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Abstract and Preface 

This thesis reports of various aspects of the coordination chemistry of phosphorus 

and arsenic based complexes towards coinage metal salts. The first part (chapters 3-5) 

deals with the reaction behavior of the tetrahedral complex [Cp2Mo2(CO)4(µ,h2-As2)] (1) 

with Cu(I) and Ag(I) salts containing weakly coordinating anions (WCAs) and the three 

component reactions of 1 with Ag(I)WCA salts and organic pyridyl linkers. In chapter 3 

the reactions of the organometallic diarsenic complex 1 with the weakly coordinating 

Ag[FAl{OC(C6F5)(C6F10)}3] (AgFAl) and Ag[Al{OC(CF3)3}4] (AgTEF), respectively are 

presented. Chapter 4 focuses on the synthesis of [Ag{Cp2Mo2(CO)4(µ,h2-As2)}3][PF6] and 

its coordination chemistry towards organic pyridyl linkers. The reaction of 

[Cp2Mo2(CO)4(µ,h2-As2)] with Cu(I) WCA salt is reported in chapter 5. The second part 

(chapter 6) presents the formation of the superdeficient supramolecule [(Cp’’Fe(η5-

P5))12{CuNCMe}8]8+ under weakly coordinating conditions. The unique structure of the 

sphere is discussed in terms of its vacancies, the inner cavity and its potential for further 

supramolecular reactions. The last part (chapter 7) displays the syntheses of the 

metallacycles [Cu4(μ2-dppm)4(CN)2][X]2 (X = TEF- (2), BArCl- (3)), their photophysical 

properties and the reactions of 2 and 3 with pyridyl linkers and the resulting luminescence 

properties. Finally, chapter 8 contains the thesis treasury and describes additional results 

which were obtained during the preparation of this work. 

At the beginning of each chapter a list of authors, who contributed to the respective 

part, is given. If results from collaborations are in part also discussed in other theses, it 

is stated there.  

To ensure a uniform design of this work, all chapters are subdivided into ‘Introduction’, 

‘Results and Discussion’, ‘Conclusion’, ‘Supporting Information’ and ‘References’. 

Furthermore, all chapters have the same text settings and the compound numeration 

begins anew. In addition, a general introduction is given at the beginning and a 

comprehensive conclusion of all chapters is presented at the end of the thesis.  
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1. Introduction 

1.1 Supramolecular Chemistry 

Jean-Marie Lehn defined supramolecular chemistry as the “chemistry beyond the 

molecule”.1 Its principles do not only help to understand chemical mechanisms but also 

biological phenomena, such as the structure of DNA or protein-protein interactions based 

on the lock-and-key model. Its principles are found in many different areas.2,3 For their 

pioneering “development and use of molecules with structure-specific interactions of high 

selectivity” Jean-Marie Lehn, Donald J. Cram and Charles Pedersen were jointly 

awarded with the Nobel Prize in chemistry in 1987.1,4,5 As, for most of the 150 years 

between Wöhler’s urea synthesis6 and the 1987 Nobel Prize, the main focus of chemists 

were molecules containing only covalently linked atoms, this was an important turning 

point in the history of chemistry. The coordinative bond turned out to be an exceptional 

tool, since it incorporates the advantages of both weak interactions (van-der Waals 

forces, hydrogen bonds, π,π-, electrostatic interactions) and covalent bonds. These 

bonds are comparatively strong, but also weak enough to allow dynamic behavior in 

solution. 

The work in supramolecular chemistry started with the selective binding of alkali metal 

cations by natural7 and synthetic5,8,9 macro(poly)cyclic ligands, such as crown ethers and 

cryptands. This led to the appearance of molecular recognition as a new field of chemical 

research that expanded and became supramolecular chemistry.8,10 Many different 

receptor types, such as crown ethers, cryptands and calixarenes have been explored 

with regard to molecular recognition based on supramolecular principles.5,11–13 During 

the last decades supramolecular chemistry gained impact in modern chemistry, with 

regard to biological systems and beyond. The Lewis acid/base interaction between a 

metal center and a ligand is also included in the field and was named 

metallosupramolecular chemistry.14,15 

It has become evident that the key concept of supramolecular chemistry is not size 

but information. In keeping with Richard Feynman’s motto ‘there’s plenty of room at the 

bottom’16 the capability of supramolecular species to spontaneously build up networks 

and achieve complex roles on the basis of encoded instructions and information 

demonstrates that with supramolecular chemistry ‘there’s even more room at the top’.10  
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1.1.1 Coordination Chemistry of En (E = P, As) Ligand Complexes 

The term En ligand complexes describes organometallic complexes with a limited 

number n    (n = 2 - 6) of substituent-free pnictogen atoms E (E = P, As, Sb, Bi) only 

bound to other pnictogen atoms or transition metals.17–20 Since the first examples of Pn 

ligand complexes (1971: [RhCl(P4)L2], L = P(C6H5)3, P(p-CH3C6H4)3, P(m-CH3-C6H4)3, 

As(C6H5)3;21 1973: [Co4(η5-C5H5)4P4];22 1973: [(Co(CO)3)2(µ,η2,2-P2)]23) were published 

around 50 years ago a variety of other examples have been reported. En ligand 

complexes can act as electron-donors towards Lewis acids due to their sterically 

accessible lone pairs, as well as their occupied σ-orbitals of E-E bonds. This enables a 

unique coordination chemistry. The tetrahedrane complexes [{CpRMo(CO)2}2(η2-E2)] (E 

= P (1), As (2); Cp = C5H5) and [CpRMo(CO)2(η3-P3)] (3), the P4 complex [CpRTa(CO)2(η4-

P4)] (4), the cyclo-E5 complexes [CpRFe(η5-E5)] (E = P (5), As (6)) as well as the 

tripledecker complex [(CpRMo)2(µ,η6,6-P6)] (7) are versatile synthetic building blocks in 

supramolecular chemistry (Figure 1.1). 
 

Figure 1.1. Selected En (E = P, As; n = 2 – 6) complexes suitable as building blocks for supramolecular 

chemistry. 

Compounds 1, 3, 5 and 7 can be easily obtained by the thermolysis of [CpRMo(CO)3]2 

(CpR = C5H5, C5Me5) and [CpRFe(CO)2]2 (CpR =  η5-C5Me5, η5-C5H3
tBu2, η5-C5H2

tBu3), 

respectively, with white phosphorus (P4).24–28 Compound 4 containing a Cp’’ ligand (Cp’’ 

= η5-C5H3
tBu2) can be synthesized by photolysis of [Cp’’Ta(CO)4] with P4.29 The 

polyarsenic complexes 2 and 6 are formed when reacting hexaphenylcyclohexaarsine 

with [CpMo(CO)3]2 or by thermolysis of [CpRFe(CO)2]2 with yellow arsenic (As4).30,31 The 

first example of the coordination behavior of a Pn ligand complex was reported by 

Scherer et al. in 1984 who observed the coordination of 1 with the 16 valence electron 

(VE) complexes [Re(CO)4Br] and [Cr(CO)5].32  

The conversion of 1 with coinage metal salts results in 1D coordination polymers (CPs) 

or dimers depending on the counterion. The first reports on this reactivity included the 

formation of the neutral 1D polymer 833,34 as well as  the charged polymer 933 and the 
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discrete complex 1033 (Figure 1.2) from the reaction of 1 with CuX (X = Cl, Br, I),  AgNO3 

and Ag(OTf) (Otf = CF3SO3), respectively. 

 

Figure 1.2. First polymeric and oligomeric coordination compounds based on 1.  

Compound 8 consists of six-membered Cu2P4 rings in which two P2 units coordinate 

side-on to the Cu atoms. Additionally, each copper atom coordinates to two halides 

forming a one-dimensional neutral polymer. Using the strongly coordinating anion [NO3]- 

instead of a halide the charged 1D polymer 9 is obtained, which features Ag2P4 rings 

similar to the Cu2P4 rings in 8. The Ag2P4 rings are linked by coordination of each Ag 

atom to a bridging NO3
- and an additional Mo2P2 fragment. Interestingly, compound 10 

is not a coordination polymer (CP) but a discrete compound containing an Ag2P4 ring, 

similar to 9. The Ag cations are additionally side-on coordinated by one molecule of 1 

each. Due to the relatively weakly coordinating anion (WCA) [Otf]- compound 10 is 

slightly soluble, but dissociates in solution. Using other first generation WCA salts 

(AgBF4,35 AgClO4,35 AgPF6,35 AgSbF6,35 Ag[Al{OC(CF3)3}4],35 [(Ph3P)Au(thf)][PF6],35 

[Cu(CH3CN)4][PF6],35 [Cu(CH3CN)4][BF4],36 [Cu(CH3CN)4][Al{OC(CF3)3}4]37, 

[Cu(CH3CN)3.5][Fal{OC(C6F10)(C6F5)}3]38) leads to isostructural compounds comparable 

to 10. The structural differences in 8-10 illustrate how small differences in the binding 

properties of the anions present in solution can dramatically change the structure of the 

product. 

Interestingly, the reaction of the cyclo-P5 compound 5 with CuCl leads to a structure 

similar to that of 8, which consists of planar six-membered Cu2P4 and four-membered 

Cu2Cl2 rings, arranged alternatingly in an orthogonal fashion.39 However, using CuBr or 

CuI rather than CuCl, the 2D coordination compounds [{Cp*Fe(µ,η1,1,1,5-P5)}CuX]n (X = 

Br, I; Cp* =   η5-C5Me5) are formed under otherwise identical reaction conditions. The 

polymers feature a 1,2,4-substitution pattern of the P5 ring which causes the formation 

of two-dimensional layers in the solid-state structure.39 Since organophosphorus and 

organoarsenic compounds generally show comparable behavior, one would assume a 

similar reactivity of Asn and Pn ligand complexes. Electronic structures of 5 and 6 
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modelled by DFT calculations using the hybrid B3LYP functional show only minor 

differences, which seems to support this hypothesis.40 The energies of the highest 

occupies molecular orbital (HOMO) and the HOMO-1 in 6 are higher than in 5. 

Furthermore, the lowest unoccupied molecular orbital (LUMO) of 6 is doubly degenerate 

(e2 symmetry) involving mainly π orbital contribution from the As5 ligand, and the 

LUMO+1 (e1 symmetry) contains metal, Cp* and As5 ligand contributions. In 5 the relative 

energies of the unoccupied e1 and e2 orbitals are reversed. This and the relative energy 

of the HOMO in 6 compared to 5 suggest a somewhat more electron releasing character 

of the As5 moiety in comparison to the P5 unit in 5. Consequently, 6 should be a slightly 

weaker ligand than 5. Nevertheless, the experimental results contradict this prediction.40  

 

Scheme 1.1. Reaction behavior of [Cp*Fe(η 5-As5)] (6) with CuX (X = Cl, Br, I) yielding the 1D polymers 11-
14.40 

The reaction of the cyclo-As5 compound 6 with CuX (X = Cl, Br) leads to the isostructural 

1D coordination polymers 11 and 12, respectively (Scheme 1.1). 11 and 12 are chain-

like polymers comprised of building blocks in which an As5 moiety coordinates to the 

copper atoms of a (CuX)3 six-membered ring in an η2:η2:η2 coordination mode. The 

(CuX)3 ring shows a distorted chair conformation with the Cu3 plane parallel to that of the 

As5 ring. The building blocks are linked via an end-on coordination of two copper atoms 

to arsenic atoms of the neighboring building units. The third copper atom of each building 

block is coordinated by a CH3CN molecule. Surprisingly, two one-dimensional CPs (13 

and 14) are obtained by reacting 6 with CuI. The polymeric structure of 13 reveals a 

(CuI)n ladder structure coordinated by molecules of 6 (Scheme 1.1). Four arsenic atoms 

of the cyclo-As5 unit coordinate side-on in an η2:η2 fashion towards two copper atoms. 
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Compound 14 combines structural motifs of 11, 12 and 13 with new ones. The linked 

building blocks of 14 consist of two 6 units in which one cyclo-As5 adopts an η2:η2 

coordination mode towards two copper atoms. These two copper atoms form a six-

membered (CuI)3 ring with a third Cu atom that is η2 coordinated by two arsenic atoms 

of the second As5 unit in the building unit. Furthermore, this second molecule 6 

coordinates in a η5 fashion to another Cu atom of a dumbbell shaped CuI located nearly 

perpendicular above the As5 plane. This structural motif is reminiscent of a triple-decker 

sandwich complex. These units are linked by end-on coordination of a copper atom 

towards an arsenic atom of a neighboring unit and vice versa. This structural variety 

demonstrates the extended π coordination behavior of 6 compared to a more σ donating 

character of 5.40 

Going beyond the domain of CPs comprised of organometallic building blocks and metal 

salts, organometallic-organic hybrid materials can be built up by reacting En ligand 

complexes, metal salts and organic N-donor linkers. This field is increasingly attracting 

interest due to the great potential of hybrid materials, including metal-organic frameworks 

(MOF), e.g. in catalysis or for gas storage and separation. Reactions of 1, different 

coinage metal salts and ditopic pyridyl-based linkers leading to the CPs 15-18 are 

depicted in Scheme 1.2. The 3D coordination polymer [{Cp2Mo2(CO)4(µ4,η1,1,2,2-

P2)}(µ,η1,1-C12H10N2)Ag]n[Al{OC(CF3)3}4]n  (15), comprised of distorted octahedral 

building blocks, crystallizes upon layering with toluene (Scheme 2). 41 Interestingly, 

layering the reaction mixture of 1, [Cu(CH3CN)4][PF6] and 2,2’-bipyrimidine with toluene 

results in the formation of the discrete compound 16 in which the copper atoms are side-

on coordinated by two nitrogen atoms of the linker and one P2 unit, and end-on 

coordinated by a phosphorus atom of another 1 moiety (Scheme 1.2).42  
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Scheme 1.2. Coordination compounds 15-18 containing the tetrahedral P2 complex 1, organic pyridyl based 

linkers and coinage metal salts.  

Unexpectedly, when the reaction is conducted with the same reactants and reaction 

conditions except n-pentane is used as layering solvent instead of toluene, the neutral 

1D CP 17 is obtained.42  

The repeating unit of 17 consists of one 2,2’-bipyrimidine molecule, two P2 ligand 

complexes 1, two chloride atoms bound to two copper atoms. A copper atom is side-on 

coordinated by two nitrogen atoms of the linker, η1 coordinated by one P atom and one 

chloride ion resulting in a tetrahedral coordination sphere. Switching to the flexible ditopic 

linker 1,2-bis(4-pyridyl)ethane leads to the expected coordination polymer 18.36 In 18 the 

Cu2P4 six-membered ring is still intact and two linker molecules coordinate each copper 

atom to form a one-dimensional hybrid compound.  

These examples only give a brief insight into the enormous variety of accessible hybrid 

materials and show that the structure of the organometallic-organic hybrid materials can 
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be easily tuned by changing either the metal center, the anion, the organic linker or the 

layering solvent.  

 

1.1.2 Discrete Nano-sized Aggregates 

Discrete nano-sized aggregates, particularly spheres with distinct inner cavities, 

display great potential for a broad range of applications, such as storage of small 

molecules, for molecular recognition, in catalysis or as molecular containers. Therefore, 

the field of large spherical molecules and clusters has attracted unprecedented attention 

within the last years. With regard to molecular recognition, smaller supramolecules such 

as crown ethers,9 cryptands9 and calixarenes gained popularity.12 (Figure 1.3). 

 

 
 

 

 

 

Figure 1.3. Representatives for crown ethers, cryptands and calixarenes, respectively. 

These classes of supramolecules are able to bind selectively cations in their cavities or 

the interior of the ring. 

Polyoxometallates (POMs) are another prominent example for nano-sized 

supramolecules.43 POMs are defined by MO6 octahedra (M = Mo, W, V, Mn, …) 

connected via their faces, edges or vertices to form inter alia larger polyanions with the 

basic structural motif of the Keggin ion [(XO4)(M12O36)]n- (X = P5+, Si4+, B3+, …; M = Mo6+, 

W6+, V6+, …).44,45 

Furthermore, Schnöckel et al. defined compounds which contain more metal-metal 

bonds than metal-ligand bonds as metalloid clusters.46–48  They succeeded in the 

synthesis of the metalloid Au102(SR)44 (SR = p-mercaptobenzoic acid) which emphasizes 

‘the outstanding position of metalloid clusters as intermediates between the bulk metal 

and the bulk salts on the one hand and of naked metal atom clusters and salt-like clusters 

on the other hand’.46  

The discovery of the third allotropic modification of carbon, the fullerenes,49 was 

awarded with the Nobel Prize to Robert F. Curl,50 Harold W. Kroto51 and Richard E. 

Smalley52 in 1996. Fullerenes consist of twelve five- and any even number of six-
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membered rings with the pentagons not bordering each other.53,54 The smallest and most 

prominent fullerene is the highly symmetric Buckminster fullerene Ih-C60
49 which is 

associated with the geodesic domes designed by the architect R. Buckminster Fuller.55–

57 It contains twelve five-membered and twenty six-membered carbon rings.  Most of the 

reported fullerenes are restricted to the most stable derivatives such as C60 and C70. Our 

group was able to show that [Cp*Fe(η5-P5)] (5a) and  [CpRTa(CO)2(η4-P4)] (4) (CpR = Cp’’ 
(4a), Cp’’’ (4b)) self-assemble with Cu(I) halides to give a supramolecular aggregate with 

fullerene-like topology. The carbon-free fullerene analogues of the Ih-C80 frameworks 

embody less stable representatives.58,59 It became evident that larger spherical 

molecules of this fullerene type are only accessible by using large guest molecules such 

as 5a,60 o-carborane,58 C60,
61 ferrocene,62 cobaltocene63 or [MCp2][PF6] (M = Fe, Co)63 

as a template (Figure 1.4a). Using 5 with the sterically more demanding CpBn substituent 

(5b, CpBn = η5-C5(CH2Ph)5) leads to the formation of the nano-sized supramolecule 

(CH2Cl2)3.4@[(CpBnFeP5)12(CuI)54(CH3CN)1.46] (Figure 1.4b).64 The size of the 

supramolecular aggregates can even be increased to a 140-vertex65 core and a 168-

vertex core66 using CpBIG and CpBn substituents (CpBIG =  η5-C5(4-nBuC6H4)5), 

respectively. Furthermore, the cyclo-P4 complexes 4a and 4b form highly symmetric non-

classical fullerene-like 32-vertex cores of solely four- and six-membered rings upon 

reaction with CuX (X = Cl, Br) (Figure 1.4c-d).67  

 

Figure 1.4. a) Molecular structure of C2B10H12@[(5a)12(CuCl)20],58 b) idealized scaffold of [(5b)12(CuI)54],64                         
c) molecular structure of [(4a)6(CuBr)8],67 d) scaffold of 32-vertex core.67  

 

 

 

 

 

a)a) c)b) d)

Cu

I

P
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1.2 The Myth of the Non-Coordinating Anion  

Over 50 years ago the dogmatic term ‘non-coordinating anions’ was introduced for 

more complex anions such as [BF4]-, [CF3SO3]-, [ClO4]- or [MF6]- (M = P, As, Sb) 

compared to covalently binding halides. However, it has been shown that these anions 

can indeed easily be coordinated.68 Also, ‘non-coordinating’ implies the lack of cation-

anion interactions, which is physically impossible, since opposite charges attract each 

other, resulting in the Coulomb force F (equation 1.1).69 

 

𝐹 = 	
1
4𝜋𝜀

𝑞!𝑞"
𝑟"

=	
1
4𝜋𝜀

𝑧!𝑧"𝑒"

𝑟"
 

 
q1, q2 = point charges, z1, z2 = ionic charges, e = elemental charge, r = distance between charges,                    ε0 
= dielectric constant. 

 

The force decreases with an increasing distance between the charges (r) and is 

dependent on the ionic charges (z1 and z2). In other words, to minimize the Coulomb 

force a small negative charge should be delocalized over a large surface area. 

Consequently, the more precise expression ‘Weakly Coordinating Anion’ (WCA) is 

commonly used in literature today. In order to achieve a nearly non-coordinating WCA 

many efforts in fundamental70,71 as well as in applied72 chemistry were undertaken. A 

large number of  approaches to obtain the best approximation of  non-coordinating 

anions have been tried, resulting in many ‘superweak anions’.73–76 These groups of 

WCAs include carborane-based anions,70,77 teflate-based anions,78–80 anions formed by 

reaction with Lewis acids,81,82 borate-based anions and aluminates. The last two 

examples will be described in more detail.  

The first group of anions to be introduced are borates. The well-known [BPh4]- anion 

is obtained by the substitution the fluorine atoms in [BF4]- with phenyl groups. Since this 

anion is susceptible to hydrolysis, the phenyl groups can be fluorinated or exchanged 

with -C6F5 or -C6H3-3,5-(CF3)2 groups in order to avoid this drawback. Several salts of 

[B(C6F5)4]- 83 and [B(ArF)4]- (ArF = - C6H3-3,5-(CF3)2),84,85 respectively, are commercially 

available and broadly used for example in homogenous catalysis.72 The EMIM+ (1-ethyl-

3-methyl imidazolium) salt with the weakly coordinating anion [B{(C6H3(CF3)2}4]-, used as 

an ionic liquid, can enhance the conversions in hydrovinylation reactions.86 In order to 

further reduce the coordinating strength of the anion, the -CF3 substituent can be 

replaced by larger perfluoroalkyl groups leading to the modified [B(ArF)4]- (ArF = - C6H3-

3,5-(RF)2; RF = n-C6F13,87 n-C4F9,88 2-C3F7
88). It was shown that such [B(ArF)4]- anions can 

(equation 1.1) 
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lead to very high conductivities when used in lithium-ion batteries.89 Our group 

investigates the potential of the closely related chlorinated borate anion [B(3,5-

C6H3Cl2)4]- (= [BArCl
4]-, 19, Figure 1.5). The corresponding Ag(I) salt Ag[BArCl

4] was first 

reported by Braunschweig et al. in 2014,90 followed by the synthesis of 

[Cu(CH3CN)3][BArCl
4] by Scheer et al.91  

Another prominent type of WCAs are weakly coordinating aluminate anions, such as 

[Al{OC(CF3)3}4]-  (= [TEF]-, 20, Figure 1.5) and [FAl{OC6F10(C6F5)}3]- (= [FAl]-, 21, Figure 

1.5). This class of anions was introduced by Strauss et al. in 199692–94 and 

complemented by Krossing et al. 95,96 and our group.38 

 

Figure 1.5.  Representation of the WCAs [BarCl4]- (19), [TEF]- (20) and [FAl]- (21). 

These perfluorinated alkoxymetallates with the oxophilic and highly Lewis acidic Al(III) 

centers offer the advantage of being easily accessible on a large scale compared to 

some borates anions.76 The reaction of Li[AlH4] with four equivalents of the appropriate 

fluorinated alcohol RFOH (RF = C(CF3)3, C6F10(C6F5)) leads to the corresponding Li(I) 

salts.93,97,98 The facile conversion of the lithium [TEF] salt yields the monovalent M(I) 

[TEF] (M(I) = Ag+,95 Cu+,38,99–101 In+,102 Tl+103)  salts. The [TEF]- anion shows a low 

coordinative strength,75 a high stability in nitric acid95 and its Brønsted acid 

[H(OEt)2]+[TEF]- can be produced in high yields.104 This stability towards hydrolysis is a 

result of the steric shielding of the oxygen atoms and the electronic stabilization caused 

by the perfluorination. In addition, the chemical robustness of 20 is also shown in the 

synthesis of its salts with the highly electrophilic cations [PX4]+,105 [P2X5]+,105 [P5X2]+ (X = 

Br, I) 105,106 and [CI3]+.107 This class of WCAs has also proven to act as very good 

counterions in ionic liquids for polymerization catalysis, as conducting salts for cyclic 

voltammetry or in electric cells and many more.108 Furthermore, Krossing et al.  reported 

the Ag(I) complexes [Ag(η4-S8)2][TEF], with two S8 crowns coordinating to the Ag(I) 

atoms,109 and [Ag(η2-P4)2][TEF], with two η2-coordinated P4 tetrahedra.110 Remarkably, 

the P4 tetrahedra remain intact and are easily displaced from the silver center, which is 

why this compound is one of the first known P4 transfer reagents. In 2013, Scheer et al. 
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synthesized the isostructural arsenic analogue [Ag(η2-As4][TEF].111 For the [FAl]- anion, 

only Li(I),98 the Ag(I)98 and Cu(I)38 salts have been reported so far. The [FAl]- anion 

facilitates the isolation of unstable cations in condensed phase. 21 can stabilize the 

dication [Ag2Se14]2+ by the coordination of the fluorine atom of the WCA to the silver 

atoms (d(Ag•••F) = 2.4198(2)).98 

The weakly coordinating aluminate anions are also used in supramolecular chemistry. 

The reaction of the polypnictogen complexes [Cp*Fe(η5-E5)] (Cp* =  η5-C5Me5; E = P 

(5a), As (6a)) with the monovalent M[TEF] salts (M = Tl(I), In(I) and Ga(I)) yields one-

dimensional coordination polymers [M(μ,η5:η1-E5FeCp*)3]n]TEF]n.112 The dimers 22, 24 

and 26 and the 1D polymers 23 and 25 were obtained by reacting the tetrahedral 

diphosphorus complex [Cp2Mo2(CO)4(η2-P2)] (1a; Cp = C5H5) with Ag[TEF] and Ag[FAl], 

respectively (Scheme 1.3).113  

 

Scheme 1.3. Reaction of [Cp2Mo2(CO)4(η2-P2)] with Ag[TEF] and Ag[FAl], respectively, yielding dimers 22, 
24, 26 and the 1D coordination polymers 23 and 25. 

The special properties of WCAs enable a broad range of applications, for example in the 

area of ionic liquids,86 lithium batteries 114,115 and photoacid generators (PAGs).116–118 
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Hygroscopic diaryl iodonium salts containing [SbF6]- are used as photoacid generators 

for cationic polymerization of many different substrates. The counterions of these toxic 

salts can be exchanged for a series of WCAs, including [(F5C6)3B(μ-X)B(C6F5)3]n- (X = 

C3N2H3, n = 1; X = C6F4, n = 2) making them more stable and less toxic.118 PAGs are 

used in many applications, such as printing inks, optical fibers, holography, and 

photolithography.76 

These examples demonstrate how the unique properties of WCAs allow the synthesis 

and isolation of unprecedented compounds and lead to improvements in a number of 

technical applications. Therefore, WCA salts of coinage metals hold great promise for 

the generation of new coordination polymers and hybrid materials. 

 

1.3 The Potential of Luminescent Cu(I) Complexes 

Intense research efforts are currently focused on the development of novel 

phosphorescent transition metal complexes as building blocks for a number of 

applications, such as components in organic light emitting diodes (OLEDs).119–122 The 

recognition of the potential of third row transition metal complexes for this type of 

application was a breakthrough. The advantage of these metal complexes is that they 

can display strong spin-orbit coupling (SOC) which can result in high phosphorescence 

emission quantum yields and fast emission decays from the lowest triplet state (T1) and 

thus, efficient harvesting of electrically generated excitons.123–127 This was successfully 

applied in the conception of red and green OLEDs, but the development of blue and 

white light emitting phosphorescent materials is still challenging. Furthermore, unclear 

toxicity, and high costs of third row transition metal complexes may be disadvantageous. 

Therefore, other abundant emitter materials are highly sought after, such as first row 

transition metals. Unfortunately, the triplet emission (phosphorescence) decay times of 

these compounds are usually too long due to relatively ineffective SOC. As a 

consequence, transitions between the excited triplet states (Tx) and the singlet ground 

state (S0) are highly forbidden. The application of these metal compounds in OLEDs 

could therefore result in undesired saturation effects. However, selected Cu(I) 

complexes with reducible ligands, i.e. with energetically low-lying π* orbitals, can 

overcome these severe restraints and thus have gained rising attractiveness, due to the 

extensive metal-to-ligand charge transfer (MLCT) character of their lowest excited 

states.123,128–132 The associated transitions induce distinct spatial separations of the 

involved orbitals, especially of the HOMO and the LUMO, leading to comparatively small 

exchange integrals and, consequently, to a small energy gap ΔE (S1 – T1) between the 
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lowest triplet state T1 and the lowest excited singlet state S1 (e.g. <1000 cm-1 or 0.12 

eV).133 Following thermal induction, the excitons can undergo a reversed intersystem 

crossing (RISC) from T1 to S1. Consequently, these materials can show a very efficient 

Thermally Activated Delayed Fluorescence (TADF, Figure 1.6).133–142 

Figure 1.6. Thermally Activated Delayed Fluorescence (TADF), reversed intersystem crossing, 
fluorescence and phosphorescence processes in Cu(I) complexes. 

This mechanism allows consuming all introduced excitons for light generation by making 

use of the singlet harvest effect.129,131,143,144 Different structural motifs in Cu(I)  complexes 

have been in the focus of research. In particular, wide-ranging photophysical studies 

were performed for copper(I) complexes that exhibit a pseudo-tetrahedral coordination 

of the Cu center by two bidentate chelating ligands, such as  [Cu(N^N)2]+ (N^N indicates 

a bisimine ligand),131,145–148 heteroleptic [Cu(N^N)(P^P)]+ complexes,149–151 

amidophosphane derivatives ([Cu(P^N)(P^P)]+)152,153 as well as [Cu(P^P)2]+ 

(bisphosphane derivatives) complexes129,138,154–158 (Figure 1.7).  
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Figure 1.7. Examples of ligands used to form luminescent Cu(I) complexes with the general formulas 
[Cu(N^N)2]+, [Cu(N^N)(P^P)]+, [Cu(P^N)(P^P)]+ or [Cu(P^P)2]+. dmp = 2,9-dimethyl-1,10-phenanthroline; 
dbp = 2,9-di-n-butyl-1,10-phenanthroline; dtp = 2,9-di-tert-butyl-1,10-phenanthroline; PNP = bis[2-

(diisobutylphosphino)phenyl]amide); P-N = [2-(diisopropylphosphino)diphenyl]amide; POP = bis[2-

(diphenylphosphino)phenyl]ether; dppb = 1,2-bis-(diphenylphosphino)benzene. For P^N ligands, “N” refers 

to an amide, not to an imine ligand, as for N^N. 

[Cu(N^N)(P^P)]+ complexes, where P^P denotes a bisphosphane ligand, exhibit 

highly enhanced emission properties compared to complexes containing N^N ligands.159 

Only a few examples of light emitting coordination-driven supramolecular assemblies are 

reported as yet. For example, the reaction of the P^P ligand dppm (dppm = 1,1-

bis(diphenylphosphino)methane) with Cu(I) salts yields luminescent dinuclear Cu(I) 

complexes such as 27 with a clip-like structure (Scheme 1.4).160,161 Reacting this clip with 

different substrates leads to a variety of room temperature solid-state luminescent 

polymetallic assemblies 28-30M (Scheme 1.4).93,97 Compound 28 ([Cu4(µ2-

dppm)4(CN)2][PF6]2) exhibits blue luminescence in the solid state at room temperature 

(λem = 457 nm; excitation at 320 nm) with an emission quantum yield of 72% and 

interestingly, displays a reversible red-shift of its emission maximum upon cooling.158 

The neutral 1D helicoidal coordination polymer 29 is based on repeating units of [Cu2(µ2-

dppm)2]2+ fragments and two sorts of cyano ligands coordinated to the Cu(I) center. One 

CN- ligand acts as a µ2-ditopic linker between two metal centers of neighboring Cu2(µ2-

dppm)2 moieties while the second cyano ligand bridges the two metal centers within each 

Cu2(µ2-dppm)2 moiety in a rare end-on/side-on coordination mode. Compound 29 
demonstrates a broad emission maximum at 538 nm upon excitation at 320 nm with an 

emission quantum yield (EQY) of 20% at room temperature. However, cooling to 77 K 

results in a blue-shift to an emission maximum at 468 nm.162 The isostructural derivatives 

30M (M = Ni(II), Pd(II), Pt(II)) are discrete polymetallic compounds. The asymmetric unit 

contains one dicationic [Cu8M(CN)8(dppm)8]2+ entity and two hexafluorophosphate 

anions. The central M cation is square planar coordinated by four cyano ligands, which 



 | 15 
 

connect the center atom with four [Cu2dppm(CN)] units. The luminescence properties in 

the solid state at room temperature are dependent on the metal atom M. Compounds 

30Ni shows a very weak turquoise luminescence, 30Pd displays a moderate luminescence 

(λem = 500 nm; EQY = 2%) upon excitation at 350 nm and 30Pt exhibits an intense 

luminescence with an emission maximum at 510 nm (EQY = 18%).162 These data reveal 

a crucial impact of the spin-orbit coupling offered by the central metal center M on the 

emission properties of the heterobimetallic compounds 30M.  
 

Scheme 1.4. Synthesis of the tetrametallic dicationic assembly 28. Synthesis of the derivatives 29 and 30M. 
Simplified top view along the c axis of 29 showing six repetition units [Cu2(µ2-dppm)2(CN)2]. Simplified top 
view of 30M. 

The previous section shows that only minor changes of the ligand can have an essential 

influence on the photophysical properties of Cu(I) complexes. This versatility and the 

need for new luminescent materials for OLEDs drive many scientists to develop more 

innovative compounds. 
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2. Research Objectives 

This thesis is divided into three main parts dealing with various aspects of the 

coordination chemistry of coinage metals and their use in the self-assembly of 

oligonuclear aggregates as well as two- and three-dimensional coordination polymers. 

 

Reactions of an As2 ligand complex with coinage metal salts and organic linkers 
This chapter is concerned with the reactivity of the As2 ligand complex 

[(C5H5)2Mo2(CO)4(μ,η2-As2)] towards coinage metal (I) salts of weakly coordinating 

anions (WCAs). The reaction behavior of the resulting coordination complexes towards 

organic pyridyl-based linkers are of interest. The investigated topics include: 

 
• coordination chemistry of [{CpMo(CO)2}2(µ,η2:η2-As2)]  with CuWCAs and 

AgWCAs 
• reaction of [{CpMo(CO)2}2(µ,η2:η2-As2)]  with Ag[PF6] and organic linkers 

 

Spherical Aggregates based on the self-assembly of [Cp’’Fe(η5-P5)] and Cu[TEF] 
This chapter deals with the reaction of Cp’’Fe(η5-P5) (Cp’’ = 1,3-C5H3tBu2) with 

[Cu(CH3CN)4][TEF] (TEF- = [Al{OC(CF3)3}4]-) yielding the unprecedented cationic 

supramolecule [(Cp’’Fe(η5-P5))12{CuNCMe}8]8+ as a salt of the WCA TEF-. The 

investigated topics include:  

 

• synthesis and characterization in solution of the supramolecule 

• structural characterization of [(Cp’’Fe(η5-P5))12{CuNCMe}8][TEF]8 in the solid 

state and comparison to other supramolecular spheres 
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Reactivity of tetranuclear Cu(I) metallacycle towards organic pyridyl linkers 

In collaboration with Dr. Christophe Lescop (Institut des Sciences Chimiques de 

Rennes, UMR 6226 at the Institut National des Sciences Appliques de Rennes) the 

influence on the coordination chemistry and the photophysical properties of a blue 

emissive tetranuclear Cu(I) metallacycle is investigated. The work on this topic focuses 

on the complexes [Cu4(μ2-dppm)4(CN)2](X)2 (X = PF6-, [Al{OC(CF3)3}4]- (TEF-), 

[B(C6H3Cl2)4]- (BArCl-), dppm = 1,1-bis(diphenylphosphino)methane). For the systematic 

investigation of this chemistry the following challenges arise: 

 

 

• synthesis of Cu (I) metallacycles containing the WCAs [TEF] and [BArCl] 

• reaction of [Cu4(μ2-dppm)4(CN)2](X)2 (X = PF6-, TEF-, BArCl-) with pyridyl linkers 

• structural characterization of [Cu4(μ2-dppm)4(CN)2][TEF]2, [Cu4(μ2-dppm)4(CN)2] 

[BArCl]2 and the coordination polymers resulting from reactions of the 

metallacycles with pyridyl spacers in the solid state 

• characterization of the photophysical properties of selected 1D polymers 
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1. The Diarsene Complex [(C5H5)2Mo2(CO)4(µ,ƞ2-As2)]         
as a Building Block in Supramolecular Chemistry 

Abstract: The reaction of the organometallic diarsenic complex 
[Cp2Mo2(CO)4(µ,η2-As2)] (B) (Cp = C5H5) with Ag[FAl{OC(C6F5)(C6F10)}3] 
(Ag[FAl]) and Ag[Al{OC(CF3)3}4] (Ag[TEF]), respectively, yields four 
unprecedented supramolecular assemblies [(η2-B)4Ag2][FAl]2 (4), [(h2-
B)3Ag][TEF] (5), [(µ,η1:η2-B)3[(η2-B)2Ag3][TEF]3 (6) and [(µ,η1:η2-
B)4Ag3][TEF]3 (7). These compounds characterized with X-Ray 
crystallography represent the first homoleptic complexes of B and Ag(I). 
Additionally, 6 and 7 are unique supramolecular assemblies bearing B as a 
linking unit and the first examples of [Ag(I)]3 units stabilized by organometallic 
bichelating ligands. 

3.1 Introduction 

The interest in using metal-directed self-assembly for the design of well-defined solid 

state structures have remarkably increased in the past decades.1 The majority of these 

assemblies are obtained from the association of multitopic organic linkers featuring N-, 

O- or S- donor atoms with Lewis acidic metal cations.2 In addition, only few examples of 

organometallic building blocks have been also used as linking moieties to metal centers.3 

To fill this gap, our group developed the concept of using organometallic polyphosphorus 

(Pn) ligand complexes with flexible coordination modes as connectors between metal 

ions.4 This new approach allowed for the synthesis of a large variety of unprecedented 

supramolecular aggregates including 1D, 2D and 3D coordination polymers (CPs),5 

inorganic nanospheres,6 nanosized bowls7 and capsules.8 One of the simplest of these 

Pn compounds is the diphosphorus complex [Cp2Mo2(CO)4(µ,η2-P2) (A) (Cp = ƞ5-C5H5).9 

Its reaction with a large number of Ag(I) salts including those of the weakly coordinating 

anions [Al{OC(CF3)3}4]-  ([TEF]-) and [FAl{OC(C6F5)(C6F10)}3]- ([FAl]-) allowed for the 

isolation of Ag(I) dimers of the general formula [Ag2(ƞ2-A)2(µ,ƞ1:ƞ1-A)2][X]2 (X = [FAl]- (1), 

[TEF]- (2); Scheme 3.1).5a It is only possible to isolate selectively these products if A is 

used in excess compared to the Ag(I) salts. However, for example, when a stoichiometric 

reaction of A and Ag[TEF] is conducted, the 1D polymer [Ag2(µ,ƞ1:ƞ1-A)3]n[TEF]2n is 

formed instead (Scheme 3.1). Interestingly, within the dimers 1 and 2, due to the weaker 

coordination of the terminal ƞ2-coordinated ligands A compared to the ƞ1:ƞ1-coordinated 

ones, these can be easily substituted by pyridyl functions upon the reaction of the Ag(I) 

dimers with ditopic  pyridine-based organic molecules to form a new class of hybrid CPs, 

in which both organometallic and organic units link Ag(I) ions.10 
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Scheme 3.1.  Reaction of A with Ag[FAl{OC(C6F5)(C6F10)}3] (Ag[FAl]) and Ag[Al{OC(CF3)3}4] (Ag[TEF]). 
Synthesis of the dimers 1 and 2 and the 1D CP 3. 

In addition to Pn complexes, arsenic-based organometallic complexes have been known 

also for decades.11 However, their coordination chemistry is only very little 

investigated,12a-d and their use as linkers in supramolecular chemistry is rare. In fact, 

coordination compounds of any polyarsenic linker and silver ions are extremely 

rare.12a,c-
 

e Thus, expanding this field can be of great interest for organometallic and 

supramolecular chemists, since the coordination behavior of the much weaker As in 

comparison to P may significantly differ. Moreover, due to the flexible coordination 

sphere of the Ag(I) ion and its tendency to form Ag···Ag interactions,13,14 the question 

arise whether it is possible to stabilize short Ag-Ag distances using a certain combination 

of the diarsene complex [Cp2Mo2(CO)4(µ,η2-As2)] (B)11a  and Ag(I) ions. Accordingly, we 

became captivated in expanding our research by studying the supramolecular chemistry 

of polyarsenic Asn complexes and its comparison to their phosphorus analogues. Herein, 

we show that the reaction of the diarsenic complex [Cp2Mo2(CO)4(µ,η2-As2)] (B) with 

Ag[FAl] and Ag[TEF] using various reactants ratios allowed for the isolation of the first 

homoleptic coordination compounds of B and silver; [(η2-B)4Ag2][FAl]2 (4), [(η2-

B)3Ag][TEF] (5), [(µ,η1:η2-B)3[(η2-B)2Ag3][TEF]3 (6) and [(µ,η1:η2-B)4Ag3][TEF]3 (7). 

Moreover, compounds 6 and 7 show that B has the potential as a connecter between 

the Ag(I) centers, stabilizing short Ag⋯Ag distances. Compounds 6 and 7 are the only 

known supramolecular compounds featuring B as a linking moiety and to the best of our 
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knowledge, are the first examples of trinuclear [Ag(I)]3 units stabilized by organometallic 

bichelating ligands.  

 

3.2 Results and Discussion 

In the first step, B was reacted with the Ag(I) salt (Ag[FAl]). This reaction was 

conducted using a 2:1 ratio of B:Ag[FAl] in CH2Cl2 at room temperature (Scheme 3.2). 

This specific ratio of reactants was studied in order to compare the formed product to 

that obtained from a similar reaction of the P-containing analogue A affording the Ag(I) 

dimer 1 (Scheme 3.1).  

 

 

Scheme 3.2. Reaction of B with Ag[FAl{OC(C6F5)(C6F10)}3] (Ag[FAl]) and Ag[Al{OC(CF3)3}4] (Ag[TEF]). 

Synthesis of the supramolecular compounds 4-7. Yields are shown in parentheses. 

From this reaction however compound 4 was isolated as red prisms in 36% yield suitable 

for X-ray structure analysis. Compound 4 is well soluble in common organic solvents like 

CH2Cl2 and CH3CN and insoluble in n-pentane. In the solid state, it is air- and light-stable 

for several hours while it decomposes gradually after one hour in CH3CN under air. 

Compound 4 crystallizes in the orthorhombic space group Pccn. Its solid-state structure 

(Figure 3.1) reveals an Ag(I) dimer stabilized by four As2 ligands B. The whole molecular 

complex lies on the 2-fold axis along the z direction and is additionally disordered over 2 

close laying positions with occupancies 0.75 and 0.25, respectively. This type of disorder 

is ambiguous for the interpretation of the structure and allows for three possible individual 

cores for 4, two of them, core 4a and core 4b, possess 2-fold rotational symmetry, and 
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core 4c is asymmetric (Figure 3.1; for further details see SI). The disorder implies that 

the crystal structure 4 is always a mixture of complexes with different cores. If cores 4a 

and 4b co-crystallize, they should form the mixture of 75% of 4a and 25% of 4b. The 

core 4c can co-exist with the core 4a in a 1:1 ratio. In principle, any mixture of all three 

complexes 4a-4c is possible with a ratio that does not contradict the crystallographic 

occupancies of the atoms. As one of such examples, the mixture of the 4a, 4b and 4c in 

a ratio of 0.25:0.25:0.5 also does not contradict to the experimental data. Thus, the 

question as to which of these alternatives would really exist cannot be answered by using 

X-ray structural data alone. 

 

Figure 3.1. a) The disordered complex 4 (2z axis is directed vertically to the plane of the picture). b) Possible 

individual cores of 4 in the disordered structure. 

In order to elucidate which of the above-mentioned cores represents an energy 

minimum in the gas phase, we performed DFT calculations using the range separated 

hybrid functional ωB97XD,15 which also incorporates dispersion corrections together with 

the def2SVP basis set. Starting from the experimental geometry of core 4b, the geometry 

optimization in the gas phase leads to an optimized geometry, which is very similar to 

that of the core 4a, solely, the Ag···Ag distance in the optimized geometry is with 3.188 

Å longer than that found experimentally for core 4a (Figure 3.2, left). Interestingly, the 

geometry optimization of a [{{CpMo(CO)2}2As2}2Ag]+ unit, starting from the experimental 

coordinates of a half of core 4a, leads to a more symmetric geometry containing a 

distorted tetrahedrally coordinated Ag center (Figure 3.2, right). This indicates that 

between the two [{{CpMo(CO)2}2As2}2Ag]+ units attraction forces should be present in the 

solid state. This is also reflected by the gas phase “dimerization” energy of two 

[{{CpMo(CO)2}2As2}2Ag]+ units to the gas phase optimized geometry of 4 of -9.90 

kJ·mol−1 (for further details see SI). 

Whichever structures 4 adopts in the solid state, its composition (an Ag(I) dimer 

stabilized by four As2 ligands B) is related to the Ag(I) dimer 2, obtained from a similar 

reaction with the phosphorus analogue A (Scheme 3.1). Still however, two main 
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differences are realized between both dimers 2 and 4. Firstly, although two of the E2 

units (E= P, As) in both dimers possess each a ƞ2-coordination mode, the other ones 

possess each a bridging µ,ƞ1:ƞ1-coordination in 2 and a bridging µ,ƞ1:ƞ2-coordination or 

a ƞ2-coordination in 4. 

 

 

Figure 3.2. Gas-phase optimized geometry of 4 at the ωB97XD/def2SVP level of theory. 

Additionally, the distance between the metal centers in 2 [d(Ag···Ag) > 4.85 Å]5a are 

much larger than those in 4 [2.65 Å > d(Ag···Ag) > 2.86 Å]. So, no argentophilic 

interaction is present in 2, while a possible metal-metal interaction is present in 4 (the 

sum of the van der Waals radii for silver (3.44 Å)).16 The As-As (2.331(1)-2.414(2) Å) 

bond lengths in 4 are slightly elongated compared to those in the non-coordinated ligand 

complexes 1 (As-As = 2.312(3) Å).11c The As-Ag bond lengths are in the range of 

2.613(1)-2.919(6) Å. These lengths are expectedly longer than the P-Ag bond lengths 

(2.442(5)-2.688(5) Å) found in the Ag(I) dimer based on the lighter analog 

[Cp2Mo2(CO)4(µ,η2-P2)].5a 

The crystallographic features of 4, including the flexible coordination mode of the As2 

ligand complex B and the short Ag···Ag contacts, raised the question as to whether a 

change in the stoichiometry of the reactants would lead to products with different 

compositions. Obviously if, a higher amount of Ag(I) salts is used as reactants would 

lead to a higher number of Ag(I) ions with possible metal-metal interaction in the formed 

solid-state products. Thus, B was treated with the Ag(I) salt Ag[Al{OC(CF3)3}4] (Ag[TEF]), 

due to the very high solubility of the [TEF]- salts, for which the dependence of the 

composition of the product on the stoichiometry of the reactants was studied by varying 

the B:Ag[TEF] ratio. Interestingly, very different solid-state products where obtained in 

these reactions directed by the ratio of the used starting materials. All these reactions 

were performed in CH2Cl2 and subsequently layered with n-pentane. The 3:1 reaction 
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gave compound 5, the 2:1 reaction compound 6 and the 1:1 reaction compound 7 in 

yields of 63%, 60% and 71%, respectively. Compounds 5-7 are selectively isolated from 

their corresponding crude reaction mixtures as red crystals and show air- and light 

stability in the solid state. Single-crystal X-ray structure analysis of 5-7 reveal 

composition ratios of 3:1 (for 5), 5:3 (for 6) and 4:3 (for 7) of B:Ag(I) (Figure 3.3). 

Compound 5 represents a Ag(I) monomer with the general formula [Ag(µ,η2-B)]3[TEF] 

while compounds 6 and 7 are unprecedented Ag(I) trimers with the formulas [Ag3(µ,η2-

B)2(µ,η1:η2-B)3][TEF]3 and [Ag3(µ,η1:η2-B)4][TEF]3 respectively. The silver monomer 5 

crystallizes in the monoclinic space group P21/c.  

 

Figure 3.3. Molecular structures of the supramolecular assemblies 5-7 in the solid state. 

The Ag(I) core in 5 is stabilized by three Mo2As2 ligand complexes B each possessing a 

ƞ2-coordination mode, thus the Ag(I) center is hexacoordinated to six As atoms. 

According to the CSD database,16 only one other coordination compound in which a 

silver center has been stabilized by six arsenic atoms has been previously reported.12d 

The As2AgAs2 plane to plane normal angles range from 71.77(3) to 108.77(3)°. As a 

consequence, the Ag(I) center adopts a distorted trigonal prismatic coordination sphere. 

The As-As bond lengths in 5 (2.3572(4)-2.3734(3) Å) are slightly elongated compared to 

those in the non-coordinated ligand complex B (2.312(3) Å).11c The Ag-As bond lengths 

in 5 range between 2.7337(3) and 2.9186(3) Å). 

