Neural Correlates of Coherent Audiovisual Motion Perception

Real-life moving objects are often detected by multisensory cues. We investigated the cortical activity associated with coherent visual motion perception in the presence of a stationary or moving auditory noise source using functional magnetic resonance imaging. Twelve subjects judged episodes of 5-s random-dot motion containing either no (0%) or abundant (16%) coherent direction information. Auditory noise was presented with the displayed visual motion that was moving in phase, was moving out-of-phase, or was stationary. Subjects judged whether visual coherent motion was present, and if so, whether the auditory noise source was moving in phase, was moving out-of-phase, or was not moving. Performance was greatest for a moving sound source that was in phase with the visual coherent dot motion compared with when it was in antiphase. A random-effects analysis revealed that auditory motion activated extended regions in both cerebral hemispheres in the superior temporal gyrus (STG), with a right-hemispheric preponderance. Combined audiovisual motion led to activation clusters in the STG, the supramarginal gyrus, the superior parietal lobule, and the cerebellum. The size of the activated regions was substantially larger than that evoked by either visual or auditory motion alone. The congruent audiovisual motion evoked the most extensive activation pattern, exhibiting several exclusively activated subregions.

Keywords: audiovisual integration, brain imaging, coherence, multimodal, superior temporal gyrus, supramarginal gyrus

Introduction

Most events in everyday life are perceived simultaneously by different sensory systems. Therefore, the processing and integration of multisensory information are essential for complete perception of our environment and for the planning and control of movements (Calvert and others 2004). With our 2 most important senses, vision and audition, we can perceive the speed and the direction of moving objects. If visual and auditory stimuli are perceived as coincident in space and time, thereby giving the impression that they come from the same source, the information presumably merges, producing a unified percept of movement. The synthesis of sensory information in the brain can contribute to the subject’s ability to detect, localize, and discriminate between stimuli, thereby leading to a faster and more precise response (e.g., Miller 1982). The multisensory contribution to motion perception is most pronounced when moving stimuli, encoded by different sensory modalities, occur at the same spatial location and approximately the same time. On the other hand, when the stimuli are presented out of synchrony or from different spatial locations, multisensory enhancement declines (Soto-Faraco and others 2004).

Multimodal stimuli can also attenuate response behavior, for instance, when one of the stimulus components acts as a distractor. One prominent mechanism is multisensory capture (Soto-Faraco and others 2002; Morein-Zamir and others 2003), the phenomenon that an irrelevant stimulus alters the perception of an attended stimulus in a way that leads to a decrease in performance in discrimination or detection tasks.

At the neural level, the integration of visual and auditory information has been investigated foremost with electrophysiological and lesion techniques. Results of electrophysiological (Colby and others 1996; Andersen 1997) and histochemical studies (Rizzolatti and others 1997) in macaque monkeys indicate that the posterior parietal cortex and the premotor cortex are important for the integration of neural signals from different modalities, as well as for the control of movements guided by visual, auditory, and tactile stimuli. Anatomical data also show that the ventral intraparietal area gets direct input from primary visual and auditory areas (Lewis and Van Essen 2000).

Using functional magnetic resonance imaging (fMRI) Bremmer and others (2001) showed that moving audiovisual stimuli activate homolog areas in the human brain: The posterior parietal cortex in both hemispheres, the right ventral premotor cortex, and the lateral inferior postcentral cortex. Lewis and others (2000) identified the intraparietal sulcus (IPS), the anterior middle fissure, and the anterior insula as regions that play an important role in multisensory integration. Bushara and others (1999) found increased activity in the inferior parietal lobule (IPL) in tasks concerning the integration of spatial information from several modalities.

Inhibitory interactions have also been reported. Using fMRI, Calvert and others (2000) showed that activity in the insula and in the colliculus superior (CS) significantly increases during the presentation of temporally synchronous auditory and visual stimuli, whereas with the presentation of asynchronous auditory and visual stimuli the activity in the insula and the CS decreased. It remains to be determined whether these effects are task specific or due to uncontrolled cognitive or attentive factors (Haxby and others 1994; Shulman and others 1997; Binder and others 1999). A recent study by Kayser and others (2005) supports the idea that multisensory integration can take place even without attention and without feedback from higher cortical areas, by showing supra-additive integration of sound and touch in the auditory cortex in anaesthetized monkeys. However, Fujisaki and Nishida (2005) recently showed that the conscious detection of audiovisual synchrony is slow and postattentive requiring feature tracking.

Functional brain imaging can be combined with psychophysical methods to further contribute to our understanding of multisensory integration. In particular we asked whether regions are active in the human brain in response to audiovisual...
motion parallel to those found with electrophysiological recordings in primates.

We investigated the cortical activations associated with coherent visual motion perception in the presence of a stationary or moving sound source. In an fMRI paradigm, our subjects were presented 5-s episodes of random-dot motion containing either no (0%) or abundant (16%) coherent direction information. Simultaneous auditory noise was presented with an in phase moving (with respect to the visual motion), antiphase moving, or stationary sound source. To assure that the subjects attended to both the visual and the auditory stimuli, a 4 alternative forced-choice response paradigm was employed. Subjects had to judge whether visual coherent motion was present, and if so, whether the auditory sound source was moving in phase, was moving out-of-phase, or was not moving.

