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Di-tert-butyldiphosphatetrahedrane: Catalytic Synthesis of the Elusive
Phosphaalkyne Dimer
Gabriele Hierlmeier, Peter Coburger, Michael Bodensteiner, and Robert Wolf*

Abstract: While tetrahedranes as a family are scarce, neutral
heteroatomic species are all but unknown, with the only
reported example being AsP3. Herein, we describe the isolation
of a neutral heteroatomic X2Y2 molecular tetrahedron (X, Y=

p-block elements), which also is the long-sought-after free
phosphaalkyne dimer. Di-tert-butyldiphosphatetrahedrane,
(tBuCP)2, is formed from the monomer tBuCP in a nickel-
catalyzed dimerization reaction using [(NHC)Ni(CO)3]
(NHC = 1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene
(IMes) and 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-yli-
dene (IPr)). Single-crystal X-ray structure determination of
a silver(I) complex confirms the structure of (tBuCP)2. The
influence of the N-heterocyclic carbene ligand on the catalytic
reaction was investigated, and a mechanism was elucidated
using a combination of synthetic and kinetic studies and
quantum chemical calculations.

Tetrahedranes (tricyclo[1.1.0.02,4]butanes) have considerable
practical and theoretical significance because of their high
energy content, large bond strain and ensuing high reactiv-
ity.[1] While theoretical chemists have endeavored to deter-
mine the electronic structure and the thermodynamic stability
of tetrahedranes with ever increasing accuracy,[2–5] synthetic
chemists have striven to develop effective protocols for their
preparation. The isolation by Maier and co-workers of the
first organic tetrahedrane, (tBuC)4, was a milestone in organic
synthesis (Figure 1 a).[6] Nevertheless, the number of well-
characterized tetrahedranes remains small, even more than
four decades later.[7–13] Some heavier congeners, for example,
(RE)4 (E = Si and Ge, R = SitBu3) and related group 13
element compounds, are also known,[14–21] as are the structures
adopted by white phosphorus (P4) and yellow arsenic (As4).
Undoubtedly, P4 is the most industrially significant tetrahe-
drane. Moreover, neutral tetrahedranes containing two differ-
ent heteroatoms in their skeleton are almost unknown, the
only example to have been isolated so far being AsP3, which
was synthesized by reaction of a niobium cyclotriphosphido
complex with AsCl3.

[22]

Diphosphatetrahedranes, (RCP)2, represent a particularly
attractive target in this area, potentially providing a hybrid
between the two most famous tetrahedral molecules, P4 and
(tBuC)4. However, high level quantum chemical studies
indicate that, similar to pure carbon-based tetrahedranes,
such a species must be stabilized by bulky alkyl substituents
(Figure 1b). Thus, while 1,2-diphosphatriafulvene (IV) is
predicted to be the preferred isomer of (HCP)2, the diphos-
phatetrahedrane (I) is the most stable isomer of (tBuCP)2

(Figure 1b).[3, 5] Related diphosphacyclobutadienes II and III
are considerably higher in energy in both cases.

We reasoned that the dimerization of phosphaalkynes,
R-C/P, could present an elegant avenue toward elusive
diphosphatetrahedranes. Indeed, transition metal-bound
phosphaalkyne dimers (most frequently 1,3-diphosphacyclo-
butadienes,[23] but also other isomers) commonly result from
transition metal-mediated phosphaalkyne oligomerization
reactions.[24] Free diphosphatetrahedranes have also been
proposed as key intermediates in thermal and photochemical
oligomerization reactions of phosphaalkynes, which typically
lead to higher phosphaalkyne oligomers (RCP)n (n = 3–
6).[25–30] However, an uncomplexed phosphaalkyne dimer
has never been observed.

Building on previous work on iron(-I)- and cobalt(-I)-
mediated phosphaalkyne dimerizations,[31–33] we recently
began studying the analogous reactivity of phosphaalkynes
with nickel(0) species. Unexpectedly, the 31P{1H} NMR spec-
trum of the reaction of [Ni(CO)4] with an excess of tBuCP
(50 equivalents) exhibited a high-field-shifted singlet at
@468.2 ppm in addition to the signal of free tBuCP at
@68.1 ppm. It was anticipated that such an upfield shift
could be consistent with formation of a P2C2 tetrahedron (cf.

