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We provide the first large dataset of human fixations on physical 3D objects

presented in varying viewing conditions and made of different materials. Our

experimental setup is carefully designed to allow for accurate calibration and

measurement. We estimate a mapping from the pair of pupil positions to 3D

coordinates in space and register the presented shape with the eye tracking

setup. By modeling the fixated positions on 3D shapes as a probability

distribution, we analysis the similarities among different conditions. The

resulting data indicates that salient features depend on the viewing direction.

Stable features across different viewing directions seem to be connected to

semantically meaningful parts. We also show that it is possible to estimate

the gaze density maps from view dependent data. The dataset provides the

necessary ground truth data for computational models of human perception

in 3D.
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1 INTRODUCTION
A large part of geometry processing in computer graphics is based

on perceptually-based metrics [Lavoué and Corsini 2010] and visu-
ally salient shape features [Lee et al. 2005; Song et al. 2014a]. Salient

features are usually defined as objects or regions that draw atten-

tion of human observers. Interestingly, most approaches are based

entirely on geometric or information theoretic measures. Those

that are based on experiments almost exclusively use renderings of

the shapes presented on a screen for evaluation (e.g. [Bulbul et al.

2011; Dutagaci et al. 2012; Feixas et al. 2009; Kim et al. 2010]). We
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Fig. 1. Schematic of the experimental setup. Shapes are placed approxi-
mated 100 mm below the eyes.

find that data derived from human observers inspecting physical

manifestations of 3D shapes would provide a firmer ground for com-

putational models of human perception. In this paper we present

an experimental setup for this task and gather data from over 70

participants on 16 shapes presented in 14 conditions.

The original notion of salient visual features derives from eye

tracking experiments using images presented on a screen as visual

stimuli. The main idea is that humans tend to attend to the most

important parts of a scene first (see more on this argument in Sec-

tion 2). Computational models of saliency [Itti and Koch 2001] were

developed only after some consensus had been reached on the local

image characteristics that seemed to evoke attention.

Presenting the stimulus on a screen leads to a simple experimental

setup. It has been argued [Kowler 2011] that only the visual percept

on the retina matters, so restricting stimuli to images might suffice

to learn about saliency of features. This point of view is questioned

more and more [Henderson et al. 2007; Itti and Borji 2015; Tatler

et al. 2011]. If 3D shapes are restricted to virtual environments, such

as being only presented on screens, then screen-based experiments

naturally provide the necessary insight. And while it may be true

that computer graphics researchers rather deal with teapots and

bunnies on-screen, 3D computer graphics and, more specifically, ge-

ometry processing derive their importance from the fact 3D shapes

describe the “real world”. The recent trend of direct digital manu-

facturing (aka. 3D printing) should remind us that a purely virtual

existence of 3D shapes is the exception rather than the rule. It also
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provides an ample number of reasons for basing visual saliency on

experiments with real 3D data.

Collecting points on real 3D shapes from human viewing behavior

is significantly more involved than experiments using a screen for

presentation. The experiments we are aware of [Wang et al. 2016]

are limited in the variation of viewing conditions. We believe an

important question is if low-level geometric saliency exists at all.

This would mean that a region on a shape is attended to across

different human observers, different surface reflection properties

and different viewing directions. For this reason we have put effort

into varying viewing directions (7 directions 15
◦
degrees apart) and

material (diffuse powder and comparatively glossy plastic) for a

number of different shapes (see Section 3 for details). Illumination

is restricted to one diffuse light source at a fixed location. The data

will be generally useful to evaluate existing computational models

for geometric saliency [Lee et al. 2005; Shilane and Funkhouser

2007; Song et al. 2014b; Tasse et al. 2015] and, if possible, directly

generate such models from the data similar to recent approaches

for images [Jiang et al. 2015; Kruthiventi et al. 2017; Kümmerer et al.

2016].

Eye tracking on 3D requires establishing a mapping between the

pupil positions and positions on the shape. We do this using a setup

(see Figure 1) that allows estimating a mapping from pairs of pupil

positions to points in 3D and then intersecting registered 3D shapes

in this environment. The mapping allows us to create gaze density

maps, a probability representation of eye tracking data over the

surfaces of the shapes for further analysis.

Data collected in this setup from over 70 human observers seems

to suggest that salient features depend on the viewing direction,

but not on the two different materials we used. Visual inspection

of regions that are fixated in all viewing directions appear to be

connected to semantically meaningful parts. These observations

indicate that visual saliency is difficult to predict from geometric

features alone. Based on these observations we build a small con-

volutional network that is able to predict the gaze density maps

generated from our experiments for a given shape. Consistent with

our experimental findings, it fails to generalize across shapes, yet is

still better in predicting saliency than geometric approaches such

as mesh saliency [Lee et al. 2005].

In summary, we make the following contributions:

• We develop a setup for eye tracking experiments on real

3D shapes, including an accurate registration, calibration

procedure and automatic mapping from eye tracking data to

the surface of 3D shapes.

• We provide the first large data set with fixations on 3D shapes.

The data set will be useful for assessing perceptual metrics

and saliency measures.

• We develop a novel method to analyze distributions of fixa-

tions on 3D shapes.

• We show that stability of features depends on distance in

viewing angle.

• We develop a machine learning approach that allows pre-

dicting human visual saliency on objects based on view-

dependent geometry information.

2 BACKGROUND AND RELATED WORK

2.1 Human viewing behavior
Human viewing behavior is defined by three major systems making

up the oculomotor system: the fixation-saccade system, the vestibu-

locular system (VOR) and the smooth pursuit system. During fixa-

tions the eyes remain relatively stationary to allow for the intake of

visual information [Martinez-Conde et al. 2004]. Saccades are rapid

ballistic eye movements occurring between fixations [Abrams et al.

1989]. The VOR stabilizes gaze during head movements. Smooth pur-

suit occurs when the eyes follow a smoothly moving object [Robin-

son 1965], a fact that has been exploited for interaction and to

enhance eye-tracking [Vidal et al. 2012], for example.

In this work, we are concerned with human viewing behavior on

static objects in a controlled environment, especially in the sense

of extracting salient features. Therefore, we focus on the analysis
of fixations, which tells us where are the attended areas. Saccades

involve no information uptake. The VOR is inactive because our

participants keep their heads still, and smooth pursuit only happens

when there is a moving object.

2.2 Eye tracking basics
In most eye tracking experiments, the head is being fixed, for ex-

ample using a chin and forehead rest. The orientation of the eyes

in the head is indicative for the gaze direction. The orientation is

approximately two-dimensional: a rotation around the view axis

would be a mapping of the image onto a rotated version of itself, and

the extra-ocular muscles controlling the orientation of the eye are

not providing this degree of freedom. Consequently, the (projection

of the) position of the pupil center is a good parameterization of the

gaze direction.

Most of the widely used eye trackers are based on video cam-

eras directed towards the eyes. The center of the pupil position is

extracted from each video frame. It is common to take a reflected

static light in the cornea as a frame of reference for the pupil po-

sition [Holmqvist et al. 2011] – this provides stabilization against

minor head movements that would otherwise have a large effect on

the estimated gaze direction. We rely on the software provided with

the eye tracking device for extracting the pupil center and corneal

reflection from the video frame (involving the necessary calibration

of the camera). In the following we use the term ‘pupil position’ for

the position of the center of the pupil in a suitable reference frame,

which in our case is the corneal reflection. The sequence of pupil

positions over time is denoted as p(t) ∈ R2.
If the stimulus is two-dimensional, typically presented on a dis-

play, then we need a mapping from pupil positions to locations on

the stimulus, i.e., a mapping f : R2 7→ R2. The geometry of the prob-

lem suggests that a linear mapping would be sufficient, higher order

polynomial mappings are used to compensate for some non-linear

effects resulting from lens distortion or the fact that pupil centers

are not on a common plane in 3-space due to the spherical shape

of the eye ball. Cerraloza et al. [2012] have systematically analyzed

different mapping functions and found that low order polynomi-

als (i.e., linear or quadratic) provide the best compromise between

stability of estimating the mapping and achievable accuracy.
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The coefficients of the linear or quadratic mapping are established

in a calibration phase: markers (e.g., a white dot on a black back-

ground) are displayed at predetermined screen positions ci ∈ R2.
The observer is asked to look at them. Due to the small extend

of the fovea, the pupil position is expected to be unique for each

marker. Let’s assume we are able to identify the pupil position pi
corresponding to marker ci . Then we have conditions of the form

f (pi ) = ci . Usually the number of conditions is larger than the num-

ber of parameters in the mapping, and the parameters are computed

so as to minimize the residual

∑
i (f (pi ) − ci )2.

