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ABSTRACT 

 

Modifications of RNA bases are various and occur in almost all classes of RNA. Despite their 

abundance, most questions concerning RNA base modifications like the functions within the 

cell, remain elusive. To develop tools that can detect these modified bases is therefore an 

important step for helping to find answers to these questions. Especially issues concerning 

modification of the mRNA - the transcriptome - are of high interest. Following the epigenetics, 

the new field of “epitranscriptomics” has evolved. Next generation sequencing has made the 

research in this direction a lot faster and easier. However, there are several caveats to this 

quick generation of vast amounts of sequencing data. Several groups already performed 

transcriptome-wide sequencing experiments using – among other methods – antibodies 

against modified RNA bases. For some of these analyses, the results vary immensely among 

different groups. This could be partly due to different behaviours of the used tools, besides 

the disparate data evaluation methods. Thus, the set goal was, to generate more sensitive and 

specific antibodies, than the available ones. For the generation, ovalbumin-coupled 

nucleosides were used as antigens. After testing in various assays and optimisation of RNA-

IP protocols, several antibodies can now be used to enrich for certain modifications. In this 

thesis, functional antibodies against the RNA base-modifications m5C, m6A, Ψ and m26A are 

being presented and characterised. Different applications like immune fluorescence assays, 

and miCLIP (m6A individual-nucleotide-resolution cross-linking and immunoprecipitation) 

experiments are conceivable methods to apply the newly generated tools. Data from possible 

RIP-Seq (RNA-Immunoprecipitation and Sequencing) experiments could hint to consensus 

sequences in which the modifications mainly occur. These sequences could be one way to find 

proteins that bind to the modifications and eventually lead to the holistic function behind the 

different modified RNA bases. To discover some unknown specific binding proteins of 

modified bases, or “reader” proteins, was yet another task to accomplish in this thesis. For 

that, a pulldown technique, developed by colleagues in the laboratory was amended and 

optimised for these purposes. RNA hairpins containing the modified base of interest were 

used to precipitate the proteins, which were then identified via mass spectrometry.  
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ZUSAMMENFASSUNG 

 

RNA Basenmodifikationen sind vielseitig und ko nnen in nahezu allen RNA-Arten auftreten. 

Trotz ihrer Ha ufigkeit sind viele Fragestellungen rund um die Modifikationen, wie zum 

Beispiel ihre Funktionen in der Zelle, noch nicht beantwortet. Ein Werkzeug zu entwickeln, 

mit dem man diese modifizierten RNA-Basen detektieren kann, ist daher wichtig, um dazu 

beizutragen, diesen Fragen auf den Grund zu gehen. Besonders interessant sind dabei 

natu rlich die Modifizierungen der mRNA-Basen, also des Transkriptomes. Nach der 

Epigenetik hat sich nun auch das neue Themengebiet der “Epitranskriptomik” entwickelt. Die 

neuen Sequenziermethoden haben die Forschung in diesem Gebiet wesentlich schneller und 

einfacher gemacht. Allerdings gibt es mehrere Nachteile dieser schnellen Erzeugung von 

großen Mengen an Sequenzierdaten. Verschiedene Arbeitsgruppen haben bereits 

transkriptomweite Sequenzierexperimente durchgefu hrt, bei denen sie, unter anderem, 

Antiko rper gegen RNA Basenmodifikationen verwendet haben. Die Ergebnisse dieser 

Analysen weichen teilweise sehr stark voneinander ab. Neben den verschiedenartigen Daten-

Auswertungsmethoden, ko nnte der Grund dafu r auch an den unterschiedlichen 

Verhaltensweisen der verwendeten Antiko rper liegen. Ziel war es daher, Antiko rper zu 

generieren, die sensibler und spezifischer als die kommerziell erha ltlichen arbeiten. Als 

Antigene fu r die Erzeugung der Antiko rper wurden Nukleosid-Ovalbumin-Konjugate 

verwendet. Nach diversen Tests und Optimierungsschritten der RNA-Immunopra zipitations-

Experimente, ko nnen einige Antiko rper nun zur Anreicherung bestimmter Modifikationen 

verwendet werden. In dieser Arbeit werden Antiko rper gegen die RNA Basenmodifikationen 

m5C, m6A, Ψ und m26A pra sentiert und charakterisiert. Verschiedene Anwendungen wie 

Immunfluoreszenz Tests und miCLIP (m6A Einzelnukleotid „cross-linking and 

immunoprecipitation“) Experimente sind denkbare Methoden, die neu generierten 

Antiko rper zu verwenden. Die Daten von mo glichen RIP-Seq Analysen (RNA-

Immunopra zipitation und RNA-Sequenzierung) ko nnten auf Konsensus-Motive hinweisen, in 

welchen die Modifikationen hauptsa chlich vorkommen. Derartige Sequenzen wa ren eine 

Mo glichkeit, Proteine zu finden, die an Modifizierungen binden und letztendlich zu den 

holistischen Funktionen der verschiedenen modifizierten RNA-Basen fu hren. Solche 

unbekannten Basenmodifizierungs-bindende Proteine, oder kurz “Lese” Proteine zu 

entdecken war ein weiteres Ziel dieser Arbeit. Dafu r wurde eine, von Kollegen entwickelte 

Pulldown-Methode abgea ndert und fu r diese Zwecke optimiert. RNA-Haarnadelstrukturen, 

die eine modifizierte Base enthalten, wurden verwendet, um Proteine zu pra zipitieren und 

herauszuziehen. Diese wurden anschließend mittles Massenspektrometrie identifiziert. 





INTRODUCTION 

1 
 

1. INTRODUCTION 

1.1 Posttranscriptional Modifications 

The investigation of RNA bases and their modifications have their roots far in the past. From 

the 1950s, several labs already studied the complex world of the modified transcriptome in 

various species1–6. They analysed RNA modifications already to a great extent although 

methods were rather limiting compared to today’s possibilities. The revolution of RNA 

analysis came with next generation sequencing. This had a tremendous impact on the field of 

“epitranscriptomics” – a new name for a quickly developing field of RNA research7.  

1.1.1 The discovery of modified bases in non-coding and coding RNA 

Already in 1925, Johnson and Coghill were able to separate, crystalize and identify 5-methyl-

cytosine from nucleic acids of the tubercle bacillus via microscopic comparison8. This was the 

first hint of an additional base besides adenine, cytosine, guanine and uracil/thymine in 

nucleic acid8. At that time however – after all 28 years before the discovery of the DNA 

structure by Watson, Crick9, Wilkins10 and Franklin11 - the existence of two different nucleic 

acid species was not yet discovered. First thoughts to “yeast/pentose nucleic acid” being a 

second type of nucleic acid, namely RNA, were not mentioned until 193912. Wyatt proved the 

existence of 5-methylcytosine (m5C) in nucleic acids in 1950, using more biochemical 

methods13. In 1955, a “new base X” was found to be “6-methyl-aminopurine” (nowadays called 

N6-methyladenosine or m6A), however in deoxyribonucleic acid14. In 1956, Davis and Allen 

found uridylic acid to be the fifth abundant nucleotide in yeast ribonucleic acids (RNA)5. 5-

Ribosyl-uracil (known as pseudouridine as proposed by Dr. A. Michelson15) was the first “new, 

unknown nucleotide” explicitly found in total ribonucleic acid (RNA) in 19565,16. Two years 

later, thymine, 2-Methyladenine, 6-Methylaminopurine and 6-Dimethylaminopurine could be 

identified in total RNA of different bacterial strains, yeast and rat liver17. 

The first insights of modification of a certain ribonucleic acid species were achieved in tRNA 

(transfer RNA), at that time – the late 1950s - still known as soluble RNA or S-RNA18,19. In the 

beginning, the techniques used for detecting ribonucleic bases in RNA were rather simple. 

Paper chromatography, paper electrophoresis and UV absorption spectroscopy with 

hydrolysed RNA was used to analyse the components of RNA17,20. Using these methods, the 

groups of Dunn, Anders and Matthews could find several hydroxylated and methylated 

adenine, guanine and hypoxanthine bases18–20 in tRNA. When Cohn investigated the salt-

soluble RNA in more detail, he could find approximately 1 % of pseudouridine (Ψ) in this 
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fraction16, which fits to the nowadays known composition of all tRNAs21. In the first attempt of 

solving the primary and secondary structure of a transfer RNA (alanine), Holley and 

colleagues proposed – among other schematic conformations - a clover leaf structure, 

comprising nine different “unusual” nucleotides, including inosine, pseudouridine, 

methylated and dihydroxylated residues22,23. Several similar analyses of specific tRNAs have 

shortly thereafter been carried out, leading to the discovery of more and more unknown 

nucleotides24–27. The group of Miyazaki, for example, also found nine different bases besides 

the abundant ones in isoleucine tRNA, i. a. N-(purin-6-ylcabamoyl)-threonine, a 

comparatively large ribonucleotide28. 

Methylation of other RNA species was initially thought to be contaminants of tRNA29. Using 

sucrose gradients and 2-dimensional chromatography, Starr and Fefferman could prove the 

existence of methylated adenines and guanines in purified ribosomal RNA (rRNA) of E. coli in 

196429. With the development of fractionating HeLa cell lysates into cytoplasmic, 

nucleoplasmic and nucleolar fractions in 196630,31, rRNA could be similarly analysed to a 

greater extend and in more detail in mammalian cells3,4,32. Brown and Attardi found hints, 

indicating rRNA-modification consists mainly of 2’-O-methylations and to a minor portion of 

methylated adenine and guanine bases with 6-dimethylaminopurine (m26A) solely in the 18S 

fraction3. Greenberg and Penman did several experiments and found methylation to be mainly 

in the 45 S rRNA, which is the precursor of the 18S rRNA4. In another early study, Iwanami 

and Brown did a broader study regarding the identity of the specific RNA modifications. They 

could assign several modifications (e.g. 2’-O-Methylcytidine, 2’-O-Methyluridine, N4-

Methylcytidine (m4C), 3-Methylcytidine (m3C), 3-Methyluridine (m3U), 1-Methyladenine 

(m1A), N6-Methyladenine (m6A), N6-Dimethyladenine (m26A), N2-Dimethylguanine (m22G) and 

1-Methylguanine(m1G)) to the different fractions of the rRNA32. 

For a long time, the common thought was that methylated nucleotides solely appear in tRNA 

and rRNA and that mRNA is a “natural methyl-free species”, as discussed in several 

reviews33,34. The lack of ability to detect methylation in mRNA was mainly due to insufficient 

methods that were applied. Fortunately, not everyone blindly believed in the common 

“knowledge”. The first discoveries of methylated bases in coding RNA were made in rat6, 

mouse35, hamster36 and HeLa37 cells in the 1970s. The groups of F. Rottman, D.E. Kelley, R.H. 

Taylor and A. J. Shatkin did poly-A selection of 3H-methyl Methionine and 32Pi/14C-Uridine-

treated cells and found the methylated bases by analysing the RNA via density gradient 

sedimentation and electrophoretic methods6,35–37. These groups all measured m6A to be 

present at least once and on average 4 to 5 times per mRNA molecule6,35–37. Additionally to 

m6A, Desrosiers et al. found 2’-O-methylnucleosides and small amounts of m1A and m26A6. In 

1975, the m7G-triphosphate-cap was discovered to be at the 5’-end of mRNA and firstly 
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designated as “bizarre 5’-termini”38. The same group also detected m6A, four ribose-

methylated nucleosides and small traces of another two unidentified bases in mRNA of mouse 

myeloma38. In the 1980s, initial genome-wide studies of the composition of mRNA of Rous 

Sarcoma Virus39 and bovine prolactin40 have been made by hybridizing the mRNA to a cDNA 

library, digesting the RNA, m6A-immuno precipitation (IP)/labelling and thin layer 

chromatographic (TLC) analysis39,40. Kane et al. thereby could determine a consensus 

sequence (PuGm6ACU)39 in mRNA, which has emerged earlier in several organisms as well41–

43. For centuries, the biological relevance of the unusual RNA-components however was not 

apparent and could not be determined with the limited methods available. 

1.1.2 Developments in the field of epitranscriptomics  

In the early 2000s, different approaches have been made to elucidate the transcribed regions 

of the genome, like various variations of genome array assays44–46. With the development of 

RNA-Seq (mapping and quantification of transcriptomes by deep sequencing) in 2008, the 

global analysis of RNA became much more accessible47–51. For the epitranscriptomics-

research, this innovation turned out to be the reboot. In 2012, the group of Gideon Rechavi did 

the first genome-wide m6A RNA sequencing in human cells52. In the same year and the two 

following years, the sequencing and transcriptome-wide detection of m6A and other 

modifications like m5C and Ψ went on53–58. In chapter 1.4, the different methods for detecting 

RNA base modification are summarized. Nowadays, a database of RNA modifications - 

“Modomics” - lists 171 different RNA modifications21,59 and it is not sure, if this list is complete. 

In the last few years, the field of research has slightly moved from the detection of the 

modified RNA bases to the functional implications and this has exploded. The next chapters 

(1.2 and 1.3) deal with a lot of these functional findings, but the research is still actively going 

on, leaving a lot of questions open for now. 

1.2 RNA modifications in different RNA species 

The roles and effects of modified RNA are very widespread and are most probably not at all 

discovered to its final extend. Especially in mRNA, a lot more is to be elucidated and 

scrutinised until all pathways are fully explained. A short overview of the diverse functions of 

certain, most investigated RNA modifications found to date in different RNA species is shown 

in Figure 1.  
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Figure 1: Overview of the effects of four modified nucleotides in different RNA species. The structures of 

m6A, m5C, Ψ and m1A are shown. The table shows different functions and effects of these nucleotides, observed in 

three classes of RNA (tRNA, rRNA and mRNA). These implications are, among others, further discussed in this 

chapter. 

1.2.1 tRNA modifications and their functions 

tRNA is the most abundantly modified RNA species overall. Almost one hundred different 

RNA base modifications have been detected in tRNA21,60 (see Figure 3). These modifications 

serve various different structural and functional purposes61,62. One example is the stabilisation 

of the tRNA-2D-structure by forming additional hydrogen bonds with other bases (Ψ), base 

stacking improvement (Ψ, m5s2U, m5C), flexibility changes (2’O-methylations, 

dihydrouridine), building water bridges to other molecules (m5C and Ψ) or by allowing to 

bind additional metal ions (m5C)61,62. The m5C-methylation at position 40 in yeast, for example, 

has been shown to have an important role in magnesium ion binding63. Another m5C site is 

proposed to have base stacking and hydrophobicity enhancing functions64. 2’O-methylations 

have the ability to protect tRNA from endonucleolytic degradation62. M1A and m22G prevent 

misfolding of the tRNA, by helping to avoid potential undesirable interactions62. Another 
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function of modified bases in tRNA is the influence on the acetylation by aminoacyl-tRNA 

synthetases65. Lysidine (k2C), t6A and m1G have negative effects on the recognition of the tRNA 

by the aminoacyl-synthetase enzyme66,67. A third example for the purposes of tRNA base 

modifications is that the codon-anticodon interaction can be influenced by some bases’s 

tendency to enhance base stacking (e.g. m5C, s2C or Ψ) when they are present in the stem or 

the immediate neighbourhood of the anticodon62. Similar to that, bases at the position 37, such 

as m1I, i6A, t6A or m1G are not able to base-pair in a Watson-Crick fashion and thus prevent 

frameshifting, since this position is adjacent to the anticodon62. Therefore, modified 

nucleosides can modulate codon recognition and are important for the maintenance of the 

correct reading frame during translation62. Another function can be found in bacteria, where 

s4U can protect the tRNA from photo-induced damages68,69. Phosphoribosyl-Purines (Arp and 

Grp) can prevent the tRNA from binding to certain elongation factors in several fungal and 

plant species70. Mutations in the tRNA modification pathway have shown to have serious 

effects, leading to neurological and metabolical disorders in many organisms, like Alzheimer’s 

disease, ALS, epilepsy, intellectual disability, X-linked mental retardation and many more71–73. 

The effects described above are just examples of the variety of possibilities, modifications of 

RNA bases can open up in tRNA function. 

1.2.2 Impact of modified RNA bases on ribosomal function 

rRNA is heavily modified. However, compared to the highly diverse set of modifications that 

occur in nature, rRNA only comprises a limited number of (in the human 80S ribosome for 

example) 14 different post transcriptional modifications74,75 (Figure 3). Until now, around 100 

Ψ and 2’O-methylation sites each have been found in human rRNA and several sites of only 15 

different other modifications (m1acp3Ψ, ac4C, m1A, m5C, m7G, m26A, m3U, m6A, m3C, m4C, m1G, 

m2G, m22G, m1Ψ and cm5U) in eukaryotes75–80. Like in tRNA, the functions of modified RNA 

bases include effects on the structure of the ribosomal RNA61,81. M2
6A, m2G and Um (2’O-

methylated uridine) have been shown to affect the rRNA structure and stabilisation of the 

secondary folding82–84. M3U, in contrast to m2
6A promotes hairpin structure formation85,86. For 

m7G and m1A, a positive effect on RNA-protein interactions was observed87. Most modified 

RNA nucleotides cluster around functionally important regions, like the peptidyl-transferase 

centre or the decoding and tRNA binding sites, suggesting a role in translational fidelity and 

efficiency88,89. Certain m2G, Um, m1acp3Ψ and m5C sites were found to be in direct contact to 

tRNAs or close to the P-site of the ribosome, affecting translation accuracy90. Ψ and 2’O-

methylated sites near the A-site were shown to be involved in maintaining efficient 

translation91. 
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In bacteria, ribosomes are very often a target for antibiotics. Methylation of the rRNA can 

change the affinity of these kind of drugs to the ribosome, thus pointing out a way for 

antibiotic resistance in bacteria92,93. The methyltransferases, which are responsible for the 

resistances against kasugamycin, erythromycin and avilamycin have been identified and 

investigated94–97. 

1.2.3 Modifications found in other non-coding RNA species 

The most prominent RNA base modification in small RNAs, observed in the recent past is the 

m6A-methylation of the snRNA (small nuclear RNA) U698,99. Warda et al. found several other 

non-coding RNAs to be m6A-methylated as well98. The function of these new m6A sites 

however is not yet clarified, but the position of the methylation in U6 snRNA suggests to be 

connected to splicing regulation98. Other snRNAs have been identified as new classes of m6A 

containing non-coding RNAs100,101. Several snRNAs contain Ψ and 2’O-methylations as 

well100,101. The U2 snRNA for example comprises several 2’OMe and Ψ sites at the 5’ end, which 

all seem to be required for the assembly of the spliceosome102. But also other small RNAs can 

be affected by modifying enzymes, such as microRNAs (miRNAs)103,104. The m6A mark was 

found on primary miRNAs (pri-miRNAs) for example. Also 2’O-methylation was detected in 

plant miRNAs105. This modification is located at the 3’ terminal nucleotide and most likely 

protects the miRNAs from 3’-uridylation and subsequent decay105. Furthermore, pri-miRNAs, 

as well as mature miRNAs have been shown to be targets of A-to-I editing by ADAR (adenosine 

deaminase acting on RNA), whereby an adenine is modified to an inosine106–110. Editing of 

miRNAs can have impacts on their biogenesis and can further affect asymmetric strand 

selection111. 

1.2.4 Implications of the epitranscriptome on messenger RNA 

In mRNA, only a limited number of different RNA modifications is described (Figure 3). The 

most prominent modification is the 5’ cap, which is, together with the 3’ poly(A)-tail, crucial 

for mRNA stability, nuclear export and translational efficiency112,113. In eukaryotes, the best 

known 5’cap comprises a m7G(5’)ppp(5’)N structure (Figure 2A) ,which is very stable and can 

only be de-capped by specific enzymes, such as the decapping enzyme Dcp2, allowing for 

subsequent degradation by the exonuclease Xrn137,114–116. In addition to the m7G modification 

and the 5’-to-5’-triphosphate bridge, N6,2’-O-dimethylation on the first adenosine and 2’-O-

methylation on the second adenosine (m7Gpppm6AmAm) have been observed in vertebrates 

117,118119 (Figure 2A). 

Just recently, a new cap structure has been described in several species, the NAD-cap120–124 

(Figure 2B). In these cases, a Nicotinamide adenine dinucleotide (NAD) is attached to the 5’ 
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end of certain mRNAs, via the 3’OH of the adenine ribose of the molecule. In bacteria, where 

it was assumed that mRNA is not capped, this NAD-cap was shown to protect the RNA from 

5’-processing by the RNA-pyrophosphohydrolase RppH and endonucleolytic restriction by 

ribonuclease RNaseE122. As a decapping enzyme, NudC was identified, which triggers RNase E 

mediated decay122. In mammals however, the NAD-cap promotes mRNA decay by the 

“deNADding” enzymes DXO/Rai1, other than the translation-promoting m7G-cap120,125. After a 

mass spectrometric approach, further cap structures like FAD, UDP-Glc and UDP-GlcNAc were 

detected126. 

 

Figure 2: Cap structures found in mRNA. (A) The canonical 5’ cap structure comprising an m7G modification, a 

5’-to-5’-triphosphate bridge, N6,2’-O-dimethylation on the first adenosine and very often a 2’-O-methylation on the 

second adenosine (m7Gpppm6AmAm), how it appears in vertebrate mRNA. (B) The NAD structure is shown. It 

appears to be the 5’cap of mRNAs of various species. 
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The “internal” modifications, found in mRNA are m6A, Ψ, 2’O-methylations, inosine, hm5C, m5C 

and m1A127,128 (Figure 3). The first, very extensive research on internal mRNA modifications 

was done on m6A52,53. Up until now, it is the most investigated modification in mRNAs and 

research is continuously evolving for a complete understanding129. The effects, already found 

for the m6A-mark in mRNA are very widespread and reach from nuclear export and 

alternative splicing effects130–132, over mRNA-decay133,134 to the regulation of translation135 (see 

chapter 1.3.2). The destabilizing role of m6A has an important function regarding stem cell 

differentiation by regulation of pluripotency factors136–139. Also m6A demethylases have been 

found, making this epitranscriptomics mark very dynamically regulated140,141. There are hints 

for a role of this demethylation in splicing142. However, that much functional investigation has 

not been accomplished for all of the mRNA modifications. The group of Sammy Jaffrey 

described a m6Am (2’O-methylated m6A) demethylase143–145. The authors presented this new 

mRNA modification m6Am to be part of an alternative 5’cap and having a positive impact on 

mRNA stability143,146. Another RNA modification - m5C - was found mainly in certain 

untranslated regions, suggesting a role in mRNA silencing54. Another group found hints that 

point to a role of m5C in mRNA export147. For the m1A modification, even less information was 

revealed yet. The group of Schraga Schwartz found implications, that m1A methylation in 

mRNA leads to translational repression due to its disruptive impact on base pairing148,149. The 

group of Chengqi Yi demonstrated that m1A in mitochondrial mRNA interferes with 

translation150,151. Merely 5 years ago, Ψ was found to be another modified base present in 

mRNA55,57,152. Using different sequencing techniques, three independent groups found several 

hundred Ψ-sites on mRNA55,57,152. Functionally, Ψ is assumed to stabilise the secondary 

structure of RNA, since this modified base is known to affect the structure in tRNA 

likewisely127,153. Another interesting finding was that Ψ in stop codons leads to efficient read-

through and incorporation of specific amino acids in yeast154,155. In this study, it was further 

observed that Ψ, m6A, m5C and 2’O-methylation sites in specific codon contexts can reduce 

the protein production, m5C even was observed to change the coding from a proline to a 

leucine in E. coli156. Still a lot has to be elucidated in this field and future work will surely 

explain a multitude of biological processes. For an overview of all the RNA modifications 

found so far in the different RNA species, see Figure 3. 
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Figure 3: Summary of RNA modifications in different RNA species.  The upper part shows schematic structures 

of tRNA, rRNA, snRNA and mRNA. Underneath, lists of the abbreviations of modifications are shown, which are 

described to be found in the different RNA species of all phylogenetic classes (archaea, bacteria and eukarya). 2’O-

methylations are marked with a terminal “m” after the base. For more information and full names of the 

modification symbols, see https://mods.rna.albany.edu/mods/60,80.  

1.3 Proteins involved in the pathway of modified RNA bases 

RNAs are not modified during transcription by incorporating modified nucleosides by RNA 

polymerases. Instead, RNA modifications are generated by proteins that modify the 

nucleotide post-transcriptionally. These proteins have been termed “writers”. The de-

modifying enzymes that have been described, have (analogous to the writers) been named 

“erasers”. For resulting in direct functions of the RNA modifications, RNA binding proteins – 

the “reader” proteins – are of particular importance. Those enzymes are by far not found and 
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described for all RNA modifications. The proteins, responsible for m6A, m5C, Ψ and m1A-

modification in RNA and for their subsequent function are discussed in this chapter. In Figure 

4, a summary of the proteins, described in the literature that interact with the 

epitranscriptome is shown.  
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Figure 4: Suggested RNA modification interacting proteins for m6A, m5C, Ψ and m1A. In the left row, the 

modifying enzymes (“writers”) that are described in the literature are listed. The next row shows the structures 

of the nucleotides. In the third row, “erasers” and in the fourth row, “readers” are summed up, as suggested by 

several groups for the different nucleotides. The depicted proteins are discussed in this chapter. 

 

1.3.1 RNA-modifying enzymes 

1.3.1.1 Catalysing m6A-methylation and demethylation in RNA 

Over 20 years ago, Methyltransferase Like 3 (METTL3), a subunit of the m6A-writer complex 

was described for the first time157,158. Subsequently, more and more parts of this large enzyme 

complex were identified. METTL14159–161, WTAP (Wilm’s Tumor 1 Associated Protein)162,163, 

KIAA1429 or VIRMA (Vir in Drosophila130,164)161,165, RBM15/15B166, ZC3H13 (Zinc finger CCCH 

domain-containing protein 13, Flacc in Drosophila)167–169 and HAKAI were all found to 

contribute to m6A-methylation in mammals (Figure 5). METTL3 is the catalytic subunit, 

generating a methylation at an adenosine base within the RRACH motif (with R = G or A, H = 

A, C or U) of mRNAs with the help of the cofactor S-Adenosyl methionine (SAM)170,171. This 

protein was found to be able to interact with the translation initiation factor eIF3H, thus 

enhancing translation172. METTL14 comprises RGG repeats at its C-terminal end, with which it 

brings the RNA target into place and stabilizes the binding, probably by binding to a 

secondary RNA structure170,171,173. Recent research has shown that METTL14 binds specifically 

to the histone H3 trimethylation at Lys36 (H3K36me3), guiding the whole complex to the m6A 

sites co-transcriptionally174. The specific RNA signal has further been suggested to be 

recruited by RBM15166. WTAP has a nuclear localisation signal, targeting the complex into 

nuclear speckles162,173. VIRMA (KIAA1429) has shown to be required for functional m6A-

methylation161 and to guide the modification at the specific site165. ZC3H13 was just recently 

found to serve as a bridge between RBM15/15B and WTAP in Drosophila and may also have 

localisation duties167,168. The function of HAKAI remains elusive to date, but several studies 

found this protein to interact with other components of this methylation complex165,167,168,175.  
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Figure 5: Schematic depiction of the METTL3-METTL14 complex. The methyltransferase complex, responsible 

for the catalysis of the reaction from an adenosine (A) to m6A in the context of a RRACH motif (R=G/A, H=A/C/U). 

The methylating complex consists of METTL3, METTL14, WTAP, RBM15/15B, ZC3H13, VIRMA and HAKAI. 

 

Another m6A methylating enzyme, independent from the METTL3-METTL14 complex was 

found to act on mRNA as well: the m6A modification of the N6,2’-O-dimethylation (m6Am) on 

the first adenosine after the m7G cap. This modification was found to be generated by the RNA 

polymerase II-associated methyltransferase PCIF1, renamed as CAPAM (cap-specific 

adenosine methyltransferase)118. 

Recently, another methyltransferase, METTL16, has been found to catalyse m6A modification 

in RNA, more specifically in the U6 snRNA and different other non-coding RNAs (ncRNAs) and 

pre-mRNAs98,99. ZCCHC4 is a very recently added member of the m6A methyltransferases that 

acts on ribosomal RNA79. 

The “eraser” proteins FTO140 and ALKBH5141 have been discovered to demethylate m6A in 

mRNA, thus adding another layer of regulation to this epitranscriptomic mark. 

1.3.1.2 Generation of m5C in RNA 

RNA m5C methyltransferases (RCMTs) can be sub-classed in two clades, DNMT2 and the 

NOL1/NOP2/sun (NSUN) proteins, which all belong to the superfamily of Rossman fold-

containing enzymes, using SAM as their methyl-donor176. In mammals, the NSUN family 

consists of seven proteins, namely NSUN1 - 7177. NSUN1 and NSUN5 and their yeast homologues 

Nop2p and Rcm1p have been identified as being rRNA methylating enzymes178,179. NSUN4 acts 

as a RCMT on mitochondrial rRNA, forming a stoichiometric complex with MTERF4, which 

recruits NSUN4 to the ribosome180,181. Transfer RNAs also harbour m5C-methylations. DNMT2 

is one of the tRNA-RCMTs182,183, targeting tRNAAsp, tRNAGly and tRNAVal in the consensus motif 

CACGCG184–186. NSUN3 is another tRNA m5C methyltransferase, which methylates tRNAMet in 
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mitochondria187–189. The tRNA affecing m5C-methyltransferase NSUN6, introduces m5C in 

tRNAThr and tRNACys in humans190. NSUN2 methylates several specific tRNAs in the variable 

loop region185,191,192. This enzyme was also found to be responsible for the m5C-methylation in 

several other ncRNAs193,194. A third RNA species that NSUN2 specifically targets, are 

mRNAs54,147,193,195–197. The function of NSUN7 is not completely clear yet. However, there are 

hints that it might be specifically methylating enhancer RNAs (eRNAs), a class of short non-

coding RNAs, transcribed from DNA-enhancer regions198. In DNA, TET enzymes are known to 

demethylate m5C199, but the enzymes TET1-3 have also been shown to act on RNA as erasers200. 

