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Introduction

A great success of theoretical physics lies in the stepwise combination of small, special-
ized theories to more fundamental, unified ones, that require a smaller set of assump-
tions or parameters. While the discovery of each successful unification is usually driven
by the insufficiency of older theories, their greatest value lies in the prediction of new
phenomena. However, although the new theories often add important new aspects to
the theoretical description of the physical effects that had been well explained without
them, the “old” theory can remain equally valid in such situations. Even within a single
theoretical framework, very different (equivalent) approaches, as well as approximate
methods can be formulated, that can lead to very different (approximately) equivalent
interpretations. The practical implication of this is nicely summarized in a quote by
Richard Feynman, stating that “[...] every theoretical physicist who is any good knows
six or seven different theoretical representations for exactly the same physics” [1]. This
can, of course, not be applied to new experimental discoveries, where sometimes not
a single theoretical representation is known, but it describes very well how a physical
problem should be approached from as many different viewpoints as possible to capture
all of its physical aspects. However, it is not the task of a single physicist to find all these
representations, and in the study of new phenomena, it is usually a whole community
that works on very similar problems, hopefully exploring them in different ways.

This thesis tries to complement some of the standard approaches that are nowadays
used in few- and many-body systems with selected semiclassical methods. The latter are,
although approximate (but not perturbative) in nature, a very useful tool when it comes
to acquiring a physical intuition to otherwise “black box” exact techniques, and can
complement the understanding gained from other (approximate) methods in otherwise
inaccessible regimes. To point out some of the advantages of semiclassical methods,
a brief overview of some standard methods and stepping stones in the treatment of
few- and many-body systems is given in the following. It is far from being a complete
summary of methods and means only to highlight some of the common characteristics
and shortcomings that set the basis for the theoretical work in the main part.

From few to many

Single-particle problems, formally also comprising the relative motion in separable two-
body problems, have clearly been of paramount importance in the early development
of quantum mechanics. The Bohr-Sommerfeld quantization of the hydrogen atom was
one of the first steps towards a full quantum theory. Once found, the latter had to be
tested by applying it to the simplest and best explored kinds of systems, i.e., classically
separable (single-particle) systems like the harmonic oscillator, the Coulomb problem,
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and many other systems that can be treated exactly in quantum mechanics. However,
these systems are very special and already at the level of the three-body problem, one
usually obtains classically chaotic behavior [2]. In the same way, the quantum description
of systems with more than two interacting particles does not allow for a fully analytic
description in most cases' and approximate methods have to be found.

The simplest approximations, especially used in molecular and condensed matter
physics, comprise the linear combination of atomic orbitals and tight binding approxima-
tions, often combined with Born-Oppenheimer approximations to adiabatically separate
the fast electronic motion from the motion of the heavy nuclei [4-6]. A first important
stepping stone in the description of atoms and molecules that included the nontrivial
effects of the interactions between the electrons was the introduction of the Hartree-Fock
method as a many-body variational technique [7]. By assigning a single-particle wave
function to each of the electrons in an atom or molecule, it is one of the early imple-
mentations of the idea of each particle “feeling” the other particles only in terms of a
mean field. It is a common feature of such mean-field approaches that the quantum
correlations between the particles are neglected by finding an effective noninteracting
theory that then describes the excitations in the system by quasiparticles [8]. However,
especially in systems with only a few particles, the correlations between the particles
are very important and the true ground state energy of the system can differ strongly
from the variational ground state obtained in Hartree-Fock theory, as the latter neglects
the correlation energy. To get better approximations for such systems, more elaborate
algorithms are needed.

An early extension that takes superpositions of Slater determinants into account is
the configuration interaction method introduced in early quantum chemistry [9]. It
is, however, limited to rather small particle numbers, such that other methods have
taken its place in more recent developments?. A widely used modern tool in electronic
systems is the density functional theory (see [7] or [10] for a review) that uses the fact
that, if the many-body ground state is not degenerate, its electron density uniquely
determines the (external) potential. As this potential is the only non-universal part in
the electronic Hamiltonian, all ground state expectation values turn out to be functionals
of the electron density. Unfortunately, although the latter is guaranteed by the theorem
of Hohenberg and Kohn [11], the explicit functionals are not known and already at the
level of calculating the energy one has to use approximations for the unknown exchange
energy functional. Moreover, the density functional theory is only capable of determining
the ground state properties of the (possibly strongly correlated) system, to albeit good
approximation.

A complementary approach for fermionic systems is found in the Fermi liquid theory
that can be formally derived in many-body perturbation theory [8] and deals exclusively
with excitations in terms of fermionic quasiparticles. In fact, most macroscopic fermionic
systems, such as the electrons in metals or (fermionic) cold atom gases, are well described

"Excluding the special class of quantum integrable models [3] here.

2Nevertheless, the enormous increase in computational power in the past decades has made it possi-
ble to use (advanced) configuration interaction approaches using bases of several billions of Slater
determinants [9].
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within this theory, that is adiabatically connected to the case of free fermions. Usually,
such mean field quasiparticle descriptions become exact in the thermodynamic limit in
the low-temperature regimes, where the corrections from quantum correlations are of
subleading order in the system size. An important exception are systems close to phase
transitions, where the correlation length diverges, as it will be discussed in more detail
in the introduction of chapter 2. In contrast to some of the other methods discussed
here, perturbative approaches are very well controlled by a small parameter, but they are
always limited to the vicinity of known limits. Moreover, they can only capture analytic
effects, such that phase transitions cannot be described. A famous example in fermionic
systems is the instability of the Fermi sea (in a Fermi Liquid or free fermionic gas) against
small attractive interactions, leading to the formation of the Bardeen-Cooper-Schrieffer
(BCS) ground state that is non-analytic in the coupling between the fermions [12].

In bosonic systems, the mean-field description often boils down to quasi-classical field
equations. An important example is the Gross-Pitaevskii, or nonlinear Schrédinger
equation [13], that is commonly used in the theory of Bose-Einstein condensation (BEC)
in the presence of short-range interactions [14]. There, collective bosonic Bogoliubov
excitations above the mean-field ground state can be found by a quadratic expansion of
the field operators around the condensate [15]. The Bogoliubov equations that determine
the excitations are then often referred to as the Bogoliubov-de Gennes equations, as they
are the analogues to the respective equations in the BCS theory of superconductivity,
however for bosonic operators. Although these mean-field methods are very powerful
tools that can be used also in regimes that are not accessible by perturbative approaches
(see, e.g., [16] for an application on both sides of a quantum phase transition), they are
not devised for the study of effects that stem from finite system sizes and cannot capture
the correlations among particles. Moreover, they are restricted to small excitations of
the condensate and thus to extremely low temperatures when equilibrium properties are
concerned.

Out of the methods devised for the calculation of thermal equilibrium expectation
values, the standard method of cluster expansions will be introduced in more detail in
chapter 1, also including a brief historical overview, and is therefore not further discussed
here.

The most prominent approach to many-body equilibrium physics has been mentioned
already in the context of Fermi liquid theory, namely the many-body perturbation theory.
For finite temperatures, it uses the temperature, or imaginary-time Green’s functions,
equipped with diagrammatic approaches [8]. Due to the similarity to the well-known
perturbation theory in (real time) quantum field theories, this approach is also referred
to as thermal field theory. But it has distinct differences like the appearance of dis-
crete Matsubara frequencies due to the periodicity (or anti-periodicity in the case of
Fermions) of the fields with respect to the temperature, being enforced by the trace in
the definition of the partition function [8]. The obvious drawback of the perturbative
approach is its limited applicability, i.e., explicit calculations are restricted to pertur-
bative regimes. It is, however, possible to approximately evaluate the path integrals
non-perturbatively using stochastic methods. Especially in bosonic systems, state of
the art path integral Monte-Carlo calculations can yield predictions for tens of parti-
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cles [17], but the computational effort is enormous. Unfortunately, this is complicated
in fermionic systems due to the sign problems [7], that can only be overcome in selected
applications [18]. Although these computational methods are, together with exact di-
agonalization approaches, sometimes the only way to obtain accurate results in certain
regimes, their more or less black-box processing does not provide very much insight into
possible underlying mechanisms (although they might help in their discovery).

Finally, one should also mention a special class of many-body systems that allows for
an exact analytical treatment, i.e., the quantum integrable systems [3]. These models
are of one-dimensional nature and they have in common that they fulfill the Yang-Baxter
equation at some stage. For the one-dimensional Lieb-Liniger model [19], that will be
used in this thesis, it incorporates the fact that the scattering of any number of particles
decomposes into commuting two-particle scattering events [20].

From many to few: the advent of ultracold atomic gases

Most of the theoretical developments sketched so far have roughly followed the exper-
imental demands and discoveries: The early few-particle applications were devised for
fermions®, as the only experimentally relevant few-particle systems were composed of
electrons in atoms and molecules or, in the description of nuclei, protons, and neutrons,
all of them being of fermionic nature. Also in the many-particle solid state systems,
the description of the electronic properties were of predominant relevance, but also the
phonons, being bosonic quasiparticles of lattice vibrations, started playing an experi-
mental role. Photons, as the only elementary particles of bosonic nature that are easily
observable, do not couple directly to each other and cannot be confined to a system
with a fixed number of particles. The same holds true for the bosonic quasiparticles
appearing in mean-field theories. Although they generically have residual interactions,
their number is not conserved, thus requiring a statistical description.

The situation is different in dilute cold atomic gases, where the atoms behave similar
to elementary bosons and fermions, depending on their total spin, such that these sys-
tems have long been candidates for well-controlled experimental applications. Although
cooling down gases to ultracold regimes, that are dominated by quantum effects, is a
standard procedure in modern experiments ( [22,23] and references therein), it has taken
more than 70 years from the prediction to the experimental realization of a Bose-Einstein
condensate in such a system [24]. But once this breakthrough was achieved, the experi-
mental progress in the field developed extremely fast. While the early experiments were
performed with macroscopic numbers of atoms, the experimental capacities of trapping
and detection have drastically improved in this respect and experiments with only a
few hundred atoms [25] are now possible. Even few-particle systems with single-atom
resolution have been realized in recent experiments [26,27]. Simultaneously, the advent
of Feshbach resonances in cold atom gases [28,29] has allowed to tune the two-particle
scattering length in ultracold bosonic and fermionic gases to arbitrary values. Together

3However, before the discovery of the spin statistic theorem, Thomas [21] discovered that the Tritium
nucleus could collapse if the neutrons are in a symmetric state and have vanishing mutual interaction.
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with the possibility of “painting” arbitrary potentials [30] in some of these systems this
has paved the way to gain full control over a wide class of artificially designed many- and
few-particle systems that can model condensed matter or even high-energy systems on
larger scales and open the way to new kinds of physics, e.g., Bloch oscillations without a
lattice due to strong interactions [31] and Efimov physics in bosonic gases [32,33], to name
two examples, accompanied with a renewed interest in correlated few-body systems [34].
By using strongly anisotropic trapping potentials, effectively one-dimensional quantum
gases can be realized [35-38] with arbitrarily strong interactions due to confinement in-
duced resonances [39], bringing some of the formerly purely theoretical low-dimensional
model systems closer to experiment.

The power of semiclassical methods

It is important to stress right at the start that the meaning of the term “semiclassical”
is not homogeneous among the literature. While rigorous semiclassical methods devel-
oped during the last century can be used to obtain well-controlled approximate results
in quantum mechanics, many authors abuse the term for introducing ad hoc classical
methodology in certain approximations. Some of these are extremely successful, and
of great value especially in the teaching of quantum mechanics, as the human intuition
on classical systems is usually much better trained, but the way these approximations
are presented as “semiclassical arguments” have, in my opinion, created the connota-
tion of semiclassical methods being a conglomeration of classical arguments that have
turned out to work miraculously well also in quantum mechanics. This might be par-
tially owed to the first “old quantum theory” [40] being also referred to as semiclassical
by some authors. The respective “semiclassical” constructions have unarguably been
very important in the development of quantum mechanics, with the Bohr model of the
quantized orbits being an intermediate step between classical particle mechanics and
wave mechanics. But although it seems to incorporate already the idea of the electron
having a wavelength, this interpretation was not part of the original formulation and the
picture of an electron following a classical orbit is incompatible with modern quantum
mechanics.

One could take the radical view that the invention of the Schrédinger equation has
proven the concept of particles unnecessary, as one can explain everything in terms of
waves. But calculating the orbit of a satellite orbiting earth using wave mechanics might
be not a good idea, and one should accept that the concept of particles, though seemingly
not fundamental, is useful in many applications, especially when macroscopic objects are
concerned. Modern semiclassical physics can be understood as a bridge between the two
extremes, being applicable in regimes where both particle and wave concept are useful,
when they are used in combination. Of course, this also includes certain “obvious” cases,
where certain degrees of freedom can be understood fully classically, as is the case, e.g.,
in the famous Stern-Gerlach experiment, where the orbital motion of the silver atoms
can be understood classically, although coupled to the quantized spin. The key point is,
however, that the semiclassical methods have a much broader range of applicability, as
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they have to be understood as rigorous approximations of quantum mechanics in cases
where the Planck constant can be considered to be small but non-zero.

For systems with an integrable classical limit, a semiclassical quantization rule, the
Einstein-Brillouin-Keller (EBK) quantization, can be derived. A detailed presentation
of the method can be found in the introduction of chapter 2, where also the subtleties
of taking the “classical limit” are discussed. The EBK quantization rules yield the
correct quantization of the hydrogen atom and many other elementary (single-particle)
models [41], while being conceptually different from the Bohr model, as they use WKB
wave functions (after Wentzel, Kramers, and Brillouin) as approximate orbitals with a
trivial time evolution [42], and are thereby not restricted to single-particle systems. In
the many-body context, the mean-field limit can be understood as a different type of a
classical limit, where the inverse particle number takes the role of an effective Planck
constant. A quantization of the mean field then yields finite-size corrected quantized
energies that reduce to the Bogoliubov spectrum at low excitations, but can also be
used at large energies, as will also be demonstrated in chapter 2 of this thesis, and has
been used in selected applications in the literature [43,44]. The number of particles
thereby enters as a parameter and thus the complexity of the problem does not increase
with the particle number, as is the case, e.g., in exact methods. Moreover, the accuracy
of the semiclassical results increases with the particle number, such that it can fill the gap
between the regime of few particles, that might be treatable exactly, and the mean-field
limit,.

When it comes to nonintegrable systems, where both the classical and quantum dy-
namics become more complex, a simple quantization of the above form does not exist.
The semiclassical analysis then shows that the classical periodic orbits, when used cor-
rectly, contain (most of) the information about the positions of the discrete energy levels.
This was formally derived by Gutzwiller with his famous trace formula [2] for the fluc-
tuations in the density of states. It has been successfully used in various systems that
exhibit classical chaos [45-47], including the Helium atom [48] that has a mixed phase
space structure. On the one hand, although the trace formula is an asymptotic expan-
sion, using the shortest periodic orbits can be sufficient in many applications where the
spectrum does not have to be resolved exactly. On the other hand, by analyzing the
Fourier transforms of exact quantum-mechanical spectra, one can identify the dominant
classical periodic orbits, which can help understanding the underlying physics [49].

One application that is also of central relevance in this thesis is the approximation
of propagators in the short-time regime. To this end, one evaluates the semiclassical
van Vleck-Gutzwiller propagator, that is obtained from the stationary phase analysis of
the Feynman path integral [40], only for the shortest paths. This approximation corre-
sponds to replacing the discrete quantum-mechanical spectrum by a smooth function in a
controlled manner, yielding the smooth part of the density of states (DOS) as an expan-
sion in terms of the dominant system characteristics, known as Weyl expansion [50,51].
Its many-body version involves propagations in high-dimensional spaces, that, in the
case of noninteracting indistinguishable particles, have different contributions due to the
exchange permutations. As the latter decompose into cyclic single-particle propagations
in the short-time approximation, this naturally leads to a certain cluster structure and
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a generalized Weyl law [52]. For interacting particles, this can be combined with the
quantum cluster expansion, as will be discussed in more detail in chapter 1.

In the last 20 years, one semiclassical (but almost classical) method known as the
Truncated Wigner Approximation [53,54] (TWA) has emerged as a powerful tool that
is now used by a wide community, especially in the field of cold-atom gases. It is
based on the Wigner phase-space representation of an initial state of the system, that
is then reinterpreted as a classical phase-space distribution that evolves according to
the classical equations of motion, thus ignoring interference effects in the time evolution
of expectation values. This also limits its applicability to short times smaller than
the so-called Ehrenfest time in chaotic systems [55]. Although widely used, the TWA
does, by far, not exploit the full potential of the semiclassical methods, as the latter can
describe interference phenomena: Recent developments have shown that one can describe
the quantum time evolution far beyond the Ehrenfest time using more sophisticated
semiclassical methods of interfering (complexified) classical paths [56], also providing
detailed information on the quantum spectrum.

Apart from the use of the semiclassical techniques as powerful predictive tools, their
great value also lies in the relative parametric simplicity and generality of these predic-
tions. The Weyl expansion shows that the mean DOS in, e.g., a billiard can be well
described using only a few parameters like the volume and the most important charac-
teristics of the boundaries [51]. In the case of the EBK quantization, the calculation of
energy levels is reduced to classical action integrals with clear parametric dependencies
that are usually hard to obtain from ab initio numerical calculations. The same holds
true when the shortest periodic orbits in chaotic systems are concerned, revealing system-
specific parametrizations of the level fluctuations on large energy scales, e.g., through
bouncing-ball orbits in billiards [49]. The systematic analysis of the generic structure of
the semiclassical approximations can also reveal universal features of certain classes of
systems. By using the torus structure of the integrable classical dynamics, one can show
that corresponding quantum systems should, in the generic case, have poissonian quan-
tum fluctuations [41]. Moreover, it was shown that in uniformly hyperbolic, i.e., purely
chaotic systems, the spectral form factor calculated semiclassically from correlated pe-
riodic orbits (Sieber-Richter pairs [57]) agrees with the predictions of random matrix
theory, thus providing the closest-to-proof justification of the Bohigas-Giannoni-Schmit
(BGS) conjecture so far [58,59].






Outline of the thesis

This thesis is divided into two main chapters.

Chapter 1 presents an application of cluster expansions combined with the semiclas-
sical short-time approximation. After a short introduction and historical overview in
section 1.1, the general formalism of quantum cluster expansions is introduced in sec-
tion 1.2, with its main focus on the canonical description. Apart from the known results,
it also introduces new recurrence relations and a generalized notion of clustering for the
calculation of correlation functions. After a generalization to systems with multiple
species it concludes with the presentation of an exact resummation for the grand canon-
ical description valid for homogeneous systems. The next section 1.3 then reviews the
semiclassical short-time approximation of propagators and its implications for the gen-
eral scaling properties of the cluster expansion. By presenting some general results on
certain types of cluster integrals and a rederivation of the shifting method introduced
in [60] with a focus on the thermodynamic limit scaling, this section provides some of the
tools that are used in the two sections that follow. The latter focus on an application
of the methods introduced so far: Section 1.4 presents novel results for the non-local
pair correlation function in the a one-dimensional Bose gas with repulsive interactions
and demonstrates the applicability of the scaling relations derived from the short-time
approximation, as well as the potential of truncated quantum cluster expansions in
high-temperature regimes. Section 1.5 moves on to three-dimensional applications of
the cluster expansion. For this, some general results valid for spherically symmetric
interaction potentials are derived and an exemplary model potential is discussed that
can be used to model general short-range interactions in low-energy regimes. Such a
short-range interaction is then implemented in a repulsive Bose gas with a few particles,
presenting a novel analytic result on non-local correlations in virial expansion, and dis-
cussing different approximations for the integrated smooth part of the density of states
for a few particles as obtained from the cluster expansion. Finally, the cluster expansion
is applied to a system of four fermions with resonant interaction. The chapter concludes
with a short summary and a few remarks on further applications in section 1.6.

While the methods of chapter 1 are useful for the description the thermal equilib-
rium properties of quantum gases, they cannot be applied at zero temperature and in
non-equilibrium situations. Chapter 2 therefore presents complementary semiclassical
methods that enable a detailed semiclassical discussion of a specific type of quantum
phase transitions. The introductory section 2.1 gives a brief introduction to the the-
ory of phase transitions. It also introduces some of the concepts and methods that are
required in the subsequent sections, i.e., the quantum-classical correspondence and the
phase-space formulation of quantum-mechanics, as well as the important semiclassical
EBK quantization and a motivation of the so-called out-of-time-ordered correlators. The
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next two sections then give a detailed analysis of two approximations of the attractive
Bose gas in one dimension that exhibits a quantum phase transition. Section 2.2 in-
troduces the model and then proceeds with a momentum truncated version using three
single-particle momentum modes. After a short review of the semiclassical results ob-
tained in an earlier work [61], it supplements the semiclassical treatment of the model
with the introduction of highly accurate WKB wave-functions and demonstrates, how
the exact dynamics can be visualized in phase space using Husimi functions. The section
then proceeds with a detailed semiclassical and numerical study of an out-of-time-ordered
correlator, uncovering a mechanism of scrambling and unscrambling close to criticality,
including a discussion of the rigidity of the effect with respect to a perturbation with
an external potential. The next section 2.3 relaxes the truncation used in the previous
section by including two more modes. After a classical analysis of a high-symmetry man-
ifold in the (effectively) six-dimensional phase space, uncovering the mixed character of
the dynamics, the requirement of an approximate method for the quantum-mechanical
diagonalization is discussed. The latter is then developed as a pre-diagonalization that
is motivated from a separation of scales and adiabatic (Born-Oppenheimer) approxima-
tions. The numerical scheme is then extended to a characterization of the low-lying
spectrum. Finally, the scrambling properties are shown to be very similar to the in-
tegrable three-mode approximation, also showing scrambling and unscrambling due to
criticality. The results of the chapter are then summarized in section 2.4 and possible
further extensions are sketched.

The thesis concludes with a very brief summary of the thesis and a comment about
the possible value of the results for a broader audience.
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1. Quantum cluster expansions in
short-time approximation

1.1. Introduction

The description of the equilibrium properties of gases and fluids with non-negligible
interactions has always been an outstanding problem in the field of thermodynamics.
Although all gases can be well described by the ideal gas law at high temperatures and
low densities, the interactions become crucial when the temperature is lowered. A phe-
nomenological description using the van der Waals equation of state, that includes the
effects of the interactions by introducing a reduced volume and pressure in the ideal gas
law [62], has been found very early, but despite its physical appeal, it is not derived
from first principles. A more fundamental approach is found in the methods of quantum
statistical mechanics, also including the fundamental indistinguishability of identical par-
ticles, that is not captured by the van der Waals equation. For noninteracting particles,
the commonly used grand canonical approach reduces to a single particle description us-
ing the thermal bosonic and fermionic distribution functions in terms of single-particle
energies, rendering the statistics of these quantum gases fundamentally different from
Boltzmann gases at low temperatures. The single-particle picture can be maintained in
perturbative and mean-field approaches, but strongly correlated systems require an ex-
plicit many-particle description. As the full description is not possible in general, certain
approximate methods have been introduced. Classical and quantum cluster expansions
have emerged in this context as a natural way to hierarchically order the interaction ef-
fects according to the number of particles that interact in a non-separable way. Although
it presents only a reformulation of the problem, one finds that at high temperatures (or
low densities) the few-particle clusters become dominant. This is formalized in the virial
expansion of the equation of states as [63]

p

— 2
e = 1 B+ (T + (1.1)

where p is the pressure, n = N/V is the particle density, kp is the Boltzmann constant,
and T is the temperature. The second virial coefficient B is completely defined by the
two-body interaction, C' contains the tree-body corrections, and so on. In the classical
statistics, one can even show that it is only the irreducible part of the k-body prob-
lem, that enters the kth coefficients, with the irreducibility defined by a factorization
criterion [63]. In the quantum description, the subtleties introduced by the nontrivial
commutation relations and the indistinguishability of identical particles alter the no-
tion of irreducibility, but the relation of the kth virial coefficient to the k-body problem

11



1. Quantum cluster expansions in short-time approximation

remains intact!. The virial expansion (1.1) is useful in the description of the thermo-
dynamic limit of gases and liquids, but is invalid, e.g., in the statistical description of a
system of three particles, even if the coefficient C, and thus the solution of the three-
body problem, is included. Therefore, for intermediate, and fixed particle numbers, one
should use the canonical (or micro-canonical) description. Fortunately, the starting point
for cluster expansions is the canonical description, and the grand canonical formalism
is then only introduced for simplification. This has led most authors to concentrate on
the application of cluster expansions in the thermodynamic limit, where the ensembles
become equivalent.

The classical cluster expansion was first introduced by Ursell in 1927 [65], while the
quantum extension has been first studied nine years later by Uhlenbeck and Beth [66]
with a focus on the calculation of the second virial coefficient, expressing the latter only
in terms of scattering phases, today acknowledged as the Beth-Uhlenbeck formula [67].
Kahn and Uhlenbeck have then derived the general (implicit) form of the equation of
state in the grand canonical description and discussed condensation phenomena on a for-
mal level based on the analytic structure of the cluster expansion. As numerous authors
have calculated virial coefficients for several two-body potentials in the following decades
(see [63] and references therein), only selected theoretical developments based on cluster
expansions are highlighted in the following. In the fifties, Lee and Yang have developed
a binary collision expansion that represents all the larger clusters in terms of a series
expansion of two-body operators [68,69]. It was later published in a series of five articles
starting with [70]. A generalization of the grand canonical cluster expansion to multiple
species, with a focus on charged particles was given in [71]. Other important theoretical
works addressed the the third virial coefficient [72-74] and the low-temperature behav-
ior of higher cluster integrals and virial coeflicients [75,76]. In the nineties, a group of
authors has reinvented the cluster expansion in an operator formulation [77-79] with an
emphasis on condensation phenomena [80] and first implementations of self-consistent
calculations in the weakly-interacting regime [81,82].

The above summary shows that previous research concentrated primarily on the
thermodynamic-limit properties of classical and quantum gases and their phase tran-
sitions. Moreover, the research concentrated on the full cluster integrals an the reduced
one-body density matrix, while few-body expectation values have not been considered
(except for the formal considerations on the two-body correlation found in [78]). How-
ever, with ultra-cold atom experiments being possible today not only with macroscopic
particle numbers, but even down to two or a few particles, the thermodynamic-limit
equivalence of ensembles certainly breaks down, and one should naturally consider the
canonical formalism in few-particle cases with well-controlled particle-numbers. There-
fore, the focus here is on the canonical description of few-body systems and the smooth
density of states that can be extracted from it. On the other hand, general results of the
cluster expansion for arbitrary correlations will be derived that are exemplarily used for
the explicit calculation of nonlocal pair correlations in selected systems.

"However, the virial coefficients do not vanish for noninteracting particles due to their indistinguisha-
bility [64].

12



1.2. The quantum cluster expansion

1.2. The quantum cluster expansion

In this section the formalism of quantum cluster expansions (QCE) is reviewed and gen-
eral new results will be derived, that hold irrespectively of the details of the physical
systems. After introducing the Ursell expansion and the indistinguishability of particles
as the two important mechanisms for clustering, the combinatorial nature of the result-
ing expansions will be discussed, with a focus on the derivation of recurrence relations
and the notion of irreducible clusters. Then, after generalizing the formalism to mul-
tiple species of indistinguishable particles, the special case of homogeneous systems is
discussed, where further modifications can simplify the formalism.

Let us consider a (non-relativistic) autonomous system with fixed particle number N.
The dynamics of the system is then fully described by the propagator

A (y, ;1) = (yle " |2) (1.2)

where H is the N-particle Hamiltonian of the system, ¢ is the time, and |&) = |21)®---®
|en) = |@1,...,zN) is a product of N position eigenstates. Specifically, any many-body
quantum state ¥(x,0) = (x|¥(0)) prepared at time ¢ = 0 will evolve such that it is
given by

W(y,t) = /dNDx G (y, 2: ) (x, 0) (13)

at time ¢t (D is the space dimension). On the other hand, evaluating the propagator in
imaginary time

t = —ihp (1.4)
completely determines the equilibrium thermodynamic properties of the system, with
B = (kgT)™! as the inverse temperature. For example, the canonical partition function
Z(N) ig obtained from the integral

ZM)(8) = / A0y GO (2, 2 —ih3) = / A0y (gle Pl |z) = e {e P} (15)

Integrals of the above form will be referred to as (partial) traces. To ease later notation,
let us define
KMy, @; ) = ™ (y, 25 —inp) (1.6)

as the imaginary time propagator. By definition, it inherits the properties of the prop-
agator and thus satisfies the equations

0 .
gk @i 8) = —H, Ky, 2:), (1.7)
lim KN (y,@; 8) = §VP) (y — x), (1.8)
B—0
where 6&VP) is the N D-dimensional Dirac delta function and ﬁy is the Hamiltonian in

position representation, i.e.,

(y| H|0) = Hy (y|¥) (1.9)
for any state |¥) in the Hilbert space.
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1. Quantum cluster expansions in short-time approximation

The interpretation of propagation in imaginary time establishes a link between thermal
and dynamical approaches, where understanding of the latter can then provide better
intuition for thermodynamic properties and vice versa. For example, the imaginary time
propagator has the same convolution property

/ Nz KN (g, 2 5 KW (2,5 ) = K (g, 1 + o) (1.10)

as the propagator, which, for the latter, is just the semigroup property of the time
evolution incorporating the intuition that the state obtained by stepwise time evolution
should be the same as the one obtained, when the time evolution is performed in a
single step. One could, in principle, interpret the imaginary time propagation as a
generalized heat kernel that solves the “heat equation” (1.7), where the Laplace operator
is substituted by the many-body Hamiltonian (and a minus sign). However, to make the
analogy complete one should then reinterpret 5 as a real time and the quantum states
as classical distributions, which does not make much sense after all, even in the case
of a single, free particle. So, keeping the interpretation of the inverse temperature as
imaginary time, the word “propagation” will be used in the following, keeping in mind
that the quantum statistical considerations do not depend on time.

1.2.1. Ursell operators and symmetrization

The use of the many-body propagator does not, by itself, simplify the description. More-
over, it contains far more information than is needed to calculate thermodynamic quan-
tities, as it contains the full information about the quantum states. So, calculating the
many-body propagator is equivalent to solving the Schrédinger equation of the many-
body system, which is usually not possible. One can, however, bring the propagator in
a form that systematically clusters particles into subsets, such that the smaller clusters
can be treated individually.

Ursell operators

The imaginary-time evolution operator is decomposed into Ursell operators [77] in the
following manner. Let JEI(”)(Z‘I7 ...,ipn) be the Hamiltonian of n < N particles labeled by
ity yin € {1,...,N} and KM (iy,... ip) = e BHM @in) Here, H™(iy,. .., i,) has
to be thought of as an operator on the N-particle Hilbert space that has a nontrivial
action only on the n-particle subspace labeled by the i, where it is identical to the n-
particle Hamiltonian, while it reduces to the identity on the (N —n)-particle complement
space. The first three Ursell operators U™ are then implicitly defined as

KO @) =0uM(),
K®(1,2) = 0W00W @) +0®(1,2),
K®(1,2,3) = UMW) (2)0™M (3)
+UWMTP(2,3) + UV (2)03(1,3)
+UWE)TR(1,2) +U®(1,2,3). (1.11)
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1.2. The quantum cluster expansion

All higher Ursell operators are defined in the same way by decomposing K™ into all pos-
sible partitions of particles. The intuitive picture behind this decomposition is that the
kth Ursell operator contains only the additional information of the k-particle problem
that is not contained in the lower Ursell operators. For example, the second Ursell oper-
ator contains only the information that exceeds the noninteracting two-particle problem.
Consequently, all Ursell operators U®) for k > 2 vanish in the noninteracting case.

