Reactivity of P_{4} butterfly complexes

Dissertation zur Erlangung des
Doktorgrades der Naturwissenschaften (Dr. rer. Nat.)

an der
Naturwissenschaftlichen Fakultät IV
- Chemie und Pharmazie -
der Universität Regensburg

Mai, 2020

Diese Arbeit wurde angeleitet von Prof. Dr. Manfred Scheer.

Promotionsgesuch eingereicht am:	30.04 .2020
Tag der mündlichen Prüfung:	29.05 .2020

Vorsitzende:	Prof. Dr. Julia Rehbein
Prüfungsausschuss:	Prof. Dr. Manfred Scheer
	Prof. Dr. Henri Brunner
	Prof. Dr. Frank-Michael Matysik

D
Universität Regensburg

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit mit dem Titel „Reactivity of P_{4} butterfly complexes" ohne unzulässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die aus anderen Quellen direkt oder indirekt übernommenen Daten und Konzepte sind unter Angabe des Literaturzitats gekennzeichnet.

This thesis was elaborated within the period from December 2016 until April 2020 in the Institute of Inorganic Chemistry at the University Regensburg under the supervision of Prof. Dr. Manfred Scheer.

Next to the results presented in this thesis the author contributed to the following publication:

Isomerism and dynamic behavior of bridging phosphaalkynes bound to a dicopper complex
A. Nicolay, M. S. Ziegler, D. W. Small, R. Grünbauer, M. Scheer, T. D. Tilley, Chem. Sci. 2020, 11, 16071616.

Preface

In the beginning of this thesis, a general introduction about the element phosphorus, P_{4} activation and the current state of the P_{4} butterfly chemistry is given. In chapter 2 , the research objectives are laid out.

The following chapters (3-6) are composed as self-contained drafts suitable for future publications. Therefore, all chapters are structured to that effect with the paragraphs being: "Abstract", "Introduction", "Results and Discussion", "Conclusion", "Supplementary Information", "Author Contributions" and "References". If some of the presented results have already been partly discussed in other theses, the respective information is given in the paragraph "Author Contributions".

In addition, due to reasons of uniformity, all chapters have the same text settings and the layout may vary in respect to the published versions. The consecutive numbering of compounds, figures, schemes and tables begins anew in each chapter for reasons of future publishing. The depicted molecular structures may differ in style due to layout requests from different journals.

The results presented in this thesis are summarized in the following chapters:

Chapter 3 - The butterfly complex $\left[\left\{\mathrm{Cp}{ }^{*} \operatorname{Cr}(\mathrm{CO})_{3}\right\}_{3}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]$ as a versatile ligand and its unexpected P_{1} / P_{3} fragmentation route

Herein, the reactivity of the title compound towards Lewis acidic $\left[\mathrm{M}(\mathrm{CO})_{4}\right]$ fragments $[\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}]$ is reported and subsequent reactions of the obtained products are delineated.

Chapter 4 - The reactivity of the P_{4} butterfly ligand [\{Cp" $\left.\mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)$] towards Lewis acids: Coordination vs. rearrangement

In this chapter the reactivity of the iron P_{4} butterfly compound $\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{3}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]$ towards different Lewis acids is reported.

Chapter 5 - Reactivity of P_{4} butterfly compounds towards NHCs: Generation of a novel metal bridged P_{2} dumbbell complex

The as yet unexplored reactivity of the P_{4} butterfly unit towards nucleophiles is investigated in this chapter. Within the investigations special emphasis is laid on the reaction with N-heterocyclic carbenes

Chapter 6 - The P_{4} butterfly complex $\left[\left\{\operatorname{Cp}^{*} \operatorname{Cr}(\mathrm{CO})_{3}\right\}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]$: a starting material for P_{4} transfer processes

The lability of the $\mathrm{Cr}-\mathrm{P}$ bonds in $\left[\left\{\mathrm{Cp}^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right\}_{3}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]$ is utilized obtain different P_{4} butterfly complexes by means of a novel substituent exchange reaction pathway.

The second to last chapter of this thesis contains a thesis treasury presenting preliminary results. Finally, a comprehensive conclusion of all results presented in this thesis is given at the last chapter.

Für den wichtigsten Menschen in meinem Leben

"What are the three most important rules of the chemist?"
"Label clearly. Measure twice. Eat elsewhere."

- Patrick Rothfuss, The Name of the Wind -

Table of content

1. Introduction 1
1.1 Elemental phosphorus and its allotropes 1
1.2 The importance of phosphorus 3
1.3 P4 activation 4
1.4 Reactivity of P_{4} butterfly complexes 9
1.4.1 Rearrangement processes 9
1.4.2 Coordination behaviour. 11
1.5 Recent developments in the P_{4} butterfly chemistry 14
1.6 References 14
2. Research objectives 19
3. The butterfly complex $\left[\left\{\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right\}_{3}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]$ as a versatile ligand and its unexpected $\mathrm{P}_{1} / \mathrm{P}_{3}$ fragmentation route 21
3.1 Abstract 21
3.2 Introduction 22
3.3 Results and Discussion. 23
3.4 Conclusion 28
3.5 References 29
3.6 Supplementary Information 30
3.6.1 General remarks. 30
3.6.2 Syntheses 30
3.6.3 NMR spectroscopic experiments. 34
3.6.4 DFT calculations 40
3.6.5 Crystallographic details 48
3.6.6 References 51
3.7 Author contributions 52
4. The reactivity of the P_{4} butterfly ligand $\left[\left\{C p^{\prime \prime}=\mathrm{Fe}(C O)_{2}\right\}_{2}\left(\mu, \eta^{1: 1}-P_{4}\right)\right]$ towards Lewis acids: Coordination vs. rearrangement 55
4.1 Abstract 55
4.2 Introduction 56
4.3 Results and Discussion. 57
4.4 Conclusion 65
4.5 References 66
4.6 Supplementary Information 69
4.6.1 General remarks. 69
4.6.2 Syntheses. 69
4.6.3 NMR spectroscopic experiments. 75
4.6.4 DFT calculations. 87
4.6.5 Crystallographic details 107
4.6.6 References 114
4.7 Author contributions 115
5. Reactivity of P_{4} butterfly compounds towards NHCs: Generation of a novel metal bridged P_{2} dumbbell complex. 117
5.1 Abstract 117
5.2 Introduction 118
5.3 Results and Discussion. 120
5.4 Conclusion 127
5.5 References 128
5.6 Supplementary Information 129
5.6.1 General remarks 129
5.6.2 Syntheses. 129
5.6.3 NMR spectroscopic experiments. 132
5.6.4 DFT calculations. 135
5.6.5 Crystallographic details. 137
5.6.6 References 140
5.7 Author contributions 141
6. The P_{4} butterfly complex $\left[\left\{\mathrm{Cp}^{*} \operatorname{Cr}(\mathrm{CO})_{3}\right\}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]$: a starting material for P_{4} transfer processes 143
6.1 Abstract 143
6.2 Introduction 144
6.3 Results and Discussion. 146
6.3.1 Organometallic substituents. 146
6.3.2 Organic substituents 148
6.4 Conclusion 151
6.5 References 152
6.6 Supplementary Information 153
6.6.1 General remarks 153
6.6.2 Organometallic substituents. 153
6.6.2.1 Experimental setup 153
6.6.2.2 IR spectroscopic experiments 154
6.6.2.3 NMR spectroscopic experiments 156
6.6.3 Organic substituents 157
6.6.3.1 Experimental setup 157
6.6.3.2 NMR spectroscopic experiments 159
6.6.4 References 163
6.7 Author contributions 163
7. Thesis treasury-Synthesis of $\left[\left\{\left(\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right)_{2}\left(\mu_{3}, \eta^{1: 1: 4}-\mathrm{P}_{4}\right)\right\}_{2} \mathrm{Fe}\right]\left[\mathrm{PF}_{6}\right]_{2}$ 165
7.1 Abstract 165
7.2 Introduction 166
7.3 Results and Discussion. 166
7.4 Conclusion 168
7.5 References 168
7.6 Supplementary Information 169
7.6.1 General remarks. 169
7.6.2 Synthesis 169
7.6.3 NMR spectroscopic experiments. 170
7.6.4 Crystallographic details. 171
7.6.5 References 171
7.7 Author contributions 172
8. Conclusion 175
8.1 Reactivity of $\left[\left\{\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right\}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]$ towards Lewis acidic tetracarbonyl moieties of Cr, Mo and W 175
8.2 Reactivity of $\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]$ towards different Lewis acids 177
8.3 Reactivity of P_{4} butterfly compounds towards nucleophiles 179
$8.4\left[\left\{\mathrm{Cp}^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right\}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]$ as a starting material of P_{4} butterfly transfer processes 180
8.5 Generation of a new chromium substituted cyclo- P_{4} sandwich complex. 181
8.6 References 182
9. Appendices 185
9.1 List of abbreviations 185
9.2 List of numbered compounds 187
9.3 Acknowledgements 190

1.Introduction

1.1 Elemental phosphorus and its allotropes

Elemental phosphorus has always sparked great interest in the scientific community. Its discovery was part of the quest for the search of the philosopher's stone and even today new elemental modifications are reported quite frequently. ${ }^{[1]}$ The German alchemist Henning Brand was the first to obtain elemental phosphorus while boiling down urine to find the mystically acclaimed source of immortality. ${ }^{[2]}$ Hereby, the contained phosphates were reduced yielding white phosphorus $\left(\mathrm{P}_{4}\right)$ the most prominent modification of this element. White phosphorus consists of tetrahedral P_{4} molecules (Scheme 1a) and due to the high tension in the condensed P_{3} rings this scaffold is highly reactive. Moreover, P_{4} displays blueish chemiluminescent properties upon the reaction with oxygen. Therefore, it was given the Greek name "Ф $\omega \sigma \varphi$ ó 0 os" (phōsphóros), which means light-bearer and subsequently the term "phosphorescence" (which is now used in a different photochemical context) was created. ${ }^{[1]} \mathrm{P}_{4}$, the only molecular modification of phosphorus, is mainly found in the gaseous phase when heating any source of phosphorus above $280.5^{\circ} \mathrm{C}$. However, crystalline P_{4} can be obtained as well, displaying a temperature dependent rearrangement from $\alpha-P_{4}$ (cubic) at room temperature to $\beta-P_{4}$ (triclinic) below $-76.9^{\circ} \mathrm{C}$ and $\gamma-\mathrm{P}_{4}$ (distorted $b c c$) when decreasing the temperature below $-115^{\circ} \mathrm{C} .{ }^{[3]}$

(a)

(b)

(c)

(d)

Scheme 1. Molecular structure of white phosphorus (a), the repetitive unit of the tubular allotrope found in violet and fibrous phosphorus (b) as well as the repetitive unit of two polymeric phosphorus strands isolated from a copper iodide matrix (c,d).

After the initial discovery of white phosphorus, more and more elemental modifications of phosphorus were identified and studied over the years. Different polymeric strand-like allotropes of phosphorus have been obtained by heating white phosphorus under the exclusion of oxygen. As phosphorus is highly oxophilic the exclusion of oxygen is of utmost importance. Otherwise, mere phosphorus oxide or phosphoric acid (in the presence of water) would be obtained from these reactions. ${ }^{[1 \mathrm{a}]}$ The second most prominent phosphorus modification, the amorphous red phosphorus (Pred), was first obtained by A. Schrötter and proved to be a
mixture of various polymeric phosphorus allotropes. ${ }^{[4]}$ In 1947, Roth et al. reported that PRED consists of different phases, of which Phase I, a mixture of different and not distinctly identifiable polymeric phosphorus allotropes, is classically referred to as $P_{\text {RED }}$ nowadays. ${ }^{[5]}$ By heating Phase I, four distinct phases (II, III, IV and V) could be isolated and subsequently studied in detail. However, Phase III is hitherto uncharacterized, which shows that there are still unanswered questions regarding the modifications of this essential element. The group of Winchester reported that Phase II incorporates unprecedented P-nanorods with a diameter of approx. 160 nm. ${ }^{[6]}$ Phase IV and V both incorporate the same crosslinked phosphorus tubes, in which a zigzag-like P_{2} ladder is capped by alternating P_{8} and P_{9} cages (Scheme 1b). Phase IV was first characterized by Ruck et al. and because of the parallel linkage of the phosphorus tubes (via the tips of the P9 cages) this modification is also called fibrous phosphorus. ${ }^{[7]}$ Phase V was first reported on by J. W. Hittdorf in 1865 and is called violet phosphorus or "Hittdorf's phosphorus". ${ }^{[8]}$ Herein, the phosphorus tubes are connected in a perpendicular fashion in contrast to the parallel arrangement in fibrous phosphorus. Furthermore, the Pfitzner group could isolate two additional tube-like phosphorus allotropes from a copper iodide matrix. ${ }^{[9]}$ These unprecedented phosphorus tubes are based on repetitive P_{12} motifs: one modification displays opposing P_{8} cages on a zigzag-like P_{2} band $\left((\mathrm{Cul})_{8} \mathrm{P}_{12}-{ }_{\infty}^{1}[\mathrm{P} 8] \mathrm{P} 4(4)\right.$, Scheme 1c), while in the other allotrope P_{10} cages are linked by P_{2} dumbbells $\left((\mathrm{CuI})_{3} \mathrm{P}_{12}-{ }_{\infty}^{1}[\mathrm{P} 10] \mathrm{P} 2[\right.$, Scheme 1d).

(a)

Scheme 2. Structural motifs found in layered allotropes of phosphorus; left: orthorhombic modification of P $_{\text {вLACK }}$ at ambient conditions (a) and hexagonal modification of $\mathrm{P}_{\text {BLACK }}$ at high pressure (b); right: side view of monolayer stacking in Pblue, Pblack and $P_{\text {green. }}$

Black phosphorus (РвьАск), the thermodynamically preferred modification, was first isolated by P. W. Bridgeman in 1914. ${ }^{[10]}$ Unlike the tube-like allotropes discussed before, it consists of monolayers of condensed P_{6} rings in a chair-like conformation. In the orthorhombic sub-modification the P_{6} rings are stacked in a parallel orientation (Scheme 2a), whereas at high pressure the P_{6} rings are connected in a sloping fashion (Scheme 2b). This high-pressure structure is identical to the connectivity found in the grey arsenic allotrope,
the thermodynamically preferred modification of the heavier homologue of phosphorus. ${ }^{[19]}$ Recently, several groups reported on the extraction of thin monolayers from PвLАСК, called phosphorene, for optical as well as $^{\text {a }}$ electronic investigations. ${ }^{[11]}$ In contrast to the closely related graphene, phosphorene displays a thickness dependent band gap of 1.5 eV in the monolayer, while the band gap of bulk $\mathrm{P}_{\text {bLACk }}$ is given at 0.3 eV . Moreover, Howard et al. were able to synthetize phosphorene nanoribbons, which exhibit a range of unique chemical and physical properties. ${ }^{[12]}$ Inspired by the fascinating properties of phosphorene, the study of new monolayered phosphorus allotropes has come to the attention of the scientific community. Two theoretically proposed representatives are the so called blue and green phosphorus, respectively. ${ }^{[13]}$ In $P_{\text {BLUE }}$ the P_{6} rings are stacked in a narrow 2D zigzag honeycomb structure, whereas PGreen can be interpreted as the combination of $P_{\text {BLUE }}$ and Pblack displaying an additional bend in comparison to the chair-like arrangement in $^{\text {b }}$ Рвдаск (Scheme 2). Lastly, new approaches towards the isolation of unprecedented phosphorus modifications utilizing confined spaces inside carbon nanorods yielded various thin polyphosphorus strands and even rings consisting of 230 P atoms. ${ }^{[14]}$ By high resolution transmission electron microscopy various strand types such as bead-like strung P_{4} molecules, double stranded zigzag ladders and single stranded zigzag chains could be identified and characterized. ${ }^{[15]}$ Consequently, the search for novel elemental phosphorus allotropes is still of great interest today and enables the investigation of fascinating materials with powerful properties.

1.2 The importance of phosphorus

Phosphorus is an essential element for all organisms because major groups of biomolecules like DNA, phospholipids or certain proteins rely on phosphate groups as key structural elements. ${ }^{[16]}$ Moreover, the entire metabolic energy transfer is based on the release and storage of phosphate groups on ATP (adenosine triphosphate). ${ }^{[17]}$ Due to its biological abundancy a so called phosphate cycle, very similar to the often discussed carbon cycle, can be observed on a global scale. ${ }^{[18]}$ It describes the equilibrium between organic phosphates contained in biomolecules and inorganic phosphates stored in minerals. The biological importance of phosphorus is a strong incentive to examine its properties for the entire scientific community as biologically prominent elements often display a vast variety in reactivity.

Phosphorus itself is highly oxophilic and the reactive P_{4} modification self-ignites upon contact with air. ${ }^{[1]}$ Consequently, no natural reservoirs of elemental phosphorus can be found, but rather phosphate minerals, like apatite, or the aforementioned biomolecules. Due to its pyrophoric properties, P_{4} was used as a chemical weapon and firebomb during World War II and in the production of lighter matches. ${ }^{[19]}$ However, for security and health reasons the latter nowadays contain Pred, as this modification is non-toxic and non-selfinflammable. Before the substitution, workers in matchstick factories in the $19^{\text {th }}$ and early $20^{\text {th }}$ century often suffered from the so called "phossy jaw", a necrosis of the mouth tissue and jawbone due to the constant exposure to toxic P_{4} vapor. Occasionally, small lumps of P_{4} (liberated from broken World War II weapons) are washed ashore as P_{4} is inert towards the reaction with water. ${ }^{[1]}$ Unaware, people often mistake it for amber, which causes severe accidents, as the collected lumps of P_{4} ignite spontaneously when drying. ${ }^{[20]}$

Despite its toxicity and flammability, P_{4} is still the most common starting material in the synthesis of a variety of phosphorus containing compounds in academic and industry scale setups due to its incomparable reactivity. Usually, P_{4} is obtained by reacting fluorapatite $\left[\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3}(\mathrm{OH}, \mathrm{F}, \mathrm{Cl})\right]$ with coal and quartz in an electric arc furnace under very harsh reaction conditions, producing gaseous P_{2} which condenses as P_{4} upon
cooling. ${ }^{[21]} \mathrm{P}_{4}$ is then converted to a variety of different compounds like the chlorinating agents PCl_{3} and $\mathrm{POCl}_{3}{ }^{[22]}$ or herbicides and fertilizers ${ }^{[23]}$. Hereby, the current large-scale reaction pathways require harsh reagents like chlorine gas and the subsequent workup often affords stochiometric amounts of waste. For example, the reaction of PCl_{3} with Grignard reagents like $\mathrm{RMgCl}(\mathrm{R}=$ organic residue) yields the desired phosphine PR_{3} as well as three equivalents of undesired $\mathrm{MgCl}_{2} .^{[16]}$ Various phosphines obtained in this manner are crucial building blocks of chiral and highly selective catalytic compounds. ${ }^{[24]}$ Consequently, phosphorus is an indispensable element not only in the synthesis of essential chemicals, but also extensively contributes to various fields of current research.

1.3 P_{4} activation

Scheme 3. P_{n} units $(n \leq 4)$ obtained from the subsequent degradation of the P_{4} tetrahedron during P_{4} reduction.

The previously discussed molecular structure of P_{4} gives insight into the high reactivity of the compound. With approx. 60° the P-P-P angles in the symmetric P_{4} tetrahedron differ drastically from the energetically preferred angle for non-hybridized P atoms (approx. 90°). ${ }^{[3]}$ However, the extraordinary reactivity of P_{4} is also a drawback as in most reactions low selectivity is observed. In addition, the current synthetic routes converting P_{4} to practical phosphorus containing compounds display major disadvantages (vide supra). Therefore, the investigation of the so called P_{4} activation is of current interest. ${ }^{[25]}$ Here, P_{4} is reacted with organic or organometallic fragments to give a precast opening of the P_{4} tetrahedron directing its reactivity in certain reaction pathways and decreasing energy barriers for subsequent reactions. Trough subsequent $P-P$ bond cleavage and phosphide elimination a vast array of P_{n} fragments ($n \leq 4$) are obtained from the P_{4} tetrahedron (Scheme 3). The classical definition of a P_{n} ligand states that all P atoms are exclusively linked to each other
and display only coordinative interactions with transition metals or main group elements. ${ }^{[25]}$ Various P_{n} ligand systems have been studied until now and for each of the feasible P_{n} ligands exemplary compounds could be obtained, isolated and characterized. ${ }^{[25]}$ Besides studies concerning the organic activation of P_{4} and the conversion with main group elements, the classical approach to obtain P_{n} ligand complexes is the reaction of P_{4} with unsaturated organometallic fragments. The P_{n} ligands obtained in this manner are consequently stabilized in the coordination sphere of these fragments.

The intact P_{4} tetrahedron can coordinate in an end-on η^{1}-fashion promoted by one lone pair of electrons located on a P atom or in a side-on mode trough the σ-orbital of a $P-P$ bond, respectively. With $\left[\left(n p_{3}\right) N i\left(\eta^{1}-P_{4}\right)\right]$ ($n p_{3}=$ tris(2-diphenylphosphino-ethyl)amine, A, Scheme 4) the first example for an end-on coordination was reported by Sacconi et al. in 1979. ${ }^{[26]}$ Subsequently, it took more than 20 years until Krossing first reported on the homoleptic $\left[\mathrm{Ag}\left(\mathrm{n}^{2}-\mathrm{P}_{4}\right)_{2}\right]^{+}$cation (B, Scheme 4) which bears two intact P_{4} tetrahedra in a side-on coordination mode. ${ }^{[27]}$ The first homoleptic P_{4} complex \mathbf{B} and the analog $\mathrm{Cu}^{[28]}$ and $\mathrm{Au}^{[29]}$ compounds display a $D_{2 h}$ symmetry which derives from an almost square planar coordination environment of the central metal ion.

Scheme 4. Historical and most prominent compounds incorporating intact P_{4} tetrahedra (left) and P_{4} butterfly ligands (right).

The first step in the activation of P_{4} is the selective reductive cleavage of one $P-P$ bond affording the tetraphospha-bicyclo[1.1.0]butane $\left(\mathrm{P}_{4}{ }^{2-}\right)$ unit, which is typically called P_{4} butterfly motif due to its geometry (Scheme 4). The first example for this class of compounds was given by Lindsell and Ginsberg in 1971: $\left[\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{RhCl}\left(\eta^{1: 1}-\mathrm{P}_{4}\right)\right]\left(\mathrm{C}\right.$, Scheme 4). ${ }^{[30]}$ The authors proposed at first that the P_{4} tetrahedron stayed intact upon coordination with data collected from mass spectrometry and IR as well as Raman spectroscopic experiments. However, supplementary ${ }^{31}$ P NMR spectroscopy clearly confirmed that one P-P bond of the P_{4} tetrahedron was cleaved and the organometallic rhodium fragment is coordinated via the wing tip P atoms of the bidentate $\mathrm{P}_{4}{ }^{2-}$ unit. ${ }^{[31]}$ Next to this chelating coordination mode, a bridging coordination of the $\mathrm{P}_{4}{ }^{2-}$ moiety is more commonly observed with $\left[\left\{\mathrm{Cp}^{\mathrm{R} F e}(\mathrm{CO})_{2}\right\}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]\left(\mathrm{D} ; \mathrm{Cp}^{\mathrm{R}}=\mathrm{Cp}{ }^{\prime \prime}\left(\mathrm{C}_{5} \mathrm{H}_{3}{ }^{\mathrm{t}} \mathrm{Bu} u_{3}, \mathrm{D}{ }^{\prime \prime}\right)\right.$ or $\mathrm{Cp}^{\prime \prime \prime}\left(\mathrm{C}_{5} \mathrm{H}_{2}{ }^{\mathrm{t}} \mathrm{Bu}_{3}\right.$, $\mathbf{D}^{\prime \prime \prime}$), Scheme 4) being the most prominent example for this structural scaffold. ${ }^{[32]}$ The reactivity of $\mathbf{D}^{\prime \prime}$ and $\mathbf{D}^{\prime \prime \prime}$ has been intensively studied under photolytic ${ }^{[32 a]}$ and thermolytic ${ }^{[32 b]}$ reaction conditions (vide infra) and therefore the P_{4} butterfly moiety is an indispensable element in gaining insight in the mechanistic background of P_{4} activation. Next to the well-studied organometallic P_{4} butterfly compounds, only few examples are known for P_{4} butterfly ligands with organic substituents. Fluck et al. reacted MesLi, MesBr and white phosphorus and
could therefore report on the first "organo-P4 butterfly" compound [\{sMes $\left.\}_{2}\left(\mu, \eta^{1: 1}-P_{4}\right)\right]$ (E , sMes $=2,4,6-$ tri- ${ }^{\text {t }}$ Buphenyl) in 1985. ${ }^{[33]}$

Scheme 5. Pioneer P_{n} ligand ($n \leq 4$) compounds.

A second step in the P_{4} activation can be the selective cleavage of the $\mathrm{P}-\mathrm{P}$ bond between the two bridgehead P atoms of the P_{4} butterfly unit, yielding a cyclo- P_{4} moiety. The first compound incorporating a rhomboidal distorted P_{4} ring was $\left[\mathrm{Cp}{ }^{*} \mathrm{Nb}(\mathrm{CO})_{2}\left(\mathrm{n}^{4}-\mathrm{P}_{4}\right)\right]\left(\mathrm{F}\right.$, Scheme 5). ${ }^{[34]}$ The first complex incorporating a cyclo- P_{4} enddeck, was afforded by irradiating $\left[\mathrm{Cp} * \mathrm{Nb}(\mathrm{CO})_{4}\right]$ in the presence of P_{4}. Complementary, Fryzuk et al. afforded $\left[\left\{\mathrm{Zr}\left(\mathrm{PhP}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{2} \mathrm{NSiMe}_{2} \mathrm{CH}_{2}\right)_{2}-\mathrm{PPh}\right)\right\}_{2}\left(\mu, \eta^{4: 4}-\mathrm{P}_{4}\right)\right] \quad\left(\mathbf{G}\right.$, Scheme 5), the first $\mathrm{D}_{2 \mathrm{~d}}$ symmetric complex incorporating a square planar $\mathrm{P}_{4}{ }^{4-}$ middle deck. ${ }^{[35]}$

Further reduction of the cyclo- P_{4} unit generates P_{4} chains which could first be isolated by the group of Bertrand. They obtained [($\left.{ }^{\text {menthyl }} \mathrm{CAAC}\right)_{2} \mathrm{P}_{4}$] (menthyl $=2-\mathrm{CH}_{3}, 6-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{9}, \mathbf{H}$, Scheme 5) by reacting P_{4} with a sterically demanding cyclic alkyl(amino)-carbene (CAAC, 1-[2,6-($\left.\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right]-3,3-\left(\mathrm{CH}_{3}\right)_{2}-$ pyrrolidine). ${ }^{31} \mathrm{P}$ NMR spectroscopy reveals that the P_{4} chain of \mathbf{H} can be oriented in a cis or trans fashion in solution, while only the E-isomer crystallizes from slow evaporation. In contrast, the reaction with the sterically less demanding ${ }^{\text {cHex }} \mathrm{CAAC}$ (cHex = cyclo-hexane) affords [($\left.{ }^{\mathrm{CHex}} \mathrm{CAAC}\right)_{3} \mathrm{P}_{4}$] (I, Scheme 5) incorporating an isotetraphosphine moiety which is the last possible variation of a $\mathrm{P}_{4}{ }^{x-}$ ligand. ${ }^{[36]}$

Sacconi et al. obtained the first cyclo- P_{3} ligands from the reaction of P_{4} with Co^{2+} and Ni^{2+} salts in the presence of the tridentate ligand $\mathrm{L}=\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{PPh}_{2}\right)_{3} \cdot{ }^{[37]}$ Interestingly, the conversion with Co^{2+} affords $\left[\mathrm{LCo}\left(\mathrm{n}^{3}-\mathrm{P}_{3}\right)\right](\mathrm{J}$, Scheme 5) displaying a terminal $\eta^{3}-P_{3}$ ligand, while the reaction with Ni^{2+} results in $\left[\{L N i\}_{2}\left(\mu, \eta^{3: 3}-P_{3}\right)\right]\left(\mathrm{BF}_{4}\right)_{2}(\mathbf{K}$, Scheme 5), a complex in which a bridging $\mu, \eta^{3: 3}-P_{3}$ coordination mode.

From the thermolysis of P_{4} in the presence of $\left[\mathrm{CpMo}(\mathrm{CO})_{2}\right]_{2}$, Scherer et al. afforded the first P_{2} dumbbell incorporating complex: $\left[\left\{\mathrm{CpMo}(\mathrm{CO})_{2}\right\}_{2}\left(\mu, \eta^{2: 2}-\mathrm{P}_{2}\right)\right]$ (L, Scheme 5$)^{[38]}$, which is currently used as a powerful building block in the formation of supramolecular aggregates in our group. ${ }^{[39]}$ The herein observed $\mu, \eta^{2: 2}$-coordination mode of the P_{2} unit is quite common. In contrast, Bertrand et al. obtained [($\left.{ }^{\text {cHex } C A A C) P] ~}\right]_{2}$ (\mathbf{M}, Scheme 5), in which the P_{2} dumbbell is stabilized in an end-on fashion by two carbenes, alongside I. ${ }^{[36]}$

Phosphido ligands $\left(P^{3-}\right)$ represent the final stage of the P_{4} activation after all six $P-P$ bonds of the initial P_{4} tetrahedron are reductively cleaved. The first example of a complex incorporating two trigonal planar coordinated $\mu_{3}-P^{3-}$ ligands was given by Huttner et al.: $\left[\left\{\mathrm{CpMn}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{3}, \eta^{1: 1: 1: 1}-\mathrm{P}\right)_{2}\left\{\mathrm{Fe}_{2}(\mathrm{CO})_{6}\right\}\right]$ (N, Scheme 5). ${ }^{[40]}$ After several theoretical proposals ${ }^{[41]}$, Scheer and coworkers were the first to observe the terminal phosphide complex $\left.\left[{ }^{(t \mathrm{BuO}}\right)_{3} \mathrm{~W} \equiv \mathrm{P} \rightarrow \mathrm{Mo}(\mathrm{CO})_{5}\right]$ in ${ }^{31} \mathrm{P}$ NMR spectroscopic studies and could confirm its identity via in-situ conversions with phosphaalkynes in 1995. ${ }^{[42]}$ In the same year, the groups of Cummins and Schrock reported simultaneously on the terminal phosphido compounds [PM(Me3 $\left.\mathrm{SiNCH}_{2} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}$]
 first structurally characterized representatives of compounds bearing a terminal P^{3-} ligand displaying exceedingly short $P-M$ bond lengths (e.g. Mo-P = $2.11 \AA$ in O_{Mo}), which indicate $\mathrm{P} \equiv \mathrm{M}$ triple bonds. A shared feature of all phosphide compounds is the remarkably lowfield ${ }^{31} \mathrm{P}$ NMR chemical shift (e.g. $\delta=977 \mathrm{ppm}$ for \mathbf{N}) caused by the tensed coordination geometry.

Scheme 6. Pioneer cyclo-P ${ }_{5}$ and cyclo-P6 compounds.

Besides the degradation of the P_{4} tetrahedron during P_{4} activation, aggregates with more than four phosphorus atoms can also be obtained from white phosphorus. If stabilizing organometallic fragments are scarce, intermediates of the P_{4} activation process can accumulate providing greater polyphosphorus moieties. The group of Scherer took great interest in the synthesis of cyclo- P_{5} and cyclo- P_{6} units due to their isolobality to the 6π-electron donating cyclopentadienyl (Cp) and benzene ligands, respectively. In 1986, they reported on the first successful stabilization of a cyclo- P_{5} moiety in the form of a middle deck in the triple decker $\left[\left(C p^{*} \mathrm{Cr}\right)_{2}\left(\mu_{2}, \eta^{5: 5}-\mathrm{P}_{5}\right)\right]\left(\mathbf{Q}\right.$, Scheme 6) obtained from the thermolysis of $\left[\mathrm{Cp}{ }^{*}(\mathrm{CO})_{2} \mathrm{Cr}\right]_{2}$ and $\mathrm{P}_{4} .{ }^{[44]}$ One year later, they could report on $\left[\mathrm{Cp}{ }^{*} \mathrm{Fe}\left(\eta^{5}-\mathrm{P}_{5}\right)\right.$] (R , Scheme 6), the first ever organometallic analog of ferrocene incorporating one planar cyclo- P_{5} ligand. ${ }^{[45]}$ Finally, almost 20 years later, Ellis and coworkers isolated the anionic complex $\left[\mathrm{Ti}\left(\eta^{5}-\mathrm{P}_{5}\right)_{2}\right]^{2-}\left(\mathbf{S}\right.$, Scheme 6), which represents the first all-phosphorus sandwich complex. ${ }^{[46]}$

By incorporating the reliable thermolysis route, Scherer and coworkers obtained the triple-decker complex $\left[\left\{C p^{*} M o\right\}_{2}\left(\mu, \eta^{6: 6}-P_{6}\right)\right](T, S c h e m e 6)$, which bears the first inorganic benzene analog, from the reaction of $\left[\mathrm{Cp}^{*}(\mathrm{CO})_{2} \mathrm{Mo}\right]_{2}$ with $\mathrm{P}_{4}{ }^{[47]}$ Two years after the report on \mathbf{T}, the group published the synthesis of $\left[\left\{\mathrm{Cp}^{*} \mathrm{Ti}_{2}\left(\mu, \eta^{3: 3}-\mathrm{P}_{6}\right)\right]\left(\mathrm{U}\right.\right.$, Scheme 6), in which the cyclo-P6 middle deck is arranged in a chair-like fashion. ${ }^{[48]}$ For T, a D6d symmetry was observed due to the planar geometry of the central cyclo- P_{6} deck. The highly symmetric $\mu, \eta^{6: 6}$-coordination mode found in \mathbf{T} is in contrast to the $\mu, \eta^{3: 3}$-coordination mode of \mathbf{U} and the differing coordination spheres have strong influence on the electronic properties of the ligand. Hence, a drastic difference can be observed in the respective ${ }^{31} \mathrm{P}$ NMR chemical shifts: $-315.6 \mathrm{ppm}(\mathbf{T})$ vs. 386.7 ppm (U).

$\mathrm{P}_{7}{ }^{3-}$

Scheme 7. Examples for large polyphosphoric aggregates.

Ultimately, even larger aggregates like the polyphosphide anions $P_{7^{3-}}, P_{14^{4-}}, P_{16^{2-}}, P_{21^{3-}}$ and $P_{26}{ }^{4-}$ have been reported (Scheme 7). ${ }^{[49]}$ The smaller anions are composed of P_{7} cages, whereas the larger anions incorporate a zigzag-like P_{2} band which is capped by bridging P atoms while condensed P_{7} cages constitute the edges. In contrast, the P_{24} unit found in $\left[(\mathrm{Cp} \mathrm{\prime "} \mathrm{Co})_{5} \mathrm{P}_{24}\left\{\mathrm{Cr}(\mathrm{CO})_{4}\right\}_{3}\right]$ is the largest molecular neutral polyphosphorus
scaffold characterized by single crystal X-ray diffraction so far (Scheme 7). ${ }^{[50]}$ The structure of the polyphosphorus core moiety can be interpreted as the result of a [4+2] cyclo-addition of two P_{12} repetitive units of Hittdorf's phosphorus. Mass spectroscopy results indicate the presence of phosphorus aggregates made up of more than 60 phosphorus atoms, yet, so far, no structural characterization could be achieved. ${ }^{[51]}$

1.4 Reactivity of P_{4} butterfly complexes

Scherer et al. first reported on the synthesis of the iron P_{4} butterfly compounds $\left[\left\{\mathrm{Cp}{ }^{\prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]\left(\mathrm{D}^{\prime \prime}\right)$ and $\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]\left(\mathrm{D}^{\prime \prime \prime}\right)$ by applying irradiation or short term thermolysis to the corresponding $\left[\mathrm{Cp}^{\mathrm{R} F e}(\mathrm{CO})_{2}\right]_{2}\left(\mathrm{Cp}^{\mathrm{R}}=\mathrm{Cp}{ }^{\prime \prime}\right.$ or $\left.\mathrm{Cp} p^{\prime \prime \prime}\right)$ dimer in presence of $\mathrm{P}_{4}{ }^{[32]}$ The drastic reaction conditions induce decarbonylation, affording a number of byproducts which require subsequent chromatographic workup (Scheme 8). Surprisingly, our group discovered that these harsh reaction conditions are not required and a quantitative conversion can be observed almost instantly at room temperature. ${ }^{[52]}$ This catapulted the yield and accessibility of $\mathbf{D}^{\prime \prime \prime}$ to a new level and consequently spiked interest in the implementation of this compound in novel reaction pathways.

1.4.1 Rearrangement processes

The stepwise decarbonylation of $\mathbf{D}^{\prime \prime}$ under photolytic conditions forces the P_{4} butterfly ligand to rearrange in order to compensate for the electron deficiency accompanying the CO ligand dissociation. ${ }^{[32 a]}$ After the elimination of one CO ligand, $\left[\{\mathrm{Cp} " \mathrm{Fe}(\mathrm{CO})\}\left(\mu, \eta^{2: 1}-\mathrm{P}_{4}\right)\left\{\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{Cp}{ }^{\prime \prime}\right\}\right]\left(\mathrm{D}_{\mathrm{A}}\right.$, Scheme 8$)$ is obtained. In \mathbf{D}_{A} the decarbonylated $\{\mathrm{Fe}(\mathrm{CO}) \mathrm{Cp} "\}$ fragment is coordinated by the two wing tip P atoms of the still intact P_{4} butterfly moiety. Next in line is $\left[\{\mathrm{Cp} " \mathrm{Fe}\}\left(\mu, \eta^{4: 1}-\mathrm{P}_{4}\right)\left\{\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{Cp}{ }^{\prime \prime}\right\}\right]$ (D_{B}, Scheme 8), which is afforded after the elimination of two CO ligands. In D_{B} the butterfly geometry is broken with the cleavage of the $P-P$ bond between the former bridgehead P atoms due to the electron deficiency caused by the additional decarbonylation. The resulting distorted rhombic cyclo- P_{4} moiety is substituted by one intact $\left\{\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{Cp}{ }^{\prime \prime}\right\}$ fragment and coordinates in a η^{4}-fashion towards the fully decarbonylated $\left\{F \mathrm{FeCp}{ }^{\prime \prime}\right\}$ fragment. During the next decarbonylation step, the resulting $\left\{\mathrm{Fe}(\mathrm{CO}) \mathrm{Cp}{ }^{\prime \prime}\right\}$ fragment inserts in the cyclo- P_{4} ligand affording a ferra-tetraphospha-cyclopentadienyl ligand isolobal to the ferrole motif described for $\left[\left\{\mathrm{Fe}(\mathrm{CO})_{3}\right\}\left(\eta^{4}-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{Fe}(\mathrm{CO})_{3}\right)\right] .{ }^{[53]}$ Thus, $\left[\{\mathrm{Cp} " \mathrm{Fe}\}\left(\eta^{4}-\mathrm{P}_{4} \mathrm{Fe}(\mathrm{CO}) \mathrm{Cp} "\right)\right]$ (D_{c}, Scheme 8) is obtained. Finally, $\left[\left\{\mathrm{Cp}^{\prime \prime} \mathrm{Fe}\right\}_{2}\left(\mu, \eta^{4: 4}-\mathrm{P}_{4}\right)\right]\left(\mathrm{D}_{\mathrm{D}}\right.$, Scheme 8), a sandwich complex with an open cis-P P_{4}-chain middle deck, is obtained after the complete decarbonylation of $\mathbf{D}^{\prime \prime}$. A fluctuation in the $\mathrm{P}-\mathrm{P}$ bonds of the middle deck is suggested by ${ }^{31} \mathrm{P}$ NMR spectroscopy studies. For the $A A^{\prime} X X$ ' spin system of D_{D} two sets of signals could be observed at $185 \mathrm{~K}\left(\delta_{\mathrm{AA}^{\prime}}=302.5 \mathrm{ppm}, \delta_{\mathrm{BB}^{\prime}}=-143.2 \mathrm{ppm}\right)$, while only one broad signal was recorded at room temperature, which displayed sharpening when heating the solution to 370 K . The authors proposed a closo-octahedral type complex with a closed cyclo- P_{4} middle deck as a reasonable intermediate of the observed dynamic.

Scheme 8. Complexes obtained from $\mathbf{D "}^{\prime \prime}$ and $\mathbf{D}^{\prime \prime \prime}$ under photolytic (top) and thermolytic (bottom left) reaction conditions as well as the conversion with $\mathrm{Ph}-\mathrm{C} \equiv \mathrm{C}-\mathrm{Ph}$ and $\mathrm{P} \equiv \mathrm{C}-\mathrm{t} \mathrm{Bu}$ (bottom right).

Under thermolytic conditions, $\mathbf{D}^{\prime \prime \prime}$ decomposes to give only the P_{4}-chain incorporating $\left[\left\{\mathrm{Cp} \mathrm{p}^{\prime \prime} \mathrm{Fe}\right\}_{2}\left(\mu, \eta^{4: 4}-\mathrm{P}_{4}\right)\right]\left(\mathrm{D}_{\mathrm{E}}\right.$, Scheme 8) alongside the pentaphosphaferrocene derivative $\left[\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}\left(\eta^{5}-\mathrm{P}_{5}\right)\right]$ (D_{F}, Scheme 8). ${ }^{[32 b]}$ Obviously, the thermolysis in boiling decalin $\left(190^{\circ} \mathrm{C}\right)$ for 3 hours is exceptionally harsher than UV irradiation for 20 minutes, leaving no carbonylated species behind. By decreasing the thermolysis time to 45 minutes the diphosphadiferratetrahedrane $\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime F e}\right\}_{2}\left(\mu, \eta^{2: 2}-P_{2}\right)(\mu-C O)\right]\left(D_{G}\right.$, Scheme 8) which incorporates a Fe=Fe double bond can be isolated in reasonable yields alongside D_{E} and $D_{F}{ }^{[54]}$ Moreover, subsequent irradiation of D_{G} induces the release of the bridging carbonyl group and the cleavage of the P_{2} dumbbell affording $\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}\right\}_{2}(\mu-\right.$ $P)_{2}$] $\left(\mathbf{D}_{\mathrm{H}}\right.$, Scheme 8) which incorporates a rhombic cyclo- $\mathrm{Fe}_{2} \mathrm{P}_{2}$ unit. ${ }^{[54]}$ For \mathbf{D}_{G} and \mathbf{D}_{H} an almost planar arrangement of the two $\mathrm{Cp}^{\prime \prime \prime}$ ligands in a nearly staggered conformation is reported.

In contrast to the pentaphosphaferrocene D_{F} obtained from $\mathbf{D}^{\prime \prime \prime}$ by decarbonylation induced rearrangement processes, the reaction of $\mathbf{D}^{\prime \prime \prime}$ with $\mathrm{Ph}-\mathrm{C} \equiv \mathrm{C}-\mathrm{Ph}$ affords the sandwich complex $\left[\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}\left(\eta^{5}-\mathrm{P}_{3} \mathrm{C}_{2} \mathrm{Ph}_{2}\right)\right]$ ($\mathbf{D}_{\mathbf{l}}$, Scheme 8) which incorporates a 1,2,3-triphospha-cyclopentadienyl ligand. ${ }^{[55]}$ Additionally, the trinuclear iron complex $\left[\left\{\mathrm{Cp}^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{n}\right\}_{3} \mathrm{P}_{11}\right]$ (D_{J}, Scheme 8) featuring a P_{11} scaffold could be isolated from this reaction. Most commonly the so called "ufosan" structure, which consists of six annulated P_{5} rings, is observed for P_{11} scaffolds and was reported for $\mathrm{Na}_{3} \mathrm{P}_{11}$, $\left(\mathrm{Me} \mathrm{E}_{3} \mathrm{EtN}\right)_{3} \mathrm{P}_{11}$, $(\mathrm{Me} 3 \mathrm{Si})_{3} \mathrm{P}_{11}$ and ${ }^{\mathrm{I}} \mathrm{Pr}_{3} \mathrm{P}_{11}$. ${ }^{[56]}$ However, the polyphosphorus scaffold of D_{J} does not display this structural motif, but rather resembles a substructure motif of Hittorf's phosphorus with an additional capping P atom on top of the P_{2} band-like foundation.

Furthermore, $\mathrm{D}^{\prime \prime \prime}$ was reacted with the phosphaalkyne IP $=\mathrm{C}^{+4} \mathrm{Bu}$, affording the sandwich complexes $\left[C p{ }^{\prime \prime \prime} F e\left(\eta^{5}-P_{4} C^{t} B u\right)\right]$ (D_{K}, Scheme 8) and $\left[\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}\left(\eta^{5}-\mathrm{P}_{3}\left(\mathrm{C}^{\mathrm{t}} \mathrm{Bu}\right)_{2}\right)\right]$ (D_{L}, Scheme 8) next to the pentaphosphaferrocene derivative $\mathbf{D}_{\mathbf{F}}{ }^{[57]}$ The structural composition of the 1,2,3,4-tetraphosphacyclopentadienyl and the 1,2,4-triphospha-cyclopentadienyl ligand incorporated by \mathbf{D}_{K} and \mathbf{D}_{L}, respectively, indicate a preliminary P_{1} / P_{3} fragmentation of the starting material $D^{\prime \prime \prime}$ followed by a subsequent reaction with one or two equivalents of IP =C-tBu. Additionally, $\left[\left\{\mathrm{Cp}^{\prime \prime \prime} \mathrm{Fe}\right\}_{2}\left(\mu, \eta^{3: 3}-\mathrm{P}_{3}\right)\right]$ ($\mathrm{D}_{\mathbf{m}}$, Scheme 8) the first binuclear complex incorporating a triphosphaallyl unit could be isolated in small amounts from the reaction supporting the proposed $\mathrm{P}_{1} / \mathrm{P}_{3}$ fragmentation.

1.4.2 Coordination behavior

In the previously discussed reactions, the central P_{4} butterfly moieties of $\left[\left\{C p=F e(C O)_{2}\right\}_{2}\left(\mu, \eta^{1: 1}-P_{4}\right)\right]$ (D") and $\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]$ ($\left.\mathrm{D}^{\prime \prime \prime}\right)$ undergo structural transformations in response to the altered electronic structure caused by the applied reaction conditions. Another prominent feature of polyphosphorus ligand complexes is introduced by the coordinatively active lone pairs on each P atom: the coordination of the P_{n} ligand moiety towards various Lewis acidic compounds. ${ }^{[25]}$ These coordination processes are observed for intact as well as rearranged or fragmented polyphosphorus scaffolds. Accordingly, DFT calculations were performed stating that a coordination of the intact P_{4} butterfly moiety is feasible as well (Fig. 1). ${ }^{[58]}$ For $\mathbf{D}^{\mathbf{\prime \prime \prime}}$ the HOMO-1 (highest occupied molecular orbital) is concentrated on the wing tip P atoms, while the HOMO orbital is distributed over the entire P_{4} butterfly scaffold. For the isoelectronic chromium compound $\left[\left\{\mathrm{Cp}^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right\}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]\left(\mathrm{D}^{*}, \mathrm{Cp}^{*}=\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5}\right)$ the order is reversed with the electron density of the HOMO being concentrated on the wing tip P atoms (Fig. 1). This difference in the electronic framework may induce differing reactivities for the analog P_{4} butterfly complexes $D^{\prime \prime \prime}$ and D^{*}. However, the lowest unoccupied molecular orbital (LUMO) is identical for the two compounds. It represents primarily the σ^{*}-bonds between the wing tip P atoms and the respective organometallic substituents. Consequently, the wing tip P atoms
appear to be the pivotal points in respect to the coordination chemistry originating from the P_{4} butterfly motif. Thus, the most preferred coordination mode for the P_{4} butterfly unit is the chelating coordination via the two wing tip P atoms promoting the P_{4} butterfly moiety to a bidentate ligand.

D"'

■ $=\mathrm{C}$ - $\mathrm{-} \mathrm{Bu}$

D*

Figure 1. Frontier molecular orbitals of the isoelectronic P_{4} butterfly compounds $D^{\prime \prime \prime}$ and D^{*}; calculated at the BP86/def2-TZVP level of theory. ${ }^{[58]}$

In agreement with these computational results, the reaction of $\mathbf{D " \prime \prime}$ with 1.0 eq. of $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]\left[\mathrm{BF}_{4}\right]$ afforded $\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{3}, \eta^{1: 1: 1: 1: 1}-\mathrm{P}_{4}\right)\left\{\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right\}\right]\left[\mathrm{BF}_{4}\right]\left(\mathrm{D}_{\mathrm{N}}\right.$, Scheme 9$)$ in which the coinage metal salt is coordinated by the bidentate P_{4} butterfly ligand. ${ }^{[58 a]}$ By a variation of the implied stoichiometry, $\left[\left\{\left(\mathrm{Cp} \mathrm{\prime} \mathrm{\prime} \mathrm{\prime} \mathrm{Fe}(\mathrm{CO})_{2}\right)_{2}-\right.\right.$ $\left.\left.\left(\mu_{3}, \eta^{1: 1: 1: 1}-P_{4}\right)\right\}_{2} C_{u}\right]\left[\mathrm{BF}_{4}\right]\left(D_{0}\right.$, Scheme 9), a homoleptic spiro-P4-butterfly complex with a distorted tetrahedral coordination sphere of the central copper cation was obtained. ${ }^{[58 a]}$ In contrast, the reaction of $\mathbf{D}{ }^{\prime \prime \prime}$ with 3.0 eq. of Cul gave the dimeric $\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})\right\}\left(\mu_{4}, \eta^{1: 1: 1: 1: 1: 2}-\mathrm{P}_{4}\right)\{\mathrm{Cul}\}\right]_{2}\left(\mathrm{D}_{\mathbf{P}}\right.$, Scheme 9$)$, for which an intricate coordination pattern can be observed. ${ }^{[59]}$ Each of the two P_{4} butterfly moieties is coordinated towards a Cu^{+} cation and a $\left\{\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{Cp}^{\prime \prime \prime}\right\}$ fragment in the exo-positions on the two wing tip P atoms, respectively. Additionally, a $\left\{\mathrm{Fe}(\mathrm{CO}) \mathrm{Cp}{ }^{\prime \prime}\right\}$ fragment (obtained from the organometallic substituent after decarbonylation) is
coordinated in a chelating fashion by the two wing tip P atoms. Single crystal X-ray diffraction analysis indicates that the chelating coordination has only insignificant impact on the overall structure of the P_{4} butterfly moiety. One observation is that the wing tip P atoms are slightly pulled inwards. The coordination process reduces the distance between the two wing tip P atoms (e.g. $2.96 \AA$ in $\mathbf{D}^{\prime \prime \prime}$ and $2.8135(8) \AA$ in \mathbf{D}_{N}) and the angle spanned by the two wing tip P atoms and one bridgehead P atom (e.g. 84° in $D^{\prime \prime \prime}$ and 78° in D_{N}). ${ }^{[32 b, 58 a]}$

- $=$ C- ${ }^{\text {t }}$ Bu

Scheme 9. Products obtained from the reaction of \mathbf{D} "' with different Lewis acids.

Finally, the reaction of $\mathbf{D}^{\prime \prime \prime}$ with $\mathrm{Fe}($ II $)$ salts contributed an interesting facet to the reactivity of $\mathbf{D}^{\prime \prime \prime}$. While the reaction with $\mathrm{FeBr}_{2} \cdot \mathrm{dme}$ (dme = 1,2-dimethoxyethane) gave the expected coordination adduct $\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{3}, \eta^{1: 1: 1: 1: 1}-\mathrm{P}_{4}\right)\left\{\mathrm{FeBr}_{2}\right\}\right]$ (D_{Q}, Scheme 9), an isomerization yielding planar $\mathrm{P}_{4}{ }^{2-}$ ligands was
 Scheme 9), the first fully characterized carbon free sandwich complex with 6π-aromatic $\mathrm{P}_{4}[\mathrm{Fe}]_{2}$ ligands could be obtained. This puts emphasis to the fact that the nature of the involved Lewis acid strongly influences the reaction pathway.

1.5 Recent developments in the P_{4} butterfly chemistry

Over the last years, our group was able to enlarge the library of P_{4} butterfly compounds by utilizing different approaches. $\mathrm{Cp}^{\mathrm{BIG}}\left(\mathrm{Cp}^{\mathrm{BIG}}=\mathrm{C}_{5}\left(4-{ }^{-} \mathrm{Bu}^{-}-\mathrm{C}_{6} \mathrm{H}_{4}\right)_{5}\right)$, a cyclopentienyl ligand derivative with an exceedingly large steric demand was employed to obtain the organometallic $\left[\left\{\mathrm{Cp}{ }^{\mathrm{BIG}} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]$ as well as the metalfree $\left[\mathrm{Cp}^{\mathrm{BIG}}{ }_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]$ via radical pathways. ${ }^{[61]}$ With the help of a supporting Fe"/Fe ${ }^{\text {III }}$ redox system, which promotes the formation of a Cp radical, several organo- P_{4} butterfly compounds with less bulky Cp ligands ($\left[\mathrm{Cp}^{\mathrm{R}} 2\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]$ with $\left.\mathrm{Cp}^{\mathrm{R}}=\mathrm{Cp} p^{*}, \mathrm{Cp}{ }^{\prime \prime \prime}, \mathrm{Cp}^{4 \mathrm{Pr}}\left(\mathrm{C}_{5} \mathrm{H}^{\mathrm{i}} \mathrm{Pr}_{4}\right)\right)$ could be obtained. ${ }^{[61 \mathrm{~b}]}$ Lastly, the previously mentioned \mathbf{D}^{*}, the isolobal chromium compound to $\mathbf{D}^{\prime \prime}$ and $\mathbf{D}^{\prime \prime \prime}$, was prepared by the classical approach of reacting the dimeric $\left[\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right]_{2}$ with white phosphorus. ${ }^{[62]}$ Preliminary reactivity studies in our group demonstrated that \mathbf{D}^{*} affords the expected bidentate coordination pattern via the two wing tip P atoms analog to $\mathbf{D}^{\mathbf{\prime \prime \prime}}$ but also displays unique reaction behavior. ${ }^{[58 b]}$ The previously discussed variations in the frontier molecular orbitals could be one explanation for these observations. Additionally, DFT calculations were performed on the BP86/def2-TZVP level, that illustrate that the $\mathrm{P}-\mathrm{Cr}$ bond in D^{*} is rather labile compared to the $\mathrm{P}-\mathrm{Fe}$ bond in $\mathbf{D}^{\prime \prime \prime} .{ }^{[58 b]}$ While a dissociation energy of $67.47 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$ is given for the $\mathrm{P}-\mathrm{Cr}$ bond in D^{*}, the dissociation of the P-Fe bond in $\mathbf{D}^{\mathbf{\prime \prime}}$ is considerably more endothermic ($142.91 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$). Consequently, D^{*} is more prone to pursue rearrangement processes making it an interesting starting material for further investigations concerning the mechanisms behind the first steps in P_{4} activation.

1.6 References

[1] (a) A. F. Holleman, N. Wiberg, E. Wiberg, Lehrbuch für Anorganische Chemie, 102. Edition, de Gryter, 2007, 746-749.
(b) D.E.C. Corbridge, Phosphorus: Chemistry, biochemistry \& technology, 6. Edition, CRC Press, 2013
[2] F. Krafft, Angew. Chem. Int. Ed. Engl. 1969, 8, 660-671.
[3] (a) A. Simon, H. Borrmann, H. Craubner, Phosphorus Sulfur Silicon Relat. Elem. 1987, 30, 507-510. (b) H. Okudera, E. Dinnebier Robert, A. Simon, Z. Kristallogr. 2005, 220, 259.
[4] A. Schrötter, J. Prakt. Chem. 1850, 51, 155-158.
[5] W. L. Roth, T. W. DeWitt, A. J. Smith, J. Am. Chem. Soc. 1947, 69, 2881-2885.
[6] R. A. L. Winchester, M. Whitby, M. S. P. Shaffer, Angew. Chem. Int. Ed. Engl. 2009, 48, 3616-3621.
[7] M. Ruck, D. Hoppe, B. Wahl, P. Simon, Y. Wang, G. Seifert, Angew. Chem. Int. Ed. Engl. 2005, 44, 7616-7619.
[8] W. Hittorf, Ann. Phys. Chem. 1865, 126, 193.
[9] A. Pfitzner, M. F. Bräu, J. Zweck, G. Brunklaus, H. Eckert, Angew. Chem. Int. Ed. Engl. 2004, 43, 4228-4231.
[10] P. W. Bridgman, J. Am. Chem. Soc. 1914, 36, 1344-1363.
[11] (a) L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, Y. Zhang, Nat Nano 2014, 9, 372-377.
(b) S. P. Koenig, R. A. Doganov, H. Schmidt, A. H. Castro Neto, B. Özyilmaz, Appl. Phys. Lett. 2014, 104, 103106.
(c) H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, P. D. Ye, ACS Nano 2014, 8, 4033-4041.
[12] M. C. Watts, L. Picco, F. S. Russell-Pavier, P. L. Cullen, T. S. Miller, S. P. Bartu's, O. D. Payton, N. T. Skipper, V. Tileli, C. A. Howard, Nature 2019, 568, 216-220.
[13] (a) Z. Zhu, D. Tománek, Phys. Rev. Lett. 2014, 112, 176802.
(b) J. L. Zhang, S. Zhao, C. Han, Z. Wang, S. Zhong, S. Sun, R. Guo, X. Zhou, C. D. Gu, K. D. Yuan, Z. Li, W. Chen, Nano Letters 2016, 16 (8), 4903-4908.
(c) W. H. Han, S. Kim, I.-H. Lee, K. J. Chang, J. Phys. Chem. Lett. 2017, 8, 4627-4632.
(d) E. Golias, M. Krivenkov, A. Varykhalov, J. Sánchez-Barriga, O. Rader, Nano Lett. 2018, 18, 66726678.
[14] (a) M. Hart, E. R. White, J. Chen, C. M. McGilvery, C. J. Pickard, A. Michaelides, A. Sella, M. S. P. Shaffer, C. G. Salzmann, Angew. Chem. Int. Ed. 2017, 56, 8144.
(b) J. Zhang, D. Zhao, D. Xiao, C. Ma, H. Du, X. Li, L. Zhang, J. Huang, H. Huang, C.-L. Jia, D. Tománek, C. Niu, Angew. Chem. Int. Ed. 2017, 56, 1850.
[15] M. Hart, J. Chen, A. Michaelides, A. Sella, M. S. P. Shaffer, C. G. Salzmann, Inorg. Chem. 2019, 58 (22), 15216-15224.
[16] (a) F. H. Westheimer, Science 1987, 235, 1173-1178.
(b) J. M. Berg, L. Stryer, J. Tymoczko, G. Gatto, Biochemistry, 9. Edition, WH Freeman, 2019.
[17] (a) K. Lohmann, Naturwissenschaften 1929, 17, 624-625.
(b) F. Lipmann, Adv. Enzymol 1941, 1, 99-162.
(c) J. Baddiley, A. M. Michelson, A. R. Todd, J. Chem. Soc. 1949, 582-586.
[18] (a) M. Steiner, Naturwissenschaften 1938, 6, 723-724.
(b) P. N. Froelich, M. L. Bender, N. A. Luedtke, G. R. Heath, T. DeVries, Am. J. Sci. 1982, 282, 474511.
(c) K. B. Föllmi, Earth-Sci. Rev. 1996, 40, 55-124.
(d) J. Elser, E. Bennett, Nature 2011, 478, 29-31.
(e) D. Cordell, S. White, Sustainability 2011, 3, 2027-2049.
(f) Z. Yuan, S. Jiang, H. Sheng, X. Liu, H. Hua, X. Liu, Y. Zhang, Environ. Sci. Technol. 2018, 52, 2438-2450.
[19] (a) J. P. W. Hughes, R. Baron, D. H. Buckland, M. A. Cooke, J. D. Craig, D. P. Duffield, A. W. Grosart, P. W. J. Parkes, A. Porter, Br. J. Ind. Med. 1962, 19, 83-99.
(b) E.-C. Koch, Propellants Explos. Pyrotech. 2008, 33, 165-176.
[20] U. Aviv, R. Kornhaber, M. Harats, J. Haik, Disaster Mil. Med. 2017, $3,6$.
[21] (a) J. B. Readman, J. Chem. Technol. Biotechnol. 1890, 9, 163-211.
(b) A. D. F. Toy 1973, „The Chemistry of Phosphorus": Pergamon Press, Oxford.
(c) G. Villalba, Y. Liu, H. Schroder, R. U. Ayres, J. Ind. Ecol. 2008, 12, 557-569.
[22] (a) S. Hoerold, A. Ratcliff, J. Pyrotech. 2001, 13, 54-63.
(b) T. J. Connolly, M. Matchett, P. McGarry, S. Sukhtankar, J. Zhu, Org. Process Res. Dev. 2006, 10, 391-397.
(c) L. Chen, X. Li, Y. Pang, L. Li, X. Zhang, L. Yu, J. Mater. Sci. Mater. Med. 2007, 18, 2199-2203.
[23] M. A. Dhansay, P. W. Linder, R. G. Torrington, T. A. Modro, J. Phys. Org. Chem. 1990, 3, 248-254.
[24] J. H. Downing, M. B. Smith, Comprehensive Coordination Chemistry II 2003, 1, 253-296.
[25] (a) B. M. Cossairt, N. A. Piro, C. C. Cummins, Chem. Rev. 2010, 110, 4164-4177.
(b) M. Caporali, L. Gonsalvi, A. Rossin, M. Peruzzini, Chem. Rev. 2010, 110, 4178-4235.
(c) M. Scheer, G. Balázs, A. Seitz, Chem. Rev. 2010, 110, 4236-4256.
(d) N. A. Giffin, J. D. Masuda, Coord. Chem. Rev. 2011, 255, 1342-1359.
[26] P. Dapporto, S. Midollini, L. Sacconi, Angew. Chem. Int. Ed. Engl. 1979, 18, 469.
[27] (a) I. Krossing, Chem. Eur. J. 2001, 19, 4603-4604.
(b) I. Krossing, L. van Wüllen, Chem. Eur. J. 2002, 8, 700-711.
[28] G. Santiso-Quinones, A. Reisinger, J. Slattery, I. Krossing, Chem. Comm. 2007, 5046-5048.
[29] L. C. Forfar, T. J. Clark, M. Green, S. M. Mansell, C. A. Russell, R. A. Sanguramath, J. M. Slattery, Chem. Comm. 2012, 48, 1970-1972.
[30] A. P. Ginsberg, W. E. Lindsell, J. Am. Chem. Soc. 1971, 93, 2082-2084.
[31] W. E. Lindsell, J. Chem. Soc., Chem. Commun. 1982, 1422-1424.
[32] (a) O. J. Scherer, G. Schwarz, G. Wolmershäuser, Z. Anorg. Allg. Chem 1996, 622, 951-957.
(b) O. J. Scherer, T. Hilt, G. Wolmershäuser, Organometallics 1998, 17, 4110-4112.
[33] R. Riedel, H.-D. Hausen, E. Fluck, Angew. Chem. Int. Ed. Engl. 1985, 24, 1056-1057.
[34] O. J. Scherer, J. Vondung, G. Wolmershäuser, Angew. Chem. Int. Ed. 1989, 28, 1355-1357.
[35] W. W. Seidel, O. T. Summerscales, B. O. Patrick, M. D. Fryzuk, Angew. Chem. Int. Ed. Engl. 2009, 48, 115-117.
[36] O. Back, G. Kuchenbeiser, B. Donnadieu, G. Bertrand, Angew. Chem. Int. Ed. Engl. 2009, 48, 55305533.
[37] M. Di Vaira, C. A. Ghilardi, S. Midollini, L. Sacconi, J. Am. Chem. Soc. 1978, 100, 2550-2551.
[38] O. J. Scherer, H. Sitzmann, G. Wolmershäuser, J. Organomet. Chem. 1984, 268, C9-C12.
[39] (a) J. Bai, E. Leiner, M. Scheer, Angew. Chem. Int. Ed. 2002, 41, 783-786.
(b) M. Scheer, L. J. Gregoriades, M. Zabel, J. Bai, I. Krossing, G. Brunklaus, H. Eckert, Chem. Eur. J. 2008, 14, 282-295.
(c) S. Welsch, M. Bodensteiner, M. Dušek, M. Sierka, M. Scheer, Chem. Eur. J. 2010, 16, 1304113045.
(d) B. Attenberger, S. Welsch, M. Zabel, E. Peresypkina, M. Scheer, Angew. Chem. Int. Ed. 2011, 50, 11516-11519.
(e) M. Fleischmann, S. Welsch, E. V. Peresypkina, A. V. Virovets, M. Scheer, Chem. Eur. J. 2015, 21, 14332-14336.
(f) M. E. Moussa, B. Attenberger, E. V. Peresypkina, M. Fleischmann, G. Balázs, M. Scheer, Chem. Commun. 2016, 52, 10004-10007.
(g) M. Fleischmann, J. S. Jones, G. Balázs, F. P. Gabbaï, M. Scheer, Dalton Trans. 2016, 45, 1374213749.
[40] H. Lang, L. Zsolnai, G. Huttner, Angew. Chem. Int. Ed. Engl. 1983, 22, 976-976.
[41] (a) M. L. Ziegler and H.-P. Neumann, Chem. Ber. 1989, 122, 25-30.
(b) F. P. Arnold, D. P. Ridge and A. L. Rheingold, J. Am. Chem. Soc. 1995, 117, 4427-4428.
(c) M. H. Chisholm, K. Folting and J. W. Pasterczyk, Inorg. Chem. 1988, 27, 3057-3058.
(d) M. H. Chisholm, J. C. Huffman and J. W. Pasterczyk, Inorg. Chim. Acta 1987, 133, 17-18.
(e) G. Becker, W. Becker, R. Knebl, H. Schmidt, U. Hildenbrand and M. Westerhausen, Phosphorus and Sulfur 1987, 30, 349-352.
(f) P. Binger, Multiple Bonds and Low Coordination in Phosphorus Chemistry, ed. M. Regitz, 0. J. Scherer, Thieme, Stuttgart, 1990, p. 100.
(g) J. F. Nixon, Chem. Rev. 1988, 88, 1327-1362.
[42] M. Scheer, K. Schuster, T. A. Budzichowski, M. H. Chisholm, W. E. Streib, Chem. Commun. 1995, 1671-1672.
[43] (a) C. E. Laplaza, W. M. Davis, C. C. Cummins, Angew. Chem. Int. Ed. Engl. 1995, 34, 2042-2044.
(b) N. C. Zanetti, R. R. Schrock, W. M. Davis, Angew. Chem. Int. Ed. Engl. 1995, 34, 2044-2046.
[44] O. J. Scherer, J. Schwalb, G. Wolmershäuser, W. Kaim, R. Gross, Angew. Chem. Int. Ed. Engl. 1986, 25, 363-364.
[45] (a) O. J. Scherer, T. Brück, Angew. Chem. Int. Ed. Engl. 1987, 26, 59-59.
(b) O. J. Scherer, T. Brück, G. Wolmershäuser, Chem. Ber. 1988, 121, 935-938.
[46] E. Urnèžius, W. W. Brennessel, C. J. Cramer, J. E. Ellis, P. v. R. Schleyer, Science 2002, 295, 832834.
[47] O. J. Scherer, H. Sitzmann, G. Wolmershäuser, Angew. Chem. Int. Ed. Engl. 1985, 24, 351-353.
[48] O. J. Scherer, H. Swarowsky, G. Wolmershäuser, W. Kaim, S. Kohlmann, Angew. Chem. Int. Ed. Engl. 187, 26, 1153-1155.
[49] (a) M. Baudler, H. Ternberger, W. Faber, J. Hahn, Z. Naturforsch. 1979, B34, 1690-1697.
(b) M. Baudler, T. Pontzen, J. Hahn, H. Ternberger, W. Faber, Z. Naturforsch. 1980, B35, 517-521.
(c) M. Baudler, W. Faber, Chem. Ber. 1980, 113, 3394-3395.
(d) M. Baudler, Angew. Chem. 1982, 94, 520-539; Angew. Chem. Int. Ed. Engl. 1982, 21, 492-512.
(e) M. Baudler, O. Exner, Chem. Ber. 1983, 116, 1268-1270.
(f) M. Baudler, D. Düster, K. Langerbeins, J. Germeshausen, Angew. Chem. 1984, 96, 309-310; Angew. Chem. Int. Ed. Engl. 1984, 23, 317-318.
(g) M. Baudler, R. Heumüller, D. Düster, J. Germeshausen, J. Hahn, Z. anorg. allg. Chem. 1984, 518, 7-13.
(h) M. Baudler, R. Becher, J. Germeshausen, Chem. Ber. 1986, 119, 2510-2516.
(i) S. Du, J. Hu, Z. Chai, W.-X. Zhang, Z. Xi, Chin. J. Chem. 2019, 37, 71-75.
[50] F. Dielmann, M. Sierka, A. V. Virovets, M. Scheer, Angew. Chem. 2010, 122, 7012-7016; Angew. Chem. Int. Ed. Engl. 2010, 49, 6860-6864.
[51] L. Mu, S. Yang, X. Bao, H. Yin, X. Kong, J. Mass Spectrom. 2015, 50, 1352-1357.
[52] C. Schwarzmaier, A. Y. Timoshkin, G. Balázs, M. Scheer, Angew. Chem. Int. Ed. Engl. 2014, 53, 9077-9081.
[53] G. Dettlaf, E. Weiss, J. Organomet. Chem. 1976, 108, 213-223.
[54] C. Eichhorn, O. J. Scherer, T. Sögding, G. Wolmershäuser, Angew. Chem. Int. Ed. 2001, 40, 28592861.
[55] O. J. Scherer, T. Hilt, G. Wolmershäuser, Angew. Chem. Int. Ed. Engl. 2000, 39, 1425-1427.
[56] (a) W. Wichelhaus, H. G. von Schnering, Naturwissenschaften 1973, 60, 104.
(b) N. Korber, J. Daniels, H. G. von Schnering, Angew. Chem. Int. Ed. Engl. 1996, 35, 1107-1110.
(c) H. G. von Schnering, D. Fenske, W. Hönle, M. Binnewies, K. Peters, Angew. Chem. Int. Ed. Engl. 1979, 18, 679-680.
(d) M. Baudler, H. Jachow, J. Germershausen, Z. Anorg. Allg. Chem. 1987, 553, 15-23.
(e) K.-F. Tebbe, Z. Anorg. Allg. Chem. 1989, 572, 115-125.
[57] M. Scheer, S. Deng, O. J. Scherer, M. Sierka, Angew. Chem. Int. Ed. 2005, 44, 3755-3758.
[58] (a) D"': C. Schwarzmaier, S. Heinl, G. Balázs, M. Scheer, Angew. Chem. Int. Ed. Engl. 2015, 54, 13116-13121.
(b) D*: R. Grünbauer, Master Thesis, University of Regensburg (Regensburg), 2016.
[59] M. Eberl, Ph. D. Thesis, University of Regensburg (Regensburg), 2011.
[60] J. Müller, S. Heinl, C. Schwarzmaier, G. Balázs, M. Keilwerth, K. Meyer, M. Scheer, Angew. Chem. Int. Ed. 2017, 56, 7312-7317.
[61] (a) S. Heinl, M. Scheer, Chem. Sci. 2014, 5, 3221-3225.
(b) S. Heinl, S. Reisinger, C. Schwarzmaier, M. Bodensteiner, M. Scheer, Angew. Chem. Int. Ed. 2014, 53, 7639-7642.
[62] C. Schwarzmaier, A. Y. Timoshkin, G. Balázs, M. Scheer, Angew. Chem. Int. Ed. 2014, 53, 90779081.

2. Research objectives

Understanding the fundamental processes of P_{4} activation could propose new pathways in the generation of phosphorus containing compounds ultimately rendering the current toxic, uneconomical and wasteful approach as obsolete. Intrigued by previous results, synthetic pathways originating from P_{4} butterfly compounds are a fascinating possibility to obtain new P_{n} ligand complexes and furthermore gain insight in the subsequent processes of P_{4} activation. Therefore, the isolobal compounds $\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu, 1^{1: 1}-\mathrm{P}_{4}\right)\right](1)$ and $\left[\left\{\mathrm{Cp}^{*} \mathrm{Cr}(\mathrm{CO})_{2}\right\}_{3}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right](2)$ are chosen as starting materials to investigate the reactivity potential of P_{4} butterfly compounds. On the one hand their isolobality suggests a rather similar reaction behavior, whereas the differing nature of the organometallic substituents is expected to promote unique reactivities as well. Hence, the combination of the two starting materials is predestined to evaluate the influence of the organometallic substituent on the reactivity of the P_{n} ligand complex.

Previously, the coordination behavior of 1 towards different Lewis acids has been investigated resulting in coordination processes as well as novel rearrangement pathways. However, the reactions were mostly limited to small Lewis acids like coinage metal or Fe(II) salts. Hence tasks of this thesis are:

- Investigating the relatively unknown reactivity of 2 towards different Lewis acids.
- Expanding the reactivity of 1 towards more elaborate Lewis acidic metallcarbonyles.

In contrast to the reactivity towards Lewis acids, the reactivity of P_{4} butterfly complexes towards nucleophiles has not been studied to date. Therefore, another task of this thesis is:

- Investigating the reactivity of $\mathbf{1}$ and $\mathbf{2}$ towards different nucleophiles.

Lastly, the rather labile $\mathrm{P}-\mathrm{Cr}$ bond in 2 suggest the possibility of selective bond cleavage ultimately yielding an unsubstituted P_{4} butterfly motif which could be available for the reaction with newly introduced substituents. Consequently, the generation of novel P_{4} butterfly complexes could be achieved. Therefore, the final task of this thesis is:

- Utilizing 2 in the selective transfer of the P_{4} butterfly unit to obtain novel P_{4} butterfly complexes.

3. The butterfly complex $\left[\left\{\mathrm{Cp}^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right\}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]$ as a versatile

 ligand and its unexpected $\mathrm{P}_{1} / \mathrm{P}_{3}$ fragmentation routeRebecca Grünbauer, Gábor Balázs and Manfred Scheer

3.1 Abstract

The versatile coordination behavior of the P_{4} butterfly complex $\left[\left\{\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right\}_{2}\left(\mu, \eta^{1: 1}-P_{4}\right)\right]$ (1) towards Lewis acidic pentacarbonyl compounds of Cr, Mo and W is reported. The reaction of 1 with $\left[W(C O)_{4}(n b d)\right]$ (nbd $=$ norbornadiene) yields the complex $\left[\left\{C p^{*} \operatorname{Cr}(\mathrm{CO})_{3}\right\}_{2}\left(\mu_{3}, \eta^{1: 1: 1: 1}-P_{4}\right)\left\{W(C O)_{4}\right\}\right](2)$, in which 1 serves as a chelating P_{4} butterfly ligand. In contrast, reactions of 1 with $\left[M(C O)_{4}(n b d)\right](M=C r(a), M o(b))$ result in the step-wise formation of $\left[\left\{\mathrm{Cp}^{*} \mathrm{Cr}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{3,} \eta^{3: 1: 1}-P_{4}\right)\left\{M(C O)_{5}\right\}\right]$ (3) and $\left[\left\{\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{4}, \eta^{3: 1: 1: 1}-P_{4}\right)\left\{M(C O)_{5}\right\}_{2}\right]$ (4), which contain a folded cyclo- P_{4} unit. 4a undergoes an unprecedented P_{1} / P_{3}-fragmentation yielding the cyclo- P_{3} complex $\left[\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{2}\left(\eta^{3}-P_{3}\right)\right]$ (5) and the yet unknown phosphinidene complex $\left[\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{2}\left(\mathrm{Cr}(\mathrm{CO})_{5}\right)_{2}\left(\mu_{3}-\mathrm{P}\right)\right](6)$. The identity of 6 is confirmed by spectroscopic methods and by the in-situ formation of $\left[\left\{\mathrm{Cp}^{*} \mathrm{Cr}(\mathrm{CO})_{2}{ }^{(}{ }^{(} \mathrm{BuNC}\right)\right\} \mathrm{P}\left\{\mathrm{Cr}(\mathrm{CO})_{\left.\left.5{ }_{52}{ }^{(}{ }^{(} \mathrm{BuNC}\right)\right]}(7)\right.$. DFT calculations shade light in the bonding situation of the reported products.

3.2 Introduction

The activation of small molecules is currently of great importance, as hereby uneconomical industrial scale reactions can be improved by making them more atom-efficient, clean, sustainable and inexpensive. ${ }^{[1]}$ Within this field, the investigations considering the activation of P_{4} describe the subsequent $P-P$ bond cleavage of the tetrahedral P_{4} molecule of white phosphorus. ${ }^{[2]}$ Ultimately, the goal of these studies is to achieve insight in controlling the remarkable reactivity of P_{4} and eventually obtain organo-phosphorus compounds in a more sustainable way. The first step of the selective degradation of the P_{4} tetrahedron is the formation of the tetraphospha-bicyclo[1.1.0]butane moiety (often entitled P_{4} butterfly due to its geometry). This moiety can be used as a ligand in coordination chemistry, typically displaying small bite angles, like usual chelating diphosphine ligands. ${ }^{[3]}$ This was demonstrated by the synthesis of the transition-metal stabilized bridging P_{4} butterfly complex $\left[\left\{\mathrm{Cp} " ' \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]\left(\mathbf{A}, \mathrm{Cp} " '=\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{2}{ }^{\mathrm{t}} \mathrm{Bu}_{3}\right) .{ }^{[4]}$

The continuative degradation of white phosphorus via the P_{4} butterfly structure is widely investigated and a plethora of polyphosphorus compounds could be isolated. ${ }^{[2]}$ However, only very few examples are reported for a controlled fragmentation of the intact P_{4} butterfly moiety affording a P_{1} and a P_{3} fragment. One of the reported examples originates from the butterfly anion $\mathrm{Li}\left[\mathrm{Mes}^{*} \mathrm{P}_{4} \cdot \mathrm{BR}_{3}\right] \cdot{ }^{[5]}$ Lammertsma et al. studied its reactivity towards imidazolium salts and phenylisocyanate yielding the stabilized phosphinidene adducts and [Mes* ${ }_{3}$] fragments. They could isolate the P_{3} fragment as the respective dimer [Mes* $\left.\mathrm{P}_{3}\right]_{2}$ or as the DielsAlder adduct [Mes* $\mathrm{P}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{8}\right)$] after employing the trapping agent 1,3-cyclohexadiene. Starting from elemental phosphorus, Zhang et al. used intricate rare-earth-metal complexes to obtain bicyclo[4.1.0]triphosphaheptanide ligands alongside with phospholyl lithium. ${ }^{[6]}$ Both of these fragmentation routes require additional reactants like non-innocent ligands in order to induce the $\mathrm{P}_{1} / \mathrm{P}_{3}$ fragmentation. A first step towards a more untouched P_{1} / P_{3} fragmentation route was reported by reacting $[C p * N i(\mu-C O)]_{2}$ with P_{4} in the presence of stabilizing $\left[\mathrm{Cr}(\mathrm{CO})_{5}\right]$ fragments. ${ }^{[7]}$ Various steps of irridiation and thermolysis induce the fragmentation process affording a bend cyclo- P_{4} structure. Subsequently, the formation of $\left[\mathrm{Cp} * \mathrm{Ni}\left(\eta^{3}-\mathrm{P}_{3}\right)\left\{\mathrm{Cr}(\mathrm{CO})_{5}\right\}_{3}\right]$ and an $\left[\mathrm{Cp}{ }^{*} \mathrm{Ni} \equiv \mathrm{P}-\mathrm{Cr}(\mathrm{CO})_{5}\right]$ intermediate that could be isolated as its corresponding dimer $\left[\left\{\mathrm{Cp}^{*} \mathrm{Ni}\right\}_{2}\left(\mu, \eta^{2: 2}-\right.\right.$ $\left.\left.\mathrm{P}_{2}\right)\left\{\mathrm{Cr}(\mathrm{CO})_{5}\right\}_{2}\right]$ was observed.

Scheme 1. Coordination and isomerization obtained from the reaction of \mathbf{A} with different Fe (II) Lewis acids.

