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Abstract 

Major Depressive Disorder (MDD) is a severe disease with almost 300 million people 

suffering worldwide (WHO 2019). By 2030, MDD is suggested to be identified as the global 

leading cause of disease burden. Only about 60% of patients react to a classical 

antidepressant (ADs) treatment and even if the subject is successfully treated and 

remission is achieved, the depressive disorder still imposes a considerable burden. 

Rarely, all of the symptoms disappear during remission and still depict an impairment to 

the patients’ daily life (Lépine and Briley 2011). The treatment of symptoms cannot be 

the sole ‘cure’ for MDD, rather a treatment of the cause is needed. Yet, the cause of MDD 

cannot be broken down to one single mechanism or factor, it is rather a variety of 

malfunctions leading to the manifestation of MDD. 

This study hypothesized the involvement of mitochondria and a bioenergetic imbalance 

for MDD patients. The mitochondrial respiration, the adenosine triphosphate (ATP) 

content, as well as the mitochondrial membrane potential (MMP) and the Ca2+ 

homeostasis were investigated in human cellular model. The mitochondria-related 

functions were assessed in somatic cells (human dermal fibroblasts) and neural 

progenitor cells (NPCs) derived from iPSCs of 16 MDD patients and 16 gender- and age-

matched healthy control subjects.  

Individuals with MDD showed significantly impaired mitochondrial functioning in 

fibroblasts under standard culturing conditions: basal and maximal respiration, spare 

respiratory capacity, non-mitochondrial respiration and ATP-related turnover is lower in 

Seahorse XFp Flux Analyzer respiratory measurements. Moreover, MDD fibroblasts 

harbor lower ATP levels determined by a bioluminescence assay. Measurements with the 

cationic dye JC-1 reveal a significantly more negative MMP in MDD fibroblasts, whereas 

the assessment of cytosolic Ca2+ with the ratiometric dye Fura-2 does not result in any 

significant differences. 

Additionally, fibroblasts were exposed to metabolic stress (galactose, 7 days) and 

hormonal stress (dexamethasone, 7 days). After the exposure to stress, the differences in 

bioenergetics in MDD fibroblasts were widely abolished and fibroblasts of both groups 

showed an overall significantly increased metabolism. 

In order to investigate the bioenergetics on a neuronal cellular level, the fibroblasts were 

episomally reprogrammed into iPSCs and differentiated into NPCs. Despite this process, 
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the mitochondria-related alterations discovered in MDD fibroblasts were also detectable 

in NPCs: A significantly lower basal and non-mitochondrial respiration and proton leak-

related oxygen consumption were discovered in respiratory measurements. Whereas 

ATP levels did not exhibit any significant differences, MDD NPCs showed a significantly 

more positive MMP and a trend towards altered Ca2+ homeostasis could be shown. Similar 

to the observations in fibroblasts, the differences between MDD patients and controls are 

not present after the exposure to hormonal stress (dexamethasone, 7 days).  

The results of the present study underpin the theory of a bioenergetic imbalance in MDD. 

It is likely that a mitochondrial dysfunction contributes to the pathophysiology of MDD 

and suggests that these alterations contribute to the biomolecular manifestation of 

depressive symptoms.  

Those differences in electron transport chain (ETC) function and the altered 

mitochondria-related properties depict a basis for further investigations of disease-

causing mechanisms. Furthermore, it might open new ways to gain insight into ADs-acting 

pathways, which could demonstrate a promising tool for new therapeutical approaches.  
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Zusammenfassung 

Die Unipolare Depression, mit weltweit mehr als 300 Millionen Betroffenen, ist eine 

schwerwiegende Krankheit (WHO 2019). Es wird prognostiziert, dass die Unipolare 

Depression bis zum Jahr 2030 die weltweit führende Krankheitsbelastung darstellt. Auf 

eine Behandlung mit klassischen Antidepressiva sprechen nur in etwa 60% der Patienten 

an und selbst wenn eine Remission erreicht wird, erlegt die Depression den Betroffen 

noch immer eine Last auf.  Selten sind die Patienten während der Remission symptomfrei 

und leiden unter den damit einhergehenden täglichen Einschränkungen (Lépine und 

Briley 2001).  Die alleinige Behandlung der Symptome kann nicht die ,,Heilung‘‘ der 

Depression sein - vielmehr wird eine Behandlung der Ursache benötigt. Der Grund für die 

Entstehung einer Depression kann jedoch nicht an einem einzigen Mechanismus oder 

Faktor festgemacht werden. Es ist eher eine Vielzahl an Fehlfunktionen, welche 

schlussendlich zur Manifestation einer Depression führen. 

Im Zuge dieser Studie wird eine Beteiligung der Mitochondrien als einer dieser Faktoren 

vermutet und es wird angenommen, dass ein bioenergetisches Ungleichgewicht in 

depressiven Patienten vorliegt. In einem humanen Zellmodell werden die mitochondriale 

Respiration, der Gehalt an Adenosin-Triphosphat (ATP), wie auch das mitochondriale 

Membranpotential (MMP) und der Ca2+-Haushalt untersucht. Diese mit Mitochondrien 

assoziierten Funktionen werden in somatischen Zellen (humanen dermalen 

Fibroblasten)  und neuralen Vorläuferzellen von 16 depressiven Patienten und 16 alters- 

und geschlechtsangepassten gesunden Kontrollen betrachtet.  

Die Fibroblasten von Personen mit einer Unipolaren Depression zeigen signifikant 

eingeschränkte mitochondriale Funktionen unter Standard-Kulturbedingungen: Basale 

und  maximale Respiration, respiratorische Reservekapazität, nicht-mitochondriale 

Respiration und die ATP-produktionsabhängige Atmung sind verringert in Seahorse XFp 

Flux Analyzer Messungen. Außerdem besitzen Fibroblasten von Patienten einen 

niedrigeren ATP Gehalt, welcher mit Hilfe eines Biolumineszenz Assays bestimmt wurde. 

Messungen mit dem kationischen Farbstoff JC-1 resultieren in einem signifikant 

negativeren MMP in Patientenfibroblasten, wohingegen keine signifikanten Unterschiede 

in den Messungen des zytosolischen Ca2+ mittels des ratiometrischen Farbstoffes Fura-2 

festgestellt werden können. 
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Zudem wurden die Fibroblasten eine Woche lang metabolischem Stress in Form von 

Galaktose und hormonellem Stress durch die Zugabe des synthetischen Glukokortikoids 

Dexamethason ausgesetzt. Durch die Anwendung dieser Stressprotokolle wurden die 

bioenergetischen Unterschiede in den Patientenfibroblasten weitestgehend aufgehoben 

und Patienten- als auch Kontrollfibroblasten zeigen generell eine gesteigerte 

metabolische Aktivität.  

Um die Bioenergetik auf einem neuralen Zelllevel zu untersuchen, wurden die 

Fibroblasten zu induzierten pluripotenten Stammzellen reprogrammiert und zu neuralen 

Vorläuferzellen differenziert. Trotz dieses Prozesses können die Veränderungen in der 

Mitochondrienfunktion, welche vor der Reprogrammierung in den Patientenfibroblasten 

gemessen wurden,  auch in den neuralen Vorläuferzellen nachgewiesen werden: Eine 

signifikant verringerte basale und nicht-mitochondriale Atmung wurden in 

Respirationsexperimenten ermittelt. Obgleich der ATP-Gehalt der neuralen 

Vorläuferzellen sich zwischen Patienten und Kontrollen nicht unterscheidet, konnte ein 

signifikant verringertes MMP und ein Trend zu einer veränderten Ca2+-Homöostase 

gezeigt werden. Ähnlich den Beobachtungen in Fibroblasten, sind die Unterschiede in 

Patienten und Kontrollen auch bei neuralen Vorläuferzellen nach hormonellem Stress 

(Dexamethason, 7 Tage) nicht mehr vorhanden. 

Die Ergebnisse dieser Studie untermauern die Theorie eines bioenergetischen 

Ungleichgewichts bei einer Unipolaren Depression. Es ist sehr wahrscheinlich, dass eine 

mitochondriale Dysfunktion zur Pathophysiologie der Unipolaren Depression beiträgt 

und es gibt Hinweise, dass diese Veränderungen einen Einfluss auf die biomolekulare 

Manifestation der depressiven Symptome haben. 

Die veränderte Funktion der Elektronentransportkette und die abweichenden 

Eigenschaften bezüglich der Mitochondrien legen einen Grundstein für weitere 

Untersuchungen von Mechanismen, welche Depressionen verursachen. Des Weiteren 

könnten diese Entdeckungen neue Wege und Möglichkeiten bieten, einen Einblick in 

Wirkmechanismen von Antidepressiva zu gewinnen, welche wiederum eine 

vielversprechende neue Methode darstellen neue therapeutische Ansätze zu eröffnen. 
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1 Introduction 

1.1 Mitochondria – the vital force in our cells 

1.1.1 Mitochondria structure and the site of action 

The human body harbors trillions of mitochondria. For a eukaryotic cell’s function 

mitochondria are vital. Hundreds to thousands of small bacteria-sized (0.5-1 µM) 

mitochondria ensure the cell’s energy supply. The number of mitochondria varies among 

cell type, tissue and organ, depending on the energetic needs. Muscle and cardiac cells, 

neurons and liver cells, for instance, contain up to 2,000 mitochondria, whereas red blood 

cells do not have them at all. However, mitochondria do not only vary in number, but also 

in size and shape. Mitochondria have – among many others – one key function: the 

provision of the cell with energy in form of ATP, which is pivotal for the maintenance of 

the cell’s proper function and survival. To fulfill this crucial task, mitochondria have a 

special structure: They are double-membraned, with an outer (OMM) and an inner 

membrane (IMM), an intermembrane space (IMS), cristae and the matrix (Alberts et al. 

2002).  

 

 

Figure 1 The organization of the mitochondrion. The outer membrane encloses the inner membrane possessing 
cristae, where the ETC machinery is located. The matrix of the mitochondrion contains granules, ribosomes and 

the mtDNA. 
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The mitochondrion is enclosed by OMM that is equipped with porins for the exchange of 

metabolites. Between the OMM and the IMM is the IMS. The smooth OMM, consisting of a 

lipid-double layer, has numerous embedded proteins. Large integral proteins called 

porins form the connection between the cell’s cytosol and the IMS. Those porins are the 

major junction to the cells‘ surrounding and they are responsible for the transport of 

nucleotides, ions and metabolites (Alberts et al. 2002). One of these important gateways 

from outside to the IMS of mitochondria is the voltage-gated anion channel (VDAC) that 

extends over the OMM. VDAC is described as a large aqueous pathway from a single 

30 kDa protein; a channel, that does not only have the purpose of the exchange of small 

hydrophilic molecules across the OMM. VDAC displays multi-faceted features and is able 

to form complexes with proteins and enzymes and responds to the protein concentration 

of the cytoplasm (Colombini 2004). Hence, VDAC, in association with the Translocator 

Protein 18 kDa (TSPO), for example, depicts a noteworthy equipment of the OMM setup 

and therefore the entire mitochondrial structure (Shoshan-Barmatz, Pittala, and Mizrachi 

2019). 

Enzymes and proteins also run through the IMM. The TOM complex in the OMM and the 

TIM complex situated in the IMM are multimeric protein assemblies which enable protein 

transport across the double membrane. Most importantly, the proteins of the ETC are 

embedded into the IMM. To extend the membrane and enlarge its surface, the IMM has 

cristae. The cristae are foldings of the IMM and just like the number, size and shape of the 

mitochondria itself, they differ widely along cell types. Muscle cells and neurons, for 

instance – cells types hat require a high energetic demand - show large cristae in order to 

gain some extra space for the machinery of oxidative phosphorylation (OXPHOS): the 

process which creates chemical energy (Alberts et al. 2002). 

The matrix contains the mitochondrial DNA (mtDNA). The mtDNA is a small, circular and 

multi-copy genome. It includes 37 mitochondrial genes whereof 13 mt genes are coding 

for essential components of the mitochondrial ETC and the ATP synthase. Each 

mitochondrion can contain 2–10 copies of mtDNA (Robin and Wong 1988). 
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Figure 2 The ETC and the mechanism of OXPHOS in mitochondria. Through the transfer of electrons at the 
Complexes I-IV of the respiratory chain the reduction equivalents and the pumping of protons from the mitochondrial 
matrix the mitochondrial membrane potential is built up. This electrochemical gradient drives the ATP synthase that 
converts ADP and inorganic phosphate the cell’s most valuable energy carrier ATP. 

 

 

The respiratory chain is the ‘’site of action’’ and through OXPHOS the final products of the 

tricarboxylic acid (TCA) cycle and glycolysis are metabolized. Via OXPHOS basically the 

metabolism of sugars is completed and the mitochondrion fulfills its major function in the 

cell: the energy supply in form of ATP.  In the respiratory chain, the reduction equivalents 

NADH and FADH2 derived from the TCA cycle are oxidized through serial redox reactions. 

Besides H2O and CO2, 36 molecules of ATP are synthesized. The respiratory chain is built 

up of four protein complexes and the ATP synthase located at the IMM. At Complex I 

(NADH Ubiquinone-Oxidoreductase) two electrons are transferred from NADH/H+ to 

ubiquinone. Two further electrons are transferred from FADH2 to ubiquinone at Complex 

II, called the Succinate-Ubiquinone-Oxidoreductase. At the third Complex (Ubiquinone-

Cytochrome-c-Oxidoreductase) two molecules of Cytochrome c (Cyt c) are reduced by the 

transfer of two electrons from ubiquinol. Finally, at Complex IV (Cyt c-Oxidase), Cyt c is 

reoxidized under the reduction of O2 to H2O. Besides the transport of electrons along the 

reduction equivalents, protons are pumped from the matrix of the mitochondrion into the 

IMS. Therefore, an electrochemical gradient is built up over the IMM. This proton motive 

force drives the ATP synthase and enables the generation of ATP from ADP+Pi (Alberts et 

al. 2002).  
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Figure 3 The ATP synthase. The ATP synthase is located at the IMM and consists of two subunits, which are in 
turn built up of several subunits. The hydrophobic F0 (consisting of a, b, c) is situated in the membrane and forms 
a proton channel: it converts the flux of the protons through the membrane into a rotation, with whose help the ATP 
synthase is driven. The hydrophilic F1-subunit (put together by the alpha, beta, gamma, delta and epsilon unit), 
sticks out of the IMM into the matrix, where from ADP und Pi ATP are synthesized. The OSCP-subunit also belongs 
to the F1-complex and plays an important role when it comes to stabilization of the F1-subunit against the rotation 
of the F0-subunit. 

 

 

1.1.2 Mitochondria in the cellular metabolism 

The mitochondrion’s key function, the OXPHOS, cannot be seen as a separate mechanism, 

independently passing off in the mitochondrion. Mitochondria are involved in a network 

of metabolic pathways and the products of these important metabolic pathways are 

transformed into energy and eventually, mitochondria are the organelles keeping the cell 

alive. Metabolites from lipid degradation, glycolysis and the TCA cycle convert in the 

mitochondrion.  

Oxidative metabolism of both glucose and free fatty acids result in the generation of the 

key metabolite Acetyl-CoA. During the oxidation of one molecule glucose into two 

molecules pyruvate, net 2 ATP and 2 NADH are generated. Pyruvate is converted by 

enzyme complex pyruvate dehydrogenase into two molecules of Acetyl-CoA, which is 

trafficked from the cytosol into the mitochondrion. During β-oxidation fatty acids are 

broken down in a four-step reaction: The β-carbon is oxidized to ketone followed by the 

cleavage of the α- and the β-carbon which yields after all one molecule Acetyl-CoA and the 

reduction equivalents NADH and FADH2. In the TCA cycle, Acetyl-CoA is oxidized in an 

eight steps process in the mitochondrial matrix outside the cristae. Each molecule of 

Acetyl-CoA yields 3 molecules of NADH and one molecule of FADH2. These reduced 
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nucleotide coenzymes subsequently transfer electrons to molecular oxygen via the ETC 

and ATP is generated from ADP and inorganic phosphate (Alberts et al. 2002). 

Mitochondria are the main source of endogenously produced reactive oxygen species 

(ROS). ROS are a byproduct of OXPHOS which is produced by the ETC through the 

reduction of O2 to superoxide. In order to prevent oxidative stress by overwhelming 

amounts of ROS, cells harbor an antioxidative defense (Roma et al. 2017). The 

mitochondrial enzymes superoxide dismutase (SOD) and thioredoxin-2 (TRX2) scavenge 

free radicals and strive for an equilibrium in the cell. Another endogenous antioxidant 

system with mitochondrial involvement is the glutathione (GSH) peroxidase system 

(Tanaka et al. 2002).  

 

 

Figure 4 Mitochondria in the cellular metabolism. Mitochondria are involved in crucial cellular functions including 
biosynthesis as well as degradation of metabolites, bioenergetics and energy supply and balance and signaling of 
ROS. The key processes – glycolysis, β-oxidation of fatty acids, the TCA cycle and one-carbon metabolism – in the 
cell and in the mitochondrion and their interplay are depicted.  

 

 

However, ROS is necessary for the cell and its production is imperative for redox 

homeostasis. Balanced ROS levels are vital for the cell‘s homeostasis. ROS signalling is not 

only part of the immune system, but it also mediates cell proliferation and apoptotic 

pathways to ensure proper regulation of the cell cycle and programmed cell death (Roma 

et al. 2017). Ca2+ homeostasis is the second key player in cell survival and apoptosis. Ca2+ 

as second messenger molecule mediates intracellular signalling cascades as well as cell-
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cell-signalling (Clapham 2007). Mitochondria regulate cytosolic Ca2+ levels and 

consequently Ca2+-mediated signalling. Mitochondrial Ca2+ levels are crucial for the rate 

of OXPHOS.  Uncoupling proteins 1, 2 and 3 (UCP1, UCP2, UCP3) are embedded in the IMM  

and belong to the superfamily of mitochondrial ion transporters (Ricquier and Bouillaud 

2000) . UCP1 accounts for heat production by inducing a H+ leak that uncouples OXPHOS, 

whereas UCP2 and UCP3 contribute to many cellular processes including mitochondrial 

free-radical production, apoptosis, hormone secretion and they are implicated in glucose 

and fatty acid metabolism (Dejean et al. 2004; Harper et al. 2002; Krauss et al. 2003; 

Mookerjee et al. 2010). Most importantly, UCP2 and UCP3 were shown to be fundamental 

for mitochondrial Ca2+ transport (Graier, Trenker, and Malli 2014).  

Besides those transport systems, Ca2+ signalling and buffering is accomplished by 

interfaces of the mitochondria and the endoplasmic reticulum (ER) and are entitled 

mitochondria-associated ER membranes (MAMs). Proteins in MAM either are involved in 

physical connection between ER and mitochondria or modify the tethering complexes in 

MAMs. Mitofusin 1/2 (Mfn1/2), a mitochondrial fusion GTPase, which situated to the 

OMM, is part of the MAM complex. MFN1/2 plays a role in mitochondrial fusion and 

together with OPA1, another mitochondrial fusion GTPase, which located at the IMM, 

regulates the merging of mitochondria  (De Brito and Scorrano 2008; Cipolat et al. 2004; 

Detmer and Chan 2007). 

 

 

1.1.3 Fission and fusion: a dynamic network 

Mitochondria are highly dynamic organelles and change their shapes and distribution 

constantly. Mitochondria’s shapes range from small vehicles, short rods and reticular 

networks spanning the entire cell. Their rapid changes in shape and location, allow 

mitochondria a fast adaption to energetic needs and they are essential to mitochondrial 

health, wherefore damaged organelles or precipitates are restored and removed. 

Mitochondrial fission and fusion events are balanced and have been identified as a critical 

process in mitochondrial morphology and function. As mentioned beforehand, and most 

importantly, fission and fusion control the shape length and number of mitochondria. 

Additionally, the shape of mitochondria affects the ability of cells to distribute their 

mitochondria to specific subcellular locations. By continuous merger and division, the 

exchange of lipid membranes and intra-mitochondrial content is ensured (Charmandari, 

Tsigos, and Chrousos 2005; Gold et al. 2002; Kyrou, Chrousos, and Tsigos 2006; Detmer 
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and Chan 2007). Defects in fission and fusion come with severe diseases. Dysregulation of 

those two processes are associated with an energetic defect, giving the hint that 

mitochondrial structure and function are tightly related (Bertholet et al. 2016; Lee and 

Yoon 2016). Mfn1 and Mfn2 are responsible for OMM fusion, whereas OPA1 regulates the 

fusion of the IMM. Fission events in mammals are mediated by the dynamin-like protein 

1 (drp1), which is predominantly a cytosolic protein (Meeusen et al. 2006; Yonashiro et 

al. 2009). Fibroblasts that lack both, Mfn1 and Mfn2, show reduced respiratory capacity 

and individual mitochondria show great heterogeneity in shape and membrane potential. 

Cells that lack OPA1 show similar defects, with an even greater reduction in respiratory 

capacity (Chen, Chomyn, and Chan 2005).  

 

 

 

 

Figure 5 Fission and Fusion events. (a) Wild-type cells with intact mitochondrial dynamics. Functioning 
mitochondria are shown in green, whereas mitochondria with defects and lack of mtDNA are shown in orange. By 
fusion events the deficiencies in non-functional mitochondria can regain its function and mtDNA by fusing with a 
neighbouring mitochondrion. The fused mitochondrion then undergoes fission, with both daughter mitochondria 
receiving mtDNA nucleoids. (b) Cells with fusion-deficient properties. The mitochondria are fragmented since fission 
events are still happening. Cells lack mtDNA nucleoids accumulate because there is no pathway for defective 
mitochondria to regain mtDNA. Fusion-deficient cells can maintain mtDNA nucleoids, but such nucleoids serve a 
much smaller mitochondrial mass. 

 

 

Hence, mitochondrial dynamics are extremely important for mitochondrial function. 

Mitochondria should not be seen as separate organelles but as a population of organelles 

with heterogeneous functions. Information and contents are being exchanged and 

deficient mitochondria can be rescued by others. A few mitochondria might be non-

functional owing to the loss of essential components. However, this dysfunction is 

transient, since mitochondrial fusion provides a pathway for these defective 
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mitochondria to regain essential components (figure 5). An essential prerequisite for 

proper mitochondrial function is mitochondrial DNA (mtDNA) which is organized in 

nucleoids. The mtDNA genome encodes important subunits of the respiratory Complexes 

I, III and IV, and is therefore indispensable for OXPHOS. When mitochondrial fusion is 

abolished, a large fraction of the mitochondrial population loses mtDNA nucleoids (Chen, 

McCaffery, and Chan 2007). When mitochondria divide, most daughter cells inherit at 

least one mtDNA nucleoid. If this inheritance fails, fusion events compensate for that and 

the mtDNA is restored in the daughter cell. Since in cells with disturbed mitochondrial 

dynamics, the exchange of contents does not take place, the restoration of mtDNA 

nucleoids probably accounts for the heterogeneity in mitochondrial MMP and the reduced 

respiratory capacity. Cells with a lack of fusion capability, however, still harbour a 

significant number of mtDNA nucleoids. Due to fission events, the functional 

mitochondrial mass gets reduced. Furthermore, not only the mtDNA gets restored by 

mitochondrial fusion, but also other components like substrates, metabolites and specific 

lipids can be recovered in disturbed mitochondria (Detmer and Chan 2007). Concluding, 

the mitochondrial mass is strongly influenced by mitochondrial dynamics and might 

reflect the cell’s health or disease state. The cellular mtDNA content is regulated by the 

nuclear DNA that encodes for in mtDNA replication, transcription, translation and repair. 

Molecular defects in the genes responsible for mtDNA biogenesis and therefore a 

reduction of mtDNA content. It is known that mtDNA depletion and a lack of the 

maintenance of mtDNA integrity can lead to a series of disorders. Those diseases include, 

for instance, Leigh-like encephalopathy with dystonia, deafness and lactic acidosis 

combined with encephalomyopathy, but also mitochondrial hepatoencephalopathy with 

hepatic and neurologic symptoms during infancy (Dimmock et al. 2008; Ostergaard et al. 

2007; Sarzi et al. 2007; Wong et al. 2008). 

Studies also reported alterations of the mitochondrial mass in mood disorders. MtDNA 

copy number is reduced in leucocytes of Schizophrenia (SZ) and Bipolar Disorder (BPD) 

patients and could be correlated to the severity of disease and the anti-psychotic 

treatment. They suggested a link between mitochondrial dysfunction and psychosis-like 

symptoms (Kumar et al. 2018). Decreased number of mtDNA in leucocytes was revealed 

for MDD (Kim et al. 2013). Decreased mtDNA copy numbers were also discovered with 

increasing duration of the Posttraumatic Stress Disorder (PTSD) symptoms, whereas the 

copy number is highest in the initial phase of PTSD (Bersani et al. 2016). Moreover, for 

patients with MDD, anxiety disorder or adjustment-disorder an increased mtDNA copy 
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numbers in peripheral blood is reported and it is positively correlated to the severity of 

disease (Karabatsiakis et al. 2014). It might be assumed that higher mtDNA copy numbers 

compensate for dysfunctional mitochondrial metabolism and the resulting energetic 

deficiencies (Wang et al. 2017).  