The Ursell decomposition above is only a reformulation of the problem and could, in
principle, yield additional complications. However, the Hamiltonian of an N-particle
system can always be written in the form

N N N
HM =3"aVG) + > V@G5 + Y VO k) +... (1.12)
i=1 i#j=1 i#jAk=1

with k-body interactions V(k)(il, ...,ix) (k < N), where the one-body operators and
two-body interactions usually dominate the physics. In this case, the higher Ursell
operators should become subdominant in certain regimes, such that the cluster expansion
can be truncated.

In many applications, the interactions can be assumed to be short-ranged. In this case,
it is expected that particles that are separated far from each other will be essentially
independent. This means that the matrix elements

AKM(y, 2 8) = (y|U™|z) (1.13)

in coordinate space vanish if the distance of any two particles in  and y is large,
making the “clustering” of particles very explicit. Note that in Eq. (1.13) |2) and |y)
have to be understood as elements of a n-particle (sub-) Hilbert space. The propagator
KM (y, x; 8) can then be written in terms of the matrix elements AK ™ (y, a; 8) with
n < N. Let us further refer to these matrix elements as interaction contributions of
order n and identify KM (y,x;8) = AKM(y, ;) for n = 1. We can now write the
propagator for N distinguishable particles as a sum of interaction contributions

EMya8) = >  [[AE" (a8, (1.14)

JH1,...N}IE€T

where the sum in this cluster expansion runs over all possible partitions J of the set of
N particle indices and @y = (x;,, ..., ;) is the shorthand notation for the (ordered)
particle coordinates that are part of the same interaction contribution, represented by
the disjoint subsets I € J. As noted above, this decomposition is particularly useful
when higher-order interaction contributions are subdominant, i.e., the dominant parts
of the propagator factorize into clusters of smaller particle numbers. It is worth noting,
that neglecting, e.g., interaction contributions of order n > 3 is conceptually different
from a perturbation expansion, as two-body interactions are fully accounted for by the
interaction contributions of order n = 2, which are nonperturbative in the interaction
strength. For example, while respecting the finiteness of the system, such a truncation
includes the virial expansion to second order in the thermodynamic limit.

15



1. Quantum cluster expansions in short-time approximation

Indistinguishability

For indistinguishable particles we have to use the symmetry projected (imaginary-time)
propagator,

Ky, :0) = 15 3 GV EO Py, ), (1.15)
PceSN

where the sum runs over the symmetric group Sy operating on the particle indices, + and
— stand for bosons and fermions, respectively, and (—1)% is the sign of the permutation
P.

This yields an additional factorization mechanism corresponding to the decomposition
of permutations into cycles [52], which is best demonstrated in the noninteracting case
where

N
N
EM (y.a;8) = [] KD (. zi:8). (1.16)
i=1
Consider a permutation P = g 00p0--- 00, in its cycle decomposition, i.e., the cycles
ok act on disjoint index sets I such that UY_ I, = {1,...,N}. The corresponding
contribution to the symmetry projected propagator (1.15) is

p
KN Py, 2 8) = [ K&™ Wy 1) @13 B). (1.17)
k=1

The sum over all permutations can be rewritten as the sum of all partitions of the index
set yielding

Nap == S [ > K o) (1)

JH1,.,N}IeT o(l)=

where the last sum runs over the (|I| — 1)! cyclic permutations of the set I and x; =
(Tiy, ..., xi,) is, as in Eq. (1.14), short-hand notation for the (ordered) particle co-
ordinates with index in I and y, ;) = (ya(il), . ,ya(im)). The apparent similarity of
Egs. (1.18) and (1.14) as a sum of all partitions shows that both, Ursell expansion and
symmetrization, can be treated as a cluster expansion in a similar fashion.

Combining the two mechanisms to cluster particles yields a grouping of particles into
clusters that are either part of the same interaction contribution or connected by per-
mutation cycles (or both). This becomes important when calculating traces of the prop-
agator, as each cluster of particles can then be treated independently from the rest of
the particles while its internal dynamics is tied in a non-separable way.

Example

As an illustrative example, consider a partition of N > 3 particles into one interaction
contribution of order 2 [e.g., particles one and two connected by U®)(1,2)] and N — 2
interaction contributions of order one, together with the permutation P = (1 3). This
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1.2. The quantum cluster expansion

is one of many combinations that appear if we symmetrize Eq. (1.14) according to
Eq. (1.15). Tt factorizes into N — 3 single-particle propagators and the term

AK®) ((ys,92), (1,22);: ) KW (g1, 23: ), (1.19)

such that the full contribution to the cluster expansion will be

N
%AK@) ((y37 y2)7 (:131, mQ); B)K(l) (yh T3; 6) H K(1> (yi7 T, B) (120)
i=4
So, in this example, we have a total of N — 2 clusters—one cluster comprising three par-
ticles given by Eq. (1.19) and N — 3 (trivial) single-particle clusters. Even though the
factors in Eq. (1.19) are, as is, independent functions, they cannot be treated indepen-
dently if we trace, e.g., the particle with index i = 3, such that the relevant criterion of
factorization into independent clusters is the particle index rather than the coordinates
themselves.

1.2.2. The role of (irreducible) diagrams

As has been argued in the example above, the indez itself rather than the coordinates
define the clusters, as should be clear from the fact that the cluster expansion does
not rely on a specific basis representation and can also be formulated at the level of
operators [77-79]. If one is interested in thermodynamic quantities or reduced density
matrices one must calculate the (partial) trace the propagator, where the indices of the
particles that are traced out can be interchanged, such that different assignments of
particle indices can lead to the same contribution to the cluster expansion. Already for
moderate particle numbers this leads to a plethora of identical contributions in Eq. (1.14)
due to particle relabeling. This suggests a diagrammatic treatment of the (symmetry-
projected) cluster expansion (1.14), which will be presented in the following, with an
emphasize on the aspects of irreducibility.

Diagrams

Each interaction contribution of order n is represented as a diagram connecting n initial
and n final coordinates. The diagrams representing the interaction contributions of
the first three orders are displayed in Fig. 1.1(a). They contain a solid line for every
particle with an arrow pointing from initial to final coordinates represented by labeled
dots. An interaction contribution of order n thus contains n solid lines, together with
n(n—1)/2 curly lines connecting every pair of the n particles. The number of curly lines
connected to a particle thus directly indicates the order of the interaction contribution
it is part of, i.e., if a solid line has m curly lines connected to it, the corresponding
particle is part of an interaction contribution of the order m + 1, and all the other
particles in this interaction contribution have to be met by m curly lines, too. The
name “vertex” is avoided here to clarify that, in contrast to perturbative diagrammatic
approaches, there is no meaning of these points other than the assignment of a particle
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1. Quantum cluster expansions in short-time approximation

(a) (b)

Y1 Y1 Y Yy, Ys
% : T X2

M T .

T T s T2 T3

Figure 1.1: (a) Diagrams representing AK ™ (y, x; 3), Eq. (1.13), for n = 1,2,3. (b)
Diagram representing the particular cluster Eq. (1.19) for z = y.

to a certain interaction contribution. Instead of using curly lines, one could give a label
to each particle line indicating its affiliation to an interaction contribution. However,
by graphically connecting the respective particles, one can directly determine whether a
given diagram factorizes, i.e., it can be split into two diagrams without cutting any lines,
or whether it is irreducible, i.e., it cannot be split up further. A full diagram represents
a factorization into clusters according to Eq. (1.14) or its symmetry-projected equivalent
and comprises several irreducible diagrams that represent single clusters.

The cycle structure is then either encoded in the indices of the final coordinates as
compared to the initial ones or, in the case of particles that have been traced out, by
the connection of the particle lines. By convention, each unlabeled bullet in a diagram
stands for a coordinate that has been traced out. Such points have to connect two particle
lines or, in the case of a one-cycle, a particle line with itself. Loose ends correspond to
untraced particles with different initial and final coordinates, such that they always have
to come in pairs. As an example, the irreducible diagram corresponding to Eq. (1.19) for
y = x and with @3 traced out is depicted in Fig. 1.1(b). In practice it is convenient to
omit one-particle irreducible diagrams while stating the particle number of the (reduced)
diagrams explicitly. As a diagram contains the full information on the cycle structure
one is free to include the sign factors from exchange symmetry in the diagram values.
Here, however, the convention is used that the value of a diagram is defined irrespective
of the exchange symmetry and treat the sign factors as additional prefactors.

Let us now focus on diagrams that appear in the full trace of the cluster expansion, i.e.,
the canonical partition function, with the purpose of counting only distinct diagrams,
then provided with multiplicities and a sign factor that encodes the particle symmetry.
Consider a full diagram in the expansion that is built out of [ irreducible diagrams of
sizes ny > --- > n;. By distributing the particle indices among the irreducible diagrams
in a different way one finds equivalent full diagrams. Therefore, the multiplicity of any
such diagram contains the combinatorial factor

N 1 N! N!

#n = = , (1.21)

[[2 ma(@)! Hé:l n! T2 ma@)!(p)ma)
where mq(v) is the multiplicity of the number v in 9 = {n,...,n;}. It is the number of
possible partitions of the set of the N particle indices into subsets of the sizes n1,...,n;.
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1.2. The quantum cluster expansion

This holds irrespective of the structure of the irreducible diagrams, whereas an additional
factor counts the number of ways to relabel the coordinates inside an irreducible diagram
depending on its structure. The index [ for the length of 91 was only introduced to shorten
notation and does not appear the second form of the combinatorial factor (1.21). If we
collect all full diagrams in the cluster expansion that factorize into irreducible diagrams
of the sizes ni,...,n; their sum can be written as

S (B), (1.22)

:N

(#31)

i=1

where Sff)i (5) is the sum of all n-particle irreducible diagrams, including the multiplici-
ties from internal relabeling as well as the sign factors from symmetrization. The upper
index (k) with k£ € Ny denotes the number of particles that are not traced over and
will be different from zero when thermal expectation values of operators, e.g., particle
densities or n-point correlation functions are concerned. Using the above definitions the
partition function can be written in terms of the sums of irreducible clusters as

A MZ%JI@m. (1.23)

NN neN

Note that, in contrast to Egs. (1.14) and (1.18), the sum runs over the partitions of
the number N instead of the partitions of the index set {1,...,N}. To be precise, the
explicit form of Eq. (1.23) is given by

1 N
Z(iN)(ﬁ) = MZ Z #{7“, ,nl}H 'r(g?

Cl=1n1>e>n>1
Z£71n1:N

_ % Z H 7; (1.24)

=1 ni,...,n=11i=1
l
i ni=N

In this form, the cluster expansion of the canonical partition function is organized in a
way that the first sum runs over the number [ of irreducible clusters.

The central role of the irreducible diagrams S 0 as building blocks of the theory is
better demonstrated when looking at the grand canonical partition function. As will
be shown in section 1.2.3, it is given exactly as the exponentiated sum of irreducible
diagrams, only weighted with a combinatorial factor and the fugacity z:

[eo]

mmmm% ﬁ@@) 2=, (1.25)

k=0

Here, the index for the symmetry class &+ has been omitted to highlight the simple form
of the result.
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1. Quantum cluster expansions in short-time approximation
SO=0 Sé?i:io-i—ofoi@
=2 Jeo 40+ T 0030 0 )

Figure 1.2: The sum of irreducible k-particle diagrams S](co) for £ = 1,2,3. Most of
the diagrams for k& = 3 appear with multiplicities larger than 1. The first three dia-
grams in S:‘E(.)i include only the interaction contributions up to order 2, while the rest
accounts for all six possible permutations of the third-order interaction contribution.
For noninteracting indistinguishable particles, only the first diagrams contribute, while
for distinguishable particles only the second diagram in Sé?l and the fourth diagram in

Si(,)oi contribute.

Before moving on to the implications of the combinatorial nature of the cluster ex-
pansion, let us consider, as an example, the cluster expansion for three indistinguishable
particles. There are three different partitions of the particles with combinatorial factors

3 3 3
#Foan =1L  #enp=3  #Hy=1 (1.26)
so that the partition function is given by

Z® = % {(55?1)3 +350 5% + 55 | (1.27)
where the dependence on § has been omitted. The sums of the k-particle irreducible
diagrams S]i?j: for £k = 1,2,3 are shown in Fig. 1.2, also including the multiplicities of
the individual diagrams due to internal relabeling.

We are now left with the calculation of the multiplicities due to internal relabeling and
the sign factors from exchange symmetry. Let us exemplarily focus on the multiplicity
of the second diagram in Sé?i. It is built from one interaction contribution of order
two and one free propagation (order one). Choosing the interacting pair out of three
particles already gives three possibilities corresponding to the Ursell decomposition, cf.,
Eq. (1.11). Then, one of the interacting particles has to be linked to the free particle
by a two-cycle. This can be achieved with two distinct exchange permutations, yielding
the overall multiplicity of 6. In addition, the factor £1 has to be introduced to account
for the two-cycle. A detailed formal description of how the coefficients are determined
in general can be found in [61].

1.2.3. Partial traces, recurrence relations, and expectation values

The previous subsection has introduced the basic notation and the the very general
combinatorial nature of the cluster expansion for the example of the canonical partition
function, i.e., the full trace of the (imaginary time) propagator. When dealing with
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T3 Yo |

Y2 Y, Y \
[ T \ [ 1 T3 \\\Q
T Ys o \\\
Ys h

Figure 1.3: Diagrams for five particles where two particles have been traced out. Both
diagrams are built from three irreducible diagrams. However, the left diagram is coor-
dinate irreducible while the right one can be cut at the dashed line such that all the
coordinates are in the left part of the diagram. Thus, the right diagram is coordinate
reducible.

partial traces, the number of equivalent diagrams in the cluster sum is reduced, as only
the particles that are traced out can be relabeled. This means that the combinatorial
factors in Eq. (1.21) as well as the multiplicities of the irreducible diagrams with fixed
coordinates have to be modified, but one can, in principle, easily write down the cor-
responding expressions. It is, however, much more convenient to use the combinatorial
structure of the partition function to simplify the partial traces. This will be done on
a purely combinatorial level, leading to the notion of coordinate irreducible diagrams
that are the building blocks for correlation functions and expectation values. Moreover,
the relations obtained for the partial traces naturally lead to recurrence relations for
the partition function. At the end of the subsection, the results for the grand canonical
ensemble will be derived.

Partial traces

Let us define the partial trace of the symmetry-projected N-particle propagator with
N — k particles traced out as

A0 wi0) = a0k ). w20 0) (1.28)

where (z, z) = (@1,..., Tk, Zk+1, .-, 2n) and (y, z) defined analogously. The full clus-
ter expansion that combines the Ursell decomposition (1.14) and the cycle decomposition
(1.18) is the sum of all allowed (reducible) diagrams with 2k legs representing the co-
ordinates  and y. Every such diagram stands for a product of irreducible clusters,
represented by an irreducible diagram, that either depend on some of the pairs (z;, y;)
or are fully traced over. Therefore, in each diagram, we can split off the part that
depends on the coordinates « and y or, in other words, factorize the corresponding con-
tribution to the cluster expansion into a part that depends on x and y and a product
of fully traced irreducible clusters. In this context it is useful to introduce the notion
of coordinate irreducible diagrams as the part of a diagram, that remains after splitting
off all fully traced irreducible clusters. As an example, Fig. 1.3 shows a comparison of a
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1. Quantum cluster expansions in short-time approximation

coordinate reducible and a coordinate irreducible diagram for five particles, where two
particles have been traced out.

One can now proceed in the same way as in the previous subsection and define
AiLk l(:c,y; B) as the sum of all coordinate irreducible diagrams composed of n parti-
cles. In every diagram that contributes to Aglkl(y x; 8), n — k particle coordinates are
traced out. The respective particle indices are drawn from the N — k coordinates that
are traced over, such that there are

N—k (N —k)!
<n—k> T m—R)I(N —n) (1.29)

equivalent diagrams in the overall sum. The remaining N — n particles will then be
distributed in all possible fully traced irreducible diagrams with their sum given by
(N — n)!Z(ian), as seen in the last subsection. Thus, only by rearranging the cluster
expansion, we can write the partial trace (1.28) as

N 1N (N =k N
A0 = 5y 3 (570 Akt ) (9 - izl

(N =k)! = A (w2 8) (ven
TN Z:k EErIER G
N-k) & .
= N )-Zaﬁﬁ(y,w;ﬁ)zf '(8), (1.30)
n==k

where Z(io ) (8) = 1 by convention. In Eq. (1.30) the rescaled sum of coordinate irreducible

diagrams

A, (y, 2 8)
(n—k)!

has been introduced. It is convenient to define also the rescaled sum of irreducible

clusters as

all (y, @ B) = (1.31)

0 Suek(8)

" —(n =k = dpo)!
where 0y; is the Kronecker delta and the factorial is chosen such that it cancels the
internal multiplicity of the cyclic diagrams in the noninteracting case.

As the dependence on the inverse temperature £ is clear from the definitions, it will be
dropped in the following for better readability. Moreover, the label £ for the exchange
symmetry will be omitted.

For the cases k =1 and k = 2 that will be of relevance later one obtains

(1.32)

oD (y,x) = s (y, @), (1.33)
n—1

a?(y,z) = s (y,2) + s (yy, @1)s' (o, @2). (1.34)
=1
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1.2. The quantum cluster expansion

With this notation the partial trace of the propagator for £ = 1 and k = 2 is conveniently
written as

N
P (y,w) = D 5D (g, ) 70, (1.35)

n:l

1
(N2) _ @ (N—n)
P (y, @) NN=T) (n§_28n (y,z)Z
N—1N-k

+> Z st (i @1)s) (yg, 22) 20 k_l)> : (1.36)

k=1 I=1

Equations of this kind are of central relevance for the calculation of expectation values.
However, they can also be used to derive recurrence relations as will be shown below.

Recurrence formulas

By tracing out the remaining particle in Eq. (1.35) one immediately finds the very useful
recurrence relation for the canonical partition function

N
720 = % 3 50 7N-) (1.37)
n=1

that has been long known for the noninteracting case [83]. It has also been used re-
cently as a very useful tool in quantum Monte Carlo approaches [17] where the recursive
approach drastically reduces the computational effort. Tracing Eq. (1.36) one finds a
different recurrence relation

M- 1 3 1)s(0) Z(N=n) N8R L0 5 Z(N-k-D 138
ab syl OO DI I L (138)

n=2 k=1 l=1

More general, Eq. (1.30) yields a recursion formula for every k > 1, but the resulting
expressions become, of course, more complicated with increasing k and their usefulness
for practical purposes might become questionable. Nevertheless, if one wants to find
new recursion formulas, one should keep in mind that the functions s%k ) are related to
each other by

/d i1 ST (G, Tpi1), (T, Tg1)) = (0 — k)P (g, @) (1.39)
for k > 0. Here, & denotes the k remaining coordinates 1, ..., x;. For & = 0 one simply
has

/dDyc W (@, x) = 5. (1.40)

23



1. Quantum cluster expansions in short-time approximation

Expectation values

The relations for the partial traces are of use when one is interested in the thermal
expectation value

(05 = —) T [ —ﬂﬂ@} (1.41)
i

of an observable O, where the trace is taken in the Hilbert space sector with bosonic (+)
or fermionic symmetry (—). Let us start with the simple case of a one-particle observable

N
O1=3 01" = /dDw Py Oy (m,y) P! () (y), (1.42)
i=1

where O1(z,y) = (2|01 ]y) and zﬁt and ¢ are the bosonic or fermionic field operators.
The thermal expectation value of A is then given by

(O1)p = /dDm 4% O1(@,y) (' (@)d(y))s (1.43)

in terms of the single-particle reduced density matrix or two-point correlation function

A (g
W @) = —— M. (1.44)

Zy (B M(B)

The last identity will be shown below in a more general context. Using Eq. (1.35) for
(N 1

T [e 01 @)i(y)] =

then yields, dropping the S-dependence,

N
@) = oy 3ol 2. (1.45)

+ n=1

So, to calculate the expectation values of one-particle operators, one only needs the
additional information of the irreducible clusters 9,(1 ). This can be extended to arbitrary
k-particle operators. In general, the expectation value of the normal ordered product of

field operators is given by

Oy, @) = (Ul (@) - W (@) P (yy) - (y1)) s (1.46)
N P (), (k) B)
= (N*k)) ! Zk(iN) : b ) (1.47)

as is shown in appendix A. Note the reversed order of the coordinates y; in (1.46) that
is important in the case of fermions. Finally, by making use of Eq. (1.30) one obtains
the simple result

8y, @) = N)Zaifgy, z) 2. (1.48)
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1.2. The quantum cluster expansion

The expectation value of a k-particle operator

N , .
Z O}(Czl,,..,lk) (149)
1 yeenyip=1
iy

in the canonical ensemble is thus given by

O = [P d Py Opla ) Cf g i), (1.50)
where the dependence on £ has been restored and Oy (x,y) is the matrix element
A(l,....k
Ok(w,y) = (@0 ly), (151)

that is calculated in a k-particle subspace of the N-particle Hilbert space. Note that
according to Eq. (1.48) the expectation value (1.50) is expressed only using the coordinate
irreducible clusters and the canonical partition functions of subsystems.

The grand canonical ensemble

We have seen that the canonical partition function is completely determined by irre-
ducible clusters via recursive formulas. Moreover, correlation functions and thus the ex-
pectation values they generate are completely determined by the coordinate irreducible
diagrams and the irreducible clusters that enter the partition function. This again high-
lights the fact that, if the (coordinate) irreducible clusters are known, the calculation of
the full cluster expansions is merely a combinatorial problem. The latter originates from
the fact that the particle number NV is fixed exactly in the canonical formalism. This con-
dition is relaxed in the grand canonical ensemble, leading to a description that depends
only on the (coordinate) irreducible diagrams while not suffering from any combinatorial
difficulties.

The grand canonical partition function can be expressed through the canonical parti-

tion function as -
p =Nz (), (1.52)

where z = e is the fugacity and p is the chemical potential that controls the aver-
age number of particles in the system. The logarithmic derivative of Eq. (1.52) with
respect to the fugacity is given by (omitting the index for the particle symmetry and the
functional dependencies for the rest of this subsection)

9 1 o 1 o0 N
(C -1 (N) _ N-1 (N—k)
g, los 29 = § NZN = N§—1Z § sz

=1
- & (fj zmlsgp) (i ) S, sy

1 m=1

8
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1. Quantum cluster expansions in short-time approximation

where the recurrence relation (1.37) for Z(¥) and the Cauchy product formula have been
used (assuming convergence of the series). Using Z¢|.—g = Z(©) = 1 one immediately
gets

79 = exp (Z 'jnsﬁ,?)) : (1.54)

m=1

such that the grand potential € is given by the sum of irreducible clusters,

Q) = 5105 2% =5 - Zosld (1.55)

For the correlation functions let us first relate the expectation values in the two ensem-
bles:

N

_ LG i . (1.56)
N=0

Here, the first trace is over the full Fock space. Using Eq. (1.48) one finds

CW(y,x, B, 1) = <w*<m1> Ul (@) T (yy) - U(y))) g
= ﬁ Z ZNZ(N)C<k’N)(y7:t:,ﬁ)
N=k

1 [e'9) N
=G Z Z y x)ZN-
N=k =k
e <Z 2"a (k )) (Z ZmZ(m)>
Z m=0

76

_ ZZ" ®)(y, z). (1.57)

This means that the thermal expectation values are directly determined by the coordi-
nate irreducible diagrams. This is in analogy to the cancellation of vacuum bubbles in
quantum field theories. The interpretation is, however, different, as there are no vacuum
bubbles in a particle-conserving theory. It is rather the statistical average over systems
with different particle numbers that leads to the simplifications in the grand canonical
ensemble. Another way to view the simple expressions obtained in the grand canonical
ensemble is to simply take them as the gemerating functions of the canonical partition
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1.2. The quantum cluster expansion

function and expectation values via

ASLE i' {a—]jvzc , (1.58)
N!0z 2—0
R 1 oN R
(0) :7{— 7%(0)5, } . (1.59)
F T NIZ® azN( ﬁ“) o

1.2.4. Generalization to multiple species

In this subsection, the generalizations of the previous results for multiple species is
provided. This is of relevance not only in mixtures of fundamentally distinguishable
particles but also in systems where single-particle degrees of freedom are conserved by
the inter-particle interaction, thus making the particles effectively distinguishable. The
most important examples comprise the cases of spin-1/2 fermions with spin-conserving
interactions and composite particles with internal degrees of freedom that are robust
against collisions.

The results of the previous sections are straightforwardly generalized using multi-index
notation

1
n=(ny,...,n), n!:Hni!, e = (e, ..., eM), (1.60)
i=1

l l

N N
2" =[], o =]]or. 2: [IDEE (1.61)

i=1 io i=1ni=k;

where [ is the number of species. Let us denote the coordinates of the NV; indistinguishable
particles of species i as X; = (wgi), e ,wg\z,)z) and the coordinates of all particles by
X. Using the many-body imaginary-time propagator K(N>(Y7 X;B) for Ny +---+ N}
particles, the symmetry-projected propagator is generalized from (1.15) to

N 1
KS(Y . X:6) = 55 > oPKN(PY. X:5), (1.62)
PeSN

where the sum runs over all tuples (P(M),..., PU) € Sy = Sy, x --- x Sy, and the
individual permutations act only on the coordinates of the respective particle species
PY = (P(l)Y(l),...,P(l)Y(l))A The exchange symmetry in each particle species is
encoded in the indices o; = £1 for ¢ = 1,...,l. With the same notation, the sums of
(coordinate) irreducible clusters S&;(Y,X ; B) and A(,fj L(Y,X ; B) can be introduced,
with the same definitions of irreducibility as before. Here, the multi-indices n and k
have to fulfill n > k and k > 0 in Agf), making use of the partial order that can be
defined by

s>te s >t foralli=1,...,L (1.63)

Note that as before, abusing notation, the arguments X and Y in AS',(lkl)7 and Ag‘: 2, are
defined by the tuple k in that they contain k; particle coordinates of the species j (k; =0
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1. Quantum cluster expansions in short-time approximation

is not excluded). Then, defining the rescaled cluster sums

SELY, X; 8)

s (Y, X ) = CETOI (1.64)
AR (Y, X
(Y, X3 ) = ’(n(_ 1 2 (1.65)

in analogy to Eqs. (1.32) and (1.31) the generalization of Eq. (1.30) to multiple species

is found as
N

— k)
o x:0) = MBS ol v x 2 ) (1.66)
n=k
in terms of the canonical partition functions of the smaller systems that have the particles
labeled by n > k excluded. There is one important difference in the definitions (1.64)
and (1.32). In the latter, the definition for k¥ = 0 has a different normalization that is
motivated from the cycle diagrams. In the case of multiple species, it is more convenient
to avoid this special treatment of k; = 0 for ¢ € {1,...,l}. By taking k = e; in (1.66),
where e; is the ith unit vector, and tracing out the remaining particle one obtains an

equivalent of the recursion formula (1.37) for every species ¢ € {1,...,l} (omitting )
N 1 & N
2 = NT; nisweZss M, i=1,.L (1.67)

Note the extra factor n; on the right hand side that comes from the different definitions
of the irreducible cluster sums.
Proceeding with the generalization of the correlators (1.47),

OBy X1 ) = <Tl[ B (o)) 0 (o) 0 (50) -0 (y§i>)> (1.68)
i=1 B
N oMMy, x;8)

_ , (1.69)

(N —k)! Zg-N>(/3)
where the field operators for different species commute, one immediately finds
k 1 AR

CNPY, X58) = —z7— D" anb (Y, X: )25 ™ (B). (1.70)
Z. —
o n=~k

Introducing the I chemical potentials g = (u1,..., ) and fugacities z = e®* one then

finds with the same methods as above the recursion formula for the grand canonical
partition function

i=1,...,1, (1.71)

b
pi——o0

79(8, ) = exp (Z z"s59>(6)) Z2%(8,)

n=e;
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1.2. The quantum cluster expansion

where the last factor is the grand partition function without species 4. It is easily proven
by taking logarithmic derivatives of Z& with respect to the fugacities. The full result is
the generalization of (1.54),

Z%(B, ) = exp (Z 203 ) (1.72)

Finally, the generalization of Eq. (1.57) can be given as
cR (Y, X8, p) Zz APy, X, B). (1.73)

As before, they are sufficient to calculate the expectation value of any k-particle observ-
able.

