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Abstract We determine the Galois representations inside the `-adic cohomology of some unitary Shimura

varieties at split places where they admit uniformization by finite products of Drinfeld upper half spaces.

Our main results confirm Langlands–Kottwitz’s description of the cohomology of Shimura varieties in
new cases.
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1. Introduction

The aim of this article is to determine the Galois representations inside the `-adic

cohomology of some unitary Shimura varieties at split places where they admit

uniformization by finite products of Drinfeld upper half spaces ([34, Theorem 6.50]

and [44]). The main results confirm Langlands–Kottwitz’s description of the cohomology

of Shimura varieties in new cases.

For the Shimura varieties with good reductions at p (6=`), Langlands and Kottwitz

have given a conjectural description of the Galois representations inside the cohomology

(cf. [23]). Roughly it says that, the Galois representation associated to an automorphic

representation when restricting to a place above p is given by the local Langlands

correspondence for the local reductive group. To prove such a result, Langlands’s idea is

to analyze the cohomology of Shimura varieties by computing the alternating sum of the

traces of Hecke operators twisted by a Frobenius correspondence on the cohomology. By

Lefschetz trace formula, this needs to understand the set of points on Shimura varieties
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1198 X. Shen

over finite fields. Kottwitz introduced some group theoretic triples (γ0; γ, δ) in [25] which,

roughly speaking, parameterize isogeny classes of points of Shimura varieties over finite

fields. There he also proved a formula for the traces of Hecke operators twisted by a

Frobenius by using these triples. Then to get the desired description, one should stabilize

this formula and compare it with the Arthur–Selberg trace formula (see [23]). In some

cases this description has been proved, for example see [24, 30]. Here in our case, even

for the maximal level at p, these varieties have bad reductions. And in fact we also want

to treat the cases of arbitrary levels at p.

In [39] Scholze has developed the Langlands–Kottwitz approach for some PEL Shimura

varieties with arbitrary level at p. There the local hypothesis are made to ensure the

local reductive groups are quasi-split, so that there is no problem for the definition of

Kottwitz triples. Also, Scholze proved that the set of all equivalent effective Kottwitz

triples can parameterize all the fixed points. The key new ingredient is to define some test

functions by deformation spaces of p-divisible groups with some additional structures.

This approach avoids the study of local models of Shimura varieties with bad reductions,

and gives less information about these functions. However, the definition of these test

functions is conceptually elegant, and sufficient for applications in many ways. Scholze

then studied the properties of these functions and proved a formula similar to the one of

Kottwitz in [25]. Using this formula Scholze and Shin in [40] have proved some character

identities about the transfers of the test functions defined in [39], and deduce many

results about the cohomology of some compact unitary Shimura varieties for arbitrary

level at p, which confirm the expected descriptions of Langlands–Kottwitz. Note to have

such a description one needs to know the local Langlands correspondence for the related

reductive groups. In [40] their assumptions are made such that the local reductive groups

at p are products of Weil restriction of general linear groups.

For the PEL Shimura varieties with reductive groups G non-quasi-split at p, we also

want to describe their points modulo p and their `-adic cohomology. However, there

are some group theoretic problems due to the non-quasi-split property. Namely, in this

set-up the set of equivalent Kottwitz triples (in the usual sense) will not be enough to

parameterize all the points valued in a finite field Fpt . We can indeed find the pairs

(γ, δ) associated to each isogeny class over Fpt . But the conjugacy class of the norm Nδ
does not always contain an element of G(Qp) (cf. [21]). This is an obstruction to find

a γ0 ∈ G(Q) such that (γ0; γ, δ) forms a Kottwitz triple. Nevertheless, we can introduce

some reasonable test functions φτ,h at p in the same way as [39] whose twisted orbital

integrals contribute to the trace formula. This was already noted by Scholze in [39].

Following [32, Conjecture 5.7] and [33, Conjecture 10.2], one conjectures that if the

conjugacy class of the norm Nδ does not contain an element of G(Qp), then the twisted

orbital integral vanishes

TOδσ (φτ,h) = 0.

This is certainly a new phenomenon in the non-quasi-split case. If one can prove this

result, then only the points parameterized by the Kottwitz triples contribute to the trace

formula, and one has a similar formula as [23, 39]. Going through further, one can continue

the process of stabilization or pseudostabilization to compute the cohomology. To get

the desired description of the cohomology, one still needs to know the local Langlands

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1474748016000360
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek Regensburg, on 21 Nov 2019 at 09:58:29, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1474748016000360
https://www.cambridge.org/core


On the `-adic cohomology of some p-adically uniformized Shimura varieties 1199

correspondence for G(Qp) and a suitable character identity for the twisted transfer of

φτ,h (cf. [40, Conjecture 7.1], which is a weaker form of [14, Conjectures 6.1.1 and 6.2.3]).

This paper deals with a special example where we can prove the above two main points

for the test functions φτ,h . Also, for this case at hand, the local Langlands correspondence

has been known. So we can get desired description of the cohomology. Let ShK be a

Shimura variety over its local reflex field E with the open compact subgroup in the form

K = K p K p ⊂ G(A f ), such that at p it admits uniformization by r products of Drinfeld

moduli spaces MDr,K p with level K p. Let ξ be an irreducible algebraic representation of

G over Q`. By a standard construction, we have a Q`-local system Lξ on each Shimura

variety ShK for K ⊂ G(A f ). We are interested in the virtual G(A f )×WE -representation

defined by the alternating sum of `-adic cohomology

Hξ =
∑

i

(−1)i lim
−→

K

H i (ShK ×Qp,Lξ ),

where K runs over the set of open compact subgroups of G(A f ). The local reductive group

GQp is a product of some inner forms of GLn (together with Gm), so the local Langlands

correspondence has been known (cf. [2, 19]). For any smooth irreducible representation

πp of G(Qp), let ϕπp be the associated local Langlands parameter. Recall associated to

the Shimura data (G, h−1) we have the representation r−µ of the Langlands dual group
L(G E ) introduced in [22, Lemma 2.1.2]. The main theorem is as follows.

Theorem 1.1. With the notations as above, we have an identity

Hξ =
∑
π f

a(π f )π f ⊗ (r−µ ◦ϕπp |WE )| − |
r(1−n)/2

as virtual G(Zp)×G(Ap
f )×WE -representations. Here π f runs through irreducible

admissible representations of G(A f ), the integer a(π f ) is as in [24, p. 657].

We first prove the theorem for case r = 1 by using the results of Boyer [6] and

Dat [8], thus avoiding the counting points method for these Shimura varieties. In

fact, the global p-adic uniformization leads to a Hochschild–Serre spectral sequence

for the `-adic cohomology of these Shimura varieties, from which we get a formula

(in [12] Fargues called it as a p-adic Matsushima formula) for Hξ . Then using Boyer’s

description of the cohomology of Lubin–Tate spaces, the Faltings–Fargues isomorphism

for the towers of Lubin–Tate and Drinfeld, and Dat’s results about extension of elliptic

representations, we get the desired formula in the theorem. Here we prove the identity

as G(A f )×WE -representations. We note that essentially the same idea had already

appeared in [8, § 5].

To prove the result in general case, we develop the theory of test functions by means

of deformation spaces of p-divisible groups in our context as in [39]. We also adapt

some notations from [38]. To prove the vanishing results and character identities for

these test functions, we use the formula for Hξ in the case r = 1 proved previously.

Thus these are some global arguments. We note that in [32] Rapoport conjectured the

vanishing results for the example there with maximal level at p, and by some explicit

combinatorial description of the test function Waldspurger proved this conjecture in the
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case r = 1. There the test functions were constructed by the theory of local models which

describes the bad reduction of the Shimura varieties. These functions satisfy the required

character identities. So in this case r = 1 and the level structure K p at p is maximal,

the result was more or less known in [32]. In fact in [32] Rapoport restricted on the

trivial coefficients and concentrated on the local semisimple zeta functions (see the below

corollary).

In [41] we shall use our results for the test functions to describe the cohomology of

quaternionic and related unitary Shimura varieties at ramified places (see § 7 for more

details).

In a series of papers [15–17], Harris had studied the supercuspidal part of the

cohomology. At that time, one did not know the local Galois representations inside the

cohomology are given by the local Langlands correspondence, except for the cases n <
p [16]. In fact, in these papers Harris tried to prove the local Langlands correspondence

for GLn by studying the supercuspidal part of the cohomology of these Shimura varieties.

Later, in [18] Harris and Taylor successfully achieved this by studying the cohomology of

another class of Shimura varieties. We note that the same result as in the above theorem

for Harris–Taylor’s Shimura varieties was proved in [37] implicitly.

From this theorem we get the following corollary concerning the local semisimple zeta

functions of our Shimura varieties. Let Ẽ be the global reflex field, and ν be a place of

Ẽ above p such that E = Ẽν .

Corollary 1.2. In the situation of the theorem, let K ⊂ G(A f ) be any sufficiently small

open compact subgroup. Then the semisimple local Hasse–Weil zeta function of ShK at

the place ν of Ẽ is given by

ζ ss
ν (ShK , s) =

∏
π f

Lss(s− r(n− 1)/2, πp, r−µ)
a(π f ) dimπK

f .

In the case r = 1 Dat has proved the Weight-Monodromy conjecture for these Shimura

varieties (cf. [8, 5.2]). Then by [32, § 2] one can recover the classical Hasse–Weil zeta

function.

Corollary 1.3. Let r = 1 and K ⊂ G(A f ) be any sufficiently small open compact subgroup

in the situation of the theorem. Then the local Hasse–Weil zeta function of ShK at the

place ν of Ẽ is given by

ζν(ShK , s) =
∏
π f

L(s− r(n− 1)/2, πp, r−µ)
a(π f ) dimπK

f .