The central problem of calibration, however, is that the positions

of the pupil during the display of a single marker are not constant.

Without the mapping already being established, it is impossible to

select any of the many possible pupil positions p(t) corresponding
to the marker at ci .
Generally, pupil positions are first clustered into fixations. Still,

there may be more than one fixation per calibration marker and

RANSAC is then used to sample the possibilities in order to find

a good set of corresponding pairs. Note that this is based on the

unsupported assumption that a mapping with smaller residual error

is a better approximation of the underlying mapping, while it might

also be true that a linear or quadratic function poorly models the

true mapping and a higher order in the model would be closer to

the true mapping.

2.3 3D eye tracking
Eye tracking is also being used to determine the point in 3D space an

observer is fixating. While humans decode the depth from a variety

of different cues, approaches based on eye tracking dominantly use

vergence, the fact that the two eyes are tilted such that for both eyes

the point of interest projects into the fovea. The common synthetic

model is based on the assumption that the rays through pupil and

fovea for different orientations of the eye have a common point –

the center of projection. Then the mapping from points in space

x ∈ R3 to pupil positions p ∈ R2 is a projective mapping. Writing

the positions in space as well as pupil positions in homogeneous

coordinates, the projection can be written as a matrix multiplication

λ

(
p
1

)
= T

(
x
1

)
, T ∈ R3×4. (1)

In some work the coordinate system of the eye tracker is assumed

to be perfectly aligned with the coordinate system of the calibration

target or the distance between calibration targets and the center of

projection is known [Gutierrez Mlot et al. 2016; Wang et al. 2014],

which leads to effective replacement of some of the unknown coef-

ficients in T with 0 or estimated constants.

Given calibration targets ci ∈ R3 and corresponding pupil posi-

tions pi , estimating the projectionmatrix can be done byminimizing

the squared differences∑
i

(
λi

(
pi
1

)
− T

(
xi
1

))
2

. (2)

subject to suitable constraints to avoid the trivial solution λi =
0,T = 0 [Wang et al. 2017a]. This problem depends non-linearly on

the constraints. We will present more details for solving this type

of problem in the context of our new approach in Section 5.

Practical experience shows that the angular error between a ray

from the calibration targets through the reconstructed center of

projection and the estimated ray is on the order of 1
◦
of visual

angle, which is similar to what can be achieved with video-based

eye trackers in the 2D setup.

The estimated rays still lack information on the exact position

in space. The idea based on vergence is to track both eyes, and

reconstruct one ray for each eye. Assuming the model is correct

and measurements are perfect, the two rays would intersect and

the intersection would be the desired point in space (the point is

effectively triangulated). In practice, the point that minimizes the

squared distances to the two rays is commonly taken [GutierrezMlot

et al. 2016] and the computation of this point is linear.

While this approach is widespread, its validity may be questioned

because of the small baseline compared to the distance of the objects

(e.g. Gutierrez Mlot et al. [2016] suggest that accurate estimation

in depth is only possible up to a distance of 400 mm), and some

inconsistent results it generates [Liversedge et al. 2006; Nuthmann

and Kliegl 2009]. There are several possible explanations for the

inconsistencies, among them also that fitting the intersection point

using a linear model is biased [Wang et al. 2018].

An alternative to intersecting the two eye rays is based on the

registration of a digital shape representation of the stimulus with

the calibrated coordinate system. Digital representations of physical

objects can be reconstructed using KinectFusion [Pfeiffer et al. 2016],

or approximated by simple bounding boxes [Pfeiffer and Renner

2014]. Shapes are aligned to the coordinates of the calibration targets

using fiducial markers [Maurus et al. 2014; Pfeiffer and Renner 2014]

and an additional scene camera is often used to track the markers.

Once their coordinates are aligned, each view raywhich corresponds

to a pupil position can be intersected against the geometry.

Virtual reality (VR) provides another convenient alternative as

visual scenes are represented digitally [Pfeiffer 2012; Pfeiffer et al.

2008], however, it is unclear whether human viewing behavior is

the same as in real world. So far we only know that perception of

distance and size is largely distorted in VR [Ebrahimi et al. 2015;

Nilsson et al. 2018], apart from all other modalities such as accommo-

dation, resolution etc. Future work on comparing viewing behavior

in real-world and VR would be beneficial to the community.

Our approach is similarly based on exploiting the fact that we

know the geometry of the stimuli. In contrast, we register stimulus

and calibration targets using a carefully designed rig, reconstructing

the geometry in a preprocessing step using photogrammetry. This

avoids inaccuracies due to the fiducial markers.

2.4 Saliency experiments
The human visual system prioritizes visual information projected

onto a small central region on the retina, the fovea. The area of

the fovea corresponds to about 2
◦
in the visual field or less than

0.03% of the whole visual field [Holmqvist and Andersson 2017],

yet 25% of the neurons in primary visual cortex process that foveal

information. The remaining 99.9% of the visual field is used by the

brain for selection of the next fixation point, and for planning body

movements. The fixation-saccade system is constantly redirecting
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our gaze towards task-relevant and salient positions in our envi-

ronment. Numerous experiments in psychology suggest that the

process of selecting the peripheral elements to be looked at next is

neither random nor idiosyncratic [Henderson et al. 2007; Ringer et al.

2016]. Humans have a common strategy which elements to fixate,

and these elements must be identified in the peripheral vision. Such

elements in the scene are commonly called salient features [Borji
and Itti 2013; Rayner 2009].

A salient visual feature is characterized by the fact that many

humans direct their attention to it. Salient features have been in-

vestigated in many eye tracking experiments with images as stim-

uli [Kienzle et al. 2007; Xu et al. 2014]. While the findings are not en-

tirely consistent, it is generally assumed that both low-level features

(e.g., contrast and edges), high-level features (e.g., faces, text), and

task-related features exist [Cerf et al. 2008; Hayhoe and Ballard 2005;

Itti 2005; Li et al. 2010]. In particular, there are low-level features,

which arise from the image function alone. A common setup in such

an experiment includes an eye-tracker, a display which presents the

stimuli as well as a chin-rest, s which is required by most desktop

eye trackers. The gaze position on screen is normally estimated

through the built-in calibration of eye trackers. Both natural pho-

tographs and specially designed simple patterns (e.g., checkerboard)

have been used as visual stimuli. Viewing time varied but is often

in the order of 5 seconds and observers are mostly asked to freely

explore the images. Before each trial, observers are instructed to

look at a fixation cross placed at the center of a display so that the

influence caused by different initial fixating points is limited.

Many saliency experiments in graphics have been conducted

with 3D content being presented on screen. Besides tracking eye

movements [Kim et al. 2010; Lavoué et al. 2018], mouse-clicking has

been employed as another alternative of interacting with human

observers [Chen et al. 2012; Lau et al. 2016]. Recent work has studied

where people look at in virtual reality [Sitzmann et al. 2017] or

images presented on stereoscopic displays [Banitalebi-Dehkordi

et al. 2018; Wang et al. 2017b]. Both technologies have an improved

3D perception by presenting two different images to the eyes.

3 DESIGN AND SETUP OF THE EXPERIMENT
Our experiment follows the established protocol of eye tracking

experiments for detect salient regions in image stimuli [Borji and Itti

2015; Judd et al. 2012]: in a first step, calibration targets with known

positions are presented to the observer, allowing to establish a map-

ping from pupil positions to the coordinate space of the calibration

targets. Then, stimuli are presented for a short amount of time in the

same coordinate frame and observer’s eye movements are recorded.