1.2.5. Resummation of clusters

In this section, the important case of systems that are homogeneous in space is con-
sidered. In such systems, the total momentum is conserved, such that the many-body
propagator in momentum space is diagonal in the total momentum. Moreover, tracing
out one particle fixes the initial and final momentum of the respective particle to be the
same, such that the total momentum of the remaining particles must be conserved. This
means that the n-point correlation functions CiN’k) (y,z), Eq. (1.48), and C’:(tk) (y, ),
Eq. (1.57), are diagonal in the total momentum of the k particles that are not traced
over. This does also apply to individual diagrams in the cluster expansion, and thus
any coordinate irreducible diagram. In this section we will only focus on the reduced
one-body density matrix, i.e., all but one particles are traced out. In this case one has

as’)i S )i and this sum of 1rreduc1ble diagrams can then be written in the as

1 1 1 ike(y—a) <(1
skwse) =5k —2.0) = o5 P25, x), (1.74)
with the momentum representation of the irreducible cluster sums
30 (k) = / 4Pz e *%51, (2,0). (1.75)

The reduced one-body density matrix in momentum representation is thus diagonal and,
using Eq. (1.57), given by

8

P (k) = / dPze =W (y — 2,0) = 3 5L (k). (1.76)

Up to this point one has not gained much from the representation in momentum space.
However one should note that many irreducible diagrams now factorize. To be more
specific, if a two-legged irreducible diagram in ele)i can be cut into two pieces such that
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1. Quantum cluster expansions in short-time approximation

Figure 1.4: The factorization of diagrams in the reduced one-body density matrix. The
diagram on the left can be cut into two pieces at the dashed line, and it has the same
momentum k at this point. The value of the full diagram is then the product of the two
diagrams evaluated at the same momentum k. As cutting the diagram is achieved by
interchanging two particle indices, one has to account for the exchange symmetry with
a factor £1.

one ends up with two new two-legged diagrams, the full diagram is given by the product
of the latter. Figure 1.4 shows an example of such a factorization. There, instead
of labeling the initial and final coordinates, the momentum k is used and the sign
factors from exchange symmetry have been included in the diagram values for simplicity
(opposing the convention introduced in section 1.2.2), leading to the sign factor on the
right hand side, as, on a formal level, any two-legged diagram that can be cut in the
above manner is linked by a single exchange of particle indices. This can be seen as
follows: Let (£1)Pe®, and (+1)7®; be the disconnected parts of the diagram and
(£1)Fe®,; the connected diagram, i.e., P,, Py, and P, are the permutations that enter
the diagrams and P, and P, act on disjoint sets of particle indices. Let P = (12) the
exchange permutation of the indices 1 and 2, then

Ou(yn1) = [ Dify1, a2 Dule, )
= /dD962 dPys 6P) (29 — y5)Dp(y1, 22) Do (Ys, 1)
= /dez Py 6P (5 — y5)Du(Y pay 2)Da (Y p(1), 1) (L.77)

such that in the connected diagram one has to account for the the additional particle
exchange P as compared with the disconnected parts, giving rise to a factor (+)” = +1
for each cut. To be precise, the cycle structure of the connected diagram is given by
Pu, = P o P, o Py and the sign factor is given by

(£1)Far = (£1)FPoPaoPy — 4 (£1)PaoPo = p(11)Fa(11)P, (1.78)

As was explained in section 1.2.2, each irreducible diagram has a certain internal
multiplicity due to possible relabeling of the particles that have been traced out. To
make use of the factorization of diagrams we need to explore how the multiplicity of the
full diagram is related to the multiplicities of the constituents. This can be done on a
purely combinatorial level. Let us assume that we have a two-legged irreducible diagram
of n = k + [ particles that can be cut into two such diagrams with k and [ particles,
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1.2. The quantum cluster expansion

respectively, with internal multiplicities #; and #;. The latter are due to relabeling of
k—1 and [ —1 traced particles, respectively, as one of the particle labels in each diagram
is fixed by the legs. The multiplicity #, of the connected n-particle diagram can then
be given in terms of the multiplicities #j and #; by counting the ways to distribute the
n — 1 traced coordinates to the constituents. First, two of the legs are connected and
are traced over in the full diagram, giving rise to n — 1 possible assignments. Then, out
of the remaining n — 2 traced particle coordinates one has to fix £ — 1 coordinates to
be part of the k-particle diagram that can then be internally relabeled in #; ways. The
remaining [ — 1 coordinates are then part of the l-particle diagram with multiplicity #;.
The (bare) internal multiplicity of the full diagram is thus

#n=(n—1)x Kz:i)#k} X #1=(n— 1)!(1{7%]61)!%7 (1.79)

or, including the scaling factor of the irreducible cluster sums in Eq. (1.32) into the
internal multiplicities according to

it __ Fn
#t = [CESk (1.80)

one finds that the internal multiplicities factorize, i.e.,
gt — ity gt =k L. (1.81)

Thus, concluding the above considerations, the example of the diagrammatic identity
in Fig. 1.4 can be either understood as an equality for a single diagram, or as an equality
for the sum of all equivalent diagrams, i.e., including the internal multiplicities (and the
sign factor). One is thus free to omit the internal multiplicities by ascribing them to
the value of the diagram while still allowing for factorization. With this in mind, the
one-body reduced density matrix in the grand canonical ensemble is given by

}+22><{ +%@+H
fOrborf
b O+ [F + o+ D+

+z4[...}+... (1.82)

P (k) =z x {

+z3><{

where the momentum k has been omitted in the diagrams. By reordering the sum ac-
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1. Quantum cluster expansions in short-time approximation
cording to the number of factors in the diagrams one obtains the formal power expansion

v (b by e ()]

(k) =2 x [

ifx{+zXQ{>ﬁg+;(g+m)+mI
el o))

Thus, the full expansion can be reordered to a formal power series in the dressed Boltz-

mann factor
ci(k:):%:)-i-zx<W+%>+z2<&+...)+... (1.84)

that contains only diagrams that cannot be cut anymore. Note, again, that the sign
factors for the exchange symmetry are included in the diagrams here, opposing the
convention of other sections. The one-body reduced density matrix can thus be formally
written as

zey (k) 1

CL) =+ 3 e ()" = T = T T (1.85)

n=1

This has the form of the Bose-Einstein (upper sign) or Fermi distributions (lower sign) for
the occupation of the single-particle states with momentum k, but with the Boltzmann
factor replaced by the dressed function cy (k). In the case of vanishing interactions one
has ¢t (k) — e PF®) with E(k) = h2k?/2m such that the correct noninteracting result
for the one-particle density matrix is obtained:

1

~(1) NI
k) = GEea T

(1.86)
Although there is no guarantee that the dressed Boltzmann factor has a positive conver-
gence radius for finite interaction, it could give much better asymptotic approximations
than other approaches. One reason for this is the fact that even for free fermions, where

50 (k) = (—1)v ek, (1.87)

the fugacity expansion (1.76) does not converge for ze PPk > 1 ie., Ep < u~ Ep, a
regime that is, however, covered by the Fermi function (1.86) being the analytic contin-
uation of the series expression.

A natural application of Eq. (1.85) is a perturbative expansion

- %log (ze2(k)) = Ex — i+ by + O(?) (1.88)
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1.2. The quantum cluster expansion

in a small coupling « to obtain a mean field description in terms of a shifted single-
particle energy. A more elaborate way to proceed could be a recursive calculation of the
dressed Boltzmann factor ci by noting that it has a self similar structure. For example,
one can generate a whole class of diagrams that only contain interaction contributions
of second order by truncating the series expansion of c4 (k) after the linear term, while
replacing the single dot in each diagram by the rule

! (1.89)

o1+ CWK) = [1F zew ()]
before integrating over the momentum k’. To be specific, one would obtain an integral
equation of the form

et (k) = e PBr 4 z/de’ % (1.90)

with the function f being defined by the diagonal and exchange elements of the inter-
action contribution AK® in momentum space. Extensions that generate a larger class
of diagrams are also possible. Although all the ingredients are available, e.g., for short
range interactions in arbitrary dimensions [84], this approach has not been taken yet
and might be subject of a future project.
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1. Quantum cluster expansions in short-time approximation

1.3. Short times—smooth spectra—high temperatures

The previous section has introduced the cluster expansion on a purely formal level,
being valid for any kind of systems with fixed number of particles. However, despite
the conceptually simple formulas that one obtains in the theory, one still has to face the
fact that, in almost all situations, only the simplest diagrams can be exactly calculated.
Moreover, if a finite system is considered, the values of irreducible diagrams are not
independent of the external potentials or the system’s boundaries. Therefore, this section
is dedicated to the introduction of certain approximations that help solving some of these
difficulties.

The section is structured as follows: First, using the analogy of short-time propagation
and high-temperature quantum statistics, the general short-time scaling of the quantum
cluster expansion is reviewed, also introducing the (smooth) density of states that defines
the microcanonical ensemble. Then, the scaling is used for the analytical treatment of a
certain class of diagrams that can be calculated whenever the interaction contributions
of second order are known explicitly, being of use for later sections. Finally, after the
implications of the high temperature scaling on the thermodynamic limit is put forward,
a self-consistent method for calculating the mean energy shifts due to interaction is
reviewed, with a focus on its scaling in the thermodynamic limit.

1.3.1. Short-time propagation and high-temperature scaling

This subsection gives an overview of the short-time approximation and the general di-
mensional scaling properties of propagators that were introduced in [52,61,85]. For
further details, the reader is referred to the literature.

The starting point for the quantum cluster expansion was the many-body propagator.
However, as was noted before, the whole theory is basis-independent and can even be
formulated at the level of operators. The reason for using the (imaginary time) prop-
agator is that it is very well understood at the level of single-particle systems, where
a saddle point approximation in the Feynman path integral leads to the semiclassical
Van Vleck-Gutzwiller propagator [41,49], that comes as a sum over classical paths and
admits a systematic approximation for short times. In the context of billiard systems,
the short-time approximation, that takes only into account the shortest classical paths,
plays a special role as it contains the information on the smooth part of density of states,
then given by Weyl’s law and the Weyl expansion [49, 50].

Now, a key step is to realize that if the temperature is large enough, the discreteness of
the many-body spectrum becomes unimportant due to its high level density. This has to
be contrasted to the assumption of a smooth single-particle level density, as the latter is,
e.g., not capable of describing Bose-Einstein condensation in bosonic systems unless the
single-particle ground state is treated separately [13]. A many-body description does not
suffer from any such problems. Therefore, the discreteness of the many-body DOS can be
neglected even for temperatures inside the quantum degenerate regime or in the presence
of condensation effects as long as the number of uncondensed particles is not very small.
It is then sufficient to include only the short-time information on the propagators G(V)
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1.3. Short times—smooth spectra—nhigh temperatures

to be specified in the following. For finite systems without external potentials all the
propagators in the calculation are replaced by their infinite space equivalents, i.e., it is
assumed that the particles do not explore the whole system in arbitrarily short times.
Formally, this corresponds to only taking into account the shortest classical paths in the
Van Vleck-Gutzwiller propagator. The condition for this approximation to be accurate
can be estimated at the single-particle level to be

mvV®

t <€ —— =tr, 1.91
< 2mh T ( )

where m is the mass of the particle, V is the volume of the system, and D is the
dimension. The characteristic time ¢ can be thought of as the typical traversal time
through the system of a particle with momentum iV ~1/P where the latter corresponds
to the minimal uncertainty in the momentum of a wave packet in the volume V. If we
switch to imaginary time the condition (1.91) can be translated into

A<V, (1.92)
introducing the thermal (de Broglie) wavelength

22
=y B (1.93)
m

At this length scale the propagator of a single free particle decays in imaginary time
t = —ihp. This gives the intuitive picture that within the regime of validity of the short-
time approximation all clusters of particles have a characteristic size that scales with Ap
that is much smaller than any length scale introduced from external confinement, such
that their internal structure is essentially independent of the latter. It is worth stressing
that the short-time approximation does not require that the thermal wavelength is small
compared to the mean inter-particle separation, i.e., one can have
NAR

— >1 1.94
v L (1.94)

in contrast to the case of high-temperature expansions in the thermodynamic limit. This
parameter will also be referred to as the “quantum degeneracy parameter” later, as it
marks the onset of dominant quantum effects. For example, BEC sets in at NA3./V =
¢(3/2) = 2.61 in three dimensions [13]. The term “quantum degenerate regime” will be
used when NAR/V is of order one or larger and will thus refer to both fermionic and
bosonic gases.

As the short-time approximation specified above is obtained from taking the short-
est paths in the Van Vleck-Gutzwiller propagator, it can be easily extended to include,
e.g., corrections from boundaries that improve the range of applicability to even smaller
temperatures and energies. The short-time approximation of the propagator thereby
encodes the information on the slowly varying parts of the density of states: The bound
in Eq. (1.91) plays the role of a Heisenberg time ¢t = 27h/A where A is the mean single-
particle level spacing?. Tt can be understood as a lower bound for the time needed to

2Estimated around the ground state using Weyl’s law for the smooth density of states.
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1. Quantum cluster expansions in short-time approximation

resolve the discreteness of the spectrum. This means that the price we pay for using the
short-time approximation is the loss of all information related to this discreteness. How-
ever, as the levels in noninteracting many-particle systems can be estimated to become
exponentially dense in a certain window not very high in energy [86], the knowledge of
the exact position of individual levels is only important very close to the ground state.

In the presence of smooth external potentials the short-time approximation can be
modified such that only the internal dynamics of a cluster is mapped to infinite space,
while its center of mass evolves according to the single-particle (short-time) propagator
[60, 85]. This assumes that the spatial extent of a cluster is small compared to the
variations of the external potential, which is justified by the short-range character of
the interactions together with the short-time approximation. However, to be consistent
with the latter, the external potential has to be included only as a phase factor, here
evaluated in imaginary time,

clust

(y,z; 8) ~ Kc(lrllx)st(%m;ﬁ) L %o B Jords YTy Vese ((y;—ai)s+a;) (1.95)
ext =

that can be found from the Eikonal approximation [61]. The function Kﬁﬁ}st

represents any irreducible cluster.

The power of the short-time approximation lies in the high level of generality, leading
to certain general scaling properties. Let us first focus on the full trace of a cluster as
it appears, e.g., in the partition function. As the internal cluster dynamics is treated
like in homogeneous systems in the short-time approximation, it is invariant with re-
spect to a translation of all the coordinates. Without external potentials this invariant
direction leads to a factor in the full trace that is proportional to the volume of the
system, while in the case of slowly varying external potentials, their effect can be ap-
proximated by evaluating Eq. (1.95) at the point where all coordinates coincide, leading
to a contribution

/d(NA)Dm Kélr;)st(:c,a:; B) R X /dDzl exp (—fnVexs (1)) (1.96)
1=V, Vext=

Eq. (1.95)

of the respective cluster to the partition function, where the first term is calculated
independently of the external potential®. Similar approximations can be applied for
partial traces, where 1 should be one of the untraced coordinates or the center of mass.
Before further analyzing the short-time dynamics it is instructive to review the general
dimensional scaling [61,85] of the exact non-relativistic propagators, only assuming that
the form of the Hamiltonian in position representation is given in the standard form

R Dot B2
H=Y"——A, 1.
; o D+ V(@), (1.97)

where V(z) is a function that only depends on the Dyt coordinates @, an energy scale
a, a reference mass m and Planck’s constant, together with an arbitrary number of

3In the cluster expansion of the grand potential, i.e., for the fully traced clusters, this approximation is
closely related to a local density approximation [87,88], but should be considered more general when
applied to propagators and partial traces.
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1.3. Short times—smooth spectra—nhigh temperatures

dimensionless parameters A that encode, e.g., the mass ratios and different length scales.
Explicitly, the potential has to be of the form

V =V(x;a,m,h,\). (1.98)

The latter assumption actually encodes the restriction that the potential should be
completely determined by % and quantities that can either be expressed in the ST units of
time, mass, and length, or can be combined to have the latter units, which is the generic
situation. This means that the strongest assumption in the form of the Hamiltonian
(1.97) lies in the homogeneity of degree —2 of the kinetic energy.

With the above assumptions one can show [85] that the (imaginary time) propagator
can be generally written as

1 Yy T
K(y,z; 8,0, m, h, A) = k{=,—;Ba,A 1.99
(y,2: 8 )= 50= ( L2 ) (1.99)

with a dimensionless function k that depends only on dimensionless quantities.

The potential V' in (1.98) is usually the sum of external and interaction potentials with
their interplay encoded in the dimensionless parameters A. However, in the short-time
approximation the internal cluster dynamics is assumed to decouple from the external
potential, such that the scaling can be applied to the interactions separately. Thus,
assuming an interaction potential V' of the form (1.98) one can rewrite the contribution
of the internal dynamics of the irreducible clusters (1.95) as

(n) _ _lw (¥ =z
Kclust(y7w76) Vet =0 - @kclust (E: E7Ba) (1100)

as a dimensionless function kg‘?st that is invariant under the translation of all coordinates.
Approximating the external potential by evaluating all the coordinates at the same point
z then leads to

n 1 n y —n
Kélu)st(y7x;5) ~ )\nD k£1u>st <E7 E;ﬁa) € ﬁ%Xt<Z)' (1101)
T

Here, z corresponds to the invariant direction of kg:l)st and can be understood as the
center of mass position of the cluster, but in practice any of the x; or y; can be used.
Then, however, one has to keep in mind that the coordinate z should not be traced over

in any partial traces. By further assuming the form (1.98) also for the external potential

one may write it as
z
‘/ext(Z) = QextVext (\/ Oéextﬁ;) s (1102)

where aext is the energy scale and possible dimensionless parameters Aqxt have been
suppressed.

Equation (1.101) implies very generally that in the short-time approximation the func-
tions s,(lk) in Eq. (1.32) factorize into )\;kD and a function of s = af for £ > 0. For
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1. Quantum cluster expansions in short-time approximation

k = 0, homogeneous potentials allow for further direct analysis: If the external potential
is homogeneous of degree 7, i.e., Vext (AT) = AN"vext (2), the z-integration yields

%/dpze—nﬁaexwext( S n 25t edff7 (1.103)
>\T /\T

using the effective volume and dimension

D
Vg = ( 2mh ) n /que’cht(q)7 d=D (1 + g) . (1.104)
7

Mext

This also includes the case without external potential by taking n = co. To make the
factorization explicit let us define the dimensionless functions

0 (§.&5) = NP s (y,2, B,0)  for k>0,
d
bk (s) = —{)T s\ (Ba), (1.105)
eff

that only depend on the rescaled coordinates & = /A and s = a8. Note that the func-
(0)

tions b, depend on the physical dimension D intrinsically and the effective dimension
d through the factor n(®=%/2 in (1.103), i.e., they are of the form

b (s) = n "7 b (s) (1.106)

Vext =0

1.3.2. The smooth density of states/microcanonical ensemble

As has been mentioned in the previous section, the discrete spectra of finite quantum
systems are approximated by smooth functions in the short-time approximation. To be
precise, the density of states (DOS) of the many-body quantum system, that is defined
as

pM(B) = i(S(E—E,SW) (1.107)
k=0

with the discrete N-particle energies E,(CN), is replaced by a smooth function pt¥ )(E)
Moreover, due to the scaling properties of the short-time approximation, it has a very
specific dependence on the energy-like interaction parameter a.. By collecting all contri-
butions that have the same number of irreducible clusters one can write the full partition
function as a polynomial in the effective volume in units of the thermal wave length as [61]

N l
Ve
283 = 3[40 + a1 (8a)] (A—f> v (1.108)
T

=1

where, following the notation in [61], the noninteracting clusters have been split off and
the dependence on the (effective) dimension has been made explicit. The coefficients
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1.3. Short times—smooth spectra—nhigh temperatures

in (1.108) can be read off from Eq. (1.24) as

l (0)
) =g 0 [ (1.109)

N1,y =1
1
Y=g =N

where the dimensionless cluster sums defined in (1.105) have been used. For the nonin-
teracting case, where bfﬂi = n~%2_ this was first reported in [89], where also recursion
relations for a fast calculation are provided.

By using the general relation between the canonical partition function and the density

of states via the (both-sided) Laplace transformation

2(5) = LelplE))(8) = [ Ep(E) (1.110)

one can readily show that the integrated DOS, or level counting function

E
./\/(E):/ dE' p(E") (1.111)
is given by [60]
N (N,d)
z 0(E) v
NN (g 1+ LN Iy L112
; Fld+1) 92" (B/a)| (n§"E)?, ( )
h
where (N,d) _d g (N,d) _ud_q
gli () =€ 2L {A 2+ (s)s™ 2 }(E) (1.113)
and V%
o m
=555 (1.114)

Again, the interaction parameter « appears in a very specific way due to the assumptions
of the short-time approximation, i.e., the polynomial form of the smooth density of states
is not altered by the interaction, that only enters the coefficients (if £ and E/a are
considered as independent variables).

The smooth DOS is, of course, an important quantity by itself, as it contains a lot of
information about the actual (discrete) spectrum. It has, however, also a direct appli-
cation as an ingredient for the microcanonical ensemble. The microcanonical partition
function M (E) counts the number of states in a small energy interval A [62],

M(E) = N(E + A) — N(E). (1.115)

The nature of the interval A is thereby such that the partition function M (E) should be
insensitive to small variations of the energy while its value should be sufficiently small
to allow one to consider the system as having a fixed energy. It thus plays the role of
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1. Quantum cluster expansions in short-time approximation

smoothing the level distribution, so that, if we use the smooth counting function, one
can write M (F) as

M(E) = p(E)A, (1.116)

such that it is actually smooth in the energy. This leads to the definition of the entropy
as

S(E) = kplog p(E)A (1.117)

relevant for the thermodynamic properties of the system.

1.3.3. The QCE(n)—general results

As has been seen up to this point, the short-time approximation, applied to the dynamics
of individual clusters, allows one to separate the effects from external potentials and
confinement from the interaction contributions, such that the irreducible diagrams have
to be calculated only once and can then be used in different systems, giving rise to
effective dimension and volume, or boundary corrections. In most cases, however, only a
small portion of diagrams can be calculated exactly, while interaction contributions of the
orders n > 2 require solving the n-body problem, which can only be achieved exactly for
quantum integrable systems. In contrast, the two-body problem can be treated exactly
in most cases, e.g., for any potential in three dimensions with rotational symmetry the
problem can be reduced to solving one-dimensional Schrédinger equations, that are very
well understood. It has been shown by Beth and Uhlenbeck already in 1936 that the full
trace of the simplest diagram containing the interaction contribution of order two can
be expressed only in terms of the scattering phases of the relative motion [67]. Different
attempts have been made to generalize this formula [77,90], but the problem of the
practically unsolvable n-body problems persists.

However, the Ursell operator U®) or the interaction contributions AK® contain more
information than the scattering phases and can be used in larger diagrams that link
different particles by exchange cycles. Thus, if one treats the problems of interaction and
indistinguishability separately by fully accounting for the latter while only allowing for
interaction contributions of the order two, one is not restricted to small cluster sizes as,
e.g., in virial expansions. The simplest way to achieve this goal is to keep only the terms
in the expansion into Ursell operators (1.11) for IV particles that are a product of at least
N — n Ursell operators. This approximation has been introduced in [61] as the QCE of
order n or QCE(n), such that n = 0 is the noninteracting system, n = 1 involves (single)
two-particle collisions, while the QCE(2) would include the three-particle collisions as
well as two interacting pairs. In short-time approximation for distinguishable particles,
the QCE(n) is then equivalent to a truncation of the canonical partition function and
the smooth density of states as a polynomial of the effective volume Vg, keeping only
the terms that are O(VCJQE/*”)

For indistinguishable particles, however, the clustering mechanism due to symmetriza-
tion (1.15) can be fully accounted for, leading to all sizes of clusters (up to the particle
number N). One should thus not think of the QCE(n) in terms of a brute-force high
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1.3. Short times—smooth spectra—nhigh temperatures

ny na

n2

Figure 1.5: Inter-cycle (left) and intra-cycle (right) diagrams relevant for the QCE(1). In
the inter-cycle diagrams, two cycle diagrams with nj, respective ny particles are linked
by the interaction of two of the particles. The intra-cycle diagram is a cycle diagram of
n = n1 + ng particles. The interaction between two of the particles divides the diagram
into ny, respective ny particles on each side of the interaction line.

temperature expansion but rather a way to systematically correct the polynomial coeffi-
cients of the smooth many-body density of states in the presence of interactions. When
compared to a perturbative approach in a small coupling v, the QCE(n) predictions will
give the same? result for the first coefficients up to 4. But it also gives the ezact result
(within the scope of short-time approximation) for arbitrary interactions for the first n
terms in an expansion in the parameter /\% /Vest in the partition function, corresponding
to the high temperature regime. Thus, the QCE(n) covers a much bigger part of the
parameter space and can be thought of as interpolating between the different regimes.

The QCE(1)

The diagrams in the first order QCE contain at most one interaction contribution AK®),
such that the irreducible diagrams are either noninteracting cycle diagrams or the inter-
action links two particles within a cycle (intra-cycle) or particles in two different cycles
(inter-cycle) via AK® | as depicted in Fig. 1.5.

The calculation of the interacting diagrams can, of course, only be fully achieved if
the interaction contribution AK® is known. However, a great part of the calculations
can be done for general interaction potentials without further specification. Let us first
consider the case of interaction between different species of indistinguishable particles
with masses m; and mo. As the two species are distinguishable, the only irreducible
diagrams within QCE(1) are then inter-cycle diagrams with nq, respective ny particles
of each species, see Fig. 1.5. The value of the diagram is given by

ni—1 ng—1

Al (5,a) = / d" PPy T] AR (@ien, 2 8) [[ AKS) (i1, 93 6)
i=1 j=1
X AK'r(rgf,mg((wbyl)v($n1ﬁyn2)§ﬁ:a)v (1'118)

where AK, (12 = K,(,B is just the single-particle (imaginary time) propagator for species i
with mass m;. The explicit dependence of Alrf‘ltf;‘;z on the masses m; has been suppressed

to ease notation. Making use of the convolution property (1.10) of K7(,1>7 all but four

4This can be seen, e.g., from expanding the Ursell operators as a path integral.
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1. Quantum cluster expansions in short-time approximation

particles can be traced exactly, leading to

Alter (B.a) = / P d?Py KM (@, 21; (n1 — 1)B) K (o, yy; (n2 — 1)8)
X AKT(r%l)mzz((wl?yl)v(w07y0);ﬁ7a) (1119)

where the coordinates have been relabeled to ease notation. In short-time approxima-
tion, we can replace the propagators by their free-space equivalents (excluding external
potentials for now). Then, the interaction contribution AK (2) can be decomposed into
the free motion of the center of mass and the relative motion as

AKD . (@1.91), (@0, yo); B @) = K\ (R1, Ro; 8) K (71,703 B,),  (1.120)

mi,m2

where (5K,(Ll) is the propagator of a particle with reduced mass p = mima/(m; + mg)
moving in the interaction potential, with the free propagator Kﬁl) subtracted, M =
m1 + my is the total mass of the two involved particles and

mix; +moy;
R = MBI LAY = — . 1.121
¢ my + ma T = %Y ( )

are center-of-mass and relative coordinates. Thus, we can write the inter-cycle diagram
as

Al (,0) = / dPry dPr K(m2) (1, r0; B) x 0KV (r1,0; B, ) (1.122)

n1,n2 mi,m2
with f(,(fﬁlﬁi) given by
Rt rari ) = [ dPRydP Ry K (B, R )

mi,m2
x KW (20,215 (n1 — DB)KD (Yo, y1; (n2 — 1)B),  (1.123)

with the x; and y; depending on the R; and r; for ¢ = 0,1 according to Eq. (1.121).
As the free propagators in imaginary time are only normal distributions of the distance,
I_(}(,?llﬁ? can be explicitly calculated as a Gaussian integral yielding

v
WK7%>(T17TO§IB)’ (1.124)

where the thermal wavelength Ay = Ap(m), Eq. (1.93), is written as a function of a mass
m and

P P 2 1
mcﬁ.:M i = AT ( ma + My n1n2—1) . (1.125)

KRG ey, mo: ) =

mi,m2

nimy + ngmsy’ my +mo \ nimi + name

Here, everything is written in terms of the initial and final relative coordinates of the
two interacting particles. One can get an even simpler formula if one uses the general
scaling (1.99) of the propagator,

1 S
Dék(1>(r1,r0;a5), (1.126)

KD (r1,m0; B,0) = DrP
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where r; = #;A7(u), finally yielding
v

A,lr{llterfz (,8 Oé) W amt“(aﬁ) (1127)
where the dimensionless function a, is given by
. x— 2
a™(s) = /de dPy yDem(%7¥) okW (x, y; s), (1.128)

i.e., it is a normal distributed average of 6k(1) over the distance characterized by the
single parameter

po fmEme (1.129)
nimi + nome

Note that the case n; = ng = 1 is included in (1.128) as the limit v — 0, where
the normal distribution can be replaced by a Dirac delta distribution. In the case
of external potentials, the species could, in principle, be subject to different external
potentials, e.g., atoms in a magnetic trap will feel very different forces depending on the
magnetic quantum numbers. Thus, the arguments that lead to an effective dimension
and volume can only be applied, if all the external potentials have the same degree of
homogeneity, then leading to the same definition of the effective dimension. The effective
volume, however, is then ambiguous and can be constructed from any of the external
potentials or combinations of them. The factor n"z" in (1.103) then is replaced by a
more complicated function of the n; that also depends on the choice of the effective
volume.

For the full characterization of the diagrams, one still needs to find the internal mul-
tiplicity and the sign factors of the diagram. One has to distinguish the cases of having
two different species, with the symmetry given by o; = £1 or a single species. As there
are two incompatible definitions (1.32) and (1.64) of the rescaled cluster sums depending
on whether other species are involved or not, the multiplicities are given here in their
unscaled form. The prefactors of the diagrams are given as

inter __
pn1 ,ne T

(1.130)

ni4no (N1+n2)!

{0’?1_1 o2 My lng!  two species,
JEX —

o one species.

Let us now turn to the intra-cycle diagram that appears only in the case of a single
species. However, as the calculation steps are very similar as in the case of the inter-cycle
diagrams, it is convenient to use these results and setting m; = mo in the end. The
intra-cycle diagram is simply obtained by interchanging 1 and y,; in AK® appearing
in Eq. (1.118). The only effect of this in the further calculations is that r; has to be
replaced by —r; in the interaction part 0K, P(tl) of the propagator of the relative motion.
So, the intra-cycle diagram is given by

v

Alntra (,8, ) P\T(mc )]

n1,n2

——F 1ntra( IB) (1131)
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1. Quantum cluster expansions in short-time approximation

with

ara(s) = /dD.r dPy yPe (%) ok (x,y; 5), (1.132)
where the minus sign has been included in the normal distribution instead of the inter-
action part and the effective mass meg, Eq. (1.125), and the parameter v, Eq. (1.129),
have to be evaluated at m; = ms. The prefactor of the diagram is given as

ag

intra __ n1+n2flw 1.133
Py na 1+ 5n1,n2 ' ( ' )

Finally, for the actual computation of the partition function one has to sum up all the
diagrams with the same number of irreducible diagrams. For indistinguishable particles
this can be done using the relation (c.f., [61])

y N—-Il+1 p mtcr ( ) mtra (&)
Alle )(S) 2D Z il nnfiz(N’n )Z u(nl n—mni) u(m,n—nl) 7 (1.134)

ni=1

2

where the index on A; stands for the QCE(1) and z(N nd) _ On,n has to be defined.
Note that the effective dimension d has been used and the physical dimension enters
only in the factor 2P that could be absorbed into the definition of the inter- and intra-
cycle diagrams. The factor n=%22P is the product of the scaling factor n(P~9/2 for
homogeneous external potentials, Eq. (1.106), and the term (4/n)P/2, that stems from
the proportionality factor between the mass meg, Eq. (1.125), and the particle mass
m for m; = my = m. Equation (1.134) is thus valid in short-time approximation for
homogeneous external potentials encoded in the effective dimension d and by using the
inter- and intra-cycle diagrams that are calculated in free space.

1.3.4. The thermodynamic limit and ensemble equivalence

As was discussed in section 1.2.3, the dependence on the particle number N in the
cluster expansion of the canonical description is of purely combinatorial nature. This
is inherited by the microcanonical description presented in section 1.3.2, leading to a
nontrivial dependence of the functions z(N 9 and glNd> (e) on the particle number N.
For small particle numbers, it is not very hard to ﬁgure out this dependence explicitly.
However, the knowledge of the large-N scaling of the individual terms in the cluster
expansion for the DOS gives an important insight on the relative importance of their
contributions. In order to find this scaling, one best starts with the grand canonical
description introduced in 1.2.3, that does not suffer from any combinatorial difficulties.
However, as was mentioned before, the fugacity expansion of the grand potential (1.55)
might not have a positive convergence radius in certain cases, even though it can then
still serve as a generating function for the canonical description that should converge for
any finite particle number.

In the following it is assumed that the grand canonical description is well defined in
the sense that the grand potential is an analytic function of its arguments. This should
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1.3. Short times—smooth spectra—nhigh temperatures

also be true for large volumes, i.e., phase transitions and their immediate vicinities are
excluded here. With these assumptions, there is a well defined thermodynamic limit,
where the different ensembles become equivalent. The latter can be rigorously shown
for noninteracting systems by asymptotic analysis of the generating function relations
between the ensembles. However, this can be done formally also in the case of interacting
systems, revealing the scaling of the various parameters that describe the system in the
thermodynamic limit, as is demonstrated in the following.

