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SUMMARY 

Aggression is defined as a social behavior that has the intention of physically 

harming a conspecific. In nature, aggressive behavior emerges whenever an 

individuum, engages in conflict over essential resources for its survival, such as food, 

water, territory, and mating partners. Thus, aggression may act as an evolutive force 

controlling populational levels and keeping hierarchy. However, in humans, when 

expressed out-of-context and in exacerbated manner aggressive behavior becomes 

disruptive constituting a severe burden on society. This is especially evident in the 

excessive as well as pathological levels of aggression expressed by individuals 

suffering from conduct disorder (CD) in childhood and anti-social personality disorder 

(ASPD) in adulthood. As violent aggressive behavior causes serious damage not only 

to the victims but also to the perpetrators, scientists have worked throughout the last 

decades to understand the neurobiological underpinnings of escalated aggression. In 

order to do so, several rodent models have been established to study aggressive 

behavior, using mostly males as model organisms whereas females have been rarely 

studied. Nevertheless, recent evidence shows that women and girls may develop 

ASPD and CD just like men and boys, respectively. Additionally, there are some new 

indications that the neurobiology of aggression might be sex-specific in humans and 

rodents. Thus, new animal models are necessary to understand the neural 

mechanisms of female aggression. 

In my thesis, I first established and utilized two rat models of female aggression 

based on different etiologic strategies, namely post-weaning social isolation (PWSI) 

was used as a model of early life stress-induced aggression whereas a combination of 

social isolation and aggressive training was used to enhance aggression in an 

ethological setting in adult rats. These models allowed me to investigate the role of the 
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brain oxytocin (OXT) and vasopressin (AVP) systems on aggressive behavior. Both 

neuropeptides are known to regulate social including aggressive behavior in males and 

lactating females. 

Although aggression is a naturally occurring behavior in animals and humans, 

exacerbated aggressive behavior may also emerge as a maladaptive response to 

stress. Especially, early life adverse experiences are known to evoke violent 

aggressive behavior. Thus, in chapter 2 post-weaning social isolation (PWSI) was used 

as a reliable model of early life stress-induced (ELS) aggression in order to compare 

its effects on male and female aggression as well as on the endogenous OXT and AVP 

systems. My results show that males and females displayed similar levels of 

aggression independent of the housing conditions and that PWSI increased aggression 

in both male and female Wistar rats. However, abnormal aggression was displayed in 

a sex-dependent manner, i.e. females exhibited elevated aggression towards 

juveniles, whereas males tended to show more attack bites and attacks towards 

vulnerable body parts. In addition, PWSI also impaired social discrimination in both 

sexes. From a neurobiological point of view, PWSI decreased OXTmRNA in the 

paraventricular nucleus of the hypothalamus (PVN) and OXT receptor (OXTR) binding 

in the nucleus accumbens (NAcc), independent of the sex.  Regarding the  AVP 

system, I have found that PWSI rats showed decreased  AVP 1a receptor (V1aR) 

binding in the dentate gyrus (DG) and lateral hypothalamus (LH) independent of sex.  

However, the anterior part of the BNST was affected by PWSI in a sex-dependent 

manner, i.e. in control conditions, females exhibited higher V1aR binding than males 

in this region, but after PWSI females had lower V1aR binding than males. Thus, my 

data supports PWSI as a reliable rat model to instigate exaggerated as well as 

abnormal aggression not only in males but also in females. In addition, OXTRs in the 
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NAcc and V1aR in the BNSTa, DG, and LH may play a role in the link between PWSI 

and aggression in rats. 

In chapter 3, in order to specifically investigate the role of OXT and AVP on 

female aggression,  social isolation, as well as successive encounters with a same-sex 

and unknown conspecific (aggression training) (IST), were used to enhance the mild 

levels os aggression displayed by group-housed (GH) and non-trained females. In 

comparison to low aggressive GH controls, highly aggressive IST females exhibited 

elevated levels of OXT and reduced levels of AVP in both CSF and LS in response to 

a female intruder test (FIT). Furthermore, both OXTR and V1aR binding were 

decreased in the ventral (vLS) and dorsal (dLS) portion of the LS of IST rats, 

respectively. Manipulation of both neuropeptide systems using a combination of 

neuropharmacological, chemo- and optogenetic approaches resulted in dramatic 

changes in aggression. Elevating OXT availability either centrally or in the vLS of GH 

rats enhanced aggression. Accordingly, blockade of OXTR, via OXTR antagonist, 

either centrally or in the vLS decreased aggressive display in IST rats. Regarding the 

AVP system, synthetic AVP administrated either locally in the dLS or centrally 

(intracerebroventricular) decreased aggression in IST rats. 

Due to the fact that OXT and AVP effects appear to be region- and receptor-

specific, i.e. OXT acted via OXTR in the vLS and AVP acted via V1aR in the dLS, I 

decided to verify whether those two neural populations within the LS interact with each 

other in a single-cell level after OXTR activation using whole-cell voltage-clamp. OXTR 

activation increased GABAergic inhibition of dLS neurons whereas decreased 

GABAergic inhibition of vLS neurons. Next, I decided to evaluate whether those 

differences in activity were also reflected in vivo after an aggressive encounter, using 

pERK as a neural activity marker. Aggression differentially regulated pERK expression 
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in the LS, i.e. GABAergic neurons in the dLS showed decreased whereas in the vLS 

showed increased activation after the FIT. In line with that,  pharmacological inhibition 

of the dLS and vLS enhanced and reduced female aggression, respectively. Taken 

together this part of my thesis shows that the balance between OXT and AVP release 

within the LS regulates female aggression in a receptor and region-specific manner via 

modulating GABAergic neurotransmission. 

Overall, this thesis shows that females are able to develop escalated as well as 

abnormal aggression just like males. In addition, the OXT and the AVP system seem 

to be main players in regulating aggressive behavior in female Wistar rats, especially, 

regarding their role in controlling aggression by acting on the LS. 
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1. GENERAL INTRODUCTION 

1.1. AGGRESSION 

Social aggression is typically defined as a social behavior displayed between 

conspecifics with the intention of physically harming one another (De Almeida et al, 

2005; Koolhaas et al, 2013; Miczek et al, 2001; Nelson and Trainor, 2007). It is 

expressed by many, if not all animal species including humans, and usually the 

successful aggressor benefits by gaining access to limited resources, such as food, 

territory, nests, or mating partners (De Almeida et al, 2005; Nelson and Trainor, 2007). 

Further, aggressive behavior may also emerge, as a maladaptive response, whenever 

animals face challenges to their homeostasis, such as threats and/or stressors (Haller 

et al, 2014; Sandi and Haller, 2015).  

When expressed out-of-context or in an exacerbated manner aggressive 

behavior becomes disruptive by harming both aggressor and victim. This is especially 

evident in the pathological levels of aggressive behavior displayed by humans suffering 

from aggression disorders, such as conduct (CD), anti-social personality (ASPD), and 

intermittent explosive disorder (De Almeida et al, 2005; Haller, 2016; Nelson and 

Trainor, 2007). Around 5% and 0.6-3% of the European population are affected by CD 

and ASPD, respectively. Those patients suffer from a broad spectrum of symptoms 

including excessive aggression towards others, damaging property, deceitfulness, lack 

of remorse or guilt, callousness or lack of empathy, shallow or deficient affect, 

manipulativeness, and egocentrism (DSM-V American Psychiatric Association, 2012; 

Freitag et al, 2018; Reynolds and Kamphaus, 2014; Wittchen et al, 2011). Exaggerated 

aggression also occurs as a symptom of other psychiatric and neurological disorders, 

such as autism, bipolar personality disorder, schizophrenia, post-traumatic stress 

disorder (PTSD), and dementia (Nelson and Trainor, 2007). Thus, aggression as 
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comorbidity or as a disorder constitutes a severe burden to society. In fact, estimations 

indicate that annually 1.3 million people worldwide die as a consequence of violence, 

and 126 billion US dollars are spent annually to either prevent or deal with the 

consequences of violence (WHO, 2014). 

In humans, aggressive behavior is mainly classified into two types: instrumental 

or controlled aggression characterized by having a goal-oriented purpose, and reactive 

or impulsive aggression known to be a sudden, rather uncontrolled reaction to a 

stimulus, often related to anger. In general, reactive aggression is related to abrupt and 

inappropriate aggressive outbursts, as an example, when someone, by accident, 

punches a co-worker after a passionate argument, this type of aggression is typically 

linked with intermittent explosive disorder, PTSD and depression-related aggression. 

On the other hand, instrumental aggression can be associated with genocide, planned 

assassination and massive killings, in this case, people act less on impulse and plan 

their aggressive acts, as an example, we could mention planning for weeks on how to 

kill the co-worker who punched you after the argument. Patients suffering from CD and 

ASPD show high levels of instrumental aggression frequently accompanied by a lack 

of remorse (Viding et al, 2012). Both types of aggression also differ from a physiological 

point of view, reactive aggression is related to hyper-arousal, i.e. accompanied by high 

sympathetic activity and cortisol levels, whereas instrumental aggression has been 

linked to a hypo-arousal phenotype, i.e. low sympathetic activity and cortisol levels 

(Comai et al, 2012; Haller, 2013; Nelson and Trainor, 2007).  

In order to reveal the brain regions and neurobiological mechanisms involved in 

aggression regulation, various strategies have been employed in animals. Seminal 

studies have used electrical and chemical stimulation of so-called aggression centers 

to evoke aggressive phenotypes similar to the ones seen in humans (De Almeida et 

al, 2005; Baxter, 1968; Haller, 2013; Potegal, M Blau, A and Glusman, 1981; Potegal 
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et al, 1981), current approaches preferred focusing on the animal’s ethology in order 

to increase the biological significance of the findings. Therefore, in animals, aggression 

is usually classified accordingly with the subject’s ethology (territorial, dominance, 

maternal) (De Almeida et al, 2005; Comai et al, 2012). Especially, territorial aggression 

has been studied in male rodents for years, using a reliable and consistent paradigm: 

the resident-intruder test (RI). This test relies on the fact that male residents will defend 

their territory against unfamiliar male intruders. Usually, either co-housing with a 

female over several days or weeks or social isolation are used to instigate the 

resident’s territoriality and, consequently, aggressive behavior to defend its homecage. 

The test consists of releasing a slightly smaller same-sex intruder into the resident's 

homecage for 10-20 minutes. During this time aggressive behaviors, such as attack 

bites, threats, chases and tail rattles (mice) as well as dominant behaviors, such as 

keep down, offensive grooming, offensive up-rights are quantified. In addition, non-

aggressive behaviors like non-aggressive social investigation (sniffing), investigation 

of the homecage, self-grooming and defensive behaviors might be also quantified in 

order to evaluate, whether the high aggressiveness impacts on other behavioral 

domains displayed by the residents (Koolhaas et al, 2013; Miczek et al, 2001). 

Surprisingly, although territorial aggression has been reported in wild female mice and 

hamsters (Harmon et al, 2002; Mcdonald et al, 2011; Miczek et al, 2001; Ross et al, 

2019; Silva et al, 2010), this behavior has been mostly studied in males, whereas 

females have been only studied in the context of lactation associated with the 

prominent display of maternal aggression (see discussion on page 23). 

Aiming to mimic pathological and out-of-context aggression seeing in humans, 

various rat and mouse models have been established, in order to understand the 

neural underpinnings of escalated aggressive behavior. In general, an animal becomes 

abnormally aggressive when shows: i) a mismatch between provocation and response, 
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i.e. attacking in inappropriate situations, as in a neutral arena or showing elevated 

aggression (excessive attack counts, short-latency to attack, causing severe tissue 

damage); ii) disregard of species-specific rules, such as attacking juveniles, 

anesthetized animals and females or attacking vulnerable body parts (head, paws, 

neck, and belly); iii) insensitivity towards the social signals of the intruder, i.e. sustained 

aggression despite submissiveness of the opponent or showing an inability in 

terminating aggression outbursts; iv) “offensive ambiguity”, namely aggressive 

behavior lacking a normal structure, i.e., failure in signaling attacks from threats, 

attacking from defensive postures or attacking only smaller intruders (Haller, 2013; 

Miczek et al, 2013). 

Among the approaches used to develop animal models of abnormal and 

excessive aggression five main strategies have been successfully described: i) using 

naturally aggressive animals such as hamsters (Ferris et al, 1997; Harmon et al, 2002; 

Potegal et al, 1981), Calfornia mice (Oyegbile and Marler, 2005; Silva et al, 2010) and 

feral rats (Koolhaas et al, 2013) ii) selecting mice (Caramaschi et al, 2008; Lagerspetz, 

1968; Miczek et al, 2013; van Oortmerssen and Bakker, 1981) and rats (Beiderbeck et 

al, 2012; Koolhaas et al, 2013; Neumann et al, 2010; Walker et al, 2016) based on 

their levels of aggression in order to have animals showing feral aggression; ii) using 

ELS such as post-weaning social isolation (Toth et al, 2011), peripubertal stress (PPS) 

(Marquez et al, 2013) or maternal separation (MS) (Veenema et al, 2006); iii) 

manipulation of selected biological system to mimic features encountered in highly 

aggressive patients, such as adrenalectomy (Haller et al, 2004) to induce a state of 

hypo-CORT, and alcohol consumption (De Almeida et al, 2005; Miczek et al, 2013); 

and iv) aggression training, engaging and winning, repeatedly, conflicts have been 

implicated in decreasing attack latencies and increasing the number of attacks in 

hamsters (Been et al, 2016) and mice (Oyegbile and Marler, 2005; Silva et al, 2010). 
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Especially, ELS models have been repeatedly shown to induce consistent and 

reliable levels of high aggression in male rats (Haller et al, 2014; Masis-Calvo et al, 

2018; Sandi and Haller, 2015). Those models are translationally relevant because they 

were built on the fact that patients with CD and ASPD as well as offenders, often come 

from troubled homes and face different types of abuse during their childhood and/or 

adolescence. In fact, several studies have described that stressful environmental 

conditions, especially during early life, correlate with aggressive as well as 

externalizing behavior in humans  (Caspi et al, 2002; Dackis et al, 2017; Freitag et al, 

2018; Glenn et al, 2013; Haller et al, 2014; Nelson and Trainor, 2007; Sandi and Haller, 

2015). Most of the rat studies of ELS support the findings seen in humans (Marquez et 

al, 2013; Toth et al, 2011; Veenema et al, 2006), showing that an exaggerated 

stimulation of the hypothalamic-pituitary-adrenal axis (HPA) by stress during early life 

leads to abnormal aggressive behavior later in life underlined by a hyper-CORT 

phenotype (Biro et al, 2016; Marquez et al, 2013; Toth et al, 2011, 2012; Veenema et 

al, 2006; Veenit et al, 2013). 

In the present thesis, PWSI has been used as a model of ELS for studying 

mechanisms of aggression in females in comparison to males. Therefore, I will 

describe the model in more detail in the next session. 

1.2. POST-WEANING SOCIAL ISOLATION AND AGGRESSION 

Among the ELS models of pathological aggression, PWSI seems to have the 

strongest effects, because it fulfills the 4 criteria needed to be classified as an abnormal 

aggression model as well as presents a robust translational component, psychosocial 

deprivation, including neglect and abuse, have been implicated in the development of 

ASPD and CD (Dackis et al, 2017; Glenn et al, 2013; Haller, 2016). The protocol 

consists of keeping pups (21 days old) either housed in groups (controls) or singly-

housed for 7 weeks after weaning. It is based on the premise that lack of social contact 
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and the display of play behavior with conspecifics during puberty/adolescence impairs 

or prevents the development of the rat’s social behavior repertoire, resulting in high 

and abnormal aggression (Toth et al, 2011). 

PWSI induces abnormal aggression in male Wistar rats by increasing attack 

bites towards vulnerable targets and decreasing signaled attacks, i.e. PWSI rats attack 

from defensive postures. Conversely, isolated rats exhibit elevated plasma 

corticosterone (CORT) and autonomic responses during the RI (Toth et al, 2011), 

characterizing a hyper-arousal type of aggression, which has been linked rather to 

reactive aggression than to instrumental aggression expressed by ASPD and CD 

patients (Comai et al, 2012; Nelson and Trainor, 2007). 

Concerning the neurobiological mechanisms underlying the high levels of 

aggression shown by isolated animals, it has been shown that PWSI enhances the 

neuronal activation of aggression-related regions, such as the hypothalamic-attack 

area (HAA), the bed nucleus of stria terminalis (BNST), the medial amygdala (MeA) 

and the orbital frontal cortex (OFC) (Toth et al, 2012). In addition, isolated rats exhibit 

a thinner right prefrontal cortex (PFC), which was a consequence of reduced glia and 

dendritic density as well as impaired vascularization of this area (Biro et al, 2016). 

Those changes have been related to the finding of decreased levels of the brain-

derived neurotrophic factor (BDNF) in the PFC as well as in the MeA of PWSI rats 

(Mikics et al, 2018).  

1.3. NEURAL CIRCUITS OF AGGRESSION 

Throughout the years, neuroscientists have tried to fully characterize the brain 

networks involved in aggressive behavior display by using a variety of techniques, such 

as neural activity markers (c-fos, pERK, and zif268), chemical and mechanical 

lesioning/inhibition of target brain regions, electrophysiological recordings of neuronal 

populations during the display of aggression and, recently, calcium imaging in freely 
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moving animals (fiber photometry). All this effort culminated in the establishment of an 

aggressive behavior neuronal pathway, which completely overlaps with the social 

behavior network, in agreement with the theory that aggressiveness is an emergent 

property of social behaviors (Nelson and Trainor, 2007). 

In rodents, social cues, including the ones eliciting aggression, are known to be 

mainly olfactory, therefore, they are initially processed in the main (MOB) and 

accessory (AOB) olfactory bulbs (Dulac and Torello, 2003; Nelson and Trainor, 2007; 

Stowers et al, 2013). In fact, the ablation of either the olfactory bulb by bulbectomy or 

of the olfactory nerves strongly impairs aggressive display in male mice (Mucignat-

Caretta et al, 2004) and rats (Bergvall et al, 1991). Also, the existence of aggression 

evoking pheromones has been described in male mice (Chamero et al, 2007; Stowers 

et al, 2013). After this initial processing, the signals are forwarded to limbic and 

hypothalamic regions involved in aggression display such as the BNST, MeA, the 

lateral septum (LS), the medial pre-optic area (MPOA), the ventromedial (VMH) and 

anterior (AH) hypothalamus (mice), also known as part of the hypothalamic attack-area 

or mediobasal hypothalamus (MBH) (rats) (Beiderbeck et al, 2007, 2012; Toth et al, 

2012; Trainor et al, 2010a). After, further processing all those signals seem to converge 

into the periaqueductal gray matter (PAG), in the midbrain, where the motor outputs 

are generated (Nelson and Trainor, 2007) (Figure 1.1).  
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It is important to highlight the essential role of the HAA in eliciting attacks in male 

rodents. Early studies have shown that electrical stimulation of the HAA, which 

anatomically corresponds to several hypothalamic nuclei, leads to irritability and 

aggression in cats and rats (Brown et al, 1969; Haller, 2013; Kruk et al, 1983). 

Additionally, increased activation of the HAA after the RI has been reported, using 

neural activity markers, in rat models of abnormal aggression (Beiderbeck et al, 2012; 

Toth et al, 2012) and in Peryomiscus californicus (Trainor et al, 2010a). Recent 

experiments using immediate early genes, optogenetics, in vivo electrophysiology and 

calcium imaging, have shown that a specific population of neurons, expressing the 

estrogen receptor alpha (ERα) as well as progesterone receptors (PR) within the 

Figure 1.1: Neuroanatomical pathways of aggression in the rodent brain. Typically sensorial 

information arrives in the olfactory bulb and is further processed in the medial amygdala (MEA), the 

MEA projects to the lateral septum (LAS), bed nucleus of stria terminalis (BNST) and anterior 

hypothalamus (AHA). These brain areas are known to modulate the periaqueductal gray (PAG) 

activity, in order to originate the motor patterns need it during aggressive behavior display in rodents. 

Other regions such as the hippocampus, orbital frontal cortex (OFC) and the paraventricular nucleus 

of the hypothalamus (PVN) may also modulated aggressive behavior by acting on these regions, 

especially under stressful conditions. The OFC is thought to be one of the main inhibitors of 

aggressive behaviors in mammals (Adapted from Nelson and Trainor, 2007). 
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ventrolateral portion of the ventromedial hypothalamus (VMHvl) work as a switch 

triggering aggression in solitary male mice independent of pheromone-sensing, 

gonadal hormones, opponents or social context (Lee et al, 2014; Lin et al, 2011; Yang 

et al, 2013, 2017). Further, the VMHvl ERαPR-neurons seem to have a pivotal role in 

aggressive behavior display, not only for controlling attack initiation and termination 

(Lee et al, 2014; Yang et al, 2013), but also for being responsible for controlling attack 

motivation/seeking in male mice (Falkner et al, 2016). 

In addition to the VMHvl, there are other brain regions that should be drawn to 

attention for being constantly associated with male aggressive behavior in rodents 

such as the amygdaloid complex, the nucleus accumbens (NAcc) and the PFC. 

Particularly, hyperactivation of the central (CeA) and medial nuclei of the amygdala has 

been described in rat models of abnormal aggression (Marquez et al, 2013; Toth et al, 

2012), also aromatase-positive neurons in the MeA have been shown to, specifically, 

induce aggressive behavior in male mice (Unger et al, 2015). Regarding the 

motivational aspects of aggression, the NAcc appears to play a main a role,  addiction-

like aggressive behavior has been described in male mice (Golden et al, 2017), this 

behavior is, at least, partially underlined by dopamine-sensitive neurons in the NAcc 

(Aleyasin et al, 2018; Golden et al, 2019). Accordingly, dopamine release within the 

NAcc as well as increased activity of this region have been shown in abnormally and 

highly aggressive male rats selectively bred for low anxiety-related behavior (LAB) 

during the RI (Beiderbeck et al, 2012). Last, although the PFC has been implicated in 

aggression inhibition in rodents (Nelson and Trainor, 2007), its role on it is still 

controversial, as both increased (Toth et al, 2012) as well as decreased (Marquez et 

al, 2013) neuronal activity has been seen in different subregions of the PFC in rat 

models of abnormal aggression. Moreover, direct stimulation of the medial part of PFC 

reduces aggression in male mice (Takahashi et al, 2014), whereas stimulation of 
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specific projections of the PFC to the hypothalamus seems to increase attack counts 

as well as abnormal attacks in PWSI rats (Biro et al, 2018). 

1.3.1. THE LATERAL SEPTUM AS A GATE FOR AGGRESSIVE BEHAVIOR 

The LS consists mainly of GABAergic neurons (~90%) (Alonso et al, 1990) 

located in different subnuclei, i.e. the dorsal (dLS), intermediate (iLS), ventral (vLS), 

rostral (rLS) and caudal (cLS) LS, placed in between the lateral ventricles in the 

rostrodorsal septal region. Although those subnuclei are mostly GABAegic, they are 

known to co-express different neuropeptides and steroid hormone receptors, such as 

substance P, neurotensin, encephalin, somatostatin, dynorphin, growth-hormone-

releasing hormone, androgen receptors (AR), ERαs, mineralocorticoid receptors (MR), 

oxytocin receptors (OXTR) and vasopressin 1a receptors (V1aR) in a nuclei- and 

neuron-specific manner (Risold and Swanson, 1997a; Smith et al, 2017). The main 

source of inputs to the LS is the hippocampus, although it also receives projections 

from the brainstem (ventral tegmental area, locus coeruleus and Raphé nucleus) and 

presents bidirectional connections with the hypothalamus, BNST, preoptic area, and 

amygdala. Therefore, different neuropeptidergic, as well as monoaminergic terminals, 

can be found in the LS (DiBenedictis et al, 2017; Risold and Swanson, 1997b). 

From a behavioral point of view, the LS has been implicated in several different 

types of social behaviors including social anxiety (Zoicas et al, 2014), stress-induced 

social avoidance (Guzmán et al, 2013), social memory (Camats Perna and 

Engelmann, 2017; Lukas et al, 2011a; Popik et al, 1992) and aggression (Wong et al, 

2016). Early case studies have described the role of the septal area on inhibiting 

aggression in humans, patients, including women, with septal tumors exhibited 

aggression outbursts (septal rage) and increased irritability (Zeman, Wolfgang and 

King, 1958). Later studies performed in rodents have shown the same pattern: either 

lesion (Potegal, M Blau, A and Glusman, 1981) or pharmacological inhibition 
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(Muscimol-GABA agonist) (Borland et al, 2019) of the LS triggered septal rage and 

heightened aggression, in hamsters. Accordingly, electrical stimulation of the septum 

reduced aggression in highly aggressive male hamsters (Potegal et al, 1981). In male 

rats,  a similar picture is seen, where lesions of the LS evoked septal rage (Albert and 

Chew, 1980). Moreover, reduced activation of the LS (c-fos) was found in highly 

aggressive LAB rats after an aggressive encounter (Beiderbeck et al, 2007). Recently, 

the mechanism by which the LS abolishes aggression has been elucidated. 

Optogenetic stimulation of LS-GABAergic projections to the VMHvl stopped attacks as 

well as reduced aggression in male mice (Wong et al, 2016). Intriguingly, new evidence 

has shown that this pathway is regulated by an intricate polysynaptic LS microcircuit, 

where GABA neurons in the dLS, under the influence of glutamatergic hippocampal 

V1bR-positive terminals, inhibit neurons in the vLS, leading to a disinhibition of the 

VMHvl and subsequently to aggression in male mice. 

1.4. NEUROCHEMISTRY AND NEUROENDOCRINOLOGY OF AGGRESSION 

Several neurotransmitters, neuropeptides, and hormones have been linked to 

aggressive behavior. Regarding the neurotransmitters, especially the monoamines 

serotonin (5-HT) and dopamine (DA), but also other neurotransmitters such as 

glutamate, GABA, noradrenaline (NA), acetylcholine (ACh) have been studied 

extensively (Comai et al, 2012). Drugs targeting both the DA and 5-HT systems such 

as haloperidol, risperidone or selective serotonin reuptake inhibitors (SSRIs) have 

been used for decades to treat aggressive patients in the clinic; nevertheless, the 

efficacy of those treatments is still arguable due to severe side effects (Carrillo and 

Ricci, 2009; Comai et al, 2012; Nelson and Trainor, 2007). Those treatments are based 

on the hypothesis that especially low levels of 5-HT in the brain might lead to disruptive 

aggressive behavior (Comai et al, 2012; Nelson and Trainor, 2007). In contrast to this 

hypothesis, low activity of the monoamine oxidase A (MAOA), the enzyme responsible 
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for degrading the monoamines in the brain, has been associated with high levels of 

emotional dysfunction and aggression in children with ADHD (Fowler et al, 2009). 

However, those results have to be interpreted with caution, because the effect of 

MAOA on aggression seems to be influenced by environmental conditions like 

maltreatment in childhood (Caspi et al, 2002; Fowler et al, 2009).  

Although animal studies have shown that potentiating serotoninergic 

neurotransmission was able to reduce aggression in male hamsters (Ferris et al, 1997; 

Terranova et al, 2016), abnormally aggressive Wild-Type Groningen (WTG) rats (De 

Boer and Koolhaas, 2005), and mice (De Almeida and Miczek, 2002; Audero et al, 

2013), other studies have shown rather opposite effects in similar models (Audero et 

al, 2013; Marquez et al, 2013; Mikics et al, 2018). This might be due to the fact that 5-

HT receptors can also influence serotonin synthesis and release in the brain by acting 

on autoreceptors, which makes manipulating this system challenging (Carrillo and 

Ricci, 2009; Nelson and Trainor, 2007). Regarding the dopaminergic system, recent 

evidence shows that DA is released in the NAcc of LAB rats during the RI, and in this 

region, aggression was linked to activation of D2 receptors (Beiderbeck et al, 2012). 

Moreover, D1 but not D2 positive neurons in the NAcc shell seem to regulate 

aggression seeking as well as aggression self-administration in male mice (Golden et 

al, 2019). 

Many studies have tried to link hormonal levels in blood with aggression in 

animals and humans. Especially, CORT concentration reflecting the activity of the HPA 

axis under basal or stimulated conditions have been associated with pathological 

aggression. Intriguingly, both hyper- as well as hypo-CORT levels have been strongly 

related to abnormal forms of aggression in different rat models (Masis-Calvo et al, 

2018; Sandi and Haller, 2015; Walker et al, 2016). Specifically, heightened CORT 

responses to the RI or to an acute stressor have been seen in rat models of high and 
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abnormal aggression induced by ELS protocols such as MS (Veenema et al, 2006),  

PPS (Marquez et al, 2013), and PWSI (Toth et al, 2011). In agreement rats selected 

for high CORT responsiveness to restrain-stress exhibited increased levels of 

aggression in the RI (Walker et al, 2017), and acute inhibition of CORT release via 

metyrapone decreases attack counts in Wistar rats (Haller et al, 2004). However, 

abnormal aggression has been also described in Wistar rats after adrenalectomy 

(Haller et al, 2004). Altogether, this data fits the hypothesis that both low and high 

arousal states lead to increased aggression and that an aberrant function of the HPA 

axis underlines exaggerated aggressive behavior (Masis-Calvo et al, 2018; Nelson and 

Trainor, 2007; Sandi and Haller, 2015). 

