Aus dem Lehrstuhl für Innere Medizin II Prof. Dr. Lars S. Maier

> der Fakultät für Medizin der Universität Regensburg

Glucocorticoid stimulation increases cardiac contractility by SGK1dependent SOCE-activation in rat cardiac myocytes

> Inaugural-Dissertation Zur Erlangung des Doktorgrades der Medizin

der Fakultät für Medizin der Universität Regensburg

Vorgelegt von

Michael Wester

2019

Aus dem Lehrstuhl für Innere Medizin II Prof. Dr. Lars S. Maier

> der Fakultät für Medizin der Universität Regensburg

Glucocorticoid stimulation increases cardiac contractility by SGK1dependent SOCE-activation in rat cardiac myocytes

> Inaugural-Dissertation Zur Erlangung des Doktorgrades der Medizin

der Fakultät für Medizin der Universität Regensburg

Vorgelegt von

Michael Wester

2019

Dekan	Prof. Dr. Dirk Hellwig
1. Berichterstatter	Prof. Dr. Stefan Wagner
2. Referent	Prof. Dr. Stephan Hirt
Tag der mündlichen Prüfung	27.01.2020

Deutschsprachige Zusammenfassung der wissenschaftlichen Originalarbeit

Glucocorticoid stimulation increases cardiac contractility by SGK1-dependent SOCE-activation in rat cardiac myocytes

von

Michael Wester et al.

publiziert in

PLOS ONE

2019

vorgelegt von

Michael Wester

Einleitung

In der vorliegenden Arbeit wurden die Effekte einer Aktivierung des Glukokortikoid-Rezeptors mit Dexamethason auf die Kalziumhomöostase und Kontraktilität von Rattenkardiomyozyten untersucht. Die Ergebnisse meiner Arbeit wurden als Originalarbeit mit dem Titel: "Glucocorticoid stimulation increases cardiac contractility by SGK1-dependent SOCE-activation in rat cardiac myocytes" in PLoS ONE publiziert.¹

Diese Zusammenfassung beleuchtet die wichtigsten Ergebnisse dieser Studie. Die referenzierten Abbildungen beziehen sich auf die Nummerierung der oben genannten Publikation.

Seit Langem wird durch zahlreiche klinische Beobachtungen gestützt ein kardioprotektiver Effekt von Glukokortikoiden im Kontext einer akuten Ischämie vermutet. Im Tiermodel verringert die Aktivierung des Glukokortikoid-Rezeptors den biochemisch mittels systemischer Freisetzung von Kreatininkinase sowie histologisch evaluierten myokardialen Schaden und verbessert den Koronarfluss nach Ischämie und Reperfusion.²⁻⁴ Im Menschen reduziert die Vorbehandlung mit Glukokortikoiden den Troponinanstieg und erhöht die Kontraktilität (den Herzindex, Quotient aus Herzzeitvolumen und Körperoberfläche) nach einer kardiopulmonalen Bypass-Operation.^{5–7} Neben den wohlbekannten antiinflammatorischen Effekten von Glukokortikoiden⁸ wurde auch *in vivo/ex vivo* eine Stimulation der kardialen Kontraktilität in Langendorff-perfundierten Rattenherzen⁹ sowie der Kalziumtransientenamplitude in Schweinekardiomyozyten nach einem kardiopulmonalen Bypasseingriff¹⁰ gezeigt. Letzterer ist ein Maß für die Menge an systolisch freigesetztem Kalzium und bestimmt maßgeblich die Kontraktilität von Herzmuskelzellen. Die zugrundeliegenden Mechanismen und insbesondere die Quellen für die Steigerung der systolischen Kalziumfreisetzung sind jedoch bisher nur unzureichend verstanden. Interessanterweise induziert Dexamethason (Dex) den Storeoperated calcium entry (SOCE) in gestreiften Muskelzellen (L6-Myotuben)¹¹. Die Dexvermittelte Stimulation (500 nM, 24h) der Serum and glucocorticoid-regulated kinase 1 (SGK1) erhöhte die Expression des Natrium-Protonen-Austauschers in HL-1-Kardiomyozyten.¹² Eine SGK1-abhängige Regulation weiterer kardialer Ionenkanäle erscheint daher wahrscheinlich.

Für nicht-kardiale Zellen (Megakaryozyten¹², HEK293-Zellen¹³ sowie Mastzellen¹³) gibt es experimentelle Daten, die eine SGK1-Aktivierung für die Glukokortikoid-vermittelte transkriptionale Regulierung des Stromal interaction molecule 1 (STIM1) und des ORAI calcium release-activated calcium modulator 1 (Orai1) zeigen. Diese beiden Proteine sind für die Funktion des SOCE von entscheidender Bedeutung.¹⁴

In nicht-erregbaren Zellen stellt der SOCE eine etablierte, wichtige Kalziumquelle dar.¹⁵ Eine erniedrigte sarkoendoplasmatische (SR) Kalziumkonzentration führt zu Konformationsänderungen und Oligomerisierung der als Kalziumsensor agierenden STIM-Proteine. Diese befinden sich hauptsächlich in der SR-Membran und können als transmembranöse Proteine an den SR-Plasmamembran-Junktionsstellen die selektiven Orai-Kalziumkanäle aktivieren, sodass ein direkter Kalziumeinstrom in das Sarkoplasmatische Retikulum (SR) entsteht (ausführliche Zusammenfassung in ^{14,16}). Die Relevanz des SOCE für die elektromechanische Kopplung in gesunden adulten Herzmuskelzellen ist derzeit jedoch unklar und wird kontrovers diskutiert.^{14,16} SOCE wurde in neonatalen Rattenkardiomyozyten nachgewiesen, scheint jedoch in gesunden, adulten Herzmuskelzellen kaum vorhanden zu sein.^{16,17} In Situationen kardialer Belastung tritt er allerdings wieder auf. Eine wachsende Zahl experimenteller Daten lässt vermuten, dass in Rattenherzen eine erhöhte Druckbelastung des linken Ventrikels (experimentelle Konstriktion der thorakalen oder abdominellen Aorta) sowie die Exposition mit Phenylephrin oder Angiotensin II über eine Stimulation des SOCE und der SOC-Kanäle eine Aktivierung des Calcineurin-NFAT-Signalweges auslöst und somit zu einer ventrikulären Hypertrophie führt.^{18,19}

In der vorliegenden Arbeit wird die Hypothese untersucht, dass SOCE auch in erregbaren Zellen eine wichtige Rolle spielt und, vermutlich über einen SGK1-abhängigen Mechanismus, zum positiv inotropen Effekt der Glukokortikoid-Rezeptorstimulation in Kardiomyozyten beiträgt.

Material und Methoden

Tiermodell

Für die Experimente wurden männliche Sprague-Dawley Ratten (Charles River, Europa) im Alter von 12 Wochen verwendet (Körpergewicht 250-350 g). Nach Isoflurananästhesie (2%) wurden die Tiere durch Dekapitation getötet. Für einige Experimente wurde 24 h zuvor *in vivo* intraperitoneal Dex (2 mg/kg KG) oder Vehicle verabreicht. Alle Tierexperimente wurden zuvor von der zuständigen Behörde genehmigt (Aktenzeichen 54-2532.1-14/14, Bezirksregierung Oberpfalz, Anzeigender Dr. Christian Schach) und wurden unter Berücksichtigung des "Guide for the Care and Use of Laboratory Animals" (NIH Publikationsnummer 85-23, 1996 überarbeitet) durchgeführt.

Langendorff-Perfusion der Herzen

Nach Entnahme der Herzen wurde die Aorta rasch kanüliert und an einen Langendorff-Apparat (Hugo Sachs Electronic KG, March-Hugstetten, Deutschland) angeschlossen.²⁰ Während der Präparation wurden die Herzen durchgehend retrograd mit einer gefilterten (5 μm Porengröße, Sigma-Aldrich, München, Deutschland) modifizierten Krebs-Ringer-Lösung (in mM: NaCl 124,5; KCl 4,5; CaCl₂ 2.5; KH₂PO₄ 1,2; NaHCO₃ 15,5; EDTA 0,05, Glukose 11,5; Pyruvat 2, Mannitol 10, Insulin 5 Einheiten pro Liter; 6,2±0,2°C; 95% Sauerstoff, 5% Kohlenstoffdioxid) perfundiert. Ein flüssigkeitsgefüllter Ballon wurde in den linken Ventrikel eingebracht. Die Messungen wurden nach einer 30-minütigen Stabilisierungsphase durchgeführt (0 mmHg linksventrikulärer enddiastolische Druck (LVEDP); 55 mmHg koronarer Perfusionsdruck). Alle Parameter der Langendorff-Experimente (developed left ventrikular pressure, time-to-peak, Relaxationszeit, LVEDP, Kontraktions- und Relaxationsgeschwindigkeit) wurden aus dem über 20 Kontraktionszyklen gemittelten Drucksignal abgeleitet und mit dem Programms LabChart Pro (Version 8.1.9) analysiert.

Isolation und Kultur der Kardiomyozyten

Die Isolation der Kardiomyozyten erfolgte wie von unserer Arbeitsgruppe vorbeschrieben.²¹ Die Rattenherzen wurden nach Entnahme in eine kalte Pufferlösung transferiert (in mM: NaCl 113; KCl 4,7; KH₂PO₄ 0,6; Na₂HPO₄ 0,6; MgSO₄ 1,2; NaHCO₃ 10; KHCO₃ 12; Hepes 10; BDM 0,05; Glucose 5,5; pH von 7,4 bei 37 °C). Die Aorta wurde kanüliert und durch Spülen von verbliebenem Blut gereinigt, was sich durch Entfärben des Myokards bestätigte. Dann wurde das Herz zur Zellisolation mit der Kanüle an den Langendorff-Apparat angeschlossen (Hugo Sachs Electronic KG, March-Hugstetten, Deutschland) und retrograd für 15 Minuten mit erwärmter Enzymlösung durchströmt (Trypsin 0,6 %; 7,5 mg/mL Liberase, Roche; 37 °C). Vorhöfe und rechter Ventrikel wurden entfernt und der linke Ventrikel zerkleinert und vorsichtig mit einer Pasteurpipette titriert, bis sich eine homogene Zellsuspension ergab. Dann setzten sich die Zellen für 10 Minuten unter der Schwerkraft in der Pufferlösung ab (in mM: NaCl 113; KCl 4,7; KH₂PO₄ 0,6; Na₂HPO₄ 0,6; MgSO₄ 1,2; NaHCO₃ 10; KHCO₃ 12; Hepes 10; BDM 0,05; Glucose 5,5; pH von 7.4 bei 37 °C). Nach der schrittweisen Erhöhung der Kalziumkonzentration (0,2; 0,4;0,8 mM) zur Vermeidung des Kalziumparadoxes wurde die Zellsuspension in ein Kulturmedium überführt (MEM mit Insulin-Transferrin-Selenium, L-glutamine, Penicillin, Streptokinase, 2 mM BDM, BSA) und in Dex (0.010 mg/mL) oder Vehicle inkubiert (24 h; 37 °C; 20 % O₂; 75 % N₂: 5 % CO₂). Für einige Experimente wurde außerdem der SGK1-Inhibitor EMD (N'-[2-(3,5-difluorophenyl)-2-hydroxyacetyl]-2-ethyl-4-hydroxy-3-methylbenzohydrazide; 50 μM) beigefügt.

Messung der Kalziumkonzentration und Sarkomerlänge

Die Messungen der intrazellulären Kalziumkonzentration wurden wie von unserer Arbeitsgruppe vorbeschrieben durchgeführt.²¹ Isolierte Kardiomyozyten wurden auf Lamininbeschichtete Glaskammern aufgebracht. Dann wurden die Zellen mit FURA-2-Acetoxymethylester (FURA-2-AM; 5 µM; 0,02 % w/v Pluronic; 10 Minuten; 25 °C) beladen und auf ein Epifluoreszenzmikroskop aufgebracht (IonOptix). Über eine Estherbindung ist Acetoxymethyl an den Fluoreszenzfarbstoff FURA-2 gebunden, sodass die Zellmembran überwunden werden kann. Intrazelluläre Estherase spalten dann die Acetoxymethylgruppen ab und FURA-2 reichert sich im Zytosol an.²² Nach Auswaschen des FURA-2-Farbstoffes für 10 Minuten durch eine Superfusion mit modifizierter Tyrode-Lösung (in mM: NaCl 140; KCl 4; MgCl₂ 1; Hepes 5; pH von 7,4, bei 37 °C) wurden die Zellen mittels elektrischer Feldstimulation (20 V; 1 Hz) erregt. Zur Messung der intrazellulären Kalziumkonzentration wurde FURA-2 abwechselnd (240 Hz) mit Licht der Wellenlänge 340 nm und 380 nm angeregt und die emittierte Fluoreszenz der Wellenlänge 510 nm wurde von einem Photomultiplier aufgezeichnet (alle optischen Filter von Chroma Technology Corporation; Wellenlänge ±10 nm). Für jedes einzelne Experiment wurde die unspezifische Hintergrundfluoreszenz in direkter Nachbarschaft zur Zelle für jede Anregungswellenlänge gemessen und von der emittierten Fluoreszenz subtrahiert. Die Hintergrundfluoreszenz betrug weniger als 10% der zellulären Fluoreszenz. Infolge der elektrischen Stimulation kommt es in den Kardiomyozyten zu einem zyklischen Anstieg (Systole) und Abfall (Diastole) der Kalziumkonzentration, was als Kalziumtransient bezeichnet wird. Die Amplitude des Transienten ist dabei ein Maß für die Kontraktilität der Herzmuskelzelle. Die Kalziumtransienten wurden aus durchschnittlich 10 elektrisch stimulierten Transienten gemittelt. Aus dem gemittelten Transienten wurden zahlreiche Parameter analysiert. So die Kinetik des Anstiegs ("time-to-peak", gemessen vom Beginn des Kalziumtransienten), die Kinetik des Abfalls, die Amplitude sowie die diastolische Kalziumkonzentration. Koffein (10 mM) wurde als Aktivator der Ryanodinrezeptoren verwendet, um den SR-Kalziumgehalt am Ende jeden Experiments zu messen. Die Abfallrate der koffeininduzierten Kalziumtransienten wurde als Maß für den Natrium-Kalzium-Austauscher (NCX) analysiert. Im gleichen experimentellen Versuchsaufbau wurden die Veränderungen der Sarkomerlänge über ein Videokamerasystem aufgezeichnet. Die relative Sarkomerverkürzung wurde als fraktionelle Verkürzung (Amplitude der Verkürzung bezogen auf die diastolische Sarkomerlänge) berechnet (IonWizard). Die Experimente zur Sarkomerlängenbestimmung wurden ohne vorherige FURA-2 Beladung durchgeführt, um Kalziumpuffereffekte des Farbstoffes zu vermeiden. Für einige Experimente wurden der SOCE-Inhibitor SKF-96356 (1-[2-(4-Methoxyphenyl)-2-[3-(4-methoxyphenyl)propoxy]ethyl-1H-imidazole hydrochloride; SKF; 2 μ M) oder BTP2 ([N-{4-[3,5-bis(Trifluoromethyl)-1Hpyrazol-1-yl]phenyl}-4-methyl-1,2,3-thiadiazole-5-carboxamide], 5 μ M) hinzugefügt.