DFT calculations predicted that a chelating coordination mode via the lone pairs of the two wing tip Patoms of \mathbf{A} is energetically most favorable. ${ }^{[8]}$ Therefore, we studied the coordination behavior of \mathbf{A} towards monovalent coinage metal salts and different Fe (II) compounds. ${ }^{[8,9]}$ As anticipated, chelating coordination products, e.g. $\left[\left\{\mathrm{Cp} " \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{3,}, \eta^{1: 1: 1: 11}-\mathrm{P}_{4}\right)\left\{\mathrm{FeBr}_{2}\right\}\right]^{[8]}(\mathbf{B}$, Scheme 1$)$, in which \mathbf{A} acts as a bidentate ligand could be obtained. With $70.27(3)^{\circ}$ the bite angle of \mathbf{B} compares well to the bite angle reported for dppm (72(2) ${ }^{\circ}$, 1,2-bis(diphenylphosphino)methane). ${ }^{[3]}$ In contrast, $\left[\mathrm{Fe}(\mathrm{MeCN})_{6}\right]^{2+}$, a Lewis acid containing labile acetonitrile ligands, reacts with \mathbf{A} by inducing an isomerization of the P_{4} butterfly unit forming the 6π-aromatic cyclo- P_{4} sandwiched dication $\left[\left\{\left(\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right)_{2}\left(\mu_{3}, \eta^{1: 1: 4}-\mathrm{P}_{4}\right)\right\}_{2} \mathrm{Fe}\right]^{2+}(\mathrm{C}$, Scheme 1$) .{ }^{[9]}$

While the reactivity of \mathbf{A} under photolytic ${ }^{[10]}$ and thermolytic ${ }^{[4]}$ reaction conditions, its reactivity towards alkynes ${ }^{[11]}$ and its coordination chemistry ${ }^{[8,9]}$ have been intensively studied, the reactivity of the isostructural chromium containing complex $\left[\left\{\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right\}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]\left(1, \mathrm{Cp}^{*}=\eta^{5}-\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5}\right)$ has only been scarcely investigated. ${ }^{[12]}$ Consequently, this encouraged us to further study the reactivity of 1 and the question arose, whether simple coordination chemistry expected for a chelating polyphosphine would occur or a much more diverse reaction pathway would be unraveled.

3.3 Results and Discussion

Scheme 2. Reactions of 1 with Lewis acidic $\left[M(C O)_{4}(n b d)\right](M=C r, M o, W)$.

Herein we report on the reaction of 1 with Lewis acidic group six carbonyl complexes $\left[M(C O)_{4}(n b d)\right](M=C r$, Mo, W; nbd = norbornadiene). The weakly coordinating norbornadiene ligand is expected to be replaced by the more strongly donating P_{4} butterfly ligand affording new organometallic P_{4} coordination compounds. The reaction of 1 with 1.0 eq. $\left[W(C O)_{4}(n b d)\right]$ selectively yields the chelating adduct $\left[\left\{\mathrm{Cp}{ }^{*} \operatorname{Cr}(\mathrm{CO})_{3}\right\}_{2}\left(\mu_{3}, \eta^{1: 1: 1: 1: 1}-\right.\right.$
$\left.\left.\mathrm{P}_{4}\right)\left\{\mathrm{W}(\mathrm{CO})_{4}\right\}\right]$ (2, Scheme 2). The formation of the tetraphosphatungsten-tricyclo[1.1.1.0 ${ }^{2,4}$]pentane compound could be verified by single crystal X-ray diffraction analysis. ${ }^{[13]}$ Hereby, only little influence of the bidentate coordination on the overall structure of the P_{4} scaffold could be detected in comparison to 1 (Fig. 1). While for 2 bond lengths and angles similar to those for 1 are given, the central P_{4} unit in $\mathbf{2}$ is slightly distorted, whereas this moiety in $\mathbf{1}$ is more symmetrical. Due to the distortion, which probably perseveres in solution, $\mathbf{2}$ displays an AA'BB' spin system with a relatively large $\delta_{A A^{\prime}} / \delta_{B B^{\prime}}$ separation affording two multiplets at $\delta=-168.8 \mathrm{ppm}$ (bridgehead P atoms) and $\delta=-153.8 \mathrm{ppm}$ (wing tip P atoms) in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum. The outstanding feature of 2 is the exceedingly small $\mathrm{P} 1-\mathrm{W}-\mathrm{P} 2$ bite angle of $64.21(11)^{\circ}$ again highlighting the structural familiarity to the dppm ligand. ${ }^{[3]}$

Surprisingly, the reactions of 1 with $\left[M(C O)_{4}(n b d)\right](M=\operatorname{Cr}(a)$, $M o(b))$ do not afford P_{4} butterfly-Lewis acid adducts, but the monosubstituted $\left[\left\{\mathrm{Cp}^{*} \mathrm{Cr}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{3}, \eta^{3: 1: 1}-\mathrm{P}_{4}\right)\left\{\mathrm{M}(\mathrm{CO})_{5}\right\}\right]$ (3) and the disubstituted derivative $\left[\left\{\mathrm{Cp}^{*} \mathrm{Cr}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{4}, \eta^{3: 1: 1: 1: 1}-\mathrm{P}_{4}\right)\left\{\mathrm{M}(\mathrm{CO})_{5}\right\}_{2}\right]$ (4) (Scheme 2). During the formation of 3 and 4 a cleavage of the $P-P$ bond between the former bridgehead P atoms of 1 is observed affording a folded deltoid cyclo- P_{4} unit as the central structural moiety. This is a direct result from an initial CO shift from the $\left[\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right]$ substituents of 1 to the $\left[M(C O)_{4}\right]$ fragments yielding $\left[\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{2}\right]$ substituents and $\left[M(C O)_{5}\right]$ units. The consequential electron deficit on Cr 2 is balanced by an additional coordination of the two former bridgehead phosphorus atoms towards Cr 2 , leading to the cleavage of the $\mathrm{P}-\mathrm{P}$ bond (labeling according to Fig. 1). The electron deficit of the Cr 1 fragment is balanced by the formation of a formal double bond between Cr 1 and the adjacent P1 atom and the former wing tip atom P1 reaches a planar coordination environment. The formal $\mathrm{P}=\mathrm{Cr}$ double bond can be viewed as an additional coordination of the P lone pair to the Cr 1 atom since the [$\left.\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{2}\right]$ fragment requires 3 additional electrons according to the 18 VE rule. Various terminal or bridging, square planar or distorted cyclo- P_{4} ligands have been reported either as bare polyphosphorus units or stabilized by different Lewis acids. ${ }^{[2]}$ However, the folded deltoid cyclo- P_{4} unit of 3 and $\mathbf{4}$ represents a novel structural motif due to the adjacent $\mathrm{P}=\mathrm{Cr}$ double bond that can be interpreted as the tail of the cyclo- P_{4} kite. The structurally most related compound to 3 and 4 is $\left[\left\{\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}(\mathrm{CO})_{2} \mathrm{WCl}\right\}\left(\eta^{3}-\mathrm{P}_{3}\left\{\mathrm{~W}(\mathrm{CO})_{5}\right\}_{2}-\mathrm{P}\left\{(\mathrm{X}) \mathrm{W}(\mathrm{CO})_{5}\right\}\right)\right]$ $(\mathrm{X}=\mathrm{Cl}, \mathrm{OH})$ for which no phosphorus metal double bond but an additional stabilization with a chloride or hydroxy group on the P1 atom is observed. ${ }^{[14]}$

According to DFT calculations, the reaction of 1 with $\left[\mathrm{Cr}(\mathrm{CO})_{4}(\mathrm{nbd})\right]$ is slightly endothermic $\left(1.34 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}\right)$ while the reaction of 1 with $\left[\mathrm{W}(\mathrm{CO})_{4}(\mathrm{nbd})\right]$ yielding 2 is exothermic $\left(-6.49 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}\right)$. This reinforces that a stable complex, such as $\left[\left\{\mathrm{Cp}^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right\}_{2}\left(\mu_{3}, \eta^{1: 1: 1: 1: 1}-\mathrm{P} 4\right)\left\{\mathrm{Cr}(\mathrm{CO})_{4}\right\}\right]$ (" 2 a ") is not formed, but rather a CO shift from a $\left[\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right]$ unit to the $\left[\mathrm{Cr}(\mathrm{CO})_{4}\right]$ moiety occurs.

When the reaction of 1 with $\left[M(C O)_{4}(n b d)\right](M=C r(a), M o(b))$ is performed in a 1:1 stoichiometry, the monosubstituted compound $\mathbf{3}$ is the main product in the reaction solution alongside with traces of $\mathbf{4}$. However, the conversion of 1 is limited to 50% due to the mismatched CO count. Two CO ligands are abstracted from each molecule of 1 , but only one CO ligand is needed to obtain a $\left[M(C O)_{5}\right]$ fragment from $\left[M(C O)_{4}(n b d)\right](M=C r$, Mo). In contrast, $\mathbf{4}$ is formed almost quantitively (besides some impurities of $\mathbf{3}$), when the reaction of 1 with $\left[M(C O)_{4}(n b d)\right](M=C r, M o)$ is performed in a 1:2 ratio. Attempts to isolate 3 by crystallization lead to rearrangement to 4 , which exclusively crystallizes from the solution. This process was monitored by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy (vide infra). Therefore, reasonable amounts of pure 3 could not be isolated although different isolation methods and alternative synthetic pathways have been examined. Yet, a few single crystals of 3 a could be obtained from the reaction mixture after storage at $-78^{\circ} \mathrm{C}$, whereas 4 a already crystallizes
at $-28^{\circ} \mathrm{C}$ (Fig. 1). Unfortunately, no single crystals could be obtained for $\mathbf{3 b}$ but a similar structure to $\mathbf{3 a}$ can be proposed based on NMR spectroscopic data. ${ }^{[15]}$ Compounds $\mathbf{3 a}, \mathbf{4 a}$ and $\mathbf{4 b}$ all crystallize readily in the form of stacked plates from saturated solutions in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-28{ }^{\circ} \mathrm{C}\left(\mathbf{3 a}: \mathrm{P}_{2} / \mathrm{c} ; \mathbf{4 a}\right.$ and $\mathbf{4 b}$: $\left.\mathrm{P} \overline{1}\right)$. The central deltoid cyclo- P_{4} structural motif of $\mathbf{3 a}, \mathbf{4 a}$ and $\mathbf{4 b}$, respectively, is very similar. The distances for the P1-P2 bond (3a: $2.2181(7) \AA, 4 \mathbf{a}: 2.2265(13) \AA, \mathbf{4 b}: 2.2259(13) \AA$) and the P1-P3 bond (3a: $2.1973(7) \AA$, 4a: $2.2013(14) \AA, 4 \mathbf{b}: 2.1938(13) \AA$) comply well with the value for an usual $P-P$ single bond $(2.209(5) \AA) .{ }^{[16]}$ In contrast, the P2-P4 bond (3a: 2.1606(7) \AA, 4a: 2.1390(15) \AA, 4b: 2.1427 (13) \AA) and P3-P4 bond (3a: $2.1705(7) \AA, 4 \mathbf{a}: 2.1583(12) \AA, 4 b: 2.1560(13) \AA$) are noticeably shortened indicating a delocalized electron system between P2, P3 and P4 (labeling according to Fig. 1). The Cr1-P1 bond attached to the rearranged cyclo- P_{4} unit (3a: $2.1258(6) \AA$, 4a: $2.1129(11) \AA$, $\mathbf{4 b}$: 2.1169 (11) \AA) is significantly shortened in comparison to the corresponding $\mathrm{P}-\mathrm{Cr}$ bond length in 1 (2.529(2) \AA), revealing a $\mathrm{Cr} 1-\mathrm{P} 1$ multiple bond character. Moreover, the degree of folding of the cyclo- P_{4} unit is independent of the nature of the substituent pattern as 3a, 4a and $\mathbf{4 b}$ display nearly identical folding angles (3a: 135.50(8) ${ }^{\circ}$, 4a: 135.92(6) ${ }^{\circ}$, 4b: $\left.136.18(8)^{\circ}\right)$.

Figure 1. Molecular structures of 2, 3a, 4a and $\mathbf{5}$ in the solid state; H atoms and solvent molecules are omitted for clarity and CO as well as Cp^{*} ligands are drawn in the wire frame model; thermal ellipsoids are drawn at 50% probability level.

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of 3 and 4 are very similar displaying an AMNX spin system. ${ }^{[15]}$ The chemical shift of the signal attributed to $\mathrm{P}_{\mathrm{A}}(\delta=515.4 \mathrm{ppm}(\mathbf{3 a}), 515.4 \mathrm{ppm}(\mathbf{3 b}), 489.1 \mathrm{ppm}(\mathbf{4 a}), 487.8 \mathrm{ppm}(\mathbf{4 b})$; P 1 in Fig. 1) is in the typical range for a phosphorus atom in planar environment that is part of a formal phosphorus metal multiple bond. In comparison to the formal $\left[\mathrm{Cr}=\mathrm{P}(\mathrm{P})_{2}\right]$ structural motif in 3 and 4 , the ${ }^{31} \mathrm{P}$ NMR chemical shift of the trigonal planar $\left[\mathrm{Mn}=\mathrm{P}(\mathrm{Fe})_{2}\right]$ moiety of $\left[\left\{\left(\mathrm{CpMn}(\mathrm{CO})_{2}\right)-\left(\mu_{3}, 1^{1: 1: 1}-\mathrm{P}\right)\right\}_{2}\left\{\mathrm{Fe}_{2}(\mathrm{CO})_{6}\right\}\right]$ is even more downfield shifted $\left(\delta\left({ }^{31} \mathrm{P}\right)=977 \mathrm{ppm}\right) .{ }^{[17]}$ The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction mixture after stirring 1 with 1.0 eq. of $\left[\mathrm{Cr}(\mathrm{CO})_{4}(\mathrm{nbd})\right]$ in thf for 3 days shows the signal set characteristic for 3a (Fig. S6a in SI) as the main product as well as traces of $\mathbf{4 a}$. In contrast, the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the crystals obtained from storing the concentrated reaction mixture at $-28{ }^{\circ} \mathrm{C}$ displays exclusively the signals of $\mathbf{4 a}$ ($\mathrm{Fig} . \mathrm{S} 6 \mathrm{~b}$ in SI). Obviously, 3a coordinates to an excess of $\left[\mathrm{Cr}(\mathrm{CO})_{5}\right]$ units present in the solution during the crystallization process. Consequently, $\mathbf{4 a}$ is formed, which crystallizes due to its lower solubility. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the supernatant of the obtained crystals exhibits signals for both major compounds $\mathbf{3 a}$ and $\mathbf{4 a}$. However, the intensity of the signals corresponding to $\mathbf{3 a}$ decreased significantly in comparison to the signals corresponding to $\mathbf{4 a}$, now promoting $\mathbf{4 a}$ to the primary component in solution after crystallization (Fig. S6c in SI). In summary, storing the concentrated reaction solution at low temperatures leads to the formation of $\mathbf{4 a}$ from 3a and excess $\left[\mathrm{Cr}(\mathrm{CO})_{5}\right]$ in the form of crystalline $4 \mathbf{a}$ as well as in solution. The same observations can be reported for $\mathbf{3} \mathbf{b}$ and $\mathbf{4 b}$ but in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of crystalline $\mathbf{4 b}$ minor amounts of $\mathbf{3} \mathbf{b}$ can be detected indicating partial degradation after re-dissolving.

In order to elucidate the electronic structure of 4a, DFT calculations at the B3LYP/def2-TZVP level were performed. ${ }^{[18]}$ The DFT optimized geometry of $\mathbf{4 a}$ compares well with the experimental geometry. According to NBO analysis, the Cr1-P1 bond is a double bond built from a σ-type and a π-type bond (Fig. 2). The σ-bond is realized over a $\mathrm{sp}^{0.9}$ hybrid orbital on phosphorus and a $\mathrm{sd}^{2.2}$ hybrid orbital on chromium, while the π-orbital is realized over a pure p-orbital on P and pure d -orbital on Cr . The partial double bond character is also reflected in the Wiberg Bond Index (WBI) of 1.16, while the WBI of the Cr3-P3 bond is $0.39{ }^{[15]}$ The WBIs of the P1-P2 and P1-P3 bonds are slightly lower (0.91 and 0.93) then the WBIs of the P2-P4 and P3-P4 bonds (1.06 and 0.99).

Figure 2. Localized molecular orbitals of $\mathbf{4 a}$ representing the $\mathrm{Cr} 1-\mathrm{P} 1$ multiple bond.

A common observation for all experiments performed with 1 is the sensitivity of 1 towards temperature and light causing slow decomposition even at mild reaction conditions. In nearly all manipulations starting from 1
one characteristic singlet at approx. - 270 ppm can be detected in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum. By comparison with literature data for similar compounds Scherer et al. attributed this chemical shift to $\left[\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{2}\left(\eta^{3}-\mathrm{P}_{3}\right)\right]$ (5) ${ }^{[19]}$ and within this work we were able to confirm this proposal by single crystal X-ray diffraction of the isolated compound 5 (Fig. 1). ${ }^{[20]}$ Alongside 5, an insoluble solid (probably a mixture of various polyphosphides) is obtained after the quantitative decomposition of 1.

Remarkably, after stirring a solution of $\mathbf{4 a}$ in thf for three days at $50^{\circ} \mathrm{C}$ a distinct second degradation product can be detected. In the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum, an additional singlet at $\delta=1123.7 \mathrm{ppm}$ is recorded next to the characteristic singlet at $\delta=-273.3$ ppm corresponding to 5 . The drastic low field shift of this novel signal indicates a planar coordination sphere of the corresponding P atom, as it is typical for planar phosphinidene complexes like the μ_{3}-bridging complex $\left[\left\{\mathrm{CpW}(\mathrm{CO})_{2}\right\}\left(\mu_{3}-\mathrm{P}\right)\left\{\mathrm{Cr}(\mathrm{CO})_{5}\right\}_{2}\right]\left(\mathrm{B}, \delta\left({ }^{31} \mathrm{P} \mathrm{NMR}\right)=945 \mathrm{ppm}\right){ }^{[21]}$ Hence, we propose the structurally analog $\left[\left\{\mathrm{Cp}^{*} \operatorname{Cr}(\mathrm{CO})_{2}\right\}\left(\mu_{3}-\mathrm{P}\right)\left\{\mathrm{Cr}(\mathrm{CO})_{5}\right\}_{2}\right](6)$ as the second compound obtained from the degradation of 4 a attributable to the second signal at $\delta=1123.7 \mathrm{ppm}$) observed in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum. Although 6 could not be characterised by single crystal X-ray diffraction analysis, the mutual extreme low field ${ }^{31} \mathrm{P}$ NMR chemical shifts of $\mathbf{6}$ and \mathbf{B} validate the proposed structure of $\mathbf{6}$. Consequently, an unprecedented type of selective $\mathrm{P}_{1} / \mathrm{P}_{3}$-fragmentation of $\mathbf{4 a}$ yielding 5 and 6 can be proposed (Scheme 3). A closer look on the molecular structure of $\mathbf{4 a}$ in the solid state further supports the proposed $\mathrm{P}_{1} / \mathrm{P}_{3}$ fragmentation. As discussed above, two different $P-P$ bond lenghts can be found in 4a. The two longest and therefore comparatively weakest $P-P$ bonds (P1-P2 and P1-P3) appear to be the predetermined breaking points of 4 a finally affording 5 and 6.

4a

5

Scheme 3. $\mathrm{P}_{1} / \mathrm{P}_{3}$-fragmentation of $\mathbf{4 a}$ and subsequent phosphinidene adduct formation of the obtained P_{1}-fragment $\mathbf{6}$ yielding 7.

Since it was not possible to isolate 6 as a pure compound from the reaction mixture, we attempted to trap 6
with ${ }^{\text {tBuNC }}{ }^{1}$ as this type of reaction is widely known for phosphinidene complexes. For instance, ${ }^{\text {t }}$ BuNC reacts with $\left[\mathrm{Cp} * \mathrm{P}\left\{\mathrm{W}(\mathrm{CO})_{5}\right\}_{2}\right]$ affording the Lewis acid/base (LA/LB) adduct [Cp*P\{W(CO) $\left.\left.)_{5}\right\}_{2}\left({ }^{[1} \mathrm{BuNC}\right)\right]$. ${ }^{[22]}$ Diagnostic is the extreme change in the ${ }^{31} \mathrm{P}$ NMR chemical shift from $\delta=1076.5 \mathrm{ppm}{ }^{[22 a]}$ for the phosphinidene complex to $\delta=-73.1 \mathrm{ppm}^{[22 \mathrm{~b}]}$ for the LA/LB adduct. Following this strategy, an excess of ${ }^{\text {tBuNC }}$ was added to a solution of 6. The reaction was monitored by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy, which shows that the characteristic signal for 6 at $\delta=1124 \mathrm{ppm}$ disappears while a new signal at $\delta=-166 \mathrm{ppm}$ appears indicating the full conversion of 6 into the proposed LA/LB adduct $\left[\left\{\mathrm{Cp}^{*} \mathrm{Cr}\left({ }^{(} \mathrm{BuNC}\right)(\mathrm{CO})_{2}\right\}-\left(\mu_{3}-\mathrm{P}\right)\left\{\mathrm{Cr}(\mathrm{CO})_{5}\right\}_{2}\right]$ (7, Scheme 3). In $\mathbf{7}$ the planar coordination geometry of the P atom is abolished by the additional coordination of one ${ }^{\mathrm{t}} \mathrm{BuNC}$ ligand yielding a pseudo-tetrahedral phosphinidene adduct. Consequently, the deshielding of the P atom is strongly reduced leading to the drastic change in the chemical shift. A second 'BuNC ligand additionally coordinates to the $\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{2}$ fragment, compensating the arisen electron deficit at the Cr atom accordingly. According to DFT calculations, the coordination of one ${ }^{\text {t } B u N C ~ t o ~ t h e ~} P$ atom in the center of 6 is exothermic with $-48.5 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$. The addition of the second ${ }^{\mathrm{t}} \mathrm{BuNC}$ molecule to the $\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{2}$ fragment is even more exothermic with $-53.2 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$, indicating that the coordination of two ${ }^{\text {tBuNC ligands to }} \mathbf{6}$ is to be expected. In order to prove the identity of $\mathbf{6}$ and $\mathbf{7}$, the ${ }^{31}$ P NMR chemical shifts of $\mathbf{5}, \mathbf{B}, \mathbf{6}$ and $\mathbf{7}$ have been calculated by DFT methods. For this, the geometry of the compounds has been optimized in the gas phase at the BP86/Def2TZVP level of theory. For the calculation of the ${ }^{31}$ P NMR chemical shifts using the GIAO method the aug-pcSseg-2 basis set for phosphorus has been used. The values of the calculated chemical shifts are in good agreement with the experimental values (Table 1), validating the proposed identity of $\mathbf{6}$ and $\mathbf{7}$.

Table 1. Experimental ($\delta_{\text {exp }}$) and calculated ($\delta_{\text {cal }}{ }^{31} \mathrm{P}$ NMR chemical shifts of compounds 5, B, 6 and 7.

	$\mathbf{5}$	\mathbf{B}	$\mathbf{6}$	$\mathbf{7}$
$\delta_{\text {exp }} / \mathrm{ppm}$	$-273^{[a]}$	$945^{[b]}$	$1124^{[a]}$	$-166^{[a]}$
$\delta_{\text {cal }} / \mathrm{ppm}$	-242	1046	1221	-111

${ }^{[a]}$ recorded in thf with $\mathrm{C}_{6} \mathrm{D}_{6}$ capillary at room temperature
${ }^{[b]}$ recorded in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $-20^{\circ} \mathrm{C}^{[21]}$

It has to be noted, that the ${ }^{31} \mathrm{P}$ chemical shifts are very sensitive to geometry changes. In order to evaluate the accuracy of the calculated chemical shifts, we also included the known phosphinidene complex $\left[\mathrm{CpW}(\mathrm{CO})_{2}\left(\mathrm{Cr}(\mathrm{CO})_{5}\right)_{2}\left(\mu_{3}-\mathrm{P}\right)\right](\mathrm{B})^{[21]}$ in our calculations. The calculated ${ }^{31} \mathrm{P}$ chemical shift of $\delta=1046 \mathrm{ppm}$ is in good agrement with the experimental value of $\delta=954 \mathrm{ppm}$. This shows, that the electronic structure of \mathbf{B} and 6 are well described by the applied DFT methods and confirms the identity of 6 .

3.4 Conclusion

In conclusion, we were able to illustrate the diverse coordination behavior of the P_{4} butterfly complex 1 towards Lewis acidic carbonyl compounds of Cr, Mo and W . On the one hand a chelating coordination yielding 2, a complex with a P_{4} butterfly ligand that displays an exceedingly small bite angle, was achieved by implying $\left[\mathrm{W}(\mathrm{CO})_{4}\right]$ fragments. On the other hand, 1 manifested to be a promising starting material for rearrangement
processes yielding new compounds with folded cyclo- P_{4} units (3 and 4), when reacted with $\left[\mathrm{M}(\mathrm{CO})_{4}\right]$ moieties ($M=\operatorname{Cr}(\mathbf{a})$, $\mathrm{Mo}(\mathbf{b})$). Most importantly, an unprecedented $\mathrm{P}_{1} / \mathrm{P}_{3}$-fragmentation route was observed starting from 4 a yielding the cyclo- P_{3} complex 5 and the novel μ_{3}-bridging phosphinidene compound $\mathbf{6}$. The proposed structure of 6 could be verified by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy, DFT calculations and the in-situ reaction with ${ }^{\text {tBuNC }}$ yielding the phosphinidene adduct 7. These results promote the ongoing implementation of P_{4} butterfly complexes as starting materials in the formation of unprecedented polyphosphorus compounds which represent further steps is the P_{4} activation sequence.

3.5 References

[1] a) N. Hazari, Chem. Soc. Rev. 2010, 39, 4044-4056; b) I. Mellone, F. Bertini, L. Gonsalvi, A. Guerriero, M. Peruzzini, Chimia 2015, 69, 331-338; c) Z. Turner, Inorganics 2015, 3, 597; d) R. A. Henderson, Trans. Met. Chem. 1990, 15, 330-336; e) V. P. Indrakanti, J. D. Kubicki, H. H. Schobert, Energy Environ. Sci. 2009, 2, 745-758; f) X. Yin, J. R. Moss, Coord. Chem. Rev. 1999, 181, 27-59.
[2] a) B. M. Cossairt, N. A. Piro, C. C. Cummins, Chem. Rev. 2010, 110, 4164-4177; b) M. Caporali, L. Gonsalvi, A. Rossin, M. Peruzzini, Chem. Rev. 2010, 110, 4178-4235; c) M. Scheer, G. Balázs, A. Seitz, Chem. Rev. 2010, 110, 4236-4256; d) N. A. Giffin, J. D. Masuda, Coord. Chem. Rev. 2011, 255, 1342-1359.
[3] P. W. N. M. van Leeuwen, P. C. J. Kamer, J. N. H. Reek, P. Dierkes, Chem. Rev. 2000, 100, 27412770.
[4] O. J. Scherer, T. Hilt, G. Wolmershäuser, Organometallics 1998, 17, 4110-4112.
[5] J. E. Boger, A. W. Ehlers, M. Lutz, J. C. Slootweg, K. Lammertsma, Angew. Chem. Int. Ed., 2017, 56, 285-290.
[6] S. Du, J. Yin, Y. Chi, L. Xu, W.-X. Zang, Angew. Chem. Int. Ed., 2017, 56, 15886-15890.
[7] M. Scheer, U. Becker, Chem. Ber. 1996, 129, 1307-1310.
[8] C. Schwarzmaier, S. Heinl, G. Balázs, M. Scheer, Angew. Chem. 2015, 127, 13309-13314; Angew. Chem. Int. Ed. Engl. 2015, 54, 13116-13121.
[9] J. Müller, S. Heinl, C. Schwarzmaier, G. Balázs, M. Keilwerth, K. Meyer, M. Scheer, Angew. Chem. 2017, 129, 7418-7423; Angew. Chem. Int. Ed. 2017, 56, 7312-7317.
[10] O. J. Scherer, G. Schwarz, G. Wolmershäuser, Z. Anorg. Allg. Chem. 1996, 622, 951-957.
[11] O. J. Scherer, T. Hilt, G. Wolmershäuser, Angew. Chem. Int. Ed. Engl. 2000, 39, 1425-1427.
[12] C. Schwarzmaier, A. Y. Timoshkin, G. Balázs, M. Scheer, Angew. Chem. Int. Ed. 2014, 53, 90779081.
[13] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339-341.
[14] M. Scheer, M. Dargatz, P. G. Jones, J. Organomet. Chem. 1993, 447, 259-264.
[15] Cf. SI for further detail
[16] a) A. Simon, H. Borrmann, H. Craubner, Phosphorus Sulfur Silicon Relat. Elem. 1987, 30, 507-710; b) H. Okudera, E. Dinnebier Robert, A. Simon, Z. Kristallogr. 2005, $220,259$.
[17] H. Lang, L. Zsolnai, G. Huttner, Angew. Chem. Int. Ed. 1983, 22, 976-976.
[18] The electronic structure of $\mathbf{3 a}, \mathbf{3 b}, \mathbf{4 a}$ and $\mathbf{4 b}$ are very similar, therefore only $\mathbf{4 a}$ will be discussed. For details on the electronic structure of 4 a see SI .
[19] O. J. Scherer, J. Schwalb, G. Wolmershäuser, W. Kaim, R. Groß, Angew. Chem. 1986, 98, 349-350.
[20] The structure of 5 in the solid state complies well with the known Cp analog $\left[\mathrm{CpCr}(\mathrm{CO})_{2}\left(\eta^{3}-\mathrm{P}_{3}\right)\right]$; L. Y. Goh, C. K. Chu, R. C. S. Wong, J. Chem. Soc, Dalton Trans. 1989, 1, 1951-1956.
[21] G. Huttner, U. Weber, B. Sigwarth, O. Scheidsteger, H. Lang, L. Zsolnai, J. Organomet. Chem. 1985, 282, 331-348.
[22] a) M. Scheer, E. Leiner, P. Kramkowski, M. Schiffer, G. Baum, Chem. Eur. J. 1998, 4, 1917-1923; b) M. Seidl, M. Schiffer, M. Bodensteiner, A. Y. Timoshkin, M. Scheer, Chem. Eur. J. 2013, 19, 13783 -13791.

3.6 Supplementary Information

3.6.1 General remarks

All experiments were carried out under an atmosphere of dry argon or nitrogen using glovebox and schlenk techniques. Residues of oxygen and water were removed from the inert gas by passing it over a BASF R 3$11\left(\mathrm{CuO} / \mathrm{MgSiO}_{3}\right)$ catalyst, concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ and finally granulated silica gel. Dry solvents were collected from a Braun SPS Apparatus and degassed prior to use. The deuterated solvents $\mathrm{C}_{6} \mathrm{D}_{6}$ and $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ were degassed and dried by stirring with Na / K alloy and CaH_{2}, respectively, followed by distillation. After the distillation, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ was additionally stored over molecular sieve ($3 \AA$) which had previously been dried for four hours under high vacuum at $100^{\circ} \mathrm{C}$. $\left[\left\{\mathrm{Cp}^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right\}_{2}\left(\mu, \mathrm{\eta}^{1: 1}-\mathrm{P}_{4}\right)\right](1)^{[1]}$ and $\left[\mathrm{M}(\mathrm{CO})_{4}(\mathrm{nbd})\right](\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W})^{[2]}$ were prepared according to literature procedures.

NMR spectra were recorded at the NMR department of the University Regensburg using a Bruker Advance 300 or 400 spectrometer. Samples are referenced against TMS $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right)$ or $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}\left({ }^{31} \mathrm{P}\right)$ as external standards. Chemical shifts (δ) are reported in ppm and coupling constants (J) in Hz . The spectra were processed using the TopSpin 3.5 software (Bruker) and the WIN-DAISY module of this software was used to perform simulations. ${ }^{[3]}$

Mass spectrometry experiments were performed by the MS department of the University Regensburg. The LIFDI-, FD-, and EI-MS spectra were recorded on an AccuToF GCX (Jeol) spectrometer. The observed fragments were assigned according to the mass/charge (m / z) ratio and the isotope pattern.

IR spectra were recorded on an ALPHA platinum ATR spectrometer (Bruker Optik GmbH) which was placed inside a glove box. Therefore, the air-sensitive solid samples could be placed directly on the spectrometer without any additional preparative measures.

Elemental analyses were performed by the department of central analyses of the University Regensburg on a Vario micro cube instrument (Elementar Analysensysteme GmbH).

3.6.2 Syntheses

Synthesis of $\left[\left\{\mathrm{Cp}^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right\}_{2}\left(\mu_{3}, \boldsymbol{\eta}^{1: 1: 1: 1:}-\mathrm{P}_{4}\right)\left\{\mathrm{W}(\mathrm{CO})_{4}\right\}\right]$ (2)
A dark orange solution of 1 ($100 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in thf $(5 \mathrm{~mL})$ is added to a slightly yellow solution of $\left[\mathrm{W}(\mathrm{CO})_{4}(\mathrm{nbd})\right](59 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) in thf (5 \mathrm{~mL})$. The resulting mixture is stirred at room temperature for 3 days. Hereby, the color of the solution changes from dark orange to red. The solvent is subsequently removed under reduced pressure. The resulting red solid is washed with n-hexane and dried in vacuo. To obtain pure 2, n-pentane (15 mL) is slowly added to a concentrated solution of the crude product in dichloromethane (2 mL). Hereby, 2 precipitates as a dark red powder. Crystals suitable for single crystal X-ray analysis were obtained from a saturated solution in n-hexane (5 mL) and dichloromethane (1 mL) after storage at $-28^{\circ} \mathrm{C}$.

Analytical data for 2

Yield	$70 \mathrm{mg}(0.8 \mathrm{mmol}, 48 \%)$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{~K}\right)$	$\delta[\mathrm{ppm}]=1.42\left(\mathrm{~s}, 30 \mathrm{H}, \mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{3}\right)$.
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{~K}\right)$	$\delta[\mathrm{ppm}]=-153.8\left(\mathrm{~m}, 2 \mathrm{P}, \mathrm{P}_{\mathrm{A}}\right),-168.8\left(\mathrm{~m}, 2 \mathrm{P}, \mathrm{P}_{\mathrm{B}}\right)$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{~K}\right)$	$\delta[\mathrm{ppm}]=-153.8\left(\mathrm{~m}, 2 \mathrm{P}, \mathrm{P}_{\mathrm{A}}\right),-168.8\left(\mathrm{~m}, 2 \mathrm{P}, \mathrm{P}_{\mathrm{B}}\right)$.
IR (solid)	$\tilde{\mathrm{v}} \mathrm{co}\left[\mathrm{cm}^{-1}\right]=2069(\mathrm{~s}), 2019(\mathrm{~s}, \mathrm{br}), 2006(\mathrm{~s}, \mathrm{br}), 1992(\mathrm{~s}, \mathrm{br}), 1988(\mathrm{~s}, \mathrm{br})$.
ES-MS (toluene)	No reasonable peaks detectable.
LIFDI-MS (toluene)	No reasonable peaks detectable.

Synthesis of $\left[\left\{\mathrm{Cp}{ }^{*} \operatorname{Cr}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{3}, \eta^{3: 1: 1}-\mathrm{P}_{4}\right)\left\{\mathrm{Cr}(\mathrm{CO})_{5}\right\}\right]$ (3a)

A dark orange solution of $1(100 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.0$ eq.) in thf (5 mL) is added to a yellow solution of $\left[\mathrm{Cr}(\mathrm{CO})_{4}(\mathrm{nbd})\right](39 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in thf $(5 \mathrm{~mL})$. The resulting mixture displays a color change from orange to red while it is stirred at room temperature for 3 d . Subsequently, the solvent is removed under reduced pressure. The resulting solid is dried in vacuo and dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL). Upon storage at $-78^{\circ} \mathrm{C}$ for two weeks and subsequent storage at $-28^{\circ} \mathrm{C}$ for three months, a few single crystals of 3a can be obtained.

Analytical data for 3a

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right) \quad \delta[\mathrm{ppm}]=22.3\left(\mathrm{dd},{ }^{1} \mathrm{~J}_{\mathrm{Mx}}=306 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{Nx}}=290 \mathrm{~Hz}, 1 \mathrm{P}, \mathrm{Px}\right), 166.3$ (dd, $\left.{ }^{1} \mathrm{~J}_{\mathrm{AN}}=257 \mathrm{~Hz}, \quad{ }^{1} \mathrm{~J}_{\mathrm{NX}}=290 \mathrm{~Hz}, \quad 1 \mathrm{P}, \mathrm{P}_{\mathrm{N}}\right), 226.3$ (dd, ${ }^{1} \mathrm{~J}_{\mathrm{AM}}=251 \mathrm{~Hz}$, $\left.{ }^{1} \mathrm{~J}_{\mathrm{MX}}=306 \mathrm{~Hz}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{M}}\right), 515.4\left(\mathrm{~m}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{A}}\right)$.

Synthesis of $\left[\left\{\mathrm{Cp} * \mathrm{Cr}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{3}, \eta^{3: 1: 1}-\mathrm{P}_{4}\right)\left\{\mathrm{Mo}(\mathrm{CO})_{5}\right\}\right]$ (3b)

A dark orange solution of $1(100 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.0$ eq.) in thf $(5 \mathrm{~mL})$ is added to a yellow solution of $\left[\mathrm{Mo}(\mathrm{CO})_{4}(\mathrm{nbd})\right](45 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) in thf (5 \mathrm{~mL})$. The resulting mixture displays a color change from orange to red while it is stirred at room temperature for 3 d . Subsequently, the solvent is removed under reduced pressure. The resulting solid is dried in vacuo and dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL). Upon storage 3b rearranges to $\mathbf{4 b}$ obtainable in the form of dark black crystalline plates.

Analytical data for (3b)

$\begin{array}{ll}{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right) & \delta[\mathrm{ppm}]=29.2\left(\mathrm{dd},{ }^{1} \mathrm{~J}_{\mathrm{Mx}}=285 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{NX}}=303 \mathrm{~Hz}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{x}}\right), 174.1(\mathrm{dd}, \\ & \left.{ }^{1} \mathrm{~J}_{\mathrm{AN}}=248 \mathrm{~Hz}, \quad{ }^{1} \mathrm{~J}_{\mathrm{NX}}=303 \mathrm{~Hz}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{N}}\right), 197.1 \quad\left(\mathrm{dd},{ }^{1} \mathrm{~J}_{\mathrm{AM}}=251 \mathrm{~Hz},\right. \\ & \left.{ }^{1} \mathrm{~J}_{\mathrm{MX}}=285 \mathrm{~Hz}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{M}}\right), 515.4\left(\mathrm{~m}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{A}}\right) .\end{array}$

Synthesis of $\left[\left\{\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{4}, \eta^{3: 1: 1: 1: 1}-\mathrm{P}_{4}\right)\left\{\mathrm{Cr}(\mathrm{CO})_{5}\right\}_{2}\right]$ (4a)

A dark orange solution of $1(200 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) in thf (5 \mathrm{~mL})$ is added to a yellow solution of $\left[\mathrm{Cr}(\mathrm{CO})_{4}(\mathrm{nbd})\right]$ ($154 \mathrm{mg}, 0.6 \mathrm{mmol}, 2.0 \mathrm{eq}$.) in thf $(5 \mathrm{~mL})$. The resulting mixture is stirred at room temperature for 20 h . Hereby, the color of the solution darkens. The solvent is removed under reduced pressure yielding a brown-purple solid that is washed with n-pentane. The solid is taken up in dichloromethane (2 mL) and upon storage at $-28^{\circ} \mathrm{C}$ pure 4 a is obtained in the form of purple crystals that are suitable for single crystal X -ray analysis.

Analytical data for 4a

Yield	184 mg ($0.18 \mathrm{mmol}, 60 \%$).
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right)$	$\delta[\mathrm{ppm}]=1.84\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.15\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{3}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right)$	$\begin{aligned} & \delta[\mathrm{ppm}]=11.4\left(\mathrm{~s}, \mathrm{C}_{5}\left(\mathrm{C}_{3}\right)_{3}\right), 12.0\left(\mathrm{~s}, \mathrm{C}_{5}\left(\underline{\mathrm{C}_{3}}\right)_{3}\right), 103.3\left(\mathrm{~s}, \underline{\mathrm{C}}_{5}\left(\mathrm{CH}_{3}\right)_{3}\right), 105.8 \\ & \left(\mathrm{~s}, \underline{\mathrm{C}} 5\left(\mathrm{CH}_{3}\right)_{3}\right), 212.2(\mathrm{~s}, \mathrm{CO}), 214.7(\mathrm{~s}, \mathrm{CO}), 215.9-216.1(\mathrm{~m}, \mathrm{CO}), 221.2(\mathrm{~s}, \\ & \mathrm{CO}), 221.9(\mathrm{~s}, \mathrm{CO}) . \end{aligned}$
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right)$	$\begin{aligned} & \delta[p p m]=107.9\left(\mathrm{ddd},{ }^{2} \mathrm{~J}_{\mathrm{AX}}=28 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{MX}}=300 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{NX}}=330 \mathrm{~Hz}, 1 \mathrm{P}, \mathrm{PX}\right) \text {, } \\ & 150.5\left(\mathrm{ddd},{ }^{2} \mathrm{~J}_{\mathrm{MN}}=19.5 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{AN}}=252 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{NX}}=330 \mathrm{~Hz}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{N}}\right), 219.5 \\ & \left(\mathrm{ddd},{ }^{2} \mathrm{~J}_{\mathrm{MN}}=19.5 \mathrm{~Hz},{ }^{1} \mathrm{JAM}_{\mathrm{AM}}=254 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{MX}}=300 \mathrm{~Hz}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{M}}\right), 489.1(\mathrm{dt}, \\ & \left.{ }^{2} \mathrm{~J}_{\mathrm{AX}}=28 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{AM}} \text { resp. }{ }^{1} \mathrm{~J}_{\mathrm{AN}}=254 \mathrm{~Hz}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{A}}\right) . \end{aligned}$
IR (solid)	$\begin{aligned} & \tilde{v} \mathrm{co}\left[\mathrm{~cm}^{-1}\right]=2069 \text { (s), } 2055 \text { (s), } 1995 \text { (s), } 1977 \text { (m), } 1921 \text { (s, br), } 1909 \text { (s,br), } \\ & 1867 \text { (s, br). } \end{aligned}$
LIFDI-MS (toluene)	$\mathrm{m} / \mathrm{z}=993.85[\mathrm{M}]^{+}(100 \%), 801.92\left[\mathrm{M}-\mathrm{Cr}(\mathrm{CO})_{5}\right]^{+}(10 \%)$.
Elemental Analysis	calcd. for $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{Cr}_{4} \mathrm{O}_{14} \mathrm{P}_{4} \cdot\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\left(1079.42 \mathrm{~g} \mathrm{~mol}^{-1}\right)$ C 38.95, H 2.99; found C 39.09, H 3.07 .

Synthesis of $\left[\left\{\mathrm{Cp}{ }^{*} \operatorname{Cr}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{4}, \eta^{3: 1: 1: 1: 1}-\mathrm{P}_{4}\right)\left\{\mathrm{Mo}(\mathrm{CO})_{5}\right\}_{2}\right]$ (4b)
A dark orange solution of $1(100 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) in thf (5 \mathrm{~mL})$ is added to a yellow solution of $\left[\mathrm{Mo}(\mathrm{CO})_{4}(\mathrm{nbd})\right](90 \mathrm{mg}, 0.30 \mathrm{mmol}, 2.0 \mathrm{eq}$.) in thf $(5 \mathrm{~mL})$. The resulting mixture is stirred at room temperature for 20 h while the color of the solution turns from orange to dark brown. The solvent is removed under reduced pressure yielding a brown solid that is washed with n-pentane. The solid is subsequently taken up in a mixture of dichloromethane (2 mL) and n-pentane (5 mL). Upon storage at $-28^{\circ} \mathrm{C}$ pure $\mathbf{4 b}$ is obtained in the form of black crystals that are suitable for single crystal X-ray analysis.

Analytical data for 4b

Yield
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right)$
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right)$

83 mg ($0.76 \mathrm{mmol}, 51 \%$).
$\delta[p p m]=1.84\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.14\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{3}\right)$.
$\delta[p p m]=11.4\left(\mathrm{~s}, \mathrm{C}_{5}\left(\underline{\mathrm{C}} \mathrm{H}_{3}\right)_{3}\right), 12.0\left(\mathrm{~s}, \mathrm{C}_{5}\left(\underline{\mathrm{C}} \mathrm{H}_{3}\right)_{3}\right), 103.2\left(\mathrm{~s}, \underline{\mathrm{C}}_{5}\left(\mathrm{CH}_{3}\right)_{3}\right), 105.4$ (s, $\underline{\mathrm{C}}_{5}\left(\mathrm{CH}_{3}\right)_{3}$) (no signals for CO ligands detectable).

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl} 2,300 \mathrm{~K}\right)$	$\delta[p p m]=75.2\left(\mathrm{~m}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{x}}\right), 152.9\left(\mathrm{~m}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{N}}\right), 192.2\left(\mathrm{~m}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{m}}\right), 487.8$ (td, ${ }^{2} J_{A X}=24 \mathrm{~Hz},{ }^{1} J_{\mathrm{AM}}$ resp. $\left.{ }^{1} \mathrm{~J}_{\mathrm{AN}}=248 \mathrm{~Hz}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{A}}\right)$.
IR (solid)	$\begin{aligned} & \tilde{v}_{\mathrm{co}}\left[\mathrm{~cm}^{-1}\right]=2078(\mathrm{~m}), 2067(\mathrm{~m}), 1997(\mathrm{~m}, \mathrm{br}), 1979(\mathrm{~m}, \mathrm{br}), 1924(\mathrm{~s}, \mathrm{br}) \text {, } \\ & 1909(\mathrm{~s}, \mathrm{br}), 1865(\mathrm{~s}, \mathrm{br}) . \end{aligned}$
LIFDI-MS (toluene)	$\mathrm{m} / \mathrm{z}=1081.77[\mathrm{M}]^{+}(100 \%), 847.85\left[\mathrm{M}-\mathrm{Mo}(\mathrm{CO})_{5}\right]^{+}(24 \%)$.

Fragmentation of $\left[\left\{\mathrm{Cp}^{*} \mathrm{Cr}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{4}, \eta^{3: 1: 1: 11}-\mathrm{P}_{4}\right)\left\{\mathrm{Cr}(\mathrm{CO})_{5}\right\}_{2}\right](4 \mathrm{a})$ and in situ reactivity of $\left[\left\{\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{2}\right\}\left(\mu_{3}-\right.\right.$ $\left.\mathrm{P})\left\{\mathrm{Cr}(\mathrm{CO})_{5}\right\}_{2}\right](6)$ affording $\left[\left\{\mathrm{Cp}^{*} \mathrm{Cr}(\mathrm{CO})_{2}\left({ }^{\mathrm{t}} \mathrm{BuNC}\right)\right\} \mathrm{P}\left\{\mathrm{Cr}(\mathrm{CO})_{5}\right\}_{2}\left({ }^{(} \mathrm{BuNC}\right)\right](7)$

A brown solution of $\mathbf{4 a}(20 \mathrm{mg}, 0.02 \mathrm{mmol}, 1.0$ eq. $)$ in thf $(50 \mathrm{~mL})$ is stirred at $50{ }^{\circ} \mathrm{C}$ for 3 d . Using ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy, the consumption of the starting material can be monitored and two new signals are obtained. ${ }^{\text {t } B u-N C ~(~} 1 \mathrm{~mL}, 8.8 \mathrm{mmol}, 440$ eq.) is added to the reaction solution and no color change can be observed. Again, with the help of ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy the immediate quantitative reaction of $\mathbf{6}$ to $\mathbf{7}$ is observed, while the signal for 5 stays unchanged.

Analytical data

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (5,thf with $\mathrm{C}_{6} \mathrm{D}_{6}$-capillary, 300 K)
${ }^{31}$ P\{ $\left.{ }^{1} \mathrm{H}\right\}$ NMR (6 ,thf with $\mathrm{C}_{6} \mathrm{D}_{6}$-capillary, 300 K)
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (7,thf with $\mathrm{C}_{6} \mathrm{D}_{6}$-capillary, 300 K)
$\delta[p p m]=-273.3\left(\mathrm{~s}, 3 \mathrm{P},\left[\mathrm{Cp}{ }^{*} \operatorname{Cr}(\mathrm{CO})_{2}\left(\eta^{3}-\underline{P}_{3}\right)\right]\right)$.
$\delta[p p m]=1123.7\left(\mathrm{~s}, 1 \mathrm{P},\left[\left\{\mathrm{Cp}{ }^{*} \operatorname{Cr}(\mathrm{CO})_{2}\right\}\left(\mu_{3}-\underline{P}\right)\left\{\mathrm{Cr}(\mathrm{CO})_{5}\right\}_{2}\right]\right)$.
$\delta[\mathrm{ppm}]=-166.4$ (s, 1P, $\quad\left[\left\{\mathrm{Cp}^{*} \mathrm{Cr}(\mathrm{CO})_{2}\left({ }^{(} \mathrm{BuNC}\right)\right\} \underline{\mathrm{P}}-\right.$ $\left.\left.\left\{\mathrm{Cr}(\mathrm{CO})_{5}\right\}_{2}\left({ }^{(\mathrm{BuNC}}\right)\right]\right)$.

3.6.3 NMR spectroscopic experiments

Figure S1. Experimental (top) and simulated (bottom) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectra of 2 (recorded in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 300 K).

Table S1. Experimental and simulated values for the chemical shifts and coupling constants in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 2 (recorded in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 300 K).

	Exp.	$\begin{gathered} \text { F1 } \\ (85.69 \%) \end{gathered}$	$\begin{gathered} \text { F2 } \\ (14.28 \%) \end{gathered}$		Exp.	$\begin{gathered} \text { F1 } \\ (85.69 \%) \end{gathered}$	$\begin{gathered} \text { F2 } \\ (14.28 \%) \end{gathered}$
$\delta_{\text {A }}$	$\begin{gathered} \hline-153.8 \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \hline-153.8 \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} -153.8 \\ \mathrm{ppm} \end{gathered}$	$\begin{aligned} & { }^{1} J_{A B} \\ & { }^{1} \mathrm{~J}_{\mathrm{AB}} \end{aligned}$	$\begin{aligned} & 168 \mathrm{~Hz} \\ & 168 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 169.2 \mathrm{~Hz} \\ & 169.2 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & \hline 169.4 \mathrm{~Hz} \\ & 168.7 \mathrm{~Hz} \end{aligned}$
$\delta_{\text {A }}$	$\begin{gathered} -153.8 \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} -153.8 \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} -153.8 \\ \text { ppm } \end{gathered}$	$\begin{aligned} & { }^{1} J_{A^{\prime} \cdot B} \\ & { }^{1} J_{A^{\prime} \cdot B^{\prime}} \end{aligned}$	$\begin{aligned} & 168 \mathrm{~Hz} \\ & 168 \mathrm{~Hz} \end{aligned}$	$\begin{gathered} 169.2 \mathrm{~Hz} \\ 169.2 \mathrm{~Hz} \end{gathered}$	$\begin{aligned} & 169.4 \mathrm{~Hz} \\ & 168.7 \mathrm{~Hz} \end{aligned}$
$\delta_{\text {в }}$	$\begin{gathered} -168.8 \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} -168.8 \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} -168.8 \\ \text { ppm } \end{gathered}$	$\begin{aligned} & { }^{2} \mathrm{~J}_{\mathrm{AA}} \\ & { }^{2} \mathrm{JBB}^{\prime} \end{aligned}$	$\begin{aligned} & 11 \mathrm{~Hz} \\ & 11 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 35.0 \mathrm{~Hz} \\ & 15.4 \mathrm{~Hz} \end{aligned}$	$35.0 \mathrm{~Hz}$ $18.7 \text { Hz }$
δ_{B}	$\begin{gathered} -168.8 \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} -168.8 \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} -168.8 \\ \mathrm{ppm} \end{gathered}$	${ }^{1} \mathrm{~J}_{\mathrm{AW}}$ ${ }^{1}{ }^{\mathrm{J} \cdot \mathrm{W}} \mathrm{W}$ ${ }^{2} J_{B W}$ ${ }^{2} J_{B} \cdot \mathrm{~W}$			$\begin{gathered} 128.3 \mathrm{~Hz} \\ 129.0 \mathrm{~Hz} \\ 9.8 \mathrm{~Hz} \\ 9.8 \mathrm{~Hz} \end{gathered}$

The simulation of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 2 was carried out on the basis of an AA'BB' spin system with a C_{1} symmetry. According to the natural abundancy of the NMR active ${ }^{138} \mathrm{~W}$ isotope, the simulation was performed using two fragments. The main fragment (F1, 85.69\%) was simulated with an NMR inactive tungsten atom, whereas the second fragment (F2, 14.28\%) considered the ${ }^{138} \mathrm{~W}$ atom.

Figure S2. Experimental ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction of 1 with 1.0 eq. $\left[\mathrm{Cr}(\mathrm{CO})_{4}(\mathrm{nbd})\right]$ (top, recorded in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 300 K) and simulated ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{3 a}$ (bottom).

Figure S3. Experimental (top, recorded in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 300 K) and simulated (bottom) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectra of 4a.

Figure S4. Experimental ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction of 1 with 1.0 eq. $\left[\mathrm{Mo}(\mathrm{CO})_{4}(\mathrm{nbd})\right]$ (top, recorded in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 300 K) and simulated ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{3 b}$ (bottom).

Figure S5. Experimental (top, recorded in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 300 K) and simulated (bottom) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum of $\mathbf{4 b}$ (Signals marked with * can be attributed to $\mathbf{3 b}$ as a result of decomposition).

Table S2. Experimental and simulated values for the chemical shifts and coupling constants in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{3 a}, \mathbf{4 a}$ and $\mathbf{4 b}$ (recorded in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 300 K).

	experimental values				simulated values ${ }^{[1]}$			
3a	$\delta_{\text {A }}$	515.4 ppm	${ }^{1}{ }_{\text {Jam }}$	251 Hz	$\delta_{\text {A }}$	515.4 ppm	${ }^{1} \mathrm{~J}_{\text {AM }}$	249.3 Hz
	$\delta_{\text {M }}$	226.3 ppm	${ }^{1} \mathrm{JAN}$	257 Hz	$\delta_{\text {м }}$	226.3 ppm	${ }^{1} \mathrm{~J}_{\text {AN }}$	258.5 Hz
	δ_{N}	166.3 ppm	${ }^{2} \mathrm{JAX}$	-	δ_{N}	166.2 ppm	${ }^{2} \mathrm{JAX}$	6.8 Hz
	δx	22.3 ppm	${ }^{2} J_{\text {MN }}$	-	δ^{\prime}	22.3 ppm	${ }^{2} J_{\text {MN }}$	1.1 Hz
			${ }^{1} J_{\text {MX }}$	306 Hz			${ }^{1} \mathrm{~J}_{\text {MX }}$	306.2 Hz
			${ }^{1} J_{\mathrm{NX}}$	290 Hz			${ }^{1} \mathrm{~J}_{\mathrm{NX}}$	291.0 Hz
3b	$\delta_{\text {A }}$	515.4 ppm	${ }^{1} \mathrm{Jam}$	252 Hz	$\delta_{\text {A }}$	515.4 ppm	${ }^{1}$ Jam	250.5 Hz
	ठм $^{\text {m }}$	197.1 ppm	${ }^{1}{ }^{\text {AN }}$	247 Hz	ठм	197.1 ppm	${ }^{1} J_{\text {AN }}$	248.2 Hz
	δ_{N}	174.1 ppm	${ }^{2} J_{\text {AX }}$	-	δ_{N}	174.1 ppm	${ }^{2} J_{\text {AX }}$	5.7 Hz
	δx	29.2 ppm	${ }^{2} \mathrm{~J}_{\text {MN }}$	-	δ^{x}	29.2 ppm	${ }^{2} \mathrm{~J}_{\text {MN }}$	2.6 Hz
			${ }^{1} J_{\text {MX }}$	284 Hz			${ }^{1} \mathrm{~J}_{\text {MX }}$	284.6 Hz
			${ }^{1} J_{\mathrm{NX}}$	303 Hz			${ }^{1} \mathrm{~J}_{\mathrm{NX}}$	302.5 Hz
4a	$\delta_{\text {A }}$	489.1 ppm	${ }^{1} \mathrm{JAM}$	254 Hz	$\delta_{\text {A }}$	489.1 ppm	${ }^{1} J_{\text {AM }}$	256.0 Hz
	$\delta_{\text {M }}$	219.5 ppm	${ }^{1} \mathrm{JAN}$	252 Hz	$\delta_{\text {м }}$	219.6 ppm	${ }^{1} J_{\text {AN }}$	251.3 Hz
	δ_{N}	150.5 ppm	${ }^{2} J_{\text {AX }}$	28 Hz	δ_{N}	150.4 ppm	${ }^{2} J_{\text {AX }}$	26.9 Hz
	δx	107.9 ppm	${ }^{2} J_{\text {mN }}$	20 Hz	δx	108.0 ppm	${ }^{2}$ Jmn	19.2 Hz
			${ }^{1} \mathrm{JmX}^{\text {m }}$	300 Hz			${ }^{1} \mathrm{~J}_{\text {MX }}$	230.0 Hz
			${ }^{1} J_{\mathrm{NXX}}$	330 Hz			${ }^{1} \mathrm{~J}_{\mathrm{NX}}$	330.3 Hz
4b	$\delta_{\text {A }}$	487.8 ppm	${ }^{1} \mathrm{JAM}$	-	$\delta_{\text {A }}$	487.8 ppm	${ }^{1}{ }^{\text {AMM }}$	247.3 Hz
	ठм $^{\text {m }}$	192.2 ppm	${ }^{1} \mathrm{JAN}$	248 Hz	ठм	192.1 ppm	${ }^{1}{ }^{\text {daN }}$	249.6 Hz
	δ_{N}	152.9 ppm	${ }^{2} J_{\text {AX }}$	24 Hz	δ_{N}	152.9 ppm	${ }^{2} J_{\text {AX }}$	22.6 Hz
	δx	75.2 ppm	${ }^{2}$ JMN	-	δx	75.2 ppm	${ }^{2}$ JmN	20.8 Hz
			${ }^{1} J_{\text {MX }}$	-			${ }^{1} \mathrm{~J}_{\text {MX }}$	286.9 Hz
			${ }^{1} J_{\mathrm{NX}}$	-			${ }^{1} \mathrm{~J}_{\mathrm{NX}}$	324.0 Hz

[^0]The simulation of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{3 a}, \mathbf{4 a}$ and $\mathbf{4 b}$ was carried out on the basis of an AMNX spin system with a C_{1} symmetry.

Figure S6: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra (recorded in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 300 K) of the reaction of 1 with 1.0 eq. $\left[\mathrm{Cr}(\mathrm{CO})_{4}(\mathrm{nbd})\right]$: (a) reactions solution (b) dissolved crystals obtained from the reaction solution (c) supernatant of the obtained crystals.

Figure S7. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (recorded in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 300 K) of the reaction solution (top) and the isolated crystals (bottom) from the reaction of 1 with 1.0 eq. [$\left.\mathrm{Mo}(\mathrm{CO})_{4}(\mathrm{nbd})\right]$.

As discussed for $\mathbf{3 a}$, the monosubstituted $\mathbf{3 b}$ is the main species in the reaction solution when reacting $\mathbf{1}$ with 1.0 eq. $\left[\mathrm{Mo}(\mathrm{CO})_{4}(\mathrm{nbd})\right]$. When storing the solution at $-28{ }^{\circ} \mathrm{C}$ during the crystallization process, a second substitution occurs giving $\mathbf{4 b}$ as the exclusive crystallization product. However, if the crystals are dissolved in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ a small amount of $\mathbf{4} \mathbf{b}$ decomposes to give $\mathbf{3} \mathbf{b}$ as a side product.

Figure S8: ${ }^{31}{ }^{1}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra (recorded in thf with $\mathrm{C}_{6} \mathrm{D}_{6}$ capillary at 300 K) of the fragmentation of $\mathbf{4 a}$ yielding 5 and 6 (a) and the in-situ reaction with ${ }^{\text {tBuNC }}$ affording 7 (b).

3.6.4 DFT calculations

For the calculation of the reaction energies the geometry of the compounds has been optimized in the gas phase at the RI- ${ }^{[4]}{ }^{B} 3 L Y P^{[5]} /$ def2-TZVP ${ }^{[6]}$ level of theory using the TURBOMOLE ${ }^{[7]}$ program package. The Multipole Accelerated Resolution of Identity (MARI-J) ${ }^{[8]}$ approach has been used in the geometry optimization steps to speed up the calculations. The final energy has been determined by single point calculations on the optimized geometries without the RI approximation. The SCF energies has been used without corrections for zero-point vibration energies.

The ${ }^{31} \mathrm{P}$ NMR chemical shifts have been calculated using the Gauge-Independent Atomic Orbital (GIAO) method ${ }^{[9]}$ as implemented in Gaussian09. ${ }^{[10]}$ For this, the geometries have been optimized using the BP86 ${ }^{[11]}$ functional together with the def2-TZVP basis set and a fine integration grid. The magnetic shielding has been computed by a single point calculation in which for the phosphorus atom the def2-TZVP basis set has been replaced by the aug-pcSseg-2 basis set, ${ }^{[12]}$ obtained from the basis set exchange library. ${ }^{[13]}$ The values of the ${ }^{31} \mathrm{P}$ NMR chemical shifts have been calculated using the formula $\delta_{\text {mol }}=\sigma_{\text {ref }}-\sigma_{\text {mol }}+\delta_{\text {ref }}$, where $\mathrm{PH} H_{3}$ was used as reference with $\delta\left({ }^{31} \mathrm{P}\right)=-266 \mathrm{ppm}$.

The natural bond orbital analysis (NBO) has been performed with NBO $6.0^{[14]}$ on the wave function obtained at the B3LYP/def2-TZVP level of theory.

Table S3. Section of the NBO-output for compound 4a.
(Occupancy) Bond orbital / Coefficients / Hybrids

140. (1.85698) BD (1) Cr1-P6					
(57.67\%)	$0.7594 * \mathrm{Cr} 1$	s (1.83\%)	p 0.03 (0.05\%)	d 53.74 (98.12\%)	f 0.00 (0.00\%)
(42.33\%)	0.6506*P6	s (21.10\%)	p 3.72 (78.51\%)	d 0.02 (0.37\%)	f 0.00 (0.02\%)
141. (1.83957) BD (1) Cr1-P8					
(64.52\%)	0.8032*Cr1	s (0.55\%)	p 0.18 (0.10\%)	d 99.99 (99.34\%)	f 0.00 (0.00\%)
(35.48\%)	0.5957* P8	s (6.95\%)	p 13.28 (92.25\%)	d 0.11 (0.79\%)	f 0.00 (0.01\%)
144. (1.76395) BD (1) Cr2-P5					
(35.03\%)	0.5918*Cr2	s (30.60\%)	p 0.04 (1.10\%)	d 2.23 (68.28\%)	f 0.00 (0.01\%)
(64.97\%)	0.8061*P5	s (46.42\%)	p 0.93 (43.33\%)	d 0.22 (10.06\%)	f 0.00 (0.19\%)
145. (1.86275) BD (2) Cr2-P5					
(47.05\%)	$0.6860 * \mathrm{Cr} 2$	s (0.04\%)	p 0.72 (0.03\%)	d 99.99 (99.93\%)	f 0.06 (0.00\%)
(52.95\%)	0.7276*P5	s (0.02\%)	p 99.99 (99.83\%)	d 4.90 (0.11\%)	f 1.97 (0.04\%)
148. (1.85150) BD (1) Cr3-P6					
(24.66\%)	0.4966*Cr3	s (35.21\%)	p 0.00 (0.07\%)	d 1.84 (64.72\%)	f 0.00 (0.00\%)
(75.34\%)	0.8680*P6	s (44.08\%)	p 1.27 (55.83\%)	d 0.00 (0.06\%)	f 0.00 (0.03\%)
155. (1.79766) BD (1) P5-P8					
(47.00\%)	0.6855*P5	s (25.13\%)	p 2.24 (56.34\%)	d 0.73 (18.42\%)	f 0.00 (0.10\%)
(53.00\%)	0.7280*P8	s (11.87\%)	p 7.31 (86.74\%)	d 0.12 (1.37\%)	f 0.00 (0.03\%)
156. (1.93333) BD (1) P6-P7					
(45.31\%)	0.6731*P6	s (15.06\%)	p 5.57 (83.90\%)	d 0.07 (1.00\%)	f 0.00 (0.04\%)
(54.69\%)	0.7396*P7	s (36.73\%)	p 1.70 (62.44\%)	d 0.02 (0.79\%)	f 0.00 (0.04\%)
157. (1.92869) BD (1) P7-P8					
(53.78\%)	0.7333*P7	s (31.80\%)	p 2.12 (67.29\%)	d 0.03 (0.87\%)	f 0.00 (0.04\%)
(46.22\%)	0.6799*P8	s (12.05\%)	p 7.17 (86.42\%)	d 0.12 (1.50\%)	f 0.00 (0.03\%)

Table S4. Wiberg bond index matrix in the NAO basis.

Atom	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
Cr1	0.0000	0.0359	0.0248	0.0266	0.0306	0.4698	0.4212	0.5083	0.0009
Cr2	0.0359	0.0000	0.0037	0.0090	1.1572	0.0414	0.0509	0.0494	0.0029
Cr3	0.0248	0.0037	0.0000	0.0015	0.0205	0.3892	0.0212	0.0258	0.0796
Cr4	0.0266	0.0090	0.0015	0.0000	0.0103	0.0271	0.3951	0.0245	0.0001
P5	0.0306	1.1572	0.0205	0.0103	0.0000	0.9126	0.0364	0.9301	0.0013
P6	0.4698	0.0414	0.3892	0.0271	0.9126	0.0000	0.9942	0.0637	0.0101
P7	0.4212	0.0509	0.0212	0.3951	0.0364	0.9942	0.0000	1.0579	0.0004
P8	0.5083	0.0494	0.0258	0.0245	0.9301	0.0637	1.0579	0.0000	0.0010

Table S5. Total SCF energies at the B3LYP/def2-TZVP level.

Compound	Total energy (a. u.)	Compound	$\begin{aligned} & \text { Total energy } \\ & \text { (a. u.) } \end{aligned}$
norbornadiene	-271.3943365	3b	-5322.473081
$\left[\mathrm{Cr}(\mathrm{CO})_{4}(\mathrm{nbd})\right]$	-1769.183676	4a	-7909.770896
$\left[\mathrm{Mo}(\mathrm{CO})_{4}(\mathrm{nbd})\right]$	-793.0132628	4b	-5957.430388
$\left[\mathrm{W}(\mathrm{CO})_{4}(\mathrm{nbd})\right]$	-791.8932707	5	-2685.1003
1	-4914.174548	6a	-5224.64971
2a	-6411.963378	$\begin{aligned} & {\left[\{ \mathrm { Cp } ^ { * } \mathrm { Cr } (\mathrm { CO }) _ { 2 } \} \left(\mu_{3}-\right.\right.} \\ & \left.\mathrm{PCN}^{t} \mathrm{Bu}\right)\left\{\mathrm{Cr}(\mathrm{CO})_{5\}_{2}}\right] \end{aligned}$	-5475.264526
2b	-5435.795267	${ }^{\text {tBuNC }}$	-250.5963615
2c	-5434.675954	7	-5725.88115
3a	-6298.643788		

Table S6. Cartesian coordinates of the optimized geometry of 1 at the B3LYP/def2-TZVP level ($\mathrm{E}=-4914.17454760153$ a.u.).

Atom			X
Cr	1.5889583	-2.3470836	-2.7678121
Cr	-1.8231907	3.0758139	1.6631681
P	0.6476663	-1.0392644	-0.7148162
P	-0.6773190	0.8723584	0.8659234
P	-1.1607257	0.1550313	-1.2097715
P	0.7244201	1.2042144	-0.8259995
C	-0.0469361	-3.0968091	-2.2769762
C	0.8897325	-2.6769089	-4.4451335
C	1.4861891	-0.5915402	-3.3943381
C	0.0000153	3.1805668	2.0391232
C	-1.5197922	4.8438142	1.2211263
C	-2.2512835	3.0013660	-0.1530500
O	-1.0216022	-3.6395687	-2.0021866
O	0.4732437	-2.9015663	-5.4927589
O	1.5025304	0.4520871	-3.8727627
O	1.1007064	3.2964054	2.3479483
O	-1.3428231	5.9508458	0.9670634
O	-2.6053283	3.0402395	-1.2446301
C	3.8447915	-2.1449923	-2.6126888
C	3.5036823	-3.1472897	-3.5681976
C	2.8022171	-4.1919639	-2.8836627
C	2.7181388	-3.8293087	-1.5035319
C	3.3832337	-2.5785178	-1.3363212
C	-3.6266087	3.8274155	2.7366720
C	-2.5661202	3.6188251	3.6754763
C	-2.2689525	2.2202323	3.6938454
C	-3.1562477	1.5705096	2.7839136
C	-3.9768777	2.5639107	2.1765241
C	4.6939690	-0.9367118	-2.8696081
H	5.7507591	-1.1718517	-2.7067677
H	4.4364512	-0.1115522	-2.2061145
H	4.5927852	-0.5796368	-3.8939177
C	3.9591487	-3.1773920	-4.9964817
H	4.9611347	-3.6131859	-5.0637391

Atom	x	y	z
H	4.0081231	-2.1779126	-5.4285453
H	3.3006352	-3.7760114	-5.6246240
C	2.3881157	-5.5072951	-3.4721810
H	3.1984839	-6.2381408	-3.3820977
H	2.1433830	-5.4217656	-4.5306515
H	1.5169392	-5.9223082	-2.9656628
C	2.1870556	-4.6833645	-0.3919271
H	2.9959931	-5.2614884	0.0663502
H	1.4395307	-5.3916404	-0.7474015
H	1.7279335	-4.0825011	0.3933759
C	3.7112416	-1.9346293	-0.0262172
H	4.6425168	-2.3573642	0.3661137
H	2.9350200	-2.0997617	0.7198895
H	3.8535879	-0.8589818	-0.1220692
C	-4.3660887	5.1122609	2.5105869
H	-5.2291984	5.1726795	3.1812906
H	-4.7397682	5.1926364	1.4898327
H	-3.7422447	5.9842097	2.7027777
C	-1.9904736	4.6526521	4.5962408
H	-2.5711239	4.7059504	5.5230401
H	-1.9993852	5.6463565	4.1488473
H	-0.9604695	4.4242117	4.8691492
C	-1.3227951	1.5234255	4.6242241
H	-1.8571562	1.1496727	5.5036158
H	-0.5370053	2.1899892	4.9782807
H	-0.8428190	0.6699901	4.1446177
C	-3.3289038	0.0911081	2.6389348
H	-4.0307262	-0.2724794	3.3972587
H	-2.3919727	-0.4479810	2.7729572
H	-3.7301072	-0.1802334	1.6631732
C	-5.1236230	2.3028353	1.2472261
H	-6.0334224	2.0863535	1.8164576
H	-4.9340172	1.4492435	0.5969717
H	-5.3332247	3.1617918	0.6106472

Table S7. Cartesian coordinates of the optimized geometry of 2 at the B3LYP/def2-TZVP level ($E=-5434.675953999$ a.u. $)$.

Atom x			y
W	-1.4251134	0.5377818	-1.6599126
Cr	-1.2269073	2.4012107	2.8876573
Cr	2.2214589	-2.7619606	-1.7332537
P	-0.6338125	0.8773018	0.8787759
P	0.6878544	-0.8819059	-0.8233026
P	0.2176627	-1.1427409	1.3400326
P	1.5568468	0.4976674	0.7128166
O	-3.9356220	2.4148833	-1.9194751
O	-3.4443720	-1.8477446	-0.9365663
O	-0.5768963	4.2306825	0.5668129
O	-0.6213455	-3.7786953	-1.9334208
O	0.3644551	3.0078563	-2.6537766
O	0.8065088	0.5817672	4.1656777

Atom x		y	z
C	-2.9110270	3.5021918	3.8107273
C	-0.8028102	3.5039532	1.4202936
C	-1.6365018	0.0201099	-3.5647260
C	2.9995393	-2.3668753	-0.0771151
C	0.0624189	1.2539895	3.6118571
C	2.7370290	-1.2930545	-3.4314607
C	-2.5203733	2.4300073	4.6746933
C	-3.9568958	0.5322912	1.7744073
H	-3.9168442	0.8732586	0.7425247
H	-5.0119820	0.3893449	2.0313058
H	-3.4760883	-0.4429758	1.8242488
C	-4.0808301	3.6899858	1.4920439
H	-3.6618076	4.6883658	1.3703180

0	-1.7439284	-0. 2851418	-4.6787685
0	3.5782008	-2.1771667	0.8931464
C	3.0637215	-3.5709842	-3.6133057
C	-3.3468126	1.5152712	2.7196281
C	2.2029768	-2.4918377	-3.9855775
0	0.5560747	4.3976207	4.2412313
C	-3.0076141	1.7240721	-1.8345800
C	-2.7763222	1.2007157	3.9888395
C	2.9705901	-4.9730433	-4.1357275
H	3.4531405	-5.6913292	-3.4740842
H	3.4632712	-5.0430225	-5.1105493
H	1.9362046	-5.2883173	-4.2710169
C	-3.4135479	2.9330347	2.5993883
C	4.1244078	-3.0357205	-2.8150555
0	2.5460791	-5.5322109	-0.6304714
C	-0.1126646	3.6314903	3.7094890
C	-2.0892716	2.5599968	6.1045303
H	-1.4204678	1.7533031	6.4037789
H	-2.9610021	2.5240848	6.7655378
H	-1.5766655	3.5026704	6.2932439
C	0.4377396	-3.3603924	-1.8287949
C	-2.6912316	-1.0103093	-1.1670564
C	1.0639247	-2.5789806	-4.9548765
H	0.5664021	-3.5474205	-4.9137369
H	1.4367749	-2.4481069	-5.9759417
	0.3128574	-1.811014	-4.78343

H	-5.1459382	3.8095137	1.7155928
H	-4.0063383	3.1789644	0.5345794
C	-2.6625534	-0.1754045	4.5714626
H	-2.4087555	-0.9167826	3.8143503
H	-3.6163298	-0.4755620	5.0165820
H	-1.9061552	-0.2264872	5.3535499
C	-0.2513531	2.1197517	-2.2617957
C	-2.9721218	4.9550186	4.1753102
H	-2.2356070	5.2201592	4.9328232
H	-3.9598226	5.1988783	4.5791062
H	-2.8066979	5.5981357	3.3112375
C	3.9097468	-1.6266827	-2.6909745
C	2.2713864	0.0920193	-3.7427608
H	1.1966965	0.1395306	-3.9026519
H	2.7547124	0.4386932	-4.6623975
H	2.5249583	0.8003089	-2.9561414
C	2.4074581	-4.4690986	-1.0398322
C	4.8550081	-0.6412462	-2.0732196
H	4.3297400	0.2144500	-1.6500239
H	5.5467167	-0.2587471	-2.8303297
H	5.4532515	-1.0893542	-1.2808638
C	5.3377709	-3.7793645	-2.3441076
H	5.7383528	-3.3619925	-1.4205264
H	6.1294148	-3.7245331	-3.0980125
H	5.1290771	-4.8341262	-2.1679785

Table S8. Cartesian coordinates of the optimized geometry of 3a at the B3LYP/def2-TZVP level ($E=-5434.675953999$ a.u.).

Atom x			y
Cr	0.4303934	-2.3822836	-1.6320987
Cr	-0.1403160	2.4883773	0.9335014
Cr	3.9616669	-1.0386640	1.0940488
P	0.4354068	0.7976792	-0.2379036
P	1.9301053	-0.8555476	-0.2645331
P	2.0012663	-0.6160621	-2.4209554
P	-0.0589930	0.0150163	-2.2634172
O	2.5074143	-0.0613282	3.6012581
O	2.5306719	3.0051907	2.1840937
O	6.5174047	-1.0406758	2.7066085
O	2.9023668	-4.1063081	-1.7938558
O	5.5416938	-2.1231574	-1.2841095
O	0.3372179	-2.7637800	-4.6210110
O	3.4525540	-3.8879811	2.0425373
O	-0.7926395	0.9498461	3.4305654
O	4.6754951	1.7701916	0.1047031
C	3.0255661	-0.3970522	2.6403126
C	-1.6768380	-3.1088737	-1.7688018
C	-0.1893627	4.6502197	0.4101974
C	-0.7162647	-2.8622434	0.3171600
C	-1.9322861	3.2772768	-0.2279584
C	-2.0822636	3.5614224	1.1623271
C	-0.8052501	-4.2220308	-1.5537466
C	-1.0098803	4.4217591	1.558663
C	-0.7632123	3.9457972	-0.6906389
C	-1.6311481	-2.2811399	-0.6039684
C	1.5193452	2.7646957	1.6889807

Atom x			y
H	0.6186172	6.5970036	z
H	1.7066794	5.2794899	-0.404080
C	0.5971080	-5.1022656	0.4517567
H	1.1777504	-5.7210588	-0.2306306
H	-0.0806102	-5.7668708	0.9973559
H	1.2843575	-4.6708222	1.1751200
C	0.3892702	-2.5872041	-3.4908261
C	-0.8587294	5.0854895	2.8946479
H	-1.2639018	4.4727897	3.6999466
H	-1.3896175	6.0433954	2.9131171
H	0.1859125	5.2871980	3.1309896
C	-0.5145712	-2.4374982	1.7374572
H	0.4668196	-2.7208442	2.1130499
H	-1.2598799	-2.9250892	2.3752186
H	-0.6308363	-1.3640508	1.8675806
C	-2.9310452	2.5630986	-1.0866012
H	-2.4615801	2.0641976	-1.9342378
H	-3.6601899	3.2736892	-1.4915563
H	-3.4888103	1.8156277	-0.5234035
C	-3.2598676	3.1804665	2.0090445
H	-3.6747974	2.2151186	1.718193
H	-4.0583236	3.9233202	1.9105903
H	-2.9991356	3.1201959	3.0651558
C	-0.2970156	4.0283424	-2.1126682
H	0.7863222	4.1255746	-2.1782684
H	-0.7347791	4.9036384	-2.6052019
H	-0.5859757	3.1508241	-2.6903287

C	1.9923953	-3.4187104	-1.7194439
C	5.5479009	-1.0394245	2.0947037
C	-0.5221728	1.5311906	2.4731844
C	-0.2069578	-4.0623898	-0.2659686
C	-2.5919925	-1.1773924	-0.2987809
H	-2.1571694	-0.4228159	0.3535601
H	-3.4679488	-1.5936884	0.2110313
H	-2.9428507	-0.6836128	-1.2032488
C	3.6165302	-2.8170980	1.6654962
C	0.9656632	5.6027946	0.3269055
H	1.4749907	5.7095158	1.2838940

Table S9. Cartesian coordinates of the optimized geometry of 4a at the B3LYP/def2-TZVP level ($\mathrm{E}=-7909.77089551509$ a.u.).