Figure 1. a) The tetrahedrane (tBuC)4 in equilibrium with the cyclo-
butadiene isomer and DFT structure of (tBuCP)2 ;[6] b) calculated
relative electronic energies (DE in kcalmol@1) for (RCP)2 with R = H
(data from ref. [3]) and R = tBu (see Supporting Information).
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P4, d =@521 ppm) through dimerization of tBuCP. This
assumption was later confirmed through isolation of the
pure product 1a (vide infra). A subsequent screening of
various nickel tricarbonyl complexes [(NHC)Ni(CO)3]
(NHC = IMes, IPr, iPr2ImMe (= 1,3-di(isopropyl)-4,5-di-
(methyl)imidazolin-2-ylidene)) for this dimerization reaction
of tBuCP revealed that the bulky NHC ligands IPr and IMes
gave optimal results (see Supporting Information for details),
while the use of the smaller isopropyl-substituted ligand
iPr2ImMe resulted in only a low yield of 1a. Using [(IMes)Ni-
(CO)3] , 1a can be isolated in up to 55% yield on a 500 mg
scale using just 2 mol% of the nickel catalyst in n-hexane for
18 h (Figure 2). Fractional condensation of the raw product

affords pure 1a as a pyrophoric, yellow oil with a melting
point of @32 88C. Above the melting point, neat 1 a dimerizes
to the known ladderane-type tetramer 2a (Figure 2) within
several hours.[25] However, 1 a is stable at @80 88C for weeks
without noticeable decomposition as evidenced by
31P{1H} NMR spectroscopy. Dimerization of 1 a to 2a is
significantly slower in dilute solutions (e.g. 0.2m in toluene).
The use of 1-adamantylphosphalkyne under similar condi-
tions results in the analogous formation of diadamantyldi-
phosphatetrahedrane (1b), as indicated by a resonance at
@479.8 ppm in 31P{1H} NMR spectra. However, attempts to
isolate 1 b in pure form have thus far been hampered by
decomposition to higher phosphaalkyne oligomers (e.g. the
ladderane (AdCP)4 (2b) analogous to 2a).

Multinuclear NMR spectra of 1a are in agreement with
the tetrahedral structure with localized C2v symmetry. The
31P{1H} NMR spectrum of 1a in C6D6 displays a singlet

resonance at @468.2 ppm similar to other tetrahedral phos-
phorus compounds, for example, P4 (d(31P) =@520 ppm) and
AsP3 (d(31P) =@484 ppm).[34–36] The 1H NMR spectrum shows
a singlet resonance at 1.07 ppm for the tBu group. In the
13C{1H} spectrum, a singlet resonance is observed for the
methyl groups, whereas the two other carbon signals split into
triplets with 1JP-C = 46.7 Hz and 2JP-C = 5.7 Hz (Figure 2). 1a
was further characterized by elemental analysis, IR, UV/VIS
spectroscopy and mass spectrometry. The UV/VIS spectrum
reveals a weak absorption band at 275 nm (emax =

1200 Lmol@1 cm@1) tailing into the visible region with
a shoulder at 350 nm accounting for the yellow color. Analysis
of 1a by EI-MS mass spectrometry revealed a molecular ion
peak at m/z = 200.0879 in good agreement with the calculated
molecular ion peak (m/z = 200.0878) and additionally showed
fragmentation pathways via loss of P2 units (e.g. M+-CH3-P2 :
123.1172, calcd 123.1173).

Attempts to grow single crystals of 1a suitable for X-ray
crystallography have so far been unsuccessful. For this reason,
the preparation of a metal complex was attempted with
[Ag(CH2Cl2)2(pftb)] (pftb = Al{OC(CF3)3}4).[37, 38] A clean
reaction was observed in toluene using two equivalents of
1a per silver atom, and a species with a significantly downfield
shifted 31P{1H} NMR signal (@446.8 ppm, cf. @468.2 ppm for
1a) was detected. Further NMR monitoring also showed the
slow formation of the tetramer 2a. A single-crystal X-ray
diffraction study on crystals grown from CH2Cl2 revealed the
formation of [{Ag(1a)(2a)}2][pftb]2 (3), where both 1a and 2a
are incorporated in the same complex (Figure 3).[39] Crucially,
the X-ray diffraction experiment confirms the tetrahedral
structure of 1a. The P2C2 tetrahedron is bound to the Ag atom
in an h2 fashion via the P@P bond (P1@P2 2.308(3) c). The
four P@C bond lengths in the tetrahedron range 1.821(9)–
1.836(9) c, while the C@C bond length (C1@C2 1.462(12) c)
is similar to that of (tBuC)4 (average: 1.485 c).[40] Broadened
singlet resonances are observed in the 31P{1H} NMR spectrum
at @19.8 and @446.8 ppm when crystals of 3 are dissolved inFigure 2. a) Synthesis of 1a by [(NHC)Ni(CO)3] (NHC= IMes, IPr)

catalyzed dimerization of tBuCP, b) 31P{1H} and 13C{1H} NMR spectra
for 1a at 300 K in C6D6. The asterisk marks a trace of the tetramer
(tBuCP)4 (2a, that is, the dimerization product of 1a).