Compounds 6 and 7 crystallize in the monoclinic space groups P21/n and P21/c with 

three crystallographically unique Ag(I) atoms, five (in 6) and four (in 7) Mo2As2 ligands 

B, four (in 6) and one (in 7) CH2Cl2 solvent molecules and three [TEF]- anions in the 

asymmetric units. The central structural motif of 6 consists of a bent trinuclear Ag3 chain 

while it shows an almost perfect equilateral Ag3 triangle in 7. In 6, these Ag(I) ions are 

stabilized by five Mo2As2 ligands B with two of them showing an ƞ2-coordination mode 

and three others a µ,ƞ2:ƞ1-coordination. Interestingly, one of these bridging ligands B 

connects all the three Ag(I) ions, Ag1, Ag2 and Ag3, while the other two ligands B 
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connect each only the Ag1 and Ag2 ions. Additionally, the intermetallic Ag⋯Ag distances 

in 6 (2.8376(3)-2.9053(3) Å) are significantly shorter than the sum of the van der Waals 

radii for two silver atoms (3.44 Å) indicating a possible existence of argentophilic 

interactions.17 As a consequence, all the Ag(I) ions in 6 show different coordination 

environments: Ag1 is hexacoordinated to five As atoms and one Ag(I) ion, Ag2 is 

heptacoordinated to five As atoms and two Ag(I) ions and Ag3 is tetracoordinated to 

three As atoms and one Ag(I) ion. The Ag3 core in 7 is stabilized by four bridging Mo2As2 

ligands B each showing a ƞ2:ƞ1-coordination. All Ag(I) ions in 7 show different 

coordination spheres; Ag3 is heptacoordinated to five As atoms and two Ag(I) ions, Ag2 

is hexacoordinated to four As atoms and two Ag(I) ions and Ag1 is pentacoordinated to 

three As atoms and two Ag(I) ions. The intermetallic Ag⋯Ag distances in 7 range 

between 2.858(2) and 2.980(1) Å, are also within the range of possible metal-metal 

interactions.[17] The As-As bond lengths in 6 (2.321(1)-2.458(3) Å) and 7 (2.378(5)-

2.409(5) Å) are elongated compared to those in the non-coordinated complex B 

(2.312(3) Å).11c The Ag-As bond lengths are in the range of 2.438(1)-3.123(1) Å for 6 and 

2.573(8)-2.989(8) Å) for 7, respectively. The 3:1 and the 2:1 stoichiometric ratio reactions 

of the Mo2P2 ligand complex (A) and Ag[TEF] afforded the Ag(I) dimer 2, whereas a 1:1 

reaction gave the 1D polymer 3. Similar reactions of the Mo2As2 ligand complex (B) using 

similar ratios afforded totally different products (5-7). This is caused by the very flexible 

coordination behavior of the As2 moiety in B which can adopt easily both ƞ2:ƞ1- and ƞ2-

coordination modes. 

Compounds 4-7 are well soluble in common organic solvents like CH2Cl2 and CH3CN, 

little soluble in THF and insoluble in n-pentane. Their 1H and 13C{1H} NMR spectra in 

CD3CN at room temperature show typical signals for Cp and CO ligands. In the ESI mass 

spectra in CH3CN peaks for the cations [Ag(B)2]+ and [Ag(B)(CH3CN)]+ are mainly 

detected in the positive ion mode and a peak for the [TEF]- or the [FAl]- anions in the 

negative ion mode. These data indicate that only a partial dissociation of the assemblies 

4-7 occurs in solutions of CH3CN. The solid-state IR spectra of 4 and 5 show each three 

strong broad absorptions between 1921 and 2048 cm-1 while those of 6 and 7 show each 

two absorptions between 1942 and 1980 cm-1. These are attributed to the stretching 

vibrations of the CO ligands in the coordinated ligand units B. These vibrations appear 

at lower energies from those reported for the free complex B (1900 and 1949 cm-1).11c 

 



34 | 3 .  [ ( C p 2 ( C O ) 4 M o 2 A s 2 ]  i n  S u p r a m o l e c u l a r  C h e m i s t r y   
 

3.3 Conclusion 

In summary we have synthesized the first homoleptic complexes (4-7) of the 

tetrahedral diarsenic complex Mo2As2 (B) and Ag(I) ions. Thereby, the potential of B as 

a connector in supramolecular chemistry stabilizing short Ag⋯Ag distances was 

demonstrated. By using the right stoichiometric ratios of the starting materials and careful 

experimental conditions, a large variety of solid-state Ag(I) coordination compounds 

stabilized by three, four or five of these ligand complexes is accessible. The solid-state 

structures of these products allow a comparison to corresponding P-containing 

derivatives obtained from similar reactions using the lighter analogue P2 complex A as a 

building block. The higher potential of the As2 units to form ƞ2:ƞ1-coordination towards 

Ag(I) promotes the formation of trimers as cycle (7) or catena (6) compounds showing 

Ag⋯Ag interactions in the solid state. DFT calculations show that core 4a represents the 

ground state of complex 4, and indicates attractive interactions between the two units. 

Current investigations in this field focus on the reaction of the Ag(I) monomer (5) with N-

donor organic molecules to build more complex supramolecular architectures with (As,N) 

mixed donor ligands. 

 

3.4 Supporting Information 

3.4.1 General 

All manipulations were carried out under an inert atmosphere of dry nitrogen using 

standard glovebox and Schlenk techniques. The nitrogen/argon was dried and purified 

from traces of oxygen with a Cu/MgSO4 catalyst, concentrated H2SO4 and orange gel. 

The ligand complex [Cp2Mo2(CO)4(µ,ƞ2-As2)] (B)18 and the Ag(I) salts 

Ag[FAl{OC(C6F5)(C6F10)}3]19  and Ag[Al{OC(CF3)3}4]20 were prepared according to 

literature procedures. All used solvents were taken from the solvent drying machine MB 

SPS-800 of the company MBRAUN. IR spectra were recorded as solids using a 

ThermoFisher Nicolet iS5 FT-IR spectrometer with an ATR-Ge disc. 1H and 13C {1H} 

spectra were recorded on a Bruker Avance 400 spectrometer at room temperature. 1H 

and 13C {1H} chemical shifts were reported in parts per million (ppm) relative to Me4Si as 

external standard. Mass spectra were recorded on an Agilent Q-TOF 6540 UHD mass 

spectrometer with acetonitrile as solvent. Elemental analyses were performed on an 

Elementar Vario MICRO cube apparatus by the microanalytical laboratory of the 

University of Regensburg. 
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3.4.2 Synthesis of [{{CpMo(CO)2}2{η2:η2-As2}}4Ag2][FAl{OC(C6F5)(C6F10)}3]2 (4) 

 

A solution of Ag[FAl] (76 mg, 0.05 mmol, 1 eq.) in 5 mL of CH2Cl2 and slowly added to a 

stirred solution of [CpMo2(CO)4(η2-As2)] (B) (58 mg, 0.1 mmol, 2 eq.) in 10 ml of CH2Cl2. 

The red solution was stirred for 1 h at room temperature, after which, it was carefully 

layered with 30 ml of n-pentane. In two days, red crystals of 4 were obtained, washed 

with n-pentane and dried in vacuo. Yield (48 mg, 36% referred to B). 
1H NMR (400 MHz, CD3CN): d = 5.34 ppm (s, HCp).  
13C{1H} NMR (100 MHz, CD3CN): d = 86.7 (s, CCp), 224.5 ppm (s, CCO).  

Positive ion ESI-MS (CH3CN, RT): m/z (%) = 1276.3 (100) [{Cp2(CO)4Mo2As2}2Ag]+, 

731.6 (80) [{Cp2(CO)4Mo2As2}Ag(CH3CN)]+, 690.6 (30) [{Cp2(CO)4Mo2As2}Ag]+, 583.7 

(7) [Cp2(CO)4Mo2As2]+.  

Negative ion ESI-MS (CH3CN, RT): m/z (%) = 1380.9 [FAl{OC6F10(C6F5)}3]‾.  

Elemental analysis, calcd (%) for C128H40Ag2Al2As8F92Mo8O22 (5314.16 g/mol): C, 28.93; 

H, 0.76; found: C, 28.69; H, 0.79;  

IR (solid, CO bands): 𝑣̃/cm-1: 1971 (vs), 1933 (vs), 1921 (vs). 

3.4.3 Synthesis of [{{CpMo(CO)2}2{η2:η2-As2}}3Ag][Al{OC(CF3)3}4] (5) 

 

A solution of Ag[TEF] (54 mg, 0.05 mmol, 1 eq.) in 5 mL of CH2Cl2 and slowly added to 

a stirred solution of [CpMo2(CO)4(η2-As2)] (B) (87 mg, 0.15 mmol, 3 eq.) in 10 ml of 

CH2Cl2. The red solution was stirred for 1 h at room temperature, after which, it was 

carefully layered with 30 ml of n-pentane. In four days, orange crystals of 5 were 

obtained, washed with n-pentane and dried in vacuo. Yield (88 mg, 63% referred to B). 
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1H NMR (400 MHz, CD3CN): d = 5.31 ppm (s, HCp).  
13C{1H} NMR (100 MHz, CD3CN): d = 86.3 (s, CCp), 225.4 ppm (s, CCO).  

Positive ion ESI-MS (CH3CN, RT): m/z (%) = 1276.3 (55) [{Cp2(CO)4Mo2As2}2Ag]+, 731.6 

(100)  [{Cp2(CO)4Mo2As2}Ag(CH3CN)]+, 583.7 (16) [Cp2(CO)4Mo2As2]+.  

Negative ion ESI-MS (CH3CN, RT): m/z (%) = 966.9 (100) [Al{OC(CF3)3}4]‾.  

Elemental analysis, calcd (%) for C58H30AgAlAs6F36Mo6O16 (2826.83): C, 24.64; H, 1.07; 

found: C, 24.70; H, 1.01;  

IR (solid, CO bands): 𝑣̃/cm-1: 2048 (s), 1985 (s), 1946 (s). 

3.4.4 Synthesis of [{{CpMo(CO)2}2{η2:η2-As2}}2{{CpMo(CO)2}2{η1:η2:η2-As2}}3Ag3][ 
Al{OC(CF3)3}4]3 (6) 

 

A solution of Ag[TEF] (54 mg, 0.05 mmol, 1 eq.) in 5 mL of CH2Cl2 and slowly added to 

a stirred solution of [CpMo2(CO)4(η2-As2)] (B) (58 mg, 0.1 mmol, 2 eq.) in 10 ml of CH2Cl2. 

The red solution was stirred for 1 h at room temperature, after which, it was carefully 

layered with 30 ml of n-pentane. After one week, red crystals of 6 were obtained, washed 

with n-pentane and dried in vacuo. Yield (61 mg, 60% referred to B). 
1H NMR (400 MHz, CD3CN): d = 5.34 ppm (s, HCp).  
13C{1H} NMR (100 MHz, CD3CN): d = 86.7 (s, CCp), 224.5 ppm (s, CCO).  

Positive ion ESI-MS (CH3CN, RT): m/z (%) = 1276.3 (42) [{Cp2(CO)4Mo2As2}2Ag]+, 731.7 

(100)  [{Cp2(CO)4Mo2As2}Ag(CH3CN)]+, 690.6 (16) [{Cp2(CO)4Mo2As2}Ag]+.  

Negative ion ESI-MS (CH3CN, RT): m/z (%) = 966.9 (100) [Al{OC(CF3)3}4]‾.  

Elemental analysis, calcd (%) for C118H50Ag3Al3As10F108Mo10O32 (6144.67): C, 23.07; H, 

;0.82 found: C, 23.11; H, 0.93;  

IR (solid, CO bands): 𝑣̃/cm-1: 1980 (vs), 1949 (vs). 
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3.4.5 Synthesis of [{{CpMo(CO)2}2{η1:η2:η2-As2}}4Ag3][Al{OC(CF3)3}4]3 (7) 

 

A solution of Ag[TEF] (54 mg, 0.05 mmol, 1 eq.) in 5 mL of CH2Cl2 and slowly added to 

a stirred solution of [CpMo2(CO)4(η2-As2)] (B) (29 mg, 0.05 mmol, 1 eq.) in 5 ml of CH2Cl2. 

The red solution was stirred for 1 h at room temperature, after which, it was carefully 

layered with 30 ml of n-pentane. In four days, red crystals of 7 were obtained, washed 

with n-pentane and dried in vacuo. Yield (65 mg, 71% referred to B). 
1H NMR (400 MHz, CD3CN): d = 5.34 ppm (s, HCp).  
13C{1H} NMR (100 MHz, CD3CN): d = 86.7 (s, CCp), 224.5 ppm (s, CCO).  

Positive ion ESI-MS (CH3CN, RT): m/z (%) = 1276.3 (100) [{Cp2(CO)4Mo2As2}2Ag]+, 

731.7 (79)  [{Cp2(CO)4Mo2As2}Ag(CH3CN)]+, 690.6 (37) [{Cp2(CO)4Mo2As2}Ag]+, 583.7 

(14) [Cp2(CO)4Mo2As2]+.  

Negative ion ESI-MS (CH3CN, RT): m/z (%) = 966.9 (100) [Al{OC(CF3)3}4]‾.  

Elemental analysis, calcd (%) for C104H40Ag3Al3As8F108Mo8O28 (5560.72): C, 23.06; H, 

0.82; found: C, 22.82; H, 0.68;  

IR (solid, CO bands): 𝑣̃/cm-1:  1977 (vs), 1942 (vs). 

3.4.6 Crystallographic Data 

Crystals of 4 – 7 were taken from a Schlenk flask under a stream of argon and 

immediately covered with mineral oil to prevent a loss of solvent. The quickly chosen 

single crystals covered by a thin oil layer were taken to the pre-centered goniometer 

head with CryoMount® and directly attached to the diffractometer into a stream of cold 

nitrogen.  

The diffraction experiments for 4 – 7 were collected on a Rigaku Oxford Diffraction 

diffractometers, Gemini R-ultra equipped with a sealed tube (MoKa radiation, l = 

0.71073 Å) and Atlas CCD detector (4, 6, 7) or on a SuperNova micro-focus source 

(CuKa radiation, l = 1.54178 Å) or Titan CCD detector (5), respectively, using ω scans 

of 0.5° frames. The measurements for 4, 6, 7 were performed at 123 K, whereas 5 at 90 

K. Absorption corrections were applied analytically using CrysAlis PRO Software.21 The 
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crystal structures were solved by direct methods with SHELXT21 or Olex22 programs and 

refined by full-matrix least-squares method against |F|2 in anisotropic approximation 

using multiprocessor versions of SHELXTL.23 Hydrogen atoms were refined in calculated 

positions using riding on pivot atom model. In case of the disorder, the site occupancies 

of the disordered components were refined with their Uiso fixed at average Ueq for fully 

occupied atoms in given structure in order to avoid correlations. After refinement, 

occupancies were fixed at the resulting values and the refinement of the atomic 

displacement parameters was performed. The light atoms with site occupation factors 

less than 0.5 were refined isotropically.  

The Cp2Mo2P2(CO)4 dimers in 4, 6 and 7 demonstrate different type of disorder. 

It can be rotational caused by re-orientations of Cp groups about the direction of π-bond 

(the tendency can be seen in 6), or positional, related to different mutual orientation of 

the CO, Cp ligands coordinated to Mo atoms (4, 6, 7). In the case of 6 the introduction 

of the minor (refined to 0.03) disorder of the three of 5 {Mo2P2} dimers allowed to describe 

otherwise meaningless electron density (2.40- 3.23 e·Å-2) and improve quality factors 

from R1 = 0.0384, wR2 = 0.0905 to R1 = 0.0271, wR2 = 0.0522 and maximal ED peak of 

0.82 e·Å-2 

In all structures with the weakly coordinating anion [TEF], it is disordered. The 

disorder patterns varied according to different orientations or conformations of the [TEF] 

anion caused by rotation around O-tertC (5, 6, 7) or C-C(F3) bonds of OC4F9 groups (6, 
7). In all structures the solvent CH2Cl2 molecules are also either disordered or partly 

occupied. The disorder patterns are illustrated in the Figures S6, S8 and S10.  

The supplementary crystallographic data for this publication (Tables S1-S2: 

CCDC- 1985242 (4), CCDC-1985243 (5), CCDC-1985244 (6), CCDC-1985245 (7)) can 

be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html (or from the 

Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; 

Fax: + 44-1223-336-033; e-mail: deposit@ccdc.cam.ac.uk).  

All ORTEP drawings for 4 – 7 were made in Olex2 software.22 
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Table S3.1. Crystallographic details for 4 and 5. 

Compound 4 5 
CCDC Code CCDC-1985242 CCDC-1985243 
Structural formula [Ag2(Cp2Mo2As2(CO)4)4] 

(FAlO3C36H45)×1.675(CH2Cl2) 
[Ag(Cp2Mo2As2(CO)4)3] 

(Al(OC4F9)4) 

Chemical formula C129.68H43.35Ag2Al2As8Cl3.35 

F92Mo8O22 
C42H30AgAs6Mo6O12·C16AlF36O4 

Mr 5456.43 2826.83 
Crystal system, space 
group Orthorhombic, Pccn Monoclinic, P21/c 

Temperature (K) 123 90 
a, b, c (Å) 18.5126 (3), 33.8843 (8), 

25.6612 (6) 
14.08967 (13), 13.71359 (11), 

39.9112 (3) 

b (°) 90, 90, 90 90.3681 (8) 

V (Å3) 16096.9 (6) 7711.49 (11) 
Z 4 4 
F(000) 10409 5360 
Dx (Mg m-3) 2.252 2.435 
Radiation type Mo Ka Cu Ka 

µ (mm-1) 2.71 14.10 

Crystal shape Prism Plate 
Colour Red Orange 
Crystal size (mm) 0.73 × 0.68 × 0.51 0.07 × 0.06 × 0.04 
Diffractometer Xcalibur, AtlasS2, Gemini ultra SuperNova, TitanS2 
Absorption correction Analytical Gaussian 
 Tmin, Tmax 0.273, 0.398 0.513, 0.681 
No. of measured, 
independent and 
observed [I > 2s(I)] 
reflections 

82022, 26113, 12482 93514, 15595, 13932 

Rint 0.042 0.038 

(sin q/l)max (Å-1) 0.756 0.623 

Range of h, k, l h = -27®16, k = -50®32, 
l = -21®38 

h = -17®16, k = -17®17, 
l = -48®49 

R[F2 > 2s(F2)], wR(F2), 
S 0.044, 0.101, 0.90 0.022, 0.055, 0.96 

No. of reflections 26110 15595 
No. of parameters 1359 1153 
No. of restraints 0 0 
H-atom treatment H-atom parameters constrained H-atom parameters constrained 

Dρmax, Dρmin (e Å-3) 1.78, -1.47 0.64, -1.18 
Computer programs: CrysAlis PRO 1.171.38.41, 1.171.38.46 (Rigaku OD, 2015), SHELXT2015/7 
(Sheldrick, 2015), SHELXL2014/7 (Sheldrick, 2014).  
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Table S3.2. Crystallographic details for 6 and 7. 

Compound 6 7 
CCDC Code CCDC-1985244 CCDC-1985245 
Structural formula [Ag3(Cp2Mo2As2(CO)4)5] 

(AlO4C16F36)3×4CH2Cl2 
[Ag3(Cp2Mo2As2(CO)4)4] 

(AlO4C16F36)3×CH2Cl2 

Chemical formula C122H58Ag3Al3As10Cl8F108Mo10O32 C105H42Ag3Al3As8Cl2F108Mo8O28 
Mr 6484.43 5645.71 
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/c 
Temperature (K) 123 123 
a, b, c (Å) 20.20026(19), 30.0466(3), 

31.0089(3) 
22.6469(5), 23.0028(4), 

30.4515(4) 

b (°) 103.4982 (10) 91.9714(16) 

V (Å3) 18301.0 (3) 15854.1(5) 
Z 4 4 
F(000) 12336 10728 
Dx (Mg m-3) 2.353 2.365 
Radiation type Mo Ka Cu Ka 

µ (mm-1) 3.07 12.025 

Crystal shape prism plate 
Colour red red 
Crystal size (mm) 0.71 × 0.62 × 0.38 0.32 × 0.17 × 0.05 
Diffractometer Xcalibur, AtlasS2, Gemini ultra AtlasS2, SuperNova 
Absorption correction Analytical Analytical 
 Tmin, Tmax 0.221, 0.431 0.143, 0.650 
No. of measured, independent 
and observed [I > 2s(I)] 
reflections 

169943, 58279, 38192 69104, 32402, 26756 

Rint 0.029 0.0353 

(sin q/l)max (Å-1) 0.744 0.746 

Range of h, k, l h = -29®28, k = -40®44, 
l = -46®43 

h = -28®27, k = -25®29, 
l = -38®29 

R[F2 > 2s(F2)], wR(F2), S 0.027, 0.054, 0.90 0.0634, 0.1804, 1.02 

No. of reflections 58279 32402 
No. of parameters 2975 4201 
No. of restraints 0 7150 
H-atom treatment H-atom parameters constrained H-atom parameters constrained 

Dρmax, Dρmin (e Å-3) 1.26, -1.19 1.67, -1.18 
Computer programs: CrysAlis PRO 1.171.38.41 and 1.171.39.45g (Rigaku OD, 2018), SHELXL2014/7 
(Sheldrick, 2014), Olex2 (Dolomanov et al., 2009).  
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Figure S3.1. Molecular structure of the compound 4 (a.d.p. ellipsoids at 50% probability).  

 

Table S3.3. Selected geometric parameters (Å, º) for 4. 

Ag1A—As4A 2.6188 (15) Ag1B—Ag1Bi 2.655 (4) 

Ag1A—As2A 2.678 (3) Ag1B—As1B 2.656 (8) 

Ag1A—As1A 2.705 (2) Ag1B—As4B 2.718 (5) 

Ag1A—As3A 2.706 (2) Ag1B—As3B 2.726 (7) 

Ag1A—Ag1Ai 2.8583 (12) Ag1B—As4Bi 2.919 (6) 
Mo1A—As2A 2.553 (5) Mo1B—As2B 2.549 (15) 

Mo1A—As1A 2.629 (4) Mo1B—As1B 2.607 (12) 

Mo2A—As1A 2.545 (2) Mo2B—As1B 2.559 (7) 

Mo2A—As2A 2.623 (3) Mo2B—As2B 2.664 (12) 

Mo4A—As3A 2.5510 (18) Mo4B—As3B 2.550 (6) 

Mo4A—As4A 2.6546 (17) Mo4B—As4B 2.603 (6) 

As1A—As2A 2.413 (4) As1B—As2B 2.331 (14) 

As3A—As4A 2.414 (2) As3B—As4B 2.346 (9) 
Ag1B—As2B 2.613 (10) As4B—Ag1Bi 2.919 (6) 

 

As4A—Ag1A—As2A 164.27 (8) As1B—Ag1B—As4B 127.2 (2) 

As4A—Ag1A—As1A 142.24 (6) As2B—Ag1B—As3B 138.7 (3) 

As2A—Ag1A—As1A 53.27 (9) Ag1Bi—Ag1B—As3B 116.47 (16) 

As4A—Ag1A—As3A 53.88 (5) As1B—Ag1B—As3B 86.2 (2) 
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As2A—Ag1A—As3A 138.18 (10) As4B—Ag1B—As3B 51.05 (18) 
As1A—Ag1A—As3A 90.92 (6) As2B—Ag1B—As4Bi 91.0 (3) 

As4A—Ag1A—Ag1Ai 92.18 (4) Ag1Bi—Ag1B—As4Bi 58.15 (12) 

As2A—Ag1A—Ag1Ai 72.23 (7) As1B—Ag1B—As4Bi 131.75 (18) 

As1A—Ag1A—Ag1Ai 125.49 (5) As4B—Ag1B—As4Bi 99.69 (12) 

As3A—Ag1A—Ag1Ai 137.24 (4) As3B—Ag1B—As4Bi 122.51 (13) 

As2A—As1A—Ag1A 62.79 (9) As2B—As1B—Ag1B 62.8 (3) 

Mo2A—As1A—Ag1A 116.34 (10) Mo2B—As1B—Ag1B 120.6 (3) 

Mo1A—As1A—Ag1A 107.36 (9) Mo1B—As1B—Ag1B 105.1 (3) 
As1A—As2A—Ag1A 63.94 (8) As1B—As2B—Ag1B 64.7 (3) 

Mo1A—As2A—Ag1A 110.47 (14) Mo1B—As2B—Ag1B 108.0 (5) 

Mo2A—As2A—Ag1A 114.61 (11) Ag1B—As2B—Mo2B 118.3 (4) 

As4A—As3A—Ag1A 61.21 (6) As4B—As3B—Ag1B 64.3 (2) 

Mo4A—As3A—Ag1A 105.44 (7) Mo3—As3B—Ag1B 117.1 (2) 

Mo3—As3A—Ag1A 115.24 (7) Mo4B—As3B—Ag1B 109.8 (2) 

As3A—As4A—Ag1A 64.90 (6) As3B—As4B—Ag1B 64.6 (2) 
Mo3—As4A—Ag1A 120.91 (6) Mo3—As4B—Ag1B 120.05 (18) 

Ag1A—As4A—Mo4A 105.00 (6) Mo4B—As4B—Ag1B 108.5 (2) 

As2B—Ag1B—Ag1Bi 101.2 (3) As3B—As4B—Ag1Bi 120.3 (2) 

As2B—Ag1B—As1B 52.5 (3) Mo3—As4B—Ag1Bi 146.48 (15) 

Ag1Bi—Ag1B—As1B 146.34 (14) Mo4B—As4B—Ag1Bi 143.3 (2) 

As2B—Ag1B—As4B 153.8 (3) Ag1B—As4B—Ag1Bi 56.06 (12) 

Ag1Bi—Ag1B—As4B 65.79 (14)   
Symmetry code(s):  (i) -x+1/2, -y+3/2, z. 
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Interpretation of the disorder of the core in the cationic complex 4 

The cationic complex [Ag3(Cp2Mo2As2(CO)4)5]3+ (4) is disordered over two close 

positions with occupancies 0.75 and 0.25. It occupies special position on the 2-fold axis 

along z direction. The half of each two disordered components is located in the 

asymmetric unit (Figure S3.2). The symmetrically generated disordered complex is 

depicted in Figure S3.3.  

 

If symmetry operation of 2z axis is applied only to the major (0.75) part of the complex 

4, the resulting core will include only ‘green-bonded’ atoms in the Figure S3.3b, if the 

same procedure is repeated for the minor part (0.25) – the ‘red-bonded’ atoms. This 

would be the easiest and straightforward interpretation of the disorder. However, it is 

also possible, that the red part in the asymmetric part combines with the green part of 

the symmetrically generated part of the disorder. Then two more combinations ‘green-

red’ and ‘red-green’ are allowed, which correspond to potentially different cores of the 

complex 4 (Figure S3.4). 

 

 

 

a b 

  

Figure S3.3. (a) Disordered cationic part in 4 and (b) the view of the disordered core with highlighted major 
(0.75, green bonds) and minor (0.25, red bonds). 
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occupancy 0.75 

 

 

occupancy 0.25 

 

 

occupancy 0.25 

Core 4a 

based on the major part only 

Core 4b 

based on the minor part only 

Core 4c 

based on the major unique part 
and minor part rotated by the 2z 

axis 

 

Same result as above 

 

Same result as above 
 

 

occupancy 0.25 

  

Core 4c (2) 

based on the minor unique part 
and major part rotated by the 2z 

axis 
 

Figure S3.4. Possible individual cores of 4 in the disordered structure.  

There is no unambiguous interpretation of the structure model, as it is impossible to 

distinguish if it is either cores 4a and 4b co-exist (and have local rotational symmetry as 

they can be generated by 2-fold axis) or the core 4c (which has no rotational symmetry) 

is disordered by the 2-fols axis and co-exists with the core 4a (Figure S3.5). Obviously, 

co-existence of 4b and 4c is less probable if the occupancies are taken into account. 
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max occupancy 0.75 

 

 

 

max occupancy 0.25 

 

 

max occupancy 0.50 

Core 4a  
rotational symmetry 

Core 4b  
rotational symmetry 

Core 4c  
asymmetric 

 

Figure S3.5. Possible inorganic cores of the complex 4. 

 

Two (simplest) possible situations: in the crystal structure co-exist different 
complexes: 

Situation 1: 0.75´(Core I) + 0.25´(Core II) 

Situation 2:  0.5´(Core III) + 0.5´(Core I)  

or any mixture of all three complexes with a ratio that does not contradict 

crystallographic occupancies of the atoms. As one of possible examples, the solid 

solution of 0.25´(core 4a) + 0.25´(core 4b) + 0.5´(core 4c) is non-contradicting to the 

experimental data. More possible compositions can also be devised. Therefore, the 

answer to the question as to which of these alternatives do really exist, cannot be 

obtained from the X-ray structural data as the symmetry of the special position hides the 

initial forms.  
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Figure S3.6. Molecular structure of the compound 5 (a.d.p. ellipsoids at 50% probability). 

 

Table S3.4. Selected geometric parameters (Å, º) for 5. 

Ag1—As6 2.7337 (3) Mo4—C42 2.332 (3) 

Ag1—As1 2.7507 (3) Mo4—C44 2.342 (3) 

Ag1—As3 2.7760 (3) Mo4—C43 2.371 (3) 

Ag1—As2 2.7843 (3) Mo4—As4 2.5751 (3) 

Ag1—As4 2.9053 (3) Mo4—As3 2.6637 (3) 
Ag1—As5 2.9186 (3) Mo5—C52C 1.973 (3) 

Mo1—C12C 1.992 (3) Mo5—C51C 2.005 (3) 

Mo1—C11C 1.993 (3) Mo5—C51 2.299 (2) 

Mo1—C13 2.300 (3) Mo5—C52 2.318 (2) 

Mo1—C12 2.304 (3) Mo5—C55 2.321 (2) 

Mo1—C14 2.328 (3) Mo5—C53 2.363 (3) 

Mo1—C11 2.343 (3) Mo5—C54 2.372 (2) 

Mo1—C15 2.359 (3) Mo5—As6 2.5621 (3) 
Mo1—As1 2.5690 (4) Mo5—As5 2.6615 (3) 

Mo1—As2 2.6496 (3) Mo5—Mo6 3.0511 (3) 

Mo1—Mo2 3.0431 (3) Mo6—C61C 1.983 (3) 

Mo2—C22C 1.987 (3) Mo6—C62C 1.997 (3) 

Mo2—C21C 1.987 (3) Mo6—C64 2.304 (2) 
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Mo2—C21 2.291 (3) Mo6—C63 2.316 (3) 
Mo2—C25 2.311 (3) Mo6—C65 2.346 (3) 

Mo2—C22 2.325 (3) Mo6—C62 2.353 (3) 

Mo2—C24 2.355 (3) Mo6—C61 2.381 (3) 

Mo2—C23 2.376 (3) Mo6—As5 2.5828 (3) 

Mo2—As2 2.5750 (3) Mo6—As6 2.6656 (3) 

Mo2—As1 2.6540 (3) As1—As2 2.3734 (4) 

Mo3—C31C 1.982 (3) As3—As4 2.3572 (4) 

Mo3—C32C 1.992 (3) As5—As6 2.3583 (4) 
Mo3—C32 2.298 (3) O11C—C11C 1.142 (4) 

Mo3—C31 2.316 (3) O12C—C12C 1.148 (4) 

Mo3—C33 2.328 (3) O21C—C21C 1.145 (4) 

Mo3—C35 2.357 (3) O22C—C22C 1.144 (4) 

Mo3—C34 2.374 (3) O31C—C31C 1.150 (3) 

Mo3—As3 2.5665 (3) O32C—C32C 1.148 (4) 

Mo3—As4 2.6664 (3) O41C—C41C 1.138 (3) 
Mo3—Mo4 3.0354 (3) O42C—C42C 1.149 (3) 

Mo4—C42C 1.987 (3) O51C—C51C 1.141 (3) 

Mo4—C41C 1.999 (3) O52C—C52C 1.154 (3) 

Mo4—C41 2.303 (3) O61C—C61C 1.148 (3) 

Mo4—C45 2.305 (3) O62C—C62C 1.143 (3) 

 

As6—Ag1—As1 141.568 (10) As3—Mo4—Mo3 53.045 (8) 

As6—Ag1—As3 108.360 (10) As6—Mo5—As5 53.635 (9) 
As1—Ag1—As3 107.412 (10) As6—Mo5—Mo6 55.886 (8) 

As6—Ag1—As2 101.731 (10) As5—Mo5—Mo6 53.229 (7) 

As1—Ag1—As2 50.778 (8) As5—Mo6—As6 53.375 (9) 

As3—Ag1—As2 145.678 (11) As5—Mo6—Mo5 55.635 (8) 

As6—Ag1—As4 103.923 (10) As6—Mo6—Mo5 52.730 (7) 

As1—Ag1—As4 109.932 (10) As2—As1—Mo1 64.696 (11) 

As3—Ag1—As4 48.961 (8) As2—As1—Mo2 61.320 (10) 

As2—Ag1—As4 108.209 (10) As2—As1—Ag1 65.344 (10) 
As6—Ag1—As5 49.186 (8) As1—As2—Mo2 64.720 (10) 

As1—Ag1—As5 108.649 (10) As1—As2—Mo1 61.229 (10) 

As3—Ag1—As5 103.252 (10) As1—As2—Ag1 63.878 (10) 

As2—Ag1—As5 108.847 (10) As4—As3—Mo3 65.417 (10) 

As4—Ag1—As5 137.923 (10) As4—As3—Mo4 61.352 (10) 

As1—Mo1—As2 54.075 (9) As4—As3—Ag1 68.380 (10) 

As1—Mo1—Mo2 55.675 (8) As3—As4—Mo4 65.200 (10) 

As2—Mo1—Mo2 53.242 (8) As3—As4—Mo3 61.080 (10) 
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As2—Mo2—As1 53.960 (9) As3—As4—Ag1 62.659 (10) 
As2—Mo2—Mo1 55.527 (8) As6—As5—Mo6 65.110 (10) 

As1—Mo2—Mo1 53.074 (8) As6—As5—Mo5 61.026 (10) 

As3—Mo3—As4 53.503 (9) As6—As5—Ag1 61.320 (10) 

As3—Mo3—Mo4 56.032 (8) As5—As6—Mo5 65.339 (10) 

As4—Mo3—Mo4 53.219 (8) As5—As6—Mo6 61.515 (10) 

As4—Mo4—As3 53.448 (9) As5—As6—Ag1 69.494 (10) 

As4—Mo4—Mo3 56.031 (8)   
 

 

Figure S3.7. (left) Molecular structure of the cation of the compound 6 (H atoms are omitted); (right) the 
disorder of the {Mo2As2} units with a ratio of 0.97:0.03  a.d.p. ellipsoids at 50% probability). 
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Table S3.5. Selected geometric parameters (Å) for 6. 

Ag1—As10 2.6709 (3) Mo1A—As2A 2.537 (15) 

Ag1—As5A 2.694 (11) Mo1A—Mo2A 3.036 (13) 

Ag1—As9 2.7340 (3) Mo2A—As1A 2.542 (15) 

Ag1—As5 2.7382 (3) Mo2A—As2A 2.664 (14) 

Ag1—As7 2.7541 (3) As1A—As2A 2.400 (17) 

Ag1—As7A 2.826 (10) Mo5A—As5A 2.560 (15) 

Ag1—Ag2 2.8376 (3) Mo5A—As6A 2.615 (15) 
Ag1—As2 3.0218 (4) Mo5A—Mo6A 3.057 (13) 

Ag1—As2A 3.123 (11) Mo6A—As5A 2.600 (14) 

Ag2—As6A 2.438 (12) Mo6A—As6A 2.609 (15) 

Ag2—As8 2.7204 (3) As5A—As6A 2.387 (16) 

Ag2—As6 2.7513 (3) Mo7A—As8A 2.553 (14) 

Ag2—As2 2.7566 (3) Mo7A—As7A 2.565 (13) 

Ag2—As2A 2.858 (11) Mo7A—Mo8A 2.989 (12) 

Ag2—Ag3 2.9053 (3) Mo8A—As7A 2.524 (13) 
Ag2—As7A 2.942 (10) Mo8A—As8A 2.594 (14) 

Ag2—As8A 2.995 (11) As7A—As8A 2.321 (15) 

Ag2—As7 3.0159 (3) Mo1—As1 2.5144 (4) 

Ag2—As5 3.0225 (3) Mo1—As2 2.6539 (4) 

Ag3—As1 2.4642 (3) Mo1—Mo2 3.0689 (3) 

Ag3—As4 2.5699 (3) Mo2—As2 2.5635 (3) 

Ag3—As1A 2.604 (12) Mo2—As1 2.6140 (4) 

Ag3—As3 2.6519 (3) Mo5—As6 2.5716 (3) 
Mo3—As4 2.5824 (3) Mo5—As5 2.6271 (3) 

Mo3—As3 2.6023 (3) Mo5—Mo6 3.0641 (3) 

Mo3—Mo4 3.1375 (3) Mo6—As5 2.5636 (3) 

Mo4—As3 2.5511 (3) Mo6—As6 2.6665 (3) 

Mo4—As4 2.5940 (3) Mo7—As7 2.5587 (3) 

Mo9—As9 2.5514 (3) Mo7—As8 2.6519 (3) 

Mo9—As10 2.6323 (3) Mo7—Mo8 3.0465 (3) 

Mo9—Mo10 3.0480 (3) Mo8—As8 2.5792 (3) 
Mo10—As10 2.5589 (3) Mo8—As7 2.6359 (3) 

Mo10—As9 2.6304 (3) As1—As2 2.3748 (4) 

As3—As4 2.4585 (3) As5—As6 2.3693 (4) 

As9—As10 2.3968 (4) As7—As8 2.3738 (4) 

Mo1A—As1A 2.536 (16)   
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Figure S3.8. The TEF anions (disordered groups are shown in pale yellow) in the structure of the compound 
6 (a.d.p. ellipsoids at 50% probability). 

 

Figure S3.9. The structure of the cationic complex in the compound 7 (a.d.p. ellipsoids at 50% probability). 
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Table S3.6. Selected geometric parameters (Å) for 7. 

Ag1—Ag3 2.8904 (8) Mo1—Mo2 3.0627 (9) 

Ag1—Ag2 2.9800 (8) Mo1—As2 2.6069 (9) 

Ag1—As3 2.5738 (8) Mo1—As1 2.5643 (10) 

Ag1—As2 2.7923 (9) Mo2—As2 2.5357 (10) 

Ag1—As1 2.6133 (9) Mo2—As1 2.6413 (10) 

Mo3—Mo4 3.0759 (8) Mo5—As5 2.5566 (10) 

Mo3—As3 2.5424 (9) Mo5—As6 2.6267 (11) 
Mo3—As4 2.6345 (10) As3—As4 2.4066 (10) 

Ag3—Ag2 2.8625 (9) Mo7A—As8A 2.540 (9) 

Ag3—As3 2.8582 (9) Mo7A—Mo8A 3.064 (7) 

Ag3—As4 2.6054 (9) Mo7A—As7A 2.649 (5) 

Ag3—As5 2.8190 (9) As2—As1 2.4095 (11) 

Ag3—As8A 2.989 (8) As5—As6 2.4066 (12) 

Ag3—As6 2.6312 (11) As8A—Mo8A 2.596 (7) 

Ag2—As2 2.6718 (10) As8A—As7A 2.378 (5) 
Ag2—As5 2.7041 (10) Mo8A—As7A 2.529 (4) 

Ag2—As8A 2.737 (7) Mo8B—As7B 2.579 (5) 

Ag2—As7A 2.730 (5) Mo8B—Mo7B 3.029 (8) 

Ag2—As7B 2.680 (4) Mo8B—As8B 2.627 (9) 

Ag2—As8B 2.683 (9) As7B—Mo7B 2.585 (5) 

Mo4—As3 2.6042 (9) As7B—As8B 2.365 (6) 

Mo4—As4 2.5564 (9) Mo7B—As8B 2.550 (11) 
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Figure S3.10. The TEF anions (disordered groups are shown in pale yellow) in the structure of the 
compound 7 (a.d.p. ellipsoids at 50% probability). 
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3.4.7 DFT Calculations 

The DFT calculations have been performed with Gaussian 0924 at the ωB97XD25 

functional together with the def2-SVP26 basis set. For the calculation of reaction energies, 

the SCF energies were used without corrections for zero point vibrations.  

 

Table S3.7. Cartesian coordinates of the gas-phase optimized geometry of [{(Cp(CO)2Mo)2(As2)}4Ag2]2+ at 

the ωB97XD/def2-SVP level of theory. E = -22083.8841414 Hartree. 

Atom     x       y  z     .  
Ag      -0.000866000     -1.594029000     -0.026443000 

Ag       0.000866000      1.594029000     -0.026443000 

As       1.515199000     -3.335603000     -1.450448000 

As       1.940414000     -1.007319000     -1.853091000 

As      -1.485453000     -3.253201000      1.573342000 

As      -1.989238000     -0.908669000      1.693120000 

Mo       4.011374000     -2.496227000     -1.554668000 

Mo       2.028208000     -2.703223000     -3.871395000 

Mo      -3.977864000     -2.658945000      1.536702000 

Mo      -2.108387000     -2.198671000      3.906483000 

As      -1.515199000      3.335603000     -1.450448000 

As      -1.940414000      1.007319000     -1.853091000 

As       1.485453000      3.253201000      1.573342000 

As       1.989238000      0.908669000      1.693120000 

Mo      -4.011374000      2.496227000     -1.554668000 

Mo      -2.028208000      2.703223000     -3.871395000 

Mo       3.977864000      2.658945000      1.536702000 

Mo       2.108387000      2.198671000      3.906483000 

C        2.137965000      1.836553000      6.160565000 

H        1.446672000      2.321408000      6.846963000 

C        3.436039000      2.309748000      5.803808000 

H        3.895788000      3.228895000      6.163348000 

C        4.049441000      1.343001000      4.964910000 

H        5.061819000      1.392809000      4.574991000 

C        3.133166000      0.269675000      4.782761000 

H        3.312079000     -0.644116000      4.219765000 

C        1.958637000      0.570148000      5.523407000 

H        1.102040000     -0.089282000      5.628433000 
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C       -4.035706000      4.483947000     -1.476566000 

       -4.140102000      5.625976000     -1.439355000 

C        2.039701000      4.173861000      4.147826000 

O        2.020450000      5.298045000      4.371097000 

O       -3.506698000      2.412349000      1.534924000 

O        0.835362000      1.492291000     -4.203163000 

O       -3.329851000      0.104952000     -5.050037000 

O       -1.014673000      2.140633000      4.055659000 

O        3.671416000      1.982062000     -1.499321000 

C        4.791278000      0.897744000      1.940526000 

O        5.365354000     -0.068671000      2.183406000 

C       -3.663634000      2.454078000      0.399227000 

C       -5.672044000      0.961928000     -1.128553000 

H       -5.614794000      0.251313000     -0.309565000 

C       -6.233031000      2.276416000     -1.062093000 

H       -6.690288000      2.740207000     -0.190582000 

C       -6.161403000      2.836110000     -2.371345000 

H       -6.541719000      3.813383000     -2.664713000 

C       -5.564384000      1.882530000     -3.235458000 

H       -5.417659000      1.997185000     -4.305624000 

C       -5.254702000      0.725909000     -2.464895000 

H       -4.816164000     -0.194462000     -2.842525000 

C       -0.223648000      1.906145000     -4.050847000 

C       -2.834605000      1.016441000     -4.563595000 

C       -3.368750000      4.510205000     -4.607539000 

H       -4.335878000      4.788716000     -4.198830000 

C       -3.146476000      3.614524000     -5.685412000 

H       -3.915933000      3.085321000     -6.245211000 

C       -1.746838000      3.580772000     -5.960551000 

H       -1.266107000      3.038048000     -6.771746000 

C       -1.106409000      4.462432000     -5.033525000 

H       -0.044126000      4.697235000     -5.003289000 

C       -2.108387000      5.029717000     -4.199787000 

H       -1.950632000      5.777757000     -3.425804000 

C        0.128432000      2.179253000      3.960998000 

C        3.753381000      2.181520000     -0.371441000 

C        4.335219000      4.963335000      1.855081000 
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H        3.550494000      5.711708000      1.942721000 

C        4.968597000      4.289587000      2.937328000 

H        4.759019000      4.437565000      3.992551000 

C        5.977552000      3.447856000      2.400934000 

H        6.667555000      2.832619000      2.975993000 

C        5.983246000      3.601909000      0.982584000 

H        6.685846000      3.143380000      0.289874000 

C        4.961357000      4.545535000      0.650231000 

H        4.735621000      4.919792000     -0.346645000 

C       -2.137965000     -1.836553000      6.160565000 

H       -1.446672000     -2.321408000      6.846963000 

C       -3.436039000     -2.309748000      5.803808000 

H       -3.895788000     -3.228895000      6.163348000 

C       -4.049441000     -1.343001000      4.964910000 

H       -5.061819000     -1.392809000      4.574991000 

C       -3.133166000     -0.269675000      4.782761000 

H       -3.312079000      0.644116000      4.219765000 

C       -1.958637000     -0.570148000      5.523407000 

H       -1.102040000      0.089282000      5.628433000 

C        4.035706000     -4.483947000     -1.476566000 

O        4.140102000     -5.625976000     -1.439355000 

C       -2.039701000     -4.173861000      4.147826000 

O       -2.020450000     -5.298045000      4.371097000 

O        3.506698000     -2.412349000      1.534924000 

O       -0.835362000     -1.492291000     -4.203163000 

O        3.329851000     -0.104952000     -5.050037000 

O        1.014673000     -2.140633000      4.055659000 

O       -3.671416000     -1.982062000     -1.499321000 

C       -4.791278000     -0.897744000      1.940526000 

O       -5.365354000      0.068671000      2.183406000 

C        3.663634000     -2.454078000      0.399227000 

C        5.672044000     -0.961928000     -1.128553000 

H        5.614794000     -0.251313000     -0.309565000 

C        6.233031000     -2.276416000     -1.062093000 

H        6.690288000     -2.740207000     -0.190582000 

C        6.161403000     -2.836110000     -2.371345000 

H        6.541719000     -3.813383000     -2.664713000 



56 | 3 .  [ ( C p 2 ( C O ) 4 M o 2 A s 2 ]  i n  S u p r a m o l e c u l a r  C h e m i s t r y   
 

C        5.564384000     -1.882530000     -3.235458000 

H        5.417659000     -1.997185000     -4.305624000 

C        5.254702000     -0.725909000     -2.464895000 

H        4.816164000      0.194462000     -2.842525000 

C        0.223648000     -1.906145000     -4.050847000 

C        2.834605000     -1.016441000     -4.563595000 

C        3.368750000     -4.510205000     -4.607539000 

H        4.335878000     -4.788716000     -4.198830000 

C        3.146476000     -3.614524000     -5.685412000 

H        3.915933000     -3.085321000     -6.245211000 

C        1.746838000     -3.580772000     -5.960551000 

H        1.266107000     -3.038048000     -6.771746000 

C        1.106409000     -4.462432000     -5.033525000 

H        0.044126000     -4.697235000     -5.003289000 

C        2.108387000     -5.029717000     -4.199787000 

H        1.950632000     -5.777757000     -3.425804000 

C       -0.128432000     -2.179253000      3.960998000 

C       -3.753381000     -2.181520000     -0.371441000 

C       -4.335219000     -4.963335000      1.855081000 

H       -3.550494000     -5.711708000      1.942721000 

C       -4.968597000     -4.289587000      2.937328000 

H       -4.759019000     -4.437565000      3.992551000 

C       -5.977552000     -3.447856000      2.400934000 

H       -6.667555000     -2.832619000      2.975993000 

C       -5.983246000     -3.601909000      0.982584000 

H       -6.685846000     -3.143380000      0.289874000 

C       -4.961357000     -4.545535000      0.650231000 

H       -4.735621000     -4.919792000     -0.346645000 
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Table S3.8. Cartesian coordinates of the gas-phase optimized geometry of [{(Cp(CO)2Mo)2(As2)}2Ag]1+ at 

the ωB97XD/def2-SVP level of theory. E = -11041.940186 Hartree.  