 
 

1.2 Major Depressive Disorder – a multifactorial disease 

1.2.1 Classification and diagnostics  

Sadness, emptiness, hopelessness, a loss of interest and pleasure – MDD has many faces. 

The severe disease is of high heterogeneity and multifaceted in the clinical picture. 

Symptoms include changes in mood, cognition, interest, but also troubles in decision-

making, anxiety, anhedonia, problems in volition and motivation and changes with 

respect to psycho-motility and energy. Furthermore, appetite and therefore weight and 

the circadian rhythm can be affected. According to Diagnostic and Statistical Manual of 

Mental Disorders V (DSM V) classification two out of three main symptoms - a depressed 

mood, anhedonia and the lack of drive and some of the side symptoms, respectively 

somatic symptoms include troubles in cognition, reduced self-esteem, feelings of guilt 

and/or hopelessness, changes in appetite, sleep disturbances and the expression of 

meaninglessness of life – so suicidal ideation – must be present for at least 2 weeks nearly 

every day. MDD is diagnosed based on physician-administered or patient self-

administered interview and is still subjective since it depends on the individual clinical 

judgment (Bilello 2016; Young et al. 2016). MDD state is evaluated through a 

questionnaire that determines the severity of depression. The Hamilton Depression Scale 

(HAM-D) ranges from 0 (no depression) to 10-20 scores (mild depression) to 21-30 

scores (medium severe depression). More than 30 points are considered as a severe MDD. 

Classification according to ICD-10 Classification of Mental and Behavioral Disorders. 

Clinical Descriptions and Diagnostic guidelines (ICD-10) provides the following categories: 

 

- F32.0: Mild depressive episode: Two or three of the symptoms are present. The 

subject is generally impaired and is seeking for help, however he/she is still able 

to fulfill occupational and private routine.  

- F32.1: Medium severe depressed episode: Usually four or more of the symptoms 

are present. The subject has severe troubles continuing daily routine. 

https://www.dict.cc/englisch-deutsch/suicidal.html
https://www.dict.cc/englisch-deutsch/ideation.html
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- F32.2: Severe depressed episode without psychotic symptoms: Several of the 

symptoms are present to a torturous extent. Subjects typically exhibit a loss of self-

esteem and worthlessness and affected persons utter suicidal thoughts and 

actions. Persons additionally suffer from somatic symptoms, e.g. agitation, sleep 

disturbances or loss of appetite or libido. 

- F32.3: Severe depressed episode with psychotic symptoms: State of disease is 

described as F32.2, but additionally subjects suffer from hallucinations and 

delusional ideas, psychomotor inhibitions or stupor, so that daily social activities 

are impossible and persons are in danger of life due to suicide and a lack of 

imbibition and ingestion. 

- 32.8: Other depressive episode. 

- 32.9: Depressed episode, not specified. 

 

 

Figure 6 Symptoms of MDD and its increasing impact on daily performance. A combination of symptoms concerning 
emotional status, vegetative and cognitive function must be present over a period of 2 weeks. Increasing number 
of a combination of manifestations causes cumulative functional impairment. Main symptoms for depression are 
marked with a red dot. The color green indicates emotional symptoms, blue color stands for neurovegetative 
symptoms and orange depicts neurocognitive symptoms.  

 

 

MDD has a severe impact on the affected persons. It is a disease with tremendous societal, 

economic and emotional burden and results in an impairment in social or occupational 

functioning and therefore impairs daily living (Kessler and Bromet 2013). MDD is 
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considered as a global burden with 1 to 17% of affected people in adults, 3 to 6% in 

adolescents, and 12 to 38% in elderly (Gururajan et al. 2016; Kessler and Bromet 2013; 

Rantamaki and Yalcin 2016). MDD is one of the leading causes of mental disability 

worldwide, with an estimated lifetime prevalence of up to 20–30% (Weissman et al. 

1996). Moreover, women are affected more frequently than men (Kessler and Bromet 

2013). MDD is highly comorbid with somatic diseases like diabetes, asthma and arthritis, 

but also with neurodegenerative disorders like Alzheimer’s disease (AD), Parkinson’s 

diseases (PD) and Huntington’s disease (HD) (Kupfer, Frank, and Phillips 2012; Réus et 

al. 2016). 

MDD is a multifactorial disease including, genetic and epigenetic factors, the exposure to 

stress or traumatic events and the interaction with other psychological or environmental 

factors and even personality itself plays a role in the manifestation of MDD (Rantamaki 

and Yalcin 2016; Schneider and Prvulovic 2013). It is assumed, that for MDD patients 

neuronal circuits are affected and neuronal connectivity is altered, leading to functional 

neuroanatomical modifications (Rantamaki and Yalcin 2016). From a molecular point of 

view, neurobiological, but also neuroendocrine, neurotrophins as well as oxidative stress 

and inflammatory processes contribute to the manifestation of MDD and several theories 

for the development of the disease merged the last decades. 

 

 

1.2.2 Early and new theories for manifestation  

The oldest hypothesis that is postulated with regard to the manifestation of MDD is the 

monoaminergic theory of depression. It claims that the underlying pathophysiologic basis 

for the manifestation of MDD is a lack of monoamines like serotonin, norepinephrine 

and/or dopamine in the synaptic cleft. Tricyclic antidepressants (TCAs) and selective 

serotonin reuptake inhibitors (SSRIs) are the most common treatments for the MDD 

(Bartl et al. 2014; Eisenhofer, Kopin, and Goldstein 2004). These medications elevate the 

level of neurotransmitters in the brain by either prolonging their presence in the synaptic 

cleft or blocking their presynaptic auto-receptors. Depressive symptoms are effectively 

reversed by monoamine oxidase inhibitors (MAOIs) and TCAs, however with a delayed 

onset. Drugs acting on the monoaminergic system usually need at least 2 to 8 weeks 

before a therapeutic effect can be observed and each drug is only efficient in around two 

third of MDD patients (Sonnenberg et al. 2008). Besides that, the observed discrepancy 
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between pharmacological and biochemical function of ADs and their clinical mood 

altering responses  remains unclear (Leonard 2007).  

Therefore, additional neurotransmitter systems came into play and newer theories 

postulate that monoamine deficiency cannot be the sole underlying reason for the 

development of depression. The neuroplasticity theory of depression includes other 

transmitters like Glutamate and γ–butyric acid (GABA), but also the Brain-Derived-

Neurotrophic factor (BDNF). The glutamatergic system may be also implicated in MDD 

(Hashimoto 2009). Fast-acting drugs like Ketamine, which is an antagonist of the NMDA-

receptor, revealed antidepressant effects (Dutta, McKie, and Deakin 2015). Moreover, it is 

likely that the glutamatergic system is involved in the manifestation of MDD, since 

increased glucocorticoid levels, which are released under conditions of chronic stress that 

associated with depression, lead to enhanced glutamatergic transmission, elevated NMDA 

receptor expression and increased extracellular glutamate levels (Lu et al. 2003). 

Glutamate and GABA are both involved in synaptic plasticity and various studies 

implicated GABA in the pathophysiology of depression (Krystal, Sanacora, and Duman 

2013; Luscher, Shen, and Sahir 2011). 

Synaptic plasticity is an important process in the brain including synaptogenesis, 

alterations in dendritic function, neurite extension, synaptic remodelling and 

modification of synaptic neurotransmissions. ADs treatment can – at least partly - reverse 

this disturbed plasticity which contributes to a pathological state (Pittenger and Duman 

2008; Wood et al. 2004). The modulation of receptors for serotonin and noradrenaline 

through ADs treatment, different downstream pathways get activated that have a 

common function which is the regulation of gene expression, e.g. BDNF, which is crucial 

for the formation of neuronal networks (Yu and Chen 2011). 

Numerous studies also suggest that inflammation may contribute to symptoms relevant 

to a number of psychiatric disorders and particularly depression. Inflammation and 

depression are linked and there is strong evidence that one goads the other, in the sense 

that inflammatory responses can lead to depression and depression can lead to 

inflammation. It is known that patients with inflammatory diseases are more likely to 

show greater rates of MDD. Moreover, patients with high inflammation have been shown 

to react poorly to conventional ADs therapies (Felger 2018). A large number of people 

with MDD show elevated peripheral inflammatory biomarkers, even in the absence of a 

medical illness. Several studies have reported increased circulating inflammatory 

cytokines, such as interleukin (IL)-1, IL-6, and tumor necrosis factor (TNF), their soluble 
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receptors, and acute phase reactants, like C-reactive protein (CRP), in patients with MDD 

(Maes 1999; Maes et al. 1992; Sluzewska 1999). And coming back to neurogenesis and 

alterations in brain signaling pattern, inflammatory mediators have been found to alter 

glutamate and monoamine neurotransmission as well as glucocorticoid receptor (GR) 

resistance (Amodeo, Allegra Trusso, and Fagiolini 2018). 

A dysfunction of GRs, elevated levels of glucocorticoid hormones and the accompanied 

disturbed feedback mechanism of the hypothalamus-pituitary-adrenal (HPA) axis is 

strongly associated with MDD (Vreeburg et al. 2009). ADs act on the upregulation of the 

HPA axis and moderate the hyperactivity by ameliorating many of the neurobiological 

disturbances in depression and relief depressive symptoms (Anacker et al. 2001).  

 

 

1.3 The risk factor stress - impact on mitochondria and mood 

1.3.1 The stress response in the human body 

The human stress response is a homeostatic mechanism that provides a better chance of 

survival when the body is under threat. It mobilizes neural and hormonal networks to 

optimize cognitive, cardiovascular, immunological and metabolic function. 

The HPA axis is the key pathway in the human stress response and reacts immediately to 

a real or perceived stressor. It is the central mediator of the ‘’fight or flight’’ reaction.  

 

 

Figure 7 The Hypothalamic-Pituitary-Adrenal Axis. An internal or external stressor induced the releases of CRH 
from the hypothalamus which causes a release of ACTH from the pituitary gland. ACTH acts on the adrenal glands 
and elevated levels of Cortisol follows. Cortisol action is regulated by a negative feedback mechanism on the 
hypothalamus. Source: https://images.agoramedia.com/everydayhealth/gcms/What-Is-Cortisol-722x406.jpg 
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The HPA axis is a complex combination of organs and transmitters with a feedback 

mechanism. Internal, e.g. the circadian rhythm, and external signals, like stress, trigger 

the hypothalamic release of corticotropin releasing hormone (CRH), which acts on the 

anterior pituitary, which in turn stimulates the synthesis and secretion of 

adrenocorticotropic hormone (ACTH) in the pituitary gland. ACTH then acts on the 

adrenal cortex to stimulate the production and secretion of Cortisol, a glucocorticoid (GC). 

The GCs that are released, mediate through GRs which are expressed throughout the 

entire body and trigger negative feedback mechanism by also targeting the hypothalamus 

and anterior pituitary. The production and release of CRH and ACTH are inhibited and 

thereby limit both, the intensity and duration, of the GC increase (Oakley and Cidlowski 

2013). Hence, the stress response is crucial for our homeostasis and survival and comes 

along with beneficial adaptations on a cellular and molecular level. 

 

1.3.2 Benefits of acute stress 

Not just the release of CRH, ACTH and GCs are typical for the stress response, but also the 

release of catecholamines, adrenaline and noradrenaline, as well as pro-inflammatory 

factors TNF-α, IL-1 and IL-6. Altogether, the secreted substances ensure the fast response 

that includes effective blood supply in the brain, the cardiac muscle and the skeletal 

muscle. Furthermore, the energy production is enhanced by recruiting substrates like 

glucose, fatty acids and amino acids from storages. Besides that, the optimal ATP 

availability to vital tissues is orchestrated (Charmandari, Tsigos, and Chrousos 2005). 

Mitochondria are the pivotal organelle when it comes to biosynthetic activities and the 

supply of energy. Together with their involvement in Ca2+ metabolism, signaling, the 

regulation of thermogenesis and the generation of ROS, as well as the decision makers 

over cell survival or apoptosis, they are the first organelles to react to stressors 

(Klinedinst and Regenold 2014). Oxygen consumption and total energy expenditure are 

increased during the initial phase of the acute stress. Several signalling pathways are 

activated to meet energy demands during stress situations. Firstly, a higher number of 

mitochondria are recruited and they increase their volume. The expression and the 

activity of OXPHOS units are enhanced and the uncoupling of the respiratory chain and 

consequently energy in the form of heat is released. Besides that, the ROS level is 

regulated which is in turn important for signalling and defence and finally, an apoptotic 
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cascade is triggered, depending on the nature of the stressor (Goldenthal and Marin-

Garcia 2004).  

Mitochondrial function is affected and enhanced through GR action. GRs are expressed in 

mitochondria in several cell types (Demonacos et al. 1995). There is evidence that short-

term exposure to stress and the concentration of GCs is associated with induction of 

mitochondrial biogenesis and enzymatic activity of the ETC units. For instance, by acute 

exposure of skeletal muscles to the synthetic GC dexamethasone, the transcription 

primarily of nuclear genes, but also mtDNA-encoded genes, affecting mitochondrial 

function and biogenesis, are initiated (Mikes et al. 2002). Mitochondrial biogenesis and 

OXPHOS and consequently adaptive thermogenesis in adipose tissue as well as in the 

skeletal muscle are stimulated by the catecholamines that are released. In brown adipose 

tissue energy saved from OXPHOS of substrates is dissipated as heat instead of the storage 

in form of ATP: this process is denominated as ‘uncoupling’. The process of uncoupling is 

beneficial for the cell, as it attenuates mitochondrial ROS production and protects against 

cellular damage (Brand and Esteves 2005). Another signalling pathway that is activated 

during acute stress is the peroxisome proliferator-activated receptor-coactivator 1-α 

(PGC-1α) signalling pathway. Cytokines, such as TNF-a, IL-1, which are immediately 

released, trigger the transcriptional activity of PGC 1-α via direct phosphorylation and 

activation the mitogen-activated protein kinase (MAPK) pathway. This results in 

stabilization and activation of PGC-1α protein, which is the master regulator of 

mitochondrial biogenesis. PGC 1-α switches on gene expression that drives mitochondrial 

biogenesis and OXPHOS, again directing the metabolism towards mitochondrial 

uncoupling and energy expenditure (Michael et al. 2001; Wu et al. 2006). 

Taken together, the acute effects of stress on the human body and the downstream effects 

are beneficial and necessary for the reaction to a stressor in general. But what happens 

when the perceived or actual stressor is persistent and the human body is steadily 

exposed to stress? 

 

1.3.3 Sustained stress and its deleterious consequences 

Chronic exposure to stress results in reversal of the beneficial effects. The longterm 

cortisol exposure becomes maladaptive, which can lead to a broad range of problems 

including the metabolic syndrome, obesity, cancer, mental health disorders, 

cardiovascular disease and increased susceptibility to infections (Björntorp and Rosmond 

2000; Pufall 2015a; Steckler, Holsboer, and Reul 1999; Strüber, Strüber, and Roth 2014a). 
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However, starting with the initial process leading to these serious diseases: the activation 

of the HPA axis and the release of GCs, adrenaline and cytokines. Prolonged exposure to 

GCs causes respiratory chain dysfunction, increased ROS generation, mitochondrial 

structural abnormalities, apoptosis and cell death. Even if the release of GC is crucial and 

necessary in a stressed state, an overload of cortisol – regardless if naturally secreted or 

synthetic GCs administered through pharmacological treatments – is associated with 

various serious diseases (Charmandari, Tsigos, and Chrousos 2005; Chrousos 2000; Gold 

et al. 2002; Kyrou, Chrousos, and Tsigos 2006). The beneficial PCG1-α signalling, which is 

necessary for mitochondrial biogenesis, can become maladaptive and is detrimental to 

the cell in response to persistent stressors. PGC-1α overexpression for instance, caused 

hepatic insulin resistance, manifested by higher glucose production and diminished 

insulin suppression of gluconeogenesis (Liang et al. 2009). Another study was able to 

show, also in a murine model, that the overexpression of PGC1-α leads to cardiomyopathy 

(Russell et al. 2004).  Abnormally increased mitochondrial biogenesis leads to an elevated 

level of ROS. Increased oxidative damage in form of elevated levels of stress markers and 

genetic modification, namely telomere shortening, was revealed in children of mother 

with chronical psychological stress (Epel et al. 2004). In this context, especially the NF-κβ 

pathway is highly sensitive to changes in the intracellular redox environment and thus 

can be activated by oxidative stress. Mitochondrial gene expression can be negatively 

regulated in response to cellular TNF-α stimulation (Cogswell et al. 2003). Moreover, 

exceeded TNF-α release induces apoptosis in several cell types. TNF-α mediated 

apoptosis requires binding of the cytokine to its receptor TNFR1. This triggers a 

downstream activation of caspase 8 increasing Cyt c release which is followed by a loss of 

the MMP and the induction of apoptosis (Micheau and Tschopp 2003). Moreover, mtDNA 

is sensitive to oxidative damage. Mutations in the mtDNA can lead to altered transcription 

and expression of the ETC enzymes, which causes pathologic changes of mitochondrial 

function (Shokolenko et al. 2009). 

It is known that chronic stress alters ingestion behavior. Nutrient overload and a 

carbohydrate- and lipid-rich diet leads to an excess of GC and is associated with abdominal 

obesity. It is very likely that overweight is accompanied by the development of diseases 

affecting metabolism, e.g. metabolic syndrome, type-2 diabetes and cardiovascular 

disease (Krempler et al. 2002; Patti et al. 2003). Disruptions of the OXPHOS and mtDNA 

abnormalities cause changes in PGC 1-α expression and UCP2. PGC 1- α and UCP2 play a 



 
32 Introduction 

crucial role in proton leak and thermogenesis and they are linked diabetes and the 

metabolic syndrome (Brand and Esteves 2005).  

 
 

 

 

Figure 8 Mitochondrial functions in the stress response. This figure summarizes important mitochondrial functions 
including (a) the energy production through OXPHOS, (b) the generation of ROS and (c) the induction of apoptosis 
by opening of the mitochondrial permeability transition pore (mtPTP). By the release of Cyt c and the activation of 
Apaf1, the Apoptosome is triggered downstream and caspase activation follows. Alongside, the mitochondrion’s 
most important signaling pathways are shown. (d) By adrenergic receptor activation, cAMP and PKA are activated. 
By cytokine receptor activation, the p38 MAPK pathway is triggered, which in results an activation of the major 
upstream regulator of mitochondrial function-related gene expression, the PGC-1α. Exposure to stressors, such as 
cold temperature, fasting, exercise, cachexia or chronic infection activates PGC-1α. (e) The release of GC during 
the stress response nuclear and mitochondrial genes regulating mitochondrial biogenesis and function are activated 
and the GRs can enter the mitochondrion and regulate mtDNA transcription. (f) A ‘mitochondria-specific stress 
response’ takes place by a retrograde signalling from the mitochondrion to the nucleus.  

 

 

Elevated diurnal GC levels are a characteristic for depressed subjects and they remain 

high even after remission from a depressed episode (Beluche et al. 2009; Belvederi Murri 

et al. 2014). A constant state of stress in form of high cortisol levels constitutes one 

important neurobiological characteristic of depression (Stetler and Miller 2011). Chronic 

stress, which is defined as stress ongoing for more than 12 months, is a stronger predictor 

of depressive symptoms than acute stressors (Hammen 2005). There is clear evidence, 

that the severity and number of negative, stressful events increases the probability for an 

onset of a depressed phase (Kendler, Karkowski, and Prescott 1998). Resuming the facts 

of persisting stress, the long-term elevation of cortisol and its molecular downstream 
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effects as one of the biggest risk factors for the manifestation of MDD, a fundamental role 

of dysfunctional mitochondria and their pathogenic impact is reasonable. 

 

 

1.4 Mitochondria and disease – what we know so far 

1.4.1 Mitochondriopathies 

Primary and secondary mitochondriopathies are described as clinical, biochemical and 

genetic diseases. The disorders are caused either by mutations of the maternally inherited 

mitochondrial genome or nuclear DNA mutations. The clinical manifestation of a 

mitochondriopathy is in the first place not dependent on the localisation of the mutation 

or the cell type, organ or the affected person, but rather on the distribution across cell 

types and the extent of the mtDNA mutations. Besides the genetic variation of the mtDNA 

itself, epigenetic factors contribute to the clinical picture (Finsterer 2004). 

Mitochondriopathies can be distinguished according to different aspects. Firstly, primary 

and secondary mitochondriopathies are differentiated. Primary mitochondriopathies 

include mutations in the mtDNA or the nDNA, or in both. A secondary mitochondriopathy 

is defined by a normal mitochondrial DNA, however the mitochondria are structurally 

modified. Secondary mitochondriopathies prevail along muscle dystrophies, glycogenosis 

or myositis. The biochemical defect is another aspect. Myopathies can be considered and 

categorized according to the molecular changes: defects in the respiratory enzymes, 

respectively substrate transporters or protein shuttles, alterations in the β-oxidation or 

pyruvate oxidation or the citrate cycle (Morgan-Hughes 1996). Alternatively, it can be 

distinguished among the clinical symptoms. Those symptoms are of high variety and 

range from muscle dystrophies, ophtalmoplegia and vision loss, to metabolic diseases like 

diabetes. Epilepsy and physical or mental retardation are typical for 

mitochondriophathies, too (Walker and Collins 1996). Clinically classified mitochondrial 

symptoms are for example Chronic Progressive External Opthalmoplegia (CPEO), Kearns 

Sayre Syndrom (KSS), Mitochondrial Encephalomyopathy- Lactic Acidosis and Stroke-like 

Episodes (MELAS), myoclonic epilepsy and ragged red fibres (MERRF) or maternally 

inherited Leigh Syndrome (MILS). It is known, that people primarily diagnosed with a 

mitochondriopathy, show comorbidities with psychiatric disorders. A high comorbidity 

of mitochondrial MELAS in SZ and bipolar affective disorder has also been documented 

(Oexle and Zwirner 1997; Prayson and Wang 1998; Siciliano et al. 2003). Moreover, an 

acute confused state and SZ-like hallucination syndrome are sometimes observed in 
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patients with MELAS. Cases of mitochondrial encephalopathies presenting MDD or BPD 

have also been reported (Kato and Kato 2000). 

 

1.4.2 Mitochondrial disruption in neurodegenerative diseases 

Mitochondrial dysfunction and abnormalities have been reported in several neurological 

disorders. Typical neurodegenerative disorder with mitochondrial involvement are 

Alzheimer’s disease (AD), Parkison’s disease (PD), Amyotrophic Lateral Sclerosis (ALS) 

or Huntington’s disease (HD). The most common cause for these illnesses is mitochondrial 

ageing and as a consequence thereof, an accumulation of mtDNA mutations and the net 

production of ROS. Throughout lifespan, increasing number of large scale deletions and 

point mutations are acquired (Corral-Debrinski et al. 1992). Several IS proteins including 

Cyt c, second mitochondrial activator of caspases (SMAC) and high-temperature 

requirement protein A2 (HTRA2) have pro-apoptotic functions when released to the 

cytoplasm. An accumulation of deletions and point mutations in genes that are 

responsible for apoptosis, are considered to contribute to a diminished mitochondrial 

function and survival. Defects in ROS scavenging enzymes like mitochondrial superoxide 

dismutase (MnSOD) or methionine sulfoxide reductase A (MSRA) are related to a 

shortened mitochondrial life span. Oxidative damage notably contributes to AD-related 

pathology. For instance, deficiencies in the MnSOD enzyme activity was shown to increase 

amyloid-β-peptide (Aβ) levels, which is the primary component of senile plaques 

(Velliquette, O’Connor, and Vassar 2005). Moreover, amyloid precursor protein (APP), 

which gives rise to Aβ, was detected to interact with the ER and mitochondria directly. An 

exceed of APP blocks the mitochondrial protein import machinery and causes 

mitochondrial dysfunction and impaired energy metabolism (Anandatheerthavarada et 

al. 2003). 

A characteristic for PD is neuronal loss in the substrantia nigra pars compacta (SN). 

Surviving nigral neurons may contain intracytoplasmic inclusions called Lewy bodies. The 

presence of Lewy bodies in the SN constitutes the histologic diagnosis. Lewy bodies 

consist largely of fibrillar α-synuclein and its aggregation is promoted by Complex I 

inhibition in cell culture and PD animal models. The functional disruption and the 

elevation of oxidative stress on PD are induced by mutations in further nuclear encoded 

genes like phosphatase and tensin homologue (PTEN)-induced kinase 1 (PINK1), leucine-
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rich-repeat kinase 2 (LRRK2) which directly or indirectly involve biogenetic metabolism 

and mitophagy (Swerdlow 2009).  

