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CHAPTER 1 

1 Photochromic Surfactants Based on Azobenzene 
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This project was performed in collaboration with A. Dietz (Prof. H. Motschmann, University of 
Regensburg). K. Rustler performed the synthesis and (photo-)chemical characterization of all 
compounds. A. Dietz performed the drop shape analysis. Mass spectrometry analysis were 
performed by the analytical department at the University of Regensburg. Prof. B. König and Prof. 
H. Motschmann supervised the project.  
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1.1 Introduction 

The equilibrium of assembly and disruption of amphiphilic molecules into ordered 

structures such as monolayers, bilayers, vesicles and micelles is based on their 

divided character containing both a hydrophilic and a hydrophobic moiety in one 

molecule.[1] Besides their use for solubilization, emulsification, foaming, and 

detergency,[2] the dynamics of those clusters allow to control and manipulate 

motion of particles,[2-5] including reaction control via storage and release of 

reactants on demand.[6-11] Besides redox activity[12-15] and magnetic-field-

sensitivity[16] as triggers for destabilizing responses, optical control via light allows 

modulation with high spatial and temporal resolution. Several classes of 

photoreactions interfering with organized structures of surfactants bearing a light-

responsive hydrophilic/hydrophobic change are reported. So-called “destructible 

surfactants” undergo irreversible photoscission between their hydrophilic 

headgroups and hydrophobic tails. For reversible structural modulations, the most 

common tool is represented by a photoinduced cis-trans isomerization[1] of either 

an unsaturated double bond or an azobenzene within the hydrophobic chain of 

the surfactant.  

Photochromic scaffolds, e.g., dithienylethenes (DTEs), fulgides, and the above 

mentioned azobenzenes have achieved increasing interest as small molecular 

devices enabling non-invasive, reversible light-control without any waste or side-

products. Especially azobenzenes are frequently exploited for industrial and 

biomedicinal applications benefiting of their large change in sterics and polarity 

upon isomerization. In the case of azobenzene-based surfactants, the isomerization 

enhances either the hydrophobic character of the tail (trans isomer) or the 

hydrophilic character of the surfactant’s head group (cis isomer). Furthermore, the 

change in dipole moment and end-to-end distance leads to a variation in the 

organization of the surfactant molecules disrupting their arrangements.[17-19] It is 

reported that the addition of an azo moiety to the hydrophobic part of linear 

alkanesulfonates and -carboxylates promotes micellization.[20] In addition, it 
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induces preassociation of surfactant monomers below the critical micellar 

concentration (cmc).[21] Furthermore, the cis-trans isomerization affects the surface 

tension of liquids resulting in changes up to 20 mN/m,[22,23] which can be 

determined using the hanging drop experiment.[24] A pendant drop is a small 

column of liquid provided at the end of a low diameter vertical tube and is defined 

by gravitation and surface tension. The latter one is related to the drop’s shape as 

described by the Young-Laplace equation.[25]  

In the presented work, we envisioned that functionalizing amphiphilic molecules 

with an azobenzene as photochromic core between the polar head group and the 

hydrophobic chain could result in bursting of a hanging drop upon light-induced 

trans-cis isomerization and resulting change in organization of the molecules and 

overall surface tension. Hence, we synthesized and (photo-)chemically 

characterized differently substituted azo-surfactants, which were tested in 

cooperation with the group of Prof. Motschmann.  

1.2 Results and Discussion 

1.2.1 Design and Syntheses 

Design. In a first attempt, alkane-azo-sulfonates and -carboxylates with different 

lengths of their hydrophobic tails are synthesized. To further increase the speed of 

the light-triggered trans-cis isomerization, push-pull azo-surfactants bearing an 

electron withdrawing nitro substitution as headgroup and a hydrophobic alkyl 

chain linked to the azo via an electron donating substituent are synthesized. 

Synthesis of alkane-azo-carboxylates. The synthesis of differently substituted 

alkane-azo-carboxylates is based on a Baeyer[26]-Mills[27]-reaction of an aromatic 

nitroso and an arylamine (Scheme 1). In a first synthetic step, ethyl-4-

aminobenzoate (1) is oxidized to its corresponding nitroso derivative 2 using 

potassium peroxymonosulfate as oxidant in a biphasic solvent mixture preventing 

overoxidation.[28] The subsequent reaction of nitroso 2 with para alkyl substituted 

anilines (n = 5, 3; n = 11, 4) afforded alkane-azo-esters 5 (n = 5) and 6 (n = 11). 
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Cleavage of the ester in basic media using potassium hydroxide provided the 

corresponding alkane-azo-carboxylates 7 (n = 5) and 8 (n = 11).[29] To increase both 

the solubility in aqueous media and the polarity of the head group, samples of the 

carboxylic acids 7 and 8 were converted into their sodium salts 9 (n = 5) and 10 

(n = 11). As the corresponding carboxylic acids 7 and 8 are not deprotonated in 

water (pH = 7) due to their low pKa value (pKa of benzenecarboxylic acid = 4.2;[30] 

pKa of azobenzene carboxylic acid = 3.8[31]), the sodium salts provide the presence 

of a charged species during the investigations. 

 

Scheme 1. Synthesis of alkane-azo-carboxylates 7 (n = 5) and 8 (n = 11) and their corresponding 
sodium salts 9 (n = 5) and 10 (n = 11).[26-29]  

Synthesis of alkane-azo-sulfonates. In a first approach, a Baeyer[26]-Mills[27]-

reaction in analogy to Scheme 1 starting from benzene sulfonic acid was attempted 

for the synthesis of alkane-azo-sulfonates (Scheme 2). Sulfanilic acid (11) was 

converted into its tetrabutylammonium salt 12, which is soluble in organic 

solvents. Subsequent nitroso formation using oxone in a biphasic reaction mixture 

prevents overoxidation.[32] Due to low or no yields in the azo forming step, the 

synthetic strategy was changed. Byproducts are the overoxidized nitro-substituted 
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sulfanilic acid as well as the symmetric azobenzene upon reaction of 13 with its 

precursor 12. 

Scheme 2. Attempted synthesis of alkane-azo-sulfonates 15 (n = 5) and 16 (n = 8).[26,27,32]  

In a second approach, commercially available aminoazobenzene sulfonic acid 17 

was reacted with alkanoyl chlorides 18 (n = 5) and 19 (n = 8) to generate the 

alkanoyl amido azobenzene sulfonic acids 20 (n = 5) and 21 (n = 8) in high yields. 

In contrast to the above mentioned carboxylic acid derivatives, the sulfonic acid 

derivatives 20 and 21 are completely deprotonated in water (pH = 7) bearing an 

overall negative charge (pKa of benzenesulfonic acid = 0.7)[32]. 

Scheme 3. Synthesis of the sulfonic acid substituted alkanamide azobenzene derivatives 20 and 21.  

Synthesis of the push-pull derivatives. The synthesis of the push-pull 

azobenzenes 26 and 27 is based on a Baeyer[26]-Mills[27]-reaction. Para nitro aniline 

22 was oxidized to its nitroso derivative and reacted with alkanoylether- 24 and 

alkanoyl amide-substituted aniline 25, respectively.  



CHAPTER 1 

7 

 

Scheme 4. Synthesis of the push-pull azobenzene derivatives 26 and 27.[26,27] 

1.2.2 Photochemical Characterization 

The decision for one type of photochromic scaffold is strongly dependent on its 

application. In the case of amphiphiles, azobenzene as light-responsive moiety can 

easily be incorporated between the polar head group and the hydrophobic tail. In 

addition to their synthetic accessibility, azobenzenes undergo efficient light-

induced photoisomerization without photodegradation, loss of responsiveness or 

photobleaching.[34,35]   

The in general thermally more stable, planar trans isomer[35] (except bridged 

azobenzenes[36]) interconverts to its metastable, bent cis isomer upon irradiation 

with light of an appropriate wavelength resulting in a large change in geometry 

and dipole moment. Regeneration of the trans state occurs either quantitatively by 

thermal back relaxation or by irradiation with light only partially due to a 

substantial overlap of the absorption band of the trans and cis isomer.[35]   

The photochemical properties of compounds 7, 8, 20, 21, 26, and 27 were 

investigated by UV-Vis spectroscopy in DMSO. Figure 1 shows exemplarily the 

UV-Vis absorption spectrum (left panel) and cycle performance (right panel) of 

alkane-azo-carboxylate 8 measured 50 µM in DMSO. The changes in absorption 

maxima upon irradiation are indicated with black arrows. Dotted black arrows 

label the isosbestic points indicating a clear two component switching without 

decomposition or side-reaction upon isomerization. The black curve represents the 

UV-Vis spectrum of compound 8 in its thermal equilibrium. Upon irradiation 

induced trans-cis isomerization using  = 365 nm, the maximum around 350 nm 
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decreased and a new maximum around 440 nm arised representing the compound 

in its cis-photostationary state (cis-PSS; red curve). Reisomerization is triggered by 

irradiation with visible light of  = 455 nm (blue curve, trans-PSS). The 

performance of the repetitive cycle measurement shows excellent fatigue 

resistance. After ten cycles no signs of photodegradation were observed.  

 

Figure 1. Compound 8 measured 50 µM in DMSO. Left: UV-Vis spectrum. Right: Repetitive cycle 
performance.  

In comparison, the photochromic properties of the alkane-azo-sulfonates 20 and 

21 (Table 1) show a slight shift in the absorption spectrum due to the stronger 

electron withdrawing character of the sulfonic acid moiety compared to the 

carboxylic acid moiety. This tendency is more pronounced for the push-pull 

derivatives 26 and 27. Figure 2 shows the UV-Vis spectrum (left panel) and cycle 

performance (right panel) of compound 27 measured 50 µM in DMSO. The trans 

absorption maximum is shifted to the visible range. Both isomerizations are 

triggered using visible light: blue light of  = 400 nm triggers the trans to cis and 

green light of  = 505 nm the cis to trans isomerization. Furthermore, a broadening 

and overlap of the trans absorption band with the cis absorption band can be 

observed. In addition, as reported for push-pull azobenzenes, the thermal half-

lives of 26 and 27 are shorter compared to the alkane-azo-sulfonate 

and -carboxylate derivatives (Table 1). 
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Figure 2. Compound 27 measured 50 µM in DMSO. Left: UV-Vis spectrum. Right: Repetitive cycle 
performance.  

 

All synthesized compounds featured excellent photochromic properties. Table 1 

summarizes the characteristic photochemical data (absorption maxima, isosbestic 

points, thermal half-lives) of compounds 7, 8, 20, 21, 26, and 27 measured 50 µM in 

DMSO.  

Table 1. Summary of the characteristic photochemical data of compounds 7, 8, 20, 21, 26, and 27 
measured 50 µM in DMSO.  

Entry Compound 
max trans isomer  

[nm] 

max cis isomer  

[nm] 

Isosbestic points  

[nm] 

 

 
 

THL(a) 

1 7 341 439 292, 401 32 h 

2 8 342 434 291, 397 26 h 

3 20 367 443 316, 434 20 h 

4 21 368 446 316, 433 24 h 

5 26 382 - 332, 460 12 min 

6 27 392 - 343, 464 18 min 

(a) Determined by thermal relaxation of an irradiated sample (cis-PSS) in the dark at room 
temperature.  

1.2.3 Drop Shape Analysis (DSA) 

The change in the surface tension of a water drop containing a monolayer of the 

synthesized photochromic surfactant was measured in its trans and cis state using 

drop shape analysis (DSA) of a hanging drop. Due to insufficient solubility of 

compounds 20, 21, 26 and 27 the experiment could only be performed for 

carboxylic acids 7 and 8 and their sodium salts 9 and 10. Figure 3 depicts the 
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experimental DSA setup. A camera and a lamp are used to record the changes in 

the drop’s shape. Cut-off filters are used to ensure, that no light of the lamp or the 

camera might induce isomerization of the azobenzene surfactants. Two LEDs are 

switched on alternately to accumulate a substantial amount of the desired isomer. 

Using this method, changes in the surface tension of the hanging drop upon 

continuous irradiation can be analyzed.  

   

Figure 3. Schematic drawing of the DSA setup. 

Figure 4 shows the plots of the measurement of the surface tension of compounds 

7 and 8, respectively 9 and 10, depending on the subphase. As the solubility of the 

compounds in aqueous media was very low, the compounds were dissolved in 

chloroform and filtered to generate a saturated solution. The chloroform solution 

of the compound was applied to a hanging drop of water (compounds 7 and 8) 

and 10 mM aqueous NaOH (compounds 9 and 10), respectively. Upon evaporation 

of chloroform, the measurement of the surface tension was started. Irradiation 

with blue light ( = 460 nm), triggering the cis to trans isomerization is labeled with 

a blue box. Irradiation with UV light ( = 365 nm) for trans to cis isomerization is 

highlighted with a purple box. The surface tension of the protonated carboxylic 

acid 7 (subphase water) is shown in the upper left panel A; its deprotonated form 

9 (subphase 10 mM NaOH) in the lower left panel B. The surface tension of 
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protonated compound 8 (subphase water) is shown in the upper right panel C; its 

deprotonated form 10 (subphase 10 mM NaOH) in the lower right panel D. 

 

Figure 4. Measurement of the surface tension using drop shape analysis. (A) Compound 7. 
Subphase water. (B) Compound 9. Subphase 10 mM aq. NaOH. (C) Compound 8. Subphase water. 
(D) Compound 10. Subphase 10 mM aq. NaOH. 

Table 2 summarizes the surface tension values for the trans isomers, the cis isomers 

and the change in surface tension upon isomerization. The change in surface 

tension  is increasing upon use of 10 mM aqueous NaOH as subphase compared 

to water. This might be explained by a higher solubility of the compound upon 

deprotonation of the carboxylic acid. The packing of the molecules in the 

monolayer is tighter and results in a stronger disorganization of the molecules 

upon trans to cis isomerization and in a larger change of the surface tension. The 

changes in surface tension for the shorter alkyl chain (n = 5) are higher than for the 

longer alkyl chain (n = 11). This might also be explained by a higher solubility of 

the shorter linked compound and a tighter packing of the molecules in the 

monolayer. Interestingly, for compound 9 the surface tension of the cis isomer is 

higher than for the trans isomer whereas in all other cases the surface tension of 

the trans isomer is higher. An explanation might be, that the in general more 

soluble cis isomer, its shorter tail and the charged moiety allow for molecules of 
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the interface to enter the subphase. Thus, more molecules are packed in the 

subphase resulting in an increase of the surface tension, whereas in all other cases 

the trans isomer allows for tighter packing of the molecules. 

Table 2. Surface tension of both isomeric states of compounds 7-10 analyzed using DSA. 

Entry Compound 
 trans isomer 

[mN/m] 

 cis isomer 

[mN/m] 

 (trans-cis) 

[mN/m] 

 
 
 
 

Subphase 

1 7 59.5 57.7 +1.80 water 

2 9 59.8 62.8 -3.00 10 mM aq. NaOH 

3 8 56.5 55.6 +0.90 water 

4 10 63.8 61.4 +2.40 10 mM aq. NaOH 

 

1.3 Conclusion 

In summary, we synthesized azobenzene derivatives equipped with a rather 

soluble, polar head group (carboxylic acid, sulfonic acid, nitro) in para position and 

a hydrophobic alkyl chain of different lengths in para’ position. The compounds 

were synthesized based on a Baeyer[26]-Mills[27]-reaction or functionalization of 

commercially available azobenzene precursors. In the used setup, only the 

carboxylic acid substituted derivatives were soluble enough to be tested using 

drop shape analysis. Changes in surface tension upon light-induced isomerization 

could be triggered but were not strong enough to cause bursting of the hanging 

drop. As the azobenzene moiety seems to enhance the hydrophobic character of 

the surfactant stronger than expected, the azobenzene moiety should be placed in 

the middle of an alkyl chain bearing a positively charged head group on one end 

to behave similar as non-photochromic alkane-substituted surfactants.  

1.4 Experimental Part 

1.4.1 General Procedures and Materials 

Commercial reagents and starting materials were purchased from the commercial 

suppliers abcr, Acros Organics, Alfa-Aesar, Fisher Scientific, Fluorochem, Merck, 

Sigma Aldrich, TCI, or VWR and used without any further purification. Solvents 
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were used in p.a. quality and dried according to common procedures, if necessary. 

Flash column chromatography was performed using Sigma Aldrich MN silica gel 

60 M (40-63 µm, 230-400 mesh) for normal phase chromatography. Reaction 

monitoring via thin layer chromatography was performed on alumina plates 

coated with silica gel (Merck silica gel 60 F254, layer thickness 0.2 mm). Melting 

points were determined using a Stanford Research System OptiMelt MPA 100 and 

are uncorrected. NMR spectra were measured on a Bruker Avance 300 (1H 

300.13 MHz, 13C 75.48 MHz), Bruker Avance III HD 400 (1H 400.13 MHz, 13C 

100.61 MHz), Bruker Avance III HD 600 (1H 600.25 MHz, 13C 150.95 MHz) and 

Bruker Avance III 600 (1H 600.25 MHz, 13C 150.95 MHz). The spectra are referenced 

against the NMR solvent (DMSO-d6: H = 2.50 ppm, C = 39.52 ppm; CDCl3-d: H = 

7.26 ppm, C = 77.16 ppm) and chemical shifts  are reported in ppm. Resonance 

multiplicity is abbreviated as: s (singlet), d (doublet), t (triplet), q (quartet), p 

(pentet), and m (multiplet). Carbon NMR signals are assigned using DEPT 135 and 

1H-13C HSQC spectra with (+) for primary/tertiary, (-) for secondary, and (q) for 

quaternary carbons. Mass spectra were recorded on a Finnigan MAT-SSQ 710 A, 

ThermoQuest Finnigan TSQ 7000, Agilent Q-TOF 6540 UHD, or a Jeol AccuTOF 

GCX instrument. UV-Vis absorption spectroscopy was performed in 10 mm quartz 

cuvettes using an Agilent 8543, Agilent Cary 100, or Agilent Varian Cary 50 

spectrometer. Light sources for irradiation:  = 365 nm (Seoul Viosys CUN6GB1A, 

1000 mA, 1.4 W),  = 400 nm (Luxeon 400 nm SZ-01-S2, 500 mA, 0.48 W),  = 

455 nm (Osram OSLON SSL 80 LD-CQ7P-1U3U, 1000 mA, 0.45 W), and  = 505 nm 

(Osram OSLON SSL 80 LVCK7P-JYKZ, 800 mA, 163 lm). The power of the light is 

given based on the specifications supplied by the company when the LEDs were 

purchased. 

1.4.2 Synthetic Procedures and Characterization 

Ethyl (E)-4-((4-hexylphenyl)diazenyl)benzoate (5). Compound 5 was synthesized 

as orange solid in 86% yield (8.1 g, 24 mmol) using an adapted literature reported 

procedure[29] starting from hexylaniline 5 (5.0 g, 28 mmol, 1.0 eq) and nitroso 
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benzoic acid ethyl ester 2[28] (5.0 g, 28 mmol, 1.0 eq). M.p.: 63 °C. 1H-NMR 

(300 MHz, CDCl3-d): δ = 8.24 – 8.15 (m, 2H), 7.98 – 7.84 (m, 4H), 7.38 – 7.28 (m, 2H), 

4.41 (q, J = 7.1 Hz, 2H), 2.68 (t, 2H), 1.73 – 1.57 (m, 2H), 1.42 (t, J = 7.1 Hz, 3H), 1.36 

– 1.24 (m, 5H), 0.98 – 0.81 (m, 3H). 13C-NMR (75 MHz, CDCl3-d): δ = 166.1 (q), 155.2 

(q), 150.9 (q), 147.4 (q), 131.9 (q), 130.6 (+), 129.2 (+), 123.2 (+), 122.5 (+), 61.2 (-), 36.0 

(-), 31.7 (-), 31.2 (-), 29.0 (-), 22.6 (-), 14.4 (+), 14.1 (+). HR-MS (ESI): calcd. for 

C21H27N2O2+ [M+H]+ 339.2067; found 339.2072. MF: C21H26N2O2. MW: 

338.45 g/mol. 

Ethyl (E)-4-((4-dodecylphenyl)diazenyl)benzoate (6). Compound 6 was 

synthesized as orange solid in 95% yield (1.5 g, 3.6 mmol) using an adapted 

literature reported procedure[29] starting from dodecylaniline 4 (1.0 g, 3.8 mmol, 

1.0 eq) and nitroso benzoic acid ethyl ester 2[28] (0.70 g, 3.8 mmol, 1.0 eq). M.p.: 

71 °C. 1H- NMR (400 MHz, CDCl3-d): δ = 8.19 (d, J = 8.7 Hz, 2H), 7.93 (d, J = 8.3 Hz, 

2H), 7.87 (d, J = 8.2 Hz, 2H), 7.33 (d, J = 8.1 Hz, 2H), 4.42 (q, J = 7.1 Hz, 2H), 2.69 (t, 

J = 7.7 Hz, 2H), 1.66 (p, J = 7.3 Hz, 2H), 1.43 (t, J = 7.1 Hz, 3H), 1.35 – 1.19 (m, 18H), 

0.88 (t, J = 6.6 Hz, 3H). 13C-NMR (101 MHz, CDCl3-d): δ = 166.1 (q), 155.3 (q), 150.9 

(q), 147.5 (q), 131.9 (q), 130.6 (+), 129.2 (+), 123.2 (+), 122.5 (+), 61.2 (-), 36.0 (-), 31.9 

(-), 31.3 (-), 29.7 (-), 29.7 (-), 29.7 (-), 29.6 (-), 29.5 (-), 29.4 (-), 29.3 (-), 22.7 (-), 14.4 (+), 

14.1 (+). HR-MS (ESI): calcd. for C27H39N2O2+ [M+H]+ 423.3006; found 423.2997. 

MF: C27H38N2O2. MW: 422.61 g/mol. 

(E)-4-((4-hexylphenyl)diazenyl)benzoid acid (7). Compound 7 was synthesized 

as orange solid in 70% yield (2.6 g, 8.4 mmol) using an adapted literature reported 

procedure[29] starting from ethyl ester benzoic acid azobenzene 5 (4.2 g, 12 mmol, 

1.0 eq) and KOH (38 g, 0.68 mol, 55 eq). M.p.: 228 °C. 1H-NMR (400 MHz, 

DMSO-d6): δ = 13.22 (s, 1H), 8.16 – 8.10 (m, 2H), 7.97 – 7.91 (m, 2H), 7.87 – 7.82 (m, 

2H), 7.45 – 7.39 (m, 2H), 2.67 (t, J = 7.7 Hz, 2H), 1.60 (p, J = 7.5 Hz, 2H), 1.36 – 1.20 

(m, 6H), 0.89 – 0.79 (m, 3H). 13C-NMR (101 MHz, DMSO-d6): δ = 167.2 (q), 154.8 (q), 

150.7 (q), 147.8 (q), 133.1 (q), 131.1 (+), 129.9 (+), 123.4 (+), 122.9 (+), 35.5 (-), 31.5 (-), 

31.1 (-), 28.8 (-), 22.5 (-), 14.4 (+). HR-MS (ESI): calcd. for C19H23N2O2+ [M+H]+ 

311.1754; found 311.1760. MF: C19H22N2O2. MW: 310.40 g/mol. 
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(E)-4-((4-dodecylphenyl)diazenyl)benzoid acid (8). Compound 8 was 

synthesized as orange solid in 82% yield (1.1 g, 2.9 mmol) using an adapted 

literature reported procedure[29] starting from ethyl ester benzoic acid azobenzene 

6 (1.5 g, 3.5 mmol, 1.0 eq) and KOH (11 g, 0.20 mol, 55 eq). M.p.: 198 °C. 1H-NMR 

(400 MHz, DMSO-d6): δ = 13.23 (s, 1H), 8.16 – 8.10 (m, 2H), 7.97 – 7.91 (m, 2H), 7.89 

– 7.83 (m, 2H), 7.47 – 7.40 (m, 2H), 2.72 – 2.64 (m, 2H), 1.62 (t, J = 7.4 Hz, 2H), 1.32 

– 1.21 (m, 18H), 0.89 – 0.81 (m, 3H). 13C-NMR (151 MHz, DMSO-d6): δ = 166.5 (q), 

154.8 (q), 150.7 (q), 147.9 (q), 133.2 (q), 131.1 (+), 129.9 (+), 123.4 (+), 122.9 (+), 35.5 

(-), 31.8 (-), 31.1 (-), 29.5 (-), 29.5 (-), 29.5 (-), 29.4 (-), 29.3 (-), 29.2 (-), 29.1 (-), 22.6 (-), 

14.4 (+). HR-MS (ESI): calcd. for C25H35N2O2+ [M+H]+ 395.2693; found: 395.2692. 

MF: C25H34N2O2. MW: 394.56 g/mol. 

(E)-4-((4-heptanamidophenyl)diazenyl)benzenesulfonic acid (20). Para amino 

para’ sulfonic acid azobenzene (17) (1.0 g, 3.6 mmol, 1.0 eq) was dissolved in 

pyridine (0.20 L) and heptanoyl chloride (18) (0.54 g, 3.6 mmol, 1.0 eq) was added 

dropwise. The reaction mixture was stirred at room temperature for 16 hours. The 

solvent was evaporated. Purification by recrystallization from methanol afforded 

the desired product (1.1 g, 2.9 mmol, 80%). M.p.: decomposition over 300 °C. 

1H-NMR (400 MHz, DMSO-d6): δ = 10.24 (s, 1H), 7.91 – 7.85 (m, 2H), 7.85 – 7.72 (m, 

6H), 2.36 (t, J = 7.4 Hz, 2H), 1.60 (p, J = 7.4, 6.6 Hz, 2H), 1.36 – 1.24 (m, 6H), 0.86 (t, 

3H). 13C-NMR (101 MHz, DMSO-d6): δ = 172.3 (q), 152.2 (q), 150.8 (q), 147.8 (q), 

143.0 (q), 127.1 (+), 124.2 (+), 122.3 (+), 119.6 (+), 37.0 (-), 31.5 (-), 28.8 (-), 25.4 (-), 

22.5 (-), 14.4 (+). HR-MS (ESI): calcd. for C19H24N3O4S+ [M+H]+ 390.1482; found: 

390.1487. MF: C19H23N3O4S. MW: 389.47 g/mol. 

(E)-4-((4-decanamidophenyl)diazenyl)benzenesulfonic acid (21). Para amino 

para’ sulfonic acid azobenzene (17) (1.0 g, 3.6 mmol, 1.0 eq) was dissolved in 

pyridine (0.20 L) and decanoyl chloride (19) (0.69 g, 3.6 mmol, 1.0 eq) was added 

dropwise. The reaction mixture was stirred at room temperature for 16 hours. 

Purification by recrystallization from methanol afforded the desired product 

(1.2 g, 2.7 mmol, 75%). M.p.: decomposition over 300 °C. 1H-NMR (400 MHz, 

DMSO-d6): δ = 10.24 (s, 1H), 7.91 – 7.77 (m, 8H), 2.35 (t, J = 7.4 Hz, 2H), 1.60 (t, J = 
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7.2 Hz, 2H), 1.32 – 1.20 (m, 12H), 0.89 – 0.79 (m, 3H). 13C-NMR (101 MHz, 

DMSO-d6): δ = 172.3 (q), 152.2 (q), 150.7 (q), 147.8 (q), 143.1 (q), 127.2 (+), 124.2 (+), 

122.3 (+), 119.6 (+), 37.0 (-), 31.7 (-), 29.4 (-), 29.3 (-), 29.2 (-), 29.1 (-), 25.5 (-), 22.6 (-), 

14.4 (+). HR-MS (ESI): calcd. for C22H30N3O4S+ [M+H]+ 432.1952; found: 432.1955. 

MF: C22H29N3O4S. MW: 431.55 g/mol. 

(E)-1-(4-butoxyphenyl)-2-(4-nitrophenyl)diazene (26). Nitroaniline 22 (2.0 g, 

14 mmol, 1.0 eq) was dissolved in CH2Cl2 (0.10 L) and stirred under a nitrogen 

atmosphere. Oxone (8.9 g, 14 mmol, 1.0 eq) was dissolved in water (0.10 L) and 

added to the solution. The biphasic reaction mixture was stirred at room 

temperature for three hours. The organic phase containing nitroso 23 was 

separated, dried, and used in the next step without further purification. A solution 

of butoxy aniline 24 (2.4 g, 14 mmol, 1.0 eq) in acetic acid (0.10 L) was added to the 

nitroso solution and the mixture stirred at room temperature for 16 hours. The 

product was purified by column chromatography using PE/EA 3/1 as eluent. The 

solvent was evaporated yielding 26 as orange solid in good yield (2.6 g, 8.7 mmol, 

60%). M.p.: 115 °C. 1H-NMR (400 MHz, DMSO-d6): δ = 8.45 – 8.34 (m, 2H), 8.08 – 

7.99 (m, 2H), 7.99 – 7.91 (m, 2H), 7.21 – 7.11 (m, 2H), 4.11 (t, J = 6.5 Hz, 2H), 1.73 (p, 

2H), 1.45 (h, J = 7.4 Hz, 2H), 0.94 (t, J = 7.4 Hz, 3H). 13C-NMR (101 MHz, DMSO-d6): 

δ = 163.1 (q), 155.9 (q), 148.5 (q), 146.6 (q), 125.9 (+), 125.5 (+), 123.6 (+), 115.7 (+), 

68.4 (-), 31.1 (-), 19.2 (-), 14.2 (+). HR-MS (ESI): calcd. for C16H18N3O3+ [M+H]+ 

300.1343; found: 300.1349. MF: C16H17N3O3. MW: 299.33 g/mol. 

(E)-N-(4-((4-nitrophenyl)diazenyl)phenyl)pentanamide (27). Nitroaniline 22 

(2.0 g, 14 mmol, 1.0 eq) was dissolved in CH2Cl2 (0.10 L) and stirred under a 

nitrogen atmosphere. Oxone (8.9 g, 14 mmol, 1.0 eq) was dissolved in water 

(0.10 L) and added. The biphasic reaction mixture was stirred at room temperature 

for three hours. The organic phase containing nitroso 23 was separated, dried, and 

used in the next step without further purification. A solution of pentanamide 

aniline 25 (2.8 g, 14 mmol, 1.0 eq) in acetic acid (0.10 L) was added to the nitroso 

solution and the mixture stirred at room temperature for 16 hours. The product 

was purified by column chromatography using PE/EA 3/1 as eluent. The solvent 
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was evaporated yielding 27 as orange solid in good yield (3.1 g, 9.4 mmol, 65%). 

M.p.: 187 °C. 1H-NMR (400 MHz, DMSO-d6): δ = 10.33 (s, 1H), 8.46 – 8.37 (m, 2H), 

8.11 – 7.99 (m, 2H), 7.99 – 7.89 (m, 2H), 7.89 – 7.80 (m, 2H), 2.38 (t, J = 7.5 Hz, 2H), 

1.60 (p, J = 7.5 Hz, 2H), 1.34 (h, J = 7.3 Hz, 2H), 0.91 (t, J = 7.4 Hz, 3H). 13C-NMR 

(101 MHz, DMSO): δ = 172.5 (q), 155.8 (q), 148.5 (q), 147.8 (q), 144.2 (q), 125.5 (+), 

125.0 (+), 123.7 (+), 119.6 (+), 36.8 (-), 27.6 (-), 22.3 (-), 14.2 (+). HR-MS (ESI): calcd. 

for C17H19N4O3+ [M+H]+ 327.1452; found: 327.1458. MF: C17H18N4O3. MW: 

326.36 g/mol. 
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1.5 Supporting Information 

1.5.1 1H- and 13C-NMR Spectra 

Compound 5 (CDCl3-d)  
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Compound 6 (CDCl3-d) 
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Compound 7 (DMSO-d6) 
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Compound 8 (DMSO-d6) 
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Compound 8 (DMSO-d6): HMBC spectrum 
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Compound 20 (DMSO-d6) 
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Compound 21 (DMSO-d6) 
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Compound 26 (DMSO-d6) 
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Compound 27 (DMSO-d6) 
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1.5.2 UV-Vis Absorption Spectra, Cycle Performances, and Thermal Half-Lives 

 

 
Figure S1. UV-Vis absorption spectroscopy of compound 7 measured 50 µM in DMSO. Upper 
panel: Absorption spectra (thermal equilibrium, cis-PSS, trans-PSS). Middle panel: Cycle 
performance. Lower panel: Thermal half-life.  
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Figure S2. UV-Vis absorption spectroscopy of compound 8 measured 50 µM in DMSO. Upper 
panel: Absorption spectra (thermal equilibrium, cis-PSS, trans-PSS). Middle panel: Cycle 
performance. Lower panel: Thermal half-life.  
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Figure S3. UV-Vis absorption spectroscopy of compound 9 measured 50 µM in DMSO. Upper 
panel: Absorption spectra (thermal equilibrium, cis-PSS, trans-PSS). Middle panel: Cycle 
performance. Lower panel: Thermal half-life.  
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Figure S4. UV-Vis absorption spectroscopy of compound 21 measured 50 µM in DMSO. Upper 
panel: Absorption spectra (thermal equilibrium, cis-PSS, trans-PSS). Middle panel: Cycle 
performance. Lower panel: Thermal half-life.  
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Figure S5. UV-Vis absorption spectroscopy of compound 26 measured 50 µM in DMSO. Upper 
panel: Absorption spectra (thermal equilibrium, cis-PSS, trans-PSS). Middle panel: Cycle 
performance. Lower panel: Thermal half-life.  
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Figure S6. UV-Vis absorption spectroscopy of compound 27 measured 50 µM in DMSO. Upper 
panel: Absorption spectra (thermal equilibrium, cis-PSS, trans-PSS). Middle panel: Cycle 
performance. Lower panel: Thermal half-life.  
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CHAPTER 2 

2 Photochromic Evaluation of Arylazo NH-Pyrazoles 

 
 

This chapter has not been published.  

This project was performed in collaboration with Dr. S. Crespi (Prof. B. L. Feringa, University of 
Groningen, Netherlands) and Dr. P. Nitschke (Prof. R. Gschwind, University of Regensburg). 
K. Rustler performed the synthesis of all compounds besides 4e (synthesized by Dr. S. Crespi). K. 
Rustler performed the (photo-)chemical characterization of the compounds except the thermal half-
lives of compounds 4b, 4c, 4e, 4f, 4h, and 4j in DMSO, 4a, 4b, 4c, 4e-4h, 4j in DMSO:water, and 4a 
in methanol (performed by Dr. S. Crespi). Dr. P. Nitschke measured the photostationary states via 
NMR spectroscopy under constant irradiation. Dr. S. Crespi performed laser flash photolysis. Mass 
spectrometry analysis were performed by the analytical department at the University of 
Regensburg. Prof. B. König supervised the project. 
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2.1 Introduction 

Light is unsurpassed in nature as noninvasive, orthogonal, abundant fuel 

triggering diverse chemical and biological processes.[1,2] Recently, this 

spatiotemporal tool is exploited in the emerging field of photopharmacology.[3-8] 

Irradiation with light induces a reversible isomerization between at least two states 

of a photochromic scaffold each characterized by a certain absorption spectrum 

and specific structural and electronical properties. Such photoswitches are used as 

small molecular tools allowing to control molecular properties, biological 

activity[9-10] or even motion as shown for molecular machines.[11] Amongst others, 

e.g., dithienylethenes and fulgides, azobenzenes are frequently reported for 

investigations in various scientific fields.[9,10,12-14] Depending on the required 

criteria for a specific application, efforts are made to control their thermal stability 

and the wavelengths triggering their isomerization. Azobenzenes are favored 

because of their synthetic accessibility, tuneability, and high fatigue resistance. 

Besides, they show high extinction coefficients and quantum yields, allowing 

switching with low light intensity. Their thermodynamically stable, planar trans 

isomer can be converted to the metastable cis isomer by irradiation with light 

resulting in a huge change in geometry, end-to-end distance, solubility, and dipole 

moment. Regeneration of the usually thermally more stable trans isomer[9,10,12] 

(except bridged azobenzenes)[15] can be achieved either by irradiation with light or 

by thermal relaxation. Due to a substantial overlap of the absorption bands of the 

trans and cis isomer of classical azobenzenes, a quantitative generation of one or 

the other isomer by irradiation is not feasible.[16] Depending on the substitution 

pattern, the thermal lifetime of the metastable cis isomer is strongly varying.[17] As 

a result of the increasing interest in finding a fitting azobenzene scaffold for each 

application with predictable optimized properties, more and more attention is 

paid to new azobenzene derivatives e.g., bearing heterocyclic rings as a substitute 

for the phenyl group.[18-23] This led to the discovery of arylazo pyrazoles (AAPs) 

benefiting of almost quantitative photoswitching in both directions (for dimethyl 
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pyrazoles)[24] and their stability against glutathione is beneficial for their use in 

biological environments.[25] Other systems, containing imidazole, indole, and 

pyridine moieties are also explored.[26-29] The introduction of a heterocycle as part 

of the switch offers further modes of interaction as coordination or hydrogen bond 

formation. Furthermore, nitrogen containing heterocycles are vastly represented 

as natural product sub moieties and drug elements.[30] Despite investigations on 

unmethylated arylazo pyrazoles,[32] mainly the more promising methylated 

derivatives[22,24-26] are explored as hydrazone tautomerism and thermal stability 

are discussed controversial for unmethylated pyrazole azobenzenes. Tautomerism 

might occur in the same way as reported for hydroxy- or amino-substituted 

azobenzenes if the proton is shifted intra- or intermolecularly to the azo bond.[21]  

In this study, we focus on the experimental investigation of arylazo NH-pyrazoles 

as extension of the present knowledge on arylazo pyrazoles. This class of 

photochromic scaffold allows for post-functionalization of the NH and is sterically 

less demanding compared to its methylated derivatives. As for all classes of 

azobenzenes, solvent and substitution dependencies were expected and 

investigated. To evaluate the switching performance the wavelengths of maximum 

light absorption, thermal half-lives, photostationary states, and repetitive cycle 

performances were determined unraveling new insights into arylazo NH-

pyrazoles. 

2.2 Results and Discussion 

2.2.1 Design and Syntheses 

Design. To unravel the photochromic properties of this type of photoswitchable 

scaffold, differently substituted arylazo pyrazoles bearing electron donating 

groups (EDGs) and electron withdrawing groups (EWGs) as substituents, 

respectively, were synthesized. 
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Scheme 1. Scope of the synthesized (hetero-)arylazo pyrazoles.  

Syntheses. Arylazo pyrazoles 4b, 4c, and 4e-4k were synthesized via Baeyer[33]-

Mills[34] reaction – a well-known reported procedure for the synthesis of 

azobenzenes via reaction of an arylnitroso with an arylamine (Scheme 2). The 

corresponding arylamines 1b, 1c, and 1e-1k, respectively, were oxidized to their 

nitroso derivatives 2b, 2c, and 2e-2k using potassium monoperoxosulfate as 

oxidant in a biphasic reaction system preventing overoxidation. The resulting 

nitroso derivatives are reacted with the commercially available amino-substituted 

pyrazole 3 in a mixture of acetic acid and dichloromethane providing the 

substituted arylazo pyrazoles 4b, 4c, and 4e-4k in moderate to good yields 

regardless of the presence of EDGs or EWGs. 

 

Scheme 2. Baeyer[33]-Mills[34] reaction for the synthesis of arylazo pyrazoles 4b, 4c, 4e-4k.  

The amino-substituted arylazo pyrazole 4a was synthesized in good yield via 

reduction of its corresponding nitro-precursor 4k using sodium sulfide as mild 

reductant (Scheme 3).[35]  
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Scheme 3. Reduction of the nitro-substituted arylazo pyrazole 4k.[35]  

In contrast, the symmetric arylazo pyrazole 4d was synthesized via an oxidative 

coupling of amino pyrazole 3 in the presence of manganese(IV)oxide 

(Scheme 4).[36]  

 

Scheme 4. Oxidative coupling of amino pyrazole 3 for the synthesis of the symmetric azo pyrazole 

4d.[36]  

2.2.2 Photochemical Characterization 

To investigate the influence of the different electron donating and electron 

withdrawing substituents on the photochromic performance of the arylazo 

pyrazole derivatives, the cycle performances, thermal half-lives and 

photostationary states of compounds 4a-4k were determined using UV-Vis 

absorption spectroscopy. Furthermore, the effect of different solvents ranging 

from apolar (toluene, DMSO) to polar (DMSO/water, methanol) on the switching 

performance was investigated. 

As an example, Figure 1 shows the normalized UV-Vis absorption spectra of 

compounds 4a (amino-substituted), 4e (unsubstituted), and 4k (nitro-substituted) 

in their thermal equilibrium, their cis-PSS, and their trans-PSS state measured 

50 µM in DMSO. The more bathochromically shifted the UV-Vis spectrum of the 

respective compound, the broader is the absorption peak. In DMSO, the 

unsubstituted arylazo pyrazole 4e absorbs in its thermal equilibrium mainly at 

around 320 nm and its cis isomer at 430 nm. The EWG-substitution leads to a shift 

of the absorption spectrum towards longer wavelengths for the trans isomer (max 
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~ 340 nm) whereas the cis absorption band is almost unaffected (max ~ 430 nm). 

The strongest shift can be observed for the amino-substituted azo pyrazole 4a with 

a maximum absorption at 400 nm for its trans isomer, which can be photo-

isomerized in both directions using visible light irradiation.  

 

Figure 1. Normalized UV-Vis spectra of compounds 4a, 4e, and 4k as example for an electron 
donating- (4a, R = NH2) and an electron withdrawing- (4k, R = NO2) substituted azo pyrazole 
compared to the unsubstituted reference (4e, R = H). 

Considering all substitutions and solvents, the absorption maximum representing 

the trans isomer ranges from 300-400 nm. The weaker absorption band in the 

visible range representing the cis maximum tails around 400-450 nm. The 

formation of the cis isomer is generally triggered most efficiently using 365 nm 

(expect 400 nm for 4a) and can be followed by a decrease in the absorption 

maximum in the UV-range and an increase of the absorption band in the visible 

region until the cis-photostationary state (cis-PSS; dotted line) is reached and no 

more changes in the absorption spectrum despite continuous irradiation are 

observed. Back-isomerization can be triggered using blue light irradiation ( = 

455 nm; except 4a: green light,  = 505/528 nm). Due to a substantial overlap of the 

absorption band of both isomeric species a quantitative generation of one or the 

other isomer by irradiation is not feasible. All compounds were subjected to 

alternate photoisomerization for ten cycles in each solvent and no significant 
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degradation was observed demonstrating high fatigue resistance. All compounds 

show fast switching proving high switching efficiency. 

Table 1 summarizes all characteristic photochromic data (wavelengths of 

maximum absorption, extinction coefficients, isosbestic points, thermal half-lives) 

for compounds 4a-4k measured 50 µM in apolar (toluene, DMSO) and polar 

(DMSO/water 1/1, methanol) solvents.  

Table 2 summarizes the photostationary states of compounds 4a-4k determined by 

online NMR measurements under constant irradiation in deuterated DMSO. All 

compounds show moderate to high cis-photostationary states and moderate trans-

photostationary states. For the determined values, the higher concentrated NMR 

solutions (~ 50 mM) compared to the lower concentrated UV-Vis measurements 

(50 µM) need to be considered. A discrepancy of the PSS values may be explained 

by a higher optical density of the NMR sample and resulting lower light 

penetration as well as the reduced light intensity of the light fiber irradiation 

(NMR) compared to the direct irradiation using high power LEDs (UV-Vis). 

Table 1. Summary of the characteristic photochemical data of compounds 4a-4k measured 50 µM 
in toluene(a) (entry 1-11), DMSO(b) (entry 12-22), DMSO:water 1:1(c) (entry 23-33), methanol(d) (entry 
34-44). Cpd. = Compound. Isosb. points = Isosbestic points. THL = thermal half-life. 

Entry Cpd. 

 

 

Substituent 

max 

* 

trans 

isomer 

[nm] 

 

 

 

 

  

trans 

isomer 

[M-1cm-1] 

max 

n* 

cis 

isomer 

[nm] 

 

 

 

 

 n 

cis 

isomer 

[M-1cm-1] 

Isosb. 

points 

[nm] 

 

 

THL(e) 

1(a) 4a 4-NH2-C6H4 373 23600 439 2868 314, 451 18 s 

2(a) 4b 4-OMe-C6H4 339 12952 431 1632 297, 417 12 h 

3(a) 4c 4-Me-C6H4 328 20714 433 1558 287, 399 84 h 

4(a) 4d 3(5)-Pyrazole 316 19944 425 1060 409 9.4 h 

5(a) 4e 4-H-C6H4 321 12128 425 740.0 388 59 h 

6(a) 4f 4-Br-C6H4 331 24630 429 1328 287, 397 93 h 

7(a) 4g 2-F-C6H4 325 19734 424 1993 392 62 h 

8(a) 4h 4-COOH-C6H4 325 12200 422 1068 289, 395 26 h 

9(a) 4i 4-COOEt-C6H4 325 23460 425 1178 291, 396 23 h 

10(a) 4j 4-Ac-C6H4 329 14328 426 904.0 295, 398 12 h 

11(a) 4k 4-NO2-C6H4 334 17914 427 1056 289, 403 11 h 
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12(b) 4a 4-NH2-C6H4 391 24400 452 4296 343, 464 4.7 min 

13(b) 4b 4-OMe-C6H4 344 20400 430 2460 296, 420 8.1 d(f) 

14(b) 4c 4-Me-C6H4 332 20078 430 1200 285, 398 11 d(f) 

15(b) 4d 3(5)-Pyrazole 320 15980 430 1068 279, 390 22 h 

16(b) 4e 4-H-C6H4 324 15440 423 880.0 283, 392 9.5 d(f) 

17(b) 4f 4-Br-C6H4 331 21056 421 1096 286, 397 4.2 d(f) 

18(b) 4g 2-F-C6H4 328 25600 421 2320 285, 391 21 h 

19(b) 4h 4-COOH-C6H4 328 25930 425 1400 292, 394 1.6 d 

20(b) 4i 4-COOEt-C6H4 331 25400 422 1300 293, 396 38 h(f) 

21(b) 4j 4-Ac-C6H4 322 16740 415 1044 297, 401 5.1 h(f) 

22(b) 4k 4-NO2-C6H4 340 19524 418 

 

1104 294, 406 42 s 

23(c) 4a 4-NH2-C6H4 388 20800 -(h) -(h) -(h) 96 ms(f,g) 

24(c) 4b 4-OMe-C6H4 347 12960 430 2500 296, 420 7.6 d(f) 

25(c) 4c 4-Me-C6H4 321 20360 417 2680 276, 391 20 d(f) 

26(c) 4d 3(5)-Pyrazole 311 19940 420 1614 270, 381 23 h 

27(c) 4e 4-H-C6H4 322 12054 420 776.0 282, 381 15 d(f) 

28(c) 4f 4-Br-C6H4 322 22800 410 1340 277, 387 6.4 d(f) 

29(c) 4g 2-F-C6H4 318 20440 408 1800 284, 391 20 h(f) 

30(c) 4h 4-COOH-C6H4 319 14080 409 1100 279, 383 18 h(f) 

31(c) 4i 4-COOEt-C6H4 320 24000 409 1236 280, 381 16 h 

32(c) 4j 4-Ac-C6H4 322 17600 403 1180 285, 386 20 h(f) 

33(c) 4k 4-NO2-C6H4 328 17600 403 

 

1440 286, 392 43 min 

34(d) 4a 4-NH2-C6H4 380 25200 -(h) -(h) -(h) 0.10 s(f,g) 

35(d) 4b 4-OMe-C6H4 340 17560 430 2600 292, 412 5.5 d 

36(d) 4c 4-Me-C6H4 325 21000 425 1300 281, 390 31 h 

37(d) 4d 3(5)-Pyrazole 315 18530 420 900.0 274, 387 51 h 

38(d) 4e 4-H-C6H4 315 14518 415 718.0 279, 384 11 h 

39(d) 4f 4-Br-C6H4 325 24760 420 1170 282, 384 10 h 

40(d) 4g 2-F-C6H4 320 20708 420 1358 279, 383 37 h 

41(d) 4h 4-COOH-C6H4 325 18784 420 700.0 285, 386 5.8 h 

42(d) 4i 4-COOEt-C6H4 320 21368 420 1058 286, 385 15 h 

43(d) 4j 4-Ac-C6H4 325 17650 415 682.0 291, 392 16 h 

44(d) 4k 4-NO2-C6H4 330 18846 420 1054 290, 394 4.6 h 

(e) Determined by thermal relaxation of an irradiated sample (cis isomer) in the dark at room 

temperature and following of the increase in the absorption of max (trans isomer) via UV-Vis 
absorption spectroscopy. (f) Measurement performed by Dr. S. Crespi. (g) Determined by laser 
flash photolysis. (h) n.d. = not determined due to very short thermal half-life of the cis isomer. 
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Table 2. Determined photostationary states by online NMR spectroscopy under constant 
irradiation. n.d. = not determined due to very short thermal half-life of the cis isomer. 
Measurements performed by Dr. P. Nitschke. 

Entry PSS 4a 4b 4c 4d 4e 4f 4g 4h 4i 4h 4k 

1 cis (E→Z) 73 76 79 74 62 88 58 69 73 70 45 

2 trans (Z→E) n.d. 66 61 79 60 54 61 62 63 64 n.d. 
 

 

 

 

2.3 Conclusion 

In summary, we synthesized a series of substituted arylazo NH-pyrazoles bearing 

electron donating and electron withdrawing substituents, respectively. All 

compounds showed moderate to high photostationary states, especially for the 

trans to cis isomerization. The thermal stabilities of their corresponding cis isomers 

are within the hours to days range, with the exception of the amino-substituted 

azo pyrazole 4a and the nitro-substituted derivative 4k in DMSO and 

DMSO/water 1/1 as solvents, which show high thermal instability. This is 

beneficial especially for different types of analysis, as constant irradiation during 

the testing can be avoided. All compounds showed high fatigue. Despite the lower 

switching efficiency compared to their literature reported dimethyl azo pyrazole 

derivatives[24], especially for the cis to trans isomerization, this new class benefits 

of a reduced steric demand, which might be beneficial for applications in biological 

systems as well as the possibility of post-functionalization of its free NH. 

Nevertheless, especially the trans to cis isomerization shows good photostationary 

states. Furthermore, the compounds show highly efficient fast switching in both 

directions. This is beneficial for biological applications, as short irradiation times 

during online measurements are sufficient to reach the photostationary state. In 

ongoing studies performed by Dr. S. Crespi, the quantum yields of the 

isomerization of all compounds will be determined.  
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2.4 Experimental Part 

2.4.1 General Procedures and Materials 

Commercial reagents and starting materials were purchased from the commercial 

suppliers abcr, Acros Organics, Alfa-Aesar, Fisher Scientific, Merck, Sigma 

Aldrich, TCI, or VWR and used without any further purification. Solvents were 

used in p.a. quality and dried according to common procedures, if necessary. Dry 

nitrogen was used as an inert gas atmosphere. Flash column chromatography was 

performed using Sigma Aldrich MN silica gel 60 M (40-63 µm, 230-400 mesh) for 

normal phase chromatography. Reaction monitoring via thin layer 

chromatography was performed on alumina plates coated with silica gel (Merck 

silica gel 60 F254, layer thickness 0.2 mm). Melting points were determined using a 

Stanford Research System OptiMelt MPA 100 and are uncorrected. NMR spectra 

were measured on a Bruker Avance 300 (1H 300.13 MHz, 13C 75.48 MHz) and a 

Bruker Avance III HD 400 (1H 400.13 MHz, 13C 100.61 MHz). The spectra are 

referenced against the NMR solvent (DMSO-d6: H = 2.50 ppm, C = 39.52 ppm) 

and chemical shifts  are reported in ppm. Resonance multiplicity is abbreviated 

as: s (singlet), d (doublet), t (triplet) and m (multiplet). Carbon NMR signals are 

assigned using DEPT 135 and 1H-13C HSQC spectra with (+) for primary/tertiary, 

(-) for secondary, and (q) for quaternary carbons. Mass spectra were recorded on a 

Finnigan MAT-SSQ 710 A, ThermoQuest Finnigan TSQ 7000, Agilent Q-TOF 6540 

UHD, or a Jeol AccuTOF GCX instrument. UV-Vis absorption spectroscopy was 

performed in 10 mm quartz cuvettes using an Agilent 8543, Agilent Cary 100, or 

Agilent Varian Cary 50 spectrometer. Light sources for irradiation:  = 365 nm 

(Seoul Viosys CUN6GB1A, 1000 mA, 1.4 W),  = 405 nm (Nichia NVSU233A SMD-

LED UV, 1000 mA, 1.4 W),   = 455 nm (Osram OSLON SSL 80 LD-CQ7P-1U3U, 

1000 mA, 0.45 W),  = 505 nm (Osram OSLON SSL 80 LVCK7P-JYKZ, 800 mA, 

163 lm), and   = 528 nm (Osram LTCP7P-KXKZ, 350 mA, 71 lm). The power of the 

light is given based on the specifications supplied by the company when the LEDs 

were purchased. Light sources used for PSS determination via online NMR 
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spectroscopy under constant irradiation:  = 365 nm (LEUVA66; operated at 1000-

1500 mA);  = 450 nm (Oslon SSL80; operated at 1000 mA);  = 405 nm (Nichia 

NVSU233 B; operated at 1400 mA);  = 500 nm (Nichia NCSE119 A; operated at 

700 mA).  