Atom     x       y  z     .  
Ag      -0.001021000     -0.000373000     -0.000068000 
As      -2.389062000      0.689827000      0.979702000 
As      -2.389157000     -0.690014000     -0.979720000 
As       2.388013000     -0.507348000      1.085472000 
As       2.388002000      0.507102000     -1.085535000 
Mo      -4.110070000     -1.297193000      0.812890000 
Mo      -4.109837000      1.297286000     -0.812948000 
Mo       4.110057000      1.352855000      0.722413000 
Mo       4.110387000     -1.352761000     -0.722338000 
C        5.439321000     -2.757969000     -1.939482000 
H        5.424200000     -3.826150000     -1.800533000 
C        6.303621000     -1.838899000     -1.283998000 
H        7.049807000     -2.093328000     -0.548626000 
C        6.056987000     -0.547839000     -1.803828000 
H        6.582604000      0.352158000     -1.537103000 
C        5.030178000     -0.655264000     -2.775011000 
H        4.637282000      0.152315000     -3.369879000 
C        4.648856000     -2.014941000     -2.862652000 
H        3.915319000     -2.420661000     -3.540100000 
C       -4.597070000     -0.220722000      2.413801000 
O       -4.948873000      0.339837000      3.344968000 
C        4.602556000     -2.200638000      1.009759000 
O        4.957763000     -2.726334000      1.959653000 
O       -1.825962000     -2.664274000      2.455528000 
O       -1.825444000      2.664102000     -2.455410000 
O       -4.949052000     -0.339771000     -3.344871000 
O        1.829594000     -3.463927000     -1.071768000 
O        1.828835000      3.463587000      1.071682000 
C        4.602211000      2.200817000     -1.009642000 
O        4.957454000      2.726608000     -1.959471000 
C       -2.636072000     -2.127611000      1.861583000 
C       -4.647424000     -3.479372000      0.304268000 
H       -3.909407000     -4.264748000      0.305450000 
C       -5.429545000     -3.062832000      1.419839000 
H       -5.404108000     -3.486511000      2.409983000 
C       -6.303793000     -2.037931000      0.967480000 
H       -7.045893000     -1.535027000      1.566606000 
C       -6.069732000     -1.829034000     -0.410380000 
H       -6.605868000     -1.146293000     -1.045986000 
C       -5.042368000     -2.715990000     -0.819696000 
H       -4.657119000     -2.817376000     -1.820632000 
C       -2.635695000      2.127467000     -1.861632000 
C       -4.596974000      0.220906000     -2.413879000 
C       -6.069430000      1.829426000      0.410297000 
H       -6.605688000      1.146764000      1.045887000 
C       -6.303438000      2.038376000     -0.967564000 
H       -7.045611000      1.535597000     -1.566705000 
C       -5.429025000      3.063146000     -1.419899000 
H       -5.403507000      3.486834000     -2.410038000 
C       -4.646852000      3.479548000     -0.304312000 
H       -3.908715000      4.264810000     -0.305475000 
C       -5.041935000      2.716218000      0.819638000 
H       -4.656689000      2.817537000      1.820582000 
C        2.638969000     -2.678678000     -0.909237000 
C        2.638360000      2.678489000      0.909169000 
C        5.029821000      0.655638000      2.775198000 
H        4.637012000     -0.151966000      3.370089000 
C        6.056711000      0.548311000      1.804090000 
H        6.582485000     -0.351622000      1.537453000 
C        6.303174000      1.839375000      1.284189000 
H        7.049373000      2.093874000      0.548853000 
C        5.438679000      2.758352000      1.939550000 
H        5.423392000      3.826521000      1.800530000 
C        4.648271000      2.015260000      2.862716000 
H        3.914628000      2.420909000      3.540092000 
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4. Discrete and Polymeric Organometallic-Organic 
Assemblies Based on the Diarsene Complex 
[(C5H5)2Mo2(CO)4(µ,ƞ2-As2)], AgPF6 and Organic N-
donor Molecules          

Abstract: The three component reactions of the organometallic diarsene 
complex [Cp2Mo2(CO)4(µ,η2-As2)] (B) (Cp = C5H5) with AgPF6 in the 
presence of N-donor linkers 1,2-di(4-pyridyl)ethylene (L1), 1,2-di(4-
pyridyl)ethyne (L2), 2,2´-bipyrimidine (L3), 1,3-di(4-pyridyl)propane (L4) and 
4,4´-bipyridine (L5) are studied. Depending on the organic linker used, a 
variety of new coordination compounds are accessible: the novel dicationic 
molecular organometallic-organic hybrid complexes [{(η2-B)2Ag}2(µ-
L1)][PF6]2 (1) and [{(η2-B)2Ag}2(µ-L2)][PF6]2 (2), as well as the one-
dimensional organometallic-organic hybrid polymers [{(η2-B)Ag}(µ-
L3)]n[PF6]2n (3), [{(η1:η2-B)2(CH3CN)2Ag2}(µ-L4)]n[PF6]2n (4), [{(η1:η2-B)2(η1:η1-
B)Ag2}(µ-L5)]n[PF6]2n (5) and [{(η1:η2-B)2(CH3CN)2Ag2}(µ-L5)]n[PF6]2n  (6). All 
compounds 1-6 were characterized by X-ray crystallography. Compounds 4-
6 have unique solid-state structures in which the organometallic diarsene 
complex B and organic dipyridine units cooperate together as linkers 
between Ag(I) ions.  

4.1 Introduction 

The design of Ag(I) complexes  represent an interesting research area because of 

their rich structural diversity and wide range of applications.1 This diversity is due to the 

flexible coordination sphere of the Ag(I) ion on one hand which can adopt various 

coordination geometries (linear, trigonal planar, tetrahedral, square-planar, trigonal 

bipyramidal, etc…).2 And on the other hand due to its ability to coordinate a variety of 

multitopic organic ligands bearing mainly N-, O-, S- or P- and minorly Se-, C-, As- or 

mixed-donor atoms.3 However, only few examples of organometallic building blocks 

have been used as ligands to stabilize Ag(I) centers.4 Due to the lack of such 

investigations, our group focuses on studying the potential of organometallic 

polyphosphorus (Pn) and polyarsenic (Asn) complexes with flexible coordination modes 

as connectors between metal ions.5 This novel approach allowed for the synthesis of a 

large variety of discrete and extended supramolecular aggregates including 1D, 2D and 

3D coordination polymers (CPs),5a,b,d-g inorganic nanospheres,6 and nanosized 

capsules.7 Furthermore, we investigated the possibility of conducting reactions in which 

both organic molecules and organometallic complexes are used together to link metal 
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centers.8 Within this field, the most studied compound is the diphosphorus complex 

[Cp2Mo2(CO)4(µ,η2-P2)] (Cp = C5H5, A). Its reaction with Ag(I) or Cu(I) salts in the 

presence of a variety of ditopic pyridine-based linkers allowed for the formation of 

unprecedented solid state organometallic-organic hybrid polymers.8a-g Interestingly, such 

reactions with Ag(I) ions can be performed in two ways: i) either in one step three 

component reactions by mixing all starting materials together under certain experimental 

conditions8e,g or ii) in two step reactions in which the first step involves the preparation of 

a preorganized precursor composed of the Ag(I) ions and the P2 ligand complex and the 

second step involves the reaction of this precursor with the N-donor organic 

molecules.8c,d   

More recently, we became interested in studying the supramolecular chemistry of similar 

molybdenum complexes bearing unsubstituted heavier homo- and heterodiatomic group 

15 elements as connectors between metal ions. For example the  diarsene complex 

[Cp2Mo2(CO)4(µ,η2-As2)] (B) was reacted with the Ag(I) salt of the weakly coordinating 

anion [Al{OC(CF3)3}4]-  ([TEF]-) allowing the synthesis of first compounds [(µ,η1:η2-B)3[(η2-

B)2Ag3][TEF]3 (D) and [(µ,η1:η2-B)4Ag3][TEF]3 (E) containing [Ag(I)]3 units stabilized by 

organometallic bichelating ligands  and [(µ,η1-B)3Ag][TEF] (F) (Scheme 4.1).9 Within the 

compounds D and E, the complex B was found to possess either an η2- or an η1:η2-

coordination mode. These results were particularly interesting considering the fact that 

similar reactions from the P2 analogue complex A and Ag[TEF] yield totally different 

products: the Ag(I) dimers of the general formula [Ag2(ƞ2-A)2(µ,ƞ1:ƞ1-A)2][TEF]2 (G) or 

the 1D polymer [Ag2(µ,ƞ1:ƞ1-A)3]n[TEF]2n (H) (Scheme 4.1).8e,f Compound F contains one 

Ag(I) ion coordinated by three complexes B only in an h2-coordination mode. The 

accessibility of these products of two-component reactions rises the question whether it 

would be possible to conduct three component reactions of complex B with metal ions 

in the presence of N-donor organic molecules. Accordingly, Ag(I) is an attractive ion due 

to its adaptive coordination sphere which would result in a greater variety of the formed 

products compared to other coinage metal salts. Herein, we show that the reaction of B 

with AgPF6 yields a cationic moiety similar to F, [(µ,η2-B)3Ag][TEF] (C) (Scheme 4.2). 
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Scheme 4.1. Reactions of A and B, respectively, with Ag[TEF] in different ratios.8e,f,9  

Furthermore, the three component reactions of B with AgPF6 and the N-donor organic 

molecules 2-di(4-pyridyl)ethylene (L1), 1,2-di(4-pyridyl)ethyne (L2), 2,2´-bipyrimidine 

(L3), 1,3-di(4-pyridyl)propane (L4) and 4,4´-bipyridine (L5) allowed for the synthesis of the 

novel dicationic molecular organometallic-organic hybrid complexes 

[{Cp2Mo2(CO)4(µ3,η2:2:2-As2)}4(µ2,η1:1-C12H8N2)Ag2][PF6]2 (1) and [{Cp2Mo2(CO)4(µ3,η2:2:2-

As2)}4(µ2,η1:1-C12H10N2) Ag2][PF6]2 (2), the new one-dimensional (1D) organometallic-

organic hybrid polymer [{Cp2Mo2(CO)4(µ3,η2:2:2-As2)}(µ2,η1:1:1:1-C6H8N4)Ag]n[PF6]2n (3) as 

well as the unique 1D organometallic-organic hybrid polymers [{Cp2Mo2(CO)4(µ4,η2:2:1:2-

As2)}2(µ2,η1:1-C13H14N2) (CH3CN)2Ag2]n[PF6]2n (4), [{Cp2Mo2(CO)4(µ4,η2:2:1:2-As2)}2(µ2,η1:1-

C10H8N2)(CH3CN)2Ag2]n [PF6]2n (5) and [{Cp2Mo2(CO)4(µ4,η2:2:1:2-

As2)}2{Cp2Mo2(CO)4(µ4,η2:2:1:1-As2)} (µ2,η1:1-C13H14N2) Ag2]n[PF6]2n (6) (Scheme 4.3).  
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4.2 Results and Discussion 

The reaction of B and AgPF6 was conducted using a 3:1 ratio of B:AgPF6 in 

CH2Cl2:CH3CN 1:1 at room temperature (Scheme 4.2). Layering with n-pentane affords 

red blocks of C suitable for X-ray structure analysis in a good yield within several day. 

Compound C crystallizes in the trigonal space group P3"1c. The Ag(I) center is η2-

coordinated by three complexes B. The As-As bonds (2.3676(17) Å) are slightly 

elongated compared to the uncoordinated complex A (2.311(3) Å).10 Additionally, the 

distances of the coordinating As atoms to Ag are rather long (2.752(4) Å). The As2AgAs2 

plane to plane angle is 76°, resulting in a distorted trigonal prismatic coordination sphere 

of the Ag(I) center.   

Compound C is well soluble in donor solvents such as CH3CN and slightly soluble in 

CH2Cl2 but insoluble in n-pentane. The ESI mass spectra of C show the expected peaks 

for the cationic fragments [AgB2]+ and [AgB(CH3CN)]+ and one peak for the PF6
- anion in 

the negative ion mode. The solid-state IR spectrum of C reveals four strong broad 

absorptions between 1889 and 1985 cm-1. These vibration bands are attributed to the 

stretching of the CO ligands of the coordinated B and are shifted to lower energies 

compared to the free complex B (1900 and 1949 cm-1).10 

 

Scheme 4.2. Reaction of B with Ag[PF6] yielding compound C. Yield is given in parenthesis. 

Reacting B and AgPF6 with the linkers 1,2-di(4-pyridyl)ethylene (L1) and 1,2-di(4-

pyridyl)ethyne (L2) lead to two discrete coordination complexes 1 and 2, respectively 

(Scheme 4.3). The straightforward synthetic approach, mixing B and AgPF6 in 

CH2Cl2:CH3CN 1:1 and add L1 or L2, respectively, after 1 h of stirring at room 

temperature, yields in red blocks suitable for X-ray structure analysis. Compounds 1 and 

2 crystallize in the triclinic space group P𝟏$ in very good yields.  Both solid-state structures 

reveal two [AgB2]+ units connected with linker L1 or L2, respectively, via the free 

coordination site at the Ag(I) (Figure 4.1). Surprisingly, also an excess of the linkers L1 

and L2 did not lead to the formation of a higher dimensional coordination compound.  
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Scheme 4.3. Reaction of B and AgPF6 with the linkers L1-L5 conducted at r. t. in CH2Cl2:CH3CN 1:1 yielding 
compounds 1-6. Yields are given in parentheses. 

Though, the reaction of B and AgPF6 with L3 under the same reaction conditions 

resulted in the 1D zig-zag polymer 3 (Scheme 4.3). Compound 3 crystallizes in the 

monoclinic space group P21/c as red blocks in a good yield. The solid-state structure 

reveals [AgB]+ moieties, which are linked with L3. The Ag(I) centers are trigonal prismatic 

coordinated with As2, N2 of one linker molecule and N2 of another linker molecule forming 

the edges of the prism (Figure 4.4). The NAgN plane to plane angle is 83°, leading to a 

distorted coordination sphere on the Ag(I) center.  

Moreover, compound 4 was obtained by reacting B and AgPF6 with L4 (Scheme 4.3). 

Interestingly, the [Ag2B2(CH3CN)2]+units were linked with L4 to yield a 1D coordination 

polymer (Figure 4.1).  The Ag(I) centers are η2-coordinated by one molecule B, η1-

coordinated by a second B unit. The nitrogen atoms of L4 coordinate in an end-on 

coordination mode towards the Ag(I) centers. Additionally, every Ag(I) ion is coordinated 

by one CH3CN molecule. The Ag1AsAg2/Ag1’AsAg2’ planes deviate from planarity (21°). 

The intermetallic Ag···Ag distance in 4 is significantly short (2.9690(4) Å) compared to 

the sum of the van der Waals radii for Ag···Ag (3.44 Å)11 demonstrating the possible 

existence of argentophilic interactions. The [Ag2B2(CH3CN)2]+ moieties show a cis-like 

coordination sphere concerning the linker L4 and the solvent molecules, resulting in the 

same coordination environments of all Ag(I) centers. Attempts to substitute the solvent 

molecule by adding an excess of linker L4 to build up 2D coordination polymers failed. 

n 
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Figure 4.1. Solid-state structures of the compounds C and 1-6. Cp-, CO-fragments, hydrogen atoms and 
anions are not depicted for clarity. Ellipsoids are shown at 50% probability level. 

Compounds 1-4 are formed regardless of the ratio of B:AgPF6:linker. In contrast, 

linker L5 forms two structurally distinct compounds 5 and 6, depending on the 

stoichiometry. Reacting B, AgPF6 and L5 in a 3:1:2 ratio results in the formation of 5, 

while using a threefold excess of L5 yields compound 6 (Scheme 4.3).  

The central structural motif of 5 consists of [Ag2B3]+ units linked with L5. Each Ag(I) center 

is η2-coordinated by one B moiety and η1-coordinated by the other two B molecules, 

whereby, one of the three B only coordinate towards the silver ions in an η1 fashion 

(Figure 4.1 and 4.2). Such structural motif is unique and has not been observed so far. 

Furthermore, the Ag···Ag distance is found to be even shorter than in 4 (2.7867(6) Å), 

also proposing argentophilic interactions.  
 

 

 

 

 

Figure 4.2. Section of the solid-state structure of 5 showing a rare η1-coordination mode of the As2 complex 
B towards the Ag(I) centers. Cp-, CO- and anions were omitted for clarity. Ellipsoids shown at 50% probability 
level.  

C 1 2

3 4

5 6



 | 69 
 

The coordination polymer 6 consists of linked [Ag2B2(CH3CN)2]+ entities. Surprisingly, 

the third molecule B of compound 6 was not substituted by a linker molecule as expected, 

but the free coordination site of the silver ion is occupied by an acetonitrile molecule. The 

difference between the [Ag2B2(CH3CN)2]+ unit of 4 and 6 is the direction of the solvent 

molecules. Compound 6 shows a trans arrangement of the CH3CN molecules 

coordinated to the Ag(I) centers. The Ag···Ag distance in 6 is similar to the distance in 4 

(2.9798(4) Å).  

As already discussed in chapter 3 of this work, compounds 4-6 demonstrate that the 

tetrahedral complex B has a high potential to form a ƞ2:ƞ1-coordination towards Ag(I) and 

to stabilize short Ag···Ag distances. Compounds 1-6 are all well soluble in CH3CN, 

slightly soluble in CH2Cl2 and insoluble in n-pentane. The 1H and 13C{1H} NMR spectra, 

recorded in acetonitrile-d3 at room temperature, of compounds of 3 and 4 show signals 

corresponding to the proton and carbon nuclei of the Cp and CO ligands of the 

coordinated B, respectively, and the corresponding linkers. Since the products can only 

be dissolved in the donor solvent CH3CN, the NMR data of compounds 1, 2 and 5 reveal 

depolymerization in solution as only signals for uncoordinated B (5.45 ppm) and the 

linkers are detectable.i  The ESI mass spectra in CH3CN show mainly peaks for the 

cationic fragments [AgB2]+, [AgB(CH3CN)]+ and [AgB]+. Some peaks lower in intensities 

are detected for [Lx]+ and [Ag(CH3CN)]+ in the positive ion mode. The assignment of 

some higher aggregated cationic fragments in very low intensities was not possible. In 

the negative ion mode, the peak for PF6
- is detected. These data indicate a partial 

dissociation of all compounds in solutions of CH3CN. In the solid-state IR spectra of 

compounds 1-5ii the CO bands are shifted to higher wavenumbers (between 1905 and 

1983 cm-1) compared to the uncoordinated complex B (1900, 1949 cm-1).12 

 

4.3 Conclusion 

To conclude, we were able to obtain compound C by reacting the tetrahedral diarsenic 

complex [Cp2Mo2(CO)4(µ,η2-As2)] (B) with AgPF6.  Furthermore, we synthesized two 

discrete (1, 2) and four polymeric (3-6) coordination compounds by using Ag(I), B and 

the organic pyridyl linker L1-L5, respectively. The one-dimensional polymers show a 

variety of Ag(I) coordination modes. The supramolecular polymers 4, 5 and 6 contain 

[Ag2]2+ units with very short Ag···Ag distances stabilized by the tetrahedral complex B. 

Additionally, compound 5 shows an unprecedented mix of coordination modes of B 

 
i NMR measurements for compound 6 could not be performed within this work. 
ii IR measurements for compound 6 and 4 could not be performed within this work. 
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towards the silver atoms ([(η1:η2-B)2(η1:η1-B)Ag2]2+), leading to very short Ag···Ag 

distance (2.7866(6) Å), indicating even stronger argentophilic interactions. Linker L5 

(4,4’-bipyridine) was the only one to form different coordination compounds (5 and 6) 

depending on the linker stoichiometry used. 

 

4.4 Supporting Information 

4.4.1 General  

All experiments were performed under an atmosphere of dry argon or nitrogen using 

standard Schlenk and glovebox techniques. The nitrogen/argon was dried and purified 

from traces of oxygen with a Cu/MgSO4 catalyst, concentrated H2SO4 and orange gel. 

All used solvents were taken from the solvent drying machine MB SPS-800 of the 

company MBRAUN. The precursor [Cp2Mo2(CO)4(μ,η2:2-As2)] (B) was prepared 

according to literature procedures.12 AgPF6 (abcr),  1,2-di(4-pyridyl)ethylene (L1) (TCI), 

1,2-di(4-pyridyl)ethyne (L2) (TCI), 2,2’-bipyrimidine (L3) (TCI), 1,3-di(4-pyridyl)propane 

(L4) (TCI) and 4,4’-bipyridine (L5) (TCI) were used as received without further purification.  

Solution NMR spectra were recorded on a Bruker Avance III HD 400 spectrometer (1H: 

400 MHz, 31P: 161 MHz, 13C: 100 MHz, 19F: 376 MHz) with acetonitrile -d3 as solvent at 

room temperature. The chemical shifts δ are presented in parts per million ppm and 

coupling constants J in Hz. The following samples were used as external reference: TMS 

(1H, 13C), CFCl3 (19F), H3PO4 85 % (31P). The spectra were processed and analyzed using 

the software Bruker TopSpin 3.0. IR spectra were recorded as solids with an ATR-Ge 

disc on a Thermo Fisher Nicolet iS5 spectrometer. Elemental analyses were performed 

on an Elementar Vario MICRO cube apparatus. Mass spectra were recorded on an 

Agilent Q-TOF 6540 UHD mass spectrometer with acetonitrile as solvent. 

4.4.2 Synthesis of [(µ,η2-B)3Ag][PF6]2 (C) 

0.15 mmol AgPF6 (39 mg) in 5 mL CH2Cl2:CH3CN 1:1 was added to a stirred solution of 

[Cp2Mo2(CO)4(η2-As2)] (30 mg, 0.05 mmol) in 5 mL CH2Cl2, respectively, and stirred for 

1 h at room temperature. The red solution was filtered and carefully layered with threefold 

amount of n-pentane and stored at room temperature in the dark. After several days red 

blocks were formed. The crystals were washed with n-pentane and dried in vacuo. Yield 

20 mg (61% referred to [Cp2Mo2(CO)4(η2-As2)]). 
1H NMR (CD3CN): d/ppm = 5.29 (s). 
13C {1H} NMR (CD3CN): d/ppm = 226.32 (CO), 86.21 (C5H5). 
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Positive ion ESI-MS (CH3CN, RT): m/z (%) = 1276.3 (100) [{Cp2(CO)4Mo2As2}2Ag]+, 

731.6 (12) [{Cp2(CO)4Mo2As2}Ag(CH3CN)]+, 690.6 (5) [{Cp2(CO)4Mo2As2}Ag]+. 

Negative ion ESI-MS (CH3CN, RT): m/z (%) = 145.0 (100) PF6
-. 

Elemental analysis, calcd (%) for C42H30AgAs6F6Mo6O12P (2004.70 g/mol): C, 25.16; H, 

1.51; found: C, 25.37; H, 1.52;  

IR (solid, CO bands): 𝑣̃/cm-1: 1985 (vs), 1951 (vs), 1919 (vs), 1889 (vs); 

4.4.3 Synthesis of [{(η2-B)2Ag}2(µ-L1)][PF6]2 (1) 

AgPF6 (1 eq., 4 mg, 0.016 mmol) in 5 mL CH2Cl2:CH3CN 1:1 was added to a stirred 

solution of compounds B (3 eq., 29 mg, 0.05 mmol) in 5 mL CH2Cl2:CH3CN 1:1 and 

stirred for 1 h at room temperature. Then 0.1 mmol (6 eq., 18 mg) of the linker 1,2-di(4-

pyridyl)ethylene (L1) was added and stirred for another 2 h. The red solution was filtered 

and carefully layered with the threefold amount of n-pentane and stored at room 

temperature in the dark. After several days, compound 1 was obtained as clear red 

blocks. The supernatant was decanted off, the remaining crystals washed with n-pentane 

and dried in vacuo. Yield = 28 mg (74% referred to [Cp2Mo2(CO)4(η2-As2)]). 
1H NMR (CD3CN): d/ppm = 8.57 (m, 4H), 7.54 (m, 4H), 7.42 (s, 2H), 5.33 (s, 40H).  
13C {1H} NMR (CD3CN): d/ppm = 225.11 (CO), 151.41 (o-CAr), 131.64 (m-CAr), 122.38 

(CEt), 86.53 (C5H5). 
31P {1H} NMR (CD3CN): d/ppm = -143.13 (sept, 1JP,F = 705.3 Hz).  
19F {1H} NMR (CD3CN): d/ppm = -71.76 (d, 1JF,P = 705.3 Hz).   

Positive ion ESI-MS (CH3CN, r. t.): m/z (%) = 1276.33 (100) [{Cp2(CO)4Mo2As2}2Ag]+, 

731.65 (19) [{Cp2(CO)4Mo2As2}Ag(CH3CN)]+, 690.62 (5) [{Cp2(CO)4Mo2As2}Ag]+, 183.09 

(6) [N2C12H10]+. 

Negative ion ESI-MS (CH3CN, r. t.): m/z (%) = 144.97 (100) PF6
-. 

Elemental analysis, calcd (%) for C68H50Ag2As8F12Mo8N2O16P2 (3023.71 g/mol): C, 

27.01; H, 1.67; N, 0.93; found: C, 26.93; H, 1.78; N, 1.03; 

IR (solid, CO bands): 𝑣̃/cm-1: 1953.42 (w), 1912.22 (w). 

4.4.4 Synthesis of [{(η2-B)2Ag}2(µ-L2)][PF6]2 (2) 

AgPF6 (1 eq., 4 mg, 0.016 mmol) in 5 mL CH2Cl2:CH3CN 1:1 was added to a stirred 

solution of compounds B (3 eq., 29 mg, 0.05 mmol) in 5 mL CH2Cl2:CH3CN 1:1 and 

stirred for 1 h at room temperature. Then 0.1 mmol (6 eq., 18 mg) of the linker 1,2-di(4-

pyridyl)ethyne (L2) was added and stirred for another 2 h. The red solution was filtered 

and carefully layered with the threefold amount of n-pentane and stored at room 
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temperature in the dark. After several days, compound 2 was obtained as clear red 

blocks. The supernatant was decanted off, the remaining crystals washed with n-pentane 

and dried in vacuo. Yield = 25 mg (66% referred to [Cp2Mo2(CO)4(η2-As2)]). 
1H NMR (CD3CN): d/ppm = 8.64 (m, 4H), 7.49 (m, 4H), 5.32 (s, 40H). 
13C {1H} NMR (CD3CN): d/ppm = 225.39 (CO), 151.12 (o-CAr), 126.57 (m-CAr), 86.47 

(C5H5). 
31P {1H} NMR (CD3CN): d/ppm = -143.08 (sept, 1P, 1JP,F = 706.3 Hz). 
19F {1H} NMR (CD3CN): d/ppm = -71.76 (d, 1JF,P = 706.7 Hz).   

Positive ion ESI-MS (CH3CN, r. t.): m/z (%) = 1276.33 (100) [{Cp2(CO)4Mo2As2}2Ag]+, 

731.65 (28) [{Cp2(CO)4Mo2As2}Ag(CH3CN)]+, 690.62 (7) [{Cp2(CO)4Mo2As2}Ag]+, 181.08 

(19) [N2C12H8]+. 

Negative ion ESI-MS (CH3CN, r. t.): m/z (%) = 144.97 (100) PF6
-. 

Elemental analysis, calcd (%) for C68H48Ag2As8F12Mo8N2O16P2 (3021.69 g/mol): C, 27.03; 

H, 1.60; N, 0.93; found: C, 27.27; H, 1.84; N, 1.22; 

IR (solid, CO bands): 𝑣̃/cm-1: 1951.88 (s), 1917.12 (s). 

4.4.5 Synthesis of [{(η2-B)Ag}(µ-L3)]n[PF6]2n (3) 

AgPF6 (1 eq., 4 mg, 0.016 mmol) in 5 mL CH2Cl2:CH3CN 1:1 was added to a stirred 

solution of compounds B (3 eq., 29 mg, 0.05 mmol) in 5 mL CH2Cl2:CH3CN 1:1 and 

stirred for 1 h at room temperature. Then 0.1 mmol (6 eq., 16 mg) of the linker 2,2’-

bipyrimidine (L3) was added and stirred for another 2 h. The red solution was filtered and 

carefully layered with the threefold amount of n-pentane and stored at room temperature 

in the dark. After several days, compound 3 was obtained as dark red blocks. The 

supernatant was decanted off, the remaining crystals washed with n-pentane and dried 

in vacuo. Yield = 20 mg (40% referred to [Cp2Mo2(CO)4(η2-As2)]). 
1H NMR (CD3CN): d/ppm = 9.03 (d, JHH = 4.91 Hz, 6H), 7.64 (t, JHH = 4.92 Hz, 3H), 5.31 

(s, 10H). 
13C {1H} NMR (CD3CN): d/ppm = 225.03 (CO), 161.56 (NCqN), 159.49 (NCC), 123.65 

(CCC), 86.51 (C5H5). 
31P {1H} NMR (CD3CN): d/ppm = = -143.14 (sept, 1P, 1JP,F = 706.9 Hz). 
19F {1H} NMR (CD3CN): d/ppm = -71.76 (d, 1JF,P = 705.5 Hz).   

Positive ion ESI-MS (CH3CN, r. t.): m/z (%) = 1276.33 (12) [{Cp2(CO)4Mo2As2}2Ag]+, 

848.68 (100) [Ag[Cp2(CO)4Mo2As2](N2C10H8)]+, 423.02 (18) [Ag(N4C8H6)2]+,  181.05 (17) 

, 147.93 (8) [Ag(CH3CN)]+.   

Negative ion ESI-MS (CH3CN, r. t.): m/z (%) = 144.97 (100) PF6
-. 
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Elemental analysis, calcd (%) for C22H16AgAs2F6Mo2N4O4P (994.95 g/mol): C, 26.56; H, 

1.62; N, 5.63; found: C, 26.50; H, 1.44; N, 5.53; 

IR (solid, CO bands): 𝑣̃/cm-1:  1942.85 (s), 1915.93 (vs), 1900.98 (vs). 

 

4.4.6 Synthesis of [{(η1:η2-B)2(CH3CN)2Ag2}(µ-L4)]n[PF6]2n (4) 

AgPF6 (1 eq., 4 mg, 0.016 mmol) in 5 mL CH2Cl2:CH3CN 1:1 was added to a stirred 

solution of compounds B (3 eq., 29 mg, 0.05 mmol) in 5 mL CH2Cl2:CH3CN 1:1 and 

stirred for 1 h at room temperature. Then 0.1 mmol (6 eq., 20 mg) of the linker 1,3-di(4-

pyridyl)propane (L4) was added and stirred for another 2 h. The red solution was filtered 

and carefully layered with the threefold amount of n-pentane and stored at room 

temperature in the dark. After 3-5 weeks, compound 4 was obtained as clear orange 

blocks. The supernatant was decanted off, the remaining crystals washed with n-pentane 

and dried in vacuo. Yield = 17 mg (35% referred to [Cp2Mo2(CO)4(h2-As2)]). 
1H NMR (CD3CN): d/ppm = 8.44 (d, JHH = 4.85 Hz, 4H), 7.22 (d, JHH = 4.85 Hz, 4H), 5.34 

(s, 20H), 2.67 (t, JHH = 7.7 Hz, 4H), second linker signal is overlaid by solvent signal. 
13C {1H} NMR (CD3CN): d/ppm = 224.60 (CO), 153.85 (CAr,q), 150.27 (o-CAr), 125.54(m-

CAr), 86.64 (C5H5), 35.13 (CAr,q-CH2-CH2), 31.33 (CH2-CH2-CH2). 
31P {1H} NMR (CD3CN): d/ppm = -143.08 (sept, 1P, 1JP,F = 705.8 Hz). 
19F {1H} NMR (CD3CN): d/ppm = -71.74 (d, 1JF,P = 707.2Hz).   

Positive ion ESI-MS (CH3CN, r. t.): m/z (%) = 1276.3 (15) [{Cp2(CO)4Mo2As2}2Ag]+, 731.6 

(33) [{Cp2(CO)4Mo2As2}Ag(CH3CN)]+, 147.9 (100) [Ag(CH3CN)]+,  189.0 (24) [N2C13H14]+. 

Negative ion ESI-MS (CH3CN, r. t.): m/z (%) = 144.97 (100) PF6
-. 

4.4.7 Synthesis of [{(η1:η2-B)2(η1:η1-B)Ag2}(µ-L5)]n[PF6]2n (5) 

AgPF6 (1 eq., 4 mg, 0.016 mmol) in 5 mL CH2Cl2:CH3CN 1:1 was added to a stirred 

solution of compounds B (3 eq., 29 mg, 0.05 mmol) in 5 mL CH2Cl2:CH3CN 1:1 and 

stirred for 1 h at room temperature. Then 0.032 mmol (2 eq., 5 mg) of the linker 4,4’-

bipyridine (L5) was added and stirred for another 2 h. The red solution was filtered and 

carefully layered with the threefold amount of n-pentane and stored at room temperature 

in the dark. After several days, compound 5 was obtained as red blocks. The supernatant 

was decanted off, the remaining crystals washed with n-pentane and dried in vacuo. 
Yield = 23 mg (57% referred to [Cp2Mo2(CO)4(h2-As2)]). 
1H NMR (CD3CN): d/ppm = 8.71 (dd, 4H, 4JH,H = 1.7, 3JH,H = 4.6 Hz), 7.71 (m, 4H), 5.34 

(s, 30H).  
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13C {1H} NMR (CD3CN): d/ppm = 224.44 (CO), 151.74 (o-CAr), 122.69 (m-CAr), 86.62 

(C5H5), 55.26 (p-CAr). 
31P {1H} NMR (CD3CN): d/ppm = -143.13 (sept, 1JP,F = 705.2 Hz).   
19F NMR (CD3CN): dd/ppm = -71.75 (d, 1JF,P = 705.3 Hz).   

Positive ion ESI-MS (CH3CN, r. t.): m/z (%) = 1276.3 (100) [{Cp2(CO)4Mo2As2}2Ag]+, 

731.7 (82) [{Cp2(CO)4Mo2As2}Ag(CH3CN)]+, 690.6 (22) [{Cp2(CO)4Mo2As2}Ag]+, 147.9 

(22) [Ag(CH3CN)]+.  

Negative ion ESI-MS (CH3CN, r. t.): m/z (%) = 144.97 (100) PF6
-. 

Elemental analysis, calcd (%) for C52H38Ag2As6F12Mo6N2O12P2 (2413.72 g/mol): C, 

25.88; H, 1.59; N, 1.16; found: C, 25.49; H, 1.61; N, 1.16; 

IR (solid, CO bands): 𝑣̃/cm-1: 1983.19 (s), 1956.80 (s), 1905.60 (vs). 

4.4.8 Synthesis of [{(η1:η2-B)2(CH3CN)2Ag2}(µ-L5)]n[PF6]2n (6) 

AgPF6 (1 eq., 4 mg, 0.016 mmol) in 5 mL CH2Cl2:CH3CN 1:1 was added to a stirred 

solution of compounds B (3 eq., 29 mg, 0.05 mmol) in 5 mL CH2Cl2:CH3CN 1:1 and 

stirred for 1 h at room temperature. Then 0.1 mmol (6 eq., 16 mg) of the linker 4,4’-

bipyridine (L5) was added and stirred for another 2 h. The red solution was filtered and 

carefully layered with the threefold amount of n-pentane and stored at room temperature 

in the dark. After several days, compound 5 was obtained as clear orange blocks. The 

supernatant was decanted off, the remaining crystals washed with n-pentane and dried 

in vacuo. Yield =10 mg (22% referred to [Cp2Mo2(CO)4(h2-As2)]). 

Positive ion ESI-MS (CH3CN, RT): m/z (%) = 1276.33 (43) [{Cp2(CO)4Mo2As2}2Ag]+, 

731.65 (100) [{Cp2(CO)4Mo2As2}Ag(CH3CN)]+, 690.62 (25) 

[{Cp2(CO)4Mo2As2}Ag]+,147.93 (69) Ag(CH3CN)+. 

Negative ion ESI-MS (CH3CN, RT): m/z (%) = 144.97 (100) PF6
-. 

4.4.9 Crystallographic Data 

Crystals of 1-6 were taken from a Schlenk flask under a stream of argon and 

immediately covered with mineral oil to prevent a loss of solvent. The quickly chosen 

single crystals covered by a thin oil/Fomblin layer were taken to the pre-centered 

goniometer head with CryoMount® and directly attached to the diffractometer into a 

stream of cold nitrogen.  

The diffraction experiments for 1-6 were collected on Rigaku Oxford Diffraction 

diffractometers; on a GV50 diffractometer equipped with a TitanS2 detector (CuKa 

radiation, l = 1.54178 Å) (C,1, 3, 4, 5, 6) or on a GV1000 diffractometer equipped with a 

TitanS2 detector (CuKa radiation, l = 1.54178 Å) (2), respectively. The crystals were 
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kept at T = 123(1) K during data collection. Data collection and reduction were performed 

with CrysAlis PRO [Version V1.171.40.14a, 2018 (1), V1.171.38.41h, 2015 (C, 2, 3, 5), 

V1.171.41.54a, 2020 (4, 6)].13 For all compounds a numerical absorption correction 

based on gaussian integration over a multifaceted crystal model and an empirical 

absorption correction using spherical harmonics as implemented in SCALE3 ABSPACK 

scaling algorithm was applied. The crystal structures were solved by dual methods or 

intrinsic phasing solution method with SHELXT14 or Olex215 programs and refined by full-

matrix least-squares method against |F|2 in anisotropic approximation using 

multiprocessor versions of SHELXL.16 Hydrogen atoms were refined in calculated 

positions using riding on pivot atom model. In case of the disorder, the site occupancies 

of the disordered components were refined with their Uiso fixed at average Ueq for fully 

occupied atoms in given structure in order to avoid correlations. After refinement, 

occupancies were fixed at the resulting values and the refinement of the atomic 

displacement parameters was performed.  

The PF6
- molecule and one CH2Cl2 molecule in 1 demonstrate disorder. 

Compound 2 shows an anion disordered over two positions. In compound 5 one As atom 

and the CO, Cp ligands coordinated to Mo atoms of half a Cp2Mo2P2(CO)4 dimer, as well 

as one CH2Cl2 molecule show positional disorder, related to different mutual orientation. 

All CO and Cp ligands, as well as the PF6
- molecule and one the linker molecule in 

compound 6 demonstrate positional disorder, related to different mutual orientation.  

All ORTEP drawings for C, 1-6 were made with the Olex2 software.15 
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Table S4.1. Crystallographic details for C, 1, 2 and 3. 

Compound C · CH2Cl2 1· 2 CH2Cl2/ 1 CH3CN 2 · CH3CN 3 

Data set 
(internal naming) 

ems_282f_ 
hp_abs 

ems_405_aP_ 
abs_gaus 

ems_407_aP_ 
abs 

ems_542f_mP_ 
abs 

Formula  C44H34AgAs6Cl4F6 

Mo6O12 
C74.7H61.4Ag2As8Cl5.4 

F12Mo8N4O16P2 

Ag2As8C75Cl6F12H60 

Mo8N4O16P2 

C22H16AgAs2F6Mo2 

N4O4P 

Dcalc. / g · cm-3  2.352 2.142 2.162 2.348 
μ/mm-1  18.306 15.754 15.937 16.591 
Formula Weight  2174.51 3335.06 3358.53 994.95 
Colour  red red red red 
Shape  block block block block 
Size/mm3  0.22×0.17×0.12 0.33×0.25×0.21 0.35×0.23×0.15 0.20×0.14×0.10 
T/K  293.82(10) 122.97(13) 123.0(2) 123.01(10) 
Crystal System  trigonal triclinic triclinic monoclinic 
Space Group P3"1c P1" P1" P21/c 
a/Å  16.35(3) 12.9052(4) 12.8682(7) 12.5558(3) 
b/Å  16.35(3) 12.9624(3) 13.0664(6) 21.4306(5) 
c/Å  13.264(7) 16.0579(5) 15.9420(8) 10.6865(2) 
α/°  90 97.822(2) 98.621(4) 90 
β/°  90 103.366(3) 103.144(4) 101.817(2) 
γ/°  120 91.281(2) 90.062(4) 90 
V/Å3  3070(11) 2585.09(13) 2579.1(2) 2814.56(11) 
Z  2 1 1 4 
Z'  0.16667 0.5 0.5 1 
Wavelength/Å  1.54184 1.54184 1.54184 1.54184 
Radiation type  Cu Kα Cu Kα Cu Kα CuKα 
Qmin/°  3.121 2.859 2.881 3.596 
Qmax/°  74.442 74.232 74.868 74.231 
Measured Refl.  33019 24671 16268 15640 
Independent Refl.  2101 10080 9907 5559 
Reflections with I > 2(I)  2093 9574 9310 5096 
Rint  0.0513 0.0347 0.0359 0.0547 
Parameters  192 696 615 379 
Restraints  219 130 150 18 
Largest Peak  1.002 1.132 0.917 2.640 
Deepest Hole  -0.790 -1.386 -1.075 -1.871 
GooF  1.161 1.050 1.031 1.056 
wR2 (all data)  0.0906 0.0971 0.1015 0.1588 
wR2  0.0905 0.0955 0.0996 0.1532 
R1 (all data)  0.0361 0.0372 0.0375 0.0628 
R1  0.0361 0.0355 0.0359 0.0590 
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Table S4.2. Crystallographic details for 4, 5 and 6. 

Compound 4   5 · CH2Cl2 6 · CH3CN 

Data set 
(internal naming) js2016_aP_abs_gaus ems_404_mC_abs js233_aP_abs_gaus 

Formula  
C90H80Ag4As8F24Mo8N8 

O16P4 

C27H21AgAs3Cl2F6 

Mo3NO6P 
C26AgAs2F6H24.5Mo2 

N4.5O4P 

Dcalc. / g · cm-3  2.273 2.371 1.891 
μ/mm-1  16.312 18.091 9.962 

Formula Weight  3907.86 1291.77 996.98 
Colour  clear orange red clear orange  
Shape  block block block 
Size/mm3  0.15×0.12×0.11 0.18×0.09×0.07 0.15×0.07×0.06 
T/K  122.97(12) 123.11(10) 123.00(10) 
Crystal System  triclinic monoclinic triclinic 
Space Group P1" C2/c P1" 
a/Å  10.7861(2) 24.8486(4) 10.8770(2) 
b/Å  20.7482(4) 18.8751(3) 13.3926(2) 
c/Å  26.5944(5) 15.5925(3) 13.6762(2) 
α/°  79.429(2) 90 100.5570(10) 
β/°  87.128(2) 98.2656(17) 111.5570(10) 
γ/°  77.470(2) 90 100.6310(10) 
V/Å3  5710.9(2) 7237.2(2) 1751.07(5) 
Z  2 8 2 
Z'  1 1 1 
Wavelength/Å  1.54184 1.54184 1.39222 

Radiation type  Cu Kα 
Cu Kα Cu Kβ 

 
Qmin/°  3.381 2.951 3.153 
Qmax/°  74.148 74.254 69.506 
Measured Refl.  63285 21960 21688 
Independent Refl.  22500 7156 8567 
Reflections with I > 
2(I)  20378 6547 7586 

Rint  0.0468 0.0305 0.0324 
Parameters  1463 559 705 
Restraints  0 234 342 
Largest Peak  1.064 0.868 1.020 
Deepest Hole  -0.742 -0.760 -1.200 
GooF  1.047 1.038 1.034 
wR2 (all data)  0.0754 0.0650 0.0746 
wR2  0.0730 0.0627 0.0718 
R1 (all data)  0.0348 0.0286 0.0350 
R1  0.0306 0.0254 0.0301 
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Figure S4.1. Molecular structure in the solid state of compound C. Thermal ellipsoids are depicted at 50% 

probability level. 

 
Table S4.3. Selected geometric parameters (Å, °) for C. 

i Symmetry code: y-x, y, 3/2-z; ii Symmetry code: 1-y,1-x, 3/2-z; iii Symmetry code: y-x, 1-x, z; 
iv Symmetry code: 1-y, 1+x-y, z; v Symmetry code: x, 1+x-y, 3/2-z. 

 

 

 

 

 

 

 

Ag1—As1i 2.752(4) Ag1—As1v 2.752(4) 

Ag1—As1ii 2.752(4) Ag1—As1 2.752(4) 

Ag1—As1iii 2.752(4) As1—As1v 2.3676(17) 

Ag1—As1iv 2.752(4)   

 

As1i—Ag1—As1ii 50.95(7) As1i—Ag1—As1v 105.06(3) 

As1iii—Ag1—As1 50.95(7) As1ii/iii—Ag1—As1iv/v 145.76(2) 

As1iii—Ag1—As1iv 105.77(4) As1v—Ag1—As1iv 50.95(7) 

As1i—Ag1—As1iii-iv 105.77(4) As1—Ag1—As1iv 105.06(3) 

Ag1 

As1v 

As1 

As1ii As1iii 

As1i 

As1iv 
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Figure S4.2. Molecular structure in the solid state of compound 1. Thermal ellipsoids are depicted at 50% 

probability level. i symmetry codes: -x, -y, 1-z. 

 
Table S4.4. Selected geometric parameters (Å, °) for 1. 

 

 

 

 

 

 

 

 

 

 

Ag1—As1 2.6823(5) Ag1—N1 2.302(3) 

Ag1—As2 2.7393(5) As1—As2 2.3858(6) 

Ag1—As3 2.7164(5) As3—As4 2.3726(6) 

Ag1—As4 2.7637(6)   

 

As1—Ag1—As2 52.201(13) As3—Ag1—As4 51.302(14) 

As1—Ag1—As3 118.165(16) N1—Ag1—As1 127.19(9) 

As1—Ag1—As4 105.770(16) N1—Ag1—As2 109.78(9) 

As2—Ag1—As4 149.395(16) N1—Ag1—As3 114.12(9) 

As3—Ag1—As2 115.542(17) N1—Ag1—As4 100.60(9) 

Ag1 

As4 As3 

As1 

As2 

N1 

Mo2 Mo1 

Mo3 

Mo4 

Ag1i 
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Figure S4.3. Molecular structure in the solid state of compound 2. Thermal ellipsoids are depicted at 50% 

probability level. i symmetry codes: 2-x, 2-y, 1-z. 

 
Table S4.5. Selected geometric parameters (Å, °) for 2. 

 

 

 

 

 

 

 

 

 

 

Ag1—As1 2.6764(5) Ag1—N1 2.324(4) 

Ag1—As2 2.7230(6) As1—As2 2.3842(7) 

Ag1—As3 2.7246(6) As3—As4 2.3749(7) 

Ag1—As4 2.7230(6)   

 

As1—Ag1—As2 52.398(15) As4—Ag1—As3 51.693(15) 

As1—Ag1—As3 108.037(19) N1—Ag1—As1 127.01(10) 

As1—Ag1—As4 119.285(18) N1—Ag1—As2 107.58(10) 

As2—Ag1—As3 151.525(19) N1—Ag1—As3 100.85(10) 

As4—Ag1—As2 115.296(19) N1—Ag1—As4 113.55(10) 

Ag1 
Ag1i 

As4 
As3 

As1 
As2 

N1 
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Figure S4.4. Part of the polymeric structure in the solid state of compound 3. Thermal ellipsoids are depicted 

at 50% probability level. i symmetry codes: x, 1/2-y, 1/2+z. 

 

Table S4.6. Selected geometric parameters (Å, °) for 3. 

Ag1—As1 2.7298(8) Ag1—N3i 2.596(5) 

Ag1—As2 2.6314(8) Ag1—N4i 2.423(5) 

Ag1—N1 2.553(5) As1—As2 2.3777(8) 

Ag1—N2 2.387(5)   

 

As2—Ag1—As1 52.61(2) N4i—Ag1—As1 124.83(13) 
N3i—Ag1—As1 84.29(12) N4i—Ag1—As2 101.77(14) 

N3i—Ag1—As2 118.01(12) N4i—Ag1—N3i 65.51(17) 

N2—Ag1—As1 128.78(12) N4i—Ag1—N1 94.12(18) 

N2—Ag1—As2 154.87(12) N1—Ag1—As1 130.07(14) 

N2—Ag1—N3i 85.81(16) N1—Ag1—As2 93.45(13) 

N2—Ag1—N4i 95.30(18) N1—Ag1—N3i 144.67(18) 

N2—Ag1—N1 66.81(17)   
 i Symmetry code: x, 1/2-y, 1/2+z. 
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Figure S4.5. Part of the polymeric structure in the solid state of compound 4. Thermal ellipsoids are depicted 
at 50% probability level.  

 
Table S4.7. Selected geometric parameters (Å, °) for 4. 

Ag2—Ag3 2.9690(4) Ag3—N5 2.463(4) 

Ag2—As5 2.7177(4) Mo4—Mo3 3.0704(4) 

Ag2—As6 2.6953(4) Mo4—As3 2.5518(5) 

Ag2—As3 2.7257(5) Mo4—As4 2.6589(5) 

Ag2—N3 2.274(3) Mo5—As5 2.5498(5) 

Ag2—N4 2.482(4) Mo5—As6 2.6216(5) 

Ag3—As6 2.8073(4) Mo6—Mo5 3.0644(4) 

Ag3—As3 2.6912(5) Mo6—As5 2.6632(4) 

Ag3—As4 2.7096(5) Mo6—As6 2.5569(4) 

Ag3—N6 2.267(3)   

 

As5—Ag2—Ag3 111.542(12) N4—Ag2—Ag3 121.41(10) 

As5—Ag2—As3 155.758(15) N4—Ag2—As5 93.18(9) 

As6—Ag2—Ag3 59.186(11) N4—Ag2—As6 121.59(9) 

As6—Ag2—Ag3 52.407(11) N4—Ag2—As3 79.43(10) 

As3—Ag2—Ag3 56.207(11) As6—Ag3—Ag2 55.544(10) 

N3—Ag2—Ag3 126.56(8) As3—Ag3—Ag2 57.323(11) 

N3—Ag2—As5 105.17(8) As3—Ag3—As6 109.941(14) 

N3—Ag2—As6 136.56(8) As3—Ag3—As4 52.595(12) 

N3—Ag2—As3 98.30(8) As4—Ag3—Ag2 109.798(12) 

N3—Ag2—N4 92.96(13) As4—Ag3—As6 158.611(16) 
 

Ag3 
Ag2 

N5 

N4 
N3 

As3 
As4 

As5 As6 

Mo6 
Mo5 

Mo4 Mo3 
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Figure S4.6. Part of the polymeric structure in the solid state of compound 5 (left). Disordered [Ag2B3]2+ unit 
(right). Thermal ellipsoids are depicted at 50% probability level. i symmetry codes: 1-x, y, 3/2-z. 

 
Table S4.8. Selected geometric parameters (Å, °) for 5. 

Mo1—Mo2 3.0653(3) Ag1—Ag1i 2.7866(6) 

Mo1—As1 2.5787(4) Ag1—As1 2.6997(4) 

Mo1—As2 2.6464(4) Ag1—As1i 3.0965(5) 

Mo2—As1 2.6364(4) Ag1—As2 2.7515(4) 

Mo2—As2 2.5599(4) Ag1—As3 2.9209(14) 

Mo3—Mo3i 3.0745(5) Ag1—N1 2.254(3) 

Mo3—As3 2.6399(13) As1—As2 2.3908(5) 

Mo3—As4 2.6361(13) As3—As4 2.350(3) 

 

As1—Mo1—Mo2 54.878(10) As2—Ag1—As1i 121.065(16) 

As1—Mo1—As2 54.440(12) As2—Ag1—As3 126.36(3) 

As2—Mo1—Mo2 52.633(10) As3—Ag1—As1i 110.95(3) 

As1—Mo2—Mo1 53.133(10) N1—Ag1—Ag1i 138.87(9) 

As2—Mo2—Mo1 55.249(10) N1—Ag1—As1 150.00(9) 

As2—Mo2—As1 54.763(12) N1—Ag1—As1i 85.95(10) 

Ag1i—Ag1—As1i 54.324(13) N1—Ag1—As2 99.50(8) 

Ag1i—Ag1—As3 89.73(3) N1—Ag1—As3 96.09(9) 

As1—Ag1—Ag1i 68.697(13) Ag1—As1—Ag1i 56.979(12) 

As1—Ag1—As2 52.016(11) As2—As1—Ag1i 110.353(16) 

As1—Ag1—As3 95.36(3) As2—As1—Ag1 65.107(13) 

As2—Ag1—Ag1i 109.492(13) As4—As3—Ag1 79.70(5) 
 i Symmetry code: 1-x, y, 3/2-z. 
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Figure S4.7. Part of polymeric structure in the solid state of compound 6 (left). Disordered molecular 

structure of the [Cp2(CO)4Mo2As2] moiety (right). Thermal ellipsoids are depicted at 50% probability level.  