Messung des SOCE

Zur Messung des SOCE wurde ein spezielles experimentelles Protokoll verwendet (Fig 3A). Unter elektrischer Stimulation der Zellverkürzung (20 V; 1 Hz) bis zum Erreichen eines stabilen Gleichgewichtes wurde mittels Koffeinapplikation (10 mM) eine Entleerung des SRs erreicht. Anschließend wurde die Superfusion von modifizierter Tyrode-Lösung (in mM: NaCl 140; KCl 4; MgCl₂ 1; Hepes 5; pH 7,4) auf eine 0 Ca/0 Na-Lösung (in mM: LiCl 140; KCl 4; MgCl₂ 1; Hepes 5; EGTA 1) gewechselt und die Kardiomyozyten wurden für 5 Minuten mit dem SERCA-Inhibitor Thapsigargin (Tg; 100 nM) und dem L-Typ-Kalziumkanalblocker Verapamil (10 µM) inkubiert. Durch wiederholte Koffeinapplikation (10 mM) wurde nun eine weitestgehende Entleerung des SRs erreicht. Im Anschluss wurde der extrazellulären Kalzium hinzugefügt Superfusion wieder (2,5)mM) und die intrazelluläre Kalziumkonzentration wurde kontinuierlich aufgezeichnet. Für einige Experimente wurde der SOCE-Inhibitor SKF (2 µM) 5 Minuten vor und während der Kalziumerhöhung hinzugefügt.

Messung der mRNA

Zur Messung des mRNA-Gehaltes wurden isolierte Zellen nach 24-stündiger Inkubation in Dex (1 mg/mL), EMD (50 μ M) oder beidem geerntet und bis zur weiteren Verarbeitung (RNeasy Mini Kit, Qiagen, Niederlande) bei -80°C tiefgefroren. Die komplette mRNA für STIM1/2, Orai1/2/3 und TRPC channels 1/3/4/6 (transient receptor potential cation channels) wurde mittels quantitativer rt-PCR auf β -Aktin normalisiert gemessen (ViiA7 Life Technologies,

Applied Biosystems). Die RNA-Primer sind in S1 Table aufgelistet. Der mRNA-Gehalt wurde durch Verwendung der Standardkurven-Methode berechnet.

Datenanalyse und Statistik

Die statistische Analyse wurde mithilfe des Programms Graphpad Prism (Version 6.01, GraphPad Software, La Jolla California USA) vorgenommen. Die Ergebnisse sind als Mittelwert \pm Standardfehler des arithmetischen Mittels dargestellt. Nach Kontrolle auf Normalverteilung mittels des D'Agostino-Pearson-Tests und des Kolmogorov-Smirnov-Tests wurden die Ergebnisse durch Anwendung des gepaarten t-Tests oder durch Varianzanalyse mittels one-way ANOVA miteinander verglichen. Als statistisch signifikant wurden Ergebnisse mit einem p<0,05 bezeichnet.

Ergebnisse

Der positiv inotrope Effekt von Dexamethason

Zuerst wurde der Effekt von Dex auf die Kontraktilität intakter Langendorff-perfundierter Herzen untersucht. Eine *in vivo*-Vorbehandlung mit Dex führte zu einem signifikanten Anstieg der systolischen Kontraktilität (developed left ventricular pressure; devel. LVP; Figs 1A-C). Interessanterweise war die Zeit bis zur maximalen Kontraktion als Maß der elektromechanischen Kopplung, die hauptsächlich durch die kinetischen Eigenschaften der spannungsgesteuerten L-Typ-Kalziumkanäle (LTCC) und kardialen Ryanodin-Rezeptoren (RyR) vermittelt wird²³, unverändert. Dies lässt vermuten, dass sich der positiv-inotrope Dex-Effekt nicht über eine LTCC-Regulation erklären lässt (s. Diskussion). Die Dex-Vorbehandlung hatte zudem keinen Einfluss auf die diastolische Funktion der Herzen, da sowohl der LVEDP (Fig 1E) als auch die Relaxationszeit (Fig 1F) unverändert waren. Letzteres kann als Maß der diastolischen Kalziumextrusion gewertet werden.

Dexamethason erhöht die intrazelluläre Kalziumtransientenamplitude über einen SOCE-abhängigen Mechanismus

Zur genaueren Charakterisierung dieses positiv-inotropen Dex-Effekts wurde die intrazelluläre Kalziumkonzentration in isolierten Rattenkardiomyozyten gemessen. Sowohl die Verkürzungsfraktion der Sarkomere als auch die Kalziumtransientenamplitude waren nach der Dex-Vorbehandlung erhöht (Figs 2A und C). Der Kalziumgehalt des sarkoendoplasmatischen Retikulums (SR) war im Vergleich zur Kontrolle erhöht (Fig 2D). Auch auf zellulärer Ebene war die "time-to-peak" zwischen beiden Gruppen gleich (Fig 2E). Dies unterstützt die Hypothese, dass der positiv inotrope Dex-Effekt nicht über Veränderungen der LTCC vermittelt ist (s. Diskussion). Die fraktionelle SR-Kalziumfreisetzung als Maß der RyR-Aktivität war ebenfalls zwischen den Gruppen nicht signifikant verändert (S Fig A). Die Parameter der diastolischen Funktion zeigten sich zellulär ebenfalls unverändert. So waren bei der Relaxationszeit als Maß der Funktion der Calcium-ATPase des sarkoendoplasmatischen Retikulums (SERCA) und der Rückbildungsrate der Koffein-induzierten Kalziumtransienten als Maß der Funktion des NCX keine signifikanten Unterschiede zwischen den Gruppen festzustellen (Figs 2C und D). In allen Gruppen bestand eine deutliche und signifikante Korrelation zwischen SR-Kalziumgehalt und Kalziumtransientenamplitude (S Figs C-F), sodass es wahrscheinlich erscheint, dass der positiv inotrope Effekt von Dex über eine Stimulation des SR Kalziumgehaltes zustande kommt, was einen SOCE-abhängigen Mechanismus wahrscheinlich macht.

Dexamethason erhöht den SOCE über einen SGK1-abhängigen Mechanismus

Um den Einfluss von Dex auf den SOCE weiter zu untersuchen, wurde ein spezielles experimentelles Protokoll verwendet, welches den SOCE direkt zu messen imstande ist (dargestellt in Fig 3A). Die Vorbehandlung mit Dex verursachte einen signifikanten Anstieg der SOCE-Amplitude (Figs 3B und C), welcher durch Zugabe des SOCE-Inhibitors SKF-96356 (SKF, 2 μ M, Fig 3C) verhindert wurde. Da bereits bekannt ist, dass Glukokortikoide SGK1 stimulieren können, verwendeten wir den SGK1-Inhibitor EMD638683 (EMD, 50 μ M), um zu prüfen, ob der positiv inotrope Dex-Effekt auch über eine SGK1-Aktivierung vermittelt ist. Die gleichzeitige Behandlung mit EMD und Dex verhinderte den SOCE-Anstieg komplett. Dies lässt vermuten, dass SGK1 einen wichtigen Effektor in der Dex-vermittelten SOCE-Stimulation darstellt.

Dexamethason erhöht die Expression der SOCE-Moleküle STIM2 und TRPC-Kanäle 3 und 6 über einen SGK1-abhängigen Mechanismus

Um den Mechanismus der Dex-abhängigen SOCE-Stimulation weiter aufzudecken, wurde die kardiale mRNA-Expression der molekularen Bestandteile des SOCE (STIM1/2, Orai 1/2/3, TRPC 1/3/4/6) mittels real time-PCR bestimmt. In isolierten Rattenkardiomyozyten führte die Vorbehandlung mit Dex zu einer signifikant erhöhten mRNA-Expression von STIM 1 und 2 sowie der TRPC-Kanäle 3 und 6 (Fig 4, S Table 2). Durch Zugabe von EMD konnte dieser Anstieg bei STIM2 sowie TRPC-Kanäle 3 und 6 verhindert werden (Fig 4, S Table 2).

Diskussion

Die vorliegende Arbeit zeigt, dass die Exposition mit dem Glukokortikoid-Rezeptor-Stimulator Dex die systolische kontraktile Funktion in Ratten *in vivo* verbessert. Die *in vitro*-Exposition mit Dex erhöht die Kalziumtransientenamplitude und den SR-Kalziumgehalt in isolierten Rattenkardiomyozyten über einen SGK1-abhängigen Mechanismus. Passend hierzu stimuliert die Dex-Vorbehandlung die mRNA-Expression der SOCE-Moleküle STIM1 und 2, Orai3 sowie der TRPC-Kanäle 3 und 6.

Dexamethason verbessert die kardiale Kontraktilität über einen SOCE-abhängigen Mechanismus

Zahlreiche Studien lassen einen positiv inotropen Effekt von Glukokortikoiden über die Glukokortikoid-Rezeptors²⁴ vermuten. Die Überexpression Aktivierung des des Glukokortikoiden-Rezeptors führte in einem Mäusen zu Anstieg der Kalziumtransientenamplitude, der zellulären Verkürzungsfraktion sowie des SR-Kalziumgehaltes.²⁵ In isolierten und Langendorff-perfundierten Rattenherzen führte die Exposition mit Dex zu einer erhöhten Kontraktilität.⁹ Nach in vivo-Gabe von Methylprednisolon sechs Stunden vor einer kardiopulmonalen Bypass-Operation war die ex vivo gemessene intrazelluläre Kalziumtransientenamplitude in Schweinekardiomyozyten erhöht.¹⁰ Die Mechanismen jedoch, die zu diesem Anstieg der Inotropie führen sind nur unzureichend verstanden. Der Effekt von Glukokortikoiden auf die intrazelluläre Kalziumhomöostase wurde bisher in Kardiomyozyten nicht systematisch untersucht. Bis auf die oben genannte Beobachtung, dass die Überexpression des Glukokortikoid-Rezeptors den SR-Kalziumgehalt erhöht²⁵, existierten kaum Daten für Kardiomyozyten. In nicht-erregbaren, kultivierten lymphoblastoiden Zelllinien erhöhte eine Kortisoninkubation den SR-Kalziumgehalt.²⁶ Unsere Experimente zeigen einen erhöhten SR-Kalziumgehalt nach Dex-Inkubation in Rattenkardiomyozyten (Fig 2D), welcher teilweise die gesteigerte Inotropie erklären kann. Die fraktionelle Kalziumfreisetzung aus dem SR war nach Dex-Exposition unverändert (S Fig A). Da normalerweise die fraktionelle Kalziumfreisetzung mit gesteigerter LTCC-Dichte oder -Aktivität zunimmt, kann in diesem Fall kein Dex-Effekt auf LTCC für die Inotropie ursächlich sein. Unterstützend zu dieser Hypothese bestand in allen experimentellen Gruppen starke Korrelation zwischen SR-Kalziumgehalt eine und Kalziumtransientenamplitude (S Figs C-F), sodass vermutet werden muss, dass der zugrundeliegende Hauptmechanismus eine Steigerung des SR-Kalziumgehalts ist. Hieraus ergibt sich die Frage, wodurch es zu dem vermehrten SR-Kalziumgehalt kommt.

Die Existenz des SOCE und seine grundlegende Bedeutung für die physiologische Funktion zahlreicher Zelltypen ist in nicht-erregbaren (z.B. Immunzellen²⁷) sowie erregbaren Zellen (z.B. Skelettmuskeln²⁸) umfassend untersucht. SOCE ist entscheidend an der Reifung von Kardiomyozyten beteiligt.^{16,17,29} Einige Arbeitsgruppen haben auch die Bedeutung des SOCE für die Entwicklung einer kardialen Hypertrophie herausgestellt. Die Exposition von kultivierten Kardiomyozyten mit Hypertrophie-induzierendem Angiotensin II oder Phenylephrin führte zu einer Hypertrophie sowie Steigerung der STIM1-Expression und Erhöhung des SOCE. Ein Knockdown von STIM1 verhinderte die Entstehung der Hypertrophie.^{18,19} In Mäusen verursachte ein trans-aortales Banding ebenfalls eine kardiale Hypertrophie sowie einen Anstieg der STIM1-Expression und des SOCE.^{18,19} In adulten Ratten konnte dies durch STIM1-Knockdown verhindert werden.¹⁹ Ein komplett fehlender SOCE scheint sich jedoch auch schädlich auf die Kardiomyozytenfunktion auszuwirken. So entwickelten Mäuse nach dem kardiospezifischem knock-down von STIM1 das phänotypische Bild einer dilatativen Kardiomyopathie.^{30,31} Unsere Daten unterstreichen die Bedeutung des SOCE im Herzen, indem sie auch eine Regulation der elektromechanischen Kopplung nahe legen.

Der Einfluss des SOCE auf die elektromechanische Kopplung in Kardiomyozyten ist bisher unklar und wird kontrovers diskutiert.18,19 In Übereinstimmung mit vorher gehenden Experimenten^{18,32,33} haben wir in isolierten adulten Kardiomyozyten unter basalen Bedingungen eine zu vernachlässigende SOCE-Amplitude gemessen, sodass der SOCE wahrscheinlich für die normale elektromechanische Kopplung unbedeutend ist. Im Gegensatz dazu war die SOCE-Amplitude nach Vorbehandlung mit Dex deutlich erhöht. Die erhöhte Kalziumtransientenamplitude, die verstärkte fraktionelle Verkürzungsfraktion der Sarkomere sowie der gesteigerte SR-Kalziumgehalt traten nach Inhibition des SOCE mittels SKF und BTP2 nicht mehr auf (Figs 2A-D), was eine funktionelle Bedeutung des SOCE für den Dexabhängigen positiv inotropen Effekt vermuten lässt. In arteriellen glatten Muskelzellen korreliert die SOCE-Geschwindigkeit negativ mit dem SR-Kalziumgehalt.³⁴ Da die molekularen Bestandteile des SOCE in glatten sowie in kardialen Muskelzellen identisch sind, liegt die Vermutung nahe, dass ein ähnlicher Effekt in Kardiomyozyten existiert. Da die Kinetik der STIM1-Verteilung und Orai-Aktivierung jedoch im Bereich von Sekunden und nicht Millisekunden liegt³³, ist es unwahrscheinlich, dass dieser Effekt oder der SOCE in der zellulären Kalziumhomöostase während der zyklischen elektromechanischen Kopplung eine direkte Rolle spielt. Vielmehr ist eine verzögerte SOCE Antwort, welche die kurzdauernden Fluktuationen des intrazellulären Kalziums über viele kardiale Zyklen integriert, zu vermuten. Trotz der fehlenden Relevanz des SOCE unter basalen Bedingungen könnten daher pathophysiologische Situationen, welche zur Depletion des SR-Kalziumgehalts führen, mit einer Stimulation des SOCE einhergehen, was zur Wiederauffüllung der SR-Kalziumspeicher führt. Dies könnte eine neuartige Autoregulation des SR-Kalziumgehaltes darstellen, welche vor allem unter pathophysiologischen Bedingungen relevant wird.

Ein Problemfeld im Rahmen der experimentellen Untersuchung von Ionenkanälen mittels pharmakologischer Hemmung stellt immer die Selektivität der verwendeten Substanzen und damit mögliche off-target Effekte dar. Für die hier verwendeten SOCE-Inhibitoren BTP2 und SKF sowie die eingesetzten Konzentrationen ist jedoch eine ausreichende Selektivität und zu vernachlässigende Hemmung anderer relevanter zellulärer Kalziumkanäle (wie z.B. LTCC) anzunehmen.^{35–41} Diese Annahme wird durch den fehlenden Einfluss der SOCE-Inhibition auf die Kinetik der Kalziumtransienten, die durch die Funktion von LTCC, RyR sowie NCX definiert wird, gestützt.

