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1 1. Introduction 

1. Introduction 
Electroanalytical methods can be found in the context of various types of samples in environmental, 

pharmaceutical and bioanalytical applications, as a number of recent reviews shows [1–11]. The 

electrochemical determination of analytes has the potential to be an attractive alternative to expensive 

instrumental methods like gas chromatography-mass spectrometry (GC-MS) or high-performance liquid 

chromatography-mass spectrometry (HPLC-MS), as the compound-specific oxidation or reduction 

potentials are obtained as qualitative information while the current delivers quantitative information 

[12]. However, the reliability of pure electrochemical data may be limited in some cases due to limited 

selectivity and the missing possibility to identify products. To increase the understanding of 

electrochemical processes and reveal mechanistic details of oxidation or reduction pathways, 

hyphenation to advanced detection techniques is in demand. Since the first beginnings by Thomson 

[13,14], mass spectrometry (MS) evolved into a very important technique that is well suited for this 

purpose as it offers high sensitivity and the possibility to identify products of electrochemical reactions 

by their mass to charge ratios and fragmentation patterns. There are different approaches to hyphenate 

electrochemistry and mass spectrometry such as direct coupling of electrochemical flow cells to mass 

spectrometry (EC-MS) as well as electrochemistry coupled with capillary electrophoresis-mass 

spectrometry (EC-CE-MS) or high-performance liquid chromatography-mass spectrometry (EC-HPLC-

MS) as for example reviewed by Faber et al [15], Cindric and Matysik [16], and Portychová and Schug 

[17]. Since the first idea of electrochemical online sample preparation combined with injection to 

capillary electrophoresis by a concept called electrochemically assisted injection was proposed by 

Matysik in 2003 [18], different approaches to online EC-MS and EC-CE-MS based on disposable 

electrodes have been developed and applied in the Matysik research group [19–22]. In this thesis, the 

focus was put on further developments and applications of these methods. In Scheme 1.1, the main 

topics addressed in the research are summarized: 

 

Scheme 1.1 Summary of the main aspects addressed in this thesis. 



 

 

2 2. Background and theory 

2. Background and theory 

2.1 Introduction to voltammetry 
Working with macroscopic electrodes (dimension in the scale of millimeters to centimeters), 

electrochemical measurements are usually carried out in a three-electrode configuration consisting of a 

working electrode (WE), an auxiliary or counter electrode (AE or CE), and a reference electrode (RE) 

[23]. Electrode potentials are externally controlled by a potentiostat. As shown in equation (1) the 

potential at the WE-solution interface Eapp is applied as the potential difference between the WE (EWE, 

variable) and the RE (ERE, fixed). Both are connected in a high-resistance circuit [24]. 

𝐸!"" = 𝐸#$ − 𝐸%$ − 𝑖𝑅 (1) 

As almost no current flow i occurs between WE and RE, the applied potential is not affected by the 

electrical resistance of the bulk solution R in form of the Ohmic drop iR and electrolytic change within 

the reference electrode [23]. The current of the electrochemical reaction flows between WE and AE 

[24]. A supporting electrolyte is added to the solution to minimize mass transport by migration effects 

and to reduce the solution resistance [25]. If the current response upon the application of a fixed potential 

is recorded over time, the experiment is called chronoamperometry [24]. Without convection, as shown 

in equation (2), the current i decreases over time t according to the Cottrell equation [26]: 

𝑖(𝑡) ∝
1
√𝑡

 (2) 

This is due to diffusion limited mass transport towards the electrode surface and increasing diffusion 

layer thickness if the potential is set to a value where the surface concentration of the consumed species 

equals zero [26]. Typical potential-time and current-time curves are depicted in Figure 2.1. Analytical 

information obtained from chronoamperometry are for example diffusion coefficients of electroactive 

species and the surface areas of working electrodes [24]. 

 
Figure 2.1 Potential (left) and current as a function of time (right) in a chronoamperometric experiment at a macroscopic 
electrode in quiescent solution. Adapted from [24]. 



 

 

3 2. Background and theory 

Linear sweep voltammetry (LSV) and cyclic voltammetry (CV) are potential sweep methods where the 

current response is measured with respect to the change in the WE potential [25]. At the beginning of a 

potential sweep the potential is set to a value at which no electrochemical conversion takes place. Only 

nonfaradaic currents, also called capacitive or charging currents, flow. These are caused by charging of 

the electrical double layer at the electrode-solution interface. At some point a potential is reached where, 

depending on the scan direction, oxidation or reduction of the species of interest begins [25]. With 

increasing anodic (i.e. oxidative) or cathodic (i.e. reductive) potential the surface concentration of the 

available species drops and the faradaic current increases due to increased electrochemical conversion. 

At a certain potential all species close to the surface is consumed and the current decreases due to the 

formation of a growing diffusion layer with flattening concentration gradient. This results in a peak-

shaped current response [25]. In LSV the potential is only scanned in one direction while in CV the scan 

direction is reversed at the vertex potential. A plot of the current as a function of the applied potential is 

called voltammogram [23]. An exemplary cyclic voltammogram obtained for a reversible diffusion 

controlled redox reaction exhibiting a one electron transfer is depicted in Figure 2.2.  

 

Figure 2.2 Potential as a function of time (left) and current as a function of potential (right) in cyclic voltammetry at a 
macroscopic electrode in quiescent solution. Adapted from [25]. 

Typical results obtained in CV are the ratio of anodic and cathodic peak currents and the separation of 

anodic and cathodic peak potentials which give information on electrode kinetics (reversible/Nernstian, 

quasireversible, or totally irreversible) [25]. CV is perfectly suited to give a qualitative overview on the 

redox activity of analytes (position of redox potentials, effects of electrolyte composition) but has some 

drawbacks for quantitative evaluations as the faradaic current is overlapping with charging currents that 

have to be corrected [24,25]. Cyclic voltammetry was used for preliminary electrochemical 

characterization of analytes during this thesis (investigation of redox properties of analytes, comparison 

of electrolytes, optimization of oxidation potentials for electrochemical sample preparation prior to CE-

MS or HPLC-MS). Chronoamperometry was used for oxidation of samples prior to mass spectrometric 

investigation of electrogenerated products by EC-CE-MS or EC-HPLC-MS. 

  



 

 

4 2. Background and theory 

2.2 Fundamentals of time-of-flight mass spectrometry 
A mass spectrometer consists of a sample inlet, an ion source, a mass analyzer, and a detector [27]. 

There are different kinds of mass analyzers such as quadrupole [28] or time-of-flight instruments [29]. 

Time-of-flight mass spectrometry (TOF-MS) was first proposed in 1946 by Stephens [29] and is 

characterized by its practically unlimited mass range and high spectra acquisition rates [30]. Combined 

with electrospray ionization (ESI) [31–33], a so-called soft ionization method characterized by low 

fragmentation [34], it is a powerful tool to identify analytes out of liquid samples [30]. In ESI, 

schematically shown in Figure 2.3, an ionization voltage of usually 1 to 5 kV is applied between ESI 

sprayer and spray shield resulting in a liquid filament called Taylor cone [30]. During evaporation of 

the solvent, the charge density at the surface of the liquid increases until the Rayleigh limit is reached 

and highly charged droplets are detached. Upon further evaporation of the solvent, so-called Coulomb 

explosions into small and highly charged droplets take place that repetitively undergo the same process, 

until gas phase ions are formed [30]. These ions are then transferred to the mass analyzer. 

 

Figure 2.3 Schematic illustration of the ESI process. Adapted from [30]. 

The working principle of a time-of-flight mass analyzer is illustrated in Figure 2.4. After passing the 

ionization source and several vacuum stages, the ions carrying the charge z·e are accelerated to the same 

kinetic energy Ekin by an acceleration voltage Ea. The velocity v is depending on the mass m according 

to equation (3) (adapted from [34]): 

𝐸&'( =
1
2
∙ 𝑚 ∙ 𝑣) = 𝑧 ∙ 𝑒 ∙ 𝐸! (3) 
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Based on equation (3), the time of flight tTOF, which is resulting from v and the length of the flight tube, 

can be expressed depending on the mass-to-charge ratio m/z as shown in equations (4) and (5) (adapted 

from [30,34]): 

𝑣 = 2
𝑧
𝑚
∙ 2 ∙ 𝑒 ∙ 𝐸* 

(4) 

𝑡+,- ∝ 2
𝑚
𝑧

 (5) 

The higher m/z, the longer is the drift time to cross the field-free drift zone under high vacuum 

conditions. If a TOF analyzer is operated in reflectron mode as illustrated in Figure 2.4, the flight 

direction of ions is reversed at the end of the field-free drift zone and mass resolution is increased by 

compensation of energy distributions and elongation of the flight path [34]. 

 

Figure 2.4 Simplified scheme of an ESI-TOF mass analyzer. After ionization in the spray chamber the ions are transferred to 
the mass analyzer, where they are accelerated to the same kinetic energy by an acceleration voltage Ea. The time needed to 
transfer a field-free drift zone is depending on the velocity, which is depending on the mass-to-charge ratio of the ions. Adapted 
from [30,34]. 

An important operating mode of modern MS systems is tandem mass spectrometry. Triple quadrupole 

or quadrupole-TOF instruments are often used for this purpose. Typically, three steps are carried out: 

(i) selection of a target m/z, (ii) fragmentation (by collision-induced dissociation CID, electron capture 

dissociation ECD, photodissociation PD, or electron transfer dissociation ETD), and (iii) detection of 

fragments. The evaluation of the fragmentation pattern can be helpful for identification of structural 

features of target ions while the selection of target precursors and target fragments can lead to enhanced 

sensitivity due to separation from background ions (single- or multiple-reaction monitoring) [30]. 

Another technique capturing increasing attention is ion mobility mass spectrometry (IM-MS), especially 

in form of ion mobility time-of-flight mass spectrometry (IM-TOF-MS) [35–37]. As reviewed by Kanu 

et al [38] four methods of ion mobility spectrometry (IMS) exist, namely drift-time ion mobility 

spectrometry (application of continuous low electrical field in drift cell), aspiration ion mobility 

spectrometry, differential-mobility spectrometry (or field-asymmetric waveform ion mobility 

spectrometry; based on alternating electrical field), and traveling-wave ion mobility spectrometry (high 

electrical field swept sequentially through IMS cell). The most common type is drift-time ion mobility 

spectrometry, which is mostly just called ion mobility spectrometry (IMS) [38]. For IM-MS the drift 

cell is included between ionization source and mass analyzer [37]. Gas phase ions are migrating through 
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a buffer gas in the presence of an electrical field [38]. By ion mobility spectrometry gas phase ions can 

be separated based on their size and shape and their interaction with buffer gases so that additional 

information on isobaric compounds with the same m/z can be obtained (e.g. rotationally averaged cross-

sectional area) [38,39]. Isomers, isobars and conformers can be separated, chemical noise can be 

reduced, and the size of ions can be measured which is very powerful in combination with mass 

spectrometric identification [38]. 
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2.3 Fundamentals of capillary zone electrophoresis 
Capillary electrophoresis (CE) is a separation method based on the migration of charged species in an 

electrical high voltage field (usually up to 30 kV) [27]. It can be carried out in fused silica capillaries 

but also in glass and polymer capillaries with typical inner diameters of 50-100 µm and lengths of 10-

50 cm [27]. But also inner diameters as small as 5 µm can be used [40]. CE is characterized by low 

consumption of samples and solvent, fast separation, high resolution, and a comparably simple 

experimental setup [41]. There are different modes of CE such as capillary zone electrophoresis (CZE), 

isotachophoresis, capillary electrokinetic chromatography, capillary gel electrophoresis, and isoelectric 

focusing [42]. In the following, the basics of CZE will be further described. CZE using capillaries with 

small inner diameters and high separation voltages was introduced by Jorgenson and Lukacs [43] in 

1981 who used a borosilicate glass tube with an inner diameter of 80 µm and a length of 1 m at a 

separation voltage of 30 kV. A scheme of a CZE setup is depicted in Figure 2.5 (A).  

 

Figure 2.5 (A) Schematic setup for capillary zone electrophoresis with on-column detection at the cathode side. (B) Illustration 
of the relative migration velocities in CZE. (C) Migration order in a corresponding electropherogram. Cationic species migrate 
with the sum of their electrophoretic velocity and the velocity of the EOF and are detected first. Neutral species are transported 
by the EOF and anionic species are migrating against the EOF and are detected last. Adapted from [41]. 

The capillary is immersed into two buffer reservoirs equipped with high voltage electrodes. The detector 

can be placed on the cathode or the anode side [41]. Typical on-column detectors are UV, fluorescence 

or capacitively-coupled contactless conductivity detectors (C4D) [44]. At one electrode the separation 

voltage is applied while the other electrode is at ground potential. The inlet end of the capillary can be 

immersed into a sample solution for injection. There are two injection modes: hydrodynamic injection 

(injection by pressure at inlet, vacuum at outlet or gravity flow) and electrokinetic injection (injection 

by application of high voltage) [41]. The migration behavior is, depending on the CE separation mode, 

based on the polarity and magnitude of the charge, the size, and the shape of the analytes [41]. In CZE 

a buffer with constant composition and pH is used as separation medium [27]. Applying the electrical 
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high voltage Eel, the electrophoretic migration velocity vep depending on the charge q and the friction 

coefficient fc can be expressed by equation (6) [41]: 

𝑣." =
𝑞 ∙ 𝐸./
𝑓0

= 𝑢 ∙ 𝐸./ (6) 

According to equation (6), the electrophoretic mobility u can be described by the migration velocity 

depending on the separation voltage and thus can be experimentally determined by evaluating the 

migration time at a known length of the capillary. An important phenomenon in CE is the electroosmotic 

flow (EOF). At a pH higher than 4, the inner wall of fused silica capillaries starts to become negatively 

charged due to deprotonation of the silanol groups at its surface [45]. By interaction with positively 

charged buffer components, an electrical double layer is formed [27]. When a separation voltage is 

applied, the cations at the inner wall of the capillary move towards the cathode, resulting in a suction 

effect causing the EOF [45]. The EOF is characterized by a flat flow profile in contrast to the parabolic 

flow profile present in pressure driven systems (Figure 2.6) leading to low band broadening and narrow 

peaks [41].  

 

Figure 2.6 (a) Flat flow profile of electroosmotic flow and (b) parabolic flow profile of laminar flow. Adapted from [41]. 

The velocity of the EOF vEOF is depending on the zeta-potential ζ of the double layer, the dielectric 

constant ε, the viscosity η and the potential Eel according to equation (7) [41]:  

𝑣$,- =
𝜀 ∙ 𝜁 ∙ 𝐸./
4 ∙ 𝜋 ∙ 𝜂

 (7) 

Neutral molecules that are not influenced by the electrical field are transported to the cathode with the 

EOF at vEOF. Cationic species are migrating towards the cathode with the sum of the velocity of the EOF 

and their electrophoretic velocity vEOF + vep (+), while anionic species are migrating with vEOF - vep (-) as 

they migrate against the direction of the EOF. Figure 2.5 (B) illustrates the migration behavior of 

differently charged species in CZE. If the detector is placed on the cathode side and vEOF is larger than 

vep (-), all species present in the solution can be detected on the cathode side in one run [45]. The resulting 

migration order is illustrated in Figure 2.5 (C). The coupling of capillary electrophoresis with mass 

spectrometry was introduced in 1987 by Olivares et al [46]. It is commonly established by electrospray 

ionization [27,41,45], an ionization technique suitable for the investigation of biological 
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macromolecules as well as small polar molecules and metal complexes [30,34]. The outlet buffer 

reservoir present in the case of on-column detection is replaced by the ionization interface of the MS 

system. There are different types of interfaces, including sheath flow (or liquid-supported; high voltage 

applied via sheath liquid) and sheathless (or nonliquid-supported; high voltage applied directly to CE 

buffer) interfaces [41,47]. In a coaxial sheath flow interface as it was used during this thesis, a sheath 

flow with a flow rate of commonly between 2-10 µL min-1 is surrounding the capillary. It has the 

function of increasing the flow rate to stabilize the electrospray as the CE flow rate is very low [27,41]. 

Additionally, the electrical contact between CE effluent and the sprayer is established [41]. A nebulizer 

gas is supporting spray formation and solvent evaporation [30]. A typical sprayer configuration of a so-

called triple-tube sprayer is depicted in Figure 2.7. 

 

Figure 2.7 Illustration of a triple-tube ESI sprayer (left) and enlarged view of the sprayer tip (right). The fused silica capillary 
(a) is installed in the center and coaxially surrounded by a sheath liquid flow (b) and a nebulizer gas (c). Own drawing based 
on the ESI sprayer by Agilent Technologies (Waldbronn, Germany). 

As demonstrated by Grundmann and Matysik [40], the flow rate of the sheath liquid does not lead to 

significant dilution effects of the ionized CE effluent in a sheath flow range between 2-10 µL min-1. A 

schematic illustration of a CE-ESI-MS setup is shown in Figure 2.8. The grounded stainless-steel 

sprayer acts as shared electrode between the CE high voltage circuit and the ESI ionization circuit. 

Selectivity of capillary electrophoresis can be significantly enhanced by applying two-dimensional 

separation (coupling of CE to HPLC or coupling of two orthogonal CE modes) or dual detection 

concepts (combining different detectors) [44]. 
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Figure 2.8 Scheme of a CE-ESI-MS setup with a coaxial sheath liquid sprayer. The ESI interface replaces the outlet reservoir 
of the CE setup. Adapted from [41].  
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Abstract  

Hyphenation of electrochemistry and mass spectrometry is an attractive method to investigate oxidation 

and reduction processes. By using mass spectrometry electrochemically generated products can be 

identified. In this Review, different approaches to electrochemistry-mass spectrometry will be 

summarized including hyphenation of electrochemical flow cells to mass spectrometry as well as 

integration of separation steps between electrochemical reactions and detection of products. Fields of 

application range from bioanalytical studies to studies regarding corrosion, electrosynthesis and energy 

carriers. Important historical developments will be highlighted, followed by an overview of terminology 

and instrumental setups and discussion of developments within recent years (2017-2020).  
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3.1 Introduction 
Detailed characterization of electrochemical reactions demands coupling of electrochemical systems to 

advanced detection techniques so that it is possible to identify oxidation or reduction products and 

elucidate reaction pathways. Mass spectrometry (MS) is ideally suited for this purpose as it can be used 

in combination with electrochemical flow cells as well as separation methods like high-performance 

liquid chromatography (HPLC) and capillary electrophoresis (CE). Furthermore, it offers valuable 

information for the identification of substances in terms of molecular ion masses, mass fragments, and 

isotopic patterns. Recent reviews covered different aspects of this topic such as bioanalytical and 

metabolic studies [1–4] as well as instrumental aspects [5–11], organic electrosynthesis under flow 

conditions [12], and electrocatalysis research [13]. Herein, the most important developments of 

electrochemistry-mass spectrometry (EC-MS) since its beginnings will be shortly summarized. Aspects 

of terminology and instrumentation will be highlighted followed by the latest developments in this topic 

from 2017 to early 2020. Main focus will be put on online approaches (i.e. electrochemical cells with 

two- or three-electrode setups and externally controlled potential are directly coupled to separation 

systems or MS). In-source electrochemistry (i.e. part of the ion source of MS system serves as 

electrochemical cell) will not be covered in detail. 

3.1.1 Historical developments 

One of the main challenges of the investigation of electrochemical reactions is the rather small amount 

of products generated by electrochemistry compared to solution chemistry [14], so that the transfer of 

analytes from electrode to detection system plays an important role. Mass spectrometric characterization 

of electrochemically generated species started in 1971 when Bruckenstein and Gadde [15] collected 

gaseous reaction products in a vacuum system before they were transferred to electron ionization mass 

spectrometry (EI-MS). Wolter and Heitbaum [16] improved the setup to the first online EC-MS 

approach and named it differential electrochemistry mass spectrometry (DEMS) to distinguish from 

offline sampling methods. Reaction products formed at a porous electrode were directly transferred to 

MS via a porous membrane. Due to the direct transfer, so-called mass spectrometric cyclic voltammetry 

(MSCV) could be accomplished as the MS response could be directly correlated with faradaic current. 

Thus, typical information gained in DEMS experiments is the MS signal development during potential 

sweeps. However, this approach for fast and direct analysis of electrogenerated products was limited to 

volatile compounds that could be transferred through the membrane [16]. After progress in interfacing 

technologies, Hambitzer and Heitbaum [17] were the first to analyze non-volatile oxidation products by 

online EC-MS using thermospray ionization. A scheme of the corresponding instrumental setup is 

depicted in Figure 3.1.  
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Figure 3.1 Schematic setup of an online EC-MS setup with thermospray ionization. Reprinted with permission from G. 
Hambitzer, J. Heitbaum, Anal. Chem. 1986, 58, 1067–1070. Copyright 1986 American Chemical Society. 

The electrooxidation of N,N-dimethylaniline was investigated by recording MSCVs. The dead time of 

this flow cell approach was 9 s and was proposed to be reduced to 1 s, which was supposed to allow for 

kinetic studies if the transfer time was varied [17]. This shows that the idea of real-time EC-MS which 

is of high interest nowadays arose already quite early. Rotating disk electrodes were also successfully 

coupled to mass spectrometry [18]. In 1988 Volk et al [19] applied the methodology in bioanalytical 

context. The oxidation of uric acid and 6-thioxanthine was investigated and the usefulness for 

characterizing redox reactivity of drugs and xenobiotics was proposed. One year later, in 1989, further 

studies on uric acid oxidation were published by the same group and reaction intermediates and products 

were described together with proposed reaction pathways [20]. In the same year, the first online coupling 

of electrochemistry and high-performance liquid chromatography to separate stable products was 

described [21] (Figure 3.2).  
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Figure 3.2 Illustration of an online EC-LC-thermospray-MS system. Reprinted with permission from K. J. Volk, R. A. Yost, 
A. Brajter-Toth, J. Chromatogr. A 1989, 474, 231–243. Copyright 1989 Elsevier. 

Further studies were concerned with the application of online-EC-HPLC-MS to study the oxidation of 

thiopurines [22,23]. A significant drawback of thermospray ionization is the risk of thermal 

decomposition of labile analytes in the ion source [24]. Electrospray ionization (ESI) represents an 

alternative ionization method facilitating the investigation of such thermally labile compounds [25]. 

After some studies on the inherent electrochemistry of ESI were published [26–30], Dupont et al [31] 

were the first to use electrochemistry to allow for the ESI-MS detection of neutral compounds by 

generation of stable oxidation or reduction products, however, in an offline approach. Fullerenes were 

used as model compounds. The applicability of in-source electrochemistry and offline electrochemistry 

to detect neutral species in ESI was compared. Zhou and Van Berkel [32] first described online coupling 

of different types of electrochemical flow cells (thin-layer electrode flow-by cell, tubular electrode flow-

through cell, and porous electrode flow-through cell) to ESI-MS and addressed challenges and 

applications of this approach. First attempts to online electrochemical oxidation after HPLC separation 

were carried out by Karst and coworkers [33] with the goal of detecting ferrocenecarboxylic acid esters 

of different alcohols and phenols (Figure 3.3). Coulometric oxidation allowed for detection of these non-

polar species in ESI-MS by generation of charged oxidation products. Next to HPLC, capillary 

electrophoresis (CE) is an alternative separation method suitable to be coupled with EC-MS. In 2003, 

Esaka et al [34] and Matysik [35] independently described first electrophoretic separations of online 

electrogenerated species. Esaka et al focused on the characterization of electrochemically generated 

anion radicals of phenanthrenequinone and anthraquinone while Matysik proposed so-called 

electrochemically assisted injection as an online sample preparation method for enhanced separation 

performance in CE and detectability of non-polar analytes in ESI-MS. The latter was demonstrated by 

online EC-CE-MS measurements of Scholz and Matysik [36] in 2011, when different ferrocene 

derivatives were analyzed by EC-CE-ESI-MS. Since then, the different methodologies of online EC-

MS, EC-HPLC-MS, HPLC-EC-MS and EC-CE-MS have been widely applied, as several reviews show 

[1-11,37–39]. 
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Figure 3.3 Scheme of an HPLC-EC-MS setup. Reprinted with permission from G. Diehl, A. Liesener, U. Karst, Analyst 2001, 
126, 288–290. Copyright 2001 Royal Society of Chemistry. 