1.3.1.3 Pseudouridylation in RNA 

Pseudouridine (Ψ) can be installed via two different pathways: through “stand-alone” 

enzymes or via small RNAs-dependent enzymes. For the first class of enzymatically 

pseudouridylated RNAs, ten different PUS (Pseudouridine synthase) proteins are responsible 

(PUS 1-10 in eukaryotes)201. They differ in localisation (nucleus, cytoplasm or mitochondria) 

and domain composition, but share a common catalytic domain201. These enzymes convert the 

N-C glycosidic bond between N1 of the uracil ring and the ribose sugar into a C-C bond, thereby 

enabling an RNA structure stabilisation201. Various U-sites in tRNAs are affected by PUS 1, 2, 3, 

4, 7 and 8201,202. The only known consensus sequence however is UGUAR (with R = G or A), 

which is recognised only by PUS7203. Also mRNA is affected by several PUS enzymes at various 

sites55,57. PUS5 on the other hand modifies mitochondrial rRNA at one position204. Ribosomal 

RNA is otherwise pseudouridylated by a protein called dyskerin or NAP57 in humans, which 

is also a pseudouridine synthase, but is incorporated into a snoRNA guiding complex205. There 

are three further core proteins, important for this enzymatic functionality. NOP10 stabilises 

the complex and serves as a binding surface for NHP2, which has RNA-binding properties206–

208. GAR1 is the fourth core protein, which has binding ability to the catalytic domain of NAP57 

and is required for substrate turnover during the enzymatic reaction209,210. Apart from the 

proteins, mentioned, small so-called snoRNAs (small nucleolar RNA) are relevant for the 

generation of the modification. There are two classes of snoRNAs (small nucleolar RNA) that 

guide chemical modifications to RNAs: The C/D box snoRNAs, which are responsible for 2’-O-

methylations and H/ACA box snoRNAs, which are associated with pseudouridylation of other 

RNAs211. These snoRNAs direct the protein complex to the target RNA, where certain hairpin 

structures lead to a perfect positioning of the RNA to be modified212–215. 
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1.3.1.4 m1A-modification in RNA 

Not much is investigated yet about the methylation process of adenosine at position N1 The 

group of Schraga Schwartz found m1A methylation to be catalysed by TRMT6/61A148,149. Also 

demethylases have been suggested, namely ALKBH1 and ALKBH3, which have been described 

to demethylate m1A in tRNA216,217. 

1.3.2 RNA modification reader and effector proteins 

The modification of RNA bases and the associated change of properties can directly affect 

stability, base-pairing, charges or secondary structures, thus leading directly to modulation 

of localisation, translation or processing218. Reader proteins are a way of indirectly affecting 

properties of RNAs. The best investigated readers are the m6A recognising proteins. The YTH 

protein family was found to bind specifically to m6A in mRNA contexts52,219,220. There are five 

different proteins in the YTH (YT521-B Homology) family, YTHDF1, -DF2, -DF3, YTHDC1 and –

DC2221,222. They are all cytoplasmic, except YTHDC1 (YTH domain-containing protein 1), which 

is found in the nucleus and is involved in several nuclear functions223. After binding to m6A in 

an RNA, YTHDC1 directly binds to SRSF3, a serine/arginine-rich splicing and mRNA export 

factor and thus contributes to alternative splicing130,131,219. Through the interaction with SRSF3, 

YTHDC1 is also involved in the regulation of the polyadenylation process of m6A-containing 

pre-mRNAs224. YTHDC1 was further found to enhance the export of m6A-methylated mRNA, 

also via interaction with SRSF3131,132. Another function of YTHDC1 is to assist in transcriptional 

repression of X-chromosome genes by binding to the long non-coding RNA XIST (X-inactive 

specific transcript)166. YTHDC2 has several functions in the cytoplasm223. Among others, the 

protein has 3’-5’ RNA helicase activity225,226, plays a role in the proliferation of cancer cells227,228 

and binds to the 40S ribosomal subunit near the mRNA entry/exit site229, thereby pursuing 

opposing duties: it enhances translation efficiency by recruiting meiosis-specific m6A-mRNAs 

to the ribosome230,231 but also decreases mitotic mRNA stability by recruiting exonucleases 

225,229–232. YTHDF2 has further been shown to regulate the decay of m6A-containing mRNA via 

interaction with the CCR4/NOT complex, the major deadenylase in eukaryotic cells133,134. This 

role of YTHDF2 seems to be conserved in evolution, since in S. cerevisiae, the YTH protein 

Pho92 also interacts with a component of the CCR4-NOT complex233. Interacting with 

RNaseP/MRP via the adaptor protein HRSP12, YTHDF2 was shown to be involved in 

endoribonucleolytic cleavage of m6A containing RNAs234. In contrast, YTHDF1 is facilitating 

the translation initiation, thus enhancing translation efficiency of certain RNAs, which are 

m6A-methylated in the 3’UTR135. YTHDF1 can recruit and interact with ribosomal subunits, 

namely the 40S subunit and the eIF3 complex, forming a loop between the methylated 3’UTR 
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and the translation start site135. Independently of YTHDF1, eIF3 also has the ability to bind 

directly to the 5’UTR of m6A-containing RNA under stress conditions, promoting cap-

independent translation146. YTHDF3 is able to act synergistically in a cooperative way together 

with YTHDF1 and 2, being able to enhance translation (with YTHDF1) or degradation (with 

YTHDF2)235,236. Oxidative stress leads to re-localisation of only YTHDF3 to stress granules, 

selecting and sorting out specific affected mRNAs237. The three YTH proteins have also been 

found to act together in decreasing different m6A-containing viral RNA reverse transcription 

rates or inhibit viral replication238–242. It has been specifically looked into the Hepatitis C virus, 

Zika virus and HIV, however, the findings have to be further investigated for a complete 

elucidation238–241.  

With all these different specific functions of the YTH proteins, the YTH domain seems to have 

specifically evolved as an m6A binding domain. Figure 6 shows the perfect fitting of the m6A 

RNA oligo in the YTH domain with m6A buried in the hydrophobic binding pocket. 

 

 

Figure 6: Structure of the YTH domain in complex with an RNA oligo (5’-UGm6ACAC-3’). (A) The YTH domain 

is shown in ribbons, the RNA is displayed in stick representation. The figure shows an ensemble of 20 selected 

structures. (B) Electrostatic potential of the surface of the YTH domain structure. The RNA oligo fits perfectly in 

the YTH domain and m6A is buried in the hydrophobic core, which serves as the m6A binding pocket. Figure from 

Theler et al., 2014220. 

 

In addition to the YTH proteins, several other specific m6A reader proteins were identified in 

different screens52,243–245. HNRNPA2B and HNRNPG were found to bind m6A, thereby affecting 

and regulating alternative splicing and, in case of HNRNPA2B1 also mediating primary miRNA 

processing via interaction with the micro-processor complex protein DGCR8103,244,245. HNRNPC 

has also a binding affinity to m6A, however only when the base is in a certain secondary 

structure246. M6A has the ability to alter the secondary structure in RNA246. This so-called 

“m6A-switch” facilitates the binding of HNRNPC, thus affecting alternative splicing246. Another 
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protein family, IGF2BP 1, 2 and 3, were found to recognise m6A in RNA to enhance stability and 

translation of mRNAs247. The group of Michiel Vermeulen did a large SILAC-based screening, 

where they found specific binders and repellents of m6A243. As novel reader proteins, they 

found CPSF6, ZCCHC8, SF3B4, RBBP6, FMR1 and FXR1&2 among others243. Already in 2012, 

ELAVL1, DBN1, DHX36 and also HNRNP proteins were found to bind to m6A in a study of 

Dominissini et al.52. However, all these factors are found in large-scale screening approaches 

and need to be further validated. The function of these proteins in biological pathways have 

still to be clarified. 

Not only for m6A, but also for m5C, RNA-reader proteins have been described, one of them is 

the mRNA export factor ALYREF (and ALY1 in Arabidopsis thaliana)147,248. Both in animals and 

plants, it was thus suggested that m5C acts as a regulator of mRNA export147,248. Not much has 

been investigated in this direction and further research is needed to understand the effects of 

potential m5C methylation in mRNA. Another new specific reader protein for m5C has recently 

been described which is a well-known RNA binding protein - YBX1249,250. Two independent 

studies found this protein to preferentially bind to m5C methylated mRNA with its cold shock 

domain (CSD), thus influencing the stability of mRNA and early embryogenesis250,251. For m1A, 

one reader protein was described to have specific binding properties. Pre-published data 

suggests a potential binding of YTHDF2 to m1A252. 

The described proteins are most probably not all the interactors and readers of modified RNA 

bases that exist. The finding of more of these proteins will help elucidate the importance and 

function of the base modifications in RNA. 

1.3.3 Discussion and debate about certain modifications in mRNA 

For a few modifications, the suggested sites and also proteins, involved are not fully accepted 

by all researchers in the field. In fact, the mere existence of m5C54,253 and m1A148–151 in mRNA 

is still highly debated, since for both, several independent groups have found contradictory 

results in their sequencing approaches. Several groups found various m5C modification sites 

within untranslated regions and in the coding sequences of the mRNA54,147. The groups of 

Frank Lyko and Mark Helm however, claim that the m5C marks found in mRNA are artefacts 

of the bisulfite treatment, necessary for sequencing253. Using a “statistically robust” 

computational approach they doubt m5C to be present in mRNA at all253. For the potential m1A 

sites in mRNA it is similar. Two groups are having a lively discussion, whether or not this 

modification is highly abundant in human mRNA148,150. Using more or less the same method 

with different approaches of analysing the data, the group of Schraga Schwartz only found 

m1A methylation to be present very sparsely in mRNA at nine specific sites and , as mentioned 

before, to be catalysed by TRMT6/61A148,149. The group of Chengqi Yi however, detected more 
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than 450 sites and claimed them most likely not to be installed by TRMT6/61A150,151. With 

both groups having reanalysed the data and still having divergent views, it shows how still 

today the investigation of RNA is not trivial148,150. Furthermore, concerning m6A, recent 

research found contrary results, suggesting no m6A-demethylation via ALKBH5 occuring on 

mature mRNA254. In this article, the authors also claim that m6A is not involved in ALKBH5-

dependent splicing events254,255. Chuan He’s group also investigated the matter of 

demethylation in more detail and claimed recently that FTO demethylates m6A as well as 

m6Am and even affects m1A in tRNA256. One last matter of debate are the exact Ψ-sites, which 

are also not finally clarified, since also here, the sites differ a lot between the different 

sequencing data sets55,57,58. Using pseudoU-Seq, one group found over 200 sites, another 

described over 300 sites and the slightly different method CeU-seq identified over 2000 Ψ-

sites55,57,58. With all this uncertainty and no common ground in the field of RNA modification 

research, it seems very important to generate tools and methods for clarification, as they are 

urgently needed to shed some light in the jungle of RNA modifications. 

1.4 Detection strategies of RNA modifications 

There are several methods to detect modified RNA bases, some of them developed in very 

early times (see chapter 1.1.1). Thin layer chromatography, paper chromatography, UV 

absorption and even microscopy belonged to the first detection methods8,13,17,20. The 

application of different RNases helped to analyse and partially understand the RNA 

composition22–24. Using the isotopes 14C and 3H, several groups endeavoured chase 

experiments of the modified bases4,6,32,35–37 . As the methodical range grew broader, also the 

work with RNA and its different modified bases was becoming easier. With electrophoresis 

methods257, northern blotting258 and mass spectrometry259,260, a much wider scale of RNA 

science could be conducted. Using mass spectrometry, the group of James McCloskey could 

for example detect and find the structure of 93 different modified nucleosides in RNA in 

1994261. Another important finding was that some modified bases leave specific reverse 

transcriptase (RT) signatures in the cDNA from which the modified base can be deduced. The 

RT mis-incorporates certain bases, like a cytosine instead of a thymine at the site of 

inosine262,263 or characteristic mismatch rates for m1A264,265. Some modifications, like m1G, m3U 

and also m1A can cause the RT to stop and thereby block any extension of the cDNA or change 

its fidelity266–268. A method to detect m1A was developed, taking advantage of the Dimroth 

rearrangement of m1A to m6A under basic conditions, thus avoiding the RT to stop and to gain 

clearer signals149,269,270. To make the signal of the modified bases more obvious or to enhance 

their signatures, RNA can be treated with different compounds271,272. Using the chemical CMC-



INTRODUCTION 

18 
 

T (N-Cyclohexyl-N′-(2-morpholinoethyl) carbodiimid-methyl-p-toluolsulfonat) for example, 

pseudouridine sites can be uncovered by an induced RT arrest55,57,58,273. Bisulfite is known to 

deaminate unmethylated cytosines (which are then reverse transcribed to thymine) but 

doesn’t affect 5-methylcytosine (m5C)54,56,274. The m5C sites are reverse transcribed into 

cytosines and can thus be determined54,56,274. Inosine can be N-alkylated using Acrylonitrile, 

leading to RT arrest (ICE-seq method)275. There are much more examples for reagents that 

specifically bind to certain RNA base modifications, having an impact on the reverse 

transcription272.  

The RNA can subsequently be analysed with the perhaps most important development in RNA 

research, the RNA next generation sequencing methods47–51. For an analysis like that, the RNA 

base modifications have to be enriched. Several methods were developed to achieve that272,276. 

There is a strategy, where a mutated modifying enzyme is trapped on the target site, which 

then covalently crosslinks to the RNA. Primer extension and sequencing then give rise to the 

modified position181,188,193. A second enrichment method is the use of biotinylated clickable 

chemicals, which can be specifically linked to a certain modification on a fragmented RNA via 

the “Click” reaction. Through the biotin tag, the fragment can then be pulled out using 

streptavidin and prepared for sequencing122,152,277. Very commonly in use are antibodies 

against modified RNA bases for enriching those. Either the simple methylated RNA 

immunoprecipitation (MeRIP)52,53 can be applied, where fragmented RNA is subjected to an 

antibody selection, followed by isolation of the RNA fragments via stringent washing steps 

and finally library preparation. Other applications of antibodies are combinations of MeRIP 

and iCLIP (individual nucleotide resolution crosslinking (UV 254 nm) and 

immunoprecipitation), called miCLIP278 or MeRIP and PAR-CLIP (photoactivatable 

ribonucleoside-enhanced crosslinking (in vivo s4U-incorporation and UV 365 nm) and 

immunoprecipitation), called PA-m6A-seq279. 

From the first generation of an antibody against an RNA base in the 1970s on, these very 

helpful and convenient tools made them be irreplaceable for studies with modified bases. 

Their potentially high specificity and sensitivity make antibodies such precious tools.  

1.5 Detection of RNA modifications by specific antibodies 

1.5.1 Short history of antibodies 

The roots of immunology lay far back with the works of Dr. Edward Jenner, who discovered 

in 1796 that variolia vaccinia (or cow-pox) could induce protection against smallpox in 

humans and called the method vaccination280,281. Dr. Emil Behring, an assistant of Robert Koch, 
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made a great progress in the field of vaccinations in the 1890s282. He observed a developing 

immunity against diphtheria and tetanus in mice and rabbits when treated with cell-free 

blood fluid. Shortly thereafter, he was the first scientist to treat humans with a purified 

antitoxin (against diphtheria) in a larger scale, industrially produced by Farbwerke Hoechst 

in 1894283. For this, he was awarded the very first Nobel Prize for Physiology/Medicine in 

1901284. The analysis of antibodies went on, until Behring and colleagues found the antitoxic 

substance to be in the protein fraction, more specifically a member of the globulin family and 

called it paralbumin (today called gamma-globulin)283. Antibody research, or 

immunochemistry was in the subsequent years on the one hand moving in the clinical 

direction, but also biochemical applications were investigated. Nowadays, antibodies are 

regularly used for clinical and research applications. 

1.5.2 Functional and structural depiction of immunoglobulins 

The immune system is a very complex, potent and vast network of cells, molecules, organs 

and tissues that spread throughout the body to protect an organism from pathogens like 

bacteria, viruses, fungi or toxins285. Its task is to recognize and destroy antigens and to 

ultimately extinguish the source of their production285. There are two types of immune 

responses, the innate immune response and the adaptive response, where antibodies play an 

important role285. Antibodies are proteins acting in the immune system and are also called 

immunoglobulins. They are secreted from specific B-lymphocytes, when a pathogen enters an 

organism285. The pathogen, in this case a virus, produces antigens (short for antibody 

generators), which are bound by dendritic cells (DCs)285. These cells are then activated, 

turning into APCs (antigen-presenting cells) and express MHCs (major histocompatibility 

complex I and II) with the viral peptides on their surface286. The antigen-binding MHC-II 

presents the antigen fragments to helper T-cells (CD4+ T-cells), activating them thereby286. 

The helper T-cells in turn activate specific B-lymphocytes that become antibody secreting 

plasma cells. There are several effector functions of the secreted antibodies286. They can 

attach to pathogens, blocking their binding to cell-surface receptors286. Another response of 

antibodies is the direct binding of soluble mediators, excreted by pathogens and blocking 

their toxic activity286. Antibodies can also trigger a part of the innate immune response, 

namely the complement system, which promotes inflammation and lysis of the pathogen286. 

Granulocytes can bind to the antibody-bound pathogen and induce inflammatory processes 

and phagocytosis286. The MHC-I also binds to antigens and is bound by natural killer and 

cytotoxic T-cells (CD8+ T-cells), which have been activated by cytokines, secreted by MHC-II 

to eventually lyse the infected cell285. To prevent a second attack by the pathogen, memory B-
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cells are produced that can secrete the specific antibody, when necessary. An antibody can 

only bind specifically to a small region of an antigen, called epitope, for which it is produced285. 

Generally, antibodies consist of a constant and a variable region287. Within the molecule group 

of immunoglobulins, there are five different classes – IgM, IgD, IgG, IgA and IgE, which vary in 

their constant region287. As the class of IgG antibodies is the most abundant and also the most 

relevant for this work, they will be described in detail. The class of IgG antibodies, can be 

subdivided into several subclasses285. In humans, there are the subclasses IgG 1 to IgG 4 A, 

mice and rats show the subclasses IgG1, 2a, b and IgG3. The schematic view of an antibody is 

depicted in Figure 7.  

 

Figure 7: General structure of an antibody. Disulfide bonds connect the two light chains to the two heavy chains, 

and the two heavy chains at the hinge domain together. The very N-terminus of all four chains are variable in their 

amino acid sequence and bind the antigen. The C-terminal constant region has the purpose to bind to effector 

molecules and cells287. 

 

These molecules are Y-shaped and consist of three globular parts that are connected by the 

flexible hinge region and that are more or less same in size287. IgG antibodies are 

approximately 150 kDa in size and consist of four polypeptide chains287. The two identical 

heavy chains (around 50 kDa each) are connected via disulfide bond. Each heavy chain binds 

one of the two identical light chains (around 25 kDa each) also via disulfide bond287. There are 

carbohydrate side chains attached to the middle CH-domain which are located between the 

heavy chains287. The amount of these side chains varies between the different classes of 

antibodies and determines the structure. The arms of the Y-shaped molecule are called 

Fragment antigen binding, or Fab-domain. The Y-stem could be crystallized easily and is 

therefore called Fragment crystallisable, or Fc-part287. Each region of 110 amino acids builds 

up a discrete immunoglobulin domain. The N-terminal variable domains of heavy and light 

chains differ between antibodies in the first 110 amino acids (variable region, VH  and VL), 
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whereas the C-terminal domains of the heavy and light chains are constant within the same 

isotype (CH and CL)287. This property entails the N-terminal domain to bind the different 

antigens and the C-terminal domain to interact with effector cells and molecules of the host287. 

1.5.3 Generation of monoclonal antibodies 

There are two types of antibodies: polyclonal and monoclonal. Polyclonal antibodies are 

secreted from different B cell lines within one organism288. They are a compilation of different 

antibodies, each recognising a different epitope, but altogether reacting to a specific 

antigen288. They can be harvested and purified from the blood serum of animals after 

immunisation288. In contrast, monoclonal antibodies come from a single B cell and are a 

homogenous mixture of mono-specific immunglobulines288. In 1975, Ko hler and Milstein 

developed the technique of fusing spleen cells and myeloma cells to hybridoma cells for 

monoclonal antibody production289. The technique is schematically depicted in Figure 8. 

 

 

Figure 8: Schematic overview of the generation of monoclonal antibodies. Mice or rats are immunized with 

the specific antigen of interest. After a few weeks, the antibody producing B-cells from the spleen are fused with a 

myeloma cell line to gain hybridoma cells. The positive clones are then selected via Elisa assay, the subclass is 

determined and finally, the positive monoclonal antibody clone can be produced in a larger scale. 

 

Laboratory animals, typically mice, rats or rabbits are immunized with the specific antigen290. 

After a few weeks, the B cells which are produced in the spleen of the animals are then fused 

with myeloma cells to gain immortal hybridoma cells290. These cells then have to be separated 
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and selected in HAT medium290. The first hybridoma screening is normally done via enzyme-

linked immunosorbent assays (ELISA). The subclass of the antibody clones is determined 

using HRP-linked antibodies specific for the different IgG subclass. The cells are then 

cultivated for bulk antibody production290. For a better understanding and also for 

engineering the immunoglobulin, the antibodies can be isolated, sequenced and cloned into a 

vector for recombinant expression and purification288. 

 

1.5.4 Antibodies against modified nucleic bases 

In 1964, Erlanger and Beiser developed a method to conjugate a riboside to a protein in order 

to achieve an antigen for immunisation291 (Figure 9). This achievement was important to be 

able to create antibodies against nucleic bases. 

 

 

Figure 9: Coupling reaction of a riboside to ovalbumin.  The RNA or DNA nucleoside is oxidised, using IO4-. To 

that, ovalbumin is added under basic condition to achieve an imine formation. This molecule then has to be 

reduced, using NaBH4. After gel filtration and purification, the conjugate can be used as an immunogen. Figure 

adapted from Erlanger and Beiser, 1964291. 

 

In the figure shown above, ovalbumin is used as an immunogenic carrier protein. Ovalbumin 

has long since been used for this application since it has a great number of free and accessible 

amine groups292. BSA is also very commonly used as a carrier protein, as it is a basic protein, 

comprising several free NH2-groups. The ribose ring of the nucleoside is oxidised with IO4
-. 

Two aldehyde groups are formed, to which the carrier protein can bind under basic 

conditions, resulting in an imine. Reducing this molecule with NaBH4 yields in the conjugate 



INTRODUCTION 

23 
 

that can be used for immunisation. The ribose ring is opened during the reaction and the 

protein is linked to the nucleoside via the 2’ and the 3’ position. This leads to the consequence 

that antibodies resulting from an immunisation with these antigens will not be able to 

discriminate between DNA and RNA as well as 2’-O-methylated and unmodified 2’ and 3’ OH-

groups278. As of now, there are no published antibodies against nucleosides, generated 

differently from this coupling method293.  

The development of antibodies against modified nucleic bases was partly driven by the urge 

to detect DNA that was structurally modified by chemical carcinogens294–296. In the 1970s, 

several labs started to work on generating antibodies detecting RNA nucleosides. Munns et 

al. characterized antibodies against m6A and m7G, using BSA-nucleoside conjugates297. 

Sawicki et al. used the same technique to devise antibodies against 5-bromouracil, 5-

iodouracil and 6-methyladenosine298. Some groups even developed antibodies against 

relatively large modifications, like N6-(Δ2-isopentenyl)-adenosine299 or N-[9-(β-D-

ribofuranosyl)purin-6-ylcarbamoyl]-L-threonine300. 

For several bigger analyses and studies, commercially available antibodies have been used. 

Among others, the most widely used were the polyclonal antibody against m6A from Synaptic 

Systems (no. 202-003)52,103,160,270,278,301–303, the anti-m1A antibody from MBL (clone AMA-

2)149,151,270,304,305, the antibodies against m5C from MBL (clone FMC-9)304 or Diagenode (clone 

33D3)56,306–308 and the anti-Ψ-antibody from MBL (clone APU-6)304,309,310. However widely used, 

several laboratories reported unsatisfying results regarding affinity and specificity for RNA 

molecules of certain antibodies304. Although there have been a few intentions to generate anti-

m6A antibodies, until now, only the polyclonal antibody from Synaptic Systems met the high 

requirements of the scientists278. The urge for more rigorous and detailed characterisation of 

antibodies can be read in several publications272,293,311. 

1.6 Aim of this thesis 

This thesis was pursued with the aim of generating and establishing highly specific and most 

sensitive monoclonal antibodies against a set of certain nucleic base modifications. We 

adapted and optimised a method for the synthesis of the antigen. Subsequently, the different 

antibody hybridoma clones had to be validated regarding specificity and sensitivity. To 

achieve that, the verifying experiments had to be designed and optimised. With the best 

performing antibodies, different applications, like immunofluorescence and miCLIP analysis 

have been carried out. 

A second study deals with the search for unknown “reader” proteins – RNA binding proteins 

that bind specifically to modified bases of the RNA. For that, an established pulldown 
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experiment using RNA hairpin structures was redesigned. First, the hairpins had to be cloned, 

in vitro transcribed and ligated in an optimisation process. The precipitated proteins were 

then analysed via mass spectrometry and evaluated for positive binding to modified RNA. 
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2. RESULTS 

2.1 Antibodies against modified nucleosides 

To generate and validate highly sensitive and specific antibodies against a number of 

modified RNA bases was the aim in this chapter. 

2.1.1 Synthesis of the antigens for immunisation 

First, modified bases were selected, which were subsequently used for antigen generation. 

For that, the most common modifications m6A, m5C and Ψ were chosen. To have a broader 

spectra of antibodies later, also m26A, m1A, m3C, m1G, m5U and m3U nucleosides were elected 

to work with. The chemical structures of the selected RNA bases are depicted in Figure 10. 

 

 

Figure 10: Selected modified RNA bases used for antigen synthesis and immunisation. The chemical 

structures of the nine selected RNA bases, which were used for antigen synthesis. The common names are written 

underneath each structure.  

 

For immunizing mice and rats, a suitable antigen needed to be developed. Single nucleosides 

alone do not trigger an efficient immune reaction, so ovalbumin (OVA) was used as a carrier 
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protein, since OVA will lead to an immune response. In Figure 9 (chapter 1.5.4) and Figure 11A, 

an overview of the coupling of nucleoside to carrier protein using the Erlanger/Beiser 

method291 is depicted. The same reaction was performed with BSA as carrier protein for 

subsequent analysis of the antibodies in ELISA experiments (Figure 13, right part). During the 

reaction, the ribose is converted, thus the nucleoside loses its RNA-specific properties. After 

the reaction, the coupling efficiency was tested using UV-photometric analysis. The 

absorbance of the conjugate was measured at 5 different wavelengths (250 nm, 260 nm, 270 

nm, 280 nm and 290 nm). The measured data points were then fitted to the corresponding 

calculated absorption values. The best fit composition of nucleoside and carrier protein was 

determined using a grid search, which builds a model for every combination of the 

parameters and evaluates them. The grid search was performed with a resolution of 0.1 µg, 

using the sum of squares of the deviation between measured and calculated absorption 

values. For that, the conjugate-spectrum was assumed to be the sum of the spectra for 

nucleoside and ovalbumin (Figure 11B).  

 

Figure 11: Absorption curves for ovalbumin, nucleosides and the resulting conjugates. (A) Schematic 

depiction of the reaction between ovalbumin (blue) and the nucleoside (red) to form the conjugate (purple). (B) 

Absorption curves of the members of the reaction with the same colour scheme as in (A). The spectra for m6A, m5C, 

Ψ and m26A are shown. 
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Here, the blue line depicts the ovalbumin curve, the red line shows nucleoside-absorption and 

the purple graph shows the best fit for the conjugate, as described above. Only the absorption 

curves for m6A, m5C, Ψ and m2
6A are shown in Figure 11B. The same was executed with all 

modified nucleosides used for coupling (see Figure 10). From these absorption curves, the 

molar ratios of bound nucleosides per carrier protein and thus the efficiency of the reactions 

was estimated (Figure 12). From the 20 lysines in ovalbumin, there were on average 4 - 5 

coupled to a nucleoside, which sums up to 20 to 25 %. 

 

 

Figure 12: Estimated coupling efficiency of the nucleoside to ovalbumin conjugation reaction. Of the 20 

lysines in Ovalbumin, on average 4 – 5 were coupled to a respective nucleoside. This was estimated using the 

values gathered in the absorption experiments (shown in Figure 11B). 

 

The coupling reaction of nucleosides and OVA/BSA, as well as the validation of the data and 

estimation of the reaction efficiency was performed by Robert Hett in the lab. 

After having synthesised the required conjugate antigens, immunisation and fusion of 

myeloma and splenic B cells of the immunised mice were done in the Helmholtz Center in 

Neuherberg by the group of Dr. Regina Feederle (chapters 1.5.3 and 4.2.3.2). Figure 13 (left 

part) gives a complete overview of the generation of monoclonal antibodies.  
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Figure 13: Workflow for the generation of monoclonal antibodies and schematic depiction of ELISA. The left 

section shows the workflow for generating the antibodies. The three boxes on the right are overviews of the 

detection ELISAs, which were done for first validation of the hybridoma clones. 

 

The different ELISA screening methods that are shown on the right section of Figure 13 were 

also conducted in the laboratory of Dr. Feederle. In the first detection ELISA assay, the plates 

were coated with biotinylated DNA oligos (modified and unmodified), the second detection 

ELISA was performed with BSA-coupled modified nucleosides. For the capture ELISA, the 

antibodies were coupled to the plates directly and BSA-coupled nucleosides were added (see 

chapter 4.2.3.3 for ELISA protocols). After Cryo conservation and determination of subclass 

and titer, the antibody hybridomas of around 10-60 different antibody clones per nucleoside 

were ready to be tested further. The complete record of these antibody candidates is listed in 

Table 16 in the appendix (chapter 5.2.1). Following the workflow in Figure 13, the hybridoma 

clones were subjected to dotblot experiments for first containment of specificity (chapter 

2.1.2). The positively tested antibodies were then subcloned and produced in larger amounts. 

After purification, the antibodies were validated further, regarding specificity and sensitivity 

(chapters 2.1.3 – 2.1.7). Subsequently, several different applications for the antibodies were 

tested and are shown in chapter 2.1.8. 