In [20] Ito proved the Weight-Monodromy conjecture for the varieties which are

p-adically uniformized by the maximal level Drinfeld upper half spaces. In [20,

Theorem 6.2] an application to the local zeta function was also presented. These varieties

are the Galois twisted versions of the connected components of our Shimura varieties

studied here with r = 1 and K p maximal (see [34, Theorem 6.50] and [44, 2.13]).

Shortly after the first version of this paper, Mieda claimed that the Weight-Monodromy

conjecture holds true for the general p-adically uniformized Shimura varieties studied
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On the `-adic cohomology of some p-adically uniformized Shimura varieties 1201

here, i.e., r is not necessary 1, and one can argue as in § 3 to prove the above Theorem 1.1

(cf. [28]). In particular in Corollary 1.3 r can be an arbitrary positive integer. However, as

the reader can see in this introduction, our general purpose is trying to prove results for

as many cases as possible. Our theory of test functions developed in §§ 4–6 by Scholze’s

method, will be used in [41] in an essential way to prove results for some other Shimura

varieties.

We give an overview of the content of this article. In § 2 we introduce the p-adically

uniformized Shimura varieties which we are interested in. In § 3 we deduce the cohomology

of the Shimura varieties uniformized by one Drinfeld moduli spaces by using the results of

Boyer and Dat. Then in § 4 we define the test functions φτ,h by Scholze’s method, and list

their properties. Here we just state the facts since the arguments and proofs are the same

as those in [39]. In § 5 we prove the vanishing property of these test functions by global

method, and establish the trace formula as a sum over the set of equivalent Kottwitz

triples. In § 6 we use the formula for Hξ in the case r = 1 proved in § 3 to deduce the

character identity of the transfers fτ,h of φτ,h . Finally in § 7 we deduce the theorem for

the general case. Corollaries for the local (semisimple) zeta functions of Shimura varieties

are stated.

2. Some p-adically uniformized Shimura varieties

We now introduce some unitary Shimura varieties which admit p-adic uniformization

by finite products of Drinfeld upper half spaces. They were first introduced by

Rapoport–Zink [34] and Varshavsky [43, 44] as higher-dimensional generalization of the

Cherednik’s theorem for Shimura curves as presented in [4, 5, 10]. We note that some

special higher-dimensional cases already appeared in [32].

Let p be a prime number. Fix an imaginary quadratic field K in which p splits. The

two primes of K above p will be denoted by u and uc, and the complex conjugation of

Gal(K/Q) will be denoted by c. Let F+|Q be a totally real field of degree N . Set F =
F+K , so that F is a CM-field with maximal totally real subfield F+. Let $1,$2, . . . ,$s
denote the primes of F above u, and let ν1, ν2, . . . , νs denote their restrictions to F+. Fix

an integer 1 6 r 6 s. Let B/F denote a central division algebra of dimension n2 over F
such that

• the opposite algebra Bop is isomorphic to B⊗K ,c K ;

• at any place x of F which is not split over F+, Bx is split (here and in the following

Bx = B⊗ Fx );

• at the places $1, . . . ,$r ,$
c
1 , . . . ,$

c
r (for 1 6 i 6 s,$ c

i is the place over uc which

induces also νi on F+) B is ramified with invariants

inv$i B =
1
n
, inv$ c

i
B = −

1
n
;

• at the places $r+1, . . . ,$s,$
c
r+1, . . . ,$

c
s the invariants of B are arbitrary but satisfy

inv$i B = −inv$ c
i

B.

Note that we assume in particular s = t by the notation of [34, 6.38].
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1202 X. Shen

We assume that there is an involution of second kind ∗ on B. Moreover, we can choose

some alternating pairing 〈, 〉 on V × V → Q for the B⊗F Bop module V := B, which

corresponds to another involution of second kind ] on B. The associated reductive group

G/Q is defined by

G(R) = {(g, λ) ∈ (Bop
⊗Q R)×× R×| gg] = λ},

for any Q-algebra R. Let G1 be the kernel of the map G → Gm, (g, λ) 7→ λ, which can be

viewed as a group over F+. For 1 6 i 6 r , choose distinguished embeddings τi : F+ ↪→ R.

As in [34, 6.40], we assume that we can make the choice of the alternating pairing on

V × V → Q and the isomorphism ι : Qp ' C such that

• if σ : F+ ↪→ R is an embedding, then G1×F+,σ R is isomorphic to the unitary group

U (1, n− 1) if σ = τi for 1 6 i 6 r and U (n) otherwise;

• under the bijection Hom(F+,C) = Hom(F+,R)→ Hom(F+,Qp) induced by ι,

τ1, . . . , τr induce the primes ν1, . . . , νr of F+ above p.

Let B×$i
be the local reductive group over F$i associated to the units in B$i for 1 6 i 6 r .

Then under our assumptions we have

GQp ' ResF$1
B×$1
× · · ·×ResF$r B×$r

×G D′ ×Gm

with obvious definition of the factor G D′ which is associated to the semisimple algebra

D′ =
∏s

i=r+1 B$i over Qp. Let E be the composition of the fields F$1 , . . . , F$r , which

will be our local reflex field.

As in [34, 6.37] we have a homomorphism h : ResC|RGm → GR which corresponds to

our signature condition. Then the datum (G, h−1) defines a projective Shimura variety

ShK over E for any compact open subgroup K ⊂ G(A f ) (cf. [25]). The conjugacy class

of the cocharacter µ : Gm −→ GQp
associated to h is defined over E (cf. [34, 6.40]). For

sufficiently small open compact subgroup K p
⊂ G(Ap

f ), we have a projective scheme SK p

over OE (the integer ring of E) which is a moduli space of some abelian varieties with

additional structures. This moduli space is defined in a similar way as those introduced

in [25], but contrary to the later case, it is not smooth. For any locally noetherian scheme

S over OE , SK p (S) is the isomorphism classes of quadruples (A, λ, ι, ηp) consisting of

• a projective abelian scheme A over S up to prime-to-p isogeny;

• a polarization λ : A→ AD of degree prime to p (here and in the following, the upper

subscript D means the Cartier dual);

• a homomorphism ι : OB → End(A) satisfying the determinant condition and

compatible with λ;

• a level structure ηp of type K p.

For more details we refer to [34, Definition 6.9]. As usual on generic fibers we have the

isomorphism

SK p ×OE E '
∐

ker1(Q,G)

ShK 0
p K p ,

where K 0
p ⊂ G(Qp) is the maximal open compact subgroup O×B$1

× · · ·× O×B$r
× O×D′ ×

Z×p .
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On the `-adic cohomology of some p-adically uniformized Shimura varieties 1203

We set Di := B$i from now on. For any locally noetherian scheme S over OE on which

p is locally nilpotent, let A/S be an abelian scheme coming from an S-valued point of

SK p . Looking at its p-divisible group, we get a decomposition

A[p∞] = (H1⊕ · · ·⊕ Hr ⊕ H ′)⊕ (H1⊕ · · ·⊕ Hr ⊕ H ′)D,

where for 1 6 i 6 r , Hi is a $i -divisible ODi -module, H ′ is a D′-group in the sense

of [38, Definition 4.1] which is the sum of the étale $i -divisible ODi -modules for i =
r + 1, . . . , s. In particular, after fixing a point in the special fiber of SK p we can consider

the associated (formal) Rapoport–Zink space M̂, which has the decomposition (cf. [34,

Proposition 6.49])

M̂ ' M̂Dr,$1 × · · ·×M̂Dr,$r ×G D′(Qp)/O×D′ ×Q×p /Z
×
p

'

( r∏
i=1

�̂n
F$i
× SpfOĚ × D×i /K 0

p,$i

)
×G D′(Qp)/O×D′ ×Q×p /Z

×
p

'

( r∏
i=1

�̂n
F$i
× SpfOĚ

)
×G(Qp)/K 0

p,

where for i = 1, . . . , r , M̂Dr,$i is the formal Drinfeld moduli space associated to the local

data, K 0
p,$i
⊂ D×i is the maximal open compact subgroup and �̂n

F$i
is the formal Drinfeld

upper half space over SpfOF$i
. Here Ě is the completion of the maximal unramified

extension of E . The associated reductive group Jb has the form (cf. [34, 6.44 p. 310, 6.46

and 6.49])

Jb ' ResF$1
GLn × · · ·×ResF$r GLn ×G D′ ×Gm .

Now we have the following theorem which says that our Shimura varieties admit global

p-adic uniformization.

Theorem 2.1 [34, Theorem 6.50]. As K p varies, there is a G(Ap
f )-equivariant

isomorphism of formal schemes∐
ker1(Q,G)

I (Q)
∖( r∏

i=1

�̂n
F$i
× SpfOĚ

)
×G(A f )/K ' ŜK p × SpfOĚ ,

where K = K 0
p K p and ŜK p is the formal completion of SK p along its special fiber. The

group I is an inner form of G over Q such that I (Qp) = Jb(Qp), I (Ap
f ) = G(Ap

f ). This

defines the action of I (Q) used in forming the quotient above. The natural descent datum

on the right hand side induces on the left hand side the natural descent datum on the

first r factors (under the above decomposition for M̂) multiplied with an action of some

explicit element g ∈ G(Qp) on G(A f )/K .

Passing to rigid analytic fibers, we get a rigid analytic uniformization of these Shimura

varieties ShK 0
p K p

. Moreover, in the rigid analytic setting, we have the uniformization for

arbitrary levels at p. More precisely, let m > 1 be an integer, we consider open compact

subgroups of the form

K m
p = (1+5

m
1 OD1)× · · ·× (1+5

m
r ODr )× (1+ pm OD′)× (1+ pmZp) ⊂ G(Qp),
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1204 X. Shen

where 5i ∈ Di is a fixed uniformizer for each 1 6 i 6 r . Then we have the following

G(A f )-equivariant isomorphism of rigid analytic spaces

I (Q)
∖( r∏

i=1

MDr,$i ,m

)
×G D′(Qp)/(1+ pm OD′)×Q×p /(1+ pmZp)×G(Ap

f )/K p

' Shrig
K m

p K p × Ě,

where MDr,$i ,m is the level m rigid analytic Drinfeld moduli space for each 1 6 i 6 r . The

above isomorphism is compatible with the two descent datums as in the above theorem

on both sides.