C	4.9267928	-1.7207844	-0.4079710
C	-2.6439661	-2.9435151	-2.9008941
H	-2.7631677	-1.8971650	-3.1813796
H	-3.6282547	-3.3220685	-2.6079782
H	-2.3344465	-3.4927441	-3.7886415
C	4.3770990	0.7381825	0.4899265
C	-0.6857290	-5.4350981	-2.4255693
H	-0.8745277	-5.2077866	-3.4740126
H	-1.4165642	-6.1896279	-2.1179636
H	0.3010910	-5.8918619	-2.3569176

Cr	-0.0225995	2	-1.0927
	-0.6100679		
	-0.04		
	1.48		
	-0.5		
	0150		
	,		
	5.111372	-2.5	
	5		
	2.731203		
	-1.161790		
	,		
	50		
	.	-0.2825	
	-2.1288980		
	-1.16012	-2.8788	
	-2.457	3.24258	
	. 54	3.54093	
	-1.24721	-4.2	
	-1.465189	,	
	-1.3145080	912	
	4.696256		
	-2.08389	-2.2955	
	, 8087	,	
	,	-3.395	
	4.9959	-1.07	
	.925		
	析		
	. 056		
	-2.6253710	-0.4557038	0.9351567
	-3.9208250	-1.642978	
	-3.4		
	2.9748999	-2.764705	
	0.4445075	5.5930905	

Atom	X	Z	
H	0.0744991	6.5769871	0.5337486
H	1.1581586	5.2621804	0.0857965
C	0.1638580	-5.1171038	0.9622145
H	0.7488394	-5.7205412	0.2699176
H	-0.5139500	-5.7949599	1.4911163
H	0.8446318	-4.6978253	1.6981569
C	-0.0863047	-2.5885695	-2.9450835
C	-1.2609852	5.0932439	3.4942162
H	-1.6225516	4.4861286	4.340850
H	-1.8013492	6.0453680	3.5251589
H	-0.2091205	5.3092549	3.6802892
C	-0.9635682	-2.4676400	2.2859571
H	0.0041860	-2.7797121	2.6722396
H	-1.7296926	-2.9392901	2.9108404
H	-1.0545128	-1.3918593	2.4208803
C	-3.4879095	2.5126139	-0.3633612
H	-3.0538488	2.0178840	-1.2318836
H	-4.2440962	3.2132911	-0.7341502
H	-4.0088353	1.7606661	0.2284166
C	-3.6873027	3.1653284	2.7350034
H	-4.1083259	2.1936655	2.4755796
H	-4.4933911	3.9024088	2.6585409
H	-3.3833914	3.1223820	3.7803362
C	-0.9149809	3.989824	-1.5213256
H	0.1635911	4.0844082	-1.6413000
H	-1.3744814	4.865353	-1.9931345
H	-1.2347878	3.1131406	-2.0837289
C	4.4658928	-1.9674324	0.3897585
C	-3.1065840	-2.9413141	-2.3459621
H	-3.2374234	-1.8934767	-2.6154241
H	-4.0847577	-3.3308864	-2.0472866
H	-2.8009402	-3.4795990	-3.2415092
C	3.9921811	0.6550298	1.0629028
O	3.4849458	-2.9948963	-4.3516598
C	-1.1262693	-5.4234184	-1.9071417
H	-1.3329895	-5.1921894	-2.9511146
H	-1.8447819	-6.1869236	-1.5929382
H	-0.1340433	-5.8705283	-1.8556105
C	2.6756269	1.8075066	-3.3173850
C	1.4719326	-0.0196834	-4.886582
C	4.0482880	0.4465382	-5.1657283
C	4.562635	0.019184	-2.6181583
C	3.2887997	-1.9014044	-4.0917464

Table S10. Cartesian coordinates of the optimized geometry of 5 at the B3LYP/def2-TZVP level ($\mathrm{E}=-2685.10029983595$ a.u.).

Atom x		y	z
Cr	0.6127740	-1.1776482	-0.0000023
P	-0.5694597	-3.0416221	-1.0814615
P	1.1700975	-3.6448836	-0.0000474
P	-0.5694033	-3.0416470	1.0814897
O	2.7421218	-1.3191173	2.1205726
C	0.7822576	1.0210189	-0.0000033
C	-1.1883370	0.0418380	-0.7136502
C	0.0242679	0.6447452	-1.1552794
C	1.9279437	-1.3067894	1.3103546
C	0.3421050	1.0032359	-2.5755590
C	2.0403402	1.8357166	-0.0000096
C	-2.3611815	-0.3033629	-1.5779691
H	1.4108900	1.1341676	-2.7365630
H	-0.1480255	1.9454586	-2.8407598
H	-2.9304267	-1.1438827	-1.1813191
H	-2.0589699	-0.5576594	-2.5925777

Atom x		y	z
H	-3.0420692	0.5528911	-1.6390513
H	1.8036129	2.9048716	-0.0000173
H	2.6534845	1.6375390	-0.8788286
C	-1.1883330	0.0418328	0.7136516
C	0.0242771	0.6447403	1.1552758
C	0.3421225	1.0032423	2.5755519
C	-2.3611775	-0.3033694	1.5779679
H	1.4109092	1.1341634	2.7365505
H	-0.1479956	1.9454719	2.8407491
H	-2.9304058	-1.1439062	1.1813308
H	-2.0589692	-0.5576424	2.5925831
H	-0.0070176	0.2429742	3.2739884
H	-3.0420823	0.5528736	1.6390320
H	2.6534893	1.6375512	0.8788090
O	2.7422040	-1.3190197	-2.1205005
C	1.9279876	-1.3067412	-1.3103197

Table S11. Cartesian coordinates of the optimized geometry of 6 at the B3LYP/def2-TZVP level ($\mathrm{E}=-5224.64971048614$ a.u.).

Atom x		y	z
P	-1.3683383	0.5575896	0.4143550
Cr	0.6489845	-0.2140411	0.6084532
Cr	-0.3800432	2.8591053	0.2803675
Cr	-3.6658722	-0.0521682	0.3329558
C	-0.2184564	-1.2003816	1.8755864
O	-0.6918399	-1.8828614	2.6723890
C	1.5407108	0.5360719	2.0855488
O	2.1126283	0.8997327	3.0068234
C	2.0582912	-0.3006315	-1.2428015
C	2.7721999	-0.7378404	-0.0970117
C	2.0997238	-1.8857999	0.4315529
C	0.9706119	-2.1576986	-0.4066454
C	0.9338230	-1.1629438	-1.4323967
C	-0.4041935	2.6567451	-1.6180111
O	-0.4464748	2.5663677	-2.7573099
C	1.5305142	2.7670400	0.3187147
O	2.6644317	2.9428724	0.3250289
C	-0.0349243	4.7006656	0.1498413
O	0.1865867	5.8198381	0.0672697
C	-2.1870157	3.4687883	0.1898570
O	-3.2167733	3.9547783	0.1160861
C	-0.4700298	2.9446847	2.2037298

Atom x		y	z
C	-5.5131390	-0.4400449	0.1810111
O	-6.6288328	-0.6672261	0.0788117
C	-3.6142689	-1.2849785	1.8115575
O	-3.7036150	-2.0341695	2.6657862
C	-3.3036221	-1.5188390	-0.8227225
O	-3.1438329	-2.4231698	-1.5067203
C	0.0638005	-1.1800879	-2.6527797
H	-0.8625004	-1.7238535	-2.4869560
H	-0.1887658	-0.1773454	-2.9942941
H	0.5914451	-1.6777100	-3.4737207
C	0.1330627	-3.3988441	-0.3523515
H	-0.0254346	-3.7466343	0.6677286
H	-0.8414518	-3.2572754	-0.8132486
H	0.6384026	-4.2042169	-0.8951979
C	2.6110877	-2.7687160	1.5296515
H	3.3054631	-3.5113200	1.1236937
H	3.1481403	-2.2040558	2.2916682
H	1.8069346	-3.3111503	2.0250001
C	4.1004674	-0.2158439	0.3590672
H	4.9021402	-0.7120799	-0.1972319
H	4.1991811	0.8554354	0.1933384
H	4.2734023	-0.4082117	1.4170849

O	-0.5452648	3.0149577	3.3387598	C	2.5360598	0.7250908	-2.2227023
C	-3.8755473	1.0953589	-1.1882666	H	1.7203721	1.1819509	-2.7778993
O	-4.0384506	1.7334119	-2.1205987	H	3.1164955	1.5139245	-1.7493350
C	-4.0981636	1.3299465	1.6052003	H	3.1893401	0.2388466	-2.9557385

Table S12. Cartesian coordinates of the optimized geometry of 7 at the B3LYP/def2-TZVP level ($\mathrm{E}=-5725.88114970216$ a.u.).

Atom x		y	z
P	-1.4984880	0.6076991	-0.5628551
Cr	1.0065009	-0.6773792	-0.4313522
Cr	-3.5743486	-0.1861720	-2.1050077
Cr	-1.2834010	3.3231860	-0.2482467
C	0.7847412	0.2825573	1.1634354
O	0.7134896	0.7544183	2.2074536
C	2.5417089	0.4875777	-0.5801127
N	3.4876319	1.1630741	-0.6864869
C	1.2514369	-2.7215332	-1.4414296
C	2.4744443	-2.3171512	-0.8255715
C	2.2474689	-2.1994951	0.5769290
C	0.8741576	-2.5303914	0.8242271
C	0.2714410	-2.8635457	-0.4222912
C	-3.9962630	-1.6815248	-1.0220703
O	-4.3349727	-2.5731307	-0.3808397
C	-2.4948321	-1.2553621	-3.2494664
O	-1.9218877	-1.9192547	-3.9885007
C	-5.0317304	-0.5958408	-3.1799373
O	-5.9347279	-0.8554801	-3.8421764
C	-4.7402521	0.8177105	-0.9711192
O	-5.4961181	1.3385101	-0.2871876
C	-3.2189091	1.3217744	-3.2461264
O	-3.0577187	2.1789809	-3.9821199
C	-1.9473247	3.2013436	1.5260463
O	-2.3342161	3.1600943	2.6058090
C	-3.0548670	3.6426374	-0.9152413
O	-4.0806279	3.9772385	-1.2909034
C	-1.1710812	5.1677111	-0.1098653
O	-1.0966277	6.3116714	-0.0161693
C	-0.5667245	3.4096270	-2.0281398
O	-0.1030413	3.5412184	-3.0641472
C	0.4863516	3.3246756	0.4287705
O	1.5485961	3.4813019	0.8373364
C	-1.0859689	-3.4628979	-0.5948058
H	-1.7897183	-3.1129139	0.1560653
H	-1.5075220	-3.2526662	-1.5744037
H	-1.0225452	-4.5523354	-0.4963552
C	0.2556759	-2.7340859	2.1736452
H	0.6742827	-2.0635401	2.9237131

	3.7361979		
	4.0	-1.329945	
H	2.8772048	-1	
C	3.7		
H	4.2207058	-3	
	3.7		
	4.5195363	-1.	-0.9610476
C	1.1086694		
H	0.0842193	-3	-3.2290266
	1.7	-2	-3
	1.4192119	-4.	-2
C	-2.20	0.151582	0.9615895
N	-2.7098	-0.1268298	19736540
C	-3.421	-0.3775747	32130532
C	-2.4835115	-0.02875	4.3774077
C	-3.81722	-1.8608281	3.2471042
H	-4	-2.1206	. 393
		-2	
	-4.	-2.05838	4.1616548
H	-1.	-0	
H	-3.	-0.	
	-2		
H	-5.	. 33	
	-4.		
C			
C			
	4.1862896		
C			
	912	78717	-1.
	9357069	3.959530	-1.8591420
H	3.7764224	2.909905	-2.6890158
C	5.7441114	1.34223	
	5.4379881		

H	-0.8214810	-2.5776188	2.1477194
H	0.4281049	-3.7590168	2.5180729
C	3.2912743	-1.9609767	1.6253476

$\begin{array}{llll}\mathrm{H} & 6.5841888 & 2.0238749 & -1.6724119 \\ \mathrm{H} & 6.0840691 & 0.5004928 & -0.9283869\end{array}$
H 0.4281049 -3.7590168 2.5180729

Table S13. Cartesian coordinates of the optimized geometry of $\left[\left\{\mathrm{Cp}^{*} \mathrm{Cr}(\mathrm{CO})_{2}\right\}\left(\mu_{3}-\mathrm{PCN}{ }^{\dagger} \mathrm{Bu}\right)\left\{\mathrm{Cr}(\mathrm{CO})_{5}\right\}_{2}\right]$ at the B3LYP/def2-TZVP level ($\mathrm{E}=-5475.26452574106$ a.u.).

Atom			x
P	0.8017548	0.2022314	-0.6376475
Cr	-1.3831028	0.3233973	0.3262144
Cr	-0.2898718	-1.1482626	-2.6028246
Cr	3.0458803	1.5783896	-0.7480021
C	-0.4625073	-0.0425670	1.8678953
O	0.0676579	-0.2609052	2.8690840
C	-2.0108281	-1.3897486	0.6617508
O	-2.4283746	-2.4199319	0.9569302
C	-2.9811764	1.7055660	-0.6880187
C	-3.5438568	1.0192245	0.4236053
C	-2.8229635	1.4109572	1.5906983
C	-1.7919037	2.3224428	1.1847759
C	-1.8914474	2.4959182	-0.2320755
C	-0.4568054	0.5392919	-3.4914195
O	-0.5686218	1.5168081	-4.0725627
C	-2.1760082	-1.2608899	-2.2971709
O	-3.3004853	-1.4909227	-2.3131839
C	-0.7205515	-2.0138360	-4.1990019
O	-0.9835422	-2.5425689	-5.1809714
C	1.5211817	-1.3175536	-3.2021429
O	2.5713295	-1.4778721	-3.6194627
C	-0.1280610	-2.8244380	-1.7093378
O	-0.0331367	-3.8530892	-1.2164887
C	2.7995949	1.8521963	-2.6320994
O	2.6892393	2.0446237	-3.7522997
C	4.0392938	-0.0225552	-1.0539149
O	4.7062926	-0.9435078	-1.1920820
C	4.6780198	2.4721890	-0.8181599
O	5.6866844	3.0190857	-0.8597202
C	3.2342467	1.3300389	1.1337555
O	3.3782904	1.2037389	2.2627493
C	2.2776173	3.2825583	-0.3825255
O	1.9503404	4.3530282	-0.1365888
C	-1.2038182	3.5426390	-1.0558862

	-0,	4.0420872	
H	-0	31468096	
C			
H	-0.703	2.583634	
C			
	-3		
C			
H	-5		
		-0.3	
	-4.8353065	-0.	
C			
	-4		
	-4.2	2.6316	-2
C		-1	
		-2.	
	25969801	-3	
	3.6510976	-2	
	4.1060209	-3.3566	
		-2.	1.8818314
	3.1998532	-1	
	3.2410967	-4	
		-4	. 0
		-4.5323	
	9981	-3.59835	-0.0
	1.4834366	-3	2.3039126
	0.720035	-4.2578905	1.6361
	1.9	-4.68	
	1.0143247	-3.1696030	3.00

3.6.5 Crystallographic details

Table 14: Overview of selected crystallographic parameters of the single crystal X-ray diffraction experiments performed for $\mathbf{2 , 3 a}, \mathbf{4 a}, \mathbf{4 b}$ and 5 .

	2	3a	4a	4b	5
Formula	$\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{Cr}_{2} \mathrm{O}_{10} \mathrm{P}_{4} \mathrm{~W} \mathrm{C}_{30} \mathrm{H}_{32} \mathrm{Cl}_{2} \mathrm{Cr}_{3} \mathrm{O}_{9} \mathrm{P}_{4} \mathrm{C}_{35} \mathrm{H}_{32} \mathrm{Cl}_{2} \mathrm{Cr}_{4} \mathrm{O}_{14} \mathrm{P}_{4} \mathrm{C}_{35} \mathrm{H}_{32} \mathrm{Cl}_{2} \mathrm{Cr}_{2} \mathrm{Mo}_{2} \mathrm{O}_{14} \mathrm{P}_{4} \mathrm{C}_{12} \mathrm{H}_{15} \mathrm{CrO}_{2} \mathrm{P}_{3}$				
$D_{\text {calc. }} / \mathrm{l} \mathrm{g} \mathrm{cm}{ }^{-3}$	1.790	1.583	1.639	1.721	1.582
$\mathrm{m} / \mathrm{mm}^{-1}$	12.906	10.458	11.028	11.297	9.816
Formula Weight	962.27	887.33	1079.38	1167.26	336.15
Colour	dark brown	dark orange	dark orange	dark green	light orange
Shape	block	plate	plate	plate	block
Size/mm ${ }^{3}$	$0.10 \times 0.10 \times 0.07$	$0.15 \times 0.12 \times 0.04$	$0.11 \times 0.09 \times 0.02$	$0.36 \times 0.20 \times 0.04$	$0.08 \times 0.06 \times 0.05$
T/K	123.01(13)	123.01(10)	123.00(10)	123.0	123.01(10)
Crystal System	tetragonal	monoclinic	triclinic	triclinic	orthorhombic
Flack Parameter	-0.007(8)	-	-	-	-
Hooft Parameter	-0.008(6)	-	-	-	-
Space Group	$1 \overline{4}$	P21/c	$P \overline{1}$	$P \overline{1}$	Pnma
alÅ	19.1084(4)	8.61978(12)	11.0293(5)	11.1540(3)	8.3549(2)
b/Å	19.1084(4)	21.5601(3)	11.2147(5)	11.2534(3)	12.7888(3)
clÅ	19.5531(6)	20.3044(2)	19.6309(7)	19.9843(5)	13.2096(2)
$\boldsymbol{\alpha} \mathbf{l}^{\circ}$	90	90	83.486(4)	83.065(2)	90
$\beta 1^{\circ}$	90	99.3350(13)	89.878(3)	89.507(2)	90
$\boldsymbol{Y} 1^{\circ}$	90	90	65.220(5)	64.897(2)	90
V/A ${ }^{3}$	7139.4(4)	3723.47(9)	2187.57(18)	2252.35(10)	1411.44(6)
Z	8	4	2	2	4
Z'	1	1	1	1	0.5
Wavelength/A	1.54184	1.54184	1.54184	1.54184	1.54184
Radiation type	$\mathrm{Cu} \mathrm{K}_{\alpha}$	$\mathrm{CuK}{ }_{\alpha}$	$\mathrm{Cu} \mathrm{K}_{\alpha}$	$\mathrm{CuK}{ }_{\alpha}$	$\mathrm{CuK}{ }_{\alpha}$
$Q_{\text {min }}{ }^{\circ}$	3.234	4.101	4.376	4.375	4.813
$Q_{\text {max }}{ }^{\circ}$	74.141	74.213	74.174	66.404	79.927
Measured Refl's.	. 18647	21477	18305	23984	7393
Ind't Refl's	6396	7429	8439	7857	1448
Refl's with I > 2(I)	5883	6622	6231	7480	1397
Rint	0.0577	0.0315	0.0584	0.0375	0.0245
Parameters	434	633	561	569	119
Restraints	0	520	18	66	0
Largest Peak	2.722	0.700	0.725	1.271	0.324
Deepest Hole	-1.883	-0.599	-0.627	-1.371	-0.370
GooF	1.082	1.026	1.018	1.036	1.083
$w R_{2}$ (all data)	0.1235	0.0760	0.1252	0.1235	0.0618
wR2	0.1192	0.0728	0.1103	0.1215	0.0600
R_{1} (all data)	0.0542	0.0353	0.0750	0.0449	0.0243
R_{1}	0.0483	0.0298	0.0484	0.0433	0.0230

$\left[\left\{\mathrm{Cp}^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right\}_{2}\left(\mu_{3}, \eta^{1: 1: 1: 1: 1}-\mathrm{P}_{4}\right)\left\{\mathrm{W}(\mathrm{CO})_{4}\right\}\right](\mathbf{2})$
Compound $\mathbf{2}$ crystalizes in the form of dark brown blocks from a saturated solution in hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ upon storage at $-28^{\circ} \mathrm{C}$. A suitable crystal with dimensions $0.10 \times 0.10 \times 0.07 \mathrm{~mm}^{3}$ was selected and mounted on a GV50, TitanS2 diffractometer. The crystal was kept at a steady $T=123.01$ (13) K during data collection. The structure was solved with the SheIXT 2018/2 (Sheldrick, 2018) solution program using Olex2 (Dolomanov et al., 2009) as the graphical interface. The model was refined with ShelXL 2018/3 (Sheldrick, 2015) using full matrix least squares minimisation on F^{2}. The asymmetric unit contains one molecule of 2.

Figure S9. Molecular structure of $\mathbf{2}$ in the solid state; for clarity H atoms are omitted and the Cp^{*} as well as CO ligands are drawn in the wire frame model; thermal ellipsoids drawn at 50% probability level.

Table S15: Selected bond lengths $[\AA]$ and angles [${ }^{\circ}$] of $\mathbf{2}$ in the solid state.

\mathbf{d} / \AA		$\boldsymbol{\alpha} /^{\circ}$	
Cr1-P1	$2.449(4)$	P1-W-P2	$64.21(11)$
Cr2-P2	$2.445(4)$	P1-P3-P2	$76.21(17)$
W-P1	$2.583(4)$	P1-P4-P2	$76.51(17)$
W-P2	$2.582(3)$	P3-P1-P4	$59.49(17)$
P1-P3	$2.214(5)$	P3-P2-P4	$59.38(17)$
P1-P4	$2.224(5)$	P2-P4-P3	$60.86(17)$
P2-P3	$2.235(5)$	P1-P4-P3	$60.03(16)$
P2-P4	$2.210(5)$	P2-P3-P4	$59.75(16)$
P1-P2	$2.74(5)$	P1-P3-P4	$60.48(16)$
P3-P4	$2.202(6)$		

$\left[\left\{\mathrm{Cp}^{*} \mathrm{Cr}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{3,} \mathrm{\eta}^{3: 1: 1}-\mathrm{P}_{4}\right)\left\{\mathrm{Cr}(\mathrm{CO})_{5}\right\}\right]$ (3a)
Compound 3a crystalizes in the form of dark orange plates from a reaction solution of 1 with 1.0 eq. $\left[\mathrm{Cr}(\mathrm{CO})_{4}(\mathrm{nbd})\right]$. The reaction solution is stored at $-78^{\circ} \mathrm{C}$ for one week and subsequently held at $-28^{\circ} \mathrm{C}$ for three months. A suitable crystal with dimensions $0.15 \times 0.12 \times 0.04 \mathrm{~mm}^{3}$ was selected and mounted on a GV50, TitanS2 diffractometer. The crystal was kept at a steady $T=123.01$ (10) K during data collection. The structure was solved with the SheIXT 2018/2 (Sheldrick, 2018) solution program using Olex2 (Dolomanov et al., 2009) as the graphical interface. The model was refined with ShelXL 2018/3 (Sheldrick, 2015) using full matrix least squares minimization on F^{2}. The asymmetric unit contains one molecule of Compound $\mathbf{3 a}$ (displaying a highly disordered Cp^{*} ligand) and one $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ molecule.
$\left[\left\{\mathrm{Cp}^{*} \mathrm{Cr}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{4}, \eta^{3: 1: 1: 1: 1}-\mathrm{P}_{4}\right)\left\{\mathrm{Cr}(\mathrm{CO})_{5}\right\}_{2}\right]$ (4a)
Compound $4 \mathbf{4 a}$ crystalizes in the form of dark orange plates from a saturated solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ upon storage at $-28^{\circ} \mathrm{C}$. A suitable crystal with dimensions $0.11 \times 0.09 \times 0.02 \mathrm{~mm}^{3}$ was selected and mounted on a SuperNova, Single source at offset/far, Atlas diffractometer. The crystal was kept at a steady $T=123.00$ (10) K during data collection. The structure was solved with the SheIXT 2018/2 (Sheldrick, 2018) solution program using Olex2 (Dolomanov et al., 2009) as the graphical interface. The model was refined with SheIXL 2018/3 (Sheldrick, 2015) using full matrix least squares minimisation on F^{2}. The asymmetric unit contains one molecule of $\mathbf{4 a}$ as well as one disordered solvent molecule.

$$
\left[\left\{\mathrm{Cp}^{*} \mathrm{Cr}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{4}, \mathrm{\eta}^{3: 1: 1: 1: 1}-\mathrm{P}_{4}\right)\left\{\mathrm{Mo}(\mathrm{CO})_{5}\right\}_{2}\right](4 b)
$$

Compound $\mathbf{4} \mathbf{b}$ crystalizes in the form of dark green plates from a saturated solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-pentane upon storage at $-28^{\circ} \mathrm{C}$. A suitable crystal with dimensions $0.36 \times 0.20 \times 0.04 \mathrm{~mm}^{3}$ was selected and mounted on a Xcalibur, AtlasS2, Gemini ultra diffractometer. The crystal was kept at a steady $T=123.0 \mathrm{~K}$ during data collection. The structure was solved with the SheIXT 2018/2 (Sheldrick, 2018) solution program using Olex2
(Dolomanov et al., 2009) as the graphical interface. The model was refined with ShelXL 2018/3 (Sheldrick, 2015) using full matrix least squares minimisation on F^{2}. The asymmetric unit contains one molecule of $\mathbf{4 b}$ as well as one disordered solvent molecule.

0

Figure S10. Molecular structure of Compound $\mathbf{3 a} \mathbf{a} \mathbf{4 a}$ and $\mathbf{4 b}$ in the solid state; for clarity H atoms and solvent molecules are omitted, Cp^{*} and CO ligands are drawn in the wire frame model and only position of disordered Cp^{*} ligand is displayed; thermal ellipsoids drawn at 50% probability level.

Table S16: Selected bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ of $\mathbf{3 a}, \mathbf{4 a}$ and $\mathbf{4 b}$ in the solid state.

$\left[\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{2}\left(\mathrm{n}^{3}-\mathrm{P}_{3}\right)\right](5)$

Compound 5 crystalizes as light orange blocks from a saturated solution in n-hexane upon storage at $-28^{\circ} \mathrm{C}$. A suitable crystal with dimensions $0.08 \times 0.06 \times 0.05 \mathrm{~mm}^{3}$ was selected and mounted on a GV50, TitanS2 diffractometer. The crystal was kept at a steady $T=123.01$ (10) K during data collection. The structure was solved with the SheIXT 2018/2 (Sheldrick, 2018) solution program using Olex2 (Dolomanov et al., 2009) as the graphical interface. The model was refined with ShelXL 2018/3 (Sheldrick, 2015) using full matrix least squares minimisation on F^{2}. The asymmetric unit contains half a molecule of 5 .

Figure S11. Molecular structure of 5 in the solid state; for clarity H atoms are omitted and the Cp^{*} as well as CO ligands are drawn in the wire frame model; thermal ellipsoids drawn at 50\% probability level.

Table S17: Selected bond lengths $[\AA \AA]$ and angles $\left[{ }^{\circ}\right]$ of 5 in the solid state.

d/A		$\mathbf{\alpha / ~}^{\circ}$	
Cr-P1	$2.4773(5)$	P1-P1'-P2	$60.646(15)$
Cr-P1'	$2.4773(5)$	P1-P2-P1'	$58.71(3)$
Cr-P2	$2.5406(7)$		
P1-P2	$2.1205(7)$		
P1-P1'	$2.0790(8)$		

3.6.6 References

[1] a) R. B. King, J. Organomet. Chem. 1967, 8, 139-148; b) P. Leoni, A. Landi, M. Pasquali, J. Organomet. Chem. 1987, 321, 365-369; c) T. J. Jaeger, M. C. Baird, Organometallics 1988, 7, 2074-2076; d) C. Schwarzmaier, A. Y. Timoshkin, G. Balázs, M. Scheer, Angew. Chem. Int. Ed. 2014, 53, 9077-9081.
[2] R. B. King, A. Frozalia, Inorg. Chem. 1966, 5, 1837.
[3] TopSpin 3.0, Bruker BioSpin GmbH
[4] a) K. Eichkorn, O. Treutler, H. Oehm, M. Häser, R. Ahlrichs, Chem. Phys. Lett. 1995, 242, 652-660; b) K. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs, Theor. Chem. Acc. 1997, 97, 119.
[5] a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652; b) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785-789; c) A. D. Becke, Phys. Rev. A 1988, 38, 3098-3100; d) S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200-1211; e) J. C. Slater, Phys. Rev. 1951, 81, 385-390.
[6] a) A. Schäfer, C. Huber, R. Ahlrichs, J. Chem. Phys. 1994, 100, 5829; b) K. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs, Theor. Chem. Acc. 1997, 97, 119; c) F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297; d) F. Weigend, Phys. Chem. Chem. Phys. 2006, 8, 1057.
[7] a) F. Furche, R. Ahlrichs, C. Hättig, W. Klopper, M. Sierka, F. Weigend, WIREs Comput. Mol. Sci. 2014, 4, 91-100; b) R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kölmel, Chem. Phys. Lett. 1989, 162, 165-169; c) O. Treutler, R. Ahlrichs, J. Chem. Phys. 1995, 102, 346-354.
[8] M. Sierka, A. Hogekamp, R. Ahlrichs, J. Chem. Phys. 2003, 118, 9136.
[9] a) J. R. Cheeseman, G. W. Trucks, T. A. Keith, M. J. Frisch, J. Chem. Phys. 1996, 104, 5497-5509; b) K. Wolinski, J. F. Hinton, P. Pulay, J. Am. Chem. Soc. 1990, 112, 8251-8260; c) R. Ditchfield, Mol.

Phys. 1974, 27, 789-807; d) R. McWeeny, Phys. Rev. 1962, 126, 1028-1034; e) F. London, J. Phys. Radium 1937, 8, 397-409.
[10] Gaussian 09, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.
[11] a) P. A. M. Dirac Proc. Royal Soc. A, 1929, 123, 714-733; b) J. C. Slater Phys. Rev., 1951, 81, 385390; c) S. Vosko; L. Wilk; M. Nusair, Can. J. Phys., 1980, 58, 1200-1211; d) A. D. Becke Phys. Rev. A, 1988, 38, 3098-3100; e) J. P. Perdew. Phys. Rev. B, 1986, 33, 8822-8824; f) J. P. Perdew, Phys.I Rev. B 1986, 34, 7406-7406.
[12] F. Jensen, J. Chem. Theory Comput. 2015, 11, 132-138.
[13] B. P. Pritchard, D. Altarawy, B. Didier, T. D. Gibson, T. L. Windus, J. Chem. Inf. Model. 2019, 59, 4814-4820. www.basissetexchange.org/
[14] NBO 6.0. E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, C. R. Landis, F. Weinhold (Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2013); http://nbo6.chem.wisc.edu/

3.7 Author Contributions

Rebecca Grünbauer

- Synthesis and characterization of all reported compounds.

The synthesis and characterization of compounds 2, 3a and 4a was already performed in the scope of the Master thesis of Rebecca Grünbauer (University of Regensburg, 2016) and the results are also included therein.

- Preparation of manuscript (including figures, schemes, tables and supplementary information) except for paragraphs on the topic of DFT calculations.

Gábor Balázs

- Execution of DFT calculations.
- Preparation of manuscript (including figures, schemes and tables and supplementary information) for paragraphs on the topic of DFT calculations.

Manfred Scheer

- Supervision of project.

4. The reactivity of the P_{4} butterfly ligand $\left[\left\{\mathrm{Cp} " \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]$ towards Lewis acids: Coordination vs. rearrangement

Rebecca Grünbauer, Christoph Schwarzmaier, Miriam Eberl, Gábor Balázs and Manfred Scheer

4.1 Abstract

The following report focuses on the reaction of the P_{4} butterfly compound $\left[\left\{C p^{\prime \prime \prime} F e(C O)_{2}\right\}_{2}\left(\mu, \eta^{1: 1}-P_{4}\right)\right](1$, $\left.C p^{\prime \prime \prime}=C_{5} H_{2}{ }^{t} B_{3}\right)$ with various Lewis acids. On the one hand, the reaction of 1 with $\left[\left(P P h_{3}\right) A u(t h t)\right]\left[P F_{6}\right]$ (tht = tetrahydrothiophene) or $\left[M(C O)_{4}(n b d)\right]$ ($M=C r, M o, W ; n b d=$ norbornadiene) yields chelating
 butterfly ligands with exceedingly small bite angles (ca. 65°). The reaction of 1 with $\left[A g P F_{6}\right]$ even afforded the spiro complex $\left[\left\{\left(C p^{\prime \prime} F e(C O)_{2}\right)_{2}\left(\mu_{3}, \eta^{1: 1: 1: 1}-P_{4}\right)\right\}_{2} A g\right]\left[P F_{6}\right](3)$, in which the silver cation is coordinated in a tetrahedrally distorted fashion by two P_{4} butterfly motifs. On the other hand, the reaction of 1 with more reactive carbonyl Lewis Acids like $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{9}\right]$ or $\left[\mathrm{Co}_{2}\left(\mathrm{CO}_{8}\right]\right.$ leads to rearrangement yielding

 carbonyl insertion, respectively. The obtained compounds are comprehensively characterized by different spectroscopic methods as well as single crystal X-ray diffraction analysis and theoretical calculations.

4.2 Introduction

Over the last decades the interest in the activation of small molecules gained great popularity, as these investigations are presumed to improve fundamental chemical processes towards an increased economical sustainability. ${ }^{[1]}$ In this crucial area of research, the selective degradation of the extremely reactive P_{4} tetrahedron found in white phosphorus (called P_{4} activation) is a promising approach towards the selective generation of phosphorus containing compounds. ${ }^{[2]}$ In this field, the tetraphospha-bicyclo[1.1.0]butane structural motif is of immense importance, since it represents the first step in the P_{4} activation process. With one $\mathrm{P}-\mathrm{P}$ bond cleaved in comparison to the intact P_{4} tetrahedron, the so called P_{4} butterfly motif was part of major milestones in the development of the polyphosphorus ligand chemistry. Ginsberg and Lindsell were the first to report on the P_{4} butterfly motif within the Type \mathbf{A} chelating complex $\left[\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{RhCl}\left(\eta^{1: 1}-\mathrm{P}_{4}\right)\right]$ (Scheme 1), although it was thought to be an intact P_{4} tetrahedron at first. ${ }^{[3]}$ Later on, the group of Scherer intensively studied the reactivity of the Type B bridging complexes $\left[\left\{\mathrm{Cp}{ }^{R} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu, \eta^{1: 1}-P_{4}\right)\right]\left(C p^{R}\right.$: $\mathrm{Cp}{ }^{\prime \prime}=\mathrm{C}_{5} \mathrm{H}_{3}{ }^{\mathrm{t}} \mathrm{Bu}_{2} ; \mathrm{Cp}^{\prime \prime \prime}=\mathrm{C}_{5} \mathrm{H}_{2}{ }^{\mathrm{t}} \mathrm{Bu}_{3}$ (1); Scheme 1) under photolytic and thermolytic conditions. ${ }^{[4]}$ Due to decarbonylation processes induced by the reaction conditions, several products incorporating P_{n} ligands (n $\leq 4)$ could be obtained in each case, delineating the consecutive P_{4} activation steps. Another major scope of application for P_{4} butterfly compounds was introduced by Scherer et al. with the complex [Cp" $\left.2 \mathrm{Zr}\left(\mathrm{n}^{1: 1}-\mathrm{P}_{4}\right)\right]$, which has proven to be an excellent source for the transfer of P_{4} units. ${ }^{[5]}$ Thus, our group was able to obtain a vast variety of products like phosphorus-carbon cage compounds ${ }^{[6]}$, inorganic benzene analoga ${ }^{[7]}$ and different P_{4} ligand complexes ${ }^{[8]}$ from several reactions with the P_{4} butterfly transfer reagent.

A

B

c)
this work

Scheme 1. a) chelating (A) and bridging (B) coordination mode for the P_{4} butterfly motif; b) reactivity of 1 towards different $\mathrm{Fe}(\mathrm{II})$ salts; c) novel compounds obtained in this work.

Next to these commonly observed rearrangement processes, our group takes major interest in the coordination properties of intact P_{n} ligand complexes. Characteristically, every P atom of the P_{n} scaffold displays coordinatively available lone pairs. Therefore, we were able to obtain various coordination compounds, polymers and even spherical aggregates originating from compounds like $\left[\mathrm{Cp} p^{R} F e\left(\eta_{5}-\mathrm{P}_{5}\right)\right]\left(\mathrm{Cp}^{\mathrm{R}}\right.$: $\left.C p^{*}=\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5}, \mathrm{Cp}^{\mathrm{BIG}}=\mathrm{C}_{5}\left(4-{ }^{\mathrm{n}} \mathrm{Bu}-\mathrm{C}_{6} \mathrm{H}_{4}\right)_{5}\right)^{[9]}$ or $\left[\left\{\mathrm{CpM}(\mathrm{CO})_{2}\right\}_{2}\left(\mu, \eta^{2: 2}-\mathrm{E}_{2}\right)\right](\mathrm{M}=\mathrm{Cr}, \mathrm{Mo} ; \mathrm{E}=\mathrm{P}, \mathrm{As})^{[10]}$. In contrast, the coordination chemistry of 1 has been neglected, as previously mainly its degradation affording novel P_{n} ligand complexes was examined. ${ }^{[4]}$ However, DFT calculations predicted that a chelating coordination via the two wing tip P atoms is thermodynamically favored and reactions of 1 with monovalent Cu salt supported these calculations. ${ }^{[11]}$ Depending on the stoichiometry, the monoadduct $\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{3, \eta} \eta^{1: 1: 1: 1: 1}-\right.\right.$ $\left.\mathrm{P}_{4}\right)\left\{\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right\}\left[\mathrm{BF}_{4}\right]$ and the spiro compound $\left[\left\{\left(\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right)_{2}\left(\mu_{3}, \eta^{1: 1: 1: 1:}-\mathrm{P}_{4}\right)\right\}_{2} \mathrm{Cu}\right]\left[\mathrm{BF}_{4}\right]$ can be isolated from the reactions of 1 with $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]\left[\mathrm{BF}_{4}\right]$. Reactions of 1 with $\left[\mathrm{FeBr}_{2} \cdot \mathrm{dme}\right]$ (dme $=$ dimethoxyethane) again lead to the formation of the P_{4} butterfly adduct $\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{3}, \eta^{1: 1: 1: 1: 1}-\mathrm{P}_{4}\right)\left\{\mathrm{FeBr}_{2}\right\}\right]$, while reactions with $\left[\mathrm{Fe}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{6}\right]\left[\mathrm{PF}_{6}\right]_{2}$ afforded $\left[\left\{\left(\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right)_{2}\left(\mu_{3}, \eta^{1: 1: 14}-\mathrm{P}_{4}\right)\right\}_{2} \mathrm{Fe}\right]\left[\mathrm{PF}_{6}\right]_{2}($ Scheme 1) $){ }^{[12]}$ In this first ever reported "carbon-free" sandwich complex the former P_{4} butterfly motif rearranged to a six valence electron donating aromatic cyclo- P_{4} ligand delineating the reaction potential originating from the P_{4} butterfly motif. Intrigued by these results, we were prompted to investigate the reactivity of 1 towards Lewis Acids of different reactivity and report herein on the various obtained products (Scheme 2).

4.3 Results and Discussion

Scheme 2. Reactivity of the P_{4} butterfly compound 1 towards different Lewis acids and their precursors.

The reactions of 1 with one equivalent of $\left[\mathrm{M}(\mathrm{CO})_{4}(\mathrm{nbd})\right](\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}$; nbd = norbornadiene) or $\left[\left(\mathrm{PPh}_{3}\right) \mathrm{Au}(\right.$ tht $\left.)\right]\left[\mathrm{PF}_{6}\right]$ (tht $=$ tetrahydrothiophene) selectively afford the coordination products $\left[\left\{\mathrm{Cp}^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{3}, \eta^{1: 1: 1: 1: 1}-\mathrm{P}_{4}\right)\left\{\mathrm{M}(\mathrm{CO})_{4}\right\}\right] \quad(\mathrm{M}=\mathrm{Cr}(\mathbf{2 a})$, $\mathrm{Mo}(\mathbf{2 b}), \mathrm{W}(\mathbf{2 c}))$ and $\left[\left\{\mathrm{Cp}{ }^{\prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{3}, \eta^{1: 1: 1: 1: 1}-\right.\right.$ $\left.\left.\mathrm{P}_{4}\right)\left\{\mathrm{AuPPh}_{3}\right\}\right]\left[\mathrm{PF}_{6}\right](\mathbf{2 d})$, respectively (Scheme 2 and Fig. 1). By means of a straightforward ligand exchange, both the nbd and tht ligand are replaced by the more strongly donating P_{4} butterfly ligand. Consequently, 1 serves as a bidentate ligand coordinating towards the Lewis acidic $\left[M(C O)_{4}\right]$ and $\left[A u P P h_{3}\right]$ fragment, respectively, via the two wing tip P atoms. Moreover, the reaction of 1 with 0.5 eq. [AgPF ${ }_{6}$] yields the spiro compound $\left[\left\{\left(\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right)_{2}\left(\mu_{3}, \eta^{1: 1: 1: 1}-\mathrm{P}_{4}\right)\right\}_{2} \mathrm{Ag}\right]\left[\mathrm{PF}_{6}\right]$ (3), in which the Ag^{+}ion is coordinated by two chelating molecules of 1 in a distorted tetrahedral fashion (Scheme 2 and Fig. 1). The red 2a-c as well as the orange 2d and $\mathbf{3}$ are not soluble in pentanes, moderately soluble in toluene and very well soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Single crystal X-ray diffraction analysis confirms, that the coordination towards the Lewis acidic fragments $\left[\mathrm{M}(\mathrm{CO})_{4}\right]$ and $\left[\mathrm{AuPPh}_{3}\right]$ has only little influence on the geometric parameters of the P_{4} butterfly scaffold. Whereas 2ac crystalize with an almost identical monoclinic-sphenoidal unit cell (spacegroup C2/c), 2d crystalizes in the monoclinic $P 2_{1} / n$ and 3 crystalizes in the Cc space group. Moreover, the asymmetric units of 2a-c contain two stereoisomeric molecules each, as the tert-butyl groups of the Cp"l ligand can be arranged in a cis- or trans-like fashion respectively (Fig. 1). Analogously to the uncoordinated 1, all the P-P bonds of the coordination adducts are in the range of an usual $P-P$ single bond. ${ }^{[13]}$ However, the central P_{4} butterfly structural motif in the adducts 2 and $\mathbf{3}$ is slightly distorted compared to the symmetrical P_{4} butterfly scaffold in 1 , resulting in marginally different bond lengths between the wing tip P atoms and the coordinated metal atom (d_{P}, Table 1).

Figure 1. Molecular structures of the two isomers of $\mathbf{2 a}$ and the cationic entities of $\mathbf{2 d}$ and $\mathbf{3}$ in the solid state; for clarity H Atoms as well as solvent molecules are omitted and CO as well as $\mathrm{Cp}{ }^{\prime \prime \prime}$ ligands are drawn in the wire frame model; thermal ellipsoids are drawn at 50% probability.

Table 1. $\mathrm{P}-\mathrm{M}-\mathrm{P}$ bite angles, $\mathrm{P}-\mathrm{M}$ bond lengths and selected ${ }^{31} \mathrm{P}$ NMR chemical shifts of compounds $\mathbf{2 a} \mathbf{a} \mathbf{d}$ and $\mathbf{3}$ (${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra are recorded in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 300 K).

	P-M-P [${ }^{\text {] }}$	dPм [\AA]	$\bar{O}_{\text {P-wing tip }}$ [ppm]	ŌP-bridgehead [ppm]
2a (M = Cr $)$	$\begin{aligned} & 66.78(3) \\ & 67.25(3) \end{aligned}$	$\begin{gathered} \hline 2.3043(9)- \\ 2.3162(9) \end{gathered}$	$\begin{gathered} -98.8 \\ \left(\mathrm{t},{ }^{1} \mathrm{JPP}_{\mathrm{PP}}=162 \mathrm{~Hz}\right) \end{gathered}$	$\begin{gathered} -152.1 \\ \left(\mathrm{t},{ }^{1} \mathrm{JPP}=162 \mathrm{~Hz}\right) \end{gathered}$
2b ($\mathrm{M}=\mathrm{Mo}$)	$\begin{aligned} & 64.63(4) \\ & 65.62(4) \end{aligned}$	$\begin{gathered} 2.2944(12)- \\ 2.3055(14) \end{gathered}$	$\begin{gathered} -121.8 \\ \left(\mathrm{t},{ }^{1} \mathrm{JPP}^{=}=162 \mathrm{~Hz}\right) \end{gathered}$	$\begin{gathered} -178.4 \\ \left(\mathrm{t},{ }^{1} \mathrm{JPP}=162 \mathrm{~Hz}\right) \end{gathered}$
2c ($\mathrm{M}=\mathrm{W}$)	$\begin{aligned} & 64.56(5) \\ & 65.07(5) \end{aligned}$	$\begin{gathered} 2.2927(16)- \\ 2.3051(17) \end{gathered}$	$\begin{gathered} -161.6 \\ (\mathrm{~m}) \end{gathered}$	$\begin{aligned} & -168.3 \\ & (\mathrm{~m}) \end{aligned}$
2d ($\mathrm{M}=\mathrm{Au}$)	68.16(7)	$\begin{aligned} & 2.480(2) \\ & 2.557(2) \end{aligned}$	$\begin{gathered} -22.9 \\ \left(\mathrm{dt},{ }^{1} \mathrm{JPP}^{=}=196 \mathrm{~Hz},\right. \\ \left.{ }_{2} \mathrm{~J}_{\mathrm{PPP}}=111 \mathrm{~Hz}\right) \end{gathered}$	$\begin{gathered} -299.2 \\ \left(\mathrm{t},{ }^{1} \mathrm{JPP}=196 \mathrm{~Hz}\right) \end{gathered}$
3 (M = Ag)	$\begin{aligned} & 67.07(2) \\ & 66.08(3) \end{aligned}$	$\begin{aligned} & 2.5882(8) \\ & 2.6342(8) \end{aligned}$	-63.8 -63.8 $\left(\mathrm{dtt},{ }^{1} \mathrm{JPP}=191 \mathrm{~Hz}\right.$ $\left(\mathrm{dt},{ }^{1} \mathrm{JPP}^{2}=191 \mathrm{~Hz}\right.$ $\left.{ }^{1}{ }^{\mathrm{JP} 107 \mathrm{Ag}}=138 \mathrm{~Hz}\right)$ $\left.{ }^{1} \mathrm{~J}_{\mathrm{P} 109 \mathrm{Ag}}=158 \mathrm{~Hz}\right)$	$\begin{gathered} -305.0 \\ \left(\mathrm{t},{ }^{1} \mathrm{JPP}=191 \mathrm{~Hz}\right) \end{gathered}$

Surprisingly, 2a-c display very similar P-M bond lengths (approx. $2.30 \AA$) independent of the nature of the coordinated metal atom. This observation suggests that the steric properties of 1 determinate the structural composition of the adducts $\mathbf{2 a} \mathbf{a} \mathbf{c}$ while the $\left[\mathrm{M}(\mathrm{CO})_{4}\right]$ fragment has only very little impact on the structural motif. In the classical complexes $\left[\mathrm{M}(\mathrm{CO})_{4}(\mathrm{dppm})\right]\left(\mathrm{M}=\mathrm{Cr}^{[14]}, \mathrm{Mo}^{[15]}, \mathrm{W}^{[16]}\right.$, dppm = bis(diphenylphosphino)methane) the corresponding $\mathrm{P}-\mathrm{M}$ bonds are elongated about $0.2 \AA$ in comparison to 2a-c, respectively. Similarly, $\left[\left\{\mathrm{Cp}^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right\}_{2}\left(\mu_{3, ~} \eta^{1: 1: 1: 2}-\mathrm{P}_{4}\right)\left\{\mathrm{W}(\mathrm{CO})_{4}\right\}\right]$, the chromium analog to $\mathbf{2 c}$, incorporates $\mathrm{P}-\mathrm{W}$ bond lengths of $2.582(3) \AA$ and $2.583(4) \AA$, respectively. ${ }^{[17]}$ Consequently, 2a-c display a exceptionally strong interaction between the P_{4} butterfly ligand 1 and the coordinated $\left[\mathrm{M}(\mathrm{CO})_{4}\right]$ fragment when compared to analog compounds. In contrast to the shortened P-M bond lengths of 2a-c, the P-Au bonds in 2d (2.480(2) \AA and $2.557(2) \AA$, respectively) are elongated in comparison to the corresponding bonds in similar compounds. For the trigonal planar gold complex $\left[\left\{0-\mathrm{B}_{10} \mathrm{H}_{10} \mathrm{C}_{2}\left(\mathrm{PPh}_{2}\right)_{2}\right\} \mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right]\left[\mathrm{ClO}_{4}\right]$ two $\mathrm{Au}-\mathrm{P}$ bond lengths of 2.405(1) \AA and 2.417(1) \AA are reported involving the chelating ligand and the $A u-\mathrm{PPh}_{3}$ bond is given at 2.318(1) $\AA .{ }^{[18]}$ Consequently, 1 displays a comparably weaker interaction with the Lewis acidic fragment [$\left.\mathrm{AuPPh}_{3}\right]^{+}$than the [$0-\mathrm{B}_{10} \mathrm{H}_{10} \mathrm{C}_{2}\left(\mathrm{PPh}_{2}\right)_{2}$] ligand most likely due to steric repulsion of the $\mathrm{Cp}{ }^{\prime \prime \prime}$ and Ph ligands. The remarkably long P-Ag bonds in 3 are given at $2.5882(8) \AA$ and $2.6342(8) ~ \AA$, respectively, and can be interpreted as a result of the steric repulsion of the four $\mathrm{Cp}^{\prime \prime \prime}$ ligands in 3 resulting in a strained coordination sphere. The previously reported Cu analog of 3 incorporates P-Cu bonds of 2.3630(8) \AA and 2.4268(8) \AA, causing an even more distorted coordination sphere in comparison to 3 due to an increased steric repulsion. ${ }^{[11]}$

The most prominent shared feature of $\mathbf{2 a - d}$ and 3 are the exceedingly small $P-M-P$ bite angles of $64.07(5)^{\circ}$ $-68.16(7)^{\circ}$, which are smaller than the corresponding angles of most established bisphosphane ligands applied in catalytic processes. ${ }^{[19]}$ This suggest that the P_{4} butterfly ligand 1 could be an all-phosphorus inorganic alternative for established ligands like dppm (bite angle $=72(2)^{\circ}$), as reports showed that the activity of a catalyst mainly depends on the direct environment of the active metal site making the bite angle an important parameter in terms of catalyst improvement. ${ }^{[20]}$

IR spectroscopic and mass spectrometric analysis of $\mathbf{2}$ and $\mathbf{3}$ gave the expected results (cf. Si). The ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2 a}, \mathbf{2 b}, \mathbf{2 d}$ and $\mathbf{3}$ each display the expected three sharp singlets for the freely rotating $\mathrm{Cp}{ }^{\prime \prime \prime}$ ligands.

In the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum of $\mathbf{2 a}$ and $\mathbf{2 b}$ identical $\mathrm{A}_{2} \mathrm{M}_{2}$ spin systems yielding two triplets with ${ }^{1} \mathrm{JPP}$ coupling constants of 162 Hz can be detected (Table 1). ${ }^{[21]}$ In contrast, an additional ${ }^{2} J_{\text {PP }}$ coupling (111 Hz) of the wing tip P atoms and the PPh_{3} ligand coordinated to the central Au ion is observed in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum of 2d. In the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{3}$ a sharp triplet $\left({ }^{1} \mathrm{~J}_{\mathrm{PP}}=191 \mathrm{~Hz}\right)$ at $\delta=-305.0 \mathrm{ppm}$ corresponding to the bridgehead P atoms and two overlapping doublets of triplets at $\delta=-63.8 \mathrm{ppm}$ corresponding to the wing tip P atoms can be observed. The overlapping doublet of triplet splitting of the signal attributed to the wing tip P atoms is due to the coupling with the two NMR active nuclei of silver: ${ }^{107} \mathrm{Ag}$ and ${ }^{109} \mathrm{Ag}\left({ }^{1} \mathrm{~J}_{\mathrm{P} 107 \mathrm{Ag}}=138 \mathrm{~Hz}\right.$ and ${ }^{1} J_{\text {P109Ag }}=158 \mathrm{~Hz}$, respectively). Analogous observations are reported for similar compounds like [Ag(dppe) $)_{2}$ [NO] (dppe = bis-(diphenylphosphino)ethane) which incorporates coupling constants of ${ }^{1} J_{\text {P107Ag }}=231 \mathrm{~Hz}$ and ${ }^{1} \mathrm{~J}_{\text {P109Ag }}=266 \mathrm{~Hz}$. ${ }^{[22]}$

b)

c)

	wing tip P atoms	bridgehead P atoms
intercept	$-161.5(1) \mathrm{ppm}$	$-168.12(4) \mathrm{ppm}$
slope	$-0.05(3) \mathrm{ppm}^{-1}$	$0.196(8) \mathrm{ppm}^{-1}$

Figure 2. (a) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{2 c}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-pentane mixtures with increasing n-pentane percentage (recorded with $\mathrm{C}_{6} \mathrm{D}_{6}$-capillary at 300 K); (b) chemical shifts of the signals in the recorded ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectra compared with the n-pentane percentage of the corresponding solutions; (c) parameters of the linear fits displayed in (b)

Unlike $\mathbf{2 a}$ and $\mathbf{2 b}$, all NMR spectra of the higher homologue complex $\mathbf{2 c}$ are highly solvent dependent. Similar observations are established for biomolecules bearing phosphate groups (like ribonucleic acids or proteins) as protic solvents are able to change the environment of the phosphate groups via hydrogen bonding in contrast to non-polar solvents. ${ }^{[23]}$ The ${ }^{1} \mathrm{H}$ NMR spectrum of 2c displays three sharp singlets in non-polar solvents like benzene ($\delta=1.19 \mathrm{ppm}(36 \mathrm{H}), 1.34 \mathrm{ppm}(18 \mathrm{H})$ and $4.70 \mathrm{ppm}(4 \mathrm{H})$) and toluene $(\delta=1.27 \mathrm{ppm}$ $(36 \mathrm{H}), 1.39 \mathrm{ppm}(18 \mathrm{H})$ and $4.73 \mathrm{ppm}(4 \mathrm{H})$), whereas two broad signals are recorded in polar solvents like thf $(\delta=1.43 \mathrm{ppm}(54 \mathrm{H})$ and $4.89 \mathrm{ppm}(4 \mathrm{H}))$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\delta=1.41 \mathrm{ppm}(54 \mathrm{H})$ and $4.71 \mathrm{ppm}(4 \mathrm{H}))$. This indicates that the three tert-butyl groups of the $\mathrm{Cp}^{\prime \prime \prime}$ ligand are magnetically very similar in a polar environment, while magnetically different tert-butyl substituents are observed in a non-polar environment. However, the polarity of the solvent effects the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 c}$ even more distinctly. Whereas polar solvents
like $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afford two distinct multiplets for the $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ spin system, a decrease in solvent polarity causes a convergence of the two multiplets resulting in a high order spin system in non-polar solvents like benzene or toluene. ${ }^{[24]}$ However, control experiment showed that concentration variations have no influence on the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra. Moreover, protonated and deuterated solvents gave the same ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra excluding isotope effects. A simulation of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 c}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ based on an $\mathrm{AA}{ }^{\prime} \mathrm{BB}$ ' spin system results in chemical shifts of $\delta=-161.6 \mathrm{ppm}$ (wing tip P atoms) and $\delta=-168.2 \mathrm{ppm}$ (bridgehead P atoms) and these values comply well with the chemical shifts obtained for the highest peak found in the experimentally recorded spectrum.

To further investigate the uncommon degree of solvent dependency, a series of ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra was recorded in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-pentane mixtures with increasing n-pentane percentage delineating a linear convergence of the two multiplets with decreasing polarity (Fig. 2). Moreover, it is obvious that the polarity of the solvent has more influence on the environment of the wing tip P atoms as the corresponding signal in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra is more noticeably shifted (steeper slope; Fig. 2) than the signal attributed to the bridgehead P atoms. In summary, these observations suggest, that in solution the structural composition of $\mathbf{2 c}$ is not rigid and highly solvent dependent. The underlying process of the observed dynamic behavior could be the wobbling of the $\left[\mathrm{W}(\mathrm{CO})_{4}\right]$ fragment between the two wing tip P atoms of 1 due to steric repulsion of the $\left[\mathrm{W}(\mathrm{CO})_{4}\right]$ fragment and the bulky $\mathrm{Cp}^{\prime \prime \prime}$ ligands of 1 . Hence, the environment of the wing tip P atoms is directly susceptible to solvent changes due to the weak coordination of the Lewis acid. Another possibility is the complete or partial dissociation of the $\left[\mathrm{W}(\mathrm{CO})_{4}\right]$ fragment from the P_{4} butterfly ligand yielding ionogenic Lewis structures with separated (formal) charges. Naturally, only polar solvents endorse this (partial) fragmentation by stabilizing the afforded polar fragmentation products, which explains the solvent dependent observation of this phenomenon. The fact, that an analog observation cannot be made for the lighter homologues $\mathbf{2 a}$ and $\mathbf{2 b}$, suggests that the tungsten atom of $\mathbf{2 c}$ is essential to the observed dynamic process.

Intrigued by the for P_{4} butterfly compounds unprecedented relation between solvent polarity and chemical shift in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum, the influence of temperature on the NMR spectra of $\mathbf{2 c}$ was investigated. Here, a common variation of the chemical shifts as well as line broadening could be detected in the ${ }^{1} \mathrm{H}$ and
${ }^{31}$ P NMR spectra of $\mathbf{2 c}$. ${ }^{[24]}$ Moreover, these effects are observed in polar as well as non-polar solvents. In contrast to the previously discussed dependency on solvent polarity, the change in temperature has only little influence on the chemical shift of the signal corresponding to the wing tip P atoms in the ${ }^{31} P\left\{{ }^{1} H\right\} N M R$ spectrum but influences the chemical shift attributed to the bridgehead P atoms more distinctly. ${ }^{[24]}$ However, none of these effects are out of the ordinary and therefore no additional information about the composition of $2 \mathbf{c}$ can be deducted.

Besides the formation of P_{4} butterfly adducts, 1 can also be the starting point for the generation of novel P_{n} ligand systems by converting it with highly reactive Lewis acidic fragments. Depending on the electronic requirement of the metal fragment, different rearrangements of the tetraphospha-bicyclo[1.1.0]butane unit can occur. One example for such a rearrangement is the formation of the afore mentioned cyclo- P_{4} sandwich complex $\left[\left\{\left(\mathrm{Cp} " \mathrm{Fe}(\mathrm{CO})_{2}\right)_{2}\left(\mu_{3}, \eta^{1: 1: 4}-\mathrm{P}_{4}\right)\right\}_{2} \mathrm{Fe}\right]\left[\mathrm{PF}_{6}\right]_{2}$ obtained from the reaction of 1 with $\left[\mathrm{Fe}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{6}\right]\left[\mathrm{PF}_{6}\right]$ (Fig. 1). ${ }^{[12]}$ Additionally, the chromium P_{4} butterfly complex $\left[\left\{\mathrm{Cp}{ }^{*} \operatorname{Cr}(\mathrm{CO})_{3}\right\}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]$ undergoes rearrangement processes affording a bend deltoid cyclo- P_{4} motif with a unique substitution pattern when reacted with $\left[\mathrm{M}(\mathrm{CO})_{4}(\mathrm{nbd})\right]\left(\mathrm{M}=\mathrm{Cr}\right.$, Mo). ${ }^{[17]}$

Figure 3. Molecular structures of $\mathbf{4}$ and $\mathbf{5}$ in the solid state. For clarity H Atoms as well as solvent molecules are omitted and CO as well as Cp"' ligands are drawn in the wire frame model; thermal ellipsoids are drawn at 50% probability.

However, in this report we focus on the reactions of 1 with the two transition metal carbonyls $\left[\mathrm{Co}_{2}(\mathrm{CO})_{8}\right]$ and $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{9}\right]$. By reacting 1 with $\left[\mathrm{Co}_{2}(\mathrm{CO})_{8}\right]$, the $\mathrm{P}-\mathrm{P}$ bond between the former bridgehead P atoms of 1 is cleaved yielding the cyclo- P_{4} incorporating $\left[\left\{\mathrm{Cp}^{\prime \prime \prime}(\mathrm{CO})_{2} \mathrm{Fe}\right\}_{2}\left(\mu_{4}, \mathrm{n}^{1: 1: 2: 2: 2}-\mathrm{P}_{4}\right)\left\{\mathrm{Co}(\mathrm{CO})_{3}\right\}_{2}\right]$ (4). Stabilized by the chelating coordination towards two $\left[\mathrm{Co}(\mathrm{CO})_{3}\right]$ fragments, 4 is left with a central $\left[\mathrm{P}_{4} \mathrm{Co}_{2}\right]$ structural motif which strongly resembles the "boot conformation" known for organic six membered rings (Fig. 3). Formally, each $\left[\mathrm{Co}(\mathrm{CO})_{3}\right]$ fragment is covalently bound to one of the former bridgehead P atoms via a 2-center-2-electronbond and additionally datively coordinated by one former wing tip P atom. Thus, the cyclo-P4 ligand in 4 represents a six-valence electron donor. Compound 4 can be isolated in the form of dark brown needles, which are very well soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The single crystal X-ray diffraction analysis of 4 displays a slightly folded cyclo- P_{4} moiety incorporating two different $\mathrm{P}-\mathrm{P}$ bond lengths (Fig. 3). With 2.1351(14) \AA and $2.1361(14) \AA$, respectively, the two P-P bonds which are asymmetrically canopied by $\left[\mathrm{Co}(\mathrm{CO})_{3}\right]$ fragments are noticeable shortened compared to an ordinary P-P single bond $(2.21 \AA) .{ }^{[3]]}$ In contrast, the two remaining P-P bonds are slightly elongated (2.2804(15) \AA and $2.2923(15) \AA$, respectively). Moreover, the four Co-P bond lengths in 4 vary from $2.2438(10) \AA(C o 2-P 3)$ to $2.2872(13) \AA(C o 2-P 4)$ with Co1-P1 and Co2-P3 being shorter than Co1-P2 and Co2-P4 (labeling according to Fig. 3). The different P-P and Co-P bond lengths in 4 are nicely reflected in the corresponding Wiberg Bond Indices (WBI). WBIs of 1.03 and 0.87 are given for the canopied and non-canopied P-P bonds, respectively, while WBIS of 0.63 and 0.51 are determined for the Co1-P1/Co2-P3 and Co1-P2/Co2-P4 bonds, respectively. The P-Fe bonds in 4 (2.2954(11) \AA and $2.2872(13) \AA$) are shortened compared to the corresponding bonds in the starting material 1 (2.355(2) \AA and $2.348(2) \AA$), due to the electron withdrawing properties of the $\left[\mathrm{Co}(\mathrm{CO})_{3}\right]$ fragments. Finally, with a torsion angle of 13.4° the central cyclo- P_{4} unit in 4 displays only a slight deviation from planarity.

In the ${ }^{1} \mathrm{H}$ NMR spectrum of 4 two associated sets of three signals each are detected for the two $\mathrm{Cp}{ }^{\prime \prime \prime}$ ligands indicating, that 4 is not symmetrical in solution, probably due to the hindered rotation of the $\left[\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right]$ fragments. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 4 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ displays two distinct signals at $\delta \mathrm{x}=-12.6 \mathrm{ppm}$ (attributed to the former bridgehead P atoms; P 2 and P 4 in Fig. 3) and $\delta_{\mathrm{A}}=24.4 \mathrm{ppm}$ (attributed to the former wing tip P atoms; $P 1$ and $P 3$ in Fig. 3) indicating an $A A^{\prime} X X$ ' spin system. The simulation of this ${ }^{31} P\left\{{ }^{1} H\right\} N M R$
spectrum affords two different types of ${ }^{1} J_{\mathrm{PP}}$ coupling constants ($\left.{ }^{1} \mathrm{~J}_{\mathrm{AX}}=237.5 \mathrm{~Hz}\right)^{1} \mathrm{~J}_{\mathrm{AX}}=250.5 \mathrm{~Hz}$ and ${ }^{1} J_{A X}=361.1 \mathrm{~Hz} /{ }^{1} J_{A X^{\prime}}=369.1 \mathrm{~Hz}$) corresponding to the non-canopied and canopied P-P bonds, respectively. This complies well with the values obtained from the WBI analysis as higher WBIs are given for the canopied $P-P$ bonds $(W B I=1.03)$ in comparison to the non-canopied $P-P$ bonds $(W B I=0.87)$. The $I R$ spectrum of solid 4 exclusively displays carbonyl stretching bands for terminal CO ligands, while an additional bridging CO band at $\tilde{v}_{\mathrm{CO}}=1712 \mathrm{~cm}^{-1}$ is detected for a solution of 4 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Therefore, dynamic processes like the opening and rearrangement of carbonyl bridges as those that have been observed for $\left[\mathrm{Fe}_{3}(\mathrm{CO})_{12}\right]^{[25]}$ are to be expected for 4 in solution. ${ }^{[26]}$ Consequently, ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of 4 at different temperatures were recorded to further investigate the proposed dynamic processes. Hereby, a broadening of the two multiplets with decreasing temperature can be observed, with the effect being more pronounced for the signal corresponding to the two former bridgehead P atoms ($\mathrm{Px} ; \mathrm{P} 2$ and P 4 in Fig. 3). However, as this is a quite common observation in variable temperature ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy, no further conclusions can be drawn regarding the nature of the proposed dynamic processes occurring in solution.

In contrast to the straight forward P-P bond cleavage accompanied by stabilization trough Lewis acidic fragments that affords 4 , the reaction of 1 with $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{9}\right]$ yields $\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{4}, \eta^{1: 1: 1: 1: 3}-\right.\right.$ $\left.\left.\mathrm{P}_{4} \mathrm{CO}\right)\left\{\mathrm{Fe}(\mathrm{CO})_{4}\right\}\left\{\mathrm{Fe}(\mathrm{CO})_{3}\right\}\right](5)$ after chromatographic workup and crystallization. The central moiety of $\mathbf{5}$ is a tetraphosphol scaffold obtained by the insertion of a carbonyl ligand into the P_{4} butterfly unit alongside bond cleavage of the $P-P$ bond between the two former bridgehead P atoms (Fig. 3). Additionally, the distorted five membered $\left[\mathrm{P}_{4} \mathrm{C}\right]$ ring is stabilized by the two $\left[\mathrm{Cpm}{ }^{\prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right]$ substituents of the starting material 1 as well as a canopying $\left[\mathrm{Fe}(\mathrm{CO})_{3}\right]$ and a terminal $\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]$ fragment. However, ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectroscopy suggest the initial formation of a different product (5^{*}) with a subsequent CO insertion affording 5 during the chromatographic workup or the crystallization process. Since no single crystals suitable for X-ray diffraction analysis could be obtained for the dark brown 5^{*}, the structural composition of 5^{*} is yet to be determined. In the ${ }^{31} \mathrm{P}$ NMR spectrum of 5^{*} only one triplet ($\delta=-257.5 \mathrm{ppm},{ }^{1} \mathrm{JPP}=217 \mathrm{~Hz}$; recorded in toluene- d_{8}) can be detected at room temperature. After cooling the sample below $-20^{\circ} \mathrm{C}$, two additional multiplets centered at $\delta=16.0 \mathrm{ppm}$ and $\delta=-19.9 \mathrm{ppm}$ emerge. The intensity ratio of the three signals in the ${ }^{31} \mathrm{P}$ NMR spectrum at $-50^{\circ} \mathrm{C}$ is given at 1:1:2 indicating an $A B X_{2}$ spin system. IR spectroscopic investigations of 5^{*} reveal the exclusive presence of terminal carbonyl ligands, while EI-MS spectrometric investigations give m/z=1053 as the peak with highest mass to charge ratio. However, this type of ionization is prone to cause decarbonylation. Hence, it is not obvious, whether this peak is assignable to the molecular ion peak of 5^{*}. With these experimental parameters, two possible compositions for 5^{*} can be deducted. If the recorded peak from the EI-MS spectrum is considered to be the molecular ion peak [M^{+}], the molecular composition of 5^{*} would be $\mathrm{C}_{34} \mathrm{H}_{58} \mathrm{Fe}_{4} \mathrm{O}_{9} \mathrm{P}_{4}$. This composition corresponds to $\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{4,} \eta^{1: 1: 1: 12}-\mathrm{P}_{4}\right)\left\{\mathrm{Fe}(\mathrm{CO})_{4}\right\}\left\{\mathrm{Fe}(\mathrm{CO})_{3}\right\}\right]$ $\left(5^{*}-1\right)$ representing an intact molecule of 1 coordinating to one $\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]$ fragment in a η^{1}-coordination mode accompanied by the additional coordination towards a $\left[\mathrm{Fe}(\mathrm{CO})_{3}\right]$ fragment in a chelating η^{2}-fashion. However, if the peak observed in the EI-MS spectrum of 5^{*} is attributed to $\left[\mathrm{M}^{+}-\mathrm{CO}\right]$, the composition of 5^{*} amounts to $\mathrm{C}_{35} \mathrm{H}_{58} \mathrm{Fe}_{4} \mathrm{O}_{10} \mathrm{P}_{4}$ suggesting $\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{4}, \eta^{1: 1: 1: 1: 1}-\mathrm{P}_{4}\right)\left\{\mathrm{Fe}(\mathrm{CO})_{4}\right\}_{2}\right] \quad\left(5-\mathbf{2}^{*}\right)$, an intact molecule of 1 coordinating towards two $\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]$ fragments, as the second structural proposal for 5^{*}. For both $5^{*}-1$ and $5^{*}-2$ the coordination of the (second) $\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]$ fragment could be alternating between the two (former) bridgehead atoms explaining the dynamic behavior obtained in solution.

$0.0 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$

5*-2b
$9.94 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$

5*-2c
$90.87 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$

5*-2d
$68.68 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$

5*-1a
$0.0 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$

$5^{*}-1 \mathrm{~b}$
$89.92 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$

5*-1c
$97.11 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$

Figure 4. Structure and relative energies of suggested isomers for $5^{*}-1$ and $5^{*}-\mathbf{2}$ (calculated on the B3LYP/def2TZVP level of theory).

In order to elucidate the nature of $\mathbf{5}^{*}$ we calculated the relative energy of different feasible isomers of $\mathbf{5}^{*}$ - $\mathbf{1}$ and $5^{*}-2$ at the B3LYP/def2TZVP level of theory (Fig. 4). ${ }^{27}$ The results show that the coordination of both wing tip P atoms to two $\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]$ fragments is rather unlikely due to steric reasons. Additionally, the binding of one $\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]$ fragment to only one wing tip P atom is preferred instead of a symmetrical $\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]$ bridge. All attempts to localize an intermediate of the latter type failed (geometries converge to the η^{1}-coordination) indicating that such a geometry might be a transition state but not a stable minimum. The energetically most stable compound from the analyzed series is $5^{*}-2 \mathrm{a}$ in which one of the wing tip P atoms and one of the bridgehead P atoms coordinate in a η^{1}-fashion to a $\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]$ fragment each. The isomer 5^{*} - $\mathbf{2 b}$, in which both bridgehead P atoms coordinate to two $\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]$ fragments, lies energetically higher than $5^{*}-\mathbf{2 a}$ ($9.94 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$, Fig. 4). Additionally, we were able to locate the isomer $5^{*}-2 \mathrm{c}$ in which one $\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]$ fragment is bound in a η^{2}-mode to the bridgehead P atoms and a second $\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]$ fragment is bound to one bridgehead P atom a η^{1}-fashion. However, with $90.87 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1} 5^{*}-2 \mathrm{c}$ lies much higher in energy than $\mathbf{5}^{*}$ - 2 a and $5^{*}-2 b$ (Fig. 4). Furthermore, a $\eta^{1}: \eta^{1}$-coordination of 1 via the wing tip P atoms towards a $\left[\mathrm{Fe}(\mathrm{CO})_{3}\right]$ fragment $\left(5^{*}-1 \mathrm{a}\right)$ is clearly preferred with $-89.92 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$ over a η^{2}-coordination promoted by the two bridgehead P atoms (5*-1b). With $97.11 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$ the isomer $\mathbf{5}^{*}-\mathbf{1 c}$, displaying a $\eta^{2}: \eta^{1}$-coordination mode of the two bridgehead P atoms, lies only slightly higher in energy compared to 5^{*} - $\mathbf{2 b}$ (Fig. 4).

By comparing the ${ }^{31} \mathrm{P}$ NMR spectrum of 5^{*} and 1 , it is obvious that in 5^{*} both the wing tip P atoms and the bridgehead P atoms interact with an Fe fragment as both signals attributed to the respective P atoms are distinctly altered in the ${ }^{31} \mathrm{P}$ NMR spectra. For complex 5^{*}, both bridgehead P atoms are equivalent on the NMR time scale at low temperatures as well as at room temperature. Meanwhile the ${ }^{31} \mathrm{P}$ NMR spectra depict that the wing tip P atoms of 5* are inequivalent at low temperatures and at room temperature an accentuated dynamic process can be observed by the dissolving of the corresponding signals. This indicates that the wing tip P atoms are involved in the underlying dynamic process. Since the coordination of a $\left[\mathrm{Fe}(\mathrm{CO})_{3}\right]$ fragment by the wing tip P atoms would result in a stable core, no dynamic behavior could be observed. The
coordination of a $\left[\mathrm{Fe}(\mathrm{CO})_{3}\right]$ fragment to the $\mathrm{P}-\mathrm{P}$ bond of the bridgehead P atoms and the wobbling of the $\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]$ fragment between both wing tip P atoms in $5^{*}-1 \mathrm{~b}$ could explain the observations in the ${ }^{31} \mathrm{P}$ NMR spectra. Although $5^{*}-1 b$ is energetically less stable than $5^{*}-1 a$, the formation of $5^{*}-1 b$ might be endorsed due to kinetic reasons. A similar process has been reported for the protonated 1, i.e. $\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu, \eta^{1: 1}-\right.\right.$ $\left.\left.\mathrm{P}_{4}\right) \mathrm{H}\right]^{+} .{ }^{[28]}$

Compound $\mathbf{5}$ crystallizes in the triclinic space group $\mathrm{P} \overline{1}$ and single crystal X-ray diffraction analysis depicts the central tetraphosphol moiety, which adopts a distorted envelope conformation in the solid state (Fig. 3). The strained five membered ring consists of two different type of $\mathrm{P}-\mathrm{P}$ bonds: the $\left[\mathrm{Fe}(\mathrm{CO})_{3}\right]$ bridged bonds P2-P3 (2.1625(15) Å) and P3-P4 (2.1876(15) Å) which are slightly shortened compared to the P1-P2 bond (2.2114(51) Å). Consequently, a partial double bond character can be proclaimed for P2-P3 and P3-P4. A similar P-P distance with double bond character has been reported for the diphosphene complex $\left[\left\{\mathrm{Fe}(\mathrm{CO})_{4}\right\}_{2}\left(\mu, \eta^{2: 1}-\mathrm{P}_{2} \mathrm{Ph}_{2}\right)\right](2.139(2) \AA) .{ }^{[29]}$ In contrast, the P1-P2 bond length compares well with an usual $\mathrm{P}-\mathrm{P}$ single bond. ${ }^{[13]}$ Additionally, the $\mathrm{P} 1-\mathrm{C}-\mathrm{P} 4$ angle of $115.2(2)^{\circ}$ in 5 matches well with the corresponding angle in $\left[\mathrm{Li}(\mathrm{thf})_{3} \mathrm{Cyc} / \mathrm{O}-\left(\mathrm{P}_{4}{ }^{\mathrm{t}} \mathrm{Bu}_{4} \mathrm{CH}\right)\right]\left(116.9^{\circ}\right) .{ }^{[30]}$

Due to the asymmetric substitution pattern of the five membered ring, two sets of five singlets are recorded in the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5}$. Moreover, 5 displays an ABMX spin system yielding four distinct signals in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($\delta=69.0 \mathrm{ppm}, 40.3 \mathrm{ppm}, 6.5 \mathrm{ppm}$ and -133.9 ppm ; recorded in $\mathrm{C}_{6} \mathrm{D}_{6}$). In contrast to $5^{*}, 5$ displays a broad band at $\tilde{v}_{\mathrm{CO}}=1638 \mathrm{~cm}^{-1}$ in the IR spectrum typical for the bridging CO group of the teraphosphol motif.

4.4 Conclusion

In conclusion, we were able to illustrate the diverse coordination behavior of the P_{4} butterfly compound 1 towards different carbonyl Lewis acids. On the one hand, a chelating coordination via the two wing tip P atoms of 1 towards $\left[\mathrm{M}(\mathrm{CO})_{4}\right](\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W})$ as well as $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{Au}\right]^{+}$fragments was reported. Hereby, complexes 2a-d incorporating intact P_{4} butterfly ligands that display exceedingly small bite angles (approx. 65°) were obtained. These compounds might represent an all-phosphorus alternative to dppm and could give new impulses in catalytic applications. Additionally, the reaction of 1 with [AgPF ${ }_{6}$] afforded 3, a spiro complex with two intact P_{4} butterfly ligands. Moreover, the interesting solvent depended ${ }^{31} P\left\{{ }^{1} H\right\} N M R$ spectra of $\mathbf{2 c}$ were intensively discussed to highlight this for P_{n} ligands unprecedented behavior.