2.1.2 Validation of antibodies in Dot blot analysis 

All positive candidates from the ELISA tests were first tested in dot blot experiments for 

validation. For that 100 µg BSA-coupled modified and non-modified nucleosides were cross-

linked to a nylon membrane incubating the membrane for 1 h at 80°C. After blocking, the 

membrane was incubated with the hybridoma candidates listed in Table 16 and afterwards 

with a suitable secondary antibody. Figure 14 shows exemplary blots for this screen. Here, the 
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specificity of hybridoma clones, directed against m6A were analysed using m6A coupled BSA 

as a positive control and m26A- and A-coupled BSA as negative controls. The dotblots 1 – 4 in 

Figure 14 showed unspecific binding to m2
6A and / or A, while almost no cross-reaction could 

be detected in the blots 5 – 9. The positive candidates from this test were used for further 

validation. The hybridoma clones, directed against the 8 other nucleosides (m5C, Ψ, m2
6A, m1A, 

m3C, m1G, m5U and m3U), used for immunisation were screened in the same way. A summary 

of the numbers of positive candidates for all modified nucleosides in this test is shown in 

Table 2, chapter 2.1.7 in the second row (“dotblot”). 

 

 

Figure 14: Dot blot analysis of several m6A hybridoma clones.  The three BSA-coupled nucleosides m26A, m6A 

and A were used for validation and specificity studies of a number of m6A hybridoma clones. For some, cross 

reaction could be detected (blots 1-4), others showed rather specific signals (blots 5-9). In total, 63 m6A hybridoma 

clones were tested, the shown blots are examples. 

 

For a first validation, the test using BSA-coupled nucleosides, as also used in the ELISA 

screens, was sufficient. However, a screen for antibody clones that can detect the modification 

in an RNA context would bring more application-oriented data. For that, short modified and 

non-modified RNA-oligos were generated or purchased and cross-linked to a nylon 

membrane using EDC. The membrane was subsequently incubated with the specific 

antibodies. The clones used for this test, were all those, found to be positive in the previous 

dotblot experiment from all the nine modified nucleoside antibody hybridomas (data not 

shown for all). To show in Figure 15, a selection of antibody clones against m6A, m5C, m2
6A and 

Ψ were chosen, as they brought forward exemplary results and some of them will be shown 

in further analyses in this thesis. As a loading control, the membranes were stained with 

methylene blue, which detects the amount of nucleic acid that was spotted. 
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Figure 15: Dotblot analysis of antibodies using RNA oligos to verify specific binding abilities. Modified and 

unmodified RNA oligos were cross-linked to a nylon membrane, which was then treated with the respective 

specific antibody. α-m6A antibody clones 9B7, 11D11 and 13G2 are shown in the first row, α-m5C clones 32E2 and 

28F6 in the second, α-m26A clone 60G3 in the third and α-Ψ clones 27C8 and 26H5 in the last row. For the latter 

two, also the blots with the BSA conjugates are depicted. Methylene blue staining was performed as a loading 

control. 

 

The α-m6A hybridoma clones 9B7, 11D11 as well as 13G2 are shown in the first row of Figure 

15. They all show very specific detection abilities for m6A-RNA, when compared to the signal 

for A. The loading controls show a signal for both, the modified and the unmodified RNA oligo. 

The unmodified RNAs give no signal in neither of the shown dot blots. The depicted blots 

using the α-m5C clones 32E2 and 28F6 show similar results for detection ability, as does the 

blot, treated with α-m26A clone 60G3 using the respective RNA oligos. On the blots, incubated 

with α-Ψ antibody clones 27C8 and 26H5, no signal was detected for the Ψ-modified RNA 

oligos. However also on the methylene blue stained membrane, only the unmodified oligo 

seems to have cross-linked to the membrane, suggesting a cross-linking problem of the RNA 

oligo containing Ψ. Thus, for these two antibodies also the blots, using the nucleoside-BSA 

conjugates are shown, which were performed analogous to the blots in Figure 14. Here, the 
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two antibody clones show very specific detection (Figure 15, last row). Therefore, the α-Ψ 

clones 27C8 and 26H5 were tested in other experiments for further validation, together with 

the antibody clones used for the blots in Figure 15. Positive hybridoma clones, directed against 

the other modified RNA bases m1A, m3C, m1G, m5U and m3U were also tested in other 

experiments, but the results will not be shown in further figures of this thesis. Most clones for 

these RNA modifications did not show as clear results in the further tests as the discussed 

antibody clones for the α-m6A, α-m5C, α-m26A and α-Ψ did, which will be characterised in 

more detail in the following chapters. 

2.1.3 Establishment and optimisation of the RNA-IP protocol 

A very relevant application for the produced antibodies is RNA-immunoprecipitation (RIP), 

because there are several sequencing approaches, where a RIP is inevitable, like MeRIP, 

miCLIP or PA-m6A-seq52,53,278,279, as introduced in chapter 1.4.Since each antibody is unique and 

may require distinct IP-conditions, buffers with different pH values and salt species were 

tested first (Figure 16A). To examine, whether our antibody candidates are useful for IP, they 

were coupled to Protein G beads and incubated with total RNA from HEK293T. The 

precipitated RNA was then analysed in northern blot experiments using probes against 

endogenous RNA species that carry well known modifications. We started our buffer test with 

α-Ψ 26H5 using a probe against the 5.8 S rRNA for detection, because it is well established 

that the 5.8 S rRNA carries a Ψ-site312. Figure 16A shows the first buffer tests. Different salt 

types (NaCl, LiCl and KCl, 150 mM each; lanes 4 – 6) and pH values (pH 6.8, 7.5, 8 and 8.8; lanes 

7 - 10) were titrated. According to this, LiCl at a pH of 7.5 were the buffer conditions, which 

gave the highest signal for this antibody clone, as seen in lane 8. 
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Figure 16: Buffertest for RNA immunoprecipitations.(A) For this buffer test, the antibody clone 26H5 against 

Ψ was used. Total RNA was loaded as a positive control (lane 1), the IgG control and “beads only” as negative 

controls (lanes 2 and 3). In the first IPs (lanes 4 – 6), different salts were used (NaCl, LiCl and KCl). Using the salt 

with the best results from this first round, the pH values were titrated from 6.8 to 8.8 (lanes 7 – 10). For detection, 

a probe against the 5.8 S rRNA was used. (B) The concentration of LiCl in the buffers increases from left to right. 

Three different LiCl concentrations in the IP buffer and 4 different washing conditions were applied. a: 150 mM – 

300 mM – 450 mM; b: 300 mM – 450 mM – 750 mM; c: 450 mM – 750 mM – 1000 mM; d: 750 mM – 1000 mM – 1500 

mM. As probes for the m6A IPs, the U6 snRNA and the 18S rRNA were used. For the m5C IPs, a probe against the 18 

S rRNA and tRNA GlyGCC were used. 

 

The IP buffer conditions were further optimised by titrating the LiCl concentration in IP and 

wash buffers. The data for the α-Ψ antibodies is not shown here, as they did not give any 

conclusive results. Instead, the northern blots of the IPs with the antibodies α-m6A 9B7 and 

α-m5C 32E2 are shown in Figure 16B, for these antibody clones seemed the most promising. 

IP buffers 1 (150 mM LiCl), 2 (450 mM LiCl) and 3 (750 mM LiCl) were applied for the 

experiments. After IPs, the beads were washed thrice with different washing buffers. The 

Lithium chloride concentration in the wash buffers was varied from a (150 mM – 300 mM – 

450 mM) over b (300 mM – 450 mM – 750 mM) and c (450 mM – 750 mM – 1000 mM) to d 

(750 mM – 1000 mM – 1500 mM). For the m6A IPs, probes against the 18 S rRNA and the U6 

snRNA were used to show successful precipitation, as both RNAs are known to be 

endogenously m6A methylated98,99,313. The probes, used for the m5C-IPs were directed against 

the 18S rRNA and the tRNA GlyGCC. For those RNAs, it is known, that they comprise at least one 
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endogenous m5C methylation59,314,315. The signal intensity decreases when using higher salt 

concentrations. However, there is a clear difference in specificity with different LiCl 

concentrations between the two antibodies against m6A and m5C. For the m6A antibody, the 

buffer combination 2a seems to comprise the highest LiCl concentration to still gain a specific 

band for the 18S rRNA (lane 5), whereas for the m5C antibody, condition 1b seems best to get 

a good signal for the tRNA probe (lane 2). These buffer conditions were used for further 

experiments. This test had to be done with all antibodies, for they all have different properties 

(data not shown). The best buffer condition, used for the α-Ψ antibody clones, as well as the 

clone α-m26A 60G3 was found to be condition 1a (data not shown). Data for these antibodies 

will be shown in the course of this thesis, as they showed interesting results. 

Having determined the best IP buffer conditions for each antibody, the RIP was optimised 

regarding the RNA and antibody concentrations. This is just shown for the antibody α-m5C 

32E2 as an example, since it looked the same for all antibodies, tested. The total RNA from 

HEK293T cells for the IP was titrated from 0.1 µg to 100 µg, using the same amount of antibody 

(5 µg) (Figure 17A). In the next titration series, the antibody concentration was varied 

between 0.1 and 100 µg with the same amount of total RNA in the IP (12 µg). This is shown 

representatively for the antibody clones α-m5C 32E2, α-m6A 9B7 and the clone α-m26A 60G3 

(Figure 17B). 

 

 

Figure 17: Titration of RNA and antibody concentrations in IP assays. (A) Titration of the concentration of 

total input RNA in IP experiments using the antibody α-m5C 32E2. A probe against 18S rRNA was used in northern 

blot analysis. (B) The α-m5C antibody 32E2 was titrated from 0.1 to 100 µg, with constant amount of RNA (12 µg) in 

the reaction (upper panel). The antibodies α-m6A 9B7 and α-m26A 60G3 were titrated the same. The RNA 

concentration was kept constant at 12 µg in all IPs. For detection, a probe against the 18 S rRNA was used. 
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The antibody titration assays using the antibody clones α-m5C 32E2, α-m6A 9B7 and α-m26A 

60G3 were conducted to find the best amount for each antibody individually. For detection, a 

probe against the 18S rRNA was used, as the respective RNA modifications endogenously 

occur in this RNA, as mentioned before. For m2
6A, the presence in the 18S rRNA has been 

shown very early in several publications as well3,17. The titration of the RNA did not show big 

differences in the signal intensity. The precipitating antibody however seemed to be the 

limiting factor in the IP and its amount changed the signal intensity a lot. The amount of 

antibody, needed, had to be titrated for each antibody individually, since each clone behaved 

differently. For α-m5C 32E2, 10 µg and for α-m6A 9B7, 5 µg of antibody showed sufficient 

results and were used for further assays. For m26A, even 50 µg of antibody had to be applied. 

Although, 2µg of RNA seemed to be sufficient to detect the ribosomal RNA, 5-10 µg of total 

RNA were used in most subsequent experiments to also be able to precipitate less abundant 

RNA. 

Another optimisation test was carried out, to find out the best coupling strategy. The standard 

protocol for protein immunoprecipitation assays is to first couple the antibody to protein G 

beads, wash the unbound antibodies off and apply the mixture of proteins afterwards. This 

protocol can however lead to important epitope binding sites of the antibody to be occupied 

by the beads and thus to weaker binding of the antigen to the antibody. Therefore, two 

coupling methods were tested, regarding the precipitation capability. The antibody was in 

one case coupled as described above and afterwards incubated with total RNA (a). In the 

other case, the antibody was first incubated with total RNA and afterwards pulled out with 

the beads (b). The result is shown in Figure 18. This test was also conducted with a well-

established polyclonal α-m6A antibody, which was commercially purchased and is widely 

used in the field (α-m6A antibody clone 202-003, Synaptic Systems (sysy)). For α-m6A (lanes 

2 and 3), α-m6A sysy (lanes 4 and 5) and α-m5C 32E2 (lanes 6 and 7), protocol b was more 

sufficient for precipitation. The α-Ψ antibody 27C8 did not show any preferred bead-coupling 

protocol (lanes 8 and 9) and the α-m2
6A antibody 60G3 precipitated much better, when 

incubating the antibody with the beads first (protocol a, lanes 10 and 11) 

 

 

Figure 18: Investigation to find the best mode of coupling the antibody to the beads. Antibodies against m6A 

(9B7 and the commercial antibody from Synaptic Systems), m5C (32E2), Ψ (27C8) and m26A (60G3) were tested 

regarding the coupling method. In strategy a, the antibody was coupled to the beads, which were afterwards 

incubated with the RNA. For method b, the antibody and the RNA were mixed and incubated together, followed by 

precipitation with the protein G beads.  
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2.1.4 Competition assays for specificity and sensitivity analysis 

To gain further insight into the specificity of the antibodies, a competition assay was 

conducted. This would show, if any unspecific interaction with the respective unmodified 

RNA nucleoside occurs, when using the antibodies in IP experiments. An excess of modified 

or unmodified free nucleosides were added to the IP sample during the binding. This was 

done to see, whether the free nucleosides can compete the RNA off the beads. At high 

sensitivity, the samples with the modified nucleosides should give no signal in northern blot 

analysis. The signal of the sample with the unmodified nucleoside should show the same 

intensity as the untreated IP, resulting in high specificity. In Figure 19, examples for these 

competition IP assays are shown for the antibodies m6A 9B7 (A), m5C 32E2 (B), Ψ 27C8 (C) 

and m2
6A 60G3 (D). To have an internal negative control, an unmodified GFP mRNA was 

spiked into the total RNA input. In lanes 1 respectively, 200 ng of total RNA and 75 ng of GFP 

spike-in was loaded as input control. The IP was conducted with an IgG control antibody in 

parallel to the other IPs to test for background signals (lanes 2). Lanes 3 show the IP with the 

respective antibody. In lanes 4, 100 µM of the specific modified nucleoside was added for 

competition. The unmodified nucleoside was added in additional samples, which are shown 

in lanes 5. The upper blots for each antibody were analysed with a probe against an rRNA 

subunit and the lower ones show the signals for a probe against GFP. The α-m6A directed 

antibody gave clear signals for the IP and the non-modified nucleoside and no signal for the 

IP with spiked-in modified nucleoside (Figure 19A). This shows that the antibody clone 9B7 

can specifically recognise the free m6A nucleoside, but is not directed against the non-

methylated nucleoside. The same could be observed when using the α-m5C antibody 32E2, 

which showed a preferential binding to the target and was competed off the total RNA m5C-

sites, when adding the specific RNA base (Figure 19B). In Figure 19C, the results for the α-Ψ 

antibody 27C8 is shown, which seems not to have any affinity for the unmodified nucleoside 

U (lane 5). However, the amount of Ψ-nucleoside was not enough to compete with the 

endogenous Ψ-sites that was bound by the antibody, resulting in a slight band in lane 4, 

suggesting low sensitivity. The α-m2
6A antibody 60G3 also did not show impaired binding 

upon adding the A nucleoside (lane 5). But also here, a faint signal is detected, when adding 

m26A nucleosides to the reaction (lane 4). This could however also be a background signal, 

since the IP with the IgG control antibody shows a similar signal. No unspecific binding to the 

unmodified spike-in GFP could be observed in neither of the conducted IPs shown in Figure 

19.  
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Figure 19: Competition immunoprecipitations of certain antibodies against modified RNA bases. The 

antibodies  (A) m6A 9B7, (B) m5C 32E2, (C) Ψ 27C8 and (D) m26A 60G3 have been tested in a specificity assay, using 

free nucleosides to compete for the modified sites in the total RNA input. IgG controls were used to analyse a 

potential background signal. Unmodified nucleosides were used as a control for the competition. As a negative 

control, unmodified GFP mRNA was spiked-in the input before IP. 

 

To specify at which nucleoside concentration, the competition is detectable and how much 

unmodified nucleoside can be added to still see no unspecific binding, a titration of 

nucleosides was conducted with the four antibodies shown for the previous experiment (α-

m6A 9B7, α-m5C 32E2, α-Ψ 27C8 and α-m26A 60G3). The titration was performed, adding no, 10 

nM, 100 nM, 1 µM, 10 µM and 100 µM of modified or unmodified nucleoside to the IPs (Figure 

20). Again, probes against the ribosomal RNA subunits 18S or 5.8 S rRNA were used for 

detection of the endogenous modification. 
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Figure 20: Titration of the competing free nucleosides. To find the nucleoside concentration at which a 

competition can be observed, the antibodies m6A 9B7, m5C 32E2, Ψ 27C8 and m26A 60G3 were subjected to a 

titration series with different nucleoside concentrations. Modified and unmodified nucleosides were used to 

investigate the competition ability for each antibody. After IPs, the resulting northern blots were incubated with 

probes against ribosomal RNA subunits 18S or 5.8 S rRNA. 

 

The concentrations at which the competition with the modified nucleoside could be detected, 

was different for all antibodies. Also the signals for unmodified nucleoside-spike-ins were 

detected at different concentrations. In the IPs, using the α-m6A antibody 9B7 (Figure 20, first 

row), the signal of the m6A nucleoside competition vanished at around 1 µM (lane 5). The 

signal with the unmodified A nucleoside in the IP was detected in the IPs up 100 µM of A (lane 

12). Thus, the results hint to high sensitivity as well as high specificity. In the α-m5C IPs 

(second row), only 100 nM of m5C nucleoside (lane 4) was need for competition and also 100 

µM of C nucleosides (lane 12) could be added without unspecific binding. Sensitivity and 

specificity seems very high for this antibody clone as well. The amount of Ψ nucleoside in the 

IP (third row) was still not high enough to lose the signal, even with 100 µM in the IP (lane 7). 

However, for this antibody, too, up to 100 µM of unmodified nucleoside could be added 

without noticeable competition (lane 12). The α-Ψ antibody 27C8 seems very specific but not 

as sensitive. The concentration of spiked-in m26A nucleosides seemingly needs to be higher 

than 100 µM to be able to compete completely (lane 7). For the A nucleosides, the data from 

Figure 20 is rather inconclusive, as all, except 1 µM A nucleoside (lane 10) in the IP lead to a 

competition. More tests have to be conducted to validate the α-m26A 60G3 antibody to its full 

extent. Also for the other antibodies, tested here, further characterisation was performed. 

2.1.5 Optimisation of the elution protocol 

To enhance the specificity of the output after IP, a method for elution of specifically bound 

RNA was performed using modified nucleosides to elute the RNA off the antibody. This was 

previously done by Dominissini et al.52. The protocol was optimised using the antibodies 

against m5C (clone 32E2) and m6A (9B7), as they showed the best results in previous 

experiments, and is depicted in Figure 21. After IP and washing, 250 – 500 µM of modified or 

unmodified nucleosides were added to the beads and incubated for one additional hour while 

shaking. The RNA was then extracted from eluates and the beads and was loaded onto the gel. 

In lane 2, the conventional IP was loaded, lanes 3 – 5 show the RNA, which was still bound to 

the beads after elution and lanes 7 – 9 show the signals of the eluates after IP and elution. For 

the m6A IPs, the high signals are very clearly seen only in the IP (lane 2) and in the elution 

samples with the modified nucleosides (lanes 7 and 8). The elution, using this protocol seems 

to be applicable for the antibody α-m6A 9B7. For the m5C antibody 32E2, the signals were 
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weaker than detected before. A signal could be detected in the beads-fraction that was treated 

with the unmodified nucleosides (lane 5) and also faintly in the elution fractions with 

modified nucleoside (lanes 7 and 8) and unmodified nucleoside (lane 9). Thus, further 

optimisation work had to be conducted for the elution experiment to be able to detect the 

signals better. 

 

 

Figure 21: Specificity test via elution after the IPs. Free nucleosides were used to elute the specifically bound 

RNA from the antibodies α-m5C 32E2 and α-m6A 9B7. After IP and washing, modified and unmodified nucleosides 

were added to the beads for elution. In the left part, the RNA signals for the beads fraction are shown and in the 

right part, the elution signals for the two antibodies are shown. 

 

In Figure 22, the optimisation of the elution protocol using the antibodies α-m6A 9B7, α-m5C 

32E2 and α-m26A 60G3 is shown. The RNA was eluted from the beads, as it was done in the 

previous experiment, using 250 µM modified nucleoside. In addition to testing the most 

potent buffer conditions for IP and washing, in vitro transcribed modified or unmodified GFP 

mRNA was spiked in the IP for further specificity control. Of note, m26A is not incorporated in 

the RNA by the T7-polymerase during in vitro transcription and thus m26A-GFP could not be 

used in this experiment. A GFP probe was used to visualise the precipitated GFP amount in 

the northern blot (Figure 22, upper panels). As a positive control, a probe against 18S rRNA 

was used (Figure 22, lower panels). In lanes 1 respectively, 200 ng total RNA and 75 ng GFP 

mRNA was loaded as input. For Background analysis, IPs using an IgG control antibody were 

conducted (lanes 2). 
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Figure 22: Optimisation of the elution protocol of antibody IPs using spike-ins.  Modified and unmodified 

GFP mRNA was used as spike-ins to the total RNA in the IPs. The m6A antibody, which was used was 9B7 (lanes 3 

– 10), for m5C, the clone 32E2 was used (lanes 11 - 18) and the m26A antibody clones was 60G3 (lanes 19 – 22). 

Different IP and wash buffers were used for each antibody. The RNA was eluted from the beads after IP, as 

described above. Probes against the GFP mRNA and 18S rRNA were used for northern blot detection. 

 

The α-m6A IPs showed no signal for GFP in the IPs with unmodified spike-ins (lanes 3 to 6), 

whereas signals could be detected in the IPs with modified GFP spike-in (lanes 7 to 10). In 

previous experiments with the α-m6A antibody, there were hints that NaCl results in higher 

affinity to its targets, as compared to using LiCl (data not shown). Hence it was tested again 

in this experiment. The buffer that showed the highest signal and thus precipitated most GFP 

mRNA was the NET buffer for the m6A antibody (lane 10, upper panel), which contains NaCl 

instead of LiCl. The elution of m6A containing RNA with m6A nucleosides was successful in all 

IPs, with highest signals using buffer condition 1a and NET buffer (lanes 3 and 10). The α-m5C 

antibody 32E2 was also able to specifically precipitate the modified GFP-mRNA (lanes 15 to 18 

in contrast to lanes 11 to 14, upper panel). The signal showed highest intensity, when using the 

buffer condition 1a in this elution experiment (lane 15). Also the detection of endogenous 

rRNA was most successful with buffer condition 1a (lanes 11 to 18, lower panel). The α-m26A 

60G3 antibody clone showed no precipitation of the non-modified GFP mRNA (lanes 19 to 22, 

upper panel). The elution protocol showed best detection of the endogenous m2
6A sites in 

rRNA when using the buffer 1a (lanes 19 to 22, lower panels). In general, for IP experiments, 

the elution protocol can be recommended to give rise to more specific signals but always has 

to be tested for each antibody individually. 

2.1.6 Estimation of the apparent KD values 

An important characteristic of antibodies is the dissociation constant (KD). This index is 

defined as the coefficient of the propensity of a complex to separate into its components and 

is regularly used in various applications316. For the description of antibody-antigen 

interactions, it usually rather describes the tendency to interact (association constant). It is 

commonly used as a measurement of the specificity of an antibody. Here, the apparent KD-

values were determined by Robert Hett using HPLC analyses. For that, free modified and 

unmodified nucleosides were mixed equally in six different concentrations, subjected to 
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immunoprecipitations and filtered to remove the antibody from the reactions. The filtered 

nucleosides as well as the inputs were then analysed via HPLC (Figure 23A). For a detailed 

protocol of the procedure, please see chapter 4.2.3.4 in the methods section.  

 

 

Figure 23: Estimation of the apparent KD-value of antibodies. (A) Schematic overview of the experimental 

setup. The modified and unmodified nucleosides are mixed, immunoprecipitated with the specific antibody and 

analysed via HPLC. (B) Using the differences between the values for modified and unmodified, a Scatchard plot 

was derived. As an example, the plot for the antibody clone 9B7 against m6A is shown. 

 

The antibody-bound and unbound fractions were determined from the HPLC measurements 

and the concentrations of the bound ([AbN]) and free nucleoside ([N]) were calculated. For 

the Scatchard plot, the ratio of bound and free nucleosides was plotted against the bound 

fraction317,318. This was done for all the potentially highly specific antibodies. The KD values 

were then estimated from the negative reciprocal value of the slope of the resulting line 

(Figure 23B). This estimation was used to deduce the binding models that describe the ratio 

of free and bound nucleoside (see Figure 24). These values were fitted with nonlinear 

regression, which is a statistical method for estimating the relationship among independent 

variables by successive approximations319. In Figure 24A, the grey squares in the upper part 

of each graph show the binding of the antibody to m6A with A as the control nucleoside. The 

black triangles in the lower part of the graphs depict antibody-m26A binding. For the m5C 

antibodies, m3C was used as a negative control (black triangles) (Figure 24B) and for the m26A 

antibodies, binding to m6A was analysed in addition to the binding to m26A (Figure 24C). 
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Figure 24: Binding models for the KD-determination of antibodies against m6A, m5C and m26A. The grey 

squares show the binding to the specific nucleoside, the antibody was generated against. The fitted binding curve 

is represented in black. Unspecific binding to differently modified nucleosides is depicted with black triangles. 

 

The antibody clone 4G10 against m1G showed unspecific binding to G, when higher 

concentrations were used. Thus, clone 4G10 was not further validated, but rather the α-m1G 

clone 6E3 (shown in Figure 43 J/K, chapter 5.2.2 in the appendix). The binding modelling was 

done for several antibodies and after fitting with nonlinear regression, the apparent KD-values 

of the different antibodies were estimated. They are listed in Table 1. 

 

 

 

 



RESULTS 

42 
 

Table 1: List of the apparent KD-values of several antibody clones against m6A, m5C, Ψ, m26A, m1G and m3U.  

The row “control nucleoside” shows the RNA bases with which the specific modified nucleoside was initially 

mixed, before the IP was conducted. 

Modification 
Antibody 

clone 

apparent 
KD-value 

(nucleoside) 
[µM] 

control 
nucleoside 

m6A 

13G2 1.92 A 

11D11 0.59 A 

9B7 

0.55 A 

0.89 m26A 

0.60 m1A 

m5C 

31B10 1.14 C 

28F6 1.5 C 

32E2 
0.39 C 

0.68 m3C 

Ψ 
26H5 38.12 U 

27C8 17.18 U 

m26A 60G3 
0.89 A 

1.15 m6A 

m1G 
6E3 9.88 G 

4G10 0.15 G 

m3U 6A2 0.52 U 

 

The KD-values of most of the tested antibodies are in the low µ-molar range, when using free 

nucleosides. Further biochemical analyses were mainly carried out with one clone for each 

antibody that showed the best results in this test. The respective KD-values were more or less 

coinciding with the results from the RNA-IPs. The best antibody clones were α-m6A 9B7, α-

m5C 32E2, α-Ψ 27C8, α- m2
6A 60G3, α-m1G 6E3 and α-m3U 6A2. A compilation of all binding 

model curves and Scatchard plots are shown in Figure 43 in the appendix (chapter 5.2.2). 

2.1.7 Determination of the antibody specificities 

The capacity of the antibodies to enrich for the specific RNA base was the question of another 

experimental setup, which is graphically depicted in Figure 25. For that, a DNA fragment was 

in vitro transcribed on the one hand with unmodified nucleoside-tri-phosphates (NTPs) in the 

presence of 32P-α-ATP and on the other hand with a mixture of specific modified NTP and 
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unmodified NTPs, this time in the presence of 32P-α-UTP. The 32P-α-ATP and 32P-α-UTP RNAs 

were mixed in equimolar concentration and IPs with the modification-specific antibodies 

were performed. The precipitated RNA was then digested to nucleoside-mono-phosphates 

(NMPs) using Nuclease P1 and analysed by thin layer chromatography (TLC). The NMPs are 

separated on a TLC plate and the radioactive signal intensities, resulting from 32P-AMP and 

32P-UMP correspond to the amount of immunoprecipitated RNAs. These were normalised to 

the input signals. From this, enrichment factors were calculated that allow for an estimation 

of the antibody specificity. For α-m6A and α-m5C antibodies, the signal for AMP depict the 

amount of immunoprecipitated unmodified RNA oligos, whereas the UMP signals are 

proportional to the modified RNA oligos that were enriched in the experiment.  

 

Figure 25: Schematic depiction of the experiments to determine the enrichment of antibodies. A DNA 

fragment was in vitro transcribed with modified NTPs and 32P-UTP and with unmodified NTPs and 32P-ATP. From 

this mix, an IP was performed with the respective antibodies. The output was digested to NMPs and analysed via 

thin layer chromatography (TLC). 

 

Different percentages of modified NTPs were used for the in vitro transcription (ivt) to 

analyse the immunoprecipitation capacity of the antibody with high and low amounts of 

modified bases in the target RNA. This is relevant in order to see, whether the antibodies are 

capable of enriching only highly modified RNA or if they can comparably detect low amounts 

of the RNA base, which would be more application specific to use in experiments with 

endogenous RNA. For m6A, 1 % (Figure 26A) and 50 % (Figure 26B) of m6ATP was used in 

triplicates. The radiograms are shown in the left parts of Figure 26A and B, the quantifications 

are depicted in the right parts. Four different antibody clones against m6A were tested in this 

assay: 11D11, 13G2, 9B7 and a commercially available antibody from Synaptic Systems, which 

is widely used in the field and was thus considered as positive control. When using only 1 % 

m6ATP in the ivt, the enrichment of precipitated modified RNA over the unmodified and input 

RNA only amounts to 1.5 to 2-fold. This can be observed for all the tested antibody clones 

similarly. When 50 % m6ATP were incorporated into the transcript, 4 to almost 6-fold 
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enrichment was observed for the different antibody clones. This demonstrates a correlation 

between the amount of m6A in the RNA and the precipitation ability of the antibodies, which 

was expected. The α-m6A antibodies that were tested here, all show comparable enrichment 

among each other in both experimental setups. The enrichment of the antibodies is not as 

high as protein-directed antibodies, which can be much higher. However the proof-of-

principle setup with the commercially available and widely used antibody (Synaptic Systems) 

shows same results as the newly generated antibodies do. Thus, the values of enrichment of 

m6A RNA, gathered in this experiments are plausible and nevertheless significant. 

 

Figure 26: Enrichment of m6A in m6A-IPs using 1 % and 50 % m6ATP in the ivt.  In the left part of the figure, 

exemplary autoradiograms of the TLCs are depicted, the right part shows the quantifications of the IPs in 

triplicates. The three m6A antibody clones 11D11, 13G2 and 9B7 were tested. Additionally, the commercially 

available antibody from Synaptic Systems served as a positive control. In (A), the experiments with 1 % m6ATP are 

shown. Part (B) comprises the experiments with 50 % m6ATP in the ivt. 

