ±

/⇢
±)�u� (1/⇢±)r⇡
u3 � J@3⌘K

◆
, (5.10)

where

D(L) := W
2
r
(⌦\⌃)⇥W

4�1/q
q

(⌃) \ {(u, h) : div u = 0, JuK = 0,

P⌃(Jµ±(Du+Du
>)Ke3) = 0, PS1(µ

±(Du+Du
>)⌫S1) = 0,

(u|⌫S1) = 0, (h|1)L2(⌃) = 0, (n@⌃|rx0h) = 0}.

Here, ⇡ 2 Ḣ
1
r
(⌦\⌃) and ⌘ 2 W

2
q
(⌦\⌃) in (5.10) are determined as the unique

solutions of the corresponding weak transmission problem

([1/⇢±]r⇡|r )L2(⌦) = ([µ±
/⇢

±]�u|r )L2(⌦), for all  2 W
1
r0(⌦),

J⇡K = (Jµ±(Du+Du
>)Ke3|e3) + ��x0h+ J⇢Kgh, on ⌃,
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and the solution of the elliptic problem

�⌘ = 0, in ⌦\⌃,

J⌘K = 0, ⌘|⌃ = ��x0h+ J⇢Kgh, on ⌃,

(⌫@⌦|r⌘) = 0, on @⌦\⌃.

From Lemma A.7 in [64] stems also the notation via solution operators,

(1/⇢±)r⇡ = T1[(µ
±
/⇢

±)�u] + T2[(Jµ±(Du+Du
>)Ke3|e3) + ��x0h+ J⇢Kgh].

We will now analyze the spectrum of the operator L. Note that the domain D(L)
compactly embeds into X0, whence L has a compact resolvent and the spectrum of
L only consists of eigenvalues with finite multiplicity.

Again note that for any (u, h) 2 D(L), the height function h is mean value free.
Let � 2 C and consider the corresponding eigenvalue problem �(u, h) = L(u, h) for
(u, h) 2 D(L), that is

�⇢u� µ�u+r⇡ = 0, in ⌦\⌃,

div u = 0, in ⌦\⌃,

�Jµ(Du+Du
>)� ⇡IKe3 = ��x0he3 + J⇢Kghe3, on ⌃,

JuK = 0, on ⌃,

�h� u3 + J@3⌘K = 0, on ⌃,

(�rx0h|⌫@⌃) = 0, on @⌃,

�⌘ = 0, in ⌦\⌃,

J⌘K = 0, ⌘|⌃ � ��x0h� J⇢Kgh = 0, on ⌃,

(⌫@⌦|r⌘) = 0, on @⌦\⌃,

PS1

�
µ(Du+Du

>)⌫S1

�
= 0, on S1\@⌃,

(u|⌫S1) = 0, on S1\@⌃,

u = 0, on S2.

(5.11)

We test (5.11)1 with u in L2(⌦) to obtain

�|⇢
1/2

u|
2
L2(⌦) + |µ

1/2(Du+Du
>)|2

L2(⌦) � (��x0he3 + J⇢Kghe3|u)L2(⌃) = 0.

Equation (5.11)5 entails

�|⇢
1/2

u|
2
L2(⌦) + |µ

1/2(Du+Du
>)|2

L2(⌦) � (��x0h+ J⇢Kgh|�h+ J@3⌘K)L2(⌃) = 0.

An integration by parts gives

�|⇢
1/2

u|
2
L2(⌦) + |µ

1/2(Du+Du
>)|2

L2(⌦)+

+ �̄

h
�|rx0h|

2
L2(⌃) � J⇢Kg|h|2

L2(⌃)

i
+ |r⌘|

2
L2(⌦) = 0.

(5.12)

Using equality (5.12) we obtain important properties of the spectrum of L. These
are stated in the next lemma. It is the crucial step in showing Rayleigh-Taylor
instability of the coupled two-phase Navier-Stokes/Mullins-Sekerka system.

Theorem 5.3. The operator L : D(L) ⇢ X1 ! X0 from (5.10) has the following

spectral properties:
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(1) �(L) \ iR ⇢ {0}, and 0 2 �(L) if and only if J⇢Kg/� 2 �(��N ).
(2) If J⇢K  0, then �(L) ⇢ C�.

(3) If J⇢K > 0 and J⇢Kg/� < �1, then �(L) ⇢ C�.

(4) If J⇢K > 0 and J⇢Kg/� > �1, then �(L) \ C+ 6= ;.

Here, ��N denotes the negative Neumann-Laplacian in the space

X := W
2�1/q
q

(⌃) \ {h : (h|1)L2(⌃) = 0}

with domain

D(��N ) := W
4�1/q
q

(⌃) \X \ {h : n@⌃ ·rx0h = 0 on @⌃}.

We denote by �(��N ) ⇢ R+ its spectrum, and �1 > 0 its first eigenvalue.

Proof. Let us prove the first statement. Let � = 0. Then (5.12) implies that
the symmetric gradient is zero and ⌘ is constant. By Korn’s inequality, u = 0 since
u vanishes on S2. Also ⇡ is constant in the phases with possibly di↵erent values.
Since then also J⇡K is constant, this entails that h solves the linear elliptic problem

�x0h+
J⇢Kg
�

h = 0, on ⌃,

(rx0h|n@⌃) = 0, on @⌃.

This stems from integrating equation (5.11)3 over ⌃. Hence this problem has a
nontrivial solution if and only if J⇢Kg/� belongs to the spectrum of ��N . This
shows that 0 2 �(L) if and only if J⇢Kg/� 2 �(��N ). Let now � 2 C such that
Re� = 0. Then by the same arguments we conclude that u is zero and ⌘ is constant.
In this case, equation (5.11)5 reads �h = 0, whence since h may not be trivial, � = 0.
This shows the first assersion.

Whenever J⇢K  0, the expression in brackets in (5.12) satisfies

h
�|rx0h|

2
L2(⌃) � J⇢Kg|h|2

L2(⌃)

i
� 0. (5.14)

Hence taking real parts in (5.12) yields that Re�  0 and the above arguments show
that then Re� < 0, since g,� > 0.

Now let J⇢K > 0 and J⇢Kg/� < �1. Following the lines of [64], the Poincare
inequality then yields that

|rx0h|
2
L2(⌃) �

J⇢Kg
�

|h|
2
L2(⌃) � 0,

since h is mean value free. Note that this inequality renders equation (5.14) to be
true, whence also in this case �(L) ⇢ C�.

Let us finally consider the most involved case where J⇢K > 0 and J⇢Kg/� > �1.
We now aim to show that �(L) \ C+ is not empty. Let 3 < r < 7/2. We will now,

for given � � 0 and given g 2 W
1�1/r
r (⌃), use Theorem A.13 in [64] to solve the
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linear two-phase Stokes problem

�⇢
±
u� µ

±�u+r⇡ = 0, in ⌦\⌃,

div u = 0, in ⌦\⌃,

�Jµ±(Du+Du
>)Ke3 + J⇡Ke3 = ge3, on ⌃,

JuK = 0, on ⌃,

PS1(µ
±(Du+Du

>)⌫S1) = 0, on S1\@⌃,

(u|⌫S1) = 0, on S1\@⌃,

u = 0 on S2,

(5.15)

uniquely by some u 2 W
2
r
(⌦\⌃) \ W

1
r
(⌦). Define the corresponding Neumann-to-

Dirichlet operator N
S

�
: W 1�1/r

r (⌃) ! W
2�1/r
r (⌃) of the Stokes problem (5.15) by

N
S

�
g := (u|e3). Regarding N

S

�
, Proposition 4.1 in [64] gives the following properties.