 
Table S4.9. Selected geometric parameters (Å, °) for 6. 

Ag1—Ag1i 2.9798(4) Mo2A—As1 2.583(3) 

Ag1—As2 2.6599(4) Mo1A—As2 2.5180(13) 

Ag1—As2i 2.7437(4) Mo1A—As1 2.7055(11) 

Ag1—As1 2.7235(4) As2—As1 2.3734(4) 

Ag1—N1 2.309(2) As2—Mo1B 2.615(4) 

Ag1—N2 2.393(3) As2—Mo2B 2.685(3) 

Mo2A—Mo1A 3.108(3) As1—Mo1B 2.450(3) 

Mo2A—As2 2.543(3) As1—Mo2B 2.511(3) 

 

As2i—Ag1—Ag1i 55.199(9) As1—Ag1—Ag2i 164.634(13) 

As2—Ag1—Ag1i 57.888(9) N1—Ag1—Ag1i 131.56(7) 

As2—Ag1—As2i 113.087(10) N1—Ag1—As2 145.00(7) 

As2—Ag1—Ag1 52.302(10) N1—Ag1—As2i 85.77(7) 

As1—Ag1—Ag1i 109.998(12) N1—Ag1—As1 104.49(7) 

N1—Ag1—N2 94.78(10) N2—Ag1—As2 114.17(7) 

N2—Ag1—Ag1i 109.69(8) N2—Ag1—As1 102.03(8) 

N2—Ag1—As2i 88.23(8)  
i Symmetry code: 2-x, 1-y, 1-z. 
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5. Unprecedented linking behavior of tetrahedral 
Mo2E2 complexes (E = P, As) towards Cu(I) units 

Abstract: The reaction of [Cp2Mo2(CO)4(µ,η2:2-E2)] (E = P (A), E = As (B), 
Cp = C5H5) with the WCA containing Cu(I) salts 
([Cu(CH3CN)4][Al{OC(CF3)3}4] (Cu[TEF], C), [Cu(CH3CN)4][BF4] (D) and 
[Cu(CH3CN)3.5][FAl{OC6F12(C6F5)}3] (Cu[FAl], E)) affords seven 
unprecedented coordination compounds (Scheme 5.1). Depending on the E2 
ligand complex, the anion of the copper salt and the stoichiometry, four novel 
dinuclear copper dimers and three trinuclear copper compounds are 
accessible. The latter complexes reveal first linear Cu3 arrays linked by E2 
units (E = P, As) coordinated in a η2,1,1 coordination mode. All compounds 
were characterized by X-ray crystallography, NMR and IR spectroscopy, 
mass spectrometry and elemental analysis. To define the nature of the 
Cu···Cu···Cu interactions DFT calculations were performed. 

5.1 Introduction 

In the last two decades the number of organometallic aggregates bearing Cu(I) units 

increased rapidly, owing to their wide range of applications and their versatile 

coordination chemistry.1 Cu(I) compounds have proven to be useful in mimicking enzyme 

interactions,1a as anticancer drugs,1b and in other materials.1c Furthermore, Cu(I) 

derivatives turned out to be smart and novel solid-state emitters because of their 

accessibility and low costs.2 Therefore, the development of inter alia extended linear 

Cu(I) arrays for potential applications in molecular electronics and luminescent materials 

gets more and more important. Some linear trinuclear cationic Cu(I) complexes bridged 

by P/N hybrid ligands, such as 7-diphenylphosphino-2,4-dimethyl-1,8-naphthyridine,3 

N,N,N’,N’’,N’’-pentamethyl-diethylen-triamine,4 diphosphine/N-heterocyclic-carbene 

hybrid ligands5 or the synthesis of halide-bridged trinuclear Cu(I) complexes connected 

by (diphenylphosphinomethyl)phenyl-phosphine6  with Cu···Cu distances below the sum 

of the van der Waals radii were reported. However, Cu···Cu interactions were not 

confirmed by calculations. A variety of compounds containing different Cu(I) and 

organometallic polyphosphorus ligand complexes were previously reported by us.7 We 

were able to show the formation of 1D, 2D and even 3D coordination polymers,8 metal-

organic nanosized capsules9 and inorganic spherical supramolecules.10 Additional to 

polyphosphorus complexes, organometallic polyarsenic ligand complexes have been 

known for many years.11 However, their coordination chemistry is a rather uncharted 

area so far.12 To bring metals in a close proximity for metallophilic interactions special 

building blocks are needed. One of such potential materials is the tetrahedral Mo2E2 
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moiety in the compounds [Cp2Mo2(CO)4(µ,η2:2-E2)], (E = P (A), As (B)).13 Until now, 

basically three coordination modes have been observed for these E2 ligand complexes 

(Figure 5.1).7c,e 

Figure 5.1. Reported and new coordination modes of Mo2E2 complexes. MI = Ag(I), Cu(I), Au(I). [Mo] = 
[CpMo2(CO)2].7c,e  

The lone pairs of one or two E atoms can either coordinate towards one or two metal 

centers via σ-coordination of the lone pairs (type I and II),7c,e or the E-E σ-orbital binds in 

a π-coordination to the metal center (type III).7e However, to bring metal cations in a 

close proximity, the coordination modes IV and V are needed, which are unknown for 

heteroelement Mo2E2 compounds. Note, that the coordination mode IV have so far only 

be observed for mixed EE’ derivatives (E = P, E’ = As, Sb).7b Herein we report the 

reactions of the polypnictogen ligand complexes [Cp2Mo2(CO)4(µ,η2:2-E2)] (A: E = P, B: 

E = As, Cp = C5H5) with the Cu(I) salts [Cu(CH3CN)4][BF4], 

[Cu(CH3CN)3.5][FAl{OC6F12(C6F5)}3] (Cu[FAl]) and ([Cu(CH3CN)4][Al{OC(CF3)3}4] 

(Cu[TEF]) which lead, by variation of the stoichiometry of the used reactants, to seven 

unprecedented coordination compounds (1-7, Scheme 5.1) showing a novel η2:1:1 and 

η2:1 coordination behavior, respectively, of the E2 ligand complexes (E = P). Moreover, 

compounds 1, 2 and 6 show Cu···Cu···Cu interactions, which were analyzed by DFT 

calculations. For the first time a η2,1,1 coordination mode of both En ligand complexes A 

and B have been detected, in which both P/As atoms contribute via σ-bonding and π-

coordination. To the best of our knowledge, these unprecedented linear Cu3 chains 

stabilized by η2,1,1-coordination of only polypnictogen ligand complexes are the first ones 

to be observed. 
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5.2 Results and Discussion 

The reaction of [Cu(o-DFB)][TEF] (o-DFB = ortho-difluorobenzene) with A to give the 

dimeric compound [Cu2(Cp2Mo2(CO)4(µ4,η2:2:1:1-P2)2(Cp2Mo2(CO)4(µ3,η2:2:1-P2)2][TEF] 

(F), containing a P4Cu2 6-membered ring, was reported a time ago (Figure 5.2).8c 

 

 

Figure 5.2. Structure of the dimeric compound F.8c 

By using the different Cu(I) source [Cu(CH3CN)4][TEF] (C)7a in the reaction with A we 

have been surprised to receive the new coordination compound 

[Cu{Cu(CH3CN)2}2{Cp2Mo2(CO)4 (µ5,η2:2:2:1:1-P2)}2][TEF]3 (1, Figure 5.3). Crystals of 1 as 

orange blocks in the trigonal space group P32 were obtained by diffusion of n-pentane or 

toluene into the crude reaction mixture. When n-pentane was used, 1 crystallizes as red 

plates in the monoclinic space group P21/c. In compound 1, two P2 ligand complexes A 

are coordinated to a molecular chain of three copper atoms (Cu···Cu 2.4344(10)-

2.4537(19) Å) in a η2:2:2:1:1-coordination mode. The peripheral copper atoms Cuper are 

coordinated by two acetonitrile ligands each. Unlike other known structures, which 

feature a characteristic six-membered Cu2P4 ring with A being coordinated in a 

η2:2:1:1-coordination mode,8c,7c in 1, a third additional copper atom is located in the center 

of this six-membered ring with an unprecedented type V like coordination (Scheme 5.1). 

Therefore, the P-P bonds in 1 (2.4344(10)-2.4537(19) Å) are elongated compared to the 

free A (2.0798(3) Å).13a The bonds between the peripheral copper atoms and the 

respective phosphorus atoms have values from 2.3830(19) to 2.460(3) Å, which are 

significantly longer than in the dimer F (2.240(3)-2.277(2) Å). The Cu-Cu-Cu angles in 1 

are between 177.95(9)° and 180°, depending on the space group of the product, and the 

angles around the central copper atom are between 57.70(6)-62.39(9)°. Compound 1 

presents the first trinuclear Cu(I) complex with such short Cu···Cu distances, stabilized 

by the η2:1:1 coordination of a polypnictogen unit. 
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Scheme 5.1. Products of the reaction of A with [Cu(CH3CN)4][Al{OC(CF3)3}4] (1/2, depending on the 
stoichiometry), and with [Cu(CH3CN)4][BF4] (3) and reaction of B with the Cu(I) salts 

[Cu(CH3CN)4][Al{OC(CF3)3}4] (4), [Cu(CH3CN)3.5][FAl{OC6F12(C6F5)}3] (5) and [Cu(CH3CN)4][BF4] (6/7, 
depending on the stoichiometry). Yields are given in parentheses. 

By using an excess of the Cu(I) salt C in the reaction with A (CH2Cl2, room 

temperature), the novel compound [{Cu(CH3CN)2}{Cu(CH3CN)3}2{Cp2Mo2(CO)4 

(µ5,η2:2:2:1:1-P2)}][TEF]3 (2, Figure 5.3) was obtained. Compound 2 crystallizes as yellow 

blocks in the monoclinic space group P21/c and consists of only one ligand complex A 

coordinated to three copper atoms in a η2:2:2:1:1-coordination mode type V. The peripheral 

copper atoms are saturated with three acetonitrile ligands each; the central copper atom 

has two acetonitrile ligands attached. The Cu···Cu distances in 2 (3.0013(6) Å and 

3.0593(6) Å) are significantly elongated compared to 1. The distance between the two 

peripheral copper atoms are also significantly larger in 2 (5.8238(8) Å; 1: 4.869(2)-

4.904(2) Å). The Cu-P bonds are slightly longer for Cucen-P (2.3706(8) and 2.3909(8) Å), 

but shorter for Cuper-P (2.2446(8) and 2.2520(8) Å), compared to 1. Also, the Cu-Cu-Cu 

angle is with 147.861(19)° significantly more bent. The angles around the central copper 

atom possess values between 47.55(2) and 53.56(3)°. 

Furthermore, we were interested in the reactivity of the As2 ligand complex 

[Cp2Mo2(CO)4(µ,h2-As2)] (B) towards [Cu(CH3CN)4][TEF] (C). In a straightforward 

synthetic approach, mixing B with an equimolar amount of C in CH2Cl2 at room 
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temperature, the new compound [{{CpMo(CO)2}2(µ5,η2:2:2:1-As2)}{Cu(CH3CN)2} 

Cu(CH3CN)][TEF]2 (4) was obtained. 

Figure 5.3. Molecular structures of the cationic parts of compounds 1, 2, 4 and 6 in the solid state. Cp- and 
CO-ligands and hydrogen atoms are omitted for clarity. Thermal ellipsoids are shown at 50% probability 

level. Only the major part of compound 6 is depicted (for further information see SI). 

Layering with n-pentane afforded 4 in a moderate yield as red needles suitable for X-

ray structure analysis (Figure 5.3).14 4 crystallizes in the triclinic space group P1" and 

reveals a Cu dimer stabilized by two As2 ligands B. Additionally, the copper atom Cu1 is 

coordinated by two and the copper atom Cu2 is coordinated by one acetonitrile ligand. 

Cu1 is η1-coordinated by one As atom from both As2 ligand complexes B, Cu2 is η2-

coordinated by two complexes B in a new η2:1 coordination mode IV. The Cu···Cu 

distance (2.6925(7) Å) is elongated compared to 1. The As-As bonds (2.3905(5)-

2.3901(5) Å) are slightly elongated compared to the uncoordinated complex B (2.311(3) 

Å).15 Additionally, the distances of the coordinating As atoms to Cu2 (η2-coordination) 

are slightly longer (2.4849(6-2.5312(6) Å) than the As-Cu1 distances (η1-coordination, 

2.4582(6)-2.4850(6) Å). A to 4 isostructural compound 5 containing a different counterion 

was formed by the reaction of B with the Cu(I) salt [Cu(CH3CN)3.5][FAl] (E) (cf. Supporting 

Information).  

Moreover, the unprecedented trinuclear complex 6 was obtained by reacting B with 

[Cu(CH3CN)4][BF4] in CH2Cl2 at room temperature using equimolar amounts. By diffusion 

of n-pentane into the crude reaction mixture 6 crystallizes as dark red blocks in the 

monoclinic space groups C2/c. X-ray crystallography of 6 revealed that the central Cu 

atom has an occupancy of 0.8. Therefore, a complex with only the peripheral copper 

atoms is present with an occupancy of only 0.2. Furthermore, the acetonitrile molecules 

coordinated to the outer Cu atoms have an occupancy of 0.59 (for further details see SI). 

The major part (Figure 5.3) consists of a Cu3 (d(Cu-Cu) = 2.587(4) Å) chain coordinated 

by four As2 ligand complexes B, with the peripheral copper atoms (Cu2B and Cu2B’) 

coordinated additionally by one acetonitrile ligand each. While Cu2B and Cu2B’ are η 2-

side-on-coordinated by one molecule of B and η1-end-on coordinated by two other 

[Cp2Mo2(CO)4(µ,η2:2-As2)] moieties, Cu1 shows only η2-side-on-coordination of two 
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molecules of B. The As-As bonds of the side-on-coordinated molecules B are tilted by 

an angle of 133° with regard to the plane As1-Cu1-As2’-Cu2B and accordingly tilted to 

an angle of 47° to the symmetry generated plane.  

By using a 1:1 stoichiometry of B and D the product 6 was obtained with a composition 

of 2:1. It was expected that a higher ratio of D would lead to a product, which is similar 

to complex 1. In contrast, using an excess of D compound 7 was formed. The structure 

of 7 is comparable to those of compounds 4 and 5 with the difference that Cu2 atom is 

not coordinated by a CH3CN molecule. However, the synthesis of a Mo2P2 containing 

compound [Cu(CH3CN)2{Cu{Cp2Mo2(CO)4(µ4,η2:2:2:1-P2)}2][BF4]2 (3) (Figure 5.3), which is 

isostructural with 7 was achieved by reacting equimolar amounts of A with D. The use of 

two equivalents of A lead to a compound containing a P4Cu2 6-membered ring similar to 

compound F (Figure 5.2).8c Compounds 3 (orange plates) and 7 (red plates) crystallize 

both in the monoclinic space group I2/m. For detailed information on their structures, see 

the Supporting Information. 

 

The products 1-7 are well soluble in donor solvents such as CH3CN and slightly 

soluble in CH2Cl2, but insoluble in other common organic solvents such as THF, toluene 

and n-pentane. The NMR spectra of all compounds have been recorded in acetonitrile-

d3 at room temperature. The 1H and 13C{1H} NMR spectra of compounds 1-7 indicate 

decomplexation by showing signals corresponding to the proton and carbon nuclei of the 

Cp and CO ligands of A or B, respectively. The 31P NMR spectra of compounds 1-3 show 

broad signals upfield shifted compared to the free P2 ligand complex A 

(δ = -43.2 ppm).13a The broad signals in combination with already reported variable-

temperature NMR studies on the Ag-dimer [Ag2(Cp2Mo2(CO)4(µ,η2:2:1:1-

P2)2(Cp2Mo2(CO)4(µ,η2:2:1-P2)2][TEF]7c indicate a dynamic behavior in solution between 

1-3 and monomeric fragments of them. Therefore, with acetonitrile being a coordinating 

solvent, decomplexation is most likely observed in solution. In the ESI mass spectra of 

1-3, peaks for the cationic fragments ([Cu{Cp2Mo2(CO)2P2}2]+, [Cu(CH3CN)-

{Cp2Mo2(CO)2P2}]+ and [Cu(CH3CN)2]+) were detected. While the ESI mass spectra of 4-

5 show peaks for the cationic fragments [{Cp2(CO)4Mo2As2}2Cu]+ and 

[{Cp2(CO)4Mo2As2}Cu(CH3CN)]+, compounds 6-7 reveal an additional peak for 

[Cp2(CO)4Mo2As2]+. All compounds are air- and light-stable in the solid state for several 

days, but decompose within hours in solution when exposed to air. 

The Cu···Cu distances in 1, 2 and 6 are below the sum of the van-der-Waals radii16 

and are in the range of Cu(I)-Cu(I) single bonds (2.24 Å)17 suggesting intramolecular 

metallophilic interactions. In order to elucidate the bonding situation in 

[{{CpMo(CO)2}2(µ5,η2:2:2:1:1-P2)}2{Cu(CH3CN)2}2Cu]3+ (1) and [{{CpMo(CO)2}2(µ5,η2:2:2:1:1-
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P2)}{Cu(CH3CN)3}2Cu(CH3CN)2]3+ (2), DFT calculations at the B3LYP/def2-TZVP level of 

theory have been performed. The Cu···Cu distances in 1 in the gas phase (2.559 Å) are 

similar to the distances in the solid state (2.4344(10) - 2.4537(19) Å). For 2, the Cu···Cu 

distances are even longer in the gas phase (3.380 and 3.384 Å) compared to the solid 

state (3.0013(6) and 3.0593(6) Å). This indicates that the chelating effect of a second 

[{CpMo(CO)2}2(µ,η2:2-P2)] is responsible for the relatively short Cu···Cu distances in 1. 

The calculations also show that the bonding of the peripheral Cu ions to the P2 ligands 

in 1 takes place via the coordination of the phosphorus lone pairs, while the central Cu 

ion binds to the P-P σ-orbital of the P2 unit. This is clearly revealed by the Localized 

Molecular Orbitals (LMOs) (Figure 5.4). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4. Selected Localized Molecular Orbitals (LMOs) representing the Cu-P bonding in 

[{{CpMo(CO)2}2(µ5,η2:2:2:1:1-P2)}2{Cu(CH3CN)2}2Cu]3+, calculated at the B3LYP/def2-TZVP level of theory. 

A small orbital contribution of the central Cu ion to the LMOs of the P-Cuper bond of 

roughly 7% has been detected for 1. A comparison of the LMOs of 1 with that of 

[{{CpMo(CO)2}2(µ4,η2:2:1:1-P2)}2{Cu(CH3CN)2}2]2+ (G)7a shows that the bonding of the P2 

ligand A to the peripheral Cu ions is very similar (Figure S5.3). The Wiberg Bond Indexes 

(WBIs) of the P-P bond in G is close to unity (1.06), while in 1 and 2 the WBIs of the P-

P bonds are lower (0.78 in 1; 0.72 in 2), indicating a weaker P-P bond. This is not 

unexpected if considering the coordination of the P-P σ-bond additionally to the central 

Cu ion, which leads to depletion of the electron density in this bonding orbital. The WBIs 

of the peripheral Cu-P bonds in 1, i.e. 0.40-0.44, are slightly lower than in G (0.53-0.55) 

and 2 (0.55), respectively. The WBIs of the Cucen-P bonds in 1 are 0.29 (Cu9-P6, Cu9-
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P8) and 0.40 (Cu9-P5, Cu9-P7) indicating a slightly asymmetric bonding and a 

preference for a linear coordination geometry of the central Cu ion. This is an explanation 

for the elongation of the P-P bond in 1 (WBI (Wiberg Bond Index) 0.78) compared to G 

(1.06). The calculations indicate that between the three Cu ions an interaction is present 

since a WBI of 0.11 has been found. 

 

5.3 Conclusion 

In conclusion, we synthesized seven unprecedented coordination compounds (1-7), 

obtained by reacting the P2 (A) and As2 (B) ligand complexes with three different Cu(I) 

salts (C, D and E) containing a WCA as counterion. Thus, four novel dinuclear copper 

dimers (3, 4, 5 and 7) and three trinuclear copper complexes (1, 2 and 6) have been 

obtained. For the first time, a tetrahedral Mo2E2 ligand complex is able to connect 

different metal atoms forming a chain of three Cu atoms. These complexes reveal the 

decisive influence of WCAs as a counterion in addition to the use Cu(I) salts with different 

coordinating solvent, as ([Cu(CH3CN)4][TEF] forms a novel trinuclear Cu(I) chain 

coordinated by two A units and [Cu(o-DFB)][TEF] forms a Cu2P4 ring.8c The Cu···Cu 

distances in the trinuclear copper complexes 1, 2 and 6 (2.4344(10)-2.4537(19) Å; 

3.0013(6)/3.0593(6) Å; 2.587(4) Å) are below the sum of the van-der-Waals radii and in 

the range of Cu(I)-Cu(I) single bonds, suggesting intramolecular metallophilic 

interactions. DFT calculations for 1 at the B3LYP/def2-TZVP level of theory revealed that 

the bonding of the peripheral Cu ions to the Mo2P2 ligands in 1 takes place via the 

coordination of the phosphorus lone pairs, while the central Cu ion binds to the P-P σ-

orbital of the Mo2P2 unit. Therefore, it can be concluded that there is an interaction 

present between the central and peripheral Cu ions, as a WBI of 0.11 has been found. 

Moreover, under the same reaction conditions, the As2 ligand complex B has a higher 

tendency to coordinate in an η2-fashion and additionally, in a η1:η1-mode in comparison 

to the P2 complex A.  
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5.4 Supporting Information 
 

5.4.1 General  

All experiments were carried out in an inert atmosphere of nitrogen or argon using 

standard Schlenk techniques. The nitrogen/argon was dried and purified from traces of 

oxygen with a Cu/MgSO4 catalyst, concentrated H2SO4 and orange gel. Reactants were 

stored in a glovebox under argon atmosphere. All used solvents were taken from the 

solvent drying machine MB SPS-800 of the company MBRAUN. The precursors 

[Cp2Mo2(CO)4(μ,η2:2-P2)]13a (A), [Cp2Mo2(CO)4(μ,η2:2-As2)]13b (B), 

[Cu(CH3CN)4][Al{OC(CF3)3}4] (Cu[TEF], C)7a and [Cu(CH3CN)3.5][FAl{OC6F10(C6F6)}3] 

(Cu[FAl], E)7a were prepared according to literature procedures. [Cu(CH3CN)4][BF4] (D) 

was purchased from the company TCI and used without further purification. IR spectra 

were recorded as solids with an ATR-Ge disc on a Thermo Fisher Nicolet iS5 

spectrometer. Solution NMR spectra were recorded on a Bruker Avance III HD 400 

spectrometer (1H: 400 MHz, 31P: 161 MHz, 13C: 100 MHz, 19F: 376 MHz, 11B: 128 MHz) 

with acetonitrile-d3 as solvent at room temperature. The signals of tetramethylsilane (1H, 
13C), CFCl3 (19F), Et2O x BF3 (11B) and 85% H3PO4 (31P) were used as reference for 

determining chemical shifts. The chemical shifts δ are presented in parts per million ppm 

and coupling constants J in Hz. The spectra were processed and analyzed using the 

software Bruker TopSpin 3.0. Elemental analyses were performed on an Elementar vario 

MICRO cube apparatus. Mass spectra were recorded on an Agilent Q-TOF 6540 UHD 

mass spectrometer with acetonitrile as solvent. 

5.4.2 Synthetic procedure 

 Synthesis of [{{CpMo(CO)2}2(µ5,η2:2:2:1:1-P2)}2{Cu(CH3CN)2}2Cu][TEF]3  (1): 

 

Compounds A (1 eq., 5 mg, 0.01 mmol) and Cu[TEF] (3 eq., 79.4 mg, 0.05 mmol) were 

dissolved in CH2Cl2 (5 mL each). Subsequently, the solution of C was added dropwise 

to the solution of A. The clear reaction mixture was stirred for 3h, filtered and stored at -

30 °C. After one day, compound 1 was obtained as clear orange blocks (1a) or red plates 
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(1b). The supernatant was decanted off, the remaining crystals washed with n-pentane 

and dried in vacuo. Crystalline Yield: 39 mg (95 %, related to A).  
1H NMR (CD3CN): d = 5.32 (s, 10H, C5H5).  
13C {1H} NMR (CD3CN): d = 226.1 (CO),  87.6 (C5H5). 
31P {1H} NMR (CD3CN): d = -54.0 - -59.5 (bs).18   
19F {1H} NMR (CD3CN): d = -74.8 (s).  

Positive ion ESI-MS (CH3CN, RT): m/z (%) = 1056.56 (60) [Cu{Cp2Mo2(CO)2P2}2]+, 

599.77 (100) [Cu(CH3CN){Cp2Mo2(CO)2P2}]+.  

Elemental analysis, calc. for C84H32Al3Cu3F108Mo4N4O20P4 (4253.24 g/mol) (%): C, 23.75; 

H, 0.76; N 1.31; found: C, 23.89; H, 0.83; N, 1.29.  

IR (solid, CO bands): 𝑣̃/cm-1: 2037 (w), 2013 (w), 1983 (w).  

Synthesis of [{{CpMo(CO)2}2(µ5,η2:2:2:1:1-P2)}{Cu(CH3CN)3}2Cu(CH3CN)2][TEF]3 (2): 

 

Compounds A (1 eq., 5 mg, 0.01 mmol) and Cu[TEF] (4 eq., 64 mg, 0.04 mmol) were 

dissolved in CH2Cl2 (5 mL each). Subsequently, the solution of C was added dropwise 

to the solution of A. The clear reaction mixture was stirred for 3h, filtered and stored at -

30 °C. After one day, compound 2 was obtained as yellow blocks. The supernatant was 

decanted off, the remaining crystals washed with n-pentane and dried in vacuo. 

Crystalline Yield: 38.7 mg (99 %, revered to A).  
1H NMR (CD3CN): d = 5.32 (s, 10H, C5H5).  
13C {1H} NMR (CD3CN): d = 226.2 (s, CO), 87.5 (C5H5).  

31P{1H} NMR (CD3CN): d = -57.8 - -64.3 (bs).18  

19F {1H} NMR (CD3CN): d = -74.8 (s).  

Positive ion ESI-MS (CH3CN, RT): m/z (%) = 1056.56 (60) [Cu{Cp2Mo2(CO)2P2}2]+, 

599.77 (100) [Cu(CH3CN){Cp2Mo2(CO)2P2}]+.  

Elemental analysis, calc. for C78H34Al3Cu3F108Mo2N8O16P2 (3917,53 g/mol) (%): C, 23.89; 

H, 0.87; N 2.86; found: C, 24.22; H, 0.70; N, 2.82. 

IR (solid, CO bands): 𝑣̃/cm-1: 2009 (w), 1972 (w).  
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Synthesis of [{{CpMo(CO)2}2(µ5,η2:2:2:1-P2)}{Cu(CH3CN)2}Cu][BF4]2 (3): 

 

Compounds A (1.9 eq., 88 mg, 0.28 mmol) and [Cu(CH3CN)4][BF4] (1 eq., 351.7 mg, 

0.15 mmol) were dissolved in CH2Cl2 (5 mL each) and the solution of D was added 

dropwise to the solution of A. The clear reaction mixture was stirred for 3h, filtered and 

stored at -30 °C. After one day, compound 3 was obtained as clear intense red blocks. 

The supernatant was decanted, the remaining crystals were washed with n-pentane and 

dried in vacuo. Crystalline yield: 46 mg (48 %, related to A).  
1H NMR (CD3CN): d = 5.33 (s, 10H, C5H5).  
13C {1H} NMR (CD3CN): d = 225.4 (CO), 87.7 (C5H5).  
31P {1H} NMR (CD3CN): d = -69.5-59.8 (bs).18  
19F {1H} NMR (CD3CN): d = -150.6 (bs).  
11B {1H} NMR (CD3CN): d = -0.56 (s).  

Positive ion ESI-MS (CH3CN, RT): m/z (%) = 1056.56 (60) [Cu{Cp2Mo2(CO)2P2}2]+, 

599.77 (100) [Cu(CH3CN){Cp2Mo2(CO)2P2}]+, 144.98 (100) [Cu(CH3CN)2]+.  

Elemental analysis, calc. for C32H26B2Cu2F8Mo4N2O8P4 (1381,55 g/mol) (%): C, 27.79; 

H, 1.90; N 2.03; found: C, 27.97; H, 1.89; N, 2.03. 

IR (solid, CO bands): 𝑣̃/cm-1: 1971 (s), 1932 (w), 1911(s).  

Synthesis of [{{CpMo(CO)2}2(µ5,η2:2:2:1-As2)}{Cu(CH3CN)2}Cu(CH3CN)][TEF]2 (4): 

 

[Cu(CH3CN)4][Al{OC(CF3)3}4] (1 eq., 60 mg, 0.05 mmol) was dissolved in CH2Cl2 (5 mL) 

and was added to a solution of Cp2Mo2(CO)4(h2-As2) (B) (1 eq., 29 mg, 0.05 mmol) in 

CH2Cl2 (5 mL) and stirred for 2h at room temperature. The red solution was carefully 

layered with threefold amount of n-pentane and stored at room temperature. After one 
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day, red needles were formed. The crystals were washed with n-pentane and dried in 

vacuo. Crystalline Yield: 75 mg (89 %, referred to B).  
1H NMR (CD3CN): d = 5.45 (s, 10H, C5H5) + 5.26 Mo2As2.  

13C {1H} NMR (CD3CN): d = 227.59 (CO), 85.80 (C5H5).  
19F {1H} NMR (CD3CN): d = -74.78.  

Positive ion ESI-MS (CH3CN, RT): m/z (%) = 1232.3 (60) [{Cp2(CO)4Mo2As2}2Cu]+, 687.7 

(100) [{Cp2(CO)4Mo2As2}Cu(CH3CN)]+, 583.7 (12) [Cp2(CO)4Mo2As2]+.  

Elemental analysis, calc. for C66H29Al2As4Cu2F72Mo4N3O16 (3352.35 g/mol) (%): C, 

23.92; H, 0.88; N 2.86; found: C, 24.22; H, 0.70; N, 2.82. 

IR (solid, CO bands): 𝑣̃/cm-1: 1275 (s), 1298 (s), 1240 (vs), 1215 (vs).  

Synthesis of [{{CpMo(CO)2}2(µ5,η2:2:2:1-As2)}{Cu(CH3CN)2}Cu(CH3CN)][FAl]2 (5): 

 

 [Cu(CH3CN)3.5][FAl{OC(C6F10)(C6F5)}3] (1 eq., 79 mg, 0.05 mmol) dissolved in CH2Cl2 (5 

mL), was added to a solution of Cp2Mo2(CO)4(h2-As2) (B) (1 eq., 29 mg, 0.05 mmol) in 

CH2Cl2 (5 mL) and stirred for 2h at room temperature. The red solution was carefully 

layered with threefold amount of n-pentane and stored at room temperature. After one 

day, orange plates crystallized. The crystals were washed with n-pentane and dried in 

vacuo. Crystalline Yield: 60 mg (57 %, referred to B).  
1H NMR (CD3CN): d = 5.45 (s, 10H, C5H5) + 5.26 Mo2As2.  
13C {1H} NMR (CD3CN): d = 227.75 (CO), 85.85 (C5H5).  
19F {1H} NMR (CD3CN): d = -111.64 (d, JF,F = 283 Hz, 2F), -116.14 (d, JF,F = 280Hz, 2F), 

-121.13 (d, JF,F = 280Hz, 2F), -127.84 (s, 2F), -129.77 (d, JF,F = 280Hz, 2F), -136.46 (d, 

JF,F = 280Hz, 2F), -140.79 (d, JF,F = 280Hz 1F), -154.00 (tt, 2JF,F =21Hz, 3JF,F = 6Hz, 1F), 

164.70 (td, 2JF,F =21Hz, 3JF,F = 6Hz, 1F), -170.63 (s, 1F).  

Positive ion ESI-MS (CH3CN, RT): m/z (%) = 1232.3 (51) [{Cp2(CO)4Mo2As2}2Cu]+, 687.7 

(100) [{Cp2(CO)4Mo2As2}Cu(CH3CN)]+, 583.7 (37) [Cp2(CO)4Mo2As2]+.  

Elemental analysis, calc. for C106H29Al2As4Cu2F92Mo4N3O14 (4180.73 g/mol) (%): C, 

30.45; H, 0.70; N, 1.01; found: C, 30.38; H, 0.61; N, 0.61.  

IR (solid, CO bands): 𝑣̃/cm-1: 2005 (s), 1979 (s), 1950 (s), 1934 (s).  
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Synthesis of [{{CpMo(CO)2}2(µ5,η2:2:2:1:1-As2)}2{{CpMo(CO)2}2}(µ5,η2:2:2-As2)}2 

{Cu(CH3CN)}2Cu][BF4]3  (6): 

 

 [Cu(CH3CN)4][BF4] (1 eq., 16 mg, 0.05 mmol), dissolved in CH2Cl2 (5 mL), was added 

to a solution of Cp2Mo2(CO)4(η2-As2) (B) (1 eq., 29 mg, 0.05 mmol) in CH2Cl2 (5 mL) and 

stirred for 2h at room temperature. The red solution was filtered and carefully layered 

with threefold amount of n-pentane and stored at room temperature. After one day dark 

red block-shaped crystals were formed. The crystals were washed with n-pentane and 

dried in vacuo. Crystalline Yield: 15 mg (43%, referred to B).  
1H NMR (CD3CN): d = 5.45 (s, 10H, Cp) + 5.26 Mo2As2.  
13C {1H} NMR (CD3CN): d = 227.22 (CO), 85.82 (C5H5).  
19F {1H} NMR (CD3CN): d = -150.66 (d, 1JB,F = 19.8 Hz).  
11B {1H} NMR (CD3CN): d = -0.57 (s).  

Positive ion ESI-MS (CH3CN, RT): m/z (%) = 1232.4 (100) [{Cp2(CO)4Mo2As2}2Cu]+, 

687.7 (99) [{Cp2(CO)4Mo2As2}Cu(CH3CN)]+.  

IR (solid, CO bands): 𝑣̃/cm-1: 1953 (vs), 1917 (vs).  

Elemental analysis, calc. (%) for C56H40As8B3Cu3F12Mo8O16 (2786.85 g/mol): C, 24.13; 

H, 1.45; found: C, 24.11; H, 1.57. 

Synthesis of [{{CpMo(CO)2}2(µ5,η2:2:2:1-As2)}2{Cu(CH3CN)2}Cu][BF4]2 (7): 

 

[Cu(CH3CN)4][BF4]  (7 eq., 110 mg, 0.35 mmol), dissolved in CH2Cl2 (5 mL), was added 

to a solution of B (1 eq., 29 mg, 0.05 mmol) in CH2Cl2 (8 mL) and stirred for 2h at room 

temperature. The light red solution was carefully layered with threefold amount of n-

pentane and stored at room temperature. After one day dark red block-shaped crystals 
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were formed. The crystals were washed with n-pentane and dried in vacuo. Crystalline 

yield: 21 mg (47%, referred to B).  
1H NMR (CD3CN): d = 5.45 (s, C5H5), 5.26 Mo2As2.         
13C {1H} NMR (CD3CN): d = 226.8 (CO), 85.45 (C5H5).  
19F {1H} NMR (CD3CN): d = -150.65 (d, 1JB,F = 19.7 Hz). 11B NMR (CD3CN): d = -0.56 (s). 

Positive ion ESI-MS (CH3CN, RT): m/z (%) = 1232.4 (100) [{Cp2(CO)4Mo2As2}2Cu]+, 

687.7 (48) [{Cp2(CO)4Mo2As2}Cu(CH3CN)]+.   

Elemental analysis did not deliver matching values, because an excess of starting 

material is used which crystallizes simultaneously with the product. [Cu(CH3CN)4][BF4] 

cannot be separated from the product, due to similar solubilities.  

IR (solid, CO bands): 𝑣̃/cm-1: 1992 (s), 1939 (s).  

 

5.4.3 Crystallographic Data 

Crystal Structure Analysis: The crystals were selected and measured on a Gemini 

Ultra diffractometer equipped with an AtlasS2 CCD detector (1 (2 CH2Cl2), 1 (toluene), 

2, 3) and a GV50 diffractometer equipped with a TitanS2 detector (4-7), respectively. 

The crystals were kept at T = 123(1) K during data collection. Data collection and 

reduction were performed with CrysAlisPro [Version V1.171.38.46, 2015 (1 (2 CH2Cl2)), 

V1.171.40.14a, 2018 (1 (toluene), 2, 3, 4, 5, 6, 7)].19 For the compounds 1 (toluene), 2, 

3 and 6 an analytical numeric absorption correction using a multifaceted crystal model 

based on expressions derived by R.C. Clark & J.S. Reid20 and an empirical absorption 

correction using spherical harmonics as implemented in SCALE3 ABSPACK was 

applied. For the compounds 1 (2 CH2Cl2), 4, 5 and 7 a numerical absorption correction 

based on gaussian integration over a multifaceted crystal model and an empirical 

absorption correction using spherical harmonics as implemented in SCALE3 ABSPACK 

was applied. Using Olex2,21 the structures were solved with ShelXT22 and a least-square 

refinement on F2 was carried out with ShelXL23 for all structures. All non-hydrogen 

atoms were refined anisotropically. Hydrogen atoms at the carbon atoms were located 

in idealized positions and refined isotropically according to the riding model. 

Compound 1 (2 CH2Cl2): The asymmetric unit contains two CH2Cl2 solvent molecules, 

which are respectively disordered over two positions (79:21; 74:26). Further, the 

asymmetric unit contains two halves of the complex [{{CpMo(CO)2}2(µ5,η2:2:2:1:1-

P2)}2{Cu(CH3CN)2}2Cu] and additionally three [Al{OC(CF3)3}4]- anions. Almost all the 

{OC(CF3)3} units at the three [Al{OC(CF3)3}4]- anions are disordered over at least two 

positions. Further, one Cp ligand at one half of a [{{CpMo(CO)2}2(µ5,η2:2:2:1:1-
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P2)}2{Cu(CH3CN)2}2Cu] complex is disordered over two positions (53:47). To describe 

these disorders the FLAT, DFIX, SADI, SIMU, RIGU and ISOR restraints were applied. 

Compound 1 (toluene): The asymmetric unit contains one toluene solvent molecule, the 

cationic complex [{{CpMo(CO)2}2(µ5,η2:2:2:1:1-P2)}2{Cu(CH3CN)2}2Cu] and three 

[Al{OC(CF3)3}4]- anions. One Cp and one CO ligand of the complex 

[{{CpMo(CO)2}2(µ5,η2:2:2:1:1-P2)}2{Cu(CH3CN)2}2Cu] are disordered over two positions 

(73:27). Further, almost all the {OC(CF3)3} units at the three [Al{OC(CF3)3}4]- anions are 

disordered over at least two positions. To describe these disorders the SADI, SIMU and 

RIGU restraints were applied. 

Compound 2: The asymmetric unit contains one CH2Cl2 solvent molecule, the cationic 

complex [{{CpMo(CO)2}2(µ5,η2:2:2:1:1-P2)}{Cu(CH3CN)3}2Cu(CH3CN)2] and three 

[Al{OC(CF3)3}4]- anions. The Cl atoms of CH2Cl2 solvent molecule are disordered over 

two positions (69:31). Further, almost all the {OC(CF3)3} units at the three [Al{OC(CF3)3}4] 

anions are disordered over at least two positions. To describe these disorders the SADI, 

SIMU, RIGU and ISOR restraints were applied. 

Compound 3: The asymmetric unit contains half a BF4
- anion and one quarter of the 

complex [{{CpMo(CO)2}2(µ4,η2:2:2:1-P2)}{Cu(CH3CN)2}Cu] at which one CO group is 

disordered over two positions (50:50). To describe this disorder, the SIMU restraint was 

applied. 

Compound 4: The asymmetric unit contains one CH2Cl2 solvent molecule, the cationic 

complex [{{CpMo(CO)2}2(µ4,η2:2:2:1-As2)}2{Cu(CH3CN)2}Cu(CH3CN)1] and three 

[Al{OC(CF3)3}4]- anions. At one [Al{OC(CF3)3}4]- anion two {OC(CF3)3} units are 

disordered over two (60:40) and one {OC(CF3)3} unit is disordered over three positions 

(37:37:26). To describe these disorders the SADI, SIMU and RIGU restraints were 

applied. 

Compound 5: The asymmetric unit contains 1.75 CH2Cl2 solvent molecules, two 

[FAl{OC6F10(C6F6)}3]- anions and the cationic complex [{Cp2Mo2(CO)4(µ4,η2:2:2:1-

As2)}{Cu(CH3CN)2}{Cu(CH3CN)}]. One and a half of the CH2Cl2 solvent molecules were 

heavily disordered. Therefore, a solvent mask was calculated and 252 electrons were 

found in a volume of 1252 Å3 in two voids per unit cell. This is consistent with the 

presence of 1.5 CH2Cl2 molecules per asymmetric unit, which account for 252 electrons 

per unit cell. Additionally 0.25 CH2Cl2 molecules were disordered over two positions 

(15:10). Further, one Cp ligand (70:30) and a CH3CN molecule (53:47) of the complex 

[{Cp2Mo2(CO)4(µ4,η2:2:2:1-As2)}{Cu(CH3CN)2}{Cu(CH3CN)}] are disordered over two 

positions. Furthermore, two of the three {OC6F10(C6F6)} substituents of one 
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[FAl{OC6F10(C6F6)}3]- anion are disordered over two positions (72:28; 61:39). To describe 

these disorders the SADI, SIMU and ISOR restraints were applied. 

Compound 6: The asymmetric unit contains 2.19 CH2Cl2 solvent molecules and 1.4 BF4 

anions. It further contains four overlaying complexes [{Cp2Mo2(CO)4(µ5,η2:2:2:1:1-

As2)}2{Cp2Mo2(CO)4(µ3,η2:2:2-As2)}2{Cu(NCMe)}2Cu] (6a, 39 - 59% occupancy), 

[{Cp2Mo2(CO)4(µ5,η2:2:2:1:1-As2)}2{Cp2Mo2(CO)4(µ3,η2:2:2-As2)}2Cu3] (6b, 21 - 41% 

occupancy), [{Cp2Mo2(CO)4(µ4,η2:2:1:1-As2)}2{Cp2Mo2(CO)4(µ3,η2:2:2-As2)}2Cu2] (6c; 

0 - 20% occupancy) and [{Cp2Mo2(CO)4(µ5,η2:2:2:1:1-As2)}2{Cp2Mo2(CO)4(µ3,η2:2:2-

As2)}2{Cu(NCMe)}2] (6d; 0 - 20% occupancy), which are located on a 2-fold rotation axis 

and therefore only half present in the asymmetric unit. The vague allocation of these 

complexes is a result of the unequal occupation of the central Cu atom (0.8% occupancy) 

and the NCMe ligands (0.59% occupancy). The SADI and SIMU restraints were applied 

to describe one BF4 anion, which is located on a 2-fold rotation axis. Further, these 

restrains were also used to describe a CH2Cl2 molecule, which shares the same position 

with an NCMe molecule coordinated to a Cu atom. 

Compound 7: The asymmetric unit contains one quarter of a BF4
- anion and one quarter 

of the complex [{Cp2Mo2(CO)4(µ4,η2:2:2:1-As2)}2{Cu(NCCH3)2Cu]. Due to the special 

position of the [Cu(NCCH3)2]+ fragment on a mirror plane near an inversion center the 

SIMU restraint was applied to this fragment. 
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Table S5.1. Crystallographic data and details of diffraction experiments for compounds 1a - 3. 

Compound 1a · 2 CH2Cl2 1b 2 · CH2Cl2 
3 · 4 CH3CN 
· 4 CH2Cl2 

Data set 
(internal naming) abs268 abs461a abs437a abs444b_2 

Formula  
C86H36Al3Cl4Cu3F108 

Mo4N4O20P4 

C91H40Al3Cu3F108 

Mo4N4O20P4 

C79H36Al3Cl2Cu3F108 

Mo2N8O16P2 

C32H26B2Cu2F8Mo4 

N2O8P4 
Dcalc. / g · cm-3  2.117 2.059 2.008 2.077 
m/mm-1  6.645 5.879 0.954 2.284 
Formula Weight  4418.19 4340.47 4001.44 1374.89 
Colour  red clear orange yellow clear orange 
Shape  plate block block plate 
Size/mm3  0.46×0.28×0.06 0.25×0.16×0.08 0.41×0.31×0.28 0.44×0.22×0.07 
T/K  123(1) 123(1) 123.15 123(1) 
Crystal System  monoclinic trigonal monoclinic monoclinic 
Flack Parameter  - -0.010(8) - - 
Hooft Parameter - -0.007(4) - - 
Space Group P21/c P32 P21/c I2/m 
a/Å  28.5401(2) 17.35370(10) 27.3674(7) 8.3221(3) 
b/Å  18.57590(14) 17.35370(10) 23.2498(6) 25.8028(9) 
c/Å  26.6845(2) 40.2585(2) 20.7996(5) 10.2632(4) 
α/°  90 90 90 90 
β/°  101.5352(8) 90 90.654(2) 94.027(3) 
γ/°  90 120 90 90 
V/Å3  13861.24(19) 10499.58(13) 13233.6(6) 2198.41(14) 
Z  4 3 4 2 
Z'  1 1 1 0.25 
Wavelength/Å  1.54184 1.54184 0.71073 0.71073 
Radiation type  Cu Kα Cu Kα Mo Kα Mo Kα 
Qmin/°  3.434 3.293 3.278 3.411 
Qmax/°  72.915 73.056 32.310 32.327 
Measured Refl.  57598 39410 119824 16969 
Independent Refl.  26486 23136 41829 3773 
Reflections with I > 
2(I)  20576 22123 31376 3435 

Rint  0.0551 0.0304 0.0296 0.0255 
Parameters  3249 3327 3116 229 
Restraints  4244 2605 3335 24 
Largest Peak  3.618 0.958 1.232 0.454 
Deepest Hole  -1.195 -0.541 -0.788 -0.651 
GooF  1.049 1.016 1.073 1.179 
wR2 (all data)  0.2255 0.1421 0.1453 0.0535 
wR2  0.2104 0.1395 0.1332 0.0520 
R1 (all data)  0.0971 0.0551 0.0802 0.0319 
R1  0.0783 0.0530 0.0559 0.0267 
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Table S5.2. Crystallographic data and details of diffraction experiments for compounds 4 - 7. 

Compound  4 5 · 1.75 CH2Cl2 6 · 4.38 CH2Cl2 7 

Data set 
(internal naming) JS200 JS151 JS120_2 JS164_2 

Formula  
C67H31Al2As4Cl2Cu2 

F72Mo4N3O16 

Al2As4C107.75Cl3.5Cu2 

F92H32.5Mo4N3O14 

C62.74H52.3As8B2.58Cl8.76 

Cu2.79F10.32Mo8N1.18O16 
C16H13As2BCuF4 

Mo2NO4 
Dcalc. / g · cm-3  2.213 2.080 2.309 2.316 
m/mm-1  8.170 4.958 11.674 10.433 
Formula Weight  3437.33 4329.42 3157.42 775.34 
Colour  orange clear orange orange orange 
Shape  block plate plate plate 
Size/mm3  0.20×0.15×0.12 0.22×0.12×0.04 0.26×0.15×0.05 0.12×0.06×0.05 
T/K  122.97(11) 122.98(14) 123.00(12) 123.00(11) 
Crystal System  triclinic monoclinic monoclinic monoclinic 
Space Group P-1 P21/n C2/c I2/m 
a/Å  15.2567(3) 23.5326(6) 14.6204(4) 8.2869(2) 
b/Å  15.8605(3) 18.9404(4) 26.8116(5) 26.2286(6) 
c/Å  23.6139(5) 31.4016(8) 23.3084(5) 10.2500(2) 
α/°  72.159(2) 90 90 90 
β/°  75.865(2) 98.942(2) 96.168(2) 93.660(2) 
γ/°  74.451(2) 90 90 90 
V/Å3  5157.7(2) 13826.1(6) 9083.9(3) 2223.33(9) 
Z  2 4 4 4 
Z'  1 1 0.5 0.5 
Wavelength/Å  1.54184 1.39222 1.39222 1.39222 
Radiation type  Cu Kα Cu Kα Cu Kα Cu Kα 
Qmin/°  3.342 1.978 3.123 3.043 
Qmax/°  74.188 61.639 57.000 60.027 
Measured Refl.  58028 129209 29745 9499 
Independent Refl.  20296 28445 8329 2274 
Reflections with I > 
2(I)  18284 22099 8089 2230 

Rint  0.0361 0.0505 0.0384 0.0498 
Parameters  1939 2601 618 181 
Restraints  471 1303 49 36 
Largest Peak  1.444 0.706 2.503 1.389 
Deepest Hole  -0.908 -0.711 -1.120 -1.052 
GooF  1.011 1.029 1.185 1.243 
wR2 (all data)  0.0827 0.0996 0.1868 0.1280 
wR2  0.0796 0.0899 0.1860 0.1275 
R1 (all data)  0.0384 0.0605 0.0697 0.0487 
R1  0.0336 0.0420 0.0685 0.0481 
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Table S5.3. Selected bond lengths and atom-atom distances of 1-7 in Å. Only the major part of compound 

6 is described.  

