
crystals

Communication

Crystal Structure of the Protonated Germanide
Cluster [HGe9]3−

Corinna Lorenz and Nikolaus Korber *

Institute of Inorganic Chemistry, University of Regensburg, 93055 Regensburg, Germany; Corinna.Lorenz@ur.de
* Correspondence: Nikolaus.Korber@ur.de; Tel.: +49-941-943-4448; Fax: +49-941-943-1812

Received: 28 August 2018; Accepted: 17 September 2018; Published: 21 September 2018
����������
�������

Abstract: A single crystal X-ray diffraction study of the new compound [Rb([2.2.2]crypt)]2

[Rb([18]crown−6)][HGe9]·4NH3 revealed the presence of the first protonated nine-atom germanide
cluster [HGe9]3−. It forms from Rb4Ge9 in liquid ammonia, so that [Ge9]4− can be considered as the
base and [HGe9]3− its formally conjugated acid. The H atom is attached to a germanium vertex atom
of the basal square plane, as it is known for [RGe9]3− (R = C5H9, Mes, etc.) or [HE9]3− (E = Si, Sn).
In addition, the proton could be located unambiguously in the Fourier difference map. [HGe9]3− also
represents a nido cluster species with 22 cluster-bonding electrons, which can be considered the most
stable structure for nine-atom cluster species for all group 14 elements.
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1. Introduction

The ability of metals to form negatively charged species was experimentally proven by Joannis
in 1891 [1]. Later, Zintl and co-workers determined, by means of electrochemical and potentiometric
experiments on solutions of alkali metal alloys of the heavier main group elements in liquid ammonia,
that these species must be polyanionic salts [2,3]. However, the shape of the so-called Zintl ions
was then still completely unknown. This changed after the introduction of the chelating alkali metal
ligand cryptand to these solutions by Corbett [4,5], when the isolation and structural characterization
of solvate structures containing Zintl anions was facilitated. At present, for group 14 elements the
representative homoatomic cluster anions identified in several solid state and solvate structures are
[E4]4− (E = Si–Pb) [6–9], [E5]2− (E = Si–Pb) [10–13], [E9]x− (x = 4; E = Si-Pb; x = 3, E = Si–Sn; x = 2
E = Si,Ge) [5,14–18] and [E10]2− (E = Ge, Pb) [19,20]. For solvation experiments with germanium
clusters, A4Ge9 (A = K–Cs) [21,22] or A12Ge17 (A = Na, K, K/Rb, Rb, Cs) [23,24] phases are used as
starting materials, which contain the nine-atom germanide cluster or respectively [Ge9]4−/[Ge4]4−

cage anions in a ratio of 1:2. These compounds are readily soluble in anhydrous liquid ammonia,
ethylendiamine or N,N-dimethylformamide [4,25,26]. Recently, we reported on the synthesis and
first structural characterization of the elusive and highly charged [Ge4]4− anion in Cs4Ge4·9NH3 [7].
However, solution chemistry with the more stable and better characterized [Ge9] clusters is far better
developed. They undergo a variety of reactions with different reagents like transition metal complexes,
acyl chlorides or chlorophosphines [5,27–29]. As mentioned above, the [Ge9] clusters exist with three
different overall charges: −4, −3 and −2. Starting with the fourfold negatively charged cluster,
the charge of −3 and −2 can either be explained by oxidation (Equation (1)) [30,31] or protonation
(Equation (2)) [32].

[Ge9]4− � [Ge9]3− + e− (solv) � [Ge9]2− + 2e− (solv) (1)

[Ge9]4− + 2 NH3 � [HGe9]3− + NH3 + NH2
− � [H2Ge9]2− + 2 NH2

− (2)
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Sevov et al. assume that [Ge9]4− clusters are oxidized after dissolution. In solution they
are then in an equilibrium with their oxidized species [Ge9]3− and [Ge9]2− and solvated electrons
(Equation (1)) [31]. An oxidation state of −3 or −2 per [Ge9] cage can also be observed in dimers
[Ge9-Ge9]6− [16,33,34], trimers [Ge9=Ge9=Ge9]6− [35,36], tetramers [Ge9=Ge9=Ge9=Ge9]8− [37,38] or
in one-dimensionally extended 1