Fixations are detected from eye movement sequences and can be

mapped to the stimulus for further analysis. The fixations shortly

after the onset of the stimulus are indicative of salient regions in

visual scenes.

The main idea of our experiment is to present physical 3D shapes

as stimuli. Besides carefully adapting the standard setup, this comes

with a few challenges, such as accurately aligning the coordinate

spaces of the calibration targets and shapes as well as presenting the

shapes at once. Moreover, the experiment should reflect our main

Switchable visor
Calibration rig

Eye tracker

Head support

Fig. 2. Calibration setup. EyeLink 1000 is used to track the eye movements
and a chin-forehead rest is used for stabilization. Coordinates space of
the calibration targets and shapes are aligned with sockets permanently
mounted on the table. A switchable visor is used to control the on-site of
stimuli. A custom-built calibration rig is used with 20 LEDs mounted as
calibration targets.

question, namely if geometric features of the shape may be salient,

i.e., attract attention regardless of viewing conditions.

3.1 Setup
For eye tracking, we use an EyeLink 1000 table top device, which

is routinely used in a variety of eye tracking experiments. The eye

tracker consists of a camera and an integrated IR illumination (as

shown in Figure 2). The camera and the light source need to have

free view on the eyes, with the angle to the line of sight being

limited. As eye tracking has limited angular accuracy, the spatial

accuracy decreases with the distance to the observer. This motivates

us to bring the shape in the experiment close to the observer such

that the error in relating the gaze to the shape is small, while still

keeping the eye tracker in its working range with distinct corneal

reflections.

We accomplish the requirements of the eye tracking device and

our goal to place the shape close to the observer by placing the

shapes onto a fixture that allows placing the eye tracker under it

(see Figure 2). The fixture is placed with its front edge at a distance

of 320 mm to the observer, allowing the presentation of objects at

an average distance of about 430 mm (see Figure 1 for a schematic

illustration of related distances). The fixture is made of aluminum.

The base is a block with dimensions 300mm × 300mm × 12mm. It is

mounted onto four cylindrical legs with a diameter of 20mm, which

fit into sockets permanently mounted to the table. There are two

copies of the fixture. One base plate contains a raster of 9 × 9 screw

mounts with grid constant 40 mm. The screw mounts serve to hold

the legs as well as 20 tubes with calibration targets as shown in

Figure 2. The other base plate only has the four corner mounts for

the legs and 4 holes to hold a connector for the base of the shapes as

shown in Figure 4. Machining precision for these parts is reportedly

on the order of 2/10 mm. This allows presenting the shapes in a

coordinate frame that is very well aligned with the coordinate frame

of the calibration targets.
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Fig. 3. The whole stimuli set of 16 shapes printed in sandstone.

Object base

Socket

Fig. 4. During viewing, 3D printed stimuli are placed in front on a fixture,
which is mounted into the sockets on the table. The coordinate frame of
shapes is aligned with the calibrated space by mounting the two identical
fixtures in the sockets that are permanently mounted onto the table.

The calibration targets are LEDs. Each LED is mounted onto the

top of an aluminum tube, wired through the tube and the screw

hole. The tubes have different lengths and the LEDs cover a volume

of 150mm3
(consistent with the size of the shapes, see below). LEDs

are arranged in space as evenly as possible while not being occluded.

They are controlled by an Arduino board, so that the active time of

each of the LEDs can be recorded and aligned with the data from

the eye tracker. While the accuracy of the positions of the tubes on

the base plate is high, the exact heights of the LEDs relative to the

top of the tubes vary slightly, and the angular deviation of the screw

mounts potentially translates into significant displacement at the

top of the tube. To compensate for this, we measure the positions of

the LEDs using a recent structure from motion tool [Schönberger

and Frahm 2016]. We took 10 photographs with constant camera

parameters of the calibration rig while all LEDs are illuminated. In

each image, we identify the four corners of the base plate by fitting

lines to the edges of the base and intersecting them. The front

left corner serves as the origin of the coordinate system. We fit a

quadratic function to the smoothly varying brightness of the LEDs in

the photographs. This yields the LED centers with subpixel accuracy.

The resulting reconstruction has a reported average accuracy of 0.6

mm in the positions of the LEDs. The reconstructed positions are

consistent with the design of the fixture.

The whole setup is enclosed by a box with diffuse white walls

to avoid presenting visually interesting features apart from the

stimulus. The front side of the box is open, leaving space for a head

and chin rest.

3.2 Selection of stimuli
It is well known that both low-level features, such as contrast and

edges, and high-level features, such as faces, consistently attract

visual attention [Gottlieb et al. 2013; Henderson and Hollingworth

1999; Tatler et al. 2011]. In order to best investigate how low-level

features generated by the geometry of a region and high-level fea-

tures embedded in the shapes contribute to the visual saliency, we

try to select a set of models that represent a broad generalization.

We include shapes with both smooth surface and sharp corners.

Symmetrical shapes, including those with repetitive geometric fea-

tures, are also selected, although we suspect that repetitive features

could make it difficult to find a consistency among observers. Even

if such features draw attention, the number of fixations on each

of them could still be small. Inspired by [Lau et al. 2016], we also

include man-made artifacts (e.g., teapot and spanner), which might

have task-related affordances (e.g., grabbing) that attract attention.

Shapes with discernible semantic features like the BUNNY-object

are also included in the set to have a generalized representation.

Based on thess principles, we selecte 16 shapes (shown in Figure 3).

The number 16 is a compromise between providing enough variation

and the duration required for each experiment session.

Using direct digital manufacturing for creating the physical stim-

ulus has several important advantages (cf. [Wang et al. 2017a, 2016]):

(1) Because we start from the digital version and manufacturing

devices are reported to have high geometric accuracy, the

geometry of the physical artifact is known.

(2) Digital modeling allows us to add geometry to the bottom of

the shape, enabling a connection to the experimental setup

in a controllable way.

(3) The material is homogeneous.
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The only potential problems result from some manufacturing tech-

niques being limited in terms of the minimal thickness of parts in

the shape as well as the largest dimensions because of limited build

volume. The size of the shapes results from covering a large visual

angle without being uncomfortable for humans to inspect the object

while not moving their head. Other experiments suggest that an

acceptable visual angle is 20
◦
, resulting in an average size of 150

mm along the largest dimension. This size is still compatible with

mass-market 3D printing.

For evaluating constancy of features against change in material,

we choose to manufacture each shape in two materials, using two

different manufacturing devices. One set is generated using the

Stratasys Uprint SE Plus fused deposition modeling device available

in our lab with ABS
1
as filament, resulting in a slightly shiny and

smooth appearance. Another set is manufactured commercially

using 3D ink-based printing with a diffuse material
2
. Figure 5 shows

a visual comparison of the BUNNY-object printed in two materials.

To test the variation in viewing behavior, we present each shape

in several orientations. For each shape we decide on an up-direction.

The different orientations result from rotating around the up-axis.

Rotation by very large angles would lead to occlusion or disocclusion

of features. We feel a total range of 90
◦
is sufficient. One may expect

that for very small angles of rotation, the resulting visual stimulus in

the experiment hardly changes, so this would add little information.

We split the 90
◦
into steps of 15

◦
(see Figure 5 for example). To

facilitate an accurate presentation at different angles, we add a

flat 24-gon to the base of the shape. Adding this 24-gon to the

shape before manufacturing has the advantage that the angle of the

vertices of the polygon relative to the geometry is well-defined.

The set of 7 orientation together with the two different materials

leads to 14 different experimental conditions for each of the 16

shapes.

3.3 Presentation
We believe a lighting situation that is common for humans leads to

the most meaningful results. Consequently, a single light source is

placed above and slightly to the left (see illustration in Figure 4) of

the shapes. This leads to different surface scattering properties of

shapes printed in ABS comparing to shapes printed in sandstone.