Using an event-related design, blood oxygen level-dependent (BOLD) responses for trials with congruent (in phase) audiovisual coherent motion were compared with those found for trials with incongruent (antiphase) audiovisual motion and with those on trials containing visual motion and a stationary sound source. Using this approach, we isolated different processes involved in audiovisual motion integration. In contrast to previous studies investigating neuronal responses to audiovisual stimuli (e.g., Lewis and others 2000), our study did not aim to reveal the differences between unimodal and multimodal stimulus conditions, but rather to show the differences between congruent and incongruent stimulus conditions. By doing so we seek to identify brain regions that are involved in multisensory integration while avoiding contamination of the results through common activity (i.e., that related to attention or anticipation of the stimulus), which could result from simply contrasting unimodal and bimodal stimulus conditions (Gondan and Roder 2006).

Prior to the fMRI study we conducted a psychophysical study with an independent sample of 11 subjects to determine the effect of the relative phase of the virtual sound source (in phase or antiphase) on the subject’s ability to detect visual coherent motion. Here we used 4 levels of motion coherence to evaluate the effect of the sound source on the detection of visual coherent motion around the subject’s threshold.

Materials and Methods

Psychophysical Study

Subjects

The psychophysical study was conducted outside of the scanner with an independent group of 11 right-handed healthy volunteers (8 female). All subjects gave informed consent to procedures approved by the Regensburg University’s ethics committee. The subjects’ ages ranged from 19 to 28 years (mean age, 22 years). The subjects were assessed in a training session to exclude subjects who were unable to identify at least 80% of all “hit”-trials the sound direction (in phase or antiphase) correctly, those with false-alarm rates >20%, and those who could not maintain stable fixation. Three subjects were excluded in the training session for one or more of these reasons.

Visual Stimulation

The subjects rested their head on a chinrest and viewed the stimuli on a Sony cathode ray tube (CRT) monitor. The stimuli were presented using a Matrox graphic card. The image was 26° of visual angle horizontal and 20° of visual angle vertical (1024 × 768 pixels) at a viewing distance of 70 cm.

The stimuli were digital movies created with Matlab (Version 6.5). The visual stimuli consisted of a white fixation target dot (0.4°, 100 cd/m²) and 400 sparse gray background dots (0.4°, 45 cd/m²) on a black background (0.5 cd/m²). The white stationary fixation dot was displayed in the center of the display. The background dots moved along random trajectories creating a random-dot kinematogram (RDK). Four levels of motion coherence (0%, 4%, 6%, and 8%) were presented evenly distributed using the method of constant stimuli. In the conditions with coherent motion, the coherent dots moved along the horizontal axis with a sinusoidal velocity profile. The maximum speed of 12.6°/s occurred when the dots passed the center of the screen. This yielded a frequency of 0.2 Hz. The speed of the random-dot trajectories was distributed over the same range and had the same mean velocity as the coherent dots. The half-life of each dot (coherent or random) was 1 s, after which it was replaced by another dot with a new speed and direction. These transition periods were randomized over time, such that a steady migration of dots from random to coherent or vice versa occurred.

Auditory Stimulation

The moving sound was Gaussian white noise which was convolved with a generic head-related transfer function for positions +/- 12° of azimuth angle, in discrete steps of 1°. The sounds generated were smoothed by a hanning window to create the impression of a smoothly moving sound source. The visual sound source had the same sinusoidal velocity profile as the coherently moving dot.

The stationary sound was Gaussian noise, which was convolved with the same generic head-related transfer function for the position 0° of azimuth angle (i.e., straight ahead). This manipulation yielded the impression of a stationary sound source located just in front of the listener. The moving and the stationary sound files had the same mean energetic profile. The amplitude was −76 dB(A) sound pressure level (SPL) maximum inside the headphones. In the psychophysical study, the acoustic noise was presented using a Soundblaster soundcard, a digital amplifier and Beyer dynamic DT 990 headphones.

Audiovisual Stimulation

The visual and auditory stimuli were merged together using an audiovisual editing program (FX REsound, Hepple, Inc., Hewitt, Texas), leading to 5-s episodes of audiovisual digital movies. Overall, 7 combinations of stimuli were constructed containing either no (0%) or 1 of 3 levels (4%, 6%, 8%) of coherent direction information and either an in phase moving or antiphase moving sound source. The sequence of trials from the different conditions was randomized and the direction of the auditory stimulus was counterbalanced for all conditions. In the condition with 0% visual coherence, the sound source was designated as moving because phase relative to the coherent motion cannot be defined. The stimuli were presented using “Presentation” Version 9.20 (Neurobehavioral Systems, Inc., Burnaby, BC, Canada).

Task

Subjects judged whether visual coherent motion was present in the random-dot displays, and if so, whether the auditory sound source was moving in phase or was moving in antiphase. They were instructed to press 1 of 3 different buttons depending on whether they thought the stimulus contained any dots that moved in a coherent direction, regardless of the auditory condition. A high tone signaled the subjects that they had judged correctly and a low tone that they had made a wrong decision. The accuracy of the responses given by the subjects was estimated by d’. From the collected hits and false alarms, the sensitivity measure d’ can be computed as follows.

\[d’ = Z_{hit} - Z_{fa} = Z\left(P(hit)\right) - Z\left(P(false\,alarm)\right) \]

The value of d’ corresponds to the distance between 2 standard normal distributions that model the noise associated with discriminating a signal from no signal. A d’ of 0 denotes that the subject cannot reliably detect the signal. The larger the d’, the higher is the detectability of the signal. Thus, d’ is a measure of detectability, which is independent of the response criterion of the subject. A detailed description of this procedure can be found in Wickens (2001).

For computational purposes, stimuli that had a visual coherence level of 0% were designated as noise trials and stimuli with a visual coherence
level of 4%, 6% and 8% were designated as signal trials. Pressing buttons 1 and 2 were treated as "yes" responses (signal present) and pressing button 3 as "no" (noise only), respectively. In total, every subject conducted 320 trials, 80 for each level of visual coherence (with equal proportion of audiovisual in phase and antiphase conditions).