For ALS, progressive weakness, muscle atrophy, spasticity, and eventual paralysis are 

typical. The neurological disruptions origin from a degeneration of upper and lower 

motor neurons. Frequent mutations detected in ALS include changes in genes encoding 

for SOD1, which protects for oxidative damage and which is implicated in apoptosis. SOD1 

is considered to be a cytoplasmic enzyme, but it is also identified to be membrane-

associated in mitochondria. Mutations in SOD1 in mice exhibit altered mitochondrial 

morphology and SOD1 accumulation, which underpins that mutant SOD1 drives 

neurodegeneration by damaging mitochondria (Gurney et al. 1994; Wong et al. 1995). 

Moreover, Complex I, II and III activities have been reported to be increased in vulnerable 

and non-vulnerable regions of patients with SOD1 mutations, whereas Complex IV activity 

was decreased in the spinal cord and skeletal muscle.   

Abnormalities in mitochondrial morphology in skeletal muscles, liver and spinal cord 

motor neurons were detected in ALS patients (Borthwick et al. 2001; Comi et al. 1998). 

Moreover, Ca2+ homeostasis is altered in mitochondria of skeletal muscles of ALS patents. 

Despite of an increased number of local mitochondrial in synaptic terminals of motor 

neurons, Ca2+-mediated processes in mitochondria appear to be disrupted (Siklós et al. 

1996). In familial ALS patients Cyt c activity was reduced, indicating changes in proper 

mitochondrial metabolism and cellular survival (Comi et al. 1998). 

HD is defined by a mutation of the Huntingtin gene on chromosome 4 and characterized 

as a hyperkinetic movement disorder. Various metabolism-related enzymes including the 

ETC complexes are altered in HD. The contribution of Huntingtin in particular remains 

unclear. However, Huntingtin was shown to be associated with the mitochondrial 

membrane and therefore it is likely to be involved in Ca2+ handling. Furthermore, 

Huntingtin is reported to disrupt PGC-1α and thereby affecting mitochondrial metabolism 

(Swerdlow 2009). 

 

1.4.3 Dysfunction of mitochondria and psychiatric disorders 

Several brain disorders including MELAS, Leigh Syndrome, Friedrich’s Ataxia as well the 

aforementioned neurodegenerative diseases AD, PD, ALS and HD result from mtDNA 

mutations. It is suggested that a malfunction of ROS production and disturbed 

mitochondrial metabolism contribute to the manifestation. Other studies also implicate 

the effect of oxidative stress on the development of mood disorders (Barton et al. 2003; 
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Forlenza and Miller 2006; Ozcan et al. 2004). Psychiatric symptoms also occur in subjects 

with mitochondriopathies. Several cases were documented that report of mitochondrial 

disorders with a comorbidity of psychiatric diseases including BPD, MDD, psychosis, 

anxiety disorders, and personality changes. Depressive episodes are reported with CPEO, 

whereas MELAS is highly correlated with SZ and BPD (DiMauro and Moraes 1993; Oexle 

and Zwirner 1997; Prayson and Wang 1998; Siciliano et al. 2003). Hence, brain 

metabolism seems to be disrupted which is caused by mtDNA mutation. These mutations 

causing mitochondrial abnormalities induce a patho-psychological state. Vice versa, in 

subjects primarily diagnosed with mental illnesses, especially MDD, bioenergetic deficits 

can be detected. 

 

 

1.5 From fibroblasts via induced pluripotent stem cells through to induced 

neurons - a cellular model for MDD 

In order to study mitochondrial metabolism in psychiatric disorders, a suitable model is 

needed. Whereas postmortem studies of brains can provide information about genetic 

variations, protein expression, changes in brain structures and volume alterations of 

different regions as well as the network of brain cells, several factors may interfere with 

tissue and molecular preservation of these samples and induce changes in the post-

mortem state of the brain compared to pre-mortem (Ferrer et al. 2008). Therefore, 

functional and enzymatic studies are preferably conducted in intact, living cells from MDD 

subjects. Moreover, mitochondria constantly undergo fusion and fission, form networks 

and crosstalk with other subcellular compartments (Picard et al. 2011). This emphasizes 

also the need to analyze mitochondrial function without, or at least with minimal, cell 

disruption and with an as close as possible physiological environment, declining 

observations with isolated mitochondria or even frozen or fixed tissue. Nevertheless, 

brain studies in patients with MDD revealed that cellular bioenergetics are imbalanced 

and are related to mitochondrial dysfunction (Iosifescu et al. 2008; Stork and Renshaw 

2005; Videbech 2000). Recent investigations in intact peripheral cells present 

bioenergetic changes in peripheral blood mononuclear cells (PBMCs), muscle cells, 

platelets and fibroblasts in correlation with a MDD state. Gardner et al. discovered a 

decreased ATP production and enzyme ratios comprising Complex I+III/Complex IV and 

the Complex II+III/Complex IV ratios in mitochondria of muscle cells in MDD patients 

(Gardner et al. 2003). Another study revealed that MDD patients lacking any ADs 
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treatment or pharmacological interventions exhibited significantly increased nitric oxide 

levels and a heightened MMP in platelets compared with those observed in control 

subjects (Moreno et al. 2013). Hroudová et al. also investigated platelets and were able to 

unveil reductions in mitochondrial physiological respiration, maximal capacity of the ETC 

and a lower respiratory rate after Complex I inhibition (Hroudová et al. 2013). Human 

fibroblasts of MDD patients show on a mRNA and miRNA level changes induced by 

metabolic stress. Those alterations indicate MDD-associated impairments in molecular 

pathways which are involved in guiding metabolism and energy production, cell survival, 

proliferation and migration (Garbett et al. 2015).  

Moreover, patients with MDD had significantly lower basal and maximal respiratory 

rates in PBMCs than controls (Karabatsiakis et al. 2014).  

 
Lorenz et al. investigated the mitochondrial metabolism and defects in the mtDNA not in 

somatic cells as the aforementioned studies, but in iPSCs derived from human fibroblasts, 

NPCs and induced neurons (iN). They were able to show that despite the process of 

reprogramming, the parental mtDNA profile is retained. Moreover, they revealed that 

cells from iPSCs via NPCs through to iN exhibit a metabolic switch towards OXPHOS. The 

differentiated NPCs from patients carrying a deleterious homo-plasmic mutation mtDNA 

mutation showed defective ATP production and abnormal MMP besides an altered Ca2+ 

homeostasis, which might display a potential cause of neural impairment. The results of 

the study of Lorenz et al. highlighted that iPSC-derived NPCs provide an effective model 

for the investigation of bioenergetic changes, not only due to genetic changes that take 

place during development, but also that the cell types itself throughout neural 

development are a suitable model (Lorenz et al. 2017). Another study also emphasizes the 

importance of NPC investigation and their metabolic switch from aerobic glycolysis to 

OXPHOS, on which neurons rely on for their energy provision. They demonstrated the 

importance of this developmental changes since this process is critical for neural 

development. Defects during neuronal development cause neurological as well as 

neurodegenerative diseases (Zheng et al. 2016). 

Klein Gunnewiek et al. elucidated mitochondrial dysfunction by the means of iPSC stem 

cell technology. They generated and observed excitatory cortical neurons with normal 

and impaired mitochondrial function due to the common pathogenic m.3243A>G 

mutation causing MELAS. iN with high levels of mtDNA mutations showed mitochondrial 

dysfunction, delayed neural maturation, receded dendritic complexity and less functional 
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synapses with a reduced network activity. These structural changes and failed proper 

integrity of iN are suggested to be a result of impaired metabolism in neurons bearing 

pathogenic mutation. These observations are proposed to enhance the susceptibility to 

neuropsychiatric manifestation because of a mitochondrial disease (Klein Gunnewiek et 

al. 2019). 

A study highlighted iPSC-derived neurons as a model to investigate mental disorders – 

BPD in the particular case – and its potential for developing new therapies and drugs 

aiming for clinical treatment. iN of BPD patients exhibited mitochondrial abnormalities 

and a hyperexcitability which could be reversed by lithium treatment in neurons derived 

from patients who also responded to lithium (Mertens et al. 2015).  

Various studies proved iPSCs, NPCs and iN as models for the investigation of metabolic 

changes, as well as an appropriate in vitro system to examine potential mitochondrial 

defects and bioenergetic alterations throughout development in disease. The iPSC 

technology from somatic cells to neural cell types is a suitable way to approach the 

implication of mitochondria in MDD in the present study. 

 

 

1.6 Bioenergetic imbalance in MDD – hypothesis and aim of the thesis 

In the present study, we focus on the association of mitochondria function and MDD. 

Potential pathomechanisms related to mitochondrial dysfunction and the bioenergetics 

imbalance in cells from MDD patients compared to healthy subjects should be elucidated. 

Based on the recent findings by Garbett et al., Hroudová et al., Karabatsiakis et al. and 

others, we hypothesize that mitochondria function is altered in somatic cells of MDD 

patients, as well as in neural cells.  

In a first approach, the bioenergetic core function, the function of the ETC and OXPHOS, is 

examined in human dermal fibroblasts by the Seahorse XFp Flux Analyzer. It enables the 

assessment of the respiratory flux by the direct measurement of the oxygen consumption 

rate (OCR), which can be seen as a measure of the efficiency of the ETC. In the presence of 

the naturally available substrates, the OCR can be correlated to the function of the 

different respiratory complexes. The application of chemical compounds interfering with 

the ETC reveals the activity and capacity. Besides that, the aim is to investigate the overall 

energetic state in both, MDD fibroblasts and fibroblasts from controls. Measurements 
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with the Seahorse XFp Flux Analyzer allow the assessment of the proton secretion, the 

extracellular acidification rate (ECAR), which is a measure for glycolysis. 

In addition, the energetic capacity in form of ATP is investigated by the direct 

measurement of the ATP content using a bioluminescence-based assay in order to unravel 

differences in MDD fibroblasts and control fibroblasts.  

The ETC builds up an electro-chemical gradient between the IMS and the mitochondrial 

matrix, which is degraded by the ATP synthase and uncoupling proteins. This MMP over 

the IMM serves as an indicator for the bioenergetic state of mitochondria and might give 

a hint at a bioenergetic imbalance resulting from mitochondrial malfunction. Therefore, 

an objective is the assessment of the MMP in live cell imaging experiments with the help 

of the cationic dye JC-1. 

Another objective of this thesis is to observe the homeostatic function of mitochondria 

and to elucidate potential differences in MDD cells and cells from healthy subjects. 

Mitochondria in association with the ER possess a Ca2+ -buffer function, which is closely 

related to the negative MMP. Alterations in the MMP might result in higher or lower 

cytosolic Ca2+ levels and consequently changes in cellular Ca2+-mediated signaling. 

Peripheral, non-neuronal cells are suitable for the investigation of mitochondrial 

functions and their implication in psychiatric disorders – like this case for MDD disease 

modeling. Nevertheless, in the focus of interest of this thesis is also to investigate whether 

potential alterations in the mitochondrial function in fibroblasts are also detectable in 

precursor-like state of neurons, the neural progenitor cells (NPCs). Reprogrammed 

somatic cells and cells that undergo the differentiation process experience changes in 

their energetic demands. Therefore, the cell’s metabolism adapts and metabolism 

switches from efficient OXPHOS to fast but less efficient glycolysis and back to OXPHOS. 

NPCs are an intermediate state between iPSCs and iNeurons, and as this developing cell 

stage is pivotal to neuronal growth and differentiation, the research focus of this thesis is 

the mitochondrial (dys)function and bioenergetic (im)balance in MDD NPCs. This study 

hypothesizes, that also neural cells from MDD patients harbor alterations in their 

mitochondrial function. Therefore, the goal is to reprogram fibroblasts into iPSCs 

(Takahashi and Yamanaka 2006) and differentiate those into NPCs by the application of 

different growth factors and to control for proper neural induction by 

immunocytochemical staining (Yan et al. 2013). Similar to the focus of research in somatic 

cells, an important objective is to conduct the respiratory experiments with the Seahorse 

XFp Flux Analyzer in NPCs derived from MDD patients and compare their properties to 
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those from NPCs from healthy controls. Moreover, another objective is to determine the 

ATP levels in NPCs by a bioluminescence assay.  

Likewise in fibroblasts, it is hypothesized that possible changes in the respiration also 

cause differences in the MMP in NPCs and go along with alterations in their Ca2+ 

homeostasis. In order to investigate this issue, live cell imaging experiments are 

conducted with NPCs. The cationic dye JC-1 is used to assess the MMP and cytosolic Ca2+ 

levels are determined with the ratiometric dye Fura-2. 

Furthermore, the impact of hormonal stress in form of Dexamethasone (1 µM, 7d) and 

metabolic stress induced by the replacement of glucose by galactose (10 mM, 7d) on 

mitochondria function and metabolism is a main objective. 

Whether the differences in the bioenergetics, which might be unveiled in the previously 

described approaches, are actually due to an ETC malfunction or simply by a reduced 

mitochondrial mass, the mitochondrial DNA copy number is determined in patient and 

control cells. 

This study aims for a better insight into mechanisms related to the manifestation of MDD 

and seeks for shedding light on the indispensable proper function of a small but crucial 

organelle – the mitochondrion – assuring not only a healthy body, but also a healthy mind. 
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2 Materials 

2.1 Lab supplies 

Table 1 Lab supplies used in the present study 

Material Manufacturer 
6-well-/12-well-/24-well-plate Corning Incorporated; Tewksbury, Massachusetts 
Agilent Seahorse XFp Flux Cartridge Agilent Technologies; Santa Clara, California 
Agilent Seahorse XFp Flux Miniplate Agilent Technologies; Santa Clara, California 
cell strainer 100 µm Greiner Bio One; Kremsmünster, Austria 
chamber for coverslip (ø 25 mm) Warner Instruments; Hamden, Conneticut 
coverslips, glass (ø 25 mm, ø 12 mm) Menzel Gläser; Braunschweig, Germany 
cryo Vials 2mL Lab Solute by Th. Geyer; Renningen, Germany 
Eppendorf cups (0. 5mL- 5 mL) Eppendorf; Hamburg, Germany 
Erlenmeyer flask 250 mL Corning Incorporated; Tewksbury, Massachusetts 
Falcon tubes (15 mL, 50 mL) Corning Incorporated; Tewksbury, Massachusetts 
mircoplates 96-well (black bottom) Greiner Bio One; Kremsmünster, Austria 
mircoplates 96-well (transparent) Greiner Bio One; Kremsmünster, Austria 
parafilm PECHINEY Plastic Packaging; Chicago, Illinois 
Pasteur pipette Carl Roth; Karlsruhe, Germany 
petridish (ø10 cm) Sarstedt; Nümbrecht, Germany 
pipette 0.1-10 µL Eppendorf; Hamburg, Germany 
pipette 10 µL - 200 µL Eppendorf; Hamburg, Germany 
pipette 100 µL - 1000 µL Eppendorf; Hamburg, Germany 
pipette filter tips Sarstedt; Nümbrecht, Germany 
pipette tips (10 µL, 200 µL, 1200 µL) Sarstedt; Nümbrecht, Germany 
pipettor Brand GmbH&Co. KG; Wertheim, Germany 
stripette, glass (5 mL) Corning Incorporated; Tewksbury, Massachusetts 
stripettes, plastic (1 mL, 5 mL, 10 mL, 25 mL)  Corning Incorporated; Tewksbury, Massachusetts 
T75 flask Sarstedt; Nümbrecht, Germany 

 

 

2.2 Reagencies, chemicals and kits 

Table 2 Chemicals required for the experiments of the study 

Reagency Manufacturer 
0.5 M EDTA pH 8.0 Invitrogen by Life Technologies; Carlsbad, 

California 
Accutase Gibco by Life Technologies; Carlsbad, California 
Advanced DMEM Gibco by Life Technologies; Carlsbad, California 
Agilent Seahorse XF Base Medium Agilent Technologies; Santa Clara, California 
Antibiotic/Antimycotic solution Sigma-Aldrich; St. Louis, Missouri 
Antimycin A Cayman Chemical Company; Ann Arbor, Michigan 
CASYton buffer OMNI Life Science; Bremen, Germany 
dexamethasone Cayman Chemical Company; Ann Arbor, Michigan 
dextrose Carl Roth; Karlsruhe, Germany 
ethanol 100% Merck; Darmstadt, Germany 
Dispase STEMCELL Technologies; Vancouver, Canada 
DMEM Gibco by Life Technologies; Carlsbad, California 
DMEM/F12 Gibco by Life Technologies; Carlsbad, California 
DMSO Sigma-Aldrich; St. Louis, Missouri 
DPBS Gibco by Life Technologies; Carlsbad, California 
E7 Medium STEMCELL Technologies; Vancouver, Canada 
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FCCP Cayman Chemical Company; Ann Arbor, Michigan 
FCS Sigma-Aldrich; St. Louis, Missouri 
FCS dialyzed PAN Biotech; Aidenbach, Germany 
Fluorescent Mounting Medium Dako; Carpinteria, California 
Fura-2/AM (‘’Fura-2’’) Gibco by Life Technologies; Carlsbad, California 
galactose Carl Roth; Karlsruhe, Germany 
gentamycin Gibco by Life Technologies; Carlsbad, California 
JC-1 Invitrogen by Life Technologies; Carlsbad, 

California 
L-Glutamine Sigma-Aldrich; St. Louis, Missouri 
matrigel Corning Incorporated; Tewksbury, Massachusetts 
mTeSR STEMCELL Technologies; Vancouver, Canada 
mTeSR Supplement 50X STEMCELL Technologies; Vancouver, Canada 
NaOH Carl Roth; Karlsruhe, Germany 
Neural Induction Supplement Gibco by Life Technologies; Carlsbad, California 
Neurobasal Medium Gibco by Life Technologies; Carlsbad, California 
non-essential amino acids Gibco by Life Technologies; Carlsbad, California 
normal goat serum Thermo Fisher Scientific; Carlsbad, California 

Oligomycin Cayman Chemical Company; Ann Arbor, Michigan 
OptiMEM Gibco by Life Technologies; Carlsbad, California 
paraformaldehyde Carl Roth; Karlsruhe, Germany 
DPBS Gibco by Life Technologies; Carlsbad, California 
Penicilin-Streptomycin Sigma-Aldrich; St. Louis, Missouri 
Pluronic 10% F127 Thermo Fisher Scientific; Carlsbad, California 
Rotenone Cayman Chemical Company; Ann Arbor, Michigan 
sodium butyrate Sigma-Aldrich; St. Louis, Missouri 
sodium pyruvate Gibco by Life Technologies; Carlsbad, California 
RNase free water MACHERY-NAGEL; Düren, Germany 
CryoStore CS10 BioLifeSolutions; Bothell, Washington 
STEMdiff Neural Progenitor Freezing 
Medium 

STEMCELL Technologies; Vancouver, Canada 

Triton X-100 Sigma-Aldrich; St. Louis, Missouri 
Trypan Blue Sigma-Aldrich; St. Louis, Missouri 
Trypsin Sigma-Aldrich; St. Louis, Missouri 
Vitronectin XF STEMCELL Technologies; Vancouver, Canada 

 

 
Table 3 Kits 

Kit Manufacturer 
Pierce™ BCA Protein Assay Kit Thermo Fisher Scientific; Carlsbad, California 
CellTiter Glo Cell Viability Assay Promega; Madison, Wosconsin  
Seahorse XFp Mito Stress Kit Agilent Technologies; Santa Clara, California 
Human Dermal Fibroblast Nucleofector Kit 
VPD-1001 

Lonza; Basel, Switzerland 

QIAmp DNA Mini Kit Qiagen; Hilden, Germany 
Takyon Amplification Technologies Eurogene; Seraing, Belgium 
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2.4 Antibodies 

Table 4 Antibodies for Immunocytohemistry 

Antibody (AB) Dilution Type of  AB Manufacturer 
Hoechst 1:1000 primary Gibco by Life 

Technologies; Carlsbad, 
California 

Anti-PAX6 (mouse) 1:10 primary PAX6 was deposited to 
the DSHB by Kawakami, A. 
(DSHB Hybridoma 
Product PAX6) 

Anti-SOX2 ab97959 
(rabbit) 

1:1000 primary Abcam; Cambridge, UK 

Anti-mouse Cy3 1:1000 secondary Thermo Fisher Scientific; 
Carlsbad, California 

Anti-rat 488 1:1000 secondary Gibco by Life 
Technologies; Carlsbad, 
California 

 

2.5 Culture media and buffer compositions 

Table 5 Primary Fibroblast Medium 

Component Volume 
DMEM 500 mL 
FCS 50 mL 
Antibiotic/Antimycotic Solution 5 mL 

 

 
Table 6 Primary fibroblast freezing medium 

Component Volume 
Primary Fibroblast Medium 35 mL 
FCS 10 mL 
DMSO 5 mL 

 

 
Table 7 E7 Medium 

Component Volume 
TeSR-E7 480 mL 
TeSR-E7 25X Supplement 20 mL 

 

 
Table 8 mTeSR Medium 

Component Volume 
mTeSR Basal Medium 400 mL 
mTeSR Supplement 50X 100 mL 
Gentamycin (2000X) 250 µL 

 

 
Table 9 Neural Induction Medium 

Component Volume 
Neurobasal Medium 49 mL 
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Neural Induction Supplement 1 mL 
 

Table 10 Neural Expansion Medium 

Component Volume 

Neurobasal Medium 24.5 mL 
Advanced DMEM/F12 Medium 24.5 mL 
Neural Induction Supplement 1 mL 
Penicillin/Streptomycin 250 µL 

 

 
Table 11 Blocking buffer 

Component Volume 
0.5% Triton-X100 1 mL 
10% normal goat serum 1 mL 
1X PBS 1 mL 
ddH2O 7 mL 

 

 
Table 12 Antibody buffer 

Component Volume 
0.5% Triton-X100 200 µL 
10% normal goat serum 200 µL 
1X PBS 1 mL 
dd H2O 8.6 mL 

 

 
Table 13 Seahorse Assay Medium pH=7.4 

Component Volume 
XFp Base Assay Medium 24 mL 
1 M glucose 500 µL 
sodium pyruvate 100 mM 250 µL 
L-Glutamine 200 mM 250 µL 

 

 
Table 14 Ringer’s solution, pH=7.4 

Component Volume 
NaCl 140 mM 46.7 mL 
KCl 5 mM 1 mL 
MgCl2 2 mM 2 mL 
HEPES 10 mM 50 mL 
ddH2O 900.3 mL 

 

 
Table 15 Phosphate Buffered Saline pH=7.3 

Component Concentration 
NaCl 137 mM 
KCl 2.7 mM 
Na2HPO4 8 mM 
KH2PO4 1.4 mM 
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3 Methods 

3.1 Study participants 

Primary fibroblast lines were obtained by skin biopsy conducted by Dr. Leopold Größer, 

Dr. Konstantin Drexler and Prof. Dr. Mark Berneburg, Department of Dermatology, 

University Hospital of Regensburg, Regensburg, Germany. All 16 patients are diagnosed 

with MDD (Unipolar Depression, Hamilton Score > 18, diagnosed according to ICD-10) 

and responded to ADs medication. For the 16 gender- and age-matched healthy control 

subjects no current psychiatric disorder was recorded (Hamilton score 0-3). 

 

 
Table 16 Study participants and controls 

Patient 
 

Gender Age Hamilton 
Score 

Control 
 

Gender Age Hamilton 
Score 

MDD1 M 48 24 CON1 M 49 3 
MDD2 F 49 21 CON2 F 50 0 
MDD3 M 19 24 CON3 M 25 0 
MDD4 M 48 20 CON4 M 45 1 
MDD5 M 19 23 CON5 M 24 0 
MDD6 F 24 23 CON6 F 25 1 
MDD7 F 44 22 CON7 F 49 0 
MDD8 F 44 22 CON8 F 53 0 
MDD9 M 21 22 CON9 M 21 0 
MDD10 M 21 21 CON10 M 20 1 
MDD11 M 23 31 CON11 M 24 1 
MDD12 F 23 34 CON12 F 23 0 
MDD13 M 23 32 CON13 M 23 0 
MDD14 M 30 28 CON14 M 27 0 
MDD15 M 31 28 CON15 M 30 0 
MDD16 M 34 25 CON16 M 35 0 

 

 

Biopsy material of healthy skin (ø 4 mm) is cut into 6 to 10 smaller pieces, put into 6 wells 

of a 6-well-plate, attached for 5-7 minutes and covered with Primary Fibroblast Medium 

(PrimFibM), consisting of DMEM/F12 supplemented with 10% fetal calf serum and 1% 

Antibiotic/Antimycotic solution (Anti/Anti). The primary fibroblasts determined passage 

0 are cultured for 2-3 weeks until wells reach a confluence of 80-90%, then they are split 

(see 3.2) and transferred into T75 flasks for further growth. 
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3.2 Adult human dermal fibroblasts  

3.2.1 Culturing conditions 

Fibroblast cell lines are cultured at 37 °C and 5% CO2 in PrimFibM in either 6-well-plates 

for experimental purposes or T75 flasks/ø10 cm petri dishes for further culturing. Cell 

cultures are checked daily under Olympus IX70 inverted cell culture transmitted-light 

microscope (Olympus Corporation; Tokyo, Japan). The medium is changed every other day. 