We use a luminance meter to measure the amount of light reflected

from the surface and for shapes printed in ABS it is 74 cd/m2
and

for shapes printed in sandstone it is 42 cd/m2
. In future work, it

would be interesting to include more lighting conditions by varying

the number of light sources, directions and intensities. Determining

a good set of conditions to study variations for human perception

is an interesting question.

It is important that each visual stimulus is presented at once.
The underlying idea of analyzing saliency by eye tracking is that

an unknown stimulus is explored, and the first milliseconds after

the stimulus became present are indicative for the most important

features. This can only be achieved by blocking the observers view

while setting up the shape on the fixture. We wish to avoid any

moving objects in front of the observer, as moving objects tend to

1
ABSplus P430XL

2
We printed at Shapeways using sandstone.

draw attention. We would also like to avoid any evasive motion

of the observer’s head, which would invalidate the calibration. For

this reasons we mount a sheet of polymer-dispersed liquid crystal

(PDLC) switchable diffuser on the chin-forehead rest and the diffuser

is controlled by an Arduino circuit. In its transparent condition,

PDLC switchable diffuser is reported to have 90% transmission.

In opaque state, the material exhibits approximately 80% haze (i.e.

scatters incoming visible light), making it virtually impossible for

participants to see through [Lindlbauer et al. 2016]. Arduino control

allows us to record the time of the onset of the stimulus and to

synchronize with the recorded eye positions. Figure 6 shows the

view of an observer when the BUNNY-object is presented and the

occluded view is shown in the right corner. No significant change

of pupil size is observed when the diffuser is switched between its

two conditions.

4 DATA COLLECTION

4.1 Observers
We recruited n = 78 participants (mean age = 24, SD = 4.5, 32 fe-

males) for the experiment. They had normal or corrected to normal

visual acuity and no (known) color deficiencies. 8 observers failed

to calibrate the eye-tracker with the required accuracy, which left

us with a dataset of 70 observers viewing 16 shapes. Importantly,

all participants were naive with respect to the purpose of the exper-

iment. Consent was given before the experiment and participants

were compensated for their time.

4.2 Eye movement recording
The experiment was conducted in a quiet room and shapes were

presented on the fixture 430mm in front of the observer. The largest

visual span is 20
◦
, resulting from 150 mm being the largest dimen-

sion of all shapes. Binocular eye movements were tracked with an

EyeLink 1000 in remote mode and calibration was performed with

our custom-built calibration fixture.

In calibration 20 LEDs were lit up one after another in random

order with the first one being repeated once at the end, resulting

in 21 targets in total. Recorded eye movements for the first LED is

discarded and we only use the more reliable data from the second

repeat.

4.3 Task
Observers read the written task beforehand and were instructed to

look at and inspect the shapes. The exact task is written as "Look

at each object. See if anything is unusual or odd about the object.

At the end of the experiment we will ask you to point out any

observations you made. We will show the objects again, so you

do not have to memorize them.". We do so to encourage observers

actively viewing each shape without introducing an additional task.

As an experimental task in eye tracking based perception studies

is often designed as a trade-off between motivating observers to

actively perceive the stimuli without introducing systematic bias

and reducing the influence of noise and fatigue, we introduced such

visual search task in the experiment. Observers might interpret the

task differently but we do not observe any bias in the collected data,

which coincides with the visual search literature as well [Godwin
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Fig. 5. Experimental conditions of one stimulus. Each shape is printed in two materials and presented in 7 viewing directions. Here we see an example of the
Stanford BUNNY printed in ABS shown in the first row. The second row shows the shape printed in sandstone. From left to right we see all seven viewing
directions presented in the experiment.

Fig. 6. View of an observer during stimuli presentation. An occluded view
when the switchable diffuser is opaque is shown in the bottom corner.

et al. 2015; Monty et al. 2017]. Most observers reported that nothing

is unusual except there are several objects which they were unable

to identify. All of them could describe details of the viewed shapes

and report their perceived aspects.

4.4 Procedure
After reading the task, observers were introduced to the experimen-

tal setup and the detailed experimental routine. 16 objects were

divided in two blocks with each being viewed for 5 seconds. Each

observer only views one object in one condition and viewing order

is randomized for each observer. Calibration and validation were

conducted before each viewing block while validation is essentially

a repeated procedure of calibration. We verify the calibration ac-

curacy in validation and it took approximately 6 minutes for each

block on average. As each configuration of one object is viewed

for 5 seconds, we can easily take any subset for analysis. Although

viewing order is only randomized without guaranteeing that the

space of all possible viewing orders are sampled evenly, such sim-

ple randomization is more than sufficient to investigate whether

viewing behavior changes over time.

One practice block was conducted at the beginning, which con-

sists of calibration, validation and one shape (a horse) for viewing.

Through the practice block, observers are familiarized with the

experimental procedure as well as the tasks they need to perform.

We use the velocity-based fixation detection algorithm provided

by EyeLink and on average there are 15 fixations in each trail of

viewing one shape. Material, viewing direction and shapes all have

no significant influence on the amount of fixations.

5 MAPPING
An appealing feature of the 2D to 2Dmapping approach is that it can

be developed from minimal assumptions: identical pupil positions

identify identical positions on the stimulus; and small displacements

of stimuli induce small displacements of pupil positions. Mathemat-

ically, this means the mapping can be approximated by a smooth

function, and practice shows that low order polynomials are suffi-

cient. In particular, while some models are derived from additional

assumptions on the geometry or physiology of the problem, their

success is independent of the validity of the assumptions. This is

important, because in many cases such assumptions are difficult to

test experimentally.

Our goal is to relate pairs of pupil positions to the attended points
in space. We believe this is possible because of vergence. We wish

to also base our approach on minimal assumptions. In particular we

want to avoid identifying individual pupil positions with eye rays

and then intersecting these rays, because in this approach calibration

is usually not directly optimized for the resulting positions in 3D

but rather for the directions of the rays. In the following we develop

a model that allows directly optimizing for the positions of the

calibration targets.

Based on the established mapping between pairs of pupil posi-

tions and calibration targets, we analyze the error and model it

as a Gaussian distribution. We can then estimate the probability

distribution of a fixation on the provided three-dimensional object,

simply as the restriction of the Gaussian distribution of the fixation

in space to the object’s surface.
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5.1 Mapping function
We consider a pair of pupil positions

p =
(
pl
pr

)
∈ R4, (3)

where the subscripts l and r refer to the left eye and the right

eye, respectively. Our goal is to establish a mapping f : R4 7→ R3

that identifies pairs of pupil positions with fixated points in space

directly. The parameters governing f should be estimated directly

from the known positions of the calibration coordinates xi ∈ R3

and the corresponding pairs of pupil positions pi measured in the

calibration phase.

We develop a parametric model for f based on geometric reason-

ing. As mentioned before, as long as the mapping provides sufficient

accuracy, it is irrelevant whether our geometric assumptions are

valid. Still, it makes sense to provide at least the precision of an

idealized situation.

First, we assume that lines of sight have a common center for

each eye and denote them by el , er ∈ R3. The pupil positions are
mapped to affine planes in R3 using homogenous pupil positions

(pl , 1)T, (pr , 1)T and transformations Tl ,Tr ∈ R3×3. Then the two

half-lines emanating from the centers are defined as the lines passing

through the eye centers and the pupil position mapped to the affine

plane:

hl (λl ) = el + λlTlpl , λl > 0

hr (λr ) = er + λrTr pr , λl > 0.
(4)

We may ask that the two affine planes for mapping the pupil posi-

tions coincide, and that the recovered geometry for the eye centers

and the affine planes are consistent with the desired world coordi-

nate system. Because the planes coincide, for any point x in space

we find

x = hl (λl ) = hr (λr ) =⇒ λl = λr = λ, (5)

and the parameter λ is a linear function of the distance of the point

x to the eyes. When solving for λ we have

er − el + λ (Tr pr − Tlpl ) , (6)

and this is a rational function with constant nominator and a de-

nominator that is linear in the pair of pupil positions. Plugging this

expression back into the equations for the half lines to find the point

in space x, which is a function that is linear in λ, leads to rational
linear function in the pair of pupil positions. This means we can

write the mapping as

f : R4 7→ R3, f(p) =
A
(
p
1

)
b
(
p
1

) , A ∈ R3×5, b ∈ R5. (7)

There are 20 parameters in A and b, however, they share a common

scale factor, leaving us with 19 degrees of freedom. Since each point

in space provides 3 constraints, this means we need at least 7 cali-

bration targets to estimate the mapping – usually we use more. To

estimate the parameters with more constraints than unknowns we

consider the residuals

ri = xi −
A
(
pi
1

)
b
(
pi
1

) . (8)

A common optimization goal is to minimize the sum of the squared

lengths of the residuals. Based on our geometric motivation, how-

ever, we really want the residuals to have non-uniform lengths: the

error in pupil positions is measured on a plane; it is proportional to

the error in space, however, by a factor that depends on the distance

to the center of projection. In other words, we want the error to be

proportional to the distance to the observer.

