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1.1 Introduction 

Carbanions are among the most important intermediates in synthetic organic chemistry as they 

readily undergo reactions with various electrophiles and therefore enable the formation of new 

carbon–carbon or carbon–heteroatom bonds. Grignard and Barbier reactions are still among 

the most important C–C bond forming reactions in modern organic synthesis, although they 

have been first reported over a century ago.[1] In these reactions, a zerovalent metal like 

magnesium or zinc is added to an organic halide to generate a highly nucleophilic organometal 

reagent, which is capable of reacting with electrophiles such as aldehydes, ketones, carbon 

dioxide, esters and several more, enabling the formation of a wide range of different products 

(Scheme 1-1a).[2] Over the last years, the applicability of the Grignard and Barbier reaction has 

been further expanded, for example by the combination with metal-catalyzed cross-coupling 

reactions.[3] The scope of viable substrates has been increased,[4] and the reactions can be 

performed with high regio- and stereoselectivity[5] and under mild reaction conditions.[6]  

While these reactions are very versatile, they still have some disadvantages. The reactions 

require stoichiometric amounts of metals, which are converted to metal halide salts during the 

reaction, generating high amounts of waste products. In addition, they also require 

prefunctionalized organohalides as starting materials which are often not commercially 

available and need to be synthesized.[7] 

Another possible method for the formation of carbanions would be the direct deprotonation 

of C–H bonds, eliminating the need for prefunctionalized starting materials (Scheme 1-1b). 

However, in absence of stabilizing functional groups, C–H bonds in organic substrates usually 

have a very low acidity. Therefore their deprotonation would require the use of very active 

non-nucleophilic bases such as LDA (pKa = 36 in THF) or n-BuLi (pKa = approx. 50).[8] The 

use of such strong bases limits the selectivity and functional group tolerance of the reaction 

and promotes the formation of side products. Additionally, most bases that are strong enough 

for these transformations are lithium-based causing the generation of stoichiometric amounts 

of metal salt waste products. 

In recent years, photocatalysis has become increasingly popular, enabling a variety of many 

new transformations that could previously not be obtained with classical organic reactions.[9] 

In photocatalysis, visible light is used to excite a catalyst which can either be metal-based or an 

organic dye. The excited state of this catalyst is capable of donating or accepting electrons to 

or from numerous substrates, generating radical cations, radical anions or neutral radicals as 



METHODS FOR THE PHOTOCATALYTIC GENERATION OF CARBANIONS 

 

4 

 

intermediates which can subsequently undergo various reactions, e.g. trapping by alkenes,[10] 

alkynes[11] or arenes,[12] radical-radical cross-couplings (Scheme 1-1, right side).[13] New 

innovations, such as the dual-catalytic combination with metal- or organocatalysis,[14] 

photocatalytic C–H bond activations,[15] or the development of stereo- and enantioselective 

transformations[16] have expanded the applicability of photocatalytic reactions in the last years. 

Despite these developments, all common photocatalytic reactions proceed via single electron 

transfer (SET) processes and are therefore limited to radical reactivity.  

 

Scheme 1-1 – Left side: generation of carbanion intermediates in classic organic synthesis; right side: schematic 
mechanism for the formation of radical anions and radical cations in photoredox reactions, with A being an 
electron donor and B an electron acceptor. 

 

The interest in the photocatalytic generation of carbanions, has increased recently and several 

groups have described the appearance of anionic intermediates in their reports. In most cases, 

the carbanion is formed during the regeneration of the photocatalyst to the ground state and 

is then only protonated to obtain the corresponding product.[17] Utilizing a photocatalytically 

generated carbanion intermediate for a subsequent C–C bond formation has the potential to 

overcome the above mentioned downsides of Grignard-type reactions or classical carbanion 

generations, as the use of  strong metal bases can be avoided. In this way, novel reaction 

pathways can be disclosed, in some cases employing simple, readily available, starting materials 

in high or even full atom economy under mild conditions.  

This chapter will provide an overview of methods, in which photocatalytically generated 

carbanions have been used synthetically. Three different concepts for their photocatalytic 

generation will be introduced.   
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1.2 Generation of carbanions after radical trapping 

So far, carbanions in photocatalysis have mainly been generated after trapping a previously 

formed radical with an alkene. The resulting, more stable radical species was then reduced 

again, forming a carbanion while regenerating the ground state of the photocatalyst and closing 

the catalytic cycle (Scheme 1-2). The resulting anion could then be used for several 

transformations, such as reactions with electrophiles, eliminations or intramolecular cyclisation 

reactions.  

 

Scheme 1-2 – Schematic mechanism for the photocatalytic generation of carbanions after radical trapping with 
A being an electron donor and radical precursor and R being a group capable of stabilizing the radical intermediate 
(electron withdrawing or an aromatic group). 

 

1.2.1 Intermolecular reactions with electrophiles 

To our knowledge, the Martin group was the first that used this strategy for the generation of 

carbanions synthetically in their report on the intermolecular dicarbofunctionalization of 

styrenes with CO2 (Scheme 1-3a).[18] In this work, radical precursors such as sulfinates, 

trifluoroborates or oxalates were used to generate radical intermediates by photocatalytic 

oxidation. After trapping with styrenes the resulting benzylic radical was reduced to the 

corresponding carbanion which undergoes nucleophilic attacks with CO2, generating 

carboxylic acids as products. Similar strategies were used by Wu et al. for the difunctionalization 

of alkenes with CO2 and silanes,[19] or by the Yu group in their report on the synthesis of β-

phosphono carboxylic acids by the phosphonocarboxylation of alkenes with CO2 (Scheme 1-

3b).[20] All of these examples use CO2 as an electrophile to trap the carbanion and so far, reports 

using other electrophiles are scarce. In 2017 the Song group reported the 

thiotrifluoromethylation of alkenes with sodium trifluoromethanesulfinate as a precursor to 

generate a CF3-radical which is trapped by terminal alkenes. After reduction to the carbanion 
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a reaction with benzenesulfonothioates takes place and the desired products are generated 

(Scheme 1-3c).[21] 

 

Scheme 1-3 – Examples for intermolecular reactions of carbanions generated by photocatalysis with 
electrophiles: a) dicarbofunctionalization of styrenes with CO2,[18] b) phosphonocarboxalation of alkenes with 
CO2,[20] c) thiotrifluoromethylation of terminal alkenes with sodium triflate and benzenesulfonothioates.[21] 

 

1.2.2 Intramolecular cyclisation reactions 

Another reaction which has been widely used is the intramolecular cyclisation by a nucleophilic 

substitution. This strategy was first reported in 2018 by Molander et al. in their work on the 

redox-neutral cyclopropanation via radical/polar crossover (Scheme 1-4a).[22] They use 

triethylammonium bis(catecholato)silicates as precursors to generate iodomethyl radicals by 

photocatalytic oxidation. After trapping by an alkene and subsequent reduction by the 

photocatalyst an anion is formed which can undergo a SN2 reaction with iodide as a leaving 

group. The same concept was used for the cyclopropanation of α-substituted 

vinylphosphonates with chloromethyl silicates as methylene transfer reagents.[23] Also in 2018, 

Aggarwal and co-workers reported a similar method for the synthesis of cyclopropanes using 

carboxylic acids as radical precursors, electron poor alkenes as trapping reagents and chloride 

as the leaving group (Scheme 1-4b).[24] In contrast to the work of Molander, where the iodide 

is appended to the radical precursor, the chloride which is acting as a leaving group is attached 

to the alkene in this work, illustrating a different approach and yielding different products. 

Apart from carboxylic acids, this concept could also be applied for other radical precursors 

such as silicates, potassium trifluoroborates or dihydropyridines,[25] as well as for the synthesis 
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of cyclobutanes[26] and saturated nitrogen heterocycles.[27] Another notable application of this 

concept was reported by the group of Zhiwei Zuo (Scheme 1-4c).[28] They use a combination 

of diphenylanthracene as a photo- and cerium(III) chloride as a hydrogen atom transfer (HAT) 

catalyst to enable the abstraction of hydroxy hydrogen atoms from cycloalkanols. The resulting 

oxygen radical quickly undergoes β-scission, leading to a ring opening and the generation of a 

carbon centered radical which is subsequently trapped by an electron deficient alkene. 

Analogously to the other reports, this radical is reduced to the corresponding carbanion by the 

photocatalyst, but in this case instead of a nucleophilic substitution, an intramolecular attack 

of a carbonyl group takes place, resulting in the formation of a seven membered ring.  

 

Scheme 1-4 – Examples for intramolecular cyclisation reactions using carbanions generated by photocatalysis: a) 
redox-neutral photocatalytic cyclopropanation,[22] synthesis of functionalized cyclopropanes rom carboxylic 
acids,[24] c) cerium-catalyzed formal cycloaddition of cycloalkanols with alkenes through dual photoexcitation.[28] 

 

1.2.3 Eliminations 

Another group of reactions using carbanions generated by photocatalysis in synthesis are E1cb 

eliminations, first reported by Molander and co-workers in 2017 (Scheme 1-5a).[29] Silicates, 

potassium trifluoroborates or α-silylamines are used as precursors to generate radicals which 

are trapped by trifluoromethylalkenes. After reduction to the carbanion, a E1cb elimination of 

a fluoride takes place, generating the desired gem-difluoroalkenes. The same concept was used 

by Singh et al. for the γ-trifluoromethylation of Baylis-Hillman acetates. Sodium 

trifluoromethanesulfinate was used as a radical precursor, electron poor alkenes as trapping reagents 

and the desired product was obtained after the elimination of acetate (Scheme 1-5b).[30] 
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Scheme 1-5 – Examples for elimination reactions using carbanions generated by photocatalysis: a) synthesis of 
1,1-difluoroalkene carbonyl mimics,[29] b) γ-trifluoromethylation of Baylis-Hillman acetates.[30] 

 

1.3 Generation of carbanions via two consecutive one-electron transfer 

steps 

While the concept of redox-neutral carbanion-generation after radical trapping is already quite 

well established and has been used for many desirable reactions, it has the disadvantage that 

two separate molecules have to be combined first to enable the generation of a carbanion. 

While this might be beneficial for some applications it lacks the versatility of classic organic 

reactions such as the Grignard reactions, where almost any molecule with a suitable 

prefunctionalization can be transformed into an anionic intermediate. The most intuitive way 

to enable photocatalytic carbanion generations would be to replace the metal which is used for 

the twofold reduction of the neutral substrate in Barbier- or Grignard-type reactions by two 

subsequent photocatalytic single electron transfers (Scheme 1-6). 

 

 

Scheme 1-6 – Schematic mechanism for the photocatalytic generation of carbanions via two subsequent one-
electron reduction steps with B being an electron acceptor and precursor of a stabilized radical. 
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Although the two-step reduction of benzyl bromide to the corresponding benzylic anion using 

Ru(bpy)3
2+ as a photocatalyst has already been reported in 1984,[31] reports where this concept 

is utilized for synthetic transformations are rare. In 2015, the group Guo reported the 

cyclopropanation of dibromomalonates with alkenes via double-SET (Scheme 1-7a).[32] After 

the first reduction and subsequent bromide elimination of dibromomalonate, the resulting 

radical is reduced again, generating a carbanion which can add to an alkene, leading to an 

intramolecular cyclisation and yielding the desired cyclopropane product. Unfortunately, the 

scope of this method is extremely limited, as it is limited to strongly electron deficient 

dibromomalonates. In 2018, Yu et al. reported an elegant method for the coupling of tetraalkyl 

ammonium salts with various carbonyl compounds which proceeds without external 

reductants (Scheme 1-7b).[33] In this work, benzylic tetraalkyl ammonium salts are reduced 

twice, yielding a benzylic radical which is capable of reacting with aromatic aldehydes or 

ketones and carbon dioxide. After the first photocatalytic SET, trimethylamine is cleaved from 

the starting material, enabling the regeneration of the photocatalyst without the addition of a 

sacrificial electron donor as an external reductant.  

 

 

Scheme 1-7 – Examples for reactions of carbanions generated by two subsequent photocatalytic reductions: a) 
cyclopropanation of dibromomalonates with alkenes via double-SET,[32] b) external-reductant-free cross-
electrophile couplings of tetraalkyl ammonium salts.[33] 
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1.4 Redox-neutral generation of carbanions from one starting material 

While the carbanion generation via two single electron transfer steps described above is 

mechanistically similarity to conventional organometallic reactions, it also has the drawback of 

requiring sacrificial electron donors to close the catalytic cycle, leading to the formation of 

stoichiometric amounts of amine waste products. To circumvent these disadvantages, our 

group has developed a concept for the redox-neutral formation of carbanions by first 

generating a radical through photocatalytic oxidation, which is then directly reduced to the 

corresponding carbanion in the same catalytic cycle, without being trapped by an alkene first 

(Scheme 1-8). This concept enables the photocatalytic generation of carbanions from a single 

precursor molecule without the need for sacrificial electron donors. 

  

 

Scheme 1-8 – Schematic mechanism for the redox-neutral photocatalytic generation of carbanions from a single 
substrate with A being an electron donor and precursor of a stabilized radical . 

The first synthetic application of this concept has been published by our group in this year 

(Scheme 1-9a).[34] Benzylic radicals are generated by the photocatalytic oxidation and 

subsequent CO2 extrusion of carboxylic acids. The well-stabilized radicals are reduced again, 

closing the catalytic cycle and generating the desired benzylic carbanion, which could be 

trapped by aliphatic aldehydes to generate secondary alcohols as products. This method 

however still suffers from some drawbacks. While the use of external reductants is not 

necessary, stoichiometric amounts of base are required for the deprotonation of the carboxylic 

acid and CO2 is released as a byproduct, diminishing the atom economy of the reaction. 

Furthermore, synthetically useful yields were only obtained for aldehydes as carbanion-traps 

while only traces of product were obtained for less active electrophiles, such as ketones, due 

to the competing protonation of the carbanionic intermediate. To overcome these limitations, 

we recently reported the carbanion generation from C–H bonds utilizing a dual-catalytic 
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approach by combining photo- and hydrogen atom transfer catalysis (Scheme 1-9b and c).[35] 

Instead of directly oxidizing a radical precursor to obtain the desired radical intermediate, a 

HAT catalyst is added, which - after oxidation by the photocatalyst – is capable of abstracting 

a hydrogen atom of a suitable unfunctionalized substrate. The thus generated radical is now 

reduced to the corresponding carbanion while the HAT catalyst is regenerated by 

deprotonation. This approach enables a redox-neutral, waste- and metal-free generation of 

carbanions in full atom economy. As a protonation of the carbanionic intermediate does not 

lead to the termination of the reaction, but rather to the regeneration of the starting material, 

the use of other electrophiles such as CO2
[35a] or ketones[35b] was also possible.  

 

Scheme 1-9 – Examples for reactions of carbanions generated by the redox-neutral oxidation and subsequent 
reduction of a radical precursor: a) photocatalytic carbanion generation from phenylacetic acids for the 
benzylation of aliphatic aldehydes to secondary alcohols,[34] b) photocarboxylation of benzylic C–H bonds,[35a] c) 
photocatalytic carbanion generation from C–H bonds for the benzylation of aldehydes and ketones.[35b]   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



METHODS FOR THE PHOTOCATALYTIC GENERATION OF CARBANIONS 

 

12 

 

1.5 Conclusion and outlook 

While carbanions have been occurring in photocatalytic cycles as intermediates to close the 

catalytic cycle after radical trapping for a while now, they have initially only been protonated 

to obtain the desired product. Starting in 2017, carbanions were generated as key intermediates 

in photocatalytic reactions and were used in synthesis. So far, three major strategies have been 

developed. Carbanions can be generated by reducing a radical that is formed after trapping a 

less stable photocatalytically generated radical with an alkene, by consecutively reducing one 

substrate twice in two photocatalytic cycles or by generating a radical oxidatively and 

subsequently reducing it in the same catalytic cycle. While these concepts already enable a wide 

variety of different transformations for various substrates, they are not yet capable of fully 

replacing the well-established anionic reactions known from conventional organic synthesis. 

Due to the nature of photocatalytic reactions, the choice of substrates is limited to compounds 

with suitable redox potentials. The occurrence of radicals, which are naturally rather unstable 

and short-lived, in the catalytic cycle often requires the use of starting materials containing 

stabilizing groups. However, the initial developments of the concept hold promise that further 

progress in the next years may eventually overcome some of the current limitations. 
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2 Photocatalytic organometallic reactions using in situ 

generated zerovalent metals 
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2.1 Introduction 

Reactions involving the transfer of two electrons are an integral part of organic chemistry as 

they enable ionic reactions by the formation of anionic or cationic intermediates. The twofold 

reduction of organic starting materials to nucleophilic carbanion synthons with metals like zinc 

or magnesium is the key step in classic organometallic reactions like the Barbier or the 

Grignard reaction.[1] While many transition metal catalyzed coupling reactions like Suzuki 

coupling,[2] Heck reaction[3] or Sonogashira coupling[4] are already well established, require only 

small amounts of metal catalysts and work under mild reaction conditions, there are still many 

organometallic reactions that demand the use of stoichiometric amounts of the respective 

metal. In these reactions, the metal is used as a two-electron reductant to convert organic 

substrates into anionic intermediates, enabling a wide variety of nucleophilic reactions. During 

this process, the metal is oxidized which leads to the formation of stoichiometric amounts of 

undesired metal salt waste. 

In 2013, the Bernhard group reported their work on the reduction of Zn(II) salts to zerovalent 

zinc using an iridium-based photocatalyst and triethylamine as sacrificial electron donor.[5] The 

reaction likely proceeds either via two consecutive SET steps with Zn(I) as an intermediate 

which is stabilized by halide anions or via the disproportionation of two Zn(I) species, yielding 

Zn2+ and Zn(0) (Scheme 2-1, left). One year later, the same reaction was reported using the 

organic ligand 5,7-dichloro-8-hydroxyquinoline (A) which acts as the photocatalyst after 

forming a complex (A’) with ZnCl2 in situ (Scheme 2-1, right).[6] 

 

Scheme 2-1 – Photocatalytic reduction of Zn(II) to Zn(0) as reported by Bernhard et al.[5-6] 



PHOTOCATALYTIC ORGANOMETALLIC REACTIONS USING IN SITU GENERATED ZEROVALENT 

METALS 

 

20 

 

Zerovalent zinc is one of the most commonly applied reductants in organic chemistry and is 

used in numerous reactions like the defunctionalization of 1,2-dihalides[7] or for the 

regeneration of other metals in many metal-catalyzed couplings.[8] Additionally, Zn(0) is 

capable of inserting in certain carbon-halogen bonds, forming nucleophilic organozinc species 

which are key intermediates in many carbon–carbon bond formations such as the Barbier 

reaction,[1a, 9] the Reformatzky reaction,[10] the Simmons-Smith cyclopropanation[11] or the 

Negishi coupling.[12] While zinc(0) is an extremely versatile reagent with various applications, 

it has to be used in stoichiometric amounts for most transformations and zinc(II) salts are 

obtained as waste products after the reaction. Therefore, we envisioned that the combination 

of conventional organometallic reactions which usually require stoichiometric amounts of zinc 

with a suitable photocatalytic system for the reduction of Zn(II) to regenerate the zerovalent 

metal might be a new catalytic approach for many organometallic reactions. 

 

2.2 Results and discussion 

2.2.1 Photocatalytic generation of Zn(0) 

The first step of this project was to find suitable conditions for the photocatalytic generation 

of zerovalent zinc (Table 2-1). When the reaction was performed using the reaction conditions 

reported by the Bernhard group, zinc formation could be observed with an iridium-based 

photocatalyst,[5] as well as the organic dye 5,7-dichloro-8-hydroxyquinoline (A) (Table 2-1, 

entries 1 and 2).[6] The reaction also worked when Ru(bpy)3Cl2, eosin Y or rhodamine 6G were 

used as photocatalysts (Table 2-1, entries 3-5), but no zinc was formed with rose bengal or 

riboflavintetracetate (Table 2-1, entries 6 and 7).  

Apart from photocatalysts, different solvents for the generation of zerovalent were also 

investigated (Table 2-2). With 5,7-dichloro-8-hydroxyquinoline (A) as a photocatalyst, only 

acetonitrile and ethyl acetate were viable solvents for the generation of Zn(0) (Table 2-2, entries 

1 and 2). No reaction was observed when THF, DMF, DCM or methanol were used as 

solvents (Table 2-2, entries 3-6) and solvent mixtures containing acetonitrile also did not lead 

to any zinc formation (Table 2-2, entries 7 and 8). 

After having found some viable conditions for the photocatalytic formation of Zn(0), the in situ 

use of the generated zerovalent metal in several reactions was tested.  
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Table 2-1 – Screening of different photocatalysts for the generation of Zn(0) from ZnCl2. 

 

Entry 
Photocatalyst 

(mol%) 

Wavelength 

(nm) 

Zinc 
formation 

1 Ir(ppy)3 (1) 455 ✓ 

2 
5,7-Dichloro-8-

hydroxyquinoline (5) 
455 ✓ 

3 Ru(bpy)3Cl2 (2) 455 ✓ 

4 Eosin Y (5) 535 ✓ 

5 Rhodamine 6G (5) 455 ✓ 

6 Rose Bengal (5) 535 X 

7 Riboflavintetraacetate (5) 455 X 

[a] The reactions were performed using 3 mmol ZnCl2 in 3 mL degassed solvent 

mixture.  

 

 

Table 2-2 – Screening of different solvents for the generation of Zn(0) from ZnCl2. 

 

Entry Solvent 
Zinc 

formation 

1 MeCN ✓ 

2 EtOAc ✓ 

3 THF X 

4 DMF X 

5 DCM X 

6 MeOH X 

7 DMF/MeCN X 

8 THF/MeCN X 

[a] The reactions were performed using 3 mmol ZnCl2 in 3 mL 

degassed solvent mixture.  
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2.2.2 Reformatsky reaction 

The Reformatsky reaction enables C–C bond formations between α-halogenated esters and 

aldehydes or ketones to form β-hydroxy esters using a stoichiometric amount of zinc 

powder.[10] After the insertion of Zn(0) into the carbon-halogen bond, the newly formed 

nucleophilic carbon is capable of attacking an electrophilic ester (Scheme 2-2a). A 

photocatalytic version of the reaction was tested using benzaldehyde (1a) and ethyl 

bromoacetate (2) as starting materials, eosin Y or 5,7-dichloro-8-hydroxyquinoline as a 

photocatalyst, ZnCl2 as a zinc source, triethylamine as a sacrificial electron donor and 

acetonitrile as a solvent (Scheme 2-2b). However, no formation of the desired product 3 could 

be observed in GC-MS. Using THF or a 9:1 mixture or MeCN and THF as a solvent did also 

not afford any product. 

A possible problem in this reaction is, that no zinc formation was observed in the reaction 

mixture. This could either mean that the in situ formed Zn(0) is immediately reacting with the 

bromoacetate 2 to form an organozinc species, or that no zinc is generated at all in the reaction. 

However, as no product formation could be observed, it is more likely, that the photocatalytic 

formation of Zn(0) was suppressed under the reaction conditions.  

Another reason why the photocatalytic approach of the Reformatsky reaction is not working 

might be that the desired product is obtained in a two-step reaction in the classic version of 

the reaction. After the oxidative addition of Zn(0) into the C-Br bond and the subsequent 

attack the electrophilic carbon of the aldehyde or ketone (1), the organozinc compound 3’ is 

formed as an intermediate. In the second reaction step an aqueous acidic workup is performed 

to remove zinc and form the β-hydroxy ester 3 and a zinc(II) salt (Scheme 2-2a).  The first part 

of the reaction should in theory also be possible under the photocatalytic conditions. However, 

even if the reaction takes place and the organozinc intermediate 3’ is formed, the acidic workup 

step cannot be combined with the photocatalytic reaction and the reaction will stop after the 

first step. This not only means that the desired product cannot be formed, but also that the 

zinc(II) catalyst will not be regenerated. To enable a photocatalytic version of the Reformatsky 

reaction it would be necessary to find an alternative way to remove the zinc from intermediate 

3’ without the acidic workup step. 
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Scheme 2-2 – a) Classical and b) photocatalytic version of the Reformatsky reaction.  

 

2.2.3 Simmons-Smith cyclopropanation 

Another widely used reaction that requires the use of stoichiometric amounts of zinc powder 

is the Simmons-Smith cyclopropanation.[11] In this reaction, Zn(0) and diiodomethane (4) are 

used to form iodomethylzinc iodide (4’) in situ as the active reagent which is able to perform a 

cyclopropanation reaction of an alkene (5) yielding the desired product 6 (Scheme 2-3a). 

During this reaction, ZnI2 is formed as a side product. For the photocatalytic approach of the 

Simmons-Smith reaction, 5,7-dichloro-8-hydroxyquinoline was used as a photocatalyst, ZnCl2 

as a zinc source, triethylamine as a sacrificial electron donor and acetonitrile as a solvent 

(Scheme 2-3b).  

 

 

Scheme 2-3 – a) Classical and b) photocatalytic version of the Simmons-Smith reaction. 
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When the reaction was tested with various alkenes (5), traces of the desired products (6) were 

observed in GC-MS in most cases (Table 2-3). Of the tested alkenes, cyclohexene (5f) was the 

only one which did not yield any product formation (Table 2-3, entry 6). Although the 

formation of the desired products was observed in GC-MS, the conversions were extremely 

low which is why the isolation of the products was not possible. Attempting to increase the 

yield, different reaction conditions were tested using the reaction with cinnamyl alcohol (4a) 

as a test system. When eosin Y was used as a photocatalyst instead of 5,7-dichloro-8-

hydroxyquinoline the same amount of product was obtained and neither increasing the amount 

of catalyst nor the use of other solvents such as DMF or DCE did lead to improved yields.  

When the reaction was performed without ZnCl2 traces of the product were also observed in 

GC-MS. Apparently, the reaction is not proceeding according to the mechanism of the classical 

Simmons-Smith reaction but instead via a purely photocatalytic process. At roughly the same 

time, a photocatalytic stereoconvergent cyclopropanation of styrenes with diiodomethane was 

published by Suero et al.[13] In this reaction, [Ru(bpy)3]Cl2 is used as a photocatalyst to reduce 

CH2I2, yielding an iodomethyl radical which is able to undergo a cyclopropanation of various 

styrenes. Although with –1.44 V vs. SCE the redox potential of CH2I2 should be too low for 

the photocatalysts used in this reaction (Eosin Y: EY/EY• – = –1.06 V vs. SCE in MeCN/H2O 

1:1;[14] 5,7-dichloro-8-hydroxyquinoline: 5,7-dCl-Hq/5,7-dCl-Hq– = –0.91 V vs. SCE in 

MeCN.[6]), it might still be possible that a small amount of diiodomethane is reduced 

photocatalytically to a iodomethyl radical. Another possibility is the purely photochemical 

formation of the cyclopropanation product, as it has been reported that a homolytic cleavage 

of the C–I bonds in diiodomethane is possible upon irradiation, forming a iodomethyl radical 

which is able to undergo cyclopropanation reactions with various alkenes.[15] 
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Table 2-3 – Screening of different alkenes.[a] 

 
Entry 5 6[b] 

1 

  

2 

  

3 

  

4 

  

5 

  

6 

 

no product 
observed 

[a] The reactions were performed using 1.5 eq. (0.3 mmol) 4 and 1 

eq. (0.2 mmol) 5 in 2 mL degassed solvent. [b] Observed in GC-MS.   
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2.2.4 Barbier reaction 

Zerovalent zinc is also a frequently used metal in the Barbier reaction which is one of the 

oldest C–C bond forming reactions and mechanistically similar to the better-known Grignard 

reaction. While the Grignard reaction is a two-step process where the organometallic reagent 

is formed prior to the addition of the electrophile, the Barbier reaction proceeds as a one-pot 

reaction with all reagents being present already at the beginning (Scheme 2-4a).[1] For a 

photocatalytic approach of the Barbier reaction, benzaldehyde (1a) and allyl bromide (7a) were 

used as substrates, 5,7-dichloro-8-hydroxyquinoline (A) as photocatalyst, triethylamine as 

sacrificial electron donor and ZnCl2 as a zinc source (Scheme 2-4b).  

 

Scheme 2-4 – a) Classical and b) photocatalytic version of the Barbier reaction. 

 

However, neither the desired product 8a nor the formation of Zn(0) in the reaction mixture 

could be observed. As the photocatalytic generation of zerovalent zinc appears to be highly 

sensitive to changes, the reliability of the system in presence of various potential substrates 

and additives was tested (Table 2-4). Almost all tested substrates, including aldehydes (Table 

2-4, entries 1 and 2), ketones (Table 2-4, entry 3), imines (Table 2-4, entry 4) and amines (Table 

2-4, entries 6-8), inhibited the formation of zinc. The only tested additive which did not hinder 

the generation of Zn(0) was ethyl benzoate (Table 2-4, entry 5). This is in accordance with the 

observation, that ethyl acetate is a viable solvent for the photocatalytic reaction (Table 2-2, 

entry 2), indicating that the presence of ester groups seems to be tolerated by the system. 

However, while esters are viable electrophiles for Grignard-type reactions with 
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organomagnesium compounds, the corresponding zinc-based reagents are known to be 

generally uncapable of reacting with esters under standard conditions.[16]  

 

Table 2-4 – Photocatalytic generation of Zn(0) in presence of various additives.[a] 

 

Entry Additive (eq.) Zinc formation 

1 Benzaldehyde 1a (1) X 

2 Isovaleraldehyde (1) X 

3 Cyclohexanone (1) X 

4 N-Benzylideneaniline (1.5) X 

5 Ethyl benzoate (2.5) ✓ 

6 TMEDA (1) X 

7 EDTA (1) X 

8 2,2’-Bipyridine (2) X 

[a] The reactions were performed using 1 eq. ZnCl2 (925 µmol) in 

3 mL degassed solvent mixture.  

 

As so far, none of the photocatalytic approaches for one-step organometallic reactions with in 

situ generated Zn(0) were successful, the use of zerovalent zinc generated by photocatalytic 

reduction from ZnCl2 in a two-step process was tested. Directly adding the substrates 1a and 

7a to the reaction mixture after zinc generation did not lead to any product formation 

(Table 2-5, entry 1). Surprisingly, even when the Zn(0) generated via photocatalytic reduction 

was washed, dried and subjected to reaction conditions which are known from literature to be 

suitable for Barbier reactions, the desired product 8a could only be observed in traces using a 

aqueous protocol (Table 2-5, entry 2),[17] and not at all under anhydrous conditions (Table 2-5, 

entries 3, 4 and 6),[18] although the same protocol did afford product 8a when commercial zinc 

powder was used, albeit in low yields (Table 2-5, entry 5). These observations suggest, that the 

zerovalent zinc which is formed in the photocatalytic reaction is not suitable for organometallic 

reactions, presumably due to a blocked and therefore inactive surface of the Zn(0). 
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Table 2-5 – Two-step process using photocatalytically generated Zn(0) for a classical Barbier reaction.[a] 

 

Entry Preparation of Zn(0) 
Solvent of Barbier 

reaction 
Temperature 

[°C] 
Yield 

1 
Direct addition of 1a and 7a to 
zinc suspension after 
photocatalytic reaction 

MeCN/TEA (9:1) 25 – 

2 
Washed with MeCN two times, 
dried in vacuo 

NH4Cl(aq., sat.)/THF 
(5:1) 

25 Traces[b] 

3 
Washed with MeCN two times, 
solvent residues removed in vacuo, 
flame dried 

dry THF 25 – 

4 
Washed with MeCN two times, 
solvent residues removed in vacuo, 
flame dried 

dry THF 60 – 

5[c] 
Use of commercially available zinc 
powder 

dry THF 25 10[d] 

6[c] 
Washed and flame dried zinc from 
several batches was collected 

dry THF 25 – 

[a] First step: The photocatalytic reaction was performed using 925 µmol ZnCl2 3 mL solvent mixture, second 

step: the Barbier reaction was performed using 1 eq. 1a (0.2 mmol) and 1.5 eq. 7a. [b] Observed in GC-FID. [c] 

A one- step Barbier reaction was performed using 1 eq. 1a (40 mmol), 1.25 eq. and 1.9 eq. Zn(0) according to a 

literature procedure.[18] [d] Isolated yield. 

 

2.2.5 Enhanced photocatalytic zinc generation using 4CzIPN 

The previous experiments revealed that the two main problems for the combination of light-

induced zinc formation with classical organometallic reactions are the extreme sensitivity of 

the photocatalytic system for the reduction of Zn(II) and the low reactivity of the generated 

Zn(0). These problems could be solved by a more robust method for the generation of 

zerovalent zinc which works with various solvents, in presence of possible starting materials 

and generates a more reactive form of Zn(0) that is able to form organozinc reagents.  

The use of the organic dye, 1,2,3,4-tetrakis(carbazole-9-yl)-5,6-dicyanobenzene (4CzIPN) as a 

photocatalyst has first been reported in 2016.[19] Since then, 4CzIPN has proven to be a highly 

effective photocatalyst which enables reactions that could previously only be realized with 



CHAPTER 2 
 

 

29 

 

highly oxidizing or reducing iridium-based catalysts.[20] When 4CzIPN was used as a 

photocatalyst for the photocatalytic reduction of ZnCl2 to Zn(0), the formation of zinc could 

not only be observed faster and in higher amounts than with the previously used 

hydroxyquinoline catalyst,[21] but was also possible in different solvent and with various 

additives (Table 2-6). Apart from acetonitrile, the zinc generation also worked well in THF, 

DMF and a mixture of MeCN and THF (Table 2-6, entries 1-3 and 4) and small amounts of 

Zn(0) were observed with ethanol as a solvent (Table 2-6, entry 4). Notably, apart from 

acetonitrile, none of these solvents were efficient for the zinc formation in the initial systems 

reported by Bernhard et al.[5-6] With 4CzIPN as a photocatalyst, the reaction was also 

significantly less sensitive to the presence of possible substrates and additives. The generation 

of Zn(0) now proceeded well when aliphatic aldehydes, ketones or bromides (Table 2-6, entries 

7, 8 and 10) were added. Only small amounts of zinc were observed after the addition of 

ethylenediamine, presumably due to its ability to from complexes with Zn2+ (Table 2-6, 

entry 11). However, no zinc was produced when benzaldehyde 1a or allyl bromide 7a were 

added to the reaction mixture (Table 2-6, entries 6 and 9).  

Table 2-6 – Photocatalytic generation of Zn(0) with various solvents and additives using 4CzIPN as a 
photocatalyst. 

 

Entry Solvent Additive 
Zinc 

formation 

1 MeCN[b] – ✓ 

2 THF[b] – ✓ 

3 DMF[b] – ✓ 

4 EtOH – Small amount 

5 MeCN/THF (1:1) – ✓ 

6 MeCN or THF Benzaldehyde 1a X 

7 THF Isovaleraldehyde 1b ✓ 

8 THF or MeCN Cyclohexanone 1c ✓ 

9 THF Allyl bromide 7a X 

10 THF 1-Bromo propane 7b ✓ 

11 THF or MeCN Ethylenediamine Small amount 

12 THF or MeCN LiCl X 

[a] The reactions were performed using 1 eq. ZnCl2 (925 µmol) in 3 mL degassed 

solvent mixture. [b] Reaction also worked with DIPEA as an electron donor instead 

of TEA. 
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When 1a was subjected to the conditions for the photocatalytic generation of zinc, the 

homocoupling product hydrobenzoin (9) could be observed instead of Zn(0) (Scheme 2-5a). 

In absence of ZnCl2, 9 was obtained in 60% isolated yield while no homocoupling product 

was formed in the absence of 4CzIPN. This reaction likely proceeds via the homocoupling of 

the radical anion of benzaldehyde 1a•– which can be generated by the photocatalytic reduction 

of 1a. A mechanistically similar photocatalytic pinacol reaction using iridium-based 

photocatalysts has been reported in 2016 by the Rueping group.[22] So, when ZnCl2 and 

benzaldehyde are both present in the reaction, 4CzIPN seems to reduce exclusively 1a instead 

of Zn2+, thus preventing the generation of Zn(0). Zinc generation was also not observed in the 

presence of allyl bromide (7a). This might either be due to the possible in situ formation of an 

organozinc species by the insertion of Zn(0) into the C–Br bond, or due to the inhibition of 

the photocatalytic reduction of Zn2+ by the presence of 7a. Control reactions have shown that 

in the absence of ZnCl2 the homocoupling product 1,5-hexadiene (10) was obtained in a yield 

of 45% while only traces of 10 were observed without the photocatalyst (Scheme 2-5b). The 

reaction likely proceeds via the photocatalytic reduction of allyl bromide (7a) to the 

corresponding radical 7a•. This assumption is further supported by the successful trapping of 

the allyl radical 7a• by 1,1-diphenylethylene (Scheme 2-5c). 

 

Scheme 2-5 – Side reactions observed by photocatalytic reduction of benzaldehyde 1a and allyl bromide 7a with 
4CzIPN in absence of ZnCl2. 
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An attempted one-pot Barbier reaction with photocatalytically generated Zn(0) using allyl 

bromide (7a) and isovaleraldehyde (1b), which does not interfere with the zinc generation, did 

not lead to the corresponding coupling product 13 (Scheme 2-6). This observation also 

indicates, that no zinc is generated in presence of 7a as the formation of product 13 would be 

expected, if an organozinc species was formed in situ from Zn(0) and allyl bromide. Metallic 

zinc could be observed in the reaction mixture when alkyl bromides were added to the 

photocatalytic system (Tabel 2-6, entry 10), presumably because they cannot be reduced by the 

photocatalyst due to their significantly lower potential (1-bromo propane 7b: E1/2
red = -2:1 V 

vs. SCE in DMSO[23] compared to allyl bromide 7a: E1/2
red = -1.4 V vs. SCE in MeCN[24]). 

However, this observation leads to the conclusion that the generated Zn(0) is not active 

enough to form the corresponding organozinc species. It is known from literature, that zinc 

needs further activation by additives such as LiCl to be able to insert into inactive C–Br 

bonds.[16a] Therefore, the use of LiCl as a possible additive was tested, but no zinc formation 

could be observed when LiCl was added to the photocatalytic system (Table 2-6, entry 12). 

 

Scheme 2-6 – Attempted photocatalytic coupling reaction of isovaleraldehyde 1b and allyl bromide 7a. 

 

2.2.6 Two-step/one-pot Barbier-type reactions 

As the possible substrates for Barbier-type reactions either inhibited the formation of zinc or 

did not lead to the formation of reactive organozinc intermediates, a two-step process was 

attempted with the improved photocatalytic system for zinc generation using 4CzIPN as a 

catalyst and DIPEA as a sacrificial electron donor (Table 2-7). When 1a and 7a were added 

directly to the reaction mixture after the completed photocatalytic reaction the zinc dissolved 

immediately, suggesting the formation of an organozinc intermediate by the oxidative addition 

of Zn(0) to allyl bromide. Surprisingly, no product was observed when acetonitrile was used 

as a solvent, and only traces of 8a were formed when the reaction was performed in THF or 

DMF, although Zn(0) was fully consumed in all cases (Table 2-7, entries 1-3). We 

hypothesized, that the presence of water in the reaction mixture might quench the reactive 
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organozinc intermediate while forming the defunctionalization product propene and 

ZnBr(OH). As ZnCl2 is known to be highly hygroscopic, it is likely the source of water in the 

reaction, which is why a literature known procedure for the synthesis of an anhydrous ZnCl2 

solution using thionyl chloride as a drying agent was employed.[25] While the formation of 8a 

was not observed when the reaction was performed with a solution of anhydrous ZnCl2 in 

THF, the desired product could be isolated in a yield of 56% when DMF was used as a solvent 

instead (Table 2-7, entries 4 and 5). As expected, a control reaction without ZnCl2 did not lead 

to the formation of product 8a, indicating that the presence of Zn(0) is required for the 

reaction. 

Table 2-7 – Development of a two-step/one-pot Barbier-type reaction using photocatalytically generated Zn(0). 

 

Entry ZnCl2 source Solvent  Yield 

1 Commercial ZnCl2 MeCN/DIPEA – 

2 Commercial ZnCl2 THF (dry)/DIPEA Traces[b] 

3 Commercial ZnCl2 DMF (dry)/DIPEA Traces[b] 

4 Anhydrous ZnCl2-solution[d] THF (dry)/DIPEA (dry) – 

5 Anhydrous ZnCl2-solution[d] DMF (dry)/DIPEA (dry) 56[d] 

6 Without ZnCl2 DMF (dry)/DIPEA (dry) – 

[a] First step: The photocatalytic reaction was performed using 1 mmol ZnCl2 in 3 mL degassed solvent 

mixture, second step: 1 eq. 1a (0.1 mmol) and 2 eq. 7a were added to the reaction mixture and stirred 

for 2 h in the dark. [b] Observed in GC-FID. [c] A 370 mM solution of anhydrous ZnCl2 which was 

previously dried with thionyl chloride was used as a solvent and a ZnCl2 source. [d] Isolated yield. 

Although this approach for a two-step/one-pot Barbier reaction works reasonably well, it 

requires the stoichiometric use of ZnCl2 as a catalytic process would only be possible in a one-

step process. A stepwise process where the Zn(II) salt is regenerated in cycles after the 

organometallic reaction by irradiating the reaction mixture and therefore reinitiating the 

photocatalytic process is also not possible in this system, as the presence of benzaldehyde (1a) 

and allyl bromide (7a) prevents the generation of Zn(0). 
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2.2.7 Attempted formation of C(sp2)-organozinc compounds 

As the previously attempted formations of C(sp3)-organozinc species have proven to be 

challenging, the generation of C(sp2)-organozinc compounds was targeted next. While zinc is 

known to be incapable of inserting into C(sp2)–Br bonds directly, a method for the preparation 

of aryl zinc species from the corresponding aryl bromides using catalytic amounts of a cobalt 

halide and zinc dust was reported by Gosmini and co-workers (Scheme 2-7).[26]  

 

Scheme 2-7 – Cobalt catalyzed formation of aryl zinc species reported by Gosmini et al. 

 

Their proposed mechanism includes the Zn(0)-induced reduction of Co(II) to Co(I) which can 

undergo oxidative addition into aromatic C–Br bonds, forming an aryl-Co(III) species. This 

intermediate is subsequently reduced to the corresponding aryl-Co(II) intermediate which can 

undergo transmetallation with ZnBr2, generating the desired aryl zinc species 15.  

We hypothesized that a combination of our system with a Co(II) co-catalyst might enable the 

photocatalytic formation of aryl zinc species (Table 2-8). Unfortunately, regardless of the 

choice and combination of the Co(II) and Zn(II) sources, only the defunctionalization product 

anisole (16) could be obtained instead of the desired product 15. 

To investigate if the desired aryl zinc species 15 was not formed at all, of if it was generated 

and defunctionalized to product 16 in situ under our reaction conditions, a reaction of 14 with 

an allyl acetate (17) in presence of a Co(II) co-catalyst was attempted (Scheme 2-8). According 

to literature reports, aromatic organozinc intermediates should readily react with Co(II)-allyl 

species as electrophiles that are generated in situ from allyl acetates and the CoCl2 co-catalyst.[27] 
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Table 2-8 – Attempted reaction for the generation of aryl zinc species.[a] 

 

Entry CoX2 ZnX2  Product 

1 CoCl2 – Traces of 16 

2 CoBr2 – Traces of 16 

3 – ZnCl2 – 

4 – ZnBr2 – 

5 CoCl2 ZnCl2 Only 16 

6 CoBr2 ZnBr2 Only 16 

The reactions were performed using 1 eq. 14 (0.3 mmol), 1 mol% 4CzIPN, 10 mol% CoCl2 

or CoBr2, 1 eq. ZnCl2 (0.43 mL of a 0.7 M solution of anhydrous ZnCl2 in THF) or 1 eq. 

ZnBr2 in 1 mL degassed solvent mixture. 

 

 

Scheme 2-8 – Attempted cobalt-catalyzed allylation of aryl bromides via the formation of aryl zinc species. 
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2.3 Conclusion 

The goal of this project was the photocatalytic generation and subsequent in situ use of 

zerovalent zinc for various organometallic reactions that usually require the use of 

stoichiometric amounts of zerovalent metal. Eventually, this strategy was supposed to enable 

catalytic versions of many conventional organometallic reactions by constantly regenerating 

Zn(0) from catalytic amounts of Zn(II) salts.  

Initially, the literature-reported procedure for the photocatalytic generation of zinc(0) has been 

reproduced and the combination with several well-known zinc-based reactions, such as the 

Reformatsky reaction, the Simmons-Smith cyclopropanation or the Barbier reaction was 

tested. However, due to the extreme sensitivity of the photocatalytic system towards changes 

in reaction conditions these approaches were not successful. Zinc formation only proceeded 

in acetonitrile which is not a suitable solvent for many organometallic reactions and the 

addition of potential substrates such as aldehydes, ketones or organohalides also inhibited the 

generation of Zn(0).  

Therefore, the next step of this project was the development of a more robust photocatalytic 

method for the reduction of Zn2+ to Zn(0). A suitable system which enabled the formation of 

zinc in various solvents and in presence of several additives was found using 4CzIPN as a 

photocatalyst and DIPEA as an electron donor. With this system, a two-step/one-pot Barbier-

type reaction could be realized where Zn(0) is generated photocatalytically from ZnCl2 in the 

first step and subsequently used for a C–C coupling reaction in the second step by adding the 

respective substrates to the reaction mixture containing Zn(0). However, this system requires 

the use of stoichiometric amounts of ZnCl2. 

So far, the development of a one-step process for the synthetic use and subsequent 

regeneration of catalytic amounts of Zn(0) generated by photocatalysis has not been possible. 

This is mainly due to the incompatibility of the reaction conditions required for organometallic 

reactions with the photocatalytic system. To circumvent these problems, purely photocatalytic 

methods that are capable of transferring two electrons and therefore mimic carbanionic 

reactivity were investigated in the following chapters. 
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2.4 Experimental part 

2.4.1 General information 

Starting materials and reagents were purchased from commercial suppliers (Sigma Aldrich, 

Alfa Aesar, Acros, Fluka, TCI or VWR) and used without further purification. Solvents were 

used as p.a. grade or dried and distilled according to literature known procedures.[28] For 

automated flash column chromatography industrial grade of solvents was used. All reactions 

with oxygen- or moisture-sensitive reagents were carried out in glassware, which was dried 

before use by heating under vacuum. Dry nitrogen was used as inert gas atmosphere. Liquids 

were added via syringe, needle and septum techniques unless otherwise stated. 

All NMR spectra were measured at room temperature using a Bruker Avance 300 (300 MHz 

for 1H, 75 MHz for 13C, 282 MHz for 19F) or a Bruker Avance 400 (400 MHz for 1H, 101 MHz 

for 13C, 376 MHz for 19F)[29] NMR spectrometer. All chemical shifts are reported in δ-scale as 

parts per million [ppm] (multiplicity, coupling constant J, number of protons) relative to the 

solvent residual peaks as the internal standard.[30] Coupling constants J are given in Hertz [Hz]. 

Abbreviations used for signal multiplicity: 1H-NMR: b = broad, s = singlet, d = doublet, t = 

triplet, q = quartet, hept = heptet dd = doublet of doublets, dt = doublet of triplets, dq = 

doublet of quartets, and m = multiplet; 13C-NMR: (+) = primary/tertiary, (–) = secondary, 

(Cq) = quaternary carbon). 

The mass spectrometrical measurements were performed at the Central Analytical Laboratory 

of the University of Regensburg. All mass spectra were recorded on a Finnigan MAT 95, 

ThermoQuest Finnigan TSQ 7000, Finnigan MAT SSQ 710 A or an Agilent Q-TOF 6540 

UHD instrument.  

GC measurements were performed on a GC 7890 from Agilent Technologies. Data acquisition 

and evaluation was done with Agilent ChemStation Rev.C.01.04. GC/MS measurements were 

performed on a 7890A GC system from Agilent Technologies with an Agilent 5975 MSD 

Detector. Data acquisition and evaluation was done with MSD ChemStation E.02.02.1431.A 

capillary column HP-5MS/30 m x 0.25 mm/0.25 μM film and helium as carrier gas (flow rate 

of 1 mL/min) were used. The injector temperature (split injection: 40:1 split) was 280 °C, 

detection temperature 300 °C (FID). GC measurements were made and investigated via 

integration of the signal obtained. The GC oven temperature program was adjusted as follows: 

initial temperature 40 °C was kept for 3 minutes, the temperature was increased at a rate of 
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15 °C/min over a period of 16 minutes until 280 °C was reached and kept for 5 minutes, the 

temperature was again increased at a rate of 25 °C/min over a period of 48 seconds until the 

final temperature (300 °C) was reached and kept for 5 minutes. 1-Naphthol was used as an 

internal standard.  

Analytical TLC was performed on silica gel coated alumina plates (MN TLC sheets 

ALUGRAM® Xtra SIL G/UV254). Visualization was done by UV light (254 or 366 nm). If 

necessary, potassium permanganate, vanillin or ceric ammonium molybdate was used for 

chemical staining.  

Purification by column chromatography was performed with silica gel 60 M (40-63 μm, 230-

440 mesh, Merck) on a Biotage® IsoleraTM Spektra One device.  

For irradiation with blue light OSRAM Oslon SSL 80 LDCQ7P-1U3U (blue, λmax = 455 nm, 

Imax = 1000 mA, 1.12 W) was used. For irradiation with green light Cree XPEGRN L1 G4 Q4 

(green, λmax = 535 nm, Imax = 1000 mA, 1.12 W) was used.  
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2.4.2 General procedures 

 Synthesis of 4CzIPN 

The photocatalyst was synthesized according to a literature procedure.[19] 

Under a nitrogen atmosphere, carbazole (1.67 g, 10 mmol, 5 eq.) was dissolved in dry THF 

(40 ml) at room temperature. Sodium hydride (60 % in paraffin oil, 0.6 g, 15 mmol, 6 eq.) was 

slowly added and the reaction mixture was stirred for 30 minutes at room temperature. 

Tetrafluoroisophthalonitrile (0.4 g, 2 mmol, 1 eq.) was added and the reaction was heated to 

40 °C. After 12 h, the reaction mixture was quenched with water (2 ml), concentrated under 

vacuum and washed with water and EtOH. After recrystallization from hexane/DCM, the 

desired product 2,4,5,6-tetra(carbazole-9-yl)isophthalonitrile (4CzIPN) was obtained as a 

bright yellow powder (840 mg, 1.06 mmol, 53%). 

 

1H NMR (400 MHz, DMSO-d6, δH) 8.35 (d, J = 7.7 Hz, 2H), 8.18 (d, J = 8.2 Hz, 2H), 7.91 – 

7.83 (m, 4H), 7.78 – 7.71 (m, 6H), 7.59 – 7.42 (m, 6H), 7.19 – 7.04 (m, 8H), 6.80 (t, J = 7.4 

Hz, 2H), 6.74 – 6.65 (m, 2H). 