 

3.2.2 Passaging, freezing and thawing procedure 

When the cells reach around 80- 90% of confluence, they are prepared for splitting. The 

medium is aspirated and the cells are incubated with pre-warmed 1 mM PBS/EDTA for 

15 min at 37°C in order to facilitate detachment. Subsequently, they are enzymatically 

detached by adding pre-warmed Trypsin for 5 min at 37 °C. By adding culture media, the 

reaction is stopped and the cell suspension is transferred into a 15 mL Falcon tube. After 

centrifugation for 5 min at 800 rpm, the cell pellet is resuspended properly in culture 

media and 200 µL are transferred into an Eppendorf cup for counting. 

Cell counting was done with the CASY Cell Counter (OMNI Life Science; Bremen, Germany; 

see 3.2.3). 

The volume with the desired amount of cells is seeded onto 6-well-plates or in a T75 

flask/ø10 cm petri dish.  

 

 
Table 17 Volumes for fibroblast splitting procedure 

 1 well/6-well-plate T75 flask/ 
ø10 cm petri dish 

1 mM PBS/EDTA 1 mL 5 mL 
Trypsin 0.5 mL 2 mL 
PrimFibM (stopping reaction) 1.5 mL 8 mL 
PrimFibM (resuspending) 2 mL 6-10 mL 

 

 

For freezing, the cells are split as described above, apart from resuspending the cell pellet. 

After aspiration of the medium, the cell pellet is taken up in 1 mL of fibroblast freezing 

medium and transferred into a 1.5 mL cryo store vial. An evenly freezing of the sample is 

guaranteed by putting the vials into an isopropanol container. The cells are stored for 

short-term purposes at -80 °C and long-term at -196 °C. 
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For thawing, the fibroblasts in cryo vials are put shortly into the waterbath (37 °C) and 

afterwards, they are transferred into a 15 mL Falcon tube with 5-10 mL of PrimFibM. The 

suspension is centrifuged for 5 min at 800 rpm in order to eliminate the cell-toxic DMSO. 

The cell pellet is resuspended in 10 mL of PrimFibM and seeded into a T75 flask/ø10 cm 

petri dish.  

 

All the experiments with primary fibroblasts were conducted under three different 

conditions: non-treated (N), galactose (GAL) and dexamethasone (DEX). The metabolic 

(GAL, 10 mM) or hormonal (DEX, 1 µM) stress inducing media are applied for 1 week 

under the culturing conditions as described above. 

 

3.2.3 Automated cell counting with CASY Cell Counter 

For accurate cell counting, 60 µL of the cell suspension are diluted in 6 mL CASYton buffer 

and measured automatically. The program determines average cell size, cell viability, total 

cell number and number of viable cells. The amount of viable cells is used for calculations 

of desired numbers of cells used in the experiments.  

 

3.3 Reprogramming of adult human dermal fibroblasts into induced 

pluripotent stem cells using Epi5 plasmids  

3.1 Coating with Vitronectin 

15 µL hrVitronectin XF (250 µg/µL) are diluted in 6 mL PBS and 1 mL per 6-well-plate is 

prepared and polymerized for 1 h at room temperature. The wells are washed with 2 mL 

of PrimFibM before seeding the cells and 2 mL fresh PrimFibM are added to each well of 

a 6-well-plate. Per cell line one 6-well-plate is required. 

 

3.2 Preparation of Epi5 plasmids 

For the reprogramming, the VPD-1001 kit (Lonza; Basel, Switzerland) is used. The 

required plasmids are pCBX-EBNS, pCE-hsk, pCE-hUL, pCE-hOCT3/4 and pCE-mp53DD, 

as described in the publication of Takahashi and Yamanaka 2006. 600 ng of each plasmid 

are required. The plasmids are mixed with 82 µL of nucleofactor solution and 18 µL of the 

supplement. 
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3.3 Preparation and electroporation of human fibroblasts 

The fibroblasts are split and counted as described in the previous chapter. The cell pellet 

of 600,000 cells is washed once with 3 mL of PBS in order to remove remaining PrimFibM. 

The cells are centrifuged again at 800 rpm for 5 min. The medium is aspirated and the 

cells are mixed with the solution containing the plasmids and the nucleofactor solution. 

The cell suspension is applied into the pre-cooled electroporation chambers. The cells are 

electroporated with program U-23 of the Amaxa Nucleofactor Electroporator (Lonza; 

Basel, Switzerland) and immediately put back on ice. 200 – 300 µL of PrimFibM are added 

to the cell suspension and it is distributed equally drop by drop into the 6 wells of the 6-

well-plate. Day 0 and day 1 after electroporation PrimFibM with 100 µg of sodium 

butyrate is used. From day 2 on until day 7, E7 Medium with 100 µM sodium butyrate is 

applied and the medium is changed every day. From day 8 on, E7 Medium without sodium 

butyrate is used and the medium is changed every day. From day 15, on clones should 

appear. The clones are marked with self-inking object  marker  (‘’cell dotter’’) (Nikon; 

Tokyo, Japan) and picked with the help of a digital microscope (Primo Vert, Zeiss; 

Oberkochen, Germany) under sterile conditions and transferred into a new well of a 12-

well-plate each by taking up the clone with a 200 µL tip. The 12-well-plates are coated 

with Matrigel beforehand as described in the following chapter.  

 

 

3.4 Coating for iPSCs and NPCs  

iPSCs and NPCs require coated plates for attachment and optimal growth. Matrigel is a 

soluble basement membrane extract of the Engelbreht-Holm-Swarm (EHS) tumor that 

polymerizes to form a reconstituted basement membrane (Kleinman et al., 1986). An 

aliquot Matrigel (volume dependent on manufacturer’s advice, usually 270 µL – 300 µL) 

is dissolved in cold 12 mL DMEM/F12 and for each well this solution and cold DMEM/F12 

are added 1:1 into the pre-cooled plate. Afterwards, the plates can be stored for one to 

three weeks at 4 °C or polymerized at 37 °C for 30 min. Before the cell suspension is added 

to the wells, they need to be washed with DMEM/F12 in order to remove unpolymerized 

Matrigel. The table below lists the volumes required for the different plates. In case cover 

slips are added to the wells, they are placed into the wells before the solutions are added. 
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Table 18 Coating conditions 

Plate type DMEM/F12 with Matrigel DMEM/F12 
6-well-plate 1 mL 1 mL 
12-well-plate 0.5 mL 0.5 mL 
24-well-plate 250 µL 250 µL 
XFp Seahorse Miniplate 100 µL 100 µL 

 

 

3.5 Induced pluripotent stem cells  

3.5.1 Culturing conditions 

The iPSCs are kept under standard conditions (37 °C, 5% CO2). The mTeSR Medium is 

changed every day and differentiated parts are marked and aspirated. 

 

3.5.2 Passaging, freezing and thawing procedure 

One well of a 6-well-plate of iPCSs is split in a 1:3 ratio. 6-well-plates are coated as 

described above and 1.5 mL of mTeSR Medium are put into each well. The medium is 

aspirated and per each 6 well 1 mL of pre-warmed Dispase is added. After 5 to 8 min the 

Dispase is aspirated and each well is washed three times with 1 mL of DMEM/F12. After 

the last washing step, 2 mL of DMEM/F12 is added and the previously marked 

differentiated spots and finally the DMEM/F12 are aspirated.  1.5 mL of mTeSR Medium 

are added. With the help of a disposable glass pipette the stem cell colonies are separated 

by gently scratching the bottom in grid pattern. With the help of a cell scraper the stem 

cell colonies are completely detached from the bottom. Per each new well, 0.5 mL of the 

cell suspension are added drop by drop and distributed by gently shaking horizontally. 

 

For freezing purposes, after detaching the cells with the help of Dispase and the 

differentiated cells are removed as described before. The cells are detached with a cell 

scraper in DMEM/F12 and transferred into a 15 mL Falcon tube and centrifuged at 

800 rpm for 5 min. The cell pellet is taken up in 1 mL CryoStore CS10 freezing medium, 

put into a cryo vial and stored at -80 °C. 

 

For thawing, the cryo vial with the stem cells is put into a waterbath (37 °C) for maximum 

5 min and the cell suspension is quickly transferred into a 15 mL Falcon tube containing 

3 mL of DMEM/F12 in order to remove the cytotoxic component of the freezing medium. 

The suspension is centrifuged for 5 min at 800 rpm, the supernatant is aspirated and the 
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cell pellet is taken up into 2 mL of mTeSR Medium and seeded onto one well of a 6-well-

plate. 

 

3.6 Neural induction and expansion of neural progenitor cells 

One day after splitting, the iPSC colonies for differentiation should have densities of 2–

2.5x104. mTeSR Medium is changed to Neural Induction Medium (NIM). The medium is 

changed every other day from day 0 until day 4 of neural induction and from day 5 on 

every day, since cell densities increase during differentiation. After one week, the cells are 

split. The cells are detached with 1 mL pre-warmed Accutase for 5 min per one 6-well. 

The reaction is stopped by adding 2 mL of DPBS or DMEM/F12. The suspension is 

transferred into a 15 mL Falcon tube and centrifuged for 5 min at 800 rpm. The 

supernatant is aspirated and the cell pellet is resuspended in 2-3 mL of DPBS or 

DMEM/F12 and the suspension is passed through a 100 µm cell strainer placed on a 50 

mL Falcon tube. Subsequently, the suspension is centrifuged at 800 rpm for 5 min and the 

cell pellet is resuspended in Neural Expansion Medium (NEM) with 5 µM ROCK-Kinase-

Inhibitor. The cells are counted with the help of Trypan Blue in a Neubauer Chamber and 

approximately 6.0–7.0x105 cells are seeded onto one well of a 12-well-plate coated with 

Matrigel. The medium is changed every other day and the NPCs of passage 0 are grown 

until they reach confluence.  

 NPCs are split by aspirating the medium and the addition of 1 mL pre-warmed Accutase 

for 5 min. The reaction is stopped by 2-3 mL of DPBS or DMEM/F12 and the cell 

suspension is transferred into a 15 mL Falcon tube and centrifuged at 800 rpm for 5 min. 

The supernatant is aspirated and the cell pellet is resuspended in 5 mL DPBS or 

DMEM/F12 and 20 µL are mixed with 20 µL of Trypan Blue in a 1.5 mL Eppendorf cup 

and used for counting with the Neubauer Chamber. 2-3 mio cells are seeded into a well of 

6-well-plate coated with Matrigel. 5–6x106 cells are used for freezing. The volume of cell 

suspension with the desired amount of cells is transferred into a new 15 mL Falcon tube 

and centrifuged down at 800 rpm for 5 min. NPCs used for cultivation are resuspended in 

NEM and seeded. NPCs that are being frozen are taken up into 1 mL of STEMdiff Neural 

Progenitor Freezing Medium, transferred in to a 2 mL cryo vial and stored at -80 °C, 

respectively at -196 °C.  
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NPCs are thawed by putting the cryo vial for maximal 5 min into the waterbath (37 °C) 

and transferring the cell suspension into 2-3 mL of DPBS or DMEM/F12. The cell 

suspension is centrifuged at 800 rpm for 5 min in order to remove the potentially 

cytotoxic residuals of the cryo storage medium. The cell pellet is resuspended in 2 mL 

NEM and the cell suspension is seeded onto one well of a 6-well-plate coated with 

Matrigel. 

 

3.7 Immunocytochemical staining 

For immunocytochemical staining, the cells are split and seeded onto cover slips, in low 

densities with approximately 60% confluence. The next day, the cover slips are 

transferred into a new plate and the cells are fixed with 4% PFA for 10 min. Subsequently, 

in each well 250 µL blocking buffer are added in order to prevent unspecific binding of 

the antibody. Afterwards, the first antibody is applied and left over night at 4 °C. The next 

day, the antibody is discarded and the coverslips are washed three times with 500 µL 1X 

PBS for 10 min. The second antibody is applied for 1 h at RT in the dark. The second 

antibody is discarded and the coverslips are washed again three times with 1X PBS for 10 

min. The coverslips are mounted onto glass object slides with the help of a drop of Dako 

Fluorescing Mounting Medium and let to polymerize overnight. 

 

3.8 Assessment of respiratory properties: Seahorse XFp Flux Analyzer  

For respiratory experiments, the cells are being split and seeded as described beforehand 

the day before the experiment. 30,000 fibroblasts or 500,000 NPCs, respectively, are 

seeded into the wells of the XFp Seahorse Miniplate. The Wells B to G contain control cells 

respectively patient cells in triplicates. The wells A and H remain without cells as a blank 

control.  

Additionally, an XFp Flux Cartridge is equilibrated with 200 µL in the wells A to H and 400 

µL of Agilent Seahorse XF Calibrant solution in the outer cambers and left at 37 °C in a 

non-CO2 incubator. 

The following day, the XFp Seahorse Miniplate containing the cells is washed with 200 µL 

of Seahorse Assay Medium, finally filled with 180 µL of the Seahorse Assay Medium and 

left for 30 min to 1 h in a non-CO2 incubator. Meanwhile, the reagents for the XFp Mito 

Stress Test are being prepared. Therefore, the component stocks are diluted 1:1000 in 

Seahorse Assay Medium and applied into the Seahorse XFp Flux Cartidge into different 
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volumes in order to get a final concentration of 1 µM Oligomycin, 2 µM FCCP and 0.5 µM 

Rontenone/Antimycin A. 

 

 

Figure 9 ETC inhibitors. Inhibition of the ETC is sequentially conducted in Seahorse XFp Flux experiments. 
Oligomycin acts on Complex V, the ATP synthase, and inhibits the degradation of the H+ gradient. FCCP is an 
uncoupler of the ETC and enables and uninhibited flow of the H+. Rotenone and Antimycin A block Complex I and 
Complex III of the ETC and shut down OXPHOS. 

 

 

20 µL Oligomycin are applied into all of the ‘’A’’ ports, 22 µL FCCP are pipetted into ports 

‘’B’’ and 25 µL of the Rotenone/Antimycin A mixture are added into the ports ‘’C’’ in all of 

the wells A to H of the Seahorse XFp Flux Cartidge.  

The Seahorse XFp Flux Cartidge is placed into the XFp Flux Analyzer for calibration and 

afterwards, the cells are placed into the machine, according to the manufacturer’s 

instructions and the XFp Mito Stress Test is started. For the Mito Stress Test, four baseline 

measurements of the OCR and the ECAR are conducted and four measurements each are 

made after the sequential injection of the components (see figure 9). The assay output 

includes also an overall mean OCR value and mean ECAR value calculated from all 16 

measured points. 
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Figure 10 Mito Stress Test in the Seahorse XFp Flux Analyzer. Initially, the basal respiration is measured. By the 
inhibition of the ATP synthase by Oligomycin the OCR declines. The ATP production-related OCR and the proton 
leak can be determined. FCCP uncouples the ETC and OXPHOS can run at its maximum. The readout parameter 
of the maximal respiration can be assessed. Rotenone and Antimycin A block the ETC and the remaining OCR is 
related to non-mitochondrial processes that require oxygen. The spare capacity results out of the maximal 
respiration subtracted by the basal respiration. 

 

 

After the measurement, the assay medium is aspirated and the fibroblasts are fixed with 

4% PFA for 10 min for normalization purposes with Hoechst staining. The NPCs are stored 

at -20 °C and normalized by determination of the protein content with the BCA Assay (see 

3.10). 

 

3.10 Normalization of respiratory experiments 

3.10.1 Normalization by Hoechst staining 

When XFp Mito Stress Test of fibroblasts is finished, the medium is aspirated and the cells 

are fixed with 100 µL 4% PFA per XFp Seahorse Miniplate-well for 10 min. The cells are 

washed with 200 µL PBS and stained with Hoechst (1:1000 in PBS) for 10 min in the dark 

and washed with 200 µL PBS three times in order to remove residual dye. With the help 

of a fluorescence microscope pictures of the Miniplate-wells are taken that can be further 

used for cell counting with Image J. The cell numbers per Miniplate-well are entered into 

the Wave files that are created by the XFp Flux Analyzer. 

 

3.10.2 Normalization by Bichinoic Acid Assay 

Following the XFp Mito Stress Test of NPCs, the medium is aspirated and the cells are 

lysed in 20 µl 1X Triton X-100 for 15 min at 4 °C. Meanwhile, 10 µL of BSA standards 

dissolved in 1X Triton X-100 with concentrations reaching from 100 µg/mL to 2 mg/mL 

BSA. The standards are applied onto a transparent 96-well-plate. The reagents A and B 
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are used in a ratio 1:50. 200 µL of the AB-reagent is applied to each Miniplate-well and 

the cells are resuspended properly. Twice 110 µL of the suspension are added to the 96-

well-plate and 100 µL A-B-reagent are added to the cell suspension.  200 µL AB-reagent 

are added to the BSA standards. The plate is shaken for 5 min at RT and incubated for 

30 min at 37 °C in a non-CO2 incubator. The absorption is measured in a VarioScan plate 

reader and analyzed with the Software SkanIt. The protein content (mg/mL) is 

determined with the help of the BSA standards for each well and used for normalization 

of the respiratory experiments. The resulting protein amounts are added to the Wave files 

containing the results of the Mito Stress Test. 

 

 

3.11 Luminescent assay for ATP content 

For the determination of the ATP content, 1x105 fibroblasts and 1x106 NPCs cell pellets 

are collected in a 1.5 mL Eppendorf cup and stored at -20 °C if necessary. Untreated or 

previously treated fibroblasts with galactose (10 mM, 7 days) or dexamethasone (1 µM,  

7 days) and untreated or previously with dexamethasone treated (1 µM, 7 days) NPCs are 

used for ATP content determination.  

According to the manufacturer’s advice, the CellTiter-Glo®Reagent containing 

CellTiter®Substrate and CellTiter®Buffer, is thawed on ice. As an ATP standard curve 

with concentrations of 10 µM, 100 nM, 10 nM and 10 pm ATP in PBS is used. The cell 

pellets are resuspended in 500 µL PBS and heated at 100°C for 2 min in order to inactivate 

ATPases. Subsequently, the samples are stored on ice. 50 µL of each sample and each 

standard are applied to a black 96-well-plate in duplicates. 50 µL of the CellTiter-

Glo®Reagent are added to the ATP standards and the samples and the 96-well-plate is 

shaken for 2 min in the dark. The absorption is measured at the VarioScan with an 

integration time of 1 s. The RLU generated by the SkanIT Software can be calculated to the 

actual ATP concentrations with the help of the ATP standard curve.  

 

 

 

Figure 11 Luciferase reaction for ATP quantification. Mono-oxygenation of luciferin is catalyzed by luciferase in the 
presence of Mg2+, ATP and molecular oxygen. Source: CellTiter-Glo®Assay Technical Manual, Promega 
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3.12 Live cell imaging 

Live cell imaging experiments are conducted with a Zeiss Axio Observer Z.1 microscope 

equipped with Fluar 40/1.3 objective lens (Zeiss; Oberkochen, Germany) and a Lambda 

DG-4 excitation device (Sutter Instruments; Novato, California). All recordings are 

conducted at a magnification of 40X with oil and captured with an AxioCam MRm CCD 

camera (Zeiss; Oberkochen, Germany). Hardware control and measuring parameters are 

set with the help of ZEN 2012 Software. Fibroblasts and NPCs used in imaging 

experiments are either non-treated (N) or underwent metabolic (GAL) or hormonal stress 

(DEX) for one week. 

 

3.12.1 Mitochondrial membrane potential measurements with JC-1 

The cationic dye JC-1 allows the qualitative measurement of the MMP in different cell 

types. The dye exhibits a potential-dependent accumulation in mitochondria, indicated by 

a fluorescence emission shift from green (~529 nm) to red (~590 nm). Consequently, 

mitochondrial depolarization is indicated by a decrease in the red/green fluorescence 

intensity ratio. The potential-sensitive color shift from green fluorescing monomers of the 

dye is due to concentration-dependent formation of red fluorescent aggregates. 

 

 

 

Figure 12 Emission spectra of the cationic dye JC-1. Depending on the mitochondrial membrane 
potential, JC-1 dye is present as monomers or forms aggregates. The monomers emit at 529 nm, 
whereas aggregates of the dye emit at 590 nm. The ratio between red/green is associated with the 
mitochondrial membrane potential. Source: https://www.biotek.de/de/resources/application-
notes/fluorescent-detection-of-drug-induced-mitochondrial-toxicity/ 
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The JC-1 dye is used at a final concentration of 300 nM in OptiMEM and the cells are 

incubated with the dye for 30 min.  The cells are washed three times with Ringer’s solution 

and the cover slip is placed in the measuring chamber. The cells are covered with 200 – 

300 µL of Ringer’s solution. 5-10 visual fields are captured at a 40X magnification with oil. 

The exposure time is set to 150 ms. 5 cycles with 2s each are recorded. Data analysis is 

done with FIJI Image J by defining regions of interest per each picture and Ratio Plus 

Plugin for determination of the red/green ratios.  

 

 

3.12.2 Analysis of intracellular Ca2+ with Fura-2 dye 

For assessment of Ca2+ homeostasis, the fluorescent dye Fura-2/AM (‘’Fura-2’’) is used. 

The emission wavelength of Fura-2 is dependent on the free or Ca2+-bound state of the 

dye. Free Fura-2 emits at 380 nm, Ca2+-bound Fura-2 emits a wavelength of 340 nm. The 

ratio of 340 nm/380 nm is correlated with the amount of cytosolic Ca2+ in the cell.  

 

 

 

 

Figure 13. Emission spectra and complex forming of the ratio metric dye Fura-2. In the presence of Ca2+ Fura-2 
forms a chelate complex and changes its conformation. Free Fura-2 is excited at 340 nm, whereas Ca2+-bound 
Fura-2 is excited at 380 nm. Both forms emit at 510 nm. The ratio between 34 0nm/380 nm is directly related to free 
cytosolic Ca2+ in the cell. Source: https://www.moleculardevices.com/products/assay-kits/gpcrs/fura-2-qbt-calcium-
kit#Technology 

 

 

Fibroblasts and NPCs are split and prepared for the measurements the previous day. The 

cells are plated onto 25mm cover slips. For NPCs coating with Matrigel is required as 

described before. 150,000 fibroblasts or 2.8 Mio NPCs are seeded. The following day 1 µL 
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Fura-2 dye is mixed with 1 µL Pluronic 10% F127 and diluted in 1 mL OptiIMEM (final 

concentration 2 µM). The cover slip is transferred into a 35 mm tissue dish, the solution 

with the dye is added and incubated for 30 mins. The cells are washed with Ringer’s 

solution three times and the cover slip is applied onto the measuring chamber. The cells 

are covered with 200 – 300 µL Ringer solution. The measurements for Ca2+ are conducted 

at a Zeiss fluorescent microscope with the help of Zen software. For each cover slip 5 – 15 

different sections with cells are measured. 5 cycles for 2 s each, with an exposure time of 

300 ms (fibroblasts) or 150 ms (NPCs) for both channels are recorded at a 40X 

magnification with oil. 

The analysis of the measurements is done with FIJI Image J, by manual definition of the 

regions of interest and building the 340 nm/380 nm ratio for each image. 

 

3.13 Determination of the mitochondrial content 

3.13.1 gDNA extraction 

For each patient and control cell line gDNA was extracted from two biological replicates. 

The cell pellet of 1x106 cells is resuspended in 200 µL PBS and 20 µL QIAGEN Protease is 

added. Afterwards, 200 µL of AL buffer is added to each sample and vortexted for 15 s to 

ensure proper mixing. The samples are incubated at 56 °C for 10 min. 200 µL ethanol 

(100%) are added to the sample and again mixed by pulse-vortexing for 15 s. After mixing, 

the tube is briefly centrifuged to remove drops from the inside of the lid. Subsequently, 

the mixture is applied to the QIAamp Mini spin coloumn placed in a 2 mL collection tube 

without wetting the rim. Cap closed, the samples are centrifuged at 8000 rpm for 1 min. 

The QIAamp Mini spin column is changed to a new collection tube and the tube with the 

filtrate is discarded. In the next step, 500 µL AW1 buffer is applied and the samples are 

centrifuged at 8000 rpm. Afterwards, the QIAmp Mini spin column is changed to a new 2 

mL collection tube and the filtrate and the old collection tube can be discarded. The second 

washing AW2 buffer is applied to the sample (500 µL) and the QIAamo Mini Spin columns 

are centrifuged at full speed (14000 rpm for 5 min). In order to remove remaining 

washing buffer, the QIAamp Mini columns are placed into a fresh collection tube and 

centrifuged at full speed for 1 min. The QIAamp Mini Spin columns are then placed into a 

fresh 1.5 mL Eppendorf cup and to each sample 100 µL of distilled water are added. After 

an incubation time of one minute at RT (15-25 °C) the gDNA is eluted at 8000 rpm for 1 
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min. The DNA concentration is determined at the Nano Drop and all the samples are 

adjusted to 50 ng/µL for RT-PCR measurements. 