On trials in which coherent dots were present and the subject pressed button 1 or 2 the response was counted as a hit. Therefore, the estimation of d' was not influenced by whether subjects were correct with respect to relative direction. For the estimation of the detectability of coherent visual motion, a response was counted as a hit even if the subject misjudged the relative phase of the auditory and the visual stimulus. Subjects were instructed to wait to respond at the end of the stimulation, to be as accurate as possible. Therefore, response times were determined from the offset of the stimulus to activation of the response button. In all trials, subjects responded within the 3-s time window allowed. The subjects were instructed to maintain steady fixation on the fixation dot during the entire experiment. During the rest periods between 2 stimuli a blank screen was presented for the duration of 4 s. In total 320 trials were presented, separated in 2 blocks of duration of 24 minutes each. The 2 experimental blocks were conducted on 2 subsequent days.

Recordings of Eye Movements

During the psychophysical measurement, eye movements were recorded using the IRIS-Eyetracker (Skalar, Delft, NL), a limbus tracking device (Reulen and others 1988). The Matlab Data Acquisition Toolbox was used to acquire the signals derived from the IRIS-Eyetracker. The sampling frequency of the eye-tracker signal was 500 Hz, the spatial resolution was 0.1\(\text{m}\). The eye-recording system was calibrated with 4 eccentricities (\(-10^\circ, -5^\circ, +5^\circ, +10^\circ\)), to determine the deviation from the fixation position. Using the Matlab Signal Processing Toolbox, we analyzed the eye trajectories offline and evaluated the fixation performance of the subjects. In all conditions, the maximum deviations during stimulus presentation were <0.1\(\text{m}\). According to this, all of the subjects could maintain a stable fixation during the stimulus presentation. Trials on which the subject broke fixation and initiated pursuit or saccadic tracking would have been eliminated from the analysis but this turned out to be unnecessary.

\textbf{fMRI-Study}

\textbf{Subjects}

An independent group of 12 right-handed volunteers (8 female) participated after giving informed consent to procedures approved by the Regensburg University's ethics committee. The subjects' ages ranged between 18 and 35 years (mean 22 years). None of the subjects had a history of neurological or psychiatric disorders. All subjects had no known hearing or visual impairments. All subjects participated in a training session during which they practiced the audiovisual motion task. Subjects' performance was assessed in the psychophysical laboratory prior to imaging to exclude subjects who could not fulfill the criteria described above.

\textbf{Visual Stimulation}

The subjects were positioned supine in the scanner with their head tightly secured in the headcoil to minimize head movement. They viewed the stimuli with a mirror that reflected the image from the projection screen placed at the head of the subject in the end of the scanner gantry.

The same stimulus sequences were presented as in the psychophysical study. The visual stimuli consisted of a white fixation target dot (0.4\(\text{m}\) × 0.4\(\text{m}\)), 250 cd/m\(^2\) and 400 sparse grey background dots (0.4\(\text{m}\) × 110 cd/m\(^2\)) on a black background (5 cd/m\(^2\)). In half of the trials, the RDks contained 16% coherently moving dots and in the other half there was no coherent motion present. We chose the 16% coherence level to guarantee that all subjects could detect the coherent visual motion in most of the trials.

\textbf{Auditory Stimulation}

The parameters of the auditory stimulation were the same as in the psychophysical study. The acoustic noise was presented using a Soundblaster soundcard, MR Confon amplifier, and MRI-compatible sound-dampening headphones (MR Confon, GmbH, Magdeburg, Germany). The sound pressure level (SPL) of the auditory noise stimuli was 76 dB(A) and as such comparable with those used in the psychophysical study.

\textbf{Audiovisual Stimulation}

Overall, 6 combinations of stimuli were constructed containing either no (0\%) or abundant (16\%) coherent direction information and either an in phase moving, antiphase moving, or stationary sound source. In the condition with 0\% visual coherence, the source sound was designated as moving because phase relative to the coherent motion cannot be defined. The sequence of trials from the different conditions was randomized, and the direction of the auditory stimulus was counter-balanced for all conditions.

\textbf{Task}

The subjects judged whether visual coherent motion was present in the random-dot displays, and if so, whether the auditory sound source was moving in phase, was moving in antiphase, or was not moving. Responses were recorded with a 5-button fiber-optic response box (Lumitouch, Photon Control, Ltd, Burnaby, BC, Canada). Subjects were instructed to press 1 of 4 different buttons depending on whether they thought the stimulus contained any dots that moved in a coherent direction and the auditory sound source was moving in phase, or in antiphase, not moving, or whether the stimulus contained no dots that move in a coherent direction, regardless of the auditory condition. There was no auditory feedback to avoid confounding artifacts with respect to activation in the auditory cortex. The accuracy of the responses given by the subjects was measured in units of d', in analogy to the psychophysical study. Pressing buttons 1, 2, and 3 were treated as "yes" responses (signal present) and pressing button 4 as "no" (noise only), respectively.

Subjects were instructed to wait to the end of the stimulation to respond thereby avoiding confounding artifacts with respect to activation in motor areas. Therefore, response times were measured from the offset of the stimulus to activation of the response button. In all trials, the subjects responded within the 6-s time window allowed.

Subjects were instructed to maintain steady fixation on the bright white fixation dot during the entire experiment. Between 2 stimuli, a static image containing random dots was presented for the duration of 10 s. This image also contained the white fixation dot. This image was presented to prevent dark adaptation during the interstimulus interval and to maintain a steady-state level of stimulation. In total, 120 trials were presented, which required a total duration of 30 min.