∞[-Ge9-]2− [39–41] chains, which could be obtained by the oxidative
coupling of [Ge9]4− anions. However, the protonation of [Ge9]4− clusters is also highly likely
(Equation (2)). Here, [Ge9]4− can be considered as the base and [HGe9]3− as the formal conjugated
acid. For the lighter and the heavier homologous elements of group 14, the formation of [HSi9]3− and
[HSn9]3− has already been reported in the literature [15,32], as well as [H2Si9]2− [42] and a mixed
Si/Ge species [H2(Si/Ge)9]2− [14]. Thus, it seemed highly likely that pure [Ge9]4− clusters would also
undergo similar protolytic reactions.

2. Results and Discussion

The cluster compound [Rb([2.2.2]crypt)]2[Rb([18]crown−6)][HGe9]·4NH3 could be observed
after the extraction of Rb4Ge9 in liquid ammonia in the presence of two chelating agents
[2.2.2]cryptand (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane) and [18]crown−6 and the
organocadmium compound CdPh2 (Appendix A). A single crystal X-ray structure diffraction study
clearly revealed the presence of the first protonated nine-atom germanide cluster [HGe9]3−. Next to
the anionic cluster, the asymmetric unit also contains three rubidium cations, which are sequestered
by [18]crown−6 and [2.2.2]cryptand, and four ammonia molecules of crystallization. P21/n could
be determined as the space group of the solvate structure. The space group was confirmed using
PLATON [43]. In Table 1, the crystal structure and structure refinement details are listed.

Table 1. Crystallographic data of [Rb([2.2.2]crypt)]2[Rb([18]crown−6)][HGe9]·4NH3.

Chemical Formula [Rb([2.2.2]crypt)]2[Rb([18]crown−6)][HGe9]·4NH3

CCDC No. * 1858787
Mr [g·mol−1] 1995.14

Crystal system monoclinic
Space group P21/n

a [Å] 13.8629(3)
b [Å] 14.3533(3)
c [Å] 38.8444(6)
α [◦] 90
β [◦] 95.899(2)
γ [◦] 90

V [Å3] 7688.3(3)
Z 4

F(000) (e) 3960.0
ρcalc [g·cm−3] 1.719
µ [mm−1] 5.415

Absorption correction numerical [44]
Diffractometer (radiation source) MoKα (λ = 0.71073)

2θ-range for data collection [◦] 6.4–53.464
Reflections collected/independent 130738/16301

Data/restraints/parameters 16301/18/872
Goodness-of-fit on F2 1.110

Final R indices [I > 2σ(I)] R1 = 0.0476, wR2 = 0.0791
R indices (all data) R1 = 0.0762, wR2 = 0.0863

Rint 0.0923
∆ρmax, ∆ρmax [e·Å−3] 0.76/−0.51

* Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre, CCDC, 12 Union
Road, Cambridge CB21EZ, UK. Copies of the data can be obtained free of charge on quoting the depository
number CCDC-1858787.