3.1.2 Terminology 

Different kinds of data can be derived from EC-MS depending on the measurement mode and the 

denotation of the data is not uniform. By online EC-MS, so-called mass spectrometric cyclic 

voltammograms [16,17,40], mass spectrometric hydrodynamic voltammograms [20,21], on-line linear 

sweep voltammetry-electrospray mass voltammetry measurements [41], extracted ion voltammograms 

[42] or mass voltammograms [43–48] have been described. The potential-dependent mass intensity was 

measured and correlated to the potential. This method is perfectly suited to assign formed product 

species to the respective potential regions. Prerequisite for this is a fast transfer from the electrochemical 

cell to MS in order to directly correlate potential and mass intensity to each other. An alternative method 

is the application of constant potential steps [17,20], which is the method of choice to characterize the 

instrumental setups regarding time-delays between generation and detection of products. Constant 

current and anodic stripping modes have also been applied [32]. 

Considering mass voltammograms, two different modes of data acquisition have to be taken into 

account: (i) the potential is swept at a certain scan rate and the MS response is recorded in real time and 

correlated to the faradaic current [17,40,41] and (ii) the potential is increased step wise and the 

corresponding MS response is recorded. The discrete data points are collected to a mass voltammogram 

[20,21,24,32]. The first approach demands short dead times (below 1 s [17]). Already in the first online 

EC-MS studies a quantitative correlation between faradaic current and mass intensity was proposed as 

a source of information on current efficiency and number of transferred electrons [17]. However, in 

many cases, the current response of the electrode is not considered in data evaluation and only the mass 

intensity versus potential is presented. Considering the term voltammetry, which was introduced by 

Laitinen and Kolthoff [49] in 1941 as a description for determination and interpretation of current-

voltage curves, a complete mass voltammogram should include both mass and current intensity to give 

comprehensive information and fully fit the term mass voltammogram. Due to time-resolution of the 



 

 

19 3. Recent developments in electrochemistry-mass spectrometry 

separation step, EC-HPLC-MS and EC-CE-MS experiments are usually carried out after constant-

potential electrolysis as potential sweeps can not be directly transferred to the separation system. 

Figure 3.4 shows an example of how a comprehensive mass voltammogram could be presented. The 

oxidation of ferrocenemethanol (FcMeOH) in a thin-layer flow cell equipped with a thin-film gold 

electrode is depicted and the current response as well as the mass intensity are drawn in dependence of 

the applied potential. 

 

Figure 3.4 Example of a mass voltammogram for the oxidation of FcMeOH to FcMeOH+. Hydrodynamic linear sweep 
voltammogram of 1 mM FcMeOH in ACN/1 mM HOAc/10 mM NH4OAc (red, 10 mV s-1, Micrux ED-SE1-Au electrode, 
16 µL min-1) recorded parallel to MS signal of FcMeOH+ (black, m/z 216.06) with a PEEK thin-layer flow cell equipped with 
a thin-film electrode. The cell was coupled to ESI-TOF-MS via a fused silica capillary (50 µm x 21 cm). Experimental setup 
based on [50]. Unpublished work. 

3.1.3 Instrumental setups 

In this section, a rough overview of different instrumental approaches to EC-MS will be presented. A 

straightforward method for EC-MS characterization of electrogenerated species is offline electrolysis 

followed by HPLC-MS or CE-MS [45,51]. However, it is combined with a loss of time resolution and 

experimental effort in sample preparation. Thus, online approaches are preferred when fast analysis is 

required. DEMS as the most traditional method is still relevant today. Gaseous products of 

electrochemical reactions can be detected after passing a porous membrane, usually consisting of 

polytetrafluoroethylene (PTFE), which separates the electrochemical cell from the MS system [52]. 

Different electrochemical cell configurations such as thin-layer flow cells or cells based on coated PTFE 

membranes exist as reviewed by Abd-El-Latif et al [52]. DEMS is characterized by very fast response 

times but is limited to gaseous reaction products [52]. In direct EC-MS of liquid solutions, mostly 

coulometric flow-through cells and amperometric thin-layer flow cells are used as previously described 

[1]. Different configurations are available on the market. ESA analytical cells [42,53,54], 

electrochemical guard cells [55,56] and conditioning cells [48,55] as well as Antec ReactorCells 

[44,45,47,57] and µ-prepCells [51] equipped with different electrode materials have been quite popular 

in the last years. HPLC pumps (typically applied flow rates up to 50 µL min-1) [42,53,55] or syringe 

pumps (typically applied flow rates 5-20 µL min-1) [44–47,51,54] are used for transport of solutions. 
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EC-HPLC-MS measurements are achieved by coupling the aforementioned flow cells to HPLC-MS by 

direct infusion into injection loops of the HPLC system [46,48,57] so that samples can be 

electrochemically pretreated on-line. Online EC-CE-MS measurements have been carried out either by 

injection from electrolytical batch cells [36] or disposable electrodes [58,59] with the advantage that no 

valve-based systems are needed as a direct injection into the separation capillary is possible. Especially 

in bioanalytical context EC-MS and EC-CE-MS offer the advantages that physiological conditions can 

be simulated by using the corresponding (MS compatible) aqueous electrolytes. This is not valid for 

HPLC separation, where typical separation conditions are very different from the electrolytes so that 

ongoing reactions during separation might not be representative for the behavior in close-to 

physiological solutions. However, if electrochemistry is coupled to CE systems, care has to be taken to 

decouple the electrochemical cells from the separation high voltage to avoid interferences and damage 

of the potentiostat. Miniaturization of electrochemical systems also plays an important role in 

instrumental developments. As reviewed by van den Brink et al [8], miniaturization offers the 

advantages of high conversion efficiencies at low sample consumption based on rapid diffusive mass 

transport in microvolumes, reduced transfer times to MS, and compatibility to nano-LC and nano-

electrospray conditions due to the low flow rates. Experiments that would be associated with critical 

conditions in conventional cells with larger amount of sample such as reactions of highly reactive 

compounds or reactions under high pressure can be carried out at low risk [8]. Micro and nanoscale cells 

of different materials such as ceramics, glass, or plastics with volumes ranging from low µL to even pL 

have been reported using flow rates in the range of several hundred µL min-1 down to low nL min-1 [8]. 

However, not all cells have been coupled to MS and many configurations are in the prototype status [8]. 

A further aspect of miniaturization is the combination of electrochemistry and electrospray ionization 

in one device [8]. Next to the methods mentioned above, a lot of innovative concepts are in development 

as will be shown in the following sections. Interfacing electrochemistry and mass spectrometry is 

another important issue. While membrane-based interfaces and electron ionization (EI) are used for 

analysis of volatile compounds in DEMS [6], mostly electrospray ionization (ESI) [4,6] and inductively 

coupled plasma (ICP) [13] are used as interfacing strategies for liquid samples. ESI is a soft ionization 

method characterized by low fragmentation and is especially suited for analysis of bioanalytically 

relevant compounds of all sizes such as drugs, peptides and proteins, as covered in different reviews 

[1,4,6]. However, the electrochemical cell has to be decoupled from the ionization voltage of several 

kV, and the inherent electrochemistry of the ESI source has to be kept in mind [6]. As reviewed by 

Kasian et al [13], ICP-MS is characterized by high sensitivity and the possibility of multielement 

analysis, particularly of trace metals. Therefore, it was widely applied for stability studies of electrode 

materials in the context of electrocatalysis in fuel cells and water electrolyzers and the authors pointed 

out that it is also promising for stability studies in other fields of research [13]. As a drawback, however, 

it is not possible to determine the oxidation state of the respective dissolved species by ICP-MS 

alone [13]. 
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3.2 Latest developments and applications 
In this section, developments and applications of mainly the last three years (2017-2020) will be shortly 

summarized. Table 3.1 shows the reported methods and fields of application. However, the different 

methods are often used in combination and a large variety of different topics are addressed so that the 

given classification is just intended to present a rough overview. 

Table 3.1 Reported methods and fields of application 

Method, advantages and disadvantages Fields of application Ref. 

DEMS* 

Pro: 

Fast response, separation of products from electrolyte 

Contra: 

Limited to volatile products 

 

CO2 reduction  

Lithium-ion batteries 

Methanol oxidation 

Carbon corrosion 

Hydroxylamine oxidation 

 

[60,61] 

[62] 

[63] 

[64] 

[65] 

EC-MS* 

Pro: 

Fast, rather simple setup, high instrumental flexibility and 

diversity of setups 

Contra: 

Suppression effects by electrolyte salts or product mixtures 

possible, compatibility of EC and MS conditions prerequisite 

(e.g. electrolyte salts and concentrations) 

 

Energy carriers 

Alloy corrosion 

Electrode corrosion 

Interfacing 

Electrosynthesis 

Simulation of metabolism 

Protein cleavage 

Detection of complexes 

Reduction of quinones 

Disulfide bond mapping 

Location of double bonds 

Antibiotics degradation 

 

[66–70] 

[71,72] 

[73–77] 

[78–80] 

[81–85] 

[86–94] 

[95] 

[50] 

[96] 

[97] 

[98] 

[99] 

EC-HPLC-MS* 

Pro: 

Separation, retention time as additional information, 

identification via analytical standards 

Contra: 

Instrumentally complex, loss of time resolution, analytical 

standards often not available 

 

Simulation of metabolism 

Quantification in MS 

Coupling reactions 

 Protein digestion 

 

[100–103] 

[104–106] 

[107] 

[108] 

EC-CE-MS 

Pro: 

Separation, migration time as additional information, suited 

for small charged compounds (orthogonal to HPLC) 

Contra: 

Instrumentally complex, limited sensitivity due to small 

injected volume, decoupling of EC and CE voltage necessary 

 

Separation of complexes 

Nucleobase oxidation 

 

[109] 

[110,111] 

*Commercial setups available 
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3.2.1 DEMS 

DEMS is an important method for research in the context of energy carriers as recent publications show. 

Figure 3.5 illustrates a DEMS cell that was developed by Bell and coworkers [60]. It enabled the real 

time quantification of electrochemically generated products of CO2 reduction, which was taking several 

hours with conventional methods. For the first time, DEMS could be used to quantify most of the major 

products of the CO2 reduction reaction on polycrystalline copper within one hour. The cell was intended 

to be used for screening of the potential-dependent activity and selectivity of novel electrocatalysts and 

to characterize the activity and sensitivity over time. The same group investigated the concentration of 

carbon dioxide and reaction products in the immediate vicinity of the cathode surface [61]. The 

electrocatalyst was directly coated onto the pervaporation membrane and volatile species were directly 

sampled from the electrode-electrolyte interface. Thus, the reaction conditions close to the electrode 

surface could be characterized. Ag and Cu were used as electrode materials. 

 

Figure 3.5 Exploded view of a DEMS cell applied for the investigation of CO2 reduction. Reprinted with permission from E. 
L. Clark, M. R. Singh, Y. Kwon, A. T. Bell, Anal. Chem. 2015, 87, 8013–8020. Copyright 2015 American Chemical Society. 

Shen et al [62] used online continuous flow differential electrochemical mass spectrometry and in situ 

X-ray diffraction to investigate Li-rich layered oxide materials. The structure transformation during 

charge and discharge processes was characterized. High-energy nickel-manganese-cobalt cathode 

materials with different Co/Ni ratios showed different initial medium discharge voltages and voltage 

decays upon cycling. DEMS was used to detect gaseous products (CO2, O2) released from the electrodes 

during the initial cycle. Mateos-Santiago et al [63] investigated the anodic oxidation of methanol on 

nanostructured Pt/C and Pt/WO3-C electrode materials under acidic conditions. Methanol oxidation was 

different on both electrodes. The addition of WO3 to the electrode support matrix led to an increased 
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direct oxidation of methanol to CO2 and the formation of formic acid. The electrochemical corrosion of 

carbon electrode materials at high anodic potentials in alkaline electrolytes was investigated by Möller 

et al [64] by DEMS for the first time. By a modified DEMS system, the initially generated CO3
2- could 

be detected as corrosion marker in form of CO2 by in situ acidification in front of the DEMS membrane 

(Figure 3.6). Using highly active oxygen evolution reaction (OER) catalysts, carbon oxidation could be 

reduced. 

 

Figure 3.6 Setup for the investigation of carbon corrosion at high anodic potentials in alkaline electrolytes by DEMS. CO2 was 
detected as corrosion marker after conversion to CO3

2- due to the alkaline pH and release as CO2 by in situ acidification. 
Adapted under the terms of the Creative Commons Attribution Licence (CC BY) from S. Möller, S. Barwe, J. Masa, D. 
Wintrich, S. Seisel, H. Baltruschat, W. Schuhmann, Angew. Chemie Int. Ed. 2020, 59, 1585–1589. Copyright 2020 The 
Authors. 

DEMS under forced convection was used by Pozniak et al [65] to determine absolute faradaic 

efficiencies for the generation of nitrogen by oxidation of hydroxylamine on polycrystalline gold 

electrodes. N2 and N2O were found as main products in acidic and neutral media and NO as well as N2O 

in alkaline media. 

3.2.2 EC-MS 

3.2.2.1 Energy carriers and corrosion 

Cheng et al [66] investigated the generation of formaldehyde by oxidation of methanol in the context of 

fuel cell research. Online EC-desorption electrospray ionization (DESI)-MS was used as method. The 

oxidation at Pt, Au, and Pt/C electrodes was characterized in acidic and alkaline solution. Formaldehyde 

was detected after online derivatization with phenylhydrazine. Liu et al [67] developed a Y-shaped dual-

channel microchip to investigate the reduction of oxygen by decamethylferrocene or tetrathiafulvalene 

under catalysis of tetraphenylporphyrin at a water/oil interface by EC-ESI-MS, which is important for 

electrochemical energy conversion. The electrochemical reaction steps were either induced by applying 

an external potential to glass microchips with integrated electroplated platinum line electrodes or by 

lithium tetrakis(pentaflourophenyl) borate in a polyimide-based microchip. The same topic was 
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addressed by Gu et al [68], who investigated the oxygen reduction reaction by ferrocene under catalysis 

of cobalt tetraphenylporphine. Gel hybrid ultramicroelectrodes were developed that worked as 

electrochemical cells and nanospray emitters. Spray formation was achieved via a piezoelectric pistol. 

The agar-gel and PVC-gel components worked as liquid/liquid interface between aqueous and organic 

phase (agar-gel/dichloroethane, water/PVC-gel). Real time analysis of the oxygen reduction reaction 

was possible. Other investigations were concerned with the development of methods for the evaluation 

of water splitting catalysts. Electrolysis was coupled with mass spectrometry to measure the faradaic 

efficiency of water splitting at planar metal electrodes, metal-foam-based electrodes and porous 

electrodes with carbon additive under real time conditions [69]. Gaseous products were transferred to 

MS during electrolysis by a nitrogen carrier gas. In contrast to DEMS, transfer to MS was not achieved 

via a gas permeable membrane but an exhaust system. The anode and cathode chambers were separated 

by an ion exchange membrane. During slow potential scans the produced gases were quantified by MS 

while accumulation in the cell was minimized. Xu et al [71] reported the investigation of alloys by so-

called electrochemical ionization mass spectrometry (ECI-MS). A microelectrolytic cell equipped with 

platinum wire working and auxiliary electrode and a silver/silverchloride reference electrode was used 

for the investigations and the metal of interest was either connected to the anode or operated as bipolar 

electrode. By applying suitable potentials, the alloy components were selectively dissolved to the 

corresponding metal ions, which were complexed by ligands in the electrolyte and detected by mass 

spectrometry. The method was suggested to investigate organic compounds and alloys for example in 

the context of engine abrasion and engine oil analysis or cast post analysis in the context of dental 

treatment. The same method was applied to the analysis of metal impurities on the surface of objects 

with irregular shape such as necklaces and rings. Non-destructive sampling with sample consumption 

in the nanogram range was achieved by potential-dependent formation of metal ions from the sample 

followed by mass spectrometric detection [72]. Jovanovič et al [73] investigated the corrosion of gold 

materials by measuring the potential-resolved dissolution of gold from a gold disc electrode and a carbon 

disc electrode coated with gold nanoparticles by EC-ICP-MS based on an electrochemical flow cell 

which has been previously applied for characterization of platinum electrocatalysts [74]. Online 

dissolution profiles of gold were obtained during cyclic voltammetry depending on the amount of 

simulated chloride impurities (Figure 3.7). Nanostructured gold on carbon supports was more stable 

against corrosion as less dissolution was observed. Another study was concerned with the investigation 

of platinum and gold dissolution in an organic methanol-based electrolyte. A modified EC-ICP-MS 

setup was used [75]. Ledendecker et al [76] investigated the optimization of the iridium utilization 

during the acidic oxygen evolution reaction while reducing the noble metal content, which is important 

for future large scale applications. The stability of iridium oxide layers on tin oxide based support 

materials was investigated by dissolution experiments utilizing a flow cell coupled online to ICP-MS. 

Kasian et al [77] used a scanning flow cell coupled to ICP-MS and online electrochemical mass 

spectrometry to investigate the oxygen evolution reaction on iridium and iridium oxide electrodes and 
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the associated electrode degradation pathways. Three different dissolution mechanisms were identified. 

The reported measurements described above showed a trend towards miniaturization of electrochemical 

cells and interfacing systems. In many cases, two-electrode setups are used. However, no commercial 

standard systems have been established yet. As demonstrated in several studies, EC-MS is an attractive 

method to investigate and optimize the corrosion stability of coatings and electrocatalysts especially if 

electrochemistry is coupled to ICP-MS. 

 

Figure 3.7 (a) Cyclic voltammograms of 0.05 M H2SO4 on a polycrystalline Au electrode with increasing anodic potential 
limits (scan rate 20 mV s-1). (b+c) EC-ICP-MS measurements of Au dissolution during potentiodynamic cycling at 20 mV s-1. 
(d) Au dissolution profile (red) and current signal (black) during potentiodynamic cycle (20 mV s-1). Reprinted under the terms 
of the Creative Commons Attribution Licence (CC BY) from P. Jovanovič, M. Može, E. Gričar, M. Šala, F. Ruiz-Zepeda, M. 
Bele, G. Marolt, N. Hodnik, Coatings 2019, 9, 10. Copyright 2018 The Authors. 

3.2.2.2 Electrosynthesis and metabolism studies 

Brajter-Toth and coworkers [78] investigated the ionization process in liquid sample (LS)-DESI and 

characterized an in-line LS-DESI configuration in comparison to common angled LS-DESI-MS 

systems, electrosonic spray ionization (ESSI) and ESI. As main advantage of the in-line LS-DESI-MS 

approach, a higher tolerance of the interface towards electrolyte solutions was described, avoiding 

contamination or clogging of the sprayer as it can occur in regular ESI. The MS intensity was found to 

be lower in LS-DESI-MS compared to ESI-MS but the ion signal stability was higher in LS-DESI-MS. 

The compatibility of the used electrolytes to the MS system is an important aspect as volatile electrolytes 

have to be used. However, in electrochemistry often high concentrations of electrolytes are preferred 

while low concentrations are better for MS to avoid suppression effects in the ionization process [32]. 
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Miniaturization of electrochemical systems plays an important role for electrosynthesis processes. 

Folgueiras-Amador et al [81] developed an electrochemical flow microreactor for organic 

electrosynthesis as improved version of their previous design [82–84]. Due to the small dimensions, the 

addition of high amounts of supporting electrolytes can be avoided. Among other studies, the cyclization 

of amides to isoindolinones was investigated and the number of electrons for a complete conversion was 

determined by inline mass spectrometry. This approach is interesting as minimizing the amount of 

supporting electrolyte avoids time consuming clean-up procedures and facilitates high-efficiency 

electrosynthesis of product solutions that can directly be investigated by further techniques such as NMR 

without interferences by electrolyte salts. Next to Fenton-like oxidation and UV irradiation, online as 

well as offline EC-ESI-MS was used to investigate the phase I metabolism of the mycotoxins citrinin 

and dihydroergocristine and results were compared to in vitro metabolites by Koch and coworkers [86]. 

Even if the Fenton-like reaction was the better suited method to predict phase I metabolites, the products 

generated by EC were suggested to be potentially interesting for future research. The same group 

investigated transition products of monensin by EC-MS and compared the results with microsomal 

metabolism and hydrolysis experiments of monensin [87]. Subsequent HPLC-MS/MS studies were used 

for further investigations. Decarboxylation, O-demethylation and acid catalyzed ring-opening reactions 

were found to be the main processes. By electrochemistry, some products formed in the microsomal 

assay could be reproduced but also additional products could be found. Colombo et al [88] used online 

EC-ESI-MS to simulate oxidative injury of three phosphatidylethanolamines with a boron-doped 

diamond (BDD) working electrode and suggested an oxidation mechanism mediated by hydroxyl 

radicals. EC-ESI-MS was demonstrated to be able to reproduce oxidative metabolism by reactive 

oxygen species. Rohn and coworkers [89] analyzed the redox properties of various phenolic compounds 

such as chlorogenic acid or caffeic acid on a boron-doped diamond electrode and used EC-MS for 

investigation of adduct formation of oxidized phenolic compounds to food proteins by reaction of 

oxidized chlorogenic acid with peptides of alpha-lactalbumin. The same group reported the 

electrochemical simulation of phase-I and phase-II metabolism of cholecalciferol and ergocalciferol in 

the context of vitamin D metabolism [90]. Electrochemical investigations as well as binding studies to 

glucuronic acid were carried out and products of in vivo studies could be simulated. Additionally, EC-

MS was suggested as a promising method for generating reference compounds. Oxidative metabolism 

of the antimicrobial agent triclosan was investigated by Zhu et al [91]. An electrochemical flow cell 

with a boron-doped diamond electrode was coupled to MS to identify possible metabolites. Additionally, 

the toxicity of triclosan and the simulated metabolites was investigated with modelling tools and 

bioassays on zebrafish embryos. The results demonstrated potential harmfulness of triclosan and its 

metabolites. Though far less frequently applied, investigations of reductive processes are also carried 

out. Pietruk et al [92] investigated the reduction reactions of the azo-dyes Sudan I-IV and 4-nitroaniline 

at a glassy carbon electrode. Possible metabolites were identified by a flow cell approach. For further 

confirmation of the products, LC-MS/MS measurements were carried out after offline electrolysis. A 
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novel paper based electrochemical cell was developed by Narayanan et al [80]. A filter paper coated 

with carbon nanotubes and equipped with printed silver paste electrodes was used to convert thiols to 

disulfides, to functionalize polycyclic aromatic hydrocarbons, detect radical cations of metallocenes and 

polycyclic aromatic hydrocarbons and to investigate the oxidation of glucose. van den Brink et al [95] 

developed a glass-based microfluidic electrochemical cell with an integrated boron-doped diamond 

electrode for specific electrochemical protein cleavage. The cell volume was 160 nL. The potential-

dependent cleavage was investigated by recording mass voltammograms and selectivity was proposed 

to be tunable by the selection of the potential. Cleavage of bovine insulin and chicken egg white 

lysozyme was demonstrated. The microfluidic cell was suggested as a purely instrumental approach to 

protein analysis and proteomics studies by high electrochemical conversion efficiency and mass 

spectrometric detection. The timescale of investigations can be reduced and reactions can be carried out 

under conditions not suitable for enzymatic cleavage [95]. Figure 3.8 illustrates the chip design. The 

reported studies show that instead of pure electrochemical investigations more and more additional 

experiments are carried out such as toxicity studies of electrogenerated compounds or conjugation 

studies of electrogenerated intermediates. 

 

Figure 3.8 Microfluidic electrochemical cell used for electrochemical protein digestion. (A) Photograph of assembled chip. 
(B) Exploded view of the different chip layers. (C) Structures of BDD working electrode and counter electrode (I), Pt pseudo 
reference electrode and contact pads (II), SU-8 layers (III), and microfluidic structures and access holes (IV). (D) Scheme of 
fluidic structures. (E) Expanded view of a part of the working electrode and frit channel network.  Reprinted with permission 
from F. T. G. van den Brink, T. Zhang, L. Ma, J. Bomer, M. Odijk, W. Olthuis, H. P. Permentier, R. Bischoff, A. van den Berg, 
Anal. Chem. 2016, 88, 9190–9198. Copyright 2016 American Chemical Society. 
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3.2.2.3 Real time EC-MS 

The idea of fast real time analysis of electrochemical reactions was already present in the beginnings of 

EC-MS. However, in the last years this idea was reactivated and several developments towards real time 

detection of electrogenerated species were described by different working groups. Matysik and 

coworkers [50] used amperometric thin layer flow cells with integrated disposable electrodes for direct 

coupling to ESI-TOF-MS. The dead volume for the transfer to MS was minimized by using short fused 

silica capillaries with low inner diameters and an ESI interface commonly used in CE-MS. By 

appropriate flow rates, short transfer times in the range of 1 s could be achieved. However, this approach 

is limited to ESI compatible electrolytes. Wang et al [79] described the real time investigation of 

ascorbic acid oxidation by the previously developed so-called in situ liquid secondary ion mass 

spectrometry (in situ liquid SIMS [112,113]). A radical intermediate could be detected and dynamic 

double layer processes at the electrode-electrolyte interface could be investigated by coupling a vacuum 

compatible microfluidic electrochemical cell with integrated gold film working electrode to TOF-SIMS. 