2.4.2 Synthetic Procedures and Characterization 

General procedure for the Baeyer[33]-Mills[34] reaction. The respective arylamines 

1b, 1c, and 1e-1k (1.0 eq) were dissolved in CH2Cl2 under an inert gas atmosphere 

and a solution of oxone (1.0 eq) in water (ratio CH2Cl2/water 1/1) was added. The 

biphasic reaction mixture was stirred at room temperature for three hours. The 

organic phase was separated, dried, and the solvent evaporated. The crude nitroso 

derivatives 2a, 2c, and 2e-2k, respectively, were used in the next reaction step 

without further purification. The nitroso derivatives were dissolved in a mixture 

of acetic acid and CH2Cl2 (ratio 1/1) and amino pyrazole 3 (1.0 eq) was added and 

the reaction stirred at room temperature for 16 hours. After removal of the solvent, 

the product was purified by flash column chromatography using CH2Cl2 + 5% 

MeOH as eluent.  

(E)-3-((4-methoxyphenyl)diazenyl)-1H-pyrazole (4b). The compound was 

synthesized as brown solid in 20% yield following the general procedure for the 

Baeyer[33]-Mills[34] reaction starting from para methoxy aniline 1b. M.p.: 143 °C. 

1H-NMR (400 MHz, DMSO-d6): δ = 13.36 (s, 1H), 7.87 – 7.81 (m, 3H), 7.14 – 7.10 (m, 

2H), 6.52 (d, J = 2.5 Hz, 1H), 3.86 (s, 3H). 13C-NMR (101 MHz, DMSO-d6): δ = 162.2 

(q), 146.8 (q), 124.7 (+), 115.1 (+), 56.1 (+). HRMS (ESI): calcd. for (C10H11N4O+) 

[M+H]+: m/z = 203.0927; found 203.0930. MF: C10H10N4O. MW: 202.22 g/mol. 

(E)-3-(p-tolyldiazenyl)-1H-pyrazole (4c). The compound was synthesized as 

yellow solid in 48% yield following the general procedure for the Baeyer[33]-

Mills[34] reaction starting from para methyl aniline 1c. M.p.: 157 °C. 1H-NMR 

(400 MHz, DMSO-d6): δ = 13.42 (s, 1H), 7.89 – 7.82 (m, 1H), 7.77 – 7.74 (m, 2H), 7.39 

– 7.36 (m, 2H), 6.53 (t, J = 2.2 Hz, 1H), 2.39 (s, 3H). 13C-NMR (101 MHz, DMSO-d6): 

δ = 152.6 (q), 131.7 (+), 131.2 (+), 129.9 (+), 122.7 (+), 94.2 (+). HRMS (ESI): calcd. 
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for (C10H11N4+) [M+H]+: m/z = 187.0978; found 187.0978. MF: C10H10N4. MW: 

186.22 g/mol. 

(E)-3-(phenyldiazenyl)-1H-pyrazole (4e). The compound was synthesized as 

yellow solid in 87% yield following the general procedure for the Baeyer[33]-

Mills[34] reaction starting from aniline 1e. M.p.: 126 °C. 1H-NMR (400 MHz, 

DMSO-d6): δ = 13.49 (s, 1H), 7.88 – 7.83 (m, 3H), 7.60 – 7.52 (m, 3H), 6.58 (d, J = 

2.5 Hz, 1H). 13C-NMR (101 MHz, DMSO-d6): δ = 152.6 (q), 131.7 (+), 131.2 (+), 129.9 

(+), 122.7 (+), 94.2 (+). HRMS (ESI): calcd. for (C9H9N4+) [M+H]+: m/z = 173.0822; 

found 173.0823. MF: C9H8N4. MW: 172.19 g/mol. 

(E)-3-((4-bromophenyl)diazenyl)-1H-pyrazole (4f). The compound was 

synthesized as yellow solid in 65% yield following the general procedure for the 

Baeyer[33]-Mills[34] reaction starting from para bromo aniline 1f. M.p.: 151 °C. 

1H-NMR (400 MHz, DMSO-d6): δ = 13.54 (s, 1H), 7.89 (t, J = 2.0 Hz, 1H), 7.79 (s, 

4H), 6.56 (t, J = 2.1 Hz, 1H). 13C NMR (101 MHz, DMSO-d6): δ = 151.5 (q), 133.0 (+), 

125.0 (q), 124.6 (+). HRMS (ESI): calcd. for (C9H8BrN4+) [M+H]+: m/z = 250.9927; 

found 250.9928. MF: C9H7BrN4. MW: 251.09 g/mol. 

(E)-3-((2-fluorophenyl)diazenyl)-1H-pyrazole (4g). The compound was 

synthesized by Dr. S. Crespi as brown solid in 8% yield following the general 

procedure for the Baeyer[33]-Mills[34] reaction starting from ortho fluoro aniline 1g. 

M.p.: 103 °C. 1H-NMR (400 MHz, DMSO-d6): δ = 13.56 (s, 1H), 7.89 (dd, J = 2.6, 

1.5 Hz, 1H), 7.71 (td, J = 7.9, 1.8 Hz, 1H), 7.59 (s, 1H), 7.51 – 7.44 (m, 1H), 7.34 (td, J 

= 7.7, 1.3 Hz, 1H), 6.55 (t, J = 2.2 Hz, 1H). 13C-NMR (101 MHz, DMSO-d6): δ = 164.6 

(q), 160.7 (q), 158.2 (q), 140.5 (q), 140.5 (q), 133.6 (+), 133.6 (+), 131.3 (+), 125.5 (+), 

125.5 (+), 117.9 (+), 117.8 (+), 117.6 (+), 94.1 (+). HRMS (ESI): calcd. for (C9H8FN4+) 

[M+H]+: m/z = 191.0728; found 191.0730. MF: C9H7FN4. MW: 190.18 g/mol.  

(E)-4-((1H-pyrazol-3-yl)benzoic acid) (4h). The compound was synthesized as 

orange solid in 53% yield following the general procedure for the Baeyer[33]-

Mills[34] reaction starting from para carboxy aniline 1h. M.p.: 270 °C. 1H-NMR 

(300 MHz, DMSO-d6): δ = 13.48 (s, 2H), 8.15 – 8.09 (m, 2H), 7.95 – 7.87 (m, 3H), 6.61 
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(d, J = 2.5 Hz, 1H). 13C-NMR (75 MHz, DMSO-d6): δ 166.58 (q), 154.47 (q), 132.44 

(q), 130.52 (+), 122.18 (+). HRMS (ESI): calcd. for (C10H9N4O2+) [M+H]+: m/z = 

217.0720; found 217.0719. MF: C10H8N4O2. MW: 216.20 g/mol. 

Ethyl (E)-4-((1H-pyrazol-3-yl)diazenyl)benzoate (4i). The compound was 

synthesized as yellow solid in 67% yield following the general procedure for the 

Baeyer[33]-Mills[34] reaction starting from para ethylbenzoate aniline 1i. M.p.: 149 °C. 

1H-NMR (300 MHz, DMSO-d6): δ = 13.65 (s, 1H), 8.16 – 8.12 (m, 2H), 7.96 – 7.92 (m, 

2H), 7.91 (d, J = 2.5 Hz, 1H), 6.61 (d, J = 2.5 Hz, 1H), 4.34 (q, J = 7.1 Hz, 2H), 1.34 (t, 

J = 7.1 Hz, 3H). 13C-NMR (75 MHz, DMSO-d6): δ = 165.6 (q), 155.2 (q), 135.0 (q), 

132.0 (q), 130.9 (+), 122.9 (+), 94.2 (q), 61.5 (-), 14.6 (+). HRMS (ESI): calcd. for 

(C12H13N4O2+) [M+H]+: 245.1033; found: 245.1037. MF: C12H12N4O2. MW: 

244.25 g/mol. 

(E)-1-(4-((1H-pyrazol-3-yl)diazenyl)phenyl)ethan-1-one (4j): The compound was 

synthesized as orange solid in 33% yield following the general procedure for the 

Baeyer[33]-Mills[34] reaction starting from para acetyl aniline 1j. M.p.: 127 °C. 

1H-NMR (400 MHz, DMSO-d6): δ = 13.62 (s, 1H), 8.15 (d, J = 8.4 Hz, 2H), 7.94 (d, J 

= 8.4 Hz, 2H), 7.90 (d, J = 2.5 Hz, 1H), 6.61 (d, J = 2.5 Hz, 1H), 2.64 (s, 3H). 13C-NMR 

(75 MHz, DMSO-d6): δ = 197.9 (q), 155.0 (q), 138.6 (q), 131.9 (q), 130.1 (+), 122.9 (+), 

116.3 (q), 94.4 (q), 27.4 (+). HRMS (ESI): calcd. for (C11H11N4O+) [M+H]+: m/z = 

215.0927; found 215.0931. MF: C11H10N4O. MW: 214.23 g/mol. 

(E)-3-((4-nitrophenyl)diazenyl)-1H-pyrazole (4k): The compound was 

synthesized as orange solid in 82% yield following the general procedure for the 

Baeyer[33]-Mills[34] reaction starting from para carboxy aniline 1k. M.p.: 200 °C. 

1H-NMR (300 MHz, DMSO-d6): δ = 13.72 (s, 1H), 8.42 – 8.37 (m, 2H), 8.04 – 7.99 (m, 

2H), 7.93 (d, J = 2.5 Hz, 1H), 6.63 (s, 1H). 13C-NMR (75 MHz, DMSO-d6): δ = 163.9 

(q), 155.3 (q), 148.1 (q), 131.0 (+), 124.9 (+), 123.1 (+), 93.9 (+). HRMS (ESI): calcd. 

for (C9H8N5O2+) [M+H]+: m/z = 218.9673; found 218.0674. MF: C9H7N5O2. MW: 

217.19 g/mol. 
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(E)-4-((1H-pyrazol-5-yl)diazenyl)aniline (4a). Compound 4a was synthesized via 

an adapted literature reported procedure as orange solid in 93% yield via reduction 

of its nitro-substituted precursor 4k using sodium sulfide.[35] M.p.: 184 °C. 

1H-NMR (400 MHz, DMSO-d6): δ = 13.10 (s, 1H), 7.75 (s, 1H), 7.62 – 7.58 (m, 2H), 

6.67 – 6.63 (m, 2H), 6.41 (s, 1H), 6.01 (s, 2H). 13C-NMR (101 MHz, DMSO-d6): δ = 

153.0 (q), 143.3 (q), 130.4 (+), 130.4 (q), 125.2 (+), 113.8 (+), 93.3 (+). HRMS (ESI): 

calcd. for (C9H10N5+) [M+H]+: m/z = 188.0931; found 188.0929. MF: C9H9N5. MW: 

187.21 g/mol. 

(E)-1,2-di(1H-pyrazol-5-yl)diazene (4d). Compound 4d was synthesized as brown 

solid in 35% yield via oxidative coupling following an adapted literature reported 

procedure.[36] M.p.: decomposition over 300 °C. 1H-NMR (400 MHz, DMSO-d6): δ 

= 13.42 (s, 2H), 7.84 (s, 2H), 6.54 (s, 2H). 13C-NMR (101 MHz, DMSO-d6): δ = 164.5 

(q), 131.1 (+), 93.8 (+). HRMS (ESI): calcd. for (C6H7N6+) [M+H]+: m/z = 163.0727; 

found 163.0727. MF: C6H6N6. MW: 162.16 g/mol. 

2.4.3 Laser Flash Photolysis 

The laser pulse photolysis apparatus consisted of a Flash lamp pumped Q-

switched SpitLight-100 Nd:YAG laser from InnoLas, used at the third harmonic of 

its fundamental wavelength. It delivered a maximum power of 10 mJ at 355 nm 

with 6 ns pulse duration. The LP920-K monitor system (supplied by Edinburgh 

Instruments), arranged in a cross-beam configuration, consisted of a high-intensity 

450 W ozone free Xe arc lamp (operating both in pulsed and in continuous wave), 

a Czerny-Turner with Triple Grating Turret monochromator, and a five-stage 

dynode photomultiplier. The signals were captured by means of a Tektronix TDS 

3012C digital phosphor oscilloscope, and the data was processed with the L900 

software supplied by Edinburgh Instruments. The solutions to be analysed were 

placed in a fluorescence cuvette (d = 10 mm) without any further treatment (all the 

signals are thus registered in the presence of the atmospheric oxygen). All the 

decays reported are an average of 10 signals. 
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2.5 Supporting Information 

2.5.1 1H- and 13C-NMR Spectra 

Compound 4a (DMSO-d6) 
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Compound 4b (DMSO-d6) 
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Compound 4c (DMSO-d6) 
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Compound 4d (DMSO-d6) 
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Compound 4e (DMSO-d6) 
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Compound 4f (DMSO-d6) 
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Compound 4g (DMSO-d6) 
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Compound 4h (DMSO-d6) 
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Compound 4i (DMSO-d6) 
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Compound 4j (DMSO-d6) 
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Compound 4k (DMSO-d6) 
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2.5.2 UV-Vis Absorption Spectra, Cycle Performances, and Thermal Half-Lives 

 

 

 

Figure S1. Compound 4a measured 50 µM in toluene. Upper panel: UV-Vis absorption spectra. 
Middle panel: Cycle performance upon alternate irradiation. Lower panel: Thermal half-life. 
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Figure S2. Compound 4b measured 50 µM in toluene. Upper panel: UV-Vis absorption spectra. 
Middle panel: Cycle performance upon alternate irradiation. Lower panel: Thermal half-life. 
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Figure S3. Compound 4c measured 50 µM in toluene. Upper panel: UV-Vis absorption spectra. 
Middle panel: Cycle performance upon alternate irradiation. Lower panel: Thermal half-life. 



PHOTOCHROMIC EVALUATION OF ARYLAZO NH-PYRAZOLES 

66 

  

 

 

 

Figure S4. Compound 4d measured 50 µM in toluene. Upper panel: UV-Vis absorption spectra. 
Middle panel: Cycle performance upon alternate irradiation. Lower panel: Thermal half-life. 
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Figure S5. Compound 4e measured 50 µM in toluene. Upper panel: UV-Vis absorption spectra. 
Middle panel: Cycle performance upon alternate irradiation. Lower panel: Thermal half-life. 
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Figure S6. Compound 4f measured 50 µM in toluene. Upper panel: UV-Vis absorption spectra. 
Middle panel: Cycle performance upon alternate irradiation. Lower panel: Thermal half-life. 
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Figure S7. Compound 4g measured 50 µM in toluene. Upper panel: UV-Vis absorption spectra. 
Middle panel: Cycle performance upon alternate irradiation. Lower panel: Thermal half-life. 
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Figure S8. Compound 4h measured 50 µM in toluene. Upper panel: UV-Vis absorption spectra. 
Middle panel: Cycle performance upon alternate irradiation. Lower panel: Thermal half-life. 
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Figure S9. Compound 4i measured 50 µM in toluene. Upper panel: UV-Vis absorption spectra. 
Middle panel: Cycle performance upon alternate irradiation. Lower panel: Thermal half-life. 
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Figure S10. Compound 4j measured 50 µM in toluene. Upper panel: UV-Vis absorption spectra. 
Middle panel: Cycle performance upon alternate irradiation. Lower panel: Thermal half-life. 
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Figure S11. Compound 4k measured 50 µM in toluene. Upper panel: UV-Vis absorption spectra. 
Middle panel: Cycle performance upon alternate irradiation. Lower panel: Thermal half-life. 
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Figure S12. Compound 4a measured 50 µM in DMSO. Upper panel: UV-Vis absorption spectra. 
Middle panel: Cycle performance upon alternate irradiation. Lower panel: Thermal half-life. 
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Figure S13. Compound 4b measured 50 µM in DMSO. Upper panel: UV-Vis absorption spectra. 
Middle panel: Cycle performance upon alternate irradiation. Lower panel: Thermal half-life. 
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Figure S14. Compound 4c measured 50 µM in DMSO. Upper panel: UV-Vis absorption spectra. 
Middle panel: Cycle performance upon alternate irradiation. Lower panel: Thermal half-life. 
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Figure S15. Compound 4d measured 50 µM in DMSO. Upper panel: UV-Vis absorption spectra. 
Middle panel: Cycle performance upon alternate irradiation. Lower panel: Thermal half-life. 
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Figure S16. Compound 4e measured 50 µM in DMSO. Upper panel: UV-Vis absorption spectra. 
Middle panel: Cycle performance upon alternate irradiation. Lower panel: Thermal half-life. 
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Figure S17. Compound 4f measured 50 µM in DMSO. Upper panel: UV-Vis absorption spectra. 
Middle panel: Cycle performance upon alternate irradiation. Lower panel: Thermal half-life. 
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Figure S18. Compound 4g measured 50 µM in DMSO. Upper panel: UV-Vis absorption spectra. 
Middle panel: Cycle performance upon alternate irradiation. Lower panel: Thermal half-life. 
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Figure S19. Compound 4h measured 50 µM in DMSO. Upper panel: UV-Vis absorption spectra. 
Middle panel: Cycle performance upon alternate irradiation. Lower panel: Thermal half-life. 
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Figure S20. Compound 4i measured 50 µM in DMSO. Upper panel: UV-Vis absorption spectra. 
Middle panel: Cycle performance upon alternate irradiation. Lower panel: Thermal half-life. 
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Figure S21. Compound 4j measured 50 µM in DMSO. Upper panel: UV-Vis absorption spectra. 
Middle panel: Cycle performance upon alternate irradiation. Lower panel: Thermal half-life. 
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Figure S22. Compound 4k measured 50 µM in DMSO. Upper panel: UV-Vis absorption spectra. 
Middle panel: Cycle performance upon alternate irradiation. Lower panel: Thermal half-life. 
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Figure S23. Compound 4a measured 50 µM in DMSO:water 1:1. Upper panel: UV-Vis absorption 
spectrum. Lower panel: Thermal half-life. 
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Figure S24. Compound 4b measured 50 µM in DMSO:water 1:1. Upper panel: UV-Vis absorption 
spectra. Middle panel: Cycle performance upon alternate irradiation. Lower panel: Thermal half-
life. 
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Figure S25. Compound 4c measured 50 µM in DMSO:water 1:1. Upper panel: UV-Vis absorption 
spectra. Middle panel: Cycle performance upon alternate irradiation. Lower panel: Thermal half-
life. 
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Figure S26. Compound 4d measured 50 µM in DMSO:water 1:1. Upper panel: UV-Vis absorption 
spectra. Middle panel: Cycle performance upon alternate irradiation. Lower panel: Thermal half-
life. 
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Figure S27. Compound 4e measured 50 µM in DMSO:water 1:1. Upper panel: UV-Vis absorption 
spectra. Middle panel: Cycle performance upon alternate irradiation. Lower panel: Thermal half-
life. 
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Figure S28. Compound 4f measured 50 µM in DMSO:water 1:1. Upper panel: UV-Vis absorption 
spectra. Middle panel: Cycle performance upon alternate irradiation. Lower panel: Thermal half-
life. 
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Figure S29. Compound 4g measured 50 µM in DMSO:water 1:1. Upper panel: UV-Vis absorption 
spectra. Middle panel: Cycle performance upon alternate irradiation. Lower panel: Thermal half-
life. 
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Figure S30. Compound 4h measured 50 µM in DMSO:water 1:1. Upper panel: UV-Vis absorption 
spectra. Middle panel: Cycle performance upon alternate irradiation. Lower panel: Thermal half-
life. 
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Figure S31. Compound 4i measured 50 µM in DMSO:water 1:1. Upper panel: UV-Vis absorption 
spectra. Middle panel: Cycle performance upon alternate irradiation. Lower panel: Thermal half-
life. 
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Figure S32. Compound 4j measured 50 µM in DMSO:water 1:1. Upper panel: UV-Vis absorption 
spectra. Middle panel: Cycle performance upon alternate irradiation. Lower panel: Thermal half-
life. 
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Figure S33. Compound 4k measured 50 µM in DMSO:water 1:1. Upper panel: UV-Vis absorption 
spectra. Middle panel: Cycle performance upon alternate irradiation. Lower panel: Thermal half-
life. 
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Figure S34. Compound 4a measured 50 µM in methanol. Upper panel: UV-Vis absorption 
spectrum. Lower panel: Thermal half-life. 
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Figure S35. Compound 4b measured 50 µM in methanol. Upper panel: UV-Vis absorption spectra. 
Middle panel: Cycle performance upon alternate irradiation. Lower panel: Thermal half-life. 
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Figure S36. Compound 4c measured 50 µM in methanol. Upper panel: UV-Vis absorption spectra. 
Middle panel: Cycle performance upon alternate irradiation. Lower panel: Thermal half-life. 
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Figure S37. Compound 4d measured 50 µM in methanol. Upper panel: UV-Vis absorption spectra. 
Middle panel: Cycle performance upon alternate irradiation. Lower panel: Thermal half-life. 
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Figure S38. Compound 4e measured 50 µM in methanol. Upper panel: UV-Vis absorption spectra. 
Middle panel: Cycle performance upon alternate irradiation. Lower panel: Thermal half-life. 
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Figure S39. Compound 4f measured 50 µM in methanol. Upper panel: UV-Vis absorption spectra. 
Middle panel: Cycle performance upon alternate irradiation. Lower panel: Thermal half-life. 
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Figure S40. Compound 4g measured 50 µM in methanol. Upper panel: UV-Vis absorption spectra. 
Middle panel: Cycle performance upon alternate irradiation. Lower panel: Thermal half-life. 
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Figure S41. Compound 4h measured 50 µM in methanol. Upper panel: UV-Vis absorption spectra. 
Middle panel: Cycle performance upon alternate irradiation. Lower panel: Thermal half-life. 
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Figure S42. Compound 4i measured 50 µM in methanol. Upper panel: UV-Vis absorption spectra. 
Middle panel: Cycle performance upon alternate irradiation. Lower panel: Thermal half-life. 
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Figure S43. Compound 4j measured 50 µM in methanol. Upper panel: UV-Vis absorption spectra. 
Middle panel: Cycle performance upon alternate irradiation. Lower panel: Thermal half-life. 
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Figure S44. Compound 4k measured 50 µM in methanol. Upper panel: UV-Vis absorption spectra. 
Middle panel: Cycle performance upon alternate irradiation. Lower panel: Thermal half-life. 
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2.5.3 PSS Determination via NMR 

Compound 4a: red spectrum = cis PSS 73% (DMSO-d6) 
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Compound 4b: red spectrum = cis PSS 76% (DMSO-d6) 

 

Compound 4b: blue spectrum = trans PSS 66% (DMSO-d6) 
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Compound 4c: red spectrum = cis PSS 79% (DMSO-d6) 

 

Compound 4c: blue spectrum = trans PSS 61% (DMSO-d6) 
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Compound 4d: red spectrum = cis PSS 74% (DMSO-d6) 

 

Compound 4d: blue spectrum = trans PSS 79% (DMSO-d6) 
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Compound 4e: red spectrum = cis PSS 62% (DMSO-d6) 

 

Compound 4e: blue spectrum = trans PSS 60% (DMSO-d6) 
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Compound 4f: red spectrum = cis PSS 88% (DMSO-d6) 

 

Compound 4f: blue spectrum = trans PSS 54% (DMSO-d6) 
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Compound 4g: red spectrum = cis PSS 58% (DMSO-d6) 

 

Compound 4g: blue spectrum = trans PSS 61% (DMSO-d6) 
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Compound 4h: red spectrum = cis PSS 69% (DMSO-d6) 

 

Compound 4h: blue spectrum = trans PSS 62% (DMSO-d6) 
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Compound 4i: red spectrum = cis PSS 73% (DMSO-d6) 

 

Compound 4i: blue spectrum = trans PSS 63% (DMSO-d6) 
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Compound 4j: red spectrum = cis PSS 70% (DMSO-d6)  

 

Compound 4j: blue spectrum = trans PSS 64% (DMSO-d6) 
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Compound 4k: red spectrum = cis PSS 45% (DMSO-d6) 
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CHAPTER 3 

3 Development of Photoswitchable Inhibitors for 
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3.1 Introduction 

By incorporating photochromic scaffolds into the molecular structure of known 

bioactive compounds, photons can be used as an orthogonal control element 

providing high spatiotemporal precision in a – depending on the applied 

wavelength – non-invasive manner without risking contamination of the studied 

sample.[1-5] In contrast to photolyzable moieties, the reversible approach of 

photoswitches and the absence of a cleaved side-product is beneficial.[6-8] 

Introducing this photochromic tool into a bioactive target leads – upon irradiation 

with light – to a reversible toggling between two states, affecting geometry, 

polarity, and charge distribution.[1,7,9] A variety of such photoresponsive scaffolds 

has been investigated, including dithienylethenes (DTEs), fulgi(mi)des, and 

azobenzenes, which can be characterized by their distinct switching mechanism 

either based on a 6-electrocyclic rearrangement (cyclization/ring-opening: DTEs, 

fulgi(mi)des) or an E–Z double-bond photoisomerization (azobenzenes). Their 

thermal stability differs from bistable (P-type: DTEs, fulgi(mi)des) to a tuneable 

thermal reversibility ranging from ns to years (T-type: azobenzenes).[1,3,5,10-12] After 

the first publication of azobenzene in the late 1960s for the photoregulation of the 

activity of chymotrypsin,[13] the applications for photoactive moieties expanded 

towards the reversible light-triggered control of receptors,[14-17] bacterial growth,[18] 

vision restoration,[19,20] the respiratory chain,[21] and enzymatic activity.[13,22-27] The 

homotetrameric enzyme -galactosidase from Escherichia coli catalyzes the 

hydrolysis of glycosidic bonds in -D-galactosides.[28] -Galactosidase has been 

extensively investigated[29] and several competitive inhibitors including 

2-phenylethyl -D-thiogalactoside (PETG)[32] and 1-amino-1-deoxy--D-galactose 

(galactosylamine)[33] have been developed. One of the strongest competitive 

inhibitors of -galactosidase (Ki: 0.6 nM; tight binding inhibitor) based on a 

mannostatin derivative was developed by Greul et al.[35,36] More recently, the 

inhibition of -galactosidase has been investigated on the single molecule level in 

so-called femtoliter arrays.[30,37] This method provides statistic information about 

the individual behavior of enzyme molecules in a population. The substrate 
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turnover of a single -galactosidase molecule – observable by the generation of a 

fluorescent product - is interrupted if an inhibitor binds to the active site, and the 

turnover resumes when the inhibitor is released. From the intermittency of the 

substrate turnover, stochastic information on individual binding and unbinding 

events can be retrieved. While it has not been possible to exert any control over 

these random events so far, a photochromic inhibitor would allow for switching 

the activity of single enzyme molecules on and off on demand. By extending the 

PETG-benzene moiety, we have designed a photochromic -galactosidase 

inhibitor, whose inhibitory activity can be controlled by irradiation with light 

orthogonal to the fluorescent read-out system resorufin (Ex/Em = 574/589 nm).[31,32]  

Azobenzenes form one of the largest and most studied classes of photochromic 

molecules. First described in 1834,[38] their photoinduced cis-trans isomerization, 

which is accompanied by a large geometrical change and a considerable change in 

polarity, was discovered one century later in 1937 by G. S. Hartley.[39] Back-

switching to the thermodynamically more stable trans isomer can be achieved by 

irradiation with light of a different wavelength or may proceed by thermal 

relaxation.[1,3,5] Benefiting from those properties, we aimed for a strong difference 

in inhibitory activity upon light-induced switching between the two isomers. In 

this work, we report the design, synthesis, photochromic characterization, and 

inhibitory performance of water-soluble photochromic competitive 

-galactosidase inhibitors based on the structures of PETG and galactosylamine 

(Scheme 1). 

 

Scheme 1. Chemical structures of -galactosidase inhibitors. (A) 1-Amino-1-deoxy--D-galactose 

(Galactosylamine).[33] (B) 2-Phenylethyl -D-thiogalactoside (PETG).[32] (C) Photochromic 
azobenzene in its trans- and cis-isomeric state. 
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3.2 Results and Discussion 

3.2.1 Design and Syntheses  

Design and synthesis of photochromic galactosylamine derivatives. Because of 

its high inhibitory activity, synthetic accessibility, and high reactivity at its C1 

position for further functionalization, galactosylamine was chosen as one 

inhibitory scaffold for the introduction of a photoresponsive moiety. To attach the 

photoswitch azobenzene to the galactopyranoside moiety two different syntheses 

were conducted (Scheme 2). In a first synthetic attempt, D-galactose (1) was 

converted into its C1-amino derivative 2 (galactosylamine) in moderate yield upon 

reaction with ammonia in methanol for 48 hours at room temperature. Under these 

conditions the -pyranose isomer was isolated as pure precipitate beside its -

pyranose and /-furanose form.[40] In the next step the -pyranose product 2 was 

transformed into its photochromic amide 4 upon reaction with the carboxylic acid 

chloride azobenzene 3 in basic media in good yield; an acetone/water solvent 

mixture (5/1) allowed the solution of all reactants.[41] As compound 4 is based on 

a carboxy azobenzene core its photochromic properties are characterized by a long 

thermal half-life of its cis isomer. To vary the photochromic properties (e.g., 

thermal half-life, absorption maxima), in addition, a second derivative, bearing an 

amino azobenzene moiety directly attached to the galactosylamine, was 

synthesized. Compound 6 was obtained in a one-step reaction starting from 

D-galactose (1) and para amino azobenzene 5.[42] In analogy to the formation of 

-D-galactosylamine 2 from D-galactose (1) again the -pyranose form was 

isolated as major product. 
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Scheme 2. Synthesis of azobenzene-based galactosylamine derivatives as competitive inhibitors for 

-D-galactosidase (Escherichia coli).[40-42] 

Design of azobenzene-based PETG derivatives. Based on its benzene ring, PETG 

was selected for azo-formation as the structural necessary modification is less 

drastic compared to the complete de novo introduction of an azobenzene and the 

risk to lose inhibitory activity is consequently lower. 

Synthesis of asymmetric azobenzene-based PETG derivatives. The asymmetric 

PETG-based azobenzene derivatives 34-42 were synthesized as outlined in 

Scheme 3. The general procedure is based on the transformation of the 

commercially available pentaacetylated -D-galactose 7 into its C1--acetobromo-

derivative 8 upon reaction with HBr in acetic acid.[43] In the next step, compound 

8 was converted into its imino-methanamine salt 9 by reaction with thiourea and 

subsequently reduced to obtain the pentaacetylated -D-thiogalactopyranoside 

10.[44] This thiosugar derivative was used for the reaction with differently bromo-

substituted nitrobenzenes affording the corresponding pentaacetylated 

nitrobenzene -D-thiogalactopyranosides 11-16.[45] Besides the use of the native 

PETG moiety containing two CH2 linking groups, the steric influence of the linker 

length and substitution position was further investigated. Bromo-substituted 

nitrobenzenes vary in their linker length (n = 0, 1, 2) and their substitution position 

(ortho, para). In order to perform a classical Mills reaction for the formation of an 

azo bridge, the nitro group was reduced to its amino function.[46] As reaction 

partner nitrosobenzene (23) and its sterically more demanding para tert-butyl 
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substituted derivative 24[47] were used affording the pentaacetylated -D-

thiogalactopyranoside azobenzenes 25-33 in low to moderate yields. Thereby, the 

tert-butyl group was introduced to increase the steric demand upon light-induced 

trans-cis isomerization. For synthetic reasons, the tert-butyl substitution was placed 

in para position as the ortho-substituted nitrosobenzene showed no product 

formation in the Mills reaction due to steric hindrance. To regain the free hydroxy 

groups necessary for the interaction with the biological target, the protected 

hydroxy groups were deacetylated in quantitative yield using potassium 

carbonate affording the desired photochromic thiogalactoside-based azobenzene 

derivatives 34-42.[48] 

Scheme 3. Synthesis of asymmetric azobenzene-based PETG derivatives as competitive inhibitors 

for -galactosidase (E. coli).[43-47] 

Synthesis of the symmetric azobenzene-based PETG derivative. As design for a 

sterically more demanding inhibitor with increased binding probability, a 

symmetrically phenethyl thiogalactopyranoside substituted azobenzene was 

synthesized. For the synthesis, a different synthetic strategy was used (Scheme 4). 

In a first step, the symmetric para hydroxyethyl substituted azobenzene 45 was 

synthesized. Therefore, commercially available para amino-phenethylalcohol 43 
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was converted into its nitroso derivative 44 via organoselenium-catalyzed 

oxidation by hydrogen peroxide.[49] The generated nitroso compound was 

subsequently reacted in a Mills reaction upon addition of amine 43 in acetic acid. 

The alcohol of the symmetric hydroxyethyl substituted azobenzene 45 was then 

converted to the bromide 46 using tetrabromomethane and triphenylphosphine. 

The thiol functional groups were introduced by reaction of 46 with thiourea 

followed by basic hydrolysis.[50] The glycosylation of thiol 47 with pentaacetylated 

galactopyranoside 7 under activation of the Lewis acid boron trifluoride etherate 

yielded the symmetrically glycosylated ethylazobenzene 48. Deacetylation of the 

hydroxy protecting groups under basic conditions afforded the desired 

symmetrical target compound 49.[48] 

 

Scheme 4. Synthesis of the symmetric azobenzene-based PETG derivative as competitive inhibitor 

for -galactosidase (E. coli).[48-50]  

3.2.2 Photochemical Characterization 

Photoisomerization studies of the competitive photochromic -galactosidase 

inhibitors 4, 6, 34-42, and 49 were conducted in phosphate buffer and DMSO, 

respectively, by absorption and NMR-spectroscopy as well as HPLC-assisted 

analysis. Therefore, the dissolved compounds were irradiated with the indicated 

wavelengths to accumulate a substantial amount of their cis isomer until the 
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photostationary state (PSS) was reached. Thereby, the maximum representing the 

trans isomer decreased and a new shoulder in the visible range, characteristic for 

the cis isomer, evolved. For back isomerization the photochromic inhibitors were 

exposed to visible light. The resulting isosbestic points in the absorption spectra 

indicate a clear two-component switching without any degradation or formation 

of a side product.  

 

Figure 1. Photochromic properties of azobenzene-based PETG-derivative 37 (50 µM in phosphate 

buffer + 0.1% DMSO). Left: UV-Vis absorption spectrum upon irradiation with  = 365 nm until the 

cis-PSS is reached (30 s) and  = 455 nm until the trans-PSS is reached (30 s). Black arrows indicate 
the characteristic changes in the absorption spectrum upon irradiation with the indicated 
wavelengths. Dotted black arrows indicate isosbestic points. Right: Repetitive switching cycles 

after alternate irradiation with UV ( = 365 nm) and blue ( = 455 nm) light determined at 325 nm. 

For full UV-Vis absorption spectroscopic characterization see Figures S1-S12. In 

addition, the PSS was determined by HPLC and NMR measurements. The major 

photophysical properties of compounds 4, 6, 34-42, and 49 are summarized in 

Table 1; for additional photochemical data see Supporting Information Tables 

S1-S3. All compounds showed excellent photochromic properties in DMSO, and 

phosphate buffer, respectively, with high photostationary states and fatigue 

resistance. Figure 1 shows exemplarily the UV-Vis absorption spectrum (left) and 

the cycle performance (right) for the competitive inhibitor 37.  

The thermal half-lives (THL) of the cis isomers of compounds 4, 6, 34-42, and 49 

were determined by monitoring the increase in absorbance which corresponds to 

the evolution of the trans isomer. The data indicate slow thermal reversal of the cis 
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isomer at room temperature (except compound 6), which is beneficial because 

constant irradiation during the enzymatic testing can be avoided. 

Table 1. Photochemical properties of azobenzene-based -galactosidase inhibitors measured 50 µM 
in phosphate buffer + 0.1% DMSO, and 1% DMSO (labeled by *), respectively. Cpd. = Compound. 

Entry Cpd. 

max 

trans isomer 

[nm] 

max 

cis isomer 

[nm] 

Isosbestic 

points 

[nm] 

 

 
 
 

 

 

 

THL 

 

         PSS distribution 

1 4 323 425 237, 280, 385 536 h 
67% cis (375 nm)(a) 

75% trans (405 nm)(a) 

2 6 379 - 279, 293, 335, 464 1.69 s n.d. 

3 34 325 431 234, 274, 390 98.2 h 
93% cis (365 nm)(b) 

74% trans (455 nm)(b) 

4 35 329 426 238, 278, 396 252 h 
88% cis (365 nm)(a) 

72% trans (455 nm)(a) 

5 36* 334 431 242, 287, 399 21.8 h 
90% cis (365 nm)(b) 

82% trans (455 nm)(b) 

6 37 325 431 241, 275, 390 17.4 h 
76% cis (365 nm)(b) 

77% trans (455 nm)(b) 

7 38 323 423 235, 273, 388 203 h 
83% cis (365 nm)(a) 

75% trans (455 nm)(a) 

8 39* 335 434 245, 288, 399 25.3 h 
90% cis (365 nm)(b) 

82% trans (455 nm)(b) 

9 40 322 428 235, 254, 273, 428 262 h 
81% cis (365 nm)(a) 

63% trans (455 nm)(a) 

10 41 348 429 238, 280, 421 94.3 h 
88% cis (365 nm)(a) 

69% trans (455 nm)(a) 

11 42* 352 433 241, 297, 432 37.0 h 
90% cis (365 nm)(a) 

76% trans (455 nm)(a) 

12 49 338 430 240, 288, 407 104 h 
93% cis (365 nm)(a) 

74% trans (455 nm)(a) 

(a) Determined by analytical HPLC measurement of a preirradiated 50 µM solution at 20 °C. (b) 
Determined by NMR-measurement of a preirradiated sample in D2O + 5% DMSO until the PSS was 
reached. n.d.: not detected due to fast thermal back relaxation. 

3.2.3 Enzyme Inhibition 

Based on the determined relative inhibitory activity (see Supporting Information 

Table S4) of the trans isomer in its thermal equilibrium and the cis isomer at its PSS 

of the competitive -galactosidase inhibitors 4, 6, 34-42, and 49, the Ki values of the 

most promising derivatives were determined (Table 2). 
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Table 2. Ki [µM] values of photochromic competitive -galactosidase inhibitors. Ki was determined 
by varying the inhibitor concentration at three different substrate concentrations (50, 100, and 
150 µM). The standard deviation was calculated from the average of three independent 
measurements. Cpd. = Compound. 

Entry Cpd. 
Ki [µM]  

trans isomer 

Ki [µM]  

cis-PSS 

Ratio  

(cis/trans) 

1 34 0.7 ± 0.2 1.7 ± 0.5 2.4 

2 37 0.06 ± 0.01 0.29 ± 0.08 4.8 

3 41 62 ± 12 50 ± 11 0.8 

From all tested photoswitchable inhibitors, the ortho substituted thiogalactosides 

with one (compound 37) or two CH2 spacers (compound 34) between the sugar 

residue and the photochromic azobenzene part showed the strongest inhibition 

compared to the well-known inhibitor PETG, which has a Ki value of 7.2 µM.[34] 

Compared to PETG, the trans isomer of compound 34 had a 10x lower Ki (0.7 µM) 

and the trans isomer of compound 37 a 100x lower Ki (60 nM). Irradiating both 

inhibitors with 365 nm until the cis-PSS was reached allowed the accumulation of 

a substantial amount of the sterically more demanding isomer, which increased 

the Ki values of 34 to 1.7 µM (2.4x higher), and of 37 to 0.29 µM (4.8x higher). The 

trans isomer of the para substituted thiogalactosyl compound 41 without CH2 

spacer had a 10x higher Ki compared to PETG. Switching to the cis-PSS had almost 

no effect on Ki as indicated by a cis/trans ratio of around 1. -Galactosidase is a 

homotetramer comprising four identical active centers at the interface of two 

neighboring subunits. The large binding pockets make it difficult to design 

photochromic derivatives with high cis/trans ratios. Comparing the inhibitors 34, 

37, and 41, compound 41 is the least sterically demanding inhibitor, which resulted 

in no activity change upon switching the molecule (Ki ratio 1.2; Table 2). Changing 

the position of the azobenzene substitution from para (41) to ortho and extending 

the spacer length increased the cis/trans ratio by a factor of 2 for compound 34 (two 

CH2 linking groups; ratio 2.4), and by a factor of 4 for compound 37 (one CH2 

linker; ratio 4.8). This implicates that the structural flexibility gained by one CH2 

group between sugar moiety and azobenzene (37) is sufficient for efficient binding 

into the enzyme’s pocket. 



DEVELOPMENT OF PHOTOSWITCHABLE INHIBITORS FOR B-GALACTOSIDASE 

134 

  

3.2.4 Docking Experiments 

Compound 37 was docked to the -galactosidase in its trans- and cis-isomeric state 

using VINA docking[51] as implemented in YASARA.[52] The best-ranked cis isomer 

of 37 had an estimated dissociation constant of 31 nM, whereas the estimated 

dissociation constant of its best-ranked trans isomer is 27 nM, which supports a 

stronger binding of the trans isomer. Figure 2 indicates that the sugar moiety of the 

ligand fits well into the binding pocket and fills it completely. The two aromatic 

rings of azobenzene, which are involved in light-induced switching are located at 

the surface of the protein and protrude out of the binding pocket. This localization 

argues against a drastic effect in inhibitory activity upon light-induced 

isomerization. 

 

Figure 2. (A) A detailed view of the ligand 37 in its cis- (left panel) and trans-isomeric (right panel) 
state. The ligand is shown in blue; residues defined as flexible during docking are shown in white. 
Yellow dotted lines represent hydrogen bonds. (B) Surface view of the ligand in its cis- (left panel) 
and trans-isomeric (right panel) state.   
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3.3 Conclusion 

In the presented work, we succeeded in the synthesis of thermally highly stable 

photochromic -galactosidase inhibitors by modifying the chemical structure of 

potent inhibitors with an azobenzene moiety. All compounds show highly 

reversible photochromism in aqueous media with excellent fatigue resistance over 

ten measurement cycles. For the galactosylamine derivatives 4 and 6, the high 

inhibitory activity of parent compound 2 (galactosylamine) could not be retained. 

In contrast, the PETG-based photochromic inhibitors 34-42 and 49 could be 

structurally optimized regarding their isomer-dependent activity by variation of 

their linker length, their substitution position, and their steric demand. Thereby, 

the photochromic moiety was first placed in para position to the inhibitory PETG 

moiety resulting in good inhibitory activity without significant isomer-dependent 

effect. To increase the effect of isomerization, the linker length was reduced 

resulting in a partial decrease of the inhibitory activity but no gain in isomer 

specific effects. Therefore, the switching moiety was placed in ortho position 

increasing on one hand inhibitory activity and on the other hand isomer dependent 

effects. Compound 37 could be identified as a highly inhibitory active 

photochromic PETG-derivative with 5-fold difference upon switching and a Ki 

value of 60 nM (trans isomer). Single-molecule experiments will provide additional 

information about the inhibition mechanism. Additional docking analysis 

explained the experimental observations. 

3.4 Experimental Part 

3.4.1 General Procedures and Materials  

Commercial reagents and starting materials were purchased from the commercial 

suppliers abcr, Acros Organics, Alfa-Aesar, Fisher Scientific, Merck, Sigma 

Aldrich, TCI, or VWR and used without any further purification. Solvents were 

used in p.a. quality and dried according to common procedures, if necessary. Dry 

nitrogen was used as an inert gas atmosphere. Flash column chromatography was 
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performed using Sigma Aldrich MN silica gel 60 M (40-63 µm, 230-400 mesh) for 

normal phase chromatography. Reaction monitoring via thin layer 

chromatography was performed on alumina plates coated with silica gel (Merck 

silica gel 60 F254, layer thickness 0.2 mm). Melting points were determined using a 

Stanford Research System OptiMelt MPA 100 and are uncorrected. NMR spectra 

were measured on a Bruker Avance 300 (1H 300.13 MHz, 13C 75.48 MHz), Bruker 

Avance III HD 400 (1H 400.13 MHz, 13C 100.61 MHz), Bruker Avance III HD 600 

(1H 600.25 MHz, 13C 150.95 MHz) and Bruker Avance III 600 (1H 600.25 MHz, 13C 

150.95 MHz). The spectra are referenced against the NMR solvent (DMSO-d6: H = 

2.50 ppm, C = 39.52 ppm; CDCl3-d: H = 7.26 ppm, C = 77.16 ppm) and chemical 

shifts  are reported in ppm. Resonance multiplicity is abbreviated as: s (singlet), 

d (doublet), t (triplet) and m (multiplet). Carbon NMR signals are assigned using 

DEPT 135 and 1H-13C HSQC spectra with (+) for primary/tertiary, (-) for 

secondary, and (q) for quaternary carbons. Mass spectra were recorded on a 

Finnigan MAT-SSQ 710 A, ThermoQuest Finnigan TSQ 7000, Agilent Q-TOF 6540 

UHD, or a Jeol AccuTOF GCX instrument. UV-Vis absorption spectroscopy was 

performed in 10 mm quartz cuvettes using an Agilent 8543, Agilent Cary 100, or 

Agilent Varian Cary 50 spectrometer. Analytical HPLC measurements were 

performed using an Agilent 1220 Infinity LC (column: Phenomenex Luna 3 µm 

C18(2) 100 Å, 150 x 2.00 mm; flow 0.3 mL min-1 at 20 °C for PSS determination or 

30 °C for purity determination; solvent A: MilliQ water with 0.05 wt% TFA; solvent 

B: MeCN). The ratios at the PSSs were determined via analytical HPLC at 20 °C at 

the isosbestic points or via NMR spectroscopy. An Agilent 1260 system (column: 

Phenomenex Luna 10 µm C18(2) 100 Å, 250 x 21.2 mm; flow: 22 mL min-1; solvent 

A: MilliQ water; solvent B: MeCN) was used for preparative HPLC purification. 

Light sources for irradiation:  = 365 nm (Seoul Viosys CUN6GB1A, 1000 mA, 

1.4 W),  = 385 nm (Seoul Viosys CUN8GF1A, 1000 mA, 1.6 W),  = 455 nm (Osram 

OSLON SSL 80 LD-CQ7P-1U3U, 1000 mA, 0.45 W),  = 470 nm (Osram OSLON 

SSL 80 LBCP7P-GYHY, 1000 mA, 50.4 lm), and  = 505 nm (Osram OSLON SSL 80 

LVCK7P-JYKZ, 800 mA, 163 lm). The power of the light is given based on the 
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specifications supplied by the company when the LEDs were purchased. All tested 

final compounds possess a purity ≥93% determined by HPLC measurements at 

30 °C with detection at 220 nm or 254 nm, respectively.  

Compounds 8,[43] 9,[44] 10,[44] 24[47] were prepared according to previously reported 

procedures. 

3.4.2 Synthetic Procedures and Characterization 

(2R,3R,4S,5R,6R)-2-amino-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (2). 

Galactosylamine 2 was synthesized via an adapted literature reported 

procedure.[40] Therefore, D-Galactose (1.0 g, 5.5 mmol, 1.0 eq) was dissolved in a 

solution of ammonia in methanol (40 mL, 7.0 M, 0.28 mol, 50 eq) and stirred at 

room temperature for 48 hours until a colorless solid precipitated. The product was 

filtered, washed with cold methanol (2 x 5.0 mL) and diethyl ether (2 x 5.0 mL) and 

dried in vacuo to afford 2 in its -pyranose form in 63% yield (3.5 mmol, 0.62 g). 

The measured NMR spectrum was in accordance with the literature reported 

spectrum. 

4-((E)-phenyldiazenyl)-N-((2R,3R,4S,5R,6R)-3,4,5-trihydroxy-6-hydroxymethyl) 

tetrahydro-2H-pyran-2-yl)benzamide (4). To a stirred solution of galactosylamine 

2 (0.17 g, 0.94 mmol, 2.3 eq) and potassium carbonate (56 mg, 0.41 mmol, 1.0 eq) in 

water (2.0 mL) was added a solution of phenylazobenzoylchloride 3 (0.25 g, 

1.0 mmol, 2.4 eq) in acetone (8.0 mL) and stirred at room temperature for 

14 hours.[41] Thin layer chromatography indicated complete consumption of the 

phenylazobenzoylchloride. Purification by column chromatography (CH2Cl2 + 5% 

MeOH) afforded the desired product which was further purified by preparative 

HPLC (column: Phenomenex Luna 10 µm C18(2) 100 Å, gradient 0-16 min 75:25 -

66:34, tR = 12.5 min) to afford the product as orange solid in good yield (0.30 g, 

0.77 mmol, 82%). M.p.: 189 °C. 1H-NMR (400 MHz, DMSO-d6):  = 8.56 (d, J = 

8.7 Hz, 1H), 8.10 (d, J = 8.3 Hz, 2H), 7.99 – 7.91 (m, 4H), 7.65 – 7.58 (m, 3H), 5.68 

(dd, J = 8.7, 5.4 Hz, 1H), 5.02 – 4.92 (m, 1H), 4.69 – 4.50 (m, 2H), 4.40 (d, J = 4.5 Hz, 

1H), 4.01 – 3.91 (m, 1H), 3.87 (s, 1H), 3.78 – 3.73 (m, 1H), 3.71 (t, J = 6.2 Hz, 1H), 3.57 
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– 3.50 (m, 1H), 3.44 – 3.38 (m, 1H). 13C-NMR (101 MHz, DMSO-d6):  = 167.1 (q), 

153.4 (q), 151.9 (q), 136.8 (q), 132.1 (+), 129.6 (+), 129.2 (+), 122.8 (+), 122.2 (+), 77.2 

(+), 72.3 (+), 69.0 (+), 68.5 (+), 67.0 (+), 60.4 (-). HRMS (ESI) calcd. for (C19H22N3O6+) 

[M+H]+: m/z = 388.1503; found 388.1502. MF: C19H21N3O6. MW: 387.39 g/mol.  

(2R,3R,4S,5R,6R)-2-(hydroxymethyl)-6-((4-((E)-phenyldiazenyl)phenyl)amino) 

tetrahydro-2H-pyran-3,4,5-triol (6). Compound 6 was synthesized according to an 

adapted literature reported procedure.[42] Para aminoazobenzene (1.0 g, 5.2 mmol, 

1.0 eq) was added to a solution of -D-galactose (0.90 g, 5.0 mmol, 1.0 eq) in a 

mixture of EtOH and water (20 mL, 3:1). The reaction was heated to reflux for four 

hours and at room temperature for additional 16 hours. The mixture was extracted 

with ethyl acetate (3x 20 mL). The organic phase was dried over MgSO4 and the 

solvent was evaporated. The product was purified by column chromatography 

(CH2Cl2 + 5% MeOH) and preparative HPLC (column: Phenomenex Luna 10 µm 

C18(2) 100 Å, gradient 0-12 min 10:90 -37:63, tR = 10.0 min) to yield the desired 

product in good yield as orange solid (1.4 g, 3.9 mmol, 78%). M.p.: 131 °C. 1H-NMR 

(400 MHz, DMSO-d6):  = 7.81 – 7.70 (m, 4H), 7.57 – 7.47 (m, 2H), 7.45 – 7.39 (m, 

1H), 7.17 (d, J = 7.7 Hz, 1H), 6.90 – 6.82 (m, 2H), 4.81 (t, J = 5.2 Hz, 2H), 4.60 (t, J = 

5.1 Hz, 1H), 4.54 – 4.41 (m, 2H), 3.76 (t, J = 3.8 Hz, 1H), 3.62 – 3.51 (m, 3H), 3.51 – 

3.41 (m, 2H). 13C-NMR (101 MHz, DMSO-d6):  = 152.8 (q), 151.5 (q), 144.2 (q), 130.2 

(+), 129.7 (+), 125.2 (+), 122.3 (+), 113.5 (+), 85.0 (+), 76.3 (+), 74.8 (+), 70.5 (+), 68.9 

(+), 61.0 (-). HRMS (ESI) calcd. for (C18H22N3O5+) [M+H]+: m/z = 360.1554; found 

360.1558. MF: C18H21N3O5. MW: 359.38 g/mol. 

General procedure for the synthesis of pentaacetylated-thiogalactoside 

nitrobenzene precursors 11-16. The compounds were synthesized following an 

adapted literature procedure.[45] To a solution of -D-thiogalactoside 10 (2.0 g, 

5.5 mmol, 1.0 eq) in CH3CN (20 mL) was added the respective bromo-substituted 

nitrobenzene (6.0 mmol, 1.1 eq) and triethylamine (0.80 mL, 6.0 mmol, 1.1 eq) and 

stirred at room temperature until TLC indicated consumption of the starting 

material. The solvent was evaporated, and the mixture separated between water 

and ethyl acetate. The organic phase was dried (MgSO4), the solvent evaporated, 
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and the residue purified by flash column chromatography (PE/EA 1/1) to afford 

the desired products in moderate to good yields.  

(2R,3S,4S,5R,6S)-2-(acetoxymethyl)-6-((2-nitrophenethyl)thio)tetrahydro-2H-py-

ran-3,4,5-triyl triacetate (11). White foam: 76% yield; 1H-NMR (300 MHz, 

CDCl3-d):  = 7.95 (dd, J = 8.5, 1.4 Hz, 1H), 7.60 – 7.49 (m, 1H), 7.45 – 7.32 (m, 2H), 

5.44 (dd, J = 3.4, 1.1 Hz, 1H), 5.25 (t, J = 10.0 Hz, 1H), 5.06 (dd, J = 10.0, 3.4 Hz, 1H), 

4.58 (d, J = 9.9 Hz, 1H), 4.13 (dd, 2H), 4.04 – 3.92 (m, 1H), 3.33 – 3.12 (m, 2H), 3.11 – 

2.95 (m, 1H), 2.98 – 2.77 (m, 1H), 2.15 (s, 3H), 2.05 (s, 3H), 1.99 (s, 3H), 1.97 (s, 3H). 

13C-NMR (75 MHz, CDCl3-d):  = 170.5 (q), 170.4 (q), 170.1 (q), 169.7 (q), 149.2 (q), 

135.1 (q), 133.4 (+), 132.7 (+), 127.9 (+), 125.1 (+), 84.5 (+), 74.7 (+), 72.0 (+), 67.4 (+), 

67.3 (+), 61.6 (-), 34.7 (-), 31.0 (-), 20.9 (+), 20.8 (+), 20.8 (+), 20.7 (+). HRMS (ESI) 

calcd. for (C22H27NO11SNa+) [M+Na]+: m/z = 536.1197; found 536.1197. MF: 

C22H27NO11S. MW: 513.51 g/mol. 