One way of solving this problem is to weigh the residuals with

the inverse of the known distance of the calibration targets xi to the
observer and then solve the resulting non-linear least squares prob-

lem using an appropriate solver (e.g., Ceres Solver [Agarwal et al.]).

Another solution arises from the observation that the parameter λ
is proportional to the distance from the observer. Recall that λ is a

constant function divided by b(p, 1)T. This means we introduce a

weighted residual by multiplying with b(p, 1)T to get

r′i = b
(
pi
1

)
ri = b

(
pi
1

)
xi − A

(
pi
1

)
. (9)

These residuals are a pure linear function in the unknown coeffi-

cients of A and b, so minimizing the squares leads to a homogeneous
linear system. We compute the parameters using the singular-value

decomposition (SVD) of the resulting system by taking the singular

vector corresponding to the smallest singular value.

Based on validation we have found that the best results are

achieved by optimizing the non-linear function, however, using

the values computed with the SVD for initialization.

5.2 Selecting the fixations from calibration
During calibration, observers are asked to direct their gaze at the

illuminated calibration markers. This usually leads to more than

one fixation per calibration target. A common strategy among man-

ufacturers of eye tracking devices is to select the fixations that lead

to smallest residual in the estimated mapping function. We believe

this approach is questionable, as it is based on the unfounded as-

sumption that the mathematical mapping is an accurate model of

the real world behavior.

We base our selection on the idea that in repeated presentation of

the same calibration target, accurate fixation should likely reappear,

while fixations that are slightly off-target should be independently

distributed and are unlikely to be repeated. Our protocol consists of

repeating the calibration procedure, with the main idea of having

data to validate the estimated mapping. We use the validation cycle

to compute distance between fixations for corresponding calibration

targets and select the pair with the smallest euclidean distance.

Formally, let pji , j ∈ {0, 1, . . .} be the pupil positions for calibration

target with index i in the calibration phase, and qki ,k ∈ {0, 1, . . .}

the data from the validation phase. Then we select the pair

argmin

j,k
∥pji − qki ∥ (10)
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The reported precision of EyeLink 1000 is 0.1◦ root mean square

(RMS)
3
but there is no measured precision in the camera coordinates.

In our implementation, we use four times the standard deviation of

raw eye samples within a fixation as the threshold.

5.3 Error
We estimate a mapping from the pupil positions in calibration, se-

lected as explained above, and the corresponding locations of the

calibration targets. We then estimate an error for this mapping by

taking the fixation data for the validation session. Again, this is

based on the above selection. The mapped pupil position and the

known calibration target yield a sequence of error vectors vi . We

use this set of vectors to generate a first order model of the error

for this mapping.

Our assumption is that the error should really grow linearly

with the distance to the observer. Based on this idea we suggest to

consider the error per unit distance (from the observer). For this we

divide the error vectors by the distance of the corresponding target:

v′i =
1

zi

©«
xi −

A
(
pi
1

)
b
(
pi
1

) ª®®®®¬
. (11)

Here, zi is the depth value of xi . Letm be the number of scaled error

vectors (this number is 20 in most cases). Then compute the mean

µ =m−1∑
i v′i and covariance matrix

C =
1

m

∑
i
(v′i − µ)(v′i − µ)T (12)

for the mapping. The eigendecomposition of this matrix allows us

to define an error ellipsoid:

C = QΛQT = QΛ1/2 Λ1/2QT = MMT
(13)

where the matrixM contains the semi-axes of the error ellipsoid.

Both, the mean and the error ellipsoid need to be understood

as functions of the distance to the observer, since we have defined

them based on first dividing by depth. Putting everything together,

the mean and error ellipsoid are defined as

zµ, σzM. (14)

The depth z can be taken either from the calibration targets when

we want to evaluate the quality of the estimated mapping, or from

the estimated viewing point by applying the mapping to the pupil

positions. With σ we can adjust the size of the ellipsoid to account

for a desired confidence that the ellipse contains the observed points

in the validation. It is common to assume a chi-squared distribution,

so we can compute the confidence interval using the cumulative

chi-squared distribution for three dimensions applied to σ 2. We

choose σ = 2, corresponding to an approximately 75% confidence

interval.

3
EyeLink 1000 User manual http://sr-research.jp/support/EyeLink%201000%20User%

20Manual%201.5.0.pdf
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Fig. 7. Mapping accuracy. Averaged errors measured inmm together with
the mean absolute errors in x, y, z direction are plotted on the left. X is
the horizontal direction, Y the vertical direction and Z points to the depth
direction. Error ellipsoids are visualized on the right in a top view of the
experimental setup when bunny is used as the stimulus.

5.4 Accuracy of the mapping
We use the smallest singular vector of the system of linear equations

described in Equation 9 as the initialization and further optimize

the solution with Ceres solver. Applying our data to the mapping

procedure reveals results that are on a par with or better than other

results reported in the literature. The averaged distance between

estimated positions and target points is 16.02 mm (SD = 5.42), with

the largest inaccuracy in depth. The mean absolute residuals in

horizontal, vertical, and depth direction are 5.31 mm, 19.88 mm,

6.42 mm respectively (corresponding SDs are 3.41, 5.92, 2.67). The
mean absolute residual per mm distance over all participants is 0.050

(SD = 0.016). This translates to a mean absolute error of 15.03mm at

300mmdistance and 25.05mmat 500mmdistance (see Figure 7 for a

comparison with bunny). The error ellipsoid for the 75% confidence

interval has a mean semi-axes length of 0.106, 0.027, 0.037 per mm

distance (corresponding SDs are 0.076, 0.021, 0.031).
Accuracy in the planes orthogonal to the dominant view direction

is comparable to accuracies reported for eye tracking experiments

on displays, only that the mapping we compute for 3D needs to

accommodate the potential variation of this mapping along the

depth axis. Our numbers are consistent with video-based eye track-

ing experiments – where we would stress that numbers provided

by manufacturers of eye tracking devices are usually based on the

residuals from the fitting procedure and not from independently

collected data. This way of reporting the data is highly dependent

on the degrees of freedom in the model and fails to account for the

inaccuracy of repeat fixations for the same target.

The error in depth is significantly larger. This is to be expected

because of the small inter-ocular base line relative to the distance of

the stimulus. It is difficult to find meaningful points of comparison,

because the majority of 3D eye tracking experiments are done either

using some type of 3D display (e.q. red-green glasses [Essig et al.

2006] or stereoscopic displays [Wang et al. 2014]) or they operate

on a single plane [Mansouryar et al. 2016]. This may lead to slightly

different results for relating vergence to positions in 3D because

vergence is controlled not just by binocular disparity but also other

depth cues [Wagner et al. 2009; Wismeijer et al. 2008]. Gutierrez

Mlot et al. [2016] appear to fit a series of mappings for stimuli

presented at varying depth and then report the error in depth for
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each of them. This would mean, their mappings are conditioned

on estimating depth around a fixed value, while the mapping we

generate applies generally to all depths at once. Nonetheless our

numbers are comparable.