Secondary ions were directly sampled from the electrode-electrolyte interface by a primary Bi3+ ion 

beam that was penetrating a silicon nitride membrane as illustrated in Figure 3.9.  

 

Figure 3.9 (a) Illustration of an electrochemical cell for in situ liquid SIMS. (b) Depth profiles of different ions obtained during 
drilling a hole through a SiN membrane and a Au film electrode in a solution of 0.5 mM ascorbic acid (AA) in 10 mM HCl. 
Reprinted with permission from Z. Wang, Y. Zhang, B. Liu, K. Wu, S. Thevuthasan, D. R. Baer, Z. Zhu, X.-Y. Yu, F. Wang, 
Anal. Chem. 2017, 89, 960–965. Copyright 2016 American Chemical Society. 
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Khanipour et al [70] presented a method for time- and potential-resolved investigation of liquid and 

gaseous products of electrochemical reactions by electrochemical real time mass spectrometry (EC-

RTMS). The CO2 reduction reaction on pristine and anodized copper was investigated. A scanning 

electrochemical flow cell with extraction capillary was coupled to mass spectrometry. Though 

instrumentally quite complex because of the parallel use of two MS systems, this method allowed for 

highest flexibility as volatile and non-volatile species could be investigated. The first was achieved by 

gas extraction through a hydrophobic membrane and detection by electron ionization quadrupole MS 

while the latter was realized by nebulizing the electrolyte solution and coupling to direct analysis in real 

time (DART) TOF-MS (Figure 3.10). Using DART ionization this approach was more robust towards 

electrolyte salts than regular EC-ESI-MS techniques.   

 

Figure 3.10 Setup for real time EC-MS consisting of a scanning flow cell (A), a degasser with hydrophobic tubing for gas-
liquid separation (B), an electron-ionization quadrupole MS for gas analysis (C), a nebulizer (D), a spray chamber (E), and a 
direct analysis in real time-TOF-MS for liquid analysis (F). Reprinted with permission from P. Khanipour, M. Löffler, A. M. 
Reichert, F. T. Haase, K. J. J. Mayrhofer, I. Katsounaros, Angew. Chemie Int. Ed. 2019, 58, 7273–7277. Copyright 2019 Wiley-
VCH. 

Though it is contentious in some cases [114], in-source electrochemistry or electrochemical systems 

combining electrochemistry and spray formation controlled by the ionization high voltage represent 

other variants of real-time EC-MS. However, in most cases the thermodynamic redox potentials can not 

be investigated as no classical electrochemical cells with three-electrode system are used.  Precise 

control of electrochemical potentials may be difficult in such systems and mechanistic findings have to 

be transferred to regular electrochemical cells carefully. Because of that only a few applications will be 

mentioned and not discussed in detail. Pei et al [96] investigated corona discharge-induced reduction of 

various quinones by negative mode ESI-MS. Cramer et al [97] used in-source reduction for disulfide 

bond mapping. Wan et al [85] developed a real-time electrochemical reaction platform to monitor 
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picomole-scale electrosynthetic reactions by nano-ESI-MS. Tang et al [98] used electro-epoxidation in 

nano-ESI-MS controlled by the spray voltage. By fragmentation in tandem MS the capability to locate 

double bonds in lipids was demonstrated. He et al [99] investigated the real-time monitoring of 

electrochemical degradation of ciprofloxacin by electrochemical mass spectrometry. Oxidation and 

spray formation by high voltage based on a platinum slice electrode placed on an ITO glass chip was 

used. Another application was demonstrated for dopamine [93] as well as DOPA and adrenaline [94]. 

Oxidation was either carried out by the ESI spray high voltage of 3 kV or by an integrated 

electrochemical cell using the stainless-steel electrospray emitter as working electrode and a second 

stainless-steel capillary as counter electrode that was connected by PTFE tubing. The voltage of the 

electrochemical cell was supplied by a battery and a variable resistor and the cell voltage was floated on 

the ESI high voltage [94]. Intermediates were detected in real time with a specified response time of 

about 3 ms [93,94].  

3.2.3 EC-HPLC-MS 

Offline and online HPLC-MS and HPLC-MS/MS are often applied to support findings of EC-MS 

studies. On the other hand, EC-MS is regularly used to optimize oxidation conditions to get the highest 

possible yields of the products that should be analyzed by consecutive HPLC-MS so that both 

instrumental approaches are mostly applied in combination. By evaluation of the retention behavior, 

additional information on the polarities of analytes can be obtained and suppression effects in the 

ionization source can be avoided. In the following, recent online studies with focus on hyphenation of 

electrochemistry to chromatographic methods and mass spectrometry are summarized. Karst and 

coworkers [100] analyzed the oxidative transformation or roxarsone by EC-MS and EC-hydrophilic 

interaction liquid chromatography (HILIC)-MS using an electrochemical thin-layer cell with boron-

doped diamond electrode. ESI and ICP were used as ionization methods. Adduct formation experiments 

were also carried out. By HILIC polar analytes could be separated using liquid chromatography, which 

shows the flexibility and universality of modern HPLC techniques. Using ICP-MS additionally to ESI-

MS not only identification of organic substances but also speciation and quantification of inorganic 

constituents is possible. Another study was concerned with reduction of prodrugs based on Pt(IV) in the 

context of anticancer agents (Figure 3.11) [101]. Electrochemistry was presented as alternative to 

chemical reducing agents where in some cases the reduction kinetics are very slow. Different platinum 

complexes were reduced and analyzed by EC-MS, EC-HPLC-ESI-MS and EC-HPLC-ICP-MS. 
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Figure 3.11 Top: Experimental setup used for reduction of Pt(IV) compounds either by EC-ESI-MS (a) or EC-HPLC-ESI-MS 
(b1)/EC-HPLC-ICP-MS (b2). Bottom: Mass voltammogram obtained for the reduction of OxPt(Succ)(OAc) on a Ti cathode 
during a potential ramp at a scan rate of 10 mV s-1. Adapted under the terms of the Creative Commons Attribution 3.0 Unported 
License from L. M. Frensemeier, J. Mayr, G. Koellensperger, B. K. Keppler, C. R. Kowol, U. Karst, Analyst 2018, 143, 1997–
2001. Copyright 2018 The Authors. 

Mekonnen et al [102] developed an automated EC-HPLC-MS method for electrochemical simulation of 

biotransformation products of the insecticide chlorpyrifos and compared the electrogenerated products 

with in vitro generated metabolites of rat and human liver microsomes. Six products could be identified 

with both methods while the authors emphasized the time that could be saved by the instrumental 

approach due to the missing sample preparation steps (matrix removal). Oxidations were carried out on 

boron-doped diamond and glassy carbon electrodes and the oxidation potential was optimized by EC-

MS. The same group reported the investigation of biotransformation of the fungicide fluopyram [103]. 

Several known phase I metabolites could be simulated by electrochemical oxidation on a boron-doped 

diamond electrode, but also new metabolites were predicted by electrochemistry and studies based on 

 

 



 

 

32 3. Recent developments in electrochemistry-mass spectrometry 

human and rat liver microsomes. Additionally, mechanistic reaction steps were proposed. Xu et al [104] 

used electrochemical oxidation for quantification in HPLC-MS without the need of standard compounds 

or calibration curves (electrochemical mass spectrometry) in a dual detection-like method. By evaluating 

the faradaic current in an LC-EC-MS approach the amount of oxidized analyte could be calculated, and 

the yield of oxidation was determined by comparing the MS signal before and after electrolysis. No 

quantitative electrolysis was needed as it would have been the case for coulometric quantification. 

Applications were demonstrated for determination of dopamine, norepinephrine, rutin, and glutathione 

as well as uric acid in urine. The same method was used for quantification of tyrosine containing peptides 

[105]. However, in both cases it is mandatory to know the oxidation mechanism and the number of 

transferred electrons as well as the number of oxidizable groups of each target molecule. The method 

was also applied to purified samples where no separation was needed and the sample could directly be 

analyzed and quantified without separation step [106]. A novel approach to online dual electrochemistry 

coupled to LC-MS was presented by Karst and coworkers [107]. Two liquid streams were combined for 

online derivatization of a disulfide reduced to a thiol and a phenol oxidized to a benzoquinone. The 

coupling products were evaluated by HPLC separation and mass spectrometry. In future studies the 

concept is intended to be used for online protein labelling. Bischoff and coworkers [108] developed a 

method for electrochemical digestion of proteins. Next to digestion, chemical labeling of the cleavage 

products by introduction of reactive spirolactone groups was addressed. Cu(II) ions were used to 

stabilize spirolactone containing peptides which were subsequently labeled with biotin and enriched by 

avidin affinity chromatography. Identification was carried out by mass spectrometry. LC-MS 

measurements after the different reaction steps are shown in Figure 3.12. The method was applied to the 

analysis of chicken egg white lysozyme. The results show that electrochemical reaction steps can be 

effectively included into sample preparation and derivatization procedures. Overall it can be stated that 

various applications of rising complexity are reported. Usually different techniques are combined. The 

general redox behavior of analytes is often investigated and optimized by EC-MS while HPLC-MS is 

used for characterization based on the retention behavior and mass of products. Different ionization 

methods are applied for characterization of organic and inorganic constituents. In most cases methods 

based on electrochemistry are not used independently but are still compared to conventional methods 

leading to the conclusion that this field is still not fully established. A vast amount of applications is 

concerned with metabolic and biomimetric studies and the biggest advantage of electrochemistry is the 

rather simple setup and well controllable reaction conditions. Compared to regular assays the effort of 

sample preparation is significantly reduced and timescales of analysis are much shorter. 
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Figure 3.12 (A) LC-MS of the electrochemically digested tripetide LWL, (B) measurement of the reaction mixture after 
biotinylation and solid-phase extraction, and (C) measurement of the biotinylated LW+14 fragment after enrichment on 
monomeric avidin agarose. Extracted ion chromatograms of unoxidized LWL (*, m/z 431.26), uncleaved isomeric oxidation 
products LWL+32 (#, m/z 463.26), LW+14 (m/z 332.16), and biotinylated LW+14 (m/z 706.37). Reprinted with permission 
from T. Zhang, M. P. de Vries, H. P. Permentier, R. Bischoff, Anal. Chem. 2017, 89, 7123–7129. Copyright 2017 American 
Chemical Society. 

3.2.4 EC-CE-MS 

Capillary electrophoresis is a complementary separation method that can be used as an alternative to 

HPLC. However, it is much less frequently applied. Matysik and coworkers established an online EC-

CE-MS system based on direct injection into the CE system from screen-printed electrodes. The 

capillary tip was directly placed on the working electrode surface for hydrodynamic injection [58,59]. 

This allows for a fast and efficient transfer of electrochemically pretreated solutions to the separation 

step without the need of quantitative oxidation or reduction. The approach was limited to aqueous 

electrolytes due to the screen-printed electrode materials that are not resistant against organic solvents. 

To extend the applicability to non-aqueous solutions, a miniaturized electrochemical injection cell based 

on disposable thin-film electrodes was developed and characterized. The instrumental setup is illustrated 

in Figure 3.13 [109]. Very low amounts of sample (below 10 µL) could be oxidized and characterized 

online by CE-MS as demonstrated for different ferrocene derivatives [109]. Next to guanosine and 8-

oxo-7,8-dihydroguanosine [115] and cyclic nucleotides [116], cytosine [110] and thymine [111] 

oxidation was investigated by online EC-CE-MS based on screen-printed carbon electrodes. Contrary 

to HPLC, the same electrolyte can be used for oxidation and separation in the case of CE. This has the 
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advantage that the migration behavior in CE is representative for the state of charge of the analyte in the 

electrolyte as no solvent exchange takes place. Physiological conditions can be simulated also in the 

separation step, which is not possible in reversed-phase HPLC. 

 

Figure 3.13 EC-CE-MS setup based on an injection cell equipped with disposable thin-film electrodes. (a) Injection device at 
injection position. The separation capillary (1) is moveable vertically and the base unit with integrated electrochemical injection 
cell and electrolyte reservoirs (2) is moveable horizontally. (b) Exploded view of the electrochemical injection cell consisting 
of a cover with electrical contacts (3) and base with electrode slot (4). Reprinted with permission from T. Herl, N. Heigl, F.-
M. Matysik, Monatsh. Chem. - Chem. Mon. 2018, 149, 1685–1691. Copyright 2018 Springer Nature.  
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3.2.5 Further studies 

In Table 3.2, further recent studies from 2017-2020 are shortly summarized. 

Table 3.2 Further EC-MS studies from 2017-2020. 

Category Method Content Ref. 

Metabolism EC-MS, EC-

HPLC-MS 

-Simulation of oxidative metabolism of antitumor-active 

compounds  

[117,118] 

Metabolism EC-MS -Simulation of oxidative metabolism of nucleosides and 

nucleotides by EC-ESI-MS 

[119] 

Metabolism EC-MS, EC-

HPLC-MS 

-Simulation of the oxidative metabolism of cardiovascular 

drugs 

-Conjugation to glutathione 

-Comparison to in-vivo experiments 

[120,121] 

Protein 

analysis, 

interfacing 

EC-MS -Disulfide bond electroreduction and tagging by 

electrochemical-mass spectrometry 

[122] 

Protein 

analysis 

EC-MS, EC-

HPLC-MS 

-Disulfide linkage assignment of disulfide-rich peptides by 

electrochemical reduction on a lead electrode 

-Alkylation of peptides followed by alkylated peptide 

sequencing 

[123] 

Metabolism, 

degradation, 

remediation 

EC-MS, EC-

HPLC-MS 

-Simulation of metabolism and degradation of polycyclic 

aromatic hydrocarbons 

-Comparison to UV irradiation and microsomal incubation 

[124] 

Metabolism EC-MS -Simulation of enzyme-mediated metabolism processes of 

phosphatidylethanolamines 

[125] 

Energy 

carriers 

EC-MS -Screening of CO2 reduction electrocatalysts by scanning flow 

cell and pervaporator 

[126] 

Metabolism EC-HPLC-

MS 

-Aromatic hydroxylation of lidocaine to 3-hydroxylidocaine at 

a Pt electrode 

-Identification of ogygen source by experiments with 18O 

labelled water 

[127] 
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3.3 Summary and outlook 
EC-MS is an attractive method for characterization of redox processes and identification of oxidation 

and reduction products. A vast amount of the EC-MS investigations is concerned with the 

electrochemical simulation of oxidative metabolism, oxidative stress, or degradation processes. But also, 

electrochemical sample preparation, for example in the context of corrosion studies, plays an important 

role. While instrumental setups for EC-MS and EC-HPLC-MS are already established and commercially 

available, new developments in recent years dealt with interfacing strategies and development of real 

time analytical systems and electrochemical interfaces combining electrochemistry and ionization for 

MS. However, potential control and evaluation of thermodynamic redox information is barely possible 

with such systems, as often two-electrode setups are applied and the potential drop within the ionization 

system is used for the electrochemical conversion. One crucial part of EC-MS is the identification of 

oxidation products. Evaluation of the masses and molecular formulas by MS is straightforward but 

deriving structural features is difficult. EC-MS systems are therefore often combined with separation 

techniques to obtain additional information on the retention or migration behavior. Tandem MS 

experiments can be applied to identify structural features by characteristic fragments. However, a lot of 

valuable data can be obtained this way but in many cases structures can still only be proposed because 

there is often a lack of analytical standards for comparison. Another difficulty is the low amount of 

product species generated by EC. Thus, producing enough sample for preparative separation and offline 

analysis, for example by NMR, is difficult. Especially if long electrolysis times are applied, one 

significant advantage of EC-MS, the short timescale of analysis, is lost. A lot of follow up reactions of 

primary oxidation products will take place and the composition of the reaction mixture will change 

significantly over time, which makes analysis quite complex. This may be a problem especially in 

studies with biological context as there is often interest in reactive intermediates. In the future, additional 

techniques for structural identification will be in demand for more detailed characterization of oxidation 

and reduction products.  

In one of the main fields of application, investigations in bioanalytical context, metabolism studies 

showed that some characteristic processes can be simulated by electrochemistry. Different electrode 

materials can simulate different mechanisms like direct electron transfer or radical mediated processes. 

A current trend is that not only oxidation or reduction products are identified to simulate phase I 

metabolism but also conjugation studies for simulation of phase II metabolism are carried out. 

Applications of rising complexity are reported, and even dual electrochemical approaches are already 

established. In more and more investigations, microsomal experiments and toxicity studies of 

electrochemically generated metabolites are carried out additionally to electrochemical studies so that 

EC-MS slowly develops from pure proof-of-concept studies to an applied technique in this field. EC-

MS is an attractive approach for preliminary screening procedures that can be carried out on a reduced 

time scale compared to in vitro assays and animal studies might be reduced. However, a lot of 

electrogenerated products are artificial and probably won’t be present in in vivo metabolism so that 
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conclusions have to be drawn carefully. One important issue especially for routine and high-throughput 

analysis is electrode maintenance. Electrodes need to be cleaned and polished properly to avoid artifacts 

and electrode fouling. This is time-consuming and demands experienced users. The application of 

disposable electrodes can be attractive in this case as electrodes can in principle be replaced by new 

ones after each measurement so that a constant performance can be ensured. 

While in the past many instrumental developments in electrochemical cells and hyphenation to 

separation techniques have been established, future developments should deal with more powerful 

methods for online structural identification such as NMR [128]. Additionally, final steps from proof-of-

concept to standardized applications should be done. 
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4. Experimental 
In this chapter, an overview of the most important chemicals, materials, and instruments is given. 

Instrumental setups and general procedures are shortly described. Exact details of the conducted 

experiments are given in the respective chapters in the results section. 

4.1 Materials and instruments 

4.1.1 Chemicals 

In Table 4.1, the most important chemicals used in the experiments are listed in alphabetical order. 

Purity was analytical grade or higher, if not stated otherwise. Aqueous solutions were prepared using 

Milli-Q water (18 MW cm-1) provided by a Milli-Q Advantage A10 system (Merck Millipore, 

Darmstadt, Germany). Non-aqueous solutions were degassed at 50 mbar for 30 min prior to use. The 

exact solution specifications used in the single experiments are described in the respective chapters in 

the results section. 

Table 4.1 List of most important chemicals 

Substance Abbreviation Supplier 

Acetic acid, glacial HOAc Sigma-Aldrich, St. Louis, MO, USA 

Acetonitrile ACN Merck, Darmstadt, Germany 

Ammonia, 25% NH3 Merck, Darmstadt, Germany 

Ammonium acetate NH4OAc Merck, Darmstadt, Germany 

Ammonium hydrogencarbonate NH4HCO3 Roth, Karlsruhe, Germany 

Caffeine, 99% Caff ABCR, Karlsruhe, Germany 

Cytosine, ≥ 99% Cyt Sigma-Aldrich, St. Louis, MO, USA 

Decamethylferrocene, 99% dMFc ABCR, Karlsruhe, Germany 

di-Sodium hydrogenphosphate Na2HPO4 Merck, Darmstadt, Germany 

Ferrocene, 98% Fc Riedel-de-Haën, Seelze, Germany 

Ferrocenemethanol, 99% FcMeOH ABCR, Karlsruhe, Germany 

Formic acid, 98-100% FA Merck, Darmstadt, Germany 

Hydrochloric acid, 1 M HCl Merck, Darmstadt, Germany 

Hydrochloric acid, conc. HCl Merck, Darmstadt, Germany 

Isopropanol iPrOH Roth, Karlsruhe, Germany 

Sodium carbonate Na2CO3 Roth, Karlsruhe, Germany 

Sodium dihydrogenphosphate NaH2PO4 Merck, Darmstadt, Germany 

Sodium hydrogencarbonate NaHCO3 Merck, Darmstadt, Germany 

Sodium hydroxide, 0.1 M NaOH Merck, Darmstadt, Germany 

Thymine, ≥ 99% Thy Sigma-Aldrich, St. Louis, MO, USA 
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4.1.2 Consumables 

In Table 4.2 the most important consumables are listed: 

Table 4.2 List of consumables 

Consumable Supplier 

Fused silica capillary, ID 25 µm, OD 360 µm Polymicro Technologies, Phoenix, AZ, USA 

Fused silica capillary, ID 50 µm, OD 360 µm Polymicro Technologies, Phoenix, AZ, USA 

Screen-printed carbon electrode, DRP-110 DropSens, Llanera, Spain 

Gold thin-film electrode, ED-SE1-Au Micrux Technologies, Oviedo, Spain 

Platinum thin-film electrode, ED-SE1-Pt Micrux Technologies, Oviedo, Spain 

4.1.3 Instruments  

In Table 4.3, the most important commercially available instruments used in this thesis are summarized. 

Table 4.3 List of instruments 

Instrument Supplier 

µAutolab III potentiostat Metrohm Autolab B. V., Utrecht, The Netherlands 

µStat 200 potentiostat DropSens, Llanera, Spain 

PalmSens 3 potentiostat PalmSens BV, Houten, The Netherlands 

Coulochem II potentiostat ESA Biosciences Inc., Chelmsford, USA 

Lambda 1010 UV/VIS detector Bischoff Analysentechnik und -geräte GmBH, Leonberg, Germany 

MicrOTOF mass spectrometer Bruker Daltonics, Bremen, Germany 

Type A-99 syringe pump Razel Scientific Instruments, Saint Albans, VT, USA 

Microinjection syringe pump World Precision Instruments, Sarasota, FL, USA 

Type 601553 syringe pump KD Scientific, Holliston, MA, USA 

Flow cell, model FLWCL DropSens, Llanera, Spain 

Flow cell, model ED-FLOW-CELL Micrux Technologies, Oviedo, Spain 
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4.1.4 Software 

All software used for data evaluation and presentation is listed in Table 4.4: 

Table 4.4 List of software 

Software Supplier 

NOVA 2.0 Metrohm Autolab B. V., Utrecht, The Netherlands 

DropView DropSens, Llanera, Spain 

PSTrace 4.6 PalmSens BV, Houten, The Netherlands 

MicrOTOF Control 2.3 Bruker Daltonics, Bremen, Germany 

Compass DataAnalysis 4.0 Bruker Daltonics, Bremen, Germany 

Microsoft Office 365 Microsoft Corporation, Redmond, WA, USA 

Origin 2018 OriginLab Corporation, Northampton, MA, USA 

Blender 3D Creation Suite Blender Foundation, Amsterdam, The Netherlands 

4.1.5 Handling of capillaries 

Fused silica capillaries were cut to the desired length by carving the polyimide coating with a ceramic 

cutter and carefully breaking the capillary. During preparation, the capillaries were flushed with water 

by applying pressure with a syringe via a septum. The polyimide coating was removed at the capillary 

tips with a micro torch and remaining particles were removed with a razorblade and a soft cloth soaked 

with isopropanol. The capillary tips were polished using a laboratory-constructed polishing machine and 

micro abrasive sheets (Precision Surfaces International, Houston, TX, USA) with a grain size of 30 µm 

for rough polishing and 9 µm for fine polishing. The detection end of the capillaries was polished to a 

planar edge. The injection end was polished to a planar edge for EC-MS measurements and to an angle 

of 15° for EC-CE-MS measurements, as illustrated in Figure 4.1.  

 

Figure 4.1 Illustration of polished capillary tips at the injection end for EC-MS (left) and EC-CE-MS (right). 