3. The cohomology of Shimura varieties I

In this section we will assume r = s = 1 and compute the `-adic cohomology of these

p-adically uniformized Shimura varieties. The main ingredients are the Hochschild–Serre

spectral sequences [12, 15], Boyer’s description of the `-adic cohomology of the

Lubin–Tate tower [6], the Fargues–Faltings isomorphism for the towers of Lubin–Tate

and Drinfeld [11, 13], and Dat’s results for extensions of elliptic representations [8].

We note that in the previous works [15–17], Harris had studied the supercuspidal

part of the cohomology. In [15, 17] he did not prove that the associated local Galois

representations are given by the local Langlands correspondences. In [16] he could

prove this key fact for some special case n < p. In fact, Harris just constructed the

local Langlands correspondences in these cases by the cohomology of these p-adically

uniformized Shimura varieties. Later, in [18] Harris–Taylor studied the supercuspidal

part of the `-adic cohomology of some other simple Shimura varieties to construct the

local Langlands correspondence for GLn in the general case.

Fix a prime l 6= p. In this paragraph r and s are not necessary 1. Let ξ be an irreducible

representation of G over Ql . By standard construction, we have a Ql -local system Lξ on

each Shimura variety ShK for K ⊂ G(A f ). We are interested in the virtual G(A f )×

WE -representation defined by the alternating sum of `-adic cohomology

Hξ =
∑
i>0

(−1)i lim
−→

K

H i (ShK ×Qp,Lξ ),

where K runs over the set of open compact subgroups of G(A f ).

Let the notations be as in the previous section with r = s = 1. For m > 1, we have the

rigid Rapoport–Zink space

MK m
p =MDr,$,m ×Q×p /(1+ pmZp).

Then the p-adic uniformization of ShK m
p K p gives rise to the following spectral sequence

(cf. [15, Lemma 6], [12, Théorème 4.5.12]) see also [7, § 4].

ExtiJb(Qp)
(H2(n−1)− j

c (MK m
p ×Cp,Ql(n− 1)),A(I )K p

ξ )⇒ H i+ j (ShK m
p K p ×Qp,Lξ ),

where A(I )ξ is the space of automorphic forms on I such that each automorphic

representation 5 ⊂ A(I )ξ has archimedean component 5∞ = ξ̌ , the dual representation
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On the `-adic cohomology of some p-adically uniformized Shimura varieties 1205

of ξ ; A(I )K p

ξ is the K p-invariant subspace, and the Ext is taken in the category of smooth

Ql -representations of Jb(Qp). For any 5 ⊂ A(I )ξ , write its p-component as 5p and the

restricted tensor product of its finite components outside p as 5p. Taking direct limits

for levels on both sides and passing to the alternating sum, we get the equalities of virtual

representations of G(A f )×WE (cf. [12, Corollaire 4.6.3])

Hξ =
∑

i, j>0

(−1)i+ j lim
−→
m

ExtiJb(Qp)
(H j

c (MK m
p ×Cp,Ql(n− 1)),A(I )ξ )

=

∑
i, j>0

5⊂A(I )ξ

(−1)i+ j lim
−→
m

ExtiJb(Qp)
(H j

c (MK m
p ×Cp,Ql(n− 1)),5p)⊗5

p.

This formula can also be viewed as an analogue of Mantovan’s formula (cf. [27] and

the last paragraph of this section). We would like to rewrite the above last formula

in a slightly finer form. Recall that under our assumption r = s = 1, the local reflex

field E = F$ and the local reductive group has the form GQp = ResE |Qp D××Gm . The

cocharacter µ associated to the Shimura data factors as (µ0, µ1) with µ0 (respectively µ1)

the cocharacter of ResE |Qp D× (respectively Gm). Recall associated to the cocharacter µ

we have the representation r−µ of the Langlands dual group L(G E ) introduced in [22,

Lemma 2.1.2]. We also have representations r−µ0 and r−µ1 associated to µ0 and µ1,

respectively. An irreducible smooth representation 5p of I (Qp) = Jb(Qp) decomposes as

5p,0⊗χp where 5p,0 is an irreducible smooth representation of GLn(E) and χp is a

character of Q×p .

Lemma 3.1. We have the equality

Hξ =
∑

i, j>0
5⊂A(I )ξ

(−1)i+ j lim
−→
m

ExtiGLn(E)(H
j

c (MDr,m ×Cp,Ql(n− 1)),5p,0)

⊗ r−µ1 ◦ϕχp |WE ⊗χp ⊗5
p,

where ϕχp : WQp −→
L(Gm) is the Langlands parameter associated to χp.

Proof. Indeed, by the notation of [42]

Mantµ(5p) :=
∑

i, j>0

(−1)i+ j lim
−→
m

ExtiJb(Qp)
(H j

c (MK m
p ×Cp,Ql(n− 1)),5p),

we have

Mantµ(5p) = Mantµ0(5p,0)⊗Mantµ1(χp),

with similar definitions of Mantµ0(5p,0) and Mantµ1(χp) using the corresponding

Rapoport–Zink spaces. This equality comes from the decomposition of our

Rapoport–Zink spaces MK m
p . Now local class field theory tells us that

Mantµ1(χp) = r−µ1 ◦ϕχp |WE ⊗χp,

which can also be viewed as a corollary of the results of [18] in the case n = 1 (cf. [42,

Proof of Theorem 7.5]). Now the lemma follows.
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1206 X. Shen

We need to know the `-adic cohomology of the tower of Drinfeld spaces. To this end,

consider the tower of Lubin–Tate spaces (MLT,K )K⊂GLn(E), where K runs over the set

of open compact subgroups of GLn(E) contained in GLn(OE ). We have the following

isomorphism.

Theorem 3.2 [11, 13]. For each i > 0, there is a GLn(E)× D××WE -equivariant

isomorphism of groups

lim
−→

K

H i
c (MLT,K ×Cp,Ql) ' lim

−→
m

H i
c (MDr,m ×Cp,Ql).

In fact, for 0 6 i 6 n− 2 we know the left hand side vanishes, so the right hand side also

vanishes in these cases. We denote both sides by H i
c . In [18] Harris–Taylor computed the

supercuspidal part of the cohomology of Lubin–Tate spaces. Boyer in [6] has computed

the remaining part. It involves elliptic representations of GLn(E). Recall an elliptic

representation of GLn(E) is an irreducible smooth representation which has the same

supercuspidal support as a discrete series representation. For more details we refer to

[8, § 2]. We state Boyer’s results in the form as in [8, 4.1]. For any irreducible smooth

representation π of GLn(E), let σ(π) be its associated Weil–Deligne representation of

WE by the local Langlands correspondence [18]. If π is a discrete series representation,

let σ ′(π) be the unique irreducible sub Weil–Deligne representation of σ(π). The set of

irreducible smooth representations of D× will be denoted by Irr(D×), and an element of

it will be usually denoted by ρ, with its contragredient denoted by ρ∨.

Theorem 3.3 [8, Théorème 4.1.2]. For 0 6 i 6 n− 1, there is an isomorphism of

GLn(E)× D××WE -representations

Hn−1+i
c '

⊕
ρ∈Irr(D×)

π6i
ρ ⊗ ρ⊗ σ

′(J L(ρ)∨)| − |
n/nρ−n

2 −i+ 1−n
2 ,

where J L(ρ) is the discrete series representation of GLn(E) associated to ρ by

the Jacquet–Langlands correspondence, cf. [36]. πρ | − |
1−nρ

2 ⊗ · · ·⊗πρ | − |
nρ−1

2 is its

supercuspidal support, nρ is an integer which divides n such that πρ is the (supercuspidal)

representation of GLn/nρ (E), π
6i
ρ is the elliptic representation associated to i with the

same supercuspidal support as πρ (cf. [8, 2.1.11 and 4.1.1]).

Here we have corrected the upper subscript of | − | in [6, 8] according to [18,

Theorem VII.1.5]. We note that σ(J L(ρ)) is the Weil–Deligne representation associated

to ρ ∈ Irr(D×) by the local Langlands correspondence for the inner form D× of GLn , as

expected naturally (cf. [2, 19]).

Combining Lemma 3.1 with Theorem 3.3, we can now prove the following theorem.

Since the local reductive group GQp is a product of inner forms of GLn (together

with Gm), the local Langlands correspondence for it is known [2, 19]. For any smooth

irreducible representation πp of G(Qp), let ϕπp : WQp −→
L(GQp ) be the associated local

Langlands parameter.
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On the `-adic cohomology of some p-adically uniformized Shimura varieties 1207

Theorem 3.4. With the notations as above, we have an identity

Hξ =
∑
π f

a(π f )π f ⊗ (r−µ ◦ϕπp |WE )| − |
(1−n)/2

as virtual G(A f )×WE -representations. Here π f runs through irreducible admissible

representations of G(A f ), the integer a(π f ) is as in [24, p. 657].

Proof. Recall that

G(Qp) = D××Q×p ,

I (Qp) = Jb(Qp) = GLn(E)×Q×p ,

G(Ap
f ) = I (Ap

f ).

For any irreducible representation 5 f of I (A f ), let 5p (respectively 5p) be its

p-component (respectively component outside p). As in the paragraph preceding

Lemma 3.1, we denote 5p = 5p,0⊗χp, with 5p,0 an irreducible smooth representation

of GLn(E), χp a character of Q×p . Then for any irreducible representation ρ of D×, the

tensor product

ρ⊗5p,0

gives us an irreducible representation π f of G(A f ), and vice versa. By Lemma 3.1 we

have

Hξ =
∑

i, j>0
5⊂A(I )ξ

(−1)i+ j lim
−→
m

ExtiGLn(E)(H
j

c (MDr,m ×Cp,Ql(n− 1)),5p,0)

⊗ r−µ1 ◦ϕχp |WE ⊗χp ⊗5
p

=

∑
5⊂A(I )ξ

Mantµ0(5p,0)⊗ r−µ1 ◦ϕχp |WE ⊗χp ⊗5
p.