 1 2 3 4 5 6 7 

 abs268 / 
abs461a abs437a abs444b JS200 JS151 JS120 JS164 

 E = P E = P E = P E = As E = As E = As E = As 

Cuperipheral

-
Cuperipheral 

2.4344(1
0)/ 

2.4537(1
9) 

3.0013(6) 
/  

3.0593(6) 
2.5645(9) 2.6925(7) 2.6668(10) 2.587(4) 2.470(3) 

Cuperipheral

-
Cuperipheral 

4.869(2) 
- 

4.904(2) 
5.8238(8) - - - 5.175(9) - 

Cu-E 
2.2830(1

9)-  
2.437(2) 

2.2446(8) 
-  

2.3909(8) 

2.3545(6)/ 
2.491(7) 

2.4582(6) 
-  

2.5312(6) 

2.4465(8) 
-  

2.5689(8) 

2.382(4) 
-  

2.714(4) 

2.4197(7) 
/ 

2.4488(18
) 

Cucentral-E 

2.2838(1
7)-

2.3132(1
6) 

2.3706(8) 
/ 

2.3909(8) 
2.491(7) 

2.4849(6) 
- 

2.5312(6) 

2.4647(8) 
- 

2.5689(8) 

2.410(3) 
/ 

2.415(3) 
2.4197(7) 

Cuperipheral

-E 

2.3830(1
9)- 

2.460(3) 

2.2446(8) 
/ 

2.2520(8) 
2.3545(6) 

2.4582(6) 
/ 

2.4850(6) 

2.4465(8) 
/ 

2.3604(8) 

2.382(4) 
-  

2.714(4) 

2.4488(18
) 

E-E 
2.213(3) 

- 
2.238(2) 

2.1455(10) 2.1796(11) 2.3901(5)-
2.3905(5) 

2.3816(6) 
/ 

2.3849(6) 

2.3860(16) 
- 

2.4372(2) 

2.4282(14
) 

 

Disorder of compound 6 

The solid-state molecular structure of 6 shows a superposition of four possible species 

(6a- 6d) with different occupancies (Figure S5.1). For the central copper atom Cu1, an 

occupancy of 0.8 was determined, while the acetonitrile molecules have an occupancy 

of 0.59. Hence, the resulting occupancies are 0.39-0.59 for 6a, 0.21-0.41 for 6b, 0-0.20 

for 6c and 6d, respectively. As 6a appears to be the species with the highest 

occupancy, it is considered as the major product in this work.  
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Figure S5.1. Possible occupancies of the compounds 6a-6d in brackets. Only the cationic fragments are 

depicted. Cp-, CO-ligands and hydrogen atoms were omitted for clarity. Thermal ellipsoids are shown at 

50% probability level. 

 

5.4.4 DFT Calculations 

All calculations have been performed with the TURBOMOLE program package24 at 

the RI25-B3LYP26/def2-TZVP27 level of theory. The geometries were optimized in the gas 

phase using the Multipole Accelerated Resolution of Identity (MARI-J)28 approximation 

during the geometry optimization steps. The solvent effects were incorporated as single 

point calculations (without the RI approximation) on the gas phase optimized geometries 

via the Conductor-like Screening Model (COSMO)29 using the dielectric constant of 

CH2Cl2 (ε = 8.930). For the reaction energies the SCF energies, corrected for the 

“outlying charge” were used. The energy minimum structure of 

[{{CpMo(CO)2}2(µ5,η2:2:2:1:1-P2)}2{Cu(CH3CN)2}2Cu]3+ (1) have been proven by frequency 

calculations which shows no imaginary frequencies. The population analysis has been 

performed on the gas phase optimized geometries.  

In order to elucidate the bonding situation in [{{CpMo(CO)2}2(µ5,η2:2:2:1:1-

P2)}2{Cu(CH3CN)2}2Cu]3+ (1) and [{{CpMo(CO)2}2(µ5,η2:2:2:1:1-P2)}{Cu(CH3CN)3}2 

6a (0.39-0.59) 6b (0.21-0.41) 

6c (0-0.20) 6d (0-0.20) 
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Cu(CH3CN)2]3+ (2) DFT calculations at the B3LYP/def2-TZVP level of theory have been 

performed. The optimized geometry of 1 in the gas phase is very similar to the 

experimental structure determined by single crystal X-ray diffraction, i.e. the Cu-Cu 

distances in the gas phase optimized geometry of 2.559 Å are similar to the experimental 

values of 2.4344(10) - 2.4537(19) Å. In the case of 3 the Cu-Cu distances are longer in 

the gas phase optimized geometry (Cu···Cu 3.380 and 3.384 Å) compared to that in the 

solid state (Cu···Cu 3.0013(6) and 3.0593(6) Å). This indicates that the chelating effect 

of a second [{CpMo(CO)2}2(µ,η2:2-P2)] is responsible for the relatively short Cu-Cu 

distances in 1. The energy minimum structure of 1 have been proven by frequency 

calculations which shows no imaginary frequencies.  

The calculations also show that the bonding of the peripheral Cu ions to the Mo2P2 

ligand in 1 takes place via the coordination of the phosphorus lone pairs, while the central 

Cu ion binds to the P-P sigma orbital of the Mo2P2 unit. This is nicely shown by the 

Localized Molecular Orbitals (LMOs) (Figure S5.2). A small orbital contribution of the 

central Cu ion to the LMOs of the P-Cuperipheral bonding of roughly 7% has been observed. 

This is not the case for 2. A comparison of the LMOs of 1 with that of 

[{{CpMo(CO)2}2(µ4,η2:2:1:1-P2)}2{Cu(CH3CN)2}2]2+ (G) shows that the bonding of the Mo2P2 

Ligand to the peripheral Cu ions is very similar (Figure S5.3). The Wiberg Bond Indexes 

(WBIs) of the P-P bond in G is close to unity (1.06), while in 1 and 2 the WBIs of the P-

P bonds are lower (0.78 in 1 and 0.72 in 2) indicating a weaker P-P bond. This is not 

unexpected if consider that the coordination of the P-P sigma bond to the central Cu ion, 

which leads to depletion of the electron density in this bonding orbital. The WBIs of the 

peripheral Cu-P bonds in 1 are slightly lower than in G and 2, i.e. 0.40 – 0.44 in 1 and 

0.53 – 0.55 and 0.55 in G and 2, respectively. The WBIs of the Cucentral-P bonds are 0.29 

(Cu9-P6, Cu9-P8) and 0.40 (Cu9-P5, Cu9-P7) indicating a slightly asymmetric bonding 

and a preference for a linear coordination geometry of the central Cu ion (for labeling 

see Figure S5.4). The calculations indicate that between the three Cu ions an interaction 

is presence since a WBI of 0.11 has been found. 
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Figure S5.2. Selected Localized Molecular Orbitals (LMOs) representing the Cu-P bonding in 

[{{CpMo(CO)2}2(µ5,η2:2:2:1:1-P2)}2{Cu(CH3CN)2}2Cu]3+ (1). Calculated at the B3LYP/def2-TZVP level of theory.  

 

 

 
 
 
 
 
 
 
 
 
 

Figure S5.3. Selected Localized Molecular Orbitals (LMOs) representing the Cu-P bonding in 
[{{CpMo(CO)2}2(µ4,η2:2:1:1-P2)}2{Cu(CH3CN)2}2]2+ (G). Calculated at the B3LYP/def2-TZVP level of theory.  
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Figure S5.4. Optimized geometry and selected geometric parameters of [{{CpMo(CO)2}2(µ5,η2:2:2:1:1-

P2)}2{Cu(CH3CN)2}2Cu]3+ (1) at the B3LYP/def2-TZVP level of theory.  

 

 

 

 
 
 
 
 
 
 
 

 

Figure S5.5. Optimized geometry and selected geometric parameters of [{{CpMo(CO)2}2(µ5,η2:2:2:1:1-

P2)}{Cu(CH3CN)3}2Cu(CH3CN)2]3+ (2) at the B3LYP/def2-TZVP level of theory. 
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Table S5.4. Cartesian coordinates of the optimized geometry of [{{CpMo(CO)2}2(µ5,η2:2:2:1:1-
P2)}2{Cu(CH3CN)2}2Cu]3+ (1).  

Atom         x                    y                  z        

Mo    1.6912025    3.2304868   -1.6450839 

Mo    1.9990712    3.1753909    1.5251320 

Mo   -1.6911198   -3.2304863    1.6449352 

Mo   -1.9989085   -3.1753706   -1.5252966 

P     2.0140406    1.2468919   -0.1183611 

P     0.1175368    2.3689693    0.1213012 

P    -2.0139739   -1.2468899    0.1182200 

P    -0.1174381   -2.3689319   -0.1214054 

Cu    0.0000291    0.0000106    0.0000022 

Cu   -2.2025092    1.2893836    0.1929427 

Cu    2.2024820   -1.2894585   -0.1929527 

N     3.2031299   -1.9347044   -1.8448166 

N     3.2971686   -1.9774515    1.3692341 

N    -3.2974532    1.9775323   -1.3689751 

N    -3.2030104    1.9346190    1.8449216 

O    -0.6164617    5.3932285   -1.5928664 

O    -0.1678400    1.4871114   -3.4694739 

O     5.0917287    3.0572322    0.9267115 

O     1.9237373    6.2091307    0.7100018 

C     0.2100544    4.6114691   -1.5714240 

C     4.0062542   -2.4590205    2.1333324 

C     1.6129283    1.8423368    3.4760805 

C     3.9208651   -2.3934233   -2.6156718 

H     1.5649104    0.7659719    3.4545258 

C     4.8322419   -2.9779966   -3.5815378 

H     4.4869410   -2.7744672   -4.5961615 

H     5.8295464   -2.5541238   -3.4535909 

H     4.8854830   -4.0578123   -3.4336736 

C     0.4890097    2.1223548   -2.7809440 

C     3.9639736    3.1241706    1.0904378 

C     1.9371295    5.0840674    0.9198213 

C     0.5098626    2.7294313    3.3502430 

H    -0.5205034    2.4413040    3.2235791 

C     3.9870577    3.0506915   -2.3027542 
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H     4.6723524    2.3281781   -1.8916364 

C     2.4509201    4.0846951   -3.6751102 

H     1.7913214    4.2881416   -4.5031985 

C     2.7804130    2.6217382    3.6721140 

H     3.7740749    2.2419248    3.8485094 

C     2.4038854    3.9968184    3.6635119 

H     3.0560648    4.8354060    3.8477096 

C     3.1550972    2.8625524   -3.4350418 

H     3.1077270    1.9770220   -4.0476985 

C     3.8116550    4.3845799   -1.8463924 

H     4.3403307    4.8536518   -1.0339160 

C     4.9057555   -3.0723545    3.0919656 

H     4.5602870   -2.8772018    4.1081012 

H     4.9400590   -4.1507364    2.9290735 

H     5.9102525   -2.6634553    2.9723663 

C     2.8620519    5.0184295   -2.6832318 

H     2.5442250    6.0467130   -2.6084615 

C     0.9922637    4.0572015    3.4624085 

H     0.3943782    4.9543015    3.4506854 

O     0.6166455   -5.3931238    1.5928270 

O     0.1677627   -1.4869608    3.4693555 

O    -5.0915979   -3.0573459   -0.9269733 

C    -3.9207591    2.3933049    2.6157848 

O    -1.9235447   -6.2091181   -0.7101974 

C    -0.2099051   -4.6114004    1.5713445 

C    -4.0068335    2.4591301   -2.1327821 

C    -1.6128378   -1.8422793   -3.4762501 

H    -1.5649676   -0.7659077   -3.4547167 

C    -4.8321580    2.9778300    3.5816593 

H    -4.4868439    2.7743092    4.5962801 

H    -5.8294426    2.5539099    3.4537140 

H    -4.8854516    4.0576445    3.4338051 

C    -0.4890258   -2.1222695    2.7808258 

C    -3.9638361   -3.1242285   -1.0906761 

C    -1.9369473   -5.0840523   -0.9200035 

C    -0.5096620   -2.7292219   -3.3503163 
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H     0.5206563   -2.4409565   -3.2235826 

C    -3.9870032   -3.0507762    2.3025008 

H    -4.6722945   -2.3282831    1.8913453 

C    -2.4508998   -4.0847309    3.6749248 

H    -1.7913327   -4.2881566    4.5030426 

C    -2.7802040   -2.6218406   -3.6723419 

H    -3.7739065   -2.2421652   -3.8488061 

C    -2.4034951   -3.9968679   -3.6636908 

H    -3.0555511   -4.8355437   -3.8479202 

C    -3.1551107   -2.8626147    3.4348323 

H    -3.1077981   -1.9770841    4.0474935 

C    -3.8115290   -4.3846542    1.8461390 

H    -4.3401422   -4.8537396    1.0336311 

C    -4.9067171    3.0724886   -3.0910390 

H    -4.5615856    2.8774753   -4.1073158 

H    -4.9410618    4.1508503   -2.9280209 

H    -5.9111347    2.6634838   -2.9711350 

C    -2.8619446   -5.0184740    2.6830194 

H    -2.5440685   -6.0467416    2.6082499 

C    -0.9918782   -4.0570616   -3.4624872 

H    -0.3938750   -4.9540815   -3.4507110 

ENERGIES [a.u.]: 

Total energy            =    -8771.0678177315 

Total energy + OC corr. =    -8771.0608050097 
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Table S5.5. Cartesian coordinates of the optimized geometry of [{{CpMo(CO)2}2(µ4,η2:2:1:1-
P2)}2{Cu(CH3CN)2}2]2+ (G). 

Atom         x                    y                  z        

Mo    1.5636762    3.1668807   -1.6165327 

Mo    1.9579801    3.1052378    1.5232183 

Mo   -1.5636666   -3.1668293    1.6164772 

Mo   -1.9579561   -3.1052715   -1.5232450 

P     1.9073930    1.1535960   -0.1299055 

P     0.0958917    2.1401870    0.1823365 

P    -1.9073760   -1.1535798    0.1298150 

P    -0.0958676   -2.1401677   -0.1824039 

Cu   -2.1083992    1.2226720    0.2534735 

Cu    2.1084037   -1.2226449   -0.2535302 

N     3.2021402   -1.8576163   -1.8971982 

N     3.2498971   -1.9830596    1.2718297 

N    -3.2499522    1.9831285   -1.2718143 

N    -3.2020532    1.8575402    1.8972017 

O    -0.7461471    5.2966273   -1.3229077 

O    -0.4426161    1.5363698   -3.3821857 

O     4.9841502    2.4773146    0.9716905 

O     2.3288308    6.0567915    0.5634651 

C     0.0855754    4.5165659   -1.3875733 

C     3.9103554   -2.4517902    2.0846672 

C     1.3130961    1.9587824    3.5293399 

C     3.9380449   -2.2724902   -2.6750032 

H     1.1485648    0.8938865    3.5562723 

C     4.8717681   -2.8016244   -3.6526463 

H     4.5358610   -2.5596224   -4.6617154 

H     5.8603816   -2.3686699   -3.4940698 

H     4.9399049   -3.8856517   -3.5517270 

C     0.2689951    2.1169995   -2.6937695 

C     3.8725375    2.7206188    1.1183011 

C     2.1775047    4.9399401    0.8010644 

C     0.3222224    2.9533387    3.2924922 

H    -0.7243868    2.7687222    3.1181166 

C     3.8174540    2.8551443   -2.4057941 

H     4.4638392    2.0629474   -2.0672763 
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C     2.2879367    4.0685026   -3.6333689 

H     1.5984820    4.3598306   -4.4086184 

C     2.5475306    2.6181898    3.7475446 

H     3.4841872    2.1452593    3.9948310 

C     2.3270913    4.0211236    3.6346224 

H     3.0605351    4.7943078    3.7960514 

C     2.9144748    2.7909712   -3.4969968 

H     2.7642132    1.9431218   -4.1452510 

C     3.7550345    4.1647316   -1.8655296 

H     4.3462599    4.5404761   -1.0479848 

C     4.7450875   -3.0479269    3.1111154 

H     4.3361281   -2.8269346    4.0977569 

H     4.7824820   -4.1297320    2.9764332 

H     5.7572488   -2.6464141    3.0473373 

C     2.8062885    4.9103487   -2.6099315 

H     2.5578143    5.9475570   -2.4519301 

C     0.9411198    4.2222759    3.3565873 

H     0.4502401    5.1760798    3.2506291 

O     0.7461838   -5.2965665    1.3229681 

O     0.4425859   -1.5362251    3.3820831 

O    -4.9841062   -2.4773192   -0.9716678 

C    -3.9379298    2.2723811    2.6750495 

O    -2.3287831   -6.0568063   -0.5634162 

C    -0.0855497   -4.5165111    1.3875810 

C    -3.9104806    2.4518472   -2.0846020 

C    -1.3131265   -1.9588469   -3.5294004 

H    -1.1486218   -0.8939479   -3.5563648 

C    -4.8716200    2.8014665    3.6527426 

H    -4.5356620    2.5594394    4.6617874 

H    -5.8602303    2.3684954    3.4941962 

H    -4.9397811    3.8854954    3.5518592 

C    -0.2690166   -2.1168923    2.6936901 

C    -3.8724986   -2.7206360   -1.1183021 

C    -2.1774591   -4.9399596   -0.8010407 

C    -0.3222230   -2.9533705   -3.2925424 

H     0.7243845   -2.7687227   -3.1181901 
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C    -3.8174433   -2.8550475    2.4057290 

H    -4.4638171   -2.0628486    2.0671970 

C    -2.2879497   -4.0684019    3.6333269 

H    -1.5984997   -4.3597230    4.4085830 

C    -2.5475426   -2.6182970   -3.7475766 

H    -3.4842154   -2.1454029   -3.9948717 

C    -2.3270669   -4.0212218   -3.6346163 

H    -3.0604936   -4.7944305   -3.7960086 

C    -2.9144676   -2.7908665    3.4969337 

H    -2.7641982   -1.9430113    4.1451758 

C    -3.7550429   -4.1646454    1.8654843 

H    -4.3462762   -4.5403997    1.0479536 

C    -4.7452972    3.0479573   -3.1109918 

H    -4.3363972    2.8269731   -4.0976596 

H    -4.7827109    4.1297620   -2.9763075 

H    -5.7574413    2.6464135   -3.0471427 

C    -2.8063057   -4.9102603    2.6099036 

H    -2.5578362   -5.9474710    2.4519163 

C    -0.9410868   -4.2223269   -3.3565996 

H    -0.4501788   -5.1761140   -3.2506200 

 

ENERGIES [a.u.]: 

Total energy            =    -7130.7434091722 

Total energy + OC corr. =    -7130.7381750726 
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Table S5.6. Cartesian coordinates of the optimized geometry of [{{CpMo(CO)2}2(µ5,η2:2:2:1:1-
P2)}{Cu(CH3CN)3}2Cu(CH3CN)2]3+ (2). 

Atom         x                    y                  z   

Mo   -1.4764508   -0.2411396    2.2242238 

Mo    1.5859373    0.3398631    2.1283441 

Cu    0.5357696   -3.1609302   -0.5573098 

Cu   -0.0546305   -0.0354771   -1.7126697 

Cu   -0.5675516    3.1373673   -0.6679758 

P     0.2859753   -1.0313115    0.5297532 

P    -0.2664491    1.0573640    0.4990335 

O    -0.7712909   -3.1364112    3.2472733 

O    -3.3745933   -1.5215576    0.0825565 

O     0.9361374    3.2804819    3.0552226 

O     3.3625655    1.5183828   -0.1703459 

N     2.2573691   -4.1077019    0.1313365 

N    -0.9673046   -4.4177119    0.0603291 

N     0.6634930   -3.4792297   -2.5766409 

N     1.5849703    0.2477298   -2.8167359 

N    -1.7610229   -0.3698998   -2.6959545 

N     0.9932545    4.3946439   -0.2190323 

N    -2.2218444    4.1425348    0.0995445 

N    -0.8424115    3.3628348   -2.6844520 

C    -3.4003863   -0.1147126    3.5390969 

H    -4.1517834   -0.8874330    3.5406526 

C    -3.3798451    1.0416245    2.7013857 

H    -4.1062132    1.2847179    1.9431153 

C    -2.2755629    1.8423754    3.0871317 

H    -2.0066602    2.7946501    2.6620126 

C    -1.6167154    1.1963373    4.1682370 

H    -0.7758360    1.5812099    4.7191988 

C    -2.3047089   -0.0108630    4.4406324 

H    -2.0725511   -0.7072175    5.2308782 

C     1.8323513   -1.0097031    4.1240694 

H     1.0232325   -1.3677336    4.7371305 

C     2.5339941    0.2068563    4.3042501 

H     2.3453035    0.9384394    5.0740274 

C     3.5787146    0.2681147    3.3405343 
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H     4.3284669    1.0388822    3.2662879 

C     3.5126854   -0.9244323    2.5577320 

H     4.1962190   -1.2026163    1.7722751 

C     2.4312727   -1.7047699    3.0384909 

H     2.1403162   -2.6746529    2.6719053 

C    -0.9929313   -2.0876538    2.8479119 

C    -2.6431024   -1.0668105    0.8369939 

C     1.1364659    2.2140814    2.6931802 

C     2.6742313    1.0998295    0.6434183 

C     3.1014519   -4.8430872    0.3891135 

C     4.1630605   -5.7786260    0.7132724 

H     4.0230217   -6.7048364    0.1538839 

H     4.1482603   -6.0056496    1.7802235 

H     5.1323703   -5.3512476    0.4531951 

C    -1.6936642   -5.2433166    0.3897430 

C    -2.6061500   -6.2910282    0.8082460 

H    -3.3082971   -6.5179664    0.0049503 

H    -3.1635979   -5.9702062    1.6891246 

H    -2.0453483   -7.1938620    1.0544221 

C     0.7555711   -3.9374140   -3.6253772 

C     0.8730164   -4.5310175   -4.9448730 

H     1.8699007   -4.9547490   -5.0747125 

H     0.7051886   -3.7766828   -5.7144927 

H     0.1352107   -5.3263219   -5.0608094 

C     2.5636797    0.4551461   -3.3788906 

C     3.8058004    0.7223676   -4.0782235 

H     3.6040292    1.2363183   -5.0189633 

H     4.3228553   -0.2142475   -4.2912159 

H     4.4485672    1.3491813   -3.4584009 

C    -2.7747529   -0.6045561   -3.1799138 

C    -4.0607101   -0.9060665   -3.7787612 

H    -3.9223923   -1.4761909   -4.6983574 

H    -4.5893892    0.0189624   -4.0127896 

H    -4.6617571   -1.4913578   -3.0813077 

C     1.7565063    5.2179778    0.0202725 

C     2.7162374    6.2624289    0.3259698 
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H     2.5455974    7.1246369   -0.3202861 

H     3.7311783    5.8958400    0.1671210 

H     2.6076961    6.5724308    1.3662829 

C    -3.0343808    4.9040300    0.3817460 

C    -4.0559785    5.8727694    0.7354490 

H    -4.8241274    5.9039099   -0.0384878 

H    -3.6089631    6.8633526    0.8317015 

H    -4.5194586    5.6009521    1.6847895 

C    -1.0086860    3.7706895   -3.7447588 

C    -1.2193756    4.3008090   -5.0796070 

H    -2.2174615    4.7349241   -5.1541237 

H    -1.1215932    3.5068204   -5.8208900 

H    -0.4819956    5.0765312   -5.2913130 

 

ENERGIES [a.u.]: 

Total energy            =    -7130.7434091722 

Total energy + OC corr. =    -7130.7381750726 
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5.4.5 Results and Discussion – Additional Compounds 

During the studies on this work, additional experiments were performed. The additional 

compounds obtained during these studies will be discussed in the following. 

[{{CpMo(CO)2}2(µ4,η2:2:2:1-E2)}2{Cu(CH3CN)2}Cu(CH3CN)][TEF]2 (E = 56% P, 44% As) 
(8) 

The P2 ligand complex A was reacted with [Cu(CH3CN)4)[TEF] (C, [TEF]- = 

[Al{OC(CF3)3}4]-) and the As2 ligand complex B in one reaction in order to synthesize a 

mixed coordination compound. Single crystal X-ray analysis revealed the formation of a 

Cu2E4
2+

 unit (Figure S5.6) with the formula [{{CpMo(CO)2}2(µ4,η2:2:2:1-

E1
2)}{{CpMo(CO)2}2(µ4,η2:2:2:1-E2

2)}{Cu(CH3CN)2}Cu(CH3CN)][TEF]2 (E1 = 50% P, 50% 

As; E2 = 62% As, 38 % P) (8). 

 

 

Figure S5.6: Molecular structure of the cationic fragment of 8 in the solid state. Cp- and CO- ligands and 

hydrogen atoms are omitted for clarity. Thermal ellipsoids are shown at 50% probability level. Average of 
selected bond lengths [Å] and angles [°]: Cu1-Cu2 2.6494(7), Cu1-N1 1.994(3), Cu2-N3 1.982(3), Cu2-N2 

1.988(3), N1-Cu1-Cu2 97.79(9), N3-Cu2-Cu1 146.96(9), N2-Cu2-Cu1 105.77(9), N3-Cu2-N2 107.0(1). 

Crystals of compound 8 were obtained as clear orange blocks in 97% yield (referred to 

A) by diffusion of n-pentane into the crude reaction mixture. 8 crystallized in the triclinic 

space group P1". Single crystal X-ray analysis (Figure S5.6) showed that 8 is isostructural 

to compounds 4 and 5. The E2 position have an As2:P2 ratio of 50:50 and 62:38, 

respectively. The stoichiometry of P2:As2 in the compound therefore is approximately 

1.12:0.88. Compound 8 could be also be characterized by NMR and mass spectrometry, 

IR spectroscopy and elemental analysis. In the 1H NMR (400 MHz, CD3CN, r.t.) of 8, the 

signals for the P2 and As2 ligand complexes can be observed. The signal in the 31P NMR 

50% P2/As2 

62% P2/ 
38% As2 
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is observed at -47.5 ppm. In the 13C{1H} NMR, signals for the CO and Cp ligand of P2 

and As2 are observed. In the positive ESI mass spectrum, the signals for 

[Cu(CH3CN){Cp2Mo2(CO)4P2]+, [Cu{Cp2Mo2(CO)4P2}2]+, 

[Cu(CH3CN){Cp2Mo2(CO)4As2}]+, [Cu{Cp2Mo2(CO)4P2}{Cp2Mo2(CO)4As2}]+ and 

[Cu{Cp2Mo2(CO)4As2}2]+ are detected. Compound 8 is well soluble in acetonitrile, 

moderately soluble in dichloromethane and insoluble in other common solvents. 

Table S5.7. Comparison of selected bond length [Å] and angles [°] of compound 8. 

 E = P E = As 

E1-E2 2.17(2), 2.258(8) 2.314(7), 2.38(1) 

Cu1-E 2.402(6) - 2.489(5) 2.422(5) - 2.531(8) 

Cu2-E2 

Cu2-E3 

2.373(7) 

2.469(19) 

2.344(5) 

2.409(8) 

E-Mo 2.474(6) - 2.608(10) 2.491(5) - 2.633(5) 

E1-Cu1-Cu2, 
E4-Cu1-Cu2 109.7(1), 107.1(3) 110.2(1), 107.8(1) 

E2-Cu1-Cu2, 
E3-Cu1-Cu2 54.9(2), 57.8(4) 54.2(1), 55.4(2) 

E1-Cu1-E2, 
E3-Cu1-E4 55.0(2), 53.2(5) 56.2(2), 57.1(2) 

E1-Cu1-E3 150.6(4) 152.0(2) 

E1-Cu1-E4 118.4(3) 117.1(2) 

E2-Cu1-E3 105.2(4) 103.3(2) 

E2-Cu1-E4 128.0(2) 127.4(2) 

N1-Cu1-E 101.9(4) - 115.5(2) 99.89(2) - 115.9(1) 

Cu1-Cu2-E2, 
Cu1-Cu2-E3 59.1(1), 57.0(5) 59.4(1), 59.8(2) 

E2-Cu2-E3 108.2(5) 111.9(2) 

N-Cu2-E 103.5(4) - 117.0(4) 102.1(2) - 114.6(2) 
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Synthesis of [{{CpMo(CO)2}2(µ4,η2:2:2:1-E1
2)}{{CpMo(CO)2}2(µ4,η2:2:2:1-E2

2)}{Cu(CH3CN)2} 

Cu(CH3CN)][TEF]2 (E1 = 50%P, 50% As; E2 = 62% As, 38 % P) (8): 

 

The P2 ligand complex A (1 eq., 25 mg, 0.05 mmol), the As2 ligand complex B (1.5 eq., 

148.8 mg, 0.1 mmol) and the CuI salt C (1 eq., 29.4 mg, 0.05 mmol) were each dissolved 

in dichloromethane (4 mL). The solution of B was slowly added to the solution of A and 

the mixture stirred for half an hour. The solution of C was slowly added and the reaction 

stirred for 3 h. The crude reaction mixture was filtered and layered with n-pentane. After 

one day, crystals of compound 8 were obtained as clear orange blocks. The supernatant 

was decanted off, the remaining crystals washed with n-pentane and dried in vacuo. 

Crystalline Yield: 72 mg (97%, related to A).  
1H NMR δ[ppm] = 5.32 (s, C5H5, P2), 5.26 (s, C5H5, As2).  
13C {1H} NMR δ[ppm] = 226.6 (s, CO), 87.5 (s, C5H5, P2), 85.9 (s, C5H5, As2).  
31P {1H} NMR δ[ppm] = -47.5 (s).  
19F {1H} NMR δ[ppm] = -74.8 (s).  

Positive ion ESI-MS (CH3CN, RT): m/z (%) = 599.77 (100) 

[Cu(CH3CN){Cp2Mo2(CO)4P2]+, 1056.56 (60) [Cu{Cp2Mo2(CO)4P2}2]+, 689.67 (100) 

[Cu(CH3CN){Cp2Mo2(CO)4As2}]+, 1144.46 (64) [Cu{Cp2Mo2(CO)4P2}{Cp2Mo2(CO)4As2}]+, 

1231.35 (58) [Cu{Cp2Mo2(CO)4As2}2]+.  

Negative ion ESI-MS (CH3CN, RT): m/z (%) = 966.9 (100) [Al(OC(CF3)3)4]-.  

Elemental analysis calculated for C66H29Al2As1.8Cu2F72Mo4N3O16P2.2 (3255,6 g·mol-1): 

24.3 %C, 0.90 %H, 1.29 %N; Found: 24.53 %C, 0.79 %H, 1.26 %N. 

IR (solid, CO bands): 𝑣̃/cm-1: 2015 (vs), 1991 (s), 1980 (s), 1967 (vs), 1954 (vs), 1941 

(s), 1933 (s), 1918 (vs).  

Crystal Structure Analysis: The crystal was selected and measured on a Gemini Ultra 

diffractometer equipped with an AtlasS2 CCD detector. The crystal was kept at T = 

123(1) K during data collection. Data collection and reduction was performed with 

CrysAlisPro [Version 171.40.14a, 2018].19 An analytical numeric absorption correction 

using a multifaceted crystal model based on expressions derived by by R.C. Clark & J.S. 

Reid20 and an empirical absorption correction using spherical harmonics as implemented 
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in SCALE3 ABSPACK was applied. Using Olex2,21 the structure was solved with 

ShelXT22 and a least-square refinement on F2 was carried out with ShelXL.23 All non-

hydrogen atoms were refined anisotropically. Hydrogen atoms at the carbon atoms were 

located in idealized positions and refined isotropically according to the riding model. 

Compound 8: The asymmetric unit contains a CH2Cl2 solvent molecule, two 

[Al{OC(CF3)3}4]- anions and the cationic complex [{CpMo(CO)2}2(µ4,η2:2:2:1-

E2)}2{Cu(CH3CN)2}Cu(CH3CN)] (E = P, As). In this cationic complex, the complex 

fragments A and B superpose each other in a ratio of 50:50 and 62:38, respectively. 

Further, one of the two [Al{OC(CF3)3}4]- anions shows a disorder of two OC(CF3)3} groups 

in the ratio 86:14. The second [Al{OC(CF3)3}4]- anion shows a disorder of three of the 

four OC(CF3)3} groups over two (56:44; 64:36) and three (40:30:30) positions 

respectively. To describe these disorders the restrains SADI, ISOR, SIMU and RIGU 

were applied. 
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Table S5.8. Crystallographic data and details of diffraction experiments for compound 8. 

Compound 8 · CH2Cl2 
 Data set 
(internal naming) abs445 

Formula  
C67H31Al2As1.76Cl2Cu2F72 

Mo4N3O16P2.24 
Dcalc. / g · cm-3  2.152 
m/mm-1  7.707 
Formula Weight  3338.88 
Colour  clear orange 
Shape  block 
Size/mm3  0.39×0.31×0.22 
T/K  123(1) 
Crystal System  triclinic 
Space Group P-1 
a/Å  15.1935(3) 
b/Å  15.8577(3) 
c/Å  23.6045(5) 
α/°  72.586(2) 
β/°  76.091(2) 
γ/°  74.721(2) 
V/Å3  5153.4(2) 
Z  2 
Z'  1 
Wavelength/Å  1.54184 
Radiation type  Cu Kα 
Qmin/°  3.653 
Qmax/°  73.264 
Measured Refl.  57168 
Independent Refl.  20098 
Reflections with I > 2(I)  19381 
Rint  0.0293 
Parameters  2299 
Restraints  1599 
Largest Peak  0.923 
Deepest Hole  -0.753 
GooF  1.056 
wR2 (all data)  0.0854 
wR2  0.0844 
R1 (all data)  0.0354 
R1  0.0341 
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[{{CpMo(CO)2}2(µ4,η2:2:1:1-P2)}2{CpMo(CO)2}2(µ3,η2:2:2-P2)}{CpMo(CO)2}2(µ3,η2:2:1-P2)}-
{Cu(CH3CN)}2][BF4]2 (9) 

Compound 9 was obtained by the reaction of A with the CuI salt [Cu(CH3CN)4][BF4] (D) 

and characterized by single crystal X-ray crystallography (Figure S5.7). The reaction was 

performed in CH2Cl2 using a 1:1 stoichiometry. The storage of the reaction mixture 

at -30°C resulted in crystals of 9, which crystallize as clear intense red blocks in the 

triclinic space group P-1. Single crystal X-ray analysis revealed the presence of two units 

of A, which are coordinated in a η2:2:1:1-coordination mode to two Cu atoms, resulting in 

a Cu2P4 dimer. Two additional complexes A coordinated to the CuI centers in a η2:2:1 and 

η2:2:1 coordination mode, respectively. Additionally, each CuI center is coordinated by one 

acetonitrile ligand. 

 

 

 

 

 

 

Figure S5.7: Molecular structure of the cation of compound 9 in the solid state. Cp- and CO-ligands, the 
hydrogen atoms and the minor parts of the disorder are omitted for clarity. Thermal ellipsoids are shown at 

50% probability level. Average of selected bond lengths [Å] and angles [°]: Cu1-P1 2.3339(5), Cu1-P6 

2.3267(5), Cu1-P7 2.2844(5), Cu1-N2 2.017(2), Cu2-P2 2.3357(6), Cu2-P3 2.6306(7), Cu2-P4 2.4184(8), 
Cu2-P5 2.3214(6), Cu2-N1 2.080(2), P6-Cu1-P1 114.76(2), P7-Cu1-P1 116.61(2), P7-Cu1-P6 110.99(2), 

N2-Cu1-P1 98.33(5), N2-Cu1-P6 100.97(5), N2-Cu1-P7 113.44(5), P2-Cu2-P3 92.49(2), P2-Cu2-P4 

137.19(2), P4-Cu2-P3 49.55(2), P5-Cu2-P2 109.32(2), P5-Cu2-P3 121.59(3), P5-Cu2-P4 108.06(2), N1-
Cu2-P2 96.32(5), N1-Cu2-P3 131.54(5), N1-Cu2-P4 97.07(5), N1-Cu2-P5 99.97(5).  

 

The 1H NMR spectra (400 MHz, CD3CN, r.t.) of 9 reveals signals for the Cp ligand and 

free acetonitrile. In the 31P NMR spectra, a chemical shift of -49.1 ppm (s) was observed. 

In the 13C {1H} NMR, the signals referring to the CO- and Cp-ligands are observed. In the 

positive ion ESI mass spectrum, signals for [Cu(CH3CN)2]+, 

[Cu(CH3CN){Cp2Mo2(CO)4P2]+ and [Cu{Cp2Mo2(CO)4P2}2]+ were detected. 
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Synthesis of [{{CpMo(CO)2}2(µ4,η2:2:1:1-P2)}2{CpMo(CO)2}2(µ3,η2:2:2-

P2)}{CpMo(CO)2}2(µ3,η2:2:1-P2)}{Cu(CH3CN)}2][BF4]2 (9): 

 

A solution of A (35 mg, 0.07 mmol) in CH2Cl2 (5 mL) was added dropwise to a solution 

of D (22 mg, 0.07 mmol) in CH2Cl2 (5 mL). The clear reaction mixture was stirred for 3h, 

filtered and stored at -30 °C. After one day, compound 9 was obtained as clear orange 

plates. The supernatant was decanted off, the remaining crystals washed with n-pentane 

and dried in vacuo. Crystalline Yield: 23 mg (28 %, related to A).  
1H NMR (400 MHz, CD3CN): d = 5.30 (s, 10H, C5H5), 2.11 (s, CH3CN).  
31P {1H} NMR (400 MHz, CD3CN): d  = -49.10 (s).  
13C {1H} NMR (400 MHz, CD3CN): d = 226.5 (s, CO), 87.5 (s, C5H5).  
19F {1H} NMR (400 MHz, CD3CN): d = -150.7 (s).  
11B {1H} NMR (400 MHz, CD3CN): d = 0.57 (s).  

Positive ion ESI-MS (CH3CN, RT): m/z (%) = 144.98 (100) [Cu(CH3CN)2]+, 599.77 (100) 

[Cu(CH3CN){Cp2Mo2(CO)4P2]+, 1056.56 (60) [Cu{Cp2Mo2(CO)4P2}2]+.  

Negative ion ESI-MS (CH3CN, RT): m/z (%) = 87.00 (100) [BF4]-. 

Elemental analysis, calc. for B2C62Cl4Cu2F8H50Mo8N2O16P8 (= 9 · 2 CH2Cl2) (2549 g/mol) 

(%): C, 29.35; H, 1.99; N 1.10; found: C, 29.13; H, 1.98; N, 1.04. 

IR (solid, CO bands): 𝑣̃/cm-1: 1972 (s), 1932 (s), 1912 (s).  

Crystal Structure Analysis: The crystal was selected and measured on a Gemini Ultra 

diffractometer equipped with an AtlasS2 CCD detector. The crystal was kept at T = 

123(1) K during data collection. Data collection and reduction were performed with 

CrysAlisPro [Version 171.39.37b, 2017].19 An analytical numeric absorption correction 

using a multifaceted crystal model based on expressions derived by by R.C. Clark & J.S. 

Reid20 and an empirical absorption correction using spherical harmonics as implemented 

in SCALE3 ABSPACK was applied. Using Olex2,21 the structure was solved with 

ShelXT22 and a least-square refinement on F2 was carried out with ShelXL.21 All non-

hydrogen atoms were refined anisotropically. Hydrogen atoms at the carbon atoms were 

located in idealized positions and refined isotropically according to the riding model. 
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Compound 9: The asymmetric unit contains two CH2Cl2 and two CH3CN solvent 

molecules, which are heavily disordered. Therefore, a solvent mask was calculated and 

268 electrons were found in a volume of 774 Å3 in two voids per unit cell. This is 

consistent with the presence of two CH2Cl2 and two CH3CN solvent molecules per 

asymmetric unit, which account for 256 electrons per unit cell. The asymmetric unit 

further contains the cationic complex [{{CpMo(CO)2}2(µ4,η2:2:1:1-

P2)}2{CpMo(CO)2}2(µ3,η2:2:2-P2)}{CpMo(CO)2}2(µ3,η2:2:1-P2)}-{Cu(CH3CN)}2]2+ and two BF4 

anions. One of the two BF4 anions is disordered over three positions (39:36:25), a Cu 

atom is disordered over two positions (96:4) and further both of the terminal complexes 

A are disordered over two positions (96:4; 93:7). To model this disorders the restraints 

DFIX, SADI, FLAT, ISOR, SIMU and RIGU were applied. 
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Table S9. Crystallographic data and details of diffraction experiments for compound 9. 

Compound Compound 9 · 2 CH2Cl2 · 2 CH3CN 

Data set 
(internal naming) 

abs444b_2 

Formula  B2C66Cl4Cu2F8H56Mo8N4O16P8 

Dcalc. / g · cm-3  2.247 
m/mm-1  2.066 
Formula Weight  2952.99 
Colour  clear intense red 
Shape  block 
Size/mm3  0.38×0.31×0.28 
T/K  123.15 
Crystal System  triclinic 
Space Group P-1 
a/Å  14.5777(3) 
b/Å  14.8078(3) 
c/Å  23.6001(4) 
α/°  100.584(2) 
β/°  93.8500(10) 
γ/°  117.715(2) 
V/Å3  4364.53(16) 
Z  2 
Z'  1 
Wavelength/Å  0.71073 
Radiation type  Mo Kα 
Qmin/°  3.348 
Qmax/°  32.546 
Measured Refl.  78860 
Independent Refl.  28165 
Reflections with I > 2(I)  23497 
Rint  0.0267 
Parameters  1265 
Restraints  497 
Largest Peak  1.222 
Deepest Hole  -0.975 
GooF  1.030 
wR2 (all data)  0.0587 
wR2  0.0557 
R1 (all data)  0.0378 
R1  0.0281 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



130 | 5 .  U n p r e c e d e n t e d  l i n k i n g  b e h a v i o r  o f  M o 2 E 2  
 

[{Cp2(CO)4Mo2(µ3,η2:2:2-As2)}2(η1-CH3CN)Cu][TEF] (10) 
  
As mentioned before, the E2/CuI systems are highly dynamic in solution. Due to this, the 

compound [{Cp2(CO)4Mo2(µ,η2:2:2-As2)}2-(CH3CN)Cu][TEF] (10), once co-crystallized 

with compound 4. Except of preliminary X-ray measurements (Figure S5.8), no further 

characterization was performed for 10. The measurement revealed a Cu(I) monomer 

with the Cu(I) center η2:2:1-coordinated by two molecules of As2 and saturated with one 

acetonitrile ligand. 

 

 

 

 

Figure S5.8. Molecular structure of the cationic fragment of compound 10. Cp-, Co-ligands and hydrogen 
atoms are omitted for clarity. Thermal ellipsoids are shown at 50% probability level.  

Crystal Structure Analysis: The crystal was selected and measured on a GV50 

diffractometer equipped with a TitanS2 CCD detector. The crystal was kept at T = 153(1) 

K during data collection. Data collection and reduction were performed with CrysAlisPro 

[Version V1.171.41.21a, 2019].19 A numerical absorption correction based on gaussian 

integration over a multifaceted crystal model and an empirical absorption correction using 

spherical harmonics as implemented in SCALE3 ABSPACK was applied. Using Olex2,21 

the structure was solved with ShelXT22 and a least-square refinement on F2 was carried 

out with ShelXL.23 All non-hydrogen atoms were refined anisotropically. Hydrogen atoms 

at the carbon atoms were located in idealized positions and refined isotropically 

according to the riding model. 
 

Compound 10: The asymmetric unit contains two CH2Cl2 solvent molecule, two 

independent units of the cationic complex [{Cp2(CO)4Mo2(µ3,η2:2:2-As2)}2(η1-CH3CN)Cu]+ 

and two [Al{OC(CF3)3}4]- anions. For one of the complexes [{Cp2Mo2(CO)4(µ3,η2:2:2-

As2)}2(η1-CH3CN)Cu]+ a [Cp2Mo2(CO)4(As2)] unit and a CH3CN molecule are disordered 

over two positions (78:22; 68:32). Further, one of the CH2Cl2 molecules is disordered 

(72:28). One of the two [Al{OC(CF3)3}4]- anions shows a disorder of one OC(CF3)3 group 

over two positions (73:27). For the second [Al{OC(CF3)3}4]- anion all four OC(CF3)3 

groups are disordered over two positions (60:40; 54:46; 55:45; 54:46). To describe this 

disorder the restraints DFIX, SADI and SIMU were applied. 
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Table S5.10. Crystallographic data and details of diffraction experiments for compound 10. 

 
Compound 10 · 2 CH2Cl2 
 Data set 
(internal naming) JS200_3 

Formula  
C47H25AlAs4Cl2Cu 

F36Mo4NO12 
Dcalc. / g · cm-3  2.223 
m/mm-1  10.465 
Formula Weight  2324.54 
Colour  clear orange 
Shape  needle 
Size/mm3  0.50×0.09×0.06 
T/K  152.96(13) 
Crystal System  triclinic 
Space Group P-1 
a/Å  11.9908(2) 
b/Å  19.2373(3) 
c/Å  31.4734(3) 
α/°  87.8510(10) 
β/°  88.7130(10) 
γ/°  73.2230(10) 
V/Å3  6945.57(18) 
Z  4 
Z'  2 
Wavelength/Å  1.54184 
Radiation type  Cu Kα 
Qmin/°  3.637 
Qmax/°  74.218 
Measured Refl.  79129 
Independent Refl.  27517 
Reflections with I > 2(I)  25208 
Rint  0.0738 
Parameters  2614 
Restraints  1833 
Largest Peak  1.468 
Deepest Hole  -1.351 
GooF  1.101 
wR2 (all data)  0.1825 
wR2  0.1803 
R1 (all data)  0.0784 
R1  0.746  
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6. Metal-Deficient Supramolecule Based on a Fivefold-
Symmetric Building Block 

Abstract: An unprecedented cationic supramolecule [(Cp’’Fe(η5-
P5))12{CuNCMe}8]8+ 2.66 nm in diameter was selectively isolated as a salt of 
the weakly coordinating anion [Al{OC(CF3)3}4]- for the first time and 
characterized by X-ray structure analysis, PXRD, NMR spectroscopy and 
mass spectrometry. Its metal-deficient core contains the lowest possible 
number of Cu atoms to connect 12 pentaphosphaferrocene units providing a 
supramolecule with fullerene topology which, topologically, also represents 
the simplest homologue in the family of metal-deficient 
pentaphosphaferrocene-based supramolecules [{CpRFe(η5-P5)}12(CuX)20-n]. 
The 12 vacant metal sites between cyclo-P5 rings, the largest number 
attained to date, make this compound a facile precursor for potential inner 
and outer modification of the core as well as for functionalization via the 
substitution of labile acetonitrile ligands. 

6.1 Introduction 

Giant self-assembled supramolecules based on metal cations and rigid bi- or 

multidentate organic ligands have been met with growing interest over the last decade.1 

They represent an attractive combination of solubility and functionality such as selective 

encapsulation of enantiomers and catalytic as well as photochemical activity.2 Generally, 

these supramolecules contain dozens of metal atoms in their hollow cores as, for 

example, spherical [Pd30(L1)60](BF4)60, [Pd48(L1)96](BF4)60 (L1 = selenophene-based 

spacer), octahedral [M24{pyrogallol[4]arene}6] (M = Cu, Fe, Mg, V), or icosahedral 

[M48{μ3-L2}18{TC4A}12] (M = Co, Ni; H4TC4A = p-tert-butylthiacalix[4]arene; L2 = 1H-

tetrazol-1-yl)isophthalate) (Figure S6.14 in the Supporting Information).3 Although 

usually all positions of metal cations in the supramolecule are fully occupied, it is 

nonetheless entirely conceivable that some of these metal cations are absent without 

harming the integrity of the core of the supramolecule in any way. Such ‘metal-deficient’ 

supramolecules might be interesting as a precursor for the design of mixed-metal 

supramolecules via subsequent saturation of vacant coordination sites with 

heterometals, opening a way to tailor the total charge/spin state of the supramolecule or 

electronic structure of the spacers. Moreover, modification by additional ligands 

coordinated to heterometallic sites becomes possible. Nevertheless, the general 

principles of achieving such metal-deficient supramolecules have not been developed.  
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During our studies of coordination chemistry of polyphosphorus ligand complexes as for 

instance pentaphosphaferrocene, [CpRFe(η5-P5)] (CpR = C5(CH2Ph)5 (CpBn, 1a), C5(CH3)5 

(Cp*, 1b), 1,3-C5H3tBu2 (Cp'', 1c)) we found a way to construct various giant 

supramolecules reaching 4.6 nm in size via coordination of Cu cations to P atoms of 

cyclo-P5 rings.4 In a homologous family of supramolecules with the formula [{CpRFe(η5-

P5)}12(CuX)20] (2: CpR = Cp*, CpBn; X = Cl, Br, Figure 6.1a), all phosphorus atoms of all 

cyclo-P5 rings coordinate towards Cu cations, ideally forming an 80-vertex {Cu20P60} core 

with the fullerene Ih-C80 topology and a pentagonal dodecahedral arrangement of Cu 

(Figure 6.1b). However, the comprehensive study of 1a- and 1b-based supramolecules 

in solid state and solution revealed the fact that some of the {CuX} sites are statistically 

vacant. Therefore, instead of an individual compound, a solid solution of various 

[{1a}12(CuX)20-n] n-vacant supramolecules with 0 < n < 4.8 crystallizes in the solid state.4f 

The question arises as to how an individual compound containing a supramolecule with 

given n can be selectively obtained? Moreover, what is the maximal achievable value of 

metal-deficiency n?  