Prior to measurements, the capillaries were conditioned by flushing with 0.1 M NaOH for 10 min, 

followed by Milli-Q water for 5 min, and separation buffer for at least 30 min. When not in use, 

capillaries were flushed with water.  
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4.1.6 Handling of electrodes 

Screen-printed carbon electrodes (SPCEs, DRP-110, DropSens, Llanera, Spain), thin-film gold 

electrodes (ED-SE1-Au, Micrux Technologies, Oviedo, Spain), and thin-film platinum electrodes (ED-

SE1-Pt, Micrux Technologies, Oviedo, Spain) were used during the experiments. The SPCEs exhibited 

a carbon WE, a carbon AE, and a silver quasi-RE. The thin-film electrodes had all electrode structures 

fabricated from gold or platinum, respectively. All electrodes were used as received without particular 

cleaning or pretreatment protocols. Screen-printed electrodes were flushed with water and dried with 

nitrogen between measurements. Thin-film electrodes were washed with water or isopropanol and dried 

with nitrogen. Due to the electrode materials, screen-printed electrodes were limited to the application 

in aqueous solvents, as the carbon inks were not solvent-resistant. Thin-film electrodes were solvent-

resistant and could therefore be used in acetonitrile-based media. Figure 4.2 shows a comparison of the 

different electrodes. 

 

Figure 4.2 Drawings of a screen-printed carbon electrode (a), a thin-film gold electrode (b), and a thin-film platinum electrode 
(c). The relative sizes are shown to scale. Working electrode (WE), auxiliary electrode (AE), and quasireference electrode (RE) 
are marked. 

4.1.7 Mass spectrometer configuration 

A micrOTOF time-of-flight mass spectrometer (Bruker Daltonics, Bremen, Germany) was used as mass 

selective detector in most measurements. It was equipped with a coaxial sheath liquid electrospray 

ionization (ESI) interface (Agilent Technologies, Waldbronn, Germany). A fused silica capillary with 

an outer diameter of 360 µm was installed in the center of the sprayer. A sheath liquid flow was added 

with a syringe pump (KD Scientific, Holliston, MA, USA) in order to enhance the flow rate for the 

formation of a stable spray and to close the electrical circuit between the CE effluent and the grounded 

stainless-steel sprayer. A nebulizer gas supported spray formation and solvent evaporation. To monitor 

the quality of the electrospray, the ESI source was equipped with a microscope camera (DigiMicro 1.3, 

dnt, Dietzenbach, Germany) and a laboratory-constructed laser illumination. Thus, spray conditions 

could be optimized during operation based on the MS signals and optical feedback. 
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4.2 Instrumentation and methods 

4.2.1 Instrumental setup for EC-MS 

EC-MS measurements were carried out by direct coupling of electrochemical flow cells with integrated 

disposable electrodes to MS. The solutions to be investigated were filled into a 1 mL glass syringe and 

transported to the respective flow cell with a syringe pump. A PEEK capillary was used to connect 

syringe and flow cell. The effluent of the flow cell was guided to the ESI interface of the MS system via 

a fused silica capillary. The exact details of the flow cell configuration are described in [1]. The capillary 

was installed via PEEK fittings and capillary sleeves for 360 µm OD capillaries (Upchurch Scientific, 

Oak Harbor, WA, USA). A general scheme of the setup is depicted in Figure 4.3. Three different flow 

cells were available. Commercially available polymethylmethacrylate (PMMA) flow cells by DropSens 

(model FLWCL, DropSens, Llanera, Spain) and Micrux (model ED-FLOW-CELL, Micrux 

Technologies, Oviedo, Spain) were suitable for measurements of aqueous samples. To facilitate 

measurement of non-aqueous solutions, a flow cell with a polyetheretherketone (PEEK) cover, based 

on the Micrux-type flow cell, was manufactured by the fine-mechanical and electronic workshops of the 

University of Regensburg. During EC-MS measurements, the sample was continuously infused to the 

flow cell at a constant flow rate. A constant potential pulse or a potential sweep were applied after a 

certain period of time and the oxidation products were detected by mass spectrometry. Further details 

can be found in the respective chapters of the results section. 

 

Figure 4.3 General setup for EC-MS measurements. Syringe pump (a), PMMA flow cell for DropSens electrodes (b1), PMMA 
flow cell for Micrux electrodes (b2), PEEK flow cell for Micrux electrodes (b3), fused silica capillary (c), time-of-flight mass 
spectrometer (d), potentiostat (e), computer (f). 
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4.2.2 Instrumental setup for EC-CE-MS 

EC-CE-MS measurements were carried out with a fully automated injection device developed by 

Matysik and coworkers [2]. It consisted of a bottom part with a slot for electrode and buffer reservoirs, 

which was moveable horizontally, and a top part with a PEEK fitting (Upchurch Scientific) for 

installation of the capillary, which was moveable vertically. Both were controlled by servo motors and 

the injection sequence was programmed by a software developed by the electronic workshop of the 

University of Regensburg. The beveled injection end of the capillary was positioned directly onto the 

working electrode surface of screen-printed or thin-film electrodes for hydrodynamic sample injection. 

The injection device and an enlarged view of the injection position are schematically shown in 

Figure 4.4. A scheme of the general setup for EC-CE-MS is depicted in Figure 4.5. The electrode 

potential was controlled by a potentiostat. High-voltage was applied by an external high-voltage source. 

A time-of-flight mass spectrometer equipped with a coaxial sheath liquid electrospray ionization 

interface was used as detector. All parts of the setup that were in contact with high voltage were placed 

in a PMMA box for safety reasons. EC-CE-MS measurements were carried out as follows: The sample 

solution was placed onto the electrode. A constant oxidation potential was applied for a certain period 

of time. At the end of the oxidation, the capillary tip was placed directly on the center of the working 

electrode surface while the oxidation potential was still applied. Sample injection took place 

hydrodynamically by a difference in height between the injection end and the detection end of the 

capillary and the suction pressure of the ESI interface. After injection, the capillary was automatically 

moved back into the buffer reservoir, the potentiostat was plugged off, and the separation voltage was 

applied. Further experimental details are described in the respective parts of the results section. 

 

Figure 4.4 Illustration of the fully automated injection device for EC-CE-MS measurements. The inset shows a closer look at 
the injection position of the capillary tip on the working electrode surface. Screen-printed electrode (a), buffer reservoirs (b), 
capillary installed in PEEK fitting (c), housing for servo motors (d). 
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Figure 4.5 Setup for EC-CE-MS measurements. High-voltage source (a), injection device with integrated disposable electrode 
and buffer reservoirs (b), fused silica capillary (c), time-of-flight mass spectrometer (d), potentiostat (e), computer (f). 
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5. Results and discussion 
5.1 Development of a miniaturized injection cell for online electrochemistry-

capillary electrophoresis-mass spectrometry 
 

This chapter was published in the journal Monatshefte für Chemie - Chemical Monthly. The layout 

specifications of the journal were changed for uniformity. Copyright 2018 Springer Nature. 

T. Herl, N. Heigl, F.-M. Matysik, Monatsh. Chem. 2018, 149, 1685-1691.  

 

Abstract 

The elucidation of oxidation or reduction pathways is important for the electrochemical characterization 

of compounds of interest. In this context, hyphenation of electrochemistry and mass spectrometry is 

frequently applied to identify products of electrochemical reactions. In this contribution, the 

development of a novel miniaturized injection cell for online electrochemistry-capillary electrophoresis-

mass spectrometry (EC-CE-MS) is presented. It is based on disposable thin-film electrodes, which allow 

for high flexibility and fast replacement of electrode materials. Thus, high costs and time-consuming 

maintenance procedures can be avoided, which makes this approach interesting for routine applications. 

The cell was designed to be suitable for investigations in aqueous and particularly non-aqueous solutions 

making it a universal tool for a broad range of analytical problems. EC-CE-MS measurements of 

different ferrocene derivatives in non-aqueous solutions were carried out to characterize the cell. 

Oxidation products of ferrocene and ferrocenemethanol were electrochemically generated and could be 

separated from the decamethylferricenium cation. The importance of fast CE-MS analysis of instable 

oxidation products was demonstrated by evaluating the signal of the ferriceniummethanol cation 

depending on the time gap between electrochemical generation and detection. 
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5.1.1 Introduction 

Electrochemical methods are of high relevance in many fields of research. They are essential tools for 

studies in the context of material sciences such as corrosion studies [1], the development of energy 

carriers [2], microbial fuel cells [3], or electrosynthetic processes [4]. Electrochemistry is also widely 

applied in bioanalytical studies such as the electrochemical simulation of oxidative stress [5–8] or 

metabolic processes [9–17]. 

Pure electrochemical investigations such as cyclic voltammetry are well suited for the characterization 

of redox activities and reversibility of redox processes [18], but lack of qualitative information regarding 

mechanistic details. Thus, hyphenation to powerful detection techniques is in demand to obtain 

additional information on processes taking place on the electrode surface. In this context, hyphenation 

of electrochemistry (EC) to electrospray ionization-mass spectrometry (ESI-MS) is a frequently applied 

method, as recent reviews point out [16, 19]. ESI-MS offers high sensitivity and the possibility of 

identifying products of electrochemical reactions by their molecular masses and isotopic patterns with 

low fragmentation in the ionization process [20]. Thus, this technique can help in the elucidation of 

possible reaction mechanisms. However, EC and ESI have to be decoupled as electrochemical cells are 

operated at low voltages, while in ESI high-voltage conditions are applied [21]. This can be achieved 

by using setups with grounded ESI interfaces [22].  

Typical approaches to EC-MS comprise the direct coupling of electrochemical flow cells such as 

coulometric flow-through cells with porous electrodes or thin-layer flow cells with planar electrodes to 

mass spectrometry [4, 19, 23, 24]. Furthermore, efforts towards miniaturized setups using microfluidic 

electrochemical cells and nanoscale electrochemical reactors were made [25]. The advantage of such an 

approach is the simplicity of the experimental setup and the possibility of very fast detection within 

seconds [26], as the analytes are directly transported to MS via pumps. However, based on the cell type, 

the dependence of the conversion efficiency on the flow rate and the electrode surface area has to be 

kept in mind [23, 24]. An innovative approach to EC as online sample preparation technique for ESI-

MS was developed by Dytrtová et al [27], who coupled an electrochemical cell with switchable working 

electrodes to ESI-MS in order to ionize even non-polar organic compounds by adduct formation with 

electrochemically generated reactive metallic ions.  

 However, there are also some limitations of direct EC-MS. In complex samples, additional separation 

steps are necessary, as ion suppression effects in the ion source of MS can influence the detection, 

especially if mixtures of products are formed or if product and educt species show significant differences 

in their ionization properties. Thus, a quantification of oxidation or reduction products is difficult. 

Overlapping mass spectra can prevent the clear identification of individual species. Moreover, the 

separation behavior can give important additional information on the analytes, such as the presence of 

functional groups or polarity.  
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Hyphenation to separation techniques is often achieved by coupling EC to HPLC via electrochemical 

flow cells installed prior to or after the separation column [7, 13, 24]. However, the instrumental setups 

for this purpose are quite complex as different pumps and valves are needed, if EC is carried out before 

HPLC [19]. Another disadvantage that can arise is the compatibility between the conditions needed for 

electrochemical reactions and the separation conditions [13]. Contrary to direct EC-MS, the time gap 

between formation and detection of products is longer if a separation step is carried out after oxidation 

or reduction. Typical analysis times are in the range of several minutes [7, 14, 23]. Working with 

reversed phase HPLC-MS it has to be considered that non-polar analytes are usually favored for HPLC, 

but polar analytes are better compatible to ESI-MS conditions [28]. 

Due to the aspects mentioned above, capillary electrophoresis (CE) is the method to be preferred in 

some cases. It offers fast separation and low solvent consumption [29, 30] and is suitable for separation 

of charged species. Thus, it is an ideal separation method for many biomolecules that contain functional 

groups which can be protonated or deprotonated depending on pH. In contrast to HPLC, separations are 

possible under nearly physiological conditions [5] and can be carried out in the same electrolyte as the 

oxidation or reduction, so that the migration behavior in CE is representative for the state of charge of 

the analytes in the electrolyte. Due to the charge-dependent migration behavior, CE allows for 

differentiation between ions, which are generated by electrochemical processes and ions generated in 

the ionization prior to MS detection. This information can not be obtained in direct EC-MS or EC-

HPLC-MS.  

First online EC-CE approaches were established in 2003 [31, 32] using batch electrolysis cells and 

classical three-electrode setups. Thus, they had the disadvantage of time-consuming electrode 

maintenance procedures, which are necessary to avoid electrode fouling and require experienced users. 

Additionally, a comparably high sample volume is needed. In contrast to that, Palatzky et al. [33] 

developed a fully automated device for online EC-CE-MS based on disposable screen-printed electrodes 

(SPEs). Hence, compared to classical cells, significantly lower sample consumption (about 50 µL is 

sufficient), easy replacement of electrodes avoiding time-consuming cleaning and polishing procedures, 

and high flexibility concerning electrode materials could be achieved. The electrochemical cell consisted 

of a droplet of solution placed onto the three-electrode structure of the electrode and sample injection 

into the CE-system was achieved by placing the separation capillary into this droplet directly above the 

working electrode. However, this system was not compatible to non-aqueous solutions due to the screen-

printed electrode materials, which is a major drawback when it comes to the investigation of analytes 

that are not readily soluble or stable [31] in water.  

This contribution presents an instrumental approach to online EC-CE-MS with disposable electrodes, 

which is applicable under non-aqueous conditions. It is based on the existing fully automated EAI-CE-

MS device described in [33]. To allow for investigations in non-aqueous solutions, different problems 

had to be addressed. As already mentioned above, screen-printed electrodes are attacked by organic 
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solvents, so that alternative electrode types had to be used. Commercially available solvent-resistant 

thin-film electrodes are fabricated of metal electrode materials on glass substrates instead of carbon inks 

and thus are ideal for this purpose [26]. However, simply applying droplets of solution onto the electrode 

surface as it could be done with aqueous solutions [5, 33] was not possible, as organic solvents easily 

spread due to low surface tension. This can lead to electrical shortcuts and corrosion problems, when 

the liquid flows into electrical contacts. Therefore, the cell volume had to be delimited physically in 

order to prevent spreading of the liquid. To overcome these problems, a novel miniaturized injection 

cell for online EC-CE-MS with integrated thin-film electrodes was developed, capable of measurements 

in aqueous and especially non-aqueous media. A model mixture consisting of ferrocene (Fc), 

ferrocenemethanol (FcMeOH), and decamethylferrocene (dMFc) was used to characterize this injection 

cell. The importance of short separation times was demonstrated by evaluation of the dependency of 

FcMeOH+ signal on the separation time. 

5.1.2 Experimental 

Reagents and chemicals 

The following chemicals were used, all of analytical grade or higher if not stated otherwise: acetic acid 

(Sigma Aldrich, MO, USA), acetonitrile, ammonium acetate (both Merck, Darmstadt, Germany), 

decamethylferrocene (purity 99%, ABCR, Karlsruhe, Germany), formic acid (Merck, Darmstadt, 

Germany), ferrocene (purity 98%, Riedel-de-Haën, Seelze, Germany), ferrocenemethanol (purity 99%, 

ABCR, Karlsruhe, Germany), isopropanol (Roth, Karlsruhe, Germany). 

Instrumentation 

For EC-CE-MS measurements, the fully automated CE system developed by Palatzky et al. [33] was 

used. The setup was installed in a plexiglass box and connected to a high voltage supply (HCN 7E 

35000, FuG Elektronik, Schechen, Germany). A micrOTOF time-of-flight mass spectrometer (Bruker 

Daltonics, Bremen, Germany), equipped with a coaxial sheath liquid ESI interface (Agilent 

Technologies, Waldbronn, Germany), was used for detection. It was operated in positive ion mode. A 

mixture of isopropanol:water:formic acid (49.9:49.9:0.2, v:v:v) was added as sheath liquid at a flow rate 

of 8 µL min-1 with a syringe pump (KS Scientific, Holliston, MA, USA). Separations were carried out 

in fused silica capillaries (Polymicro Technologies, AZ, USA) with an outer diameter of 360 µm, an 

inner diameter of 25 µm, and a length of 35 cm. The detection end of the capillary was polished to a 

plane edge while the injection end of the capillary was polished to an angle of 15°. The capillaries were 

preconditioned by flushing with 0.1 mol dm-3 NaOH for 10 min, followed by water for 5 min and 

background electrolyte (BGE) for CE separation (ACN/10 mmol dm-3 NH4OAc/1 mol dm-3 HOAc) for 

at least 30 min. A thin-film electrode with gold working, counter, and quasireference electrode (ED-

SE1-Au, Micrux Technologies, Oviedo, Spain) was used for the oxidation. All potentials given are 

referred to the Au quasireference electrode and all electrochemical measurements were carried out in 
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ACN/10 mmol dm-3 NH4OAc/1 mol dm-3 HOAc as BGE. The electrode was installed in the novel 

injection cell described in detail in the results and discussion section. A µSTAT 200 potentiostat 

(DropSens, Llanera, Spain) controlled by Dropview 200 software was used for applying potentials. A 

schematic illustration of the experimental setup is depicted in Figure 5.1.1. 

 

Figure 5.1.1 Illustration of the instrumental setup used for EC-CE-MS measurements: (a) injection unit with novel injection 
cell and electrolyte reservoirs, (b) potentiostat, (c) high voltage source, (d) fused silica capillary, (e) mass spectrometer, (f) 
computer. 

Experimental procedures 

For evaluation of the cell performance, a solution of 1.5 mmol dm-3 Fc, 1 mmol dm-3 FcMeOH, and 

40 µmol dm-3 dMFc in BGE was used. Fast detection studies were carried out with a solution of 

1 mmol dm-3 FcMeOH in BGE. For the CE protocol, 8 mm3 of sample solution were filled into the cell. 

The sample was hydrodynamically injected into the CE system by placing the tapered end of the 

separation capillary onto the working electrode surface for 2 s at a difference in height of 18 cm between 

the injection end of the capillary and the detection end of the capillary (hydrostatic pressure). After the 

injection, the capillary was automatically placed into the 2 mL BGE reservoir and the separation voltage 

denoted in detail in the respective measurements in the results section was applied. Measurements were 

carried out without previous oxidation and after oxidation at 0.5 V for 10 s (injection during the last 2 s 

of oxidation). For data evaluation the extracted ion signals of Fc (m/z 186.01), FcMeOH (m/z 199.02; 

m/z 216.02), and dMFc (m/z 326.20) were used. 

The parameters for the MS detection were as follows: Acquisition: ion polarity: positive; mass range: 

100-350 m/z; spectra rate 5 Hz; Source: end plate offset: -500 v; capillary: -4000 V; nebulizer: 1.0 bar; 

dry gas: 4.0 L/min; dry temperature: 190 °C; Transfer: capillary exit: 75.0 V; skimmer 1: 25.3 V; 
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hexapole 1: 23.0 V; hexapole RF: 65.0 Vpp; skimmer 2: 23.0 V; lens 1 transfer: 38.0 µs; lens 1 pre pulse 

storage: 6.0 µs.  

5.1.3 Results and discussion 

Design and fabrication of the injection cell 

The developed injection cell was based on commercial Micrux thin-film electrodes (size 10 mm x 6 mm, 

working electrode diameter 1 mm). The cell geometry was adapted to the existing EC-CE-MS setup 

[33] to allow for the usage of thin-film electrodes without changing the injection unit. Instead of a SPE, 

the injection cell with integrated thin-film electrode was installed in the injection unit. Due to electrode 

and cell dimensions, small sample volumes of only 10 µL or lower were sufficient for EC-CE-MS 

measurements, which is especially advantageous if only limited amount of sample is available. A 

schematic illustration of the final injection cell prototype is shown in Figure 5.1.2. 

 

Figure 5.1.2 Illustrations of (a) the injection cell in the setup at injection position and (b) exploded view of injection cell. The 
cell is installed in the bottom part (2) of the EC-CE-MS device next to buffer reservoirs for CE separation. The separation 
capillary (1) is installed in the top part. The injection cell consists of a bottom piece (4) with electrode slot and a cover piece 
(3) with electrical contacts. A silicone sealing ring prevents leakage of the sample. 

Polyether ether ketone (PEEK), a highly chemical resistant and mechanically stable material, was used 

for fabrication of the cell body. To prevent leakage, a sealing ring was integrated at the bottom of the 

open cell chamber. Thus, spreading of droplets could be avoided. As commercially available O-ring 

materials were attacked by organic solvents, a custom silicone sealing ring with appropriate dimensions 
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(inner diameter 2 mm, outer diameter 4 mm, thickness 1 mm) was prepared. The electrical contact to 

the implemented thin-film electrode was achieved via spring contact probes. To facilitate a fast 

assembling and disassembling of the cell, magnets were integrated to keep the cell closed. Due to 

materials and modularity of the cell it could be cleaned easily and was suitable for measurements in 

aqueous as well as non-aqueous solutions. Electrodes could easily be exchanged, which allowed for high 

flexibility regarding electrode materials. When installed in the EC-CE-MS device, a fully automated 

hydrodynamic injection of sample directly from the working electrode surface was possible by placing 

the tapered tip of the fused silica separation capillary onto the electrode surface. The overall 

experimental setup is illustrated in Figure 5.1.1 in the experimental section. 

EC-CE-MS experiments 

By CE-MS, a fast separation and detection of neutral and particularly cationic species was possible 

applying a positive high voltage at the injection end of the capillary (detection end of capillary installed 

in grounded ESI sprayer). Figure 5.1.3a shows a CE-MS measurement that was carried out at a 

separation voltage of 18 kV (2.4 µA) without previous oxidation using a model mixture of Fc, FcMeOH, 

and dMFc. The three model substances showed different behavior regarding state of charge and 

detectability. In the case of dMFc, the migration behavior in CE and the respective mass detected in MS 

indicated that only the cationic dMFc+ (m/z 326.20) was present in solution even without 

electrochemical oxidation. This is because in dMFc Fe(II) is easily oxidized to Fe(III) by dissolved 

oxygen forming a stable cationic complex [32, 34]. This behavior is well known as already reported in 

1990 by Bashkin and Kinlen [35]. FcMeOH was migrating with the EOF, showing that it was neutral in 

solution. The detected mass (m/z 199.02) indicated a loss of the hydroxyl group during the ionization 

process, whereas no protonation or oxidation in the ESI source could be observed under the applied 

conditions. Non-oxidized Fc could not be detected due to its hydrophobicity and thus poor ionization 

efficiency in ESI. Unlike Dytrtová et al [36], who used a NaClO4/HClO4 electrolyte, we could not 

observe a protonation or oxidation of Fc in solution or in the ESI source. In contrast to dMFc, Fc and 

FcMeOH exhibited no peaks corresponding to cationic species in CE separation without previous 

electrochemical oxidation. By electrochemical oxidation at 0.5 V for 10 s, the cationic ferricenium 

(m/z 186.01) and ferriceniummethanol species (m/z 216.02) were formed, as could be confirmed by the 

m/z values and the migration behavior in CE. A representative electropherogram is shown in 

Figure 5.1.3b. Fc+ and FcMeOH+ were migrating to the cathode faster than dMFc+. The results 

demonstrated the importance of CE separation: The migration behavior in CE and the comparison of the 

electropherograms before and after oxidation facilitated the distinction between cationic species that are 

present in solution and species formed in the ionization process, which is not possible without separation 

step. 
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Figure 5.1.3 Electropherograms of the model mixture Fc, FcMeOH and dMFc without oxidation (a) and after oxidation at 
0.5 V for 10 s (b). The inset in (b) shows an enlarged view of the separated cationic species dMFc+ (m/z 326.20), FcMeOH+ 
(m/z 216.02) and Fc+

 (m/z 186.01). The migration time of FcMeOH marks the EOF. Before oxidation, only dMFc+ and 
FcMeOH (m/z 199.02) were visible. After oxidation, additional peaks of FcMeOH+ and Fc+ were present. Separation voltage 
18 kV (2.4 µA); capillary: ID = 25 µm, L = 35 cm; separation in ACN/10 mmol dm-3 NH4OAc/1 mmol dm-3 HOAc; 2 s 
hydrodynamic injection. 

The results showed that electrochemical sample pretreatment and online analysis of oxidation products 

could be achieved within a short time scale. Very short oxidation times of only 10 s (injection during 

last 2 s of oxidation) were enough to generate a sufficient amount of product species for detection. The 

electrochemical generation and detection of Fc+ and FcMeOH+ were feasible within 90 s and both were 

separated from dMFc+.  