Neben der unveränderten Kinetik von LTCC, RyR und NCX legen unsere Ergebnisse nahe, dass auch SERCA nicht durch Dex beeinflusst wird. Für die diastolische kontraktile Funktion, auf Organebene dargestellt durch den LVEDP (Fig 1E) sowie die Relaxationszeit (Fig 1F) und auf zellulärer Ebene durch die diastolische Kalziumkonzentration (Fig 2F) und die Zeit bis zur 90%-Relaxation des Kalziumtransienten (Fig 2G), ergeben sich keine Unterschiede zwischen Gruppen. den experimentellen Dies lässt vermuten. dass Dex nicht die Kalziumwiederaufnahme ins SR beeinflusst. Diese Schlussfolgerung sollte jedoch nur unter Vorbehalt konträrer Ergebnisse anderer Arbeitsgruppen gezogen werden.^{25,42}

Ein weiterer wichtiger Aspekt ist die Frage, warum der Anstieg der Kalziumtransientenamplitude nicht durch die von Eisner beschriebene Autoregulation der Kalziumhomöostase, bei der eine Erhöhung der dyadischen Kalziumkonzentration zu einem verminderten LTCC-vermittelten transmembranösen Kalziumeinstrom führte, ausgeglichen wird.⁴³ Hier wäre bei insgesamt stabiler Kalziumtransientenamplitude eine Steigerung der fraktionellen Kalziumfreisetzung aus dem SR zu erwarten. Unsere Ergebnisse einer Erhöhung der Kalziumtransientenamplitude ohne Veränderungen der relativen Kalziumfreisetzung aus dem SR (Fig 2C, S Fig A) oder veränderten "time-to-peak" der Kalziumtransienten (Fig 2E) als Korrelat des Mechanismus der durch die LTCC- und RyR-Funktion definierten kalziuminduzierten Kalziumfreisetzung sind konträr zu der beschriebenen Eisner'schen Autoregulation, sodass hier wahrscheinlich andere Mechanismen eine Rolle spielen. Normalerweise entspricht die Menge des von extrazellulär einströmenden Kalziums der durch den NCX extrudierten.²³ Die durch die Abfallrate der Kalziumkonzentration nach Koffeinexposition abgeschätzte NCX-Funktion war jedoch zwischen den experimentellen Gruppen unverändert (S Fig B). Wir müssen also davon ausgehen, dass in unserem Modell auch Kalziumeinstrom via LTCC unverändert blieb. der trotz der erhöhten SR-Kalziumkonzentration. Eine mögliche Erklärung hierfür ist, dass der von Eisner beschriebene Mechanismus nur für minimale Veränderungen des Kalziumgehaltes funktioniert, die so von Kontraktion zu Kontraktion ausgeglichen werden. Eine zu starke Veränderung führt jedoch zu einer Neueinstellung des Gleichgewichtes auf einem anderen Niveau für den SR Kalziumgehalt. Das Konzept des SOCE sieht einen direkten Kalziumeinstrom von extrazellulär durch die transsarkolemmalen Orai-Kanäle ins SR vor^{14,16}, sodass die Annahme wahrscheinlich erscheint, dass der SOCE die Mechanismen der Eisner'schen Autoregulation umgeht. Der exakte Weg dieses SOCE-vermittelten Kalziumeinstroms ist jedoch noch nicht ausreichend zufriedenstellend definiert.

Dexamethason verbessert die kardiale Kontraktilität durch eine SGK1-abhängige Steigerung des SOCE

Um den Mechanismus der Dex-abhängigen Inotropie aufzuklären, wurde die Expression wichtiger SOCE-Proteine bestimmt. Die mRNA-Level von STIM1, STIM2, Orai3 und der TRPC-Kanäle 3 und 6 war nach Vorbehandlung mit Dex erhöht (Figs 4A-E). Natürlich ist die Einschränkung zu beachten, dass die mRNA-Konzentration nicht der endgültigen Proteinexpression entsprechen muss, wobei diese Korrelation für STIM1 und Orai1 bereits von anderen Arbeitsgruppen nachgewiesen wurde⁴⁴, sodass ein Zusammenhang zwischen mRNAund Proteinexpression auch für unsere Ergebnisse angenommen werden kann. Untersuchungen in Mastzellen und HEK293-Zellen lassen vermuten, dass Dex SGK1 aktiviert, welches dann zu einer NF-κB-Translokation in den Nukleus und erhöhten STIM1- und Orai1-Expression führt.¹³ In unseren Experimenten verhinderte die Inkubation mit dem SGK1-Inhibitor EMD (50 µM)⁴⁵ eine Stunde vor und während der Dex-Behandlung die Hochregulation von STIM2 und der TRPC-Kanäle 3 und 6. Diese Ergebnisse sind in Übereinstimmung mit der Regulation des Natrium-Protonen-Austauschers in HL-1-Kardiomyozyten.⁴⁶ Unsere Daten zeigen, dass die SGK-1-Inhibition ausreichend war, um den durch Dex verursachten Anstieg des SOCE zu verhindern (Fig 3C). Die Veränderungen der Expression der SOCE-Kanäle führen wahrscheinlich zu Veränderungen der zellulären Kalziumhomöostase. So konnte gezeigt werden, dass eine Überexpression von STIM1 zu einer erhöhten Kalziumtransientenamplitude und erhöhtem SR-Kalziumgehalt in adulten Rattenkardiomyozyten führt^{39,47,48}. STIM1Knockdow, auf der anderen Seite, reduzierte entsprechend den SR-Kalziumgehalt in neonatalen Kardiomyozyten⁴⁸. In STIM1-transgenen Mäusen wurde ein gesteigerter SOCE bei unveränderten SR-Kalziumgehalt gemessen.⁴⁷ Ein erhöhtes diastolisches Kalziumleck könnte hier jedoch den gesteigerten SOCE ausgeglichen haben.⁴⁷

STIM1 kann nicht nur in der SR-Membran nachgewiesen werden. Etwa 10% des STIM1 sind in der Plasmamembran lokalisiert.^{49–51} STIM kann auch mit den nicht-selektiven Kationenkanälen der TRPC-Familie interagieren.^{14,52} Es gibt sieben unterschiedliche TRPC-Kanäle, von denen die TRPC-Kanäle 1 und 3-6 direkt oder indirekt von STIM1 reguliert werden.^{14,52} Alle TRPC-Kanäle bis auf TRPC2 wurden in Kardiomyozyten aus Maus, Ratte und Mensch nachgewiesen.^{53,54} Die TRPC-Kanäle 3 und 6 sind an der Entwicklung einer kardialen Hypertrophie beteiligt (Ratte⁵⁵, Maus^{56,57}, Mensch⁵⁷) und tragen wahrscheinlich auch zum transmembranösen Kalziumeinstrom bei, was in Übereinstimmung mit unseren Ergebnissen ist. Der Dex-abhängige Anstieg der TRPC3/6-Expression trägt mutmaßlich auch zu den in unseren Experimenten beobachteten Anstieg der Kalziumtransientenamplitude und Kontraktilität bei.

Die hier beschriebenen kurzfristig positiv-inotropen Effekte des SOCE könnten möglicherweise durch die Interferenz des SOCE mit der zellulären Stressantwort mit resultierender gestörter Kalziumhomöostase und Begünstigung von Arrhythmien^{58,59} eingeschränkt sein. So führte die Exposition mit Glukokortikoiden zu endoplasmatischem Stress⁵⁹, was wiederum über eine verstärkte Aktivierung der Ca/Calmodulin-abhängigen Kinase IIδ (CaMKIIδ) mit einem vermehrten SR Kalziumleck und Arrhythmien assoziiert war.^{60,61} Darüber hinaus kann eine direkte Stimulation des SOCE durch 2-aminoethoxydiphenyl borate (2-APB) kardiale Arrhythmien und spontane Kontraktionen in atrialen und ventrikulären Kardiomyozyten induzieren. Dieser Effekt ist von Orai abhängig.⁶²

Zusammenfassung

Die Behandlung mit Dex erhöhte die Expression von SOCE-Kanälen und verstärkt den SOCE, die Kalziumtransientenamplitude und die fraktionelle Sarkomerverkürzung. Die SOCE-Inhibitoren SKF und BTP2 verhinderten diese Veränderungen. Die Kinetik der Kalziumtransienten als Maß der kalzium-abhängigen Kalziumfreisetzung waren nach Dex-Exposition unverändert, was auf einen SOCE-abhängigen positiv-inotropen Effekt von Dex hinweist, der sich klar von anderen pharmakologischen Aktivierungswegen (z.B. β -adrenerge Aktivierung) unterscheidet. Zusammen mit der langsamen Kinetik des SOCE, scheint dieser die zelluläre Kalziumhomöostase über zahlreiche Kontraktionszyklen hinweg zu beeinflussen und die Effekte auf die Kontraktilität über eine Veränderung des zellulären Kalziumgleichgewichts zu bewirken. Unsere Ergebnisse reihen sich in die wachsende Erkenntnis ein, dass der SOCE, obwohl irrelevant für die basale kontraktile Funktion, einen wichtigen kurzfristig-kardioprotektiven Schutzmechanismus darstellt.

References

- Wester M, Heller A, Gruber M, Maier LS, Schach C, Wagner S. Glucocorticoid stimulation increases cardiac contractility by SGK1-dependent SOCE-activation in rat cardiac myocytes. *PLoS ONE* 2019;14:e0222341.
- 2. Libby P, Maroko PR, Bloor CM, Sobel BE, Braunwald E. Reduction of experimental myocardial infarct size by corticosteroid administration. *J. Clin. Invest.* 1973;**52**:599–607.
- 3. Spath JA, Lane DL, Lefer AM. Protective action of methylprednisolone on the myocardium during experimental myocardial ischemia in the cat. *Circ. Res.* 1974;**35**:44–51.
- Valen G, Kawakami T, Tahepold P, Dumitrescu A, Lowbeer C, Vaage J. Glucocorticoid pretreatment protects cardiac function and induces cardiac heat shock protein 72. *Am. J. Physiol. Heart Circ. Physiol.* 2000;**279**:H836-43.
- Enc Y, Karaca P, Ayoglu U, Camur G, Kurc E, Cicek S. The acute cardioprotective effect of glucocorticoid in myocardial ischemia-reperfusion injury occurring during cardiopulmonary bypass. *Heart Vessels* 2006;21:152–156.
- Checchia PA, Backer CL, Bronicki RA, Baden HP, Crawford SE, Green TP, Mavroudis C. Dexamethasone reduces postoperative troponin levels in children undergoing cardiopulmonary bypass. *Crit Care Med* 2003;**31**:1742–1745.
- Liakopoulos OJ, Schmitto JD, Kazmaier S, Brauer A, Quintel M, Schoendube FA, Dorge H. Cardiopulmonary and systemic effects of methylprednisolone in patients undergoing cardiac surgery. *Ann Thorac Surg* 2007;84:110-8; discussion 118-9.
- Katzung BG, ed. *Basic & clinical pharmacology*. Fourteenth Edition. [New York]: McGraw-Hill, 2018. Lange medical book.
- Xue Q, Patterson AJ, Xiao D, Zhang L. Glucocorticoid modulates angiotensin II receptor expression patterns and protects the heart from ischemia and reperfusion injury. *PLoS ONE* 2014;9:e106827.

- Pearl JM, Plank DM, McLean KM, Wagner CJ, Duffy JY. Glucocorticoids improve calcium cycling in cardiac myocytes after cardiopulmonary bypass. *J Surg Res* 2011;167:279–286.
- Itagaki K, Menconi M, Antoniu B, Zhang Q, Gonnella P, Soybel D, Hauser C, Hasselgren P-O. Dexamethasone stimulates store-operated calcium entry and protein degradation in cultured L6 myotubes through a phospholipase₂-dependent mechanism. *Am. J. Physiol., Cell Physiol.* 2010;298:C1127-39.
- 12. Borst O, Schmidt E-M, Münzer P, Schönberger T, Towhid ST, Elvers M, Leibrock C, Schmid E, Eylenstein A, Kuhl D, May AE, Gawaz M, Lang F. The serum- and glucocorticoid-inducible kinase 1 (SGK1) influences platelet calcium signaling and function by regulation of Orai1 expression in megakaryocytes. *Blood* 2012;**119**:251–261.
- Eylenstein A, Schmidt S, Gu S, Yang W, Schmid E, Schmidt E-M, Alesutan I, Szteyn K, Regel I, Shumilina E, Lang F. Transcription factor NF-κB regulates expression of poreforming Ca²⁺ channel unit, Orai1, and its activator, STIM1, to control Ca²⁺ entry and affect cellular functions. *J. Biol. Chem.* 2012;**287**:2719–2730.
- Collins HE, Zhu-Mauldin X, Marchase RB, Chatham JC. STIM1/Orai1-mediated SOCE: current perspectives and potential roles in cardiac function and pathology. *Am. J. Physiol. Heart Circ. Physiol.* 2013;305:H446-58.
- 15. Parekh AB, Putney JW. Store-operated calcium channels. *Physiol. Rev.* 2005;85:757–810.
- Avila-Medina J, Mayoral-Gonzalez I, Dominguez-Rodriguez A, Gallardo-Castillo I, Ribas J, Ordoñez A, Rosado JA, Smani T. The complex role of store operated calcium entry pathways and related proteins in the function of cardiac, skeletal and vascular smooth muscle cells. *Front Physiol* 2018;9:257.
- Bootman MD, Rietdorf K. Tissue specificity: Store-operated Ca²⁺ entry in cardiac myocytes. *Adv Exp Med Biol* 2017;**993**:363–387.
- Luo X, Hojayev B, Jiang N, Wang ZV, Tandan S, Rakalin A, Rothermel BA, Gillette TG, Hill JA. STIM1-dependent store-operated Ca²⁺ entry is required for pathological cardiac hypertrophy. *J. Mol. Cell. Cardiol.* 2012;**52**:136–147.
- Hulot J-S, Fauconnier J, Ramanujam D, Chaanine A, Aubart F, Sassi Y, Merkle S, Cazorla O, Ouille A, Dupuis M, Hadri L, Jeong D, Muhlstedt S, Schmitt J, Braun A, Benard L, Saliba Y, Laggerbauer B, Nieswandt B, Lacampagne A, Hajjar RJ, Lompre A-M, Engelhardt S. Critical role for stromal interaction molecule 1 in cardiac hypertrophy. *Circulation* 2011;**124**:796–805.