On the other hand, 1 verified to be a promising starting material for P_{4} rearrangement processes, as the reactions of 1 with $\left[\mathrm{Co}_{2}(\mathrm{CO})_{8}\right]$ and $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{9}\right]$ afforded the cyclo- P_{4} compound 4 and the tetraphosphol 5, respectively. In 4 a slightly bend P_{4} ring (obtained after a selective $P-P$ bond cleavage) is stabilized by two canopying $\left[\mathrm{Co}(\mathrm{CO})_{3}\right]$ fragments. In contrast, 5 is the result of a CO insertion into the P_{4} motif found in 5^{*} which is originally obtained from the reaction of 1 with $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{9}\right]$. DFT calculations suggest that 5^{*} can be described as an intact molecule of 1 coordinated towards a $\left[\mathrm{Fe}(\mathrm{CO})_{3}\right]$ fragment in a chelating fashion accompanied by an additional coordination towards a terminal $\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]$ fragment. In summary, we were able to demonstrate the diverse potential of the P_{4} butterfly compound $\mathbf{1}$ as a starting material in the formation of unprecedented P_{n} ligands, which are an incentive for the examination of P_{4} activation processes

4.5 References

[1] (a) N. Hazari, Chem. Soc. Rev. 2010, 39, 4044-4056.
(b) I. Mellone ,F. Bertini, L. Gonsalvi, A. Guerriero, M. Peruzzini, CHIMIA Int. J. Chem. 2015, 69, 331-338.
(c) Z. Turner, Inorganics 2015, 3, 597.
(d) R. A. Henderson, Trans. Met. Chem. 1990, 15, 330-336;
(e) V. P. Indrakanti, J. D. Kubicki, H. H. Schobert, Energy Environ. Sci. 2009, 2, 745-758.
(f) X. Yin, J. R. Moss, Coord. Chem. Rev. 1999, 181, 27-59.
[2] (a) B. M. Cossairt, N. A. Piro, C. C. Cummins, Chem. Rev. 2010, 110, 4164-4177.
(b) M. Caporali, L. Gonsalvi, A. Rossin, M. Peruzzini, Chem. Rev. 2010, 110, 4178-4235.
(c) M. Scheer, G. Balázs, A. Seitz, Chem. Rev. 2010, 110, 4236-4256.
(d) N. A. Giffin, J. D. Masuda, Coord. Chem. Rev. 2011, 255, 1342-1359.
[3] (a) A. P. Ginsberg, W. E. Lindsell, J. Am. Chem. Soc. 1971, 93, 2082-2084.
(b) W. E. Lindsell, J. Chem. Soc., Chem. Commun. 1982, 1422-1424.
[4] (a) O. J. Scherer, G. Schwarz, G. Wolmershäuser, Z. Anorg. Allg. Chem 1996, 622, 951-957.
(b) O. J. Scherer, T. Hilt, G. Wolmershäuser, Organometallics 1998, 17, 4110-4112.
[5] O. J. Scherer, M. Swarowsky, H. Swarowsky, G. Wolmershäuser, Angew. Chem. 1998, 5, 738-739.
[6] U. Vogel, M. Eberl, M. Eckhardt, A. Seitz, E.-M. Rummel, A. Y. Timoshkin, E. V. Peresypkina, M. Scheer, Angew. Chem. Int. Ed. 2011, 50, 8982-8985.
[7] A. E. Seitz, M. Eckhardt, A. Erlebach, E. V. Peresypkina, M. Sierka, M. Scheer, J. Am. Chem. Soc. 2016, 33, 10433-10436.
[8] A. E. Seitz, U. Vogel, M. Eberl, M. Eckhardt, G. Balázs, E. V. Peresypkina, M. Bodensteiner, M. Zabel, M. Scheer, Chem. Eur. J. 2017, 23, 10319-10327.
[9] (a) J. Bai, A. V. Virovets, M. Scheer, Angew. Chem. Int. Ed., 2002, 41, 1737-1740.
(b) J. Bai, A. V. Virovets, M. Scheer, Science, 2003, 300, 781-783.
(c) M. Scheer, J. Bai, B. P. Johnson, R. Merkle, A. V. Virovets, C. E. Anson, Eur. J. Inorg. Chem. 2005, 20, 4023-4026.
(d) M. Scheer, L. J. Gregoriades, A. V. Virovets, W. Kunz, R. Neueder. I. Krossing, Angew. Chem. Int. Ed. 2006, 45, 5689-5693.
(e) M. Scheer, A. Schindler, R. Merkle, B. P. Johnson, M. Linseis, R. Winter, C. E. Anson, A. V. Virovets, J. Am. Chem. Soc. 2007, 129, 13386-13387.
(f) S. Welsch, L. J. Gregoriades, M. Sierka, M. Zabel, A. V. Virovets, M. Scheer, Angew. Chem. Int. Ed. 2007, 46, 9323-9326.
(g) M. Scheer, L. J. Gregoriades, R. Merkle, B. P. Johnson, F. Dielmann, Phosphorus, Sulfur, Silicon and the Related Elements 2008, 183, 504-508.
(h) M. Scheer, A. Schindler, C. Gröger, A. V. Virovets, E. V. Peresypkina, Angew. Chem. Int. Ed. 2009, 48, 5046-5049.
(i) M. Scheer, A. Schindler, J. Bai, B. P. Johnson, R. Merkle, R. Winter, A. V. Virovets, E. V. Peresypkina, V. A. Blatov, M. Sierka, H. Eckert, Chem. Eur. J., 2010, 16, 2092-2107.
(j) A. Schindler, G. Balázs, M. Zabel, C. Gröger, R. Kalbitzer, M. Scheer, C. R. Chimie 2010, 13, 1241-1248.
(k) A. Schindler, C. Heindl, G. Balázs, C. Gröger, A. V. Virovets, E. V. Peresypkina, M. Scheer, Chem. Eur. J. 2012, 18, 829-835.
(I) F. Dielmann, A. Schindler, S. Scheuermayer, J. Bai, R. Merkle, M. Zabel, A. V. Virovets, E. V. Peresypkina, G. Brunklaus, H. Eckert, M. Scheer, Chem. Eur. J. 2012, 18, 1168-1179.
(m) C. Heindl, S. Heinl, D. Lüdeker, G. Brunklaus, W. Kremer, M. Scheer, Inorg Chim. Acta 2014,422, 218-223.
(n) E. V. Peresypkina, C.Heindl, A. Schindler, M. Bo, W. Kremer, M. Scheer, Z. Krist. 2014,229, 735740.
(o) F. Dielmann, C. Heindl, F. Hastreiter, E. V. Peresypkina, A. V. Virovets, R. M. Gschwind, M. Scheer, Angew. Chem. Int. Ed. 2014, 53, 13605-13608.
(p) M. Fleischmann, J. S. Jones,F.P. Gabbai, M. Scheer, Chem. Sci. 2015, 6, 132-139.
(q) M. Fleischmann, L. Dütsch, M. Elsayed Moussa, A. Schindler, G. Balázs, C. Lescop, M. Scheer, Chem. Comm. 2015, 51, 2893-2895.
(r) F. Dielmann, M. Fleischmann, C. Heindl, E. V. Peresypkina, A. V. Virovets, R. M. Gschwind, M. Scheer, Chem. Eur. J. 2015, 21, 6208-6214.
(s) S. Heinl, E. Peresypkina, M. Scheer, Angew. Chem. Int. Ed. 2015, 54, 13431-13435.
(t) C. Heindl, E. V. Peresypkina, A. V. Virovets, W. Kremer, M. Scheer, J. Am. Chem. Soc. 2015, 137, 10938-10941.
(u) C. Heindl, E. V. Peresypkina, A. V. Virovets, I. S. Bushmarinov, M. G. Medvedev, B. Krämer, B. Dittrich, M. Scheer, Angew. Chem. Int. Ed. 2017, 56, 13237-13243.
(v) M. Elsayed Moussa, B. Attenberger, E. V. Peresypkina, M. Scheer, Dalton Trans. 2018, 47, 10141017.
(w) E. V. Peresypkina, C. Heindl, A. V. Virovets, H. Brake, E. Mädl, M. Scheer, Chem. Eur. J. 2018, 24, 2503-2508.
(x) M. Elsayed Moussa, M. Piesch, M. Fleischmann, A. Schreiner, M. Seidl, M. Scheer, Dalton Trans. 2018, 47, 16031-16035.
[10] (a) J. Bai, E. Leiner, M. Scheer, Angew. Chem. Int. Ed. 2002, 41, 783-786.
(b) M. Scheer, L. Gregoriades, J. Bai, M. Sierka, G. Brunklaus, H. Eckert, Chem. Eur. J. 2005, 11, 2163-2169.
(c) M. Pronold, M. Scheer, J. Wachter, M. Zabel, Inorg. Chem. 2007, 46, 1396-1400.
(d) M. Scheer, L. J. Gregoriades, M. Zabel, M. Sierka, L. Zhang, H. Eckert, Eur. J. Inorg. Chem. 2007, 2775-2782.
(e) M. Scheer, L. J. Gregoriades, M. Zabel, J. Bai, I. Krossing, G. Brunklaus, H. Eckert, Chem. Eur. J. 2008, 14, 282-295.
(f) S. Welsch, C. Lescop, G. Balázs, R. Réau, M. Scheer, Chem. Eur. J. 2011, 17, 9130-9141.
(g) B. Attenberger, S. Welsch, M. Zabel, E. Peresypkina, M. Scheer, Angew. Chem. Int. Ed. 2011, 50, 11516-11519.
(h) B. Attenberger, E. V. Peresypkina, M. Scheer, Inorg. Chem. 2015, 54, 7021-7029.
(i) M. Fleischmann, L. Dütsch, M. Elsayed Moussa, G. Balázs, W. Kremer, Ch. Lescop, M. Scheer, Inorg. Chem. 2016, 55, 2840-1854.
(j) M. Fleischmann, J. S. Jones, G. Balázs, F. P. Gabbaï, M. Scheer, Dalton Trans. 2016, 45, 1374213749.
(k) M. Elsayed Moussa, B. Attenberger, E. V. Peresypkina, M. Fleischmann, G. Balázs, M. Scheer, Chem. Commun. 2016, 52, 10004-10007.
(I) M. Elsyaed Moussa, B. Attenberger, M. Fleischmann, A. Schreiner, M. Scheer, Eur. J. Inorg. Chem. 2016, 4538-4541.
(m) M. Elsayed Moussa, M. Fleischmann, E. V. Peresypkina, L. Dütsch, M. Seidl, G. Balázs, M. Scheer, Eur. J. Inorg. Chem. 2017, 3222-3226.
(n) M. Elsayed Moussa, B. Attenberger, M. Seidl, A. Schreiner, M. Scheer, Eur. J. Inorg. Chem. 2017, 5616-5620.
(o) M. Elsayed Moussa, M. Seidl, G. Balázs, A. V. Virovets, B. Attenberger, A. Schreiner, M. Scheer, Chem. Eur. J. 2017, 23, 16199-16203.
(p) M. Elsayed Moussa, S. Welsch, M. Lochner, E. V. Peresypkina, A. V. Virovets, M. Scheer, Eur. J. Inorg. Chem. 2018, 2689-2694.
(q) M. Elsayed Moussa, S. Welsch,L. J. Gregoriades, G. Balázs, M. Seidl, M. Scheer, Eur. J. Inorg. Chem. 2018, 1683-1687.
(r) M. Elsayed Moussa, E. Peresypkina, A. V. Virovets, G. Balázs, M. Scheer, CrystEngComm 2018, 20, 7417-7422.
[11] C. Schwarzmaier, S. Heinl, G. Balázs, M. Scheer, Angew. Chem. Int. Ed. Engl. 2015, 54, 1311613121.
[12] J. Müller, S. Heinl, C. Schwarzmaier, G. Balázs, M. Keilwerth, K. Meyer, M. Scheer, Angew. Chem. Int. Ed. 2007, 56, 7312-7317.
[13] (a) A. Simon, H. Borrmann, H. Craubner, Phosphorus Sulfur Silicon Relat. Elem. 1987, 30, 507-510. (b) H. Okudera, E. Dinnebier Robert, A. Simon, Z. Kristallogr., 2005, 220, 259.
[14] Chambridge Crystallographic Database, 1032637
[15] K. K. Cheung, T. F. Lai, K. S. Mok, J. Chem. Soc. A. 1971, 0, 1644-1647.
[16] G. W. Wong, J. L. Harkreader, C. A. Mebi, B. J. Frost, Inorg. Chem. 2006, 45, 6748-6755.
[17] Cf. chapter 3 of this thesis.
[18] O. Crespo, M. C. Gimeno, A. Laguna, P. G. Jones, Dalton Trans. 1992, 1601-1605.
[19] P. W. N. M. van Leeuwen, P. C. J. Kamer, J. N. H. Reek, P. Dierkes, Chem. Rev. 2000, 100, 27412770.
[20] (a) C. A. Tolman, Chem. Rev. 1977, 77, 313-348.
(b) W.-J. van Zeist, F. M. Bickelhaupt, Dalton Trans. 2011, 40, 3028-3038.
[21] In the NMR spectra of the reaction mixtures and crystals obtained from the reaction of 1 with $\left[\mathrm{Mo}(\mathrm{CO})_{4}(\mathrm{nbd})\right]$ a second species next to $\mathbf{2 b}$ was observed. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta[\mathrm{ppm}]=1.18(\mathrm{~s}, 36 \mathrm{H}$, $\left.\mathrm{C}_{5} \mathrm{H}_{2}\left(\mathrm{C}_{4} \underline{H}_{9}\right)_{3}\right), 1.36\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{2}\left(\mathrm{C}_{4} \underline{\mathrm{H}_{9}}\right)_{3}\right), 4.67\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{C}_{5} \underline{\mathrm{H}}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3}\right) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta[\mathrm{ppm}]=-99.9$ $\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{AB}}=162 \mathrm{~Hz}, 2 \mathrm{P}, \mathrm{P}_{\mathrm{A}}\right),-149.5\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{AB}}=162 \mathrm{~Hz}, 2 \mathrm{P}, \mathrm{P}_{\mathrm{B}}\right)$). Throughout various workup and crystallization steps the ratio of $\mathbf{2 b}$ and the unidentified side product stayed constant ($5: 1$). The side product could not be identified and characterized so far, however, one feasible suggestion is the spiro compound $\left.\left[\left\{\left(\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right)_{2}\left(\mu_{3}, \eta^{1: 1: 1: 1: 1}-\mathrm{P}_{4}\right)\right\}_{2}\left\{\mathrm{Mo}(\mathrm{CO})_{2}\right\}\right]\right)$. $\left[\mathrm{Mo}(\mathrm{CO})_{2}(\mathrm{nbd})_{2}\right]$ is a known side product in the synthesis of $\left[\mathrm{Mo}(\mathrm{CO})_{4}(\mathrm{nbd})\right]$ and a peak corresponding to $[2 \mathrm{~b}-2 \mathrm{CO}]^{+}(967.86 \mathrm{~m} / \mathrm{z})$ could be identified in the mass spectrum of $\mathbf{2 b}$.
[22] S. J. B. Price, C. Brevard, A. Pagelot, P. J. Sadler, Inorg. Chem. 1985, 24, 4278-4281.
[23] (a) D. B. Lerner, W. J. Becktel, R. Everett, M. Goodman, D. R. Kearns, Biopolymers 1984, 23, 21572172.
(b) R. Streck, A. J. Barnes, Spectrochimica Acta Part A 1999, 55, 1059-1076.
[24] See SI for further detail.
[25] B. E. Mann, J. Chem. Soc., Dalton Trans. 1997, 1457-1472.
[26] A structural suggestion for an according intermediate with bridging CO ligands is given in the SI alongside corresponding DFT calculations.
[27] Extensive DFT calculations for $5^{*}-1,5^{*}-2$ and additional structural suggestion for 5^{*} are given in the SI.
[28] C. Schwarzmaier, S. Heinl, G. Balázs, M. Scheer, Angew. Chem. 2015, 127, 13309-13314; Angew. Chem. Int. Ed. 2015, 54, 13116-13121.
[29] R. Mathieu, A.-M. Caminade, J.-P. Majoral, S. Attali, M. Sanchelz, Organometallics 1986, 5, 19141916.
[30] R. Wolf, E. Hey-Hawkins, Chem. Commun. 2004, 2626-2627.

4.6 Supplementary Information

4.6.1 General Remarks

All experiments were carried out under an atmosphere of dry argon or nitrogen using glovebox and schlenk techniques. Residues of oxygen and water were removed from the inert gas by passing it over a BASF R 3$11\left(\mathrm{CuO} / \mathrm{MgSiO}_{3}\right)$ catalyst, concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ and finally granulated silica gel. Dry solvents were collected from a Braun SPS Apparatus and degassed prior to use. The deuterated solvents $\mathrm{C}_{6} \mathrm{D}_{6}$ and $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ were degassed and dried by stirring with Na / K alloy and CaH_{2}, respectively, followed by distillation. After the distillation, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ was additionally stored over molecular sieve ($3 \AA$) which had previously been dried for four hours under high vacuum at $100^{\circ} \mathrm{C}$.
$\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right](1)^{[1]},\left[\mathrm{M}(\mathrm{CO})_{4}(\mathrm{nbd})\right](\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W})^{[2]}$, $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)(\right.$ tht $\left.)\right]\left[\mathrm{PF}_{6}\right]^{[3]}$, $\left[\mathrm{Fe}_{2}(\mathrm{CO}) \mathrm{C}_{9}{ }^{[4]}\right.$ and $\left[\mathrm{Co}_{2}(\mathrm{CO})_{8}\right]^{[5]}$ were prepared according to literature procedure. $\left[\mathrm{AgPF}_{6}\right]$ is commercially available and was used without any further modification.

NMR spectra were recorded at the NMR department of the University Regensburg using a Bruker Advance 300 or 400 spectrometer. Samples are referenced against TMS $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right)$ or $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}\left({ }^{31} \mathrm{P}\right)$ as external standards. Chemical shifts (δ) are reported in ppm and coupling constants (J) in Hz . The spectra were processed using the TopSpin 3.5 software (Bruker) and the WIN-DAISY module of this software was used to perform simulations. ${ }^{[6]}$

Mass spectrometry experiments were performed by the MS department of the University Regensburg. The LIFDI-, FD-, and EI-MS spectra were recorded on an AccuToF GCX (Jeol) spectrometer and the ESI-MS spectra were recorded on a Q-TOF 6540 UHD (Agilent) spectrometer, respectively. The observed fragments were assigned according to the mass/charge (m / z) ratio and the isotope pattern.

For compounds 2a, 2b and 2c the IR spectra were recorded on an ALPHA platinum ATR spectrometer (Bruker Optik GmbH) which was placed inside a glove box. Therefore, the air-sensitive solid samples could be placed directly on the spectrometer without any additional preparative measures. For compounds 2d, 3, 4, 5* and 5 the IR spectra were recorded on a VARIAN FTS-800 FT-IR spectrometer as KBr discs.

Elemental analyses were performed by the department of central analyses of the University Regensburg on a Vario micro cube instrument (Elementar Analysensysteme GmbH).

4.6.2 Syntheses

Synthesis of $\left[\left\{\mathrm{Cp}^{\prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{3}, \eta^{1: 1: 1: 1:}-\mathrm{P}_{4}\right)\left\{\mathrm{Cr}(\mathrm{CO})_{4}\right\}\right]$ (2a)
A red-orange solution of $1(100 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) in thf (5 \mathrm{~mL})$ is added to a yellow solution of $\left[\mathrm{Cr}(\mathrm{CO})_{4}(\mathrm{nbd})\right](31 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.0$ eq.) in thf $(5 \mathrm{~mL})$. The resulting mixture is stirred at room temperature for 19 h while the color of the solution changes to brown. The solvent is subsequently removed under reduced pressure. To obtain pure 2a, a saturated solution in n-pentane (5 mL) and dichloromethane (1 mL) was stored at $-28^{\circ} \mathrm{C}$ yielding crystals suitable for single crystal X -ray diffraction analysis.

Analytical data for 2a

Yield	68 mg ($0.07 \mathrm{mmol}, 53 \%$).
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right)$	$\begin{aligned} & \delta[\mathrm{ppm}]=1.39\left(\mathrm{~s}, 36 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{2}\left(\mathrm{C}_{4} \underline{\mathrm{H}}_{9}\right)_{3}\right), 1.43\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{2}\left(\mathrm{C}_{4} \underline{\mathrm{H}_{9}}\right)_{3}\right), 4.68(\mathrm{~s}, \\ & \left.4 \mathrm{H}, \mathrm{C}_{5} \underline{\mathrm{H}}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3}\right) . \end{aligned}$
${ }^{31} \mathrm{P}$ NMR ($\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right)$	$\delta[p p m]=-98.8\left(t,{ }^{1} \mathrm{~J}_{\mathrm{AB}}=162 \mathrm{~Hz}, 2 \mathrm{P}, \mathrm{P}_{\mathrm{A}}\right),-152.1\left(\mathrm{t},{ }^{1} \mathrm{~J}_{A B}=162 \mathrm{~Hz}, 2 \mathrm{P}, \mathrm{P}_{\mathrm{B}}\right)$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right)$	$\delta[p p m]=-98.8\left(t,{ }^{1} \mathrm{~J}_{\mathrm{AB}}=162 \mathrm{~Hz}, 2 \mathrm{P}, \mathrm{P}_{\mathrm{A}}\right),-152.1\left(\mathrm{t},{ }^{1} \mathrm{~J}_{A B}=162 \mathrm{~Hz}, 2 \mathrm{P}, \mathrm{P}_{\mathrm{B}}\right)$.
IR (solid)	$\begin{aligned} & \tilde{\mathrm{v}} \mathrm{co}\left[\mathrm{~cm}^{-1}\right]=2011 \text { (m), } 1989 \text { (s), } 1967 \text { (s), } 1923 \text { (m, br), } 1889 \text { (s), } 1871 \text { (s,br), } \\ & 1827(\mathrm{~s}, \mathrm{br}) . \end{aligned}$
LIFDI-MS (toluene)	$\begin{aligned} & \mathrm{m} / \mathrm{z}=978.19[\mathrm{M}]^{+}(13.6 \%), 950.18[\mathrm{M}-\mathrm{CO}]^{+}(100.0 \%), 922.15[\mathrm{M}-2 \mathrm{CO}]^{+} \\ & (2.5 \%), 894.11[\mathrm{M}-3 \mathrm{CO}]^{+}(1.9 \%) . \end{aligned}$
Elemental Analysis	calcd. for $\left[\mathrm{C}_{42} \mathrm{H}_{58} \mathrm{CrFe}_{2} \mathrm{O}_{8} \mathrm{P}_{4}\right]_{2}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\left(2041.94 \mathrm{~g} \mathrm{~mol}^{-1}\right)$ C 50.00, H 5.82; found C 49.86, H 5.72 .

Synthesis of $\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{3}, \eta^{1: 1: 1: 1: 1}-\mathrm{P}_{4}\right)\left\{\mathrm{Mo}(\mathrm{CO})_{4}\right\}\right]$ (2b)

A red-orange solution of $1(100 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in thf $(5 \mathrm{~mL})$ is added to an orange solution of $\left[\mathrm{Mo}(\mathrm{CO})_{4}(\mathrm{nbd})\right]\left(37 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.0\right.$ eq.) in thf $(5 \mathrm{~mL})$. The resulting mixture is stirred at $60^{\circ} \mathrm{C}$ for 17 h while a color change yielding a red-brown solution is observed. The solvent is subsequently removed under reduced pressure affording a red solid. To obtain crystalline $\mathbf{2 b}$, the solid was taken up in a mixture of n pentane (5 mL) and dichloromethane (5 mL) and the saturated solution was stored at $-28{ }^{\circ} \mathrm{C}$ yielding crystals suitable for single crystal X-ray diffraction analysis. A constant amount of side product could be observed in every step of the workup and could not be separated by differences in solubility, crystallization or extraction. NMR spectroscopy suggest $\left[\left\{\left(\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right)_{2}\left(\mu_{3,} \eta^{1: 1: 1: 1: 1}-\mathrm{P}_{4}\right)\right\}_{2}\left\{\mathrm{Mo}(\mathrm{CO})_{2}\right\}\right]$ as the side product.

Crystalline Yield of mixture 92 mg

For product ratio of 5:1 (as found in by NMR spectroscopic studies):

2b: $\quad 68 \mathrm{mg}(0.065 \mathrm{mmol}, 50 \%)$.
$\left[\left\{\left(\mathrm{Cp}{ }^{\mathrm{\prime} \mathrm{\prime}}{ }^{\prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right)_{2}\left(\mu_{3}, \mathrm{\eta}^{\left.\left.\left.1: 1: 1: 1:-\mathrm{P}_{4}\right)\right\}_{2}\left\{\mathrm{Mo}(\mathrm{CO})_{2}\right\}\right]}\right.\right.\right.$ (assumed side product): $24 \mathrm{mg}(0.013 \mathrm{mmol}, 10 \%)$.

Analytical data for 2b

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{~K}\right) \quad \delta[\mathrm{ppm}]=1.20\left(\mathrm{~s}, 36 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{2}\left(\mathrm{C}_{4} \underline{\mathrm{H}}_{9}\right)_{3}\right), 1.34\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{2}\left(\mathrm{C}_{4} \underline{\mathrm{H}_{9}}\right)_{3}\right), 4.65(\mathrm{~s}$, $\left.4 \mathrm{H}, \mathrm{C}_{5} \underline{H}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3}\right)$.

${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{~K}\right)$	$\delta[\mathrm{ppm}]=-121.8\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{AB}}=162 \mathrm{~Hz}, 2 \mathrm{P}, \mathrm{P}_{\mathrm{A}}\right),-178.5\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{AB}}=162 \mathrm{~Hz}, 2 \mathrm{P}, \mathrm{P}_{\mathrm{B}}\right)$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{~K}\right)$	$\delta[\mathrm{ppm}]=-121.8\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{AB}}=162 \mathrm{~Hz}, 2 \mathrm{P}, \mathrm{P}_{\mathrm{A}}\right),-178.5\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{AB}}=162 \mathrm{~Hz}, 2 \mathrm{P}, \mathrm{P}_{\mathrm{B}}\right)$.
$\mathrm{FD}^{+}-\mathrm{MS}$ (toluene)	$\mathrm{m} / \mathrm{z}[\%]=345.06\left[\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right]^{+}(88.4), 967.86[\mathrm{M}-2 \mathrm{CO}]^{+}(100.0)$.

Analytical data for side product (presumably [\{(Cp"'Fe(CO) $\left.\left.\left.)_{2}\right)_{2}\left(\mu_{3}, \boldsymbol{\eta}^{1: 1: 1: 1: 1}-\mathrm{P}_{4}\right)\right\}_{2}\left\{\mathrm{Mo}(\mathrm{CO})_{2}\right\}\right]$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{~K}\right) \quad \delta[\mathrm{ppm}]=1.18\left(\mathrm{~s}, 36 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{2}\left(\mathrm{C}_{4} \underline{\mathrm{H}}_{9}\right)_{3}\right), 1.36\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{2}\left(\mathrm{C}_{4} \underline{\mathrm{H}}_{9}\right)_{3}\right), 4.67(\mathrm{~s}$, $\left.4 \mathrm{H}, \mathrm{C}_{5} \underline{H}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3}\right)$.
${ }^{31}$ P NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{~K}\right) \quad \delta[\mathrm{ppm}]=-99.9\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{AB}}=162 \mathrm{~Hz}, 2 \mathrm{P}, \mathrm{P}_{\mathrm{A}}\right),-149.5\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{AB}}=162 \mathrm{~Hz}, 2 \mathrm{P}, \mathrm{P}_{\mathrm{B}}\right)$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{~K}\right)$ $\delta[p p m]=-99.9\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{AB}}=162 \mathrm{~Hz}, 2 \mathrm{P}, \mathrm{P}_{\mathrm{A}}\right),-149.5\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{AB}}=162 \mathrm{~Hz}, 2 \mathrm{P}, \mathrm{P}_{\mathrm{B}}\right)$.

Synthesis of $\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{3}, \mathrm{\eta}^{1: 1: 1: 1: 1}-\mathrm{P}_{4}\right)\left\{\mathrm{W}(\mathrm{CO})_{4}\right\}\right]$ (2c)

A red-orange solution of $1(100 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in thf $(5 \mathrm{~mL})$ is added to a slightly yellow solution of $\left[\mathrm{W}(\mathrm{CO})_{4}(\mathrm{nbd})\right](47 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) in thf (5 \mathrm{~mL})$. The resulting mixture is stirred at $55^{\circ} \mathrm{C}$ for 17 h while the color of the solution changes to red. The solvent is subsequently removed under reduced pressure. To obtain pure 2c, a saturated solution in n-pentane (5 mL) and dichloromethane (1 mL) was stored at $-28{ }^{\circ} \mathrm{C}$ yielding crystals suitable for single crystal X-ray diffraction analysis.

Analytical data for 2c

Yield

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{~K}\right)$
${ }^{1} \mathrm{H}$ NMR (toluene- $\mathrm{d}_{8}, 300 \mathrm{~K}$)
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$
${ }^{1} \mathrm{H}$ NMR (THF-d ${ }_{8}, 300 \mathrm{~K}$)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right)$
${ }^{31} \mathbf{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{~K}\right)$
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{~K}\right)$
${ }^{31}$ P NMR (toluene-d ${ }^{2}, 300 \mathrm{~K}$)
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (toluene- $\mathrm{d}_{8}, 300 \mathrm{~K}$)
${ }^{31}$ P NMR (THF-d $8,300 \mathrm{~K}$)
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (THF-d $8,300 \mathrm{~K}$)
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right)$
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right)$

IR (solid)

LIFDI-MS (toluene)
Elemental Analysis

100 mg ($0.09 \mathrm{mmol}, 68 \%$).
$\delta[\mathrm{ppm}]=1.19\left(\mathrm{~s}, 36 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{2}\left(\mathrm{C}_{4} \underline{\mathrm{H}_{9}}\right)_{3}\right), 1.34\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{2}\left(\mathrm{C}_{4} \underline{\mathrm{H}_{9}}\right)_{3}\right)$, $4.70\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{C}_{5} \underline{\mathrm{H}_{2}}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3}\right)$.
$\delta[p p m]=1.27\left(\mathrm{~s}, 36 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{2}\left(\mathrm{C}_{4} \underline{\mathrm{H}_{9}}\right)_{3}\right), 1.39\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{2}\left(\mathrm{C}_{4} \underline{\mathrm{H}}_{9}\right)_{3}\right)$, $4.73\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{C}_{5} \underline{\mathrm{H}}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3}\right)$.
$\delta[p p m]=1.39\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{2}\left(\mathrm{C}_{4} \underline{\mathrm{H}_{9}}\right)_{3}\right), 1.41\left(\mathrm{~s}, 36 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{2}\left(\mathrm{C}_{4} \underline{\mathrm{H}_{9}}\right)_{3}\right)$, 4.83 ($\left.\mathrm{s}, 4 \mathrm{H}, \mathrm{C}_{5} \underline{H}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3}\right)$.
$\delta[\mathrm{ppm}]=1.43\left(\mathrm{~s}, 54 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{2}\left(\mathrm{C}_{4} \underline{\mathrm{H}}_{9}\right)_{3}\right), 4.89\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{C}_{5} \underline{\mathrm{H}}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3}\right)$.
$\delta[p p m]=1.41\left(\mathrm{~s}, 54 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{2}\left(\mathrm{C}_{4} \underline{\mathrm{H}}_{9}\right)_{3}\right), 4.71\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{C}_{5} \underline{\mathrm{H}}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3}\right)$.
$\delta[p p m]=-164.3(m, 4 \mathrm{P})$.
$\delta[p p m]=-164.3(m, 4 \mathrm{P})$.
$\delta[p p m]=-164.9(m, 4 \mathrm{P})$.
$\delta[p p m]=-164.9(m, 4 \mathrm{P})$.
$\delta[p p m]=-161.6\left(m, 2 P, \mathrm{P}_{\mathrm{A}}\right),-164.3\left(\mathrm{~m}, 2 \mathrm{P}, \mathrm{P}_{\mathrm{B}}\right)$.
$\delta[p p m]=-161.6\left(m, 2 P, \mathrm{P}_{\mathrm{A}}\right),-164.3\left(\mathrm{~m}, 2 \mathrm{P}, \mathrm{P}_{\mathrm{B}}\right)$.
$\delta[p p m]=-161.6\left(m, 2 P, P_{A}\right),-168.3\left(m, 2 P, P_{B}\right)$.
$\delta[p p m]=-161.6\left(m, 2 P, P_{A}\right),-168.3\left(m, 2 P, P_{B}\right)$.
$\tilde{v}_{\mathrm{co}}\left[\mathrm{cm}^{-1}\right]=2017(\mathrm{~m}), 2002(\mathrm{~m}), 1994(\mathrm{~m}), 1977(\mathrm{w}), 1969(\mathrm{~s}), 1957$
(m), 1898 (s, br), 1882 (s, br), 1863 (s, br), 1832 (s, br), 1813 (s, br).
no reasonable peaks detectable .
calcd. for $\left[\mathrm{C}_{42} \mathrm{H}_{58} \mathrm{WFe}_{2} \mathrm{O}_{8} \mathrm{P}_{4}\right]_{2}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\left(2305.64 \mathrm{~g} \mathrm{~mol}^{-1}\right)$
C 44.28, H 5.16; found C 44.49, H 5.11 .

Synthesis of $\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{3}, \eta^{1: 1: 1: 1: 1}-\mathrm{P}_{4}\right)\left\{\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right\}\right]^{+}\left[\mathrm{PF}_{6}\right]^{-}(2 \mathrm{~d})$

To a solution of $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right) A u(t h t)\right]\left[P F_{6}\right](43 \mathrm{mg}, 0.061 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in thf (5 ml) is given a solution of $1(50 \mathrm{mg}$, $0.061 \mathrm{mmol}, 1.0$ eq. $)$ in thf $(5 \mathrm{ml})$ affording a bright red colored solution. The reaction mixture is stirred for one hour at room temperature and the solution is reduced to about 3 ml in vacuo. Filtration via canula and layering with hexane (4 ml) yields $\mathbf{2 d}$ as orange crystals, suitable for single crystal X-ray diffraction analysis.

Analytical data for 2d

Yield	42 mg ($0.029 \mathrm{mmol}, 48$ \%).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right)$	$\begin{aligned} & \delta[\mathrm{ppm}]=1.21\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{2}\left(\mathrm{C}_{4} \underline{H}_{9}\right)_{3}\right), 1.31\left(\mathrm{~s}, 36 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{2}\left(\mathrm{C}_{4} \underline{H}_{9}\right)_{3}\right), 4.67(\mathrm{~s}, \\ & \left.4 \mathrm{H}, \mathrm{C}_{5} \underline{H}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3}\right), 7.55-7.65\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{PP}_{3}\right) . \end{aligned}$
${ }^{13} \mathrm{C}$ [$\left.{ }^{1} \mathrm{H}\right\}$ NMR ($\left.\mathrm{CD}_{2} \mathrm{Cl} 2,300 \mathrm{~K}\right)$	$\delta[\mathrm{ppm}]=31.7\left(\mathrm{~s},-\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right)\right), 31.9\left(\mathrm{~s},-\left(\underline{(\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right)_{2}\right), 33.2\left(\mathrm{~s},-\left(\mathrm{C}\left(\underline{\mathrm{C}} \mathrm{H}_{3}\right)_{3}\right)\right)$, 33.7 (s, $\left.-\left(\mathrm{C}\left(\underline{\mathrm{C}} \mathrm{H}_{3}\right)_{3}\right)_{2}\right), 91.0\left(\mathrm{~s}, \underline{\mathrm{C}}_{2} \mathrm{H}_{2} \mathrm{C}^{t} \mathrm{BuC}_{2}{ }^{t} \mathrm{Bu}_{2}\right), 109.9\left(\mathrm{~s}, \mathrm{C}_{2} \mathrm{H}_{2} \underline{\mathrm{C}}^{t} \mathrm{BuC}_{2}{ }^{t} \mathrm{Bu}_{2}\right)$, 111.9 (s, $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{C}^{t} \mathrm{Bu}_{2}{ }^{t} \mathrm{Bu}_{2}$), 130.1 (br, PPh_{3}), 134.4 (br, PPh_{3}).
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl} 2,300 \mathrm{~K}\right)$	$\begin{aligned} & \delta[\mathrm{ppm}]=42.5\left(\mathrm{t}, 1 \mathrm{P},{ }^{2} \mathrm{~J}_{\mathrm{AM}}=111 \mathrm{~Hz}, \mathrm{Au}^{2}-\mathrm{P}_{\mathrm{A}} \mathrm{Ph}_{3}\right),-22.9\left(\mathrm{dt}, 2 \mathrm{P},{ }^{1} \mathrm{~J}_{\mathrm{MX}}=196\right. \\ & \left.\mathrm{Hz},{ }^{2} \mathrm{~J}_{\mathrm{AM}}=111 \mathrm{~Hz}, \mathrm{P}_{\mathrm{M}}\right),-143.5\left(\mathrm{sept}, 1 \mathrm{P},{ }^{1} \mathrm{~J}_{\mathrm{PF}}=710 \mathrm{~Hz}, \mathrm{PF}_{6}\right),-299.2(\mathrm{t}, 2 \mathrm{P}, \\ & \left.{ }^{1} \mathrm{~J}_{\mathrm{MX}}=196 \mathrm{~Hz}, \mathrm{Px}\right) . \end{aligned}$
ES-MS ($\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$	$m / z=1245.8\left[\mathrm{M}^{2+}\right](5 \%), 721.2\left[\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Au}^{+}\right](100 \%)$.
IR (KBr)	$\tilde{v}_{\mathrm{co}}\left[\mathrm{cm}^{-1}\right]=2030$ (s, sh), 2008 (vs), 1966 (vs), 1944 (s, sh).
Elemental analysis	calcd. for $\mathrm{C}_{55} \mathrm{H}_{73} \mathrm{AuF}_{6} \mathrm{Fe}_{2} \mathrm{O}_{4} \mathrm{P}_{6}\left(1418.67 \mathrm{~g} \mathrm{~mol}^{-1}\right)$ C 47.41, H 5.19; found C 45.62, H 4.93.

Synthesis of $\left[\left\{\left(\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right)_{2}\left(\mu_{3}, \mathrm{\eta}^{1: 1: 1: 1}-\mathrm{P}_{4}\right)\right\}_{2} \mathrm{Ag}\right]^{+}\left[\mathrm{PF}_{6}\right]^{-}(3)$

To a solution of $\left[\mathrm{AgPF}_{6}\right]$ ($16 \mathrm{mg}, 0.061 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in dichloromethane (5 ml) is given a solution of 1 (100 $\mathrm{mg}, 0.123 \mathrm{mmol}, 2.0 \mathrm{eq}$.) in dichloromethane (5 ml). The reaction mixture is stirred for 16 hours at room temperature and the solvent is removed under reduced pressure. The resulting solid is washed with n-hexane $(5 \mathrm{ml})$ and dried in vacuo. The crude product is taken up in thf (4 ml) and layered with n-hexane (4 ml) to yield 3 as orange crystals, suitable for single crystal X-ray diffraction analysis.

Analytical data for 3

Yield	38 mg ($0.020 \mathrm{mmol}, 33$ \%).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right)$	$\begin{aligned} & \delta \mathrm{ppm}]=1.41\left(\mathrm{~s}, 36 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{2}\left(\mathrm{C}_{4} \underline{\mathrm{H}}_{9}\right)_{3}\right), 1.44\left(\mathrm{~s}, 72 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{2}\left(\mathrm{C}_{4} \underline{\mathrm{H}}_{9}\right)_{3}\right), 4.81(\mathrm{~s}, \\ & \left.8 \mathrm{H}, \mathrm{C}_{5} \underline{\mathrm{H}}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3}\right) . \end{aligned}$
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right)$	$\delta[p p m]=32.0\left(\mathrm{~s},-\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right)\right), 32.6\left(\mathrm{~s},-\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right)_{2}\right), 33.4\left(\mathrm{~s},-\left(\mathrm{C}\left(\underline{\mathrm{C}} \mathrm{H}_{3}\right)_{3}\right)\right)$, $34.1\left(\mathrm{~s},-\left(\mathrm{C}\left(\underline{\mathrm{C}} \mathrm{H}_{3}\right)_{3}\right)_{2}\right), 88.7\left(\mathrm{~s}, \underline{\mathrm{C}}_{2} \mathrm{H}_{2} \mathrm{C}^{t} \mathrm{BuC}_{2}{ }^{t} \mathrm{Bu}_{2}\right), 109.6\left(\mathrm{~s}, \mathrm{C}_{2} \mathrm{H}_{2} \underline{\mathrm{C}}^{t} \mathrm{BuC}_{2}{ }^{t} \mathrm{Bu}_{2}\right)$, 111.7 (s, $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{C}^{t} \mathrm{BuC}_{2}{ }^{t} \mathrm{Bu}_{2}$), 213.9 (s, CO).
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right)$	
ES-MS ($\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$	$\begin{aligned} & m / z=1736.2\left[\mathrm{M}^{+}\right](100 \%), 1709.0\left[\mathrm{M}^{+}-\mathrm{CO}\right](10 \%), 1679.0\left[\mathrm{M}^{+}-2 \mathrm{CO}\right](5 \%), \\ & 1651.2\left[\mathrm{M}^{+}-3 \mathrm{CO}\right](1 \%) . \end{aligned}$
IR (KBr)	$\tilde{v}_{\mathrm{co}}\left[\mathrm{cm}^{-1}\right]=2006$ (vs), 1961 (vs).

Synthesis of $\left[\left\{\mathrm{Cp}^{\prime \prime \prime}(\mathrm{CO})_{2} \mathrm{Fe}\right\}_{2}\left(\mu_{4}, \eta^{\text {1:1:2:2:- }} \mathrm{P}_{4}\right)\left\{\mathrm{Co}(\mathrm{CO})_{3}\right\}_{2}\right](4)$

At $-20^{\circ} \mathrm{C}, 20 \mathrm{ml} \mathrm{CH} \mathrm{Cl}_{2}$ were added to a mixture of $1\left(700 \mathrm{mg}, 0.86 \mathrm{mmol}, 1.0 \mathrm{eq}\right.$.) and [$\left.\mathrm{Co}_{2}(\mathrm{CO})_{8}\right](323.5 \mathrm{mg}$, $0.95 \mathrm{mmol}, 1.1$ eq.). Subsequently, the mixture was stirred two hours at this temperature and another 12 hours without further cooling. By then, some dark brown crystals of 4 suitable for single crystal X-ray diffraction formed and the crystalline yield could be increased by concentrating and storing of the solution at $-28^{\circ} \mathrm{C}$.

Analytical data for 4

Yield

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{~K}\right)$
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{~K}$)
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathrm{H}\right\} \mathbf{N M R}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{~K}\right)$
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right)$
IR (KBr)
IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
FD-MS (toluene)
Elemental Analysis

602 mg ($0.55 \mathrm{mmol}, 64 \%$).
$\delta[p p m]=1.1\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{2}\left(\mathrm{C}_{4} \underline{\mathrm{H}_{9}}\right)_{3}\right), 1.51\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{2}\left(\mathrm{C}_{4} \underline{\mathrm{H}_{9}}\right)_{3}\right), 1.41(\mathrm{~s}, 18 \mathrm{H}$, $\left.\mathrm{C}_{5} \mathrm{H}_{2}\left(\mathrm{C}_{4} \underline{H}_{9}\right)_{3}\right), 1.26\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{2}\left(\mathrm{C}_{4} \underline{\mathrm{H}_{9}}\right)_{3}\right), 5.16\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{5} \underline{\mathrm{H}}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3}\right), 5.26$ (s, $\left.2 \mathrm{H}, \mathrm{C}_{5} \underline{\mathrm{H}_{2}}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3}\right)$.
$\delta[p p m]=31.35\left(\mathrm{~s}, \underline{\mathrm{C}}_{5} \mathrm{H}_{2}\left(\mathrm{C}\left(\mathrm{C}_{3} \mathrm{H}_{9}\right)_{3}\right), 31.78\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{2}\left(\mathrm{C}\left(\underline{\mathrm{C}}_{3} \mathrm{H}_{9}\right)_{3}\right), 32.76(\mathrm{~s}\right.\right.$, $\underline{\mathrm{C}}_{5} \mathrm{H}_{2}\left(\mathrm{C}\left(\mathrm{C}_{3} \mathrm{H}_{9}\right)_{3}\right), 32.82\left(\mathrm{~s}, \underline{\mathrm{C}}_{5} \mathrm{H}_{2}\left(\mathrm{C}\left(\mathrm{C}_{3} \mathrm{H}_{9}\right)_{3}\right), 33.25\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{2}\left(\mathrm{C}\left(\underline{\mathrm{C}}_{3} \mathrm{H}_{9}\right)_{3}\right), 33.68\right.\right.$ (s, $\quad \mathrm{C}_{5} \mathrm{H}_{2}\left(\mathrm{C}\left(\underline{\mathrm{C}}_{3} \mathrm{H}_{9}\right)_{3}\right), \quad 88.82 \quad\left(\mathrm{~s}, \quad \mathrm{C}_{3} \underline{\mathrm{C}}_{2} \mathrm{H}_{2}\left(\mathrm{C}\left(\mathrm{C}_{3} \mathrm{H}_{9}\right)_{3}\right), \quad 89.95 \quad\right.$ (s, $\mathrm{C}_{3} \underline{\mathrm{C}}_{2} \mathrm{H}_{2}\left(\mathrm{C}\left(\mathrm{C}_{3} \mathrm{H}_{9}\right)_{3}\right), 109.94\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{2}\left(\underline{\mathrm{C}}\left(\mathrm{C}_{3} \mathrm{H}_{9}\right)_{3}\right), 111.22\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{2}\left(\underline{\mathrm{C}}\left(\mathrm{C}_{3} \mathrm{H}_{9}\right)_{3}\right)\right.\right.$, 112.99 (s, $\mathrm{C}_{5} \mathrm{H}_{2}\left(\underline{\mathrm{C}}\left(\mathrm{C}_{3} \mathrm{H}_{9}\right)_{3}\right), 207.76$ (s, $\underline{\mathrm{C}}$), 213.80 (s, $\underline{\mathrm{CO}}$), 214.51 (s, $\underline{\mathrm{C}}$).
$\delta[p p m]=24.4\left(\mathrm{~m}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{A}}\right), 24.4\left(\mathrm{~m}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{A}^{\prime}}\right),-12.6\left(\mathrm{~m}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{x}}\right),-12.6(\mathrm{~m}$, 1P, P_{x}).
$\delta[p p m]=24.3 \mathrm{ppm}\left(\mathrm{m}, 2 \mathrm{P}, \mathrm{P}_{\mathrm{A}}\right),-12.6\left(\mathrm{~m}, 2 \mathrm{P}, \mathrm{P}_{\mathrm{x}}\right)$.
$\tilde{v}_{\mathrm{co}}\left[\mathrm{cm}^{-1}\right]=2041$ (s), 2019 (s), 1977 (s), 1955 (sh).
$\tilde{v}_{\mathrm{co}}\left[\mathrm{cm}^{-1}\right]=2042$ (s), 2019 (s), 1982 (s), 1950 (sh), 1712 (s).
$\mathrm{m} / \mathrm{z}=1072[\mathrm{M}-\mathrm{CO}]^{+}$(100\%), $1044[\mathrm{M}-2 \mathrm{CO}]^{+}$(27\%).
calcd. for $\mathrm{C}_{44} \mathrm{H}_{58} \mathrm{Co}_{2} \mathrm{Fe}_{2} \mathrm{O}_{10} \mathrm{P}_{4}\left(1100.39 \mathrm{~g} \mathrm{~mol}^{-1}\right)$
C 45.60 , H 5.10; found C 45.79 , H 5.36 .

Synthesis of $\left.\left[\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{4,} \boldsymbol{\eta}^{1: 1: 1: 1: 3}-\mathrm{P}_{4} \mathrm{CO}\right)\left\{\mathrm{Fe}(\mathrm{CO})_{4}\right\}\left\{\mathrm{Fe}(\mathrm{CO})_{3}\right\}\right]$ (5)

A solution of 1 ($200 \mathrm{mg}, 0.25 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{9}\right]$ ($91 \mathrm{mg}, 0.25 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in toluene (50 mL) is stirred for 12 h at r.t. Hereby, a color change from red-brown to dark brown is observed. The reaction solution is filtered over celite and the initial product 5^{*} is obtained as a dark brown solid after removing the solvent under reduced pressure. Chromatographic workup of 5^{*} yields two fractions upon elution with a nhexane:toluene (1:1) mixture. The first fraction yields a dark brown solid after removing the solvent under reduced pressure, which could not be characterized so far. The second brown-greenish fraction was concentrated and crystals of 5 suitable for single crystal X-ray diffraction could be obtained after storage for $3-4$ weeks at $-12^{\circ} \mathrm{C}$.

Analytical data for 5*:

Yield
${ }^{1} \mathrm{H}$ NMR (toluene-d $8,300 \mathrm{~K}$)
${ }^{1}$ H NMR (toluene-d8, 123 K)
${ }^{31}$ P NMR (toluene- $\mathrm{d}_{8}, 300 \mathrm{~K}$)
${ }^{31} \mathrm{P}$ NMR (toluene- $\mathrm{d}_{8}, 123 \mathrm{~K}$)
IR (toluene)

El-MS

Analytical data for 5:

Yield

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{~K}\right)$

```
31P NMR (C66 D % 300 K)
```

IR (KBr)

167 mg ($0.15 \mathrm{mmol}, 60 \%$, for 5-2*: $\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{4,} \eta^{1: 1: 1: 1: 1}-\right.\right.$ $\left.\left.\left.\mathrm{P}_{4}\right)\left\{\mathrm{Fe}(\mathrm{CO})_{4}\right\}_{2}\right]\right)$.
$\delta[p p m]=1.24\left(\mathrm{~s}, 36 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{2}\left(\mathrm{C}_{4} \underline{\mathrm{H}_{9}}\right)_{3}\right), 1.28\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{2}\left(\mathrm{C}_{4} \underline{\mathrm{H}_{9}}\right)_{3}\right)$, $4.79\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{C}_{5} \underline{\mathrm{H}_{2}}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3}\right)$.
$\delta[p p m]=1.16\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{2}\left(\mathrm{C}_{4} \underline{\mathrm{H}}_{9}\right)_{3}\right), 1.22\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{2}\left(\mathrm{C}_{4} \underline{\mathrm{H}}_{9}\right)_{3}\right)$, $1.24\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3}\right), 1.30\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{2}\left(\mathrm{C}_{4} \underline{\mathrm{H}}_{9}\right)_{3}\right), 4.79(\mathrm{~s}, 4 \mathrm{H}$, $\left.\mathrm{C}_{5} \underline{\mathrm{H}}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3}\right), 4.83\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{5} \underline{\mathrm{H}}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3}\right)$.
$\delta[p p m]=-257.5\left(2 \mathrm{PX}, \mathrm{dd},{ }^{1} \mathrm{~J}_{\mathrm{PP}}=217 \mathrm{~Hz}\right)$.
$\delta[p p m]=16.0\left(\mathrm{~m}, \mathrm{P}_{\mathrm{A}}, 1 \mathrm{P}\right),-19.9\left(\mathrm{~m}, \mathrm{P}_{\mathrm{B}}, 1 \mathrm{P}\right),-257.8(\mathrm{Px}, \mathrm{m}, 2 \mathrm{P})$.
$\tilde{v} \mathrm{co}\left[\mathrm{cm}^{-1}\right]=2052$ (w), 2036 (s), 2011(m), 1993 (m), 1977 (m), 1951 (s), 1930 (m).
$\mathrm{m} / \mathrm{z}=1086\left[\mathrm{M}^{+}-3 \mathrm{CO}\right](0.5 \%), 1053\left[\mathrm{M}^{+}-3 \mathrm{CO}-\mathrm{CH}_{3}\right](7.2 \%), 997$ $\left[\mathrm{M}^{+}-5 \mathrm{CO}^{-} \mathrm{CH}_{3}\right]$ (0.8%), $702\left[\mathrm{M}^{+}-2 \mathrm{Fe}-12 \mathrm{CO}\right]$ (100\%).
$\left(\mathrm{M}^{+}=\right.$molecular peak of $\mathbf{5}^{*}-\mathbf{2 :} \quad\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{4,} \eta^{1: 1: 1: 1: 1-}\right.\right.$ $\left.\left.\left.\mathrm{P}_{4}\right)\left\{\mathrm{Fe}(\mathrm{CO})_{4}\right\}_{2}\right]\right)$

25 mg ($0.02 \mathrm{mmol}, 8 \%$).
$\delta[\mathrm{ppm}]=1.02\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{2}\left(\mathrm{C}_{4} \underline{\mathrm{H}}_{9}\right)_{3}\right), 1.06\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{2}\left(\mathrm{C}_{4} \underline{\mathrm{H}}_{9}\right)_{3}\right), 1.11$ (s, 9H, $\left.\mathrm{C}_{5} \mathrm{H}_{2}\left(\mathrm{C}_{4} \underline{\mathrm{H}}_{9}\right)_{3}\right), 1.15$ (s, 9H, $\left.\mathrm{C}_{5} \mathrm{H}_{2}\left(\mathrm{C}_{4} \underline{\mathrm{H}}_{9}\right)_{3}\right), 1.17$ (s, 9H, $\left.\mathrm{C}_{5} \mathrm{H}_{2}\left(\mathrm{C}_{4} \underline{\mathrm{H}_{9}}\right)_{3}\right), 1.25\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{2}\left(\mathrm{C}_{4} \underline{H}_{9}\right)_{3}\right), 4.05\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{5} \underline{\mathrm{H}}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3}\right)$, $5.09\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{5} \underline{\mathrm{H}}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3}\right), 5.17\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{5} \underline{\mathrm{H}}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3}\right), 5.41(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{C}_{5} \underline{H}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3}\right)$.
$\delta[p p m]=69.0\left(P_{\mathrm{A}}\right.$, ddd, ${ }^{1} \mathrm{~J}_{\mathrm{AX}}=384 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{\mathrm{AN}}=37 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{\mathrm{AM}}=29 \mathrm{~Hz}$,
1P), 40.3 ($\mathrm{P}_{\mathrm{M}}, \mathrm{ddd},{ }^{1} \mathrm{~J}_{\mathrm{MN}}=378 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{Mx}}=358 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{\mathrm{AM}}=29 \mathrm{~Hz}, 1 \mathrm{P}$), $6.5\left(\mathrm{P}_{\mathrm{N}}, \mathrm{dd},{ }^{1} \mathrm{~J}_{\mathrm{MN}}=378 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{\mathrm{AN}}=37 \mathrm{~Hz}, 1 \mathrm{P}\right)$, $-133.9\left(\mathrm{P}_{\mathrm{X}}, \mathrm{dd}\right.$, $\left.{ }^{1} \mathrm{~J}_{\mathrm{AX}}=384 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{MX}}=358 \mathrm{~Hz}, 1 \mathrm{P}\right)$.
$\tilde{v}_{\mathrm{CO}}\left[\mathrm{cm}^{-1}\right]=2030(\mathrm{br}), 1986(\mathrm{br}), 1638(\mathrm{br})$.

4.6.3 NMR spectroscopic experiments

Figure S1. Experimental (top, recorded in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 300 K)) and simulated (bottom) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of 2a.

Table S1. Experimental and simulated values for the chemical shifts and coupling constants in the ${ }^{31}\left\{\left\{{ }^{1} \mathrm{H}\right\}\right.$ NMR spectrum of $\mathbf{2 a}$.

experimental values			simulated values				
δ_{A}	-98.8 ppm	${ }^{1} \mathrm{~J}_{\mathrm{Ax}}$	162 Hz	δ_{A}	-98.8 ppm	${ }^{1} \mathrm{~J}_{\mathrm{AX}}$	162.3 Hz
$\boldsymbol{\delta}_{\mathrm{x}}$	-152.1 ppm			δ_{x}	-152.1 ppm		

The simulation of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 a}$ was carried out on the basis of an $\mathrm{A}_{2} \mathrm{X}_{2}$ spin system with a $\mathrm{C}_{2 \mathrm{~h}}$ symmetry.

Figure S2. Experimental (top, recorded in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 300 K) and simulated (bottom) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectra of 2b (signals marked with asterisk are attributed to the proposed side product $\left.\left[\left\{\left(\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right)_{2}\left(\mu_{3}, \eta^{1: 1: 2}-\mathrm{P}_{4}\right)\right\}_{2}\left\{\mathrm{Mo}(\mathrm{CO})_{2}\right\}\right]\right)$.

Table S2. Experimental and simulated values for the chemical shifts and coupling constants in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 b}$.

experimental values			simulated values			
δ_{A}	-121.8 ppm	${ }^{1} \mathrm{~J}_{\mathrm{AX}}$	162 Hz	δ_{A}	-121.8 ppm	${ }^{1} J_{\mathrm{AX}}$
$\boldsymbol{\delta}_{\mathrm{x}}$	-178.4 ppm			δ_{x}	163.3 Hz	

The simulation of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 b}$ was carried out on the basis of an $\mathrm{A}_{2} \mathrm{X}_{2}$ spin system with a $\mathrm{C}_{2 \mathrm{~h}}$ symmetry.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2 c}$ in different deuterated solvents (recorded at 300 K).

The reactivity of the P_{4} butterfly ligand $\left[\left\{\mathrm{Cp}{ }^{\prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]$ towards Lewis acids:

Figure S4. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{2 c}$ in different deuterated solvents (recorded at 300 K).

Figure. S5. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2 c}$ at different temperatures (recorded in toluene- d_{8}).

Figure. S6. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2 c}$ at different temperatures (recorded in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$).

Figure. S7. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{2 c}$ at different temperatures (recorded in toluene- d_{8}).

Figure. S8. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{2 c}$ at different temperatures (recorded in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$).

Figure S9. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{2 c}$ in different $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ / n-pentane mixtures with increasing n-pentane percentage (recorded at 300 K).

Figure S10. Experimental (top, recorded in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 300 K) and simulated (bottom) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum of 2c.

Table S3. Experimental and simulated values for the chemical shifts and coupling constants in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 c}$.

	chemical shift $\overline{\text { d }}$ [ppm]				coupling constant J [Hz]		
	Exp.	$\begin{gathered} \hline \text { F1 } \\ (85.69 \%) \end{gathered}$	$\begin{gathered} \text { F2 } \\ (14.28 \%) \end{gathered}$		Exp.	$\begin{gathered} \hline \text { F1 } \\ \text { (85.69\%) } \end{gathered}$	$\begin{gathered} \text { F2 } \\ (14.28 \%) \end{gathered}$
$\delta_{\text {A }}$	-161.6	-161.66	-161.66	${ }^{1} J_{\text {AB }}$	-	155.9	155.0
				${ }^{1}{ }^{\text {AB }}$,	-	169.5	165.6
				${ }^{1} J_{A B}{ }^{1}$	-	155.2	165.6
$\delta^{\prime}{ }^{\text {a }}$	-161.6	-161.66	-161.66	${ }^{1} J_{A} \cdot{ }^{\prime} \cdot$	-	159.0	164.3
				${ }^{2} J_{A A}{ }^{\text {a }}$	-	10.8	6.2
$\delta_{\text {в }}$	-168.3	-168.23	-168.23	${ }^{2}{ }^{\text {BBB }}$	-	2.4	16.3
δ.	-168.3	-168.24	-168.24	${ }^{1}{ }^{\text {daw }}$	-	-	145.9
$\delta_{\text {B }}$	-168.3	-168.24	-168.24	${ }^{1} J_{A} \cdot \mathrm{~W}$	-	-	118.6
				${ }^{2} J_{\text {BW }}$	-	-	11.0
				${ }^{2} J_{B} \cdot \mathrm{~W}$	-	-	18.4

The simulation of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 c}$ was carried out on the basis of an $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ spin system with a C_{1} symmetry. According to the natural abundancy of the NMR active ${ }^{138} \mathrm{~W}$ isotope, the simulation was performed using two fragments. The main fragment (F1, 85.69\%) was simulated with an NMR inactive tungsten atom, whereas the second fragment (F2, 14.28\%) considered the ${ }^{138} \mathrm{~W}$ atom.

Figure S11. Experimental (top) and simulated (bottom) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum of 4 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Table S4. Experimental and simulated values for the chemical shifts and coupling constants in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{4}$

experimental values				simulated values			
$\delta_{\text {A }}$	24.4 ppm	${ }^{1}{ }^{\text {AMM }}$	-	$\delta_{\text {A }}$	24.39 ppm	${ }^{1} \mathrm{JAX}$	369.1 Hz
$\delta_{A}{ }^{\text {. }}$	24.4 ppm	${ }^{1} J_{\text {AN }}$	-	$\delta_{\text {A }}$	24.40 ppm	${ }^{1} \mathrm{JAX}$	237.5 Hz
$\delta_{\text {в }}$	-12.6 ppm	${ }^{2} J_{\text {AX }}$	-	$\delta^{\text {x }}$	-12.60 ppm	${ }^{1} J_{\text {A }} \times$	250.5 Hz
δ_{B}.	-12.6 ppm	${ }^{2} \mathrm{~J}_{\text {MN }}$	-	δx	-12.59 ppm	${ }^{1} J_{A} \cdot \mathrm{X}$	361.1 Hz
		${ }^{1} J_{\text {MX }}$	-			${ }^{2} J_{\text {AA }}{ }^{\text {a }}$	27.7 Hz
		${ }^{1} \mathrm{~J}_{\mathrm{NX}}$	-			${ }^{2} J_{x x}$	$-5.5 \mathrm{~Hz}$

The simulation of the ${ }^{31} P\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 4 was carried out on the basis of an $A A^{\prime} X X^{\prime}$ spin system.

Figure. S12. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of 4 at different temperatures (recorded in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$).

Figure. S13. ${ }^{31} \mathrm{P}$ NMR spectrum of 5^{*} at room temperature at variable temperatures (recorded in toluene-d8).

$(\mathrm{CO})_{4} \mathrm{Fe}$

5*-1a
5*-2b
$[\mathrm{Fe}]=\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{Cp}{ }^{\prime \prime}$

A

Figure. S14. Experimental (top) and simulated (bottom) ${ }^{31} \mathrm{P}$ NMR spectrum of 5^{*} (recorded in toluene-d8 at $-50^{\circ} \mathrm{C}$)

Table S5. Experimental and simulated values for the chemical shifts and coupling constants in the ${ }^{31} \mathrm{P}$ NMR spectrum of 5^{*}

experimental values			simulated values				
δ_{A}	16.0 ppm	${ }^{1} J_{A X}$	-	δ_{A}	16.0 ppm	${ }^{1} J_{A X}$	208.1 Hz
δ_{B}	-19.9 ppm	${ }^{1} \mathrm{~J}_{\mathrm{BX}}$	-	δ_{B}	-19.9 ppm	${ }^{1} \mathrm{~J}_{\mathrm{BX}}$	225.6 Hz
δ_{X}	-257.8 ppm	${ }^{1} \mathrm{~J}_{\mathrm{AB}}$	-	δ_{X}	-257.8 ppm	${ }^{1} \mathrm{~J}_{\mathrm{AB}}$	170.3 Hz

The simulation of the ${ }^{31} \mathrm{P}$ NMR spectrum of 5^{*} was carried out on the basis of an $A B X_{2}$ spin system.

Figure. S15. ${ }^{31} \mathrm{P}$ NMR spectrum of 5 (recorded in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 300 K).

4.6.4 DFT calculations

The geometry of the molecules has been optimized using the TURBOMLE program package ${ }^{[7]}$ at the RI-- ${ }^{[8]}$ B3LYP ${ }^{[9]}$ level together with the def2-TZVP basis set for all atoms. ${ }^{\left[{ }^{[10]} \text { To speed up the calculations, the }\right.}$ Coulomb part was evaluated by using the Multipole Accelerated Resolution of Identity method (MARI-J) ${ }^{[11]}$ along with optimized auxiliary basis sets on all atoms. ${ }^{[12]}$ The natural bond orbital analysis (NBO) has been performed with NBO $6.0^{[13]}$ on the wave function obtained at the B3LYP/def2-TZVP level of theory. The topological analysis of the electron density obtained from the DFT calculations, according to the Atoms in Molecules theory ${ }^{[14]}$ has been performed with the MultiWFN program (version 3.6). ${ }^{[15]}$

5
$0.0 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$

5*-2b
$70.15 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$

5*-2a
$60.22 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$

5*-2c
$151.09 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$

5*-2a'
$84.15 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$

5*-2d $128.90 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$

5*-0a
$0.0 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$

5*-3a
$0.0 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$

5*-1b
$89.92 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$

5*-0b
$55.58 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$

5*-3b
$10.52 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$

5*-3c
$6.87 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$

Figure S16. Structure and relative energies of suggested isomers for $5,5^{*}-0,5^{*}-1,5^{*}-2$ and $5^{*}-3$ (calculated on the B3LYP/def2TZVP level of theory).

Table S6. Total SCF energies at the B3LYP/def2-TZVP level.

Total energy (a.u.)			Total energy (a.u.)
1	-5676.125867	5*-2a	-9110.174705
4	-9121.666449	5*-2a'	-9110.165589
4-i	-9121.63229561	$5^{*}-2 \mathrm{~b}$	-9110.170921
5	-9110.197641	5*-2c	-9110.140095
5*-0a	-7279.79448	5*-2d	-9110.148545
5*-0b	-7279.815651	5*-3a	-7393.155018
5*-1a	-8996.846448	5*-3b	-7393.151012
5*-1b	-8996.812202	$5^{*}-3 \mathrm{c}$	-7393.152401
5*-1c	-8996.80946		

Table S7. Cartesian coordinates of the optimized geometry of 4 at the B3LYP/def2-TZVP level.

om	m	y	z
Fe	-0.3219001	-0.5409696	-2.8822998
Fe	0.4066561	-0.1826637	3.8258906
Co	2.8771712	1.5802570	-1.1967576
Co	3.4947446	-1.5856472	1.4173238
P	1.3684567	-0.1633766	-1.2665565
P	1.0875681	1.3516851	0.2410061
P	1.6711983	-0.2322503	1.8082135
P	1.4597960	-1.8086957	0.3560778
0	-1.1904797	2.2017398	-2.3954414
0	-2.0973330	-1.6086014	-0.8291593
0	-0.8834036	-2.6688997	2.9981630
0	2.5267674	-1.6387872	5.2021819
0	4.4773690	0.6263660	-3.4463099
0	1.9263143	4.1742419	-2.1849999
0	4.9818978	2.1145213	0.7741751
0	5.2763145	-1.7159897	-0.9093349
0	5.2725776	-0.2593563	3.3192479
0	3.2868954	-4.2618405	2.6048857
C	-1.2808290	-0.9638441	-4.7752075
C	-0.0599820	-0.1941325	-5.0382285
C	1.0204553	-0.9677880	-4.5208089
H	2.0515831	-0.6647394	-4.5514745
C	0.5633251	-2.2069087	-4.0005556
C	-0.8436631	-2.1722262	-4.1498680
H	-1.5004089	-2.9644321	-3.8381786
C	-2.7610969	-0.7918473	-5.1879935
C	-3.5957077	-2.0011426	-4.7103753
H	-4.6364431	-1.8454424	-4.9986341
H	-3.5737303	-2.1164344	-3.6256181
H	-3.2673431	-2.9359328	-5.1677871
C	-2.8743457	-0.7776080	-6.7287514
H	-2.4210150	0.1012050	-7.1794561
H	-3.9274550	-0.7878048	-7.0182434
H	-2.4003532	-1.6609944	-7.1618963
C	-3.4427856	0.4534248	-4.5881276
H	-3.5170958	0.3637927	-3.5035132

Atom			X
C	1.5170979	-4.2511107	-4.9759031
H	2.0045809	-3.6669304	-5.7589986
H	0.5376651	-4.5626967	-5.3448546
H	2.1148517	-5.1485962	-4.8021911
C	-0.8332123	1.1330703	-2.5807147
C	-1.3710767	-1.1893015	-1.6046302
C	-1.4062019	1.0860019	3.8998399
C	-1.1183296	0.4800803	5.2087089
C	0.1657092	0.9698954	5.5867441
H	0.6566673	0.7266382	6.5129262
C	0.7160086	1.8247152	4.5941236
C	-0.2598808	1.8607751	3.5651322
H	-0.1509348	2.4068841	2.6456063
C	-2.6933354	1.1818822	3.0478023
C	-2.4800246	2.1444840	1.8602359
H	-2.2499952	3.1587465	2.1918485
H	-3.4015740	2.1918857	1.2776653
H	-1.6849155	1.8119350	1.1932354
C	-3.1594294	-0.1537007	2.4401818
H	-4.1058661	-0.0013402	1.9161532
H	-3.3148771	-0.9343369	3.1771309
H	-2.4371375	-0.5179010	1.7101575
C	-3.8194375	1.8061219	3.9025244
H	-4.6855692	2.0051704	3.2678553
H	-3.4988587	2.7557979	4.3361675
H	-4.1507924	1.1611777	4.7119049
C	-1.9431882	-0.3087151	6.2512613
C	-3.0360412	-1.2340187	5.6942160
H	-3.5119997	-1.7536942	6.5282138
H	-2.6241466	-1.9944242	5.0311700
H	-3.8195514	-0.7012828	5.1642547
C	-2.5940527	0.7267018	7.2006317
H	-1.8346076	1.3382054	7.6915203
H	-3.1657009	0.2124831	7.9767006
H	-3.2710499	1.3967191	6.6723301
C	-1.0236004	-1.2097096	7.1068466
		0	

H	-4.4582334	0.5372373	-4.9827526
H	-2.9254045	1.3797578	-4.8112359
C	0.2606472	1.0402330	-5.9094101
C	0.5394318	0.5056612	-7.3371633
H	1.3653016	-0.2076090	-7.3327052
H	0.8141085	1.3354245	-7.9923119
H	-0.3297456	0.0101425	-7.7682265
C	-0.8208143	2.1287212	-5.9924365
H	-0.4511817	2.9360610	-6.6275460
H	-1.0400855	2.5617414	-5.0172451
H	-1.7485804	1.7782707	-6.4346812
C	1.5440443	1.7416727	-5.4184851
H	2.4269217	1.1089521	-5.4917933
H	1.4499089	2.0790936	-4.3871024
H	1.7288997	2.6189085	-6.0403283
C	1.3931868	-3.4376379	-3.6640536
C	2.8028494	-3.0647442	-3.1876793
H	2.7757179	-2.4797783	-2.2698112
H	3.3504202	-2.4912874	-3.9373418
H	3.3782112	-3.9699209	-2.9857498
C	0.7068610	-4.3157594	-2.6054235
H	-0.2786986	-4.6534716	-2.9327476
H	0.5931000	-3.7905380	-1.6566355
H	1.3089918	-5.2076657	-2.4212129

Table S8. Cartesian coordinates of the optimized geometry of 4-i at the B3LYP/def2-TZVP level.

Atom	x	y	z
Fe	-0.3021240	0.0143336	-3.1710132
Fe	0.6197793	-0.0517770	3.9793532
Co	3.6030271	0.0962510	-1.3009651
Co	3.8610658	0.0015228	1.2848576
P	1.2081827	-0.0387982	-1.3052143
P	0.1929751	1.0770476	0.3519566
P	1.5497870	0.0153999	1.7751868
P	0.2117572	-1.1269441	0.3880841
O	0.1544920	2.8976289	-3.1012387
O	-2.7180374	0.1453164	-1.5426473
O	0.4786522	-2.9494712	3.6456418
O	3.3086876	-0.2140752	5.0940681
O	4.5990042	-1.8211072	-3.2698268
O	4.6464405	2.2859876	-2.9343319
O	3.2745328	2.6284295	0.1389203
O	3.5094054	-2.5699074	-0.0747776
O	5.3247635	1.9945403	2.8532680
O	5.0228568	-2.1373099	2.9114221
C	-1.1003911	-0.2916375	-5.1595537
C	0.3560569	-0.1677787	-5.2571656
C	0.9030998	-1.2212892	-4.4632329
H	1.9551815	-1.3975141	-4.3310911
C	-0.1214607	-2.0407912	-3.9209188
C	-1.3319490	-1.4412636	-4.3418725
H	-2.3074925	-1.8144690	-4.0863803
C	-2.2816794	0.4130350	-5.8656289
C	-3.6228819	-0.2224043	-5.4355750
H	-4.4368605	0.3038914	-5.9365510
H	-3.7961242	-0.1388933	-4.3618104
H	-3.6916452	-1.2736994	-5.7203251

H	-0.5050958	-1.9496799	6.4962859
H	-1.6322459	-1.7479168	7.8353695
H	-0.2798636	-0.6480692	7.6710007
C	1.9222997	2.7390627	4.7577843
C	1.4237512	3.9950940	5.5127206
H	1.0295627	3.7364767	6.4978384
H	0.6346957	4.5037900	4.9552612
H	2.2472938	4.6989479	5.6520315
C	3.0369025	2.0781236	5.5844303
H	3.4568506	1.2103838	5.0760028
H	2.6870310	1.7649234	6.5702400
H	3.8489501	2.7906051	5.7415518
C	2.4960563	3.1743641	3.4025874
H	1.7557262	3.6934828	2.7917940
H	2.8727366	2.3230928	2.8364970
H	3.3304916	3.8608181	3.5574247
C	-0.3896712	-1.6816996	3.2875687
C	1.7185106	-1.0749910	4.6278899
C	3.8652166	1.0042057	-2.5565865
C	2.2486886	3.1402285	-1.8138720
C	4.1567289	1.8405852	0.0315994
C	4.5565339	-1.6115124	-0.0262305
C	4.5842751	-0.7760915	2.5672663
C	3.3278036	-3.2081795	2.1602376

Atom X		y	z
C	-0.1361640	-4.4288262	-4.4928203
H	0.6362529	-4.2652735	-5.2469070
H	-1.1100341	-4.3336829	-4.9776705
H	-0.0383567	-5.4530627	-4.1262699
C	-0.0118897	1.7679078	-3.1260088
C	-1.7346694	0.1015068	-2.1239358
C	-1.5396103	0.3506633	4.2603381
C	-0.8649608	0.1203187	5.5459584
C	0.1193112	1.1440850	5.6545608
H	0.7727591	1.2664179	6.5007793
C	0.1236779	1.9946033	4.5143073
C	-0.8894052	1.4730309	3.6710910
H	-1.1474990	1.8824855	2.7116928
C	-2.8400198	-0.2162469	3.6446041
C	-3.2146002	0.5624401	2.3654683
H	-3.3930406	1.6201302	2.5681071
H	-4.1377149	0.1461577	1.9591538
H	-2.4531173	0.4789250	1.5907396
C	-2.7641130	-1.7000126	3.2378745
H	-3.7460287	-2.0289994	2.8895450
H	-2.4658628	-2.3567211	4.0479319
H	-2.0625491	-1.8364165	2.4142775
C	-4.0059412	0.0113656	4.6339299
H	-4.9471408	-0.2595144	4.1509527
H	-4.0706357	1.0621168	4.9244871
H	-3.9214786	-0.5834680	5.5391607
C	-1.1342224	-0.7772428	6.7750993
C	-1.7872964	-2.1392129	6.4931236
H	-1.8901844	-2.6788852	7.4366857
H	-1.1751206	-2.7538785	5.8337392

C	-2.1795567	0.1950577	-7.3919522
H	-1.3221252	0.6931620	-7.8359722
H	-3.0752077	0.5873687	-7.8785849
H	-2.1098059	-0.8689103	-7.6281082
C	-2.4037776	1.9149947	-5.5419363
H	-2.6466244	2.0614441	-4.4885423
H	-3.2153191	2.3489333	-6.1309195
H	-1.5030159	2.4782116	-5.7574945
C	1.3005080	0.6417348	-6.1720854
C	1.5096445	-0.2144986	-7.4467015
H	1.9373138	-1.1871350	-7.1981882
H	2.2007128	0.2950636	-8.1218891
H	0.5775805	-0.3849313	-7.9846592
C	0.8295655	2.0435708	-6.5904366
H	1.6028870	2.4948781	-7.2149522
H	0.6868148	2.6996832	-5.7323902
H	-0.0839169	2.0332939	-7.1771612
C	2.6776012	0.8343107	-5.5070384
H	3.1903838	-0.1058563	-5.3117266
H	2.5941514	1.3834022	-4.5709685
H	3.3187816	1.4134169	-6.1731746
C	0.0106574	-3.4317877	-3.3164514
C	1.3803130	-3.6530893	-2.6627722
H	1.5506361	-2.9790341	-1.8257463
H	2.1961122	-3.5247962	-3.3757053
H	1.4440641	-4.6729652	-2.2788600
C	-1.1006885	-3.7156647	-2.2929886
H	-2.0960460	-3.6236264	-2.7327348
H	-1.0397952	-3.0417015	-1.4384582
H	-1.0044866	-4.7372428	-1.9198429

Table S9. Cartesian coordinates of the optimized geometry of 5 at the B3LYP/def2-TZVP level.

Atom x			
y	z		
P	0.3683193	1.6046742	1.6940266
P	-0.4424949	1.3434961	3.6888322
P	0.1960638	-0.7228616	3.5620377
P	-0.5981517	-1.4167719	1.5926863
Fe	0.2081579	3.7021136	0.6345922
Fe	0.2325698	-3.4821020	0.7344043
Fe	1.8848469	0.9171247	3.3426752
Fe	-0.3901725	-2.0492912	5.4060428
O	-0.0378291	0.1575328	-0.5711655
C	-0.0496155	0.0574143	0.6384817
O	-0.1551972	0.2372458	7.2561521
O	3.0944090	3.5051157	0.2153675
O	0.3331431	5.0572034	3.2190818
O	-0.8496373	-5.0451180	2.9514974
O	2.8324020	-3.0121906	1.9704903
O	3.8981262	-0.1955606	1.5238240
O	3.0420834	0.0091861	5.8891786
O	3.1266480	3.5564762	3.7098544
O	-3.0577136	-2.4444837	4.2071483
O	1.9961861	-3.7274800	4.9649458
O	-1.1664412	-3.8186953	7.6088245
C	-0.1520201	4.0680547	-1.4963167
C	-0.3156167	5.3019413	-0.7215439
C	-1.3870765	5.0415717	0.1881833
H	-1.7674227	5.7586657	0.8936000

H	-2.7811017	-2.0571759	6.0643874
C	-2.0403586	0.0260013	7.7404074
H	-1.5620984	0.9608675	8.0384758
H	-2.2305269	-0.5578954	8.6438531
H	-3.0013651	0.2719549	7.2905975
C	0.1816725	-1.0873814	7.5248156
H	0.8874991	-1.6265912	6.8921979
H	-0.0418368	-1.7186661	8.3863648
H	0.6758782	-0.1950686	7.9075399
C	0.8238136	3.3430757	4.4021509
C	-0.0805111	4.3649301	5.1336495
H	-0.2091018	4.1018154	6.1858296
H	-1.0697693	4.4157869	4.6743081
H	0.3662913	5.3604416	5.0861463
C	2.2031047	3.3334176	5.0806337
H	2.8953318	2.6586229	4.5775512
H	2.1442565	3.0454713	6.1321843
H	2.6366566	4.3344525	5.0432837
C	0.9905629	3.7902816	2.9433438
H	0.0333102	3.8523707	2.4228138
H	1.6413804	3.1201360	2.3831059
H	1.4409286	4.7843224	2.9144672
C	0.5129619	-1.8127048	3.7507262
C	2.2764469	-0.1500436	4.6123481
C	4.1985171	-1.0990207	-2.4759199
C	4.2095145	1.4469894	-2.2913399
C	3.4970137	1.4803080	0.0719537
C	3.6334086	-1.4071247	-0.0426103
C	4.7403180	1.2356477	2.2282435
C	4.5609941	-1.3174723	2.2642994

Atom X		y	z
H	-3.3529916	4.7740193	2.1880413
C	-3.3420771	1.7068419	0.5548762
H	-2.6005688	1.2025934	1.1722602
H	-3.2443400	1.3422539	-0.4688938
H	-4.3271539	1.4060949	0.9164076
C	1.9681961	3.5786668	0.3807054
C	0.3139547	4.4868556	2.2322360
C	0.7083556	-5.0318840	-0.7016625
C	-0.7046391	-4.9474313	-0.4962456
H	-1.3061020	-5.7467795	-0.1007814
C	-1.2187687	-3.6897481	-0.8862114
C	-0.0888260	-2.9476914	-1.3239756
H	-0.1244027	-1.9271375	-1.6594403
C	1.1013998	-3.7352755	-1.2590014
C	1.4434829	-6.3781501	-0.5052106
C	2.6019734	-6.3207955	0.5093975
H	3.3475864	-5.5699610	0.2736314
H	3.1059647	-7.2897239	0.5402450
H	2.2248164	-6.1144999	1.5117977
C	0.4681541	-7.4517973	0.0276915
H	0.0407855	-7.1810038	0.9940610
H	1.0163816	-8.3846581	0.1672911
H	-0.3453612	-7.6536094	-0.6713604
C	1.9426728	-6.8995515	-1.8716376
H	1.1200175	-6.9603344	-2.5875757

C	-1.8968399	3.7304444	0.0415277
C	-1.1005317	3.1354770	-0.9747956
H	-1.2020007	2.1227001	-1.3192883
C	0.5915792	3.7235053	-2.8063647
C	0.9043002	2.2158056	-2.8920379
H	1.4157304	2.0186963	-3.8359656
H	0.0121323	1.5943824	-2.8698376
H	1.5532273	1.8874525	-2.0813963
C	1.9199470	4.4509899	-3.0658682
H	1.8140343	5.5284457	-3.1433159
H	2.3220368	4.1020847	-4.0189028
H	2.6644049	4.2275166	-2.3026665
C	-0.3928333	4.0619894	-3.9553107
H	-0.6568261	5.1189286	-3.9734881
H	-1.3152576	3.4867023	-3.8607678
H	0.0642360	3.8119344	-4.9153041
C	0.2717187	6.7275573	-0.8423215
C	-0.3595760	7.6617778	0.2144223
H	-0.1713682	7.3229028	1.2341232
H	-1.4361154	7.7751339	0.0757943
H	0.0863095	8.6525781	0.1167039
C	1.7941227	6.8034614	-0.6150402
H	2.1357991	7.8266457	-0.7872022
H	2.3633677	6.1524912	-1.2687531
H	2.0414164	6.5440759	0.4153078
C	-0.1032348	7.3267260	-2.2164620
H	-1.1833175	7.2905863	-2.3741471
H	0.3739426	6.8162635	-3.0484238
H	0.2043089	8.3738851	-2.2540988
C	-3.2099483	3.2327843	0.6315488
C	-4.3334703	3.8638063	-0.2278038
H	-5.3092759	3.5380493	0.1387860
H	-4.2476289	3.5626225	-1.2739706
H	-4.3035264	4.9544832	-0.1857766
C	-3.3893279	3.6872722	2.0894318
H	-2.6278765	3.2569212	2.7401425
H	-4.3638275	3.3618009	2.4583802

Table S10. Cartesian coordinates of the optimized geometry of $5^{*}-0$ a at the B3LYP/def2-TZVP level.