 General procedure for the preparation of anhydrous ZnCl2 

ZnCl2 has been dried according to a literature procedure.[25] 

Freshly distilled thionyl chloride (25 ml, 0.32 mol) was added to 10 g ZnCl2 (0.07 mol) at room 

temperature in a schlenk flask. After gas evolution stopped, the suspension was refluxed for 

2 h. The remaining thionyl chloride was removed under vacuum using a liquid nitrogen cold 

trap. The dry ZnCl2 was dissolved in 200 ml dry solvent, 4Å molecular sieve was added and 

the solution was stored under nitrogen. 
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 General procedures for photocatalytic reactions 

General procedure for the photocatalytic generation of zinc 

Procedure A: 

A 5 mL crimp cap vial was equipped with ZnCl2 (84 mg, 0.6 mmol, 1 equiv.), the photocatalyst 

(1-10 mol%) and a stirring bar. After adding the solvent mixture (solvent/electron donor 9:1, 

2 mL) via syringe, the vessel was capped and degassed by three cycles of freeze pump thaw. 

The reaction mixture was stirred and irradiated using a blue LED (455 ± 15 nm) for 24 h at 

25 °C, yielding the zerovalent zinc as a fine gray powder. 

Procedure B: 

A 5 mL crimp cap vial was equipped with the ZnCl2 (126 mg, 0.925 mmol, 1 equiv.), the 

photocatalyst (1-10 mol%) and a stirring bar. After adding the solvent mixture 

(solvent/electron donor 9:1, 3 mL) via syringe, the vessel was capped and degassed by three 

cycles of freeze pump thaw. The reaction mixture was stirred and irradiated using a blue LED 

(455 ± 15 nm) for 15 h at 25 °C, yielding the zerovalent zinc as a fine gray powder. 

 

General procedure for the photocatalytic Reformatsky reaction 

A 5 mL crimp cap vial was equipped with benzaldehyde 1a (20.3 µL, 0.2 mmol, 1 equiv.), ethyl 

bromoacetate 2 (66.5 µL, 0.6 mmol, 3 equiv.), ZnCl2 (13.6 mg, 0.1 mmol, 0.5 equiv.), the 

photocatalyst (10 mol%) and a stirring bar. After adding the solvent (2 mL, MeCN/TEA 9:1) 

via syringe, the vessel was capped and degassed by three cycles of freeze pump thaw.  The 

reaction mixture was stirred and irradiated using a blue (455 nm ± 15 nm) or green LED (535 

nm ± 15 nm) for 20 h at 25 °C. The progress could be monitored by GC-FID and GC-MS 

analysis. 

 

General procedure for the photocatalytic Simmons-Smith reaction 

A 5 mL crimp cap vial was equipped with the alkene 5 (0.2 mmol, 1 equiv.), diiodomethane 4 

(24.2 µL, 0.3 mmol, 1.5 equiv.), ZnCl2 (13.6 mg, 0.1 mmol, 0.5 equiv.), the photocatalyst 

(10 mol%) and a stirring bar. After adding the solvent (2 mL, MeCN/NEt3 9:1) via syringe, 

the vessel was capped and degassed by three cycles of freeze pump thaw.  The reaction mixture 

was stirred and irradiated using a blue (455 nm ± 15 nm) or green LED (535 nm ± 15 nm) for 

20 h at 25 °C. The progress could be monitored by GC-FID and GC-MS analysis. 
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General procedure for the photocatalytic one-step Barbier reaction 

A 5 mL crimp cap vial was equipped with benzaldehyde 1a (20.3 µL, 0.2 mmol, 1 equiv.), allyl 

bromide 7a (66.5 µL, 0.6 mmol, 3 equiv.), ZnCl2 (13.6 mg, 0.1 mmol, 0.5 equiv.), the 

photocatalyst (10 mol%) and a stirring bar. After adding the solvent (2 mL, MeCN/NEt3 9:1) 

via syringe, the vessel was capped and degassed by three cycles of freeze pump thaw.  The 

reaction mixture was stirred and irradiated using a blue (455 nm ± 15 nm) or green LED (535 

nm ± 15 nm) for 20 h at 25 °C. The progress could be monitored by GC-FID and GC-MS 

analysis. 

 

General procedure for the photocatalytic two-step/two-pot Barbier reaction 

A 5 mL crimp cap vial was equipped with the ZnCl2 (126 mg, 0.925 mmol, 1 equiv.), the 

photocatalyst (1-10 mol%) and a stirring bar. After adding the solvent mixture 

(solvent/electron donor 9:1, 3 mL) via syringe, the vessel was capped and degassed by three 

cycles of freeze pump thaw. The reaction mixture was stirred and irradiated using a blue LED 

(455 ± 15 nm) for 15 h at 25 °C. Afterwards, the zinc particles were allowed to deposit on the 

bottom of the vial and the liquid phase was removed via syringe. The remaining zinc powder 

was washed with 2 mL of MeCN twice and the remaining solvent was removed in vacuo. For 

anhydrous reactions the vial containing Zn(0) was flame dried under vacuum. The solvent for 

the Barbier reaction (1 mL) and allyl bromide (7a, 26 µL, 300 µmol, 1.5 eq.) were added via 

syringe and the suspension was stirred for 1 h. Benzaldehyde (1a, 20 µL, 200 µmol, 1 eq.) was 

added and the mixture was stirred for 2 h. Afterwards, the reaction was quenched with 

saturated NH4Cl solution (2 mL) and 1 mL THF was added. The reaction was analyzed by 

subjecting the organic phase to GC-FID or GC-MS. 
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Photocatalytic homocoupling of benzaldehyde (1a)[22] 

A 5 mL crimp cap vial was equipped with 4CzIPN (7.9 mg, 5 mol%) and a stirring bar. The 

vessel was capped and benzaldehyde (1a, 0.1 mL, 1 mmol, 1 eq.), DIPEA (0.3 mL, 1.7 mmol, 

1.7 eq.) and 2.7 mL dry DMF were added via syringe under a nitrogen atmosphere. The 

reaction mixture was degassed by three cycles of freeze pump thaw and stirred and irradiated 

using a blue LED (455 ± 15 nm) at 25 °C. The progress could be monitored by GC-FID and 

GC-MS analysis. 

The reaction mixture was diluted with water (10 ml), extracted with ethyl acetate (3 x 20 ml), 

washed with brine (1 x 20 ml) and dried over Na2SO4. The crude product was obtained by 

removing the solvents under reduced pressure. Purification was performed by automated flash 

column chromatography (PE/EtOAc, 0-50% EtOAc) yielding the corresponding product 

hydrobenzoin (9). 

 
1H–NMR (dl and meso) (400 MHz, DMSO-d6, δH): 7.23-7.06 (m, 5H), 5.33 [5.18] (brs, 2H), 

4.56 (s, 2H). 

13C–NMR (dl and meso) (400 MHz, DMSO-d6, δH): 143.3 (Cq), 142.3 (Cq), 127.4 (+), 127.2 (+), 

127.2 (+), 127.1 (+), 126.7 (+), 126.6 (+), 77.6 (+), 77.0 (+). 

 

Photocatalytic homocoupling of allyl bromide (7a) 

A 5 mL crimp cap vial was equipped with 4CzIPN (7.9 mg, 5 mol%) and a stirring bar. The 

vessel was capped and allyl bromide (7a, 12 µL, 140 µmol, 1 eq.), DIPEA (0.3 mL, 1.72 mmol, 

12 eq.) and 2.7 mL dry DMF were added via syringe under a nitrogen atmosphere. The reaction 

mixture was degassed by three cycles of freeze pump thaw and stirred and irradiated using a 

blue LED (455 ± 15 nm) at 25 °C. The yield of the reaction was determined by GC analysis 

using n-decane as an internal standard. GC-yield of 45% of 10 was obtained over four 

experiments. 
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Radical trapping of allyl bromide (7a) with 1,1-diphenylethylene (11) 

A 5 mL crimp cap vial was equipped with 4CzIPN (7.9 mg, 5 mol%) and a stirring bar. The 

vessel was capped and allyl bromide (7a, 20 µL, 0.2 mmol, 1 eq.), 1,1-diphenylethylene (11, 

177 µL, 1 mmol, 5 eq.), DIPEA (0.2 mL, 1.15 mmol, 6 eq.) and 2.7 mL dry THF were added 

via syringe under a nitrogen atmosphere. The reaction mixture was degassed by three cycles of 

freeze pump thaw and stirred and irradiated using a blue LED (455 ± 15 nm) at 25 °C. The 

reaction progress was monitored by GC-FID and GC-MS analysis. 

 

 

General procedure for the photocatalytic two-step/one-pot Barbier reaction 

A flame dried 5 mL crimp cap vial was equipped with 4CzIPN (7.9 mg, 5 mol%) and a stirring 

bar. The vessel was capped and 2 mL of a 0.34 M solution of dry ZnCl2 in DMF and DIPEA 

(200 µl, 1.2 mmol, 6 eq.) were added via syringe under a nitrogen atmosphere. The reaction 

mixture was degassed by three cycles of freeze pump thaw and stirred and irradiated using a 

blue LED (455 ± 15 nm) at 25 °C. After irradiation for 18 h, an aldehyde or ketone (1, 

0.2 mmol, 1 eq.) and an allyl or alkyl bromide (7, 0.2 mmol, 1 eq.) were added via syringe and 

the solution was stirred for 2 h at 25 °C in the dark. The progress could be monitored by TLC, 

GC analysis and GC-MS analysis. 

For isolation, the content of four batches was combined and saturated NH4Cl solution (10 mL) 

was added. The mixture was extracted with DCM (3 x 10 mL), washed with brine (10 mL) and 

dried over Na2SO4. The crude product was obtained by removing the solvents under reduced 

pressure. Purification was performed by automated flash column chromatography 

(PE/EtOAc, 0-20% EtOAc), yielding the corresponding product 8a. 
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Synthesis of 4-phenyl-1-buten-4-ol (8a) with a classical Barbier-type reaction 

The synthesis was performed according to a literature procedure.[18] 

A flask fitted with a dropping funnel and a condenser was flame dried. Zinc powder (5.0 g, 

76.5 mmol, 1.9 eq.) was added under a nitrogen atmosphere and covered with dry THF (1 mL). 

A solution of 19a (4.32 mL, 50.0 mmol, 1.25 eq.) in dry THF (3 mL) was slowly added to the 

stirred Zn-suspension to maintain a temperature of 25-30 °C and the reaction mixture was 

stirred for 1 h at room temperature after completed addition. Then, a solution of 1a (4.08 mL, 

40.0 mmol, 1 eq.) in dry THF (10 mL) was slowly added, and the resulting mixture was stirred 

for an additional hour. After completion, the mixture was hydrolyzed with NH4Cl (aq., sat.) 

(10 mL). The aqueous phase was extracted with DCM (3 x 50 mL). The combined organic 

phases were washed with brine (2 x 50 mL), dried over MgSO4, filtered and concentrated in 

vacuo. The crude product was purified by flash column chromatography (PE/EA, 20%). 4-

Phenyl-1-buten-4-ol (2a) was obtained as colorless liquid (0.59 g, 3.98 mmol, 10%). 

 

1-Phenyl-3-bten-1-ol (8a)[31] 

 

1H–NMR (400 MHz, CDCl3, δH): 7.38-7.27 (m, 5H), 5.87-5.77 (m, 1H), 5.20-5.13 (m, 2H), 

4.76-4.73 (m, 1H), 2.58-2.46 (m, 2H). 

13C–NMR (101 MHz, CDCl3, δC): 144.3 (Cq), 134.9 (+), 128.9 (+), 128.0 (+), 126.3 (+), 118.9 

(-), 73.7 (+), 44.3 (-). 
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3.1 Introduction 

Although first reported over a century ago, Barbier-type reactions are still important tools for 

carbon–carbon bond formations in organic synthesis today.[1] In the classical Barbier reaction 

a metal, e.g. zinc[2] or magnesium[3] is able to insert in the carbon–halide bond of a reactive 

organic halide to form a nucleophilic organometallic intermediate 4 which can undergo a 

reaction with various electrophiles, like aldehydes or ketones to form the corresponding 

secondary or tertiary alcohols as products (Scheme 3-1a). One of the main application of 

Barbier reactions is the synthesis of allylic or benzylic alcohols from an aldehyde or ketone and 

allyl or benzyl bromide using a metal as reductant.[4] Over the years, Barbier-type reactions 

have been developed further, and today they are known for many different substrates[5] and 

with various metals e.g. tin[6], indium,[7] praseodymium[8] or manganese.[9] While these methods 

offer a wide variety of reaction conditions, they all are overall two-electron processes which is 

why they require the use of a stoichiometric amount of metal as a reductant. Using a 

photoredox catalyst to access an organic electron source instead of a metal would represent an 

interesting and more environmentally benign alternative. However, photoredox catalyzed two-

electron processes are scarce, as photocatalytic reactions usually proceed via radical 

intermediates that are generated by a photoinduced single electron transfer (SET).[10] To 

generate carbanion synthons with similar reactivity as the nucleophilic organometallic 

intermediate in classical Barbier-type reactions, two consecutive SETs would be required to 

generate a radical first followed by another reduction to the corresponding carbanion.[11] Due 

to the high reactivity of most radicals and their low concentration in photocatalytic reactions 

this process is rather unlikely. Another strategy to enable photocatalytic two-electron processes 

would be a reductive radical-radical cross coupling where one electron is transferred to each 

starting material, generating two radical intermediates that can recombine to give the desired 

product (Scheme 3-1b).[12] Photocatalytic reductions of aromatic aldehydes to the 

corresponding alcohols have been known since a report by Pac et al. in 1983[13] and in 1990 the 

formation of diols as homocoupling products of ketyl radical anions has been observed.[14] 

After having been used only rarely in photoredox catalysis for many years, there has been an 

increasing number of reports about photocatalytic reductions of aldehydes and ketones 

recently. Ketyl radicals have often been used for radical-radical coupling reactions,[12, 15] e.g. in 

the work of Rueping and co-workers about a photoredox-catalyzed reductive dimerization of 
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aldehydes and ketones (Scheme 3-1c)[15b] or in the reductive arylation of carbonyl derivatives 

by Xia et al. in 2017.[12] Apart from radical-radical coupling reactions, it is also possible to use 

ketyl radicals for cyclization reactions[16] or to trap them intermolecularly with alkenes.[17] In 

the work of Chen and co-workers, hydroxymethyl radicals derived from the photocatalytic 

reduction of aldehydes or ketones are added to allyl sulfones (Scheme 3-1d) to form the 

corresponding homoallylic alcohols as products.[17a] While this is an elegant method for the 

photocatalytic allylation of aldehydes and ketones, it  is only possible for allyl sulfones with 

electron withdrawing CO2Et-groups. A photochemical method for the allylation and 

benzylation of ketones an 1,2-diketones using organotrifluoroborate has been reported in 2009 

by Nishigaichi et al.[18] We developed a method for the direct photocatalytic synthesis of allylic 

and benzylic alcohols from ketones or aldehydes and allyl or benzyl bromides with an organic 

photocatalyst via a reductive radical-radical cross coupling. 

 

Scheme 3-1 – a) Classical and b) photocatalytic version of the Barbier-type reaction; c and d) other photocatalytic 
reactions with ketyl radicals. 
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3.2 Results and discussion 

For the optimization of the reaction conditions, we used the readily available substrates 

benzaldehyde (1a) and allyl bromide (2a) as starting materials. Initial experiments have shown 

that we could obtain 22% of the desired product 3a when the reaction was performed in dry 

DMF with 4CzIPN (A) as a photocatalyst and DIPEA as sacrificial electron donor (Table 3-1, 

entry 1). 

By using 3,7-di(4-biphenyl) 1-naphthalene-10-phenoxazine (B) as a photocatalyst[19] the yield 

could be increased to 38% (Table 3-1 – entry 2) and by changing the irradiation wavelength 

from 455 to 400 nm and the solvent from DMF to DMA a yield of 54% could be obtained 

(Table 3-1 – entry 3). With the iridium-based photocatalyst C only 21% of 3a was formed 

(Table 3-1 – entry 4). By adding 1.5 equivalents of LiBF4 to the reaction mixture the formation 

of the diol homocoupling product of 1a could be suppressed which further increased the yield 

to 64% (Table 3-1 – entry 5).[15a] Reducing the reaction time from 18 to 2 hours only slightly 

decreased the yield (Table 3-1 – entry 6). While light and DIPEA are necessary for product 

formation (Table 3-1 – entries 7 and 8), the reaction also works in moderate yields without 

photocatalyst at 400 nm (46%, Table 3-1 – entry 9). However, the presence of the 

photocatalyst significantly accelerates the reaction as we already obtain complete conversion 

after 3 hours with 5 mol% of B, while only traces of 3a were formed after the same time 

without photocatalyst (Table 3-1 – entry 10). When the reaction was performed at 455 nm 

without B no product formation could be observed (Table 3-1 – entry 11).  

As shown in Table 1, varying amounts of the homocoupling products 5a and 8a are formed 

under all tested reaction conditions. Due to the use of an excess of allyl bromide (2a), the 

generation of 8a has little influence on the yield of the reaction. In contrast, the formation of 

the diol homocoupling product 5a decreases the yield of the desired product significantly, as 

two equivalents of the stoichiometric reagent 1a are required to form one equivalent of 5a. 
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Table 3-1 – Optimization of the reaction conditions.[a] 

 

Entry 
PC (mol%, 
hν, [nm]) 

Solvent 
DIPEA 

(eq.) 
Additive 

(eq.) 
t 

[h] 
Yield 3a 

[%][b] 
Yield 5a 

[%][c] 
Yield 8a 

[%][d] 

1 A (5, 455) 
DMF 
(dry) 

6 – 18 22 15 31 

2 B (5, 455) 
DMF 
(dry) 

6 – 18 38 8 17 

3 B (5, 400) DMA 6 – 18 54 14 23 

4 C (2, 455) DMA 6 – 18 21 19 43 

5 B (5, 400) DMA 6 
LiBF4 
(1.5) 

18 64 13 23 

6 B (5, 400) DMA 6 
LiBF4 
(1.5) 

2 59 12 28 

7 B (5, 400) DMA – 
LiBF4 
(1.5) 

18 0 0 0 

8 B (5, dark) DMA 6 
LiBF4 
(1.5) 

18 0 0 0 

9 – (400) DMA 6 
LiBF4 
(1.5) 

15 46 3 15 

10 – (400) DMA 6 
LiBF4 
(1.5) 

4 3 2 6 

11 – (455) DMA 6 
LiBF4 
(1.5) 

15 0 0 0 

 
 [a] The reactions were performed using 1 eq. (0.2 mmol) 1a and 2 eq. (0.4 mmol) 2a in 2 mL degassed solvent 

under nitrogen, [b] yields were determined by GC analysis with 1-naphthol as an internal standard, [c] yields were 

determined by crude NMR with 1,3,5-trimethoxybenzene as an internal standard, [d]yields were determined by 

GC analysis with 1-naphthol as an internal standard. 
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The scope of the reaction was investigated using the optimized reaction conditions (Table 3-2). 

Apart from allyl bromide (2a) the reaction also worked in moderate to good yields with 3-

bromo cyclohexene (2b), benzyl bromide (2c) (1-bromoethyl)benzene (2d). When 3,3-

dimethylallyl bromide (2e) was used, a mixture of product 3n-a and 3n-b was obtained, with 

3n-a being the main product. Using alkyl or phenyl bromides did not lead to any product 

formation, probably because the radicals formed upon reduction and debromination are too 

unstable to undergo the coupling reaction. Aromatic aldehydes containing ester groups (3e, 

3f), or aliphatic aldehydes (3g) were also tolerated in the reaction with moderate yields. 

Notably, the reaction selectively takes place at the carbonyl group in benzylic position, while 

other carbonyl groups in the molecule remain unchanged. Apart from benzaldehydes which 

gave moderate yields (3a-3g) the reaction also works well with 1- and 2-naphthaldehyde (3i, 

3j) and with the heterocyclic 2-thiophenecarboxaldehyde (3h). Good yields were obtained 

when benzophenone was used (3k-3n) and 1,2-diketones (3r-3u) are also viable substrates. 

Using a non-symmetric diketone with an electron rich and an electron poor arene gave a 

mixture of product 3t-a and 3t-b with only a slight preference of the less electron rich position 

(3t-a). Product 3u shows an important advantage over the classical Barbier reaction, as the 

reaction selectively takes place at the sterically more hindered ketone next to the aromatic 

system. Halogen substituted substrates (3o, 3p, 3s, 3t) and substrates containing a methoxy 

group (3v) were also tolerated. Alkyl aldehydes and ketones did not yield any product as they 

have significantly lower reduction potentials and can therefore not be reduced by B 

(E1/2
red(benzophenone 1e) = -1.83 V vs SCE,[20] compared to E1/2

red(cyclohexanone 2m) 

= -2.79 V vs SCE[15a]). Additionally, an aromatic system in α-position to the carbonyl group 

seems to be required, probably due to the enhanced stability of the ketyl radical. 

As moderate yields are obtained in many cases, the side products of the reaction were 

determined for selected examples (3a, 3b, 3c, 3f, 3h, 3i). The diol homocoupling products 5 

were observed in all examples. In some cases, remaining starting material was observed (3b, 

3c, 3f, 3h) which indicates an incomplete reaction. While the homocoupling of 2 did not have 

any influence on the yield in most cases, it seems to have significant effect when benzyl 

bromide (2c) was used. This can be seen in the case of 3c, where 66% of the homocoupling 

product 8a was formed. 
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Table 3-2 – Scope of the reaction.[a] 

 

 

[a] The reactions were performed using 1 eq. (0.2 mmol) 1 and 2 eq. (0.4 mmol) 2 in 2 mL degassed DMA under 

nitrogen, all yields are of the isolated products, [b] a 1:1 mixture of the syn- and anti-product was obtained, [c] 

yields of the side products were determined by crude NMR with 1,3,5-trimethoxybenzene as an internal standard. 
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Control reactions have shown that under the reaction conditions the homocoupling products 

of benzaldehyde (5a) and allyl or benzyl bromide (8) could be observed (Scheme 3-2a). This 

confirms that the ketyl- (1a•–) as well as the allyl- (2a•) or benzyl radical (2c•) are present in the 

reaction mixture and lead to product formation via a radical-radical cross-coupling reaction. 

Notably, the homocoupling products of 2a and 2c are formed also without photocatalyst just 

by irradiating a mixture of the bromide 2 and DIPEA with 400 nm while the photocatalyst is 

required for the formation of the diol 5a from benzaldehyde. However, DIPEA and 400 nm 

light are both crucial for the formation of allyl radicals, as irradiating only 2a at 400 nm as well 

as stirring a mixture of 2a and DIPEA in the dark or at 455 nm did not lead to the formation 

of homocoupling product 8a. It was also possible to trap the allyl radical, which was formed 

upon irradiation with 1,1-diphenylethylene (9) yielding product 10 (Scheme 3-2b). 

 

 

Scheme 3-2 – Control reactions for radical-radical cross coupling. 
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Stern-Volmer fluorescence quenching experiments of photocatalyst B show that the excited 

state of B is quenched efficiently by benzaldehyde 1a, but not by allyl bromide (2a) or DIPEA 

(Figure 3-1). These results are in accord with the prior observations, as they show that radical 

1a•– is generated by a SET from B to 1a while the allyl radical (2a•) is formed without 

photocatalyst.  
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Figure 3-1 – Fluorescence quenching experiments of photocatalyst B upon addition of benzaldehyde (1a) and 
allyl bromide (2a) 
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According to cyclic voltammetry, benzaldehyde has a reduction potential of –2.0 V vs. SCE in 

DMF and should therefore not be in the range of photocatalyst B (E0* = –1.80 V vs. SCE).[19b, 

19c] However, it is known that the potential of aldehydes and ketones can be lowered by 

activating the carbonyl group with Lewis acids[15d] or with the oxidized form of the tertiary 

amine (DIPEA•+).[15b] Indeed, CV-measurements show, that the signal for the reduction of 1a 

is clearly shifted to lower potentials upon addition of DIPEA and LiBF4 (Figure 3-2). This 

effect could only be observed when both additives were present in the reaction mixture, which 

explains the role of LiBF4 in the reaction.  
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Figure 3-2 – Cyclic voltammograms of benzaldehyde (1a, black) and a mixture of 1a (1 eq.), DIPEA 
(6 eq.) and LiBF4 (1.5 eq.) (red); the peak that corresponds to the reduction of 1a is shifted to lower 
potentials upon addition of DIPEA and LiBF4. 

 

Although the mixture of allyl bromide and DIPEA has no detectable absorbance at 400 nm, 

there seems to be a weak interaction between 2a and DIPEA leading to the absorption of 

small amounts of light and initiating an electron transfer from the amine to 2a. After a few 

minutes of irradiation, the absorption spectrum of the reaction mixture changes and an 

absorbance band with λmax, abs= 413 nm arises, therefore enabling the efficient absorbance of 

400 nm light and speeding up the reaction (Figure 3-3). To gain further insight, the quantum 

yield of the reaction was measured. While the determined value of φ = 7.6 % is rather high for 

photocatalytic reactions, it is in accordance with the fast reaction times. 

reduction of 1a 
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Figure 3-3 – UV/Vis absorption spectra of allyl bromide (2a, 1 eq.) and DIPEA (3 eq.) in DMA before 
irradiation and after 10, 20 and 30 minutes of 400 nm irradiation. 

 

Based on these mechanistic investigations and recent literature reports,[15, 21] we propose the 

reaction mechanism depicted in Scheme 3-4. Photocatalyst B is excited upon irradiation with 

400 nm light and benzaldehyde (1a) can be reduced to the ketyl radical 1a•– by a SET from the 

excited photocatalyst B*. DIPEA acts as a sacrificial electron donor to regenerate the 

photocatalyst from its oxidized form B•+ to the ground state B. Irradiation of allyl bromide 

and DIPEA initiates an electron transfer, which after the cleavage of Br-, leads to the formation 

of the allyl radical 2a•. The more persistent ketyl radical 1a•–[21] and the transient allyl radical 

2a•[22] recombine in a radical-radical cross-coupling, which is in accordance with the persistent 

radical effect,[21, 23] and after protonation, the desired product 3a is formed. 
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Scheme 3-3 – Proposed reaction mechanism. 

 

3.3 Conclusion 

In summary, we have developed a photocatalytic version of the Barbier-type reaction, which 

generates homoallylic or -benzylic alcohols from aldehydes or ketones and allyl- or benzyl 

bromides under mild conditions via a radical-radical cross-coupling. Instead of using 

stoichiometric amounts of zerovalent metal as a reductant to generate an organometallic 

carbanion synthon, we use an organic photocatalyst, a tertiary amine and visible light to reduce 

both substrates to the corresponding radicals. The cross-coupling of these radicals leads to the 

desired product and enables a photocatalytic two electron process. 
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3.4 Experimental part 

3.4.1 General information 

Starting materials and reagents were purchased from commercial suppliers (Sigma Aldrich, 

Alfa Aesar, Acros, Fluka, TCI or VWR) and used without further purification. Solvents were 

used as p.a. grade or dried and distilled according to literature known procedures.[24] For 

automated flash column chromatography industrial grade of solvents was used. All reactions 

with oxygen- or moisture-sensitive reagents were carried out in glassware, which was dried 

before use by heating under vacuum. Dry nitrogen was used as inert gas atmosphere. Liquids 

were added via syringe, needle and septum techniques unless otherwise stated. 

All NMR spectra were measured at room temperature using a Bruker Avance 300 (300 MHz 

for 1H, 75 MHz for 13C, 282 MHz for 19F) or a Bruker Avance 400 (400 MHz for 1H, 101 MHz 

for 13C, 376 MHz for 19F)[25] NMR spectrometer. All chemical shifts are reported in δ-scale as 

parts per million [ppm] (multiplicity, coupling constant J, number of protons) relative to the 

solvent residual peaks as the internal standard.[26] 

Coupling constants J are given in Hertz [Hz]. Abbreviations used for signal multiplicity: 1H-

NMR: b = broad, s = singlet, d = doublet, t = triplet, q = quartet, hept = heptet dd = doublet 

of doublets, dt = doublet of triplets, dq = doublet of quartets, and m = multiplet; 13C-NMR: 

(+) = primary/tertiary, (–) = secondary, (Cq) = quaternary carbon).  

The mass spectrometrical measurements were performed at the Central Analytical Laboratory 

of the University of Regensburg. All mass spectra were recorded on a Finnigan MAT 95, 

ThermoQuest Finnigan TSQ 7000, Finnigan MAT SSQ 710 A or an Agilent Q-TOF 6540 

UHD instrument. 

GC measurements were performed on a GC 7890 from Agilent Technologies. Data acquisition 

and evaluation was done with Agilent ChemStation Rev.C.01.04. GC/MS measurements were 

performed on a 7890A GC system from Agilent Technologies with an Agilent 5975 MSD 

Detector. Data acquisition and evaluation was done with MSD ChemStation E.02.02.1431.A 

capillary column HP-5MS/30 m x 0.25 mm/0.25 μM film and helium as carrier gas (flow rate 

of 1 mL/min) were used. The injector temperature (split injection: 40:1 split) was 280 °C, 

detection temperature 300 °C (FID). GC measurements were made and investigated via 

integration of the signal obtained. The GC oven temperature program was adjusted as follows: 

initial temperature 40 °C was kept for 3 minutes, the temperature was increased at a rate of 
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15 °C/min over a period of 16 minutes until 280 °C was reached and kept for 5 minutes, the 

temperature was again increased at a rate of 25 °C/min over a period of 48 seconds until the 

final temperature (300 °C) was reached and kept for 5 minutes. 1-Naphthol was used as an 

internal standard. 

Analytical TLC was performed on silica gel coated alumina plates (MN TLC sheets 

ALUGRAM® Xtra SIL G/UV254). Visualization was done by UV light (254 or 366 nm). If 

necessary, potassium permanganate, vanillin or ceric ammonium molybdate was used for 

chemical staining. 

Purification by column chromatography was performed with silica gel 60 M (40-63 μm, 230-

440 mesh, Merck) on a Biotage® IsoleraTM Spektra One device. 

For irradiation with blue light OSRAM Oslon SSL 80 LDCQ7P-1U3U (blue, λmax = 455 nm, 

Imax = 1000 mA, 1.12 W) was used. For irradiation with green light Cree XPEGRN L1 G4 Q4 

(green, λmax = 535 nm, Imax = 1000 mA, 1.12 W), and for irradiation with 400 nm Edison 

EDEV-SLC1-03 (λmax = 400 nm, Imax = 700 mA, 400 mW) was used. 

CV measurements were performed with the three-electrode potentiostat galvanostat 

PGSTAT302N from Metrohm Autolab using a glassy carbon working electrode, a platinum 

wire counter electrode, a silver wire as a reference electrode and TBATFB 0.1 M as supporting 

electrolyte. The potentials were achieved relative to the Fc/Fc+ redox couple with ferrocene 

as internal standard.[27] The control of the measurement instrument, the acquisition and 

processing of the cyclic voltammetric data were performed with the software Metrohm 

Autolab NOVA 1.10.4. The measurements were carried out as follows: a 0.1 M solution of 

TBATFB in acetonitrile was added to the measuring cell and the solution was degassed by 

argon purge for 5 min. After recording the baseline the electroactive compound was added 

(0.01 M) and the solution was again degassed a stream of argon for 5 min. The cyclic 

voltammogram was recorded with one to three scans. Afterwards ferrocene (2.20 mg, 12.0 

μmol) was added to the solution which was again degassed by argon purge for 5 min and the 

final measurement was performed with three scans. 

Fluorescence spectra were measured on a HORIBA FluoroMax®-4 Spectrofluorometer at 

room temperature. Gas tight 10 mm Hellma® quartz fluorescence cuvettes with a screw cap 

with PTFE-coated silicon septum were used. FluorEssence Version 3.5.1.20 was used as a 

software for measurement and analysis. UV-Vis absorption spectroscopy was performed at 

25 °C on a Varian Cary 100 Spectrometer with a 10 mm quartz cuvette. 
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3.4.2 General procedures 

 Synthesis of photocatalysts 

2,4,5,6-Tetra(carbazole-9-yl)isophthalonitrile (4CzIPN, A) 

The photocatalysts were synthesized according to a literature procedure.[28] 

Under a nitrogen atmosphere, carbazole (1.67 g, 10 mmol, 5 eq.) was dissolved in dry THF 

(40 ml) at room temperature. Sodium hydride (60 % in paraffin oil, 0.6 g, 15 mmol, 6 eq.) was 

slowly added and the reaction mixture was stirred for 30 minutes at room temperature. 

Tetrafluoroisophthalonitrile or tetrafluorophthalonitrile (0.4 g, 2 mmol, 1 eq.) was added and 

the reaction was heated to 40 °C. After 12 h, the reaction mixture was quenched with water 

(2 ml), concentrated under vacuum and washed with water and EtOH. After recrystallization 

from hexane/DCM, the desired products were obtained. 

 

1H NMR (400 MHz, CDCl3, δH) 8.22 (d, J = 7.7 Hz, 2H), 7.78 – 7.65 (m, 8H), 7.52 – 7.47 (m, 

2H), 7.33 (d, J = 7.8 Hz, 2H), 7.25 – 7.18 (m, 4H), 7.16 – 7.00 (m, 8H), 6.82 (td, J = 8.2, 1.1 

Hz, 4H), 6.63 (td, J = 7.6, 1.2 Hz, 2H). 

13C NMR (101 MHz, CDCl3, δC) 145.3 (Cq), 144.7 (Cq), 140.1 (Cq), 138.3 (Cq), 137.1 (Cq), 134.9 

(Cq), 127.1 (+), 125.9 (+), 125.1 (Cq), 124.9 (Cq), 124.7 (+), 124.0, 122.5 (+), 122.1 (+), 121.5 

(+), 121.1 (+), 120.6 (+), 119.8 (+), 116.5 (Cq), 111.8 (Cq), 110.1 (+), 109.6 (+), 109.6 (+). 

 

 

 

 



CHAPTER 3 
 

 

63 

 

3,7-Di(4-biphenyl) 1-naphthalene-10-phenoxazine 

The photocatalysts was synthesized according to a literature procedure.[19a-c] 

1-Naphthalene-10-phenoxazine[19b]  

A flame dried schlenk flask was equipped with phenoxazine (2.0 g, 10.9 mmol, 1 eq.), NaOtBu 

(2.1 g, 21,8 mmol, 2 eq.), RuPhos (131.2 mg, 0.32 mmol. 3 mol%), RuPhos precat (229.5 mg, 

0.32 mmol, 3 mol%), 1-bromonaphthalene (3.1 ml, 21.8 mmol, 2 eq.) and 12 ml dry dioxane. 

The reaction mixture was stirred at 130 °C for 48 h. After cooling to room temperature DCM 

(20 ml) was added and the solution was washed with water (3 x 20 ml), brine (1 x 20 ml) and 

dried over MgSO4. After removing the solvents under reduced pressure, the crude product 

was obtained. It was purified by recrystallization from DCM. After recrystallization, the 

solution was layered with hexane at –25 °C and the product was obtained as a light-yellow 

powder. 

 

1H NMR (400 MHz, CDCl3, δH) 8.08 (d, J = 8.4 Hz, 1H), 8.02 – 7.94 (m, 2H), 7.68 – 7.60 (m, 

1H), 7.59 – 7.52 (m, 2H), 7.51 – 7.44 (m, 1H), 6.78 – 6.69 (m, 2H), 6.63 (t, J = 7.6 Hz, 2H), 

6.49 (dt, J = 7.7, 1.5 Hz, 2H), 5.70 (dd, J = 8.0, 1.5 Hz, 2H). 

13C NMR (101 MHz, CDCl3, δC) 144.1 (Cq), 135.7 (Cq), 135.2 (Cq), 134.4 (Cq), 131.5 (Cq), 129.3 

(+), 129.1 (+), 128.9 (+), 127.4 (+), 127.0 (+), 126.9 (+), 123.5 (+), 123.5 (+), 121.4 (+), 115.5 

(+), 113.5 (+). 

Yield: 78% 

3,7-Dibromo 1-naphthalene-10-phenoxazine 

In a flask which was covered in aluminum foil to block out light, 1-naphthalene-10-

phenoxazine (1.6 g, 5.2 mmol, 1 eq.) was dissolved in 160 ml chloroform. 160 ml of glacial 

acetic acid was added to the solution. N-Bromosuccinimide (1.9 mg, 10.6 mmol, 2.1 eq.) was 

added to the stirred reaction mixture in small portions in the dark. After stirring at room 

temperature for 2 h, the solvents were removed under reduced pressure. The solid residue was 

dissolved in chloroform, washed with water (3 x 20 ml), brine (1 x 20 ml) and dried with 

MgSO4 and the product was collected as a brown powder. 
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1H NMR (400 MHz, Benzene-d6, δH) δ 7.82 (d, J = 8.3 Hz, 1H), 7.57 (dd, J = 18.9, 8.1 Hz, 

2H), 7.21 – 7.18 (m, 1H), 7.15 – 7.10 (m, 2H), 6.90 (dd, J = 7.3, 1.2 Hz, 1H), 6.84 (d, J = 

2.2 Hz, 2H), 6.36 (dd, J = 8.5, 2.2 Hz, 2H), 5.31 (d, J = 8.5 Hz, 2H). 

13C NMR (101 MHz, Benzene-d6, δC) 144.6 (Cq), 135.9 (Cq), 134.6 (Cq), 133.4 (Cq), 131.2 (Cq), 

129.6 (+), 129.1 (+), 128.8 (+), 127.3 (+), 127.0 (+), 126.9 (+), 123.2 (+), 119.1 (+), 114.(+), 

113.4 (+), 110.4 (Cq). 

Yield: 77% 

3,7-Di(4-biphenyl) 1-naphthalene-10-phenoxazine B 

In a flame dried schlenk flask 3,7-dibromo 1-naphthalene-10-phenoxazine (1.1 g, 2.2 mmol, 

1 eq.) and 4-biphenylboronic acid (1.9 g, 9.7 mmol, 4 eq.) were dissolved in 90 ml THF. 27 ml 

of a 2 M solution of K2CO3 in water was added to the solution and the reaction mixture was 

stirred at 80 °C for 20 minutes. After that, a solution of palladium tetrakis(triphenylphosphine) 

(420 mg, 0.4 mmol, 15 mol%) in 90 ml THF was added and the mixture was refluxed at 100 °C 

for 24 h. After cooling to room temperature, the solvents were removed under reduced 

pressure. The solid residue was dissolved in DCM, washed with water (2 x 20 ml), brine (1 x 

20 ml) and dried with MgSO4. The crude product was purified by recrystallization in 

DCM/Methanol and the product was obtained as a light tan powder. 

 

1H NMR (400 MHz, DMSO-d6, δH) 8.18 (dd, J = 14.5, 8.0 Hz, 2H), 8.02 (d, J = 8.2 Hz, 1H), 

7.81 – 7.76 (m, 2H), 7.72 – 7.7 (m, 14H), 7.46 (t, J = 7.8 Hz, 4H), 7.38 – 7.33 (m, 2H), 7.21 (d, 

J = 2.1 Hz, 2H), 6.98 (dd, J = 8.4, 2.1 Hz, 2H), 5.73 (d, J = 8.3 Hz, 2H). 

Yield: 80% 
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 Synthesis of starting materials 

3-(4-(Hydroxymethyl)phenyl)propan-1-ol[29] 

The substrate was synthesized according to a literature procedure.[30] 

Lithium aluminium hydride (2.4 g, 61.8 mmol, 6 eq) was added to a solution of 4-(2-

carboxethyl)benzoic acid (2 g, 10.3 mmol, 1 eq) in 120 mL anhydrous THF. The reaction 

mixture was stirred at room temperature for 3 h and quenched by addition of aqueous KOH 

(80 mL, 5 wt%). The resulting solution was extracted with ethyl acetate. The organic layer was 

and washed twice with brine, dried over MgSO4 and the solvent was removed in vacuum. The 

crude product was purified by automated flash column chromatography (PE/EtOAc 1:1) to 

provide the desired product as a colorless oil. 

 
1H NMR (400 MHz, CDCl3, δH) 7.30 – 7.26 (m, 2H), 7.21 – 7.17 (m, 2H), 4.65 (s, 2H), 3.66 

(t, J = 6.4 Hz, 2H), 2.73 – 2.68 (m, 2H), 1.92 – 1.84 (m, 2H), 1.69 (s, 2H). 

13C NMR (101 MHz, CDCl3, δC) 141.5 (Cq), 138.6 (Cq), 128.8 (+), 127.4 (+), 65.3 (–), 62.3      

(–), 34.3    (–), 31.9 (–). 

Yield: 64% 

4-(3-Oxopropyl)benzaldehyde[31] 

The substrate was synthesized according to a literature procedure.[32] 

Pyridinium chlorochromate (1.8 g, 8.58 mmol, 3 eq.)  was added to a solution of 

3-(4-(hydroxymethyl)phenyl) propan-1-ol (1 g, 2.86 mmol, 1 eq.) in THF (30ml) and stirred at 

75 °C for 16 h. After cooling, the solution was filtered and evaporated. The product was 

purified by automated flash column chromatography (DCM/MeOH, 20:1) to give 

compound 1d. 

 

 

 

1H NMR (300 MHz, CDCl3, δH) 9.81 (s, 1H), 9.70 – 9.64 (m, 1H), 7.68 – 7.63 (m, 2H), 7.26 

– 7.19 (m, 2H), 2.91 – 2.85 (m, 2H), 2.76 – 2.64 (m, 2H). 

13C NMR (75 MHz, CDCl3, δC) 200.8 (+), 191.9 (+), 147.8 (Cq), 134.7 (Cq), 130.1 (+), 129.0 

(+), 44.6 (–), 28.1 (–). 
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 General procedure for the photocatalytic allylation of aldehydes and ketones 

A 5 mL crimp cap vial was equipped with the aldehyde/ketone 1 (0.2 mmol, 1 equiv.), an allyl 

or benzyl bromide 2 (0.4 mmol, 2 equiv.), DIPEA (200 µl, 1.2 mmol, 6 equiv.), LiBF4 (28.1 mg, 

0.3 mmol, 1.5 eq.) the photocatalyst (5 mol%) and a stirring bar. After adding the solvent 

(2 mL DMA) via syringe, the vessel was capped and degassed by three cycles of freeze pump 

thaw.  The reaction mixture was stirred and irradiated using a 400 nm (± 10 nm) LED for 2 – 

6 h at 25 °C. The progress could be monitored by TLC, GC analysis and GC-MS analysis. 

The reaction mixture was diluted with water (10 ml), extracted with ethyl acetate (3 x 20 ml), 

washed with brine (1 x 20 ml) and dried over Na2SO4. The crude product was obtained by 

removing the solvents under reduced pressure. Purification was performed by automated flash 

column chromatography (PE/EtOAc, 0-20% EtOAc or DCM/MeOH,0-5% MeOH) yielding 

the corresponding product 3. 

 

 

1-Phenyl-3-buten-1-ol (3a)[33] 

 

1H NMR (400 MHz, CDCl3, δH) 7.40 – 7.32 (m, 4H), 7.31 – 7.24 (m, 1H), 5.88 – 5.74 (m, 1H), 

5.21 – 5.11 (m, 2H), 4.74 (dd, J = 7.6, 5.4 Hz, 1H), 2.58 – 2.45 (m, 2H), 2.07 (s, 1H). 

13C NMR (101 MHz, CDCl3, δC) 144.0 (Cq), 134.6 (+), 128.5 (+), 127.7 (+), 125.9 (+), 118.5 

(–), 73.4 (+), 43.9 (–). 

Yield: 44% 
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Cyclohex-2-enyl(phenyl)methanol (3b)[34] 

 

1H NMR (300 MHz, CDCl3, δH) 7.39 – 7.26 (m, 10H), 5.85 (s, 2H), 5.84 – 5.77 (m, 1H), 5.44 

– 5.34 (m, 1H), 4.58 (d, J = 6.6 Hz, 1H), 4.46 (d, J = 7.0 Hz, 1H), 2.57 – 2.42 (m, 2H), 2.02 – 

1.96 (m, 5H), 1.80 – 1.69 (m, 3H), 1.57 – 1.44 (m, 4H), 1.37 – 1.23 (m, 2H). 

13C NMR (75 MHz, CDCl3, δC) 143.6 (Cq), 143.0 (Cq), 130.5 (+), 129.9 (+), 128.4 (+), 128.3 

(+), 128.1 (+), 127.5 (+), 127.5 (+), 127.2 (+), 126.6 (+), 126.4 (+), 78.1 (+), 77.49 (+), 43.1 

(+), 42.9 (+),  26.4 (–), 25.4 (–), 25.3 (–), 24.0 (–), 21.6 (–), 21.2 (–). 

Yield: 58 % (mixture syn/anti 1:1) 

 

 

1,2-Diphenylethanol (3c)[35] 

 

1H NMR (400 MHz, DMSO-d6, δH) 7.34 – 7.12 (m, 10H), 5.26 (s, 1H), 4.80 – 4.69 (m, 1H), 

2.94 – 2.82 (m, 2H). 

13C NMR (101 MHz, DMSO-d6, δC) 145.7 (Cq), 139.1 (Cq), 129.5 (+), 127.8 (+), 127.8 (+), 

126.7 (+), 126.0 (+), 125.8 (+), 73.7 (+), 45.7 (–). 

Yield: 31 % 
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1,2-Diphenyl-1-propanol (3d)[2c] 

 

1H NMR (400 MHz, CDCl3, δH) 7.41 – 7.13 (m, 20H), 4.82 (d, J = 5.7 Hz, 1H), 4.67 (d, J = 

8.7 Hz, 1H), 3.17 – 3.09 (m, 1H), 3.08 – 2.98 (m, 1H), 1.93 (s, 1H), 1.90 (s, 1H), 1.33 (d, J = 

7.0 Hz, 3H), 1.10 (d, J = 7.1 Hz, 3H). 

13C NMR (101 MHz, CDCl3, δC) 143.7 (Cq), 143.5 (Cq), 143.0 (Cq), 142.7 (Cq), 128.8 (+), 128.4 

(+), 128.4 (+), 128.2 (+), 128.2 (+), 128.1 (+), 127.9 (+), 127.3 (+), 127.1 (+), 127.0 (+), 126.6 

(+), 126.4 (+), 79.8 (+), 78.8 (+), 48.3 (+), 47.3 (+), 18.5 (+), 15.1 (+). 

Yield: 37 % (mixture syn/anti 1:1) 

 

 

Methyl 4-(1-hydroxybut-3-en-1-yl)benzoate (3e)[36] 

 

1H NMR (300 MHz, CDCl3, δH)  8.05 – 7.96 (m, 2H), 7.45 – 7.39 (m, 2H), 5.87 – 5.70 (m, 

1H), 5.20 – 5.12 (m, 2H), 4.80 (dd, J = 7.8, 4.9 Hz, 1H), 3.90 (s, 3H), 2.58 – 2.41 (m, 2H), 2.18 

(s, 1H). 

13C NMR (75 MHz, CDCl3, δC) 167.1 (Cq), 149.1 (Cq), 133.9 (+), 129.9 (+), 129.4 (Cq), 125.9 

(+), 119.2 (–), 72.9 (+), 52.2 (+), 44.0 (–). 

HRMS (APCI) (m/z): [MH+] (C12H15O3
+) calc.: 207.1016, found: 207.1018. 

Yield: 33% 
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Methyl 3-(4-(1-hydroxybut-3-en-1-yl)phenyl)acrylate (3f)[37] 

 

1H NMR (400 MHz, DMSO-d6, δH) 7.56 (d, J = 8.1 Hz, 2H), 7.32 (d, J = 8.1 Hz, 2H), 6.99 (d, 

J = 12.7 Hz, 1H), 5.98 (d, J = 12.7 Hz, 1H), 5.82 – 5.71 (m, 1H), 5.31 (d, J = 4.5 Hz, 1H), 5.03 

– 4.95 (m, 2H), 4.60 (q, J = 6.0 Hz, 1H), 3.65 (s, 3H), 2.40 – 2.33 (m, 2H). 

13C NMR (101 MHz, DMSO-d6, δC) 166.3 (Cq), 146.8 (Cq), 142.4 (+), 135.4 (+), 132.9 (Cq), 

129.5 (+), 125.6 (+), 118.6 (+), 116.8 (–), 71.9 (+), 51.2 (+), 43.5 (–). 

HRMS (ESI) (m/z): [MH+] (C19H20ClO4
+) calc.: 233.1172, found: 233.1175. 

Yield: 19% 

 

 

3-(4-(1-hydroxybut-3-en-1-yl)phenyl)propanal (3g) 

 

1H NMR (400 MHz, CDCl3, δH) 9.81 (t, J = 1.4 Hz, 1H), 7.32 – 7.24 (m, 2H), 7.21 – 7.14 (m, 

2H), 5.87 – 5.73 (m, 1H), 5.19 – 5.11 (m, 2H), 4.70 (dd, J = 7.5, 5.4 Hz, 1H), 2.99 – 2.90 (m, 

2H), 2.82 – 2.69 (m, 2H), 2.53 – 2.42 (m, 2H), 2.09 (s, 1H). 

13C NMR (101 MHz, CDCl3, δC) 201.7 (+), 142.1 (Cq), 139.7 (Cq), 134.6 (+), 128.5 (+), 126.2 

(+), 118.5 (–), 73.2 (+), 45.3 (–), 43.9 (–), 27.9 (–). 

HRMS (APCI) (m/z): [MNH4
+] (C13H20NO2

+) calc.: 222.1489, found: 222.1493. 

Yield: 30% 
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Cyclohex-2-enylthiophen-2-ylmethanol (3h)[38] 

 

anti-product (R,S / S,R) 

1H NMR (400 MHz, CDCl3, δH) 7.29 – 7.26 (m, 1H), 7.03 – 6.94 (m, 2H), 5.88 – 5.80 (m, 1H), 

5.51 – 5.43 (m, 1H), 4.83 (d, J = 6.9 Hz, 1H), 2.61 – 2.53 (m, 1H), 2.06 – 1.96 (m, 3H), 1.90 – 

1.73 (m, 2H), 1.59 – 1.50 (m, 2H). 

13C NMR (101 MHz, CDCl3, δC) 146.9 (Cq), 130.7 (+), 127.5 (+), 126.6 (+), 124.8 (+), 124.6 

(+), 73.9 (+), 43.6 (+), 25.4 (–), 24.6 (–), 21.2 (–). 

 

syn-product (R,R / S,S) 

1H NMR (400 MHz, CDCl3, δH) 7.26 – 7.24 (m, 1H), 7.00 – 6.95 (m, 2H), 5.94 – 5.86 (m, 1H), 

5.86 – 5.80 (m, 1H), 4.74 (d, J = 6.6 Hz, 1H), 2.61 – 2.50 (m, 1H), 2.04 – 1.98 (m, 2H), 1.79 – 

1.69 (m, 1H), 1.66 – 1.48 (m, 3H), 1.42 – 1.32 (m, 1H). 