Lemma 5.4. Let 3 < r < 7/2. The Neumann-to-Dirichlet operator N
S

�
of the

Stokes problem (5.15) admits a compact, self-adjoint extension to L2(⌃) which has

the following properties.

(1) If u denotes the solution of (5.15), then

(NS

�
g|g)L2(⌃) = �|(⇢±)1/2u|2

L2(⌦) +
1

2
|(µ±)1/2(Du+Du

>)|2
L2(⌦)

for all g 2 W
1�1/r
r (⌃) and � � 0.

(2) For each ↵ 2 (0, 1/2), there exists C↵ > 0, such that

(NS

�
g|g)L2(⌃) �

(1 + �)↵

C↵

|N
S

�
g|

2
L2(⌃),

for all g 2 L2(⌃) and � � 0. In particular,

|N
S

�
|B(L2(⌃);L2(⌃)) 

C↵

(1 + �)↵

for all � � 0.
(3) N

S

�
g has mean value zero for all g 2 L2(⌃), � � 0.

Let us be concerned with the elliptic problem of the Mullins-Sekerka equations.

For given g 2 W
2�1/q
q (⌃), 5/3 < q < 2, we may solve the two-phase elliptic problem

�⌘ = 0, in ⌦\⌃,

J⌘K = 0, ⌘|⌃ = g, on ⌃,

(n@⌦|r⌘) = 0, on @⌦,

uniquely by a function ⌘ 2 W
2
q
(⌦\⌃), cf. Appendix A, and define the corresponding

Dirichlet-to-Neumann operator

DMS : W 2�1/q
q

(⌃) ! W
1�1/q
q

(⌃)

by DMSg := J@3⌘K. The eigenvalue problem (5.11) can then, for � � 0, equivalently
be written as

�h+N
S

�
(A⇤h) +DMS(A⇤h) = 0, (5.16)
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where A⇤h := ���Nh� J⇢Kgh, equipped with domain

D(A⇤) := W
4�1/q
q

(⌃) \ {h : (h|1)L2(⌃) = 0, (n@⌃|rx0h) = 0}. (5.17)

Note at this point that also A⇤h is indeed mean value free for every h 2 D(A⇤). We
now want to invert N

S

�
+ DMS and apply the inverse operator to equation (5.16).

To this end, we need properties of the corresponding Neumann-to-Dirichlet operator
NMS = [DMS ]�1, which is given as follows.

For given g we solve

�# = 0, in ⌦\⌃,

J#K = 0, J@3#K = g, on ⌃,

(n@⌦|r#) = 0, on @⌦,

(5.18)

and define NMSg := #|⌃. Proposition 10.5.1 in [57] gives that whenever g 2

W
1�1/q
q (⌃) is mean value free, problem (5.18) is solvable and the solution is unique

up to a constant. Hence if we restrict the problem to mean-value free functions,

the operator NMS : W 1�1/q
q,(0) (⌃) ! W

2�1/q
q,(0) (⌃) is well defined. Here, W s

q,(0)(⌃) :=

W
s

q
(⌃) \ {u : (u|1)L2(⌃) = 0}, s > 0, and L2,(0)(⌃) := L2(⌃) \ {u : (u|1)L2(⌃) = 0}.

Regarding NMS , we now have the following result.

Lemma 5.5. The Neumann-to-Dirichlet operator

NMS : W 1�1/q
q,(0) (⌃) ! W

2�1/q
q,(0) (⌃)

of problem (5.18) admits a compact, selfadjoint extension to L2,(0)(⌃), which has the

following properties.

(1) For g 2 W
1�1/q
q,(0) (⌃) and # 2 W

2
q,(0)(⌦\⌃) the corresponding unique mean-

value free solution of (5.18), we have

(NMSg|g)L2(⌃) = |r#|
2
L2(⌦). (5.19)

(2) The extension to L2,(0)(⌃) satisfies (5.19) as well, where now g 2 L2,(0)(⌃)
and # 2 W

1
q,(0)(⌦) is the unique weak solution of (5.18).

(3) There exists a constant c0 > 0, such that

(NMSg|g)L2(⌃) � c0|NMSg|
2
L2(⌃)

for all g 2 W
1�1/q
q,(0) (⌃) and the extension satisfies

|NMS |B(L2,(0)(⌃);L2(⌃))  C.

(4) The extension of NMS to L2,(0)(⌃) is injective.

Let us postpone the proof of Lemma 5.5 to a later point. Having these results
at hand, we can proceed as in [64] and [57]. We know that both N

S

�
and NMS are

selfadjoint and positive semi-definite on L2,(0)(⌃), hence T� := [NS

�
+ DMS ]�1 is

selfadjoint and positive semi-definite as well. Furthermore, NS

�
+DMS is injective

in the space of mean-value free functions. Indeed, whenever (NS

�
+DMS)g = 0, by

the above results the corresponding solutions are u = 0 and ⌘ = const., whence g
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has to be constant as well, hence zero. In particular, regarding equation (5.16), we
may rewrite the eigenvalue problem as

�T�h+A⇤h = 0. (5.20)

We now want to show there is a nontrivial solution to (5.20). To this end let
B� := �T� +A⇤ with domain

D(B�) := W
2
2 (⌃) \ {h : (h|1)L2(⌃) = 0, (n@⌃|rx0h) = 0}.

We now want to show that for � > 0 su�ciently small, there is some h⇤ 2 D(B�)
such that (B�h⇤|h⇤)L2(⌃) < 0.

To this end let e be an eigenfunction to the first nontrivial eigenvalue of ��N

in X, that is, ��Ne = �1e. Define v� := T�e. Then, since e is mean value free,

e = T
�1
�

v� = N
S

�
v� +DMSv� = N

S

�
v� + [NMS ]

�1
v�. (5.21)

Let P0 : L2(⌃) ! L2,(0)(⌃) be the orthogonal projection onto the mean value free
functions, P0f := f � (f |1)L2(⌃)/|⌃|. Applying P0 to (5.21) yields

e = P0e = P0N
S

�
v� + P0[NMS ]

�1
v� = P0N

S

�
v� + [NMS ]

�1
v�,

since [NMS ]�1
v� is mean value free. Hence

NMSe = NMSP0N
S

�
v� + v�.

Testing with N
S

�
v� yields

(NMSe|N
S

�
v�) = (NMSP0N

S

�
v�|P0N

S

�
v�) + (v�|N

S

�
v�),

since NMSP0N
S

�
v� is mean value free. Invoking Lemma 5.4 and Lemma 5.5,

c0|NMSP0N
S

�
v�|

2
L2(⌃)+

(1 + �)1/4

C
|N

S

�
v�|

2
L2(⌃)  (v�+NMSP0N

S

�
v�|N

S

�
v�)L2(⌃),

for some c0 > 0. In particular, there is a constant C > 0 independent of �, such
that

|N
S

�
v�|

2
L2(⌃)  C(v� +NMSP0N

S

�
v�|N

S

�
v�)L2(⌃), � > 0.

Let us estimate the right hand side. We have

(v� +NMSP0N
S

�
v�|N

S

�
v�)L2(⌃) = (NMSe|N

S

�
v�)L2(⌃) = (NMSe|P0N

S

�
v�)L2(⌃),

since NMSe is mean value free. Since NMS is selfadjoint, the right hand side is equal
to (e|NMSP0N

S

�
v�)L2(⌃). Hence we obtain

(v� +NMSP0N
S

�
v�|N

S

�
v�)L2(⌃)  |e|L2(⌃)|N

S

�
v�|L2(⌃).