Fast online analysis of oxidation products 

Besides high-throughput aspects, short analysis times are crucial for the investigation of reactive or 

instable species in order to allow for a reliable identification and sensitive detection. To demonstrate 

that, the detection of FcMeOH+ was investigated depending on the separation conditions. As in the case 

of FcMeOH both, the cationic and the neutral species were detectable, the peak of neutral FcMeOH 

could be used as internal standard for characterization of the analytical performance. The time gap 

between generation and detection of FcMeOH+ was varied by changing the separation voltage and thus 

the migration time. Representative electropherograms measured after oxidation are illustrated in 

Figure 5.1.4. As visible in the measurements, the ratio of the FcMeOH+ peak to the FcMeOH peak 

continuously increased with higher separation voltage meaning faster migration. This indicated the 

decomposition of the cation over time, as after longer migration less amount of cation could be detected. 

As depicted in Figure 5.1.4a, the detection of both species took quite long and the signal corresponding 

to the cationic species was comparably small when applying a separation voltage of 2 kV, while at a 

separation voltage of 18 kV, a fast detection, narrow peaks and a high intensity of the FcMeOH+ peak 

were observed as shown in Figure 5.1.4e. 
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Figure 5.1.4 EC-CE-MS measurements of FcMeOH (m/z 199.02, 216.02) after oxidation at 0.5 V for 10 s. Separations were 
carried out at different separation voltages: (a) 2 kV (0.7 µA), (b) 6 kV (1.3 µA), (c) 10 kV (1.8 µA), (d) 14 kV (2.1 µA), 
(e) 18 kV (2.4 µA). Capillary: ID = 25 µm, L = 35 cm; separation in ACN/10 mmol dm-3 NH4OAc/1 mmol dm-3 HOAc; 2 s 
hydrodynamic injection.  

Further evaluation of the experimental data led to the results illustrated in Figure 5.1.5. The peak area 

obtained for FcMeOH+ normalized to the peak area corresponding to FcMeOH was plotted versus the 

migration time of the respective FcMeOH+ peak. Due to the fully automated oxidation and injection 

procedures, the measurements showed a good reproducibility regarding migration times and amount of 

cation formed. The time between generation and detection of FcMeOH+ could precisely be controlled 

by the high voltage. At short migration times, a significantly larger signal for the cationic species was 

obtained, so that the sensitivity of the system could be enhanced by applying higher separation voltages. 

These results indicate that this method is promising for sensitive detection of instable oxidation or 

reduction products due to the possibility of fast online analysis. 
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Figure 5.1.5 Peak area of FcMeOH+ (normalized to the peak area of the FcMeOH signal) vs. migration time of FcMeOH+. The 
migration times were controlled by the separation voltages of 18, 14, 10, 6, and 2 kV (from left to right). The standard deviations 
of migration times and peak ratios (n = 3) are indicated by error bars.  

5.1.4 Conclusion 

A miniaturized injection cell for online EC-CE-MS was developed and characterized. It was capable of 

handling very small sample volumes of 10 µL or lower. Electrodes and injection cell were solvent-

resistant, so that online investigations of electrochemical reactions in aqueous and particularly non-

aqueous media were possible. The integration of disposable thin-film electrodes leads to a high 

flexibility in electrode materials and to an easy exchange of electrodes, which is minimizing artifacts 

due to adsorption or electrode fouling. Time-consuming electrode maintenance procedures that usually 

need experienced users can be avoided. In online EC-CE-MS using ferrocene derivatives, short analysis 

times within few minutes from generation to detection of oxidized species were possible. Fc+ and 

FcMeOH+ could be generated and separated from dMFc+ within less than 90 s. Due to that, the method 

is suitable for the investigation of instable products, which was demonstrated by evaluating the signal 

of electrochemically generated FcMeOH+ depending on separation speed. Fully automated oxidation 

and injection procedures allowed for reproducible measurements and a reliable control of the time gap 

between formation and detection of oxidized species. 

In conclusion, this novel setup extends the applicability of online EC-CE-MS based on disposable 

electrodes to analytes that are only soluble in organic solvents, which was not possible using screen-

printed electrodes. The high flexibility and possibility of fast online analysis make this setup attractive 

for further applications, such as kinetic studies or electrochemical simulation of metabolic processes 

with particular focus on reactive species. 

  

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

no
rm

al
iz

ed
 p

ea
k 

ar
ea

migration time / min



 

 

63 5. Results and discussion 

References 

[1] F. Arjmand, A. Adriaens, Microcapillary electrochemical droplet cells: Applications in solid-state surface 
analysis, J. Solid State Electrochem. 18 (2014) 1779–1788.  

[2] S. Chandrasekaran, J.S. Chung, E.J. Kim, S.H. Hur, Advanced Nano-Structured Materials for 
Photocatalytic Water Splitting, J. Electrochem. Sci. Technol. 7 (2016) 1–12.  

[3] A.D. Tharali, N. Sain, W.J. Osborne, Microbial fuel cells in bioelectricity production, Front. Life Sci. 9 
(2016) 252–266. 

[4] T. Gul, R. Bischoff, H.P. Permentier, Electrosynthesis methods and approaches for the preparative 
production of metabolites from parent drugs, TrAC Trends Anal. Chem. 70 (2015) 58–66. 

[5] R. Scholz, P. Palatzky, F.-M. Matysik, Simulation of oxidative stress of guanosine and 8-oxo-7,8-
dihydroguanosine by electrochemically assisted injection–capillary electrophoresis–mass spectrometry, 
Anal. Bioanal. Chem. 406 (2014) 687–694. 

[6] M. Cindric, M. Vojs, F.-M. Matysik, Characterization of the Oxidative Behavior of Cyclic Nucleotides 
Using Electrochemistry-Mass Spectrometry, Electroanalysis 27 (2015) 234–241. 

[7] R. Erb, S. Plattner, F. Pitterl, H.-J. Brouwer, H. Oberacher, An optimized electrochemistry-liquid 
chromatography-mass spectrometry method for studying guanosine oxidation, Electrophoresis 33 (2012) 
614–621. 

[8] A. Baumann, W. Lohmann, S. Jahn, U. Karst, On-line electrochemistry/electrospray ionization mass 
spectrometry (EC/ESI-MS) for the generation and identification of nucleotide oxidation products, 
Electroanalysis 22 (2010) 286–292. 

[9] U. Karst, Electrochemistry/Mass Spectrometry (EC/MS)—A New Tool To Study Drug Metabolism and 
Reaction Mechanisms, Angew. Chem. Int. Ed. 43 (2004) 2476–2478. 

[10] U. Jurva, H. V. Wikström, A.P. Bruins, In vitro mimicry of metabolic oxidation reactions by 
electrochemistry/mass spectrometry, Rapid Commun. Mass Spectrom. 14 (2000) 529–533. 

[11] U. Jurva, H. V. Wikström, L. Weidolf, A.P. Bruins, Comparison between electrochemistry/mass 
spectrometry and cytochrome P450 catalyzed oxidation reactions, Rapid Commun. Mass Spectrom. 17 
(2003) 800–810. 

[12] T. Johansson, L. Weidolf, U. Jurva, Mimicry of phase I drug metabolism – novel methods for metabolite 
characterization and synthesis, Rapid Commun. Mass Spectrom. 21 (2007) 2323–2331. 

[13] H. Faber, M. Vogel, U. Karst, Electrochemistry/mass spectrometry as a tool in metabolism studies—A 
review, Anal. Chim. Acta 834 (2014) 9–21. 

[14] E. Nouri-Nigjeh, H.P. Permentier, R. Bischoff, A.P. Bruins, Lidocaine Oxidation by Electrogenerated 
Reactive Oxygen Species in the Light of Oxidative Drug Metabolism, Anal. Chem. 82 (2010) 7625–7633. 

[15] T. Yuan, H. Permentier, R. Bischoff, Surface-modified electrodes in the mimicry of oxidative drug 
metabolism, TrAC Trends Anal. Chem. 70 (2015) 50–57. 

[16] U. Bussy, R. Boisseau, C. Thobie-Gautier, M. Boujtita, Electrochemistry-mass spectrometry to study 
reactive drug metabolites and CYP450 simulations, TrAC Trends Anal. Chem. 70 (2015) 67–73. 

[17] U. Jurva, L. Weidolf, Electrochemical generation of drug metabolites with applications in drug discovery 
and development, TrAC Trends Anal. Chem. 70 (2015) 92–99. 

[18] A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd ed., Wiley & 
Sons, Hoboken, NJ, 2001. 

[19] L. Portychová, K.A. Schug, Instrumentation and applications of electrochemistry coupled to mass 
spectrometry for studying xenobiotic metabolism: A review, Anal. Chim. Acta 993 (2017) 1–21. 

 



 

 

64 5. Results and discussion 

[20] J.B. Fenn, M. Mann, C.K. Meng, S.F. Wong, C.M. Whitehouse, Electrospray ionization for mass 
spectrometry of large biomolecules, Science 246 (1989) 64–71. 

[21] F. Zhou, G.J. Van Berkel, Electrochemistry Combined Online with Electrospray Mass Spectrometry, Anal. 
Chem. 67 (1995) 3643–3649. 

[22] P. Liu, Q. Zheng, H.D. Dewald, R. Zhou, H. Chen, The study of electrochemistry with ambient mass 
spectrometry, TrAC Trends Anal. Chem. 70 (2015) 20–30. 

[23] W. Lohmann, A. Baumann, U. Karst, Electrochemistry and LC–MS for Metabolite Generation and 
Identification: Tools, Technologies, and Trends, LCGC N. Am. 28 (2010) 470–478. 

[24] A.P. Bruins, An overview of electrochemistry combined with mass spectrometry, TrAC Trends Anal. 
Chem. 70 (2015) 14–19. 

[25] F.T.G. van den Brink, W. Olthuis, A. van den Berg, M. Odijk, Miniaturization of electrochemical cells for 
mass spectrometry, TrAC Trends Anal. Chem. 70 (2015) 40–49. 

[26] T. Herl, F.-M. Matysik, Characterization of electrochemical flow cell configurations with implemented 
disposable electrodes for the direct coupling to mass spectrometry, Tech. Mess. 84 (2017) 672–682. 

[27] J. Jaklová Dytrtová, M. Jakl, T. Navrátil, J. Cvačka, O. Pačes, An electrochemical device generating metal 
ion adducts of organic compounds for electrospray mass spectrometry, Electrochim. Acta 211 (2016) 787–
793. 

[28] G. Diehl, A. Liesener, U. Karst, Liquid chromatography with post-column electrochemical treatment and 
mass spectrometric detection of non-polar compounds, Analyst 126 (2001) 288–290. 

[29] X. Wang, K. Li, E. Adams, A. Van Schepdael, Capillary electrophoresis-mass spectrometry in 
metabolomics: the potential for driving drug discovery and development., Curr. Drug Metab. 14 (2013) 
807–813. 

[30] J.J.P. Mark, P. Piccinelli, F.-M. Matysik, Very fast capillary electrophoresis with electrochemical 
detection for high-throughput analysis using short, vertically aligned capillaries, Anal. Bioanal. Chem. 406 
(2014) 6069–6073. 

[31] Y. Esaka, N. Okumura, B. Uno, M. Goto, Electrophoretic analysis of quinone anion radicals in acetonitrile 
solutions using an on-line radical generator, Electrophoresis 24 (2003) 1635–1640. 

[32] F. Matysik, Electrochemically assisted injection – a new approach for hyphenation of electrochemistry 
with capillary-based separation systems, Electrochem. Commun. 5 (2003) 1021–1024. 

[33] P. Palatzky, A. Zöpfl, T. Hirsch, F.-M. Matysik, Electrochemically Assisted Injection in Combination with 
Capillary Electrophoresis-Mass Spectrometry (EAI-CE-MS) - Mechanistic and Quantitative Studies of the 
Reduction of 4-Nitrotoluene at Various Carbon-Based Screen-Printed Electrodes, Electroanalysis 25 
(2013) 117–122. 

[34] A. Singh, D.R. Chowdhury, A. Paul, A kinetic study of ferrocenium cation decomposition utilizing an 
integrated electrochemical methodology composed of cyclic voltammetry and amperometry, Analyst 139 
(2014) 5747–5754. 

[35] J.K. Bashkin, P.J. Kinlen, Oxygen-Stable Ferrocene Reference Electrodes, Inorg. Chem. 29 (1990) 4507–
4509. 

[36] J.J. Dytrtová, M. Jakl, T. Navrátil, D. Schröder, A hyphenation of stripping voltammetry with electrospray 
ionization mass spectrometry; An effect of sodium perchlorate on ferrocene oxidation, Int. J. Electrochem. 
Sci. 8 (2013) 1623–1634. 

  



 

 

65 5. Results and discussion 

5.2 Bile acids: Electrochemical oxidation on bare electrodes after acid-induced 

dehydration 
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Abstract 

Bile acids and sterols in general have long been considered practically inactive for direct redox 

processes. Herein, a novel way of electrochemical oxidation of primary bile acids is reported, involving 

an initial acid-induced dehydration step, as confirmed by capillary electrophoresis – mass spectrometry, 

thereby extending the electrochemical activity of the steroid core. Oxidation potentials were found to be 

ca +1.2 V vs. Ag/AgNO3 in acetonitrile on boron doped diamond, glassy carbon, and platinum electrodes 

in a mixed acetonitrile-aqueous medium employing perchloric acid as a chemical reagent, and as a 

supporting electrolyte for the voltammetric measurements. The chemical step proved to be effective 

only for primary bile acids, possessing an axial 7α-hydroxyl group, which is a prerequisite for providing 

a well-developed voltammetric signal. Preliminary results show that other steroids, e.g., cholesterol, can 

also be oxidized by employing a similar approach. 
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5.2.1 Introduction 

Biosynthesis of the bile acids (BAs) is an important pathway for the metabolism and excretion of 

cholesterol in mammals [1]. Depending on the place of formation, literature discerns primary BAs, 

which originate in the liver, and secondary BAs that are formed by bacterial transformation of the 

primary BAs in the gut [2]. The most common primary BAs in humans are cholic (1; CA) and 

chenodeoxycholic (2; CDCA) acids. 

The lack of double bonds or any fluorescent or electrochemically active groups in the molecules of BAs 

significantly limits the range of methods useful for their determination [3]. Gas chromatography after 

derivatization and HPLC in combination with mass spectrometry are commonly utilized for quantitation 

of individual BAs [4–6]. Other methods are based on detection of the products of enzymatic reactions, 

frequently using 3a-hydroxysteroid dehydrogenase as the key enzyme [7]. Electrochemical biosensors 

detecting the enzymatically generated NADH [8,9] or hydrogen peroxide [10] represent another 

strategy. Other reports on utilization of electrochemical methods for quantitation of BAs are scarce, as 

shown in our recent review [11]. BAs give electrochemical signal on mercury electrodes at far negative 

potentials [12,13], presumably as a result of catalytic hydrogen evolution from the carboxyl group in the 

side chain. Alternatively, electrooxidation has been reported in studies employing chromatographic 

separation with pulsed amperometric detection on gold [14,15] or porous graphite electrodes [16]. These 

studies, however, are mainly focused on the chromatographic aspects of the methods, rather than on the 

electrochemical processes themselves. Indirect oxidation using NaCl as a mediator succeeded in 

conversion of the hydroxyl groups of cholic acid into keto groups [17,18]. No study sufficiently 

characterizing the direct electrochemical oxidation of BAs has been published to date. Reports on 

steroids lacking any or possessing only isolated double bonds, including cholesterol, are scarce [11]. 

Herein, we present anodic oxidation of primary BAs on bare platinum, glassy carbon (GC), and boron 

doped diamond (BDD) electrodes in a mixed medium of acetonitrile - water - perchloric acid, where 

perchloric acid serves as a dehydrating reagent. Such an introduction of a double bond into the steroid 

skeleton can potentially increase the electrochemical activity. In the case of cholesterol, the double bond, 

together with the respective allylic positions, was identified as one of the sites of the electrochemical 

attack [19]. This approach, based on acid-induced dehydration, has also enabled a spectrometric 

determination of cholesterol (Liebermann-Burchard reaction) [20–22]. The proposed electrochemical 

approach could find application in the diagnosis of disorders of BA synthesis. A block in the 

biosynthesis of BAs in most cases results in a deficiency of the primary BAs [23]. 

5.2.2 Experimental 

Cholic (1), chenodeoxycholic (2), ursodeoxycholic (3), deoxycholic (4), lithocholic (5) acids, and 

cholesterol (all of > 99% purity, structures in Figure 5.2.1C) were purchased from Sigma-Aldrich. All 

other commercially available chemicals were of analytical grade (if not stated otherwise). 
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Voltammetry was performed using a potentiostat PalmSens 2.0 with PSTrace 4.8 software. BDD (A = 

7.07 mm2, Windsor Scientific, UK), GC (A = 3.14 mm2), or platinum (A = 7.07 mm2; both Metrohm, 

Switzerland) working electrodes were used, routinely polished using alumina prior to each scan. 

Electrochemical cells with integrated reference electrode (Ag wire in 0.1 mol L–1 AgNO3, 1 mol L–1 

NaClO4 in acetonitrile, separated from the measured solution by a salt bridge containing 0.5 mol L–1 

NaClO4 in acetonitrile) and a platinum foil counter electrode were employed. All experiments were 

carried out under the temperature of 21°C. The contact time of the BA and HClO4 and their 

concentrations are given in the caption of each voltammogram. 

A modification of the previously described setup was used for capillary electrophoresis-mass 

spectrometry (CE-MS) [24]. The sample was hydrodynamically injected from an implemented PEEK 

cell: Sample volume 10 µL; injection time 2 s; separation voltage 18 kV. Parameters of fused silica 

capillary: Inner diameter 25 µm, outer diameter 360 µm, length 50 cm. Separation buffer: 

acetonitrile/1 mol L–1 acetic acid/10 mmol L–1 ammonium acetate. A Bruker micrOTOF (Bruker 

Daltonics, Germany) time-of-flight mass spectrometer equipped with a coaxial sheath liquid 

electrospray ionization (ESI) interface (Agilent, Waldbronn, Germany) was operated in positive ion 

mode; the mass range set 100-480 m/z; spectra rate 5 Hz. Source: ESI voltage: −4000 V (grounded 

sprayer tip), plate offset: −500 V; nebulizer: 1.0 bar; dry gas: 4.0 L min−1; dry temperature: 

190 °C. Transfer: capillary exit: 75.0 V; skimmer 1: 25.3 V; hexapole 1: 23.0 V; hexapole RF: 65.0 Vpp; 

skimmer 2: 23.0 V; lens 1 transfer: 38.0 µs; lens 1 pre pulse storage: 6.0 µs. Sheath liquid (2-

propanol:water:formic acid, 49.9:49.9:0.2, v/v/v) was introduced by a syringe pump (KD Scientific, 

Holliston, MA, USA) with a flow rate of 0.48 mL h–1. 

5.2.3 Results and discussion 

5.2.3.1 Voltammetric response of bile acids in the acetonitrile-water-perchloric acid medium 

Electrochemical oxidation of two primary CA (1) and CDCA (2), and three secondary BAs, deoxycholic 

acid (3, DCA), lithocholic acid (4, LCA), and ursodeoxycholic acid (5, UDCA) in a mixed medium of 

acetonitrile-water containing perchloric acid was investigated.  

Respective cyclic voltammograms on BDD electrode are presented in Figure 5.2.1A (curves a-c). The 

overall process proved to be highly dependent on the structure. Only primary BAs with the axial 7α-

hydroxyl group (CA, CDCA) afforded well-developed irreversible anodic signals at around +1.2 V 

(curves a, b), ca 2.25× higher for CDCA than CA, increasing in time (Figure 5.2.1B). The difference in 

current densities for the different BAs can be rationalized by different, temperature-dependent rates at 

which each of the BAs undergoes the dehydration reaction. Such low oxidation potential has not been 

reported to date. That applies not only to BAs, but to any other steroid-based compounds, lacking any 

or possessing only isolated double bonds, including cholesterol. A proof of its oxidizability at +1.5 V 

under the same conditions as those for BAs is presented by the voltammogram in Figure 5.2.1A, curve 

d. The voltammograms of the secondary BAs, namely DCA and LCA lacking the 7α-hydroxyl group 
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and UDCA possessing 7b-hydroxyl group, are featureless around this potential (shown for UDCA in 

Figure 5.2.1A, curve c). 

 

Figure 5.2.1 (A) Cyclic voltammograms of (a) CA, (b) CDCA, (c) UDCA (c = 9×10–5 mol L–1), and (d) cholesterol                   
(c = 5×10–5 mol L–1) in acetonitrile containing 0.1 mol L–1 HClO4 and 0.43 % H2O on BDD electrode. Voltammograms 
recorded 90 minutes after the solutions were prepared from the stock solution and the supporting electrolyte. Supporting 
electrolyte in dotted line, scan rate 50 mV s–1. (B) In-time development of the first CV peak height of CDCA                                       
(c = 9×10–5 mol L–1). (C) Structural formulas of the BAs. 

Obviously, the presence of the 7α-hydroxyl group is the crucial factor enabling the development of the 

anodic signal. Note that its anti-periplanar position to the hydrogen atom at C(8) is likely to allow ready 

dehydration on protonation with HClO4. The latter reaction was identified as the rate determining step 

leading to time dependency of the voltammetric signal, reaching a stabilized current value after 

approximately 75 min (Figure 5.2.1B). Figure 5.2.2 shows that the oxidation process can be achieved 

on various bare electrode materials including BDD, GC, and platinum with comparable positive 

potentials. The highest signal/background ratio is provided by BDD, which predestines this material for 

analytical applications. Preliminary voltammetric experiments on this electrode material suggest linear 

concentration dependences with detection limits in the micromolar concentration range for both BAs. 
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Figure 5.2.2 Linear sweep voltammograms for CDCA (c = 9×10–4 mol L–1) and supporting electrolyte on (a) Pt, (b) GC, and 
(c) BDD electrodes. Supporting electrolyte: acetonitrile containing 0.1 mol L–1 HClO4 and 0.43 % H2O. Voltammograms were 
recorded 70 minutes after the preparation of the solutions, scan rate 50 mV s–1. 

5.2.3.2 CE-MS elucidation of reaction steps 

CE-MS measurements were used to confirm the dehydration reaction steps and to investigate its other 

products and products of electrochemical oxidation. The proposed mechanism for the CDCA (2) 

(m/z = 410.33; CDCA∙NH4
+ adduct) chemical reaction step is shown in Figure 5.2.3B based on CE-MS 

measurements of the reaction mixture containing CDCA in acetonitrile/HClO4 solution (water content 

0.43 %) (Figure 5.2.3A). In principle, the dehydration can produce the corresponding D6 or D7 alkene 

(m/z = 392.32; (CDCA−H2O) NH4
+ adduct); the latter structure (6) is more likely, as it should be 

thermodynamically preferred (Zaitsev's rule) but the structure has not been confirmed at this stage. 

Nevertheless, dehydration of 7α-hydroxy derivatives on treatment with POCl3 in pyridine at room 

temperature is known to afford the thermodynamically favored D7-alkenes (Zaitsev rule) [25]. Therefore, 

formation of the D7-alkene (6) in our case seems very likely. After a longer period (inset in 

Figure 5.2.3A), a new signal was found at m/z = 416.32 (H+ adduct), corresponding to the loss of another 

hydroxyl and addition of the acetamide group (7). This is also supported by the migration behavior in 

CE that indicated a positive charge of the latter species (7), presumably due to protonation of the amide 

group (Figure 5.2.3A). Formation of such a product can be rationalized by Ritter reaction [26], starting 

with an attack of the Lewis basic nitrogen of the acetonitrile at a cationic species (presumably generated 
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by protonation of the double bond), followed by hydrolysis of the iminium intermediate with the water 

that is present. Elucidation of the exact structure of this product will be the subject of future 

investigation.  

 

Figure 5.2.3 (A) CE-MS of solution containing CDCA (c = 9×10–4 mol L–1) in acetonitrile containing 0.1 mol L–1 HClO4 and 
0.43% H2O obtained after 4 hours. Three selected ion traces are shown (m/z 392.32, 410.33, 416.32). Inset: In-time development 
of ratio between respective peaks. (B) The proposed reaction mechanism for CDCA dehydration. 