 

The experiments regarding the m5C antibodies were carried out with the clones 28F6, 32E2 

and the commercially available antibody from Diagenode. First, only the experiments with 

1 % m5CTP in the transcription reaction were performed and analysed as described above. 

The calculations resulted in an enrichment of up to 6-fold for the clone 32E2, 2.5-fold for clone 

28F6 and almost none for the antibody from Diagenode (Figure 27).  
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Figure 27: Enrichment of m5C in m5C-IPs using 1% m5CTP in the ivt.  Results from the ivt and TLC experiments, 

analysing the m5C antibody enrichment capacity. An antibody from Diagenode (commercially available) and the 

clones 28F6 and 32E2 were tested in this experiment, using 1 % m5CTP in the transcription reaction. 

 

Since the antibody α-m5C 32E2 showed very high enrichment factors and was moreover 

promising regarding the very high specificity compared to the commercial antibody, further 

TLC-based experiments were conducted. A titration of the m5CTP in the reaction was 

performed, using 10%, 30 % and 50 % of m5CTP in the reaction. Furthermore, the input RNA 

was titrated as well from 2.5 µg to 16 µg for each NTP-percentage. The signals of these IPs on 

TLC plate are shown in Figure 28 in the upper part. The lower part shows the evaluation of 

these signals in separate graphs. This suggests 12 µg of RNA to be the best concentration for 

these assays. Furthermore, no significant difference concerning enrichment capacity can be 

seen, when using 10, 30 or 50 % of m5CTP in the transcription reaction, as the enrichment 

factor using 12 µg varies only from 4.5- to 4-fold. In conclusion, the high enrichment capacity 

of the antibody α-m5C 32E2 is relatively independent of the amount of modified nucleotides 

in the RNA since all the enrichment curves shown in Figure 28 are similar in appearance and 

thus the resulting enrichment factors are reproducibly significant. 
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Figure 28: Titration of the m5C antibody clone 32E2 and input RNA in TLC experiments. The upper part shows 

the radioactive signals on TLC plates after the experiment. 10, 30 or 50 % of m5CTP was used in the ivt and the 

reaction was done with 2.5 to 16 µg of RNA. The lower part shows the calculated –fold enrichments in three graphs, 

divided in the different m5CTP amounts, used in the transcription. 

 

Subsequently, the pseudouridine antibody clones 25C6, 26H5 and 27C8 were tested in this 

experimental system. Different to that, in IPs using α-Ψ antibodies, the signal for UMP is 

proportional to the enriched unmodified RNAs and the AMP signal represents the modified 

RNAs that were precipitated. This is done to avoid a competition between Ψ and UMP for the 

U-sites in the RNA, when using them together in the ivt. For a more detailed protocol, see 

chapter 4.2.2.10 in the methods section. The results are shown in Figure 29. In part A, again 

only 1 % ΨTP was used in the ivt. Here, no significant enrichment could be measured, for none 

of the antibody clones. In Figure 29B, however, 50 % ΨTP were used and up to 6-fold 

enrichment was measured for the clone 27C8, which was thus chosen for further analyses 

because it showed specificity and affinity in the experiments carried out so far. 

 

 

Figure 29: Enrichment of Ψ in Ψ-IPs using 1 % and 50 % ΨTP in the in vitro transcription. (A) 1 % of ΨTP 

was used for these experiments. The left part shows the signals on the TLC plate. Antibody clones 25C6, 26H5 and 

27C8 were tested in this experiment. (B) Here, 50 % of ΨTP were used in the ivt. The right graph shows the 

calculated enrichment factors. The experiments were conducted in triplicates. 
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Due to the inability of incorporating m26A in an in vitro transcription using the T7 RNA 

polymerase, these experiments could not be performed for the α-m26A antibodies. 

To investigate performance under more competitive conditions, a second experimental 

strategy for assessing modified RNA enrichment by our antibodies was designed. Short RNA 

fragments of 10 nucleotides in length were designed, containing either Ψ, m5C, m6A or m2
6A. 

As negative control, an unmodified RNA oligo was used. With the best antibody clones from 

the previous experiments, immunoprecipitation experiments were conducted using all the 

differently modified RNAs for each antibody. For each antibody clone, γ-AT32P-labelled Ψ-

oligos, m5C-oligos, m6A-oligos, m26A-oligos and unmodified oligos were used for IP. The cpm 

(counts per minute) values of the input RNA and the samples after IP were measured with a 

Scintillation counter. From triplicate experiments, enrichment factors were calculated, 

normalised to the input and the signal for the unmodified oligo. In Figure 30A, the enrichment 

for the α-m6A antibody clones 9B7 and the commercial antibody from Synaptic Systems are 

shown. Part B shows the m5C enrichment of the antibody clone 32E2. In C, the experiment 

with the pseudouridine antibody clone 27C8 is shown and in D, the m26A antibody 60G3 

enrichment is depicted. The enrichment ability of the two antibodies against m6A, 9B7 and 

Synaptic Systems clone are comparable. Both antibodies are able to enrich for the m6A-oligo, 

by approximately 6-fold over the input, not having a very high affinity to the other modified 

oligos (Figure 30A). The anti-m5C antibody 32E2 enriched around 120-fold for the m5C oligo 

and has no high affinity for the other oligos (Figure 30B). Anti-pseudouridine clone 27C8 

shows relatively high affinity for the Ψ-oligo, but even higher for the m5C-oligo. While having 

a high sensitivity for its target RNA base, this antibody seems to have no high specificity 

(Figure 30C). The α-m26A antibody is able to enrich mainly for the m26A-oligo and with an 

enrichment of 8-fold over the input, this antibody seems highly specific (Figure 30D). 
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Figure 30: Determination of the enrichment of RNA oligos with different antibody clones.  IPs using different 

radioactively labelled oligos as input were performed with different antibodies. The enrichment factor was 

calculated, normalising the cpm-value of the IP to the input and the signal with unmodified oligo. (A) The 

enrichment factors of antibody clone α-m6A 9B7 and the polyclonal antibody from Synaptic Systems for differently 

modified oligos are shown. (B) The enrichment results for the antibody clone 32E2 against m5C are depicted. (C) 

Pseudouridine antibody specificities are shown in this graph. (D) The enrichment ability of the antibody against 

m26A, 60G3 is shown. 

 

Table 2 sums up the number of specific antibody clones that showed positive results in the 

different experimental setups. This comprises all antibodies, including the ones, for which the 

results are not shown in this thesis. The antibodies were first tested in ELISA experiments, 

then in dot blots. After that, an RNA-IP analysis was performed and for three modifications, 

an ivt-TLC experiment was developed and conducted. The last row shows the established 

clones, which are now stable hybridoma cells, expressing the antibody, which can be purified.  
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Table 2: Hybridoma fusion screen and candidate validation.  

 

2.1.8 Further applications of the antibodies 

Having developed a functional set of tools, the next step was to apply the antibodies in 

biologically relevant experiments. We used the antibodies to immunofluorescently stain the 

modified RNA bases in C643 cells (chapter 2.1.8.1). Another application, which was applied 

was miCLIP, a crosslinking method to analyse RNA, which is bound by the specific antibodies 

for investigation of methylation sites on nucleotide resolution by possible subsequent 

sequencing (chapter 2.1.8.2). 

2.1.8.1 Visualisation of modified RNA by Immunofluorescence experiments 

Immunofluorescence assays using the α-m6A antibody 9B7 were carried out in C643 wildtype 

(WT) and METTL3 knock-out (KO) cells (gratefully provided by Dr. Stefan Hu ttelmaier, Halle). 

The aim of this experiment was to investigate, whether and to which extent m6A can be 

detected in such assays. Since METTL3 only catalyses m6A on mRNA and the m6A marks on 

the rRNA, tRNA and other non-coding RNAs are not affected by the KO of METTL3, only a 

reduction of the signal can be expected. Nevertheless, a difference between the fluorescence 

signals of WT and METTL3-KO cells using the α-m6A antibody is likely. Additionally, it would 

be benefiting for the community, working with m6A to have established antibodies that can 

be operated in IF experiments as well, to be able to investigate this RNA mark also through 

this methodology. The first investigation, however that had to be done, was to verify the 

knockout of METTL3, since this cell line was not published before and a characterisation was 

not provided. For that, a western blot with WT and METTL3 KO cell lysate was loaded on a 

SDS gel and stained with METTL3 antibody and α-Tubulin antibody as loading control (Figure 

Modification 
ELISA 

Capture ELISA 
dot blot RNA-IP TLC 

established 
clones 

m5C 10 9 3 2 3 

m6A 63 20 11 3 4 

Ψ 6 4 2 1 3 

m2
6A 8 6 3  - 3 

m1G 28 7 3  - 3 

m1A 36 4 4  - 2 

m5U 5 3 2 0 2 

m3U 20 10 6  - 5 

m3C 33 17 6  - 3 



RESULTS 

50 
 

31). The α-tubulin band is clearly visible and comparable in signal intensity. The signal for 

METTL3 is clearly visible in the WT lane and lost in the knock-out cells. However, a very faint 

and smaller band appears in the KO. 

 

Figure 31: Validation of the METTL3 knock out (KO) in C643 cells via western blot.  Western blot of C643 

wildtype (WT) and METTL3 KO cell lysate. An antibody against METTL3 was used for detecting the specific protein, 

α-tubulin immunostaining serves as a loading control. 

 

Having confirmed the knockout of METTL3, the m6A levels in the two different cell lines were 

compared via HPLC analysis. For that, poly-(A) RNA from WT and KO cell total RNA was 

enriched using oligo-dT capturing. Enrichment efficiency was verified by measuring the 

depletion of ribosomal RNA as seen in Figure 32. The left chromatogram shows the input total 

RNA, whereas in the right part, the chromatogram for poly-(A) enriched RNA is shown, which 

clearly lacks the high peaks of 18 S and 28S rRNAs. 

 

 

Figure 32: Enrichment of poly-(A) RNA from total RNA. Total RNA from C643 cells was used as the input for the 

enrichment reaction. The TAPE station analysis of input total RNA is shown on the left side. Apart from the lower 

marker at 25 nucleotides, the most prominent peaks are the 18S and the 28S rRNA. On the right, the RNA after 

mRNA enrichment is depicted, with strongly decreased rRNA peaks. 

 

The poly(A) RNA was then digested into single nucleosides with an enzyme mix consisting of 

Benzonase and Phosphodiesterase I for 3 to 4 hours at 37°C. After this treatment, the 

nucleoside mix of WT and KO RNA were loaded onto a HPLC Hypercarb column (Thermo 
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Scientific), applying also an m6A nucleoside as a standard (Figure 33A). The quantification of 

the integrated area of the m6A/A ratio peaks, normalised to WT is shown in Figure 33B. HPLC 

analysis was performed by Robert Hett. The m6A peak in the wildtype cells was found to be 

70% higher than the peak of the mRNA from METTL3 KO cells. 

 

 

Figure 33: Validation of the METTL3 knock out (KO). (A) HPLC curves of the m6A peak measure in C643 WT 

(black), METTL3 KO (red) poly-(A)-RNA. The green line, which has a small subset is the curve for the m6A standard 

nucleoside. The m6A peak is detected after 21.75 minutes of HPLC run. (B) Quantification of the HPLC measurement 

of WT and METTL3 KO C643 cell mRNA shown in B. 

 

The decrease in the amount of m6A in KO cells, which was seen in the HPLC analysis was then 

investigated in immunofluorescence staining. C643 WT and KO cells were treated with the α-

m6A antibody clone 9B7 and the polyclonal antibody from Synaptic Systems, following the 

protocol, described in 4.2.5.6 (Figure 34A). Using ImageJ (Wayne Rasband, NIH), the signal 

intensities were quantified for 30 cells for each antibody staining (Figure 34B). Using the 

antibody clone 9B7, a signal decrease of approximately 40% in the KO was observed. Staining 

with the Synaptic Systems antibody, the signal decreased by 30%. These results suggest that 

real m6A signals were detected in the experiments and that the antibody can be used in 

analyses like the presented. 
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Figure 34: Immunofluorescence staining of C643 WT and METTL3 KO cells.  (A) The C643 cells were stained 

with two different α-m6A antibody clones (9B7 and Synaptic Systems polyclonal). (B) Quantification of the 

immunofluorescence staining shown in (A). 

2.1.8.2 miCLIP analysis 

A very commonly used method for RNA-base directed antibodies is miCLIP analysis that 

allows for base-resolution mapping (m6A individual-nucleotide-resolution cross-linking and 

immunoprecipitation)193,278. For that, total RNA is extracted and the antibody is cross-linked 

to the specific RNA sites using UV light at 254 nm. The antibody and bound RNA is then 

precipitated with protein G-coupled magnetic beads. After radioactive labelling of the RNA, 

the antibody-RNA complex is loaded onto a SDS-gel and blotted on a nitrocellulose 

membrane. The experiment was done using α-m6A antibodies 9B7, 19B7, 11D11 and the 

commercially available one from Synaptic Systems. Also α-m5C antibody clones 32E2 and the 

commercially available one from Diagenode were used. Lastly, the α-Ψ antibody clone 27C8 

and the m26A-directed clone 60G3 were applied in this experiment. The respective 

autoradiograms of the blots, which show antibody-bound RNA fragments are presented in 

Figure 35.  
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Figure 35: Autoradiograms of miCLIP analyses using different antibodies.  miCLIP experiments were 

conducted using (A) m6A antibodies, (B) m5C antibodies, (C) Ψ- antibodies and (D) m26A antibodies. The (-) lanes 

shows the non-crosslinked negative control, the lanes with a (+) were UV-crosslinked. The heights of heavy (50 

kDa) and light chains (25 kDa) of the antibodies are labelled on the side. 

 

Heavy and light chain of the antibodies are marked as size markers. The RNA, which was 

immunoprecipitated by the specific antibodies is found as fragments, smearing from the light 

(25 kDa) and heavy (50 kDa) - but mostly from the heavy - antibody chains in all experiments. 

Also, in almost all +UV-setups, the antibodies seem to be able to precipitate RNA (lanes 2, 4, 6 

and 8) in contrast to the UV–negative controls (lanes 1, 3, 5 and 7). The RNA signals could then 

be cut out of the gel and be subject to a cDNA library preparation and a subsequent RNA-

sequencing. 

 

Most of the shown figures and other content of this chapter are part of the manuscript 

Generation and validation of monoclonal antibodies specific to modified nucleotides, Saller, F. et 

al., which was under revision for publication at the time of writing this thesis. 
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2.2 Detection of RNA modification binding proteins 

The aim of the following chapter was to identify specific reader proteins of the base 

modifications m6A, m26A and m1A. As an initial screening strategy, a biochemical pulldown 

approach was developed. 

2.2.1 Principle of the pulldown 

Several laboratories already made more or less successful attempts to find interactors of 

modified RNA bases, so-called reader proteins. Different approaches have been made, 

including SILAC and other mass-spectrometry-based methods243,320. However, a lot of 

functions of modified RNA bases in the cell can still not be explained and moreover, for most 

of the modified RNA bases, no reader or interacting protein has yet been found. To be able to 

affect downstream processes, most probably, the bases however have to be bound by certain 

effector proteins. Thus, a lot of effort is being made by several groups to find reader proteins, 

specific for RNA base modifications.  

A well performing RNA pulldown method was already well-established in our group321. To 

tackle the problem of detecting reader proteins, in this study, a variation of this pulldown 

strategy was applied. Magnetic beads, coupled to streptavidin were used to first be bound to 

a biotinylated 2’-O-Methyl-RNA linker. This RNA oligo is complementary to an RNA-hairpin, 

based on a pre-microRNA. In the loop of this hairpin, the modified base of interest was placed 

for better accessibility for possible specific reader proteins (Figure 36). This coupled hairpin 

was then incubated with different cell lysates and was washed stringently to get rid of 

unspecific binding. Subsequently the samples were loaded on an SDS-gel and finally the whole 

precipitate was cut out and prepared for mass spectrometric analysis. 

 

 

Figure 36: Scheme of the hairpin-pulldown approach to find modified RNA base binding proteins. Magnetic 

streptavidin beads were coupled to a biotinylated 2’-O-Methyl-RNA linker which can bind complementary to a 

hairpin, containing the modified base in the loop region. This setup was used to precipitate specific interactors 

which were identified by mass spectrometric analysis. 
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2.2.2 Ligation of the hairpins for the pulldown 

In order to perform pulldown experiments, the hairpins were obtained in two different ways. 

The unmodified part was cloned and in vitro transcribed. The modified part was purchased 

from Axolabs GmbH. These two RNA-oligos were then ligated to generate the full hairpin 

(Figure 37A). The first ligation attempt included a splint-involving ligation to aid the two free 

ends find each other and ensuring a more efficient ligation. Several optimisation trials were 

conducted, including buffer tests, titration of the reactants and other components of the 

reaction, usage of different ligases, incubation times and temperatures and much more (Data 

not shown). In Figure 37B, the resulting hairpins of the optimised protocol are shown. In lane 

1, the fully in vitro transcribed unmodified hairpin was loaded as size standard. Lane 2 – 4 

show the individual fragments without ligation. In the lanes 5 – 8, the produced ligation 

products of the pre-let7f2-based hairpin are shown, lanes 9 – 12 show the different pre-

mir29b2-based hairpins. 

 

Figure 37: Ligation reaction of the two fragments to gain a hairpin. (A) Schematic depiction of the ligation of 

the two RNA fragments. (B) Urea gel showing the hairpin and the 3’ and 5’ fragments as size markers and the 

ligation products of the optimised protocol. 

 

Finally, a suitable protocol was established and the hairpins were produced in a larger scale 

for further application in pulldown experiments.  

To make sure, the RNA hairpins were ligated in the right way, a test-pulldown was conducted, 

comparing ligated and in vitro transcribed pre-miRNA hairpins. Thereby, it could be verified, 

if the ligated hairpins behaved in the same way as the endogenous pre-miRNAs do. Binding 

between modified pre-miR-29b2 (ligated and in vitro transcribed as a whole) and its binding 
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protein YBX1 was investigated (Figure 38). Pre-miR-21 was used as a negative control, but 

showed a faint band of the protein as well. The signal for YBX1 could clearly be detected in the 

positive control and also in the test pulldown with the ligated hairpin. The ligated product 

showed another unknown precipitated band, but the hairpin was also able to specifically bind 

the protein of interest. Thus, the ligated hairpin was intact and could be used in further 

experiments.  

 

Figure 38: Protein binding pre-test of transcribed versus ligated hairpin.  The hairpin pre-miR-29b2 was 

tested in a pulldown assay using its binding protein YBX1. The experiment comprised a negative control (pre-miR-

21), the in vitro transcribed pre-miR-29b2 and the ligated pre-miR-29b2. 

2.2.3 RNA pulldown of modified RNA binding proteins 

The RNA pulldown experiments were conducted in the three human cell lines HEK293T, 

NTera2 and HepG2. Furthermore, the setup was conducted with 2 different pre-miRNA 

hairpin templates pre-let7f2 and pre-miR29b2. The RNA modifications m1A, m6A and m26A 

were chosen to be analysed in this study. Thereby, m6A was used as positive control, for a lot 

of m6A readers are already known224,322–325. M1A and m26A on the other hand were chosen, since 

not much is known about these RNA base modifications and at least m1A is a potential mRNA 

modification326, which suggests that also some readers for this modification should exist. 

 After the pulldown, the proteins were eluted from the beads, run on 10 % SDS gels (NuPAGE, 

Invitrogen) and the entire lane was cut into several pieces for mass spectrometry analysis 

(see Figure 39 for an example). 
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Figure 39: SDS gel of the pulldowns with pre-mir29b2 m1A in three different cell lines, as examples. The gel 

was stained with Coomassie blue. The bands were cut out and prepared for mass spectrometry analysis. This was 

done for the other lanes of the different hairpins and cell lines as well. 

 

The gel pieces were then trypsin-digested and prepared for mass spectrometric analysis (see 

4.2.4.5). This analysis resulted in a list of around 2400 binding proteins for all three 

nucleosides, which had to be sorted into true binders and false positive candidates. Of this 

long list of proteins, it is very likely that the vast majority shows only background binding. To 

distinguish the unspecific binders, a preclear experiment has been conducted independently 

and analysed as well. Therefore, only the streptavidin beads coupled to the biotin-linked RNA 

oligo, was incubated with the cell lysates without the use of the hairpin-RNA. For analysis, 

several leverage points were used to examine the data. On the one side, the peptide scores 

were taken into account. Proteins with a lower score than 50 were not considered further, 

unless the protein was a known reader protein. To be considered as ‘positive’, the protein in 

question had to reveal a higher score for one of the modifications than for the other two base 

methylations. Also, proteins, which showed a higher score in the preclear measurement than 

in a pulldown were not regarded specific. It was further checked, if a protein was detected in 

more than one replicate or in samples with both pre-miRNA backgrounds. The hits were 

counted, compared with all other pulldown sample results and also taken into consideration. 

In Table 3, the potential binding proteins with the highest mass spectrometry peptide scores 

are listed, ranked by their abundance in the data set. 

 

 

 

 

 



RESULTS 

58 
 

Table 3: Sorted proteins found in the pulldown for the different RNA base modifications. The shown list 

comprises the potential binders, which showed the highest scores in the mass spectrometry data for the m1A-, 

m6A- and m26A pulldown. The protein names represent the “uniprot” nomenclature (www.uniprot.org). 

m1A m6A m26A 

TBA4A SPF27 TBB6 CPNE9 H2B1O PLEC 

H2B1M RN3P2 TADBP SRRT H2B2F PP1B 

FXR1 RBBP6 FMR1 PSIP1 IF2B3 RIF1 

FXR2 EXOS8 XPO1 TF2H4 PLOD1 NDUS3 

VSIG8 RCC1 UBA1 FLNA FUBP2 IKIP 

YTDC2 UN45A H2B2D GBB1 TUT4 STT3A 

SYTC2 AMYP NSUN2 MIC60 YLPM1 PLIN3 

MCA3 DMBT1 DDX20 MRCKB VIGLN TMA16 

FUBP3 G45IP CPSF6 UBP10 RBM15 AL1A2 

DICER WDR55 CAPR1 YTHD2 SF3B4 CDK5 

1433G RALA SF01 ICAM1 H32 FANCI 

PLAK DI3L2 PI51A IGJ NOLC1 RM04 

NACAM BT1A1 SF3B6 CCDC8 RL36L GMPPA 

TGM3 PADI4 HBA DCAF7 LAT1 PON2 

TNIK RBM40 MSH2 DDB1 AMPN NDUS1 

NUCB1 UCHL5 MECP2 RPP38 SMC2 PPHLN 

TPM2 FEN1 ATD3B VIR PRS6A DHX40 

RADI MET17 ERLN1 S30BP PDIP3 RPC1 

EZRI PEF1 TF2H2 YTDC1 MD12L GALK1 

DIM1 THOC7 ZC11A AGO2 CS047 SUN2 

LAP2A CASC3 EI2BB TRM2A PLOD3 METL8 

PINX1 GSTP1 CD11A NSUN5   

S10A3 PEX19 EIF3G    

LYG2 L2HDH     

MYO15 THUM1     

PHF5A ZC3H8     

TBL2 NMNA1     

RT18B ZCHC8     

INCE ALKB5     

 

In Table 17 to Table 18 (chapter 5.2.3), the scores and peptide amounts for all the proteins are 

shown. The next step was to verify the data, gained from mass spectrometry. For that, electro 

mobility shift assays (EMSAs) and western blots were performed. EMSAs, conducted with 

YTH proteins and m6A oligos were used as a positive control experiment, the EMSA with the 

protein c9orf114 showed weak binding to the m1A oligo (data not shown). All other 

westernblots and EMSA assays, which were executed did not show any clear results. Thus, it 

remained unclear whether the identified proteins are specific binders and therefore, these 

proteins were not investigated further as part of this study.  
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3. DISCUSSION 

3.1 Antibodies against modified RNA bases 

One central aim of this work was to generate highly specific and sensitive antibodies against 

various modified RNA bases. This was achieved with the help of Robert Hett and in 

collaboration with the group of Dr. Regina Feederle from Helmholtz Center, Munich.  

3.1.1 The selection of the coupling reaction method 

For the first step of antibody generation, the synthesis of the antigens was chosen following a 

protocol established by Erlanger and Beiser291. This was executed in the laboratory by Robert 

Hett. The reaction was followed photometrically and showed a shift of the conjugate in the 

expected range. To increase the efficiency of the reaction, ovalbumin was cationised. Thus, 

the lysines of the protein are transformed into iminium cations, which consist of a mesomere-

stabilised nitrogen-carbon bond. These iminium cations are very reactive and the nucleosides 

are more likely to be bound by these lysine sites of ovalbumin. Using a carrier protein for 

immunisation is commonly used for the generation of antibodies against small compounds327. 

However, this antigen strategy was not the only one that could have been applied. There are 

approaches from other laboratories (i.e. Prof Dr. Thomas Carrell, Munich) to couple not only 

a nucleoside to the carrier protein but an RNA-oligo, containing the modified base. Thereby, 

the antibody would be directed against the modification in an RNA context and not only 

against the single nucleic acid base. There are, however, no published antibodies that were 

successfully generated by the use of this method. The reaction that was chosen for this work, 

resulted in potent and useful antigens since the number of positive antibody hybridoma 

clones was relatively high.  

3.1.2 The importance of the right immunoprecipitation conditions 

In chapter 2.1.3, several conditions are described for optimising the RNA IP protocol. For the 

specificity of an antibody, the right pH and the type of salt in the IP buffer seems to be crucial. 

LiCl, which has shown to precipitate the RNA best in these experiments, is a known RNA 

interacting and stabilising salt328,329 (Figure 16A). Furthermore, the salt concentrations in the 

wash buffers have a high influence on the precipitated RNA (Figure 16B). The stringency of 

the washing steps has to be perfectly balanced to gain only specific bound RNA species, 

without immunoprecipitating unmodified RNAs. Additionally, especially the amount of 

antibody changes the amount of precipitated RNA tremendously (Figure 17). It seems that the 

application of a high excess of antibody in the immunoprecipitation experiment leads to a 
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higher yield in precipitation, as the antibody with its restricted binding sites represents the 

limiting factor. Then there is the effect of the mode of coupling that seems to be very 

important for the ability to bind the RNA properly (Figure 18). It is not easy to distinguish if a 

signal is specific or not. For that, competition with free nucleosides as well as the use of 

unmodified spike-in RNAs are good tools as seen in Figure 19. The buffer conditions can be 

very clearly determined, when using unmodified and modified mRNA spike-ins, since there, 

the signal should be very distinctly positive or negative (Figure 22). For every antibody clone 

however, the protocol had to be optimised separately, since the conditions vary immensely 

from antibody to antibody. Particularly for sequencing approaches, highly specific 

enrichment of RNA transcripts is of great importance, as otherwise, the data cannot be trusted 

and worked with.  

3.1.3 One important annotation 

A relevant point that must not be forgotten, when dealing with results from these antibody-

based methods is that the antibodies, generated here, are only directed against the base and 

not the whole RNA-nucleoside, since the ribose ring is destroyed during the coupling reaction 

(Figure 9). This means that our antibodies cannot distinguish between the modified RNA 

bases, they have been generated against or additionally 2’-O-methylated modified RNA 

nucleosides (methylation at the 2’-OH-group of the ribose ring). Even modified DNA 

nucleosides could be detected by the antibodies. To avoid misinterpreting data, gained from 

an antibody-based experiment, the input can be DNase treated before. To identify any 

unwanted co-immunoprecipitated 2’-O-methylations is a more complicated problem to 

address and is not easily solved. Deep-sequencing and bioinformatical-based setups like 

RiboMethSeq, 2’OMe-Seq, RibOxiSeq, Nm-Seq or meTH-seq can help detect the 2’-O-

methylations330,331. For detection of 2’-O-methylations, biochemical properties of the structure 

can be taken advantage of. 2’-O-Methylations have an increased resistance against 

alkaline/enzymatic hydrolysis, the reverse transcription stops at low NTP concentrations at 

these sites and when located at the 3’ end, enzymatic activity can be altered331. 

3.1.4 Challenges in KD determination 

A very important characteristic of antibodies is the affinity to their antigens (KD index), as 

mentioned in 2.1.4. The apparent KD-values were determined using mixtures of free modified 

and unmodified nucleosides (see 2.1.4). The samples were then separated using filter tubes. 

The modified nucleosides, bound by the antibody were then assumed to be retained on the 

filter (bound fraction), whereas the unbound nucleosides were measured via HPLC. The ratio 

of bound and unbound was then used to determine the KD value. There are several caveats to 
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this method. The filter-separation is not an error-free technique, since antibody-nucleoside 

complexes could slip through the membrane or too much free nucleosides could remain in 

the supernatant. To make sure, these potential shortcomings are negligible, six different 

dilutions of the nucleosides were prepared for the experiment. The mathematical approach 

of KD determination also has its downsides. The numbers that are calculated are graphical 

approximations and, although arithmetically correct, still estimations. These KD index 

numbers also may vary depending on the substrate. Furthermore, all the experiments to 

determine the KD value presented here, were conducted with nucleosides. Nucleosides are 

however not the final target of these antibodies in subsequent applications. Thus, a similar 

experiment was attempted with RNA-oligos. For that, the concentration of the RNA was 

measured before and after IP and the same mathematical evaluation as before with the 

nucleosides was performed. However, the obtained outcome was not as clear as the 

experiment with the nucleosides. Although conducted in triplicates with 4 different dilutions 

each, the Scatchard plots did not emerge as a straight line. Also the binding models did not 

show a clean curve. In some cases, to obtain a reasonable value, particular data points had to 

be purged. The KD-values, identified with the RNA oligos (Table 4) vary from the ones, 

obtained with nucleosides and show increased values for the affinity constants. Nevertheless, 

for most antibodies tested, the values are still in a low µmolar range. These KD-values are 

however only an estimation and not to be taken for granted for the above-mentioned reasons. 

 

Table 4: Comparison of the KD-values of the antibodies against modified RNA bases using nucleosides and 

RNA oligos for determination of the affinity. The first three rows show antibody clones and the KD-values, 

determined with the nucleoside method, like in Table 1. In the last row, the apparent KD-values obtained, using 

RNA oligos are listed. 