(2R,3S,4S,5R,6S)-2-(acetoxymethyl)-6-((4-nitrophenethyl)thio)tetrahydro-2H-py-

ran-3,4,5-triyl triacetate (12). White foam: 82% yield; 1H-NMR (400 MHz, 

CDCl3-d):  = 8.03 (d, J = 8.7 Hz, 2H), 7.29 (d, J = 8.7 Hz, 2H), 5.34 (d, J = 3.4, 1.1 Hz, 

1H), 5.15 (t, J = 10.0 Hz, 1H), 4.98 (dd, J = 10.0, 3.4 Hz, 1H), 4.45 (d, J = 9.9 Hz, 1H), 

4.06 – 3.98 (m, 2H), 3.91 (t, 1H), 3.00 – 2.90 (m, 3H), 2.90 – 2.81 (m, 1H), 2.04 (s, 3H), 

1.93 (s, 3H), 1.91 (s, 3H), 1.87 (s, 3H). 13C-NMR (101 MHz, CDCl3-d):  = 170.2 (q), 

170.0 (q), 169.9 (q), 169.5 (q), 147.8 (q), 146.6 (q), 129.5 (+), 123.6 (+), 83.8 (+), 74.5 

(+), 71.7 (+), 67.3 (+), 66.9 (+), 61.6 (-), 35.9 (-), 30.4 (-), 20.7 (+), 20.6 (+), 20.6 (+), 20.5 

(+). HRMS (ESI) calcd. for (C22H27NO11SNa+) [M+Na]+: m/z = 536.1197; found 

536.1196. MF: C22H27NO11S. MW: 513.51 g/mol. 

(2R,3S,4S,5R,6S)-2-(acetoxymethyl)-6-((2-nitrobenzyl)thio)tetrahydro-2H-pyran-

3,4,5-triyl triacetate (13). White viscous solid: 72% yield; 1H-NMR (300 MHz, 

CDCl3-d):  = 7.92 (dd, J = 8.1, 1.5 Hz, 1H), 7.57 – 7.47 (m, 1H), 7.46 – 7.35 (m, 2H), 

5.35 (dd, J = 3.3, 1.2 Hz, 1H), 5.17 (t, J = 10.0 Hz, 1H), 4.92 (dd, J = 10.0, 3.4 Hz, 1H), 

4.30 (d, J = 10.0 Hz, 1H), 4.19 (s, 2H), 4.04 – 3.98 (m, 2H), 3.79 (td, J = 6.6, 1.2 Hz, 

1H), 2.11 (s, 3H), 2.01 (s, 3H), 1.96 (s, 3H), 1.91 (s, 3H). 13C-NMR (75 MHz, CDCl3-d): 
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 = 170.4 (q), 170.2 (q), 170.0 (q), 169.6 (q), 148.7 (q), 133.5 (q), 133.0 (+), 132.2 (+), 

128.6 (+), 125.3 (+), 83.2 (+), 74.5 (+), 71.7 (+), 67.2 (+), 67.0 (+), 61.4 (-), 31.3 (-), 20.7 

(+), 20.7 (+), 20.7 (+), 20.6 (+). HRMS (ESI) calcd. for (C21H25NO11SNa+) [M+Na]+: 

m/z = 522.1041; found 522.1044. MF: C21H25NO11S. MW: 499.49 g/mol. 

(2R,3S,4S,5R,6S)-2-(acetoxymethyl)-6-((4-nitrobenzyl)thio)tetrahydro-2H-pyran-

3,4,5-triyl triacetate (14). White foam: 44% yield; 1H-NMR (300 MHz, CDCl3-d):  

= 8.19 – 8.13 (m, 2H), 7.51 – 7.45 (m, 2H), 5.41 (dd, J = 3.4, 1.2 Hz, 1H), 5.28 (t, J = 

10.0 Hz, 1H), 4.99 (dd, J = 10.0, 3.4 Hz, 1H), 4.32 (d, J = 9.9 Hz, 1H), 4.12 – 4.00 (m, 

3H), 3.95 – 3.84 (m, 2H), 2.15 (s, 3H), 2.05 (s, 3H), 2.04 (s, 3H), 1.96 (s, 3H). 13C-NMR 

(75 MHz, CDCl3-d):  = 170.3 (q), 170.1 (q), 170.0 (q), 169.7 (q), 147.2 (q), 144.9 (q), 

130.0 (+), 123.8 (+), 82.4 (+), 74.7 (+), 71.6 (+), 67.2 (+), 66.9 (+), 61.5 (-), 32.8 (-), 20.8 

(+), 20.7 (+), 20.7 (+), 20.6 (+). HRMS (ESI) calcd. for (C21H25NO11SNa+) [M+Na]+: 

m/z = 522.1041; found 522.1045. MF: C21H25NO11S. MW: 499.49 g/mol. 

(2R,3S,4S,5R,6S)-2-(acetoxymethyl)-6-((2-nitrophenyl)thio)tetrahydro-2H-pyran-

3,4,5-triyl triacetate (15). White viscous solid: 61% yield; 1H-NMR (300 MHz, 

CDCl3-d):  = 8.09 (dd, J = 8.1, 1.5 Hz, 1H), 7.82 (dd, J = 8.1, 1.3 Hz, 1H), 7.57 (ddd, 

J = 8.1, 7.3, 1.5 Hz, 1H), 7.40 (ddd, J = 8.4, 7.3, 1.3 Hz, 1H), 5.48 (dd, J = 3.4, 1.0 Hz, 

1H), 5.35 (t, J = 10.0 Hz, 1H), 5.10 (dd, J = 9.9, 3.3 Hz, 1H), 4.85 (d, J = 10.0 Hz, 1H), 

4.22 – 4.10 (m, 2H), 4.08 – 4.02 (m, 1H), 2.17 (s, 3H), 2.06 (s, 3H), 2.03 (s, 3H), 1.98 (s, 

3H). 13C-NMR (75 MHz, CDCl3-d):  = 170.3 (q), 170.1 (q), 170.0 (q), 169.3 (q), 148.4 

(q), 133.2 (+), 132.5 (q), 130.2 (+), 127.1 (+), 125.5 (+), 84.6 (+), 74.7 (+), 71.9 (+), 67.1 

(+), 66.4 (+), 61.8 (-), 20.7 (+), 20.7 (+), 20.7 (+), 20.6 (+). HRMS (ESI) calcd. for 

(C20H23NO11SNa+) [M+Na]+: m/z = 508.0884; found 508.0882. MF: C20H23NO11S. 

MW: 485.46 g/mol. 

(2R,3S,4S,5R,6S)-2-(acetoxymethyl)-6-((4-nitrophenyl)thio)tetrahydro-2H-pyran-

3,4,5-triyl triacetate (16). White foam: 68% yield; 1H-NMR (400 MHz, DMSO-d6): 

 = 8.19 (d, J = 8.9 Hz, 2H), 7.66 (d, J = 9.0 Hz, 2H), 5.56 (d, J = 10.0 Hz, 1H), 5.42 – 

5.38 (m, 1H), 5.31 (dd, J = 9.9, 3.4 Hz, 1H), 5.13 (t, J = 9.9 Hz, 1H), 4.47 – 4.40 (m, 

1H), 4.14 – 4.01 (m, 2H), 2.15 (s, 3H), 2.05 (s, 3H), 2.01 (s, 3H), 1.94 (s, 3H). 13C-NMR 



CHAPTER 3 

141 

 

(101 MHz, DMSO-d6):  =170.4 (q), 170.3 (q), 169.9 (q), 169.8 (q), 146.3 (q), 143.7 (q), 

129.2 (+), 124.4 (+), 82.6 (+), 74.3 (+), 71.3 (+), 68.0 (+), 67.0 (+), 62.2 (-), 21.0 (+), 20.9 

(+), 20.9 (+), 20.8 (+). HRMS (ESI) calcd. for (C20H23NO11SNa+) [M+Na]+: m/z = 

508.0884; found 508.0882. MF: C20H23NO11S. MW: 485.46 g/mol. 

General procedure for reduction to pentaacetylated-thiogalactoside 

aminobenzenes 17-22. For the reduction of the nitro-groups of the 

pentaacetylated-thiogalactosides, nitrobenzenes 11-16 (4.0 mmol, 1.0 eq) were 

dissolved in a mixture of EtOH (60 mL) and CH2Cl2 (20 mL). Tin(II)chloride 

dihydrate (3.6 g, 16 mmol, 4.0 eq) was added and the mixture heated to reflux at 

80 °C for four to six hours until TLC indicated complete consumption of the 

starting material and ninhydrin stain positive amine formation. The solvent was 

removed, and the residue portioned between EtOAc (200 mL) and NaHCO3. The 

organic phase was dried over MgSO4, the solvent was evaporated, and the crude 

product directly used in the next step without further purification.[46] 

General preparation for the formation of PETG-based azobenzene derivatives 

34-42. The pentaacetylated-thiogalactoside aminobenzenes 17-22 (1.0 eq) and the 

respective nitrosobenzene (1.0 eq) were dissolved in a mixture of acetic acid and 

CH2Cl2 (1:1) and stirred at room temperature for 16 hours. The solvent was 

evaporated, and the product purified by flash column chromatography (CH2Cl2). 

Deprotection of the sugar-moiety was achieved by dissolving the protected 

compound in methanol and addition of potassium carbonate (0.50 eq).[53] The 

crude products were purified by flash column chromatography (CH2Cl2 + 5% 

MeOH) and preparative HPLC (column: Phenomenex Luna 10 µm C18(2) 100 Å) to 

afford the desired products in moderate to good yields. 

(2R,3R,4S,5R,6S)-2-(hydroxymethyl)-6-((2-((E)-phenyldiazenyl)phenethyl)thio) 

tetrahydro-2H-pyran-3,4,5-triol (34). Orange solid (51%). Gradient 0-20 min 10:90 

-98:2, tR = 11.7 min. M.p.: 139 °C. 1H-NMR (400 MHz, DMSO-d6): δ = 7.94 – 7.85 (m, 

2H), 7.65 – 7.54 (m, 4H), 7.53 – 7.44 (m, 2H), 7.41 – 7.33 (m, 1H), 4.92 (d, J = 5.7 Hz, 

1H), 4.76 (d, J = 5.6 Hz, 1H), 4.54 (t, J = 5.6 Hz, 1H), 4.38 (d, J = 4.4 Hz, 1H), 4.25 (d, 
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J = 9.4 Hz, 1H), 3.67 (t, J = 3.9 Hz, 1H), 3.52 – 3.32 (m, 6H), 3.29 – 3.19 (m, 1H), 3.00 

– 2.83 (m, 2H). 13C-NMR (101 MHz, DMSO-d6): δ = 152.8 (+), 149.9 (+), 141.0 (+), 

132.1 (+), 131.9 (+), 131.6 (+), 130.0 (+), 127.8 (+), 123.1 (+), 115.5 (+), 86.3 (+), 79.6 

(+), 75.2 (+), 70.3 (+), 68.8 (+), 61.0 (-), 32.4 (-), 31.7 (-). HRMS (ESI) calcd. for 

(C20H25N2O5S+) [M+H]+: m/z = 405.1479; found 405.1482. MF: C20H24N2O5S. MW: 

404.48 g/mol. 

(2R,3R,4S,5R,6S)-2-(hydroxymethyl)-6-((4-((E)-phenyldiazenyl)phenethyl)thio) 

tetrahydro-2H-pyran-3,4,5-triol (35). Orange solid (62%). Gradient 0-11 min 28:72 

- 70:30, tR = 8.57 min. M.p.: 162 °C. 1H-NMR (400 MHz, DMSO-d6): δ = 7.90 – 7.86 

(m, 2H), 7.85 – 7.81 (m, 2H), 7.62 – 7.53 (m, 3H), 7.51 – 7.45 (m, 2H), 4.97 (d, J = 

5.7 Hz, 1H), 4.80 (d, J = 5.6 Hz, 1H), 4.60 (t, J = 5.6 Hz, 1H), 4.42 (d, J = 4.4 Hz, 1H), 

4.29 (d, J = 9.4 Hz, 1H), 3.70 (t, J = 3.9 Hz, 1H), 3.52 (t, J = 5.6 Hz, 2H), 3.43 – 3.36 

(m, 2H), 3.32 – 3.27 (m, 1H), 3.01 – 2.92 (m, 3H), 2.92 – 2.82 (m, 1H). 13C-NMR 

(101 MHz, DMSO-d6): δ = 152.4 (-), 150.9 (-), 145.4 (-), 131.8 (+), 130.1 (+), 129.9 (+), 

123.0 (+), 122.9 (+), 86.1 (+), 79.7 (+), 75.2 (+), 70.2 (+), 69.0 (+), 61.2 (-), 36.3 (-), 30.7 

(-). HRMS (ESI) calcd. for (C20H24N2O5SNa+) [M+Na]+: m/z = 427.1300; found 

427.1298. MF: C20H24N2O5S. MW: 404.48 g/mol. 

(2R,3S,4S,5R,6S)-2-(acetoxymethyl)-6-((2-((E)-(4-(tert-butyl)phenyl)diazenyl) 

phenethyl)thio)tetrahydro-2H-pyran-3,4,5-triyl triacetate (36). Orange solid 

(19%). Gradient 0-20 min 10:90 - 98:2, tR = 15.7 min. M.p.: 109 °C. 1H-NMR 

(400 MHz, DMSO-d6): δ = 7.83 (d, J = 8.6 Hz, 2H), 7.62 (d, J = 8.5 Hz, 2H), 7.59 – 

7.56 (m, 1H), 7.51 – 7.44 (m, 2H), 7.38 – 7.34 (m, 1H), 5.34 – 4.29 (m, 5H), 4.24 (d, J 

= 9.4 Hz, 1H), 3.67 (d, J = 3.1 Hz, 1H), 3.52 – 3.37 (m, 4H), 3.30 – 3.18 (m, 2H), 2.94 

– 2.85 (m, 2H), 1.33 (s, 9H). 13C-NMR (101 MHz, DMSO-d6): δ = 154.5 (q), 150.4 (q), 

149.5 (q), 140.3 (q), 131.3 (+), 131.1 (+), 127.3 (+), 126.3 (+), 122.4 (+), 115.0 (+), 85.9 

(+), 79.1 (+), 74.7 (+), 69.9 (+), 68.3 (+), 60.5 (-), 34.8 (q), 32.0 (-), 31.3 (-), 31.0 (+). 

HRMS (ESI) calcd. for (C24H32N2O5SNa+) [M+Na]+: m/z = 483.1924; found 

483.1924. MF: C24H32N2O5S. MW: 460.59 g/mol. 
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(2R,3R,4S,5R,6S)-2-(hydroxymethyl)-6-((2-((E)-phenyldiazenyl)benzyl)thio)te-

trahydro-2H-pyran-3,4,5-triol (37). Orange solid (22%). Gradient 0-20 min 10:90 - 

98:2, tR = 11.1 min. M.p.: 179 °C. 1H-NMR (400 MHz, DMSO-d6): δ = 7.96 – 7.91 (m, 

2H), 7.65 – 7.55 (m, 5H), 7.52 – 7.47 (m, 1H), 7.43 – 7.39 (m, 1H), 4.90 (d, J = 5.9 Hz, 

1H), 4.76 (d, J = 5.6 Hz, 1H), 4.66 (t, J = 5.6 Hz, 1H), 4.44 – 4.38 (m, 2H), 4.33 (d, J = 

12.6 Hz, 1H), 4.15 (d, J = 9.5 Hz, 1H), 3.68 (t, J = 4.0 Hz, 1H), 3.54 (t, J = 5.8 Hz, 2H), 

3.41 – 3.33 (m, 2H), 3.23 – 3.18 (m, 1H). 13C-NMR (101 MHz, DMSO-d6): δ = 152.8 

(q), 149.5 (q), 139.5 (q), 131.9 (+), 131.8 (+), 131.6 (+), 129.9 (+), 128.3 (+), 123.3 (+), 

115.7 (+), 84.7 (+), 79.7 (+), 75.2 (+), 70.4 (+), 68.9 (+), 61.1 (-), 28.6 (-). HRMS (ESI) 

calcd. for (C19H22N2O5SNa+) [M+Na]+: m/z = 413.1142; found 413.1143. MF: 

C19H22N2O5S. MW: 390.45 g/mol. 

(2R,3R,4S,5R,6S)-2-(hydroxymethyl)-6-((4-((E)-phenyldiazenyl)benzyl)thio)te-

trahydro-2H-pyran-3,4,5-triol (38). Orange solid (52%). Gradient 0-20 min 10:90 - 

98:2, tR = 10.6 min. M.p.: 128 °C. 1H-NMR (400 MHz, DMSO-d6): δ = 7.93 – 7.80 (m, 

4H), 7.63 – 7.53 (m, 5H), 4.98 (d, J = 5.9 Hz, 1H), 4.79 (d, J = 5.5 Hz, 1H), 4.69 (t, J = 

5.7 Hz, 1H), 4.44 (d, J = 4.4 Hz, 1H), 4.09 – 3.98 (m, 2H), 3.87 (d, J = 13.0 Hz, 1H), 

3.68 (t, J = 3.8 Hz, 1H), 3.62 – 3.50 (m, 2H), 3.44 – 3.38 (m, 1H), 3.34 – 3.31 (m, 1H), 

3.26 – 3.20 (m, 1H). 13C-NMR (101 MHz, DMSO-d6): δ = 152.4 (q), 151.1 (q), 143.2 

(q), 131.9 (+), 130.6 (+), 130.9 (+), 123.1 (+), 123.0 (+), 84.0 (+), 79.9 (+), 75.2 (+), 70.5 

(+), 69.0 (+), 61.3 (-), 32.5 (-). HRMS (ESI) calcd. for (C19H22N2O5SNa+) [M+Na]+: 

m/z = 413.1142; found 413.1143. MF: C19H22N2O5S. MW: 390.45 g/mol. 

(2S,3R,4S,5R,6R)-2-((2-((E)-(4-(tert-butyl)phenyl)diazenyl)benzyl)thio)-6-(hy-

droxymethyl)tetrahydro-2H-pyran-3,4,5-triol (39). Light brown solid (16%). 

Gradient 0-20 min 10:90 - 98:2, tR = 14.8 min. M.p.: 143 °C. 1H-NMR (400 MHz, 

DMSO-d6): δ = 7.90 – 7.82 (m, 2H), 7.64 – 7.58 (m, 3H), 7.54 (dd, J = 7.7, 1.5 Hz, 1H), 

7.46 (td, J = 7.4, 1.4 Hz, 1H), 7.39 (td, J = 7.6, 1.5 Hz, 1H), 4.88 (d, J = 5.9 Hz, 1H), 

4.75 (d, J = 5.6 Hz, 1H), 4.66 (t, J = 5.6 Hz, 1H), 4.43 – 4.35 (m, 2H), 4.30 (d, J = 

12.6 Hz, 1H), 4.14 (d, J = 9.5 Hz, 1H), 3.67 (t, J = 3.9 Hz, 1H), 3.53 (t, J = 5.7 Hz, 2H), 

3.40 – 3.34 (m, 2H), 3.22 – 3.16 (m, 1H), 1.33 (s, 9H). 13C- NMR (101 MHz, DMSO-d6): 

δ = 154.5 (q), 150.4 (q), 149.1 (q), 138.8 (q), 131.1 (+), 131.1 (+), 127.8 (+), 126.3 (+), 
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122.6 (+), 115.2 (+), 84.3 (+), 79.3 (+), 74.7 (+), 70.0 (+), 68.4 (+), 60.6 (-), 34.8 (q), 31.0 

(+), 28.2 (-). HRMS (ESI) calcd. for (C23H30N2O5SNa+) [M+Na]+: m/z = 469.1768; 

found 469.1769. MF: C23H30N2O5S. MW: 446.56 g/mol.  

(2R,3R,4S,5R,6S)-2-(hydroxymethyl)-6-((2-((E)-phenyldiazenyl)phenyl)thio)te-

trahydro-2H-pyran-3,4,5-triol (40). Orange solid (16%). Gradient 0-10 min 32:68 - 

78:22, tR = 5.8 min. M.p.: 166 °C.  1H-NMR (400 MHz, DMSO-d6): δ = 7.90 – 7.86 (m, 

2H), 7.72 (dd, J = 8.2, 1.2 Hz, 1H), 7.64 – 7.56 (m, 4H), 7.47 (ddd, J = 8.3, 7.3, 1.5 Hz, 

1H), 7.27 (ddd, J = 8.2, 7.2, 1.2 Hz, 1H), 5.26 (d, J = 6.0 Hz, 1H), 4.96 (s, 1H), 4.86 (d, 

J = 9.7 Hz, 1H), 4.67 (t, J = 5.4 Hz, 1H), 4.55 (d, J = 4.5 Hz, 1H), 3.77 (t, J = 3.7 Hz, 

1H), 3.64 – 3.48 (m, 4H), 3.46 – 3.41 (m, 1H). 13C-NMR (101 MHz, DMSO-d6): δ = 

152.6 (q), 148.6 (q), 139.7 (q), 132.5 (+), 132.1 (+), 130.0 (+), 127.8 (+), 125.7 (+), 123.2 

(+), 116.6 (+), 85.3 (+), 79.6 (+), 75.3 (+), 69.7 (+), 68.9 (+), 61.0 (-). HRMS (ESI) calcd. 

for (C18H20N2O5SNa+) [M+Na]+: m/z = 399.0985; found 399.0986. MF: 

C18H20N2O5S. MW: 376.43 g/mol. 

(2R,3R,4S,5R,6S)-2-(hydroxymethyl)-6-((4-((E)-phenyldiazenyl)phenyl)thio)te-

trahydro-2H-pyran-3,4,5-triol (41). Orange solid (54%). Gradient 0-10 min 23:77 – 

67:33, tR = 8.2 min. M.p.: 188 °C. 1H-NMR (400 MHz, DMSO-d6): δ = 7.90 – 7.85 (m, 

2H), 7.85 – 7.81 (m, 2H), 7.65 – 7.54 (m, 5H), 5.26 (d, J = 6.1 Hz, 1H), 4.94 (d, J = 

5.7 Hz, 1H), 4.78 (d, J = 9.6 Hz, 1H), 4.68 (t, J = 5.4 Hz, 1H), 4.55 (d, J = 4.4 Hz, 1H), 

3.75 (t, J = 3.9 Hz, 1H), 3.60 – 3.49 (m, 4H), 3.44 – 3.38 (m, 1H). 13C-NMR (101 MHz, 

DMSO-d6): δ = 152.4 (q), 150.2 (q), 141.3 (q), 131.9 (+), 129.9 (+), 129.1 (+), 123.4 (+), 

123.0 (+), 87.1 (+), 79.8 (+), 75.1 (+), 69.6 (+), 68.9 (+), 61.0 (-). HRMS (ESI) calcd. for 

(C18H21N2O5S+) [M+H]+: m/z = 377.1166; found 377.1164. MF: C18H20N2O5S. MW: 

376.43 g/mol. 

(2S,3R,4S,5R,6R)-2-((4-((E)-(4-(tert-butyl)phenyl)diazenyl)phenyl)thio)-6-(hy-

droxymethyl)tetrahydro-2H-pyran-3,4,5-triol (42). Orange solid (39%). Gradient 

0-20 min 10:90 -98:2, tR = 9.7 min. M.p.: 146 °C. 1H-NMR (400 MHz, DMSO-d6): δ = 

7.85 – 7.77 (m, 4H), 7.64 – 7.58 (m, 4H), 5.26 (d, J = 6.0 Hz, 1H), 4.94 (d, J = 5.3 Hz, 

1H), 4.77 (d, J = 9.6 Hz, 1H), 4.68 (t, J = 5.5 Hz, 1H), 4.55 (d, J = 4.4 Hz, 1H), 3.75 (t, 
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J = 3.8 Hz, 1H), 3.58 – 3.48 (m, 4H), 3.44 – 3.39 (m, 1H), 1.33 (s, 9H). 13C-NMR 

(101 MHz, DMSO-d6): δ = 154.9 (q), 150.4 (q), 150.3 (q), 140.8 (q), 129.2 (+), 126.7 

(+), 123.3 (+), 122.8 (+), 87.2 (+), 79.8 (+), 75.1 (+), 69.7 (+), 68.8 (+), 61.0 (-), 35.3 (+), 

31.4 (+). HRMS (ESI) calcd. for (C22H28N2O5SNa+) [M+Na]+: m/z = 455.1611; found 

455.1610. MF: C22H28N2O5S. MW: 432.54 g/mol. 

(E)-2,2'-(diazene-1,2-diylbis(4,1-phenylene))bis(ethan-1-ol) (45). The symmetric 

phenethyl-alcohol azobenzene 45 was synthesized in a twostep procedure starting 

from 2-(4-aminophenyl)ethan-1-ol (43). In order to perform a Mills reaction the 

amino-group of 43 was transformed into its nitroso derivative following an 

adapted literature procedure.[49] The PhSeSePh catalyst (57 mg, 5.0 mol-%), the 

aniline 43 (0.50 g, 3.6 mmol, 1.0 eq), and 30% aqueous H2O2 (0.24 mL, 7.9 mmol, 

2.2 eq) were mixed CHCl3/MeCN (1:1, 5.0 mL) and stirred at room temperature 

for one hour. The solvent was evaporated and the generated nitroso 44 was used 

without further purification. For the following Mills reaction, the nitroso-

derivative 44 was dissolved in acetic acid (15 mL) and the aniline 43 (0.50 g, 

3.6 mmol, 1.0 eq) was added and the mixture stirred at room temperature for 

16 hours. Purification by flash column chromatography (CH2Cl2) afforded the 

desired product 45 as orange solid in moderate yield (0.39 g, 1.4 mmol, 40%). 

1H-NMR (400 MHz, DMSO-d6): δ = 7.80 (d, J = 8.3 Hz, 4H), 7.43 (d, J = 8.4 Hz, 4H), 

4.70 (t, J = 5.2 Hz, 2H), 3.71 – 3.60 (m, 4H), 2.82 (t, J = 6.9 Hz, 4H). 13C-NMR 

(101 MHz, DMSO-d6): δ = 150.4 (q), 143.6 (q), 129.9 (+), 122.3 (+), 61.8 (-), 38.8 (-). 

HRMS (ESI) calcd. for (C16H18N2O2Na+) [M+Na]+: m/z = 293.1260; found 293.1261. 

MF: C16H18N2O2. MW: 270.33 g/mol. 

(E)-1,2-bis(4-(2-bromoethyl)phenyl)diazene (46). Compound 46 was synthesized 

according to a literature adapted procedure.[50] A solution of triphenyl phosphine 

(1.1 g, 4.2 mmol, 3.0 eq) was dissolved in anhydrous CH2Cl2 (10 mL) and added to 

a suspension of the symmetric phenethyl alcohol azobenzene 45 (0.39 g, 1.4 mmol, 

1.0 eq) and tetra bromomethane (1.1 g, 3.4 mmol, 2.4 eq) in anhydrous CH2Cl2 

(20 mL) under an inert gas atmosphere. The reaction mixture was stirred at room 

temperature for two hours until TLC indicated full conversion of the starting 
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material. The solution was diluted with CH2Cl2, filtered, and concentrated under 

reduced pressure. Purification by flash column chromatography (CH2Cl2) and 

evaporation of the solvent afforded the desired product 46 as red solid in high 

yield (0.46 g, 1.1 mmol, 82%). 1H-NMR (300 MHz, DMSO-d6): δ = 7.84 (d, J = 8.3 Hz, 

4H), 7.50 (d, J = 8.4 Hz, 4H), 3.80 (t, J = 7.1 Hz, 4H), 3.24 (t, J = 7.1 Hz, 4H). 13C-NMR 

(75 MHz, DMSO-d6): δ = 150.8 (q), 142.7 (q), 129.9 (+), 122.5 (+), 38.0 (-), 34.2 (-). 

HRMS (ESI) calcd. for (C16H16N2Br2Na+) [M+Na]+: m/z = 418.9553; found 418.9554. 

MF: C16H16N2Br2. MW: 396.13 g/mol. 

(2R,2'R,3R,3'R,4S,4'S,5R,5'R,6S,6'S)-6,6'-(((((E)-diazene-1,2-diyl)bis(4,1-phenyl-

ene))bis(ethane-2,1-diyl))bis(sulfanediyl))bis(2-(hydroxymethyl)tetrahydro-2H-

pyran-3,4,5-triol) (49). The compound was synthesized in a two-step procedure 

starting from 46 following a literature adapted procedure. Under a nitrogen 

atmosphere thiourea (0.36 g, 4.4 mmol, 4.0 eq) was added to a solution of 

symmetric bromoethylazobenzene 46 (0.46 g, 1.1 mmol, 1.0 eq) in ethanol (20 mL) 

and heated to reflux for 16 hours. 10% aqueous NaOH (20 mL) was added and the 

solution heated to reflux for additional two hours.[50] The solvent was removed 

under reduced pressure and the residue extracted with CH2Cl2 and water. The 

organic phase was dried (MgSO4), filtered, and concentrated under reduced 

pressure. The orange product (0.24 g, 0.78 mmol, 71%) was directly used in the 

next step without further purification to avoid disulfide formation or degradation. 

(E)-2-2’-(diazene-1,2-diylbis(4,1-phenylene))bis(ethane-1-thiol) (47) (0.24 g, 

0.78 mmol, 1.0 eq) was added to a solution of 1,2,3,4,6-penta-O-acetyl-D-galactose 

(7) (0.61 g, 1.6 mmol, 2.0 eq) in CH2Cl2 (7.0 mL). The reaction mixture was stirred 

for 15 minutes at room temperature, cooled to 0 °C and boron trifluoride diethyl 

etherate (2.0 mL, 5.5 mmol, 7.0 eq) was added dropwise. The mixture was stirred 

for 15 minutes, warmed to room temperature, and stirred for additional 24 hours. 

The reaction mixture was diluted with CH2Cl2 and poured into ice water under 

stirring. The organic phase was separated, washed with saturated NaHCO3, water, 

dried (Na2SO4), filtered, and concentrated.[53] Purification by flash column 

chromatography (CH2Cl2 + 10% MeOH) and evaporation of the solvent afforded 
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the pentaacetylated galactopyranose azobenzene derivative 48 (0.36 g, 0.37 mmol, 

47%) as orange solid. Deacetylation was achieved by dissolving the compound in 

MeOH (10 mL) and addition of potassium carbonate (51 mg, 0.37 mmol, 1.0 eq). 

The reaction mixture was stirred at room temperature for 30 minutes, filtered, and 

concentrated under reduced pressure. Purification by preparative HPLC (gradient 

0-9 min 10:90 – 60:40, tR = 8.06 min) afforded the desired product as orange solid 

in quantitative yield (0.23 g, 0.37 mmol). M.p.: 202 °C. 1H-NMR (400 MHz, 

DMSO-d6): δ = 7.81 (d, J = 8.3 Hz, 4H), 7.47 (d, J = 8.4 Hz, 4H), 4.96 (d, J = 5.7 Hz, 

2H), 4.79 (d, J = 5.4 Hz, 2H), 4.60 (t, J = 5.6 Hz, 2H), 4.41 (d, J = 4.4 Hz, 2H), 4.28 (d, 

J = 9.4 Hz, 2H), 3.69 (t, J = 3.9 Hz, 2H), 3.51 (t, J = 5.4 Hz, 4H), 3.42 – 3.35 (m, 4H), 

3.32 – 3.27 (m, 2H), 3.02 – 2.92 (m, 6H), 2.91 – 2.81 (m, 2H). 13C-NMR (101 MHz, 

DMSO-d6): δ = 151.0 (q), 145.1 (q), 130.1 (+), 122.9 (+), 86.1 (+), 79.7 (+), 75.2 (+), 70.2 

(+), 68.9 (+), 61.1 (-), 36.3 (-), 30.7 (-). HRMS (ESI) calcd. for (C28H39N2O10S2+) 

[M+H]+: m/z = 627.2041; found 627.2040. MF: C28H38N2O10S2. MW: 626.74 g/mol. 

3.4.3 Enzymatic Inhibition Studies 

A 2 µM -galactosidase stock solution was diluted to 720 pM in sterile filtered 

assay buffer (137 mM NaCl, 10 mM Na2HPO4, 2 mM KH2PO4, 2.7 mM KCl, pH 7.5) 

containing 0.05 mg mL-1 bovine serum albumin, 0.005% Tween 20 and 1 mM 

MgCl2. Prior to each measurement, 10 µl of -galactosidase was added to 190 µl of 

substrate or substrate/inhibitor mix resulting in a final enzyme concentration of 

36 pM. Inhibitors were dissolved in DMSO to a concentration of 20 mM, diluted in 

assay buffer and mixed either directly 1:1 with the substrate (trans isomer in its 

thermal equilibrium) or irradiated at 365 nm for 1 minute in a fused silica 

microplate and then mixed with the substrate (cis isomer at its photostationary 

state). Fluorescence measurements (λEx: 565 nm; λEm: 590 nm) were performed in a 

Synergy neo 2 multi-mode microplate reader (BioTek) at 25 °C. The formation of 

the fluorescent product resorufin was observed in intervals of 30 seconds over a 

period of 5 minutes. The inhibitory activity of all compounds was pre-tested at a 

concentration of typically 100 µM (Table S4). Three of these compounds showed a 

high inhibitory activity and were investigated in detail. The initial increase of the 
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fluorescence was normalized to the uninhibited reaction and the inhibitor 

concentrations [I] were varied at three different substrate concentrations ([S] = 50, 

100 and 150 µM). Ki values were determined by non-linear regression using the 

Michaelis Menten model for competitive inhibition (Eq. 1). The velocity at 

substrate saturation (Vmax) was set to 1000 s-1 [31] and the Michaelis constant KM was 

determined as a curve fit parameter. 

𝑣 =
𝑉𝑚𝑎𝑥∙[𝑆]

𝐾𝑀∙(1+
[𝐼]

𝐾𝑖
)+[𝑆]

                                                                                                                Eq. 1 

3.4.4 Molecular Docking 

The ligands were docked to an ensemble of -galactosidases using VINA[51] as 

implemented in YASARA[52]. The ensemble consisted of the following 3D 

structures indicated by their PDB IDs: 1dp0, 1f4a, 1f4h, 1hn1, 1jyn, 1jyv, 1jyw, 1jyx, 

1jz2, 1jz3, 1jz4, 1jz5, 1jz6, 1jz7, 1jz8, 1px3, 1px4, 3czj, 3dym, 3dyo, 3dyp, 3e1f, 3i3b, 

3i3d, 3i3e, 3iap, 3iaq, 3j7h, 3muy, 3muz, 3mv0, 3mv1, 3sep, 3t08, 3t09, 3t0a, 3t0b, 

3t0d, 3t2o, 3t2p, 3t2q, 3vd3, 3vd4, 3vd5, 3vd7, 3vd9, 3vda, 3vdb, 3vdc, 4ckd, 4duv, 

4duw, 4dux, 4ttg, 5a1a. Residues with a distance of ≤ 10 Å to the ligand-binding 

site were made flexible; all other ones were kept rigid. For a comprehensive 

sampling of the search space, every ligand was docked 32 times to each receptor, 

resulting in 1760 dockings per ligand. The results were ranked according to their 

estimated dissociation constant. 
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3.5 Supporting Information 

3.5.1 1H- and 13C-NMR Spectra 

Compound 4 (DMSO-d6) 
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Compound 6 (DMSO-d6) 
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Compound 11 (CDCl3-d) 

 

 

* solvent residual signal: ethyl acetate 

* * 
* 

* 
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Compound 12 (CDCl3-d) 

 

 

* solvent residual signal: ethyl acetate 

* 

* * 
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Compound 13 (CDCl3-d) 

 

 

* solvent residual signal: ethyl acetate 

* 
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Compound 14 (CDCl3-d) 

 

 

* solvent residual signal: ethyl acetate 

* 

* 

* * 

* 
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Compound 15 (CDCl3-d) 

 

 

* solvent residual signal: ethyl acetate 

* 
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Compound 16 (DMSO-d6) 

 

 

* solvent residual signal: ethyl acetate 

* 
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Compound 34 (DMSO-d6) 
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Compound 35 (DMSO-d6) 
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Compound 36 (DMSO-d6) 
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Compound 37 (DMSO-d6) 
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Compound 38 (DMSO-d6) 
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Compound 39 (DMSO-d6) 
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Compound 40 (DMSO-d6) 
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Compound 41 (DMSO-d6) 
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Compound 42 (DMSO-d6) 
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Compound 45 (DMSO-d6) 
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Compound 46 (DMSO-d6) 
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Compound 49 (DMSO-d6)  
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3.5.2 UV-Vis Absorption Spectra, Cycle Performances, and Thermal Half-Lives 

 

Figure S1. Changes in absorption spectra of 4 upon continuous irradiation until the PSS is 

reached. (A) 50 µM in DMSO.  (cis-PSS) = 365 nm,  (trans-PSS) = 455 nm. (B) 50 µM in phosphate 

buffer + 0.1% DMSO.  (cis-PSS) = 365 nm,  (trans-PSS) = 455 nm. Cycle performance of 4. (C) 

50 µM in DMSO. Changes in absorption at 329 nm (max of the trans isomer) were measured during 

alternate irradiation with light of  = 365 nm and  = 455 nm until the PSS is reached. (D) 50 µM in 

phosphate buffer + 0.1% DMSO. Changes in absorption at 323 nm (max of the trans isomer) were 

measured during alternate irradiation with light of  = 365 nm and  = 455 nm until the PSS is 
reached. Thermal stability of the cis isomer of 4 measured at 25 °C. Black dots represent the 
absorption at the indicated wavelength dependent on the time of relaxation [h]. Red curve 
represents an exponential nonlinear curve fit. (E) 50 µM in DMSO. Changes in absorption maxima 

measured at 330 nm (max of the trans isomer) after irradiation with  = 365 nm until the PSS is 
reached. t0.5 = 121 h. (F) 50 µM solution in phosphate buffer + 0.1% DMSO. Changes in absorption 

maxima measured at 323 nm (max of the trans isomer) after irradiation with  = 365 nm until the 
PSS is reached. t0.5 = 536 h.  
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Figure S2. Changes in absorption spectra of 6 upon continuous irradiation until the PSS is 

reached. (A) 50 µM in DMSO.  (cis-PSS) = 400 nm,  (trans-PSS) = 505 nm. (B) 50 µM in phosphate 

buffer + 0.1% DMSO.  (cis-PSS) = 455 nm. Cycle performance of 6. (C) 50 µM in DMSO. Changes 

in absorption at 401 nm (max of the trans isomer) were measured during alternate irradiation with 

light of  = 400 nm and  = 505 nm until the PSS is reached. (D) 25 µM in phosphate buffer + 0.1% 

DMSO. Changes in absorption at 379 nm (max of the trans isomer) were measured during 

irradiation with light of  = 455 nm and thermal back relaxation until the PSS is reached. Thermal 

stability of the cis isomer of 6 measured at 25 °C. Black dots represent the absorption at the 
indicated wavelength dependent on the time of relaxation [h]. Red curve represents an exponential 

nonlinear curve fit. (E) 50 µM in DMSO. Changes in absorption maxima measured at 401 nm (max 

of the trans isomer) after irradiation with  = 400 nm until the PSS is reached. t0.5 = 3.5 h. (F) 50 µM 
solution in phosphate buffer + 0.1% DMSO. Changes in absorption maxima measured at 379 nm 

(max of the trans isomer) after irradiation with  = 455 nm until the PSS is reached. t0.5 = 1.69 s. 
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Figure S3. Changes in absorption spectra of 34 upon continuous irradiation until the PSS is 

reached. (A) 50 µM in DMSO.  (cis-PSS) = 365 nm,  (trans-PSS) = 455 nm. (B) 50 µM in phosphate 

buffer + 0.1% DMSO.  (cis-PSS) = 365 nm,  (trans-PSS) = 455 nm. Cycle performance of 34. (C) 

50 µM in DMSO. Changes in absorption at 329 nm (max of the trans isomer) were measured during 

alternate irradiation with light of  = 365 nm and  = 455 nm until the PSS is reached. (D) 50 µM in 

phosphate buffer + 0.1% DMSO. Changes in absorption at 325 nm (max of the trans isomer) were 

measured during alternate irradiation with light of  = 365 nm and  = 455 nm until the PSS is 
reached. Thermal stability of the cis isomer of 34 measured at 25 °C. Black dots represent the 
absorption at the indicated wavelength dependent on the time of relaxation [h]. Red curve 
represents an exponential nonlinear curve fit. (E) 50 µM in DMSO. Changes in absorption maxima 

measured at 325 nm after irradiation with  = 365 nm until the PSS is reached. t0.5 = 84.4 h. (F) 50 µM 
solution in phosphate buffer + 0.1% DMSO. Changes in absorption maxima measured at 325 nm 

(max of the trans isomer) after irradiation with  = 365 nm until the PSS is reached. t0.5 = 98.2 h. 
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Figure S4. Changes in absorption spectra of 35 upon continuous irradiation until the PSS is 

reached. (A) 50 µM in DMSO.  (cis-PSS) = 365 nm,  (trans-PSS) = 455 nm. (B) 50 µM in phosphate 

buffer + 0.1% DMSO.  (cis-PSS) = 365 nm,  (trans-PSS) = 455 nm. Cycle performance of 35. (C) 

50 µM in DMSO. Changes in absorption at 331 nm (max of the trans isomer) were measured during 

alternate irradiation with light of  = 365 nm and  = 455 nm until the PSS is reached. (D) 50 µM in 

phosphate buffer + 0.1% DMSO. Changes in absorption at 329 nm (max of the trans isomer) were 

measured during alternate irradiation with light of  = 365 nm and  = 455 nm until the PSS is 
reached. Thermal stability of the cis isomer of 35 measured at 25 °C. Black dots represent the 
absorption at the indicated wavelength dependent on the time of relaxation [h]. Red curve 
represents an exponential nonlinear curve fit. (E) 50 µM in DMSO. Changes in absorption maxima 

measured at 330 nm after irradiation with  = 365 nm until the PSS is reached. t0.5 = 80.2 h. (F) 50 µM 
solution in phosphate buffer + 0.1% DMSO. Changes in absorption maxima measured at 325 nm 

after irradiation with  = 365 nm until the PSS is reached. t0.5 = 252 h. 
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Figure S5. Changes in absorption spectra of 36 upon continuous irradiation until the PSS is 

reached. (A) 50 µM in DMSO.  (cis-PSS) = 365 nm,  (trans-PSS) = 455 nm. (B) 50 µM in phosphate 

buffer + 1% DMSO.  (cis-PSS) = 365 nm,  (trans-PSS) = 455 nm. Cycle performance of 36. (C) 

50 µM in DMSO. Changes in absorption at 337 nm (max of the trans isomer) were measured during 

alternate irradiation with light of  = 365 nm and  = 455 nm until the PSS is reached. (D) 50 µM in 

phosphate buffer + 1% DMSO. Changes in absorption at 334 nm (max of the trans isomer) were 

measured during alternate irradiation with light of  = 365 nm and  = 455 nm until the PSS is 
reached. Thermal stability of the cis isomer of 36 measured at 25 °C. Black dots represent the 
absorption at the indicated wavelength dependent on the time of relaxation [h]. Red curve 
represents an exponential nonlinear curve fit. (E) 50 µM in DMSO. Changes in absorption maxima 

measured at 337 nm (max of the trans isomer) after irradiation with  = 365 nm until the PSS is 
reached. t0.5 = 65.2 h. (F) 50 µM solution in phosphate buffer + 1% DMSO. Changes in absorption 

maxima measured at 334 nm after irradiation with  = 365 nm until the PSS is reached. t0.5 = 131 h. 
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Figure S6. Changes in absorption spectra of 37 upon continuous irradiation until the PSS is 

reached. (A) 50 µM in DMSO.  (cis-PSS) = 365 nm,  (trans-PSS) = 455 nm. (B) 50 µM in phosphate 

buffer + 0.1% DMSO.  (cis-PSS) = 365 nm,  (trans-PSS) = 455 nm. Cycle performance of 37. (C) 

50 µM in DMSO. Changes in absorption at 327 nm (max of the trans isomer) were measured during 

alternate irradiation with light of  = 365 nm and  = 455 nm until the PSS is reached. (D) 50 µM in 

phosphate buffer + 0.1% DMSO. Changes in absorption at 325 nm (max of the trans isomer) were 

measured during alternate irradiation with light of  = 365 nm and  = 455 nm until the PSS is 
reached. Thermal stability of the cis isomer of 37 measured at 25 °C. Black dots represent the 
absorption at the indicated wavelength dependent on the time of relaxation [h]. Red curve 
represents an exponential nonlinear curve fit. (E) 50 µM in DMSO. Changes in absorption maxima 

measured at 340 nm after irradiation with  = 365 nm until the PSS is reached. t0.5 = 122 h. (F) 50 µM 
solution in phosphate buffer + 0.1% DMSO. Changes in absorption maxima measured at 325 nm 

(max of the trans isomer) after irradiation with  = 365 nm until the PSS is reached. t0.5 = 17.4 h. 
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Figure S7. Changes in absorption spectra of 38 upon continuous irradiation until the PSS is 

reached. (A) 50 µM in DMSO.  (cis-PSS) = 365 nm,  (trans-PSS) = 455 nm. (B) 50 µM in phosphate 

buffer + 0.1% DMSO.  (cis-PSS) = 365 nm,  (trans-PSS) = 455 nm. Cycle performance of 38. (C) 

50 µM in DMSO. Changes in absorption at 328 nm (max of the trans isomer) were measured during 

alternate irradiation with light of  = 365 nm and  = 455 nm until the PSS is reached. (D) 50 µM in 

phosphate buffer + 0.1% DMSO. Changes in absorption at 323 nm (max of the trans isomer) were 

measured during alternate irradiation with light of  = 365 nm and  = 455 nm until the PSS is 
reached. Thermal stability of the cis isomer of 38 measured at 25 °C. Black dots represent the 
absorption at the indicated wavelength dependent on the time of relaxation [h]. Red curve 
represents an exponential nonlinear curve fit. (E) 50 µM in DMSO. Changes in absorption maxima 

measured at 330 nm after irradiation with  = 365 nm until the PSS is reached. t0.5 = 106 h. (F) 50 µM 
solution in phosphate buffer + 0.1% DMSO. Changes in absorption maxima measured at 325 nm 

after irradiation with  = 365 nm until the PSS is reached. t0.5 = 203 h. 
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Figure S8. Changes in absorption spectra of 39 upon continuous irradiation until the PSS is 

reached. (A) 50 µM in DMSO.  (cis-PSS) = 336 nm,  (trans-PSS) = 446 nm. (B) 50 µM in phosphate 

buffer + 1% DMSO.  (cis-PSS) = 335 nm,  (trans-PSS) = 434 nm. Cycle performance of 39. (C) 

50 µM in DMSO. Changes in absorption at 336 nm (max of the trans isomer) were measured during 

alternate irradiation with light of  = 365 nm and  = 455 nm until the PSS is reached. (D) 50 µM in 

phosphate buffer + 1% DMSO. Changes in absorption at 335 nm (max of the trans isomer) were 

measured during alternate irradiation with light of  = 365 nm and  = 455 nm until the PSS is 
reached. Thermal stability of the cis isomer of 39 measured at 25 °C. Black dots represent the 
absorption at the indicated wavelength dependent on the time of relaxation [h]. Red curve 
represents an exponential nonlinear curve fit. (E) 25 µM in DMSO. Changes in absorption maxima 

measured at 336 nm (max of the trans isomer) after irradiation with  = 365 nm until the PSS is 
reached. t0.5 = 27.2 h. (F) 50 µM solution in phosphate buffer + 1% DMSO. Changes in absorption 

maxima measured at 350 nm after irradiation with  = 365 nm until the PSS is reached. t0.5 = 25.3 h. 
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Figure S9. Changes in absorption spectra of 40 upon continuous irradiation until the PSS is 

reached. (A) 50 µM in DMSO.  (cis-PSS) = 385 nm,  (trans-PSS) = 470 nm. (B) 50 µM in phosphate 

buffer + 0.1% DMSO.  (cis-PSS) = 365 nm,  (trans-PSS) = 455 nm. Cycle performance of 40. (C) 

50 µM in DMSO. Changes in absorption at 322 nm (max of the trans isomer) were measured during 

alternate irradiation with light of  = 385 nm and  = 470 nm until the PSS is reached. (D) 50 µM in 

phosphate buffer + 0.1% DMSO. Changes in absorption at 322 nm (max of the trans isomer) were 

measured during alternate irradiation with light of  = 365 nm and  = 455 nm until the PSS is 
reached. Thermal stability of the cis isomer of 40 measured at 25 °C. Black dots represent the 
absorption at the indicated wavelength dependent on the time of relaxation [h]. Red curve 
represents an exponential nonlinear curve fit. (E) 50 µM in DMSO. Changes in absorption maxima 

measured at 320 nm after irradiation with  = 385 nm until the PSS is reached. t0.5 = 56.2 h. (F) 50 µM 
solution in phosphate buffer + 0.1% DMSO. Changes in absorption maxima measured at 320 nm 

after irradiation with  = 365 nm until the PSS is reached. t0.5 = 262 h.  
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Figure S10. Changes in absorption spectra of 41 upon continuous irradiation until the PSS is 

reached. (A) 50 µM in DMSO.  (cis-PSS) = 385 nm,  (trans-PSS) = 455 nm. (B) 50 µM in phosphate 

buffer + 0.1% DMSO.  (cis-PSS) = 365 nm,  (trans-PSS) = 455 nm. Cycle performance of 41. (C) 

50 µM in DMSO. Changes in absorption at 363 nm (max of the trans isomer) were measured during 

alternate irradiation with light of  = 365 nm and  = 455 nm until the PSS is reached. (D) 50 µM in 

phosphate buffer + 0.1% DMSO. Changes in absorption at 348 nm (max of the trans isomer) were 

measured during alternate irradiation with light of  = 365 nm and  = 455 nm until the PSS is 
reached. Thermal stability of the cis isomer of 41 measured at 25 °C. Black dots represent the 
absorption at the indicated wavelength dependent on the time of relaxation [h]. Red curve 
represents an exponential nonlinear curve fit. (E) 50 µM in DMSO. Changes in absorption maxima 

measured at 365 nm after irradiation with  = 385 nm until the PSS is reached. t0.5 = 28.5 h. (F) 50 µM 
solution in phosphate buffer + 0.1% DMSO. Changes in absorption maxima measured at 350 nm 

after irradiation with  = 365 nm until the PSS is reached. t0.5 = 94.3 h. 
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Figure S11. Changes in absorption spectra of 42 upon continuous irradiation until the PSS is 

reached. (A) 50 µM in DMSO.  (cis-PSS) = 365 nm,  (trans-PSS) = 455 nm. (B) 50 µM in phosphate 

buffer + 0.1% DMSO.  (cis-PSS) = 365 nm,  (trans-PSS) = 455 nm. Cycle performance of 42. (C) 

50 µM in DMSO. Changes in absorption at 367 nm (max of the trans isomer) were measured during 

alternate irradiation with light of  = 365 nm and  = 455 nm until the PSS is reached. (D) 50 µM in 

phosphate buffer + 1% DMSO. Changes in absorption at 352 nm (max of the trans isomer) were 

measured during alternate irradiation with light of  = 365 nm and  = 455 nm until the PSS is 
reached. Thermal stability of the cis isomer of 42 measured at 25 °C. Black dots represent the 
absorption at the indicated wavelength dependent on the time of relaxation [h]. Red curve 
represents an exponential nonlinear curve fit. (E) 50 µM in DMSO. Changes in absorption maxima 

measured at 367 nm (max of the trans isomer) after irradiation with  = 365 nm until the PSS is 
reached. t0.5 = 13.6 h. (F) 50 µM solution in phosphate buffer + 1% DMSO. Changes in absorption 

maxima measured at 350 nm after irradiation with  = 365 nm until the PSS is reached. t0.5 = 37.0 h. 
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Figure S12. Changes in absorption spectra of 49 upon continuous irradiation until the PSS is 

reached. (A) 50 µM in DMSO.  (cis-PSS) = 365 nm,  (trans-PSS) = 455 nm. (B) 50 µM in phosphate 

buffer + 0.1% DMSO.  (cis-PSS) = 365 nm,  (trans-PSS) = 455 nm. Cycle performance of 49. (C) 

50 µM in DMSO. Changes in absorption at 340 nm (max of the trans isomer) were measured during 

alternate irradiation with light of  = 365 nm and  = 455 nm until the PSS is reached. (D) 50 µM in 

phosphate buffer + 0.1% DMSO. Changes in absorption at 338 nm (max of the trans isomer) were 

measured during alternate irradiation with light of  = 365 nm and  = 455 nm until the PSS is 
reached. Thermal stability of the cis isomer of 49 measured at 25 °C. Black dots represent the 
absorption at the indicated wavelength dependent on the time of relaxation [h]. Red curve 
represents an exponential nonlinear curve fit. (E) 50 µM in DMSO. Changes in absorption maxima 

measured at 340 nm (max of the trans isomer) after irradiation with  = 365 nm until the PSS is 
reached. t0.5 = 38.4 h. (F) 50 µM solution in phosphate buffer + 0.1% DMSO. Changes in absorption 

maxima measured at 335 nm after irradiation with  = 365 nm until the PSS is reached. t0.5 = 104 h. 
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Table S1. Photochemical properties of azobenzene-based galactosidase inhibitors measured 50 µM 
in DMSO at 25 °C. Cpd. = Compound. 