13C NMR (101 MHz, CDCl3 δC) 147.9 (Cq), 130.7 (+), 126.7 (+), 126.6 (+), 124.6 (+), 124.1 

(+), 74.3 (+), 43.5 (+), 26.2 (–), 25.4 (–), 21.5 (–). 

Yield: 32 % (mixture syn/anti 1:1) 

 

 

1-(2-Naphthyl)-3buten-1-ol (3i)[39] 

 

1H NMR (400 MHz, CDCl3, δH) 7.88 – 7.79 (m, 4H), 7.53 – 7.44 (m, 3H), 5.91 – 5.78 (m, 1H), 

5.24 – 5.12 (m, 2H), 4.91 (dd, J = 7.6, 5.3 Hz, 1H), 2.69 – 2.53 (m, 2H), 2.20 (s, 1H). 

13C NMR (101 MHz, CDCl3, δC) 141.4 (Cq), 134.5 (+), 133.4 (Cq), 133.1 (Cq), 128.3 (+), 128.1 

(+), 127.8 (+), 126.3 (+), 125.9 (+), 124.6 (+), 124.1 (+), 118.7 (–), 73.5 (+), 43.9 (–). 

Yield: 48% 
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Cyclohex-2-enyl(1-naphthyl)methanol (3j)[40] 

 

1H NMR (400 MHz, DMSO-d6, δH) 8.28 – 8.22 (m, 1H), 8.22 – 8.15 (m, 1H), 7.96 – 7.88 (m, 

2H), 7.81 (d, J = 8.2 Hz, 2H), 7.65 – 7.59 (m, 2H), 7.56 – 7.43 (m, 6H), 5.90 (dq, J = 10.3, 2.2 

Hz, 1H), 5.77 – 5.67 (m, 1H), 5.66 – 5.56 (m, 1H), 5.42 (d, J = 4.3 Hz, 1H), 5.33 (d, J = 4.3 

Hz, 1H), 5.29 (dq, J = 10.2, 2.3 Hz, 1H), 5.20 (dd, J = 6.7, 4.3 Hz, 1H), 5.03 (dd, J = 7.0, 4.3 

Hz, 1H), 2.62 – 2.51 (m, 2H), 1.99 – 1.83 (m, 4H), 1.76 – 1.57 (m, 4H), 1.44 – 1.27 (m, 4H). 

13C NMR (101 MHz, DMSO-d6, δC) 140.4 (Cq), 140.3 (Cq), 133.4 (Cq), 133.3 (Cq), 130.5 (+), 

129.5 (+), 128.7 (+), 128.6 (+), 128.5 (+), 127.9 (+), 127.4 (+), 127.1 (+), 127.0 (+), 125.6 (+), 

125.6 (+), 125.3 (+), 125.2 (+), 125.2 (+), 125.2 (+), 124.3 (+), 124.3 (+), 123.9 (+), 123.8 (+), 

73.4 (+), 72.3 (+), 42.2 (+), 42.2 (+), 26.4 (–), 24.8 (–), 24.8 (–), 24.2 (–), 21.5 (–), 20.9 (–). 

Yield: 48% (mixture syn/anti 1:1) 

 

 

1,1-Diphenylbut-3-en-1-ol (3k)[8] 

 
1H NMR (300 MHz, CDCl3, δH) 7.54 – 7.46 (m, 4H), 7.38 – 7.32 (m, 4H), 7.29 – 7.22 (m, 2H), 

5.80 – 5.62 (m, 1H), 5.34 – 5.17 (m, 2H), 3.13 (dt, J = 7.2, 1.2 Hz, 2H), 2.64 (s, 1H). 

13C NMR (75 MHz, CDCl3, δC) 146.6 (Cq), 133.5 (+), 128.3 (+), 126.9 (+), 126.1 (+), 120.6   

(–), 77.0 (Cq), 46.8 (–). 

Yield: 75 % 
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Cyclohex-2-en-1-yldiphenylmethanol (3l)[41] 

 
1H NMR (300 MHz, CDCl3, δH) 7.71 – 7.61 (m, 2H), 7.58 – 7.50 (m, 2H), 7.42 – 7.28 (m, 4H), 

7.28 – 7.16 (m, 2H), 6.06 – 5.96 (m, 1H), 5.60 – 5.51 (m, 1H), 3.60 – 3.43 (m, 1H), 2.30 (s, 

1H), 2.12 – 2.00 (m, 2H), 1.88 – 1.77 (m, 1H), 1.64 – 1.47 (m, 3H). 

13C NMR (75 MHz, CDCl3, δC) 146.9 (Cq), 145.6 (Cq), 133.8 (+), 128.4 (+), 128.1 (+), 126.6 

(+), 126.5 (+), 126.3 (+), 126.1 (+), 125.5 (+), 79.4 (Cq), 43.8 (+), 25.4 (–), 23.9 (–), 22.1 (–). 

Yield: 76 % 

 

 

1,1,2-Triphenylethan-1-ol (3m)[42] 

 

1H NMR (300 MHz, CDCl3, δH) 7.49 – 7.42 (m, 4H), 7.36 – 7.29 (m, 4H), 7.29 – 7.22 (m, 2H), 

7.22 – 7.14 (m, 3H), 6.97 – 6.87 (m, 2H), 3.68 (s, 2H), 2.34 (s, 1H). 

13C NMR (75 MHz, CDCl3, δC) 146.7 (Cq), 135.9 (Cq), 131.0 (+), 128.2 (+), 128.2 (+), 127.0 

(+), 126.9 (+), 126.3 (+), 78.0 (Cq), 48.1 (–). 

Yield: 33 % 
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4-Methyl-1,1-diphenylpent-3-en-1-ol  & 2,2-dimethyl-1,1-diphenylbut-3-en-1-ol (3n)[8, 43] 

 

3n-a: 

1H NMR (400 MHz, CDCl3, δH) 7.51 – 7.46 (m, 4H), 7.37 – 7.30 (m, 4H), 7.26 – 7.21 (m, 2H), 

5.12 – 5.04 (m, 1H), 3.05 (d, J = 7.4 Hz, 2H), 2.59 (s, 1H), 1.71 (s, 6H). 

13C NMR (101 MHz, CDCl3, δC) 147.1 (Cq), 138.1 (Cq), 128.2 (+), 126.8 (+), 126.1 (+), 118.5 

(+), 77.8 (Cq), 40.9 (–), 26.3 (+), 18.4. (+) 

3 n-b: 

1H NMR (400 MHz, CDCl3, δH) 7.58 – 7.52 (m, 4H), 7.29 – 7.20 (m, 6H), 6.19 (dd, J = 17.6, 

10.9 Hz, 1H), 5.26 – 5.10 (m, 2H), 2.46 (s, 1H), 1.19 (s, 6H). 

13C NMR (101 MHz, CDCl3, δC) 146.5 (+), 145.7 (Cq), 128.6 (+), 127.4 (+), 126.8 (+), 112.8 

(–), 81.8 (Cq), 45.6 (Cq), 24.4 (+). 

Yield: 77 % (3n-a /3n-b = 2.6:1) 

 

 

1-(2-Chlorophenyl)-1-phenylbut-3-en-1-ol (3o)  

 

1H NMR (400 MHz, CDCl3, δH) 7.80 (dd, J = 7.9, 1.6 Hz, 1H), 7.33 – 7.17 (m, 8H), 5.74 – 

5.61 (m, 1H), 5.16 – 5.03 (m, 2H), 3.41 (ddt, J = 14.1, 6.7, 1.3 Hz, 1H), 3.13 (s, 1H), 3.01 (ddt, 

J = 14.1, 7.2, 1.3 Hz, 1H). 

13C NMR (101 MHz, CDCl3, δC) 145.7 (Cq), 142.7 (Cq), 133.7 (+), 132.5 (Cq), 131.5 (+), 128.9 

(+), 128.8 (+), 128.1 (+), 127.2 (+), 126.6 (+), 126.3 (+), 119.1 (–), 77.7 (Cq), 44.7 (–). 

HRMS (APCI) (m/z): [M + NH4]
+ (C16H19ClNO+) calc.: 276.1150, found: 276.1150. 

Yield: 41 % 
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1,1-Bis(4-fluorophenyl)but-3-en-1-ol (3p)[8] 

 

1H NMR (400 MHz, CDCl3, δH) 7.43 – 7.37 (m, 4H), 7.06 – 6.96 (m, 4H), 5.71 – 5.59 (m, 1H), 

5.28 – 5.19 (m, 2H), 3.04 (dt, J = 7.2, 1.1 Hz, 2H), 2.59 (s, 1H). 

13C NMR (101 MHz, CDCl3, δC) 163.1 (Cq), 160.7 (Cq), 142.3 (Cq), 142.3 (Cq), 133.0 (+), 127.9 

(+), 127.8 (+), 121.1 (–), 115.2 (+), 115.0 (+), 76.4 (Cq), 47.0 (–). 

19F NMR (376 MHz, CDCl3, δF) -116.4 (s). 

Yield: 66 % 

 

 

Cyclohex-2-en-1-yl(phenyl)(thiophen-2-yl)methanol (3q)  

 

1H NMR (400 MHz, CDCl3, δH) 7.68 – 7.62 (m, 2H), 7.58 – 7.53 (m, 2H), 7.35 (ddd, J = 17.6, 

8.4, 7.0 Hz, 4H), 7.29 – 7.15 (m, 4H), 7.12 (dd, J = 3.6, 1.2 Hz, 1H), 6.99 (dd, J = 5.1, 3.6 Hz, 

1H), 6.96 – 6.90 (m, 2H), 6.09 – 6.00 (m, 1H), 5.97 – 5.89 (m, 1H), 5.67 (dq, J = 10.3, 2.3 Hz, 

1H), 5.44 – 5.35 (m, 1H), 3.41 – 3.32 (m, 1H), 3.32 – 3.23 (m, 1H), 2.65 (s, 1H), 2.44 (s, 1H), 

2.06 – 1.97 (m, 4H), 1.88 – 1.68 (m, 3H), 1.63 – 1.46 (m, 3H), 1.44 – 1.36 (m, 2H). 

13C NMR (101 MHz, CDCl3, δC) 153.3 (Cq), 151.2 (Cq), 146.0 (Cq), 144.7 (Cq), 134.4 (+), 133.3 

(+), 128.3 (+), 128.1 (+), 127.0 (+), 126.9 (+), 126.7 (+), 126.3 (+), 126.1 (+), 125.7 (+), 125.3 

(+), 124.5 (+), 124.0 (+), 123.3 (+), 123.0 (+), 79.4 (Cq), 79.1 (Cq), 46.4 (+), 46.4 (+), 25.3 (–), 

25.3 (–), 24.1 (–), 24.0 (–), 22.0 (–), 21.9 (–). 

HRMS (APCI) (m/z): [MH+ - H2O] (C17H17S
+) calc.: 253.1045, found: 253.1045.  

Yield: 57 % (mixture syn/anti 1:1) 
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2-Hydroxy-1,2-diphenylpent-4-en-1-one (3r)[44] 

 

1H NMR (400 MHz, DMSO-d6, δH) 7.96 – 7.89 (m, 2H), 7.50 – 7.41 (m, 3H), 7.34 (q, J = 7.4 

Hz, 4H), 7.26 – 7.18 (m, 1H), 6.47 (s, 1H), 5.70 – 5.56 (m, 1H), 4.94 (d, J = 1.3 Hz, 1H), 4.93 

– 4.88 (m, 1H), 2.93 – 2.77 (m, 2H). 

13C NMR (101 MHz, DMSO-d6, δC) 200.1 (Cq), 142.1 (Cq), 135.0 (Cq), 133.5 (+), 132.3 (+), 

130.2 (+), 128.3 (+), 127.8 (+), 127.0 (+), 124.8 (+), 118.1 (–), 82.0 (Cq), 45.0 (–). 

Yield: 65 %  

 

 

1,2-Bis(4-bromophenyl)-2-hydroxypent-4-en-1-one (3s)[45] 

 

1H NMR (300 MHz, CDCl3, δH) 7.71 – 7.63 (m, 2H), 7.54 – 7.42 (m, 4H), 7.39 – 7.32 (m, 2H), 

5.81 – 5.59 (m, 1H), 5.23 – 5.02 (m, 2H), 3.84 (s, 1H), 3.10 (ddt, J = 13.7, 7.3, 1.0 Hz, 1H), 

2.82 (ddt, J = 13.7, 7.1, 1.2 Hz, 1H). 

13C NMR (75 MHz, CDCl3, δC) 199.0 (Cq), 140.7 (Cq), 133.1 (Cq), 132.2 (+), 132.0 (+), 131.9 

(+), 131.6 (+), 128.4 (Cq), 127.2 (+), 122.4 (Cq), 121.5 (–), 81.3 (Cq), 44.7 (–). 

Yield: 28 %  
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1-(2-Chlorophenyl)-2-(3,4-dimethoxyphenyl)-2-hydroxypent-4-en-1-one (3t-a) and 

2-(2-chlorophenyl)-1-(3,4-dimethoxyphenyl)-2-hydroxypent-4-en-1-one (3t-b) 

 

1H NMR (400 MHz, CDCl3, δH) 7.88 (dd, J = 7.9, 1.4 Hz, 1H), 7.40 – 7.31 (m, 3H), 7.30 – 

7.23 (m, 4H), 7.06 (td, J = 7.6, 1.2 Hz, 1H), 7.03 – 6.97 (m, 3H), 6.86 – 6.80 (m, 1H), 6.68 – 

6.62 (m, 2H), 5.87 – 5.66 (m, 2H), 5.24 – 5.17 (m, 3H), 5.10 – 5.04 (m, 1H), 5.00 – 4.91 (m, 

1H), 4.76 (s, 1H), 3.87 (s, 4H), 3.83 (s, 3H), 3.81 (s, 4H), 3.69 (s, 3H), 3.56 (s, 1H), 3.21 – 3.10 

(m, 2H), 3.08 – 2.98 (m, 1H), 2.89 – 2.81 (m, 1H). 

13C NMR (101 MHz, CDCl3, δC) 204.6 (Cq), 197.4 (Cq), 153.3 (Cq), 149.0 (Cq), 148.8 (Cq), 148.5 

(Cq), 140.7 (Cq), 137.5 (Cq), 133.9 (Cq), 132.3 (+), 131.9 (+), 131.5 (+), 131.1 (Cq), 130.8 (+), 

129.9 (+), 129.5 (+), 128.1 (+), 127.4 (+), 127.0 (+), 126.6 (Cq), 125.9 (+), 124.3 (+), 120.8      

(–), 119.7 (–), 118.6 (+), 112.1 (+), 111.0 (+), 110.0 (+), 109.3 (+), 82.4 (–), 79.8 (–), 56.0 (+), 

55.9 (+), 55.9 (+), 55.8 (+), 43.9 (–), 43.2 (–). 

HRMS (ESI) (m/z): [MH+] (C19H20ClO4
+) calc.: 347.1045, found: 347.1052. 

Yield: 57 % (3t-a/3t-b = 1:1.3)  

 

3-Hydroxy-3-phenylhex-5-en-2-one (3u)[46] 

 
1H NMR (400 MHz, CDCl3, δH) 7.51 – 7.45 (m, 2H), 7.41 – 7.34 (m, 2H), 7.34 – 7.28 (m, 1H), 

5.82 – 5.69 (m, 1H), 5.26 – 5.14 (m, 2H), 4.24 (s, 1H), 3.04 – 2.88 (m, 2H), 2.09 (s, 3H). 

13C NMR (101 MHz, CDCl3, δC) 208.9 (Cq), 140.6 (Cq), 132.3 (+), 128.8 (+), 128.2 (+), 126.1 

(+), 119.8 (–), 82.3 (Cq), 41.6 (–), 24.2 (+). 

Yield: 12 %  



CHAPTER 3 
 

 

77 

 

1-Methoxy-1,2-diphenylpent-4-en-2-ol (3v)  

 
1H NMR (400 MHz, CDCl3, δH) 7.30 – 7.21 (m, 3H), 7.20 – 7.10 (m, 5H), 7.03 – 6.94 (m, 2H), 

5.70 – 5.50 (m, 1H), 5.15 – 4.95 (m, 2H), 4.30 – 4.28 (2 x s, 1H), 3.26 – 3.22 (2 x s, 3H), 2.92 

– 2.82 (m, 2H), 2.73 – 2.51 (m, 1H). 

13C NMR (101 MHz, CDCl3, δC) 142.7 (Cq), 142.2 (Cq), 136.9 (Cq), 136.8 (Cq), 133.9 (+), 133.7 

(+), 128.8 (+), 128.7 (+), 128.0 (+), 127.7 (+), 127.7 (+), 127.5 (+), 127.5 (+), 127.0 (+), 126.9 

(+), 126.7 (+), 126.6 (+), 118.7 (–), 118.6 (–), 90.6 (+), 89.8 (+), 78.3 (Cq), 78.3 (Cq), 57.6 (+), 

57.6 (+), 42.9 (–), 41.1 (–). 

Yield: 36 % (mixture syn/anti 1:1) 

 

3.4.3 Detailed optimization of the reaction conditions 

Screening of different photocatalysts 

Table 3-3 – Optimization of the reaction conditions: screening of different photocatalysts [a] 

 

Entry 
Photocatalyst  

(mol%, hν [nm]) 

Yield[b] 

[%] 

1 4CzIPN (5, 455) 22 

2[c] (Ir[dF(CF3)ppy]2(dtbpy))PF6 (2, 455) 21 

3 D (5, 400) 48 

4 Eosin Y (5, 535) 0 

5 Fluorescein (5, 535) 0 

6 [Ru(bpy)3]Cl2 (5, 455) 0 

7 Rhodamine 6G 0 

[a] The reactions were performed using 1 eq. of a and 2 eq. of 2a. [b] Determined by GC 

analysis with 1-Naphthol as an internal standard. [c] DMA was used as a solvent instead of DMF. 
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Screening of different solvents 

 Table 3-4 – Optimization of the reaction conditions: screening of different solvents[a] 

 

Entry Solvent 
Yield[b] 

[%] 

1 DMF (dry) 38 

2 MeCN (dry) 24 

3 EtOH 24 

4 DCE (dry) 19 

5 Toluene (dry) 0 

6 DMSO 34 

7 THF 7 

8 DMA 54 

[a] The reactions were performed using 1 eq. of a and 1 eq of 2a. in 2 mL of degassed solvent 

under nitrogen. [b] Determined by GC analysis with 1-Naphthol as an internal standard. 
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Screening of different additives 

Table 3-5 – Optimization of the reaction conditions: screening of different additives.[a] 

 

Entry 
Electron donor 

(eq.) 

Additive 

(eq.) 

Yield[b] 

[%] 

1 DIPEA (6) – 38 

2 TEA (6) – 0 

3 TBA (2) – 16 

4 Hantzsch ester (2) K2CO3 (1) 25 

5 DIPEA (6) LiBF4 (1) 43 

6[c, d] DIPEA (6) LiBF4 (1.5) 64 

7[c, d] DIPEA (6) Li2CO3 (1) 56 

8[c, d] DIPEA (6) LiCl (1.5) 0 

9[c, d] DIPEA (6) Thiophenol (1) 51 

10[c, d] DIPEA (6) LiBF4 (0.5) 43 

11[c, d] DIPEA (3) LiBF4 (1.5) 39 

12[c, d] DIPEA (6) La(OTf)3 (1) 0 

13[c, d] DIPEA (6) B2pin2 (1) 0 

[a] The reactions were performed using 1 eq. of a and 1 eq. of 2a in 2 mL of degassed solvent under nitrogen, 

[b] Determined by GC analysis with 1-Naphthol as an internal standard, [c] DMA was used as a solvent instead 

of DMF, [d] reaction performed at 400 nm. 
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3.4.4 Mechanistic investigations 

Control reactions 

 

Scheme 3-4 – Control reactions for the formation of ketyl- and allyl-/benzyl radicals. 
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Scheme 3-5 – Control experiments for radical-radical cross-coupling 

 

All control experiments were performed with 1 eq. of 1 (0.2 mmol), 2 eq. of 2 (0.4 mmol), 

5 mol% photocatalyst B, 6 eq. DIPEA (1.2 mmol) in 2 mL degassed solvent (DMA or DMF) 

under nitrogen. In radical trapping experiments, 10 eq. of 1,1-diphenylethylene 9 were added. 

The reactions were irradiated with 400 nm at 25 °C. The reaction mixtures were analyzed with 

GC and GC-MS. 
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 Fluorescence quenching experiments 

For fluorescence quenching experiments, a 30 µM solution of the photocatalyst D in degassed 

DMF was prepared under nitrogen atmosphere in a gas-tight 10 mm quartz cuvette. The 

photocatalyst was irradiated with 390 nm and the change of the fluorescence emission upon 

addition of different potential quenchers was recorded. 

Benzaldehyde 1a: 

 

𝐼0

𝐼
= 1 + 𝑘𝑞𝜏0[𝑄] 

𝑦 = 1 + 0.02174[𝑄] 

𝑘𝑞𝜏0 = 21.74 
𝑙

𝑚𝑜𝑙
 

𝜏0 = 480𝜇𝑠 [19c] 

𝑘0 = 4.53 ∗ 1010 

 

 

Figure 3-4 – Top: fluorescence quenching of D (30 µM in DMF) upon titration with 1a, bottom: corresponding 
Stern-Volmer plot. 
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Allyl bromide 2a: 
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Figure 3-5 – Top: fluorescence quenching of D (30 µM in DMF) upon titration with 2a, bottom: corresponding 
Stern-Volmer plot. 
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Benzyl bromide (2c) 
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Figure 3-6 – Top: fluorescence quenching of D (30 µM in DMF) upon titration with 2c, bottom: corresponding 
Stern-Volmer plot. 
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DIPEA: 
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Figure 3-7 – Top: fluorescence quenching of D (30 µM in DMF) upon titration with DIPEA, bottom: 
corresponding Stern-Volmer plot. 
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The fluorescence titration experiments show an effective quenching of the emission of 

photocatalyst D after the addition of benzaldehyde (1a) (Figure 3-4). This indicates that an 

electron transfer from the excited state of the photocatalyst to 1a takes place upon irradiation 

which leads to the formation of the ketyl radical anion 1a•– and the oxidized form of the 

photocatalyst PC•+. Ally bromide (2a), benzyl bromide (2c) and DIPEA did not quench the 

emission of the D, so there seems to be no interaction between the excited state of the 

photocatalyst and 2a, 2c or DIPEA (Figure 3-5 – 3-7). 

 

 Cyclic voltammetry measurements 
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Figure 3-8 – Cyclic voltammogram of benzaldehyde (1a) in DMF under argon (scan direction indicated by black 
arrow). The peak at -1.65 V shows the reduction of 1a and corresponds to a potential of -2.0 V vs SCE; the 
reversible peaks at 0.66 and 0.75 V correspond to ferrocene, which was used as an internal standard. The 
measurement was performed with a scan rate of 50 mV/s and with TBATFB (0.1 M) as supporting electrolyte. 
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Figure 3-9 – Cyclic voltammogram of a mixture of benzaldehyde (1a, 1 eq.), DIPEA (6 eq.) and LiBF4 (1.5 eq.) 
in DMF under argon (scan direction indicated by black arrow). The peak at -1.43 V shows the reduction of 1a 
and corresponds to a potential of -1.88 V vs SCE; the reversible peaks at 0.79 and 0.87 V correspond to ferrocene, 
which was used as an internal standard. The measurement was performed with a scan rate of 50 mV/s and with 
TBATFB (0.1 M) as supporting electrolyte. 
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Figure 3-10 – Cyclic voltammograms of benzaldehyde (1a, black) and mixture of 1a (1 eq.), DIPEA (6 eq.) and 
LiBF4 (1.5 eq.) (red) under argon (scan direction indicated by black arrow). The peak that corresponds to the 
reduction of 1a is shifted to lower potentials upon addition of DIPEA and LiBF4. The measurement was 
performed with a scan rate of 50 mV/s and with TBATFB (0.1 M) as supporting electrolyte. 

reduction of 1a 
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 UV/Vis measurements 
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Figure 3-11 – UV/Vis absorption spectra of allyl bromide (2a, 1 eq., 0.4 mmol) and DIPEA (3 eq., 1.2 mmol) in 
DMA before irradiation and after 10, 20 and 30 minutes of 400 nm irradiation. 
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Figure 3-12 – On-line UV/Vis measurements of a mixture of benzaldehyde (1a, 1 eq., 0.2 mmol), allyl bromide 
(2a, 2 eq., 0.4 mmol), DIPEA (6 eq., 1.2 mmol) and LiBF4 (1.5 eq., 0.3 mmol) in DMA (2 mL). The reaction 
mixture was irradiated for 22 h with 400 nm light, a UV/Vis spectrum was recorded every 30 minutes. 
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 Quantum yield determination 

The quantum yield was measured using a quantum yield determination setup determined by 

our group and the group of Riedle:[47] Thorlabs DT 25/M or DT S25M translation stages 

(horizontal and vertical),  photographic lens with f = 50 mm, magnetic stirrer (Faulhaber 

motor 1524B024S R with 14:1 gear), PS19Q power sensor from Coherent, adjustable power 

supply (Basetech BT-153-0-15 V/DC 0-3 A 45 W), PowerMax software. 

A reaction mixture of 1a (20.33 µl, 0.2 mmol, 1 eq.), 2a (34.62 µl, 0.2 mmol, 2 eq.), DIPEA 

(0.2 ml, 1.2 mmol, 6 eq.) and LiBF4 (28.1 mg, 0.3 mmol, 1.5 eq.) and photocatalyst B (6.1 mg, 

5 mol%) in 2 ml DMA was degassed with three cycles freeze pump thaw and transferred into 

a gas tight 10 mm Hellma® quartz fluorescence cuvette with a stirring bar under nitrogen 

atmosphere. A cuvette with solvent (DMA, 2 ml) and a stirring bar was placed in the beam of 

a 400 nm LED and the transmitted power (Pref = 72 mW) was determined by a calibrated 

photodiode horizontal to the cuvette. The cuvette containing the reaction mixture was placed 

in the beam of the LED and the transmitted power Psample was measured analogously. The 

sample was irradiated and the transmitted power as well as the yield of the photocatalytic 

reaction were recorded after different times (Table 4). These values enabled the determination 

of the quantum yield according to the following equation E1: 

∅ =
𝑁𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝑁𝑝ℎ
=

𝑁𝐴 ∗ 𝑛𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝐸𝑙𝑖𝑔ℎ𝑡

𝐸𝑝ℎ

=
𝑁𝐴 ∗ 𝑛𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝐸𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑 ∗ 𝑡
ℎ ∗ 𝑐

𝜆

=
ℎ ∗ 𝑐 ∗ 𝑁𝐴 ∗ 𝑛𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝜆 ∗ (𝑃𝑟𝑒𝑓 − 𝑃𝑠𝑎𝑚𝑝𝑙𝑒) ∗ 𝑡
  (𝐄𝟏) 

where Φ is the quantum yield, Nproduct is the number of product molecules generated during 

the reaction, Nph is the number of absorbed photons, NA is Avogadro’s constant, nproduct is the 

the amount of product generated in mol, Elight is the energy of absorbed light in Joules, Eph is 

the energy of a single photon, Pabsorbed is the radiant power absorbed in Watts, t is the irradiation 

time in seconds, h is the Planck’s constant in J*s, c is the speed of light in m s-1, λ is the 

wavelength of the irradiation source (400 nm), Pref is the radiant power transmitted by a the 

blank sample containing only the solvent and Psample is the radiant power transmitted by the 

cuvette containing the reaction mixture.  

After one hour of irradiation, the yield of the reaction was 34 %, and Psample was 50 µW, which 

corresponds to a quantum yield of Φ = 7.6% 
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 NMR-experiments 

 

 

Figure 3-13 – 1H-NMR-spectra of allyl bromide (2a, 1 eq.) and DIPEA (3 eq.) in DMF-d7 before (red) and after 
(blue) 22 h of 400 nm irradiation. While the allyl bromide signals remain unchanged, the signals of DIPEA (1.03, 
2.55 and 3.09 ppm) show a broadening, which indicates the formation of radicals or ionic species in the reaction 
mixture upon irradiation. 
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3.5 NMR-spectra 

Compound A (4CzIPN), 1H- and 13C-NMR (CDCl3) 
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1-Naphthalene-10-phenoxazine, 1H- and 13C-NMR (CDCl3) 
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3,7-Dibromo 1-naphthalene-10-phenoxazine, 1H- and 13C-NMR (C6D6) 
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Compound D, 1H-NMR (DMSO-d6) 
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3-(4-(Hydroxymethyl)phenyl)propan-1-ol, 1H- and 13C-NMR (CDCl3) 
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Compound 1d, 1H- and 13C-NMR (CDCl3)  
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Compound 3a, 1H- and 13C-NMR (CDCl3) 
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Compound 3b, 1H- and 13C-NMR (CDCl3)  
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Compound 3c, 1H- and 13C-NMR (DMSO-d6)  
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Compound 3d, 1H- and 13C-NMR (CDCl3)  
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Compound 3e, 1H- and 13C-NMR (CDCl3) 
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Compound 3f, 1H- and 13C-NMR (DMSO-d6) 
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Compound 3g, 1H- and 13C-NMR (CDCl3)
* 

 

 
* NMR-studies revealed, that the product is degrading during purification. Hence, no clean NMR of the product 

could be obtained. The additional signals between 0.5 and 2.2 ppm correspond to degradation products. 
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Compound 3h anti, 1H- and 13C-NMR (CDCl3)  
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Compound 3h syn, 1H- and 13C-NMR (CDCl3) 
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Compound 3i, 1H- and 13C-NMR (CDCl3)  
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Compound 3j, 1H- and 13C-NMR (DMSO-d6)  
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Compound 3k, 1H- and 13C-NMR (CDCl3)  
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Compound 3l, 1H- and 13C-NMR (CDCl3) 
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Compound 3m, 1H- and 13C-NMR (CDCl3)  
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Compound 3n-a, 1H- and 13C-NMR (CDCl3) 
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Compound 3n-b, 1H- and 13C-NMR (CDCl3) 
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Compound 3o, 1H- and 13C-NMR (CDCl3)  
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Compound 3p, 1H-, 13C and 19F-NMR (CDCl3)  
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Compound 3q, 1H- and 13C-NMR (CDCl3)  
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Compound 3r, 1H- and 13C-NMR (DMSO-d6)  
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Compound 3s, 1H- and 13C-NMR (CDCl3)  
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Compound 3t-a and compound 3t-b, 1H- and 13C-NMR (CDCl3)  
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Compound 3u, 1H- and 13C-NMR (CDCl3)  
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Compound 3v, 1H- and 13C-NMR (CDCl3) 
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CHAPTER 4 

4 Photocatalytic carbanion generation - benzylation of 

aliphatic aldehydes to secondary alcohols 
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4.1 Introduction 

Photocatalysis is a fast growing field in chemistry, enabling novel transformations previously 

unattainable under thermal conditions.[1] The formation of carbon–carbon bonds is at the core 

of organic synthesis[2] and many photocatalytic methods have been reported over the last two 

decades, the majority of which involve the generation of one or more radical species as key 

intermediates.[3] In contrast, photocatalytic C–C bond formations involving anionic species as 

key intermediates are rare,[4] although the reaction between a carbanion and a carbon 

electrophile, e.g. the Grignard reaction,[5] is the most typical C–C bond forming reaction. Thus, 

photocatalytic methods to generate und utilize carbanion intermediates are desired in order to 

expand the limits of photocatalytic transformations from open shell to closed shell reactivity. 

Commonly used photocatalysts, however, are only known to transfer a single electron to a 

substrate at once (SET), forming the corresponding radical and are not able to transfer two 

electrons in one step to generate the corresponding carbanion.[3] Thus, the most intuitive way 

to photocatalytic carbanion generation is by two subsequent SETs, i.e. a consecutive two-fold 

reduction.[6] There are a few literature examples illustrating the synthetic applicability of this 

strategy.[4a, 4b] These include the carbanion formation from 1,2-dibromomalonates giving 

cyclopropanes after addition to electron poor alkenes[4a] and the carbanion formation from 

tetraalkyl ammonium salts followed by their addition to aromatic aldehydes (Scheme 4-1a).[4b] 

The latter transformation reported by Yu et al. is especially interesting, as it is similar to the 

commonly used Grignard reaction. However, this method seems to be limited to aromatic 

aldehydes. 

Beside the generation of a carbanion via a consecutive two-fold reduction, redox-neutral 

carbanion formations are proposed in several reports as well, typically by the reduction of a 

radical intermediate during the regeneration of the photocatalyst. However, this carbanion is 

in most cases simply protonated[7] and examples where it is synthetically used are scarce.[4c-i, 8] 

These include the formation of a C–S bond with benzenesulfonothioates as electrophiles[4e] 

and intramolecular ring closures via an SN2 reaction (Scheme 4-1b).[4f-i] 

To the best of our knowledge, there is so far no report for a redox-neutral photocatalytic 

carbanion generation followed by its intermolecular reaction with an aliphatic aldehyde or 

ketone as electrophile (Scheme 4-1c). As mentioned above, aldehydes and ketones are in this 

regard especially interesting electrophiles, as the corresponding transformation is analogous to 
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the widespread Grignard reaction. Additionally, substituted carbonyl compounds are poor 

radical traps for an intermolecular radical addition and forming the desired product using 

established photocatalytic protocols for radical addition to double bonds is generally not 

successful.[9] An exception to this is the photocatalytic radical addition enabled by in situ 

Brønsted acid activation yielding 3-alkoxy alcohols as reaction products reported by Glorius et 

al.[10] Mainly aromatic carbonyl compounds could be used as radical traps. 

Inspired by the above mentioned reports, we envisioned a photocatalytic cycle, in which a 

carbanion is formed from readily available carboxylic acids. Here, the in situ formed carboxylate 

is oxidized to the corresponding radical. This intermediate is prone to CO2 exclusion, forming 

the carbon centered radical, which may be converted to the corresponding carbanion by SET 

from the reduced photocatalyst. The desired product is then formed by addition of the 

carbanion to an aldehyde as electrophile (Scheme 4-1c). Herein we describe our efforts to 

realize this catalytic cycle. 

 

 

Scheme 4-1 - (a) Photocatalytic carbanion generation via two consecutive SETs. (b) Redox-neutral carbanion 
generation followed by intramolecular SN2 reaction. (c) Envisioned catalytic cycle. 
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4.2 Results and discussion 

With the envisioned photocatalytic cycle in mind, the coupling between phenylacetic acid (1a) 

and n-pentanal (2a) was chosen as model reaction. Compound 1a was selected as carbanion 

precursor, since the corresponding benzylic radical as well as the desired carbanion 

intermediate are stabilized by the aromatic moiety. As the photocatalyst is supposed to engage 

in a single electron oxidation as well as reduction, employing a catalyst with both a strong 

oxidation as well as reduction power is crucial. 4CzIPN is an in this regard very attractive 

organic photocatalyst, exhibiting an excited state redox potential of E1/2(P*/P•-) = +1.35 V vs 

SCE and a ground state reduction potential of E1/2
red(P/P•–) = –1.21 V vs SCE in MeCN.[11] 

With 4CzIPN as catalyst and Cs2CO3 as base, the reaction proceeded smoothly yielding the 

desired addition product 3a in 73% GC- yield after 16 h (Table 4-1). Toluene (4a) was 

observed as a second product in 15% yield resulting from the reaction with protons as 

electrophile. To increase the reaction yield, several parameters were optimized (Table 4-1, for 

the full optimization process see experimental part).  

 

Table 4-1 – Optimization of the reaction conditions.[a] 

 

Entry Solvent Additive (eq.) Yield 3a[b] [%] Yield 4a[b] [%] 

1 Dry DMF – 73 15 

2 Dry DMA – 75 11 

3 DMA – 75 (63) [c] 12 

4 DMA H2O (3 eq.) 34 55 

5[d] DMA – not detected (n.d.) n.d. 

6[e] DMA – n.d. n.d. 

7[f] DMA – n.d. n.d. 

8[g] DMA – 64 (48) [c] 12 

[a] Reactions were performed with 1a (150 μmol, 1 eq.), 2a (3 eq.) and Cs2CO3 (1 eq.) in degassed solvent (2 mL) 

under a nitrogen atmosphere. [b] GC-Yield determined with n-decane as internal standard. [c] Isolated yield in 

parentheses. [d] Reaction performed in absence of 4CzIPN. [e] Reaction performed in the dark. [f] Reaction 

preformed without base. [g] The preformed NBu4
+ carboxylate salt (NBu4PA, 5) was used instead of 1a in absence 

of Cs2CO3. 
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A slight improvement could be realized by using DMA as solvent. Interestingly, prior drying 

of the solvent over 4 Å molecular sieve did not improve the yield significantly (entries 2 and 

3), whereas the addition of H2O gave more toluene (4a) (entry 4). Control experiments 

confirmed that photocatalyst, light and base (entries 5-7) are necessary for the reaction 

conversion. However, the reaction can be performed in absence of base when using the 

preformed NBu4
+ carboxylate salt (5) (entry 8), suggesting that the base merely serves to 

generate the carboxylate. 

The reaction proceeds with various carboxylic acids (Table 4-2) as carbanion precursors in 

moderate to good yields. Halogen or -CF3 substituted phenyl acetic acid derivatives give the 

desired products (3b-h). The presence of an additional methyl or phenyl group on the aromatic 

ring (3i-l), extended aromatic systems (3m-n), a Boc-protected amine (3o) and methoxy (3p-r) 

functional groups or additional substituents on the benzylic carbon (3t-v) are tolerated. 

The presence of a stabilizing aromatic moiety is necessary. Aliphatic and allylic carboxylic acids 

yield only traces of the desired product or none at all. Aliphatic aldehydes bearing short or long 

chains (3z-ab) react well as electrophiles. The presence of an additional methyl group at the α-

carbon decreased the yield to 25% (3ac) and only traces of the product could be observed 

when pivalaldehyde was employed (3ad). Substituents in the β-position (3ae) are tolerated and 

even adding a second methyl group showed only a minor effect (3af). Aromatic aldehydes, e.g. 

benzaldehyde (2i), gave the corresponding product as well, but a radical-radical cross coupling 

of the benzyl radical and the ketyl radical similar to our previous report[12] instead of a 

carbanion generation cannot be excluded (Experimental part, section 4.4.7.10). 

The formation of byproducts was investigated for selected examples (3a-b, 3l-n, 3p-s, 3w) 

and an almost complete mass balance could be obtained in most cases when combining the 

yield of the desired (3) and the decarboxylated (4) product (Table 4-2). If this was not the case, 

e.g. for 3p, an incomplete conversion of 1 was observed. Ketones, e.g. acetone (6), yield only 

small amounts of the tertiary alcohol (Experimental part, Table 4-11). Using acetone (6) as co-

solvent (1:1 mixture of DMA and acetone) increased the yield and 3ag could be isolated in 

32% (Table 4-2). Further, several electrophiles for an intermolecular SN2 reaction were tested 

(Experimental part, Table 4-13), however an efficient system could not be found and only 

product traces were detected in some cases. 
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Table 4-2 – Scope of the reaction.[a] 

 

[a] Reactions were performed with 1 (150 μmol, 1 eq.) and 2 (3 eq.) in degassed DMA (2 mL) under a nitrogen 

atmosphere. If not noted otherwise, the numbers indicate isolated yields. [b] GC-yield of the corresponding 

decarboxylated side-product 4 determined by GC-FID analysis with n-decane as internal standard. [c] Isolated 

yield of the corresponding decarboxylated side-product 4. [d] Recovered starting material 1 after complete 

reaction time. [e] Mixture of syn- and anti-product was obtained. [f] trans-styrylacetic acid rather than 

α-vinylphenylacetic acid was used as starting material. [g] Observed by GC-MS, not isolated. [h] Acetone/DMA 

(1:1) was used as solvent. 
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Starting the mechanistic investigation, a photo-conversion of 4CzIPN was observed during 

the course of the reaction (Experimental part, Figure 4-2). The degradation product could be 

isolated and identified as 4CzBnBN (7a) by X-ray crystal structure analysis (Scheme 4-2). 

Compound 7a is likely formed by radical addition of the benzyl radical to the radical anion of 

4CzIPN, followed by cyanide elimination similar to reactions reported by different groups.[13] 

4CzBnBN seems to be significantly more photo-stable and the product resulting from a second 

cyanide elimination could only be detected in traces. Performing the benzylation reaction with 

4CzBnBN as catalyst gave the desired product as well (Experimental part, Scheme 4-7), 

showing that 4CzBnBN is contributing and likely the main active catalyst for the carbanion 

formation. Ground state potentials of E1/2
ox(P•+/P) = +1.48 V vs SCE and E1/2

red(P/P•–) = –

1.72 V vs SCE in DMF were measured by CV. 

 

Scheme 4-2 – Isolation of 4CzIPN photo-conversion product 4CzBnBN (7a). The reaction was performed with 

4CzIPN (30 μmol, 1 eq.) and 1a (4 eq.) in degassed DMA (2 mL) under a nitrogen atmosphere. 

The first step in our mechanistic hypothesis is the oxidation of the carboxylate followed by the 

extrusion of CO2 to generate a benzyl radical. There are several reports describing this process 

with various photoredox catalysts.[14] Accordingly, the emission of 4CzBnBN could be 

quenched upon addition of NBu4PA (5) resulting in a linear Stern-Volmer plot (Experimental 

part, Figure 4-8), confirming the interaction between the excited photocatalyst and the 
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substrate. The following CO2 elimination could be monitored by in situ IR spectroscopy (Figure 

4-1) together with the depletion of the aldehyde in course of the reaction. 

 

Figure 4-1 – In situ FT-IR studies. Irradiation of a solution containing NBu4PA (5) (75 mM), 2a (75 mM) and 
4CzBnBN (3.75 mM) in dry DMA lead to the formation of CO2 (2338 cm-1) and the depletion of 2a (1722 cm-1). 

Next, deuterium labeling experiments were conducted to support the formation of an anionic 

intermediate during the later course of the reaction (Scheme 4-3a). With D2O as electrophile, 

the corresponding deuterated decarboxylated starting material was isolated (4v-d). As a control 

experiment, the non-deuterated product (4v) was obtained when the reaction was performed 

in deuterated DMF in absence of D2O. Addition of D2O to a reaction mixture after completed 

irradiation did not yield any 4v-d from 4v via base-induced (Cs2CO3) H/D-exchange 

(Experimental part, Scheme 4-8). 

 

Scheme 4-3 – Experiments supporting the formation of a reactive anionic intermediate. 
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In addition to the incorporation of deuterium, a carbanion intermediate is expected to engage 

in an E1cb elimination if an appropriate leaving group is present in the homobenzylic position. 

Hence, tropic acid (9) was subjected to the reaction conditions (Scheme 4-3b). Indeed, styrene 

(10) together with the decarboxylated byproduct (11) was detected. To exclude styrene 

formation from 11 by a simple E2 elimination induced by Cs2CO3, 11 was directly subjected to 

the applied reaction conditions, yielding no styrene (Experimental part, Scheme 4-9). 

In order to thoroughly study the feasibility and selectivity of the addition of the benzyl anion 

(15) to the electrophile, a computational analysis was performed. The C=O addition and the 

acid-base reaction of 15 and the C-H was proven at the SMD(DMF)-B97X-D/TZVP level 

of theory (Experimental part, Section 4.4.7.9). Indeed, the reaction of the benzyl anion with 

the aldehydes results to be exothermal (G = -6.9 kcal/mol) and slightly kinetically favored 

(G* = +6.2 kcal/mol) compared to the abstraction of the acidic proton in the  position 

(G* = +6.8 kcal/mol). Ketones were found to be less selective towards the C=O addition 

of the benzyl anion compared to the aldehydes (see compound 3ag). As a parallelism, the 

reaction of the benzyl anion with the ketonic C=O is almost thermoneutral (G = +1.5 

kcal/mol). The competing acid-base reaction is exothermal (G = -12.1 kcal/mol), with 

comparable barriers (G* ca. 10 kcal/mol). The barriers for the reactions of 15 with DMA are 

higher compared to the ones of aldehydes and ketones. 

Considering the experimental observations, computational results and cited literature reports, 

the following mechanism is proposed (Scheme 4-4): Carboxylic acid 1a is deprotonated by the 

base (Cs2CO3) to give carboxylate 12. The carboxylate (E1/2
ox (NBu4PA 5) = +1.27 vs SCE[14a]) 

can be oxidized by the excited photocatalyst 4CzBnBN (E1/2
ox(P*/P•–) = +1.21 V vs SCE) and 

the generated radical species 13 is transformed to the benzylic radical 14 by elimination of CO2. 

The radical anion of 4CzBnBN is with a reduction potential of E1/2
red(P/P•–) = – 1.72 V vs SCE 

not able to reduce aliphatic aldehydes (E1/2
red(3-methylbutanal 2g) = –2.24 V vs SCE[15]) and 

hence transfers an electron to the more easily reducible benzyl radical (E1/2
red = – 1.43 V vs 

SCE[16]) to form carbanion 15. This species is capable of adding to aldehydes (2) forming the 

desired product 3 after protonation of the alcoholate. 
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4.3 Conclusion 

In summary, a redox-neutral procedure to benzylate aliphatic aldehydes via the photocatalytic 

generation of a carbanion intermediate is presented, rendering the desired Grignard analogous 

products in moderate to good yields. The proposed mechanism is supported by emission 

quenching, in situ UV/VIS and in situ IR studies, while the presence of the reactive anionic 

intermediate is shown by deuterium labeling, E1cb Elimination and DFT calculation. 
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4.4 Experimental part 

4.4.1 General information 

Starting materials and reagents were purchased from commercial suppliers (Sigma Aldrich, 

Alfa Aesar, Acros, Fluka, TCI or VWR) and used without further purification. Solvents were 

used as p.a. grade or dried and distilled according to literature known procedures.[17] For 

automated flash column chromatography industrial grade of solvents was used. All reactions 

with oxygen- or moisture-sensitive reagents were carried out in glassware, which was dried 

before use by heating under vacuum. Dry nitrogen was used as inert gas atmosphere. Liquids 

were added via syringe, needle and septum techniques unless otherwise stated. 

All NMR spectra were measured at room temperature using a Bruker Avance 300 (300 MHz 

for 1H, 75 MHz for 13C, 282 MHz for 19F) or a Bruker Avance 400 (400 MHz for 1H, 101 MHz 

for 13C, 376 MHz for 19F)[18] NMR spectrometer. All chemical shifts are reported in δ-scale as 

parts per million [ppm] (multiplicity, coupling constant J, number of protons) relative to the 

solvent residual peaks as the internal standard.[19] Coupling constants J are given in Hertz [Hz]. 

Abbreviations used for signal multiplicity: 1H-NMR: b = broad, s = singlet, d = doublet, t = 

triplet, q = quartet, hept = heptet dd = doublet of doublets, dt = doublet of triplets, dq = 

doublet of quartets, and m = multiplet; 13C-NMR: (+) = primary/tertiary, (–) = secondary, 

(Cq) = quaternary carbon.  

HRMS (high resolution mass spectra) and LRMS (low resolution mass spectra) were measured 

at the Central Analytical Laboratory of the University of Regensburg. These mass spectra were 

recorded on a Finnigan MAT 95, ThermoQuest Finnigan TSQ 7000, Finnigan MAT SSQ 710 

A or an Agilent Q-TOF 6540 UHD instrument.  

GC measurements were performed on a GC 7890 from Agilent Technologies. Data acquisition 

and evaluation was done with Agilent ChemStation Rev.C.01.04. GC/MS measurements were 

performed on a 7890A GC system from Agilent Technologies with an Agilent 5975 MSD 

Detector. Data acquisition and evaluation was done with MSD ChemStation E.02.02.1431. A 

capillary column HP-5MS/30 m x 0.25 mm/0.25 μM film and helium as carrier gas (flow rate 

of 1 mL/min) were used. The injector temperature (split injection: 40:1 split) was 280 °C, 

detection temperature 300 °C (FID). GC measurements were made and investigated via 

integration of the signal obtained. The GC oven temperature program was adjusted as follows: 

initial temperature 40 °C was kept for 3 minutes, the temperature was increased at a rate of 

15 °C/min over a period of 16 minutes until 280 °C was reached and kept for 5 minutes, the 
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temperature was again increased at a rate of 25 °C/min over a period of 48 seconds until the 

final temperature (300 °C) was reached and kept for 5 minutes. n-Decane was used as an 

internal standard.  

Analytical TLC was performed on silica gel coated alumina plates (MN TLC sheets 

ALUGRAM® Xtra SIL G/UV254). Visualization was done by UV light (254 or 366 nm). If 

necessary, potassium permanganate or ceric ammonium molybdate was used for chemical 

staining. 

Purification by column chromatography was performed with silica gel 60 M (40-63 μm, 230-

440 mesh, Merck) or with a pre-packed Biotage® Snap Ultra HP-SphereTM 25 um column on 

a Biotage® IsoleraTM Spektra One device.  

For irradiation with blue light OSRAM Oslon SSL 80 LDCQ7P-1U3U (blue, λmax = 455 nm, 

Imax = 1000 mA, 1.12 W) was used. For irradiation with green light Cree XPEGRN L1 G4 Q4 

(green, λmax = 535 nm, Imax = 1000 mA, 1.12 W), and for irradiation with 400 nm Edison 

EDEV-SLC1-03 (λmax = 400 nm, Imax = 700 mA, 400 mW) was used. 

Fluorescence spectra were measured on a HORIBA FluoroMax®-4 Spectrofluorometer at 

room temperature. Gas tight 10 mm Hellma® quartz fluorescence cuvettes with a screw cap 

with PTFE-coated silicon septum were used. FluorEssence Version 3.5.1.20 was used as a 

software for measurement and analysis. 

UV-Vis absorption spectroscopy was performed at 25 °C on a Varian Cary 100 Spectrometer 

with a 10 mm quartz cuvette. 

Oxidation and reduction potentials given in the text are cited from literature reports. All 

potentials therein were determined in acetonitrile. 

CCDC 1884950 contains the supplementary crystallographic data for this paper. These data 

are provided free of charge by The Cambridge Crystallographic Data Centre. 
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4.4.2 Synthetic procedures 

 Synthesis of photocatalysts 

2,4,5,6-Tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN)[11] 

The photocatalyst was synthesized using an adapted literature procedure.[11] 

NaH (60% in paraffin oil, 800 mg, 20 mmol, 10 eq.) was added portionwise to a stirred 

solution of carbazole (1.67 g, 10 mmol, 5 eq.) in dry THF (40 mL). The reaction mixture was 

heated to 35 °C and stirred for 1 h before adding tetrafluoroisophthalonitrile (400 mg, 2 mmol, 

1 eq.). The reaction mixture was stirred at 35 °C overnight for approx. 16 h, afterwards 

quenched by H2O (2 mL) and concentrated in vacuo. The solid residue was washed with H2O 

and EtOH to yield the crude product, which was purified by recrystallization from 

hexane/DCM to give 2,4,5,6-tetrakis(carbazol-9-yl)-4,6-dicyano-benzene (4CzIPN) as bright 

yellow powder (840 mg, 1.06 mmol, 53%). 