\textbf{Recordings of Eye Movements}

Eye movements were recorded using the MR-Eyetracker (CRS, Ltd, Rochester, England), a fiber-optic limbus tracking device (Kimmig and others 1999). The Matlab Data Acquisition Toolbox was used to record the signals derived from the MR-Eyetracker. The sampling frequency of the eye-tracker signal was 1000 Hz; the spatial resolution was 0.1\(\text{m}\). The eye-recording system was calibrated with 4 eccentricities (-15\(^\circ\), -20\(^\circ\), +15\(^\circ\), +20\(^\circ\)) to determine the deviation of the fixation position.

Using the Matlab Signal Processing Toolbox, we analyzed the resulting eye trajectories offline and evaluated the fixation performance of the subjects. The maximum deviations were in all conditions <1\(\text{m}\)/s, which was due to baseline drifts and noise. As in the training session outside the scanner, all subjects were able to maintain stable fixation.

\textbf{MR Imaging}

MRI was performed with a 1.5-Tesla clinical scanner (Magnetom Sonata, Siemens, Erlangen, Germany) equipped with an echo-planar imaging (EPI) booster for fast gradient switching and an 8-channel phase array full-head radio-frequency receive-transmit headcoil (MR-Devices). High-resolution, sagittal T1-weighted images were acquired with the magnetization prepared, rapid acquisition gradient echo sequence to obtain a 3D anatomical scan of the head and brain. Functional imaging was performed with T2*-weighted gradient EPI. We used a variation of Hall's sparse temporal sampling technique (Belin and others 1999; Hall and others 1999) to circumvent interference from acoustic noise.
created by the gradient coils, such that the onset of the MR acquisition began immediately after the end of the audiovisual stimulation. The acquisition time was 3.3 s, with an adjacent waiting period of 11.7 s, resulting in a total time repetition of 15 s. The time to echo corresponded to time echo = 60 ms, the flip angle corresponded to 90°, and we used a field of view (FOV) = 192 mm, with a voxel matrix of 64 × 64, resulting in a voxel size of 3 × 3 × 3 mm. We acquired volumes with 36 slices, aligned parallel to the anterior and posterior commissures (AC-PC) line, with a gap of 0.45 mm between slices and could thus image nearly the entire neocortex, with the only exception of the most anterior part of the inferior temporal cortex. The stimulation protocol for a single experimental run consisted of 120 alternating periods of stimulation and rest (stationary visual noise), resulting in a total of 120 volumes per subject.

fMRI Data Analysis

The data were preprocessed and analyzed on single subject level using Statistical Parametric Mapping, version 2 (SPM2). After motion correction, the functional images were coregistered to the anatomical volume to normalize both to the Montreal Neurological Institute (MNI) Template (Friston and others 1995a). Functional images were smoothed with a 3D Gaussian kernel (full width, half maximum, FWHM = 8 mm). Analysis using the general linear model (Friston and others 1995b) was done after applying high-pass filtering (cut-off: 128 s). In an epoch design analysis, responses during the 5-s stimulation periods were modeled with a boxcar convolved with the hemodynamic response function separately for the 5 conditions (0% visual coherence with moving auditory noise, 0% visual coherence with stationary auditory noise, 16% visual coherence with in phase auditory noise, 16% visual coherence with antiphase auditory noise, 16% visual coherence with stationary auditory noise). For the random-effects group analysis we used the nonparametric SnPM-Toolbox (Holmes 1994; Holmes and others 1996).

For each interesting difference in effect sizes we calculated 1 contrast nonparametric SnPM-Toolbox (Holmes 1994; Holmes and others 1996). To normalize both to the Montreal Neurological Institute (MNI) Template, the functional images were coregistered to the anatomical volume, with the Talairach demon (Lancaster and others 2000). The functional group data were mapped to the Human Colin surface-based atlas (Van Essen et al. 2001) with the Caret Map fMRI to Surface computer program (Van Essen 2002).

Results

Psychophysical Study

For the majority of the subjects, d’ was higher in the in phase condition than in the antiphase condition (for 9 of 11 subjects in the 4% condition, for 5 of 8 in the 6% condition, and for 8 of 11 in the 8% condition). A Wilcoxon test revealed, that the difference between the in phase and antiphase conditions (averaged over all visual coherence levels) is highly significant (P < 0.001). For all subjects, d’ increased with the visual coherence level (Fig. 1a). Additionally, the d’ values of all 3 visual coherence levels (averaged over the sound conditions) were significantly different from each other (Friedman, P < 0.001) and the difference between the 2 sound conditions within the 4% (Wilcoxon, P = 0.013) and 8% (Wilcoxon P = 0.028) visual coherence level was also significant.

The response times were in general longer in the antiphase condition, but the difference between the 2 auditory conditions was not statistically significant (Wilcoxon, P = 0.131). Likewise, there were no significant differences between the different levels of visual coherence (Friedman, P = 0.797) (Fig. 1b). Because subjects were instructed to wait until the end of the stimulation to respond, these results were not unexpected.

fMRI Study

In the fMRI study, most of the subjects had a hit rate near 100% and all the 12 subjects had a false-alarm rate below 20%. The mean d’ value was 3.92 (standard error [SE] 0.17) for the in phase condition, 3.73 (SE 0.75) for the antiphase condition, and 4.03 (SE 0.64) for the stationary sound condition. A Friedman test revealed that the d’ of the 3 conditions were not significantly different from each other (P = 0.227). Owing to the ceiling effect evoked by the relatively high coherence level of 16% it is not surprising that a significant difference was not evident.