Entry Cpd. 

max 

trans 
isomer 

[nm] 

max 

cis 
isomer 

[nm] 

Isosbestic 

points 

[nm] 

 

Fatigue 
resistance 

 

irr 

trans-cis 

[nm] 

 

irr 

cis-trans 

[nm] 

1 4 329 435 283, 386 excellent 365 455 

2 6 401 445 271, 300, 360, 477 excellent 400 505 

3 34 329 441 279, 389 excellent 365 455 

4 35 331 436 282, 389 excellent 365 455 

5 36 337 442 289, 396 excellent 365 455 

6 37 327 440 278, 394 excellent 365 455 

7 38 328 432 278, 386 excellent 365 455 

8 39 336 446 288, 399 excellent 365 455 

9 40 322 - - excellent 385 470 

10 41 363 440 283, 426 excellent 385 455 

11 42 367 446 302, 433 excellent 365 455 

12 49 340 441 291, 398 excellent 365 455 

 

Table S2. Photochemical properties of azobenzene-based galactosidase inhibitors measured 50 µM 
in phosphate buffer + 0.01% DMSO, and 1% DMSO*, respectively. Cpd. = Compound. 

Entry Cpd. 

max 

trans 
isomer 

[nm] 

max 

cis 
isomer 

[nm] 

Isosbestic 

points 

[nm] 

 

Fatigue 
resistance 

 irr 

trans-cis 

[nm] 

 irr 

cis-trans 

[nm] 

1 4 323 425 237, 280, 385 excellent 365 455 

2 6 379 - 279, 293, 335, 464 excellent 455 - 

3 34 325 431 234, 274, 390 excellent 365 455 

4 35 329 426 238, 278, 396 excellent 365 455 

5 36* 334 431 242, 287, 399 excellent 365 455 

6 37 325 431 241, 275, 390 excellent 365 455 

7 38 323 423 235, 273, 388 excellent 365 455 

8 39* 335 434 245, 288, 399 excellent 365 455 

9 40 322 428 235, 254, 273, 428 excellent 365 455 

10 41 348 429 238, 280, 421 excellent 365 455 

11 42* 352 433 241, 297, 432 excellent 365 455 

12 49 338 430 240, 288, 407 excellent 365 455 
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3.5.3 HPLC- and NMR-Based Photochromic Characterization 

Table S3. Photochemical properties of azobenzene-based galactosidase inhibitors measured 50 µM 
in DMSO at 25 °C. Cpd. = Compound. 

Entry Cpd. 
PSS-distribution 

(DMSO) 

PSS-distribution 

(aqueous media) 

THL [h] 

(DMSO) 

THL [h] 

(PBS+0.1% / 
1%* DMSO) 

1 4 
74% cis (375 nm)(a) 

88% trans (405 nm)(a) 

67% cis (375 nm)(a) 

75% trans (405 nm)(a) 
121 

 

 

 

536 

2 6 
91% cis (400 nm)(b) 

64% trans (505 nm)(b) 
n.d. 3.53 

 

 

 

4.70 ∙ 10-4 

3 34 
53% cis (365 nm)(b) 

78% trans (455 nm)(b) 

93% cis (365 nm)(b) 

74% trans (455 nm)(b) 
84.4 98.2 

4 35 
93% cis (365 nm)(a) 

82% trans (455 nm)(a) 

88% cis (365 nm)(a) 

72% trans (455 nm)(a) 
80.2 

 

 

 

252 

5 36* 
63% cis (365 nm)(b) 

72% trans (455 nm)(b) 

90% cis (365 nm)(b) 

82% trans (455 nm)(b) 
65.2 

 

 

 

131 

6 37 
86% cis (365 nm)(b) 

83% trans (455 nm)(b) 

76% cis (365 nm)(b) 

77% trans (455 nm)(b) 
122 17.4 

7 38 
89% cis (365 nm)(a) 

81% trans (455 nm)(a) 

83% cis (365 nm)(a) 

75% trans (455 nm)(a) 
106 203 

8 39* 
92% cis (365 nm)(b) 

82% trans (455 nm)(b) 

90% cis (365 nm)(b) 

82% trans (455 nm)(b) 
27.2 

 

 

 

25.3 

9 40 
84% cis (385 nm)(a) 

63% trans (455 nm)(a) 

81% cis (365 nm)(a) 

63% trans (455 nm)(a) 
56.2 262 

10 41 
91% cis (385 nm)(a) 

73% trans (455 nm)(a) 

88% cis (365 nm)(a) 

69% trans (455 nm)(a) 
28.5 94.3 

11 42* 
89% cis (365 nm)(a) 

70% trans (455 nm)(a) 

90% cis (365 nm)(a) 

76% trans (455 nm)(a) 
13.6 

 

 

 

37.0 

12 49 
96% cis (365 nm)(a) 

80% trans (455 nm)(a) 

93% cis (365 nm)(a) 

74% trans (455 nm)(a) 
38.4 

 

 

 

104 

(a) determined by analytical HPLC measurement of a preirradiated 50 µM solution in DMSO and 
phosphate buffer + 0.1% DMSO, and 1% DMSO,* respectively, at 20 °C. (b) determined by NMR-
measurement of a preirradiated solution in DMSO and D2O + 5% DMSO,* respectively. 
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3.5.4 Enzymatic Inhibition 

Table S4. Inhibitory activity of photochromic competitive -galactosidase inhibitors measured at a 
substrate concentration of 100 µM, an enzyme concentration of 36 pM. Inhibitor concentrations 
were chosen according to the compound solubility and are indicated below. Cpd. = Compound. 

Entry Cpd. 
Relative activity 

trans isomer [%] 

Relative activity 

cis-PSS [%] 

Ratio 

(cis/trans) 

1 4(b) 77±29 85±15 1.1 

2 6(b,e) 78.5±1.7 n.d.(a) - 

3 34(b,e) 0.48±0.16 0.88±0.09 1.8 

4 35(b,e) 16.6±1.6 11.8±2.1 0.7 

5 36(d,e) 23.7±2.4 15.2±1.0 0.6 

6 37(b) -6.28±0.11 0.346±0.023 - 

7 38(b) 23±3 22±4 1.0 

8 39(d,e) 13.4±1.9 10.5±1.7 0.8 

9 40(b) 18.9±1.2 23.5±1.1 1.2 

10 41(b) 27±3 52±11 1.9 

11 42(c,e) 30.1±1.8 49±5 1.6 

12 49(b) 8.5±0.3 5.53±0.11 0.6 

(a) n.d. due to thermal instability during enzymatic assay. (b) 100 µM inhibitor concentration. (c) 
50 µM inhibitor concentration. (d) 25 µM inhibitor concentration. (e) 1% DMSO present in assay 
buffer. 

              

 

Figure S13. Normalized β-galactosidase kinetics at 100 µM substrate concentration at different 
concentrations of (A) compound 34; (B) compound 37 and (C) compound 41 either in its trans-
isomeric state (black lines; thermal equilibrium) or its cis-PSS (red lines). An enzyme concentration 
of 36 pM was present in all experiments. Error bars indicate the standard deviation of three 
independent measurements. Enzyme kinetics were additionally measured at 50 and 150 µM 
substrate concentration and the inhibition constant Ki was calculated as the average over these 
measurements. 
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CHAPTER 4 

4 Light-Switchable Antagonists for the Histamine H1 

Receptor at the Isolated Guinea Pig Ileum 
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4.1 Introduction 

The biogenic amine histamine is stored in vesicles or granules, and upon 

stimulation is released by various cell types, such as mast and enterochromaffin 

cells. Subsequent binding can occur at four different histamine receptors (H1R, 

H2R, H3R, H4R) present in various tissues, for example, smooth muscle and 

endothelial cells for H1R. Those receptors belong to the rhodopsin-like family A of 

G protein-coupled receptors (GPCRs), a subfamily of the GPCR superfamily.[1-7] 

GPCRs contain seven transmembrane domains including an extracellular 

N terminus and an intracellular C terminus – the latter being able to interact with 

G proteins.[8,9] Amongst them, H1R is related to symptoms of inflammatory 

processes and contraction of the intestinal smooth muscle,[2,4,10,11] which is the basis 

for the organ-pharmacological studies presented herein. Although a multitude of 

H1 antihistamines have been developed and are in clinical use, these drugs show a 

wide variety in chemical structure, pharmacology, side effects (e.g., sedation), and 

toxicity.[2,12,13] Furthermore, the complexity of GPCR function and the diversity of 

receptor subtypes makes it difficult to develop new structures and investigate their 

exact mode of operation. For a better understanding of the pharmacokinetics and 

pharmacodynamics, as well as spatial and temporal control of histamine 

antagonists, a photochromic H1 receptor ligand may overcome some limitations of 

conventional drugs and could be an important tool to study the dynamics of this 

receptor at the molecular level.[14-16] 

Light is an ideal external trigger of pharmacological functions for a variety of 

reasons. It can be modulated in its intensity (dosage control) and it can be focused 

to very small areas (sub-micron accuracy) with high temporal and spatial precision 

in a non-invasive fashion, depending on wavelength, intensity, and duration.[17-20] 

Light-responsive molecules with bioactivity are finding increasing use in 

biological and pharmaceutical applications in the emerging field of 

photopharmacology.[17,19] Three main approaches to introduce light-

responsiveness can be distinguished, some as irreversible or as reversible 
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processes. In the single-cycle irreversible caged-ligand (CL) approach, a 

deactivating photosensitive chemical protecting group (cage) renders the 

biologically interacting group ineffective. Restoration of the active structure occurs 

by light-stimulated cleavage with the formation of a by-product, such as the 

remnants of the protecting group.[21-24] In contrast, a reversible multicycle 

approach is offered by photoswitchable tethered ligands (PTLs)[25-27] and 

photoswitchable orthogonal remotely tethered ligands (PORTLs).[15] Both 

approaches use a flexible linker that allows anchoring on a remote site of the 

engineered receptor.[15,25-27] The most common technique is represented by 

photochromic ligands (PCLs) serving as freely diffusible light-controllable small-

molecule drugs. Typically, the ligand carries a photosensitive unit that can be 

switched between two or more configurations, thereby changing the binding 

properties to the native receptor.[18] Considering the limitations of the various 

approaches,[28] PCLs were chosen as the mode of operation in our study, allowing 

an organ-pharmacological investigation on the native H1R (guinea pig). Within the 

group of PCLs, different photoinduced mechanisms are used. For example, 

dithienylethenes (DTEs) and fulgimides are based on an intramolecular 6-

electrocyclic reaction resulting in bond formation (closed isomer) and bond 

cleavage (open isomer).[29-32] In contrast, azobenzenes rely on a light-inducible 

trans–cis isomerization. The thermodynamically more stable trans isomer takes up 

an extended planar configuration with a dipole moment near zero, compared with 

the higher energy, metastable nonplanar cis isomer. Although the trans isomer can 

be regenerated 100% by thermal relaxation, full conversion by irradiation with 

visible light is impossible owing to a substantial overlap of the absorption spectra 

of both isomers. Additional benefits, besides their large geometrical change, 

include reversibility of 105 to 106 cycles without detectable photodegradation or 

loss of responsiveness, synthetic accessibility via Mills reaction, 

oxidative/reductive coupling or azo coupling, and tunability of their 

photochromic properties.[33-36] Furthermore, azobenzene-based photoresponsive 

systems have already been successfully applied in several biological systems.[37-41] 



CHAPTER 4 

193 

 

Recently, the research groups of Wijtmans and Leurs reported the use of a 

bidirectional photoswitchable antagonist toolbox for the H3R, a GPCR, based on 

azobenzene.[16] 

We designed a photochromic antagonist for the H1R based on azobenzene as the 

photochromic scaffold. The clozapine derivative VUF6884[42,43] and 

dibenzo[b,f][1,4]oxazepine derivatives,[5,44,45] showing antagonistic behavior at the 

H1R, served as the molecular design models. Herein we report the design, 

synthesis, photochromic characterization, and organ-pharmacological 

investigations of azobenzene-based histamine H1R ligands. 

4.2 Results and Discussion 

4.2.1 Design and Syntheses 

Design. The design of the investigated photochromic histamine H1 receptor 

ligands is derived from the work of Strasser[5,44] and Gobleder[45] based on 

substitution studies on the clozapine derivative VUF6884[42,43] developed by the 

research group of Leurs (Scheme 1). In general, the beneficial effect of electron-

withdrawing groups (e.g., chlorine) and the addition of a basic moiety (e.g., 

methylpiperazine) has been well investigated for the development of potent 

histamine antagonists.[13,46-48] Derived from the standard antihistamines 

mepyramine (pA2 = 8.95)[46] and diphenhydramine (pA2 = 7.68)[46] compounds 

such as pheniramine (pA2 = 7.82, Scheme 1),[46] chlorpheniramine (pA2 = 8.82, 

Scheme 1)[46] and chlorcyclizine (pA2 = 7.98, Scheme 1)[46] were investigated in the 

1940s and 1950s. Variously substituted ring-open derivatives and one ring-closed 

tricyclic derivative containing an azobenzene photochromic moiety were 

synthesized. The best photochromic antagonist 19 was further optimized, resulting 

in the bathochromically shifted azobenzene derivatives 35 and 41. 
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Scheme 1. Reported parent compounds and modifications towards a photochromic azobenzene 
derivative.[5,44,45,42,43,46-48] 

Synthesis of the azobenzene-4-methanimine derivative. The synthesis of 

azobenzene-4-methanimine 6 was performed as outlined in Scheme 2. In a first 

synthetic step the para carboxy-substituted azobenzene 2 was synthesized in a 

Mills reaction in acetic acid starting from 4-aminobenzoic acid (1) and 

nitrosobenzene.[49] Activation of the carboxylic acid moiety of 2 using thionyl 

chloride[50] afforded the acid chloride 3 and allowed the subsequent reaction with 

3-chloroaniline in the presence of triethylamine to form the meta chloro-substituted 

azobenzene amide 4.[51] A second activation step of amide 4 using thionyl 

chloride[52] to obtain imino chloride 5 afforded the target compound 6 upon 

reaction with N-methylpiperazine.[5,45] 

Scheme 2. Synthesis of the ring open azobenzene-4-methanimine derivative 6.[5,45,49-52] 

Synthesis of the para aminoazobenzene derivatives. In comparison with the 

substitution patterns analyzed by Strasser[5,44] and Gobleder,[45] the variously 
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chloro-substituted para aminoazobenzene derivatives 19-21 were synthesized as 

depicted in Scheme 3. The synthetic strategy was kept in analogy to the synthesis 

of the azobenzene-4-methanimine 6 (Scheme 2) using para-aminoazobenzene as 

starting material. The differently chloro-substituted benzoic acids 7-9 were 

activated as acid chlorides 10-12[50] and subsequently converted into the respective 

amide derivatives 13-15 by reaction with para aminoazobenzene.[51] Formation of 

the highly reactive imino chlorides 16-18[52] allowed the introduction of 

N-methylpiperazine[5,45] to afford target compounds 19-21.  

Scheme 3. Synthesis of the ring-open para aminoazobenzene derivatives 19-21.[5,45,50-52] 

Synthesis of the ring-closed derivative. The synthesis of the photochromic ring-

closed derivative was performed as reported for the non-photochromic amino 

precursor 28,[5,45] and adding a Mills reaction in the final step (Scheme 4). 

Carboxylic acid 22 was converted into its corresponding acid chloride 23,[50] which 

reacted with 2-amino-4-chlorophenol to yield the highly functionalized amide 24. 

Ring closure was performed by the addition of pulverized sodium hydroxide and 

heating.[5] The cyclic amide 25 was activated to its imino chloride 26[52] and reacted 

with N-methylpiperazine to give the nitro-substituted derivative 27.[5] Reduction 

of the nitro group of 27 to its amine 28[5] allowed installation of an azo bridge in a 

Mills reaction[53] and provided the photochromic tricyclic ring-closed derivative 

29. 
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Scheme 4. Synthesis of the ring-closed photochromic derivative 29.[5,45,52,53] 

Synthesis of the bathochromically shifted derivatives of 19. To increase solubility 

and to avoid the use of UV light, a nitro-substituted push-pull azobenzene 

derivative 35 and a sulfonate-substituted derivative 41 (negatively charged at 

physiological pH) of the so-far most active compound 19 were synthesized. For the 

nitro-substituted derivative (Scheme 5), aminoazobenzene 32 was synthesized via 

a Mills reaction[53] of the respective nitro-substituted nitrosobenzene 31[54] and 

subsequent reaction with phenylene diamine. Formation of the amide[51] 33, 

activation (34),[52] and substitution with N-methylpiperazine[5,45] (35) was 

performed in analogy to Scheme 3.  

 

Scheme 5. Synthesis of the bathochromically shifted target compound 35 and its corresponding 
crystal structure.[5,45,51-54] 

Synthesis of the sulfonate-substituted derivative of 19 is based on a strategy in 

analogy to that shown in Scheme 4. First, the pharmacophore was synthesized and 

converted into the azobenzene in the final reaction step (Scheme 6).[5,45,51,52,53] 
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Scheme 6. Synthesis of the sulfonate-substituted target compound 41.[5,45,51,52,55] 

4.2.2 Photochemical Characterization 

Azobenzenes are the most widely used class of photochromic compounds. 

Depending on their molecular structure, they differ in the absorption wavelength 

that triggers trans–cis isomerization and in the half-life of their thermal relaxation. 

Azobenzene-type derivatives show a strong UV absorption maximum around 

320 nm (–* transition) and a weaker one around 430 nm (n–* transition) with a 

thermodynamically long half-life. In our study, this type is represented by the 

azobenzene-4-methanimine derivatives 6 and 29. Ortho/para electron-donating 

substituents (EDG, such as NH2) shorten the lifetime and shift the –* transition 

bathochromically, which was observed for the para aminoazobenzene-based 

ligands 19-21, and 41. The so-called push-pull azobenzene derivative 35 is 

characterized by an EDG (NR2) in para and an electron-withdrawing group (EWG, 

NO2) in para’ position, resulting in a faster thermal reconversion and a red-shifted 

absorption.[53]   

As dimethyl sulfoxide was used as stock solvent for the photochromic derivatives, 

it was used as solvent for the investigations of the photoisomerization of 6, 19-21, 

29, 35, and 41 by UV-Vis absorption spectroscopy and NMR analysis. Due to poor 

solubility, only the negatively charged sulfonate derivative 41 was investigated by 

UV-Vis absorption spectroscopy in the organ bath solvent (Tyrode’s solution). 

Solutions of the compounds in DMSO (50 µM), and Tyrode’s solution (50 µM + 

0.1% DMSO, compound 41), respectively, were irradiated with UV light (irr = 

365 nm; 6, 19-21, 29) and visible light (irr = 420 nm, 35; irr = 400 nm, 41), 
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respectively, until the photostationary state (PSS) was reached and a substantial 

amount of the cis isomer had accumulated. Upon trans–cis isomerization the 

maximum representing the trans isomer decreased and a new absorption band in 

the visible range representing the cis isomer formed (Figure 1, black arrows). Back-

isomerization to the thermally more stable trans isomer was triggered by 

irradiation with blue light (irr = 455 nm; 6, 19-21, 29), green light (irr = 528 nm; 41) 

or thermally (35). The resulting isosbestic points indicate a clean, two-component 

switching (Figure 1, dotted black arrows). Table S1 (Supporting Information) 

summarizes the characteristic absorption maxima, isosbestic points, and required 

irradiation wavelengths of 6, 19-21, 29, 35, and 41. Due to a substantial overlap of 

the absorption maxima of the trans and the cis isomers, the trans isomer cannot be 

regenerated quantitatively by irradiation. Still, the investigated compounds show 

high photostationary states (Table S2, Supporting Information). Determination of 

the thermal stability of the cis isomers of 6, 19-21, 29, 35, and 41 revealed 

intermediate thermal stability for compounds 19-21, and 29 relative to the 

thermally more stable derivative 6 and the less stable derivatives 35 and 41 (Table 

S2, Figures S9-S16, Supporting Information). Investigations of the repetitive cycle 

performance showed excellent fatigue over ten measured cycles for all analyzed 

compounds (Figures S1-S8, Supporting Information). 

 
Figure 1. Left: Exemplary UV-Vis absorption spectrum representing the para aminoazobenzene 
derivative 19 in its thermal equilibrium (black), cis-PSS (red), and trans-PSS (blue). Black arrows 
indicate the characteristic changes in the absorption spectra upon switching to the cis isomer. 

Dotted black arrows indicate isosbestic points. Right: Depiction of the bathochromic shift of max 
(trans isomer) for the differently substituted classes of azobenzenes. Carboxyazobenzene 

represented by compound 6 (max 330 nm); aminoazobenzene by compound 20 (max 360 nm); push-

pull azobenzene by compound 35 (max 420 nm). 
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4.2.3 Studies on the Isolated Guinea Pig Ileum 

The established organ-pharmacological setup (Figure 2) on the isolated guinea pig 

ileum allows investigation of the photochromic derivatives 6, 19-21, 29, 35, and 41 

on native H1R in comparison to the results obtained by Strasser[5] and Gobleder.[45] 

To guarantee the presence of the maximum amount of the cis isomer available by 

irradiation (cis-PSS), the thermally less stable derivatives 19-21 (irr = 365 nm), 35 

(irr = 420 nm), and 41 (irr = 400 nm) were exposed to constant irradiation during 

the organ-pharmacological testing. 

 

Figure 2. Organ-pharmacological setup. (A) Side view without irradiation. (B) Top view under 
constant irradiation.  

Table 1 summarizes the antagonistic activities (pA2) of the investigated 

compounds on the H1R of the isolated guinea pig ileum. The pA2 determination is 

based on the addition of various concentrations of histamine to the organ bath 

solution, resulting in contraction of the guinea pig ileum (histamine concentration–

response curve, or CRC). The contraction is transmitted to a needle writer via a 

transducer.  

Upon addition of the photochromic antagonist, either in its trans isomer (thermal 

equilibrium) or at its cis-PSS, the contraction of the ileum is reduced if the 

compounds behave as H1R antagonists and thus displace histamine. The resulting 

Schild plot curves (see Supporting Information) allow calculation of the 

logarithmic pA2 values as unit for an antagonist’s effectiveness. Compared with 

their reference compounds (SI-1, SI-2, SI-3, and SI-4; see Supporting Information) 
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6, 20, and 29 showed a remarkable decrease in pA2 values. The most drastic 

collapse of at least three logarithmic units could be observed for 29 with its tricyclic 

pattern. It was conspicuous that 19 maintained its antagonistic activity with 

respect to its lead structure. Interestingly, the trans isomer of 19 demonstrated 

fourfold higher antagonistic activity than the cis form. Furthermore, additional 

substitution with an EWG (NO2, 35) or charged moiety (SO3-, 41) increased the 

trans isomer antagonistic activity relative to reference SI-2 (35: eightfold, 41: 

fourfold), as well as the solubility in aqueous solution. Upon light-induced cis 

isomer accumulation, the antagonistic activity of 41 decreased by a factor of 15, 

and for 35 even by a factor of 46. The use of longer wavelengths required for the 

trans–cis isomerization of 41 (irr = 400 nm) and especially 35 (irr = 420 nm) relative 

to their photochromic reference 19 (irr = 365 nm) allows better light penetration 

toward the organ-pharmacological testing and hence increased cis isomer 

accumulation. Furthermore, the results obtained for the nitro-substituted 

derivative 35 suggest a positive effect of an EWG at the para position, on the 

antagonistic activity. This is in agreement with data obtained by Marshall[46] and 

Gobleder[45] proving the beneficial effect of chloro substituents. 

Table 1. Overview of the determined pA2 values determined at the guinea pig ileum. Cpd. = 
Compound. 

Cpd. 
pA2±SEM(a) 

trans 
isomer(b) 

N*(d) 

pA2±SEM(a) 

cis     
isomer(c) 

N*(d) 

 

pA2±SEM(a)  
reference 

 

 

 

 

 

 

 

Ref.(e) 

 

ratio pA2 

trans/cis 

6 5.04 ± 0.07 14/(40) 5.37 ± 0.24 9/(26) 6.22 ± 0.07 SI-1 0.5 

19 5.27 ± 0.12 6/(9) 4.70 ± 0.17 3/(9) 5.27 ± 0.10 SI-2 3.7 

20 n.a. 27 n.a. 19 4.74 ± 0.12 SI-3 - 

21 4.84 ± 0.09 4/(9) 4.73 ± 0.16 4/(9) - - 1.3 

29 5.69 ± 0.08 18/(36) 5.83 ± 0.12 12/(25) 8.88 ± 0.06 SI-4 0.7 

35 6.16 ± 0.08 25/(30) 4.50 ± 0.07 4/(15) 5.27 ± 0.12 SI-2 46 

41 5.85 ± 0.12 19/(30) 4.67 ± 0.11 5/(15) 5.27 ± 0.12 SI-2 15 

(a) Data are the mean values ± SEM (standard error of mean) from N experiments; data were 
analyzed by nonlinear regression and were best fitted to sigmoidal concentration-response curves. 

pA2 = -logc(Ant)+log(r–1), where r = 10pEC
50; pEC50 was calculated from pEC50 of histamine and 

pEC50 of histamine in presence of the respective antagonist; n.a. = not active. (b) The trans isomer 
was tested in its thermal equilibrium. (c) The cis isomer was tested at its photostationary state (PSS) 
upon irradiation. (d) N* represents the number of experiments in “X/(X+Y)”. Experiments were 
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carried out in presence of the respective antagonist at a concentration range from 10-7.5 to 10-4 M. 
“X” represents experiments in which an effect–a rightward shift of the histamine concentration-
response curve (CRC) –could be measured. “Y” represents experiments in which no rightward-
shifted histamine CRCs could be measured (especially for weak antagonists at lower 
concentration). (e) See the Supporting Information. 

4.3 Conclusion 

We report the design, synthesis, and photophysical characterization of seven 

photochromic oxazepine derivatives, as well as the establishment of an organ-

pharmacological assay compatible with continuous tissue irradiation. Initially, 

three different structural leads were used, comprising a ring-closed oxazepine 

derivate (29), a ring-open azobenzene-4-methanimine derivative (6), and three para 

aminoazobenzene-based ring-open derivatives (19-21). The change in position of 

the azobenzene moiety, either as extension of the aniline-benzene or the carboxy-

benzene, and variation of the chloro substitution pattern varies the steric and 

electronic properties. Four compounds showed decreased antagonistic activity, 

whereas one compound – 19 – maintained its pharmacological activity relative to 

its non-photochromic lead. Compound 19 showed an isomer-dependent 

antagonistic activity by a factor of four. Optimization resulted in two 

bathochromically shifted compounds (35 and 41) to avoid the use of UV light and 

to improve both solubility and tissue penetration, resulting in increased trans 

isomer antagonistic activity compared with reference SI-2 (factor of eight for trans-

35, and a factor of four for trans-41). Upon irradiation-induced trans–cis 

isomerization, the antagonistic activity dropped remarkably by a factor of 15 (for 

41) and even 46 (for 35). Ongoing attempts are aimed at a stronger bathochromic 

shift and the use of ortho,ortho-bridged azobenzenes[56] for a cis active compound. 

Furthermore, the use of arylazo pyrazoles,[57] known for almost quantitative 

switching in both directions, is considered to increase the amount of cis isomer 

accessible by irradiation. 
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4.4 Experimental Part 

4.4.1 General Procedures and Materials 

Commercial reagents and starting materials were purchased from the commercial 

suppliers abcr, Acros Organics, Alfa-Aesar, Fisher Scientific, Merck, Sigma-

Aldrich, TCI, or VWR, and used without any further purification. Solvents were 

used in p.a. quality and dried according to common procedures, if necessary. Dry 

nitrogen was used as an inert gas atmosphere. Flash column chromatography was 

performed using Sigma-Aldrich MN silica gel 60M (40-63 µm, 230-400 mesh) for 

normal-phase chromatography. Reaction monitoring via thin-layer 

chromatography was performed on alumina plates coated with silica gel (Merck 

silica gel 60 F254, layer thickness: 0.2 mm). Melting points were determined using a 

Stanford Research System OptiMelt MPA 100 and are uncorrected. NMR spectra 

were measured on a Bruker Avance 300 (1H 300.13 MHz, 13C 75.48 MHz), Bruker 

Avance III HD 400 (1H 400.13 MHz, 13C 100.61 MHz), Bruker Avance III HD 600 

(1H 600.25 MHz, 13C 150.95 MHz) and Bruker Avance III 600 (1H 600.25 MHz, 13C 

150.95 MHz). The spectra are referenced against the NMR solvent (DMSO-d6: H = 

2.50 ppm, C = 39.52 ppm), and chemical shifts () are reported in ppm. Resonance 

multiplicity is abbreviated as: s (singlet), d (doublet), t (triplet), and m (multiplet). 

Carbon NMR signals are assigned using DEPT 135 and 1H-13C HSQC spectra with 

(+) for primary/tertiary, (-) for secondary, and (q) for quaternary carbons. Mass 

spectra were recorded on a Finnigan MAT-SSQ 710 A, ThermoQuest Finnigan TSQ 

7000, Agilent Q-TOF 6540 UHD, or a Jeol AccuTOF GCX instrument. UV-Vis 

absorption spectroscopy was performed in 10 mm quartz cuvettes using an Agilent 

Cary 100 or Agilent Varian Cary 50 spectrometer. Analytical HPLC measurements 

were performed using an Agilent 1220 Infinity LC (column: Phenomenex Luna 

3 µm C18(2) 100 Å, 150 x 2.00 mm; flow rate 0.3 mL min-1 at 30 °C; solvent A: MilliQ 

water with 0.05 wt% TFA; solvent B: MeCN). The ratios at the PSSs were 

determined by analytical HPLC at 30 °C at the isosbestic points or by NMR 

spectroscopy of an irradiated sample. An Agilent 1260 system (column: 
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Phenomenex Luna 10 µm C18(2) 100 Å, 250 x 21.2 mm; flow rate 22 mL min-1; 

solvent A: MilliQ water with 0.05 wt% TFA; solvent B: MeCN) was used for 

preparative HPLC purification. Light sources for irradiation:  = 365 nm (Herolab 

hand-held lamp UV-6 L, 6W; Seoul Viosys CUN6GB1A, 1000 mA, 1.4 W),  = 

400 nm (Luxeon 400 nm SZ-01-S2, 500 mA, 0.48 W),  = 420 nm (Luxeon 420 nm 

SZ-01-S6, 500 mA, 0.63 W),  = 455 nm (Osram OSLON SSL 80 LD-CQ7P-1U3U, 

1000 mA, 0.45 W),  = 528 nm (Osram LTCP7P-KXKZ, 350 mA, 71 lm). The power 

of the light is given based on the specifications supplied by the manufacturer for 

the case of purchased LEDs.  

Compounds 2,[49] 24,[5,45] 25,[5,45] 27,[5,45] 28,[5,45] 31,[54] 39,[5,45] and 40[55] were 

synthesized by following literature reported procedures. Acid and imino chlorides 

3, 5, 10-12, 16-18, 23, 26, 34, and 37 were synthesized by following general 

procedure A.[50,52] Amides 4, 13-15, 33, and 36 were synthesized by following 

general procedure B.[51] N-methylpiperazine derivatives 6, 19-21, 35, and 38 were 

synthesized by following general procedure C.[5,45] Mills reactions[53] for the 

formation of compounds 29, 32, and 41 were performed according to general 

procedure D. 

4.4.2 Synthetic Procedures and Characterization 

General procedure A. The respective compound (carboxylic acid/amide; 1.0 eq) 

was suspended in thionyl chloride (10 eq) and heated at reflux for three hours until 

complete dissolution of the starting material.[50,52] The solvent was evaporated 

under reduced pressure, and the reaction mixture was co-evaporated from CH2Cl2 

three times to remove residual thionyl chloride. The crude products were used in 

the next step without further purification or characterization. The crystal structure 

of the imino chloride 16 is available in the Supporting Information. 

General procedure B. The respective substituted aniline (1.0 eq) was dissolved in 

ethyl acetate (5.0 mL mmol-1) in the presence of triethylamine (1.4 eq). A solution 

of the benzoic acid chloride derivative (1.2 eq) in ethyl acetate (2.0 mL mmol-1) was 

added dropwise under stirring at room temperature. The reaction mixture was 
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stirred at room temperature overnight.[51] The formed precipitate was collected 

and dried under vacuum to afford the desired products without further 

purification. 

(E)-N-(3-chlorophenyl)-4-(phenyldiazenyl)benzamide (4). Brown solid (90%). 

M.p.: 176 °C. 1H-NMR (400 MHz, DMSO-d6):  = 10.58 (s, 1H), 8.20 – 8.16 (m, 2H), 

8.04 – 7.98 (m, 3H), 7.98 – 7.93 (m, 2H), 7.74 (ddd, J = 8.3, 2.0, 1.0 Hz, 1H), 7.67 – 

7.59 (m, 3H), 7.41 (t, J = 8.1 Hz, 1H), 7.19 (ddd, J = 8.0, 2.1, 0.9 Hz, 1H). 13C-NMR 

(101 MHz, DMSO-d6):  = 165.4 (q), 154.1 (q), 152.4 (q), 141.0 (q), 137.1 (q), 133.4 (q), 

132.6 (+), 130.8 (+), 130.0 (+), 129.6 (+), 124.0 (+), 123.3 (+), 122.9 (+), 120.3 (+), 119.2 

(+). HRMS (ESI) calcd. for (C19H15ClN3O+) [M+H]+: m/z = 336.0898; found 

336.0903. MF: C19H14ClN3O. MW: 335.79 g/mol.  

(E)-4-chloro-N-(4-(phenyldiazenyl)phenyl)benzamide (13). Orange solid (79%). 

M.p.: 226 °C. 1H-NMR (400 MHz, DMSO-d6):  = 10.64 (s, 1H), 8.06 – 8.00 (m, 4H), 

7.96 – 7.92 (m, 2H), 7.90 – 7.85 (m, 2H), 7.65 – 7.53 (m, 5H). 13C-NMR (101 MHz, 

DMSO-d6):  = 165.3 (q), 152.5 (q), 148.4 (q), 142.6 (q), 137.2 (q), 133.8 (q), 131.6 (+), 

130.2 (+), 129.9 (+), 129.0 (+), 124.0 (+), 122.8 (+), 121.0 (+). HRMS (ESI) calcd. for 

(C19H15ClN3O+) [M+H]+: m/z = 336.0898; found 336.0902. MF: C19H14ClN3O. MW: 

335.79 g/mol. 

(E)-3-chloro-N-(4-(phenyldiazenyl)phenyl)benzamide (14). Orange solid (83%). 

M.p.: 194 °C. 1H-NMR (300 MHz, DMSO-d6):  = 10.69 (s, 1H), 8.08 – 8.00 (m, 3H), 

7.99 – 7.92 (m, 3H), 7.91 – 7.85 (m, 2H), 7.70 (ddd, J = 8.0, 2.2, 1.1 Hz, 1H), 7.64 – 

7.52 (m, 4H). 13C-NMR (101 MHz, DMSO-d6):  = 164.9 (q), 152.5 (q), 148.4 (q), 142.5 

(q), 137.1 (q), 133.7 (q), 132.1 (+), 131.6 (+), 130.9 (+), 129.9 (+), 128.0 (+), 127.1 (+), 

124.0 (+), 122.9 (+), 121.0 (+). HRMS (ESI) calcd. for (C19H15ClN3O+) [M+H]+: m/z 

= 336.0898; found 336.0902. MF: C19H14ClN3O. MW: 335.79 g/mol. 

(E)-3,4-dichloro-N-(4-(phenyldiazenyl)phenyl)benzamide (15). Orange solid 

(98%). M.p.: 228 °C. 1H-NMR (400 MHz, DMSO-d6):  = 10.71 (s, 1H), 8.25 (d, J = 

2.1 Hz, 1H), 8.05 – 8.00 (m, 2H), 7.99 – 7.92 (m, 3H), 7.91 – 7.82 (m, 3H), 7.62 – 7.52 

(m, 3H). 13C-NMR (101 MHz, DMSO-d6):  = 164.0 (q), 152.5 (q), 148.5 (q), 142.3 (q), 
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135.4 (q), 135.1 (q), 131.8 (q), 131.6 (+), 131.3 (+), 130.2 (+), 129.9 (+), 128.7 (+), 124.0 

(+), 122.9 (+), 121.1 (+). HRMS (ESI) calcd. for (C19H14Cl2N3O+) [M+H]+: m/z = 

370.0508; found 370.0513. MF: C19H13Cl2N3O. MW: 370.23 g/mol. 

(E)-4-chloro-N-(4-((4-nitrophenyl)diazenyl)phenyl)benzamide (33). Red solid 

(92%). M.p.: 253 °C. 1H-NMR (400 MHz, DMSO-d6):  = 10.73 (s, 1H), 8.45 – 8.37 

(m, 2H), 8.09 – 7.98 (m, 8H), 7.65 – 7.60 (m, 2H). 13C-NMR (101 MHz, DMSO-d6): 

 = 165.4 (q), 155.8 (q), 148.6 (q), 148.3 (q), 143.9 (q), 137.27 (q), 133.7 (q), 130.3 (+), 

129.0 (+), 125.5 (+), 124.8 (q), 123.7 (q), 120.9 (q). HRMS (ESI) calcd. for 

(C19H13ClN4O3Na+) [M+Na]+: m/z = 403.0568; found 403.0568. MF: C19H13ClN4O3. 

MW: 380.79 g/mol. 

General procedure C. N-Methylpiperazine (1.3 eq) and triethylamine (1.7 eq) were 

dissolved in dry CH2Cl2 (5 mL mmol-1) and stirred at 0 °C for ten minutes. To this 

mixture was added a solution of the respective imino chloride (1.0 eq) in dry 

CH2Cl2 (3 mL mmol-1). The reaction mixture was stirred at 0 °C for 20 minutes and 

heated at 50 °C for two hours. After cooling to room temperature, the reaction 

mixture was extracted with ethyl acetate and washed with 1 M HCl. The organic 

layer was dried over anhydrous Na2SO4.[5,45] Purification by preparative HPLC 

afforded the desired products.  

(Z)-N-(3-chlorophenyl)-1-(4-methylpiperazin-1-yl)-1-(4-((E)phenyldiazenyl) 

phenyl)methanimine (6). Light orange solid (60%). Gradient 0-20 min 10:90-98:2, 

tR = 10.1 min. M.p.: 144 °C. 1H-NMR (400 MHz, DMSO-d6):  = 7.89 – 7.84 (m, 2H), 

7.82 – 7.78 (m, 2H), 7.61 – 7.55 (m, 3H), 7.39 – 7.35 (m, 2H), 6.98 (t, J = 8.0 Hz, 1H), 

6.71 (ddd, J = 8.0, 2.1, 1.0 Hz, 1H), 6.57 (t, J = 2.0 Hz, 1H), 6.46 (ddd, J = 8.0, 2.0, 

0.9 Hz, 1H), 3.34 (s, 4H), 2.37 (s, 4H), 2.21 (s, 3H). 13C-NMR (101 MHz, DMSO-d6): 

 = 159.6 (q), 153.2 (q), 152.4 (q), 151.9 (q), 136.2 (q), 132.9 (q), 132.3 (+), 130.3 (+), 

130.1 (+), 130.0 (+), 123.1 (+), 122.9 (+), 122.6 (+), 121.7 (+), 121.0 (+), 54.7 (-), 46.2 

(+). HRMS (ESI) calcd. for (C24H25ClN5+) [M+H]+: m/z = 418.1793; found 418.1795. 

MF: C24H24ClN5. MW: 417.94 g/mol. 
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(Z)-1-(4-chlorophenyl)-1-(4-methylpiperazin-1-yl)-N-(4-((E)-phenyldiazenyl) 

phenyl)methanimine (19). Orange solid (59%). Gradient 0-9 min 32:68-70:30, tR = 

5.1 min. M.p.: 164 °C.1H-NMR (400 MHz, DMSO-d6):  = 7.79 – 7.72 (m, 2H), 7.60 – 

7.45 (m, 5H), 7.42 – 7.36 (m, 2H), 7.24 – 7.19 (m, 2H), 6.67 – 6.61 (m, 2H), 3.33 (s, 

4H), 2.38 (s, 4H), 2.22 (s, 3H). 13C-NMR (101 MHz, DMSO-d6):  = 159.1 (q), 155.3 

(q), 152.6 (q), 146.7 (q), 134.1 (q), 132.1 (q), 131.0 (+), 131.0 (+), 129.8 (+), 129.0 (+), 

123.7 (+), 123.6 (+), 122.6 (+), 54.7 (-), 46.1 (+). HRMS (ESI) calcd. for (C24H25ClN5+) 

[M+H]+: m/z = 418.1793; found 418.1795. MF: C24H24ClN5. MW: 417.94 g/mol. The 

crystal structure of 19 is provided in the Supporting Information. 

(Z)-1-(3-chlorophenyl)-1-(4-methylpiperazin-1-yl)-N-(4-((E)-phenyldiazenyl) 

phenyl)methanimine (20). Red solid (68%). Gradient 0-20 min 10:90-98:2, tR = 

10.3 min. M.p.: 143 °C. 1H-NMR (400 MHz, DMSO-d6):  = 7.79 – 7.74 (m, 2H), 7.60 

– 7.46 (m, 5H), 7.37 – 7.32 (m, 2H), 7.31 – 7.27 (m, 1H), 7.19 – 7.14 (m, 1H), 6.69 – 

6.65 (m, 2H), 3.33 (s, 4H), 2.39 (s, 4H), 2.23 (s, 3H). 13C NMR (101 MHz, DMSO-d6): 

 = 158.4 (q), 155.2 (q), 152.6 (q), 146.8 (q), 135.4 (q), 133.7 (q), 131.0 (+), 130.8 (+), 

129.8 (+), 129.5 (+), 128.7 (+), 127.8 (+), 123.7 (+), 123.6 (+), 122.6 (+), 54.6 (-), 46.1 

(+). HRMS (ESI) calcd. for (C24H25ClN5+) [M+H]+: m/z = 418.1793; found 418.1797. 

MF: C24H24ClN5. MW: 417.94 g/mol. 

(Z)-1-(3,4-dichlorophenyl)-1-(4-methylpiperazin-1-yl)-N-(4-((E)-phenyldiazen-

yl)phenyl)methanimine (21). Orange solid (43%). Gradient 0-20 min 10:90-98:2, tR 

= 11.6 min. M.p.: 156 °C. 1H-NMR (400 MHz, DMSO-d6):  = 7.80 – 7.73 (m, 2H), 

7.64 – 7.56 (m, 3H), 7.56 – 7.46 (m, 4H), 7.19 (dd, J = 8.2, 2.0 Hz, 1H), 6.72 – 6.66 (m, 

2H), 3.32 (s, 4H), 2.39 (s, 4H), 2.23 (s, 3H). 13C-NMR (101 MHz, DMSO-d6):  = 157.5 

(q), 155.0 (q), 152.6 (q), 146.8 (q), 133.9 (q), 132.2 (q), 131.9 (q), 131.2 (+), 131.1 (+), 

131.0 (+), 129.8 (+), 129.4 (+), 123.8 (+), 123.6 (+), 122.6 (+), 54.6 (-), 46.1 (+). HRMS 

(ESI) calcd. for (C24H24Cl2N5+) [M+H]+: m/z = 452.1403; found 452.1408. MF: 

C24H23Cl2N5. MW: 452.38 g/mol. The crystal structure of 21 is provided in the 

Supporting Information. 
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(Z)-1-(4-chlorophenyl)-1-(4-methylpiperazin-1-yl)-N-(4-((E)-(4-nitrophenyl)di-

azenyl)phenyl)methanimine (35). Red solid (33%). Gradient (A: MilliQ water; 

solvent B: MeCN) 0-20 min 10:90-98:2, tR = 21.5 min. M.p.: 124 °C. 1H-NMR 

(400 MHz, DMSO-d6):  = 8.40 – 8.33 (m, 2H), 7.97 – 7.91 (m, 2H), 7.68 – 7.62 (m, 

2H), 7.42 – 7.38 (m, 2H), 7.25 – 7.22 (m, 2H), 6.70 – 6.65 (m, 2H), 3.38 (s, 4H), 2.37 (s, 

4H), 2.22 (s, 3H). 13C-NMR (101 MHz, DMSO-d6):  = 159.1 (q), 156.9 (q), 156.0 (q), 

148.2 (q), 146.8 (q), 134.2 (q), 132.0 (q), 131.0 (+), 129.1 (+), 125.5 (+), 124.6 (+), 123.8 

(+), 123.4 (+), 54.7 (-), 46.1 (+). HRMS (ESI) calcd. for (C24H24ClN6O2+) [M+H]+: m/z 

= 463.1644; found 463.1640. MF: C24H23ClN6O2. MW: 462.94 g/mol. The crystal 

structure of 35 is provided in the Supporting Information. 

(Z)-1-(4-chlorophenyl)-1-(4-methylpiperazin-1-yl)-N-(4-nitrophenyl)methan-

imine (38). Yellow oil (83%) Purification by column chromatography (CH2Cl2 + 5% 

MeOH). 1H-NMR (300 MHz, DMSO-d6):  = 7.92 – 7.81 (m, 2H), 7.43 – 7.35 (m, 2H), 

7.26 – 7.14 (m, 2H), 6.71 – 6.57 (m, 2H), 3.38 (s, 4H), 2.36 (s, 4H), 2.20 (s, 3H). 

13C-NMR (75 MHz, DMSO-d6):  = 158.6 (q), 158.2 (q), 140.6 (q), 133.9 (q), 130.9 (q), 

130.4 (+), 128.6 (+), 124.2 (+), 122.7 (+), 54.1 (-), 45.4 (+). HRMS (ESI) calcd. for 

(C18H20ClN4O2+) [M+H]+: m/z = 359.1270; found 359.1269. MF: C18H19ClN4O2. 

MW: 358.83 g/mol. 

General procedure D. The amino-substituted benzene derivative (1.0 eq) and the 

respective substituted nitrosobenzene derivative (1.0 eq) were dissolved in a 

mixture of acetic acid and CH2Cl2 (1:1) and stirred at 50 °C for 48 hours (29) and at 

room temperature for 16 hours (32, 41), respectively.  

(E)-8-chloro-11-(4-methylpiperazin-1-yl)-3-(phenyldiazenyl)dibenzo[b,f][1,4]ox-

azepine (29). Purification by preparative HPLC (gradient 0-20 min 10:90-98:2, tR = 

15.5 min) afforded the desired product as light brown solid (28%). M.p.: 123 °C. 

1H-NMR (600 MHz, DMSO-d6):  = 7.95 – 7.90 (m, 2H), 7.89 – 7.84 (m, 2H), 7.74 – 

7.71 (m, 1H), 7.66 – 7.61 (m, 3H), 7.37 (d, J = 8.6 Hz, 1H), 7.15 (d, J = 2.6 Hz, 1H), 

7.12 (dd, J = 8.6, 2.6 Hz, 1H), 3.52 – 3.30 (broad, 8H), 2.88 (s, 3H). 13C-NMR 

(151 MHz, DMSO-d6):   = 160.5 (q), 158.0 (q), 157.8 (q), 155.2 (q), 151.8 (q), 149.9 
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(q), 141.0 (q), 132.5 (q), 130.8 (+), 129.6 (+), 125.8 (+), 124.3 (+), 124.1 (+), 122.9 (+), 

122.1 (+), 120.5 (+), 114.3 (+), 52.0 (-), 52.0 (-), 42.2 (+). HRMS (ESI) calcd. for 

(C24H23ClN5O+) [M+H]+: m/z = 432.1586; found 432.1590. MF: C24H22ClN5O. MW: 

431.92 g/mol. 

(E)-4-((4-nitrophenyl)diazenyl)aniline (32). Purification by column 

chromatography (CH2Cl2) afforded the desired product as dark-red solid (86%). 

The analytical data agree with published data.[58] 

4-((E)-(4-(((Z)-(4-chlorophenyl)(4-methylpiperazin-1-yl)methylene)amino)phen-

yl)diazenyl)benzenesulfonate (41). The respective amino precursor was 

synthesized following an adapted reported procedure for the reduction of nitro 

groups.[4,45] The amine was used in the next reaction step without further 

characterization or purification. Mills reaction afforded the desired product 41, 

which was further purified by column chromatography (CH2Cl2 + 10% MeOH) 

and subsequent preparative HPLC (gradient MilliQ water/MeCN 0-20 min 10:90-

98:2, tR = 9.6 min; red viscous solid; 42%). M.p.: 141 °C. 1H-NMR (300 MHz, 

DMSO-d6):  = 7.73 (d, J = 2.0 Hz, 4H), 7.60 – 7.56 (m, 2H), 7.41 – 7.37 (m, 2H), 7.21 

(d, J = 8.5 Hz, 2H), 6.64 (d, J = 8.7 Hz, 2H), 3.59 (s, 4H), 3.10 – 3.18 (m, 8H), 2.38 (s, 

4H), 2.22 (s, 3H), 1.60 – 1.49 (m, 8H), 1.29 (h, J = 7.4 Hz, 8H), 0.91 (t, J = 7.3 Hz, 12H). 

13C-NMR (101 MHz, DMSO-d6):  = 159.0 (q), 155.4 (q), 152.2 (q), 150.6 (q), 146.7 

(q), 134.1 (q), 132.1 (+), 131.1 (+), 129.1 (+), 127.0 (+), 123.8 (+), 123.6 (+), 122.0 (+), 

58.0 (-), 54.6 (-), 46.1 (+), 23.5 (-), 19.7 (-), 14.0 (+). HRMS (ESI) calcd. for 

(C24H23ClN5O3S-) [M-H]-: m/z = 496.1216; found 496.1220. MF: C40H59ClN6O3S. 

MW: 739.46 g/mol. 

4.4.3 Organ-Pharmacological Testing 

Preparation of the stock solutions. The stock solutions of the tested compounds 

and all their dilutions were prepared with DMSO. 

Studies on the isolated guinea pig ileum.[58] All organ-pharmacological 

experiments were carried out in accordance with national and local legislation. 
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Guinea pigs of either sex (250 - 500 g) were stunned by a blow on the neck and 

exsanguinated. The ileum was rapidly removed, rinsed, and cut into segments of 

1.5 - 2.0 cm length. The tissues were mounted isotonically (preload of 5 mN) in a 

jacketed 20 mL organ bath that was filled with Tyrode's solution (composition 

[mM]: NaCl 137, KCl 2.7, CaCl2 1.8, MgCl2 1.0, NaH2PO4 0.4, NaHCO3 11.9, and 

glucose 5.0) supplemented with atropine at a concentration not affecting H1 

receptors (0.05 μM), to block cholinergic muscarinic receptors. The bath was 

aerated with 95% O2/5% CO2 and heated at 37 °C. During an equilibration period 

of 80 min, the tissues were stimulated three times with histamine (2 × 1 µM, 

1 × 10 µM) followed by washout. Up to four cumulative CRCs were determined 

on each tissue: the first by addition of histamine (0.01 – 30 µM) and the second to 

fourth by addition of histamine in the presence of increasing concentrations of 

antagonist (pre-incubation: see below). pEC50 differences were not corrected, 

because four successive curves for histamine were superimposable under these 

conditions (N > 10).  

For each experiment a DMSO blank was performed simultaneously, and data were 

corrected. For compounds 19, 21, 35 and 41 pre-incubation (30 s) and the following 

CRC of histamine was implemented by permanent irradiation at 365 nm (19 and 

21), 420 nm (35) or 400 nm (41). A pre-incubation and the accompanying light 

exposure of 15, 10, 5 and 3 min had an influence at the tissue’s contractility, 

resulting in a depression of the CRCs of histamine. A pre-incubation of 30 s 

showed no difficulties, as four successive curves for histamine were 

superimposable under these conditions. The pA2 values of the trans isomers of 19 

and 21 showed no significant difference depending on the pre-incubation time 

(15 min vs. 30 s, see Table S3, Supporting Information). Therefore, incubation for 

35 and 41 was set to 30 s. Data were analyzed by nonlinear regression and were 

best fitted to sigmoidal concentration-response curves using Prism 5.0c software 

(GraphPad, SanDiego, CA, USA). 
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4.5 Supporting Information 

4.5.1 1H- and 13C-NMR Spectra 

Compound 4 (DMSO-d6)

 



CHAPTER 4 

211 

 

Compound 6 (DMSO-d6) 
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Compound 13 (DMSO-d6)
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Compound 14 (DMSO-d6) 
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Compound 15 (DMSO-d6) 
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Compound 19 (DMSO-d6)
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Compound 20 (DMSO-d6)
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Compound 21 (DMSO-d6)
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Compound 29 (DMSO-d6)  
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Compound 32 (DMSO-d6)  
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Compound 35 (DMSO-d6) 
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Compound 38 (DMSO-d6) 

* solvent residual signals: MeOH, CH2Cl2 
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Compound 41 (DMSO-d6) 
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4.5.2 HSQC and HMBC spectra 

HSQC spectra of compound 6 (DMSO-d6) 

 



LIGHT-SWITCHABLE ANTAGONISTS FOR THE HISTAMINE H1 RECEPTOR AT THE ISOLATED 

GUINEA PIG ILEUM 

224 

  

HMBC spectra of compound 6 (DMSO-d6) 
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HSQC spectra of compound 19 (DMSO-d6) 
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HMBC spectra of compound 19 (DMSO-d6) 
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HSQC spectra of compound 20 (DMSO-d6) 
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HMBC spectra of compound 20 (DMSO-d6) 
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HSQC spectra of compound 21 (DMSO-d6) 
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HMBC spectra of compound 21 (DMSO-d6) 
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HSQC spectra of compound 29 (DMSO-d6) 
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HMBC spectra of compound 29 (DMSO-d6) 
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HSQC spectra of compound 35 (DMSO-d6) 
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HMBC spectra of compound 35 (DMSO-d6) 
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HSQC spectra of compound 41 (DMSO-d6) 
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HMBC spectra of compound 41 (DMSO-d6) 
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4.5.3 UV-Vis Absorption Spectra and Cycle Performances 

 

Figure S1. Compound 6 measured 50 µM in DMSO. Left: UV-Vis absorption spectra upon 

continuous irradiation until the PSS is reached.  (cis-PSS) = 365 nm (20 s),  (trans-PSS) = 455 nm 

(10 s). Black arrows show the changes in absorption upon trans-cis isomerization triggered with  
= 365 nm. Dotted black arrows indicate isosbestic points. Right: Cycle performance. Changes in 

absorption at 327 nm (max of the trans isomer) were measured during alternate irradiation with  

= 365 nm (20 s) and  = 455 nm (10 s) until the PSS is reached. 