This shows that |NS

�
v�|

2
L2(⌃) is bounded as �! 0. This implies

lim
�!0

�T�e = lim
�!0

�v� = lim
�!0

�[NMSe�NMSP0N
S

�
v�] = 0.

Therefore, because of B� = �T� +A⇤,

lim
�!0

(B�e|e)L2(⌃) = (A⇤e|e)L2(⌃).

By choice of e, ��Ne = �1e, whence

(A⇤e|e)L2(⌃) = �

✓
�1 �

J⇢Kg
�

◆
|e|L2(⌃) < 0.
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This shows that

lim
�!0

(B�e|e)L2(⌃) < 0.

We are now interested in the behaviour of (B�h|h)L2(⌃) as � ! 1. Recall that
T� = [N�

S
+DMS ]�1. We can write

T� = (I +NMSN
S

�
)�1

NMS = NMS �NMSN
S

�
(I +NMSN

S

�
)�1

NMS ,

since (I + NMSN
S

�
)�1 = I � NMSN

S

�
(I + NMSN

S

�
)�1. Hence, since NMS is self-

adjoint,

(T�g|g)L2(⌃) = (NMSg|g)L2(⌃) � (NMSN
S

�
(I +NMSN

S

�
)�1

NMSg|g)L2(⌃)

= (NMSg|g)L2(⌃) � (NS

�
(I +NMSN

S

�
)�1

NMSg|NMSg)L2(⌃)

Furthermore, (NS

�
(I +NMSN

S

�
)�1

NMSg|NMSg)L2(⌃) can be bounded by

|N
S

�
|B(L2(⌃);L2(⌃))|(I +NMSN

S

�
)�1

|B(L2,(0)(⌃);L2(⌃))|NMSg|
2
L2(⌃),

which itself is bounded by

|N
S

�
|B(L2(⌃);L2(⌃))

1� |NMS |B(L2,(0)(⌃);L2(⌃))|N
S

�
|B(L2(⌃);L2(⌃))

|NMSg|
2
L2(⌃),

provided |N
S

�
|B(L2(⌃);L2(⌃)) is small enough. Altogether,

(T�g|g)L2(⌃) �

� (NMSg|g)L2(⌃) �
|N

S

�
|B(L2(⌃);L2(⌃))

1� |NMS |B(L2,(0)(⌃);L2(⌃))|N
S

�
|B(L2(⌃);L2(⌃))

|NMSg|
2
L2(⌃).

Lemma 5.5 renders there is some constant c0 > 0, such that

(T�g|g)L2(⌃) �

� (NMSg|g)L2(⌃) �
1

c0

|N
S

�
|B(L2(⌃);L2(⌃))

1� |NMS |B(L2,(0)(⌃);L2(⌃))|N
S

�
|B(L2(⌃);L2(⌃))

(NMSg|g)L2(⌃),

and Lemma 5.4 gives that |NS

�
|B(L2(⌃);L2(⌃)) tends to zero as �! 1. In particular,

there exists some �+ > 0, such that

(T�g|g)L2(⌃) �
1

2
(NMSg|g)L2(⌃), � � �+.

Since NMS is self-adjoint, positive semidefinite and invertible, NMS is positive def-
inite, cf. Proposition 1.3.6 in [45]. Hence there is a positive d0 > 0 such that
(NMSg|g)L2(⌃) � d0|g|

2
L2(⌃) for all g 2 L2,(0)(⌃). Clearly,

(A⇤g|g)L2(⌃) = (���Ng|g)L2(⌃) � J⇢Kg|g|2
L2(⌃)

= �|rx0g|
2
L2(⌃) � J⇢Kg|g|2

L2(⌃)

� �J⇢Kg|g|2
L2(⌃),
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for all g 2 W
2
2,(0)(⌃), whence

(B�g|g)L2(⌃) �
�

2
(NMSg|g)L2(⌃) + (A⇤g|g)L2(⌃), � � �+,

�


�

2
d0 � J⇢Kg

�
|g|

2
L2(⌃), � � �+. (5.22)

In particular, if � > 0 is large enough, B� is positive definite. Define

�⇤ := sup{� > 0 : Bµ is not positive semi-definite for each µ 2 (0,�]}. (5.23)

By what we have shown above, 0 < �⇤ < 1 and B� has a negative eigenvalue for
each � < �⇤, again since the resolvent of B� is compact. It follows that since the
eigenvalue has to cross the imaginary axis, 0 2 �(B�⇤), cf. [64]. Hence there exists
a nontrivial solution h 2 D(B�⇤) to B�⇤h = 0 in L2,(0)(⌃). In other words,

�⇤T�⇤h+A⇤h = 0.

Hence A⇤h 2 W
2�1/q
q (⌃). By regularity theory, h 2 W

4�1/q
q (⌃) and satisfies the

other conditions in (5.17). We have shown that �(L) \ C+ 6= ; and the proof is
complete. ⇤

We close this section with the proof of Lemma 5.5.

Proof of Lemma 5.5. Let us for given g 2 W
1�1/q
q,(0) (⌃) solve problem (5.18)

by # 2 W
2
q,(0)(⌦\⌃). We then obtain

(NMSg|g)L2(⌃) =

Z

⌃
#|⌃J@3#Kdx0 = |r#|

2
L2(⌦).

Since
R
⌦ #dx = 0, we obtain by Poincaré-Wirtinger inequality and a standard argu-

ment that
| tr⌃ #|

2
L2(⌃)  C|r#|

2
L2(⌦) (5.24)

for some C > 0. Hereby we used Sobolev embeddings and J#K = 0 to show that
# 2 H

1
2 (⌦). In particular, there is some C > 0 such that

|#|H1
2 (⌦)  C|#|W 2

q (⌦\⌃).

Interpolating estimates then gives (5.24). Consequently,

(NMSg|g)L2(⌃) �
1

C
|NMSg|

2
L2(⌃) (5.25)

for all g 2 W
1�1/q
q,(0) (⌃) for some C > 0 independent of g. Since W

1�1/q
q,(0) (⌃) is dense

in L2,(0)(⌃) we may extend NMS to all of L2,(0)(⌃). Note that (5.25) implies

|NMSg|L2(⌃)  C|g|L2(⌃), g 2 L2,(0)(⌃).

It remains to characterize the weak limit. To this end let g 2 L2,(0)(⌃) and (gn)n ⇢

W
1�1/q
q,(0) (⌃) such that gn ! g in L2,(0)(⌃). Let #n be the corresponding solution of

(5.18) with right hand side gn. An integration by parts in the two phases then yields
that Z

⌃
gn'|⌃ =

Z

⌦\⌃
r#n ·r', ' 2 C

1

0 (⌦), n 2 N. (5.26)
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By definition of the extension, NMSg = limn!1 NMSgn. This way,

|r#n|
2
L2(⌦) = (NMSgn|gn)L2(⌃) !n!1 (NMSg|g)L2(⌃).