Modification 
Antibody 

clone 

apparent 
KD-value 

(nucleoside) 
[µM] 

apparent 
KD-value 

(RNA oligo) 
[µM] 

m6A 

13G2 1.92 12.7 

11D11 0.59 21.4 

9B7 

0.55 

14.7 0.89 

0.60 

m5C 

31B10 1.14 23.8 

28F6 1.5 14.9 

32E2 
0.39 

20.5 
0.68 
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Ψ 
26H5 38.12 59.4 

27C8 17.18 6.7 

m26A 60G3 
0.89 

1.66 
1.15 

m1G 
6E3 9.88  -  

4G10 0.15  -  

m3U 6A2 0.52  -  

3.1.5 Further quantitative characterisations of the antibodies 

The affinity was further tested in several other quantitative experiments like the in vitro 

transcription/TLC experiments or the IPs with radioactive and modified RNA oligos. Here, the 

antibodies were tested in a more application-oriented examination, using them for enriching 

RNA oligos. These setups were particularly important for the antibody characterisation to 

validate their specificity and enrichment abilities. The TLC experiments showed very clear 

results regarding the enrichment capability. In these experiments, the newly generated 

antibodies against m6A (clones 11D11, 13G2 and 9B7, equally) showed approximately the same 

results as the commercial antibody did (Figure 26). This proof of principle setup shows that 

the attempt for generating highly specific antibodies was successful. The antibody clone 32E2 

against m5C even yielded higher enrichment as the commercial α-m5C antibody (which did 

not enrich at all) did and showed overall a very good enrichment capacity (Figure 27 and 

Figure 28). The α-Ψ antibodies on the other hand were not enriching their target RNA as 

much. Only when using a highly modified RNA oligo, the antibody clone 27C8 had good 

enrichment abilities (Figure 29). Unfortunately, not all the antibodies could be tested in this 

highly informative experiment, as the in vitro transcription cannot be executed with all 

modified NTPs. This is because the RNA polymerase, used for in vitro transcription is not able 

to incorporate every modified NTP in the RNA. Thus, another experiment was designed to 

investigate the enrichment capability as well as the specificity towards differently modified 

RNA oligos that were purchased. Here, the generated α-m6A antibody (clone 9B7) showed 

slightly reduced enrichment, compared to the commercial one (Synaptic Systems). However, 

the background enrichment for the clone 9B7 was lower, thus the specificity for this clone is 

higher. A very interesting notation is that the m2
6A-oligo seems not to be enriched more than 

other RNA transcripts, even though the difference in the structure between m6A and m2
6A is 

very little (see Figure 40). That an antibody can distinguish between such small epitopes was 

not entirely clear before and is striking. 
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Figure 40: Structures of N6-Methyladenosine and N6, N6-Dimethyladenosine. When comparing the two 

structures, the only difference is one methylation group at the nitrogen atom at the 6th position of the purine ring. 

M6A has only one and m26A harbours two methylation groups. 

 

Even more astonishing is the tremendous enrichment of m5C-oligos using the α-m5C antibody 

32E2. To display the enrichment of the other RNA oligos using this antibody, the y-axis of the 

chart is depicted non-continuously in Figure 41B. This antibody seems to be very specific and 

also very sensitive as it enriches the same amount of modified RNA bases 100-fold more 

effectively than the other antibodies. 

 

 

Figure 41: Enrichment of modified RNA oligos using the antibody clone α-m5C 32E2. (A) Enrichment of the 

oligos like it was shown in Figure 24B. (B) Different y-axis application to visualise the enrichment of the other 

modified RNA oligos. 

 

The assay, done with the α-Ψ antibody 27C8 showed enrichment for the Ψ-oligo but 

unfortunately, it enriched the m5C-oligo even more (Figure 30C). This fits to other results for 

this antibody, being not as specific as other antibodies that were generated. The α-m26A-

antibody clone 60G3 enriches very specifically for the m2
6A-oligo and not for any other 

modification. Again, the expected potential cross-reaction with the m6A-oligo cannot be seen 

here (Figure 30D). 
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3.1.6 Antibodies from other laboratories and companies 

In the introduction, several groups were mentioned, that also developed antibodies against 

RNA base modifications (1.5.4). Among them, the groups of Munns and Sawicki were the first 

ones to establish such of tools for application in RNA biology298,332. They used the same 

approach as was described here. Several m5C antibodies have been originally generated 

against DNA, but have later also been applied for RNA-specific questions56,306–308,333. One 

example is the m5C antibody from Diagenode, which was tested in the ivt-TLC experiments as 

well. Several labs used this antibody for different experiments with the aim of detecting m5C 

in RNA. However, the results presented here (chapter 2.1.7) do not show very specific binding 

of this antibody to m5C in the context of RNA. The antibody against m6A by Synaptic Systems 

is very widely used for several applications, as discussed in chapter 1.5.4. Many sequencing 

experiments have been conducted using this antibody. From our data, this antibody displays 

very sensitive and specific properties. Data, generated with this antibody can indeed be 

trusted, according to our results. A very positive outcome of our research was that the 

antibody clones α-m6A 9B7, 11D11 and 13G2 seem to be as specific as the α-m6A clone from 

Synaptic Systems. In a very recent publication, the efficiency of RIP-Seq protocols was to be 

optimised311. Three different commercially available α-m6A antibodies were tested and 

compared. These were antibodies from Synaptic Systems, which was also tested here, from 

NEB and Millipore. The latter showed the lowest signal-to-noise ratio and overall had the best 

performance311. This however is a polyclonal antibody, whereas the presented antibody clones 

are monoclonal, thus directed only against one epitope, which commonly leads to a higher 

specificity. Studies like these show that there is a very high urge to find highly specific and 

sensitive antibodies. As they also conclude in their discussion to aim optimising RIP-Seq 

protocols for m5C and m1A as well, “when good antibodies become available”311. 

3.1.7 Nucleobase directed antibodies in different applications 

3.1.7.1 Immunofluorescences 

The generated and rigidly tested antibodies have subsequently been applied in several 

biochemical and molecular biological experiments. When using the α-m6A antibody clone 9B7 

in immunofluorescence assays, well detectable signals can be seen, however only in the 

cytoplasm (Figure 34). Non-coding RNAs such as rRNAs and snRNAs, which localise to the 

cytoplasm harbour m6A-marks and are detected by the antibody. Strangely, no signal is 

detected in the nucleus, even though the U6 snRNA, as well as several mRNAs that are bound 

by nuclear YTHDC1, have been reported to harbour m6A sites and localise to the nucleus98,131. 

An explanation could be that the reader protein is bound to the RNA modification and the 
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antibody cannot access its target. The same could be true for the U6 snRNA, which could be 

too deeply buried in the spliceosome to be accessible for the antibody. Nevertheless, a signal 

can be detected for the cytoplasmic RNAs, so in principle, the antibody seems to be sufficient 

for immunofluorescence experiments. The commercial antibody from Synaptic Systems 

shows very similar intensity and patterns as the clone 9B7. Thus, our newly generated 

antibody can stain as sufficiently as the widely used and trusted antibody clone. In the 

immunofluorescences, the knock-out (KO) of METTL3 clearly leads to a reduction of the m6A 

signal intensity. The remaining 70 % of the m6A signal originates like abovementioned, most 

likely from rRNA, snRNA and other cytoplasmic RNA species. The analysis of the KO of 

METTL3, which was demonstrated in Figure 31 shows a shorter and less abundant band in the 

western blot. This could be a truncated version, hinting to a non-complete knockout. But since 

the m6A abundance is reduced by around 30% in HPLC measurements of poly-A RNA (Figure 

32), the expressed protein seems to be non-functional. Altogether, the immunofluorescence 

stainings represent another very useful application of the generated antibodies and open the 

way to new exciting experimental insights. 

3.1.7.2 miCLIP analysis 

The described miCLIP technique (m6A/methylation individual-nucleotide-resolution cross-

linking and immunoprecipitation) was developed for the analysis of RNA-methylation at a 

nucleotide resolution193,278. Here, it was tested, if certain antibody clones against m6A, m5C, Ψ 

and m26A are applicable for such approaches (chapter 2.1.8.2). The resulting autoradiograms 

are shown in Figure 35. Several other groups have already applied this or analogous methods 

for subsequent sequencing of the RNA193,278,334,335 . The different m6A antibody clones used 

here, show varying results (Figure 35A). Clones 9B7 and 19B7 show the most intense RNA 

signals. The signal intensities when using the antibody clones from Synaptic System and 11D11 

are similar to each other. When comparing the autoradiograms using the newly generated 

antibodies to those, presented e.g. by Grozhik et al.334 (Figure 42), the signal pattern seems to 

be similar. In the paper, it is not exactly specified if the autoradiogram shown was performed 

with polyclonal α-m6A antibody from Synaptic Systems or from Abcam. In any case, the signal 

of Figure 42 can be compared with the data, produced with the generated α-m6A-antibodies.  
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Figure 42: Autoradiogram of a miCLIP experiment, performed by Grozhik et al.334.  The group used poly(A)-

RNA, crosslinked to an α-m6A antibody. After the described miCLIP protocol (chapter 2.1.8.2 and 4.2.3.5), the 

crosslinked RNA fragments can be seen on the nitrocellulose membrane as smears extending from light and heavy 

chains of the reduced antibody. 

 

The α-m5C antibody clone 32E2 precipitates a high amount of RNA, whereas the one from 

Diagenode does not (Figure 35B). Again, the commercial α-m5C antibody appeared to be not 

as sensitive as the antibody, generated in this thesis. The α-Ψ antibody 27C8 also shows a very 

high signal for precipitated RNA (Figure 35C). This, however, is most probably due to 

unspecific binding of the antibody to RNA and not restricted to the Ψ-modification. This non-

specificity could also be seen in the enrichment-experiment, shown in Figure 30, where the 

α-Ψ antibody bound to any oligo. The m26A-antibody showed very little signal in the 

experiment (Figure 35D). This might be due to low m2
6A-modified RNA concentrations, 

present in the analysed total RNA or low sensitivity of the antibody. To really draw a 

conclusion out of all the miCLIP-experiments, the RNA would have to be sequenced to gather 

and compare solid data. In chapter 1.3.3, it was already mentioned that several different 

sequencing data sets are published, which all differ a lot from one another. Especially m5C, 

m1A and Ψ sites in mRNA are under debate54,55,57,149,151,253. But even m6A sites are not fully 

explored. Regularly, computational or biochemical tools are published for better 

discrimination between real sites and background signals. Rigidly tested tools like the 

antibodies presented here can definitely help to figure out, which modified sites are real. 

 

Apart from the presented data, the antibodies have been used in different experimental 

setups by other groups. The group of Prof. Dr. M. Cristina Cardoso (Technische Universita t 

Darmstadt) performed immunofluorescence experiments using the α-m5C antibody 32E2 to 
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stain DNA in mouse embryonic fibroblast (MEF) cells. The signal could clearly be detected in 

nucleoli and showed much higher intensity than the α-m5C antibody from Active Motif clone 

33D3. Another experimental setup, using the α-m6A antibodies generated here, was 

Fluorescence-Activated Cell Sorting (FACS) analysis in MEF cells, performed by the group of 

Prof. Dr. Vigo Heissmeyer (Ludwig-Maximilians-Universita t Mu nchen). There, m6A-modified 

RNA could be detected in solution using biotinylated antibody clones. In detail, the difference 

of detected m6A in wildtype compared to WTAP-deficient cells could be made visible clearer 

by the newly generated antibodies, when compared to the commercial antibody from Abcam. 

The data for both experiments is not shown, but can be found in Figure 5 and 6 of the 

manuscript Generation of monoclonal antibodies specific to modified nucleotides, Saller, F. et al. 

(under revision at the time of submission of this thesis). Taken together, possibly new 

experimental approaches could be accomplished, when using the antibodies in setups like 

this. 

3.1.8 The anti-Pseudouridine antibodies 

Before working with the antibodies, dot blot analysis was pursued to get a first glimpse on 

how the antibody hybridomas perform in general (Figure 14). For some of these antibody 

clones, the chosen method did not show a positive result, like the α-Ψ antibody shown in 

Figure 15, even though it performed better in other experiments. However, the overall 

performance of the α-Ψ was not very convincing. For certain applications, the antibodies 

seemed to be sufficient, especially when immunoprecipitating highly Ψ-modified RNA (TLC 

experiment with 50% ΨTP in the reaction, Figure 29B). Another experiment, where the 

antibodies showed reasonably good specificity, was a CMC-analysis (data not shown). Here, 

total RNA was treated with a chemical that binds specifically to Ψ (CMC) and thus prevents 

antibody binding. Indeed, a reduced binding and thus reduced signal intensity was observed 

when using the presented antibody clones 27C8 and 26H5 to precipitate CMC-treated RNA. 

This hints to specific binding, since uridine is not bound by CMC and could thus be bound by 

the antibody, when unspecific. In the KD analysis, the antibodies seem rather high, except for 

the clone 27C8, which shows a KD of 6 µM in the RNA-oligo based measurements. It is therefore 

always crucial to test the antibody of interest in the experiment of choice rigidly before 

believing the produced data. 
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3.1.9 Recapped conclusions for the generated antibodies 

Antibodies are biochemical tools with biological background and thus can have several 

caveats compared to engineered proteins. Thus, the rigid testing for sensitivity and especially 

specificity are crucial for every experiment that is to be done with these valuable tools. The 

optimisation of several applications for the respective antibody is of great importance. The 

antibodies have been keenly characterised and their functions tested in different experiments 

to make sure that data, produced with the help of these antibodies can be relied on. Judging 

from the executed experiments, a set of highly specific and sensitive antibodies have been 

successfully generated, as it is depicted in Table 5.  

 

Table 5: Summary of the different antibody validation results.  KD: dissociation constant, IP: 

immunoprecipitation, TLC: thin layer chromatography experiment, IF: immunofluorescence, FACS: fluorescence-

activated cell sorting; +: medium performance in the experiment, ++: good performance in the experiment, +++: 

very good performance in the experiment, n.a.: not analysed. 

 

  

Modification 
Antibody 

clone 
apparent 
KD-value  

RNA-IP TLC IF Crosslink FACS 

m6A 

13G2 + n.a. ++ n.a. n.a. n.a. 

11D11 +++ ++ ++ - + ++ 

9B7 +++ ++ ++ ++ +++ +++ 

19B7 n.a. + n.a. +++ +++ +++ 

m5C 

31B10 ++ n.a. - - n.a. n.a. 

28F6 ++ n.a. + - n.a. n.a. 

32E2 +++ +++ +++ +++ +++ n.a. 

Ψ 
26H5 - n.a. n.a. n.a. n.a. n.a. 

27C8 - - + n.a. ++ n.a. 

m26A 60G3 ++ ++ n.a. n.a. + n.a. 
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3.2 Detection of RNA modification binding proteins 

3.2.1 Ligation difficulties 

To ligate two DNA fragments is a common procedure during every cloning experiment. 

Ligation of two RNA fragments however, is not as trivial. There are several RNA ligases that 

have been tested, including T4 DNA ligase, RNA ligase, a truncated version of the T4 RNA 

ligase and the Circ-ligase (Plasmid thankfully provided by Dr. Jan Medenbach), which was 

eventually applied. Furthermore, different strategies have been approached, like splint-

ligation, where a short RNA fragment was used to bring the 3’ and the 5’ ends together by base 

pairing. Another approach was the direct ligation with dephosphorylated 5’-fragment and 

phosphorylated 3’-fragment. Different RNA, MnCl2/MgCl2, PEG, ATP and ligase 

concentrations, different incubation times and reaction temperatures have been tested and 

the conditions were optimised for each hairpin individually. Up-scaling was not applicable for 

this reaction, so it was conducted in several smaller batches (Figure 37). Aside from a lot of 

unspecific side products, the desired bands were finally obtained and could be used for the 

pulldown experiment. That the ligated hairpin can be used for the pulldown experiment was 

shown in Figure 38, where the ligated and the in vitro transcribed hairpin were compared 

regarding their precipitation efficiency. Here, the protein of interest could be detected with 

both hairpins equally. 

3.2.2 Reader proteins 

Finding reader proteins is a task that is not easy to accomplish. Although being RNA binding 

proteins, they don’t always have a familiar RNA binding domain like KH-domain, zinc finger, 

RRM (RNA recognition motif) or dsRBM (double-stranded RNA-binding motif)336. The first 

family of RNA modification binding proteins that was discovered, were the m6A-readers of 

the YTH domain family, which all share the YTH domain219,220. This domain, which is located 

in the C-terminal part of the proteins has been shown to be able to bind m6A in an RNA 

context133. With a KD of around 26 µM, this protein-RNA binding is however comparably 

weak219. This is one reason, why finding new reader proteins can be challenging. Furthermore, 

the field of readers is very diverse and all kinds of differently assigned proteins can function 

as a modified RNA base binding protein. Heterogenous nuclear ribonucleoproteins (hnRNPs) 

for example, are involved in pre-mRNA processing and transport, such as alternative splicing 

or nuclear export. They comprise an RRM domain, with which they can bind the RNA. Just 

recently, HNRNP-A2B, -G and –C have been found to bind m6A in RNA, thus also affecting 

splicing or mediating primary miRNA processing103,244–246. IGF2BP is another example of 

reader proteins with several functions in the cell. It comprises 2 RRMs as well as 4 KH 
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domains, binding mRNAs and targeting them to cytoplasmic RNPs337,338. Both HNRNP as well 

as IGF2BP proteins have been found in the data, acquired for m6A (Table 6). 

In the experimental approach (Table 3 in chapter 2.2.3) executed here, not all the YTH proteins 

could be detected. These proteins can be taken as positive controls. In the m6A pulldown, only 

YTHDF2 and YTHDC1 were detected to be specific reader proteins. Another YTH protein, 

YTHDC2, was detected to bind more specifically to m1A than to m6A. YTHDF1 and 3 could not 

be detected in this approach. Their binding to the modified base might be less strong. Also, 

they were not found to be the most abundant m6A reader proteins in this analysis, compared 

to other proteins, detected. However, several other known reader proteins could be found in 

the data. These proteins, found in other studies as well, are discussed in chapter 3.2.3. 

Additionally, several methyltransferases were found in the data, like DIMT1, METTL17 (both 

as m1A reader), METTL8 (supposedly binding to m26A) or NSUN5 (found in the m6A data). 

Here again, the binding affinity of the proteins is different to what was expected, as NSUN5 

for example, is known to methylate C to gain m5C in rRNA178. METTL8 was found to install a 

m3C modification, other than m26A339. METTL17 was very recently described as acting on 

mitochondrial ribosomal RNA, namely installing m4C(840) and m5C(842) in the 12S mt-

rRNA340, but a methylation activity for m1A is not described. For DIMT1, a N6-dimethylating 

action on adenosine was observed341. Also methyltransferase-interacting proteins, like RBM15 

(in the m26A data) or KIAA1429/Virma (Virilizer) (m6A-binding) were found. Even a 

demethylase, like ALKBH5 was found in the data from the m1A pulldowns. This is in contrast 

to what has been found before: ALKBH5 was referred to as m6A demethylase141(see chapter 

1.3.1.1). However, the other known m6A-demethylase FTO was recently shown to act on m1A 

and m6Am as well256. The finding of this work could be a hint for a similar function of ALKBH5. 

Most of the proteins that have been found are not known to bind to modified RNA base 

modifications. The validation attempts were not completely convincing. This could partly be, 

due to the weak binding of reader proteins as discussed above. Another reason might of 

course be that the proteins are no real readers, but merely bind unspecifically to the modified 

RNA base or the RNA hairpin as such. The binding could also be sequence-dependent, having 

nothing to do with the altered RNA base. To get a better idea of the real binding situation, a 

deeper investigation has to be accomplished. The project however could not be followed in 

that extent at the time. 

3.2.3 Comparison with the results of other reader-finding attempts 

As already introduced in chapter 1.3.2, a lot of effort from other labs already went into the 

finding of RNA modification binding proteins and the research is not at all at its end. For m6A, 

the most reader proteins have been found. The groups of Gideon Rechavi and Michiel 
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Vermeulen have conducted similar, but only m6A-regarding mass spectrometry-based high-

throughput analyses, as presented in this study52,243. The comparison between the two data 

sets and our findings are listed in Table 6. Proteins that have been found were marked with 

(), proteins that did not come up in the analysis were labelled with (). In the data from this 

work, it occurred that proteins were found in the pulldown data, derived with a different base 

modification (m1A or m26A). They are assigned accordingly. (~) is written, when the data is 

not significant for one modification. 

 

Table 6: Comparison of three different data sets of m6A reader proteins. In the left column, the proteins are 

listed. The data from the papers Dominissini et al., 2012 and Edupuganti et al., 2017 and ours were compared 

regarding their detection of the proteins, binding to m6A52,243. (: found in the data, : not found in the data, m1A / 

m26A: differently assigned proteins, ~: found in the data, but not significant). 

Protein Rechavi Data Vermeulen Data Our Data 

YTHDC1    

YTHDF2    

YTHDC2    

RBBP6   m1A 

YTHDF3    

CPSF6    

HNRNPH2   ~ 

TARDBP    

FUBP3   m1A 

FMR1    

KHSRP   m26A 

HNRNPH1   ~ 

IGF2BP3   m26A 

FXR1   m1A 

HNRNPF   ~ 

COLGALT1    

CNBP    

FXR2   m1A 

ALKBH5   m1A 

YTHDF1    

ZCCHC8   m1A 

SF3B4   m26A 
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XRN1    

NMT1    

EDC4    

PATL1    

LSM1    

ELAVL1  ~  

DHX36  ~ m1A 

DBN1   ~ 

HNRNPA2B1   m26A 

GNAI3    

HNRNPR    

FUBP1   ~ 

 

The relatively great deviation between the three data sets derive from different approaches 

and its data analyses. The group of Vermeulen also found m6A-repellent proteins, which in 

turn positively regulate the mRNA stability. Of these proteins, some have also been found in 

our data set. 

Overall, the presented data, produced for this work may not be completely trusted. The 

pulldown conditions would have to be optimised and further analysis has to be conducted. 

3.3 Outlook 

Although first discovered in the early twentieth century, research in the direction of 

epitranscriptomics is relatively young. The great majority of interconnections between 

modified RNA bases and the resulting effect has not been elucidated yet. More and more new 

techniques, methods and tools are developed to help seek links in different regions. The 

antibodies, described in this work are just one example of endless attempts to tackle the 

remaining questions. The applied pulldown method was another trial to bring more light into 

the unknown correlations in this field. Every day, new data is produced in the RNA 

modification area. Thus, one of the greatest tasks is to distinguish the truth from misleading 

hints. It will be very interesting to see, where the research in this field heads and what great 

discoveries will be made in the future. It is very likely that a number of these RNA base 

modifications have great implications on cellular levels and to follow publications in this area 

is greatly recommended. 
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4. MATERIAL AND METHODS 

4.1 Material 

4.1.1 Reagents and consumables 

The chemicals and reagents were purchased in the highest standards (pro analysis) from the 

following suppliers: AppliChem (Darmstadt, Germany), Biorad (Hercules, USA), Fermentas 

(St. Leon-Rot, Germany) GE Healthcare (Buckinghamsire, UK), Merck (Darmstadt, Germany), 

New England Biolabs (Ipswich, USA), PAA (Pasching, Austria), Roche Diagnostics (Penzberg, 

Germany), Roth (Karlsruhe, Germany), Serva (Heidelberg, Germany), Sigma-Aldrich (St. 

Louis, USA) and Thermo Fisher Science (Waltham, USA). 

Enzymes and respective buffers were obtained from Thermo Scientific (Waltham, USA), 

unless stated differently. The T7 RNA Polymerase was recombinantly expressed, purified and 

provided by Dres. Treiber. 

Radio chemicals were purchased from Hartmann Analytics GmbH (Braunschweig, Germany) 

and American Radiolabeled Chemicals, Inc. (St. Louis, USA). 

Other consumables were purchased from: Sarstedt (Nu mbrecht, Germany), GE Healthcare 

(Buckinghamshire, UK), Biorad (Hercules, USA), Eppendorf (Hamburg, Germany), Invitrogen 

(Carlsbad, USA) and CAWO (Schrobenhausen, Germany). 

Peptides, used as antigens were bought from Peps4LS GmbH (Heidelberg, Germany).  

The Kits were purchased as stated in Table 7. 

Table 7: Kits 

Kit name Supplying company 

NucleoSpin® Gel and PCR Clean-up Macherey-Nagel (Du ren, Germany) 

NucleoSpin® Plasmid Macherey-Nagel (Du ren, Germany) 

NucleoBond® Xtra Midi Macherey-Nagel (Du ren, Germany) 

NucleoSpin® RNA Midi Macherey-Nagel (Du ren, Germany) 

Illustra MicroSpin G-25 Columns Fermentas (St. Leon-Rot, Germany) 

First Strand cDNA Synthesis Kit GE Healtcare (Buckinghamsire, UK) 

Rotiphorese Sequenziergel  Roth (Karlsruhe, Germany) 

MEGAclearTM transcription clean-up Kit Invitrogen (Carlsbad, USA) 

Oligo Clean & ConcentratorTM-5 Zymo Research (Freiburg, Germany) 

Oligo d(T)25 Magnetic beads New England Biolabs, NEB (Ipswich, USA) 

4.1.2 Antibodies 

Commercial Antibodies were obtained as seen in Table 8.  
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The tested antibodies against base modifications, which are a main part of this thesis, are 

displayed in the result section and the appendix (Table 5 and Table 16). These were generated 

in a collaboration with the laboratory of Dr. Regina Feederle in Helmholtz Centre Munich 

(Neuherberg, Germany). Another antibody, which was generated in collaboration with the 

Helmholtz Centre Munich was the antibody α-METTL3 clone 29C8, which was presented in 

Scho ller et al.173. 

 

Table 8: Commercial antibodies 

Antibody  
Source 
organism 

Purpose of use Supplying company 

α-Flag M2 mouse Immunofluorescence Sigma-Aldrich (St. Louis, USA)) 

α-GFP mouse Western blot Roche (Penzberg, Germany) 

α-HA 16B12 mouse Western blot Covance (Princeton, USA) 

α-Myc rabbit Western blot Sigma-Aldrich (St. Louis, USA) 

α-m5C (33D3) mouse RIP Diagenode (Ougre e, Belgium) 

α-m6A, polyclonal rabbit RIP Synaptic Systems (Go ttingen, Germany) 

α-m6A, monoclonal mouse RIP Synaptic Systems (Go ttingen, Germany) 

Alexa 488 α-mouse goat Immunofluorescence Invitrogen (Carlsbad, USA) 

Alexa 555 α-rabbit goat Immunofluorescence Invitrogen (Carlsbad, USA) 

α-mouse IgG goat Western blot Licor (Bad Homburg, Germany) 

α-rabbit IgG goat Western blot Licor (Bad Homburg, Germany) 

4.1.3 Oligonucleotides and Plasmids 

The DNA-oligonucleotides were purchased at Metabion GmbH (Martinsried, Germany). 

RNA-nucleosides were purchased from Carbosynth (Oxford, UK). RNA-oligo nucleotides were 

obtained from Metabion GmbH (Martinsried, Germany), Dharmacon (Lafayette, USA), 

Biomers GmbH (Ulm, Germany) and individually synthesized by Axolabs GmbH (Kulmbach, 

Germany). 

