Dearomative Cycloadditions Utilizing an Organic Photosensitizer: An Alternative to Iridium Catalysis

Alessa B. Rolka and Burkhard Koenig*

ABSTRACT: A highly efficient, cheap, and organic alternative to the commonly used iridium photosensitizer (Ir[dF(CF3)ppy]2(dtbpy))PF6 ([Ir−F]) is presented for visible-light energy transfer catalysis. The organic dye 2CzPN surpasses [Ir−F] in selectivity while at the same time being easily accessible in one step. The catalyst is recyclable and, due to its uncharged nature, soluble in nonpolar solvents such as toluene. Furthermore, the scope of molecular scaffolds that are compatible substrates for visible-light catalyzed dearomative cycloadditions is expanded.

Over the past few years, energy transfer catalysis has gained significant attention and has emerged as a powerful synthetic tool.1 The reasons for this are manifold, but of particular significance is the methodology’s ability to rapidly generate high levels of molecular complexity.2,3 This is elegantly highlighted by the works of Glorius et al.3 and You et al.4 that demonstrate the generation of polycyclic cores by intramolecular dearomative cycloadditions of naphthol (Scheme 1A) and indole derivatives (Scheme 1B). The resulting molecular scaffolds often map onto natural product olds that are of particular significance in regards to industrial applications of these complexity generating processes.5 Finally, the charged nature of the expensive catalyst complicates its recyclability,6,7 as well as limits the catalyst’s solubility in many common nonpolar solvents.8a

This work aims to address these problems by avoiding iridium and offers a highly effective, cheap, neutral, and organic alternative for the widely utilized [Ir−F] photosensitizer. Based upon OLED research9 and reports about the photochemical and photophysical properties of organic dyes, we were drawn to 1,2-bis(carbazol-9-yl)-4,5-dicyanobenzene (2CzPN) (Scheme 1D) as a promising candidate for this task.10 Specifically, the high triplet energy of this system at 60.6 kcal/mol (corresponding to T1 = 2.63 eV)10d as well as the prior use of this catalyst for photochromism10 led us to explore its performance in the deaoramatization reactions of aforementioned naphthol and indole derivatives.

The deaoromatization of naphthalol 1a was used as a model reaction to investigate the organic catalyst 2CzPN (Table 1). To begin, 1a and 5 mol % 2CzPN were irradiated with 455 nm light in 1,4-dioxane at room temperature. Under

Received: May 12, 2020
these conditions, we were pleased to see full conversion of the starting material but with poor selectivity, as measured by the ratio of 2a:3a (entry 1). This reaction proceeds via two sequential triplet energy excitation processes. First, excitation of 1a results in a [2 + 2] cycloaddition to form 3a, while subsequent excitation of 3a followed by rearrangement furnishes 2a. The ultimate ratio of 2a:3a is influenced by the triplet energy of the catalyst and the rate of energy transfer. For the complete mechanism, see Supporting Information S.1.

Lowering the wavelength from 455 to 405 nm did not influence selectivity (entry 2). After a brief screening of solvents, it was found that chloroform was ideal, leading to formation of 2a with a high selectivity of 16:1 (entry 4). We were able to lower both the reaction time to 14 h and the catalyst loading to 1 mol % without impacting the reaction (entry 5). Further lowering the catalyst loading resulted in worse selectivity (entries 6 and 7). Through the addition of a Lewis acidic additive, the reaction could be directed toward the selective formation of 3a (entry 8). However, this observed effect proved not to be general to other substrates. Therefore, 1 mol % 2CzPN in chloroform irradiated at 455 nm for 14 h were chosen as the optimized conditions, giving 2a in 94% isolated yield as a single diastereomer and with a 2a:3a ratio of 16:1 (entry 5). In comparison, the optimized conditions of Glorius utilizing 1 mol % [Ir–F] (1,4-dioxane; 0.04 M; 18 h; 455 nm) achieved a ratio of 6:1 with a yield of 86%, showing that 2CzPN is able to improve the selectivity of the reaction. Control experiments utilizing the organic photosensitizer thioxanthone (TX), which absorbs at lower wavelengths16 (entry 9), and irradiation without any catalyst (entry 10) resulted in no conversion, proving the necessity of 2CzPN.

With optimized conditions in hand, tailored to the organic dye 2CzPN, the substrate scope was investigated to better compare 2CzPN with [Ir–F]. To do so, five substrates were selected with different electronic and steric properties at the activating group R1 as well as at the naphthyl ring R2 (Scheme 2). For ease of comparison, the already reported yields with 1 mol % of the iridium catalyst [Ir–F] are included in brackets.