In short-time approximation, each irreducible cluster sum sgi) in the grand potential
(1.55) factorizes as

Ve
s (8,0) = 500 (), (1.135)
T

according to the general scaling (1.105), such that the grand potential is given by

QB, p, @) = ([3 s @) Vet (1.136)
p(B, py ) = )\d Z 240 (ap), (1.137)
T m=1

i.e., it factorizes into the (effective) volume and the pressure p. Here, all the parameters
like the effective dimension d and any dimensionless parameters A that are not essential
for the following have been dropped for a clearer presentation. The canonical partition
function can then be obtained from the grand canonical partition function by applying
Eq. (1.58), which can be rewritten as

G
ZMN(B,a) = ZLm fdz 2B a) (1.138)

SN+
using the Cauchy integral formula for derivatives with a contour around the origin. The
level counting function A’Y)(E) is obtained via the inverse Laplace transformation that
can be performed with the help of the (Bromwich) inversion integral [91]
y+ioco

N(N)(E,a):% dBe o 2™ é@ ), (1.139)

™ y—1i00

where « is chosen such that it is greater than the real values of all poles of Z(Y) (B)/8,
i.e., ¥ > 0. The divisor 8 in (1.139) comes from integrating the DOS to obtain the level
counting function. Combining Eqgs. (1.138) and (1.139) one gets

+ico
N(N)(E,a):#/’y dB %d [)’EZ BN7 )

(27”‘)2 ZN+1
1 Ytico oBE- m(ﬁ,u, )—N log z
= i) .)2/ dg Y{dz 5 . (1.140)
Uy y—ico z

Here, Q(8, p, ) = Q(B,1og(z)/B8,a) should be considered as a function of the fugacity
z instead of the chemical potential ;1. The logarithm of z is understood as the analytic
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continuation along the contour around the origin, i.e., it changes by 27 for a full cycle.
The exponent in (1.140) can be rewritten as

f(E,,B7Z7Oé,N) :/BEfﬁg(B M7 )7N10g2

Z —b(o (af) —Nlog z

T m=1
w(z,a3)
=N [ﬂﬁ;(pgf)z (z,aB) —logz
=N [TESC -7 gw(z, e T) — log z]
= Nf(Ese,7, 2, 0sc), (1.141)

such that the function f does not depend on N explicitly anymore. The scaled variables
are defined as

Ey. = Qge = 37 T = fe, (1,142)

Ne’
making use of the intensive unit of energy

2
Na 27h? [ N \4
) (1

2
N)\d d
T= ( v T) , (1.144)
eff

i.e., it is essentially the ratio between thermal wavelength and mean inter-particle sepa-
ration. With the rescaled variables one can rewrite Eq. (1.140) as

1 7/ +ico N f(Bsc,m,2,050)
NY(E o) = 7/ dr fdz SER—— (1.145)
.

(2mi)? TZ

Note that 7 can also be written as

! —ioo

The large-N scaling can now be obtained by applying two subsequent saddle-point
approximations to Eq. (1.145), the first giving an asymptotic relation between grand
canonical and canonical ensemble and the second relating the latter to the microcanoni-
cal ensemble or level counting function. The validity of the saddle point approximations
is, of course, not guaranteed for all temperatures, but it should hold for large enough
temperatures, where condensation effects or superfluidity do not play a dominant role®.
Instead of performing the approximations stepwise, it is more straightforward to apply
both steps simultaneously. For noninteracting fermions, this leads to the famous Bethe

°But even in the BEC regime the combined saddle-point approximations give the correct result [60,
supplemental material].
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1.3. Short times—smooth spectra—nhigh temperatures

estimate [86] for the many-body density of states®, that is valid almost down to the
ground state, where the latter emerges naturally as the point, where the approximation
breaks down.

The saddle point equations can be written in the form

E, = %ngw(z,ascﬂr), (1.146)
a 7]
=2 o), 1.14
T2 zazw(z,a T) (1.147)

where the second equation is equivalent to

(Ny=——=N (1.148)
known from the equivalence of grand canonical and canonical ensemble in the thermo-
dynamic limit. The solution(s) of Egs. (1.146) and (1.147) are functions

Top = Tsp(Esc, Qisc), (1.149)
Zsp = ZSP(ESQO‘SC)a (1150)
i.e., they can only depend on the scaled variables Es. and ag. (and the variables that

have been suppressed in the notation). The same holds true for f and the determinant
of its Hessian evaluated at the saddle,

fsp(Escy aSC) = f(ESC7 Tsp(Esm asc): Zsp(Esm asc)7 aSC)7 (1151)
9%f

hsp(Esc, se) = 3 , (a1,a2) = (7, 2). (1.152)
;A .

Thus, assuming a single dominant saddle point, the level counting function N@) in
saddle point approximation has the form

exp (Nfsp (Psc, Oésc))

(B o) — 1.153
NE ) = ) (1.153)
where the function g(Fsc, as) is defined as
1
g(Esm asc) = 27T7—SP(ESC7 aSC)ZSp(ESCa asc) [hsp(Esm asc)} 2. (1~154)

This means that, if the scaled variables Es. and ag are used in the level counting
function, the remaining dependence on the particle number is very simple. Moreover,
keeping the values of the scaled variables fixed such that the function hep(Fic, tsc) 1S a
(positive) constant, one finds

f(ESC,aSC) = %log [g(ESC,aSC) X N/\_f(N)] (1.155)
1 _
= log [N+ o(n, (1.156)

5Tt is also referred to as the stretched exponential form of the many-body DOS.
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1. Quantum cluster expansions in short-time approximation

or, in other words, log[NN' S )] is an extensive quantity in the thermodynamic limit,
provided that the scaled variables can be considered as being intensive’. This is closely
related to the extensivity of the microcanonical entropy defined by

S(E,a) = log [p<N>(E, a)A] (1.157)

with an auxiliary small energy window A, c.f., Eq. (1.117). It is straightforward to see
that the relation between the mean DOS p(") and the level counting function N'™) in
saddle point approximation is given by

E _

FN(E, a) = Top(Bie: ) ZC’O‘SC)NW)(E,a), (1.158)
such that they are related by a O(N?) factor that is unimportant in the thermody-
namic limit. However, the asymptotic expression in (1.156) includes the O(log(N)/N)
correction that has to be neglected to obtain an extensive microcanonical entropy [62].

1.3.5. The shifting method from a different viewpoint

Using only the QCE(n) diagrams up to a certain order n 2 1 gives good results in the
high-temperature regime. However, the approximation is poor in the low-energy sector
and, strictly speaking, can only be fully trusted to nth order in the coupling «, where
it is assumed that @ — 0 corresponds to the noninteracting limit for the rest of this
subsection. As the N body problem can usually not be solved exactly for N > 2, it is
desirable to use the information contained in the QCE(1) to approximate higher orders.
It has proven fruitful [60] to do this on the basis of energy shifts in the density of states,
instead of using the thermodynamic functions themselves. As the presentation of this
shifting method in [60] is quite technical, the following presents a reformulation of the
technique that tries to be clear about the individual steps of the derivation.

The general idea is to write the level counting function of the fully interacting system
as a shifted version of the noninteracting result, i.e.,

NM(E) = NV <E AWM (g, a)) = NN (Ey). (1.159)

Here, the explicit dependence on the (effective) dimension d and the effective volume Vg
is omitted. Using Eq. (1.159), the problem can be reformulated such that all the infor-
mation about interactions is encoded in the shift AV (E, «), and one has to find approx-
imations for the latter. Figure 1.6 illustrates the quantities that appear in Eq. (1.159).
One should note that, in contrast to mean-field approaches, it is the many-particle energy
that is shifted, and not the single-particle energy.

If one is able to invert the relation between N ™) and the energy E, i.e., finding
E(N,N), the shift can be explicitly calculated as a function of the energy excitation

index N = NéN) (Eo) = No(tN)(E) as
A(N,Q,N,V;ﬂ) :EQ(N,N,VBH)—E()(N,N,V;{{) (1.160)

“This means that the total energy F is extensive, which should be expected from the fact that the
starting point was an extensive grand potential Q = —pV.
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1.3. Short times—smooth spectra—nhigh temperatures

E

Figure 1.6: Sketch of the shifting method using A, = A(«a) as a shorthand notation,
omitting other arguments (see text). The value of the counting function NV (E) can
also be found from shifting the argument of the counting function without interaction,
J\_/'éN)(E — A,) (left). Alternatively one could think in terms of the inverted functions,
all evaluated at the same “excitation index” A (right).

and can then be re-expressed in terms of the energies E or Ey by using N' = /Vo(éN)(E)
or N = /\_/'O(N)(Eo)7 respectively. As the latter function is known exactly (within the
scope of short-time approximation) for all energies one might hope to get better, or
at least well-behaved results by approximating the shift (1.160), rather than individual
coefficients in the general form of N ™) (E), Eq. (1.112). This is emphasized by the fact
that, in the case of free fermions, the polynomial coefficients have to be balanced in a
very detailed way to produce small oscillations in the smooth DOS and the level counting
function for energies below the many-particle ground state, such that the result is very
sensitive to errors or truncations in the coefficients [52].

Due to the general form (1.112) of NV)(E) one can write the level counting function
as

N
NDE 0, i) = S0 (L) i, (1.161)
=1

where the dependencies on d and Vg have been restored. The effective volume appears
only in p§f, Eq. (1.114), and the functions cgN’d)(e) depend only on the ratio e = E/a
between the energy E and the coupling a. By treating ¢ and pgffE as independent
variables, one can formally invert the relation (1.161) with respect to p(C)HE in the large-
energy regime in terms of a series expansion. This approach can be justified by the
fact that, in many situations, there exist two limits, e.g., « — 0 and a — oo, where
the coefficient functions become independent of the interaction parameter o while the
polynomial form of N (E) is preserved, such that in these limits, the inversion gives
the right results, while finite couplings within the two limits will only renormalize the
coefficients.

Before performing this formal inversion with respect to the volume-dependent energy
scale pSHE, it is useful to bring the level counting function into a form that makes
the expected large-N scaling (1.156) explicit by using the scaled variables Eg. and asc,
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1. Quantum cluster expansions in short-time approximation

Eq. (1.142), to rewrite Eq. (1.161) as

)k] ; . (1.162)

where the right hand side is written as a function of ES_Cd/ Zand e= N Eye/ s, and

wl

_ 1
NWWEM}N 4

WA (By,e) = | “m——a| = Ei
y O (Ese,€) |:C§\1[V,d)NN(1+§)

N-1
1+ Y dM () (ESZ
k=1

ey _ 1 1.163

N = Nd (1.163)
NIT (8¢ +1)

is the leading coefficient in the cluster expansion of the smooth level counting function,

Egs. (1.112) and (1.161), that does not depend on the interaction. The new coefficients

N,d .
dli D are given as

V) (€) d
a9 () = Dol s, (1.164)
N

It is easily verified (using Stirling’s formula for the Gamma function) that c%v’d) NNQ+d/2)
scales like N~'a’V with an asymptotic constant a for large N (see below), such that the
left hand side of Eq. (1.162) is constructed in a way that it is expected to have a nontrivial
finite thermodynamic limit according to the asymptotic relation (1.156).

Now, formally inverting (1.162) shows that the scaled energy is of the form

_2 > N,d
%—QW@ﬂ—de+Z%)@¢> (1.165)
k=1

where in the second step, the function has been expanded as a series in y to make the
dependence on the interaction-dependent energy scale e explicit. We have thus found a
systematic way to calculate the energy shift A in terms of an expansion in the (intensive)
quantity

y=A(N,d) x [NN]"¥ (1.166)
that depends only on the excitation index N and the system parameters N and d in a
very simple way. The explicit form of the coefficient function A is given by

d
2

1
% " ~ (C_Z)7 el+% (QWZd)iﬁ (1.167)
2 ’ '

AN, d) = [ NN

where the last relation holds for large particle numbers N. The scaled energy shift thus
has the form

ANy, ) =y=1 > x V() (1.168)
k=1

with the coefficients referred to as partial shifts defined by subtracting their noninter-

acting contribution:
Nd Nd N,d
X (0 = ai (e) - "

(1.169)

a:O.
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1.3. Short times—smooth spectra—nhigh temperatures

Note that the definition of the partial shifts differs slightly from the original definitions
in [60], where the first order partial shift is normalized such that it has values only
between zero and one. The large-N scaling is, however, the same up to a constant
factor.

The important step now is to realize that the equation (1.168) for the energy shift is
actually implicit, as the shift appears also on the right hand side of the equation in the
coupling dependent energy scale € that only drops out in certain limits. To actually solve
for the shift, the dependence on the energy through € on the right hand side has to be
eliminated such that the shift is represented as a function of the coupling « and v, i.e.,
the excitation index A, only. Then, with the full knowledge of the functional dependence
of N = /\_/'O(N)(Eo) on the energy of the noninteracting problem, the problem would be
solved. Obviously, it is not that simple, and one simply cannot find such a solution.
However, Eq. (1.168) can be used as the starting point for systematic approximations by
truncating the series and then solving for the shifts self-consistently. In this context, the
number of terms included in the expansion is referred to as the order of the approximation
[60]. For example, the first order would only include XSN’d)(eL which is only given in
terms of the solution of the two-particle problem.

As the partial shifts y are naturally given in terms of the energy rather than the exci-
tation index A one can avoid an inversion of the noninteracting level counting function
by solving the equation for Ey = E — A, (see Fig. 1.6) using y = y(Ep), i.e., one has to
solve the equation for the nth order shift,

pe= ()] S (X (02 ()]
k=1 s¢

where the index (IV,d) has been omitted for better readability. This has been demon-
strated to yield remarkably good results in the one-dimensional Bose gas, including the
nonintegrable case of harmonic trapping [60]. There, the best agreement between the
semiclassical theory and the numerical simulations has been found in the partial shifts
themselves, that turned out to be remarkably rigid against the single-particle level fluc-
tuations. The latter can have a very strong effect on the noninteracting level counting
function in the low-energy regime, as a variation ¢ in the single-particle ground state
leads to a shift of N¢ in the N-particle counting function (but the effect scales as ¢ if
the scaled energy Fg. is used).

The first partial shift is given in terms of the function gg\],v_"?(e), Eq. (1.113), as
N,d
) () = 2 91(v71)(€) _ _F(%)N! S
! Nd N1+5 D Ni+E Nt

It can be shown to have a nontrivial scaling for large particle numbers [60], that is
independent on N. This also holds true for the higher order partial shifts, but a rigorous
proof to all orders is missing. There is, however, a good argument that this should
hold by construction, as the starting point of the inversion, Eq. (1.162), expresses the
intensive quantity (™% by the intensive quantity Fi., such that a series expansion of
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1. Quantum cluster expansions in short-time approximation

the right hand side of the equation in terms of Ey. should yield intensive coefficients.
The coefficients a,(CN’d) are then determined by the latter, and should thus be intensive
themselves. A direct proof would thus take Eq. (1.162) as a starting point. This was,
however, not possible yet in the scope of this thesis and could be part of a future project.
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1.4. Application: Nonlocal correlations in the Lieb-Liniger gas

In this section, the methods introduced in sections 1.2 and 1.3 are applied to the one-
dimensional Bose gas with repulsive short-range interactions, as described by the Lieb-
Liniger model [19,92], that, as it allows for an exact solution via the Bethe ansatz,
can be used to systematically check the approximations. As the methods for obtaining
the smooth part of the spectrum have been discussed in much detail in this model
by [61], the focus is on the calculation of nonlocal pair correlations here, as defined in
the following, together with a brief overview of the experimental relevance. The results of
this section have already been published in [93] by the author. Although the coauthors
have contributed to the final formulations used there (especially in the introductory
part), the entire manuscript has been written by the author of this thesis and large
parts are therefore taken over here.

1.4.1. Nonlocal correlations

The study of spatial correlations provides an intuitive and experimentally accessible
window to the physical properties of interacting many-body quantum systems. The
special role of low-order spatial correlation functions arises from the definitional property
of multiparticle systems as having a large number of degrees of freedom. Up to the case
of two or three degrees of freedom, the spatial structure of the wave function can be
directly visualized and efficiently computed. When the number of degrees of freedom
increases, the full description of quantum-mechanical states not only becomes highly
unintuitive, but pretty soon explicit computations become a hopeless task. This is
one of the reasons for the relevance of field-theoretical descriptions in terms of field
operators that live in real space and provide more intuitive characterizations in terms of
collective degrees of freedom such as particle density and correlation functions [8]. These
theoretical descriptions have been used to successfully describe quantities accessible to
measurements in noninteracting ultracold atom systems [25,94-102].

For interacting systems state-of-the-art experiments [38,103] have addressed so far
mainly the local limit g2 (7 — 0) of the (normalized) pair correlation function®

) — (T ) (0))
(WHO)B(0) (1(r) ()

(1.171)

here expressed in terms of the bosonic field operators U and \ilT, while specific proposals
for the measurement of truly nonlocal correlations with  # 0 are now available [105,106].

Within the program of characterizing the spatial structure of many-body states, one-
dimensional (1D) systems play a special role. One reason for this is the possibility of
experimental realization [36,37], where now controlled access to the collective behavior
of a few dozens of constituents is possible [107]. Moreover, for this kind of systems, and
depending on the type of interaction and other properties, the corresponding mathemat-
ical description may fall into the category of quantum integrable models and thus admits

8See also [104] for recent results on gs(0).
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1. Quantum cluster expansions in short-time approximation

an explicit (but formal) solution in terms of a set of algebraic equations. A paradigmatic
example of quantum integrability is the Lieb-Liniger model [19], a many-body Hamil-
tonian describing a set of N bosonic particles interacting through repulsive short-range
forces, and confined to a region of finite length L. One of the remarkable consequences
of quantum integrability is that the many-body eigenstates and eigenenergies of these
systems are characterized by a complete set of quantum numbers labeling the rapidities
of the states [19,108]. The latter, although playing the role of quasimomenta, are, how-
ever, genuine many-body objects that do not have a direct interpretation in terms of
quasiparticle excitations unless the particle number becomes infinite [92].

Although the theory of quantum integrable systems provides, in principle, results for
any kind of spatial correlations to any order [109], it has two obvious drawbacks. First,
the solutions of the equations relating the quantum numbers to the actual quantized
quasimomenta must be found numerically, even for the case of two particles, and be-
comes more and more a black-box routine when the regime of a few to dozens of particles
is reached. Second, in finite systems where finite temperatures enter into consideration,
the usefulness of precise quantized many-body eigenstates is even more questionable,
as one expects the many-body spectra to get exponentially dense [86]. These problems
stem from the discrete character of the Bethe ansatz equations. Usually, one considers
the thermodynamic limit to overcome them in what is known as thermodynamic Bethe
ansatz [110] or by exploiting the asymptotic equivalence to grand canonical descrip-
tions. However, besides the obvious limitation to very large particle numbers, related
approaches to address nonlocal multiparticle correlations also suffer from restrictions
to the extreme regimes of weak or strong coupling [111,112] and small inter-particle
separations [111].

Therefore, in this section, a different approach using cluster expansions, as introduced
in the previous sections, will be used. It is thereby assumed that only short-time in-
formation, i.e., approximating the many-body dynamics by its bulk contribution with
smoothed spectrum, should provide the major physical input.

This is consistent with state-of-the-art experimental measurements of nonlocal pair
correlations in ultracold Hey atomic clouds in quasi-1D geometries, as discussed in [25].
In this pioneering experiment, high-order nonlocal correlators are measured, with the
two-body correlation showing a Gaussian profile as a function of the separation, a clear
indication of temperatures well above deep quantum degeneracy and negligible interac-
tions. The validity of the measurement protocol in this nearly ideal Bose gas was addi-
tionally confirmed by the compatibility of measured high-order correlations with Wick’s
theorem, bringing nonlocal multiparticle correlations in interacting quantum gases closer
to experimental reach. The approach presented here works well precisely in the regime
of weak degeneracy, where (thermal) boson bunching is still strongly pronounced but
already starts to decay into long-range coherence present in the BEC regime [95,100].
By providing accurate unified analytical formulas in the whole range from weak to strong
interactions in the following, all their nontrivial effects on the bunching behavior will be
captured in a single strike.
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1.4.2. The model

The system of N bosons with zero-range repulsive interactions can be described by the
well-known Lieb-Liniger (LL) model defined by the Hamiltonian [3,19]

) FLQ N 82 N
71#3_

with ¢ > 0, z; € [-L/2,L/2], where L is the system size, and periodic boundary con-
ditions. The energy-like interaction parameter can be defined as o = h%c?/4m and the
relevant dimensionless coupling parameter in the weakly degenerate regime is s = af.
The symmetric, i.e., bosonic eigenfunctions of the Hamiltonian (1.172) can be found
via a Bethe ansatz, where periodicity leads to a quantization condition in terms of N
coupled transcendental equations [19].

In the limit L — oo, sometimes referred to as extended LL model, the spectrum be-
comes continuous. The symmetrized many-body propagator for this extended system is
known exactly from integrating over all Bethe ansatz solutions [113-115]. The respective
results are, however, not given in closed form but in terms of specific combinatorial rules.
This can be resolved using the closed-form expressions for the wave functions introduced
in [3], leading to the strikingly simple form

KN (@ @;t) = % > KNPl x;t) (1.173)
" PeSn

with

—icsgn(z; — 27)

(1.174)

(2m)N —idcsgn(z; —xp)

_ 1 iht 2 o ki — ki
N (g e ) = N o= 22k +ik(z' —x) J
KW (2, x;t) = /d ke 2 |‘>|l P
J

A derivation of this result can be found in Appendix B.1. Note that, despite the sim-
ilarity of Eqs. (1.173) and (1.15), the function K™ is not the many-body propagator
KW) for distinguishable particles but can be used as a substitute for bosons, as the two
objects differ only by terms that cancel in the symmetric sum in (1.173). Since only
symmetry-projected quantities matter eventually we are free to replace the interaction
contributions AKX in the Ursell decomposition (1.14) by their symmetry-projected
equivalents AKS_M. The corresponding expressions for n = 2,3 can be found in Ap-
pendix B.2. The non-symmetrized expression for AK® can be calculated from the
propagator for a § potential directly, which gives exactly the same result, as it is already
symmetric with respect to particle exchange (antisymmetric states are not affected by
the § potential).
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1.4.3. Lieb-Liniger model for three particles—full cluster expansion

Using the results of section 1.2, specifically Eqgs. (1.47), (1.36), and (1.35), one can
rewrite the normalized nonlocal correlation function (1.171) as

N) {Zé (N k) + Z NZ (1) O 0 ,)Z(nkl)}

(1.175)
where p = N/L is the homogeneous particle density. Here, and in the rest of this
section, the index “+” for the bosonic symmetry is omltted whenever possible to simplify

V() =

the notation. By using the rescaled cluster sums b(] q. (1.105), for j = 1,2 and
the polynomial form (1.108) of the partition functlons one 1mmediately finds that the
normalized pair correlation gém(r) is a rational function in L/Ar with coefficients that
are dimensionless functions of the rescaled quantities r/Ar and s = a8. Moreover, due
to the homogeneity of the system the diagonal part of b,g)(x, y), Le., b,(cl)
depend on r, leading to the identification

(r,7) does not

bV (rr) = b = by, (1.176)

that will be used in the following. It is also convenient to introduce the shorthand
notation

b (r) = b2 ((0.7), (0,7)) (1.177)

for a clearer presentation.
Let us first address the full cluster expansion of the pair correlation for N = 3 particles
using the propagator (1.174). By expanding the general result for géN), Eq. (1.175), with

the help of Eq. (1.37) for N = 3 the nonlocal pair correlation function can be written as

1+ [0 + 2627 | + 07 ()

wl o

g (r) == x (1.178)

1+ 3by 2 +2b3< )2

The functions b;f)(r) and by for £k = 2,3 have been calculated from the interaction
contributions AKP and AKf>, For k = 2 this yields the simple result

ng) (r) = — [1 — VareeEtl)? erfe(é + \f|)} , (1.179)

by = [2e52 erfe(é) — 1] : (1.180)

1
V2
where 7 = v/27r /Ar is the distance in terms of the thermal wavelength and

¢ = Ape/V/8r = sgn(c)y/af = sgn(c)y/s (1.181)

is the dimensionless (thermal) interaction strength. The results for the two-clusters, Eqgs.
(1.179) and (1.180) are valid also for the attractive case é < 0, which is the reason for
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Figure 1.7: Comparison of géB)(r), Eq. (1.178), (solid lines) with numerical calcula-
tions (dots) for Ap/L = 0.5 and various values of the thermal interaction strength ¢,
Eq. (1.181) (labeled). The inset shows the maximum arising for ¢ = 10, an indicator of
quasi-crystalline order.

not using the variable s introduced earlier. The corresponding expressions for k = 3 are
more complicated and can be found in Appendix B.2, Egs. (B.17)—(B.21), and Eq. (B.24).
The integrated function b in Eq. (1.180) is closely related to the virial coefficient found
in [116] for the spin-balanced Gaudin-Yang model. The correct normalization

2
/dr P (r) = 5L (1.182)
is obtained from Eq. (1.105) only if the integration domain (—L/2, L/2) can be replaced
by R in all nontrivial integrals in the spirit of the short-time approximation, i.e., if
b%(r) ~ 0 for |r| > L/2. In the case at hand this gives the natural bound Ay < L/2

for the short-time approximation to be valid, as both bézg have a typical extent of Ap.
This means that one can make predictions for very low temperatures as long as the
semiclassical result for ggN)(r) saturates well before r = L/2.

For comparison with numerical results the exact correlation functions have been cal-
culated using the Bethe ansatz solutions similar to [109]. The details can be found in
Appendix B.3. It is straightforward to show that the system size L can be eliminated
completely from go in both results using the scale transformation x; — x;/L, k; — k;L,
c—cL, B— /L27 where the k; are the quasimomenta that appear in the Bethe so-
lutions. Thus, r and Ay are expressed in units of L in all plots and Ap is used as the
temperature parameter rather than T or 8. Figure 1.7 shows 3/2 x géS) (r) for various
values of ¢, Eq. (1.181), and for Ax/L = 0.5. The absolute and relative error in the semi-
classical results are smaller than 10~2 for all values of & at this temperature. For higher
temperatures the results are more accurate, e.g., for Ap/L = 0.3 (not shown) both the
absolute and relative error of the semiclassical result are of the order 1076 for all values
of ¢. Considering the fact that for A\p/L = 0.5 the numerical calculations converge up
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1. Quantum cluster expansions in short-time approximation

to an error of 0.1% already for a summation cutoff after only 15-30 states (depending
on the interaction strength), the accuracy of the semiclassical prediction based on a
continuous spectrum is impressive.

Interestingly, a feature that usually becomes visible only for very low temperatures, the

non-monotonicity of géN) in the fermionization regime of large ¢ [112,117], can already

be seen in Fig. 1.7. There, the maximum value of gés) (r) at r/L ~ 1/3 for ¢ = 10 is
highlighted in the inset and can be interpreted as a precursor of a quasi-crystalline order
in the two-particle correlations. For larger values of Ay > 0.5L the approximation fails
as expected.

1.4.4. Exploiting the universal scaling of the short-time approximation

The general scaling properties of the short-time approximation presented in section 1.3
are not only useful to identify relevant parameters of the theory but can actually be used
as a predictive tool. Let us assume that the expressions for b, and bg) (r) are known up
to a certain cluster size n = [ — 1. If one can find, in whatsoever way, e.g., by direct
measurement [102], find an expression for the nonlocal pair correlation function gél) (r) for
fixed values of ¢ and (small enough) Ar it contains all the information needed to calculate
b; and bl(z) (r). The scaling behavior of the latter can then be used to calculate gél) (r) at
all temperatures in the range of validity of the short-time approximation with the same
¢ or to find better approximations for higher particle numbers (see next subsection).

The interplay between the scaling of the functions b%k) and the form of géN) as a rational

)

function in Ay /L renders this approach nontrivial. To actually calculate b§2 and b; from

gél), one has to note that bg)(r) — 0 for r — oo and that the cluster expansion of gél)

contains b; only in the denominator. This means that gg) (r)/ gg) (c0) depends on b,@ (r)

but not on b;, while the latter can be found independently from gél)(oo). In practice, the
diverging argument » — oo has to be replaced by a value that lies inside the saturation
regime of ggw. This explains why gél) (r) has to be known for “small” values of Ap. As
the above considerations use only the homogeneity of the system, they are not restricted
to 1D or to d-like interaction potentials.

To demonstrate the power of the method, the numerical results from the Bethe ansatz
calculations of ggl) (r) and gés) (r) at Ar/L = 0.1 and various values of ¢ have been used
here to calculate the clusters bng) and 177(10> for n = 4,5. The results were then used to
calculate gé‘r)) (r) at Ap/L = 0.4. The comparison of the respective predictions with the
numerical calculations is shown in the left part of Fig. 1.8. The nearly perfect agreement
for all values of the interaction strength shows that the method is indeed applicable to
the case at hand. Moreover, one an clearly see the first signatures of a quasi-crystalline
order in the nonlocal correlations in the fermionization regime, with maxima separated
by L/5 — a clear signature of the degenerate nature of the fermionization regime both
visible in the numerical and semiclassical result.

The breakdown of the validity of this approach can be investigated by calculating the
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Figure 1.8: Left: The nonlocal pair correlation function for N = 5 particles from Bethe
ansatz calculations (dots) and the semiclassical result (solid lines) for Ay /L = 0.4 using
the functions b\ (r) and b Eq. (1.105) for n = 4,5 that have been recursively extracted
from the numerical results for g§4) (r) and 925) (r) at Ap/L = 0.1. The values for ¢ (ranging
from 0.01 to 10, from top to bottom at r = 0) are the same as in Fig. 1.7. The inset
shows the non-monotonous behavior in the fermionization regime for ¢ = 10 showing
two maxima at approximately r = L/5 and r = 2L/5 indicating quasi-crystalline order.
Right: The maximum (with respect to the interaction strength ¢) of the mean difference
between semiclassical and numerical results (see text). While the deviation is smaller
than the numerical precision for N = 3, Ay < 0.2L it increases rapidly for Ap/L > 0.2.

mean absolute error in the semiclassical results for ggN) (r) using the 2-norm
A L ™) (]2
Agy ' = / dr [Ag2 (r)} , (1.183)
)\T 0

where AgéN)(r) is the difference between the numerical and semiclassical results. The

right part of Fig. 1.8 shows the maximum of this mean error with respect to the inter-
action strength ranging from 0.01 to 10 for N = 3,4,5 and for various values of Ap/L.
For N = 3 and Ar/L < 0.2 the error is smaller than the numerical precision (see Ap-
pendix B.3). The deviation for Ay = 0.1L is not shown for N = 4,5, as this is the value
used for the extraction of the functions bﬁf”, bﬁf) (r) for n =4, 5. The large offset between
the graphs for the different particle numbers can be explained by the rather small numer-
ical precision in the extracted cluster contributions, but all three curves show a roughly
exponential increase in the range of 0.1 < Ap/L < 0.5, indicating a sudden breakdown
of the short-time approximation.

1.4.5. Truncated cluster expansion for higher particle numbers

The full cluster expansion for géN), Eq. (1.175), could be calculated from the propagator

(1.174), in principle, for arbitrary particle numbers N. In practice one would have to
(partially) trace not only AK®™ for 1 < n < N, which is a difficult task, but also all
permutations of different products thereof. Here, only the information from interaction
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contributions up to third order will be used. One way to achieve this goal is to use the
QCE(2) to take into account only the desired orders. This has been proven to yield
excellent results for the canonical partition function for the QCE(1) contributions [85].
The full QCE(2) has also been used in combination with the energy shifting method to
second order in [60]. Here, the approximation is done at the level of cluster sizes n < 3,
i.e., not taking into account the full symmetrization but having full control over the
approximation through the parameter NAp/L as is used in virial expansions, yielding
accurate predictions for the high temperature regime.