Table 9: DNA oligonucleotides 

Name Sequence (5’ to 3’) 

Cloning primers  

Hairpin cloning  

HH_Adaptor_for_7f2-1 CGGTACCCGGTACCGTCGGGAGACCTAGCCTTGTGG 

HH-7f2-1_rev ACTGACCCTAAAACTATAC 

HH-Adaptor_for_end AATCCATGGTCTCCCCTGATGAGTCCGTGAGGACG 

HH-7f2-2_for CGGTACCCGGTACCGTCTTGGAGATAACTATACAG 

HH-7f2-2_rev ACCGTGGGAAAGACAGTAG 

HH-7f2-2_for_end AATCCATGGCTCCAACTGATGAGTCCGTGAGGACG 

Splint-7f2-1 CTCCAAGATGNGGTATGACCC 



MATERIAL AND METHODS 

75 
 

Splint-7f2-2 GATGNGGTATGACCCTAA 

HH-Adaptor_mir29b2-1 CGGTACCCGGTACCGTCGGGAGACCTAGCCTCTTCTG 

HH-29b2-1_rev ACAAAAATCTAAGCCACCATG 

HH-29b2-2_for CGGTACCCGGTACCGTCTGTATCTAGCACCATTTG 

HH-29b2-2_rev ACTCCTAAAACACTGATTTC 

HH-29b2-2_for_end AATCCATGGGATACACTGATGAGTCCGTGAGGACG 

Splint-29b2-1 GATACAAAGANTGGAAAAAT 

Splint-29b2-2 AAGANTGGAAAAATCTAAG 

HH-Adaptor_mir1-2-1 CGGTACCCGGTACCGTCGGGAGACCTAGCCTACCTAC 

HH-1-2-1_rev ACTCATATGGGTACATAAAG 

HH-1-2-2_for CGGTACCCGGTACCGTCATGCTATGGAATGTAAAG 

HH-1-2-2_rev ACGCCTACCAAAAATACATAC 

HH1-2-2_for_end AATCCATGGTAGCATCTGATGAGTCCGTGAGGACG 

RNA binder cloning  

YTHDC1_BamHI_TEV_F ATAGGATCCGAAAACCTGTATTTTCAGGGAATGGCGGCTGACAGTCGGGAGG 

YTHDC1_SalI_R AAAGTCGAC TTATCTTCTATATCGACCTCTCTCC 

YTHDC1_BamHI393TEV_F ATAGGATCCGAAAACCTGTATTTTCAGGGA TCTGCAAGGAGTGTTATCTTAA 

METTL17_EcoRI_TEV_F ATAGAATTCGAAAACCTGTATTTTCAGGGAGGCGGCGCGGCGGCACTGAAGTGTC 

METTL17_SalI_R AAAGTCGAC TCAACTCTCAGAGGGATCCTGAGCC 

DIMT1_BamHI_TEV_F ATAGGATCCGAAAACCTGTATTTTCAGGGAGGCGGCCCGAAGGTCAAGTCGGGG 

DIMT1_SalI_R AAA GTCGAC CTAGGAAAAATGAATACCTTCTGCG 

TFB1M_BamHI_TEV_F ATAGGATCCGAAAACCTGTATTTTCAGGGAGGCGGCGCTGCCTCCGGAAAACTCAGC 

TFB1M_SalI_R AAA GTCGAC CTAGAGTCTGTAATTCTCTGCG 

TOMM22_BamHI_TEV_F ATAGGATCCGAAAACCTGTATTTTCAGGGAGGCGGCGCTGCCGCCGTCGCTGCT 

TOMM22_SalI_R AAAGTCGACCTAGATCTTTCCAGGAAGTGAGG 

YTHDF1_BamHI_TEV_f ATAGGATCCGAAAACCTGTATTTTCAGGGA TCGGCCACCAGCGTGGACAC 

YTHDF1_BamHI_365_TEV_f ATAGGATCCGAAAACCTGTATTTTCAGGGA AGCGTCGAATCCCACCCCGTC 

YTHDF1und2_SalI_rev AAAGTCGACTCATTGTTTGTTTCGACTCTGCCGTTC 

YTHDF2_BamHI_TEV_f ATAGGATCCGAAAACCTGTATTTTCAGGGA TCGGCCAGCAGCCTCTTGGAGC 

YTHDF2_BamHI_383_TEV_f ATAGGATCCGAAAACCTGTATTTTCAGGGA TCAGAACCCCACCCAGTGTTGGAG 

YTHDF3_BamHI_TEV_f ATAGGATCCGAAAACCTGTATTTTCAGGGATCAGCCACTAGCGTGGATC 

YTHDF3_BamHI_388_TEV_for ATAGGATCCGAAAACCTGTATTTTCAGGGAAGTGTAGAAGTGCATCCCGTG 

YTHDF3_SalI_rev AAAGTCGACTTATTGTTTGTTTCTATTTCTCTCCCT 

VP5_METTL17_F CGATGCTAGCATGGCGGCGGCACTGAAGTG 

VP5_METTL17_R CGATGAATTCTCAACTCTCAGAGGGATCCTG 

VP5_DIMT1_F CGATGCTAGCATGCCGAAGGTCAAGTCGG 

VP5_DIMT1_R CGATGCGGCCGCCTAGGAAAAATGAATACCTTCTGC 

VP5_TFB1M_F CGATGCTAGCATGGCTGCCTCCGGAAAACT 

VP5_TFB1M_R CGATGAATTCCTAGAGTCTGTAATTCTCTGCG 

VP5_TOMM22_F CGATGCTAGCATGGCTGCCGCCGTCGCTGC 

VP5_TOMM22_R CGATGAATTCCTAGATCTTTCCAGGAAGTGAG 

Northern blot probes  

5,8S rRNA probe2 GACGCTCAGACAGGCGTAGCCC 

18S rRNA probe1 CATGCATGGCTTAATCTTTGAGACAAGC 

18S rRNA probe2 CTAAACCATCCAATCGGTAGTAGCGAC 

28S rRNA probe1 GGTTAGTTTCTTTTCCTCCGCTGAC 
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28S rRNA probe2 GGCTGACTTTCAATAGATCGCAGCG 

7SK ACTCGTATACCCTTGACCGAAGA 

U6 snRNA GAATTTGCGTGTCATCCTTGCGCAGGGGCCATGCTAA 

U2 snRNA GAGGTACTGCAATACCAGGTCGATGCGTGG 

qPCR primer  

NDUFB7_qPCR_FW CCTCATCCGGCTGCTCAAGT 

NDUFB7_qPCR_REV GCAGTAGTCCCAGTCGTGC 

SZRD1_qPCR_FW CTCCTGACCAGCAGATACGTT 

SZRD1_qPCR_REV GAGCCTGTGAGACTCAGCTTG 

SCO1_qPCR_FW CTATTGCCTGGGAACCCG 

SCO1_qPCR_REV CTTCCAGGAAACAGGCCC 

RTN3_qPCR_FW AAAGTGGGACTGAGAGGGAGT 

RTN3_qPCR_REV AAACCACTTTCCCAAATGGCG 

RTN3_qPCR_FW2 GGTCACTCCCTCTGCCACTA 

RTN3_qPCR_REV2 TCAGAACCGGTGTCCAGTGA 

OSBPL8_qPCR_FW ACTGATGAGCCACAGAACTTCA 

OSBPL8_qPCR_REV CTGACCAGTGGTAGTGCTTGA 

UBR4_qPCR_FW TGGCTGAGCAGATGCAAGAA 

UBR4_qPCR_REV TGGCATGTGCACTCCAAGAT 

PCSK1_qPCR_FW GGAGTGGAATCACACGGACA 

PCSK1_qPCR_REV GTCCCGTGTTTGTTCTCGTT 

SYT12_qPCR_FW GCAGTATCGGGTCCGTTTTT 

SYT12_qPCR_REV GGCTCTTGATGACGCTCAGAT 

TET2_qPCR_FW TCCCATCTTGCAGATGTGTAG 

TET2_qPCR_REV GTCCAAACCTTTCTTCCATGATT 

SUGP2_qPCR_FW TCCAGGAGCCAAAAGTCCAT 

SUGP2_qPCR_REV TATCGGTCAGCTTCTGCTGG 

FIBIN_qPCR_FW TCTCCTACGACCTAGACGGG 

FIBIN_qPCR_REV TTGGAGTAGGCATCCCCGAT 

tRNA-Gly GCC-fw TGCAGGTCTTTAGCTGACAGT 

tRNA-Gly GCC-rev GAGAAAAAGAATTGAAATGGATCGG 

AC008870.1-fw GCCATACTGACCTGTGCCAT 

AC008870.1-rev CCTTTTCAGTTCCTGGGGCT 

RIMBP3B-fw AAAGCCCTGCTCCAGGATTC 

RIMBP3B-rev TTGGGCATCTTGCTTTTGCC 

AP000295.1-fw CACACACGAGGCCTATGTCA 

AP000295.1-rev GCCAGCCAGAAATTGTGTGAG 

NUTM2E-fw CGTGCTTCCTCATCCCAGTT 

NUTM2E-rev ATCCGGTCAAAGTTGCTCGT 

FP565260.2-fw GTGTCTCGCCACCTGGAAT 

FP565260.2-rev GTGCACCAGGATCAGTTTCG 

AC011511.4-fw CTTCGACTACCCCTCGGACA 

AC011511.4-rev GTGGGCGAGCCTGAATAGAA 

HNRNPH2-fw CAAGTGGGGGTGCTTACGAT 
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Table 10: RNA oligonucleotides 

Primer name Sequence (5’ to 3’) 

HNRNPH2-rev TAAGCCCATCCCTCCCATCA 

CSPG4P11-fw CCTCCTCCAGGCAAGAATCTG 

CSPG4P11-rev TTCGGGTTGGGACATGGAGA 

ATP5MPL-fw GAACTCGCGGGTCAGACATT 

ATP5MPL-rev TCTTTTATCAGCAGCCCGGA 

PTBP1-fw CTGCGCATCGACTTTTCCAA 

PTBP1-rev TGCATACGGAGAGGCTGAGA 

SNORA70-fw CGCAGCCAATTAAGCCGAC 

SNORA70-rev AGGTCCCTTAGAGCAACCCA 

AC010733.2-fw TAGAATTGGTGATCCAGGCCG 

AC010733.2-rev GCAGGCTGGGTATTACCTGA 

SNORD10-fw ATGCGTGTCATCTGAGCCTCT 

SNORD10-rev AACAGCCCTGGGAAGTAGGAC 

RNU12-fw ATAACGATTCGGGGTGACGC 

RNU12-rev ACCTTGAGGGCGACCTTTAC 

BIVM-ERCC5-fw CTTTCTGCACAAGTGCCTCA 

BIVM-ERCC5-rev GAGCGGGATGGATTTGGAGT 

SNORA40-fw CGTGGACAAAGACTTACAGATAGG 

SNORA40-rev ACTGAACAATGAGTTCTGGGTTG 

TMEM189-UBE2V1-fw GCATGTCATCCTGCCACGTA 

TMEM189-UBE2V1-rev ACCCCAGCTAACTGTGCCAT 

BLOC1S5-TXNDC5-fw GATAACAGCAGCATCTCGACC 

BLOC1S5-TXNDC5-rev CTGTAACATTGAAGGAAAGACCAG 

HIST1H4J-fw CGCTAAGCGCCACCGTAAAG 

ALY2 fw ATGCGATGTGGCAAAACGAC 

ALY2 rev CTCGATAGACGAGCCACCAC 

ALY3 fw CCATAAACAAGCTTGCCCGC 

ALY3 rev CTGTGGTTCCGACTTCCACT 

ALY4 fw GGCTGAAGAGGACGGTTGTT 

ALY4 rev GCGACTGACAGTAGGAGCTG 

MOS11 fw TGGTATTGGATCGACGGCTG 

MOS11 rev CGCTTCTCCTCTTCGGTCAA 

U2AF65 fw GCGGAAAGTTTGGTGCTTTGA 

U2AF65 rev CGAGCCATCTGTATCGGCAT 

Firefly fw TCGAAAGAAGTCGGGGAAGC 

Firefly rev CGGTTTATCATCCCCCTCGG 

Renilla fw TGATAACTGGTCCGCAGTGG 

Renilla rev TAAGAAGAGGCCGCGTTACC 

GFP fw TCGTGACCACCCTGACCTA 

GFP rev TCTTGTAGTTGCCGTCGTCC 



MATERIAL AND METHODS 

78 
 

Hairpin project  

Let7f-2 scaffold-m6A 
UACC m6A CAUCU UGGAGAUAAC UAUACAGUCU 
ACUGUCUUUC CCACG 

Let7f-2 scaffold-m1A 
UACC m1A CAUCU UGGAGAUAAC UAUACAGUCU 
ACUGUCUUUC CCACG 

Let7f-2 scaffold-m62A 
UACC m62A CAUCU UGGAGAUAAC UAUACAGUCU 
ACUGUCUUUC CCACG 

Mir-29-b2 scaffold –m6A 
UCCA m6A UCUUU GUAUCUAGCA CCAUUUGAAA 
UCAGUGUUUU AGGA 

Mir-29-b2 scaffold –m1A 
UCCA m1A UCUUU GUAUCUAGCA CCAUUUGAAA 
UCAGUGUUUU AGGA 

Mir-29-b2 scaffold –m62A 
UCCA m62A UCUUU GUAUCUAGCA CCAUUUGAAA 
UCAGUGUUUU AGGA 

mir7f2-nonmod ACCNCAUCUUGGAGAUAACUAUACAGUCUACUGUCUUUCC 

mir1-2-nonmod ACAUNACAAUGCUAUGGAAUGUAAAGAAGUAUGUAUUUUU 

mir29b2-nonmod CCANUCUUUGUAUCUAGCACCAUUUGAAAUCAGUGUUUUA 

Antibody project  

ELISA-biotin-RNA-m1A NN(m1A) NNN (m1A)NN N -Biotin 

ELISA-biotin-RNA-A NNA NNN ANN N -Biotin - 

ELISA-biotin-RNA-C NNC NNN CNN N -Biotin 

ELISA-biotin-RNA-dU NN(2-Deoxyuridine) NNN (2-Deoxyuridine)NN N -Biotin 

ELISA-biotin-RNA-T NNT NNN TNN N- Biotin 

PseudoU-RNA-oligo AGCCUACCΨACUCAG 

random m26A-RNA-oligo NNNNNm26ANNN 

random ctrl-RNA-oligo NNNNNNNNN 

m5C-RNA-oligo ACGCGUAm5CUUGA 

m6A-RNA-oligo ACGCGUm6ACUUGA 

control-RNA-oligo ACGCGUACUUGA 

m1G-RNA-oligo ACGCm1GUACUUGA 

 

Table 11: Vectors 

Plasmid Resistance Tag 

pcDNA5 Amp none 

pCS2-Myc6-FA Amp Myc 

pSuperior Amp none 

VP5 Amp Flag/HA 

pET Amp His 

pGex Amp GST 

4.1.4 Technical equipment 

Table 12: Equipment 

Equipment Supplying company 

MyiQ SingleColor Real-Time PCR Detection System Bio-Rad (Hercules, USA) 

UV Stratalinker 2400 Stratagene (Santa Clara, USA) 

Odyssey Infrared Imaging System LI-COR Biosciences (Lincoln, USA) 
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Personal Molecular Imager (Phosphor-imager) Bio-Rad (Hercules, USA) 

Agilent 4200 TapeStation System Agilent Technologies (Waldbronn, Germany) 

Confocal laser scanning microscopy platform Leica TCS SP8 Leica Microsystems (Wetzlar, Germany) 

MaXis Mass Spectrometer Bruker Corporation (Billerica, USA) 

4.1.5 Biological Material 

Table 13: Cell lines 

Cell line Specification 

HEK 293T human embryonic kidney cell line 

HeLa human cervical epithelial adenocarcinoma cell line 

HeLa suspension  human cervical epithelial adenocarcinoma cell line 

Mcf7 human metastatic breast adenocarcinoma cell line 

NTera2 human metastatic embryonal carcinoma cell line 

HepG2 human hepatocellular carcinoma cell line 

C643 human thyroidea carcinoma cell line 

 

Table 14: Bacterial Strains 

Bacterial strain Genotype 

Escherichia coli XL 1 blue F– recA1, endA1, gyrA96, thi-1, hsdR17, supE44, relA1, lac F’[proAB lacI qZΔM15 
Tn10 (TetR)] 

Escherichia coli BL21 F- dcm+ Hte ompT hsdS(rB- mB-) gal endA Hte  

Rosetta F- ompT hsdSB(rB- mB-) gal dcm (DE3) pRARE (CamR)  
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4.2 Methods 

4.2.1 Preparation of DNA constructs 

4.2.1.1 PCR and Cloning 

For the cloning attempts, different variations (e.g. classical PCR, two-step PCR and colony 

PCR) of the Polymerase Chain reaction (PCR) were pursued. During this reaction the gene of 

interest is amplified. The applied DNA-oligonucleotide primers were designed to anneal to 

the flanking regions of the gene of interest. The DNA-polymerase extends the DNA 

oligonucleotide through the addition of dNTPs. Thus, the DNA fragment is amplified 

exponentially. The following steps were performed in a thermo-cycler: 30sec at 98°C; for 20 

– 35 cycles: 10 sec at 98°C, 0 – 1 min at 55 – 65°C, 30 sec/kb at 72°C; then 10 min at 72°C. The 

pipetting scheme was as follows: 1 µg cDNA (HEK 293T or HeLa) or gDNA or cells from a 

colony, 10 µl 10xBuffer HF/GC, 2.5 µl Primer F (10µM), 2.5 µl Primer R (10µM), 2.5 µl dNTPs (10 

mM each), up to 5 µl DMSO (optional), 1 µl DNA Polymerase (Phusion) (2 U/µl), fill up to 50 µl 

with water. After amplifying, the PCR products were analysed on 0.5 – 2 % agarose gels. The 

fragment of interest was then isolated from the gel using the “PCR clean-up kit” from 

Macherey & Nagel according to the manufacture’s protocol. The purified PCR products, as well 

as the vector were then used for a restriction reaction. After a 2-4 hour incubation at 37°C and 

kit clean-up, the digested vector and insert were ligated for 1 h at RT: 1.5 µl T4 ligase, 1.5 µl T4 

ligase buffer, 350 – 450 ng vector, 1 – 1.8 µg insert, fill up to 15 µl with water. After this, the 

product was transformed into competent E. coli cells, using 15 µl ligase reaction and 50 µl 

competent E. coli cell suspension. The sample was incubated at 42°C for 1 minute then at 4°C 

for 1 minute. After plating the cell suspension on a LB-Amp-plate, it was incubated overnight 

at 37°C. Several colonies were then picked, inoculating 5 ml of liquid LB-Amp media. The test 

tubes were incubated overnight at 37°C under agitation. 1.5 ml of each clone was subjected to 

a boiling lysate test. For that, the cell pellet was resuspended in 40 µl of Easy Prep buffer (10 

mM Tris/HCl, pH 8, 1 mM EDTA, pH 8, 15 % sucrose, 2 mg/ml lysozyme, 0.2 mg/ml RNaseA 

and 0.1 mg/ml BSA) and incubated for 1 min at 99°C, then 1 min at 4°C and finally spun down 

for 15 min at full speed in a table centrifuge. 10 µl of the supernatant was used for a test digest 

with the restriction enzymes used for cloning for approx. 1 hour at 37°C. The product of this 

reaction was then separated on an agarose gel. The band pattern should now show the vector 

and the insert with the correct size. If so, the tested clone is considered potentially positive. 

Using 3 ml of the inoculated LB-Amp media, the DNA was purified using the “NucleoSpin 

Plasmid mini-prep kit” of Macherey-Nagel. The resulting product was then sequenced with 

the help of the sequencing service “Macrogen” to check if the sequence is correct without any 
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undesired mutations. To yield higher amounts of DNA and for subsequent experiments, 100 

ml of LB-Amp media were inoculated with the positive clone and a “Midi Prep” (NucleoBond® 

Xtra Midi, Macherey-Nagel) was performed according to the manufacturer’s protocol. 

4.2.1.2 Agarose Gel Electrophoresis 

The agarose gel electrophoresis is a method to separate a mix of nucleic acids. Generally, 0.5 

– 2 % agarose gels were prepared. Therefore, the appropriate amount of agarose is dissolved 

in 1 x TBE (10 x TBE: 890 mM Tris, 890 mM boric acid and 20 mM EDTA) via heating. The hot 

agarose is poured into an already prepared and sealed agarose chamber. In addition, approx. 

1 µl of ethidium bromide is dissolved in the solution to make the nucleic acids visible. A 

specific DNA band of interest can then be cut out of the gel. The DNA is then purified via a gel 

purification kit of Macherey-Nagel and can be used for further analysis. 

4.2.2 Working with RNA 

4.2.2.1 RNA Isolation 

HEK 293T or HeLa cells from a confluent 15 cm plate were harvested and spun down at 500 x g 

for 5 minutes. One approach was to use the RNA Midi kit by Macherey & Nagel following the 

manufacturer’s protocol (NucleoSpin® RNA Midi). The other way, applied, was to use TRIzolTM 

(Invitrogen) for RNA preparation. 1 ml TRIzol and 200 µl chloroform were added to the cell 

pellet and then the mixture was vortexed thoroughly for 15 seconds. The sample was 

centrifuged at 4 °C at 12.000 x g for 15 minutes. Subsequently, another chloroform step was 

executed or the RNA was directly precipitated using 600 µl isopropanol and 1 µl glycogen. 

This mixture was then either incubated for 1 hour at -80 °C or several hours at -20 °C. The 

sample was centrifuged for 30-60 min at 4 °C at full speed. The pellet was washed twice with 

75% ethanol and resuspended in RNase-free water. The concentration was measured using 

the NanoDrop (Thermo Fisher). 

4.2.2.2 RNA-Immunoprecipitation 

Total RNA from HEK293T cells was isolated like it was described in the previous chapter. 

Several optimisation tests have been conducted for the RNA-immunoprecipitations. Thus, 

wide ranges of RNA, antibody and buffer concentrations and amounts were used and are 

given in this protocol. Two different protocol setups for the RNA-immunoprecipitations were 

tested for the antibodies. For a part of the experiments, 0.1 – 100 µg of the respective antibody 

was coupled over night at 4 °C to 15 – 40 µl Protein G Sepharose beads (GE Healthcare) or 

DynabeadsTM Protein G (Invitrogen). The coupled beads were washed thrice in RNA-IP buffer 
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(150 – 750 mM LiCl, 0.5 % NP-40, 10 mM Tris-HCl, pH 7.5) or NET buffer (50 mM Tris, pH 7.5, 

150 mM NaCl, 5 mM EDTA, 0.5 % NP-40, 10 % glycerol). Using 0.1 - 100 µg of the total RNA or 

0.5 – 1 nmol of the RNA-oligos, the immunoprecipitation was conducted for 2 hours in 0.5 - 1 

ml RNA-IP buffer. For the other setup, the antibody was incubated with the RNA in RNA-IP 

buffer or NET buffer for 2 hours. Protein G Sepharose beads or DynabeadsTM Protein G were 

added and incubated for additional 2 hours. For the nucleoside-competition assay, 5 µM - 5 

mM nucleoside (end concentration) was added and incubated for 1 additional hour. The 

setups were then washed once each with RNA-IP buffer, wash buffer I (RNA-IP buffer with 

300 - 1000 mM LiCl) and II (RNA-IP buffer with 450 - 1500 mM LiCl) or NET buffer and twice 

with NET wash buffer (NET buffer with additional 150 mM NaCl). For isolation of the RNA 

from the beads, 500 µl TRIzol® was used and the RNA was precipitated afterwards. 

4.2.2.3 Fragmentation of RNA 

The fragmentation was conducted following the protocol of Dominissini and colleagues342. 180 

µg total RNA was incubated with 10x fragmentation buffer for 5 min at 94 °C. 2 µl EDTA was 

added immediately and the samples were put on ice. After precipitation with 0.1 x NaAc and 

2.5 x EtOH at 20 °C over night, the RNA samples were used for RIP. 

4.2.2.4 CMC-treatment of RNA 

CMC (N-Cyclohexyl-N′-(2-morpholinoethyl)carbodiimid-methyl-p-toluolsulfonat) treatment 

of RNA can be used to block Pseudouridine sites273. Total RNA was denatured in 5 mM EDTA 

for 2 min at 80 °C followed by incubation with 30 µl BEU-buffer plus CMC (0.3 M CMC, 50 mM 

bicine, pH 8.3, 4 mM EDTA and 7 M urea) for 30 min at 40°C and afterwards precipitated. Using 

a basic buffer (50 mM sodium-carbonate, pH 10.4, 2 mM EDTA) for 2 h at 50 °C, the G- and U-

sites of the RNA were reconstituted 57,273. After another precipitation, the RNA was used. As 

mock samples, the samples were incubated with BEU-buffer without CMC. 

4.2.2.5 cDNA Preparation 

To perform a (quantitative) PCR, complementary DNA (cDNA) is needed. CDNA is reverse 

transcribed from RNA, using an RNA dependent DNA polymerase (Reverse Transcriptase). 

First, the genomic DNA (gDNA) has to be removed from the preparation: 1 – 5 µg extracted 

RNA, 1 µl 10x buffer with MgCl2, 1µl DNase I, filled up to 10 µl with water was incubated for 30 

minutes at 37°C. After that, 1 µl 50 mM EDTA was added and the setup was denatured at 65°C 

for 10 minutes. For the Reverse Transcriptase reaction the following reagents were added to 

the 11 µl gDNA free RNA: 1 µl random hexamer primer (or oligo (dT)18 primer), 4 µl 5x reaction 
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buffer, 2 µl 10 mM dNTP Mix and 2 µl Reverse Transcriptase. The mix was then transferred 

into a cycler and the following program was used: 5 min at 25°C, 60 min at 37°C, 5 min at 70°C. 

4.2.2.6 Quantitative Polymerase Chain Reaction (qPCR) 

The quantitative polymerase chain reaction is a type of PCR where the amplification of the 

targets can be observed in real time. The RNA of interest first had to be reversely transcribed 

into cDNA. The intercalating agent (SsoFastTM Eva Green, Bio-Rad or TakyonTM SYBR® 

Mastermix blue, Eurogentec) interacts with the double stranded DNA and is excited via a 

Laser. Triplicate measurements were performed. The relative quantification was carried out, 

using the method of Pfaffl (2001)343. 7.5 µl of the qPCR mix, 1 µl of a 10µM primer mix and 4.5 

µl H2O were mixed and 2 µl of the cDNA was added. The samples were then analysed on the 

qPCR machine MyiQ SingleColor Real-Time PCR Detection System (Bio-Rad). 

4.2.2.7 Urea Polyacrylamide Gel Electrophoresis for RNA Analysis 

For the analysis of RNAs, an urea polyacrylamide gel electrophoresis was performed. 

Thereby, an RNA mix is separated into the different species of RNA when an electric current 

is applied. Depending on the size of the RNA of interest, a 4 – 20 % urea polyacrylamide gel 

was used, the percentage indicating the degree of branching. The solutions used, were 

provided by Roth (Rothiphorese Sequencing Gel System) and include a Urea gel Concentrate 

and Diluent. Freshly added to the mix are APS and TEMED. When the gel is polymerised, it 

should be prerun at 400 V for 20 – 30 minutes using 1 x TBE. To avoid a smiling effect, a metal 

plate is clamped to the back of the gel to ensure a good heat distribution. Approximately 10 – 

20 µg of the RNA sample is mixed with 10 – 15 µl RNA loading dye (formamide with 

bromophenol blue and xylene cyanol) and incubated for 5 minutes at 95°C. The pigments run 

depending on the percentage of the gel at the height corresponding to a certain length of RNA. 

Thus, the running time needed, can be estimated. The wells have to be cleaned with a syringe, 

directly before loading, since the urea is settling down in the wells. The gel runs at 400 V. After 

the run, the gel can be stained with ethidium bromide for 10 minutes. 

4.2.2.8 Semi-dry Northern Blot with Urea Polyacrylamide Gels 

The urea polyacrylamide gel were placed between two stacks of whatman papers and onto a 

membrane. The nylon membrane used here is specifically suitable for the blotting of nucleic 

acids (Hybond-N by GE Healthcare). The size of the membrane and the whatman papers 

should be the same as the gel’s size. Everything was first dipped into ddH2O before 

assembling the “sandwich”, avoiding air bubbles during assembly. The blot ran for 20-60 

minutes (depending on the size of the RNA of interest) at 20 V (constant voltage used).The 
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RNA was then crosslinked to the membrane via the UV-Stratalinker at 254 nm with the 

AutoCrossLink function, when the RNA of interest is larger than 75 nucleotides. Small RNA 

was crosslinked using EDC (l-ethyl-3-(3-dimethylaminopropyl) carbodiimide), following Pall 

et al344. The membrane was then prehybridised in hybridisation solution (5 x SSC, 7 % SDS, 1 

M Na2HPO4 pH 7.2 and 1 x Denhardt’s solution; 50 x Denhardt’s solution: 1 % albumin fraction 

V, 1 % polyvinylpyrrolidone K30, 1 % Ficoll 400; 20 x SSC: 3 M NaCl, 0.3 M Na citrate) and 

incubated for 1 hour at 50 °C in a rotating oven. Meanwhile, the probe was labelled using 

radioactive γ-32P-ATP. For this, the following setup was prepared: 14µl H2O, 1µl 20 µM 

Oligonucleotide, 2µl 10 x PNK buffer A, 1µl PNK (polynucleotide 5’hydroxyl-kinase) and 2 µl γ-

32P-ATP. The mixture was incubated at 37 °C for 30 – 60 minutes. To stop the labelling reaction, 

30 µl 30 mM EDTA was added. Using a MicroSpin G-25 Column (Illustra, GE Healthcare), all 

the free γ-32P-ATP was filtrated out of the sample. The probe was then added to the 

hybridisation solution in the hybridisation flask containing the membrane. After an 

incubation overnight, the membrane was washed using 30-50 ml of the washing solutions. 

The wash solution I (5 x SSC and 1 % SDS) was used twice, the wash solution II (1 x SSC and 

1 % SDS) once. Subsequently, the membrane was wrapped in saran foil and exposed onto a 

Phosphoimager screen. The detection was done using the Phosphoimager. 

4.2.2.9 Standard in vitro transcription 

The reaction was prepared in various sample sizes, ranging from 50 µl to 10 ml. 10 µg PCR 

product/linear vector/other DNA fragment was used for a 200 µl in vitro transcription (ivt) 

reaction. 20 µl of 10 x ivt-buffer (10 mM DTT, 0.01% Triton-X-100, 2 mM Spermidine and 30 

mM Tris-HCl, pH 8), 10 µl of NTP mix (0.2 M each), 5 µl of MgCl2 (1 M), 0.2 µl of Pyro-

phosphatase (Thermo) and 20 µl of a T7-RNA polymerase (2 mg/ml, purified by Dr. Thomas 

and Dr. Nora Treiber in the lab) were added. The setup was filled up to 200 µl with H2O. The 

ivt sample was incubated for 4 hrs at 37°C. Then, 1 µl DNase I (50 U/µl) was added, incubating 

for additional 15 min at 37°C. After that, the RNA was purified using Urea gels with acryl-amide 

concentrations depending on the RNA size. For that, the ivt setup was mixed equally with 2x 

RNA loading dye (formamide with bromophenol blue and xylene cyanol). The bands were 

then cut out at the right size using either UV-fluorescence from Ethidium Bromide staining or 

through UV shadowing at 254 nm which can be seen when using high amounts of RNA. 

4.2.2.10 In vitro transcription with 32P-labelled and modified NTPs, immune 

precipitation and digestion 

RNA oligos with different lengths (880 bp, 100 bp and 50 bp) were in vitro transcribed in four 

different setups. For the first two reactions, modified NTPs of interest in different ratios (0.1% 
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to 50 %) of the total NTPs were used. In one transcription mix, additional 32P-UTP was added, 

the other was non-radioactively transcribed. The second two control setups were transcribed 

using unmodified NTPs. For one of them, the radioactive sample, 32P-ATP was used. The four 

different samples were then DNase-digested and purified using the MEGAclearTM 

Transcription Clean-Up Kit (Ambion). For the non-radioactive samples, the concentration was 

determined using a NanoDrop Photometer, for the radioactive samples, the cpm-values were 

determined using the Cerenkov setting at a Scintillation-counter. The different RNA-solutions 

were then mixed to obtain equal cpm-values as well as same amounts (1.25 µg – 8 µg) for the 

modified and unmodified samples. These setups were then used for immune precipitation 

(see chapter 4.2.2.2). The precipitated RNA was digested using Nuclease P1 over night at 37°C. 

The single nucleotides were afterwards analysed via 1D thin layer chromatography. This 

method was elaborated together with Prof. Dr. Mark Helm and his PhD students Kaouthar 

Slama and Jasmin Hertler from the Johannes-Gutenberg University in Mainz. 

4.2.2.11 Thin layer chromatography (TLC) 

The digestion with nuclease P1 and the TLC was conducted as described earlier (e.g. Grosjean, 

Keith and Droogmans, 2004). The digested RNA was spotted on a TLC-plate which ran in 66 

% isobutyric acid and 1 % conc. ammonia for 3 – 4 hours. After drying, the signals were 

detected by exposure to a screen and scanning using a Phosphoimager (PMI, Bio-Rad). 