As the notation in the proof of Lemma 3.1, we have to compute

Mantµ0(5p,0) =
∑

i, j>0

(−1)i+ j lim
−→
m

ExtiGLn(E)(H
j

c (MDr,m ×Cp,Ql(n− 1)),5p,0).

First, we rewrite it as

Mantµ0(5p,0) =
∑
i>0
k>0

(−1)i+n−1+k lim
−→
m

ExtiGLn(E)(H
n−1+k
c (n− 1)K m

p,0 ,5p,0).

Apply the formula in Theorem 3.3 for Hn−1+k
c (here over Ql we can ignore the Tate

twist), then take the terms other than π
6k
ρ out of the Ext, and then take the direct limit

on m we get that Mantµ0(5p,0) equals∑
ρ∈Irr(D×)

∑
i>0

nρ−1>k>0

(−1)i+n−1+kExtiGLn(E)(π
6k
ρ ,5p,0)⊗ ρ⊗ σ

′(J L(ρ)∨)| − |
n/nρ−n

2 −k+ 1−n
2 .
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1208 X. Shen

Now by [8, Proposition 2.1.17], for 0 6 k 6 nρ − 1, ExtiGLn(E)(π
6k
ρ ,5p,0) 6= 0 if and only

if 5p,0 is elliptic and has the supercuspidal support πρ and i satisfies an equality

which depends on k and 5p,0. In this case, ExtiGLn(E)(π
6k
ρ ,5p,0) = Ql , and since 5p,0 is

preunitary for any fixed isomorphism Ql ' C, it has to be π
60
ρ := J L(ρ) or the local Speh

representation π
6nρ−1
ρ (see [8, 5.2 p. 140]). On the other hand, we know by construction

nρ−1∑
k=0

σ ′(J L(ρ)∨)| − |
n/nρ−n

2 −k
= σ(J L(ρ)∨).

Therefore, we can continue the above formula as follows:

Hξ =
∑

ρ∈Irr(D×)

∑
5⊂A(I )ξ
5p,0=J L(ρ)

(−1)n−1ρ⊗ σ(J L(ρ)∨)| − |
1−n

2 ⊗ r−µ1 ◦ϕχp |WE ⊗χp ⊗5
p

+

∑
ρ∈Irr(D×)

∑
5⊂A(I )ξ

5p,0=π
6nρ−1
ρ

(−1)n−1+nρ−1ρ⊗ σ(J L(ρ)∨)| − |
1−n

2 ⊗ r−µ1 ◦ϕχp |WE ⊗χp ⊗5
p

=

∑
ρ∈Irr(D×)

∑
5⊂A(I )ξ

5p,0=J L(ρ) orπ
6nρ−1
ρ

(−1)dρρ⊗ σ(J L(ρ)∨)| − |
1−n

2 ⊗ r−µ1 ◦ϕχp |WE ⊗χp ⊗5
p,

where dρ ∈ {0, 1} depends on ρ. For ρ,5 occurring in the above formula, let π f = ρ⊗

χp ⊗5
p. Then πp = ρ⊗χp, and

r−µ ◦ϕπp |WE = r−µ0 ◦ϕρ |WE ⊗ r−µ1 ◦ϕχp |WE .

By comparing with Matsushima’s formula, the above formula for Hξ equals∑
π f

a(π f )π f ⊗ (r−µ ◦ϕπp |WE )| − |
(1−n)/2,

with the integer a(π f ) as in [24, p. 657]. Note that we have

a(π f ) =
∑

ρ∈Irr(D×)

∑
5⊂A(I )ξ

5p,0=J L(ρ) orπ
6nρ−1
ρ

π f=ρ⊗χp⊗5
p

(−1)dρ .

Here we have used the explicit description of

r−µ0 :
L(D×E ) = GLn(Ql)×

 ∏
τ ′:E↪→Qp
τ ′ 6=τ

GLn(Ql)

×WE −→ GLn(Ql)

(g, g′, σ ) 7−→ (g−1)t .

Hence we have

r−µ0 ◦ϕρ |WE = σ(J L(ρ))∨ = σ(J L(ρ)∨).
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On the `-adic cohomology of some p-adically uniformized Shimura varieties 1209

In [27] Mantovan introduced Igusa varieties for all PEL type Shimura varieties with the

related reductive groups unramified at p, and established a formula which describes the

cohomology of each Newton strata by the cohomology of the associated Rapoport–Zink

spaces and Igusa varieties. Here in our setting, the space A(I )ξ is a substitute of

the cohomology of the Igusa varieties, as one can define in a similar way to [27].

However, the space A(I )ξ should be slightly larger, since one should have a similar

formula as [42, Theorem 6.7] which says that, the cohomology of the Igusa varieties

should be understood from automorphic representations of G by the Jacquet–Langlands

correspondence, therefore locally at p the representations are only restricted in the class

of all discrete series of GLn .

4. Deformation spaces of special OD-modules and test functions

We want to prove the above theorem for all p-adically uniformized Shimura varieties

introduced in § 2, i.e., r can be arbitrary positive integer. To this end, we will follow an

another approach: the Langlands–Kottwitz approach for these Shimura varieties at hand.

We will apply Scholze’s method to define some test functions by means of deformation

spaces of p-divisible groups (cf. [37–39]). Our local setting is in the EL case as in [34],

which is not included in [39] since there one restricts to the general linear groups.

We change the notations in this section. We will not make the full generality as in [34,

1.38 and Definition 3.18]. Here we will restrict ourself to the simple EL case as in [34].

The general case can be studied in the same way, or by working with each simple factor

as presented here. In fact, for the purpose of this paper, only a more restricted case will

be used later. Let D be a central division algebra of dimension n2 over a finite extension

F of Qp, with invariant s
n . Let V be a finite left D-module. We fix a maximal order

OD ⊂ D and a OD-stable lattice 3 ⊂ V . These data give use the semisimple Qp-algebra

C = EndD(V ) with the maximal order OC = EndOD (3). Let G/Zp be the algebraic group

whose group of R-valued points is given by

G(R) = (R⊗Zp OC )
×

for any Zp-algebra R. Let {µ} be the conjugacy class of the cocharacter

µ : Gm −→ GQp
.

The field of definition of {µ} is denoted by E . Fix a representative µ of {µ} over Qp. We

assume that only weights 0 and 1 occur in the associated decomposition of V over Qp,

i.e., VQp
= V0⊕ V1. The isomorphism class of the subspace V0 (and V1) is defined over

E . We make the following definition of special OD-modules as p-divisible groups with

suitable actions of OD (cf. [39, Definition 3.3] or [34, 3.23]).

Definition 4.1. Let S be a scheme over OE on which p is locally nilpotent. A special

OD-module is given by a pair H = (H, ι) consisting of

• a p-divisible group H over S;

• a homomorphism ι : OD → End(H) such that
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1210 X. Shen

(1) locally on S there is an isomorphism of OD ⊗ OS-modules between the Lie algebra

of the universal vector extension of H and OD ⊗Zp OS ; and

(2) the determinant condition holds true, i.e., we have an identity of polynomial

functions in a ∈ OD

detOS (a|LieH) = detE (a|V0).

With the above definition, many results of [39, §§ 3 and 4] still hold true in our context.

We just review and summarize what we need; for details we refer to [39]. Let H = (H, ι)
be a special OD module over a perfect field κ of characteristic p, which we give a structure

of an OE -algebra via a fixed morphism OE → κ.

• The deformation functor DefH of H as a special OD-module is pro-representable by a

complete noetherian local OE -algebra RH with residue field κ.

• Let k0 be the complete discrete valuation ring with residue field κ that is unramified

over OE , and let k be its fraction field. Then RH has a structure as a k0-algebra. Let

X H = (SpfRH )
rig be the rigid generic fiber of SpfRH , as a rigid analytic space over k.

Then for any open compact subgroup K ⊂ G(Zp), we have a finite étale covering X H ,K
of X H parameterizing level K structures.

• If X H 6= ∅, then κG(b) = µ], where b ∈ B(GQp ) is the σ -conjugacy class defined from

the Frobenius morphism on the covariant Dieudonné module of H , κG : B(GQp ) −→

X∗(Z(Ĝ)0) is the Kottwitz map defined in [26], µ] ∈ X∗(Z(Ĝ)0) is the element

defined from the conjugacy class of cocharacters µ as in [26]. Here B(GQp ) is the

set of σ -conjugacy class in G(W (κ)Q), Ĝ is the dual group, Z(Ĝ) its center, and

0 = Gal(Qp/Qp).

• For any perfect field κ of characteristic p which is an OE -algebra, there is an association

by using Dieudonné module theory H 7→ δ ∈ G(W (κ)Q) which defines an injection from

the set of isomorphism classes of special OD-modules over κ such that X H 6= ∅ into the

set of G(W (κ))-σ -conjugacy classes in G(W (κ)Q) with the properties pOD ⊂ pδOD ⊂

OD and κG(pδ) = µ].

•We say H has controlled cohomology if X H ,K has controlled cohomology for all

normal pro-p open subgroups K ⊂ G(Zp) and all primes l 6= p in the sense of [39,

Definition 2.2]. Assume H has controlled cohomology. Then for any normal pro-p open
subgroup K ⊂ G(Zp), there is an integer m > 1 such that for all automorphisms j of

H that act trivially on H [pm
] the induced action on H i (X H ,K ×

ˆk,Ql) is trivial for

all i .