Sex hormones such as testosterone and estradiol have also been associated 

with aggressive behavior display in male rodents. For example, sexual investigation, 

i.e. exposition of a male to a receptive female, is known to increase testosterone levels 

as well as territoriality and aggressive display in rats (Koolhaas et al, 1980, 2013). In 

addition, castration is broadly known to abolish aggression in male rodents (Koolhaas 

et al, 1980; Miczek et al, 2001; Nelson and Trainor, 2007). In the brain, aromatized 

testosterone acts via estrogen receptors for masculinizing the undifferentiated brain of 

males, which contributes to the establishment of male-typical behaviors including 

components of mating and aggressive behavior (Lenz et al, 2012). Indeed, the deletion 

of ERα (Sano et al, 2016), estrogen receptor β (ERβ) (Nakata et al, 2016) and AR 

(Juntti et al, 2010) impairs aggressive behavior in male mice. It is important to highlight 

that the activational effects of those receptors are under the influence of environmental 

cues and may differ from the organizational effects seen after the deletion of the 

receptors (Trainor et al, 2007). 
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1.4.1. THE OXYTOCIN AND VASOPRESSIN SYSTEMS AND THEIR ROLE IN 

MODULATING AGGRESSIVE BEHAVIOR 

The nonapeptides Oxytocin (OXT) and arginine vasopressin (AVP) are sister 

neuropeptides that emerged after the duplication of the single gene coding the peptide 

vasotocin in Vertebrata. Interestingly, more than a dozen homologous nonapeptides 

have been described among invertebrates and vertebrates, showing how relevant 

those peptides are from an evolutive point of view (Jurek and Neumann, 2018) (Figure 

1.2). Although OXT and AVP are mainly found in magno- and parvocellular neurons of 

the paraventricular (PVN) and magnocellular neurons of the supraoptic (SON) nuclei 

of the hypothalamus (Grinevich et al, 2016; Jurek and Neumann, 2018; Koshimizu et 

al, 2012), AVP neurons can also be found in several other brain regions such as the 

MeA, BNST, MOB, AOB, piriform cortex, MPOA and suprachiasmatic nucleus of 

hypothalamus (SCN) (Tobin et al, 2010; De Vries and Panzica, 2006; Wacker and 

Ludwig, 2019). Both peptides are released into the capillaries of the neurohypophysis, 

reaching the periphery, where they act like hormones. In mammals, hormonal OXT is 

known to promote milk-ejection during lactation and the contraction of the myometrium 

during labor, whereas hormonal AVP supports water reabsorption in the kidney, and 

acts as a vasoconstrictor in the arterial capillaries. Moreover, parvocellular AVP 

originated in the PVN acts synergically with corticotrophin-releasing-hormone (CRH) 

to regulate corticotrophin (ACTH) secretion in the adenohypophysis (Grinevich et al, 

2016; Jurek and Neumann, 2018; Koshimizu et al, 2012).  
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Besides their hormonal role in the periphery, OXT and AVP also act as 

neuromodulators in the brain, where they are released from either axonal collaterals, 

terminals in various brain regions, or from soma and dendrites locally in the SON and 

PVN (Grinevich et al, 2016; Jurek and Neumann, 2018; Ludwig and Leng, 2006). Both 

peptides change neuronal excitability by binding to their respective receptors. OXT, 

typically binds to OXT receptors (OXTRs), whereas AVP binds to vasopressin 1a and 

1b receptors (V1aRs and V1bRs) (Jurek and Neumann, 2018; Koshimizu et al, 2012), 

However, cross-activation of each others receptor has been described in vitro 

(Manning et al, 2012) as well as in vivo (Song et al, 2014; Tan et al, 2019). Moreover, 

OXT and AVP fibers, as well as OXTR and V1aR, are widespread throughout the 

rodent brain. Receptor binding is especially found in regions within the social behavior 

network, such as the amygdala nuclei, LS, BNST, NAcc, hypothalamic nuclei (VMH, 

AH, LH) and MPOA (DiBenedictis et al, 2017; Smith et al, 2017) (Figure 1.3). 

Figure 1.2: OXT and AVP sequences across different Taxa. Nonapeptide sequences of 

invertebrates are shown in green and vertebrates show in blue and red OXT and AVP, respectively, 

analogs across the animal kingdom. Each amino acid sequence is initiated by a 19 amino acid signal 

peptide, followed by the specific nonapeptide sequence depicted above, a processing signal 

consisting of glycine-lysine-arginine (GKR), and the neurophysin-glycopeptide-COOH-terminus. 

Italic/bold amino acids, difference between OXT and AVP; bold amino acids, difference between 

respective OXT or AVP. (Adapted from Jurek and Neumann, 2018). 
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Interestingly, in the rat brain, OXTRs and V1aRs seem to be uniquely distributed in 

different neuronal populations within the same region (Smith et al, 2017; Stoop et al, 

2015). This is supposed to be the basis of the antagonistic effects of OXT and AVP on 

various behaviors. Indeed, in the lateral portion of the CeA, GABAergic neurons 

expressing OXTR inhibit V1aR-positive neurons in the medial part of the same region 

via collaterals, this process triggers opposing effects on fear, i.e. OXT decreases it 

whereas AVP increases it (Huber et al, 2005; Knobloch et al, 2012; Stoop et al, 2015). 

 

 

Another interesting fact about these systems is their sexual dimorphism in terms 

of receptor binding, neuronal number, and fiber densities. Male rats present more AVP-

positive neurons in the BNST and MeA, and they also exhibit higher fiber density in the 

Figure 1.3:The oxytocin (OXT) and vasopressin (AVP) systems in the aggression network. 

Scheme shows localization of OXT neurons, in blue, in the paraventricular (PVN) and supraoptic 

(SON) nucleus of the hypothalamus, as well as AVP neurons, in red, in the PVN, SON, olfactory 

bulb (OB), medial amygdala (MeA), and bed nucleus of stria terminalis (BNST). OXT receptors 

(OXTR) and AVP 1a receptors (V1aR) are co-expressed in all regions involved in the aggression 

network, i.e. BNST, hypothalamic attack area (HAA), hippocampus, lateral septum (LS), MeA, OB 

and orbitalfrontal cortex (OFC), periaquedutal gray matter (PAG). Projections within the aggression 

network are shown in dotted blue lines. Blue (OXT) and red (AVP) plain lines show projections to 

the septum. Purple dotted line indicates inhibitory GABAergic projections from the LS to the HAA 

(Adapted from Jurek and Neumann, 2018; Nelson and Trainor, 2007; Stoop, 2015 and Swanson, 

1997). 
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LS,  BNST, MeA and MPOA (DiBenedictis et al, 2017; De Vries and Panzica, 2006). 

Regarding the receptors, males showed increased OXTR binding in several regions of 

the social behavior network, such as posterior BNST (pBNST), MeA and VMH whereas 

females show increased OXTR binding only the iLS (Smith et al, 2017). On the other 

hand, V1aR binding is higher in female Wistar rats in the dLS, arcuate nucleus and 

ventromedial thalamus (Smith et al, 2017). 

These sex differences might lead to functional differences. Indeed 

intracerebroventricular (i.c.v.) application of OXT triggered higher blood oxygen level-

dependent (BOLD) activation in males than in female rats (Dumais et al, 2017). In 

addition, sexual dimorphic actions of the peptides have been reported in social 

behavior. For instance, endogenous OXT  promotes social preference in male (Lukas 

et al, 2011c), but not in female Wistar rats (Lukas and Neumann, 2014). Also, the 

application of synthetic OXT into the pBNST was only able to prolong social memory 

persistence in males, but not females (Dumais et al, 2015). Regarding the 

vasopressinergic system, sex-dependent effects have been described in the context of 

aggression. Infusion of synthetic AVP into the AH exacerbates aggression male 

hamsters, whereas it reduces it in female hamsters (Terranova et al, 2016). 

The role of OXT and AVP on modulating social behaviors has been extensively 

demonstrated in male rodents, the release of both neuropeptides has been associated 

to social behaviors, such as social investigation, social avoidance/ defeat, social 

memory, sexual behavior and aggression (Lukas and de Jong, 2017). Focusing 

specifically on aggression, there is not much known about how OXT may affect 

aggressive behavior in rodents and humans. In humans, conflicting data was found 

after intranasal OXT (de Jong and Neumann, 2017), those effects were also influenced 

by levels of anxiety (Pfundmair et al, 2018) and sociability, i.e. whether the participants 

were from in-groups or out-groups (de Dreu et al, 2012). 
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In rodents, the effects of OXT on aggression are also controversial,  Excessively 

aggressive male WTG rats showed decreased OXT mRNA in the PVN when compared 

to low aggressive WTG rats, in those animals OXT mRNA was negatively correlated 

with offensive behavior in the RI, pointing towards the serenic role of OXT (Calcagnoli 

et al, 2014a). In addition, synthetic OXT administrated either intranasally (Calcagnoli 

et al, 2014b), i.c.v (Calcagnoli et al, 2013), or into the CeA (Calcagnoli et al, 2015) was 

able to reduce aggression in WTG rats, interestingly blockade of the endogenous 

system via an OXTR antagonist (OXTR-A) had no effect on those animals. Moreover, 

genetic approaches have also been used to target the OXT system in order to figure 

its role on intermale aggression, conventional OXTR knockout mice showed increased 

aggression, whereas conditional knockout mice, which had their OXTRs absent only 

in the forebrain postnatally, showed normal levels of aggression (Sala et al, 2013). In 

contrast with those results, the deletion of OXTR specifically in serotoninergic neurons 

in the raphé nucleus decreased aggression in male mice (Pagani et al, 2015). This 

shows a regional as well as a developmental-specific effect of the OXTR loss on 

aggression. The density of OXTRs also seems to be relevant for aggression display in 

male mice. In another study, OXTR knockouts, but not knockdowns (heterozygous 

subjects), showed increased aggression. Strikingly, OXT, as well as TGOT (OXTR 

specific agonist), rescued the social deficits of the knockouts probably by acting on 

other receptors, presumably V1aRs (Dhakar et al, 2012). In line with that, new evidence 

has shown anti-aggressive effects of OXT via binding to V1aRs in mice (Tan et al, 

2019) and macaques (Jiang and Platt, 2018a). 

Literature is also ambiguous about how AVP affects aggression in rodents. In 

male Wistar rats, a rise in AVP release was found in the LS of highly aggressive 

subjects, whereas low aggressive animals exhibited rising AVP levels in the BNST, 

during the RI. Accordingly, AVP levels in the LS are positively correlated with 
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aggression, and blockade of V1aR in the LS, as well as synthetic AVP administration 

into the BNST, decrease aggression in highly aggressive rats (Veenema et al, 2010). 

In male hamsters, pro-aggressive effects of synthetic AVP infusion into the AH have 

been found as well (Terranova et al, 2016), those effects were associated with 

increased V1aR binding in the AH of aggressive hamsters (Elliott Albers et al, 2006). 

In addition, V1bRKO mice displayed reduced aggression in the RI (Wersinger et al, 

2002). Contrasting with those results, a blunted AVP release in the LS has been shown 

in abnormally aggressive rodents. For example, LAB rats exhibit a drop in AVP release 

in the LS during an aggressive encounter (Beiderbeck et al, 2007), also, short-attack 

latency (SAL) mice show decreased AVP fiber density in the same region (Compaam 

et al, 1993). In addition, a reduction of V1aR binding has been found in the LS of 

dominant male mice (Lee et al, 2019). In agreement with this data, activation of V1aR 

by synthetic AVP applied either i.c.v. in mice (Tan et al, 2019), intranasally or into the 

intra-cingulate cortex, in macaques reduced aggression (Jiang and Platt, 2018a). In 

addition, recent evidence has shown anti-aggressive and prosocial effects of AVP in 

humans (Brunnlieb et al, 2016; Parker et al, 2019). In summary, those results confirm 

that AVP, as well as OXT effects on aggression, are peptide-, region-, neuronal type- 

as well as sex-specific in rodents. 

1.5. SEX DIFFERENCES IN AGGRESSION: FEMALE AGGRESSION 

As mentioned before, aggressive behavior, as most of the other social 

behaviors, has been studied and validated predominantly in males, whereas females 

have been understudied or, alternatively, only studied in the unique physiological 

period of lactation (maternal aggression) (Denson et al, 2018; Freitag et al, 2018; 

Hashikawa et al, 2018). In fact, a few human studies led by neurobiologists, 

psychologists, and anthropologists, have compared aggressive behavior across the 

sexes and reported women as less aggressive than men in the laboratory, but also in 
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the real world (Campbell, 1999; Denson et al, 2018; Mancke et al, 2015). 

Consequently, two main hypotheses have been drawn to explain, why aggressive 

behavior is dimorphic in humans. From an evolutionary point of view, males and 

females are under different selective pressures, especially in terms of reproductive 

fitness. In general, males tend to adopt a polygynous strategy in order to guarantee 

their reproductive success. This may trigger high levels of competition and, 

consequently, aggression among males, in order to acquire sexual partners. In 

contrast, females are always “certain” of passing their genes to their offspring, thus 

aggression might be seeing as a potential risk to females due to the possibility of 

severe injury (Campbell, 1999). The exception is the state of lactation, when females 

have to defend the wellbeing of the offspring in order to guarantee their reproductive 

fitness. This might explain why mothers show high levels of aggression (even attacks 

to vulnerable targets) in order to protect their progeny. However, it is necessary to 

mention that females also have to compete for essential resources to achieve 

reproductive success such, as nutrition and space. Additionally, they should also be 

able to reject unsutable mating partners and to defend themselves in case of retaliation 

(Campbell, 1999; Hashikawa et al, 2018).    

Another attempt to explain sex differences in aggression is based on cultural 

reasons. Despite evolution, culture is also seen as a powerful force shaping human 

behavior. Therefore, we have to acknowledge the fact that most of the human societies 

live under patriarchy (“a system of organization in which the overwhelming number of 

upper positions in hierarchies are occupied by males”), in this context sociobiological 

studies have pointed out how male-oriented culture has suppressed female 

aggressiveness and endorsed male aggression. Indeed, aggressive features tend to 

be seen as positive qualities in males, aggressive men are often described as brave, 

“war-heroes”, heroical and assertive whereas the same aggressive features are seen 
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as detrimental in females being frequently associated with adjectives like pathological, 

male-like, emotional and illness-related. This might have led women to suppress their 

aggressive behaviors or alternatively use indirect forms of aggression (manipulation 

and relational aggression) in order to fit in the social construct imposed by men 

(Campbell, 1999; Denson et al, 2018). 

Nevertheless, epidemiological evidence shows that non-lactating young girls 

and women may develop CD and ASPD just like males, although some sex differences 

have been found in terms of prevalence (1female:3males), affected females seem to 

show severer symptoms than affected males (Freitag et al, 2018). In addition, numbers 

of female offenders seem to arise in our society (Campbell, 1999; Denson et al, 2018; 

Freitag et al, 2018). From a neurobiological point of view sex differences in brain 

structure have been described in children with CD (Menks et al, 2017; Smaragdi et al, 

2017). Furthermore, other neurobiological mechanisms underlying aggression in males 

and females seem also to differ (Denson et al, 2018; Hashikawa et al, 2018). 

Altogether, this shows how necessary is to develop new animal models in order to 

better understand the neural underpinnings of female aggressive behavior, especially 

in the context of intervention and treatment.  

Similarly to humans, female aggression has been poorly studied in rodents, 

apart from maternal aggression. Curiously, territorial aggression has been observed in 

non-lactating female wild-mice (De Almeida et al, 2005; Miczek et al, 2001; Silva et al, 

2010), hamsters (Harmon et al, 2002) and rats (Ho et al, 2001; De Jong et al, 2014). 

Especially, female hamsters (Been et al, 2016) and California mice (Silva et al, 2010) 

develop escalated aggression similarly to males. Recently, more studies where female 

aggressive behavior was assessed came to light. For example, female CD-1 mice form 

a hierarchy, among conspecifics, less despotic and linear than the ones established 

among males though (Williamson et al, 2019). In addition, co-housing with a mate 
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proved to be as efficient as in males in triggering enhanced aggression in non-lactating 

Swiss mice (Newman et al, 2019). Finally, our group established the female intruder 

test, based on the resident-intruder test of males, to assess female aggression in non-

lactating Wistar rats. Although a direct comparison is inappropriate in this case 

because of different housing conditions, the results indicated that females did not differ 

from males in terms of quality or quantity of aggressive behavior displayed (De Jong 

et al, 2014). 

In terms of neurobiological mechanisms, little is known regarding the regulation 

of female aggression. Lesions of the mediobasal hypothalamus seem to trigger 

exaggerated aggression in female rats (Haller et al, 1999). Accordingly, optogenetic 

stimulation of ERα-positive neurons in the posterior VMHvl (lateral part) leads to 

aggression in female mice (Hashikawa et al, 2017). Differently from males (Lee et al, 

2014), the VMHvl of females developed distinct and specialized areas to control 

aggressive (lateral part) and sexual (medial part) behaviors in mice (Hashikawa et al, 

2017). Sexually divergent mechanisms have also been described in hamsters 

concerning the involvement of 5-HT and AVP in aggression. In females, potentiating 

serotoninergic transmission, either by using a specific agonist (5-HT1a) into the AH or 

fluoxetine (SSRI) intraperitoneally (i.p.) was pro-aggressive, whereas AVP infusion in 

the AH was anti-aggressive; contrasting effects were seen in males after the infusion 

of the same treatments (Terranova et al, 2016).  

The existence of evidence of aggression being displayed in virgin females as 

well as of dimorphic mechanisms regulating aggression reinforces the need for new 

rodent models to understand the neuronal mechanisms controlling female aggression. 

Such models of enhanced aggression in female rodents would also allow 

neuroscientists to understand the effect of social stress, such as acute or chronic social 

defeat on female behavior. This is indeed important, especially taking into account that 
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women suffer more from social phobia, depression, and PTSD caused by, among 

others, social stress (Laman-Maharg and Trainor, 2017; Wittchen et al, 2011). 

1.6. AIMS OF THE PRESENT THESIS 

Based on the evidence that i) females, including girls and women, show 

pathological and disruptive aggression, and ii) the mechanisms regulating aggression 

seem to be sexually dimorphic, the present thesis aimed to establish reliable and robust 

rat models of female aggression mimicking different etiological aspects of aggression 

in order to investigate the role of the OXT and AVP systems in regulating aggressive 

display in females. I specifically aimed to: 

1. Evaluate whether PWSI is able to induce abnormal aggression in female Wistar 

rats similarly as it does in males. Additionally, I wondered whether aggressive behavior 

would also be sexually dimorphic in GH controls. Finally, I speculated whether the 

endogenous OXT and AVP system would also be affected in a sex-dependent manner 

by PWSI; 

2. Establish a reliable rat model to enhance aggression displayed by female Wistar 

rats in order to evaluate the role of the neuropeptides OXT and AVP on female 

aggression, focusing especially on the LS. 

1.6.1. COMPARING THE EFFECTS OF PWSI ON AGGRESSION ACROSS THE 

SEXES  

PWSI is known as a consistent protocol to induce excessive and abnormal 

aggression in male Wistar rats (Toth et al, 2011, 2012). However, its effects on female 

behavior and neurobiology have not been yet assessed. In addition, although some 

papers have uncovered the neural underpinnings of PWSI induced aggression (Biro et 

al, 2016, 2018; Mikics et al, 2018; Toth et al, 2012), its effects on the OXT and AVP 

systems are still largely unknown. Since both neuropeptides are known to regulate 

aggressive display (Caldwell, 2017; de Jong and Neumann, 2017) it is very likely that 
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alterations on both systems are underlying the abnormal aggression seeing in PWSI 

rats.  

Therefore, I first studied the effects of PWSI on aggressive, anxiety-like and 

social including aggressive behavior in female and male Wistar rats. Despite evaluating 

several components of aggressive behavior we also looked into social and anxiety-like 

behaviors due to the fact that CD as well as ASPD show comorbidity with anxiety 

disorders and socially deviant behavior (Freitag et al, 2018; Glenn et al, 2013). 

Moreover, we investigated whether PWSI would affect the endogenous OXT and AVP 

systems, at the peptide as well as at the receptor level. 

1.6.2. EVALUATING THE ROLE OF THE OXT AND AVP SYSTEMS ON FEMALE 

AGGRESSION 

In the second part of my thesis, I focused on establishing a model that relies on 

ethological features of aggression instead of the maladaptive ones induced by PWSI. 

This would be beneficial to better understand how the circuitry of aggression works in 

an ethologically relevant setting such as protecting a territory. 

In order to do so, I used a combination of ethologically relevant approaches that 

have been used in male rodents as well as in female Syrian hamsters and California 

mice, i.e. a combination of short-term social isolation to induce territoriality (De Almeida 

et al, 2005; Elliott Albers et al, 2006; Koolhaas et al, 2013; Miczek et al, 2001; Ross et 

al, 2019) and aggression training to escalate aggressive behavior (winner effect) (Been 

et al, 2016; Oyegbile and Marler, 2005; Silva et al, 2010). Then, lowly aggressive, i.e. 

group-housed (GH), and highly aggressive, i.e. isolated and trained (IST), female 

Wistar rats were used in comparison to assess whether extreme phenotypes of 

aggression influence the endogenous OXT and AVP systems at the receptor (binding) 

and peptide level (release). Next, I used neuropharmacological and genetic 

approaches to manipulate OXT and AVP signaling within the brain in a central or local 
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manner. Because OXTR and V1aR are differently expressed in the LS, local 

experiments focusing on OXT targeted the vLS, predominantly OXTRs, whereas AVP 

experiment targeted the dLS, predominantly V1aRs. In addition, in order to understand 

how those neurons are wired in a circuit-level, we used two different approaches. First, 

whole-cell voltage-clamp was used to evaluate how the pharmacological activation of 

OXTRs would impact the spontaneous inhibitory activity of GABAergic neurons in 

those LS subregions. Second, immunohistochemistry (pERK) and neuropharmacology 

were used to evaluate and to manipulate neuronal activity in a LS region- and 

aggression level-specific manner. 
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CHAPTER 2: POST-WEANING SOCIAL ISOLATION EXACERBATES AGGRESSION IN BOTH 

SEXES AND AFFECTS THE VASOPRESSIN AND OXYTOCIN SYSTEM IN A SEX-SPECIFIC 

MANNER 

 
This chapter was published in Neuropharmacology (Oliveira et al, 2019) as part of the 

special issue on Impulsivity and Aggression. The experiments were designed by 

Vinicius Oliveira, Trynke de Jong, and Inga Neumann. V.O. did all the behavioral 

assessments as well as analyzed the behavior. T.d.J. helped with brain collection. V.O. 

sliced the brains, performed, developed and evaluated in situ hybridization and 

receptor autoradiographs. V.O. prepared figures and tables, and wrote the first draft of 

the manuscript, which was revised by T.d.J. and I.N. 

2.1. INTRODUCTION 
 Adverse and stressful early life experiences in humans, including parental neglect 

or abuse, often lead to impaired social behaviors such as exaggerated aggression in 

adulthood (Arseneault, 2017; Caspi et al, 2002; Dackis et al, 2017; Nelson and Trainor, 

2007). This phenomenon is not limited to humans, as several rodent models of early 

life stress have found that they also affect social interactions in adulthood (Haller et al, 

2014; Nelson and Trainor, 2007; Sandi and Haller, 2015). Adverse experiences 

occurring around puberty, in particular, appear to result in abnormal aggression in 

rodents (Marquez et al, 2013; Toth et al, 2011; Veenema et al, 2006, 2007).  

 Recently, post-weaning social isolation (PWSI) has emerged as a reliable rodent 

model of peri-pubertal stress leading to exacerbated aggressiveness in adulthood 

(Toth et al, 2011). The neurobiological underpinnings of the pro-aggressive effects of 

PWSI have been extensively studied in the last few years. Thus, isolated rats show 

enhanced corticosterone (CORT) levels after an aggressive encounter (Toth et al, 

2011), and increased neural activity (c-Fos expression) in areas associated with threat 
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perception, social behaviors, and aggression such as the basolateral (BLA) and medial 

(MeA) amygdalar nuclei, the mediobasal hypothalamus, the bed nucleus of the stria 

terminalis (BNST) and the pre-frontal cortex (PFC) (Toth et al., 2012). In the medial 

PFC, PWSI caused reduced thickness accompanied by decreased spine density, 

number of astrocytes and vascularization (Biro et al, 2016). 

 As with most translational studies of aggression, the PWSI paradigm has been 

established and validated in males, whereas females have thus far not been tested. 

However, antisocial tendencies and abnormal aggression are prevalent in girls, and 

peri-pubertal stress may be a relevant factor in its onset (Denson et al, 2018; Freitag 

et al, 2018; Menks et al, 2017; Smaragdi et al, 2017). We, therefore, set out to establish 

whether PWSI can be implemented as an animal model of aggression in females by 

assessing whether PWSI has comparable effects on aggressive behavior in females 

and males using the female intruder test (FIT) (de Jong et al. 2013) alongside the male 

resident-intruder test (RIT) (Koolhaas et al, 2013), respectively. 

 A second goal of the study was to assess whether PWSI modifies two brain 

neuropeptide systems that both are essentially involved in the regulation of socio-

emotional behavior, i.e. the oxytocin (OXT) and arginine vasopressin (AVP) systems. 

A role for central OXT and AVP in PWSI-induced aggression is likely, as the activity of 

both neuropeptides is affected by early life stress (Barrett et al, 2015; Beiderbeck et al, 

2007; Lukas et al, 2010; Veenema et al, 2006) as well as social isolation (Albers et al., 

2006; Tanaka et al., 2010). Furthermore, both nonapeptides play a strong role in the 

modulation of social interactions (Ebner et al., 2000; Lukas et al., 2011c;Lukas et al., 

2011a; Zoicas et al., 2014) including aggression (Calcagnoli et al, 2013, 2014a; 

Harmon et al, 2002; De Jong et al, 2014; de Jong and Neumann, 2017; Lukas and de 

Jong, 2017; Masis-Calvo et al, 2018; Terranova et al, 2016; Veenema et al, 2010). 

Specifically, OXT was found to have anti-aggressive effects whereas AVP was 
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described to have sex and brain region-specific effects on aggression. Since profound 

sex differences have been found in the OXT and AVP systems in general (DiBenedictis 

et al, 2017; Smith et al, 2017), and in the role of OXT and AVP in social behaviors, 

including aggression (Bredewold et al., 2014; Dumais et al., 2015; Lukas et al., 2011c; 

Lukas and Neumann, 2014; Terranova et al., 2016), we hypothesized that PSWI affects 

OXT and AVP mRNA expression in the hypothalamic paraventricular (PVN) and 

supraoptic (SON) nucleus, as well as OXTR and V1aR receptor binding in aggression-

related brain areas, in a sex-specific manner.  

2.2. MATERIAL AND METHODS  

ANIMALS 

  All experiments were carried out in male and female Wistar rats that were bred in 

the animal facilities of the University of Regensburg, Germany. Intruders of both sexes 

were Wistar rats obtained from Charles Rivers Laboratories (Sulzfeld, Germany) that 

were kept in groups of 3 to 4 animals in a separate animal room. All rats were kept 

under controlled laboratory conditions (12:12 h light/dark cycle; lights off at 11:00, 

21±1oC, 60±5% humidity, standard rat nutrition (RM/H, Ssniff Spezialdia¨ten GmbH, 

Soest, Germany and water ad libitum). 

PWSI PROCEDURE AND HOUSING CONDITIONS 

 The PWSI procedure was performed according to Toth et al., 2011. In brief, 6 

litters were culled to 8 pups per litter (4 to 5 males and 3 to 4 females), 3-4 days after 

birth. On postnatal day (PND) 21, all pups were weaned and similarly distributed over 

four different experimental groups: isolated males and females (IS-m/IS-f, n = 13/11 

per group) and group-housed males and females (GH-m/GH-f, n = 12 per group). IS 

animals were kept single-housed in a single rat cage (30.80 x 22.23 x 22.23 cm). GH 

rats were housed in non-related same-sex groups of 3-4 animals in standard group 
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cages (55x35x20 cm). All experimental animals were weighed once a week to monitor 

general health. 

OVERVIEW OF EXPERIMENTS (FIG 2.1) 

 At PND72, the first cohort of rats (IS males: n=5; GH males: n=5; IS females: n=5; 

GH females: n=5) were transferred to single-housed observation cages (40x24x35 cm, 

Plexiglas walls) 48 hours prior to the first test, the RIT (males) and the FIT (females), 

respectively, in order to induce reliable levels of aggression (Toth et al, 2011). On PND 

74, these animals underwent the RIT or FIT one hour after lights went off. Immediately 

after the test they were deeply anesthetized by isoflurane, immediately after which 

animals were sacrificed, and brains were dissected and snap frozen for OXT and AVP 

mRNA quantification and OXTR and V1aR binding assays. Adrenals were dissected 

and weighed as an indirect marker of chronic stress (Haller et al, 2014; Sandi and 

Haller, 2015).  

 On PND 74, the second cohort (IS males: n=8; GH males: n=7; IS females: n=6; 

GH females: n=7) was singly housed in observation cages and tested in the RIT and 

FIT 48 hours later, similar to the first cohort. These animals were kept alive and 

underwent behavioral assessments in order to evaluate anxiety (PND78, elevated plus-

maze) and social-related behaviors (PND 86 and PND88, social preference and social 

discrimination, respectively).  

 In both cohorts, vaginal smears were obtained from all females approximately 2 

hours prior to the FIT. Only diestrous females underwent the FIT and, in cohort 1, brain 

and adrenal dissection. Vaginal smears were also taken after the other behavioral 

tests.  
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RESIDENT AND FEMALE INTRUDER TEST 

 The RIT and FIT took place in the early dark phase under dim red light conditions. 

An unfamiliar same-sex intruder was released into the observational cage of the 

resident for 10 minutes. Intruders weighed between 10-20% less than residents (De 

Jong et al, 2014; Koolhaas et al, 2013). The test was videotaped and ongoing behavior 

was continuously scored from video by a blind observer using JWatcher event recorder 

Program (Blumstein et al, 2000). The percentage of time of four major sets of behaviors 

were scored: i) aggressive behavior, consisting of attacks, keep down, threat, offensive 

grooming, offensive up-right; ii) neutral behaviors, consisting of exploring (investigating 

the home-cage), drinking and eating, autogrooming, immobility; iii) social behaviors 

(non-aggressive social interactions, sniffing); and iv) defensive behavior (submissive 

posture, kicking a pursuing intruder with hind limb). We also measured sexual behavior 

(lordosis, hopping, darting and mounting) when shown. In addition, we scored the 

frequency of attacks as well as the latency to the first attack. Furthermore, we re-scored 

the videos in slow frame speed in order to identify attacks towards vulnerable targets 

Figure 2.1: Schematic overview of the experimental design. Coh: Cohort; EPM: elevated plus-

maze; FIT: female intruder-test; RIT resident intruder-test; SP: social preference test; SD: social 

discrimination task. 
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(paws, head, belly, and throat) as a marker of abnormal aggression (Haller, 2013; Toth 

et al, 2011) 

ELEVATED PLUS-MAZE 

 For analysis of anxiety-related behavior, the second cohort of animals was tested 

on the elevated plus-maze (EPM) on PND 78 in the late light phase (8:00–10.30 h). 