 

3.13.2 Quantitative Real-Time Poly Chain Reaction 

3.13.2.1 Amplification efficiencies 

 

For the quantification of the mtDNA content, the primers for the mitochondrial gene 

mt-TL1 and the nuclear gene B2M are used. Primer sequences are listed in table 19. 

 

Table 19 Target genes, sequences, concentrations and manufacturer of the primers used for mtDNA 
quantification 

Gene Abbr. direction Sequence Stock conc. Manufacturer 

Beta-2 

microtubulin 

B2M forward 5′-

TGCTGTCTCCA

TGTTTGATGTA

TCT 

10 µM Metabion, Planegg, 

Germany 

reverse 5′-

TCTCTGCTCCC

CACCTCTAAGT 

mitochondrially 

encoded tRNA 

leucine 1 

mt-TL1 forward 5′-

CACCCAAGAAC

AGGGTTTGT 

10 µM Metabion, Planegg, 

Germany 

reverse 5′-

TGGCCATGGGT

ATGTTGTTA 

 

 

In order to test the primer efficiency first, five times a threefold serial dilution of one DNA 

sample in water is made. The dilutions are used to obtain a standard curve and the PCR 

efficiency (E) is determined. PCR efficiency is calculated from the slope of the standard 

curves using the equation formula: 

 

E = 10-1/slope – 1 
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In order to improve precision, the samples for the standard curve were pipetted in 

quadruplicates. 

 

 

  

c target dye slope intercept R2 efficiency 

 mtDNA FAM -3.448 11.172 0.99343 0.95 

 nDNA YY -3.463 18.615 0.98445 0.94 

Figure 14 Graphs and values for primer efficiency for mtDNA copy number determination. Regression curve, R2 
and efficiency determination for (a) mtTL1 primer pair and (b) B2M primer pair. In the table (c) below, the values 
for slope, intercept, R2 and efficiency for each target are listed. 

 

The components and volumes for each single RT-PCR reaction is listed in table 20. The 

RT-PCR is run in an initial phase of 5 min at 95 °C, followed by 45 cycles of 95 °C for 15 s 

and 60 °C for 30 s. The melt curve is assessed from 65 °C to 95 °C. 

 

Table 20 Ragencies and volumes for RT-PCR 

Reagent Volume 

gDNA 50 ng/ µL 0.5 µL 

primer forward 0.5 µL 

primer reverse 0.5 µL 

H20 3.5 µL 

 

3.13.2.2 mtDNA copy number calculation 

 

Relative quantification was applied to calculate number of mtDNA per diploid nuclear 

(2n) cell: 

2 x E-𝝙𝝙Cq 
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In this equation ‘’Cq’’ is the quantification cycle, 𝝙𝝙Cq is (Cqmt-Cqnuc), ‘’E’’ is the averaged 

mean efficiency of the PCR reactions of the two targets and ‘’2’’ is to account for the two 

nDNA copies in a cell (Fazzini et al. 2018). The mtDNA copy number was assessed from 

two biological replicates for each cell line and each biological replicate was measured in 

two separate runs. 

 

3.14 Data analysis and statistics 

Data collection and calculations are done with Windows EXCEL (Microsoft Corporation; 

Redmond, Washington). Graphical depiction and statistical analysis is conducted with 

Graph Pad Prism 8.0.2 (GraphPad Software; San Diego, California).  

For all analysis, the mean of two to three technical replicates is calculated and two or three 

biological replicates are averaged. All data is checked for normality and lognormality 

(Anderson-Darling test, D’Agostnino & Pearson test, Shapiro Wilk test and Kolmogorov-

Smirnov test). Consequently, the parametric test (Student’s paired t-test) or non-

parametric test (Wilcoxon matched-pairs rank sum test) are applied. P-value limit for 

statistical significance is set to ≤ 0.05. Values are given as means ± standard error of the 

mean (SEM). Energy maps are statistically evaluated by ANOVA with repeated measures 

and Greenhouse Geisser as a Post Hoc Analysis respectively Bonferroni correction. 
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4 Results 

4.1 Patient and control cohort 

 

To exclude gender- and age-specific differences in mitochondrial and respiratory 

functions, for each patient a matching control was recruited. As depicted in Table 21, 

patients and controls do not differ in mean age or sex. The patients’ age ranges from 21 to 

50 with a mean age of 31±3.12 and the controls are aged 19 to 49 with a mean age of 

32±2.81. Eleven male patients and five female patients were paired with eleven male 

healthy controls and five healthy female controls. Moreover, physical parameters were 

assessed. Patients and controls do not differ in BMI (patients BMI = 23.0±0.48; controls 

BMI = 24.2±03.28). Whereas 94% of the MDD patients smoke, 25% of the controls exhibit 

a regular smoking habit. 56% of the patients drink regularly alcohol, whereas 94% of the 

healthy controls declared that they consume alcohol several times a week. 93% of the 

MDD patients and 83% of controls do not consume drugs. Drug abuse in controls was 

stated as ‘’very seldom’’. Besides physiological examinations psychological health of the 

controls was confirmed by PD Dr. med. Caroline Nothdurfter (Berzirksklinikum 

Regensburg) to exclude possible mental diseases (HAM-D 0-3). The patient cohort for this 

study was selected according to their diagnosis at the Bezirksklinikum Regensburg. All 

patients were diagnosed according to ICD-10 with a medium severe or severe MDD (HAM-

D 20-34, please see method section 3.1). All patients were treated with different 

combinations of ADs. The ADs given are listed in the table below. 

 

 
Table 21 Mean and SEM of clinical characteristics of n=16 MDD patients and n=16 controls. 

Variables 
 

Groups 

MDD (n=16) Controls (n=16) 

 
ICD-10 
 
F32.1 
F32.2 
F33.1 
F33.3 

 
 
 

2 
10 
1 
3 

 
 
 

0 
0 
0 
0 

Age (mean ± SEM, years) 
 

31 ± 3.12 
 

11 (69%)/5 (31%) 

32 ± 2.81 
 

11 (69%)/5 (31%) 
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Sex (male, n (%)/female, n 
(%)) 
 
BMI (mean±SEM, kg m -2) 
 
Smoker (yes, n (%)) 
 
 
Alcohol (yes, n (%)) 
 
 
Drugs (no, n (%)) 
 

 
 

23.0 ± 0.48 
 

9 (75%) 
[4 n/a] 

 
9 (75%) 
[4 n/a] 

 
11 (93%) 

[4 n/a] 

 
 

24.2 ± 3.38 
 

4 (25%) 
 
 

15 (94%) 
 
 

13 (81%) 

Medication 
 
Agomelatin 
Bupropion 
Duloxetin 
Escitalopram 
Mirtazapin 
Olanzapin 
Promethazin 
Trimipramin 
Venlafaxin 
 
 

 
 

3 
2 
1 
6 
3 
2 
1 
1 
2 

 
 

0 
0 
0 
0 
0 
0 
0 
0 
0 

 

 

4.2 Differences in mitochondrial metabolism in peripheral cells: Fibroblasts 

show alterations in mitochondria-related functions 

 

Human dermal fibroblasts are easily accessible, fast growing and simple to cultivate. 

Despite the fact, that the cells are not of neural origin, it already could be shown that 

peripheral cells (PBMCs, platelets or muscle cells) from people suffering from psychiatric 

disorders - like MDD and PTSD - harbor alterations in their cellular metabolism (Garbett 

et al. 2015; Gardner et al. 2003; Hroudová et al. 2013; Karabatsiakis et al. 2014). 

Therefore, experiments with human dermal fibroblast are the initial approach to 

investigate mitochondria-related changes in association with MDD. The results regarding 

the patient cohort and experiments with fibroblasts - including respiration, energy maps, 

ATP levels as well as imaging experiments (JC-1 and cytosolic Ca2+ levels) and mtDNA 

content - have previously been published in Kuffner et al. (Kuffner et al. 2020). 
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4.2.1 Mito Stress Test: ETC function and glycolysis 

4.2.1.1 Respiration of fibroblasts 

 

In order to test the mitochondrial function in fibroblasts, each patient cell line was 

examined in comparison to the control cell line. In total, 16 patient cell lines were 

compared to 16 gender- and age-matched cell lines. The cells were measured under 

standard culturing conditions (non-treated), but also after the exposure to one week of 

either hormonal stress induced by DEX or metabolic stress which is evoked by the 

exchange of glucose to galactose in the culture medium. The cellular respiration in form 

of OCR and the measure for the function of the glycolysis, the ECAR, was assessed in the 

XFp Flux Analyzer. The Mito Stress Test allows a readout of various parameters linked to 

the function of the ETC. By the application of compounds interacting with the ETC, the 

basal respiration, the maximum respiration, the spare capacity, the non-mitochondrial 

respiration, the ATP production-related oxygen consumption and the proton leak were 

determined.  

The assessment of the respiratory parameters resulted in significant differences in 

peripheral cells (figure 15). Fibroblasts derived from MDD patients compared to 

fibroblasts from healthy controls have a significantly lower basal respiration under basal 

conditions (MDD 16.09±0.88, CON 18.53±0.95, Student’s t-test, paired, two-tailed, * p > 

0.05, p = 0.0200, mean±SEM). The differences that were detected under basal conditions 

are reversed after one week of stress. The basal respiration after hormonal stress induced 

by DEX does not show differences between MDD cells and cells from controls (MDD 

22.96±1.14, CON 23.25±1.12, Student’s t-test, paired, two-tailed, p = 0.7392, mean±SEM, 

figure 15 a). The application of galactose medium for one week, which demonstrates 

metabolic stress for the cells, also abolished the significant differences between cells from 

patients and healthy subjects (MDD 22.31±1.70, CON 22.64±1.58, Student’s t-test, paired, 

two-tailed, p = 0.7899, mean±SEM, figure 15 a). The maximum respiration is an important 

measure to determine how much the cells could respire in case of an energetic challenge 

or a high energetic demand. In the Mito Stress Test it is induced by the ETC uncoupler 

FCCP. For the maximal respiration similar observations are made. Whereas cells from 

healthy controls reach significantly higher OCRs than MDD cells under non-treated 

conditions (MDD 32.20±2.23, CON 37.01±2.40, Student’s t-test, paired, two-tailed, *** p < 

0.001, p = 0.0003, mean±SEM, figure 15 b), the detected differences are not present after 

DEX stress (MDD 48.76±3.88, CON 45.03±2.32, Student’s t-test, paired, two-tailed, 
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p = 0.4514, mean±SEM, figure 15 b) neither after galactose stress (MDD 57.86±2.64, CON 

60.04±3.51, Wilcoxon matched-pairs signed rank test, p = 0.2769, mean±SEM, figure 15 

b). A parameter that is closely related to the basal respiration and the maximal respiration 

is the spare respiratory capacity. The spare respiratory capacity is a measure for the cells 

flexibility and ability to react to an excess energetic need. Theoretically, the higher the 

spare capacity the more reserves the cells have in case of an energetic challenge. 

Accompanying the results from basal respiration and the maximal respiration, the MDD 

cells also show significant differences in the spare respiratory capacity under normal, 

non-treated conditions (MDD 16.11±1.81, CON 18.95±2.29, Student’s t-test, paired, two-

tailed, * p < 0.05, p = 0.0257, mean±SEM, figure 15 c).  The spare respiratory capacity did 

not differ between MDD fibroblasts and fibroblasts derived from healthy controls after 

hormonal stress (DEX, MDD 25.28±3.15, CON 27.72±3.92, Wilcoxon matched-pairs signed 

rank test, p = 0.2769, mean±SEM) or after metabolic stress (GAL, MDD 35.91±3.19, CON 

37.33±3.65, Wilcoxon matched-pairs signed rank test, p = 0.2078, mean±SEM, figure 15 

c). Furthermore, the non-mitochondrial respiration was determined after the application 

of Rotenone and Antimycin A that block the Complex I and III of the ETC and therefore 

inhibit mitochondrial respiration. The non-mitochondrial respiration is caused by other 

enzymatic reactions in the cell or oxygenases outside the mitochondria. MDD fibroblasts 

exhibit a significantly lower non-mitochondrial respiration under normal conditions in 

comparison with control fibroblasts (MDD 7.90±0.71, CON 9.650.91, Student’s t-test, 

paired, two-tailed, * p < 0.05, p = 0.0115, mean±SEM), indicating an overall decreased 

cellular metabolism. These alterations are cancelled out after one week of DEX stress 

(MDD 11.08±0.95, CON 11.84±0.79, Student’s t-test, paired, two-tailed, p = 0.2134, 

mean±SEM) but not by metabolic stress (MDD 15.43±1.34, CON 18.05±1.60, Student’s t-

test, paired, two-tailed, * p < 0.05, p = 0.0818, mean±SEM, figure 15 d). 

 

Oligomycin blocks the ATP synthase and allows the proton leak and the ATP-related OCR 

as readout parameters in the Mito Stress Test. Oligomycin prevents the increase in 

mitochondrial respiration induced by ADP without inhibiting uncoupling-stimulated 

respiration. NADH remains high and NAD+ is too low for the citric acid cycle to operate (O. 

Lee, P.J. O’Brien, 2010). The proton leak describes the flux of H+ across the mitochondrial 

membrane independently from the ETC, but through transporters, for example (Cheng et 

al. 2017). No significant differences were detected in the proton leak-associated OCR 

neither under non-treated conditions (MDD 2.38±0.20, CON 2.80±0.22, Student’s t-test, 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/respiration
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/adenosine-diphosphate
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/reduced-nicotinamide-adenine-dinucleotide
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/citrate
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Figure 15 Seahorse XFp Flux Analyzer results of fibroblasts. (a) Shown is the basal respiration in fibroblasts of 
MDD and control cell lines under non-treated conditions and after one week of 1 µM DEX or 10 mM GAL stress. 
Significant differences were found for MDD vs. control, non-treated (* p < 0.05, compared with control, Student’s t-
test, paired, two-tailed). (b) Shown is the maximal respiration in fibroblasts of MDD and control cell lines under non-
treated conditions and after one week of 1 µM DEX or 10 mM GAL stress. Significant differences were found for 
MDD vs. control, non-treated (*** p < 0.001, compared with control, Student’s t-test, paired, two-tailed). (c) Shown 
is the spare respiratory capacity in fibroblasts of MDD and control cell lines under non-treated conditions and after 
one week of 1 µM DEX or 10 mM GAL stress. Significant differences were found for MDD vs. control, non-treated 
(* p < 0.05, compared with control, Student’s t-test, paired, two-tailed). (d) Shown is the non-mitochondrial 
respiration in fibroblasts of MDD and control cell lines under non-treated and after one week of 1 µM DEX or 10 mM 
GAL stress. Significant differences were found for MDD vs. control, non-treated (* p < 0.05, compared with control, 
Student’s t-test, paired, two-tailed) and GAL (* p < 0.05, compared with control, Wilcoxon matched-pairs signed 
rank test). (f) Shown is the proton leak in fibroblasts of MDD and control cell lines under non-treated conditions and 
after one week of 1 µM DEX or 10 mM GAL stress. No significant differences were found. (g) ATP production in 
fibroblasts of MDD and control cell lines under non-treated conditions and after one week of 1 µM DEX or 10 mM 
GAL stress. Significant differences were found for MDD vs. control, non-treated (* p < 0.05, compared with control, 
Student’s t-test, paired, two-tailed). Bar graphs show normalized mean OCR values + SEM; MDD n=16, control 
n=16. 
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paired, two-tailed, p = 0.2041, mean±SEM, figure 15 e), nor under DEX stress (MDD 

2.94±0.31, CON 2.72±0.29, Student’s t-test, paired,  two-tailed, p = 0.2415 mean±SEM, 

figure 15 e) neither GAL stress (MDD 3.99±0.58, CON 3.76±0.37, Student’s t-test, paired, 

two-tailed, p = 0.5415 mean±SEM, figure 15 e). Nevertheless, control fibroblasts show 

under normal conditions a higher ATP-related OCR compared to MDD fibroblasts (MDD 

13.71±0.76, CON 15.72±0.82, Student’s t-test, paired, two-tailed, * p < 0.05, p = 0.0257, 

mean±SEM, figure 15 f), but not subsequent to exposure of DEX (MDD 19.91±0.90, CON 

20.52, Student’s t-test, paired, two-tailed, p = 0.4110, mean±SEM, figure 15 f) or GAL 

(MDD 18.32±1.26, CON 18.88±1.27, Student’s t-test, paired, two-tailed, p = 0.5847, 

mean±SEM, figure 15 f).  
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Figure 16 Mito Stress Test in fibroblasts. 
Exemplary curves for OCR measurement 
during the Mito Stress Test for MDD (white 
squares) and control (black dots) 
fibroblast lines (pair #6). Sequential 
injection of Oligomycin, FCCP and 
Rotenone/Antimycin A causes by 
interaction with the complexes of the ETC 
changes in the OCR. Figure (a) depicts 
graphically the differences in basal 
respiration and maximal respiration after 
injection of FCCP. The lower basal and 
maximal respiration of MDD cells is 
rescinded after one week of (b) 1 µM DEX 
stress or (c) 10 mM GAL stress. 
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4.2.1.2 Energy profile of fibroblasts 

 

Besides the OCR, the Seahorse XFp Flux Analyzer assesses the secretion of H+, the ECAR, 

which is a measure for glycolysis. The OCR values in dependence of the ECAR values 

across the entire Mito Stress Test describes the general energetic state of the fibroblasts 

and gives a hint whether the cells metabolism is more driven towards a glycolytic state or 

OXPHOS activity. 
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Figure 17  Energy map of fibroblasts. Mean OCR in dependence of mean ECAR are shown for MDD and control 
fibroblasts for non-treated, after one week of 1 µM DEX and 10 mM GAL stress. Significant effects of treatment 
were found for DEX (# p << 0.05, compared with non-treated, ANOVA with repeated measures, Greenhouse-
Geisser correction, Post-Hoc Analysis with Bonferroni) and GAL (§ p << 0.05, compared with non-treated, ANOVA 
with repeated measures, Greenhouse-Geisser correction, Post-Hoc Analysis with Bonferroni), Data are shown as 
mean OCR±SEM vs. mean ECAR±SEM; MDD n=16, control n=16.  

 

In fibroblasts, the three conditions non-treated (MDD OCR 24.55±1.00 vs. CON OCR 

29.32±1.70 vs. MDD ECAR 13.68±0.99 vs. CON ECAR 12.78±0.7, mean ± SEM), DEX (MDD 

OCR 39.74±3.57 vs. CON OCR 43.62±2.66 vs. MDD ECAR 10.74±1.28 vs. CON ECAR 

11.21±0.9, mean±SEM) and GAL (MDD OCR 49.69±4.58 vs. CON OCR 49.72±3.83 vs. MDD 

ECAR 19.42±2.38 vs. CON ECAR 16.18±1.21, mean±SEM, figure 17) compared to each 

other had significantly different effects (ANOVA with repeated measures, Greenhouse-

Geisser correction, F(2, 64)= 32.904, p << 0.05, df = 2). In particular, DEX had a significant 

effect on OCR and ECAR (N vs. DEX for MDD and CON, Post-Hoc Analysis, Bonferroni 

correction p << 0.05) and GAL stress changed OCR and ECAR significantly (N vs. GAL for 
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MDD and CON, Post-Hoc Analysis, Bonferroni correction p << 0.05). However, the 

conditions with DEX (MDD OCR DEX 39.74±3.57 vs. MDD OCR N 24.55±1.00 vs. CON OCR 

DEX 43.62±2.66 vs. CON OCR N 29.32±1.70, MDD ECAR DEX 10.74±1.28 vs. MDD ECAR N 

13.68±0.99 vs. CON ECAR DEX 11.21±0.97 vs. CON ECAR N 12.78±0.77, mean±SEM, figure 

18 b) and GAL (MDD OCR GAL 49.69±4.58 vs.  MDD OCR N 24.55±1.00 vs. CON OCR GAL 

49.72±3.83 vs. CON OCR N 29.32±1.70, MDD ECAR GAL 19.42±2.38 vs. MDD ECAR N 

13.68±0.99 vs. CON ECAR GAL 16.18±1.21vs. CON ECAR N 12.78±0.77, mean±SEM, figure 

18 c) did not have significantly different effects on the groups (ANOVA with repeated 

measures Greenhouse-Geisser correction, F(2, 64)= 0.788, p = 0.457). The shift towards a 

more aerobic state for DEX and the shift towards a more energetic state is similar in the 

MDD and the control group. The treatment with DEX (MDD OCR 39.74±3.57, MDD ECAR 

10.74±1.28; CON OCR 43.62±2.66, CON ECAR 11.21±0.97; mean±SEM) compared to GAL 

(MDD OCR 49.69±4.58, MDD ECAR 19.42±2.38; CON OCR 49.72±3.83, CON ECAR 

16.18±1.21; mean±SEM) did not have the same effect on OCR respectively ECAR (ANOVA 

with repeated measures Greenhouse-Geisser correction, F(2, 64)= 18.215, p << 0.05, df = 

1.664), which describes that DEX treatment leads to an increase in OCR and therefore 

OXPHOS, but a reduction of ECAR and therefore a decrease in glycolytic activity. GAL 

treatment caused a rise in both, OCR and ECAR and therefore fueled OXPHOS and 

glycolysis.  

Overall, there is no significant difference between the MDD group and the control group 

(ANOVA with repeated measures, Greenhouse-Geisser correction, F(1, 32)= 0.340, p  = 

0.562, df = 1.664). Moreover, the MDD and the control group do not differ significantly 

regarding their OCR (MDD N 24.55±1.00 vs. CON N 29.32±1.70; MDD DEX 39.74±3.57 vs. 

CON DEX 43.62±2.66; MDD GAL 49.69±4.58 vs. CON GAL 49.72±3.83) and their ECAR 

(MDD N 13.68±0.99 vs. CON N 12.78±0.77; MDD DEX 10.74±1.28 vs. CON DEX 11.21±0.97; 

MDD GAL 19.42±2.38 vs CON GAL 16.18±1.21, mean±SEM) values (ANOVA with repeated 

measures Greenhouse-Geisser correction, F(1, 32)= 2.024, p = 0.160, df = 1). 
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4.2.2 ATP content 

Since differences in the respiration of fibroblasts from MDD patients compared to control 

fibroblasts were unraveled, the energy production of mitochondria was examined in 

detail. The main function of mitochondria is the production of energy in form of ATP. In 

the last step of the ETC, the ATP synthase converts ADP and inorganic phosphate to ATP. 

Hence, to test a direct readout parameter of the mitochondrial function and function of 

Figure 18 Energy maps of 
fibroblasts for the three conditions. 
Single OCR values in dependence of 
single ECAR values are shown of 16 
MDD and control pairs for the three 
different conditions (a) non-treated 
(b) after one week of 1 µM 
dexamethasone stress and (c) after 
one week of galactose stress. Due to 
the induction of either hormonal or 
metabolic stress OXPHOS and 
glycolysis are fueled, which can be 
seen in an increase in OCR and 
ECAR values. MDD and control 
fibroblast lines do not significantly 
differ in their OCR and ECAR values 
for any of the conditions (ANOA with 
repeated measures, Greenhouse-
Geisser correction, p > 0.05). 
However, both stressors had 
significant effects on the energetic 
parameters OCR and ECAR in MDD 
and control fibroblast lines (ANOVA 
with repeated measures, 
Greenhouse-Geisser correction, 
p << 0.05). After (b) dexamethasone 
stress fibroblasts are mainly driven 
towards a more aerobic state (shift 
along the y-axis), whereas (c) 
galactose induces a more energetic 
state (shift along the x-axis and y-
axis). The lack of glucose inhibits 
energy provision through glycolysis 
and forces the fibroblasts towards 
meeting their energetic needs by 
OXPHOS. MDD fibroblast lines are 
indicated by white squares, black 
dots represent control fibroblast 

lines; MDD n=16, control n=16. 
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the Complex V of the ETC, the ATP content was determined in the 16 patient and control 

fibroblast cell lines by a luminescence assay.   

As shown in figure 19, there are statistically significant differences in the ATP content 

between MDD patient fibroblasts and control fibroblasts under non-treated conditions. 