Therefore, (r#n)n is bounded in L2(⌦). By Poincare-Wirtinger inequality, (#n)n is
bounded in H

1
2 (⌦). Hence, for a subsequence, #n * #̃ in H

1
2 (⌦) for some #̃. Passing

to the limit in (5.26) yields that
Z

⌃
g'|⌃ =

Z

⌦\⌃
r#̃ ·r', ' 2 C

1

0 (⌦),

whence #̃ is the unique weak solution of (5.18) with given right hand side g. The fact

that NMS : W 1�1/q
q,(0) (⌃) ! W

2�1/q
q,(0) (⌃) is injective is obvious: If for some g we have

NMSg = 0, by (5.19) we know that # is constant, where # is the unique solution of
(5.18). Hence g = 0 by (5.18). ⇤

5.4. Thermodynamically consistent Mullins-Sekerka equations with
gravity

We will now formulate a Mullins-Sekerka problem with gravity which is itself
thermodynamically consistent. For a related model of Cahn-Hilliard type with grav-
ity see Section 3.6 in [18]. Again let ⌦ = ⌃⇥ (L1, L2) ⇢ Rn, n = 2, 3, be a cylinder,
where �1 < L1 < 0 < L2 < 1 and ⌃ ⇢ Rn�1 is bounded with smooth boundary.
Again we assume that ⇢± > 0, g > 0 are constant and ⇢ := ⇢

+
�⌦+(t) + ⇢

�
�⌦�(t),

where � is the indicator function. Let S1 := @⌃⇥ (L1, L2). We consider now a pure
two-phase Mullins-Sekerka problem with ninety degree angle condition

V� = �Jr⌘K · ⌫�, on �(t),

⌫� · ⌫S1 = 0, on @�(t),

�⌘ = 0, in ⌦\�(t),

⌘|� = �H� + J⇢Kgxn, in ⌦\�(t),

⌫⌦ ·r⌘ = 0, on @⌦\�(t),

�(0) = �0.

(5.27)

Again we are interested in physical relevance, well-posedness, and stability proper-
ties.

5.4.1. Energy-dissipation equality. A similar calculation as in the proof of
Lemma 5.1 using transport identities shows that if (�, ⌘) is a su�ciently smooth
solution to (5.27),

d

dt

"Z

�(t)
�dH

n�1 +

Z

⌦
⇢gxndx

#
= �

Z

⌦
|r⌘|

2
dx  0. (5.28)

Note that if g = 0, this reduces to the classical estimate. Note that since �⌘ = 0 in
the bulk phases ⌦\�(t), phases are conserved also for g > 0,

d

dt
|⌦±(t)| = 0, t 2 R+.
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5.4.2. Well-Posedness. Assuming that the free interface �(t) is a graph of
a function h over ⌃, we can transform the system to ⌦\⌃ by means of Hanzawa
transform,

@th+ J@3⌘K = G⌃(h, ⌘), on ⌃,

(�rx0h, 0)> · ⌫S1 = 0, on @⌃,

�⌘ = Gc(h, ⌘), in ⌦\⌃,

⌘|⌃ � ��x0h� J⇢Kgh = G(h), on ⌃,

⌫@⌦ ·r⌘|@⌦ = GN (h, ⌘), on @⌦\⌃,

h(0) = h0, on ⌃,

(5.29)

where G⌃, Gc, G and GN are nonlinearities, similarly as before, cf. also Section
2.6. Note that well-posedness of (5.29) in the case g = 0 with a ninety degree
angle condition was already proven in Section 2.6. Since again the extra term only
induces a compact perturbation, we obtain well-posedness of (5.29) by a perturbation
argument.

5.4.3. Stability properties. Let us discuss the equilibria of (5.27). Again we
note the potential ⌘ may be reconstructed by solving a two-phase elliptic problem.
By the energy-dissipation equailty (5.28) we easily see that any stationary solution
(�, ⌘) necessarily satisfies ⌘ = const. This implies that for (�, ⌘),

�H� + J⇢Kgxn = const.

We readily see that flat interfaces belong to the set of equilibria.
Again we want to investigate properties of the trivial equilibrium (0,⌃). Con-

sider the linear problem

@th = �J@3⌘K + fh, on ⌃,

(�rx0h, 1)> · ⌫S1 = 0, on @⌃,

�⌘ = 0, in ⌦\⌃,

⌘|⌃ = ��x0h+ J⇢Kgh, on ⌃,

⌫@⌦ ·r⌘|@⌦ = 0, on @⌦\⌃,

h(0) = h0, on ⌃.

(5.30)

Suppose fh and h0 are mean value free. Then
R
⌃ h(t)dx = 0 for all times t 2 R+.

Define

X0 := W
1�1/q
q

(⌃) \ {h : (h|1)L2(⌃) = 0}, X1 := W
4�1/q
q

(⌃),

and L : D(L) ⇢ X1 ! X0 by Lh := �J@3⌘K with natural domain

D(L) := X1 \ {h : (h|1)L2(⌃) = 0, (�rx0h, 1)> · ⌫S1 = 0 on @⌃}. (5.31)

Clearly, for given h 2 D(L), ⌘ 2 W
2
q
(⌦\⌃) is given as the unique solution of the

corresponding linear two-phase elliptic problem (5.30)3 � (5.30)5.
Again since D(L) embeds compactly in X0, the resolvent of L is compact and

hence the spectrum of L only consists of isolated eigenvalues with finite multiplicity.
We now want to analyze the spectrum of L. To this end we consider the eigenvalue
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problem �h = Lh for some � 2 C, h 2 D(L), that is, h is mean value free and
satisfies

�h = �J@3⌘K, on ⌃,

(�rx0h, 0)> · ⌫S1 = 0, on @⌃,

�⌘ = 0, in ⌦\⌃,

⌘|⌃ = ��x0h+ J⇢Kgh, on ⌃,

⌫@⌦ ·r⌘|@⌦ = 0, on @⌦\⌃.

(5.32)

Testing the first equation (5.32)1 with ⌘|⌃ in L2(⌃) yields

�

h
�|rx0h|

2
L2(⌃) � J⇢Kg|h|2

L2(⌃)

i
+ |r⌘|

2
L2(⌦) = 0. (5.33)

Assume that � = 0 for a moment. Then ⌘ is constant, whence h has to solve the
elliptic problem

�x0h+
J⇢Kg
�

h = 0, on ⌃, (n@⌃|rx0h) = 0, on @⌃. (5.34)

Let again ��N denote the negative Neumann-Laplacian in

X := W
2�1/q
q

(⌃) \ {h : (h|1)L2(⌃) = 0}

with domain

D(��N ) := W
4�1/q
q

(⌃) \X \ {h : n@⌃ ·rx0h = 0 on @⌃},

as in Lemma 5.3. Then clearly h is a nontrivial solution to (5.34) if and only if
J⇢Kg/� belongs to the spectrum of ��N .

By (5.33), � is necessary real. Hence �(L) \ iR ⇢ {0}. Following the lines of
the proof of Lemma 5.3, we readily obtain that �(L) ⇢ C� whenever J⇢Kg/� < �1,
where �1 > 0 is the first eigenvalue of ��N in X. Note that this includes the case
where J⇢K  0. In particular in these cases, since 0 is not an eigenvalue and L has
compact resolvent, we have a spectral gap, �(L) ⇢ {Re z  � < 0} for some  > 0.
We now aim to show that �(L) \ C+ is not empty if J⇢Kg/� > �1.