 

Figure S2. Compound 19 measured 50 µM in DMSO. Left: UV-Vis absorption spectra upon 

continuous irradiation until the PSS is reached.  (cis-PSS) = 365 nm (3 s),  (trans-PSS) = 455 nm 

(3 s). Black arrows show the changes in absorption upon trans-cis isomerization triggered with  = 
365 nm. Dotted black arrows indicate isosbestic points. Right: Cycle performance. Changes in 

absorption at 362 nm (max of the trans isomer) were measured during alternate irradiation with  

= 365 nm (3 s) and  = 455 nm (3 s) until the PSS is reached. 
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Figure S3. Compound 20 measured 50 µM in DMSO. Left: UV-Vis absorption spectra upon 

continuous irradiation until the PSS is reached.  (cis-PSS) = 365 nm (3 s),  (trans-PSS) = 455 nm 

(3 s). Black arrows show the changes in absorption upon trans-cis isomerization triggered with  = 
365 nm. Dotted black arrows indicate isosbestic points. Right: Cycle performance. Changes in 

absorption at 363 nm (max of the trans isomer) were measured during alternate irradiation with  

= 365 nm (3 s) and  = 455 nm (3 s) until the PSS is reached. 

 

Figure S4. Compound 21 measured 50 µM in DMSO. Left: UV-Vis absorption spectra upon 

continuous irradiation until the PSS is reached.  (cis-PSS) = 365 nm (3 s),  (trans-PSS) = 455 nm 

(3 s). Black arrows show the changes in absorption upon trans-cis isomerization triggered with  = 
365 nm. Dotted black arrows indicate isosbestic points. Right: Cycle performance. Changes in 

absorption at 361 nm (max of the trans isomer) were measured during alternate irradiation with  

= 365 nm (3 s) and  = 455 nm (3 s) until the PSS is reached. 
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Figure S5. Compound 29 measured 50 µM in DMSO. Left: UV-Vis absorption spectra upon 

continuous irradiation until the PSS is reached.  (cis-PSS) = 365 nm (30 s),  (trans-PSS) = 455 nm 

(10 s). Black arrows show the changes in absorption upon trans-cis isomerization triggered with  
= 365 nm. Dotted black arrows indicate isosbestic points. Right: Cycle performance. Changes in 

absorption at 303 nm (max of the trans isomer) were measured during alternate irradiation with  

= 365 nm (30 s) and  = 455 nm (10 s) until the PSS is reached. 

 
 

Figure S6. Compound 35 measured 50 µM in DMSO. Left: UV-Vis absorption spectra upon 

continuous irradiation until the PSS is reached.  (cis-PSS) = 420 nm (6 s). Black arrows show the 

changes in absorption upon trans-cis isomerization triggered with  = 365 nm. Dotted black arrows 

indicate isosbestic points. Right: Cycle performance. Changes in absorption at 422 nm (max of the 

trans isomer) were measured during alternate irradiation with  = 420 nm (6 s) and thermal 
relaxation. 
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Figure S7. Compound 41 measured 50 µM in DMSO. Left: UV-Vis absorption spectra upon 

continuous irradiation until the PSS is reached.  (cis-PSS) = 400 nm (10 s),  (trans-PSS) = 528 nm 

(60 s). Black arrows show the changes in absorption upon trans-cis isomerization triggered with  
= 400 nm. Dotted black arrows indicate isosbestic points. Right: Cycle performance. Changes in 

absorption at 389 nm (max of the trans isomer) were measured during alternate irradiation with  

= 400 nm (10 s) and  = 528 nm (60 s) until the PSS is reached. 

 
 

 

Figure S8. Compound 41 measured 50 µM in Tyrode’s solution + 0.1% DMSO. Left: UV-Vis 

absorption spectra upon continuous irradiation until the PSS is reached.  (cis-PSS) = 400 nm (3 s), 

 (trans-PSS) = 528 nm (3 s). Black arrows show the changes in absorption upon trans-cis 

isomerization triggered with  = 400 nm. Dotted black arrows indicate isosbestic points. Right: 

Cycle performance. Changes in absorption at 375 nm (max of the trans isomer) were measured 

during alternate irradiation with  = 400 nm (3 s) and  = 528 nm (3 s) until the PSS is reached. 
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4.5.4 Thermal Half-Lives (THL) 

Figure S9. Thermal stability of the cis isomer of 6 measured 50 µM in DMSO at 25 °C. Changes in 

the absorption at the indicated wavelength (max of the trans isomer) after irradiation with  = 
365 nm and subsequent thermal relaxation are represented as black dots. The red curve represents 
an exponential nonlinear curve fit. 

 

Figure S10. Thermal stability of the cis isomer of 19 measured 50 µM in DMSO at 25 °C. Changes 

in the absorption at the indicated wavelength (max of the trans isomer) after irradiation with  = 
362 nm and subsequent thermal relaxation are represented as black dots. The red curve represents 
an exponential nonlinear curve fit. 



LIGHT-SWITCHABLE ANTAGONISTS FOR THE HISTAMINE H1 RECEPTOR AT THE ISOLATED 

GUINEA PIG ILEUM 

242 

  

Figure S11. Thermal stability of the cis isomer of 20 measured 50 µM in DMSO at 25 °C. Changes 

in the absorption at the indicated wavelength (max of the trans isomer) after irradiation with  = 
365 nm and subsequent thermal relaxation are represented as black dots. The red curve represents 
an exponential nonlinear curve fit. 

 

Figure S12. Thermal stability of the cis-isomer of 21 measured 50 µM in DMSO at 25 °C. Changes 

in the absorption at the indicated wavelength (max of the trans isomer) after irradiation with  = 
361 nm and subsequent thermal relaxation are represented as black dots. The red curve represents 
an exponential nonlinear curve fit. 
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Figure S13. Thermal stability of the cis-isomer of 29 measured 50 µM in DMSO at 25 °C. Changes 

in the absorption at the indicated wavelength (max of the trans isomer) after irradiation with  = 
365 nm and subsequent thermal relaxation are represented as black dots. The red curve represents 
an exponential nonlinear curve fit. 
 
 

Figure S14. Thermal stability of the cis isomer of 35 measured 50 µM in DMSO at 25 °C. Changes 

in the absorption at the indicated wavelength (max of the trans isomer) after irradiation with  = 
365 nm and subsequent thermal relaxation are represented as black dots. The red curve represents 
an exponential nonlinear curve fit. 
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Figure S15. Thermal stability of the cis isomer of 41 measured 50 µM in DMSO at 25 °C. Changes 

in the absorption at the indicated wavelength (max of the trans isomer) after irradiation with  = 
400 nm and subsequent thermal relaxation are represented as black dots. The red curve represents 
an exponential nonlinear curve fit. 

 

 

Figure S16. Thermal stability of the cis isomer of 41 measured 50 µM in Tyrode’s solution + 0.1% 

DMSO at 25 °C. Changes in the absorption at the indicated wavelength (max of the trans isomer) 

after irradiation with  = 400 nm and subsequent thermal relaxation are represented as black dots. 
The red curve represents an exponential nonlinear curve fit. 
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4.5.5 Additional Photochemical Data 

Table S1. Photochemical properties of photochromic histamine antagonist derivatives measured 
50 µM in DMSO at 25 °C. Cpd. = Compound. 

Entry Cpd. 

max 

trans isomer 

[nm] 

max 

cis isomer 

[nm] 

Isosbestic  

points 

[nm] 

irr 

trans→cis 

[nm] 

irr 

cis→trans 

[nm] 

1 6 327 435 274, 402 365 455 

2 19 362 435 319, 423 365 455 

3 20 363 413 319, 423 365 455 

4 21 361 437 319, 422 365 455 

5 29 303 - 279, 424 365 455 

6 35 422 - 362, 560 420 (thermal) 

7 41 389 - 337, 481 400 (420) 528 

 

Table S2. Distribution of both isomers at their photostationary states [%]. Irradiation wavelengths 
indicated in brackets. Cpd. = Compound. 

Entry Cpd. PSS distribution THL(c) Fatigue resistance 

1 6 73% cis (365 nm), 75% trans (455 nm)(b) 53 h excellent 

2 19 84% cis (365 nm), 76% trans (455 nm)(a) 24 h excellent 

3 20 83% cis (365 nm), 75% trans (455 nm)(a) 26 h excellent 

4 21 84% cis (365 nm), 72% trans (455 nm)(a) 23 h excellent 

5 29 45% cis (365 nm), 80% trans (455 nm)(b) 29 h excellent 

6 35 n.d. cis (420 nm), 100% trans (thermal)(d) 7.2 s excellent 

7 41 83% cis (400 nm), 77% trans (528 nm)(a) 9.3 h excellent 

(a) Determination performed by NMR measurement of an irradiated sample. (b) Determination 
performed by analytical HPLC measurement of a 50 µM solution in DMSO at the isosbestic point. 
(c) Thermal half-lives (THL) determined by UV-Vis absorption spectroscopy of a 50 µM solution in 
DMSO at 25 °C upon irradiation with the indicated wavelength to accumulate a substantial amount 
of the cis isomer. (d) n.d.: not determined due to very fast thermal back relaxation. 

 

Table S3. Photochemical properties of the photochromic histamine antagonist 41 measured 50 µM 
in Tyrode’s solution + 0.1% DMSO at 25 °C. 

max 

trans isomer 
[nm] 

max 

cis isomer 
[nm] 

Isosbestic  

points  

[nm] 

irr 

trans→cis 
[nm] 

irr 

cis→trans 
[nm] 

 

  THL 

 

 

 

 

 

 

Fatigue 

resistance 

375 - 295, 498 400 528 / thermal 9.2 s excellent 
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4.5.6 Analytical HPLC Traces for Purity Determination 

Compound 6 (0.5 mM in DMSO, injection volume 1 µL) 

 

tR (trans isomer) = 12.8 min 

 

Detection at 220 nm: 99% 

        

 

Detection at 254 nm: 98% 
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Compound 19 (0.5 mM in DMSO, injection volume 1 µL) 

 

tR (trans isomer) = 12.9 min 

 

Detection at 220 nm: >99% 

 

 

Detection at 254 nm: 99% 

 

 



LIGHT-SWITCHABLE ANTAGONISTS FOR THE HISTAMINE H1 RECEPTOR AT THE ISOLATED 

GUINEA PIG ILEUM 

248 

  

Compound 20 (0.5 mM in DMSO, injection volume 1 µL) 

 

tR (trans isomer) = 13.1 min 

 

Detection at 220 nm: 99% 

 

 

Detection at 254 nm: 99% 
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Compound 21 (0.5 mM in DMSO, injection volume 1 µL) 

 

tR (trans isomer) = 14.5 min 

 

Detection at 220 nm: >99%  

 

 

Detection at 254 nm: 99% 
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Compound 29 (0.5 mM in DMSO, injection volume 3 µL) 

 

tR (trans isomer) = 17.3 min; tR (cis isomer) = 14.5 min (see HPLC PSS determination 

of 29 as proof for the retention time of the cis isomer) 

 

Detection at 220 nm: >99% (95% trans isomer + 5% cis isomer) 

 

 

Detection at 254 nm: 99% (91% trans isomer + 8% cis isomer) 
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Compound 35 (0.5 mM in DMSO, injection volume 1 µL) 

 

 

tR (trans-isomer) = 13.4 min 

 

Detection at 220 nm: 94%  

 

 

Detection at 254 nm: 94%  
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Compound 41 (50 µM in MeCN/water, injection volume 5 µL) 

 

tR (trans isomer) = 7.7 min. 

 

Detection at 220 nm: 95% 

       

 

Detection at 254 nm: 95% 
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4.5.7 Analytical HPLC Traces for PSS Determination 

Compound 6 (50 µM in DMSO, injection volume 5 µL) 

cis-PSS (irradiation with  = 365 nm) 

cis isomer: tR = 10.4 min (73%); trans isomer: tR = 12.3 min (27%) 

 

trans-PSS (irradiation with  = 455 nm) 

 

cis isomer: tR = 10.4 min (25%); trans isomer: tR = 12.4 min (75%) 
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Compound 29 (50 µM in DMSO, injection volume 5 µL) 

cis-PSS (irradiation with  = 365 nm) 

 

cis isomer: tR = 14.5 min (45%); trans isomer: tR = 17.3 min (55%) 

 

trans-PSS (irradiation with  = 455 nm) 

 

cis isomer: tR = 14.5 min (20%); trans isomer: tR = 17.3 min (80%) 
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4.5.8 PSS Determination via NMR 

Compound 19 (DMSO-d6) 

cis-PSS (irradiation with  = 365 nm) 

red spectrum = thermal equilibrium; blue spectrum = cis-PSS (84% cis) 

 

 

trans-PSS (irradiation with  = 455 nm) 

red spectrum = thermal equilibrium; blue spectrum = trans-PSS (76% trans) 
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Compound 20 (DMSO-d6) 

cis-PSS (irradiation with  = 365 nm) 

red spectrum = thermal equilibrium; blue spectrum = cis-PSS (83% cis) 

 

 

trans-PSS (irradiation with  = 455 nm) 

red spectrum = thermal equilibrium; blue spectrum = trans-PSS (75% trans) 
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Compound 21 (DMSO-d6) 

cis-PSS (irradiation with  = 365 nm) 

red spectrum = thermal equilibrium; blue spectrum = cis-PSS (84% cis) 

 

 

trans-PSS (irradiation with  = 455 nm) 

red spectrum = thermal equilibrium; blue spectrum = trans-PSS (72% trans) 
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Compound 41 (DMSO-d6) 

cis-PSS (irradiation with  = 410 nm) 

red spectrum = thermal equilibrium; blue spectrum = cis-PSS (83% cis) 

 

 

trans-PSS (irradiation with  = 530 nm) 

red spectrum = thermal equilibrium; blue spectrum = trans-PSS (77% trans) 
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4.5.9 Single Crystal X-ray Crystallography 

Compound 16 

Experimental. Single clear light orange plate-shaped crystals of 16 were obtained 

by recrystallisation from CH2Cl2. A suitable crystal (0.22×0.11×0.05) mm3 was 

selected and mounted on a MITIGEN holder with inert oil on a GV 50, TitanS2 

diffractometer. The crystal was kept at T = 123 K during data collection. Using 

Olex2[59] the structure was solved with the ShelXT[60] structure solution program, 

using the Intrinsic Phasing solution method. The model was refined with version 

2016/6 of ShelXL[61] using Least Squares minimization. 

Crystal Data. C19H13Cl2N3, Mr = 354.22, monoclinic, P21/c (No. 14), a = 

19.0964(7) Å, b = 15.2454(4) Å, c = 5.7013(2) Å,  = 90.0°,  = 94.416(3)°,  = 90.0°, V = 

1654.91(9) Å3, T = 123 K, Z = 4, Z' = 1, (CuK) = 3.557, 19628 reflections measured, 

3290 unique (Rint = 0.0605) which were used in all calculations. The final wR2 was 

0.0859 (all data) and R1 was 0.0328 (I > 2(I)). 

Cambridge Structural Database CCDC. 1873233 
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Detailed Crystal Data.   

 

 

 

 

Formula  C19H13Cl2N3  

Dcalc./ g cm-3  1.422  

/mm-1  3.557  

Formula Weight  354.22  

Colour  clear light orange  

Shape  plate  

Size/mm3  0.22×0.11×0.05  

T/K  123  

Crystal System  monoclinic  

Space Group  P21/c  

a/Å  19.0964(7)  

b/Å  15.2454(4)  

c/Å  5.7013(2)  

/°  90.0  

/°  94.416(3)  

/°  90.0  

V/Å3  1654.91(9)  
Z  4  
Z'  1  

Wavelength/Å  1.54184  

Radiation type  CuK  

min/°  3.714  

max/°  73.771  

Measured Refl.  19628  

Independent Refl.  3290  

Reflections Used  2869  
Rint  0.0605  

Parameters  217  

Restraints  0  

Largest Peak  0.230  

Deepest Hole  -0.200  

GooF  1.049  

wR2 (all data)  0.0859  
wR2  0.0808  

R1 (all data)  0.0394  
R1  0.0328  
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Compound 19 

Experimental. Single clear orange prism-shaped crystals of 19 were obtained by 

recrystallisation from acetone. A suitable crystal 0.21×0.14×0.08 mm3 was selected 

and mounted on a MITIGEN holder oil on a SuperNova, Single source at 

offset/far, Atlas diffractometer. The crystal was kept at a steady T = 123.01(10) K 

during data collection. The structure was solved with the ShelXT[60] structure 

solution program using the Intrinsic Phasing solution method and by using 

Olex2[59] as the graphical interface. The model was refined with version 2016/6 of 

ShelXL[61] using Least Squares minimisation. 

Crystal Data. C24H24ClN5, Mr = 417.93, monoclinic, P21/n (No. 14), a = 

12.7354(2) Å, b = 13.1621(2) Å, c = 13.0567(2) Å,  = 92.9670(10)°,  =  = 90°, V = 

2185.69(6) Å3, T = 123.01(10) K, Z = 4, Z' = 1, (CuK) = 1.698, 24506 reflections 

measured, 4391 unique (Rint = 0.0336) which were used in all calculations. The final 

wR2 was 0.1488 (all data) and R1 was 0.0645 (I > 2(I)). 

Cambridge Structural Database CCDC. 1884361 
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Detailed Crystal Data.   

Formula  C24H24ClN5  

Dcalc./ g cm-3  1.270  

/mm-1  1.698  

Formula Weight  417.93  

Colour  clear orange  

Shape  prism  

Size/mm3  0.21×0.14×0.08  

T/K  123.01(10)  

Crystal System  monoclinic  

Space Group  P21/n  

a/Å  12.7354(2)  

b/Å  13.1621(2)  

c/Å  13.0567(2)  

/°  90  

/°  92.9670(10)  

/°  90  

V/Å3  2185.69(6)  
Z  4  
Z'  1  

Wavelength/Å  1.54184  

Radiation type  CuK  

min/°  4.730  

max/°  73.866  

Measured Refl.  24506  

Independent Refl.  4391  

Reflections with I> 2(I)  3914  
Rint  0.0336  

Parameters  405  

Restraints  384  

Largest Peak  0.561  

Deepest Hole  -0.355  

GooF  1.027  

wR2 (all data)  0.1488  
wR2  0.1443  

R1 (all data)  0.0708  
R1  0.0645  
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Compound 21 

Experimental. Single clear yellow plate-shaped crystals of 21 were obtained by 

recrystallisation from acetone. A suitable crystal (0.44×0.23×0.07) mm3 was 

selected and mounted on a MITIGEN holder with inert oil on a SuperNova, Single 

source at offset/far, Atlas diffractometer. The crystal was kept at T = 123 K during 

data collection. Using Olex2,[59] the structure was solved with the ShelXT[60] 

structure solution program, using the Intrinsic Phasing solution method. The 

model was refined with version 2016/6 of ShelXL[61] using Least Squares 

minimisation. 

Crystal Data. C24H23Cl2N5, Mr = 452.37, monoclinic, P21/n (No. 14), a = 

9.9891(3) Å, b = 20.9542(8) Å, c = 10.8578(4) Å,  = 91.030(3)°,  =  = 90°, V = 

2272.32(14) Å3, T = 123.00(10) K, Z = 4, Z' = 1, (CuK) = 2.732, 14444 reflections 

measured, 4685 unique (Rint = 0.0484) which were used in all calculations. The final 

wR2 was 0.1307 (all data) and R1 was 0.0651 (I > 2(I)). 

Cambridge Structural Database CCDC. 1873486 
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Detailed Crystal Data.   

Formula  C24H23Cl2N5  

Dcalc./ g cm-3  1.322  

/mm-1  2.732  

Formula Weight  452.37  

Colour  clear yellow  

Shape  plate  

Max Size/mm  0.44  

Mid Size/mm  0.23  

Min Size/mm  0.07  

T/K  123.00(10)  

Crystal System  monoclinic  

Space Group  P21/n  

a/Å  9.9891(3)  

b/Å  20.9542(8)  

c/Å  10.8578(4)  

/°  90  

/°  91.030(3)  

/°  90  

V/Å3  2272.32(14)  
Z  4  
Z'  1  

min/°  4.220  

max/°  76.537  

Measured Refl.  14444  

Independent Refl.  4685  

Reflections Used  4108  
Rint  0.0484  

Parameters  407  

Restraints  240  

Largest Peak  0.420  

Deepest Hole  -0.513  

GooF  1.172  

wR2 (all data)  0.1307  
wR2  0.1263  

R1 (all data)  0.0738  
R1  0.0651  
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Compound 35 

Experimental. Single clear red plate-shaped crystals of 35 were obtained by 

recrystallisation from acetone. A suitable crystal 0.24×0.19×0.08 mm3 was selected 

and mounted on a MITIGEN holder oil on a SuperNova, Single source at 

offset/far, Atlas diffractometer. The crystal was kept at a steady T = 123.01(10) K 

during data collection. The structure was solved with the ShelXT[60] structure 

solution program using the dual solution method and by using Olex2[59] as the 

graphical interface. The model was refined with version 2016/6 of ShelXL[61] using 

Least Squares minimisation. 

Crystal Data. C24H23ClN6O2, Mr = 462.93, triclinic, P-1 (No. 2), a = 9.6038(3) Å, b = 

10.8828(3) Å, c = 11.6639(3) Å,  = 93.930(2)°,  = 105.063(3)°,  = 102.321(3)°, V = 

1140.09(6) Å3, T = 123.01(10) K, Z = 2, Z' = 1, (CuK) = 1.765, 24274 reflections 

measured, 4559 unique (Rint = 0.0439) which were used in all calculations. The final 

wR2 was 0.1088 (all data) and R1 was 0.0379 (I > 2(I)). 

Cambridge Structural Database CCDC. 1884855 
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Detailed Crystal Data.   

Formula  C24H23ClN6O2  

Dcalc./ g cm-3  1.349  

/mm-1  1.765  

Formula Weight  462.93  

Colour  clear red  

Shape  plate  

Size/mm3  0.24×0.19×0.08  

T/K  123.01(10)  

Crystal System  triclinic  

Space Group  P-1  

a/Å  9.6038(3)  

b/Å  10.8828(3)  

c/Å  11.6639(3)  

/°  93.930(2)  

/°  105.063(3)  

/°  102.321(3)  

V/Å3  1140.09(6)  
Z  2  
Z'  1  

Wavelength/Å  1.54184  

Radiation type  CuK  

min/°  3.959  

max/°  74.052  

Measured Refl.  24274  

Independent Refl.  4559  

Reflections with I > 2(I)  4064  
Rint  0.0439  

Parameters  299  

Restraints  0  

Largest Peak  0.256  

Deepest Hole  -0.341  

GooF  1.042  

wR2 (all data)  0.1088  
wR2  0.1036  

R1 (all data)  0.0431  
R1  0.0379  
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4.5.10 Additional Pharmacological Data 

Table S3. Pharmacological data of compounds 19 and 21 at the guinea pig ileum (gpH1R) with 
varying preincubation time (15 min and 30 s). Cpd. = Compound. 

Cpd. 

pA2 ± SEM(a) (gp-ileum) 

trans isomer(b) 

(15 min incubation) 

N*(c) 

pA2 ± SEM(a) (gp-ileum) 

trans isomer(b) 

(30 min incubation) 

N*(c) 

19 5.31 ± 0.10 16/(52) 5.27 ± 0.12 6/(9) 

21 4.88 ± 0.04 3/(23) 4.84 ± 0.09 4/(9) 

(a) Data represent mean values ± SEM (standard error of mean) from N experiments. Data were 
analysed by nonlinear regression and were best fitted to sigmoidal concentration-response curves. 

pA2: -log c(Ant) + log (r-1); where r = 10pEC50; pEC50 was calculated from pEC50 of histamine and 
pEC50 of histamine in presence of the respective antagonist. n.a. = not active. (b) The trans isomer 
was tested in its thermal equilibrium. (c) N* represents the number of experiments in “X/(X+Y)”. 
Experiments were carried out in presence of the respective antagonist at a concentration range from 
10-7.5 – 10-4. “X” represents experiments in which an effect - rightward-shift of the histamine 
concentration-response-curve (CRC) - could be measured. “Y” represents experiments in which no 
rightward-shifted histamine CRCs could be measured (especially for weak antagonists at lower 
concentrations). 
 

 

 

Figure S17.  Schild plots for 29-cis (A), 35-trans (B), and 41-trans (C) of experiments on the guinea 
pig ileum (gpH1R). 

 

4.5.11 Additional Chemical Structures 

 

Scheme S1. Chemical structures of the reference substances.[5,45] 
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CHAPTER 5 

5 A Photochromic Glycine Potentiator Azolog 
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5.1 Introduction 

The field of photopharmacology emerged as a hybrid of photochemistry and 

pharmacology and has achieved increasing attention for the spatial and temporal 

regulation of biologically active targets by light.[1,7] The use of photo-responsive 

molecules to trigger a certain response can be characterized by their mode of 

operation. In contrast to irreversible approaches (e.g., caged ligands)[8-10] or 

tethered ligands (e.g., photoswitchable – orthogonal remotely – tethered ligands), 

which require genetically engineered receptors,[11] photochromic ligands (PCLs) 

are freely diffusible, reversibly acting small molecules. PCLs can be isomerized 

between at least two different isomeric states upon irradiation with light, each 

characterized by certain chemical and steric properties. Besides fulgides and 

dithienylethenes, azobenzenes represent the most prominent PCL scaffold.[10,12] 

Within the last years, especially their applications in living test systems has 

attracted growing attention.[2] Their benefits include their high photostability and 

cycle reversibility without loss of responsiveness or degradation as well as their 

synthetic accessibility and tuneability concerning their photochromic properties, 

e.g., thermal half-lives and absorption wavelengths. Upon light-induced trans-cis 

isomerization, the PCL undergoes a drastic change in sterics and electronics 

allowing to change the properties of the merged pharmacological ligand towards 

its biological target.[10,12-15]  

Although this isomerization was discovered almost 100 years ago[16] and is 

henceforth experimentally and computationally deeply investigated few 

drawbacks remain, e.g., incomplete photoswitching. Especially for biological 

applications, high photostationary states are desirable to unequivocally assign an 

effect to each of the isomers. Even though azobenzenes are successfully used in in 

vitro and in vivo studies, the predictability of azobenzene’s photostationary states 

remains challenging.  

A first breakthrough concerning the improvement of the photostationary states 

was achieved by the exchange of one of the aryl rings of conventional azobenzene 
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by a heterocycle. Herges reported azoindazoles with quantitative trans to cis 

isomerization but a trans-photostationary state (trans-PSS) of only around 50%.[17] 

As further improvement, Fuchter introduced arylazo pyrazoles (AAPs) with 

almost quantitative switching in both directions due to a red shift of the n-* 

absorption band of the cis isomer.[18] Besides their improved photochromism, 

AAPs’ five-membered nitrogen heterocycle provides synthetic accessibility for 

further functionalization and represents a significant structural component 

present in biological molecules and pharmaceuticals.[19]  

In particular, a highly active non-photochromic glycine potentiator has been 

recently reported[20,21] that is susceptible of “azologization”.[22,23] Glycine receptors 

(GlyRs) are inhibitory anion selective pentameric ion channels and belong to the 

cysteine-loop (Cys-loop) superfamily of ligand-gated ion channels, which also 

include type A -aminobutyric acid receptors (GABAARs), nicotinic acetylcholine 

receptors (nAChRs), and serotonin type 3 receptors (5HT3Rs). GlyRs are expressed 

in nerves of the spinal dorsal horn and are responsible for fast synaptic inhibitory 

transmission, making them potential targets for novel painkillers. Their fast 

kinetics are well-matched to the kinetics of synthetic photoswitches. The activation 

of GlyRs, in particular alpha3 GlyR, is believed to reduce the transmission of 

painful stimuli. Current pain treatment includes the systemic administration of 

agents (such as opioids) with undesirable side effects and which often lack 

potency.[20,21,24-27] The identification of novel drugs devoid of these side effects or a 

method to localize GlyR modulation would improve medical care. Therefore, 

photocontrolling the activity of GlyR modulators bears great interest for 

neurochemistry and for medicine.[28] 

In the present work, we report the synthesis and in vivo evaluation of a 

photochromic glycine potentiator derivative based on arylazo pyrazole. The in vivo 

activity of xenopus larvae could be switched towards high excitatory states upon 

light-induced trans to cis isomerization and restored to vehicle activity upon re-

isomerization to trans. Molecular modelling provides a molecular view on the 

binding of the photochromic ligand to its putative target receptor alpha3 GlyR and 
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also serves as primary screening tool to predict which of the designed molecules 

is more likely to exhibit a light-dependent effect. 

5.2 Results and Discussion 

5.2.1 Design and Syntheses 

Design. Based on the chemical structure of DiMauro’s[20] optimized tricyclic 

sulfonamide AM3607, which functions as a high efficacy alpha3 GlyR potentiator, 

we designed a corresponding arylazo pyrazole derivative (Scheme 1). We 

envisioned that the replacement of the amide linked pyrrolidine by an aryl azo 

pyrazole, while maintaining the sulfonamide benzodioxole moiety would result in 

a highly potent arylazo pyrazole derivative. This photochromic modulator is 

designed to exert activity only in its cis-isomeric state, which resembles the “chair”-

like conformation reported for the parent compound AM3607 bound to alpha3 

GlyR.[21] The steric change upon cis to trans isomerization would then result in loss 

of activity, which could be restored by irradiation with light. Thus, the design 

aimed at obtaining a cis active photochromic GlyR potentiator that was inert in its 

trans-isomeric state. 

 

Scheme 1. Design of a photochromic arylazo pyrazole derivative as glycine receptor modulator 
based on the hit to lead optimization of DiMauro.[20] 

Synthesis. The synthesis of the sulfonic acid substituted benzodioxole as structural 

key element was performed as reported (Scheme 2).[29] The functionalization of 1,3-

benzodioxole (1) was performed using a sulfur trioxide-N,N-dimethylformamide 

complex. The resulting sulfonic acid 2 was converted into its corresponding 



A PHOTOCHROMIC GLYCINE POTENTIATOR AZOLOG 

278 

  

sulfonyl halide 3 upon reaction with thionyl chloride allowing the subsequent 

formation of an azo pyrazole sulfonamide (Scheme 3). 

 

Scheme 2. Synthesis of the highly reactive 1,3-benzodioxole-5-sulfonyl chloride 3.[29] 

As photochromic moiety, two different arylazo pyrazoles were synthesized as 

outlined in Scheme 3. Aniline (4) and – for improved overall solubility in aqueous 

media – its hydroxy derivative 5 were diazotized using sodium nitrite in the 

presence of hydrochloric and acetic acid and reacted with pentane-2,4-dione 

providing the phenylhydrazonopentane-2,4-diones 8 and 9, respectively. The 

subsequent reaction with hydrazine monohydrate afforded the desired 1,3-

dimethyl-arylazo pyrazoles 10 and 11.[30] The installation of the sulfonic acid 

benzodioxole 3 was achieved in the presence of sodium hydride as base affording 

the highly functionalized photochromic derivatives 12 and 13 in good yields.[31] 

 

Scheme 3. Synthesis of the pyrazole azobenzene based sulfonamides 12 and 13.[30,31] 

5.2.2 Photochemical Characterization 

The photochemical characterization of compounds 12 and 13 was performed in 

DMSO using UV-Vis and NMR spectroscopy as well as HPLC-assisted analysis. 
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Figure 1 shows exemplarily the UV-Vis absorption spectrum (left panel) and cycle 

performance (right panel) of the hydroxy substituted AAP sulfonamide 13. The 

compounds were dissolved 50 µM in DMSO representing the trans isomer in its 

thermal equilibrium (black curve). Black arrows indicate the spectral changes upon 

trans-cis isomerization triggered by irradiation with UV light ( = 365 nm) until the 

cis-photostationary state (cis-PSS; red curve) was reached. The maximum 

representing the trans isomer (black curve) decreased and a new shoulder in the 

visible range, characteristic for the cis isomer, evolved. Back isomerization to the 

trans isomer at its PSS (blue curve) is triggered by irradiation with visible light ( 

= 528 nm). Dotted black arrows label the resulting isosbestic points indicating a 

clear two-component switching without any degradation or formation of a side 

product. The major photophysical properties of compounds 12 and 13 are 

summarized in Table 1. All compounds showed excellent photochromic properties 

in DMSO with high photostationary states and excellent fatigue resistance. 

 

Figure 1. Photochromic properties of AAP derivative 13 (50 µM DMSO). Left panel: UV-Vis 

absorption spectrum upon irradiation with  = 365 nm until the cis-PSS is reached (30 s) and  = 
528 nm until the trans-PSS is reached (120 s). Black arrows indicate the characteristic absorption 
changes upon trans-cis isomerization. Dotted black arrows indicate isosbestic points. Right panel: 

Repetitive switching cycles upon alternate irradiation with UV ( = 365 nm) and green ( = 528 nm) 

light plotted at 341 nm (max of the trans isomer). 

The determination of the thermal half-lives (THLs) of the cis isomer of compounds 

12 and 13 was accomplished by monitoring the increase in absorbance at the 

maximum wavelength of the trans isomer, which corresponds to the regeneration 

of the trans isomer from a 50 µM solution of the cis isomer in the dark. The data 
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indicate moderate thermal stability of the cis isomers, which is beneficial because 

constant irradiation during the biological testing can be avoided. 

Table 1. Photochemical properties of sulfonamides 12 and 13 measured 50 µM DMSO. Cpd. = 
Compound. 

Entry Cpd. 
max             

cis isomer 
[nm] 

max        
trans isomer 

[nm] 

Isosbestic 
points 
[nm] 

 

THL   
[h] 

 

PSS 

1 12 329 439 287, 396 1.6 
93% cis (365 nm)(a) 

78% trans (455 nm)(a) 

2 13 

 

 

 

 

 

341 441 

 

 

 

 

 

297, 409 2.9 
86% cis (365 nm)(b) 

83% trans (528 nm)(b) 

(a) Determined by analytical HPLC measurement of a preirradiated 50 µM solution at 20 °C at the 
isosbestic point. (b) Determined by NMR-measurement of a 50 mM solution in DMSO under 
constant irradiation until the PSS was reached. 

5.2.3 In Vivo Behavioral Studies 

Due to insufficient solubility of the unsubstituted AAP sulfonamide 12 only its 

hydroxy derivative 13 could be subjected to in vivo analysis in aqueous media. 

Compound 13 showed a robust photoswitchable profile in animal behavioral 

studies. As intended by the design, the AAP sulfonamide 13 acted as a cis-active 

modulator of xenopus behavior (Figure 2). In its trans-isomeric state, compound 13 

restored larvae activity to control (vehicle) activity during the relaxation period 

(RP) and the first visible light cycles. Upon irradiation-induced trans to cis 

isomerization, compound 13 induced major inactivity states to all tadpoles for the 

entire UV ( = 365 nm) irradiation periods, after which the animals slowly 

recovered to movements corresponding to control experiments (Figure 2A). This 

data suggests, that the AAP sulfonamide 13 acts as a highly effective GlyR 

potentiator in its cis-isomeric state whereas its trans-isomeric activity resembles the 

control conditions (vehicle). 
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Figure 2. (A) One-minute trajectories of the average swimming distances (n = 24 per treatment) are 
shown for vehicle (0.5% DMSO) and for 50 µM of compound 13. For the first 20 minutes, tadpoles 
were undisturbed in complete darkness (relaxation period, RP). Afterwards, the larvae were 
irradiated with three cycles of two minutes of 365 nm and two minutes of 500 nm wavelengths, 
each one spared with two minutes of dark. Colored areas show the standard error of the mean 
(S.E.M.). (B) Light period analysis for both treated larvae. Average of the distance swam for the last 
five minutes of the RP and all-time irradiation periods for each wavelength (500 nm and 365 nm). 
Unpaired t-test was applied for each treatment and the light period was used for the statistical 
analysis with p < 0.05 for statistical significance (n.s. = not significant, ** p-value < 0.01, *** p-value 
< 0.001). (C) Inset of one-minute trajectory for the same group of tadpoles and treatment 
corresponding to visible light (green boxed) and UV (purple boxed) irradiation period. Larvae 
swimming trajectories are colored traces were red traces respond to larvae movements above six 
mm·s-1 and green traces for movements between two and six mm·s-1. 

5.2.4 Molecular Docking 

Compound 13 was modelled to its putative target receptor alpha3 GlyR in order 

to understand the molecular determinants of the different effect of the cis and trans 

isomers in the in vivo zebrafish behavioral tests. As this compound was designed 

based on the chemical structure of AM3607,[20] which is an effective glycine 
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potentiator of alpha3 GlyR, it is expected to bind in the same allosteric pocket,[21] 

located at the subunit interface in the extracellular domain. 

In order to validate the applied docking protocol, AM3607[20] was first re-docked 

into the crystallographically discovered allosteric pocket.[21] The obtained docking 

pose accurately reproduces the X-ray binding pose of AM3607 (Figure 3). AM3607 

shows two T-stacking interactions with Y78 and F32, one - stacking with Y161, 

two hydrogen bonds between the sulfonamide group and R29 and many 

hydrophobic contacts (Figure 4C), i.e. the obtained docking pose reproduces the 

main receptor-ligand interactions observed in the reported X-ray structure.[21] 

Figure 3. Binding poses of AM3607 in the crystallographic structure[21] (green) and obtained from 

the docking calculation (carbon atoms in black, oxygen atoms in red and nitrogen atoms in blue) in 
the novel allosteric binding site. 

Dockings were subsequently performed for each of the two stereoisomers of 

compound 13. The cis isomer of compound 13 exhibits receptor-ligand interactions 

similar to AM3607, such as the two hydrogen bonds of the sulfonamide group with 

R29. Although the mentioned T-stacking interaction with F32 and some 

hydrophobic contacts are lost, this is easily compensated by the gain of two - 

stacking interactions with Y161 and Y78 and one hydrogen bond between K33 and 

the phenolic hydroxyl group of 13. 

In contrast, the trans isomer of compound 13 shows a binding mode, which is more 

different from that of AM3607. The two hydrogen bonds between R29 and the 

sulfonamide group (which help to secure the compound in its binding site), as well 

as the two - stacking interactions with Y78 and F32, are lost, and the hydrogen 
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bond with K33 is replaced by a weaker cation- interaction. Also, fewer 

hydrophobic contacts are present. 

Figure 4. (A) Number of receptor-ligand interactions for AM3607 (black), cis-13 (pink bars) and 
trans-13 (orange) bound to alpha3 GlyR. (B) Superposition of the binding modes of AM3607 (black) 
and of both isomers of 13 (trans in orange and cis in purple). (C) AM3607, represented with black 
carbon atoms and blue, yellow and red for the nitrogen, sulfur and oxygen atoms, respectively. (D) 
cis-13 bound in the novel allosteric pocket, represented with purple carbon atoms, all other atom 
types are colored as in (C). (E) Trans-13, represented with orange carbon atoms; all other atom types 
are colored as in (C). In panels (C-E) the residues interacting with the respective compound are 
shown as thin lines with carbon atoms in white. Hydrogen bonds are shown using larger spheres 
for the atoms involved directly in the interaction and dashed black lines connecting donor and 

acceptor. T- and - stacking interactions are displayed with green transparent surfaces around the 

atoms involved in the interaction, whereas cation- interactions are represented as smaller spheres 
and a double dashed black line. 

Altogether, the docking results indicate that the cis isomer of 13 binds to alpha3 

GlyR with a pattern of interactions more similar to AM3607 than its trans isomer. 

This is most likely due to the cis isomer mimicking better the “chair”- shaped 

conformation of AM3607[21] than the extended trans isomer. Consequently, cis-13 is 

associated to the positive allosteric conformational change of GlyR3 proposed for 

AM3607. The ligand binding pocket is only 10 Å away from the glycine binding 

site, and hence it has been hypothesized that binding of the potentiator can 

stabilize the orthosteric site and increase the receptor affinity to glycine.[21] 
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5.3 Conclusion 

In this work, we present the design, synthesis, and (photo-)chemical 

characterization of an arylazo pyrazole based photochromic derivative of a 

reported glycine potentiator. All synthesized compounds show highly reversible 

photochromism with high fatigue resistance and high photostationary states. This 

is beneficial as an observed biological effect can clearly be assigned to one or the 

other isomer.  In vivo investigations on tadpoles showed an isomer-dependent 

effect on their behavior. In its cis-isomeric state, AAP 13 induced major inactivity 

states, in agreement with GlyR potentiation. Reisomerization to trans AAP 13 

provoked the restoration of the larvae activity to vehicle activity. Molecular 

docking analysis provide a rational guidance to design and understand the 

observed isomer-dependent in vivo activities in comparison to the reported[20,21] 

results.   

5.4 Experimental Part 

5.4.1 General Procedures and Materials 

Commercial reagents and starting materials were purchased from the commercial 

suppliers abcr, Acros Organics, Alfa-Aesar, Fisher Scientific, Merck, Sigma 

Aldrich, TCI, or VWR and used without any further purification. Solvents were 

used in p.a. quality and dried according to common procedures, if necessary. Dry 

nitrogen was used as an inert gas atmosphere. Flash column chromatography was 

performed using Sigma Aldrich MN silica gel 60 M (40-63 µm, 230-400 mesh) for 

normal phase chromatography. Reaction monitoring via thin layer 

chromatography was performed on alumina plates coated with silica gel (Merck 

silica gel 60 F254, layer thickness 0.2 mm). Melting points were determined using a 

Stanford Research System OptiMelt MPA 100 and are uncorrected. NMR spectra 

were measured on a Bruker Avance 300 (1H 300.13 MHz, 13C 75.48 MHz), Bruker 

Avance III HD 400 (1H 400.13 MHz, 13C 100.61 MHz), Bruker Avance III HD 600 

(1H 600.25 MHz, 13C 150.95 MHz) and Bruker Avance III 600 (1H 600.25 MHz, 13C 



CHAPTER 5 

285 

 

150.95 MHz). The spectra are referenced against the NMR-solvent (DMSO-d6: H = 

2.50 ppm, C = 39.52 ppm) and chemical shifts  are reported in ppm. Resonance 

multiplicity is abbreviated as: s (singlet), d (doublet), t (triplet) and m (multiplet). 

Carbon NMR signals are assigned using DEPT 135 and 1H-13C HSQC spectra with 

(+) for primary/tertiary, (-) for secondary, and (q) for quaternary carbons. Mass 

spectra were recorded on a Finnigan MAT-SSQ 710 A, ThermoQuest Finnigan TSQ 

7000, Agilent Q-TOF 6540 UHD, or a Jeol AccuTOF GCX instrument. UV-Vis 

absorption spectroscopy was performed in 10 mm quartz cuvettes using an Agilent 

8543, Agilent Cary 100, or Agilent Varian Cary 50 spectrometer. Analytical HPLC 

measurements were performed using an Agilent 1220 Infinity LC (column: 

Phenomenex Luna 3 µm C18(2) 100 Å, 150 x 2.00 mm; flow 0.3 mL min-1 at 20 °C or 

30 °C; solvent A: MilliQ water with 0.05 wt% TFA; solvent B: MeCN). The ratios at 

the PSSs were determined via analytical HPLC at 20 °C at the isosbestic points or 

via NMR spectroscopy under constant irradiation. An Agilent 1260 system 

(column: Phenomenex Luna 10 µm C18(2) 100 Å, 250 x 21.2 mm; flow: 22 mL min-1; 

solvent A: MilliQ water; solvent B: MeCN) was used for preparative HPLC 

purification. Light sources for irradiation:  = 365 nm (Seoul Viosys CUN6GB1A, 

1000 mA, 1.4 W),  = 455 nm (Osram OSLON SSL 80 LD-CQ7P-1U3U, 1000 mA, 

0.45 W), and  = 528 nm (Osram LTCP7P-KXKZ, 350 mA, 71 lm). The power of the 

light source is given based on the specifications supplied by the company when 

the LEDs were purchased. All tested final compounds possess a purity ≥94% 

determined by HPLC measurements at 30 °C with detection at 220 nm or 254 nm, 

respectively.  

Compounds 2,[29] 3,[29] 8,[30] 9,[30] 10,[30] and 11[30] were prepared according to 

reported procedures. 

5.4.2 Synthetic Procedures and Characterization 

General procedure for the synthesis of 12 and 13. Compounds 12 and 13 were 

prepared via an adapted literature procedure.[31] A solution of the respective azo 

pyrazole (1.0 eq) in DMF (10 mL pro mmol) was cooled to 0 °C under a nitrogen 
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atmosphere. Sodium hydride (60% suspension in paraffin oil, 1.1 eq) was added 

and the mixture stirred for 15 minutes at 0 °C and 15 minutes at room temperature. 

The substituted sulfonyl chloride (1.3 eq) was added and the reaction stirred at 

room temperature for one hour. The mixture was poured on ice and the solid 

collected by filtration. Purification by column chromatography using CH2Cl2 + 5% 

MeOH as eluent and subsequent preparative HPLC afforded the desired product.  

(E)-1-(benzo[d][1,3]dioxol-5-ylsulfonyl)-3,5-dimethyl-4-(phenyldiazenyl)-1H-

pyrazole (12). Orange solid (0.36 g, 0.93 mmol, 75%). Gradient 0-10 min 50%-98% 

MeCN, tR = 11.1 min. M.p.: 158 °C. 1H-NMR (400 MHz, DMSO-d6): δ = 7.82 – 7.76 

(m, 2H), 7.65 (dd, J = 8.3, 2.0 Hz, 1H), 7.59 – 7.49 (m, 4H), 7.17 (d, J = 8.4 Hz, 1H), 

6.21 (s, 2H), 2.88 (s, 3H), 2.38 (s, 3H). 13C-NMR (101 MHz, DMSO-d6): δ = 153.3 (q), 

152.5 (q), 148.5 (q), 145.5 (q), 144.8 (q), 135.9 (q), 131.0 (+), 129.4 (+), 129.2 (q), 124.7 

(+), 122.0 (+), 108.9 (+), 107.1 (+), 103.3 (-), 14.7 (+), 10.9 (+). HRMS (ESI) calcd. for 

(C18H17N4O4S+) [M+H]+: m/z = 385.0965; found 385.0970. MF: C18H16N4O4S. MW: 

384.41 g/mol. 

(E)-4-((1-(benzo[d][1,3]dioxol-5-ylsulfonyl)-3,5-dimethyl-1H-pyrazol-4-yl)diaz-

enyl)phenol (13). Orange solid (264 mg, 0.66 mmol, 55%). Gradient 0-20 min 10%-

98% MeCN, tR = 16.2 min.  M.p.: 156 °C. 1H-NMR (400 MHz, DMSO-d6): δ = 12.88 

(s, 1H), 7.72 – 7.68 (m, 2H), 7.41 (d, J = 1.9 Hz, 1H), 7.35 (dd, J = 8.2, 2.0 Hz, 1H), 

7.19 – 7.15 (m, 2H), 7.11 (d, J = 8.3 Hz, 1H), 6.22 (s, 2H), 3.31 (s, 6H). 13C-NMR 

(101 MHz, DMSO-d6): δ = 153.4 (q), 152.0 (q), 149.7 (q), 148.9 (q), 141.3 (q), 141.3 (q), 

134.7 (q), 127.1 (q), 125.5 (+), 123.4 (+), 123.2 (+), 109.1 (+), 108.1 (+), 103.6 (-), 12.3 

(+), 12.3 (+). HRMS (ESI) calcd. for (C18H17N4O5S+) [M+H]+: m/z = 401.0914; found 

401.0910. MF: C18H16N4O5S. MW: 400.41 g/mol. 

5.4.3 In Vivo Behavioral Studies 

Animal housing and photoswitchable behavioral assays. Xenopus tropicalis 

embryos (Nasco) were obtained by natural mating and maintained till 3-4 dpf in 

0.1 × Marc’s modified Ringer’s (MMR) solution in agarose coated petri dishes 

(10-15 cm diameter) in a dark incubator (24ºC). Animals were transferred to tanks 
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containing Xenopus water, which was prepared by adding eight grams of instant 

ocean salt (Instant Ocean) to 20 L of distilled water. Conductivity and pH were 

800 µS and 7.0-7.5, respectively. Tadpoles were kept at a density of 30-50 animals 

L-1, at 25ºC and fed daily with spirulina. Tadpoles were recorded and video 

analyzed using the Zebrabox and Zebralab software (ViewPoint Life Sciences). For 

all experiments, tadpoles of stage 43 to 47[32] were left undisturbed for 40 minutes 

in 200 µL fresh UV filtered water and in darkness. Continuously, 100 µL were 

removed and replaced with a double concentrated treatment solution and data and 

video recording begun. For the first 20 minutes, tadpoles were kept in darkness 

measuring basal activity, named as the relaxation period (RP). After the RP, three 

double light irradiation cycles were applied; two minutes of 365 nm (UV light) and 

two minutes of darkness followed by two minutes 500 nm (visible light) and two 

minutes of darkness. 

Data analysis and statistics. X. tropicalis tracking was performed in real time and 

data acquisition integrated one-minute intervals using the Zebralab software 

(ViewPoint Life Science). Data statistical analysis was performed using GraphPad 

Prism 6 software. Selective irradiation was performed with two ordered based 

(evenly distributed) arrays of twelve light emitting diodes (LEDs) for each 

wavelength placed twelve cm afar of the multiwell plate. The light intensities, 

measured with an optical power meter (model Newport 1916-C), were 5.92 W·m-2 

for 365 nm (UV) and 2.2 W·m-2 for 500 nm (Visible-Blue). Distance activity was 

measured as the sum of swimming distances (in millimeters) during burst 

activities (larvae swimming velocities higher than 6 mm·s-1) over one-minute 

integration. Data was analyzed following unpaired t-test with Welch’s correction 

(p-value 0.05) and are presented as mean ± standard error of the mean (s.e.m.) with 

the number of larvae (n) indicated in each case. 

5.4.4 Molecular Docking 

The initial structures of compound 13 (cis and trans) were created employing 

Avogadro (version 1.1.1).[33] The structure of the alpha3 GlyR was taken from the 
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recently published crystal structure (PDB code 5TIO).[21] Docking was performed 

into the novel allosteric pocket found for AM3607, located at the subunit interface 

in the extracellular domain. Given the pentameric symmetry of GlyR, only one site 

was considered. The program Autodock Vina[34] was used for the docking 

calculations, using default values. This docking protocol was repeated ten times, 

starting with different random seeds, so that a total number of 90 binding modes 

was obtained for each of the two possible isomers of compound 13. Both 

compound 13 and some receptor residues were treated as flexible. In particular, 

the protein residues chosen as flexible are the ones surrounding the photochromic 

moiety attached to the pharmacologically active sulfonamide benzodioxole (see 

Scheme 1), in order to allow the protein to adjust to the ligand modifications. A 

similar docking protocol was used for the re-docking experiment of AM3607. The 

criteria to select the best docking pose are: (i) the sulfonamide benzodioxole moiety 

is placed as the AM3607 potentiator,[21] in order to maximize the interactions with 

the allosteric binding pocket residues, and (ii) the pose has the highest binding 

energy, according to the AutoDock Vina scoring function.[34] Protein-ligand 

interactions (such as hydrogen bonds, - stacking, and hydrophobic interactions) 

were analyzed using the Binana algoritm.[35] All images were generated using the 

VMD program.[36] 
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5.5 Supporting Information 

5.5.1 1H- and 13C-NMR Spectra 

Compound 12 (DMSO-d6)  
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Compound 13 (DMSO-d6)  
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5.5.2 UV-Vis Absorption Spectra and Cycle Performances 

 

                       

Figure S1. Compound 12 measured 50 µM in DMSO. Upper panel: UV-Vis absorption spectra upon 

continuous irradiation until the PSS is reached.  (cis-PSS) = 365 nm (15 s),  (trans-PSS) = 455 nm 

(9 s). Lower panel: Cycle performance. Changes in absorption at 348 nm (max of the trans isomer) 

were measured during alternate irradiation with  = 365 nm (10 s) and  = 455 nm (10 s) until the 
PSS is reached. 
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5.5.3 Thermal Half-Lives  

 

Figure S2. Thermal stability of the cis isomer of 12 measured 50 µM in DMSO at 25 °C. Changes in 

the absorption at the indicated wavelength (max of the trans isomer) after irradiation with  = 
365 nm and subsequent thermal relaxation are represented as black dots. The red curve represents 
an exponential nonlinear curve fit. 

 

Figure S3. Thermal stability of the cis isomer of 13 measured 50 µM in DMSO at 25 °C. Changes in 

the absorption at the indicated wavelength (max of the trans isomer) after irradiation with  = 
365 nm and subsequent thermal relaxation are represented as black dots. The red curve represents 
an exponential nonlinear curve fit. 
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5.5.4 Analytical HPLC Traces for Purity Determination 

Compound 12 (0.5 mM in DMSO, injection volume 3 µL) 

 

 

tR (trans isomer) = 23.2 min 

 

Detection at 220 nm: 97% 

 

 

Detection at 254 nm:  >99% 
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Compound 13 (0.5 mM in DMSO, injection volume 3 µL) 

 

 

tR (trans isomer) = 18.3 min 

 

Detection at 220 nm: >99% 

 

 

Detection at 254 nm: >99% 
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5.5.5 Analytical HPLC Traces for PSS Determination  

Compound 12 

Thermal equilibrium (50 µM solution in DMSO, injection volume 5 µL):  

100% trans isomer 

 

 

cis-PSS (50 µM solution in DMSO, injection volume 5 µL; 365 nm):  

93% cis isomer; 7% trans isomer 

 

 

trans-PSS (50 µM solution in DMSO, injection volume 5 µL; 455 nm):  

22% cis isomer; 78% trans isomer 
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5.5.6 PSS Determination via NMR 

Compound 13 

cis-PSS (86%; blue spectrum) compared to thermal equilibrium (red spectrum) 

 

trans-PSS (83%; blue spectrum) compared to thermal equilibrium (red spectrum) 
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5.5.7  Single Crystal X-ray Crystallography 

Compound 11 

Experimental. Single clear light-yellow prism-shaped crystals of 11 were obtained 

by recrystallisation from ethanol. A suitable crystal (0.25×0.08×0.06) mm3 was 

selected and mounted on a MITIGEN holder oil on a SuperNova, Single source at 

offset, Atlas diffractometer. The crystal was kept at T = 122.99(10) K during data 

collection. Using Olex2,[37] the structure was solved with the ShelXT[38] structure 

solution program, using the Intrinsic Phasing solution method. The model was 

refined with version 2016/6 of ShelXL[39] using Least Squares minimization. 