 

Figure 6.1. a) Spherical supramolecule [{CpRFe(η5-P5)}12(CuX)20] (2), b) its inorganic core {Cu20P60}, 
corresponding icosahedral representation for centres of cyclo-P5 units and dodecahedral for copper. c) 

Hypothetic 12-fold deficient {Cu8P60} core and its respective polyhedral representation. D) Coordination 
environment of Cu. 

All [{1}12(CuX)20-n] 80-vertex supramolecules known so far are neutral due to the 

presence of copper-bonded halide anions X and are similar in size and shape as 

predefined by substituted cyclopentadienyl ligands of 12 units of 1. Obviously, this is the 
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reason why they readily co-crystallize. At the same time, molecular modeling of these 

spherical systems revealed that eight copper(I) cations is the minimal number to keep a 

sphere of this overall size together, if they are distributed in a cube-like arrangement 

(Figure 6.1c), leaving 20 - 8 = 12 vacant metal sites. After numerous attempts, such a 

super-vacant sphere was considered as unattainable in both 1a/CuX and 1b/CuX 

systems.4b,f  

6.2 Results and Discussion 

One of the possible approaches to control the formation of a Cu-deficient sphere with a 

given n is to obtain positively charged analogues of the supramolecule 2 using weakly 

coordinating anions (WCAs). As the stability of the ionic structure strongly depends on 

the mutual size and charge of ions (function of n in the present case), the size of the 

WCA should play an important role. Firstly, every additional metal position will require an 

additional counter anion, and with a large WCA, different [{1}12Cu20-n](20-n)+(WCA-)20-n salts 

are not be able to crystallize in the same structure type. In this way, an undesirable co-

crystallization of salts with different n can be prevented. In addition, different salts are 

also expected to have different solubilities, which allows fractional crystallization. 

Secondly, the degree of metal deficiency can be controlled to a certain extent by the size 

of the WCA, because only a restricted number of large anions can surround multi-

charged cations, avoiding anion-anion repulsive interactions. Therefore, a larger WCA 

can afford a higher degree of metal-deficiency. Following these considerations, herein 

we report on the synthesis of a Cu salt of a bulky WCA [Al(OC4F9)4]- (teflonate, [TEF]-) 

with [Cp''Fe(η5-P5)] (1c) allowing an isolation of the 8+ charged supramolecule 

 

Figure 6.2. a) The cationic supramolecular assembly of 3: b) the 68-vertex cube-like inorganic core, c) 1,3-
coordination mode of the 1c unit, d) coordination environment of Cu, and e) 18-membered {Cu4P14} cycles. 
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[(1c)12{CuNCMe}8](TEF)8 (3, Figure 6.2b) possessing the first metal-deficient 68-vertex  

{Cu8P60} core with the lowest possible number of copper atoms sufficing to bind 12 cyclo-

P5 ligands as required by the fullerene topology.4b,f 

The reaction of two equivalents of 1c with three equivalents of 

[Cu(CH3CN)4][Al{OC(CF3)3}4] (2) in CH2Cl2 at room temperature led to the formation of 

an olive green solution. Layering the solution with n-pentane afforded green octahedra 

of (CH2Cl2)1.25@[(Cp''FeP5)12 {Cu(CH3CN)}8](TEF)8 (3, Scheme 6.1) and green plates of 

[(Cp''FeP5)2Cu4(CH3CN)10](TEF)4 (4). By changing the stoichiometry of the reaction, only 

the ratio of 3 to 4 could be varied, with 3 always being the major product. Surprisingly, 

compound 3 was formed during a first unsuccessful attempt to fill the free coordination 

sites at the cyclo-P5 units with Ni(0) by adding Ni(cod)2 (cod = 1,5-cyclooctadiene) to the 

reaction mixture. Within a few minutes, black metallic Ni precipitated. After filtration and 

layering the olive-green solution with n-pentane, 3 could be isolated in a moderate yield 

with its phase purity confirmed by PXRD (Figure S6.12 in the Supporting Information).  

 

 

 

 

 

 

 

 

Scheme 6.1. Reaction of 1c with [Cu(CH3CN)4][TEF] (2) leading to 3. 

Compound 3 crystallizes as green octahedra in the trigonal space group R3̄. Single 

crystal X-ray structure analysis of 3 revealed a 68-vertex sphere 

[(CH2Cl2)@[{Cp''Fe(η5:η1:η1-P5)}12Cu8]8+ (Figure 6.2), consisting of 12 units of 1c 

arranged in an icosahedron in which Cu(I) ions systematically cap eight of the 20 

available trigonal faces (Figure 6.1c). The remaining 12 trigonal faces furnish six 18-

membered rings {Cu4P14} corresponding to a face of an underlying cube of the inorganic 
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core (Figure 6.2e). Each ring edge-shares four analogous rings and carries two positions 

potentially available to metal coordination. Every cyclo-P5 ligand coordinates to Cu in a 

1,3-mode with the Cu-P distances of 2.287(2)-2.314(2) Å and bond angles P-Cu-P 

99.53(8)-103.80(8)°. A spherical assembly solely composed of two-coordinated units of 

1 was predicted, but never observed before.4b,f The Cu atoms are tetrahedrally 

coordinated by three units of 1c and one acetonitrile molecule (Cu-N: 

1.98(1) - 1.974(7) Å, Figure 6.2d). The two-fold coordinated pentaphosphaferrocene unit 

allows a restricted rotation around all Cu-P coordinative bonds and thus provides some 

adaptability to the inorganic core. The Cu×××Cu separation in this cube-like arrangement 

amounts to 7.53-7.59 Å, which points to a certain deformation of the core along one of 

the body diagonals. 

Another feature of the inorganic core is a guest-accessible inner cavity of 0.77 nm 

(Figure 6.2). In 3, the cavity is statistically occupied by one or two CH2Cl2 molecules. 

Therefore, guest encapsulation of small molecules appears feasible.4f, 5 

The metal-deficient supramolecule possesses an outer diameter of 2.66 nm, which is 

twice that of a TEF anion (1.32 nm).6 Charge balance requirements in 3 dictate a 1:8 

ratio of supramolecule to the outer sphere TEF anions. Therefore, each supramolecule 

is completely isolated from any contacts with neighboring supramolecules by TEF anions 

as well as solvent CH2Cl2 molecules (Figure S6.11 in the Supporting Information).  

Notably, the formation of 3 is not accompanied by more metal-rich 

[(1b)12{CuNCMe}8+m]8+m salts. It is possible that these phases with m > 0 are less 

favorable because of electrostatic repulsion of 8+m large anions per supramolecule in 

the crystal. 

The minor product 4 crystallizes as green plates in the triclinic space group P1̄. In the 

crystal structure of [{Cp’’Fe(η5:η1,η1,η1-P5)}2Cu4(CH3CN)10](TEF)4 (4, Figure 6.3), 

tetracationic dimers are surrounded by bulky TEF anions and solvent molecules. The 

complexes [(1c)2Cu4(CH3CN)10]4+ consist of two units of 1c which coordinate three 

copper cations in a 1,2,4-mode. Two Cu(I) ions are coordinated by two units of 1c each 

to give a 4-membered {Cu2P4} cycle with Cu-P bond lengths of 2.2592(9) - 2.278(1) Å 

and P-Cu-P angles of 107.11(4) - 108.13(4)° falling into the usual range.7 Two 

acetonitrile ligands coordinate the copper ions to complete their tetrahedral environment 

with Cu-N bond lengths of 1.997(3) - 2.019(3) Å. Two more Cu cations are coordinated 

to the cyclo-P5 in the position 4 (Cu-P: 2.216(1) - 2.224(1) Å); their coordination sphere 

is saturated by three acetonitrile ligands with Cu-N bond distances of 1.974(3) - 2.008(3) 

Å (Figure 6.3). 
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Figure 6.3. Molecular structure of the tetracationic dimer 4. 

The supramolecular aggregate 3 and the by-product 4 are slightly soluble in CH2Cl2, and 

completely insoluble in other common organic solvents such as THF, toluene and n-

pentane. In donor solvents such as CH3CN, 3 and 4 are well soluble at the cost of partial 

fragmentation. Therefore, all characterizations in solution were performed in a mixture of 

CH2Cl2(CD2Cl2)/CH3CN(CD3CN). The 1H NMR spectrum of 3 shows three singlets for 

the hydrogen atoms of Cp’’ at 4.12 ppm (2H), 3.98 ppm (1H) and 1.18 ppm (18H). In the 

room-temperature 13C {1H} NMR spectra of 3, five signals for the Cp’’ ligands can be 

detected (31.35 ppm, 32.90 ppm, 72.37 ppm, 73.94 ppm, 111.84 ppm). The signals in 

the 1H and 13C {1H} NMR spectra are all slightly low-field shifted compared to the 

uncoordinated 1c, which prefigures a dynamic behavior of 3 in solution. The 31P NMR of 

3 exhibits one high-field shifted singlet at 163.2 ppm for the coordinated cyclo-P5 ligand 

complex 1c compared to free 1c (168.9 ppm). The ESI mass spectra show peaks for the 

cationic fragments [{1c}2Cu]+, [{1c}Cu(CH3CN)]+, [Cu(CH3CN)2]+ and [Cu(CH3CN)]+. 

Both compounds are air- and light-stable in the solid state for several days, but 

decompose within hours in solution when exposed to air. 

 

6.3 Conclusion 

In conclusion, a novel approach to metal-deficient pentaphosphaferrocene-based 

supramolecules was demonstrated relying on the usage of WCAs as counter anions, 

making it possible to control metal-deficiency of the inorganic core. In this way, the hollow 

supramolecule 3 was obtained based on 12 cyclo-P5 rings and so far the smallest 

possible number (eight) of coinage metal atoms bearing labile acetonitrile ligands. These 

features open a way to using this promising multitasking precursor in supramolecular 

chemistry, which was beyond the scope of this first report about the fundamental 

accessibility of such metal-deficient spheres. The future perspectives are: (i) the 

presence of unprecedented 12 free metal site makes it an interesting starting material 

for further substitution of the supramolecule with heterometals or with metal complexes; 
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(ii) the central cavity of 0.77 nm, which is accessible for small molecules, allows inner 

functionalization; (iii) the terminal acetonitrile ligands could be substituted by various 

bridging N-donor ligands, opening the way to expanded networks of the supramolecules. 

This approach will be fine-tuned in the future with respect to the nature of the 

corresponding Cp ligands or the coinage metals and further extended to any 

supramolecules having  cores that are constructed from metal cations and neutral 

polydentate ligands. 

 

6.4 Supporting Information 

6.4.1 General  

All experiments were carried out in an inert atmosphere of nitrogen or argon using 

standard Schlenk techniques. The nitrogen/argon was dried and purified from traces of 

oxygen with a Cu/MgSO4 catalyst, concentrated H2SO4 and orange gel. Reactants were 

stored in a glovebox under argon atmosphere. All used solvents were taken from the 

solvent drying machine MB SPS-800 of the company MBRAUN. 

The precursors [Cp’’Fe(η5-P5)]8 (1c), [Cu(CH3CN)4][Al{OC(CF3)3}4] (2)9 were prepared 

according to literature procedures.  

Solution NMR spectra were recorded on a Bruker Avance 400 spectrometer (1H: 400 

MHz, 31P: 161 MHz, 13C: 100 MHz, 19F: 376 MHz,) with a mixture of CD3CN and CD2Cl2 

as solvent at room temperature. The signals of tetramethylsilane (1H, 13C), CFCl3 (19F) 

and 85% H3PO4 (31P) were used as reference for determining chemical shifts. The 

chemical shifts δ are presented in parts per million ppm. The spectra were processed 

and analyzed using the software Bruker TopSpin 3.0. Elemental analyses were 

performed on an Elementar vario MICRO cube apparatus. Mass spectra were recorded 

on an Agilent Q-TOF 6540 UHD mass spectrometer with a mixture of CH2Cl2 and CH3CN 

as solvents.  

6.4.2 Synthetic Procedure 

 Synthesis of 3 and 4: [Cu(CH3CN)4][Al{OC(CF3)3}4]  (2 eq., 60 mg, 0.05 mmol), dissolved 

in CH2Cl2 (5 mL), was added to a solution of Cp’’FeP5 (3 eq., 29 mg, 0.075 mmol) in 

CH2Cl2 (5 mL) and stirred for 1.5h at room temperature under inert gas atmosphere. The 

greenish brown solution was carefully layered with threefold amount of n-pentane and 

stored at room temperature. After 3h green octahedra (compound 3) and green plates 
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(compound 4) were formed. The crystals were washed with n-pentane and dried in 

vacuo.  

Synthesis of 3: [Cu(CH3CN)4][Al{OC(CF3)3}4]  (2 eq., 60 mg, 0.05 mmol), dissolved in 

CH2Cl2 (5 mL), was added to a solution of Cp’’FeP5 (3 eq., 29 mg, 0.075 mmol) in CH2Cl2 

(5 mL) and stirred for 1.5h at room temperature. A suspension of Ni(cod)2 (3 eq., 21 mg, 

0.075 mmol) in 5 mL CH2Cl2 was added to the reaction mixture. The directly afterwards 

formed black precipitate (Ni(0)) was remove by filtration and the greenish brown solution 

was carefully layered with threefold amount of n-pentane and stored at room 

temperature. After 2d only green hexagonal plates 3 were formed. The crystals were 

washed with n-pentane and dried in vacuo. Crystalline yield: 30 mg (36 %, referred to 2). 
1H NMR (CH2Cl2/CD3CN): d = 4.12 (s, 2H), 3.98 (s, 1H), 1.18 (s, 18H).  
13C {1H} NMR (CH2Cl2/CD3CN): d = 111.84 (s, CCp,q), 73.94 (s, CCp,2), 72.37 (s, CCp,1), 

32.90 (s, C(CH3)), 31.35 (s, C(CH3)).  
31P {1H} NMR (CH2Cl2/CD3CN): d = 163.2 (s).  
19F {1H} NMR (CH2Cl2/CD3CN): d = -75.76 (s).  

Positive ion ESI-MS (CH2Cl2/CD3CN, RT): m/z (%) = 838.9 (25) 

[{C5H3(C(CH3)3)2FeP5}2Cu]+, 491.9 (42) [{C5H3(C(CH3)3)2FeP5}Cu(CH3CN)]+, 145.0 (100) 

[Cu(CH3CN)2]+, 104.0 (38) [Cu(CH3CN)]+.   

Negative ion ESI-MS (CH2Cl2/CD3CN, RT): m/z (%) = 966.9 (100) [TEF]-.  

Elemental analysis, calc. for C300H276Al8Cu8F288Fe12N8O32P60 (13229.88 g/mol) (%): C, 

27.24; H, 2.10; N, 0.85; found: C, 27.93; H, 2.25; N, 0.82. 

As mentioned before, compound 3 shows a partial fragmentation in pure CH3CN. Due to 

this, the analytics in solution have been performed in a mixture of CH2Cl2 and CH3CN. 

However, the signals of 3 in the 1H and 13C {1H} NMR spectra are all slightly low-field 

shifted compared to the uncoordinated 1c, which prefigures a dynamic behavior of 3 in 

solution.  

6.4.3 Crystallographic Data 

Crystals of 3 and 4 were taken from a Schlenk flask under a stream of argon and 

immediately covered with perfluorinated Fomblin® mineral oil to prevent a loss of 

solvent. The quickly chosen single crystals covered by a thin layer of the oil were taken 

to the pre-centered goniometer head with suitable CryoMount® and directly attached to 

the goniometer into a stream of cold gas. The X-ray diffraction study of 3 faced many 

challenges, since the crystals were systematically twinned and quickly decomposed 

due to the loss of solvent.  
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The data for 3 were collected using 0.5° ω scans on a Rigaku Oxford Diffraction 

diffractometer equipped with a TitanS2 CCD detector and a SuperNova CuKa 

microfocus source at 90 K. The data for 4 were collected at P24 beamline of PETRA III 

(DESY, Hamburg) using 22.11 keV synchrotron radiation (λ = 0.56076 Å) and scan 

width 0.5 deg. The experiment for 4 was performed at 14 K to suppress thermal 

contribution to the disorder for usually severely disordered teflonate anions. The partial 

ordering in fact took place in the case of 4. Numerous attempts were also performed to 

measure the structure of 3 at helium temperatures at DESY PETRA synchrotron for the 

same purpose. Unfortunately, pre-selected crystals kept in liquid nitrogen either lost 

their quality upon storing or immediately cracked when tried at P24 beamline with 

manual sample mounting. At P11 beamline we used robotic mounting, but considerable 

radiolysis took place and the resulting data proved worse than those obtained with in-

house diffractometer at 90 K. 

The data processing and reduction for all experiments was performed with 

CrysAlisPRO Software.10 The structures were solved by direct methods with SHELXT 

and refined by full-matrix least-squares method on êF 
2 using multiprocessor and 

variable memory version SHELXL2015-2018.11 All positionally ordered non-hydrogen 

atoms were refined in an anisotropic approximation, while the disordered light atoms 

with occupation factors less than 0.5 were refined isotropically. The hydrogen atoms 

were refined as riding on pivot atoms. The disordered anions were treated in the 

following procedure. The occupancy factors of the atoms of the disordered fragments 

were refined with fixed isotropic a.d.p. parameters. When all positions of the disordered 

atoms were localized, the relative contribution of a disordered group was refined with 

FVAR instructions in SHELX. Then the occupancies were fixed at refined-to values and 

isotropic followed by anisotropic (for major component) refinement of the a.d.p. 

parameters was performed. In this way the positional disorder of the TEF- anion over 3̄ 

position was refined in 3 (Fig. S6.9). The extra low temperatures during the X-ray 

experiment made the refinement of the structure of the 4 with four unique TEF anions 

considerably easier. A few tBu-groups become ordered at 14 K compared to the in-

house preliminary measurement at 90 K.  

Crystallographic data and details of the diffraction experiments are given in Table 

S1, bond lengths and angles are listed in Tables S6.2 and S6.3, and molecular structures 

3 and 4 are depicted in Figs. S6.1-S6.11.  

CIF files with comprehensive information on the details of the diffraction experiments and 

full tables of bond lengths and angles for 3 and 4 are deposited in Cambridge 
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Crystallographic Data Centre under the deposition codes CCDC-1988183 and CCDC- 

1988184, respectively. 

Table S6.1. Crystallographic details for 3 and 4. 

Crystal data 3 4 

CCDC Deposition Code CCDC-1988183 CCDC-1988184 
Structural formula (CH2Cl2)1.25[(Cp''FeP5)12{Cu(CH3CN)}

8](AlO4C16F36)8·4.33CH2Cl2 
[(Cp''FeP5)2Cu4(CH3CN)10](AlO4C16F36)

4·0.8CH2Cl2·0.45CH3CN 
Chemical formula C300H276Cu8Fe12N8P60·8(AlO4C16F36)· 

5.89(CH2Cl2) 
C110H72Cu4Fe2N10P10·4(AlO4C16F36)· 

0.8(CH2Cl2)·0.45(CH3CN) 
Mr 13704.00 5395.67 
Crystal system, space group Trigonal, R3̄:H Triclinic, P1̄ 
Temperature (K) 90 14 
a, b, c (Å) 26.5534 (4),  64.0248 (18) 19.2003 (4), 22.1827 (5), 25.7710 (7) 
a, b, g (°) 90, 90, 120 67.188 (2), 68.385 (2), 85.8176 (16) 
V (Å3) 39094.7 (16) 9374.9 (4) 
Z 3 2 
F(000) 20288 5279 
Dx (Mg m-3) 1.746 1.911 
Radiation type Cu Ka Synchrotron, l = 0.56076 Å 
µ (mm-1) 6.77 0.49 
Crystal shape and colour Green hexagonal prism Green plate 
Crystal size (mm) 0.17 × 0.14 × 0.06 0.3 × 0.2 × 0.1 
Data collection   
Diffractometer SuperNova, TitanS2 P24 beamline, PETRA III synchrotron 
Absorption correction Gaussian Multi-scan 
 Tmin, Tmax 0.313, 1.000 0.832, 1.000 
No. of measured, 
independent and observed [I 
> 2s(I)] reflections 

25899, 15426, 10647 102710, 36450, 31708 

Rint 0.054 0.031 
(sin q/l)max (Å-1) 0.600 0.625 
Range of h, k, l h = -31®31, k = -22®25, l = -55®75 h = -24®24, k = -27®27, l = -29®30 
Refinement   
R[F2 > 2s(F2)], wR(F2), S 0.107,  0.305,  1.16 0.057,  0.158,  1.02 
No. of reflections 15426 36450 
No. of parameters 1197 3665 
No. of restraints 24 4 
H-atom treatment H-atom parameters constrained H-atom parameters constrained 
Dρmax, Dρmin (e Å-3) 1.72, -1.15 1.55, -0.72 

Computer programs: CrysAlis PRO 1.171.40.18c and 1.171.41.21a (Rigaku OD, 2018), SHELXL2015/3 
(Sheldrick, 2015), SHELXL2018/3 (Sheldrick, 2018). 
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6.4.3.1 The Crystal Structure of the By-Product [{Cp’’FeP5}2Cu4(CH3CN)10][TEF]4 
(4)  

 

Figure S6.3. Asymmetric unit and enumeration scheme in 4 (a.d.p. ellipsoids at 50% probability). 

Table S6.2. Selected geometric parameters (Å, °) for 4. 

Cu1—N11 1.974 (3) Fe1—P14 2.3572 (10) 

Cu1—N12 1.993 (3) Fe1—P13 2.4102 (11) 

Cu1—N13 2.002 (3) Fe1—P15 2.4266 (9) 

Cu1—P14 2.2235 (10) Fe2—P24 2.3445 (10) 

Cu2—N21 2.006 (3) Fe2—P22 2.3451 (9) 

Cu2—N22 2.011 (4) Fe2—P21 2.3567 (10) 

Cu2—P22 2.2679 (10) Fe2—P25 2.4091 (10) 

Cu2—P12 2.2757 (10) Fe2—P23 2.4279 (9) 

Cu3—N32 1.997 (3) P11—P12 2.1014 (12) 

Cu3—N31 2.019 (3) P11—P15 2.1077 (13) 

Cu3—P21 2.2592 (9) P12—P13 2.1062 (14) 

Cu3—P11 2.2756 (10) P13—P14 2.1065 (13) 

Cu4—N42 1.989 (4) P14—P15 2.1045 (13) 

Cu4—N43 2.003 (4) P21—P22 2.1018 (13) 

Cu4—N41 2.008 (3) P21—P25 2.1043 (14) 

Cu4—P24 2.2158 (10) P22—P23 2.1009 (13) 

Fe1—P12 2.3503 (10) P23—P24 2.1089 (14) 
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Fe1—P11 2.3547 (10) P24—P25 2.1106 (13) 

 

N11—Cu1—N12 108.73(14) P22—Cu2—P12 107.11(4) 

N11—Cu1—N13 108.36(13) N32—Cu3—N31 99.42(12) 

N12—Cu1—N13 106.69(13) N32—Cu3—P21 106.17(9) 

N11—Cu1—P14 118.46(9) N31—Cu3—P11 99.86(9) 

N12—Cu1—P14 108.79(10) P21—Cu3—P11 108.13(4) 

N13—Cu1—P14 105.20(10) N42—Cu4—N43 102.51(15) 

N21—Cu2—N22 100.34(13) N42—Cu4—N41 110.73(13) 

N21—Cu2—P22 103.99(9) N43—Cu4—N41 104.11(14) 

N22—Cu2—P22 127.83(12) N42—Cu4—P24 121.29(10) 

N21—Cu2—P12 121.16(9) N43—Cu4—P24 114.35(10) 

N22—Cu2—P12 98.17(10) N41—Cu4—P24 102.79(9) 
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Figure S6.4. Anionic part in 4 (a.d.p. ellipsoids at 50% probability). 

Figure S6.5. Crystal packing in 4. The TEF anions are shown in thin lines, solvent molecules are mot shown. 

 

 



150 | 6 .  M e t a l - d e f i c i e n t  S p h e r e  b a s e d  o n  [ C p ’ ’ F e ( η5-P5)] 
 

6.4.3.2 The Crystal Structure of the Super-vacant Supramolecule 
(CH2Cl2)1.25@[(Cp''FeP5)12{Cu(CH3CN)}8][TEF]8 (3) 

Compound ball crystallizes in a trigonal R3̄ space group. The supramolecular cation 

and one of the TEF cations lie on the tree-fold rotainversion axis. The other TEF anion 

occupies general position. 

 

Figure S6.6. a) Asymmetric unit in 3 and b) enumeration scheme of the cationic part (a.d.p. ellipsoids at 
50% probability). Cl3i position is shared between C and Cl. 
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Figure S6.7. The anionic part of the structure 3. TEF- anions a) in general position (a.d.p. ellipsoids at 50% 

probability) and b) two positions of TEF anions in 3̄ position (balls-and-sticks model). c) Disordered TEF- anions 

over 3̄ axis with relative ratio 5/6 and 1/6. 
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Table S6.3. Selected geometric parameters (Å, °) for 3. 

C4I—Cl4Ii 2.01 (5) Fe1—P12 2.398 (2) 

Cu1—N1 1.974 (7) Fe2—P23 2.337 (2) 

Cu1—P11 2.287 (2) Fe2—P21 2.340 (2) 

Cu1—P21 2.296 (2) Fe2—P25 2.390 (2) 

Cu1—P14i 2.314 (2) Fe2—P24 2.402 (2) 

Cu2—N2 1.984 (12) Fe2—P22 2.407 (2) 

Cu2—P23 2.303 (2) P11—P12 2.104 (3) 

Cu2—P23ii 2.303 (2) P11—P15 2.107 (3) 

Cu2—P23iii 2.303 (2) P12—P13 2.107 (3) 

N1—C11N 1.132 (10) P13—P14 2.107 (3) 

C11N—C12N 1.444 (12) P14—P15 2.104 (3) 

N2—C21N 1.114 (19) P21—P22 2.108 (3) 

C21N—C22N 1.48 (2) P21—P25 2.111 (3) 

Fe1—P11 2.344 (2) P22—P23 2.102 (3) 

Fe1—P13 2.373 (2) P23—P24 2.114 (3) 

Fe1—P15 2.378 (2) P24—P25 2.112 (3) 

Fe1—P14 2.385 (2)   

 

N1—Cu1—P11 113.8 (2) P11—P12—P13 106.48 (11) 

N1—Cu1—P21 117.7 (2) P14—P13—P12 106.50 (11) 

P11—Cu1—P21 99.53 (8) P15—P14—P13 111.49 (11) 

N1—Cu1—P14i 117.8 (2) P15—P14—Cu1iv 122.50 (11) 

P11—Cu1—P14i 101.57 (8) P13—P14—Cu1iv 122.36 (10) 

P21—Cu1—P14i 103.80 (8) P14—P15—P11 103.36 (11) 

N2—Cu2—P23 116.92 (6) P22—P21—P25 111.76 (11) 

N2—Cu2—P23ii 116.92 (6) P22—P21—Cu1 123.02 (10) 

P23—Cu2—P23ii 101.10 (8) P25—P21—Cu1 125.18 (10) 

N2—Cu2—P23iii 116.92 (6) P23—P22—P21 103.77 (11) 

P23—Cu2—P23iii 101.11 (8) P22—P23—P24 111.43 (11) 

P23ii—Cu2—P23iii 101.10 (8) P22—P23—Cu2 119.02 (10) 

P12—P11—P15 111.68 (11) P24—P23—Cu2 128.73 (10) 

P12—P11—Cu1 125.98 (11) P25—P24—P23 106.80 (11) 

P15—P11—Cu1 122.34 (11) P21—P25—P24 106.20 (11) 
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The host supramolecule 

 

Figure S6.8. Cationic supramolecule in 3 (a) in ball-and-stick representation with one orientation of 

positionally disordered CH2Cl2 guest molecule is shown in van der Waals spheres; (b, c) in van der Waals 

spheres. 
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Disorder of the guest molecule 

The guest molecule is disordered over 12 equatorial positions (2 unique positions are 

shown in green) and 6 apical positions (yellow). Two atom positions are shared 

between C and Cl atoms in the apical part; they lie on the 3-fold rotainversion axis 

(Figure S6.9) 

Figure S6.9. a) The disorder pattern of the CH2Cl2 guest molecule in the cavity of the cationic 3. Two 

pairwise non-contradictory positions of the CH2Cl2 b) in the apical positions (the molecule on the 3̄ axis) 
and c) in the equator (the molecules in general position). 

 

Crystal packing 

In crystal the supramolecules form abundant arrangement topologically identical to face-

centered cubic packing of equal spheres (Figure S6.10). However, here the 

supramolecules are not in direct contact with each other, but well-isolated by bulky TEF 

anions. Each 8-fold positively charged cation forms van der Waals contact with 24 TEF 

anions (Figure S6.11). 
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Figure S6.10. The face-centered cubic (fcu)12 arrangement of spherical cations in crystal packing of 3. TEF 
anions, solvent molecules and {Cp’’’Fe} fragments are omitted. 

 

 

 

 

 

 

 

 

Figure S6.11. The schematic arrangement of spherical cations (purple) with TEF anions (green) in crystal 

packing of 3. 

Minimal and complete inorganic cores: a comparison 

The inorganic core of the minimal possible core derived from a well-known 80-vertex 

core [(CpRFeP5)12(CuX)20] (X = Cl, Br) for the neutral supramolecules based on 

pentaphosphaferrocenes (CpR = CpBn, Cp*). The interrelation is schematically shown in 

Figure S6.11. Two inserted polyhedral ascribe the mutual orientation of the 

pentaphosphaferrocene molecules (Fe atoms are chosen as vertices of a resultant 

isocahedron) and Cu cations (blue polyhedra). In the complete core the copper 
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arrangement corresponds to pentagonal dodecahedron (Figure S6.11a), whereas in the 

minimal core this arrangement is a cube (Figure S6.11b). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S6.11. Comparison of the complete 80-vertex and 68-vertex minimal possible cores. 

 

6.4.4 Powder Diffraction 

Phase purity for the compound 3 was confirmed by X-ray powder diffraction. The PXRD 

measurements were performed with a STADI-P powder diffractometer from STOE with 

CuKα1 radiation at room temperature. The shift of peak positions to higher 2θ angles for 

the theoretical diffraction pattern compared to the experimental one occurs due to 

thermal constriction of the unit cell constants, as the single crystal data used for 

simulation were obtained at 90 K for 3 and at 14 K for 4.  
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Figure S6.12. Comparison of measured (top) at room temperature and theoretical (bottom) PXRD pattern of 3 

calculated from the single crystal data at 90K (2θ range 2-60°).  
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Figure S6.13. Comparison of measured (top) at room temperature and theoretical (bottom) PXRD patterns of 3 
(black) and 4 (red) calculated from the single crystal data at 90K and 14K, respectively (2θ range 2-25°). 
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6.4.5 Additional Solid-State Structures Mentioned in the Introduction 

 

Figure S14. a) Ligand L1 and [Pd30(L1)60]60+ cationic supramolecule; b) ligand L1’ and [Pd48(L1’)96](BF4)96 
cationic supramolecule; c) [Mg24(PG)6(H2O)44(NO3)4]4− anion and pyrogallol[4]arene (PG) ligand; d) [Co48{μ3-

L2}18{TC4A}12] supramolecule, H4TC4A (p-tert-butylthiacalix[4] arene) and L2 (1H-tetrazol-1-yl ) ligands. 
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7. Tuning Emission Properties of Cu(I) Metallacycles by 
Introducing Bulky Weakly Coordination Anions 

Abstract: Herein is presented the impact of changing the nature of the 
counterion of A ([Cu4(μ2-dppm)4(CN)2]2+, Figure 7.1), from the ‘small’ PF6

- 
(A1) ion to the bulky weakly coordinating [Al{OC(CF3)3}4]- and [B(C6H3Cl2)4]- 
ions, respectively, on the architecture of a self-assembled metallacycle and 
its photophysical properties. By doing so, we synthesized [Cu4(μ2-
dppm)4(CN)2][Al{OC(CF3)3}4]2 (A2) and [Cu4(μ2-dppm)4(CN)2] [B(C6H3Cl2)4]2 
(A3) (dppm= 1,1-bis(diphenyl-phosphino)methane) and extended our 
investigations by reacting A1, A2 and A3 with organic pyridyl linkers. 

7.1 Introduction 

The development of phosphorescent transition metal complexes as building blocks for 

a number of applications, particularly for organic light emitting diodes (OLEDs), drew a 

lot of attention in recent years.1 Especially, complexes based on third row transition 

metals, such as Ir(III) and Pt(II) are suitable, as the metal center can induce spin-orbit 

coupling (SOC).2 This results in short emission decay times for normally spin-forbidden 

transitions from the first excited triplet state to the ground state (T1→S0)1d,3 and fast 

intersystem crossing.3a,4 The consequential emission properties (fluorescence and 

phosphorescence) of metal complexes can be modulated using different combinations 

of lewis acidic metals and organic ligands.5 Cu(I) derivatives turned out to be smart novel 

solid-state emitters because of their low costs and accessibility.6  

Recently, Thermally Activated Delayed Fluorescence (TADF) Cu(I) coordination 

complexes have experienced significant research attention1c,6b,7 as they show exalted 

photophysical performances which are in no way inferior to “classical” expensive heavy 

metal complexes.8 Up to now, luminescent Cu(I) precursors acting as pre-organized 

building blocks to form coordination-driven supramolecular assemblies have almost 

never been reported.9 This is mostly assigned to the labile and non-directional 

coordination spheres that Cu(I) ions usually exhibit. Based on this knowledge, we were 

interested, how the photophysical properties of Cu(I) complexes can be tuned by 

introducing different anions and subsequently building up one-dimensional coordination 

polymers with organic linkers. 
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7.2 Results and Discussion 

The blue emissive tetranuclear metallacycle  [Cu4(μ2-dppm)4(CN)2](PF6)2 (A1) (dppm= 

1,1-bis(diphenylphosphino) methane) was  recently described    as    the    first     Cu(I)  

coordination-driven supramolecular assembly bearing solid-state Thermally Activated 

Delayed Fluorescence (TADF) properties.10 Compound A1 exhibits an absolute 

luminescence quantum yield of 72% at room temperature and displays a reversible red-

shift of its emission spectra upon cooling. These results have triggered us to extend our 

investigation. We were interested how anions can influence the photophysical properties 

of precursor A. For this the bulky weakly coordinating [Al{OC(CF3)3}4]- and [B(C6H3Cl2)4]- 

ions were introduced. 

 
 

 

 

 

 

 

 

 

 

Figure 7.1. Synthesis of compounds A1-A3. Hydrogen atoms, counteranions and included solvent molecules 
were omitted for clarity. Thermal ellipsoids are shown at 50% probability level.   

The reaction of the previously reported pre-assembled molecular clip B1
11 with an 

equimolar amount of KCN at room temperature in air in a 2:1 CH2Cl2/CH3OH mixture 

leads to the formation of A1 in a very good yield (Figure 7.1).10 The analogous reaction 

with in situ prepared B2 and B3 yields the Cu(I) metallacycles A2 and A3, respectively. 

Upon layering the crude solutions with n-pentane, homogenous batches of air stable 

colorless blocks suitable for X-ray crystallography were obtained in moderate to good 

yields. Compounds A2 crystallizes in the triclinic space group P1" and A3 in the monoclinic 

space group P21/n. A is bearing two [Cu2(μ2-dppm2)] fragments, which are connected by 

two cyano ligands. The location of the C and N atom is arbitrary. The solid-state 

structures of the cationic fragments of A2 and A3, respectively, are isomorphous to A1. 

The IR spectra of A2 and A3 show characteristic signals for the presence of the cyanide 
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groups coordinated to the metal centers (2135 cm-1 for A2
12 and 2120 cm-1 for A3, Figure 

7.2), while it is 2117 cm-1 for A1.10 

 

 

Figure 7.2. IR spectra of the metallacycle precursors A2 and A3. Characteristic C≡N vibration band (inset). 

In the solid state at room temperature, compounds A2 and A3 demonstrate blue 

luminescence (excitation at 325 nm) with an emission maximum of 456 nm and 473 nm, 

respectively. Interestingly, the emission quantum yield at room temperature of A2 (Φ298K 

= 86%) and A3 (Φ298K = 91%) was improved compared to compound A1 (Φ298K = 72%).10 

Upon cooling both new derivatives show a similar behavior as A1 (λmax = 457 nm at r. t., 

λmax = 486 nm at 80 K10). Cooling from room temperature to 80 K the emission (excitation 

325 nm) of compound A2 shows a bathochromic shift to 472 nm (Figure 7.3 left, S7.3), 

associated with an intense visually perceived greenish luminescence. Cooling 

compound A3 to 80 K affords an emission maximum (excitation 325 nm) at 489 nm 

(Figure 7.3 right, S7.6). The shift of the emission maxima is lower for A2 and A3, 

respectively, compared to A1. Exciting compounds A2 and A3 at 360 nm does not 

significantly change the obtained emission spectra (Figures S7.4, S7.5 and S7.7, S7.8).  
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Figure 7.3. Solid-state emission spectra of A2 (a) and A3 (b) at 300 K and 80 K upon excitation at 325 nm. 

Variable-temperature excited state lifetime measurements of A2 could not make a 

statement to evidence the electronic processes responsible for the luminescence 

behavior (Figure S7.11, S7.12). Indeed, as for A2 higher temperatures should be 

investigated and further measurements have to be performed. Nevertheless, the 

temperature dependence for both, the emission spectra and the lifetime of the excited 

states support a TADF mechanism.  

Upon heating, compound A2 undergoes a weight loss of less than 2% up to 270°C 

and an endothermic transition at 206°C followed by decomposition of the compound 

(Figure S7.13 left). The IR spectra recorded after this transition of A2 shows a shift of the 

CN band to 2128 cm-1 (Figure S7.19). The visually perceived emission changes from 

blue to more greenish after the transition. This fact could imply a change in the geometry 

of the metallacycle assigned to the phase transition in the solid state at high 

temperatures. Similar behavior was also observed for A1 recently and is still under study. 
A3 also loses 2% of its weight upon heating, but the thermal degradation starts at 180°C 

and no transition is observable (Figure S7.13 right). The weight loss could be attributable 

to solvent removal in both cases.  

 

As Cu(I) complexes are popular building blocks in supramolecular chemistry,13 

compounds A1-A3 were reacted with different organic pyridyl-based linkers (B1-B11, 

Figure 7.4). The coordination behavior of the precursor A1 towards B1-B3, B9-B11 and 

other 4-pyridyl linkers was mainly investigated by the cooperation partners in Rennes 

and already reported.14 In this work only the compounds obtained within the cooperation 

will be discussed (A1B4, A1B5, A1B6 and A1B7), further polymers will only serve as 

comparative samples (A1B1). 

456 
nm 

472 
nm a) b) 

473 
nm 

489 
nm 
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Figure 7.4. Organic pyridyl-based linkers B1-B11 used in this work.  

For the reactions with the metallacycle A1 the precursor had to be isolated before 

adding the organic linkers B4, B5, B6, B7 and B8 in a 1:1 ratio. Whereas, the polymers 

A2Bx and A3Bx were obtained by in situ formation of the precursors A2 and A3, 

respectively, followed by the addition of the linkers. X-ray diffraction studies of the 

isolated products performed at low temperatures on single crystals revealed the 

formation of the one-dimensional coordination polymers A1B4, A1B5, A1B6 and A1B7 

(Figure 7.5).  

The reaction of any precursor with the 2-pyridyl linker B8 did only lead to the 

crystallization of the starting material Ax most-likely due to sterical hindrance. The 

compounds A1B5 and A1B6, obtained by the reaction of the preformed precursor A1 and 

the linker B6, crystallizes in the monoclinic space group P21/n in moderate yields. 

Compounds A1B4 and A1B7 crystallize in the triclinic space group P1" in moderate to poor 

yields. In the solid-state structure, the metallacycles A are connected by linker units, 

resulting in four one-dimensional coordination polymers. The pyridyl rings in compound 

A1B6 are tilted by an angle of 55° what causes also torsion of the metallacycle units to 

each other (Figure S7.5). Also, cumulated π···π and π···CH interactions are observed 

between the dppm ligands of the neighboring metallacycles. This stabilizes the structures 

and could be the reason for such torsion.  
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Figure 7.5. Solid-state structures of the 1D polymers A1B4, A1B5, A1B6 and A1B7. Anions and hydrogen 
atoms are omitted for clarity. Phenyl rings are depicted transparent. Thermal ellipsoids are shown at 50% 

probability level. Yields are given in parenthesis.  

The characteristic IR vibration bands of the CN groups of the obtained 1D polymers are 

shifted to lower wavenumbers compared to A1 (Table 7.1).10 Compound A1B4 shows a 

red luminescence under UV irradiation. TGA-DSC measurements show that compound 

A1B5 

A1B7 

A1B6 

A1B4 

(43%) 

(83%) 

(60%) 

(14%) 
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A1B4 undergoes no transition and shows a weight loss of only 1% upon heating to 250°C, 

most-likely as a loss of solvent molecules, which co-crystallized in the crystal lattice, 

followed by a decomposition upon heating to 270°C (Figure S7.14 left). The visually 

perceived emission at r. t. changed to blue after the thermal degradation. The IR spectra 

of A1B4 recorded after the TGA-DSC measurement displays a shift of the CN vibration 

band to higher wavenumbers (2126 cm-1, Figure S7.22), that, however, differs from the 

infrared spectrum of A1 (ν(C≡N) 2117 cm-1)10 and shows that there is still a CN unit 

present.  

 
Table 7.1. Values for IR vibration bands of C≡N groups in compounds A1B4-A1B7 compared to A1. 

compound A1
10 A1B4 A1B5 A1B6 A1B7 

vCN (cm-1) 2117 2100 2102 2103 2106 
 
The temperature dependent UV-Vis spectra of A1B4 (excitation 325 nm) reveals three 

emission bands at 300 K at 581 nm, 635 nm and 698 nm, which do not significantly shift 

upon cooling to 80 K (578 nm, 637 nm and 706 nm). However, a new emission band 

arises at higher energies during cooling to 80 K centered at 445 nm (Figure S7.9). 

Investigations of the nature of this new emission band was not possible within this work. 

Compound A1B7 indicates a visually perceived change in its weakly observable blue 

emission at room temperature upon cooling to 77 K (yellow emission). Upon heating to 

50 °C compound A1B7 loses 2% of its weight, up to 230 °C a weight loss of another 2% 

is evident followed by a thermal degradation at 270 °C. This loss of weight could indicate 

the evaporation of solvent incorporated in the crystal lattice. The DSC measurement 

revealed an exothermic transition at 199 °C (Figure S7.14 right). After the decomposition, 

the visibly black compound shows a stronger blue luminescence than before.  

The reaction of equimolar amounts of A2 and B1-B4, B6 and B7, respectively, 
conducted at room temperature in air in CH2Cl2 led to the formation of six novel one 

dimensional polymers (Figure 7.6). So far, an X-ray structural analysis of compound A2B6 

was not possible, though, the characterization, including elemental analysis and IR 

spectroscopy point to a 1D polymer with a 1:1 A2 to B6 composition, similar to the other 

obtained coordination polymers. The linking units of A2B1 and A2B2 deviate from planarity 

with a dihedral angle of 55° and 45°, respectively. This will be further examined later in 

this chapter for compound A2B1 in comparison to A1B1.14 Similar to the coordination 

polymers A1Bx also the polymers shown in table 7.2 possess C≡N vibrations band shifted 

to lower wavenumbers compared to A2. 
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Figure 7.6. Solid-state structures of the 1D polymers A2B1, A2B2, A2B3, A2B4, A2B6 and A2B7. Anions and 

hydrogen atoms are omitted for clarity. Phenyl rings are depicted transparent. Thermal ellipsoids are shown 
at 50% probability level. Yields are given in parenthesis.  
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Table 7.2. Values for IR vibration bands of C≡N groups in compounds A2B1a-A2B4 and A2B6-A2B7 compared 

to A2. 

compound A2
 A2B1a A2B1bi A2B2 A2B3 A2B4 A2B6 A2B7 

vCN (cm-1) 2135 2096 2110 2096 2107 2106 209715 210016 

i complexes A2B1a and A2B1b are indicated for completeness. This will be discussed in more detail later in this work. 

 
The TGA-DSC measurement of compound A2B3 shows a weight loss of 2% upon 

heating to 175°C and an endothermic transition at 186°C with another weight loss of 

3.5% at 230°C and the thermal degradation of the polymer (Figure S7.16 left). The weight 

loss indicates that the linker sublimates during heating. After the transition an additional 

IR spectrum was recorded and the resulting C≡N vibration band of 2133 cm-1 also 

designates, that the starting material A2 is being formed (Figure S7.28). Furthermore, 

the TGA-DSC measurement of compound A2B4 shows a similar behavior with a transition 

at 208 °C and a total weight loss of 5.5% pointing to the cleavage of linker B4. In this 

case it is an exothermic process. The IR spectrum after the conversion reveals a 

vibration band of 2135 cm-1 matching the precursor A2 (Figure S7.29). Also, the visible 

perceived emission corresponding to the fact that polymer A2B4 is not luminescent under 

UV light but, the resulting compound after heating is blue emissive. The emission 

spectrum of A2B4 at room temperature shows a maximum at 415 nm and two maxima 

lower in energy at 568 nm and 625 nm upon excitation at 325 nm. Cooling to 80 K reveals 

four additional emission maxima at 480 nm, 570 nm, 627 nm and a broad peak at 685 

nm (Figure S7.10). All peaks do not shift significantly in energy upon cooling. The intense 

peak at 415 nm might be corresponding to an emission centered on the linker. The two 

coordination polymers containing the 3-pyridyl based linkers A2B6 and A2B7 do not show 

any evidence of linker cleavage upon heating to 200 °C and 220 °C, respectively (Figure 

S7.17). However, polymer A2B6 shows an exothermic transition at 198 °C resulting in a 

change of visible perceived emission from not emissive to slightly green after the 

transition. The IR spectrum recorded after the transition shows a band in the range of 

those for the starting material (2134 cm-1, Figure S7.30). For the coordination polymers 

A1Bx which also show this transition but no weight loss, the collaboration partners 

proposed a de-coordination of A1 upon heating.14 

 
In 2019 Kitamura et al. published the luminescent silver(I) halogenido coordination 

polymers [Ag2X2(PPh3)2(bpy)]n (X = I, Br, Cl; bpy = 4,4’-bipyridine), where the organic 

linker in the chlorido complex deviates from planarity which influences the emission 

properties compared to the planar iodide and bromide complexes.17 Since compound 

A1B1
14

 does not show any torsion of the linker (Figure S7.2), compounds A2B1 and A1B1 
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will be compared in the following regarding their emission properties as well as the 

differences in their solid-state structures. As seen in figure 7.7 the emission maximum of 

compound A2B1 (507 nm) is blue shifted compared to the emission maximum of A1B1 

(611 nm) upon excitation at 320 nm at 300 K. Furthermore, A2B1 shows a drop in the 

emission intensity, as well as a slight bathochromic shift upon cooling to 130 K followed 

by an increase of the emission and a blue shift upon cooling to 80 K. Compound A1B1, 

instead, reveals an increase in emission upon cooling to 80 K with an additional emission 

maximum arising at 503 nm. Interestingly, A2B1 is green emissive in the solid state when 

dried and blue emissive as crystals in the supernatant, suggesting a solvatochromic 

effect. The C≡N IR vibration band of A2B1 is shifted to lower wavenumbers (2096 cm-1) 

compared to compound A1B1 (2105 cm-1) (Figure S7.21, S7.26). The Cu•••Cu distances 

in the twisted polymer A2B1 of 3.36 Å are slightly longer than in A1B1 (3.21 Å). Since the 

metallacycle units and the linkers are the same in A1B1 and A2B1 the differences 

observed in the conformations have to be related to the packing in the solid state 

influenced by the anions.  

 
 

 

 

 

 

 

 

 

Figure 7.7. Temperature dependent emission spectra of A2B1 (left) and A1B1 (right) between 80 K and 300 
K upon excitation at 320 nm.  

Surprisingly, the crystals of A2B1 transform quantitatively into yellow emissive crystals 

in the supernatant within 7 days. X-ray diffraction studies revealed the formation of the 

oligomer A2B1bi containing one metallacycle unit coordinated by two 4,4’-bipyridine 

linkers (Figure 7.8 top). The torsion angle between the two pyridyl rings in the linker 

decreases from 55° to 41° in the newly formed thermodynamic product A2B1b. The 

transformation of A2B1a to A2B1b leads to a contraction of the Cu•••Cu distances (3.23 

Å). The vibration bands of the CN groups shift to higher wavenumbers (2110 cm-1, Figure 

 
i In the following the polymer will be named A2B1a and the oligomer A2B1b. 
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S7.27). The TGA-DSC measurements of both compounds show a cleavage of the pyridyl 

linker at around 175°C, directly followed by a thermal decomposition in the case of 

compound A2B1b (Figure S7.15 right).  

The transformation could be driven by the higher stability of the π-stacked units (Figure 
7.8 bottom). Within this work no photophysical measurements for compound A2B1b could 
be performed, but the transformation from the polymer A2B1a to the oligomer A2B1b and 
also the comparison to A1B1 bear many interesting approaches worth to investigate in 
the future. 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 7.8. Solid-state structure of compound A2B1b (top). Π-stacking via pyridyl rings (bottom). Anions and 

hydrogen atoms are omitted for clarity. Phenyl rings are depicted transparent. Thermal ellipsoids are shown 

at 50% probability level. 