Based upon these yields, it is evident that 2CzPN is able to catalyze the dearomatization of naphthols in a highly efficient fashion that is comparable or superior to [Ir–F].

Table 1. Optimization Studies for the Organocatalytic Dearomatization of Naphthol 1a

<table>
<thead>
<tr>
<th>entry</th>
<th>PC</th>
<th>X</th>
<th>time (h)</th>
<th>solvent</th>
<th>ratio 2a:3a<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1<sup>1</sup></td>
<td>2CzPN</td>
<td>5</td>
<td>17</td>
<td>1,4-dioxane</td>
<td>1.2:1</td>
</tr>
<tr>
<td>2<sup>2</sup></td>
<td>2CzPN</td>
<td>5</td>
<td>17</td>
<td>1,4-dioxane</td>
<td>1.2:1</td>
</tr>
<tr>
<td>3</td>
<td>2CzPN</td>
<td>5</td>
<td>17</td>
<td>PhMe</td>
<td>1.8:1</td>
</tr>
<tr>
<td>4</td>
<td>2CzPN</td>
<td>5</td>
<td>17</td>
<td>CHCl<sub>3</sub></td>
<td>16:1</td>
</tr>
<tr>
<td>5</td>
<td>2CzPN</td>
<td>1</td>
<td>14</td>
<td>CHCl<sub>3</sub></td>
<td>16 (94%); 1</td>
</tr>
<tr>
<td>6</td>
<td>2CzPN</td>
<td>0.5</td>
<td>14</td>
<td>CHCl<sub>3</sub></td>
<td>3:1</td>
</tr>
<tr>
<td>7</td>
<td>2CzPN</td>
<td>0.2</td>
<td>14</td>
<td>CHCl<sub>3</sub></td>
<td>1:1.6</td>
</tr>
<tr>
<td>8</td>
<td>2CzPN</td>
<td>1</td>
<td>17</td>
<td>CHCl<sub>3</sub></td>
<td>1:20</td>
</tr>
<tr>
<td>9</td>
<td>TX</td>
<td>5</td>
<td>17</td>
<td>CHCl<sub>3</sub></td>
<td>N/A<sup>2</sup></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>17</td>
<td></td>
<td>1,4-dioxane</td>
<td>N/A<sup>2</sup></td>
</tr>
</tbody>
</table>

*Reactions were run at a 0.2 mmol scale. *^bDetermined by 1H-crude NMR ratio. Entries with a ratio showed no other proton signals and full conversion with isolation of a mixture of 2a and 3a in near quantitative yield. *^c0.04 M <i>λ</i>_{max} = 405 nm light was used instead of <i>λ</i>_{max} = 455 nm. *^dNot applicable. No conversion of starting material.

Yields in brackets are isolated yields of the originally reported reactions with 1 mol % [Ir–F].^e Reactions were run on a 0.2 mmol scale at 0.1 M. ^fTwo mol % 2CzPN, 42 h.
Reactions with 2CzPN readily scale and could be performed equally effectively in multiple gram quantities with only 1 mol % catalyst (Scheme 3A). We were also able to take advantage of 2CzPN’s neutral charge to readily recycle the catalyst by means of column chromatography in 88% yield, and the recycled catalyst shows no change in activity upon reuse (Scheme 3B).

Motivated by the positive results, we explored the compatibility of 2CzPN with the dearomatization of indole derivatives. This class of compounds represents a more challenging test due to their increased triplet energy. While the optimized conditions for naphthal deearomatization resulted in very poor conversion of 4a, it was found that utilization of toluene as solvent allowed the reaction to proceed in high yields (Supporting Information 3.1). It is thought that the use of the less polar toluene solvent inhibits electron transfer from the indole substrate to the excited photocatalyst that preferentially occurs over triplet sensitization in polar solvents.

The ability to utilize nonpolar solvents with 2CzPN highlights another advantage of this organic photosensitizer over the [Ir\textsc{F}] system, which is only minimally soluble in toluene (100–1000 ppm)10a and other nonpolar solvents due to its charged nature (Table 2). A comparison of the maximum solubility in a range of different solvents revealed a more than 100 times higher solubility of 2CzPN in toluene. It is noteworthy that the organic catalyst retains high solubility in polar solvents.