- 20. Bell RM, Mocanu MM, Yellon DM. Retrograde heart perfusion: the Langendorff technique of isolated heart perfusion. *J. Mol. Cell. Cardiol.* 2011;**50**:940–950.
- Wagner S, Ruff HM, Weber SL, Bellmann S, Sowa T, Schulte T, Anderson ME, Grandi E, Bers DM, Backs J, Belardinelli L, Maier LS. Reactive oxygen species-activated Ca/calmodulin kinase II δ is required for late I_{Na} augmentation leading to cellular Na and Ca overload. *Circ. Res.* 2011;**108**:555–565.
- Roe MW, Lemasters JJ, Herman B. Assessment of Fura-2 for measurements of cytosolic free calcium. *Cell Calcium* 1990;11:63–73.
- Bers DM. *Excitation-contraction coupling and cardiac contractile force*. Second edition. Dordrecht: Springer Netherlands, 2001.
- 24. Oakley RH, Cidlowski JA. Glucocorticoid signaling in the heart: A cardiomyocyte perspective. *J Steroid Biochem Mol Biol* 2015;**153**:27–34.
- 25. Sainte-Marie Y, Nguyen Dinh Cat A, Perrier R, Mangin L, Soukaseum C, Peuchmaur M, Tronche F, Farman N, Escoubet B, Benitah J-P, Jaisser F. Conditional glucocorticoid receptor expression in the heart induces atrio-ventricular block. *FASEB J* 2007;**21**:3133– 3141.
- 26. Gardner JP, Zhang L. Glucocorticoid modulation of Ca²⁺ homeostasis in human B lymphoblasts. *J. Physiol. (Lond.)* 1999;**514**:385–396.
- 27. Feske S. CRAC channelopathies. *Pflugers Arch* 2010;460:417–435.
- 28. Stiber J, Hawkins A, Zhang Z-S, Wang S, Burch J, Graham V, Ward CC, Seth M, Finch E, Malouf N, Williams RS, Eu JP, Rosenberg P. STIM1 signalling controls store-operated calcium entry required for development and contractile function in skeletal muscle. *Nat Cell Biol* 2008;10:688–697.
- Bartoli F, Sabourin J. Cardiac remodeling and disease: Current understanding of STIM1/Orai1-mediated store-operated Ca²⁺ entry in cardiac function and pathology. *Adv Exp Med Biol* 2017;**993**:523–534.
- 30. Parks C, Alam MA, Sullivan R, Mancarella S. STIM1-dependent Ca(2+) microdomains are required for myofilament remodeling and signaling in the heart. *Sci Rep* 2016;**6**:25372.
- 31. Collins HE, He L, Zou L, Qu J, Zhou L, Litovsky SH, Yang Q, Young ME, Marchase RB, Chatham JC. Stromal interaction molecule 1 is essential for normal cardiac homeostasis through modulation of ER and mitochondrial function. *Am. J. Physiol. Heart Circ. Physiol.* 2014;**306**:H1231-9.
- 32. Völkers M, Dolatabadi N, Gude N, Most P, Sussman MA, Hassel D. Orai1 deficiency leads to heart failure and skeletal myopathy in zebrafish. *J. Cell. Sci.* 2012;**125**:287–294.

- Kiviluoto S, Decuypere J-P, de Smedt H, Missiaen L, Parys JB, Bultynck G. STIM1 as a key regulator for Ca²⁺ homeostasis in skeletal-muscle development and function. *Skelet Muscle* 2011;1:16.
- Sedova M, Klishin A, Huser J, Blatter LA. Capacitative Ca²⁺ entry is graded with degree of intracellular Ca²⁺ store depletion in bovine vascular endothelial cells. *J. Physiol. (Lond.)* 2000;**523 Pt 3**:549–559.
- 35. Sweeney ZK, Minatti A, Button DC, Patrick S. Small-molecule inhibitors of store-operated calcium entry. *ChemMedChem* 2009;**4**:706–718.
- Merritt JE, Armstrong WP, Benham CD, Hallam TJ, Jacob R, Jaxa-Chamiec A, Leigh BK, McCarthy SA, Moores KE, Rink TJ. SK&F 96365, a novel inhibitor of receptor-mediated calcium entry. *Biochemical Journal* 1990;271:515–522.
- 37. Gao H, Wang F, Wang W, Makarewich CA, Zhang H, Kubo H, Berretta RM, Barr LA, Molkentin JD, Houser SR. Ca²⁺ influx through L-type Ca²⁺ channels and transient receptor potential channels activates pathological hypertrophy signaling. *J. Mol. Cell. Cardiol.* 2012;**53**:657–667.
- 38. Ji Y, Guo X, Zhang Z, Huang Z, Zhu J, Chen Q-H, Le Gui. CaMKIIδ meditates phenylephrine induced cardiomyocyte hypertrophy through store-operated Ca²⁺ entry. *Cardiovasc Pathol* 2017;**27**:9–17.
- Zhao G, Li T, Brochet DXP, Rosenberg PB, Lederer WJ. STIM1 enhances SR Ca²⁺ content through binding phospholamban in rat ventricular myocytes. *Proc Natl Acad Sci U S A* 2015;**112**:E4792-801.
- Troupes CD, Wallner M, Borghetti G, Zhang C, Mohsin S, Lewinski D von, Berretta RM, Kubo H, Chen X, Soboloff J, Houser S. Role of STIM1 (Stromal Interaction Molecule 1) in Hypertrophy-Related Contractile Dysfunction. *Circ. Res.* 2017;**121**:125–136.
- 41. Obejero-Paz CA, Lakshmanan M, Jones SW, Scarpa A. Effects of dexamethasone on Ltype calcium currents in the A7r5 smooth muscle-derived cell line. *FEBS Lett* 1993;**333**:73–77.
- De P, Roy SG, Kar D, Bandyopadhyay A. Excess of glucocorticoid induces myocardial remodeling and alteration of calcium signaling in cardiomyocytes. *J Endocrinol* 2011;**209**:105–114.
- Eisner V, Csordas G, Hajnoczky G. Interactions between sarco-endoplasmic reticulum and mitochondria in cardiac and skeletal muscle - pivotal roles in Ca²⁺ and reactive oxygen species signaling. *J. Cell. Sci.* 2013;**126**:2965–2978.

- 44. Lang F, Eylenstein A, Shumilina E. Regulation of Orai1/STIM1 by the kinases SGK1 and AMPK. *Cell Calcium* 2012;**52**:347–354.
- 45. Ackermann TF, Boini KM, Beier N, Scholz W, Fuchss T, Lang F. EMD638683, a novel SGK inhibitor with antihypertensive potency. *Cell Physiol Biochem* 2011;**28**:137–146.
- 46. Voelkl J, Pasham V, Ahmed MSE, Walker B, Szteyn K, Kuhl D, Metzler B, Alesutan I, Lang F. SGK1-dependent stimulation of cardiac Na⁺/H⁺ exchanger NHE-1 by dexamethasone. *Cell Physiol Biochem* 2013;**32**:25–38.
- Correll RN, Goonasekera SA, van Berlo JH, Burr AR, Accornero F, Zhang H, Makarewich CA, York AJ, Sargent MA, Chen X, Houser SR, Molkentin JD. STIM1 elevation in the heart results in aberrant Ca²⁺ handling and cardiomyopathy. *J. Mol. Cell. Cardiol.* 2015;87:38–47.
- Voelkers M, Salz M, Herzog N, Frank D, Dolatabadi N, Frey N, Gude N, Friedrich O, Koch WJ, Katus HA, Sussman MA, Most P. Orai1 and STIM1 regulate normal and hypertrophic growth in cardiomyocytes. *J. Mol. Cell. Cardiol.* 2010;48:1329–1334.
- 49. Park CY, Shcheglovitov A, Dolmetsch R. The CRAC channel activator STIM1 binds and inhibits L-type voltage-gated calcium channels. *Science* 2010;**330**:101–105.
- Wang Y, Deng X, Mancarella S, Hendron E, Eguchi S, Soboloff J, Tang XD, Gill DL. The calcium store sensor, STIM1, reciprocally controls Orai and CaV_{1.2} channels. *Science* 2010;**330**:105–109.
- 51. Soboloff J, Rothberg BS, Madesh M, Gill DL. STIM proteins: Dynamic calcium signal transducers. *Nat Rev Mol Cell Biol* 2012;**13**:549–565.
- 52. Cheng KT, Ong HL, Liu X, Ambudkar IS. Contribution and regulation of TRPC channels in store-operated Ca2+ entry. *Curr Top Membr* 2013;**71**:149–179.
- 53. Eder P, Molkentin JD. TRPC channels as effectors of cardiac hypertrophy. *Circ. Res.* 2011;**108**:265–272.
- 54. Watanabe H, Murakami M, Ohba T, Takahashi Y, Ito H. TRP channel and cardiovascular disease. *Pharmacology & Therapeutics* 2008;**118**:337–351.
- 55. Bush EW, Hood DB, Papst PJ, Chapo JA, Minobe W, Bristow MR, Olson EN, McKinsey TA. Canonical transient receptor potential channels promote cardiomyocyte hypertrophy through activation of calcineurin signaling. *J. Biol. Chem.* 2006;**281**:33487–33496.
- 56. Niizeki T, Takeishi Y, Kitahara T, Arimoto T, Ishino M, Bilim O, Suzuki S, Sasaki T, Nakajima O, Walsh RA, Goto K, Kubota I. Diacylglycerol kinase-ε restores cardiac dysfunction under chronic pressure overload: A new specific regulator of Ga_q signaling cascade. *Am. J. Physiol. Heart Circ. Physiol.* 2008;**295**:H245-55.

- Kuwahara K, Wang Y, McAnally J, Richardson JA, Bassel-Duby R, Hill JA, Olson EN. TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling. *J. Clin. Invest.* 2006;**116**:3114–3126.
- 58. Song R, Hu X, Zhang L. Glucocorticoids and programming of the microenvironment in heart. *J Endocrinol* 2019.
- 59. Zannas AS, Jia M, Hafner K, Baumert J, Wiechmann T, Pape JC, Arloth J, Ködel M, Martinelli S, Roitman M, Röh S, Haehle A, Emeny RT, Iurato S, Carrillo-Roa T, Lahti J, Räikkönen K, Eriksson JG, Drake AJ, Waldenberger M, Wahl S, Kunze S, Lucae S, Bradley B, Gieger C, Hausch F, Smith AK, Ressler KJ, Müller-Myhsok B, Ladwig K-H, Rein T, Gassen NC, Binder EB. Epigenetic upregulation of FKBP5 by aging and stress contributes to NF-κB-driven inflammation and cardiovascular risk. *Proc Natl Acad Sci U S A* 2019;**116**:11370–11379.
- Yan J, Thomson JK, Zhao W, Gao X, Huang F, Chen B, Liang Q, Song L-S, Fill M, Ai X. Role of Stress Kinase JNK in Binge Alcohol-Evoked Atrial Arrhythmia. *J Am Coll Cardiol* 2018;**71**:1459–1470.
- 61. Gao X, Wu X, Yan J, Zhang J, Zhao W, DeMarco D, Zhang Y, Bakhos M, Mignery G, Sun J, Li Z, Fill M, Ai X. Transcriptional regulation of stress kinase JNK2 in pro-arrhythmic CaMKIIδ expression in the aged atrium. *Cardiovasc Res* 2018;**114**:737–746.
- 62. Wolkowicz PE, Huang J, Umeda PK, Sharifov OF, Tabengwa E, Halloran BA, Urthaler F, Grenett HE. Pharmacological evidence for Orai channel activation as a source of cardiac abnormal automaticity. *Eur. J. Pharmacol.* 2011;**668**:208–216.

Check for updates

G OPEN ACCESS

Citation: Wester M, Heller A, Gruber M, Maier LS, Schach C, Wagner S (2019) Glucocorticoid stimulation increases cardiac contractility by SGK1dependent SOCE-activation in rat cardiac myocytes. PLoS ONE 14(9): e0222341. https://doi. org/10.1371/journal.pone.0222341

Editor: Xun Ai, Rush University Medical Center, UNITED STATES

Received: April 28, 2019

Accepted: August 27, 2019

Published: September 9, 2019

Copyright: © 2019 Wester et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: The data underlying the results presented in the study are available from http://doi.org/10.5283/epub.40422.

Funding: SW is funded by DFG grants WA 2539/4-1, 5-1 and 7-1. LSM is funded by DFG grants MA 1982/5-1 and 7-1. SW and LSM are also funded by the DFG SFB 1350 grant (Project Number 387509280, TPA6), are supported by the ReForM C program of the faculty and funded by the DZHK (Deutsches Zentrum für Herz-Kreislauf-Forschung; RESEARCH ARTICLE

Glucocorticoid stimulation increases cardiac contractility by SGK1-dependent SOCEactivation in rat cardiac myocytes

Michael Wester¹, Anton Heller¹, Michael Gruber¹, Lars S. Maier¹, Christian Schach¹, Stefan Wagner¹

1 University Heart Center Regensburg, University Hospital Regensburg, Regensburg, Germany, 2 Clinic for Anesthesiology, University Hospital Regensburg, Regensburg, Germany

These authors contributed equally to this work.

* stefan.wagner@ukr.de

Abstract

Aims

Glucocorticoid (GC) stimulation has been shown to increase cardiac contractility by elevated intracellular [Ca] but the sources for Ca entry are unclear. This study aims to determine the role of store-operated Ca entry (SOCE) for GC-mediated inotropy.

Methods and results

Dexamethasone (Dex) pretreatment significantly increased cardiac contractile force *ex vivo* in Langendorff-perfused *Sprague-Dawley* rat hearts (2 mg/kg BW i.p. Dex 24 h prior to experiment). Moreover, Ca transient amplitude as well as fractional shortening were significantly enhanced in Fura-2-loaded isolated rat ventricular myocytes exposed to Dex (1 mg/mL Dex, 24 h). Interestingly, these Dex-dependent effects could be abolished in the presence of SOCE-inhibitors SKF-96356 (SKF, 2 μ M) and BTP2 (5 μ M). Ca transient kinetics (time to peak, decay time) were not affected by SOCE stimulation. Direct SOCE measurements revealed a negligible magnitude in untreated myocytes but a dramatic increase in SOCE upon Dex-pretreatment. Importantly, the Dex-dependent stimulation of SOCE could be blocked by inhibition of serum and glucocorticoid-regulated kinase 1 (SGK1) using EMD638683 (EMD, 50 μ M). Dex preincubation also resulted in increased mRNA expression of proteins involved in SOCE (stromal interaction molecule 2, STIM2, and transient receptor potential cation channels 3/6, TRPC 3/6), which were also prevented in the presence of EMD.

Conclusion

Short-term GC-stimulation with Dex improves cardiac contractility by a SOCE-dependent mechanism, which appears to involve increased SGK1-dependent expression of the SOCE-related proteins. Since Ca transient kinetics were unaffected, SOCE appears to influence Ca cycling more by an integrated response across multiple cardiac cycles but not on a beat-to-beat basis.

German Center for Cardiovascular Research). CS was funded by the ReForM program of the faculty.

Competing interests: The authors have declared that no competing interests exist.