The response times were not significantly different in the 3 sound conditions (Friedman, P = 0.424), and there was no significant (Wilcoxon, P = 0.433) difference in response times between the 2 levels of visual coherence (i.e., 0% and 16%). The average response time in all conditions was 837 ms (SE 65 ms). Because subjects were instructed to wait until the end of the stimulation to respond, these results were not unexpected.

![Figure 1](https://example.com/figure1.png)

Figure 1. (a) Mean d’ values and standard errors of 11 subjects for the in phase and antiphase condition as a function of motion coherence. (b) Mean response times (measured from the offset of the stimulus) and standard errors of eleven subjects for the same experimental conditions.

Functional MRI Data

Moving versus Static Auditory Stimuli with Random-Dot Motion

The results of the across-subjects analysis for the condition with 0% coherent dots and moving sound with respect to the condition with 0% coherent dots and stationary sound revealed 2 activation clusters. The BOLD clusters were located in the superior temporal gyrus (STG) (area 42) in both hemispheres corresponding to the secondary auditory cortex. The left-hemispheric activation cluster extended also to the supramarginal gyrus (SMG) (area 43). The right-hemispheric cluster was thereby about a factor 3 larger than the left-hemispheric one (Table 1, Fig. 2a,b). These regions of activations are in close agreement with the study of Baumgart and others (1999), who reported an area in associative auditory cortex that responded selectively to a moving sound source.

Combined Audiovisual Motion: Moving versus Static Acoustic Noise in Presence of Coherent Visual Motion

Modulation of the neural activity during the perception of an abundant (16%) coherent visual motion stimulus by the in phase and antiphase auditory noise conditions is shown in Figure 2(a,b).

The comparison between the conditions in phase versus the static sound source led to 2 large (right hemisphere: 433 voxels, left hemisphere: 354 voxels) significant activation clusters, which were located in the STG (area 22 and 42) and the SMG (area 43) in both hemispheres. Another small left-hemispheric cluster was active in the precuneus (area 5) (Table 1, Fig. 2a,b).

The comparison between the conditions antiphase and the static sound source led to bihemispheric activations located in the STG (area 22 and 42) and the SMG (area 43) (Table 1, Fig. 2a,b). As can be seen in Figure 2(a,b), the activation clusters are located in the same brain regions as in the in phase condition but the activations are smaller by about a factor of 4.

Detection of Coherent Visual Motion: Coherent Visual Motion versus Random Visual Motion

Our experimental design allowed us to isolate the effect of coherent visual motion on brain activation in the presence of stationary sound. The results of the SnPM across-subject, random-effects analysis for the condition with 16% coherent dots and stationary sound with respect to the condition with 0% coherent dots and stationary sound revealed 2 right- and 2 left-hemispheric activation clusters with a spatial extend ranging between 33 and 47 voxels per cluster. The right-hemispheric activation clusters were located in the superior parietal lobule (areas 7 and 5) and in the SMG extending to the STG (area 40 and 22). The first left-hemispheric activation was located in the precentral gyrus (area 6) and the second in the precentral gyrus near to the middle frontal gyrus (areas 6 and 4) (Table 2, Fig. 3a,b).

Effect of the Moving Sound Source on the Response to Coherent Visual Motion

To investigate the effect of a moving sound source on neural activation, we compared the activations evoked when the moving auditory noise was in phase with the visual coherent motion and when the sound source was in antiphase. In the condition with 0% visual coherence, the sound source was designated as moving because phase relative to the coherent motion cannot be defined.

The contrast "moving acoustic noise and 16% in phase coherent visual motion greater than 0% coherent visual motion" led to several extended activated brain regions (in total 6477 activated voxels), in the superior parietal lobule, SMG, lingual gyrus in both hemispheres, and in the cerebellum. Other activated regions were located in the right hemisphere: in the superior frontal gyrus (SFG), the cuneus, the cingulate gyrus, the STG, and the caudate nucleus. The cuneus, the middle frontal gyrus, and the inferior frontal gyrus were active only in the left hemisphere (Table 2, Fig. 3a,b).

The contrast between the condition moving acoustic noise with 16% antiphase coherent visual motion and the condition with 0% coherent motion revealed several activated regions in both hemispheres in the superior parietal lobule, the SFG, the SMG, the STG, the cuneus, and the precentral gyrus. The cerebellum was only activated on the right side. The middle frontal gyrus and the lingual gyrus were exclusively activated in the left hemisphere (Table 2, Fig. 3a,b). Compared with the in phase condition, the activation patterns of the antiphase sound condition were less pronounced (in total 1241 activated voxels). This observation is especially true for the activated regions in the superior, the intraparietal area, the SMG, the STG, and the SFG (Table 2, Fig. 3a,b).

Discussion

We examined the facilitating and inhibitory effects of an in phase, antiphase, or stationary sound source on the perception of coherent visual motion dot stimuli, as well as its effects on the resultant brain activations. We asked the following questions:

1. Does in phase auditory noise facilitate the detection of coherent visual motion?
2. How is the neuronal activity during the perception of visual coherent motion influenced by in phase, antiphase or stationary auditory stimuli, respectively?