The rise in voltammetric signal intensity correlates with the gradual rise of the peak attributed to 

dehydrated steroid (6) in the CE-MS measurements. The introduction of double bond(s) into the steroid 

skeleton enables the oxidation process, as unsaturated compounds are more prone to the removal of an 

electron from a bonding π-orbital (HOMO) and formation of a reactive radical cation. The exact 

mechanism and structure of the products of both chemical and electrochemical reaction steps are under 

investigation. In general, formation of a number of reaction products is expected, as dehydration of 

steroids, promoted by aqueous acidic systems, often leads to backbone rearrangements and other 

transformations [20, 27, 28]. Further, oxidative properties of perchloric acid itself have to be considered 

together with the fact, that beside the final products of dehydration reaction the intermediates can 

undergo electrochemical oxidation. 
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5.2.3.3 Solvent, supporting electrolyte and water effects on voltammetric signals 

The effects of the media used and the water content on the overall process were further investigated. 

The choice of the solvent must respect its safe miscibility with strong acids in view of the associated 

hazards. Furthermore, the solvent must provide sufficient potential limit that enables electrochemical 

oxidation within the potential window of the respective electrode material. Acetonitrile, a weak electron 

donor, fulfils both requirements. With other tested miscible solvents, no signal for BAs was observed, 

presumably as a consequence of incomplete dehydration reaction (nitromethane) or decomposition of 

the solvent preceding the electrochemical reaction of the primary BAs (tetrahydrofuran). The second 

key factor is the choice of the supporting electrolyte, which should also function as a dehydration agent. 

Experiments were carried out with HClO4, H2SO4, H3PO4, and HCl (all 0.1 mol L–1), containing 

respective concentrations of water in the solutions (%): 0.43, 0.02, 0.10, and 0.57. Only the presence of 

HClO4 as the strongest among the inorganic acids used, enabled the dehydration step and consequently 

the electrochemical oxidation of the reaction products. Nevertheless, for other steroids with the core 

already activated by the presence of double bond(s), the use of other inorganic acids for further 

dehydration can be foreseen [20], as indicated by our preliminary experiments with cholesterol. 

Importantly, the voltammetric signal is not developed when using water-free medium, such as 

acetonitrile with NaClO4 as supporting electrolyte, or the same medium with water present, confirming 

the necessity of the presence of a strong acid for inducing the dehydration reaction. 

The initial water content proved to be an important factor influencing the chemical reaction step. The 

minimum amount in the solution (0.43 %) is given by its presence in the concentrated solution of 

perchloric acid (70 %). On the other hand, with water concentration higher than 2 % v/v, only negligible 

voltammetric signal was obtained as the dehydration step was apparently inhibited. However, once the 

dehydration starts and the electrochemically active species are formed, increasing the water:acetonitrile 

ratio does not lead to any substantial decrease of the voltammetric signal. This finding is important for 

prospective applications in HPLC with electrochemical detection of steroids requiring variability in 

water content for their successful separation. 

5.2.4 Conclusion 

For the first time an approach offering anodic electrochemical oxidation of bile acids in mixed organic-

aqueous medium at reasonably low potential is presented. The signal can be obtained on various 

electrodes (BDD, GC, Pt). The saturated steroid core, known to be electrochemically inert, is activated 

by introduction of double bond(s) (via dehydration). This takes place directly in the medium of 

acetonitrile-water containing HClO4, the latter also serving as the supporting electrolyte. Only primary 

BAs, possessing the axial 7α-hydroxyl group, can undergo the acid-induced dehydration step, which 

nevertheless proceeds rather slowly. Therefore, the voltammetric signal is time dependent. Identification 

of the products of both chemical and electrochemical reaction steps is under investigation. Applicability 

to cholesterol was also confirmed. Based on the current work development of voltammetric methods 



 

 

72 5. Results and discussion 

and methods based on amperometric detection in liquid flow techniques can be envisaged. The novel 

approach presented here, inspired by enzyme-based or acid-induced dehydration reactions, can be 

viewed as a promising step on the way to a long-sought after tool aiming at implementation of 

electrochemical methods for characterization and detection of steroids that are currently deemed to be 

electrochemically inert. 
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5.3 Electrooxidation of cytosine on bare screen-printed carbon electrodes 

studied by online electrochemistry-capillary electrophoresis-mass 

spectrometry 
 

This chapter was published in the journal Electrochemistry Communications. The layout specifications 

of the journal were changed for uniformity. Copyright 2019 The Authors. Published by Elsevier B. V. 

T. Herl, L. Taraba, D. Böhm, F.-M. Matysik, Electrochem. Commun. 2019, 99, 41-45.  

 

Abstract 

The electrooxidation of cytosine on common commercially available screen-printed carbon electrodes 

was investigated. To characterize the processes on the electrode surface, the oxidation products were 

analyzed by online electrochemistry-capillary electrophoresis-mass spectrometry. Capillary 

electrophoresis was the ideal separation technique as all occurring species were positively charged at 

acidic separation conditions. Comparing the results to literature data on cytosine oxidation by one 

electron oxidants, the compound 6-hydroxy-5-hydroperoxy-5,6-dihydrocytosine was identified as the 

main oxidation product that could be detected on the screen-printed carbon electrode material. This 

product species was found to be rather stable over an investigated period of 60 minutes under the 

conditions present in our experiments. A small amount of cytosine glycol was detected, probably formed 

as decomposition product. During oxidation in acetate electrolyte, a side reaction with the electrolyte 

took place forming an artificial product, which was not the case in hydrogencarbonate electrolyte. This 

showed that products have to be investigated carefully in the context of the background electrolyte to 

avoid misinterpretations. 
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5.3.1 Introduction 

The nucleobase cytosine is an important analytical target in research studies regarding DNA damage or 

mutations [1,2]. Various investigations are concerned with the identification of base, nucleoside and 

nucleotide oxidation products. However, in this context mainly chemical or irradiation processes based 

on hydroxyl radicals, one-electron oxidants and UV- or γ-irradiation are widely applied as described by 

Wagner and Cadet [3,4]. Typical mechanisms proposed in literature are one-electron oxidation to a 

cytosine radical cation or addition of a hydroxyl radical followed by subsequent reactions like hydration 

or deprotonation. Amongst others, 5-hydroxycytosine, 5-hydroxyuracil, 5,6-dihydroxy-5,6-

dihydrouracil, 5-hydroxyhydantoin and 1-carbamoyl-4,5-dihydroxy-2-oxoimidazolidine were described 

as stable oxidation products [5]. Compared to the methods described above, sophisticated mechanistic 

studies in the context of electrochemical oxidation of cytosine are scarce in comparison for instance to 

guanine, which is more readily oxidizable and thus well investigated [6–8]. However, different 

analytical applications for electrochemical determination of cytosine or related species exist [9–13] and 

are referred to as cheap alternatives to expensive instrumental techniques [14]. Thus, it is important to 

investigate the mechanism of electrochemical cytosine oxidation. 

Early studies on the electrochemical behavior of cytosine were solely dealing with polarographic 

reduction [15,16] until it was shown that it can be oxidized at glassy carbon electrode materials where 

it was considered inactive for a long time [17]. Brotons et al. [18] reported in-house fabricated tailored 

screen-printed graphite electrodes that were used for oxidation of all nucleobases including cytosine and 

methylcytosine. The general application of carbon materials for electrooxidation was recently reviewed 

by Brotons et al. [14]. Some examples for the characterization of electrochemically generated oxidation 

products of cytosine species can be found in literature dealing for example with the investigation of 2’-

deoxycytidine-5’-monophosphate [19], cytidine-3’,5’-cyclic monophosphate [20], or 5-halocytosine 

oxidation [21]. However, investigations on cytosine itself are predominantly concerned with 

voltammetric characterization but not with product identification, even if some mechanistic steps are 

proposed [14]. Nevertheless, the identification of oxidation products is of fundamental importance to 

understand the processes happening on the electrode surface depending on electrode materials and 

oxidation conditions, especially if electrochemistry is used to mimic physiological conditions. Next to 

the commonly applied hyphenation of electrochemical flow cells to MS or HPLC-MS [22], 

electrochemistry-capillary electrophoresis-mass spectrometry (EC-CE-MS) is the method of choice if 

charged product species are formed [23]. 

In this study, the electrooxidation of cytosine on widely used commercial screen-printed carbon 

electrodes was investigated by online EC-CE-MS. The application of disposable electrodes [24] offered 

the advantages of simple electrochemical setup, user-friendliness, low costs, low sample consumption, 

and easy replacement of electrodes avoiding electrode fouling. Because of these features, this approach 

is potentially interesting for future routine applications. Electrooxidation of cytosine combined with CE 
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separation allowed for the characterization and interference-free detection of individual product species 

based on the pH-dependent migration behavior. Oxidation as well as separation were carried out under 

different conditions and products were characterized by MS and MS/MS detection. 

5.3.2 Experimental 

All chemicals were of analytical grade, if not stated otherwise. Solutions were prepared with Milli-Q 

water (18.2 MΩ cm-1, Milli-Q Advantage A10 system, Merck Millipore, Darmstadt, Germany). 

Solutions of 1 mM cytosine (purity ≥ 99%, Sigma-Aldrich, St. Louis, MO, USA) in 100 mM NH4OAc 

(Merck) at pH 7 or NH4HCO3
 (Roth, Karlsruhe, Germany) at pH 8 were prepared. Caffeine at a 

concentration of 100 µM served as EOF marker. As electrolyte for CE separations, 50 mM NH4OAc 

(pH 7) or 50 mM HOAc (pH 3) (Sigma-Aldrich) were used. 

Electrode potentials were controlled by a µAutolab III potentiostat and NOVA 2.0 software (Metrohm 

Autolab B.V., Utrecht, The Netherlands). Voltammetric studies were carried out by applying droplets 

of 50 µL cytosine solution on screen-printed carbon electrodes (SPCEs, DRP-110, DropSens, Llanera, 

Spain) and cycling the potential at a scan rate of 50 mV s-1. 

The setup developed by Palatzky et al [24] was used for EC-CE-MS. Volumes of 50 µL of cytosine 

solution were applied onto the SPCE and CE measurements were done prior to and after oxidation at 

1.4 V for 15 s (injection during last 10 s). Sample was hydrodynamically injected by placing the beveled 

tip (15°) of the capillary onto the center of the working electrode (height difference of 17 cm between 

injection and detection end of capillary). A separation voltage of 20 kV was applied and a fused silica 

capillary with an ID of 25 µm, an OD of 360 µm and a length of 35 cm was used. The MS detector was 

a micrOTOF mass spectrometer (Bruker Daltonics, Bremen, Germany) equipped with a grounded 

coaxial sheath liquid electrospray ionization interface (Agilent, Waldbronn, Germany). A solution of 2-

propanol:water:formic acid 49.9:49.9:0.2 v/v/v was added as sheath liquid with a syringe pump (KD 

Scientific, Holliston, MA, USA) at a flow rate of 8 µL min–1. The MS was operated in positive ion mode 

(mass range m/z 50-450, spectra rate 3 Hz, nebulizer 1.0 bar, dry gas 4.0 L min−1, dry temperature 

250 °C). MS/MS measurements were carried out with an Agilent QTOF MS system (positive ion mode, 

mass range m/z 50-400, MS spectra rate 4 Hz, MS/MS spectra rate 6 Hz, collision energy 10 eV, 

nebulizer 1 bar, dry gas 10 L min-1, dry temperature 180°C).  

5.3.3 Results and discussion 

5.3.3.1 Cyclic voltammetry of cytosine on bare SPCE 

The electrolytes for electrochemical oxidation of cytosine were selected to be compatible to ESI-MS 

measurements. Additionally, the pH was chosen close to neutral to simulate physiological conditions. 

For the electrochemical characterization of cytosine, NH4OAc was more suitable than NH4HCO3 due to 

the larger anodic potential window (Figure 5.3.1A) leading to a more pronounced oxidation peak 

compared to NH4HCO3 (Figure 5.3.1B). Cytosine exhibited an oxidation wave at 1.3 V. Based on the 
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cyclic voltammograms, an oxidation potential of 1.4 V was chosen for oxidation in EC-CE 

measurements to ensure diffusion-controlled processes. 

 

Figure 5.3.1 Cyclic voltammograms of 1 mM cytosine in 100 mM NH4OAc (A) and 100 mM NH4HCO3 (B) on a SPCE. The 
dotted lines represent voltammograms in background electrolytes. Scan rate was 50 mV s-1. 

5.3.3.2 Migration behavior of cytosine and oxidation products  

During separation in NH4OAc at neutral pH (Figures 5.3.2A+B), cytosine and its oxidation products 

were migrating close to the electroosmotic flow (EOF), marking the migration of neutral species (EOF 

marker caffeine). At these conditions, only one oxidation product (m/z 162.051), identified as C4H8N3O4
 

(1, [M+H]+) was detected. When separation was done in HOAc (pH 3), cytosine and its oxidation 

products could be fully separated and were migrating faster than the EOF meaning that they carried a 

positive charge due to protonation in solution (Figure 5.3.2C). After oxidation in NH4OAc, three product 

species were detected (Figure 5.3.2C+5.3.3A): product 1 and, additionally, products with m/z 204.061 

(2, C6H10N3O5, [M+H]+) and m/z 146.058 (3, C4H8N3O3, [M+H]+). 2 and 3 were probably suppressed 

under neutral pH due to overlap with the other peaks. After oxidation in NH4HCO3 in place of NH4OAc, 

only products 1 and 3 were detected (Figure 5.3.3B) under the same separation conditions. This means 

that in the case of NH4OAc a reaction with the electrolyte took place. This step was competing with 
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formation of the other products, as only minor amounts of 1 and 3 were detected relative to the cytosine 

peak compared to NH4HCO3. Product 3 was only generated in very small amounts. Investigations on 

product stability (electrolysis in acetate electrolyte for 20 minutes followed by consecutive CE-MS 

measurements) are shown in the inset in Figure 5.3.3A and revealed that product 1 was the main product 

and was quite stable with only a small decrease in signal intensity within an hour under the present 

conditions. Product 2 showed a fast decomposition within 5 minutes after oxidation and exhibited a 

much smaller peak area after 20 minutes oxidation compared to injection directly from the electrode 

after oxidation. The small peak for 3 remained at a constant level. 

 

Figure 5.3.2 CE-MS measurements of 1 mM cytosine in 100 mM NH4OAc (pH 7) without prior oxidation (A) and after 
oxidation on SPCE at 1.4 V for 15 s (B+C). Separation in 50 mM NH4OAc at pH 7 (A+B) and 50 mM HOAc at pH 3 (C). 
Extracted ion electropherograms ([M+H]+ traces) of cytosine (Cyt, blue, m/z 112.051), product 1 (magenta, m/z 162.051), 
product 2 (orange, m/z 204.061), product 3 (cyan, m/z 146.058), and EOF marker caffeine (black, m/z 195.074) are shown. 
Separation at 20 kV, capillary ID 25 µm, L 35 cm, 10 s hydrodynamic injection. 
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Figure 5.3.3 EC-CE-MS measurements of 1 mM cytosine in 100 mM NH4OAc at pH 7 (A) and 100 mM NH4HCO3 at pH 8 
(B) after oxidation on SPCE at 1.4 V for 15 s. Separation in 50 mM HOAc (pH 3) at 20 kV. Extracted ion electropherograms 
of cytosine (Cyt, blue, m/z 112.051), product 1 (magenta, m/z 162.051), product 2 (orange, m/z 204.061), and product 3 (cyan, 
m/z 146.058). Capillary ID 25 µm, L 35 cm, 10 s hydrodynamic injection. The proposed structures are shown on the right side. 
Product 2 was assigned to a reaction with acetate electrolyte. The inset in 5.3.3A shows the development of peak areas 
normalized to cytosine over time after oxidation in NH4OAc for 20 minutes. 

5.3.3.3 MS/MS measurements 

EC-CE-MS/MS measurements with collision-induced dissociation were carried out to obtain additional 

structural information. In the cytosine spectrum, a deamination (-17 m/z) and loss of HNCO (-43 m/z) 

were observed (Figure 5.3.4A). The spectra of 1 and 2 were similar to each other (Figures 5.3.4B+C). 

A characteristic fragment occurring in both cases was m/z 144.039, exhibiting a molecular formula of 

C4H6N3O3 ([M+H]+). This species can be assigned to dehydration (-18 m/z) of 1. Product 2 showed a 

loss of acetic acid (-60 m/z) instead. This was the final proof that product 2 was not a primary oxidation 

product of cytosine but rather an artifact caused by reaction with the electrolyte. The signal intensity 

obtained for 3 was too low for MS/MS measurements. 
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Figure 5.3.4 Mass spectra of cytosine (A), 1 (B) and 2 (C) after collision-induced dissociation (collision energy 10 eV). 
Assignment of fragments adapted from [25]. 

5.3.3.4 Oxidation mechanism 

Based on the results obtained, we propose an electrochemical oxidation mechanism starting with the 

formation of a cytosine radical cation by oxidation of the double bond between C5 and C6, similar as 

described for one-electron oxidants [3] and already reported in the recent review by Brotons et al [14]. 

By hydration of the radical cation [26], hydroxyl adduct radicals are formed [3] predominantly resulting 

in 6-hydroxy-5,6-dihydrocytos-5-yl radicals [27]. These react fast and quantitatively with oxygen to 6-

hydroxy-5-hydroperoxylradicals [26, 28] followed by reduction for example by superoxide radical 

anions [28] and protonation to 6-hydroxy-5-hydroperoxy-5,6-dihydrocytosine 1 (C4H7N3O4, structure 

shown in Figure 5.3.3) as main product of the electrochemical oxidation. The formation of 5-hydroxy-

6-hydroperoxy-5,6-dihydrocytosine that can not be distinguished from 1 with our methods can be ruled 

out as it would result from a reaction of cytosine with hydroxyl radicals forming 5-hydroxy-5,6-

dihydrocyto-6-yl radicals [28]. Considering the electrode material, a hydroxyl radical based mechanism 

is negligible, as SPCEs are known for oxidations involving direct electron transfer in contrast to for 

example boron doped diamond generating hydroxyl radicals [20]. Imidazolidine decomposition 

products commonly described particularly for 5-hydroxy-6-hydroperoxy-5,6-dihydrocytosine [27] were 

not observed. As MS/MS measurements showed comparable fragmentation patterns, product 1 and 

product 2 may have been formed via a similar mechanism starting from the cytosine radical cation. 

However, as already stated, product 2 was an artifact formed by reaction with the electrolyte. A possible 

mechanism for the formation of 2 can be explained by nucleophilic addition of acetate to the cytosine 

radical cation instead of initial hydration finally leading to 6-acetoxy-5-hydroperoxy-5,6-
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dihydrocytosine (C6H9N3O5). Nucleophilic additions of radical cations were previously reported in the 

context of crosslink reactions between guanine radical cations and thymine [29]. Product 2 decomposed 

quite fast (see inset in Figure 5.3.3). As can be found in literature [27], 6-hydroxy-5-hydroperoxides of 

cytosine decompose to 5,6-glycols. Thus, cytosine glycol 3 (C4H7N3O3, structure shown in Figure 5.3.3), 

which was also detected, can be interpreted as decomposition product formed by reduction of the 

hydroperoxide of product 1 [28]. It has to be stated that we could not distinguish possible cis and trans 

isomers of products 1 and 3. Product 1 is often referred to as instable intermediate in literature, 

undergoing subsequent reactions [3,5, 30]. However, in our experiments we measured only a slow decay 

of signal intensity within one hour and no decomposition products besides cytosine glycol were detected. 

This might be due to the rather low amount of products generated via electrochemistry compared to 

other methods, so that the concentration of decomposition products was too low to detect. Additionally, 

fast sample preparation and analysis by online EC-CE-MS without isolation and preconcentration steps 

allows for a short time interval between generation and detection of products, limiting decomposition.  

5.3.4 Conclusion 

EC-CE-MS was applied to investigate the electrochemical oxidation of cytosine and to identify 

oxidation products. Cytosine was oxidizable on widely used commercial screen-printed carbon 

electrodes using MS compatible electrolytes. Online CE-MS allowed for a fast detection of 

electrogenerated species. CE was well suited for separation as all analytes were positively charged at 

acidic separation conditions. The results indicated the formation of 5,6-hydroperoxy-hydroxy species as 

main products that were quite stable within an investigated period of one hour showing only minor 

decrease in signal intensity under the present conditions. Cytosine glycol was detected in small amount, 

probably as decomposition product formed by reduction of hydroperoxides. When oxidation was carried 

out in acetate-containing electrolyte, an additional product was found in contrast to oxidation in 

hydrogencarbonate. In further investigations, this species could be attributed to reaction with the 

electrolyte so that it could finally be identified as artifact instead of a primary oxidation product of 

cytosine. This illustrates that results have to be interpreted carefully. The results showed that online EC-

CE-MS can contribute to the investigation of electrochemical reactions enabling the identification of 

final oxidation products. In the future, this method may be of rising interest for routine applications due 

to the advantages of screen-printed electrodes like easy replaceability, simple setup, and low sample 

volumes. Furthermore, it might be an attractive complementary method for simulation of oxidative stress 

under physiological conditions, avoiding the addition of chemical oxidants or irradiation sources. 
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5.4 Investigation of the electrooxidation of thymine on screen-printed carbon 

electrodes by hyphenation of electrochemistry and mass spectrometry 
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Abstract 

The electrooxidation of thymine on screen-printed carbon electrodes was investigated utilizing different 

complementary instrumental approaches. The potential-dependent product profile was obtained by 

recording real-time mass voltammograms. Electrochemical flow cells with integrated disposable 

electrodes were directly coupled with mass spectrometry to facilitate a very fast detection of 

electrogenerated species. Thymine dimers were found at a potential of about 1.1 V in ammonium acetate 

(pH 7.0) and 1.25 V in ammonium hydrogen carbonate electrolyte (pH 8.0). Electrochemistry-capillary 

electrophoresis-mass spectrometry measurements revealed that two isobaric isomers of a dimeric 

oxidation product were formed. Separations at different time intervals between end of oxidation and 

start of separation showed that these were hydrated over time. An investigation of the pKa values by 

changing the separation conditions in electrochemistry-capillary electrophoresis-ultraviolet-visible 

spectroscopy measurements allowed for further characterization of the primary oxidation products. The 

results showed that both isomers exhibited two deprotonation steps. The oxidation products were further 

characterized by high-performance liquid chromatography-tandem mass spectrometry. Based on the 

obtained data, the main oxidation products of thymine in aqueous solution could most likely be identified 

as N(1)-C(5’) and N(1)-C(6’) linked dimer species evolving into the corresponding dimer hydrates over 

time. The presented methods for online characterization of electrochemically pretreated samples showed 

that not only mass spectrometric data can be obtained by electrochemistry-mass spectrometry but also 

further characterizations such as the investigation of product stability and the pH-dependent protonation 

or deprotonation behavior are possible. This is valid not only for stable oxidation products but also for 

intermediates, as analysis can be carried out within a short time scale. Thus, a vast amount of valuable 

experimental data can be acquired, which can help in understanding electrooxidation processes.  
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5.4.1 Introduction 

Developing methods for the investigation of nucleobase oxidation is important to improve the 

understanding of DNA damage caused by oxidative processes. In simulative studies, different methods 

can be applied for oxidation for example based on hydroxyl-radical [1] or radiation-mediated reactions 

[2–4]. Oxidative processes of purine and pyrimidine bases as well as DNA have been reviewed 

extensively by Cadet et al [5,6]. Being considered electrochemically inactive on carbon-based electrode 

materials for long time [7], cytosine and thymine can as well be oxidized electrochemically on glassy 

carbon electrodes [8], analogous to the well-investigated guanine [9]. Electrochemical oxidation is an 

attractive alternative to chemical and irradiative processes for simulation of oxidative stress due to the 

simple setup and well-controllable parameters such as the selection of electrode materials, oxidation 

potentials, and reaction time. Next to electrochemical simulation of oxidative processes, the 

electrochemical detection of nucleobases and modified nucleobases is applied in DNA sensing as 

reviewed by Hocek and Fojta [10]. Different carbon-based electrode materials for nucleobase oxidation 

were reviewed by Brotons et al [11]. Next to bare and modified glassy carbon, graphite, and gold paste 

electrodes [11–13], screen-printed platforms are also suitable for oxidation of DNA bases [14,15]. 