Abbreviations: 2-APB, 2-Aminoethoxydiphenyl borate; a.u., Arbitrary units; BDM, 2,3butanedionmonoxime; BSA, Bovine serum albumine; BW, Bodyweight; Ca, Calcium; CICR, Calcium-induced calcium release: Dex. Dexamethasone; EMD, EMD638683; GC, Glucocorticoid; i.p., Intraperitoneally; LTCC, L-type calcium channels; LVEDP, Left ventricular end diastolic pressure; MEM, Minimal essential medium: NCX. Sodium-calcium exchanger: Orai. ORAI calcium release-activated calcium modulator 1; RyR, Ryanodine receptor; SEM, Standard error of the mean; SERCA, Sarco-/endoplasmatic reticulum calcium-Transporting ATPase; SGK1, Serum and glucocorticoid-regulated kinase 1; SKF, SKF-96365; SOCC, Store-operated Ca channel; SOCE, Store-operated calcium entry; SR, Sarco-/ endoplasmic reticulum; STIM, Stromal interaction molecule; TRPC, Transient receptor potential cation channel

Introduction

Various clinical reports indicate a cardioprotective effect of glucocorticoids (GC) in the context of acute ischemia. GC receptor activation ameliorates biochemical (creatine kinase) and histological myocardial damage as well as improves coronary flow in animals after ischemia/ reperfusion [1–3]. In human beings, GC-pretreatment reduces troponin levels and increases cardiac index after cardiopulmonary bypass surgery [4-6]. Besides the well-known antiinflammatory effects of GC [7], GC-receptor activation has also been shown to stimulate cardiac contractile force in Langendorff-perfused rat hearts [8] and Ca transient amplitude in vitro/ex vivo in pig cardiomyocytes after cardiopulmonary bypass surgery [9]. The mechanisms, however, are insufficiently understood. Interestingly, it has been shown that exposure to dexamethasone (Dex) induces store-operated Ca entry (SOCE) in a cellular model of striated muscle cells (L6 myotubes) [10]. In HL-1 cardiomyocytes, stimulation of the serum and glucocorticoid-regulated kinase 1 (SGK1) by Dex (500 nM, 24h) increased expression of the sodium-proton-exchanger (Na⁺/H⁺-exchanger) [11]. In non-cardiac cells, there is evidence that activation of SGK1 may be important for GC-dependent transcriptional regulation of stromal interaction molecule 1 (STIM1) and ORAI calcium release-activated calcium modulator 1 (Orai1) in megakaryocytes [11], HEK293-cells and bone marrow-derived mast cells [12].

The relevance of SOCE for excitation-contraction coupling in healthy adult cardiac myocytes is still controversial [13,14]. SOCE has been shown to be present in neonatal rat cardiac myocytes but hardly detectable in healthy adult cardiac myocytes, and re-emerges during states of increased cardiac stress [14,15]. Growing evidence suggests that pressure-overload (thoracic aortic constriction and abdominal aortic banding) and exposure to phenylephrine or angiotensin II results in stimulation of SOCE and SOC channels, which may be important for development of ventricular hypertrophy by triggering calcineurin-NFAT-signaling in rat cardiomyocytes [16,17].

Since SOCE has been shown to be a major source of Ca entry in non-excitable cells [18], we hypothesized that SOCE, possibly via an SGK1-dependent mechanism, may also contribute to the positive inotropic effect of GC-receptor stimulation in cardiac myocytes.

We show here that *in vivo* exposure of rats to the GC receptor stimulator Dex resulted in increased systolic contractile function (isolated Langendorff-perfused hearts). Moreover, we show that 24h *in situ* exposure of isolated rat ventricular myocytes to Dex increased Ca transient amplitude and sarco/endoplasmic reticulum (SR) Ca content by a SGK1-SOCE-dependent fashion.

Methods

Animals

Male *Sprague-Dawley* rats (Charles River, Europe) were purchased at the age of 12 weeks. The animals were housed on a 12/12 h light/dark cycle with constant temperature (22–23°C) with access to food and tap water ad libitum. At the age of 20 weeks, experiments were performed. For some experiments, Dex (2 mg/kg BW) vs. vehicle was injected i.p. 24 h before. Euthanasia was performed using decapitation after isofluran (2%) anesthesia. All animal care and experimental procedures followed German law as well as the Guide for the Care and Use of Laboratory Animals, published by the National Institutes of Health, and were approved by the Institutional Review Board at the University of Regensburg and by the district government of Lower Franconia (55.2-2532-2). All efforts were made to minimize suffering.

Langendorff-perfused hearts

After isofluran (2%) anesthesia, hearts were isolated and the aorta was rapidly cannulated. During preparation hearts were continuously retrogradely perfused with a cold (6.2+/-0.2°C),

oxygenated, modified Krebs-Ringer solution and transferred to a Langendorff apparatus (Hugo Sachs Electronic KG, March-Hugstetten, Germany). The modified Krebs-Ringer's salt solution, containing in mM: NaCl 124.5, KCl 4.5, CaCl₂ 2.5, KH₂PO₄ 1.2, NaHCO₃ 15.5, EDTA 0.05, glucose 11.5, pyruvate 2, mannitol 10, and insulin 5 units per liter) was filtered inline (5 µm pore size filter disk, Sigma-Aldrich, Munich, Germany). Krebs-Ringer solution was equilibrated with 95% oxygen and 5% carbon dioxide. A fluid-filled balloon was introduced into the left ventricle. Left ventricular end diastolic pressure (LVEDP) was kept at 0 mmHg during the stabilization period. Hearts were perfused with a constant pressure of 55 mmHg. After 30 minutes of equilibration, measurements were performed. For the Langendorff experiments, all parameters were derived from the pressure signal. Time to peak was analyzed using the LabChart Pro (version 8.1.9) peak analysis tool. The tool acquired each parameter (developed LVP, time to peak, dp/dt, etc.) from an average of 20 contraction cycles. The starting point for the rising phase was defined as the event when the pressure value left the baseline band of sample values. The baseline band was defined as the sequence of points where the variation was less than 5% of the developed pressure amplitude in either direction. The peak was identified as the point of maximum (positive deflection) of the averaged pressure signal if an absolute increase in pressure exceeded 30 mmHg (threshold). The time to peak was calculated as the difference between the times at starting point and at peak.

Cardiomyocyte isolation and culture

Hearts were quickly removed from anesthetized (2% isoflurane) rats at the age of 20 weeks (body weight: 250-350 g) and transferred to ice cold buffer solution (containing in mM: NaCl 113, KCl 4.7, KH₂PO₄ 0.6, Na₂HPO₄ 0.6, MgSO₄ 1.2, NaHCO₃ 10, KHCO₃ 12, Hepes 10, BDM 0.05, Glucose 5.5; pH adjusted to 7.4 at 37°C). The aorta was identified, connected to a cannula and rinsed to wash out remaining blood, proven by decoloration of the cardiac tissue. Thereafter, the heart was mounted on a Langendorff apparatus (Hugo Sachs Electronic KG, March-Hugstetten, Germany) and the heart was perfused retrogradely with prewarmed enzyme solution (trypsin 0.6%, 7.5 mg/mL liberase, Roche, 37°C) for 15 minutes. Atria and the right ventricle were removed and the left ventricle was cut into small cubicles and carefully triturated with a Pasteur pipette. Cells were allowed to settle under gravity for 10 minutes in buffer solution (containing in mM: NaCl 113, KCl 4.7, KH₂PO₄ 0.6, Na₂HPO₄ 0.6, MgSO₄ 1.2, NaHCO₃ 10, KHCO₃ 12, Hepes 10, BDM 0.05, Glucose 5.5; pH adjusted to 7.4 at 37°C). After stepwise increase of Ca (0.2, 0.4, 0.8 mM), the cell suspension was transferred to cell culture medium (MEM with addition of insulin-transferrin-selenium, L-glutamine, penicillin, streptokinase, 2 mM BDM, BSA) and incubated with Dex (0.010 mg/mL) vs. vehicle for 24 h (37°C, 20% O₂, 75% N₂, 5% CO₂). In some experiments the SGK-1-inhibitor EMD (50 µM) was added.

Measurement of intracellular Ca concentration and sarcomere length acquisition

Ca measurements were conducted as previously described. [19] Briefly, myocytes were plated on laminin coated glass chambers and allowed to attach for 20 minutes. Thereafter, myocytes were loaded with FURA-2-AM (5 μ M; 0.02% w/v Pluronic; 10 minutes, 25°C) and the chambers were mounted on stage of an epifluorescence microscope (IonOptix). After washing out the external dye (10 min) by superfusion with modified Tyrode's solution (containing in mM: NaCl 140, KCl 4, MgCl₂ 1, Hepes 5; pH adjusted to 7.4, at 37°C), cell twitching was elicited by electrical field stimulation (20 V, 1 Hz). For Ca measurements, FURA-2 was alternating excited at wavelengths of 340 nm and 380 nm (240 Hz) and emitted fluorescence acquired by a

photomultiplier at 510 nm (all optical filters by Chroma Technology Corporation, wavelength ± 10 nm). For each individual experiment, unspecific background fluorescence was measured at each wavelength in immediate vicinity of each cell and subtracted from the fluorescence intensities emitted from the cell. The magnitude of the background fluorescence was less than 10% of the total cell fluorescence. Ca transient properties were calculated from a mean of 10 electrically stimulated transients. Time to peak was measured from the onset of the Ca transient, not from the pacing event marker, to the peak of the transient. In parallel to fluorescence acquisition, sarcomere length was measured as a function of time by means of a video camera system. Fractional shortening was calculated as absolute sarcomere shortening normalized to diastolic sarcomere length (IonWizard). For some experiments, sarcomere shortening was recorded in absence of FURA-2 to avoid Ca buffering effects. For some experiments, myocytes were exposed to SKF-96356 (SKF, 2 μ M) or BTP2 (5 μ M) to inhibit SOCE. Caffeine (10 mM) was administered to measure SR content at the end of each experiment

SOCE measurements

A specific protocol was used to measure SOCE. SR Ca was depleted by caffeine (10 mM) after electrical stimulation until steady state (electrical field stimulation; 1 Hz; 20 V). Then, the superfusion with modified Tyrode's solution (containing in mM: NaCl 140, KCl 4, MgCl₂ 1, Hepes 5; pH adjusted to 7.4) was switched to 0 Ca/0 Na solution (containing in mM: LiCl 140, KCl 4, MgCl₂ 1, Hepes 5, EGTA 1) and myocytes were incubated with thapsigargin (Tg, 100 nM) and verapamil (10 μ M) for 5 minutes. Repeated administration of caffeine (10 mM) ensured maximal depletion of SR Ca stores. Thereafter, extracellular Ca concentration was raised to 2.5 mM and intracellular Ca concentration was measured continuously as described. For some experiments, 2 μ M SKF was added 5 minutes before and during elevation of extracellular Ca.

mRNA measurements

After cell culture in the presence of Dex (1 mg/mL) or EMD (50 μ M) or both for 24 h, cells were harvested and frozen at -80°C until further processing (RNeasy Mini Kit, Qiagen, Netherlands). Total mRNA was extracted for STIM1/2, Orai1/2/3 and TRPC channels 1/3/4/6 (transient receptor potential cation channels) and contents were assessed by quantitative reverse-transcriptase polymerase chain reaction and normalized with β -Actin (ViiA7 Life Technologies, Applied Biosystems). Primers are shown in <u>S1 Table</u>. Content of mRNA was calculated relative to β -Actin using the standard curve-method.

Data analysis and statistics

Statistical analysis was performed using Graphpad Prism (Version 6.01 for Windows, Graph-Pad Software, La Jolla California USA). Data are presented as mean \pm standard error of the mean (SEM). After testing for normal distribution using the D'Agostino-Pearson-test and the Kolmogorov-Smirnov-test, data were compared using either a paired t-test or one-way ANOVA. Values of p<0.05 were considered significant. SOCE curves were analyzed by exponential curve fitting with Graphpad Prism (two-phase association, least squares ordinary fit). The computed rate constant K_{fast} was used as a measurement for the velocity of SOCE.

Results

Positive inotropic effect of dexamethasone

First, we examined the effects of Dex on cardiac contractility in a Langendorff-perfused whole heart setup. Original tracings of left ventricular pressure as a function of time are shown in Fig

PLOS ONE

Fig 1. Dex significantly increased inotropy in Langendorff-perfused rat hearts. (A) Exemplary original tracings of left ventricular pressure (LVP) as a function of time of spontaneously beating Langendorff-perfused rat hearts. Mean data for systolic developed pressure (devel. LVP, B) and maximal pressure development rate ($dPdt_{max}$), (C). 24 h Dex pre-treatment (i.p., 2 mg/kg BW) significantly increased devel. LVP and $dPdt_{max}$ consistent with a strong positive inotropic effect. (D) Mean data for total time to peak systolic LVP (time to peak). In contrast to systolic function, diastolic function was not affected by Dex pretreatment as indicated by mean data for left ventricular end-diastolic pressure (LVEDP, E) and relaxation time (F). *—p<0.05 vs. vehicle (unpaired t-test, n = 5 hearts in each group).

https://doi.org/10.1371/journal.pone.0222341.g001

1A. In vivo Dex-pretreatment (2 mg/kg BW i.p., 24h prior to experiment) resulted in a significant increase in developed left ventricular (systolic) pressure (developed LVP, LVP amplitude) as well as maximal pressure development rate (dPdt_{max}, Fig 1A–1C). The LVP amplitude increased from 107 ± 8.9 to 148 ± 8.3 mmHg (N = 5 vs. 5, p = 0.0093, Fig 1B), and dPdt_{max} increased from 3356 ± 284 to 5379 ± 349 mmHg/s (N = 5 vs. 5, P = 0.0037, Fig 1C). Interestingly, the time to peak contraction, which is dependent on the coupled gating of L-type Ca channels (LTCC) and ryanodine receptor (RyR) Ca-induced Ca release (CICR) [20], was not affected by Dex pretreatment (Fig 1D) suggesting that the Dex-dependent positive inotropic effect does not involve stimulation of LTCC function. In addition, Dex-pretreatment did not alter diastolic contractile function (Fig 1E and 1F). After Dex pretreatment, both left ventricular end-diastolic pressure (LVEDP, Fig 1E) and relaxation time (Fig 1F) were not different from vehicle. The latter suggest that diastolic Ca removal may also not be altered by Dex pretreatment.

Dexamethasone increased intracellular Ca transient amplitude by a SOCEdependent mechanism

To further investigate the mechanism of the Dex-dependent increase in systolic contractility, we measured intracellular Ca handling in FURA-2 loaded isolated rat ventricular myocytes (Fig 2). Consistent with an increase in cellular shortening (fractional shortening), 24 h Dex-pretreatment significantly increased Ca transient amplitude (Fig 2A and 2C). Interestingly, this increase was accompanied by a significant increase in SR Ca load as assessed by rapid exposure to caffeine (10 mM, Fig 2A and 2D). Compared to vehicle, caffeine-transient amplitude increased from 0.62 ± 0.12 to 0.77 ± 0.17 (for vehicle vs. Dex, N = 7 vs. 8, p = 0.0036)

suggesting an SR-dependent mechanism of the positive inotropic effect. In accordance with unaltered time to peak LVP (Fig 1), the time to peak Ca transient was not affected by Dex pretreatment (Fig 2E) supporting the hypothesis that stimulation of LTCC is not crucially involved in the Dex-dependent positive inotropic effect. Moreover, Dex exposure did not affect fractional SR Ca release (S1A Fig). Fractional release changes in parallel with LTCC for a given SR Ca load. In the face of increased SR Ca load, a Dex-dependent increased in LTCC is, thus, highly unlikely and cannot be responsible for the positive inotropic effect of Dex.

In addition, diastolic Ca concentration and time to 90% relaxation of the Ca transient, which indicate function of SR Ca ATPase (SERCA) [20], were not different from vehicle (Fig 2F and 2G) suggesting that stimulation of SR Ca reuptake may also not underlie the Dexdependent increase in Ca transient amplitude. Finally, we did not detect any difference in caffeine-transient decay rate as a measure of NCX function (S1B Fig).

To test, if Ca entry by a store-related mechanism may contribute to the increased Ca transient amplitude upon Dex pretreatment, we exposed myocytes to the selective SOCE inhibitors SKF (2 μ M) or BTP2 (5 μ M), respectively. Both drugs abolished the Dex-dependent increase in Ca transient amplitude and caffeine-transient amplitude (Fig 2C and 2D). There was a strong and significant correlation between SR Ca content and Ca transient amplitude in all groups (S1C-S1F Fig). Thus, increased SOCE-dependent Ca entry, which fills up the SR Ca store may likely underlie the Dex-dependent increase in Ca transient amplitude.