Animals were transferred to the EPM room two hours prior to the experiment in order 

to habituate to the novel environment. The EPM consisted of a plus-shaped platform 

elevated 80 cm above the floor, with two open (50x10 cm; 100 lux) and two closed 

arms (50x10x40 cm; 20 lux). Rats were placed in the center square facing a closed 

arm. The following parameters were recorded during the 5-min test using a 

video/computer system (Plus-maze version 2.0; ErnstFricke): time spent in open and 

closed arms, number of entries into open and closed arms, latency to enter an open 

arm. Here, statistical analysis is only presented for the percentage of time spent on the 

open arms: [time on open arms]/[time on open+closed arms] x100% as an indication 

of anxiety levels. 

SOCIAL PREFERENCE TEST  

 One week later, on PND 86, the second cohort underwent a Social Preference 

Test. The test was performed according to standard procedures described in detail 

elsewhere (Lukas et al., 2011c; Lukas and Neumann, 2014). In brief, experiments were 

conducted in the early dark phase (13:00-16:00h). Rats were placed in a novel arena 

(40x80x40 cm) under dim red light conditions. Animals were allowed to habituate to the 

arena for 30 seconds, after which an empty wire-mesh cage (object stimulus: 2x9x9 

cm) was placed at one side wall of the arena for 4 min. The empty cage was then 

exchanged by an identical cage containing an unknown same-sex conspecific (social 

stimulus) for an additional 4 min. Between each trial, the arena was cleaned with water 
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containing a low concentration of detergent. All phases were videotaped and videos 

were scored afterward by an observer who was blind to the experimental groups. The 

results were expressed using the Social Preference index: [time investigating the social 

stimulus]/[total time investigating both stimuli] x100%. 

 SOCIAL DISCRIMINATION TEST 

 On PND 88, the second cohort underwent a Social Discrimination Test. This test 

assesses the ability of an individual to discriminate a known conspecific from an 

unknown one, measured as the preference of the novel conspecific over the familiar 

one (Engelmann et al., 1998; Lukas et al., 2011a). The tests were performed in the 

dark phase (13:00-16:00) under the dim red light. Rats were individually housed in an 

observation cage with bedding from their home cage starting 2 h prior to the 

experiment. A same-sex juvenile rat (3 weeks old) was introduced into the cage of the 

experimental rat for 4 min (social memory acquisition period); 60 minutes later the now 

familiar juvenile rat was reintroduced along with an unfamiliar juvenile for 4 min (social 

discrimination period). All tests were videotaped and the time spent investigating the 

juveniles (sniffing the anogenital and head/neck regions) was measured by a 

researcher blinded to the housing conditions using JWatcher event recorder. The 

results were expressed using the discrimination index: [time investigating the unfamiliar 

conspecific]/[total time investigating both juveniles] x 100%. An index above 50% 

indicates a preference for the unfamiliar juvenile, in other words, social memory is 

present. We also measured latency to approach and total interaction time with the 

juveniles to exclude that possible effects were due to social avoidance. Furthermore, 

we measured aggressive behavior display towards the juveniles as a marker of 

abnormal aggression.  
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 IN SITU HYBRIDIZATION 

 Brains were frozen and cut into 16-µm coronal cryostat sections, mounted on 

slides, and kept in -20°C. We adopted the hybridization protocol used by (Veenema et 

al, 2006). Briefly, slides were fixed in 4% paraformaldehyde, acetylated in 0.25% 

triethanolamine ⁄ acetic anhydride and dehydrated through a series of graded ethanols. 

Hybridization was performed using two specific 48-mer, 35S-labelled oligonucleotide 

probes: AVP: 5’-GCA-GAAGGC-CCC-GGC-CGG-CCC-GTC-CAG-CTG-CGT-GGC-

GTT-GCTCCG-GTC-3’ (Veenema et al, 2006) OXT: 5’-CTCGGAGAAGGCAG 

ACTCAGGGTCGCAGGCGGGGTCGGTCTCGGAGAAGGCAGACTCAGGGTCGCA

GGCGGGGTCGGTGC-GGCAGCC-3’ (Peters et al., 2014). Slides were incubated in 

hybridization solution [50% formamide, 10% dextran sulphate, 2 x standard sodium 

citrate (SSC), 2 mg ⁄ mL yeast tRNA, 10 mm dithiothreitol, 5 x Denhardt’s]. The probe 

was applied to each slice at a concentration of 106 cpm ⁄ slide in 200 µL hybridization 

solution. The sections were hybridized overnight at 50°C in a humidified chamber. 

Then, slides were washed three times in 1 x SSC at 50°C, washed in 1 x SSC at room 

temperature, dehydrated in a graded series of ethanol and air dried. Hybridized 

sections were exposed to X-Omat film (Kodak, Rochester, NY, USA). Exposure time 

varied according to the peptide (OXT: 16h, AVP: 32h). All brain sections were 

hybridized at the same time and were exposed to the same film to avoid intrinsic 

variations between different in situ hybridizations and different films. Films were 

scanned using an EPSON Perfection V800 Scanner (Epson, Germany), the analysis 

was performed using the NIH Image program (ImageJ 1.31, National Institute of Health, 

http://rsb.info.nih.gov/ij/). Briefly, optical density was calculated in the PVN and SON 

for both peptides by taking the mean of bilateral measurements of 6 to 12 brain sections 

per region of interest. After subtraction of tissue background. 
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 RECEPTOR AUTORADIOGRAPHY 

 Brains were cut into 16-µm coronal cryostat sections and mounted on slides kept 

in -20°C. The receptor autoradiography procedure was performed according to Lukas 

et al., 2010 using a linear V1A-R antagonist [125I]-d(CH2)5(Tyr[Me])-AVP (Perkin 

Elmer, USA) or a linear OXTR antagonist [125I]-d(CH2)5[Tyr(Me)2-Tyr-Nh2]9-OVT 

(Perkin Elmer, USA) as tracers. Briefly, the slides were thawed and dried at room 

temperature followed by a short fixation in paraformaldehyde (0.1%). Then slides were 

washed two times in 50 mM Tris (pH 7.4), exposed to tracer buffer (50 pM tracer, 50 

mM Tris, 10 mM MgCl2, 0.01% BSA) for 60 min, and washed four times in Tris þ 10 

mM MgCl2. The slides were then shortly dipped in pure water and dried at room 

temperature overnight. On the following day, the slides were exposed to Biomax MR 

films for 7-20 days depending on the receptor density and brain region (Kodak, Cedex, 

France). The films were scanned using an EPSON Perfection V800 Scanner (Epson, 

Germany). The optical density V1aR and OXTR were measured using ImageJ (V1.37i, 

National Institute of Health, http://rsb.info.nih.gov/ij/). Receptor density was calculated 

per rat by taking the mean of bilateral measurements of 6 to 12 brain sections per 

region of interest. After subtraction of tissue background. 

STATISTICAL ANALYSES 

 Data were analyzed using GraphPad Prism 6.0. Normality was assessed using 

Kolmogorov-Smirnov analyses. Two-way ANOVA was carried out to analyze the main 

and interaction effects of sex and housing conditions on behaviors, adrenal weights, 

OXT, and AVP mRNA expression, and OXTR and V1aR binding. Body weight was 

evaluated in each sex with two-way ANOVA (main and interaction effects of housing 

condition and age. Social preference and social discrimination tests statistics were 

carried using the one-sample t-test comparing the groups with a hypothetical value of 

50%. Data were presented as Means + SEM. Significance was accepted at p≤0.05.  
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2.3. RESULTS 

PWSI DOES NOT AFFECT BODY AND ADRENAL WEIGHTS  

 During the PWSI period (PND21-74), the males’ body weight increased from 

58.96 ± 3.64 to 386.58 ± 20.39 g (GH-m) and from 60.69 ± 2.58 g to 416.83 ± 9.07 g 

(IS-m) (main effect of age: F(7,167)= 1003.0; p<.001; main effect of housing: F(1,167)= 

0.24; n.s; interaction effect of age x housing: F(7,167)= 0.84; n.s). In females, body weight 

increased from 57.96 ± 2.5 g to 265.50 ± 5.45 g (GH-f) and from 58.18 ± 2.07 to 254.41 

± 6.38 (IS-f) (main effect of age: F(7,167)= 590; p<.001; main effect of housing: F(7,167)= 

1.68; n.s; interaction effect of age x housing: F(7,167)= 0.84; n.s). 

 At PND 74, relative adrenal weights were higher in females (GH-f and IS-f: 0.31 

± 0.01 %) compared to males (GH-m: 0.17 ± 0.01 %, IS-m: 0.16 ± 0.01 %), but were 

not affected by housing condition (main effect of sex: F(1,167)= 106.4; p<.001; main effect 

of housing: F(1,167)= 0.12; n.s.; interaction effect of sex x housing: F(1,167)= 0.11; n.s).  

PWSI INCREASES AGGRESSION IN BOTH MALE AND FEMALE RATS 

 For this analysis, animals from cohort 1 and cohort 2 were pooled, since 

aggression levels did not differ between both cohorts. IS animals from both sexes 

showed increased aggression in the RIT or FIT (see table 2.1 for an overview of 

statistics). This increase was mainly reflected by an increase in threat behavior (Figure 

2.2A). Both IS males and IS females engaged less time in neutral behaviors compared 

to GH animals during the RIT or FIT (Figure 2.2B). Females displayed more time in 

offensive grooming compared to males, independent of housing (Fig. 2.2A), whereas 

males displayed more autogrooming compared to females, independent of housing 

(Figure 2.2B). IS animals of both sexes showed a higher number of attacks (Figure 

2.2C), and a higher percentage of attacks directed at vulnerable body parts compared 

with GH controls (Figure 2.2D). There was a trend toward a reduced attack latency in 

IS rats (Figure 2.2E). 
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Table 2.1: Main and interaction effects of housing (isolated (IS) vs. group-housed (GH)), and sex (male 

vs. female) on various behaviors in the RIT/FIT and social discrimination test. n.s. not significant. 

 

Figure 2.2: Effects of post-weaning social isolation (IS, black /dark grey) or group-housing (GH, 

white/light grey) on behavior of male (m, black/white bars) and female (f, grey bars) rats during a 

10-min RIT/FIT, including (A) percentage of time behaving aggressively; (B) percentage of time 

behaving neutrally, socially and defensively; (C) number of attacks; (D) percentage of attacks 

towards vulnerable targets; (E) latency to attack. Effects of housing: * p≤.05; ** p≤.01; ***p≤.00; 

Effects of sex: #p≤.05; ###p≤.001. 
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PWSI IMPAIRS SOCIAL DISCRIMINATION, BUT NOT ANXIETY-LIKE BEHAVIOR OR 

SOCIAL PREFERENCE 

 PWSI had no effect on anxiety-like behavior or social preference (see table 2.2 

for statistical details). However, whereas GH animals were able to distinguish between 

a known and unknown juvenile (GH-m: t(3)=3.337, p=0.0455; GH-f: t(6)=2.612, 

p=0.0400), IS animals were not (IS-m: t(6)=0.3042; p=0.7713; IS-f: t(5)=1.304; p=0.2490) 

(Figure 2.3A). Furthermore, IS females presented increased aggression during the 

social discrimination test towards the juveniles compared to GH females and IS males 

(Figure 2.3B) (see table 1 for statistical details).  

Behavioral test Behavior Housing effect Sex effect HousingxSex 

RIT/FIT 

Aggression F(1,40) =12.08; 

p=.001 

n.s. n.s. 

Threat F(1,40)=17.32; 

p<.001 

n.s. n.s. 

Offensive 

grooming 

n.s. F(1,40)=20.99; 

p< .001 

n.s. 

Attack F(1,40)=7.14; 

p=.011 

n.s. n.s. 

Vulnerable 

targets 

F(1,40)=9.15; 

p=.004  

n.s. n.s. 

Latency to 

atttack 

F(1,40)=4.08; 

p=.050  

n.s. n.s. 

Auto-grooming n.s. F(1,40)= 11.59; 

p=.002 

n.s. 

Neutral F(1,40)=11.09; 

p=.002  

n.s. n.s. 

Social 

discrimination 

Aggression F(1,22)=12.67; 

p=.002  

F(1,22)= 4.472; 

p=.04 

n.s. 
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Table 2.2: Main and interaction effects of housing (isolated (IS) vs. group-housed (GH)), and sex (male 

vs. female) on the percentage of time spent in the open arm of the elevated plus-maze (EPM) and social 

preference index in the social preference test. Data are shown in mean±SEM. GH: group-housed; IS: 

isolated; m: male; f: female; n.s.: not significant 

 

PWSI INCREASES OXT, BUT NOT AVP MRNA EXPRESSION 

 PWSI increased OXT mRNA in the PVN but not in the SON in both sexes. In 

addition, males had a lower expression of OXT mRNA in the PVN compared to females 

(Figure 2.4A). Neither housing condition nor sex had any effect on AVP mRNA (see 

table 2.3 for statistical details).  

Behavior GH-m GH-f IS-m IS-f p 

EPM 

(% time) 

11.5±2.8 33.3±7.4 34.8±9.2 34.5±9.1 n.s. 

Social 
Preference 

Index 

62.2±3.9 62.1±3.2 58.9±6.5 59.6±1.5 n.s. 

Figure 2.3: Effects of post-weaning social isolation (IS, black /dark grey) or group-housing (GH, 

white/light grey) on social memory (A) and aggression (B) of male (m, black/white bars) and female 

(f, grey bars) rats toward juveniles in a social discrimination task. Effects of housing: * p≤.05; ** 

p≤.01; Effects of sex: #p≤.05. 
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Table 2.3: Main and interaction effects of housing (isolated (IS) vs. group-housed (GH)), and sex (male 

vs. female) on OXT and AVP mRNA expression and OXTR and V1aR binding. AVP: vasopressin; 

BNSTa: bed nucleus of stria terminalis anterior part; BNSTp: bed nucleus of stria terminalis posterior 

part; CeA: central amygdala; DG: dentate gyrus; IL: infralimbic cortex; LH: lateral hypothalamic area; 

LSd: lateral septum dorsal part; LSv: lateral septum ventral part; NAcca: nucleus accumbens anterior 

part; n.s.: not significant; OXT: oxytocin; OXTR: oxytocin receptor binding; PrL: Prelimbic cortex; VMH: 

ventromedial nucleus of the hypothalamus; V1aR: V1a receptor. 

Figure 2.4: Effects of post-weaning social isolation (IS, black /dark grey) or group-housing (GH, 

white/light grey) on OXT and AVP mRNA expression in the PVN (A, C) and SON (B, D) of male (m, 

black/white bars) and female (f, grey bars) rats. Upper panel shows representative pictures of the 

brain regions evaluated. Effects of housing: * p≤.05; Effects of sex: #p≤.05. 
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Peptide or 

Receptor 

Region Housing effect Sex effect HousingxSex 

OXT 

PVN F(1,12)=7.732; 

p=.02  

F(1,12)= 11.89; 

p=.005 

n.s. 

SON n.s. F(1,13)= 4.117; 

p=.06 

n.s. 

AVP 

PVN n.s. n.s. n.s. 

SON n.s. n.s. n.s. 

OXTR 

BNSTa n.s. F(1, 14)=8.05; 

p=.01 

n.s. 

BNSTp n.s. F(1, 12)=31.87;  

p< .001 

n.s. 

CeA n.s. n.s. n.s. 

IL n.s. n.s. n.s. 

LSv n.s. n.s. n.s. 

NAcca F(1, 13)=6.37; 

p= .02 

F(1, 13)=5.52; p= 

.03 

n.s. 

PrL n.s. n.s. n.s. 

VMH n.s. n.s. n.s. 

V1aR 

BNSTa n.s. n.s. F(1, 15)= 22.96; 

p<.001 

CeA n.s. n.s. n.s. 

DG F(1, 14)=9.98; 

p=.007 

n.s. n.s. 

LH F(1, 15)=6.69; 

p=.02 

n.s. n.s. 

LSd n.s. n.s. n.s. 

NAcca n.s. n.s. n.s. 
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PWSI ALTERS V1A AND OXT RECEPTOR BINDING 

 PWSI decreased OXTR binding in the NAcc independently of sex. Females 

presented higher binding than males in this brain region independent of the housing 

condition. Furthermore, males exhibited higher OXTR binding in the posterior and 

anterior part of the BNST than females, regardless of housing (Figure 2.5).  

 

 

 Regarding the V1a receptor, IS animals presented lower binding in the LH and 

DG regardless of sex. In the anterior portion of BNST, V1aR binding was differently 

regulated depending on sex: GH females presented higher binding than GH males, 

whereas IS females presented lower binding compared to IS males (Figure 2.6) (see 

table 2.3 for statistical details). 

Figure 2.5: Effects of post-weaning social isolation (IS, black /dark grey) or group-housing (GH, 

white/light grey) on OXTR binding in male (m, black/white bars) and female (f, grey bars) rats. In (A) 

representative pictures showing main effects; (B), a graph depicting quantitative grey levels; (C) 

schematic diagrams showing the analyzed regions. BNSTa and BNSTp: bed nucleus of stria 

terminalis, anterior and posterior parts; LSv: lateral septum ventral part; NAcca: nucleus accumbens 

anterior part; CeA: central amygdala; VMH: ventromedial nucleus of the hypothalamus. Effects of 

housing: * p≤.05; Effects of sex: #p≤.05. 
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2.4. DISCUSSION 

 The present study shows that PWSI has considerable long-lasting effects on two 

aspects of social behavior, i.e. aggression and social memory, and these effects are, 

overall, similar in males and females. Interestingly, males and females did not differ in 

the total level of aggression displayed during the RIT or FIT, independent of the housing 

condition. In other words, female Wistar rats were exactly as aggressive as male Wistar 

rats. This finding is somewhat surprising as female rodents are typically considered 

less aggressive than their male counterparts (Hashikawa et al, 2017, 2018; De Jong et 

al, 2014; Trainor et al, 2010b; Unger et al, 2015). However, only a few studies directly 

Figure 2.6: Effects of post-weaning social isolation (IS, black /dark grey) or group-housing (GH, 

white/light grey) on V1aR binding in male (m, black/white bars) and female (f, grey bars) rats. In (A) 

representative pictures showing main effects; (B), a graph depicting quantitative grey levels; (C) 

schematic diagrams showing the analyzed regions. BNSTa and BNSTp: Bed nucleus of stria 

terminalis, anterior and posterior parts; LSd: lateral septum dorsal portion; NAcca: nucleus 

accumbens anterior portion; CeA: Central amygdala; LH: lateral hypothalamic area; DG: dentate 

gyrus. Effects of housing: * p≤.05; Effects of sex: #p≤.05. 
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compared aggressive behavior between males and females, showing that female 

house mice (Mus musculus) and California mice (Peromyscus californicus) indeed 

exhibited less aggression than their male conspecifics (Hashikawa et al, 2017; Trainor 

et al, 2010b) whereas female Syrian hamsters (Mesocricetus auratus) were as 

aggressive as males (Been et al, 2016; Terranova et al, 2016). To the best of our 

knowledge, this is the first study to directly compare aggression in virgin female and 

male rats under the same experimental conditions. Importantly, since aggression is a 

behavior that is particularly affected by breeding and housing conditions, as shown in 

this and other studies (Albers et al., 2006; Kohl et al., 2015; Oliva et al., 2010; Tulogdi 

et al., 2014), suboptimal conditions such as group versus single housing, limited 

bedding and nesting, and cage ventilation may have obscured aggressive behavior in 

female rats in previous studies. Overall, the similar levels of aggression demonstrated 

in the present study may be translated to humans. Recent studies have shown that 

men and women have the same potential to aggress, although men tend to engage 

more often in physical aggression, whereas women tend to engage more in verbal and 

psychological aggression (Denson et al, 2018; Freitag et al, 2018; Mancke et al, 2015). 

PWSI again proved to be a reliable model to enhance aggression in adulthood, similar 

to other peri-pubertal stress paradigms (Haller et al, 2014; Marquez et al, 2013; Sandi 

and Haller, 2015; Toth et al, 2011; Veenema et al, 2006). Aside from the quantitative 

increase, IS rats also presented a higher percentage of attacks towards vulnerable 

targets during the RIT or FIT (especially males), as well as aggression towards a 

juvenile during the social discrimination test (especially females). A recent study has 

reported that isolated female Swiss-Webster mice attacked juvenile intruders in 

response to optogenetic stimulation of estrogen receptor α-positive neurons in the 

ventrolateral part of the ventromedial hypothalamus, suggesting that attacking a 

“weaker” intruder is hard-wired in the female brain (Hashikawa et al, 2017). Further 
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studies are needed to dissect the neural pathways involved in the specific features of 

abnormal aggression exhibited by males and females after PWSI.  

 PWSI changed neither explorative behavior in the elevated plus-maze nor social 

preference behavior in adult male and female rats, indicating normal levels of anxiety-

related behavior and social motivation in these animals (Lukas et al., 2011c; Lukas and 

Neumann, 2014). However, IS subjects showed impaired social memory as they failed 

to discriminate a known juvenile from an unknown one in the social discrimination test. 

Previous studies have also reported that early life stress affects social memory and 

social discrimination in rats. Both male and female Long Evans rats exposed to 2 weeks 

of PWSI were not able to discriminate between a familiar and an unfamiliar juvenile 

within a 30 minutes interval (Tanaka et al, 2010). In addition, exposure to maternal 

separation or limited nesting also impaired social discrimination in adult male rats and 

mice, respectively (Kohl et al., 2015; Lukas et al., 2011a). Our study confirmed these 

previous findings and showed that the effects of PWSI on social discrimination last until 

adulthood in both sexes. 

 Our final aim was to evaluate whether exposure to PWSI leads to an alteration of 

central OXT and AVP systems as a possible mechanism underlying the behavioral 

effects. Our results show that OXT mRNA was increased (5%) in the PVN of IS rats in 

both sexes, whereas AVP mRNA was not altered by sex or housing condition in our 

subjects. These findings appear to be somewhat in contrast with (Tanaka et al, 2010), 

who found a reduced number of OXT-immunoreactive neurons in the medial 

parvocellular dorsal zone of the PVN after 2 weeks of PWSI in female, but not male 

rats, and a decreased number of AVP-ir neurons in the medial parvocellular ventral 

zone of the PVN in males but not in female rats. This difference may be a result of the 

quantification of mRNA expression versus protein levels, which do not always correlate 

(Steinman et al., 2015). Alternatively, OXT and AVP mRNA expression and protein 
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synthesis may shift depending on the duration of the isolation period (two weeks versus 

seven weeks in our study). Furthermore, both IS and GH females presented higher 

levels of OXT mRNA than males in this brain region. Several studies have shown a 

lack of sexual dimorphism in the OXT system in rats (both basal mRNA expression and 

basal peptide immunoreactivity) (DiBenedictis et al, 2017; Dumais et al, 2013). A 

possible explanation for this discrepancy is that our experiments differed in terms of 

experimental settings such as the light-dark cycle and context (animals were 

transferred to a new environment, single-housed observation cages, 48 hours before 

the RIT and FIT), which may have induced the sex difference. Rats in our study also 

underwent a 10-min aggressive encounter immediately before the killing, and it is 

possible that this induced some rapid sex-dependent changes in OXT mRNA 

expression. 

 Concerning the receptors, we found housing and sex-related changes in both 

OXTR and V1aR binding. Males presented a higher OXTR binding in the anterior and 

posterior part of the BNST compared to females. This sex difference has been reported 

before and has been linked to sexual dimorphisms in persistence of social memory 

(Dumais et al, 2013, 2015; Smith et al, 2017). Furthermore, PWSI decreased OXTR 

binding in the anterior part of the NAcc of both sexes. The NAcc has been reported to 

regulate appetitive (seeking) and consummatory (execution) aspects of aggression in 

mice (Aleyasin et al, 2018). In addition, NAcc is involved in abnormal aggression in 

male rats bred for low anxiety behavior (LAB rats) (Beiderbeck et al, 2012). 

Interestingly, OXT signaling in the NAcc has also been shown to be related to the 

positive aspects of social interactions and stress resilience in voles (Barrett et al, 2015; 

Bosch et al, 2016; Yu et al, 2016). Therefore, it is possible that altered OXT signaling 

in this region plays a role in PWSI-induced abnormal aggression. Our lab currently 
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explores the effects of OXTR manipulation in the amygdala and septum on female 

aggression. The present results suggest that the NAcc should also be studied.  

 PWSI affected V1aR binding in both males and females in several brain areas. 

Receptor binding was decreased in the LH and DG. The LH has been associated with 

predatory aggression in rats (Haller, 2013). This brain region was highly activated in 

both GH and IS male rats who fought a conspecific in the RIT (Toth et al., 2012). In 

addition, AVP-ir was increased in this region under basal conditions and 2 hours after 

exposition to the RIT in MS male rats (Veenema et al, 2006). Therefore, it can be 

hypothesized that PWSI affects aggression in part via changes in AVP 

neurotransmission in the LH. The DG, on the other hand, has been implicated in social 

memory acquisition (Fernandes et al, 2016) and persistence in mice (Pereira-caixeta 

et al, 2017). This region also presented a blunted neural activity (c-Fos expression), in 

response to a pubertal con-specific, in rats isolated for four weeks, independently of 

the sex (Ahern et al, 2017). A reduction of AVP signaling in the DG through low V1aR 

binding may disrupt rats social discrimination ability. 

 Finally, we found an interaction effect of housing and sex on V1aR binding in the 

anterior portion of the BNST. GH females presented high levels of V1aR binding when 

compared to GH males. Surprisingly, this relation was reversed after PWSI, as males 

had higher binding than females. The BNST is known to be involved in the effects of 

PWSI on aggression in male rats, as IS males exhibited enhanced neural activity in 

this brain area after the RIT compared to GH males (Toth et al., 2012). The BNST also 

contains a sexually dimorphic AVP system, with males presenting a higher number of 

AVP-ir cell bodies (DiBenedictis et al, 2017). Furthermore, activity of AVP neurons 

located in the caudal portion of the BNST was correlated positively with aggression in 

male, but negatively in female California mice (Steinman et al., 2015). Taking into 

account that AVP may have sex-specific effects on aggression (for example, AVP 
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injection into the anterior hypothalamus decreased aggressiveness in females whereas 

it potentiated aggression in males (Terranova et al, 2016)), it is possible that PWSI 

resulted in opposite effects on AVP neurotransmission in the BNST in males compared 

to females, which in turn lead to pro-aggressive effects in both sexes. Further studies 

should focus on the sex-specific effects of AVP neurotransmission in the anterior BNST 

on aggressive behavior. Ongoing experiments in our lab are focusing on the effects of 

manipulation of V1aR in the amygdala and septum on female aggression, the present 

results suggest that the anterior BNST should be targeted as well.  

2.5. CONCLUSION 

 Our study is the first study to directly compare aggressive behavior between virgin 

female and male rats, both under normal (GH) conditions and after PWSI. Importantly, 

both females and males of the IS group showed increased aggressive behavior as 

adults, mainly reflected by exacerbated threat behavior. Besides its overall effect on 

general aggression, PWSI induced abnormal aggression, i.e. increased attacks 

towards vulnerable targets and increased aggression towards a juvenile. Finally, 

whereas OXT and AVP mRNA expression remained largely unchanged, PWSI altered 

OXTR binding in the NAcc and V1aR binding in the LH, DG and BNST, regions likely 

to contribute to the effects of prolonged PWSI on social interactions. 

 In summary, the present study supports PWSI as a reliable animal model to 

induce aggression in both male and female rats. We also show evidence of the 

contribution of the OXT and AVP system in the aggressive behavior induced by PWSI. 
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CHAPTER 3: THE OXYTOCIN-VASOPRESSIN BALANCE WITHIN THE LATERAL SEPTUM 

DETERMINES AGGRESSION LEVELS IN VIRGIN FEMALE RATS 

This chapter was submitted for publication in Nature Communications (Oliveira et. al.). 

The behavioral experiments were designed by Vinicius Oliveira with the help of  Trynke 

de Jong and Inga D. Neumann. The electrophysiology experiments were designed by 

V.O. and Michael Lukas with the help of Veronica Egger. V.O. did all the behavioral 

assessments as well as analyzed the behavior with the help of Hanna Wolff, Elisa 

Durante, Alexandra Lorenz, and Anna-Lena Mayer. V.O. sliced the brains, performed, 

developed and evaluated the receptor autoradiographs with the help of Elisa Durante. 

V.O. performed and analyzed all the immunohistochemistry data. Patch-clamp was 

performed by V.O. and posterior analyses were done by VO with the help of M.L. 

Surgeries were done by V.O. with the help of Oliver Bosch, Rodrigue Maloumby and 

Thomas Grund. All the figures and tables were prepared by V.O. who also wrote the 

manuscript with the input of I.N, all authors proofread the manuscript. 

3.1. INTRODUCTION 

Aggression is defined as a social behavior that has the intention of inflicting 

physical damage to a conspecific. Aggressive behavior is expressed by most, if not all, 

mammalian species, including humans, and it typically benefits the aggressor by 

gaining access to resources such as food, territory or mating partners (Nelson and 

Trainor, 2007). When expressed out-of-context or in an exacerbated manner, 

aggressive behavior becomes disruptive and harms both aggressor and victim. In 

humans, excessive or pathological aggression as seen, for example, in individuals 

suffering from conduct or antisocial personality disorder constitutes a severe burden to 

society (Freitag et al, 2018; Glenn et al, 2013; Nelson and Trainor, 2007; Wittchen et 

al, 2011). To better understand the neurobiology of social aggression and to develop 

potential treatment options, laboratory animal models of aggression have been 
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successfully used for decades (Koolhaas et al, 2013; Nelson and Trainor, 2007).  

However, as with most animal models available, aggressive behavior has been studied 

and validated predominantly in male rodents, whereas females have been studied 

rarely and if so, only in the physiologically unique period of lactation(Hashikawa et al, 

2018). Given the facts that i) girls and women also demonstrate disruptive social 

aggression and may develop conduct as well as anti-social personality disorder just 

like males (Colins et al, 2016; Denson et al, 2018; Freitag et al, 2018), and ii) the 

neurobiology of aggression appears to be sexually dimorphic (Borland et al, 2019; 

Denson et al, 2018; Hashikawa et al, 2017, 2018; Newman et al, 2019; Oliveira et al, 

2019; Terranova et al, 2016), the use of non-lactating female animal models is required 

to fully understand female aggression and to identify potential targets for treatment of 

extreme aggression in both sexes. 