 

1H-NMR (400 MHz, CDCl3, δH): 8.22 (d, J = 7.7 Hz, 2H), 7.75 – 7.67 (m, 8H), 7.52 – 7.47 

(m, 2H), 7.33 (d, J = 7.8 Hz, 2H), 7.25 – 7.19 (m, 4H), 7.12 – 7.05 (m, 8H), 6.82 (t, J = 8.2 Hz, 

4H), 6.63 (td, J = 7.6, 1.2 Hz, 2H). 

13C-NMR (101 MHz, CDCl3, δC): 145.3, 144.7, 140.1, 138.3, 137.1, 134.9, 127.1, 125.9, 125.1, 

124.9, 124.7, 124.0, 122.5, 122.1, 121.5, 121.1, 120.6, 119.8, 116.5, 111.8, 110.1, 109.6, 109.6. 
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2,4,6-Tris(diphenylamino)-5-fluoroisophthalonitrile (3DPAFIPN)[20] 

The photocatalyst was synthesized analogous to 4CzIPN with diphenylamine (1.69 g, 

10 mmol, 5 eq.) instead of carbazole. 2,4,6-Tris(diphenylamino)-5-fluoroisophthalonitrile 

(3DPAFIPN) (900 mg, 1.39 mmol, 70%) was obtained as bright yellow powder. 

 

1H-NMR (300 MHz, CDCl3, δH): 7.29 – 7.24 (m, 16H), 7.12-7.04 (m, 8H), 7.02 – 6.98 (m, 

16H). 

13C-NMR (75 MHz, CDCl3, δC): 145.7, 145.4, 143.3, 143.1, 129.6, 129.5, 124.7, 124.2, 122.9, 

122.8, 112.7, 109.0. 

19F-NMR (282 MHz, CDCl3, δF): -121.81 (s). 

Field desorption mass spectra (FD-MS) (m/z): [M+] (C44H30FN5
+) calc. 647.25; observed 

647.1977. 

FD-MS revealed, that 4DPAFIPN[11] is present in smaller amount as well (m/z): [M+] 

(C56H40N6
+) calc. 796.33; observed 796.2684. It may be the impurity visible in the NMR. 
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3,4,5,6-Tetra(carbazol-9-yl)phthalonitrile (4CzPN)[11]  

The photocatalyst was synthesized using the adapted literature procedure analogous to 

4CzIPN with tetrafluorophthalonitrile (400 mg, 2 mmol, 1 eq.) instead of 

tetrafluroisophthalonitrile. 3,4,5,6-Tet-ra(carbazol-9-yl)phthalonitrile (4CzPN) (584 mg, 

0.74 mmol, 37%) was obtained as bright orange powder. 

 

 

 

1H-NMR (400 MHz, CDCl3, δH): 7.89 – 7.86 (m, 4H), 7.72 – 7.68 (m, 4H), 7.38 (t, J = 7.4 Hz, 

8H), 7.16 – 7.09 (m, 8H), 6.73 (t, J = 7.5 Hz, 4H), 6.59 (t, J = 8.2 Hz, 4H). 

 

 

[Ir(dF-CF3-ppy)2(dtbpy)](PF6) 

The photocatalyst was synthesized according to a literature procedure.[21] 

 

 

3,7-Di(4-biphenyl) 1-naphthalene-10-phenoxazine 

The photocatalyst was synthesized according to a literature procedure.[22] 

 

 

 

 

 



CHAPTER 4 
 

 

141 

 

 Synthesis of starting materials 

Tetrabutylammonium phenylacetate (NBu4PA) (5) solution 

Tetrabutylammonium phenylacetate (5) was obtained using an adapted literature procedure.[7g] 

An NBu4OH in H2O solution (40 wt%, 1.3 mL, 2 mmol, 1eq.) and H2O (2 mL) were added to 

phenylacetic acid (1a) (286 mg, 2.1 mmol, 1.05 eq.). The mixture was stirred for 2 h during 

which it became a clear solution. Subsequently, the water was removed by freeze drying for 

2 d yielding the hygroscopic Tertbutylammonium phenylaetate salt (5). (A small amount for 

the NMR-analysis was taken at this point). 

4 Å Molecular sieve was added to the residue followed by either dry DMF (27 mL) or dry 

DMA (27 mL) to obtain a 75 mM solution of 5. The solution was allowed to stand for at least 

1 d before further use. 

 

 

 

1H-NMR (300 MHz, d7-DMF, δH): 7.34 – 7.29 (m, 2H), 7.21 – 7.14 (m, 2H), 7.09 – 7.03 (m, 

1H), 3.45 – 3.37 (m, 8H), 3.30 (s, 2H), 1.81 – 1.68 (m, 8H), 1.45 – 1.32 (m, 8H), 0.96 (t, 

J = 7.3 Hz, 12H). 

13C-NMR (75 MHz, d7-DMF, δC): 174.1 (Cq), 142.4 (Cq), 130.4 (+), 128.3 (+), 125.5 (+), 59.2 

(–), 48.2 (–), 24.6 (–), 20.6 (–), 14.2 (+). 
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4.4.3 Photocatalytic benzylation of aldehydes 

General procedure for the photocatalytic benzylation of aldehydes (general 

procedure A) 

A 5 mL crimp cap vial equipped with a magnetic stirring bar was loaded with 4CzIPN (5.9 mg, 

7.5 μmol, 5 mol%), Cs2CO3 (48.9 mg, 150 μmol, 1 eq.), the corresponding carboxylic acid 

(150 μmol, 1 eq.), the corresponding aldehyde (450 μmol, 3 eq.) and DMA (2 mL). In doing 

so, all solid compounds were added before capping the vial, whereas all liquid compounds 

were added via syringe after setting the capped vial under inert conditions. The reaction mixture 

was degassed by four cycles of freeze-pump-thaw and subsequently stirred under light 

irradiation using a 455 nm (± 25 nm) LED for 16 h at 25 °C. 

Two reaction batches were combined and diluted with brine (15 mL), water (5 mL) and ethyl 

acetate (15 mL). The phases were separated and the water phase was extracted with ethyl 

acetate (3 x 8 mL). The combined organic phases were washed with H2O/brine (1:1) (15 mL) 

and dried over Na2SO4. The solvent was removed under reduced pressure and the crude 

product was purified by automated flash column chromatography (PE/EtOAc, 0-20% 

EtOAc). If necessary, the product was further purified by another automated flash column 

chromatography (DCM/MeOH, 1% MeOH), yielding the corresponding product. 

If specified in the table, the corresponding decarboxylated side-product was isolated along the 

desired coupling product in the purification process or was quantified in a separate reaction 

batch by GC-FID analysis directly after the reaction with n-decane as internal standard. 

 

1-Phenylhexan-2-ol (3a)[23] 

 

1H-NMR (300 MHz, CDCl3, δH): 7.36 – 7.20 (m, 5H), 3.86 – 3.77 (m, 1H), 2.84 (dd, J = 13.5, 

4.2 Hz, 1H), 2.65 (dd, J = 13.5, 8.4 Hz, 1H), 1.67-1.27 (m, 7H), 0.92 (t, J = 7.1 Hz, 2H). 

13C-NMR (75 MHz, CDCl3, δC): 138.8 (Cq), 129.5 (+), 128.7 (+), 126.5 (+), 72.8 (+), 44.2 (–), 

36.7 (–), 28.1 (–), 22.9 (–), 14.2 (+). 

Yield: 63% (colorless liquid) 
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1-(4-Fluorophenyl)hexan-2-ol (3b) 

 

1H-NMR (300 MHz, CDCl3, δH): 7.20 – 7.13 (m 2H), 7.03 – 6.95 (m, 2H), 3.80 – 3.72 (m, 

2H), 2.78 (dd, J = 13.7, 4.3 Hz, 1H), 2.61 (dd, J = 13.7, 8.2 Hz, 1H), 1.66 (s, 1H), 1.53-1.28 (m, 

6H), 0.91 (t, J = 7.1 Hz, 3H). 

13C-NMR (75 MHz, CDCl3, δC): 161.7 (d, 1JCF = 244.2 Hz, Cq), 134.5 (d, 4JCF = 3.3 Hz, Cq), 

130.9 (d, 3JCF = 7.8 Hz, +), 115.3 (d, 2JCF = 21.1 Hz, +), 72.8 (d, JCF = 0.9 Hz, +), 43.2 (–), 36.6 

(–), 28.0 (–), 22.8 (–), 14.2 (+). 

19F-NMR (282 MHz, CDCl3, δF): -117.40 (s). 

HRMS (EI) (m/z): [M+] (C12H17FO+) calc. 196.12579; observed 196.12558. 

Yield: 62% (colorless, highly viscous oil) 

 

 

 

1-(4-Chlorophenyl)hexan-2-ol (3c) 

 

1H-NMR (300 MHz, CDCl3, δH): 7.30 – 7.25 (m, 2H), 7.18 – 7.11 (m, 2H), 3.82-3.73 (m, 1H), 

2.79 (dd, J = 13.7, 4.3 Hz, 1H), 2.62 (dd, J = 13.6, 8.3 Hz, 1H), 1.54 (s, 1H), 1.51 – 1.27 (m, 

6H), 0.91 (t, J = 7.1 Hz, 3H). 

13C-NMR (75 MHz, CDCl3, δC): 137.3 (Cq), 132.3 (Cq), 130.9 (+), 128.7 (+), 72.7 (+), 43.4 (–

), 36.7 (–), 28.0 (–), 22.8 (–), 14.2 (+). 

HRMS (APCI) (m/z): [MNH4
+] (C12H21ClNO+) calc.: 230.1306, found: 230.1325. 

Yield: 53% (white solid) 
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1-(4-Bromophenyl)hexan-2-ol (3d) 

 

1H-NMR (300 MHz, CDCl3, δH): 7.46 – 7.40 (m, 2H), 7.12 – 7.07 (m, 2H), 3.82 – 3.74 (m, 

1H), 2.77 (dd, J = 13.6, 4.3 Hz, 1H), 2.61 (dd, J = 13.7, 8.3 Hz, 1H), 1.56 – 1.27 (m, 7H), 0.91 

(t, J = 7.1 Hz, 2H). 

13C-NMR (75 MHz, CDCl3, δC): 137.8 (Cq), 131.7 (+), 131.3 (+), 120.4 (Cq), 72.7 (+), 43.5 (–

), 36.7 (–), 28.0 (–), 22.8 (–), 14.2 (+). 

HRMS (APCI) (m/z): [MNH4
+] (C12H21ClNO+) calc.: 274.0801, found: 274.0805. 

Yield: 32% (white solid) 

 

 

 

1-(3-Fluorophenyl)hexan-2-ol (3e) 

 

1H-NMR (300 MHz, CDCl3, δH): 7.31 – 7.23 (m, 2H), 7.02 – 6.89 (m, 3H), 3.86 – 3.77 (m, 

1H), 2.82 (dd, J = 13.6, 4.2 Hz, 1H), 2.65 (dd, J = 13.6, 8.3 Hz, 1H), 1.58 – 1.30 (m, 7H), 0.91 

(t, J = 7.1 Hz, 3H). 

13C-NMR (75 MHz, CDCl3, δC): 163.0 (d, 1JCF = 245.8 Hz, Cq), 141.5 (d, 3JCF = 7.3 Hz, Cq), 

130.0 (d, 3JCF = 8.4 Hz, +), 125.2 (d, 4JCF = 2.7 Hz, +), 116.4 (d, 2JCF = 20.9 Hz, +), 113.4 (d, 

2JCF = 21.0 Hz, +), 72.6 (+), 43.9 (–), 36.7 (–), 28.0 (–), 22.8 (–), 14.2 (+). 

19F-NMR (282 MHz, CDCl3, δF): -113.93 (s). 

HRMS (APCI) (m/z): [MNH4
+] (C12H21FNO+) calc.: 214.1602, found: 214.1599. 

Yield: 17% (colorless liquid) 
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1-(3-Bromophenyl)hexan-2-ol (3f) 

 

1H-NMR (400 MHz, CDCl3, δH): 7.40 – 7.34 (m, 2H), 7.20 – 7.13 (m, 2H), 3.84 – 3.77 (m, 

1H), 2.79 (dd, J = 13.7, 4.1 Hz, 1H), 2.62 (dd, J = 13.7, 8.4 Hz, 1H), 1.53 – 1.31 (m, 7H), 0.92 

(t, J = 7.1 Hz, 3H). 

13C-NMR (101 MHz, CDCl3, δC): 141.3 (Cq), 132.5 (+), 130.2 (+), 129.7 (+), 128.2 (+), 122.7 

(Cq), 72.6 (+), 43.8 (–), 36.8 (–), 28.0 (–), 22.8 (–), 14.2 (+). 

HRMS (APCI) (m/z): [MNH4
+] (C12H21BrNO+) calc.: 274.0801, found: 274.0804. 

Yield: 16% (colorless, highly viscous oil) 

 

 

 

1-(2-Bromophenyl)hexan-2-ol (3g) 

 

1H-NMR (300 MHz, CDCl3, δH): 7.58 – 7.53 (m, 1H), 7.29 – 7.22 (m, 2H), 7.14 – 7.05 (m, 

1H), 3.97 – 3.87 (m, 1H), 3.03 (dd, J = 13.6, 3.9 Hz, 1H), 2.74 (dd, J = 13.6, 8.7 Hz, 1H), 

1.61 – 1.30 (m, 7H), 0.92 (t, J = 7.1 Hz, 2H). 

13C-NMR (75 MHz, CDCl3, δC): 138.5 (Cq), 133.1 (+), 131.9 (+), 128.3 (+), 127.5 (+), 125.0 

(Cq), 71.3 (+), 44.2 (–), 37.0 (–), 28.0 (–), 22.9 (–), 14.2 (+). 

HRMS (EI) (m/z): [M+] (C12H17BrO+) calc.: 256.04573, found: 256.04613. 

Yield: 43% (colorless, highly viscous oil) 
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1-(4-(Trifluoromethyl)phenyl)hexan-2-ol (3h) 

 

1H-NMR (300 MHz, CDCl3, δH): 7.56 (d, J = 8.0 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 3.89 – 

3.79 (m, 1H), 2.87 (dd, J = 13.6, 4.2 Hz, 1H), 2.72 (dd, J = 13.6, 8.3 Hz, 1H), 1.55 – 1.30 (m, 

7H), 0.92 (t, J = 7.2 Hz, 3H). 

13C-NMR (75 MHz, CDCl3, δC): 143.1 (d, 5JCF = 1.5 Hz, Cq), 129.9 (+), 128.8 (d, 2JCF = 32.2 

Hz, Cq), 125.5 (q, 3JCF = 3.7 Hz, +), 124.4 (d, 1JCF = 272.0 Hz, Cq), 72.6 (+), 43.9 (–), 36.9 (–), 

28.0 (–), 22.8 (–), 14.2 (+). 

19F-NMR (282 MHz, CDCl3, δF): -62.9 (s). 

HRMS (APCI) (m/z): [MNH4
+] (C13H21F3NO+) calc.: 264.1570, found: 264.1575. 

Yield: 37% (white solid) 

 

 

 

1-(p-Tolyl)hexan-2-ol (3i) 

 

1H-NMR (300 MHz, CDCl3, δH): 7.16 – 7.09 (m, 4 H), 3.83 – 3.75 (m, 1H), 2.81 (dd, J = 13.6, 

4.2 Hz, 1H), 2.60 (dd, J = 13.6, 8.4 Hz, 1H), 2.34 (s, 3H), 1.59 – 1.30 (m, 7H), 0.92 (t, 

J = 7.1 Hz, 3H). 

13C-NMR (75 MHz, CDCl3, δC): 136.1 (Cq), 135.6 (Cq), 129.4 (+), 129.4 (+), 72.8 (+), 43.7 (–

), 36.6 (–), 28.1(–), 22.9 (–), 21.2 (+), 14.2 (+). 

HRMS (EI) (m/z): [M+] (C13H20O
+) calc.: 192.15087, found: 192.15122. 

Yield: 60% (colorless liquid) 
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1-(m-Tolyl)hexan-2-ol (3j) 

 

1H-NMR (300 MHz, CDCl3, δH): 7.25 – 7.18 (m, 1H), 7.08 – 7.00 (m, 3H), 3.85 – 3.76 (m, 

1H),   2.81 (dd, J = 13.5, 4.1 Hz, 1H), 2.60 (dd, J = 13.5, 8.5 Hz, 1H), 2.35 (s, 3H),  1.59 (s, 

1H), 1.55 – 1.30 (m, 6H),  0.93 (t, J = 7.1 Hz, 2H). 

13C-NMR (75 MHz, CDCl3, δC): 138.7 (Cq), 138.3 (Cq), 130.3 (+), 128.6 (+), 127.3 (+), 126.5 

(+), 72.8 (+), 44.1 (–), 36.7 (–), 28.1 (–), 22.9 (–), 21.5 (+), 14.2 (+). 

HRMS (EI) (m/z): [M+] (C13H20O
+) calc.: 192.15087, found: 192.15049. 

Yield: 68% (colorless liquid) 

 

 

 

1-(o-Tolyl)hexan-2-ol (3k) 

 

1H-NMR (300 MHz, CDCl3, δH): 7.20 – 7.13 (m, 4H), 3.85-3.77 (m,  1H), 2.86 (dd, J = 13.7, 

4.2 Hz, 1H), 2.67 (dd, J = 13.7, 8.8 Hz, 1H), 2.35 (s, 3H), 1.64 (s, 1H), 1.59 – 1.32 (m, 6H), 

0.94 (t, J = 7.1 Hz, 3H). 

13C-NMR (75 MHz, CDCl3, δC): 137.1 (Cq), 136.7 (Cq), 130.6 (+), 130.3 (+), 126.6 (+), 126.1 

(+), 71.8 (+), 41.4 (–), 37.0 (–), 28.1 (–), 22.9 (–), 19.8 (+), 14.2 (+). 

HRMS (EI) (m/z): [M+] (C13H20O
+) calc.: 192.15087, found: 192.15057. 

Yield: 54% (colorless liquid) 
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1-([1,1’-Biphenyl]-4-yl)hexan-2-ol (3l)[24] 

 

1H-NMR (300 MHz, CDCl3, δH): 7.63 – 7.55 (m, 4H), 7.49 – 7.43 (m, 2H), 7.39 – 7.29 (m, 

3H), 3.91 – 3.83 (m, 1H), 2.90 (dd, J = 13.6, 4.2 Hz, 1H), 2.71 (dd, J = 13.6, 8.4 Hz, 1H), 1.68 

(s, 1H), 1.61 – 1.35 (m, 6H), 0.96 (t, J = 7.1 Hz, 3H). 

13C-NMR (75 MHz, CDCl3, δC): 141.0 (Cq), 139.4 (Cq), 137.9 (Cq), 130.0 (+), 128.9 (+), 127.3 

(+), 127.2 (+), 127.1 (+), 72.8 (+), 43.8 (–), 36.7 (–), 28.1 (–), 22.9 (–), 14.2 (+). 

HRMS (EI) (m/z): [M+] (C13H20O
+) calc.: 254.16652, found: 254.16588. 

Yield: 58% (white solid) 

 

 

 

1-(Naphthalen-2-yl)hexan-2-ol (3m) 

 

1H-NMR (300 MHz, CDCl3, δH): 7.87 – 7.78 (m, 3H), 7.68 (s, 1H), 7.52 – 7.42 (m, 2H), 7.37 

(dd, J = 8.4, 1.7 Hz, 1H), 3.96 – 3.87 (m, 1H), 3.01 (dd, J = 13.5, 4.2 Hz, 1H), 2.82 (dd, J = 

13.5, 8.4 Hz, 1H), 1.65 – 1.29 (m, 7H), 0.94 (t, J = 7.1 Hz, 3H). 

13C-NMR (75 MHz, CDCl3, δC): 136.3 (Cq), 133.7 (Cq), 132.4 (Cq), 128.3 (+), 128.0 (+), 127.9 

(+), 127.8 (+), 127.6 (+), 126.2 (+), 125.6 (+), 72.7 (+), 44.3 (–), 36.7 (–), 28.1 (–), 22.9 (–), 

14.3 (+). 

HRMS (EI) (m/z): [M+] (C16H20O
+) calc.: 228.15087, found: 228.15084. 

Yield: 33% (colorless liquid) 
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1-(Naphthalen-1-yl)hexan-2-ol (3n) 

 

1H-NMR (300 MHz, CDCl3, δH): 8.07 – 8.03 (m, 1H), 7.90 – 7.87 (m, 1H), 7.79 – 7.75 (m, 

1H), 7.57 – 7.36 (m, 4H), 4.03 – 3.93 (m, 1H), 3.37 (dd, J = 13.8, 3.9 Hz, 1H), 3.05 (dd, J = 

13.8, 8.7 Hz, 1H), 1.69 – 1.31 (m, 7H), 0.95 (t, J = 7.1 Hz, 3H). 

13C-NMR (75 MHz, CDCl3, δC): 134.9 (Cq), 134.1 (Cq), 132.3 (Cq), 129.0 (+), 127.8 (+), 127.5 

(+), 126.1 (+), 125.8 (+), 125.6 (+), 124.0 (+), 72.1 (+), 41.4 (–), 37.1 (–), 28.1 (–), 22.9 (–), 

14.3 (+). 

HRMS (EI) (m/z): [M+] (C16H20O
+) calc.: 228.15087, found: 228.15109. 

Yield: 56% (colorless liquid) 

 

 

 

tert-Butyl (4-(2-hydroxyhexyl)phenyl)carbamte (3o) 

 

1H-NMR (300 MHz, CDCl3, δH): 7.27 – 7.21 (m, 2H), 7.10 – 7.05 (m, 2H), 6.53 (s, 1H), 

3.75 – 3.66 (m, 1H), 2.72 (dd, J = 13.6, 4.3 Hz, 1H), 2.53 (dd, J = 13.6, 8.3 Hz, 1H), 1.59 (s, 

1H), 1.46 (s, 9H), 1.45 – 1.20 (m, 6H), 0.85 (t, J = 7.1 Hz, 3H). 

13C-NMR (75 MHz, CDCl3, δC): 153.0 (Cq), 136.9 (Cq), 133.3 (Cq), 130.0 (+), 119.0 (+), 80.6 

(Cq), 72.8 (+), 43.4 (–), 36.5 (–), 28.5 (+), 28.1 (–), 22.8 (–), 14.2 (+). 

HRMS (ESI) (m/z): [MNH4
+] (C17H31N2O3

+) calc.: 311.2329, found: 311.2331. 

Yield: 48% (white solid) 
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1-(4-Methoxyphenyl)hexan-2-ol (3p) 

 

1H-NMR (300 MHz, CDCl3, δH): 7.16 – 7.10 (m, 2H), 6.88 – 6.83 (m, 2H), 3.82 – 3.71 (m, 

4H), 2.78 (dd, J = 13.7, 4.2 Hz, 1H), 2.58 (dd, J = 13.7, 8.4 Hz, 1H), 1.58 (s, 1H), 1.52 – 1.43 

(m, 3H), 1.41 – 1.28 (m, 3H), 0.91 (t, J = 7.1 Hz, 3H). 

13C-NMR (75 MHz, CDCl3, δC): 158.4 (Cq), 130.7 (Cq), 130.5 (+), 114.1 (+), 72.9 (+), 55.4 (+), 

43.2 (–), 36.6 (–), 28.1 (–), 22.9 (–), 14.2 (+). 

HRMS (APCI) (m/z): [MNH4
+] (C13H24NO2

+) calc.: 266.1802, found: 266.1804. 

Yield: 13% (colorless liquid) 

 

 

 

1-(3-Methoxyphenyl)hexan-2-ol (3q)[25] 

 

1H-NMR (300 MHz, CDCl3, δH): 7.26 – 7.19 (m, 1H), 6.83 – 6.75 (m, 3H), 3.87 – 3.73 (m, 

4H), 2.81 (dd, J = 13.5, 4.2 Hz, 1H), 2.62 (dd, J = 13.5, 8.4 Hz, 1H), 1.69 (d, J = 3.5 Hz, 1H), 

1.55 – 1.30 (m, 6H), 0.92 (t, J = 7.1 Hz, 3H). 

13C-NMR (75 MHz, CDCl3, δC): 159.8 (Cq), 140.4 (Cq), 129.6 (+), 121.8 (+), 115.2 (+), 111.8 

(+), 72.7 (+), 55.2 (+), 44.2 (–), 36.6 (–), 28.0 (–), 22.8 (–), 14.2 (+). 

Yield: 63% (colorless liquid) 
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1-(Benzo[d][1,3]dioxol-5-yl)hexan-2-ol (3r) 

 

1H-NMR (300 MHz, CDCl3, δH): 6.77 – 6.63 (m, 3H), 5.93 (s, 2H), 3.79 – 3.69 (m, 1H), 2.74 

(dd, J = 13.7, 4.2 Hz, 1H), 2.54 (dd, J = 13.7, 8.4 Hz, 1H), 1.57 (s, 1H), 1.51 – 1.29 (m, 6H), 

0.91 (t, J = 7.1 Hz, 3H). 

13C-NMR (75 MHz, CDCl3, δC): 147.9 (Cq), 146.3 (Cq), 132.5 (Cq), 122.4 (+), 109.8 (+), 108.4 

(+), 101.0 (–), 72.8 (+), 43.8 (–), 36.6 (–), 28.1 (–), 22.9 (–), 14.2 (+). 

HRMS (EI) (m/z): [M+] (C13H18O3
+) calc.: 222.12505, found: 222.12541. 

Yield: 35% (colorless liquid) 

 

 

 

1-(Thiophen-2-yl)hexan-2-ol (3s) 

 

1H-NMR (300 MHz, CDCl3, δH): 7.18 (dd, J = 5.1, 1.2 Hz, 1H), 6.99 – 6.93 (m, 1H), 6.88 – 

6.85 (m, 1H), 3.84 – 3.76 (m, 1H), 3.04 (ddd, J = 14.7, 4.0, 0.8 Hz, 1H), 2.88 (dd, J = 14.8, 8.0 

Hz, 1H), 1.76 (s, 1H), 1.57 – 1.29 (m, 6H), 0.92 (t, J = 7.1 Hz, 3H). 

13C-NMR (75 MHz, CDCl3, δC): 140.8 (Cq), 127.1 (+), 126.1 (+), 124.3 (+), 72.5 (+), 38.1 (–), 

36.4 (–), 28.0 (–), 22.8 (–), 14.2 (+). 

HRMS (EI) (m/z): [M+] (C10H16OS+) calc.: 184.09164, found: 184.09188. 

Yield: 61% (colorless liquid) 
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2-Phenylheptan-3-ol (syn/anti diastereomeric mixture) (3t)[26] 

 

1H-NMR (diastereomeric mixture) (300 MHz, CDCl3, δH): 7.36 – 7.19 (m, 5H), 3.70 – 3.62 

(m, 1H), 2.83 – 2.71 (m, 1H), 1.59 – 1.24 (m, 10H), 0.95 – 0.84 (m, 3H). 

13C-NMR (diastereomeric mixture) (75 MHz, CDCl3, δC): 144.8 (Cq), 143.7 (Cq), 128.7 (+), 

128.6 (+), 128.3 (+), 127.9 (+), 126.8 (+), 126.5 (+), 76.3 (+), 76.2 (+), 46.2 (+), 45.7 (+), 34.5 

(–), 34.3 (–), 28.4 (–), 28.0 (–), 22.9 (–), 22.8 (–), 18.1 (+), 15.5 (+), 14.3 (+), 14.2 (+). 

Yield: 62% (colorless liquid) 

 

 

 

2-Methyl-2phenylheptan-3-ol (3u) 

 

1H-NMR (300 MHz, CDCl3, δH): 7.41 – 7.30 (m, 4H), 7.25 – 7.19 (m, 1H), 3.63 – 3.57 (m, 

1H), 1.51 – 1.18 (m, 13H), 0.87 (t, J = 7.0 Hz, 3H). 

13C-NMR (75 MHz, CDCl3, δC): 147.4 (Cq), 128.4 (+), 126.6 (+), 126. (+), 79.8 (+), 42.8 (Cq), 

31.3 (–), 29.4 (–), 24.4 (+), 23.7 (+), 22.8 (–), 14.2 (+). 

HRMS (APCI) (m/z): [MH+–H2O] (C14H21
+) calc.: 189.1638, found: 189.1642. 

Yield: 57% (colorless liquid) 
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1,1-diphenylhexan-2-ol (3v)[24] 

 

1H-NMR (400 MHz, CDCl3, δH): 7.41 – 7.17 (m, 10H), 4.38 – 4.32 (m, 1H), 3.90 (d, 

J = 8.3 Hz, 1H), 1.58 (s, 1H), 1.54 – 1.22 (m, 6H), 0.87 (t, J = 7.2 Hz, 3H). 

13C-NMR (101 MHz, CDCl3, δC): 142.7 (Cq), 141.7 (Cq), 129.0 (+), 128.9 (+), 128.7 (+), 128.4 

(+), 127.0 (+), 126.6 (+), 73.9 (+), 58.9 (+), 34.9 (–), 28.2 (–), 22.8 (–), 14.2 (+). 

Yield: 51% (colorless liquid) 

 

 

 

1,1-Bis(4-chlorophenyl)hexan-2-ol (3w) 

 

1H-NMR (300 MHz, CDCl3): δ 7.30 – 7.18 (m, 8H), 4.29 – 4.22 (m, 1H), 3.86 (d, J = 7.5 Hz, 

1H), 1.53 (s, 1H), 1.49 – 1.22 (m, 6H), 0.87 (t, J = 7.2 Hz, 3H). 

13C-NMR (75 MHz, CDCl3): δ 140.8 (Cq), 139.6 (Cq), 132.9 (Cq), 132.6 (Cq), 130.4 (+), 129.7 

(+), 129.0 (+), 129.0 (+), 73.7 (+), 57.1 (+), 35.1 (–), 28.1 (–), 22.7 (–), 14.2 (+). 

HRMS (APCI) (m/z): [MNH4
+] (C18H24OCl2N) calc.: 340.1229, found: 340.1230. 

Yield: 33% (colorless liquid) 
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2-(4-isobutylphenyl)heptan-3-ol (3x) 

 

1H-NMR (300 MHz, CDCl3, δH): 7.14 – 7.06 (m, 4H), 3.69 – 3.61 (m, 1H), 2.81 – 2.72 (m, 

1H), 2.45 (d, J = 7.2 Hz, 2H), 1.85 (hept, J = 6.8 Hz, 1H), 1.46 – 1.36 (m, 3H), 1.32 – 1.24 (m, 

6H), 0.92 – 0.86 (m, 9H). 

13C-NMR (75 MHz, CDCl3, δC): 141.9 (Cq), 139.8 (Cq), 129.3 (+), 127.6 (+), 76.4 (+), 45.2 (+), 

45.2  

(–), 34.4 (–), 30.4 (+), 28.4 (–), 22.8 (–), 22.6 (+), 15.2 (+), 14.2 (+). 

HRMS (APCI) (m/z): [MH+ - H2O] (C17H27
+) calc.: 231.2107, found: 231.2119. 

Yield: 27% (colorless oil) 

 

 

 

3-Phenyloct-1-en-4-ol (syn/anti diastereomeric mixture) (3y)[27] 

 

Starting materials: (E)-4-phenylbut-3-enoic acid (trans-styrylacetic acid) and n-pentanal (2a). 

1H-NMR (300 MHz, CDCl3, δH): 7.38 – 7.18 (m, 5H), 6.19 – 6.00 (m, 1H), 5.26 – 5.09 (m, 

2H), 3.90 – 3.75 (m, 1H), 3.35 – 3.22 (m, 1H), 1.85 – 1.81 [1.66 – 1.63] (m, 1H), 1.53 – 1.21 

(m, 6H), 0.94 – 0.82 (m, 3H). 

13C-NMR (75 MHz, CDCl3, δC): 141.8 (Cq), 141.1 (Cq), 138.8 (+), 138.5 (+), 128.9 (+), 128.8 

(+), 128.6 (+), 128.1 (+), 127.0 (+), 126.7 (+), 118.0 (–), 116.8 (–), 74.4 (+), 74.1 (+), 57.5 (+), 

57.5 (+), 34.3 (–), 34.2 (–), 28.1 (–), 28.0 (–), 22.9 (–), 22.8 (–), 14.2 (+), 14.2 (+). 

HRMS (APCI) (m/z): [MNH4
+] (C14H24ON+) calc.: 222.1853, found: 222.1852. 

Yield: 35% (colorless liquid) 
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1-Phenylbutan-2-ol (3z)[28] 

 

1H-NMR (400 MHz, CDCl3, δH): 7.35 – 7.29 (m, 2H), 7.26 – 7.20 (m, 3H), 3.79 – 3.72 (m, 

1H), 2.84 (dd, J = 13.6, 4.3 Hz, 1H), 2.65 (dd, J = 13.6, 8.4 Hz, 1H), 1.62 – 1.49 (m, 3H), 1.00 

(t, J = 7.4 Hz, 3H). 

13C-NMR (101 MHz, CDCl3, δC): 138.8 (Cq), 129.6 (+), 128.7 (+), 126.6 (+), 74.2 (+), 43.7     

(–), 29.7 (–), 10.2 (+). 

Yield: 41% (colorless liquid) 

 

 

 

1-Phenyltridecan-2-ol (3aa) 

 

1H-NMR (400 MHz, CDCl3, δH) 7.35 – 7.29 (m, 2H), 7.26 – 7.21 (m, 3H), 3.85 – 3.78 (m, 

1H), 2.84 (dd, J = 13.5, 4.3 Hz, 1H), 2.65 (dd, J = 13.5, 8.4 Hz, 1H), 1.75 – 1.61 (m, 1H), 1.54 

– 1.49 (m, 2H), 1.34 – 1.26 (m, 18H), 0.90 (t, J = 6.8 Hz, 3H). 

13C-NMR (101 MHz, CDCl3, δC) 138.8 (Cq), 129.5 (+), 128.6 (+), 126.5 (+), 72.8 (+), 44.2      

(–), 37.0 (–), 32.1 (–), 29.8 (–), 29.8 (–), 29.8 (–), 29.5 (–), 25.9 (–), 22.8 (–), 14.3 (+). 

HRMS (APCI) (m/z): [MNH4
+] (C19H36NO+) calc.: 294.2791, found: 294.2794. 

Yield: 73% (brown solid) 
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1,4-Diphenylbutan-2-ol (3ab)[29] 

 

1H-NMR (300 MHz, CDCl3, δH) 7.38 – 7.21 (m, 10H), 3.91 – 3.82 (m, 1H), 2.94 – 2.83 (m, 

2H), 2.80 – 2.67 (m, 2H), 1.92 – 1.82 (m, 2H), 1.66 (s, 1H). 

13C-NMR (75 MHz, CDCl3, δC) 142.1 (Cq), 138.5 (Cq), 129.6 (+), 128.7 (+), 128.6 (+), 128.5 

(+), 126.6 (+), 125.9 (+), 72.0 (+), 44.2 (–), 38.5 (–), 32.2 (–). 

Yield: 72% (yellow solid) 

 

 

 

3-Methyl-1-phenylbutan-2-ol (3ac)[28a, 30] 

 

1H-NMR (400 MHz, CDCl3, δH): 7.35 – 7.29 (m, 2H), 7.26 – 7.21 (m, 3H), 3.63 – 3.56 (m, 

1H), 2.86 (dd, J = 13.6, 3.5 Hz, 1H), 2.61 (dd, J = 13.6, 9.4 Hz, 1H), 1.81 – 1.72 (m, 1H), 1.46 

(s, 1H), 1.01 (d, J = 6.8 Hz, 6H). 

13C-NMR (101 MHz, CDCl3, δC): 139.3 (Cq), 129.5 (+), 128.7 (+), 126.5(+), 77.6 (+), 40.9 (–

), 33.3 (+), 19.1 (+), 17.6 (+). 

Yield: 25% (colorless liquid) 
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4-Methyl-1-phenylpentan-2-ol (3ae)[31] 

 
1H-NMR (400 MHz, CDCl3, δH): 7.35 – 7.30 (m, 2H), 7.26 – 7.21 (m, 3H), 3.90 (hept, J = 4.1 

Hz, 1H), 2.82 (dd, J = 13.6, 4.1 Hz, 1H), 2.64 (dd, J = 13.5, 8.4 Hz, 1H), 1.89 – 1.79 (m, 1H), 

1.57 (s, 1H), 1.51 – 1.44 (m, 1H), 1.35 – 1.28 (m, 1H), 0.94 (dd, J = 12.3, 6.6 Hz, 6H). 

13C-NMR (101 MHz, CDCl3, δC): 138.8 (Cq), 129.6 (+), 128.7 (+), 126.6 (+), 70.8 (+), 46.2     

(–), 44.7 (–), 24.8 (+), 23.6 (+), 22.2 (+). 

HRMS (APCI) (m/z): [MNH4
+] (C12H22NO+) calc.: 196.1696, found: 196.1695. 

Yield: 56% (colorless liquid) 

 

 

 

4,4-Dimethyl-1-phenylpentan-2-ol (3af)[32] 

 

1H-NMR (300 MHz, CDCl3, δH) 7.36 – 7.29 (m, 2H), 7.27 – 7.20 (m, 3H), 4.01 – 3.92 (m, 

1H), 2.78 (dd, J = 13.4, 4.5 Hz, 1H), 2.67 (dd, J = 13.4, 8.4 Hz, 1H), 1.50 – 1.43 (m, 3H), 0.97 

(s, 9H). 

13C-NMR (75 MHz, CDCl3, δC) 138.8 (Cq), 129.6 (+), 128.7 (+), 126.6 (+), 70.5 (+), 50.5 (–), 

46.2 (–), 30.5 (Cq), 30.3 (+). 

HRMS (APCI) (m/z): [MNH4
+] (C13H24NO+) calc.: 210.1852, found: 210.1850. 

Yield: 41% (colorless liquid) 
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4.4.4 Detailed reaction optimization process 

General procedure for the reaction optimization process (General Procedure B) 

A 5 mL crimp cap vial equipped with a magnetic stirring bar was loaded with photocatalyst, 

base, phenylacetic acid (1a), n-pentanal (2a), solvent and if noted an additive in the amounts 

given in the corresponding tables. In doing so, all solid compounds were added before capping 

the vial, whereas all liquid compounds were added via syringe after setting the capped vial 

under inert conditions. The reaction mixture was degassed by four cycles of freeze-pump-thaw 

and subsequently stirred under light irradiation for the given time at 25 °C. Subsequently, an 

aliquot of the reaction mixture was submitted to GC-FID analysis to determine the product 

yield with n-decane as internal standard. 

 

Table 4-3 – Control experiments in absence of either photocatalyst, light or base.[a] 

 

Entry 
Catalyst loading 

[mol%] 

Pentanal 

[eq.] 

Cs2CO3  

[eq.] 
Yield 3a[b] [%] 

1 2 3 1 70 

2 - 10 1 n.d. 

3[c] 2 10 1 n.d. 

4 2 10 - n.d. 

[a] Reactions were performed with phenylacetic acid (1a) (150 μmol, 1 eq.) in dry DMF (2 mL). [b] Determined 

by GC-FID analysis with n-decane as internal standard. [c] Reaction performed in absence of light. 
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Table 4-4 – Optimization of reaction time, catalyst- and base loading.[a] 

 

Entry 
Catalyst loading 

[mol%] 
Cs2CO3 

[eq.] 
Time [h] 

Yield[b] 3a 
[%] 

Yield[b] 4a 
[%] 

1 2 1 6 51 9 

2 2 1 16 70 15 

3 2 1 24 73 16 

4 5 1 6 67 13 

5 5 1 16 73 15 

6 5 1 24 73 17 

7 5 1.5 16 39 12 

8 5 0.5 16 50 5 

[a] Reactions were performed with phenylacetic acid (1a) (150 μmol, 1 eq.) and n-pentanal (2a) (450 μmol, 3 eq.) 

in dry DMF (2 mL). [b] Determined by GC-FID analysis with n-decane as internal standard. 

 

Table 4-5 – Solvent screening.[a] 

 

Entry Solvent Yield[b] 3a [%] Yield[b] 4a [%] 

1 Dry DMF 73 15 

2 Dry DMA 75 11 

3 Dry DCM n.d. n.d. 

4 Dry EtOAc n.d. n.d. 

5 Dry MeCN 20 20 

6 Dry THF Traces n.d. 

7 DMA 75 12 

8 1,4-Dioxane Traces n.d. 

9[c] DMA 42 13 

[a] Reactions were performed with phenylacetic acid (1a) (150 μmol, 1 eq.) and n-pentanal (2a) (450 μmol, 3 eq.) 

in 2 mL solvent. [b] Determined by GC-FID analysis with n-decane as internal standard. [c] Without prior freeze-

pump-thaw degassing of reaction mixture before irradiation. 
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Table 4-6 – Base screening.[a] 

 

Entry Base (eq.) Yield 3a[b] [%] Yield 4a[b] [%] 

1 Cs2CO3 (1) 75 12 

2 K2CO3 (1) 68 18 

3 Na2CO3 (1) 60 23 

4 CsF (1) 65 16 

5 CsF (1.5) 69 16 

6 KOAc (1) 72 16 

7 KOAc (1.5) 72 18 

8 CF3COOK (1.5) 7 Traces 

9 CsOAc (1) 49 11 

10 CsOAc (1.5) 46 11 

11 NBu4OAc (1.5) 61 12 

12 DBU (1.5) Traces n.d. 

13 Lutidin (1.5) Traces n.d. 

14 Tetramethylguanidine (1.5) 7 3 

15 
2,2,6,6-Tetramethyl-

piperidine (1.5) 
Traces n.d. 

[a] Reactions were performed with phenylacetic acid (1a) (150 μmol, 1 eq.) and n-pentanal (2a) (450 μmol, 3 eq.) 

in DMA (2 mL). [b] Determined by GC-FID analysis with n-decane as internal standard. 
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Table 4-7 – Photocatalyst screening.[a] 

 

Entry 
Photocatalyst 

(Irradiation wavelength [nm], loading [mol%]) 

Yield[b] 3a 
[%] 

Yield[b] 4a 
[%] 

1 4CzIPN (455, 5) 75 12 

2 4CzPN (455, 5) 55 10 

3 3DPAFIPN (455, 5) 6 Traces 

4 [Ir(dF-CF3-ppy)2(dtbpy)](PF6) (455, 2) 4 5 

5 
3,7-Di(4-biphenyl) 1-naphthalene-10-phenoxazine 

(400, 5) 
Traces n.d. 

6 Rhodamin-6G (455, 5) n.d. n.d. 

7 Dicyanoanthracene (400, 5) 6 Traces 

8 [Acr+-Mes](ClO4) (455, 5) n.d. n.d. 

9 2,4,6-Triphenylpyrylium (455, 5) n.d. n.d. 

10 Eosin Y (535, 5) n.d. n.d. 

[a] Reactions were performed with phenylacetic acid (1a) (150 μmol, 1 eq.) and n-pentanal (2a) (450 μmol, 3 eq.) 

in DMA (2 mL). [b] Determined by GC-FID analysis with n-decane as internal standard. 

 

Table 4-8 – Variation of the electrophile amount.[a] 

 

Entry 2a (eq.) Yield[b] 3a [%] Yield[b] 4a [%] 

1 1 50 31 

2 2 67 17 

3 3 75 12 

4 5 78 7 

5 10 79 3 

[a] Reactions were performed with phenylacetic acid (1a) (150 μmol, 1 eq.) in DMA (2 mL). [b] Determined by 

GC-FID analysis with n-decane as internal standard. 
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Table 4-9 – Additive screening.[a] 

 

Entry Additive (eq.) Yield[b] 3a [%] Yield[b] 4a [%] 

1 H2O (3) 34 55 

2 LiBF4 (1) 35 18 

3 B2pin2 (1) n.d. n.d. 

4 Sc(OTf)3 (0.5) Traces Traces 

[a] Reactions were performed with phenylacetic acid (1a) (150 μmol, 1 eq.) and n-pentanal (2a) (450 μmol, 3 eq.) 

in DMA (2 mL). [b] Determined by GC-FID analysis with n-decane as internal standard. 

 

 

Table 4-10 – Repetition of control experiments with optimized conditions.[a] 

 

Entry 
Catalyst loading 

[mol%] 
Cs2CO3 [eq.] Yield[b] 3a [%] Yield[b] 4a [%] 

1 5 1 75 12 

2 - 1 n.d. n.d. 

3[c] 5 1 n.d. n.d. 

4 5 - n.d. n.d. 

[a] Reactions were performed with phenylacetic acid (1a) (150 μmol, 1 eq.) and n-pentanal (2a) (150 μmol, 3 eq.) 

in DMA (2 mL). [b] Determined by GC-FID analysis with n-decane as internal standard. [c] Reaction performed 

in absence of light. 
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4.4.5 Photocatalytic benzylation of acetone and use of potassium benzyl-

trifluoroborate as a carbanion precursor 

Photocatalytic benzylation of acetone (6) with phenylacetic acid (1a) – GC-Yields 

The GC-Yields of the photocatalytic benzylation of acetone (6) with phenylacetic acid (1a) 

were determined according to General Procedure B with acetone (6) instead of n-pentanal (2a) 

Table 4-11 – Benzylation of acetone (6) with phenylacetic acid (1a).[a] 

 

Entry Acetone equivalents Yield[b] 3ag [%] Yield[b] 4a [%] 

1 3 4 77 

2 10 13 70 

3[c] Approx. 91 (1 mL) 39 49 

[a] Reactions were performed with phenylacetic acid (1a) (150 μmol, 1 eq.) in DMA (2 mL). [b] Determined by 

GC-FID analysis with n-decane as internal standard. [c] Acetone/DMA (1:1) (2 mL) was used as solvent. 

 

 

2-Methyl-1-phenylpropan-2-ol (3ag)[33] 

 

2-Methyl-1-phenylpropan-2-ol (3ag) was synthesized according to General Procedure A with 

an acetone/DMA (1:1) (2 mL) mixture as solvent. 

1H-NMR (400 MHz, CDCl3, δH): 7.35 – 7.19 (m, 5H), 2.77 (s, 2H), 1.23 (s, 6H). 

13C-NMR (101 MHz, CDCl3, δC): 137.9 (Cq), 130.6 (+), 128.3 (+), 126.6 (+), 70.9 (Cq), 49.9   

(–), 29.3 (+). 

Yield: 32% (colorless liquid) 
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Photocatalytic benzylation of n-pentanal (2a) with potassium benzyltrifluoroborate 

(16) 

According to the proposed mechanism, every compound that bears a functional group in a 

benzylic position that can be oxidized by the excited photocatalyst leading to the formation of 

a benzyl radical should be a viable carbanion precursor. Hence, it was attempted to use 

benzyltrifluoroborate (16) as starting material. Furthermore, 16 does not hold a protic 

hydrogen and it was tested if the yield can thus be increased. 

Indeed, benzylation product 3a using n-pentanal (2a) and potassium benzyltrifluoroborate (16) 

as carbanion precursor could be isolated according to General Procedure A in absence of 

Cs2CO3 and with 16 instead of a carboxylic acid. Only a very small increase of yield in 3a 

accompanied by a small decrease in toluene (4a) side product compared to carboxylic acids as 

starting material could be observed. 

 

Scheme 4-4 – Benzylation of n-pentanal (2a) with potassium benzyltrifluoroborate (16) as carbanion precursor. 

 

Photocatalytic benzylation of acetone (6) with potassium benzyltrifluoroborate (16) – 

GC-Yields 

The GC-Yields of the photocatalytic benzylation of acetone (6) with potassium 

benzyltrifluoroborate (16) were determined according to General Procedure B with 16 instead 

of phenylacteic acid (1a) and acetone (6) instead of n-pentanal (2a) in absence of Cs2CO3. 

Table 4-12 – Benzylation of acetone (6) with potassium benzyltrifluoroborate (16).[a] 

 

Entry Acetone equivalents Yield[b] 3ag [%] Yield[b] 4a [%] 

1 3 6 67 

2 10 13 56 

3[c] Approx. 91 (1 mL) 43 43 

[a] Reactions were performed with potassium benzyltrifluoroborate (16) (150 μmol, 1 eq.) in DMA (2 mL). [b] 

Determined by GC-FID analysis with n-decane as internal standard. [c] Acetone/DMA (1:1) (2 mL) was used as 

solvent. 
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4.4.6 Attempted SN2 reactions with potassium benzyltrifluoroborate as a 

carbanion precursor 

Attempted SN2 reactions with potassium benzyltrifluoroborate (16) as carbanion precursor 

were performed according to General Procedure B in absence of Cs2CO3, with 16 instead of 

phenyl acetic acid (1a) and with the electrophile according to Table S11 instead of n-pentanal 

(2a). After the given reaction time, the mixture was submitted to GC-MS analysis. 

16 was used instead of 1a to avoid an esterification reaction with the carboxylate as direct 

electrophile. 

Table 4-13 – Attempted SN2 reactions with potassium bnezyltrifluoroborate (16) as carbanion precursor.[a] 

 

Entry Electrophile Desired product 
Product 

Formation[b] 

1 

  

n.d. 

2 

  

Traces detected 

3 
  

Traces detected 

4 
  

n.d. 

5 

  
n.d. 

6 

  

n.d. 

7 
  

Traces detected 

[a] Reactions were performed with potassium benzyltrifluoroborate (16) (150 μmol, 1 eq.) and the corresponding 

electrophile (450 μmol, 3 eq.) in DMA (2 mL). [b] Determined by GC-MS analysis. [c] Starting material 

synthesized according to a literature procure.[34] [d] Starting material synthesized according to a literature 

procure.[35] [e] Starting material synthesized according to a literature procure.[36] 
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4.4.7 Mechanistic investigations 

 Photocatalytic benzylation with NBu4PA (5) as carbanion precursor 

 

Scheme 4-5 – Benzylation of n-pentanal (2a) with NBu4PA (5). 

 

A 5 mL crimp cap vial equipped with a magnetic stirring bar was loaded with 4CzIPN (5.9 mg, 

7.5 μmol, 5 mol%) and set under inert conditions. Subsequently, a solution of 

tetrabutylammonium phenylacetate (5) in dry DMA (75 mM, 2 mL, 150 μmol, 1 eq.) followed 

by n-pentanal (2a) (48 μL, 450 μmol, 3 eq.) were added via syringe. The reaction mixture was 

degassed by four cycles of freeze-pump-thaw and subsequently stirred under light irradiation 

using a 455 nm (± 25 nm) LED for 16 h at 25 °C. 