Regardless of the oxidation method, sophisticated analytical methods for the identification of oxidation 

products are needed to understand mechanistic details. Different instrumental approaches are available 

such as coupling of electrochemical flow cells to MS (EC-MS) or hyphenation of electrochemistry with 

separation methods like high-performance liquid chromatography or capillary electrophoresis combined 

with mass spectrometric detection (EC-HPLC-MS, EC-CE-MS) as recently reviewed by Portychová 

and Schug [16] in the context of xenobiotic metabolism. EC-MS and, in particular, electrochemical real-

time mass spectrometry (EC-RTMS) measurements are characterized by a fast detection of 

electrogenerated species and allow for the investigation of reactive intermediates and dynamic processes 

such as the determination of oxidation products under potential sweep conditions [17]. By establishing 

flow cell configurations with very low dead volumes very fast transfer times to MS can be achieved 

[18]. However, if a separation step is added, additional information such as polarity of occurring 

structures can be obtained and fragmentation of respective peaks in MS can be investigated [19]. Using 

screen-printed platforms for oxidation offers different advantages. Screen-printed electrodes (SPEs) are 

easy to use and can easily be replaced avoiding time-consuming electrode maintenance procedures. 

Thus, they are suitable for routine and high-throughput investigations as a constant performance can be 

ensured. Additionally, only low amounts of sample solution are needed so that a sufficient number of 

measurements can be carried out even if the sample volume is limited [20]. Using capillary 

electrophoresis as a separation method, the oxidized sample can be injected into the capillary directly 

from the electrode surface allowing for a fast analysis and an efficient transfer into the separation system 

even at short electrolysis times [21]. Capillary electrophoresis facilitates not only separation but also 

further investigation of molecular properties of analytes based on the pH-dependent migration behavior. 

Thus, acidic and basic groups can be characterized and pKa values can be determined [22]. Concerning 
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thymine oxidation, different oxidation products are described in literature including hydroxy and 

hydroperoxy species [23]. Besides that, thymine is also known for dimerization caused by UV-

irradiation resulting in cyclobutene-pyrimidine dimers and (6-4) lesions [24–29]. Dimeric species 

caused by oxidation instead of photodimerization are much less described [3,30]. 

In this study, the investigation of electrochemical oxidation of thymine on bare screen-printed carbon 

electrodes (SPCEs) is presented. In contrast to cytosine, which we previously investigated with similar 

methods [31], thymine showed barely monomeric oxidation products. Instead, mainly dimeric oxidation 

products were detected under the applied conditions. The electrogenerated dimeric oxidation products 

of thymine were characterized by EC-MS, EC-CE-MS, EC-CE-UV/VIS, and EC-HPLC-MS/MS. 

5.4.2 Experimental 

Chemicals and solutions 

Solutions of 1 and 0.1 mM thymine (T, purity ≥ 99%, Sigma-Aldrich, St. Louis, MO, USA) were 

prepared by dissolution in aqueous solutions of 50 mM ammonium acetate (NH4OAc, Merck KGaA, 

Darmstadt, Germany) at pH 7.0 or 50 mM ammonium hydrogen carbonate (NH4HCO3, Roth, Karlsruhe, 

Germany) at pH 8.0 as electrolytes. 50 mM acetic acid (HOAc, Sigma-Aldrich) at pH 3.0, 50 mM 

NH4OAc at pH 7.0, and 50 mM NH4HCO3 (Roth) at pH 10.0 were used as separation buffers for EC-

CE-MS measurements (pH adjusted with NH3 or HOAc). For EC-CE-UV/VIS measurements, 20 mM 

phosphate buffer (NaH2PO4/Na2HPO4) or 20 mM carbonate buffer (NaHCO3/Na2CO3) were used as 

buffers in pH ranges of 6-8 and 9-11, respectively (pH adjusted with concentrated HCl or 1 M NaOH). 

100 µM caffeine (C) was used as an EOF marker in EC-CE-MS measurements, and 0.1 mg mL-1 C was 

used as an EOF marker in EC-CE-UV/VIS measurements. Isopropanol (iPrOH, LC-MS grade) was 

obtained from Roth. All solutions were prepared with Milli-Q water (18.2 MW cm-1) provided by a Milli-

Q Advantage A 10 system (Merck), and all chemicals were of analytical grade or higher if not stated 

otherwise. 

Instruments    

Oxidation of thymine was carried out on screen-printed carbon electrodes (DRP-110, DropSens, 

Llanera, Spain) that were used as received. Potentials were applied using a µAutolab III potentiostat 

controlled by NOVA 2.0 software (Metrohm Autolab B. V., Utrecht, The Netherlands) in EC-MS and 

EC-CE-MS measurements or an ESA Coulochem II potentiostat (ESA Biosciences Inc., MA, USA) in 

EC-CE-UV/VIS measurements. A Bruker micrOTOF mass spectrometer (Bruker Daltonics, Bremen, 

Germany), equipped with a coaxial sheath liquid electrospray ionization interface (Agilent 

Technologies, Waldbronn, Germany) was used for MS detection. Sheath liquid (iPrOH/H2O/FA 

49.9:49.9:0.2 v/v/v for EC-CE-MS and iPrOH/FA 99.8:0.2 v/v for EC-MS) was provided by a syringe 

pump (Type 161553, KD Scientific, Holliston, MA, USA) and a 1 mL glass syringe (ILS, Stützerbach, 

Germany) at a flow rate of 0.48 mL h-1. The MS was operated in positive mode using the following 
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settings: mass range m/z 50-450, spectra rate 3 Hz, nebulizer 1.0 bar, dry gas 4.0 L min-1, dry 

temperature 250 °C. A Lambda 1010 UV/VIS detector (Bischoff Analysentechnik und -geräte GmbH, 

Leonberg, Germany) was used for UV/VIS detection at a wavelength of 250 nm. HPLC-MS 

measurements were carried out with an HPLC-Q-TOF-MS system (model 6540, Agilent Technologies) 

using the following parameters: Column: YMC-Triart C18, 1.9 u, 75x2 mm, 12 nm; Solvent A: H2O + 

0.1% formic acid, Solvent B: ACN + 0.1% formic acid, Gradient: 0 min 100% A/0% B, 4 min 100% 

A/0% B, 8 min 2% A/98% B, 9 min 2% A/98% B, 9.1 min 100% A/0% B, 10.1 min 100% A/0% B; 

flow rate 0.4 mL min-1; injected volume: 2.5 µL. Ion source: AJS ESI; dry gas temperature 300 °C; dry 

gas flow 8 L min-1; nebulizer gas pressure 2.8 bar; sheath gas temperature 300 °C; sheath gas flow 

10 L min-1. Collision induced dissociation of target species at 10 and 20 eV. 

Instrumental setups and parameters 

A schematic overview of the instrumental setups is depicted in Figure 5.4.1. For voltammetric studies, 

50 µL of 1 mM thymine solutions were applied onto screen-printed electrodes and potential scans were 

carried out at a scan rate of 50 mV s-1. As illustrated in Figure 5.4.1A, EC-MS measurements were 

carried out by coupling an electrochemical flow cell with integrated SPCE (DRP-FLWCL, DropSens) 

to MS via a fused silica capillary (50 µm x 21 cm, Polymicro Technologies, AZ, USA), which was 

installed in the cell using a modified PEEK fitting and sleeve as described previously [18]. The solutions 

were transported to the detector by a microinjection syringe pump (World Precision Instruments, 

Sarasota, FL, USA) equipped with a 1 mL glass syringe (Hamilton Company, Reno, NV, USA) at a 

flow rate of 16 µL min-1, corresponding to a fast transfer time of 1-2 s between generation at the 

electrode and detection in MS (experimentally determined by using ferrocene methanol as model system 

at an oxidation potential of 0.5 V). Due to this fast detection of products, the real-time response of the 

product composition while scanning a potential ramp from 0 to 2 V at 10 mV s-1 could be recorded. 

Solutions of 1 mM and 0.1 mM thymine in 50 mM NH4OAc (pH 7.0) or 50 mM NH4HCO3 (pH 8.0) 

were used.  

EC-CE-MS (Figure 5.4.1B) and EC-CE-UV/VIS measurements (Figure 5.4.1C) were carried out using 

laboratory-constructed CE systems, as described elsewhere [21,32]. Samples were hydrodynamically 

injected into the separation capillary by placing the injection end of the capillary directly onto the 

working electrode surface during oxidation. The capillary tip was polished to an angle of 15° at the 

injection end with a laboratory-constructed polishing machine using lapping foils with a grain size of 

30 and 9 µm to ensure a reproducible injection position. For EC-CE-MS measurements, an oxidation 

potential of 1.2 V was applied for 15 s and injection was carried out in the last 10 s of oxidation. For 

EC-CE-UV/VIS measurements, oxidation was carried out at 1.2 V for 60 s and injection took place in 

the last 15 s. After injection, a separation voltage of 18 kV was applied. Capillary dimensions were 

25 µm x 35 cm for EC-CE-MS measurements and 50 µm x 50 cm (effective length to detector 35 cm) 

for EC-CE-UV/VIS measurements. The choice of separation buffers is described in the respective parts 
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of the results section. Solutions of 1 mM thymine in 50 mM NH4OAc (pH 7.0) were used for the 

investigations. HPLC-MS measurements were carried out after offline oxidation on an SPCE at 1.2 V 

for 180 s and transferring the 50 µL droplet into a sample vial. 

 

Figure 5.4.1 Schematic overviews of used setups: (A) EC-MS, (B) EC-CE-MS, and (C) EC-CE-UV/VIS. (a) Computer, (b) 

potentiostat, (c) time-of-flight mass spectrometer, (d) fused silica capillary, (e) flow cell with integrated SPCE, (f) syringe 

pump, (g) XZ-table with SPCE and buffer reservoirs, (h) HV source, (i) autosampler with SPCE and buffer reservoir, (j) UV 

detector. 

5.4.3 Results and discussion 

EC-MS measurements 

Thymine was oxidizable on screen-printed carbon electrodes and showed an oxidation signal at about 

1.1 V in static solution as depicted in the cyclic voltammogram in Figure 5.4.2A. Thus, EC-MS 

measurements were conducted for a real-time investigation of oxidation products within a short time 

scale, which was possible as the transfer time between electrochemical cell and mass spectrometer was 

only 1-2 s. In a linear potential scan from 0.5 to 2 V at a scan rate of 10 mV s-1, the intensity of the 
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thymine mass trace (m/z 127.05, [M+H]+, C5H7N2O2) started to decrease at around 1 V (potential shift 

due to transfer time neglectable for moderate scan rates), revealing a beginning consumption due to 

oxidation as can be seen in the mass voltammograms depicted in Figures 5.4.2B + 5.4.2C.  

 

Figure 5.4.2 (A) Cyclic voltammogram of a 50 µL droplet of 1 mM thymine (T) in 50 mM NH4OAc on a SPCE at a scan rate 

of 50 mV s-1 (dotted line electrolyte, solid line T in electrolyte), (B) EC-MS measurement of 0.1 mM T in 50 mM NH4OAc 

and (C) EC-MS measurement of 0.1 mM T in 50 mM NH4HCO3. Potential scans from 0.5 to 2 V at a scan rate of 10 mV s-1. 

Flow rate 16 µL min-1. Extracted mass traces m/z 127.05 (T,  black), m/z 173.05 (green), m/z 190.08 (blue), m/z 191.07 

(magenta), m/z 251.08 (product 1, red), and m/z 269.09 (orange). The current is plotted in gray. Transfer capillary 

50 µm x 21 cm. 

A dimeric species with m/z 251.08 (1, [M+H]+, C10H11N4O4) was the main product formed under the 

present conditions. The signal of this mass trace started to increase at around 1.1 V in NH4OAc 
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electrolyte and around 1.25 V in NH4HCO3 electrolyte and decreased at potentials higher than 1.5 V in 

both cases indicating either a decomposition of the dimer or competing processes hindering the 

formation of this species. At higher potentials, additional products (m/z 173.05, m/z 190.08, m/z 191.07) 

were detected in NH4OAc electrolyte (Figure 5.4.2B). Analogous to cytosine oxidation [31], these were 

most likely a result of the reaction of reactive intermediates with the electrolyte, as they were not 

detected if the oxidation was carried out in NH4HCO3 instead of NH4OAc. MS data indicating the 

formation of acetoxy groups supported this suggestion. However, in both electrolytes the same main 

product (1) was detected in ESI-MS. In the time scale of EC-MS measurements, no significant amount 

of dimer hydrate species (m/z 269.09) could be detected, despite being proposed as final products in 

literature [3,30]. The mass voltammograms showed that EC-MS is a useful technique to characterize the 

electrochemical activity of analytes. Even if, in contrast to the cyclic voltammogram in static solution 

(Figure 5.4.2A), no clear oxidative wave was visible in the hydrodynamic potential scans depicted in 

Figure 5.4.2B and 5.4.2C, the oxidation of thymine was nevertheless visible in the MS signals. It can be 

assumed that adsorbed thymine contributes to the voltammetric signal and gets oxidized earlier in static 

solutions. 

Separation behavior and product stability 

Evaluating the migration behavior in CE, structural properties of the individual species were 

investigated based on protonation and deprotonation characteristics. MS detection allowed for 

identification of peaks by the corresponding molecular formulas. Neither thymine nor the oxidation 

products detected in this study were protonated in solution under the investigated conditions, as all were 

migrating with the EOF using NH4OAc (pH 7.0) or HOAc (pH 3.0) as electrolyte for separation. 

Corresponding electropherograms are depicted in Figure 5.4.3A and 5.4.3B. Consequently, the 

structures exhibited no basic groups which would have resulted in cationic migration behavior in CE. In 

a CE measurement under alkaline conditions (NH4HCO3, pH 10.0), a separation of thymine and its main 

oxidation product 1 with m/z 251.08 was possible. The measurements revealed that two isobaric species 

(1a, 1b) with the same molecular formula (C10H11N4O4, [M+H]+) but slightly different migration times 

were present (Figure 5.4.3C). These could not be distinguished in EC-MS measurements, as no 

separation step was included. 
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Figure 5.4.3 CE-MS measurements of 1 mM thymine (T) in 50 mM NH4OAc in different electrolytes: 50 mM NH4OAc at 

pH 7.0 (A), 50 mM HOAc at pH 3.0 (B), and 50 mM NH4HCO3 at pH 10.0 (C). The respective electropherograms at the top 

were recorded without oxidation and the electropherograms at the bottom were recorded after oxidation on an SPCE at 1.2 V 

for 15 s. Capillary 25 µm x 35 cm, separation voltage 18 kV, 10 s hydrodynamic injection. Extracted ion electropherograms of 

T (m/z 127.05, black), caffeine (C, m/z 195.09, gray), and product 1 (m/z 251.08, red). 

In order to obtain additional structural information about the product isomers by collision induced 

dissociation (CID) measurements, HPLC-MS separations were carried out. Both product isomers could 

as well be separated by HPLC using a C18 column (Figure 5.4.4). However, due to the offline approach 

(oxidation on SPCE for 180 s followed by transfer into sample vial and HPLC-MS analysis) the obtained 

signal intensities of the products 1a and 1b were significantly lower compared to the thymine signal. 

Additionally, two peaks with m/z 269.09 (2a + 2b, C10H13N4O5, [M+H]+) were detected corresponding 

to the hydrated species of 1a and 1b as could be concluded from the mass difference of m/z 18 and the 

molecular formulas. The formation of such dimer hydrates is already known for quite a long time 

[33,34]. 



 

 

93 5. Results and discussion 

 
Figure 5.4.4 HPLC-MS of an electrochemically oxidized thymine solution (1.2 V, 180 s). Extracted ion chromatograms of 
thymine (T, EIC m/z 127.05), the dimeric products 1a and 1b (EIC m/z 251.08), the hydrated species 2a and 2b (EIC 
m/z 269.09), and the monomeric product 3 (EIC m/z 161.06). Separation on a C18 column. 

CID measurements of all four compounds corresponding to the separated chromatographic peaks were 

carried out at collision energies of 10 and 20 eV (Figures 5.4.S1 and 5.4.S2). In all CID spectra a 

thymine fragment (m/z 127.05) was present. According to Chandran et al [3] this shows that the dimers 

were connected by C-N cross-links. A C-C cross-link could be ruled out, as in this case no thymine 

fragment and no dehydration to a fragment with m/z 251.08 would have been detected [3]. The 

occurrence of the corresponding dehydration fragments in CID supports the conclusion that 1a and 1b 

were direct precursors of 2a and 2b. Proposed structures of the different products are shown in 

Scheme 5.4.1 [3,30]. Comparing the collision spectra and the elution order of 2a and 2b to literature 

data, the structures could be assigned to the corresponding N(1)-C(5’) (2b) and N(1)-C(6’) linked 

species (2a) [3,30]. 2b was more stable against CID as a much lower amount of fragments was obtained 

compared to 2a, which already showed significant fragmentation at 10 eV (Figure 5.4.S2). Similar to 

2b, 1b was more stable than 1a where already significant fragmentation occurred at 10 eV 

(Figure 5.4.S1). By comparing the elution order, the relative signal intensities and the stability toward 

fragmentation, 1a and 1b were assigned to the corresponding N(1)-C(6’) and N(1)-C(5’) precursors of 

2a and 2b. However, it has to be stated that further structural validation for example by preparative 

HPLC and NMR analysis is needed to fully confirm this, if the stability of the precursors is high enough 

to allow for this. This has to be tested in further measurements. As a side product of the electrochemical 

oxidation, a product most likely corresponding to thymine glycol (3, m/z 161.06, C5H9N2O4, [M+H]+) 

could be detected based on measured mass and isotopic pattern.  
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Scheme 5.4.1 Proposed structures of the detected species and corresponding measured m/z values of [M+H]+. 

The product composition differed from previous studies found in literature where various additional 

monomeric products have been described [5,6,23]. This is probably due to the different kind of oxidation 

and sampling in this study (electrochemical oxidation instead of irradiation or radical mediated 

processes, short electrolysis time of 180 s on a carbon electrode instead of 5 h at 5 mA [34] or 150 min 

at 5 mA on a platinum electrode [30]). Due to the rather large surface area of the electrode compared to 

the small oxidized sample volume of 50 µL and the missing convection during oxidation, a high density 

of thymine radicals can be expected at the electrode surface so that radical coupling of thymine radicals 

to dimeric species was probably more favored than hydroxylation and subsequent reactions. However, 

as the time scale of oxidative sample preparation and analysis was quite short, the reaction intermediates 

1a and 1b could be detected and characterized. CE-MS measurements with different time intervals 

between oxidation and separation showed a decrease of the intensity of m/z 251.08 and an increase of 

the intensity of m/z 269.09. This also verified that the primary oxidation products underwent hydration 

over time to the corresponding dimer hydrates 2a and 2b. A plot of the corresponding peak areas 

normalized to the thymine peak versus the time interval between start of the separation and the end of 

oxidation is shown in Figure 5.4.5. Due to low signal intensity in NH4HCO3, these measurements had 

to be carried out in NH4OAc so that only the cumulative information on both isomers could be obtained. 
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However, the general trend of hydration could be observed. To further characterize the intermediates 1a 

and 1b, the pH-dependent migration behavior was investigated using UV/VIS detection due to better 

reproducibility of migration times and higher flexibility in choice of separation buffer compared to MS 

detection. 

 

Figure 5.4.5 Development of the peak areas of products m/z 251.08 and m/z 269.09 depending on the time difference between 

end of oxidation (1 mM T in 50 mM NH4OAc) and start of separation (50 mM NH4OAc, pH 7.0). Oxidation on SPCE at 1.2 V 

for 600 s. Capillary 25 µm x 35 cm, separation voltage 18 kV, 10 s hydrodynamic injection. 

Characterization of oxidation products by EC-CE-UV/VIS measurements 

For the characterization of the migration behavior of thymine and its main oxidation products 1a and 

1b, two buffer systems (NaH2PO4/Na2HPO4 for pH 6-9 and NaHCO3/Na2CO3 for pH 9-11) were used. 

The electrophoretic current was kept at 30 ± 5 µA for all separations to avoid excessive Joule heating 

which would lead to irreproducible migration times. All measurements were carried out at a room 

temperature of 25 °C. The migration behavior relative to the EOF marker caffeine was evaluated and 

the electrophoretic mobility was calculated based on Caliaro and Herbots [22]. Figure 5.4.6 shows some 

representative electropherograms. First a measurement of caffeine was made to determine the EOF, 

followed by measurements of thymine solution without oxidation and after oxidation. Each set of 

measurements was carried out three times. With increasing pH values, the migration times of thymine 

and 1a as well as 1b increased relative to the EOF, showing an increasing rate of deprotonation. As 

expected, a plot of the electrophoretic mobilities versus pH showed a sigmoidal curve for thymine 

(Figure 5.4.7A) meaning that thymine exhibited one deprotonation step. A sigmoidal fit of the data based 

on Caliaro and Herbots [22] resulted in a calculated pKa value of 9.80 ± 0.02 (Figure 5.4.S3), which is 

in reasonable accordance to literature where a pKa value of 9.94 is reported [35]. The plots obtained for 

1a and 1b (Figures 5.4.7B and 5.4.7C) showed two sigmoidal ranges, leading to the conclusion that, in 

contrast to thymine, two possible deprotonation sites were present due to the dimeric structure. 

Sigmoidal fits of the respective ranges of the experimental data revealed pKa values of 7.9 ± 0.1 and 

10.1 ± 0.4 for 1a and 7.77 ± 0.03 and 10.45 ± 0.06 for 1b (Figures 5.4.S4 and 5.4.S5). The 
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measurements demonstrated that varying the separation conditions in capillary electrophoresis is an 

attractive method to obtain molecular information like pKa values of electrogenerated species. Oxidized 

samples can be analyzed without the need for quantitative generation and tedious sample preparation. 

Combined with MS data evaluating the migration behavior thus is a powerful method for the 

characterization of oxidation products. 

 

Figure 5.4.6 (A) Representative electropherograms at different pH of separation buffers showing the migration behavior of 

thymine (T), caffeine (C), and both isobaric products 1a and 1b. Capillary 50 µm x 50 cm, Leff 35 cm, 18 kV, 15 s hydrodynamic 

injection, UV detection at 250 nm. Measurements of C (red) and T without oxidation (black, dotted) and T after oxidation at 

1.2 V for 60 s (black).  



 

 

97 5. Results and discussion 

 

Figure 5.4.7 Evaluation of electrophoretic mobilities vs. pH for T (A), product 1a (B), and product 1b (C). Calculation of 

electrophoretic mobilities based on literature [22]. The pKa values calculated by fitting the experimental data are marked by 

arrows (Fit data are shown in Figures 5.4.S3 – 5.4.S5). 

5.4.4 Conclusion 

Thymine was found oxidizable on commercial screen-printed carbon electrodes. A range of different 

methods were applied to investigate the thymine oxidation products generated on this electrode material. 

EC-MS measurements using electrochemical flow cells allowed for real-time characterization of the 

redox properties of thymine and showed that dimeric species were the main products that were formed 

upon electrochemical oxidation. Product generation started, depending on the electrolyte, at 1.1 to 1.2 V 

as could be seen by recording the real-time MS signals in parallel to potential scans. CE-MS 

measurements revealed that the primary dimeric product of thymine oxidation was present in two 

different isomers as two isobaric compounds could be separated under alkaline separation conditions. 

Further characterization of these products by CE-MS measurements with increasing time intervals 

between end of oxidation and start of separation showed that the primary products were precursors of 

stable dimer hydrates as already described in literature. EC-CE-UV/VIS measurements at different pH 

of separation showed that both precursor isomers exhibited two deprotonation steps and the 

corresponding pKa values were determined based on the experimental data. This demonstrated the 

capability of EC-CE to analyze in-situ generated products which is very advantageous if the compounds 
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are not stable enough to be isolated and to be investigated by classical titration methods. To obtain 

further information, offline EC-HPLC-MS/MS measurements were carried out. By combining all results 

and comparing to literature, it could be concluded that thymine was forming N(1)-C(5’) and N(1)-C(6’) 

linked dimer hydrates induced by electrochemical oxidation on screen-printed carbon electrodes. Due 

to the short time scale of electrochemical sample preparation and subsequent analysis, the 

characterization of reaction intermediates could be achieved. Further studies might deal with cross-

coupling reactions of oxidized thymine with other nucleobases or biologically relevant molecules such 

as pharmaceutical compounds. The results show that the presented complementary methods EC-MS, 

EC-CE-MS, EC-CE-UV/VIS, and EC-HPLC-MS/MS are an attractive approach for the characterization 

of electrogenerated species. They offer the advantages of high flexibility, low consumption of samples 

and solutions, fast analysis, and low sample preparation. Products can be characterized on different time 

scales and mass spectrometric data can be combined with the migration behavior in CE and retention 

behavior in HPLC, delivering a large range of valuable information. Considering the proceeding 

progress in computational techniques, the obtained experimental data (e.g. pK values) might be 

combined with simulations to verify proposed structures in nontargeted analysis and mechanisms in 

future applications. 