We first discuss the pattern of BOLD responses found here and compare them with earlier results. Subsequently, we attempt to describe how these results reveal the extent to

Table 1

<table>
<thead>
<tr>
<th>Region</th>
<th>Hemisphere</th>
<th>Brodmann area</th>
<th>Talairach coordinates x</th>
<th>y</th>
<th>z</th>
<th>Pseudo t-values of maxima (cluster size in number of voxels)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0% coherent visual motion: moving acoustic noise > stationary acoustic noise</td>
<td>STG R</td>
<td>42</td>
<td>51</td>
<td>25</td>
<td>12</td>
<td>6.62 (108)</td>
</tr>
<tr>
<td></td>
<td>STG/SMG L</td>
<td>42/43</td>
<td>-50</td>
<td>27</td>
<td>11</td>
<td>6.07 (39)</td>
</tr>
<tr>
<td>16% coherent visual motion: in phase acoustic noise > stationary acoustic noise</td>
<td>STG/SMG R</td>
<td>22/42/43/40</td>
<td>50</td>
<td>23</td>
<td>10</td>
<td>7.60 (433)</td>
</tr>
<tr>
<td></td>
<td>STG/SMG L</td>
<td>47/42/43/40</td>
<td>-53</td>
<td>25</td>
<td>10</td>
<td>7.38 (354)</td>
</tr>
<tr>
<td></td>
<td>Prec L</td>
<td>22</td>
<td>-8</td>
<td>-50</td>
<td>58</td>
<td>6.13 (48)</td>
</tr>
<tr>
<td>16% coherent visual motion: antiphase acoustic noise > stationary acoustic noise</td>
<td>STG/SMG L</td>
<td>40/43</td>
<td>-55</td>
<td>25</td>
<td>12</td>
<td>6.28 (87)</td>
</tr>
<tr>
<td></td>
<td>SMG R</td>
<td>22</td>
<td>63</td>
<td>-38</td>
<td>13</td>
<td>6.47 (69)</td>
</tr>
<tr>
<td></td>
<td>STG R</td>
<td>22</td>
<td>51</td>
<td>-21</td>
<td>8</td>
<td>6.36 (38)</td>
</tr>
<tr>
<td></td>
<td>STG R</td>
<td>6/4</td>
<td>55</td>
<td>-24</td>
<td>18</td>
<td>4.45 (10)</td>
</tr>
</tbody>
</table>

Note: For each cluster the hemisphere, Brodmann areas, and anatomical structures are specified, in which the respective cluster is located. Significant clusters of at least 10 contiguous voxels or more with a statistical threshold of alpha = 0.05 (corrected for multiple comparisons) are presented. Prec = precuneus.
which a select group of cortical areas underlie our ability to integrate audiovisual motion cues.

Auditory Motion versus Static Auditory Stimuli

With respect to the comparison between moving and stationary sound sources our results are in line with the study of Baumgart and others (1999) who found an extensive cluster of activation mainly in the right planum temporale. In our study, the auditory-motion condition activated extended regions in both hemispheres in the STG (Brodmann area 42), with a right-hemispheric preponderance (Fig. 2a). In agreement with Baumgart and others (1999), our results imply that either the
Stationary acoustic noise: 16% coherent visual motion > 0% coherent visual motion

Stationary acoustic noise: 16% non-coherent visual motion

Moving acoustic noise: 16% in phase coherent visual motion

Moving acoustic noise: 16% antiphase coherent visual motion

Table 2

<table>
<thead>
<tr>
<th>Region</th>
<th>Hemisphere</th>
<th>Brodmann area</th>
<th>Talairach coordinates (x, y, z)</th>
<th>Pseudo-t-values of maxima (clusterize in number of voxels)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFG</td>
<td>R + L</td>
<td>18/19</td>
<td>4 -2 -72</td>
<td>7.39 (890)</td>
</tr>
<tr>
<td>GL/cuneus</td>
<td>R + L</td>
<td>18/19</td>
<td>8 -70 13</td>
<td>7.42 (410)</td>
</tr>
<tr>
<td>CPIG</td>
<td>R + L</td>
<td>24</td>
<td>2 -2 42</td>
<td>6.59 (201)</td>
</tr>
<tr>
<td>SMG/STG</td>
<td>R</td>
<td>40/22</td>
<td>57 -40 13</td>
<td>5.75 (44)</td>
</tr>
<tr>
<td>PrCeG</td>
<td>L</td>
<td>6/4</td>
<td>-36 -9 61</td>
<td>5.84 (33)</td>
</tr>
<tr>
<td>SPL/IPS</td>
<td>R + L</td>
<td>5/7</td>
<td>-8 -63 62</td>
<td>7.91 (1699)</td>
</tr>
<tr>
<td>SMG/IPS</td>
<td>L</td>
<td>40/22</td>
<td>-63 -26 22</td>
<td>6.04 (47)</td>
</tr>
<tr>
<td>STG</td>
<td>L</td>
<td>40/22</td>
<td>67 -28 19</td>
<td>6.39 (102)</td>
</tr>
<tr>
<td>Nuc. Caud.</td>
<td>R</td>
<td>—</td>
<td>12 10 0</td>
<td>6.35 (88)</td>
</tr>
<tr>
<td>MFG/IFG</td>
<td>L</td>
<td>10/46</td>
<td>-43 14 64</td>
<td>6.45 (53)</td>
</tr>
<tr>
<td>Cuneus</td>
<td>R + L</td>
<td>19</td>
<td>-2 62 24</td>
<td>5.89 (61)</td>
</tr>
<tr>
<td>IFG</td>
<td>R</td>
<td>9</td>
<td>51 9 25</td>
<td>5.97 (59)</td>
</tr>
<tr>
<td>Cerebelum</td>
<td>R</td>
<td>—</td>
<td>34 -60 26</td>
<td>6.10 (53)</td>
</tr>
<tr>
<td>CPIG</td>
<td>R</td>
<td>4</td>
<td>-34 -12 63</td>
<td>5.93 (50)</td>
</tr>
<tr>
<td>Nuc. Lent.</td>
<td>L</td>
<td>—</td>
<td>24 -4 6</td>
<td>6.31 (47)</td>
</tr>
<tr>
<td>Cuneus</td>
<td>L</td>
<td>18</td>
<td>-18 64 34</td>
<td>5.77 (43)</td>
</tr>
<tr>
<td>IFG</td>
<td>R</td>
<td>9</td>
<td>53 3 18</td>
<td>5.94 (31)</td>
</tr>
<tr>
<td>MTG</td>
<td>L</td>
<td>37</td>
<td>-53 -58 5</td>
<td>5.75 (31)</td>
</tr>
<tr>
<td>CPIG</td>
<td>R</td>
<td>4</td>
<td>56 4 40</td>
<td>6.19 (29)</td>
</tr>
<tr>
<td>Cerebelum</td>
<td>R</td>
<td>—</td>
<td>28 -68 -22</td>
<td>5.24 (25)</td>
</tr>
<tr>
<td>CGI</td>
<td>R</td>
<td>24</td>
<td>16 -36 44</td>
<td>5.74 (21)</td>
</tr>
<tr>
<td>Thal</td>
<td>L</td>
<td>—</td>
<td>12 -18 8</td>
<td>6.33 (20)</td>
</tr>
<tr>
<td>STG</td>
<td>L</td>
<td>22</td>
<td>-55 25 5</td>
<td>5.56 (14)</td>
</tr>
<tr>
<td>Nuc. Caud.</td>
<td>R</td>
<td>—</td>
<td>18 1 5</td>
<td>5.59 (13)</td>
</tr>
<tr>
<td>SPL</td>
<td>L</td>
<td>7</td>
<td>-18 -51 71</td>
<td>5.54 (13)</td>
</tr>
<tr>
<td>SPL</td>
<td>L</td>
<td>7</td>
<td>-18 -4 64</td>
<td>5.71 (11)</td>
</tr>
<tr>
<td>IFG</td>
<td>R</td>
<td>9</td>
<td>-40 16 26</td>
<td>5.57 (11)</td>
</tr>
<tr>
<td>CPIG</td>
<td>L</td>
<td>—</td>
<td>-21 42 5</td>
<td>5.52 (10)</td>
</tr>
</tbody>
</table>