While we believe using the error ellipsoid is the correct approach

from a statistical point of view (see below) for counting the number

of valid fixations. One may argue that very small and very large

errors lead it unintuitive results: for an observer with a calibration

that turned out to be highly accurate on the validation, the error

ellipses are small. This means that the fixations of highly accurate

observers are counted as being on the surface only when they are

very close to the surface, which is implausible given the sources

of error influencing the absolute positional accuracy of our setup.

Conversely, observers with a large deviation between calibration

and validation get assigned to very large ellipses, which tend to

intersect the surface almost regardless of their position in space.

Out of that perspective, one might want to also check how ellipses

of constant size intersect the surface. For this, we adjust the longest

semi-axis of the unit-distance ellipsoid to a fixed value in the interval

[.01, .15]. These values translate to the longest semi-axes of 4 mm

- 60 mm at the target distance of 400 mm. Keep in mind that the

longest axis is usually along the depth direction and that errors

on the order of 10 mm - 50 mm have to be accepted based on the

accuracy of the eye tracker.

As we provide all the data to the public, we are certain the in-

evitable minor problems that still remain will soon be discovered

and the data adjusted accordingly.
4

6 ANALYSIS
We base the analysis on gaze density maps, generated from fixations

on the surface of the object. For this we interpret the Gaussian error

distribution of an individual fixation as a density and restrict it to

the surface, and then sum over the fixations. We consider different

sets of fixations to account for different assumptions. The resulting

density maps are compared using Bhattacharyya distance.

We perform several analyses on a per-object basis: first, we com-

pare pairs of observers to find out if the variability of per-observer

gaze densities is smaller within conditions than across conditions.

Then, we analyze the dependence of gaze density maps on the con-

ditions (viewing direction and material), i.e., does gaze behavior

change for different viewing directions or materials? Lastly, we pro-

vide a visualization of regions that are attended across conditions.

6.1 Generating gaze density maps on objects
It is common to aggregate fixations into gaze density maps. For this,

each fixation is associated with a density function, and the density

functions are summed up over the relevant fixations, weighted by

the duration of the fixations [Borji and Itti 2015; Judd et al. 2012].

Based on the error analysis in the preceding section, we model the

distribution of an individual fixation as a Gaussian in space: given

the unit distance mean µ and error ellipsoid M for an observer and

fixation position x with duration t computed from the eye tracking

4
Data for all fixations collected in the experiment as well as a small tool based on

WebGL that allows exploring the fixation data can be found on the project page http:

//cybertron.cg.tu-berlin.de/xiwang/project_saliency/3D_dataset.html.

sequence, we define the distribution as

t

|M|
exp

(
−σ 2(x − x2µ)

TMTM(x − x2µ)
)

(15)

The normalization factor t/|M| accounts for the fixation duration

and volume of the ellipsoid, such that the resulting distribution

integrates to a fixed constant proportional to t . Note that the volume

of the ellipsoid is proportional to the determinant ofM and that it

exhibits the error of the mapping. Larger error, i.e., larger volume,

should not result in more weight being given to a fixation.

To map this distribution over R3 onto the surface we take the

restriction: we consider the values of the distribution in space only

in the positions of the surface. Since the surface is given as a mesh in

our case, we sample the values in the vertices. Vertices are only con-

sidered if they are within the 75% confidence interval. This interval

defines an ellipsoid in space. To effectively collect the vertices in this

ellipsoid we use an axis-aligned-bounding-box-tree [Gottschalk et al.

1996] and filter vertices in the axis aligned bounding box around the

ellipsoid [Schneider and Eberly 2002]. The density map resulting

from the fixations is stored as a vector f ∈ RV , where V is the

number of vertices in the mesh representing the stimulus object.

Several fixations are combined into one gaze density map on the

surface simply by adding the values in the vertices, i.e., the gaze

density representation results from fixations fi as
∑
i fi . The density

function on the surface is modeled as piecewise constant. This

means, we need a measure of area that is associated to each vertex.

We take the barycentric area measure [Meyer et al. 2002], and denote

the diagonal matrix of vertex areas asA. The aggregated gaze density
representation is normalized, so that the density integrates to one

over the surface. Based on our model assumption, the integrated

gazed density is the result of multiplying with the area matrix A
and then summing up the vertex values. So the normalized gaze

density map resulting from a set of fixations fi is

g =
A (

∑
i fi )

∥A (
∑
i fi ) ∥1

, (16)

where the 1-norm ∥ · ∥1 implements the summation over vertices.

Naturally we combine fixation data of the same condition, i.e.,

the same view on the same stimulus made out of the same material.

Figure 8 provides a color coded visualization of the gaze density

maps for the 14 conditions of the Bunny-object used as stimulus.

For color coding we use a perceptually uniform heat map from the

color maps provided by Kovesi [2015].

6.2 Measuring and visualizing the distance of gaze
distributions

In order to analyze the dependence on the conditions we need a way

to compare different gaze distribution functions. We suggest to use

the Bhattacharyya distance [Aherne et al. 1998]. Let д,д′ be two

continuous densities, then distance is defined as − log

∫ √
дд′. This

means the densities are multiplied in each point in the domain, then

the square root is taken in each point, end the resulting function is

integrated over the domain. For the discrete model we define the

similarity vector of two (normalized) gaze density maps g, g′ as

s(g, g′) =
(√
д0д

′
0
,
√
д1д

′
1
, . . .

)T
∈ RV , (17)
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Fig. 8. Gaze density maps for the individual conditions resulting by assigning Gaussian probability density functions over the volume to each fixation and
then combining them using the relative durations as probabilities. The volumetric functions are sampled on the surface and then used to assigned color values.
Columns correspond to the 7 viewing directions, upper row shows the results for ABS (slightly glossy), lower row for sandstone (diffuse).

encoding the point-wise similarity in each vertex. This representa-

tion allows us to write the distance as

d(g, g′) = − log ∥s(g, g′)∥1, (18)

where the 1-norm ∥ · ∥1 is a discrete version of integrating the

piecewise constant function defined in the vertices over the surface.

We prefer the Bhattacharyya distance as a measure over other

possible ways for comparing gaze distribution functions because

it results in large distance if fixations are disjoint from each other.

What is particularly nice is that s(g, g′) in itself nicely visualizes

why two functions are similar, if they are. Only regions where both
gaze densities are likely to contain fixations will have non-zero

values.

The concept of similarity can be extended to more than two gaze

densities: Matusita [1967] introduced a measure of affinity that is

based on the geometric mean of the densities (see also [Toussaint

1974]). In our context this means we extend the similarity represen-

tation to a set ofm gaze density maps g0, . . . , gm−1
as

s(g0, . . . , gm−1) =

©«

(
д0
0
· . . . · gm−1

0

)
1/m(

д0
1
· . . . · gm−1

1

)
1/m

...

ª®®®®®¬
. (19)

In analogy to s(g, g′), this extension can be used to visualize the

regions that have been attended to in all gaze patterns, i.e., it high-

lights stable surface features. The sum of the values in the vector

representation provides a measure of similarity among the gaze

distributions.

6.3 Inter-observer variation
Wang et al. [2016] have provided evidence indicating that the varia-

tion across observers is smaller for the same object as stimulus than

for different objects. Here we refine this question to the variation

for the same object as stimulus, but different viewing conditions.

Specifically we ask: is the difference among different observers look-

ing at the same object in the same condition smaller than looking

at the same object in different conditions?

To do this we compute all pairwise differences of two observers on

the same stimulus. There are 70 observers, resulting in

(
70

2

)
= 2415

pairs for each object. For each object, we distinguish the 7 viewing

directions and 2 materials. We consider three classes: 1) the 14

different conditions resulting from directions and materials, 2) the 7

conditions differentiating the viewing direction, but ignoring the

difference in material, and 3) the 2 material conditions, ignoring

the viewing direction. Figure 9 shows the resulting distributions

for a subset of the stimulus objects. The distribution in blue shows

all pairs, independent of condition. The three distributions in gray

are pairs that are limited so that both observers are within the

same class, corresponding to the classes mentioned above. Visual

inspection suggests that the distributions are similar, meaning the

distance between gaze density maps of two observers is not smaller

for the same condition.