Dexamethasone increases SOCE by a SGK1-dependent mechanism

To examine, if Dex pretreatment stimulates SOCE in cardiac myocytes, we used a specific protocol to measure SOCE as detailed in Fig 3A. Dex pretreatment resulted in a significant increase in SOCE (Fig 3B and 3C). Compared to vehicle, SOCE amplitude increased from

Fig 2. Dex increased Ca transient amplitude by a SOCE-dependent mechanism. (A) exemplary original tracings of electrical field-stimulated Ca transients (1 Hz, 20 V; marked by ticks) and caffeine-transients (10 mM) of FURA-2 loaded isolated ventricular myocytes cultured for 24 h with either vehicle, Dex or Dex in the presence of SOCE inhibitor BTP2. Mean data for fractional shortening (B), Ca transient amplitude (D), Caffeine-transient amplitude (D), time to peak Ca transient (peak time, E), diastolic Ca (F), and time to 90% relaxation of the Ca transient (G) are also shown. 24 h Dex-pretreatment (1 mg/mL) significantly increased fractional shortening, Ca transient amplitude, and caffeine-induced Ca transient. This could be prevented by addition of SOCE inhibitors SKF (2 μ M) or BTP2 (5 μ M). Peak time, diastolic Ca, and time to 90% baseline were unaltered in all groups. n = 5–10 animals for each group. *P<0.05 vs vehicle, #P<0.05 vs Dex (one-way ANOVA).

https://doi.org/10.1371/journal.pone.0222341.g002

PLOS ONE

Fig 3. Dex stimulates SOCE via an SGK1-dependent mechanism. (A) Schematic representation of the SOCE-protocol. Isolated rat ventricular myocytes loaded with FURA2 were electrical-field stimulated (1 Hz, 20V) in the presence of 1 mM extracellular Ca concentration. After addition of 10 mM caffeine, the superfusion was changed to Ca/Na-free Tyrode's solution to empty the intracellular Ca stores. The SERCA-inhibitor thapsigargin (100 nM) and LTCC-inhibitor verapamil (10 μ M) were added to prevent Ca reuptake into the SR and Ca entry via LTCC and caffeine (10 mM) was repeatedly administered to completely empty the SR. SOCE was then measured after wash in of Ca containing Tyrode. In parallel experiments, SKF (5 min., 2 μ M) was added to inhibit SOCE. (B) Original traces of SOCE measured at the end of the protocol in myocytes pre-treated with either vehicle or Dex ((1 mg/mL, 24 h). (C) Mean data for SOCE amplitude. Dex exposure significantly increased SOCE amplitude. Interestingly, exposure to selective the SGK1 inhibitor EMD (24 h, 50 μ M) completely abolished the Dex-dependent stimulation of SOCE amplitude. Data are from n = 4–11 animals. *P<0.05 vs vehicle, #P<0.05 vs Dex (one-way ANOVA).

https://doi.org/10.1371/journal.pone.0222341.g003

 0.039 ± 0.22 to 0.079 ± 0.028 (for vehicle vs. Dex, N = 6 vs. 11, p = 0.0003). This increase was abolished in the presence of the SOCE inhibitor SKF (2 μ M, Fig 3C). To investigate, if SGK1, which has been shown to be activated by GC stimulation, may be involved in the Dex-dependent regulation of SOCE, we exposed myocytes to the selective SGK1 inhibitor EMD (50 μ M). Importantly, EMD exposure completely prevented the Dex-dependent increase in SOCE amplitude (Fig 3C) suggesting that Dex may requires SGK1 to stimulate SOCE.

Dex pre-treatment enhanced expression of STIM2, TRPC channel 3 and 6 by a SGK1-dependent mechanism

To test, if the Dex-dependent stimulation of SOCE may result from increased cardiac expression of SOCE-related proteins, we measured mRNA levels of STIM (1, 2), Orai (1–3) and TRPC (1,3,4,6) by quantitative PCR. Intriguingly, compared to vehicle, 24 h Dex pre-treatment significantly increased the mRNA expression of STIM 1 and 2 (by 76.9 \pm 20.8% and 98.2 \pm 31.8%, respectively, p = 0.0012 and p = 0.0014 respectively, N = 12 and 13) as well as TRPC channels 3 and 6 (by 90.1 \pm 57.2% and 268.1 \pm 100.4%, respectively, p = 0.0392 and p = 0.0353, respectively, N = 7 and 12) in isolated myocytes (Fig 4, S2 Table). In contrast, mRNA expression of Orai1 was significantly reduced (by 76.8 \pm 7.1%, S2 Table). Importantly, the Dex-dependent stimulation of mRNA expression of STIM2, TRPC 3, 6 and Orai1 were abolished by inhibition of SGK1 with EMD (50 μ M).

Discussion

We show here that exposure to the GC receptor stimulator Dex resulted in increased systolic contractile function of rats *in vivo* (isolated Langendorff-perfused hearts). Moreover, 24 h *in*

PLOS ONE

Fig 4. Dex incubation increases m-RNA expression of SOCE-proteins in cardiac myocytes. Mean data for mRNA levels measured via real-time PCR deploying the standard-curve method are shown as relative expression versus β -actin in arbitrary units (a.u.). Dex significantly increased STIM1 (A), STIM2 (B), Orai3 (C), and TRPC3 (D) and TRPC6 (E) expression. Importantly, Dex-dependent stimulation of STIM2, TRPC3 and TRPC6 expression were prevented by EMD pretreatment (B, D, and E, respectively). Data are from n = 5–18 animals. *P<0.05 vs vehicle, #P<0.05 vs Dex (one-way ANOVA).

https://doi.org/10.1371/journal.pone.0222341.g004

situ exposure of isolated rat ventricular myocytes to Dex increased Ca transient amplitude and SR Ca content by a SGK1-SOCE-dependent mechanism. In accordance, Dex-pretreatment increased mRNA expression of STIM1, STIM2, Orai3 and TRPC channels 3 and 6 in rat cardiac myocytes. A summary of the proposed mechanisms of inotropy by Dex exposure is shown in Fig 5.

Exposure to Dex improves cardiac contractile force by a SOCE-dependent mechanism

We show here that *in vivo* Dex-pretreatment (24 h, 2 mg/kg BW) increased developed LVP and dPdtmax in Langendorff-perfused rat hearts (Fig 1A–1C) and increased fractional sarcomere shortening and Ca transient amplitude in isolated cardiomyocytes (24 h incubation *ex vivo*, 0.010 mg/mL) (Fig 2A–2C).

GC have been shown to exert actions through binding to the GC receptor [21] and numerous studies have suggested a positive inotropic effect. Conditional overexpression of human glucocorticoid receptor in mice, for instance, has been shown to increase Ca transient amplitude, cell shortening, and SR Ca load in isolated myocytes compared to control [22]. Similar results have been acquired by GC-receptor stimulation with Dex in adult rats *in vivo* (1 mg/kg BW/day for 5 days) showing increased cardiac contractile force (Langendorff-perfused hearts) [8]. In accordance, exposure to GC-receptor activator methylprednisolone (30 mg/kg BW) 6 h prior to cardiopulmonary bypass surgery has also been shown to increase Ca transient amplitude *in vitro/ex vivo* in pig cardiomyocytes [9].

Cardiac myocyte

Fig 5. Schematic presentation of the positive inotropic effect of dexamethasone. Dex stimulates mRNA expression of SOC channels TRPC channel 3 and 6 and STIM2 via an SGK1-dependent mechanism. This results in increased SOCE mediated through Orai and TRPC channels leading to an elevation of SR Ca load and improved systolic RyR Ca release, which increases Ca transient amplitude and contractile force.

https://doi.org/10.1371/journal.pone.0222341.g005

However, the mechanisms that lead to GC-receptor dependent stimulation of inotropy are less clear. The effect of glucocorticoids on intracellular Ca stores, for instance, has not been systemically examined in cardiomyocytes. Beside data that conditional GC-receptor overex-pression may increase SR Ca load in isolated myocytes [22], there is few evidence in myocytes. In non-excitable cultured lymphoblastoid cell lines, however, cortisol incubation (200 nM, 48 h) has been shown to increase SR Ca content [23]. We show here that Dex exposure increased SR content measured by caffeine-induced transients in isolated cardiomyocytes (Fig 2D), which may at least partly explain the Dex-dependent stimulation of inotropy. We have also shown that fractional SR Ca release, which changes in parallel with LTCC for a given SR Ca load, was not different upon DEX exposure (S1A Fig). Since SR Ca load was increased, a Dex-dependent increased in LTCC cannot be responsible for the positive inotropic effect of Dex. Moreover, we show here that was a strong correlation between SR Ca load and Ca transient amplitude for all experimental groups (S1C-S1F Fig) suggesting that increased SR Ca load may be the major mechanism underlying the observed increase in Ca transient amplitude. This raises the question about the source of Ca that leads to increased SR Ca content.

The existence of SOCE and its vital contribution to the physiologic function of many cell types has been extensively studied in non-excitable cells (e.g. immune cells [24]) as well as excitable cells (e.g. skeletal muscle cells [25]). SOCE has been shown to be critically involved in cardiomyocyte maturation and function (for review see [14,15,26]). Multiple reports have also indicated a crucial role of SOCE in the development of cardiac hypertrophy. For instance, increased STIM1-expression and SOCE have been shown to result from exposure of cultured mouse cardiomyocytes to the pro-hypertrophic stimuli angiotensin II or phenylephrine and cellular hypertrophy was prevented by STIM1 knock-down [16,17]. Moreover, trans-aortic banding in mice, which also results in cardiac hypertrophy, was shown to increase

STIM1-expression and SOCE [16,17]. In accordance, STIM1 knock-down was shown to prevent cardiac hypertrophy in adult rats subjected to aortic banding [17]. However, a lack of SOCE may also be detrimental. For instance, it was shown that cardio-specific knock-down of STIM1 in mice results in phenotypic dilatative cardiomyopathy [27,28]. Our data underscore the importance of SOCE in the heart by extending its role to regulation of excitation-contraction coupling.

The role of SOCE for excitation-contraction coupling in cardiac myocytes, however, remains unclear and disputed [16,17]. In accordance with previous data [16,29,30], we have measured negligible SOCE in isolated rat cardiac myocytes under basal conditions suggesting that SOCE is not important for basal regulation of excitation-contraction coupling. In contrast, we show here that SOCE amplitude increased dramatically upon GC stimulation with Dex in isolated rat cardiomyocytes. Moreover, the Dex-dependent stimulation of Ca transient amplitude, fractional sarcomere shortening, and caffeine-induced Ca transient were abolished when SOCE inhibitors SKF (2 μ M) and BTP2 (5 μ M) were present (Fig 2A-2D) suggesting that this Dex-dependent SOCE stimulation appears to be critically involved in the positive inotropic effect. Sedova et al. elegantly showed that SOCE entry rate is graded with SR Ca store depletion in isolated calf pulmonary artery endothelial cells [31]. Given that the same molecular SOCE components are present in skeletal and cardiac myocytes, it is reasonable to assume that a similar graded response may be present in cardiac myocytes. However, since the kinetics of STIM1 redistribution and Orai activation are in the order of seconds not milliseconds [30], it is unlikely that the graded response would be important for beat-to-beat regulation of SR Ca content. Instead, it is more likely that the SOCE response integrates gradual beat-to-beat changes in SR Ca content across many cardiac cycles. Although SOCE may not be relevant during basal cardiac conditions as shown by Luo et al. [16], an intervention that depletes SR Ca stores, could result in SOCE stimulation and SR Ca refilling providing a kind of autoregulation of SR Ca content. However, this graded response across cardiac cycles and for different levels of SR Ca load remains to be shown.

SKF has been widely used to block SOCE. However, there is evidence that SKF may also block LTCC but at a much larger concentration. The IC_{50} for SOCE inhibition is 12 μ M in Tlymphocytes [32]. The IC₅₀ for LTCC inhibition appears to be around 20–30 μ M in smooth muscle cells [33]. In contrast, in neonatal rat ventricular myocytes $10 \,\mu$ M SKF has been shown to have no effect on LTCC function [34]. We have used an even lower concentration (2 μ M) rendering inhibition of LTCC function very unlikely. Nevertheless, to verify our results, we have also used the highly-specific SOCE-inhibitor BTP2 [32,35], that showed a similar inhibition of Dex-dependent inotropy as SKF. The IC₅₀ of BTP2 for SOCE-inhibition has been determined between 10–150 nM [32]. The range of concentrations commonly used to selectively block SOCE in isolated murine and cat cardiomyocytes varies between 1 μ M and 20 μ M [36-38]. To date, there is no data that BTP2 may also block LTCC in cardiac myocytes. Thus, is seems plausible that at least part of the Dex-dependent increase in SR Ca content may be mediated by stimulation of SOCE and not be dependent on LTCC. More indirect evidence that LTCC stimulation may not be involved results from our analysis of kinetics of the contraction and Ca transient. We show here that the time to peak contraction, which is known to be dependent on the coupled gating of LTCC and RyR Ca release [20], was not affected by Dex pretreatment (Fig 1D), which is also in accordance to previous data [39]. Obejero et al. found no effect of Dex-pretreatment (200 nM, 48h) on LTCC currents in A7r5 smooth muscle cells [40]. On the other hand, it was shown that prolonged exposure to Dex for 5 days *in vivo* resulted in increased LTCC density in mice and mRNA levels in rats, respectively [40,41]. So, the differences to our findings may be attributed to the much longer Dex-treatment duration (5 days vs 24 h).

In addition to LTCC and RyR, we provide indirect evidence that stimulation of SERCA may also not be the major mechanism of Dex-dependent inotropy. We show here that Dexpretreatment did not alter diastolic contractile function (Fig 1E and 1F). After Dex pretreatment, both LVEDP (Fig 1E) and relaxation time (Fig 1F) were not different from vehicle. Moreover, the diastolic Ca concentration and time to 90% relaxation of the Ca transient, which indicate function of SERCA [20], were also not different from vehicle (Fig 2F and 2G). This suggests that Dex may not stimulate SR Ca reuptake. However, conclusions about regulation of SERCA function by GC stimulation should be made carefully since our data is in contrast to a previous publications showing an enhanced Ca transient decay by conditional GCreceptor overexpression in mice [22]. On the other hand, prolonged *in vivo* exposure to Dex (oral; 0.35 mg/kg BW; 15 days) has been shown to reduce SERCA expression levels in rats [41]. Another important aspect is the question, why the steady-state autoregulation of Ca fluxes described by the Eisner group, was not able to prevent the increase in Ca transient amplitude upon Dex exposure [42]. If autoregulation would be present, the increased SR Ca load and release (due to increased SOCE) would be accompanied by a reduced LTCC influx due to LTCC inhibition by dyadic Ca. This would result in a stable, unaltered Ca transient amplitude but with increased fractional release. In contrast to this concept, we have measured increased Ca transient amplitude but unaltered time to peak, and no significant differences in fractional Ca release (Fig 2C and 2E; S1A Fig). To get more insight, we have also analyzed the caffeine-transient decay rate as a measure of NCX function (S1B Fig). There was no significant difference in caffeine-transient decay rates between our experimental groups suggesting that NCX function was neither enhanced nor reduced (S1B Fig). This is in accordance with the concept of balanced Ca fluxes. At steady state, the amount of Ca that enters the cell from extracellular space equals the amount of Ca that is removed by NCX [20]. Thus, despite increased SR Ca load and release, the extracellular Ca influx was not reduced in our experimental model. The Eisner concept of autoregulation only works for modest changes. If one parameter is changed too drastically, a new equilibrium will evolve. In our case, Ca transient amplitude increases in parallel to SR Ca load to a new level. The question remains, why the mechanisms of autoregulation described by Eisner are not able to reduce steady-state Ca influx in our model despite increased SR Ca release into thy dyadic cleft. Although there are many possible explanations, it seems plausible that the Ca influx mediated by SOCE, in contrast to LTCC, may not be subject to autoregulation because Ca may be transferred directly from extracellular space into the SR bypassing the dyadic cleft. It is generally assumed that STIM-mediated Oraiactivation allows for direct Ca entry into the SR [13,14]. Orai is a trans-sarcolemmal Ca channel in close vicinity to the SR membrane. However, the detailed route, through which Ca enters the SR via SOCE needs to be further elucidated.