Consider the eigenvalue problem �h = Lh in X0 for h 2 D(L),� � 0. Define
A⇤h := ���Nh� J⇢Kgh, where D(A⇤) := D(L). Let T0 be the solution operator to
the elliptic two-phase problem and DMSg := J@3T0gK the corresponding Dirichlet-
to-Neumann operator. Then the eigenvalue problem can be written as

�h+DMSA⇤h = 0. (5.35)

By applying the Neumann-to-Dirichlet operator NMS , cf. (5.18), the equation (5.35)
can be rewritten as

�NMSh+A⇤h = 0. (5.36)

Define B� := �NMS + A⇤ with natural domain D(B�) := W
2
2 (⌃) \ {h : (h|1) =

0, (n@⌃|rh) = 0}. Note that A⇤ by perturbation of ��N and NMS by Lemma 5.5
both admit suitable extensions to L2,(0)(⌃). Then, for � > 0 su�ciently large, B�

is positive definite. Indeed,

(B�h|h)⌃ = �(NMSh|h) + (A⇤h|h) � �d0|h|
2
L2(⌃) + �|rx0h|

2
L2(⌃) � J⇢Kg|h|2

L2(⌃),
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for all h 2 {h 2 H
2(⌃) : (h|1)2 = 0, n@⌃ · rx0h = 0 on @⌃}, where d0 > 0 is as

in (5.22). On the other hand, let 0 6= h⇤ 2 D(A⇤) be a nontrivial eigenfunction of
��N to the eigenvalue �1 > 0. Then

(B�h⇤|h⇤)⌃ = �(NMSh⇤|h⇤)⌃ + (A⇤h⇤|h⇤)⌃.

Taking limits as � ! 0, lim�!0(B�h⇤|h⇤)⌃ = (A⇤h⇤|h⇤)L2(⌃). By choice of h⇤, we
readily get

(A⇤h⇤|h⇤)L2(⌃) = �


�1 �

J⇢Kg
�

�
|h⇤|

2
L2(⌃),

whence (B�h⇤|h⇤)⌃ < 0, provided � > 0 is su�ciently small. Defining �⇤ > 0 as in
(5.23), the same arguments yield 0 2 �(B�⇤), hence there is a nontrivial h 2 D(B�⇤)
solving (5.36) in L2,(0)(⌃) and the same bootstrap argument as in the proof of
Lemma 5.3 finally yields h 2 D(L).

We have shown the following result.

Theorem 5.6. Let ��N and �1 > 0 be as in Lemma 5.3. The operator L :
D(L) ⇢ X1 ! X0 from (5.31) has the following spectral properties.

(1) �(L) \ iR ⇢ {0}, and 0 2 �(L) if and only if J⇢Kg/� 2 �(��N ).
(2) If J⇢K  0, or J⇢K > 0 and J⇢Kg/� < �1, then �(L) ⇢ C�.

(3) If J⇢K > 0 and J⇢Kg/� > �1, then �(L) \ C+ 6= ;.





APPENDIX A

Auxiliary problems of elliptic type

A.1. Smooth domains

Let ⌦ ⇢ Rn, n = 2, 3, be a bounded domain with smooth boundary @⌦. Fur-
thermore let ⌃ be a smooth submanifold of Rn with boundary such that the interior
⌃̊ is inside ⌦ and meets @⌦ at a constant ninety degree angle.

In this chapter we are concerned with problems of elliptic type, namely,

(⌘ ��)u = f, in ⌦\⌃,

u|⌃ = g1, on ⌃,

n@⌦ ·ru|@⌦ = g2, on @⌦,

(A.1)

where ⌘ > 0 is a fixed shift parameter, as well as the non-shifted version,

��u = f, in ⌦\⌃,

u|⌃ = g1, on ⌃,

n@⌦ ·ru|@⌦ = g2, on @⌦,

(A.2)

where in both cases f, g1 and g2 are given data. We will show optimal solvability
of this problem via a localization method. To this end we consider first the model
problem of (A.3) on Rn

+ with flat interface {xn > 0, x1 = 0}.

A.1.1. Flat interfaces.

Theorem A.1. Let q 2 (3/2, 2) and ⌃ := {xn > 0, x1 = 0} be a flat interface.

Then there is some ⌘0 > 0, such that for every ⌘ � ⌘0, f 2 Lq(Rn

+), g1 2 W
2�1/q
q (⌃),

and g2 2 W
1�1/q
q (@Rn

+), there exists a unique solution u 2 W
2
q
(Rn

+\⌃) of

(⌘ ��)u = f, in Rn

+\⌃,

u|⌃ = g1, on ⌃,

@nu|@Rn
+
= g2, on @Rn

+.

(A.3)

Furthermore, there is some C(⌘) > 0 and some K > 0 independent of ⌘ � ⌘0,

such that

|u|Lq(Rn
+) + ⌘

�1/2
|Du|Lq(Rn

+\⌃) + ⌘
�1

|D
2
u|Lq(Rn

+\⌃)

 K⌘
�1

|f |Lq(Rn
+) + C(⌘)|g1|

W
2�1/q
q (⌃)

+K⌘
�1/(2q)�1/2

|g2|
W

1�1/q
q (@Rn

+)

for all ⌘ � ⌘0.

151
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Proof. We first solve the auxiliary upper half space problem

(⌘ ��)w = f, in Rn

+,

@nw|@Rn
+
= g2, on @Rn

+,

by a function w 2 W
2
q
(Rn

+). Then it su�ces to solve

(⌘ ��)u = 0, in Rn

+\⌃,

u|⌃ = g̃1, on ⌃,

@nu|@Rn
+
= 0, on @Rn

+,

(A.4)

where g̃1 := g1�w|⌃, since then u = w+v solves the initial problem. Since @nu = 0
on the boundary, we may reflect problem (A.4) via an even reflection to obtain
an elliptic problem on Ṙ ⇥ Rn�1. By Theorem 2.11 using q < 2 we obtain that

Rg1 2 W
2�1/q
q (⌃̃), where ⌃̃ := {x1 = 0}. Here, R denotes the aforementioned even

reflection in xn-direction. The problem we are left to solve is now

(⌘ ��)v = 0, in Rn
\⌃̃,

v|⌃̃ = Rg1, on ⌃̃.
(A.5)

Let x
0 := (x2, ..., xn). It is now well known that the operator (⌘ � �x0)1/2 with

domain W
1
q
(Rn�1) has maximal regularity on the half line R+ with respect to the

base space Lq(Rn�1) and the induced semigroup is analytic:
By Example 4.5.16 in [57], the fractional power of the shifted Laplacian (⌘ �

�x0)1/2 admits a bounded H
1-calculus with base space L

q(Rn�1) and domain
W

1
q
(Rn�1), and the H

1-angle, say '1, is zero.

By the embedding (3.62) in [57], the operator (⌘ � �x0)1/2 then also admits
bounded imaginary powers with power angle 'P  '1, from which it follows by
Theorem 4.4.5 in [57] that (⌘��x0)1/2 is R-sectorial with spectral angle 'R  'P .
Since '1 = 0, we have 'R  0 and therefore Theorem 4.4.4 in [57] yields that
(⌘��x0)1/2 has maximal regularity on finite time intervals with respect to the base
space L

q(Rn�1). Note that due to the shift parameter the spectral bound of the
fractional power (⌘ ��x0)1/2 is strictly less than zero, see Remark A.3. Therefore
by well known results we have maximal regularity on the whole half-line R+. Note
that the induced semigroup of this operator is also analytic, cf. [57].

From Theorem 6.1.8 in [57], the natural domain of ⌘ � �x0 with respect to
the base space Lq(Rn�1) equals the Sobolev space W

2
q
(Rn�1). Corollary 6.1.9 in

[57] then renders the domain of the fractional operator to be D((⌘ � �x0)1/2) =
W

1
q
(Rn�1). To obtain a solution via maximal Lq-regularity with non-trivial initial

value, the initial value has to be in the corresponding interpolation space, which is
in this case explicitly given by

⇣
Lq(Rn�1), D((⌘ ��x0)1/2)

⌘

1�1/q,q
= W

1�1/q
q

(Rn�1).

