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NUMERICAL IMPLEMENTATION

Kwant takes as an input tight-binding Hamiltonians
of nanostructures and applies the so-called wave function
approach to compute their electronic transport proper-
ties using the Landauer-Biittiker formalism [39]. Tight-
binding Hamiltonians are passed to kwant as “conven-
tional” Hermitian matrices, i.e. finite dimensional matri-
ces which fulfill (H*)T = H. However, discretizing the
continuum Hamiltonian Eq. (2) leads to a tight-binding
representation which does not fulfill this condition. Let
us clarify that the reason for this is the non-trivial (non-
constant, i.e. coordinate dependent) volume form. Con-
sider, for simplicity, a one-dimensional system with real
space coordinate ¢ and volume form dV = g(¢q)dg. On
the lattice, we use the shorthand notation ¢g; = ¢(¢;) as
well as ¥; = U(g;), where i labels the lattice sites. The
condition for the Hermiticity of H, (P|HY) = (HP|V),
is then given by
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on the lattice. From Eq. [7] it is, in general, only possible
to deduce that (H*)T = H if g(q) = const. Hence, we
use the local transformation
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which makes the volume form trivial. This can be easily
seen by considering the scalar product
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Note that in Eq. g is fully absorbed in the wave
functions and the Hamiltonian, the volume form is trivial.
Hence, using the transformation Eq. yields a tight-
binding Hamiltonian H which fulfills (H*)T = H.

We implement the magnetic fields via usual Peierls
phases and consider standard Gaussian-correlated disor-

der,
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with disorder strength K and correlation length £. For
our simulations we use K = 0.1 and £ = 7 nm. To avoid
the fermion doubling problem [25, 26], we use a conven-
tional Wilson mass term. For a recent discussion see Ref.
[27]. Note that a Wilson mass affects the specifics of the
spin-momentum texture. Such specifics are, however, ir-
relevant for our charge transport problem.

EFFECTIVE MASS POTENTIAL FOR THE TI
NANOCONE IN WEAK COAXIAL MAGNETIC
FIELD

In order to develop a feeling of how the effective po-
tential |Vi(s, B)| defined in Eq. (6) affects transport, we
consider the conductance through a clean TINC (with
the same geometry as in Fig. 3) for zero and weak coax-
ial magnetic field without doping in the leads.

The conductance for B = 0 as a function of the Fermi
energy e, depicted in Fig. 5| (a), shows equidistant con-
ductance steps of size 2e2/h. Their position and height
can be explained with the corresponding effective poten-
tials, which are plotted in Fig. b) for all l-values which
are relevant in the depicted energy range. The central
region in between the black vertical lines (600 nm < s <
1200 nm) corresponds to the truncated cone, while the re-
gions s < 600 nm and s > 1200 nm correspond to straight
leads. The leads are modeled by semi-infinite cylindri-
cal nanowires, thus |V;(s, B)| is constant. Note that for
B = 0, the effective potential |V;(s)| o |l + 0.5|/R(s) is
purely determined by the finite size confinement energy,
hence the spacing in the left lead (smaller circumference),
is larger than in the right lead (larger circumference).
Modes which enter the scattering region (the truncated
cone) via the leads are described by a well defined or-
bital angular momentum quantum number [, and each of
them feels the effective potential |V;(s)|. As soon as the
Fermi energy surpasses the effective potential for a given
l, the corresponding mode has enough energy to traverse
the TINC and a step in the conductance appears. Since
there is no disorder and modes are twofold degenerate in
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FIG. 5. Conductance as a function of Fermi energy (left panels) and effective potentials (right panels) for a clean TI nanocone

with leads, see Fig. 1(c).

Panels (a) and (b) correspond to B = 0, panels (¢) and (d) to a coaxial magnetic field B = 0.2 T.

Steps in the conductance appear whenever the Fermi energy er surpasses one of the effective potentials |Vi(s, B)| labeled by (
(corresponding energies are marked by vertical lines). For the conductance simulations we used kwant and a Fermi velocity of

vp =5 x 10°m/s.

orbital momentum, the conductance is quantized in units
of 22 /h.

In Fig.[5| (c¢) and Fig.[5|(d), the conductance and the ef-
fective potential for a coaxial magnetic field of B = 0.2T
is shown. For low energies < 2 meV, the characteris-
tic effective potential “wedges”, ubiquitous in Fig. 3(b)
(strong magnetic field B = 2T), start to emerge. In the
conductance, a more complicated step sequence appears
with step sizes of €2/h and 2¢%/h since orbital angular
momentum degeneracy is broken due to the magnetic
flux. The first step in the conductance, which is of size
e?/h, appears at ~ 4.75 meV which corresponds to the
opening of the [ = 1 mode [red curve in (d)]. Modes
with [ = 0 (green curve) and [ = 2 (purple curve) appear
almost at the same energy around 6.75 meV. The prox-
imity of those two mode openings leads to a step size in
the conductance of 2e?/h.

Note that due to rotational symmetry, modes cannot
change their orbital angular momentum quantum num-
ber [. However, as soon as rotational symmetry is bro-
ken, for instance, by disorder, modes couple. This cou-
pling forms the basis of the resonant transport through
Dirac LLs (consisting of bound states of effective poten-

tial wedges) discussed in the main manuscript.
SMOOTHED TI NANOCONE

For the description of a smoothed TINC we choose
to work with the coaxial coordinate z. We approxi-
mate the Heaviside step function by ©,(z — /) = 3 +
L arctan[o(z — 2')], JILH;O O,(z — 2') = ©(z — 2’). The
radius of a junction that starts with a cylinder of radius
Ry at z = —oo and becomes a cylinder of radius R; at
z = oo with an intermediate smoothed TINC can then
be written as

R,;(z) =Ro+ (R1 — Ro)Os(z — 21)

+ S(z — 20)[00(2 — 20) — Op(z — 21)], (14)
where § = (R1 — Rp)/(#1 — #0) is the slope of a TINC
with initial radius Ry, final radius Ry and length z; — z.
The input parameters chosen for Fig. 4 are such that in
the limit o — oo the function agrees with the TINC
studied in Fig. 3. Thus Ry = Cunin/(27) = 78.3nm,
R; = 2Ry = Chax/(27) = 156.6nm, 2o = 0 and 21 =
594.7nm.
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