One reaction batch was submitted to GC-FID analysis to determine the product GC-yield 

with n-decane as internal standard, while the desired product was isolated from two other 

batches. 

For the isolation, the two combined reaction mixtures were diluted with brine (15 mL), water 

(5 mL) and ethyl acetate (15 mL). The phases were separated and the water phase was extracted 

with ethyl acetate (3 x 8 mL). The combined organic phases were washed with H2O/brine (1:1) 

(15 mL) and dried over Na2SO4. The solvent was removed under reduced pressure and the 

crude product was purified by automated flash column chromatography (PE/EtOAc, 0-15% 

EtOAc). 1-Phenylhexan-2-ol (3a) was obtained as colorless oil (25.8 mg, 145 μmol, 48%). 
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 Photo-degradation of 4CzIPN 

Online UV-VIS 

During the course of the reaction, 4CzIPN is photo-degraded. This process was monitored by 

a UV-VIS online measurement. For this purpose, a sample containing 4CzIPN (37.5 μM) and 

NBu4PA (5) (750 μM) in degassed dry DMA (100-fold dilution in respect to the reaction 

concentration) in a gas-tight fluorescence cuvette was irradiated using a 455 nm (± 25 nm) 

LED for 10 min at 25 °C, while recording UV-VIS spectra at defined times after start of the 

irradiation (Figure S1, right). As reference, the same measurement was repeated in absence of 

NBu4PA (5) using an analogous sample containing only 4CzIPN (37.5 μM) (Figure S1, left). 

The data shows, that the photo-degradation of 4CzIPN is highly accelerated in the presence 

of NBu4PA (5), indicating a photoreaction between 4CzIPN and the carboxylate. 
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Figure 4-2 – Left: UV-VIS online measurement of a sample containing 4CzIPN (37.5 μM) in degassed dry DMA. 
Right: UV-VIS online measurement of a sample containing 4CzIPN (37.5 μM) and NBu4PA (5) (750 μM) in 
degassed dry DMA. Both spectra are normalized to the absorbance maxima of 4CzIPN at 328 nm before 
irradiation. 
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Procedure for 4CzIPN photo-conversion to 4CzBnBN 

 

Scheme 4-6 – Photo-conversion of 4CzIPN to 4CzBnBN. 

A 5 mL crimp cap vial equipped with a magnetic stirring bar was loaded with 4CzIPN 

(23.7 mg, 30 μmol, 1 eq.), Cs2CO3 (39.1 mg, 120 μmol, 4 eq.), the carboxylic acid (120 μmol, 

4 eq.) and DMA (2 mL). In doing so, all solid compounds were added before capping the vial, 

whereas all liquid compounds were added via syringe after setting the capped vial under inert 

conditions. The reaction mixture was degassed by three cycles of freeze-pump-thaw and 

subsequently stirred under light irradiation using a 455 nm (± 25 nm) LED for 3 h at 25 °C. 

Two reaction batches were combined and diluted with brine (15 mL), water (5 mL) and ethyl 

acetate (15 mL). The phases were separated and the water phase was extracted with ethyl 

acetate (10 mL). The combined organic phases were washed with brine/H2O (1:1) (4x10 mL) 

and dried over MgSO4. The solvent was removed under reduced pressure and the crude 

product was purified by automated flash column chromatography (PE/EtOAc, 10-20% 

EtOAc). 
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(2r,4r,5r,6r)-3-benzyl-2,4,5,6-tetra(9H-carbazol-9-yl)benzonitrile (4CzBnBN) (7a) 

 

Phenylacetic acid was used as carboxylic aid. The product was obtained as light yellow solid. 

Clear colorless/light yellow plate-shaped crystals could be obtained by recrystallization from 

PE/EA (8:2). 

1H-NMR (400 MHz, d7-DMF, δH): 8.30 (d, J = 7.7 Hz, 2H), 8.10 (d, J = 8.2 Hz, 1H), 7.92 (d, 

J = 8.2 Hz, 2H), 7.88–7.75 (m, 8H), 7.64 (t, J = 8.1 Hz, 2H), 7.45–7.36 (m, 4H), 7.21–7.12 (m, 

4H), 7.10–6.99 (m, 4H), 6.84–6.74 (m, 4H), 6.48 (t, J = 7.3 Hz, 1H), 6.41 (t, J = 7.3 Hz, 2H), 

6.13 (d, J = 7.2 Hz, 2H), 3.72 (s, 2H). 

13C-NMR (101 MHz, d7-DMF, δC): 146.6, 144.4, 142.9, 141.9, 141.6, 140.9, 140.4, 140.0, 139.2, 

137.5, 128.4, 128.3, 127.8, 126.6, 126.5, 126.3, 125.3, 124.8, 124.6, 124.3, 124.1, 122.0, 121.8, 

121.7, 121.4, 121.0, 120.9, 120.2, 119.5, 114.2, 113.0, 112.6, 112.4, 111.6 

LRMS (FD-MS) (m/z): [M+] (C62H39N5
+) calc.: 853.32, found: 853.36. 

Yield: 64%. 

Crystal structure (CCDC 1884950): 
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(2r,3r,4r,6r)-2,3,4,6-tetra(9H-carbazol-9-yl)-5-(4-methylbenzyl)benzonitrile (7b) 

 

4-methylphenylactic acid was used as carboxylic aid. The product was obtained as light yellow 

solid. 

1H-NMR (300 MHz, d7-DMF, δH): 8.30 (d, J = 7.7 Hz, 2H), 8.07 (d, J = 8.2 Hz, 1H), 7.94–

7.75 (m, 10H), 7.64 (t, J = 8.2 Hz, 2H), 7.46–7.36 (m, 4H), 7.21–6.99 (m, 8H), 6.83–6.73 (m, 

4H), 6.19 (d, J = 7.8 Hz, 2H), 5.95 (d, J = 8.0 Hz, 2H), 3.62 (s, 2H), 1.78 (s, 3H). 

13C-NMR (75 MHz, d7-DMF, δC): 146.9, 144.3, 142.8, 141.8, 141.6, 140.9, 140.4, 140.1, 139.2, 

136.0, 134.4, 129.1, 128.2, 127.7, 126.5, 126.2, 125.3, 124.8, 124.6, 124.4, 124.1, 122.0, 121.7, 

121.3, 121.0, 120.9, 120.2, 119.4, 114.2, 113.0, 112.6, 112.4, 111.6, 20.9. 

LRMS (FD-MS) (m/z): [M+] (C63H41N5
+) calc.: 867.34, found: 867.29. 

Yield: 47%. 

 

During the synthesis of 7a, FD-MS analysis of the solid residue prior to column 

chromatography showed, that 7a is the main product, while the degradation product from a 

two-fold cyanide elimination (30) is only generated in traces (Scheme 4-7). 

 

Scheme 4-7 – Cyanide elimination products of 4CzIPN with phenylacetic acid (1a). 
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4CzBnBN as photocatalyst 

Compounds 7a and 7b could both be used as catalyst for the benzylation of aliphatic 

aldehydes, following general procedure A (Scheme 4-8). In accordance, the use of 4CzIPN 

derivatives with one cyano group and five electron donating groups was recently reported.[20] 

 

Scheme 4-8 – Benzylation of n-pentanal (2a) using 7a (upper and middle) and 7b (lower) as catalyst. 

7a and 7b are light yellow powders. The UV/VIS-spectra were measured. They show a weak 

absorption within the range of the employed LED at the reaction concentration (Figure 4-3). 
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Figure 4-3 – Left: UV/VIS absorption (black) and emission (red) spectrum of 7a in dry DMA (37.5 μM). Right: 
UV/VIS absorption spectrum of 7a in dry DMA at reaction concentration (3.75 mM). 
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Figure 4-4 – Left: UV/VIS absorption spectrum of 7b in dry DMA (37.5 μM). Right: UV/VIS absorption 
spectrum of 7b in dry DMA at reaction concentration (3.75 mM). 

 

 Cyclic voltammetry measurement 

The CV measurement was performed with the three-electrode potentiostat galvanostat 

PGSTAT302N from Metrohm Autolab using a glassy carbon working electrode, a platinum 

wire counter electrode, a silver wire as a reference electrode and Tetrabutylammonium 

tetrafluoroborate (TBATFB) (0.1 M) as supporting electrolyte. The potentials were achieved 

relative to the Fc/Fc+ redox couple with ferrocene as internal standard.[37] The control of the 

measurement instrument, the acquisition and processing of the cyclic voltammetric data were 

performed with the software Metrohm Autolab NOVA 1.10.4. The measurement was carried 

out as follows: a 0.1 M solution of TBATFB in DMF was added to the measuring cell and the 

solution was degassed by argon purge for 5 min. After recording the baseline a solution of 

4CzBnBN in DMF (0.01 M) was added and the solution was again degassed by a stream of 

argon for 5 min. The cyclic voltammogram was recorded with two scans. Afterwards ferrocene 

(2.20 mg, 12.0 μmol) was added to the solution which was again degassed by argon purge for 

5 min and the final measurement was performed with three scans. 

A ground state oxidation potential of E1/2(4CzBnBN+/4CzBnBN) = +1.48 V vs SCE and 

ground state reduction potential of E1/2(4CzBnBN/4CzBnBN–) = –1.72 V vs SCE in DMF 

could be determined. The emission maximum was measured to be 477 nm (in dry DMA). The 

excited state potentials were estimated from the crossing point of the normalized absorption 

and emission spectra (Figure S2). E1/2(4CzBnBN+/4CzBnBN*) = +1.21 V vs SCE and 

E1/2(4CzBnBN*/4CzBnBN–) = -1.45 V vs SCE. 



CHAPTER 4 
 

 

173 

 

-2,0 -1,5 -1,0 -0,5 0,0 0,5 1,0 1,5

0,00000

0,00005

0,00010

C
u
rr

e
n
t 
[A

]

Potential vs SCE [V]

 

Figure 4-5 – CV of 4CzBnBN (7a) in DMF. The reversible peak at 0.380 V refers to the added internal standard 
ferrocene. The measurement was conducted with TBATFB (0.1 M) as supporting electrolyte and a scan rate of 
50 mV/s. 
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 Fluorescence quenching studies 

Emission quenching of 4CzIPN with NBu4PA (5) 

For the emission quenching experiment of 4CzIPN with NBu4PA, a 15 μM solution of 

4CzIPN in degassed dry DMF was prepared under nitrogen atmosphere in a gas-tight 10 mm 

quartz cuvette. The photocatalyst was irradiated at 435 nm and the change of the fluorescence 

emission upon addition of different amounts of quencher solution was measured (Figure 4-6). 

The quencher solution contained NBu4PA (c = 67.5 mM, dry DMF) as quencher, as well as 

4CzIPN (c = 15 μM) to exclude an emission decrease due to dilution. 
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Figure 4-6 – Upper: Upper: Emission quenching of 4CzIPN (15 μM in dry DMF) upon titration with NBu4PA 
(5). Lower: Corresponding Stern-Volmer plot with a Stern-Volmer constant of KSV = 70.3 μM-1. 
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An efficient quenching of 4CzIPN upon the addition of NBu4PA (5) could be observed (Figure 

S5). By plotting I0/I-1 versus the quencher concentration, a Stern-Volmer constant of 

KSV = 70.3 μM-1 was determined from the slope of the linear fit. 

𝐼0

𝐼
− 1 = 𝐾𝑆𝑉 ∙ [𝑄] 

(With I0 being the fluorescence intensity at 535 nm in absence of the quencher, I the 

fluorescence intensity at 535 nm in presence of the quencher and [Q] the quencher 

concentration) 

Emission quenching of 4CzIPN with n-pentanal (2a) 

An 80 μM solution of 4CzIPN in DMA was prepared in a 10 mm quartz cuvette. The 

photocatalyst was irradiated with 435 nm and the change of the fluorescence emission upon 

addition of different amounts of quencher solution was measured. The quencher solution 

contained n-pentanal (2a) (c = 18.7 mM, DMA) as well as 4CzIPN (c = 80 μM). The 

Quenching experiment showed, that n-pentanal (2a) does not efficiently quench the excited 

state of 4CzIPN (Figure 4-7). 
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Figure 4-7 – Left: Emission quenching of 4CzIPN (80 μM in DMA) upon titration with n-pentanal (2a). Right: 
Corresponding Stern-Volmer plot. 
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Fluorescence quenching of 4CzBnBN (7a) with NBu4PA (5) 

For the emission quenching experiment of 4CzBnBN with NBu4PA (5), a 37.5 μM solution of 

4CzBnBN in degassed dry DMA was prepared under nitrogen atmosphere in a gas-tight 

10 mm quartz cuvette. The photocatalyst was irradiated at 390 nm and the change of the 

fluorescence emission upon addition of different amounts of quencher solution was measured 

(Figure 4-8). The quencher solution contained NBu4PA (c = 67.5 mM, dry DMA) as quencher, 

as well as 4CzBnBN (c = 37.5 μM) to exclude an emission decrease due to dilution. An 

efficient quenching of 4CzBnBN upon the addition of NBu4PA (5) could be observed. 
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Figure 4-8 – Upper: Emission quenching of 4CzBnBN (37.5 μM in dry DMA) upon titration with NBu4PA (5). 
Lower: Corresponding Stern-Volmer plot with a Stern-Volmer constant of KSV = 26.0 μM-1. 
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 In situ FT-IR measurements 

FT-IR spectra were recorded on Varian Excalibur 3100 spectrometer using 1 cm-1 resolution. 

A solution of NBu4PA (5) (75 mM), n-pentanal (75 mM) and 4CzBnBN (3.75 mM) in dry 

DMA (6 mL) was prepared and degassed by three cycles of freeze-pump-thaw. The sample 

was held in a septum-capped vial connected to a Harrick Scientific (Pleasantville, New York) 

DLC-S25 flow cell with a 56 µm path length and CaF2 windows. The vial was irradiated from 

the bottom with a 455 nm (± 25 nm) LED and circulated to the flow cell with a peristaltic 

pump at a flow rate of 3 mL/min. Spectra were recorded at 5-minute intervals using the 

starting reaction mixture as a blank so that difference spectra were produced (Figure 4-9). The 

main features are the appearance of a dissolved CO2 band at 2338 cm-1 and a negative aldehyde 

C=O stretch at 1722 cm-1.  Kinetic plots show saturation of the solution with CO2 after about 

3 hours.  Complete loss of the aldehyde is apparent after about 10 hours. 

 

 

Figure 4-9 – Left: : FT-IR difference spectra of a solution containing NBu4PA (5) (75 mM), n-pentanal (75 mM) 
and 4CzBnBN (3.75 mM) in degassed dry DMA (6 mL) irradiated using a 455 nm (± 25 nm) LED at defined 
periods of time after irradiation start. Right: corresponding kinetic plot of the CO2 band at 2338 cm-1 and aldehyde 
C=O stretch at 1722 cm-1. 
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 Deuterium labeling studies 

Employing D2O instead of an aldehyde as electrophile leads to the formation of the 

corresponding deuterated product. 

 

Diphenylmethane-d1 (4v-d)[38] 

 

A 5 mL crimp cap vial equipped with a magnetic stirring bar was loaded with 4CzIPN (5.9 mg, 

7.5 μmol, 5 mol%), Cs2CO3 (48.9 mg, 150 μmol, 1 eq.) and diphenylacetic acid (1v) (31.8 mg, 

150 μmol, 1 eq.). The vial was set under inert conditions and dry DMF (2 mL) followed by 

D2O (30 μL, 1.50 mmol, 10 eq.) were added via syringe. The reaction mixture was degassed by 

four cycles of freeze-pump-thaw and subsequently stirred under light irradiation using a 

455 nm (± 25 nm) LED for 16 h at 25 °C. 

The reaction mixture was diluted with brine (10 mL), water (5 mL) and ethyl acetate (10 mL). 

The phases were separated and the water phase was extracted with ethyl acetate (3 x 6 mL). 

The combined organic phases were washed with H2O/brine (1:1) (3 x 10 mL) and dried over 

Na2SO4. The solvent was removed under reduced pressure and the crude product was purified 

by automated flash column chromatography (PE). Diphenylmethane-d1 (4v-d) (21.6 mg, 

128 μmol, 85%, 81% deuterium incorporation) was obtained as colorless oil. 

1H-NMR (400 MHz, CDCl3, δH): 7.35 – 7.17 (m, 10H), 4.00-3.96 (m, 1H). 
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Diphenylmethane (4v)[39] 

 

 

Following the same experimental procedure in absence of D2O with d7-DMF instead of dry 

DMF as solvent, diphenylmethane (4v) was obtained in 75% isolated yield with no deuterium 

incorporation. 

1H-NMR (400 MHz, CDCl3, δH): 7.35 – 7.17 (m, 10H), 3.99 (s, 2H). 

 

To exclude that 4v-d is formed by an H/D-exchange between 4v and D2O in the presence of 

Cs2CO3, the reactive intermediate was generated in absence of D2O to form 4v. Subsequently, 

D2O was added to the reaction mixture and it was stirred for further 24 h. 4v was not 

deuterated (Scheme 4-9). 

 

 

Scheme 4-9 – Control experiment for the exclusion of an H/D exchange between 4v and D2O in presence of 
Cs2CO3. 
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4-Methylphenyl)carbamic acid tert-butyl ester-d1 (4o-d) 

 

A 5 mL crimp cap vial equipped with a magnetic stirring bar was loaded with 4CzIPN (5.9 mg, 

7.5 μmol, 5 mol%), Cs2CO3 (48.9 mg, 150 μmol, 1 eq.) and 4-(t-

Butyloxycarbonylamino)phenylacetic acid (1o) (37.7 mg, 150 μmol, 1 eq.). The vial was set 

under inert conditions and dry DMA (2 mL) followed by D2O (30 μL, 1.50 mmol, 10 eq.) were 

added via syringe. The reaction mixture was degassed by four cycles of freeze-pump-thaw and 

subsequently stirred under light irradiation using a 455 nm (± 25 nm) LED for 16 h at 25 °C. 

Two reaction batches were combined and diluted with brine (10 mL), water (5 mL) and ethyl 

acetate (10 mL). The phases were separated and the water phase was extracted with ethyl 

acetate (3 x 6 mL). The combined organic phases were washed with H2O/brine (1:1) 

(3 x 10 mL) and dried over Na2SO4. The solvent was removed under reduced pressure and the 

crude product was purified by automated flash column chromatography (PE/EtOAc 0-20%). 

(4-Methylphenyl)carbamic acid tert-butyl ester-d1 (4o-d) (41.6 mg, 200 μmol, 67%, 84% 

deuterium incorporation) was obtained as white solid. 

1H-NMR (300 MHz, CDCl3, δH): 7.24 (d, J = 8.4 Hz, 2H), 7.09 (d, J = 8.5 Hz, 2H), 6.46 (s, 

1H), 2.30-2.27 (m, 2H), 1.52 (s, 9H). 

13C-NMR (75 MHz, CDCl3, δC): 153.0 (Cq), 135.8 (Cq), 132.6 (Cq), 129.6 (+), 118.8 (+), 80.4 

(Cq), 28.5 (+), 20.8 (+, non-deuterated), 20.6 (t, J = 19.5 Hz, –). 

HRMS (ESI) (m/z): [MH+] (C12H16DNO2
+) calc.: 209.1395, found: 209.1391. 
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 NMR in-situ irradiation studies 

A benzyl anion (15) is expected to show a highly upfield-shifted NMR-signal. It was attempted 

to detect its potential presence by measuring NMR-spectra while in-situ irradiating the reaction 

mixture in absence of electrophiles like aldehydes or water. Therefore, potassium 

benzyltrifluoroborate (16) (14.9 mg, 75 μmol, 1 eq.) and 4CzIPN (3 mg, 3.8 μmol, 5 mol%) 

were dissolved in 0.5 mL dry d7-DMF and the solution was irradiated using a 455 nm LED 

while simultaneously measuring NMR-spectra at defined periods of time. 

No new upfield-shifted peak after irradiation could be detected. However, the depletion of 

residual H2O was observed, indicating the generation of a reactive anionic species.[40] 

Additionally, the generation of toluene and formation of 4CzBnBN could be detected 

(Figure 4-10). 

 

Figure 4-10 – Measurement of NMR-spectra during irradiation of a mixture containing potassium 
benzyltrifluoroborate (16) (75 μmol, 1 eq.) and 4CzIPN (3.8 μmol, 5 mol%) in dry d7-DMF (0.5 mL). 
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 E1cb-elimination reactions 

The proposed carbanion intermediate is expected to undergo an E1cb elimination in case a 

suitable leaving group is present. Thus, the styrene (10) formation of two benzylic carboxylic 

acids bearing different leaving groups in the homobenzylic position was monitored. Dry DMF 

instead of DMA was chosen as solvent, as the DMA peak covers the potential styrene peak in 

the GC-FID analysis. The formation of styrene (10) was confirmed by GC-FID retention time, 

GC-MS analysis and crude NMR. 

Photocatalytic E1cb-eliminiation of benzylic carboxylic acids bearing leaving groups 

in the homobenzylic position (General procedure C) 

A 5 mL crimp cap vial equipped with a magnetic stirring bar was loaded with 4CzIPN (5.9 mg, 

7.5 μmol, 5 mol%), Cs2CO3 (48.9 mg, 150 μmol, 1 eq.) and the carboxylic acid (150 μmol, 

1 eq.). The vial was set under inert conditions and dry DMF (2 mL) was added via syringe. The 

reaction mixture was degassed by four cycles of freeze-pump-thaw and subsequently stirred 

under light irradiation using a 455 nm (± 25 nm) LED for 16 h at 25 °C. An aliquot of the 

reaction mixture was submitted to GC-FID analysis to quantify the product yields with n-

decane as internal standard. 

 

Table 4-14 – E1cb-elimination of tropic acid (9).[a] 

 

Entry Photocatalyst Base Yieldb] 10 [%] Yield[b] 11 [%] 

1 Yes Yes 23 33 

2 No Yes n.d. n.d. 

3[c] Yes Yes n.d. n.d. 

4 Yes No n.d. n.d. 

[a] Reactions were performed with tropic acid (9) (150 μmol, 1 eq.) in dry DMF (2 mL). [b] Determined by GC-

FID analysis with n-decane as internal standard. [c] Reaction performed in absence of light. 
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Control experiment 2-phenylethanol (11) under reaction conditions 

2-Phenylethanol (11) instead of tropic acid (9) was subjected to General Procedure C, to 

exclude a styrene (10) formation by a decarboxylation of 9 to 11 followed by an E2-elimination 

with Cs2CO3 (Scheme S4-10). 

 

Scheme 4-10 – Control experiment excluding the formation of styrene (10) by an E2-elimination of 11 in presence 
of Cs2CO3. 

 

 

E1cb-elimination of acetyltropic acid (31) 

Acetyltropic acid (31) was subjected to General procedure C. 

 

Table 4-15 – E1cb-elimination of acetyltropic acid (31).[a] 

 

Entry Photocatalyst Base Yieldb] 10 [%] Yield[b] 32 [%] 

1 Yes Yes 72 n.d. 

2 No Yes 18 n.d. 

3[c] Yes Yes 13 n.d. 

4 Yes No 9 n.d. 

[a] Reactions were performed with tropic acid (31) (150 μmol, 1 eq.) in dry DMF (2 mL). [b] Determined by GC-

FID analysis with n-decane as internal standard. [c] Reaction performed in absence of light. 
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Control experiment 2-phenylacetate (32) under reaction conditions 

2-Phenylacetate (32) instead of acetyltropic acid (31) was subjected to General Procedure C, to 

exclude a styrene (10) formation by a decarboxylation of 31 to 32 followed by an E2-

elimination with Cs2CO3 (Scheme 4-11). 

 

Scheme 4-11 – Control experiment excluding the formation of styrene (10) by an E2-elimination of 30 in presence 
of Cs2CO3. 

 

 

 

Crude NMR of the E1cb-elimination of acetyltropic acid (31) 

To verify the formation of styrene beyond GC-FID and GC-MS analysis, acetyltropic acid (31) 

was subjected to General Procedure C in d7-DMF and the reaction solution was irradiated 

within the NMR tube. NMR-spectra before and after the irradiation were measured. The 

characteristic peaks of styrene can be observed in the 1H-NMR of the reaction mixture after 

completed reaction (Figure 4-11).  
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Figure 4-11 – 1H-NMR of crude reaction mixture of photocatalytic E1cb elimination of acetyltropic acid (31) to 
styrene (10) (upper) compared to 1H-NMR of styrene (10) in DMF-d7 (lower). 

Acetate 
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 DFT-calculations 

 

Figure 4-12 – Calculated energy values for possible reaction pathways with 4CzIPN as photocatalyst. 

DFT calculations were performed using Gaussian 09 Revision E.01.[41] All structures were 

optimized using the wB97X-D functional with the TZVP basis set. The SMD solvation 

model[42] for DMF was included in all the optimizations. DMF was used instead of DMA due 

to the similar dielectric constant.  Frequency calculations confirmed that the optimized 

structures were local minima or transition states and were used to calculate Gibbs free energies. 

The saddle points were connected to the reagents and products via the Intrinsic Reaction 

Coordinate method. 

The competition between the abstraction of the proton in a of the carbonyl and the C=O 

attack of the benzyl anion 15 was tested for aldehydes, ketones and the solvent (DMA). For 

the calculations, acetaldehyde was chosen as the prototypical member of the aldehyde class 

while acetone was selected for the ketones. The results of the analysis are reported in Figure 

4-12.  

Interestingly, all the kinetic barriers are extremely low. Even the barrier of the acid-base 

reaction between 15 and DMA are compatible with a reaction extremely feasible at room 

temperature. Hence we can state that the reduction product (toluene) can confidently come 

both from the reaction of the benzyl anion with the H in a to the carbonyl of the solvent and 

of the one of the aldehyde/ketone. The acid-base reaction with the DMA is kinetically less 

favored, but it is equally feasible due to the higher concentration of the species. 

The energies and cartesian coordinates of the species analyzed are herein reported. 
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15 + acetaldehyde (H+ abstraction): reagent 

C 0.0371434505 2.0396221661 1.5674770206 

H -0.4788084362 1.8872708996 2.5101288245 

H 0.0547957072 3.0440309903 1.1568191851 

C 0.650995074 0.9819951888 0.9059473867 

C 1.332047693 1.1357427676 -0.3527885488 

C 0.6412002781 -0.3679248519 1.4044608695 

C 1.9428516698 0.0812132877 -0.9982581799 

H 1.3672362649 2.1250551122 -0.8010809675 

C 1.2620780297 -1.4067060285 0.7421901973 

H 0.133859765 -0.5677287626 2.3444368812 

C 1.926446064 -1.216563459 -0.4743271734 

H 2.4437495189 0.2692950846 -1.9441950486 

H 1.2220726803 -2.4014956894 1.1777791601 

H 2.4113957851 -2.038413275 -0.9864500689 

C -1.7770808914 -0.742053442 -1.1126856041 

O -2.5190921275 -1.66493574 -0.863037017 

C -2.2065579229 0.6789308765 -1.2430087672 

H -1.7755401081 1.2467389698 -0.408243494 

H -1.7903018301 1.1027638218 -2.1607570777 

H -3.292406704 0.7730505337 -1.2333748698 

H -0.6964009604 -0.9252594503 -1.2567807078 

 

 Energy= -424.86724 

 Zero-point correction=                           0.170443 (Hartree/Particle) 

 Thermal correction to Gibbs Free Energy=         0.132256 

 Sum of electronic and zero-point Energies=           -424.696797 

 Sum of electronic and thermal Energies=              -424.685413 

 Sum of electronic and thermal Enthalpies=            -424.684469 

 Sum of electronic and thermal Free Energies=         -424.734984 

 G + ZVPE = -424.564541 
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15 + acetaldehyde (H+ abstraction): product 

C -0.1598240874 1.9221698929 0.5879016987 

H -0.7512183768 1.6671130112 1.4697765429 

H 0.2805404222 2.908312311 0.7428828466 

C 0.8968899017 0.8845104056 0.32706662 

C 2.2164840724 1.247890884 0.0684542125 

C 0.5665251486 -0.4727387461 0.3261153552 

C 3.1869886137 0.2852649064 -0.185588766 

H 2.4901651459 2.2978345224 0.0669669298 

C 1.5348337762 -1.4346214697 0.0722484978 

H -0.4607171479 -0.7717871019 0.529175425 

C 2.8493120856 -1.0609960685 -0.1848580639 

H 4.2091556959 0.5888945896 -0.3810503091 

H 1.2621204824 -2.4842092778 0.0773063635 

H 3.6042941629 -1.8134547615 -0.3809037239 

C -2.965515025 -0.7819052011 -0.4682580711 

O -2.7035267626 -1.1593319155 0.7113309881 

C -3.456185647 0.4228656626 -0.9115060511 

H -0.8539325186 1.9882143899 -0.2546896166 

H -3.6294476383 0.5889306327 -1.970001751 

H -3.6894397865 1.226926767 -0.2168014382 

H -2.7723415174 -1.5162804333 -1.2884176893 

 

 Energy= -424.8972188 

 Zero-point correction=                           0.172281 (Hartree/Particle) 

 Thermal correction to Gibbs Free Energy=         0.132143 

 Sum of electronic and zero-point Energies=           -424.724937 

 Sum of electronic and thermal Energies=              -424.713522 

 Sum of electronic and thermal Enthalpies=            -424.712578 

 Sum of electronic and thermal Free Energies=         -424.765075 

 G + ZVPE = -424.592794 
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15 + acetaldehyde (H+ abstraction): TS 

C -0.6039184283 2.4481481751 -0.4577577892 

H -0.2326765965 2.7045958318 -1.4502395933 

H -0.9989122122 3.3053671742 0.0877038944 

C -1.3528824303 1.2294764874 -0.3577869144 

C -2.2773777125 0.9904228069 0.6888675314 

C -1.0792852098 0.1260877504 -1.2015468709 

C -2.8918309393 -0.2376537855 0.8569791722 

H -2.5154669418 1.8017833068 1.3704246448 

C -1.7020666269 -1.1013635792 -1.0292076749 

H -0.3698235177 0.2533193009 -2.0132140982 

C -2.6153847868 -1.3035571409 0.0002131001 

H -3.5987971217 -0.3701620448 1.6698968353 

H -1.4640398156 -1.9153310531 -1.7067448529 

H -3.0998391232 -2.2634096581 0.1332961774 

C 2.1493849698 0.3252760261 -0.1418938736 

O 2.8280247766 0.4060392613 -1.1686519951 

C 1.788299013 1.4076872913 0.7243909639 

H 0.6925248919 1.9384661173 0.2048160734 

H 1.4888738812 1.0988833812 1.726574977 

H 2.4875615711 2.2456899419 0.7182985303 

H 1.7001661689 -0.6576086211 0.1194772023 

 

 Energy= -424.8512799 

 Zero-point correction=                           0.167382 (Hartree/Particle) 

 Thermal correction to Gibbs Free Energy=         0.130227 

 Sum of electronic and zero-point Energies=           -424.683898 

 Sum of electronic and thermal Energies=              -424.673899 

 Sum of electronic and thermal Enthalpies=            -424.672955 

 Sum of electronic and thermal Free Energies=         -424.721053 

 G + ZVPE = -424.553671 
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15 + acetaldehyde (C=O attack): reagent 

C -0.1886612606 0.4276492021 2.2426191649 

H -0.6523566777 -0.4079876983 2.7569666133 

H -0.3270212908 1.4195473228 2.6607163425 

C 0.621611911 0.2243564516 1.1307608541 

C 1.2747147212 1.2981312245 0.4304796962 

C 0.8528663385 -1.0759355776 0.5598031023 

C 2.0191845777 1.091640837 -0.7122094335 

H 1.1535804648 2.3093402978 0.8093687516 

C 1.6006381832 -1.257480708 -0.5850574212 

H 0.4049634909 -1.9393049631 1.0441459929 

C 2.1967171495 -0.184787899 -1.2573768926 

H 2.4749660343 1.9490060003 -1.2001676031 

H 1.7276079134 -2.2655767643 -0.9706423501 

H 2.7817082411 -0.3378360427 -2.1559373924 

C -2.5441675875 -0.2695377174 -0.4434530868 

O -3.7183288067 -0.0998951778 -0.2070647531 

H -1.9721379985 -1.0357466556 0.1123299664 

C -1.7660085456 0.4817329553 -1.4693299755 

H -0.9413846362 1.0073261829 -0.9775824719 

H -1.3096957229 -0.229493747 -2.1643305244 

H -2.3969764992 1.1872894765 -2.0093695795 

 

 Energy= -424.867137 

 Zero-point correction=                           0.170380 (Hartree/Particle) 

 Thermal correction to Gibbs Free Energy=         0.131174 

 Sum of electronic and zero-point Energies=           -424.696757 

 Sum of electronic and thermal Energies=              -424.685245 

 Sum of electronic and thermal Enthalpies=            -424.684301 

 Sum of electronic and thermal Free Energies=         -424.735962 

 G + ZVPE = -424.565582 
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15 + acetaldehyde (C=O attack): product 

C -0.9698015879 0.2241330894 1.1041002958 

H -1.0780256088 -0.4439016272 1.9630670152 

H -1.1062026051 1.2499781857 1.4619233631 

C 0.3889412581 0.0595209953 0.4930769536 

C 1.1159567486 1.1533089014 0.0185400563 

C 0.9405500882 -1.2123872995 0.3185162089 

C 2.3448013717 0.9864157646 -0.6061170139 

H 0.7093265734 2.1518441355 0.1412063747 

C 2.1677913904 -1.386558609 -0.3083906256 

H 0.3997800921 -2.0784886354 0.686001461 

C 2.8759012731 -0.2865113622 -0.7759202163 

H 2.8892375193 1.8535709067 -0.9628548432 

H 2.5728353161 -2.3849357489 -0.4301362542 

H 3.8344232238 -0.4189076411 -1.2640680419 

C -2.1904276406 -0.0984197761 0.1619697066 

O -3.3531720573 -0.0267497736 0.8138460055 

H -1.952168515 -1.1309713818 -0.2359001094 

C -2.1295217158 0.8235345001 -1.0786453263 

H -1.2132403774 0.7115269573 -1.6702881066 

H -2.9818635228 0.599497533 -1.7266981004 

H -2.2138642239 1.8712988858 -0.7656978027 

 

 Energy= -424.8947076 

 Zero-point correction=                           0.176442 (Hartree/Particle) 

 Thermal correction to Gibbs Free Energy=         0.141750 

 Sum of electronic and zero-point Energies=           -424.718265 

 Sum of electronic and thermal Energies=              -424.709192 

 Sum of electronic and thermal Enthalpies=            -424.708247 

 Sum of electronic and thermal Free Energies=         -424.752958 

 G + ZVPE = -424.576516 
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15 + acetaldehyde (C=O attack): TS 

C -1.2712815871 0.5606559034 1.5557947492 

H -1.6551094836 -0.2255368155 2.1964268242 

H -1.5837852967 1.5732324269 1.7925940643 

C -0.0802857286 0.3514532893 0.8425327701 

C 0.6100191298 1.4059950581 0.1690408968 

C 0.4686256133 -0.9519131856 0.6376726364 

C 1.7344588252 1.1777266066 -0.6003467604 

H 0.2401185051 2.4211769514 0.2805590521 

C 1.5953915557 -1.1634179314 -0.1358309835 

H -0.011775661 -1.7985053336 1.1199361975 

C 2.252762239 -0.108434693 -0.7707450773 

H 2.2232087458 2.0205013892 -1.0804499259 

H 1.9726848258 -2.1757170471 -0.248600206 

H 3.1374599808 -0.2804942694 -1.3716344544 

C -3.0136040396 0.0305456589 -0.0221655472 

O -4.0704234753 -0.0835324994 0.5982035979 

H -2.3789345442 -0.855456346 -0.205217795 

C -2.7627895408 1.1822787786 -0.9610143213 

H -1.7026502704 1.2967808301 -1.1902976403 

H -3.2943080962 0.9789277247 -1.8986510325 

H -3.1558257871 2.1115297137 -0.5442264447 

 

 Energy= -424.8632841 

 Zero-point correction=                           0.171791 (Hartree/Particle) 

 Thermal correction to Gibbs Free Energy=         0.135747 

 Sum of electronic and zero-point Energies=           -424.691493 

 Sum of electronic and thermal Energies=              -424.681635 

 Sum of electronic and thermal Enthalpies=            -424.680691 

 Sum of electronic and thermal Free Energies=         -424.727537 

 G + ZVPE = -424.555746 
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15 + acetone (H+ abstraction): product 

C -0.0752531939 2.1395549532 0.8801034935 

H 0.1836486033 2.5783818718 1.8462771802 

H -0.0548667175 2.927652181 0.1257456747 

C 0.8586971529 1.0186412129 0.5227919569 

C 1.2840703209 0.8253693421 -0.7900937941 

C 1.2752495678 0.1048624205 1.4909716365 

C 2.0947879551 -0.2502965009 -1.129804212 

H 0.969139005 1.5233910364 -1.5581750729 

C 2.0871298469 -0.9707081905 1.1576301798 

H 0.9548073061 0.2380741497 2.519093074 

C 2.4977892512 -1.1555081955 -0.1569716446 

H 2.4103253262 -0.3825241729 -2.1584620537 

H 2.3971538992 -1.6691520072 1.9265696979 

H 3.1300021847 -1.9954947923 -0.4197840742 

C -2.2951468386 -0.2048130873 -0.5629666884 

O -2.7160383566 -0.0158561899 0.6191612936 

C -2.4435738985 0.6567248792 -1.6320562894 

H -1.0978161966 1.7512399352 0.9446493049 

H -2.0398160408 0.4232977623 -2.6113434943 

H -2.9642122061 1.6029685232 -1.5068422198 

C -1.5395733055 -1.5129931594 -0.8053535468 

H -2.1914456517 -2.3604577647 -0.5718780255 

H -1.1758636302 -1.6247476182 -1.8295758461 

H -0.6854773833 -1.5662315885 -0.1233775304 

 

 Energy= -464.2200049 

 Zero-point correction=                           0.200937 (Hartree/Particle) 

 Thermal correction to Gibbs Free Energy=         0.161576 

 Sum of electronic and zero-point Energies=           -464.019068 

 Sum of electronic and thermal Energies=              -464.006793 

 Sum of electronic and thermal Enthalpies=            -464.005849 

 Sum of electronic and thermal Free Energies=         -464.058429 

 G + ZVPE = -463.857492 
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15 + acetone (H+ abstraction): reagent 

C 0.5951962749 2.6493868771 0.1976203463 

H -0.0609646863 2.9986422518 0.9883309335 

H 0.8902397533 3.3605436108 -0.5673399387 

C 1.0907989631 1.3495823339 0.1988381153 

C 1.9861909057 0.8498420773 -0.811374022 

C 0.7409456034 0.380297577 1.2032111935 

C 2.4599420298 -0.4453893016 -0.8054653391 

H 2.2944527379 1.523377139 -1.6065807356 

C 1.2283677693 -0.9101252877 1.188145671 

H 0.0636703468 0.6815974943 1.9977638163 

C 2.0961105895 -1.3612314128 0.1882468954 

H 3.1321596583 -0.7580878148 -1.6001786754 

H 0.9192801963 -1.5924400848 1.9754801728 

H 2.4734581274 -2.3764516791 0.1851111245 

C -2.1858368128 -0.9298520566 -0.2841539879 

O -2.5797431511 -1.7773131508 0.4909224113 

C -2.6072290685 0.5089544802 -0.1735311596 

H -1.7244285567 1.1473338974 -0.0629346573 

H -3.1060794076 0.8165318821 -1.0969092559 

H -3.2785782612 0.6518286228 0.6721035661 

C -1.2730304631 -1.2660314566 -1.4322098196 

H -1.8389067318 -1.1894686873 -2.365808942 

H -0.4526990551 -0.5471984223 -1.4917426544 

H -0.8802207615 -2.2765328892 -1.3312300586 

 

 Energy= -464.1958901 

 Zero-point correction=                           0.198781 (Hartree/Particle) 

 Thermal correction to Gibbs Free Energy=         0.158955 

 Sum of electronic and zero-point Energies=           -463.997109 

 Sum of electronic and thermal Energies=              -463.984427 

 Sum of electronic and thermal Enthalpies=            -463.983483 

 Sum of electronic and thermal Free Energies=         -464.036935 

 G + ZVPE = -463.838154 

  



CHAPTER 4 
 

 

195 

 

15 + acetone (H+ abstraction): TS 

C -0.065038 2.208279 0.459612 

H -0.343235 2.474136 1.480392 

H 0.115416 3.080203 -0.170695 

C 0.881059 1.132606 0.328849 

C 1.589752 0.908617 -0.874844 

C 1.011826 0.130764 1.318433 

C 2.353576 -0.22906 -1.07368 

H 1.521828 1.649489 -1.665892 

C 1.779349 -1.003739 1.115595 

H 0.484283 0.254808 2.2595 

C 2.455433 -1.205866 -0.085363 

H 2.874509 -0.360906 -2.016654 

H 1.844738 -1.748326 1.90251 

H 3.050176 -2.097345 -0.244323 

C -2.294851 -0.473329 -0.155707 

O -2.938908 -0.734124 0.869131 

C -2.254623 0.829261 -0.765146 

H -1.254693 1.507412 -0.154495 

H -1.962193 0.842432 -1.815909 

H -3.131443 1.443865 -0.556783 

C -1.445714 -1.566526 -0.78754 

H -2.073531 -2.146471 -1.472279 

H -0.606881 -1.165165 -1.358518 

H -1.072331 -2.247182 -0.021149 

 

 Energy= -464.1759247 

 Zero-point correction=                           0.196069 (Hartree/Particle) 

 Thermal correction to Gibbs Free Energy=         0.158756 

 Sum of electronic and zero-point Energies=           -463.979856 

 Sum of electronic and thermal Energies=              -463.968778 

 Sum of electronic and thermal Enthalpies=            -463.967834 

 Sum of electronic and thermal Free Energies=         -464.017169 

 G + ZVPE = -463.821100 

 



PHOTOCATALYTIC CARBANION GENERATION - BENZYLATION OF ALIPHATIC ALDEHYDES TO 

SECONDARY ALCOHOLS 

 

196 

 

15 + acetone (C=O attack): product 

C -0.8928609531 0.6993394903 0.7955854668 

H -1.2696108829 0.314336109 1.7484007636 

H -0.8681179722 1.7925235552 0.8648966407 

C 0.495047031 0.1914688395 0.5624288278 

C 1.4926418087 1.0183824007 0.0429624217 

C 0.8203389558 -1.1437027712 0.8143417068 

C 2.7696137684 0.5350298191 -0.2161778425 

H 1.2624108845 2.0587210358 -0.1637746561 

C 2.0943333019 -1.632584535 0.5573183165 

H 0.0477896983 -1.798390555 1.1965700567 

C 3.0768411324 -0.794898198 0.0410897983 

H 3.5256343941 1.200282382 -0.6183757027 

H 2.3246954289 -2.672173022 0.7633227185 

H 4.0723877921 -1.1756335042 -0.1562957006 

C -1.9461292048 0.2401593393 -0.2990522904 

O -2.0945759289 -1.0918183036 -0.3447354235 

C -3.267897549 0.9577943786 0.0916179346 

H -3.185453456 2.051379727 0.1334612867 

H -4.0443045492 0.701215462 -0.6364232114 

H -3.6003102201 0.6007907109 1.0718866705 

C -1.4958803826 0.8243922949 -1.665290565 

H -2.2594223769 0.59866068 -2.4169416619 

H -1.3391415379 1.9106388196 -1.6534947833 

H -0.5655171823 0.347714845 -1.9864917719 

 

 Energy= -464.2124778 

 Zero-point correction=                           0.204793 (Hartree/Particle) 

 Thermal correction to Gibbs Free Energy=         0.169361 

 Sum of electronic and zero-point Energies=           -464.007685 

 Sum of electronic and thermal Energies=              -463.997445 

 Sum of electronic and thermal Enthalpies=            -463.996501 

 Sum of electronic and thermal Free Energies=         -464.043117 

 G + ZVPE = -463.838324 
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15 + acetone (C=O attack): reagent 

C -0.1856228449 1.8273236502 2.1148049162 

H -0.9377122286 1.4080890354 2.7754055052 

H -0.0332059981 2.9019774569 2.1356024693 

C 0.5868209881 1.0088475103 1.2965625969 

C 1.6022115311 1.5168748279 0.4121568722 

C 0.429183085 -0.4205029285 1.2483803081 

C 2.3513317768 0.6956351967 -0.4043110181 

H 1.7781322478 2.5891287398 0.3906272714 

C 1.1899934214 -1.2215504292 0.4223587214 

H -0.3255038488 -0.8785377424 1.8819763793 

C 2.167520212 -0.6916863931 -0.4260484034 

H 3.1015559184 1.1459565417 -1.0489051089 

H 1.0140890077 -2.2938617476 0.4315340491 

H 2.7574009552 -1.3281285265 -1.0741832049 

C -2.0708402181 -0.6788036084 -1.2200869489 

O -2.2364871988 -1.8687894214 -1.393368878 

C -2.8206433159 0.0796362081 -0.1586808477 

H -2.1550737994 0.7531162614 0.3885615632 

H -3.5742189352 0.7045013749 -0.6485247948 

H -3.3170336555 -0.6053802257 0.5277406648 

C -1.1347491369 0.1283495093 -2.0774007966 

H -1.7000319821 0.9080639275 -2.5958155158 

H -0.4005301203 0.6317229805 -1.4427274085 

H -0.6277458609 -0.5052691978 -2.8035323913 

 

 Energy= -464.195812 

 Zero-point correction=                           0.197791 (Hartree/Particle) 

 Thermal correction to Gibbs Free Energy=         0.157330 

 Sum of electronic and zero-point Energies=           -463.998021 

 Sum of electronic and thermal Energies=              -463.985662 

 Sum of electronic and thermal Enthalpies=            -463.984718 

 Sum of electronic and thermal Free Energies=         -464.038482 

 G + ZVPE = -463.840691 
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15 + acetone (C=O attack): TS 

C -1.0947611727 1.064241857 0.9323372038 

H -1.698845713 0.5686161772 1.6856662254 

H -1.2022120695 2.1447768034 0.8822074614 

C 0.1493935055 0.4979817885 0.5912467424 

C 1.1383653397 1.2096238567 -0.1499596887 

C 0.4629785491 -0.8649944983 0.8637219004 

C 2.3178087657 0.6179928955 -0.5620316945 

H 0.9541446579 2.2527159468 -0.3910141409 

C 1.646485856 -1.4451673253 0.4441866992 

H -0.2526178407 -1.4591048882 1.4225225426 

C 2.5972253426 -0.7195334098 -0.2749521573 

H 3.0382164874 1.2099815524 -1.118969118 

H 1.8372323282 -2.4873161444 0.6835583418 

H 3.5248855771 -1.1781850678 -0.595668212 

C -2.518685014 0.2990474596 -0.7956782181 

O -2.4334332099 -0.9364285052 -0.8146143195 

C -3.7417809106 0.9494996023 -0.1699578432 

H -3.5906687308 2.0029809949 0.0657018669 

H -4.5673331179 0.8769820456 -0.8904648557 

H -4.0381451724 0.4131227998 0.7320148334 

C -1.8494497395 1.1044838802 -1.8911631596 

H -2.4177240646 0.9573465775 -2.8183466901 

H -1.8212323139 2.1727080812 -1.6729544637 

H -0.8331975495 0.7444055402 -2.0592730561 

 

 Energy= -464.18536 

 Zero-point correction=                           0.199509 (Hartree/Particle) 

 Thermal correction to Gibbs Free Energy=         0.161701 

 Sum of electronic and zero-point Energies=           -463.985851 

 Sum of electronic and thermal Energies=              -463.974495 

 Sum of electronic and thermal Enthalpies=            -463.973551 

 Sum of electronic and thermal Free Energies=         -464.023659 

 G + ZVPE = -463.824150  
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15 + DMA (H+ abstraction): product 

C -0.3086030857 2.1796188253 -0.7551228408 

H -0.3164794032 2.311419668 -1.8384929435 

H -0.5440886097 3.1407628275 -0.2920020268 

C -1.2859068166 1.1203125111 -0.3305247308 

C -1.6023915125 0.9484509348 1.01751095 

C -1.8737662837 0.263926373 -1.2583785264 

C -2.4738094697 -0.0510748231 1.4253182062 

H -1.1507736121 1.6017780741 1.7562180318 

C -2.7466665675 -0.7403709371 -0.8553947761 

H -1.6433403843 0.3812806527 -2.3117885499 

C -3.0496487752 -0.9024518535 0.4890118417 

H -2.702772573 -0.1673221085 2.4784011031 

H -3.190004008 -1.3959776545 -1.5961569949 

H -3.7304163338 -1.683468265 0.8066015383 

C 2.3626395381 0.0993008783 0.5372929061 

O 3.0161041353 1.0035275538 -0.0557204201 

C 2.0755612866 0.0929585886 1.9020231629 

H 0.7102192174 1.910492365 -0.4575694974 

H 1.4577569652 -0.6476497744 2.3895918824 

H 2.4559799449 0.9130515572 2.5003159849 

N 1.9250842199 -0.9985465785 -0.2604159375 

C 1.7812039216 -0.7699066999 -1.6818909839 

H 1.9127521967 -1.7096867124 -2.2258522056 

H 0.7934603117 -0.3633533825 -1.9472217305 

H 2.5392593567 -0.0620702137 -2.0062744597 

C 0.9761963606 -1.9452471389 0.2793911028 

H 0.8360940799 -2.7577394585 -0.4367833977 

H 1.3479397282 -2.3863353113 1.2056997612 

H -0.0099398278 -1.5012948979 0.4833095501 

 

 Energy= -558.8841059 

 Zero-point correction=                           0.246235 (Hartree/Particle) 

 Thermal correction to Gibbs Free Energy=         0.204161 

 Sum of electronic and zero-point Energies=           -558.637871 

 Sum of electronic and thermal Energies=              -558.623630 

 Sum of electronic and thermal Enthalpies=            -558.622686 

 Sum of electronic and thermal Free Energies=         -558.679945 

 G + ZVPE = -558.433710 
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15 + DMA (H+ abstraction): reagent 