The anionic part of the compound is represented by the [HGe9]3− cluster (Figure 1), which is
the first protonated nine-atom germanide cluster to be reported to date. The Ge-Ge distances within
the cage anion are listed in Table 2. The average atomic distance (d) has a value of 2.637 Å. This is
in good accordance with previously reported germanide clusters [16,18]. The longest Ge-Ge bond
lengths can be found in the central square plane (Ge5-Ge6, Ge5-Ge8, Ge6-Ge7, Ge7-Ge8, Table 2).
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In contrast, the shortest Ge-Ge atomic distances with values of 2.460(5) Å ((H-Ge1)-Ge2) and 2.529(4) Å
((H-Ge1)-Ge4) are observed in the basal square plane, which involve the germanium atom to which
the hydrogen atom is attached. While these two bond lengths are reduced, the opposite two Ge-Ge
distances in the basal square plane Ge2-Ge3 = 2.686(6) Å and Ge3-Ge4 = 2.681(6) Å (Figure 1) are
elongated. This reaction of the bond lengths of the basal square plane of the cluster is an expected and
already documented consequence of any functionalization by exo-bonded ligands [33,45–49]. Figure 2
shows the ligand-free (a,e) [50], protonated (b,f), coupled (c,g) [33] and twofold substituted (d,h) [51]
germanide cluster with a view to the basal square plane and each rotated by 90◦. The [Ge9]4− cluster,
from which all listed cluster species can be derived, ideally shows C4v symmetry. Its shape can be
best described as a one-capped square antiprism (Figure 2a,e). According to Wade´s electron counting
rules [52,53], the [Ge9]4− anion can be considered as a nido cluster with 2n + 4 = 22 cluster-bonding
electrons. Protonation, functionalization by one or two ligands or coupling of n [Ge9]4− anions
causes a deviation from that ideal C4v symmetry to approximately C2v or Cs symmetry, as it is for
the compound reported here (Figure 2). However, there is no fundamental change of the electronic
situation and they remain 22-electron 9-vertex nido cluster species. Overall, the clusters only differ
in the level of distortion of the basal square plane [51]. As mentioned above, functionalization by
one ligand or protonation causes an elongation and reduction of two Ge-Ge atomic distances in
the open face (Figure 2b,c,f,g). Thus, the clusters mostly adopt Cs symmetry. If two ligands are
bonded on two facing germanium atoms (Figure 2d), the basal square plane undergoes an even greater
compression (Figure 2h). This results in an overall shortening of the Ge-Ge atomic distances and they
can be considered almost equal. As a result, the more symmetrical [R2-Ge9]2− clusters mostly adopt
approximately C2v symmetry [48,49,54–56].
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Figure 2. Comparison of different germanide cluster species with view to the basal square
plane and rotation by 90◦: (a,e) [Ge9]4− cluster in [K-(2,2)diaza-[18]-crown-6]K3Ge9·2en;
(b,f) [HGe9]3− in [Rb([2.2.2]crypt)]2[Rb([18]crown−6)][HGe9]·4NH3; (c,g) [(Ge9-Ge9)]6− in
Cs4(K-crypt)2[(Ge9)-(Ge9)]·6en and (d,h) [Ph2Bi-(Ge9)-BiPh2]2− in (K-crypt)2[Ge9(BiPh2)2]·en.
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Table 2. Distances [Å] within the anionic moiety [HGe9]3−.

Atom1-Atom2 Distance (Å) Atom1-Atom2 Distance (Å)

Ge1-H 1.39(9) Ge4-Ge8 2.584(7)
Ge1-Ge2 2.460(5) Ge4-Ge5 2.693(6)
Ge1-Ge4 2.529(4) Ge5-Ge6 2.852(4)
Ge1-Ge5 2.600(5) Ge5-Ge8 2.788(7)
Ge1-Ge6 2.558(3) Ge5-Ge9 2.639(6)
Ge2-Ge3 2.686(6) Ge6-Ge7 2.758(3)
Ge2-Ge6 2.658(2) Ge6-Ge9 2.588(4)
Ge2-Ge7 2.553(3) Ge7-Ge8 2.874(5)
Ge3-Ge4 2.681(6) Ge7-Ge9 2.579(5)
Ge3-Ge7 2.551(6) Ge8-Ge9 2.576(6)
Ge3-Ge8 2.539(8)

The germanide cluster in the described compound shows a slight orientational disorder that could
be resolved by a 0.695:0.305 ratio. Due to the high quality of the single crystal X-ray data (Table 1),
the proton of the [HGe9]3− cluster could be located unambiguously on the Fourier difference map.
The Ge-H distance of 1.39(9) Å is slightly shorter than the values found in the literature (1.45(3) Å [57]).
The proton is also located on a vertex germanium atom of the basal square plane, as it is supposed to
be for [HSn9]3− [32], and found at [HSi9]3− [14,15].