As shown above, the full cluster expansion is a rational function in the parameter Ay /L
with coefficients that are functions of 7, ¢, and N. With A, (r) = b2 (r)—(n—1)byAr/L
one can write go as

)y N-1) As(r) + [(N;2)A3(r) + (NZ—Z)bQAZ(T)] M 4 0(2)
92 r) = —m— —-

1.184)
N A ) (
N L+ ()b +0(2)

where O(2) stands for higher orders in Ap/L. Expanding this function into a formal
series in the parameter Ar/L, while treating the functions A,, as constants to preserve
normalization, results in

dN () ~ %{1 4 Ay (r) + [(N — 2)As(r) — (2N — 3)A2(r)b2} AL—T} (1.185)

The terms of order n in Ar/L now come with coefficients that are polynomials in the
particle number N of the order n, a fact that is well hidden in the rational expression
for oM . . - . .. .

or g, '. The series expansion has a positive convergence radius for any finite particle
number, and the truncation is a good approximation if the ratio between the thermal

wavelength and the mean inter-particle distance,
nr :]V)\T/L7 (1.186)

is taken as a small parameter. The left part of Fig. 1.9 shows the comparison of
Eq. (1.185) with numerical calculations for N = 5 particles and NAp/L = 0.5. The
agreement is very good for the whole range of interaction parameters ¢, despite the
expansion parameter being of order one. The inset shows the effect of truncating the
expansion Eq. (1.185) to single two-particle clusters (first two terms in the curly bracket)
and the effect of neglecting terms of subleading order in the particle number, respectively,
for ¢ = 0.3 (the latter corresponds to the thermodynamic limit that will be addressed
below). Clearly, there is a major improvement by using the additional information from
béo),bgf) (r) and multiple clusters only if the crucial finite-size effect are accounted for.
Also note that the fermionization limit ¢ — oo at r = 0 yields zero for all orders in the
full expansion, which is often referred to as antibunching. This cancellation takes place
between different A, (0), their values being fixed by equating ¢2(0) = 0, leading to an
error in the truncated expansion (1.185) for the fermionization limit that is of the order
n2/N.
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Figure 1.9: Left: Comparison of the expansion for gé5), Eq. (1.185), with numerical re-

sults (dots) for Ay/L = 0.1 (i.e., ny = 0.5) for the same range of values of ¢ as in Fig. 1.7.
The inset shows the effect of truncating the expansion of ggs) after the single two-particle
clusters [first two terms in Eq. (1.185)] (green triangles) and the effect of neglecting all
coefficients that are subleading in the particle number (blue squares), i.e., Eq. (1.187),
for ¢ = 0.3. Right: Comparison of numerical results for go(r) in the thermodynamic
limit (taken from [112], error estimates not shown) with Eq. (1.187) for ny & 0.035 and
¢ labeled. The numerical method in [112] cannot access the fermionization regime ¢ > 1.

1.4.6. The thermodynamic limit

From the virial-like expansion Eq. (1.185) it is easy to find the thermodynamic limit by
omitting all terms that are subleading in N while fixing ny, Eq. (1.186). This gives

ga(r) = 1+ 62 () + B2 (r) — 26262 (r) g + O(n). (1.187)

Equation (1.187) can also be found within the grand canonical approach by inverting the
fugacity expansion in terms of the particle number in the high-temperature limit [61]. A
comparison with numerical results taken from [112] is shown in the right part of Fig. 1.9,
demonstrating the validity of the result presented here in the full range of interactions.
Although the first order in nr is taken into account there, the term bg) (r) defined by
the two-body problem is dominant for the particular value of ny ~ 0.035 used there. For
higher values of nr the first-order term gives non-negligible corrections. This is shown
in Fig. 1.10. The left plot shows go(r) for different values of ny and ¢ given in the figure
as approximate numbers. The exact values are

47 47 47
2 ~2
(nt,é%) = (W,0.18> , (W,0.1568> , (E’O‘H%) , (1.188)

and are chosen to match the parameter values of the data presented in [112]°. For
n% = 47/10% ~ 0.035, g2 can be well approximated by single- and two-particle clusters.
For higher values of np the O(ny) contributions, and thus three-particle clusters, have
to be included, and for n% = 47/10, i.e., ny ~ 1.12 the truncation to first order in ny

“The authors of [112] use different dimensionless parameters given by 7 = 47 /n% and v = v/87&/nr.
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Figure 1.10: Left: Nonlocal pair correlation in the thermodynamic limit for different
interaction strengths and different values of np such that g2(0) ~ 1. In the high-
temperature or low-density regime ny < 1 only two-particle clusters contribute. For
lower temperatures O(nr) corrections cannot be neglected and larger clusters play a
role. Right: Local correlations g2(0) with respect to the interaction parameter. Numer-
ical data (dots) is taken from [118]. The approximation by two-particle clusters (gray
dashed) is sufficient for high temperatures (low densities). By including the next order
in the cluster expansion (solid line) we can see a major improvement in the regime of
lower temperature.

is not sufficient anymore for a precise prediction but still gives reasonable qualitative
agreement with numerical calculations. The right part of Fig. 1.10 shows the local
correlations go(0) for a wide range of the interaction parameter. A major improvement
in the agreement of numerical (taken from [118]) and semiclassical results can be seen
when including the first-order correction in np. Note that the local version g(0) of
the pair correlation can be calculated exactly by solving integral equations using the
Hellmann-Feynman theorem [118] (higher local correlation functions have been found
from viewing the LL model as a limiting case of the sinh-Gordon model [119]), but to
the best knowledge of the author, all published analytical results for go(r) in the weakly
degenerate regime were derived in perturbation theory, i.e., they are only valid in the
limits of weakly or strongly interacting bosons. The result presented here, Eq. (1.187),
represents the generalization of these results for arbitrary interaction strengths in the
moderate- to high-temperature regime.

1.4.7. Summary and possible further applications

This section has demonstrated that the application of the short-time approximation to
the spatially dependent nonlocal pair correlation leads to essentially exact results for
temperatures well above the quantum degenerate regime while still giving good results
close to the latter. For the example of three particles it has been shown that the full
cluster expansion in short-time approximation remains valid up to Ay &~ L/2. In this
situation, the mean inter-particle distance L/N = 2Ar/3 is already smaller than the
thermal wavelength. It was then demonstrated that the universal scaling behavior in
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1.4. Application: Nonlocal correlations in the Lieb-Liniger gas

the short-time approximation remains valid for higher particle numbers. This was done
by predicting the form of the nonlocal pair correlation function for a whole range of
temperatures using the numerically extracted values of the individual clusters at a fixed
temperature. Comparing the results obtained from this rescaling procedure to numerical
calculations shows very good agreement down to Ay = 0.4L, corresponding to a thermal
wavelength that is fwice the mean particle separation. This underlines the validity of
the short-time approximation also in this quantum regime with NAp/L > 1.

For higher particle numbers approximations were presented that are valid well above
the quantum degeneracy regime, i.e., NAp/L < 1, while still explicitly depending on the
particle number and thus explicitly accounting for its finiteness. Finally, by neglecting
the contributions that are subleading in the particle number, the exact results for the
first two orders of the series expansion of ga(r) in the quantum degeneracy parameter
ny = NMAp/L were calculated, and very good agreement with the numerical results
obtained by other authors was shown. While this work awaits experimental confirmation
in state-of-the-art experiments with 1D trapped quantum gases in the weak degeneracy
regime, it is planned to extend the analysis to momentum correlations in the 1D Bose
gas that have been measured recently [120].

Possible further applications could extend the results to the case of smooth external
potentials, including the latter on the level of the short-time approximation. This allows
for the transfer or the results from the quantum integrable Lieb-Liniger model to these
nonintegrable cases, where not only the analytical results for bgﬂ for n = 1,2, 3, but also
the numerically extracted results for n > 3 can be used.

Another application in one-dimensional systems, apart from the straightforward mul-
tiple-species extensions that can range from dynamical impurities, to fermionic spin-1/2
systems (i.e., the Gaudin-Yang model [108]) and mixtures of different species, could
be the super-Tonks-Girardeau gas [121] that has been experimentally realized using a
confinement induced resonance [122], where the interaction changes from infinitely re-
pulsive (Tonks-Girardeau) to infinitely attractive interaction (super-Tonks-Girardeau)
by continuously tuning the scattering length of the three-dimensional interaction. The
idea is to use the results from the Lieb-Liniger gas also for the attractive case ¢ < 0,
however eliminating the bound states that are suppressed in the super-Tonks-Girardeau
gas that gets dynamically stabilized, when approached from the Tonks-Girardeau gas
regime, through the large kinetic energy in the latter. Thus, a large part of the complica-
tions introduced in the calculation of the many-body propagator through the existence
of bound states is eliminated in this approach. As the smooth spectrum and nonlocal
correlations of the Tonks-Girardeau gas mimic the respective properties of free spinless
fermions [123], one could use a fermionic model with an effective interaction to also apply
the shifting method beyond the resonance.

63



1. Quantum cluster expansions in short-time approximation

1.5. Application: Short-range interaction in three dimensions

In this section, the methods of cluster expansions in short-time approximation will be
applied to three-dimensional (3D) systems. Although systems with lower dimensions can
nowadays be prepared in experiments (as discussed in the last section), most systems
are three-dimensional in nature. It is probably for this reason that Beth and Uhlenbeck
applied the cluster expansion only to 3D systems when they first introduced its quan-
tum formulation [66]. Their final result was the now-called Beth-Uhlenbeck formula for
the first virial coefficient that is determined by the two-particle problem and can be
expressed in terms of the scattering phases of the interaction potential. The strength
of this approach is that the scattering phases are rather simple to calculate and thus
a wide variety of interaction potentials can be addressed. However, spatially resolved
quantities as well as information beyond the first virial coefficient are not included in
these results. As mentioned earlier, there have been attempts to generalize the Beth-
Uhlenbeck formula either by introducing three-body scattering phases [90] or by Ursell
expansion [77], but explicit calculations beyond the perturbative regime have not been
realized in this context. Omne reason for this could be the fact that the calculation of
the single-particle propagators in three dimensions in the presence of a scattering po-
tential cannot be given as a closed form expression except for very special potentials
like the Pd&schl-Teller potential [124]. Of course, approximations can be found using
the general Lippmann-Schwinger equation [125], with the simplest one being the Born
approximation, however leading to expressions that are perturbative in the potential
strength. Here, the QCE(1) and other approximations introduced earlier in this thesis,
that go beyond these approaches, will be used for short-range repulsive and attractive
interactions by calculating the interaction contributions explicitly from the propagator
of the scattering problem in the low energy scattering limit.

1.5.1. The QCE(1) in three dimensions

When considering short-range interactions it is usually a reasonable assumption that
the interaction potential is spherically symmetric, as is usually assumed in cold-atom
quantum gases with Feshbach-tunable interactions [22,29]. The goal is to calculate
the part of the (imaginary time) propagator of the relative motion 5K;(Ll>(r1,'r0; B, )
that enters the interaction contributions (1.120) and finally the reduction of the inter-
and intra~cycle contributions in the QCE(1) to one-dimensional integrals. Thus, let us
start with the general treatment of two particles interacting via a spherically symmetric
potentials in an infinite volume. After separating off the motion of the center of mass,
the Hamiltonian of the relative motion in position representation is simply given as

FLQ
Heyg=—— N, 1.1
o= g St V) (1.189)

with r = |r| and the reduced mass p and the spherically symmetric potential V(). The
energy eigenfunctions can then be decomposed into the spherical harmonics Y}, and the
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1.5. Application: Short-range interaction in three dimensions

solutions wuy(r) of the radial equation as

ukl( )

wklm('r) Y'lm(e ¢) (1190)

The propagator for the relative motion can therefore be simplified using the addition
theorem for spherical harmonics [91],

[eS) 1
KM (1,708, 0) ZZ M(rl,m,ﬁ,amm(ol,qslm,n(eo,qso)

20 +
47r7"11’

ul(n,ro,ﬂ,a)Pz(cow) (1.191)
=0

where P is the [th Legendre polynomial and v is the angle between r; and 7r¢. The
radial component of the propagator with angular momentum quantum number [ is here
defined as

00 22
KSZ)(T17T0;6, @) =/ dke P upr(r1)ug;(ro) (1.192)
0

and scales like a one-dimensional propagator (c.f., Eq. (1.99) with Dy = 1). Subtracting
the noninteracting part from the propagator will only affect the radial components, such
that one can write it as

o 20 +1
6Kl(f)(r1,r0;ﬂ, a) = Z —(5Kﬁl)(7“177“0;57 @) P(cos ) (1.193)
l

0 47T7'1 70
or, using the general scaling (1.99) for 6K, Eq. (1.126), one obtains

20+1
47r7" 170

5k (7, 703 ) = kM (71, 703 8) P (cos ) (1.194)

=

in terms of the dimensionless variables #; = r;/Ap(u). The dimensionless inter- and
intra-cycle diagrams, Eqgs. (1.128) and (1.132), are thus given as

amter/mtra Z/ d’L’/ dy 5’4} .%’ y; s )flnter/lntra(m7y) (1195)
with

v,l

. . z 2
flnter/mtra( ) (2l+1)4 /dQ de 3 (%) PZ(COS’Y)

=@+ 1)4”3’ (= )(:Fi)ljl (2m%) . (1.196)

Here, j; is the Ith spherical Bessel function (see [91] for the evaluation of the integral) and
the upper and lower sign stand for inter- and intra-cycle diagrams, respectively. Note
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1. Quantum cluster expansions in short-time approximation

that ' (it) is real for real values of t. The above result shows that the values of inter- and
intra-cycle diagrams are the same for the even angular momentum quantum numbers [
while they have the opposite sign for odd I. Combining this result with the multiplicities
(1.130) and (1.133) of the diagrams, (1.196) shows that if the interacting particles are
of the same species, their contributions vanish in the case of even(odd) values of { for
fermions(bosons). This is a direct consequence of the parity of the spherical harmonics
in the case of two particles, where the exchange of the particles corresponds to the
inversion of their relative coordinate. The calculation presented here thus shows that
this property also holds in the QCE(1) as it should.
In the case of s-wave scattering, f, o simplifies drastically, yielding

. : 1 z—y\2 z4y\2
@) = ey = [T — e (). (1.197)

Remarkably, this has exactly the form of a single-particle propagator for a semi-infinite
line subject to a Dirichlet boundary condition at the origin [126].

1.5.2. Low-energy approximations and s-wave scattering

One of the assumptions that has been used in the preceding sections is the short-range
character of the interaction. However, this has to be specified in terms of a different
length scale of the system. In equilibrium systems as are considered here, one should
compare the range of the interaction to the thermal wavelength: If the latter is much
larger than the extent of the interaction potential, the details of this potential cannot
be resolved by the average particle, i.e., only particles with a relative kinetic energy that
exceeds the average single-particle energy by far will be affected by the detailed form
of the potential. In the partial wave analysis one would find that the scattering into
waves with [ > 1 is strongly suppressed, as the respective wave functions have to vanish
at the center of the potential and are only slowly varying compared to the latter, thus
being close to zero over the full range of the potential. Therefore, it is often sufficient to
take only the s-wave scattering into account, especially in the low-temperature regime
that is addressed in cold atom experiments [22,29]. One has to stress that the short-
time approximation does not contradict this low-temperature assumption as long as
the thermal wavelength does not become comparable to the length scale given by the
system size. If the latter is much larger than the range of the interaction, as is the case
in almost all cold-atom experiments, there is a very big window where both short-time
approximation and short-range interaction are perfectly consistent.

The low-energy scattering is then only determined by the s-wave scattering phase ds
that should then be consistently approximated by its low-energy (i.e., large wavelength)
limit, where it is determined through the scattering length as as the only parameter. To
model this simple type of interaction that treats the potential as if it has no length, one
is tempted to do this with a point-like interaction by using an interaction potential of
the form

Ving(r',7) = “g0® (¢ — 1) (1.198)
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1.5. Application: Short-range interaction in three dimensions

with a 3D Dirac delta distribution, similar as in 1D. However, it turns out that modeling
this delta distribution, e.g., as a limiting case of a spherical step potential, its effect would
vanish for any finite coupling strength g in the zero-range limit and it thus requires
regularization. There are different ways to achieve this, the most popular being the
Fermi or Fermi-Huang pseudo-potential [127-129] acting as (setting h2/2m = 1 for the
moment)

Ve(r)(r) = 4mass (r) - (ri(r) (1199

on the relative wave function. The effect of the derivative is to remove possible 1/r
divergences in the wave function that are forbidden in the noninteracting case, leading
to a nontrivial boundary condition

¥(r) ~ const x (1 - i) (1.200)

T Qg

for r — 0 (The constant is nonzero only for the rotationally symmetric s-wave functions).
One has to be careful, however, when interpreting the potential (1.199). Naively, one
would expect that a small attractive interaction leads to a small negative scattering
length while the latter would be positive for repulsive interaction. However, the Fermi
pseudo-potential allows for a bound state solution for as > 0, with an energy that diverges
for as — 0T (the plus sign indicating that as = 0 is approached from above), while
this bound state is absent for negative scattering lengths. In more recent approaches,
a momentum cutoff regularization [130-132] of the contact interaction is often used,
however leading to the same results. This apparently unphysical behavior has led to some
confusion and inconsistency in the literature when it comes to the physical interpretation
in terms of “attractive” and “repulsive” interaction.

There is, however, a perfectly meaningful interpretation of the above behavior. In
experiments with tunable scattering length ag, the latter is not a system parameter but
rather a derived quantity. In cold atom experiments, the control of ag is usually achieved
using Feshbach resonances [29], where the scattering length has the form
_ 1

9 — Gres
in the vicinity of the resonance value g,es of the continuous parameter g that depends,
e.g., on the magnetic field. Thus, the potential (1.199) is best interpreted as an effective
description around a resonance and would be better expressed in terms of a continuous
parameter g, Eq. (1.201), such that the values a; — 0% correspond to the regimes
g — Foo far to the left and far to the right of the resonance. The noninteracting case
would then correspond to the limit ¢ — oo, while it is natural to expect that a zero
energy bound state appears at the resonance g = gs that has a negative energy for
9 < Jres-

(1.201)

Qs

The soft-shell scattering potential

To clarify the above and to see how the resonance picture emerges naturally, it is in-
structive to use a simple model potential with finite range rs to analyze the limit ry — 0.
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1. Quantum cluster expansions in short-time approximation

This will then be used to derive the s-wave part of the propagator, i.e., Eq. (1.192) with
[ = 0. Let the relative potential of two particles be given as the soft-shell potential

e

% sV (r =) (1.202)

V(r)
with a finite shell radius rs and the potential strength c. It is equivalent to imposing the
(mixed) boundary condition

d rs+e

lim | —1 = 1.2

i sl | = (1.203
at the shell, where the left hand side means the difference of evaluating the bracket
outside and inside the shell and wuy(r) is the radial wave function defined in (1.190).
Note that for the finite soft-shell potential 1.202 there is a clear definition of repulsive
and attractive interaction as ¢ > 0 and ¢ < 0, respectively.

It is straightforward to show that the scattering phases can be expressed as

%jl(krs)
c i k"'s bl
(£ + 2523 ) mulkr) — ()

tan d; = (1.204)

with the spherical Bessel and Neumann functions j; and n;. Using the Wronskian [133]

) . 1
ni(@)ji(@) — mi(@)ji(@) = — (1.205)
leads to the simpler form
jIQ(kTS)
Ji(krs)ng(krs) — (crs - krg) =

tand; = (1.206)

For large wavelengths compared to the potential range rg, i.e., krs < 1 the known
expansion for the Bessel and Neumann functions yield the low-energy scattering phases

2l +1 (krs)QHl
20+ DN~ 14 2L

crs

tan & = — + O((krg)?+3). (1.207)

Thus, for every value of [ there is a divergence at crg = —(2{ + 1) corresponding to a fast
increase of the respective scattering phase §; by 7 that coincides with the emergence of
a bound state, as shown in the following.

The equation for the bound states is obtained by matching the free solutions inside the
shell to exponentially decaying solutions for » > r4 (i.e., the spherical Hankel functions
R (ikr) with imaginary argument) yielding the quantization

i j2 (ikrs)

- — - =1, 1.208
(i) guGinrs) — (ere - imrs)” (1.208)

1
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1.5. Application: Short-range interaction in three dimensions

where the energy is given by F = — 1252 i the solution exists. In the regime krg < 1

24
the solutions can be found as

1
2

ar(1+35) /1 1

R 0 (G ) (R RS T | R (1.209)
(-3 \ers 2041

Krg = Ter CTS, =0, (1.210)
crs

where the condition for the existence is in all cases crs < —(20 + 1), i.e., they appear
(with zero energy) exactly at the divergences of tan d;, Eq. (1.207).

The above shows that there are many resonances already in this simple model. How-
ever, as can be seen from Eq. (1.207), the s-wave scattering is dominant away from the
resonances. One can directly read off the scattering length as

Ty

-1
as = — [%ii%kcot 60] = oy + I7s: (1.211)

The zero-range Fermi pseudo-potential now turns out to have exactly the same scattering
and bound states as the shell potential in the limit r¢ — 0, keeping the parameter
¢ = c+ 1/rs fixed to stay in the vicinity of the s-wave resonance. The reason for this is
the different position of the resonances of scattering phases for [ > 0 thus yielding the
trivial limit §; — 0 in the zero-range limit as for the Fermi pseudo-potential. However,
in this limit, the parameter regime of repulsive interactions ¢ > 0 is pushed to ¢ = oo
and can therefore not be accessed anymore.

To conclude the above, the pseudo-potential (1.199) and equivalent regularized zero-
range potentials should only be used in the vicinity of a s-wave resonance. There, it
does not make sense to interpret a positive scattering length ag > 0 as an indicator for
repulsive interaction. As the resonance is accompanied by the formation of a bound state,
one should rather understand the potential as attractive for all values of the scattering
length. In other words, a repulsive zero-range potential has no effect (if internal degrees
of freedom of the particles are left unaccounted for).

However, we are now in the position to say something also for the more general case,
as we do not have to take the zero-range limit as long as we stay in the low-energy regime
krs < 1 to justify the description of interactions only in terms of the scattering length
(1.211) (and the bound state for cry < —1).

The low-temperature imaginary-time propagator for a soft-shell potential

As was discussed earlier, we can make use of the short-time approximation of propagators
evaluated in imaginary time while still being in a regime where the thermal wavelength
is much larger than the range of interactions, therefore having to include only the low-
energy effects of the interaction. One can thus calculate an approximation of the s-wave
part of the imaginary-time propagator (1.192) for the soft-shell potential (1.202) by
replacing the radial wave functions ugg by their low-energy approximations using

tan dp = kas (1.212)
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1. Quantum cluster expansions in short-time approximation

for all k£ and noting that error gets suppressed at low temperatures, when Ap > rq.
Specifically, for krs = 1 we have

~

REB MWk | A (w)

E =
6 k,rel 2#‘ A ~ 47.mn§

>1, (1.213)
such that the respective contributions in the imaginary-time propagator are strongly
suppressed due to their weighting with exp(—/SFEj rel).

To calculate the s-wave part of the propagator, Eq. (1.192) with I = 0, the relative
motion is enclosed in a finite, but large volume, e.g., a large sphere with radius R >
rs, that quantizes the values of k and fixes the normalization and is sent to R — oo
afterwards. Here, only the results are presented, and the reader is referred to Appendix
C for the detailed derivations. Also, it is assumed that the initial and final coordinates
lie outside the potential shell. In this case, the correction to the s-wave part of the
propagator can be written as

1

KW (1, 70; B,0) = ——— kS (71 + 70, 0; 5), 1.214
H,O( 1,705 3 ) )‘T(:U') 0 ( 1 0 ) ( )

kY (2,05 5) = 2077 [1 + m5e" G+ erfe (F/7 (2 + 5))] (1.215)
with the complementary error function erfc and the scaled variables

r1+10 P 7)\T(,u)
Ar(p)’ 2mas

Z=T1+70= (1.216)
The upper and lower sign in (1.215) correspond to the repulsive (¢ > 0) and attractive
(c < 0) case, respectively. Note that the variable § is of the form y/afB rather than of3
used before, with a being an energy-like parameter. The reason for this choice is the
fact that the sign of § then encodes the sign of the scattering length as.

The result for the attractive case exactly reproduces the interaction part of the (real-
time) propagators found either using the (unique) self-adjoint extension of the Hamilto-
nian for a point interaction [134,135] as well as for the Fermi pseudo-potential [84] and
the momentum-cutoff regularization of a delta-potential [132], showing the equivalence
of the respective approaches.

It is instructive to see how the repulsive result differs from the attractive one. This
can be seen by rewriting the complementary error function in (1.215) for the repulsive
case as

—erfe (—v/@(z — §)) = erfe (Vr(2 - 5)) — 2, (1.217)
such that the result differs from the attractive case with § > 0 by

— e ™ HTE = gy (3, 5). (1.218)

It is easily verified that this exactly cancels the bound state contribution present in the

attractive regime beyond the resonance, such that the low-temperature imaginary-time
propagator for the repulsive soft-shell potential can be obtained from the known results
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1.5. Application: Short-range interaction in three dimensions

by dropping the bound state contribution, as long as the two coordinates lie outside the
potential sphere.

If one or more of the coordinates are within the sphere, there are additional contri-
butions (see Appendix C) that vanish in the limit of a point potential. One can easily
argue that, within QCE(1), the condition rs < Ay implies that the latter contributions
are negligible as the propagator is smeared with normal distributions according to Egs.
(1.197) and (1.195), with a width v large compared to the potential range s/ A < 1
for any cluster size. Also in the special case v = 0, that yields the trace of 6k((]1), the
contribution from within the potential is negligible.

This means that we can use the s-wave interaction correction (1.215) for the propagator
together with the scattering length ag in terms of the potential strength ¢ and the finite
range 1, Eq. (1.211). By neglecting the contributions from { > 0 in Eq. (1.194) this
yields the approximate interaction part of the propagator

1

6kW (71,70 5) ~ 47”:17:0519(()1)(7’17?0;5) (1.219)

that will be used in the following.

One should, however, make a few comments when it comes to repulsive interactions
in the simple model used here. The scattering length of the shell potential used in the
derivation is bounded by r¢ for the case ¢ > 0, with r4 being the scattering length of
the hard-sphere potential obtained for ¢ — oo. Therefore, if one wants to stick with
the simple model, one has to keep the potential range rg finite to obtain a nontrivial
result. The low-temperature limit sketched above then corresponds to the perturbative
regime [$71| < 1 or as < Ar according to Eqgs. (1.213) and (1.216), such that the s-wave
scattering approach would be rather trivial in this regime, only yielding known results
(see, e.g., [68]). But we have seen that the analytic form of the propagator for ¢ > 0, when
expressed through the scattering length ag or equivalently § is ezactly the same as for a
resonance, except for the missing bound state. Therefore, one could equally well forget
about the (hidden) dependence on the parameter ¢ and simply use the propagator for
the “repulsive” interaction in situations, where a resonance is approached from below
(as > 0) while only taking into account the scattering states that are adiabatically
connected to the scattering states of a weakly repulsive interaction.

This approach is actually closer to experimental setups than the use of the model
potential introduced above: A real gas of cold atoms usually hosts molecular bound
states that actually render the gas metastable, leading to inelastic scattering and parti-
cle losses in experiments that are, however, strongly suppressed due to weak coupling of
the respective molecular and atomic states. In cold atom gases, the internal degrees of
freedom of the atoms lead to many different scattering channels, with most of them being
closed at very low temperatures, but with closed-channel bound states that can lie very
close to the continuum threshold energy of an open channel. If such a closed channel
bound state can be energetically tuned by external parameters to approach the contin-
uum, even a weak coupling between this state and the open-channel scattering states can
induce a Feshbach resonance [29]. The situation of approaching such a resonance from
“below” then just means that the molecular bound state in the closed channel is initially
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Figure 1.11: Sketch of the parametrization of the interactions used in the following. In
the attractive case, the scaled interaction §, Eq. (1.216), describes the regime around a
resonance with a bound state being created at § = 0 and a bound state energy Ej, oc —32
(sketched in dashed blue). The limit § — oo corresponds to the noninteracting limit. In
the repulsive case, § is only used as a parametrization of the scattering length, that can
have any dependence on a tunable parameter, and diverges when (another) resonance
at § = 0 is approached adiabatically from the left. Although a bound state has to
exist also at this resonance (sketched in dashed red), it is not taken into account in the
calculations, assuming that it is adiabatically decoupled from the scattering states and
inelastic scattering subdominant.

below the continuum threshold. The finite “background scattering length” (given by 7
in the soft-shell potential model above) plays a role in the characterization of Feshbach
resonances, but a universal description is applicable in the region of diverging scattering
length [29], where the resonance has exactly the shape modeled by the shell potential at
its s-wave resonance, with a (hybrid) bound state that has exactly the same properties
but is adiabatically connected to a closed-channel molecular state. Even though a Fes-
hbach resonance is subject to enhanced particle losses and molecule formation at this
universal regime [29], one should expect that the scattering states dominate the physics
when the resonance is approached from below, as the molecular state is dynamically in-
accessible well below the resonance. In contrast, the bound state should not be ignored,
when tuning across the resonance from above, as the molecular state then connects to

the continuum?©.

The above adiabatic exclusion of the bound state is assumed in the following, when
“repulsive” interaction is considered, i.e., it is assumed that one can adiabatically tune
the system from the noninteracting case to the vicinity of a resonance, where the scat-
tering states are obtained adiabatically from the noninteracting states and the bound
state can be ignored. This situation is exactly described by the soft-shell propagator for
the “repulsive” interaction. Note that the parameters ¢ and rg of the soft-shell potential
then lose their meaning for as > ry and are therefore not further used. Figure 1.11
summarizes the notion of “attractive” and “repulsive” interaction that is assumed here,
and illustrates the parametrization through the parameter § o a;!, that changes from
00 to —oo when switching from attractive to repulsive.

'9This can actually be used for adiabatic atom-molecule conversion in ultracold atomic gases [29)]
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1.5. Application: Short-range interaction in three dimensions

1.5.3. The short-range interacting Bose gas

In this section, some of the methods of the previous sections are applied to a Bose gas
with dominant s-wave scattering.

Nonlocal correlations

As a “low-hanging fruit”, one can consider the nonlocal correlation function in the
thermodynamic limit to leading order in its virial expansion (1.187). The universal
density-independent part that dominates the high-temperature regime is given by

g2(r) = 1+ b5 (r) (1.220)

also in the case of three dimensions, where the first term corresponds to the “classical”
correlation being constant. The function bg)(r) only depends on the distance r of the
particles and is easily calculated from (1.215) as

b (1) = e 4 #074’”:2 Lk mse O erfe (VARG +5/2))] . (1221)
Here, as before, the upper sign stands for the repulsive case (i.e., it excludes the bound
state) while the lower sign is valid for the attractive case, also across the resonance. In
the noninteracting case (§ — %00 for the attractive, respective repulsive case), only the
first term remains, corresponding to the cyclic permutation of two particles. It describes
thermal bunching of bosons, increasing the local correlations at » = 0 by a factor of
two. When interactions are switched on, the correlations diverge at the origin as an
artifact of the point-like approximation of the potential. One thus has to take into
account a finite radius 7 of the interaction potential that is used as a lower cutoff in
the distance or one can use the expression for the model shell-potential propagator for
r < rs given in Appendix C to obtain a regular expression also for this regime. However,
when considering the radial distribution

o0 = [d2r2a(r) = tmrga(res), (1.222)

that is proportional to the probability of finding two particles in a distance r, the diver-
gence is removed and yields finite correlations at the origin, that can only be positive,
irrespective of the type of interactions, as the pair correlation has to be positive every-
where.
For completeness, let us also consider the scaling of the pair correlation function in
specific limits. For an infinitesimal scattering length, one obtains
. 4ag
i) = 1+ 1= 2] o), (1.223)
r
valid for both attractive and repulsive regime, while first expanding g, with respect to
r reveals the short-range scaling

galr) ~ 2 (1 - %)2 (1.224)
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Figure 1.12: Leading order of the virial expansion of the nonlocal correlation function go
(with the trivial part 1 subtracted) for bosons with attractive (left) and repulsive (right)
contact interactions. The probability of finding two particles at the same point (7 = 0)
is enhanced in both cases. This is strongly enhanced in the attractive case for § < 0,
quickly diverging due to the bound state. The repulsive case is corrected by negative
contributions for intermediate distances, effectively pushing the (everywhere positive)
distribution outward.

valid for small scattering lengths as < 1, as expected from Eq. (1.200). For § = 0, i.e.,
for an infinite scattering length one obtains

. 1
P =1+ (1+— 1.225
92( ) =) ( )
in both cases, with the bound state only having an influence on linear corrections in ag!.
Figure 1.12 shows the nontrivial part of the radial distribution

Ar(u)~2 [ gV () — 47r7"2} = 477268 (r) (1.226)

that only depends on the rescaled distance 7 and interaction 3, Eq. (1.216). The trivial
metric term 4772 has been subtracted for better visibility. As was mentioned above, both
attractive and repulsive interaction lead to an enhanced local pair correlation at # = 0.
However, while in the attractive case, the pair correlation increases everywhere due to
the interaction, especially when § < 0, the repulsive interaction leads to a reduction of
the pair correlation for intermediate distances, effectively shifting the dominant radial
distribution to higher values, i.e.,

4772 s 4 (7 — €)? (1.227)

for # > 0.5. The large enhancement at 7 = 0 for large scattering lengths (small |3])
is incompatible with the intuition of a repulsive interaction, but this does not pose a
problem as this picture is inadequate in the situation at hand, where go(r) actually
describes the scattering part of the nonlocal correlation function close to a resonance.
Despite the strikingly simple form of ga(r) and the straightforward derivation, the
result (1.221) has not been reported to the best of the author’s knowledge. The results
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1.5. Application: Short-range interaction in three dimensions

for the s-wave part of a gas of hard spheres can be calculated analytically without using
the low-energy approximation [136,137]. The results are equivalent for a small sphere
radius compared to the thermal wavelength, i.e., in the regime where s-wave scattering
is dominant.