C 1.4107461985 2.8895062522 0.4454555983 

H 0.7428976009 3.3065012375 1.1924150402 

H 1.9040937851 3.57744978 -0.2337537653 

C 1.6739407607 1.5239426717 0.4016669159 

C 2.5701833896 0.9273200933 -0.553657173 

C 1.0604701743 0.5801155125 1.2980353903 

C 2.8023112822 -0.431534329 -0.6023005715 

H 3.0745074855 1.5775628086 -1.2635294653 

C 1.3074078609 -0.7746500615 1.2289884239 

H 0.3653317542 0.9541514733 2.0447869422 

C 2.1791582195 -1.3205677477 0.2803671228 

H 3.4879538293 -0.81653096 -1.3525867471 

H 0.7978731469 -1.4330231239 1.9275672095 

H 2.3663302086 -2.3863475342 0.2336542055 

C -2.2699727489 -0.1965995934 0.1591906711 

O -2.916289695 -0.5469297202 1.1454803921 

C -2.156575431 1.2594953183 -0.222966436 

H -1.1224976538 1.6055754151 -0.1412295524 

H -2.4810526401 1.4313718036 -1.251184087 

H -2.7789266611 1.8432246598 0.4515521607 

N -1.627205571 -1.079342765 -0.6409660959 

C -1.6776859132 -2.4993398769 -0.3596326081 

H -2.1030167975 -3.0419400477 -1.2082321202 

H -0.6736546019 -2.8867021684 -0.165866519 

H -2.2977461719 -2.6664767391 0.5168247226 

C -0.8314162209 -0.6608651056 -1.7833798689 

H -0.2781674732 -1.5233804062 -2.1504002499 

H -1.4554380215 -0.2837009249 -2.5981261876 

H -0.106379095 0.1063660777 -1.5064333481 

 

 Energy= -558.8759995 

 Zero-point correction=                           0.245515 (Hartree/Particle) 

 Thermal correction to Gibbs Free Energy=         0.201265 

 Sum of electronic and zero-point Energies=           -558.630485 

 Sum of electronic and thermal Energies=              -558.615162 

 Sum of electronic and thermal Enthalpies=            -558.614217 

 Sum of electronic and thermal Free Energies=         -558.674735 

 G + ZVPE = -558.429220 
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15 + DMA (H+ abstraction): TS 

C 0.5253599404 2.3289031967 0.6902301388 

H 0.1732721752 2.496484489 1.7100694196 

H 0.9212245551 3.2412896364 0.2399319794 

C 1.3463173869 1.1538843582 0.517307484 

C 2.2415716748 1.0165034976 -0.5680130505 

C 1.1828312868 0.0107710751 1.332691086 

C 2.9246766172 -0.1650815653 -0.8092762672 

H 2.3968723238 1.8648015146 -1.2280272661 

C 1.8660284047 -1.1682749088 1.0862253624 

H 0.4932711007 0.0607045692 2.1700124336 

C 2.7475995535 -1.2747685227 0.0127012962 

H 3.605459211 -0.2218793129 -1.6526659172 

H 1.7094177384 -2.019197352 1.7413846784 

H 3.2809940955 -2.1982131047 -0.1782278444 

C -2.2511700321 0.3602588078 -0.0561735933 

O -2.8913628783 0.3413997419 1.0117287684 

C -1.8665729052 1.5984455474 -0.7027334093 

H -0.6911349974 1.9835654321 -0.042434172 

H -1.6245848573 1.560472526 -1.7623740402 

H -2.5607497028 2.4047248663 -0.4676822304 

N -1.8116908079 -0.8365576814 -0.6045412945 

C -1.8274947856 -2.0240657882 0.2216611312 

H -2.0117804288 -2.9065793882 -0.3951064569 

H -0.8716202982 -2.1651143714 0.7460610244 

H -2.6162676377 -1.9352252765 0.9637455561 

C -0.8913306537 -0.8694076222 -1.7236180945 

H -0.7422043542 -1.907408914 -2.0213401429 

H -1.2938403351 -0.3358762693 -2.5858697111 

H 0.0878826104 -0.4407421805 -1.4769428682 

 

 Energy= -558.8487253 

 Zero-point correction=                           0.242210 (Hartree/Particle) 

 Thermal correction to Gibbs Free Energy=         0.201884 

 Sum of electronic and zero-point Energies=           -558.606515 

 Sum of electronic and thermal Energies=              -558.592889 

 Sum of electronic and thermal Enthalpies=            -558.591945 

 Sum of electronic and thermal Free Energies=         -558.646841 

 G + ZVPE = -558.404631 
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15 + DMA (C=O attack): product 

C 0.4239863919 -0.0612798545 -0.7779996533 

H 0.6779334926 -0.9863804838 -1.3026345364 

H 0.6674435543 0.7743616174 -1.4399696138 

C -1.0446677822 -0.0363038099 -0.4940694942 

C -1.797518633 1.1256665108 -0.6733110775 

C -1.7018918006 -1.1703037014 -0.0092680679 

C -3.1556166707 1.1598999786 -0.3790459942 

H -1.3092288027 2.0193635997 -1.0488955947 

C -3.0577480064 -1.1422451068 0.285900692 

H -1.1227610094 -2.070072688 0.1548644552 

C -3.7933007943 0.0238738306 0.1017492778 

H -3.7160880751 2.0759224709 -0.5297543423 

H -3.5463583471 -2.0353597355 0.6599080713 

H -4.8532926234 0.0436901947 0.3274204333 

C 1.3294938748 -0.0325971128 0.5287220009 

O 1.0892202445 -1.0561643771 1.3264379851 

C 1.1116748504 1.3235264947 1.2466811177 

H 1.8444447536 1.4113762034 2.0536415142 

H 1.1889781334 2.2089425865 0.6076169608 

H 0.1146012367 1.3199529307 1.6919970705 

N 2.7957252513 -0.038169687 0.062754618 

C 3.2003690841 0.9614845796 -0.902918266 

H 2.8671665121 1.9566105595 -0.6077714002 

H 4.2939215605 0.9917383673 -0.9689111953 

H 2.8267993605 0.7717711294 -1.9259566886 

C 3.2304174159 -1.3467199186 -0.3689678525 

H 2.897919661 -1.6076507233 -1.3926980369 

H 4.3249763385 -1.4038593322 -0.3655593823 

H 2.8266518287 -2.0861675227 0.3211289989 

 

 Energy= -558.8701278 

 Zero-point correction=                           0.249650 (Hartree/Particle) 

 Thermal correction to Gibbs Free Energy=         0.210494 

 Sum of electronic and zero-point Energies=           -558.620478 

 Sum of electronic and thermal Energies=              -558.607577 

 Sum of electronic and thermal Enthalpies=            -558.606633 

 Sum of electronic and thermal Free Energies=         -558.659634 

 G + ZVPE = -558.409984 
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15 + DMA (C=O attack): reagent 

C -0.1214481693 -0.8688868804 -2.4224190948 

H 0.1449926484 -1.9209512598 -2.4248790479 

H 0.3445235923 -0.2275299186 -3.1635998773 

C -0.9697886491 -0.3458078976 -1.4534546471 

C -1.315888404 1.0502258525 -1.3809257768 

C -1.5841730865 -1.152298148 -0.4303425518 

C -2.1814891831 1.5506770702 -0.4299465353 

H -0.8806440948 1.7284740815 -2.1098947737 

C -2.4456548611 -0.6291392582 0.5096789133 

H -1.3560375117 -2.2145657837 -0.407196368 

C -2.7727466963 0.731826333 0.5380736767 

H -2.4032017188 2.6147322532 -0.4357768966 

H -2.875345232 -1.2976516839 1.2510174558 

H -3.4493264578 1.1349454431 1.2815361041 

C 1.6201293638 -0.4138432545 1.3042475586 

O 1.7362749373 -1.5508149862 1.7579410969 

C 0.6894314866 0.5819700073 1.9569193504 

H 1.2372912464 1.4479981055 2.3340200581 

H -0.0705699413 0.9359473561 1.2580586189 

H 0.1976586577 0.0855046353 2.7902638262 

N 2.3205808911 0.0008517993 0.2206654228 

C 2.2318867714 1.317974517 -0.3752953009 

H 1.5687598106 1.9707137049 0.1823682814 

H 3.2239250398 1.7781821517 -0.4044893835 

H 1.8591170751 1.2385579541 -1.4008083013 

C 3.2126161521 -0.9102506692 -0.4659079125 

H 2.9158631833 -1.0009976055 -1.5148031904 

H 4.2415107196 -0.5401600915 -0.4248867219 

H 3.1645164302 -1.8877348274 0.0049040161 

 

 Energy= -558.8760453 

 Zero-point correction=                           0.245525 (Hartree/Particle) 

 Thermal correction to Gibbs Free Energy=         0.202843 

 Sum of electronic and zero-point Energies=           -558.630521 

 Sum of electronic and thermal Energies=              -558.615447 

 Sum of electronic and thermal Enthalpies=            -558.614503 

 Sum of electronic and thermal Free Energies=         -558.673202 

 G + ZVPE = -558.427677 
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15 + DMA (C=O attack):TS  

C 0.7962351019 -0.26007225 1.1788690135 

H 1.2586529886 0.5697170474 1.7097659296 

H 0.993607132 -1.2294843299 1.6323930798 

C -0.5302527819 -0.0419723075 0.7119281901 

C -1.4051348605 -1.1100213856 0.3813697372 

C -1.022817296 1.2591139927 0.4354860679 

C -2.6551402384 -0.8924969656 -0.1715439714 

H -1.0786288566 -2.1279514053 0.5735202167 

C -2.2765590679 1.4689255913 -0.1124433823 

H -0.3926203295 2.111735711 0.6659236741 

C -3.1136466187 0.3993191293 -0.4285460002 

H -3.2866831414 -1.7444343504 -0.4046975225 

H -2.6106188133 2.4850655561 -0.2995774892 

H -4.0939606912 0.5677647821 -0.8583478468 

C 2.0471228495 -0.2094680354 -0.629497034 

O 1.6161014559 0.7216283928 -1.3432738697 

C 1.7439463201 -1.6320884263 -1.079710983 

H 2.3434614396 -1.8515685019 -1.9713645668 

H 1.9339843643 -2.4034668538 -0.3360788699 

H 0.6922307538 -1.6784941772 -1.3599369506 

N 3.3456488796 -0.0388970727 -0.0424503384 

C 3.804270834 -0.9611820717 0.9740545402 

H 3.6323736201 -1.995180956 0.6823140648 

H 4.8811303835 -0.8348354576 1.1112513724 

H 3.3205891161 -0.7939123433 1.9473135608 

C 3.6886284755 1.3290406448 0.2778224086 

H 3.1720899447 1.6904098383 1.1824469281 

H 4.764365695 1.4022643656 0.4543637199 

H 3.4164546112 1.980049669 -0.5493394987 

 

 Energy= -558.8501053 

 Zero-point correction=                           0.246688 (Hartree/Particle) 

 Thermal correction to Gibbs Free Energy=         0.206845 

 Sum of electronic and zero-point Energies=           -558.603418 

 Sum of electronic and thermal Energies=              -558.590146 

 Sum of electronic and thermal Enthalpies=            -558.589202 

 Sum of electronic and thermal Free Energies=         -558.643261 

 G + ZVPE = -558.396573 
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 Photocatalytic benzylation of aromatic aldehydes 

General procedure for the photocatalytic benzylation of aromatic aldehydes (General 

Procedure D) 

A 5 mL crimp cap vial equipped with a magnetic stirring bar was loaded with 4CzIPN (2 mg, 

2.5 μmol, 2.5 mol%), Cs2CO3 (48.9 mg, 150 μmol, 1.5 eq.) and the corresponding carboxylic 

acid (150 μmol, 1.5 eq.). The vial was set under inert conditions and dry DMF (2 mL) and the 

corresponding aldehyde or ketone (100 μmol, 1 eq.) were added via syringe. The reaction 

mixture was degassed by four cycles of freeze-pump-thaw and subsequently stirred under light 

irradiation using a 455 nm (± 25 nm) LED for 16 h at 25 °C. 

Four reaction batches were combined and diluted with H2O (10 mL) and EtOAc (10 mL). The 

phases were separated and the aqueous phase was extracted with EtOAc (3 x 10 mL). The 

combined organic phases were washed with 2 M HCl (15 mL) and subsequently dried over 

Na2SO4. The crude product was purified by automated flash column chromatography 

(PE/EtOAc, 0-20% EtOAc). If noted, the GC-yield was determined by GC-FID analysis 

using 1-naphthol as internal standard. 

1,2,2-Triphenylethan-1-ol (33)[24] 

 

1H-NMR (300 MHz, CDCl3, δH): 7.45 – 7.05 (m. 15H), 5.41 (d, J = 8.8 Hz, 1H), 4.26 (d, 

J = 8.8, 1H). 

13C-NMR (75 MHz, CDCl3, δC): 142.3, 141.6, 141.0, 129.1, 128.9, 128.7, 128.4, 128.2, 127.7, 

127.1,127.0, 126.5, 77.0, 60.5. 

Yield: 71% 
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1,1,2-Triphenylethan-1-ol (34)[43] 

 
1H-NMR (300 MHz, CDCl3, δH): 7.48 – 7.12 (m, 13H), 6.95 – 6.88 (m, 2H), 3.67 (s, 2H), 2.34 

(s, 1H). 

13C-NMR (75 MHz, CDCl3, δC): 146.7, 135.9, 131.0, 128.2, 128.2, 127.0, 126.9, 126.3, 78.0, 

48.1. 

Yield: 27% 

1,2-Diphenylethan-1-ol (6ah) could be formed as well. Only the GC-yield was determined in 

this case (Scheme 4-12). 

 

Scheme 4-12 – Benzylation of benzyaldehyde (2i) with phenylacetic acid (1a). 

 

Proposed mechanism for the photocatalytic benzylation of aromatic aldehydes 

dWhen employing aromatic instead of aliphatic aldehydes, the corresponding coupling product 

can be formed as well, yet a radical-radical cross-coupling similar to our previously reported 

procedure[12] is the likely pathway (Scheme 4-13). Observations supporting a radical-radical 

cross coupling mechanism are the formation of the corresponding homocoupling products 36 

and 37 detected by GC/FID and GC/MS in several reactions in the brief optimization process. 

Furthermore, 4CzIPN is a viable photocatalyst for the pinacol homocoupling of benzaldehyde 

(2i) (E1/2red = –1.93 V vs SCE[15]) with DIPEA as electron donor (Scheme 4-14, upper).[44] 

An analogous reaction is not possible with n-pentanal (2a) (E1/2
red(3-methylbutanal 2g) = –

2.24 V vs SCE[15]) (Scheme 4-14, lower). 

Thus aromatic aldehydes (or ketones) were not included in the substrate scope, although the 

corresponding products can be formed under the same conditions. 
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Scheme 4-13 – Proposed mechanism for the benzylation of aromatic aldehydes. 

 

 

Scheme 4-14 – Photocatalytic pinacol reaction of benzaldehyde (2i) (upper) and n-pentanal (2a) (lower) with 
4CzIPN as catalyst. 
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4.5 NMR-spectra 

3DPAFIPN, 1H-, 13C-NMR and 19F-NMR (CDCl3) 
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4CzPN, 1H-NMR (d6-DMSO) 
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Compound 5, 1H- and 13C-NMR (CDCl3) 
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Compound 3a, 1H- and 13C-NMR (CDCl3) 
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Compound 3b, 1H-, 13C-NMR and 19F-NMR (CDCl3) 
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Compound 3c, 1H- and 13C-NMR (CDCl3) 
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Compound 3d, 1H- and 13C-NMR (CDCl3) 
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Compound 3e, 1H-, 13C-NMR and 19F-NMR (CDCl3) 
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Compound 3f, 1H- and 13C-NMR (CDCl3) 
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Compound 3g, 1H- and 13C-NMR (CDCl3) 
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Compound 3h, 1H-, 13C-NMR and 19F-NMR (CDCl3) 
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Compound 3i, 1H- and 13C-NMR (CDCl3) 
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Compound 3j, 1H- and 13C-NMR (CDCl3) 
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Compound 3k, 1H- and 13C-NMR (CDCl3) 
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Compound 3l, 1H- and 13C-NMR (CDCl3) 
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Compound 3m, 1H- and 13C-NMR (CDCl3) 

 

 

 



PHOTOCATALYTIC CARBANION GENERATION - BENZYLATION OF ALIPHATIC ALDEHYDES TO 

SECONDARY ALCOHOLS 

 

228 

 

Compound 3n, 1H- and 13C-NMR (CDCl3) 
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Compound 3o, 1H- and 13C-NMR (CDCl3) 
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Compound 3p, 1H- and 13C-NMR (CDCl3) 

 

 

 



CHAPTER 4 
 

 

231 

 

Compound 3q, 1H- and 13C-NMR (CDCl3) 
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Compound 3r, 1H- and 13C-NMR (CDCl3) 
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Compound 3s, 1H- and 13C-NMR (CDCl3) 
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Compound 3t, 1H- and 13C-NMR (CDCl3) 
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Compound 3u, 1H- and 13C-NMR (CDCl3) 
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Compound 3v, 1H- and 13C-NMR (CDCl3) 
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Compound 3w, 1H- and 13C-NMR (CDCl3) 
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Compound 3x, 1H- and 13C-NMR (CDCl3) 
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Compound 3y, 1H- and 13C-NMR (CDCl3) 
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Compound 3z, 1H- and 13C-NMR (CDCl3) 
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Compound 3aa, 1H- and 13C-NMR (CDCl3) 
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Compound 3ab, 1H- and 13C-NMR (CDCl3) 

 

 

 



CHAPTER 4 
 

 

243 

 

Compound 3ac, 1H- and 13C-NMR (CDCl3) 
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Compound 3ae, 1H- and 13C-NMR (CDCl3) 
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Compound 3af, 1H- and 13C-NMR (CDCl3) 
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Compound 3ag, 1H- and 13C-NMR (CDCl3) 
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Compound 4v-d, 1H-NMR (d7-DMF) 

 

Compound 4v, 1H-NMR (d7-DMF) 
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Compound 4o-d, 1H- and 13C-NMR (CDCl3) 
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Compound 7a, 1H- and 13C-NMR (d7-DMF)  
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Compound 7b, 1H- and 13C-NMR (d7-DMF) 
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Compound 33, 1H- and 13C-NMR (CDCl3) 
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Compound 34, 1H- and 13C-NMR (CDCl3) 
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5.1 Introduction 

Novel catalytic methods generally aim to produce a desired chemical compound from ever-

simpler starting materials, maximizing the atom and step economy.[1] Hence, the 

functionalization of C–H bonds has received great attention, as it illustrates the most 

straightforward retrosynthetic path for the synthesis of a targeted product.[2] There are several 

methods for C–H functionalizations summarized in comprehensive reviews.[3] A prominent 

example is the C–H activation by metal insertion,[3c-f] comprising cases of very high and catalyst 

controlled regioselectivity.[4] Another prevalent method is hydrogen atom transfer,[3g] which is 

used to generate carbon centred radicals for subsequent functionalization from unreactive C–

H bonds by the abstraction of a hydrogen atom.  

Recently, the combination of hydrogen atom transfer (HAT) and photocatalysis has evolved 

into a powerful method yielding carbon radicals under mild conditions often without the need 

of a sacrificial oxidant or reductant.[5] With this approach, several impressive examples for C–

C and C–X bond formations were reported, utilizing C–H bonds in order to arrive at the 

desired product in high or even full atom economy.[6] While photocatalysis, especially in 

combination with HAT catalysis, mainly revolves around the generation and subsequent 

reaction of radical species,[7] some groups have recently proposed the generation of carbanions 

as crucial intermediates in photocatalytic transformations.[7a, 8] The formation of carbanionic 

intermediates is of particular interest as they are the reactive intermediates in the widely used 

Grignard and Barbier reactions (Scheme 5-1a).[9] However, these reactions produce 

stoichiometric amounts of metal salt waste[9c] and require organohalide starting materials which 

often have to be prepared.[10]  

In our previous report we aimed to overcome those drawbacks by using carboxylates to 

generate carbanionic intermediates in a photocatalytic reaction (Scheme 5-1b).[8g] Though, only 

aldehydes were efficient electrophiles and CO2 was released as a stoichiometric by-product. 

Developing this method further, we wondered if C–H bonds could directly be activated to 

form the desired Grignard analogous products, maximizing the atom economy.  

The most straight-forward C–H activation giving potential access to carbanion intermediates 

from unfunctionalized starting materials is the deprotonation of the respective C–H bond. 

However, with a pKa value of approximately 43 (in DMSO),[11] even benzylic C–H bonds 

would require the use of highly active bases like nBu-Li (pKa approx. 50) exceeding e.g. LDA 

(pKa = 35 in DMSO)[12] in reactivity, which limits the functional group tolerance and gives 
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rises to potential side reactions. Additionally, many of these strong bases can directly add to 

carbonyl compounds or be quenched by the deprotonation of the more acidic proton in alpha 

position of the carbonyl (pKa of acetone = 26 in DMSO),[13] which may also be the case for 

the desired benzyl anion. Additionally, waste products resulting from the use of metal bases 

again diminish the atom economy. Considering this, the generation of carbanions by the 

combination of HAT- and photocatalysis could overcome these issues and illustrates a valuable 

method for a redox-neutral, waste-free synthesis of Grignard-type products without the use of 

metals or strong bases (Scheme 5-1c). 

In a recent report, our group could show the applicability of this concept for the 

photocarboxylation of benzylic C–H bonds via carbanionic intermediates.[14] In this work, we 

aim to extend this method to the synthesis of secondary and tertiary benzylic alcohols from 

unfunctionalized starting materials and aldehydes or ketones in a photocatalytic two-step 

deprotonation reaction. 

 

Scheme 5-1 – a) Grignard Reaction. (b) Photocatalytic carbanion generation from carboxylates and addition to 
aldehydes. (c) Envisioned photocatalytic carbanion generation from C–H bonds for Grignard-type reactions in 
full atom economy. 
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5.2 Results and discussion 

With our aim in mind, we chose ethylbenzene (1a) as model substrate, because its benzylic C–

H bonds have a low bond dissociation energy (BDE = 85.4 kcal/mol[15]) and benzylic radicals 

can be converted into the corresponding carbanion by single electron transfer (SET) using a 

reduced photocatalyst.[8g] Acetone (2a) was chosen as electrophile, as ketones do not bear a 

carbonyl hydrogen, which has shown to be prone to C-H abstraction by electrophilic 

radicals.[16]  

The first product formation was observed using the combination of 4CzIPN (A) as 

photocatalyst and (iPr)3SiSH as HAT catalyst. With K2CO3 as base and dry MeCN as solvent, 

the coupling product (3a) between 1a and 2a was detected in traces (Table 5-1, entry 1). A 

higher yield of 21% was obtained by adding grinded 4 Å molecular sieves to the reaction (Table 

5-1, entry 2). Increasing the amount of 2a by using it as a co-solvent in a 1:1 mixture with dry 

acetonitrile gave a yield of 49% (Table 5-1, entry 3). Reducing the amount of (iPr)3SiSH and 

molecular sieves gave a slightly enhanced yield (Table 5-1, entry 4). Using 3DPA2FBN (B) as 

a photocatalyst increased the yield to 50% when 10 eq. 2a were used and 86% when acetone 

was used as a co-solvent (Table 5-1, entries 5 and 6). The reaction improved slightly by 

reducing the loading of photocatalyst B to 3 mol% and the amount of K2CO3 to 10 mol% 

(Table 5-1, entry 7). Control experiments showed, that the yield is significantly lower when the 

reaction is performed without base (Table 5-1, entry 8) and no product was detected in absence 

of light, photocatalyst or HAT catalyst (Table 5-1, entries 9-11). 
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Table 5-1 – Optimization of the reaction conditions for the photocatalytic HAT-reaction of ethylbenzene (1a) 
with acetone (2a) as an electrophile 

 

Entry 
Amount 

of 2a 

Photocatalyst 

(mol%) 

Amount of 
(iPr)3SiSH 

Amount 
of base 

Additive 
Yield 
[%][b] 

1 10 eq. 4CzIPN (5) 20 mol% 20 mol% – 3 

2 10 eq. 4CzIPN (5) 20 mol% 20 mol% 4 Å MS (100 mg) 21 

3 
co-solvent 

(1:1) 
4CzIPN (5) 20 mol% 20 mol% 4 Å MS (100 mg) 49 

4 10 eq. 4CzIPN (5) 10 mol% 20 mol% 4 Å MS (50 mg) 30 

5 10 eq. 3DPA2FBN (5) 10 mol% 20 mol% 4 Å MS (50 mg) 50 

6 
co-solvent 

(1:1) 
3DPA2FBN (5) 10 mol% 20 mol% 4 Å MS (50 mg) 86 

7 10 eq. 3DPA2FBN (3) 10 mol% 10 mol% 4 Å MS (50 mg) 59 

8 10 eq. 3DPA2FBN (5) 10 mol% – 4 Å MS (50 mg) 27 

9 10 – 10 mol% 20 mol% 4 Å MS (100 mg) 0 

10[c] 10 4CzIPN (5) 10 mol% 20 mol% 4 Å MS (100 mg) 0 

11 10 4CzIPN (5) – 20 mol% 4 Å MS (100 mg) 0 

 

[a] The reaction was performed using 1 eq. (0.2 mmol) 1a in 2 mL degassed solvent, b] yields were determined 

with GC-FID analysis using n-decane as an internal standard, [c] reaction was performed in the dark. 
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The kinetic profile of the reaction shows a quite fast linear increase of product formation in 

the first hours. However, after 5 hours, the conversion of starting material stops at a product 

yield of 50 to 55%, which increased only slightly by prolonging the reaction time (Figure 5-1). 
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Figure 5-1 – Product formation and consumption of starting material during the reaction. 

 

To exclude the possibility, that the termination of the reaction is caused by the decomposition 

of either the photocatalyst or the hydrogen atom transfer catalyst, both compounds were added 

to the reaction separately or in combination after several hours (Table 5-2, entries 1-3). 

However, the yield of the desired product 3a could not be increased for any of the 

combinations. To test if the reaction was inhibited by the formation of the product, 2-methyl-

1-phenyl-2-propanol 4 was added due to its structural similarity to product 3a. Indeed, the 

yield decreased to 39% when 0.5 eq. 4 was added and to 11% with 1 eq. 4 (Table 5-2, entries 

4 and 5). The addition of 1 eq. 1-heptanol also decreased the yield to 21% (Table 5-2, entry 6), 

indicating that the presence of alcohols causes the reaction to stop, presumably due to the 

protic hydroxy groups quenching the carbanion. 
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Table 5-2 – Investigations of product inhibition of the reaction. 

 

Entry Additive 
Yield 

[%][b] 

1[c] 3DPA2FBN (5 mol%) 41 

2[c] (iPr)3SiSH (10 mol%) 50 

3[c] 
3DPA2FBN (3 mol%) 

(iPr)3SiSH (10 mol%) 
60 

4  
(0.5 eq.) 

39 

5  
(1 eq.) 

11 

6 1-Heptanol (1 eq.) 21 

[a] The reaction was performed using 1 eq. (0.2 mmol) 1a and 10 eq. 2a in 2 mL 

degassed solvent, [b] yields were determined with GC-FID analysis using n-decane 

as an internal standard, [c] additional catalyst was added after 14 h. 

The scope of the reaction was investigated for various ethylbenzene derivatives, ketones and 

aldehydes (Table 5-3). In most cases, good yields were obtained when the electrophile acetone 

was used as a co-solvent in a 1:1 mixture with acetonitrile, while using 10 eq. of electrophile 

led to moderate yields. Besides ethylbenzene 1a (41%/72%, 3a), 4- or 2-ethyltoluene were also 

viable substrates for the reaction (3b and 3c). Notably, 4-ethyltoluene 1b was the only substrate 

where using less electrophile seemed to be beneficial for the reaction, as a yield of 62% was 

obtained for 10 eq. 2a, while using acetone as a co-solvent only lead to 55% of the desired 

product 3b. Using cumene 1d decreased the yield to 29% (11% with 10 eq. 2a), presumably 

due to enhanced steric hindrance in the benzylic position (3d). The reaction proceeded well 

with isopentylbenzene 1e, yielding the corresponding product 3e in 47% and 79%, 

respectively. Ethylbenzene derivatives containing electron donating substituents, such as 

methoxy- (3f – 3i) or amide-groups (3j) led to significantly increased yields of up to 87% (3f 

and 3j). In contrast, no product was obtained with electron deficient substrates such as 

4-ethylbenzonitrile or 1-ethyl-4-(trifluoromethyl)benzene, presumably due to the lower 

reactivity of the corresponding carbanion intermediate. While unsubstituted toluene did not 
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lead to any product formation due to the bond dissociation energy of the benzylic C–H bond 

exceeding the capability of the hydrogen atom transfer catalyst (toluene: BDE = 89 kcal/mol, 

(iPr)3SiSH: BDE = 87 kcal/mol),[17] 4-methoxytoluene 1i gave the corresponding product 3i in 

19% and 53%, respectively. Chlorine and fluorine substituents at the aromatic ring were also 

well tolerated in the reaction (3k and 3l) and using triethylbenzene 1m led to 87% of the triple 

substituted product 3m when acetone was used as a co-solvent. For this substrate, no product 

could be isolated when only 10 eq. 2a was used, as an inseparable mixture of single, double 

and triple substituted product was obtained. p-Phenyl substituted ethylbenzene could also be 

used in the reaction, yielding 62% of product 3n (31% with 10 eq. 2a). In contrast, 2-

ethylnaphthalene 1o gave only low yields of 7% and 22%, respectively (3o). Heteroaromatic 

substrates were also viable substrates for the reaction as moderate to good yields were obtained 

when 2-ethylthiophene 1p or -benzofurane 1q were used (3p and 3q). 

Moving to ketones, the effect of steric hindrance was investigated first. A good yield can still 

be obtained when the carbon chain is extended at on side (3r), whereas the yield is notably 

affected when both sides bear longer chains (3s and 3t) or an additional group is present in α-

position (3u and 3v). No ring opening products were observed when a cyclopropane ring was 

present in α-position, indicating that no radical processes are involved in the addition to the 

electrophile. The reaction proceeds well with cyclic ketones (3w and 3x), especially with 

cyclobutanone (3x), altogether displaying the significant influence of steric hindrance. In terms 

of functional group tolerance, alkenes (3y), alkyl chlorides (3z), ethers (3aa), esters (3ab) and 

protected amines (3ac) are viable substrates. However, the amount of electrophile has to be 

reduced in these cases, causing a decrease in yield. Notably, if an α,β-unsaturated system is 

used, the 1,4-addition product (3ad) is obtained, while the 1,2-addition product was not 

observed. As noted above, aldehydes are prone to C–H abstraction from the carbonyl 

position,[16] seemingly leading to deleterious side reactions. Hence, the reaction conditions were 

adapted, mainly by using an excess of the ethyl benzene instead of the electrophile (see SI for 

all optimization parameters). Under the modified reaction conditions, aldehydes are feasible 

substrates, but yields are generally only low to moderate (up to 43% for 6a). As with ketones, 

steric hindrance has a significant effect (6a-6e). Thioethers are tolerated (6f) despite the 

presence of C–H bonds in α-position to the heteroatom. Further, employing aromatic 

aldehydes gave the desired products as well (6g and 6h), and the yield increased with an 

additional electron withdrawing ester group (6h). 
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Table 5-3 – Scope of the reaction. 

 

[a] The reaction was performed using 1 eq. (0.2 mmol) 1 and 10 eq. of the respective ketone in 2 mL dry, degassed 

MeCN, [b] the reaction was performed using 1 eq. (0.2 mmol) 1 and 2a as co-solvent in a 1:1 mixture with dry 

MeCN in 2 mL degassed solvent mixture, [c] the reaction was performed using 1 eq. (0.2 mmol) 1 and the 

respective ketone in the amount given in the table in 2 mL dry, degassed MeCN, [d] the reaction was performed 

using 1 eq. (0.15 mmol) 5 and 3 eq. 1f in 2 mL dry, degassed MeCN. 
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To investigate the mechanism of the reaction, a carbanion test system based on a molecule 

used by Murphy et al. to confirm the generation of aryl anions (Scheme 5-2a) was used.[18] 

According to Murphy, radicals are not capable of adding to esters. Therefore, ethyl-5-

phenylpentanoate 7a was subjected to the standard reaction conditions. The formation of the 

cyclic ketone 8a indicates the presence of the anionic intermediate 7a– (Scheme 5-2b). 

 

Scheme 5-2 – Carbanion test system a) developed by Murphy et al. for the detection of aryl anions and b) test 
system used for this reaction. 

In addition to this, fluorescence quenching studies were performed to confirm the interaction 

of the excited state of the photocatalyst with the deprotonated HAT catalyst (iPr)3SiS–. 

Efficient fluorescence quenching was observed for the photocatalysts B and C upon addition 

of (iPr)3SiS–, indicating the oxidation of the deprotonated hydrogen atom transfer catalyst by 

the excited state of the photocatalyst (experimental part, Figure 5-4 and 5-5). To further 

confirm this, cyclic voltammetry measurements were performed (Supporting Information, 

Figure S5). Indeed, a potential of 0.67 V vs. SCE in MeCN was obtained for a 1:2 mixture of 

(iPr)3SiSH and K2CO3 which is well in the range of photocatalyst B and C 

(E1/2(3DPA2FBN*/3DPA2FBN•–) = 0.92 V vs. SCE, E1/2(3DPAFIPN*/3DPAFIPN•–) = 

1.09 V vs. SCE).[19] Lastly, the formation of benzylic radicals (1•) during the reaction is indicated 

by the presence of small amounts of the homocoupling product 9 in the reaction mixture 

(experimental part, Figure 5-7). 



PHOTOCATALYTIC CARBANION GENERATION FROM C–H BONDS - REDUCTANT-FREE 

BARBIER/GRIGNARD-TYPE REACTIONS  

 

268 

 

Based on these mechanistic investigations, the reaction mechanism depicted in Scheme 5-3 is 

proposed. The photocatalyst is excited upon irradiation with blue light and after deprotonation 

with K2CO3, (
iPr)3SiS– can be oxidized to (iPr)3SiS• by a SET to the excited photocatalyst PC*. 

The generated sulfur radical is capable of abstracting a hydrogen atom from ethylbenzene 1a, 

generating the benzylic radical 1a• (1a: BDE = 85.4 kcal/mol,[15] (iPr)3SiSH: BDE = 

87 kcal/mol[17]). Compound 1a• (E1/2 (1a•/1a–) = 1.60 V vs. SCE)[20] can be reduced by the 

radical anion of the photocatalyst PC•– (E1/2(3DPA2FBN/3DPA2FBN–) = -1.92 V vs. SCE, 

E1/2(3DPAFIPN/3DPAFIPN–) = -1.59 V vs. SCE),[19] thus closing the photocatalytic cycle. 

The resulting benzylic anion 1a– reacts with electrophiles like aldehydes or ketones, leading to 

the desired product 3. 

 

Scheme 5-3 – Proposed reaction mechanism. 

 

5.3 Conclusion 

In summary, we have developed a method for the photocatalytic generation of carbanions 

from benzylic C–H bonds, which react with electrophiles, such as aldehydes or ketones, to 

generate homobenzylic alcohols as products. The reaction represents a formal two-step 

deprotonation of the non-acidic benzylic C–H bond and could be a mechanistic alternative to 

classic C–C bond forming reactions such as the Grignard or Barbier reaction, giving the same 

products. However, instead of using stoichiometric amounts of a zero-valent metal and 

halogenated precursor, an organic photocatalyst, catalytic amounts of a hydrogen atom transfer 

reagent and visible light are used to generate carbanionic intermediates directly from C–H 

bonds, yielding the desired product in a redox neutral reaction with full atom economy. 
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5.4 Experimental part 

5.4.1 General information 

Starting materials and reagents were purchased from commercial suppliers (Sigma Aldrich, 

Alfa Aesar, Acros, Fluka, TCI or VWR) and used without further purification. Solvents were 

used as p.a. grade or dried and distilled according to literature known procedures.[21] For 

automated flash column chromatography distilled solvents was used. All reactions with 

oxygen- or moisture-sensitive reagents were carried out in glassware, which was dried before 

use by heating under vacuum. Dry nitrogen was used as inert gas atmosphere. Liquids were 

added via syringe, needle and septum techniques unless otherwise stated. 

All NMR spectra were measured at room temperature using a Bruker Avance 300 (300 MHz 

for 1H, 75 MHz for 13C, 282 MHz for 19F) or a Bruker Avance 400 (400 MHz for 1H, 101 MHz 

for 13C, 376 MHz for 19F)[22] NMR spectrometer. All chemical shifts are reported in δ-scale as 

parts per million [ppm] (multiplicity, coupling constant J, number of protons) relative to the 

solvent residual peaks as the internal standard.[23] 

Coupling constants J are given in Hertz [Hz]. Abbreviations used for signal multiplicity: 1H-

NMR: b = broad, s = singlet, d = doublet, t = triplet, q = quartet, hept = heptet dd = doublet 

of doublets, dt = doublet of triplets, dq = doublet of quartets, and m = multiplet; 13C-NMR: 

(+) = primary/tertiary, (–) = secondary, (Cq) = quaternary carbon).  

The mass spectrometrical measurements were performed at the Central Analytical Laboratory 

of the University of Regensburg. All mass spectra were recorded on a Finnigan MAT 95, 

ThermoQuest Finnigan TSQ 7000, Finnigan MAT SSQ 710 A or an Agilent Q-TOF 6540 

UHD instrument.  

For the optimization using aldehydes following GC method was used: GC measurements were 

performed on a GC 6890 from Agilent Technologies. Data acquisition and evaluation was 

done with Agilent ChemStation Rev.C.01.04. A capillary column DB–WAX UI/30 m x 

0.25 mm/0.25 μM film and helium as carrier gas (flow rate of 1 mL/min) were used. The 

injector temperature (split injection: 30:1 split) was 280 °C, detection temperature 310 °C 

(FID). GC measurements were made and investigated via integration of the signal obtained. 

The GC oven temperature program was adjusted as follows: initial temperature 40 °C was kept 

for 3 minutes, the temperature was increased at a rate of 15 °C/min over a period of 12 

minutes until 220 °C was reached and kept for 5 minutes, the temperature was again increased 
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at a rate of 25 °C/min over a period of 48 seconds until the final temperature (240 °C) was 

reached and kept for 5 minutes. 1-Heptanol was used as an internal standard.  

For every other use following GC method was used: GC measurements were performed on a 

GC 7890 from Agilent Technologies. Data acquisition and evaluation was done with Agilent 

ChemStation Rev.C.01.04. GC/MS measurements were performed on a 7890A GC system 

from Agilent Technologies with an Agilent 5975 MSD Detector. Data acquisition and 

evaluation was done with MSD ChemStation E.02.02.1431.A capillary column HP-5MS/30 m 

x 0.25 mm/0.25 μM film and helium as carrier gas (flow rate of 1 mL/min) were used. The 

injector temperature (split injection: 40:1 split) was 280 °C, detection temperature 300 °C 

(FID). GC measurements were made and investigated via integration of the signal obtained. 

The GC oven temperature program was adjusted as follows: initial temperature 40 °C was kept 

for 3 minutes, the temperature was increased at a rate of 15 °C/min over a period of 16 

minutes until 280 °C was reached and kept for 5 minutes, the temperature was again increased 

at a rate of 25 °C/min over a period of 48 seconds until the final temperature (300 °C) was 

reached and kept for 5 minutes. If noted, n-decane was used as an internal standard.  

Analytical TLC was performed on silica gel coated alumina plates (MN TLC sheets 

ALUGRAM® Xtra SIL G/UV254). Visualization was done by UV light (254 or 366 nm). If 

necessary, potassium permanganate, vanillin or ceric ammonium molybdate was used for 

chemical staining.  

Purification by column chromatography was performed with silica gel 60 M (40-63 μm, 230-

440 mesh, Merck) on a Biotage® IsoleraTM Spektra One device.  

For irradiation with blue light OSRAM Oslon SSL 80 LDCQ7P-1U3U (blue, λmax = 455 nm, 

Imax = 1000 mA, 1.12 W) was used. For irradiation with green light Cree XPEGRN L1 G4 Q4 

(green, λmax = 535 nm, Imax = 1000 mA, 1.12 W) was used.  

CV measurements were performed with the three-electrode potentiostat galvanostat 

PGSTAT302N from Metrohm Autolab using a glassy carbon working electrode, a platinum 

wire counter electrode, a silver wire as a reference electrode and TBATFB 0.1 M as supporting 

electrolyte. The potentials were achieved relative to the Fc/Fc+ redox couple with ferrocene 

as internal standard.[24] The control of the measurement instrument, the acquisition and 

processing of the cyclic voltammetric data were performed with the software Metrohm 

Autolab NOVA 1.10.4. The measurements were carried out as follows: a 0.1 M solution of 

TBATFB in acetonitrile was added to the measuring cell and the solution was degassed by 
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argon purge for 5 min. After recording the baseline the electroactive compound was added 

(0.01 M) and the solution was again degassed a stream of argon for 5 min. The cyclic 

voltammogram was recorded with one to three scans. Afterwards ferrocene (2.20 mg, 12.0 

μmol) was added to the solution which was again degassed by argon purge for 5 min and the 

final measurement was performed with three scans. 

Fluorescence spectra were measured on a HORIBA FluoroMax®-4 Spectrofluorometer at 

room temperature. Gas tight 10 mm Hellma® quartz fluorescence cuvettes with a screw cap 

with PTFE -coated silicon septum were used. FluorEssence Version 3.5.1.20 was used as a 

software for measurement and analysis. 

 

 

5.4.2 General procedures 

 Synthesis of photocatalysts 

2,4,5,6-Tetrakis(carbazole-9-yl)-4,6-dicyanobenzene (4CzIPN) 

The photocatalyst was synthesized according to a literature procedure.[25] 

NaH (60% in paraffin oil, 800 mg, 20 mmol, 10 eq.) was slowly added to a stirred solution of 

carbazole (1.67 g, 10 mmol, 5 eq.) in dry THF (40 mL). The reaction mixture was heated to 

35 °C and stirred for 1 h before adding tetrafluoroisophthalonitrile (400 mg, 2 mmol, 1 eq.). 

The reaction mixture was stirred at 35 °C for 16 h, afterwards quenched by H2O (2 mL) and 

concentrated in vacuo. The solid residue was washed with H2O and EtOH to yield the crude 

product, which was purified by recrystallization from hexane/DCM to give 2,4,5,6-

tetrakis(carbazol-9-yl)-4,6-dicyano-benzene (4CzIPN) as bright yellow powder (840 mg, 

1.06 mmol, 53%). 
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1H-NMR (400 MHz, CDCl3, δH): 8.22 (d, J = 7.7 Hz, 2H), 7.75 – 7.67 (m, 8H), 7.52 – 7.47 

(m, 2H), 7.33 (d, J = 7.8 Hz, 2H), 7.25 – 7.19 (m, 4H), 7.12 – 7.05 (m, 8H), 6.82 (t, J = 8.2 Hz, 

4H), 6.63 (td, J = 7.6, 1.2 Hz, 2H). 

13C-NMR (101 MHz, CDCl3, δC): 145.3, 144.7, 140.1, 138.3, 137.1, 134.9, 127.1, 125.9, 125.1, 

124.9, 124.7, 124.0, 122.5, 122.1, 121.5, 121.1, 120.6, 119.8, 116.5, 111.8, 110.1, 109.6, 109.6. 

 

 

2,4,6-Tris(diphenylamino)-3,5-difluorobenzonitrile (3DPA2FBN) 

The photocatalyst was synthesized according to a literature procedure.[19] 

Under nitrogen atmosphere, diphenylamine (1.27 g, 7.5 mmol, 1.25 eq.) was dissolved in dry 

THF (40 ml) in a flame dried Schlenk flask. Sodium hydride (60% in paraffin oil, 0.45 g, 

11.3 mmol, 5.6 eq.) was slowly added and the reaction mixture was stirred at 50 °C for 30 

minutes. Pentafluorobenzonitrile (255 µl, 0.39 g, 2 mmol, 1 eq.) was added and the reaction 

was stirred at room temperature for 24 h. The reaction mixture was quenched with water (2 ml) 

and concentrated under vacuum. The residue was dissolved in DCM and washed with brine. 

The organic phase was dried over Na2SO4 and the solvent was removed under reduced 

pressure. Purification of the crude product was performed by flash column chromatography 

on silica gel (PE/DCM, DCM 20 – 80%) yielding the desired product.  

 

1H NMR (300 MHz, CDCl3, δH) 7.26 – 7.20 (m, 12H), 7.07 – 7.00 (m, 6H), 6.99 – 6.95 (m, 

12H). 

19F NMR (282 MHz, CDCl3, δF) -120.72 (s). 

HRMS (EI+) (m/z): [M+•] (C43H30F2N4
+•) calc.: 640.2433, found: 640.2430. 
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2,4,6-Tris(diphenylamino)-5-fluoroisophthalonitrile (3DPAFIPN) 

The photocatalyst was synthesized according to a literature procedure,[19] and analogous to 

4CzIPN with 2,3,5,6-tetrafluorobenzonitirl (350 mg, 2 mmol, 1 eq.) instead of carbazole. The 

crude product was purified by automated flash column chromatography (PE/DCM 20-80%). 

2,4,6-Tris(diphenylamino)-5-fluoroisophthalonitrile (3DPAFIPN) (910 mg, 1.40 mmol, 70%) 

was obtained as bright yellow powder. 

 
1H-NMR (400 MHz, CDCl3, δH): 7.30 – 7.23 (m, 12H), 7.11-7.02 (m, 6H), 7.02 – 6.96 (m, 

12H). 

19F-NMR (377 MHz, CDCl3, δF): -121.83 (s). 

HRMS (FD-MS) (m/z): [M+] (C44H30FN5
+) calc. 647.2485; observed 647.1977. 

FD-MS revealed, that 4DPAFIPN[25] is present in small amount as well (m/z): [M+] 

(C56H40N6
+) calc. 796.3314; observed 796.2684. It may be the impurity visible in the NMR. 

 

 

2,3,5,6-Tetrakis(carbazol-9-yl)benzonitrile (4Cz(pH)BN) 

The photocatalyst was synthesized analogous to 4CzIPN with diphenylamine (1.69 g, 

10 mmol, 5 eq.) instead of tetrafluoroisophthalonitrile. The crude product was purified by 

automated flash column chromatography (PE/DCM 20-80%). 2,3,5,6-Tetrakis(carbazol-9-

yl)benzonitrile (4Cz(pH)BN) (1.00 g, 1.31 mmol, 66%) was obtained as pale yellow powder. 
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1H-NMR (300 MHz, CDCl3, δH): 8.44 (s, 1H), 7.82-7.74 (m, 8H), 7.39-7.280 (m, 8H), 

7.23-7.08 (m, 16H). 

13C-NMR (75 MHz, CDCl3, δC): 139.3, 139.0, 137.9, 136.7, 125.9, 124.4, 124.0, 121.4, 121.1, 

120.5, 120.4, 110.0, 109.4. 

HRMS (FD-MS) (m/z): [M+] (C55H33N5
+) calc. 763.2731; observed 763.2712. 

 

 

3,7-Di(4-biphenyl) 1-naphthalene-10-phenoxazine 

The photocatalysts was synthesized according to a literature procedure.[26] 

1-Naphthalene-10-phenoxazine 

A flame dried Schlenk flask was equipped with phenoxazine (2.0 g, 10.9 mmol, 1 eq.), NaOtBu 

(2.1 g, 21,8 mmol, 2 eq.), RuPhos (131.2 mg, 0.32 mmol. 3 mol%), RuPhos precat (229.5 mg, 

0.32 mmol, 3 mol%), 1-bromonaphthalene (3.1 ml, 21.8 mmol, 2 eq.) and 12 ml dry dioxane. 

The reaction mixture was stirred at 130 °C for 48 h. After cooling to room temperature DCM 

(20 ml) was added and the solution was washed with water (3 x 20 ml), brine (1 x 20 ml) and 

dried over MgSO4. After removing the solvents under reduced pressure, the crude product 

was obtained. It was purified by recrystallization from DCM. After recrystallization, the 

solution was layered with hexane at –25 °C and the product was obtained as a light yellow 

powder. 

 
1H NMR (400 MHz, CDCl3, δH) 8.08 (d, J = 8.4 Hz, 1H), 8.02 – 7.94 (m, 2H), 7.68 – 7.60 (m, 

1H), 7.59 – 7.52 (m, 2H), 7.51 – 7.44 (m, 1H), 6.78 – 6.69 (m, 2H), 6.63 (t, J = 7.6 Hz, 2H), 

6.49 (dt, J = 7.7, 1.5 Hz, 2H), 5.70 (dd, J = 8.0, 1.5 Hz, 2H). 

13C NMR (101 MHz, CDCl3, δC) 144.1 (Cq), 135.7 (Cq), 135.2 (Cq), 134.4 (Cq), 131.5 (Cq), 129.3 

(+), 129.1 (+), 128.9 (+), 127.4 (+), 127.0 (+), 126.9 (+), 123.5 (+), 123.5 (+), 121.4 (+), 115.5 

(+), 113.5 (+). 

Yield: 78% 
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3,7-Dibromo 1-naphthalene-10-phenoxazine 

In a flask which was covered in aluminum foil to block out light, 1-naphthalene-10-

phenoxazine (1.6 g, 5.2 mmol, 1 eq.) was dissolved in 160 ml chloroform. 160 ml of glacial 

acetic acid was added to the solution. N-Bromosuccinimide (1.9 mg, 10.6 mmol, 2.1 eq.) was 

added to the stirred reaction mixture in small portions in the dark. After stirring at room 

temperature for 2 h, the solvents were removed under reduced pressure. The solid residue was 

dissolved in chloroform, washed with water (3 x 20 ml), brine (1 x 20 ml) and dried with 

MgSO4 and the product was collected as a brown powder. 

 

1H NMR (400 MHz, Benzene-d6, δH) δ 7.82 (d, J = 8.3 Hz, 1H), 7.57 (dd, J = 18.9, 8.1 Hz, 

2H), 7.21 – 7.18 (m, 1H), 7.15 – 7.10 (m, 2H), 6.90 (dd, J = 7.3, 1.2 Hz, 1H), 6.84 (d, J = 

2.2 Hz, 2H), 6.36 (dd, J = 8.5, 2.2 Hz, 2H), 5.31 (d, J = 8.5 Hz, 2H). 

13C NMR (101 MHz, Benzene-d6, δC) 144.6 (Cq), 135.9 (Cq), 134.6 (Cq), 133.4 (Cq), 131.2 (Cq), 

129.6 (+), 129.1 (+), 128.8 (+), 127.3 (+), 127.0 (+), 126.9 (+), 123.2 (+), 119.1 (+), 114.(+), 

113.4 (+), 110.4 (Cq). 