First, in order to study the neurobiological mechanisms underlying female 

aggression, we established an animal model to robustly enhance the mild levels of 

spontaneous aggression displayed by female Wistar rats (De Jong et al, 2014). We 

hypothesized that a combination of social isolation and repeated aggression training 

by exposure to the female intruder test (FIT) (De Jong et al, 2014), i.e. to an unknown 

same-sex intruder, enhances female aggressiveness. Indeed, it has been shown that 

both social isolation (Oliveira et al, 2019; Ross et al, 2019), as well as repeated 

engagement in conflict with conspecifics (winner effect) (Been et al, 2016; Oyegbile 

and Marler, 2005; Silva et al, 2010), exacerbate aggression in solitary and aggressive 

rodent species, independently of the sex. Next, we sought to investigate the role of the 

neuropeptides oxytocin (OXT) and vasopressin (AVP) in female aggression. Both OXT 

and AVP have been strongly associated with aggressive behavior in males and 

lactating females (Beiderbeck et al, 2007; Bosch et al, 2005; Bosch and Neumann, 
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2010; Calcagnoli et al, 2013; Lukas and de Jong, 2017; Nephew et al, 2010; Oliveira 

et al, 2019; Ross et al, 2019; Veenema et al, 2010) and are known to be affected by 

social isolation in a sex-dependent manner (Oliveira et al, 2019; Ross et al, 2019).  

We also hypothesized that the effects of OXT and AVP on female aggression are 

predominantly mediated in the lateral septum (LS), which is known to inhibit aggressive 

behavior in both sexes (Borland et al, 2019; Zeman, Wolfgang and King, 1958). Early 

studies have shown that electrical stimulation of the LS reduced aggression (Albert and 

Chew, 1980; Potegal et al, 1981), whereas either pharmacological inhibition or 

lesioning of the LS triggered exaggerated aggression (‘septal rage’) in male and female 

hamsters (Borland et al, 2019; Mcdonald et al, 2011; Potegal, M Blau, A and Glusman, 

1981). Also, patients (including women) with septal tumors show increased irritability 

and aggressive outbursts (Zeman, Wolfgang and King, 1958). Recently, it has been 

shown that optogenetic stimulation of LS GABAergic neurons to the VMHvl abolishes 

attacks in male mice(Wong et al, 2016). 

Although several pieces of evidence confirm the gatting role of the LS in 

aggression, the neuromodulatory mechanisms involved in the regulation of septal 

activity during aggressive encounters, especially in virgin females, are still largely 

unknown. Interestingly, in the rat LS, OXT receptors (OXTR) and AVP V1a receptors 

(V1aR) are differentially expressed in two distinct subregions of the LS, i.e. OXTRs are 

located exclusively in the ventral LS (vLS) whereas V1aRs are predominantly found in 

the dorsal LS (dLS) (Smith et al, 2017). In addition, both OXT and AVP release in the 

LS have been tied to various social behaviors, including aggression, although the 

results are sometimes conflicting (Lukas and de Jong, 2017). For example, Wistar rats 

bred for low anxiety-related behavior (LAB), which display high and abnormal 

aggression (Beiderbeck et al, 2012), showed an attenuated LS AVP release 



Chapter 3: The oxytocin-vasopressin balance within the lateral septum 
determines aggression levels in virgin female rats 

 

55 
 

(Beiderbeck et al, 2007), whereas the high aggression of male Wistar rats (Veenema 

et al, 2010) during the resident-intruder test (RI) was found to be associated with 

increased AVP release in the same region. Regarding OXT even less is known about 

its role in the LS in the context of aggression. At the receptor level, increased OXTR 

binding has been reported in both dominant male mice (Lee et al, 2019) and lactating 

females (Caughey et al, 2011). 

Here, using a novel, reliable rat model of female aggression, we first investigated 

differences in central OXT or AVP release and receptor binding in response to an 

aggressive encounter in group-housed (GH), i.e. lowly aggressive, females, versus 

isolated and trained (IST), i.e. highly aggressive, females. Next, neuropharmacological, 

chemogenetic and optogenetic approaches were used to selectively manipulate  OXT 

or AVP signaling within the brain, either centrally or targeting specifically the vLS or 

dLS to assess its behavioral consequences in the FIT. Finally, in order to dissect the 

neuronal mechanisms within the LS controlling aggressive behavior, we (i) specifically 

modulated OXTR activation while recording spontaneous GABAergic inputs to vLS and 

dLS GABAergic neurons in-vitro , and (ii) monitored and manipulated neuronal activity 

in those subregions using pERK immunohistochemistry and neuropharmacology, 

respectively, in rats that exhibited opposite levels of aggression.  

3.2. METHODS 

RATLINES AND ANIMAL CARE  

The rats used for behavioral experiments were female Wistar rats (10-14 weeks 

old) that were bred in the animal facilities of the University of Regensburg, Germany. 

Female intruders were Wistar rats obtained from Charles Rivers Laboratories (Sulzfeld, 

Germany) that were kept in groups of 3 to 5 animals in a separate animal room. All rats 

were kept under controlled laboratory conditions (12:12 h light/dark cycle; lights off at 
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11:00, 21±1oC, 60±5% humidity), with access to standard rat nutrition (RM/H, Ssniff 

Spezialdiäten GmbH, Soest, Germany) and water ad libitum. For patch-clamp and 

pERK immunohistochemistry analyses, Venus-VGAT rats (VGAT: vesicular GABA 

transporter; lineVenus-B, W-Tg(Slc32a1-YFP*)1Yyan)(Uematsu et al, 2008) were 

used that were bred in the animal facilities of the University of Regensburg. All 

procedures were conducted in accordance with the Guidelines for the Care and Use 

of Laboratory Animals of the Local Government of Oberpfalz and Unterfranken. 

FEMALE INTRUDER TEST (FIT)  

The FIT took place in the early dark phase under dim red light conditions. An 

unfamiliar same-sex intruder was released into the observational cage of the resident 

for 10 minutes. Intruders weighed between 10-15% less than residents (De Jong et al, 

2014). The test was videotaped for later analysis by an experienced observer blind to 

any treatments using JWatcher event recorder Program (Blumstein et al, 2000). The 

percentage of time of four major groups of behaviors were scored: i) aggressive 

behavior, consisting of keep down, threat behavior, offensive grooming, and attacks; 

ii) neutral behaviors, consisting of exploring (investigating the home-cage), drinking 

and eating, self-grooming; iii) social behaviors (non-aggressive social interactions, 

sniffing, following); and iv) defensive behavior (submissive posture, kicking a pursuing 

intruder with hind limb). We also measured sexual behavior (lordosis, hopping, darting 

and mounting) and immobility when displayed. In addition, we scored the frequency of 

attacks as well as the latency to the first attack. Vaginal smears were taken after the 

FIT in order to verify the estrus cycle; all phases of the estrus cycle were included in 

the study.  
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OVERVIEW OF THE IN-VIVO EXPERIMENTS 

Animal groups for endogenous OXT/AVP measurements: Female Wistar rats were 

split into three different conditions: Group-housed (GH) females were kept in groups of 

3 to 5 animals per cage; Isolated (IS) females were singly housed for 8 days in 

observational cages and Isolated and trained (IST) females were also kept singly for 8 

days, but from day 5 on they underwent 3 consecutive FITs (training). On day 9, GH 

females were transferred to observational cages 4 hours prior to the behavioral 

experiments. One hour after lights went off, all residents were assigned into two 

different conditions FIT, rats which got an intruder, and control, rats that were left 

undisturbed in their home-cages. Immediately after the FIT rats were deeply 

anesthetized using intraperitoneal urethane (25%, 1,2 ml/kg) to allow cerebrospinal 

fluid (CSF) collection via cisterna magna puncture. Next, these animals were 

decapitated and brains and trunk blood were collected for receptor binding and 

hormonal measurements, respectively (Figure 1a).  

Neuropharmacology design: In the following experiments, subjects were split only into 

GH and IST conditions. IST females underwent surgery for intracerebroventricular 

(i.c.v.) or local cannula implantation and were respectively left undisturbed for recovery 

for 3 or 5 days. The training protocol was performed as described above, except for 

the fact that residents received a sham-injection before the FIT in order to get used to 

the infusion procedure. GH animals were kept single-housed overnight for recovery 

and brought back to their original groups in the next day until the experiments took 

place. As described previously, before pharmacology experiments GH residents were 

transferred into observational cages. All animals were handled daily in order to get 

used to the infusion procedure. Typically, a cross-over, within-subjects design was 
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used for all the intracerebroventricular (i.c.v.) agonist experiments whereas a between-

subjects design was used for the local infusions and i.c.v. antagonists experiments. 

Microdialysis: After 4 days of training, IST rats had their microdialysis probes implanted 

into the LS. After one day of recovery, IST subjects received the fifth FIT in order to 

confirm their previous aggression levels. On the following day, both GH and IST 

animals underwent the microdialysis procedure. Briefly, rats were connected to a 

syringe mounted onto a microinfusion pump via polyethylene tubing and were perfused 

with sterile Ringer's solution (3.3 μl/min, pH 7.4) for 2 hours, prior to the experiment, in 

order to establish an equilibrium between inside and outside of the microdialysis 

membrane. One hour after lights went off, three consecutive dialysates were collected 

every 30 min: 1 and 2 were collected before the FIT (baseline represented as an 

average of both time-points) and dialysate 3 included the 10-min FIT. Dialysates were 

collected into Eppendorf tubes containing 10 μl of 0.1 M HCl and were immediately 

frozen on dry ice, and subsequently stored at −20 °C until AVP and OXT 

radioimmunoassay measurements took place. 

Opto- and Chemogenetics design: Chemo- and optogenetics experiments were only 

performed using GH rats. After virus infusion into the paraventricular (PVN) and 

supraoptic (SON) nucleus of the hypothalamus, animals were kept single-housed for 

one week in order to recover. After recovery, rats were brought back to their original 

groups for two weeks until either the experiments took place (chemogenomics) or they 

had their optical fiber implanted (optogenetics). Similarly to the pharmacology 

experiments, chemogenetic rats were kept in groups and isolated shortly before the 

dark phase (see above). Subjects received an i.p. infusion of clozapine-N-oxide 

dihydrochloride (CNO, 2mg/kg) 45 min before the FIT. They were brought back to their 

original groups directly after the FIT. In the optogenetic experiments, after optical fiber 
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implantation rats were single-housed for three days for recovery as well as to avoid 

damaging the fiber. Similarly to the microdialysis experiments, animals were connected 

to the optogenetics cables two hours before the experiment to get used to the cables. 

Especially, in this experiment, the FIT lasted 12 minutes. Blue-light (30ms pulses of 

30Hz delivered for 2min) was delivered twice: at 2 and 8 minute after the beginning of 

the FIT. For both, chemo- and optogenetic experiments, animals were tested twice 

according to their estrus-cycle phase. Once when they were receptive (proestrus and 

estrus) and the second time when they were non-receptive (metestrus-diestrus). All 

the animals were transcardiacally perfused after the last test and handled daily during 

the experiment. 

Neural activation after aggression The LS consists mostly of GABAergic neurons 

(Risold and Swanson, 1997a). Therefore, in order to detect neural activity differences 

induced by an aggressive encounter, we used female Venus-VGAT rats (10-14 weeks 

old). As described previously, those animals have been divided into GH and IST 

groups. Immediately after the last FIT animals were deeply anesthetized, in the room, 

with isoflurane, followed by CO2, before being transcardiacally perfused. 

STEREOTAXIC SURGERY  

Briefly, rats were anesthetized with isoflurane (ForeneH, Abbott GmbH & Co. 

KG, Wiesbaden, Germany) and fixed in a stereotaxic frame. Further, rats were 

intraperitoneally (i.p.) injected with the analgesic Buprenovet (0.05 mg/kg 

Buprenorphine, Bayer) and the antibiotic Baytril (10 mg/kg Enrofloxacin, Baytril, Bayer, 

Germany). i.c.v. cannulas (21 G, 12 mm; Injecta GmbH, Germany) and microdialysis 

probes (2mm, self-made, molecular cut-off 18 kDa) (Neumann I., Russel J.A. and 

Group, 1993) were implanted unilaterally, whereas local cannulas were implanted 

bilaterally (26 G, 12 mm; Injecta GmbH, Germany). Cannulas were implanted 2 mm 
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above the target region in order to avoid lesion before the experiment, fixed to the skull 

with two jeweler’s screws and dental cement (Kallocryl, Speiko-Dr. Speier GmbH, 

Muenster, Germany), and closed by a stainless steel stylet (i.c.v. 25 G, local 27 G). For 

virus surgeries, a solution of ketamine and xylazine (100 and 10 mg/kg, respectively, 

i.p.) was applied as anesthesia. After virus delivery skin was sutured. Optogenetic 

animals underwent another surgical procedure similar to the one used for cannula 

implantation to implant the optic fiber (PlexBright optogenetic stimulation system fiber 

stub implant; 6 mm length). Here, fibers were fixed with light-hardening dental cement. 

For specific coordinates please see Table 1. 

Table 3.1: Stereotaxic surgery coordinates. * Second optic fiber was implanted in a 15° angle. 

Procedure Region 
Coordinates 

AP ML DV 

i.c.v. Lateral ventricle -1.0 +1.6 +2.0 

Local cannula 
dLS -0.4 ±0.7 +2.4 

vLS -0.4 ±0.7 +3.5 

Microdialyses 
dLS -0.4 +0.7 +5.0 

vLS -0.4 +0.7 +5.2 

Virus delivery 
PVN -1.7 ±0.3 +8.1 

SON -1.25 ±1.9 +9.3 

Optic Fiber* 
vLS 0° 

-0.4 
-2.25 +5.8 

vLS 15° +0.7 +5.1 

 

RECEPTOR AUTORADIOGRAPHY  

 Brains were cryo-cut into 16-µm coronal sections, slide-mounted, and stored at -

20°C. The receptor autoradiography procedure was performed using a linear V1A-R 

antagonist [125I]-d(CH2)5(Tyr[Me])-AVP (Perkin Elmer, USA) or a linear OXTR 

antagonist [125I]-d(CH2)5[Tyr(Me)2-Tyr-Nh2]9-OVT (Perkin Elmer, USA) as tracers. 

Briefly, the slides were thawed and dried at room temperature followed by a short 

fixation in paraformaldehyde (0.1%). Then slides were washed two times in 50 mM Tris 
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(pH 7.4), exposed to tracer buffer (50 pM tracer, 50 mM Tris, 10 mM MgCl2, 0.01% 

BSA) for 60 min, and washed four times in Tris buffer 10 mM MgCl2. The slides were 

then shortly dipped in pure water and dried at room temperature overnight. On the 

following day, the slides were exposed to Biomax MR films for 7-25 days depending 

on the receptor density and brain region (Kodak, Cedex, France). The films were 

scanned using an EPSON Perfection V800 Scanner (Epson, Germany). The optical 

density of V1aR and OXTR were measured using ImageJ (V1.37i, National Institute of 

Health, http://rsb.info.nih.gov/ij/). Receptor density was calculated per rat by 

subtracting the background and calculating the mean of bilateral measurements of 6 to 

12 brain sections per region of interest.  

ELISA FOR PLASMA CORTICOSTERONE  

 Quantification of plasma corticosterone was performed using ELISA. As 

described before, trunk blood of FIT animals was collected after decapitation. 

Approximately 1 ml blood was collected in EDTA-coated tubes on ice (Sarstedt, 

Numbrecht, Germany), centrifuged at 4°C (2000g, 10 min), aliquoted and stored at -

20°C until the assay was performed using a commercially available ELISA kit for 

corticosterone (IBL International, Hamburg, Germany). 

RADIOIMMUNOASSAY FOR OXT AND AVP 

 OXT and AVP content in blood, CSF and lysates were measured via 

radioimmunoassay (RIAgnosis, Germany). All samples were measured within the 

same assay to avoid inter-assay variability. 

DRUGS AND VIRUSES 

 Animals were treated either with endogenous ligands, agonists or antagonists in 

order to modulate the OXT and AVP system. Usually, drugs were infused 10 min before 

the FIT in i.c.v cannula experiments (OXT: 50ng/5µl and AVP: 0.1ng or 1ng/5µl, Tocris). 
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Antagonists were infused 10 min prior to the infusion of the respective agonist with a 

final volume (agonist+antagonist) of 5µl (OXTR-A, des-Gly-NH2,d(CH2 

)5[Tyr(Me)2,Thr 4]OVT, or V1aR-A, d(CH2)5Tyr(Me)2AVP: 750ng)(Manning et al, 

2012). For cannulas placed in the LS agonists (OXT, AVP, TGOT, [Thr4,Gly7]OT: all 

at: 0.1ng, /0.5µl per side) were infused 5 min before the FIT whereas antagonists 

(OXTR-A and V1aR-A: 100ng/0.5µl, per side) and muscimol (10ng/0.5µl, per side, 

Tocris) were infused 10 min before the FIT. In order to modulate the activity of the OXT 

neurons, the PVN and SON of GH females were infused with 280nl of rAAV1/2 

OTprhM3Dq:mCherry (4×1011 genomic copies per ml) and rAAV1/2 OXTpr-

ChR2:mCherry (4×1011 genomic copies per ml) for chemo- and optogenetic 

experiments, respectively. Viruses were slowly infused by pressure infusion at 

70nl/min. After infusion, optogenetic animals had their water replaced by salt loaded 

water for 1 week (2% NaCl) in order to enhance virus expression. Chemogenetic 

animals received i.p. infusions either with CNO (HB6149, HelloBio, United Kingdom) 

or saline (1ml/kg). 

PATCH-CLAMP  

Slice preparation: Juvenile VGAT-Rats (postnatal day 15-21) were deeply anesthetized 

with isoflurane and decapitated. Coronal brain slices containing the lateral septum (300 

µm) were cut in ice-cold carbogenized (O2 [95 %], CO2 [5 %]) artificial extracellular fluid 

(ACSF; [mM]: 125 NaCl, 26 NaHCO3, 1.25 NaH2PO4, 20 Glucose, 2.5 KCl, 1 MgCl2, 

and 2 CaCl2) using a vibratome (Vibracut, Leica Biosystems, Germany) followed by 

incubation in carbogenized ACSF for 30 min at 36°C and then kept at room temperature 

(~21° C) until experimentation. Electrophysiology: Neurons in the dLS and vLS were 

visualized by infrared gradient-contrast illumination via an IR filter (Hoya, Tokyo, 

Japan) and patched with pipettes sized 8–10 MΩ. Somatic whole-cell patch-clamp 
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recordings were performed with an EPC-10 (HEKA, Lambrecht, Germany). Series 

resistances measured 10-30 MΩ. The intracellular solution contained [mM]: 110 CsCl, 

10 HEPES, 4 MgCl2, 10 TEA, 10 QX-314, 2.5 Na2ATP, 0.4 NaGTP, 10 

NaPhosphocreatine, 2 ascorbate, at pH 7.2. The ACSF was gassed with carbogen and 

contained [mM]: 125 NaCl, 26 NaHCO3, 1.25 NaH2PO4, 20 Glucose, 2.5 KCl, 1 MgCl2 

and 2 CaCl2. Additionally, biocytin (5 mg/ml) was added to the intracellular solution for 

post-hoc fluorescent labeling of the patched neurons. The average resting potential of 

lateral septal neurons was -60 mV (Allaman-Exertier et al, 2007). Leaky cells with a 

holding current above  -30 pA were rejected. Spontaneous activity (i.e. IPSCs) was 

recorded in voltage-clamp mode at resting membrane potential (-60 mV). The 

frequency, amplitude, and coefficient of variance (CV) of spontaneous IPSCs were 

analyzed with Origin 2019 (OriginLab Corporation, Northampton, MA, USA). Histology: 

After the experiment in-vitro slices were post-fixed in 4% paraformaldehyde in PBS 

(room temperature, overnight) and prepared for fluorescent labeling.  

PERFUSION 

 After deep anesthesia with isoflurane followed by CO2 rats were transcardiacally 

perfuse first with 0.1 PBS followed by 4% paraformaldehyde. Brains were post-fixated 

in PFA 4% overnight.  

IMMUNOHISTOCHEMISTRY 

 Brains were cut into 40µm slices, which were collected in cryoprotectant solution 

and stored at -20°C until usage. Typically, a series of 6-8 slices comprehending the 

whole anteroposterior axis of the region of interest was used for immunostaining. First, 

slices were washed in 0.1 PBS and then raised in Glycine buffer (0.1M in PBS) for 20 

min. After slices were washed with PBST (0.1 PBS with 0.3% triton-x 100) and blocked 

for 1 hour in blocking solution. Directly after blocking, slices were incubated in primary 
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antibodies for 1-2h at room temperature and then at 4°C overnight. On the next day, 

slices were again left in room temperature for 1-2h then washed in PBST and incubated 

in the secondary antibody. Next, slices were raised in 0.1 PBS and mounted on 

adhesive microscope slides (Superfrost Plus, Thermo Fisher Scientific Inc, Waltham, 

MA, USA). Slides were kept in the dark at 4°C until imaging. Especially, for the pERK 

immunostaining slices were pre-incubate in ice-cold methanol at -20°C for 10 min 

before the Glycine buffer step. Also for this staining primary antibody incubation lasted 

64h. For details of tissue, mounting medium, blocking solution, and antibodies please 

see Table 2. Imaging from the neural activity, patch-clamp and molecular identification 

of the LS neurons was done using an inverted confocal laser scanning microscope 

(Leica TCS SP8, Leica Microsystems, Wetzlar, Germany). Chemo- and optogenetic 

imaging was performed using an epi-fluorescence microscope (Thunder Imaging 

Systems, Leica). Digital images were processed (Merging and Z-projections) using the 

Leica Application Suite X (Leica) and Fiji (Schindelin et al, 2019). Cell counting was 

done by an experienced observer blind to the treatments. For patch-clamp, the detailed 

morphology of the neurites was reconstructed and analyzed with the Fiji plugin Simple 

Neurite Tracer(Longair et al, 2011) from the z-stack. From this analysis, number of 

branch points, junctions, and total branch length of the neurites were extracted and 

compared between dorsal and ventral neurons of the lateral septum. We also analyzed 

the area and diameter of the soma comparing both subregions. 
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Table 3.2: Immunohistochemistry specifics: NGS (normal-goat serum), BSA (bovine 

serum albumin). 

Experiment Tissue 
Blocking 

solution 

Primary antibody Secondary 

antibody 

Mounting medium 

Neuronal 

activity 

Venus-

VGAT 
5% NGS 

rabbit-anti-pERK 

antibody (1:250 

CellSignalling #9101 or 

#4370, Danvers, MA, 

USA) 

Alexa-fluor 

594 goat-

anti-rabbit 

antibody 

(1:200) 

Bectastain har-set 

(H-1400, Vector 

Laboratories, Inc., 

Burlingame, CA, 

USA 

Patch-clamp 
Venus-

VGAT 
5% NGS 

Streptavidin conjugated with CF633 

(1:400; Biotium, Fremont, CA, USA) 

DAPI Fluoromount-

G 

(SouthernBiotech, 

Birmingham, AL, 

USA) 

Molecular 

identification 

of LS neurons 

Venus-

VGAT 
5% NGS 

rabbit-anti-ERα (1:500, 

C1355, Milipoer, USA); 

chicken-anti-

Somatostain (1:500, 

366-006, Synaptic 

Systems, Gottingen, 

DEU) 

Alexa-fluor 

594 goat-

anti-rabbit 

antibody 

(1:250): 

Alexa-fluor 

647 goat-

anti-chicken 

(1:250) 

Bectastain har-set 

(H-1400, Vector 

Laboratories, Inc., 

Burlingame, CA, 

USA 

Chemo- and 

optogenetics  
Wistar  

1%BSA 

5% NGS 

mouse-anti-

neurophysin1/oxytocin 

(1:500, Harold Gainer, 

p38); rabbit-anti-

mCherry (1:1.000, 

ab167453, Abcam) 

Alexa-fluor 

488 goat-

anti-mouse 

antibody 

(1:1000): 

Alexa-fluor 

594 goat-

anti-rabbit 

(1:1000) 

DAPI Fluoromount-

G 

(SouthernBiotech, 

Birmingham, AL, 

USA) 

 

STATISTICS  

 Data normality was checked using the Kolmogorov-Smirnov test. If normality was 

reached, data were analyzed using either Student t-tests (paired or unpaired), chi-
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square test, or analyses of variance (one or two way ANOVA) followed by a posthoc 

comparison corrected with Bonferroni, when appropriate. In case data were not 

normally distributed, either Mann-Whitney U-test or Dumms multiple comparison tests 

were performed. For detailed statistics information see Supplementary Table 1. 

3.3. RESULTS 

SOCIAL ISOLATION AND TRAINING RELIABLY ENHANCED FEMALE AGGRESSION  

 Training consisted of daily 10-min exposure to a FIT (De Jong et al, 2014) on 

three consecutive days. GH and isolated non-trained rats (IS) were used as control 

groups to assess the effects of isolated housing and of aggression training (Figure 

3.1a). Both IST and IS females displayed increased aggression, i.e. increased time 

spent on keep down, threat, offensive grooming (Figure 3.1b), and attacking, and 

engaged more frequently in attacks (Figure 3.1c,d), when compared to GH controls 

(Supplementary Movie1). Further, we found a major effect of the estrus-cycle on 

aggression, i.e. IS females were less aggressive in the proestrus or estrus phase than 

in the metestrus or diestrus phase (Figure 3.1e). Probably as compensation for 

increased aggression, IS and IST rats displayed less neutral behaviors. Only IST 

females showed increased self-grooming behavior when compared to GH controls. 
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 In order to further validate our model of female aggression, we infused 

aggressive IST females with the selective serotonin reuptake inhibitor (SSRI) 

escitalopram (ESC) (s.c.10mg/kg), since SSRIs typically decrease aggression in 

rodents (Carrillo and Ricci, 2009). Indeed, ESC significantly reduced the time spent on 

aggression, i.e. on keeping down, threat, and attacking, and increased the latency to 

attack, compared to vehicle. Also, ESC-treated females displayed more defensive and 

neutral behaviors (Supplementary Figure 1). 

 

 

Figure 3.1. Social isolation and training reliably enhance female aggression, independently 

of the estrous cycle. a Scheme illustrating the animal groups and behavioral timeline. Female 

Wistar rats were kept either housed in groups (GH) or socially-isolated (IS and IST). IST females 

underwent three consecutive female intruder tests (FIT), those consisted of aggressive encounters 

with an unknown same-sex intruder, partially drawn using https://biorender.com/). b Both IS and IST 

rats increased total aggression (one-way ANOVA followed by Bonferroni F(2,63)=16.26, p< 0.0001), 

keep down (Kruskal-Wallis test followed by Dunn’s H3=6.691, p=0.035), threat (H3=18,98, 

p<0.0001) and offensive grooming (H3=10.78, p=0.0046). IS and IST females engaged more in 

attacks (Chi-squared test, X2=40.81, p<0.0001) c, and spend more time attacking (H3=8.8, 

p=0.0123) d than GH females. e IS females in the proestrus-estrus (Pro-estrus) phase of the 

estrous-cycle displayed less aggressive behavior than metestrus-diestrus (Met-diestrus) females 

(two-way ANOVA followed by Bonferroni; factor housing: F(2, 57)=14.24, p<0.0001; estrous cycle: 

F(1, 57)=5.470, p=0.0229; housingxestrous cycle: F(2, 57) =1.780, p=0.1779)  . f IST and IS females 

compensated their increased aggression with decreased neutral behaviors (F(2, 63)=18.76, 

p<0.0001), only IST females spent more time auto-grooming (F(2, 63)=5.787, p=0.0049). All data 

are shown as mean+SEM. #p<0.05,##p<0.001, ,###p<0.001 vs GH; ep<0.05 vs met-diestrus. 

Supplementary Figure 1. Escitalopram (ESC) decreases aggression in isolated and trained 

rats (IST). Insert illustrates experimental design (FIT=female intruder test; WO=wash-out). a 

Intraperitoneal infusion of ESC 45 min before the FIT decreased total aggression (Paired two-tailed 

t-Student’s test t(10)=2.157, p=0.05) keep down (Mann-Whitney test U=26.0, p=0.0233), threat 

(t(10)=2.506, p=0.0311) and c number of attacks (U=24.0, p=0.011) in IST rats. c Latency to attack 

was increased in ESC rats (U=24.0, p=0.011) . d ESC treatment increased the time spent in neutral 

(t(10)=2.821, p=0.0181) as well as defensive behaviors (t(10)=2.201, p=0.05) in IST rats. All data are 

shown as mean+SEM. *p<0.05,**p<0.001, vs vehicle. 
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THE HIGH LEVELS OF AGGRESSION DISPLAYED BY ISOLATED AND TRAINED RATS 

ARE UNDERLINED BY HIGH LEVELS OF OXT AND LOW LEVELS OF V1A RECEPTOR 

BINDING 

Next, rats were either exposed to the FIT or not (control), after being housed in 

their respective housing-conditions in order to evaluate the role of the endogenous 

OXT and AVP systems on aggression (Figure 3.1a). IST and IS rats exposed to the 

FIT exhibited higher levels of OXT in the CSF compared with their respective control 

groups. Additionally, IST females had elevated OXT levels when compared with GH 

females that underwent the FIT (Figure 3.2a). Consequently, aggression levels were 

found to be positively correlated with OXT content in the CSF (Figure 3.2b). However, 

none of these effects of aggression on intracerebral OXT release were reflected in 

plasma OXT concentrations (Supplementary Figure 2a-b). We also analyzed OXTR 

binding in selected brain regions involved in the social/aggressive behavior network 

(Supplementary Figure 2c). Among 9 regions analyzed, only within the LS OXTR were 

affected by the housing and training conditions, as IST females exhibited less OXTR 

binding in the vLS, when compared to GH controls (Figure 3.2c and 3.2e). However, 

local OXTR binding did not correlate with aggression (Figure 3.2d). 

In contrast to OXT, AVP concentrations in the CSF were reduced in IST females 

after the FIT without any effect of housing/training conditions (Figure 3.2f). 

Consequently, AVP content in the CSF did not correlate with aggression (Figure 3.2e). 