The threefold negative charge of [HGe9]3− is compensated by two [Rb[2.2.2]crypt]+ and one
[Rb[18]crown–6]+ complex. Due to the two different chelating agents, the anion and the cations are
almost completely separated. Only Rb1 of the [Rb[18]crown-6]+ complex shows contact to the anion.
It coordinates η4 like on the basal square plane of the cage, the site where electrophilic substitution is
preferred [31]. The Rb-Ge distances range between 3.584(6)–3.740(2) Å. Rb1 is removed by 1.021 Å
out of the mean plane of the crown ether molecule with Rb1-O distances of 2.873(3)–3.088(4) Å. Rb2
and Rb3 are sequestered by the [2.2.2]cryptand. The Rb-O distances of 2.846(3)–2.908(3) Å as well
as the Rb-N distances of 2.990(3)–3.3.052(4) Å are in good accordance with the values found in the
literature [12]. Additionally, there are four ammonia molecules of crystallization. Two of them refine
to complete occupancy, the remaining two are 80% and 82% occupied.

Altogether, the [Rb[2.2.2]crypt]+ and the [Rb[18]crown–6]+ complexes form cavities along
the crystallographic a- and b-axis, where the [HGe9]3− clusters and the ammonia molecules of
crystallization are located (Figure 3).Crystals 2018, 8, x FOR PEER REVIEW  5 of 8 
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3. Conclusions

We were able to synthesize and structurally characterize the first protonated germanide cluster
[HGe9]3− in the compound [Rb([2.2.2]crypt)]2[Rb([18]crown−6)][HGe9]·4NH3. The hydrogen atom
could be located unambiguously in the Fourier difference map and is bonded to a vertex germanium
atom of the basal square plane of the cluster, as has also been reported for the other group 14 species
[HSi9]3− and [HSn9]3−.

Author Contributions: C.L. carried out experimental work (synthesis, crystallization, X-ray structure determination)
and prepared the manuscript. N.K. designed and conceived the study.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A.

Appendix A.1. Experimental Details

All operations were carried out under an argon atmosphere using standard Schlenk and Glovebox
techniques. Liquid ammonia was stored over sodium metal in a dry ice cooled Dewar vessel and was
directly condensed on the reaction mixture. Germanium (irregular peaces, 99.999%, 5N, ABCR) was
used as received. Rubidium was synthesized according to Hackspill [58] and distilled for purification.
[18]crown−6 was sublimated under dynamic vacuum at 353 K. [2.2.2]cryptand (ABCR) was used
without further purification. In the reaction mixtures containing the two chelating agents, crystals of
the composition C12H24O6·2NH3 and C18H36O6N2·2NH3 could also be observed [59].

Appendix A.1.1. Synthesis of [Rb([2.2.2]crypt)]2[Rb([18]crown−6)][HGe9]·4NH3

Synthesis of the precursor Rb4Ge9: The phase was synthesized via solid-state reaction. Ge (1.313 g,
18.071 mmol) and Rb (0.687 g, 8.035 mmol) were enclosed in tantalum containers and jacketed in
an evacuated ampoule of fused silica. The containers were heated to 1223 K at a rate of 25 K·h−1.
The temperature was maintained for 2 h. The ampoule was cooled down with a rate of 20 K·h−1.
The precursor was stored in a glovebox under argon.

[Rb([2.2.2]crypt)]2[Rb([18]crown−6)][HGe9]·4NH3: 100 mg (0.100 mmol) of the precursor was
dissolved in about 15 ml of anhydrous liquid ammonia together with 39.8 mg (0.151 mmol)
[18]crown−6, 94.5 mg (0.251 mmol) [2.2.2]cryptand and 26.7 mg (0.100 mmol) CdPh2. The Schlenk
tube was stored at 197 K. After several months, very few brownish crystals could be observed.
The compound accounts for about 15% of the crystalline yield.

Appendix A.1.2. X-ray Diffraction Studies

The crystals are very temperature and moisture labile. To overcome the difficult handling, a
technique developed by Kottke and Stalke, was used [60,61]. Crystals were directly isolated with a
micro spatula from the reaction solutions into a recess of a glass slide containing perfluoroether oil,
which was cooled by liquid nitrogen steam. Crystals were selected by means of a stereo microscope.
An appropriate crystal was attached on a MicroLoop™ and placed on a goniometer head on the
diffractometer. In Table 1, details of the single crystal X-Ray structure analysis are listed.

Due to the disorder of the cluster cage and the incomplete occupation of N7 and N8, SIMU
restraints were applied. Hydrogen atoms were calculated and refined according to a riding model.
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