Yield: 77% 
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3,7-Di(4-biphenyl) 1-naphthalene-10-phenoxazine (Miyake catalyst) 

In a flame dried Schlenk flask 3,7-dibromo 1-naphthalene-10-phenoxazine (1.1 g, 2.2 mmol, 

1 eq.) and 4-biphenylboronic acid (1.9 g, 9.7 mmol, 4 eq.) were dissolved in 90 ml THF. 27 ml 

of a 2 M solution of K2CO3 in water was added to the solution and the reaction mixture was 

stirred at 80 °C for 20 minutes. After that, a solution of palladium tetrakis(triphenylphosphine) 

(420 mg, 0.4 mmol, 15 mol%) in 90 ml THF was added and the mixture was refluxed at 100 °C 

for 24 h. After cooling to room temperature, the solvents were removed under reduced 

pressure. The solid residue was dissolved in DCM, washed with water (2 x 20 ml), brine (1 x 

20 ml) and dried with MgSO4. The crude product was purified by recrystallization in 

DCM/Methanol and the product was obtained as a light tan powder.  

 

1H NMR (400 MHz, DMSO-d6, δH) 8.18 (dd, J = 14.5, 8.0 Hz, 2H), 8.02 (d, J = 8.2 Hz, 1H), 

7.81 – 7.76 (m, 2H), 7.72 – 7.7 (m, 14H), 7.46 (t, J = 7.8 Hz, 4H), 7.38 – 7.33 (m, 2H), 7.21 (d, 

J = 2.1 Hz, 2H), 6.98 (dd, J = 8.4, 2.1 Hz, 2H), 5.73 (d, J = 8.3 Hz, 2H). 

Yield: 80% 
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 Synthesis of starting materials 

N-(3-Oxobutyl)-p-toluenesulfonamide 

The substrate was synthesized according to a literature procedure.[27] 

 

To a solution of p-toluenesulfonamide (1.71 g, 10.0 mmol, 1 eq.) dissolved in CHCl3 (40 mL) 

were added Al2O3 (2 g, neutral) and methyl vinyl ketone (1.01 mL, 12.0 mmol, 1.2 eq.). The 

mixture was stirred at 45 °C in a stoppered flask for 6 days. Afterwards, the solution was 

filtered and the Al2CO3 was washed with EtOAc (30 mL). The solvent was evaporated and the 

crude product was purified by Automated flash column chromatography (DCM/MeOH, 2% 

MeOH) to afford N-(3-Oxobutyl)-p-toluenesulfonamide as white solid (600 mg, 25% yield). 

1H NMR (400 MHz, CDCl3, δH) 7.63 (d, J = 8.3 Hz, 2H), 7.25 (d, J = 8.0 Hz, 2H), 5.37 (t, 

J = 6.4 Hz, 1H), 3.07 (q, J = 6.1 Hz, 2H), 2.62 (t, J = 6.0 Hz, 2H), 2.36 (s, 3H), 2.04 (s, 3H). 

 

 

N-(4-Ethylphenyl)acetamide  

The substrate was synthesized according to a literature procedure.[28] 

 

4-ethylaniline (1.21 g, 10 mmol, 1 eq) was added to a round-bottom flask. Then the flask was 

purged with argon and dry DCM (40 mL) was added. Acetic anhydride (1.14 mL, 12 mmol, 

1.2 eq) was added and the reaction was stirred at room temperature and monitored by TLC. 

Upon completion, the reaction mixture was washed with a saturated solution of sodium 

carbonate, the organic layers dried with MgSO4 and the solvent removed under reduced 

pressure. Purification by column chromatography (ethyl acetate/petroleum ether) afforded the 

product as a white solid (1.52 g, 93% yield). 

1H NMR (300 MHz, CDCl3, δH) 7.53 (s, 1H), 7.43 – 7.35 (m, 2H), 7.17 – 7.08 (m, 2H), 2.60 

(q, J = 7.7 Hz, 2H), 2.15 (s, 3H), 1.20 (t, J = 7.6 Hz, 3H). 

13C NMR (75 MHz, CDCl3, δC) 168.5, 140.5, 135.6, 128.4, 120.3, 28.4, 24.6, 15.8. 

HRMS (EI) (m/z): [M+] C10H13NO+: calc.: 163.0992, found: 163.0993. 
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Ethyl-5-phenylpentanoate (7a)[29] 

The substrate was synthesized according to modified literature procedure.[30] 

 

Sulfuric acid (533 μL, 10.0 mmol, 1 eq.) was added to a solution of 5-phenylpentanoic acid 

(1.78 g, 10.0 mmol, 1 eq.) in ethanol (30 mL) cooled to 0 °C. The reaction mixture was warmed 

to room temperature and subsequently refluxed for 16 h. After cooling to room temperature, 

the solvent was evaporated. The residue was diluted with EtOAc (50 mL) and washed with 

NH4Cl (aq., sat.) (3x20 mL). The organic phase was washed with brine (20 mL) and dried over 

MgSO4. The solvent was evaporated and the crude product was purified by automated flash 

column chromatography (Petroleum ether/Ethyl acetate 0-20%). Ethyl-5-phenylpentanoate 

(1.79 g, 8.68 mmol, 87%) was obtained as colorless liquid. 

1H NMR (300 MHz, CDCl3, δH) 7.31-7.24 (m, 2H), 7.21-7.14 (m, 3H), 4.12 (q, J = 7.1 Hz, 

2H), 2.67-2.59 (m, 2H), 2.36-2.29 (m, 2H), 1.74-1.59 (m, 4H), 1.25 (t, J = 7.1 Hz, 3H). 

13C NMR (75 MHz, CDCl3, δC) 173.8, 142.3, 128.5, 128.5, 125.9, 60.4, 35.7, 34.4, 31.1, 24.8, 

14.4. 

 

 

 

Ethyl-6-phenylhexanoate[31] 

 

The substrate was synthesized analogous to ethyl-5-phenylpentanoate (7a) with 6-

phenylhexanoic acid (470 mg, 2.5 mmol, 1 eq.) instead of 5-phenylpentanoic acid (1.78 g, 

10.0 mmol, 1 eq.) using the solvents in half of the amount noted above. 

Yield: 70% (387 mg, 1.75 mmol), colorless liquid. 

1H NMR (300 MHz, CDCl3, δH) 7.31-7.14 (m, 5H), 4.12 (q, J = 7.1 Hz, 2H), 2.65-2.57 (m, 

2H), 2.29 (t, J = 7.5 Hz, 2H), 1.72-1.55 (m, 4H), 1.42-1.30 (m, 2H), 1.25 (t, J = 7.1 Hz, 3H). 

13C NMR (75 MHz, CDCl3, δC) 173.9, 142.7, 128.5, 128.4, 125.8, 60.3, 35.9, 34.4, 31.3, 28.9, 

25.0, 14.4. 
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 General procedure for the photocatalytic generation of carbanions from 

benzylic C–H bonds 

General procedure for the photocatalytic benzylation of ketones (general procedure A) 

A 5 mL crimp cap vial was equipped with the photocatalyst 3DPA2FBN (3.8 mg, 6.0 µmol, 

3 mol%), K2CO3 (2.8 mg, 20.0 µmol, 10 mol%), grinded molecular sieves (50 mg) and a 

stirring bar. The vessel was capped and dry acetonitrile (2 ml), the ethylbenzene derivative 1 

(0.2 mmol, 1 eq.), triisopropylsilanethiol (4.3 µl, 20.0 µmol, 10 mol%) and the corresponding 

ketone 2 (2.0 mmol, 10 eq., unless noted otherwise) were added via syringe under a nitrogen 

atmosphere. The reaction mixture was degassed by three cycles of freeze pump thaw and 

stirred and irradiated using a blue LED (455 nm ± 15 nm) for 16 h at 25 °C. The progress 

could be monitored by TLC, GC analysis and GC-MS analysis. 

For isolation, the reaction mixture was diluted with water (10 ml), extracted with ethyl acetate 

(3 x 20 ml), washed with brine (1 x 20 ml) and dried over Na2SO4. The crude product was 

obtained by removing the solvents under reduced pressure. Purification was performed by 

automated flash column chromatography (DCM/MeOH 0-10% MeOH if not noted 

otherwise) yielding the corresponding product 3. 

 

 

2-Methyl-3-phenylbutan-2-ol (3a)[32] 

 

1H NMR (300 MHz, CDCl3, δH) 7.37 – 7.18 (m, 5H), 2.81 (q, J = 7.2 Hz, 1H), 1.37 (s, 1H), 

1.35 (d, J = 7.2 Hz, 3H), 1.19 (s, 6H). 

13C NMR (75 MHz, CDCl3, δC) 143.4 (Cq), 129.1 (+), 128.2 (+), 126.6 (+), 72.8 (Cq), 50.5 (+), 

28.2 (+), 27.0 (+), 15.9 (+). 

HRMS (APCI) (m/z): [MNH4
+] (C11H20NO+) calc.: 182.1539, found: 182.1538. 

Yield:  with 10 eq. acetone:   41% 

 with acetone as co-solvent:  72% 

slightly yellow liquid 
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2-Methyl-3-(p-tolyl)butan-2-ol (3b) 

 

1H NMR (400 MHz, CDCl3, δH) 7.19 – 7.08 (m, 4H), 2.78 (q, J = 7.2 Hz, 1H), 2.34 (s, 3H), 

1.33 (d, J = 7.2 Hz, 3H), 1.19 (s, 3H), 1.18 (s, 3H). 

13C NMR (101 MHz, CDCl3, δC) 140.3(Cq), 136.2 (Cq), 129.0 (+), 128.9 (+), 72.8 (Cq), 50.1 (+), 

28.2 (+), 26.9 (+), 21.1 (+), 16.0 (+). 

HRMS (APCI) (m/z): [MNH4
+] (C12H22NO+) calc.: 196.1696, found: 196.1697. 

Yield:  with 10 eq. acetone:   62% 

 with acetone as co-solvent:  55% 

slightly yellow liquid 

 

 

2-Methyl-3-(o-tolyl)butan-2-ol (3c) 

 

1H NMR (300 MHz, CDCl3, δH) 7.38 – 7.31 (m, 1H), 7.22 – 7.09 (m, 3H), 3.17 (q, J = 7.1 Hz, 

1H), 2.38 (s, 3H), 1.41 (s, 1H), 1.30 (d, J = 7.2 Hz, 3H), 1.26 (s, 3H), 1.19 (s, 3H). 

13C NMR (75 MHz, CDCl3, δC) 142.3 (Cq), 136.9 (Cq), 130.5 (+), 127.5 (+), 126.2 (+), 126.0 

(+), 73.6 (Cq), 43.9 (+), 28.5 (+), 27.3 (+), 20.8 (+), 16.6 (+). 

HRMS (APCI) (m/z): [MNH4
+] (C12H22NO+) calc.: 196.1696, found: 196.1699. 

Yield:  with 10 eq. acetone:   22% 

 with acetone as co-solvent:  44% 

slightly yellow liquid 
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2,3-Dimethyl-3-phenylbutan-2-ol (3d)[33] 

 

1H NMR (400 MHz, CDCl3, δH) 7.48 – 7.44 (m, 2H), 7.35 – 7.29 (m, 2H), 7.25 – 7.19 (m, 1H), 

1.43 (s, 6H), 1.34 (s, 1H), 1.15 (s, 6H). 

13C NMR (101 MHz, CDCl3, δC) 146.4 (Cq), 128.2 (+), 127.8 (+), 126.1 (+), 74.6 (Cq), 45.2 

(Cq), 25.8 (+), 24.5 (+). 

HRMS (APCI) (m/z): [MNH4
+] (C12H22NO+) calc.: 196.1696, found: 196.1696. 

Yield:  with 10 eq. acetone:   11% 

 with acetone as co-solvent:  29% 

slightly yellow liquid 

 

 

2,5-Dimethyl-3-phenylhexan-2-ol (3e)[34] 

 

1H NMR (400 MHz, CDCl3, δH) 7.35 – 7.26 (m, 2H), 7.26 – 7.20 (m, 3H), 2.69 (dd, J = 12.3, 

3.2 Hz, 1H), 1.85 (ddd, J = 13.4, 12.4, 3.4 Hz, 1H), 1.49 (ddd, J = 13.6, 10.5, 3.2 Hz, 1H), 1.35 

(s, 1H), 1.27 – 1.20 (m, 1H), 1.18 (d, J = 1.9 Hz, 6H), 0.85 (d, J = 6.7 Hz, 3H), 0.81 (d, J = 6.5 

Hz, 3H). 

13C NMR (101 MHz, CDCl3, δC) 141.4 (Cq), 129.7 (+), 128.2 (+), 126.6 (+), 72.8 (Cq), 54.9 (+), 

38.7 (–), 28.3 (+), 27.8 (+), 25.8 (+), 24.4 (+), 21.1 (+). 

HRMS (APCI) (m/z): [MNH4
+] (C14H26NO+) calc.: 224.2009, found: 224.2009. 

Yield:  with 10 eq. acetone:   47% 

 with acetone as co-solvent:  79% 

slightly yellow liquid 
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3-(4-Methoxyphenyl)-2-methylbutan-2-ol (3f)  

 
1H NMR (300 MHz, CDCl3, δH) 7.20 – 7.13 (m, 2H), 6.88 – 6.81 (m, 2H), 3.79 (s, 3H), 2.76 

(q, J = 7.2 Hz, 1H), 1.69 (s, 1H), 1.31 (d, J = 7.2 Hz, 3H), 1.17 (s, 3H), 1.16 (s, 3H). 

13C NMR (75 MHz, CDCl3, δC) 158.3 (Cq), 135.4 (Cq), 129.9 (+), 113.5 (+), 72.8 (Cq), 55.3 (+), 

49.6 (+), 28.0 (+), 26.9 (+), 16.0 (+). 

HRMS (APCI) (m/z): [MNH4
+] (C12H22NO2

+) calc.: 212.1645, found: 212.1648. 

Yield:  with 10 eq. acetone:   67% 

 with acetone as co-solvent:  87% 

slightly yellow liquid 

 

 

 

3-(2-Methoxyphenyl)-2-methylbutan-2-ol (3g) 

 
1H NMR (300 MHz, CDCl3, δH) 7.26 – 7.18 (m, 2H), 6.99 – 6.86 (m, 2H), 3.83 (s, 3H), 3.37 

(q, J = 7.3 Hz, 1H), 2.46 (s, 1H), 1.30 (d, J = 7.3 Hz, 3H), 1.19 (s, 3H) 1.17 (s, 3H). 

13C NMR (75 MHz, CDCl3, δC) 157.1 (Cq), 132.3 (Cq), 129.3 (+), 127.3 (+), 120.8 (+), 110.7 

(+), 73.4 (Cq), 55.5 (+), 29.2 (+), 26.4 (+), 15.6 (+). 

HRMS (APCI) (m/z): [MNH4
+] (C12H22NO2

+) calc.: 212.1645, found: 212.1641. 

Yield:  with 10 eq. acetone:   48% 

 with acetone as co-solvent:  83%  

yellow liquid 
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3-(4-Methoxyphenyl)-2,3-dimethylbutan-2-ol (3h)[35] 

 
1H NMR (400 MHz, CDCl3, δH) 7.39 – 7.34 (m, 2H), 6.88 – 6.83 (m, 2H), 3.80 (s, 3H), 1.40 

(s, 6H), 1.27 (s, 1H), 1.14 (s, 6H). 

13C NMR (101 MHz, CDCl3, δC) 157.8 (Cq), 138.4 (Cq), 129.2 (+), 113.1 (+), 74.7 (Cq), 55.3 

(+), 44.6 (Cq), 25.8 (+), 24.6 (+). 

HRMS (APCI) (m/z): [MNH4
+] (C13H24NO2

+) calc.: 226.1802, found: 226.1804. 

Yield:  with 10 eq. acetone:   52% 

 with acetone as co-solvent:  77% 

slightly yellow liquid 

 

 

 

1-(4-Methoxyphenyl)-2-methylpropan-2-ol (3i)[36] 

 
1H NMR (300 MHz, CDCl3, δH) 7.16 – 7.10 (m, 2H), 6.89 – 6.82 (m, 2H), 3.80 (s, 3H), 2.71 

(s, 2H), 1.44 (s, 1H), 1.21 (s, 6H). 

13C NMR (75 MHz, CDCl3, δC)158.5 (Cq), 131.5 (+), 129.9 (Cq), 113.8 (+), 70.9 (Cq), 55.4 (+), 

48.9 (–), 29.2 (+). 

HRMS (EI+) (m/z): [M•+] (C11H16O2
•+) calc.: 180.1145, found: 180.1154. 

Yield:  with 10 eq. acetone:   19% 

with acetone as co-solvent:  53% 

slightly yellow liquid 
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N-(4-(3-Hydroxy-3-methylbutan-2-yl)phenyl)acetamide (3j)  

 
1H NMR (300 MHz, CDCl3, δH) 8.24 (s, 1H), 7.44 – 7.38 (m, 2H), 7.17 – 7.09 (m, 2H), 2.73 

(q, J = 7.2 Hz, 1H), 2.11 (s, 3H), 2.00 (s, 1H), 1.27 (d, J = 7.2 Hz, 3H), 1.13 (s, 6H). 

13C NMR (75 MHz, CDCl3, δC) 169.1 (Cq), 139.4 (Cq), 136.5 (Cq), 129.4 (+), 119.9 (+), 72.8 

(Cq), 49.9 (+), 28.1 (+), 26.9 (+), 24.4 (+), 15.9 (+). 

HRMS (APCI) (m/z): [MNH4
+] (C13H23N2O2

+) calc.: 239.1754, found: 239.1756. 

Yield:  with 10 eq. acetone:   57% 

 with acetone as co-solvent:  87% 

white solid 

 

 

 

3-(4-Chlorophenyl)-2-methylbutan-2-ol (3k)  

 
1H NMR (300 MHz, CDCl3, δH) 7.31 – 7.15 (m, 4H), 2.77 (q, J = 7.2 Hz, 1H), 1.35 (s, 1H), 

1.31 (d, J = 7.2 Hz, 3H), 1.18 (s, 3H), 1.16 (s, 3H). 

13C NMR (75 MHz, CDCl3, δC) 142.1 (Cq), 132.3 (Cq), 130.4 (+), 128.2 (+), 72.7 (Cq), 49.9 (+), 

28.2 (+), 27.2 (+), 15.9 (+). 

HRMS (APCI) (m/z): [MNH4
+] (C11H19ClNO+) calc.: 216.1150, found: 216.1150. 

Yield:  with 10 eq. acetone:   32% 

 with acetone as co-solvent:  53% 

slightly yellow liquid 
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3-(4-Fluorophenyl)-2-methylbutan-2-ol (3l) 

 
1H NMR (300 MHz, CDCl3, δH) 7.25 – 7.17 (m, 2H), 7.04 – 6.93 (m, 2H), 2.78 (q, J = 7.2 Hz, 

1H), 1.31 (d, J = 7.3 Hz, 3H), 1.17 (s, 3H), 1.16 (s, 3H). 

13C NMR (75 MHz, CDCl3, δC) 161.7 (d, 1JCF = 244.3 Hz, Cq), 139.2 (d, 4JCF = 3.3 Hz, Cq), 

130.4 (d, 3JCF = 7.7 Hz, +), 114.9 (d, 2JCF = 20.9 Hz, +), 72.7 (Cq), 49.7 (+) , 28.2 (+) , 27.1 (+) 

, 16.1 (+) . 

19F NMR (282 MHz, CDCl3, δF) -117.4. 

HRMS (APCI) (m/z): [MNH4
+] (C11H19FNO+) calc.: 200.1445, found: 200.1444. 

Yield:  with 10 eq. acetone:   59% 

 with acetone as co-solvent:  78% 

slightly yellow liquid 

 

 

 

3,3',3''-(Benzene-1,3,5-triyl)tris(2-methylbutan-2-ol) (3m) 

 
1H NMR (300 MHz, CDCl3, δH) 6.97 (s, 3H), 2.80 – 2.71 (m, 3H), 1.93 (s, 3H), 1.31 (d, J = 

7.2 Hz, 9H), 1.16 – 1.10 (m, 18H). 

13C NMR (75 MHz, CDCl3, δC) 142.4 (Cq), 142.4 (Cq), 128.2 (+), 128.1 (+), 127.8 (+), 72.9 

(Cq), 50.4 (+), 50.4 (+), 28.4 (+), 26.7 (+), 15.9 (+). 

HRMS (APCI) (m/z): [MNH4
+] (C21H40NO3

+) calc.: 354.3003, found: 354.3003. 

Yield:  with 10 eq. acetone:    

 with acetone as co-solvent:  87% 

yellow liquid 
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3-([1,1'-Biphenyl]-4-yl)-2-methylbutan-2-ol (3n) 

 
1H NMR (400 MHz, CDCl3, δH) 7.65 – 7.59 (m, 2H), 7.59 – 7.54 (m, 2H), 7.49 – 7.42 (m, 2H), 

7.38 – 7.32 (m, 3H), 2.88 (q, J = 7.2 Hz, 1H), 1.50 (s, 1H), 1.40 (d, J = 7.2 Hz, 3H), 1.24 (s, 

6H). 

13C NMR (101 MHz, CDCl3, δC) 142.6 (Cq), 141.0 (Cq), 139.5 (Cq), 129.5 (+), 128.9 (+), 127.2 

(+), 127.1 (+), 126.8 (+), 72.8 (Cq), 50.2 (+), 28.3 (+), 27.1 (+), 15.9 (+). 

HRMS (EI+) (m/z): [M•+] (C17H20O
•+) calc.: 240.1509, found: 240.1517. 

Yield:  with 10 eq. acetone:   31% 

 with acetone as co-solvent:  62% 

yellowish solid 

 

 

 

2-Methyl-3-(naphthalen-2-yl)butan-2-ol (3o)[37] 

 
1H NMR (400 MHz, CDCl3, δH) 7.85 – 7.77 (m, 3H), 7.70 (s, 1H), 7.50 – 7.40 (m, 3H), 2.99 

(q, J = 7.2 Hz, 1H), 1.45 (d, J = 7.3 Hz, 3H), 1.27 (s, 1H), 1.24 (s, 3H), 1.23 (s, 3H). 

13C NMR (101 MHz, CDCl3, δC) 141.1 (Cq), 133.4 (Cq), 132.5 (Cq), 127.9 (+), 127.7 (+), 127.7 

(+), 127.6 (+), 127.5 (+), 126.1 (+), 125.6 (+), 73.0 (Cq), 50.6 (+), 28.4 (+), 27.2 (+), 16.1 (+). 

HRMS (APCI) (m/z): [MNH4
+] (C15H22NO+) calc.: 232.1696, found: 232.1697. 

Yield:  with 10 eq. acetone:   7% 

 with acetone as co-solvent:  34% 

slightly yellow liquid 
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2-Methyl-3-(thiophen-2-yl)butan-2-ol (3p) 

 
1H NMR (400 MHz, CDCl3, δH) 7.20 – 7.15 (m, 1H), 6.99 – 6.94 (m, 1H), 6.89 – 6.87 (m, 1H), 

3.12 (q, J = 7.2 Hz, 1H), 1.59 (s, 1H), 1.38 (d, J = 7.2 Hz, 3H), 1.24 (s, 3H), 1.21 (s, 3H). 

13C NMR (101 MHz, CDCl3, δC) 146.6 (Cq), 126.5 (+), 125.4 (+), 123.7 (+), 72.3 (Cq), 46.6 (+), 

28.1 (+), 26.5 (+), 17.8/ (+). 

HRMS (APCI) (m/z): [M+H+] (C9H15OS+) calc.: 171.0838, found: 171.0836. 

Yield:  with 10 eq. acetone:   43% 

 with acetone as co-solvent:  73% 

slightly yellow liquid 

 

 

 

3-(Benzofuran-2-yl)-2-methylbutan-2-ol (3q) 

 
1H NMR (400 MHz, CDCl3, δH) 7.55 – 7.43 (m, 2H), 7.27 – 7.19 (m, 2H), 6.50 (s, 1H), 3.04 

(q, J = 7.2 Hz, 1H), 2.01 (s, 1H), 1.40 (d, J = 7.2 Hz, 3H), 1.28 (s, 3H), 1.24 (s, 3H). 

13C NMR (101 MHz, CDCl3, δC) 160.9 (Cq), 154.6 (Cq), 128.5 (Cq), 123.6 (+), 122.8 (+), 120.6 

(+), 111.1 (+), 103.6 (+), 72.8 (Cq), 45.0 (+), 28.0 (+), 26.9 (+), 14.3 (+). 

HRMS (EI+) (m/z): [M•+] (C13H16O2
•+) calc.: 204.1145, found: 204.1147. 

Yield:  with 10 eq. acetone:   14% 

 with acetone as co-solvent:  51% 

colorless liquid 
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2-(4-Methoxyphenyl)-3-methylpentan-3-ol (3r) 

 

Column chromatography: First column: DCM/MeOH 0-5%. Second column: 

n-pentane/EtOAc 0-35%. 

1H-NMR (diastereomeric mixture) (300 MHz, CDCl3, δH): 7.21-7.14 (m, 2H), 6.88-6.82 (m, 

2H), 3.79 (s, 3H), 2.86-2.74 (m, 1H), 1.61-1.38 (m, 2H), 1.30 [1.28] (d, J = 3.3 Hz, 3H), 1.20 (s, 

1H), 1.10 [1.04] (s, 3H), 0.94 [0.92] (t, J = 7.4 Hz, 3H). 

13C-NMR (diastereomeric mixture) (75 MHz, CDCl3, δC): 158.3 (Cq), 158.2 (Cq), 135.6 (Cq), 

135.2 (Cq), 130.1 (+), 130.0 (+), 113.5 (+), 113.5 (+), 74.6 (Cq ), 74.4 (Cq ), 55.3 (+), 47.8 (+), 

47.1 (+), 33.0 (–), 31.8 (–), 24.5 (+), 23.3 (+), 16.0 (+), 15.6 (+), 8.3 (+), 8.1 (+). 

HRMS (APCI) (m/z): [MNH4
+] (C13H24NO2

+) calc.: 226.1802, found: 226.1805. 

Yield: 58% (slightly yellow liquid). 

 

 

 

3-Ethyl-2-(4-methoxyphenyl)pentan-3-ol (3s) 

 

Column chromatography: n-Pentane/EtOAc 0-20%. 

1H-NMR (300 MHz, CDCl3, δH): 7.20-7.15 (m, 2H), 6.87-6.82 (m, 2H), 3.80 (s, 3H), 2.83 (q, 

J = 7.2 Hz, 1H), 1.56 (q, J = 7.5 MHz, 2H), 1.42-1.19 (m, 5H), 1.01 (bs, 1H), 0.91-0.80 (m, 

6H). 

13C-NMR (75 MHz, CDCl3, δC): 158.2 (Cq), 135.7 (Cq), 130.1 (+), 113.6 (+), 76.1 (Cq), 55.4 

(+), 44.7 (+), 29.2 (–), 27.4 (–), 15.6 (+), 8.1 (+), 7.8 (+). 

HRMS (APCI) (m/z): [MNH4
+] (C14H26NO2

+) calc.: 240.1958, found: 240.1961. 

Yield: 34% (slightly yellow liquid). 
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5-(1-(4-Methoxyphenyl)ethyl)nonan-5-ol (3t) 

 

Column chromatography: n-Pentane/EtOAc 0-20%. 

1H-NMR (300 MHz, CDCl3, δH): 7.19-7.13 (m, 2H), 6.87-6.82 (m, 2H), 3.80 (s, 3H), 2.81 (q, 

J = 7.2 Hz, 1H), 1.59-1.01 (m, 16H), 0.96-0.82 (m, 6H). 

13C-NMR (75 MHz, CDCl3, δC): 158.2 (Cq), 135.7 (Cq), 130.2 (+), 113.6 (+), 75.8 (Cq), 55.4 

(+), 45.4 (+), 37.3 (–), 35.4 (–), 26.0 (–), 25.8 (–), 23.6 (–), 23.4 (–), 15.6 (+), 14.3 (+), 14.3 (+). 

HRMS (APCI) (m/z): [MNH4
+] (C18H34NO2

+) calc.: 296.2584, found: 296.2586. 

Yield: 10% (colorless liquid). 

 

 

 

2-(4-Methoxyphenyl)-3,4-dimethylpentan-3-ol (3u) 

 

Column chromatography: n-Pentane/EtOAc 0-20%. 

1H-NMR (diastereomeric mixture) (300 MHz, CDCl3, δH): 7.23-7.14 (m, 2H), 6.87-6.82 (m, 

2H), 3.80 (s, 3H), 2.97 [2.85] (q, J = 7.2 Hz, 1H), 2.02-1.92 [16.2-1.53] (m, 1H), 1.27 [1.26] (d, 

J = 7.2 Hz, 3H), 1.12 (s, 1H), 1.06 [0.83] (s, 3H), 1.01-0.90 (m, 6H). 

13C-NMR (diastereomeric mixture) (75 MHz, CDCl3, δC): 158.2 (Cq), 158.2 (Cq), 136.5 (Cq), 

135.7 (Cq), 130.1 (+), 113.6 (+),113.5 (+), 76.2 (Cq), 76.1 (Cq), 55.3 (+), 45.3 (+), 44.5 (+), 34.6 

(+), 33.7 (+), 20.4 (+), 19.4 (+), 18.2 (+), 18.0 (+), 17.3 (+), 16.8 (+), 16.3 (+), 15.0 (+).  

HRMS (APCI) (m/z): [MNH4
+] (C14H26NO2

+) calc.: 240.1958, found: 240.1960. 

Yield: 31% (colorless liquid). 

 

 

 

 

 

2-Cyclopropyl-3-(4-methoxyphenyl)butan-2-ol (3v) 
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Column chromatography: DCM (for 1.5 CV) followed by n-hexane/EtOAc 0-20% gradient. 

1H-NMR (diastereomeric mixture) (300 MHz, CDCl3, δH): 7.25 – 7.15 (m, 2H), 6.88 – 6.78 

(m, 2H), 3.80 (s, 3H), 2.93 – 2.77 (m, 1H), 1.38 [1,37] (d, J = 7.3 Hz, 2H), 1.06 [1.01] (s, 3H), 

0.94 – 0.79 (m, 1H), 0.41 – 0.17 (m, 4H). 

13C-NMR (diastereomeric mixture) (75 MHz, CDCl3 δC): 158.3 (Cq), 135.5 (Cq), 130.2 (+), 

113.4 (+), 72.9 (Cq), 72.7 (Cq), 55.3 (+), 50.1 (+), 49.8 (+), 24.9 (+), 23.1 (+), 19.9 (+), 19.0 (+), 

16.0 (+), 1.4 (–), 1.3 (–), 0.9 (–), 0.6 (–). 

Yield: 31% (slightly yellow liquid). 

 

 

 

1-(1-(4-Methoxyphenyl)ethyl)cyclopentan-1-ol (3w) 

 

Column chromatography: DCM (for 1.5 CV) followed by n-hexane/EtOAc 0-25%. 

1H-NMR (400 MHz, CDCl3, δH): 7.22-7.18 (m, 2H), 6.87-6.83 (m, 2H), 3.80 (s, 3H), 2.78 (q, 

J = 7.1 Hz, 1H), 1.89-1.55 (m, 7H), 1.34 (d, J = 7.1 Hz, 3H), 1.27-1.21 (m, 1H), 1.05 (bs, 1H). 

13C-NMR (101 MHz, CDCl3, δC): 158.3 (Cq), 136.3 (Cq), 129.5 (+), 113.7 (+), 84.8 (Cq), 55.4 

(+), 48.0 (+), 39.7 (–), 37.9 (–), 23.9 (–), 23.7 (–), 16.4 (+). 

HRMS (EI) (m/z): [M+] (C14H20O2
+) calc.: 220.1458, found: 220.1448. 

Yield: 57% (slightly yellow liquid). 

 

 

 

 

 

 

1-(1-(4-Methoxyphenyl)ethyl)cyclobutan-1-ol (3x) 
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Ketone equivalents: 3 eq. cyclobutanone were used for the reaction. 

Column chromatography: DCM (for 1.5 CV) followed by n-Pentane/EtOAc 0-20%. 

1H-NMR (400 MHz, CDCl3, δH): 7.24-7.19 (m, 2H), 6.88-6.83 (m, 2H), 3.80 (s, 3H), 2.88 (q, 

J = 7.1 Hz, 1H), 2.27-2.09 (m, 2H), 2.05-1.96 (m, 1H), 1.91-1.71 (m, 2H), 1.63-1.53 (m, 2H), 

1.29 (d, J = 7.1 Hz, 3H). 

13C-NMR (101 MHz, CDCl3, δC): 158.4 (Cq), 134.7 (Cq), 129.6 (+), 113.8 (+), 78.2 (Cq), 55.4 

(+), 46.4 (+), 34.6 (–), 34.2 (–), 14.6 (+), 12.6 (–). 

HRMS (EI) (m/z): [M+] (C13H18O2
+) calc.: 206.1301, found: 206.1299. 

Yield: 69% (colorless liquid). 

 

 

 

 

2-(4-Methoxyphenyl)-3-methylhept-6-en-3-ol (3y) 

 

Ketone equivalents: 3 eq. 5-hexen-2-one were used for the reaction. 

Column chromatography: DCM (for 1.5 CV) followed by n-pentane/EtOAc 0-20%. 

1H-NMR (diastereomeric mixture) (400 MHz, CDCl3, δH): 7.20-7.14 (m, 2H), 6.88-6.82 (m, 

2H), 5.88-5.77 (m, 1H), 5.06-4.91 (m, 2H), 3.80 (s, 3H), 2.86-2.74 (m, 1H), 2.23-2.04 (m, 2H), 

1.62-1.46 (m, 2H), 1.31 [1.29] (d, J = 7.2 Hz, 3H), 1.27-1.21 (m, 1H), 1.12 [1.10] (s, 3H). 

13C-NMR (diastereomeric mixture) (101 MHz, CDCl3, δC): 158.4 (Cq), 158.4 (Cq), 139.3 (+), 

139.2 (+), 135.3 (Cq), 134.9 (Cq), 130.2 (+), 130.1 (+), 114.5 (–), 114.4 (–), 113.6 (+), 113.6 (+), 

74.4 (Cq), 74.3 (Cq), 55.4 (+), 48.7 (+), 47.8 (+), 39.6 (–), 38.4 (–), 28.4 (–), 28.3 (–), 24.9 (+), 

23.7 (+), 16.0 (+), 15.7 (+). 

HRMS (APCI) (m/z): [MNH4
+] (C15H26NO2

+) calc.: 252.1958, found: 252.1958. 

Yield: 24% (colorless liquid). 

7-Chloro-2-(4-methoxyphenyl)-3-methylheptan-3-ol (3z) 
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Ketone equivalents: 3 eq. 6-chloro-2-hexanone were used for the reaction. 

Column chromatography: DCM (for 1.5 CV) followed by n-pentane/EtOAc 0-20%. 

1H-NMR (diastereomeric mixture) (300 MHz, CDCl3, δH): 7.20-7.13 (m, 2H), 6.88-6.82 (m, 

2H), 3.80 [3.80] (s, 3H), 3.54 [3.53] (t, J = 6.6 Hz, 2H), 2.86-2.74 (m, 1H), 1.82-1.37 (m, 6H), 

1.29 [1.28] (d, J = 7.2 Hz, 3H), 1.20 (s, 1H), 1.11 [1.08] (s, 3H). 

13C-NMR (diastereomeric mixture) (75 MHz, CDCl3, δC): 158.4 (Cq), 158.3 (Cq), 135.3 (Cq), 

134.8 (Cq), 130.2 (+), 130.0 (+), 113.6 (+), 113.6 (+), 74.3 (Cq), 74.2 (Cq), 55.4 (+), 48.3 (+), 

47.5 (+), 45.2 (–), 45.2 (–), 39.8 (–), 38.5 (–), 33.3 (–), 33.2 (–), 25.1 (+), 23.7 (+), 21.4 (–), 21.2 

(–), 16.0 (+), 15.6 (+). 

HRMS (APCI) (m/z): [MNH4
+] (C15H27ClNO2

+) calc.: 288.1725, found: 288.1728. 

Yield: 30% (colorless liquid). 

 

 

3-(1-(4-Methoxyphenyl)ethyl)tetrahydrofuran-3-ol (3aa) 

 
Ketone equivalents: 1 eq. tetrahydrofuran-3-one was used for the reaction. 

Column chromatography: First column: DCM/MeOH (98:2). Second column: 

n-hexane/EtOAc 35-50%. 

1H-NMR (diastereomeric mixture) (300 MHz, CDCl3, δH): 7.24-7.17 (m, 2H), 6.89-6.82 (m, 

2H), 4.08-3.85 (m, 2H), 3.79 [3.79] (s, 3H), 3.77-3.65 + 3.30-3.25 (m, 2H), 2.87 [2.87] (q, 

J = 7.1 Hz, 1H), 2.05-1.91 + 1.53-1.44 (m, 2H), 1.73 [1.68] (bs, 1H), 1.38 [1.33] (d, J = 7.2 Hz, 

3H). 

13C-NMR (diastereomeric mixture) (101 MHz, CDCl3, δC): 158.6 (Cq), 158.6 (Cq), 135.1 (Cq), 

135.1 (Cq), 129.4 (+), 129.1 (+), 113.9 (+), 113.9 (+), 83.6 (Cq), 79.0 (–), 78.0 (–), 68.1 (–), 67.8 

(–), 55.4 (+), 55.4 (+), 45.8 (+), 45.6 (+), 40.0 (–), 38.7 (–), 16.5 (+), 16.4 (+). 

HRMS (APCI) (m/z): [MHN4
+] (C13H22NO3) calc.: 240.1594, found: 240.1596. 

Yield: 30% (slightly yellow solid). 

Methyl 2-hydoxy-2-(1-(4-methoxyphenyl)ethyl)cyclopentane-1-carboxylate (3ab) 
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Ketone equivalents: 1 eq. methyl 2-oxocyclopentanecarboxylate was used for the reaction. 

Column chromatography: First column: DCM (for 1.5 CV) followed by n-pentane/EtOAc 

0-20% gradient. Second column: DCM/EtOAc 10%. 

1H-NMR (diastereomeric mixture) (300 MHz, CDCl3, δH): 7.19-7.12 (m, 2H), 6.84-6.77 (m, 

2H), 4.17 [3.88] (s, 1H), 3.78 [3.78] (s, 3H), 3.72 [3.27] (s, 3H), 2.95 [2.71] (q, J = 7.2 Hz, 1H), 

2.61-2.43 (m, 1H), 2.06-1.56 (m, 6H), 1.34 [1.33] (q, J = 7.1 Hz, 3H). 

13C-NMR (diastereomeric mixture) (75 MHz, CDCl3, δC): 177.2 (Cq), 177.0 (Cq), 158.4 (Cq), 

158.3 (Cq), 135.8 (Cq), 135.5 (Cq), 129.8 (+), 129.6 (+), 113.5 (+), 113.4 (+), 85.3 (Cq), 85.1 (Cq), 

55.4 (+), 55.3 (+), 51.9 (+), 51.5(+), 50.6 (+), 49.6 (+), 48.5 (+), 47.1 (+), 38.7 (–), 35.4 (–), 

30.2 (–), 29.1 (–), 22.0 (–), 21.6 (–), 16.8 (+), 16.4 (+). 

HRMS (APCI) (m/z): [MNH4
+] (C16H26NO4) calc.: 296.1856, found: 296.1857. 

Yield: 27% (colorless liquid). 

 
 

 

 
N-(3-hydroxy-4-(4-methoxyphenyl)-3-methylpentyl)-4-methylbenzenesulfonamide 
(3ac) 

 
Ketone equivalents: 2 eq. N-(3-oxobutyl)-p-toluenesulfonamide were used for the reaction. 

Column chromatography: DCM/MeOH (98:2). 

1H-NMR (diastereomeric mixture) (300 MHz, CDCl3, δH): 7.76-7.70 (m, 2H), 7.32-7.26 (m, 

2H), 7.09-7.02 (m, 2H), 6.86-6.79 (m, 2H), 5.63-5.40 (m, 1H), 3.79 [3.78] (s, 3H), 3.20-2.97 (m, 

2H), 2.74-2.62 (m, 1H), 2.41 (s, 3H), 1.74-1.44 (m, 3H), 1.23 [1.19] (d, J = 7.2 Hz, 3H), 1.00 

[0.97] (s, 3H). 

13C-NMR (diastereomeric mixture) (75 MHz, CDCl3, δC): 158.7 (Cq), 158.6 (Cq), 143.3 (Cq), 

143.3 (Cq), 137.0 (Cq), 137.0 (Cq), 134.2 (Cq), 133.4 (Cq), 130.2 (+), 129.9 (+), 129.7 (+), 129.7 
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(+), 127.2 (+), 127.2 (+), 113.8 (+), 113.8 (+), 75.3 (Cq), 75.1 (Cq), 55.4 (+), 49.6 (+), 48.5 (+), 

39.6 (–), 39.6 (–), 37.5 (–), 36.5 (–), 23.9 (+), 23.0 (+), 21.6 (+), 15.8 (+), 15.4 (+). 

HRMS (ESI) (m/z): [MH+] (C20H28NO4S
+) calc.: 378.1734, found: 378.1735. 

Yield: 21% (yellow solid). 

 

 

 

3-(1-(4-Methoxyphenyl)ethyl)cyclopentan-1-one (3ad) 

 
Ketone equivalents: 1 eq. 2-cyclopentene-1-one was used for the reaction. 

Column chromatography: First column: DCM/MeOH 0-5%. Second column: 

n-pentane/EtOAc 0-40%. 

1H-NMR (diastereomeric mixture) (400 MHz, CDCl3, δH): 7.12-7.05 (m, 2H), 6.88-6.81 (m, 

2H), 3.80 [3.78] (s, 3H), 2.59-1.88 (m, 6H), 1.81-1.70 (m, 1H), 1.64-1.33 (m, 1H), 1.30 [1.27] 

(d, J = 6.9 Hz, 3H). 

13C-NMR (diastereomeric mixture) (101 MHz, CDCl3, δC): 219.5 (Cq), 219.2 (Cq), 158.2 (Cq), 

158.2 (Cq), 138.0 (Cq), 137.6 (Cq), 128.2 (+), 128.1 (+), 114.0 (+), 113.9 (+), 55.4 (+), 45.1 (+), 

44.9 (+), 44.7 (+), 44.5 (+), 44.4 (–), 44.4 (–), 39.1 (–), 39.0 (–), 28.5 (–), 28.4 (–), 21.2 (+), 20.2 

(+). 

HRMS (EI) (m/z): [M+] (C14H18O2
+) calc.: 218.1301, found: 218.1305. 

Yield: 36% (colorless liquid). 

 

 

 

 

 

 

General procedure for the photocatalytic benzylation of aldehydes (general 

procedure B) 
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A 5 mL crimp cap vial equipped with a magnetic stirring bar was loaded with 3DPAFIPN 

(4.9 mg, 7.50 μmol, 3 mol%), K2CO3 (10.4 mg, 75.0 μmol, 50 mol%), (iPr)3SiSH (4.3 μL, 

20 μmol, 10 mol%), the corresponding ethyl benzene derivative (450 μmol, 3 eq.), the 

corresponding aldehyde (150 μmol, 1 eq.) and dry MeCN. In doing so, all solid compounds 

were added before capping the vial, whereas all liquid compounds were added via syringe after 

setting the capped vial under inert conditions. The reaction mixture was degassed by three 

cycles of freeze-pump-thaw and subsequently stirred under light irradiation using a 455 nm 

(±15 nm) LED for 16 h at 25 °C. Two reaction batches were combined and diluted with brine 

(10 mL), water (10 mL) and ethyl acetate (15 mL). The phases were separated, and the water 

phase was extracted with ethyl acetate (3 x 7 mL). The combined organic phases were washed 

with brine (10 mL) and dried over Na2SO4. The solvent was removed under reduced pressure 

and the crude product was purified by automated flash column chromatography 

(n-pentane/ethyl acetate, 0-20% if not noticed otherwise). 

 

 

2-(4-Methoxyphenyl)heptan-3-ol (6a) 

 
1H-NMR (diastereomeric mixture) (400 MHz, CDCl3, δH): 7.18-7.11 (m, 2H), 6.89-6.84 (m, 

2H), 3.80 (s, 3H), 3.64-3.58 (m, 1H), 2.78-2.67 (m, 1H), 1.60-1.23 (m, 10H), 0.91 [0.87] (t, 

J = 7.1 Hz, 3H).  

13C-NMR (diastereomeric mixture) (101 MHz, CDCl3, δC): 158.4 (Cq), 158.2 (Cq), 136.8 (Cq), 

135.5 (Cq), 129.2 (+), 128.8 (+), 114.1 (+), 114.0 (+), 76.5 (+), 76.3 (+), 55.4 (+), 45.3 (+), 44.8 

(+), 34.4 (–) 34.4 (–), 28.4 (–), 28.1 (–), 22.9 (–), 22.8 (–), 18.3 (+), 15.6 (+), 14.2 (+), 14.2 (+).  

HRMS (APCI) (m/z): [MNH4
+] (C14H26NO2

+) calc.: 240.1958, found: 240.1961. 

Yield: 43% (slightly yellow liquid). 

 

 

 

2-(4-Methoxyphenyl)-4-methylpentan-3-ol (6b) 
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Column chromatography: n-Pentane/EtOAc 0-25%. 

1H-NMR (diastereomeric mixture) (400 MHz, CDCl3, δH): 7.21-7.11 (m, 2H), 6.89-6.83 (m, 

2H), 3.80 [3.79] (s, 3H), 3.40-3.34 (m, 1H), 2.89-2.77 (m, 1H), 1.81-1.55 (m, 1H), 1.43 (bs, 1H), 

1.28 [1.23] (d, J = 7.0 Hz, 3H), 1.04-0.88 (m, 6H). 

13C-NMR (diastereomeric mixture) (101 MHz, CDCl3, δC): 158.4 (Cq), 158.2 (Cq), 137.3 (Cq), 

136.1 (Cq), 129.2 (+), 128.6 (+), 114.1 (+), 114.0 (+), 81.5 (+), 80.7 (+), 55.4 (+), 42.6 (+), 42.0 

(+), 30.3 (+), 30.1 (+), 20.6 (+), 20.1 (+), 18.9 (+), 16.9 (+), 15.9 (+), 15.6 (+). 

HRMS (APCI) (m/z): [MNH4
+] (C13H24NO2

+) calc.: 226.1802, found: 226.1802. 

Yield: 31% (slightly yellow liquid). 

 

 

 

 

2-(4-Methoxyphenyl)-5-methylhexan-3-ol (6c) 

 
1H-NMR (diastereomeric mixture) (400 MHz, CDCl3, δH): 7.18-7.11 (m, 2H), 6.89-6.84 (m, 

2H), 3.80 (s, 3H), 3.74-3.64 (m, 1H), 2.76-2.62 (m, 1H), 1.87-1.71 (m, 1H), 1.43 (bs, 1H), 1.34-

1.13 (m, 5H), 0.94-0.84 (m, 6H). 

13C-NMR (diastereomeric mixture) (101 MHz, CDCl3, δC): 158.4 (Cq), 158.2 (Cq), 136.8 (Cq), 

135.5 (Cq), 129.3 (+), 128.8 (+), 114.1 (+), 114.0 (+), 74.3 (+), 74.2 (+), 55.4 (+), 45.9 (+), 45.2 

(+), 44.1 (–), 43.9 (–), 24.9 (+), 24.8 (+), 24.0 (+), 23.8 (+), 21.9 (+), 21.8 (+), 18.3 (+), 15.6 

(+). 

HRMS (APCI) (m/z): [MNH4
+] (C14H26NO2

+) calc.: 240.1958, found: 240.1962. 

Yield: 37% (slightly yellow liquid). 

 

 

 

2-(4-Methoxyphenyl)-5,5-dimethylhexan-3-ol (6d) 
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1H-NMR (diastereomeric mixture) (300 MHz, CDCl3, δH): 7.19-7.11 (m, 2H), 6.89-6.83 (m, 

2H),  3.82-3.70 (m, 4H), 2.74-2.61 (m, 1H), 1.50 [1.37] (dd, J = 14.6, 1.5 Hz, 2H), 1.27 [1.25] 

(d, J = 7.1 Hz, 3H), 0.94 [0.90] (s, 9H). 

13C-NMR (diastereomeric mixture) (75 MHz, CDCl3, δC): 158.4 (Cq), 158.2 (Cq), 136.8 (Cq), 

135.4 (Cq), 129.3 (+), 128.9 (+), 114.0 (+), 113.9 (+), 74.0 (+), 73.8 (+), 55.4 (+), 48.5 (–), 48.5 

(–), 46.6 (+), 46.3 (+), 30.4 (Cq), 30.4 (Cq), 30.3 (+), 30.2 (+), 18.1 (+), 15.3 (+). 

HRMS (APCI) (m/z): [MNH4
+] (C15H28NO2

+) calc.: 254.2115, found: 254.2114. 

Yield: 16% (slightly yellow liquid). 

 

 

 

 

1-Cyclohexyl-2-(4-methoxyphenyl)propan-1-ol (6e) 

 

Column chromatography: n-Pentane/EtOAc 0-25%. 

1H-NMR (diastereomeric mixture) (400 MHz, CDCl3, δH): 7.20-7.11 (m, 2H), 6.89-6.84 (m, 

2H), 3.80 (s, 3H), 3.39-3.33 (m, 1H), 2.95-2.82 (m, 1H), 1.95-1.59 (m, 5H), 1.45-1.19 (m, 10H). 

13C-NMR (diastereomeric mixture) (101 MHz, CDCl3, δC): 158.4 (Cq), 158.1 (Cq), 137.4 (Cq), 

136.0 (Cq), 129.2 (+), 128.7 (+), 114.1 (+), 114.0 (+), 80.7 (+), 80.3 (+), 55.4 (+), 41.8 (+), 41.0 

(+), 40.2 (+), 40.2 (+), 30.8 (–), 30.1 (–), 27.9 (–), 26.7 (–), 26.7 (–), 26.6 (–), 26.4 (–), 26.4 (–), 

26.1 (–), 19.0 (+), 15.0 (+). 

HRMS (EI) (m/z): [M+] (C16H24O2
+) calc.: 248.1771, found: 248.1767. 

Yield: 33% (slightly yellow liquid). 

 

 

 

 

4-(4-Methoxyphenyl)-1-(methylthio)pentan-3-ol (6f) 
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Column chromatography: n-Pentane/EtOAc 0-25%. 

1H-NMR (diastereomeric mixture) (400 MHz, CDCl3, δH): 7.18-7.10 (m, 2H), 6.89-6.83 (m, 

2H), 3.81-3.71 (m, 4H), 2.77-2.52 (m, 3H), 2.09 [2.03] (s, 3H), 1.90-1.53 (m, 3H), 1.30 [1.27] 

(t, J = 7.0 Hz, 3H). 

13C-NMR (diastereomeric mixture) (101 MHz, CDCl3, δC): 158.5 (Cq), 158.3 (Cq), 136.3 (Cq), 

135.1 (Cq), 129.2 (+), 128.8 (+), 114.1 (+), 114.0 (+), 75.6 (+), 75.2 (+), 55.4 (+), 45.4 (+), 45.2 

(+), 33.8 (–), 33.5 (–), 31.3 (–), 31.1 (–), 18.1 (+), 16.4 (+), 15.7 (+), 15.5 (+). 