More precisely, we have a unique solution

v 2 W
1
q
(R+;L

q(Rn�1)) \ L
q(R+;W

1
q
(Rn�1))
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to the evolution equation

@x1v � (⌘ ��x0)1/2v = 0, x1 2 (0,1),

v(x1 = 0) = v0,

whenever v0 2 W
1�1/q
q (Rn�1). The solution to this problem is then given by appli-

cation of the semigroup,

v+(x1, ..., xn) = e
�(⌘��x0 )1/2x1v0(x2, ..., xn).

By choosing v0 = Rg̃1, an easy calculation shows that v = e
�(⌘��x0 )1/2x1Rg̃1 is a

solution to (A.5), at least for x1 � 0. Note that by a simple coordinate transform,

v� = e
(⌘��x0 )1/2x1Rg̃1

solves (A.5) for x1  0, so altogether a solution of (A.5) is given by

v(x1, x
0) = e

�(⌘��x0 )1/2|x1|Rg1(x
0), x1 2 R, x0

2 Rn�1
.

By maximal regularity,

kvkW 1
q (R;Lq(Rn�1))\Lq(R;W 1

q (Rn�1))  CkRg̃1k
W

1�1/q
q (Rn�1)

,

hence
kv|Rn

+
kW 1

q (Rn
+)  Ckg1k

W
1�1/q
q (⌃)

. (A.6)

Note that by di↵erentiating the equations we can also control second derivatives,

kv|Rn
+
kW 2

q (Rn
+)  Ckg1k

W
2�1/q
q (⌃)

. (A.7)

Indeed, note that the semigroup is analytic, that (⌘ � �)1/2 is invariant under
translations and commutes with partial derivatives with respect to xj , j = 2, ..., n,
and that we can di↵erentiate the equations, see Proposition 2.2.1 (i) and (iv) in [43].
We obtain that @xjv, j = 2, ..., n, solves

@x1@xjv � (⌘ ��)1/2@xjv = 0, x1 2 (0,1),

@xjv(x1 = 0) = @xjv0,

for each j = 2, ..., n. Therefore maximal regularity just as above yields in this case

k@xjvkW 1
q (R;Lq(Rn�1))\Lq(R;W 1

q (Rn�1))  Ck@xjv0kW 1�1/q
q (Rn�1)

,

which then entails that

k@x1@xjvkLq(Rn
+) + k@xj@xkvkLq(Rn

+)  Ckv0k
W

2�1/q
q (Rn�1)

for all j, k = 2, ..., n. Note that since @x1@x1v = (⌘ ��x0)v, we can also control the
full W 2

q
-norm, so altogether (A.7) holds true.

To obtain the explicit dependence of the shift parameter ⌘ > 0 we proceed as
follows. By uniqueness of the solution, we know that u(x) = u⌘(

p
⌘x), where u⌘ is

the unique solution of

(I ��)u⌘ = f⌘, in Rn

+\⌃,

u⌘|⌃ = g
1
⌘
, on ⌃,

@nu⌘ = g
2
⌘
, on @Rn

+,
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where

f⌘(x) :=
1

⌘
f(

1
p
⌘
x), g

1
⌘
(x) := g1(

1
p
⌘
x), g

2
⌘
(x) :=

1
p
⌘
g2(

1
p
⌘
x).

By the above arguments there now exists a constant K > 0 independent of ⌘, such
that

ku⌘kW 2
q (Rn

+\⌃)  K

⇣
kf⌘kLq + kg

1
⌘
k
W

2�1/q
q

+ kg
2
⌘
k
W

1�1/q
q

⌘
.

A direct calculation shows that

ku⌘kW 2
q
=

p
⌘
n/q

kukLq +
p
⌘
n/q�1

kDukLq +
p
⌘
n/q�2

kD
2
ukLq ,

kf⌘kLq =
p
⌘
n/q�2

kfkLq ,

kg
1
⌘
k
W

2�1/q
q

=
p
⌘
(n�1)/q

kg1kLq +
p
⌘
(n�1)/q�1

kDg1kLq +
p
⌘
n/q�2[Dg1]

W
1�1/q
q

,

kg
2
⌘
k
W

1�1/q
q

=
p
⌘
(n�1)/q�1

kg2kLq +
p
⌘
(n�1)/q�(1�1/q)[g2]

W
1�1/q
q

.

Hence
p
⌘
n/q

kukLq +
p
⌘
n/q�1

kDukLq +
p
⌘
n/q�2

kD
2
ukLq

 K
p
⌘
n/q�2

kfkLq +K
p
⌘
(n�1)/q

kg1k
W

2�1/q
q

+K
p
⌘
(n�1)/q�1

kg2k
W

1�1/q
q

,

where K > 0 is independent of ⌘ � ⌘0. Multiplying with
p
⌘
�n/q gives the desired

estimate. ⇤

Remark A.2. We can introduce weighted norms for the solution,

|u|2,q,⌘ := kukLq +
p
⌘
�1

kDukLq +
p
⌘
�2

kD
2
ukLq ,

as well as the data,

|(f, g1, g2)|q,⌘ :=
p
⌘
�2

kfkLq +
p
⌘
�1/q

kg1k
W

2�1/q
q

+
p
⌘
�1/q�1

kg2k
W

1�1/q
q

.

This gives |u|2,q,⌘  K|(f, g1, g2)|q,⌘, where K > 0 is independent of ⌘ � ⌘0. Note
that for fixed ⌘ � ⌘0, these norms are equivalent norms in solution and data space.

Remark A.3. Let A⌘ := �(⌘ � �)1/2, ⌘ > 0, with base space L
q(Rn�1) and

domain W
1
q
(Rn�1). We now show that for every ⌘ > 0 there is c0(⌘) > 0, such that

the spectral bound satisfies s(�(⌘ � �)1/2)  �c0(⌘) < 0. From Example 4.5.16
in [57] we get that A⌘ is invertible, has maximal regularity, and the semigroup is
analytic. For fixed �, we define the Fourier multiplication operator M� := F

�1
m�F ,

where the symbol is given by

m�(⇠) :=
�(⌘ + |⇠|

2)1/2

�+ (⌘ + |⇠|2)1/2
, Re� > �⌘

1/2
.

Clearly, (⌘+ |⇠|
2)1/2 � ⌘

1/2 uniformly in ⇠ 2 Rn�1. If � 2 C\R, |�+(⌘+ |⇠|
2)1/2| �

C(�, ⌘) > 0. If � 2 R \ {� � �⌘
1/2

/2}, |� + (⌘ + |⇠|
2)1/2| � ⌘

1/2
/2. Furthermore,

using that (⌘ + |⇠|
2)1/2  1 + (⌘ + |⇠|

2)1/2  C(⌘)(⌘ + |⇠|
2)1/2 for all ⇠ 2 Rn�1, we

can conclude that m is holomorphic and bounded on

(�, ⇠) 2
�
⌃2⇡/3 � c0(⌘)

�
⇥ (�⌃⇡/4 \ ⌃⇡/4)

n�1
.
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Hence m� satisfies the scalar Mikhlin condition for every � 2 ⌃2⇡/3 � c0(⌘), see
Remark A.4, whence M� can be extended to a bounded operator on L

p(Rn�1).
So, for given f 2 L

p(Rn�1),� 2 ⌃2⇡/3 � c0(⌘) we find a unique solution of

�u � (⌘ � �)1/2u = f , namely by solving A⌘u = M�f. This however shows that
⌃2⇡/3 � c0(⌘) ⇢ ⇢((⌘ ��)1/2), which immediately implies that the spectral bound

is strictly negative, s(�(⌘ ��)1/2)  �c0(⌘) < 0.