4.2.2.12 Electro Mobility Shift Assay (EMSA) 

For the EMSA, a native gel was prepared (6 %-gel: 12 ml 30 % acrylamide, 3 ml glycerol, 6 ml 

10 x EMSA, 480 µl 10 % APS, 48 µl TEMED and 39 ml H2O). As running buffer, 1 x EMSA buffer 

(45 mM Tris and 45 mM Borat) was used. The samples consisted of 1µl tRNA, a titration set of 

protein (usually from 0 to 500 ng) and 1 µl of the radioactively labelled RNA, filled up to 20 µl 

with gel-shift-buffer (GSB) buffer (1 x GSB: 100 mM MOPS, pH 7, 50 mM KCl, 5 mM MgCl2, 5 - 

10 % glycerol, 0 - 30 µg/ml heparin and 1 mM DTT). The samples were incubated on ice for 

15 min. The gel ran approximately 1 - 2 h at 260 V in the cold room. 

4.2.2.13 Dot blot 

8 µg of RNA-oligo were spotted on a nylon membrane. The RNA was EDC (1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide hydrochloride) cross-linked to the membrane. When 

using BSA-nucleoside conjugates, 20 µg was spotted and the membrane was baked at 80°C for 

1 h to crosslink. In both cases, the membrane was blocked in 1x TBS-T (150 mM NaCl, 10 mM 

Tris, pH 8.0, 0.1 % Tween) containing 5 % skimmed milk powder for 1 h at 4°C. The first 

antibody (hybridoma) was diluted 1:5 in a 5 % skimmed milk solution in TBS-T and incubated 
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over night at 4°C, shaking. The secondary antibody (α-mouse or α-rat [Licor]) was diluted 

1:10,000 in TBS-T and incubated for 1 hour. The documentation was conducted using the 

Odyssey scanner system (LI-COR Biosciences). 

4.2.2.14 Ligation of RNA fragments for the pulldown 

Before the ligation, the 5’-end of the in vitro transcribed 5’-fragments had to be 

dephosphorylated, since they are synthesized with a triple-phosphate by the T7-polymerase. 

This was done, using FastAP (Thermo Fisher Scientific) and the appropriate buffer. The 3’-

fragments, which were purchased by Axolabs had to be phosphorylated, since they are sent 

without 3’-phosphorylation. Here, PNK (Thermo Fisher Scientific), the PNK-buffer and 10 mM 

ATP (Thermo) were used. Both reactions were conducted at 37 °C for 1 h. After this 

preparation, the RNA was isolated and precipitated using P/C/I-solution (Roth). For the 

ligation, 40 µg of the 5’ fragment and 10µg of the 3’ fragment, 1 x Circligation buffer (10x: 0.5 M 

MOPS, pH 7.5, 0.1 M KCl, 50 mM MgCl2, 10 mM DTT), 50 µM ATP (Thermo), 20 % PEG6000 

(Thermo) and 1.5 µl/20 µl Circligase (purified in the lab, plasmid kindly provided by Dr. Jan 

Medenbach) were mixed and incubated for 3 hrs at 50 °C for the let7f2-hairpin and 5 hrs at 

40 °C for the mir29b2 hairpin. These temperatures and times were found to be the best in 

several optimisation experiments. The ligated products were then purified over an urea-gel 

using UV-shadowing and subsequently used for pulldown experiments (see 4.2.4.4). 

4.2.2.15 Digestion of poly-A RNA and subsequent HPLC analysis of nucleosides 

After poly-A purification of total RNA, using oligo dT magnetic beads (NEB, following the 

manufacturer’s protocol), the RNA was digested into single nucleosides using an enzyme mix, 

consisting of Benzonase and Phosphodiesterase I for 3 to 4 hours at 37°C. The nucleosides 

were resolved on a Hypercarb-column (5 µm, 100 x 2.1; Thermo Scientific) using the HPLC-

system “WellChrom” from Knauer, equipped with Pump K-1001, Diode Array Detector K-2800, 

column oven and a Vacuum Degasser from Techlab GmbH (Germany).The experiments were 

done, detecting at wavelengths ranging from 260 to 280 nm. The resulting chromatograms 

were analysed with the software ChromGate Client/Server Vers. 3.1.7. Gradients, using the 

buffers A (50 mM NH4CH3CO2, pH 5.0), B (20% 50 mM NH4CH3CO2, pH 5.0 / 80% acetonitrile) 

and C (50% acetonitrile) were applied at different temperatures (25°C, 55°C) and flow rates 

(0.2 ml/min, 0.25 ml/min), see Table 15 for details. For quantifying the percentage changes of 

the nucleoside concentrations between different samples, an equimolar amount of an internal 

standard (unmodified nucleoside) was added to the solution of the modified nucleoside. The 

peak area of the modified nucleoside was then normalized to the internal standard to correct 
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for loading errors and/or unspecific binding during processing. The HPLC analysis was 

performed by Robert Hett in the lab. 

 

Table 15: HPLC gradient protocols for analysis of nucleosides  

Time (min) Flow (ml/min) Buffer A (%) Buffer B (%) Buffer C (%) 

Gradient 1 (for purine analysis) 

0 0.25 100 0 0 

2 0.25 100 0 0 

2.1 0.25 65 35 0 

7 0.25 65 35 0 

22 0.25 0 100 0 

52 0.25 0 100 0 

Gradient 2 (for pyrimidine analysis) 

0 0.2 100 0 0 

2 0.2 100 0 0 

30 0.2 65 35 0 

35 0.2 65 35 0 

35.1 0.2 100 0 0 

45 0.2 100 0 0 

Gradient 3 (for Ψ analysis) 

0 0.2 100 0 0 

2 0.2 100 0 0 

30 0.2 44 0 56 

35 0.2 44 0 56 

35.1 0.2 0 100 0 

55 0.2 0 100 0 

4.2.2.16 Quality measurement of RNAs using the TAPE Station System 

The quality of RNAs with the Agilent 4200 TapeStation System (Agilent Technologies, 

Waldbronn) was determined according to the protocol Agilent High Sensitivity RNA 

ScreenTape System Guide. 2 µl of RNA (concentration between 0.5 and 10 ng/µl) or HS RNA 

ladder were mixed with 1 µl HS RNA Sample buffer, vortexed for 1 min, heated to 72°C for 3 

min and directly put on ice for 2 min. After centrifugation, the samples were loaded into the 

TapeStation instrument and measured using the High Sensitivity RNA ScreenTape. 
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4.2.3 Antibody-related methods 

4.2.3.1 Coupling of the nucleosides to ovalbumin 

The coupling protocol of nucleosides to ovalbumin (OVA) and bovine serum albumin (BSA) 

was conducted similar as described before (Erlanger & Beiser, 1964). 25 mg of the nucleoside 

were dissolved in 1.25 ml 0.1 M NaIO4 and incubated for 20 minutes at room temperature. 75 

µl 1 M ethylene glycol were added and incubated for 5 minutes at room temperature. 50 mg of 

OVA/BSA were dissolved in 5 ml H2O. The pH was set to 9 using a 5 % K2CO3 solution. After 

adding the oxidized nucleoside to the ovalbumin solution, the setup was stirred for 45 

minutes, whereby the pH had to be kept at 9. A freshly prepared reduction solution (75 mg 

NaBH4 in 5 ml H2O) was then added to the conjugate and incubated overnight at room 

temperature. Using 1 M formic acid, the pH was set to 5 – 6 and incubated for another hour at 

room temperature. The pH was then set to 8.5 using 1 M NH3. The setup was gel filtrated on a 

Superose 12 column (GE Healthcare) in 0.2 M ammonium formate, pH 8.5 (see Figure 9) For 

analysis, the absorption of a defined amount of the conjugate was measured via UV 

spectroscopy. The molar ratio of bound nucleoside per carrier protein was estimated by 

measuring the absorbance of the conjugate at 5 different wavelengths (250 nm, 260 nm, 270 

nm, 280 nm and 290 nm) and fitting the measured data to the corresponding calculated 

absorption values. The spectrum of the conjugate was hereby assumed to be the sum of 

nucleoside and carrier protein spectra, so that the absorbance could be easily calculated by 

the extinction coefficients at the different wavelengths and the composition of the 

constituents. To find the “best fit”-composition of nucleoside and carrier protein, a grid search 

with a resolution of 0.1 µg was conducted using the sum-of-squares of the differences between 

measured and calculated absorption values as fit indicator. The reaction setup as well as the 

analysis was conducted by Robert Hett. 

4.2.3.2 Immunization and hybridoma cell culture  

Immunization, the work with hybridoma cells and ELISA screening was performed in the 

laboratory of Dr. Regina Feederle, our collaboration partner in Helmholtz Center in Munich. 

Approximately 50 µg of modified nucleobases coupled to ovalbumin (OVA) were dissolved in 

PBS, emulsified in an equal volume of incomplete Freund’s adjuvant (Sigma) supplemented 

with 5 nmol CpG oligonucleotides (TIB Molbiol, Berlin), and injected both intraperitoneally 

(i.p.) and subcutaneously (s.c.) into Wistar rats (OVA-m6A) and C57BL/6N mice (OVA-m5C; 

Ova-Ψ). After 6 weeks, a boost with 50 µg of nucleobase-conjugated OVA without Freund’s 

adjuvant was given 3 days before fusion. Fusion of the myeloma cell line P3X63-Ag8.653 with 

splenic B cells of immunized rat or mouse was performed according to standard 
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procedures289. P3X63-Ag8.653 cells were cultured at 37°C in a humidified 5 % CO2 incubator 

in standard medium RPMI 1640 (Sigma/GIBCO), supplemented with 1% glutamine, 1 % non-

essential amino acids, 1 % sodium pyruvate, 1 % penicillin/streptomycin (Sigma), and 2.5 % 

FCS (PAN). Hybridoma cells were cultured in standard medium supplemented with 20 % FCS 

and 2 % HT supplement (Life Technologies).  

4.2.3.3 ELISA screening 

Hybridoma supernatants were tested in a solid-phase enzyme-linked immunoassay (ELISA) 

using the corresponding modified nucleobase coupled to BSA and non-modified nucleobase 

also coupled to BSA as a negative control. To identify m6A-specific candidate supernatants, 

96-well polystyrene plates were coated with the m6A-conjugated BSA overnight at room 

temperature (m6A-BSA: 2.5 µg/ml). In parallel, 96-well plates were coated with m2
6A and A 

(conc: 2.5 µg/ml). To identify m5C-specific antibodies, screening plates were coated with m5C 

(positive screen) and C (negative screen), for Ψ screening plates were coated with Ψ as well 

as C and U. For the other nucleosides, the coating was performed accordingly. After coating, 

the plates were washed once with PBS and unbound sites were blocked with 2 % FCS in PBS 

for 20 min. After washing off unbound nucleobase BSA-conjugates, hybridoma supernatants 

(1:10 diluted) were added and incubated for 30 min. After another wash with PBS, plates were 

incubated for 30 min with a mix of HRP-coupled subclass-specific mouse α-rat secondary 

antibodies or rat α-mouse secondary antibodies, depending on the organism, the antibody 

was generated in. After five washes with PBS, TMB substrate (1 Step Ultra TMB-ELISA; 

ThermoFisher Scientific Inc.) was added and the absorbance was measured at 650nm with a 

microplate reader (Tecan). To determine the subclass of all antibodies specific for the 

respective nucleoside, the BSA-nucleobase conjugates were coated onto 96-well polystyrene 

plates as described above, incubated with the hybridoma supernatants and then detected 

with HRP-linked antibodies specific for the different IgG subclasses of rat and mouse 

respectively. Selected hybridoma cells of supernatants, specific for the nucleoside were 

cloned at least twice by limiting dilution. 

4.2.3.4 Determination of the KD of the antibodies 

For the determination of the antibody bound fraction (BF) of a modified nucleoside, 6 samples 

of an equimolar mixture of the modified nucleoside with an internal standard were prepared 

in 6 different concentrations. The concentrations ranged from 75 µM to 250 µM. In order to 

maintain a constant ratio between the amount of the modified nucleoside and the internal 

standard, the dilutions were prepared out of a premixed stock solution with a concentration 

of 0.5 mM for each nucleoside. A volume of 20 µl of each of these mixtures were pipetted to 
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100 µl PBS (= Input sample) and to 100 µl PBS containing exactly the same amount of antibody 

for each sample (~ 150 µg) leading to initial nucleoside concentrations in the range of 12.5 µM 

to 41.7 µM. After incubation of the mixtures for 2 h at 4°C, the unbound nucleosides of the 

antibody-containing samples were separated by centrifugation (2 min., 14,000 g) using a 10 

kDa cut-off spin filter (Roti-Spin MINI, Roth). A volume of 40 µl of each input and filtrate-

sample was then applied to the HPLC with one replicate (see HPLC analysis of nucleosides).  

The two peaks of each chromatogram were integrated. The peak area of the modified 

nucleoside normalized to the peak area of the internal standard eventually gave the 

normalized peak areas of the modified nucleoside in the input sample (nucleoside input, NI) 

and in the filtrate of the antibody sample (nucleoside-antibody, NA) at the various 

concentrations. The antibody-bound fraction (BF) of the modified nucleoside can then be 

calculated by: BF = (NI – NA)/NI, which can be used to derive the concentrations of bound 

([AbN]) and free nucleoside ([N]) from the initial Nucleoside concentration ([N0]): [AbN] = BF 

x [N0] and [N] = (1 – BF) x [N0]. To get a first estimation of the values for KD and the maximal 

concentration of binding sites of the antibody ([Bmax]), the ratio [AbN]/[N] was plotted against 

[AbN] to obtain a Scatchard plot317,318. From this, the KD (dissociation constant) was estimated 

using the negative reciprocal value of the slope of the resulting regression line. The maximal 

concentration of binding sites is represented by the intersection point of the regression line 

with the x-axis. These estimates were then used to describe the binding with the following 

model:   [AbN]= 
[Bmax] *[N]

KD  +  [N]
  . To enhance the accuracy of the model-parameters, the measured 

data points were fitted with nonlinear regression, whereby the residual sum-of-squares 

between model and measured data points was minimized using Excel solver. Finally the 95%-

confidence limits of the model parameters were determined via the model comparison-

approach (F-test) as described by Motulsky and Christopoulos345. These measurements as 

well as the calculations were again performed by Robert Hett. 

4.2.3.5 miCLIP analysis 

The miCLIP experiments were executed largely following the protocol of Grozhik et al., 

2017334. The fragmentation of the total RNA was performed with ZnCl2 at 94°C for 5 min as it 

is described in Dominissini et al., 2013342. The fragmented total RNA was incubated with the 

antibody of interest for 2 h, rotating and afterwards UV-crosslinked, using 254 nm and 150 

mJ/cm2. Using protein G dynabeads (Invitrogen), the crosslinked RNA was precipitated for 2 

h while rotating. After several washing steps, the RNA, attached to the antibody and beads 

was dephosphorylated and 5’-radiolabeled with γ-32P-ATP. The beads were then resuspended 

in SDS-loading dye for elution. After SDS-PAGE, the gel was wet-blotted onto a nitrocellulose 
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membrane at 90 V for 90 min. The radioactive signals were then detected using a Phospho-

imager (PMI, Bio-Rad). 

4.2.4 Protein analysis 

4.2.4.1 Protein immunoprecipitation 

Cells transfected with plasmids encoding proteins of interest or untransfected cells were 

harvested and lysed using lysis buffer (25 mM Tris/HCl pH 7.4, 150 mM KCl, 0.5 % NP-40, 2 

mM EDTA, 1 mM NaF, 0.5 mM DTT, 0.5 mM AEBSF). Of this filtrate, 1 % input was removed for 

western blot analysis. For the bead preparation, 30 µl protein G coupled Sepharose beads 

were washed twice in cold 1xPBS (140 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4 and 1.8 mM 

KH2PO4, pH 7.5). The antibody of interest was added to a final concentration of 5 µg antibody 

per 50 µl bead slurry, diluted in 500 µl 1xPBS per setup. This setup was incubated overnight 

at 4°C under agitation. The next day, the beads were washed three times with lysis buffer and 

left in the last washing buffer until the lysates were ready. 200 µl of washed beads were added 

to each setup and incubated at 4°C for 3 hrs under agitation. Using the completed Co-IP wash 

buffer (50 mM Tris/HCl pH7.4, 300 mM KCl, 1 mM MgCl2, 1 % NP-40, 0.5 mM DTT, 0.5 mM 

AEBSF) , the beads were washed 4 times including a change of reaction tubes. Between the 

steps, the beads were centrifuged at 1000 x g for 1 min. To elute the proteins off the beads, the 

supernatant was taken off completely and 5x La mmli buffer + β-mercaptoethanol was mixed 

to the beads and the input and IP samples were loaded onto a SDS-gel for subsequent western 

blot analysis. For northern blot analysis, TRIzol (Invitrogen) was added directly onto the 

beads to elute the RNA off the beads. 

4.2.4.2 SDS Polyacrylamide Gel Electrophoresis  

The samples were mixed with 5 x La mmli buffer (300 mM Tris/HCl pH 6.8, 10 % SDS, 62.5 % 

glycerol, 0.05 % bromophenol blue, 10 % β-mercaptoethanol) and incubated at 95 °C for 5 

min. For pouring the gel, first the separation gel (380 mM Tris/HCl pH 8.8, 6-15 % 

Acrylamide/Bis solution (37.5 : 1), 0.1 % SDS, 0.1 % TEMED, 0.05 % APS) and later the stacking 

gel (125 mM Tris-HCl pH 6.8, 5 % Acrylamide/Bis solution (37.5 : 1), 0.1 % SDS, 0.15 % TEMED, 

0.05 % APS) were prepared. The gel ran at 180 to 200V in SDS Running buffer (25 mM Tris, 

192 mM glycine, 1 % SDS). To evaluate the separated protein bands, western blot analysis, 

Coomassie or silver staining was performed. 

4.2.4.3 Semi-dry Western Blot 
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The proteins from an SDS-gel were transferred directly onto a PVDF (polyvinylidenfluorid) 

membrane via semi-dry blotting. Three whatman papers and a nitrocellulose membrane of 

the exact same size as the gel were soaked with 1 x Towbin buffer (25 mM Tris, 192 mM glycine, 

20 % methanol, pH 8.6) and placed onto the blotting surface. Then, the gel and another three 

whatman papers were soaked with Towbin buffer and put onto the membrane. The voltage 

must not exceed 25 V. The current in mA was determined by multiplying the size of the gel (in 

cm2) by 2. The blot ran for 90 minutes. After blotting, the membrane was incubated in 5% milk 

(analytical milk powder in 1 x TBS-T (10 mM Tris, 150 mM NaCl, 0.05 % Tween, pH 8.0)) for an 

hour to block the unspecific protein binding sites. The primary antibody, diluted in 5% milk 

was incubated for an hour on the membrane. The membrane was then washed trice with TBS-

T. The secondary antibody was then incubated for a further hour. After another three washing 

steps, the membrane was analysed using the Odyssey analyser by Licor. 

4.2.4.4 Pulldown of RBPs using RNA hairpins 

First, 50 µl Dyna beads Streptavidin M270 (Invitrogen/Thermo Fisher) per experiment were 

washed twice with pulldown buffer (50 mM Tris, pH 8, 150 mM NaCl, 5% Glycerine) using a 

magnetic rack. The beads were resuspended in 200 µl pulldown buffer and 4 µg of the RNA-

Hook (2’O-biotinylated RNA fragment) were added. This setup was incubated for 2 hrs at 4°C, 

shaking. Subsequently, the beads were washed thrice with pulldown buffer. Half of the beads 

were taken for the preclear and stored until needed. 10 µg RNA-hairpin were added to the 

beads in 500 µl buffer and incubated overnight at 4°C, shaking. Since the ligation of the hairpin 

was not as productive, RNA had to be reused for saving purposes. Thus, the supernatant of 

the first coupling was used for two more rounds of fresh beads. 1 – 2 15 cm plates of the cells, 

in this case HEPG2, N-Tera2 and HEK293T cells, were sonified in pulldown buffer with 

additional 1 mM AEBSF and 1 mM DTT (completed pulldown buffer). The setting of the 

sonicator was 50 % duty cycle, output 4 with 2 x 20 pulses. After that, the cell suspension was 

centrifuged at 32,000 x g for 10 min at 4°C. From the lysate, a Bradford test should show 

around 5 – 10 mg/ml protein. The next step was the preclear, where the hook-coupled beads 

were incubated with the lysate for 4 hrs. Afterwards, the pulldown was conducted. The 

precleared lysate was incubated with the hook-RNA-coupled beads overnight at 4 °C, shaking. 

The last steps were the washing, first with completed pulldown buffer with additional 150 mM 

NaCl, then completed pulldown buffer with 0.1% Triton-X100 and lastly with completed 

pulldown buffer. The elution was done using NuPAGE LDS-sample buffer (Invitrogen). The 

analysis was carried out on NuPAGE Bis-Tris Gels (Invitrogen). 

The protocol for the pulldown of RBPs using RNA hairpins was developed and optimised by 

Dr. Nora Treiber and Dr. Thomas Treiber346,347. For more background, see chapter 2.2.1. 
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4.2.4.5 Sample preparation for mass spectrometry analysis 

The SDS gel was washed twice with pure H2O, stained with p.a. Coomassie and destained with 

p.a. ethanol and acidic acid. Small pieces of the gel band of interest were cut out and 

transferred into 2 ml Eppendorf tubes and washed with 500µl 50 mM NH4HCO3 for 15 - 30 min, 

shaking vigorously. The gel pieces were washed the same way with 50 mM 

NH4HCO3 : acetonitrile (3 : 1), then 10 mM NH4HCO3 : AN (3: 1) and finally with 10 mM 

NH4HCO3 : acetonitrile (1 : 1), discarding the supernatant at every step. After removing the 

liquid completely, the samples were lyophilized for 1 h. The gel pieces were then covered with 

100 µ of 1 mg/ml DTT in 100 mM NH4HCO3, pH 8 and incubated at 50°C for 1 h. After taking off 

the supernatant, free Cystein-Thiolgroups were alkylated using 200 µl of 5mg/ml Iodoacetic 

acid (IAA) in 50 mM NH4HCO3. The reaction was conducted for 35 min at RT in the dark. 

Subsequently, the gel samples were washed four times and lyophilized like it was done before. 

The next step was the Trypsin digestion. 5 g Trypsin powder (Sigma) was solved in 750 µl 1 

mM HCl. Of that, 30 µl were mixed with 70 µl of 50 mM NH4HCO3 and the gel pieces were 

rehydrated using this solution and incubated at 37°C overnight. The Elution was conducted 

for 1 – 2 hrs at RT. It was eluted twice with 100 µl 100 mM NH4HCO3 and once with 

NH4HCO3 : acetonitrile (2 : 1). The samples were then lyophilized again and measured at the 

Mass spectrometer MaXis (Bruker) by Eduard Hochmuth at the chair of Dr. Astrid Bruckmann 

in Regensburg. 

4.2.5 Cell culture work 

The human cell lines used for this thesis are listed in Table 13. 

4.2.5.1 Preparation of Whole Cell Lysates from Human Cell Lines 

A plate of confluent cells were washed once with cold 1xPBS. Using a cell scraper, the cells 

were scraped off the plate and transferred into a reaction tube. To pellet the cells, they were 

centrifuged at 500 x g for 5 min at 4°C. The cell pellet was thoroughly resuspended in 1 ml of 

lysis buffer (25 mM Tris-HCl, pH 7.4, 150 mM KCl, 0.5 % NP-40, 2 mM EDTA, 1 mM NaF). After 

incubating for 20 minutes on ice, the sample was centrifuged at full speed for 20 minutes at 

4°C. The supernatant was then subjected to immunoprecipitation experiments or directly 

loaded onto a SDS gel. 

4.2.5.2 Cultivation and Passaging of Human Adherent Cell Lines 

The adherent cell lines used for this thesis were cultivated at 37°C and 5 % CO2. The growth 

media was DMEM (Dulbecco’s modified eagle media) containing 10 % FBS (fetal bovine 
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serum) and 1 % Penicillin/Streptavidin. For splitting and passaging the cells, the old media 

was aspirated and the cells were washed cautiously with 1 x PBS. 1 - 2 ml of Trypsin were 

added in order to cleave cell-cell and cell-matrix contact proteins. Completed DMEM, was 

added to the trypsinated cells to stop the reaction. This cell suspension was then partially 

passaged into a new sterile plate. 

4.2.5.3 Cultivation and Passaging of HeLa suspension cells 

HeLa S3 suspension cells were cultivated in Joklik’s medium (1.1 % Minimum Essential 

Medium Eagle (MEM) powder, 20 mM L-Glutamine, 1 % Penicillin/Streptavidin, 1 % Non-

Essential Amino Acid Solution (NEAA), 24 mM NaHCO3 and 10 % FBS) in various sizes of 

spinner flasks at 37°C and 5 % CO2. 

4.2.5.4 Transfection of HEK 293T Cells with Calcium Phosphate 

To overexpress a protein, a vector containing the respective DNA has to enter the nucleus of 

the cell. To accomplish this, calcium phosphate precipitation transfection was used. For a 15 

cm plate the following reagents were pipetted into a tube: 860 µl H2O, 122 µl CaCl2, 4-10 µg 

DNA, 1 ml 2 x HEPES buffer (115 mM NaCl, 1.2 mM CaCl2, 1.2 mM MgCl2, 1.2 MgCl2, 2.4 mM K2HPO4, 

20 mM HEPES, pH 7.4). The tube was mixed thoroughly after addition of each component. 

After a short incubation at room temperature, the solution was pipetted onto the adherent 

cells.  

4.2.5.5 Transfection of HeLa Cells with Lipofectamine 

For subsequent usage in immunofluorescence, transfection of HeLa cells was performed with 

lipofectamine to avoid Ca3(PO4)2-precipitates. The transfection was done at a cell confluency 

of 70-90 % in DMEM-media without any antibiotics. Lipofectamine 2000 was used for the 

transfection of DNA. For a 6 well (2 cm diameter), two tubes each containing 250 µl OptiMem 

were prepared. In one, 1 µg of the DNA was added and in the other 5 µl of Lipofectamine 2000 

were added. The samples were mixed and incubated for 5 minutes at room temperature. After 

pipetting the lipofectamine sample to the DNA sample, the setup was incubated for 20 min at 

room temperature and then pipetted onto the cells. To knock a gene down, siRNAs (small 

interfering RNAs) were used. The transfection reagent for the RNAi (RNA interference) was 

Lipofectamine RNAi Max. 50 µM siRNA and 5 µl Lipofectamine RNAiMax were added to 500 µl 

OptiMem. The following steps were the same as in DNA-transfection with Lipofectamine 

2000. 

4.2.5.6 Immunofluorescence 
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For localization of proteins in the cell, the proteins can be visualised using antibodies and a 

fluorescence microscope. The cells were split into 24-well plates using DMEM without 

antibiotics. The next day, the cells were transfected with Lipofectamine 2000. The following 

day, the cells were split onto cover-slips (12 mm), so that they had a confluence of about 50 % 

the next day. On the fourth day, the cells were washed with pre-warmed (37°C) PBS-A (0.2 g/l 

KCl, 0.2 g/l KH2PO4, 8 g/l NaCl, 2.2 g/l Na2HPO4 7H2O, pH 7.4). The cells must not dry out and 

thus, the following solutions were aspirated and at the same time, the new solution was 

added. The cells were fixed to the cover-slips by adding pre-warmed fixation solution (37 g/l 

Paraformaldehyde in PBS-A) and incubating them for 10 min at 37°C. This fixation was 

stopped, using PBS-G (7.5 g/l glycine in PBS-A), which was incubated for 5 min. The cover-

slips were then washed twice with PBS-A. After this step, the handling was done on the non-

sterile bench. The cells were permeabilised with a 15-min incubation at room temperature 

with the permeabilisation buffer (0.2 % Triton X-100 in PBS). After three washing steps with 

the blocking solution (1 % BSA (Cohn fraction V), 0.05 % Triton-X-100 in PBS), the cells were 

blocked for 1 h at room temperature with blocking solution. The primary antibody was 

prepared in blocking solution and also incubated for 1 h on the cover slips. To save antibody, 

only 30 µl were prepared and the cover-slips were placed upside down onto a strip of parafilm 

with the drop of antibody solution. After four wash steps with blocking solution, incubation 

with the secondary antibody for 1 h followed (ALEXA antibodies, diluted 1:400 in blocking 

solution). The last washing steps with blocking solution and PBS-A (4 x) should wash out all 

the unbound antibodies. The cover-slips were then mounted with prolong gold containing 

DAPI onto microscopy slides. Simultaneously, DAPI stained the nuclei. The image acquisition 

was performed, using the confocal laser scanning microscopy platform Leica TCS SP8 

equipped with acousto-optical beam splitter, 405 nm laser (for DAPI) and argon laser (488 

nm for α-rat and α-rabbit Alexa 488(Invitrogen)). A multidimensional image with the 

wavelengths of the used secondary antibody-coupled fluorescent pigments was recorded. 

Signal intensity was quantified using ImageJ (Wayne Rasband, NIH).  

 

A number of the methods and other content of this chapter are part of the manuscript 

Generation and validation of monoclonal antibodies specific to modified nucleotides, Saller, F. et 

al., which was under revision for publication at the time of writing this thesis. 
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5.2 Supplemental Material 

5.2.1 Complete list of antibodies 

Table 16: Antibody clones against RNA base modifications, generated in the course of this work. The 

respective base modification, species, in which it was generated, the clone number and subtype of each antibody 

clone is listed below. The in the right part, the performance in the particular tests (dotblot, immunoprecipitation, 

competition assay, ivt-TLC experiment) of each clone is depicted. The most right column shows, if a clone was 

established (+) or not (-). 