HRMS (APCI) (m/z): [MNH4
+] (C13H24NO2S

+) calc.: 258.1522, found: 258.1525. 

Yield: 37% (slightly yellow liquid). 

 

 

 

 

2-(4-Methoxyphenyl)-1-phenylpropan-1-ol (6g)[38] 

 

Column chromatography: n-Pentane/EtOAc 0-35%. 

1H-NMR (diastereomeric mixture) (300 MHz, CDCl3, δH): 7.29-7.09 (m, 5H), 7.00-6.68 (m, 

4H), 4.68 [4.51] (d, J = 5.7 Hz, [J = 8.7 Hz], 1H), 3.73 [3.69] (s, 3H), 3.04-2.83 (m, 1H), 

1.84-1.71 (m, 1H), 1.19 [0.96] (d, J = 7.1 Hz, 3H). 

13C-NMR (diastereomeric mixture) (75 MHz, CDCl3, δC): 158.6 (Cq), 158.2 (Cq), 143.0 (Cq), 

142.7 (Cq), 135.6 (Cq), 135.3 (Cq), 129.1 (+), 128.4 (+), 128.1 (+), 127.9 (+), 127.3 (+), 127.1 

(+), 126.4 (+), 114.2 (+), 113.7 (+), 79.9 (+), 78.9 (+), 55.4 (+), 55.3 (+), 47.5 (+), 46.4 (+), 

18.6 (+), 15.2 (+). 

HRMS (APCI) (m/z): [MNH4
+] (C16H22NO2

+) calc.: 260.1645, found: 260.1645. 

Yield: 23% (slightly yellow liquid). 

 

Methyl 4-(1-hydroxy-2-(4-methoxyphenyl)propyl)benzoate (6h) 
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Column chromatography: n-Pentane/EtOAc 0-25%. 

1H-NMR (diastereomeric mixture) (400 MHz, CDCl3, δH): 8.02-7.90 (m, 2H), 7.40-7.23 (m, 

2H), 7.18-7.00 (m, 2H), 6.90-6.76 (m, 2H), 4.79 [4.66] (d, J = 5.8 Hz, [J = 8.1 Hz], 1H), 3.91 

[3.89] (s, 3H), 3.80 [3.76] (s, 3H), 3.10-2.92 (m, 1H), 1.98 (s, 1H), 1.26 [1.08] (d, J = 7.1 Hz , 

3H). 

13C-NMR (diastereomeric mixture) (101 MHz, CDCl3, δC): 167.1 (Cq), 167.1 (Cq), 158.7 (Cq), 

158.4 (Cq), 148.2 (Cq), 147.9 (Cq), 135.0 (Cq), 134.5 (Cq), 129.6 (+), 129.6 (Cq), 129.4 (+), 129.2 

(+), 129.1 (+), 129.0 (Cq), 127.0 (+), 126.4 (+), 114.2 (+), 113.8 (+), 79.3 (+), 78.6 (+), 55.4 

(+), 55.3 (+), 52.2  (+), 52.2 (+), 47.4 (+), 46.4 (+), 18.2 (+), 15.2 (+). 

HRMS (ESI) (m/z): [MNH4
+] (C18H24NO4

+) calc.: 318.1700, found: 318.1704. 

Yield: 39% (slightly yellow liquid). 

 

 

 

2-Phenylhetan-3-ol (6i)[39] 

 

Column chromatography: n-Pentane/EtOAc 0-30%. 

1H-NMR (diastereomeric mixture) (300 MHz, CDCl3, δH): 7.37-7.17 (m, 5H), 3.70-3.62 (m, 

1H), 2.84-2.70 (m, 1H), 1.63-1.22 (m, 10H), 0.91 [0.87] (t, J = 7.0 Hz, 3H).  

13C-NMR (diastereomeric mixture) (75 MHz, CDCl3, δC): 144.8 (Cq), 143.7 (Cq), 128.7 (+), 

128.6 (+), 128.3 (+), 127.9 (+), 126.8 (+), 126.5 (+), 76.4 (+), 76.2 (+), 46.2 (+), 45.7 (+), 34.5 

(–), 34.4 (–), 28.4 (–), 28.1 (–), 22.9 (–), 22.8 (–), 18.2 (+), 15.5 (+), 14.3 (+), 14.2 (+).  

HRMS (APCI) (m/z): [MNH4
+] (C13H24NO+) calc.: 210.1852, found: 210.1853. 

Yield: 28% (slightly yellow liquid). 

General procedure for the intramolecular ring closure with esters as electrophiles 

(general procedure C) 
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A 5 mL crimp cap vial equipped with a magnetic stirring bar was loaded with 3DPA2FBN 

(3.8 mg, 6.00 μmol, 3 mol%), K2CO3 (13.8 mg, 100 μmol, 50 mol%), (iPr)3SiSH (4.3 μL, 

20.0 μmol, 10 mol%), the corresponding ester (200 μmol, 1 eq.), 4Å molecular sieve (50 mg) 

and dry MeCN. In doing so, all solid compounds were added before capping the vial, whereas 

all liquid compounds were added via syringe after setting the capped vial under inert conditions. 

The reaction mixture was degassed by three cycles of freeze-pump-thaw and subsequently 

stirred under light irradiation using a 455 nm (±15 nm) LED for 16 h at 25 °C. Two reaction 

batches were combined and diluted with brine (10 mL), water (10 mL) and ethyl acetate 

(15 mL). The phases were separated, and the water phase was extracted with ethyl acetate 

(3 x 7 mL). The combined organic phases were washed with brine (10 mL) and dried over 

Na2SO4. The solvent was removed under reduced pressure and the crude product was purified 

by automated flash column chromatography (n-pentane/DCM 50-100%) 

 

 

2-Phenylcyclopentan-1-one (8a)[40] 

 
1H-NMR (diastereomeric mixture) (300 MHz, CDCl3, δH): 7.38-7.16 (m, 5H), 3.38-3.28 (m, 

1H), 2.57-2.43 (m, 2H), 2.37-2.24 (m, 1H), 2.23-2.05 (m, 2H), 2.03-1.87 (m, 1H). 

13C-NMR (diastereomeric mixture) (75 MHz, CDCl3, δC): 218.2 (Cq), 138.5 (Cq), 128.7 (+), 

128.3 (+), 127.0 (+), 55.5 (+), 38.6 (–), 31.9 (–), 21.0 (–). 

HRMS (EI) (m/z): [M+] (C11H12O
+) calc.: 160.0883, found: 160.0881. 

Yield: 40% (slightly yellow liquid). 

 

 

 

 

 

 

 

2-Phenylcyclohexan-1-one (8b)[41] 
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Column chromatography: n-Pentane/DCM 50-100%. 

1H-NMR (diastereomeric mixture) (300 MHz, CDCl3, δH): 7.37-7.22 (m, 3H), 7.17-7.11 (m, 

2H), 3.63 [3.59] (d, J = 5.4 Hz, 1H), 2.58-2.40 (m, 2H), 2.33-2.22 (m, 1H), 2.21-2.09 (m, 1H), 

2.09-1.92 (m, 2H), 1.91-1.74 (m, 2H). 

13C-NMR (diastereomeric mixture) (75 MHz, CDCl3, δC): 210.5 (Cq), 138.9 (Cq), 128.7 (+), 

128.5 (+), 127.0 (+), 57.6 (+), 42.4 (–), 35.3 (–), 28.0 (–), 25.5 (–). 

HRMS (EI) (m/z): [M+] (C12H14O
+) calc.: 174.1039, found: 174.1035. 

Yield: 9% (white solid). 

 

5.4.3 Detailed optimization of the reaction conditions 

 Optimization process with ketones as electrophiles 

When the reaction was performed with ethylbenzene 1a, 4CzIPN A as a photocatalyst, 

(iPr)3SiSH as a hydrogen atom transfer catalyst, K2CO3 as a base and acetone 2a as an 

electrophile, traces of the desired product 3a could be observed (Table 5-4, entry 1). A higher 

yield of 21% could be obtained by adding grinded 4 Å molecular sieves to the reaction 

(Table 5-4, entry 2). Increasing the amount of 2a by using it as a co-solvent in a 1:1 mixture 

with dry acetonitrile gave a yield of 49% (Table 5-4 entry 3). A higher loading of hydrogen 

atom transfer catalyst (30 mol% instead of 20 mol%) or photocatalyst from (10 mol% instead 

of 5) decreased the yield (Table 5-4, entries 4 and 5) while reducing the amount of (iPr)3SiSH 

gave a slightly enhanced yield (Table 5-4, entry 6). Using 3DPA2FBN B as a photocatalyst 

increased the yield to 50% when 10 equivalents 2a was used and 86% when acetone was used 

as a co-solvent (Table 5-4, entries 7 and 8). The reaction could be improved slightly by reducing 

the loading of photocatalyst B to 3 mol% and the amount of K2CO3 to 10 mol% (Table 5-4, 

entry 9). Control experiments showed, that the yield is significantly lower when the reaction is 

performed without the base and no product is formed at all without light, photocatalyst or 

hydrogen atom transfer catalyst (Table 5-4, entries 10-13). 
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Table 5-4 – Optimization of the reaction conditions for the photocatalytic HAT-reaction of ethylbenzene with 
acetone as an electrophile.[a] 

 

Entry 
Amount of 

2a 

Photocatalyst 

(mol%) 

Amount of 
(iPr)3SiSH 

Amount 
of base 

Additive 
Yield 
[%][b] 

1 10 eq. 4CzIPN (5) 20 mol% 20 mol% – 3 

2 10 eq. 4CzIPN (5) 20 mol% 20 mol% 
4 Å MS  

(100 mg) 
21 

3 
Co-solvent 

(1:1) 
4CzIPN (5) 20 mol% 20 mol% 

4 Å MS  

(100 mg) 
49 

4 10 eq. 4CzIPN (5) 30 mol% 30 mol% 
4 Å MS  

(100 mg) 
17 

5 10 eq. 4CzIPN (10) 10 mol% 20 mol% 4 Å MS (50 mg) 18 

6 10 eq. 4CzIPN (5) 10 mol% 20 mol% 4 Å MS (50 mg) 30 

7 10 eq. 3DPA2FBN (5) 10 mol% 20 mol% 4 Å MS (50 mg) 50 

8 
Co-solvent 

(1:1) 
3DPA2FBN (5) 10 mol% 20 mol% 4 Å MS (50 mg) 86 

9 10 eq. 3DPA2FBN (3) 10 mol% 10 mol% 4 Å MS (50 mg) 59 

10 10 eq. 3DPA2FBN (5) 10 mol% – 4 Å MS (50 mg) 27 

11 10 – 10 mol% 20 mol% 
4 Å MS  

(100 mg) 
0 

12[c] 10 4CzIPN (5) 10 mol% 20 mol% 
4 Å MS  

(100 mg) 
0 

13 10 4CzIPN (5) – 20 mol% 
4 Å MS  

(100 mg) 
0 

[a] The reaction was performed using 1 eq. (0.2 mmol) 1a in 2 mL degassed solvent, [b] yields were determined 

with GC-FID analysis using n-decane as an internal standard, [c] reaction was performed in the dark. 
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Screening of different photocatalysts 

Table 5-5 – Optimization of the reaction conditions: screening of different photocatalysts.[a] 

 

Entry 
Photocatalyst 

(mol%, hν [nm]) 

Yield[b] 

[%] 

1 4CzIPN (5, 455) 30 

2 3DPA2FBN (5, 455) 50 

3 3DPAFIPN (5, 455) 28 

4 Ru(bpy)3Cl2 (5, 455) 0 

5 Eosin Y (5, 535) 0 

6 Fluorescein (5, 535) 0 

7 Rhodamine 6G (5, 455) 0 

8 fac-Ir(ppy)3 (2, 400) 0 

9 
(Ir[dF(CF3)ppy]2(dtbpy))PF6 

(2, 400) 
0 

10 Miyake catalyst (5, 400) 0 

[a] The reaction was performed using 1 eq. (0.2 mmol) 1a and 10 eq. (2 mmol) 2a in 2 mL dry, 

degassed acetonitrile, [b] yields were determined with GC-FID analysis using n-decane as an internal 

standard. 

 

 

 

 

 

 

 

 

 



PHOTOCATALYTIC CARBANION GENERATION FROM C–H BONDS - REDUCTANT-FREE 

BARBIER/GRIGNARD-TYPE REACTIONS  

 

304 

 

Screening of different hydrogen atom transfer catalysts 

Table 5-6 – Optimization of the reaction conditions: screening of different hydrogen atom transfer catalysts.[a] 

 

Entry 
HAT-catalyst 

(mol%) 

Yield[b] 

[%] 

1 (iPr)3SiSH (20) 30 

2 Methyl thioglycolate (20) traces 

3 Ethyl 2-mercaptopropionate (20) traces 

4 
3-Mercaptopropyltrimethoxysilan 

(20) 
0 

5 Quinuclidine (20) 0 

6 
1,1’-Binaaphthyl-2,2’-diyl 
hydrogenphosphate (20) 

0 

7 

N-(3,5-bis(trifluoromethyl)phenyl)-
2,4,6-

Triisopropylbenzenesulfonamide[17] 
(20 mol%) 

0 

8 NaBr (20) 0 

9 (NH4)Br (20) 0 

[a] The reaction was performed using 1 eq. (0.2 mmol) 1a and 10 eq. (2 mmol) 2a in 2 mL dry, 

degassed acetonitrile, [b] yields were determined with GC-FID analysis using n-decane as an internal 

standard. 
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Investigations on product inhibition and in-situ protection of alcohols 

Table 5-7 – Optimization of the reaction conditions: investigations on product inhibition.[a] 

 

Entry Additive Yield [%][b] 

1[c] 3DPA2FBN (5 mol%) 41 

2[c] (iPr)3SiSH (10 mol%) 50 

3[c] 
3DPA2FBN (3 mol%) 

(iPr)3SiSH (10 mol%) 
60 

4 
 

(0.5 eq.) 

39 

5 
 

(1 eq.) 

11 

6 1-Heptanol (1 eq.) 21 

7 TMS-Cl (1 eq.) – 

8 TMS-DMA (1 eq.) – 

9 BSTFA (1 eq.) traces 

10 Heptamethyldisilazane (1 eq.) traces 

[a] The reaction was performed using 1 eq. (0.2 mmol) 1a and 10 eq. (2 mmol) 2a 

in 2 mL dry, degassed acetonitrile, [b] yields were determined with GC-FID analysis 

using n-decane as an internal standard, [c] additional catalyst was added after 14 h. 
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 Optimization process with aldehydes as electrophiles 

General procedure for the reaction optimization process with aldehydes as 

electrophiles (general procedure D) 

A 5 mL crimp cap vial equipped with a magnetic stirring bar was loaded with photocatalyst, 

base, ethylbenzene (1a), n-pentanal (5a), solvent and if noted an additive in the amounts given 

in the corresponding tables (S5-S15). In doing so, all solid compounds were added before 

capping the vial, whereas all liquid compounds were added via syringe after setting the capped 

vial under inert conditions. The reaction mixture was degassed by three cycles of 

freeze-pump-thaw and subsequently stirred under light irradiation for the given time at 25 °C. 

Subsequently, an aliquot of the reaction mixture was submitted to GC-FID analysis to 

determine the product yield with 1-heptanol as internal standard. 

Table 5-8 – Benzylation of aldehydes: first successful reaction and control experiments.[a] 

 

Entry Photocatalyst HAT catalyst Base Product formation 

1 4CzIPN (5 mol%) (iPr)3SiSH (10 mol%) 
K2CO3 (50 

mol%) 

Traces 

Detected by GC/MS 

2 – (iPr)3SiSH (10 mol%) 
K2CO3 (50 

mol%) 
Not detected (n.d.) 

3 4CzIPN (5 mol%) – 
K2CO3 (50 

mol%) 
n.d. 

4[b] 4CzIPN (5 mol%) (iPr)3SiSH (10 mol%) 
K2CO3 (50 

mol%) 
n.d. 

5 4CzIPN (5 mol%) (iPr)3SiSH (10 mol%) – 
Traces 

Detected by GC/MS 

[a] Reactions were performed with 1a (150 μmol, 1 eq.) and 5a (450 μmol, 3 eq.) in degassed dry MeCN (2 mL) 

under a nitrogen atmosphere and irradiation using a 455 nm (±15 nm) LED. [b] Reaction performed in absence 

of light. 
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Table 5-9 – Benzylation of aldehydes: ethylbenzene/aldehyde ratio alteration.[a] 

 

Entry 
Amount of 

ethylbenzene [eq.] 
Amount of                

n-pentanal [eq.] 
Yield[b] [%] 

1 1 10 Traces 

2 1 3 3 

3 1 1 10 

4 3 1 16 

5[c] 3 1 20 

[a] Reactions were performed with 1 eq. being 150 μmol, 4CzIPN (5 mol% in respect to 1 eq), 

(iPr)3SiSH (20 mol%), K2CO3 (50 mol%) and molecular sieve (4 Å, 50 mg) in degassed dry 

MeCN (2 mL) under a nitrogen atmosphere and irradiation using a 455 nm (±15 nm) LED. 

[b] GC-Yield using 1-heptanol as internal standard. [c] No molecular sieve. 

 

Table 5-10 – Benzylation of aldehydes: variation of base and HAT amount.[a] 

 

Entry 
Amount of (iPr)3SiSH 

[mol%] 
Amount of K2CO3 

[mol%] 
Yield[b] [%] 

1 10 50 10 

2 20 50 20 

3 50 50 8 

4 20 – 6 

5 20 10 20 

6 20 100 18 

[a] Reactions were performed with 5a (150 μmol, 1 eq), 1a (450 μmol, 3 eq), 4CzIPN (5 mol%), 

(iPr)3SiSH and K2CO3 in degassed dry MeCN (2 mL) under a nitrogen atmosphere and 

irradiation using a 455 nm (±15 nm) LED. [b] GC-Yield using 1-heptanol as internal standard. 
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Table 5-11 – Benzylation of aldehydes: change of HAT catalyst and solvent.[a] 

 

Entry Solvent HAT catalyst Yield[b] [%] 

1 MeCN (iPr)3SiSH 20 

2 DMF (iPr)3SiSH 2 

3[c] DMF Quinuclidine n.d. 

4 MeCN 

 

2 

5 MeCN  3 

6 MeCN 
 

Not detected 
(n.d.) 

7 MeCN NaBr n.d. 

[a] Reactions were performed with 5a (150 μmol, 1 eq), 1a (450 μmol, 3 eq), 4CzIPN (5 mol%), 

HAT catalyst (20 mol%) and K2CO3 (50 mol%) in degassed dry MeCN (2 mL) under a nitrogen 

atmosphere and irradiation using a 455 nm (±15 nm) LED. [b] GC-Yield using 1-heptanol as 

internal standard. [c] Toluene instead of ethylbenzene was used. 

Table 5-12 – Benzylation of aldehydes: photocatalyst screening.[a] 

 

Entry Photocatalyst Yield[b] [%] 

1 4CzIPN (5 mol%) 20 

2 3DPA2FBN (5 mol%) 10 

3 3DPAFIPN (5 mol%) 32 

4[c] 3DPAFIPN (5 mol%) 27 

5 4Cz(pH)BN (5 mol%) 20 

6 (Ir[dF(CF3)ppy]2(dtbpy))PF6 (2 mol%) 2 

7 Miyake catalyst n.d. 

[a] Reactions were performed with 5a (150 μmol, 1 eq), 1a (450 μmol, 3 eq), photocatalyst, 

(iPr)3SiSH (20 mol%) and K2CO3 (50 mol%) in degassed dry MeCN (2 mL) under a nitrogen 

atmosphere and irradiation using a 455 nm (±15 nm) LED. [b] GC-Yield using 1-heptanol as 

internal standard. [c] 20 mol% of K2CO3 was used. 
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Table 5-13 – Benzylation of aldehydes: base and additive screening.[a] 

 

Entry Base Additive 
Yield[b] 

[%] 

1 K2CO3 – 32 

2 Li2CO3 – 13 

3 Na2CO3 – 15 

4 Cs2CO3 – 7 

5 Lutidin – 13 

6 K2CO3 B2pin2 (25 mol%) 33 

7 K2CO3 
(50 mol%) 

15 

8 Luidin 
(50 mol%) 

26 

[a] Reactions were performed with 5a (150 μmol, 1 eq), 1a (450 μmol, 3 eq), 3DPAFIPN 

(5 mol%), (iPr)3SiSH (20 mol%), base (50 mol%) and an additive if noted in degassed dry 

MeCN (2 mL) under a nitrogen atmosphere and irradiation using a 455 nm (±15 nm) LED. 

[b] GC-Yield using 1-heptanol as internal standard.  

Table 5-14 – Benzylation of aldehydes: reaction time variation.[a] 

 

Entry Time [h] Yield[b] [%] Entry Time [h] Yield[b] [%] 

1 1 27 4 16 32 

2 2 31 5[c] 16 32 

3 4 33 6[d] 16 22 

[a] Reactions were performed with 5a (150 μmol, 1 eq), 1a (450 μmol, 3 eq), 3DPAFIPN (5 mol%), (iPr)3SiSH 

(20 mol%) and K2CO3 (50 mol%) in degassed dry MeCN (2 mL) under a nitrogen atmosphere and irradiation 

using a 455 nm (±15 nm) LED. [b] GC-Yield using 1-heptanol as internal standard. [c] The reaction was executed 

as described in [a] in 1.5 mL dry MeCN. After 2 h of irradiation, a dry MeCN solution (0.5 mL) containing 

additional 3DPAFIPN (7.5 μmol, 5 mol%) was injected via syringe and the mixture was irradiated for further 

14 h. [d] Reaction was executed as described in [a]. After 2 h of irradiation, a dry MeCN solution (0.5 mL) 

containing additional 3DPAFIPN (7.5 μmol, 5 mol%) and (iPr)3SiSH (30 μmol, 20 mol%) was injected via syringe 

and the mixture was irradiated for further 14 h. 
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Table 5-15 – Benzylation of aldehydes: product inhibition test and catalyst loading.[a] 

 

Entry Additive Catalyst loading [mol%] Yield[b] [%] 

1 – 3 23 

2 – 5 32 

3 – 10 22 

4 
 (1 eq) 

5 8 

5  (1 eq) 5 17 

[a] Reactions were performed with 5a (150 μmol, 1 eq), 1a (450 μmol, 3 eq), 3DPAFIPN 

as given in the table, (iPr)3SiSH (20 mol%), K2CO3 (50 mol%) and an additive if noted in 

degassed dry MeCN (2 mL) under a nitrogen atmosphere and irradiation using a 455 nm 

(±15 nm) LED. [b] GC-Yield using 1-heptanol as internal standard.  

Table 5-16 – Benzylation of aldehydes: addition of alcohol protecting agents.[a] 

 

Entry Additive Yield 13’[b] or 13[c] [%] 

1 

   

TPDPSCL (2 eq) – 

2 
 

BAS (1 eq) – 

3 
 

TBMS triflate (1 eq) – 

4 

 

BSTFA (1 eq) Small amount[b] 

5 

 
Hexamethyldisilane (1 eq) 29[c] 

[a] Reactions were performed with 5a (150 μmol, 1 eq), 1a (450 μmol, 3 eq), 3DPAFIPN 

(5 mol%), (iPr)3SiSH (20 mol%), K2CO3 (50 mol%) and protecting agent in degassed dry 

MeCN (2 mL) under a nitrogen atmosphere and irradiation using a 455 nm (±15 nm) LED. 

[b] 13’ detected by GC-MS. [c] GC-Yield of 13 using 1-heptanol as internal standard.  
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Table 5-17 – Benzylation of aldehydes: variation of experimental execution. 

 

Entry Experimental variation Yield[a] [%] 

1[b] Aldehyde added via syringe pump 19 

2[c] Executed in micro-flow reactor 12 (26)[d] 

3[e] Reaction temperature 0 °C 27 

4[f] 1 eq set to 200 μmol instead of 150 μmol 23 

[a] GC-Yield using 1-heptanol as internal standard. [b] Reaction was performed with 1a (450 μmol, 3 eq), 

3DPAFIPN (5 mol%), (iPr)3SiSH (20 mol%) and K2CO3 (50 mol%) in degassed dry MeCN (1.5 mL) under a 

nitrogen atmosphere and irradiation using a 455 nm (±15 nm) LED. A solution of 5a (150 μmol, 1 eq) in dry 

MeCN (0.5 mL) was added via syringe pump in 4 h (0.125 mL/h). After completed addition the mixture was 

stirred overnight (12 h). [c] Reaction was performed with 5a (150 μmol, 1 eq), 1a (450 μmol, 3 eq), 3DPAFIPN 

(5 mol%), (iPr)3SiSH (20 mol%), lutidin (50 mol%) and tris(trimethylsilyl)silane (50 mol%) in degassed dry MeCN 

(2 mL) under a nitrogen atmosphere and irradiation using a 455 nm (±15 nm) LED in a micro-flow reactor 

(reactor retention time 1.7 h). [d] Reaction was performed as described in [c], yet in batch over 16 h. [e] Reaction 

was performed with 5a (150 μmol, 1 eq), 1a (450 μmol, 3 eq), 3DPAFIPN (5 mol%), (iPr)3SiSH (20 mol%) and 

K2CO3 (50 mol%) in degassed dry MeCN (2 mL) under a nitrogen atmosphere and irradiation using a 455 nm 

(±15 nm) LED at 0 °C. [f] Reaction was performed with 1a (200 μmol, 1 eq), 5a (600 μmol, 3 eq), 3DPAFIPN 

(5 mol%), (iPr)3SiSH (20 mol%) and K2CO3 (50 mol%) in degassed dry MeCN (2 mL) under a nitrogen 

atmosphere and irradiation using a 455 nm (±15 nm) LED. 

 

Table 5-18 – Benzylation of aldehydes, repetition of control experiments with optimized conditions.[a] 

 

Entry Photocatalyst HAT catalyst Base Yield[b] [%] 

1 3DPAFIPN (5 mol%) (iPr)3SiSH (20 mol%) K2CO3 (50 mol%) 32 (28)[c] 

2 – (iPr)3SiSH (20 mol%) K2CO3 (50 mol%) n.d. 

3 3DPAFIPN (5 mol%) – K2CO3 (50 mol%) n.d. 

4 3DPAFIPN (5 mol%) (iPr)3SiSH (20 mol%) – 10 

5[d] 3DPAFIPN (5 mol%) (iPr)3SiSH (20 mol%) K2CO3 (50 mol%) n.d. 

[a] Reactions were performed with 5a (150 μmol, 1 eq) and 1a (450 μmol, 3 eq) in degassed dry MeCN (2 mL) 

under a nitrogen atmosphere. [b] GC-Yield using 1-heptanol as internal standard. [c] Isolated yield in parentheses. 

[d] Executed in the dark. 
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5.4.4 Unsuccessful transformations 

Table 5-19 – Unsuitable substrates for the photocatalytic C-H to carbanion activation followed by the addition 
to carbonyl compounds. 

 

 

[a] Reaction performed according to general procedure A with acetone as electrophile. [b] Reaction performed 

according to General procedure B with n-pentanal as electrophile. [c] Reaction performed according to general 

procedure A with ethylbenzene as carbanion precursor. [d] Substrate synthesized according to literature 

procedure.[42] [e] Reaction performed according to general procedure A with 4-ethylaniosl as carbanion precursor. 

[f] Reaction performed according to general grocedure B with 4-ethylanisol as carbanion precursor. [g] Reaction 

performed according to general procedure C. [h] Reaction performed according to general procedure C with 

ethylbenzene (200 μmol, 1 eq.) as carbanion precursor and the corresponding electrophile (1 eq.). [i] Substrate 

synthesized according to an adapted literature procedure.[43] [j] Reaction performed according to general 

procedure C with ethylbenzene (200 μmol, 1 eq.) as carbanion precursor and the corresponding electrophile 

(10 eq.). [k] Reaction performed according to [j] with 3 eq. electrophile. [l] Reaction performed according to [j] 

with 1 eq. electrophile. 
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Table 5-20 – Attempted SN2 reactions. 

 

 

[a] Reaction performed according to General Procedure B with 

ethylbenzene as carbanion precursor. [b] Reaction performed according to 

General Procedure A with ethylbenzene (200 μmol, 1 eq.) as carbanion 

precursor and the corresponding electrophile (2 eq.). 

 

5.4.5 Mechanistic investigations 

 Reaction kinetics 

The reactions were performed using 1 eq. ethylbenzene 1a (0.2 mmol), 10 eq. acetone 2a 

(2 mmol), 3 mol% photocatalyst, 10 mol% (iPr)3SiSH, 10 mol% K2CO3 and 50 mg grinded 3Å 

molecular sieves in 2 ml dry, degassed acetonitrile. The reaction was irradiated with blue LEDs 

(455 nm ±15 nm). The yield of the reactions were determined with GC-FID analysis using n-

decane as an internal standard. 
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Figure 5-2 – Kinetic profile of the reaction with 4CzIPN (A) and 3DPA2FBN (B) as a photocatalyst. 
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Figure 5-3 – Product formation and consumption of starting material during the reaction. 

 

 Fluorescence quenching studies 

For the emission quenching of 3DPAFIPN with (iPr)3SiS–, a 37.5 μM solution of 3DPAFIPN 

in degassed p.A. MeCN (6.1 mg 3DPAFIPN diluted in 250 mL p.A. MeCN) was given into a 

gas-tight 10 mm quartz cuvette and set under a nitrogen atmosphere. The photocatalyst was 

irradiated at 435 nm and the change of the fluorescence emission upon addition of different 

amounts of quencher solution was measured (Figure 5-4). The quencher solution was prepared 

by the addition of the above described 37.5 μM 3DPAFIPN solution to K2CO3 (11.1 mg, 

80 μmol) and (iPr)3SiSH (17.1 μL, 80 μmol) in a volumetric flask (2 mL). As K2CO3 is not 

soluble in organic solvents, a solid residue remains, which can be K2CO3 or KHCO3. 
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Figure 5-4 – Left: Emission quenching of 3DPAFIPN (37.5 μM in MeCN) upon titration with a quencher 
solution containing (iPr)3SiSH (41 mM in MeCN) and 3DPAFIPN (37.5 μM in dry MeCN) treated with K2CO3. 
Right: Corresponding Ster-Volmer plot (Imax at 526 nm). 
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An efficient fluorescence quenching of 3DPAFIPN upon addition of (iPr)3SiS– was observed, 

indicating an interaction between the excited photocatalyst and the deprotonated HAT 

catalyst. However, a linear Stern-Volmer correlation was not obtained. 

The measurement was executed in the same manner using 3DPA2FBN instead of 3DPAFIPN 

(figure S4) using an excitation wavelength of 400 nm. An efficient fluorescence quenching of 

3DPAFIPN upon addition of (iPr)3SiS– was observed, indicating an interaction between the 

excited photocatalyst and the deprotonated HAT catalyst (Figure S4, left). By plotting (I0/I)-1 

versus the quencher concentration, a Stern-Volmer constant of KSV = 42.1 M-1 was determined 

from the slope of the linear fit (Figure 5-5, right): 

𝐼0

𝐼
− 1 = 𝐾𝑆𝑉 ∙ [𝑄] 

(With I0 being the fluorescence intensity at 490 nm in absence of the quencher, I the 

fluorescence intensity at 490 nm in presence of the quencher and [Q] the quencher 

concentration) 
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Figure 5-5 – Left: Emission quenching of 3DPA2FBN (39.3 μM in MeCN) upon titration with a quencher 
solution containing (iPr)3SiSH (41 mM in MeCN) and 3DPAFIPN (39.3 μM in dry MeCN) treated with K2CO3. 
Right: Corresponding Ster-Volmer plot (Imax at 490 nm). 
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 Cyclic voltammetry measurements  
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Figure 5-6 – Cyclic voltammogram of (iPr)3SiSH and K2CO3 (1:2) in MeCN under argon. The reversible peaks 
at 1. 53 and 1.66 V show the oxidation of (iPr)3SiS– and correspond to a potential of 0.67 V vs SCE; the reversible 
peaks at 1.24 and 1.36 V correspond to ferrocene, which was used as an internal standard. 
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 Radical-radical homocoupling 

After the oxidation of the deprotonated HAT species ((iPr)3SiS–) by the excited photocatalyst, 

the activated HAT catalyst ((iPr)3SiS•) is proposed to abstract a hydrogen atom from the ethyl 

benzene derivative yielding the corresponding benzyl radical 1•. The presence of 1f 
• is 

supported by the detection of the resulting radical-radical homocoupling product of 4-

ethylanisol (9) by GC/MS and by NMR during the isolation of product 6c (Scheme 5-4, 

Figure 5-7).  

 

Scheme 5-4 – Formation of radical-radical homocoupling product 9. 

 

Figure 5-7 – Crude NMR of 9 obtained during the isolation of 6c. 
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 Intramolecular ring closure using an ester as an electrophile 

The formation of a reactive carbanion is the key step of the proposed reaction mechanism. 

The carbanion is proposed to be generated by the SET reduction of carbon radical 1• by the 

reduced photocatalyst. The generation of the carbanion intermediate is supported by the 

successful intramolecular ring closure using esters as electrophiles. As described by Murphy et 

al.,[18] esters are not known to react with radicals, yet are susceptible to an addition by ionic 

nucleophiles. Hence, Murphy and co-workers designed compound 10 as carbanion testing 

system, which will give product 11 if a radical intermediate is involved, while product 12 can 

only be formed if the corresponding carbanion intermediate is generated (Scheme 5-8). 

 

Figure 5-8 – Carbanion test system designed by Murphy et al. 

 

Compound 7a (and 7b) can be regarded as a similar yet simpler carbanion test system. Thus, 

the formation of cyclization product 8a (and 8b) (Scheme 5-9) supports the proposed 

carbanion intermediate. 

 

Figure 5-9 – Formation of cyclization product 8a and 8b. 
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5.5 NMR-spectra 

3DPA2FBN, 1H- and 19F-NMR (CDCl3): 
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4Cz(pH)BN, 1H- and 13C-NMR (CDCl3): 

 

 



CHAPTER 5 
 

 

321 

 

Ethyl-5-phenylpentanoate (7a), 1H- and 13C-NMR (CDCl3)  
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Ethyl-6-phenylhexanoate (7b), 1H- and 13C-NMR (CDCl3)  
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Compound 3a, 1H- and 13C-NMR (CDCl3)  
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Compound 3b, 1H- and 13C-NMR (CDCl3)  
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Compound 3c, 1H- and 13C-NMR (CDCl3)  

 

 

 



PHOTOCATALYTIC CARBANION GENERATION FROM C–H BONDS - REDUCTANT-FREE 

BARBIER/GRIGNARD-TYPE REACTIONS  

 

326 

 

Compound 3d, 1H- and 13C-NMR (CDCl3)  
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Compound 3e, 1H- and 13C-NMR (CDCl3)  
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Compound 3f, 1H- and 13C-NMR (CDCl3)  
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Compound 3g, 1H- and 13C-NMR (CDCl3)  
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Compound 3h, 1H- and 13C-NMR (CDCl3)  
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Compound 3i, 1H- and 13C-NMR (CDCl3)  
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Compound 3j, 1H- and 13C-NMR (CDCl3)  
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Compound 3k, 1H- and 13C-NMR (CDCl3) 
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Compound 3l, 1H-, 13C- and 19F-NMR (CDCl3)  
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Compound 3m, 1H- and 13C-NMR (CDCl3)  
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Compound 3n, 1H- and 13C-NMR (CDCl3)  
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Compound 3o, 1H- and 13C-NMR (CDCl3)  
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Compound 3p, 1H- and 13C-NMR (CDCl3)  
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Compound 3q, 1H- and 13C-NMR (CDCl3)  
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Compound 3r, 1HNMR and 13C NMR (CDCl3):  
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Compound 3s, 1HNMR and 13C NMR (CDCl3):   
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Compound 3t, 1HNMR and 13C NMR (CDCl3):   
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Compound 3u, 1HNMR and 13C NMR (CDCl3):  
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Compound 3v, 1HNMR and 13C NMR (CDCl3):   
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Compound 3w, 1HNMR and 13C NMR (CDCl3):   
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Compound 3x, 1HNMR and 13C NMR (CDCl3):   
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Compound 3y, 1HNMR and 13C NMR (CDCl3):   
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Compound 3z, 1HNMR and 13C NMR (CDCl3):   
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Compound 3aa, 1HNMR and 13C NMR (CDCl3):   
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Compound 3ab, 1HNMR and 13C NMR (CDCl3):   
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Compound 3ac, 1HNMR and 13C NMR (CDCl3):   
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Compound 3ad, 1HNMR and 13C NMR (CDCl3):   
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Compound 6a, 1HNMR and 13C NMR (CDCl3):   
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Compound 6b, 1HNMR and 13C NMR (CDCl3):   

 

 



PHOTOCATALYTIC CARBANION GENERATION FROM C–H BONDS - REDUCTANT-FREE 

BARBIER/GRIGNARD-TYPE REACTIONS  

 

356 

 

Compound 6c, 1HNMR and 13C NMR (CDCl3):  
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Compound 6d, 1HNMR and 13C NMR (CDCl3):  
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Compound 6e, 1HNMR and 13C NMR (CDCl3):  
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Compound 6f, 1HNMR and 13C NMR (CDCl3):  

 

 



PHOTOCATALYTIC CARBANION GENERATION FROM C–H BONDS - REDUCTANT-FREE 

BARBIER/GRIGNARD-TYPE REACTIONS  

 

360 

 

Compound 6g, 1HNMR and 13C NMR (CDCl3):  
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Compound 6h, 1HNMR and 13C NMR (CDCl3):  
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Compound 6i, 1HNMR and 13C NMR (CDCl3):  
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Compound 8a, 1HNMR and 13C NMR (CDCl3):  
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Compound 8b, 1HNMR and 13C NMR (CDCl3):  
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6 Summary 

This thesis presents different methods for the photocatalytic transfer of two electrons, 

enabling the generation of twofold reduced carbon–carbon cross coupling products that would 

classically be generated by the formation of highly reactive and often metal-based carbanionic 

intermediates. Reactions involving carbanions, e.g. the Grignard- or the Barbier reaction, have 

been known for more than 100 years and are frequently used in conventional organic synthesis. 

In contrast, photocatalytic reactions are typically based on the generation of radical 

intermediates by single electron transfer processes and so far, no photocatalyst that is capable 

of donating two electrons in one step is known. This work presents three different approaches 

to mimic carbanionic reactivity using photocatalytic systems. 

Chapter 1 gives an overview of recent concepts for the photocatalytic generation of 

carbanions and their synthetic use. 

In chapter 2, a combination of classic organometallic chemistry with photocatalysis was 

attempted by coupling the visible light induced generation of zerovalent zinc from a zinc(II) 

salt to the formation and subsequent reaction of an organozinc species. Ultimately, this was 

supposed to enable the catalytic use of Zn(II) salts for various reactions by constantly 

regenerating the reactive zerovalent zinc in a photocatalytic reaction. The literature reported 

system for the reduction of Zn2+ was improved significantly and a method for a photocatalytic 

two-step/one-pot Barbier reaction was developed. However, due to the incompatibility of the 

photocatalytic system with the reaction conditions required for organometallic reactions, it was 

so far not possible to establish the a dual catalytic one-step cross-coupling reaction. 

The Barbier reaction is one of the oldest carbon–carbon bond-forming reactions in synthetic 

organic chemistry. It is based on the insertion of a zerovalent metal into a carbon–halide bond, 

generating a nucleophilic carbon center which is capable of reacting with various electrophiles, 

such as aldehydes and ketones. Chapter 3 presents a photocatalytic version of this reaction 

that uses typical substrates for Barbier reactions to generate the same substrates but requires 

neither the use of metals, nor the formation of carbanionic intermediates. Instead both 

substrates – an aromatic aldehyde or ketone and an allyl- or benzyl bromide – are reduced once 

by the photocatalyst via a single electron transfer. The generated radical intermediates are 

capable of recombining in a radical-radical cross-coupling reaction, representing an overall 

two-electron transfer and forming homoallylic and -benzylic alcohols as products. 
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A redox-neutral approach for the photocatalytic generation of carbanions is introduced in 

chapter 4. Benzylic carboxylic acids are deprotonated and subsequently oxidized by a 

photocatalyst, leading to the elimination of CO2 and the formation of a benzylic radical. Due 

to the rather high stability of this radical intermediate, it can be reduced in the same 

photocatalytic cycle, leading to the regeneration of the photocatalyst and the formation of a 

benzylic carbanion which readily reacts with aliphatic aldehydes forming secondary alcohols 

which are analog to typical products of the well-known Grignard reaction. However, the use 

of less reactive electrophiles such as ketones was not possible in synthetically useful yields, due 

to the competing defunctionalization of the carboxylic acids by protonation of the carbanion 

intermediate. 

Based on the same mechanism, the reaction presented in chapter 5 uses a combination of 

photo- and hydrogen atom transfer catalysis to generate carbanions from the corresponding 

C–H bonds. After photocatalytic oxidation, the thiol-based HAT-catalyst is capable of 

abstracting a hydrogen atom from the benzylic position of the substrate, generating a radical 

intermediate. Analogously to chapter 4, this radical is now reduced to the corresponding 

benzylic carbanion which can undergo reactions with electrophiles. Notably, in addition to 

aldehydes, this system also enables the use of ketones as electrophiles, as a protonation of the 

carbanion intermediate does not lead to a termination of the reaction but rather to the 

regeneration of the starting material.
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7 Zusammenfassung 

Das Ziel dieser Arbeit war die Entwicklung photokatalytischer Methoden zur Übertragung 

von zwei Elektronen. Dadurch sollte die Darstellung von zweifach reduzierten Kohlenstoff-

Kohlenstoff Kreuzkupplungsprodukten ermöglicht werden. In klassischer organischer 

Synthese werden diese oft mit Hilfe von hochreaktiven und meist Metall-basierten 

carbanionischen Intermediaten hergestellt. Reaktionen von Carbanionen, wie zum Beispiel die 

Grignard- oder die Barbier Reaktion, sind bereits seit über 100 Jahren ein fester Bestandteil 

der synthetischen organischen Chemie. Im Gegensatz dazu basieren photokatalytische 

Reaktionen typischerweise auf der Bildung von radikalischen Zwischenstufen, die durch die 

Übertragung einzelner Elektronen erzeugt werden. Bisher ist kein Photokatalysator bekannt, 

der zwei Elektronen in einem Schritt abgeben kann. Diese Arbeit stellt drei verschiedene 

Ansätze vor, um mit photokatalytischen Systemen carbanionische Reaktivitäten zu erreichen. 

Kapitel 1 gibt einen Überblick über aktuelle Konzepte zur photokatalytischen Erzeugung von 

Carbanionen und deren synthetische Anwendung.  

In Kapitel 2 sollte Photokatalyse mit klassischer Organometallchemie kombiniert werden. 

Hierfür wurde die photokatalytische Reduktion von Zink(II) Salzen zu metallischem Zink 

genutzt. Aus dem gebildeten Zn(0) sollte in situ eine reaktive Organozink Spezies erzeugt, und 

für diverse Reaktionen genutzt werden. Die konstante photokatalytische Regeneration von 

reaktivem nullwertigem Zink sollte letztlich die katalytische Verwendung von Zn(II) Salzen 

für Reaktionen ermöglichen, die üblicherweise mit stöchiometrischen Mengen von Zinkpulver 

durchgeführt werden. Das literaturbekannte System für die Photoreduktion von Zn2+ wurde 

deutlich verbessert und eine photokatalytische Barbier Reaktion in zwei Schritten wurde 

entwickelt. Die gewünschte einstufige Reaktion mit katalytischen Mengen an Zink konnte 

bisher jedoch nicht entwickelt werden, da sich herausstellte, dass das photokatalytische System 

nicht mit den für die organometallischen Reaktionen benötigten Bedingungen kompatibel war. 

Die Barbier Reaktion ist eine der ältesten Reaktionen zur Bildung von Kohlenstoff–

Kohlenstoff Bindungen in der synthetischen organischen Chemie. Sie basiert auf der Insertion 

eines nullwertigen Metalls in eine Kohlenstoff–Halogen Bindung, wodurch ein nukleophiles 

Kohlenstoffzentrum gebildet wird, welches mit verschiedenen Elektrophilen, wie zum Beispiel 

Aldehyden oder Ketonen reagieren kann. Kapitel 3 stellt eine photokatalytische Version dieser 

Reaktion vor, in der typische Startmaterialien von Barbier Reaktionen verwendet werden um 

dieselben Produkte zu erzeugen. Dabei werden jedoch weder Metalle benötigt, noch findet die 
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Bildung einer carbanionischen Zwischenstufe statt. Stattdessen werden beide Substrate – ein 

aromatischer Aldehyd bzw. ein aromatisches Keton und ein Ally- oder Benzyl Bromid – vom 

Photokatalysator durch eine Einelektronen Übertragung reduziert. Die dadurch gebildeten 

radikalischen Intermediate können nun in einer Radikal-Radikal Kreuzkupplung zu 

homoallylischen oder -benzylischen Alkoholen rekombinieren. In der Gesamtreaktion 

entspricht dies, analog zur klassischen Barbier Reaktion, der Übertragung von zwei 

Elektronen. 

Ein redox-neutraler Ansatz für die photokatalytische Bildung von Carbanionen wird in 

Kapitel 4 vorgestellt. Benzylische Carbonsäuren werden deprotoniert und anschließend vom 

Photokatalysator oxidiert, wodurch CO2 abgespalten und ein benzylisches Radikal gebildet 

wird. Aufgrund der relativ hohen Stabilität dieser radikalischen Zwischenstufe ist es möglich, 

diese innerhalb desselben photokatalytischen Zyklus zu reduzieren. Dadurch wird der 

Grundzustand des Photokatalysators wiederhergestellt und ein benzylisches Carbanion 

gebildet. Dieses kann nun an aliphatische Aldehyde addieren, wodurch sekundäre Alkohole 

erhalten werden welche analog zu den typischen Produkten der weit verbreiteten Grignard 

Reaktion sind. Die Verwendung von weniger reaktiven Elektrophilen wie Ketonen war jedoch 

nicht in synthetisch brauchbaren Ausbeuten möglich, da hier die konkurrierende 

Defunktionalisierung der Carbonsäure durch die Protonierung der carbanionischen 

Zwischenstufe überwiegt. 

Basierend auf diesem Mechanismus wird bei der Reaktion in Kapitel 5 eine Kombination aus 

Photo- und Wasserstoffatomtransfer Katalyse verwendet, um aus benzylischen C–H 

Bindungen direkt die entsprechenden Carbanionen zu erzeugen. Ein Thiol-basierter 

Wasserstoffatomtransfer Katalysator kann, nachdem er vom Photokatalysator oxidiert wurde, 

ein Wasserstoffatom von der benzylischen Position des Substrats abstrahieren und somit eine 

radikalische Zwischenstufe bilden. Analog zu Kapitel 4 wird dieses Radikal nun zum 

entsprechenden benzylischen Carbanion reduziert, welches wiederum mit Elektrophilen 

reagieren kann. Beachtenswert an diesem System ist, dass hier zusätzlich zu Aldehyden auch 

Ketone geeignete Reaktionspartner darstellen, da die Protonierung der carbanionischen 

Zwischenstufe hier nicht zum vorzeitigen Beenden der Reaktion, sondern lediglich zur 

Regeneration des Startmaterials führt.
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8 Appendix 

8.1 Abbreviations 

°C degrees Celsius 

Å Ångström (10-10 m) 

Φ𝐹 fluorescence quantum yield 

λ wavelength 

3DPA2FBN 2,4,6-tris(diphenylamino)-3,5-difluorobenzonitrile 

3DPAFIPN 2,4,6-tris(diphenylamino)-5-fluoroisophthalonitrile 

4CzBnBN 2,4,5,6-tetra(carbazole-9-yl)-3-benzylbenzonitrile 

4CzPN 3,4,5,6,-tetra(carbazole-9-yl)phthalonitrile 

4CzIPN 2,4,5,6-tetra(carbazole-9-yl)isophthalonitrile 

anhyd. anhydrous 

APCI atmospheric-pressure chemical ionization 

Ar arene 

BDE bond dissociation energy 

boc tert-butyloxycarbonyl 

bpy 2,2’-bipyridine 

BSA N,O-bis(trimethylsilyl)acetamide 

BSTFA N,O-bis(trimethylsilyl)trifluoroacetamide 

cm centimeter 

CV cyclic voltammetry 

DB double bond 

DCM dichloromethane 

DFT density functional theory 

DIPEA N,N-diisopropylethylamine 

DMA dimethylacetamide 

DMF dimethylformamide 

DMSO dimethyl sulfoxide 

DPA diphenylanthracene 

dtbpy/dtbbpy di-tert-butyl-2,2’-bipyridine 

E1cb elimination unimolecular conjugated base 

EDTA ethylenediaminetetraacetic acid 
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e.g. for example (lat. exempli gratia) 

eq. equivalent 

EI electron ionization 

ESI electrospray ionization 

et al. and others (lat. et alii) 

EtOAc ethyl acetate 

EtOH ethanol 

eV electron volt 

EWG electron withdrawing group 

fc ferrocene 

FID flame ionization detector 

FT-IR Fourier-transform infrared spectroscopy 

FD-MS field desorption mass spectrometry 

g gram 

GC gas chromatography 

h hour 

HAT hydrogen atom transer 

HRMS high resolution mass spectrometry 

hν incident photon energy 

i.e. that is (lat. id est) 

𝐼0 intensity of the incident light 

iPr isopropyl 

IR infrared 

L liter 

LDA lithium diisopropylamide 

LED light emitting diode 

M molar (mol/L) 

Me methyl 

MeCN acetonitrile 

MeOH methanol 

mg milligram 

min minute 

mL milliliter 
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mM millimolar (mmol/L) 

mmol millimole 

MS mass spectrometry 

n-Bu n-butyl 

NBu4PA tetrabutylammomium phenylacetic acid 

nm nanometer 

NMR nuclear magnetic resonance 

OAc acetoxy group 

OTf trifluoromethanesulfonate group 

p.a. per analysis 

PC photocatalyst 

PE petroleum ether 

Ph phenyl group 

PhCN benzonitrile 

ppy 2-phenylpyridinato 

R alkyl-, aryl- or functional groups 

r.t. room temperature 

PTFE polytetrafluoroethylene 

s second 

SCE saturated calomel electrode 

SET single electron transfer 

t-Bu tert-butyl 

TBA tributylamine 

TBATFB tetrabutylammonium tetrafluoroborate 

TEA triethylamine 

THF tetrahydrofuran 

TLC thin layer chromatography 

TMEDA tetramethylethylenediamine 

TMS trimethylsilyl group 

TsOH toluenesulfonic acid 

UV ultra violet 

Vis visible light 

vs.  against (lat. versus) 
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