Control cells contain more ATP than MDD cells (MDD 59908±11595, CON 73315±12402, 

Wilcoxon matched-pairs signed rank test, * p < 0.05, p = 0.036, mean±SEM). Moreover, 

ATP contents significantly differ between MDD fibroblasts and control fibroblasts after 

DEX stress. Patient cells contain a significantly lower amount of ATP than cells of healthy 

subjects (MDD 52419±10382, CON 58836±11328, Wilcoxon matched-pairs signed rank 

test, ** p < 0.01, p = 0.0052, mean±SEM). These differences could not be detected under 

GAL stress (MDD 89158±15043, CON 99162±14537, Wilcoxon matched-pairs signed rank 

test, p = 0.463, mean±SEM), indicating that only hormonal stress in the cellular model 

leads to an altered provision of ATP in MDD patient cells, but not metabolic stress. The 

differences detected under non-treated conditions correlate with the reduced OCR values 

in various parameters in Seahorse XFp Analyzer measurements in MDD cells.  
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Figure 19 ATP content in fibroblasts. Shown is the ATP content in MDD and control fibroblast lines under non-
treated conditions and after one week of 1 µM DEX or 10 mM GAL stress. Significant differences were found for 
MDD vs. control, non-treated (* p < 0.05, Wilcoxon matched-pairs signed rank test) and DEX (** p < 0.01, compared 
with control, Wilcoxon matched-pairs signed rank test). Bar graphs show normalized mean RLU values ± SEM. 
Dots show the distribution of single RLU values for MDD and control fibroblast lines; MDD n=16, control n=16. 

 

 

 

4.2.3 Bioenergetic properties and mitochondria-related homeostasis in fibroblasts 

The function of the ETC is directly associated with other measurable parameters which 

are linked to crucial functions of the mitochondria and therefore for the viability, survival 
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and homeostasis of the cell. Besides the transport of electrons along the Complexes I-IV, 

a gradient of protons is built across the inner mitochondrial membrane. This gradient is 

decisive for the drive of the ATP synthase and therefore the production of ATP. This 

electro-chemical gradient across the IMM is defined as the MMP. In addition, the 

mitochondria’s function of serving as buffer for the positively charged Ca2+, underlies the 

negative MMP. With the help of fluorescent dyes and live cell imaging those two 

parameters were determined in viable fibroblasts. 

 

4.2.3.1 Mitochondrial Membrane Potential 

 

The MMP in fibroblasts was measured by loading the mitochondria with the cationic dye 

JC-1 (see figure 20). 

 

 

 

Figure 20 Fibroblasts loaded with the cationic dye JC-1. Aggregates of the 
dye fluoresce red, monomers fluoresce green. Scale bar indicates 20 µM. 

 

Depending on the MMP, the dye fluoresces red or green. The ratio between the two signals 

is directly associated with the MMP. Higher red/green ratios indicate a more negative 

MMP. 
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Figure 21 Mitochondrial membrane potential of fibroblasts. (a) Shown are the red/green ratios of MDD and control 
fibroblast lines under non-treated conditions and after one week of 1 µM DEX or 10 mM GAL stress. Significant 
differences were found for MDD vs. control, non-treated (* p < 0.05, compared with control, Student’s t-test, paired, 
two-tailed). Bar graphs show mean red/green ratios ± SEM, MDD n=16, control n=16). Dots show the distribution 
of single red/green values for MDD and control fibroblast lines under non-treated conditions and after one week of 
1 µM DEX or 10 mM GAL stress; MDD n=16, control n=16. b-d Graphs show the pairwise red/green ratios for each 
MDD and control fibroblast line under (b) non-treated conditions and (c) after one week of 1 µM DEX stress or (d) 
10 mM GAL stress. 

 

In fibroblasts, there are detectable significant differences in the MMP between MDD cells 

and control cells (figure 21 a). MDD cells under non-treated conditions show a higher 

red/green ratio suggesting that the MMP is more negative in MDD cells than in control 

cells (MDD 1.40±0.0008, CON 1.35±0.0008, Student’s t-test, paired, two-tailed, ** p < 0.01, 

p = 0.419, mean±SEM). Considering the results of the respiratory experiments, where 

MDD cells show a lower OCR and the fact that MDD contain less ATP, it might be assumed 

that the ATP synthase itself is less active in MDD cells. If the ATP synthase is less active, 

the MMP is not degraded by a reflux of H+ into the mitochondrion as much as in control 

fibroblasts and therefore MDD fibroblasts harbor lower ATP levels compared to healthy 

control cells under non-treated conditions. 
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These alterations are not present under both stress conditions (DEX, MDD 1.46±0.006, 

CON 1.42±0.006, Student’s t-test, paired, two-tailed, p = 0.1874; GAL, MDD 1.46±0.008, 

CON 1.42±0.009, Student’s t-test, paired, two-tailed, p = 0.2443; mean±SEM, figure 21 a). 

Figure 21 a also depicts that the single values within the groups show only little variation, 

also indicated by the small error bars. When comparing the individual pairs, the difference 

between the MDD cells and the control cells vary from pair to pair (figure 21 c-d). Some 

of the gender- and age-matched cell line pairs show bigger differences in the MMP, 

whereas other paired cell lines display smallest or almost no differences in their MMP.  

 

4.2.3.2 Calcium Homeostasis 

 

The capability of mitochondria to store Ca2+ and to serve as a buffer for the important 

second messenger molecule is dependent on the MMP. Cytosolic Ca2+ concentrations were 

assessed by loading viable fibroblasts with the ratiometric dye Fura-2/AM (‘’Fura-2’’). 

The two excitation spectra of Fura-2 in a Ca2+ -bound (380 nm) or Ca2+-free (340 nm) state 

are directly related to the cytosolic amount of Ca2+. The ratio between the emission 340 

nm/380 nm reflect the Ca2+ homeostasis in the cell. High 340 nm/380 nm ratios indicate 

higher Ca2+ concentrations in the cytosol. 

 

Overall, there are no statistically significant differences between cells derived from 

depressed patients and healthy controls in their Ca2+ homeostasis (figure 22 a). The 

340 nm/380 nm ratio, which reflects the Ca2+ amount in the cytosol of the cell, is roughly 

the same und MDD cells and control cells (MDD 0.67±0.013, CON 0.67±0.009, Wilcoxon 

matched-pairs signed rank test, p = 0.4954, mean±SEM). Measurements after one week of 

stress did not result in any statistically significant differences either (DEX, MDD 

0.64±0.005, CON 0.64±0.006 Student’s t-test, paired, two-tailed, p = 0.2285; GAL, MDD 

0.62±0.005, CON 0.62±0.006 Student’s t-test, paired, two-tailed, p = 0.6648; mean±SEM). 

Figure 22 a also depicts that the values within one group do not vary strongly. 

Nonetheless, in some pairs there are bigger intra-pair-individual differences than in other 

pairs. These pairwise comparisons are shown in figure 22 (b-d). It is obvious that pairs 

with higher differences in the Fura-2 ratio do not show these high differences after one 

week of hormonal or metabolic stress. Interestingly, these effects were evened out after 

the application of the stress protocol. 
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Figure 22 Cytosolic Ca2+ homeostasis in fibroblasts. (a) Shown are the 340nm/380nm ratios of MDD and control 
fibroblast lines under non-treated conditions and after one week of 1 µM DEX or 10 mM GAL stress. No significant 
differences were found. Bar graphs show mean 340nm/380nm ratios ± SEM. Dots show the distribution of single 
340 nm/380 nm values for MDD and control fibroblast lines under non-treated conditions and after one week of 
1 µM DEX or 10 mM GAL stress; MDD n=16, control n=16. b-d Graphs show the pairwise 340 nm/380 nm ratios 
for each MDD and control fibroblast line under (b) non-treated conditions and (c) after one week of 1 µM DEX stress 
or (d) 10 mM GAL stress. 

 

 

4. 3 Mitochondrial content: mtDNA copy number in fibroblasts 

In the present study, it could be shown that there are deficiencies in respiratory 

parameters. Additionally, there are differences in the ATP production and the MMP. In the 

literature it has been shown that a reduced energy metabolism is correlated with reduced 

number in mtDNA, whereas higher mtNDA copy number is associated with a lower level 

of depression (Kim et al. 2001). MtDNA replication does not coincide with the cell cycle 

and occurs independently of nuclear DNA replication (Clayton and Bogenhagen 1977). 

Consequently, the mtDNA copy number was determined in relation to the diploid nuclear 

genome in 16 MDD and control fibroblast cell lines. 
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Figure 23 MtDNA copy number in 16 MDD and patient fibroblast cell lines. Shown are the mtDNA copy numbers 
per nDNA of MDD and control fibroblast lines. No significant differences were found. Bar graph show mean mtDNA 
copy number ± SEM. Dots show the single values of mtDNA copy numbers for MDD and control fibroblast lines; 
MDD n=16, control n=16. 

 

As depicted in figure 23, there are no significant differences in the mtDNA copy number 

when MDD and control cell lines are compared (MDD 654±28.04, CON 636±31.68, 

Student’s t-test, paired, two-tailed, p = 0.6540, mean±SEM).  

 

MtDNA copy numbers are, besides the telomere length, part of the ‘’biological clock’’ and  

studies prove that there are significant correlations between mtDNA copy number and 

chronological age (Fries et al. 2017; Mengel-From et al. 2014). In this case we cannot 

detect a correlation between age and mtDNA copy number (Linear Regression Analysis, 

R2 = 0.01742, p = 0.4714). Single values of the mtDNA copy numbers can be taken from 

Table 35 (see Appendix), the age of MDD patients and controls are listed in Table 16. 

 
 

 

4.4 Successful reprogramming of fibroblasts into iPSCs and induction of NPCs 

4.4.1 Cultivation and reprogramming of human dermal fibroblasts 

 

A few days after taking the skin biopsies and cultivation of the skin pieces, primary human 

dermal fibroblasts were growing out of the skin piece. Every cell line could be successfully 

cultivated and cryo-stored. Early passages of the primary fibroblast lines were 

successfully reprogrammed in to iPSCs. By episomal (Epi 5) reprogramming with the 

Yamanka factors stem cell formation was observed after 21-33 days (Takahashi and 
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Yamanaka 2006). Stem cell colonies were successfully isolated and cultivated. With 

immunocytochemistry, staining, markers for pluripotency were detected and labelled.  

 

 

Figure 24 Fibroblasts in cell culture. (left) Shown is a piece of skin with primary human dermal fibroblasts  
growing out. 10X magnification. (right) Primary Human dermal fibroblasts in culture. 40X magnification. 

 

 

 

Figure 25 Reprogramming and iPSC clone separation. (left) iPSC clone formation after 21 days of episomaly 
induced reprogramming of primary human fibroblasts. 40X magnification. (right) selected iPSC clone in culture. 
40X magnification. 

 

4.4.2 Quality control for pluripotency  

The quality control of the iPSCs was conducted by a collaborating laboratory (Prof. Dr. 

Riemenschneider. Neuropathologogy, University Hospital of Regensburg, Regensburg, 

Germany). By PluriTest analysis the first 8 patient and 7 control cell lines were examined 

(Schulze et al., 2016). For 8 of the 15 iPSC lines pluripotency could be confirmed. One 

probe is still pending. The 7 cell lines are close to threshold values. Most likely, the cell 

lines did not pass the PluriTest not because of a lack of pluripotency, but most likely 

10x 

40x 40x 
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because improper iPSC sample collecting with insufficient cleaning of iPSCs colonies and 

therefore fibroblast contamination. 

 

 

Table 22 Results of the PluriTest for pluripotency of iPSC lines. 

Cell line result remarks 

CON2 not pluripotent threshold for pluripotency: 1424, reached value: 1277.0 

CON3 not pluripotent threshold for pluripotency: 1424, reached value 1330.2 

CON4 pluripotent --- 

CON5 pluripotent --- 

CON6 not pluripotent threshold for pluripotency: 1424, reached value 1330.2 

CON7 pluripotent --- 

CON8 pluripotent --- 

MDD1 not pluripotent threshold for pluripotency: 1424, reached value: 1358.5 

MDD2 not pluripotent threshold for pluripotency: 1424, reached value: 1336.6 

MDD3 not pluripotent threshold for pluripotency: 1424, reached value: 1306.5 

MDD4 pluripotent --- 

MDD5 pluripotent --- 

MDD6 pluripotent --- 

MDD7 pluripotent --- 

MDD8 not pluripotent threshold for pluripotency: 1424, reached value: 1404.9  

 

 

4.4.3 Differentiation of neural progenitor cells 

For each iPSC cell line one clone was used to obtain NPCs. Neural induction from iPSC cells 

took 7 days to transform iPSC colonies to early neural progenitor cells. 

NPCs were passaged until p5 in order to reach a higher maturity. Then they were stained 

for neural progenitor markers PAX6 and SOX2 (figure 26). Positive staining for a 

percentage higher than 70% is considered as successful differentiation. Table 23 shows 

that all the differentiated cell lines are > 70% positive for both markers and the 

differentiation was successful. 
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Figure 26 Immunostaining of NPC line MDD4. Staining against (top left) SOX2 (green, 488 rat), (top right) 
PAX6 (red, Cy3) and (bottom left) nuclei (blue). (bottom right) merge picture. Scale bar indicates 20 µm. 

 

 
Table 23 Percentage of PAX6/SOX2 positively stained NPCs 

cell line clone PAX6-positiv (%) SOX2-positiv (%) 
CON1 k 6 87.61 86.00 
MDD1 k 4 90.81 96.25 
CON2 k 12 90,67 89.96 
MDD2 k 12 82.22 85.35 
CON3 k 2 84.64 85.60 
MDD3 k 5 91.73 91.41 
CON4 k 4 86.44 90.76 
MDD4 k 12 84.31 86.94 
CON5 k 1 90.43 93.01 
MDD5 k 4 87.76 89.58 
CON6 k 17 93.14 92.85 
MDD6 k 13 91.78 89.16 
CON7 k 13 91.71 91.71 
MDD7 k 6 89.12 90.38 
CON8 k 2 88.56 89.67 
MDD8 k 13 88.26 90.16 
CON12 k 5 90.67 87.93 
MDD12 k 4 75.34 77.89 

 

 

 

4.5 Alterations of the mitochondrial metabolism in cells of the CNS: Neural 

progenitor cells depict changes in energy supply 

 

Despite that fact that fibroblasts are a suitable model to investigate mitochondria 

function, since differences in the OXPHOS, MMP could be determined in this study and by 

others (Garbett et al. 2015; Karabatsiakis et al. 2014), neural cells are of large interest. 

MDD is a disease of the body and the brain and therefore we extended our studies to 
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investigate mitochondrial function in neural cells. Moreover, the NPCs depend on 

glycolysis to a higher extent when compared to fibroblasts. NPCs were exposed to 

hormonal (DEX) stress, but not to metabolic stress induced by galactose, since NPCs still 

mainly rely on glycolysis like iPSCs and do not survive without glucose over one week 

(Lorenz et al. 2017). 

NPCs are an attractive cellular model since they are an intermediate state between iPSCs 

and neurons and could hint at the impact of mitochondrial dysfunction in the neural 

development (Mlody et al. 2016; Zheng et al. 2016). The developing brain is highly 

dynamic and dependent on proper energetic supply (Edmond 1992). Deficiencies in 

energy supply could therefore influence neuron growth and renewal. 

 

4.5.1 Mito Stress Test: ETC and glycolysis 

4.5.1.1 Respiration of NPCs 

Differentiated NPCs were examined pairwise with the Mito Stress Test protocol in the 

Seahorse Flux XFp Flux Analyzer. After the serial application of four inhibitors of the ETC 

– Oligomycin, FCCP and Rotenone/Antimycin A – the respiratory parameters, namely the 

basal and maximal respiration, the non-mitochondrial respiration, the proton leak, the 

ATP-related oxygen consumption and the spare respiratory capacity were determined.  

Under normal conditions, NPCs from patients exhibit a significantly lower basal 

respiration compared to NPCs from controls (MDD 88.49±3.42, CON 103.72, Student’s t-

test, paired, two-tailed, ** p > 0.01, p = 0.0098, mean±SEM, figure 27 a). 

However, when the NPCs undergo one week of hormonal stress, the differences in the 

basal respiration are repealed. There are no significant differences between MDD and 

controls after DEX stress in basal respiration (MDD 94.53±5.94, CON 107.26±6.49, 

Student’s t-test, paired, two-tailed, * p > 0.05, p = 0.0658, mean±SEM, figure 27 a). NPCs 

exhibit in comparison to fibroblasts a lower rise in OCR after the application of FCCP. 

Whereas fibroblasts can double their OCR, the maximal respiration of NPCs is only about 

one third higher compared to the NPCs basal respiration. The main source of energy of 

NPCs is not OXPHOS but glycolysis which results in lower maximal respiratory abilities.  

The maximal respiration of MDD NPCs and controls NPCs does not differ under non-

treated conditions (MDD 114.94±5.55, CON 131.15±11.54, Student’s t-test, paired, two-

tailed, p = 0.1540, mean±SEM, figure 27 b) neither after DEX stress (MDD 114.61±9.84, 

CON 121.34±2.96, Student’s t-test, paired, two-tailed, p = 0.4294, mean±SEM, figure 27 b). 
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Closely related to the maximal and the basal respiration, is the spare respiratory capacity. 

The spare respiratory capacity is important for the cells’ survival in case of an energetic 

challenge and is a measure for the cell’s energetic reserves. In general, NPCs possess a 

lower spare respiratory capacity than fibroblasts, since OXPHOS is not their main source 

of ATP production. In case of an energetic demand NPCs rely on other energetic sources 

like glycolysis, most probably. In NPCs the spare respiration capacity does not result in 
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Figure 27 Seahorse XFp Flux analyzer results of NPCs. (a) Shown is the basal respiration in NPCs of 
MDD and control cell lines under non-treated conditions and after one week of 1 µM DEX stress. 
Significant differences were found for MDD vs. control, non-treated (** p < 0.01, compared with control, 
Student’s t-test, paired, two-tailed). (b) Shown is the maximal respiration of NPCs of MDD and control 
cell lines under non-treated conditions and after one week of 1 µM DEX stress. No significant differences 
were found. (c) Shown is the spare respiratory capacity in NPCs of MDD and control cell lines under 
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non-treated conditions and after one week of 1 µM DEX stress. No significant differences were found. 
(d) Shown is the non-mitochondrial respiration in NPCs of MDD and control cell lines under non-treated 
conditions and after one week 1 µM DEX stress. Significant differences were found for MDD vs. control, 
non-treated (* p < 0.05, compared with control, Wilcoxon matched-pairs signed rank test). (e) Shown is 
the proton leak in NPCs of MDD and control cell lines under non-treated conditions and 1 µM DEX. 
Significant differences were found for MDD vs. control, non-treated (* p < 0.05, compared with control, 
Wilcoxon matched-pairs signed rank test. (g) ATP production in NPCs of MDD and control cell lines 
under non-treated conditions and after one week of 1µM DEX stress. No significant differences were 
found. Bar graphs show normalized mean OCR values + SEM; MDD n=9, control n=9. 
 

any significant differences between patients and controls under normal conditions (MDD 

27.04±1.44, CON 34.81±7.46, Student’s t-test, paired, two-tailed, p = 0.5256, mean±SEM, 

figure 27 c). Likewise, it does not significantly alter between MDD subjects and healthy 

subjects after the cells were exposed to DEX (MDD 20.08±5.59, CON 14.21±10.62, 

Wilcoxon matched-pairs signed rank test, p = 0.4258, mean±SEM, figure 27 c). Another 

parameter that is determined in the Mito Stress Test is the non-mitochondrial OCR. Non-

mitochondrial OCR  has usually been attributed to inefficient mitochondrial electron 

transport, or to other cellular oxidative reactions not linked to energy metabolism (Herst 

et al. 2004).   

NPCs from controls have a significantly higher non-mitochondrial respiration compared 

to MDD patients at normal culturing conditions (MDD 25.54±1.20, CON 30.82±1.81, 

Wilcoxon matched-pairs signed rank test, * p < 0.05, p = 0.0195, mean±SEM, figure 27 d). 

Similar to the observation for the basal respiration, the non-mitochondrial respiration is 

of no significant difference after hormonal stress exposure (25.62±1.52, CON 28.00±1.40, 

Wilcoxon matched-pairs signed rank test, two-tailed, p = 0.2659, mean±SEM, figure 27 d). 

As proton leak depicts the protons that migrate into the matrix without producing ATP, it 

makes the coupling of substrate oxygen and ATP generation incomplete. Proton leak is 

the principal, but not the only, mechanism that incompletely couples substrate oxygen to 

ATP generation (Cheng et al. 2017). In this parameter NPCs from MDD patients 

significantly differ. The proton leak-associated OCR is significantly higher in control cells 

under normal conditions (MDD 16.63±0.79, CON 19.56±1.01, Student’s t-test, paired, two-

tailed, ** p < 0.01, p = 0.0078, mean±SEM, figure 26 e). However, after DEX stress there 

are no significant aberrations between MDD cells and control cells (MDD 16.22±0.70, CON 

21.02±2.96, Student’s t-test, paired, two-tailed, p = 0.0771, mean±SEM, figure 27 e). 

Regarding the ATP-related OCR, there are no differences between MDD NPCs and control 

NPCs, neither under non-treated conditions (MDD 72.55±2.70, CON 82.94±4.77, Student’s 

t-test, paired, two-tailed, p = 0.0537, mean±SEM, figure 27 f) nor after one week of 
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hormonal stress (MDD 75.87±3.83, CON 85.27±4.64, Student’s t-test, paired, two-tailed, 

0.1368m, , mean±SEM, figure 27 f).  
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Figure 28 Mito Stress Test in NPCs. Typical course for OCR values during a stress protocol in the Seahorse XFp 
Flux Analyzer before compound injection and after application of Oligomycin, FCCP and Rotenone/Antimycin A for 
MDD NPCS (white squares) and control NPC cell line (pair #9). Figure (a) depicts the differences in basal and 
maximal respiration, which are erased respectively diminished after (b) one week of 1 µM DEX stress. Characteristic 
is also the lowered rise in maximal respiration – and the resulting reduction in spare respiratory capacity – after 
FCCP injection due to hormonal stress. 

 

4.5.1.2 Energy profile of NPCs 

 

OCR and ECAR can be used to describe the energetic state of NPCs, as well (figure 29). OCR 

in dependence of ECAR values across the Mito Stress Test can describe the energy states 

MDD and controls for the two different conditions.  
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Figure 29 Energy map of NPCs. Mean OCR in dependence of mean ECAR are shown for MDD and control NPCs 
for non-treated conditions and after one week of 1 µM DEX stress. No significant effects of treatment were found. 
Significant differences were found for MDD vs. control for the non-treated condition (* p < 0.05, compared to control, 
ANOVA with repeated measures Greenhouse-Geisser correction) and after one week of 1 µM DEX stress (** p < 
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0.05, compared to control, ANOVA with repeated measures, Greenhouse-Geisser correction). Data are shown as 

mean OCR±SEM vs. mean ECAR±SEM; MDD n=9, control n=9.  

 

The treatment with DEX (MDD OCR 130.74±8.74 vs. CON OCR 148.07±6.19 vs. MDD ECAR 

50.92±2.50 vs. CON ECAR 52.49±3.65, mean±SEM, figure 30 b) compared to non-treated 

(MDD OCR 127.26±4.02 vs. CON OCR 152.46±5.90 vs. MDD ECAR 55.84±2.40 vs. CON 

ECAR 61.55±1.84, mean±SEM, figure 30 a) did not have significantly different effects on 

MDD and control NPCs, since the shift towards a less glycolytic state and more energetic 

state is similar (ANOVA with repeated measures, Greenhouse-Geisser correction, 

F(1,32) = 1.037, p = 0.316, df = 1, figure 29). Overall, the DEX treatment did not alter OCR 

(MDD OCR DEX 130.74±8.74 vs. MDD OCR N 127.26±4.02; CON OCR DEX 148.07±6.19 vs. 

CON OCR N 152.46±5.90) compared to ECAR (MDD ECAR DEX 50.92±2.50 vs. MDD ECAR 

N 55.84±2.40, CON ECAR DEX 52.49±3.65 vs. CON ECAR N 61.55±1.84, mean±SEM) 

significantly different across both groups (ANOVA with repeated measures, Greenhouse-

Geisser correction, F(1,32) = 1.232, p = 0.275). The treatment with DEX did also not have a 

different effect within the groups on the parameters OCR and ECAR (ANOVA with 

repeated measures, Greenhouse-Geisser correction, F(1,32) = 0.101, p = 0.753, df = 1). The 

treatment with the hormonal stressor causes a slight reduction in OXPHOS in control cells 

as well as a drop in glycolytic activity for MDD and control cells. 