Interestingly, FIT exposure tended to heighten plasma AVP regardless of housing 

condition, although the magnitude of this effect seemed to be reduced in IST females 

(Supplementary Figure 2d). Plasma AVP did not correlate with aggression 

(Supplementary Figure 2e). IST females exhibited lower V1aR binding in the dLS, 

when compared with GH controls (Figure 3.2h and 3.2j, for the other regions, see 
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Supplementary Figure 2f), and V1aR binding negatively correlated with aggression, i.e. 

female rats with reduced binding were found to be more aggressive (Figure 3.2i). 

 

 Since hypo-corticosterone has been implicated in the development of male 

aggression in humans and animals (Denson et al, 2018; Nelson and Trainor, 2007), 

we decided to assess plasma corticosterone concentrations after exposure to the FIT. 

Figure 3.2. The high levels of aggression displayed by isolated and trained rats are underlined 

by high levels of OXT and low levels of V1a receptor binding. a IS and IST females showed 

higher levels of OXT in the cerebrospinal fluid (CSF) immediately after the FIT compared to 

respective control rats, also IST females which underwent the FIT exhibited higher OXT levels than 

GH females (GH=group-housed; IS= isolated; IST= isolated and trained; CTRL= control; FIT= female 

intruder test) (two-way ANOVA followed by Bonferroni FIT effect: F(1,44)=3.913, p=0.0542; housing 

effect: F(2,44)=1.965, p=0.1523; FITxhousing effect: F(2,44)=4.683, p=0.0143). b Aggression correlated 

with CSF OXT levels of FIT rats (Pearson’s correlation r=0.698, p<0.0001). c IST females presented 

decreased OXT receptor (OXTR) binding in the ventral portion of the lateral septum (vLS) (Kruskal-

Wallis test followed by Dunn’s: H(3)=7.124, p=0.0284). d Aggression levels did not correlate with 

OXTR binding (Spearman's correlation r=-0.3036, p=0.2708). e Scheme illustrating localization of 

OXTR in the vLS and magnification of the autoradiograph showing example subjects (left: GH; right: 

IST). f FIT exposure decreased CSF AVP levels only in IST rats (two-way ANOVA FIT effect: 

F(1,50)=15.98, p=0.0002; housing effect: F(2,50)=2.134, p=0.1290; FITxhousing effect: F(2,50)=0.9042, 

p=0.4114). g Aggressive behavior did not correlate with CSF AVP content (r=0.066, p=0.7605). h 

IST females exhibited decreased V1a receptor (V1aR) binding in the dorsal part of the LS (dLS) 

(H(3)=8.724, p=0.0062). i Aggression negatively correlated with V1aR binding in the dLS (r=-0.5297, 

p=0.02). j Scheme illustrating localization of the V1aR in the dLS and representative autoradiograph 

(left: GH, right: IST). All data are presented as mean + SEM. #p<0.05,##p<0.01 vs GH; 
*p<0.05,**p<0.01 vs control. 
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Although there was no effect of housing/training conditions, plasma corticosterone 

indeed negatively correlated with female aggression levels (Supplementary Figure 2g). 

 

 

OXT PROMOTED WHEREAS AVP REDUCED AGGRESSION IN A CENTRAL APPROACH 

Since female aggression was positively correlated with levels of OXT in the 

CSF, we decided to combine neuropharmacological and chemogenetic methods to 

increase OXT availability in the brain of low aggressive GH females, on the other hand, 

Supplementary Figure 2. Peripheral OXT, AVP and CORT are not changed after exposure to 

the FIT, but aggression negatively correlates with plasmatic CORT in female Wistar rats. a 

Neither IS or IST females exihibited any changes in plasmatic OXT after the FIT compared to 

respective control rats. b Consequently aggression did not correlate with plasmatic OXT levels. c 

Among all the regions analyzed only ventral lateral septum (vLS) OXT receptor (OXTR) binding was 

decreased in IST females (Kruskal-Wallis test followed by Dunn’s: H(3)=7.124, p=0.0284).d FIT 

exposure tended to increase plasmatic AVP levels but this effect seems to be reduced in IST rats 

(two-way ANOVA FIT effect: F(1,55)=8.45, p=0.0053; housing effect: F(2,55)=4.387, p=0.0171; 

FITxhousing effect: F(2,55)=0.4883, p=0.6163). e Aggressive behavior did not correlate with plasmatic 

AVP content. f V1a receptor (V1aR) binding was decreased only in the dorsal LS (dLS) (H(3)=8.724, 

p=0.0062). g Neither IS or IST females showed differences in plasmatic levels of CORT after FIT 

exposure (insert). However Aggression negatively correlated with plasmatic CORT levels (Pearson’s 

correlation r=-0.4986, p=0.018) All data are presented as mean + SEM. #p<0.05 GH.Abbreviations: 

basolateral amygdala (BLA), ventromedial hypothalamus (VMH), intermediate portion of the lateral 

septum (iLS), bed nucleus of Stria terminalis (BNST), anterior Nucleus accumbens (Nacca), posterior 

Nucleus accumberns (Naccb), Nucleus accumbens shell (Nacc shell), Lateral hypothalamus (LH), 

rostral portion of the lateral septum (rLS). 

 



Chapter 3: The oxytocin-vasopressin balance within the lateral septum 
determines aggression levels in virgin female rats 

 

71 
 

we centrally infused highly aggressive IST rats with an OXTR antagonist (OXTR-A) in 

order to block endogenous release (Figure 3.3a).  

Intracerebroventricular (i.c.v.) infusion of synthetic OXT (50ng/5µl) enhanced 

aggression in GH females, whereas, surprisingly, the same treatment decreased 

aggression in IST females (Figure 3.3b), and this anti-aggressive effect of OXT was 

reflected in all behaviors analyzed. Although these results might seem puzzling at first, 

the high similarity between OXT and AVP which co-evolved from a single peptide(Jurek 

and Neumann, 2018) results in cross-reactivity with each other's receptors in vitro 

(Manning et al, 2012) and in vivo including in the context of aggression (Jiang and 

Platt, 2018a; Tan et al, 2019). In order to test for a possible cross-reactivity of OXT on 

V1aRs, we blocked either OXTR or V1aR (V1aR-A, both at 750ng/5µl, i.c.v.) with 

respective specific antagonists 10 min prior to i.c.v. OXT infusion. The OXTR-A could 

not abolish the anti-aggressive effects of OXT, but V1aR-A could (Figure 3.3c). This 

clearly indicates that the anti-aggressive effect of synthetic OXT is mediated via V1aR. 

In order to reveal the involvement of the endogenous OXT system in female 

aggression, we first blocked OXTRs in IST females and found that i.c.v. infusion of the 

OXTR-A reduced the total aggressive behavior (Fig 3.3d). Next, we infected the 

paraventricular (PVN) and supraoptic (SON) nucleus of the hypothalamus of GH 

female rats with an rAAV to selectively express GqDREADD under the control of an 

OXT promoter fragment (Figure 3.3g) and thus enable chemogenetical stimulation of 

endogenous OXT release as shown before (Grund et al, 2019). The virus showed a 

penetrance (percentage of OXT neurons that co-expressed mCherry) of 64.4% (PVN) 

and 75.1% (SON), respectively; however, some mCherry-labelled cell bodies were 

found outside the target infusion site indicating leakage of the virus (transfection 

specificity PVN: 73.9%; SON: 77.9%). Intraperitoneal application of the DREADD 
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ligand clozapine-N-oxide dihydrochloride (CNO, 2mg/kg) increased aggression in 

diestrus and metestrus GH females, thereby confirming our pharmacological results. 

Intriguingly, estrus and proestrus GH females showed no increase in aggression 

(Figure 3.3f). 

Finally, since synthetic OXT decreased aggression via activation of V1aRs, and 

because IST rats exhibited low levels of AVP in their CSF, we infused aggressive IST 

females with synthetic AVP (0.1 and 1ng/5µl, i.c.v.). Elevation of brain AVP availability 

prior to the FIT resulted in decreased total aggression, keeping down, threat behavior 

as well as time spent on attacks in IST rats rats (Figure 3.3e). Although the i.c.v. 

experiment showed strong serenic effects we decided to not manipulate the AVP 

system in a central manner using the GqDREADD approach due to two reasons i) AVP 

is one of the main players in brain physiology and stimulation of several cell bodies 

could disturb homeostasis, in fact, high doses of i.c.v. AVP are known to elicit barrel 

rotations in rats(Wurpel et al, 1986), also ii) the AVP neurons are widespread in several 

nuclei in the rat brain such as the medial amygdala, the bed nucleus of stria terminalis 

(BNST), PVN and SON (DiBenedictis et al, 2017) what makes the infusion of all 

targeted neurons challenging in terms of animal welfare. 

Taken together, our results demonstrate a pro-aggressive effect of brain OXT 

acting via OXTRs, and anti-aggressive effects of OXT and, particularly, AVP acting via 

V1aRs, in female Wistar rats. 
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THE PRO-AGGRESSIVE EFFECT OF OXT WAS MEDIATED IN THE VLS 

Based on the fact that OXTR binding was exclusively reduced in the vLS of IST 

females (Figure 3.2c), and that the LS is a target region for aggression regulation 

(Potegal, M Blau, A and Glusman, 1981; Potegal et al, 1981; Wong et al, 2016), we 

hypothesized that the pro-aggressive effect of OXT is mediated in the vLS. Thus, we 

combined local in vivo microdialysis, neuropharmacological and optogenetic 

Figure 3.3. OXT promotes aggression, whereas AVP reduces aggression in central approach. 

a Experimental design for pharmacological and chemogenetic experiments targeting the OXT and 

AVP systems in isolated and trained (IST) and group-housed (GH), rats (AAV= adeno-associated 

DREADD virus infusion into the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei; 

AVP=vasopressin; arrow= drug infusions; FIT= female intruder test; IS= social isolation after surgery; 

OXT= oxytocin; OXTR-A= OXT receptor antagonist; SH= single-housing; SURG= surgery; V1aR-A= 

V1a receptor antagonist; WO= Wash-out). b I.c.v. infusion of OXT (50ng/5ul) increased aggression 

in GH (two-tailed t-Student’s test t(19)=2.46, p=0.0237), but decreased aggression in IST females ( 

t(8)=2.33, p=0.0482). c I.c.v. infusion of V1aR-A (750ng/5µl), but not OXTR-A (750ng/5µl) blocked 

the anti-aggressive effects of OXT in IST females (one-way ANOVA followed by Bonferroni 

F(3,28)=10.08, p=0.001). Both, d i.c.v infusion of OXTR-A (t(28)=4.964, p<0.0001) and e i.c.v. AVP (0.1 

or 1ng/5µl) reduced total aggressive behavior (F(3,54)=7.483, p=0.0003) in IST rats. f Chemogenetic 

activation of OXT neurons in the PVN and SON increased aggression only in met-diestrus GH rats 

(two-way ANOVA, factor treatment: F(1,19)=3.342, p=0.0833; estrous cycle: F(1,19)=6.677, p=0.0182; 

teatmentxestrous cycle: F(1,19)= 6.449, p=0.02). g Confirmation of the virus infection in the PVN (right) 

and SON (left). OXT-neurophysin I  staining: green; mCherry (virus): red. Scale bars 300µm.  Data 

are shown as  mean + SEM. #p<0.05 vs GH; *p<0.05**p<0.01,***p<0.0001 vs either vehicle or control; 
ep<0.05 vs met-diestrus. 
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approaches to specifically reveal the role of the OXT system in the vLS on female 

aggression (Figure 3.4a). 

In vivo monitoring of OXT release within the vLS under basal conditions and 

during ongoing behavioral testing revealed an increased release in IST rats during the 

FIT, which was found to correlate with the total aggression displayed (Figure 3.4b-c). 

Consequently, local OXT release occurring during the FIT was higher in IST females 

compared with GH controls (Figure 3.4b). Next, to test for the involvement of such 

locally released OXT and subsequent OXTR-mediated signaling in the vLS in female 

aggression, we bilaterally infused an OXTR-A (100ng/0.5µl) into the vLS of IST rats, 

10 min prior to the FIT. Blockade of OXTR resulted in decreased total aggression 

(Figure 3.4d). 

With the aim to specifically prove the involvement of septal OXT 

neurotransmission in triggering female aggression, we used optogenetics to selectively 

stimulate oxytocinergic terminals and thereby local release of OXT in the vLS of GH 

rats. To this end, GH rats were infected with a channelrhodopsin (ChR2) rAAV in the 

PVN and SON, which is expressed under the control of an OXT promoter fragment 

(Figure 3.4e). Similarly to the GqDREADD rAAV, the ChR2 rAAV showed a penetrance 

of 64.4% for the PVN and 75.5% to the SON, respectively. Although the specificity of 

the virus in targeting the OXT system has been proven by another group (Knobloch et 

al, 2012), we also had leakage of the virus outside of the target regions (transfection 

specificity PVN:74.4% and SON: 76.9%). Blue-light stimulation of vLS OXT fibers 

during the FIT increased the level of aggression in a time-dependent manner, 

particularly in metestrus/diestrus females, thereby confirming our results from the i.c.v 

and CSF experiments (see Figure3 4f-h). Cumulative analyses showed a main effect 

of the virus transfection, i.e. metestrus/diestrus animals that expressed the ChR2 and 



Chapter 3: The oxytocin-vasopressin balance within the lateral septum 
determines aggression levels in virgin female rats 

 

75 
 

received blue-light stimulation exhibited higher aggression compared to controls, 

whereas aggression was not affected in proestrus/estrus females (Figure 3.4h, 

Supplementary movie 2 and 3). 
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AVP EXERTED ANTI-AGGRESSIVE EFFECTS WITHIN THE DLS 

In order to localize the anti-aggressive effects of AVP identified above, we used 

intracerebral microdialysis and neuropharmacology within the dLS (Figure3 5a), as 

local V1aR binding was decreased in highly aggressive IST females and found to be 

negatively correlated with aggression levels (Figure 3.2h-i). Optogenetic stimulation of 

AVP septal terminals was not possible due to the low specificity and penetrance of the 

virus in parvocellular neurons of the BNST, source of AVP innervation to the LS 

(DiBenedictis et al, 2017; De Vries and Panzica, 2006) (data not shown). 

Figure 3.4. The pro-aggressive effect of OXT is mediated in the vLS. a Scheme 

illustrating the experimental design for pharmacological, microdialysis and optogenetic 

experiments (AAV= adeno-associated virus microinfusion into the paraventricular (PVN) 

and supraoptic (SON) nucleus of hypothalamus; arrow= drug infusions; FIT= female 

intruder test; GH= group-housed; IS= social isolation after surgery; IST= isolated and 

trainded; MD= microdialysis; SH= single-housing; SURG= surgery; OXT= oxytocin; 

OXTR-A= OXT receptor antagonist; vLS: ventral part of the lateral septum). b OXT release 

in the vLS is indicated by the percentage of rise in OXT content. IST but not GH females 

exhibited a rise in OXT release during the FIT (One sample t-Student’s test IST: t(7)=2.649, 

p=0.033; GH: t(7)=0.8274, p=0.435), thus IST rats strongly tended to have a higher OXT 

release than GH rats (t(14)=2.12, p=0.0527), insert depics basal OXT levels in GH and IST 

females (t(14)= 0.5397, p=0.597). c Aggression displayed during the FIT correlated with 

OXT content in the vLS (Spearman’s correlation r=0.507, p=0.047).d OXTR-A 

(100ng/0.5µl) infusion into the vLS reduced total aggression (two-tailed t-Student’s test 

t(26)=2.583, p=0.0158) in IST females. e-h Optogenetic stimulation (indicated by blue 

columns) of OXT termainals in the vLS of GH females during the FIT. e Confirmation of 

the virus infection in the PVN (right) and SON (left). OXT-neurophysin I staining: green; 

mCherry (virus): red. Scale bars 300µm. Blue-light stimulation of ChR2-OXT fibers 

enhanced aggressive behavior in met-diestrus f (two-way ANOVA followed by Bonferroni 

factor: time: F(5,75)=8.826, p=0.0256; virus: F(5,75)=20.03, p=0.0004; timexvirus: 

F(5,75)=1.056, p=0.3917), but not in pro-estrus females g (factor: virus: F(1,15)=13.06, 

p=0.0026; estrous cycle: F(1,15)=2.07, p=0.1708; virusx estrous cycle: F(1,15)=1.114, 

p=0.308). h Cumulative analyses show an effect of light stimulation in enhancing 

aggression in ChR2-OXT females only when they were in the met-diestrus phase of the 

cycle (factor virus: F(1,15)=13.06, p=0.0026; estrous cycle: F(1,15)= 2.07, p=0.1708; virusx 

estrous cycle: F(1,15)= 1.114, p=0.308). Data are shown as mean+SEM. (#)p=0.05 vs GH; 
*p<0.05, **p<0.01 vs either vehicle, baseline or ChR2 control; +p<0.05 vs 0-2 time-point. 
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 AVP release was monitored within the dLS of GH and IST rats under basal 

conditions and during exposure to the FIT. Differently from GH controls, in which AVP 

release was found to significantly increase to 130% during FIT, such a rise was not 

found in IST females resulting in lower AVP levels compared with GH controls (Figure 

3.5b). However, no obvious negative correlation between AVP release and aggressive 

behavior could be identified (Figure 3 5c). Next, in order to prove that AVP acts on 

V1aRs specifically in the dLS to inhibit female aggression, we infused AVP, TGOT (a 

specific OXTR agonist), or OXT (all at 0.1ng/0.5µl) either into the dLS, where we 

identified predominantly V1aRs or into the vLS, where predominantly OXTRs were 

found (Figure 3.2e and j). Bilateral infusions of AVP, but not TGOT or OXT, into the 

dLS of IST rats resulted in decreased total aggression (Figure 3.5d). In contrast, none 

of the treatments in the vLS affected aggression (Figure 3.5e). Surprisingly, V1aR-A 

(100ng/0.5µl) administration into the dLS alone had a moderate effect on enhancing 

aggression in IST rats (Figure 3.5f). 
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TWO DISTINCT SUBREGIONS OF THE LS ARE DIFFERENTLY REGULATED BY THE 

ACTIVATION OF OXTRS 

The LS consists mostly of GABAergic neurons grouped into different subnuclei 

according to the expression of different receptors and neuropeptides (Risold and 

Swanson, 1997a); most importantly, specific expression of V1aRs and OXTRs 

Figure 3.5. AVP exerts anti-aggressive effects within the dLS. a Scheme illustrating the 

experimental design for pharmacology and microdialysis experiments targeting the AVP system 

(AVP= vasopressin; arrow= drug infusions; FIT= female intruder test; GH= group-housed; i.c.v.= 

intracerebroventricular; IS= isolation after surgery; IST= isolated and trained; MD= microdialysis; 

SH= single-housing; SURG= surgery; dLS: dorsal part of the lateral septum; OXT= oxytocin; TGOT= 

[Thr4,Gly]OXT, OXT receptor agonist; vLS: ventral part of the lateral septum; V1aR-A= V1aR 

receptor antagonist). b AVP release in the dLS is indicated by the percentage of rising in AVP 

content. GH but not IST females showed increased rise in AVP release in the dLS during the FIT 

(Wilcoxon Signed Rank test GH: W(9)=45, p=0.0039; IST: W(7)=-4.00, p=0.8125), thus AVP release 

during the FIT was higher in GH  than in IST rats (Mann-Whitney test U=6.00, p=0.0052). Insert 

shows that basal AVP levels did not differ between the groups. c Female aggression did not 

correlate with AVP content in the dLS during the FIT (Pearson’s correlation r=-0.1971, p=0.4632).d 

Infusion of AVP, but not OXT or TGOT (all at: 0.1 ng/0.5 µl), into the dLS decrease total aggression 

in IST females (F(3,30)= 7.292, p=0.0008). e AVP infusion into the ventral lateral septum (vLS) did 

not change aggression in IST females (F(3,25)=0.1097, p=0.9536). f Local blockade of V1aR 

(100ng/0.5µl) prior to the FIT increased female aggression in IST rats (two-tailed t-Student’s test 

t(20)=2.137, p=0.0451). Data are shown as mean+SEM.  #p<0.05 vs GH; *p<0.05, **p<0.01 vs either 

vehicle or baseline. 
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(Dumais and Veenema, 2016). It was reported that spontaneous IPSCs in these 

neurons are modulated by AVP in various ways (Allaman-Exertier et al, 2007). In our 

behavioral paradigm, activation of OXTRs in the vLS enhanced aggression, whereas 

activation of V1aRs in the dLS rather reduced aggression in female Wistar rats. In order 

to tie these region- and neuropeptide-specific effects to neuronal processing at the 

single-cell level, we recorded spontaneous activity from dLS and vLS neurons in vitro 

(whole-cell voltage-clamp, -60mV) and investigated OXTR-mediated effects by 

applying TGOT (1mM) to the bath. We also characterized these two neuronal 

populations with respect to morphological (biocytin filling) and molecular parameters 

(Figure 6a). 

Neurons in the dLS exhibited a higher morphological complexity compared to 

vLS neurons (Figure 3.6b-f), as indicated by higher numbers of neurite branches and 

junction points (Figure 3.6i). Apart from the specific expression of V1aRs and OXTRs, 

dorsal and ventral LS neurons also differed regarding the expression of other markers: 

somatostatin-positive cell bodies were only found in the dLS (Figure 3.6g), whereas 

estrogen receptor α (ERα) expressing cells were exclusively located in the vLS (Figure 

3.6h), suggesting that those are indeed distinct neuronal populations. 

Selective activation of OXTRs differentially affected the spontaneous inhibitory 

activity in dLS versus vLS (Figure 3.6j and l). In the dLS, cells responded to TGOT with 

an increased IPSC frequency. IPSCs were entirely blocked by further addition of 

bicuculline (50µM, GABA-A antagonist) in the bath (Figure 3.6j-k). Conversely, in the 

vLS, neurons responded to TGOT with a decreased IPSC frequency (Figure 3.6l-m), 

indicating an excitatory effect of OXTR activation. Again, activity was entirely blocked 

by bicuculline. Altogether, our data demonstrate that activation of OXTR in the vLS 

triggers concomitant excitation of vLS neurons and inhibition of dLS neurons. In 
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addition, dLS neurons exhibited higher morphological complexity and different 

individual markers when compared to vLS neurons. 
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AN INTRINSIC GABAERGIC CIRCUIT WITHIN THE LS REGULATES FEMALE 

AGGRESSION  

After we have shown that i) activation of vLS OXTR increases and dLS V1aR 

decreases aggression and ii) spontaneous inhibition is increased in dorsal and 

decreased in ventral cells by OXTR activation, we hypothesized that those subregions 

would also be differentially activated after an aggressive encounter. Therefore, we 

assessed neuronal activity in Venus-VGAT GH and IST rats exposed to the FIT using 

pERK as a neuronal activity marker(De Jong et al, 2014; Oyegbile and Marler, 2005; 

Silva et al, 2010).  

We found striking regional differences in neuronal activity in the LS of highly 

aggressive IST females (Figure 3.7a-d). In detail, FIT exposure and the display of high 

aggression resulted in a decreased total number of both pERK-positive and 

VGAT/pERK-positive cells in the dLS (Figure 3.7a-b and e), with a negative correlation 

found between the amount of double-labeled cells in the dLS and total aggression 

(Figure 3.7f). In contrast, in the vLS of IST females, we found a trend towards more 

Figure 3.6. Two distinct subregions of the LS are differently regulated by the activation of 

OXTRs. a Scheme indicating the receptor binding-specific delimitation of the vLS (OXTR) and dLS 

(V1aR) used during voltage-clamp experiments including two representative dLS and vLS cells 

located in the respective subregions b Maximal z-projection of biocytin-filled vLS cell (streptavidin-

CF633) overlaid with a single z-plane of VGAT and DAPI. c Magnification of cell body from the cell 

shown in b. d Neurite reconstruction of cell (b), the gray-dotted line indicates the border of the lateral 

ventricle (LV). e Neurite reconstruction of the cell shown in f, gray-dotted line indicates the border 

of the LV. f Maximal z-projection of a biocytin-filled dLS (Streptavidin-CF633) cell overlaid with a 

single z-plane of VGAT and DAPI. g Magnification of a single z-plane indicating the presence of 

somatostatin (SOM) cell bodies (arrowheads) only in the dLS. h Magnification of a single z-plane 

indicating the presence of ERα cell bodies (arrows) only in the vLS. i Morphological characterization 

of LS neurons. dLS cells exhibited more neurite branches (two-tailed Student’s t-test t(4)= 4.841, 

p=0.0072) and junctions (t(4)= 4.849, p=0.0072) longer neurite length (t(4)= 4.798, p=0.0078), and 

wider soma areas (Mann-Whitney test U= 1.00, p=0.0156) than vLS cells. Representative 

spontaneous current traces during TGOT (1µM) and bicuculline (50µM) bath application in dLS j 

and vLS l cells . k TGOT increased IPSC frequencies in dLS cells (Wilcoxon Signed Rank test 

W(9)=55, p=0.002) and m decreased IPSC frequencies in vLS cells (W (7)=-36, p=0.0078). Ventral 

cells also presented increased FHWM (W (7)=30, p=0.0391) TGOT had no effect whatsoever on the 

amplitude of the IPCS independent on the subregion. Data are shown as  mean+SEM. *p<0.05, 
**p<0.01, vs either vLS or aCSF. 
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pERK-positive cells and an increased number of VGAT/pERK positive cells (Figure 

3.7c-d and g), which did not correlate with aggression (Figure 3.7h). 

To further confirm the dLS as an anti-aggressive center and the vLS as a pro-

aggressive center, and consequently to create a causal link between neuronal activity 

and behavior, we infused rats with the GABA-A agonist muscimol (10ng/0.5µl) 10min 

prior to the FIT. As predicted, inactivation of the dLS enhanced aggression, threat 

behavior and the percentage of GH rats showing attacks (Figure 3.7i-j). In contrast, 

opposing effects were seen in the vLS of IST rats. Muscimol decreased aggression 

and the percentage of rats showing attacks (Figure 3.7k-l). 
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Figure 3.7. An intrinsic GABAergic circuit within the LS regulates female aggression. a-d 

Example average z-projects showing pERK (Alexa594) immunostaining in Venus-VGAT females 

after FIT exposure. a dLS of a GH female, b dLS of an IST female, c vLS of a GH female, d vLS of 

an IST female (dLS= dorsal part of the lateral septum; GH=group-housed; IST= isolated and trained; 

LV=lateal ventricle; VGAT= vesicular GABA transporter; vLS= ventral part of the lateral septum). e-

h Bar chart depicting quantitative analyses of activation patterns in the LS after FIT. e In the dLS of 

IST females less pERK-positive cells (two-tailed t-Student’s test t(9)=4.205, p=0.0023) and fewer 

pERK/VGAT co-localized cells were found (t(9)=3.753, p=0.0045). f Aggression negatively correlates 

with the number of pERK/VGAT-positive cells in the dLS (Pearson’s correlation r=-0.7459, 

p=0.0084). g In the vLS of IST females a tendency of more pERK-positive cells (t(9)=2.069, 

p=0.0685) and a higher number of pERK/VGAT-positive cells was found (T(9)=2.28, p=0.0486). h 

Aggressin does not correlate with the number of pERK/VGAT-positive cells in the vLS (r=0.4915, 

p=0.1247). i Infusion of muscimol (10ng/0.5µl) into the dLS increased total aggression (t(12)= 2.515, 

p=0.0272) and threat (Mann-Whitney test U=5.00, p=0.0111) in GH rats. j Inhibition of the dLS also 

enhanced the percentage of rats showing attacks (Fisher exact test, p<0.0001). k Infusion of 

muscimol into the vLS decreased total aggression (t(13)=3.191, p=0.0071) and tended to decrease 

threat behavior (t(13)= 1.832, p=0.0899). l Inhibition of the vLS also reduced the percentage of rats 

showing attacks (p<0.0001). Data are shown as mean+SEM.  #p<0.05, ##p<0.01 vs GH; *p<0.05, 
**p<0.01, ***p<0.0001  vs vehicle. 
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3.4. DISCUSSION 

Our results demonstrate that a combination of social isolation and aggression 

training is able to exacerbate the mild levels of aggression displayed by GH female 

Wistar rats. In addition, female aggression seems to be controlled by a sophisticated 

mechanism involving differences in GABA neurotransmission as well as a fine-tuning 

between OXT and AVP neurotransmission in two distinct neuronal populations within 

the LS.  

In highly aggressive IST females, OXT release within the vLS was found to be 

elevated during the FIT, which was also reflected by higher OXT levels in their CSF. 

We could also find that aggression levels positively correlated with both OXT release 

in the vLS and into CSF. Importantly, the involvement of endogenous OXT in female 

aggression was directly demonstrated by complementary pharmacological, 

chemogenetic and optogenetic approaches: (i) Pharmacological blockade of OXTR 

either i.c.v. or locally in the vLS resulted in reduced aggression in IST rats, whereas (ii) 

either chemogenetically intracerebral or optogenetically intra-vLS induced release of 

OXT heightened aggression in low aggressive and non-receptive GH females. 

The role of OXT in multiple aspects of social behaviors has been established in 

male rodents (Jurek and Neumann, 2018; Lukas and de Jong, 2017), where OXT is 

known to exert prosocial (Lukas et al, 2011c) and anti-aggressive (Calcagnoli et al, 

2013) effects. In contrast, OXT actions on female social behavior are less known and 

have mainly been studied in the context of maternal behavior (Jurek and Neumann, 

2018). Differently from males, OXT does not seem to be involved in social motivation 

and naturally occurring social preference in non-lactating female rats, and OXT was 

not able to reverse social defeat-induced social avoidance (Lukas and Neumann, 

2014). Further, OXTR binding in the central amygdala (CeA) has been negatively 
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correlated with social interest in female Wistar rats (Dumais et al, 2013). In line with 

our findings, pro-aggressive and/or antisocial effects of OXT have been reported in 

lactating female rats (Bosch et al, 2005), female rhesus monkeys (Jiang and Platt, 

2018b), and non-lactating women (Denson et al, 2018; Pfundmair et al, 2018). It should 

be pointed out that the motivating factors behind the high aggression found in lactating 

females may differ from the ones found in non-lactating females as well as the severity 

of the aggression (Caughey et al, 2011; Hashikawa et al, 2017, 2018; Newman et al, 

2019). However, from an evolutive point of view, co-opting the same neuropeptidergic 

system for promoting aggression in lactating females (to protect the offspring) and in 

non-lactating females (to fight for resources such as territory and food) makes sense 

especially knowing that high activity of the brain OXT system with elevated synthesis 

and release of OXT, as well as OXTR binding (Bosch et al, 2005; Caughey et al, 2011; 

Jurek and Neumann, 2018; Lukas and de Jong, 2017) has been shown during 

pregnancy/lactation. Interestingly, increased OXTR binding in the LS, our region of 

interest, has been found in highly aggressive lactating females (Caughey et al, 2011). 