Atom x		y	z
Fe	3.7708765	-0.0079220	-0.7787597
Fe	-3.6517825	-0.0161378	-0.8018104
P	1.4912400	-0.1542894	-0.2489219
P	0.0643945	-0.9022898	-1.8305672
P	0.0473775	1.2322779	-1.2803397
P	-1.3809646	-0.1785744	-0.2547386
O	3.3951193	2.3844762	-2.4027448
O	3.4699850	-1.9401708	-2.9402134
O	-3.3919068	2.3215660	-2.5256949
O	-3.2122285	-2.0803513	-2.8141837
C	5.6883127	0.6800211	-0.0161995
C	4.6542929	0.8975221	1.0072507
C	4.1367377	-0.3955194	1.3157938
C	4.7676987	-1.4056111	0.5596354
C	5.7094282	-0.7201879	-0.2639723
C	-4.9462182	-1.2954696	0.4054630
C	-5.7567398	-0.3362037	-0.3574794
C	-5.3332444	0.9528719	0.0766519

H	2.3554875	-7.9034856	-1.7511125
H	2.7197730	-6.2770170	-2.3066629
C	-2.6962773	-3.3523222	-1.0410806
C	-3.5027347	-3.7378101	0.2110305
H	-3.3893749	-4.7949735	0.4590515
H	-4.5658450	-3.5576744	0.0367578
H	-3.1992927	-3.1488315	1.0766755
C	-2.9093642	-1.8623486	-1.3413634
H	-2.5631671	-1.2359746	-0.5204419
H	-3.9742498	-1.6684807	-1.4870478
H	-2.3895212	-1.5564070	-2.2514012
C	-3.2175373	-4.1727594	-2.2451557
H	-2.6619066	-3.9356635	-3.1551109
H	-4.2715199	-3.9474027	-2.4231602
H	-3.1287684	-5.2459713	-2.0653985
C	2.3787516	-3.2126216	-1.9534401
C	3.7195046	-3.7781068	-1.4588184
H	4.5231308	-3.3114057	-2.0319245
H	3.8129696	-4.8505467	-1.5986810
H	3.8974085	-3.5458244	-0.4097631
C	2.2212965	-3.5490878	-3.4578284
H	1.3279724	-3.0779802	-3.8717313
H	2.1453812	-4.6220968	-3.6320079
H	3.0868869	-3.1780384	-4.0114302
C	2.4922109	-1.6791925	-1.8272694
H	2.5895036	-1.3676095	-0.7879260
H	1.6455459	-1.1508182	-2.2593099
H	3.3879547	-1.3487954	-2.3565296
C	-0.4256687	-4.3686036	2.1377431
C	1.8101662	-3.1733397	1.4908878
C	3.1048695	0.2000232	2.2445294
C	2.5656251	0.3582013	4.9152481
C	2.6210640	2.5435724	3.5536315
C	-2.0096842	-2.2862165	4.6500638
C	1.0718698	-3.0619249	5.1153033
C	-0.8625179	-3.1260689	6.7505966
C	-0.2318504	-0.6358319	6.5166720

C	-4.3244121	0.8679307	1.0754698
C	-4.1001551	-0.5173389	1.2500663
C	6.7998801	1.5517354	-0.6441598
C	8.0538313	1.3813143	0.2489978
C	6.5059580	3.0529904	-0.7895012
C	7.1578011	1.0452797	-2.0599584
C	3.5552051	-1.1589479	-2.1111895
C	3.5058479	1.4366145	-1.7751766
C	-3.4289074	1.3829364	-1.8769876
C	-3.3716857	-1.2517449	-2.0435221
C	4.2421384	2.1240160	1.8524972
C	5.4590187	2.6192454	2.6654370
C	3.6326468	3.2798954	1.0364225
C	3.1673333	1.7229847	2.8865622
C	4.6531047	-2.9087603	0.7859633
C	5.3574181	-3.2159090	2.1288072
C	3.1869972	-3.3623236	0.8795653
C	5.3584933	-3.7058041	-0.3229494
C	-5.0063513	-2.8224954	0.6367861
C	-5.9400550	-3.0509315	1.8512184
C	-5.5093705	-3.6803149	-0.5343613
C	-3.6110805	-3.3751072	1.0039226
C	-6.9655736	-0.4820153	-1.3090231
C	-8.1321051	-1.1568888	-0.5533994
C	-7.4792683	0.9092566	-1.7403746
C	-6.6581272	-1.2388844	-2.6154050
C	-3.8216484	2.0170142	1.9408394
C	-4.9976094	2.4560246	2.8449200
C	-3.3760825	3.2187681	1.0906972
C	-2.6557480	1.5747461	2.838574
H	3.3458540	-0.5770649	2.0212064
H	6.3626842	-1.2028004	-0.9687119
H	-5.7338900	1.8786502	-0.2970082
H	-3.3745218	-0.9313681	1.9269199
H	8.3558640	0.3341213	0.3061118
H	7.8796800	1.7349824	1.2651725
H	8.8870011	1.9516078	-0.1682174
H	7.3707962	3.5312524	-1.2538715
H	6.3437930	3.5497200	0.1624215

Table S11. Cartesian coordinates of the optimized geometry of $5^{*}-\mathbf{0 b}$ at the B3LYP/def2-TZVP level.

Atom x			
y	z		
Fe	3.6298909	-1.0087573	-0.6833781
Fe	-3.5853834	-0.4206427	-0.7120818
P	1.3754621	-0.6862889	-0.1061906
P	-0.0762820	-1.7349714	-1.4217270
P	0.1085507	0.4703761	-1.5279709
P	-1.3062384	-0.4663384	-0.0509656
O	2.9042708	-1.0889839	-3.5061795
O	3.2278874	-3.8941585	-0.4585445
O	-2.8837732	0.1614133	-3.4822849
O	-3.3546129	-3.3108903	-1.0431739
C	5.5885919	-0.1740196	-1.0909485
C	4.6909962	0.8982380	-0.6369103
C	4.2831286	0.5335356	0.6847698
C	4.8702371	-0.6849679	1.0916246
C	5.6407242	-1.1167764	-0.0271432
C	-5.1937353	-0.5981130	0.7536829
C	-5.7278593	-0.1596648	-0.5402894
C	-5.0870094	1.0859471	-0.8160174

C	-0.0113083	2.3890742	-4.3346529
H	3.1429330	-4.4238116	1.1336442
H	5.2732357	-4.7744193	-0.1161704
H	6.4232656	-3.4693771	-0.3753179
H	4.9176802	-3.5242351	-1.3032570
H	-6.9520870	-2.6952188	1.6577546
H	-5.5664436	-2.5326915	2.7361441
H	-5.9960633	-4.1172849	2.0821338
H	-6.5332627	-3.4563417	-0.8184055
H	-5.4859393	-4.7290248	-0.2309340
H	-4.8742525	-3.5841159	-1.4138119
H	-3.6846456	-4.4536014	1.1548054
H	-3.2146750	-2.9515878	1.9257389
H	-2.8855826	-3.1980591	0.2093662
H	-9.0237262	-1.1640133	-1.1843053
H	-8.3725435	-0.6079667	0.3598149
H	-7.9185115	-2.1865370	-0.2776853
H	-8.3238875	0.7780130	-2.4184989
H	-6.7187521	1.4792271	-2.2763809
H	-7.8298186	1.5014283	-0.8932179
H	-6.2536561	-2.2317990	-2.4556087
H	-5.9452551	-0.6807473	-3.2232736
H	-7.5768420	-1.3451752	-3.1970975
H	-5.3552234	1.6254638	3.4570876
H	-5.8378136	2.8266925	2.2545165
H	-4.6774641	3.2574945	3.5146603
H	-3.1052230	4.0541019	1.7402108
H	-4.1695294	3.5649407	0.4260962
H	-2.5075544	2.9707821	0.4801520
H	-2.9566923	0.7808690	3.5255747
H	-2.3165849	2.4188443	3.4426871
H	-1.8069749	1.2150213	2.2550586
Fe	0.0407362	0.7870439	-3.5954066
O	-2.3812683	0.0247351	-5.0520613
O	2.5102696	0.1934782	-5.0512915
O	-0.0462692	3.4566552	-4.7552508
C	-1.4872002	0.3383090	-4.3962743
C	1.5970906	0.4399136	-4.3937107

Atom		x	z
H	5.2715712	0.0105100	-3.9999535
H	7.1329898	-2.4426365	-1.7988263
H	7.4343472	-1.9504615	-3.4525669
H	5.7865513	-2.2988527	-2.9336152
H	6.3615314	2.7309670	-2.0307442
H	6.1783094	3.1471773	-0.3274317
H	5.4305893	4.1497393	-1.5724977
H	3.4988885	3.3195865	-2.8986242
H	2.6416072	1.8477217	-2.4590155
H	4.1667784	1.7542896	-3.3318256
H	3.2103821	4.0413962	-0.6537328
H	3.9051768	3.2328654	0.7450996
H	2.4900866	2.5497846	-0.0643041
H	6.4969078	-1.2966833	4.0372296
H	6.5840469	0.1247343	2.9911187
H	7.1472533	-1.4443731	2.4018243
H	2.9192936	-0.7498848	3.1190185
H	4.1223104	0.4735126	3.5373884

C	-4.1938495	1.4595974	0.2184143
C	-4.2558184	0.3997402	1.1600679
C	6.5702143	-0.3568571	-2.2721846
C	7.9450369	0.1648785	-1.7846343
C	6.2204542	0.3525190	-3.5892896
C	6.7322933	-1.8535444	-2.6227349
C	3.3636312	-2.7629560	-0.5174263
C	3.1690302	-1.0364726	-2.3959032
C	-3.1204902	-0.0746621	-2.3891608
C	-3.4347243	-2.1791467	-0.9048386
C	4.3601538	2.2991664	-1.1981646
C	5.6659719	3.1208832	-1.2916447
C	3.6330696	2.2908892	-2.5559533
C	3.4372447	3.0636056	-0.2254786
C	4.9567765	-1.2621997	2.5000076
C	6.3857085	-0.9489639	3.0079134
C	3.9476635	-0.6002583	3.4468329
C	4.7497955	-2.7853697	2.5224166
C	-5.5960370	-1.6933326	1.7662445
C	-6.6483530	-1.0521484	2.7060718
C	-6.1820992	-2.9911665	1.1887373
C	-4.3897697	-2.1131098	2.6329571
C	-6.8672436	-0.6674575	-1.4528951
C	-8.2031939	-0.6337237	-0.6771156
C	-7.0508909	0.2786366	-2.6605310
C	-6.6230502	-2.0670371	-2.0499894
C	-3.5646609	2.8373299	0.3813427
C	-4.7093981	3.8041269	0.770233
C	-2.9292640	3.3287295	-0.9301182
C	-2.5112120	2.8569073	1.4965157
H	3.6168809	1.1154044	1.2959561
H	6.2261568	-2.0197000	-0.0437940
H	-5.2659613	1.6768068	-1.6966924
H	-3.6892951	0.36145366	2.0733575
H	8.2827434	-0.3814065	-0.9023801
H	7.9092950	1.2236674	-1.5287335
H	8.6916852	0.0327261	-2.5709603
H	6.9937352	0.1179935	-4.3237520
H	6.1902773	1.4339133	-3.4960184

Table S12. Cartesian coordinates of the optimized geometry of $5^{*}-1 \mathrm{a}$ at the B3LYP/def2-TZVP level.

Atom	m	y	z
Fe	3.6787376	-0.7293401	-0.4723085
Fe	-3.5885011	-0.2518268	-0.3997372
P	1.4188740	-0.4989116	0.1037994
P	-0.0565364	-1.5316331	-1.2032237
P	0.1001931	0.6646339	-1.2911592
P	-1.3034320	-0.3058034	0.2006212
0	3.0125278	-0.6773865	-3.3101817
0	3.3777300	-3.6340970	-0.3341443
0	-2.9536406	0.1067152	-3.2238635
0	-3.4420344	-3.1671253	-0.4375408
C	5.6228927	0.1557708	-0.8459074
C	4.7022710	1.1972339	-0.3655712
C	4.2952374	0.7862475	0.9425652
C	4.9053820	-0.4311438	1.3184009
C	5.6874418	-0.8161463	0.1907790
C	-5.2343134	-0.2962715	1.0424750

H	4.0452501	-1.0336672	4.4442231
H	4.9578326	-3.1689843	3.5234071
H	5.4185286	-3.3014393	1.8301609
H	3.7228043	-3.0539598	2.2769961
H	-7.5433453	-0.7412968	2.1669609
H	-6.2386619	-0.1764242	3.2118949
H	-6.9474488	-1.7732834	3.4699260
H	-7.1093446	-2.8401447	0.6442794
H	-6.4068837	-3.6654095	2.0174370
H	-5.4752980	-3.5058838	0.5390924
H	-4.7067008	-2.8967020	3.3233054
H	-3.9952592	-1.2998139	3.2372938
H	-3.5752176	-2.5143939	2.0287564
H	-9.0255598	-0.8861296	-1.3501717
H	-8.3932821	0.3642809	-0.2762266
H	-8.2300441	-1.3366296	0.1510622
H	-7.8504334	-0.1098548	-3.2931828
H	-6.1521020	0.3414243	-3.2760820
H	-7.3373822	1.2864000	-2.3553223
H	-6.4463954	-2.8316562	-1.3022572
H	-5.7646224	-2.0508747	-2.7228864
H	-7.4953208	-2.3699312	-2.6341779
H	-5.1985186	3.4850114	1.6929654
H	-5.4681201	3.8613423	-0.0129291
H	-4.3114396	4.8088979	0.9292834
H	-2.5579310	4.3477795	-0.8021222
H	-3.6479289	3.3445964	-1.7519643
H	-2.0887978	2.6997180	-1.2245991
H	-2.9397606	2.5815021	2.4620920
H	-2.1015449	3.8639730	1.5973457
H	-1.6834818	2.1794911	1.2896242
Fe	0.0755568	-0.5135064	1.8769271
O	0.8746083	-3.1796304	2.8140914
O	-1.8247749	-0.1648972	4.0656097
O	1.4288386	1.9651981	2.6578936
C	0.5147121	-2.1596273	2.4082810
C	-1.0727746	-0.3174249	3.2046496
C	0.8542695	1.0181584	2.3168153
		0	

C	-5.7192209	0.1009028	-0.2817279
C	-5.0235572	1.3096241	-0.5968637
C	-4.1400149	1.6937629	0.4395183
C	-4.2582937	0.6761560	1.4230580
C	7.6175190	0.0262366	-2.0236889
C	6.2749591	0.5478988	-1.5010818
C	6.8021832	-1.454792066	-3.3184955
C	3.4717834	-2.4986113	-2.4257742
C	3.2481039	-0.6887189	-2.1931251
C	-3.1642255	-0.0516098	-2.1124170
C	-3.4865339	-2.0262727	-0.4263072
C	4.3509851	2.6092532	-0.8855693
C	5.6435661	3.4555488	-0.9370377
C	3.6390030	2.6324634	-2.2510112
C	3.4038303	3.3254247	0.1001340
C	5.0034896	-1.0428463	2.7114447
C	6.4301914	-0.7251837	3.2228588
C	3.9905830	-0.4153785	3.6776443
C	4.8149075	-2.5683707	2.6959135
C	-5.7116821	-1.3188287	2.0982226
C	-6.7515645	-0.5747442	2.9742371
C	-6.3512824	-2.6150860	1.5767034
C	-4.5487092	-1.7495519	3.0168862
C	-6.8546817	-0.4061127	-1.1996031
C	-8.2082521	-0.2690560	-0.4672803
C	-6.9618709	0.4781144	-2.4621743
C	-6.6563817	-1.8462524	-1.7114809
C	-3.4733998	3.0575799	0.5639800
C	-4.5916934	4.0585831	0.9449372
C	-2.8452502	3.5054954	-0.7660871
C	-2.4067650	3.0781378	1.6663283
H	3.6167628	1.3385970	1.5673269
H	6.2904317	-1.7067346	0.1504864
H	-5.1628253	1.8678094	-1.5055019
H	-3.7150684	0.6568992	2.3509875
H	8.3153393	-0.0247019	-0.6348328
H	7.9273151	1.5966278	-1.2087367
H	8.7365132	0.4532652	-2.2829437
H	7.0630388	0.5845774	-4.0486740
H	6.2256923	1.8556726	-3.1853641
H	5.3389169	0.4376089	-3.7574708
H	7.1966255	-2.0698919	-1.6180355
H	7.5189287	-1.5125350	-3.2465035
H	5.8679764	-1.8996162	-2.7699750

Table S13. Cartesian coordinates of the optimized geometry of $5^{*}-1 \mathrm{~b}$ at the B3LYP/def2-TZVP level.

Atom	m	y	z
Fe	2.4638743	-2.4680168	-1.2068246
Fe	-2.5422231	3.0511570	-0.2333124
P	0.7360096	-1.1757066	-0.0658605
P	-0.7197799	-0.1924117	-1.5294554
P	0.8083844	1.0627309	-0.5686383
P	-1.3005507	1.1258876	0.2139587
0	3.9091373	-0.0088234	-1.8364386
0	0.6649300	-2.8096309	-3.4791660
0	-0.4989394	4.5850280	-1.6398460

H	5.4908576	-3.0586852	1.9922109
H	3.7917528	-2.8433391	2.4421087
H	-7.6161375	-0.2498066	2.3953553
H	-6.3098349	0.3057158	3.4434716
H	-7.1059489	-1.2372885	3.7670049
H	-7.2570010	-2.4477080	1.0019771
H	-6.6292633	-3.2291888	2.4354064
H	-5.6582560	-3.2012044	0.9748793
H	-4.9195592	-2.4815606	3.7361229
H	-4.1295682	-0.9262247	3.5899063
H	-3.7398828	-2.2192536	2.4560241
H	-9.0220519	-0.5243451	-1.1494350
H	-8.3640389	0.7583145	-0.1308211
H	-8.2908713	-0.9197944	0.3989542
H	-7.7591962	0.0882758	-3.0966127
H	-6.0449157	0.4680414	-3.0533208
H	-7.2132829	1.5127192	-2.2226155
H	-6.5266306	-2.5740327	-0.9188363
H	-5.7857023	-1.9048691	-2.3659526
H	-7.5284955	-2.1464761	-2.2970326
H	-5.0749397	3.7728347	1.8814753
H	-5.3594690	4.1135277	0.1705221
H	-4.1693298	5.0576122	1.0740190
H	-2.4372372	4.5129631	-0.6610764
H	-3.5775978	3.5342312	-1.5752858
H	-2.0322803	2.8438595	-1.0656390
H	-2.8294494	2.8331850	2.6426331
H	-1.9744867	4.0779360	1.7408521
H	-1.5966984	2.3783888	1.4649383
Fe	0.1112284	-0.3516342	2.0640996
O	1.0003542	-2.9702105	3.0557604
O	-1.8204906	-0.0337440	4.2321529
O	1.4263805	2.1301729	2.8912337
C	0.6149285	-1.9675356	2.6348661
C	-1.0616003	-0.1788576	3.3777103
C	0.8757336	1.1792792	2.5252051
Fe	-0.1684977	-3.1110123	-2.8243533
O	2.2815095	-4.3291654	-3.9027849
O	-0.3160657	-5.1991848	-0.7267052
O	-0.0277516	-0.9657269	-4.8569448
O	-2.7583921	-3.9841642	-3.9099208
C	-0.2590277	-4.3879150	-1.5249343
C	-1.7666147	-3.6238901	-3.4624302
	-1.3464745	-3.8377806	-3.4580324

Atom		x	y
H	6.8249364	-3.3624707	0.7054452
H	5.9059549	-4.5593793	1.6155122
H	6.6237911	-3.1748696	2.4396089
H	5.7261380	-0.8650998	2.0922825
H	4.1997857	-0.5961813	1.2581603
H	5.6651714	-0.9142284	0.3358619
H	4.6042294	-2.4590539	3.4833131
H	3.8617089	-3.9368316	2.8784924
H	3.0672016	-2.3774503	2.6394086

O	-3.7064007	1.6342153	-2.5032048
C	4.3912495	-3.4914540	-1.2504753
C	4.0220012	-3.2518957	0.1524778
C	2.7805649	-3.9287909	0.3517090
C	2.3702071	-4.6153888	-0.8143549
C	3.3589817	-4.3026242	-1.7921944
C	-4.4195886	3.0697161	0.8891470
C	-4.2090850	4.3714765	0.2367000
C	-2.9914874	4.8756769	0.7721422
C	-2.4292343	3.9885745	1.7328917
C	-3.3197067	2.8905770	1.7793816
C	5.6623467	-3.2758464	-2.1101870
C	6.4875533	-4.5831810	-1.9967046
C	6.5751370	-2.0927621	-1.7460062
C	5.2921605	-3.0866823	-3.5998803
C	1.3598447	-2.5981445	-2.6002507
C	3.2840794	-0.9360425	-1.6141083
C	-1.2650124	3.9141431	-1.1244758
C	-3.2288849	2.1971424	-1.6314637
C	4.8171892	-2.6830109	1.3475115
C	6.1224389	-3.4929478	1.5230218
C	5.1222305	-1.1778205	1.2375005
C	4.0298148	-2.8816672	2.6576718
C	1.3124869	-5.7100646	-0.9230035
C	1.8002601	-6.8850511	-0.0420094
C	-0.0594814	-5.2486255	-0.4174354
C	1.1709250	-6.2178650	-2.3676863
C	-5.6088036	2.0876185	0.9838901
C	-6.4533241	2.5322808	2.2040386
C	-6.5298021	1.9982708	-0.2422761
C	-5.1116272	0.6504077	1.2535444
C	-5.0801697	5.2594173	-0.6814895
C	-6.3865875	5.6227109	0.0593854
C	-4.3630423	6.5960811	-0.9730942
C	-5.3948931	4.6449231	-2.0588746
C	-1.2932015	4.3171094	2.6931175
C	-1.8615188	5.3102703	3.7348609
C	-0.1071201	4.9799272	1.9732893
C	-0.7953098	3.0658394	3.4296160
H	2.2361013	-3.9308223	1.2778029
H	3.3424981	-4.6631260	-2.8049705
H	-2.5528116	5.8175357	0.4946091
H	-3.1817464	2.0244704	2.4024816
H	5.9136699	-5.4431326	-2.3462701
H	6.7990380	-4.7828319	-0.9718094
H	7.3860804	-4.5045897	-2.6125641
H	7.4226425	-2.0922393	-2.4342749
H	6.9840511	-2.1564714	-0.7427608
H	6.0724640	-1.1346605	-1.8559238
H	4.7815353	-3.9500906	-4.0245546
H	6.2087616	-2.9478926	-4.1753123
H	4.6661873	-2.2086407	-3.7588883

Table S14. Cartesian coordinates of the optimized geometry of $5^{*}-1 \mathrm{c}$ at the B3LYP/def2-TZVP level.

Atom x		y	z
Fe	3.7938028	0.1495953	-0.6581817
Fe	-3.6498083	0.1142027	-0.6502824
P	1.4464398	-0.0676892	-0.5172731

	1.8608244	-6	1.0082646
	2.7864223	-7.2329614	-0.3571452
	-0.4676868	-4.4540392	-1.0419314
	-0.0069169	-4.	
	-0.7640000	-6.0827541	
	. 4222734	-7.0114507	
	57600	-6.638396	
	8450892	-5.4336960	
	-6.848273	3.54075	
	-5.8593	2.5143708	
	-7	1.	2.
	-7	2	-0.4684023
	-7	1.	-0.0368868
	-5	1.	-1.1313362
	-5	-0	
	-4	0	
	-4	0.287104	
	-6.9555647	6.3435154	-0.5318317
	-6	6.0802009	. 0273218
	-7.0278234	4.7621134	0.2321013
	-4	7.1963304	-1.6313976
	-3	7666	-1.4828078
	-4.1896928	7.1792576	067073
	-5.8755242	7505	.001631
	-4.4839240	4.5345971	07
	-6.06	13066	2.607333
	. 71	878641	4.2669169
	-2.1930	6.2368	.
	-1.	5.	4.4705361
		5.2793577	2.7039218
			1.4262709
	-1.5849	2.5963935	
	0.0090		
	-0		
		仡	
		-0.4287	
	2.5550	3.3441004	-3.3191525
	-0	6540	. 7
	1.539625	0.1276164	-4.0684907
	1.7947759	928255	-3.206860
	-0.2048006	-1.7385126	. 058
	1.8611505	0.0456337	. 1795204
	-2.2281684	-0.322587	
	-2.4005498	-3.00507	. 5462617
	0.5840543	-4.1595123	. 5090250
	-1.4344022	-0.8418028	.9846329
	-1.5343579	-2.5382155	1.1302097
	0.3248991	-3.2263155	2.8872512
	1.0751830	-0.6693602	2.7510136

	-1.301		
	3.4797861	2.4	
	-3.4944812		
	-3.78	-2.1	
	5.5073087		
	3.783487		
	5743		
	仡	-0	
	.6425		
	-5.090391		
	-3.9158128		
	-3.7203134		
	676088	1.854	
	7577457		
	3440922		
	35		
	9898745	-1.0387	
	5849562	,	
	5		
	-3.706506	-1.248	
	3.7031848	2.4394	1.8925482
	7460835		
	914		
	48855		
	4738	-2.61827	
	4.9408484	-	
	3.030390		
	5.389059	-3.4468	
	-4.8177	-2.4504	
	-5.496967		
	-5.583051		
	-3.4019303	-3.0512	
	-7.0215517	-0.1952	
		71	
	5496	175	-0.9
	-7.018978	-1.099130	-1.7121397
	-3. 217702	2.4133325	
	路		
	-2.892165	. 501	. 815824
	-1.9237244	. 99	. 5668333
	883893	,	,
	,	-0.93	
	-5.516981	2.1707	0.02
	-2.8964194	-0.5443727	.
	. 902481	0.78774	,
	8.6262167	2.39915	0.716116
	2535173	820863	-0.733632
	916547	7002	0.4779398
	5.6052281		
	7.7342344	0.2890709	-1.2333269
	8.1149210	1.9335599	1.7002
	6.5759073	1.2231090	

H	2.8425057	4.3822144	1.4804455
H	2.3472106	3.1373744	0.3364390
H	3.9464629	3.8599889	0.2174322
H	2.0776036	2.9432467	3.2211715
H	2.7642086	1.3600590	3.5656717
H	1.6954775	1.5837921	2.1687029
H	4.9217880	-3.8749785	2.9527629
H	4.2920187	-2.2826645	3.3901475
H	5.9605098	-2.4495763	2.8331352
H	2.6787044	-3.0657181	0.0661641
H	2.3372316	-2.5664188	1.7227308
H	2.9769991	-4.1766652	1.4029790
H	5.3093443	-4.5032038	0.5778565
H	6.4375957	-3.1629061	0.4259651
H	5.1161127	-3.3499935	-0.7364000
H	-6.5107203	-2.0982377	2.6780429
H	-4.9302920	-1.9215784	3.4399737
H	-5.5519997	-3.5310028	3.0575318
H	-6.6327826	-3.1265115	0.2671476
H	-5.5432177	-4.3987887	0.7729524
H	-5.1359263	-3.4194573	-0.6255463
H	-3.4885745	-4.1007197	1.7476424
H	-2.8087011	-2.5594097	2.2306906
H	-2.8464778	-3.0084190	0.5236236
H	-9.0408801	-0.7224568	0.1365998
H	-8.0664538	-0.0598101	1.4514518
H	-7.8223105	-1.7206688	0.9161278
H	-8.5171412	1.0317939	-1.4243861
H	-6.8866195	1.6387236	-1.6740296
H	-7.6985236	1.8718798	-0.1137197
H	-6.6365229	-2.0960330	-1.5257419
H	-6.4198607	-0.6533545	-2.5069055
H	-8.0403137	-1.2014380	-2.0863517
H	-4.4569777	2.2556306	3.6539262
H	-5.1091160	3.3620625	2.4405608
H	-3.7191437	3.8448851	3.4174322
H	-2.4766888	4.3790867	1.3154966
H	-3.7814577	3.8256137	0.2721269
H	-2.1597757	3.1493929	0.0888186
H	-2.1229469	1.2894213	3.3774970
H	-1.4451381	2.8714988	3.0059767
H	-1.2154577	1.5290523	1.8794522
Fe	0.0411976	0.1044693	-4.1062700
0	-2.8778145	-0.0419721	-4.5819945
0	2.9555429	0.2733274	-4.5967695
0	-0.0836338	2.4884104	-5.7944744
C	-1.7742929	0.0133231	-4.3097670
C	1.8543408	0.1990930	-4.3202838
C	-0.0333145	1.5476049	-5.1469399
Fe	0.1232093	-2.5920512	-3.5884208
0	0.1390340	-1.6261112	-6.4529343
0	0.1437666	-4.7576790	-1.6219951
0	-2.3221688	-3.7575983	-4.7353506
0	2.6404623	-3.6509957	-4.6782632
C	0.1353977	-3.9004147	-2.3837939
C	-1.4187333	-3.2386115	-4.2576042
C	1.7072872	-3.1668082	-4.2211848
C	0.1137920	-1.4599220	-5.3014900

Table S15. Cartesian coordinates of the optimized geometry of $5^{*}-2 \mathrm{a}$ at the B3LYP/def2-TZVP level.

Atom	m x	y	z
Fe	3.5872224	-0.8536293	-0.3062523
Fe	-3.7307673	-0.0045376	-0.7946267
P	1.3519824	-0.7661452	0.6211066
P	-0.1715214	-1.4767232	-0.8953609
P	0.0607705	0.6665615	-0.5654858
P	-1.6977499	-0.4144157	0.3396018
0	2.6684838	0.0514162	-2.9168996
0	3.1290935	-3.6858185	-0.8534592
0	-2.5605713	0.5329175	-3.4069915
0	-3.8600524	-2.9061102	-1.0628758
C	5.4089758	0.3214734	-0.6660967
C	4.6519265	0.9174643	0.4363385
C	4.5865240	-0.0911961	1.4558064
C	5.2739683	-1.2588990	1.0678073
C	5.7081588	-1.0110458	-0.2673488
C	-5.4345891	0.0826076	0.5723514
C	-5.8578570	0.4473783	-0.7884839
C	-5.0951758	1.5986811	-1.1322125
C	-4.2309707	1.9932644	-0.0748543
C	-4.4484492	1.0410901	0.9500426
C	6.1019135	0.8632911	-1.9407918
C	7.5418401	1.2449181	-1.5093264
C	5.4647136	2.0807646	-2.6287088
C	6.2251943	-0.2349648	-3.0224678
C	3.2813497	-2.5783504	-0.6307203
C	2.9784718	-0.3084328	-1.8786991
C	-2.9738426	0.2960924	-2.3679403
C	-3.7989111	-1.7680211	-0.9766069
C	4.2185446	2.3685100	0.7386759
C	5.4728749	3.2695820	0.8059825
C	3.1980163	2.9463999	-0.2581898
C	3.5589533	2.4511546	2.1306730
C	5.8007511	-2.3862684	1.9514451
C	7.2772626	-2.0178935	2.2471649
C	5.0535267	-2.4800071	3.2848938
C	5.7703998	-3.7589949	1.2601777
C	-5.9834644	-0.8759217	1.6527453
C	-7.0247405	-0.0724076	2.4711721
C	-6.6447359	-2.1701788	1.1545792
C	-4.8610792	-1.3120152	2.6184983
C	-6.9919879	-0.0400218	-1.7192240
C	-8.3530584	0.1842673	-1.0226924
C	-7.0262933	0.8053322	-3.0115600
C	-6.8575425	-1.5038324	-2.1803313
C	-3.4947474	3.3228686	0.0207471
C	-4.5706458	4.4111537	0.2530054
C	-2.7338541	3.6511124	-1.2744104
C	-2.5180873	3.3456126	1.2043356
H	4.0902777	0.0330983	2.4010774
H	6.2683208	-1.7114998	-0.8609023
H	-5.1684611	2.1145233	-2.0730487
H	-3.9374851	1.0404606	1.8965032
H	8.0734653	0.3816184	-1.1060278
H	7.5486353	2.0266886	-0.7508374
H	8.0985227	1.6102333	-2.3751471
H	6.0596457	2.3284463	-3.5100916
H	5.4505399	2.9650475	-1.9988444
H	4.4513185	1.879328	-2.9711624

Ato	m	y	z
H	6.2030951	2.8687896	1.5123080
H	5.1867746	4.2655037	1.1511181
H	3.0037545	3.9932176	-0.0125542
H	2.2514449	2.4117933	-0.1912327
H	3.5294593	2.9066676	-1.2894968
H	3.2309997	3.4768546	2.3061881
H	4.2514447	2.1876715	2.9316834
H	2.6817281	1.8107447	2.2077443
H	7.7151321	-2.7617856	2.9161284
H	7.3516545	-1.0420402	2.7308886
H	7.8752349	-1.9917181	1.3342667
H	4.0049143	-2.7277163	3.1385837
H	5.1096465	-1.5514606	3.8537020
H	5.4966963	-3.2669130	3.8983704
H	6.3143002	-4.4838719	1.8691435
H	6.2440453	-3.7401989	0.2768926
H	4.7528106	-4.1274955	1.1424054
H	-7.8614774	0.2589929	1.8561968
H	-6.5698905	0.8109438	2.9227705
H	-7.4231399	-0.6950323	3.2755196
H	-7.5270777	-1.9936983	0.5467070
H	-6.9666450	-2.7497334	2.0220587
H	-5.9510263	-2.7928290	0.5910467
H	-5.2762230	-1.9905730	3.3652667
H	-4.4171690	-0.4793381	3.1618343
H	-4.0607099	-1.8405504	2.1013552
H	-9.1631120	-0.0486842	-1.7173021
H	-8.4650969	1.2262735	-0.7152372
H	-8.4862052	-0.4403319	-0.1433054
H	-7.8253749	0.4327596	-3.6541696
H	-6.0952672	0.7315871	-3.5761770
H	-7.2325511	1.8581979	-2.8114572
H	-6.7822095	-2.2112903	-1.3625822
H	-5.9784083	-1.6279414	-2.8136030
H	-7.7325889	-1.7771338	-2.7747137
H	-5.1433971	4.2107299	1.1607751
H	-5.2705547	4.4656229	-0.5832037
H	-4.0968756	5.3895522	0.3608701
H	-2.2961766	4.6492683	-1.2038859
H	-3.3897012	3.6440744	-2.1470534
H	-1.9244368	2.9427531	-1.4517941
H	-3.0322480	3.2020194	2.1565322
H	-2.0158144	4.3140363	1.2494258
H	-1.7509574	2.5776936	1.1147640
Fe	0.8518570	-1.1923145	2.8993202
0	1.7112160	-3.9593917	2.3281711
0	-1.7380150	-2.1763043	3.8695109
0	2.7018349	-0.7880934	5.1332750
C	1.3901005	-2.8851269	2.5584194
C	-0.7491051	-1.7921139	3.4326107
C	2.0271764	-0.9430176	4.2139549
Fe	-0.2095290	-2.8111219	-2.7678677
\bigcirc	2.1939047	-4.0050042	-3.9627458
0	-0.5615186	-5.1518358	-0.9863687
0	0.1366462	-0.4758097	-4.5505795
\bigcirc	-2.7325600	-3.4247650	-4.1389495
C	-0.4249664	-4.2467909	-1.6658412
C	0.0040763	-1.3609662	-3.8458333

H	6.8181297	-1.0879513	-2.6950189
H	6.7321662	0.1854244	-3.8924564
H	5.2537189	-0.5994403	-3.3533382
H	5.9642030	3.3868616	-0.1564087

$\begin{array}{lllll}H & 5.9642030 & 3.3868616 & -0.1564087\end{array}$

Table S16. Cartesian coordinates of the optimized geometry of $\mathbf{5}^{*}$-2a' at the B3LYP/def2-TZVP level.

Atom X			
y	Z		
Fe	3.8032744	-0.5061440	0.0926605
Fe	-3.7861269	-0.4907386	0.1222755
P	1.5751415	-0.1098206	0.8190616
P	0.0494431	-1.3562628	-0.2673540
P	0.0616193	0.8110089	-0.5481917
P	-1.4688481	-0.1200853	0.8349510
O	3.6916567	1.0513239	-2.3591931
O	3.0443312	-2.9243705	-1.3460212
O	-3.7135036	-2.8172531	1.8902643
O	-4.4794480	1.5253996	2.1179628
C	5.8702397	0.0698547	0.4481866
C	5.0010738	0.8165743	1.3700153
C	4.3445519	-0.1671465	2.1674186
C	4.7352055	-1.4759579	1.8095099
C	5.6604708	-1.3072478	0.7375168
C	-5.0685173	0.6073937	-1.2735112
C	-5.7683398	-0.5728747	-0.7538019
C	-4.9896515	-1.6922101	-1.1709593
C	-3.8658415	-1.2998450	-1.9344094
C	-3.9029443	0.1187499	-1.9444232
C	7.0265784	0.4484154	-0.5059430
C	8.3248618	0.3943609	0.3378230
C	6.9471326	1.8222396	-1.1897858
C	7.1625335	-0.5903069	-1.6425416
C	3.3062218	-1.9727183	-0.7676776
C	3.6855448	0.4697293	-1.3742384
C	-3.6947215	-1.8895460	1.2270425
C	-4.1656378	0.7291251	1.3647151
C	4.8608974	2.3179037	1.7052495
C	6.2166544	2.8616261	2.2093351
C	4.3331743	3.1733320	0.5380974
C	3.8602705	2.5157681	2.8637432
C	4.4563693	-2.7546469	2.5889618
C	5.3783209	-2.7250372	3.8317642
C	2.9957173	-2.8319206	3.0575540
C	4.7900427	-4.0101081	1.7674992
C	-5.4559976	2.0942463	-1.4490788
C	-6.0314704	2.2120304	-2.8839024
C	-6.4851002	2.6835602	-0.4715728
C	-4.2134901	3.0000368	-1.3535605
C	-7.1566645	-0.8011628	-0.1114155
C	-8.2449858	-0.4013296	-1.1343915
C	-7.3772220	-2.3028998	0.1811456
C	-7.3785936	-0.0812941	1.2318909
C	-3.0710606	-2.2453079	-2.8263454
C	-4.0370883	-2.6923825	-3.9523019
C	-2.6027597	-3.4941929	-2.0613006
C	-1.8745934	-1.5468964	-3.4797535
H	3.6260494	0.0594886	2.9352265
H	6.1566833	-2.1166093	0.2326202
H	-5.2420507	-2.7159125	-0.9594690

C	-1.7763492	-3.1614329	-3.5637910
C	1.2877066	-3.5234566	-3.4511980
C	0.3064761	0.5218163	3.0320060
O	-0.0409739	1.6093951	3.1202991

Alom	x	y	Z
H	6.5839321	2.2677979	3.0491265

H	6.0903551	3.8890807	2.5572776

H	4.3095066	4.2234469	0.8380041

| H | 3.3138554 | 2.8808379 | 0.2837741 |
| :--- | :--- | :--- | :--- | :--- |

H $\quad 4.9349286$
$\begin{array}{llll}\text { H } & 3.7688134 & 3.5832397 & 3.0704886\end{array}$
C $\quad-1.37401241 .8843295 \quad 2.9531079$
$\begin{array}{llll}\mathrm{H} & 4.1889535 & 2.0309332 & 3.7839828\end{array}$
$\begin{array}{llll}\text { H } & 2.8655277 & 2.1444389 & 2.6162698\end{array}$
$\begin{array}{llll}\mathrm{H} & 5.2424198 & -3.6345896 & 4.4213592\end{array}$
H $\quad 5.1512368$-1.8707474 4.4718285
H 6.4299937 -2.6627363 3.5434674
$\begin{array}{llll}\mathrm{H} & 2.3068523 & -2.8865186 & 2.2140686\end{array}$
H 2.7172118 -1.9716486 3.6669289
$\begin{array}{llll}\mathrm{H} & 2.8479556 & -3.7259705 & 3.6667347 \\ \mathrm{H} & 46079342 & -4.9004205 & 2.3723403\end{array}$
H $\quad 5.8392088$-4.0329632 1.4658858
$\begin{array}{llll}\mathrm{H} & 4.1734102 & -4.0896319 & 0.8719212\end{array}$
H $\quad-6.9139251 \quad 1.5848285-3.0170358$
H $\quad-5.29313541 .9209537$-3.6320012
$\begin{array}{llll}\text { H } & -6.3202651 & 3.2466771 & -3.0806188\end{array}$
H $\quad-7.4518181 \quad 2.1910613-0.5131207$
H -6.6495942 3.7277766 -0.7441682
$\begin{array}{llll}\mathrm{H} & -6.1295224 & 2.6753010 & 0.5570289\end{array}$
H -4.50835414 .0335215 -1.5430158
$\begin{array}{llll}\mathrm{H} & -3.4535585 & 2.7457728 & -2.0857007\end{array}$
H $-3.7634523 \quad 2.9624003-0.3618600$
H $-9.2316741-0.6469512-0.7356789$
H $-8.1158125-0.9502968$-2.0696499
H $\quad-8.23932780 .6599343-1.3687162$
$\begin{array}{llll}\text { H } & -8.3530692 & -2.4270871 & 0.6526365\end{array}$
H -6.6319893 -2.7041913 0.8695800
H -7.3778935 -2.9077900 -0.7268964
$\begin{array}{llll}\text { H } & -7.2308556 & 0.9904772 & 1.1826010\end{array}$
$\begin{array}{llll}\mathrm{H} & -6.7104856 & -0.4790046 & 1.9968883\end{array}$
H $\quad-8.4026363-0.25796001 .5684004$
H -4.4138765 -1.8344441 -4.5128403
H
H $\quad-3.5123349$-3.3477998 -4.6508355
H $\quad-2.0981026-4.1801771$-2.7448144
H $\quad-3.4404171$-4.0352487 -1.6163620
H $-1.9017367-3.2384405-1.2675899$
H $\quad-2.1929499-0.7073878$-4.1007888
H -1.3418563 -2.2486354 -4.1240502
H $-1.1689099-1.1802476-2.7375451$
Fe 0.0932075 2.2720244 -2.3417921
O $-1.06905944 .3459271-0.5773239$
O $2.4323793 \quad 3.9983197-2.7624839$
O $1.1931892 \quad 0.0932233-4.0100730$
$\begin{array}{lrrr}\text { O } & -1.9996395 & 2.6393123 & -4.3611677\end{array}$
C $\quad 1.5549917 \quad 3.2921268 \quad-2.5556011$

H	-3.1800980	0.7434212	-2.4380246
H	8.4722072	-0.5973117	0.7691726
H	8.3077742	1.1152448	1.1547778
H	9.1871254	0.6204572	-0.2936193
H	7.8258223	1.9419811	-1.8268647
H	6.9511437	2.6492867	-0.4867103
H	6.0706402	1.9135872	-1.8290414
H	7.4004390	-1.5890250	-1.2780727
H	7.9792070	-0.2903234	-2.3011927
H	6.2552496	-0.6514306	-2.2442728
H	6.9862368	2.8693654	1.4416561

Table S17. Cartesian coordinates of the optimized geometry of $\mathbf{5}^{*}-\mathbf{2 b}$ at the B3LYP/def2-TZVP level.

Atom X			
Fe	3.2765389	0.8334443	1.9634843
Fe	-2.7830147	-0.6224794	-2.1752201
P	1.1402378	0.2093486	1.1733144
P	0.9669138	-0.8199096	-0.8287904
P	0.2820168	1.2207231	-0.6648165
P	-1.2159006	-0.4409596	-0.4209153
O	3.8367636	2.4945861	-0.3634422
O	4.6238443	-1.4478950	0.7624763
O	-3.5383593	2.1188511	-1.5402204
O	-0.7730431	0.0715507	-4.1673783
C	4.3037292	2.1180829	3.3860712
C	2.8539760	2.3045543	3.5382941
C	2.3338035	1.0269451	3.9027913
C	3.3516344	0.0546437	3.9959783
C	4.5544245	0.7445550	3.6591080
C	-3.6090465	-2.2260715	-3.4311888
C	-4.6304624	-1.2398063	-3.1271807
C	-4.7666698	-1.2531114	-1.6929610
C	-3.9073032	-2.2018651	-1.1014657
C	-3.1545877	-2.7474689	-2.1725172
C	5.5139482	3.0658334	3.2235225
C	5.9989854	3.4191167	4.6514658
C	5.2703157	4.3711787	2.4509274
C	6.6763192	2.3485809	2.4994329
C	4.0503176	-0.5632873	1.2052143
C	3.5778839	1.8578411	0.5494835
C	-3.1997248	1.0571237	-1.7974516
C	-1.5425873	-0.2043100	-3.3682701
C	1.9479816	3.5539754	3.5767925
C	2.4170428	4.4924525	4.7105629
C	1.8745921	4.3153330	2.2417329
C	0.4963370	3.1532472	3.9202447
C	3.2202407	-1.3402788	4.5960192
C	3.0010119	-1.1545650	6.1164104
C	2.0213920	-2.1050587	4.0116562
C	4.4963978	-2.1717248	4.3895409
C	-3.1513624	-2.9229550	-4.7316046
C	-4.1186339	-4.1142846	-4.9500853
C	-3.1247541	-2.0598257	-6.0027746
C	-1.7343323	-3.5140940	-4.5803063
C	-5.6016355	-0.4070289	-3.9977034
C	-6.4834638	-1.3452648	-4.8515315
C	-6.5790229	0.3886948	-3.1031601
C	-4.9014119	0.6326960	-4.8959983

	0.7812555	0.9352760	-3.3600606
C	-1.2179957	2.4656634	-3.5356361
C	-0.6269368	3.5402273	-1.2527295
Fe	-1.1632999	0.1015396	3.1884043
O	-1.4847737	3.0111684	2.7912104
O	-0.6536390	-2.8042922	3.1971838
O	1.3431405	0.5254756	4.6535014
O	-3.4908881	-0.1389143	4.9546220
C	-0.8656260	-1.6794802	3.2026226
C	0.3841150	0.3718055	4.0362026
C	-2.6131683	-0.0486515	4.2183895

Atom			x
H	2.4562842	3.9616700	5.6643789
H	1.7116040	5.3194558	4.8165889
H	1.2428634	5.1986730	2.3588528
H	1.4265563	3.6872004	1.4722377
H	2.8395947	4.6484014	1.8775271
H	-0.1246982	4.0501866	3.9239077
H	0.4187112	2.6959737	4.9083176
H	0.0731120	2.4673810	3.1846562
H	2.9360074	-2.1276992	6.6084627
H	2.0768515	-0.6106697	6.3202731
H	3.8258805	-0.6005545	6.5695450
H	2.1610801	-2.3131006	2.9502664
H	1.0882278	-1.5510585	4.1220332
H	1.9036559	-3.0596865	4.5292431
H	4.3719756	-3.1526861	4.8521849
H	5.3655263	-1.7019454	4.8544841
H	4.7159756	-2.3326823	3.3338845
H	-5.1482158	-3.7894837	-5.0900627
H	-4.0940188	-4.7969611	-4.0988794
H	-3.8163214	-4.6729924	-5.8387379
H	-4.1044195	-1.6913402	-6.2905810
H	-2.7579685	-2.6703265	-6.8302551
H	-2.4486349	-1.2109465	-5.9038915
H	-1.4495785	-3.9942848	-5.5176861
H	-1.6752627	-4.2732232	-3.8025666
H	-0.9931943	-2.7446682	-4.3717079
H	-7.2566707	-0.7607769	-5.3547954
H	-6.9813933	-2.0890337	-4.2256514
H	-5.9235243	-1.8721615	-5.6190923
H	-7.2424640	0.9731083	-3.7425221
H	-6.0651005	1.0907996	-2.4460862
H	-7.2057282	-0.2659610	-2.4946870
H	-4.1382492	0.2041866	-5.5360220
H	-4.4312599	1.4109545	-4.2950569
H	-5.6417076	1.1158647	-5.5385148
H	-5.0570401	-4.5152771	-0.3416485
H	-6.1311944	-3.1831212	0.1003530
H	-5.3118180	-4.1134543	1.3609734
H	-4.3971750	-1.9966829	2.3343772
H	-5.1783918	-1.0307118	1.0893943
H	-3.4370317	-0.8733738	1.3694196
H	-2.5502452	-4.3390027	0.0928855
H	-2.8735516	-3.8817007	1.7616576
H	-1.8555382	-2.8528351	0.7559454

C	-3.9982473	-2.7144407	0.3308845
C	-5.2000981	-3.6907895	0.3597654
C	-4.2667137	-1.5793230	1.3335286
C	-2.7399558	-3.4896340	0.7511633
H	1.2910796	0.8247861	4.0700051
H	5.5276493	0.2881169	3.6345738
H	-5.4653336	-0.6458410	-1.1457654
H	-2.3997109	-3.5050416	-2.0644473
H	6.2744291	2.5202687	5.2059978
H	5.2339711	3.9435599	5.2234998
H	6.8785902	4.0644375	4.5948317
H	6.2120706	4.9205540	2.3924332
H	4.5526197	5.0257493	2.9363224
H	4.9394609	4.1880435	1.4295528
H	7.0508804	1.4863073	3.0499959
H	7.5110263	3.0432620	2.3923686
H	6.3871395	2.0191755	1.5009753
H	3.3981027	4.9220057	4.5251137

Table S18. Cartesian coordinates of the optimized geometry of $5^{*}-2 \mathrm{c}$ at the B3LYP/def2-TZVP level.

Atom x			
Fe	3.8020315	0.5788778	-0.6682115
Fe	-3.6001538	0.2273329	-0.4403859
P	1.4410956	0.2555523	-0.6348790
P	0.0609126	-0.4682359	-2.2826554
P	0.0514339	1.9526479	-1.1866787
P	-1.2245282	0.1908122	-0.5346019
O	3.5051392	3.0227265	-2.2196049
O	4.2024301	-1.2031554	-2.9397709
O	-3.5777459	3.1321976	-0.6513734
O	-3.7427254	-0.4757283	-3.2633339
C	5.4882549	1.3197582	0.4807495
C	4.2636093	1.4672763	1.2849445
C	3.7567014	0.1473830	1.4648661
C	4.5687952	-0.8167294	0.8337509
C	5.6211541	-0.0716816	0.2217994
C	-4.9151841	-1.4492937	0.0902882
C	-5.5747588	-0.1753654	0.3544559
C	-4.7582561	0.4820233	1.3309404
C	-3.6478698	-0.3128534	1.7056312
C	-3.7342121	-1.4740332	0.9039145
C	6.6580461	2.2534090	0.0961489
C	7.7246671	2.1176767	1.2108727
C	6.3229421	3.7420354	-0.0818354
C	7.3061620	1.7985195	-1.2311187
C	3.9988028	-0.4946040	-2.0661717
C	3.5985307	2.0541373	-1.6131516
C	-3.5521422	1.9881295	-0.6181395
C	-3.6627860	-0.1842317	-2.1584786
C	3.6463888	2.6512819	2.0637749
C	4.6671917	3.1618193	3.1053249
C	3.1536475	3.8128680	1.1798387
C	2.4133157	2.1783928	2.8646897
C	4.4969550	-2.3262434	1.0269455
C	5.0708459	-2.6203992	2.4339069
C	3.0503253	-2.8392896	0.9647041
C	5.3442941	-3.0810533	-0.0095198
C	-5.3515882	-2.7527644	-0.6148309
C	-6.1058172	-3.5883779	0.4508308

Fe	0.3211090	3.1944942	-1.8306982
O	-1.5442730	4.3393816	0.1609969
O	2.2101828	1.9923353	-3.7685861
O	2.2303277	5.3588812	-1.2779093
C	-0.8305067	3.8920573	-0.6092051
C	1.4852951	2.4475023	-3.0169782
C	1.5114861	4.4841355	-1.4556226
Fe	2.1914669	-2.2334692	-2.1529278
O	-1.6022902	3.6788737	-3.9968288
O	0.1510306	-4.3128214	-1.6660124
O	1.7759604	-2.2999617	-5.0620956
O	4.1871559	-4.1064426	-1.0853216
C	0.9318018	-3.5009363	-1.8640388
C	1.8962752	-2.2326841	-3.9251570
C	3.4098376	-3.3491358	-1.4519707
C	-0.8728081	3.4442050	-3.1440833
C	3.4738884	-0.9545037	-2.3465381
O	4.2922577	-0.1696754	-2.4607693

C	-6.2496786	-2.6083225	-1.8535152
C	-4.1269725	-3.5757569	-1.0650177
C	-6.9269038	0.4362522	-0.0771985
C	-8.0887866	-0.4587785	0.4090309
C	-7.1375687	1.8083218	0.6011323
C	-7.0401519	0.6916360	-1.5934623
C	-2.7370611	-0.0551552	2.8997869
C	-3.6006012	-0.2481919	4.1694431
C	-2.1836265	1.3803608	2.8959762
C	-1.5716494	-1.0550199	2.9499437
H	2.8483558	-0.0839363	1.9905693
H	6.4228076	-0.5103667	-0.3451980
H	-4.9792441	1.4463734	1.7536714
H	-3.0273422	-2.2839963	0.9252554
H	8.0608910	1.0838678	1.3076298
H	7.3425152	2.4368032	2.1803405
H	8.5936049	2.7350803	0.9714540
H	7.2347948	4.2719986	-0.3649084
H	5.9557101	4.2077000	0.8278086
H	5.5947295	3.9047055	-0.8750949
H	7.7363594	0.7993593	-1.1721894
H	8.1206921	2.4803753	-1.4817214
H	6.5905071	1.8149205	-2.0537476
H	5.5416794	3.6215045	2.6518558

Table S19. Cartesian coordinates of the optimized geometry of $5^{\star}-2 \mathrm{~d}$ at the B3LYP/def2-TZVP level.

Atom x			y
F	z		
Fe	2.9917302	0.5392181	0.5684589
Fe	-3.6733045	-0.1032558	-1.4001738
P	1.7633704	-0.5087986	-1.3009905
P	-0.0556714	0.7787723	-1.4766863
P	-0.1822817	-1.0798639	-0.3031644
P	-1.4408735	-0.8667946	-2.1320755
O	0.6214575	1.2428013	2.1108606
O	2.7647934	3.0646528	-0.8693683
O	-4.5618038	-0.2584738	-4.1766815
O	-3.9416773	-2.9197688	-0.6763883
C	3.9693289	-0.1111980	2.4516034
C	4.0829308	-1.1814771	1.4708274
C	4.7983747	-0.6194736	0.3576993
C	5.1788558	0.7156088	0.6176036
C	4.5986672	1.0351980	1.8751857
C	-4.2752773	0.5644748	0.6061577
C	-5.4078835	0.6322239	-0.3256540
C	-5.0121383	1.5530481	-1.3368411
C	-3.7190368	2.0872339	-1.0972740
C	-3.2706278	1.4349747	0.0781903
C	3.5662989	-0.0504829	3.9437692
C	4.8268897	-0.4395887	4.7594968
C	2.3921121	-0.9479568	4.3642101
C	3.2059797	1.3900984	4.3793168
C	2.8546918	2.0541650	-0.3444018
C	1.5091807	0.9067663	1.4718749
C	-4.1549785	-0.2506868	-3.1111839
C	-3.8271988	-1.8245730	-0.9768669
C	3.8172536	-2.7045562	1.5477198
C	4.5888837	-3.3219412	2.7358083
C	2.3269106	-3.0790994	1.6429929

H	-1.6023651	1.5566819	3.8038885
H	-2.9828623	2.1236538	2.8695555
H	-1.5312427	1.5508221	2.0393884
H	-1.9305276	-2.0832763	3.0310003
H	-0.9557002	-0.8536429	3.8294277
H	-0.9391948	-0.9795424	2.0655008
Fe	-0.0378864	1.5922455	-3.6935828
O	-2.8615983	2.4229659	-3.4727327
O	2.7670446	0.9661649	-4.3844583
O	0.5610629	4.4487615	-4.1715879
C	-1.7938822	2.0309174	-3.4713210
C	1.7105717	1.1858045	-4.0279084
C	0.3218597	3.3499461	-3.9981699
Fe	0.1669125	-2.6831421	-3.0432223
O	-0.8260198	0.5876299	-6.3675171
O	-0.6978443	-3.4556673	-0.3311613
O	-2.1863322	-3.8740901	-4.3390952
O	2.5090750	-4.4236328	-2.7353282
C	-0.3741426	-3.1541463	-1.3872892
C	-1.2944462	-3.3661299	-3.8261334
C	1.6150501	-3.7104288	-2.8416669
C	-0.4896333	0.9342526	-5.3385201
C	0.8250716	-2.0900809	-4.6165085
O	1.2488656	-1.7114145	-5.6093967

Atom x			y
H	5.6400442	-3.0266036	2.7213608
H	4.5489209	-4.4102872	2.6581000
H	2.2311255	-4.1528051	1.8203929
H	1.8145359	-2.8563403	0.7091253
H	1.8040030	-2.5608515	2.4406161
H	4.1417201	-4.4665746	0.3428677
H	5.4529939	-3.2982171	0.2048892
H	3.9165734	-3.0191742	-0.6241453
H	8.4065265	1.5332341	-0.1334802
H	7.7004989	-0.0814094	-0.0041842
H	7.7198966	0.9902957	1.4024615
H	5.1975798	1.9014637	-2.0066311
H	6.1494507	0.4120253	-1.9842643
H	6.9527264	1.9700816	-2.1038233
H	6.9757480	3.5684241	-0.2218263
H	6.3700105	3.1496987	1.3737214
H	5.2404871	3.4978169	0.0565156
H	-5.6205514	1.4563868	2.8181113
H	-3.9660228	2.0653337	2.8429644
H	-4.4818112	0.8603610	4.0274356
H	-5.9899946	-1.1116649	2.3257321
H	-4.6941971	-1.5126389	3.4303053
H	-4.6231911	-2.0853725	1.7719778
H	-2.5875448	-0.6167027	3.4148801
H	-2.0022773	0.5885337	2.2857921
H	-2.2540548	-1.0705733	1.7459303
H	-8.6614233	0.4391415	0.8672442
H	-7.5257545	1.7888115	0.9259193
H	-7.2240439	0.3315799	1.8709636
H	-8.6468725	0.1753385	-1.5085425
H	-7.1801278	0.2349703	-2.4727932

C	4.3693892	-3.4012692	0.2874500
C	6.2296699	1.5438155	-0.1136603
C	7.5968129	0.9558950	0.3179725
C	6.1153233	1.4445515	-1.6400329
C	6.1900890	3.0233610	0.3044031
C	-4.1249941	0.0299074	2.0473766
C	-4.5815692	1.1756158	2.9862730
C	-4.9145175	-1.2411284	2.3959978
C	-2.6527157	-0.2785601	2.3788787
C	-6.8621590	0.1001285	-0.2964527
C	-7.6021555	0.6993852	0.9208262
C	-7.6355271	0.5826929	-1.5444702
C	-6.9892280	-1.4353803	-0.2978951
C	-3.1464263	3.3200628	-1.8025109
C	-4.2661985	4.3851797	-1.8685406
C	-2.6846883	3.0138891	-3.2383400
C	-1.9846359	3.9211752	-0.9956476
H	5.0530345	-1.1601649	-0.5352846
H	4.6904694	1.9885406	2.3620313
H	-5.6307009	1.8353369	-2.1696903
H	-2.3146085	1.6043643	0.5406739
H	5.6553875	0.2355067	4.5378143
H	5.1586036	-1.4546807	4.5579297
H	4.6067001	-0.3617243	5.8265959
H	2.1840885	-0.7834213	5.4233253
H	2.6023864	-2.0055646	4.2412399
H	1.4823644	-0.7127932	3.8122350
H	4.0482925	2.0750664	4.2875542
H	2.9281302	1.3733480	5.4343390
H	2.3641653	1.8015838	3.8264785
H	4.1710022	-3.0533883	3.7020320

Table S20. Cartesian coordinates of the optimized geometry of 5*-3a at the B3LYP/def2-TZVP level.

Atom x		y	z
Fe	2.0793309	0.2736267	3.2246339
Fe	-2.9454652	0.1536534	-1.9354874
P	1.4461267	0.1572577	0.9430140
P	-0.4538325	1.2767035	0.5674032
P	-0.4940663	-0.9168433	0.6935399
P	-0.6107634	0.0703065	-1.3149180
O	0.9933693	-2.4011677	3.6251248
O	-0.4225520	1.4761262	4.1079041
O	-3.9536703	0.2289604	0.8024826
O	-2.5817427	3.0468184	-2.0644633
C	3.7617352	0.0315774	4.5668359
C	4.2273540	-0.1561367	3.1834256
C	3.9606979	1.0735218	2.5139471
C	3.3662949	2.0213627	3.3768867
C	3.2453352	1.3559104	4.6316242
C	-3.7003106	0.0281000	-3.9980492
C	-4.7941811	-0.1283596	-3.0365301
C	-4.4736863	-1.2981969	-2.2809072
C	-3.2540526	-1.8786047	-2.6994987
C	-2.7736602	-1.0252985	-3.7291100
C	3.9160851	-0.7646782	5.8818485
C	5.2303112	-0.2873230	6.5472521
C	3.9536284	-2.2955727	5.7563452
C	2.7577142	-0.4439439	6.8533606

H	-7.7244443	1.6696755	-1.5823052
H	-6.4462339	-1.9192880	0.5057295
H	-6.6337202	-1.8502474	-1.2416397
H	-8.0420898	-1.7084733	-0.1967149
H	-4.6560976	4.6136057	-0.8742705
H	-5.0993805	4.0646523	-2.4960068
H	-3.8702184	5.3087021	-2.2957280
H	-2.3302403	3.9285525	-3.7189537
H	-3.5008251	2.6174359	-3.8449247
H	-1.8708612	2.2901025	-3.2528490
H	-2.3077948	4.2066667	0.0082815
H	-1.6182232	4.8202100	-1.4949616
H	-1.1482652	3.2301583	-0.9049085
Fe	2.8564757	-1.2246654	-3.2629451
O	3.2740941	1.6424213	-3.8172558
O	1.7921115	-1.3736838	-5.9924028
O	5.7070866	-1.8917059	-3.2805977
C	3.1301341	0.5302159	-3.5887502
C	2.1274908	-1.3294492	-4.8980681
C	4.5907818	-1.6165278	-3.2158727
C	2.4092277	-2.9345904	-2.8523648
O	2.1513441	-4.0135545	-2.5804988
Fe	-1.4801261	-2.5642966	-3.7854652
O	-1.4962581	-0.3686051	-5.7668546
O	-1.0189285	-4.4485546	-1.5581884
O	-4.1626424	-3.5797091	-4.3821861
O	0.3261371	-4.1690249	-5.4460052
C	-1.1992189	-3.7232349	-2.4238049
C	-3.1408212	-3.1318813	-4.1093757
C	-0.3207054	-3.4964036	-4.7801341
C	-1.4935038	-1.2253628	-5.0105212

C	0.5499548	1.0123147	3.7225367
C	1.4285125	-1.3579872	3.4421181
C	-3.4830765	0.2051753	-0.2375408
C	-2.7033387	1.9118084	-2.0236582
C	5.0475407	-1.2641209	2.4832598
C	6.3957579	-1.4472841	3.2150145
C	4.3127372	-2.6130285	2.3619364
C	5.3972284	-0.8394171	1.0403629
C	3.1837951	3.5085313	3.1029851
C	4.5627812	4.1730982	3.3314064
C	2.7409295	3.7722196	1.6555337
C	2.1689343	4.1502535	4.0623172
C	-3.5301863	0.8706164	-5.2810306
C	-4.1709523	0.0463093	-6.4267683
C	-4.1509102	2.2765023	-5.2718867
C	-2.0415300	1.0624168	-5.6294723
C	-6.1644504	0.5661532	-2.8512270
C	-7.0170918	0.3965582	-4.1285549
C	-6.9644328	-0.1152127	-1.7177994
C	-6.0672733	2.0544613	-2.4616637
C	-2.7834287	-3.2810296	-2.3393500
C	-3.5820384	-4.2529872	-3.2421788
C	-3.0777735	-3.6197714	-0.8687071
C	-1.2885590	-3.4792206	-2.6127902
H	4.1709819	1.2520047	1.4747209
H	2.8287977	1.8028224	5.5168129
H	-5.0899197	-1.6966705	-1.4951113
H	-1.8509509	-1.1714078	-4.2617259
H	5.2054397	0.7877098	6.7347227
H	6.1009047	-0.4980307	5.9269567
H	5.3681897	-0.7944307	7.5051808
H	4.0489070	-2.7247423	6.7559843
H	4.7969585	-2.6556958	5.1751182
H	3.0373653	-2.6909638	5.3198473

Table S21. Cartesian coordinates of the optimized geometry of $5^{*}-3 \mathrm{~b}$ at the B3LYP/def2-TZVP level.

Atom x			y
Fe	3.5295049	-0.5281371	z
Fe	-3.8170305	-0.5763168	0.1088743
P	1.4023294	-0.5729586	1.1139345
P	-0.0860733	-1.6643189	-0.1361774
P	-0.1414064	0.5350643	-0.0754119
P	-1.6211174	-0.6342449	1.1221477
O	2.4757279	0.7641573	-2.3398283
O	3.0908438	-3.1735008	-1.0914308
O	-4.4393120	-2.9633291	1.6742885
O	-4.3820718	1.3686919	2.2096111
C	5.4227152	0.5317340	0.0216523
C	4.5625359	1.1083579	1.0645625
C	4.3015611	0.0469752	1.9833248
C	4.9344569	-1.1510815	1.5898032
C	5.6061289	-0.8351090	0.3719703
C	-4.3780268	0.8459445	-1.4533333
C	-5.5164695	-0.0294668	-1.1337909
C	-5.0772557	-1.3491053	-1.4292737
C	-3.7570022	-1.3644434	-1.9522789
C	-3.3364638	-0.0134400	-1.9231443
C	6.2653077	1.1110390	-1.1368370

Atom x			y
H	6.9913663	-0.8250303	-1.9179706
H	7.0447336	0.5020419	-3.0605812
H	5.4995186	-0.2556798	-2.6751094
H	5.9753379	3.5683014	0.7422490
H	6.0144278	2.9858473	2.4053579
H	5.0682684	4.4155714	1.9865481
H	2.9957093	4.2276495	0.6171167
H	2.2665210	2.6628274	0.2663089
H	3.6562770	3.2166805	-0.6596361
H	3.0092932	3.6049191	2.9171345
H	3.9111952	2.2401826	3.5648394
H	2.4148798	1.9711846	2.6545909
H	6.2385678	-2.9662169	4.1900785
H	5.6732228	-1.2927722	4.2158897
H	7.0311741	-1.7496740	3.1808081
H	3.0315251	-3.1553670	2.2672254
H	3.2799764	-2.0684359	3.6327413
H	3.9013777	-3.7136850	3.6977722
H	5.7785187	-4.4544802	2.2433686
H	6.6591962	-3.3333204	1.2136181
H	5.0262651	-3.8524529	0.7704477

C	7.6636163	1.4326772	-0.5536555
C	5.7195926	2.3716383	-1.8248403
C	6.4547792	0.0611675	-2.2551329
C	3.2323719	-2.1348895	-0.6306335
C	2.8670127	0.2744976	-1.3807665
C	-4.1572455	-2.0256770	1.0886257
C	-4.1461427	0.5952781	1.4042714
C	4.1244434	2.5529193	1.3955516
C	3.2159852	3.4270622	1.6376346
C	3.3188157	3.1962808	0.3307261
C	5.0817723	-2.4155169	2.7131111
C	6.0671049	-2.0815469	2.4273621
C	3.7423340	-2.8572748	3.0387660
C	5.6691482	-3.5746041	1.6064095
C	-4.2207010	2.3724136	-1.6377595
C	-4.5263913	2.6692448	-3.1272923
C	-5.1131488	3.2702582	-0.7671701
C	-2.7703495	2.8152641	-1.3576571
C	-7.0032966	0.2252753	-0.7857477
C	-7.6672020	0.9789908	-1.9605971
C	-7.7616386	-1.1144677	-0.6524586
C	-7.2490919	0.9727764	0.5382859
C	-3.1333891	-2.5481265	-2.6890697
C	-4.1273062	-2.9639255	-3.8007716
C	-2.9080195	-3.7548363	-1.7620327
C	-1.8159198	-2.1486908	-3.3692493
H	3.6852376	0.1416147	2.8595082
H	6.1926052	-1.5353613	-0.1953161
H	-5.6813497	-2.2301283	-1.3047630
H	-2.3678243	0.3273942	-2.2437769
H	8.1291384	0.5380383	-0.1365188
H	7.6123098	2.1813884	0.2364869
H	8.3157778	1.8177060	-1.3411906
H	6.4041434	2.6532433	-2.6277521
H	5.6477492	3.2240152	-1.1561298
H	4.7435127	2.1998923	-2.2769077
		2	

Table S22. Cartesian coordinates of the optimized geometry of $5^{*}-3 \mathrm{c}$ at the B3LYP/def2-TZVP level.

Atom x			y
z			
Fe	3.3124591	0.7247390	1.5080602
Fe	-2.9588402	-0.5477518	-2.1711958
P	1.0587145	0.1788362	1.0362914
P	0.7412533	-0.5179228	-1.0870453
P	-0.0742496	1.3967368	-0.4661375
P	-1.4067710	-0.3895112	-0.4031635
O	3.4767853	2.7499578	-0.5757370
O	4.2263550	-1.3205412	-0.3538017
O	-4.0615607	2.0389088	-1.4016930
O	-1.0151970	0.5283026	-4.0557560
C	4.5977713	1.7936628	2.9018357
C	3.2041270	1.9036460	3.3534719
C	2.7668436	0.5664926	3.5938101
C	3.7855023	-0.3719831	3.3257014
C	4.8992289	0.4032961	2.8854755
C	-3.1590727	-2.4586319	-3.2126827
C	-4.3134506	-1.6008934	-3.5041189
C	-4.9299550	-1.3473194	-2.2435996
C	-4.2509010	-2.0044248	-1.1831190

H	-5.5430582	2.3861978	-3.4001570
H	-3.8408459	2.1299091	-3.7830814
H	-4.4101157	3.7376416	-3.3230784
H	-6.1734924	3.1350384	-0.9584103
H	-4.8800517	4.3125258	-0.9938534
H	-4.9276102	3.1230447	0.2960041
H	-2.6881314	3.8907227	-1.5259838
H	-2.0422973	2.3337690	-2.0077804
H	-2.4845579	2.6173088	-0.3247454
H	-8.7426409	1.0546665	-1.7856908
H	-7.5175628	0.4432340	-2.9004071
H	-7.2840310	1.9884457	-2.0859636
H	-8.7990487	-0.9048440	-0.3876152
H	-7.3471766	-1.7455591	0.1355332
H	-7.7723544	-1.6797354	-1.5857399
H	-6.7306927	1.9217602	0.6071833
H	-6.9453896	0.3606741	1.3881043
H	-8.3180406	1.1715280	0.6442366
H	-4.3481812	-2.1269840	-4.4666769
H	-5.0700268	-3.3273637	-3.3881248
H	-3.6954415	-3.7677560	-4.4008861
H	-2.5336181	-4.6037276	-2.3386562
H	-3.8359938	-4.0683780	-1.2794874
H	-2.1795197	-3.5306273	-0.9837336
H	-1.9763156	-1.3553315	-4.1030085
H	-1.3996459	-3.0086428	-3.8977338
H	-1.0693057	-1.8095531	-2.6527521
Fe	-1.4389794	-0.7851245	3.4695660
O	-1.3308786	2.1645487	3.4613113
O	-1.3127797	-3.7088311	3.0746042
O	1.0460326	-0.8656359	5.0314980
O	-3.8968737	-0.9103587	5.0666305
C	-1.3759694	-2.5779373	3.2376883
C	0.0970917	-0.8340464	4.3823631
C	-2.9610782	-0.8590672	4.4013980
C	-1.3903513	1.0212588	3.4754706

C	-3.1594939	-2.6621399	-1.7985849
C	5.7517637	2.7971593	2.6771247
C	6.4968979	2.9277894	4.0286165
C	5.3621957	4.2026764	2.1940406
C	6.7576300	2.2504682	1.6386667
C	3.8367023	-0.5231454	0.3691155
C	3.3669154	1.9681126	0.2517436
C	-3.5920250	1.0389444	-1.6969753
C	-1.7683194	0.1129052	-3.3017073
C	2.3158218	3.0993751	3.7607210
C	2.9840349	3.8624326	4.9260120
C	1.9868344	4.0590565	2.6031342
C	0.9561022	2.5989319	4.2965219
C	3.7767633	-1.8503557	3.6951711
C	3.9181027	-1.9283278	5.2341223
C	2.4640134	-2.5359488	3.2828183
C	4.9581233	-2.6031190	3.0624937
C	-2.2061463	-3.3115954	-4.0795944
C	-2.9001106	-4.6803682	-4.2902372
C	-1.8245338	-2.7350041	-5.4518044
C	-0.8763891	-3.5740670	-3.3390900
C	-4.9835992	-1.1220586	-4.8122355
C	-5.4408832	-2.3438692	-5.6394599
C	-6.2628564	-0.3165906	-4.4944537
C	-4.1032603	-0.1920269	-5.6691762
C	-4.7673847	-2.1681841	0.2419045
C	-6.0502933	-3.0287979	0.1641172
C	-5.1174859	-0.8140891	0.8825407
C	-3.7465247	-2.8971779	1.1296130
H	1.7768703	0.3045338	3.9212082
H	5.8499405	-0.0092032	2.5989989
H	-5.8106334	-0.7439337	-2.1103676
H	-2.4304306	-3.2511220	-1.2717805
H	6.8734400	1.9598699	4.3642239
H	5.8517017	3.3251305	4.8119428
H	7.3487302	3.6030339	3.9193482
H	6.2736685	4.7892811	2.0618066
H	4.7401012	4.7401142	2.9032199
H	4.8514909	4.1790275	1.2323923

H	5.9180994	-2.1961483	3.3864860
H	4.9245186	-2.5771787	1.9731013
H	-3.8423127	-4.5825596	-4.8284578
H	-3.1090768	-5.1635361	-3.3339939
H	-2.2489081	-5.3410965	-4.8673504
H	-2.6755166	-2.6119670	-6.1150922
H	-1.1370171	-3.4276444	-5.9416249
H	-1.3111857	-1.7783462	-5.3630568
H	-0.2214471	-4.1628292	-3.9836856
H	-1.0104600	-4.1430705	-2.4196507
H	-0.3579941	-2.6469569	-3.0945535
H	-6.0234642	-2.0075067	-6.5000546
H	-6.0756483	-3.0023681	-5.0425531
H	-4.6098661	-2.9328613	-6.0189050
H	-6.7092509	0.0194775	-5.4315864
H	-6.0512466	0.5730482	-3.8992494
H	-7.0101020	-0.9177664	-3.9733620
H	-3.1452147	-0.6260011	-5.9324901
H	-3.9135010	0.7453778	-5.1453364
H	-4.6256171	0.0477262	-6.5985656
H	-5.8477999	-3.9960508	-0.3007303
H	-6.8308594	-2.5325385	-0.4159196
H	-6.4416454	-3.2108066	1.1677626
H	-5.5685701	-0.9727549	1.8646982
H	-5.8336018	-0.2519441	0.2800985
H	-4.2274692	-0.1987358	1.0170807
H	-3.5281164	-3.8981375	0.7503791
H	-4.1525849	-3.0107280	2.1370112
H	-2.8100897	-2.3433833	1.2051966
Fe	-0.1934749	3.4885831	-1.4091412
O	-2.0956134	4.2470886	0.7269742
O	1.7385494	2.5988066	-3.4684990
O	1.5788888	5.7026834	-0.6435984
C	-1.3657225	3.9522468	-0.1001667
C	0.9958763	2.9367512	-2.6729130
C	0.9126428	4.8075420	-0.9095300
O	-2.1766904	4.0733698	-3.4944097
C	-1.4217326	3.7994322	-2.6753620

4.6.5 Crystallographic details

$\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{3}, \mathrm{n}^{1: 1: 1: 1:}-\mathrm{P}_{4}\right)\left\{\mathrm{Cr}(\mathrm{CO})_{4}\right\}\right]$ (2a)
Compound 2a crystalizes in the form of green-blackish needles from a saturated solution in n-pentane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ upon storage at $-28^{\circ} \mathrm{C}$. A suitable crystal with dimensions $0.41 \times 0.10 \times 0.06 \mathrm{~mm}^{3}$ was selected and mounted on a Xcalibur, AtlasS2, Gemini ultra diffractometer. The crystal was kept at a steady $T=123(1) \mathrm{K}$ during data collection. The structure was solved with the ShelXT (Sheldrick, 2015) solution program using Olex2 (Dolomanov et al., 2009) as the graphical interface. The model was refined with ShelXL 2018/3 (Sheldrick, 2015) using full matrix least squares minimization on F^{2}. The asymmetric unit contains two molecules of 2a, which display a cis- and trans-arrangement of the tert-butyl groups of the $\mathrm{Cp}^{\prime \prime \prime}$ ligand, respectively, as well as one disordered $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ molecule.

$\left[\left\{\mathrm{Cp}^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{3}, \eta^{1: 1: 1: 1: 1}-\mathrm{P}_{4}\right)\left\{\mathrm{Mo}(\mathrm{CO})_{4}\right\}\right](\mathbf{2 b})$

Compound 2b crystalizes in the form of orange-red needles from a saturated solution in n-pentane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ upon storage at $-28^{\circ} \mathrm{C}$. A suitable crystal with dimensions $0.23 \times 0.04 \times 0.03 \mathrm{~mm}^{3}$ was selected and mounted on a GV50, TitanS2 diffractometer. The crystal was kept at a steady $T=89.9(4) \mathrm{K}$ during data collection. The structure was solved with the SheIXT 2018/2 (Sheldrick, 2018) solution program using Olex2 (Dolomanov et al., 2009) as the graphical interface. The model was refined with ShelXL 2018/3 (Sheldrick, 2015) using full matrix least squares minimization on F^{2}. The asymmetric unit contains two molecules of $\mathbf{2 b}$, which display a cis- and trans-arrangement of the tert-butyl groups of the $\mathrm{Cp}^{\prime \prime \prime}$ ligand, respectively, as well as one disordered $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ molecule.
$\left[\left\{\mathrm{Cp}^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{3}, \eta^{\left.\left.\text {1:1:1:1:1}-\mathrm{P}_{4}\right)\left\{\mathrm{W}(\mathrm{CO})_{4}\right\}\right](2 \mathrm{c})}\right.\right.$
Compound 2c crystalizes in the form of dark brown needles from a saturated solution in n-pentane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ upon storage at $-28^{\circ} \mathrm{C}$. A suitable crystal with dimensions $0.26 \times 0.07 \times 0.03 \mathrm{~mm}^{3}$ was selected and mounted on a Xcalibur, AtlasS2, Gemini ultra diffractometer. The crystal was kept at a steady $T=123 \mathrm{~K}$ during data collection. The structure was solved with the SheIXT 2014/5 (Sheldrick, 2014) solution program using Olex2 (Dolomanov et al., 2009) as the graphical interface. The model was refined with SheIXL 2018/3 (Sheldrick, 2015) using full matrix least squares minimization on F^{2}. The asymmetric unit contains two molecules of 2c, which display a cis- and trans-arrangement of the tert-butyl groups of the $\mathrm{Cp}{ }^{\prime \prime \prime}$ ligand, respectively, as well as one disordered $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ molecule.
$\left[\left\{\mathrm{Cp}^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{3}, \mathrm{\eta}^{\left.\left.1: 1: 1: 1:-\mathrm{P}_{4}\right)\left\{\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right\}\right]^{+}\left[\mathrm{PF}_{6}\right]^{-}(\mathbf{2 d})}\right.\right.$

Compound 2d crystallizes as orange plates from THF/hexane mixtures. The crystals were heavily intergrown. A suitable crystal with dimensions $0.22 \times 0.07 \times 0.01 \mathrm{~mm}^{3}$ was selected and mounted on a Xcalibur, Ruby, Gemini ultra diffractometer. The crystal was kept at a steady $T=123(1) \mathrm{K}$ during data collection. The structure was solved with the olex2.solve (Bourhis et al., 2015) solution program using Olex2 (Dolomanov et al., 2009) as the graphical interface. The model was refined with ShelXL 2018/3 (Sheldrick, 2015) using full matrix least
squares minimisation on F^{2}. Even though, the largest single crystal that could be found was used, only a diffraction limit of $1.0 \AA$ was obtained. Therefore, only very rough values can be obtained for the parameters of the molecular structure. The asymmetric unit contains one molecule of 2d.

$$
\begin{equation*}
\left[\left\{\left(\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right)_{2}\left(\mu_{3}, \eta^{1: 1: 1: 1: 1}-\mathrm{P}_{4}\right)\right\}_{2} \mathrm{Ag}^{2}\right]^{+}\left[\mathrm{PF}_{6}\right]^{-} \tag{3}
\end{equation*}
$$

Compound 3 crystallizes as orange plates from THF/hexane mixtures. A suitable crystal with dimensions $0.51 \times 0.19 \times 0.05 \mathrm{~mm}^{3}$ was selected and mounted on a Xcalibur, Ruby, Gemini ultra diffractometer. The crystal was kept at a steady $T=123(1) \mathrm{K}$ during data collection. The structure was solved with the olex2.solve (Bourhis et al., 2015) solution program using Olex2 (Dolomanov et al., 2009) as the graphical interface. The model was refined with ShelXL 2018/3 (Sheldrick, 2015) using full matrix least squares minimisation on F^{2}. The asymmetric unit contains two molecules of 3 together with seven molecules of THF. The crystals were twinned by inversion.
$\left[\left\{\mathrm{Cp}^{\prime \prime \prime}(\mathrm{CO})_{2} \mathrm{Fe}\right\}_{2}\left(\mu_{4}, \eta^{1: 1:: 2: 2}-\mathrm{P}_{4}\right)\left\{\mathrm{Co}(\mathrm{CO})_{3}\right\}_{2}\right]$
Compound 4 crystalizes in the form of dark brown needles from a saturated solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ upon storage at $-28^{\circ} \mathrm{C}$. A suitable crystal with dimensions $0.27 \times 0.09 \times 0.07 \mathrm{~mm}^{3}$ was selected and mounted on an Oxford Diffraction Gemini Ultra diffractometer. The crystal was kept at a steady $T=123 \mathrm{~K}$ during data collection. The structure was solved with the SIR-97 (Altomare, 1999) solution. The model was refined with SheIXL 2018/3 (Sheldrick, 2015) using full matrix least squares minimisation on F^{2}. The asymmetric unit contains one molecule of 4 as well as one solvent molecule.
$\left[\left\{\mathrm{Cp}^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{4,} \mathrm{\eta}^{\text {1:1:1:1:3 }}-\mathrm{P}_{4} \mathrm{CO}\right)\left\{\mathrm{Fe}(\mathrm{CO})_{4}\right\}\left\{\mathrm{Fe}(\mathrm{CO})_{3}\right\}\right](5)$
Compound 5 crystalizes a saturated solution in toluene upon storage at $-12^{\circ} \mathrm{C}$. A suitable crystal with dimensions $0.12 \times 0.08 \times 0.02 \mathrm{~mm}^{3}$ was selected and mounted on a STOE-IPDS diffractometer. The crystal was kept at a steady $T=123.15 \mathrm{~K}$ during data collection. The structure was solved with the olex2.solve (Bourhis et al., 2015) solution program using Olex2 (Dolomanov et al., 2009) as the graphical interface. The model was refined with ShelXL 2018/3 (Sheldrick, 2015) using full matrix least squares minimisation on F^{2}. The asymmetric unit contains one molecule of 5 as well as one solvent molecule.