Remark A.4. Suppose ✓ > 0 and f : (�⌃✓ [ ⌃✓)n ! C is holomorphic and
bounded, where ⌃✓ := {z 2 C : | arg z| < ✓}. Then there is some C(✓, k) > 0, such
that

|D
k
f(z)|  C(✓, k)|f |L1(�⌃✓[⌃✓,C)|z|

�k
, z 2 Ṙn

, k 2 N0.

In particular, f satisfies the scalar Mikhlin condition. There is also a more general
statement for Banach space valued multipliers implying R-boundedness of the op-
erator family, see Proposition 4.3.10 in [57]. In our case the proof is much more
simple.

Proof. The proof is a direct consequence of Cauchy’s formula. For simplicity
let n = 1. For y 2 Ṙ, since the double sector is conical, there exists  = (✓)
independent of y such that

B(✓)|y|(y) ✓ �⌃✓ [ ⌃✓.

In particular,  = sin ✓/2 is a possible choice. Cauchy’s formula then gives

f
(k)(y) =

k!

2⇡i

Z

@B(✓)|y|(y)

f(⇣)

(⇣ � y)k+1
d⇣, k 2 N0.

Hence,

|f
(k)(y)| 

k!(✓)�k�1

2⇡
|f |L1(�⌃✓[⌃✓,C)|y|

�k�1meas(@B(✓)|y|(y)), k 2 N0,

which finishes the proof since meas(@B(✓)|y|(y)) equals 2⇡(✓)|y|. ⇤

A.1.2. Bent interfaces. We consider now the problem on a perturbed upper
half space Rn

�
:= Rn

\ {xn > �(x1, ...xn�1)} with perturbed interface ⌃�̃ := Rn

�
\

{x1 = �̃(x2, ..., xn)},

(⌘ ��)u = f, in Rn

�
\⌃�̃ ,

u = g1, on ⌃�̃ ,

n@Rn
�
·ru = g2, on @Rn

�
.

(A.9)

We will show that this system is also solvable if ⌘ � ⌘0 for ⌘0 su�ciently large and
k�kC1 + k�̃kC1  "0 for "0 > 0 su�ciently small.

Theorem A.5. There is some ⌘0 > 0 and some "0 = "0(⌘0) > 0, such that the

following is true. For all ⌘ � ⌘0 and k�kC1 + k�̃kC1  "0, there is a unique solution

u 2 W
2
q
(Rn

�
\⌃�̃) of the ⌘-shifted problem (A.9), if and only if f 2 L

q(Rn

�
), g1 2

W
2�1/q
q (⌃�̃), and g2 2 W

1�1/q
q (@Rn

�
).
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Proof. We show this by a perturbation argument. Transforming via F , cf.
Lemma 2.19, the perturbed problem is equivalent to the regular upper half space
problem

(⌘ ��)ū = f̄ +A1(ū), in Rn

+\⌃,

ū = ḡ1, on ⌃,

@nū = ḡ2 +A2(ū), on @Rn

+,

(A.10)

where f̄ = f � F , ḡj = gj � F , j = 1, 2, and

A1(ū) =
X

l,j

Rjl@l@j ū+
X

l

R̃l@lū,

cf. (2.49), as well as A2(ū) = (en �n�) ·rū+n� · ((DF
T
� I)rū). Here n� denotes

the upper normal of @Rn

�
. We now perform a Neumann Series argument. We equip

W
2
q
(Rn

+\⌃) and the data space [Lq(Rn

+) ⇥ W
2�1/q
q (⌃�̃) ⇥ W

1�1/q
q (@Rn

�
)] with the

weighted norms of Remark A.2. Then the operator L, defined by the left hand side
of (A.10), is invertible. Its inverse is bounded by a constant K independent of ⌘
with respect to these ⌘-weighted norms, cf. Remark A.2. We now show that

k(A1, 0,A2)k
B(W 2

q (Rn
+\⌃);Lq(Rn

+)⇥W
2�1/q
q (⌃�̃)⇥W

1�1/q
q (@Rn

� ))
! 0,

with respect to the ⌘-scaled norms as ⌘ ! 1, and |�|C1 + |�|C1 ! 0. By a standard
Neumann series argument, L+ (A1, 0,A2) is invertible if T > 0 is small enough.

Now,

|A1(ū)|⌘ = ⌘
�1

|A1(ū)|Lq(Rn
+)

. ⌘
�1

X

j,l

|@l@j ū|Lq(Rn
+)|Rjl|L1(Rn

+) + ⌘
�1

X

j

|@j ū|Lq(Rn
+)|R̃j |L1(Rn

+)

. (|�|C1 + |�|C1)|ū|⌘ + C(�, �)⌘�1/2
|ū|⌘,

where Rjl and R̃l are as in (2.50). Now note that

|A2(ū)|⌘ =
p
⌘
�1�1/q

|A2(ū)|
W

1�1/q
q (@Rn

+)
.

Extend n� to a function on Rn

+ by a bounded extension operator, cf. [62], and denote
the extension by ñ� . Then

|A2(ū)|⌘ . p
⌘
�1�1/q

|(en � ñ�) ·rū|Lq(Rn
+)

+
p
⌘
�1�1/q

|r(en � ñ�) ·rū|Lq(Rn
+)

+
p
⌘
�1�1/q

|(en � ñ�) ·r
2
ū|Lq(Rn

+)

+
p
⌘
�1�1/q

|n� |C1 |(DF
T
� I)rū|Lq(Rn

+)

+
p
⌘
�1�1/q

|n� |C1 |r(DF
T
� I)rū|Lq(Rn

+)

+
p
⌘
�1�1/q

|n� |C1 |(DF
T
� I)r2

ū|Lq(Rn
+).
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In weighted norms,

|A2(ū)|⌘ . C(n� , DF )
p
⌘
�1/qp

⌘
�1

|rūkLq(Rn
+)+

+
p
⌘
1�1/q(|n� � en|L1 + kDF � IkL1)

p
⌘
�2

|D
2
ū|Lq(Rn

+)

. p
⌘
�1/q

C(n� , DF )|ū|⌘ +
p
⌘
1�1/q(|�|C1 + |�|C1)|ū|2,⌘.

Fixing first ⌘0 > 0 large enough and then "0 = "0(⌘0) > 0 small enough finishes the
proof. ⇤

A.1.3. Localization. By a localization argument we can now show that the
shifted problem is solvable in the case of a bounded, smooth domain.

Theorem A.6. Let q 2 (3/2, 2), ⌦ ⇢ Rn
a bounded, smooth domain and ⌃ a

smooth surface inside ⌦ intersecting the boundary @⌦ at a nintey degree angle. Then

there is some ⌘0 � 0, such that if ⌘ � ⌘0, for every (f, g1, g2) 2 Lq(⌦)⇥W
2�1/q
q (⌃)⇥

W
1�1/q
q (@⌦) there is unique u 2 W

2
q
(⌦\⌃) solving (A.3). Furthermore, the solution

map [(f, g1, g2) 7! u] is continuous between the above spaces.