In addition, aggression was influenced by the estrus-cycle especially in IS females 

and in the chemo and optogenetics induced OXT release experiments. Low aggression 

has been described in receptive (estrus) Wistar rats (Ho et al, 2001) also ovariectomy 

seems to decrease aggression in aggressive rats and mice (Ho et al, 2001; Newman 

et al, 2019). In this context, it is of note that OXTR binding in regions involved in the 

regulation of aggression differs during the estrus-cycle and after ovariectomy, typically 

OXTR binding is decreased by low estrogen (Dumais et al, 2013). Furthermore, OXT 

release is affected by sex steroids as shown in vitro (Widmer et al, 2003) and in vivo 

(Nyuyki et al, 2011). Since ERα in the vLS shows similar expression patterns to the 

one shown by OXTRs, we could hypothesize that estradiol would either act in 
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interneurons or directly on OXTR expressing neurons to counteract the effects of OXT. 

Further experiments should focus on unraveling the relation among the estrus-cycle, 

aggression and the OXT and AVP systems. 

Concerning the involvement of the AVP system in female aggression, we could 

reveal a completely different picture. In comparison to GH, IST females showed 

blunted AVP release within the dLS during an aggressive encounter, which was also 

reflected by lower AVP content in the CSF. Also, IST rats exhibited reduced V1aR 

binding in the dLS, and aggression negatively correlated with V1aR binding. As further 

proof of AVP's inhibitory effect on female aggression, infusion of AVP either i.c.v. or 

directly into the dLS was efficient to decrease the high aggression seen in IST rats, 

whereas blockade of V1aRs in the dLS exacerbated their aggression. 

 Although several pieces of evidence have reported AVP to exert pro-aggressive 

effects in males (Ferris et al, 1997; Leroy et al, 2018; Terranova et al, 2016; Veenema 

et al, 2010), conflicting data have been shown in animal models of abnormal 

aggression, where a blunted AVP system in the LS has been described. For example, 

LAB rats show decreased AVP release in the LS during the RI (Beiderbeck et al, 2007) 

and short-attack latency mice exhibited decreased AVP innervation of the same region 

(Compaam et al, 1993). Additionally, high aggression displayed by dominant animals 

seems to be also linked to reduced AVP signaling, i.e. alpha male mice showed 

decreased V1aR binding in the LS when compared to subordinate males (Lee et al, 

2019) and synthetic AVP is able to flatten dominance in rhesus macaques (Jiang and 

Platt, 2018a). In lactating females, the link between AVP and aggression seems to be 

complex as well, under basal conditions either synthetic or endogenous AVP has been 

shown to decrease maternal aggression in Sprague-Dawley rats (Nephew et al, 2010; 

Nephew and Bridges, 2008), however, anxiety dependent effects have been also 
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described in the CeA, where  AVP release was associated with maternal aggression 

only in rats bred for high anxiety-related behavior (Bosch et al, 2010). Nevertheless, in 

accordance with our data, serenic effects of AVP have been shown in non-lactating 

hamsters (Gutzler et al, 2010; Terranova et al, 2016) and rhesus macaques (Jiang and 

Platt, 2018b). In humans, recent studies have also highlighted the prosocial role of AVP 

as a potential therapeutical drug for social disorders, since intranasal AVP was able to 

increase risky cooperative behavior in men (Brunnlieb et al, 2016) and to enhance 

social skills in autistic children (Parker et al, 2019).  

 After having identified the specific pro-aggressive effect of OXT in the vLS and 

anti-aggressive effect of AVP in the dLS, in the final set of experiments we used 

pharmacology (muscimol) and neural activity (pERK), to show how those two distinct 

regions in the LS are differently activated by aggression. Dorsal neurons inhibit 

aggressive behavior whereas ventral neurons seem to promote aggression. Those 

neurons also responded differently to OXTR activation in vitro. TGOT increased 

inhibitory spontaneous activity dorsally whereas it decreased it ventrally. As the 

inhibitory currents that were modulated by TGOT were shown to be strictly GABAergic, 

this indicates that activation of OXTRs located exclusively in the vLS leads to 

GABAergic inhibition of neurons in the dLS. 

The role of the LS in suppressing aggression has been described for decades. 

However, only one recent paper has shown the existence of local microcircuits within 

the LS regulating aggression in male mice (Leroy et al, 2018). Supporting the pro-

aggressive role of AVP in males (Elliott Albers et al, 2006; Ferris et al, 1997; Terranova 

et al, 2016; Veenema et al, 2010), V1b receptor activation on presynaptic terminals of 

hippocampal fibers to the LS increased aggression via stimulation of inhibitory 

interneurons in the dLS projecting to the vLS. Although this data contrast with ours we 
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have to keep in mind that i) we did not access the role of V1bRs in the present study, 

thereby their effects could possibly differ from the V1aR’s effect, ii) V1bR’s effect was 

not shown to be modulated by endogenous AVP release, iii) the OXT and AVP systems 

as well as their effects on social and aggressive behaviors are known to be sexually 

dimorphic (DiBenedictis et al, 2017; Dumais et al, 2013, 2015; Lukas et al, 2011c; 

Lukas and Neumann, 2014; Oliveira et al, 2019; Smith et al, 2017; Terranova et al, 

2016), and iv) the distribution of V1aRs and OXTRs in the LS seems to differ in 

mice(Lee et al, 2019) and rats (Smith et al, 2017), i.e. in mice V1aR and OXTR 

distribution appears to overlap what does not occur in rats. Additionally, in our model, 

activation of V1aRs in the dLS seems to overrule whatever possible pro-aggressive 

effect of V1bRs activation in any brain region, since  AVP administration in the dLS 

was able to mimic the anti-aggressive effects of i.c.v. AVP in IST females. 

Supporting our findings, the antagonistic effects of OXTR and V1aR activation 

have been described in the context of fear in the CeA. Similar to our data, activation of 

OXTR-positive cells led to inhibition of V1aR-positive cells via GABAergic 

transmission, which abolished the behavioral effects of V1aR activation (Huber et al, 

2005; Knobloch et al, 2012). From the best of our knowledge, such a mechanism has 

never been described before in the context of aggression. Supporting our results 

showing that high levels of OXT in the vLS leads to inhibition of the dLS via GABAergic 

projections, the blockade of GABA-A receptors in the LS (dorsally) of lactating mice 

has been shown to reduce maternal aggression (Lee, Grace and Gammie, 2010). This 

indicates that aggression in animals with a higher activity of the OXT system (Jurek 

and Neumann, 2018) is at least partially modulated by increased GABA release in the 

LS. 
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 Taken together, our results demonstrate that female aggression is regulated by 

the fine balance between OXT and AVP within the LS. Thus disturbances in this 

balance elicit major behavioral consequences, i.e. whenever the balance shifts in the 

OXT direction, high OXT binding to OXTRs in the vLS, exacerbates aggression 

whereas a shift in the AVP  direction, high AVP binding to V1aRs in the dLS, reduces 

aggression in female Wistar rats. Accordingly, dorsal neurons in the V1aR expressing 

area seem to be the main inhibitors of aggression centers such as the HAA, whereas 

ventral neurons in the OXTR expressing area are the main generators of aggression. 

We also have shown that activation of OXTRs in the vLS elicits GABA release onto the 

dorsal cells implying that they are postsynaptic to vLS neurons (Figure 3.8). 
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Figure 3.8.  The balance between OXT and AVP regulates the inhibitory tonus within the LS 

in order to control female aggression in Wistar rats. The scheme depicts the main findings of 

this study (partially drawn using https://biorender.com/). Further, the scheme hypothesizes how 

alterations in OXT and AVP release may impact a microcircuit in the LS (gray-dotted outline) in order 

to generate aggressive display in female Wistar rats. Dorsal and ventral cells are shown in proportion 

to their real size (AVP= vasopressin; ERα= estrogen receptor α; HAA= hypothalamic attack area; 

LS= lateral septum; LV= lateral ventricle; MS= medial septum; OXT= oxytocin; OXTR= oxytocin 

receptor; SOM= Somatostatin; V1aR= V1a receptor). On the left, a shift into the OXT direction 

underlined by high OXT release ventrally and low AVP release dorsally culminate in increased 

inhibition of dLS (dotted line indicates hypothetical pathway). Inhibition of the dLS probably triggers 

the disinhibition of aggression centers such as the HAA what leads to female aggression. On the 

right side, the AVP shift is shown where a combination of low OXT release ventrally and high AVP 

release dorsally evokes increased activation of the dLS neurons what might trigger an inhibition of 

the HAA thereby abolishing female aggression.  

 

https://biorender.com/
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4.1 GENERAL DISCUSSION 

Since the neurobiological meaning of our findings has been extensively 

discussed in the respective chapters, here I am going to focus on the implications, 

relevance, and perspectives related to those findings. In the present thesis, I introduced 

two rat models of female aggression. The first one, PWSI was adapted from Toth and 

Haller (Toth et al, 2011) whereas the second one was established based on previous 

work showing that female aggression in hamsters and Calfornia mice is 

induced/triggered by social isolation (Borland et al, 2019; Ross et al, 2019; Silva et al, 

2010) as well as by winning conflicts (Been et al, 2016; Silva et al, 2010). Thus, I 

achieved to mimic different etiologic factors of aggression. First, with PWSI, I was able 

to show that adverse early life experiences, which are known to trigger maladaptive 

aggression in humans (Dackis et al, 2017; Freitag et al, 2018; Glenn et al, 2013; Sandi 

and Haller, 2015) and male Wistar rats (Marquez et al, 2013; Toth et al, 2011; Veenema 

et al, 2006), are also able to induce exaggerated and abnormal aggression in female 

Wistar rats. Second, using an ethological approach, I proved that the combination of 

social isolation and training, used to stimulate territoriality and aggression in males 

(Koolhaas et al, 2013; Miczek et al, 2001; Oyegbile and Marler, 2005; Ross et al, 2019), 

elicits offensive behavior towards an unknown same-sex intruder in female Wistar rats, 

in a RI setting.  

Those differences in the etiology of aggression were also reflected in 

neurobiological, physiological and behavioral contexts. PWSI affects V1aR and OXTR 

in several brain regions (BNST, LH, DG, and NAcc, respectively) whereas IST affected 

only those receptors in the LS. In addition, PWSI females showed a hyper-CORT 

phenotype (Figure 4.1., preliminary data) whereas IST females seem to show a hypo-

CORT (Supplementary figure 2) response to the FIT. From a behavioral point of view, 

those animals also diverged, PWSI induced severer aggressive behavior than IST; i.e. 
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PWSI females spent more time on threat behavior as well as displayed more attacks 

than IST females (Figure 4.2. for illustrative porpuses). However, those comparisons 

should be taken carefully because in the PWSI experiments only diestrus females 

underwent the FIT, whereas in the IST group we have mixed estrus-cycles. As the 

estrus cycle has been shown to affect female aggression by this own study and others 

(Ho et al, 2001), we could expect that PWSI rats would also display less aggressive 

behavior when they are in proestrus or estrus.  

 

 

Figure 4.1: Effects of post-weaning social isolation (IS dark grey) or group-housing (GH, light grey) 

on corticosterone levels in female (f, circles) rats after an exposure to either the female (FIT) (two-

way ANOVA followed by Bonferoni’s: Females: FIT: F(2,17)= 16.41, p=0.0009. Data show in 

Mean+SEM. Effects of the test: * p≤.05. 
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Since both models mimic different features of aggressive behavior and show 

robust effects, scientists may wonder which one of them better emulates female 

aggression. Although addressing this question is a challenging task I will try to make a 

comparison between both models. As shown in chapter 2, PWSI is a suitable model to 

investigate: a) how early life stress events affect aggressive behavior; b) abnormal 

aggression in females, especially considering the sex-specific effects shown towards 

juveniles, c) hyper-arousal (hyper-CORT) induced aggression and d) the 

pharmacology of violent aggression. As a disadvantage I have to mention that those 

animals may also show impairments in other behavioral domains such as social 

memory, as shown in chapter 2, sexual behavior (Kercmar et al, 2014) and depressive-

like behavior (Shetty and Sadananda, 2017). Although this might seem a synergistic 

feature due to the fact that aggressive patients also show comorbidities, we should 

keep in mind that creating a direct causal link in between the alterations induced by 

PWSI and aggression might be difficult in this context 

The isolation and training model is beneficial to a) unravel the neural circuitry 

involved in territorial aggression of female Wistar rats, by comparing the neurobiology 

of IST, i.e. highly aggressive, versus GH, i.e, low aggressive rats; b) investigate how 

different aggression levels are linked to hormone as well as neurotransmission in the 

brain; c) address whether rats selected for high aggressiveness show impairments in 

other behavioral domains such as anxiety, depressive-like, sexual and social 

behaviors; d) manipulate different neurotransmitter, hormones and neural pathways to 

uncover their role on territorial aggression; and e) test the efficacy of potential serenic 

drugs. 

Figure 4.2: Comparison of aggression levels displayed by PWSI and IST female rats. Bar chart 

showing PWSI females in dark gray and IST females in black. a PWSI rats spend more time in threat 

(Mann-Whitney test U=47, p=0.013) behavior as well as displayed more attacks when compared to 

IST rats b (U=54, p=0.007). Data shown Mean+SEM.  * p≤.05; ** p≤.01 vs IST. 
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4.2 OUTLOOK FOR PWSI 

In the second chapter, I was able to show that males and females did not differ 

in their levels of total aggression either in control or PWSI conditions. Nevertheless, 

sex differences in aggressive behavior display were found, i. e. females exhibited more 

offensive grooming and aggression towards a juvenile whereas males tended to 

display more attacks towards vulnerable body parts. Indeed, child maltreatment leading 

to externalizing and offending behavior in both boys and girls has been reported 

(Denson et al, 2018; Glenn et al, 2013; van der Put et al, 2015). However, the manner 

of how aggressive behavior is displayed might change across sex, as in chapter 2. 

Indeed, women (Colins et al, 2016) and girls (Ackermann et al, 2019) with psychopathic 

traits and CD, respectively, exhibited unchanged physical but increased relational 

aggression, i.e. aggression aiming at harming someone’s relationships and social 

status, when compared to their male counterparts. 

Although the reasons behind those qualitative differences in aggressive 

behavior are still obscure, it is possible to draw a hypothesis in order to explain those 

findings. As mentioned before, Campbell (1999) has already attempted to explain those 

differences making use of an evolutive approach, she hypothesized that females will 

not engage in conflicts to avoid serious harming, because their reproductive fitness 

does not depend directly on fighting for getting a larger number of sexual partners. We 

can extend this hypothesis by stating that females would only engage in a conflict when 

they are certain of winning by facing a “weaker” opponent such as a juvenile, in order 

to reduce risks of getting injured. Applying Campbell's logic again, a physical injury 

would mean more energetic costs in terms of reproduction for females due to the fact 

that they have to invest more energy on pregnancy, lactation and maternal care. 

However, this changes completely once birth takes place, in that case, going into a 

new pregnancy would mean higher energetic costs. Therefore females probably 
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escalate their aggression in order to protect their offspring (Campbell, 1999; Hashikawa 

et al, 2017; Unger et al, 2015). Accordingly to this hypothesis, attacking juveniles 

(weaker opponent) seems to be hard-wired in the virgin female brain since 

spontaneous aggression towards a juvenile was shown by virgin Swiss-webster 

females whereas lactating mice showed aggression towards juveniles and adults 

(Hashikawa et al, 2017). Another, point raised by Campbell is that patriarchal culture 

might have suppressed aggression in women. In laboratory rodents, empirical 

observations based on breeding guidelines might have endorsed the study of male 

aggression whereas eclipsed the study of female aggression in virgins, during breeding 

male’s territorial and aggressive behavior, is facilitated by co-housing with a female 

and subsequent social isolation, this probably lead scientists to use those factors to 

induce territorial aggression and to focus their research on male rodents (De Almeida 

et al, 2005; Koolhaas et al, 1980, 2013; Miczek et al, 2001). In females, aggression 

display has been typically described only during lactation what might have lead 

scientists to ignore the study of virgin’s aggression (Bosch et al, 2005; Hashikawa et 

al, 2018; Lukas et al, 2011a; Nephew and Bridges, 2008; Newman et al, 2019). 

Interestingly, recent evidence shows that sexual experience also induces aggression 

in laboratory female mice as it does in males (Newman et al, 2019), in addition, wild 

female rodents such as mice (Miczek et al, 2001; Silva et al, 2010) and hamsters (Ross 

et al, 2019) seem to show aggressive and dominant behavior just like males.  

Future studies should focus on testing these hypotheses by measuring PWSI 

induced female aggression towards different innocuous stimuli such as anesthetized 

or much smaller intruders in order to see whether this aggressive behavior is only 

directed to infants or any harmless stimuli. In addition, it would be interesting to 

investigate, in a sex-specific context: a) which are the neural correlates of “infant 

aggression”  and b) if those correlates overlap with neural pathways known to regulate 
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territorial and/or abnormal aggression. Among the regions evaluated in this study, the 

BNSTa seems like a promising target region as V1aR binding was affected in a sex-

dependent manner there, i.e. IS-f exhibited reduced whereas IS-m had enhanced 

V1aR binding. Since the effects of AVP on aggression have been reported to be sex-

specific in hamsters (Terranova et al, 2016) and AVP is released in the BNST of low-

aggressive male Wistar rats (Veenema et al, 2010), we could hypothesize that 

differential release of AVP within the BNSTa of PWSI males and females would 

regulate “infant aggression”. In that context, it would be interesting to monitor as well 

as manipulated AVP release into the BNSTa before and/or during an aggressive 

encounter in male and female PWSI rats. 

Furthermore, several pieces of evidence point towards the NAcc as a promising 

target region for this type of aggression. Thus, NAcc activity has been associated with: 

i) abnormal and escalated aggression in rodents (Been et al, 2016; Beiderbeck et al, 

2012), ii) the appetitive (seeking) and consummatory (attack on-set) aspects of 

aggression (Aleyasin et al, 2018; Golden et al, 2019) and iii) the establishment of social 

dominance in rodents (Van Der Kooij et al, 2018; Larrieu et al, 2017). In addition, OXT 

release in the NAcc seems to be linked with the rewarding aspects of social interactions 

(Barrett et al, 2015; Bosch et al, 2016; Yu et al, 2016). PVN OXT neurons are especially 

active during social interactions with a juvenile in adult male mice (Hung et al, 2017). 

In that context, we could hypothesize that the effects of PWSI on increasing OXT 

mRNA and decreasing OXTR binding in the NAcc, independently of the sex, would 

impair the reward component of interacting with a juvenile and turn the social 

investigation into aggression. Since females under control conditions had increased 

OXT mRNA in the PVN and OXTR binding in the NAcc when compared to males they 

could be particularly affected by the reduction in OXTR binding thus showing more 

aggression towards a juvenile.  In line with that scalable control of aggression has been 
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shown in male mice, where different levels of neural activation of the ERα-positive 

neurons in the VMHvl triggered contrasting social behaviors, i.e. low activation lead to 

social investigation whereas high activation culminated in aggression (Lee et al, 2014). 

Further experiments should focus on: a) assessing the activity of OXT neurons in the 

PVN  projecting to the NAcc as well as of the NAcc neurons during infant aggression, 

b) manipulating OXT neurotransmission before and during infant aggression in the 

NAcc and c) monitoring OXT release within the NAcc.  

4.3 OUTLOOK FOR THE IST PROTOCOL 

In this section, I will discuss the main open questions regarding Chapter 3 as 

well as introduce some suggestions for future experiments and new potential targets. 

In chapter 3, I was able to show that social isolation and aggression training were able 

to heighten the levels of aggression displayed by female Wistar rats (GH). This effect 

was accompanied by striking changes in OXT and AVP release which turned out to act 

on a GABAergic microcircuit within the LS. Specifically, I could show that exacerbated 

aggression was underlined by increased OXT release within the vLS and decreased 

AVP release within the dLS. 

Concerning this data set, there are still some open questions. For example, how 

social isolation and training differentially act in OXT and AVP neurons to trigger 

enhanced and decreased neuropeptide release, respectively. OXT release seems to 

be mainly affected by isolation since both, IS and IST females show increase OXT 

levels in their CSF after the FIT. In contrast, AVP release seems to be mainly affected 

by experience as only IST females showed reduced AVP levels in their CSF and dLS 

during the FIT. Further experiments should focus on identifying which are the specific 

plasticity mechanisms (neural activity, synaptic proteins, vesicle trafficking or docking, 

innervation of target regions) that lead to those differences in neuropeptidergic release. 

From an AVP perspective it would be especially interesting to know how aggressive 
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experience (training) changes the presynapse to induce a drop in the release. This type 

of mechanism associating plasticity with escalated aggression has been described 

before in the literature, but most of the studies focus on the postsynapse, for example, 

successive aggressive encounters elicit increased number of spines in the NAcc of 

female hamsters (Been et al, 2016). Thus, understanding which are the presynaptic 

components of those changes in OXT and, especially, AVP release would add new 

knowledge to the aggression field. Apart from answering how the protocol induces 

changes in peptide release, another interesting question to be answered is how IST 

females react to different social stimuli such as juveniles, young males, anesthetized 

intruders and ovariectomized females at the behavioral and neurobiological level.  

I also showed that the effects of OXT and AVP on aggression are mediated 

within specific subregions of the LS, namely OXT acted via OXTRs in the vLS whereas 

AVP acted via V1aR in the dLS. The neurons in these subregions  are differently 

regulated by aggression and OXTR activation. The FIT decreased the activity of 

GABAergic neurons in the dLS and increased the activity of GABAergic neurons in the 

vLS. Accordingly, inhibition of those regions differently regulated aggression, i.e. 

inhibition of the vLS decreased whereas inhibition of the dLS enhanced female 

aggression. Furthermore, OXTR activation also had opposing effects on GABAergic 

spontaneous inhibition in the LS, i.e. decreased inhibition in ventral neurons but 

increased inhibition in dorsal neurons of the LS.  

Although we already described in detail how the LS is regulating female 

aggression there are still some unanswered questions that are worth to be investigated, 

for example, a) how vLS and dLS cells interact in a physiological and morphological 

context, this could be evaluated using a combination of tracing, electrophysiological 

and optogenetic techniques to target the specific neuronal populations; b) how this 

circuit is wired in males since AVP is known to have pro-aggressive effects in the LS 
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of male Wistar rats (Veenema et al, 2010) and not much is known about how septal 

OXT affects intermale aggression; c) how this circuit is engaged in other social 

behaviors known to be LS- as well as OXT- and AVP-dependent such as social 

discrimination (Lukas et al, 2011a; Popik et al, 1992). 

I also have shown that being receptive, i.e. in the proestrus or estrus phases of 

the estrus cycle, not only decreases aggression but also abolishes the pro-aggressive 

effects of endogenous OXT release. Ho and co-workers (2001) have shown that being 

in estrus decreases aggression display in rats. Also, the surgical removal of the ovaries 

(ovariectomy) abolishes aggression in mice (Newman et al, 2019) and rats (Ho et al, 

2001). As estrogen and progesterone receptors are known to affect aggression in male 

(Lee et al, 2014; Nakata et al, 2016; Sano et al, 2016; Yang et al, 2013) and female 

rodents (Hashikawa et al, 2017; Spiteri et al, 2010) and sex hormones and the estrous 

cycle are known to modulate OXT release (Nyuyki et al, 2011; Widmer et al, 2003) and 

OXTR binding (Dumais et al, 2013; Dumais and Veenema, 2016), respectively, we 

could hypothesize that the effects of the estrous cycle are either mediated directly by 

affecting vLS neurons, since ERαs are expressed only in this region, or indirectly by 

regulating OXTR signaling and/or binding. Further experiments should depict this 

hypothesis and evaluate how sex hormones affect female aggression. 

Furthermore, the IST paradigm could also be used to study how other brain 

regions may engage in the aggressive behavior network during female aggression. 

Especially, it would make sense to asses how regions that are known to be involved in 

excessive and pathological aggression in humans such as the amygdala and the PFC 

(Rosell and Siever, 2015) are affected by the IST protocol. Preliminary data on the CeA 

acquired during my Ph.D. shows that an aggressive encounter (FIT) enhanced the 

colocalization of pERK/VGAT cells in IST females, indicating that the CeA is 

overactivated in aggressive females (Figure 4.3d). In addition, IST females exhibited 
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increased OXTR but unchanged V1aR binding in the CeA when compared to GH 

controls (Figure 4.3a-c). In contrast to that synthetic AVP but not TGOT (all at: 

0.1ng/0.5µl) increased female aggression in IST rats (Figure 4.3e). Further 

experiments should focus on a) monitoring OXT and AVP release in the CeA during 

the FIT, b) manipulating OXT and AVP neurotransmission within the CeA and c) 

assessing whether those effects are related to the state of anxiety of the animals since 

the amygdala is known to be strongly involved in anxiety-like behaviors/traits (Calhoon 

and Tye, 2015; Janak and Tye, 2015) that are known to influence aggressive behavior 

in rats (Neumann et al, 2010).  

 

 



   Chapter 4: General Discussion 
 

102 
 

 

Finally, despite focusing on the resident’s perspective the IST protocol allows 

scientists to study the effects of acute as well as chronic social defeat on females by 

studying the intruders. Several studies have attempted to assess the effects of social 

defeat on female psychopathology, however, most of the protocols show practical 

complications due to the use of either lactating females (Lukas and Neumann, 2014; 

Newman et al, 2019) or optogenetic stimulation of the residents (Takahashi et al, 2017). 

Thus, an ethological and simple protocol such as the IST protocol would be beneficial 

to understand how being a victim of aggression may affect neurobiology as well as 

physiology and behavior in a sex-specific manner. From a translational point of view, 

this is extremely relevant since women are more affected by depression, anxiety and 

PTSD than men (Laman-Maharg and Trainor, 2017; Wittchen et al, 2011), which are 

Figure 4.3 Preliminary data on the neuropeptidergic regulation of female aggression 

within the central amygdala (CeA): a Isolated and trained (IST) but not isolated (IS) 

females exhibited higher oxytocin receptor (OXTR) binding in the CeA than group-housed 

(GH) controls (one-way ANOVA followed by Bonferoni’s: F(2,19)=4.933, p=0.02). b no 

changes were seen in V1a receptor (V1aR) binding independent of the group (Kruskal-

Wallis test followed by Dunn’s: H(3)=4.551, p=0.101). c Scheme illustrating localization of 

OXTR (blue) as well as V1aR (dark red) in the CeA and magnification of the autoradiograph 

showing example subjects for OXTR binding (upper-right: GH; lower-right: IST). d Bar chart 

depicting quantitative analyses of pERK and VGAT co-localization. IST females tended to 

have an increased number of pERK-positive cells and showed an increased number of 

pERK/VGAT cells in the CeA (two-tailed t-Student’s test t(9)=2.319, p=0.0455). Interestingly, 

VGAT/pERK cells were also found to be increased in the medial amygdala (MeA) although 

no differences were seen in total positive-pERK cells (t(10)=6.088, p=0.0001). e Local 

infusion of AVP but not TGOT (all at: 0.1ng/0.5µl) enhanced female aggression in IST 

females (F(2,24)=4.534, p=0.02). Data shown in Mean+SEM. * p≤.05 vs either GH or vehicle. 
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all known to be caused, among other reasons, by social stress (Haller et al, 2014; 

Laman-Maharg and Trainor, 2017; Masis-Calvo et al, 2018; Sandi and Haller, 2015) 

4.4 CONCLUDING REMARKS 

Overall, in the present thesis, I have shown that although aggression may differ 

qualitatively in male and female Wistar rats, they seem to display similar levels of 

aggression from a quantitative perspective. Accordingly, the same factors known to 

stimulate male aggression appear to stimulate female aggression, since PWSI evoked 

exacerbated aggression in male and female Wistar rats and IST evoked female 

aggression at comparable levels to intermale aggression. Particularly, PWSI induced 

abnormal aggression towards juveniles. Regarding the neurobiology, the OXT and 

AVP systems emerged as important players in female aggression in both models. 