Precursor A3 was used in a reaction with the 4-pyridyl linker B4 yielding the 1D 

coordination polymer A3B4 (Figure 7.9). Compared to A2B4 the linker in this compound 

deviates from planarity with a dihedral angle of 34° between the two pyridine rings. The 

polymer shows no visually perceivable emission, though, after an exothermic transition 

at 147 °C the compound emits orange light under UV light. At 200 °C A3B4 starts to 

decompose in combination with a high mass loss (Figure S7.18). The transition leads to 

a shift of the CN vibration band (2160 cm-1, Figure S7.32) to a significantly higher 

wavenumber relative to the precursor A3 (2120 cm-
 

1). 
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Figure 7.9. Solid-state structure of compound A3B4. Anions and hydrogen atoms are omitted for clarity. 
Phenyl rings are depicted transparent. Thermal ellipsoids are shown at 50% probability level. 

The reactions of A2 with B9-B11 and A3 with B1-B3 and B5-B11 did not lead to any results 

so far or still have to be performed.  
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7.3 Conclusion 

In summary, we have presented the facile synthesis of 12 novel coordination 

compounds A1B4-A1B7, A2B1-A2B4, A2B6-A2B7 and A3B4 containing the metallacycle unit 

A, low and high sterically demanding anions and different pyridyl based organic linkers 

B1-B7. We have demonstrated that the anions have a significant influence on the 

structure in the solid state and the luminescence of the coordination polymers, as well 

as on the luminescence of the precursors A2 and A3. The comparison of A2B1a with the 

coordination polymer A1B1 shows a major difference in the solid-state structure due to 

the twisted linker in A2B1a, resulting in distinctive photophysical properties. Furthermore, 

we detected a transformation of the green emissive A2B1a after one week into the yellow 

luminescent oligomer A2B1b (Figure 7.10). For the polymer with the smaller anion PF6
- 

(A1B1) this kind of transition was never observed.  

 

 
 
 
 
 
 

 
 

 
 
 
 

Figure 7.10. Transformation of A2B1a into A2B1b within 7 days in the supernatant. Anions and hydrogen 

atoms are omitted for clarity. Phenyl rings are depicted transparent. Thermal ellipsoids are shown at 50% 
probability level. 

These different reactivities lead to a wide variety of photophysical properties of 

coordination polymers obtained by coordination of polytopic ligands with pyridyl 

terminations towards the precursors A1-A3. Future efforts will focus on more detailed 

studies (inter alia variation of the lifetime of the excited state, quantum yield 

measurements, theoretical calculations, additional VT UV-Vis measurements) in order 

to rationalize the reported observations. The different thermal transitions are a subject of 

ongoing studies, as the A1Bx compounds show various reactivities upon heating 

associated with irreversible change in the luminescence properties in the solid state. 

7 days 
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7.4 Experimental Procedures 

7.4.1 Chemicals 

All solvents were used as received. The precursors, [Cu(CH3CN)4][Al{OC(CF3)3}4]18, 

[Cu(CH3CN)3][B(C6H3Cl2)4]19 were prepared according to literature procedures. The 

organic linkers B6-B8 were prepared in a modified synthesize according to literature.20 

The organic linker B10 was prepared in a modified synthesis according to literature 

procedures from the collaboration partners.21 The starting materials dppm (1,1-

bis(diphenyl-phosphino) methane)) (Sigma Aldrich), KCN (Merck), Cu(CH3CN)4PF6 

(Sigma Aldrich), B1 (Sigma Aldrich), B2 (TCI), B3 (TCI), B4 (TCI), B5 (TCI), B9 (TCI) and 

B11 (TCI) were purchased and used without further purification. 

 

7.4.2 Spectroscopic Methods 

Steady-state emission spectra and luminescence quantum yield measurements at room 

temperature were recorded on a Horiba Universal Attenuated Total Reflectance 

accessory. UV-Vis solid state measurements were performed with a Jobin Yvon (HJY) 

Fluorolog 3 (FL3-2iHR550) fluorescence spectrofluorometer equipped with an IR R928P 

PMT / HJY FL-1073 detector and with an integrating sphere. Low temperature 

measurements were allowed by using an Optistat CF (Oxford Inst.) in the range of 80 K 

to 300 K.  Excited-state lifetimes at 77 K were measured with a delta hub (TCSPC: Time 

Correlated-Single-Photon-Counting) + delta diode system allowing to measure excited-

state lifetimes between 500 ps et 10 μs and with a pulsed xenon source (FL-1035) 

allowing to measure excited-state lifetimes longer than 10 μs. Solid sample was placed 

in a quartz sample holders inside the integrating sphere and the cryostat and maintained 

at the desired temperature until equilibrium was reached before recording the spectrum. 

The experimental data of the variable-temperature excited state lifetime measurements 

were then fitted according to the following equation22 

 

                                          𝜏(𝑜𝑏𝑠) =
!"!"#$%	((

#$%&
'(&

)
!

)(&!)
" !
")(%!)

#$%	((#$%&'(&
)
    

             

 

where τ(obs), τ(S1), τ(T1), kB, T and ∆EST represent the observed lifetime, singlet state 

decay lifetime, triplet state decay lifetime, Boltzmann constant, temperature and singlet-

equation (7.1) 
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triplet energy difference, respectively. FT-IR measurements have been performed on a 

Perkin Elmer Frontier spectrometer using UATR (Universal Attenuated Total 

Reflectance) accessory. Spectra have been recorded between 500 cm−1 and 4000 cm−1 

on pure samples. Elemental analyses were performed on an Elementar vario MICRO 

cube apparatus.  

 

7.4.3 Synthetic procedure 

The characterization of some compounds could not be finished within this work. Further 

measurements have to be performed.  

 
 

Synthesis of compounds A2 and A3 

0.126 mmol 1,1-bis(diphenyl-phosphino) methane (48 mg) in 5 mL CH2Cl2 was added to 

a solution of [Cu(CH3CN)4][Al{OC(CF3)3}4] (150 mg, 0.126 mmol) or 

[Cu(CH3CN)3][B(C6H3Cl2)4] (99 mg, 0.126 mmol) in 5 mL CH2Cl2, respectively, and left 

without stirring for 0.5 h at room temperature. Then 0.063 mmol KCN (4 mg) in 2 mL 

CH3OH was added and stirred for 18 h. The colorless solution was filtered. The diffusion 

of n-pentane and into the crude solution afforded colorless block-shaped crystals after 

3-5 days.  

 

Compound A2  
Yield: 35 mg (34% referred to CuTEF) 

Elemental analysis, calcd (%) for C354H88Al2Cu4F72N2O8P8 (3778.00 g/mol): C, 45.58; H, 

2.48; N, 1.38; found: C, 45.53; H, 2.36; N, 1.28;  

IR (solid, CN bands): 𝑣̃/cm
-1

: 2135 (w), 2114 (w); 

IR after transition (solid, CN bands) 𝑣̃/cm
-1

: 2128 (w), 2099 (w); 

Φ298K = 86% 

 
Compound A3  
Yield:  77 mg (79% referred to CuBArCl)                                                                                 

IR (solid, CN bands): 𝑣̃/cm
-1

: 2115 (w) 

Φ298K = 91% 
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Synthesis of compounds A1B4, A1B5, A1B6 and A1B7 

0.0187 mmol of the preformed precursor A1 (40 mg) in 10 mL CH2Cl2 was added to a 

solution of linker (0.0187 mmol, B4 4.1 mg, B5 3.4 mg, B6 or B7, respectively, 5.3 mg) in 

10 mL CH2Cl2, and left without stirring for 18 h at room temperature. The colorless 

solution was filtered. The diffusion of vapors of n-pentane into the crude solution afforded 

colorless block-shaped crystals after 3-5 days.  

 
Compound A1B4  
Yield: 19 mg (43% referred to CuPF6) 

IR (solid, CN bands): 𝑣̃/cm
-1

: 2100 (w); 

IR after transition (solid, CN bands) 𝑣̃/cm
-1

: 2126 (w); 

 
Compound A1B5  
Yield: 36 mg (83% referred to CuPF6) 

IR (solid, CN bands): 𝑣̃/cm
-1

: 2102 (w); 

 

Compound A1B6  
Yield: 27 mg (60% referred to Cu PF6) 

IR (solid, CN bands): 𝑣̃/cm
-1

: 2103 (w); 

 

Compound A1B7  
Yield: 7 mg (14% referred to Cu PF6) 

IR (solid, CN bands): 𝑣̃/cm
-1

: 2106 (w); 

 

Synthesis of compounds A2B1a, A2B1b, A2B2-A2B4, and A2B6-A2B7 and A3B4 
0.084 mmol 1,1-bis(diphenyl-phosphino) methane (32 mg) in 5 mL CH2Cl2 was added to 

a solution of [Cu(CH3CN)4][Al{OC(CF3)3}4] (100 mg, 0.084 mmol) or 

[Cu(CH3CN)3][B(C6H3Cl2)4] (66 mg, 0.084 mmol) in 5 mL CH2Cl2, respectively, and left 

without stirred for 0.5 h at room temperature. Then 0.042 mmol KCN (3 mg) in 2 mL 

CH3OH was added and stirred for 2 h. 0.021 mmol of the linkers were dissolved in 2 mL 

CH2Cl2. The colorless solution was filtered. The diffusion of vapors of n-pentane into the 

crude solution afforded colorless block-shaped crystals after 3-5 days.  
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Compound A2B1a  
Yield: 45 mg (52% referred to [Cu(CH3CN)4][Al{OC(CF3)3}4]) 

IR (solid, CN bands): 𝑣̃/cm
-1

: 2096 (w); 

IR after transition (solid, CN bands) 𝑣̃/cm
-1

: 2130 (w); 

 

Compound A2B1b  
Yield: 45 mg (52% referred to [Cu(CH3CN)4][Al{OC(CF3)3}4]) 

IR (solid, CN bands): 𝑣̃/cm
-1

: 2096 (w); 

IR after transition (solid, CN bands) 𝑣̃/cm
-1

: 2129 (w); 
 

Compound A2B2  
Yield: 30 mg (36% referred to [Cu(CH3CN)4][Al{OC(CF3)3}4]) 

IR (solid, CN bands): 𝑣̃/cm
-1

: 2096 (w); 

 
Compound A2B3  
Yield: 20 mg (24% referred to [Cu(CH3CN)4][Al{OC(CF3)3}4]) 

Elemental analysis, calcd (%) for C146H96Al2Cu4F72N4O8P8 (3958.21 g/mol): C, 44.30; H, 

2.44; N, 1.42; found: C, 44.29; H, 2.50; N, 1.46; 

IR (solid, CN bands): 𝑣̃/cm
-1

: 2107 (w), 2233 (w); 

IR after transition (solid, CN bands) 𝑣̃/cm
-1

: 2133 (w); 

 

Compound A2B4  
Yield: 33 mg (40% referred to [Cu(CH3CN)4][Al{OC(CF3)3}4]) 

Elemental analysis, calcd (%) for C146H98Al2Cu4F72N4O8P8 (3960.23 g/mol): C, 44.28; H, 

2.49; N, 1.41; found: C, 44.31; H, 2.51; N, 1.26; 

IR (solid, CN bands): 𝑣̃/cm
-1

: 2106 (w); 

IR after transition (solid, CN bands) 𝑣̃/cm
-1

: 2135 (w); 

 
Compound A2B6  
Yield: 52 mg (61% referred to [Cu(CH3CN)4][Al{OC(CF3)3}4]) 

Elemental analysis, calcd (%) for C154H100Al2Cu4F72N4O8P8 (4058.33 g/mol): C, 45.58; H, 

2.48; N, 1.38; found: C, 45.20; H, 2.32; N, 1.26; 

IR (solid, CN bands): 𝑣̃/cm
-1

: 2097 (w), 2220 (w); 

IR after transition (solid, CN bands) 𝑣̃/cm
-1

: 2132 (w); 
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Compound A2B7  
Yield: 36 mg (42% referred to [Cu(CH3CN)4][Al{OC(CF3)3}4]) 

Elemental analysis, calcd (%) for C154H100Al2Cu4F72N4O8P8 (4058.33 g/mol): C, 45.58; H, 

2.48; N, 1.38; found: C, 45.53; H, 2.36; N, 1.28; 

IR (solid, CN bands): 𝑣̃/cm
-1

: 2100 (w), 2223 (w); 

 
Compound A3B4  
Yield: 21 mg (31% referred to [Cu(CH3CN)3][B(C6H3Cl2)4]) 

Elemental analysis, calcd (%) for C162H122B2Cl16Cu4N4P8 (3215.62 g/mol): C, 60.51; H, 

3.82; N, 1.74; found: C, 60.41; H, 4.01; N, 1.50; 

IR (solid, CN bands): 𝑣̃/cm
-1

: 2101 (w); 

IR after transition (solid, CN bands) 𝑣̃/cm
-1

: 2160 (w); 

 

7.4.4 Crystallographic Data 

Single crystals of all compounds suitable for X-ray crystal analyses were obtained by 

slow diffusion of vapors of n-pentane into crude mother solutions. In the crystal lattices 

of the coordination complexes studied, dichloromethane solvent molecules were found 

in addition to the cationic coordination complexes and their counter-anions. These 

solvent molecules in most cases have a strong tendency to leave the bulk crystal via 

evaporation once the crystals are removed from their mother solution, a process that 

induce a rapid degradation of the single-crystal integrity of the crystals investigated. In 

order to slow down this process, single crystals of all these derivatives were always 

coated in paratone oil/Fomblin oil once removed from the mother solution, mounted at 

low temperature as quickly as possible on the diffractometer goniometer and X-ray data 

collection was performed at low temperature. Some solid state structures are only 

preliminary and could not be finalized during this work.  

Single crystal data collection for A2, A3, A1B4, A1B6, A1B7, A2B2, A2B4, A3B4 were 

performed at 150 K with a D8 Venture Bruker AXS (Centre de Diffractométrie, Université 

de Rennes 1, France) with Mo-Kα radiation (λ = 0.71073 Å), at 123 K with a GV50 

diffractometer equipped with a TitanS2 detector (A2B1a, A2B1b, A2B3, A2B7) or at 123 K 

with a Xcalibur, AtlasS2, Gemini ultra diffractometer (A1B5), respectively.   

For compounds A2, A3, A1B4, A1B6, A1B7, A2B4, A2B2, A3B4 reflections were indexed, 

Lorentz-polarization corrected and integrated by the DENZO program of the KappaCCD 

software package. The data merging process was performed using the SCALEPACK 
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program.23 Structure determinations were performed by direct methods with the solving 

program SIR97,24 that revealed all the non-hydrogen atoms. SHELXL program25 was 

used to refine the structures by full-matrix least-squares based on F2.  

The data collection and reduction were performed with CrysAlisPro [Version 

V1.171.40.14a, 2018 (A1B5, A2B1b, A2B3, A2B7), V1.171.41.54a, 2020 (A2B1a)].26  For 

the compounds A1B5 an analytical numeric absorption correction using a multifaceted 

crystal model based on expressions derived by R.C. Clark & J.S. Reid27 and an empirical 

absorption correction using spherical harmonics as implemented in SCALE3 ABSPACK 

was applied. For the A2B1a, A2B1b, A2B3, A2B7 a numerical absorption correction based 

on gaussian integration over a multifaceted crystal model and an empirical absorption 

correction using spherical harmonics as implemented in SCALE3 ABSPACK was 

applied. Using Olex2,28 the structures were solved with ShelXT29 and a least-square 

refinement on F2 was carried out with ShelXL30 for all structures. All non-hydrogen 

atoms were refined with anisotropic displacement parameters. Hydrogen atoms were 

included in idealized positions and refined with isotropic displacement parameters.  

The included dichloromethane solvent molecules (for derivatives A1B4, A2B2, A2B4, 
A3B4) were found to be highly disordered and a correct modelling of the disorder of these 

solvent molecules was not always possible leading to rather high anisotropic 

displacement parameters for some of their atoms. We have therefore proceeded to a 

‘squeeze’ treatment31 in order to remove the scattering contribution of these molecules 

which cannot be satisfactorily modelled (2 molecules of CH2Cl2 for derivative A1B4, 4 

CH2Cl2 molecules and one pentane molecule for derivative A2B2, 2 CH2Cl2 molecules for 

derivative A2B4 and 7 CH2Cl2 molecules for derivative A3B4). As a result, since these 

disordered molecules occupy a significant volume of the unit cell, several ALERTs A 

appear in the checkcif reports since ''VERY LARGE Solvent Accessible VOIDs'' are 

present in the structure resolution.  

The data set of derivative A3 has a low completeness what causes an ALERT B. This is 

only a preliminary structure and has to be measured again.  

Compound A2: The asymmetric unit contains one half of the complex [Cu4(μ2-

dppm)4(CN)2]2+
 and additionally one [Al{OC(CF3)3}4] anion. One of the {OC(CF3)3} units 

is disordered over at least two positions. The anion is not fully modeled yet. 

Compound A3: The preliminary refinement shows an asymmetric unit containing three 

CH2Cl2 molecules and half of the complex [Cu4(μ2-dppm)4(CN)2]2+
 and additionally one 
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[B(C6H3Cl2)4] anion. The measurement only has a completeness of 96% and has to be 

repeated.  

Compound A1B4: The asymmetric unit contains two CH2Cl2 molecules which were 

squeezed causing an ALERT A in the checkcif report. The squeeze does not change the 

R1 factor. Furthermore, the asymmetric unit contains half of [Cu4(μ2-dppm)4(CN)2]2+
 and 

additionally one PF6
- anion. 

Compound A1B5: The asymmetric unit contains two CH2Cl2 solvent molecules, which are 

respectively disordered over two positions (70:30; 80:20). Further, the asymmetric unit 

contains one half of the complex [Cu4(μ2-dppm)4(CN)2]2+
 and additionally one PF6

- anion. 

The anion is also disordered over two positions (75:25). To describe these disorders the 

FLAT, DFIX, SADI, SIMU, RIGU and ISOR restraints were applied. 

Compound A1B6: The asymmetric unit contains two PF6
- anions, two halves of the 

complex [Cu4(μ2-dppm)4(CN)2]2+ and one linker molecule.  

Compound A1B7: The asymmetric unit contains two CH2Cl2 solvent molecules, one PF6
- 

anion, one half of the complex [Cu4(μ2-dppm)4(CN)2]2+ and one half of the linker molecule.  

Compound A2B1a: The asymmetric unit contains two halves of the complex [Cu4(μ2-

dppm)4(CN)2]2+, one linker molecule and two [Al{OC(CF3)3}4]- anions. Both of the anions 

are disordered over more positions. To describe these disorders the FLAT, DFIX, SADI, 

SIMU, RIGU and ISOR restraints were applied. 

Compound A2B1b: The asymmetric unit contains one half of the complex [Cu4(μ2-

dppm)4(CN)2]2+, one linker molecule and one [Al{OC(CF3)3}4]- anion. One of the 

{OC(CF3)3} units is disordered over two positions (79:21). To describe these disorders 

the FLAT, DFIX, SADI, SIMU, RIGU and ISOR restraints were applied. 

Compound A2B2: The preliminary asymmetric unit contains four CH2Cl2 molecules and 

one n-pentane molecule which were squeezed causing an ALERT A. In addition, the 

asymmetric unit contains two [Al{OC(CF3)3}4] anions, two halves of the complex [Cu4(μ2-

dppm)4(CN)2]2+ and one linker molecule.  One of the {OC(CF3)3} units is disordered over 

two positions. It was necessary to apply isotropic displacement parameters to some of 

the atoms in these ponderations, implying several ALERTs in the checkcif report. 

Compound A2B3: The asymmetric unit contains one half of the complex [Cu4(μ2-

dppm)4(CN)2]2+ and one linker molecule and additionally one [Al{OC(CF3)3}4] anion. Two 

of the {OC(CF3)3} units are disordered over two positions (68:32; 66:34). To describe 

these disorders the FLAT, DFIX, SADI, SIMU, RIGU and ISOR restraints were applied. 
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Compound A2B4: The asymmetric unit contains one half of the complex [Cu4(μ2-

dppm)4(CN)2]2+, one half of the linker molecule, one [Al{OC(CF3)3}4] anion and 

additionally two CH2Cl2 molecules, which were squeezed causing an ALERT A in the 

checkcif report. 

Compound A2B7: The asymmetric unit contains one half of the complex [Cu4(μ2-

dppm)4(CN)2]2+, one half of the linker molecule, one [Al{OC(CF3)3}4] anion and 

additionally three CH2Cl2 molecules. Two of the solvent molecules are disordered over 

two positions (70:30; 50:50). To describe these disorders the FLAT, DFIX, SADI, SIMU, 

RIGU and ISOR restraints were applied. 

Compound A3B4: The preliminary asymmetric unit contains seven CH2Cl2 molecules 

which were squeezed causing an ALERT A in the checkcif report. In addition, one BArCl 

anion was found highly disordered over two positions. This leaves a high residual density 

causing several ALERTs in the checkcif report. 

Tables S7.1-S7.3 give the crystallographic data for all derivatives, the values for 

compounds A1B4, A2B2, A2B4, A3B4 are depicted after the ‘squeeze’ treatment.  
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Table S7.1. Crystallographic data and details of diffraction experiments for compounds A2, A3, A1B4, A1B5. 

Compound  A2 A3 A1B4 A1B5 

Data set (internal 
naming) 

jsr41 jsr6 fm6 js153 

Formula  C134H88F72Al2P8Cl 
Cu4N2O8  

C156H124B2Cl28Cu4 

N2P8 

C57H49ClCu2F6 

N2P5  
C120Cl12Cu4F12 

H112N4P10  
Dcalc./ g cm-3  1.659  1.495 1.291  1.485  
m/mm-1  0.795  1.141 0.903  1.110  
Formula Weight  3777.94  3542.71 1157.91  2827.39  
Colour  white  white yellow  colourless  
Shape  block  block block  block  
Size/mm3  0.24×0.14×0.10  0.18×0.14×0.11 0.20×0.16×0.11  0.30×0.20×0.15  
T/K  150(2)  150(2) 150(2)  123.0  
Crystal System  triclinic  monoclinic triclinic  monoclinic  
Space Group  P1" P21/n P1" P21/n  
a/Å  15.266(2)  20.792(3) 13.003(2)  15.9335(7)  
b/Å  16.105(2)  15.104(2) 14.326(2)  23.7619(9)  
c/Å  16.751(2)  26.935(4) 18.407(2)  16.7993(6)  
a/°  103.655(4)  90 67.527(4)  90  
b/°  101.600(4)  111.526(5) 71.071(4)  96.028(4)  
γ/°  101.694(4)  90 77.265(4)  90  
V/Å3  3782.4(8)  7869(2) 2978.8(7)  6325.2(4)  
Z  1  2 2  2  
Z'  0.5  0.5 1  0.5  
Wavelength/Å  0.71069  0.71069 0.71069  0.71073  
Radiation type  MoKα MoKα MoKα  MoKα  
Θmin/°  2.55  2.11 2.15  3.420  
Θmax/°  27.27  27.31 27.56  27.102  
Measured Refl.  83843  72473 51085  37825  
Independent Refl.  16913  16956 13714  13903  
Reflections with >2σ 
(I)  

12789  11966 12123  10483  

Rint  0.0951  0.1036 0.0223  0.0400  
Parameters  997  901 651  820  
Restraints  0  0 0  375  
Largest Peak  1.531  0.858 0.622  0.986  
Deepest Hole  -1.376  -0.567 -0.554  -0.429  
GooF  1.027  1.042 1.101  1.017  
wR2 (all data)  0.2092  0.1255 0.1017  0.1204  
wR2  0.1850  0.1116 0.0993  0.1102  
R1 (all data)  0.0962  0.0968 0.0392  0.0723  
R1  0.0713  0.0589 0.0352  0.0494  
Solution  ShelXS-97 

(Sheldrick, 1990)  
ShelXS-97  

(Sheldrick, 1990) 
ShelXS-97  

(Sheldrick, 1990)  
ShelXT  

(Sheldrick, 2015) 
Refinement  ShelXL-97 

(Sheldrick, 1997)  
ShelXL-97  

(Sheldrick, 1997) 
ShelXL-97  

(Sheldrick, 1997)  
ShelXL 2018/3 

(Sheldrick, 2015) 
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Table S7.2. Crystallographic data and details of diffraction experiments for compounds A1B6, A1B7, A2B1a, 

A2B1b. 

Compound A1B6 A1B7 A2B1a A2B1b 

Data set (internal 
naming) 

jsr1 jsr3 js111_2 js111_cu_dw 

Formula  C122H100ClCu4F12 

N4P10 

C63H54Cl4Cu2F6 

N2P5 
Al2C146.3Cl4.6Cu4F72 

H100.6N4O8.04P8 
C77H52AlCu2F36N3 

O4P4  
Dcalc./ g cm-3  1.130 1.476 1.602 1.602  
m/mm-1  0.761 1.048 3.229 2.609  
Formula Weight  2413.92 1376.81 4130.09 2045.15  
Colour  white white dark orange colorless  
Shape  block plate block block  
Size/mm3  0.24×0.19×0.13 0.15×0.10×0.07 0.20×0.11×0.09 0.19×0.12×0.12  
T/K  150(2) 150(2) 123.01(10) 100.00(10)  
Crystal System  monoclinic triclinic triclinic triclinic  
Space Group  P21/n P1" P1" P1" 
a/Å  22.618(2) 14.955(2) 16.1962(3) 15.3998(2)  
b/Å  20.254(2) 15.537(2) 17.5331(3) 17.1112(3)  
c/Å  32.549(4) 16.121(2) 30.7150(4) 18.5856(3)  
a/°  90.00 84.351(4) 90.6020(10) 64.762(2)  
b/°  107.878(4) 66.773(3) 99.6830(10) 73.7470(10)  
γ/°  90.00 64.601(3) 94.9150(10) 79.1130(10)  
V/Å3  14191(3) 3098.2(2) 8563.5(2) 4239.28(13)  
Z  4 2 2 2  
Z'  1 1 1 1  
Wavelength/Å  0.71073 0.71069 1.54184 1.54184  
Radiation type  MoKα MoKα Cu Kα Cu Kα  
Θmin/°  2.06 2.09 3.352 2.697  
Θmax/°  27.35 27.53 73.851 74.508  
Measured Refl.  430858 69928 96008 79804  
Independent Refl.  31915 14165 33616 16521  
Reflections with >2σ 
(I)  

25890 12485 27068 15621  

Rint  0.0979 0.0289 0.0578 0.0184  
Parameters  1364 740 3503 1271  
Restraints  0 0 2115 73  
Largest Peak  0.746 1.695 1.225 0.492  
Deepest Hole  -0.858 -1.200 -0.673 -0.470  
GooF  1.050 1.039 1.011 1.040  
wR2 (all data)  0.1251 0.1192 0.1508 0.0882  
wR2  0.1168 0.1127 0.1404 0.0870  
R1 (all data)  0.0745 0.0502 0.0673 0.0351  
R1  0.0537 0.0432 0.0549 0.0334  
Solution  ShelXS-97 

(Sheldrick, 1990) 
ShelXS-97  

(Sheldrick, 1990) 
ShelXT  

(Sheldrick, 2015) 
ShelXT  

(Sheldrick, 2015) 
Refinement  ShelXL-97 

(Sheldrick, 1997) 
ShelXL-97  

(Sheldrick, 1997) 
ShelXL 2018/3 

(Sheldrick, 2015) 
ShelXL 2018/3 

(Sheldrick, 2015) 
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Table S7.3. Crystallographic data and details of diffraction experiments for compounds A2B2, A2B3, A2B6, 

A2B7. 

Compound A2B2 A2B3 A2B4 A2B7 

Data set (internal 
naming) 

fm33 fm38   jsr21 js105 

Formula  C145H96Al2ClCu4F72

N3O8P8 
AlC74.5Cl3Cu2F36 

H50N2O4P4  
C73H49AlClCu2F36 

N2O4P4 
C160H116.72Al2Cl12 

Cu4F72N4O8P8 

Dcalc./ g cm-3  1.408 1.636  1.531 1.552 
m/mm-1  0.651 3.445  0.704 3.796 
Formula Weight  3932.13 2105.45  1980.08 4572.57 
Colour  white clear light yellow  white colorless 
Shape  rod hexagonal  block block 
Size/mm3  0.25×0.10×0.08 0.54×0.30×0.25  0.29×0.22×0.19 0.65×0.27×0.16 
T/K  150(2) 123.00(10)  150(2) 123.01(10) 
Crystal System  triclinic triclinic  triclinic triclinic 
Space Group  P1" P1" P1" P1" 
a/Å  19.062(4) 15.6580(5)  15.745(2) 16.5068(3) 
b/Å  21.324(4) 17.1731(8)  17.263(2) 16.6060(4) 
c/Å  24.783(4) 18.6088(6)  18.504(2) 18.2602(4) 
a/°  86.130(6) 63.166(4)  63.103(4) 91.918(2) 
b/°  78.772(6) 73.559(3)  73.704(4) 101.159(2) 
γ/°  69.840(6) 79.585(3)  79.280(4) 94.197(2) 
V/Å3  9276(3) 4274.2(3)  4295.0(9) 4891.73(19) 
Z  2 2  2 1 
Z'  1 1  1 0.5 
Wavelength/Å  0.71073 1.54184  0.71069 1.54184 
Radiation type  MoKα CuKα MoKα CuKα 
Θmin/°  2.20 3.532  2.19 3.549 
Θmax/°  27.82 74.164  27.54 75.936 
Measured Refl.  197654 32834  96007 33241 
Independent Refl.  42689 16786  19613 19469 
Reflections with >2σ 
(I)  

28086 14599  13901 17318 

Rint  0.0924 0.0597  0.0697 0.0311 
Parameters  2024 1327  1101 1270 
Restraints  0 347  0 130 
Largest Peak  2.321 0.962  1.421 0.0917 
Deepest Hole  -1.647 -0.573  -1.059 -1.008 
GooF  1.111 1.018  1.108 1.044 
wR2 (all data)  0.3195 0.1461  0.2211 0.1744 
wR2  0.2952 0.1393  0.2016 0.1671 
R1 (all data)  0.1378 0.0569  0.1038 0.0702 
R1  0.1053 0.0514  0.0774 0.0636 
Solution  ShelXS-97 

(Sheldrick, 1990) 
ShelXT  

(Sheldrick, 2015) 
ShelXS-97  

(Sheldrick, 1990) 
ShelXT  

(Sheldrick, 2015) 
Refinement  ShelXL-97  

(Sheldrick, 1997) 
ShelXL 2018/3 

(Sheldrick, 2015) 
ShelXL-97  

(Sheldrick, 1997) 
ShelXL 2018/3 

(Sheldrick, 2015) 
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Additional view of solid-state structure of compounds A1B6 and A1B1 

Figure S7.1. Side view of the solid-state structure of compound A1B6. Anions and hydrogen atoms are 

omitted and phenyl rings are depicted transparent for clarity. Thermal ellipsoids are shown at 50% probability 
level.  

 

Figure S7.2. Solid-state structure of compound A1B1. Anions and hydrogen atoms are omitted and phenyl 

rings are depicted transparent for clarity. Thermal ellipsoids are shown at 50% probability level.  

 

 

 

 

 

 

 



188 | 7 .  T u n i n g  e m i s s i o n  p r o p e r t i e s  o f  C u ( I )  m e t a l l a c y c l e s   
 

7.4.5 Additional Variable Temperature UV-Vis Spectra of Compounds A2, A3 and 
A1B4 

Figure S7.3. Solid-state emission spectra of A2 at different temperatures between 300 K and 80 K upon 
excitation at 325 nm.  

Figure S7.4. Solid-state emission spectra of A2 at different temperatures between 300 K and 80 K upon 
excitation at 360 nm.  
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Figure S7.5. Solid-state emission spectra of A2 at 300 K and at 80 K upon excitation at 360 nm.  

Figure S7.6. Solid-state emission spectra of A3 at different temperatures between 300 K and 80 K upon 
excitation at 325 nm. 
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Figure S7.7. Solid-state emission spectra of A3 at different temperatures between 300 K and 80 K upon 
excitation at 360 nm. 

Figure S7.8. Solid-state emission spectra of A3 at 300 K and at 80 K upon excitation at 360 nm.  
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Figure S7.9. Solid-state emission spectra of A1B4 at different temperatures between 300 K and 80 K upon 
excitation at 325 nm. 

Figure S7.10. Solid-state emission spectra of A2B4 at different temperatures between 300 K and 80 K upon 

excitation at 320 nm. 
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7.4.6 Variable Temperature Excited State Lifetimes of A2 

Further measurements at higher temperatures have to be done to determine if a 

Thermally Activated Delayed Fluorescence is present, due to the absence of a plateau 

region at the range of the highest temperature measured so far.  

 
Table S7.4. Calculated values for the excited state lifetimes of A2 from 80K to 300K. 

TEMPERATURE/K BI-EXP. 
LIFETIME/µS 

BI-EXP. 
LIFETIME/µS 

MONO-EXP. 
LIFETIME/µS 

80 298 158 234 
90 281 130 233 
100 306 168 230 
110 300 166 22 
120 315 175 217 
130 316 176 210 
140 316 175 205 
150 298 172 200 
160 288 168 192 
170 266 162 186 
180 263 158 178 
190 238 150 171 
200 237 145 162 
210 232 129 156 
220 206 128 145 
230 198 121 135 
240 185 114 126 
250 169 102 113 
260 152 92 103 
270 158 82 91 
280 142 70 78 
290 104 55 68 
300 84 42 58 
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Figure S7.11. Plot of the mono-exponential excited state lifetimes of A2 from 80 K to 300 K. 

 

 

Figure S7.12. Plot of the bi-exponential excited state lifetimes of A2 from 80 K to 300 K. 
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7.4.7 Thermogravimetric Analyses and Differential Scanning Calorimetry 

The samples were heated from room temperature up to 270.00 °C with a rate of 5.00 

°C/min and a nitrogen gas flow of 100.0 mL/min. The temperature was held at 270.00 °C 

for five minutes before cooling again.   

   
Figure S7.13. TGA-DSC of compound A2 (left) and compound A3 (right). 
 

 
Figure S7.14. TGA-DSC of compound A1B4 (left) and compound A1B7 (right). 
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Figure S7.15. TGA-DSC of compound A2B1a (left) and compound A2B1b (right). 

 

Figure S7.16. TGA-DSC of compound A2B3 (left) and compound A2B4 (right). 

Figure S7.17. TGA-DSC of compound A2B6 (left) and compound A2B7 (right). 
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Figure S7.18. TGA-DSC of compound A3B4. 

 

 

7.4.8 Additional IR spectra  

 

Figure S7.19. IR spectra of compound A2 before (black) and after the transition (red). Characteristic C≡N 
vibration bands shown in inset. 
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Figure S7.20. IR spectra of compound A3. 

 

Figure S7.21. IR spectra of compound A1B1. 
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Figure S7.22. IR spectra of compound A1B4 before (black) and after the transition (red). Characteristic C≡N 

vibration bands shown in inset. 

 

Figure S7.23. IR spectra of compound A1B5. 
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 Figure S7.24. IR spectra of compound A1B6. 

Figure S7.25. IR spectra of compound A1B7 before (black) and after the transition (red). Characteristic C≡N 

vibration bands shown in inset. 
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Figure S7.26. IR spectra of compound A2B1a before (black) and after the transition (red). Characteristic 

C≡N vibration bands shown in inset. 

Figure S7.27. IR spectra of compound A2B1b before (black) and after the transition (red). Characteristic 
C≡N vibration bands shown in inset. 
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Figure S7.28. IR spectra of compound A2B3 before (black) and after the transition (red). Characteristic C≡N 

vibration bands shown in inset.  

Figure S7.29. IR spectra of compound A2B4 before (black) and after the transition (red). Characteristic C≡N 
vibration bands shown in inset. 
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Figure S7.30. IR spectra of compound A2B6 before (black) and after the transition (red). Characteristic C≡N 
vibration bands shown in inset. 

Figure S7.31. IR spectra of compound A2B7. 
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Figure S7.32. IR spectra of compound A3B4 before (black) and after the transition (red). Characteristic C≡N 
vibration bands shown in inset. 
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8. Thesis Treasury 

8.1 Coordination Compounds Based on [(C5H5)2Mo2(CO)4(μ,η2-As2)]  

8.1.1 Reaction of [(C5H5)2Mo2(CO)4(µ,η2-As2)] with Au(tht)Cl  

The already reported reaction of [Cp2Mo2(CO)4(µ,η2-P2)] (A) with Au(tht)Cl (tht = 

tetrahydrothiophene) yields the molecular compound 1.1 The solid-state structure of 1 
consists of a Lewis-acidic fragment [AuCl] coordinated to one phosphorus atom (Scheme 

8.1). The coordination mode of the Au(I) cation is not exactly linear, as the P-Au-Cl angle 

deviates from linearity (170.4(2)°). 

 

 

 

 

 

 

 

Scheme 8.1. Reaction of [Cp2Mo2(CO)4(µ,h2-P2)] with Au(tht)Cl yielding compound 1.1  

As already reported in chapters 3-5, the tetrahedral arsenic analogue to A 

[Cp2Mo2(CO)4(µ,η2-As2)] (B) shows a higher tendency to coordinate towards cations in 

an h2 fashion. The question arose, what coordination mode the As2 unit in B would take 

in the reaction outcome with Au(tht)Cl. The reaction of B and this Au(I) salt was 

conducted under the same reaction conditions, in CH2Cl2 at room temperature. 

Compound 2 was obtained after one week as brownish crystals suitable for X-ray 

analysis in a moderate yield (37%). As expected, 2 consists of an As2 moiety 

coordinating in an h2-mode towards the Au(I) center (Figure 8.1).  

 
 

 

 

 

 

 

Figure 8.1. Solid-state structure of compound 2. Ellipsoids are shown at 50% probability level. 
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8.1.2 Reaction of [(C5H5)2Mo2(CO)4(µ,h2-As2)] with CuCl  

The already reported reaction of A and CuCl leads to the 1D linear polymer 

[CuCl{Cp2Mo2(CO)4(µ,η2:η1:η1-P2)}]n (3) with each phosphorus atom coordinating in a h1-

coordination mode towards the Cu(I) centers.2 In contrast to A, reacting CuCl with 

[Cp2Mo2(CO)4(µ,η2-As2)] (B) leads to the dimer 4 in moderate yields (Scheme 8.2). The 

η2-coordination of the As2 unit towards a CuCl entity results in a dimeric structure.  

 

 
Scheme 8.2. Reaction of A or B and CuCl yielding compounds 3 and 4, respectively.2 Yields are given in 

parentheses. 

The orange blocks are soluble in donor solvents, such as CH3CN, slightly soluble in 

CH2Cl2 and insoluble in n-pentane and toluene. The 1H and 13C {1H} NMR spectra of 3 

show signals for the proton (5.26 ppm) and carbon nuclei (229.54 ppm, 85.85 ppm) of 

coordinated B, respectively. The ESI mass spectra show the cationic fragments [B2Cu]+ 

and [BCu(CH3CN)]+, and the anionic fragment [CuCl2]-. 

 
8.1.3 Reaction of [(C5H5)2Mo2(CO)4(µ,η2-As2)] with hydrolyzed AgPF6 and 2,2’-
bipyrimidine  

As already reported in chapter 4, the reaction of [Cp2Mo2(CO)4(µ,η2-As2)] (B), Ag[PF6] 

and an excess of 2,2’-bipyrimidine (L) yields a 1D coordination polymer with the 

composition 1:1:1. Accidently using partly hydrolyzed Ag[PF6] leads to the similar one-

dimensional polymer 5 (Scheme 8.3). The cationic polymeric chain is identical to the one 

of the already reported polymer, while the anion present is exclusively [PF2O2]-(Figure 
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8.2). Since the determination of the anion via X-ray structural analysis is rather 

impossible, NMR spectra were performed. The 31P {1H} and the 19F {1H} spectra revealed 

the presence of a [PF2Xm]n species.  

Scheme 8.3. Reaction of B and AgPF6 with 2,2’-bipyrimidine yielding compound 5.  

This species is most likely an [PF2O2]- anion resulting from partial hydrolysis of the 

hexafluorophosphate. The 19F {1H} spectrum reveals further signals, which indicate a 

decomposition of [PF6]- and reaction of formed HF with the glassware. 

The ESI mass spectra shows peaks for the cationic fragments [BAgL]+, [AgL2]+ and 

[AgL]+. The assignment of negatively charged fragments was not possible. 

 
 
 

 

 

 

 

 

Figure 8.2. Solid-state structure of compound 5. Cp-, CO-fragments and hydrogen atoms are omitted for 
clarity. Ellipsoids are depicted at 50% probability level.  

 

8.1.4 Reaction of [(C5H5)2Mo2(CO)4(µ,η2-As2)] with hydrolyzed Ag[PF6] and 4,4’-
bipyridine  

As already reported in chapter 4, the reaction of [Cp2Mo2(CO)4(µ,η2-As2)] (B), Ag[PF6] 

and an excess of 4,4’-bipyridine yields a 1D coordination polymer with linked [Ag2B2]2+ 
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units. Accidently using partly hydrolyzed Ag[PF6] leads to the similar one-dimensional 

polymer 6 (Figure 8.3.b). This coordination compound consists, as well as the already 

reported polymer, of [Ag2B2]2+ moieties linked with each other with 4,4’-bypyridine. 

However, the partly hydrolyzed anion [PF2O2]- coordinates in an h1-coordination mode 

towards the two Ag(I) centers stabilizing a rather short Ag···Ag distance (3.778(4) Å) 

(Figure 8.3.a). The second anion in the unit cell is disordered, [PF6]- has an occupancy 

of 0.8 and another [PF2O2]- anion has an occupancy of 0.2. 

 

 

 

 

 

  

 

 

 

 

 

Figure 8.3. Solid-state structure of compound 6. a) Coordination of PF2O2- towards the Ag(I) centers; b) 
Polymeric structure of 5. Cp-, CO-fragments and hydrogen atoms, solvent molecules and additional anions 

are omitted for clarity. Ellipsoids are depicted at 50% probability level. 

 

8.1.5 Reaction of [(C5H5)2Mo2(CO)4(µ,η2-As2)] with [Cu(CH3CN)4][Al{OC(CF3)3}4] 
and 1,2-di(4-pyridyl)ethylene  

Reaction of the As2 complex B with [Cu(CH3CN)4][TEF] ([TEF]- = [Al{OC(CF3}3}4]-) and 

the ditopic linker 1,2-di(4-pyridyl)ethylene leads to the one-dimensional zig-zag polymer 

7. So far only an incomplete and poor data set could be obtained. The preliminary 

structure in the solid state shows a Cu(I) ion coordinated in an h2-fashion by one B unit, 

as well as two linkers (Figure 8.4). An exact determination of bond lengths and angles is 

not possible due to the incomplete X-ray data set. 
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Figure 8.4. Preliminary solid-state structure of compound 6. Hydrogen atoms are omitted for clarity.  

 

8.2 Coordination Compounds Based on [Cp*Fe(η5-P5)]  

8.2.1 Reaction of [Cp*Fe(η5-P5)] with Ag[B(3,5-C6H3Cl2)4] 

As already reported,3 the reaction of [Cp*Fe(η5-P5)] (C, Cp* = C5(CH3)5) with the 

weakly coordinating Ag[BArCl] ([BArCl]- = [B(3,5-C6H3Cl2)4]-) leads to compound 8 
consisting of a six-membered Ag2P4 ring (Figure 8.5). This structural motif was already 

found in several other compounds containing En ligand complexes with coinage metal (I) 

salts. The reaction of C and Cu[GaCl4]4 and CuCl5 leads to one dimensional coordination 

polymers with repeating units of Ag2P4 ring. Furthermore, P2 ligand complexes, such as 

the tetrahedral [Cp2(CO)4Mo2P2] (A) form similar six-membered ring motifs with Ag(I)1,6, 

Au(I)1 and Cu(I)1,7–9 salts. However, these compounds show an additional η2-

coordination of two A moieties towards the M(I) centers, while compound 8 shows two 

CH3CN molecules coordinated to each Ag(I) ion. 
 

 

 

 

 

 

 

 

 

 

 

Figure 8.5. Molecular structure of 8.3 Hydrogen atoms are omitted for clarity. Ellipsoids are depicted at 50% 

probability level.  
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Furthermore, two other compounds (9 and 10) could be isolated from this reaction 

(Figure 8.6). At least two of the shown products crystallize simultaneously, sometimes 

all three. 9 crystallizes as green blocks and 10 as red blocks in the monoclinic space 

group P21/n. Compound 9 shows, as well as compound 8, two Ag(I) centers coordinated 

by two C units. However, the cations in 9 are η1 coordinated by one P5 moiety and η2-

coordinated by the other P5 moiety. Furthermore, two carbon atoms of the anion 

coordinate towards each silver atom (d(Ag···C) = 2.593(4)-2.695(4) Å). The already 

reported reaction of C and Ag[Al{OC{CF3)3}4] leads to the 1D polymer 

[Ag{Cp*Fe(η5:η2:η1-P5)}2]n [Al{OC(CF3)3}4]n with a 1,2,3-coordination mode of C towards 

the Ag(I) ion.10 

Figure 8.6. Molecular structures of 9 (left) and 10 (right). Hydrogen atoms are omitted for clarity. Ellipsoids 

are depicted at 50% probability level.  

However, compound 10 consists of an Ag-Ag dumbbell middle-deck with a short Ag···Ag 

distance (2.9520(8) Å), indicating argentophilic interactions. The two P5 rings coordinate 

with two phosphorus atoms each in an η2-coordination mode towards the Ag2 unit from 

above and below. The solid-state structure of compound 10 is disordered over two 

positions (90:10) leading to an η2-η3-coordination towards Ag(I) (cf. Supporting 

Information). Furthermore, one of the Ag(I) centers is coordinated by a chloride atom of 

the anion with a rather short Ag···Cl distance of 2.8506(9) Å.  
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8.2.2 Reaction of [(C5Me5)2Fe(η5-P5)] with Ag[B(3,5-C6H3Cl2)4] and 4,4’-bipyridine 

The reaction of C with Ag[BArCl] and ditopic pyridyl-based linkers was studied. The 

only results obtained contain 4,4’-bipyridine as linking unit. Reacting C, Ag[BArCl]  and 

4,4’-bipyridine in a 2:2:1 ratio yields green rods of compound 11. Compound 11 consists 

of Ag-P5 zig-zag chains cross-linked with each other via linker molecules yielding a 

planar 2D network (Figure 8.7). The two-dimensional network has a composition of 

C:Ag[BArCl]:linker of 2:2:1, which corresponds to the used stoichiometry.  

 

 

 

 

 

 

 

 

 

 

 

Figure 8.7. 2D structure of compound 11.  [FeCp*] fragments, hydrogen atoms and anions are omitted for 

clarity. Ellipsoids are depicted at 50% probability level. 

The section shown in figure 8.8 on top shows an entity which is reminiscent of the Ag2P4 

ring motif. Compared to the already discussed 1,2-coordination, the P5 rings in 11 reveal 

a 1,3-coordination towards the Ag(I) centers. The Cp* fragments point alternating up and 

down the plane. 

 

 

 

 

 

 

 
 

Figure 8.8. Sections of compound 11. Hydrogen atoms and anions are omitted for clarity. Ellipsoids are 

depicted at 50% probability level. 
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Using a 1:1:1 ratio of C, Ag[BArCl]  and 4,4’-bipyridine results in the 3D coordination 

polymer 12. The solid-state structure of 12 reveals Ag nodes, which are tetrahedrally 

coordinated by four linker units and planar Ag2P4 six membered rings connected to each 

other via the linker units (Figure 8.9). The preliminary solid-state structure reveals a 

composition of C:Ag[BArCl]:linker of 1:2:3, which does not corresponds to the used 

stoichiometry. Colorless crystals containing protonated linker molecules and anions 

could be isolated, not explaining the excess of linker in the composition. The supernatant 

was still colored after several months. 

 

 

 

 

 

 

 

 

 
 

Figure 8.8. Solid-state structure of compound 12 along the a-c-plane (left) and long the -a-c-plane (right). 

[Cp*Fe] fragments, hydrogen atoms and anions are omitted for clarity. Ellipsoids are depicted at 50% 

probability level. 

Along the a/c-plane the pores of the 3D network reveal a diagonal of ~ 35 Å (Figure 8.8 

left), along the -a/c-plane two types of pores are present (Figure 8.8 right). The distance 

of one Ag2P4 moiety to the opposite one is ~ 35 Å, while the diagonal of one Ag(I) knot 

to a facing one is ~ 27 Å. The pores are filled with the bulky weakly coordinating anions.   

The Ag(I) centers of the planar ring moieties are coordinated by two 4,4’-bipyridine units 

demonstrating a tetrahedral coordination environment (Figure 8.9.a). The pyridyl rings of 

the linkers deviate from planarity (21°; Figure 8.9.b). The Ag(I) knots show a distorted 

tetrahedral coordination with NAgN angles between 99.8(3)° and 122.4(3)° (Figure 

8.9.c). 
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Figure 8.9. Extracts of the solid-state structure of compound 12. a) Ag2P4 six-membered ring coordinated 

by linker molecules along the c axis; b) Ag2P4 six-membered ring coordinated by linker molecules along the 
-a-c-plane; c) distorted tetrahedrally coordinated Ag(I) knots. [Cp*Fe] fragments, hydrogen atoms and anions 

are omitted for clarity. Ellipsoids are depicted at 50% probability level. 

    After several months the crystals were measured again as they changed their color 

from dark green blocks to light green plates in the reaction solution The obtained solid-

state structure of 13 was identical to the one achieved in the reaction with a 

C:Ag[BArCl]:linker ratio of 2:1:2. The 2D polymer 13 consists, similar to compound 11, of 

AgP5 chains cross-linked with 4,4’-bipyridine units (Figure 8.10.a) with a 1,3-coordination 

of the P5 towards the Ag(I). The difference to the 2D polymer 11 is the coordination mode 

of the Ag(I) ions: in compound 13, the Ag(I) centers are tetrahedrally coordinated by two 

linkers and two P5 entities resulting in a zig-zag polymer (Figure 8.10.b), in contrast to 

the trigonal planar coordination of the Ag(I) ion in 11. 
 