Nevertheless, it seems obvious that the Dex-dependent inotropy can be differentiated from the acute inotropic effect secondary to stimulation of the β -adrenergic cascade or stimulation of G_q protein-coupled receptors. A stimulation of β -adrenergic receptors would activate protein kinase A and would result in increased phosphorylation of cardiac troponin I, LTCC, phospholamban and RyR [43]. In consequence, trans-sarcolemmal Ca influx and SR Ca reuptake would increase and Ca sensitivity of troponin would be augmented leading to enhanced Ca transient kinetics [20]. The stimulation of G_q protein-coupled receptors would also result in increased LTCC-dependent Ca influx, which should increase the time to peak of the Ca transient [20,44]. In contrast to these effects, we have found no significant differences in Ca transient kinetics. Thus, it seems unlikely that our observed changes in Ca transient amplitude and contractility are due to activation of either β -adrenergic or G_q protein-coupled receptor-related pathways.

Dex improves cardiac contractile force via SGK1-dependent upregulation of SOCE-machinery

To investigate the mechanism of Dex-dependent stimulation of SOCE, we measured expression of important proteins involved in SOCE. We show here that in vivo Dex-pretreatment (24 h, 2 mg/kg BW) increased mRNA-levels of STIM1, STIM2, Orai3 and TRPC channels 3 and 6 (Fig 4A-4E). To our knowledge, this is the first report directly linking GC receptor stimulation to increased expression of SOC channels in cardiomyocytes. It has to be noted that the relationship between mRNA content and final expression of functional SOCE proteins is not necessarily firm. For STIM1 and Orai1, there is evidence for a correlation between mRNA and protein expression [45]. Therefore, despite the lacking explicit evidence, we believe it would be reasonable to assume that the effects of DEX-incubation and SGK1-inhibition on mRNA levels of SOCE components would translate into parallel changes in SOCE protein expression. The mechanisms linking GC receptor stimulation to increased SOCE protein expression are unclear but may involve gene regulation via SGK1. Dex exposure has been shown to activate SGK1 possibly by phosphorylation via PI3-kinase/ PIP3-dependent kinase PDK1 [46]. As a result, SGK1 facilitates nuclear translocation of NF-KB, which has been shown to induce expression of the SOC channels STIM1 and Orai1 [45]. In HEK293 cells that express a constitutively active SGK1, for instance, increased expression levels of STIM1 mRNA have been found [12]. In mast cells from mice lacking functional SGK1, STIM1 and Orai1 were downregulated [12].

In our experiments, preincubation with the SGK1-blocker EMD ($50 \mu M$) [47] one hour before and during Dex-treatment prevented upregulation of mRNA of STIM2 and TRPC channels 3 and 6. These results are in accordance with the findings of other groups linking GC-dependent SGK1-stimulation to the expression of ion channels and transporters important for excitation-contraction coupling. In HL-1 cardiomyocytes, Dex-incubation (500 nM, 24 h) increased expression of the sodium-proton exchanger NHE1 [48]. The effect was prevented in the presence of EMD (50 μ M) and did not occur in SGK1-deficient cardiomyocytes.

In our experiments, SGK1-inhibition by EMD was sufficient to completely prevent the SOCE-increase by Dex (Fig 3C). It is conceivable that changes in SOC channel expression may result in altered intracellular Ca cycling. STIM1 overexpression has been shown to increase Ca transient amplitude and SR Ca content adult rat cardiomyocytes [38,49,50]. In accordance, STIM1 knockdown has been shown to reduced SR Ca content in neonatal cardiomyocytes [50]. On the other hand, STIM1-transgenic mice showed an increased SOCE but unaltered SR Ca load, which was attributed to increased diastolic SR Ca leak that may counterbalance increased SOCE-dependent filling of the SR [49].

STIM1 location is not strictly restricted to the SR membrane, since approximately 10% of STIM1 are found in the plasma membrane [51–53]. STIM has been shown to interfere with non-selective cation channels of the TRPC protein family [13,54]. The TRPC channel family consists of 7 members, of which TRPC channels 1, 3–6 have also been shown to be directly or indirectly activated by STIM1 [13,54]. TRPC channels (except for TRPC channel 2) are expressed in human, mouse and rat cardiomyocytes [55,56]. TRPC3 and 6 have been shown to be involved in the development of cardiac hypertrophy in rat [57], mouse [58,59], and human [59] cardiomyocytes but may also contribute to Ca entry, which is in accordance with our results. The Dex-dependent increased TRPC3 and 6 mRNA expression may partly contribute to the observed increased Ca transient amplitude and contractility.

A caveat for the potential application of GC stimulation to increase SOCE and inotropy could be its interference with the cellular stress response leading to disturbed Ca handling and arrhythmias [60,61]. It was shown that GC stimulation results in increased ER stress, measured

as reduced methylation of FK binding protein 51 (FKBP51) [60]. Importantly, increased ER stress has been linked to increased Ca spark activity and atrial fibrillation via increased phosphorylation and activation of CaMKII δ in human, rabbit and mouse atrial tissue [62,63]. Moreover, direct stimulation of SOCE by high doses of 2-aminoethoxydiphenyl borate (2-APB; 20 μ M) has been shown to induce arrhythmias and spontaneous contractions in an Orai-dependent fashion in rat atrial and ventricular myocytes [64]. The precise mechanisms for these pro-arrhythmogenic effects certainly warrant further investigation.

Summary/Conclusion

Dex-pretreatment increased mRNA expression of store-operated Ca channels, which is accompanied by increased SOCE, Ca transient amplitude and fractional shortening. These changes were prevented in the presence of SOCE blockers SKF and BTB2. On the other hand, Ca transient kinetics, a measure of CICR (time to peak, [20]) and SERCA function (decay time, [20]) were unaltered suggesting that Dex, at least after 24 h exposure, preferentially stimulates SOCE, which differentiates the positive inotropic effects from other pharmacological pathways (i.e. β -adrenergic pathway). Given its slow kinetics, SOCE appears to influence cellular Ca cycling by an integrated response across multiple cardiac cycles but not on a beat-to-beat basis. Our data add to the growing body of evidence that SOCE, although not relevant for basal contractile function, may be important as a short-term protective response to cardiac stress.

Supporting information

S1 Table. Oligonucleotide sequences of the inner and outer PCR primers. (DOCX)

S2 Table. Relative mRNAβ-actin-expression of SOCE channels (a.u.). (DOCX)

S1 Fig. Additional analysis of Ca handling in isolated FURA-2 loaded ventricular myocytes. (A) Analysis of mean data for fractional SR release (calculated as Ca transient amplitude normalized to Caffeine transient amplitude). Exposure of ventricular myocytes to Dex (24h) did not affect fractional SR Ca release. (B) Mean data for rate constant k derived from single exponential fits of the caffeine-induced (10 mM) Ca transient decay, which can be used as a measure of NCX function. There was no significant difference in k between the experimental groups. n = 6–9 animals for each group. (C-F) Correlation (Pearson r) analysis for Ca transient amplitude and caffeine-transient amplitude of isolated ventricular myocytes exposed to either vehicle (C), Dex (D), Dex and BTP2 (E) or Dex and SKF (F) within individual ventricular myocytes (n = 8–20 cells for each group). Linear regression lines and coefficients of determination (r^2) are also shown for each plot. There was a strong correlation between Ca transient amplitude and caffeine-transient amplitude for each experimental group. (TIF)

Acknowledgments

We acknowledge Dr. Karin Hammer, Thomas Sowa, Felicia Radtke, Simon Tuemmler, and Gabriela Pietrzyk for providing technical assistance and reagents.

Author Contributions

Conceptualization: Michael Wester, Lars S. Maier, Christian Schach, Stefan Wagner.

Data curation: Michael Wester, Anton Heller, Christian Schach.

Formal analysis: Michael Wester, Christian Schach, Stefan Wagner.

Funding acquisition: Lars S. Maier, Christian Schach, Stefan Wagner.

Investigation: Michael Wester, Christian Schach.

Methodology: Michael Wester, Michael Gruber, Christian Schach, Stefan Wagner.

Project administration: Christian Schach, Stefan Wagner.

Resources: Michael Gruber, Lars S. Maier, Christian Schach, Stefan Wagner.

Supervision: Christian Schach, Stefan Wagner.

Writing - original draft: Michael Wester, Christian Schach.

Writing - review & editing: Lars S. Maier, Christian Schach, Stefan Wagner.

References

- Libby P, Maroko PR, Bloor CM, Sobel BE, Braunwald E. Reduction of experimental myocardial infarct size by corticosteroid administration. J. Clin. Invest. 1973; 52: 599–607. <u>https://doi.org/10.1172/</u> JCI107221 PMID: 4685084
- Spath JA, Lane DL, Lefer AM. Protective action of methylprednisolone on the myocardium during experimental myocardial ischemia in the cat. Circ. Res. 1974; 35: 44–51. https://doi.org/10.1161/01.res.35.1. 44 PMID: 4841252
- Valen G, Kawakami T, Tahepold P, Dumitrescu A, Lowbeer C, Vaage J. Glucocorticoid pretreatment protects cardiac function and induces cardiac heat shock protein 72. Am. J. Physiol. Heart Circ. Physiol. 2000; 279: H836–43. https://doi.org/10.1152/ajpheart.2000.279.2.H836 PMID: 10924084
- Enc Y, Karaca P, Ayoglu U, Camur G, Kurc E, Cicek S. The acute cardioprotective effect of glucocorticoid in myocardial ischemia-reperfusion injury occurring during cardiopulmonary bypass. Heart Vessels. 2006; 21: 152–156. https://doi.org/10.1007/s00380-005-0887-8 PMID: 16715189
- Checchia PA, Backer CL, Bronicki RA, Baden HP, Crawford SE, Green TP, et al. Dexamethasone reduces postoperative troponin levels in children undergoing cardiopulmonary bypass. Crit Care Med. 2003; 31: 1742–1745. https://doi.org/10.1097/01.CCM.0000063443.32874.60 PMID: 12794414
- Liakopoulos OJ, Schmitto JD, Kazmaier S, Brauer A, Quintel M, Schoendube FA, et al. Cardiopulmonary and systemic effects of methylprednisolone in patients undergoing cardiac surgery. Ann Thorac Surg. 2007; 84: 110–8; discussion 118–9. <u>https://doi.org/10.1016/j.athoracsur.2007.01.003</u> PMID: 17588396
- 7. Katzung BG, editor. Basic & clinical pharmacology. [New York]: McGraw-Hill; 2018.
- Xue Q, Patterson AJ, Xiao D, Zhang L. Glucocorticoid modulates angiotensin II receptor expression patterns and protects the heart from ischemia and reperfusion injury. PLoS ONE. 2014; 9: e106827. https://doi.org/10.1371/journal.pone.0106827 PMID: 25265380
- Pearl JM, Plank DM, McLean KM, Wagner CJ, Duffy JY. Glucocorticoids improve calcium cycling in cardiac myocytes after cardiopulmonary bypass. J Surg Res. 2011; 167: 279–286. https://doi.org/10. 1016/j.jss.2009.05.001 PMID: 19726057
- Itagaki K, Menconi M, Antoniu B, Zhang Q, Gonnella P, Soybel D, et al. Dexamethasone stimulates store-operated calcium entry and protein degradation in cultured L6 myotubes through a phospholipase₂-dependent mechanism. Am. J. Physiol., Cell Physiol. 2010; 298: C1127–39. <u>https://doi.org/10.1152/ajpcell.00309.2009</u> PMID: 20107037
- Borst O, Schmidt E-M, Münzer P, Schönberger T, Towhid ST, Elvers M, et al. The serum- and glucocorticoid-inducible kinase 1 (SGK1) influences platelet calcium signaling and function by regulation of Orai1 expression in megakaryocytes. Blood. 2012; 119: 251–261. https://doi.org/10.1182/blood-2011-06-359976 PMID: 22031864
- 12. Eylenstein A, Schmidt S, Gu S, Yang W, Schmidt E, Schmidt E-M, et al. Transcription factor NF-κB regulates expression of pore-forming Ca²⁺ channel unit, Orai1, and its activator, STIM1, to control Ca²⁺ entry and affect cellular functions. J. Biol. Chem. 2012; 287: 2719–2730. https://doi.org/10.1074/jbc. M111.275925 PMID: 22110130