Especially, using the IST protocol we have unraveled an elaborated mechanism where 

differential OXT and AVP release within specific regions of the LS triggered changes 

in GABAergic activation and subsequent neurotransmission to elicit aggression in 

females.  
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ABBREVIATION LIST 

GH-m 
Group-housed males  37, 43, 44, 46 

5-HT 
Serotonin  20, 21, 32 

ACTH 
Corticotrophin  23 

ADHD 
Attention deficit hyperactivity disorder  20 

AH 
Anterior hypothalamus  15, 25, 27, 29, 32 

AOB 
Acessory olfactory bulb  15, 23 

AR 
Androgen receptors  18, 22 

ASPD 
Antisocial personality disorder  5 

AVP 
Vasopressin  5, 6, 7, 8, 9, 22, 23, 24, 25, 26, 27, 
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Brain derived neurotrophic factor  14 

BLA 
Basolateral amygdala  35 

BNST 
Bed nucleus of stria terminalis  7 

BNSTa 
Bed nucleus of stria terminalis anterior portion  7, 

49, 50, 51, 98 
CD 

Conduct disorder  5 
CeA 

Central amygdala  17, 25, 27, 49, 51, 91, 93, 94, 
103 

ChR2 
Channelrhodopsin  66, 79, 80 

cLS 
Lateral septum cauldal nucleus  18 

CORT 
Corticosterone  10, 12, 13, 14, 21, 34, 93, 95 
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Corticotrophin releasing hormone  23 
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Cerebrospinal fluid  8, 59, 61, 66, 72, 73, 75, 76, 

90, 92, 100, 101 
D1 

Dompamine receptor 1  21 
D2 

Dopamine receptor 2  21 
DA 

Dompamine  20, 21 
DG 

Dentate gyrus  7 
dLS 

Dorsal nucleus of the lateral septum  8 
DREADD 

Designed receptor exclusively actiavated by 
designed drugs  76 

EPM 
Elevated plus-maze  39, 47, 48 

ERα 
Estrogen receptor alpha  17, 22, 32, 69, 85, 99 

ERβ 
Estrogen receptor beta  22 

ESC 
Escitalopram  72 

ELS 

Early Life Stress..6 
FIT 

Female intruder test  8 
GABA 

Gamma-aminobutyric acid  8 
GH 

Group-housed  7, 8, 37, 38, 43, 44, 46, 47, 49, 53, 
57, 58, 59, 60, 59, 61, 62, 63, 66, 70, 71, 72, 73, 
75, 76, 79, 82, 83, 87, 88, 90, 96, 100, 103 

GH-f 
Group-housed females  37, 43, 47 

HAA 
Hypothalamic-attack-area  14, 16, 95 

HPA 
Hypothalamic-pituitary-axis  13, 21, 22 

IL 
Infralimbic cortex  49, 51 

iLS 
Lataral septum intermediate nucleus  18, 26 

IS 
Isolated  37, 38, 43, 44, 46, 47, 49, 53, 54, 55, 56, 

57, 58, 59, 60, 61, 70, 71, 72, 98, 100 
IS-f 

PWSI females  37, 43, 47, 98 
IS-m 

PWSI males  37, 43, 44, 47, 98 
IST 

Isolated and trained  7, 8, 59, 61, 62, 63, 70, 71, 
72, 73, 75, 76, 77, 78, 79, 82, 83, 87, 88, 90, 91, 
92, 93, 94, 96, 99, 100, 101, 103, 105 

LAB 
Rats selectively bred for low anxiety-related 

behavior  18, 19, 21, 29, 58, 92 
LH 

Lateral hypothalamus  7 
LS 

Lateral septum  8 
MAOA 

Monoamine oxidase A  20 
MBH 

Mediobasal hypothalamus  15 
MD 

Microdialysis  79 
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MeA 
Medial amygdala  14, 15, 17, 23, 26, 35 

MOB 
Main olfactory bulb  15, 23 

MPOA 
Medial pre-optic area  15, 23, 25, 26 

MS 
Maternal separation  12, 21, 58 

NAcc 
Nucleus Accumbens  6 

NAcca 
Anterior nucleus accumbens  49, 51, 52 

OFC 
Orbital frontal cortex  14 

OXT 
Oxytocin  5, 6, 7, 8, 9, 22, 23, 24, 25, 26, 27, 28, 

29, 33, 34, 35, 36, 37, 41, 42, 43, 48, 49, 50, 53, 
56, 57, 58, 60, 57, 58, 59, 60, 61, 62, 66, 72, 73, 
74, 75, 76, 77, 78, 79, 80, 83, 90, 91, 93, 94, 95, 
99, 100, 101, 102, 103, 105 

OXTR 
Oxytocin receptor  7 

OXTR-A 
OXTR antagonist  28, 66, 75, 76, 79, 100 
Oxytocin receptor antagonist  8 

PAG 
Periaqueductal gray matter  15 

pBNST 
Bed nucleus of stria terminalis posterior part  26, 

27 
pERK 

Phosporilated extracellular signal-regulated 
kinase  8 

PFC 
Prefrontal cortex  14, 17, 18, 35, 103 

PPS 
Peripubertal stress  12, 21 

PR 
Progesterone receptor  17 

PrL 
Prelimbic cortex  49, 51 

PTSD 
Post-traumatic stress disorder  9, 10, 33, 105 

PVN 
paraventricular nucleus of the hypothalamus  6 
Paraventricular nucleus of the hypothalamus  6, 

23, 24, 27, 36, 42, 48, 50, 56, 57, 62, 64, 66, 76, 
79, 80, 99 

PWSI 
Post-weaning social isolation  6 

rAAV 
adenoassociated virus  76, 79 

RI 
Resident-intruder test  11, 14, 16, 18, 21, 27, 28, 

29, 59, 92, 93 
RIT 

Resident intruder test  35, 37, 38, 44, 46, 54, 55, 
57, 58, 59 

rLS 

Lateral septum rostral nucleus  18 
SCN 

Suprachiasmatic nucleus of the hypothalamus  23 
SON 

Supraoptic nucleus of the hypothalamus  23, 24, 
36, 42, 48, 50, 63, 65, 66, 76, 79, 80 

SSRI 
Serotonin selective re-uptake inhibitor  32, 72 

TGOT 
[Thr4,Gly7]OXT  28, 66, 83, 85, 86, 93, 103 

V1aR 
V1a receptor  7 

V1aR-A 
V1aR antagonist  66, 75, 83 

vLS 
Vental nucleus of the lateral septum  8 

VMH 
Ventromedial hypothalamus  15, 25 

VMHvl 
Ventromedial hypothalamus ventrolateral 

portion  17, 19, 32, 99 
WTG 

Wild-Type Groningen rats  20, 27, 28 



   References 
 

106 
 

REFERENCES 

Ackermann K, Kirchner M, Bernhard A, Martinelli A, Anomitri C, Baker R, et al (2019). 
Relational Aggression in Adolescents with Conduct Disorder: Sex Differences and 
Behavioral Correlates. J Abnorm Child Psychol 47: 1625–1637. 

Ahern M, Goodell DJ, Adams J, Bland ST (2017). Brain regional differences in social 
encounter-induced Fos expression in male and female rats after post-weaning social 
isolation. Brain Res 1630: 120–133. 

Albert DJ, Chew GL (1980). The Septal Forebrain and the Inhibitory Modulation of Attack and 
Defense in the Rat . A Review I. Behav Neural Biol 388: 357–388. 

Aleyasin XH, Flanigan XME, Golden XSA, Takahashi XA, Menard XC, Pfau ML, et al (2018). 
Cell-Type-Specific Role of ⌬ FosB in Nucleus Accumbens In Modulating Intermale 
Aggression. J Neurosci 38: 5913–5924. 

Allaman-Exertier G, Reymond-Marron I, Tribollet E, Raggenbass M (2007). Vasopressin 
modulates lateral septal network activity via two distinct electrophysiological mechanisms. 
Eur J Neurosci 26: 2633–2642. 

Almeida RMM De, Ferrari PF, Parmigiani S, Miczek KA (2005). Escalated aggressive behavior: 
Dopamine, serotonin and GABA. Eur J Pharmacol 526: 51–64. 

Almeida RMM De, Miczek KA (2002). Aggression escalated by social instigation or by 
discontinuation of reinforcement (“Frustration”) in mice: Inhibition by anpirtoline: A 5-HT1B 
receptor agonist. Neuropsychopharmacology 27: 171–181. 

Alonso JR, Coveñas R, Lara J, Aijón J (1990). Distribution of parvalbumin immunoreactivity in 
the rat septal area. Brain Res Bull 24: 41–48. 

Arseneault L (2017). The long-term impact of bullying victimization on mental health. World 
Psychiatry 16: 27–28. 

Audero E, Mlinar B, Baccini G, Skachokova ZK, Corradetti R, Gross C (2013). Suppression of 
serotonin neuron firing increases aggression in mice. J Neurosci 33: 8678–8688. 

Barrett CE, Arambula SE, Young LJ (2015). The oxytocin system promotes resilience to the 
effects of neonatal isolation on adult social attachment in female prairie voles. Transl 
Psychiatry 5: e606-10. 

Baxter BL (1968). Elicitation of emotional behavior by electrical or chemical stimulation applied 
at the same loci in cat mesecephalon. Exp Neurol 10: 1–10. 

Been LE, Moore KM, Kennedy BC, Meisel RL (2016). Metabotropic glutamate receptor and 
fragile x signaling in a female model of escalated aggression. Biol Psychiatry 79: 685–

692. 

Beiderbeck DI, Neumann ID, Veenema AH (2007). Differences in intermale aggression are 
accompanied by opposite vasopressin release patterns within the septum in rats bred for 
low and high anxiety. Eur J Neurosci 26: 3597–3605. 

Beiderbeck DI, Reber SO, Havasi A, Bredewold R, Veenema AH, Neumann ID (2012). High 
and abnormal forms of aggression in rats with extremes in trait anxiety — Involvement of 
the dopamine system in the nucleus accumbens. Psychoneuroendocrinology 37: 1969–
1980. 

Bergvall ÅH, Vega Matuszczyk J, Dahlöf LG, Hansen S (1991). Peripheral anosmia attenuates 



   References 
 

107 
 

female-enhanced aggression in male rats. Physiol Behav 50: 33–40. 

Biro L, Sipos E, Bruzsik B, Farkas I, Zelena D, Balazsfi D, et al (2018). Task division within the 
prefrontal cortex: Distinct neuron populations selectively control different aspects of 
aggressive behavior via the hypothalamus. J Neurosci 38: 4065–4075. 

Biro L, Toth M, Sipos E, Bruzsik B, Tulogdi A, Bendahan S, et al (2016). Structural and 
functional alterations in the prefrontal cortex after post-weaning social isolation: 
relationship with species-typical and deviant aggression. Brain Struct Funct 4: 1–15. 

Blumstein DT, Evans CS, Daniel JC (2000). JWatcher 0.9: An Introductory User’s Guide. Anim 
Behav Lab Macquarie Univ . 

Boer SF De, Koolhaas JM (2005). 5-HT1A and 5-HT1B receptor agonists and aggression: A 
pharmacological challenge of the serotonin deficiency hypothesis. Eur J Pharmacol 526: 

125–139. 

Borland JM, Walton JC, Norvelle A, Grantham KN, Aiani LM, Larkin TE, et al (2019). Social 
experience and sex-dependent regulation of aggression in the lateral septum by 
extrasynaptic δGABAA receptors. Psychopharmacology (Berl) doi:10.1007/s00213-019-
05368-z. 

Bosch OJ, Dabrowska J, Modi ME, Johnson Z V, Keebaugh AC, Barrett CE, et al (2016). 
Psychoneuroendocrinology Oxytocin in the nucleus accumbens shell reverses CRFR2-
evoked passive stress-coping after partner loss in monogamous male prairie voles. 
Psychoneuroendocrinology 64: 66–78. 

Bosch OJ, Meddle SL, Beiderbeck DI, Douglas AJ, Neumann ID (2005). Brain Oxytocin 
Correlates with Maternal Aggression : Link to Anxiety. J Neurosci 25: 6807–6815. 

Bosch OJ, Neumann ID (2010). Vasopressin released within the central amygdala promotes 
maternal aggression. Eur J Neurosci 31: 883–891. 

Bosch OJ, Pfo J, Beiderbeck DI, Landgraf R, Neumann ID (2010). Maternal Behaviour is 
Associated with Vasopressin Release in the Medial Preoptic Area and Bed Nucleus of the 
Stria Terminalis in the Rat Neuroendocrinology. 420–429doi:10.1111/j.1365-
2826.2010.01984.x. 

Bredewold R, Smith CJ, Dumais KM, Veenema AH (2014). Sex-specific modulation of juvenile 
social play behavior by vasopressin and oxytocin depends on social context. Front Behav 
Neurosci 8: 216. 

Brown JL, Hunsperger RW, Rosvold HE (1969). Defence, attack, and flight elicited by electrical 
stimulation of the hypothalamus of the cat. Exp Brain Res 8: 113–129. 

Brunnlieb C, Nave G, Camerer CF, Schosser S, Vogt B, Münte TF (2016). Vasopressin 
increases human risky cooperative behavior. Proc Natl Acad Sci 113: 2051–2056. 

Calcagnoli F, Boer SF De, Althaus M, Boer JA Den, Koolhaas JM (2013). Antiaggressive 
activity of central oxytocin in male rats. Psychopharmacology (Berl) 229: 639–651. 

Calcagnoli F, Boer SF de, Beiderbeck DI, Althaus M, Koolhaas JM, Neumann ID (2014a). Local 
oxytocin expression and oxytocin receptor binding in the male rat brain is associated with 
aggressiveness. Behav Brain Res 261: 315–322. 

Calcagnoli F, Meyer N, Boer SF De, Althaus M, Koolhaas JM (2014b). Chronic enhancement 
of brain oxytocin levels causes enduring anti-aggressive and pro-social explorative 
behavioral effects in male rats. Horm Behav 65: 427–433. 



   References 
 

108 
 

Calcagnoli F, Stubbendorff C, Meyer N, Boer SF De, Althaus M, Koolhaas JM (2015). Oxytocin 
microinjected into the central amygdaloid nuclei exerts anti-aggressive effects in male 
rats. Neuropharmacology 90: 74–81. 

Caldwell HK (2017). Oxytocin and Vasopressin: Powerful Regulators of Social Behavior. 
Neurosci 23: 517–528. 

Calhoon GG, Tye KM (2015). Resolving the neural circuits of anxiety. Nat Neurosci 18: 1394–
1404. 

Camats Perna J, Engelmann M (2017). Recognizing others : Rodent’s social memories. Curr 
Top Behav Neurosci 30: 25–45. 

Campbell A (1999). Staying alive: Evolution, culture, and women’s intrasexual aggression. 
Behav Brain Sci 22: 203–252. 

Caramaschi D, Boer SF de, Koolhaas JM (2008). Is hyper-aggressiveness associated with 
physiological hypoarousal? A comparative study on mouse lines selected for high and low 
aggressiveness. Physiol Behav 95: 591–598. 

Carrillo M, Ricci LA (2009). The effect of increased serotonergic neurotransmission on 
aggression : a critical meta-analytical review of preclinical studies. 
Psychoneuroendocrinology 205: 349–368. 

Caspi A, Mcclay J, Moffitt TE, Mill J, Martin J, Craig IW, et al (2002). Role of Genotype in the 
Cycle of Violence in Maltreated Children. Science (80- ) 297: 851–855. 

Caughey SD, Klampfl SM, Bishop VR, Pfoertsch J, Neumann ID, Bosch OJ, et al (2011). 
Changes in the intensity of maternal aggression and central oxytocin and vasopressin 
V1a receptors across the peripartum period in the rat. J Neuroendocrinol 23: 1113–1124. 

Chamero P, Marton TF, Logan DW, Flanagan K, Cruz JR, Saghatelian A, et al (2007). 
Identification of protein pheromones that promote aggressive behaviour. Nature 450: 

899–902. 

Colins OF, Fanti KA, Salekin RT, Andershed H (2016). Psychopathic personality in the general 
population : differences and similarities across gender. J Pers Disord 30: 1–26. 

Comai S, Tau M, Gobbi G (2012). The psychopharmacology of aggressive behavior: A 
translational approach: Part 1: Neurobiology. J Clin Psychopharmacol 32: 83–94. 

Compaam JC, Buijs RM, Pool CW, Ruiter AJ. de, Koolhaas JM (1993). Differential Lateral 
Septal Vasopressin Innervation in Aggressive and Nonaggressive Male Mice. Brain Res 
Bull 30: 1–6. 

Dackis MN, Rogosch FA, Cicchetti D (2017). Child maltreatment , callous – unemotional traits 
, and defensive responding in high-risk children : An investigation of emotion-modulated 
startle response. Dev Psychopathol 27: 1527–1545. 

Denson TF, O’Dean SM, Blake KR, Beames JR (2018). Aggression in Women: Behavior, Brain 
and Hormones. Front Behav Neurosci 12: 1–20. 

Dhakar MB, Rich ME, Reno EL, Lee HJ, Caldwell HK (2012). Heightened aggressive behavior 
in mice with lifelong versus postweaning knockout of the oxytocin receptor. Horm Behav 
62: 86–92. 

DiBenedictis BT, Nussbaum ER, Cheung HK, Veenema AH (2017). Quantitative mapping 
reveals age and sex differences in vasopressin, but not oxytocin, immunoreactivity in the 
rat social behavior neural network. J Comp Neurol 525: 2549–2570. 



   References 
 

109 
 

Dreu CKW de, Shalvi S, Greer LL, Kleef GA van, Handgraaf MJJ (2012). Oxytocin Motivates 
Non-Cooperation in Intergroup Conflict to Protect Vulnerable In-Group Members. PLoS 
One 7: . 

DSM-V American Psychiatric Association (2012). DSM-IV and DSM-V Criteria for the 
Personality Disorders. Am Psychiatr Assoc V: 1–15. 

Dulac C, Torello AT (2003). Molecular detection of pheromone signals in mammals: From 
genes to behaviour. Nat Rev Neurosci 4: 551–562. 

Dumais KM, Alonso AG, Immormino MA, Bredewold R, Veenema AH (2015). Involvement of 
the oxytocin system in the bed nucleus of the stria terminalis in the sex-specific regulation 
of social recognition. Psychoneuroendocrinology 64: 79–88. 

Dumais KM, Bredewold R, Mayer TE, Veenema AH (2013). Sex differences in oxytocin 
receptor binding in forebrain regions: correlations with social interest in brain region- and 
sex- specific ways. Horm Behav 64: 693–701. 

Dumais KM, Kulkarni PP, Ferris CF, Veenema AH (2017). Psychoneuroendocrinology Sex di 
ff erences in neural activation following di ff erent routes of oxytocin administration in 
awake adult rats. Psychoneuroendocrinology 81: 52–62. 

Dumais KM, Veenema AH (2016). Vasopressin and oxytocin receptor systems in the brain: 
Sex differences and sex-specific regulation of social behavior. Front Neuroendocrinol 40: 
1–23. 

Ebner K, Wotjak CT, Landgraf R, Engelmann M (2000). A single social defeat experience 
selectively stimulates the release of oxytocin, but not vasopressin, within the septal brain 
area of male rats. Brain Res 872: 87–92. 

Elliott Albers H, Dean A, Karom MC, Smith D, Huhman KL (2006). Role of V1a vasopressin 
receptors in the control of aggression in Syrian hamsters. Brain Res 1073–1074: 425–
430. 

Engelmann M, Ebner K, Wotjak CT, Landgraf R (1998). Endogenous oxytocin is involved in 
short-term olfactory memory in female rats. Behav Brain Res 90: 89–94. 

Falkner AL, Grosenick L, Davidson TJ, Deisseroth K, Lin D (2016). Hypothalamic control of 
male aggression-seeking behavior. Nat Neurosci 19: 596–604. 

Fernandes H, Moura E, Pereira GS, Thomaz D, Hudson FG, Oliveira D, et al (2016). c-Fos 
expression predicts long-term social memory retrieval in mice. Behav Brain Res 313: 260–
271. 

Ferris CF, Jr RHM, Koppel G, Perry KW, Fuller RW, Delville Y (1997). Vasopressin / Serotonin 
Interactions in the Anterior Hypothalamus Control Aggressive Behavior in Golden 
Hamsters. J Neurosci 17: 4331–4340. 

Fowler T, Langley K, Rice F, Bree MBM Van Den, Ross K, Wilkinson LS, et al (2009). 
Psychopathy trait scores in adolescents with childhood ADHD: The contribution of 
genotypes affecting MAOA, 5HTT and COMT activity. Psychiatr Genet 19: 312–319. 

Freitag CM, Konrad K, Stadler C, Brito SA De, Popma A, Herpertz SC, et al (2018). Conduct 
disorder in adolescent females: current state of research and study design of the 
FemNAT-CD consortium. Eur Child Adolesc Psychiatry 9: 1077–1093. 

Glenn AL, Johnson AK, Raine A (2013). Antisocial personality disorder: A current review. Curr 
Psychiatry Rep 15: 1–8. 



   References 
 

110 
 

Golden SA, Heins C, Venniro M, Caprioli D, Zhang M, Epstein DH, et al (2017). Compulsive 
Addiction-like Aggressive Behavior in Mice. Biol Psychiatry 82: 239–248. 

Golden SA, Jin M, Heins C, Venniro M, Michaelides M, Shaham Y (2019). Nucleus accumbens 
Drd1-expressing neurons control aggression self-administration and aggression seeking 
in mice The Journal of Neuroscience 2 4 5 Nucleus accumbens Drd1-expressing neurons 
control aggression self-administration and aggression 6 seeking in. J Neurosci 18: 2409. 

Grinevich V, Knobloch-Bollmann HS, Eliava M, Busnelli M, Chini B (2016). Assembling the 
Puzzle: Pathways of Oxytocin Signaling in the Brain. Biol Psychiatry 79: 155–164. 

Grund T, Tang Y, Benusiglio D, Althammer F, Probst S, Oppenländer L, et al (2019). 
Psychoneuroendocrinology Chemogenetic activation of oxytocin neurons : Temporal 
dynamics , hormonal release , and behavioral consequences. Psychoneuroendocrinology 
106: 77–84. 

Gutzler SJ, Karom M, Erwin WD, Albers HE (2010). Arginine-vasopressin and the regulation 
of aggression in female Syrian hamsters ( Mesocricetus auratus ). Eur J Neurosci 31: 
1655–1663. 

Guzmán YF, Tronson NC, Jovasevic V, Sato K, Guedea AL, Mizukami H, et al (2013). Fear-
enhancing effects of septal oxytocin receptors. Nat Neurosci 16: 17–21. 

Haller J (2013). The neurobiology of abnormal manifestations of aggression-A review of 
hypothalamic mechanisms in cats, rodents, and humans. Brain Res Bull 93: 97–109. 

Haller J (2016). Preclinical models of conduct disorder − principles and pharmacologic 
perspectives. Neurosci Biobehav Rev doi:10.1016/j.neubiorev.2016.05.032. 

Haller J, Fuchs E, Halász J, Makara GB (1999). Defeat is a major stressor in males while social 
instability is stressful mainly in females : Towards the development of a social stress 
model in female rats. Brain Res Bull 50: 33–39. 

Haller J, Halász J, Mikics É, Kruk MR (2004). Chronic glucocorticoid deficiency-induced 
abnormal aggression, autonomic hypoarousal, and social deficit in rats. J 
Neuroendocrinol 16: 550–557. 

Haller J, Harold G, Sandi C, Neumann ID (2014). Effects of adverse early-life events on 
aggression and anti-social behaviours in animals and humans. J Neuroendocrinol 26: 
724–738. 

Harmon AC, Huhman KL, Moore TO, Albers HE (2002). Oxytocin inhibits aggression in female 
Syrian hamsters. J Neuroendocrinol 14: 963–969. 

Hashikawa K, Hashikawa Y, Lischinsky J, Lin D (2018). The Neural Mechanisms of Sexually 
Dimorphic Aggressive Behaviors. Trends Genet 10: 755–776. 

Hashikawa K, Hashikawa Y, Tremblay R, Zhang J, Feng JE, Sabol A, et al (2017). Esr1+cells 
in the ventromedial hypothalamus control female aggression. Nat Neurosci 20: 1580–
1590. 

Ho HP, Olsson M, Westberg L, Melke J, Eriksson E (2001). The serotonin reuptake inhibitor 
fluoxetine reduces sex steroid-related aggression in female rats: An animal model of 
premenstrual irritability? Neuropsychopharmacology 24: 502–510. 

Huber D, Veinante P, Stoop R (2005). Vasopressin and Oxytocin Excite Distinct Neuronal 
Populations in the Central Amygdala. Science (80- ) 308: 245–248. 

Hung LW, Neuner S, Polepalli JS, Beier KT, Wright M, Walsh JJ, et al (2017). Gating of social 



   References 
 

111 
 

reward by oxytocin in the ventral tegmental area. Science (80- ) 357: 1406–1411. 

Janak PH, Tye KM (2015). From circuits to behaviour in the amygdala. Nature 517: 284–292. 

Jiang Y, Platt ML (2018a). Oxytocin and vasopressin flatten dominance hierarchy and enhance 
behavioral synchrony in part via anterior cingulate cortex. Sci Rep 8: 1–14. 

Jiang Y, Platt ML (2018b). Oxytocin and vasopressin increase male-directed threats and 
vocalizations in female macaques. Sci Rep 8: 1–14. 

Jong TR De, Beiderbeck DI, Neumann ID (2014). Measuring virgin female aggression in the 
Female Intruder Test (FIT): Effects of oxytocin, estrous cycle, and anxiety. PLoS One 9: 

e91701. 

Jong TR de, Neumann ID (2017). Oxytocin and Aggression. Curr Top Behav Neurosci 35: 1–

18. 

Juntti SA, Tollkuhn J, Wu M V., Fraser EJ, Soderborg T, Tan S, et al (2010). The androgen 
receptor governs the execution, but not programming, of male sexual and territorial 
behaviors. Neuron 66: 260–272. 

Jurek B, Neumann ID (2018). The oxytocin receptor: From intracellular signaling to behavior. 
Physiol Rev 98: 1805–1908. 

Knobloch HS, Charlet A, Hoffmann LC, Eliava M, Khrulev S, Cetin AH, et al (2012). Article 
Evoked Axonal Oxytocin Release in the Central Amygdala Attenuates Fear Response. 
Neuron 73: 553–566. 

Kohl C, Wang XD, Grosse J, Fournier C, Harbich D, Westerholz S, et al (2015). Hippocampal 
neuroligin-2 links early-life stress with impaired social recognition and increased 
aggression in adult mice. Psychoneuroendocrinology 55: 128–143. 

Kooij MA Van Der, Hollis F, Lozano L, Zalachoras I, Abad S, Zanoletti O, et al (2018). 
Diazepam actions in the VTA enhance social dominance and mitochondrial function in the 
nucleus accumbens by activation of dopamine D1 receptors. Mol Psychiatry 23: 569–578. 

Koolhaas JM, Coppens CM, Boer SF de, Buwalda B, Meerlo P, Timmermans PJ (2013). The 
resident-intruder paradigm: A standardized test for aggression , violence and social 
stress. J Vis Exp 77: 4367. 

Koolhaas JM, Schuurman T, Wiepkema PR (1980). The organization of intraspecific agonistic 
behaviour in the rat. Prog Neurobiol 15: 247–268. 

Koshimizu T aki, Nakamura K, Egashira N, Hiroyama M, Nonoguchi H, Tanoue A (2012). 
Vasopressin V1a and V1b receptors: From molecules to physiological systems. Physiol 
Rev 92: 1813–1864. 

Kruk MR, Poel AM Van Der, Meelis W, Hermans J, Mostert PG, Mos J, et al (1983). 
Discriminant analysis of the localization of aggression-inducing electrode placements in 
the hypothalamus of male rats. Brain Res 260: 61–79. 

Lagerspetz MJ (1968). Neurochemical and endocrinological studies of mice selectively bredfor 
aggressiviness. Scand J Psychol 9: 1962–1965. 

Laman-Maharg A, Trainor BC (2017). Stress, sex, and motivated behaviors. J Neurosci Res 
95: 83–92. 

Larrieu T, Cherix A, Lei H, Gruetter R (2017). Hierarchical Status Predicts Behavioral 
Vulnerability and Nucleus Accumbens Metabolic Profile Following Report Hierarchical 



   References 
 

112 
 

Status Predicts Behavioral Vulnerability and Nucleus Accumbens Metabolic Profile 
Following Chronic Social Defeat Stress. 2202–2210doi:10.1016/j.cub.2017.06.027. 

Lee, Grace and Gammie SC (2010). GABAA receptor sighnaling in the lateal setpum regulates 
maternal aggression. Behav Neurosci 123: 1169–1177. 

Lee H, Kim D-W, Remedios R, Anthony TE, Chang A, Madisen L, et al (2014). Scalable control 
of mounting and attack by Esr1+ neurons in the ventromedial hypothalamus. Nature 509: 
627–632. 

Lee W, Hiura LC, Eilene Y, Broerkman KA, Ophir AG, Curley JP (2019). Social status in mouse 
social hierarchies is associated with variation in oxytocin and vasopressin 1a receptor 
densities. Horm Behav 114: . 

Lenz KM, Nugent BM, McCarthy MM (2012). Sexual differentiation of the rodent brain: Dogma 
and beyond. Front Neurosci 6: 1–13. 

Leroy F, Park J, Asok A, Brann DH, Meira T, Boyle LM, et al (2018). A circuit from hippocampal 
CA2 to lateral septum disinhibits social aggression. Nature 564: 213–218. 

Lin D, Boyle MP, Dollar P, Lee H, Lein ES, Perona P, et al (2011). Functional identification of 
an aggression locus in the mouse hypothalamus. Nature 470: 221–6. 

Longair MH, Baker DA, Armstrong JD (2011). Simple Neurite Tracer : open source software 
for reconstruction , visualization and analysis of neuronal processes. Bioinformatics 27: 

2453–2454. 

Ludwig M, Leng G (2006). Dendritic peptide release and peptide-dependent behaviours. Nat 
Rev Neurosci 7: 126–136. 

Lukas M, Bredewold R, Landgraf R, Neumann ID, Veenema AH (2011a). Early life stress 
impairs social recognition due to a blunted response of vasopressin release within the 
septum of adult male rats. Psychoneuroendocrinology 36: 843–853. 

Lukas M, Bredewold R, Landgraf R, Neumann ID, Veenema AH (2011b). Early life stress 
impairs social recognition due to a blunted response of vasopressin release within the 
septum of adult male rats. Psychoneuroendocrinology 36: 843–53. 

Lukas M, Bredewold R, Neumann ID, Veenema AH (2010). Maternal separation interferes with 
developmental changes in brain vasopressin and oxytocin receptor binding in male rats. 
Neuropharmacology 58: 78–87. 

Lukas M, Jong TR de (2017). Conspecific Interactions in Adult Laboratory Rodents: Friends or 
Foes? Soc Behav from Rodents to Humans Neural Found Clin Implic 3–
24doi:10.1007/7854_2015_428. 

Lukas M, Neumann ID (2014). Social preference and maternal defeat-induced social 
avoidance in virgin female rats: Sex differences in involvement of brain oxytocin and 
vasopressin. J Neurosci Methods 234: 101–107. 

Lukas M, Toth I, Reber SO, Slattery DA, Veenema AH, Neumann ID (2011c). The neuropeptide 
oxytocin facilitates pro-social behavior and prevents social avoidance in rats and mice. 
Neuropsychopharmacology 36: 2159–68. 

Lukas M, Toth I, Reber SO, Slattery DA, Veenema AH, Neumann ID (2011d). The 
Neuropeptide Oxytocin Facilitates Pro-Social Behavior and Prevents Social Avoidance in 
Rats and Mice. Neuropsychopharmacology 36: 2159–2168. 

Mancke F, Bertsch K, Herpertz SC (2015). Gender differences in aggression of borderline 



   References 
 

113 
 

personality disorder. Borderline Personal Disord Emot Dysregulation 2: 7. 