Let IE ⊂ WE be the inertia subgroup of the Weil group, and fix a geometric Frobenius

element Frob ∈ WE . Fix some integer j > 1. Let τ ∈ Frob j IE ⊂ WE and h ∈ C∞c (G(Zp))

be a function with values in Q. Set t = j[κE : Fp] where κE is the residue field of E
(the standard notation for j[κE : Fp] should be r , but we have used r as the copies of

Drinfeld spaces in the p-adic uniformization). We regard Fpt as the degree- j-extension of

κE . As before, let k be the unramified extension of E with residue field Fpt . Fix the Haar
measures on G(Qp), respectively G(Qpt ), that give G(Zp) respectively G(Zpt ) volume 1.
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On the `-adic cohomology of some p-adically uniformized Shimura varieties 1211

Definition 4.2. Let δ ∈ G(Qpt ). If δ is associated to some special OD-module H over Fpt

under the above association, and if H has controlled cohomology, define

φτ,h(δ) = tr(τ × h|H∗(X H ,K ×
ˆk,Ql))

for any normal compact pro-p open subgroup K ⊂ G(Zp) such that h is K -biinvariant.

Otherwise, define φτ,h(δ) = 0. Here and in the following

H∗(X H ,K ×
ˆk,Ql) =

∑
i>0

(−1)i H i (X H ,K ×
ˆk,Ql).

Proposition 4.3. (1) The function φτ,h : G(Qpt )→ Ql is well defined and takes values

in Q independent of l. Its support is contained in the compact set of all δ ∈ G(Qpt )

satisfying pOD ⊂ pδOD ⊂ OD and κG(pδ) = µ].

(2) The function φτ,h is locally constant, so that it defines an element φτ,h ∈

C∞c (G(Qpt )).

Proof. Identical to the proofs of [39, Propositions 4.2 and 4.3].

We come back to the global situation as in § 2. Recall we have local central division

algebras Di = B$i over F$i with invariant 1
n for 1 6 i 6 r and the semisimple Qp-algebra

D′ which corresponds to the factors of B at the primes $r+1, . . . ,$s . For each 1 6 i 6 r ,

the cocharacter µi has the form that

Gm −→ GiQp

z 7→
((

1
z1n−1

)
, 1n, . . . , 1n

)
,

where Gi = ResF$i |Qp D×i and for any integer d > 1, 1d is the identity d × d matrix. Recall

now E is the compositum of the fields F$i for 1 6 i 6 r . We consider the following

p-divisible groups.

Definition 4.4. Let S be a scheme over OE on which p is locally nilpotent. A

(D1, . . . , Dr , D′)-group over S is a p-divisible group H̃ = ((H1, ι1), . . . , (Hr , ιr ), (H ′, ι′))
where

• for each 1 6 i 6 r , (Hi , ιi ) is a special ODi -module over S;

• (H ′, ι′) is a D′ group over S in the sense of [38, Definition 4.1], i.e., an étale p-divisible

group H ′ over S together with an action ι′ : Oop
D′ → End(H ′) such that H ′[p] is free of

rank 1 over Oop
D′/p.

Recall that there are two ways to parameterize D′-groups H ′ over Fpt , the Dieudonné

parametrization and the Galois parametrization. Let σ0 be the absolute Frobenius of

Zpt . The set of isomorphism classes of such D′-groups is in bijection with the set of

(OD′ ⊗Zp Zpt )×-σ0 conjugacy classes in (OD′ ⊗Zp Zpt )×, which is in turn bijection with

the set of O×D′-conjugacy classes in O×D′ by a map δ′ 7→ Nδ′ (cf. [38, Proposition 4.2]). Let

h′ ∈ C∞c (O
×

D′) be a function which takes values in Q and invariant under conjugation.
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1212 X. Shen

We define a function φh′ ∈ C∞c ((OD′ ⊗Zp Zpt )×) by setting φh′(δ
′) = h′(Nδ′). Then by [38,

Proposition 4.3] the functions φh′ and h′ have matching (twisted) orbital integrals.

Let H̃ be a (D1, . . . , Dr , D′)-group over Fpt , with t = j[κE : Fp]. Let G B be the group

scheme over Zp given by

G B(R) = (OB ⊗Zp R)×

for any Zp-algebra R. Then G B ×Gm is a integral model of the GQp introduced in § 2.

As in the single factor case, the group H̃ gives rise to an element

δ = (δ1, . . . , δr , δ
′) ∈ G B(Qpt ) = (D1⊗Qp Qpt )×× · · ·× (Dr ⊗Qp Qpt )××G D′(Qpt )

which is well defined up to G B(Zpt )-σ0-conjugacy. The deformation functor of H̃ as

(D1, . . . , Dr , D′)-group is pro-representable by a k0-algebra RH̃ , where as before k0 is the

unramified extension of OE with residue field Fpt and fraction field k. We assume

X H̃ = (Spf RH̃ )
rig

non-empty, which imposes the condition κG B (pδ) = µ
] on δ. Moreover, for an open

compact subgroup of the form K = (
∏r

i=1 Ki )× K ′ ⊂ G B(Zp), we have a product

decomposition of the level K covering space

X H̃ ,K =

( r∏
i=1

X H i ,Ki

)
×G D′/K ′

of X H̃ . Now for τ ∈ Frob j IE ⊂ WE , h1 ∈ C∞c (O
×

D1
), . . . , hr ∈ C∞c (O

×

Dr
), h′ ∈ C∞c (O

×

D′),

with all these functions take values in Q and h′ invariant under conjugation, we

have defined the functions φτ,h1 ∈ C∞c (D
×

1 (Qpt )), . . . , φτ,hr ∈ C∞c (D
×
r (Qpt )) and φh′ ∈

C∞c ((OD′ ⊗Zp Zpt )×). We can also define a function φτ,h1,...,hr ,h′ ∈ C∞c (G B(Qpt )) by

φτ,h1,...,hr ,h′(δ) = tr(τ × h1× · · ·× hr × h′|H∗(X H̃ ,K ×
ˆk,Ql))

for any normal compact pro-p open subgroup K ⊂ G B(Zp) such that (h1, . . . , hr , h′) is

K -biinvariant, if δ is associated to a controlled (D1, . . . , Dr , D′)-group H̃ , otherwise define

φτ,h1,...,hr ,h′(δ) = 0. Then it is easy to see that for δ = (δ1, . . . , δr , δ
′) we have

φτ,h1,...,hr ,h′(δ) = φτ,h1(δ1) · · ·φτ,hr (δr )φh′(δ
′).

Our global PEL situation actually puts us in the quasi-EL case in the following sense,

which is the analogue of the quasi-EL case of [39, § 3] in our context. Let S be a locally

noetherian scheme on which p is locally nilpotent. Recall for an abelian scheme A which

comes from an S-valued point of the moduli space SK p defined in § 2, the associated

p-divisible group has the decomposition

A[p∞] = H̃ ⊕ H̃ D
,

with H̃ a (D1, . . . , Dr , D′)-group, H̃ D
its dual. Then one can also formulate a definition

of p-divisible groups over S with the same additional (PEL) structures as those in the

form A[p∞] for A coming from an S-point of SK p (cf. [39, Definition 3.3]). We may call
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On the `-adic cohomology of some p-adically uniformized Shimura varieties 1213

these additional structures as quasi-EL additional structures. Such a p-divisible group

with quasi-EL additional structures is given by a quadruple H = (H, ι, λ,L) over S,

with λ : H
∼
−→ H D

⊗L a (twisted) principal polarization and L is a one-dimensional

smooth Zp-local system. It is equivalent to giving a (D1, . . . , Dr , D′)-group H̃0 and an

one-dimensional smooth Zp-local system L over S. The relation between the two is given

by the equality H = H0⊕ H D
0 ⊗L. In particular, for such a p-divisible group H over Fpt ,

we get an element

δ = (δ0, p−1d) ∈ G(Qpt ) = G B(Qpt )×Q×pt

where L corresponds to d as in [39, § 3]. Then for any open compact subgroup of the

form

K = K0× (1+ pmZp) ⊂ G(Zp) = G B(Zp)×Z×p
with m > 1, we have a product decomposition

X H ,K = X H̃0,K0
× XL,m,

where XL,m parameterizes isomorphisms between L⊗µpm and Z/pmZ. Similarly for τ ∈

Frob j IE ⊂ WE , (h0, hGm ) ∈ C∞c (G B(Zp))×C∞c (Z×p ) with values in Q, we can define a test

function φτ,h0,hGm
∈ C∞c (G(Qpt )) such that for all δ = (δ0, δGm ) ∈ G(Qpt ) = G B(Qpt )×

Q×pt , we have

φτ,h0,hGm
(δ) = φτ,h0(δ0)φτ,hGm

(δGm ),

where φτ,hGm
is the function with support on p−1Z×pt defined by

φτ,hGm
(δGm ) = h(ArtQp (τ )NδGm ),

where ArtQp : WQp → Q×p is the local reciprocity map sending a geometric Frobenius

element to a uniformizer. As in [39, Remark 4.11], for all characters χ : Q×p → C×, we

have the identity

tr(φτ,hGm
|χ ◦ NQpt |Qp ) = tr(τ−1

|χ ◦ArtQp )tr(h|χ),

where NQpt |Qp : Q
×

pt → Q×p is the norm map.

5. Counting points modulo p

We return to the situation of § 2. We are going to adapt Kottwitz’s method to count

points in SK p (Fpt ) and compute the cohomology of Shimura varieties. Before going into

the details, we say more about the moduli spaces SK p .

We know that

SK p ×OE E '
∐

ker1(Q,G)

ShK 0
p K p ,

where K 0
p ⊂ G(Qp) is the maximal open compact subgroup. Now for any open compact

subgroup K p ⊂ G(Zp), we have a finite étale cover πK p K p : SK p K p → SK p ×OE E which

parameterizes K p-orbits of isomorphisms between OB ⊗Zp and the p-adic Tate module

Tp A of A, compatible with the additional structures. In such a way we get a tower of
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1214 X. Shen

varieties equipped with an action of G(Zp)×G(Ap
f ) by Hecke correspondences. Moreover,

we have isomorphisms

SK p K p '

∐
ker1(Q,G)

ShK p K p

compatible with the Hecke correspondences and the maps to SK p ×OE E (cf. [39,

Proposition 5.3]).