- Collins HE, Zhu-Mauldin X, Marchase RB, Chatham JC. STIM1/Orai1-mediated SOCE: current perspectives and potential roles in cardiac function and pathology. Am. J. Physiol. Heart Circ. Physiol. 2013; 305: H446–58. https://doi.org/10.1152/ajpheart.00104.2013 PMID: 23792674
- Avila-Medina J, Mayoral-Gonzalez I, Dominguez-Rodriguez A, Gallardo-Castillo I, Ribas J, Ordoñez A, et al. The complex role of store operated calcium entry pathways and related proteins in the function of cardiac, skeletal and vascular smooth muscle cells. Front Physiol. 2018; 9: 257. https://doi.org/10. 3389/fphys.2018.00257 PMID: 29618985
- Bootman MD, Rietdorf K. Tissue specificity. Store-operated Ca²⁺ entry in cardiac myocytes. Adv Exp Med Biol. 2017; 993: 363–387. https://doi.org/10.1007/978-3-319-57732-6_19 PMID: 28900924
- Luo X, Hojayev B, Jiang N, Wang ZV, Tandan S, Rakalin A, et al. STIM1-dependent store-operated Ca²
 ⁺ entry is required for pathological cardiac hypertrophy. J. Mol. Cell. Cardiol. 2012; 52: 136–147. https:// doi.org/10.1016/j.yjmcc.2011.11.003 PMID: 22108056
- Hulot J-S, Fauconnier J, Ramanujam D, Chaanine A, Aubart F, Sassi Y, et al. Critical role for stromal interaction molecule 1 in cardiac hypertrophy. Circulation. 2011; 124: 796–805. <u>https://doi.org/10.1161/ CIRCULATIONAHA.111.031229 PMID: 21810664</u>
- Parekh AB, Putney JW. Store-operated calcium channels. Physiol. Rev. 2005; 85: 757–810. <u>https://doi.org/10.1152/physrev.00057.2003</u> PMID: 15788710
- Wagner S, Ruff HM, Weber SL, Bellmann S, Sowa T, Schulte T, et al. Reactive oxygen species-activated Ca/calmodulin kinase II δ is required for late I_{Na} augmentation leading to cellular Na and Ca overload. Circ. Res. 2011; 108: 555–565. <u>https://doi.org/10.1161/CIRCRESAHA.110.221911</u> PMID: 21252154
- Bers DM. Excitation-contraction coupling and cardiac contractile force. Dordrecht: Springer Netherlands; 2001.
- Oakley RH, Cidlowski JA. Glucocorticoid signaling in the heart. A cardiomyocyte perspective. J Steroid Biochem Mol Biol. 2015; 153: 27–34. https://doi.org/10.1016/j.jsbmb.2015.03.009 PMID: 25804222
- Sainte-Marie Y, Nguyen Dinh Cat A, Perrier R, Mangin L, Soukaseum C, Peuchmaur M, et al. Conditional glucocorticoid receptor expression in the heart induces atrio-ventricular block. FASEB J. 2007; 21: 3133–3141. https://doi.org/10.1096/fj.07-8357com PMID: 17517920
- Gardner JP, Zhang L. Glucocorticoid modulation of Ca²⁺ homeostasis in human B lymphoblasts. J. Physiol. (Lond.). 1999; 514: 385–396. https://doi.org/10.1111/j.1469-7793.1999.385ae.x PMID: 9852321
- Feske S. CRAC channelopathies. Pflugers Arch. 2010; 460: 417–435. https://doi.org/10.1007/s00424-009-0777-5 PMID: 20111871
- Stiber J, Hawkins A, Zhang Z-S, Wang S, Burch J, Graham V, et al. STIM1 signalling controls storeoperated calcium entry required for development and contractile function in skeletal muscle. Nat Cell Biol. 2008; 10: 688–697. https://doi.org/10.1038/ncb1731 PMID: 18488020
- Bartoli F, Sabourin J. Cardiac remodeling and disease. Current understanding of STIM1/Orai1-mediated store-operated Ca²⁺ entry in cardiac function and pathology. Adv Exp Med Biol. 2017; 993: 523– 534. https://doi.org/10.1007/978-3-319-57732-6_26 PMID: 28900931
- Collins HE, He L, Zou L, Qu J, Zhou L, Litovsky SH, et al. Stromal interaction molecule 1 is essential for normal cardiac homeostasis through modulation of ER and mitochondrial function. Am. J. Physiol. Heart Circ. Physiol. 2014; 306: H1231–9. https://doi.org/10.1152/ajpheart.00075.2014 PMID: 24585777
- Parks C, Alam MA, Sullivan R, Mancarella S. STIM1-dependent Ca(2+) microdomains are required for myofilament remodeling and signaling in the heart. Sci Rep. 2016; 6: 25372. <u>https://doi.org/10.1038/ srep25372 PMID: 27150728</u>
- Völkers M, Dolatabadi N, Gude N, Most P, Sussman MA, Hassel D. Orai1 deficiency leads to heart failure and skeletal myopathy in zebrafish. J. Cell. Sci. 2012; 125: 287–294. <u>https://doi.org/10.1242/jcs.090464</u> PMID: 22302996
- Kiviluoto S, Decuypere J-P, de Smedt H, Missiaen L, Parys JB, Bultynck G. STIM1 as a key regulator for Ca²⁺ homeostasis in skeletal-muscle development and function. Skelet Muscle. 2011; 1: 16. <u>https:// doi.org/10.1186/2044-5040-1-16</u> PMID: 21798093
- Sedova M, Klishin A, Huser J, Blatter LA. Capacitative Ca²⁺ entry is graded with degree of intracellular Ca²⁺ store depletion in bovine vascular endothelial cells. J. Physiol.(Lond.). 2000; 523 Pt 3: 549–559. https://doi.org/10.1111/j.1469-7793.2000.t01-3-00549.x
- Sweeney ZK, Minatti A, Button DC, Patrick S. Small-molecule inhibitors of store-operated calcium entry. ChemMedChem. 2009; 4: 706–718. https://doi.org/10.1002/cmdc.200800452 PMID: 19330784
- Merritt JE, Armstrong WP, Benham CD, Hallam TJ, Jacob R, Jaxa-Chamiec A, et al. SK&F 96365, a novel inhibitor of receptor-mediated calcium entry. Biochemical Journal. 1990; 271: 515–522. https:// doi.org/10.1042/bj2710515 PMID: 2173565

- 34. Gao H, Wang F, Wang W, Makarewich CA, Zhang H, Kubo H, et al. Ca²⁺ influx through L-type Ca²⁺ channels and transient receptor potential channels activates pathological hypertrophy signaling. J. Mol. Cell. Cardiol. 2012; 53: 657–667. https://doi.org/10.1016/j.vjmcc.2012.08.005 PMID: 22921230
- Jairaman A, Prakriya M. Molecular pharmacology of store-operated CRAC channels. Channels (Austin). 2013; 7: 402–414. https://doi.org/10.4161/chan.25292 PMID: 23807116
- Ji Y, Guo X, Zhang Z, Huang Z, Zhu J, Chen Q-H, et al. CaMKII
 meditates phenylephrine induced cardiomyocyte hypertrophy through store-operated Ca2+ entry. Cardiovasc Pathol. 2017; 27: 9–17. https://doi.org/10.1016/j.carpath.2016.11.004 PMID: 27940402
- Zhao G, Li T, Brochet DXP, Rosenberg PB, Lederer WJ. STIM1 enhances SR Ca²⁺ content through binding phospholamban in rat ventricular myocytes. Proc Natl Acad Sci U S A. 2015; 112: E4792–801. https://doi.org/10.1073/pnas.1423295112 PMID: 26261328
- Troupes CD, Wallner M, Borghetti G, Zhang C, Mohsin S, Lewinski D von, et al. Role of STIM1 (Stromal Interaction Molecule 1) in Hypertrophy-Related Contractile Dysfunction. Circ. Res. 2017; 121: 125– 136. https://doi.org/10.1161/CIRCRESAHA.117.311094 PMID: 28592415
- Obejero-Paz CA, Lakshmanan M, Jones SW, Scarpa A. Effects of dexamethasone on L-type calcium currents in the A7r5 smooth muscle-derived cell line. FEBS Lett. 1993; 333: 73–77. <u>https://doi.org/10. 1016/0014-5793(93)80377-7 PMID: 8224174</u>
- Wang L, Feng ZP, Duff HJ. Glucocorticoid regulation of cardiac K⁺ currents and L-type Ca²⁺ current in neonatal mice. Circ. Res. 1999; 85: 168–173. https://doi.org/10.1161/01.res.85.2.168 PMID: 10417398
- De P, Roy SG, Kar D, Bandyopadhyay A. Excess of glucocorticoid induces myocardial remodeling and alteration of calcium signaling in cardiomyocytes. J Endocrinol. 2011; 209: 105–114. https://doi.org/10. 1530/JOE-10-0431 PMID: 21282255
- Eisner V, Csordas G, Hajnoczky G. Interactions between sarco-endoplasmic reticulum and mitochondria in cardiac and skeletal muscle—pivotal roles in Ca²⁺ and reactive oxygen species signaling. J. Cell. Sci. 2013; 126: 2965–2978. https://doi.org/10.1242/jcs.093609 PMID: 23843617
- Spurgeon HA, Stern MD, Baartz G, Raffaeli S, Hansford RG, Talo A, et al. Simultaneous measurement of Ca²⁺, contraction, and potential in cardiac myocytes. Am J Physiol. 1990; 258: H574–86. <u>https://doi.org/10.1152/ajpheart.1990.258.2.H574 PMID: 2309919</u>
- 44. Endoh M. Cardiac α₁-adrenoceptors and inotropy. Myofilament Ca²⁺ sensitivity, intracellular Ca²⁺ mobilization, signaling pathway, and pathophysiological relevance. Circ. Res. 2016; 119: 587–590. <u>https://doi.org/10.1161/CIRCRESAHA.116.309502</u> PMID: 27539971
- 45. Lang F, Eylenstein A, Shumilina E. Regulation of Orai1/STIM1 by the kinases SGK1 and AMPK. Cell Calcium. 2012; 52: 347–354. https://doi.org/10.1016/j.ceca.2012.05.005 PMID: 22682960
- Lang F, Böhmer C, Palmada M, Seebohm G, Strutz-Seebohm N, Vallon V. (Patho)physiological significance of the serum- and glucocorticoid-inducible kinase isoforms. Physiol. Rev. 2006; 86: 1151–1178. https://doi.org/10.1152/physrev.00050.2005 PMID: 17015487
- Ackermann TF, Boini KM, Beier N, Scholz W, Fuchss T, Lang F. EMD638683, a novel SGK inhibitor with antihypertensive potency. Cell Physiol Biochem. 2011; 28: 137–146. <u>https://doi.org/10.1159/</u> 000331722 PMID: 21865856
- Voelkl J, Pasham V, Ahmed MSE, Walker B, Szteyn K, Kuhl D, et al. SGK1-dependent stimulation of cardiac Na⁺/H⁺ exchanger NHE-1 by dexamethasone. Cell Physiol Biochem. 2013; 32: 25–38. <u>https:// doi.org/10.1159/000350120 PMID: 23860121</u>
- 49. Correll RN, Goonasekera SA, van Berlo JH, Burr AR, Accornero F, Zhang H, et al. STIM1 elevation in the heart results in aberrant Ca²⁺ handling and cardiomyopathy. J. Mol. Cell. Cardiol. 2015; 87: 38–47. https://doi.org/10.1016/j.yjmcc.2015.07.032 PMID: 26241845
- Voelkers M, Salz M, Herzog N, Frank D, Dolatabadi N, Frey N, et al. Orai1 and STIM1 regulate normal and hypertrophic growth in cardiomyocytes. J. Mol. Cell. Cardiol. 2010; 48: 1329–1334. https://doi.org/ 10.1016/j.yjmcc.2010.01.020 PMID: 20138887
- Park CY, Shcheglovitov A, Dolmetsch R. The CRAC channel activator STIM1 binds and inhibits L-type voltage-gated calcium channels. Science. 2010; 330: 101–105. <u>https://doi.org/10.1126/science.</u> 1191027 PMID: 20929812
- Wang Y, Deng X, Mancarella S, Hendron E, Eguchi S, Soboloff J, et al. The calcium store sensor, STIM1, reciprocally controls Orai and CaV_{1,2} channels. Science. 2010; 330: 105–109. <u>https://doi.org/ 10.1126/science.1191086</u> PMID: 20929813
- Soboloff J, Rothberg BS, Madesh M, Gill DL. STIM proteins. Dynamic calcium signal transducers. Nat Rev Mol Cell Biol. 2012; 13: 549–565. https://doi.org/10.1038/nrm3414 PMID: 22914293
- Cheng KT, Ong HL, Liu X, Ambudkar IS. Contribution and regulation of TRPC channels in store-operated Ca2+ entry. Curr Top Membr. 2013; 71: 149–179. https://doi.org/10.1016/B978-0-12-407870-3. 00007-X PMID: 23890115

- Eder P, Molkentin JD. TRPC channels as effectors of cardiac hypertrophy. Circ. Res. 2011; 108: 265– 272. https://doi.org/10.1161/CIRCRESAHA.110.225888 PMID: 21252153
- 56. Watanabe H, Murakami M, Ohba T, Takahashi Y, Ito H. TRP channel and cardiovascular disease. Pharmacology & Therapeutics. 2008; 118: 337–351. https://doi.org/10.1016/j.pharmthera.2008.03.008 PMID: 18508125
- Bush EW, Hood DB, Papst PJ, Chapo JA, Minobe W, Bristow MR, et al. Canonical transient receptor potential channels promote cardiomyocyte hypertrophy through activation of calcineurin signaling. J. Biol. Chem. 2006; 281: 33487–33496. https://doi.org/10.1074/jbc.M605536200 PMID: 16950785
- 58. Niizeki T, Takeishi Y, Kitahara T, Arimoto T, Ishino M, Bilim O, et al. Diacylglycerol kinase-ε restores cardiac dysfunction under chronic pressure overload. A new specific regulator of Gα_q signaling cascade. Am. J. Physiol. Heart Circ. Physiol. 2008; 295: H245–55. https://doi.org/10.1152/ajpheart.00066. 2008 PMID: 18487437
- Kuwahara K, Wang Y, McAnally J, Richardson JA, Bassel-Duby R, Hill JA, et al. TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling. J. Clin. Invest. 2006; 116: 3114–3126. https://doi.org/10.1172/JCI27702 PMID: 17099778
- Zannas AS, Jia M, Hafner K, Baumert J, Wiechmann T, Pape JC, et al. Epigenetic upregulation of FKBP5 by aging and stress contributes to NF-kB-driven inflammation and cardiovascular risk. Proc Natl Acad Sci U S A. 2019; 116: 11370–11379. https://doi.org/10.1073/pnas.1816847116 PMID: 31113877
- Song R, Hu X, Zhang L. Glucocorticoids and programming of the microenvironment in heart. J Endocrinol. 2019. https://doi.org/10.1530/JOE-18-0672 PMID: 31018174
- 62. Gao X, Wu X, Yan J, Zhang J, Zhao W, DeMarco D, et al. Transcriptional regulation of stress kinase JNK2 in pro-arrhythmic CaMKIIõ expression in the aged atrium. Cardiovasc Res. 2018; 114: 737–746. https://doi.org/10.1093/cvr/cvy011 PMID: 29360953
- Yan J, Thomson JK, Zhao W, Gao X, Huang F, Chen B, et al. Role of Stress Kinase JNK in Binge Alcohol-Evoked Atrial Arrhythmia. J Am Coll Cardiol. 2018; 71: 1459–1470. https://doi.org/10.1016/j.jacc. 2018.01.060 PMID: 29598867
- Wolkowicz PE, Huang J, Umeda PK, Sharifov OF, Tabengwa E, Halloran BA, et al. Pharmacological evidence for Orai channel activation as a source of cardiac abnormal automaticity. Eur. J. Pharmacol. 2011; 668: 208–216. https://doi.org/10.1016/j.ejphar.2011.06.025 PMID: 21745466

Danksagung

Zuvorderst möchte ich meinem Doktorvater Prof. Dr. Stefan Wagner für die Überlassung des spannenden Themas, seine intensive Förderung, gute Zusammenarbeit und unermüdliche Hilfestellung beim Verfassen des Manuskripts danken. Besonderer Dank gilt auch Dr. Christian Schach für viele Stunden persönlicher Betreuung, Einarbeitung sowie Ausgestaltung der wissenschaftlichen Hypothesen. Zudem seien unbedingt die biologisch-technischen Angestellten Gabriela Pietrzyk, Thomas Sowa und Felicia Ratdke genannt, deren praktischer Rat und Hilfestellung sowie konstante Ermunterung erheblich zum Gelingen der Datenerhebung beigetragen haben.

Natürlich sei auch meiner Familie, meinen Eltern Ursula und Michael Götz und meiner Schwester Anna Götz gedankt, ohne deren Unterstützung in allen Phasen des Studiums und der Doktorarbeit gedankt, diese Arbeit nicht möglich gewesen wäre.

Ganz besonders möchte ich meiner Ehefrau Megan Wester danken, die sicherlich die größte persönliche Betreuung geleistet und mich in allen bei solcher Arbeit unvermeidlichen Rückschlägen gestärkt und jeden Erfolg mit mir gefeiert hat. Ohne diese Liebe, Unterstützung und Rücksichtnahme wäre kein Teil meiner akademischen Ausbildung so möglich gewesen.