Crystal Data. C11H12N4O, Mr = 216.25, monoclinic, C2/c (No. 15), a = 11.1476(2) Å, 

b = 9.5888(2) Å, c = 20.3006(4) Å,  = 92.376(2)°,  =  = 90°, V = 2168.11(7) Å3, T = 

122.99(10) K, Z = 8, Z' = 1, (CuK) = 0.735, 23381 reflections measured, 2182 unique 

(Rint = 0.0488) which were used in all calculations. The final wR2 was 0.0985 (all 

data) and R1 was 0.0357 (I > 2(I)). 

Cambridge Structural Database CCDC. 1942445 
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Detailed Crystal Data.   

    

Formula  C11H12N4O  

Dcalc./ g cm-3  1.325  

/mm-1  0.735  

Formula Weight  216.25  

Colour  clear light yellow  

Shape  prism  

Size/mm3  0.25×0.08×0.06  

T/K  122.99(10)  

Crystal System  monoclinic  

Space Group  C2/c  

a/Å  11.1476(2)  

b/Å  9.5888(2)  

c/Å  20.3006(4)  

/°  90  

/°  92.376(2)  

/°  90  

V/Å3  2168.11(7)  
Z  8  
Z'  1  

Wavelength/Å  1.54184  

Radiation type  CuK  

min/°  4.360  

max/°  73.758  

Measured Refl.  23381  

Independent Refl.  2182  

Reflections Used  1890  
Rint  0.0488  

Parameters  157  

Restraints  0  

Largest Peak  0.223  

Deepest Hole  -0.249  

GooF  1.035  

wR2 (all data)  0.0985  
wR2  0.0941  

R1 (all data)  0.0414  
R1  0.0357  
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Compound 12 

Experimental. Single clear yellow prism-shaped crystals of 12 were obtained by 

recrystallisation from CH2Cl2. A suitable crystal (0.23×0.12×0.11) mm3 was selected 

and mounted on a MITIGEN holder oil on a SuperNova, Single source at offset, 

Atlas diffractometer. The crystal was kept at T = 122.99(12) K during data 

collection. Using Olex2,[37] the structure was solved with the ShelXT[38] structure 

solution program, using the Intrinsic Phasing solution method. The model was 

refined with ShelXL[39] using Least Squares minimization. 

Crystal Data. C18H16N4O4S, Mr = 384.41, monoclinic, Ia (No. 9), a = 12.34620(10) Å, 

b = 8.95780(10) Å, c = 32.9428(4) Å, b = 98.9220(10)°, a = g = 90°, V = 3599.22(7) Å3, 

T = 122.99(12) K, Z = 8, Z' = 2, (CuK) = 1.891, 39474 reflections measured, 7168 

unique (Rint = 0.0328) which were used in all calculations. The final wR2 was 0.0707 

(all data) and R1 was 0.0262 (I > 2(I)). 

Cambridge Structural Database CCDC. 1942441 
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Detailed Crystal Data. 

Formula  
 

C18H16N4O4S  

Dcalc./ g cm-3  1.419  

/mm-1  1.891  

Formula Weight  384.41  

Colour  clear yellow  

Shape  prism  

Max Size/mm  0.23  

Mid Size/mm  0.12  

Min Size/mm  0.11  

T/K  122.99(12)  

Crystal System  monoclinic  

Flack Parameter  0.012(8)  

Hooft Parameter  0.000(3)  

Space Group  Ia  

a/Å  12.34620(10)  

b/Å  8.95780(10)  

c/Å  32.9428(4)  

/°  90  

/°  98.9220(10)  

/°  90  

V/Å3  3599.22(7)  
Z  8  
Z'  2  

min/°  5.121  

max/°  73.726  

Measured Refl.  39474  

Independent Refl.  7168  

Reflections Used  7014  
Rint  0.0328  

Parameters  540  

Restraints  194  

Largest Peak  0.263  

Deepest Hole  -0.182  

GooF  1.016  

wR2 (all data)  0.0707  
wR2  0.0700  

R1 (all data)  0.0270  
R1  0.0262  
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6.1 Introduction 

In nature, various receptors and biochemical processes evolved provoked by 

light.[1,2] Photons as non-invasive, abundant input signal may trigger a system’s 

response with high spatial and temporal resolution.[3,4] Their use as a control 

element for biological systems is highly suitable as light matches perfectly with 

fast signal transduction, especially of ion channels.[3-6] One profoundly 

investigated example is represented by -aminobutyric acid (GABA) gated 

chloride channels, the major mediators of inhibitory neurotransmission in the 

mammalian central nervous system. Besides GABAA receptors (GABAARs) the 

Cys-loop family of pentameric ligand-gated ion channels also includes glycine, 

serotonin and nicotinic acetylcholine receptors.[7] GABAARs display a broad 

variety regarding their subunit composition and connected physiological 

functions as cognition, learning, and memory.[8,9] Owing to their complexity, 

misfunction of these receptors leads to epilepsy, anxiety, depression and sleep 

disorders.[9] Ligand-gated chloride channels, such as GABA type A receptors 

(GABAARs), mediate fast inhibition of neural activity and determine the bulk of 

synaptic transmission controlling all behavioral relevant circuitry.[10] Thus, 

GABAARs represent an important drug target and object of current research 

aiming for suitable therapeutics for improved medical care. For instance, 

benzodiazepine-based pharmaceuticals act via allosteric modulation potentiating 

GABARs function. Despite successful clinical administration, improved drugs 

with reduced side effects or tools allowing further receptor investigation and 

mechanistic studies are desirable.[11-13]  

Light allows superior spatiotemporal resolution and enables delimited 

manipulation onto protein targets. Several optogenetic strategies have been 

addressed to control inhibitory (GABA-releasing) neurons, giving much insight on 

brain-wide inhibitory circuits using photoswitchable tethered ligands (PTLs) – 

usually needing a genetically engineered cysteine near the GABA-binding 

site.[14,15] Another optogenetic approach for inhibitory circuit studies would be to 
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use light-gated chloride anion channels,[16,17] although improvement in cell level 

expression and channel conductance[18] must be addressed for map circuitry and 

in vivo purposes. Light-caged GABA compounds have shown a remarkable action 

onto neuronal spines and seizure control. Unfortunately, toxicity levels on 

neuronal culture must be corrected prior to in vivo applications.[19] 

To overcome genetic manipulation, the use of exogenous proteins and non-toxic 

by-products, we focused on the advantages of photopharmacology to synthesize a 

photoswitchable modulator for endogenous neurotransmission, inactive prior to 

irradiation and fully reversible with light. Photopharmacology allows orthogonal 

control to most cellular processes.[3-6] Triggered by irradiation with light, a 

photochromic ligand may reversibly be interconverted between at least two 

isomeric states with different absorption spectra. Depending on the targeted field 

of application, various photochromic scaffolds emerged, amongst which 

azobenzenes, dithienylethenes, and fulgimides are the most prominent 

examples.[3-6,20] Our quest for photochromic derivatives of benzodiazepines has led 

to the serendipitous identification of a pore blocker of GABAA receptors 

(Azo-NZ1)[21], and a selective inhibitor of the structurally related glycine receptors 

(Glyght).[22] However, it has failed to preserve the allosteric potentiator profile of 

GABAARs that is characteristic of benzodiazepines. Azobenzenes have been 

successfully used as photochromic scaffolds for biological applications[21-28] due to 

their synthetic accessibility and their large change in geometry and dipole moment 

upon switching.[3-6,20,29] However, several drawbacks limit their range of 

application. Their photoinduced cis isomer is thermally bistable and its half-life 

strongly solvent- and substitution-dependent.[30,31] Determined by the exact 

photochromic scaffold, incomplete photoconversion due to a substantial overlap 

of the absorption maxima of both isomers may be considered, but structural 

optimization (e.g., arylazo pyrazoles) for a better n-* and -* band separation is 

possible.[32] Furthermore, the stability of azobenzenes towards glutathione 

reductase in biological systems is controversial.[33-35] 
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In contrast, dithienylethenes, fulgides and their fulgimide-named amide 

derivatives generally feature high photostationary states (PSS) with both 

photoisomers being thermally stable.[3,20] As dithienylethenes often lack of 

switching efficiency and stability in polar solvents due to a twisted intramolecular 

electron charge transfer,[36-38] fulgi(mi)des were chosen as photochromic scaffold in 

this study. Both subtypes can be interconverted between their flexible, less-

coloured ring-open and their rigid, more coloured ring-closed isomer upon light-

induced conrotatory 6-electrocyclic rearrangement (Scheme 1).[20,39] Although 

switching from the open to the closed form is usually triggered using UV light, this 

might be avoided by the isolation and separate application of both isomers. In 

addition, this ensures the application of quantitative amounts of either the open or 

the closed form. Thereby, a biological effect can clearly be assigned to one or the 

other conformation and enabling a photopharmacological profile corresponding 

to a pure modulator, without agonist or antagonist[40,41] or antagonist activies[42] 

which could interfere with endogenous neurotransmission. Synthetic 

investigations revealed the beneficial effects of an isopropyl group in the alpha 

bridge position of the fulgide, as the E-Z isomerization of the open isomer is 

suppressed due to steric hindrance and consequently only two distinct isomers are 

observed (Scheme 1).[43] 

 

Scheme 1. Furan-fulgimide in its open and closed isomeric state interconvertible by irradiation 
with UV- and visible light.[20,39]   

One advantage of fulgimides over fulgides is their improved switching in aqueous 

solutions and high stability. Furthermore, the two-step transformation of fulgides 

towards fulgimides via nucleophilic ring-opening of the anhydride by a primary 

amine and subsequent recyclization allows the smooth introduction of amino-



FULGAZEPAM: A FULGIMIDE-BASED POTENTIATOR OF GABAA RECEPTORS 

310 

  

functionalized biomolecules.[20,43] Recently, few examples using fulgi(mi)des in a 

biological context are reported.[44-46] The transformation of a known ligand into a 

photoresponsive molecule is typically achieved by either extending the 

pharmacophore with a photoswitch or via incorporation of the photochromic 

scaffold as part of the drug’s chemical structure. Once introduced, ideally one 

isomeric state is biologically active whereas the other loses its required 

interactions. In the presented work, both approaches were pursued. On the one 

hand, a furan-fulgide photochromic scaffold is merged with an amino-

benzodiazepine under fulgimide formation (Scheme 2, left panel). A difference in 

activity arises from the different flexibility of both isomeric states. On the other 

hand, a functionalized diazepine was synthesized aiming for a photochromic 

benzodiazepine core (Scheme 2, right panel). The difference in activity was 

expected to be given by the different conjugation of the pharmacophore’s aromatic 

system upon switching. Unfortunately, the latter modified pharmacophore 

(compound 9, Scheme 4) was inactive in patch-clamp studies (data not shown) and 

the synthesis towards the photoswitch was not further pursued. 

 

Scheme 2. Left: Pharmacophore nitrazepam and its extension towards a photochromic fulgimide. 
Right: Derivatization towards a photochromic diazepine fulgide hybrid. 
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6.2 Results and Discussion 

6.2.1 Syntheses 

The reaction of furano-fulgide 2[45] with amino-nitrazepam 1[47] upon addition of 

dicyclohexylcarbodiimide (DCC), diisopropylethylamine (DIPEA), and 1-

hydroxybenzotirazole (HOBt) in methanol afforded the desired benzodiazepine-

furano-fulgimide 3a and its iso-fulgimide derivative 4a. 

Scheme 3. Synthesis of fulgimide-nitrazepam 3a and its iso-fulgimide derivative 4a. 

To obtain a photochromic pharmacophore core, we envisioned a functionalized 

diazepine derivative (7) providing an acetyl group in position 3 required for 

Stobbe[48-50] condensation towards fulgide formation and a methyl-group in 

position 2 beneficial for the fulgide’s switching performance.[45] For diazepine 

formation, the highly functionalized precursor 7 requires in addition a primary 

amine in position 5 and a phenone substitution in position 4.[47] Based on the 

literature known Gewald-reaction[51] and screening of solvents and bases the 

desired functionalized furan 7 was obtained in good yield in a one-step synthesis 

starting from commercially available benzoylacetonitrile 5 and 3-

chloroacetylaceton 6 (Scheme 4).[52,53] The following ring closure required for 

diazepine formation of 9 was performed in analogy to literature reports.[47]    
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Scheme 4. Synthesis of the highly functionalized furan 7 and its diazepine formation towards 
compound 9.[37,44-46] 

6.2.2 Photochemical Characterization 

The introduction of the bulky isopropyl group on the 1,3,5-hexatriene system of 

the fulgide avoided the undesired UV light induced E-Z isomerization of the open 

E-fulgimide isomer (Scheme 1). Only the E-isomer undergoes a photocyclization 

reaction to the thermally stable closed isomer (Scheme 5). The colorless open 

isomers 3a and 4a were converted to their strongly colored ring closed isomers 3b 

and 4b upon irradiation with UV light of  = 365 nm. The absorption maximum of 

the open isomer around 340 nm decreased and a new maximum around 520 nm 

representing the closed isomer formed (Figure 1). Both compounds show almost 

quantitative ring-closing (93% for 3b and 95% for 4b, measured 50 µM in DMSO) 

and quantitative ring-reopening using green light ( = 505 nm or 528 nm). 

 

Scheme 5. Irradiation induced ring-closing (4b) and ring-opening (4a) of iso-fulgimide 4.  

Figure 1 shows exemplarily the UV-Vis absorption spectrum and cycle 

performance of iso-fulgimide 4 upon irradiation with 365 nm and 505 nm. Black 
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arrows indicate the spectral evolution upon irradiation. Dotted black arrows label 

isosbestic points indicating a clear two component switching. After 10 s irradiation 

at  = 365 nm the closed-PSS was reached and 93% of the closed-isomer are 

accumulated. Quantitative reopening was achieved within 120 s irradiation at  = 

505 nm or 528 nm, respectively. Both compounds show a high fatigue resistance 

over ten measured cycles upon alternate irradiation with 365 nm for closing and 

528 nm for opening.   

 
Figure 1. Photochromic properties of iso-fulgimide 4 measured 50 µM in DMSO. Left: Spectral 
evolution of 4a (open isomer; grey spectrum) upon irradiation with 365 nm and re-opening of 4b 
(closed isomer; purple spectrum) upon irradiation with 528 nm. Right: Cycle performance of 4 upon 

alternate irradiation with 365 nm (ring closing) and 528 nm (ring opening) detected at 518 nm (max 
closed isomer). 

The photochromic properties of compounds 3 and 4 measured 50 µM in DMSO are 

summarized in Table 1. The photostationary states were determined via analytical 

HPLC measurement of an irradiated sample and detected at the wavelength of the 

isosbestic point. 

Table 1. Photochemical properties of fulgimide-based benzodiazepine derivatives 3 and 4 
measured 50 µM in DMSO at 25 °C. Cpd. = Compound. PSS = Photostationary state. 

Entry Cpd. 
max 

open [nm] 

max 

closed [nm] 

Isosbestic point 

[nm] 

 

 

PSS 

1 3 - 521 

 

 

 

375 
95% closed (UV); 

99% open (green) 

2 4 335, 347 518 

 

 

 

 

 

377 
  93% closed (UV); 

99% open (green) 



FULGAZEPAM: A FULGIMIDE-BASED POTENTIATOR OF GABAA RECEPTORS 

314 

  

6.2.3 In Vitro Patch-Clamp Testing  

All experiments were performed on cells transiently expressing 

alpha1/beta2/gamma2 subunits of the GABAA receptor. This receptor possesses 

the canonical benzodiazepine allosteric site and its EC50 for GABA is about 8 µM.[21] 

The effects of the fulgimide-based benzodiazepine derivatives 3 and 4 on the 

receptor's function were studied upon co-application of 0.5 µM GABA, i.e. the 

concentration, which is below the EC50 (close to EC3) and allows to observe 

allosteric potentiation of GABAAR-mediated currents.[54]  

Application of compound 4a (open isomer) (10 µM) caused no significant effect on 

GABAA-mediated currents, while application of 4b (closed isomer), generated by 

pre-irradiation with UV light (365 nm), induced an increase of GABAA-mediated 

current amplitudes (Figure 2A). Thus, two different isomers of compound 4 

differently interact with GABAA receptors: being inactive in its open form and 

potentiatory in its closed form. Analysis of a series of dose-response curves 

established that the EC50 for 4b was 13 µM (n = 6; Figure 2B).  

Figure 2C demonstrates that UV irradiation can induce a live-time switching of 

compound’s 4 conformation and a prominent increase of the amplitude of GABA-

induced currents. In average during isomerization of 10 µM of 4a into 4b under 

UV irradiation the currents amplitude increased on 228±41% (Figure 2D; n = 11).  

Compound 3a in its open state co-applied with GABA (0.5 µM) induced a powerful 

potentiation of GABAAR-mediated currents (Figure S3A). This potentiation was 

not sensitive to irradiation by UV light and subsequent isomerization to the closed 

isomer 3b (Figure S3B) and the kinetics of compound 3b’s development (slow 

wash-in and slow wash-out) was similar to the one of 4b. Application of 10 µM of 

3a increased the current amplitude on 292±65%, while 50 µM of 3a increased the 

current amplitude on 544±107% (n = 11). The EC50 for 3a was as well similar to the 

one of compound 4b – it comprised 12 µM (Figure S3C, n = 11). The degree of the 

potentiation by 3a markedly varied for different cells (cf. A and B in Figure S3). 

The similar feature was also characteristic for the action of 4b on GABAARs. We 
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suggest that this effect reflects the variability in the EC50 for GABA on different 

cells, as it has been shown that allosteric potentiation decreases with an elevation 

of the effective GABA concentration.[55] 

 

Figure 2. The effect of compounds 4a and 4b on GABAA-mediated currents. (A) Upper panel: 
representative traces of currents induced by application of GABA 0.5 µM and by mixture of GABA 
0.5 µM with 4a 10 µM; lower panel: representative traces of currents induced by application of 
GABA 0.5 µM and by mixture of GABA 0.5 µM with 4b 10 µM. Durations of applications of GABA 
and compound 4 are indicated by black bars above the traces. (B) Cumulative dose-response curve 
for the compound 4b (n = 6). (C) Representative traces demonstrating the effect of 4a upon 
photoswitching on the amplitude of GABA-induced currents. On the left: current was induced by 
application of GABA 0.5 µM; on the right: at the same trace current was induced subsequently by 
GABA 0.5 µM, by a mixture of GABA with 4a 10 µM at visible light and upon irradiation with UV 
light (isomerization to 4b). Duration of UV irradiation is indicated by violet rectangle. Note the 
prominent increase of the GABA-induced current in the presence of 4 during irradiation with UV 
light, which triggered ring-closing (4b). (D) Cumulative graph representing mean relative 
amplitude of currents induced by application of GABA 0.5 µM (black column), GABA 0.5 µM + 4a 
10 µM (green column) and GABA 0.5 µM + 4b 10 µM (violet column) upon irradiation with UV 
light (n = 11). 

6.2.4 In Vivo Behavioral Studies 

Behavioral analysis on zebrafish larvae show that fulgazepam 4 influences their 

behavior, which is most likely driven by isomerization and can be maintained for 
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dark periods over time. As both compound states are stable in the dark, larvae 

behaviors could be studied using pre-irradiated compounds in dark and under 

direct irradiation using 365 and 500 nm wavelengths. Pre-irradiated solutions 

showed a dose dependent difference on undisturbed larvae during the resting 

period, where 4b at 100 µM concentration evoked an increase in swimming 

distance (Figure 3B, top). For all three concentrations of 4a, UV irradiation 

(isomerization to 4b) showed a significant increase in motility, highly potentiated 

on their following dark periods and reduced to vehicle levels once they were 

irradiated with visible light (Figure 3A). This photoswitching behavior was also 

observed for all 4b concentrations upon irradiation, showing even higher 

swimming distances over larvae incubated with 4a (Figure 3B, bottom) and were 

controlled with visible light. Therefore, these changes in larvae motility are 

triggered by conformational changes of compound 4 rather than by natural 

photoresponsive behaviors. An increase in larvae activity over vehicle levels is 

enhanced when 4b increases and lowered to natural activities when 4a is 

recovered. 

 
Figure 3. (a) One-minute trajectories of average swimming distances (n = 12 per treatment) are 
shown for vehicle (1% DMSO) and three different concentrations of compound 4 (4a (Top) and 4b 
(Bottom)). For the first 20 minutes, larvae were undisturbed in complete darkness (Relaxation 
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period, RP), therefore maintaining stable states. Following RP larvae were irradiated with three 
consecutive cycles of visible light (500 nm) and UV (365 nm) with discrete dark between each 
wavelength and compound transit between both conformations. Colored areas show standard 
error of the mean (S.E.M.). (b) Top: Quantification of swimming distances over the last 5 minutes 
of the RP (darkness) from two independent experiments (n = 24 per treatment) for both pre-
irradiated compounds 4a (green trace) and 4b (violet trace) and vehicle (1% DMSO). Bottom: 
Quantification of swimming distances over the light periods after UV irradiation (violet traces) and 
visible light irradiation (green trace) (n = 12 per treatment) for compound 4 and vehicle (1% DMSO). 
n.s. no significance, * p-value<0.05, ****p-value<0.0001. Colored areas show standard deviation 
(S.D.). 

6.3 Conclusion 

In summary, we successfully functionalized the benzodiazepine nitrazepam into a 

light-controllable molecule via extension by a photochromic fulgimide and report 

the first photochromic switch-on potentiator of GABAA receptors based on a 

fulgimide scaffold. The synthesized fulgimides 3 and 4 (Fulgazepam) displayed 

good photochromic properties and high photostationary states. Both fulgimides 

preserve the GABAA potentiator behavior that is characteristic of benzodiazepines, 

indicating that it is a pharmacologically tolerable substitution, in contrast to 

azobenzenes at the same position. Remarkably, both fulgimides are photochromic 

but only Fulgazepam 4 enables controlling the pharmacological activity with light. 

The open conformation of Fulgazepam (4a) did not influence the amplitude of 

GABA-induced currents, while being switched to its closed form 4b by UV 

irradiation resulted in a prominent potentiating effect. The open (4a) and closed 

(4b) conformation of iso-fulgimide 4 produced different behavioral outcomes on 

Danio rerio larvae. The ring-open isomer 4a did not alter larvae swimming 

activities, neither with undisturbed long-term larvae nor upon irradiation cycles. 

Vice versa, the closed conformation 4b produced an increase in larvae motility in a 

dose dependent manner during prolonged dark periods and under UV irradiation. 

Hence, the photoswitching between both conformations of Fulgazepam 4 controls 

the behavior of larvae, producing high activity swimming upon UV irradiation, 

which persists for continuous dark periods, and lowering it to control levels upon 

ring-opening via visible light irradiation. 
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Here we have developed a novel compound to study and control GABAAR 

activity. Fulgazepam 4 possesses some unique characteristics as a direct result of 

its photochromic (fulgimide) and pharmacological (diazepam) moieties: (i) the 

fulgimide scaffold imparts complete reversible switching of the Fulgazepam 

conformation; (ii) both Fulgazepam states are stable and can be easily obtained by 

irradiation with light of the appropriate wavelengths; (iii) Fulgazepam is a soluble 

photochromic compound successfully used to photocontrol of endogenous 

GABAARs in vitro – in its closed form it is a pure potentiator of GABAARs without 

agonist or antagonist activity; (iv) Fulgazepam allows to photocontrol the 

zebrafish behavior in vivo. 

6.4  Experimental Part 

6.4.1 General Procedures and Materials 

Commercial reagents and starting materials were purchased from the commercial 

suppliers abcr, Acros Organics, Alfa-Aesar, Fisher Scientific, Merck, Sigma 

Aldrich, TCI, or VWR and used without any further purification. Solvents were 

used in p.a. quality and dried according to common procedures, if necessary. Dry 

nitrogen was used as an inert gas atmosphere. Flash column chromatography was 

performed using Sigma Aldrich MN silica gel 60 M (40-63 µm, 230-400 mesh) for 

normal phase chromatography. Reaction monitoring via thin layer 

chromatography was performed on alumina plates coated with silica gel (Merck 

silica gel 60 F254, layer thickness 0.2 mm). Melting points were determined using a 

Stanford Research System OptiMelt MPA 100 and are uncorrected. NMR spectra 

were measured on a Bruker Avance 300 (1H 300.13 MHz, 13C 75.48 MHz), Bruker 

Avance III HD 400 (1H 400.13 MHz, 13C 100.61 MHz), Bruker Avance III HD 600 

(1H 600.25 MHz, 13C 150.95 MHz) and Bruker Avance III 600 (1H 600.25 MHz, 13C 

150.95 MHz). The spectra are referenced against the NMR-solvent (DMSO-d6: H = 

2.50 ppm, C = 39.52 ppm; CDCl3-d:  H = 7.26 ppm, C = 77.16 ppm) and chemical 

shifts  are reported in ppm. Resonance multiplicity is abbreviated as: s (singlet), 

d (doublet), t (triplet) and m (multiplet). Carbon NMR signals are assigned using 
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DEPT 135 and 1H-13C HSQC spectra with (+) for primary/tertiary, (-) for 

secondary, and (q) for quaternary carbons. Mass spectra were recorded on a 

Finnigan MAT-SSQ 710 A, ThermoQuest Finnigan TSQ 7000, Agilent Q-TOF 6540 

UHD, or a Jeol AccuTOF GCX instrument. UV-Vis absorption spectroscopy was 

performed in 10 mm quartz cuvettes using an Agilent Cary 100 or Agilent Varian 

Cary 50 spectrometer. Analytical HPLC measurements were performed using an 

Agilent 1220 Infinity LC (column: Phenomenex Luna 3 µm C18(2) 100 Å, 150 x 

2.00 mm; flow 0.3 mL min-1 at 30 °C; solvent A: MilliQ water with 0.05 wt% TFA; 

solvent B: MeCN). The ratios at the PSSs were determined via analytical HPLC at 

20 °C at the isosbestic points. An Agilent 1260 system (column: Phenomenex Luna 

10 µm C18(2) 100 Å, 250 x 21.2 mm; flow: 22 mL min-1; solvent A: MilliQ water with 

0.05 wt% TFA; solvent B: MeCN) was used for preparative HPLC purification. 

Light sources for irradiation:  = 365 nm (Herolab hand-held lamp UV-6 L, 6W; 

Seoul Viosys CUN6GB1A, 1000 mA, 1.4 W),  = 505 nm (Osram LVCK7P-JYKZ, 

350 mA, 112 lm),  = 528 nm (Osram LTCP7P-KXKZ, 350 mA, 71 lm). The power 

of the light source is given based on the specifications supplied by the company 

when the LEDs were purchased. All tested final compounds possess a purity ≥95% 

determined by analytical HPLC measurements with detection at 220 nm and 

254 nm, respectively. Compounds 1[47] and 2[45] were synthesized following 

literature reported procedures. 

6.4.2 Synthetic Procedures and Characterization 

(Iso-)fulgimide synthesis. A solution of fulgide 2[45] (0.25 g, 0.87 mmol, 1.0 eq) and 

amino-nitrazepam 1[47] (0.24 g, 0.96 mmol, 1.1 eq) in methanol (10 mL) was heated 

to 60 °C and stirred for 16 h. The mixture was cooled to room temperature. Then, 

DCC (0.23 g, 1.1 mmol, 1.3 eq), HOBt (0.15 g, 1.1 mmol, 1.3 eq) and DIPEA (0.20 mL, 

0.15 g, 1.1 mmol, 1.3 eq) were added and the mixture stirred at room temperature 

for three days. The reaction mixture was filtered and concentrated in vacuo. 

Purification by column chromatography (petroleum ether/ethyl acetate 1/1) and 
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subsequent preparative HPLC (55% - 98% MeCN in 12 min) yielded fulgimide 3a 

(tR = 7.2 min, 8%) and iso-fulgimide 4a (tR = 11.2 min, 20%) as slightly yellow solids.  

(E)-3-(1-(2,5-dimethylfuran-3-yl)-2-methylpropylidene)-1-(2-oxo-5-phenyl-2,3-

dihydro-1H-benzo[e][1,4]diazepin-7-yl)-4-(propan-2-ylidene)pyrrolidine-2,5-di-

one (3a). M.p.: 115 °C. 1H-NMR (600 MHz, DMSO-d6): δ = 10.79 (s, 1H), 7.64 (dd, J 

= 8.7, 2.3 Hz, 1H), 7.60 – 7.56 (m, 2H), 7.56 – 7.53 (m, 1H), 7.48 (m, 2H), 7.37 (d, J = 

8.7 Hz, 1H), 7.33 (d, J = 2.3 Hz, 1H), 6.14 (s, 1H), 4.39 – 4.36 (m, 1H), 4.18 (s, 2H), 

2.23 (s, 3H), 2.18 (s, 3H), 1.86 (s, 3H), 1.30 (s, 3H), 1.25 (d, J = 7.1 Hz, 3H), 0.78 (d, J 

= 6.8 Hz, 3H). 13C-NMR (151 MHz, DMSO-d6): δ = 169.9 (q), 166.3 (q), 158.3 (q), 

158.0 (q), 152.0 (q), 149.7 (q), 148.0 (q), 146.5 (q), 139.3 (q), 131.3 (+), 131.0 (+), 129.7 

(+), 129.7 (+), 128.4 (+), 126.5 (q), 125.3 (q), 125.3 (q), 122.8 (q), 122.7 (q), 121.5 (+), 

119.2 (q), 106.3 (+), 56.3 (-), 29.1 (+), 26.7 (+), 22.8 (+), 21.5 (+), 20.4 (+), 13.0 (+), 12.5 

(+). HRMS (ESI) calcd. for C32H31N3O4Na [M+Na]+: m/z = 544.2207, found 

544.2206. MF: C32H31N3O4. MW: 521.62 g/mol. 

7-(((2Z,4E)-4-(1-(2,5-dimethylfuran-3-yl)-2-methylpropylidene)-5-oxo-3-(pro-

pan-2-ylidene)dihydrofuran-2(3H)-ylidene)amino)-5-phenyl-1,3-dihydro-2H-

benzo[e][1,4]diazepin-2-one (4a). M.p.: 146 °C. 1H-NMR (600 MHz, DMSO-d6): δ 

= 12.16 (s, 1H), 7.59 – 7.52 (m, 2H), 7.45 (tt, J = 7.5, 1.3 Hz, 1H), 7.36 (d, J = 8.6 Hz, 

1H), 7.32 (d, J = 7.5 Hz, 2H), 7.15 (dd, J = 8.5, 2.2 Hz, 1H), 6.76 (d, J = 2.1 Hz, 1H), 

6.11 (s, 1H), 4.35 – 4.31 (m, 1H), 4.02 (s, 2H), 2.21 (s, 3H), 2.13 (s, 3H), 1.84 (s, 3H), 

1.28 (s, 3H), 1.22 (d, J = 7.1 Hz, 3H), 0.75 (d, J = 6.8 Hz, 3H). 13C-NMR (101 MHz, 

DMSO-d6): δ = 167.2 (q), 158.1 (q), 152.1 (q), 150.2 (q), 148.2 (q), 146.8 (q), 135.0 (q), 

135.0 (q), 131.9 (q), 130.2 (+), 123.0 (+), 128.5 (+), 126.6 (q), 124.5 (+), 123.4 (q), 123.3 

(q), 122.2 (q), 122.0 (+), 119.7 (q), 118.3 (q), 115.7 (+), 110.0 (-), 106.8 (+), 29.5 (+), 27.1 

(+), 23.3 (+), 21.9 (+), 20.9 (+), 13.5 (+), 13.0 (+). HRMS (ESI) calcd. for C32H31N3O4Na 

[M+Na]+: m/z = 544.2207, found 544.2210. MF: C32H31N3O4. MW: 521.62 g/mol. 

1-(5-amino-4-benzoyl-2-methylfuran-3-yl)ethan-1-one (7). Morpholine (2.9 g, 

33 mmol, 1.1 eq) was added to a suspension of benzoylacetonitrile (4.4 g, 30 mmol, 

1.0 eq) in EtOH (30 mL). 3-Chloro-2,4-diketo-pentan (4.0 g, 30 mmol, 1.0 eq) was 
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added dropwise. The solution was heated to reflux for three hours.[51-53] 

Evaporation of the solvent and purification by column chromatography 

(petroleum ether/ethyl acetate 1/1) afforded the desired product as yellow solid 

(1.5 g, 6.0 mmol, 20%). M.p.: 86 °C. 1H-NMR (400 MHz, CDCl3-d): δ = 7.65 – 7.58 

(m, 2H), 7.52 – 7.45 (m, 1H), 7.42 – 7.35 (m, 2H), 6.29 (s, 2H), 2.30 (s, 3H), 1.58 (s, 

3H). 13C-NMR (101 MHz, CDCl3-d): δ = 196.9 (q), 189.5 (q), 162.6 (q), 146.3 (q), 140.6 

(q), 131.8 (+), 128.7 (+), 127.9 (+), 122.8 (q), 97.4 (q), 30.3 (+), 12.4 (+). HRMS (ESI) 

calcd. for C14H14NO3 [M+H]+: m/z = 244.0968, found 244.0967. MF: C14H13NO3. 

MW: 243.26 g/mol.  

6-Acetyl-7-methyl-5-phenyl-1,3-dihydro-2H-furo[2,3-e][1,4]diazepin-2-one (9). 

Compound 9 was synthesized via an adapted literature procedure[47] starting from 

tetrasubstituted furan 7 (0.50 g, 2.1 mmol, 1.0 eq) and Fmoc-Glycine (0.61 g, 

2.1 mmol, 1.0 eq). Purification by column chromatography (CH2Cl2 + 10% MeOH) 

and subsequent preparative HPLC (10% - 98% MeCN in 25 min, tR = 10.1 min) 

afforded the desired product as slightly yellow solid (0.23 g, 0.80 mmol, 38% over 

two steps). M.p.: decomposition over 300 °C. 1H-NMR (400 MHz, DMSO-d6): δ = 

11.32 (s, 1H), 7.72 – 7.67 (m, 2H), 7.60 – 7.54 (m, 1H), 7.50 – 7.45 (m, 2H), 4.57 (s, 

2H), 2.30 (s, 3H), 1.93 (s, 3H). 13C-NMR (101 MHz, DMSO-d6): δ = 194.4 (q), 188.5 

(q), 173.3 (q), 140.1 (q), 139.5 (q), 132.2 (+), 129.2 (q), 128.6 (+), 128.5 (+), 122.1 (q), 

100.9 (q), 47.5 (-), 30.3 (+), 11.5 (+). HRMS (ESI) calcd. for C16H15N2O3 [M+H]+: m/z 

= 283.1077, found 283.1076. MF: C16H14N2O3. MW: 282.30 g/mol.  

6.4.3 In Vitro Studies 

Cell culture and transfection. GABAA receptors were heterologously expressed in 

cultured Chinese hamster ovary (CHO) cells obtained from the American Type 

Tissue Culture Collection (ATCC, Molsheim, France) that were maintained in 

culture conditions as previously described.[56] Cells were simultaneously 

transfected with cDNAs of alpha1, beta2 and gamma2 subunits (concentrations 

0.9-1.2 µg/µl).  One day before transfection, cells were plated on the cover slips 

(12 mm in diameter) and placed inside 35 mm cell culture dishes with 2 ml of 
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medium. Transfection was performed using the Lipofectamine 3000 protocol (Life 

Technology, USA). To facilitate identification of transfected cells a green 

fluorescent protein (GFP, 0.5 µg/µl) was added to the transfection mixture. 

Electrophysiological recordings were performed in the fluorescent cells 24-72 

hours after transfection. 

Electrophysiological recordings on CHO cells. Whole-cell recordings were 

performed at room temperature (20-25 °C) using an EPC-9 amplifier (HEKA 

Elektronik, Germany). Cells were continuously superfused with external solution 

containing (mM): NaCl 140, CaCl2 2, KCl 2.8, MgCl2 4, HEPES 20, glucose 10; pH 

7.4; 320-330 mOsm. Intracellular solution used for filling recording pipettes 

contained (mM): KCl 140, MgCl2 2, MgATP 2, HEPES 10, BAPTA (tetrapotassium 

salt) 2; pH 7.3; 290 mOsm. Recording pipettes were pulled from borosilicate glass 

capillaries (Harvard Apparatus Ltd, USA) and had resistances of 5-10 MOhms. For 

the rapid replacement of the solutions, the fast application system was used. Three 

parallel rectangular tubes (100x100 µm) were positioned 40-50 µm above the 

recorded cell. The movement of the tubes was controlled by a computer-driven 

fast exchange system (SF 77A Perfusion Fast-Step, Warner, USA) allowing a 10–

90% solution exchange in 3–5 ms, as measured by open electrode controls (1/10 

external solution/water). Cells with low input resistance (<150 MOhms) and a 

rapid run-down (>30% with repetitive application) were excluded from analysis. 

Recordings were performed at holding potential (Vhold) of -30 mV. Pure agonist 

was applied during five seconds at the beginning and at the end of the trace; the 

mixture of the agonist with studied compounds was applied during 15 seconds in 

the middle of the trace. UV light (365 nm) was applied during five seconds in the 

middle of the trace. UV light emitting diode (Thorlabs) was placed at the distance 

of 4-5 cm from the recorded cell. The power of UV light was reaching 

0.6 mW/mm2, which was determined using an optical power meter (Thorlabs). 
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6.4.4 Behavioral Studies 

Animal housing and photoswitchable behavioral assays. Tupfel-Lon Danio rerio 

embryos were raised in darkness for 6 days post fertilization (dpf) in UV filtered 

tap water in petri dishes (daily cleaned and refilled) at 28.5 °C. Larvae were 

recorded and video analyzed using the Zebrabox and Zebralab software 

(ViewPoint Life Sciences). For all experiments, 7 dpf larvae were left undisturbed 

for 40 minutes in 200 µL fresh UV filtered water and in darkness. Continuously, 

100 µL were removed and replaced with a double concentrated treatment solution 

and data and video recording begun. For the first 20 minutes, larvae were kept in 

darkness measuring basal activity, named as the relaxation period (RP). After the 

RP, three double light irradiation cycles were applied; 2 minutes 500 nm (visible 

light) and 2 minutes of darkness followed by 2 minutes of 365 nm (UV light) and 

2 minutes of darkness. Hence, it was assured that solutions for compound 4 transit 

between their respective open (4a) and closed states (4b). As both opened and 

closed photostationary states are stable in dark, larvae were applied each solution 

independently. Original compound solution was received as a full opened state 

solution and was kept in dark before the addition to larvae wells. Closed state was 

achieved by irradiating with 365 nm lamp original solution for 5 minutes before 

the addition as double concentrated solution to larvae. Data and video recording 

lasted for 48 minutes in order to acquire a RP and light transition measurements. 

Data analysis and statistics. Zebrafish tracking was performed in real time and 

data acquisition integrated one-minute intervals using the Zebralab software 

(ViewPoint Life Science). Data statistical analysis were performed using GraphPad 

Prism 6 software. Selective irradiation was performed with two ordered based 

[evenly distributed] arrays of 12 light emitting diodes (LEDs) for each wavelength 

placed 12 cm afar of the multiwell plate. The light intensities, measured with an 

optical power meter (model Newport 1916-C), were 5.92 Wm-2 for 365 nm (UV) 

and 2.2 Wm-2 for 500 nm (Visible-Blue). Distance activity was measured as the sum 

of swimming distances (in millimeters) during burst activities (larvae swimming 

velocities higher than 6 mms-1) over one-minute integration. Data was analyzed 
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following two-way ANOVA (p-value 0.05) and are presented as mean ± standard 

error of the mean (s.e.m.) or standard deviation (s.d.) with the number of larvae 

(n) indicated in each case. 
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6.5  Supporting Information 

6.5.1 1H- and 13C-NMR Spectra 

Compound 3a (DMSO-d6)  
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Compound 4a (DMSO-d6)  
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Compound 7 (CDCl3-d)  
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Compound 9 (DMSO-d6)  
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6.5.2 UV-Vis Absorption Spectra and Cycle Performances 

Compound 3 

 

Figure S1. Upper panel: UV-Vis absorption spectrum of fulgimide 3. Transformation of the 
colorless ring-open isomer (3a) to its purple ring-closed isomer (3b) upon irradiation with 365 nm. 
Reopening upon irradiation with 505 nm. Lower panel: Repetitive cycle performance of 3 upon 
alternate irradiation with 365 nm and 505 nm. 
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Compound 4 

 

Figure S2. Upper panel: UV-Vis absorption spectrum of iso-fulgimide 4. Transformation of the 
colorless ring-open isomer (4a) to its purple ring-closed isomer (4b) upon irradiation with 365 nm. 
Reopening upon irradiation with 528 nm. Lower panel: Repetitive cycle performance of 4 upon 
alternate irradiation with 365 nm and 528 nm. 
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6.5.3 Analytical HPLC Traces for Purity Determination 

Compound 3a (0.5 mM in DMSO, injection volume 3 µL) 

 

Detection at 220 nm: 95% purity   Detection at 254 nm: 97% purity 
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Compound 4a (0.5 mM in DMSO, injection volume 3 µL) 

 

 

Detection at 220 nm: 95% purity        Detection at 254 nm: 98% purity 
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6.5.4 Analytical HPLC Traces for PSS Determination 

Compound 3 (0.5 mM solution in DMSO, injection volume 3 µL) 

 

Irradiation with  = 365 nm for open→closed isomerization. 

Detection at 374 nm: tR open = 20.0 min (5%), tR closed = 20.3 min (93%) 

 

Irradiation with  = 505 nm for closed→open isomerization. 

Detection at 374 nm: tR open = 20.0 min (99%) 
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Compound 4 (0.5 mM solution in DMSO, injection volume 10 µL) 

 

Irradiation with  = 365 nm for open→closed isomerization. 

Detection at 377 nm: tR open = 23.6 min (4%), tR closed = 24.0 min (95%) 

 

 

Irradiation with  = 505 nm for closed→open isomerization. 

Detection at 374 nm: tR open = 23.6 min (100%) 

 

 



CHAPTER 6 

335 

 

6.5.5 Single Crystal X-ray Crystallography 

Compound 7 

Experimental. Single metallic yellow prism-shaped crystals of 7 were obtained by 

recrystallisation from acetone. A suitable crystal 0.23×0.18×0.14 mm3 was selected 

and mounted on a MITIGEN holder oil on an GV1000, TitanS2 diffractometer. The 

crystal was kept at a steady T = 123.0(3) K during data collection. The structure 

was solved with the ShelXT[57] structure solution program using the Intrinsic 

Phasing solution method and by using Olex2[58] as the graphical interface. The 

model was refined with version 2016/6 of ShelXL[59] using Least Squares 

minimisation. 

Crystal Data. C14H15NO4, Mr = 261.27, monoclinic, P21/c (No. 14), a = 16.7096(5) 

Å, b = 13.2785(2) Å, c = 7.0935(2) Å,  = 126.945(4)°,  =  = 90°, V = 1257.88(8) Å3, 

T = 123.0(3) K, Z = 4, Z' = 1, (CuK) = 0.613, 14196 reflections measured, 2534 

unique (Rint = 0.0216) which were used in all calculations. The final wR2 was 0.0879 

(all data) and R1 was 0.0333 (I > 2(I)). 

Cambridge Structural Database CCDC. 1942472 
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Detailed Crystal Data. 

Formula  
 

C14H15NO4  

Dcalc./ g cm-3  1.380  

/mm-1  0.613  

Formula Weight  261.27  

Colour  metallic yellow  

Shape  prism  

Size/mm3  0.23×0.18×0.14  

T/K  123.0(3)  

Crystal System  monoclinic  

Space Group  P21/c  

a/Å  16.7096(5)  

b/Å  13.2785(2)  

c/Å  7.0935(2)  

/°  90  

/°  126.945(4)  

/°  90  

V/Å3  1257.88(8)  
Z  4  
Z'  1  

Wavelength/Å  1.39222  

Radiation type  Cu K 

min/°  4.240  

max/°  60.099  

Measured Refl.  14196  

Independent Refl.  2534  

Reflections with I > 2(I)  2348  
Rint  0.0216  

Parameters  178  

Restraints  0  

Largest Peak  0.305  

Deepest Hole  -0.217  

GooF  1.037  

wR2 (all data)  0.0879  
wR2  0.0862  

R1 (all data)  0.0354  
R1  0.0333  
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6.5.6 Additional in Vitro Patch-Clamp Data of Compound 3 

 

Figure S3. The effect of 3 on GABAA-mediated currents upon application in its open state (3a) and 
irradiation with UV light for light-triggered ring-closing (highlighted in purple) (3b). (A) 
Representative traces of currents induced by application of GABA 0.5 µM (left), by mixture of 
GABA with 3a 10 µM (center) and by mixture of GABA with 3a 50 µM (right) (B) Representative 
traces demonstrating the absence of the effect of UV light irradiation (triggering ring closing) on 
the amplitude of currents induced by application of GABA 0.5 µM (left), by mixture of GABA with 
3a 10 µM (center) and by mixture of GABA with 3a 50 µM (right). (C) Cumulative dose-response 
curve for the compound 3a (n = 4-11). 
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7.1 Introduction 

5-Hydroxytryptamine (5-HT), commonly known as serotonin[1,2] or enteramine,[3,4] 

is a monoamine neurotransmitter and hormone which is produced in the brain and 

in intestines and regulates a large variety of physiological functions in the 

mammalian central and peripheral nervous system.[1,5] In the central nervous 

system (CNS), it modulates sleep–wake cycles, emesis, appetite, mood, memory, 

breathing, cognition and numerous other functions.[6-9] In the gastrointestinal (GI) 

tract, it causes peristalsis via either smooth muscle contraction or enteric nerve 

depolarization.[10] It is also found in the platelets, where it is presumably involved 

in blood coagulation and vasoconstriction. Furthermore, serotonin is one of the 

first neurotransmitters to appear during development[11] and may have an 

organizing function in the development of the mammalian CNS being involved in 

cell division, differentiation, survival, neuronal migration[12,13] and 

synaptogenesis.[14] Dysfunction of the 5-HT receptor (5-HTR) signalling during 

early developmental stages my lead to altered cognitive ability, 

neurodevelopmental disorders, and increased incidence of psychopathologies 

such as autism and schizophrenia.[15,16]  

Serotonin operates via seven classes of 5-HT receptors of which six are G protein-

coupled receptors (GPCRs) and only one, the 5-HT3R, is a ligand-gated cation 

channel.[5,6,17] When this receptor was identified and cloned,[18-20] it became clear 

that 5-HT3 takes a unique position as pentameric ligand-gated cation-selective ion 

channel belonging to the Cys-loop receptor subfamily. In vertebrates, this family 

also includes nicotinic acetylcholine receptors (nAChRs), -aminobutyric acid type 

A receptors (GABAARs), and glycine receptors (GlyRs). To date, five subunits of 

the 5-HT3 receptor are identified (5-HT3A–5-HT3E).[21] Functional receptors are 

either constructed as 5-HT3A homopentamers or as heteropentamers containing 

5-HT3A and 5-HT3B receptor subunits.[22-24] 5-HT3 receptors are highly expressed 

in the brainstem, especially in areas involved in the vomiting reflex and in the 

dorsal horn of the spinal cord.[25] These receptors are also expressed 
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presynaptically providing regulation of the neurotransmitters release.[21,22] Besides 

targeting of 5-HT3Rs for the treatment of psychiatric disorders, they are object to 

counteract postoperative nausea and chemo-/radiotherapy provoked emesis.[26-29] 

In the early 1990s, the first potent and selective 5-HT3 receptor antagonist 

ondansetron was initially developed.[26] Since then the development of 5-HT3R 

antagonists progressed. The first-generation antagonists are structurally 

categorized in three major classes: (I) carbazole derivatives (e.g., ondansetron), (II) 

indazoles (e.g., granisetron), and (III) indoles (e.g., dolasetron).[26,30] Generally, 

5-HT3R antagonists share a basic amine, a rigid (hetero-)aromatic system and a 

carbonyl group or isosteric equivalent which is coplanar to the aromatic system. 

Although the antagonists show a general structural motive, they differ in their 

binding affinities, dose responses, and side effects.[22]  

To improve prospective antagonists and obtain a systematic tool for receptor 

investigation, spatial and temporal restriction of ligand binding and concomitant 

activity regulation is desirable. Fuelled by light, the growing field of 

photopharmacology provides a noninvasive method to trigger a drug’s 

pharmacological response on demand.[31-33] To introduce photoresponsiveness 

into a biological system, different approaches are feasible, e.g., the use of caged 

ligands (CL),[34-37] photoswitchable tethered ligands (PTLs),[38-40} photoswitchable 

orthogonal remotely tethered ligands (PORTLs)[41] or photochromic ligands 

(PCLs).[31,42] The latter ones represent small molecules, which can either be 

engineered via extension of the chemical structure of a known pharmacophore 

towards a photochromic moiety or via replacement of certain parts of the 

biomolecule to generate a photochromic hybrid biomolecule. In this context, 

various photochromic scaffolds including diethienylethenes, fulgi(mi)des, and 

azobenzenes are investigated.[31,42] The latter ones were already discovered in 1834 

by E. Mitscherlich[43] but it took around another 100 years till G. S. Hartley[44] 

revealed their photo-induced trans–cis isomerization representing the time of birth 

of the azobenzene photoswitch. Benefiting of their accessible synthesis, large 

change in polarity and geometry upon switching, excellent photochromic 
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properties and tuneability, azobenzenes are amongst the most widely used 

photochromic scaffolds.[31,42,45-47] Since their first use in a biological environment in 

the late 1960s for the photoregulation of the enzymatic activity of chymotrypsin,[48] 

their applications in biology widely expanded towards receptor control[49-52] and 

fields as bacterial growth,[53] vision restoration,[53-55] the respiratory chain[56] and 

lipids.[57-58] Owing to the reported serotonin antagonists’ chemical structures, the 

use of azobenzene as photochromic scaffold in the presented work seemed 

axiomatic. Therefore, the primary design of our photochromic derivatives is based 

on the direct “azologization”[59] of reported non-photochromic antagonists[60,61] via 

replacement of the benzene-ring connecting amide bond and thioether, 

respectively, by an azo bridge.  

7.2 Results and Discussion 

7.2.1 Design and Syntheses  

Design. The reported[60,61] scaffolds of 5-HT3R antagonists are based on an 

aromatic system either connected to a purine/pyrimidine moiety via a thioether 

bridge or a quinoxaline moiety via an amide bond. Referring to this work 

performed by the groups of DiMauro[60] and Jensen,[61] we envisioned that the 

replacement of the thioether or amide bond (Scheme 1) by an azo bridge would 

result in highly active photochromic serotonin 5-HTR antagonists controllable by 

irradiation with light. Based on the suggested receptor binding mode reported for 

one potent non-photochromic antagonist (lead structure of 16c)[61] we expected the 

extended trans isomer as biologically active configuration whereas its bent cis 

isomer should be inactive. 

 

Scheme 1. Approach of the direct azologization of reported[60,61] serotonin 5-HT3R antagonists via 
replacement of a thioether or amide bond by an azo bridge. 
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Synthesis of the quinoxaline-based azobenzenes. The synthesis of the 

unsubstituted quinoxaline-based azobenzene derivatives 5a and 5b is based on a 

Baeyer[62]–Mills[63] reaction (Scheme 2). Therefore, nitrosoquinoxaline 3 was 

synthesized in a two-step procedure starting from 2-chloroquinoxaline (1), which 

was transformed into its oxime 2 using hydroxylammonium chloride.[64] The 

subsequent oxidation was performed using periodic acid as oxidant.[65] The 

subsequent reaction with differently substituted anilines in acetic acid[65] provided 

both quinoxaline azobenzene derivatives in good yields. 

Scheme 2. Synthesis of the differently substituted quinoxaline azobenzene derivatives 5a and 5b 
via Baeyer [62]–Mills [63] reaction.[64,65] 

The methoxy-substituted quinoxaline azobenzene derivative 12a was synthesized 

via a different synthetic route depicted in Scheme 3. In a first step, p-toluidine (4a) 

was diazotized using sodium nitrite and subsequently reacted with the 

2-chloroacetylacetone ester derivative 7 providing hydrazine 8.[66] Upon reaction 

of the chloro-ester 8 with phenylenediamine (9) in the presence of triethylamine 

the quinoxaline moiety was formed.[67] Oxidation of the hydrazine derivative 10 

using hydrogen peroxide under an oxygen atmosphere afforded the quinoxaline 

azobenzene derivative 11.[68] Subsequent methylation using methyl iodide[69] 

mainly resulted in the formation of the N-methylated non-photochromic product 

12b but in low yields also the desired photochromic methoxy-substituted 

quinoxaline azobenzene derivative 12a. 
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Scheme 3. Synthesis of the methoxy substituted quinoxaline derivative 12a via diazotization.[66-69] 

Synthesis of the purine and thienopyrimidine-based derivatives. Scheme 4 

depicts the general procedure applied for the synthesis of differently substituted 

purine and thienopyrimidine azobenzene derivatives. Differently substituted non-

photochromic antagonists were chosen as lead structures delivering photochromic 

derivatives with varying electronic and thus photochromic properties. The 

respective arylamines 13a-c were converted into their corresponding hydrazines 

14a-c via diazonium-salt formation using sodium nitrite and subsequent reduction 

using tin(II)chloride.[70] The following nucleophilic substitution at a chloro-

substituted purine (15a,b) or thienopyrimidine (15c), respectively, and subsequent 

oxidation of the hydrazine moiety afforded the corresponding azobenzene 

derivatives 16a-d.[71] 
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Scheme 4. General procedure for the synthesis of purine- and thienopyrimidine-substituted 
arylazobenzenes and depiction of the corresponding structures.[70,71] 

Synthesis of azobenzene-extended thiopurine derivatives. To further tune the 

photochromism and compare the properties of direct azologization to azo-

extension, two additional derivatives of the in vitro most promising naphthalene 

azopurine 16c were synthesized either by keeping the original thioether 

(Scheme 5) or replacing it by an amide bond (Scheme 6) known as common 

structural feature of 5-HT3R antagonists.  