Fix a prime l 6= p. Let ξ be a finite-dimensional algebraic representation of G over

Ql . Then as usual we get local systems Lξ on SK p K p to which the action of the Hecke

correspondences extend. By abuse of notation we will not put level subscripts on them.

We can define the `-adic cohomology of the tower SK p K p with coefficients in the local

systems Lξ by

H̃ξ =
∑
i>0

(−1)i lim
−→

K p,K p

H i (SK p K p ×Qp,Lξ ).

This is a virtual representation of G(Zp)×G(Ap
f )×WE . We have the equality

H̃ξ =
⊕

ker1(Q,G)

Hξ

which is compatible with the actions of WE and G(Zp)×G(Ap
f ), where Hξ was defined

in § 3.

Now let x ∈ SK p (Fpt ), write H as the associated p-divisible group with quasi-EL

additional structures over Fpt defined in § 4. Let k be the complete unramified extension of

E with residue field Fpt . By Serre–Tate theorem, we know that there is an isomorphism of

complete local rings ÔSK p ,x ' RH , where RH is the deformation ring of H . In particular,

we have the natural embedding X H ↪→ Srig
K 0

p K p × k. Moreover, for any open compact

subgroup K p ⊂ G(Zp) we have the pullback diagram

X H ,K p� _

��

// X H� _

��
Srig

K p K p × k // Srig
K 0

p K p × k.

Here for any K p ⊂ G(Zp), Srig
K p K p is the rigid analytic space over E associated to SK p K p . In

particular, H has controlled cohomology and for all i ∈ Z we have a Gal(k/k)-equivariant

isomorphism

(RiψπK p K p∗Ql)x ' H i (X H ,K p ×
ˆk,Ql),

where πK p K p : SK p K p → SK 0
p K p is the natural projection, and ψ is the nearby cycle

functor for the scheme SK p .

The p-adic uniformization gives us the description of the set of Fp-points of SK p :

SK p (Fp) =
∐

ker1(Q,G)

I (Q) \ X p × X p,
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On the `-adic cohomology of some p-adically uniformized Shimura varieties 1215

where X p =M(Fp) with M the pro-formal scheme over OE associated to the formal

Rapoport–Zink space M̂ as in [34, Definition 3.51], X p
= G(Ap

f )/K p, and the Frobenius

action on the left hand side induces the natural Frobenius action on X p. The set X p can

be described as a set of some suitable Dieudonné lattices, and after fixing a choice of

a lattice we can identify X p with a subset of G(L)/G(OL) where L = W (Fp)Q. As K p

varies, this bijection is compatible with the action of G(Ap
f ). Note for our group G, if

K p sufficiently small we have Z(Q)∩ K = 1, where Z ⊂ G is the center and K = K 0
p K p.

From now on, we take a sufficiently small K p such that Z(Q)∩ K = 1, and such that of

[25, 1.3.7 and 1.3.8] hold (the Proof of Lemma 5.5 in [29] works for the group I , as one

sees easily). Passing to the finite level, by the method of [25] we have

SK p (Fpt ) =
∐

ker1(Q,G)

∐
ε

Iε(Q) \ Aε,

where ε runs through the set of conjugacy classes in I (Q), Iε is the centralizer of ε in I ,

and Aε is defined as follows:

Aε = Fix(Fr jε−1
|X p)×Fix(ε|X p)

=: X p(ε)× X p(ε).

Here Fr is the Frobenius automorphism on X p over E . The set Aε could be empty.

However, when it is non-empty, the set
∐

ker1(Q,G) Iε(Q) \ Aε has a moduli explanation

as follows. Let x0 = (Ax0 , ιx0 , λx0 , η
p
x0) ∈ SK (Fpt ) be any point with associated ε. Then

the set of points in S p
K (Fpt ) for which the associated abelian varieties are isogenious to

(Ax0 , ιx0 , λx0) over Fpt is in bijection with
∐

ker1(Q,G) Iε(Q) \ Aε. As in the case of X p,

after fixing some choice of some lattice, the set X p(ε) can be identified with a subset of

G(Qpt )/G(Zpt ).

For ε ∈ I (Q) such that Aε is non-empty, we can associate to it a conjugacy class

γ ∈ G(Ap
f ) that is stably conjugate to ε by the embedding I (Q) ⊂ I (Ap

f ) = G(Ap
f ), and a

σ -conjugacy class δ ∈ G(Qpt ) such that Nδ is stably conjugate to ε (cf. [32, Theorem 4.11]

and [31, p. 689]). The characterization of the σ -conjugacy class δ is as follows. Assume

that Aε is non-empty, then there is a δ ∈ G(Qpt ) such that there exists c ∈ G(L) with

δ = cbσ(c)−1 and Nδ = cεc−1; here Nδ is as in Definition 5.2 and b× σ is the σ -linear

map V−1 on the covariant rational Dieudonné module. The σ -conjugacy class of such a

δ ∈ G(Qpt ) is uniquely determined by the I (Q)-conjugacy class of ε. If Aε is non-empty,

we can also get (γ, δ) by geometric means. A point x ∈ SK (Fpt ) with associated ε gives

rise to a c-polarized virtual abelian variety (Ax , ιx , λx ) over Fpt (cf. [39, Definition 6.1] or

[25, § 10]). By the existence of a level structure of type K p, we know that for all l 6= p,

the rational l-adic Tate module Vl(Ax ) is isomorphic to V ⊗Ql ; fixing an isomorphism,

the Frobenius morphism πAx gives rise to a B-linear automorphism of Vl ; we define

γl ∈ G(Ql) as its inverse. Its conjugacy class is well defined, and these elements define a

conjugacy class γ ∈ G(Ap
f ). The associated p-divisible group H = Ax [p∞] then gives an

element δ ∈ G(Qpt ) well defined up to σ -conjugation by G(Zpt ). It satisfies the equality

κG(pδ) = µ].
Now we get the first form the trace formula. Fix the Haar measures on G(Qp),

respectively G(Qpt ), that give G(Zp), respectively G(Zpt ), volume 1.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1474748016000360
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek Regensburg, on 21 Nov 2019 at 09:58:29, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1474748016000360
https://www.cambridge.org/core


1216 X. Shen

Proposition 5.1. With the notations above, we have the following equality:

tr(τ × h f p
|Hξ ) =

∑
ε

vol(Iε(Q) \ Iε(A f ))Oγ ( f p)TOδσ (φτ,h)trξ(ε),

where ε runs over the set of conjugacy classes of I (Q) such that Aε is non-empty.

Proof. This formula comes from the application of Lefschetz trace formula [45] and the

description of the set of Fpt -points. The local term of each fixed point in the isogeny class

associated to ε is φτ,h(δ)trξ(ε). The contribution of fixed points in this isogeny class is

given by

vol(Iε(Q) \ Iε(A f ))Oγ ( f p)TOδσ (φτ,h)trξ(ε).

For a more detailed proof, see [41, Proposition 5.1].

We want to construct a ‘Kottwitz triple’ attached to the above ε. Recall the usual

definition of a Kottwitz triple for our reductive group G over Q.

Definition 5.2. Let j > 1. Set t = j[κE : Fp] with κE as the residue field of E . A

degree- j-Kottwitz triple (γ0; γ, δ) consists of

• a semisimple stable conjugacy class γ0 ∈ G(Q);
• a conjugacy class γ ∈ G(Ap

f ) that is stably conjugate to γ0;

• a σ -conjugacy class δ ∈ G(Qpt ) such that Nδ := δσ (δ) · · · σ t−1(δ) is stably conjugate

to γ0;

satisfying

(1) γ0 is elliptic in G(R);
(2) κGQp

(pδ) = µ] in X∗(Z(Ĝ)0), where 0 is the absolute Galois group of Qp.

The conjugacy class of Nδ is stable under the Galois group 0. However, since GQp is not

quasi-split, it can happen that this conjugacy class contains no element of G(Qp) (cf. [21]).

This is an obstruction to obtain a γ0 ∈ G(Q) such that (γ0; γ, δ) forms a Kottwitz triple

for G. In fact, it is the only obstruction, since we have the following lemma.

Lemma 5.3. If the conjugacy class of Nδ contains an element of G(Qp), then we can find

an element γ0 ∈ G(Q) such that (γ0; γ, δ) forms a Kottwitz triple for G.

Proof. Let (A, ι, λ) be a c-polarized virtual abelian variety over Fpt coming from a

Fpt -point of SK p inside the isogeny class determined by ε. Consider the Frobenius

morphism πA ∈ EndB(A). Then F(πA) is a CM field, which is also the center of the

division algebra EndB(A). The Rosati involution ∗ on EndB(A) induced by λ preserves

F(πA). Since by assumption, the conjugacy class of Nδ is stable under the Galois group

0, we have an embedding F(πA) ⊂ Bopp. Moreover, by the definition of the moduli

problem, the two involutions ∗ and ] are compatible under this embedding. Then we

have πA ∈ G(Q) under the above embedding. We can take γ0 = π
−1
A . The conditions in

Definition 5.2 for (γ0; γ, δ) being a Kottwitz triple can be verified as in [25, § 14].

The converse of this lemma is clearly true. In particular, for our group G which is

not quasi-split at p, the set of Kottwitz triples is not enough for parameterizing all
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On the `-adic cohomology of some p-adically uniformized Shimura varieties 1217

the Fpt -points of our Shimura varieties. Maybe it is possible to define some generalized

Kottwitz triples by introducing some suitable inner form of G, such that these generalized

Kottwitz triples parameterize all the points on the Shimura varieties over finite fields.

But we will not pursue this subject here. Now the key point is the following theorem,

which can be viewed as a generalization of [32, Conjecture 5.7] which was proved in the

maximal level case by Waldspurger. See also [33, Conjecture 10.2] in the more general

setting.