1 2 3

0

0.2

0.4

To test this claim statistically we apply the

Kolmogorov-Smirnov test on the pairs within

one of the conditions defined by the three

classes vs. the distribution of all pairs. The inset

to the right shows the resulting KS test statistic

for the samematerial (1), same direction (2), and

same material and direction (3). The red lines

illustrate the threshold for significance at the

p = 0.05-level. None of the within class distribu-

tions differ significantly from the distribution

of all pairs.

6.4 Dependence on view direction
As the inter-observer variation is high, we analyze the dependence

on direction by considering all fixations for one condition, both with

and without considering the difference in material. This means we

are generating three different sets of gaze densitymaps g(ϕ), ga (ϕ), gs (ϕ),
where the subscripts a and s identify the materials ABS and sand-

stone, and the parameter ϕ takes on discrete values for the seven

viewing directions.

The following analysis applies identically to the three sets – we

describe it only for the set g(ϕ). We compute all

(
7

2

)
= 21 differences

between pairs g(ϕ), g(ψ ),ϕ , ψ . The resulting values are illustrated

ACM Transactions on Graphics, Vol. 37, No. 6, Article 188. Publication date: November 2018.



188:12 • Xi Wang, Sebastian Koch, Kenneth Holmqvist, and Marc Alexa

0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

Fig. 9. Distributions of the distance between pairs of gaze density maps (computed as Bhattacharyya distance) per stimulus object. The blue distribution
contains all possible pairs. The gray distributions are the subsets of pairs that belong to the same condition, where we distinguish between same material,
same direction, and same material and direction. The distributions appear to be rather similar, suggesting that the inter-observer variation of gaze density
maps is generally high.
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Fig. 10. The distances between two gaze density maps for different viewing
directions form a symmetric matrix. We consider the upper half of the
matrix and fit a linear model to the distance. We then ask if the linear model
has a significant tilt away from the diagonal, meaning that larger angular
distances result in large distances between the gaze density maps. The two
materials are considered separately (upper and lower illustration), as well
as combined (not shown here). The distance of the gaze densities is color
coded, ranging from blue for small distance to red for large distance. Note
the similar trend in the data, but different variance.

in Figure 10, in the form of a triangular matrix. We are asking: is

the difference of the gaze density maps dependent on the pair or,

more specifically, is the distance smaller for small differences |ϕ−ψ |
in viewing direction and growing for larger such differences? In

order to answer this question we perform linear regression on the
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Fig. 11. The red line shows the p-value of the linear regressor exhibiting a
gradient in the direction of increasing angular difference. Blue bars indicate
the result for combining the fixations from the two material conditions, the
lighter bars depict restrictions to one material.

data points (ϕ,ψ ,d(g(ϕ), g(ψ )). The null hypothesis is that linear
regressor is flat, i.e., that the fitted plane has normal (0, 0, 1). The

plane normal is found by generating the co-variance matrix of the

21 points and then taking the eigenvector corresponding to the

smallest eigenvalue. The eigenvalue provides the variance σ , and
the standard error is then σ/

√
n, where n = 21.

We wish to understand if the resulting normal (with standard

error) is significantly different from (0, 0, 1). For this we need to

compute how likely it is to observe a tilted normal by chance – we

need a probability distribution for the plane normals. This proba-

bility distribution is likely not available analytically, so we sample

it: we take the same set of fixations from the 70 observers (35 in

case we restrict to one of the two materials), and split it randomly

into 7 groups of 10 (5) observers each. We combine the fixations

and consider them as set of 7 ‘directions’ (only now they are in-

dependent of the directions used in the experiment). We perform

the linear regression on the distances of the 21 pairs of ‘directions’.

This process is done to generate 10,000 samples of random distance

matrices similar to the ones illustrated in Figure 10, emanating from

the same distribution underlying the distances among the 7 direc-

tions. We find that, as expected, the mean normal of this distribution

is numerically close to (0, 0, 1).

Based on the sampled distribution of normals and standard errors,

we can then provide a significance level for the data generated
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from g(ϕ). For this we consider the direction and magnitude of the

component of the normal orthogonal to (0, 0, 1)T [Efron 1981]. We

derive a one-dimensional probability distribution from the random

sample for the magnitude of these vectors. In this way we can test if

the tilt of the plane is significant, meaning it is unlikely the result of

a chance event. In addition we check that the direction is consistent

with our assumption that larger difference in viewing angle results

in larger distances. This test could be interpreted as first performing

a two-tailed test and then restricting to one of the tails, so it is more

conservative.

Figure 11 shows the results. We find that for 11 out of 16 ob-

jects there is a statistically significant dependence of distance on

difference in angle at the p = 0.05-level. When we consider the

material, fewer objects reach the significance level. Inspecting the

linear regression results reveals that the planes are quite similar for

the three different cases, only the smaller amount of data leads to

larger standard errors for the individual materials (see, for example,

the illustration for the Bunny in Figure 10 and the corresponding

significance levels in Figure 11). Interestingly, some objects show

a significantly flat fit, suggesting that their independence of differ-
ence in viewing direction is not just coincidence and that observers

attend to the same features in different views.

6.5 Material dependence
In the same way that we analyzed dependence on viewing direction,

we now examine dependence on material. We ask if the difference in

viewing behavior for different materials is in any way significantly

different. For this test, we generate 7 different sets of gaze density

maps g0(m), g1(m), . . . , g6(m), wherem takes on only two different

values, and we consider all viewing directions combined or each

separately. For each of the 7 sets there is only one difference that

can be computed. Without considering viewing direction this is

the difference of two sets stemming from 35 observers each, and

in the other case it is the sets from 5 observers. As above, we are

generating a random distribution for the difference values, by either

considering all data of different directions and randomly splitting

it into two sets of 35 observers each, or considering the data from

one viewing direction and randomly splitting into 5 each. Then we

can directly compute the rank of true value in the distribution of

randomly generated ones to provide the significance.

Figure 12 shows the result of this test. We find that 4 models

exhibit a significant difference between gaze density maps for the

different materials when the viewing direction is ignored. In all other

cases the dependence on material is not statistically significant.

6.6 Stable features
We wonder whether any surface features are consistently attended

to by the observers across the different conditions. Based on our

analysis so far, we drop the dependence on material as a condition

and only consider viewing direction. This means, for each object we

consider the 7 gaze density maps g(ϕ) consisting of the data from
10 observers each.

We may consider a region on the surface and ask whether it

has been attended from 3 or more viewing directions. This can be

estimated using the Matusita affinity ∥s(g(ϕ), . . .)∥1 for the set of

gaze density maps of the different viewing conditions, restricted to

the region of interest. Note that the vector s contains large values
exactly for those regions that have high affinity. So we might as

well inspect the affinity vector over all of the surface.

First, we compute the affinity for the set of all viewing directions,

showing which surface regions are attended to from all directions.

The 4 objects with overall largest affinity are depicted in Figure 13,

for most objects the resulting affinity is zero. The range of views

covering 90 degrees is apparently too wide for features to be consis-

tently attended to.

Consequently, we reduce the desired range of views to either 30

or 60 degrees. This means we compute the affinity vector for sets of

3 or 5 views. For visualization purposes we combine the resulting

affinity vectors. The result is depicted in Figure 14, showing that

stability across 30 degrees works quite well, yet stability for 60

degrees leaves only very few regions consistently attended. From a

visual inspection of the visualization we would speculate that stable

features contain more semantic information, such as the eyes of the

Bunny, the Face, and the windows for the watchtower, or the points

of symmetry for the ring and the starfish.

7 COMPUTATIONAL MODEL OF GAZE DENSITY
The idea of geometric saliency has been used in applications prob-

ably because of the existence of computational models, i.e., the

possibility to guess the gaze density map for a given 3D shape based

on the geometry alone. Here we try to develop such a computational

model based on the data we have collected and using the currently

popular convolutional neural networks (CNN). This computational

model can then be used in applications.