Scheme 5 reflects the synthesis of the azo-extended thiomethylpurine 23 starting 

with the synthesis of hydroxymethylazobenzene 19[72] in a Baeyer[62]–Mills[63] 

reaction and subsequent nucleophilic substitution using cyanuric chloride (20)[73] 

providing chloromethyl azobenzene 21. The introduction of the thiopurine moiety 

in 23 was accomplished upon reaction of 21 with dihydropurinethione 22.[74] 
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Scheme 5. Synthesis of the thiomethyl-linked purine azobenzene 23.[62,63,72-74] 

The amide-linked derivative of thiomethylpurine azobenzene 23 was synthesized 

via Baeyer[62]–Mills[63] formation of the carboxylated azobenzene 25 starting from 

aminobenzoic acid 24 and nitrosobenzene (18).[75] Activation using thionyl 

chloride[76] afforded the acid chloride 26 and allowed amide-bond formation[77] for 

the generation of 28 (Scheme 6). 

Scheme 6. Synthesis of the amide-linked azobenzene purine 28.[62,63,75-77] 

7.2.2 Photochemical Characterization 

The investigation of the photochromic properties of the potential 5-HT3R 

antagonists 5a, 5b, 12a, 16a–d, 23, and 28 was performed in DMSO and depending 

on their solubility in phosphate buffer + 0.1% DMSO (16a–d) by UV-Vis absorption 

spectroscopy. The compounds were dissolved at 50 µM in the respective solvent 

and irradiated with the indicated wavelengths to generate a substantial amount of 
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their cis isomer. This process can be followed by a decrease of the trans absorption 

maximum at around 350–400 nm and an increase in absorption at around 450–

500 nm in the UV-Vis spectrum representing the cis-isomer (Figure 1, black 

arrows). The absorption bands of the trans and cis isomers of compounds 12a, 16c, 

and 16d overlap to such an extent, that no new maximum representing the cis 

isomer was observed and thus cis–trans isomerization only occurs thermally and 

is not triggerable by irradiation with visible light. Back-isomerization was 

triggered by irradiation with visible light (5a, 5b, 16a, 16b, 23, and 28) of the 

indicated wavelength or by thermal relaxation (5a, 5b, 12a, 16a–d, 23, and 28). 

Irradiation times were determined by following the UV-Vis spectrum upon 

isomerization until no more changes in absorption were observed and the 

photostationary state (PSS) was reached. The points of intersection in the 

absorption spectrum upon switching (= isosbestic points) indicate a clear two-

component switching between trans and cis species without any degradation or 

formation of a side-product (Figure 1, dotted black arrows). The UV-Vis absorption 

spectra of all compounds are depicted in Supporting Information, Figures S1–S10 

and the data are summarized in Table S1 and Table S2. A comparison of the 

differently substituted purine azobenzene derivatives revealed the beneficial effect 

of an o-chloro substitution on the photochromic properties of 16b compared to 16c 

as the electron density at the nitrogen-rich purine core is reduced. Further 

reduction of the electron density was achieved by using a thienopyrimidine (16a) 

instead of a purine core (16b–d). Nevertheless, the photochromic properties of 

those heterocyclic, especially purine-based azobenzenes, are rather poor. In 

addition to direct azologization, two azo-extended purine derivatives 23 and 28 

were synthesized resulting in excellent photochromic properties. Figure 1 

compares exemplarily the UV-Vis absorption spectra of the naphthalene-azo-

purine 16c (left) and its azo-extended azobenzene thioether purine 23 (right). The 

determination of the thermal half-lives (THL) of the cis isomers of compounds 5a, 

5b, 12a, 16a–d, 23, and 28 was accomplished by monitoring the increase in 

absorbance which corresponds to the evolution of the trans isomer after irradiation 
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and exposure to dark. In contrast to the heterocyclic compounds 5a, 5b, 12a, and 

16a–d with a thermal half-life in the seconds to minutes range, the azo-extended 

compounds 23 and 28 showed only slow thermal back-isomerization (day range) 

at room temperature. Depending on the desired application, both properties may 

be of benefit. For thermally instable compounds, only one wavelength for 

switching is required. In case of thermally stable cis isomers constant irradiation to 

maintain a substantial amount of the cis isomer can be avoided. 

Figure 1. UV–Vis absorption spectra measured at 50 µM in DMSO. Left: Purine derivative 16c; 

Right: azo-extended derivative 23. 

7.2.3 In Vitro Patch-Clamp Studies 

The synthesized azo antagonist derivatives 5a, 5b, 12a, 16a–d, 23, and 28 were 

tested for their inhibitory activity using patch-clamp technique on heterologously 

expressed ionotropic homopentameric 5-HT3A receptors. Only upon addition of 

16c the amplitude of the 5-HT3A mediated currents was decreased (Figure 2, left). 

Application of a 50 µM solution of trans-16c in its thermal equilibrium decreased 

the amplitude of 5-HT induced currents on 54±3% (n = 4). However, irradiation-

induced trans–cis isomerization with light of  = 530 nm and 455 nm, respectively, 

had no significant effect on the amplitude of 5-HT3A-mediated currents (Figure 2, 

right). 
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Figure 2. On the left panel representative traces of currents induced by the application of 3 µM 
5-HT (black trace), by 3 µM 5-HT and 50 µM trans-16c (red trace), by 5-HT and 16c under constant 
irradiation (455 nm, blue trace), and again by pure 5-HT – wash-out of the studied compound (black 
trace) are shown. On the right panel, a graph representing the relative amplitudes of currents in 
control (black column), at application of trans-16c (red column), at application of 16c irradiated with 
blue light (blue column) and at wash-out (gray column) are shown. P > 0.05, paired t-test. 

7.3 Conclusion 

In the presented work, we address the design, synthesis, photochromic 

characterization and in vitro investigation of in total nine azobenzene-based 

derivatives of reported 5-HT3R antagonists. Initially, seven photoligands (5a, 5b, 

12a, and 16a–d) either based on quinoxaline (5a, 5b, and 12a) or purine derivatives 

(16a–d) with varying electronic and thus photochromic properties were 

synthesized by direct azologization of the respective leads. Especially the purine-

based azobenzenes displayed high solubility in aqueous media. The beneficial 

effect of substituents reducing the overall electron density of the purine moiety 

(16a, 16b) resulted in higher photostationary states and better band separation 

compared to 16c and 16d. Still, only one compound (16c) showed antagonistic 

activity in patch-clamp studies. This might be explained by the fact that its 

corresponding non-photochromic lead is the inhibitory most active reported[61] 

antagonist among the investigated ones. The partial rigidization of the thioether 

via incorporation of an azo bridge might result in a vast loss of activity. Thereby, 

azologization of the less potent leads resulted in complete loss of inhibitory activity 

(5a, 5b, 12a, 16a, 16b, 16d) and only the originally most potent derivative 16c kept 

recordable antagonistic activity. The missing significant difference in activity upon 

irradiation-induced trans–cis isomerization of 16c is probably due to its moderate 
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photochromic properties and slow trans–cis isomerization (Figure 1, left). During 

the patch-clamp analysis, the cells are continuously superfused with external 

solution resulting in a fast exchange of the surrounding media and co-applied 

tested compounds. Thus, the cis-PSS of 16c might not be reached by irradiation 

within the short time of compound application despite continuous irradiation. 

Therefore, two azobenzene-extended derivatives (23 and 28) with improved 

photochromic properties were synthesized but lost antagonistic activity probably 

due to their increased steric demand.  

In ongoing studies, detailed molecular modelling is used to design potential 

photochromic antagonists fitting the requirements of the receptor’s binding 

pocket. Regarding the analysis method, compounds will be optimized towards 

either thermally stable cis-isomers to be tested separately upon prior irradiation or 

faster switching compounds. 

7.4 Experimental Part 

7.4.1 General Procedures and Materials  

Commercially reagents and starting materials were purchased from the 

commercial suppliers abcr, Acros Organics, Alfa-Aesar, Fisher Scientific, Merck, 

Sigma Aldrich, TCI, or VWR and used without any further purification. Solvents 

were used in p.a. quality and dried according to standard procedures, if necessary. 

Dry nitrogen was used as an inert gas atmosphere. Flash column chromatography 

was performed using Sigma Aldrich MN silica gel 60 M (40–63 µm, 230–400 mesh) 

for normal phase chromatography. Reaction monitoring via thin layer 

chromatography was performed on alumina plates coated with silica gel (Merck 

silica gel 60 F254, layer thickness 0.2 mm). Melting points were determined using a 

Stanford Research System OptiMelt MPA 100 and are uncorrected. NMR spectra 

were measured on a Bruker Avance 300 (1H 300.13 MHz, 13C 75.48 MHz), Bruker 

Avance III HD 400 (1H 400.13 MHz, 13C 100.61 MHz), Bruker Avance III HD 600 

(1H 600.25 MHz, 13C 150.95 MHz) and Bruker Avance III 600 (1H 600.25 MHz, 13C 

150.95 MHz). The spectra are referenced against the NMR solvent (DMSO-d6: H = 
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2.50 ppm, C = 39.52 ppm; CDCl3-d: H = 7.26 ppm, C = 77.16 ppm) and chemical 

shifts  are reported in ppm. Resonance multiplicity is abbreviated as: s (singlet), 

d (doublet), t (triplet) and m (multiplet). Carbon NMR signals are assigned using 

DEPT 135 and 1H-13C HSQC spectra with (+) for primary/tertiary, (–) for 

secondary, and (q) for quaternary carbons. Mass spectra were recorded on a 

Finnigan MAT-SSQ 710 A, ThermoQuest Finnigan TSQ 7000, Agilent Q-TOF 6540 

UHD, or a Jeol AccuTOF GCX instrument. UV-vis absorption spectroscopy was 

performed in 10 mm quartz cuvettes using an Agilent 8543, Agilent Cary 100, or 

Agilent Varian Cary 50 spectrometer. Analytical HPLC measurements were 

performed using an Agilent 1220 Infinity LC (column: Phenomenex Luna 3 µm 

C18(2) 100 Å, 150 x 2.00 mm; flow 0.3 mL min-1 at 20 °C or 30 °C; solvent A: MilliQ 

water with 0.05 wt% TFA; solvent B: MeCN). The ratios at the PSSs were 

determined via analytical HPLC at 20 °C at the isosbestic points or via NMR 

spectroscopy. An Agilent 1260 system (column: Phenomenex Luna 10 µm C18(2) 

100 Å, 250 x 21.2 mm; flow: 22 mL min-1; solvent A: MilliQ water; solvent B: MeCN) 

was used for preparative HPLC purification. Light sources for irradiation:  = 

365 nm (Seoul Viosys CUN6GB1A, 1000 mA, 1.4 W),  = 385 nm (Seoul Viosys 

CUN8GF1A, 1000 mA, 1.6 W),  = 400 nm (Luxeon 400 nm SZ-01-S2, 500 mA, 

0.48 W),  = 455 nm (Osram OSLON SSL 80 LD-CQ7P-1U3U, 1000 mA, 0.45 W). 

The power of the light is given based on the specifications supplied by the 

company when the LEDs were purchased. 

Compounds 2,[64] 3,[65] 6,[66] 8,[66] 10,[67] 11,[68] 14a–c,[70] 19,[72] 21,[73] 25,[75] and 26[76] 

were synthesized following adapted reported procedures. 

7.4.2 Synthetic Procedures and Characterization 

(E)-2-(p-tolyldiazenyl)quinoxaline (5a). This compound was synthesized via an 

adapted literature reported procedure.[65] Nitrosoquinoxaline 3 (0.48 g, 3.0 mmol, 

1.0 eq) and p-toluidine (4a, 0.36 g, 3.4 mmol, 1.1 equiv) were suspended in acetic 

acid (10 mL), refluxed for 10 min and stirred at room temperature for additional 

16 hours. Purification by flash column chromatography using CH2Cl2 as the eluent 
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afforded the desired product as red solid (0.57 g, 2.3 mmol, 76%). M.p.: 135 °C. 

1H-NMR (300 MHz, DMSO-d6): δ = 9.32 (s, 1H), 8.26 – 8.19 (m, 2H), 8.01 – 7.96 (m, 

4H), 7.50 (d, J = 8.6 Hz, 1H), 2.45 (s, 3H). 13C-NMR (75 MHz, DMSO-d6): δ = 155.6 

(q), 150.7 (q), 144.8 (q), 142.9 (q), 141.0 (q), 138.5 (+), 131.9 (+), 131.8 (+), 130.8 (+), 

130.3 (+), 129.4 (+), 123.9 (+), 21.7 (+). HRMS (ESI) calcd. for (C15H13N4+) [M+H]+: 

m/z = 249.1135; found 249.1138. MF: C15H12N4. MW: 248.29 g/mol. 

(E)-2-((3-chloro-2-methylphenyl)diazenyl)quinoxaline (5b). This compound was 

synthesized via an adapted literature reported procedure.[65] Nitrosoquinoxaline 3 

(0.48 g, 3.0 mmol, 1.0 eq) and aniline (4b, 0.48 g, 3.4 mmol, 1.1 eq) were mixed in 

acetic acid (10 mL) and heated to reflux for 10 min. The mixture was then heated 

at 50 °C for additional 16 hours. Purification by flash column chromatography 

using CH2Cl2 as the eluent afforded the target compound as red solid (40%). M.p.: 

140 °C. 1H-NMR (300 MHz, DMSO-d6): δ = 9.35 (s, 1H), 8.32 – 8.18 (m, 2H), 8.06 – 

7.94 (m, 2H), 7.74 (dd, J = 23.8, 8.1 Hz, 2H), 7.46 (t, J = 7.9 Hz, 1H), 2.81 (s, 3H). 

13C-NMR (101 MHz, DMSO-d6): δ = 155.6 (q), 151.7 (q), 143.1 (q), 141.0 (q), 138.4 

(+), 137.9 (q), 135.7 (q), 133.9 (+), 132.2 (+), 131.9 (+), 130.3 (+), 129.5 (+), 128.3 (+), 

114.5 (+), 14.7 (+). HRMS (ESI) calcd. for (C15H12ClN4+) [M+H]+: m/z = 283.0745; 

found 283.0745. MF: C15H11ClN4. MW: 282.73 g/mol. 

(E)-2-methoxy-3-(p-tolyldiazenyl)quinoxaline (12a) and (E)-1-methyl-3-(p-

tolyldiaz-enyl)quinoxalin-2(1H)-one (12b). These compounds were synthesized 

via an adapted literature reported procedure.[69] Compound 11 (0.36 g, 1.4 mmol, 

1.0 eq) and potassium carbonate (0.19 g, 1.4 mmol, 1.0 eq) were suspended in DMF 

(6.0 mL). Then methyl iodide (0.19 g, 1.4 mmol, 1.0 eq) was added and the mixture 

stirred at room temperature for 16 hours. Water (2.0 mL/mmol) was added to the 

mixture and the aqueous layer extracted with ethyl acetate for three times. The 

combined organic layers were washed with brine, dried over magnesium sulfate, 

filtered and the solvent evaporated. Purification by flash column chromatography 

using petroleum ether/ethyl acetate 1:1 as eluent afforded the products 12a and 

12b. Characterization of 12a. Red solid (45 mg, 0.16 mmol, 12%). Gradient 0-13 min: 

MeCN/H2O 45:55 – 98:2, tR = 12.2 min. M.p.: 137 °C. 1H-NMR (600 MHz, 
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DMSO-d6): δ = 8.07 (dd, J = 8.2, 1.4 Hz, 1H), 7.97 – 7.88 (m, 3H), 7.82 (ddd, J = 8.4, 

6.9, 1.5 Hz, 1H), 7.70 (ddd, J = 8.4, 7.0, 1.4 Hz, 1H), 7.48 (d, J = 8.1 Hz, 2H), 4.15 (s, 

3H), 2.46 (s, 3H). 13C-NMR (75 MHz, CDCl3): δ = 154.2 (q), 151.6 (q), 149.4 (q), 144.0 

(q), 141.5 (q), 137.8 (q), 130.5 (+), 130.2 (+), 129.9 (+), 127.4 (+), 126.8 (+), 124.1 (+), 

54.4 (+), 21.8 (+). HRMS (ESI) calcd. for (C16H15N4O+) [M+H]+: m/z = 279.1240; 

found 279.1243. MF: C16H14N4O. MW: 278.32 g/mol. Characterization of 12b. 

Orange solid (0.16 g, 0.57 mmol, 42%). Gradient 0-10 min 45:55-90:10, tR = 7.5 min. 

M.p.: 132 °C. 1H-NMR (400 MHz, DMSO-d6): δ = 7.87 (d, J = 8.4 Hz, 3H), 7.73 – 7.64 

(m, 2H), 7.49 – 7.40 (m, 3H), 3.72 (s, 3H), 2.45 (s, 3H). 13C-NMR (101 MHz, 

DMSO-d6): δ = 157.4 (q), 152.2 (q), 150.8 (q), 144.5 (q), 134.6 (q), 131.6 (+), 131.3 (q), 

130.7 (+), 130.7 (+), 124.6 (+), 123.8 (+), 115.6 (+), 29.7 (+), 21.7 (+). HRMS (ESI) calcd. 

for (C16H15N4O+) [M+H]+: m/z = 279.1240; found 279.1243. MF: C16H14N4O. MW: 

278.32 g/mol.  

(E)-4-(phenyldiazenyl)thieno[2,3-d]pyrimidine (16a). This compound was 

synthesized via an adapted literature reported procedure.[71] 

4-chlorothieno[2,3-d]pyrimidine (15c, 0.20 g, 1.2 mmol, 1.0 eq), phenylhydrazine 

(13b, 0.15 g, 1.4 mmol, 1.2 eq), DIPEA (0.76 g, 5.9 mmol, 5.0 equiv) and n-BuOH 

(5.0 mL) were mixed and stirred at 150 °C for 16 hours. The reaction mixture was 

cooled to room temperature and exposed to pure oxygen (balloon) for 24 hours. 

Purification by flash column chromatography using CH2Cl2 as the eluent afforded 

the desired product as red solid (0.15 g, 0.60 mmol, 53%). M.p.: 106 °C. 1H-NMR 

(400 MHz, DMSO-d6): δ = 9.25 (s, 1H), 8.18 (d, J = 6.0 Hz, 1H), 8.13 – 8.10 (m, 2H), 

7.89 (d, J = 6.0 Hz, 1H), 7.74 – 7.69 (m, 3H). 13C-NMR (101 MHz, DMSO-d6): δ = 

172.1 (q), 161.4 (q), 153.7 (+), 152.7 (q), 134.4 (+), 131.9 (+), 130.3 (+), 124.0 (+), 121.7 

(q), 120.6 (+). HRMS (ESI) calcd. for (C12H9N4S+) [M+H]+: m/z = 241.0542; found 

241.0540. MF: C12H8N4S. MW: 240.28 g/mol.  

(E)-6-((2-chlorophenyl)diazenyl)-9H-purine (16b). This compound was 

synthesized via an adapted literature reported procedure.[71] 6-Chloro-9-isopropyl-

9H-purine (0.37 g, 2.4 mmol, 1.0 eq), o-chlorophenylhydrazine (0.41 g, 2.9 mmol, 

1.2 eq), DIPEA (1.6 g, 12 mmol, 5.0 eq) and n-BuOH (16 mL) were mixed and stirred 
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in a sealed glass vial at 150 °C for 16 hours. The reaction mixture was cooled to 

room temperature and exposed to pure oxygen (balloon) for 24 hours. The solvent 

was removed and the product purified by flash column chromatography using 

CH2Cl2 + 5% MeOH to afford 16b as red solid (0.42 g, 1.6 mmol, 67%). M.p.: 179 °C. 

1H-NMR (400 MHz, DMSO-d6): δ = 13.26 (s, 1H), 9.10 (s, 1H), 8.83 (s, 1H), 7.82 – 

7.78 (m, 2H), 7.73 – 7.69 (m, 1H), 7.60 – 7.55 (m, 1H). 13C-NMR (101 MHz, 

DMSO-d6): δ = 152.3 (+), 149.0 (q), 135.8 (q), 135.2 (+), 131.5 (+), 128.7 (+), 118.2 (+). 

HRMS (ESI) calcd. for (C11H8ClN6+) [M+H]+: m/z = 259.0493; found 259.0493. MF: 

C11H7ClN6. MW: 258.67 g/mol. 

(E)-6-(naphthalen-1-yldiazenyl)-9H-purine (16c). This compound was 

synthesized via an adapted literature reported procedure.[71] A mixture of 

chloroadenine 15a (93 mg, 0.60 mmol, 1.0 eq), hydrazine 14b (0.11 g, 0.72 mmol, 

1.2 eq) and DIPEA (0.39 g, 0.52 mL, 3.0 mmol, 5.0 eq) in n-BuOH (4.0 mL) was 

stirred at 150 °C for 16 hours. After cooling to room temperature, the solution was 

exposed to an oxygen atmosphere (balloon) for 24 hours. The product was purified 

by column chromatography using CH2Cl2 + 5% MeOH as the eluent and 

subsequent preparative HPLC (gradient 0 20 min: MeCN/H2O 10:90 – 98:2) and 

afforded adenine-azo 16c as red solid (tR = 11.47 min, 92.0 mg, 0.37 mmol, 62%). 

M.p.: 110 °C. 1H-NMR (400 MHz, DMSO-d6): δ = 13.53 (s, 1H), 9.14 (s, 1H), 8.91 (d, 

J = 8.4 Hz, 1H), 8.85 (s, 1H), 8.31 (d, J = 8.0 Hz, 1H), 8.13 (d, J = 8.0 Hz, 1H), 7.99 (d, 

J = 7.5 Hz, 1H), 7.80 – 7.70 (m, 3H). 13C-NMR (151 MHz, DMSO-d6): δ = 155.0 (q), 

151.8 (+), 149.3 (q), 147.7 (+), 134.0 (+), 133.9 (q), 130.2 (q), 128.2 (+), 128.0 (+), 127.0 

(+), 125.8 (+), 123.3 (+), 113.6 (q). HRMS (ESI) calcd. for (C15H11N6+) [M+H]+: m/z 

= 275.1040; found 275.1044. MF: C15H10N6. MW: 274.29 g/mol. 

(E)-9-methyl-6-(naphthalen-1-yldiazenyl)-9H-purine (16d). This compound was 

synthesized via an adapted literature reported procedure.[71] A mixture of 

methylated chloro-adenin 15b (0.10 g, 0.60 mmol, 1.0 eq), hydrazine 14b (0.11 g, 

0.72 mmol, 1.2 equiv) and DIPEA (0.39 g, 0.52 mL, 3.0 mmol, 5.0 equiv) in n-butanol 

(4.0 mL) was stirred at 150 °C for 16 hours. After cooling to room temperature, the 

solution was exposed to an oxygen atmosphere (balloon) for 24 hours. The product 
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was purified by column chromatography using CH2Cl2 + 5% MeOH as eluent and 

subsequent preparative HPLC (gradient 0 20 min: MeCN/H2O 10:90 – 98:2) and 

afforded the methylated azoadenine 16d as red solid (tR = 12.91 min, 0.13 g, 

0.45 mmol, 75%). M.p.: 186 °C. 1H-NMR (400 MHz, CDCl3-d): δ = 9.13 (s, 1H), 9.08 

(d, J = 7.3 Hz, 1H), 8.27 (s, 1H), 8.09 (d, J = 7.8 Hz, 2H), 7.94 (d, J = 7.8 Hz, 1H), 7.71 

– 7.66 (m, 1H), 7.62 – 7.58 (m, 2H), 4.00 (s, 3H). 13C-NMR (101 MHz, CDCl3-d): δ = 

158.0 (q), 155.6 (q), 152.7 (+), 148.6 (q), 147.5 (+), 134.3 (q), 134.1 (+), 132.0 (q), 127.9 

(+), 127.9 (+), 126.8 (+), 126.0 (q), 125.4 (+), 123.9 (+), 113.0 (+), 30.2 (+). HRMS (ESI) 

calcd. for (C16H13N6+) [M+H]+: m/z = 289.1196; found 289.1198. MF: C16H12N6. 

MW: 288.31 g/mol. 

(E)-6-((4-(phenyldiazenyl)benzyl)thio)-7H-purine (23). This compound was 

synthesized via an adapted literature reported procedure.[74] A solution of 

chloromethylated azobenzene 21 (0.80 g, 3.5 mmol, 1.1 eq) in DMF (10 mL) was 

added to a solution of 6-mercaptopurine 22 (0.15 g, 3.2 mmol, 1.0 eq) in 2 M NaOH 

(10 mL) and the mixture stirred at room temperature for 3 hours. The solvent was 

evaporated, and the product purified by flash column chromatography using 

CH2Cl2 + 5% MeOH as the eluent. Evaporation of the solvent afforded the desired 

product as orange solid (215 mg, 0.62 mmol, 18%). M.p.: 212 °C. 1H-NMR 

(400 MHz, DMSO-d6): δ = 13.55 (s, 1H), 8.76 (s, 1H), 8.46 (s, 1H), 7.89 – 7.83 (m, 4H), 

7.68 (d, J = 8.4 Hz, 2H), 7.59 – 7.55 (m, 3H), 4.76 (s, 2H). 13C-NMR (101 MHz, 

DMSO-d6): δ = 158.3 (q), 152.4(q), 151.9 (+), 151.4 (q), 149.9 (q), 143.6 (q), 142.4 (q), 

132.0 (+), 130.5 (+), 129.9 (+), 123.2 (+), 123.0 (+), 31.7 (-). HRMS (ESI) calcd. for 

(C18H15N6S+) [M+H]+: m/z = 347.1073; found 347.1077. MF: C18H14N6S. MW: 

346.41 g/mol.  

(E)-4-(phenyldiazenyl)-N-(9H-purin-6-yl)benzamide (28). This compound was 

synthesized via an adapted literature reported procedure.[77] 

Chlorocarbonylazobenzene 26 (0.64 g, 2.6 mmol, 1.1 eq) was added dropwise over 

30 minutes to a stirred suspension of adenine 27 (0.32 g, 2.4 mmol, 1.0 eq) in dry 

pyridine and stirring was continued for two hours at 100 °C. The mixture was 

cooled to room temperature and stirred for additional 16 hours. The reaction was 
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quenched with methanol and the solvents were removed under reduced pressure. 

Purification by column chromatography using CH2Cl2 as eluent afforded the 

desired product as orange solid (0.68 g, 2.0 mmol, 83%). M.p.: 271 °C. 1H-NMR 

(400 MHz, DMSO-d6): δ = 11.69 (s, 1H), 8.76 (s, 1H), 8.54 (s, 1H), 8.32 (d, J = 8.3 Hz, 

2H), 8.03 (d, J = 8.3 Hz, 2H), 7.97 – 7.94 (m, 2H), 7.67 – 7.62 (m, 3H). 13C-NMR 

(101 MHz, DMSO-d6): δ = 166.2 (q), 154.5 (q), 152.4 (q), 151.6 (+), 146.3 (+), 135.5 

(q), 132.7 (+), 130.5 (+), 130.1 (+), 123.3 (+), 122.9 (+). HRMS (ESI) calcd. for 

(C18H14N7O+) [M+H]+: m/z = 344.1254; found 344.1257. MF: C18H13N7O. MW: 

343.35 g/mol. 

7.4.3 In Vitro Studies 

Cell culture and transfection. The subtype A of 5-HT3 receptors was 

heterologously expressed in cultured chinese hamster ovary (CHO) cells obtained 

from the American Type Tissue Culture Collection (ATCC, Molsheim, France). 

Transfection with cDNA of 5-HT3A receptors was performed using the 

Lipofectamine 3000 protocol (Life Technology, USA). For identification of 

transfected cells a cDNA of green fluorescent protein (GFP) was co-transfected 

with cDNA of 5-HT3ARs. Three hours after the initial exposure of cells to the 

cDNAs the culture medium was replaced with fresh medium. Electrophysiological 

recordings were carried out on fluorescent cells 24-72 hours after transfection. 

Electrophysiological recordings. Whole-cell patch-clamp recordings were held at 

room temperature (20-25 °C) using an EPC-9 amplifier (HEKA Elektronik, 

Germany). Cells were continuously superfused with external solution containing 

(mM): NaCl 140, CaCl2 2, KCl 2.8, MgCl2 4, HEPES 20, glucose 10; pH 7.4; 320-

330 mOsm. Intracellular solution used for filling recording patch pipettes 

contained (mM): KCl 140, MgCl2 2, MgATP 2, BAPTA (tetrapotassium salt) 2; pH 

7.3; 290 mOsm. Recording pipettes were pulled from borosilicate glass capillaries 

(Harvard Apparatus Ltd, USA) and had resistances of 5-10 MOhm. Rapid 

replacement of solutions was provided by fast application system (SF 77A 

Perfusion Fast-Step, Warner, USA), placed 40-50 µm above the recorded cell. Cells 
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with low input resistance (<150 MOhm) and a rapid run-down (>30% with 

repetitive application) were excluded from analysis. The agonist 5-HT for the 

activation was applied alone or mixed with studied compounds during 5 s. 

Irradiation with the light of 455 nm or 530 nm was provided by LEDs (Thorlabs) 

placed at the distance of 4-5 cm from the studied cell. 
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7.5 Supporting Information 

7.5.1 1H- and 13C-NMR Spectra 

Compound 5a (DMSO-d6)  
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Compound 5b (DMSO-d6) 
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Compound 12a (1H DMSO-d6, 13C CDCl3-d) 
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Compound 12b (DMSO-d6) 
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Compound 16a (DMSO-d6) 
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Compound 16b (DMSO-d6) 
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Compound 16c (DMSO-d6) 
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Compound 16d (CDCl3-d) 
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Compound 23 (DMSO-d6) 
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Compound 28 (DMSO-d6) 
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7.5.2 UV-Vis Absorption Spectra, Cycle Performances, and Thermal Half-Lives 

 

 

Figure S1. UV–Vis absorption spectroscopic characterization of compound 5a measured at 50 µM 
in DMSO. Upper panel: UV–Vis absorption spectrum upon continuous irradiation with the 
indicated wavelengths until the PSS is reached. Black arrows indicate the changes in the absorption 
upon trans–cis isomerization. Dotted black arrows indicate isosbestic points. Middle panel: Cycle 

performance. Changes in absorption at max of the trans isomer were measured during alternate 

irradiation with the indicated wavelengths. Lower panel: Thermal half-life determined at max of 
the trans isomer. 
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Figure S2. UV–Vis absorption spectroscopic characterization of compound 5b measured at 50 µM 
in DMSO. Upper panel: UV–Vis absorption spectrum upon continuous irradiation with the 
indicated wavelengths until the PSS is reached. Black arrows indicate the changes in the absorption 
upon trans–cis isomerization. Dotted black arrows indicate isosbestic points. Middle panel: Cycle 

performance. Changes in absorption at max of the trans isomer were measured during alternate 

irradiation with the indicated wavelengths. Lower panel: Thermal half-life determined at max of 
the trans isomer. 
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Figure S3. UV–Vis absorption spectroscopic characterization of compound 12a measured at 50 µM 
in DMSO. As the cis-trans back isomerization is not triggerable by irradiation with light no cycle 
performance was recorded. Upper panel: UV–Vis absorption spectrum upon continuous 
irradiation with the indicated wavelength until the PSS is reached. Black arrow indicates the change 

in the absorption upon trans–cis isomerization. Lower panel: Thermal half-life determined at max 
of the trans isomer. 
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Figure S4. UV-Vis absorption spectrum of non-photochromic compound 12b measured at 50 µM 
in DMSO. 
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Figure S5. UV–Vis absorption spectroscopic characterization of compound 16a measured at 50 µM 
in DMSO (left) and phosphate buffer + 0.1% DMSO (right), respectively. Upper panel: UV–Vis 
absorption spectra upon continuous irradiation with the indicated wavelengths until the PSS is 
reached. Black arrows indicate the changes in the absorption upon trans–cis isomerization. Dotted 
black arrows indicate isosbestic points. Middle panel: Cycle performances. Changes in absorption 

at max of the trans isomer were measured during alternate irradiation with the indicated 

wavelengths. Lower panel: Thermal half-lives determined at max of the trans isomer. 
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Figure S6. UV–Vis absorption spectroscopic characterization of compound 16b measured at 50 µM 
in DMSO (left) and phosphate buffer + 0.1% DMSO (right), respectively. Upper panel: UV–Vis 
absorption spectra upon continuous irradiation with the indicated wavelengths until the PSS is 
reached. Black arrows indicate the changes in the absorption upon trans–cis isomerization. Dotted 
black arrows indicate isosbestic points. Middle panel: Cycle performances. Changes in absorption 

at max of the trans isomer were measured during alternate irradiation with the indicated 

wavelengths. Lower panel: Thermal half-lives determined at max of the trans isomer. 
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Figure S7. UV–Vis absorption spectroscopic characterization of compound 16c measured at 50 µM 
in DMSO (left) and phosphate buffer + 0.1% DMSO (right), respectively. As the cis-trans back 
isomerization is not triggerable by irradiation with light no cycle performances were recorded. 
Upper panel: UV–Vis absorption spectra upon continuous irradiation with the indicated 
wavelength until the PSS is reached. Black arrows indicate the change in the absorption upon trans-

cis isomerization. Lower panel: Thermal half-lives determined at max of the trans isomer. 
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Figure S8. UV–Vis absorption spectroscopic characterization of compound 16d measured at 50 µM 
in DMSO (left) and phosphate buffer + 0.1% DMSO (right), respectively. As the cis-trans back 
isomerization is not triggerable by irradiation with light no cycle performances were recorded. 
Upper panel: UV–Vis absorption spectra upon continuous irradiation with the indicated 
wavelength until the PSS is reached. Black arrows indicate the change in the absorption upon trans–
cis isomerization. Dotted black arrows indicate isosbestic points. Lower panel: Thermal half-lives 

determined at max of the trans-isomer. 
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Figure S9. UV–Vis absorption spectroscopic characterization of compound 23 measured at 50 µM 
in DMSO. Upper panel: UV–Vis absorption spectrum upon continuous irradiation with the 
indicated wavelengths until the PSS is reached. Black arrows indicate the changes in the absorption 
upon trans–cis isomerization. Dotted black arrows indicate isosbestic points. Middle panel: Cycle 

performance. Changes in absorption at max of the trans isomer were measured during alternate 

irradiation with the indicated wavelengths. Lower panel: Thermal half-life determined at max of 
the trans isomer. 
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Figure S10. UV–Vis absorption spectroscopic characterization of compound 28 measured at 50 µM 
in DMSO. Upper panel: UV–Vis absorption spectrum upon continuous irradiation with the 
indicated wavelengths until the PSS is reached. Black arrows indicate the changes in the absorption 
upon trans–cis isomerization. Dotted black arrows indicate isosbestic points. Middle panel: Cycle 

performance. Changes in absorption at max of the trans isomer were measured during alternate 

irradiation with the indicated wavelengths. Lower panel: Thermal half-life determined at max of 
the trans isomer. 
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7.5.3 Tabular Summarized Photochemical Data 

Table S1. Photochemical properties of azobenzene-based serotonin 5-HT3R antagonists determined 
at 50 µM in DMSO. Cpd. = Compound. 

Entry Cpd. 
max 

trans isomer [nm] 

max 

cis isomer [nm] 

Isosbestic points  

[nm] 

 

 

THL 

1 5a 355 452 268, 415 21 min 

2 5b 348 455 266, 411 3.4 h 

3 12a 343 - - 3.5 min 

4 12b 319 - - - 

5 16a 309 - 275, 430, 489 37 s 

6 16b 346 - 279, 432, 459 46 min 

7 16c 404 - 309 15 min 

8 16d 386 - 309 20 min 

9 23 332 437 289, 391 107 h 

10 28 331 434 302, 392 59 h 

Table S2. Photochemical properties of azobenzene-based serotonin 5-HT3R antagonists determined 
at 50 µM in phosphate buffer + 0.1% DMSO. Cpd. = Compound. 

Entry Cpd. 
max 

trans isomer [nm] 

max 

cis isomer [nm] 

Isosbestic points  

[nm] 

 

 

THL 

1 16a 315 - 243, 267, 280, 438, 466 9 s 

2 16b 352 - 289, 431, 470 10 min 

3 16c 414 - 306 52 s 

4 16d 416 - 314 49 s 

Table S3. Determination of the photostationary states for the thermally more stable compounds 23 

and 28 (at 50 µM DMSO) using analytical HPLC at the isosbestic point at 20 °C. 

Entry           Compound             PSS-distribution  

1 23 91% cis (365 nm); 81% trans (455 nm) 

2 28 69% cis (365 nm); 84% trans (455 nm) 
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7.5.4 Single Crystal X-ray Crystallography 

Compound 12b 

Experimental. Single clear red plate-shaped crystals of 12b were obtained by 

recrystallisation from acetone. A suitable crystal (0.088×0.195×0.309) mm3 was 

selected and mounted on a MITIGEN holder with inert oil on a SuperNova, Single 

source at offset/far, Atlas diffractometer. The crystal was kept at T = 123 K during 

data collection. Using Olex2,[78] the structure was solved with the ShelXT[79] 

structure solution program, using the Intrinsic Phasing solution method. The 

model was refined with version 2016/6 of ShelXL[80] using Least Squares 

minimization. 

Crystal Data. C16H14N4O, Mr = 279.31, triclinic P-1 (No. 2), a = 7.3051(5) Å, b = 

9.2030(6) Å, c = 11.3965(8) Å, α = 100.804(5)°, β = 97.060(5)°, γ = 113.159(6) °, V = 

675.35(9) Å3, T = 123(1) K, Z = 1 λ=(CuKα) = 2.732, 395 reflections measured, 2567 

unique (Rint  = 0.0305) which were used in all calculations. The final wR2 was 0.1266 

(all data) and R1 was 0.0522 (I > 2(I)). 

Cambridge Structural Database CCDC. 1890055 
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Detailed Crystal Data. 

Empirical formula  C16H14N4O  

Formula weight  278.31  

Temperature/K  123(1)  

Crystal system  triclinic  

Space group  P-1  

a/Å  7.3051(5)  

b/Å  9.2030(6)  

c/Å  11.3965(8)  

α/°  100.804(5)  

β/°  97.060(5)  

γ/°  113.159(6)  

Volume/Å3  675.35(9)  

Z  1  

ρcalcg/cm3  0.684  

μ/mm-1  0.362  

F(000)  146.0  

Crystal size/mm3  0.309 × 0.195 × 0.088  

Radiation  CuKα (λ = 1.54184)  

2Θ range for data collection/°  8.092 to 146.842  

Index ranges  -8 ≤ h ≤ 8, -7 ≤ k ≤ 11, -14 ≤ l ≤ 11  

Reflections collected  3951  

Independent reflections  2567 [Rint = 0.0305, Rsigma = 0.0405]  

Data/restraints/parameters  2567/0/192  

Goodness-of-fit on F2  1.036  

Final R indexes [I>=2σ (I)]  R1 = 0.0443, wR2 = 0.1179  

Final R indexes [all data]  R1 = 0.0522, wR2 = 0.1266  

Largest diff. peak/hole / e Å-3  0.24/-0.29  
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Compound 16a 

Experimental. Single clear orange plate-shaped crystals of 16a were obtained by 

recrystallisation from CH2Cl2. A suitable crystal 0.29×0.24×0.04 mm3 was selected 

and mounted on a suitable support on an GV1000, TitanS2 diffractometer. The 

crystal was kept at a steady T = 123.01(13) K during data collection. The structure 

was solved with the ShelXT[79] structure solution program using the Intrinsic 

Phasing solution method and by using Olex2[78] as the graphical interface. The 

model was refined with version 2016/6 of ShelXL[80] using Least Squares 

minimization. 

Crystal Data. C12H8N4S, Mr = 240.28, monoclinic, P21/n (No. 14), a = 7.0586(3) Å, 

b = 7.5744(2) Å, c = 20.8479(9) Å,  = 98.124(3)°,  =  = 90°, V = 1103.44(7) Å3, T = 

123.01(13) K, Z = 4, Z' = 1, (CuK) = 2.445, 7909 reflections measured, 2196 unique 

(Rint = 0.0606) which were used in all calculations. The final wR2 was 0.1380 (all 

data) and R1 was 0.0465 (I > 2(I)). 

Cambridge Structural Database CCDC. 1889897  
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Detailed crystal data. 

Formula  C12H8N4S  

Dcalc./ g cm-3  1.446  

/mm-1  2.445  

Formula Weight  240.28  

Colour  clear orange  

Shape  plate  

Size/mm3  0.29×0.24×0.04  

T/K  123.01(13)  

Crystal System  monoclinic  

Space Group  P21/n  

a/Å  7.0586(3)  

b/Å  7.5744(2)  

c/Å  20.8479(9)  

/°  90  

/°  98.124(3)  

/°  90  

V/Å3  1103.44(7)  
Z  4  
Z'  1  

Wavelength/Å  1.54184  

Radiation type  CuK  

min/°  4.284  

max/°  74.411  

Measured Refl.  7909  

Independent Refl.  2196  

Reflections with I> 2(I)  1981  
Rint  0.0606  

Parameters  186  

Restraints  0  

Largest Peak  0.344  

Deepest Hole  -0.369  

GooF  1.099  

wR2 (all data)  0.1380  
wR2  0.1321  

R1 (all data)  0.0516  
R1  0.0465  
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CHAPTER 8 

8 Photochromic Metal Complex-Agonist Conjugates 
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8.1 Introduction 

The human genome is expressing genes for over 800 different G protein-coupled 

receptors, which are the largest superfamily of membrane receptors.[1-4] A 

conserved feature of all known GPCRs is their heptahelical transmembrane 

domain, which undergoes conformational changes upon ligand binding allowing 

for interaction with intracellular proteins and initiation of downstream signalling 

cascades.[5] Their embedding in diverse cellular processes explains their 

importance as drug target. Around 34% of the medications approved by the US 

Food and Drug Administration (FDA) trigger around 100 different GPCRs.[6] 

Amongst them are mainly family A GPCRs which are representing 85% of the 

GPCR superfamily.[7] So called orphan GPCRs are of unknown function and their 

endogenous ligands remain unknown. Furthermore, their identification is made 

more difficult, as GPCRs are woven into the cell membrane and are difficult to 

purify. This emphasizes the importance of GPCRs, especially of class A, as a 

research target as it is likely that various untreated diseases are provoked by their 

dysfunction.[8]  

One approach for GPCR investigation is represented by designer receptors 

exclusively activated by designer drugs (DREADDs) or receptors activated solely 

by a synthetic ligand (RASSLs). As their name implies, these systems use 

engineered GPCRs, which are exclusively sensitive to synthetic ligands and no 

longer to their natural ones. This method allows receptor selectivity and cell type 

specificity but as it is based on mutated receptors, it is unreliable how far new 

findings can be applied for their natural counterparts.[9-11] The desire to unravel 

deeper understanding on native receptors led to the development of new tools, 

e.g., in the field of photopharmacology, using light as non-invasive abundant 

trigger orthogonal to cellular processes to control a drug’s activity.[12] Photocaged 

and photoswitchable ligands are soluble molecules of which the biological activity 

can be regulated in high spatiotemporal resolution by irradiation induced cleavage 

of a protecting group or isomerization.[13] Unfavourable, their kinetics are diffusion 
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limited, which often limits their specificity and activity. To overcome those 

drawbacks, the ligands are covalently tethered to a bioconjugation motif at the 

targeted protein placing the ligand in proximity to its binding pocket. Usually, an 

engineered cysteine is selectively expressed in the cells of interest and reacts to a 

maleimide motive of the photochromic ligand. Those photochromic tethered 

ligands (PTLs) allow to control the ligand’s position towards or away from the 

binding pocket. Nevertheless, the given cell and subtype specificity is restricted by 

conjugation to free thiols (e.g., glutathione, native cysteines) in intracellular 

environments and the instability of maleimides towards hydrolyzation under 

physiological conditions. Improvement is provided via tethering of a 

photochromic ligand to a benzylguanine able to react with a SNAP-tag encoded at 

an arranged site providing a photoswitchable orthogonal remotely tethered ligand 

(PORTL). Beneficial is the high stability of the tethering group and high selectivity 

and orthogonality to native reactions.[14] Another suitable approach useful for class 

A GPCRs but lacking photo responsiveness is reported by chemogenetic 

coordination tethering. Typically, the native agonist is linked to a metal chelator 

via a polyethyleneglycol moiety providing flexibility and solubility in aqueous 

media. This metal complex-agonist conjugate (MAC) binds with high affinity to an 

engineered His4 tag providing 10-100-fold lower EC50 values for ligand-binding at 

the designed receptors compared to the wildtype as the ligand is selectively placed 

close to its binding site. The length of the linker is crucial for the accessibility of the 

agonist towards its binding pocket. If the linker is too short, the site is not reached. 

If the linker is too long, the efficacy of the binding is reduced. Release of the ligand 

is driven by diffusion or complete wash-out of the MAC as it is not covalently 

bound.[15] More insight into the dynamics of the addressed class A GPCRs would 

be provided if binding and unbinding of the ligand could be further regulated via 

incorporation of a photochromic moiety.  

We envisioned, that the incorporation of an azobenzene as part of the MAC leads 

to an irradiation inducible change of the linker length upon trans-cis isomerization 

and thus to an adjustable high affinity ligand binding and unbinding (Figure 1). In 
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this case, the change in biological activity of the photochromic metal complex-

agonist conjugate (PMAC) does not result from a change in the efficacy of the 

ligand itself as it does for PCLs or caged compounds, but from a change in the 

accessibility of the ligand to its binding site. 

 

Figure 1. Upper panel: MAC designed by the Hamachi group and PMAC design attempted in this 
work. Lower panel: Schematic drawing of a PMAC acting on an engineered His4-tagged class A 
GPCR.  

8.2 Results and Discussion 

8.2.1 Design and Syntheses 

Design. The choice of the photochromic scaffold is essential for the photochromic 

properties of the final metal complex-agonist conjugate. As it is reported[15] by the 

Hamachi group that the linker length is crucial for the biological activity of the 

MAC, azobenzene was chosen as photochromic scaffold as its light-induced trans-
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cis isomerization leads to a change in end-to-end distance, which might influence 

ligand binding.[13,16,17] The photophysical properties of azobenzene, e.g., the 

wavelengths required for isomerization and the thermal stability of the cis isomer 

can be classified based on its substitution pattern. Unsubstituted azobenzenes 

undergo trans to cis isomerization upon irradiation with UV light and show long 

thermal half-lives of their cis isomers. The addition of an electron donating group 

(EDG) in para position or even an additional electron withdrawing group (EWG) 

in para’ position leads to a bathochromic shift of the absorption spectrum and 

reduced thermal stability of the cis isomers.[18] To avoid continuous irradiation 

during the in vitro assay an azobenzene scaffold is required, of which the cis isomer 

is thermally stable enough to be tested upon prior irradiation. In analogy to the 

design of a MAC reported[15] by the Hamachi group, the azobenzene is linked to 

the coordination site and the ligand via amide bonds. Using a para para’ dicarboxy 

azobenzene allows the required functionalization for PMAC formation and 

provides the desired photochromic properties. 

To keep the length of the azobenzene linker in accordance to the reported 

tetraethyleneglycol linker, Chem3D was used to calculate the end-to-end distances 

of different azobenzene linkers. This led to the design of a dicarboxy azobenzene 

moiety with an amide linked butylamine (Figure 2). 

 

Figure 2. Rough estimation of the linker length using Chem3D. 

Synthesis of the control compound. To assure that the photoisomerization of the 

latter photochromic metal complex-agonist conjugate is not altered upon 

coordination of nickel, the simplified photochromic metal chelator 5 based on 
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carboxy azobenzene was synthesized (Scheme 1). In a first synthetic step, the 

carboxylic acid azobenzene 3 was synthesized using a Mills reaction starting from 

amino benzoic acid 1 and nitrosobenzene 2.[19] Conversion to its highly reactive 

NHS-ester 5 allowed its subsequent reaction with the alkyl amine linked triacid 6 

providing the photochromic metal chelator 7.[20] Nickel coordination was achieved 

by addition of an equimolar amount of nickel(II)sulfate in Hepes buffered saline 

(HBS) at pH 7.4, which represents the solvent required during in vitro testing.[15] 

Scheme 1. Synthesis of the azobenzene metal conjugate 8 and its non-coordinated precursor 
7.[15,19,20] 

Synthesis of the photochromic metal complex-agonist conjugate (PMAC). The 

overall synthesis (Scheme 2) of the photochromic metal complex-agonist was 

designed in analogy to the reported MAC synthesis. Therefore, para carboxy para’ 

tert butyl ester azobenzene 11 was synthesized via Mills reaction. Amino benzoic 

acid 1 was oxidized to its nitroso derivative 9 using oxone in a biphasic solvent 

mixture preventing overoxidation.[21] Subsequent addition of the tert butyl ester 

substituted aniline 10 in acetic acid allowed the formation of azobenzene 11. 

Transformation of the para carboxylic acid 11 to its NHS-ester 12 allowed its 

reaction with butyldiamine 13 providing the para amino butylamide azobenzene 

14.[20] Upon cleavage of the para’ tert butyl ester of 14 using trifluoro acetic acid the 

free amino group of 15 was Boc protected. The carboxylic acid of 16 was selectively 
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NHS-activated (17) and subsequently reacted with the amino substituted hexanol 

18 providing its linked derivative 19 required for the latter addition of the agonist 

moiety. The hydroxy group of 19 is activated using methansulfonylchloride and 

deprotection of its Boc amine allowed the introduction of the NHS-activated metal 

chelator precursor 22 providing 23. In the next step, the iperoxo ligand 24 was 

introduced and the carboxylic acid groups of 25 deprotected providing the PMAC 

26 with its free carboxylic acid groups required for nickel-coordination.[15] 
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Scheme 2. Synthesis of the photochromic metal complex-agonist conjugate 27.[15,20,21]  

8.2.2 Photochemical Characterization 

Control experiments. Initially, the photochromic properties of control compound 

7 were investigated by absorption spectroscopy in HEPES buffer before (7) and 

upon nickel coordination (8). The black curve in Figure 3, left panel, shows the 

spectrum of compound 7 its thermal equilibrium. Upon irradiation with UV light 

( = 365 nm) a substantial amount of the cis isomer was accumulated, until no more 

changes in the spectrum despite ongoing irradiation could be observed 

(= cis-photostationary state; Figure 3, red curve). Thereby, the maximum around 

330 nm representing the trans isomer decreased and a new maximum in the visible 

range representing the cis isomer is formed. Regeneration of the trans isomer is 

achieved by irradiation with blue light ( = 455 nm) until the trans-photostationary 

state (blue curve) is reached. To this solution, an equimolar amount of 

nickel(II)sulfate was added and the mixture incubated at room temperature for 

12 h. The solution containing nickel-coordinated compound 8 could be isomerized 

by irradiation with UV and visible light of the same wavelengths as required for 

the non-coordinated compound 7 and the cis- and trans-photostationary states of 7 

could nearly be regenerated showing that the nickel coordination has no effect on 

the switching performance. To proof the thermal stability of the basic 

photochromic MAC scaffold represented by the prefunctionalized azobenzene 14, 

the thermal recovery of its cis isomer was determined proving high thermal 

stability in the day range (Figure 3, right panel). 
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Figure 3. Left panel: Switching performance of triacid 7 (-NiSO4) and upon nickel coordination 
(compound 8, +NiSO4) measured in 10 mM HBS pH 7.4. Right panel: Thermal half-life of the 
functionalized azobenzene linker 14 measured 50 µM in DMSO. 

Photochromic metal complex-agonist conjugate. The investigation of the 

photochromic properties of PMAC 26 was performed by absorption spectroscopy 

in DMSO (Figure S2, Supporting Information) and in HBS (Figure 4) prior to (26) 

and upon (27) nickel coordination (1.0 eq; 1 h incubation at rt). The results 

underline that the nickel coordination has neither an effect on the switching 

efficiency nor on the absorption bands of the spectrum. Furthermore, the 

absorption spectrum shows the same characteristic maxima as control compound 

7 and the prefunctionalized derivate 14 highlighting that the photochromic 

properties of azobenzenes are mainly determined by the substituents directly 

attached to the phenyl rings. Black arrows in Figure 4 indicate the characteristic 

changes in the absorption spectrum upon isomerization. Upon irradiation with UV 

light, the maximum of the trans isomer in its thermal equilibrium (black curve) is 

decreasing and a new maximum in the visible range representing the 

cis-photostationary state (PSS) is formed (red curve). Reisomerization to the 

trans-PSS (blue curve) is triggered using blue light ( = 455 nm). Due to a 

substantial overlap of the absorption bands of both isomeric states, a quantitative 

generation of one or the other species by irradiation is not feasible. The points of 

intersection (= isosbestic points) in the absorption spectra of non-coordinated 

compound 26 and coordinated compound 27 upon isomerization indicate a clear 

two component switching between trans and cis isomer without any degradation 
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or formation of a side-product (Figure 4, dotted black arrows). The repetitive cycle 

performance of compound 26 shows high fatigue resistance (Figure 4, right panel). 