Table 2. Maximum Solubilities of [Ir\textsc{F}] and 2CzPN in Common Organic Solventsa,b

<table>
<thead>
<tr>
<th>solvent</th>
<th>[Ir\textsc{F}]b</th>
<th>2CzPNc</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhMe</td>
<td>7.0 × 10-5</td>
<td>1.3 × 10-2</td>
</tr>
<tr>
<td>1,4-dioxanee</td>
<td>2.2 × 10-4</td>
<td>1.6 × 10-2</td>
</tr>
<tr>
<td>DCM</td>
<td>5.6 × 10-3</td>
<td>8.3 × 10-2</td>
</tr>
<tr>
<td>methyl tert-butyl ether</td>
<td>7.0 × 10-5</td>
<td>9.2 × 10-4</td>
</tr>
<tr>
<td>DMSO</td>
<td>1.6 × 10-1</td>
<td>1.6 × 10-2</td>
</tr>
</tbody>
</table>

aMaximum solubility given as concentration (Molar). bAs reported by the group of Weaver. cSee Supporting Information 3.4.

To demonstrate the efficiency of our conditions, a scope of indoles was investigated (Scheme 4). Just as with [Ir\textsc{F}], substitution at the 2-position was well-tolerated (5a, 5d, 5e, and 5f), as was the use of a more sterically hindered 1,1-disubstituted alkene (5e). The reaction proceeds utilizing substrates bearing the free indole N–H or an N-acetyl group, with the highest yields observed with the acetylated substrates (5b, 5e). These nearly quantitative yields are thought to be attributed to the electron-withdrawing nature of the acetyl group, which lowers the triplet energy of the substrates while at the same time increasing their oxidation potential to limit redox events with the catalyst. Using an N-acetylated substrate, we were especially delighted to find that high levels of reactivity could be obtained without the bulky diester linker which facilitates ring closure via the Thorpe–Ingold–Effect (5e).17 Once again, for all substrates tested, the organic photosensitizer proved to be comparable or superior to [Ir\textsc{F}] at equivalent catalyst loadings.3

Having established that the organic catalyst is an effective replacement for [Ir\textsc{F}], we sought to test the organic photocatalyst on more challenging cases containing allene cycloaddition partners that have the potential to form highly strained methylenecyclobutane products.18 This class of substrates is particularly intriguing due to the presence of an olefin in the product that can serve as a functional group handle for further structural elaboration.

Whereas the direct UV excitation of aromatic rings followed by their trapping with allenes has been reported, little has been done within the field of visible-light triplet-sensitized chemistry.19 A rare example of triplet-sensitized chemistry involving allenes is the work of Arai and Ohkuma, where 50 mol % of 3,4′-dimethoxycacetophenone sensitizer was required in the dearomatic cycloaddition of indole derivatives.18d,e However, in addition to the high catalyst loading, a high-pressure mercury lamp was necessary (Supporting Information S2). Inspired by their work, we synthesized allene 6 to investigate whether 2CzPN can overcome these significant
limitations. Applying the same optimized conditions as for 4b, we were pleased to see full conversion of 6 to the dearomatized products 7 and 8 in high yield and with a ratio of 5.3:1 (Scheme 5).

Scheme 5. Formation of Methylencyclobutane Products from Allene Substituted Indole 6

We next explored the previously unreported visible-light photophysics of naphthol allene derivatives. When treating naphthol ketone 9a with slightly modified conditions described above for the dearomatization of naphthols, we were surprised to obtain the aromatic cyclic acetal 10a as the main product in 61% yield. The product was confirmed by a single crystal X-ray analysis (Supporting Information 7.3) and supported by the literature-known UV-photophysics of allenyl salicylaldehydes.4b,4c We believe that 10a is formed via dearomatized intermediate 12 that upon 1,3-allylic transposition yields product 10a. As a minor side product under these conditions, dihydrofuran 11a was also obtained via a 1,4-cycloaddition. By exchanging the acetyl group (9a) with a phenyl ester (9b), only the dearomatized product 11b was observed in 81% yield (Scheme 6).

Scheme 6. Dearomative Cycloaddition of Allene-Substituted Naphthol Derivatives

We are also grateful to Birgit Hischa (University of Regensburg) for X-ray crystallographic analysis.

REFERENCES

(1) For a recent review on energy transfer mediated reactions, see: Zhou, Q.-Q.; Zou, Y.-Q.; Lu, L.-Q.; Xiao, W.-J. Visible-Light-Induced Organic Photochemical Reactions through Energy-Transfer