Note: For each cluster the hemisphere, Brodmann areas, and anatomical structures are specified, in which the respective cluster is located. Significant clusters of at least 10 contiguous voxels or more with a statistical threshold of alpha = 0.05 (corrected for multiple comparisons) are presented. CG = cingulate gyrus, GL = lingual gyrus, IFG = inferior frontal gyrus, ITG = inferior temporal gyrus, MFG = middle frontal gyrus, MTg = middle temporal gyrus, Nuc. Caud. = caudate nucleus, Nuc. Lent. = lentiform nucleus, PoCeG = posterior central gyrus, Prec = precentral, PrCeG = precentral gyrus, IPL/SPL = superior parietal lobule, Thal = Thalamus.

Interestingly, the auditory region activated in our experiment was also found to be involved during pitch discrimination tasks (Lewis and others 2000; Patterson and others 2004), which indicates that this area is probably not exclusively concerned with motion processing. This conclusion is also corroborated by single-unit studies in monkeys (Ahissar and others 1992).

Audiovisual Motion Perception

The results of the psychophysical study conducted outside the scanner yielded clear evidence that an in phase moving sound source leads to significantly better performance in detecting coherent visual motion, compared with a condition with a sound source moving in antiphase. This corresponds to some extent with the results of Soto-Faraco and others (2004) who asked subjects to judge the direction of apparent auditory motion while they ignored visual apparent motion. If the 2 motion streams were congruent, the subjects correctly judged the direction on almost all trials, whereas in the incongruent condition they performed at chance level. In contrast to our results, Soto-Faraco and others (2004) found the visual stream to be unaffected by the auditory motion and attributed this cross-modal asymmetry to visual capture. However, the fact that auditory motion is not able to capture visual motion does not exclude that auditory motion may influence the detectability for visual motion, as clearly shown in our psychophysical results (Fig. 1).

Brain Regions Subserving Coherent Audiovisual Perception

The results of the SnPM analysis clearly support the role of a select group of cortical areas that underlie audiovisual motion perception. Our evidence suggests the existence of cortical foci, namely the SPL, SMG, IPS, STG, and also areas in the superior frontal and visual cortex that are sensitive to audiovisual information (i.e., in phase audiovisual motion stimuli). The same correspondence was found in the responses of single neurons to multisensory stimuli in monkeys (Stein and Meredith 1993). Using imaging techniques and single-cell recordings, it has been shown that the superior parietal and superior temporal cortex are critically involved in integration of auditory and visual information in human and nonhuman primates (Benevento and others 1977; Hyvarinen and Shelepin 1979; Bruce and others 1981; Rizolatti and others 1981; Lewis and others 2000). Moreover, these areas were also found to be activated by more than one modality (Bremmer and others 2001; Kayser and others 2005).