Figure 3. Molecular structure of 3 in the solid state. Thermal ellipsoids
are set at 50 % probability level. Hydrogen atoms and the [pftb]@

counterions are omitted for clarity. Selected bond lengths [b] and
angles [88]: P1-P2 2.308(3), P1-C1 1.836(9), P1-C2 1.835(9), P2-C1
1.821(9), P2-C2 1.820(8), C1-C2 1.462(12), C1-P2-P1 51.2(3), C1-P2-C2
47.4(4), C2-P2-P1 51.1(3), C1-P1-P2 50.6(3), C2-P1-P2 50.5(3), C2-P1-
C1 46.9(4), P2-C1-P1 78.3(3), C2-C1-P2 66.3(5), C2-C1-P1 66.5(5), P2-
C2-P1 78.3(3), C1-C2-P2 66.4(5), C1-C2-P1 66.6(5).[45]
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CD2Cl2, and the 1H NMR data are also consistent with the
molecular structure obtained by X-ray crystallography.[41]

In an attempt to identify possible intermediates in the
formation of 1a, the nickel tricarbonyl complexes [(NHC)Ni-
(CO)3] (NHC = IMes, IPr, iPr2ImMe) were reacted with one
equivalent of phosphaalkyne RCP (R = tBu, Ad) in n-hexane
at ambient temperature. Each of these reactions led to an
instant color change from colorless to bright yellow and
concomitant gas evolution (liberation of CO gas). For the
sterically more demanding NHC ligands IPr and IMes, the
phosphaalkyne complexes [(NHC)Ni(CO)(PCR)] (NHC =

IMes, R = tBu (4a), Ad (4b), NHC = IPr; R = tBu (4 c), Ad
(4d)) featuring h2-bound phosphaalkyne ligands were the sole
P-containing products of these reactions (Figure 4a). Com-

plexes 4a–4d can be isolated as crystalline solids in yields
from 34% to 87 %, and were characterized by single crystal
X-ray diffraction, multinuclear NMR spectroscopy, IR spec-
troscopy and elemental analysis (see Supporting Information
for details). The structural and spectroscopic data compare
well to the related, isoelectronic complexes [(iPr2Im)2Ni-
(PCtBu)] (iPr2Im = 1,3-di(isopropyl)imidazolin-2-ylidene)
and [(trop2NMe)Ni(PCPh3)}] (trop = 5H-dibenzo-
[a,d]cyclohepten-5-yl).[42,43]

Conversely, the reaction of tBuCP with [(iPr2ImMe)Ni-
(CO)3] afforded a mixture of the mononuclear 1,3-diphos-
phacyclobutadiene complex [(iPr2ImMe)Ni(CO)(h4-

P2C2tBu2)] (5), the dinuclear complex [{(iPr2ImMe)Ni-
(CO)}2(m,h2 :h2-tBuCP)] (6) and a tetranuclear cluster
[{(iPr2ImMe)Ni2(CO)2(tBuCP)}2] (7, Figure 4b). The three
different species were identified in the 31P{1H} NMR spec-
trum and structurally authenticated by X-ray diffraction
experiments after fractional crystallization. Treatment of
[(iPr2ImMe)Ni(CO)3] with just 0.5 or two equivalents of
tBuCP resulted in similar mixtures. Upon addition of tBuCP
to one equivalent of [Ni(CO)4], more than ten different
species were detected by 31P{1H} NMR spectroscopy. The
unselective nature of these reactions is in contrast to the
selective formation of the h2-bound phosphaalkyne com-
plexes 4a–d and presumably accounts for the lower yields in
the catalytic formation of 1a.

With a high-yielding protocol for the preparation of 4a in
hand, the reactivity of this species was investigated. 4a is the
most potent catalyst for the dimerization of tBuCP among all
nickel complexes investigated. Thus, a significantly shorter
reaction time for full conversion of the phosphaalkyne is
required with 4a than with [(IMes)Ni(CO)3]. High temper-
ature 31P{1H} NMR spectroscopic monitoring of this catalytic
dimerization reaction revealed the presence of 4a at a con-
stant concentration throughout the whole reaction (see
Supporting Information for further details). These observa-
tions suggest that 4 a is the resting state for the catalytic cycle.
Further reaction intermediates were not detected by
31P{1H} NMR spectroscopy even upon monitoring the reac-
tion at @80 88C. Also noteworthy is that treatment of 4a with
one equivalent AdCP affords the mixed-substituted diphos-
phatetrahedrane (P2C2AdtBu, 1c), which can be identified by
a 31P{1H} NMR singlet at @473.8 ppm.