The density of states

We are now in the position to actually calculate all the clusters that appear within the
QCE(1) by using the general formulas (1.195) and (1.197) for the inter- and intra-cycle
diagrams with the s-wave interaction correction (1.215). The calculations can be short-
ened a bit by using the fact that the interaction-independent part of (1.215) is exactly
canceled in the noninteracting limit (given by § — oo and § — —oo in the attractive
and repulsive regime, respectively) and thus is included in the coupling-dependent term.
The calculation is straightforward, yielding for the repulsive case

1 v s
_;1_‘_”2 \/7 \/_+ Vse®erfe (V/s)

aLntcr/intra (S) _

\/_

142 .
- % [Gé ) ((1 + VZ)S) + e+ erfe ( 1+ u2)s>] . (1.228)
Here, to make the notation consistent, the coupling s is of the form
2
s=m?=a8>0, a= h—Q, (1.229)
paZ
and the function Gg/) is defined as
2 > 2
G(V)(s) = —05/ dz e (=1V5) erf(vz), (1.230)
0 v o

where the index 0 is only introduced for consistency with later definitions. For v = 0,
i.e., in the case of a two-particle cluster, the expressions simplify to

inter/intra 1
alrter/imtra gy —5¢ erfe(V5). (1.231)

In the attractive case, the scattering length can be either positive or negative. As the
coupling s cannot have negative values, one has to introduce an additional parameter

n = —sgn(as) = sgn(s) (1.232)
to distinguish the two cases. Here, 7 = 1 represents the regime from the noninteracting
case (s — o0) to the resonance (s = 0) while n = —1 covers the regime beyond the

resonance, where the s-wave bound state is present. The result for the attractive case is
then given by

inter /intr: 1 v s
a”te/ ta(s) _ _;1+V2 — \/—\/T\[—i_n\f\/ge erfc(n\/g)
2
12 +22” 2G5 (4 v2)s) = oD erte (/T 7)) | - (1:233)
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1. Quantum cluster expansions in short-time approximation

The function G(()n"') is defined as
2 % 2
G (s) = ——e* / dz e~ (7HV5) arf(vz). (1.234)
0 v Jo
Again, the result simplifies drastically for v = 0, yielding

inter /intr: 1 1
g ter/int *(s) = ies erfe(ny/s) = n§es erfe(y/s) + ©(—n)e’. (1.235)

To obtain the density of states, one has to use these expressions to calculate first the
partition function and then its inverse Laplace transform. This leads to the functions

gl(ﬁ’d)(e), Eq. (1.113), that alter the coefficients in the cluster expansion of NN (E).
By using the expansion (1.134) of Alle’d) into clusters one directly obtains
N—l+1 n—1
g =85 3 i NS £ [s*%*lau(w,m)(s) (€),  (1.236)
n=2 n1=1

where the labels for inter- and intra-cycle diagrams have been omitted, as the respective
diagram values are the same. The inverse Laplace transforms in Eq. (1.236) can be
explicitly performed for arbitrary [, but the calculations are rather technical and have
therefore been moved to Appendix D.4, where also more general functions can be found
that appear in the QCE(2).

The full QCE(1) can be readily applied to different particle numbers and various
interactions for the cases of a homogeneous Bose gas (d = 3) and for harmonic trapping
(d = 6). Figure 1.13 shows the repulsive case in a comparison of the QCE(1) results with
the result from the first-order shifting method described in section 1.3.5 using the scaled
variables aie, Fye, Bq. (1.142). As the QCE(1) result for the counting function A/(N:4)
takes negative values for small energies, the plots show the absolute values of N4 in
the respective approximations. The noninteracting limit as. — 00 is presented as a solid
blue line in all plots. The left plot shows the case of three particles with very strong
interactions, with as. = 0 corresponding to an infinite scattering length. As can be seen,
both methods tend to the same results for large energies, but differ quite strongly at low
energies, with the QCE(1) result even becoming negative in a whole range of energies
that is well covered by the shifting method. The same behavior is seen for intermediate
couplings ag. = 10 in the right plot, where the counting function for N = 8 is shown
for two different effective dimensions, with d = 3 corresponding to the homogeneous
case and d = 6 describing harmonic confinement in short-time approximation. The
QCE(1) result cannot be trusted up to very large excitations in both case, while the
shifted counting function yields converged results for all relevant energies. In the case
of N = 8 and d = 6, the energy of the result from the shifting method has been cut
off at approximately Fgs. = 0.5, where the self-consistent solutions for the shifts start to
wildly oscillate. This should, however, be attributed to numerical errors, also leading to
numerically induced noise in the QCE(1) result at small energies (not shown).

When the particle number is increased, one can expect the shifts to become universal
functions that only depend on the scaled energy Eg. and interaction asc, as well as the

76



1.5. Application: Short-range interaction in three dimensions

N =38

QCE(1) _
- shifted N 10

— Qe = 10 QCE(1)
oo} )
ase =0 .
: ¢ — shifted
0015 T 5 3 7 % R T R T R T R

By

Figure 1.13: Smooth level counting function for the repulsive case calculated in the
QCE(1) and with the shifting method for various particle numbers. The absolute value
has been taken in the QCE(1) result to show that it has very large negative values left
of the zero point that is visible in all plots as divergences due to the logarithmic scaling.
The noninteracting result is shown in solid blue. Left: three particles with very strong
interaction (ase = 0 corresponds to an infinite scattering length). Right: Intermedi-
ate interactions for N = 8 and different effective dimensions (see labels), where d = 6
corresponds to harmonic trapping.

Figure 1.14: Scaling behavior of the scaled shifts Ay, Eq. (1.170), with the particle num-
ber for the repulsive case (left) and the function y oc (NN )~1/N Eq. (1.162), for the
noninteracting case (right) that are both expected to become intensive in the thermo-
dynamic limit. Both functions quickly approach a universal limit with the interaction
energy per particle given by Agc.
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1. Quantum cluster expansions in short-time approximation

effective dimension d, Eq. (1.104). This has been demonstrated for the Lieb-Liniger gas
and harmonically trapped bosons in 1D in [60] and also holds true for the case at hand,
as the difference in the theory is only due to the different physical dimensions. The
asymptotic calculations are straightforward, but unfortunately have not been performed
yet due to time constraints. To assess the applicability of the expected asymptotic uni-
versal functions, Fig. 1.14 shows the tendencies of the scaled shifts Ag., Eq. (1.170), and
the noninteracting function y(Egc, 00), Eq. (1.162), towards their limiting functions. The
latter is used in the shifting method and should become an intensive quantity according
to the asymptotic ensemble equivalence discussed in section 1.3.4, being verified here for
noninteracting bosons with harmonic trapping. The calculated shifts in the left figure
show numerical noise for N = 16 and N = 32 that stems from the Gamma functions and
factorials that appear in the coefficients of the counting function, leading to large can-
cellations. This could be cured by increasing the accuracy, but the preferred approach
should be the use of the asymptotic results that naturally include also the corrections of
the function y for small energies through the amplitudes in Eq. (1.153) and should yield
comparable results with less computational efforts.

Unfortunately, the author has not yet been able to compare the above results to full-
fledged numerical calculations and/or experiments. The shifting method, in contrast to
the QCE(1) is able to predict a mean energy shift of the noninteracting levels in a way
that goes far beyond the perturbative regime, thus requiring the respective data for a
wide range of energies and interactions to benchmark. This could be addressed using
Monte-Carlo path integral approaches in the temperature regime similar to [17], but has
not been done so far, and the results above have to be considered as work in progress.
Also, although the results for the attractive interaction are also available here, they
have not been used for bosons so far. However, the next subsection uses the attractive
interaction for a small system of spin-1/2 fermions in a certain approximation.

1.5.4. The unitary Fermi gas—a few-particle perspective

A gas of spin-1/2 fermions with attractive short-range interactions in three dimensions
is known to have very interesting properties. In the noninteracting case, the gas can be
described by a Fermi sea with excitations above it. However, already for weak attractive
interactions, this Fermi sea becomes unstable and the BCS theory of superconductivity
predicts a pairing of particles with opposite spin and momentum to Cooper pairs [12],
that are, however, not localized in space. For stronger attractive forces, bound states of
the relative potentials allow for the formation of molecules that get localized in space,
with the most favorable configuration being the pairing of two fermions with opposite
spin, i.e., singlet states, as the interaction between two fermions with the same spin is
suppressed due to the Pauli principle that forces the wave function to vanish at short
distances. If the pairing forces are strong enough, the molecules can be described as
composite bosons with a weak residual interaction, leading to Bose-Einstein condensa-
tion at low temperatures. Although the two limits seem to behave quite different at
first glance, suggesting a transition between different types of physics, they are actually
adiabatically connected by a crossover known as the BCS-BEC crossover [131,138]. De-
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1.5. Application: Short-range interaction in three dimensions

spite both limits being well understood, the crossover regime hosts complicated physics
and does not allow for a mean-field description due to strong many-body correlations.
One can define a special point in the crossover that is characterized by the divergence
of the two-body scattering length when a zero-energy molecular state is formed. This is
referred to as the unitary point or unitary limit, as the s-wave scattering cross section
o0 = i—g sin? 6y — i—z (1.237)
assumes its maximally allowed value, only restricted through the unitarity of the scat-
tering matrix. Note that the fermions can only interact through s-wave scattering if they
have different spin due to the Pauli principle. In the unitary limit (and at low enough
temperatures), the physics should become independent of the length scales of the inter-
action potential, such that it can be modeled by a zero-range potential. For the latter,
being an effective description in terms of boundary conditions of the wave function, a
series of exact relations have been derived, known as Tan’s relations [139-141] that in-
troduce a quantity known as Tan’s contact that describes the short-range correlations,
but also appears in the spectral properties and can be calculated from an analogue of
the Hellmann-Feynman theorem named as “adiabatic sweep theorem” by it’s inventor,
oF v . "
m = T’ C = \kl\lglook Nk o (1.238)
Here, C' is Tan’s contact and ng, is the momentum distribution of the particles with
spin o. The energy E is thereby associated to any stationary state. The contact, as a
measurable quantity [142], has attracted a lot of attention especially in the description
of the crossover regime (see, e.g., [88,143,144] and references therein) as a nontrivial
quantity in a highly correlated system.

It is, however, worth noting that the sweep relation for the contact shows that it is
directly connected to the energy shift due to the finite inverse scattering lengths as they
appear in the applications considered here. To be specific, the shifting method used for
bosons directly outputs the quantity that defines the contact for a generic eigenstate.
It would thus be desirable to calculate the contact using the methods introduced here.
However, this has not been done to date, but a first attempt that used the large N
asymptotic expressions (i.e., the stretch exponential form of the density of states) did
not yield satisfactory results when approaching the unitary limit, where some results are
available in the literature. Instead, this section concentrates on the calculation of the
cluster expansion for four fermions as a first testing ground for the applicability of the
shifting and to reproduce the physics of the whole range of interactions (of course not
observing superconductivity in this few-particle system).

The QCE(1) is obviously not capable of producing two molecular states, as it contains
only a single two-particle bound state. Thus, to cover also the limit of two (composite)
bosons interacting via a residual interaction one has to include also the QCE(2) dia-
grams. However, as only the interaction contributions of second order, associated with
the second Ursell operator, is known, the higher interaction contributions are left out.
They are expected to be subdominant, as they have to involve at least two identical
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1. Quantum cluster expansions in short-time approximation

particles, and the Pauli principle leads to a vanishing of the three-body wave functions
when the three particles are close to each other, suppressing the three-body effects.
The corresponding suppression has also been observed [61] in the context of the related
dynamical impurity model in 1D, where already the QCE(1) yields fully satisfactory
results. Of course, there is also an interaction contribution of fourth order, but it is ne-
glected with the same argument. The diagrammatic representation of the approximate
canonical partition function is thus

ot ot G
17(22) _ {jg O~ W o O O+ W @¢}
¢ONO¢ i I
+4{¢O ©¢_¢@Ng¢_¢g%@¢+¢®w®¢}
Wy ot o
97 - S ) o

where the first line contains the QCE(0) (i.e., noninteracting), the second the QCE(1),
and the third line contains those diagrams of the QCE(2) that only involve pairs of
interacting particles. The explicit labels for the spins (arrows) are only needed to deter-
mine the allowed diagrams and can be omitted once these diagrams have been found, as
they have no influence on the values of the diagrams. Note that the diagrams have the
same multiplicities in each line, while their signs are different, depending on the number
of exchange permutations. The diagrams of the QCE(1) have been calculated already
in the last subsection, and their contribution to the partition function can be directly
written down as [again omitting the intra/inter label on the functions a,(s)]

3 2 1

A Z(22) =3 [2—%%(5) (K;) —2x 3—%%(5) (Zg) +475ay(s) (%)
(1.240)
The first diagram in the QCE(2) is just the product of two such diagrams and is thus
also known. The last diagram can be expressed in terms of known diagrams by us-

ing the completeness relation of the full two-particle propagator, yielding the general
diagrammatic relation valid for arbitrary interactions

TPy =62 ’w —2 ¥y (1.241)

Note that the irreducible four-particle QCE(1) diagrams are exactly canceled by the
second term. Thus, the only missing diagrams to be calculated are the second and third
diagram of the QCE(2), that both have the same value. As was the case for the QCE(1),
the diagram can be reduced to single integrals and one finally obtains the expressions
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for all the above QCE(2) diagrams as

_ Ver |
OWO: =64 x 2% (s) (A—;> , (1.242)

0 = S‘fd 4 [ag(25) — 2a1(s)], (1.243)

T
C}jg =32 ‘;f 4% {4 GV 45) — gm{rtv? (45)} , (1.244)
T
with the function G(()""/) defined in Eq. (1.234) of the last subsection and the function
m L 2 3 o0 — 2
H(()”)‘” )(5) = —e5/ dz e~ (n=tV5) erf(\z) erf(pz). (1.245)
VT Jo

By reordering according to powers of Veﬁ/)\% one obtains the coefficients AZI(N’d) in

Eq. (1.108),

Az§4’d)(s) —8x 27ga0(8)7 (1.246)

Az (s) =16 [21*%3(5) - 3*%%(8)} : (1.247)
3

A (5) =4 x 4% {a0(25) ~8 [4 GV (1) — aHPV? (45)] } : (1.248)

that then define the coefficient functions gl(4’d)(e) in the level counting function (1.112)

according to Eq. (1.113). The required inverse Laplace transforms can be found in
Appendix D.4. Although the results above are valid also for homogeneous external po-
tentials, the results for the inverse Laplace transform of s~%2 Hy is only given as a closed
form expression for odd effective dimension d. Although the case of even dimensions can
be easily implemented using a semi-analytical approach with one single numerical con-
volution integral being required, only the case without external potentials is discussed
here.

Figure 1.15 shows a comparison of the QCE(1) predictions and the prediction from
including the diagrams from the QCE(2). There, the natural dimensionless coupling

parameter
1 (vi)’
Peftr = — (—) (1.249)

Qg

is used, that emerges when the energy is expressed in terms of the energy unit pe_ﬂ}7
Eq. (1.114). As can be seen, both approximations yield similar results for the regime
with negative scattering length, i.e., n = 1, where no bound states are available. This is
demonstrated in green for a rather strong coupling pega = 1. Unfortunately, the QCE(2)
result suffers from oscillations for small energies, yielding unphysical negative values for
N there. In the presence of the bound states, i.e., for n = —1, the two results start
to differ also for large excitations (orange) and when approaching the regime of large

81



1. Quantum cluster expansions in short-time approximation

=1, pega =1 wp |77 0= L pera =10

n=1 pega=1 — noninteracting

pett pet E*

Figure 1.15: Left: Comparison of the predicted level counting functions (absolute value)
from QCE(1) (dashed) and including multiple pairs from QCE(2) (solid) for various
values of the coupling. For the regime with negative scattering length (n = 1), the
two results are comparable for N > 10, but the QCE(2) diagrams lead to noticeable
oscillations at small energies. For positive scattering lengths, this problem persists at
small « (large scattering length) but for larger «, the QCE(1) fails. Right: Double-
logarithmic plot of the data from the left plot for pega = 10, showing the different power
law behavior of the QCE(2) at low energies, where only a pair of (bosonic) molecules is
energetically possible.

peter, the QCE(1) result cannot reproduce the shift that comes from two bound pairs.
To verify the two-molecule character of the low-energy regime for this case, the right
plot shows a double-logarithmic plot of the level counting function against the energy
excitation E* = F + 2« above the theoretical energy minimum F = —2« corresponding
to the two bound pairs being at rest. One can clearly see a change in the power law
around F =~ 0 (i.e.,, E* ~ 20pgﬁl)., where the two (bosonic) pairs can be broken up into
four fermions and the largest exponent of the energy in the polynomial form of the level
counting function changes from 2d/2 to 4d/2. There is also a regime —a < E < 0 where
one molecule and two fermions can coexist, but one has to use very strong couplings
Pet > 1 to resolve it (not shown).

The result for the level counting function in the regime —2a < F < —a, where only
the two bound states are energetically available, is actually very simple and directly
reflects the bosonic character of the molecules. Defining E* = E + 2« one obtains for
this regime

3
pai 2pe E*)? (QPCHE*)§|: ' (2PcﬂE*>:|
N/Pairs( pry ( 1 — gPams | ——— , 1.250
(E7) 13 Wors g s (1.250)

with the effective interaction of the pairs

3

*\ T2
pairs ¢ _* :82 i
)= ()

(1+5) -(439)] wam
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By comparing this to the counting function for two bosons with contact interaction,

NO(E) = (pCfoE)?) + (f;\ﬁ/%g {1 —g(%)} , (1.252)

gle) = 873 [(1 +e)? — (1 + ge)} , (1.253)

one finds that the system does, indeed, behave like two bosons with twice the mass of the
fermions, as peg o m and pega is mass-independent, but with a renormalized interaction

gPain(e") = sg(ez) , (1.254)

where the factor 8 cannot be removed by a redefinition of the coupling in general. How-
ever, for small scattering lengths one directly finds

aP?rs — 4q (1.255)

for the scattering length of the pairs. Unfortunately, this overestimates the dimer-dimer
scattering length for a zero-range potential aygq = 0.6as close to a Feshbach resonance
[145] and is moreover incompatible with the mean-field prediction agq = 2as [131]. The
reason lies probably in the approximation of neglecting a whole class of diagrams. Still,
the discrepancy is surprisingly large, and the fact that the two scattering lengths cannot
be directly related due to the factor 8 in (1.254) is also puzzling when considering the
otherwise identical form of the interaction. However, as the above results are to be seen
as work in progress, this will not be further analyzed here.
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1.6. Summary and concluding remarks

In this part of the thesis, the general tool of quantum cluster expansions has been re-
viewed, also generalizing the known results to include spatial information that is usually
not accounted for in the applications so far. Especially with the generalization to multi-
ple species, the full potential of the cluster expansion has been explored on an exact level,
where all the combinatorial complexity has been reduced to simple recursive formulas.

After this exact analysis, the semiclassical short-time approximation has been intro-
duced, implying a very general dimensional scaling of moderate- to high-temperature
equilibrium expectation values. The short-time approximation results in a smoothed
spectrum and defines the smooth part of the density of states, but as the approximation
is done on the level of propagators, it is also applicable to arbitrary correlation functions,
as has been shown in later sections. However, before doing so, the expected thermody-
namic limit properties of the cluster expansion and the resulting ensemble equivalence
was used to rederive a version of the “shifting method” introduced in [60], with a focus
on its expected scaling in the thermodynamic limit.

As a main application, the cluster expansion for the nonlocal pair correlation function
in the extended Lieb-Liniger model has been calculated analytically up to three-body
clusters, and its usefulness for finite systems has been demonstrated by direct compar-
ison with the respective numerical results. To demonstrate the general applicability of
the dimensional scaling in short-time approximation as a semi-analytical tool, the four-
and five-body clusters have been calculated numerically and were then used to analyt-
ically predict the behavior in different parameter regimes. All this was supplemented
by full-fledged numerical calculations based on the Bethe ansatz solutions of the Lieb-
Liniger model, and the validity of the short-time approximation was verified, showing
that it is applicable even very close to the quantum degenerate regime. Apart from
this validation of the short-time approximation, the analytical results are of interest in
their own, as the analytical results obtained with the methods used here have not been
reported in the literature before and compare well with available numerical results for
the thermodynamic limit correlations in the respective regimes.

Although the correlations in quasi-one-dimensional systems are experimentally in
reach nowadays, the rest of this part of the thesis was dedicated to the three-dimensional
applications. First, the calculation for a certain class of irreducible diagrams was per-
formed for spherically symmetric interaction potentials, reducing the effort of their cal-
culation to the simpler one-dimensional radial description in partial wave decomposition.
Then, a simple finite-range model potential was introduced to convey to the reader the
naively counter-intuitive implications of zero-range limits of interaction potentials in
three-dimensions. The latter naturally led to a description of resonances, with the ana-
lytic behavior around their vicinity being universal to some extent, irrespective of their
physical origin, such that the results for the model potential can be used to describe also
Feshbach resonances, that are commonly used in experiments.

This was done in the final subsections. In a first application, a new prediction for the
virial coefficient of the normalized nonlocal pair correlation function was presented. Al-
though explicitly given for bosons only, the result for fermions can be obtained straight-

84



1.6. Summary and concluding remarks

forwardly. Then, the shifting method for the density of states was applied to a system of
repulsively interacting bosons and was compared to the more complicated calculation of
the quantum cluster expansion of order one. This was done for translationally invariant
systems as well as for bosons that are confined by harmonic trapping. The results sug-
gest that the shifting method is applicable in a larger energy regime, and noting that it
is much easier to implement also renders it the preferred approach for this type of task.
Nevertheless, the predictions still await numerical and experimental verification. Fi-
nally, the cluster expansion (equipped with the semiclassical short-time approximation)
was applied to a system of four fermions across the unitary regime of infinite scattering
length, showing the qualitatively correct behavior in all regimes, however also revealing
certain shortcomings that stem from the introduced approximations.

Altogether, the methods presented in this chapter have proven as powerful tools that
allow for the description of the equilibrium properties of quantum gases down to very
low temperatures, also enabling the analysis of correlations that go beyond the standard
thermodynamic descriptions. The neglect of the highly system-dependent level fluctua-
tions in the many-body density of states has provided a unified description of regimes
from very low to infinite temperatures that only depends on a few parameters and can
thus be applied to whole classes of systems. However, the smoothness assumption is cer-
tainly not fulfilled at all temperatures, and the ground-state properties become dominant
in the zero-temperature limit. Although the predicted smooth many-body level densi-
ties can reproduce the positions of noninteracting many-body ground states remarkably
well if subleading corrections (e.g., boundary corrections) in the Weyl expansion are
taken into account [52], the exact ground state properties are highly system-dependent
and require a different approach. Moreover, methods of cluster expansion in short-time
approximation with imaginary time are not devised for non-equilibrium (real-time) dy-
namics in quantum systems. Although the short-time approximation may be applied,
it is the discrete frequency spectrum that determines the long-time dynamics, which
cannot be captured in the methods of this chapter. Therefore the next chapter takes
a complementary semiclassical approach that is capable of both describing individual
quantum states down to the ground state in nonperturbative regimes as well as making
nontrivial predictions for the quantum time evolution.
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2. A semiclassical treatment of quantum
critical phenomena

2.1. Introduction and concepts

One of the most interesting and important phenomena in the equilibrium physics of
macroscopic bodies is, apart from the existence of an emergent description of the state
in terms of only a few parameters, the possibility of a system behaving very differ-
ently depending on macroscopic parameters, although the microscopic model and its
ingredients are the same in all so-called phases. Transitions between phases range from
everyday life examples like the melting of ice to water and vaporization of the latter,
over magnetic transitions in metals, to highly nontrivial effects like the emergence of
superconductivity at very low temperatures. Although the existence of the different
phases is clearly evident from experience, the theoretical description of the phenomenon
has proven a difficult task. One reason for this is the emergence of nontrivial long-range
correlations between particles when approaching the transition, such that their mutual
interaction has to be fully accounted for (as opposed to the situation away from the tran-
sitions, where effective descriptions are often sufficient). Another difficulty lies in the
fact that for finite systems the thermodynamic potentials, being derived from the statis-
tical ensembles, are analytic functions of the system parameters, while phase transitions
and critical phenomena are characterized by a non-analytic behavior that emerges in
the thermodynamic limit. This non-analyticity defines the order of the transition as the
lowest order derivative of the thermodynamic potential that is not continuous (Ehrenfest
classification [146]).

2.1.1. Theoretical description of phase transitions

After a first phenomenological description of the liquid-gas transition was found by van
der Waals in his famous equation of state (requiring the ad hoc Maxwell construction)
[62], more elaborate mean-field techniques were developed. Landau’s heuristic theory for
phase transitions [147], based on general assumptions on the possible analytic form of the
thermodynamic potential, allows for a systematic analysis around critical points in the
parameter space, also introducing the general scaling of thermodynamic susceptibilities
close to these points, leading to the concept of critical exponents that further characterize
the transition by introducing algebraic scaling relations of susceptibilities y of the form

X~ (T -T)", (2.1)

where T, defines the (finite) critical temperature. A more fundamental analysis of these
exponents that directly connects to microscopic models is obtained in the framework of
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2. A semiclassical treatment of quantum critical phenomena

the renormalization group (RG) analysis [148,149], incorporating the intuitive picture
of macroscopic descriptions emerging from coarse-grained microscopic models. The RG
analysis also establishes a notion of universality of the critical exponents, as they can be
considered as properties of the RG rather than being associated to a specific system.

As it turns out, the RG analysis shows that the results from mean-field theories are
valid only for dimensions above a critical dimension d*, while thermal and/or quantum
fluctuations become crucial below it [150]. However, this does not mean that fluctu-
ations are not important above d*, as they are actually the driving force behind the
transition: A phase transition can be characterized by a certain order parameter (e.g.,
the magnetization) that reflects the long range correlations in the system. In the case
of an actual broken symmetry, the fluctuations provide the necessary uncertainty in the
microscopic degrees of freedom to restore this symmetry across the transition.

In the theories for critical phenomena mentioned above, it is usually the thermal
fluctuations that are responsible for the critical behavior, leading to a finite critical
temperature and a phase transition that is then said to be classical, even though the
underlying physics can be of pure quantum nature, as is the case, e.g., in supercon-
ductivity. This is due to the fact that the thermal fluctuations are always dominant if
the critical temperature is greater than zero [151]. At zero temperature, when thermal
fluctuations are absent, the quantum fluctuations become important and can drive a
quantum phase transition. This requires a system parameter g other than the tempera-
ture to characterize the position of the critical point, and, as the system remains in its
ground state at zero temperature, the effect of the variation of this parameter has to
have drastic effects on this ground state. In most cases, the formalisms of the classical
phase transitions can be directly transferred to the quantum case by treating the imag-
inary time dimension, that represents the inverse temperature!, analogous to a space
dimension [151,152]. Although this also leads to a characterization in terms of critical
exponents, the fixed points of the RG flow (i.e., the critical points) can have very differ-
ent behavior in the (imaginary) time- and spatial directions and thus have a larger set of
universality classes [152]. On the other hand, the fact that the phase transition occurs at
zero temperature can simplify the situation in that only the low-energy properties of the
system are relevant for its characterization, such that a direct analysis of the low-lying
quantum states can be performed. In particular, the fundamental energy gap A that
separates the ground state and the first excited state can be used for a characterization
of the transition, as the way the gap closes at criticality is characterized by an exponent
v

A~(g—g.)", (2.2)

where g. is the critical value of a coupling g that can be tuned by varying system
parameters [152].

As a standard tool in mean field analysis, Bogoliubov theory can be applied to find
low-lying excitations above a many body ground state. It can sometimes even be used
as a tool to detect a transition as the point where Bogoliubov spectrum around the

!This formally results from the trotter decomposition of the partition function in imaginary time that
is required to write the partition function in the usual form of an exponential of an action.
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ground state of the system becomes imaginary [153], hence hinting at an instability of
the respective “ground state”. But this also means that this mean-field theory, although
applicable on both sides of the transition, breaks down at the transition point and
its influence on the dynamical properties of the system close to this point cannot be
accounted for, as they are then dominated by the quantum fluctuations beyond the
mean-field picture. This is where semiclassical methods can enter the game, as they can
be used to systematically improve mean field approximations by accounting for finite size
effects and correlations that are neglected in mean field approaches. To be specific, the
mean-field as a large- N approximation, where N is the particle number, can be viewed as
a classical fier = 1/N — 0 limit of a quantum system, and semiclassical methods that are
well-established in the single-particle context, can be applied to find non-perturbative
corrections in terms of the small parameter o, while treating the (real) Planck constant
as a system parameter.

2.1.2. The quantum — classical correspondence

The semiclassical methods that have been introduced mainly in the context of single or
few-particle systems in the past decade rely on the quantum-classical correspondence,
i.e., they use the experience and intuition from classical mechanics to get a better un-
derstanding of the quantum physics. Although the starting point is often a quantum
system in modern approaches, and classical dynamics can emerge unambiguously in cer-
tain approximations, one is often faced with the problem of directly associating a classical
system to a quantum system (classical limit) and vice-versa (quantization). One needs
to point out, however, that there is no direct correspondence of quantum and classical
systems in general, as the commutativity of classical conjugate variables is replaced by
non-commuting operators in quantum mechanics. This does not lead to any difficulties
in the quantization of simple mechanical systems with an classical Hamiltonian function
of the form )
P

T V), (23)

H(q,p) =

as replacing the classical variables by quantum operators

q—q, p—p, {¢;p} = [§,p] = ik (2.4)

will not lead to any mixed terms that are sensitive to ordering of operators due to the
commutator relation (the expression {g¢,p} is the Poisson bracket). This is not true in
general, however, and leads to a contradiction already at the level of the simple Hamilton
function (2.3) if a canonical transformation is applied, that mixes the coordinates ¢ and
p, e.g., by defining Q = (¢—p)/v2, P = (¢+p)/+/2 and then quantizing Q and P instead.
The same can be done for any rotation of the original coordinates, leading to a continuum
of classical models that are canonically equivalent, but with ambiguous quantization
rules. Moreover, one can find general examples that rule out the possibility to define a
unique quantum-classical correspondence of the kind (2.4) using the Poisson bracket and
the commutator [154]. Therefore, one usually applies the convention that polynomial
expressions in the variables ¢,p are brought into symmetric form before quantization,
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2. A semiclassical treatment of quantum critical phenomena

which removes the ambiguity at the level of quadratic polynomials. However, one should
note that this can lead to divergent terms in the quantization of field theories, that have
to be eliminated (e.g., by attributing them to an infinite vacuum energy that drops out
in the calculations).