Table S23. Overview of selected crystallographic parameters of the single crystal X-ray diffraction experiments performed for 2a-2d.

	2a	2b	2c	2d
Formula	$\mathrm{C}_{84.8} \mathrm{H}_{117.6} \mathrm{Cl}_{1.6} \mathrm{Cr}_{2} \mathrm{Fe}_{4} \mathrm{O}_{16} \mathrm{P}_{8}$	$\mathrm{C}_{85} \mathrm{Cl}_{2} \mathrm{Fe}_{4} \mathrm{H}_{118} \mathrm{Mo}_{2} \mathrm{O}_{16} \mathrm{P}_{8}$	$\mathrm{C}_{85} \mathrm{Cl}_{2} \mathrm{Fe}_{4} \mathrm{H}_{118} \mathrm{O}_{16} \mathrm{P}_{8} \mathrm{~W}_{2}$	$\mathrm{C}_{56} \mathrm{H}_{73} \mathrm{AuF}_{6} \mathrm{Fe}_{2} \mathrm{O}_{4} \mathrm{P}_{6}$
$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}^{-3}$	1.397	1.457	1.575	1.587
μ / mm^{-1}	8.647	8.953	11.140	10.472
Formula Weight	2024.86	2129.73	2305.55	1418.63
Colour	dark green	orange	dark brown	orange
Shape	block	needle	needle	plate
Size/mm ${ }^{3}$	$0.41 \times 0.10 \times 0.06$	$0.23 \times 0.04 \times 0.03$	$0.26 \times 0.07 \times 0.03$	$0.22 \times 0.07 \times 0.01$
T/K	123(1)	89.9(4)	123	123(1)
Crystal System	monoclinic	monoclinic	monoclinic	monoclinic
Space Group	C2/c	12/a	C2/c	$P 21 / n$
alÅ	47.5807(11)	42.0710(8)	47.552(2)	9.9443(7)
blî	12.02710(14)	12.0572(3)	12.0517(3)	31.748(2)
clî	41.8909(10)	40.7112(11)	42.166(2)	19.0838(12)
$\boldsymbol{\alpha} \mathbf{l}^{\circ}$	90	90	90	90
$\beta 1^{\circ}$	126.538(3)	109.898(2)	126.439(7)	99.739(7)
$\boldsymbol{Y} 1^{\circ}$	90	90	90	90
V/A ${ }^{3}$	19260.9(10)	19418.2(8)	19441(2)	5938.1(7)
Z	8	8	8	4
Z'	1	1	1	1
Wavelength/Å	1.54184	1.54184	1.54184	1.54178
Radiation type	$\mathrm{CuK}{ }_{\alpha}$	$\mathrm{CuK}{ }_{\alpha}$	$\mathrm{CuK}{ }_{\alpha}$	$\mathrm{CuK}{ }_{\alpha}$
$Q_{\text {min }}{ }^{\circ}$	3.718	3.720	3.721	3.643
$Q_{\text {max }}{ }^{\circ}$	66.410	74.008	66.380	51.531
Measured Refl's.	47023	52607	54192	11651
Ind't Refl's	16658	19176	16841	6205
Refl's with I > 2(I)	14371	15514	13828	4460
Rint	0.0409	0.0538	0.0693	0.0546
Parameters	1090	1063	1063	694
Restraints	13	0	0	0
Largest Peak	1.042	1.186	2.138	1.434
Deepest Hole	-0.894	-1.285	-1.550	-0.843
GooF	1.041	1.031	1.020	0.978
$w R_{2}$ (all data)	0.0986	0.1231	0.1310	0.1025
wR_{2}	0.0934	0.1140	0.1220	0.0891
R_{1} (all data)	0.0482	0.0630	0.0636	0.0824
R_{1}	0.0390	0.0478	0.0503	0.0480

Table S24. Overview of selected crystallographic parameters of the single crystal X-ray diffraction experiments performed for 3, 4 and 5.

	3	4	5
Formula	$\mathrm{C}_{90.8} \mathrm{H}_{145.6} \mathrm{AgF}_{6} \mathrm{Fe}_{4} \mathrm{O}_{11.7} \mathrm{P}_{9}$	$\mathrm{C}_{45} \mathrm{H}_{60} \mathrm{Cl}_{2} \mathrm{Co}_{2} \mathrm{Fe}_{2} \mathrm{O}_{10} \mathrm{P}_{4}$	$\mathrm{C}_{49.5} \mathrm{H}_{62} \mathrm{Fe}_{4} \mathrm{O}_{12} \mathrm{P}_{4}$
$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}{ }^{-3}$	1.370	1.498	1.435
μ / mm^{-1}	7.676	11.713	1.199
Formula Weight	2148.46	1185.27	1196.27
Colour	orange	brown	brown
Shape	plate	needle	needle
Size/mm ${ }^{3}$	$0.51 \times 0.19 \times 0.05$	$0.27 \times 0.09 \times 0.07$	$0.12 \times 0.08 \times 0.02$
T/K	123(1)	123	123.15
Crystal System	monoclinic	monoclinic	triclinic
Flack Parameter	0.176(3)	-0.012(3)	-
Hooft Parameter	0.179(2)	0.000(3)	-
Space Group	Cc	Cc	$P-1$
a/A	17.91660(10)	10.0351(2)	11.656(2)
b/Å	37.5514(2)	20.2508(5)	15.514(3)
c/Å	17.34270(10)	26.2400(5)	17.863(4)
$\boldsymbol{\alpha} \mathbf{l}^{\circ}$	90	90	66.07(3)
$\beta 1^{\circ}$	116.7650(10)	99.668(2)	78.41(3)
$\boldsymbol{Y} 1^{\circ}$	90	90	70.06(3)
V/A ${ }^{3}$	10417.95(13)	5256.7(2)	2768.2(13)
Z	4	4	2
Z'	1	1	1
Wavelength/A	1.54178	1.54184	0.71073
Radiation type	$\mathrm{CuK}{ }_{\alpha}$	$\mathrm{CuK}{ }_{\alpha}$	MoK
$Q_{\text {min }}{ }^{\circ}$	3.172	3.417	1.863
$Q_{\text {max }}{ }^{\circ}$	66.577	66.738	24.914
Measured Refl's.	40334	11828	18291
Ind't Refl's	13176	5836	8946
Refl's with I > 2(I)	13032	5277	6306
Rint	0.0422	0.0328	0.0484
Parameters	1298	604	741
Restraints	527	2	227
Largest Peak	0.787	0.545	0.503
Deepest Hole	-0.452	-0.351	-0.461
GooF	1.033	0.984	0.891
$w R_{2}$ (all data)	0.0810	0.0744	0.0971
$w R_{2}$	0.0807	0.0731	0.0918
R_{1} (all data)	0.0319	0.0345	0.0595
R_{1}	0.0316	0.0300	0.0402

cis

trans

Figure S17. Molecular structure of the two isomers of $\mathbf{2 a}$ in the solid state; for clarity H atoms and solvent molecules are omitted; thermal ellipsoids drawn at 50% probability (molecular structures of $\mathbf{2 b}$ and $\mathbf{2 c}$ are structurally identical)

Table S25. Selected bond lengths $\left[\AA\right.$] and angles $\left[{ }^{\circ}\right]$ of both isomers of $\mathbf{2 a}, \mathbf{2 b}$ and $\mathbf{2 c}$ in the solid state.

		2a $\mathrm{M}=\mathrm{Cr}$		2b M = Mo		2c $\mathrm{M}=\mathrm{W}$	
		cis	trans	cis	trans	cis	trans
$\begin{gathered} \text { d } \\ {[\AA \AA]} \end{gathered}$	Fe1-P1	2.3042(8)	2.3167(8)	2.2958(11)	2.3064(12)	2.2929(17)	2.3009(18)
	Fe2-P2	2.3063(8)	2.3155(8)	2.2952(10)	2.3010(12)	2.2924(16)	2.3049(16)
	M-P1	$2.4709(8)$	2.4682(9)	2.6085(10)	2.5724(11)	2.6030(15)	2.5817(16)
	M-P2	2.4904(8)	2.4869(8)	2.5877(9)	2.5934(10)	2.5916(14)	2.5989(14)
	P1-P3	2.2243(10)	2.2116(10)	2.2238(12)	2.2320(14)	2.208(2)	2.215(2)
	P1-P4	2.2309(10)	$2.2273(10)$	$2.2070(13)$	2.2121(14)	2.227(2)	2.230(2)
	P2-P3	2.2213(10)	2.2260(11)	2.2250(13)	2.2273(14)	2.232(2)	2.227(2)
	P2-P4	2.2072(9)	2.2203(10)	2.2303(14)	2.2321(15)	2.226(2)	2.216(2)
	P1-P2	2.731(10)	$2.745(10)$	2.777(10)	2.799(10)	$2.777(10)$	2.786(10)
	P3-P4	2.2055(10)	2.2071(11)	2.2036(14)	2.2073(15)	2.204(2)	2.206(2)
$\begin{gathered} \alpha \\ {\left[{ }^{\circ}\right]} \end{gathered}$	P1-M-P2	66.80(2)	67.27(3)	64.61(3)	65.62(3)	64.62(5)	65.07(5)
	P1-P3-P2	75.81(3)	76.41(4)	77.25(4)	77.76(5)	77.40(7)	77.69(8)
	P1-P4-P2	75.96(3)	76.21(3)	77.48(5)	78.07(5)	77.15(7)	77.60(7)
	P3-P1-P4	59.34(3)	59.63(3)	59.65(4)	59.56(5)	59.60(7)	59.50(7)
	P3-P2-P4	59.74(3)	59.52(4)	59.29(4)	59.34(5)	59.26(7)	59.54(7)

Figure S18. Molecular structure of the cationic fragments of $\mathbf{2 d}$ and $\mathbf{3}$ as well as $\mathbf{4}$ and $\mathbf{5}$ in the solid state; for reasons of clarity H atoms and solvent molecules are omitted; thermal ellipsoids drawn at 50% probability level

Table S26. Selected bond lengths $[\AA]$] and angles [${ }^{\circ}$] of $\mathbf{2 d}$ in the solid state; due to the low diffraction limit of the crystallographic experiment, the parameters are not reliable.

\mathbf{d} / \mathbf{A}			$\boldsymbol{\alpha} /{ }^{\circ}$		
Fe1-P1	$2.281(3)$	P1-P3	$2.204(3)$	P1-Au-P2	$68.16(7)$
Fe2-P2	$2.270(3)$	P1-P4	$2.210(3)$	P1-Au-P5	$146.84(8)$
Au-P1	$2.480(2)$	P2-P3	$2.220(3)$	P2-Au-P5	$144.65(8)$
Au-P2	$2.557(2)$	P2-P4	$2.223(3)$	P1-P3-P2	$79.31(11)$
Au-P5	$2.292(2)$	P1-P2	2.823	P1-P4-P2	$79.10(11)$
		P3-P4	$2.183(3)$	P3-P1-P4	$59.27(11)$
				P3-P2-P4	$58.85(10)$

Table S27. Selected bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ of $\mathbf{3}$ in the solid state.

d/ A				$\alpha{ }^{\circ}$			
Ag-P1	2.6340(9)	P1-P3	2.2194(14)	P1-Ag-P2	67.07(3)	P1-P3-P2	81.12(4)
Ag-P2	2.5884(9)	P1-P4	2.2189(13)	P5-Ag-P6	66.07(3)	P1-P4-P2	81.06(4)
Ag-P5	2.6109(9)	P2-P3	2.2181(13)	P1-Ag-P5	130.22(3)	P3-P1-P4	58.91(4)
Ag-P6	2.6161(9)	P2-P4	2.2213(13)	P1-Ag-P6	129.34(3)	P3-P2-P4	58.89(4)
P1-Fe1	2.3011(11)	P3-P4	2.1824(13)	P2-Ag-P5	137.19(3)	P5-P7-P6	79.95(5)
P2-Fe2	2.2987(11)	P5-P7	2.2242(14)	P2-Ag-P6	139.69(3)	P5-P8-P6	79.83(4)
P5-Fe3	2.3035(11)	P5-P8	2.2198(13)			P7-P5-P8	58.58(5)
P6-Fe4	2.3032(11)	P6-P7	2.2112(13)			P7-P6-P8	58.75(5)
P1-P2	2.885	P6-P8	2.2214(13)				
P5-P6	2.850	P7-P8	2.1742(15)				

Table S28. Selected bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ of 4 in the solid state.

\mathbf{d} / \mathbf{A}					$\mathbf{\alpha} /^{\circ}$			
Co1-P1	$2.2666(15)$	Fe2-P3	$2.2877(15)$	P1-Co1-P2	$56.07(5)$	P2-P1-P4	$91.22(7)$	
Co1-P2	$2.2759(15)$	P1-P4	$2.2924(17)$	P3-Co2-P4	$56.24(5)$	P1-P2-P3	$87.10(6)$	
Co2-P3	$2.2441(15)$	P1-P2	$2.1351(18)$	Co1-P1-Fe1	$125.65(6)$	P2-P3-P4	$91.53(7)$	
Co2-P4	$2.2872(15)$	P2-P3	$2.2804(17)$	Co2-P3-Fe2	$121.80(6)$	P1-P4-P3	$86.77(6)$	
Fe1-P1	$2.2958(15)$	P3-P4	$2.1360(18)$	Co1-P1-P2	$62.18(5)$	P3-P1-P2-P4	$13.3(9)$	
				Co1-P1-P4	$119.23(6)$			

Table S29. Selected bond lengths $\left[\AA \AA\right.$] and angles $\left[{ }^{\circ}\right]$ of 5 in the solid state.

\mathbf{d} / \AA					$\boldsymbol{\alpha} /^{\circ}$			
P1-P2	$2.2114(15)$	Fe1-P2	$2.3205(15)$	C1-P1-P2	$94.17(13)$	P1-P2-Fe1	$115.36(5)$	
P2-P3	$2.1623(14)$	Fe1-P3	$2.4079(13)$	C1-P1-Fe3	$112.48(12)$	P2-P3-P4	$85.45(6)$	
P3-P4	$2.1876(15)$	Fe3-P1	$2.3202(12)$	P3-P2-P1	$103.44(6)$	P2-P3-Fe1	$60.75(5)$	
P4-C1	$1.909(4)$	Fe4-P4	$2.2824(14)$	P3-P2-Fe2	$116.61(5)$	P4-P3-Fe1	$60.24(5)$	
P1-C1	$1.855(4)$	Fe2-P2	$2.2865(14)$	P1-P2-Fe2	$113.86(5)$	C1-P4-P3	$108.05(12)$	
		Fe1-P4	$2.3139(13)$	P3-P2-Fe1	$64.87(4)$	C1-P4-Fe4	$118.02(11)$	
				P3-P4-Fe1	$64.61(4)$	P1-C1-P4	$115.18(19)$	

4.6.6 References

[1] C. Schwarzmaier, A. Y. Timoshkin, G. Balázs, M. Scheer, Angew. Chem. Int. Ed. 2014, 53, 90779081.
[2] R. B. King, A. Frozalia, Inorg. Chem. 1966, 5, 1837.
[3] V. Riera, J, Ruiz, J. Chem. Soc. Dalton Trans. 1990, 1, 1607-1611.
[4] (a) E. Speyer, H. Wolf, Ber. Dtsch. Chem. Ges. 1927, 60, 1424.
(b) D. F. Keely, R. E. Johnson, J. Inorg. Nucl. Chem. 1959, 11, 33.
[5] (a) P. Szabo, L. Marko, G. Bor, Chem. Techn. 1961, 13, 549.
(b) I. Wender, H. W. Sternberg, S. Metlin, M. Orchin, Inorg. Synth. 1957, 5, 190.
[6] TopSpin 3.0, Bruker BioSpin GmbH
[7] (a) F. Furche, R. Ahlrichs, C. Hättig, W. Klopper, M. Sierka, F. Weigend, WIREs Comput. Mol. Sci. 2014, 4, 91-100.
(b) R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kölmel, Chem. Phys. Lett. 1989, 162, 165-169.
(c) O. Treutler, R. Ahlrichs, J. Chem. Phys. 1995, 102, 346-354.
(d) TURBOMOLE V6.4, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, http://www.turbomole.com.
[8] (a) K. Eichkorn, O. Treutler, H. Oehm, M. Häser, R. Ahlrichs, Chem. Phys. Lett. 1995, 242, 652-660.
(b) K. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs, Theor. Chem. Acc. 1997, 97, 119.
[9] (a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652.
(b) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785-789.
(c) A. D. Becke, Phys. Rev. A 1988, 38, 3098-3100.
(d) S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200-1211.
(e) J. C. Slater, Phys. Rev. 1951, 81, 385-390.
[10] (a) A. Schäfer, C. Huber, R. Ahlrichs, J. Chem. Phys. 1994, 100, 5829.
(b) K. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs, Theor. Chem. Acc. 1997, 97, 119.
(c) F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.
(d) F. Weigend, Phys. Chem. Chem. Phys. 2006, 8, 1057.
[11] (a) K. Eichkorn, O. Treutler, H. Ohm, M. Häser, R. Ahlrichs, Chem. Phys. Lett. 1995, 242, 652-660.
(b) M. Sierka, A. Hogekamp, R. Ahlrichs, J. Chem. Phys. 2003, 118, 9136-9148.
[12] F. Weigend, Phys. Chem. Chem. Phys. 2006, 8, 1057-1065.
[13] NBO 6.0. E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, C. R. Landis, F. Weinhold (Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2013); http://nbo6.chem.wisc.edu/
[14] (a) R. F. W. Bader, Atoms in Molecules: A Quantum Theory, Oxford University Press, 1994.
(b) R. F. W. Bader, Chem. Rev. 1991, 91, 893-928.
[15] (a) T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580-592.
(b) http://sobereva.com/multiwfn

4.7 Author contributions

Rebecca Grünbauer	- Synthesis and characterization of compounds $\mathbf{2 a}, \mathbf{2 b}$ and $\mathbf{2 c}$. - Preparation of manuscript (including figures, schemes, tables and supplementary information) except for paragraphs on the topic of DFT calculations and Figures S11, S12, S13, S14 and S15.
Christoph Schwarzmaier	- Synthesis and characterization of compounds 2d and 3. The synthesis and characterization of compounds $\mathbf{2 d}$ and 3 was already performed within the scope of the Ph. D. thesis of Christoph Schwarzmaier (University of Regensburg, 2012) and the results are also included therein.
Miriam Eberl	- Synthesis and characterization of compounds $\mathbf{4}, \mathbf{5}$ and $\mathbf{5}^{*}$. - Preparation of Figures S11, S12, S13, S14 and S15. The synthesis and characterization of compounds 5^{*} and 5 was already performed within the scope of the diploma thesis of Miriam Eberl (University of Regensburg, 2006) and the synthesis and characterization of compound 4 was already performed within the scope of the Ph. D. thesis of Miriam Eberl (University of Regensburg, 2011). The results are also included in the respective theses.
Gábor Balázs	- Execution of DFT calculations. - Preparation of manuscript (including figures, schemes, tables and supplementary information) for paragraphs on the topic of DFT calculations.
Manfred Scheer	- Supervision of project.

5. Reactivity of P_{4} butterfly compounds towards NHCs: Generation of a novel metal bridged P_{2} dumbbell complex

Rebecca Grünbauer, Stephan Reichl, Gábor Balázs and Manfred Scheer

5.1 Abstract

Herein, we report on a novel reactivity of $\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu, \eta^{1: 1}-P_{4}\right)\right] \quad\left(\mathrm{A}, \quad \mathrm{Cp}^{\prime \prime \prime}=\mathrm{C}_{5} \mathrm{H}_{2}{ }^{t} B u_{3}\right)$ and $\left[\left\{C p^{*} \operatorname{Cr}(\mathrm{CO})_{3}\right\}_{2}\left(\mu, \eta^{1: 1}-P_{4}\right)\right]\left(B, C p^{*}=C_{5}\left(\mathrm{CH}_{3}\right)_{5}\right)$ towards the N -heterocyclic carbene IMe (1,3,4,5-tetramethyl-imidazol-2-ylidene). Depending on the reaction temperature, the reaction of \boldsymbol{A} with IMe selectively affords either $\left[P(I M e)_{2}\right]\left[F e(C O)_{2} C p^{\prime \prime \prime}\right](1)$ or $\left[P(I M e)_{2}\right]\left[\left\{C p^{\prime \prime \prime} F e\right\}_{2}\left(\mu, \eta^{3: 3}-P_{3}\right)\right]$ (2). In contrast, the reaction of \boldsymbol{B} with IMe yields $\left[\mathrm{P}(\mathrm{IMe})_{2}\right]\left[\mathrm{Cr}(\mathrm{CO})_{3} \mathrm{Cp}^{*}\right]$ (3) and $\left[\left\{\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{2}\right\}\left(\eta^{2}-\mathrm{P}_{2} / \mathrm{Me} \mathrm{Me}_{2}\right)\right]\left[\mathrm{Cr}(\mathrm{CO})_{3} \mathrm{Cp}{ }^{*}\right]$ (4) simultaneously. Compound 2 is an anionic diiron complex containing an allylic P_{3} ligand, whereas 4 represents a novel cationic metal bridged P_{2} dumbbell compound. In 4 the P_{2} dumbbell is bridged by an unsaturated $\left[\mathrm{Cr}(\mathrm{CO})_{2}{ }_{2}{ }^{*}\right.$] fragment accompanied by the additional end-on coordination of two IMe ligands. Compounds $\mathbf{1}$ and $\mathbf{2}$ as well as the crystalline mixture of 3 and 4 could be characterized by NMR spectroscopy and ESI-MS spectrometry alongside with single crystal X-ray diffraction analysis.

5.2 Introduction

The reactivity of polyphosphorus (P_{n}) ligand complexes ($n \leq 4$) has been intensively studied over the last decades. ${ }^{[1]}$ The ultimate goal of these studies is to develop a more sustainable, economical and safer generation of phosphorus containing compounds on an academic and an industrial scale, respectively. One common feature of all polyphosphorus ligands is the vast opportunity for coordination originating from the accessible lone pairs on every P atom. Due to this coordination potential, P_{n} ligands are mostly stabilized in the coordination sphere of unsaturated organometallic ${ }^{[1 a-b]}$ or main group ${ }^{[10-d]}$ moieties. However, in most cases the resulting P_{n} ligand complexes nevertheless display additional electron lone pairs rendering them available for further coordination processes. Within this field, the tetraphospha-bicyclo[1.1.0]butane structural motif is of major interest as it represents the P_{4} scaffold obtained after the first reductive $\mathrm{P}-\mathrm{P}$ bond cleavage during the activation of the P_{4} tetrahedron. ${ }^{[2]}\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right] \quad\left(\mathbf{A}, \mathrm{Cp}^{\prime \prime \prime}=\mathrm{C}_{5} \mathrm{H}_{2}{ }^{4} \mathrm{Bu}_{3}\right)$ and $\left[\left\{\mathrm{Cp}{ }^{*} \operatorname{Cr}(\mathrm{CO})_{3}\right\}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]\left(\mathrm{B}, \mathrm{Cp}^{*}=\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5}\right)$, two prominent examples for the class of so called P_{4} butterfly compounds (due to the intrinsic geometry of the central P_{4} unit) are accessible in remarkably high yields ($>95 \%$). ${ }^{[2 c]}$ Consequently, \mathbf{A} and \mathbf{B} are excellent starting materials to study the reactivity of the P_{4} butterfly unit towards various Lewis acids. ${ }^{[3-7]}$ Within these studies, our group was able to demonstrate the successful coordination of the intact P_{4} butterfly moiety as well as rearrangement and fragmentation processes (Scheme 1).

I

II

III

\downarrow

IV

> | $M=$ coordinating Lewis acid |
| :--- |
| $R=$ substituent of the original P_{4} butterfly compound |
| $[R]=$ modified substituent of the original P_{4} butterfly compound |

Scheme 1. Structural motifs obtained after coordination, rearrangement and fragmentation of the P_{4} butterfly complex upon the reaction with various Lewis acids.

Early investigations concerning the coordination chemistry of the P_{4} butterfly unit with monovalent coinage metal salts afforded a tetraphosphametalla-tricyclo[1.1.1.0 ${ }^{2,4}$]pentane type I compound (Scheme 1) and a homoleptic spiro complex with two orthogonally coordinated P_{4} butterfly ligands (Scheme 1, type II). ${ }^{[3]}$ Herein, the geometric properties of the P_{4} butterfly scaffold mainly stay unaltered while the wing tip P atoms coordinate towards the Lewis acidic fragment in a chelating fashion. Next to this bidentate coordination, a planar isomerization of the P_{4} butterfly unit yielding a planar 6π-aromatic $\mathrm{R}_{2} \mathrm{P}_{4}$ ligand can be observed, when reacting A with $\left[\mathrm{Fe}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{6}\right]\left[\mathrm{PF}_{6}\right]_{2}$ (Scheme, type III). ${ }^{[4]}$ In contrast, the quantitative formation of bidentate
coordination products according to type \mathbf{I} is observed, if \mathbf{A} and \mathbf{B} are reacted with $\mathrm{FeBr}_{2} \cdot d m e$ (dme $=1,2-$ dimethoxyethane). ${ }^{[4,5]}$ Consequently, the reaction pathway is strongly depended on the nature of the Lewis acid and its intrinsic acidity. Lastly, the reaction of \mathbf{A} with tetracarbonyl fragments of Cr, Mo and W (obtained from $\left[\mathrm{M}(\mathrm{CO})_{4}(\mathrm{nbd})\right] ;$ nbd = norbornadiene) selectively afforded type I compounds. ${ }^{[6]}$ For the reaction of \mathbf{B} with $\left[\mathrm{W}(\mathrm{CO})_{4}(\mathrm{nbd})\right]$ an analog type I complex was obtained, while the reaction with $\left[\mathrm{Cr}(\mathrm{CO})_{4}\right]$ and $\left[\mathrm{Mo}(\mathrm{CO})_{4}\right]$ fragments resulted in rearrangement yielding a bend cyclo- P_{4} moiety which undergoes subsequent $P_{1} / P_{3}-$ fragmentation under special reaction conditions (Scheme 1, type IV). ${ }^{[7]}$

Therefore, the reactivity of the P_{4} butterfly complexes towards Lewis acids is well investigated yielding expected as well as surprising and intriguing new products. Consequently, the question arises whether the opposite reaction pathway, the reaction of P_{4} butterfly compounds with nucleophiles, is feasible as well. An example for a polyphosphorus complex, whose reactivity towards nucleophiles was intensively studied, is $\left[\mathrm{Cp}{ }^{*} \mathrm{Fe}\left(\eta^{5}-\mathrm{P}_{5}\right)\right] \cdot{ }^{[8]}$ A common observation upon the reaction with nucleophiles is that the fivefold symmetry of the cyclo- P_{5} ligand is broken by the nucleophilic addition resulting in a bend $\eta^{4}-\mathrm{P}_{5}$ envelope unit (Scheme 2 , type \mathbf{V}). Depending on the reaction conditions and the nature of the attacking nucleophile a bridging of two pentaphosphaferrocene units could be observed as well (Scheme 2, type VI).

Scheme 2. Products obtained from the reaction of $\left[\mathrm{Cp}{ }^{*} \mathrm{Fe}\left(\eta^{5}-\mathrm{P}_{5}\right)\right]$ with various nucleophiles.

Intrigued by these results, this work focuses on the reaction of the P_{4} butterfly complexes \mathbf{A} and \mathbf{B} with various nucleophiles. Hereby, special emphasis is laid on N-heterocyclic carbenes (NHCs) as they have proven to be a powerful reagent in the stabilization of labile compounds as well as versatile ligands in catalytic applications since their first synthetic appearance reported by Arduengo et al. in 1991. ${ }^{[9]}$ Generally, NHC ligands can be employed for the stabilization of unsubstituted main group element moieties (e.g. formal $\mathrm{C}(0), \mathrm{Si}(0)$ or $\mathrm{Ge}(0)$ species). ${ }^{[96]}$ The first compounds similar to phosphorus-NHC adducts were reported in 1964: twofold coordinated P atoms interpreted as phosphacyanines. ${ }^{[10]}$ However, 2-chlorobenzothiazolium of 2chloroquinolinium salts were utilized as starting materials in the generation of these compounds and not the classical NHCs used nowadays. Within the phosphorus chemistry, one special field of application for NHCs is the stabilization of the gaseous P_{2} allotrope. In contrast to its heavier homolog N_{2} is highly reactive and prone to aggregation. ${ }^{[11]}$ In 2008, Robinson et al. reported on the first NHC stabilized P_{2} dumbbells for which a bisphosphinidene structure was proclaimed. ${ }^{[12]}$ Consequently, the two P atoms are connected via a $P-P$ single bond and each P atoms displays two additional electron lone pairs. This observation is a drastic contrast in comparison to the $\mathrm{P} \equiv \mathrm{P}$ triple bond present in the free P_{2} dumbbell.

5.3 Results \& Discussion

Scheme 3. Reactions of \mathbf{A} and \mathbf{B} with IMe at different reaction conditions.

Initial studies showed that reactions of the P_{4} butterfly compounds \mathbf{A} and \mathbf{B} with nucleophiles like LiNMe_{2}, $\mathrm{LiCH}_{2} \mathrm{SiMe}_{3}, \mathrm{KCHPh}_{2}$ at various reaction conditions result in either uncontrollable decomposition of the starting materials or no conversion at all. Additionally, if sterically demanding NHCs like IDipp (1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) are reacted with \mathbf{A} or \mathbf{B}, no reaction of the starting materials was detected by NMR spectroscopic methods. However, when employing the rather small NHC IMe (1,3,4,5-tetramethylimidazol-2-ylidene) a reproducible reaction outcome was found. When reacting \mathbf{A} with IMe at room temperature, $\left[\mathrm{P}(\mathrm{IMe})_{2}\right]\left[\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{Cp}^{\prime \prime \prime}\right](1$, Scheme 3$)$ is obtained selectively alongside insoluble red precipitate (most likely polyphosphorus aggregates). In contrast, $\left[P(I M e)_{2}\right]\left[\left\{\mathrm{Cp}^{\prime \prime \prime} \mathrm{Fe}\right\}_{2}\left(\mu, \eta^{3: 3}-\mathrm{P}_{3}\right)\right](2$, Scheme 3) is afforded exclusively, if the reaction is performed at $-80^{\circ} \mathrm{C}$. The monophosphorus cation $\left[\mathrm{P}(\mathrm{IMe})_{2}\right]^{+}$has been reported with various anions and is thoroughly investigated. However, the fact that the reaction of \mathbf{A} with IMe affords different anions depending on the reaction temperature is intriguing. This suggest, that 2 represents the kinetically favored product, whereas $\mathbf{1}$ is the thermodynamically favored compound. Through the addition of

IMe , one P atom of \mathbf{A} is abstracted affording the $\left[\mathrm{P}(\mathrm{IMe})_{2}\right]^{+}$cation. At low temperatures the remaining P_{3} scaffold of the former P_{4} butterfly unit rearranges under carbonyl extrusion yielding the $\left[\left\{\mathrm{Cp}^{\prime \prime \prime} \mathrm{Fe}\right\}_{2}\left(\mu, \eta^{3: 3}-P_{3}\right)\right]^{-}$ anion of $\mathbf{2}$, which incorporates a bridging allylic P_{3} unit. At higher temperatures, the organometallic substituent of \mathbf{A} evolves into the $\left[\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{Cp}^{\prime \prime \prime}\right]$ anion of $\mathbf{1}$, while the residual P atoms of the P_{4} butterfly unit aggregate and form the insoluble precipitate.

When B is reacted with IMe , the two products $\left[\mathrm{P}(\mathrm{IMe})_{2}\right]\left[\mathrm{Cr}(\mathrm{CO})_{3} \mathrm{Cp}^{*}\right]\left(3\right.$, Scheme 3) and $\left[\left\{\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{2}\right\}-\right.$ $\left.\left(\eta^{2}-P_{2} \mathrm{IMe}_{2}\right)\right]\left[\mathrm{Cr}(\mathrm{CO})_{3} \mathrm{Cp}^{*}\right](4, \mathrm{Scheme} 3)$ are obtained simultaneously next to insoluble yellow precipitate (most likely polyphosphorus aggregates). Compound 3 is another representative of the known $\left[\mathrm{P}(\mathrm{IMe})_{2}\right]^{+}$cation whereas, to the best of our knowledge, 4 is a representative of a novel structural motif: the first P_{2} dumbbell stabilized by two terminal NHCs and one bridging organometallic fragment. Compound 3 is isostructural to 1 and afforded analogously: one P atom of the P_{4} butterfly unit of \mathbf{B} is abstracted by two IMe molecules affording the $\left[\mathrm{P}(\mathrm{IMe})_{2}\right]^{+}$cation, while the organometallic substituent of \mathbf{B} evolves into the $\left[\mathrm{Cr}(\mathrm{CO})_{3} \mathrm{Cp}{ }^{*}\right]^{-}$anion and the remaining P atoms aggregate forming a polyphosphorus precipitate and P_{4}. However, during the formation of 4 a rearrangement occurs after the initial abstraction of one P atom from the P_{4} butterfly unit. The residual phosphorus scaffold reacts with two molecules of IMe affording an NHC substituted P_{2} dumbbell. The P_{2} dumbbell is additionally stabilized by the coordination towards a $\left\{\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{2}\right\}$ fragment obtained from the substituent of the starting material B. Again, polyphosphorus precipitate and P_{4} can be detected as byproducts of this reaction. They arise as aggregates formed from the redundant P atoms extruded from the P_{4} butterfly moiety during the concurrent formations of 3 and 4.

Previous experiments showed that \mathbf{B} is more likely to decompose or rearrange in comparison to \mathbf{A}. For example, when solutions of \mathbf{A} or \mathbf{B} are stirred at room temperature, a quantitative decomposition of \mathbf{B} resulting in $\left[\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{2}\left(\eta^{3}-\mathrm{P}_{3}\right)\right]$ is detected by ${ }^{31} \mathrm{P}$ NMR spectroscopy, whereas for \mathbf{A} no significant decomposition or fragmentation can be detected. With a dissociation energy of $142.91 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$, the cleavage of the $\mathrm{Fe}-\mathrm{P}$ bonds in \mathbf{A} is considerably disfavored in comparison to the corresponding fragmentation of $\mathbf{B}\left(67.47 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}\right) .{ }^{[5]}$ Consequently, the $\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}$ substituent is less likely to detach, rearrange and reattach to a modified P_{n} moiety. However, the detachment of the organometallic substituent of \mathbf{B} and the rearrangement affording a canopying $\left\{\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{2}\right\}$ fragment is essential to the formation of 4. Consequently, the fact that the organometallic fragment of \mathbf{A} is less likely to rearrange might explain why no iron analog to $\mathbf{4}$ can be observed for the reaction of \mathbf{A} with IMe.

As 3 and 4 are formed simultaneously and due to very similar properties concerning solubility and crystallization as well as the fast decomposition during chromatographic workup, analytical investigations could only be performed for a mixture of crystals of 3 and 4. Moreover, each manipulation of the reaction mixture leads to the additional formation of insoluble yellow precipitate. Hence, intricate workup leads to the depletion of the obtained amounts of 3 and 4.

Compounds 1 and $\mathbf{3}$ crystalize in the triclinic space group $P \overline{1}$ as clear orange and yellow plates, respectively. In contrast, 2 crystalizes in the form of dark pink blocks in the monoclinic space group $P 2_{1} / n$. One molecule of $\mathbf{1}$ and $\mathbf{2}$ is present in the respective asymmetric unit, while for $\mathbf{3}$ two cationic and two anionic entities can be found in the asymmetric unit (Fig. 1). ${ }^{[13]}$ The $\left[\mathrm{P}(\mathrm{IMe})_{2}\right]^{+}$cation incorporated by 1, 2 and 3 is known and could be previously characterized in the presence of different counter anions. ${ }^{[14]}$ As expected, the bond lengths and angles determined by single crystals X-ray diffraction for $\mathbf{1 , 2} \mathbf{2}$ and $\mathbf{3}$ comply well with the previously reported values for the $\left[\mathrm{P}(\mathrm{IMe})_{2}\right]^{+}$cation (Table 1). However, a couple of distinctive features of $\mathbf{1 , 2} 2$ and $\mathbf{3}$ can
be noted. Since the structural parameters are recorded in the solid state, it can be stated that the bond lengths and angles of $\left[\mathrm{P}(\mathrm{IMe})_{2}\right]^{+}$are highly dependent on packing effects and influenced by the corresponding anions. Compared to the other representatives, the $\left[\mathrm{P}(\mathrm{IMe})_{2}\right]^{+}$cation in 2 displays the most unique structural parameters. With $102.65(10)^{\circ}$, the $\mathrm{C}-\mathrm{P}-\mathrm{C}$ angle of 2 is the largest of all reported $\left[\mathrm{P}(\mathrm{IMe})_{2}\right]^{+}$cations. This indicates that the elaborate $\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}\right\}_{2}\left(\mu, \eta^{3: 3}-\mathrm{P}_{3}\right)\right]^{-}$counter ion of $\mathbf{2}$ has a strong influence on the structure of the $\left[\mathrm{P}(\mathrm{IMe})_{2}\right]^{+}$cation in the solid state.

1

2

3

Figure 1. Molecular structure of $\mathbf{1 , 2}$ and $\mathbf{3}$ in the solid state; H atoms are omitted for clarity and CO as well as Cp ligands are drawn in the wire frame model; thermal ellipsoids are drawn at 50% probability.

Table 1. Comparison of structural parameters of the $\left[\mathrm{P}(\mathrm{IMe})_{2}\right]^{+}$cation in the solid state in respect to different anions.

anion	P-C [\AA]		$\frac{\mathbf{C - P}-\mathbf{C}\left[{ }^{\circ}\right]}{95.79(8)}$	Twist angle [$\left.{ }^{\circ}\right]^{[1]}$	
$\left.1 \quad \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{Cp}^{\prime \prime}\right]^{-}$	1.8049(17)	1.8054(18)		42.10(8)	44.75(8)
$2\left[\left\{C p^{\prime \prime \prime} \mathrm{Fe}\right\}_{2}\left(\mu, \eta^{3: 3}-\mathrm{P}_{3}\right)\right]^{-}$	1.802(2)	1.797(2)	102.65(10)	26.08(10)	49.42(10)
$3^{[2]}\left[\mathrm{Cr}(\mathrm{CO})_{3} \mathrm{Cp}^{*}\right]^{-}$	$\begin{aligned} & 1.805(13) \\ & 1.817(13) \end{aligned}$	$\begin{aligned} & 1.787(11) \\ & 1.792(12) \end{aligned}$	$\begin{aligned} & 98.3(6) \\ & 96.9(6) \end{aligned}$	$\begin{aligned} & 35.9(7) \\ & 36.3(7) \end{aligned}$	$\begin{aligned} & 44.9(7) \\ & 46.7(7) \end{aligned}$
$\left[\mathrm{Cp} \mathrm{\prime} \mathrm{\prime} \mathrm{Co}\left(\eta^{3}-\mathrm{P}_{3}\right)\right]^{-}$	1.8033(18)	1.7941(17)	98.74(8)	38.9(6)	42.7(7)
$\left[\left\{\mathrm{Cp}^{*} \mathrm{Mo}\right\}_{2}\left(\mu, \eta^{3: 3}-\mathrm{P}_{3}\right)\left(\mu, \eta^{2: 2}-\mathrm{P}_{2}\right)\right]^{-}$	1.801(7)	1.801(7)	97.4(3)	45.1(6)	49.7(8)
Br	1.8002(13)	1.8032(13)	98.63(6)	38.8	42.8
I^{-}	1.796(1)	1.804(2)	$\begin{aligned} & 96.3(1) \\ & 98.2(1) \end{aligned}$	42.7(1)	43.5(1)
$\left[\mathrm{BPh}_{4}\right]^{-}$	1.801(2)	1.812(2)	98.30(10)	44.7	59.0
$\left[(\mathrm{TerN})_{2} \mathrm{P}\right]^{[3]}$	1.790(2)	1.801(2)	96.96(7)	40.2	46.3

[^1]An interesting parameter for the characterization of the $\left[\mathrm{P}(\mathrm{IMe})_{2}\right]^{+}$cation is the twist angle describing the degree of distortion of the two NHC ligands in respect to the plane spanned by the central P atom and the two carbene C atoms. Two notably different twist angles are recorded for $2\left(26.08(10)^{\circ}\right.$ and $\left.49.42(10)^{\circ}\right)$ as well as $3\left(35.9(7)^{\circ} / 36.3(7)^{\circ}\right.$ and $\left.44.9(7)^{\circ} / 46.7(7)^{\circ}\right)$. Again, the strongly deviating twist angles are a result of the asymmetric environment in the crystal lattice. Since the $\left[\left\{\mathrm{Cp}^{\prime \prime \prime F}\right\}_{2}\left(\mu, \eta^{3: 3}-\mathrm{P}_{3}\right)\right]^{-}$counter ion of $\mathbf{2}$ is sterically more intricate than the $\left[\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right]^{-}$counter ion of $\mathbf{3}$, the effect is more notably for $\mathbf{2}$ resulting in an even stronger deviation of the correlated parameters.

The $\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}\right\}_{2}\left(\mu, \eta^{3: 3}-\mathrm{P}_{3}\right)\right]^{-}$anion found in 2 represents the reduced version of the neutral $\left[\left\{\mathrm{Cp}{ }^{\left.\prime \prime \prime \mathrm{Fe}\}_{2}\left(\mu, \eta^{3: 3}-\mathrm{P}_{3}\right)\right]}\right.\right.$ (C): the first binuclear complex incorporating a triphosphaallyl unit. ${ }^{[15]}$ However, whereas \mathbf{C} is highly symmetric, $\mathbf{2}$ is not symmetric indicating that the reduction reduces the allylic character of the bridging P_{3} ligand in the solid state (Table 2). With 2.1601(8) \AA and 2.1897 (8) \AA, the P-P bonds in 2 are shortened in comparison to an ordinary P-P single bond (2.209(5) \AA). ${ }^{[16]}$ Yet, they are slightly elongated in comparison to the respective P-P bonds in C (2.148(1) \AA). The Fe-Fe distance found in 2 is given at 2.8236(4) \AA and therefore remarkably elongated in comparison to the corresponding bond in \mathbf{C} (2.589(1) Å). ${ }^{[17]}$ In addition, the $\mathrm{Fe} 1-\mathrm{P}-\mathrm{Fe} 2$ angles in $\mathbf{2}$ are widened in comparison to the parameters in \mathbf{C} (Table 2). Consequently, the formal reduction of \mathbf{C} to 2 results in an enlargement of the structural scaffold. In contrast, the P-P-P angle of 2 $\left(95.21(3)^{\circ}\right)$ is slightly smaller than the angle reported for the neutral compound $\mathbf{C}\left(100.71(7)^{\circ}\right)$.

Table 2. Comparison of structural parameters of the $\left[\left\{\mathrm{Cpm}{ }^{\prime \prime} \mathrm{Fe}\right\}_{2}\left(\mu, \eta^{3: 3}-\mathrm{P}_{3}\right)\right]^{-}$anion found in 2 and the neutral $\left[\left\{\mathrm{Cp}^{\prime \prime \prime} \mathrm{Fe}\right\}_{2}\left(\mu, \mathrm{\eta}^{3: 3}-\mathrm{P}_{3}\right)\right](\mathrm{C})$ in the solid state.

	d/ A				$\alpha{ }^{\circ}$			
	2	C		2	C		2	C
Fe1-P1	2.1942(6)	2.225(1)	P1-P2	2.1601(8)	2.148(1)	Fe1-P1-Fe2	79.94(2)	71.51(4)
Fe1-P2	2.4221(6)	2.2446(1)	P2-P3	2.1897(8)	2.148(1)	Fe1-P2-Fe2	71.315(18)	63.92(4)
Fe1-P3	2.1931(6)	2.225(1)	Fe1-Fe2	2.8236(4)	2.589(1)	Fe1-P3-Fe2	80.06(2)	71.51(4)
Fe2-P1	2.2015(6)	2.225(1)				P1-P2-P3	95.21(3)	100.71(7)
Fe2-P2	2.4217(6)	2.2446(1)						
Fe2-P3	2.1971(6)	2.225(1)						

The ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 , 2}$ and $\mathbf{3}$ display the expected signals for the freely rotating Cp ligands of the anions, the methyl groups attached to the N atoms and the methyl groups located on the unsaturated back bone of IMe , respectively. Additionally, the ${ }^{31} \mathrm{P}$ NMR spectra of 1, 2 and 3 confirm the previously reported signal for $\left[\mathrm{P}\left(\mathrm{IMe}_{2}\right)\right]^{+}$, a singlet at $\delta=-114 \mathrm{ppm}$ (recorded in thf- d_{8}). Moreover, the ${ }^{31} \mathrm{P}$ NMR spectrum of 2 reveals two additional sets of signals attributed to the $\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}_{2}\left(\mu, \eta^{3: 3}-\mathrm{P}_{3}\right)\right]^{-}\right.$anion: a doublet at $\delta=638.6 \mathrm{ppm}$ (P 1 and P3) and a triplet at $\delta=-384.1 \mathrm{ppm}\left(\mathrm{P} 2\right.$, labeling according to Fig. 1). Simulation of the ${ }^{31} \mathrm{P}$ NMR spectrum of 2 confirmed a ${ }^{1}$ JPP coupling constant of 352.6 Hz . Hence, a P-P bond order in between a single and a double bond can be stated in compliance with the single crystal X-ray diffraction data. In the ESI-MS spectra of 1,2 and 3 the molecular peaks for the $\left[\mathrm{P}(\mathrm{IMe})_{2}\right]^{+}$cation and the accompanying anions are recorded in the positive and negative mode of operation, respectively.

After layering a solution obtained from the reaction of \mathbf{B} with 2.4 eq. IMe with n-pentane, 4 crystallizes alongside $\mathbf{3}$ in the form of brown blocks in the monoclinic space group $P 2_{1} / \mathrm{n}$ (Fig. 2). However, the crystals break easily and the debris cannot be distinguished from crystalline $\mathbf{3}$ under the microscope. Hence, an optical separation of $\mathbf{3}$ and $\mathbf{4}$ could not be achieved. In the solid state the $P-P$ bond length of the central P_{2} dumbbell of 4 amounts to $2.1246(8) \AA$. It is elongated in comparison to the corresponding $P-P$ bond in $\left[\left\{\mathrm{CpCr}(\mathrm{CO})_{2}\right\}_{2}\left\{\mu, \eta^{2: 2}-\mathrm{P}_{2}\right\}\right]\left(2.060(1) \AA\right.$), in which the P_{2} dumbbell is coordinated by two $\left\{\mathrm{CpCr}(\mathrm{CO})_{2}\right\}$ fragments forming a tetrahedron. ${ }^{[18]}$ However, it is shorter than a regular P-P single bond, given at 2.209(5) $\AA . .^{[16]}$ Consequently, a bond order in between a $\mathrm{P}-\mathrm{P}$ single and $\mathrm{P}=\mathrm{P}$ double bond can be proposed for the central P_{2} unit in 4. In contrast, solely NHC stabilized P_{2} dumbbells L:P-P:L (with L = IDipp or IMes (1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene)) incorporate $\mathrm{P}-\mathrm{P}$ bond lengths in the range of a regular $\mathrm{P}-\mathrm{P}$ single bond (L = IDipp: 2.2052(10) \AA; L = IMes: $2.1897(11) ~ \AA$)..$^{[12]}$ Additionally, the two P-C bonds in 4 (1.835(3) \AA and $1.842(3) \AA$) are slightly elongated in comparison to the distances reported for L:P-P:L (L = IDipp: $1.7504(17) \AA \AA ; L=I M e s: 1.754(3) A ̊)$ indicating a weaker interaction comparable to a P-C single bond. One outstanding observation about the molecular structure of 4 is the fact that the $\left\{\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{2}\right\}$ fragment is canopying the P_{2} dumbbell in an asymmetrical fashion. The central Cr atom is shifted slightly towards one of the P atoms which results in two different $\mathrm{P}-\mathrm{Cr}$ bond lengths of 2.3954(7) \AA and $2.4480(7) \AA$ as well as two differing $\mathrm{P}-\mathrm{P}-\mathrm{Cr}$ angles of $65.26(3)^{\circ}$ and $62.71(2)^{\circ}$. The IMe ligands are arranged in a trans-conformation and with torsion angles of $93.98(8)^{\circ}$ and $93.37(8)^{\circ}$ they are nearly perpendicular in respect to the central CrP_{2} plane.

Figure 2. Molecular structure of the cationic fragment of 4 in the solid state (left: front view; right: side view); H atoms are omitted for clarity and CO as well as Cp^{*} ligands are drawn in the wire frame model (only one part of the disordered Cp^{*} ligand is depicted); thermal ellipsoids are drawn at 50\% probability.

Five singlets can be detected in the ${ }^{1} \mathrm{H}$ NMR spectrum of 4 at $\delta=1.83 \mathrm{ppm}, 2.18 \mathrm{ppm}, 2.24 \mathrm{ppm}, 3.85 \mathrm{ppm}$ and 4.06 ppm (recorded in thf- d_{8}). Due to the intrinsic asymmetry of 4 , which is introduced by the sloping coordination mode of the $\left\{\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{2}\right\}$ fragment, the methyl groups of the two IMe ligands are no longer magnetically equivalent, consequently affording four distinct singlets next to the signal attributed to the Cp * ligand. Due to the asymmetric coordination sphere, two doublets at $\delta=-52.0 \mathrm{ppm}$ and $\delta=-82.1 \mathrm{ppm}$ are recorded in the ${ }^{31} P$ NMR spectrum of 4 for the inequivalent P atoms. This confirms that the P_{2} dumbbell maintains the asymmetrical η^{2}-coordination towards the $\left\{\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{2}\right\}$ fragment in solution. The ${ }^{1} \mathrm{JPP}^{2}$ coupling
constant of $4(338 \mathrm{~Hz})$ is larger than the one recorded for [IMesP-PIDipp] ($\left.{ }^{1} J_{P P}=249 \mathrm{~Hz}\right)$ for which a $\mathrm{P}-\mathrm{P}$ single bond is proposed. ${ }^{[19]}$ However, the $\mathrm{P}=\mathrm{P}$ double bond incorporating [IMesP-PIDipp] ${ }^{2+}$ displays a ${ }^{1} \mathrm{~J}_{\mathrm{PP}}$ coupling constant of 543 Hz . ${ }^{[19]}$ Consequently, for $4 \mathrm{a} \mathrm{P}-\mathrm{P}$ bond order in between a single and a double bond is reasonable. Finally, $E S I^{+}-\mathrm{MS}$ and $E S I^{-}-\mathrm{MS}$ experiments exclusively afforded the molecular peaks for the $\left[\left\{\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{2}\right\}\left(\eta^{2}-\mathrm{P}_{2} \mathrm{IMe} 2\right)\right]^{+}$cation and the $\left[\mathrm{Cr}(\mathrm{CO})_{3} \mathrm{Cp}^{*}\right]^{-}$anion, respectively.

C-P bond

P-P bond

Ione pair of electrons on P atom

Cr-P bond

Figure 3. Selected localized molecular orbitals of 4.

To gain further insight in the electronic structure of 4, the compound has been investigated by DFT calculations at the B3LYP/def2-TZVP level. The natural population analysis (NPA) shows that the Cr atom is negatively charged (-0.86), while the $C p^{*}$ ligand and the CO groups are slightly positively charged (0.15 and 0.36 , respectively) resulting in an overall negative charge of -0.35 for the $\left\{\mathrm{Cp}^{*} \mathrm{Cr}(\mathrm{CO})_{2}\right\}$ fragment. The central P_{2} unit and the two NHC fragments bear a positive charge of $0.37,0.51$ and 0.47 , respectively, resulting in a $\left\{\mathrm{P}_{2} \mid \mathrm{Me}_{2}\right\}$ fragment with an overall positive charge of 1.35 . The Wiberg Bond Index (WBI) of the $\mathrm{P}-\mathrm{P}$ bond (1.14) confirms only a weak double bond character, while the WBIs of the C-P bonds (0.98 and 1.01) are characteristic for single bonds. The NBO analysis illustrates the presence of only one lone pair of electrons on each P atom in an approximate $\mathrm{sp}^{0.5}$ hybrid orbital, alongside to two weakly polarized $\mathrm{Cr}-\mathrm{P}$ bonds in which the P atoms participate with almost pure p orbitals ($s p^{11}$ and $s p^{7.2}$). This description of the electronic structure of $\mathbf{4}$ is in line with the localized molecular orbitals. In Fig. 3 the localized molecular orbitals corresponding to the $\mathrm{C}-\mathrm{P}$ bond, the $\mathrm{P}-\mathrm{P}$ bond, the lone pair of electrons on the P atom and the $\mathrm{Cr}-\mathrm{P}$ bond are depicted.

The AIM analysis of the electron density in 4 allowed the detection of bond critical points (BCPs) along the $\mathrm{P}-\mathrm{P}$ and $\mathrm{Cr}-\mathrm{P}$ bonds (Fig. 4). The locations of BCPs corresponding to the $\mathrm{Cr}-\mathrm{P}$ bonds point towards a metallacyclopropane-like bonding. However, the relatively high ellipticity at the BCPs 1-3 ($\mathrm{P}_{2} \mathrm{Cr}$ core) indicates a deformation of the electron density in this plane, hence the presence of a $\mathrm{P}-\mathrm{P}$ double bond.

Figure 4. Locations and labeling of selected Bond Critical Points (BCP, green) and Ring Critical Points (RCP, violet) in the electron density of 4.

Although, the Laplacian of the electron density is positive at the BCPs corresponding to the $\mathrm{Cr}-\mathrm{P}$ bonds, the relatively high electron density and high energy density at the BCPs clearly shows the Cr-P bonds (Fig. 5). Additionally, the ratio of the potential-energy density $\left|\mathrm{V}_{\mathrm{c}}\right|$ and the kinetic-energy density G_{c} at the bond critical point for the P-P and P-C bonds are characteristic for covalent interactions (|V|/G > 2), while those of the $\mathrm{Cr}-\mathrm{P}$ bonds are characteristic for intermediate interactions between typical covalent and closed shell, for which the $\mathrm{V} / / \mathrm{G}$ ratio lies between 1 and 2 . Based on this results the electronic structure of 4 can be described with the Lewis formula shown in Scheme 3.

Figure 5. Electron density (left) and the Laplacian of the electron density (right) in the $\mathrm{P}_{2} \mathrm{Cr}$ plane in 4.

One compelling difference in the composition of the $\left[\left\{\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{2}\right\}\left(\eta^{2}-\mathrm{P}_{2} \mid \mathrm{Me}_{2}\right)\right]^{+}$cation of 4 in comparison to the $\left[\mathrm{P}(\mathrm{IMe})_{2}\right]^{+}$cation found in $\mathbf{1 , 2} \mathbf{2}$ and $\mathbf{3}$ is the intrinsic phosphorus-NHC ratio. Whereas a 1:2 ratio is found in
$\left[\mathrm{P}(\mathrm{IMe})_{2}\right]^{+}$, a $1: 1$ ratio is presented in $\left[\left\{\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{2}\right\}\left(\eta^{2}-\mathrm{P}_{2} \mathrm{IMe}_{2}\right)\right]^{+}$. Therefore, it can be assumed that the formation of $\mathbf{3}$ would be favored over the synthesis of $\mathbf{4}$, if the amount of IMe reacted with \mathbf{B} is increased. ${ }^{31}$ P NMR spectroscopic studies validated this proposed effect of stoichiometry variation in the starting materials on the product ratio (cf. Si Fig. S3). ${ }^{31} \mathrm{P}$ NMR spectra were recorded for the reaction of \mathbf{B} with increasing amounts of IMe and the relative integrals of the observed signals corresponding to $\mathbf{B}, \mathbf{3}$ and $\mathbf{4}$ are given in Table 3. A continuous increase in the formation of 3 can be monitored upon addition of additional IMe , whereas no 4 can be detected anymore, when adding more than 4.0 eq. of IMe . For an optimized yield of 4 (approx. 3% in crystalline yield), 2.4 eq. of IMe proved to be the ideal amount of the starting material even though traces of \mathbf{B} are still detectable. Smaller amounts of IMe still afford the formation of the desired products 3 and 4, however considerable amounts of B are not converted. Moreover, when using 6.0 eq. of IMe or more, additional side products could be observed in the ${ }^{31} \mathrm{P}$ NMR spectrum of which none could be identified so far.

Table 3. Relative integrals of the signals obtained from the experimental ${ }^{31} \mathrm{P}$ NMR spectra of reactions of \boldsymbol{B} with varying equivalents of IMe (recorded in thf with $\mathrm{C}_{6} \mathrm{D}_{6}$ capillary at 300 K).

eq. IMe	relative integrals Irel c		
	B	$\mathbf{3}$	$\mathbf{4}$
1.0	52.4%	10.4%	3.5%
2.0	23.2%	38.2%	5.7%
4.0	2.0%	52.2%	4.2%
6.0^{*}	-	86.3%	-

* formation of reasonable amounts of side products is detected.

5.4 Conclusion

In summary, the reaction of the P_{4} butterfly compound \mathbf{A} with IMe selectively affords either $\left[\mathrm{P}(\mathrm{IMe})_{2}\right]\left[\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{Cp}^{\prime \prime \prime}\right]$ (1) or $\left[\mathrm{P}(\mathrm{IMe})_{2}\right]\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}\right\}_{2}\left(\mu, \eta^{3: 3}-\mathrm{P}_{3}\right)\right]$ (2) depending on the reaction temperature. In addition, the reaction of the chromium analog B with IMe afforded $\left[\mathrm{Me} \mathrm{P}_{2} \mathrm{P}\right]\left[\mathrm{Cr}(\mathrm{CO})_{3} \mathrm{Cp}{ }^{*}\right]$ (3) and $\left.\left[\left\{\mathrm{Cp}^{*} \operatorname{Cr}(\mathrm{CO})_{2}\right\}\left(\mathrm{n}^{2-} \mathrm{P}_{2} \mathrm{IMe}\right)_{2}\right)\right]\left[\mathrm{Cr}(\mathrm{CO})_{3} \mathrm{Cp}^{*}\right](4)$. Next to the known $\left[\mathrm{P}(\mathrm{IMe})_{2}\right]^{+}$cation found in 1, 2 and 3, the anionic entity of 2 incorporates an allylic P_{3} ligand in a bridging $\mu, \eta^{3: 3}$-coordination mode. Moreover, the cationic P_{2} dumbbell in 4 represents a novel class of products accessible from the versatile starting material \mathbf{B}. In 4 the P_{2} dumbbell is stabilized by two NHC molecules and one canopying organometallic $\left\{\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{2}\right\}$ fragment, a coordination array which was not reported on so far. Comprehensive DFT calculations delineate a weak double bond character for the P_{2} dumbbell with one localized lone pair of electrons on each P atom while the $\left\{\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{2}\right\}$ fragment bears a formal negative charge. Consequently, the P_{4} butterfly chemistry is not limited to the previously reported bidentate coordination pattern but offers a great variety towards different reagents.

5.5 References

[1] (a) B. M. Cossairt, N. A. Piro, C. C. Cummins, Chem. Rev. 2010, 110, 4164-4177.
(b) M. Caporali, L. Gonsalvi, A. Rossin, M. Peruzzini, Chem. Rev. 2010, 110, 4178-4235.
(c) M. Scheer, G. Balázs, A. Seitz, Chem. Rev. 2010, 110, 4236-4256.
(d) N. A. Giffin, J. D. Masuda, Coord. Chem. Rev. 2011, 255, 1342-1359.
[2] (a) O. J. Scherer, G. Schwarz, G. Wolmershäuser, Z. Anorg. Allg. Chem 1996, 622, 951-957.
(b) O. J. Scherer, T. Hilt, G. Wolmershäuser, Organometallics 1998, 17, 4110-4112.
(c) C. Schwarzmaier, A. Y. Timoshkin, G. Balázs, M. Scheer, Angew. Chem. Int. Ed. 2014, 53, 9077 9081.
[3] C. Schwarzmaier, S. Heinl, G. Balázs, M. Scheer, Angew. Chem. Int. Ed. Engl. 2015, 54, 1311613121.
[4] J. Müller, S. Heinl, C. Schwarzmaier, G. Balázs, M. Keilwerth, K. Meyer, M. Scheer, Angew. Chem. Int. Ed. Engl. 2017, 56, 7312-7317.
[5] R. Grünbauer, Master thesis, University of Regensburg (Regensburg), 2016.
[6] Cf. chapter 4 of this thesis.
[7] Cf. chapter 3 of this thesis.
[8] (a) E. Mädl, M.V.Butovskii, G. Balázs, E. V. Peresypkina, A. V. Virovets, M. Seidl, M. Scheer, Angew. Chem. Int. Ed 2014 ,53, 7643-7646.
(b) E. Mädl, Ph. D. thesis, University of Regensburg (Regensburg), 2016.
[9] (a) A. J. Arduengo, R. L. Harlow, M. Kline, J. Am. Chem. Soc. 1991, 113, 361-363.
(b) V. Nesterov, D. Reiter, P. Bag, P. Frisch, R. Holzner, A. Porzelt, S. Inoue, Chem. Rev. 2018, 118, 9678-9842.
[10] K. Dimroth, P. Hoffmann, Angew. Chem. Int. Ed. Engl. 1964, 3, 384-384.
[11] A. F. Holleman, N. Wiberg, E. Wiberg, Lehrbuch für Anorganische Chemie, 102. Edition, de Gryter, 2007, 746-749.
[12] L. Y. Goh, C. K. Chu, R. C. S. Wong, J. Chem. Soc, Dalton Trans. 1989, 1, 1951-1956.
[13] It has to be noted that only preliminary data can be given for the single crystal X-ray diffraction analysis of 3 as only crystals of poor quality could be obtained.
[14] (a) $\mathrm{Br}^{-} /\left[\mathrm{BPh}_{4}\right]^{-}$: C. L. B. Macdonald, J. F. Binder, A. Swidan, J. H. Nguyen, S. C. Kosnik, B. D. Ellis, Inorg. Chem. 2016, 55, 7152-7166.
(b) I: M. Cicac-Hudi, J. Bender, S. H. Schlindwein, M. Bispinghoff, M. Nieger, H. Grützmacher, G. Gudat, Eur. J. Inorg. Chem. 2016, 649-658.
(c) $\left[(\operatorname{TerN})_{2} P\right]$: A. Hinz, A. Schulz, A. Villinger, Chem. Commun. 2016, 52, 6328-6331.
(d) $\left.\left[\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Co}\left(\eta^{3}-\mathrm{P}_{3}\right)\right]^{-/\left[\left\{C p^{*}\right.\right.} \mathrm{Mo}_{2}\left(\mu, \eta^{3: 3}-\mathrm{P}_{3}\right)\left(\boldsymbol{\mu}, \eta^{2: 2}-\mathrm{P}_{2}\right)\right]$: M. Piesch, S. Reichl, M. Seidl, G. Balázs, M. Scheer, Angew. Chem. 2019, 131, 16716-16721; Angew. Chem. Int. Ed. 2019, 58, 16563-16568.
[15] M. Scheer, S. Deng, O. J. Scherer, M. Sierka, Angew. Chem. Int. Ed. 2005, 44, 3755-3758.
[16] (a) A. Simon, H. Borrmann, H. Craubner, Phosphorus Sulfur Silicon Relat. Elem. 1987, 30, 507-510. (b) H.Okudera, E. Dinnebier Robert, A. Simon, Z.Kristallogr. 2005, 220, 259.
[17] Supplementary DFT calculations to elucidate the nature of the Fe-Fe interaction are still pending and could not be completed within the scope of this thesis.
[18] L. Y. Goh, C. K. Chu, R. C. S. Wong, J. Chem. Soc, Dalton Trans. 1989, 1, 1951-1956.
[19] A. Doddi, D. Bockfeld, M.-K. Zaretzke, C. Kleeberg, T. Bannenberg, M. Tamm, Dalton Trans. 2017, 46, 15859-15864.

5.6 Supplementary information

5.6.1 General remarks

All experiments were carried out under an atmosphere of dry argon or nitrogen using glovebox and Schlenk techniques. Residues of oxygen and water were removed from the inert gas by passing it over a BASF R 3$11\left(\mathrm{CuO} / \mathrm{MgSiO}_{3}\right)$ catalyst, concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ and finally granulated silica gel. Dry solvents were collected from a Braun SPS Apparatus and degassed prior to use. The deuterated solvents thf- d_{8} was degassed and dried by stirring with Na / K alloy, followed by distillation.

The starting materials $\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right](\mathbf{A})^{[1]},\left[\left\{\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right\}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right](\mathbf{B})^{[2]}, \mathrm{IMe}^{[3]}$, IDipp ${ }^{[4]}$ and $\mathrm{KCHPh}_{2}{ }^{[5]}$ were prepared according to literature procedures. LiNMe_{2} and $\mathrm{LiCH}_{2} \mathrm{SiMe}_{3}$ are commercially available and were used without further modification.

NMR spectra were recorded at the NMR department of the University Regensburg using a Bruker Advance 300 or 400 spectrometer. Samples are referenced against TMS (${ }^{1} \mathrm{H}$) or $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}\left({ }^{31} \mathrm{P}\right)$ as external standards. Chemical shifts (δ) are reported in ppm and coupling constants (J) in Hz . The spectra were processed using the TopSpin 3.5 software (Bruker) and the WIN-DAISY module of this software was used to perform simulations. ${ }^{[6]}$

Mass spectrometry was performed by the MS department of the University Regensburg. ESI-MS spectra were recorded on a Q-TOF 6540 UHD (Agilent) spectrometer. The observed fragments were assigned according to the mass/charge (m / z) ratio and the isotope pattern.

5.6.2 Syntheses

Synthesis of $\left[P(I M e)_{2}\right]\left[\mathrm{Cp}{ }^{\prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right]$ (1)

A colourless solution of $\mathrm{IMe}(149.0 \mathrm{mg}, 1.2 \mathrm{mmol}, 4.0 \mathrm{eq})$ in 10 mL thf is added to a red solution of \mathbf{A} $(244.3 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0 \mathrm{eq}) \mathrm{in} 10 \mathrm{~mL}$ thf. Thereby, the red colour intensified and a red solid is formed. The solution is stirred for one hour and subsequently the solvent is removed under reduced pressure. The orange residue is washed with cold toluene $\left(3 \times 10 \mathrm{~mL},-30{ }^{\circ} \mathrm{C}\right)$, dissolved again in thf and stored at room temperature. Compound 1 is obtained in the form of dark orange plates suitable for single crystal X-ray diffraction analysis after three days.

Analytical data for 1

Yield 255.2 mg ($0.41 \mathrm{mmol}, 68$ \%).
${ }^{1} \mathrm{H}$ NMR (thf-d $\mathrm{d}_{8}, 300 \mathrm{~K}$): $\quad \delta[\mathrm{ppm}]=1.13\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{2}{ }^{\mathrm{t}} \mathrm{Bu}_{3}\right), 1.31\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{2}{ }^{\mathrm{t}} \mathrm{Bu}_{3}\right), 2.25(\mathrm{~s}, 12 \mathrm{H}, \mathrm{N}-$ CH_{3}), 3.44 (s, 12H, C-Cㅐㅡ3), 3.93 (s, 2H, $\mathrm{C}_{5} \underline{\mathrm{H}}_{2}{ }^{\mathrm{t}} \mathrm{Bu}_{3}$).
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $($ thf- $\mathrm{d} 8,300 \mathrm{~K}): \quad \delta[\mathrm{ppm}]=-114.6\left(\mathrm{~s}, 1 \mathrm{P},\left[\underline{\mathrm{P}}(\mathrm{IMe})_{2}\right]^{+}\right)$.

${ }^{31} \mathrm{P}$ NMR $\left(\right.$ thf- $\left.\mathrm{d}_{8}, 300 \mathrm{~K}\right):$	$\delta[\mathrm{ppm}]=-114.6\left(\mathrm{~s}, 1 \mathrm{P},\left[\mathrm{P}(\mathrm{IMe})_{2}\right]^{+}\right)$.
ESI-MS (dme)	$\mathrm{m} / \mathrm{z}=345.15\left[\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{Cp}^{\prime \prime \prime}\right]^{-}(100 \%)$.
ESI $^{+}-M S($ dme $)$	$\mathrm{m} / \mathrm{z}=279.18\left[\mathrm{P}(\mathrm{IMe})_{2}\right]^{+}(100 \%)$.
IR (solid)	$\tilde{v} \mathrm{co}\left[\mathrm{cm}^{-1}\right]=1836.63(\mathrm{~m}), 1767.95(\mathrm{~m})$.

Synthesis of $\left[P(I M e)_{2}\right]\left[\left\{\mathrm{Cp}{ }^{\prime \prime}{ }^{\prime} \mathrm{Fe}\right\}_{2}\left(\mu, \eta^{3: 3}-\mathrm{P}_{3}\right)\right](2)$

A red solution of $\mathbf{A}(760.6 \mathrm{mg}, 0.8 \mathrm{mmol}, 1.0 \mathrm{eq})$ in thf is cooled to $-80^{\circ} \mathrm{C}$. A $-80^{\circ} \mathrm{C}$ cold solution of IMe ($198.7 \mathrm{mg}, 1.6 \mathrm{mmol}, 2.0 \mathrm{eq}$) in 10 mL thf is added. The mixture is stirred overnight and allowed to reach room temperature. Thereby, the colour changes to reddish-purple. The solvent is removed in vacuo. A dark red solution is extracted with toluene $(3 \times 10 \mathrm{~mL})$ from the residue. The solvent is reduced under reduced pressure and stored at $8^{\circ} \mathrm{C}$. Compound $\mathbf{2}$ can be obtained in the form of dark red blocks suitable for single crystal X-ray diffraction analysis after one week.

Analytical data for 2

Yield	720.0 mg (0.76 mmol, 95 \%).
${ }^{1} \mathrm{H}$ NMR (thf-d ${ }_{8}$, 300 K)	$\begin{aligned} & \delta[p p m]=1.43\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{2}^{2} \mathrm{~B}_{3}\right), 1.58\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{2}{ }^{\mathrm{t} \mathrm{Bu}} 3\right), 1.84(\mathrm{~s}, 12 \mathrm{H}, \\ & \left.\mathrm{N}-\mathrm{CH}_{3}\right), 2.88\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{C}-\mathrm{CH}_{3}\right), 3.82\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{5} \underline{\mathrm{H}}_{2}{ }^{2} \mathrm{Bu} u_{3}\right) . \end{aligned}$
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (tol-d ${ }_{8}, 300 \mathrm{~K}$)	$\begin{aligned} & \delta[\mathrm{ppm}]=638.6 \quad\left(\mathrm{~d}, 2 \mathrm{P},{ }^{1} \mathrm{~J}_{\mathrm{AX}}=352.6 \mathrm{~Hz}, \mathrm{P}_{\mathrm{A}}\right),-114.2 \quad(\mathrm{~s}, 1 \mathrm{P}, \\ & \left.\left[\mathrm{P}(\mathrm{Me})_{2}\right]^{+}\right),-348.1\left(\mathrm{t}, 1 \mathrm{P},{ }^{1} \mathrm{~J}_{\mathrm{AX}}=352.6 \mathrm{~Hz}, \mathrm{P}_{\mathrm{x}}\right) . \end{aligned}$
${ }^{31} \mathrm{P}$ NMR (tol- $\mathrm{d}_{8}, 300 \mathrm{~K}$)	$\begin{aligned} & \delta[\mathrm{ppm}]=638.6 \quad\left(\mathrm{~d}, 2 \mathrm{P},{ }^{1} \mathrm{~J}_{\mathrm{AX}}=352.6 \mathrm{~Hz}, \mathrm{P}_{\mathrm{A}}\right),-114.2 \quad(\mathrm{~s}, 1 \mathrm{P}, \\ & \left.\left[\underline{\mathrm{P}}(\mathrm{Me})_{2}\right]^{+}\right),-348.1\left(\mathrm{t}, 1 \mathrm{P},{ }^{1} \mathrm{JAX}_{\mathrm{AX}}=352.6 \mathrm{~Hz}, \mathrm{P}_{\mathrm{x}}\right) . \end{aligned}$
ESI-MS (dme)	$\mathrm{m} / \mathrm{z}=671.24\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}\right\}_{2}\left(\mu, \eta^{3: 3}-\mathrm{P}_{3}\right)\right]^{-}(100 \%)$.
ESI+MS (dme)	$\mathrm{m} / \mathrm{z}=279.18\left[\mathrm{P}(\mathrm{IMe})_{2}\right]^{+}$(100\%).
Elemental Analysis	calcd. for [$\left.\mathrm{C}_{48} \mathrm{H}_{82} \mathrm{~N}_{4} \mathrm{P}_{4} \mathrm{Fe}_{2}\right]\left(950.78 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)$ C 60.64, H 8.69, N 5.89; found: C 61.08, H 8.05, N 5.97 .

Synthesis of $\left[\mathrm{P}(\mathrm{IMe})_{2}\right]\left[\mathrm{Cr}(\mathrm{CO})_{3} \mathrm{C} p^{*}\right](3)$ and $\left[\left\{\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{2}\right\}\left(\eta^{2}-\mathrm{P}_{2} \mathrm{IMe}{ }_{2}\right)\right]\left[\mathrm{Cr}(\mathrm{CO})_{3} \mathrm{Cp}^{*}\right](4)$

An orange-brown solution of $\mathbf{B}(66 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}$) in thf (5 mL) and a colorless solution of $\mathrm{IMe}(30 \mathrm{mg}$, $0.24 \mathrm{mmol}, 2.4 \mathrm{eq}$.) in thf (5 mL) are cooled to $-90^{\circ} \mathrm{C}$. Slowly, the solution of IMe is added to the solution of \mathbf{B} while stirring. The solution is brought to room temperature overnight and hereby a color change to a dark brown solution and the formation of yellow precipitate is observed. The brown solution is filtered via a canula, diluted with additional 5 mL of thf and layered with n-pentane. After a few days two kinds of crystals suitable for single crystal X-ray diffraction are obtained: small yellowish blocks of $\mathbf{3}$ and dark brown blocks of 4.

Crystalline Yield of the mixture of 3 and 4

 14.0 mg
For product ratio of 3:1 (as found in by NMR spectroscopic studies):

3: 11.2 mg ($0.009 \mathrm{mmol}, 9 \%$).
4: 2.8 mg ($0.003 \mathrm{mmol}, 3 \%$).

Analytical data for 3

${ }^{1}$ H NMR (thf- ${ }_{8}, 300 \mathrm{~K}$)
${ }^{31}$ P NMR (thf-d ${ }_{8}, 300 \mathrm{~K}$)
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (thf- $\mathrm{d}_{8}, 300 \mathrm{~K}$)
ESI-MS ($\mathrm{CH}_{3} \mathrm{CN}$)
ESI ${ }^{+}$-MS $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$
$\delta[p p m]=1.83\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{Cp}{ }^{*}\right), 2.24\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.44\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{C}-\mathrm{CH}_{3}\right)$.
$\delta[p p m]=-114.8\left(\mathrm{~s}, 1 \mathrm{P},\left[\mathrm{P}(\mathrm{IMe})_{2}\right]^{+}\right)$.
$\delta[p p m]=-114.8\left(\mathrm{~s}, 1 \mathrm{P},\left[\mathrm{P}(\mathrm{IMe})_{2}\right]^{+}\right)$.
$\mathrm{m} / \mathrm{z}=271.04\left[\mathrm{Cr}(\mathrm{CO})_{3} \mathrm{Cp}^{*}\right]^{-}(100 \%)$.
$\mathrm{m} / \mathrm{z}=279.18\left[\mathrm{P}(\mathrm{IMe})_{2}\right]^{+}(100 \%)$.

Analytical data for 4

${ }^{1}$ H NMR (thf- $\mathrm{d}_{8}, 300 \mathrm{~K}$)
$\delta[p p m]=1.83(\mathrm{~s}, 15 \mathrm{H}, \mathrm{Cp} *), 2.18\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 2.24\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right)$, 3.85 (s, 6H, C-C부3), 4.06 (br, s, 6H, C-CH3 ${ }_{3}$).
${ }^{31}$ P NMR (thf- $\mathrm{d}_{8}, 300 \mathrm{~K}$)
$\delta[p p m]=-52.0\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{PP}}=388 \mathrm{~Hz}, 1 \mathrm{P}\right),-82.1\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{PP}}=388 \mathrm{~Hz}, 1 \mathrm{P}\right)$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (thf- $\mathrm{d}_{8}, 300 \mathrm{~K}$)
ESI-MS ($\mathrm{CH}_{3} \mathrm{CN}$)
ESI ${ }^{+}$-MS $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$
$\delta[p p m]=-52.0\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{PP}}=388 \mathrm{~Hz}, 1 \mathrm{P}\right),-82.1\left(\mathrm{~d},{ }^{1}{ }^{\mathrm{JPP}}=388 \mathrm{~Hz}, 1 \mathrm{P}\right)$.
$\mathrm{m} / \mathrm{z}=271.04\left[\mathrm{Cr}(\mathrm{CO})_{3} \mathrm{Cp}^{*}\right]^{-}(100 \%)$.
$\mathrm{m} / \mathrm{z}=533.20\left[\left\{\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{2}\right\}\left(\eta^{2}-\mathrm{P}_{2} \mathrm{IMe}_{2}\right)\right]^{+}(100 \%)$.

5.6.3 NMR spectroscopic experiments

Figure S1. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 2 (recorded in thf-d 8 at 300 K); inset: comparison of experimental (top) and (simulated) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the anionic entity of 2.

The simulation of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the anionic entity of 2 was carried out on the basis of an $\mathrm{A}_{2} \mathrm{X}$ spin system with a C_{1} symmetry.

Table S1. Experimental and simulated values for the chemical shifts and coupling constants in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 2 (recorded in thf-d8 at 300 K).

experimental values			simulated values			
$\boldsymbol{\delta}_{\mathrm{A}}$	638.6 ppm	${ }^{1} \mathrm{~J}_{\mathrm{AX}}$	254 Hz	$\boldsymbol{\delta}_{\mathrm{A}}$	638.6 ppm	${ }^{1} \mathrm{~J}_{\mathrm{AX}}$
$\boldsymbol{\delta}_{\mathrm{x}}$	-384.1 ppm			352.6 Hz		

Figure S2. Experimental ${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{31} \mathrm{P}$ NMR (bottom) spectrum of the crystal mixture of 3 and 4 (ratio $3 / 1$, recorded in thf-d 8 at 300 K).

Reactivity of P_{4} butterfly compounds towards NHCs: Generation of a novel metal bridged
P_{2} dumbbell compound

Figure S3. Experimental ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the reaction solution obtained from the reaction of B with various equivalents of IMe in thf (recorded with $\mathrm{C}_{6} \mathrm{D}_{6}$ capillary at 300 K ; peak marked with asterisk is attributed to the common side product $\left[\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{2}\left(\eta^{3}-\mathrm{P}_{3}\right)\right]$).