Theorem 5.4. If the conjugacy class of Nδ does not contain an element of G(Qp), then

for any j > 1, τ ∈ Frob j IE and any h ∈ C∞c (G(Zp)), we have the twisted orbital integral

of the test function φτ,h vanishes

TOδσ (φτ,h) = 0.

In particular, there is a function fτ,h ∈ C∞c (G(Qp)) which has matching (twisted) orbital

integrals with φτ,h ∈ C∞c (G(Qpt )).

Proof. By the properties of the test function φτ,h , we can assume we are in the local

quasi-EL case such that G(Qp) = D××Q×p , where D is a central division algebra with

invariant 1
n over a finite extension E of Qp. Then the test functions φτ,h are defined for

the Shimura varieties which were studied in § 2 at p. With the notation of § 2, we have

specially simple form: r = 1 and G D′ = 1. By Proposition 5.1, we have the formula

tr(τ × h f p
|Hξ ) =

∑
ε,Aε 6=∅

vol(Iε(Q) \ Iε(A f ))Oγ ( f p)TOδσ (φτ,h)trξ(ε),

where ε runs over the set of conjugacy classes of I (Q) such that Aε 6= ∅, with the

associated (twisted) conjugacy classes γ and δ as above. Recall that in the above situation

IQp = (ResE |Qp GLn)×Gm . Let G∗ = IQp be the quasi-split inner form of G over Qp. Then

we have the norm map

N :
{
σ − conjugacy classes in G(Qpt )

}
−→

{
conjugacy classes in G∗(Qp) = GLn(E)×Q×p

}
from which we can define a transfer f ∗τ,h ∈ C∞c (G

∗(Qp)) cf. [1, 32], such that for any

conjugacy class {γp} not in the image of N we have

Oγp ( f ∗τ,h) = 0,

and for {γp} = N {δ} we have

Oγp ( f ∗τ,h) = e(δ)TOδσ (φτ,h),

where e(δ) is the Kottwitz sign of Gδσ . By construction, for δ coming from ε, we have

N {δ} = {γp} where {γp} is the image of ε in I (Qp). Then we can rewrite the above formula

as

tr(τ × h f p
|Hξ ) =

∑
ε

vol(Iε(Q) \ Iε(A f ))Oγ ( f p)e(δ)Oγp ( f ∗τ,h)trξ(ε).
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1218 X. Shen

Note in particular by definition of f ∗τ,h , in the above sum ε runs over the set of all

conjugacy classes of I (Q). We identify the center Z ⊂ G as a subgroup of I and Iε.
Recall the Tamagawa number of Iε is defined by

τ(Iε) = vol(Iε(Q)AG(R)0 \ Iε(A)),

where AG is the split component of Z and AG(R)0 is the connected component containing

the identity element. So the factor vol(Iε(Q) \ Iε(A f )) equals

τ(Iε)vol(AG(R)0 \ Iε(R))−1.

Let f∞ be a pseudo-coefficient on I (R) for ξ̌ . Denote the image of ε in I (R) by γ∞. Then

as [24, p. 659] (recall that the group I (R) is compact modulo center) we have

Oγ∞( f∞) = e(γ∞)vol(AG(R)0 \ Iε(R))−1trξ(ε),

where e(γ∞) is the Kottwitz sign of IR. As in [31, p. 690] or [35, § 10], we have e(δ) =
e(γ∞). Therefore, we get

tr(τ × h f p
|Hξ ) =

∑
ε

τ(Iε)Oγ ( f p)Oγp ( f ∗τ,h)Oγ∞( f∞).

Now we apply the simple trace formula for the group I and the function f = f p f ∗τ,h f∞.

The above equals ∑
π

m(π)trπ( f ),

where π runs over the automorphic representations of I (A) whose central character is

the inverse of that of ξ on AG(R)0.

On the other hand, we have known by Theorem 3.4

Hξ =
∑
π f

a(π f )π f ⊗ (r−µ ◦ϕπp |WE )| − |
(1−n)/2

as virtual G(A f )×WE -representations. Now by the comparison of this formula with the

above trace formula, we can conclude that for any irreducible smooth representation

πp = π
0
p ⊗χp of G∗(Qp) = GLn(E)×Q×p , if π0

p is not a discrete series, i.e., it does not

come from an irreducible smooth representation of D×, then

trπp( f ∗τ,h) = 0.

Indeed, for any such πp, suppose first that we can find an automorphic representation

π of I with the p-component as πp and m(π) 6= 0. Take compact open subgroups K p
⊂

I (Ap
f ) = G(Ap

f ), K p ⊂ I (Qp) such that π
p
f has K p-invariants and πp has K p-invariants.

Let K = K p K p. Then there are only finitely finitely irreducible admissible representations

π ′f of I (A f ) such that π ′f occurs as the finite adelic component of an automorphic

representation with central character the inverse of ξ on AG(R)0, π ′f has K -invariants,

and m(π ′) 6= 0. One can then find a function f p
∈ C∞c (I (A

p
f )) biinvariant under K p with

tr( f p
|π

p
f ) = 1 and such that whenever π ′f is an irreducible admissible representation

of I (A f ) with tr(π ′f )
p( f p) 6= 0, with (π ′f )

p has invariants under K p, then (π ′f )
p
' π

p
f
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On the `-adic cohomology of some p-adically uniformized Shimura varieties 1219

(which implies π ′f = π f by [15, Lemma 3]. In fact the situation of [15] is under more

restrictive hypotheses, but the same proof applies). Take such an f p. Recall that by our

choice of f∞ we have trπ∞( f∞) = 1. Then the right hand of the trace formula has only

one term

m(π)trπp( f ∗τ,h),

which has to be zero according to the description of Hξ .
For the general case, we use the facts that the set of local p-components of automorphic

representations of I is Zariski dense in the Bernstein variety of G∗(Qp); see for example

[42, Proposition 3.1]. More precisely, let

z2 =
∐

(L ,D)∈S(GLn(E))

V (L , D)

be the Bernstein variety of GLn(E) as introduced in [9, A.4]. Here we use the notation

of 2.1 of [42]. This is the discrete series variant of the usual Bernstein variety z. Let

Irr(GLn(E)) be the set of isomorphism classes of irreducible smooth representations of

GLn(E). Then thanks to the Bernstein–Zelevinsky classification for GLn(E), we get a

map with finite fibers

r : Irr(GLn(E))→ z2,

such that its composition with the finite map z2 → z (cf. [42, Remark 2.2], and see also

the example of A.4.e in p. 64 of [9] for an explicit description of this finite map) is the

usual map Irr(GLn(E))→ z sending a representation to its supercuspidal support. By

the classification of discrete series in [46], the set of isomorphism classes of discrete series

of GLn(E) is exactly the inverse image under r of the components V (L , D) with L = G
(see also [42, Example 2.3]). Take any (L , D) ∈ S(GLn(E)) with L 6= G. Proposition 3.1

of [42] says that the set of local p-components of automorphic representations of I (which

are non-discrete series)

Y = {x ∈ V (L , D)| ∃5 ⊂ A(I )ξ , x = r(5p,0)}

is Zariski dense in V (L , D). (Note that by our definitions of A(I )ξ in § 3 and of

f∞, for 5 ⊂ A(I )ξ , we have tr5∞( f∞) 6= 0.) By [42, Proposition 2.2], the function

πp 7−→ trπp( f ∗τ,h) is regular on the Bernstein variety z2. Therefore, trπp( f ∗τ,h) = 0 for

any non-discrete series representation πp.

This implies if γp does not come from an element of G(Qp), i.e., the conjugacy class of

Nδ does not include an element of G(Qp), then

Oγp ( f ∗τ,h) = 0,

cf. [3, Lemma 3.3]. This means that f ∗τ,h comes from a function fτ,h ∈ C∞c (G(Qp)), such

that

trπp( fτ,h) = e(δ)trπ∗p( f ∗τ,h),

where πp 7−→ π∗p is the Jacquet–Langlands correspondence between the set of smooth

irreducible representations of G(Qp) and G∗(Qp). The functions f ∗τ,h and fτ,h have

matching orbital integrals, hence fτ,h and φτ,h have matching (twisted) orbital

integrals.
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We have the following theorem. It says that the fixed points which have non-trivial

contribution to the trace formula can be parameterized by Kottwitz triples, and their

contribution have the usual description as in the quasi-split case of [39].

Theorem 5.5. Let f p
∈ C∞c (G(A

p
f )), h ∈ C∞c (G(Zp)) and τ ∈ Frob j IE ⊂ WE , then

tr(τ × h f p
|Hξ ) =

∑
(γ0;γ,δ)

c(γ0; γ, δ)Oγ ( f p)TOδσ (φτ,h)trξ(γ0),

where the sum runs over degree- j-Kottwitz triples, and c(γ0; γ, δ) is a volume factor

defined as in [25, p. 441]. The Haar measures on G(Qp) respectively G(Qpt ) are

normalized by giving G(Zp) respectively G(Zpt ) volume 1.

Proof. By Proposition 5.1 we have the formula

tr(τ × h f p
|Hξ ) =

∑
ε

vol(Iε(Q) \ Iε(A f ))Oγ ( f p)TOδσ (φτ,h)trξ(ε),

where ε runs over the set of conjugacy classes of I (Q) such that Aε is non-empty. By

the above vanishing theorem, only those ε such that the conjugacy class of Nδ for the

associated δ have non-trivial contribution to the this formula, in which case we can find

a γ0 ∈ G(Q) such that (γ0; γ, δ) forms a Kottwitz triple for G. Moreover, in this case

the associated group I (γ0; γ, δ) to (γ0; γ, δ) can be taken as Iε. Fix such a Kottwitz

triple (γ0; γ, δ). The number of conjugacy classes ε which gives this triple equals to

|ker(ker1(Q, I (γ0; γ, δ))→ ker1(Q,G))| (cf. [29, Proposition 6.11]). Clearly the traces of

ε and γ0 are the same for the Ql -representation ξ . Then one can rewrite the above formula

in the form as in the theorem.