 

 

 

 

 

 

 

 

 

Figure 8.10. Solid-state structure of compound 13. a) Top-view of 2D coordination polymer; b) Section of 

the zig-zag structural motif. [Cp*Fe] fragments, hydrogen atoms and anions are omitted for clarity. Ellipsoids 
are depicted at 50% probability level. 
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The pyridyl rings in each linker unit are twisted by 38°. Interestingly, the composition of 

13 is 1:1:1 and therefore, not matching with the used stoichiometry. However, no other 

compounds could be determined. 

 

Furthermore, reacting C, Ag[BArCl]  and 4,4’-bipyridine in a one-pot reaction, in a ratio 

of 1:1:1 leads to the two-dimensional network 14 (Figure 8.11.a). The 2D polymer 

contains two layers resulting of the η1:η2-coordination mode of the P5 ring (Figure 8.11.b 

and c). Every Ag(I) center is coordinated by four neighboring atoms, however, there are 

two types of silver atoms present. One type is η1-coordinated by one phosphorus atom 

of C and distorted tetrahedrally coordinated by three linker units. The second kind of 

Ag(I) cations has, as well as type I, a tetrahedral coordination environment, however, 

they are η2-coordinated by one C entity and only two linker units (Figure 8.11.c). 

Figure 8.11. Solid-state structure of compound 14. a) Top-view of 2D coordination polymer; b) Layered 
structure; c) η1:η2-coordination mode of the P5 ring. [Cp*Fe] fragments, hydrogen atoms and anions are 

omitted for clarity. Ellipsoids are depicted at 50% probability level. 

Compounds 11-14 are hardly reproducible and not selectively formed, therefore, no 

further analytics was possible. 

These different coordination geometries of Ag(I) show its flexible coordination sphere 

and the resulting rich structural diversity of Ag(I) coordination compounds. This offers an 

interesting research area, as well as challenging synthetic tasks. 
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8.3 Supporting Information 

8.3.1 General 

All experiments were performed under an atmosphere of dry argon or nitrogen using 

standard Schlenk and glovebox techniques. The nitrogen/argon was dried and purified 

from traces of oxygen with a Cu/MgSO4 catalyst, concentrated H2SO4 and orange gel. 

All used solvents were taken from the solvent drying machine MB SPS-800 of the 

company MBRAUN. The precursors [Cp2Mo2(CO)4(μ,η2:2-As2)] (A)11, [Cp*Fe(η5-P5)] 

(B)12, [Cu(CH3CN)4)][Al{OC(CF3)3}4]13 and Ag[B(3,5-C6H3Cl2)4]14 were prepared 

according to literature procedures. Ag[PF6] (abcr),  1,2-di(4-pyridyl)ethylene (TCI), 2,2’-

bipyrimidine (TCI) and 4,4’-bipyridine (TCI) were used as received without further 

purification.  

Solution NMR spectra were recorded on a Bruker Avance III HD 400 spectrometer 

(1H: 400 MHz, 31P: 161 MHz, 13C: 100 MHz, 19F: 376 MHz) with acetonitrile-d3 as solvent 

at room temperature. The chemical shifts δ are presented in parts per million ppm and 

coupling constants J in Hz. The following samples were used as external reference: TMS 

(1H, 13C), CFCl3 (19F), H3PO4 85 % (31P). The spectra were processed and analyzed using 

the software Bruker TopSpin 3.0. IR spectra were recorded as solids with an ATR-Ge 

disc on a Thermo Fisher Nicolet iS5 spectrometer. Elemental analyses were performed 

on an Elementar Vario MICRO cube apparatus. Mass spectra were recorded on an 

Agilent Q-TOF 6540 UHD mass spectrometer with acetonitrile as solvent. 

The first synthesis of compound 4 was performed by Mehdi Elsayed Moussa. 

 

8.3.2 Synthetic Procedure  

Synthesis and Characterization of 2 

0.05 mmol Au(tht)Cl (16 mg) in 5 mL CH2Cl2 was added to a stirred solution of 

[Cp2Mo2(CO)4(η2-As2)] (30 mg, 0.05 mmol) in 5 mL CH2Cl2, and stirred for 2h at room 

temperature. The red solution was filtered and carefully layered with threefold amount of 

n-pentane and stored at room temperature in the dark. After one week red brownish 

crystals were formed. The crystals were washed with n-pentane and dried in vacuo. Yield 

15 mg (37% referred to [Cp2Mo2(CO)4(η2-As2)]) 
1H NMR (400MHz, CD3CN): d = 5.39 (s) 
13C NMR (100MHz, CD3CN): d = 86.99 (C5H5)  
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Positive ion ESI-MS (CH3CN, r. t.): m/z (%) = 1364.39 (100) [{Cp2(CO)4Mo2As2}2Au]+. 

Negative ion ESI-MS (CH3CN, r. t.): m/z (%) = 266.91 (100) [AuCl2]-, 253.78 (30) 

[CpMo(CO)2Cl]-, the attribution of some additional peaks was not possible, but the 

fragments do not contain gold or molybdenum. 

IR (solid, CO bands): 𝑣̃/cm-1: 1997 (w), 1982 (w), 1964 (s), 1936 (vs), 1923 (vs); 

Synthesis and Characterization of 4 

0.05 mmol of CuCl in 5 mL CH2Cl2:CH3CN 1:1 was added to a stirred solution of 

[Cp2Mo2(CO)4(η2-As2)] (29 mg, 0.05 mmol) in 7 mL CH2Cl2: CH3CN 2:1 and stirred for 2h 

at room temperature. The clear orange solution was carefully layered with threefold 

amount of n-pentane and stored at room temperature in the dark. After three days orange 

blocks were formed. The crystals were washed with n-pentane and dried in vacuo. Yield 

12 mg (35% referred to [Cp2Mo2(CO)4(η2-As2)]) 
1H NMR (400MHz, CD3CN): d = 5.26 (s, 10H) 
13C NMR (100MHz, CD3CN): d = 229.54 (CO), 85.85 (C5H5)  

Positive ion ESI-MS (CH3CN, r. t.): m/z (%) = 1232.36 (100) [{Cp2(CO)4Mo2As2}2Cu]+, 

687.67 (85) [{Cp2(CO)4Mo2As2}Cu(CH3CN)]+. 

Negative ion ESI-MS (CH3CN, r. t.): m/z (%) = 134.87 (100) [CuCl2]-. 

Elemental analysis, calcd (%) for C28H20As4Cl2Cu2Mo4O8 (1365.91): C, 24.62; H, 1.48; 

found: C, 24.85; H, 1.42; 

Synthesis and Characterization of 5 

Hydrolyzed AgPF6 (1 eq., 4 mg, 0.016 mmol) in 5 mL CH2Cl2:CH3CN 1:1 was added to 

a stirred solution of [Cp2Mo2(CO)4(η2-As2)]  (3 eq., 29 mg, 0.05 mmol) in 5 mL 

CH2Cl2:CH3CN 1:1 and stirred for 1 h at room temperature. Then 0.1 mmol (6 eq., 16 

mg) of the linker 2,2’-bipyrimidine was added and stirred for another 2 h. The red solution 

was filtered and carefully layered with the threefold amount of n-pentane and stored at 

room temperature in the dark. After several days, compound 5 was obtained as dark red 

blocks. The supernatant was decanted off, the remaining crystals washed with n-pentane 

and dried in vacuo.  
1H NMR (CD3CN): d = 9.05 (broad s, 4H), 7.70 (t, JH,H = 4.79 Hz, 2H), 5.45 

(uncoordinated Cp2(CO)4Mo2As2), 5.32 (s, 10H) 
31P {1H} NMR (CD3CN): d/ppm = = -12.83 (t, 1JP,F = 948.19 Hz) 
19F {1H} NMR (CD3CN): d/ppm = -80.22 (d, 1JF,P = 949.17 Hz), -150.63, -150.69 

(decomposition products of HF and glas) 

Positive ion ESI-MS (CH3CN, r. t.): m/z (%) = 848.68 (100) 

[{Cp2(CO)4Mo2As2}Ag(C8H6N4)]+, 423.02 (19) [Ag(C8H6N4)2]+, 264.97 (30) [Ag(C8H6N4)]+. 
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Negative ion ESI-MS (CH3CN, r. t.): m/z (%) = 309.17 (11) [Ag(PF2O2)2]-, 144.97 (57) 

[PF6]-, 100.96 (31) [PF2O2]-, the attribution of some additional peaks was not possible, 

however, some peaks could be assigned to linker molecules with anions and H2O. 

Synthesis of 6 
Hydrolyzed AgPF6 (1 eq., 4 mg, 0.016 mmol) in 5 mL CH2Cl2:CH3CN 1:1 was added to 

a stirred solution of [Cp2Mo2(CO)4(η2-As2)] (3 eq., 29 mg, 0.05 mmol) in 5 mL 

CH2Cl2:CH3CN 1:1 and stirred for 1 h at room temperature. Then 0.1 mmol (6 eq., 16 

mg) of the linker 4,4’-bipyridine was added and stirred for another 2 h. The red solution 

was filtered and carefully layered with the threefold amount of n-pentane and stored at 

room temperature in the dark. After several days, compound 6 was obtained as orange 

blocks. The supernatant was decanted off, the remaining crystals washed with n-pentane 

and dried in vacuo. 

Synthesis of 7 
[Cu(CH3CN)4][Al{OC(CF3)3}4] (1 eq., 60 mg, 0.05 mmol) in 5 mL CH2Cl2 was added to a 

stirred solution of [Cp2Mo2(CO)4(η2-As2)] (1 eq., 29 mg, 0.05 mmol) in 5 mL CH2Cl2 and 

stirred for 1 h at room temperature. Then 0.05 mmol (1 eq., 9 mg) of the linker 1,2-di(4-

pyridyl)ethylene was added and stirred for another 2 h. The red solution was filtered and 

carefully layered with the threefold amount of n-pentane and stored at room temperature 

in the dark. After several days, compound 7 was obtained as orange blocks. The 

supernatant was decanted off, the remaining crystals washed with n-pentane and dried 

in vacuo. 

Synthesis of 8, 9 and 10 
Ag[B(3,5-C6H3Cl2)4] (1 eq., 70 mg, 0.1 mmol) in 11 mL CH2Cl2:CH3CN 10:1 was added 

to a stirred solution of [Cp*Fe(η5-P5)] (1 eq., 35 mg, 0.1 mmol) in 10 mL CH2Cl2 and 

stirred for 1.5 h at room temperature. The green solution was carefully layered with the 

threefold amount of n-hexane and stored at room temperature in the dark. After a few 

days, compounds 8, 9 and 10 were obtained as green rods and red blocks. The 

supernatant was decanted off, the remaining crystals washed with n-pentane and dried 

in vacuo. 

Synthesis of 11 
Ag[B(3,5-C6H3Cl2)4] (1 eq., 70 mg, 0.1 mmol) in 6 mL CH2Cl2:CH3CN 10:1 was added to 

a stirred solution of [Cp*Fe(η5-P5)] (1 eq., 35 mg, 0.1 mmol) in 5 mL CH2Cl2 and stirred 

for 1 h at room temperature. The green solution was carefully layered with 4,4’-bipyridine 

(0.5 eq., 8 mg, 0.05 mmol) in 20 mL toluene and stored at room temperature in the dark. 
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After a few days, compound 11 was obtained as green rods. The supernatant was 

decanted off, the remaining crystals washed with n-pentane and dried in vacuo. 

Synthesis of 12 
Ag[B(3,5-C6H3Cl2)4] (1 eq., 70 mg, 0.1 mmol) in 4 mL CH2Cl2:CH3CN 10:1 was added to 

a stirred solution of [Cp*Fe(η5-P5)] (1 eq., 35 mg, 0.1 mmol) in 2 mL CH2Cl2 and stirred 

for 1 h at room temperature. The green solution was carefully layered with 4,4’-bipyridine 

(1 eq., 16 mg, 0.1 mmol) in 20 mL toluene and stored at room temperature in the dark. 

After 2 weeks, compound 12 was obtained as light green rods. Also colorless plates and 

dark green blocks were observed, but no structural analysis was possible. The 

supernatant was decanted off, the remaining crystals washed with n-pentane and dried 

in vacuo. 

Synthesis of 13 
Ag[B(3,5-C6H3Cl2)4] (0.5 eq., 35 mg, 0.05 mmol) in 4 mL CH2Cl2:CH3CN 10:1 was added 

to a stirred solution of [Cp*Fe(η5-P5)] (1 eq., 35 mg, 0.1 mmol) in 2 mL CH2Cl2 and stirred 

for 1 h at room temperature. The green solution was carefully layered with 4,4’-bipyridine 

(1 eq., 16 mg, 0.1 mmol) in 20 mL toluene and stored at room temperature in the dark. 

After 2 weeks, compound 13 was obtained as light green rods. The supernatant was 

decanted off, the remaining crystals washed with n-pentane and dried in vacuo. 

Synthesis of 14 
Ag[B(3,5-C6H3Cl2)4] (1 eq., 35 mg, 0.05 mmol) in 5 mL CH2Cl2:CH3CN 10:1 was added 

to a stirred solution of [Cp*Fe(η5-P5)] (1 eq., 17 mg, 0.05 mmol) in 5 mL CH2Cl2 and 

stirred for 2.5 h at room temperature. 4,4’-bipyridine (1 eq., 8 mg, 0.05 mmol) was added 

in 2 mL CH2Cl2. The green solution was carefully layered with the threefold amount of n-

hexane and stored at room temperature in the dark. After 2 days, compound 14 was 

obtained as green rods. The supernatant was decanted off, the remaining crystals 

washed with n-pentane and dried in vacuo. 

 

8.3.3 Crystallographic Data 

Crystals of 2, 4-14 were taken from a Schlenk flask under a stream of argon and 

immediately covered with mineral oil to prevent a loss of solvent. The quickly chosen 

single crystals covered by a thin oil/Fomblin layer were taken to the pre-centered 

goniometer head with CryoMount® and directly attached to the diffractometer into a 

stream of cold nitrogen.  
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The diffraction experiments for 2, 4-14 were collected on Rigaku Oxford Diffraction 

diffractometers; on a Xcalibur, Gemini ultra diffractometer equipped with a Atlas2 

detector (MoKa radiation, l = 0.71073 Å) (3); on a SuperNova diffractometer equipped 

with a Atlas detector (CuKa radiation, l = 1.54178 Å) (11); on a GV50 diffractometer 

equipped with a TitanS2 detector (CuKa radiation, l = 1.54178 Å) (2, 5, 6) or on a 

GV1000 diffractometer equipped with a TitanS2 detector (CuKa radiation, l = 1.54178 Å) 

(7, 9, 10, 12, 13, 14), respectively. The crystals were kept at T = 123(1) K during data 

collection. Data collection and reduction were performed with CrysAlis PRO [Version 

V1.171.38.41h, 2015 (7), V1.171.38.42b, 2015 (10, 11), V1.171.38.43, 2015 (9, 12, 13), 

V1.171.38.46, 2015 (13), V1.171.41.54a, 2020 (2, 5, 6)].15 For  compounds 2, 5, 6 and 

9 a numerical absorption correction based on gaussian integration over a multifaceted 

crystal model and an empirical absorption correction using spherical harmonics as 

implemented in SCALE3 ABSPACK scaling algorithm was applied. For compounds 10, 

11, 12, 13 and 14 a multi-scan absorption correction and an empirical absorption 

correction using spherical harmonics as implemented in SCALE3 ABSPACK scaling 

algorithm was applied. The crystal structures were solved by dual methods or intrinsic 

phasing solution method with SHELXT16 or Olex217 programs and refined by full-matrix 

least-squares method against |F|2 in anisotropic approximation using multiprocessor 

versions of SHELXL.18 Hydrogen atoms were refined in calculated positions using riding 

on pivot atom model. In case of the disorder, the site occupancies of the disordered 

components were refined with their Uiso fixed at average Ueq for fully occupied atoms in 

given structure in order to avoid correlations. After refinement, occupancies were fixed 

at the resulting values and the refinement of the atomic displacement parameters was 

performed.  

One CH3CN molecule in 6 demonstrates disorder. The anion in compound 6 is 

disordered over two position with an occupancy of 0.2 for [PF2O2]- and 0.8 for [PF6]-. 

Furthermore, compound 6 shows a disordered solvent molecule with an occupancy of 

0.3 for CH2Cl2 and 0.7 for CH3CN. The disorder of compound 10 is discussed in 8.3.2.1. 

Compound 9 shows a disorder of one Cp ring over two positions. The included toluene 

molecule of compound 13 was found to be highly disordered and a correct modelling 

was not possible. We have therefore proceeded to a ‘squeeze’ treatment19 in order to 

remove the scattering contribution of these molecules. Compound 14 shows two 

disordered CH2Cl2 molecules. The solid-state structures for compound 7, 9, 10, 11, 11, 

13 and 14 are only preliminary results. The data sets for compound 7, are not suitable 

and therefore, they are not depicted. The data sets for compounds 10 and 12 are not 

complete.  
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All ORTEP drawings for 2, 4-14 were made with the Olex2 software.17 

The solid-state structures of compounds 2, 5 and 6 were refined by Michael Seidl. 

Table S8.1. Crystallographic details for 2, 4, 5 and 6. 

Compound 2 4 5 6 · 0.3 CH2Cl2/ 
1.7 CH3CN 

Data set 
(internal naming) 

JS125 ems_616_aP_abs JS226 JS225 

Formula  C14H10As2AuCl 
Mo2O4 

C56H40As8Cl4Cu4 

Mo8O16 

C22H16AgAs2F2Mo2 

N4O6P 

C41.7H33.7Ag2As4Cl0.6 

F7.2Mo4N3.7O10.4P2 

Dcalc. / g · cm-3  2.982 2.559 2.194 2.1324 
μ/mm-1  31.547 6.452 16.029 17.542 
Formula Weight  816.36 2731.72 950.95 1872.21 
Colour  orange clear orange orange orange  
Shape  block block block plate 
Size/mm3  0.13×0.09×0.05 0.21×0.20×0.10 0.14×0.13×0.09 0.11×0.07×0.03 
T/K  123.0110) 123(1) 122.91(18) 122.96(13) 
Crystal System  trigonal triclinic orthorhombic monoclinic 
Flack Parameter  -0.017(17) - - - 
Hooft Parameter 0.003(9) - - - 
Space Group P32 P1" Pbcn P21/c 
a/Å  8.30060(10) 14.9570(5) 12.5626(3) 19.6075(3) 
b/Å  8.30060(10) 14.9928(5) 20.1230(4) 14.3356(2) 
c/Å  22.8539(3) 16.9565(6) 11.38763) 20.8460(3) 
α/°  90 89.238(3) 90 90 
β/°  90 88.892(3) 90 114.071(2) 
γ/°  120 68.862(3) 90 90 
V/Å3  1363.67(4) 3545.9(2) 2878.75(12) 5349.96(15) 
Z  3 2 4 4 
Z'  1 1 0.5 1 
Wavelength/Å  1.54184 0.71073 1.54184 1.54184 
Radiation type  Cu Kα Mo Kα Cu Kα Cu Kα 
Qmin/°  5.808 3.392 4.149 3.860 
Qmax/°  73.446 32.429 73.731 74.025 
Measured Refl.  5272 34184 6785 30536 
Independent Refl.  3045 22087 2826 10532 
Reflections with I > 2(I)  2999 18758 2697 9532 
Rint  0.0368 0.0263 0.0235 0.0420 
Parameters  217 865 204 776 
Restraints  7 0 24 152 
Largest Peak  1.766 0.763 2.376 1.178 
Deepest Hole  -1.022 -0.761 -1.074 -0.774 
GooF  1.057 1.024 1.082 1.086 
wR2 (all data)  0.0967 0.0529 0.0891 0.0714 
wR2  0.0963 0.0498 0.0877 0.0694 
R1 (all data)  0.0398 0.0405 0.0342 0.0358 
R1  0.0393 0.0304 0.0326 0.0308 

 

 

 

 



224 | 8 .  T h e s i s  T r e a s u r y   
 

Table S8.2. Crystallographic details for 9, 10, 11 and 12. 

Compound 9 10 11 12 · CH2Cl2 

Data set 
(internal naming) 

JS001_gruen JS001_rote 
blöcke_nicht 

complete 

JS007 JS019_hellgruen_wit 

Formula  C276H216B4P40Cl64 
Fe8Ag8 

C68H54B2P10Cl16 

Fe2Ag2 

C92H62B2N2P10Cl24 
Fe2Ag2 

C20.94H9.18Ag0.47B0.47 
Cl4.24Fe0.24N1.41P1.18 

Dcalc. / g · cm-3  1.734 1.819 2.028 1.611 
μ/mm-1  10.208 10.712 14.888 10.443 
Formula Weight  8393.08 2097.07 2704.99 536.10 
Colour  green red  green light green 
Shape  rods blocks rods rod 
Size/mm3  0.29×0.12×0.08 ? ? ? 
T/K  122.98(10) 122.99(10) 123.01(10) 122.96(17) 
Crystal System  monoclinic monoclinic monoclinic monoclinic 
Space Group P21/n P21/n P21/n P21/n 
a/Å  14.4022(2) 16.5700(4) 14.0938(3) 13.4300(4) 
b/Å  34.7489(7) 16.8337(2) 12.7788(3) 48.511(4) 
c/Å  16.2365(3) 27.4637(3) 24.7703(6) 14.6800(4) 
α/°  90 90 90 90 
β/°  98.397(2) 91.244(2) 96.883(2) 100.800(3) 
γ/°  90 90 90 90 
V/Å3  8038.6(2) 7658.8(2) 4429.02(18) 9394.6(8) 
Z  1 4 2 17 
Z'  0.25 1 0.5 4.25 
Wavelength/Å  1.39222 1.39222 1.54184 1.54184 
Radiation type  Cu Kα Cu Kα Cu Kα Cu Kα 
Qmin/°  2.737 2.780 3.442 8.359 
Qmax/°  74.644 60.377 74.346 52.773 
Measured Refl.  61176 43650 19005 18003 
Independent Refl.  21639 12770 8701 8735 
Reflections with I > 2(I)  16899 10875 7634 6378 
Rint  0.0617 0.0406 0.0311 0.0533 
Parameters  961 915 510 1108 
Restraints  0 0 0 0 
Largest Peak  1.461 0.819 0.903 0.698 
Deepest Hole  -1.604 -0.696 -1.104 -0.740 
GooF  1.009 1.036 1.038 1.043 
wR2 (all data)  0.1420 0.0763 0.1023 0.1399 
wR2  0.1299 0.0715 0.0978 0.1252 
R1 (all data)  0.0756 0.0409 0.0458 0.0873 
R1  0.0586 0.0317 0.0391 0.0589 
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Table S8.3. Crystallographic details for 13 and 14. 

Compound 13 14 · 3 CH2Cl2 

Data set 
(internal naming) 

JS020_hellgruen JS029 

Formula  C7.8H6.2N0.4Fe0.2B0.2 
Ag0.2Cl1.4P0.9 

C86.5H59Ag2B2Cl18.1 
FeN5P5 

Dcalc. / g · cm-3  1.269 1.419 
μ/mm-1  1.364 9.265 
Formula Weight  177.55 76.41 
Colour  light green green 
Shape  rods rods 
T/K  123.1(4) 123.01(13) 
Crystal System  orthorhombic triclinic 
Space Group Pbca P1" 
a/Å  18.6535(2) 15.3951(2) 
b/Å  15.69450(10) 16.4937(2) 
c/Å  35.7030(3) 21.9765(4) 
α/°  90 82.3150(10) 
β/°  90 71.7860(10) 
γ/°  90 70.9900(10) 
V/Å3  10452.32(16) 5008.47(13) 
Z  45 56 
Z'  5.625 28 
Wavelength/Å  1.54184 1.54184 
Radiation type  Cu Kα Cu Kα 
Qmin/°  2.475 2.835 
Qmax/°  74.148 74.808 
Measured Refl.  269383 101951 
Independent Refl.  10596 20380 
Reflections with I > 2(I)  9710 17375 
Rint  0.0886 0.0601 
Parameters  564 1032 
Restraints  0 0 
Largest Peak  2.672 1.166 
Deepest Hole  -4.126 -1.297 
GooF  1.053 0.985 
wR2 (all data)  0.2272 0.1288 
wR2  0.2220 0.1175 
R1 (all data)  0.0868 0.0543 
R1  0.0817 0.0448 
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Disorder of compound 10  

The data set for compound 10 is only 85% complete, so these are preliminary results. 

Compound 10 is disordered over two positions (90:10). The main part, with 90% 

occupancy, (Figure S8.1 left) shows an Ag-Ag middle-deck between two P5 rings. Both 

Ag(I) centers are coordinated in an h2-fashion by two phosphorus atoms of each P5 ring, 

while one Ag(I) is additionally coordinated by one chloride atom of one anion. The minor 

part (Figure S8.1 right) consists of the same middle deck, furthermore, the Ag(I) not 

coordinated by the chloride atom is η2-coordinated by one P5 ring.  

 

 

 

 

 

 

 

 

 

 

 

Figure S8.1. Disordered solid-state structure of compound 10. Hydrogen atoms are omitted for clarity. 

Ellipsoids are shown at 50% probability level.  
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9. Conclusion 

This work deals with the formation of discrete, polymeric and spherical compounds 

derived from self-assembly processes of phosphorus and arsenic based ligand 

complexes and coinage metals salts. Chapter 1 (Introduction) elucidates general aspects 

of supramolecular chemistry, explains why Weakly Coordinating Anions (WCAs) can be 

a central tool in coordination chemistry and gives an insight in the use and properties of 

luminescent Cu(I) complexes. After the research objectives (chapter 2), the results 

obtained within this thesis are presented in the self-contained chapters 3-8. 

9.1 Coordination Compounds Based on the Diarsene Complex 
[Cp2Mo2(CO)4(μ,η2-As2)] and Ag[WCA]  

The first part of this thesis describes the synthesis of four unprecedented coordination 

compounds based on the polypnictogen ligand complex [Cp2Mo2(CO)4(μ,η2-As2)] (A) 

and Ag(I) salts containing the weakly coordinating anions [TEF]- and [FAl]- ([TEF]- = 

[Al{OC(CF3)3}4]- , [FAl]- = [FAl{OC(C6F5)(C6F10)}3]-). Specific ratios of reactants were 

studied in order to compare the obtained products to the ones formed in similar reactions 

of the P2 analogue [Cp2Mo2(CO)4(μ,η2-P2)] (B). By using an excess of B in the reaction 

with AgWCA ([WCA]- = [TEF]- and [FAl]-) two Ag(I) dimers with the general formula 

[Ag2(η2-B)2(μ,η1:η1-B)2][WCA] ([WCA]- = [TEF]- (1), [FAl]- (2), Scheme 9.1) were 

obtained. However, in the stoichiometric reaction of B with Ag[TEF] the one-dimensional 

polymer [Ag2(μ,η1:η1-B)3]n[TEF]2n (3) is formed (Scheme 9.1).1 

 
 
 
 
 
 
 
 
 
 
 
 

 

Scheme 9.1. Reaction of B with Ag[FAl] and Ag[TEF] yielding the dimer 1 and 2 and the 1D polymer 3. 
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In contrast, the reaction of A with Ag[FAl{OC(C6F5)(C6F10)}3] (Ag[FAl]) in CH2Cl2 at room 

temperature yields the supramolecular dimeric assembly [(h2-A)4Ag2][FAl]2 (4) in a 

moderate yield (Scheme 9.2). Single crystals of 4 display a disorder which could be 

resolved as a superposition of three structural isomers 4a-c. Core 4a and 4b possess a 

2-fold rotational symmetry, and core 4c is asymmetric (Figure 9.1). Regardless of the 

structure 4 adopts in the solid state, it is related to the dimer 2 insofar as both 2 and 4 

display a 2:1 ratio of E2 to Ag. In both compounds one of the two E2 units coordinate in 

an h2-mode towards one Ag(I) center. In compound 2, the other E2 moiety possesses a 

bridging μ,η1:η1-ccordination, while the second E2 unit in 4 coordinates in a μ,η1:η2- or a 

η2-fashion. 

 

Scheme 9.2. Reaction of A with Ag[FAl{OC(C6F5)(C6F10)}3] (Ag[FAl]) and Ag[Al{OC(CF3)3}4] (Ag[TEF]). 
Synthesis of the supramolecular compounds 4-7. Yields are shown in parenthesis. 

In order to elucidate whether introducing a higher amount of Ag(I) leads to a higher 

number of Ag(I) with possible metal-metal interactions, the stoichiometry in the reaction 

of A with Ag[TEF] in CH2Cl2 at room temperature was varied, resulting in the compounds 

5, 6 and 7 (Scheme 9.2). Reacting A and Ag[TEF] in a 3:1 ratio yields the Ag(I) monomer 

5 with the general formula [Ag(μ,η2-A)]3[TEF]. Compound 5 shows an Ag(I) center 

stabilized by six arsenic atoms and demonstrates the second published compound in 

which a silver center is hexacoordinated by As units.2 Compounds 6 contains three Ag(I) 

atoms, as does compound 7, however, the central structural motif of 6 displays a bent 

trinuclear Ag3 chain, while it shows an almost perfect equilateral Ag3 triangle in 7. In 6, 

five Mo2As2 ligands (A) stabilize these Ag(I) ions with two ligands A coordinating in an 

η2-fashion and the other three in a µ,ƞ2:ƞ1-coordination mode. In 7, all A units coordinate 
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in a µ,ƞ2:ƞ1-coordination mode. Interestingly, all Ag(I) centers in compound 6, as well as 

in compound 7 show different coordination environments.  

 

 

Figure 9.1. a) The disordered complex 4 (2z axis is directed vertically to the plane of the picture). b) Possible 

individual cores for compound 4 in the disordered structure. 

Compounds 4-7 show a higher tendency of A to coordinate in an ƞ2-fashion compared 

to the complex B. Additionally, compounds 4, 6 and 7 demonstrate the potential of A as 

a bridging unit stabilizing short Ag⋯Ag distances. These short distances (2.655(4)-

2.9800(8) Å) are much shorter than in compound 2 (d(Ag⋯Ag) > 4.85 Å)1 and are 

indicative of argentophilic interactions (∑vdW(Ag-Ag) = 3.44 Å).3 These compounds could 

give rise to more complex coordination polymers by substituting one or more Mo2As2 

ligands. 

 

9.2 Discrete and Polymeric coordination Complexes based on the Diarsene 
Complex [(Cp2Mo2(CO)4(μ,η2-As2)], AgPF6 and Pyridyl-based Linkers 

The second part of the thesis deals with the formation of the coordination compound 

8 ([{Cp2(CO)4Mo2As2}3Ag][PF6]) as well as the three-component reactions of 

Cp2(CO)4Mo2(μ,η2-As2) (A) and AgPF6 with the pyridyl-based linkers L1-L5 (L1 = 1,2-di(4-

pyridyl)ethylene, L2 = 1,2-di(4-pyridyl)ethyne, L3 = 2,2´-bipyrimidine, L4 = 1,3-di(4-

pyridyl)propane and L5 = 4,4´-bipyridine). The reaction of A with AgPF6 yields the 

monomeric compound 8 containing one Ag(I) center hexacoordinated by three ligands 

A (Scheme 9.3). This monomeric complex is similar to the compound 

[{Cp2(CO)4Mo2As2}3Ag][TEF] ([TEF]- = [Al{OC(CF3)3}4]-) obtained in the reaction of A and 

Ag[TEF]. With the aim of substituting the coordinated ligands A can be substituted by 

organic linker molecules. Therefore, A, AgPF6 and L1-L5 were reacted in one-pot 

reactions. Linker L1 and L2 form both a dimeric structure (9,10) with two interlinked 

[AgA2]+ units linked with each other (Scheme 9.3). Reacting A and AgPF6 with L3 results 
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in the 1D zig-zag polymer 11. Its solid-state structure reveals [AgA]+ moieties which are 

linked with L3. Using the flexible linker L4 yields the structurally distinct one-dimensional 

coordination polymer 12 (Scheme 9.3). Compound 12 consists of linked 

[Ag2A2(CH3CN)2]2+ entities with short intermetallic Ag···Ag distances of 2.9690(4) Å, 

indicating argentophilic interactions. Compounds 9-12 are formed regardless of the ratio 

of A:AgPF6:linker. 
 

Scheme 9.3. Reaction of A and AgPF6 in a 3:1 ratio yielding compound 8 and the three component reactions 
with the linkers L1-L5 conducted at r. t. in CH2Cl2:CH3CN 1:1 resulting in compounds 9-14. Yields are given 
in parentheses. 

In contrast, linker L5 forms two structurally distinct compounds 13 and 14, depending on 

the stoichiometry (Scheme 9.3). Reacting A, AgPF6 and L5 in a 3:1:2 ratio results in the 

formation of 14, while using a threefold excess of L5 yields compound 13. Both solid-

state structures consist of [Ag2]2+ units. In 13, two As2 moieties coordinate in a µ,ƞ2:ƞ1-

mode towards the Ag(I) centers, while in compound 14 each Ag(I) center is bound by 

three coordinated As2 entities. However, 14 displays two µ,ƞ2:ƞ1-coordinating ligands 

and one A coordinating in a rare ƞ1-fashion stabilizing even shorter Ag···Ag distances of 

2.7867(6) Å compared to 12. As reported in the previous chapter, A shows a higher 

tendency to coordinate in an ƞ2-fashion than B. For that reason a pure ƞ1-coordination 

mode of A towards metal centers had not been observed before.  
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This chapter has shown anew that A can stabilize short Ag···Ag distances, which can 

be observed both in discrete complexes and in coordination polymers. Furthermore, no 

influence of the flexibility of the linker to the resulting solid-state structures is apparent, 

however the stoichiometry can have an effect on the reaction outcome in some of the 

products. 

 

9.3 Mo2E2 (E = P, As) complexes as linking units between Cu(I) ions 

The third chapter of this thesis describes the novel linking behavior of tetrahedral 

Cp2(CO)4Mo2E2 complexes (E = As (A), P (B)) towards Cu[WCA] salts ([WCA]- = 

[Al{OC(CF3)3}4]-, [BF4]-, [FAl{OC6F12(C6F5)}3]-). Organometallic compounds containing 

Cu(I) moieties have attracted a lot of attention in the last decades, due to their versatile 

coordination chemistry and their wide range of applications.4 A variety of compounds 

containing different Cu(I) and organometallic polyphosphorus ligand complexes had 

previously been reported by us.5 So far, three coordination modes (I-III) have been 

observed for E2 ligand complexes (Figure 9.2).6,7,8 The lone pairs of the E atoms can 

either coordinate via σ-coordination (type I and II) or the E-E σ-orbital binds in a π-

coordination to the metal center (type III). 

 

 

 

 

Figure 9.2. Reported and new coordination modes of Mo2E2 complexes. MI = Ag(I), Cu(I), Au(I). [Mo] = 

[Cp(CO)2Mo2]. 

Reacting the ligand complexes A and B with suitable Cu(I) precursor salts yields seven 

unprecedented coordination compounds (15-21, Scheme 9.4). Compounds 19-21 show 

a novel η2:1:1 and η2:1 coordination behavior (type IV and V) of the ligand complex B. 

Reacting B with [Cu(o-DFB)] [Al{OC(CF3)3}4] (o-DFB = ortho-difluorobenzene) leads to 

a Cu2P4 six-membered ring motif,9 while using [Cu(CH3CN)4][Al{OC(CF3)3}4] leads to two 

novel trinuclear Cu(I) chains coordinated by one or two B units in a coordination mode 

type V depending on the stoichiometry (20 and 21). Moreover, compounds 17, 20 and  

21 show Cu···Cu···Cu distances below the sum of the van der Waals radii10 that are in 
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the range of Cu(I)-Cu(I) single bonds, suggesting intramolecular metallophilic 

interactions. DFT calculations for 20 at the B3LYP/def2-TZVP level of theory revealed 

that the bonding of the peripheral Cu ions to the Mo2P2 ligands takes place via the 

coordination of the phosphorus lone pairs, while the central Cu ion binds to the P-P σ-

orbital of the Mo2P2 unit. Therefore, it can be concluded that there is an interaction 

present between the central and peripheral Cu ions, as a WBI of 0.11 has been found. 

Scheme 9.4. Products of the reaction of A with the Cu(I) salts [Cu(CH3CN)4][Al{OC(CF3)3}4] (15), 
[Cu(CH3CN)3.5][FAl{OC6F12(C6F5)}3] (16) and [Cu(CH3CN)4][BF4] (17/18, depending on the stoichiometry), 
and reaction of B with [Cu(CH3CN)4][BF4] (19) and  [Cu(CH3CN)4][Al{OC(CF3)3}4]  (20/21, depending on the 

stoichiometry). Yields are given in parentheses. 

The reaction of A with [Cu(CH3CN)4][Al{OC(CF3)3}4] and 

[Cu(CH3CN)3.5][FAl{OC6F12(C6F5)}3], respectively, as well as the reaction of B with 

[Cu(CH3CN)4][BF4] yields a coordination compound with a Cu2 unit coordinated by two 

Mo2E2 moieties (type IV). The previously reported reaction of B with [Cu(CH3CN)3.5] 

[FAl{OC6F12(C6F5)}3] leads to the formation of a compound which is similar to 20 under 

otherwise identical reaction conditions, however,  the compound is missing the central 

Cu(I) atom, thus forming a Cu2P4 ring.5a 

The comparison of the obtained compounds 20 and 21 with reported results show the 

influence of the coordinating solvents in the Cu(I) salts, while all compounds show the 

decisive influence of the WCA used in the reactions with either Mo2As2 or its phosphorus 

analogue Mo2P2. 
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For the first time, a η2,1,1 coordination mode of both E2 ligand complexes A and B has 

been detected, in which both As/P atoms contribute via σ-bonding and π-coordination 

(type V). Moreover, as already discussed in the first two chapters, B displays a 

substantially higher tendency to coordinate in an η2-fashion in comparison to the P2 

complex A.  

All the complexes reported here could function as building blocks in supramolecular 

chemistry to form polymers by substituting the coordinated CH3CN molecules with 

organic N-donor linkers. 

 

9.4 A Superdeficient Sphere based on [Cp’’Fe(η5-P5)] 

Giant self-assembled supramolecules based on metal cations and rigid bi- or 

multidentate organic ligands have attracted steadily growing attention during the last 

decade.11 Our group already studied various giant spheres reaching 4.6 nm in size via 

coordination of cyclo-P5 rings of pentaphosphaferrocenes like [CpRFe(η5-P5)] (CpR = 

C5(CH2Ph)5 (CpBn, C1), C5(CH3)5 (Cp*, C2), 1,3-C5H3tBu2 (Cp'', C3)) towards Cu(I).12 In a 

set of supramolecules with the general formula [{CpRFe(η5-P5)}12(CuX)20] (CpR = Cp*, 

CpBn; X = Cl, Br), all phosphorus atoms coordinate towards Cu(I) cations ideally forming 

an 80-vertex {Cu20P60} core with the fullerene Ih-C80 topology and a pentagonal 

dodecahedral arrangement of Cu (Figure 9.3a). 

 

 

 

 

 

 

Figure 9.3. a) The inorganic core {Cu20P60} of the supramolecule [{CpRFe(η5-P5)}12(CuX)20] (X = Cl, Br) and 

corresponding icosahedral representation for centres of cyclo-P5 units and dodecahedral for copper; b) 
Hypothetic 12-fold deficient {Cu8P60} core and its respective polyhedral representation. 

a) 

b) 
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However, previous studies in the solid state as well as in solution have shown that some 

of the {CuX} sites are statistically vacant.12f Molecular modeling of these spherical 

systems revealed that eight Cu(I) atoms is the minimum number required for a sphere 

of this overall size to remain stable (Figure 9.3b).12b The size of the WCA can control the 

degree of metal deficiency, due to fact that only a restricted number of large anions can 

surround multi-charged cations avoiding repulsion.  

Using the bulky weakly coordinating anion [Al{OC(CF3)3}4]- we were able to selectively 

synthesize the unprecedented 8+ charged supramolecule [(Cp’’Fe(η5-

P5))12{CuNCMe}8]8+ (22, Cp’’ = η5-C5H3
tBu2) of 2.66 nm in diameter (Figure 9.4a). The 

sphere possesses the first metal-deficient 68-vertex {Cu8P60} core with the least possible 

number of copper atoms (Figure 9.4b).12b,f  
 

Figure 9.4. a) The cationic supramolecular assembly of 22: b) the 68-vertex cube-like inorganic core, c) 1,3-
coordination mode of the C3 unit and d) 18-membered {Cu4P14} cycles. 

The reaction of two equivalents C3 and three equivalents [Cu(CH3CN)4][Al{OC(CF3)3}4] 

in CH2Cl2 at room temperature leads to the formation of 22 and additionally the side-

product 23.  

However, the first attempt to fill the free coordination sites with Ni(0) by adding Ni(cod)2 

(cod = 1,5-cyclooctadiene) was unsuccesful because of immediate precipitation of Ni(0). 

Nevertheless, after filtration and layering with n-pentane, compound 23 could be isolated 

selectively in a moderate yield (36%) with its phase purity confirmed by PXRD. 
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Figure 9.5. Molecular structure of the tetracationic dimer 23. 

The solid-state structure of 22 reveals 68-vertex sphere [(CH2Cl2)@[{Cp''Fe(η5:η1,η1-

P5)}12Cu8]8+ with 12 units of C3 arranged in an icosahedron, in which Cu(I) ions cap eight 

of the 20 available trigonal faces (Figure 9.3b). The remaining 12 faces provide six 18-

membered rings {Cu4P14} corresponding to a face of an underlying cube of the inorganic 

core (Figure 9.4d). Moreover, a spherical assembly exclusively composed of two-

coordinated units of C was predicted, but never observed previously.12b,f  

Each copper atom is additionally coordinated by one CH3CN molecule. These labile 

ligands might be substituted by bridging N-donor ligands to build up expanded networks 

containing the supramolecule. Furthermore, the presence of 12 free metal sites opens a 

way for further functionalization with heterometals or inner functionalization with small 

molecules. Future studies could involve the fine tuning with respect to the nature of the 

Cp ligands and the coinage metal salts. 

 
9.5 Tuned emission properties of tetranuclear Cu(I) metallacycles by 
introducing bulky weakly coordinating anions 

In cooperation with Dr. Christophe Lescop (INSA Rennes/France) the impact of 

changing the nature of the counterion of luminescent Cu(I) complexes was studied. 

Recently, Cu(I) compounds were discovered to be attractive novel solid-state emitters 

because of their low costs and accessibility.13 In the past, emissive Cu(I) precursors 

acting as pre-organized building blocks to form coordination-driven supramolecular 

assemblies were only rarely reported. Based on this knowledge, we were interested, how 

the photophysical properties of Cu(I) complexes can be tuned by introducing different 

anions and subsequently building up one-dimensional coordination polymers with 

organic linkers. 
The already reported Cu(I) metallacycle [Cu4(μ2-dppm)4(CN)2][PF6]2 (D1) (dppm= 1,1-

bis(diphenylphosphino) methane) is the first Cu(I) coordination-driven supramolecular 

assembly bearing solid-state Thermally Activated Delayed Fluorescence (TADF) 

properties (Scheme 9.5).14 
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Scheme 9.5. Synthesis of compounds D1-D3. Hydrogen atoms, counterions and included solvent 
molecules were omitted for clarity. Thermal ellipsoids are shown at 50% probability level. 

The synthesis of D2 and D3 was performed under the same reactions conditions as 

D1 in a mixture of CH2Cl2 and CH3OH at room temperature. Compound D2 (Φ298K = 86%), 

as well as D3 (Φ298K = 91%) show enhanced absolute luminescent quantum yields at 

room temperature compared to D1 (Φ298K = 72%).14 Upon cooling to 80 K the emission 

spectra of D2 and D3 show a bathochromic shift similar to compound D1. Unfortunately, 

the performed variable-temperature excited state lifetime measurements of D2 could not 

make a statement to elucidate the electronic processes responsible for the luminescence 

behavior. 

As Cu(I) complexes are popular building blocks in supramolecular chemistry,15 

compounds D1-D3 were reacted with different organic pyridyl-based linkers (L1, L2, L5-

L13, Figure 9.5).  
 

 

  

 

 

 

Figure 9.5. Organic pyridyl-based linkers L1, L2, L5-L13 used in this chapter. 
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Twelve novel coordination compounds D1L1, D1L7-D1L9, D2L1, D2L2, D2L5a, D2L5b, D1L6, 

D2L8, D2L9 and D3L7 were obtained. All of these compounds, except of C2L5b are 1D 

polymers in which two opposite Cu(I) are coordinated by the N-donor linkers (Figure 9.6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

Figure 9.6. Obtained coordination polymers in the reactions of D1-D3 with linkers L1, L2 and L5-L9. Anions 

and hydrogen atoms are omitted for clarity. Phenyl rings are depicted transparent. Thermal ellipsoids are 

shown at 50% probability level. Yields are given in parentheses. 
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The comparison of D2L5a with the coordination polymer D1L5
16 shows a major difference 

in the solid-state structure due to the twisted linker in D2L5a, resulting in distinctive 

photophysical properties. Although all polymeric structures are similar, each of them 

demonstrates unique emission behavior. Furthermore, we detected a transformation of 

the green emissive crystals of C2L5a after one week in the supernatant into the yellow 

luminescent oligomer D2L5b (Figure 9.7). 

 

 
 
 
 
 
 
 
 

 

Figure 9.7. Transformation of D2L5a into D2L5b within 7 days in the supernatant. Anions and hydrogen atoms 
are omitted for clarity. Phenyl rings are depicted transparent. Thermal ellipsoids are shown at 50% probability 

level. 

These different structural motifs lead to a wide variety of photophysical properties of the 

obtained coordination polymers. Future efforts will focus on more detailed studies (inter 

alia quantum yield measurements, variation of the lifetime of the excited state, theoretical 

calculations, additional VT UV-Vis measurements) in order to rationalize the reported 

observations. 

 
 
 
 
 
 
 
 

7 days 
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A.  Appendices 

Alphabetic List of Abbreviations 

Å   Angstroem, 1 Å = 1∙10-10 m  
°C   degree Celsius 
[BArCl]-   [B(3,5-C6H3Cl2)4] 
tBu   tert-butyl, C4H9 
CP   coordination polymer 
Cp   cyclopentadienyl, η5-C5H5 

Cp*   pentamethylcyclopentadienyl, η5-C5Me5 

Cp’’   1,3-di-tert-butylcyclopentadientyl, η5-C5H3
tBu2 

Cp’’’   1,2,4-tris-tert-butylcyclopentadientyl, η5-C5H2
tBu3 

d(NMR)  doublet  
dbp   2,9-di-n-butyl-1,10-phenanthroline 
dmp   2,9-di-tert-butyl-1,10-phenanthroline 
dppb   1,2-bis(diphenylphosphino)benzene 
dppm   1,1-bis(diphenylphosphino)methane 
DSC   differential scanning calorimetry 
dtp   2,9-di-n-butyl-1,10-phenanthroline 
δ   chemical shift 
DFT   density functional theory 
DNA   deoxyribonucleic acid 
E   element of the group 15, E = P, As, Sb, Bi 
e–   electron, elemental charge 
EMIM+   1-ethyl-3-methyl imidazolium 
ESI MS  electron spray ionization mass spectrometry 
EQY   emission quantum yield 
[FAl]-   [FAl{OC6F10(C6F5)}3]) 
h   hour 
HOMO   highest occupied molecular orbital 
IR   infrared spectroscopy 
J(NMR)  coupling constant 
K   Kelvin 
L   ligand (specified in text) 
L   liter 
LUMO   lowest unoccupied molecular orbital 
M   metal (specified in text) 
m(NMR)  multiplet 
m/z   mass to charge ratio 
Me   methyl, CH3 
MHz   Megahertz, 106 Hz 
min   minutes 
mL   milliliter, 10–3 L 
MLCT   metal-to-ligand charge transfer 
MOF   metal organic framework 
NMR   nuclear magnetic resonance 
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o-DFB   ortho-difluorobenzene 
OLED   organic light emitting diode 
[OTf]-   triflate, [CF3SO3]- 

   frequency/wavenumber 
PAG   photoacid generator 
Ph   phenyl, C6H5 
P-N   [2-(diisopropylphosphino)diphenyl]amide 
PNP   bis[2-(diisobutylphosphino)phenyl]amide 
POM   polyoxometallate 
POP   bis[2-(diphenylphosphino)phenyl]ether 
ppm   parts per million 
q(NMR)  quartett 
R   organic substituent 
r   radius 
RISC   reversed intersystem crossing 
r.t.   room temperature 
S0   singlet ground state 
S1   lowest excited singlet state 
s(IR)   strong 
s(NMR)  singlet 
SOC   spin-orbit coupling 
T1   lowest excited triplet state 
[TEF]-   [Al{OC(CF3)3}4] 
tBu   tert-butyl, C4H9  
t(NMR)  triplet 
TADF   Thermally Activated Delayed Fluorescence 
TGA   thermogravimetrical analysis 
THF/thf  tetrahydrofurane, C4H8O 
UV   ultra violet 
vdW   van der Waals 
VE   valence electrons 
vs(IR)   very strong 
VT   variable temperature 
WBI   Wiberg bond index 
WCA   weakly coordinating anion 
w(IR)   weak 
1D   one-dimensional  
2D   two-dimensional 
 

 

 

 

 
 
 
 

n~
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