Although the quantization of classical systems was historically the first task to ac-
complish when quantum mechanics was developed, it is the quantum description that
should be viewed as the (more) fundamental one, and one should rather ask the ques-
tion, whether one can define a corresponding classical model. In many cases, this can
be done unambiguously by noting that all contributions due to reordering of operators
should be considered as quantum corrections that depend on Planck’s constant /i and
should thus be neglected in a classical description. This is, of course, not true for, e.g.,
spin systems, where & sets the energy scale and thus cannot be neglected, emphasizing
the fundamentality of their quantum description.

However, simply replacing operators by classical variables and dropping the “quan-
tum” terms that contain % oversimplifies the problem, as it completely ignores the dy-
namical aspects of both theories and suggest that one can obtain classical mechanics
simply as a perturbative expansion in the small parameter /. Instead, the unitary time
evolution in quantum mechanics turns out to be non-analytic in A, as can directly be seen
in the case of a time-independent system, where the time evolution operator assumes
the form .

U(t, to) = e~ nllt=to), (2.5)

Its form suggests that one should actually think of classical mechanics as emerging from
an asymptotic expansion in a large parameter 1/h. This idea can be made explicit
by expanding the quantum-mechanical propagator into a Feynman path integral [§]
[assuming a Hamiltonian of the form (2.3)]

)=

N a\t)=ar i .
(a0 to)la) = [ Diget fo 040 (26)

Jq(to)=qi

that can then be evaluated in a stationary phase approximation [2]. The stationary phase
condition is then equivalent to Hamilton’s principle of classical mechanics, if the function
L(q,q¢,t) is taken as a classical Lagrange function, showing that the classical dynamics
emerges from an asymptotic, rather than a perturbative expansion. Analogous steps
can be performed also if the Hamiltonian assumes a more complicated form, where the
p-integration leading to the familiar form (2.6) cannot be performed explicitly [8]. Then,
one obtains coupled stationary phase conditions (in the form of Hamilton’s equations of
motion), that again generate the classical dynamics. Although this is not carried out
in detail here, one should note that the large parameter does not have to be 1/k, but
could, in principle, be anything. For example, in bosonic many-body systems, where
the number of particles NV can be used as the relevant large parameter, one can obtain
a different “classical” limit that describes the mean-field dynamics, while the reduced
Planck constant / is merely a parameter. To make the analogy explicit, one often defines
an effective Planck constant fieg in such situations, i.e., fieg = 1/N for the above mean-
field limit.
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2.1.3. Phase-Space Representations

Although the asymptotic expansion of the path integral can be used in many cases as
an elegant derivation of a classical limit, common approaches use uncontrolled approxi-
mations when taking the continuum limit in the path integral, i.e., continuity of certain
quantities is assumed, although the latter can only be guaranteed for specific functional
forms of the Hamiltonian, thus leading to wrong results in general already at the level
of the full path integral [155]. This can be especially problematic in coherent state path
integrals that are used in the many-body context.

A more direct approach that does not require functional analysis can be obtained
by using phase space representations of the quantum operators and their dynamical
equations. In the context of many-particle systems, this is best done using the coherent
states [156]

;|2 AT
) = [T e+l oy (2.7)
i
satisfying
a; o) = ailex) (2.8)
where &IT creates particles in mode ¢ and a = («;) are complex numbers associated with

the coherent states of each individual mode. For simplicity, let us concentrate on the
case of a single mode here, as the operators for different modes commute and thus do
not introduce complications.

The Wigner function associated to a density matrix p(¢) is then defined as [156]

1 At xa * x
W(a,a*t) = = /dZZ Tr {ﬁ(t) == “} e” aTE (2.9)
7r

with the integration being defined as d2z = dR(z) d3(z). For other operators A(a,al),
represented by the creation and annihilation operators, the Weyl transform (or Weyl
symbol) is defined in the same way by replacing the density operator by 7 A, i.e.,

Ala,a*,t) = 1 /d2z Tr {A(t) ez‘ﬂ_z*&} e amzat (2.10)
T

where the Heisenberg picture was used and ¢t = 0 corresponds to the Schrdinger form of
the operator (no explicit time dependence of A for simplicity). If the operator is of poly-
nomial form in the operators a,af, as is usually the case for many-body Hamiltonians,
the resulting phase-space function can be directly obtained by symmetrically ordering
all the operators and then replacing them with complex variables [154,157] according to

a—a, alear (2.11)

The expectation value of the (Schrédinger) operator A is then obtained from its cor-
responding (time-independent) phase space function A(a, a*) as a phase space average
using the Wigner quasi-distribution,

Tr{pA} = /dzz Ala, o)W (v, ", t). (2.12)
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One can further formalize the phase-space description by introducing the phase space
equivalent of the operator product, called the Moyal star product [158]. The latter is
usually represented in real variables ¢, p, but can also be written using complex phase

space variables as
— = — =
%(aaaa*faa*aa)
*=e , (2.13)

where the arrows denote that the derivative operators act to the left or to the right factor
in a product. With this, the time evolution of the Wigner function is given by [157]

oW = %(H*W—W*H) = {{H,W}}, (2.14)

were the final expression defines the Moyal bracket and H = H(a,a*) is the Weyl
symbol for the Hamiltonian. Equation (2.14) can be directly identified as the phase-
space analogue of the von Neumann equation for the density matrix. By applying the
Weyl transform to the Heisenberg equation of motion one directly obtains the equation
of motion for arbitrary phase space functions [159]. For the time-evolved annihilation
operator, one obtains?

& = da = {{o, H}}. (2.15)

This is straightforwardly generalized to the situation of having different operators a;,
leading to coupled equations of motion.

To make contact to classical dynamics, one can assume that the operators a(f) and
their phase-space analogues a*) are of the order he_ﬁ} /2 In the context of single-particle
physics, the variable « is the classical analogue of a ladder operator of a harmonic

()SCiHat() ;
q D

Vomhw

and one has hieg = h. On the other hand, in bosonic many-body systems, the creation
and annihilation operators can be viewed as being proportional to the square-root of the
occupation of the state that they are applied to, leading to an effective Planck constant
het ~ 1/N by rescaling the operators and their phase space analogues with the particle
number and treating A as a parameter. In both cases, the Moyal bracket with the Weyl
symbol H of the Hamiltonian can be written as

Y, 1Y + O() (217)

(2.16)

{f. H}} =

i.e., it reduces to the Poisson bracket for he.gs — 0 and the equation of motion for the
Wigner function (2.14) becomes Liouville’s equation with the statistical phase-space
distribution replaced by the Wigner function, while Eq. (2.15) becomes the classical
equation of motion for a single trajectory. Note that the Poisson bracket in Eq. (2.17)
is with respect to the new (rescaled) coordinates and the factor heg/h can be eliminated
by a redefinition of H.

?Note that o = a(ao, aj, t) is the Weyl symbol of the Heisenberg operator a(t) while the Moyal bracket
is then defined with respect to the time-independent variables g, .
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2.1.4. WKB wave functions and EBK torus quantization

An important semiclassical tool applicable in integrable classical dynamics is the EBK
torus quantization [41,42,160] that is briefly summarized here for further reference.

In classical mechanics, integrable systems with a 2 f-dimensional phase space are char-
acterized by the existence of f constants of motion F; (including the Hamiltonian func-
tion, e.g., as H = F) that are independent in the sense that their mutual Poisson
brackets vanish and that the tangent vectors of the (Hamiltonian) flows generated by
each of them are linearly independent in each point. To be specific, the tangent vectors
are defined as the vectors &; = (q;, p;) with

The individual flows defined by these equations can then be considered as a natural local
parametrization (with “times” ¢;) on a f-dimensional Lagrangian manifold, that is glob-
ally defined by the intersection of all the manifolds obtained from fixing the individual
constants of motion F;. If the motion is bounded in phase space, this Lagrangian mani-
fold has the topology of a (possibly degenerate) f-torus, and a trajectory that starts on
this torus will stay on it forever.

Very roughly speaking, the torus quantization then breaks up the f-torus into f
simple one-dimensional tori, that are then quantized individually by a Bohr-Sommerfeld
quantization, where each simple torus is characterized by an action variable

1 .
I]-:Q—%dqp(q,Fl,...,Ff)7 j=1,...,f. (2.19)
s T;

Here, the contour I'; is any continuous deformation (along the torus) of a single loop
around the jth one-torus in the decomposition of the f-torus, i.e., the jth irreducible
loop. Formally one finds that the WKB wave function in configuration space can be
written as .
2

det erSi@ ) +ior (2.20)

025,
0qol

P(q) = (qlv) =c>
!

where Sj(qg,I) are the (local) actions that generate the canonical transformation from
(g, p) to the action angle variables (¢, I'), with the latter being the natural parametriza-
tion of the torus with I = 0, i.e., the f constant actions I represent a specific choice of
the F;, while the angles ¢ each parametrize an irreducible loop. The reason for having
different actions comes from the fact that the parametrization of the torus in terms of
g can only be given as p;(q, I) with multiple local parametrizations, or layers [ that are
connected at caustics, where the WKB wave function description breaks down, as one
then has

%5 op,
0qoIl dq

In the simple case of a one-dimensional system, these caustics are just the classical
turning points. The additional phases oy in Eq. (2.20) have to be introduced to account

‘det — 0. (2.21)

= 'det
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for the correct phase relations between different layers®. These phase relations can
be found by either switching to a different local description or by finding the quantum
mechanical solutions in a local approximation around the caustics. This is a very difficult
task in general, requiring a full classification of caustics, and goes beyond the scope of
this thesis.

The requirement that the WKB wave function is uniquely defined quantizes the action
variables to

Ii(ng) = (nj + %) h nj=0,1,..., (2.22)

leading to a set of f quantum numbers such that all the constants of motion get quan-
tized as Fj(n) = F;j(I(n)), including the energy. Fortunately, the Maslov index v; in
Eq. (2.22), that implements the phases a;, can be calculated by counting the oriented
number of simple folds (caustics of codimension 1) along the irreducible loops that, in
generic situations, can be deformed in such a way that they avoid caustics with higher
codimension. The orientation of the fold is thereby given by the change of sign of det g—g
along the integration path, such that the folds that can be removed by a deformation of
the torus cancel in the overall count.

The EBK quantization rule (2.22) has been successfully applied to various mechanical
systems, yielding the exact spectrum in many cases [41], while the application of EBK
quantization to many-particle systems as a quantization of the mean field has started
only recently [43,44,161] (with some of the authors also including tunneling corrections).
However, most applications used effective descriptions and a simplified version of EBK,
i.e., the Bohr-Sommerfeld quantization in effective one-dimensional phase spaces. But it
turns out that in the model of interest here discussed later, special care has to be taken
when it comes to this effective description, and the knowledge of the topology of the
phase space on both sides of the phase transition that it describes is crucial for a correct
description.

2.1.5. The out-of-time-ordered correlator

The theory of chaotic dynamics is well established in classical mechanics, with the con-
cepts of phase-space mixing and ergodicity playing a crucial role [42]. However, in
quantum systems, the situation is more complicated and different aspects of quantum
chaos have been found. The most straightforward approach to quantum chaos, that is
restricted to quantum systems with a well-defined classical limit, is given by defining
a quantum system as chaotic, if its classical analogue shows (classical) chaos. In these
systems, the eigenfunctions of the Hamiltonian locally look like random waves [162], and
the famous BGS conjecture states that all such systems should be well described by
random matrix theory, leading to specific types of level statistics only characterized by
the symmetries of the system [49]. The BGS conjecture can also be applied to quan-
tum systems where a classical limit cannot be defined due to the lack of a small/large
parameter. This scenario is then referred to as “many-body quantum chaos” [163].

3In general, the oy could depend on the coordinates along the caustics.
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Direct measures of chaos in quantum systems are not easily found. In systems with
a chaotic classical analogue, one should expect that any wave function that is initially
localized in phase space (in the sense of the associated phase-phase distribution) should
spread quickly due to the classical instability, becoming more and more complex with
time, until (self)interference effects start to play a crucial role. One might try to im-
plement the classical philosophy of close-by trajectories diverging exponentially by cal-
culating the time evolution of overlaps between two wave functions, that are initially
close in phase space. However, the unitarity of the quantum-mechanical time evolution
renders this overlap constant in time, i.e.,

W1(0o(t)) = W1O)ITT )T (1)|to(0)) = ($1(0) |40 (0)) - (2.23)

More successful approaches are therefore based on operator expectation values and cer-
tain (out-of-time-ordered) correlators. The introduction of the out-of-time-ordered cor-
relators presented in the following shares similarities to the presentation in [164], and
the reader is referred to this publication and references therein for further reading.

To characterize the instability in a quantum system, one can ask the question, how
a small perturbation of an initial state at time ¢ = 0 affects the measurement of an
observable A at later times. This can be answered in a simplified linear response theory*
with an instant perturbation at ¢ = 0: If the initial state is characterized by a density
matrix p, the perturbed density matrix, characterized by a parameter € can be given as
the unitary transformation generated by a hermitian operator B,

ﬁe — efief;’ ‘beieB. (224)

For example, if B is the momentum operator, the perturbed density matrix gets shifted
by € in its real-space representation. The change in the expectation value of A after time
t is then given by

</1(t)>6 - <A(t)>0 N {(/35 - p)A(t)} —e <z [A(t), B] >0 +0(e), (2.25)

i.c., it is characterized by the commutator [A(t), B(0)].

It is instructive to consider the case of the operators being two momentum operators
at different times. In the phase space formulation introduced in section 2.1.3, using
phase space coordinates (qo,po), the expectation value of the commutator is then given
by the phase space average of the Moyal bracket, Eq. (2.15),

(i [5(), DO)]) = —h / dao dpo W, (a0, p0) {{p(d0: Do, 1), po} ) (2.26)

Here, W, is the Wigner function associated to the density matrix p at time ¢ = 0 that is
assumed to be local in phase space in some sense. The short time behavior can then be
expected to be well described by classical dynamics. Formally, this results again from
approximating the Moyal bracket by its leading order in £, i.e., the Poisson bracket, such

*See, e.g., [6] for the general formalism.
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that the time evolution of p(go, po, t) follows a classical trajectory and the Moyal bracket
in Eq. (2.26) becomes

Ipa(qo, po, t)
Jdqo

in terms of the classical expectation for the element dp(t)/9qo of the the stability ma-
trix for a generic classical trajectory in a chaotic region, with Ay being the (largest)
Lyapunov exponent [164-166]. The latter is, however, typically obtained only in a long
time average of the divergence of two trajectories, as the direction ¢y does usually not
coincide with the most unstable direction. This does not conflict with the short-time
assumption, in principle, as the phase space average in (2.26) can replace a time average
due to the (assumed) classical ergodicity. However, the very same average leads to large
cancellations, as the unspecified phase space function ¢ in Eq. (2.27), that can wildly
fluctuate within the localization length of the Wigner function, leads to a trivially van-
ishing result in generic situations. Especially in thermal systems, response functions of
the type (2.26) are known to decay rapidly as a consequence of thermalization [167].

The way out of this can be seen as an analogue construction as is used in the definition
of the Lyapunov spectrum, where a positive definite matrix is constructed from the
stability (or monodromy) matrix M as A = MTM, with its positive time-dependent
eigenvalues characterizing the (in)stability in the different phase-space directions [168,
169]. Similarly, one can replace the commutator M = i[j(t),(0)] in Eq. (2.26) by the
operator MT M, which yields the original form [165] of the out-of-time-ordered correlator
or commutator (OTOCQC)

{{r(q0,p0,t); po}} =~ {palgo, po,t),po} = ~ Tic(qo, po) e, (2.27)

5 = ([4®, BO)] [BO), A®)]) = - <[A(t),f;(o)} 2> , (2.28)

again given for arbitrary (hermitian) operators. Its name comes from the unusual time
ordering of two of the terms that one obtains when the commutator is expanded, namely

Ca5(t) = ({A®B©), BOJA®W) }) - 2RF3 5(0), (2.20)
with the curly bracket in the first expression being the anticommutator and
Fip(t) = <A(t)B(0)A(t)B(0)>. (2.30)

The latter is the object that most literature now calls the out-of-time-ordered correlator
(e.g., [170-174] and references therein), while the definition with the commutator is often
used only for the classical arguments that lead to the exponential growth. It is usually
argued that the other terms that contribute to C(t) do not show exponential behavior,
as they can be written in terms of an overlap of quantum states, e.g., for a pure state®
p = [) (| one has

T {pAOBOBOAD | = (@O®).  [¥0) = BOAD ).  (231)

®Thermal expectation values can be included by using the thermofield double state [175] that is of
recent interest in high energy physics.
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Figure 2.1: Typical behavior of an OTOC in systems that exhibit classical chaos
(adapted from [177]). For early times an exponential growth with a rate of twice the
Lyapunov exponent Ar, represents the unstable classical dynamics, while (many-body)
quantum interference starts playing a role at the Ehrenfest time 7, eventually leading
to a saturation of the OTOC in a fully scrambled regime.

However, this state is not normalized if the operators A and B are not unitary which
requires a slightly different definition of the OTOC [173], as A and B were assumed to be
hermitian here. Although in many applications it is sufficient to work with the correlators
F(t), Eq. (2.30), only the definition with the commutator, Eq. (2.28) is considered here.

By construction, the OTOC is expected to grow exponentially for short times in
systems that exhibit classical chaos®. Clearly, at very short times, the behavior can be
very different (as can be seen, e.g., by using operators that commute at ¢ = 0), and
one has to wait for the (classical) ergodic time scale proportional to /\E1 needed for the
exponential growth to become dominant. The time scale that marks the breakdown of
this exponential growth is the Ehrenfest time

p = % log<s—;;) , (2.32)
where s is a typical action of the classical system that is independent on A [55,176].
Around the Ehrenfest time, quantum interference effects become important that eventu-
ally lead to a saturation in chaotic systems [56,164,177]. Figure 2.1 shows a sketch of the
typical time evolution of the OTOC, highlighting the universal regimes of exponential
growth and saturation. This behavior has been demonstrated to be very well fulfilled
in the quantum kicked rotor [166], being a textbook example of classical and quantum
chaotic behavior, as well as in the superradiant phase of the Dicke model [178].

The Ehrenfest time (2.32) also appears in the context of scrambling in quantum sys-
tems, where it describes the time needed for a perturbation to spread over the whole
(finite) available phase space [179], where the Planck constant is replaced by the inverse
number of degrees of freedom (e.g., the basis size of a finite Hilbert space). Hence,
the OTOC is a suitable tool to characterize the scrambling in interacting quantum sys-
tems [180,181] with clear links to thermalization [167,173,182]. The logarithmic form of

5Note, however, that there is a fundamental difference in the order of averaging and taking the logarithm
in the definition of the Lyapunov exponent as compared with the OTOC growth rate, such that the
latter does not have to coincide with 2\ exactly [166].
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2. A semiclassical treatment of quantum critical phenomena

the scrambling time (as a consequence of the exponential OTOC growth) is then referred
to as fast scrambling, with black holes being conjectured as being the fastest possible
scramblers in nature [170].

Although the short-time behavior can be well understood classically, it is now common
to define the (quantum) Lyapunov exponent A via the exponential growth rate of the
OTOC C(t) or F(t), which then leads to A ~ 2\ when compared to the classical
Lyapunov exponent (if it can be defined). Surprisingly, one can show that under certain
circumstances, this “quantum” Lyapunov exponent A is bounded from above by the

temperature as
27

< 2=
=73

in thermal systems [170], and the bound has been shown to be saturated by black holes,
consistent with the aforementioned conjecture of black holes being the fastest scramblers.
The only other system that is known to saturate this bound is the Sachdev-Ye-Kitaev
model at low temperatures [171,174,183].

However, fast scrambling in the sense of an exponential growth of the OTOC does
not necessarily require chaotic classical behavior. It has been conjectured that, if a
system shows quantum critical behavior, the quantum Lyapunov exponent exhibits a
maximum at this point [184]. This has been verified for the one-dimensional Bose-
Hubbard model [184] and for the Dicke model [185], and the OTOC has since been
established also as a tool for the detection of (excited states) quantum phase transitions
[173,186-188], with a focus on its long-time behavior. The underlying classical dynamics
in these systems does not even have to be chaotic to show exponential OTOC growth,
as the necessary classical instability can be generated from isolated hyperbolic fixed
points in integrable systems [189-191]. Therefore, these types of models have even
been used as fast-scrambling toy models describing black holes as a condensate of soft
gravitons [153,192].

One of the goals of this part of the thesis is to elucidate the differences and similarities
in the scrambling properties of critical and chaotic systems. This will be done in the
following sections, first using an integrable tree-mode approximation of an attractive
Bose gas that is then extended to a nonintegrable case.

A (2.33)
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2.2. The attractive Lieb-Liniger gas in 3-mode approximation

In this section, a simple one-dimensional model of attractively interacting bosons is used
to examine the properties of systems near quantum phase transitions in a semiclassical
approach. When Lieb and Liniger introduced their model for the first time [19,92],
their analysis focused on the case of repulsive interaction. The fact that the attractive
case does not allow for a well-defined thermodynamic limit with fixed density led them
to the conclusion that the attractive extension of the model did not have a physical
meaning. However, recent theoretical and experimental progress has shown that the at-
tractive interaction, apart from being experimentally realizable, leads to very interesting
phenomena. It has been shown that the confinement in a finite volume using periodic
boundary conditions leads to a quantum phase transition at a finite coupling, where
the noninteracting many-body ground state starts to form a bright soliton [16,193,194],
leading to a broken translational symmetry.
The model can be given in first-quantized form by the Hamiltonian

R 72 N 92
k=1 k i<j

where, g > 0 is the strength of the attractive coupling and periodic boundary conditions
(with period L) are assumed. It is possible to find solutions of the Schrédinger equation
for this Hamiltonian using the Bethe ansatz, leading to the same Bethe equations as
in the repulsive case [195,196]. However, finding the solutions of these equations turns
out to be a very difficult task, as the quasimomenta that enter the Bethe ansatz have
to be found in the complex plane, and even adiabatic changes in the couplings lead to
bifurcations and structural changes in the sets of quasimomenta [196]. This limits the
usefulness of the Bethe ansatz to small particle numbers. Only in the case of special
string solutions, where the quasimomenta are distributed in subsets with the same real
part, a systematic treatment for large particle numbers is possible [20]. These string
solutions can only be exact solutions if the quasimomenta are purely imaginary, as
is the case for the ground state that has been treated in the limit of large particle
numbers N in [197,198], where the quantum phase transition manifests itself also in
a non-analyticity of the distribution of the quasimomenta. All other string solutions
are only exact in either the limit of an infinite line [20] or, equivalently, in the strongly
interacting limit. As an example, they have been used to find the long time limit of local
correlations after quenches in large systems analytically, showing that the formation of
bound pairs of particles is dominant in the strongly interacting regime [199]. However,
when approaching the noninteracting regime’, this picture breaks down, giving rise to
more complicated quantum states and non-analytic behavior. This is a remnant of the
quantum phase transition that occurs at an interaction value g ~ (NL)™!, also leading
to solutions of the Bethe equations that deviate strongly from the string solutions.

“The authors of [199] use approximations valid only in large systems where the critical interaction value
approaches zero.
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2. A semiclassical treatment of quantum critical phenomena

The appearance of a phase transition in the mean-field description is better demon-
strated in a second-quantized formulation. In the following, all lengths, energies, and
times are measured in units of

L (2mh)? h

——— Bog=-—" = 2.35
o’ ref omL2’ 70 Ercf ) ( )

respectively, i.e., the coordinates are described by an angle 6 on a ring of radius R,
x = RO (2.36)

with 0 < 6 < 27. The Hamiltonian (2.34) can then be written in terms of the field
operators ¥(f) and ¥'(0) as
R 21 R 82 R Ta A R R R
H:/ a0 {qﬁ(e) (’@) B() — "G 0)FT(0)FO)B(0)|,  (237)
0
with the dimensionless coupling & = gL/m%. The field operators satisfy the usual com-
mutation relations

[@(9), xiﬁ(e’)] =5(0-9) (2.38)

for 0 < 6,0 < 27 and are periodic with period 2wr. The mean field limit of the
Schrodinger equation is then given by the Gross-Pitaevskii equation,

o 02 9

i— = |—=—= aN 2.39

S |- g+ NI . (239

where ¢(0) is the N-particle condensate wave function, normalized to one [16]. It turns

out that the stationary solution with minimal energy is then the constant wave function

for
a=Na<l. (2.40)

At a = 1 the Bogoliubov excitation spectrum around this solution collapses indicating a
different solution becoming energetically favorable. This new mean field ground state is
a bright soliton [16,200] centered at a point on the ring, i.e., it has broken translational
symmetry, leading to a (zero-energy) Goldstone mode generated by the translation along
the ring [194].

To conclude, the mean field approach, equipped with the Bogoliubov theory, provides
a good understanding of the quantum phase transition. However, it neglects correlation
effects among particles and breaks down exactly at the critical point, such that it does
not provide a way to systematically include finite size effects. Therefore, a different
approach is taken in the following. As the mean-field solution involves only the lowest
single-particle momentum state for o < 1 it should be possible to approximate the
many-body state by using only a few single-particle states with small momentum in this
regime. The field operators are thus expanded in the momentum basis as

0 Kmax
vo)= > Ma~ Y eMay, (2.41)
k=—oc0 k=—Fkmax
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2.2. The attractive Lieb-Liniger gas in 3-mode approximation

Figure 2.2: The effect of the truncation to five (left) and three (right) single-particle
momentum modes on the excitation spectrum for N = 20 particles. The solid lines
represent the data from the full Bethe ansatz solutions (taken from [196]) and the dashed
lines stem from exact diagonalization of the Hamiltonian matrix. The states with zero
total momentum (including the ground state) are highlighted in red.

where the momentum quantum numbers are truncated to |k| < kpax, i.€., only 2kpax +1
momentum modes are used. Inserting Eq. (2.41) into the Hamiltonian (2.37) then yields
the second-quantized Hamiltonian in momentum representation

~ o Q At
H = Z k2aLa,k 1 Z 6k+l’m+nalajamam (2.42)
k

kJlmmn

where k, [, m,n run from —kpax t0 kpmax. The interaction is clearly number and momen-
tum conserving. The latter can be seen from the Kronecker delta in Eq. (2.42). Apart
from that, the interaction couples all momentum modes equally. Formally, we have the
two identities

[HN] —0, [HK} -0, (2.43)

where N and K are the particle number and momentum operators,

N = Z@L% K =>"kaja. (2.44)
k k

The conservation laws (2.43) remain true also if the single-particle momentum basis is
truncated. The effect of the truncation on the excitation spectrum for N = 20 particles
is demonstrated in Fig 2.2, where ky.x = 1,2 are compared to the full Bethe ansatz
solutions. Omne can clearly observe that, although the quality of the approximation is
lowered with the cutoff, the qualitative features of the low-lying excitations are captured
already with the lowest three momentum modes.

2.2.1. 3-mode approximation

In this section, the truncation to three modes, i.e., knax = 1 is applied. Although the
quantitative agreement with the full model is poor for « = Na 2 1, this approximation
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2. A semiclassical treatment of quantum critical phenomena

contains all the physics for understanding the quantum phase transition and its precur-
sors for a > 1 and is thus commonly used to study finite size effects in the attractive
LL model [16,153,194,196]. Moreover, it is also of direct experimental relevance, as it
can be essentially realized in a spin-1 BEC, where the spatial degrees of freedom are
frozen out and the dynamics is only in the spin degrees of freedom [201-204]. There, one
can easily control the “kinetic” energy that is actually given by the quadratic Zeeman
shift by varying the magnetic field, thus effectively changing the relative strength of the
coupling.

From the theoretical perspective, the three-mode approximation is special, as the two
constants of motion, namely the particle number N and the total momentum K, allow
for a complete characterization of all states in terms of the latter, while the remaining
degree of freedom is effectively one-dimensional, giving rise to a regular spectrum in each
sector of fixed momentum and particle number. The implications of the two constants of
motion are clearer when looking at the (classical) mean field limit. There, they lead to
integrable dynamics that, due to the simple analytic form of N and K, can be directly
represented in a two-dimensional section of phase space and one-dimensional dynamics.
The detailed treatment of the classical limit and its quantization have been performed
in [61] and the reader is referred there for details. Here, only the most important steps
are reviewed and additional calculations are given. One important note has to be made
concerning the presentation of this section: all the results from exact diagonalization of
the 3-mode model that were used in [61] and [60] have been provided by the author of
this manuscript. For this reason, some of the figures were created in close collaboration
and reappear here without further reference.

2.2.2. Semiclassical treatment

In order to obtain the classical mean-field dynamics, the operators are translated into
their Wigner symbols as phase space functions. This is done by bringing all products
of operators in symmetric order, leading to additional terms due to the commutation
relations, and then replacing them by classical variables,

a — g = qk—i_# = e %, al o = % = /nge's. (2.45)

The coordinates g and py, are called quadrature variables [205] and are analogous to the
position and momentum of a harmonic oscillator, but have to be considered only as a
pair of canonical variables as they are not a physical momentum or position of anything.
The polar coordinates nj and 6, are related to the quadrature variables by a canonical
transformation, but do not have an exact quantum analogue. This is, however, only
important when the Maslov indices (c.f., section 2.1.4) are concerned, as they originate
from the non-commutativity of the quantum operators. The reader is referred to [61] for
more details on this issue and for the intermediate steps in the derivation of the classical
Hamiltonian function. The classical analogues of the particle number N and the total
momentum K are given by

.3 .
NCIZN—§, N =n_1+ng+nq, Kg=n1—n_q, (246)
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2.2. The attractive Lieb-Liniger gas in 3-mode approximation

and can be easily shown to be constants of motion of the classical system. After a point
transformation to the variables N, K and ng the classical energy per particle can be
written in scaled variables as

E 1 3 9 1
== ) tal -+ —=— — | — =, 2.47
§ oWl ra ( 179N 8N2) N (2.47)
where the classical dynamics is fully determined by
w(ep, z) :1727% [(lfz)(3z+1)+4z (172)27l20052<p] , (2.48)
with & = aN and the phase space coordinates
no 1 1
zZ=—=, =60y—=(0 +07 N yRp = —=. 2.49
I v ="t 2( 1 1) {e, 2} 7 (2.49)

In (2.48), the momentum | = K/N enters only as a parameter, while the classical
analogue to the particle number N, Eq. (2.46), appears only as an effective quantum
of action fier = 1/N in the Poisson bracket defined by ¢ and no,

of dg  Of 9y
== - = 2.50
{f.q} Do 0ng B 0" (2.50)
while the classical equations of motion are independent of it,

ow . ow

p= = == 2.51
v=9 T a (2.51)
The full EBK quantization of the three-torus then yields the quantization rules
N:N+g, N=0,1,..., (2.52)
Kg=K, K=0+1,--£N (2.53)

for the particle number and the momentum and the numbers N and K can be iden-
tified as the eigenvalues of the respective quantum operators. With this, the relation
between the different definitions & = Na and o = Na (the natural choice for numerical
calculations) of the coupling can be given as

N 3
G=yo= (1 + ﬁ) a. (2.54)

The distinction is not important in the mean field limit but should be accounted for
when finite size effects are considered.