5.6.4 DFT calculations

The geometry of the molecules has been optimized using the TURBOMLE program package ${ }^{[7]}$ at the RI-- ${ }^{[8]}$ B3LYP ${ }^{[9]}$ level together with the def2-TZVP basis set for all atoms. ${ }^{[10]}$ To speed up the calculations, the Coulomb part was evaluated by using the Multipole Accelerated Resolution of Identity method (MARI-J) ${ }^{[11]}$ along with optimized auxiliary basis sets on all atoms. ${ }^{[12]}$ The natural bond orbital analysis (NBO) has been performed with NBO $6.0^{[13]}$ on the wave function obtained at the B3LYP/def2-TZVP level of theory. The topological analysis of the electron density obtained from the DFT calculations, according to the Atoms in Molecules theory ${ }^{[14]}$ has been performed with the MultiWFN program (version 3.6). ${ }^{[15]}$

Table S2. Cartesian coordinates of the optimized geometry of 4 at the B3LYP/def2-TZVP level. $E=-3110.31259080507$ a.u.)

Atom	x	y	z	Atom	x	y	z
Cr	2.169143400	0.017355100	1.185933300	H	1.574044000	1.563552900	-2.466059400
P	-0.061701000	-0.001879400	2.237046400	H	0.275974300	1.683664200	-3.670178800
P	-0.052956500	0.034879300	0.083201200	H	0.328345700	0.310336400	-2.554672800
N	-1.453430900	2.666767800	0.034608300	C	2.756086700	1.578064000	2.799516300
N	-0.250691400	-2.444639900	3.649602500	C	-2.906015100	-4.632987000	2.370336000
N	-1.728437900	-2.410116400	2.078091400	H	-3.925860900	-4.264946900	2.508870000
N	-0.322523100	2.118529900	-1.721696400	H	-2.794044400	-5.523257400	2.985616600
0	2.516394500	-2.829156100	2.010026900	H	-2.799395600	-4.937252800	1.326689600
O	2.776562500	-1.100895200	-1.528502600	C	2.644441100	2.234659500	1.542602000
C	-0.630184900	1.710997500	-0.462395300	C	-2.605639500	-1.993149500	0.989414000
C	-0.706333600	-1.700086000	2.614728100	H	-2.659084200	-0.910852700	0.964051000
C	-1.647815600	3.678659300	-0.905401500	H	-3.599075600	-2.397227300	1.168941600
C	-0.933144800	3.334277600	-2.009191600	H	-2.234823300	-2.348836800	0.029151700
C	-1.886860100	-3.618712600	2.754836500	C	-0.768343600	4.036517200	-3.311380700
C	-0.958814700	-3.635480100	3.748129600	H	0.282179400	4.234754500	-3.535477300
C	4.283693500	0.611921100	1.364548700	H	-1.286223100	4.993030100	-3.287857800
C	3.754509300	0.566798600	2.688876500	H	-1.183180500	3.459145600	-4.141399100
C	2.351721000	-1.730017900	1.687230600	C	4.312787700	-0.249574800	3.815947000
C	-2.502398000	4.866512000	-0.634008100	H	3.582732600	-0.410604500	4.609077600
H	-3.534581100	4.583333600	-0.414188400	H	5.167509400	0.263540700	4.267544000
H	-2.519857800	5.521844700	-1.502137400	H	4.661080300	-1.226251200	3.481415600
H	-2.132113100	5.449439000	0.212896900	C	2.080649600	2.009602700	4.064036900
C	2.512417900	-0.677422900	-0.488803500	H	1.063819000	2.361233500	3.891222800
C	-2.126323200	2.672529000	1.327530600	H	2.639662300	2.831366200	4.523420300
H	-1.772011300	1.837343500	1.922046100	H	2.031093400	1.206542500	4.798515200
H	-3.204830200	2.591707800	1.185477000	C	3.975123900	2.177611900	-0.695200100
H	-1.908420900	3.601339900	1.853514100	H	4.307442100	1.390528100	-1.371580800
C	3.594921600	1.647841200	0.654631900	H	4.798563900	2.892607200	-0.601013900
C	0.783475800	-2.047808000	4.596230500	H	3.148395000	2.705366200	-1.171317800
H	1.278478200	-1.157856300	4.223835800	C	5.477269000	-0.150253100	0.872199400
H	1.517779500	-2.843966500	4.695111500	H	5.546256700	-1.136540400	1.330642400
H	0.337094200	-1.834084600	5.568112800	H	6.400095300	0.387504100	1.112593900
C	-0.652263900	-4.662916000	4.779351900	H	5.455617000	-0.291799300	-0.208060400
H	0.362267600	-5.053087500	4.667355600	C	1.842381400	3.473114400	1.280979500
H	-1.340604700	-5.500797300	4.692767300	H	1.577014600	3.576675700	0.229113200
H	-0.745234700	-4.261835800	5.791402300	H	2.414651200	4.365005400	1.557230900
C	0.518711300	1.376589300	-2.657150700	H	0.922010300	3.492217300	1.865208000

Table S3. Properties of selected critical points in the electron density of 4. $\rho(r)=$ electron density at CP; $\nabla^{2} \rho(r)=$ Laplacian of electron density; $H(r)=$ energy density; $G(r)=$ Lagrangian kinetic energy; $V(r)=$ potential energy density; $\varepsilon(r)=$ ellipticity of electron density at CP $\left(\varepsilon(r)=\left[\lambda_{1}(r) / \lambda_{2}(r)\right]-1\right.$; where λ_{1} and λ_{2} are the lowest and the second lowest eigenvalues of Hessian matrix of ρ, respectively); $\eta(r)=$ eta index $\left(\eta(r)=\left|\lambda_{1}(r)\right| / \lambda_{3}(r)\right.$, where λ_{1} and λ_{3} are the lowest and the highest eigenvalues of Hessian matrix of ρ, respectively); Bond degree, $B D=H(B C P) / \rho(B C P)$ (the more positive the BD, the weaker the interaction). Labeling according to Fig. 4.

	$\rho(r)$	$\nabla^{2} \rho(r)$	$\mathrm{H}(\mathrm{r})$	$\mathrm{G}(\mathrm{r})$	$\mathrm{V}(\mathrm{r})$	$\mid \mathrm{V} / \mathrm{G}$	$\varepsilon(\mathrm{r})$	$\eta(\mathrm{r})$	$\mathrm{BD}(\mathrm{H} / \mathrm{R})$
BCP-1	0.122	-0.145	-0.069	0.033	-0.101	3.118	0.399	1.548	-0.566
BCP-2	0.059	0.098	-0.016	0.040	-0.056	1.390	0.331	0.263	-0.265
BCP-3	0.055	0.117	-0.013	0.042	-0.055	1.306	0.334	0.182	-0.235
BCP-7	0.331	-1.009	-0.511	0.259	-0.769	2.975	0.224	1.962	-1.542
BCP-6	0.330	-1.002	-0.505	0.254	-0.759	2.985	0.223	1.972	-1.532
BCP-4	0.142	0.003	-0.119	0.119	-0.238	1.993	0.185	0.537	-0.838
BCP-5	0.141	0.001	-0.117	0.118	-0.235	1.998	0.234	0.551	-0.835
BCP-8	0.329	-0.998	-0.502	0.253	-0.755	2.987	0.216	1.968	-1.528
BCP-9	0.329	-1.008	-0.499	0.247	-0.746	3.020	0.212	1.997	-1.519
RCP	0.051	0.114	-0.011	0.040	-0.051	1.284	-	-	-

5.6.5 Crystallographic details

$\left[\mathrm{P}(\mathrm{IMe})_{2}\right]\left[\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{Cp}^{\prime \prime \prime}\right](1)$
Compound 1 crystalizes in the form of dark orange plates from a saturated solution in thf at room temperature after 3 days. A suitable crystal with dimensions $0.29 \times 0.20 \times 0.08 \mathrm{~mm}^{3}$ was selected and mounted on a Xcalibur, AtlasS2, Gemini ultra diffractometer. The crystal was kept at a steady $T=123(1) \mathrm{K}$ during data collection. The structure was solved with the SheIXT 2018/2 (Sheldrick, 2018) solution program using Olex2 (Dolomanov et al., 2009) as the graphical interface. The model was refined with ShelXL 2018/3 (Sheldrick, 2015) using full matrix least squares minimisation on F^{2}. The asymmetric unit contains one molecule of 1.
$\left[\mathrm{P}(\mathrm{IMe})_{2}\right]\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}\right\}_{2}\left(\mu, \eta^{3: 3}-\mathrm{P}_{3}\right)\right]$ (2)
Compound 2 crystalizes in the form of dark red blocks from a saturated solution in toluene after one week. A suitable crystal with dimensions $0.42 \times 0.16 \times 0.05 \mathrm{~mm}^{3}$ was selected and mounted on a GV50, TitanS2 diffractometer. The crystal was kept at a steady $T=123.01$ (10) K during data collection. The structure was solved with the ShelXT 2018/2 (Sheldrick, 2018) solution program using Olex2 (Dolomanov et al., 2009) as the graphical interface. The model was refined with ShelXL 2018/3 (Sheldrick, 2015) using full matrix least squares minimisation on F^{2}. The asymmetric unit contains one molecule of 2.
$\left[\mathrm{P}(\mathrm{IMe})_{2}\right]\left[\mathrm{Cr}(\mathrm{CO})_{3} \mathrm{Cp}^{*}\right](3)$
Compound 3 crystalizes in the form of clear yellow blocks after layering a saturated reaction solution in thf with n-pentane after a few days. A suitable crystal with dimensions $0.10 \times 0.05 \times 0.04 \mathrm{~mm}^{3}$ was selected and mounted on a GV50, TitanS2 diffractometer. The crystal was kept at a steady $T=123.1$ (3) K during data collection. The structure was solved with the SheIXT 2018/2 (Sheldrick, 2018) solution program using Olex2 (Dolomanov et al., 2009) as the graphical interface. The model was refined with ShelXL 2018/3 (Sheldrick, 2015) using full matrix least squares minimisation on F^{2}. Due to poor quality of the obtained crystals only preliminary values can be given for the structural parameters. The asymmetric unit contains two anionic and cationic fragments of 3 .
$\left[\left\{\mathrm{Cp}^{*} \mathrm{Cr}(\mathrm{CO})_{2}\right\}\left(\mathrm{n}^{2}-\mathrm{P}_{2} \mathrm{IMe} 2\right)\right]\left[\mathrm{Cr}(\mathrm{CO})_{3} \mathrm{Cp}^{*}\right](4)$
Compound 4 crystalizes in the form of dark brown blocks after layering a saturated reaction solution in thf with n-pentane after a few days. A suitable crystal with dimensions $0.17 \times 0.14 \times 0.10 \mathrm{~mm}^{3}$ was selected and mounted on a GV50, TitanS2 diffractometer. The crystal was kept at a steady $T=123.00$ (16) K during data collection. The structure was solved with the SheIXT 2018/2 (Sheldrick, 2018) solution program using Olex2 (Dolomanov et al., 2009) as the graphical interface. The model was refined with ShelXL 2018/3 (Sheldrick, 2015) using full matrix least squares minimisation on F^{2}. The asymmetric unit contains one molecule of 4.

Table S4. Selected parameters for the single crystal X-ray diffraction experiments of 1, 2, 3 and 4.

	1	2	3	4
Formula	$\mathrm{C}_{33} \mathrm{H}_{53} \mathrm{FeN}_{4} \mathrm{O}_{2} \mathrm{P}$	$\mathrm{C}_{48} \mathrm{H}_{82} \mathrm{Fe}_{2} \mathrm{~N}_{4} \mathrm{P}_{4}$	$\mathrm{C}_{54} \mathrm{H}_{78} \mathrm{Cr}_{2} \mathrm{~N}_{8} \mathrm{O}_{6} \mathrm{P}_{2}$	$\mathrm{C}_{39} \mathrm{H}_{54} \mathrm{Cr}_{2} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{P}_{2}$
$D_{\text {calc. }} / \mathrm{g} \mathrm{g} \mathrm{cm}{ }^{-3}$	1.203	1.269	1.266	1.318
$\mathrm{m} / \mathrm{mm}^{-1}$	4.198	6.156	4.047	5.399
Formula Weight	624.61	950.75	1101.18	824.80
Colour	orange	dark pink	yellow	dark brown
Shape	plate	block	plate	block
Size/mm ${ }^{3}$	$0.29 \times 0.20 \times 0.08$	$0.42 \times 0.16 \times 0.05$	$0.10 \times 0.05 \times 0.04$	$0.17 \times 0.14 \times 0.10$
T/K	123(1)	123.01(10)	123.1(3)	123.00(16)
Crystal System	triclinic	monoclinic	triclinic	monoclinic
Space Group	$P \overline{1}$	$P 2_{1} / n$	$P \overline{1}$	$P 2_{1} / n$
alÅ	10.8194(4)	13.7995(2)	8.9241(12)	14.7956(3)
b/Å	12.5965(6)	22.0551(3)	18.0574(17)	8.60807(16)
clÅ	15.1388(6)	16.5807(2)	18.8286(14)	32.9425(6)
$\boldsymbol{\alpha} 1^{\circ}$	106.563(4)	90	106.662(7)	90
$\beta 1^{\circ}$	98.875(3)	99.5490(10)	91.003(9)	97.7244(16)
$\boldsymbol{y}{ }^{\circ}$	113.707(4)	90	95.628(9)	90
V/A ${ }^{3}$	1723.64(14)	4976.40(12)	2889.4(5)	4157.52(13)
Z	2	4	2	4
Z'	1	1	1	1
Wavelength/Å	1.54184	1.54184	1.54184	1.54184
Radiation type	$\mathrm{CuK}_{\text {a }}$	CuKa	CuK K	$\mathrm{Cu} \mathrm{K}_{\alpha}$
$Q_{\text {min }}{ }^{\circ}$	4.151	3.365	4.035	3.467
$Q_{\text {max }}{ }^{\circ}$	72.873	74.005	62.387	75.267
Measured Refl's.	12167	20961	49308	35858
Ind't Refl's	6639	9772	9187	8355
Refl's with I > 2(I)	6295	9039	3895	7041
Rint	0.0194	0.0395	0.3119	0.0616
Parameters	387	579	676	679
Restraints	0	57	0	314
Largest Peak	0.530	0.713	0.809	0.479
Deepest Hole	-0.232	-1.177	-0.775	-0.459
GooF	1.030	1.063	1.088	1.040
$w R_{2}$ (all data)	0.0887	0.1239	0.4240	0.1261
wR2	0.0871	0.1203	0.3433	0.1180
R_{1} (all data)	0.0363	0.0520	0.2256	0.0548
$\underline{R_{1}}$	0.0339	0.0488	0.1401	0.0456

1

2

3

Figure S4. Molecular structure of $\mathbf{1 , 2} \mathbf{2}$ and $\mathbf{3}$ in the solid state; H atoms are omitted for clarity and CO as well as Cp ligands are drawn in the wire frame model; thermal ellipsoids are drawn at 50% probability.

Figure S5. Molecular structure of 4 in the solid state; H atoms are omitted for clarity and CO as well as Cp^{*} ligands are drawn in the wire frame model (only one part of the disordered Cp^{*} ligand is depicted); thermal ellipsoids are drawn at 50% probability.

Table S5. Selected bond lengths $\left[\AA\right.$] and angles $\left[{ }^{\circ}\right]$ of the $\left[\mathrm{P}(\mathrm{IMe})_{2}\right]^{+}$cation of $\mathbf{1 , 2}$ and 3 in the solid state.

	P-C $[\AA]$		C-P-C $\left[{ }^{\circ}\right]$	Twist angle $\left[{ }^{\circ}\right]^{[1]}$	
$\mathbf{1}$	$1.8049(17)$	$1.8054(18)$	$95.79(8)$	$42.10(8)$	$44.75(8)$
$\mathbf{2}$	$1.802(2)$	$1.797(2)$	$102.65(10)$	$26.08(10)$	$49.42(10)$
$\mathbf{3}^{[2]}$	$1.805(13)$	$1.787(11)$	$98.3(6)$	$35.9(7)$	$44.9(7)$
	$1.817(13)$	$1.792(12)$	$96.9(6)$	$36.3(7)$	$46.7(7)$

${ }^{[1]}$ Distortion angle between the $\mathrm{PC}^{\text {Carbene }} 2$ plane and the planes spanned by the NHC ring systems.
${ }^{[2]}$ Preliminary values due to poor single crystal X-ray diffraction data.

Table S6. Selected bond lengths $[\AA \AA]$ and angles $\left[{ }^{\circ}\right]$ of the $\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}\right\}_{2}\left(\mu, \eta^{3: 3}-\mathrm{P}_{3}\right)\right]^{-}$anion of $\mathbf{2}$ in the solid state.

d/A					$\boldsymbol{\alpha} /{ }^{\circ}$	
Fe1-P1	$2.1942(6)$	Fe2-P3	$2.1971(6)$	Fe1-P1-Fe2	$79.94(2)$	
Fe1-P2	$2.4221(6)$	P1-P2	$2.1601(8)$	Fe1-P2-Fe2	$71.315(18)$	
Fe1-P3	$2.1931(6)$	P2-P3	$2.1897(8)$	Fe1-P3-Fe2	$80.06(2)$	
Fe2-P1	$2.2015(6)$	Fe1-Fe2	$2.8236(4)$	P1-P2-P3	$95.21(3)$	
Fe2-P2	$2.4217(6)$					

Table S7. Selected bond lengths $[\AA \AA]$ and angles $\left[{ }^{\circ}\right]$ of 4 in the solid state.

d/ A			$\alpha 1^{\circ}$		
Cr1-P1	2.3954(7)	P1-Cr1-P2	52.02(2)	P1-Cr1-P2-C8	93.98(8)
Cr1-P2	2.4480(7)	P2-P1-Cr1	65.26(3)	P2-Cr1-P1-C1	93.37(8)
P1-P2	2.1246(8)	P1-P2-Cr1	62.71(2)		
P1-C	1.842(3)	C1-P1-Cr1	114.09(8)		
P2-C	1.835(3)	C8-P2-Cr1	112.90(8)		

5.6.6 References

[1] C. Schwarzmaier, A. Y. Timoshkin, G. Balázs, M. Scheer, Angew. Chem. Int. Ed. 2014, 53, 90779081.
[2] (a) R. B. King, J. Organomet. Chem. 1967, 8, 139-148.
(b) P. Leoni, A. Landi, M. Pasquali, J. Organomet. Chem. 1987, 321, 365-369.
(c) T. J. Jaeger, M. C. Baird, Organometallics 1988, 7, 2074-2076.
(d) C. Schwarzmaier, A. Y. Timoshkin, G. Balázs, M. Scheer, Angew. Chem. Int. Ed. 2014, 53, 90779081.
[3] N. Kuhn, T. Kratz, Syntheses 1993, 6, 561-562.
[4] A. J. Arduengo, R. Krafczyk, R. Schmutzler, H. A. Craig, J. R. Goerlich, W. J. Marschall, M. Unverzagt, Tetrahedron 1999, 55, 14523-14534.
[5] M. Schlosser, J. Hartmann, Angew. Chem. 1973, 85, 544-545; Angew. Chem. Int. Ed. Engl. 1973, 12, 508-509.
[6] TopSpin 3.0, Bruker BioSpin GmbH
[7] (a) F. Furche, R. Ahlrichs, C. Hättig, W. Klopper, M. Sierka, F. Weigend, WIREs Comput. Mol. Sci. 2014, 4, 91-100.
(b) R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kölmel, Chem. Phys. Lett. 1989, 162, 165-169.
(c) O. Treutler, R. Ahlrichs, J. Chem. Phys. 1995, 102, 346-354.
(d) TURBOMOLE V6.4, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, http://www.turbomole.com.
[8] (a) K. Eichkorn, O. Treutler, H. Oehm, M. Häser, R. Ahlrichs, Chem. Phys. Lett. 1995, 242, 652-660.
(b) K. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs, Theor. Chem. Acc. 1997, 97, 119.
[9] (a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652.
(b) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785-789.
(c) A. D. Becke, Phys. Rev. A 1988, 38, 3098-3100.
(d) S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200-1211.
(e) J. C. Slater, Phys. Rev. 1951, 81, 385-390.
[10] (a) A. Schäfer, C. Huber, R. Ahlrichs, J. Chem. Phys. 1994, 100, 5829.
(b) K. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs, Theor. Chem. Acc. 1997, 97, 119.
(c) F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.
(d) F. Weigend, Phys. Chem. Chem. Phys. 2006, 8, 1057.
[11] (a) K. Eichkorn, O. Treutler, H. Ohm, M. Häser, R. Ahlrichs, Chem. Phys. Lett. 1995, 242, 652-660.
(b) M. Sierka, A. Hogekamp, R. Ahlrichs, J. Chem. Phys. 2003, 118, 9136-9148.
[12] F. Weigend, Phys. Chem. Chem. Phys. 2006, 8, 1057-1065.
[13] NBO 6.0. E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, C. R. Landis, F. Weinhold (Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2013); http://nbo6.chem.wisc.edu/
[14] (a) R. F. W. Bader, Atoms in Molecules: A Quantum Theory, Oxford University Press, 1994.
(b) R. F. W. Bader, Chem. Rev. 1991, 91, 893-928.
[15] (a) T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580-592.
(b) http://sobereva.com/multiwfn.

5.7 Author contributions

Rebecca Grünbauer

Stephan Reichl

Gábor Balázs

- Synthesis and characterization of compounds 3 and 4.
- Performance of additional studies concerning the reactivity of \mathbf{A} and B towards $\mathrm{LiNME}_{2}, \mathrm{LiCH}_{2} \mathrm{SiMe}_{3}, \mathrm{KCHPh}_{2}$ and IDipp.
- Preparation of manuscript (including figures, schemes, tables and supplementary information) except for paragraphs on the topic of DFT calculations.
- Synthesis and characterization of compounds 1 and 2.
- Execution of DFT calculations.
- Preparation of manuscript (including figures, schemes, tables and supplementary information) for paragraphs on the topic of DFT calculations.
- Supervision of project.

6. The P_{4} butterfly complex $\left[\left\{\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right\}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]$: a starting material for P_{4} transfer processes

Rebecca Grünbauer and Manfred Scheer

6.1 Abstract

Herein, we report on a novel reactivity of $\left[\left\{\mathrm{Cp}{ }^{*} \operatorname{Cr}(\mathrm{CO})_{3}\right\}_{2}\left(\mu, \eta^{1: 1}-P_{4}\right)\right]\left(\mathrm{Cp}^{*}=\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5}\right.$; 1), which utilizes the selective cleavage of the two $P-C r$ bonds in 1 to initiate a substituent exchange yielding new P_{4} butterfly species. By means of NMR and IR spectroscopy studies, the successful generation of [\{Cp"'Fe(CO) $\left.{ }_{2}\right\}_{2}\left(\mu, \eta^{1: 1}-\right.$ $\left.\left.P_{4}\right)\right]\left(C p^{\prime \prime \prime}=C_{5} H_{2}^{t}{ }^{t} B u_{3} ; \boldsymbol{A}\right)$ and $\left[C p^{\prime \prime \prime}{ }_{2}\left(\mu, \eta^{1: 1}-P_{4}\right)\right](B)$ via the novel P_{4} butterfly transfer route originating from 1 could be confirmed. For this purpose, 1 was reacted with 2.0 eq. of $K\left[C p " F e(C O)_{2}\right]$ or $\mathrm{NaCp}{ }^{\prime \prime \prime}$, respectively, and a quantitative conversion of 1 could be detected alongside the formation of 2.0 eq. of the $\left[\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right]^{-}$ anion. Moreover, various syntheses of novel organometallic and organic P_{4} butterfly compounds were examined and first results show that the generation of different compounds is conceivable. However, the isolation and stabilization of these sensitive molecules proves to be a major challenge.

6.2 Introduction

The activation of small molecules like $\mathrm{CO}, \mathrm{N}_{2}$ or P_{4} is currently of great scientific interest as the understanding of the underlying mechanistic steps could solve many fundamental issues, e. g. uneconomical and hazardous synthetic processes on an industrial scale. ${ }^{[1]}$ In the field of P_{4} activation, compounds incorporating a tetraphospha-bicyclo[1.1.0]butane motif are formed in the first step of the activation of the P_{4} tetrahedron. ${ }^{[2]}$ The so called P_{4} butterfly compounds can serve as starting materials in the investigation of the reactivity of polyphosphorus ligand complexes and can therefore provide more insight in the mechanisms behind the first essential steps of P_{4} activation. Due to the expanding understanding of these processes, the generation of phosphorus containing compounds is expected to eventually become more economical, less hazardous and more selective.

Most commonly, P_{4} butterfly units are stabilized through coordination towards unsaturated organometallic fragments via the wing tip P atoms. The first example for a compound incorporating such a $\mathrm{P}_{4}{ }^{2-}$ structural motif was reported by Lindsell and Ginsberg in 1971: [(PPh3 $\left.)_{2} R h C l\left(\eta^{1: 1}-\mathrm{P}_{4}\right)\right] .{ }^{[3]}$ At first it was reported that within this complex an intact P_{4} tetrahedron coordinates towards the $\left\{\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{RhCl}\right\}$ fragment in a η^{2}-coordination mode. However, subsequent ${ }^{31} \mathrm{P}$ NMR spectroscopic experiments specified a complete cleavage of the $\mathrm{P}-\mathrm{P}$ bond affording a chelating P_{4} butterfly ligand. In contrast, bridging P_{4} butterfly complexes are stabilized by two (organometallic) substituents. The most famous representative of this class of P_{4} butterfly compounds is the complex $\left[\left\{\mathrm{Cp}^{\mathrm{R}} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]\left(\mathrm{Cp}^{\mathrm{R}}=\mathrm{Cp}{ }^{\prime \prime}\left(\mathrm{C}_{5} \mathrm{H}_{3}{ }^{\mathrm{t}} \mathrm{Bu}_{2}\right)\right.$ or $\mathrm{Cp}^{\prime \prime \prime}\left(\mathrm{C}_{5} \mathrm{H}_{2}{ }^{\mathrm{t}} \mathrm{Bu} u_{3}, \mathbf{A}\right)$), which was first obtained by Scherer et al. ${ }^{[4]}$ Interestingly, our group was able to optimize the synthesis of \mathbf{A}, which can be quantitatively obtained by reacting the dimeric $\left[\mathrm{Cpm}{ }^{\prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right]_{2}$ with elemental P_{4} at ambient conditions. ${ }^{[5]}$ The vast reaction potential of \mathbf{A} has been intensively studied under photolytic ${ }^{[4 a]}$ and thermolytic ${ }^{[4 b]}$ reaction conditions and the improved synthesis of \mathbf{A} initiated investigations concerning its coordination potential. ${ }^{[5,6]}$

Fluck et al. 1985

Cossairt and Cummins
2010

Poweret al 2005

Scheeret al.
2014
$C p^{R}=C p^{\mathrm{BIG}}, C p^{\prime \prime}, C p^{*}$ and $C p^{4 i P r}$

Scheme 1. Overview of neutral organo- P_{4} butterfly compounds (Dipp $=2,6-{ }^{-} \mathrm{Pr}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$, Mes $=2,4,6-$ $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}_{6} \mathrm{H}_{2}, \mathrm{Cp}^{\mathrm{BIG}}=\mathrm{C}_{5}\left(4-{ }^{\mathrm{n}} \mathrm{BuC}_{6} \mathrm{H}_{4}\right)_{5}, \mathrm{Cp}^{\prime \prime \prime}=\mathrm{C}_{5} \mathrm{H}_{2}{ }^{\mathrm{t}} \mathrm{Bu} \mathrm{u}_{3}, \mathrm{Cp}^{*}=\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5}, \mathrm{Cp}^{4 \mathrm{Pr}}=\mathrm{C}_{5} \mathrm{H}^{\mathrm{i}} \mathrm{Pr}_{4}\right)$.

Next to investigations concerning P_{4} butterfly compounds that are stabilized by organometallic fragments, the scientific community shares great interest in the synthesis of P_{4} butterfly units with organic substituents. Only
a few of them are known so far and therefore the need for an easy synthetic access to novel "organo- P_{4} butterfly" complexes is obvious (Scheme 1). After theoretical suggestions that a [$\left.\mathrm{C}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]$ motif is thermodynamically stable ${ }^{[7]}$, Fluck et al. were the first to report on the successful synthesis of the bright orange [Mes $\left.{ }_{2}\left(\mu, \eta^{1: 1}-P_{4}\right)\right]$ (Mes* $=2,4,6-{ }^{\text {t }} \mathrm{Bu}_{3} \mathrm{C}_{6} \mathrm{H}_{2}$) in 1985 (Scheme 1). ${ }^{[8]}$ Implying different sterically demanding ligands, the group of Power was able to isolate [$\left.\mathrm{Ar}^{\mathrm{Dipp}}{ }_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]\left(\mathrm{Ar}^{\mathrm{Dipp}}=2,6-\left(2,6-\mathrm{Pr}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right.$, Scheme 1) while Cummins and Cossairt reported on the synthesis of $\left[\operatorname{Dmp}_{2}\left(\mu, \eta^{1: 1}-P_{4}\right)\right.$] (Dmp $=2,6-(2,4,6-$ $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$, Scheme 1). ${ }^{[9]}$ One common feature of all these compounds is the fact that the P_{4} unit is connected to an aromatic substituent via a sp^{2} hybridized carbon atom. However, our group was able to demonstrate that a substitution via a sp^{3} hybridized carbon atom is possible as well by synthetizing various $\left[C^{R}{ }_{2}\left(\mu, \eta^{1: 1}-P_{4}\right)\right]$ compounds that incorporate cyclopentadienyl ligands $\left(C_{p}^{R}=C p^{B I G}\left(C_{5}\left(4-{ }^{n} B u-C_{6} H_{4}\right) 5\right.\right.$, $C p^{*}\left(\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5}\right), \mathrm{Cp}^{\prime \prime \prime}\left(\mathrm{C}_{5} \mathrm{H}_{2}{ }^{\mathrm{t}} \mathrm{Bu}_{3}\right), \mathrm{C} p^{4 \mathrm{Pr}}\left(\mathrm{C}_{5} \mathrm{H}^{\prime} \mathrm{Pr}_{4}\right)$; Scheme 1$){ }^{[10]}\left[\mathrm{Cp}^{\mathrm{BIG}}{ }_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]$ was obtained by reacting P_{4} with $\mathrm{Cp}^{\mathrm{BIG}}$ radicals, which were generated from the reaction of $\mathrm{NaCp}^{B / G}$ with CuBr . For Cp ligands that do not generate comparingly stable radical species (e.g. $\mathrm{Cp}^{*}, \mathrm{Cp} p^{\prime \prime \prime}$ and $\mathrm{Cp}^{4 \mathrm{iPr}}$), another reaction pathway starting from $\mathrm{FeBr}_{3}, \mathrm{MCp}^{R}\left(\mathrm{M}=\mathrm{Li}\right.$ or Na) and P_{4} was implied as the supporting $\mathrm{Fe}^{1 /} / \mathrm{Fe}^{1 I I}$ redox system enables the formation of a Cp° radical from a Cp^{-}anion.

Scheme 2. Proposed P_{4} activation/transfer reaction mechanism starting from 1.

Previous experiments and theoretical calculations delineate that the $\mathrm{Cr}-\mathrm{P}$ bonds in $\left[\left\{\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right\}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]$ (1, dissociation energy: $67.47 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$) are easily cleaved in comparison to the $\mathrm{Fe}-\mathrm{P}$ bonds in \mathbf{A} (dissociation energy: $\left.142.91 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}\right) \cdot{ }^{[11]}$ Hence, the question arose whether it is possible to utilize this remarkable feature of 1 . Therefore, the idea to specifically break the $\mathrm{P}-\mathrm{Cr}$ bonds of 1 and attach new ligands on the resulting naked P_{4} butterfly motif came to mind. This straightforward substituent exchange might grant a foothold in the generation of a plethora of unprecedented P_{4} butterfly compounds that cannot be obtained from a more classical approach (e.g. reacting P_{4} with the corresponding dimer of the substituent like in the classical synthetic approach to obtain A, vide supra). Moreover, if the released chromium substituent of 1 could be isolated from the reaction mixture, the chromium dimer $\left[\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right]_{2}$ could be recovered with the help of a
suitable oxidizing agent. [$\left.\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right]_{2}$ could once again be reacted with P_{4} to obtain 1 initiating another cycle of the P_{4} activation / P_{4} transfer procedure (Scheme 2). Consequently, the unique reactivity of 1 could introduce a synthetic pathway not only towards the generation of unprecedented P_{4} butterfly compounds but also in terms of chemical efficiency as it might eventually enable a semi-catalytic transfer of P_{4} butterfly moieties.

6.3 Results and Discussion

6.3.1 Organometallic substituents

1

quant.

Scheme 3. Successful substituent transfer starting from 1 yielding A.

To test out the proposed substituent transfer, 1 was reacted successfully with 2.0 eq. of $\mathrm{K}\left[\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right]$ quantitatively yielding the known \mathbf{A} and 2.0 eq. of $\mathrm{K}\left[\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right]$ after 17 hours (Scheme 3). NMR and IR spectroscopy confirmed the quantitative formation of \mathbf{A} without any side reactions (cf. SI). Consequently, it can be stated that the proposed substituent transfer deriving from 1 is generally possible. A red solution of \mathbf{A} could be isolated from the crude reaction mixture upon the extraction with n-hexane leaving behind $\mathrm{K}\left[\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right]$ as a yellow solid. The clean separation of the two reaction products due to different solubilities is a great starting point for the desired recovery of $\left[\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right]_{2}$ to ultimately achieve a semi-catalytic P_{4} activation/transfer procedure.

The successful substituent transfer converting the chromium P_{4} butterfly complex 1 into the iron P_{4} butterfly complex \mathbf{A} is a compelling incentive to expand the investigations towards the generation of novel P_{4} butterfly compounds. Therefore, various organometallic reagents were reacted with 1 in accordance to the successful reaction with $\mathrm{K}\left[\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right]$. Hereby, one approach towards the generation of novel P_{4} butterfly complexes was to incorporate smaller Cp ligands like the unsubstituted Cp and the symmetrical Cp^{*} (e.g. reacting 1 with $\mathrm{K}\left[\mathrm{CpFe}(\mathrm{CO})_{2}\right]$ and $\left.\mathrm{K}\left[\mathrm{Cp}{ }^{*} \mathrm{Fe}(\mathrm{CO})_{2}\right]\right) \cdot{ }^{[12]}$ Another approach was to react 1 with $\mathrm{K}\left[\mathrm{Cp}^{\prime} \mathrm{Mo}(\mathrm{CO})_{3}\right], \mathrm{K}\left[\mathrm{CpW}(\mathrm{CO})_{3}\right]$ and $\mathrm{Na}\left[\mathrm{Cp}^{\prime \prime} \mathrm{W}(\mathrm{CO})_{3}\right]$ in order to obtain P_{4} butterfly complexes of the heavier homologs of chromium. However, all of the employed reagents gave the same result. In the ${ }^{31} \mathrm{P}$ NMR spectra of the reaction mixtures no signals corresponding to the starting material 1 or newly formed P_{4} butterfly compounds could be obtained. On the contrary, an almost quantitative conversion affording P_{4} was recorded alongside the occasional formation of small amounts of $\left[\mathrm{Cp}^{*} \mathrm{Cr}(\mathrm{CO})_{2}\left(\eta^{3}-\mathrm{P}_{3}\right)\right]$, a common byproduct of all manipulations of 1 . Moreover, IR spectroscopic investigations confirmed that for the reactions of 1 with $\mathrm{K}\left[\mathrm{CpFe}(\mathrm{CO})_{2}\right]$ and $\mathrm{K}\left[\mathrm{Cp}{ }^{*} \mathrm{Fe}(\mathrm{CO})_{2}\right]$ the corresponding $\left[\mathrm{Cp}^{\mathrm{R} F e}(\mathrm{CO})_{2}\right]_{2}$ dimers ($\mathrm{Cp}: \tilde{v} \mathrm{co}\left[\mathrm{cm}^{-1}\right]=1952,1937,1783 ; \mathrm{Cp}^{*}: \tilde{v}_{\mathrm{co}}\left[\mathrm{cm}^{-1}\right]=1959,1924,1755$
cm^{-1}; both recorded in toluene) can be detected in the reaction mixture. Additionally, bands corresponding to $\mathrm{K}\left[\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right]$ could be identified as well $\left(\tilde{v} \mathrm{co}\left[\mathrm{cm}^{-1}\right]=1994\right.$, 1873; recorded in toluene).

This observation confirms that the initial step in the P_{4} transfer process, the cleavage of the $\mathrm{Cr}-\mathrm{P}$ bonds of 1 affording $\left[\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right]^{]}$, occurred effectively. Consequently, unsubstituted P_{4} butterfly moieties are expected to be present in the reaction solution available for the coordination towards the newly introduced organometallic fragments forming novel P_{4} butterfly compounds. However, the newly obtained P_{4} butterfly compounds (e.g. $\left[\left\{\mathrm{CpFe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]$) are most likely thermodynamically very unstable, instantly decomposing to afford P_{4} and the corresponding organometallic dimer (e.g. $\left[\mathrm{CpFe}(\mathrm{CO})_{2}\right]_{2}$; Scheme 4).

Scheme 4. Proposed reaction of $\mathbf{1}$ with $\mathrm{K}\left[\mathrm{CpFe}(\mathrm{CO})_{2}\right]$ as an example of the instant decomposition of the newly obtained P_{4} butterfly compounds of the substituent transfer experiments.

Unfortunately, no method could be established to stabilize, obtain, isolate and eventually characterize the expected novel P_{4} butterfly complexes due to their presumed instability. Yet, the detection of the expected decomposition products $\mathrm{K}\left[\mathrm{Cp}^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right],\left[\mathrm{CpM}(\mathrm{CO})_{\mathrm{x}}\right]_{2}$ and P_{4} suggest the instant fragmentation of the newly formed P_{4} butterfly compounds.

Most likely, the smaller cyclopentadienyl ligands (Cp, Cp * and Cp) cannot provide the stabilization introduced by the steric hindrance of the $\mathrm{Cp}^{\prime \prime \prime}$ ligand of the $\left[\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{Cp} "\right]$ fragment, which is apparently essential to the stability of \mathbf{A}. Therefore, P_{4} butterfly compounds incorporating the smaller Cp derivatives appear to be not accessible via this novel P_{4} butterfly transfer reaction pathway. Additionally, the implementation of the heavier transition elements Mo and W did not result in the formation of the desired novel P_{4} butterfly compounds as well. For molybdenum and tungsten no P_{4} butterfly compounds are known so far. [\{CpM $\left.\left.(C O)_{2}\right\}_{2}\left\{\mu, \eta^{2: 2}-P_{2}\right\}\right]$ and $\left[\mathrm{CpM}(\mathrm{CO})_{2}\left(\eta^{3}-\mathrm{P}_{3}\right)\right](\mathrm{M}=\mathrm{Mo}, \mathrm{W})$ are the only species obtained from reacting P_{4} with $\left[\mathrm{CpM}(\mathrm{CO})_{2}\right]_{2}$ or $\left[\mathrm{CpM}(\mathrm{CO})_{3}\right]_{2}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$ under thermolytic conditions. ${ }^{[13]}$ Consequently, molybdenum and tungsten substituted P_{4} butterfly compounds might not be thermodynamically stable but decompose instantly.

6.3.2 Organic substituents

Scheme 5. Successful substituent transfer starting from 1 yielding B.

Next to the formation of novel organometallic P_{4} butterfly complexes, the unique reactivity of 1 could be the ideal starting point for an alternative synthetic pathway in the generation of organo- P_{4} butterfly compounds. To test this hypothesis, 1 was reacted with two equivalents of $\mathrm{NaCp}^{\prime \prime \prime}$, proposing the formation of the already known [Cp $\left.{ }^{\prime \prime \prime}{ }_{2}\left(\mu, \eta^{1: 1}-P_{4}\right)\right]$ (B) by means of the above discussed P_{4} butterfly transfer processes. Through ${ }^{31} \mathrm{P}$ NMR spectroscopy a successful reaction and moreover an improved selectivity in comparison to the original synthesis, incorporating $\mathrm{FeBr}_{3}, \mathrm{NaCp}^{\prime \prime \prime}$ and P_{4}, could be detected. ${ }^{[10]}$ In the previous synthetic approach the isomer depicted in Scheme 5 was obtained in approx. 35% yield alongside three other constitutional isomers varying in the arrangement of the 'Bu substituents of the Cp"' ligands. In contrast, the depicted isomer of B could be identified as the main product from the substituent transfer originating from 1 with a relative amount of 84% in respect to all obtained isomers of \mathbf{B}. The ABMN spin system of the depicted isomer of \mathbf{B} affords four elaborate multiplets in the corresponding ${ }^{31} \mathrm{P}$ NMR spectrum, which could be further examined by simulation. In comparison to the ${ }^{31} \mathrm{P}$ NMR chemical shifts given in literature ${ }^{[10]}$, the signals in the ${ }^{31} \mathrm{P}$ NMR spectrum recorded for the reaction of 1 with 2.0 eq. $\mathrm{NaCp}^{\prime \prime \prime}$ are slightly shifted (Table 1). One explanation for this observation could be the interference of a paramagnetic chromium compound present in the reaction solution.

Table 1. Comparison of the previously reported ${ }^{31} \mathrm{P}$ NMR spectrum of the depicted isomer of \mathbf{B} and the corresponding signals in the simulated ${ }^{31}$ P NMR spectrum from the reaction of 1 with 2.0 eq. NaCp"' (both recorded in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 300 K).

		P_{A}	PB	PM	P_{N}
δ [ppm]	reported ${ }^{[10]}$	-154.6	-162.5	-324.8	-352.1
	recorded	-126.6	-132.0	-312.4	-343.2
		191 (AM)	175 (BN)	191 (AM)	175 (BN)
	reported ${ }^{[10]}$	175 (AN)	191 (BM)	175 (BM)	191 (AN)
		317 (AB)	317 (AB)	173 (MN)	173 (MN)
J [Hz]					
		187 (AM)	169 (BN)	187 (AM)	169 (BN)
	recorded	208 (AN)	195 (BM)	195 (BM)	207 (AN)
		348 (AB)	348 (AB)	177 (MN)	177 (MN)

Motivated by the successful synthesis of \mathbf{B}, the reaction of 1 with NaCp * was analogously studied to investigate, if this synthetic route can be applied to obtain organo- P_{4} butterfly complexes with sterically less demanding substituents as well. Surprisingly, an immediate conversion of 1 accompanied by the quantitative formation of P_{4} could be observed in the ${ }^{31} P$ NMR spectrum suggesting that if $\left[C p^{*} 2\left(\mu, \eta^{1: 1}-P_{4}\right)\right]$ is formed, it decomposes instantly. This was not to be expected as previous reports proved that $\left[\mathrm{Cp}^{*} 2\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]$ is a stable compound. ${ }^{[10]}$ Variable temperature ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy delineates that lowering the reaction temperature does not facilitate the formation of the desired product (cf. SI). Below 223 K no conversion of the starting material can be detected. When the sample is heated above this temperature a constant increase in P_{4} can be detected without the formation of a novel P_{4} butterfly intermediate. Consequently, a rapid decomposition of an instable reaction product, which cannot be detected on an NMR time scale, affording P_{4} can be stated.

Hence, the above discussed reaction of 1 with alkali cyclopentadienyl compounds is not a universal reaction pathway for the formation of novel organo- P_{4} butterfly compounds. Consequently, a different class of reactive organic substituents was studied. Therefore, $\mathrm{Ph}_{3} \mathrm{CCl}$ and $\mathrm{Ph}_{2} \mathrm{CHCl}$, respectively, were reacted with AlCl_{3} to afford the reactive cations $\mathrm{Ph}_{3} \mathrm{C}^{+}$and $\mathrm{Ph}_{2} \mathrm{CH}^{+}$, respectively. In a second step, these activated carbon species were reacted with 1 in order to perform the abstraction of the $\left[\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right]$ fragment and the subsequent $\mathrm{P}-\mathrm{C}$ bond formation.

First experiments on an NMR spectroscopic scale gave promising results. For the reactions of $\mathbf{1}$ with 2.0 eq. of $\mathrm{Ph}_{3} \mathrm{CCl} / \mathrm{AlCl}_{3}$ and $\mathrm{Ph}_{2} \mathrm{CHCl} / \mathrm{AICl}_{3}$, respectively, two triplets assignable to new P_{4} butterfly species could be detected in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra, respectively $\left(\left[\mathrm{Ph}_{3} \mathrm{C}\right]^{+}: \delta[\mathrm{ppm}]=16.2\left(\mathrm{t},{ }^{1} \mathrm{JPP}=238 \mathrm{~Hz}, 2 \mathrm{P}\right),-313.6(\mathrm{t}\right.$, $\left.{ }^{1} \mathrm{~J}_{\mathrm{PP}}=238 \mathrm{~Hz}, 2 \mathrm{P}\right)$, Fig. 1; $\left[\mathrm{Ph} \mathrm{h}_{2} \mathrm{CH}\right]^{+}: \delta[\mathrm{ppm}]=25.4\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{PP}}=273 \mathrm{~Hz}, 2 \mathrm{P}\right),-301.2\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{PP}}=273 \mathrm{~Hz}, 2 \mathrm{P}\right)$). However, the apparently quantitative formation of these new compounds is not reproducible and upscaling of the reaction lead to major difficulties. For example, reasonable amounts of byproducts like $\left[\mathrm{Cr}(\mathrm{CO})_{3} \mathrm{Cp} * \mathrm{X}\right]$ ($\mathrm{X}=\mathrm{CO}$ or Cl) and $\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{Cr}_{2} \mathrm{Cl}_{3}\right]$ could be isolated from the reaction mixture and characterized. Additionally, a blue fluorescent oil could be extracted from the crude reaction mixture of the reaction of 1 with $\mathrm{Ph}_{2} \mathrm{CHCl}^{2} / \mathrm{AlCl}_{3}$. This suggest that a deprotonation of $\mathrm{Ph}_{2} \mathrm{CH}^{+}$followed by a dimerization affording $\mathrm{Ph}_{2} \mathrm{C}=\mathrm{CPh}_{2}$ occurred. To rule out that AICl_{3} is the culprit of the side reactions, alternative chloride abstractors like TIPF 6 were used and the reaction was repeated in the presence of a base (NBU). Unfortunately, no conversion could be detected at all when adding these reagents.

Another approach to eliminate the side effects of AlCl_{3} on the reaction, was reacting 1 with $\left[\mathrm{Ph}_{3} \mathrm{C}\right]\left[\mathrm{BF}_{4}\right]$ instead of utilizing $\mathrm{Ph}_{3} \mathrm{CCl}$ and AlCl_{3}. Surprisingly, a different ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum compared to the one obtained after the reaction of 1 with $\mathrm{Ph}_{3} \mathrm{CCI}^{2} / \mathrm{AICl}_{3}$ was recorded (Fig. 1). Instead of two triplets assignable to a new P_{4} butterfly species, the reaction of 1 with $\left[\mathrm{Ph}_{3} \mathrm{C}\right]^{+}\left[\mathrm{BF}_{4}\right]^{-}$afforded two multiples at $\delta=66.6 \mathrm{ppm}$ and $\delta=82.8 \mathrm{ppm}$ in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum. The splitting patterns of these multiplets are very similar to the ones of the signals reported for the 6π-aromatic $\mathrm{P}_{4} \mathrm{R}_{2}$ ligand found in $\left[\left\{\left(\mathrm{Cp} \mathrm{\prime} \mathrm{\prime F} \mathrm{Fe}(\mathrm{CO})_{2}\right)_{2}\left(\mu_{3,}, \eta^{1: 1: 4}-\mathrm{P}_{4}\right)\right\} 2 \mathrm{Fe}\right][\mathrm{PF} 6]_{2}\left(\delta\left({ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\right.\right.$ NMR) $=91.7 \mathrm{ppm}$ and 114.3 ppm$).{ }^{[6 \mathrm{cc]}}$ Consequently, it can be proposed that no substituent transfer on the intact P_{4} butterfly moiety occurred but some sort of rearrangement of the central P_{4} scaffold arose. Unfortunately, all attempts to crystalize, isolate or further characterize the intriguing reaction product failed. In order to increase the accessibility of the product an excess of $\left[\mathrm{Cr}(\mathrm{CO})_{4}(\mathrm{nbd})\right]$ ($\mathrm{nbd}=$ norbornadiene) was added to the reaction mixture assuming that a coordination of the newly formed P_{4} ligand motif towards $\left[\mathrm{Cr}(\mathrm{CO})_{4}\right]$ fragments would facilitate crystallization. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR experiments confirmed the successful coordination of $\left[\mathrm{Cr}(\mathrm{CO})_{4}\right]$ fragments as a remarkable upfield shift of approx. 130 ppm and a change in the
splitting pattern of the detected signal could be observed resulting in a very broad multiplet with a chemical shift of $\delta=-57.3 \mathrm{ppm}$. However, the resulting product appears to be a brown oil not feasible for further investigation. Furthermore, the reaction was performed analogously with $\left[\mathrm{Ph}_{3} \mathrm{C}\right]^{+}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]^{-}$in order to promote crystallization by anion exchange. However, only a quantitative conversion to P_{4} could be detected in the ${ }^{31} \mathrm{P}$ NMR spectrum of this reaction. Additionally, the reaction was performed with \mathbf{A} as well, as the lower solubility of the $\mathrm{Cp}{ }^{\prime \prime \prime}$ ligand in comparison to the $\mathrm{Cp}{ }^{*}$ ligand facilitates isolation. However, no conversion could be detected for the reaction of \mathbf{A} with $\left[\mathrm{Ph}_{3} \mathrm{C}\right]^{+}\left[\mathrm{BF}_{4}\right]^{-}$by NMR spectroscopic experiments. Consequently, $\mathbf{1}$ is once again the more intriguing starting material due to its increased and more unique reactivity. However, the insufficiency of means to isolate the obtained products in a major setback.

Figure 1. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the crude reaction mixtures of the reaction of 1 with 2.0 eq. $\left[\mathrm{Ph}_{3} \mathrm{C}^{+}\left[\mathrm{BF}_{4}\right]^{-}\right.$(top) and the reaction of 1 with 2.0 eq. $\mathrm{Ph}_{3} \mathrm{CCl}^{2} / \mathrm{AlCl}_{3}$ (bottom; both recorded in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 300 K).

6.4 Conclusion

Scheme 6. Successful substituent transfer reactions starting from 1.

In conclusion, the rather weak $\mathrm{P}-\mathrm{Cr}$ bonds in 1 enable an unprecedent reactivity pathway for P_{4} butterfly compounds by allowing selective substituent transfer. Although first results were very promising, the substituent exchange starting from 1 could not produce any novel P_{4} butterfly compounds so far. However, the fact that already known P_{4} butterfly compounds could be obtained by this reaction pathway is affirming (Scheme 6). A and \mathbf{B} could be obtained from this novel synthetic pathway and in the case of \mathbf{B} even an increase in selectivity could be observed compared to the literature procedure. Maybe fine tuning the reaction conditions, improving the steric demand of the substituents or the implementation of more thermodynamically stable substituents could promote the successful generation of novel P_{4} butterfly compounds from the novel reactivity we found for $\mathbf{1}$. Control experiments showed, that \mathbf{A} does not display this kind of reactivity further manifesting that 1 is the more diverse reagent compared to the traditional P_{4} butterfly compound \mathbf{A}. Moreover, the clean separation of $\mathrm{K}\left[\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right]$ in the successful P_{4} butterfly transfer from $\mathbf{1}$ to \mathbf{A} is the first step to recover the released chromium substituent and eventually retrieve $\left[\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right]_{2}$ to start another cycle in the semi-catalytic P_{4} activation/transfer process.

6.5 References

[1] (a) N. Hazari, Chem. Soc. Rev. 2010, 39, 4044-4056.
(b) I. Mellone, F. Bertini, L. Gonsalvi, A. Guerriero, M. Peruzzini, Chimia 2015, 69, 331-338.
(c) Z. Turner, Inorganics 2015, 3, 597.
(d) R. A. Henderson, Trans. Met. Chem. 1990, 15, 330-336.
(e) V. P. Indrakanti, J. D. Kubicki, H. H. Schobert, Energy Environ. Sci. 2009, 2, 745-758.
(f) X. Yin, J. R. Moss, Coord. Chem. Rev. 1999, 181, 27-59.
[2] (a) B. M. Cossairt, N. A. Piro, C. C. Cummins, Chem. Rev. 2010, 110, 4164-4177.
(b) M. Caporali, L. Gonsalvi, A. Rossin, M. Peruzzini, Chem. Rev. 2010, 110, 4178-4235.
(c) M. Scheer, G. Balázs, A. Seitz, Chem. Rev. 2010, 110, 4236-4256.
(d) N. A. Giffin, J. D. Masuda, Coord. Chem. Rev. 2011, 255, 1342-1359.
[3] A. P. Ginsberg, W. E. Lindsell, J. Am. Chem. Soc. 1971, 93, 2082-2084.
[4] (a) O. J. Scherer, G. Schwarz, G. Wolmershäuser, Z. Anorg. Allg. Chem 1996, 622, 951-957.
(b) O. J. Scherer, T. Hilt, G. Wolmershäuser, Organometallics 1998, 17, 4110-4112.
[5] C. Schwarzmaier, S. Heinl, G. Balázs, M. Scheer, Angew. Chem. Int. Ed. Engl. 2015, 54, 1311613121.
[6] (a) M. Eberl, Ph.D. thesis, University of Regensburg (Regensburg), 2011.
(b) C. Schwarzmeier, Ph.D. thesis, University of Regensburg (Regensburg), 2012.
(c) J. Müller, S. Heinl, C. Schwarzmaier, G. Balázs, M. Keilwerth, K. Meyer, M. Scheer, Angew. Chem. Int. Ed. 2017, 56, 7312 - 7317.
[7] (a) W. Schoeller, C. Lerch, Inorg. Chem. 1983, 22, 2992-2998
(b) W. W. Schoeller, V. Staemmler, P. Rademacher, E. Niecke, Inorg. Chem. 1986, 25, 4382-4385
[8] Riedel, R., Hausen, H.-D. and Fluck, E., Angew. Chem. Int. Ed. Engl. 1985, 24, 1056-1057.
[9] (a) A. R. Fox, R. J. Wright, E. Rivard, P.P.Power, Angew. Chem. Int Ed. 2005, 44, 7729-7733.
(b) B. M. Cossairt, C. C. Cummins, New. J. Chem. 2010, 35, 1533-1536.
[10] S. Heinl, S. Reisinger, C. Schwarzmaier, M. Bodensteiner, M. Scheer, Angew. Chem. Int. Ed. 2014, 53, 7639-7642.
[11] (a) Cf. other chapters of this thesis.
(b) R. Grünbauer, Master thesis, University of Regensburg (Regensburg), 2016.
[12] $\left[\left\{\mathrm{Cp}{ }^{*} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]$ was proposed by ${ }^{31} \mathrm{P}$ NMR spectroscopy $\left(\delta[p p m]=-46.5\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{AB}}=185 \mathrm{~Hz}\right.\right.$, $\left.2 \mathrm{P}, \mathrm{P}_{\mathrm{A}}\right),-337.5\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{AB}}=185 \mathrm{~Hz}, 2 \mathrm{P}, \mathrm{P}_{\mathrm{B}}\right.$); recorded in a thf reaction solution), however it decomposes during workup and could therefore not be structurally characterized yet: L. Weber, U. Sonnenberg, Chem. Ber. 1991, 124, 725-728.
[13] (a) O. J. Scherer, H. Sitzmann, G. Wolmershäuser, J. Organomet. Chem. 1984, 268, C9.
(b) O. J. Scherer, H. Sitzmann, G. Wolmershäuser, Angew. Chem. Int. Ed. Engl. 1985, 24, 351.
(c) L. Y. Goh, C. K. Chu, R. C. S. Wong, J. Chem. Soc. Dalton Trans. 1989, 1, 1951-1956.

6.6 Supplementary Information

6.6.1 General remarks

All experiments were performed under an inert gas atmosphere of dry argon or nitrogen using standard Schlenk and Glovebox techniques. Residues of oxygen and water were removed from the inert gas by passing it over a BASF R $3-11\left(\mathrm{CuO} / \mathrm{MgSiO}_{3}\right)$ catalyst, concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ and finally granulated silica gel. Dry solvents were collected from a Braun SPS Apparatus and degassed prior to use. The deuterated solvents $\mathrm{C}_{6} \mathrm{D}_{6}$ and $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ were degassed and dried by stirring with Na / K alloy and CaH_{2}, respectively, followed by distillation. After the distillation, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ was additionally stored over molecular sieve ($3 \AA$) which had previously been dried for four hours under high vacuum at $100^{\circ} \mathrm{C}$.

NMR spectra were recorded at the NMR department of the University Regensburg using a Bruker Advance 300 or 400 spectrometer. Samples are referenced against TMS $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right)$ or $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}\left({ }^{31} \mathrm{P}\right)$ as external standards. Chemical shifts [δ] are reported in ppm and coupling constants [J] in Hz. The spectra were processed using the TopSpin 3.5 software (Bruker) and the WIN-DAISY module of this software was used to perform simulations. ${ }^{[1]}$ IR spectra were recorded on a FT-IR spectrometer from DIGILAB (FTS 800) for diluted solutions sealed between KBr plates.

The starting materials $\left[\left\{\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right\}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right](1)^{[2]}, \mathrm{NaCp}{ }^{*[3]}, \mathrm{NaCp}{ }^{\prime \prime[4]}, \quad\left[\mathrm{Cr}(\mathrm{CO})_{4}(\mathrm{nbd})\right]^{[5]}$ were prepared according to literature procedures. For $\mathrm{Na}\left[\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right]$, $\mathrm{K}\left[\mathrm{CpFe}(\mathrm{CO})_{2}\right]$, $\mathrm{K}\left[\mathrm{Cp}{ }^{*} \mathrm{Fe}(\mathrm{CO})_{2}\right] \mathrm{K}\left[\mathrm{Cp}{ }^{\prime} \mathrm{Mo}(\mathrm{CO})_{3}\right]$, $\mathrm{K}\left[\mathrm{CpW}(\mathrm{CO})_{3}\right]$ and $\mathrm{Na}\left[\mathrm{Cp} \mathrm{\prime} \mathrm{\prime W}(\mathrm{CO})_{3}\right]$ the synthesis was performed as a variation of the instructions for the preparation of the respective Cp compounds. ${ }^{[6]}\left[\mathrm{Ph}_{3} \mathrm{C}\right]\left[\mathrm{BF}_{4}\right],\left[\mathrm{Ph}_{3} \mathrm{C}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right], \mathrm{Ph}_{3} \mathrm{CCI}, \mathrm{Ph}_{2} \mathrm{CHCl}, \mathrm{AlCl}_{3}, \mathrm{TIPF} 6$ and 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) are commercially available and were used without further modification.

6.6.2 Organometallic substituents

6.6.2.1 Experimental setup

To an orange-brown solution of $1(20 \mathrm{mg}, 0.03 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in 5 mL toluene a solution of 2.0 eq . $\mathrm{K}\left[\mathrm{Cp}^{\mathrm{R}} \mathrm{M}(\mathrm{CO})_{\mathrm{x}}\right](0.06 \mathrm{mmol})$ in toluene $(5 \mathrm{~mL})$ was added dropwise. No immediate color change could be observed, and the reaction mixture was stirred overnight at room temperature. Subsequently, the solution was concentrated and transferred to an NMR tube with a $\mathrm{C}_{6} \mathrm{D}_{6}$ capillary.

For the reaction with $\mathrm{Na}\left[\mathrm{Cp} \mathrm{\prime} \mathrm{\prime} \mathrm{Fe}(\mathrm{CO})_{2}\right]$ the solvent was removed from the reaction mixture under reduced pressure affording a mixture of yellow and red solid. By extraction with n-hexane a red solution (A) could be separated from the yellow residue $\left(\mathrm{Na}\left[\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right]\right)$. The solvent from the extract was subsequently removed in vacuo.

Experimental data

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (toluene with $\mathrm{C}_{6} \mathrm{D}_{6}$ capillary, 300 K))
$\mathrm{Na}\left[\mathrm{Cp} \mathrm{\prime} \mathrm{\prime} \mathrm{\prime} \mathrm{Fe}(\mathrm{CO})_{2}\right] \quad \delta[p p m]=-82.5\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{AB}}=186 \mathrm{~Hz}, 2 \mathrm{P}, \mathbf{A}\right),-324.7\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{AB}}=186 \mathrm{~Hz}, 2 \mathrm{P}, \mathbf{A}\right)$.

$\mathrm{K}\left[\mathrm{CpFe}(\mathrm{CO})_{2}\right]$	$\delta[p p m]=-512.6\left(\mathrm{~s}, \mathrm{P}_{4}\right)$.
$\mathrm{K}\left[\mathrm{Cp}{ }^{*} \mathrm{Fe}(\mathrm{CO})_{2}\right]$	$\delta[p p m]=-512.6\left(\mathrm{~s}, \mathrm{P}_{4}\right)$.
$\mathrm{K}\left[\mathrm{Cp}{ }^{\prime} \mathrm{Mo}(\mathrm{CO})_{3}\right]$	$\begin{aligned} & \delta[p p m]=-95.0\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{AB}}=196 \mathrm{~Hz}, 2 \mathrm{P}, 1\right),-273.6\left(\mathrm{~s}, 1.2 \mathrm{P},\left[\mathrm{Cp} * \mathrm{Cr}(\mathrm{CO})_{2}\left(\mathrm{n}^{3}-\mathrm{P}_{3}\right)\right]\right),-327.2 \\ & \left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{AB}}=196 \mathrm{~Hz}, 2 \mathrm{P}, 1\right),-522.6\left(\mathrm{~s}, 21.7 \mathrm{P}, \mathrm{P}_{4}\right) . \end{aligned}$
$\mathrm{K}\left[\mathrm{CpW}(\mathrm{CO})_{3}\right]$	$\delta[p p m]=-273.6\left(\mathrm{~s}, 1.2 \mathrm{P},\left[\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{2}\left(\mathrm{n}^{3}-\mathrm{P}_{3}\right)\right]\right),-522.8\left(\mathrm{~s}, 21.7 \mathrm{P}, \mathrm{P}_{4}\right)$.
$\mathrm{Na}\left[\mathrm{Cp}{ }^{\prime \prime} \mathrm{W}(\mathrm{CO})_{3}\right]$	$\begin{aligned} & \delta[p p m]=-95.0\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{AB}}=196 \mathrm{~Hz}, 2 \mathrm{P}, 1\right),-273.5\left(\mathrm{~s}, 0.5 \mathrm{P},\left[\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{2}\left(\mathrm{n}^{3}-\mathrm{P}_{3}\right)\right]\right),-327.4 \\ & \left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{AB}}=196 \mathrm{~Hz}, 2 \mathrm{P}, 1\right),-522.2\left(\mathrm{~s}, 2.7 \mathrm{P}, \mathrm{P}_{4}\right) . \end{aligned}$
IR (toluene)	
$\mathrm{Na}\left[\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right]$	$\tilde{v}_{\mathrm{co}}\left[\mathrm{cm}^{-1}\right]=2000$ (s), 1990 (s), 1949(s), 1942 (s), 1765 (w).
$\mathrm{K}\left[\mathrm{CpFe}(\mathrm{CO})_{2}\right]$	$\tilde{v}_{\mathrm{co}}\left[\mathrm{cm}^{-1}\right]=1995$ (s), 1952 (w), 1936 (s), 1914 (m), 1874 (s), 1782 (s), 1726 (m, br).
$\mathrm{K}\left[\mathrm{Cp} * \mathrm{Fe}(\mathrm{CO})_{2}\right]$	$\tilde{v}_{\mathrm{co}}\left[\mathrm{cm}^{-1}\right]=1994$ (m), 1972 (w), 1959 (w), 1924 (s), 1873 (s), 1755 (m), 1727 (w).

6.6.2.2 IR spectroscopic experiments

Figure S1. IR spectrum of the red solution extracted with n-hexane from the crude reaction product of the reaction of 1 with 2.0 eq. $\mathrm{Na}\left[\mathrm{Cp} " \mathrm{Fe}(\mathrm{CO})_{2}\right]$ (recorded in toluene); the bands corresponding to \mathbf{A} are marked red.

The yellow residue from this reaction of 1 with 2.0 eq. $\mathrm{Na}\left[\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right]$ could not be taken up in any solvent appropriate for measuring IR in reasonable amounts. Therefore, no IR spectrum for $\mathrm{Na}\left[\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right]$ could be recorded.

Figure S2. IR spectrum of the solid obtained from the reaction of 1 with 2.0 eq. $\mathrm{K}\left[\mathrm{CpFe}(\mathrm{CO})_{2}\right]$ (recorded in toluene); the bands corresponding to $\left[\mathrm{CpFe}(\mathrm{CO})_{2}\right]_{2}$ (blue) and $\mathrm{K}\left[\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right]$ (green) are marked

Figure S3. IR spectrum of the solid obtained from the reaction of 1 with 2.0 eq. $\mathrm{K}\left[\mathrm{Cp}{ }^{*} \mathrm{Fe}(\mathrm{CO})_{2}\right]$ (recorded in toluene); the bands corresponding to $\left[\mathrm{Cp}{ }^{*} \mathrm{Fe}(\mathrm{CO})_{2}\right]_{2}$ (blue) and $\mathrm{K}\left[\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right]$ (green) are marked.

6.6.2.3 NMR spectroscopic experiments

Figure S4. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the crude reaction mixture of the reaction of 1 with 2.0 eq. $\mathrm{Na}\left[\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right]$ (recorded in toluene with $\mathrm{C}_{6} \mathrm{D}_{6}$ capillary at 300 K).
(a) $1+2.0$ eq. $\mathrm{K}\left[\mathrm{CpFe}(\mathrm{CO})_{2}\right]$
\qquad
(b) $1+2.0$ eq. $\mathrm{K}\left[\mathrm{Cp}{ }^{*} \mathrm{Fe}(\mathrm{CO})_{2}\right]$
(c) $1+2.0$ eq. $\mathrm{K}\left[\mathrm{Cp}^{\prime} \mathrm{Mo}(\mathrm{CO})_{3}\right]$
\qquad
(d) $1+2.0$ eq. $\mathrm{K}\left[\mathrm{CpW}(\mathrm{CO})_{3}\right]$

Figure S5. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the crude reaction mixture of 1.0 eq. 1 with 2.0 eq. of different organometallic reagents (recorded in toluene with $\mathrm{C}_{6} \mathrm{D}_{6}$ capillary at 300 K).

6.6.3 Organic substituents

6.6.3.1 Experimental setup

Reaction of 1 with $\mathrm{NaCp}^{\mathrm{R}}$

An orange-brown solution of 1.0 eq. 1 ($17 \mathrm{mg}, 0.03 \mathrm{mmol}$ or $25 \mathrm{mg}, 0.04 \mathrm{mmol}$, respectively) in 5 mL toluene is added dropwise to a suspension of 2.0 eq. NaCp^{R} (Cp"': $13 \mathrm{mg}, 0.05 \mathrm{mmol}$; $\mathrm{Cp}^{*}: 12 \mathrm{mg}, 0.08 \mathrm{mmol}$) in 5 mL toluene. No immediate color change is observed and the reaction mixture is stirred overnight at room temperature. Subsequently, the solvent is removed in vacuo yielding yellow and brown solid, respectively.

Experimental data

$\mathrm{NaCp}{ }^{\prime \prime \prime}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{~K}\right)$
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{~K}\right)$
$\delta[p p m]=1.07\left(\mathrm{~s}, 19.9 \mathrm{H}, \mathrm{Cp}^{*}\right), 1.15$ (s, $\left.14.0 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.17\left(\mathrm{~s}, 20.6 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}\right)$, 1.25 (s, 22.9H, ${ }^{\text {t }} \mathrm{Bu}$), 1.30 ($\mathrm{s}, 14.1 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}$), 1.35 (s, $18.4 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}$), 1.36 (s, $18.3 \mathrm{H}, \mathrm{t} \mathrm{Bu}), 1.71\left(\mathrm{~s}, 12.8 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}\right), 2.96(\mathrm{~s}, 2.4 \mathrm{H}, \mathrm{CH}), 3.09(\mathrm{~s}, 3.0 \mathrm{H}, \mathrm{CH})$, $3.89\left(\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{HH}}=6.8 \mathrm{~Hz}, 3.4 \mathrm{H}, \mathrm{CH}\right), 5.76(\mathrm{~m}, 1.0 \mathrm{H}, \mathrm{CH}), 5.96(\mathrm{t}$, $\left.{ }^{1} \mathrm{~J}_{\mathrm{HH}}=1.8 \mathrm{~Hz}, 2.3 \mathrm{H}, \mathrm{CH}\right), 6.42(\mathrm{~m}, 4.7 \mathrm{H}, \mathrm{CH})$.
$\delta[p p m]=-99.1\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{PP}}=193 \mathrm{~Hz}, 0.04 \mathrm{P}\right),-123.6$ to $-135.4\left(\mathrm{~m}, 2 \mathrm{P}, \mathrm{P}_{\mathrm{A}}\right.$ and $\left.\mathrm{P}_{\mathrm{B}}\right),-157.8(\mathrm{~m}, 0.1 \mathrm{P}),-269.4\left(\mathrm{~s},\left[\mathrm{Cp}^{*} \operatorname{Cr}(\mathrm{CO})_{2}\left(\mathrm{n}^{3}-\mathrm{P}_{3}\right)\right], 0.3 \mathrm{P}\right),-312.4(\mathrm{dt}$, $\left.{ }^{1} \mathrm{~J}_{\mathrm{MN}}=170 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{AM}}={ }^{1} \mathrm{~J}_{\mathrm{BM}}=190 \mathrm{~Hz}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{M}}\right),-328.5\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{PP}}=194 \mathrm{~Hz}\right.$, $0.1 \mathrm{P}),-332.0\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{PP}}=190 \mathrm{~Hz}, 0.5 \mathrm{P}\right),-334.8\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{PP}}=183 \mathrm{~Hz}\right.$, $0.1 \mathrm{P}),-343.1\left(\mathrm{dt},{ }^{1} \mathrm{~J}_{\mathrm{MN}}=170 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{AN}}={ }^{1} \mathrm{~J}_{\mathrm{BN}}=206 \mathrm{~Hz}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{N}}\right),-520.6(\mathrm{~s}$, $\left.3 P, P_{4}\right)$.

NaCp *
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{~K}\right) \quad \delta[\mathrm{ppm}]=-269.9\left(\mathrm{~s}, 1 \mathrm{P},\left[\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{2}\left(\eta^{3}-\mathrm{P}_{3}\right)\right]\right),-520.4\left(\mathrm{~s}, 17 \mathrm{P}, \mathrm{P}_{4}\right)$.

Reaction of 1 with NaCp^{*} for VT NMR experiments

An orange-brown solution of $1\left(25 \mathrm{mg}, 0.04 \mathrm{mmol}, 1.0 \mathrm{eq}\right.$.) in $2 \mathrm{mLCD} \mathrm{Cl}_{2}$ and a yellow suspension of NaCp^{*} ($12 \mathrm{mg}, 0.08 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in $2 \mathrm{mLCD} \mathrm{Cl}_{2}$ are cooled to $-80^{\circ} \mathrm{C}$. Subsequently, 1 is added to the suspension of NaCp^{*} dropwise. The resulting mixture is transferred to a chilled NMR tube and placed in a tempered NMR spectrometer recording ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectra in intervals of $20^{\circ} \mathrm{C}$.

Experimental data

${ }^{31} \mathbf{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 193 \mathrm{~K}\right)$
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 213 \mathrm{~K}\right)$
$\delta[p p m]=-92.7\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{PP}}=198 \mathrm{~Hz}, 2 \mathrm{P}, 1\right),-326.8\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{PP}}=198 \mathrm{~Hz}\right.$, $2 \mathrm{P}, 1$), -516.6 (s, 0.5P, P_{4}).
$\delta[p p m]=-93.2\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{PP}}=198 \mathrm{~Hz}, 2 \mathrm{P}, 1\right),-326.7\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{PP}}=198 \mathrm{~Hz}\right.$, 2P, 1), -518.0 (s, 0.5P, P4).

```
\({ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\) NMR \(\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 233 \mathrm{~K}\right)\)
\({ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\) NMR \(\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 253 \mathrm{~K}\right)\)
\({ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\) NMR \(\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 273 \mathrm{~K}\right)\)
\({ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\) NMR \(\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right)\)
\(\delta[p p m]=-93.6\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{PP}}=198 \mathrm{~Hz}, 2 \mathrm{P}, 1\right),-326.8\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{PP}}=198 \mathrm{~Hz}\right.\),
2P, 1), -519.3 (s, 0.5P, \(\mathrm{P}_{4}\) ).
\(\delta[p p m]=-94.7\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{PP}}=198 \mathrm{~Hz}, 2 \mathrm{P}, 1\right),-327.6\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{PP}}=198 \mathrm{~Hz}\right.\),
\(2 \mathrm{P}, 1\) ), -521.1 (s, 0.6P, \(\mathrm{P}_{4}\) ).
\(\delta[\mathrm{ppm}]=-95.2\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{PP}}=198 \mathrm{~Hz}, 2 \mathrm{P}, 1\right),-327.8\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{PP}}=198 \mathrm{~Hz}\right.\),
2P, 1), -522.2 (s, 0.9P, P4).
\(\delta[p p m]=-95.2\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{PP}}=198 \mathrm{~Hz}, 2 \mathrm{P}, 1\right),-327.4\left(\mathrm{t},{ }^{1} \mathrm{JPP}_{\mathrm{PP}}=198 \mathrm{~Hz}\right.\),
\(2 \mathrm{P}, 1\) ), -522.8 (s, 2.5P, \(\mathrm{P}_{4}\) ).
```


Reaction of 1 with $\mathrm{Ph}_{2} \mathrm{CXCl} / \mathrm{AICl}_{3}(\mathrm{X}=\mathrm{Ph}$ or H$)$

A colorless solution of 2.0 eq. $\mathrm{Ph}_{2} \mathrm{CXCl}(X=\mathrm{Ph}: 10 \mathrm{mg}, 0.04 \mathrm{mmol} ; \mathrm{X}=\mathrm{H}, 0.06 \mathrm{~mL}$ of a $1: 10$ diluted solution in toluene, 0.04 mmol) in toluene (5 mL) is added dropwise to a colorless suspension of 2.0 eq. $\mathrm{AlCl}_{3}(5 \mathrm{mg}$, 0.04 mmol). The now orange solution is stirred for 5 min before adding a brownish solution of $1.0 \mathrm{eq}$.1 (12 mg , 0.02 mmol) in 5 mL toluene. No immediate color change is observed and the resulting mixture is stirred overnight while the color changes to green. The solvent is removed in vacuo yielding greenish-brown solids.

Experimental data

$\mathrm{Ph}_{2} \mathrm{CHCl} / \mathrm{AlCl}_{3}$

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right) \quad \delta[\mathrm{ppm}]=25.4\left(\mathrm{t},{ }^{1} \mathrm{JPP}=273 \mathrm{~Hz}, 2 \mathrm{P}\right),-301.2\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{PP}}=273 \mathrm{~Hz}, 2 \mathrm{P}\right),-522.8$ (s, 0.2P, P_{4}).

$\mathrm{Ph}_{3} \mathrm{CCl} / \mathrm{AICl}_{3}$

${ }^{31} \mathbf{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right)$

$$
\delta[p p m]=16.2\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{PP}}=238 \mathrm{~Hz}, 2 \mathrm{P}\right),-313.6\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{PP}}=238 \mathrm{~Hz}, 2 \mathrm{P}\right),-522.8
$$

$$
\left(\mathrm{s}, 7.5 \mathrm{P}, \mathrm{P}_{4}\right) .
$$

Reaction of 1 with $\left[\mathrm{Ph}_{3} \mathrm{C}\right]\left[\mathrm{BF}_{4}\right]$ and subsequent addition of $\left[\mathrm{Cr}(\mathrm{CO})_{4}(\mathrm{nbd})\right]$

An orange-brown solution of 1.0 eq. $1(12 \mathrm{mg}, 0.02 \mathrm{mmol})$ in toluene $(5 \mathrm{~mL})$ is added to a yellow suspension of 2.0 eq. $\left[\mathrm{Ph}_{3} \mathrm{C}\right]\left[\mathrm{BF}_{4}\right]$ ($12 \mathrm{mg}, 0.04 \mathrm{mmol}$) in toluene $(5 \mathrm{~mL})$. No immediate color change is observed and the resulting reaction mixture is stirred overnight. The solvent is removed from the now greenish brown solution under reduced pressure affording a brownish solid.

```
31P NMR(CD}\mp@subsup{\mp@code{Cl}}{2}{},300\textrm{K}
31P{'H} NMR (CD2Cl2, 300 K)
```

```
\delta[ppm] = 82.8(m, 2P), 66.6(m, 2P), -522.9 (s, P4).
```

\delta[ppm] = 82.8(m, 2P), 66.6(m, 2P), -522.9 (s, P4).
\delta[ppm] = 82.8(m, 2P), 66.6(m, 2P), -522.9(s, P4).

```
\delta[ppm] = 82.8(m, 2P), 66.6(m, 2P), -522.9(s, P4).
```

In a second step the obtained brownish solid is taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and a solution of 1.0 eq. $\left[\mathrm{Cr}(\mathrm{CO})_{4}(\mathrm{nbd})\right](39 \mathrm{mg}, 0.02 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ is added to the reaction mixture. No immediate color change is observed and the solution is stirred overnight. The solvent is removed in vacuo yielding a green solid.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \quad \delta[\mathrm{ppm}]=-53.9$ to $-60.6(\mathrm{~m}, 4 \mathrm{P}),-522.1\left(\mathrm{~s}, 4 \mathrm{P}, \mathrm{P}_{4}\right)$.

6.6.3.2 NMR spectroscopic experiments

Figure S6. Crude ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction mixture of 1.0 eq. 1 and 2.0 eq. $\mathrm{NaCp}{ }^{\prime \prime \prime}$ (recorded in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 300 K); signals for predominant isomer of B are marked red.

Figure S7. Experimental (top, recorded in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 300 K) and simulated (bottom) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum of the major isomer of \mathbf{B}.

The simulation of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of \mathbf{B} was carried out on the basis of an ABMN spin system with a C_{1} symmetry.

Table S1. Experimental and simulated values for the chemical shifts and coupling constants in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the major isomer of \mathbf{B}.

experimental values				simulated values			
δ_{A}	-127.1 ppm	${ }^{1} \mathrm{~J}_{\mathrm{AB}}$	-	δ_{A}	-126.56 ppm	${ }^{1} J_{\mathrm{AB}}$	347.66 Hz
δ_{B}	-132.0 ppm	${ }^{1} \mathrm{~J}_{\mathrm{AM}}$	190 Hz	δ_{B}	-132.02 ppm	${ }^{1} J_{\mathrm{AM}}$	186.79 Hz
δ_{M}	-312.4 ppm	${ }^{1} \mathrm{~J}_{\mathrm{BM}}$	190 Hz	δ_{M}	-312.39 ppm	${ }^{1} \mathrm{~J}_{\mathrm{BM}}$	195.01 Hz
δ_{N}	-343.1 ppm	${ }^{1} \mathrm{~J}_{\mathrm{AN}}$	206 Hz	δ_{N}	-343.17 ppm	${ }^{1} \mathrm{~J}_{\mathrm{AN}}$	207.49 Hz
		${ }^{1} \mathrm{~J}_{\mathrm{BN}}$	206 Hz			${ }^{1} \mathrm{~J}_{\mathrm{BN}}$	169.09 Hz
		${ }^{1} \mathrm{~J}_{\mathrm{NM}}$	170 Hz			${ }^{1} \mathrm{~J}_{\mathrm{NM}}$	177.33 Hz

Figure S8. VT ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectra of the reaction of 1 with 2.0 eq. NaCp (recorded in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$).

The amount of P_{4} present in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectra at 193 K can be attributed to decomposition during the transfer of the sample.

Table S2. Relative integral of the signal attributed to P_{4} in the $\mathrm{VT}{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the reaction of $\mathbf{1}$ with 2.0 eq. NaCp^{*} (recorded in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$).

T	193 K	213 K	233 K	253 K	273 K	300 K
$\mathrm{I}_{\text {rel }}\left(\mathrm{P}_{4}\right)$	19.4%	19.3%	19.7%	23.0%	30.0%	55.6%

Figure S9. Crude ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the reaction of 1 with $\mathrm{Ph}_{3} \mathrm{CCl} / \mathrm{AICl}_{3}$ (top) and with $\mathrm{Ph}_{2} \mathrm{CHCl} / \mathrm{AlCl}_{3}$ (bottom; both recorded in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 300 K).