The dependence of salient features on viewing direction suggests

to predict saliency based on view-dependent information unlike

common geometric saliency models, which are independent of view-

ing conditions [Lee et al. 2005; Song et al. 2014a].

In particular, the prediction of saliency is based on the surface

normals (relative to the view coordinate system) as well as the depth

information of objects. With this information as input, we train two

different models for gaze density estimation.

(1) All shapes in different viewing directions are used to predict

the gaze density of a shape for a new viewing direction.

(2) Shapes in different viewing directions are used to predict the

gaze density of a new shape.

In the first model the computational model only needs to predict a

new viewing direction, having information on the viewing behavior

for the shape from other viewing directions. The second model

analyzes generalization towards unknown shapes.

7.1 CNN model and training
For both models we train a simple 5-layer CNN consisting of three

convolutional layers followed by a fully connected and upsampling

layer. The network layout and further details are given in Figure 15.

The training input images contain the normals and depth map

of the sample objects. The first three channels of the input image

represent the surface normals at each (visible) point of the object,

the last channel represents the depth value of the underlying surface
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Fig. 12. Significance test of whether a split along the material condition leads to large difference in the gaze density maps than an arbitrary split. The small
bars show the results for the individual viewing directions and the large bar shows the results combining all views.

Fig. 13. The geometric mean of all conditions combined, illustrating regions
on the surface attended to in all views and for both materials. The selected
shapes have the highest similarity measure in our data set.

points. The output of the network is the predicted gaze density map

for different viewing directions of an object.

As a loss functionwe use themean squared error (MSE) on the pre-

dicted gaze density.We employ a dropout layer and early stopping to

prevent overfitting. The overall validation loss is decreasing during

the first 50 training epochs due to the rather small amount of train-

ing data. The complete dataset with 224 samples (of 16 objects with

14 view directions each) is evaluated with 4-fold cross-validation.

For the first trained model, the dataset was split according to the

view directions. In each cross validation run, 3 view directions were

used as the test set (48 samples in total). The remaining samples

were used as the training set (176 samples). For the second model,

the dataset was split according to object categories. In this case, the

samples of 4 objects were used as the test set (56 samples in total)

in each cross validation run. This left a total of 168 samples as the

training set.

7.2 Gaze density map prediction
The first prediction model is able to predict gaze density maps for

previously unseen viewing directions. However, given the small

amount of available data, it is difficult to prevent the model from

overfitting. Even though we employ multiple measures to prevent

overfitting, it remains unclear how well the model generalizes to

completely different unseen viewing directions. Some exemplary

test input images and the resulting predicted gaze density maps are

depicted in Figure 16.

The second prediction model is trained only on a subset of the

objects (12 out of 16) and is able to predict gaze density maps for

the 4 unseen objects (of each cross-validation fold). This situation

is similar to other generic computational models for the prediction

of gaze density, such as mesh saliency [Lee et al. 2005]. We wish to

compare the trained CNN to mesh saliency, however, comparing

the MSE would be unfair, as our model is specifically trained to

minimize this error, while mesh saliency only promises to provide

qualitative results. Consequently, we base the comparison only on

the relative ordering of the values. Specifically, we use Kendall’s

rank correlation coefficient [Kendall 1938], which measures the

correlation between two variables in the range −1 ≤ τ ≤ 1. We rank

the estimated gaze density maps with the ground truth gaze density

maps and compare them to the rank of the calculated saliency maps

with respect to the ground truth.

The mean τ coefficient for the CNN-predicted gaze density is 0.40

(with all p-values below 0.01), while mesh saliency yields a mean τ
coefficient of 0.13 (with all but 4 p-values below 0.01). These results

indicate that both computational models are positively correlated

with the ground truth gaze density maps in a significant way, yet

the correlation for our CNN-model is much higher.

The resulting MSE (averaged over the cross-validation) for the

first model (unseen view direction prediction) is 189.5. For the sec-

ond model the training results in an averaged MSE score of 249.5.
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Fig. 14. Visualizing features that are stable across a variation in viewing direction. Top row shows the combination of heat maps that result from considering
the geometric means of 3 adjacent viewing directions, i.e., features that have been attended to consistently within 30

◦. Results in the lower row are based on
requiring that features appear consistently across 60◦ viewing angle. Note how features retained for the larger insensitivity to viewing direction are exclusively
of semantic nature.
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Fig. 15. Saliency prediction network architecture. The input to the network
is an image of size 128 × 128 × 4. The network consists of 3 convolutional
layers with filter kernels of size 5×5with stride 2 and padding 2 and ReLU as
activation functions. This follows a fully connected layer and a subsequent
upsampling layer to produce a resulting saliency map of size 128 × 128 × 1.

The fact that using the shape to train the model for new views

improves the prediction suggests that certain shape features can-

not be learned from the geometry alone – they are likely higher

level features of the shapes. We expect that more refined neural net-

works would result in better computational models for gaze density

prediction.

8 DISCUSSION
Our analysis as well as the computational model suggest some

characteristics of salient features on 3D shapes, at least for amajority

of object stimuli:

• There is no significant dependence of fixations on the two

materials used for the stimuli.

• Salient features exhibit a tendency to be view-dependent and

the ones that are stable across a wide range of views appear

to be features with semantic meaning.

Both observations have consequences and deserve some discussion.

The independence of fixation on the moderate gloss of the surface

may seem natural, but it contradicts the idea that local contrast is the

strongest low-level feature in the image function. It rather suggests

that saccade targets on geometry are independent of contrast, either

governed by the occulomotor system alone, or dependent on other

features of the scene. On the other hand, the materials used in

our experiment only differ slightly, and it would be interesting

to understand the extent to which the fixations are stable across

different materials and under various lighting conditions.

The dependence of salient features on viewing angle is also intu-

itive. The better performance of our simple CNN-model compared to

mesh saliency could be due to the dependence of salient features on

view direction. Not using information on the view direction should

lead to reduced predictive power. We would speculate that the suc-

cess of computational models is based on a bias in the commonly

used shapes: relevant features almost always have larger curvature

variation and thus appear as part of the salient features predicted by

the model. It would be interesting to modify features with semantic

meaning such that computational models fail to predict them and

then see if they are still dominant in a human subject experiment.

Yet how to quantify semantics still remains a topic for future study.

Note that our analysis is based on the whole viewing sequences

without considering temporal changes. It would be interesting to

see whether saliency of objects changes over time.

While we have made a significant effort in our experiment, in-

volving more than 70 participants and using custom-built hardware,

the data would still benefit from being based on a larger corpus. To

this end, we believe that automation would help to avoid errors in

setting up the individual conditions for each observer and may also

increase the geometric accuracy of the presented stimulus.

We have decided to use a mapping from the 4D space of pairs of

pupil positions directly to 3D. While this has led to data with few

significant outliers, it did create a tendency for the fixations to have

depth values that are too small. In the specific setup, we could have

also intersected eye rays computed for each eye individually against

the geometry of the shape. This, however, makes it more difficult to

estimate which of several possible intersections along a silhouette

region are the right match. It would be interesting to combine all
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Fig. 16. CNN prediction results for different objects (from top to bottom): normal and depth channels of the input image, ground truth gaze density map,
predicted gaze density map from the trained model for unseen viewing direction prediction, predicted gaze density map for unseen objects, calculated saliency
map.

available information, yet, we are unsure how to do this. Further

studies about characteristics of eye movements in space would offer

useful guidelines in this regard.

9 CONCLUSION
We have conducted an eye tracking experiment on physical 3D

shapes. This allows defining saliency for real objects. Our analy-

sis results indicate that consistent features across different views

contain more semantic information but there is no significant fix-

ation dependence between the ABS and sandstone materials of

the stimulus. To our knowledge, this is the first large data set of its

kind, closing a large gap, particularly compared to the multitude of

such data for images. We make the data available, in raw as well

as processed form – and hope it will be useful as a basis for new

computational models of saliency.
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