Manning M, Misicka A, Olma A, Bankowski K, Stoev S, Chini B, et al (2012). Oxytocin and 
Vasopressin Agonists and Antagonists as Research Tools and Potential Therapeutics 
Neuroendocrinology. J Neuroendocrinol 24: 609–628. 

Marquez C, Poirier GL, Cordero MI, Larsen MH, Groner A, Marquis J, et al (2013). Peripuberty 
stress leads to abnormal aggression, altered amygdala and orbitofrontal reactivity and 
increased prefrontal MAOA gene expression. Transl Psychiatry 3: e216. 

Masis-Calvo M, Schmidtner AK, Moura Oliveira VE de, Grossmann CP, Jong TR de, Neumann 
ID (2018). Animal models of social stress: the dark side of social interactions. Stress 5: 

41–432. 

Mcdonald MM, Markham CM, Norvelle A, Albers HE, Huhman KL (2011). GABA A receptor 
activation in the lateral septum reduces the expression of conditioned defeat and 
increases aggression in Syrian hamsters. Brain Res 1439: 27–33. 

Menks WM, Furger R, Lenz C, Fehlbaum LV, Stadler C, Raschle NM (2017). Microstructural 
White Matter Alterations in the Corpus Callosum of Girls With Conduct Disorder. J Am 
Acad Child Adolesc Psychiatry 56: 258-265.e1. 

Miczek KA, Boer SF De, Haller J (2013). Excessive aggression as model of violence: A critical 
evaluation of current preclinical methods. Psychopharmacology (Berl) 226: 445–458. 

Miczek KA, Maxson SC, Fish EW, Faccidomo S (2001). Aggressive behavioral phenotypes in 
mice. Behav Brain Res 125: 167–181. 

Mikics É, Guirado R, Umemori J, Tóth M, Biró L, Miskolczi C, et al (2018). Social learning 
requires plasticity enhanced by fluoxetine through prefrontal Bdnf-TrkB signaling to limit 
aggression induced by post-weaning social isolation. Neuropsychopharmacology 43: 
235–245. 

Mucignat-Caretta C, Bondi’ M, Caretta A (2004). Animal models of depression: Olfactory 
lesions affect amygdala, subventricular zone, and aggression. Neurobiol Dis 16: 386–395. 

Nakata M, Sano K, Musatov S, Yamaguchi N, Sakamoto T, Ogawa S (2016). Effects of 
prepubertal or adult site-specific knockdown of estrogen receptor β in the medial preoptic 
area and medial amygdala on social behaviors in male mice. eNeuro 3: 579–588. 

Nelson RJ, Trainor BC (2007). Neural mechanisms of aggression. Nat Rev Neurosci 8: 536–

546. 

Nephew BC, Bridges RS (2008). Central actions of arginine vasopressin and a V1a receptor 
antagonist on maternal aggression, maternal behavior, and grooming in lactating rats. 
Pharmacol Biochem Behav 91: 77–83. 

Nephew BC, Byrnes EM, Bridges RS (2010). Neuropharmacology Vasopressin mediates 
enhanced offspring protection in multiparous rats. Neuropharmacology 58: 102–106. 

Neumann I., Russel J.A. LR, Group N (1993). Oxytocin and vasopressin release within the 
supraoptic and paraventricular nuclei of pregnant, parturient and lactating rats: a 
microdialysis study. Neuroscience 53: 65–75. 

Neumann ID, Veenema AH, Beiderbeck DI (2010). Aggression and anxiety: social context and 
neurobiological links. Front Behav Neurosci 4: 12. 

Newman EL, Iii HEC, Suh J, Bicakci MB, Ressler KJ, Debold JF, et al (2019). Priority 
Communication Fighting Females : Neural and Behavioral Consequences of Social 



   References 
 

114 
 

Defeat Stress in Female Mice. Biol Psychiatry 1–12doi:10.1016/j.biopsych.2019.05.005. 

Nyuyki KD, Waldherr M, Baeuml S, Neumann ID (2011). Yes, I am ready now: Differential 
effects of paced versus unpaced mating on anxiety and central oxytocin release in female 
rats. PLoS One 6: . 

Oliva AM, Salcedo E, Hellier JL, Ly X, Koka K, Tollin DJ, et al (2010). Toward a Mouse 
Neuroethology in the Laboratory Environment. PLoS One 5: 1–7. 

Oliveira VE de M, Neumann ID, Jong TR De (2019). Post-weaning social isolation exacerbates 
aggression in both sexes and affects the vasopressin and oxytocin system in a sex-
specific manner. Neuropharmacology 156: 107504. 

Oortmerssen GA van, Bakker TCM (1981). Artificial selection for short and long attack latencies 
in wild Mus musculus domesticus. Behav Genet 11: 115–126. 

Oyegbile TO, Marler CA (2005). Winning fights elevates testosterone levels in California mice 
and enhances future ability to win fights. Horm Behav 48: 259–267. 

Pagani JH, Williams Avram SK, Cui Z, Song J, Mezey E, Senerth JM, et al (2015). Raphe 
serotonin neuron-specific oxytocin receptor knockout reduces aggression without 
affecting anxiety-like behavior in male mice only. Genes, Brain Behav 14: 167–176. 

Parker KJ, Oztan O, Libove RA, Mohsin N, Karhson DS, Sumiyoshi RD, et al (2019). A 
randomized placebo-controlled pilot trial shows that intranasal vasopressin improves 
social deficits in children with autism. Sci Transl Med 7356: 1–13. 

Pereira-caixeta AR, Guarnieri LO, Pena RR, Dias TL, Pereira GS (2017). Neurogenesis 
Inhibition Prevents Enriched Environment to Prolong and Strengthen Social Recognition 
Memory , But Not to Increase BDNF Expression. Mol Neurobiol 54: 3309–3316. 

Peters S, Slattery DA, Uschold-Schmidt N, Reber SO, Neumann ID (2014). Dose-dependent 
effects of chronic central infusion of oxytocin on anxiety, oxytocin receptor binding and 
stress-related parameters in mice. Psychoneuroendocrinology 42: 225–236. 

Pfundmair M, Reinelt A, Dewall CN, Feldmann L (2018). Psychoneuroendocrinology Oxytocin 

strengthens the link between provocation and aggression among low anxiety people ☆. 

Psychoneuroendocrinology 93: 124–132. 

Popik P, Vos PE, Ree JM Van (1992). Neurohypophyseal hormone receptors in the septum 
are implicated in social recognition in the rat. Behav Pharmacol 3: 351–352. 

Potegal, M Blau, A and Glusman M (1981). Effects of Anteroventral Septal Lesions on 
Intraspecific Aggression in Male Hamsters. Physiol Behav 26: 407–412. 

Potegal M, Blau A, Glusman M (1981). Inhibition of intraspecific aggression in male hamsters 
by septal stimulation. Physiol Psychol 9: 213–218. 

Put CE van der, Lanctôt N, Ruiter C de, Vugt E van (2015). Child maltreatment among boy and 
girl probationers: Does type of maltreatment make a difference in offending behavior and 
psychosocial problems? Child Abus Negl 46: 142–151. 

Reynolds CR, Kamphaus RW (2014). 5 Diagnostic Criteria. Pract MR Mammogr 8–
10doi:10.1055/b-0034-50411. 

Risold PY, Swanson LW (1997a). Chemoarchitecture of the rat lateral septal nucleus. Brain 
Res Rev 24: 91–113. 

Risold PY, Swanson LW (1997b). Connections of the rat lateral septal complex. Brain Res Rev 



   References 
 

115 
 

24: 115–195. 

Rosell DR, Siever LJ (2015). The neurobiology of aggression and violence. CNS Spectr 20: 
254–279. 

Ross AP, Mccann KE, Larkin TE, Song Z, Grieb ZA, Huhman KL, et al (2019). Hormones and 
Behavior Sex-dependent e ff ects of social isolation on the regulation of arginine- 
vasopressin ( AVP ) V1a , oxytocin ( OT ) and serotonin ( 5HT ) 1a receptor binding and 
aggression. Horm Behav 116: 104578. 

Sala M, Braida D, Donzelli A, Martucci R, Busnelli M, Bulgheroni E, et al (2013). Mice 
Heterozygous for the Oxytocin Receptor Gene (Oxtr+/-) Show Impaired Social Behaviour 
but not Increased Aggression or Cognitive Inflexibility: Evidence of a Selective 
Haploinsufficiency Gene Effect. J Neuroendocrinol 25: 107–118. 

Sandi C, Haller J (2015). Stress and the social brain: behavioural effects and neurobiological 
mechanisms. Nat Rev Neurosci 16: 290–304. 

Sano K, Nakata M, Musatov S, Morishita M, Sakamoto T, Tsukahara S, et al (2016). Pubertal 
activation of estrogen receptor α in the medial amygdala is essential for the full expression 
of male social behavior in mice. Proc Natl Acad Sci U S A 113: 7632–7637. 

Schindelin J, Arganda-carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al (2019). Fiji : 
an open-source platform for biological-image analysis. Nat Methods 9: 676–682. 

Silva AL, Fry WHD, Sweeney C, Trainor BC (2010). Effects of photoperiod and experience on 
aggressive behavior in female California mice. Behav Brain Res 208: 528–534. 

Smaragdi A, Cornwell H, Toschi N, Riccelli R, Gonzalez-Madruga K, Wells A, et al (2017). Sex 
Differences in the Relationship Between Conduct Disorder and Cortical Structure 
in Adolescents. J Am Acad Child Adolesc Psychiatry 56: 703–712. 

Smith CJW, Poehlmann ML, Li S, Ratnaseelan AM, Bredewold R, Veenema AH (2017). Age 
and sex differences in oxytocin and vasopressin V1a receptor binding densities in the rat 
brain: focus on the social decision-making network. Brain Struct Funct 222: 981–1006. 

Song Z, McCann KE, McNeill JK, Larkin TE, Huhman KL, Albers HE (2014). Oxytocin induces 
social communication by activating arginine-vasopressin V1a receptors and not oxytocin 
receptors. Psychoneuroendocrinology 50: 14–19. 

Spiteri T, Musatov S, Ogawa S, Ribeiro A, Pfaff DW, Ågmo A (2010). The role of the estrogen 
receptor α in the medial amygdala and ventromedial nucleus of the hypothalamus in social 
recognition, anxiety and aggression. Behav Brain Res 210: 211–220. 

Steinman MQ, Duque-wilckens N, Greenberg GD, Hao R, Campi KL, Laredo SA, et al (2016). 
Archival Report Sex-Speci fi c Effects of Stress on Oxytocin Neurons Correspond With 
Responses to Intranasal Oxytocin. Biol Psychiatry 80: 406–414. 

Steinman MQ, Laredo SA, Lopez EM, Manning CE, Hao RC, Doig IE, et al (2015). 
Hypothalamic vasopressin systems are more sensitive to the long term effects of social 
defeat in males versus females. Psychoneuroendocrinology 51: 122–134. 

Stoop R, Hegoburu Chloé, Burg E van den (2015). New opportunities in vasopressin and 
oxytocin research: A perspective from the amygdala. Annu Rev Neurosci 38: 369–388. 

Stowers L, Cameron P, Keller JA (2013). Ominous odors: Olfactory control of instinctive fear 
and aggression in mice. Curr Opin Neurobiol 23: 339–345. 

Takahashi A, Chung JR, Zhang S, Zhang H, Grossman Y, Aleyasin H, et al (2017). 



   References 
 

116 
 

Establishment of a repeated social defeat stress model in female mice. Sci Rep 7: 4–15. 

Takahashi A, Nagayasu K, Nishitani N, Kaneko S, Koide T (2014). Control of Intermale 
Aggression by Medial Prefrontal Cortex Activation in the Mouse. PLoS One 9: e94657. 

Tan O, Musullulu H, Raymond JS, Wilson B, Langguth M, Bowen MT (2019). Oxytocin and 
vasopressin inhibit hyper-aggressive behaviour in socially isolated mice. 
Neuropharmacology 15: . 

Tanaka K, Osako Y, Yuri K (2010). Juvenile social experience regulates central neuropeptides 
relevant to emotional and social behaviors. Neuroscience 166: 1036–1042. 

Terranova JI, Song Z, Larkin TE, Hardcastle N, Norvelle A, Riaz A, et al (2016). Serotonin and 
arginine-vasopressin mediate sex differences in the regulation of dominance and 
aggression by the social brain. Proc Natl Acad Sci U S A 113: 13233–13238. 

Tobin VA, Hashimoto H, Wacker DW, Takayanagi Y, Langnaese K, Caquineau C, et al (2010). 
An intrinsic vasopressin system in the olfactory bulb is involved in social recognition. 
Nature 464: 413–417. 

Toth M, Mikics E, Tulogdi A, Aliczki M, Haller J (2011). Post-weaning social isolation induces 
abnormal forms of aggression in conjunction with increased glucocorticoid and autonomic 
stress responses. Horm Behav 60: 28–36. 

Toth M, Tulogdi A, Biro L, Soros P, Mikics E, Haller J (2012). The neural background of hyper-
emotional aggression induced by post-weaning social isolation. Behav Brain Res 233: 
120–129. 

Trainor BC, Crean KK, Fry WHD, Sweeney C (2010a). Activation of extracellular signal-
regulated kinases in social behavior circuits during resident-intruder aggression tests. 
Neuroscience 165: 325–336. 

Trainor BC, Lin S, Finy MS, Rowland MR, Nelson RJ (2007). Photoperiod reverses the effects 
of estrogens on male aggression via genomic and nongenomic pathways. Proc Natl Acad 
Sci U S A 104: 9840–9845. 

Trainor BC, Takahashi EY, Silva AL, Crean KK, Hostetler C (2010b). Sex differences in 
hormonal responses to social conflict in the monogamous California mouse. Horm Behav 
58: 506–512. 

Tulogdi Á, Tóth M, Barsvári B, Biró L, Mikics É, Haller J (2014). Effects of resocialization on 
post-weaning social isolation-induced abnormal aggression and social deficits in rats. Dev 
Psychobiol 56: 49–57. 

Uematsu M, Hirai Y, Karube F, Kato M, Abe K, Obata K, et al (2008). Quantitative Chemical 
Composition of Cortical GABAergic Neurons Revealed in Transgenic Venus-Expressing 
Rats. Cereb Cortex 18: 315–330. 

Unger EK, Burke KJ, Fuller PM, Unger EK, Burke KJ, Yang CF, et al (2015). Medial Amygdalar 
Aromatase Neurons Regulate Aggression in Both Sexes Report Medial Amygdalar 
Aromatase Neurons Regulate Aggression in Both Sexes. Cell Rep 10: 453–462. 

Veenema AH, Beiderbeck DI, Lukas M, Neumann ID (2010). Distinct correlations of 
vasopressin release within the lateral septum and the bed nucleus of the stria terminalis 
with the display of intermale aggression. Horm Behav 58: 273–281. 

Veenema AH, Blume A, Niederle D, Buwalda B, Neumann ID (2006). Effects of early life stress 
on adult male aggression and hypothalamic vasopressin and serotonin. Eur J Neurosci 
24: 1711–1720. 



   References 
 

117 
 

Veenema AH, Bredewold R, Neumann ID (2007). Opposite effects of maternal separation on 
intermale and maternal aggression in C57BL/6 mice: Link to hypothalamic vasopressin 
and oxytocin immunoreactivity. Psychoneuroendocrinology 32: 437–450. 

Veenit V, Cordero MI, Tzanoulinou S, Sandi C (2013). Increased corticosterone in peripubertal 
rats leads to long-lasting alterations in social exploration and aggression. Front Behav 
Neurosci 7: 26. 

Viding E, Fontaine NMG, McCrory EJ (2012). Antisocial behaviour in children with and without 
callous-unemotional traits. J R Soc Med 105: 195–200. 

Vries GJ De, Panzica GC (2006). Sexual differentiation of central vasopressin and vasotocin 
systems in vertebrates: Different mechanisms, similar endpoints. Neuroscience 138: 947–
955. 

Wacker D, Ludwig M (2019). The role of vasopressin in olfactory and visual processing. Cell 
Tissue Res 375: 201–215. 

Walker SE, Papilloud A, Huzard D, Sandi C (2016). The link between aberrant hypothalamic–
pituitary–adrenal axis activity during development and the emergence of aggression—
Animal studies. Neurosci Biobehav Rev doi:10.1016/j.neubiorev.2016.10.008. 

Walker SE, Zanoletti O, Suduiraut IG De, Sandi C (2017). Psychoneuroendocrinology 
Constitutive di ff erences in glucocorticoid responsiveness to stress are related to variation 
in aggression and anxiety-related behaviors. Psychoneuroendocrinology 84: 1–10. 

Wersinger SR, Ginns EI, O’Carroll AM, Lolait SJ, Young WS (2002). Vasopressin V1b receptor 
knockout reduces aggressive behavior in male mice. Mol Psychiatry 7: 975–984. 

WHO (2014). Global status report in violence prevention. WHO Libr Cat Data 1: . 

Widmer H, Ludwig M, Bancel F, Leng G, Dayanithi G (2003). Neurosteroid regulation of 
oxytocin and vasopressin release from the rat supraoptic nucleus. J Physiol 548: 233–

244. 

Williamson CM, Lee W, DeCasien AR, Lanham A, Romeo RD, Curley JP (2019). Social 
hierarchy position in female mice is associated with plasma corticosterone levels and 
hypothalamic gene expression. Sci Rep 9: 1–14. 

Wittchen HU, Jacobi F, Rehm J, Gustavsson A, Svensson M, Jönsson B, et al (2011). The size 
and burden of mental disorders and other disorders of the brain in Europe 2010. Eur 
Neuropsychopharmacol 21: 655–679. 

Wong LC, Wang L, D’Amour JA, Yumita T, Chen G, Yamaguchi T, et al (2016). Effective 
Modulation of Male Aggression through Lateral Septum to Medial Hypothalamus 
Projection. Curr Biol 26: 593–604. 

Wurpel JND, Dundore RL, Barbella YR, Balaban CD, Keil LC, Severs WB (1986). Barrel 
rotation evoked by intracerebroventricular vasopressin injections in conscious rats. I. 
Description and general pharmacology. Brain Res 365: 21–29. 

Yang CF, Chiang MC, Gray DC, Prabhakaran M, Alvarado M, Juntti SA, et al (2013). Sexually 
dimorphic neurons in the ventromedial hypothalamus govern mating in both sexes and 
aggression in males. Cell 153: 896–909. 

Yang T, Yang CF, Chizari MD, Bender KJ, Ganguli S, Shah NM (2017). Social Control of 
Hypothalamus-Mediated Male Article Social Control of Hypothalamus-Mediated Male 
Aggression. Neuron 95: 955-970.e4. 



   References 
 

118 
 

Yu CJ, Zhang SW, Tai FD (2016). Effects of nucleus accumbens oxytocin and its antagonist 
on social approach behavior. Behav Pharmacol 27: 672–680. 

Zeman, Wolfgang and King FA (1958). Tumors of the septum pellucidum and adjacent 
structures with abnormal affective behavior: an anterior midline structure syndrome. J 
Nerv Ment Disord 127: 490–502. 

Zoicas I, Slattery DA, Neumann ID (2014). Brain Oxytocin in Social Fear Conditioning and Its 
Extinction : Involvement of the Lateral Septum. Neuropsychopharmacology 39: 3027–
3035. 

 



   Acknowledgments 
 

119 
 

ACKNOWLEDGMENTS 

First, I would like to state my gratitude to Prof. Inga D. Neumann for giving me the opportunity 

and the resources for working in this project. Thank you for your critics, advice, scientific 

support and guidance throughout those 4 years. I also would like to thank the EU and the 

Neurobiology and Treatment of Adolescent Female with Conduct Disorder: The Central Role 

of Emotion Processing Fem-NATCD consortium for founding and beliving on this project. 

I would like then to thank my co-supervisor Dr. Trynke de Jong for taking me under her wings 

and showing me the steps of science and scientific writing. Also, I would like to express my 

extreme gratitude to Dr. Michael Lukas. Thank you, for all the scientific discussions and input, 

hours spent on teaching me how to properly patch a neuron and for your friendship. You both 

eased my way through the Ph.D.  

I also want to acknowledge and thank the collaborators who gave scientific support to my 

project. Many thanks, Prof. Dr. Veronica Egger, Prof. Dr. Oliver Bosch and Dr. Valery 

Grinevich. Thanks to Anna Bludau and Thomas Grund for the technical support. Oli, thank you 

very much for all the help with administrative and teaching matters. Many thanks also to Prof. 

Dr. Maurince Manning for the V1aR-A and OXTR-A and to Prof. Dr. Harold Gainer for the OXT-

neurophysin and AVP-neurophysin antibodies. 

I want to thank all my bachelor, master, and internship students. A special thanks to Hannah 

Wolf, Elisa Durante (ciccio), Laura-Marie Armer, Sophie Retzer,  Alex Lorenz, Anna-Lena 

Mayer for their help with the experiments and for sharing the time in the red-light zone. I also 

have to state that I am very sorry for making you all spend a lot of hours learning the video 

scoring. Thank you, girls!!!  

I also want to thank all the technical assistants and secretaries of the Neumann lab. Thanks, 

Rodrigue Maloumby for the help with the surgeries and the time spent in the surgery lab. Auf 

Deutsch für Frau Fuchs, Ich kann nicht auf Bayerisch machen (Sorry!!!),  Vielen Dank Martina 

für dein Hilfe mit die in situs und autoradiographies und für die lustige Gespräch über Schnaps 

(heheeh), I hope you can understand it. Also, many thanks to Andrea Havasi, Gabi Schindler, 

Anne Pietryga-Krieger for their technical support. Many thanks to Eva and Tanja for all the help 

with the administrative stuff, I would be completely lost without you both, thanks for the help 

with visas, contracts, documents to prove that I am not a criminal and soweit.  

Now comes to the emotional stuff. I would like to thank all my friends in the Neumann lab for 

their friendship and support throughout those 4 years. Having you all around me made it a bit 

easier to be far away from home and to stand the Ph.D. disappointments with alcohol. Thank 

you, Michael and Cindy, for all the hours in Murphy’s when we discussed movies, politics, 



   Acknowledgments 
 

120 
 

feminism, life, and work of course. Many thanks to the best people ever Magdalena, Ilony, and 

Julia for all the wine evenings, laughs, conversations about penises, ikea trips, midnight 

burgers, karaoke evenings, Krapfen and time spend together (Love you!!!). Thanks to Tobi, 

Carl, Haji and Max for all the laughs, lunches and parties. Last but not least in my heart, 

Obrigado Mama pela sua companhia durante todos esses anos, por me apoiar quando 

ninguem mais apoiava, você é e sempre será uma grande amiga. 

A especial thanks again to Michael and Magda who proofread the thesis!!! You both are the 

best!! 

I also want to thank all the other co-workers, former and current members of the Neumann and 

Egger lab for their support and scientific input. Thanks, Benji, Melie, Rohit, Marta, Thiffany, 

Fernando, Vanessa, Anna Schmidtner, Kathy G, Kerstin, Ivaldo and Yulla. 

Oi Mae, eu tenho que te agradecer por ser uma fonte de inspiracao e forca pra mim. Obrigado 

por ser a primeira a me defender e por acreditar nos meus sonhos desde sempre. Obrigado 

por acreditar em mim quando nem eu meu mesmo acreditava. A sua forca e a sua coragem 

me tornaram quem eu sou hoje. Muito obrigado por tudo o que voce foi e é na minha vida. Eu 

te amo muito! Também tenho que agradecer por ter os melhores irmaos do mundo! Carlos e 

Walquiria, obrigado por sempre me apoiarem, eu sei que nao foi fácil. Saber que tenho vocês 

ao meu lado tornou tudo mais facil. Pai, muito obrigado por todo seu amor e carinho. Sem o 

apoio e o amor de vocês nada disso teria sido possível.  

Muito Obrigado a todos os amigos pela amizade e por ouvirem as minhas lamúrias durante 

todos esses anos. Obrigado Nayara, Thaís, Paola, Hyo, Lu e Marina pela amizade. Obrigado 

Mauro, por me apoiar quando nem eu mesmo sabia que precisava de apoio, por ser minha 

consciencia e por nunca desistir da nossa amizade, you are still my person!!! Te amo amigo! 

Renato, você foi um presente que a Alemanha me deu, obrigado por todo o carinho e por tudo 

que você representa na minha vida. Por ser esse ombro amigo, que me escuta e tenta me 

animar com uma palavra de aconchego ou com uma feiticaria. Muito obrigado pela sua 

amizade, te amo tambem S2!!!!



   Curriculum Vitae 
 

121 
 

CURRICULUM VITAE 

Personal Information: 

Name: Vinícius Elias de Moura Oliveira 

Date of birth: 19th April 1991 

Place of birth: Santo Antônio do Monte, Minas Gerai, Brasil 

Nacionality: Brazilian 

 

Since 2015  Ph.D. in Neurobiology (Department of Molecular and Behavioral Neurobiology) 
Lerstuhl Neumann FP7 Project: Neurobiology and Treatment of Adolescent 
Female with Conduct Disorder: The Central Role of Emotion Processing Fem-
NATCD (602407) EU Project  University of Regensburg Supervisor: Dr. Trynke 
de Jong 

 
2013 – 2015 Masters in Biological Sciences (Physiology and Pharmacology).  

Federal University of Minas Gerais, UFMG, Belo Horizonte, Brazil 
 Supervisor: Grace Schenatto Pereira Moraes Co-supervisor: Maristela de 
Oliveira Poletini Support/fellowship: CAPES/CNpq/FAPEMIG 

 
2009 – 2013 Degree in Biological Sciences – Bachelor of Sciences Federal University of 

Lavras, UFLA, LAVRAS, Brazil Supervisor: Grace Schenatto Pereira Moraes 
 
Awards and Grants: 

1. 2019- Winter School Neural control of Instinctive and Innate behavior Obergurgl, 

Austria- Selected Oral Presentation- The balance between oxytocin and Vasopressin 

regulates female aggression in rats.  

 

2. 2018- 23rd International Society for Research in Aggression Paris-  Travel Award- Why 

is she mad? The role of neuropeptides in female aggression. 

 

3. 2017- 47th European Brain and Behavior Society Meeting Bilbao - Travel Award - 

Cross-talk between oxytocin and vasopressin regulates female aggression in rats 

 

4. 2017- Internationales Promotionsprogramm der Universität Regensburg – Conference 

Attendance – Travel Grant (47thEBBS meeting). 

 

5. 2016 - Freunde der Universität Regensburg – Conference Attendance – Travel Grant 

(13th WFSBP meeting) Copenhagen - The brain oxytocin system in inter-male and 

female aggression in rodents 

 



   Curriculum Vitae 
 

122 
 

6. 2014 - XXI Physiology and Pharmacology Research Encounter – Academic Honors 

Award – Best poster presentation - Reduction of the vesicular acetylcholine transporter 

expression induces aggressive behavior via the vasopressinergic system in mice. 

 

7. 2013 –  HF. Funil - Academic Honors Award- best student of 2013/1 biology 

undergraduate class Federal University of Lavras (UFLA) 

 

8. 2011 - Fellowship ANDIFES-Mobility - Federal University of Lavras – Federal University 

of Minas Gerais



   Publications 
 

123 
 

PUBLICATIONS 

1. Dias, TL, Giolino, HF, Oliveira, VEM, Moraes, MFD, Pereira, GS. c-FOS expression 
predicts long-term social memory retrieval in mice. Behavior Brain Research. 313 
(2016) 260-271 
 

2. Leite, HR, Lima, OCO, Pereira, LM, Oliveira, VEM, Prado, VF, Prado, MAM, Pereira, 
GS, Massenssini, AR. Vesicular Acetylcholine knock-down mice are more susceptible 
to inflammation, c-Fos expression and sickness behavior induced by 
lipopolysaccharide. Brain Behavior and Immunity (2016) 
 

3. Pádua-Reis, M, Aquino N, Oliveira, VEM, Szawka, RE, Prado, MAM, Prado, VF, 
Pereira, GS. Reduced vesicular acetylcholine transporter favors antidepressant 
behaviors and modulates serotonin and dopamine in female mouse brain. Behavior 
Brain Research. Apr 28 (2017) 
 

4. Pereira, LM, Guimarães IM, Oliveira, VEM, Bastos, CP, Ribeiro, FM, Prado, VF, Prado, 
MAM, Pereira, GS. Estradiol effect on short-term object recognition memory under 
hypocholinergic condition. Brain Research Bulletin. (2018) 
 

5. Oliveira, VEM, Massis-Calvo, M, Schmidiner, AK, Grossmann, C, de Jong, TR, 
Neumann, ID. Animal models of social stress: the dark side of social interactions. 
Stress. 10:1-6 (2018) 
 

6. Oliveira, VEM, Neumann ID, de Jong TR. Post-weaning social isolation exacerbates 
aggression in both sexes and affects the vasopressin and oxytocin system in a sex-
specific manner. Neuropharmacology. (2019) 
 

7. Oliveira, VEM,  Pádua-Reis, M, Pereira, LM, Guarnieri, L, Poletini, MO, Prado, MAM, 
Prado, VF, Pereira, GS. Increased aggressive behavior in mice models of cholinergic 
unbalance. Progress in Neuro-Psychopharmacology & Biological Psychiatry 
(submitted). 
 

8. Oliveira, VEM, Lukas M, Wolf H, Durante E, Lorenz, A, Mayer AL, Bludau, A, Bosch, 
OJ, Grinevich, V, Egger, V, de Jong TR, Neumann ID. The oxytocin-vasopressin 
balance within the lateral septum determines aggression levels in virgin female rats (in 
prep).  
 

9. Oliveira, VEM, de Jong TR, Neumann ID. The forced mating (FMT) test: a novel rat 
model to study sexual aggression (in prep). 
 

10.  Anpilov, S, Shemesh, Y, Eren, N, Harony-Nicolas, H, Benjamin, A, Dine, J, Oliveira, 
VEM, Forkosh, O, Karamihalev, S, Feldman, N, Berger, R, Dagan, A, Chen, G, 
Neumann ID, Wagner, S, Yizhar, O, Chen, A. Optogenetic stimulation of oxytocin 
neurons in a semi-naturalistic setup dynamically elevates both prosocial and agonistic 
behaviors in a group of mice (in prep). 