6. A character identity

We continue the study of the cohomology group Hξ . Let the notations be as in last section.

Since the global reductive group G has trivial endoscopic groups, by the procedure of

pseudostabilization, we get the following corollary.

Corollary 6.1. For τ ∈ Frob j IE ⊂WE , h1 ∈ C∞c (O
×

D1
), . . . , hr ∈ C∞c (O

×

Dr
), h′ ∈ C∞c (O

×

D′),

h0 ∈ C∞c (Z×p ), with all these functions take values in Q and h′ invariant under

conjugation, we have the following equality

Ntr(τ × h1× · · ·× hr × h′× h0× f p
|Hξ ) = tr( fτ,h1 × · · ·× fτ,hr × h′× h′0× f p

|Hξ ),

where N = dim r−µ, h′0 ∈ C∞c (Q×p ) has support in p−tZ×p and is defined by h′0(x) =
h0(pt x) for all x ∈ p−tZ×p .

Proof. With the expression in the last theorem, we can apply Kottwitz’s argument of

pseudostabilization in [24] (see also the proof of [38, Corollary 9.4]). We just sketch the

most important steps in the calculation. First, note the functions φτ,h = φτ,h1 × · · ·φτ,hr ×

φh′ × h0 and fτ,h1 × · · ·× fτ,hr × h′× h′0 have matching (twisted) orbital integrals. As

in [24, p. 657] Kottwitz introduced a function f∞ on G(R) depending on ξ . Consider

the function

f = fτ,h1 × · · ·× fτ,hr × h′× h′0× f p
× f∞
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be the function on G(A). Then arguing as [24, pp. 661–663] we get the left hand side

equals

Nτ(G)
∑
γ0

SOγ0( f ),

where τ(G) is the Tamagawa number of G, γ0 runs through the stable conjugacy classes

in G(Q) and SOγ0( f ) is the stable orbital integral. By the Arthur–Selberg trace formula

for f we get it equals

N
∑
π

m(π)tr( f |π),

where π runs through automorphic representations for G with central character ξ̌ . By

[24, Lemma 4.2] this can be rewritten as∑
π f

tr( fτ,h1 × · · ·× fτ,hr × h′× h′0× f p
|π f )

∑
π∞

m(π f ⊗π∞)ep(π∞⊗ ξ),

where ep denotes the Euler–Poincare characteristic as in [24]. Now Matsushima’s formula

shows that this equals

tr( fτ,h1 × · · ·× fτ,hr × h′× h′0× f p
|Hξ ).

Consider the case r = 1. Then the above corollary combined with Theorem 3.4 gives

us the following character identity.

Proposition 6.2. For ρ ∈ Irr(D×) with L-parameter ϕρ , h ∈ C∞c (O
×

D) with values in Q
and the conjugacy class {µ} of cocharacters µ defined in § 4, we have the identity

tr( fτ,h |ρ) = tr(τ |(r−µ ◦ϕρ |WE )| − |
(1−n)/2)tr(h|ρ).

Proof. As in the proof of [40, Theorem 8.1], it is equivalent to prove the equality for

the corresponding quasi-EL case. With the notation of § 3, we have GQp = D××Q×p . By

Theorem 3.4 we know

Hξ =
∑
π f

a(π f )π f ⊗ (r−µ ◦ϕπp |WE )| − |
(1−n)/2.

By [15, Lemma 1], we can globalize ρ to an irreducible admissible representation π f
of G(A f ) such that there is an algebraic representation ξ of G with the π f -isotypic

component of Hξ
H(π f ) := HomG(A f )(π f , Hξ ) 6= 0.

Take some integer m > 1 such that h ∈ C∞c (G(Zp)) is bi-K m
p -invariant. Also, take a

compact open compact subgroup K p
⊂ G(Ap

f ) such that π
p
f has K p-invariants. Let

K = K m
p K p, then since H K

ξ =
∑
(−1)i H i (ShK ,Qp

,Lξ ) is finite dimensional, there are

only finitely many irreducible admissible representations π ′f with invariants under K and

H(π ′f ) 6= 0. There exists a function f p
∈ C∞c (G(A

p
f )) bi-K p-invariant with tr( f p

|π
p
f ) = 1

and such that whenever π ′f is an irreducible representation of G(A f ) with H(π ′f ) 6= 0,

with invariants under K , and tr( f p
|(π ′f )

p) 6= 0, then π f ' π
′

f . Note the N of Corollary 6.1
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equals n under our assumption here. Now we compute the trace of the function fτ,h × f p

on Hξ :
tr( fτ,h × f p

|Hξ ) = na(π f )tr( fτ,h |πp).

By the above corollary

na(π f )tr(τ |r−µ ◦ϕπp |WE | − |
(1−n)/2)tr(h|πp) = na(π f )tr( fτ,h |πp).

We can deduce the desired identity.

7. The cohomology of Shimura varieties II

Now consider the general case that 1 6 r 6 s are arbitrary integers. The cocharacter

µ : Gm −→ GQp
has a decomposition µ = (µ1, . . . , µr , µ

′, µ0), which induces a

decomposition of r−µ = (
⊗r

i=1 r−µi )⊗ r−µ′ ⊗ r−µ0 when restricting on Ĝ. In fact one

sees easily that r−µ′ is the trivial representation. E is the composition of local reflex

fields F$i for each µi with 1 6 i 6 r . Any smooth irreducible representation π of

G(Qp) =
∏r

i=1 D×i × (D
′)××Q×p has a tensor product decomposition π =

⊗r
i=1 πi ⊗

π ′⊗χ . Accordingly we have L-parameters ϕπ , ϕπ1 , . . . , ϕπr , ϕπ ′ , ϕχ . Then the properties

of the test functions lead to the following character identity in the general case.

Proposition 7.1. For any irreducible representation π of G(Qp) with L-parameter ϕπ ,

let h ∈ C∞c (G(Zp)) have the form as h = h1× · · ·× hr × h′× h0 with hi ∈ C∞c (O
×

Di
) for

1 6 i 6 r , h′ ∈ C∞c (O
×

D′), and h0 ∈ C∞c (Z×p ), we have the identity

tr( fτ,h |π) = tr(τ |(r−µ ◦ϕπ |WE )| − |
r(1−n)/2)tr(h|π).

Proof. This comes from the decompositions of fτ,h , (r−µ ◦ϕπ |WE )| − |
r(1−n)/2, h and the

corresponding identities for each factor fτ,hi , 1 6 i 6 r , and for h′0.

Theorem 7.2. We have the identity

Hξ =
∑
π f

a(π f )π f ⊗ (r−µ ◦ϕπp |WE )| − |
r(1−n)/2

as virtual G(Zp)×G(Ap
f )×WE -representations. The notations in this identity are the

same as those in Theorem 3.4.

Proof. As in the proof of Corollary 6.1, we can take the pseudostabilization of the formula

in Theorem 5.4 to get the equality

tr(τ × h× f p
|Hξ ) = N−1tr( fτ,h f p

|Hξ ).

On the other hand, Matsushima’s formula implies

Hξ = N
∑
π f

a(π f )π f .

Put this into the above formula and take account the equality of Proposition 7.1, we get

tr(τ × h× f p
|Hξ ) =

∑
π f

a(π f )tr(τ |(r−µ ◦ϕπp )| − |
r(1−n)/2)tr(h f p

|π f ).

This gives the desired identity.
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As in the proof of the theorem, the crucial point is that we have the character identity of

Proposition 6.2, which in turn needs first Theorem 5.4 to hold true to have the definitions

of the functions fτ,h . This identity plus that in [40, Theorem 8.1] can be used to prove new

cases for the description of cohomology of Shimura varieties. For example, the compact

unitary Shimura varieties with trivial endoscopy, such that the local reductive groups

at p are products of (Weil restrictions of) D× and GLn where D is a central division

algebra over a finite extension of Qp with invariant 1
n . Moreover, to apply the results

in this paper, we have to require the local cocharacters for the factors D× are the same

as those studied here. The case of n = 2 in [24] but for arbitrary p (with the above

requirement on local cocharacters at ramified places) will be a typical example. We will

treat this case and the related quaternionic Shimura varieties in [41].

From this theorem we get the following corollary concerning the local semisimple

Hasse–Weil zeta functions of our Shimura varieties. For the definition of local semisimple

Hasse–Weil zeta functions and local semisimple automorphic L functions, see [32]. Let Ẽ
be the global reflex field, and ν be a place of Ẽ above p such that E = Ẽν .

Corollary 7.3. In the situation of the theorem, let K ⊂ G(A f ) be any sufficiently small

open compact subgroup. Then the semisimple local Hasse–Weil zeta function of ShK at

the place ν of Ẽ is given by

ζ ss
ν (ShK , s) =

∏
π f

Lss(s− r(n− 1)/2, πp, r−µ)
a(π f ) dimπK

f .

Proof. We can assume that K has the form as K p K p ⊂ G(Ap
f )×G(Zp). Then the

corollary follows from the previous theorem and the definitions.

In the case r = 1 Dat has proved the Weight-Monodromy conjecture for these Shimura

varieties (cf. [8, 5.2]). In fact, there the varieties involved are of the form MDr,m/0 where

0 ⊂ GLn(E) is some torsion free discrete subgroup. Here our Shimura varieties have the

same connected components as MDr,m/0 for suitable 0. By [32, § 2] one can recover the

classical Hasse–Weil zeta function.

Corollary 7.4. Let r = 1 and K ⊂ G(A f ) be any sufficiently small open compact subgroup

in the situation of the theorem. Then the local Hasse–Weil zeta function of ShK at the

place ν of Ẽ is given by

ζν(ShK , s) =
∏
π f

L(s− r(n− 1)/2, πp, r−µ)
a(π f ) dimπK

f .

Finally we remark that, assuming the results of [28], in the above corollary there will

be no restriction for the integer r , i.e., it can be an arbitrary positive integer, see the

paragraph under Corollary 1.3 in the introduction.
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