Modification 
Source 

organism 
Clone Subtype Dotblot IP Comp. 

ivt-
TLC 

Established 

m5U rat 15D4    +  - ~  -  + 

m5U rat 19D1    -  -  - n.a.  - 

m5U rat 22B2    -  -  - n.a.  - 

m5U mouse 25F5   ~  -  + n.a.  - 

m5U mouse 28 E6    + ~  +  -  + 

m5U rat 24B3 2a  ~  +  - n.a.  - 

m5U rat 3F8 2a  ~  +  ~ n.a.  - 

m5U rat 24G8 2a  ~  +  +  ~  - 

m5U rat 22H4 2b  -  -  - n.a.  - 
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m5U rat 2D2 2c  +  +  ~ n.a.  - 

m26A rat 1B3    +  -  + n.a.  - 

m26A rat 1B9    +  -  - n.a.  - 

m26A rat 1C8    +  -  - n.a.  - 

m26A rat 1F6   ~  -  - n.a.  + 

m26A rat 1H7   ~  +  + n.a.  + 

m26A rat 2C4    +  -  - n.a.  - 

m26A rat 58H10    +  +  + n.a.  + 

m26A rat 60G3    +  +  + n.a.  + 

Ψ mouse 25C6 2b  +  -  +  -  + 

Ψ mouse 26H5 2b  +  +  +  -  + 

Ψ mouse 26A7 2a  + ~  - n.a.  - 

Ψ mouse 35C6 2a  -  -  - n.a.  - 

Ψ mouse 27C8 2b  - ~  +  ~  + 

Ψ mouse 32 E 9 2a  +  -  - n.a.  - 

m5C rat 10F8 G1  -  -  - n.a.  - 

m5C mouse 26B7 2a, G1  +  -  - n.a.  - 

m5C mouse 31B10 G1  +  + ~  ~  + 

m5C mouse 31D1 G1  +  -  - n.a.  - 

m5C mouse 31E 12 2a  +  -  -  n.a.  - 

m5C mouse 32E 2 2a  +  +  +  +  + 

m5C mouse 25F6 G1  -  -  - n.a.  - 

m5C mouse 28F6 2b  +  + ~  +  + 

m5C mouse 25H1 G1  +  -  - n.a.  - 

m5C mouse 29H9 2b, G1  +  -  - n.a.  - 

m3U mouse 25A1 G1  ~  -  - n.a.  - 

m3U mouse 28A7 2b  -  -  - n.a.  - 

m3U mouse 27C8 G1 ~  -  - n.a.  - 

m3U mouse 26D11 2b  -  -  - n.a.  - 

m3U mouse 28D11 G3, 2b  +  +  + n.a.  + 

m3U mouse 32F5 G1  +  + ~ n.a.  + 

m3U mouse 25G8 2a  ~  -  - n.a.  - 

m3U mouse 29H8 G1  ~  -  - n.a.  - 

m3U rat 4A7 2a  ~  -  - n.a.  - 

m3U rat 6A2 2a  ~  +  + n.a.  + 

m3U rat 1B6 2a  +  +  + n.a.  - 

m3U rat 13B8 2a  +  -  - n.a.  - 

m3U rat 23B1 G1, 2c  +  +  + n.a.  - 

m3U rat 3C7 2a  -  -  - n.a.  - 

m3U rat 10C2 2a  +  + ~ n.a.  + 

m3U rat 9D7 2a  +  -  - n.a.  - 

m3U rat 1F8 G1  +  +  + n.a.  - 

m3U rat 10F10 G1  -  -  - n.a.  - 

m3U rat 13F4 2c  -  -  - n.a.  - 

m3U rat 23F8 2a  +  -  - n.a.  - 
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m3U rat 38D11 2b  +    + n.a.   + 

m6A rat 14D11 2b  -  -  - n.a.  - 

m6A rat 1H9 2a + 2c  -  -  - n.a.  - 

m6A rat 23D10 2b  -  -  - n.a.  - 

m6A rat 2F2 G1  -  -  - n.a.  - 

m6A rat 14H7 G1  -  -  - n.a.  - 

m6A rat 16D11 2b  -  -  - n.a.  - 

m6A rat 1A10 G1 + 2a  -  -  - n.a.  - 

m6A rat 15D6 2b  -  -  - n.a.  - 

m6A rat 15C12 G1 + 2a  -  -  - n.a.  - 

m6A rat 13G9 G1  -  -  - n.a.  - 

m6A rat 16D3 2a  -  -  - n.a.  - 

m6A rat 16B7 2b  -  -  - n.a.  - 

m6A rat 11E 1 2a + 2c  -  -  - n.a.  - 

m6A rat 15B8 2b  -  -  - n.a.  - 

m6A rat 8C11 G1  -  -  - n.a.  - 

m6A rat 21A11 G1  -  -  - n.a.  - 

m6A rat 11G9 G1  -  -  - n.a.  - 

m6A rat 2E 9 G1  -  -  - n.a.  - 

m6A rat 18E 12 G1  -  -  - n.a.  - 

m6A rat 23B12 2a + 2c  -  -  - n.a.  - 

m6A rat 12F4 2a  -  -  - n.a.  - 

m6A rat 11A5 2a  -  -  - n.a.  - 

m6A rat 11B7 G1 + 2a  +  -  - n.a.  - 

m6A rat 11C3 2a  +  -  - n.a.  - 

m6A rat 5C5 2a  +  +  - n.a.  - 

m6A rat 13G10 2a  +  +  - n.a.  - 

m6A rat 11D11 G1  +  +  +  +  + 

m6A rat 11B9 2a  +  +  - n.a.  - 

m6A rat 13G2 2a  +  +  +  +  + 

m6A rat 13C5 2a  +  +  - n.a.  - 

m6A rat 13D2 2a  +  +  - n.a.  - 

m6A rat 13F3 2a  -  -  - n.a.  - 

m6A rat 13F12 2a  -  -  - n.a.  - 

m6A rat 5E 2 2a  -  -  - n.a.  - 

m6A rat 5D7 2a  +  +  - n.a.  - 

m6A rat 4H6 2a  -  -  - n.a.  - 

m6A rat 2A6 2b  -  -  - n.a.  - 

m6A rat 5A10 2a  -  -  - n.a.  - 

m6A rat 5F10 2a  +    - n.a.  - 

m6A rat 5A1 2a  -  -  - n.a.  - 

m6A rat 4C10 2b  -  -  - n.a.  - 

m6A rat 7E 4 2a  -  -  - n.a.  - 

m6A rat 5H1 2a  -  -  - n.a.  - 

m6A rat 4D9 2a  -  -  - n.a.  - 

m6A rat 6A10 2a  -  -  - n.a.  - 
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m6A rat 8E 10 2a  +  -  - n.a.  - 

m6A rat 6H9 2a  -  -  - n.a.  - 

m6A rat 9C9 2a  +  -  - n.a.  - 

m6A rat 2A1 G1  +  -  - n.a.  - 

m6A rat 8G9 2b  -  -  - n.a.  - 

m6A rat 6E 7 2a  +  -  - n.a.  - 

m6A rat 9B7 G1 + 2a  +  +  +  +  + 

m6A rat 7E 10 2a  -  -  - n.a.  - 

m6A rat 7D9 2a  -  -  - n.a.  - 

m6A rat 6B10 2b  -  -  - n.a.  - 

m6A rat 10C11 2a  -  -  - n.a.  - 

m6A rat 10A7 2a  +  +  - n.a.  - 

m6A rat 9E 6 2a  -  -  - n.a.  - 

m6A rat 8F5 2a  +  -  - n.a.  - 

m6A rat 11B4 2a  +  +  - n.a.  - 

m6A rat 9D4 2a  +  -  - n.a.  - 

m6A rat 9A5 2a  -  -  - n.a.  - 

m6A rat 12A5 G1  -  -  - n.a.  - 

m6A rat 19B7 G1  +  +  +  +  + 

m3C rat 13A7 2b  ~  -  - n.a.  - 

m3C rat 5H2 2b  +  ~  - n.a.  - 

m3C rat 5H9 2b  +  -  - n.a.  - 

m3C rat 15H5 2a  +  +  + n.a.  + 

m3C rat 13E 2 2a  +  + ~ n.a.  + 

m3C rat 21F3 2a  ~  -  - n.a.  - 

m3C rat 22D9 2c ~  -  - n.a.  - 

m3C rat 21B5 2b  ~  -  - n.a.  - 

m3C rat 14A11 2c  ~  -  - n.a.  - 

m3C rat 23F10 2b  +  ~  - n.a.  - 

m3C rat 13A5 2b  +  -  - n.a.  - 

m3C rat 16A10 2b  ~  -  - n.a.  - 

m3C rat 21F12 2b  ~  -  - n.a.  - 

m3C rat 16H1 2b  +  ~  - n.a.  - 

m3C rat 6F2 2b ~  -  - n.a.  - 

m3C rat 6E 11 2b  ~  -  - n.a.  - 

m3C rat 4D6 2c  ~  -  - n.a.  - 

m3C rat 5D5 2b  +  +  ~ n.a.  + 

m3C rat 7F1 2c  +  +  ~ n.a.  - 

m3C rat 7B5 2c ~  -  - n.a.  - 

m3C rat 5C11 2c  +  +  - n.a.  - 

m3C rat 1B11 2c  +  +  + n.a.  + 

m3C rat 1A6 2b/c ~  -  - n.a.  - 

m3C rat 4D8 2c  ~  -  - n.a.  - 

m3C rat 3C1 2b2c +  +  - n.a.  - 

m3C rat 5F5 2c  +  -  - n.a.  - 

m3C rat 1B7 2c  +  +  + n.a.  + 
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m3C rat 1E 5 2c ~  -  - n.a.  - 

m3C rat 4B2 2a ~  -  - n.a.  - 

m3C rat 1C3 2b ~  -  - n.a.  - 

m3C rat 18A3 2c  +  +  ~ n.a.  - 

m3C rat 7F8 2c  +  ~  - n.a.  - 

m3C rat 6C1 2c  +  ~  - n.a.  - 

m1G rat 24F8 2b  -  -  - n.a.  - 

m1G rat 6A3 2b  ~  -  - n.a.  - 

m1G rat 22H3 2b  -  -  - n.a.  - 

m1G rat 10G4 2c  ~  -  - n.a.  - 

m1G rat 13C11 2a  +  -  - n.a.  - 

m1G rat 13G4 2b  -   -  - n.a.  - 

m1G rat 15B9 2c  ~  -  - n.a.  - 

m1G rat 7F3 2b  +  -  - n.a.  - 

m1G rat 24B3 2b&c  +  -  - n.a.  - 

m1G rat 16H6 2a&b ~  -  - n.a.  - 

m1G rat 14F11 2b  +  ~  - n.a.  - 

m1G rat 15D7 2a  ~  -  - n.a.  - 

m1G rat 20A1 2c  ~  -  - n.a.  - 

m1G rat 7B3 2b  -  -  - n.a.  - 

m1G rat 19C9 2c  ~  -  - n.a.  - 

m1G rat 17F7 2c  +  -  - n.a.  - 

m1G rat 20D4 2c  -  -  - n.a.  - 

m1G rat 5H7 2b  -  -  - n.a.  - 

m1G rat 6E 3 2b  +  +  + n.a.  + 

m1G rat 18H9 2a  -  -  - n.a.  - 

m1G rat 20G6 2c  ~  -  - n.a.  - 

m1G rat 19H4 2b  +  +  + n.a.  + 

m1G rat 19E 2 2c  ~  -  - n.a.  - 

m1G rat 4G10 2a  +  +  + n.a.  + 

m1G rat 19C11 2a  +  -  - n.a.  - 

m1G rat 18H5 2a  -   -  - n.a.  - 

m1G rat 20F2 2c ~  -  - n.a.  - 

m1A rat 5E 3 2b  +  +  + n.a.  + 

m1A rat 14B10 2b  +  +  + n.a.  + 

m1A rat 23F11 2b  ~  -  - n.a.  - 

m1A rat 5H11 2a  ~  -  - n.a.  - 

m1A rat 6A7 2b  ~  -  - n.a.  - 

m1A rat 21G5 2b  ~  -  - n.a.  - 

m1A rat 5F4 2b  ~  -  - n.a.  - 

m1A rat 21F3 2a  ~  -  - n.a.  - 

m1A rat 6E 1 2b  ~  -  - n.a.  - 

m1A rat 20C1 2a  ~  -  - n.a.  - 

m1A rat 8D8 2b  ~  -  - n.a.  - 

m1A rat 10G1 2b  ~  -  - n.a.  - 

m1A rat 17A10 2b  ~  -  - n.a.  - 
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m1A rat 3C11 2b  ~  -  - n.a.  - 

m1A rat 21C4 2b  ~  -  - n.a.  - 

m1A rat 13A6 2b  ~  -  - n.a.  - 

m1A rat 14A8 2b  ~  -  - n.a.  - 

m1A rat 3G3 2b  ~  -  - n.a.  - 

m1A rat 15D2 2b  ~  -  - n.a.  - 

m1A rat 23F12 2b  ~  -  - n.a.  - 

m1A rat 16F1 2b  ~  -  - n.a.  - 

m1A rat 17D11 2b  ~  -  - n.a.  - 

m1A rat 13G7 2b  ~  -  - n.a.  - 

m1A rat 14G9 2b  ~  -  - n.a.  - 

m1A rat 18F9 2b  ~  -  - n.a.  - 

m1A rat 16A7 2b  ~  -  - n.a.  - 

m1A rat 13B7 2b  ~  -  - n.a.  - 

m1A rat 14C1 2b  ~  -  - n.a.  - 

m1A rat 17C1 2b  +  ~  ~ n.a.  - 

m1A rat 5G5 2b  ~  -  - n.a.  - 

m1A rat 13A9 2b  ~  -  - n.a.  - 

m1A rat 18H2 2b  ~  -  - n.a.  - 

m1A rat 19B4 2b  +  +  + n.a.  + 

m1A rat 13F10 2b  ~  -  - n.a.  - 

 

 

 

 

 

 

5.2.2 Binding models and Scatchard plots for KD determination 
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Figure 43: Complete list of Scatchard plots and binding models for the determination of the KD-values of 

the antibodies. (A) – (C) shows the data for all the m6A antibodies 9B7, 13G2 and 11D11. (D) – (F) depicts scatchard 

plots and binding models for m5C antibody clones 32E2, 31B10 and 28F6. (G) and (H) show the data for the Ψ-
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antibodies 26H5 and 27C8. (I) Data for the m26A clone 60G3. (J) and (K) depict KD-determination data for m1G 

antibody clones 6E3 and 4G10. The antibody clone m1G 4G10 shows unspecific binding to G at higher concentration, 

which is depicted with red squares. In (L), the data for the m3U antibody is shown. The binding model includes 

binding data of the antibody to m3U (squares) and to unmodified U (triangles). 

5.2.3 Relevant pulldown data 

5.2.3.1 1-Methyladenosine pulldown data 

Table 17: Candidates for the m1A pulldown. The proteins, listed here are potential m1A binding proteins. On the 

left side, they are ranked by the height of the score, the right side shows the ranking by peptide amounts in the 

samples. The preclear, score results for the RNA base modifications m1A, m6A and m26A and the compared peptide 

occurrences are shown. 

 sorted by peptide score   sorted by peptide amount 

  score peptides    score peptides 

protein Pc m1A m6A m26A A 
m
1
A 

m
6
A 

m2
6A 

 protein Pc m1A m6A m26A A 
m
1
A 

m
6
A 

m
26
A 

TBA4A  921    1 -1 -1  PLAK 124 152  25 42 4 -5 -4 

H2B1M  711   575 1 -2 -2  UN45A  71,3    3 -3 -3 

FXR1 212 398 364 300 197 0 0 -1  RBM40  60,7 45,3 49  3 -3 -4 

FXR2 166 358 337 333 210 -1 1 -2  ZC3H8  43  30  3 -5 -3 

VSIG8  352    1 -1 -1  SYTC2  239 157 175  2 -2 -2 

YTDC2 161 340 280 233 96,2 -1 1 -1  TPM2  123    2 -2 -2 

SYTC2  239 157 175  2 -2 -2  TBL2 72 86 50 50 32 2 -2 -3 

MCA3  230 203 185 76,6 1 -1 -1  EXOS8 64,7 76,4 66,7 38 62 2 -2 -4 

FUBP3 96 220 189 204 154 0 0 -2  RCC1  75,7 59 35  2 -2 -2 

DICER  197 175 89 46 1 -2 -1  GSTP1  55    2 -2 -2 

1433G  157    1 -1 -1  L2HDH  52,7 38 25 38 2 -2 -2 

PLAK 124 152  25 42 4 -5 -4  THUM1  52 48 27  2 -2 -2 

NACAM  135    1 -1 -1  TBA4A  921    1 -1 -1 

TGM3  127 35  97 1 -1 -2  H2B1M  711   575 1 -2 -2 

TNIK  125  110  1 -2 -1  VSIG8  352    1 -1 -1 

NUCB1  124    1 -1 -1  MCA3  230 203 185 76,6 1 -1 -1 

TPM2  123    2 -2 -2  DICER  197 175 89 46 1 -2 -1 

RADI  122    1 -1 -1  1433G  157    1 -1 -1 

EZRI  121    1 -1 -1  NACAM  135    1 -1 -1 

DIM1 67,7 117 93 95 77,6 -2 2 -2  TGM3  127 35  97 1 -1 -2 

LAP2A  115    1 -1 -1  TNIK  125  110  1 -2 -1 

PINX1 74,5 101 80,7 55,6 63,7 1 -2 -1  NUCB1  124    1 -1 -1 

S10A3  90    1 -1 -1  RADI  122    1 -1 -1 

LYG2  88    1 -1 -1  EZRI  121    1 -1 -1 

MYO15  88    1 -1 -1  LAP2A  115    1 -1 -1 

PHF5A 27 87,7 56,5 46,5  1 -1 -1  PINX1 74,5 101 80,7 55,6 63,7 1 -2 -1 

TBL2 72 86 50 50 32 2 -2 -3  S10A3  90    1 -1 -1 

RT18B 74,3 84,2 68,8 69,6 62 1 -1 -1  LYG2  88    1 -1 -1 

INCE  83    1 -1 -1  MYO15  88    1 -1 -1 
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SPF27 63 82,4 74,6 69,3 42,7 1 -1 -1  PHF5A 27 87,7 56,5 46,5  1 -1 -1 

RN3P2 73,3 82 60,3 52 34 -2 0 0  RT18B 74,3 84,2 68,8 69,6 62 1 -1 -1 

RBBP6  82    1 -1 -1  INCE  83    1 -1 -1 

EXOS8 64,7 76,4 66,7 38 62 2 -2 -4  SPF27 63 82,4 74,6 69,3 42,7 1 -1 -1 

RCC1  75,7 59 35  2 -2 -2  RN3P2  82    1 -1 -1 

UN45A  71,3    3 -3 -3  AMYP  68    1 -1 -1 

AMYP  68    1 -1 -1  DMBT1  67    1 -1 -1 

DMBT1  67    1 -1 -1  G45IP  67 28 33  1 -1 -2 

G45IP  67 28 33  1 -1 -2  WDR55  65    1 -1 -1 

WDR55  65    1 -1 -1  RALA 57 64,3 32 40 37 1 -2 -2 

RALA 57 64,3 32 40 37 1 -2 -2  DI3L2  62 40 27  1 -1 -1 

DI3L2  62 40 27  1 -1 -1  BT1A1  62    1 -1 -1 

BT1A1  62    1 -1 -1  PADI4  61    1 -1 -1 

PADI4  61    1 -1 -1  UCHL5  60    1 -1 -1 

RBM40  60,7 45,3 49  3 -3 -4  FEN1 39 59,5 29   1 -1 -2 

UCHL5  60    1 -1 -1  MET17  59 33,5 50  1 -1 -2 

FEN1 39 59,5 29   1 -1 -2  PEF1  59    1 -1 -1 

MET17  59 33,5 50  1 -1 -2  THOC7  57    1 -1 -1 

PEF1  59    1 -1 -1  CASC3  57    1 -1 -1 

THOC7  57    1 -1 -1  PEX19  54    1 -1 -1 

CASC3  57    1 -1 -1  NMNA1  43 38 35  1 -1 -2 

GSTP1  55    2 -2 -2  ALKB5  36    1 -1 -1 

PEX19  54    1 -1 -1  FXR1 212 398 364 300 197 0 0 -1 

L2HDH  52,7 38 25 38 2 -2 -2  FUBP3 96 220 189 204 154 0 0 -2 

THUM1  52 48 27  2 -2 -2  ZCHC8  36,5 31 29  0 0 -1 

ZC3H8  43 38 35  1 -1 -2  FXR2 166 358 337 333 210 -1 1 -2 

NMNA1  43  30  3 -5 -3  YTDC2 161 340 280 233 96,2 -1 1 -1 

ZCHC8  36,5 31 29  0 0 -1  DIM1 67,7 117 93 95 77,6 -2 2 -2 

ALKB5  36    1 -1 -1  RBBP6 73,3 82 60,3 52 34 -2 0 0 

 

5.2.3.2 N6-Methyladenosine pulldown data 

Table 18: Pulldown results for the m6A experiments.  The table is built up like Table 16. Potential m6A binding 

proteins are listed below. 

sorted by peptide score  sorted by peptide amount 

 score peptides   score peptides 

protein Pc m1A m6A m26A A 
m
1A 

m
6
A 

m
26
A 

 protein Pc m1A m6A m26A A 
m
1
A 

m6
A 

m
26
A 

TBB6 690 727 846,3 628,5 695 -2 2 -2  SRRT  55,5 77,4 48  -3 3 -3 

TADBP 157 145,3 253,3 212,4 121,6 0 0 0  YTHD2   59,7   -3 3 -3 

FMR1 137,3 186,7 196,7 166,9 137,2 -1 -2 1  AGO2  32 45,1 38,3  -5 3 -3 

XPO1 76 145,6 157,2 67,25 68,67 -1 1 -2  TBB6 690 727 846 629 695 -2 2 -2 

UBA1 53,5 119,2 153,1 106 78,17 -2 1 -2  MSH2 32 77,7 100 34 76 -2 2 -3 

H2B2D  101 150,7  104,5 -1 1 -3  ICAM1   59,5   -2 2 -2 

NSUN2 40 100,8 141,2 107 75,67 -2 -1 -2  CCDC8 29 32 57,3 36  -2 2 -2 
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DDX20 85 104,6 123 91,4 27 -1 1 -1  TRM2
A 

  36,7  31 -3 2 -3 

CPSF6  80 123 91,75 70,5 0 0 0  XPO1 76 146 157 67,3 68,7 -1 1 -2 

CAPR1 49 87,2 115,5 72 70 -1 1 -1  UBA1 53,5 119 153 106 78,2 -2 1 -2 

SF01  58 114,7 36  -1 1 -2  H2B2D  101 151  105 -1 1 -3 

PI51A 89,33 82,4 112,2 72,8 58 -1 1 -1  DDX20 85 105 123 91,4 27 -1 1 -1 

SF3B6 101 95,17 107,8 65,38 65 -3 1 -1  CAPR1 49 87,2 116 72 70 -1 1 -1 

HBA   102   -1 1 -1  SF01  58 115 36  -1 1 -2 

MSH2 32 77,67 100,4 34 76 -2 2 -3  PI51A 89,33 82,4 112 72,8 58 -1 1 -1 

MECP2   94   -1 1 -1  SF3B6 101 95,2 108 65,4 65 -3 1 -1 

ATD3B   94   -1 1 -1  HBA   102   -1 1 -1 

ERLN1   92   -1 1 -1  MECP2   94   -1 1 -1 

TF2H2   90   -1 1 -1  ATD3B   94   -1 1 -1 

ZC11A  61,33 84,5 70,5  -1 1 -2  ERLN1   92   -1 1 -1 

EI2BB  58 82 40,5  -1 1 -1  TF2H2   90   -1 1 -1 

CD11A   81   -1 1 -1  ZC11A  61,3 84,5 70,5  -1 1 -2 

EIF3G  44,67 78,75 34,67 36 -1 1 -1  EI2BB  58 82 40,5  -1 1 -1 

CPNE9   78   -1 1 -1  CD11A   81   -1 1 -1 

SRRT  55,5 77,4 48  -3 3 -3  EIF3G  44,7 78,8 34,7 36 -1 1 -1 

PSIP1   71,25 40,33 27 -4 1 -1  CPNE9   78   -1 1 -1 

TF2H4 37 33 65,33 54  -1 1 -2  PSIP1   71,3 40,3 27 -4 1 -1 

FLNA   64   -1 1 -1  TF2H4 37 33 65,3 54  -1 1 -2 

GBB1   64   -1 1 -1  FLNA   64   -1 1 -1 

MIC60 41 27 62 27  -1 1 -1  GBB1   64   -1 1 -1 

MRCK
B 

  62   -1 1 -1  MIC60 41 27 62 27  -1 1 -1 

UBP10  47,5 60 39,5  -1 1 -1  MRCK
B 

  62   -1 1 -1 

YTHD2   59,67   -3 3 -3  UBP10  47,5 60 39,5  -1 1 -1 

ICAM1   59,5   -2 2 -2  IGJ   59   -1 1 -1 

IGJ   59   -1 1 -1  DCAF7   55   -1 1 -1 

CCDC8 29 32 57,25 36  -2 2 -2  DDB1  32 54,3 29  -1 1 -2 

DCAF7   55   -1 1 -1  RPP38 27 33,3 53,5 37  -1 1 -2 

DDB1  32 54,33 29  -1 1 -2  VIR  32 52,5   -1 1 -2 

RPP38 27 33,33 53,5 37  -1 1 -2  S30BP  27 50,5   -1 1 -2 

VIR  32 52,5   -1 1 -2  YTDC1 29 34,5 46,7 44  -1 1 -1 

S30BP  27 50,5   -1 1 -2  NSUN5   36   -1 1 -1 

YTDC1 29 34,5 46,67 44  -1 1 -1  TADBP 157 145 253 212 122 0 0 0 

AGO2  32 45,14 38,25  -5 3 -3  CPSF6  80 123 91,8 70,5 0 0 0 

TRM2
A 

  36,67  31 -3 2 -3  NSUN2 40 101 141 107 75,7 -2 -1 -2 

NSUN5   36   -1 1 -1  FMR1 137,3 187 197 167 137 -1 -2 1 
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5.2.3.3 N6-N6-Dimethyladenosine pulldown data 

Table 19: Proteins with potential affinity to m26A Analogous to Tables 15 and 16, the proteins, listed here, are 

potential m26A reader proteins. They are ranked by score (left) and peptide amount (right). 

sorted by peptide score  sorted by peptide amount 

score peptides  score peptides 

protein Pc m1A m6A m26A A 
m
1
A 

m
6
A 

m26
A 

 protein Pc m1A m6A m26A A 
m
1
A 

m
6
A 

m
2
6
A 

H2B1O    850  -1 -1 1  TUT4  118 62 196,8 50 -2 -3 2 

H2B2F    826  -1 -1 1  YLPM1    144,5  -2 -2 2 

IF2B3 339 433 457 482 421 0 0 0  PLIN3    58,5  -2 -2 2 

PLOD1  265 191 333 57 -2 -1 1  CDK5  36 33 54,5  -2 -3 2 

FUBP2  199 212 280 188 -3 -3 -4  PPHLN   38 48,33  -3 -2 2 

TUT4  118 62 196 50 -2 -3 2  RPC1    46,5  -2 -2 2 

YLPM1    144  -2 -2 2  GALK1   36 46  -3 -2 2 

VIGLN 36 76,5 118 129,2 50 -3 -1 1  METL8    34,5  -2 -2 2 

RBM15 68 102 111 124 113 0 0 0  H2B1O    850  -1 -1 1 

SF3B4 70 77,5 105 124  1 -1 -3  H2B2F    826  -1 -1 1 

H32    115  -1 -1 1  PLOD1  265,
1 

191,9 333,9 57 -2 -1 1 

NOLC1 48,3 67,7 87 112 92,8 -1 -1 1  VIGLN 36 76,5 118 129,2 50 -3 -1 1 

RL36L    111  -1 -1 1  H32    115  -1 -1 1 

LAT1    106  -1 -1 1  NOLC1 48,3 67,7 87 112,3 92,83 -1 -1 1 

AMPN   34 103  -2 -1 1  RL36L    111  -1 -1 1 

SMC2  53,6 56 101 26 -1 -1 1  LAT1    106  -1 -1 1 

PRS6A    94  -1 -1 1  AMPN   34 103  -2 -1 1 

PDIP3  28 74,5 90,3  -1 -1 1  SMC2  53,6 56 101,3 26 -1 -1 1 

MD12L    90  -1 -1 1  PRS6A    94  -1 -1 1 

CS047    88  -1 -1 1  PDIP3  28 74,5 90,33  -1 -1 1 

PLOD3  39 38 85,5  -1 -1 1  MD12L    90  -1 -1 1 

PLEC  36 39 85  -1 -1 1  CS047    88  -1 -1 1 

PP1B    82,2 68,7 -5 -5 1  PLOD3  39 38 85,5  -1 -1 1 

RIF1    69  -1 -1 1  PLEC  36 39 85  -1 -1 1 

NDUS3  35  63 39 -1 -2 1  PP1B    82,2 68,75 -5 -5 1 

IKIP    60  -1 -1 1  RIF1    69  -1 -1 1 

STT3A  27  60 31 -1 -2 1  NDUS3  35  63 39 -1 -2 1 

PLIN3    58,5  -2 -2 2  IKIP    60  -1 -1 1 

TMA16  40 40 55,3 40,5 -2 -1 1  STT3A  27  60 31 -1 -2 1 

AL1A2    55  -1 -1 1  TMA16  40 40 55,33 40,5 -2 -1 1 

CDK5  36 33 54,5  -2 -3 2  AL1A2    55  -1 -1 1 

FANCI    54  -1 -1 1  FANCI    54  -1 -1 1 

RM04 28 29 42 53,7  -3 -1 1  RM04 28 29 42 53,75  -3 -1 1 

GMPPA   43 52,5 32 -2 -1 1  GMPPA   43 52,5 32 -2 -1 1 

PON2    52  -1 -1 1  PON2    52  -1 -1 1 

NDUS1    51,5 35 -2 -2 1  NDUS1    51,5 35 -2 -2 1 

PPHLN   38 48,3  -3 -2 2  DHX40    47  -1 -1 1 
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DHX40    47  -1 -1 1  SUN2    46  -1 -1 1 

RPC1    46,5  -2 -2 2  IF2B3 339 433 457,1 482,1 421,1 0 0 0 

GALK1   36 46  -3 -2 2  RBM15 68 
102,

4 
111,9 124,7 113,2 0 0 0 

SUN2    46  -1 -1 1  SF3B4 70 77,5 105 124,3  1 -1 -3 

METL8    34,5  -2 -2 2  FUBP2  199 212,6 280,8 188,1 -3 -3 -4 
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