Acknowledgements 

J. Kiermaier of the MS department of the University of Regensburg is acknowledged for his support 

with MS/MS measurements. 

  



 

 

99 5. Results and discussion 

References 

[1] G.S. Madugundu, J. Cadet, J.R. Wagner, Hydroxyl-radical-induced oxidation of 5-methylcytosine in 
isolated and cellular DNA, Nucleic Acids Res. 42 (2014) 7450–7460. 

[2] J. Ma, J.-L. Marignier, P. Pernot, C. Houée-Levin, A. Kumar, M.D. Sevilla, A. Adhikary, M. Mostafavi, 
Direct observation of the oxidation of DNA bases by phosphate radicals formed under radiation: a model 
of the backbone-to-base hole transfer, Phys. Chem. Chem. Phys. 20 (2018) 14927–14937. 

[3] J. Chandran, N.R. Vishnu, U.K. Aravind, C.T. Aravindakumar, ESI-CID spectral characterization and 
differentiation of the cross links of thymine formed by one electron oxidation with SO4∙-, Int. J. Mass 
Spectrom. 443 (2019) 53–60. 

[4] M. Gomez-Mendoza, A. Banyasz, T. Douki, D. Markovitsi, J.-L. Ravanat, Direct Oxidative Damage of 
Naked DNA Generated upon Absorption of UV Radiation by Nucleobases, J. Phys. Chem. Lett. 7 (2016) 
3945–3948. 

[5] J. Cadet, J.R. Wagner, V. Shafirovich, N.E. Geacintov, One-electron oxidation reactions of purine and 
pyrimidine bases in cellular DNA, Int. J. Radiat. Biol. 90 (2014) 423–432. 

[6] J. Cadet, K.J.A. Davies, M.H. Medeiros, P. Di Mascio, J.R. Wagner, Formation and repair of oxidatively 
generated damage in cellular DNA, Free Radic. Biol. Med. 107 (2017) 13–34. 

[7] J.P. Hart, Electroanalysis of Biologically Important Compounds, Ellis Horwood Limited, Chichester, 
1990. 

[8] A.M. Oliveira Brett, F.-M. Matysik, Voltammetric and sonovoltammetric studies on the oxidation of 
thymine and cytosine at a glassy carbon electrode, J. Electroanal. Chem. 429 (1997) 95–99. 

[9] R.N. Goyal, G. Dryhurst, Redox chemistry of guanine and 8-oxyguanine and a comparison of the 
peroxidase-catalyzed and electrochemical oxidation of 8-oxyguanine, J. Electroanal. Chem. Interfacial 
Electrochem. 135 (1982) 75–91. 

[10] M. Hocek, M. Fojta, Nucleobase modification as redox DNA labelling for electrochemical detection, 
Chem. Soc. Rev. 40 (2011) 5802-5814. 

[11] A. Brotons, F.J. Vidal-Iglesias, J. Solla-Gullón, J. Iniesta, Carbon materials for the electrooxidation of 
nucleobases, nucleosides and nucleotides toward cytosine methylation detection: A review, Anal. Methods 
8 (2016) 702-715. 

[12] H. Li, X. Wang, Z. Wang, W. Zhao, Simultaneous determination of guanine, adenine, thymine and 
cytosine with a simple electrochemical method, J. Solid State Electrochem. 20 (2016) 2223–2230. 

[13] J. Jankowska-Śliwińska, M. Dawgul, J. Kruk, D.G. Pijanowska, Comparison of electrochemical 
determination of purines and pyrimidines by means of carbon, graphite and gold paste electrodes, Int. J. 
Electrochem. Sci. 12 (2017) 2329-2343. 

[14] A. Brotons, L.A. Mas, J.P. Metters, C.E. Banks, J. Iniesta, Voltammetric behaviour of free DNA bases, 
methylcytosine and oligonucleotides at disposable screen printed graphite electrode platforms., Analyst 
138 (2013) 5239–49. 

[15] A. Brotons, I. Sanjuan, C.E. Banks, F.J. Vidal-Iglesias, J. Solla-Gullón, J. Iniesta, Voltammetric Behaviour 
of 7-Methylguanine Using Screen-printed Graphite Electrodes: Towards a Guanine Methylation 
Electrochemical Sensor, Electroanalysis 27 (2015) 2766-2772. 

[16] L. Portychová, K.A. Schug, Instrumentation and applications of electrochemistry coupled to mass 
spectrometry for studying xenobiotic metabolism: A review, Anal. Chim. Acta 993 (2017) 1–21. 

[17] P. Khanipour, M. Löffler, A.M. Reichert, F.T. Haase, K.J.J. Mayrhofer, I. Katsounaros, Electrochemical 
Real-Time Mass Spectrometry (EC-RTMS): Monitoring Electrochemical Reaction Products in Real Time, 
Angew. Chemie Int. Ed. 58 (2019) 7273–7277. 

 



 

 

100 5. Results and discussion 

[18] T. Herl, F.-M. Matysik, Characterization of electrochemical flow cell configurations with implemented 
disposable electrodes for the direct coupling to mass spectrometry, Tech. Mess. 84 (2017) 672–682. 

[19] H. Faber, D. Melles, C. Brauckmann, C.A. Wehe, K. Wentker, U. Karst, Simulation of the oxidative 
metabolism of diclofenac by electrochemistry/(liquid chromatography/)mass spectrometry, Anal. Bioanal. 
Chem. 403 (2012) 345–354. 

[20] P. Palatzky, F.-M. Matysik, Development and characterization of a novel semiautomated arrangement for 
electrochemically assisted injection in combination with capillary electrophoresis time-of-flight mass 
spectrometry, Electrophoresis 33 (2012) 2689–2694. 

[21] P. Palatzky, A. Zöpfl, T. Hirsch, F.-M. Matysik, Electrochemically Assisted Injection in Combination with 
Capillary Electrophoresis-Mass Spectrometry (EAI-CE-MS) - Mechanistic and Quantitative Studies of the 
Reduction of 4-Nitrotoluene at Various Carbon-Based Screen-Printed Electrodes, Electroanalysis 25 
(2013) 117–122. 

[22] G.A. Caliaro, C.A. Herbots, Determination of pKa values of basic new drug substances by CE, J. Pharm. 
Biomed. Anal. 26 (2001) 427–434. 

[23] J. Cadet, J. Richard Wagner, DNA base damage by reactive oxygen species, oxidizing agents, and UV 
radiation, Cold Spring Harb. Perspect. Biol. 5 (2013). 

[24] T. Douki, M. Court, S. Sauvaigo, F. Odin, J. Cadet, Formation of the Main UV-induced Thymine Dimeric 
Lesions within Isolated and Cellular DNA as Measured by High Performance Liquid Chromatography-
Tandem Mass Spectrometry, J. Biol. Chem. 275 (2000) 11678–11685. 

[25] K. Haiser, B.P. Fingerhut, K. Heil, A. Glas, T.T. Herzog, B.M. Pilles, W.J. Schreier, W. Zinth, R. de Vivie-
Riedle, T. Carell, Mechanism of UV-Induced Formation of Dewar Lesions in DNA, Angew. Chemie Int. 
Ed. 51 (2012) 408–411. 

[26] B. Durbeej, L.A. Eriksson, Reaction mechanism of thymine dimer formation in DNA induced by UV light, 
J. Photochem. Photobiol. A Chem. 152 (2002) 95–101. 

[27] I. Conti, L. Martínez-Fernández, L. Esposito, S. Hofinger, A. Nenov, M. Garavelli, R. Improta, Multiple 
Electronic and Structural Factors Control Cyclobutane Pyrimidine Dimer and 6-4 Thymine-Thymine 
Photodimerization in a DNA Duplex, Chem. - A Eur. J. 23 (2017) 15177–15188. 

[28] M.D. Shetlar, V.J. Basus, The Photochemistry of Thymine in Frozen Aqueous Solution: Trimeric and 
Minor Dimeric Products, Photochem. Photobiol. 89 (2013) 631–639. 

[29] T. Douki, M. Court, J. Cadet, Electrospray-mass spectrometry characterization and measurement of far-
UV-induced thymine photoproducts, J. Photochem. Photobiol. B Biol. 54 (2000) 145–154. 

[30] H. Hatta, L. Zhou, M. Mori, S. Teshima, S. Nishimoto, N(1)−C(5‘)-Linked Dimer Hydrates of 5-
Substituted Uracils Produced by Anodic Oxidation in Aqueous Solution, J. Org. Chem. 66 (2001) 2232–
2239. 

[31] T. Herl, L. Taraba, D. Böhm, F.-M. Matysik, Electrooxidation of cytosine on bare screen-printed carbon 
electrodes studied by online electrochemistry-capillary electrophoresis-mass spectrometry, Electrochem. 
Commun. 99 (2019) 41–45. 

[32] J.J.P. Mark, P. Piccinelli, F.-M. Matysik, Very fast capillary electrophoresis with electrochemical 
detection for high-throughput analysis using short, vertically aligned capillaries, Anal. Bioanal. Chem. 406 
(2014) 6069–6073. 

[33] J.R. Wagner, J. Cadet, G.J. Fisher, Photo-oxidation of thymine sensitized by 2-methyl-1,4-
naphthoquinone: analysis of products including three novel photo-dimers, Photochem. Photobiol. 40 
(1984) 589–597. 

 

 

 



 

 

101 5. Results and discussion 

[34] S. Nishimoto, H. Hatta, H. Ueshima, T. Kagiya, 1-(5’-Fluoro-6’-hydroxy-5’,6’-dihydrouracil-5’-yl)-5-
fluorouracil, a novel N(1)-C(5)-linked dimer that releases 5-fluorouracil by radiation activation under 
hypoxic conditions, J. Med. Chem. 35 (1992) 2711–2712. 

[35] S. Budavari, M.J. O’Neil, A. Smith, P.E. Heckelman, J.F. Kinneary, eds., The Merck Index, 12th editi, 
Merck Research Laboratories Division, New York, 1996. 



 

 

102 5. Results and discussion 

5.4.5 Supporting information 

 

The Supporting Information contains: 

 

• Figure 5.4.S1 (CID spectra of oxidation products 1a and 1b) 

• Figure 5.4.S2 (CID spectra of oxidation products 2a and 2b) 

• Figure 5.4.S3 (fit data for the calculation of the pKa of thymine) 

• Figure 5.4.S4 (fit data for the calculation of the pKa values of 1a)  

• Figure 5.4.S5 (fit data for the calculation of the pKa values of 1b) 

 

 

Figure 5.4.S1 CID spectra of 1b at collision energies of 10 eV and 20 eV (left column) and CID spectra of 1a at collision 
energies of 10 eV and 20 eV (right column). 
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Figure 5.4.S2 CID spectra of 2b at collision energies of 10 eV and 20 eV (left column) and CID spectra of 2a at collision 
energies of 10 eV and 20 eV (right column). 

 

 

 

 

Figure 5.4.S3 Fit data for the calculation of the pKa value of thymine. Fit by Me = Ma/(10(pKa-pH)+1) with Ma = -4.01∙10-5 ± 
0.06∙10-5 m2 kV-1 s-1 and pKa 9.80 ± 0.02. 
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Figure 5.4.S4 Fit data for the calculation of the pKa values of 1a. Fit by Me = Ma/(10(pKa-pH)+1) with Ma = -2.9∙10-5 ±             
0.3∙10-5 m2 kV-1 s-1 and pKa 7.9 ± 0.1 (left) and Me = Ma/(10(pKa-pH)+1)+C with Ma = -2.4∙10-5 ± 0.3∙10-5 m2 kV-1 s-1, pKa 10.1 
± 0.4 and C -2.3∙10-5 ± 0.4∙10-5 m2 kV-1 s-1 (right). 

 

 

 

 

Figure 5.4.S5 Fit data for the calculation of the pKa values of 1b. Fit by Me = Ma/(10(pKa-pH)+1) with Ma = -3.01∙10-5 ±       
0.08∙10-5 m2 kV-1 s-1 and pKa 7.77 ± 0.0.03 (left) and Me = Ma/(10(pKa-pH)+1)+C with Ma = -2.3∙10-5 ± 0.1∙10-5 m2 kV-1 s-1, 
pKa 10.45 ± 0.06 and C -2.79∙10-5 ± 0.04∙10-5 m2 kV-1 s-1 (right). 
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6. Summary 
Hyphenation of electrochemistry and mass spectrometry is a very versatile method for different kinds 

of applications such as 

• electrochemical online sample pretreatment for enhanced detectability of analytes and 

separation performance 
• elucidation of oxidation and reduction mechanisms by identification of intermediates and 

products 
• electrochemical simulation of oxidative processes of relevant biomolecules. 

To meet the demands of the high diversity of different kinds of samples, flexibility of solutions and 

materials is very important. Because of that a novel injection cell for EC-CE-MS consisting of solvent-

resistant materials and equipped with solvent-resistant thin-film electrodes was developed and 

characterized. EC-CE-MS could be applied to non-aqueous solutions and a mixture of ferrocene 

derivatives was analyzed as model system. After oxidation, the cations of ferrocenemethanol, 

decamethylferrocene and ferrocene could be separated with capillary electrophoresis and detected with 

mass spectrometry. This was not possible without oxidation as neutral ferrocene is not detectable in ESI-

MS and neutral ferrocenemethanol can only be detected with very low intensity. Besides that, both 

would comigrate in CE due to the lack of charge. However, decamethylferrocene was separated and 

detected without electrochemical oxidation as it was easily oxidized by dissolved oxygen. In conclusion, 

it was shown that electrochemistry could be used to enhance the separation performance in CE and the 

detection performance in MS by generation of charged species. The applicability of online EC-CE-MS 

based on disposable electrode materials could be expanded to non-aqueous solvents, which was not 

possible before due to limitations of screen-printed electrode materials.  

For optimization of oxidation procedures in the context of electrochemical sensing it is important to 

understand the processes that take place on an electrode surface. Different primary bile acids were shown 

to be suitable for direct electrochemical oxidation after an acid-induced dehydration step. CE-MS 

measurements revealed the dehydration and addition of an acetamide group to chenodeoxycholic acid, 

which could be confirmed by the migration behavior in CE and the identification of the molecular 

formulas of the corresponding species in MS. Hence, CE-MS could contribute to the elucidation of 

different reaction steps in the context of anodic oxidation of bile acids. 

Nucleobases are essential for life due to their function as building blocks of DNA. In order to understand 

oxidative damage on DNA or to detect modified nucleobases electrochemically it is important to 

investigate the mechanisms of nucleobase oxidation. Online EC-MS, EC-CE-MS, EC-HPLC-MS and 

tandem MS were applied to investigate anodic oxidation of cytosine and thymine in aqueous solutions 

on screen-printed carbon electrodes. EC-MS based on electrochemical flow cells allowed for a fast and 

direct detection of oxidation products and thus for a screening of electrochemical activity and reactive 
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intermediates or instable species. By variation of the separation conditions in CE, the presence of acidic 

or basic functional groups could be investigated based on the migration behavior. Due to short analysis 

times, conclusions on product stability could be drawn by evaluating the development of the analyte 

signals in consecutive measurements. MS detection allowed for the identification of oxidation products. 

EC-HPLC-MS and tandem MS measurements added additional information due to the orthogonality of 

the separation methods and fragmentation patterns obtained in collision induced dissociation. Cytosine 

and thymine showed different kinds of products at the applied conditions. While in the case of cytosine 

monomeric oxidation products exhibiting hydroxy and hydroperoxy groups were detected as main 

products, thymine predominantly showed dimerization induced by electrochemical oxidation. The 

oxidation products of cytosine could be separated under acidic conditions while a separation of the 

oxidation products of thymine could only be achieved under alkaline conditions in capillary 

electrophoresis. Thus, both analytes behaved completely different despite using similar oxidation 

conditions. 

All results mentioned above show that EC-MS based on disposable electrodes is a powerful and versatile 

instrumental approach to different analytical challenges. By combination of electrochemical oxidation 

with separation methods and MS detection a large amount of information can be obtained such as the 

nature of functional groups based on the migration behavior in CE and retention behavior in HPLC, the 

product stability, and the mechanisms of electrochemical reactions by identification of products and 

intermediates. Easy-to-use and virtually maintenance-free disposable electrode materials as well as short 

separation times make this method interesting for high-throughput measurements. Thus, EC-MS might 

be of rising interest for applications in medical or pharmaceutical industry in the future.  
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7. Zusammenfassung in deutscher Sprache 
Die Kopplung von Elektrochemie mit der Massenspektrometrie ist eine sehr vielseitige Methode mit 

verschiedenen Anwendungsmöglichkeiten wie beispielsweise der 

• elektrochemischen online-Probenvorbereitung zur verbesserten Detektierbarkeit von 

Analyten und Erhöhung der Trennperformance 
• Aufdeckung von Oxidations- oder Reduktionsmechanismen über die Identifizierung 

auftretender Spezies 
• elektrochemischen Simulation oxidativer Prozesse relevanter Biomoleküle. 

Um den Anforderungen unterschiedlichster Proben gerecht zu werden ist eine hohe Flexibilität 

bezüglich verwendeter Lösungen und Materialien unabdingbar. Deshalb wurde eine neuartige 

Injektionszelle für die EC-CE-MS Kopplung entwickelt und charakterisiert, die aus 

lösemittelbeständigen Materialien bestand und mit lösemittelbeständigen Dünnfilmelektroden bestückt 

war. Die EC-CE-MS Methodik konnte somit auf nichtwässrige Systeme angewandt werden und eine 

Mischung von Ferrocenderivaten wurde als Modellsystem analysiert. Nach der Oxidation konnten die 

Kationen von Ferrocenmethanol, Decamethylferrocen und Ferrocen mittels Kapillarelektrophorese 

getrennt und mit Massenspektrometrie detektiert werden. Dies war ohne vorherige Oxidation nicht 

möglich, da neutrales Ferrocen mit ESI-MS nicht und neutrales Ferrocenmethanol nur sehr schlecht 

detektierbar ist. Außerdem würden beide im ungeladenen Zustand in der Kapillarelektrophorese 

komigrieren. Decamethylferrocen konnte auch ohne elektrochemische Oxidation als Kation detektiert 

werden, da es sehr leicht durch gelösten Sauerstoff oxidiert wird. Zusammenfassend konnte die 

Elektrochemie hier genutzt werden, um die Trennleistung in der Kapillarelektrophorese sowie die 

Detektierbarkeit in der Massenspektrometrie durch die Erzeugung geladener Spezies zu verbessern. Es 

wurde demonstriert, dass die Anwendbarkeit von EC-CE-MS auf der Basis von Einwegelektroden auf 

nichtwässrige Systeme erweitert werden konnte, was zuvor aufgrund der Limitierungen von 

Siebdruckelektroden nicht möglich war. 

Für die Optimierung von Oxidationsprozessen im Kontext elektrochemischer Sensorik ist es wichtig, 

die Prozesse zu verstehen, die auf einer Elektrodenoberfläche stattfinden. Verschiedene primäre 

Gallensäuren erwiesen sich nach einem Säure-induzierten Dehydrationsschritt als für eine direkte 

elektrochemische Oxidation geeignet. Durch CE-MS Messungen konnte die Dehydratisierung und die 

Addition einer Acetamid Gruppe an Chenodeoxycholsäure aufgedeckt werden, was durch das 

Migrationsverhalten in der CE und die Identifikation der entsprechenden Summenformeln in der MS 

bestätigt wurde. So konnte die CE-MS Analyse zur Aufdeckung verschiedener Reaktionsschritte im 

Kontext der anodischen Oxidation von Gallensäuren beitragen. 

Durch ihre Funktion als DNA-Bausteine sind Nukleobasen essenziell für das Leben. Um oxidative 

DNA-Schäden zu verstehen oder modifizierte Basen elektrochemisch zu detektieren ist es wichtig, die 
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Mechanismen der Oxidation von Nukleobasen nachzuvollziehen. Online EC-MS, EC-CE-MS, EC-

HPLC-MS und Tandem-MS wurden zur Untersuchung der anodischen Oxidation von Cytosin und 

Thymin in wässriger Lösung auf Kohlenstoff-Siebdruck Elektroden angewandt. Die direkte EC-MS-

Kopplung über elektrochemische Fließzellen ermöglichte eine schnelle und direkte Detektion von 

Oxidationsprodukten und eignete sich somit für einen schnellen Überblick über elektrochemische 

Aktivität und die Detektion reaktiver Intermediate oder instabiler Spezies. Durch eine Variation der 

Trennbedingungen in der CE konnte die Anwesenheit bestimmter funktioneller Gruppen über das 

Migrationsverhalten untersucht werden. Durch kurze Analysezeiten konnten über das Verfolgen der 

Signalintensitäten bei konsekutiven Messungen Rückschlüsse auf die Stabilität von Produkten gezogen 

werden. Die Detektion mittels MS ermöglichte die Identifikation von Oxidationsprodukten. EC-HPLC-

MS und Tandem-MS Messungen lieferten zusätzliche Informationen durch die Orthogonalität der 

Trennmethoden und die Fragmentationsmuster, die in Kollisions-induzierter Dissoziation erhalten 

wurden. Unter den vorliegenden Bedingungen zeigten Cytosin und Thymin verschiedenartige 

Oxidationsprodukte. Während im Falle des Cytosins monomere Spezies als Hauptoxidationsprodukte 

detektiert wurden, welche Hydroxy- oder Hydroperoxygruppen aufwiesen, zeigten sich für Thymin 

dimere Oxidationsprodukte, die durch elektrochemische Oxidation induziert wurden. Die 

Oxidationsprodukte des Cytosins konnten in der Kapillarelektrophorese unter sauren Bedingungen 

getrennt werden, wohingegen eine Trennung der Produkte des Thymins nur unter alkalischen 

Bedingungen erfolgreich war. Somit zeigte sich, dass sich die beiden Substanzen trotz Anwendung 

ähnlicher Oxidationsbedingungen komplett unterschiedlich verhielten. 

Alle oben dargestellten Ergebnisse zeigen, dass die EC-MS Kopplung auf Basis von Einwegelektroden 

eine leistungsstarke und vielseitige instrumentelle Methode ist, die für verschiedene analytische 

Herausforderungen eingesetzt werden kann. Durch die Kombination elektrochemischer Oxidation mit 

Trennsystemen sowie massenspektrometrischer Detektion kann ein hoher Informationsgehalt erzielt 

werden, wie etwa die Art vorhandener funktioneller Gruppen basierend auf dem Migrationsverhalten in 

der CE und dem Retentionsverhalten in der HPLC, die Produktstabilität, sowie die Mechanismen 

elektrochemischer Reaktionen über die Identifikation von Produkten. Der Einsatz einfach anwendbarer 

und durch die leichte Austauschbarkeit quasi wartungsfreier Elektrodenmaterialien sowie die schnellen 

Analysezeiten machen diesen Ansatz für Hochdurchsatzanwendungen interessant. So könnte die EC-

MS Methodik für den Einsatz in der medizinischen oder pharmazeutischen Industrie zunehmend 

Aufmerksamkeit erlangen. 
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8. Appendix 
 

List of abbreviations 
In the following list, the most important abbreviations used in this thesis are given. 

 

AE Auxiliary electrode 

CE Counter electrode, capillary electrophoresis 

CID Collision-induced dissociation 

CV Cyclic voltammetry 

CZE Capillary zone electrophoresis 

DEMS 

E 

Differential electrochemistry mass spectrometry 

Potential 

EC-MS Electrochemistry-mass spectrometry 

ESI Electrospray ionization 

GC Gas chromatography 

HPLC 

HV 

High-performance liquid chromatography 

High voltage 

ID Inner diameter 

L 

LC 

Length 

Liquid chromatography 

LSV Linear-sweep voltammetry 

MS Mass spectrometry 

OD Outer Diameter 

PEEK Polyehter ether ketone 

PMMA Polymethyl methacrylate 

PTFE Polytetrafluoroethylene 

RE Reference electrode 

SPCE Screen-printed carbon electrode 

SPE Screen-printed electrode 

WE Working electrode 
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