Proof. We show solvability and uniqueness via a localization method, cf. [57].
To this end let ('j)j=0,...,N be a partition of unity as in Section 2.5.4. Suppose u is
a solution. We then obtain localized equations for uj := 'ju, namely

(⌘ ��)uj = 'jf + C
j

1(u), in ⌦\⌃,

u
j
|⌃ = 'jg1 + C

j

2(u), on ⌃,

n@⌦ ·ru
j = 'jg2 + C

j

3(u), on @⌦,

where the perturbation operators are given by

C
j

1(u) = 'j�u��('ju), C
j

2(u) = 0, C
j

3(u) = n@⌦ · (r('ju)� 'jru).

In other words, these operators are of commutator type and therefore of lower order,

C
j

1(u) = u�'j + 2r'j ·ru, C
j

3(u) = n@⌦ · ur'j .

Let Cj := (Cj

1, 0, C
j

3). We now show that

|C
j
u|⌘  C(⌘)|u|2,⌘, (A.12)

where the constant C(⌘) satisfies C(⌘) ! 0 as ⌘ ! 1. Then the proof follows the
lines of Section 2.5.4. We have

|C
j

1u|⌘ =
1

⌘
ku�'jkLq +

2

⌘
kru ·r'jkLq


1

⌘
kukLqk�'jkL1 +

2
p
⌘

1
p
⌘
krukLqk�'jkL1


1

⌘
k'jkC2 |u|2,⌘ +

2
p
⌘
k'jkC2 |u|2,⌘,
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as well as

|C
j

3u|⌘ =
p
⌘
�1�1/q

kn@⌦ · ur'jk
W

1�1/q
q


p
⌘
�1/qp

⌘
�1

kukW 1
q
kn@⌦ ·r'jkC1


p
⌘
�1/q

|u|2,⌘kn@⌦ ·r'jkC1 .

Clearly, these two estimates give (A.12). ⇤
A.1.4. The non-shifted problem. We will now show solvability of the non-

shifted problem (A.2).

Theorem A.7. Let q 2 (3/2, 2). For every (f, g1, g2) 2 Lq(⌦) ⇥W
2�1/q
q (⌃) ⇥

W
1�1/q
q (@⌦) there is unique u 2 W

2
q
(⌦\⌃) solving (A.2). Furthermore, there is

some constant C > 0, such that

|u|W 2
q (⌦\⌃)  C

⇣
|f |Lq(⌦) + |g1|

W
2�1/q
q (⌃)

+ |g2|
W

1�1/q
q (@⌦)

⌘
.

Proof. First we choose ⌘ > 0 large enough and solve (A.3) by a function
v 2 W

2
q
(⌦\⌃). It therefore remains to solve

��w = �⌘v, in ⌦\⌃,

w|⌃ = 0, on ⌃,

n@⌦ ·rw|@⌦ = 0, on @⌦,

since then u := v+w solves (A.2). To this end define A to be the negative Laplacian
�� in Lq(⌦) with domain

D(A) := {w 2 W
2
q
(⌦\⌃) : w|⌃ = 0, n@⌦ ·rw|@⌦ = 0}.

Since D(A) compactly embeds into Lq(⌦) by Sobolev embeddings, A has compact
resolvent and the spectrum �(A) only consists of isolated eigenvalues of A with
finite multiplicity. We will show that zero is not a possible eigenvalue, hence A is
invertible.

Suppose u 6= 0 is a nontrivial eigenfunction to the eigenvalue �. The correspond-
ing eigenvalue problem reads as

��u = �u, in ⌦\⌃,

u|⌃ = 0, on ⌃,

n@⌦ ·ru|@⌦ = 0, on @⌦.

Assume for a moment that q = 2. Testing the resolvent equation with u in L2(⌦)
and invoking the boundary condition, an integration by parts entails

��|u|
2
L2(⌦) =

Z

⌦
u�udx = �|ru|

2
L2(⌦).

Whence if � = 0, then u 2 D(A) has to be a constant function, hence zero since u

vanishes on ⌃. This is a contradiction, hence � = 0 is not a possible eigenvalue if
q = 2. Note that the same arguments are still valid if q > 2, since then by Sobolev
embeddings W 2

q
(⌦) ,! W

2
2 (⌦).

Consider now the case where 3/2 < q < 2. Again consider the eigenvalue
problem �u = Au in Lq(⌦). By Sobolev embedding, W 2

q
(⌦) ,! Lq̃(⌦) for some
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q̃ > 2. We obtain that now �u = Au holds true in Lq̃(⌦). Therefore Au 2 Lq̃(⌦).
Since we already know that Aq̃ : D(Aq̃) ! Lq̃(⌦) is invertible we obtain u 2 W

2
q̃
(⌦).

Hereby, Aq̃u := Au with domain

D(Aq̃) := {w 2 W
2
q̃
(⌦\⌃) : w|⌃ = 0, n@⌦ ·rw|@⌦ = 0}.

The same arguments now yield that � = 0 is not a possible eigenvalue.
Therefore we may uniquely solve (A.13) and the proof is complete since the

proof of the estimates follows in a straightforward way. ⇤
A.1.5. Relations between shifted and non-shifted problems. We con-

clude this section by the following observation, cf. [57]. Consider the special case
where (f, g1, g2) = (0, g, 0). Define solution operators as follows. Let T0g be the so-
lution of the non-shifted problem (A.2) for (f, g1, g2) = (0, g, 0), and, for ⌘ � ⌘0, T⌘g

the solution of (A.3) with (f, g1, g2) = (0, g, 0). Then, T0g�T⌘g = ⌘(⌘��N )�1
T0g.

Hereby, z := (⌘ ��N )�1
f solves the two-phase problem

(⌘ ��)z = f, in ⌦\⌃,

z|⌃ = 0, on ⌃,

(n@⌦|rz) = 0, on @⌦.

For details we refer to Section 6.6 in [57].

A.2. Cylindrical domains.

Let us now consider the elliptic problem in a cylindrical domain. For notation,
let n = 3. In this subsection ⌦ ⇢ R3 is a bounded cylinder. We now need a result
for the elliptic model problem in the case where the top of the container meets the
walls at a ninety degree angle. With this at hand we may solve the elliptic problem
in a cylindrical domain with a localization argument as before. So let us consider
the quarter space G := R+ ⇥ R⇥ R+ and the one-phase quarter space problem

(⌘ ��)u = f, in G,

@1u = g1, on S1 := {x1 = 0, x2 2 R, x3 2 R+},

@3u = g2, on S2 := {x1 2 R+, x2 2 R, x3 = 0}.

(A.14)

The key observation is now that the two Neumann boundary conditions on S1 and S2

are compatible whenever q < 2. Suppose that we want to find a solution u 2 W
2
q
(G)

of the problem. Then by trace theory,

ru|Sj 2 W
1�1/q
q

(Sj), j = 1, 2.

This yields necessary conditions for the data. We see that on the set @S1 \ @S2 =
{x1 = x3 = 0} where the two boundary conditions meet, there is no compatibility
condition for the data g1 and g2 in the system. This is due to the fact that since
q < 2 the functions ru|Sj do not have a trace on @Sj .

So let the given data in (A.14) satisfy

f 2 Lq(G), gj 2 W
1�1/q
q

(Sj), j = 1, 2.

By a simple reflection argument we can reduce the problem to a upper half-space
problem with one Neumann condition and obtain full W 2

q
(G)-regularity for the so-

lution. Let us state this observation in the following theorem.
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Theorem A.8. For all (f, g1, g2) 2 [Lq(G) ⇥W
1�1/q
q (S1) ⇥W

1�1/q
q (S2)] there

exists a unique solution u 2 W
2
q
(G) to problem (A.14). Furthermore, the solution

map [(f, g1, g2) 7! u] is continuous with respect to these spaces.
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