 

Figure 4. Left panel: Switching performance of iperoxo azobenzene triacid prior to (- NiSO4, 26) 
and upon nickel coordination (+NiSO4, 1 h incubation, 27) measured in HBS. Right panel: Cycle 
performance of compound 26 (-NiSO4) measured in HBS. 

Table 1 summarizes the characteristic photochromic data (absorption maxima, 

isosbestic points) for azobenzenes 7, 8, 14, 26, and 27.  

Table 1. Summary of the characteristic photochemical properties of azobenzenes 7, 8, 14, 26, and 
27. Cpd. = Compound. 

Entry Cpd. 
max trans 

isomer [nm] 

max cis  

isomer [nm] 

Isosbestic  

points [nm] 

 

 

solvent 

 

 

NiSO4 

1 7 325 426 281, 383 1xHBS - 

2 8 324 397 281, 387 1xHBS + (1.0 eq)(a) 

3 14 335 433 287, 391 DMSO -  

4 26 337 434 287, 392 DMSO - 

5 26 329 428 284, 391 1xHBS - 

6 27 329 428 285, 387 1xHBS + (1.0 eq)(b) 

Incubation with an equimolar amount of NiSO4 at room temperature for (a) 12 hours, (b) 1 hour. 

8.2.3 In Vitro Fluorescence Ca2+ Imaging 

To validate the biological activity of the synthesized photochromic metal complex-

agonist conjugate, both isomeric states were examined on the native and the His-

tagged muscarinic acetylcholine receptor (mAChR) M1R as representative of a 

class A GPCR in the presence and absence of nickel. The activities of the wildtype 

M1R and His-tagged M1R transiently expressed in CHO cells were evaluated 
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using fluorescence Ca2+ imaging.[15] The obtained preliminary results will be 

discussed in the following.  

The positive controls (Figure S4, Supporting Information) proved the activity of 

Fluo4 and Fura2 as calcium sensing fluorescence reporters as well as the possibility 

of ligand (Iperoxo) wash-out and subsequent reactivation of the investigated cells.  

The trans isomer was tested in its thermal equilibrium. The concentration 

dependence for activating the His-tagged receptor showed an increased efficiency 

by a factor of 100 in the presence of nickel (Figure S6, Supporting Information) 

compared to the His-tagged receptor activation under absence of nickel (Figure S5, 

Supporting Information). The evoked response on the His-tagged cells without 

addition of nickel corresponded to the activation response on wildtype cells upon 

addition of nickel (Figure S8, Supporting Information). In absence of nickel, the 

response of the wildtype receptor (Figure S7, Supporting Information) was even 

further reduced by a factor of 10. These preliminary data confirm the beneficial 

effect of high-affinity nickel complex formation of compound 27 towards the His-

tagged receptor. This implies that the incorporation of trans azobenzene as part of 

the MAC kept the linker length within an acceptable range for ligand induced 

receptor activation upon coordination to the His-tag.  

As the cis isomer was tested at its photostationary state background activity of the 

remaining trans isomer needs to be kept in mind. Furthermore, back-isomerization 

of the cis PMAC upon adhesion to the cell and the receptor, respectively, cannot 

be ruled out. Due to aging of the cells no reliable results could be achieved for the 

testing of the cis isomer and the measurements need to be repeated with younger 

cells in ongoing tests.  

The Ca2+ responses evoked by different concentrations of the photochromic metal 

complex-agonist conjugate in the absence (compound 26) and presence 

(compound 27) of nickel for the trans isomer are summarized in Table 2.  
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Table 2. Summarized Ca2+ response evoked by different concentrations of the photochromic metal-
complex agonist conjugate in the absence (compound 26) and presence (compound 27) of NiSO4 
for the trans isomer in its thermal equilibrium. n.a.: not active. n = number of individual 
measurements. Cpd. = Compound. 

Entry Cpd. 1.0 nM  10 nM 0.10 µM 1.0 µM Ni(a) Type(b) n 

1 26 trans n.a. n.a. active active - His 2 

2 27 trans active active active active 

 

 

 

 

 

+  

 

 

 

 

 

His 
3 (n=2; 1.0 nM,  

1.0 µM) 

3 26 trans n.a. n.a. n.a. active - WT 3 

4 27 trans n.a. -(c) active active +  WT 1 

(a) A 10 mM solution of the compound and NiSO4 was incubated for 60 min at rt prior to testing 
and dilution; in cases of “+” an equimolar amount of NiSO4 was added. (b) Wildtype receptor: 
M1R; His-tagged receptor: M1R(1.18H4). (c) No clear effect can be assigned.  

8.3 Conclusion 

In the presented work, we address the design, synthesis and (photo-)chemical 

characterization of a photochromic metal-complex agonist conjugate (PMAC) 

derivative of a reported non-photochromic metal-complex agonist conjugate 

investigated by the Hamachi group. Due to their large change in geometry and 

end-to-end distance upon light-induced trans-cis isomerization azobenzenes were 

chosen as photochromic scaffold to be incorporated as part of the linker between 

the agonist and the metal chelator. The synthesized derivative displayed high 

fatigue in aqueous media regardless the presence or absence of nickel(II)sulfate. Its 

high thermal stability is beneficial as constant irradiation during the in vitro cell 

testing is not required, which might harm the cells. Furthermore, the synthesized 

PMAC was subjected to in vitro calcium measurements upon and prior to addition 

of NiSO4 and coordination to its engineered receptor site. The efficiency of the 

binding is increased by a factor of 100 upon coordination and proofed the general 

principle of coordination tethering. Furthermore, this verifies the calculation of the 

linker length. If the azobenzene incorporated linker is too short, the tethered ligand 

would not be able to bind to its receptor site. If it’s too long, the efficiency wouldn’t 

be increased upon nickel coordination as the binding would rather be diffusion 

driven. The investigation of the agonist binding upon trans to cis isomerization 

performed by the Hamachi group is ongoing. Due to a change in linker length and 
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geometry the binding efficiency of the tethered ligand might be reduced compared 

to its trans-isomeric state. This would lead to a light controlled high-efficiency 

activation of class A GPCRs represented by the muscarinic acetylcholine receptor 

(mAChR) M1R. 

8.4 Experimental Part 

8.4.1 General Procedures and Materials 

Commercial reagents and starting materials were purchased from the commercial 

suppliers abcr, Acros Organics, Alfa-Aesar, Fisher Scientific, Fluorochem, Merck, 

Sigma Aldrich, TCI, or VWR and used without any further purification. Solvents 

were used in p.a. quality and dried according to common procedures, if necessary. 

Flash column chromatography was performed using Sigma Aldrich MN silica gel 

60 M (40-63 µm, 230-400 mesh) or Kanto Chemical silica gel 60N (40-50 µm) for 

normal phase chromatography. Reaction monitoring via thin layer 

chromatography was performed on alumina plates coated with silica gel (Merck 

silica gel 60 F254, layer thickness 0.2 mm). NMR spectra were measured on a Bruker 

Avance 300 and a Varian Mercury 400. The spectra are referenced against the 

NMR-solvent (DMSO-d6: H = 2.50 ppm, C = 39.52 ppm; CDCl3-d: H = 7.26 ppm, 

C = 77.16 ppm) or tetramethyl silane as internal reference and chemical shifts  

are reported in ppm. Resonance multiplicity is abbreviated as: b (broad), s (singlet), 

d (doublet), t (triplet), and m (multiplet). Carbon NMR signals are assigned using 

DEPT 135 and 1H-13C HSQC spectra with (+) for primary/tertiary, (-) for 

secondary, and (q) for quaternary carbons. Mass spectra were recorded on a 

Finnigan MAT-SSQ 710 A, ThermoQuest Finnigan TSQ 7000, Agilent Q-TOF 6540 

UHD, a Jeol AccuTOF GCX instrument, or a Thermo Scientific Exactive. UV-Vis 

absorption spectroscopy was performed in 10 mm quartz cuvettes using an Agilent 

8543, Agilent Cary 100, Agilent Varian Cary 50 or a Shimadzu UV-2600 

spectrometer. Light sources for irradiation:  = 365 nm (Seoul Viosys CUN6GB1A, 

1000 mA, 1.4 W), and  = 455 nm (Osram OSLON SSL 80 LD-CQ7P-1U3U, 

1000 mA, 0.45 W). The power of the light is given based on the specifications 
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supplied by the company when the LEDs were purchased. Reversed phase HPLC 

was carried out on an Agilent 1260 system (column: Phenomenex Luna 10 µm 

C18(2) 100 Å, 250 x 21.2 mm; flow: 22 mL min-1; solvents: MilliQ water with 0.05% 

aqueous TFA; MeCN) or on a Hitachi Chromaster system equipped with a diode 

array (column: YMC-Pack Triart C18 or ODS-A; solvents: 0.1% aqueous TFA; 

MeCN containing 0.1% TFA). The control expression vector pCI-neo, wildtype 

mAChR expressing vector HA-M1R-pCI neo (WT), and His tag-fused mACHR 

expression vector HA-M1R(1.18H4)-pCI neo were provided by the Hamachi 

Laboratory. 

8.4.2 Synthetic Procedures and Characterization 

(E)-4-(phenyldiazenyl)benzoic acid (3). This compound was synthesized 

following a literature reported procedure.[19] 4-amino benzoic acid (1, 0.55 g, 

4.0 mmol, 1.2 eq) was dissolved in acetic acid (5.0 mL). A solution of 

nitrosobenzene (2, 0.50 g, 3.3 mmol, 1.0 eq) dissolved in acetic acid (10 mL) was 

added dropwise. The reaction mixture was stirred for 24 h at room temperature. 

The solvent was evaporated, and the product recrystallized from ethyl acetate. 

Drying in vacuo afforded the product 3 as gold solid (0.54 g, 2.4 mmol, 73%). The 

analytical data are in agreement with the reported ones. 1H-NMR (300 MHz, 

DMSO-d6): δ = 13.25 (s, 1H), 8.19 – 8.09 (m, 2H), 8.00 – 7.88 (m, 4H), 7.62 (dd, J = 

5.1, 1.9 Hz, 3H). 13C-NMR (75 MHz, DMSO-d6): δ = 166.6 (q), 154.1 (q), 151.8 (q), 

132.7 (q), 132.1 (q), 130.5 (+), 129.5 (+), 122.7 (+), 122.4 (+). MF: C13H10N2O2. MW: 

226.24 g/mol. 

2,5-dioxopyrrolidin-1-yl(E)-4-(phenyldiazenyl)benzoate (5). The compound was 

synthesized following a literature reported procedure.[20] Carboxy azobenzene 3 

(1.0 g, 4.4 mmol, 1.0 eq), N-hydroxy succinimide (0.51 g, 4.4 mmol, 1.0 eq), and 

dicyclohexylcarbodiimid (0.91 g, 4.4 mmol, 1.0 eq) were stirred in DMF (20 mL) at 

room temperature for 12 hours. The reaction mixture was filtered, and the solvent 

evaporated. The crude was recrystallized from CH2Cl2 to afford the product as 

orange solid (1.3 g, 4.0 mmol, 90%). The analytical data are in agreement with the 
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reported ones.  1H-NMR (300 MHz, DMSO-d6): δ = 8.37 – 8.24 (m, 2H), 8.15 – 8.04 

(m, 2H), 8.02 – 7.94 (m, 2H), 7.70 – 7.56 (m, 3H), 2.92 (s, 4H). 13C-NMR (75 MHz, 

DMSO-d6:) δ = 170.7 (q), 161.7 (q), 156.0 (q), 152.3 (q), 133.2 (+), 132.1 (+), 130.1 (+), 

126.6 (q), 123.7 (+), 123.5 (+), 26.0 (-). MF: C17H13N3O4. MW: 323.31 g/mol. 

(S,E) - 2,2' - ((1-carboxy-5-(4-(phenyldiazenyl)benzamido)pentyl)azanediyl)di-

acetic acid (7). This compound was synthesized via an adapted literature reported 

procedure. NHS azobenzene 5 (0.20 g, 0.62 mmol, 1.0 eq), triacid 6 (0.32 g, 

1.2 mmol, 2.0 eq), and triethylamine (63 mg, 0.62 mmol, 1.0 eq) were mixed in 

CH2Cl2 (10 mL) and stirred at room temperature for 12 hours.[20] The solvent was 

evaporated, and the product purified by preparative HPLC to afford the desired 

product as orange solid in 85% yield. 1H-NMR (300 MHz, DMSO-d6): δ = 12.41 (s, 

3H), 8.63 (t, J = 5.6 Hz, 1H), 8.11 – 8.00 (m, 2H), 7.98 – 7.84 (m, 4H), 7.62 (dd, J = 5.1, 

2.2 Hz, 3H), 3.54 – 3.22 (m, 8H), 1.69 – 1.38 (m, 5H). 13C-NMR (75 MHz, DMSO-d6): 

δ = 174.4 (q), 173.6 (q), 165.8 (q), 153.6 (q), 152.4 (q), 137.4 (q), 132.4 (+), 130.0 (+), 

128.9 (+), 123.2 (+), 122.8 (+), 64.7 (+), 53.7 (-), 39.7 (-), 29.8 (-), 29.2 (-), 23.7 (-). MF: 

C23H26N4O7. MW: 470.48 g/mol. 

(E)-4-((4-(tert-butoxycarbonyl)phenyl)diazenyl)benzoic acid (11). Under a 

nitrogen atmosphere, amino benzoic acid 1 (3.0 g, 22 mmol, 1.0 eq) was dissolved 

in CH2Cl2 (100 mL). A solution of oxone (13 g, 22 mmol, 1.0 eq) in water (0.10 L) 

was added and the biphasic reaction mixture stirred at room temperature for one 

hour. The precipitate was collected by filtration and dried under vacuum.[21] The 

crude nitroso benzoic acid 9 was dissolved in acetic acid (0.15 L) and tert-butyl 

aniline 10 (4.2 g, 22 mmol, 1.0 eq) was added. The reaction mixture was stirred at 

room temperature for 16 hours. The precipitate was collected and dried in vacuo 

(4.4 g, 14 mmol, 62%). 1H-NMR (300 MHz, DMSO-d6): δ = 8.17 – 8.09 (m, 4H), 8.02 

– 7.97 (m, 4H), 1.57 (s, 9H). 13C-NMR (75 MHz, DMSO-d6): δ = 167.1 (q), 164.6 (q), 

154.6 (q), 154.5 (q), 134.2 (q), 133.8 (q), 131.1 (+), 130.8 (+), 123.3 (+), 123.3 (+), 81.8 

(q), 28.2 (+). HRMS (ESI) calcd. for (C18H19N2O4+) [M+H]+: m/z = 327.1339; found 

327.1343. MF: C18H18N2O4. MW: 326.35 g/mol. 
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Tert-butyl(E)- 4 -((4-(((2,5-dioxopyrrolidin-1-yl)oxy)carbonyl)phenyl)diazenyl) 

benzoate (12). The substituted carboxy azobenzene 11 (4.4 g, 13 mmol, 1.0 eq), N-

hydroxy succinimide 4 (1.6 g, 13 mmol, 1.0 eq) and dicyclohexylcarbodiimid (2.8 g, 

13 mmol, 1.0 eq) were stirred in DMF (0.10 L) at room temperature for 12 hours.[20] 

The reaction mixture was filtered, and the solvent evaporated. The crude product 

was purified by column chromatography using CH2Cl2 as eluent providing the 

product as orange solid (4.0 g, 9.5 mmol, 70%). 1H-NMR (300 MHz, DMSO-d6): δ = 

8.39 – 8.28 (m, 2H), 8.18 – 8.09 (m, 4H), 8.07 – 8.01 (m, 2H), 2.93 (s, 4H), 1.58 (s, 9H). 

13C-NMR (75 MHz, DMSO-d6): δ = 170.7 (q), 164.6 (q), 162.7 (q), 161.7 (q), 155.8 (q), 

154.5 (q), 134.6 (q), 132.1 (+), 130.9 (+), 124.0 (+), 123.5 (+), 81.9 (q), 28.2 (+), 26.0 (-). 

HRMS (ESI) calcd. for (C22H22N3O6+) [M+H]+: m/z = 424.1503; found 424.1507. MF: 

C22H21N3O6. MW: 423.43 g/mol. 

Tert-butyl (E)-4-((4-((4aminobutyl)carbamoyl)phenyl)diazenyl)benzoate (14).  

NHS azobenzene 12 (1.1 g, 2.6 mmol, 1.0 eq) and triethylamine (0.27 g, 2.6 mmol, 

1.0 eq) were dissolved in CH2Cl2 (50 mL). A solution of butyldiamine 13 (0.69 g, 

7.8 mmol, 2.5 eq) in CH2Cl2 (10 mL) was added dropwise.[20] The reaction mixture 

was stirred at room temperature for 12 hours and the product was purified by 

column chromatography using CH2Cl2 + 5% MeOH as eluent (0.67 g, 1.7 mmol, 

65%). 1H-NMR (300 MHz, DMSO-d6): δ = 8.78 (t, J = 5.7 Hz, 1H), 8.14 – 8.05 (m, 

4H), 8.02 – 7.96 (m, 4H), 7.86 (s, 2H), 3.46 (s, 2H), 3.38 – 3.27 (m, 2H), 2.89 – 2.79 (m, 

2H), 1.64 – 1.60 (m, 2H), 1.57 (s, 9H). 13C-NMR (75 MHz, DMSO-d6): δ = 165.8 (q), 

164.7 (q), 154.6 (q), 153.6 (q), 137.7 (q), 134.1 (q), 130.8 (+), 129.0 (+), 123.2 (+), 123.1 

(+), 81.8 (q), 39.1 (-), 39.1 (-), 28.2 (+), 26.5 (-), 25.1 (-). HRMS (ESI) calcd. for 

(C22H29N4O3+) [M+H]+: m/z = 397.2234; found 397.2239. MF: C22H28N4O3. MW: 

396.49 g/mol. 

(E)-4-(4-((4-carboxyphenyl)diazenyl)benzamido)butan-1-aminiumtrifluoroace-

tate (15). Alkylamine azobenzene 14 (0.50 g, 1.3 mmol, 1.0 eq) was dissolved in 

CHCl2 (8.0 mL) and trifluoro acetic acid (TFA, 2.5 mL) was added dropwise. The 

reaction mixture was stirred at room temperature for 1 hour.[15] The solvent was 

evaporated and residual trifluoro acetic acid co-evaporated from toluene for three 
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times affording the product as its TFA salt (1.2 g, 2.7 mmol, 94%). 1H-NMR 

(400 MHz, DMSO-d6): δ = 8.74 (t, J = 5.7, 1H), 8.18 – 8.15 (m, 2H), 8.09 – 8.05 (m, 

2H), 8.04 – 7.98 (m, 4H), 7.70 (s, 2H), 3.35 – 3.29 (m, 2H), 2.88 – 2.78 (m, 2H), 1.64 – 

1.55 (m, 4H). MF: C20H21F3N4O5. MW: 454.41 g/mol.  

(E) -4- ((4-((4-((tert-butoxycarbonyl)amino)butyl)carbamoyl)phenyl)diazenyl) 

benzoic acid (16). Trifluoro acetate amino azobenzene 15 (1.2 g, 2.7 mmol, 1.0 eq) 

was dissolved in a mixture of DMF (10 mL) and water (0.10 L). Boc anhydride 

(0.60 g, 2.7 mmol, 1.0 eq) and triethylamine (1.1 mL, 8.2 mmol, 3.0 eq) were added. 

The reaction mixture was stirred at room temperature for 16 hours.[15] A solution 

of 5% citric acid (0.10 L) and CH2Cl2 (0.15 L) was added. The product was extracted 

for ten times. The combined organic phases were dried over Na2SO4, filtered, and 

the solvent evaporated yielding the product as orange solid (0.92 g, 2.1 mmol, 

76%). 1H-NMR (400 MHz, DMSO-d6): δ = 8.65-8.70 (b, 1H), 7.95-8.25 (m, 8H), 6.75-

6.85 (b, 1H), 2.80-3.20 (m, 4H), 1.41-1.55 (m, 2H), 1.30-1.40 (s, 9 H), 1.15-1.30 (m, 

2H). MF: C20H21F3N4O5. MF: C23H28N4O5. MW: 440.50 g/mol. 

2,5-dioxopyrrolidin-1-yl(E)-4-((4-((4-((tert-butoxycarbonyl)amino)butyl)carba 

moyl)phenyl)diazenyl)benzoate (17). Carboxylic acid azobenzene 16 (0.92 g, 

2.1 mmol, 1.0 eq), N-hydroxy succinimide (0.37 g, 3.2 mmol, 1.5 eq), and WSC∙HCl 

(0.61 g, 3.2 mmol, 1.5 eq) were dissolved in DMF (50 mL) and stirred at room 

temperature for 13 hours.[15] The solvent was evaporated, and the product purified 

by column chromatography using CH2Cl2 + 0-20% MeOH as eluent. Evaporation 

of the solvent afforded the product as orange solid (0.34 g, 0.64 mmol, 31%). 

1H-NMR (400 MHz, CDCl3-d): δ = 8.41 – 8.20 (m, 2H), 8.10 – 7.94 (m, 8H), 4.82 – 

4.57 (m, 1H), 3.80 – 3.62 (m, 1H), 3.62 – 3.46 (m, 2H), 3.30 – 3.03 (m, 4H), 1.76 – 1.62 

(m, 4H), 1.54 – 1.40 (m, 9H). MF: C27H31N5O7. MW: 537.57 g/mol. 

Tert-butyl(E)-(4-(4-((4-((6-hydroxyhexyl)carbamoyl)phenyl)diazenyl)benzami-

do)butyl)carbamate (19). NHS azobenzene 17 (0.34 g, 0.64 mmol, 1.0 eq) was 

dissolved in DMF (5.0 mL). Triethylamine (0.19 g, 1.9 mmol, 3.0 eq) and 6-amino-

1-hexanol (18, 0.23 g, 2.0 mmol, 3.0 eq) were added and the mixture stirred at room 
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temperature for 16 hours.[15] The solvent was evaporated, and the residue 

dissolved in CH2Cl2. The organic phase was washed with a 1:1 mixture of brine 

and 5% citric acid (3x). The combined organic phases were dried over Na2SO4, 

filtered, and the solvent evaporated to yield the product in quantitative yield 

(0.35 g, 0.64 mmol). 1H-NMR (400 MHz, DMSO-d6): δ = 8.73 – 8.65 (m, 2H), 8.10 – 

8.04 (m, 4H), 8.00 – 7.96 (m, 4H), 6.81 (t, 1H), 4.44 – 4.30 (m, 1H), 3.41 – 3.38 (m, 2H), 

3.30 – 3.26 (m, 4H), 2.97 – 2.90 (m, 2H), 1.56 – 1.40 (m, 8H), 1.37 (s, 9H), 1.33 – 1.28 

(m, 4H). MF: C29H41N5O5. MW: 539.68 g/mol. 

(E)-6-(4-((4-((4-((tert-butoxycarbonyl)amino)butyl)carbamoyl)phenyl)diazenyl) 

benzamido)hexylmethanesulfonate (20). Hydroxyalkane azobenzene 19 (0.35 g, 

0.64 mmol, 1.0 eq) was dissolved in DMF (6.0 mL) under a nitrogen atmosphere 

and cooled to 0 °C. Dimethyl aminopyridine (24 mg, 0.20 mmol, 0.3 eq), 

Triethylamine (0.19 g, 1.9 mmol, 3.0 eq), and MSCl (0.22 g,  1.9 mmol, 3.0 eq) were 

added and the reaction mixture allowed to warm to room temperature. The 

reaction mixture was stirred for 16 hours.[15] The solvent was evaporated and the 

crude mixture purified by column chromatography using CH2Cl2 + 5% MeOH as 

eluent. Evaporation of the solvent afforded the desired product as orange solid 

(0.20 g, 0.32 mmol, 50%). 1H-NMR (400 MHz, DMSO-d6): δ = 8.65 (t, J = 5.7 Hz, 2H), 

8.06 (d, J = 8.5 Hz, 4H), 7.98 (d, J = 8.5 Hz, 4H), 6.81 (t, J = 5.6 Hz, 1H), 4.20 (t, J = 

6.5 Hz, 2H), 3.31 – 3.25 (m, 4H), 3.16 (s, 3H), 3.00 – 2.91 (m, 2H), 2.57 – 2.52 (m, 2H), 

1.73 – 1.65 (m, 2H), 1.59 – 1.51 (m, 4H), 1.46 – 1.40 (m, 4H), 1.37 (s, 9H). HRMS (ESI) 

calcd. for (C30H43N5O7SNa+) [M+Na]+: m/z = 640.2775; found 640.2774. MF: 

C30H43N5O7S. MW: 617.76 g/mol. 

(E)-4-(4-((4-((6-((methylsulfonyl)oxy)hexyl)carbamoyl)phenyl)diazenyl)benz-

amidobutan-1-aminiumtrifluoroacetate (21). Methane sulfonate alkane 

azobenzene 20 (80 mg, 0.13 mmol, 1.0 eq) was dissolved in CH2Cl2 (1.0 mL). 

Trifluoroacetic acid (1.0 mL) was added as deprotecting agent. The mixture was 

stirred at room temperature for one hour.[15] The solvent was evaporated and 

residual trifluoro acetic acid removed by threefold co-evaporation from CH2Cl2. 

The crude product was obtained in quantitative yield (82 mg, 0.13 mmol). 1H-NMR 
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(400 MHz, DMSO-d6): δ = 8.82 – 8.57 (m, 2H), 8.08 – 8.04 (m, 4H), 8.01 – 7.96 (m, 

4H), 7.66 (s, 2H), 4.20 (t, 2H), 3.35 – 3.27 (m, 4H), 3.16 (s, 3H), 2.88 – 2.79 (m, 2H), 

1.75 – 1.65 (m, 2H), 1.61 – 1.57 (m, 4H), 1.57 – 1.51 (m, 2H), 1.41 – 1.33 (m, 4H). MF: 

C27H36F3N5O7S. MW: 613.67 g/mol. 

Tert-butyl (S,E)-19-(2-(tert-butoxy)-2-oxoethyl)-18-(tert-butoxycarbonyl)-1-(4-

((4-((6-((methylsulfonyl)oxy)hexyl)carbamoyl)phenyl)diazenyl)phenyl)-1,8,12-

trioxo-2,7,13,19-tetraaza-henicosan-21-oate (23). Methane sulfonate azobenzene 

21 (40 mg, 0.063 mmol, 1.0 eq) was dissolved in DMF (1.0 mL). The protected 

triacid NHS ester 22 (53 mg, 0.082 mmol, 1.3 eq) and triethylamine (19 mg, 

0.19 mmol, 3.0 eq) were added and the mixture stirred at room temperature for 

16 hours.[15] The solvent was removed under reduced pressure, the residue 

dissolved in CHCl3 and washed with 5% citric acid, saturated aq. NaHCO3, and 

brine. The organic phase was dried over Na2SO4, filtered, and the solvent removed 

in vacuo. The crude reaction mixture was purified by column chromatography 

using CH2Cl2 + 5% MeOH as eluent. Evaporation of the solvent afforded the 

desired product 21 in 52% yield (0.033 mmol, 35 mg). 1H-NMR (400 MHz, 

CDCl3-d): δ = 8.02 – 8.01 (m, 1H), 8.00 – 7.95 (m, 8H), 7.94 – 7.92 (m, 2H), 7.92 – 7.89 

(m, 1H), 4.25 (t, J = 6.4 Hz, 2H), 3.53 – 3.48 (m, 5H), 3.43 – 3.42 (m, 2H), 3.41 – 3.40 

(m, 2H), 3.33 – 3.29 (m, 4H), 3.01 (s, 3H), 2.30 – 2.26 (m, 4H), 2.00 – 1.95 (m, 2H), 

1.81 – 1.77 (m, 2H), 1.67 – 1.64 (m, 13H), 1.43 (s, 27H). MF: C52H81N7O13S. MW: 

1044.32 g/mol. 

(S,E)-6-(4-((4-((6-(2-(tert-butoxy)-2-oxoethyl)-7-(tert-butoxycarbonyl)-2,2-dime-

thyl-4,13,17-trioxo-3-oxa-6,12,18-triazadocosan-22-yl)carbamoyl)phenyl)diazen-

yl)benzamido)-N-(4-((4,5-dihydroisoxazol-3-yl)oxy)but-2-yn-1-yl)-N,N-dime-

thylhexan-1-aminium methanesulfonate (25). Azobenzene 23 (40 mg, 

0.038 mmol, 1.0 eq) and the Iperoxo ligand 24 (7.7 mg, 0.042 mmol, 1.1 eq) were 

suspended in dry acetonitrile (0.50 mL) and refluxed for 23 hours.[15] Thin layer 

chromatography indicated incomplete reaction. Even under addition of up to 

3.0 eq of Iperoxo ligand no further conversion of the starting material was 

achieved. The solvent was evaporated and the crude product used in the next 
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reaction step without further purification. 1H-NMR (400 MHz, MeOD-d4): δ = 8.02 

(s, 8H), 4.80 (t, J = 1.9 Hz, 4H), 4.38 – 4.36 (m, 2H), 3.48 – 3.41 (m, 8H), 3.39 – 3.36 

(m, 4H), 3.28 – 3.21 (m, 3H), 3.17 (s, 6H), 3.06 – 2.96 (m, 5H), 2.72 – 2.65 (m, 2H), 

2.21 (t, J = 7.4 Hz, 4H), 1.91 – 1.85 (m, 2H), 1.84 – 1.77 (m, 2H), 1.71 – 1.58 (m, 10H), 

1.54 – 1.51 (m, 4H), 1.46 – 1.44 (m, 27H). MF: C61H95N9O15S. MW: 1226.54 g/mol. 

(S,E)-6-(4-((4-((4-(5-((5-(bis(carboxymethyl)amino)-5-carboxypentyl)amino)-5-

oxopentanamido)butyl)carbamoyl)phenyl)diazenyl)benzamido)-N-(4-((4,5-di-

hydroisoxazol-3-yl)oxy)but-2-yn-1-yl)-N,N-dimethylhexan-1-aminium (26). 

Crude tri tert-butyl ester 25 (53 mg) was suspended in CH2Cl2 (2.0 mL) and 

trifluoro acetic acid (1.0 mL) was added. The solution was stirred at room 

temperature for four hours.[15] The solvent was evaporated and residual TFA 

removed by co-evaporation from CH2Cl2 for three times. Purification by 

preparative RP-HPLC (gradient: 100% 0.05% aq. TFA 0-10 min; 0-100% MeCN + 

0.05% TFA 10-60 min; tR = 36 min) afforded the desired product as orange solid 

(22 mg, 0.021 mmol, 37% over two steps).  1H-NMR (400 MHz, MeOD-d4): δ = 8.15 

– 7.96 (m, 8H), 5.00 – 4.92 (m, 8H), 4.50 – 4.30 (m, 4H), 3.80 – 3.62 (m, 4H), 3.56 – 

3.34 (m, 8H), 3.26 – 3.22 (m, 2H), 3.17 (s, 6H), 3.02 (t, J = 9.6 Hz, 1H), 2.31 – 2.16 (m, 

4H), 1.94 – 1.85 (m, 2H), 1.84 – 1.77 (m, 2H), 1.74 – 1.65 (m, 4H), 1.64 – 1.58 (m, 2H), 

1.57 – 1.45 (m, 6H). HRMS (ESI) calcd. for (C48H68N9O12+) [M]+: m/z = 962.4982; 

found 962.4964. MF: C50H68F3N9O14. MW: 1076.14 g/mol. 

8.4.3 In Vitro Studies 

Culture and transfection of CHO cells. CHO cells were maintained in Dulbecco’s 

modified Eagle’s medium (DMEM-F12, Sigma-Aldrich) with 10% fetal bovine 

serum (FBS) (Gibco), 100 unit/mL penicillin, 100 µg/mL penicillin, 100 µg/mL 

streptomycin, and 0.25 µg/mL amphotericin B (Gibco) at 37 °C in a humidified 

atmosphere of 95% air and 5% CO2. For M1R, CHO cells were transiently 

transfected with plasmids (WT M1R, the M1R mutants, or the control vector) using 

Lipofectamine2000 transfection reagent in DMEM-F12, supplemented with 10% 

FBS according to the manufacturer’s instruction. The cells were co-transfected with 
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pEGFP-F (Clontech) or pmCherry-F as a transfection marker. For Ca2+ imaging, the 

cells were grown for 24-36 h, seeded on glass coverslips (Matsunami) coated with 

poly-L-lysine solution (Sigma-Aldrich), and subjected to Ca2+ imaging 4-12 h after 

seeding. 

Fluorescence Ca2+ imaging. CHO cells were loaded with 5 µM Fura-2 AM 

(absorption maximum Ca2+-bound 340 nm; Ca2+-free 380 nm; emission maximum 

510 nm) or 5 µM Fluo-4 AM (absorption maximum Ca2+-bound 480 nm excitation; 

emission maximum 516 nm), respectively, for 20-30 min in growth medium. The 

fluorescence was measured in HBS (107 mM NaCl, 6 mM KCl, 1.2 mM MgSO4, 

11.5 mM glucose, 0.2 mM CaCl2, and 20 mM HEPES at pH 7.4), respectively. The 

photochromic metal chelator agonist 26 stock solution was prepared 10 mM in 

millipore water. Dilutions were prepared in HBS. For nickel positive experiments, 

compound 26 and 1.0 eq of NiSO4 (both 10 mM) were mixed 60 min before 

fluorescence Ca2+ imaging providing complex 27. Iperoxo was dissolved in HBS 

from 1000xH2O stocks. Fluorescence images were obtained using a fluorescence 

microscope (IX71, Olympus) equipeed with a CMOS camera (ORCA-flash 4.0, 

Hamamatsu Photonics) under xenon lamp irradiation, and analyzed with a video 

imaging system (CellSens Dimension, Olympus) according to the manufacturer’s 

protocol. 
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8.5 Supporting Information 

8.5.1 1H- and 13C-NMR Spectra 

Compound 3 (DMSO-d6) 
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Compound 5 (DMSO-d6) 
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Compound 7 (DMSO-d6) 
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Compound 11 (DMSO-d6) 
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Compound 12 (DMSO-d6) 

 

 



PHOTOCHROMIC METAL COMPLEX-AGONIST CONJUGATES 

424 

  

Compound 14 (DMSO-d6) 
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Compound 15 (DMSO-d6) 

 

Compound 16 (DMSO-d6)* 

 

*copied print-out 
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Compound 17 (CDCl3-d) 

 

Compound 19 (DMSO-d6) 
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Compound 20 (DMSO-d6) 

 

Compound 21 (DMSO-d6) 
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Compound 23 (CDCl3-d) 

 

Compound 25 (MeOD-d4) (Zoom for visualization of amide groups in DMSO-d6) 
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Compound 26 (MeOD-d4) 

 

 

8.5.2 UV-Vis Absorption Spectra, Cycle Performances, and Thermal Half-Lives 

 

Figure S1. UV-Vis absorption spectrum of compound 14 measured in DMSO. Thermal equilibrium 
(black curve). Cis-PSS (red curve). Trans-PSS (blue curve).  
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Figure S2. Left panel: UV-Vis absorption spectrum of compound 27 measured in DMSO. Thermal 
equilibrium (black curve). Cis-PSS (red curve). Trans-PSS (blue curve). Right panel: Repetitive cycle 

performance measured at max of the trans isomer. 

 

 

Figure S3. Thermal recovery of compound 18 measured in HBS in the dark. No changes in the 

absorption spectrum detected over 2 hours of measurement at 24 °C. 
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8.5.3 In Vitro Fluorescence Ca2+ Imaging 

 

Figure S4. Evoked responses at wildtype CHO-cells upon addition of different concentrations of 
the iperoxo ligand in the presence of Fura2 and Fluo4, respectively, as fluorescence reporter for 
GPCR activation. Plots represent average activity of all analyzed cells.  
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Figure S5. Evoked responses at His-tagged CHO-cells in the absence of nickel upon addition of 
different concentrations of trans 26. Plots represent average activity of all analyzed cells.      

 

Figure S6. Evoked responses at His-tagged CHO-cells in the presence of nickel upon addition of 
different concentrations of trans 27. Plots represent average activity of all analyzed cells.      
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Figure S7. Evoked responses at wildtype CHO-cells in the absence of nickel upon addition of 
different concentrations of trans 26. Plots represent average activity of all analyzed cells.    

 

 

Figure S8. Evoked responses at wildtype CHO-cells in the presence of nickel upon addition of 
different concentrations of trans 27. Plots represent average activity of all analyzed cells.    
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9 Summary 

This thesis presents the synthesis and (photo-)chemical characterization of 

(functionalized) photochromic scaffolds and their application for the deeper 

understanding of (bio-)chemical problems. 

Chapter I deals with the synthesis of azobenzene surfactants bearing a polar head 

group and a hydrophobic tail. Variation of the substitution pattern led to the 

development of tool compounds with different photochromic, electronic, and 

steric properties. The group of Prof. Motschmann performed the photophysical 

analysis of the derivatives using the drop shape analysis. The influence of the light-

induced trans-cis isomerization of a monolayer of the photochromic surfactant on 

the surface tension of a hanging drop resulted only in minor changes, which 

disqualified the compounds for further investigations. 

A novel class of photochromic scaffolds based on arylazo NH-pyrazoles is 

presented in Chapter II. As so far mainly their methylated derivatives are 

reported, we performed UV-Vis studies to investigate this unexplored 

photochromic scaffold. Advantages of this compound class are overall good 

photostationary states, fast photoswitching with high fatigue and thermal stability 

of the corresponding cis isomers. Furthermore, the free NH allows for post 

functionalization and coordination. In addition, pyrazoles represent an important 

building block of many drugs and natural products. 

In Chapter III, photoswitchable inhibitors for the tetrameric enzyme -

galactosidase are designed and analyzed for their inhibitory activity in cooperation 

with the group of PD. Dr. Gorris. This enzyme plays an important role in 

biochemistry and single molecule studies. Despite the recent advances in 

photopharmacology and the wide-spread use of azobenzenes, there are no 

photochromic inhibitors reported. Based on the molecular structures of 2-

phenylethyl--D-thiogalactoside (PETG) and -D-galactosylamine we designed 

light-responsive derivatives showing excellent photochromic properties in polar 

solvents. One optimized compound worked as strong competitive inhibitor with a 
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change in its inhibitory constant between 60 nM (trans) and 290 nM (cis) upon 

isomerization.  

Chapter IV deals with light-switchable antagonists for the histamine H1 receptor 

at the isolated guinea pig ileum. Variation in the position of the azobenzene moiety 

and of the chloro substitution pattern allowed the investigation of sterically and 

photochemically different derivatives of a reported histamine antagonist. In 

cooperation with Dr. Pockes an irradiation setup for tissue testing at the isolated 

guinea pig ileum was developed. One compound maintained the pharmacological 

activity compared to its non-photochromic reference and served as lead for further 

optimization. The two most promising derivatives showed increased antagonistic 

activity of their trans isomers compared to their non-photochromic reference. 

Upon irradiation-induced trans-cis isomerization the antagonistic activity of one 

compound dropped remarkably by a factor of even 46.  

The azologization of a reported highly active glycine receptor potentiator and its 

use for light-triggered in vivo studies is discussed in Chapter V. Arylazo pyrazoles 

are used as photochromic scaffold as their photochromism benefits of almost 

quantitative switching in both directions, which is especially beneficial for 

biological applications, as an effect can clearly be assigned to one or the other 

isomer. One derivative showed sufficient solubility in aqueous media and was 

subjected to in vivo behavioral analysis performed in the group of Prof. Gorostiza. 

The tested compound acted as cis activator of tadpole excitatory activity and 

displaying inertness in its thermally stable trans-isomeric state. Molecular docking 

gave a rational for the observed differences between the two isomers in 

comparison to the reported reference.  

In Chapter VI, fulgides are used as photochromic scaffold and merged with the 

molecular structure of amino-nitrazepam. As both isomeric states of fulgides are 

thermally stable, they can be isolated and tested separately. The synthetic 

conditions provided a fulgide-nitrazepam and its iso-fulgimide isomer. In vitro 

patch-clamp measurements were performed in the group of Prof. Bregestovski. 
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The iso-fulgimide showed a potentiating effect on GABA induced currents at the 

GABAA receptor in its closed state, whereas the open conformation did not 

influence the amplitude of GABA-induced currents. In vivo analysis performed in 

the group of Prof. Gorostiza showed that both isomeric states produce different 

behavioral outcomes on Danio rerio larvae fitting both the results of the in vitro 

patch-clamp analysis and the expected effect of the benzodiazepine nitrazepam.  

Chapter VII addresses the design, synthesis, photochromic characterization and 

in vitro investigation of azobenzene-based derivatives of reported antagonists of 

the serotonin receptor 5-HT3. The photoligands either based on a quinoxaline or 

purine scaffold vary in their electronic and photochromic properties. Especially 

the purine-based azobenzenes displayed high solubility in aqueous media. Despite 

structural optimization for improved photochromism, only one derivative 

retained its antagonistic activity in patch-clamp studies performed in the group of 

Prof. Bregestovski. The effect was not controllable by irradiation induced 

isomerization, which might be explained by the low photostationary state of this 

compound and its slow switching.  

The synthesis of a photochromic metal complex-agonist conjugate is content of 

Chapter VIII. This work is performed in cooperation with Prof. Hamachi reporting 

about coordination tethering of ligands to engineered receptors. A metal complex-

agonist conjugate (MAC) bearing a highly active GPCR agonist is linked to a metal 

chelator via a flexible tether. This locates the ligand in proximity to its binding 

pocket.  We envisioned that the introduction of an azobenzene as part of the linker 

results in binding and unbinding of the ligand due a change in end-to-end distance 

upon isomerization. In this case, the change in biological response of the 

photochromic MAC does not result from a change in the activity of the ligand itself 

but from a change in the accessibility of the ligand to its binding site. In vitro 

investigations for the trans-isomeric state are performed. The investigations on the 

cis isomers of the compound are ongoing. 
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10 Zusammenfassung 

Das Ziel dieser Doktorarbeit umfasst die Synthese und (photo-)chemische 

Charakterisierung (funktionalisierter) photochromer Grundgerüste sowie deren 

Anwendung zur Aufklärung (bio-)chemischer Fragestellungen.  

Kapitel I behandelt die Synthese von Azobenzolen, die durch eine polare 

Kopfgruppe und einen hydrophoben Rest als einfache Tenside fungieren. Durch 

Änderungen im Substitutionsmuster konnten Verbindungen unterschiedlicher 

photochromer, elektronischer und sterischer Eigenschaften gewonnen werden. 

Die photophysikalische Testung der Substanzen mittels Tropfenstrukturanalyse 

wurde in der Gruppe von Prof. Motschmann durchgeführt. Die lichtinduzierte 

trans-cis Isomerisierung einer Monoschicht der photochromen Tenside rief nur 

eine geringe Änderung der Oberflächenspannung eines hängenden Tropfens 

hervor, weshalb keine weiteren Experimente durchgeführt wurden.   

Eine neue Klasse photochromer Arylazo NH-Pyrazole ist in Kapitel II dargestellt. 

Da sich bisherige Studien vor allem mit ihren methylierten Derivaten befassen, 

wurden UV-Vis Experimente durchgeführt, um neues Wissen über dieses 

verborgene Schaltergerüst zu generieren. Vorteile dieser Klasse sind allgemein 

gute photostationäre Zustände, eine schnelle wiederholbare Photoisomerisierung 

sowie moderate thermische Halbwertszeiten ihrer cis Isomere. Desweiteren 

ermöglicht die freie NH-Gruppe Postfunktionalisierung und Koordination. 

Zudem sind Pyrazole ein wichtiger Strukturbaustein vieler Medikamente und 

Naturstoffe. 

Kapitel III behandelt die Entwicklung photochromer Inhibitoren des tetrameren 

Enzyms -Galactosidase sowie deren Testung in Zusammenarbeit mit der 

Arbeitsgruppe von PD Dr. Gorris. Das Enzym spielt eine Schlüsselrolle in der 

Biochemie und für Einzelmolekülstudien. Trotz der Fortschritte im Feld der 

Photopharmakologie und der weitreichenden Verwendung von Azobenzolen gibt 

es bisher keinen photochromen Inhibitor dieses Enzyms. Basierend auf den 
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molekularen Strukturen von 2-Phenylethyl--D-thiogalactosid (PETG) und -D-

Galactosylamin haben wir licht-regulierbare Derivate mit hervorragenden 

photochromen Eigenschaften in polaren Lösemitteln entwickelt. Eine optimierte 

Verbindung fungierte als effektiver kompetitiver Inhibitor und zeigte eine isomer-

abhängige Änderung der Inhibitorkonstante zwischen 60 nM (trans) und 290 nM 

(cis). 

Kapitel IV behandelt schaltbare Antagonisten des Histamin H1 Rezeptors getestet 

am isolierten Meerschweinchendarm. Die Änderung der Position der Azobenzol 

Einheit und des Chlor Substitutionsmusters ermöglicht die Untersuchung sterisch 

und photochemisch unterschiedlicher Derivate eines publizierten Histamin 

Antagonisten. In Zusammenarbeit mit Dr. Pockes wurde ein Belichtungsapparat 

für Gewebetestungen am isolierten Meerschweinchendarm entwickelt. Für eine 

der analysierten Verbindungen konnte die inhibitorische Aktivität gegenüber 

ihrer nicht-photochromen Referenzsubstanz aufrechterhalten werden. Diese 

diente als Leitmotiv für weitere Strukturoptimierungen. Die beiden 

vielversprechendsten Derivate zeigten eine verstärkte antagonistische Aktivität 

ihrer trans Isomere im Vergleich zur nicht-photochromen Referenz. Durch die 

trans-cis Photoisomerisierung sank die antagonistische Aktivität einer Verbindung 

sogar um den Faktor 46. 

Die Azologisierung eines literaturbekannten hochaktiven Verstärkers des Glycin 

Rezeptors und dessen Anwendung für licht-regulierte in vivo Studien ist in Kapitel 

V diskutiert. Arylazopyrazole als photochrome Grundgerüste zeichnen sich durch 

ihre nahezu quantitative Photoisomerisierung aus. Diese ist besonders für 

biologische Anwendungen von Vorteil, da ein Effekt eindeutig dem ein oder 

anderen Isomer zugeordnet werden kann. Ein Derivat war ausreichend 

wasserlöslich und wurde in der Gruppe von Prof. Gorostiza mittels in vivo 

Verhaltensstudien getestet. Die untersuchte Verbindung agierte als cis aktiver 

Verstärker der Kaulquappenaktivität, welche in ihrem thermisch stabilen trans 

Zustand inaktiv ist. Computerbasierte Strukturanalysen erklärten die 
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beobachteten Aktivitätsunterschiede beider Isomere im Vergleich zur 

Referenzsubstanz.  

In Kapitel VI dienen Fulgide als Grundgerüst zur Synthese eines photochromen 

Aminonitrazepam Derivates. Da beide Fulgidisomere thermisch stabil sind, 

können diese isoliert und separat getestet werden. Die Synthesebedingungen 

führten zur Bildung eines Fulgimidnitrazepams und dessen iso-Fulgimidisomers. 

In vitro Patch-Clamp Analysen beider Substanzen wurden in der Gruppe von Prof. 

Bregestovski durchgeführt. Das geschlossene iso-Fulgimidisomer wirkte als 

Verstärker von GABA induzierten Ionenströmen am GABAA Rezeptor, 

wohingegen das ringoffene Isomer keinen Einfluss nimmt. In der Gruppe von 

Prof. Gorostiza durchgeführte in vivo Analysen zeigten, dass beide Isomere des 

Isofulgimids unterschiedliche Verhaltensantworten bei Danio rerio Larven 

hervorrufen. Diese stimmen mit den Ergebnissen der in vitro Testung und der 

erwarteten Wirkung des Benzodiazepins Aminonitrazepam überein.  

Kapitel VII behandelt das Design, die Synthese, die photochrome 

Charakterisierung und in vivo Untersuchung von azobenzolbasierten 

Antagonisten des Serotonin 5-HT3 Rezeptors. Die Photoliganden basieren auf 

einem Quinoxalin oder Purin Gerüst und unterscheiden sich in ihren 

elektronischen und photochromen Eigenschaften. Besonders die purinbasierten 

Azobenzole sind in wässrigem Medium gut löslich. Trotz struktureller 

Optimierungen zur Verbesserung der Photochemie zeigte nur ein Derivat 

antagonistische Aktivität in Patch-Clamp Studien, welche in der Gruppe von Prof. 

Bregestovski durchgeführt wurden. Der Effekt war nicht photoregulierbar, was 

durch einen niedrigen photostationären Zustand und langsames Schalten 

begründet werden kann. 

Die Synthese eines photochromen Metallkomplex-Agonist Konjugats wird in 

Kapitel VIII behandelt. Diese Arbeit wurde in Kooperation mit Prof. Hamachi 

durchgeführt, der über Koordinationsbindung von Liganden an modifizierte 

Rezeptoren berichtete. Ein Metall Komplex-Agonist Derivat trägt einen hoch 



ZUSAMMENFASSUNG 

 

448 

  

aktiven GPCR Agonisten, welcher über einen flexiblen Linker an einen 

Metallchelator gebunden ist. Dadurch ist der Ligand in räumlicher Nähe zu seiner 

Bindestelle am Rezeptor lokalisiert. Azobenzol als Teil des Linkers sollte es 

ermöglichen, die Bindung des Liganden durch isomer abhängige Zugänglichkeit 

zu regulieren. Dabei resultiert die Änderung des biologischen Effekts nicht von 

einer Änderung der Aktivität des Liganden, sondern dessen Zugänglichkeit. In 

vitro Studien des trans Isomers wurden durchgeführt. Die Analyse des cis Isomers 

ist ausstehend.   
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11 Appendix 

11.1 Abbreviations 

°C degrees Celsius 

Å Ångström (10-10 m) 

3D three-dimensional 

5-HT 5-hydroxytryptamine  

A absorbance 

AAP arylazo pyrazole 

aq. aqueous  

c concentration 

calcd. calculated   

cDNA  complementary deoxyribonucleic acid 

cf  compare with/see also (lat. confer)  

CHO chinese hamster ovary 

CL caged ligand 

cm centimeter 

cmc critical micelle concentration 

CNS central nervous system 

Cpd. compound  

CRC concentration response curve 

Cys cysteine 

 chemical shift 

DCC dicyclohexylcarbodiimide  

DIPEA diisopropylethylamin 

DMF dimethylformamide 

DMSO dimethylsulfoxide 

dpf days post fertilization 

DSA drop shape analysis 

DTE dithienylethene 
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 molar extinction coefficient 

EA ethyl acetate 

E. coli Escherichia coli 

EC50 half-maximal effective concentration 

EDG electron donating group 

e.g. for example (lat. exempli gratia) 

eq equivalent 

ESI electrospray ionization  

et al. and others (lat. et alii) 

EWG electron withdrawing group 

F phenylalanine 

FBS fetal bovine serum 

g gram 

 surface tension 

GABA gamma aminobutyric acid 

GABAAR gamma aminobutyric acid receptor subtype A 

GFP green fluorescent protein 

GI gastrointestinal 

GlyR glycine receptor 

gp  guinea pig 

GPCR G protein-coupled receptor 

h hour 

HEPES 2-(4-(2-hydroxyethyl-1-piperazinyl)-ethansulfonsäure 

His histidine  

HMBC heteronuclear multiple bond correlation 

ℎ𝑣 incident photon energy 

HOBt 1-hydroxybenzotriazol 

HPLC high pressure liquid chromatography 

HR high resolution 

HSQC heteronuclear single quantum coherence spectroscopy 
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ID identification number 

J coupling constant 

Ki inhibitory constant 

KM Michaelis constant 

L liter 

LED light-emitting diode 

λ𝐸𝑚 emission wavelength 

λ𝐸𝑥 excitation wavelength 

λ𝑖𝑟𝑟 irradiation wavelength 

lm lumen 

log logarithm 

M molar (mol/L) 

m  meter 

mA  milli ampere  

mAChR muscarinic acetylcholine receptor  

MeCN acetonitrile 

MeOH methanol  

MF molecular formula 

mg milligram 

min minute 

mL milliliter 

mM millimolar (mmol/L) 

mm millimeter 

µM micromolar 

mmol millimole 

MMR Marc’s modified ringer 

mN milli Newton 

mOsm milliosmole 

M.p. melting point 

MS mass spectrometry 
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mV milli volt 

mW milli watt 

MW molecular weight 

n number  

n.a. not active 

n.d. not detected 

NAChR nicotinic acetylcholine receptor 

NHS N-hydroxy succinimid 

nm nanometer 

NMR nuclear magnetic resonance 

ns nanosecond 

oxone  potassium peroxysulfate 

p.a. pro analysi 

PBS phosphate-buffered saline 

PCL photochromic ligand 

PDB protein data bank 

PE petroleum ether 

PETG polyethylene terephthalate glycol 

PMAC photochromic metal complex-agonist conjugate 

PORTL photoswitchable orthogonal remotely tethered ligand 

ppm parts per million 

PSS photostationary state 

PTL photochromic tethered ligand 

R arginine 

ppm parts per million 

R arginine 

RP relaxation period 

rt room temperature 

s second 

s.d.  standard deviation 
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SEM standard error of the mean 

T temperature 

t time 

t0.5 half-life 

TFA trifluoroacetic acid 

THL thermal half-life  

TLC thin layer chromatography 

tR retention time 

UV ultra violet 

Vis visible 

WT wildtype  

wt% weight percent 

X. tropicalis Xenopus tropicalis 

Y tyrosine 
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