As outlined in the results section, we also found BOLD clusters in the STG, SMG, IPS, SPL, and in striate and extrastriate visual areas, which responded either exclusively or at least more robustly to congruent audiovisual motion stimuli. It appears that the congruent visual information leads to an enhancement of the activity in the auditory association cortex (Fig. 2a,b) and congruent auditory motion leads to integration processes in the higher association areas like the SMG, the superior parietal lobule and the superior frontal cortex (Fig. 3a,b). These findings cannot be explained by an attentional bias toward one sensory modality because attention to both information sources (visual, auditory) was required to perform the task. The activation related to congruent audiovisual stimuli in these areas appears to contribute to our unified perception of multisensory object motion perception. Our results therefore

STG contains neurons that are movement selective or this area contains a map of auditory space (see also, Wagner and others 1997; Griffiths and others 1998; Pavani and others 2002). Unlike previous auditory motion studies, which mostly reported that only the right hemisphere is involved, we found left-hemispheric activation, as well.
also underlie the importance of congruency for multisensory integration already indicated by behavioral experiments (e.g., Meyer and others 2005).

The fact that the association cortex in the STG, the parietal, and superior frontal cortex but also several visual areas respond more strongly to congruent audiovisual stimuli indicates that these areas are also involved in audiovisual integration. This is partly in concordance with the Lewis and others (2000) who found the IPS and the anterior midline to be involved in multisensory interaction processes. But supplementary to their results we also found evidence for multisensory enhancement in the SMG, SPL, STG, and early visual areas.

The activation in the visual areas could be due either to multisensory interaction at an early visual level or to feedback from higher areas like the parietal association cortex. Classically, multisensory integration is supposed to occur on a relative late stage of the sensory hierarchy (Felleman and Van Essen 1991). But several recent results suggest that also early sensory
had no predictive value regarding the direction of the visual motion stimuli deliberately as a cue. This strategy seems reasonable because the subjects knew that the auditory stimuli were present (Spitzer and others 1988; Beauchamp and others 1997; O'Craven and others 1997; Buechel and others 1998; Chawla and others 1999).

The pronounced activity in the in phase condition compared with the antiphase condition cannot be explained by enhanced attention to visual motion in general because both in phase and antiphase conditions required subjects to evaluate the direction of the visual coherent motion. However, the stronger activity in the in phase condition could be, besides being caused by multisensory integration processes, explained by enhanced visual processing due to the fact that in the in phase condition the auditory stimuli may direct attention to the direction of the coherent dot movement. It has been shown (Sekuler and Ball 1977) that attention to a specific direction can enhance detection of visual stimuli moving in the attended direction. Furthermore, attention to a specific direction leads also to a more pronounced motion-after effect (Chaudhuri 1990; von Grunau and others 1998; Alais and Blake 1999). In recent event-related potential (ERP) studies (Beer and Roder 2004, 2005), attention directed to a particular direction of motion enhanced processing of both visual and auditory stimuli. However, it is not clear if subjects in our study were using the sound source as a direction cue or if the enhanced BOLD response is due to multisensory integration. Some subjects reported that the motion detection task was easier in the in phase condition, but none of them reported that they were using the auditory motion stimuli deliberately as a cue. This strategy seems reasonable because the subjects knew that the auditory stimuli had no predictive value regarding the direction of the visual motion.

For the conditions with 16% coherent visual motion (in phase, antiphase, and stationary) we found significantly more activity in the dorsal precentral gyrus and the SFG, which may correspond to the frontal eye fields. It has already been shown that when humans attentively pursue objects without moving their eyes, the frontal eye fields are involved, which is also true for the MT+ complex and the area around the intraparietal sulcus (Culham and others 1998). However, the frontal eye field is activated in tasks demanding spatial working memory, as well (Jonides and others 1993; McCarthy and others 1994; Courtney and others 1996; LaBar and others 1999). In the conditions with 16% coherent visual motion, subjects had to judge both the visual and the auditory motion and in the conditions without coherent visual motion they only had to judge the visual component of the stimuli. It is therefore likely that, when subjects had to compare the visual and auditory motion, it was a more taxing task, demanding more cortical activity. The brain activity in the frontal eye fields can be at least partly due to the suppression of eye movements when directional moving stimuli are present (Sheliga and others 1995; Law and others 1997; Petit and others 1999). Because we monitored eye movements during fMRI we could rule out a possible role of saccadic or pursuit intrusions.

In the ventral precentral gyrus we found spatially separated activations in all 3 auditory conditions. This region likely corresponds to the premotor cortex, which is, at least for primates, known to be somatotopically organized (Goschalk and others 1995; Raos and others 2003). Because subjects had to respond with a different finger in the 3 conditions, the differential activations are likely due to response preparation (Simon and others 2002). However, despite possible functional overlap with attentional processes and fixation control, the results of our study gives effectual evidence for a participation of lateral parietal, superior temporal, and superior frontal cortex in the integration of moving audiovisual stimuli. Because congruent audiovisual motion leads to far more extensive activation patterns, this supports the idea that auditory and visual motion are processed conjointly in these brain areas. Our findings, though promising, have limitations inherent to the utilization of a sparse imaging design. With this approach we are unable to investigate the temporal time course of cortical activation related to specific components of the tasks.

Conclusion
We found that the superior temporal cortex, the SMG, and the superior parietal lobule underlie our ability to integrate audiovisual motion cues and that these 2 regions exhibit a differential sensitivity to in phase and antiphase combinations of audiovisual motion stimuli. Areas in the frontal cortex appear to mediate the integrative and attentive aspects of the task.

Notes
The authors would like to acknowledge financial support from the Bayerische Forschungstifting (BayernBrain Project) and the European Commission (FP6, Cognition Systems, Project: Decisions in Motion). The authors also would like to thank Stefan Uppenkamp (Department of Physics, University of Oldenburg) for providing us the generic Head-related transfer functions. Conflict of Interest: None declared.
Address correspondence to Mark W. Greenlee, Institute for Experimental Psychology, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany. Email: mark.greenlee@psychologie.uni-regensburg.de.

References