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ after addition of $\left[\mathrm{Cr}(\mathrm{CO})_{4}(\mathrm{nbd})\right]$

Figure S10. ${ }^{31} \mathrm{P}$ (top) and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ (middle) NMR spectra of the reaction of 1 with $\left[\mathrm{Ph}_{3} \mathrm{C}\right]\left[\mathrm{BF}_{4}\right]$ and the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra after the subsequent addition of $\left[\mathrm{Cr}(\mathrm{CO})_{4}(\mathrm{nbd})\right]$ (bottom; all recorded in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 300 K).

6.6.4 References

[1] TopSpin 3.0, Bruker BioSpin GmbH.
[2] (a) R. B. King, J. Organomet. Chem. 1967, 8, 139-148.
(b) P. Leoni, A. Landi, M. Pasquali, J. Organomet. Chem. 1987, 321, 365-369.
(c) T. J. Jaeger, M. C. Baird, Organometallics 1988, 7, 2074-2076.
(d) C. Schwarzmaier, A. Y. Timoshkin, G. Balázs, M. Scheer, Angew. Chem. Int. Ed. 2014, 53, 90779081.
[3] (a) D. Feitler, G. M. Whitesides, Inorg. Chem. 1976, 15, 466.
(b) W. A. H. Herrmann, W. Kachler, H. Biersack, I. Bernal, M. Creswick, Chem. Ber. 1981, 114, 3558.
[4] C. G. Venier, E. W. Casserly, J. Am. Chem. Soc. 1990, 112, 2808-2809.
[5] R. B. King, A. Frozalia, Inorg. Chem. 1966, 5, 1837.
[6] (a) E. O. Fischer, W. Hafner, H. O. Stahl. Z. anorg. allg. Chem. 1955, 282, 47-62.
(b) T. S. Piper, G. Wilkinson, J. Inorg. Nucl. Chem. 1956, 3, 104-124.

6.7 Author Contributions

Rebecca Grünbauer

- Performance of all reported experiments and characterizations.
- Preparation of manuscript (including figures, schemes, tables and supplementary information).

Manfred Scheer

- Supervision of project.

7.Thesis treasury - Synthesis of $\left[\left\{\left(\mathrm{Cp} * \mathrm{Cr}(\mathrm{CO})_{3}\right)_{2}\left(\mu_{3}, \eta^{1: 1: 4}{ }^{1}-\mathrm{P}_{4}\right)\right\}_{2} \mathrm{Fe}\right]\left[\mathrm{PF}_{6}\right]_{2}$

Rebecca Grünbauer and Manfred Scheer

7.1 Abstract

$[\mathrm{Cr}]=\mathrm{Cr}(\mathrm{CO})_{3} \mathrm{Cp}^{*}$

$[\mathrm{Fe}]=\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{Cp}{ }^{\prime \prime}$

Exchange of central metal ion

$M=M g, S n$

Intrigued by the previously reported synthesis of $\left[\left\{\left(\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right)_{2}\left(\mu_{3}, \eta^{1: 1: 4}-P_{4}\right)\right\}_{2} F e\right]\left[P F_{6}\right]_{2}$ (1), the aim of this work was to expand this field of research by synthetizing novel main group and transition metal analoga. Herein, the synthesis of $\left[\left\{\left(C p^{*} \operatorname{Cr}(\mathrm{CO})_{3}\right)_{2}\left(\mu_{3}, \eta^{1: 1: 4}-P_{4}\right)\right\}_{2} F e\right]\left[P F_{6}\right]_{2}(2)$, the chromium analog of 1 is reported. Single crystal X-ray diffraction analysis and ${ }^{31} P\left\{{ }^{1} H\right\}$ NMR spectroscopy revealed that the molecular structure of $\mathbf{2}$ is almost identical to $\mathbf{1}$, the first fully characterized carbon free sandwich complex incorporating two $6 \pi-$ aromatic $P_{4}[F e]_{2}$ ligands. In contrast, all attempts to obtain cyclo- P_{4} sandwich complexes of main group elements were not successful.

7.2 Introduction

Recent studies delineate, that the P_{4} butterfly compounds $\left[\left\{\mathrm{Cp} \mathrm{\prime} \mathrm{\prime} \mathrm{\prime Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]\left(\mathrm{A}, \mathrm{Cp}^{\prime \prime \prime}=\mathrm{C}_{5} \mathrm{H}_{2}{ }^{\mathrm{t}} \mathrm{Bu}_{3}\right)$ and $\left[\left\{\mathrm{Cp}^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right\}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]\left(\mathrm{B}, \mathrm{Cp}^{*}=\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5}\right)$ are promising starting materials in the synthesis of bidentate coordination products as well as the generation of novel P_{n} ligand complexes (vide infra). Hitherto, various examples in which P_{4} butterfly compounds act as chelating ligands are known. ${ }^{[1]}$ Moreover, early studies reported the synthesis of novel P_{n} ligand complexes by exposing \mathbf{A} to thermolytic ${ }^{[2]}$ and photolytic ${ }^{[3]}$ reaction conditions. Additionally, the novel rearrangement processes reported in the other chapters of this work underline the importance of P_{4} butterfly compounds in the generation of unprecedented P_{n} ligand containing compounds. One outstanding example for a novel P_{n} scaffold obtained from a P_{4} butterfly compound is $\left[\left\{\left(\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right)_{2}\left(\mu_{3}, \eta^{1: 1: 4}-\mathrm{P}_{4}\right)\right\}_{2} \mathrm{Fe}\right]\left[\mathrm{PF}_{6}\right]_{2}$ (1): the first fully characterized carbon free sandwich complex incorporating two 6π-aromatic $\mathrm{P}_{4}[\mathrm{Fe}]_{2}$ ligands. ${ }^{[4]}$ By reacting \mathbf{A} with a "naked" Fe^{2+} ion found in $\left[\mathrm{Fe}(\mathrm{MeCN})_{6}\right]\left[\mathrm{PF}_{6}\right]_{2}$, the selective cleavage of the bond between the two bridgehead P atoms in the P_{4} butterfly unit is induced eventually affording the cyclic ligands. This unique reaction behavior is utterly intriguing, prompting us to further investigate this reaction behavior. One approach to broaden the library of cyclo- P_{4} sandwich complexes is the modification of the sandwiched metal ion in order to achieve the generation of main group P_{4} sandwich complexes. Another approach is to react the chromium P_{4} butterfly \mathbf{B} with $\left[\mathrm{Fe}(\mathrm{MeCN})_{6}\right]\left[\mathrm{PF}_{6}\right]_{2}$.

7.3 Results and Discussion

2

Scheme 1. Reaction of \mathbf{B} with $\left[\mathrm{Fe}(\mathrm{MeCN})_{6}\right]\left[\mathrm{PF}_{6}\right]_{2}$ affording 2.

Unfortunately, the reactions of \mathbf{A} with $\left[\mathrm{Mg}(\mathrm{MeCN})_{6}\right]\left[\mathrm{PF}_{6}\right]_{2},\left[\mathrm{Sn}(\mathrm{MeCN})_{6}\right]\left[\mathrm{PF}_{6}\right]_{2}$ and $\left[\mathrm{Sn}(\mathrm{MeCN})_{6}\right][\mathrm{Tef}]_{2}$ $\left(\right.$ Tef $\left.=\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]^{-}\right)$did not afford the desired main group P_{4} sandwich complexes. Although a conversion of the starting material could be detected by ${ }^{31} \mathrm{P}$ NMR spectroscopy, no conclusions can be drawn for the composition of the obtained products. They appear to be paramagnetic in solution and can therefore not be detected in the ${ }^{31} \mathrm{P}$ NMR spectra. Moreover, all crystallization attempts failed. In contrast, the successful reaction of \mathbf{B} with $\left[\mathrm{Fe}(\mathrm{MeCN})_{6}\right]\left[\mathrm{PF}_{6}\right]_{2}$ afforded $\left[\left\{\left(\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right)_{2}\left(\mu_{3,}, \eta^{1: 1: 4}-\mathrm{P}_{4}\right)\right\}_{2} \mathrm{Fe}\right]\left[\mathrm{PF}_{6}\right]_{2}(\mathbf{2})$, the chromium analog of 1 (Scheme 1). Analog to 1, the molecular structure of 2 can be described as a sandwich complex incorporating two parallel 6π-aromatic cyclo-P4 ligands (Fig.1). 2 crystallizes in the form of black needles in the orthorhombic space group Fddd. Compound $\mathbf{2}$ is excellently soluble in polar solvents like $\mathrm{CH}_{3} \mathrm{CN}^{\text {or }} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and insoluble in non-polar solvents like n-hexane.

Figure 1. Molecular structure of the cation of $\mathbf{2}$ in the solid state; for clarity H atoms, the counter ion and solvent molecules are omitted; thermal ellipsoids drawn at 50% probability.

Table 1: Selected bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ of 1 and 2 in the solid state.

d/ A			$\alpha /^{\circ}$		
	1	2		1	2
Fe-P1	2.2255(9)	2.263(2)		82.76(4)	
Fe-P2	2.2317(9)	2.388(2)	P1-P2-P1'	82.88(4)	81.68(13)
P1-P2	$2.1406(10)$	2.136(4)	P2-P1-P2'	97.11(4)	
P1-P2'	$2.1547(10)$	2.151(3)		97.24(4)	98.31(13)
Cent $_{\text {PPPP }}$-Fe	$\begin{aligned} & 1.7648(7) \\ & 1.7759(7) \end{aligned}$	1.767(1)	torsion along $\text { Cent }_{\text {PPPP }}-\mathrm{Fe}-\mathrm{Cent}_{\text {pppp }}$	60	68

Due to poor crystal quality, only preliminary values can be given for the single crystal X-ray diffraction analysis of $\mathbf{2}$ which depict an identical structure to $\mathbf{1}$. The molecular structure of $\mathbf{2}$ in the solid state is highly symmetric with the asymmetric unit containing one quarter of the $\left[\left\{\left(\mathrm{Cp} * \mathrm{Cr}(\mathrm{CO})_{3}\right)_{2}\left(\mu_{3}, \eta^{1: 1: 4}-\mathrm{P}_{4}\right)\right\}_{2} \mathrm{Fe}\right]^{2+}$ cation and one half of a $\left[P F_{6}\right]^{-}$anion. With $2.136(4) \AA$ and $2.151(3) \AA$, respectively, the $P-P$ bonds inside the cyclo- P_{4} unit are shortened compared to a classical P-P single bond (2.209(5) \AA). ${ }^{[5]}$ The $P-P$ bond lengths of the $\left[\mathrm{P}_{4} \mathrm{Fe}_{2}\right]$ ligand are comparable to the respective bonds found in the $\mathrm{Cs}_{2} \mathrm{P}_{4} \cdot 2 \mathrm{NH}_{3}$ anion (2.146(1) \AA and 2.1484(9) \AA). ${ }^{[6]}$ However, analog to $\mathbf{1}$, the P-P-P angles of the cyclo-P4 motif of $2\left(81.68(13)^{\circ}\right.$ and $\left.98.31(13)^{\circ}\right)$ differ from an ideal square geometry due to the steric influence of the organometallic substituents. The distance of the centroid of the cyclo- P_{4} ligand and the central Fe^{2+} ion (Cent PPPP $-\mathrm{Fe}=1.767(1) \AA$) is marginally elongated in comparison to the hypothetical $\left[\mathrm{Fe}\left(\mathrm{P}_{4}\right)_{2}\right]^{2-}$ ion $(1.739 \AA)^{[7]}$ and compares well with the value found for 1 (1.7648(7) \AA / $1.7759(7) \AA$). The repulsion of the organometallic substituents in $\mathbf{1}$ and $\mathbf{2}$ is likely to cause this widening of the sandwich structure. Both, $\mathbf{1}$ and $\mathbf{2}$ display a rotation of the parallel cyclo- P_{4} motifs along the Cent $_{\text {PPPP }}-\mathrm{Fe}-$ Cent $_{\text {PPPP }}$ axis (1: $60^{\circ} / 2: 68^{\circ}$). In contrast, DFT calculations predicted a staggered conformation of the unsubstituted $\left[\mathrm{Fe}\left(\mathrm{P}_{4}\right)_{2}\right]^{2-}$ cyclo- P_{4}-sandwich dianion. ${ }^{[7]}$ Again, the deviation from this proposed $\mathrm{D}_{4 \mathrm{~d}}$
symmetry, might be explained by the steric repulsion of the carbonyl and Cp ligands of the organometallic substituents.

As expected, only one singlet ($\delta=2.08 \mathrm{ppm}$) can be detected in the ${ }^{1} \mathrm{H}$ NMR spectrum of 2 as all Cp^{*} ligands are magnetically equivalent and rotate freely in solution. Similar to 1 , an $A A^{\prime} B^{\prime}$ ' spin system can be deduced for 2 from the corresponding ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum. Two multiplets attributed to the unsubstituted P atoms ($\delta_{B}=90.9 \mathrm{ppm}, \mathrm{P} 2$ according to Fig. 1) and organometallically substituted P atoms $\left(\delta_{A}=113.3 \mathrm{ppm}, \mathrm{P} 1\right.$ according to Fig. 1), respectively, could be detected and confirmed by simulation.

From a reaction of \boldsymbol{B} with $\left[\mathrm{Fe}(\mathrm{MeCN})_{6}\right]\left[\mathrm{PF}_{6}\right]_{2}$ some crystals of $\left[\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right]\left[\mathrm{PF}_{6}\right]_{2}$ could be identified as a side product by single crystal X-ray diffraction experiments. This underlines the previously observed fragility of the $\mathbf{C r}-\mathbf{P}$ bond in \mathbf{B} in comparison to the $\mathrm{Fe}-\mathbf{P}$ bond in \mathbf{A} for which no analog side reaction was witnessed. ${ }^{[8]}$

Reactions with 1 and $\mathbf{2}$ as starting materials appear to be very promising due to the unique molecular structure of the cyclo- P_{4} sandwich complexes. Analogously to the substituent exchange observed for $\mathbf{B}^{[8]}$, $\mathbf{2}$ was reacted with $\mathrm{K}\left[\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{3}\right]$ in order to obtain 1 and $\mathrm{K}\left[\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{2}\right]$. Although a conversion of the starting materials could be observed, neither the desired or novel products could be identified or characterized yet.

7.4 Conclusion

In conclusion, it was possible to obtain the homoleptic cyclo- P_{4} sandwich complex 2, the chromium analog of the previously reported 1. Preliminary single crystal X-ray diffraction analysis of 2 depicts an almost identical molecular structure of the central cyclo- P_{4} sandwich scaffold. In contrast, experiments with main group element salts were not successful yet, denying the desired formation of main group cyclo- P_{4} sandwich compounds. Moreover, subsequent conversions of $\mathbf{1}$ and $\mathbf{2}$ were not successful either but bear great potential for novel reaction pathways.

7.5 References

[1] (a) C. Schwarzmaier, S. Heinl, G. Balázs, M. Scheer, Angew. Chem. Int. Ed. Engl. 2015, 54, 1311613121.
(b) M. Eberl, Ph.D. thesis, University of Regensburg (Regensburg), 2011.
(c) C. Schwarzmeier, Ph.D. thesis, University of Regensburg (Regensburg), 2012.
[2] O. J. Scherer, T. Hilt, G. Wolmershäuser, Organometallics 1998, 17, 4110-4112.
[3] O. J. Scherer, G. Schwarz, G. Wolmershäuser, Z. Anorg. Allg. Chem 1996, 622, 951-957
[4] J. Müller, S. Heinl, C. Schwarzmaier, G. Balázs, M. Keilwerth, K. Meyer, M. Scheer, Angew. Chem. Int. Ed. 2017, 56, 7312-7317.
[5] (a) A. Simon, H. Borrmann, H. Craubner, Phosphorus Sulfur Silicon Relat. Elem. 1987, 30, 507-510. (b) H. Okudera, E. Dinnebier Robert, A. Simon, Z. Kristallogr., 2005, 220, 259.
[6] F. Kraus, J. C. Aschenbrenner, N. Korber, Angew. Chem. Int. Ed. 2003, 42, 4030-4033; Angew. Chem. 2003, 115, 4162-4165.
[7] Z. Li, C. Zhao, L. Chen, J. Mol. Struct. THEOCHEM 2007, 810, 1-6.
[8] c.f. chapter 6 of this thesis

7.6 Supplementary information

7.6.1 General remarks

All experiments were carried out under an atmosphere of dry argon or nitrogen using glovebox and Schlenk techniques. Residues of oxygen and water were removed from the inert gas by passing it over a BASF R 3$11\left(\mathrm{CuO} / \mathrm{MgSiO}_{3}\right)$ catalyst, concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ and finally granulated silica gel. Dry solvents were collected from a Braun SPS Apparatus and degassed prior to use. The deuterated solvent $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ was degassed and dried by stirring with CaH_{2} followed by distillation. After the distillation, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ was stored over molecular sieve $(3 \AA)$ which had previously been dried for four hours under high vacuum at $100^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& {\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right](\mathbf{A})^{[1]},\left[\left\{\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right\}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right](\mathrm{B})^{[2]},\left[\mathrm{Fe}(\mathrm{MeCN})_{6}\right]\left[\mathrm{PF} F_{6}\right]_{2}[3],\left[\mathrm{Mg}(\mathrm{MeCN})_{6}\right]\left[\mathrm{PF} \mathrm{~F}_{6}\right]_{2}^{[4]},} \\
& {\left[\mathrm{Sn}(\mathrm{MeCN})_{6}\right]\left[\mathrm{PF}_{6}\right]_{2}{ }^{[5]} \text { and }\left[\mathrm{Sn}(\mathrm{MeCN})_{6}\right][\mathrm{Teff}]_{2}^{[5]} \text { were prepared according to literature procedures. }}
\end{aligned}
$$

NMR spectra were recorded at the NMR department of the University Regensburg using a Bruker Advance 300 or 400 spectrometer. Samples are referenced against TMS (${ }^{1} \mathrm{H}$) or $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}\left({ }^{31} \mathrm{P}\right)$ as external standards. Chemical shifts (δ) are reported in ppm and coupling constants (J) in Hz . The spectra were processed using the TopSpin 3.5 software (Bruker) and the WIN-DAISY module of this software was used to perform simulations. ${ }^{[6]}$

7.6.2 Synthesis

An orange-brown solution of $\mathbf{B}\left(66 \mathrm{mg}, 0.10 \mathrm{mmol}, 2.0\right.$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ is added to colorless solution of $\left[\mathrm{Fe}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{6}\left(\mathrm{PF}_{6}\right)_{2}\right](30 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.0$ eq. $)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The resulting mixture is stirred at room temperature overnight and a color change towards red can be observed. The solvent is subsequently removed under reduced pressure affording a brown solid. To obtain pure 2, the solid was taken up in 15 mL $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and layered with n-hexane. After one week, black needles suitable for single crystal X-ray analysis could be obtained.

Analytical data for 2

Yield
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right)$
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right)$
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right) \quad \delta[\mathrm{ppm}]=-143.9$ (sept, $\left.5 \mathrm{P}, \mathrm{PF}_{6}\right), 90.9\left(\mathrm{~m},{ }^{1} \mathrm{JAB}_{\mathrm{AB}}=349.48 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{AB}^{\prime}}=367.46\right.$
$\mathrm{Hz},{ }^{1} \mathrm{~J}_{\mathrm{A}^{\prime} \mathrm{B}}=369.08,{ }^{1} \mathrm{~J}_{\mathrm{A}^{\prime} \mathrm{B}^{\prime}}=369.98 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{\mathrm{AA}^{\prime}}=9.92 \mathrm{~Hz}, 2 \mathrm{P}, \mathrm{P}_{\mathrm{A}}$ and $\left.\mathrm{P}_{A^{\prime}}\right), 113.3$
$\left(\mathrm{~m},{ }^{1} \mathrm{~J}_{\mathrm{AB}}=349.48 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{AB}}=367.46 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{A}^{\prime} \mathrm{B}}=369.08,{ }^{1} \mathrm{~J}_{\mathrm{A}^{\prime} \mathrm{B}^{\prime}}=369.98 \mathrm{~Hz}\right.$,
${ }^{2} \mathrm{~J}_{\mathrm{BB}^{\prime}}=14.89 \mathrm{~Hz}, 2 \mathrm{P}, \mathrm{P}_{\mathrm{B}}$ and $\left.\mathrm{P}_{\mathrm{B}^{\prime}}\right)$.
40 mg ($0.24 \mathrm{mmol}, 47 \%$).

7.6.3 NMR spectroscopic experiments

Figure S1. Experimental (top, recorded in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 300 K) and simulated (bottom) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum of $\mathbf{2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

Table S1. Experimental and simulated values for the chemical shifts and coupling constants in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 2 (recorded in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 300 K).

experimental values				simulated values			
$\delta_{\text {A }}$	113.3 ppm	${ }^{1} \mathrm{JAB}$	- Hz	$\delta_{\text {A }}$	113.15 ppm	${ }^{1} \mathrm{JAB}$	349.48 Hz
$\delta_{A^{\prime}}$	113.3 ppm	${ }^{1} \mathrm{JAB}^{\prime}$	- Hz	$\delta_{A^{\prime}}$	113.15 ppm	${ }^{1} \mathrm{JAB}^{\prime}$	367.46 Hz
δ_{B}	90.9 ppm	${ }^{1} J_{A^{\prime} B}$	- Hz	δ_{B}	90.95 ppm	${ }^{1} J^{\prime}{ }^{\prime \prime} \mathrm{B}$	369.08 Hz
$\delta_{B}{ }^{\prime}$	90.9 ppm	${ }^{1} J^{\prime} \mathrm{A}^{\prime}$	- Hz	$\delta_{B^{\prime}}$	90.95 ppm	${ }^{1} J_{A^{\prime} B^{\prime}}$	369.98 Hz
		${ }^{2} J_{\text {AA }}{ }^{\prime}$	- Hz			${ }^{2} J_{A A^{\prime}}$	9.92 Hz
		${ }^{2} J_{B B}{ }^{\prime}$	- Hz			${ }^{2} J_{B B^{\prime}}$	14.89 Hz

The simulation of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 2 was carried out on the basis of an $A A^{\prime} X X^{\prime}$ spin system with a C_{1} symmetry.

7.6.4 Crystallographic details

Compound $\mathbf{2}$ crystalizes in the form of dark needles after layering a saturated reaction solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with n-hexane after a few days. A suitable crystal with dimensions $0.25 \times 0.20 \times 0.03 \mathrm{~mm}^{3}$ was selected and mounted on a GV50, TitanS2 diffractometer. The crystal was kept at a steady $T=123.0(2) \mathrm{K}$ during data collection. The structure was solved with the SheIXT 2018/2 (Sheldrick, 2018) solution program using Olex2 (Dolomanov et al., 2009) as the graphical interface. The model was refined with ShelXL 2018/3 (Sheldrick, 2015) using full matrix least squares minimization on F^{2}. The asymmetric unit contains one quarter of the $\left[\left\{\left(\mathrm{Cp}^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right)_{2}\left(\mu_{3}, \eta^{1: 1: 4}-\mathrm{P}_{4}\right)\right\}_{2} \mathrm{Fe}\right]^{2+}$ cation and one half of a $\left[\mathrm{PF}_{6}\right]^{-}$anion.

Table S2: Selected parameters for the single crystal X-ray diffraction experiment of 2.

Formula	$\mathrm{C}_{52} \mathrm{H}_{60} \mathrm{Cr}_{4} \mathrm{~F}_{12} \mathrm{FeO}_{12} \mathrm{P}_{10}$	Z	8
$D_{\text {calc. }} / \mathrm{l} \mathrm{g} \mathrm{cm}{ }^{-3}$	1.619	Z^{\prime}	0.25
$\mathrm{m} / \mathrm{mm}^{-1}$	9.661	Wavelength/A	1.54184
Formula Weight	1678.55	Radiation type	CuK K
Colour	dark brown	$Q_{\text {min }}{ }^{\circ}$	3.208
Shape	plate	$Q_{\text {max }}{ }^{\circ}$	65.074
Size/mm ${ }^{3}$	$0.25 \times 0.20 \times 0.03$	Measured Refl's.	9235
T/K	123.0(2)	Ind't Refl's	2906
Crystal System	orthorhombic	Refl's with I > 2(I)	1780
Space Group	Fddd	Rint	0.1031
alÅ	22.301(3)	Parameters	402
b/Å	23.444(2)	Restraints	622
c / A	26.347(4)	Largest Peak	0.838
$a l^{\circ}$	90	Deepest Hole	-0.596
bl ${ }^{\circ}$	90	GooF	1.086
gl ${ }^{\circ}$	90	$w R_{2}$ (all data)	0.3140
V/ \AA^{3}	13774(3)	$w R_{2}$	0.2654
		R_{1} (all data)	0.1385
		R_{1}	0.1024

7.6.5 References

[1] C. Schwarzmaier, A. Y. Timoshkin, G. Balázs, M. Scheer, Angew. Chem. Int. Ed. 2014, 53, 9077-9081.
[2] (a) R. B. King, J. Organomet. Chem. 1967, 8, 139-148.
(b) P. Leoni, A. Landi, M. Pasquali, J. Organomet. Chem. 1987, 321, 365-369.
(c) T. J. Jaeger, M. C. Baird, Organometallics 1988, 7, 2074-2076.
(d) C. Schwarzmaier, A. Y. Timoshkin, G. Balázs, M. Scheer, Angew. Chem. Int. Ed. 2014, 53, 90779081.
[3] J. K. Clegg, J. Cremers, A. J. Hogben, B. Breiner, M. M. J. Smulders, J. D. Thoburn, J. R. Nitschke, Chem. Sci. 2013, 4, 68-76.
[4] E. N. Keyzer, H. F. J. Glass, Z. Liu, P. M. Bayley, S. E. Dutton, C. P. Grey, D. S. Wright, J. Am. Chem. Soc. 2016, 138, 8682-8685.
[5] M. Schleep, C. Hettich, D. Kratzert, H. Scherer, I. Krossing, Chem. Commun. 2017, 53, 10914-10917.
[6] TopSpin 3.0, Bruker BioSpin GmbH

7.7 Author contributions

Rebecca Grünbauer

- Synthesis and characterization of compound 2.
- Additional experiments concerning the reactions of \mathbf{A} with $\left[\mathrm{Mg}(\mathrm{MeCN})_{6}\right]\left[\mathrm{PF}_{6}\right]_{2},\left[\mathrm{Sn}(\mathrm{MeCN})_{6}\right]\left[\mathrm{PF}_{6}\right]_{2}$ and $\left[\mathrm{Sn}(\mathrm{MeCN})_{6}\right][\mathrm{Tef}]_{2}$ and the reactivity of 2 .
- Preparation of manuscript (including figures, schemes, tables and supplementary information).

Manfred Scheer

- Supervision of project.

8. Conclusion

In summary, various synthetic opportunities originating from compounds incorporating the tetraphosphabicyclo[1.1.0]butane (" P_{4} butterfly") structural motif were illuminated in this thesis. The isolobal compounds $\left[\left\{\mathrm{Cp}^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]\left(\mathrm{A}, \mathrm{Cp}^{\prime \prime \prime}=\mathrm{C}_{5} \mathrm{H}_{2}{ }^{\mathrm{t}} \mathrm{Bu}_{3}\right)$ and $\left[\left\{\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{2}\right\}_{3}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]\left(\mathrm{B}, \mathrm{Cp}^{*}=\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5}\right)$ were chosen as starting materials for reactivity investigations concerning the central P_{4} butterfly moiety. The results reported herein validated that the different substituents in \mathbf{A} and \mathbf{B} can have a significant influence on the respective reaction behavior. On the one hand, previous reports state that similar products are obtained when reacting \mathbf{A} and \mathbf{B} with small Lewis acidic salts. ${ }^{[1]}$ On the other hand, major differences in reactivity were detected when reacting the related \mathbf{A} and \mathbf{B} with different metal carbonyls or nucleophiles within the scope of this thesis (vide infra).

In general, the reactivity of \mathbf{B} is more diverse than the reactivity of \mathbf{A}. The dissociation of the $\mathrm{P}-\mathrm{Cr}$ bond in \mathbf{B} (dissociation energy: $67.47 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$) is reasonably less endothermic than the cleavage of the corresponding P-Fe bond in \mathbf{A} (dissociation energy: $142.91 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$). ${ }^{[1 \mathrm{c}]}$ Thus, \mathbf{B} is expected to be a more promising starting material for fragmentation, rearrangement and substituent exchange processes ultimately affording novel polyphosphorus ligand complexes. Supporting this proposal, a variety of selective rearrangement processes and discrete fragmentation routes could be observed in the scope of this thesis in addition to straightforward coordination processes (vide infra).

8.1 Reactivity of $\left[\left\{\mathrm{C} \mathrm{p}^{*} \operatorname{Cr}(\mathrm{CO})_{3}\right\}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]$ towards Lewis acidic tetracarbonyl moieties of Cr , Mo and W

Scheme 1. Reactions of \mathbf{B} with $\left[M(C O)_{4}(n b d)\right](M=C r, M o, W)$.

When B is reacted with $\left[M(C O)_{4}(n b d)\right](M=C r, M o, W ; n b d=$ norbornadiene $)$ two different reaction pathways can be observed depending on the nature of the employed metal. The chelating adduct $\left[\left\{\mathrm{Cp}^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right\}_{2}\left(\mu_{3,}, \eta^{1: 1: 1: 1:-P_{4}}\right)\left\{\mathrm{W}(\mathrm{CO})_{4}\right\}\right]$ (1), which contains a bidentate P_{4} butterfly ligand, is afforded from the reaction of \mathbf{B} with a Lewis acidic $\left[\mathrm{W}(\mathrm{CO})_{4}\right]$ fragment. In contrast, reactions of \mathbf{B} with tetracarbonyl fragments of Cr and Mo result in the step-wise formation of the monosubstituted $\left[\left\{\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{3}, \eta^{3: 1: 11}-\mathrm{P}_{4}\right)\left\{\mathrm{M}(\mathrm{CO})_{5}\right\}\right]$ (2a': $\left.M=C r ; \mathbf{2 b}^{\prime}: M=M o\right)$ and the disubstituted $\left[\left\{\operatorname{Cp}{ }^{*} \operatorname{Cr}(C O)_{2}\right\}_{2}\left(\mu_{4}, \eta^{3: 1: 1: 1: 1}-P_{4}\right)\left\{M(C O)_{5}\right\}_{2}\right](\mathbf{2 a}: M=C r ;$ 2b: $M=M o$, which contain a folded cyclo- P_{4} unit in an unpreceded coordination sphere. Carbonyl rearrangement processes leave $\mathbf{2}^{\prime}$ and $\mathbf{2}$ with $\left[\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{2}\right]$ substituents, inducing an electron deficit on the Cr atoms. In order to repeal the electronic imbalance, one of the Cr atoms is coordinated in a η^{3}-fashion by one plane of the folded P_{4} unit, while a formal double bond can be observed between the other Cr atom and the adjacent P atom. The central cyclo- P_{4} structural motif, which displays a folding angle of approx. 136°, is additionally stabilized by one or two $\left[\mathrm{M}(\mathrm{CO})_{5}\right]$ fragments obtained from the released CO ligands and intrinsic $\left[\mathrm{M}(\mathrm{CO})_{4}\right]$ fragments $(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo})$. This step-wise stabilization of the deltoid cyclo- P_{4} scaffold can be monitored excelently by ${ }^{31} \mathrm{P}$ NMR spectroscopy.

Additionally, an unprecedented $\mathrm{P}_{1} / \mathrm{P}_{3}$-fragmentation of $\mathbf{2 a}$ yielding the cyclo- ${ }_{3}$ complex $\left[\mathrm{Cp} * \mathrm{Cr}(\mathrm{CO})_{2}-\right.$ $\left.\left(\eta^{3}-P_{3}\right)\right]$ (3) and the as yet unknown phosphinidene complex $\left[\mathrm{Cp}{ }^{*} \mathrm{Cr}\right.$ -$\left.(\mathrm{CO})_{2}\left(\mathrm{Cr}(\mathrm{CO})_{5}\right)_{2}\left(\mu_{3}-\mathrm{P}\right)\right]$ (4) could be monitored by ${ }^{31} \mathrm{P}$ NMR spectroscopy (Fig. 1). The proposed identity of $\mathbf{4}$ was validated by an insitu reaction with tBuNC, which yielded $\quad\left[\left\{\mathrm{Cp}^{*} \mathrm{Cr}(\mathrm{CO})_{2}\left({ }^{(}{ }^{(\mathrm{BuNC}}\right)\right\} \mathrm{P}\right.$ $\left.\left.\left\{\mathrm{Cr}(\mathrm{CO})_{5}\right\}_{2}{ }^{(}{ }^{(\mathrm{BuNN}}\right)\right]$ (4a). The formation of Lewis acid-Lewis base pairs is a common feature for phosphinidenes and the process is accompanied by a drastic change in the ${ }^{31} \mathrm{P}$ NMR chemical shift. Upon addition of ${ }^{\dagger} \mathrm{BuNC}$, a change

Figure 1. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra (recorded in thf with $\mathrm{C}_{6} \mathrm{D}_{6}$ capillary at 300 K) of the fragmentation of 2 a yielding 3 and 4 (a) and the in-situ reaction with ${ }^{\text {tBuNC affording } 4 a(b) .}$ in the ${ }^{31} \mathrm{P}$ NMR chemical shift from $\delta=1124 \mathrm{ppm}$ (attributed to the planar coordination geometry in 4) to $\delta=-166 \mathrm{ppm}$ (attributed to the pseudotetragonal coordination environment found in 4a) could be observed. Similarly, the reaction of the phosphinidene complex [Cp*P\{W(CO) $\left.\left.)_{5}\right\}_{2}\right]$ with ${ }^{\text {tBuNC }}$ affords the Lewis acid/base adduct $\left[\mathrm{Cp}{ }^{*} \mathrm{P}\left\{\mathrm{W}(\mathrm{CO})_{5}\right\}_{2}\left({ }^{(}{ }^{(B u N C}\right)\right]$ accompanied by the extreme change of the ${ }^{31} \mathrm{P}$ NMR chemical shift from $\delta=1076.5 \mathrm{ppm}$ to $\delta=-73.1 \mathrm{ppm} .{ }^{[2]}$ Supporting DFT calculations validated the identities of 4 and $\mathbf{4 a}$, confirming the proposed selective P_{1} / P_{3} fragmentation originating from 2. Consequently, the rearrangement/fragmentation process originating from \mathbf{B} introduces a novel pathway towards the generation of novel chromium P_{n} ligand complexes.

8.2 Reactivity of $\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]$ towards different Lewis acids

Scheme 2. Coordination and rearrangement products obtained from A.

The reactivity of A towards Lewis acids is strongly influenced by the nature of the Lewis acid itself. For rather weak Lewis acids like coinage metal salts a bidentate coordination of \mathbf{A} via the two wing tip P atoms of the intact P_{4} butterfly unit was observed previously. ${ }^{[1]]}$ Within this thesis, the synthesis of $\left\{\left\{\mathrm{Cp}{ }^{\left[\mathrm{FPe}(\mathrm{CO})_{3}\right\}_{2}-}\right.\right.$
 reported by reacting \mathbf{A} with $\left[\mathrm{M}(\mathrm{CO})_{4}(\mathrm{nbd})\right](\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}$; nbd $=$ norbornadiene $)$ or $\left[\left(\mathrm{Ph} \mathrm{H}_{3} \mathrm{P}\right) \mathrm{Au}(\mathrm{tht})\right]\left[\mathrm{PF}{ }_{6}\right]$ (tht = tetrahydrothiophene), respectively (Scheme 2). Compounds 5a-d are obtained as a result from a ligand exchange of the weakly coordinating nbd and tht ligands with the more strongly donating P_{4} butterfly moiety affording analog compounds to the previously reported Lewis acid-P4 butterfly adducts. ${ }^{[12]}$ Additionally, the reaction of \mathbf{A} with $\left[\mathrm{AgPF}_{6}\right]$ affords $\left[\left\{\left(\mathrm{Cp}{ }^{m} \mathrm{Fe}(\mathrm{CO})_{2}\right)_{2}\left(\mu_{3}, \eta^{11: 1: 1: 1}-\mathrm{P}_{4}\right)\right\}_{2} \mathrm{Ag}\right][\mathrm{PF} 6](6)$, a heteroleptic spiro complex with a pseudotetrahedral coordination geometry. The structural scaffold of \mathbf{A} remains basically unaltered by the coordination process, resulting in very small bite angles of approx. 64° for 5 and $\mathbf{6}$. One outstanding feature of $\mathbf{5 c}$ in comparison to the other obtained P_{4} butterfly ligand complexes is the unexpected solvent dependency of the NMR spectra. Hitherto, such a degree of solvent dependency is unknown for P_{n} ligand complexes but could be observed for biologically active phosphate groups due to the dynamic formation of hydrogen bridges induced by polar solvents. ${ }^{[3]}$ Experimental ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectra of $\mathbf{5 c}$ in mixtures of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and n-pentane clearly illustrate the linear dependency of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR chemical shifts in respect to the polarity of the solvent (Fig. 2). These observations suggest a highly dynamic coordination between the P_{4} butterfly ligand \mathbf{A} and the $\left[\mathrm{W}(\mathrm{CO})_{4}\right]$ fragment in solution, which is strongly influenced by the polarity of the solvent.

b)

c)

	wing tip P atoms	bridgehead P atoms
intercept	$-161.5(1) \mathrm{ppm}$	$-168.12(4) \mathrm{ppm}$
slope	$-0.05(3) \mathrm{ppm}^{-1}$	$0.196(8) \mathrm{ppm}^{-1}$

Figure 2. (a) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $5 \mathbf{c}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-pentane mixtures with increasing n-pentane percentage (recorded with $\mathrm{C}_{6} \mathrm{D}_{6}$-capillary at 300 K); (b) chemical shift of the recorded ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra compared with the n-pentane percentage of the responding solutions; (c) parameters of the linear fits displayed in (b)

In contrast to the previously described coordination of the intact P_{4} butterfly moiety, the reactions of \mathbf{A} with $\left[\mathrm{Co}_{2}(\mathrm{CO})_{8}\right]$ and $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{9}\right]$ induce a rearrangement of the P_{4} unit. The reactions of \mathbf{A} with these more reactive Lewis acids yield $\left[\left\{\mathrm{Cp}^{\prime \prime \prime}(\mathrm{CO})_{2} \mathrm{Fe}\right\}_{2}\left(\mu_{4}, \eta^{1: 1:: 2: 2}-\mathrm{P}_{4}\right)\left\{\mathrm{Co}(\mathrm{CO})_{3}\right\}_{2}\right]$ (7, Scheme 2) and $\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{4}, \eta^{1: 1: 1: 1: 3}-\right.\right.$ $\left.\left.\mathrm{P}_{4} \mathrm{CO}\right)\left\{\mathrm{Fe}(\mathrm{CO})_{4}\right\}\left\{\mathrm{Fe}(\mathrm{CO})_{3}\right\}\right]$ (8, Scheme 2), respectively. During the formation of 7 , the $\mathrm{P}-\mathrm{P}$ bond between the former bridgehead P atoms of \mathbf{A} is selectively cleaved, affording an almost planar cyclo- P_{4} moiety that is asymmetrically capped by two $\left[\mathrm{Co}(\mathrm{CO})_{3}\right]$ fragments. Taking the rearrangement process one step further, one carbonyl group inserts into the cyclo- P_{4} scaffold during the formation of 8, resulting in a tetraphosphole structural motif. However, 8 is obtained from the reaction of \mathbf{A} with $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{9}\right]$ only after additional rearrangement processes occur during the chromatographic work up or crystallization. A combination of IR and NMR spectroscopy, mass spectrometry and DFT calculations suggest that $\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{4}, \eta^{1: 1: 1: 12}-\right.\right.$ $\left.\left.\mathrm{P}_{4}\right)\left\{\mathrm{Fe}(\mathrm{CO})_{4}\right\}\left\{\mathrm{Fe}(\mathrm{CO})_{3}\right\}\right]\left(8^{\prime}\right)$ is initially formed from the reaction of \mathbf{A} with $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{9}\right]$ and acts as an intermediate in the generation of $\mathbf{8}$. Compound $\mathbf{8}^{\prime}$ represents an intact molecule of \mathbf{A} which coordinates towards a $\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]$ fragment in a terminal η^{1}-coordination mode while a second a $\left[\mathrm{Fe}(\mathrm{CO})_{3}\right]$ fragment is coordinated in a chelating η^{2}-fashion.

Consequently, A has once again proven to be a valuable bidentate ligand in the generation of new chelating Lewis acid- P_{4} butterfly adducts. Moreover, the conversion with more reactive Lewis led to the desired surge from mere coordination compounds towards original polyphosphorus ligand complexes.

8.3 Reactivity of P_{4} butterfly compounds towards nucleophiles

Fragmentation

Scheme 3. Reactions of \mathbf{A} and \mathbf{B} with IM e under different reaction conditions.

While the reactivity of neutral P_{4} butterfly complexes towards different Lewis acids has been the topic of previous reports ${ }^{[1]}$ and parts of this thesis, no investigations concerning their reactivity towards nucleophiles have been published to the best of our knowledge. Therefore, \mathbf{A} and \mathbf{B} were reacted with the rather small N heterocyclic carbene IMe (1,3,4,5-tetramethylimidazol-2-ylidene) to initiate the study of this hitherto unexplored reaction pathway.

The reaction of \mathbf{A} with IMe is highly temperature depended. If the reaction is performed at room temperature, $\left[\mathrm{P}(\mathrm{IMe})_{2}\right]\left[\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{Cp}^{\prime \prime \prime}\right](9)$ is obtained selectively alongside a red precipitate (most likely polyphosphorus aggregates). In contrast, performing the reaction at $-80^{\circ} \mathrm{C}$ affords $\left[P(I M e)_{2}\right]\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}\right\}_{2}\left(\mu, \eta^{3: 3}-\mathrm{P}_{3}\right)\right]$ (10) as the exclusive product. The temperature driven formation of the anion suggests that 10 represents the kinetic product of the reaction while $\mathbf{9}$ is the thermodynamically favored product. If the reaction is repeated for \mathbf{B}, two distinct products can be isolated simultaneously: $\left[\mathrm{P}(\mathrm{IMe})_{2}\right]\left[\mathrm{Cr}(\mathrm{CO})_{3} \mathrm{Cp}^{*}\right]$ (11) and $\left[\left[\left\{\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{2}\right\}\left(\eta^{2}-\right.\right.\right.$ $\left.\left.\mathrm{P}_{2} \mathrm{IM} e_{2}\right)\right]\left[\mathrm{Cr}(\mathrm{CO})_{3} \mathrm{Cp}^{*}\right](12)$. The $\left[\mathrm{P}(\mathrm{IMe})_{2}\right]^{+}$cation found in 9,10 and 11 is well established and the evaluation of the molecular structure in the solid state depicts that the counter ion has only a marginal influence on the overall structural parameters of the cation. The $\left[\left\{\mathrm{Cp}^{\prime \prime \prime} \mathrm{Fe}\right\}_{2}\left(\mu, \eta^{3: 3}-\mathrm{P}_{3}\right)\right]^{-}$anion of 10 can be formally described as a reduced version of $\left[\left\{\mathrm{Cp}^{\prime \prime \prime} \mathrm{Fe}\right\}_{2}\left(\mu, \eta^{3: 3}-\mathrm{P}_{3}\right)\right]$, the first binuclear complex which bears an allylic $\mu-\mathrm{P}_{3}$ unit. ${ }^{[4]} \mathrm{By}$ comparison, the formal reduction results in the partial resolution of the allylic system and a notable widening of the structural scaffold. Intriguingly, 12 represents the first P_{2} dumbbell that is stabilized by one bridging organometallic fragment as well as two NHC ligands in a trans conformation. The $\left\{\mathrm{Cr}(\mathrm{CO})_{2} \mathrm{Cp} *\right\}$ fragment is coordinated by the P_{2} dumbbell in an asymmetrical η^{2}-coordination mode, resulting in an $A A^{\prime}$ spin system in the ${ }^{31} \mathrm{P}$ NMR spectrum. Comprehensive DFT calculations delineate a formal negative charge of the $\left\{\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{2}\right\}$ fragment and a weak double bond character of the P_{2} dumbbell with one localized lone pair of electrons on each P atom.

A variation in the stoichiometry of the reaction of \mathbf{B} with IMe strongly influences the product distribution of 11 and 12 due to the intrinsic phosphorus/carbene ratios of the two products. By increasing the amount of IMe present in the reaction solution, the product distribution is clearly shifted towards 11 accompanied by the formation of byproducts and an increased amount of insoluble precipitate (Fig. 3).

In summary, the successful reactions of \mathbf{A} and \mathbf{B} with IMe are very intriguing and pave the way for further investigations of the reactivity of P_{4} butterfly compounds towards nucleophiles. Especially the formation of 12, a novel type of P_{2} ligand

Figure 3. Relative integrals of the signals attributed to $\mathbf{B}, 11$ and 12 in the experimental ${ }^{31} \mathrm{P}$ NMR spectra (recorded in thf with $\mathrm{C}_{6} \mathrm{D}_{6}$ capillary at 300 K) of reactions of B with varying equivalents of IMe in respect to the amount of IMe present in the reaction solution.

$8.4\left[\left\{\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right\}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]$ as a starting material of P_{4} butterfly transfer processes

Substituent exchange

Scheme 4. Proposed P_{4} activation/transfer reaction mechanism starting from B.

All reactions reported for P_{4} butterfly compounds thus far focus on the transformation of the central P_{4} unit affording either chelating coordination products or novel P_{n} ligand complexes. In contrast, little to no interest was taken in the transformation of the adjacent organic or organometallic substituents of the P_{4} butterfly compounds. However, the rather labile $\mathrm{P}-\mathrm{Cr}$ bond in \mathbf{B} introduces a unique opportunity to investigate this as yet untouched field of research. As this bond represents the weakest link in \mathbf{B}, the connection of the central P_{4} butterfly motif towards the substituents is expected to be cleaved selectively under very mild reaction conditions. Consequently, an uncoordinated P_{4} butterfly motif is a reasonable intermediate species available for the subsequent attachment towards newly introduced substituents. Hence, novel P_{4} butterfly compounds might be obtained. Moreover, the isolation of the released $\left[\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right]$ fragments of \mathbf{B} might enable the recovery of the corresponding $\left[\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right]_{2}$ dimer after conversion with a suitable reagent. Subsequently, $\left[\mathrm{Cp} * \mathrm{Cr}(\mathrm{CO})_{3}\right]_{2}$ could be reacted with white phosphorus affording \mathbf{B} and thereby closing the semi-catalytic P_{4} activation/transfer cycle (Scheme 4).

The reaction of \mathbf{B} with 2.0 eq. of $\mathrm{K}\left[\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right]$ or $\mathrm{NaCp}{ }^{\prime \prime \prime}$, respectively, affords the known P_{4} butterfly compounds \mathbf{A} and $\left[\mathrm{Cp}^{\prime \prime 2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]$ (13), respectively, alongside 2.0 eq. of $\mathrm{K}\left[\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right]$. Consequently, it could be confirmed that \mathbf{B} can be transformed into different known P_{4} butterfly compounds via the suggested substituent exchange route. These encouraging results obviously shift the focus of attention towards the generation of novel P_{4} butterfly compounds that hitherto could not be obtained via conventional synthetic pathways. However, from the reactions of \mathbf{B} with various organometallic $\left(\mathrm{K}\left[\mathrm{CpFe}(\mathrm{CO})_{2}\right], \mathrm{K}\left[\mathrm{Cp}{ }^{*} \mathrm{Fe}(\mathrm{CO})_{2}\right]\right.$, $\mathrm{K}\left[\mathrm{Cp}{ }^{\prime} \mathrm{Mo}(\mathrm{CO})_{3}\right], \mathrm{K}\left[\mathrm{CpW}(\mathrm{CO})_{3}\right]$ and $\left.\mathrm{Na}\left[\mathrm{Cp} \mathrm{\prime "} \mathrm{~W}(\mathrm{CO})_{3}\right]\right)$ and organic $\left(\mathrm{NaCp}^{*},\left[\mathrm{Ph}_{3} \mathrm{C}\right]^{+}\right.$and $\left.\left[\mathrm{Ph}_{2} \mathrm{CH}\right]^{+}\right)$reagents no novel P_{4} butterfly compounds could be obtained. Instead, IR and NMR spectroscopy depict a quantitative consumption of \mathbf{B}, followed by the formation of a novel (P_{4} butterfly) compound that instantly decomposes. However, the spectroscopic methods confirmed that the initial $\mathrm{P}-\mathrm{Cr}$ bond cleavage occurred selectively supporting the utilization of \mathbf{B} as a unique starting material in the novel substituent exchange pathway. However, as only known P_{4} butterfly compounds could be obtained from this reaction pathway so far, further investigation must be carried out concerning the ideal reaction parameters and the stability of the desired products to ultimately obtain novel P_{4} butterfly compounds.

8.5 Generation of a new chromium substituted cyclo- P_{4} sandwich complex

2

Scheme 5. Reaction of \mathbf{B} with $\left[\mathrm{Fe}(\mathrm{MeCN})_{6}\right]\left[\mathrm{PF}_{6}\right]_{2}$ affording 14.

Since previous studies showed that reacting \mathbf{A} with 0.5 eq. of $\left[\mathrm{Fe}(\mathrm{MeCN})_{6}\right]\left[\mathrm{PF}_{6}\right]_{2}$ results in the formation of $\left[\left\{\left(\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right)_{2}\left(\mu_{3}, \eta^{1: 1: 4}-\mathrm{P}_{4}\right)\right\}_{2} \mathrm{Fe}\right]\left[\mathrm{PF}_{6}\right]_{2}\left(\mathbf{1 4}^{\prime}\right)^{[1 \mathrm{ib]}}$, the analogous reaction was performed with \mathbf{B} (Scheme 5). NMR spectroscopy and single crystal X-ray diffraction analysis confirmed that the isolobal compound $\left[\left\{\left(\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right)_{2}\left(\mu_{3}, \eta^{1: 1: 14}-\mathrm{P}_{4}\right)\right\}_{2} \mathrm{Fe}\right]\left[\mathrm{PF}_{6}\right]_{2}(14)$ is obtained from the reaction of \mathbf{B} with 0.5 eq. $\left[\mathrm{Fe}(\mathrm{MeCN})_{6}\right]\left[\mathrm{PF}_{6}\right]_{2}$ and the structural parameters of 14 are very similar to those reported for ${ }^{14}$ '. Hence, the isomerization process transforming \mathbf{A} into a 6π-aromatic cyclo- P_{4} ligand ultimately affording the cyclo- P_{4} sandwich complex 14' can be replicated for the analog chromium P_{4} butterfly complex \mathbf{B}.

In summary, the results presented in this thesis delineate various synthetic pathways originating from the P_{4} butterfly structural motif. Next to coordination processes originating from the intact tetraphosphabicyclo[1.1.0]butane structural motif numerous rearrangement, fragmentation and planarization pathways are described within this thesis. Consequently, the P_{4} butterfly unit is a promising device in the synthesis of novel P_{n} ligands and irreplaceable for investigations concerning P_{4} activation.

8.6 References

[1] (a) C. Schwarzmaier, S. Heinl, G. Balázs, M. Scheer, Angew. Chem. 2015, 127, 13309-13314; Angew. Chem. Int. Ed. Engl. 2015, 54, 13116-13121.
(b) J. Müller, S. Heinl, C. Schwarzmaier, G. Balázs, M. Keilwerth, K. Meyer, M. Scheer, Angew. Chem. 2017, 129, 7418-7423; Angew. Chem. Int. Ed. 2017, 56, 7312-7317.
(c) R. Grünbauer, Master Thesis, University of Regensburg (Regensburg), 2016.
[2] (a) M. Scheer, E. Leiner, P. Kramkowski, M. Schiffer, G. Baum, Chem. Eur. J. 1998, 4, 1917-1923.
(b) M. Seidl, M. Schiffer, M. Bodensteiner, A. Y. Timoshkin, M. Scheer, Chem. Eur. J. 2013, 19, 13783-13791.
[3] (a) D. B. Lerner, W. J. Becktel, R. Everett, M. Goodman, D. R. Kearns, Biopolymers 1984, 23, 21572172.
(b) R. Streck, A. J. Barnes, Spectrochimica Acta Part A 1999, 55, 1059-1076.
[4] M. Scheer, S. Deng, O. J. Scherer, M. Sierka, Angew. Chem. Int. Ed. 2005, 44, 3755-3758.

9. Appendices

9.1 List of abbreviations

General abbreviations

A
Angstroem, $1 \AA=1 \cdot 10^{-10} \mathrm{~m}$
AIM
Atoms in Molecules
Ar ${ }^{\text {Dipp }}$
$2,6-\left(2,6-\mathrm{Pr}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$
BCP bond critical points
butterfly bicyclo[1.1.0]butane
${ }^{\circ} \mathrm{C}$
degree Celsius
CAAC
cyclic alkyl-(amino)carbene
chex cyclo-hexane, $\mathrm{C}_{6} \mathrm{H}_{11}$
$\mathrm{Cp} \quad$ cyclopentadienyl, $\mathrm{C}_{5} \mathrm{H}_{5}$
$\mathrm{Cp}^{\prime} \quad$ 1-tert-butylcyclopentadienyl, $\mathrm{C}_{5} \mathrm{H}_{4}{ }^{\mathrm{B}} \mathrm{Bu}$
$\mathrm{Cp}^{\prime \prime} \quad$ 1,3-di-tert-butylcyclopentadienyl, $\mathrm{C}_{5} \mathrm{H}_{3}{ }^{4} \mathrm{Bu}_{2}$
$\mathrm{Cp}^{\prime \prime \prime} \quad$ 1,2,4-tris-tert-butylcyclopentadienyl, $\mathrm{C}_{5} \mathrm{H}_{2}{ }^{2} \mathrm{Bu}{ }_{3}$
Cp^{*} pentamethylcyclopentadienyl, $\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5}$
$\mathrm{Cp}^{\mathrm{BIG}} \quad$ penta-4-n-butylphenylcyclopentadienyl, $\mathrm{C}_{5}\left(4-{ }^{n} \mathrm{BuC}_{6} \mathrm{H}_{4}\right)_{5}$
$\mathrm{Cp}^{4 \mathrm{iPr}} \quad$ 1,2,3,4-tetra-iso-propylcyclopentadienyl, $\mathrm{C}_{5} \mathrm{H}^{2} \mathrm{Pr}_{4}$
$\mathrm{Cp}^{\mathrm{R}} \quad$ cyclopentadienyl derivative (specified in text)
d
DBU 1,8-diazabicyclo[5.4.0]undec-7-ene
DFT density functional theory
Dipp 2,6-diisopropylphenyl, 2,6-($\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$
dme 1,2-dimethoxyethane
Dmp $\quad 2,6-\left(2,4,6-\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$
dppe bis(diphenylphosphino)ethane
dppm 1,2-bis(diphenylphosphino)methane
DTA Differential Thermal Analysis
E \quad group 15 element (specified in text)
$\mathrm{e}^{-} \quad$ electron(s)
et al. et alii ("and others"),
$\mathrm{eV} \quad$ electronvolt, $1 \mathrm{eV}=1.60217657(4) \cdot 10^{-19} \mathrm{~J}$
EI-MS electron ionization mass spectroscopy
eq. equivalent(s)
ESI-MS electron spray ionization mass spectroscopy
Fig. Figure
LIFDI-MS liquid injection field desorption ionization mass spectroscopy
h
НОМО highest occupied molecular orbital
IDipp $\quad 1,3$-bis(2,6-diisopropylphenyl)imidazol-2-ylidene
IMe 1,3,4,5-tetramethylimidazol-2-ylidene
IMes $\quad 1,3$-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene
iPr iso-propyl, $\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$
K degree Kelvin
L ligand (specified in text)

LA	Lewis acid
LB	Lewis base
LUMO	lowest unoccupied molecular orbital
M	metal (specified in text)
[M^{+}]	molecular ion
Me	methyl, CH_{3}
Menthyl	$2-\mathrm{CH}_{3}, 6-\mathrm{Pr}-\mathrm{C}_{6} \mathrm{H}_{9}$
Mes*	2,4,6- ${ }^{\text { }} \mathrm{Bu}_{3} \mathrm{C}_{6} \mathrm{H}_{2}$
m/z	mass to charge ratio
nbd	norbornadiene, bicyclo[2.2.1]hepta-2,5-diene
nBu	n-butyl, $\mathrm{C}_{4} \mathrm{H}_{9}$
NBO	natural bond orbital
NHC	N-heterocyclic carbene
np_{3}	tris(2-diphenylphosphinoethyl)amine
NPA	Natural Population Analysis
Nu	nucleophile (specified in text)
Ph	Phenyl, $\mathrm{C}_{6} \mathrm{H}_{5}$
R	(organic) substituent (specified in text)
RCP	ring critical points
r.t.	room temperature
sMes	2,4,6- ${ }^{\text {T }} \mathrm{Bu}_{3} \mathrm{C}_{3} \mathrm{H}_{2}$
T	temperature
Tef	$\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]^{-}$
Ter	2,6-(2,4,6-($\left.\left.\mathrm{CH}_{3}\right)_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$
TMS	tetra-methylsilane, $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{4}$
${ }^{\text {tBu }}$	tert-butyl, $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$
thf	tetrahydrofurane, $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$
tht	tetrahydrothiophene
VE	valence electrons
VT	variable temperature
WBI	Wiberg Bond Index
X-ray	Röntgen radiation

Interpretation of NMR spectra	Interpretation of IR spectra		
br	broad signal	br	broad signal
d	doublet	IR	infrared spectroscopy
δ	chemical shift	m	medium
Hz	Hertz $=\mathrm{s}^{-1}$	s	strong
J	coupling constant	\tilde{v}	wavenumber
m	multiplet	w	weak
NMR	nuclear magnetic resonance		
ppm	parts per million		
s	singlet		
t	triplet		
v	resonance frequency		

9.2 List of numbered compounds

1. Introduction.

A $\quad\left[\left(\mathrm{np}_{3}\right) \mathrm{Ni}\left(\eta^{1}-\mathrm{P}_{4}\right)\right]$
B $\quad\left[\mathrm{Ag}\left(\eta^{2}-\mathrm{P}_{4}\right)_{2}\right]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$
C $\quad\left[\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{RhCl}\left(\eta^{1: 1}-\mathrm{P}_{4}\right)\right]$
D" $\quad\left[\left\{\mathrm{Cp} " \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]$
D"' $\quad\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]$
D* $\quad\left[\left\{\mathrm{Cp}^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right\}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]$
E [\{sMes $\left.\}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]$
F $\quad\left[\mathrm{Cp} * \mathrm{Nb}(\mathrm{CO})_{2}\left(\eta^{4}-\mathrm{P}_{4}\right)\right]$
G $\quad\left[\left\{\mathrm{Zr}\left(\mathrm{PhP}-\left(\mathrm{CH}_{2} \mathrm{SiMe}_{2} \mathrm{NSiMe}{ }_{2} \mathrm{CH}_{2}\right)_{2}-\mathrm{PPh}\right)\right\}_{2}\left(\mu, \eta^{4: 4}-\mathrm{P}_{4}\right)\right]$
H [(menthyl CAAC$)_{2} \mathrm{P}_{4}$]
I
J

L

Омо
Ow
$\mathbf{P} \quad\left[\mathrm{PMo}\left(\mathrm{N}\left({ }^{\mathrm{t}} \mathrm{Bu}\right) \mathrm{Ar}\right)_{3}\right]$
Q
[\{Cp* $\operatorname{Cr}\}_{2}\left(\mu\right.$, , $\left.\left.^{5: 5}-\mathrm{P}_{5}\right)\right]$
R
[Cp*Fe(n $\left.{ }^{5}-\mathrm{P}_{5}\right)$]
S
$\left[\mathrm{Ti}\left(\mathrm{n}^{5}-\mathrm{P}_{5}\right)_{2}\right]^{2-}$
T
U
$\left[\left\{C p^{*} M_{3}\right\}_{2}\left(\mu, \eta^{6: 6}-P_{6}\right)\right]$
[\{Cp*Ti\}z $\left.\left(\mu, \eta^{3: 3}-P_{6}\right)\right]$
D
$\left[\{\mathrm{Cp} " \mathrm{Fe}(\mathrm{CO})\}\left(\mu, \eta^{2: 1}-\mathrm{P}_{4}\right)\left\{\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{Cp}^{\prime \prime}\right\}\right]$
$D_{B} \quad\left[\left\{\mathrm{Cp}{ }^{\prime \prime} \mathrm{Fe}\right\}\left(\mu, \mathrm{\eta}^{4: 1}-\mathrm{P}_{4}\right)\left\{\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{Cp}{ }^{\prime \prime}\right\}\right]$
Dc
[\{Cp"Fe\}($\left.\eta^{4}-\mathrm{P}_{4} \mathrm{Fe}(\mathrm{CO}) \mathrm{Cp}{ }^{\prime \prime}\right)$]
$\mathrm{D}_{\mathrm{D}} \quad\left[\left\{\mathrm{Cp}{ }^{\prime \prime} \mathrm{Fe}\right\}_{2}\left(\mu, \mathrm{\eta}^{4: 4}-\mathrm{P}_{4}\right)\right]$
$D_{E} \quad\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}\right\}_{2}\left(\mu, \eta^{4: 4}-\mathrm{P}_{4}\right)\right]$
$\mathrm{D}_{\mathrm{F}} \quad\left[\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}\left(\eta^{5}-\mathrm{P}_{5}\right)\right]$
$\mathbf{D}_{\mathbf{G}} \quad\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}\right\}_{2}\left(\mu, \eta^{2: 2}-\mathrm{P}_{2}\right) \mu-\mathrm{CO}\right]$
$\mathrm{D}_{\mathrm{H}} \quad\left[\left\{\mathrm{Cp}^{\prime \prime \prime} \mathrm{Fe}\right\}_{2}(\mu-\mathrm{P})_{2}\right]$
$D_{1} \quad\left[\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}\left(\eta^{5}-\mathrm{P}_{3} \mathrm{C}_{2} \mathrm{Ph}_{2}\right)\right]$
DJ $\quad\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{n}\right\}_{3} \mathrm{P}_{11}\right]$
$D_{k} \quad\left[\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}\left(\eta^{5}-\mathrm{P}_{4} \mathrm{C}^{\dagger} \mathrm{Bu}\right)\right]$
$\mathrm{D}_{\mathrm{L}} \quad\left[\mathrm{Cp}{ }^{\prime \prime} \mathrm{Fe}\left(\eta^{5}-\mathrm{P}_{3}\left(\mathrm{C}^{\mathrm{t}} \mathrm{Bu}_{2}\right)_{2}\right)\right]$
$\mathrm{D}_{\mathrm{m}} \quad\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}\right\}_{2}\left(\mu, \eta^{3: 3}-\mathrm{P}_{3}\right)\right]$
$D_{N} \quad\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{3}, \eta^{1: 1: 1: 1: 1}-\mathrm{P}_{4}\right)\left\{\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right\}\right]\left[\mathrm{BF}_{4}\right]$
Do
$\left[\left\{\left(\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right)_{2}\left(\mu_{3}, \eta^{1: 1: 1: 1: 1}-\mathrm{P}_{4}\right)\right\}_{2} \mathrm{Cu}\right]\left[\mathrm{BF}_{4}\right]$
D_{p}
$\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})\right\}\left(\mu_{4}, \eta^{\text {1:1:1:1::2 }}-\mathrm{P}_{4}\right)\{\mathrm{Cul}\}\right]_{2}$
$D_{Q} \quad\left[\left\{\mathrm{Cp}^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{3}, \eta^{1: 1: 1: 1: 1}-\mathrm{P}_{4}\right)\left\{\mathrm{FeBr}_{2}\right\}\right]$
$\mathrm{D}_{\mathrm{R}} \quad\left[\left\{\left(\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right)_{2}\left(\mu_{3,} \eta^{1: 1: 14}-\mathrm{P}_{4}\right)\right\}_{2} \mathrm{Fe}\right]\left[\mathrm{PF}_{6}\right]_{2}$
\qquad
2. Research objectives

```
1 [{Cp"FFe(CO) 2}2 ( }\mu,\mp@subsup{\eta}{}{1:1-P
2
[{Cp*Cr(CO)}\mp@subsup{3}{3}{2}(\mu,\mp@subsup{\eta}{}{1:1}-\mp@subsup{P}{4}{})
```

3. The butterfly complex $\left[\left\{\mathrm{Cp}^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right\}_{3}\left(\mu, \eta^{1: 1}-P_{4}\right)\right]$ as a versatile ligand and its unexpected P_{1} / P_{3} fragmentation route

A $\quad\left[\left\{\mathrm{Cp}{ }^{\prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]$
B $\quad\left[\left\{\mathrm{CpW}(\mathrm{CO})_{2}\right\}\left(\mu_{3}-\mathrm{P}\right)\left\{\mathrm{Cr}(\mathrm{CO})_{5}\right\}_{2}\right]$
$1 \quad\left[\left\{\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right\}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]$
$2 \quad\left[\left\{\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right\}_{2}\left(\mu_{3}, \eta^{1: 1: 1: 1: 1}-\mathrm{P}_{4}\right)\left\{\mathrm{W}(\mathrm{CO})_{4}\right\}\right]$
2a $\quad\left[\left\{\mathrm{Cp}^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right\}_{2}\left(\mu_{3}, \eta^{1: 1: 1: 1: 1}-\mathrm{P}_{4}\right)\left\{\mathrm{Cr}(\mathrm{CO})_{4}\right\}\right]$
3a $\quad\left[\left\{\mathrm{Cp}^{*} \operatorname{Cr}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{3}, \eta^{3: 1: 1}-\mathrm{P}_{4}\right)\left\{\mathrm{Cr}(\mathrm{CO})_{5}\right\}\right]$
3b $\quad\left[\left\{\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{3}, \mathrm{\eta}^{3: 1: 1}-\mathrm{P}_{4}\right)\left\{\mathrm{Mo}(\mathrm{CO})_{5}\right\}\right]$
4a $\left.\quad\left[\left\{\mathrm{Cp}^{*} \operatorname{Cr}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{\left.4, \eta^{3: 1: 1: 1:}-\mathrm{P}_{4}\right)}\right) \mathrm{Cr}(\mathrm{CO})_{5}\right\}_{2}\right]$
4b $\quad\left[\left\{\mathrm{Cp}^{*} \mathrm{Cr}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{4}, \eta^{3: 1: 1: 1:}-\mathrm{P}_{4}\right)\left\{\mathrm{Mo}(\mathrm{CO})_{5}\right\}_{2}\right]$
$5 \quad\left[\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{2}\left(\mathrm{n}^{3}-\mathrm{P}_{3}\right)\right]$
$6 \quad\left[\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{2}\left(\mathrm{Cr}(\mathrm{CO})_{5}\right)_{2}\left(\mu_{3}-\mathrm{P}\right)\right]$
$7 \quad\left[\left\{\mathrm{Cp}^{*} \mathrm{Cr}(\mathrm{CO})_{2}\left({ }^{(\mathrm{B}} \mathrm{Bu}-\mathrm{NC}\right)\right\} \mathrm{P}\left\{\mathrm{Cr}(\mathrm{CO})_{5}\right\}_{2}\left({ }^{(\mathrm{BuNC}}\right)\right]$

4. The reactivity of the P_{4} butterfly ligand $\left[\left\{\mathrm{Cp}{ }^{\prime} \mathrm{FFe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]$ towards Lewis acids: Coordination vs. rearrangement

$1 \quad\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]$
2a $\quad\left[\left\{\mathrm{Cp}^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{3}, \eta^{1: 1: 1: 1: 1}-\mathrm{P}_{4}\right)\left\{\mathrm{Cr}(\mathrm{CO})_{4}\right\}\right]$
2b $\quad\left[\left\{\mathrm{Cp}^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{3}, \eta^{1: 1: 1: 1: 1}-\mathrm{P}_{4}\right)\left\{\mathrm{Mo}(\mathrm{CO})_{4}\right\}\right]$
2c $\quad\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{3}, \eta^{1: 1: 1: 1:}-\mathrm{P}_{4}\right)\left\{\mathrm{W}(\mathrm{CO})_{4}\right\}\right]$
2d $\quad\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{3}, \mathrm{\eta}^{1: 1: 1: 1: 1}-\mathrm{P}_{4}\right)\left\{\mathrm{AuPPh}_{3}\right\}\right]\left[\mathrm{PF}_{6}\right]$
$3 \quad\left[\left\{\left(\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right)_{2}\left(\mu_{3}, \eta^{\text {1:1:1:1:1}}-\mathrm{P}_{4}\right)\right\}_{2} \mathrm{Ag}\right]\left[\mathrm{BF}_{4}\right]$
$4 \quad\left[\left\{\mathrm{Cp}^{\prime \prime \prime}(\mathrm{CO})_{2} \mathrm{Fe}\right\}_{2}\left(\mu_{4,} \eta^{1: 1: 1: 2: 2}-\mathrm{P}_{4}\right)\left\{\mathrm{Co}(\mathrm{CO})_{3}\right\}_{2}\right]$
$5 \quad\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{4,} \eta^{1: 1: 1: 1: 3}-\mathrm{P}_{4} \mathrm{CO}\right)\left\{\mathrm{Fe}(\mathrm{CO})_{4}\right\}\left\{\mathrm{Fe}(\mathrm{CO})_{3}\right\}\right]$
$\mathbf{5}^{*-1} \quad\left[\left\{\mathrm{Cp}^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{4,} \eta^{1: 1: 1: 1: 2}-\mathrm{P}_{4}\right)\left\{\mathrm{Fe}(\mathrm{CO})_{4}\right\}\left\{\mathrm{Fe}(\mathrm{CO})_{3}\right\}\right]$
5*-2
$\left[\left\{\mathrm{Cp}^{\prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{4}, \eta^{1: 1: 1: 1: 1}-\mathrm{P}_{4}\right)\left\{\mathrm{Fe}(\mathrm{CO})_{4}\right\}_{2}\right]$

5. Reactivity of P_{4} butterfly compounds towards NHCs: Generation of a novel metal bridged
P_{2} dumbbell complex
```
A [{Cp"Fe(CO)2}2 (\mu,\mp@subsup{\eta}{}{1:1:-P}-\mp@subsup{P}{4}{})]
B [{Cp*Cr(CO)
1 [IMe2P][Fe(CO)2Cp"]
```

```
2
    [IMe2P][{FeCp"'}2( }\mu,\mp@subsup{\eta}{}{3:3}-\mp@subsup{P}{3}{})
3
    [IMe2P][Cr(CO)}\mp@subsup{3}{3}{}\mp@subsup{\textrm{Cp}}{}{*}
4
    [{Cp*Cr(CO)2}(\eta}\mp@subsup{\eta}{}{2}-\mp@subsup{\textrm{P}}{2}{}\mp@subsup{\textrm{IMe}}{2}{})][[\textrm{Cr}(\textrm{CO})\mp@subsup{)}{3}{}\mp@subsup{\textrm{Cp}}{}{*}
```

6. The P_{4} butterfly complex $\left[\left\{\mathrm{Cp}^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right\}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]$: a starting material for P_{4} transfer processes 143
A $\quad\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]$

B $\quad\left[\mathrm{Cp}^{\prime \prime \prime}{ }_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]$
1
$\left[\left\{\mathrm{Cp}^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right\}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]$
7. Thesis treasury

A
$\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]$
B $\quad\left[\left\{\mathrm{Cp}^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right\}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]$
$1 \quad\left[\left\{\left(\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right)_{2}\left(\mu_{3}, \eta^{1: 1: 4}-\mathrm{P}_{4}\right)\right\}_{2} \mathrm{Fe}\right]\left[\mathrm{PF}_{6}\right]_{2}$
2
$\left[\left\{\left(\mathrm{Cp}^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right)_{2}\left(\mu_{3}, \eta^{1: 1: 4}-\mathrm{P}_{4}\right)\right\}_{2} \mathrm{Fe}\right]\left[\mathrm{PF}_{6}\right]_{2}$
8. Conclusion

A
$\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]$
B $\quad\left[\left\{\mathrm{Cp}{ }^{*} \operatorname{Cr}(\mathrm{CO})_{3}\right\}_{2}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)\right]$
1
$\left[\left\{\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right\}_{2}\left(\mu_{3}, \eta^{\text {1:1:1:1:1}}-\mathrm{P}_{4}\right)\left\{\mathrm{W}(\mathrm{CO})_{4}\right\}\right]$
2a' $\quad\left[\left\{\mathrm{Cp}{ }^{*} \mathrm{Cr}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{3, \eta^{3: 1: 1}}-\mathrm{P}_{4}\right)\left\{\mathrm{Cr}(\mathrm{CO})_{5}\right\}\right]$
2b' $\quad\left[\left\{\mathrm{Cp}^{*} \mathrm{Cr}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{3}, \mathrm{\eta}^{3: 1: 1:}-\mathrm{P}_{4}\right)\left\{\mathrm{Mo}(\mathrm{CO})_{5}\right\}\right]$
2a $\quad\left[\left\{\mathrm{Cp}^{*} \operatorname{Cr}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{4,} \eta^{3: 1: 1: 1: 1}-\mathrm{P}_{4}\right)\left\{\mathrm{Cr}(\mathrm{CO})_{5}\right\}_{2}\right]$
2b $\quad\left[\left\{\mathrm{Cp}^{*} \mathrm{Cr}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{\left.\left.4, \mathrm{\eta}^{3: 1: 1: 1: 1}-\mathrm{P}_{4}\right)\left\{\mathrm{Mo}(\mathrm{CO})_{5}\right\}_{2}\right]}\right.\right.$
$3 \quad\left[\mathrm{Cp} * \mathrm{Cr}(\mathrm{CO})_{2}\left(\eta^{3}-\mathrm{P}_{3}\right)\right]$
$4 \quad\left[\mathrm{Cp}^{*} \mathrm{Cr}(\mathrm{CO})_{2}\left(\mathrm{Cr}(\mathrm{CO})_{5}\right)_{2}\left(\mu_{3}-\mathrm{P}\right)\right]$
4a $\left.\quad\left[\left\{\mathrm{Cp}^{*} \mathrm{Cr}(\mathrm{CO})_{2}{ }^{(\mathrm{t}} \mathrm{Bu}-\mathrm{NC}\right)\right\} \mathrm{P}\left\{\mathrm{Cr}(\mathrm{CO})_{5}\right\}_{2}\left({ }^{(\mathrm{BuNC}}\right)\right]$
5a $\quad\left[\left\{\mathrm{Cp}^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{3}\right\}_{2}\left(\mu_{3}, \eta^{1: 1: 1: 1: 1}-\mathrm{P} 4\right)\left\{\mathrm{Cr}(\mathrm{CO})_{4}\right\}\right]$
5b $\quad\left[\left\{\mathrm{Cp}^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{3}\right\}_{2}\left(\mu_{3}, \eta^{1: 1: 1: 1: 1}-\mathrm{P}_{4}\right)\left\{\mathrm{Mo}(\mathrm{CO})_{4}\right\}\right]$
5c $\quad\left[\left\{\mathrm{Cp}^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{3}\right\}_{2}\left(\mu_{3}, \eta^{1: 1: 1: 1: 1}-\mathrm{P}_{4}\right)\left\{\mathrm{W}(\mathrm{CO})_{4}\right\}\right]$
5d $\quad\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{3}, \eta^{1: 1: 1: 1: 1}-\mathrm{P}_{4}\right)\left\{\mathrm{AuPPh}_{3}\right\}\right]\left[\mathrm{PF}_{6}\right]$
6
7
8

8'
9
10
11
12
13
14 '
$\left[\left\{\left(\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right)_{2}\left(\mu_{3}, \eta^{1: 1: 1: 1: 1}-\mathrm{P}_{4}\right)\right\}_{2} \mathrm{Ag}\right]\left[\mathrm{PF}_{6}\right]$
$\left[\left\{\mathrm{Cp}^{\prime \prime \prime}(\mathrm{CO})_{2} \mathrm{Fe}\right\}_{2}\left(\mu_{4}, \eta^{1: 1:::: 2}-\mathrm{P}_{4}\right)\left\{\mathrm{Co}(\mathrm{CO})_{3}\right\}_{2}\right]$
$\left[\left\{\mathrm{Cp}^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{4}, \eta^{1: 1: 1: 1: 3}-\mathrm{P}_{4} \mathrm{CO}\right)\left\{\mathrm{Fe}(\mathrm{CO})_{4}\right\}\left\{\mathrm{Fe}(\mathrm{CO})_{3}\right\}\right]$
$\left[\left\{\mathrm{Cp}{ }^{\prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}\left(\mu_{4}, \mathrm{\eta}^{\left.1: 1: 1: 2_{2}-\mathrm{P}_{4}\right)}\left\{\mathrm{Fe}(\mathrm{CO})_{4}\right\}\left\{\mathrm{Fe}(\mathrm{CO})_{3}\right\}\right]\right.$
$\left[\mathrm{P}(\mathrm{IMe})_{2}\right]\left[\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{Cp}^{\prime \prime \prime}\right]$
$\left[\mathrm{P}(\mathrm{IMe})_{2}\right]\left[\left\{\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}\right\}_{2}\left(\mu, \eta^{3: 3}-\mathrm{P}_{3}\right)\right]$
$\left[\mathrm{P}(\mathrm{IMe})_{2}\right]\left[\mathrm{Cr}(\mathrm{CO})_{3} \mathrm{Cp}^{*}\right]$
$\left[\left\{\mathrm{Cp}^{*} \mathrm{Cr}(\mathrm{CO})_{2}\right\}\left(\eta^{2}-\mathrm{P}_{2} \mathrm{IMe}_{2}\right)\right]\left[\mathrm{Cr}(\mathrm{CO})_{3} \mathrm{Cp}^{*}\right]$
[Cp" ${ }^{\prime \prime}\left(\mu, \eta^{1: 1}-\mathrm{P}_{4}\right)$]
$\left[\left\{\left(\mathrm{Cp}{ }^{\prime \prime \prime} \mathrm{Fe}(\mathrm{CO})_{2}\right)_{2}\left(\mu_{3}, \eta^{1: 1: 4}{ }^{\left.\left.\left.1 /-\mathrm{P}_{4}\right)\right\}_{2} \mathrm{Fe}\right]\left[\mathrm{PF}_{6}\right]_{2}, ~}\right.\right.\right.$
14
$\left[\left\{\left(\mathrm{Cp}^{*} \mathrm{Cr}(\mathrm{CO})_{3}\right)_{2}\left(\mu_{3}, \eta^{1: 1: 4}-\mathrm{P}_{4}\right)\right\}_{2} \mathrm{Fe}\right]\left[\mathrm{PF}_{6}\right]_{2}$

9.3 Acknowledgements

Finally, I would like to express my gratitude to:

- Prof. Dr. Manfred Scheer for providing good working conditions and his interest in my academic and personal progress.
- Dr. Gábor Balázs for many valuable pieces of advice and numerous DFT calculations.
- The "Fonds der Chemischen Industrie" for a Ph. D. scholarship.
- Dr. Michael Bodensteiner, Dr. Stefanie Gärtner and their team of the X-ray diffraction analysis department for help with any X-ray related problem.
- Dr. Ilya Shenderovich, Anette Schramm, Georgine Stühler and Fritz Kastner for the measurement of my NMR spectra.
- Josef Kirmeier and Wolfgang Söllner for recording my mass spectra.
- Helmut Schüller, Barbara Baumann and Wilhelmine Krutina for the elemental analyses.
- The team of the Glasbläser and Werkstätten for repairing things quickly.
- Dr. Michael Seidl for the final review of my X-ray diffraction data.
- Dr. Dirk Herrmann for proofreading parts of this thesis.
- Barbara Bauer for help with any (administrative) problem.
- My friends and family for their enduring support especially during the hard and trying times.
- Jana: without you, this time would have been a lot darker.

[^0]: ${ }^{[1]}$ based on an AMNX spin system with a C_{1} symmetry.

[^1]: ${ }^{[1]}$ Distortion angle between the $\mathrm{PC}^{\text {Carbene }} 2$ plane and the planes spanned by the NHC ring systems
 ${ }^{[2]}$ Preliminary values due to poor single crystal X-ray diffraction data
 ${ }^{[3]}$ Ter $=2,6$-bis(2,4,6-trimethyl-phenyl)phenyl