However, when comparing the groups themselves, there is a significant difference 

between MDD and control NPCs (ANOVA with repeated measures, Greenhouse-Geisser 

correction, F(1,32) = 10.677, p = 0.003). MDD and control NPCs significantly differ regarding 

their OCR (MDD N 127.26±4.02 vs. CON N 152.46±5.90, MDD DEX 130.74±8.74 vs. CON 

DEX 148.07±6.19) and ECAR (MDD N 55.84±2.40 vs. CON N 61.55±1.84, MDD DEX 

50.92±2.50 vs. CON DEX 52.49±3.65, mean±SEM) values (ANOVA with repeated measures 

Greenhouse-Geisser correction, F(1,32) = 5.343, p = 0.27). The MDD group has significantly 

lower OCR and ECAR values for non-treated as well as for DEX conditions. Conclusively, 

MDD NPCs show a lower overall metabolism compared to control NPCs, under non-

treated conditions and after DEX stress.  
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Figure 30 Energy map for NPCs for the two conditions. OCR values in dependence of the ECAR values are shown 
for (a) non-treated conditions and (b) after one week of 1 µM DEX stress. DEX stress caused predominantly a 
reduction in overall metabolism for both groups, which is indicated by a shift towards more glycolytic (y-axis) state 
and a shift towards more quiescent (x-axis) state. However, this effect is not statistically significant (ANOVA with 
repeated measures, Greenhouse-Geisser correction, p > 0.05). Nevertheless, there are significant differences 
between MDD and control NPC lines, since OCR and ECAR values are lower in MDD NPCs. Significant differences 
were found for both conditions (compared to control group, ANOVA with repeated measures, Greenhouse-Geisser 
correction, p < 0.05). MDD NPC lines are indicated by white squares, black dots represent control NPC lines; MDD 
n=9, control n=9. 

 

 

4.5.2 ATP content 

The main function and the crucial task also of mitochondria in NPCs is to generate ATP 

out of ADP and Pi. In the last step of the ETC the ATP synthase is driven by the proton 

gradient over the membrane that is built up by the previous reactions at the Complexes I-

V. Inasmuch as in this study we have seen differences in the ATP production in fibroblasts 

of MDD patients and controls, the differentiated neural cells were also measured 

separately in their ATP contents. Since NPCs of patients show a lower basal respiration, it 

might be possible that the ETC does not function properly and this could therefore result 

in differences in the drive of the ATP synthase and lower ATP contents. Nevertheless, 

there are overall no differences in the ATP levels of MDD NPCs and control NPC. As 

depicted in the figure below, cells from MDD patients do not harbor a significantly distinct 

amount of ATP compared to cells from healthy subjects (MDD 341064±49780, CON 

324275±47085, Student’s t-test, paired, two-tailed, p = 0.7939, mean±SEM, figure 31). 

DEX stress does also not cause a difference between MDD subjects and healthy controls 

(MDD 362357±65367, CON 369576±57303, Student’s t-test, paired, two-tailed, 

p = 0.8317, mean±SEM, figure 31). Possibly, the defects in basal respiration and hence 

potential deficits of ETC transport function do not have an impact on the overall ATP 
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levels. NPCs are highly reliant on glycolysis and they can assumedly compensate for 

deficits of the ETC.  
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Figure 31 ATP content in NPCs. Shown is the ATP content in MDD and control NPC lines under non-treated 
conditions and after one week of 1 µM DEX stress. No significant differences were found for MDD vs. control NPCs, 
neither for non-treated and 1 µM DEX stress. Bar graphs show normalized mean RLU values ± SEM. Dots show 
the distribution of single RLU values for MDD and control NPC lines under non-treated conditions and after one 
week of 1 µM DEX stress; MDD n=9, control n=9. 

 

4.5.3 Bioenergetics and mitochondria-related homeostasis in NPCs 

 

Besides the assessment of respiratory parameters in neural cells and the determination 

of the ATP content, the nine differentiated cell lines derived from MDD patients and 

control were observed with the help of fluorescent dyes in order to determine the MMP 

and the cytosolic Ca2+ homeostasis. Since the NPCs from MDD patients exhibited lowered 

OCR values in respiratory parameters, the MMP and the Ca2+ homeostasis, respectively 

the Ca2+ buffer function of the mitochondria, might be also affected. The NPCs are likely to 

show changes in other mitochondria-related properties. 

 

4.5.3.1 Mitochondrial Membrane Potential 

JC-1 measurements in nine NPC cell lines resulted in significant differences. NPCs derived 

from controls show a higher JC-1 red/green ratio compared to NPCs from MDD patients 

(MDD 1.70±0.065, CON 1.84±0.092, Student’s t-test, paired, two-tailed, * p < 0.05, 

p = 0.0286, mean±SEM, figure 32 a).  Higher red/green ratios indicate a lower – more 

negative – MMP. After one week of DEX stress, MDD and control cell lines do not exhibit 



 
86 Results 

any significant differences in their MMP (MDD 1.96±0.079, CON 2.04±0.128, Student’s t-

test, paired, two-tailed, p = 0.1843, mean±SEM, Figure 32 a). These observations might be 

related to the change of the ETC function in MDD NPCs. There is a low variance in the 

single values of the JC-1 ratios for all groups, also indicated by small error bars. As figures 

32 b and c show, seven of the nine MDD cell lines show a lower MMP than the control cell 

lines as well as after DEX stress the majority of MDD cells exhibits a lower MMP. However, 

depending on the pair, the differences in MMP vary in size.  
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Figure 32 Mitochondrial membrane potential measurements of NPCs. Shown are the red/green ratios of MDD and 
control NPC lines under non-treated conditions and after one week of 1 µM DEX stress. Significant differences were 
found for MDD vs. control, non-treated (* p < 0.05, compared with control, Student’s t-test, paired, two-tailed). Bar 
graphs show mean red/green ratios ± SEM. Dots show the distribution of single red/green values for MDD and 
control NPC lines under non-treated conditions and after one week of 1 µM DEX stress; MDD n=9, control n=9. b-
c Graphs show the pairwise red/green ratios for each MDD and control NPC line under (b) non-treated conditions, 

(c) after one week of 1 µM DEX. 

 

 

4.5.3.2 Cytosolic Ca2+ homeostasis 

 

Changes in the MMP are closely related to changes in the Ca2+ homeostasis in the cell. 

Therefore, in this study the cytosolic Ca2+ homeostasis was examined with the fluorescent 

dye Fura-2 in nine paired NPC cell lines. Higher Fura-2 ratios are directly related to higher 

amounts of cytosolic Ca2+. Overall, the measurement of Fura-2 ratios did not result in any 

significant differences in NPCs. Statistically, there is no difference between MDD patients 

cell lines compared to the control cell line (non-treated, MDD 0.62±0.01, CON 0.60±0.01, 

Student’s t-test, paired, two-tailed, p = 0.0705; DEX, MDD 0.62±0.01, CON 0.061±0.00, 

Student’s t-test, paired, two-tailed, p = 0.1977; mean±SEM, figure 33 a). Generally, there 

is a low variation in the values in each group, also indicated by small error bars. Despite 
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the fact that MDD patients show a slightly higher Fura-2 ratio for both conditions, the 

values of each pair are of individual differences (figure 33 b-c). 
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Figure 33 Cytosolic Ca2+ homeostasis in NPCs. Shown are the 340 nm/380 nm ratios of MDD and control NPC 
lines under non-treated conditions and after one week of 1 µM DEX stress. No significant differences were found. 
Bar graphs show mean 340 nm/380 nm ratios ± SEM. Dots show the distribution of single 340 nm/380 nm values 
for MDD and control NPC lines under non-treated conditions and after one week of 1 µM DEX stress; MDD n=9, 
control n=9. b-c Graphs show the pairwise 340 nm/380 nm ratios for each MDD and control NPC line under (b) 
non-treated conditions and (c) after one week of 1 µM DEX stress. 
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5 Discussion 

5.1 Fibroblasts from MDD patients show lower respiratory rates and altered 

bioenergetic functions 

In the present study, it could be demonstrated that there are differences in the 

mitochondria-related functions in MDD fibroblasts compared to the fibroblasts from 

gender- and age-matched healthy controls. Fibroblasts from MDD patients show lower 

OCR values for basal and maximal respiration, the spare respiratory capacity, the non-

mitochondrial respiration and the ATP-turnover related respiration. Lower basal 

respiration and a reduced ATP-related OCR rate could either be a consequence of a 

diminished activity of the mitochondrial respiratory chain or a restricted substrate or 

enzyme availability. In case of a restricted availability of the substrates glucose or fatty 

acids or the improper functioning of enzymes in their metabolic breakdown (e.g. the 

hexokinase or the Acyl-CoA Dehydrogenase), the availability of the reduction equivalents 

NADH/H+ and FADH2 is limited.  Moreover, those reduction equivalents have to be 

shuttled into the mitochondrion, which also can be a limiting factor for the function of the 

ETC (Leverve 2007). The levels of reduction equivalents in MDD and control cells were 

not determined in this study. In order to draw a conclusion if the reduced respiration is 

because of a reduced presence of NADH/H+ or FADH2 further measurements are needed. 

However, a lower basal respiration can also result from a reduced function of the ETC 

itself, meaning that the Complexes I – IV might exhibit a lower activity in MDD fibroblasts.  

The inhibition of Complex I by rotenone was shown to cause an inhibition of Complex II 

since the TCA cycle stops succinate production when NADH/H+ is not oxidized since there 

are no succinate sources in the cytosol (Steinlechner-Maran et al. 1997). Complex I 

produces most of the superoxide. A defect of Complex I activity, therefore, can be 

considered as a potential cause for altered ROS levels (Paradies et al. 2004). It cannot be 

excluded that the reduced respiration in MDD fibroblasts origins from a reduced 

mitochondrial mass. An estimation of the mitochondrial content in permeabilized PBMCs 

of acutely depressed patients resulted in increased levels and Karabatsiakis et al. 

therefore concluded the lowered respiration is actually attributable to a lower ETC 

function (Karabatsiakis et al. 2014). However, for this study, the mitochondrial content 

definition by CS activity – as is was determined in the study of Karabatisakis et al. – is 

remaining to be done. 
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Non-mitochondrial oxygen consumption is observed at low levels in a variety of cells and 

tissues. This has been linked to an inefficient ETC or to other cellular oxidative reactions 

which are not linked to energy metabolism (Herst et al. 2004). MDD fibroblasts exhibit a 

lower non-mitochondrial respiration compared to control fibroblasts, which could be 

either point at a reduced activity of the ETC or a generally decreased metabolism. 

Moreover, the reduced maximal uncoupled respiration and the lower spare respiratory 

capacity indicate that the fibroblasts of MDD patients exhibit a reduced capacity of 

mitochondrial respiration. This decreased capacity might result in a lack of energy in 

times of higher energy demand (Buttgereit, Burmester, and Brand 2000).  

Similar observations to those in the present study were made in PBMCs of acutely 

depressed patients. Karabatsiakis et al. also observed a reduction in routine respiration, 

ATP turnover-related respiration and uncoupling efficiency (Karabatsiakis et al. 2014). 

These findings are in line with those from Hroudová et al. . They revealed that the 

physiological respiratory rate and the maximal capacity of the ETC are significantly 

decreased in intact blood platelets of patients with a current depressive episode – 

regardless of a partial or complete remission of the mild to severe depressive symptoms 

(Hroudová et al. 2013). Another study demonstrated that muscle cells of depressed 

patients show an impaired activity of Complex I+III and II+III. They also discovered a 

significant decreases of mitochondrial ATP production rates (Gardner et al. 2003). In the 

present study significantly lower ATP levels in MDD fibroblasts could also be measured. 

This finding is in line with the overall decreased respiration of MDD fibroblasts and the 

reduced ATP-related turnover in particular. 

The electron flow at each complex of the ETC is used to pump protons into the IMS and 

the MMP is build up over the IMM. The flux of protons down their electrochemical 

gradient trough the ATP synthase to generate ATP (Spinelli and Haigis 2018). The MMP is 

more negative in MDD fibroblasts whereas they harbor lower ATP levels. This observation 

might be related to a reduced function of the ATP synthase and therefore a preserved 

proton gradient causing the more negative MMP. The general assumption is that the 

electrochemical gradient regulates the activity of the ETC complexes. At high potentials 

further proton pumping is inhibited. A decrease of the MMP due to proton utilization, e.g. 

by the ATP synthase, allows the ETC to rebuild the MMP. Thus, mitochondria in intact cells 

respire between the extreme energetic states, state 3 in the presence of ADP and state 4 

when ADP has been converted into ATP (Hüttemann et al. 2008). Studies of fibroblasts 

with primary defects in mitochondrial ATP synthase show that the MMP at state 4 is 
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normal, but ADP-induced discharge of the MMP is impaired as ATP synthesis at state 3 is 

decreased. Increased MMP and low ATP synthesis is also found when the ATP synthase 

content is diminished by altered biogenesis of the enzyme complex (Vojtíšková et al. 

2004). 

Although the ER is considered to be the main intracellular Ca2+ store, mitochondria 

essentially contribute to the cellular Ca2+ homeostasis. Mitochondria are able to 

accumulate Ca2+ in an energy-dependent way and they release Ca2+ through antiporters. 

Mitochondrial key functions – in particular the matrix dehydrogenases - are strongly 

influenced by the cytosolic Ca2+ level (Denton 2009). Cytosolic Ca2+ also influences the 

activity of other mitochondrial enzymes at the IMM such as the glycerophosphate 

dehydrogenase or the malate-aspartate shuttle (Satrústegui, Pardo, and Del Arco 2007). 

The examination of cytosolic Ca2+ in MDD fibroblasts and fibroblasts from controls did not 

reveal any significant differences. Mitochondrial Ca2+ concentrations were not assessed 

in the present study. However, the more negative MMP in MDD fibroblasts could cause a 

higher uptake of Ca2+ into the mitochondrion. Exceeded Ca2+ uptake by mitochondria 

triggers a bioenergetic failure of the organelle through the opening of the permeability 

transition pore, the release of Cyt c and other pro-apoptotic factors which cause cellular 

death by apoptosis or necrosis (Kroemer, Galluzzi, and Brenner 2007). Whether the more 

negative MMP in MDD fibroblasts also results in higher mitochondrial Ca2+ remains 

elusive in this case and will be part of further measurements. 

 

 

5.2 Enhanced metabolism in fibroblasts due to hormonal and metabolic 

stressors 

Besides the basal, non-treated state, the fibroblasts were investigated after one week of 

1 µM DEX stress or after one week of 10 mM GAL stress. 

Glucocorticoid hormones play an important role in times of stress by regulating salt and 

water metabolism, blood pressure, immune function, and carbohydrate, protein and fat 

metabolism (Schäcke, Döcke, and Asadullah 2002). However, chronic glucocorticoid 

treatment induces side effects, including insulin resistance, a catabolic effect on the 

skeletal muscle and an increased risk of osteoporosis (Schäcke, Döcke, and Asadullah 

2002). Chronic exposure to either endogenously released or synthetic GC is related to 

numerous physical diseases, but also mental disorders (Björntorp and Rosmond 2000; 
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Pufall 2015b; Steckler, Holsboer, and Reul 1999; Strüber, Strüber, and Roth 2014b). Long-

term GC presence causes ETC dysfunction, increased ROS, mitochondrial abnormalities, 

apoptosis and cell death (Manoli et al. 2007). 

In this study, the overall analysis of the Mito Stress Test by ANOVA with repeated 

measures revealed a significant enhancement of OXPHOS, but not glycolysis, due to DEX 

exposure. DEX stress induced in both groups – MDD and controls – a rise of the OCR in all 

parameters of the Mito Stress Test. The differences in the OCR detected in the Mito Stress 

Test between MDD fibroblasts and control fibroblasts for the non-treated state could not 

be measured after the DEX condition. It is known that chronic injection of glucocorticoids 

over 3 to 7 days decreases the rate of oxygen consumption and lowers phosphate/oxygen-

ratio (the ATP produced per oxygen atom reduced by the respiratory chain) of liver 

mitochondria, but not in mitochondria from skeletal muscle (Bullock et al. 1972; Kerppola 

1959; Kimberg, Loud, and Wiener 1968; Peter, Verhaag, and Worsfold 1970).  

A 48 h treatment with 1 µM of dexamethasone in adipocytes caused an impaired insulin-

induced glucose uptake and a mitochondrial dysfunction. The mitochondrial dysfunction 

was supported by decreased intracellular ATP and MMP, increased intracellular and 

mitochondrial ROS and mtDNA damage. Changes in the mitochondrial dynamics and 

biogenesis were suggested by decreased Drp1, increased Mfn2, and decreased PGC-1α, 

NRF1, and TFam levels (Guangxiang et al. 2019). Although the application of DEX resulted 

in a higher activity of the ETC and OXPHOS, MDD and control fibroblasts exhibit slightly 

lower ATP levels. The exposure of fibroblasts to 1µM DEX seems to have rather adverse 

effects on the energy supply. MDD fibroblasts exhibit significantly lower ATP levels 

compared to control fibroblasts. The enhancement of the ETC machinery through DEX 

might have caused, that the MMP is not significantly different between MDD fibroblasts 

and controls. Yet, MDD fibroblasts exhibit significantly lower ATP levels, suggesting a 

restricted substrate or enzyme availability also under hormonal exposure.  

Besides hormonal stress induced by DEX, metabolic stress was induced by 10 mM 

galactose instead of glucose in the culture medium. The production of pyruvate  

via glycolytic metabolism yields 2 net ATP, whereas the production via glycolytic 

metabolism of galactose yields no net ATP. Therefore, the cells are forced to have an 

increased reliance on OXPHOS for their energy supply (Marroquin et al. 2007; Robinson 

et al. 1992; Rossignol et al. 2004). Different types of cells, e.g. cancer cells or primary 

fibroblasts, grown in a medium in which glucose is replaced with galactose show a 

significantly increased OCR compared to cells grown in medium containing a high 
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concentration of glucose. Cells grown in galactose exhibit a more aerobic state due to a 

diminished ATP production via anaerobic glycolysis (Bustamante and Pedersen 1977). It 

is also suggested that galactose modulated mitochondrial structure and the oxidative 

capacity is risen by increased OXPHOS protein expression and enzymatic activities 

(Rossignol et al. 2004). The study by Robinson et al. showed that primary skin fibroblasts 

isolated from patients with mitochondrial deficiency including cytochrome oxidase 

deficiency, complex I deficiency, pyruvate dehydrogenase complex deficiency or with 

multiple respiratory chain defects, were not able to survive when cultured in a galactose-

based medium (Robinson et al. 1992). Aguer et al. assessed the mitochondrial respiration 

in human primary muscle cells after 7 day and acute (24 h) 10 mM galactose incubation 

and they discovered higher OCR rates after chronic but not after acute exposure. 

Moreover they confirmed a lower aerobic metabolism proofed by a diminished 

generation of lactate (Aguer et al. 2011). 

In the present study of MDD fibroblasts and control fibroblasts the GAL treatment 

resulted in an overall significant heightened metabolism compared to the non-treated 

state. However, not only OCR was fueled, but also ECAR. Although the acidification rate is 

widely used to describe glycolytic events, glycolysis is not the sole contributor to the 

production of H+. Extracellular acid produced by cells is derived from both lactate, 

produced by anaerobic glycolysis, and CO2, produced in the citric acid cycle during 

respiration. The export of CO2, the hydration to H2CO3 and the dissociation to HCO3- + H+ 

is the reason for respiratory acidification (Mookerjee et al. 2015). This phenomenon 

might explain the elevated ECAR levels in fibroblasts despite of glucose deprivation. The 

higher respiratory rate causes a higher extracellular acidification.  

The respiratory parameters of the Mito Stress test do not result in significant differences 

between patients and controls due to GAL exposure, except the non-mitochondrial 

respiration. The ATP levels are higher for both groups compared to non-treated 

conditions and there are no significant differences between MDD fibroblasts and controls. 

The measurements of MMP and cytosolic Ca2+ did also not result in any significant 

differences between MDD and control fibroblasts subsequent to GAL exposure. A study by 

Garbett et al. has shown that metabolic challenges evoked by substitution of glucose with 

GAL or reducing the abundance of lipids in the growth media of fibroblasts from MDD 

patients result in changes of mRNA and miRNA expression. These stress-induced changes 

are suggested to be MDD-related. The impairments in molecular pathways involved in the 

control of metabolism and energy production, cell survival, proliferation and migration 
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were found in MDD fibroblasts due to GAL and reduced-lipid challenges, but not in control 

fibroblasts (Garbett et al. 2015).  

 

 

5.3 Similar mitochondrial densities in MDD and control fibroblasts 

Mitochondrial volume or content is an important quantitative indicator, since the 

mitochondrial mass is dependent on intact mitochondrial dynamics and therefore proper 

mitochondrial bioenergetics (Chen, McCaffery, and Chan 2007; Detmer and Chan 2007). 

The mitochondrial content is most commonly defined by the measurement of the Citrate 

Synthase (CS) activity, the mtDNA copy number, cardiolipin or the activity of the Cyt c 

oxidase (Boushel et al. 2007; Karabatsiakis et al. 2014; Mogensen et al. 2006; Picard, 

Taivassalo, Ritchie, et al. 2011; Ritov, Menshikova, and Kelley 2006). In the present study 

the mitochondrial content was determined by mtDNA copy number. Using this method, 

there are no significant differences in mtDNA copy number between MDD fibroblasts and 

control fibroblasts. This observation suggests that the differences detected in respiratory 

parameters and bioenergetic properties are not due to differences in the mitochondrial 

mass. Hroudová et al. determined mitochondrial content by CS activity in blood platelets. 

Although they did not mention absolute CS values, they reported that after CS 

normalization the significant differences in respiration were sustained (Hroudová et al. 

2013). Other studies report contrary results. The mitochondrial content definition, by the 

analysis of CS activity, in PBMCs from depressed subjects revealed higher densities, 

suggesting that this increase in mitochondrial mass is an attempt of the body to 

compensate for the reduced efficiency in mitochondrial ATP production (Karabatsiakis et 

al. 2014). This finding is in line with a study by Cai et al. . They revealed that the amount 

of mtDNA alters in response to external stress: there was significantly more mtDNA in the 

saliva and blood of people with MDD than in controls. Besides that, chronic stress also 

altered the amount of mtDNA in mouse tissues. The stressed mice also showed a lowered 

mitochondrial respiratory activity (Cai et al. 2015).  

Furthermore, Wang et al. proposed elevated mtDNA copy numbers in MDD as a 

compensatory mechanism for energetic deficiencies (Wang et al. 2017).  

Nonetheless, Larsen et al. published a study, examining the different biomarkers and their 

correlation to cristae surface area determined by TEM. The goal was to evaluate the 

association and validity of CS activity, cardiolipin content, mtDNA, Complex I-V protein 
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content and Complex I-IV activity to muscle mitochondria content and OXPHOS in skeletal 

muscle cells from healthy subjects. Cardiolipin content, followed by CS activity and 

Complex I activity, were the biomarkers exhibiting the strongest association with 

mitochondrial content, whereas mtDNA was supposed to be a possibly less suitable 

method to estimate the mitochondrial content in skeletal muscle cells (Larsen et al. 2012). 

Considering those contrasting findings for mitochondrial mass determination, a future 

quantification of the mitochondrial mass in MDD fibroblasts and controls in terms of 

cardiolipin determination or CS activity measurement is suggested.  

 

 

5.4 Decreased mitochondria-related metabolism in MDD NPCs 

MDD fibroblast and control cell lines were reprogrammed into iPSCs by the ectopic 

overexpression of the transcription factors including Oct3/4, Sox2, Klf4, c-Myc and 

differentiated in to NPCs that express the neural stem cell markers PAX6 and SOX2 

(Takahashi and Yamanaka 2006; Yan et al. 2013). Several studies reported that following 

the reprogramming of iPSCs, the epigenetic memory is inherited from the parental cells 

(Doi et al. 2009; Kim et al. 2010; Lister et al. 2011; Ohi et al. 2011; Polo et al. 2010).  

In the first part of this study, it could be shown that there are detectable bioenergetic 

alterations in the somatic cells. In the second part could be shown that, despite of the 

whole progress of reprogramming to iPSCs and the differentiation process, there are also 

measurable differences in the bioenergetics of mitochondria in NPCs. 

The Mito Stress Test revealed that NPCs from MDD patients exhibit a significantly lower 

basal respiration, a lowered non-mitochondrial respiration and a significantly lower OCR 

for the proton leak under standard culturing conditions. However, MDD NPCs do not 

exhibit a lower maximal respiration as it could be measured for MDD fibroblasts. There 

are also no statistically different levels in the ATP production determined by the 

bioluminescence assay. This observation could be due to the slightly distinct metabolism 

in NPCs compared to fibroblasts. Whereas fibroblasts are highly reliant on OXPHOS, NPCs 

gain a large part of their energy via glycolytic pathways (Lorenz et al. 2017; Zheng et al. 

2016). Therefore, it is suggested that potential deficits in ETC activity – indicated by the 

lowered basal respiration - in MDD NPCs can be compensated by the generation of energy 

through glucose metabolism. In accordance with the lower basal respiration, the MMP in 

MDD NPCs is less negative. 
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The proton circuit across the IMM optimally drives the OXPHOS, where substrate 

oxidation and ADP phosphorylation are coupled. The oxidation of substrates releases 

electrons to NADH or FADH2. These electrons are passed through electron carriers in 

respiratory chain complexes with increasing oxidation potentials. This exergonic 

reactions transports protons from the matrix to the IMS, eventually creating an 

electrochemical gradient and the proton motive force driving the ATP synthase (Alberts 

et al. 2002). However, this proton motive force is incompletely converted into ATP, since 

the coupling is only about 50–80 %. This loss of energy is due to protons that return to 

the matrix independently of ATP synthase (Buttgereit, Burmester, and Brand 2000). The 

proton leak, and also the electron leak, have an impotent impact on mitochondrial 

coupling efficiency and production of reactive oxygen species. The OCR values assigned 

to the proton leak in MDD NPCs are significantly lower compared to those of control NPCs. 