Kinetic analysis with 0.5 to 4 mol% of 4 a indicates a first-
order dependence of the dimerization reaction in both
catalyst and phosphaalkyne. The proposed rate law is there-
fore [Eq. (1)]:

r ¼ d 1a½ A
dt
¼ k ? 4a½ A ? tBuCP½ A ð1Þ

These results are in good agreement with DFT calcula-
tions performed on the TPSS-D3BJ/def2-TZVP level, which
suggest that the reaction between the truncated model
complex [(IXy)Ni(CO)(tBuCP)] (4’’, IXy = 1,3-bis(2,6-dime-
thylphenyl)imidazolin-2-ylidene) and a molecule of tBuCP
initially affords the 1,3-diphosphacyclobutadiene complex A
(Figure 5, cf. complex 5, which differs only in the identity of
NHC ligand; see Supporting Information for more details).[44]

However, A is not the global minimum of the potential
hypersurface and transforms into an intermediate B showing
an isomerized (tBuCP)2 ligand. In the next step, a diphospha-
tetrahedrane complex C is formed. The formation of C has
a calculated activation barrier of 26.9 kcalmol@1 with respect
to A. This is well in line with the reaction temperature of
+ 60 88C required for the reaction to proceed at an appreciable
rate (vide supra). Subsequent replacement of the diphospha-
tetrahedrane 1a by another phosphaalkyne molecule is
a downhill process and re-forms the resting state 4’’ (cf.
complex 4, which is the only species we could identify by
NMR spectroscopy in solution). Notably, a different scenario

Figure 4. Synthesis of 4a–d, 5, 6 and 7; and structures of 4a and 5 in
the solid state. Thermal ellipsoids are set at 50 % probability level.
Hydrogen atoms and the second crystallographically independent
molecule (in case of 4a) are omitted for clarity. Selected bond lengths
[b] and angles [88] for 4a : Ni1-C1 1.777(3), Ni1-C7 1.931(2), Ni1-P1
2.1793(9), Ni1-C2 1.898(3), C1-O1 1.137(4), P1-C2 1.636(3), C3-C2-P1
144.2(2), C7-Ni1-P1 102.89(7), C2-Ni1-P1 46.67(8), C2-Ni1-C7 149.56-
(11), C2-P1-Ni1 57.59(10), O1-C1-Ni1 171.4(4); 5 : Ni1-P1 2.3114(3),
Ni1-P2 2.3113(3), Ni1-C2 2.0898(11), Ni1-C3 2.0637(11), P1-C2 1.7966-
(11), P1-C3 1.8143(11), P2-C2 1.8121(11), P2-C3 1.7992(11), Ni1-C1
1.7538(13), C1-O1 1.1458(17), Ni1-C12 1.9421(11), C1-Ni1-C12 94.29-
(5), O1-C1-Ni1 176.74(12), C2-P1-C3 78.74(5), C3-P2-C2 78.73(5), P1-
C2-P2 100.90(6), P2-C3-P1 100.71(6).[45]
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has been calculated for a further truncated model system
consisting of Me-C/P and [(IPh)Ni(CO)(PCMe)], (IPh = 1,3-
diphenylimidazolin-2-ylidene, see Supporting Information for
further details). In this case, significant stabilization of the
analogous 1,3-diphosphacyclobutadiene complex (A’’) is
observed. The high activation barrier calculated for the
transformation A’’!C’’ (49.8 kcal mol@1) precludes the forma-
tion of the diphosphatetrahedrane. It appears that the steric
repulsion between bulky substituents on the NHC such as
Mes and Dipp and the tBu groups has a destabilizing effect on
A, and this destabilization of the 1,3-diposphacyclobutadiene
complex, which is usually a thermodynamic sink in other
reactions,[33] enables catalytic turnover in this particular case.

In conclusion, diphosphatetrahedranes (RCP)2 (R = tBu,
Ad) have been synthesized by an unprecedented nickel(0)-
catalyzed dimerization reaction of the corresponding phos-
phaalkynes RCP. The tert-butyl-derivative (tBuCP)2 (1a) is
stable enough to be isolated and thoroughly characterized.
The molecular structure of the silver(I) complex 3 confirms
the tetrahedral structure of the molecule. 1a is a very rare
“mixed” tetrahedrane, which, moreover, represents the
hitherto elusive free phosphaalkyne dimer. Its synthesis
therefore closes a significant gap in phosphaalkyne oligomer
chemistry. 1a is a metastable compound that slowly converts
to the ladderane 2a. This reaction shows that such dimers are
indeed intermediates in phosphaalkyne tetramerizations as
proposed previously.[25,28] Synthetic, kinetic and computa-
tional investigations suggest that a 1,3-diphosphacyclobuta-
diene complex is a key intermediate and that destabilization
of this complex by steric repulsion is a crucial factor in
achieving catalysis. We are currently exploring the further
reactivity of the remarkable small molecule 1a.
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