This observation could indicate that the uncoupling in control NPCs is actually less 

efficient. Taken together, these findings point towards a lower substrate or enzyme 

availability in MDD NPCs.  

The cytosolic Ca2+ levels do not significantly alter between MDD and control NPCs. 

However, unlike in fibroblasts, in MDD NPCs there is a trend towards a higher cytosolic 

Ca2+ level. This observation is in accordance with the measurement of a significantly less 

negative MMP in MDD NPCs. Mitochondria have important buffer functions since they 

sequester – due to their negative MMP – large amounts of Ca2+ (Ernster and Schatz 1981). 

Especially in neuronal cells, the cytosolic Ca2+ concentration is critical. Elevated cytosolic 

Ca2+ would stimulate glutamate release which causes an activation of N-methyl-D-

aspartate receptors. This in turn would result in massive Ca2+ influx and cell damage and 

death (Kannurpatti, Joshi, and Joshi 2000). Elevated Ca2+ levels in NPCs due to a 

disturbance of the sequestration of Ca2+ by their mitochondria therefore might induce 

apoptosis and hence this might cause a reduced cellular mass that could give rise to 

neurons or astrocytes, for example. Cytosolic Ca2+ in iN of two MDD patient and control 

pairs of this study were already shown to be significantly altered and will depict an 

important objective in future investigations (Röhrl 2019). 
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5.5 Effects of the synthetic hormonal stressor dexamethasone in NPCs 

GC levels are elevated in neuropsychiatric disorders and it is known that their chronic 

administration causes a loss of memory and impaired logical thinking, disrupted HPA axis 

function and alterations in calcium homeostasis in neurons (Chen et al. 2011; Lajic, 

Nordenström, and Hirvikoski 2011; Young et al. 1999). The effects of a glucocorticoid – 

dexamethasone – were also tested in this cellular model. Besides the evaluation of the 

bioenergetic properties of NPCs under standard culturing-conditions, the cells were 

exposed to a synthetic hormonal stressor for one week. After the NPCs were treated with 

DEX, they do not exhibit any significant differences in the Mito Stress Test. The significant 

differences between MDD NPCs and control NPCs in basal respiration, non-mitochondrial 

respiration or proton leak are not detectable under stressed conditions. After 1 week of 1 

µM DEX stress there are no significant differences in the MMP between control and MDD 

NPCs. One possible explanation could be, that, as the overall analysis of the metabolism 

revealed, MDD NPCs exhibit slightly heightened OCR values consequently to hormonal 

stress. However, DEX did not cause a significant effect on overall metabolism – 

considering OCR and ECAR together – in MDD and control NPCs as it did in fibroblasts. 

However, the analysis of the overall metabolism, respectively OCR in the dependence of 

ECAR, revealed that also MDD NPCs show a significantly lower metabolism under 

standard culturing conditions but also after DEX stress. Generally, the exposure to chronic 

(hormonal) stress is considered to be detrimental to mitochondrial metabolism. The 

adverse effects include a lowered OXPHOS function, disruptions of the MMP and Ca2+ 

homeostasis, damage of mtDNA and elevated ROS levels (Manoli et al. 2007). In this study, 

possibly the exposure of 1 µM DEX for 7 days was too short to induce deficiencies in the 

OXPHOS. Similar to the effects in fibroblasts, NPCs exhibited rather the beneficial effects 

of an acute exposure to stress than the adverse consequences. An important regulator for 

mitochondrial biogenesis is PGC-1α. Balanced levels of this master regulator are crucial 

for driving OXPHOS and energy expenditure (Michael et al. 2001; Wu et al. 2006). PGC-1α 

levels were not determined in the present study. The measurement of PGC-1α by qPCR 

will be considered as a future objective.  

Suwanjan et al. examined the mitochondrial dynamics underlying dexamethasone-

induced toxicity in the human neuroblastoma SH-SY5Y cells. The treatment with DEX for 

24 h of those neuronal cells resulted in a marked decrease in cell proliferation. DEX-

induced neurotoxicity also caused upregulation of mitochondrial fusion. Unlike in the 

present study with NPCs, in the study of Suwanjang et al. a reduced ATP production could 
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be detected due to DEX treatment. Furthermore they reported increased ROS levels 

(Suwanjang et al. 2019). Morin et al. tested the effects of four different glucocorticoids – 

hydrocortisone, triamcinolone, prednisolone and dexamethasone – on isolated rat brain 

mitochondria. The application of 1 µM DEX caused a reduction of respiratory rates due to 

an inhibition of oxidative phosphorylation (state 3 respiration) and of Complex V activity 

and a modification of the proton-fluxes through the mitochondrial inner membrane. 

Moreover, DEX also inhibited the CCCP-induced rise in the OCR in a concentration-

dependent manner. Morin et al. suggested therefore an adverse effect of glucocorticoids 

on brain mitochondria and a limited capacity to increase OCR upon ETC stimulation 

(Morin et al. 2000). Nonetheless, DEX stimulation in NPCs did exhibit neither significantly 

negative nor significantly beneficial effects in the present study. The possibly differential 

effects on mitochondria of iN from MDD and controls remain elusive and will be part of 

further studies.  
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The aim of this study was to investigate the association of mitochondrial function and 

underlying pathopsychological mechanisms in MDD. 

This study shows that cells from MDD patients and healthy controls exhibit differences in 

mitochondria-associated functions. In this explorative approach the mitochondrial key 

functions in fibroblasts were assessed and differences between MDD patients and healthy 

controls could actually be demonstrated. Mitochondria in fibroblasts of MDD patients 

appear to have reduced oxidative capacities and therefore a reduced energy availability. 

These alterations in the somatic cells were in line with those from other groups 

(Hroudová et al. 2013; Karabatsiakis et al. 2014). Nonetheless, an indispensable objective 

for the future will be the verification of the mitochondrial mass with a second method. In 

order to know if the respiratory differences origin from a lower density of mitochondria, 

a measurement of the CS activity is suggested 

Moreover, mitophagy is an important aspect with regard to mitochondrial mass. 

Mitophagy, as well as fission and fusion, are the cells’ major mitochondria quality control 

mechanisms and ensure a whole mitochondrial genome turnover and proper 

mitochondrial functioning (Dombi, Mortiboys, and Poulton 2018). The recycling and 

engulfment of mitochondria by acidic lysosomes can be visualized by transfection of cells 

with mt-Rosella, which is a dual-emission biosensor sensitive to pH changes (Sargsyan et 

al. 2015). Therefore, mitophagy is strongly suggested to be assessed also in MDD 

fibroblasts to control for a functional restoring of mitochondria. 

A regulator of mitochondrial dynamics is OPA1 and it is – among many others – one of 

many targets of human sirtuins (SIRT) that coordinate a variety of molecules involved in 

certain aspects of cellular metabolism (Dombi, Mortiboys, and Poulton 2018). SIRT are 

transcription regulators and may act as metabolic sensors, since they are dependent on 

NAD+ levels. NAD+ links transcriptional events and changes in cellular signaling to cellular 

metabolism. NAD+ has a pivotal role in mitochondrial metabolism: NAD+ accepts H- 

equivalents to form reduced NADH, which then provides reducing equivalents to the 

mitochondrial ETC and to fuel OXPHOS (Cantó, Menzies, and Auwerx 2015). Therefore, a 

crucial objective for future investigations is the assessment of NAD+/NADH ratios. The 

determination of NAD+/NADH ratios allow a more detailed statement about the reduction 

equivalent availability and the redox state in MDD cells versus control cells.  
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The redox potential of a cell is widely defined by GSH. The majority of GSH is found in the 

cytosol. However, a small but significant percentage is also found in the mitochondria. 

Mitochondrial GSH is of huge importance protecting the organelle from ROS produced 

during coupled mitochondrial electron transport and OXPHOS (Buttke and Sandstrom 

1994). A lack of antioxidant defenses, e.g. GSH, leads to a generation of high ROS levels, 

which is suggested to act as a signal for the induction of apoptosis (Langer, Jürgensmeier, 

and Bauer 1996).  In the context of the present study, the investigation of GSH levels 

depicts an interesting future approach to determine the capability of scavenging 

superoxide in MDD cells. 

 

To my knowledge, this is the first study to investigate bioenergetics in neural cells derived 

from iPSCs of MDD patients. It could be shown that differences in respiration and the MMP 

in peripheral cells are also present at neuronal cell level, despite the process of 

reprogramming and differentiation. These novel observations highlight the importance of 

further investigations of mitochondria – especially in neurons. Neural cells require in 

comparison to peripheral cells higher amounts of energy: The brain with its high 

metabolic rate consumes 20% of the whole-body oxygen uptake (Vergara et al. 2019). 

Neurons might be even more sensitive to potential improper mitochondrial functioning 

and insufficient energy provision. 

First experiments with iN of selected patient and control pairs showed that neurons from 

MDD patients exhibit altered properties including Ca2+ homeostasis and spontaneous 

activity (Röhrl 2019; Triebelhorn, in preparation). Cytosolic Ca2+ was measured with the 

help of Fura-2. However, mitochondrial Ca2+ levels will also be in focus of future 

investigations. Mitochondrial Ca2+ levels can be assessed by the use of the fluorescent dye 

Rhod-2, for instance. However, synthetic fluorescent indicators targeted to mitochondria 

have blunted responses to repetitive increases in mitochondrial Ca2+ and disrupt 

mitochondrial morphology. Moreover, indicators like Rhod-2 tends to leak out of 

mitochondria over several hours which makes them unsuitable for long-term 

experiments (Nagai et al. 2001).  Ratiometric mt-Pericam though, which is an indicator 

based on a fusion of circularly permuted yellow fluorescent protein and calmodulin, is 

genetically encoded and  allows the measurement of rapid changes in and long-term 

measurements of mitochondrial Ca2+ concentrations (Akimzhanov and Boehning 2011). 

Moreover, first experiments with the treatment of cells with the particular ADs the 

patients received were conducted. Mitochondrial respiration, MMP and Ca2+ homeostasis 
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was assessed after 24 h, 3 days and 7 days of ADs treatment of fibroblasts. MMP and 

cytosolic Ca2+ homeostasis were assessed iN consequently to ADs treatment. It could be 

shown that the ADs have different effects on the MDD patient cells compared to the 

matched control (Röhrl 2019). Since the MDD patients of this study responded to AD 

treatment, the inclusion of non-responder is proposed for future investigation in order to 

gain more detailed insight into potential pathologic changes and the association to 

mitochondrial (dys-)function in MDD. 

However, the importance of respiratory deficiencies and the energy supply in iN of MDD 

patients is unresolved. The effect of stress and the impact of ADs on OXPHOS activity in 

MDD iN remain widely elusive and depict a future direction of research.  
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Table 24 Mean and SEM values for respiratory parameters of fibroblasts 

 
Basal Respiration Maximal Respiration Spare Respiratory 

Capacity 

mean OCR SEM mean OCR SEM mean OCR SEM 

MDD N 16.09 0.88 32.20 2.23 16.11 1.81 

Control N 18.53 0.95 37.01 2.40 18.95 2.29 

MDD DEX 22.96 1.14 48.76 3.88 25.28 3.15 

Control DEX 23.25 1.12 45.03 2.32 27.76 3.92 

MDD GAL 22.31 1.70 57.86 2.64 35.91 3.19 

Control GAL 22.64 1.58 60.04 3.41 37.33 3.65 
 

 
non-mitochondrial 

Respiration 

Proton Leak ATP -related 

Respiration 

mean OCR SEM mean OCR SEM mean OCR SEM 

MDD N 7.90 0.71 2.38 0.20 13.71 0.76 

Control N 9.65 0.91 2.80 0.22 15.72 0.82 

MDD DEX 11.08 0.95 2.94 0.31 19.91 0.90 

Control DEX 11.84 0.79 2.72 0.29 20.52 0.97 

MDD GAL 15.43 1.34 3.99 0.58 18.32 1.26 

Control GAL 18.05 1.60 3.76 0.37 18.88 1.27 

 

 
Table 25 Single values (non-treated) for OCR and ECAR for 16 MDD and control fibroblast lines 

 
N 

 
MDD Control 

Pair OCR ECAR OCAR ECAR 

#1 22.49 18.03 23.45 10.99 

#2 30.03 11.27 31.44 12.65 

#3 29.63 13.82 28.19 12.15 

#4 24,63 10.67 22.91 9.52 

#5 18.01 12.25 19.59 12.54 

#6 26.13 16.30 26.05 16.01 

#7 22.07 10.39 46.04 12.23 

#8 20.75 15.47 32.40 13.46 

#9 25.23 16.86 29.46 8.36 

#10 28.59 10.35 37.79 15.66 

#11 26.74 24.38 30.16 16.53 

#12 25,97 14.54 25.92 9.76 
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#13 22,69 9.84 30.25 9.37 

#14 30.48 9.16 33.19 20.23 

#15 17.96 11.41 20.76 12.98 

#16 21.41 14.07 31.49 12.29 

 

 
Table 26 Single values (dexamethasone) for OCR and ECAR of 16 MDD patients and control fibroblast lines 

 
Dexamethasone 

 
MDD Control 

Pair OCR ECAR OCR ECAR 

#1 53.55 17.93 58.86 14.18 

#2 37.21 5.89 64.30 20.29 

#3 45.31 7.38 40.41 7.48 

#4 34.90 19.33 33.07 10.53 

#5 23.23 8.33 28.63 9.59 

#6 46.83 15.69 43.97 11.81 

#7 24.39 8.07 42.41 10.24 

#8 28.61 7.51 48.86 10.24 

#9 37.49 11.52 43.16 12.29 

#10 36.73 13.79 42.97 9.53 

#11 35.87 10.55 42.57 13.05 

#12 44.58 15.01 49.54 16.93 

#13 47.74 1.69 48.17 8.60 

#14 18.94 3.29 20.30 5.57 

#15 40.94 14.80 40.03 13.68 

#16 79.48 11.08 50.68 5.46 

 

 
Table 27 Single values (galactose) for OCR and ECAR of 16 MDD patients and control fibroblast lines 

 
Galactose 

 
MDD Control 

Pair OCR ECAR OCR ECAR 

#1 29.74 15.76 30.53 15.39 

#2 30.36 17.90 39.13 22.72 

#3 46.32 18.51 41.86 16.67 

#4 30.50 12.11 29.84 8.79 

#5 41.26 15.28 28.96 17.27 

#6 39.81 12.32 40.85 13.87 

#7 32.15 12.02 40.54 16.82 

#8 36.66 13.14 43.41 13.89 

#9 59.61 18.47 63.51 19.12 

#10 89.13 43.59 72.84 26.04 

#11 52.29 15.59 59.37 16.09 

#12 68.26 31.40 69.54 18.35 

#13 56.03 17.51 62.29 13.05 
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#14 57.89 11.30 51.49 8.50 

#15 82.35 37.22 73.74 21.74 

#16 42.71 18.54 47.60 10.63 

 

 
Table 28 Mean and SEM values for ATP measurements of fibroblast lines for 16 MDD patient and control 
pairs 

 
mean (RLU) SEM 

MDD N 59908 11595 

Control N 73315 12402 

MDD DEX 52419 10382 

Control DEX 58836 11328 

MDD GAL 89158 15043 

Control GAL 99162 14537 

 

Table 29 Single RLU values of 16 MDD patient and control pairs of fibroblast cell lines 

Pair MDD N Control N MDD DEX Control DEX MDD GAL Control GAL 

#1 28725 31958 6698 8282 74970 35427 

#2 40717 65304 33293 33580 38739 47343 

#3 44159 35897 17237 23195 44297 32185 

#4 30804 42182 32253 54649 13624 116515 

#5 21119 37008 26295 34799 57752 79691 

#6 44089 110166 19703 29094 47092 118424 

#7 22327 42185 13633 21345 110430 107092 

#8 17573 87942 32355 9829 43236 26867 

#9 51614 33690 31646 31861 53646 47419 

#10 134620 149176 129238 143042 193662 193708 

#11 41377 43084 38246 39944 66356 65851 

#12 33585 32753 66047 75252 80235 97240 

#13 100628 52306 91536 92541 150930 129138 

#14 130534 144061 142213 149269 154589 163588 

#15 49801 75492 65629 84681 75637 103046 

#16 166859 189832 92688 110006 221335 223062 

 

 
Table 30 Mean and SEM values for JC-1 ratios of 16 MDD patients and controls fibroblast pairs 

 
mean SEM 

MMD N 1.401 0.008 

Control N 1.348 0.008 
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MDD DEX 1.449 0.006 

Control DEX 1.421 0.006 

MDD GAL 1.455 0.008 

Control GAL 1.421 0.009 

 

 
Table 31 Single red/green ratios for all 16 paired MDD and control cell lies 

Pair  MDD N Control N MDD DEX Control DEX MDD GAL Control GAL 
#1 1.31 1.30 1.44 1.36 1.35 1.19 

#2 1.43 1.39 1.42 1.54 1.49 1.58 

#3 1.31 1.40 1.32 1.25 1.24 1.23 

#4 1.26 1.18 1.44 1.30 1.32 1.35 

#5 1.33 1.40 1.37 1.42 1.39 1.32 

#6 1.18 1.00 1.31 1.30 1.33 1.39 

#7 1.43 1.39 1.43 1.40 1.41 1.35 

#8 1.50 1.43 1.38 1.30 1.62 1.47 

#9 1.41 1.46 1.36 1.41 1.31 1.18 

#10 1.57 1.41 1.54 1.56 1.49 1.60 

#11 1.50 1.27 1.36 1.39 1.44 1.50 

#12 1.41 1.55 1.61 1.40 1.55 1.66 

#13 1.55 1.55 1.53 1.56 1.52 1.70 

#14 1.50 1.50 1.53 1.48 1.56 1.42 

#15 1.23 1.33 1.57 1.52 1.51 1.45 

#16 1.54 1.41 1.55 1.51 1.43 1.63 

 
 

Table 32 Table 30 Mean and SEM values for Fura-2 ratios of 16 MDD patient and control pairs 

 
mean SEM 

MDD N 0.6767 0.0128 

Control N 0.6727 0.0088 

MDD DEX 0.6262 0.0054 

Control DEX 0.6204 0.0057 

MDD GAL 0.6262 0.0054 

Control DEX 0.6204 0.0057 

 

 
Table 33 Single ratio values for Fura-2 measurements in fbroblasts. 

Pair MDD N Control N MDD DEX Control DEX MDD GAL Control GAL 
#1 0.66 0.64 0.58 0.61 0.62 0.64 
#2 0.67 0.66 0.61 0.58 0.62 0.63 
#3 0.65 0.65 0.62 0.61 0.64 0.63 
#4 0.57 0.69 0.62 0.60 0.64 0.66 
#5 0.73 0.73 0.63 0.61 0.65 0.63 
#6 0.70 0.72 0.62 0.62 0.62 0.62 
#7 0.64 0.66 0.61 0.61 0.63 0.61 
#8 0.58 0.60 0.61 0.62 0.61 0.62 
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#9 0.63 0.69 0.64 0.64 0.66 0.64 
#10 0.72 0.72 0.62 0.62 0.64 0.68 
#11 0.68 0.66 0.67 0.65 0.64 0.61 
#12 0.72 0.71 0.64 0.61 0.62 0.65 
#13 0.72 0.65 0.61 0.62 0.65 0.64 
#14 0.71 0.64 0.62 0.63 0.65 0.66 
#15 0.72 0.67 0.63 0.66 0.69 0.68 
#16 0.72 0.68 0.66 0.61 0.67 0.63 

 

 
Table 34 Mean and SEM values of mtDNA copy numbers in fibroblasts. 

 
mean mtDNA 
copy number 

SEM 

MDD 654 28.04 

Control 636 31.68 

 

 
Table 35 mtDNA copy numbers for 16 MDD and control fibroblast cell lines. 

Pair mtDNA copy number 
 

MDD Control 

#1 623 582 

#2 634 618 

#3 760 711 

#4 577 584 

#5 606 540 

#6 728 501 

#7 564 819 

#8 486 738 

#9 829 609 

#10 767 375 

#11 882 893 

#12 578 668 

#13 655 745 

#14 512 545 

#15 587 589 

#16 681 652 

 

 
Table 36 Mean and SEM values of respiratory parameters of 9 MDD and control NPC pairs. 

 
Basal Respiration Maximal Respiration Spare Respiratory 

Capacity 

mean OCR SEM mean OCR SEM mean OCR SEM 

MDD N 88.49 3.42 114.94 5.55 27.40 1.44 

Control N 103.72 4.52 131.15 11.54 34.81 7.46 

MDD DEX 94.53 5.94 114.61 9.84 20.08 5.59 
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Control DEX 107.26 6.49 121.34 12.04 14.21 10.62 
 

 
non-mitochondrial 

Respiration 

Proton Leak ATP Prodction 

mean OCR SEM mean OCR SEM mean OCR SEM 

MDD N 25.54 1.20 16.63 0.79 72.55 2.70 

Control N 30.82 1.81 19.56 1.01 82.94 4.77 

MDD DEX 25.62 1.52 16.22 0.70 75.87 3.83 

Control DEX 28.00 1.40 21.02 2.96 85.27 4.64 

 
Table 37 OCR and ECAR values for 9 NPC MDD and control pairs. 

pair N DEX 

MDD CNTL MDD CNTL 

OCAR ECAR OCR ECAR OCR ECAR OCR ECAR 

#1 121.86 71.63 152.73 64.38 137.21 50.61 144.61 42.83 

#2 131.55 51.59 182.37 66.68 110.32 50.92 143.62 54.09 

#3 139.35 60.91 158.93 61.84 176.87 46.20 173.42 46.58 

#4 132.63 57.81 140.58 63.23 158.79 64.52 153.43 62.44 

#5 117.89 53.65 157.87 57.19 116.99 47.83 177.98 56.41 

#6 139.44 53.97 157.13 61.30 132.44 58.83 141.63 74.13 

#7 133.88 50.13 126.95 49.57 86.91 37.86 119.85 39.15 

#8 101.48 47.04 143.15 68.20 126.40 50.57 130.09 44.35 

#9 127.26 55.84 152.46 61.55 130.74 50.92 148.08 52.50 

 
Table 38  Mean and SEM values for JC-1 ratios of nine NPC MDD and control pairs. 

 
mean ratio SEM 

MDD N 1.696 0.065 

Control N 1.839 0.092 

MDD DEX 1.996 0.071 

Control DEX 2.079 0.115 

 

Table 39 Mean and SEM values for ATP measurements of 9 NPC MDD patients and control pairs 

 
mean SEM 

MDD N 341064 49780 

Control N 324275 47085 

MDD DEX 362357 65367 

Control DEX 369576 57303 

 

 
Table 40 Single RLU values of 9 MDD patient and control pairs of NPC lines 

Pair MDD N Control N MDD DEX Control DEX 

#1 210591 311489 127779 253116 

#2 532401 187508 496569 406236 
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#3 475031 381469 703305 748366 

#4 294678 335491 264349 257377 

#5 331633 595669 320698 280280 

#6 53072 224110 202532 168750 

#7 487705 474044 549283 499086 

#8 350901 169162 436798 352978 

#9 333564 239534 159903 359999 

 

 
Table 41 Single JC-ratios for 9 MDD and control NPC lines. 

pair MDD N Control N MDD DEX Control 
DEX 

#1 1.63 1.80 1.56 1.51 

#2 1.36 1.68 2.18 2.60 

#3 1.72 1.52 2.28 2.49 

#4 1.75 2.08 1.94 1.84 

#5 1.69 1.83 1.90 2.03 

#6 1.89 2.21 2.00 1.95 

#7 1.75 1.74 2.18 2.37 

#8 2.00 2.22 1.91 2.01 

#12 1.47 1.48 2.01 1.92 

 
 

Table 42 Mean and SEM values for Fura-2 ratios of 9 NPC MDD and control pairs 

 
mean ratio SEM 

MDD N 062 0.01 

Control N 0.60 0.01 

MDD DEX 0.62 0.01 

Control DEX 0.61 0.00 

 

 

 
Table 43 Single Fura-2 ratios for 9 MDD and control NPC cell lines. 

pair MDD Control MDD DEX Control DEX 

#1 0.60 0.62 0.62 0.61 

#2 0.64 0.60 0.62 0.59 

#3 0.62 0.60 0.63 0.59 

#4 0.59 0.60 0.58 0.60 

#5 0.62 0.60 0.62 0.62 

#6 0.63 0.62 0.60 0.63 

#7 0.65 0.57 0.66 0.60 

#8 0.62 0.56 0.62 0.62 

#9 0.62 0.62 0.63 0.60 

 

 