As the rest of the semiclassical analysis concentrates on the zero-momentum sector
that contains the ground state, let us set K = 0 in the following. With this, the remaining
quantization rule is simplified to

J’_

m

1
I(w) = %j{d@ 1—z(w,p)] = 2 m=0,1,...,|N/2|, (2.55)

N

103



2. A semiclassical treatment of quantum critical phenomena

1.0

(k=]
[enRan]

N

o
Il

—
e

A

0.0

|
(ME]
o
SE}
|
SIE}
o
SE}

©

Figure 2.3: Phase space portrait of the energy w(z,¢), Eq. (2.56), for different values
of the coupling &. The variable z denotes the relative occupation of the noninteracting
ground state and ¢ is the conjugate angle. For & > 1, a global energy minimum (cross)
and a separatrix (red) connecting two hyperbolic fixed points (dots at z=1) appear. Gray
lines represent the orbits (tori) that fulfill the quantization condition (2.55) for N = 20.
Note that the quantized orbits change their character sequentially.

where z(p,w) can be obtained from inverting the simplified energy per particle for [ = 0,

—

wz,@):(l—z){l—d[lg—z—i—zcos?(p}}. (2.56)
Figure 2.3 shows the phase space plot of the energy w(¢, z) with the contour lines defined
by the quantized energies obtained from the condition (2.55). It involves different types
of classical trajectories following lines of constant energy in phase space with periodicity
¢ — ¢+ For & < 1 all trajectories are deformed horizontal lines (rotations). For
& > 1 an island centered around a new minimum energy fixed point emerges with orbits
vibrating in ¢, similar as for the pendulum. This goes along with the formation of a
separatrix at £ = FEg, (w = 0) associated with two hyperbolic fixed points at z = 1 and
cos? ¢ = 1/a, characterized by (in)stability exponents

AL —2va 1= A, (2.57)

The energy levels that one obtains from the quantization rule (2.55) turn out to be
in perfect agreement with the quantum mechanical results obtained from exact diag-
onalization of (2.42), as seen in Fig. 2.4 for N = 200 particles, where the excitation
energy dependence with the coupling « is shown for the interesting regime around the
critical point o = 1. To show that also the ground state energy is correctly captured,
the exact ground state has been used as a reference in both results, as can be seen in
the inset, where a closeup of the region around o = 1 is shown, revealing small errors
close to the point where the quantized orbits cross the separatrix. The latter points are
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2.2. The attractive Lieb-Liniger gas in 3-mode approximation

Figure 2.4: Comparison of the excitation spectrum obtained from exact diagonalization
(dots) and semiclassical quantization (lines). In both cases, the exact ground state
energy has been used as a reference. The dashed line shows the energy of the separatrix
with respect to the ground state, indicating the points where the quantized orbits cross
the separatrix.

indicated by the intersection of the respective levels with the dashed line, that shows the
separatrix energy (with respect to the ground state) defined by w = 0. As it was already
seen from the phase space portraits in Fig. 2.3, the quantized orbits cross the separatrix
successively, and the transition for the ground state does not occur at the mean field
value a = 1 for finite particle numbers. This is again verified in Fig. 2.4, where the
dashed line starts only at a coupling o = 1.07 > 1. This also leads to a position of the
minimal gap Eg,, between the ground and first excited state that is shifted to a value
Ogap = 1 + Aogap that is larger than the critical interaction. As one approaches the
mean field limit N — oo, the gap energy and the deviation Acag,p from the critical point
approach zero in a power law behavior, and the respective exponents can be obtained
from an asymptotic analysis of the quantization condition (2.55) [61]®. This asymptotic
gap closing is a clear evidence of a quantum phase transition that emerges in the mean
field limit. However, one can clearly see that the transition of the ezcited states from
one side of the separatrix to the other goes hand in hand with a bunching of levels.
This suggests that the gap closing is not a feature unique to the ground an first excited
state but happens also between higher neighboring states. This can be verified in the
excitation spectrum, where a closer analysis of the semiclassical quantization yields a
logarithmic divergence in the inverse level spacing, indicating an excited state quantum
phase transition [206]. For a direct evidence of the phase transition, that also gives
some insight to the physics behind it, one can calculate the derivatives of the energy
level with index k with respect to the interaction and look for non-analytic behavior.

8The constant prefactors turn out to have the wrong value in this approach, as the relevant phase space
is rescaled in this limit to stay at the gap. This was corrected by reintroducing quantum operators
in a local description in [61].
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Figure 2.5: Emerging non-analytic behavior in the pair correlation function calculated
in the kth interacting excited state. Note the different scales on the horizontal axis for
the different particle numbers N.

Let us for a moment forget about the approximation introduced by the truncation to
three modes. By means of the Hellmann-Feynman theorem applied to the Hamiltonian
(2.37) and using the homogeneity of the system one obtains the relation

d T 2T . R R R N2
TwBula) ==3 [ a8 B OV ORO VO = "ol @).  (259)
(0% 2 0 4
where the a-dependence of the kth excitation eigenstate |i) has been omitted and
() () = (x| WT(0) T ()W (0) W (6)[¢n)
% (N/2r)?

(2.59)

is the local pair correlation function normalized with the particle density, describing the
probability for finding two particles at the same point. By switching to the parameter
a = Na and abusing the notation by using the same symbols Ej(a) and gék) (a) for the

functions expressed in terms of o one gets

d? N d @
ﬁEk(Q) = T 1% (a). (2.60)

The truncation does not change the calculation, but the field operators have to be
truncated to three modes, such that they cannot resolve a single point on the ring.
Still, an increase of the function gék) can be interpreted as a sign of particles bunching
together, as it is known to happen for the ground state of the full model. If one is not
comfortable with the interpretation in terms of correlations, one can also view g;k) as

the interaction energy per particle

o(@) = - (Bila) ~ (@)l Aolvn(a))) (261)
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where Hy is the noninteracting Hamiltonian of the noninteracting system. Figure 2.5
shows the numerically obtained (discrete) derivative of gék)(a) for the ground state and
three different excitations and increasing particle numbers, clearly showing a sudden
increase at successive “critical” interaction values, that coincide exactly with the points
where the respective quantized orbits cross the separatrix. When increasing the particle
number, the step gets more narrow, approaching a discontinuity in the pair correlation.
This is a clear indication of a second order quantum phase transition of the ground and
the excited states that manifests itself in the mean field limit. Moreover, this shows
that the excited state quantum phase transitions have their origin in the presence of the
separatrix in the mean field description. This means that, when tuning the interaction
beyond the critical value a = 1, there will always be states that correspond to quantized
orbits close to or at the separatrix, thus yielding critical states for any such interaction
in the mean field limit. This will play an important role later, when these states turn out
to be of central relevance for the quantum dynamics in certain quench scenarios. There
is one interesting result that was not mentioned explicitly up to now: Even though there
is no phase transition for finite particle numbers, one can now define a precise finite-size
critical coupling for every state given by the condition that the state corresponds to the
quantized separatrix. There, in the classical picture, the orbit changes discontinuously
form a vibration/libration to a rotating orbit.

Separatrix dynamics

A general semiclassical analysis, that is valid for any situation, where a classical anal-
ysis yields isolated hyperbolic fixed points in an effective two-dimensional phase space,
has shown [60], that the quantization of orbits that come close to these paths yield a
logarithmic divergence of the mean density of states. One can get a good intuition on
why this happens by noticing that a quantization condition of the form

I(E) = (n + Z) et (2.62)

with n labeling the excitation of the states, can be interpreted on a smooth level as
the equation for the integrated density of states. Solving for the level index n and
differentiating with respect to the energy yields

1 dI(B) _ T(E)
Rt dE heg

P(E) = (2.63)
i.e., the smooth level density is determined by the time period of the quantized orbit.
This (classical) time diverges logarithmically when a hyperbolic fixed point is approached
and any orbit that is close enough to a separatrix will come close to at least one such
fixed point. Therefore, the level density will be dominated by those points through their
logarithmically diverging time contributions.

For the three-mode approximation the calculations yields

1 (|E= By -
p(E)~27T)\log< = )+O<N> (2.64)
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with A given by the sum of reciprocal (in)stability exponents along the way,

-1
A= (Z AF1£> = % =va-— L (2.65)
FP

The second equality sign uses that the stability exponents \s, Eq. (2.57), are the same
for the two hyperbolic fixed points of the three-mode model. By using the quantization
rule (2.62) beyond the smooth level, one obtains a set of states around the separatrix
with an asymptotically constant level spacing that scales as [61,189]

2rva—1

AFE —
log N

(2.66)

thus setting a unique time scale for superpositions of the respective states given by the
inverse spacing
27 1. - <0

T:E:XlogN-i-O(N)‘ (2.67)
It is important to note that the level spacing (2.66) is only valid for a number of states
that grows sub-algebraic with the particle number (or the inverse effective Planck con-
stant) [61]. Remarkably, the timescale (2.67) has exactly the form of the Ehrenfest
time

R = i log <%> (2.68)

defined in chaotic systems. In (2.68), Az, is the Lyapunov exponent and s is a typical
classical action. So, the effective time scale 7 can be obtained from the Ehrenfest time
by substituting the Lyapunov exponent by (half of) the stability exponent and using the
effective action s, = 1 together with the effective Planck constant fieg = 1/ N. For this
reason the time scale 7, Eq. (2.67), is further referred to as the local Ehrenfest time.

The WKB wave functions

The EBK quantization summarized above relies on the detailed knowledge of the topol-
ogy of the phase space, i.e., one has to find the action-angle variables that characterize
the (degenerate) three-torus where the motion takes place. This information is then cru-
cial for the determination of the Maslov index. However, the action-angle variables do
not have a quantum analogue so that the actual WKB wave functions should be defined
in the original coordinates g (or py), yielding a wave function that depends on three
coordinates. But this would be a very complicated task as one would have to find the full
(multi-valued) action that wraps around the torus. Moreover, the natural basis of the
quantum system is given by the Fock states (with three modes) that have a fixed particle
number N and zero momentum, and thus can be labeled by the zero-mode occupation
or occupation fraction. The latter is the quantum analogue of the variable z, so that
defining the semiclassical WKB wave functions in the g looks like an unnecessary de-
tour. However, the number operator ng = d:g&o does not have an exact conjugate “phase
operator”. The reason for this can be found in the periodicity of the phase together
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2.2. The attractive Lieb-Liniger gas in 3-mode approximation

with the lower-boundedness of 79. In the semiclassical limit, it is however legitimate
to assume that any pair of conjugate classical variables locally corresponds to conjugate
quantum operators and that in the case of the action-angle variables, where the actions
are constants of motion and thus exactly fixed, the WKB wave function expressed in the
angles has to look like a plane wave locally. Now, as the particle number and the total
momentum (which can be negative) are closely related to two of the action variables,
one can expect that using the action defined only in the two-dimensional phase space
spanned by z and ¢ should yield good results.

The wave functions will only be given for the rotations here, but it is expected
that the vibrations can be treated similarly. Let us start with the definition of the
i-representation of the Fock states with fixed momentum and particle number,

N-K - N+ K-
m) = Mo, At T (2.69)
2 2
where the positions stand for the occupations of the £ = —1,0,1 modes in this order

and m has the same parity as N + K. For K = 0 this simplifies to the symmetric states

N —
—m> m=N —2j (2.70)

im) = N—m
m) = 5 ,m, 3

with 0 < j < | N/2| being an integer. One can then define a ¢ representation as

1
(plm) = \/—2_71_6“"’”, 0<p<2r (2.71)

using the states
lp) = Ze_im“" |m) (2.72)
{m}
that form an overcomplete basis in the sector of the three-mode Fock space with fixed
particle number and momentum spanned by the states (2.70). In particular we have

27
/0 lo) (¢l =1, (2.73)

_ L iv-vy2) e —p) S [(IN/2] + D) (¢ = 9)]
) 2m sin(y’ — ) ’ (2.74)

('l

i.e., the states are not orthogonal and thus cannot be eigenstates of a hermitian operator.
The semiclassical WKB wave functions for the rotations with quantum number n can
then be defined as

1

1 |92, o7 im —i
Un(p) = (pltn) = Ton ‘W(J)‘ iV In(@)=ifle), (2.75)
where the action Sy, () is given by
©
Sn(p) = /0 ' 2(wn, ¢') (2.76)
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2. A semiclassical treatment of quantum critical phenomena

and the action variable J is given by

2
J(w) i/ do 2w, ) =1 - L 2.77)
0 N

:27r

where the second equality is the original quantization rule applying for the rotations
only [61]. It is related to the common action variable I for both types of motion, (2.55),
by J =1 —2I. The function f(y) in (2.75) was introduced to assure the periodicity of
the wave function, i.e., it compensates the Maslov index v = 2 coming from two (hidden)
turning points [61] such that the function f(p) should fulfill

flo+2m) = f(p) + . (2.78)

In the noninteracting limit & — 0 one obtains

1 fnvon 1) s
Ynlp) = —me’(N 2y )e=idf (o), (2.79)
By matching this to the y-representation of the quantum mechanical states defined in
(2.71) (with m = N — 2n) one finds

flo) = % (2.80)

in this limit, i.e., the additional phase is picked up continuously with a constant rate.
Although this might not be exactly true for finite couplings, the effect of nonlinear
contributions to f(¢) should be subdominant. Using elementary manipulations one can
finally rewrite the WKB wave function for the rotations as

1
1 0z aJ |2 iNS (p)—i%
— by il n z, 2.81
wnle) = =| o= /52| e (281
Where the prefactor has to be evaluated at w = w,, given by the quantization rule (2.55)

or (2.77).
One can get a better intuition of the prefactor by identifying the time period T, of a
full cycle of the quantized orbit and the (phase) velocity v, along the trajectory as

-1

aJ 2 1 0z
T =271 |—| = dp ——— == 2.82
=gl =) e m@=|m (28)
With this, the semiclassical WKB wave function is conveniently written as
ei]\_]Sn(ap)fi%

V Thvn(p) .

Also, it is clear from (2.82) that the wave function is normalized to one. From Eq. (2.83)
one can directly identify situations, where the WKB wave function will not be well-
behaved: First, the classical velocity v, is zero at turning points, leading to a divergence
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2.2. The attractive Lieb-Liniger gas in 3-mode approximation

of the wave function. Second, the velocity becomes very small if the orbit comes close
to a hyperbolic fixed point, such that the probability density |, ()|? is strongly peaked
around small regions around the hyperbolic fixed points, reflecting the fact that a clas-
sical “particle” would be in these regions of phase space most of the time (borrowing
the intuition from the single-particle picture for a moment). As we will see later, the
semiclassical description is less accurate in these situations.

To be able to directly compare the WKB wave function (2.83) with the numerical
states one either has to use the ¢-representation of the quantum states defined above or
the wave function has to be transformed into the Fock basis. As the latter is the natural
basis of the many-body quantum system, we proceed by calculating the projections

ol = (m|1,) of the WKB wave functions as

o — / e~y ( /27r NS § o) (2.84)
m \/% n \/ 27TT Un(SD)
Switching to the action
_ @
5ul) = = 5u(e) = [ 4 (1 = sn ) (285)

that is closer related to the variable I, (2.55), and writing m = N — 2k then yields

(n)

4 / <
a COS
N—2k — /27TT7L 0 /vn SD

Here, the identity S, (¢+7) = Sp(p)+271, that follows from the 7-periodicity of z(wp, ¢)
in ¢, and leads to a m-periodicity of the exponential, as well as the antisymmetry of the
exponent with respect to ¢ = 0 have been used.

Before comparing the semiclassical with the exact quantum-mechanical results, let us
derive a simplified result obtained from evaluating the integral (2.86) in stationary phase
approximation (SPA). The condition for the stationary phase is given by

() — (2k + 1)¢) . (2.86)

2k + 1 +3
2B = 2(wp, ™) = T+ = mN 2 (2.87)

with m = N —2k. It describes the point where the quantized orbit crosses the horizontal
line at zgk) = (m+1/2)/N, which are exactly the quantized orbits corresponding to the
noninteracting states. This is true also for overlaps of eigenstates with any two different
couplings &; and as, and leads to a general criterion for a non-vanishing overlap between
states: if the corresponding classical orbits cross, they have a finite overlap characterized
by the crossing angle (in SPA), while the overlap is exponentially small otherwise.

In the case at hand we have &; = & and Gy = 0 and the solution of (2.87) is given by

(k)
w. 1— 2z
1- " — . (2.88)
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2. A semiclassical treatment of quantum critical phenomena

The slope of z(w, ) at this point defines the curvature of the action S, and is given by
(omitting the n and k index)

-1
). ). (&) 2
atp Wn,Ps 8SD Zs,Ps 82 Zs,Ps

where the right hand side is easily calculated from the Hamiltonian function (2.56).
However, the second term does not have to be evaluated further, as it can be identified
as the velocity v,(ps) and is canceled in the SPA. Combining the above yields the
eigenvector components in SPA

(n) 4cos (NSH (Wgn"k)) —(2k+ 1)‘P£7l’k> - %)

AN Z_op ~ )
VT x £

where, as before, T}, is independent on k and fr(lk> is the analogue to v, (p) given by

Ow
(k) — (2~ _ 945,(k) (k) (n,k) (k)
£ ( ag))h% 262 (1 zs> ! (1 ! ) (2.91)

(2.90)

with zgk) and x&””“ given in (2.87) and (2.88), respectively.

A few remarks concerning the validity of these results should be made: First, during
the calculation, one finds that using the depletion of the zero-mode, i.e., 1—z is more nat-
ural for the lower excitations, as some highly oscillating terms cancel out. This suggests
that one could start off directly from the description using ( = 1 — z as a canonical vari-
able and defining the quantum states accordingly. For the calculation of the WKB wave
functions for the vibrations, this approach is probably better suited, as the actions below
and above the separatrix energy are then expected to have a smooth transition. Second,
one immediately sees that approaching the noninteracting limit, where the quantized
orbits approach horizontal lines (see Fig. 2.3), the integral in Eq. (2.86) should not be
approximated by a stationary phase approximation. Finally, the vectors (aﬁ,’f)) are not
necessarily normalized, as they are projected to a very specific set of plane waves: The
wavenumbers m = N — 2k in Eq. (2.71) are non-negative, they have a cutoff mey, = N,
and they have the same parity as the particle number N. As the WKB wave function has
exactly the same behavior ¢, (¢ + ) = (=1)V4,(¢) as the respective plane waves, the
last condition is not a restriction at all, while the cutoffs can have a non-negligible effect.
The stationary phase condition gives a good hint on what can happen: if the quantized
orbit crosses the horizontal line at z; = (m + 1/2)/N, the respective wavenumber m is
relevant for the stationary phase analysis. If there is no such crossing, the point with
stationary phase bifurcates into two saddle points in the complex plane giving rise to
evanescent contributions that drop off exponentially with the distance of from a turning
point in z. As long as the classical orbit stays away from the phase space boundaries
0 < z < 1 (within a distance given by the penetration depth ~ 1/N of the classically
forbidden region) one can safely ignore any out-of-bound wavenumbers. Unfortunately,
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Figure 2.6: Comparison of the full semiclassical eigenvectors, Eq. (2.86), (lower panels),
and the SPA result, Eq. (2.90), (upper panels), with the exact eigenvectors (green)
for N = 200 and @ = 2. The curves show the squares of the (real) eigenvectors of
the respective results. The solid lines connecting the discrete eigenvector components
are only drawn for better visibility. Left: Excitation with n = 40 well above the the
separatrix energy. The results from the full integration and the exact diagonalization
are indistinguishable (lower panel) while the SPA approximation fails at the turning
points as expected. Right: Smallest energy eigenstate above the separatrix energy (n =
21). The normalization of the semiclassical results deviates from the exact values, but
the overall agreement is still good. Surprisingly, the SPA result is much better than
the the full integration and can be renormalized such that it fits the numerical result
almost everywhere (not shown), while the full integration yields larger or smaller values
compared with the exact vector components depending on k.

when one approaches the separatrix energy, the quantized orbit will be very close to the
line z = 1 for both types of motion and the results for the rotational orbits closest to the
separatrix with w ~ 0 turn out to be less accurate than the ones with sufficiently large
w > 0, also leading to non-normalized eigenvectors. In all other cases, the normalization
of the a,@ obtained from the numerical integration of (2.86) are very close to one down
to small particle numbers of the order of N ~ 10.

There is one further remark that should be made. It turns out that using the SPA
result also in the classically forbidden regime, i.e., at one of the complex saddles, the
real part of the resulting expression leads to the correct evanescent behavior, which is
exploited in the figures discussed below.

Let us now turn to the actual comparison of the semiclassical and quantum-mechanical
results, the latter being obtained from exact-diagonalization of H, Eq. (2.42) with
kmax = 1. Figure 2.6 shows the comparisons of the semiclassical eigenvectors from
the full calculation, Eq. (2.86), and the result in SPA, Eq. (2.90), with the exact eigen-
vectors for two different excitations. For the state with n = 40 well above the separatrix
(wn, &= 0.125), the full semiclassical result is indistinguishable from the exact one, with
a normalization that is one to machine precision (approx. 10716). The SPA fails at the
turning points where 9z/9p = 0 and can diverge for fine-tuned values of the interac-
tion (if a turning point in z coincides with z, for one of the values of k), while it gives
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2. A semiclassical treatment of quantum critical phenomena
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Figure 2.7: The comparison of the semiclassical and quantum mechanical eigenvectors
analogous to Fig. 2.6. Left: N =10, @ = 1.8, and n = 1 (blue), 2 (orange), and 4 (green).
The full full integration of (2.86) still yields good results for n > 1 (lower panel), but
the SPA is not justified anymore and gives poor approximations of the quantum states
(upper panel). Right: N = 2000, & = 1.7, and n = 280. Both upper and lower panel
show the semiclassical results (green) above the exact quantum states (red). However,
the full semiclassical result completely shadows the latter. Only in the SPA result,
deviations can be seen at the classical turning points. This is highlighted in the right
part of the figure, that shows as closeup of the turning point in z at ¢ = 0, see Fig. 2.3.

perfect results in the central part. For the lowest state above the separatrix energy
(n = 21,w, =~ 1.27 x 107%) both semiclassical results yield a wrong normalization. The
full integration of Eq. (2.86) gives values that are too small or too large depending on
the value £ and thus will not be much improved by renormalization. This is probably
also connected to the fact that the semiclassical quantization is not perfect close to the
separatrix, and w,, deviates from the exact value w, ~ 1.62 x 10~ in the case at hand.
Surprisingly, the SPA result is much more accurate and can be renormalized such that
it coincides with the exact result everywhere except at few values around the turning
points. This might be due to the fact that the ¢ representation of the WKB wave
function has a divergence at the hyperbolic fixed points, i.e., for w = 0 and that this
divergence strongly affects all the integrals, while the divergent term is absent in the SPA
result, that is only determined by the crossing points of the quantized orbits with the
horizontal lines and is thus insensitive to the hyperbolic fixed point almost everywhere.

For small particle numbers, i.e., a large effective Planck’s constant, the semiclassi-
cal result and especially the SPA are expected to be poor approximations. Figure 2.7
demonstrates the effect of small and large particle numbers on the results. As it turns
out, the full semiclassical result is still very good even for N = 10 (left part of the figure),
as long as one is far enough above the separatrix energy. However, the stationary phase
approximation does not give good results and cannot be justified anymore. The right
part of Fig. 2.7 shows the comparison of the results for N = 2000. As expected, the
semiclassical approximations give essentially exact results, except for the SPA diverging
at the classical turning points as is typical for WKB wave functions, but can be fixed by
means of uniform approximations [42].
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2.2. The attractive Lieb-Liniger gas in 3-mode approximation

To conclude, the semiclassical WKB wave function defined in the angle-representation
for the rotating classical orbits captures essentially the full quantum state even down
the few-particle case, as long as its energy is well above the separatrix energy. There,
using the exact projection to the noninteracting states, one can obtain the full quantum
mechanical eigenstates in the Fock basis, also capturing the transition from oscillatory to
evanescent behavior at the turning points (in the condensate fraction z) of the quantized
orbits. Moreover, the resulting states are correctly normalized.

Away from the classical turning points in z, the SPA works equally well for large
particle numbers, however giving rise to the typical breakdown close to them.

One drawback of the WKB wave functions introduced here is that they cannot be
used to extract the overlap of the states close to the separatrix energy with the low-lying
noninteracting states that play an important role in quench scenarios. One way out of
this dilemma could be a requantization of a local description around the hyperbolic fixed
points as was used for the analysis of the fundamental gap between the ground state
and the first excited state [61].

2.2.3. Phase space representation: Husimi functions

The semiclassical WKB wave functions investigated so far are analytic approximations
to the actual quantum states. One can, however, directly visualize the quantum states by
using one of the phase-space representations, i.e., the Wigner, Husimi Q and GlauberSu-
darshan P distributions [156]. Here, due to its simple computability, the Husimi function
is calculated for the exact quantum states. For this one first has to calculate the coherent
states in the 3-mode model. They are given in normalized form by

la_1agon) = e~ s (la—1P+aoP+au]?) qa-1al+aodf+aial 0y, (2.92)
where |0) is the vacuum state and the «; = ¢; + ip; are complex numbers. One can
easily show that the expectation values for the particle number and the momentum in a
coherent state are given by

(N) = la_a]? + ool + P =N, (K) =i — o P = K. (2.93)

Coherent states are superpositions of Fock states with different total particle number N
and momentum K. The Husimi function is however given by the expectation value

1 R
Qpla—1,0,01) = 3 (a—1apa1|pla—1a0ar) (2.94)

of the density matrix of the quantum state that can (and should) be chosen to have
fixed N and K. So, only the information of the projections of the coherent states to
specific particle numbers and momenta is used. But these projections actually allow
for a parametrization using only four independent variables, one of them being only a
renormalization, such that the quantum state can be represented in a tree-dimensional
subspace of the six-dimensional phase space spanned by the «;.
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2. A semiclassical treatment of quantum critical phenomena

Let us denote the projection of the coherent state to the sector of Fock space with NV
particles and momentum K by

lo_10001) = Prpla-10p01) (2.95)

where [A’N, L is the projector to the respective subspace. The full coherent state is then
just the sum of the projected states.

By expanding the projected state into Fock states, changing to polar coordinates
a; = /nie"’, and expressing it in terms of the expectation values N and K, Eq. (2.93),
one finds that the fixed particle number and momentum lead to the U(1) symmetries in
two of the angles, i.e., two of the angles contribute only a phase, such that the projected
coherent state is given by

1z, @, l}N’K , (2.96)

I

lara0an) y g = e NEVTEER [Py (N)]

where the new angles and scaled parameters z and [ are given by

_ 91+ 91 _ Y1+ 91 _ v — V4
— gy — =L LA Nt S Bt 2.
@ =10 5 PN 5 PK 5 (2.97)
and _
n - K
z="20¢o,1], =5 el-0-2.1-3. (2.98)

This is in complete analogy to the transformations that are used to eliminate the con-
stants of motion in the classical analysis of the 3-mode model, thus the individual steps
are not repeated here. The function Py (N) in Eq. (2.96) is the Poisson distribution of
the number N with parameter N and reflects the probability distribution of the particle
number N in the coherent state. As the phases and the normalization with the Poisson
distribution do not have a physical meaning, the projected coherent state is reduced to
a superposition of coherent single-particle excitations

Bl =y [

with the parametrized single-particle modes

. z—1 . 1—z41
bz pi(0) = %e d71+\/§e*%o+\/¥eway (2.100)

The integration over the angle 6 has only been introduced to simplify the notation and
ensures the correct total momentum K of the state. The states (2.99) are not normalized
to one but they fulfill the completeness relation (omitting the index N, K on the states)

1 T 1—2
WP [z ["ap [ dlpd) ol = P (2.101)
0 0 —(1-2)

40" [,.,.(0)'] Yoy, (2.99)

2w
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2.2. The attractive Lieb-Liniger gas in 3-mode approximation

i.e., they form a complete basis on the sector with particle number N and momentum
K. With this, one can define the normalized Husimi Q representation of the states with
fixed particle number N and fixed momentum K as

Q(z o) = EXDEED (5 & 15

Z, @, 1) 2.102
- Ny (2.102)

for a density matrix with fixed particle number and momentum.

To obtain a two-dimensional representation one has to either trace out the phase space
variable [ associated with momentum or look at fixed values of I. As one might expect,
the phase space density in I obtained from tracing out Z and @ then peaks at | = K/N
with the peak getting more pronounced with higher N. It is thus reasonable to expect
that using this value for a projection will contain most of the physics. This approach
is used in the following, however with a modification. First, one defines the normalized
coherent states as

12, 0); = ¢(z,1) |7, ¢, 1) (2.103)
with
_ 1 2T . 1—5—-17. 1-54] . N
le(2,1)72 = %/ dhe? [75 e + 7+ 722 + e—“’} (2.104)
0

and then numerically checks, whether these states have a completeness relation. This
yields, using K > 0 for simplicity,

T LN;K | )
dz [ dp|z.0) (5ol = S and)Ik) (K], (2.105)
0 0 k=0

where the states |k) are the three-mode Fock states with occupations n_1 = k, ny =
k+ K, and ng = N — K — 2k, that span the sector with fixed particle number and

momentum. One then finds numerically that th coefficients ay () are almost uniform
for I = K/N such that the states |z, @)y form an (almost) complete set and (2.105)

is approximately proportional to the projection operator PN, K, with the approximation
getting better with higher particle numbers, as expected.

Figure 2.8 shows the Husimi functions obtained in this way for N = 100, K = 0, and
a = 1.9. The left figure shows four different eigenstates, starting from the ground state
with index k& = 0 being localized at the classical energy minimum. The state with k£ = 3
then resembles a vibrational orbit while the state with k£ = 9 is energetically close to the
separatrix in classical phase space and shows signatures of both kinds of classical orbits.
Higher excitations (k = 15 is shown) clearly have the signature of rotational classical
orbits. The right part of Fig. 2.8 shows the time evolution of the noninteracting ground
state after a quench of the interaction to & = 1.9. The time is given in units of the [finite-
size corrected, see Eq. (2.141)] local Ehrenfest time scale 7, Eq. (2.67). The distribution
first approaches the region where one of the classical fixed points is located, then follows
the lower branch of the separatrix and comes back very close to the initial distribution

117



2. A semiclassical treatment of quantum critical phenomena

Figure 2.8: Plots of the Husimi functions for N = 100 and o = 1.9. In each plot, the
values of Z range from 0.3 to 1 and the values of @ range from —7/2 to 7/2. Left: the
kth eigenstates for & = 0,3,9,15. Right: Time evolution of the noninteracting ground
state after a quench to the coupling o = 1.9 for times ¢ = 0,0.47, 7, 1.47, showing a
revival of the initial state at ¢ ~ 7. For ¢ = 1.47, interference can be seen, as a part of
the wave packet is split off.

at t = 7. However, this revival is not perfect and one can see interference effects at later
times, where a small part of the wave packet splits off (see plot for ¢ = 1.47). Also,
the distribution is stretched stronger than one “period” before at t = 0.47. However,
one can still observe large parts of the distribution being concentrated at the boundary
z = 1 for multiples of 7 (not shown), which leads to the oscillations in the one-body
entropy found in [61]. The implications of these oscillations for the out-of-time-ordered
correlator are investigated in the next section.

2.2.4. The out-of-time-ordered correlator close to criticality

In this subsection, a specific quench scenario is applied and the subsequent non-equilib-
rium time dynamics is studied. As has been mentioned above, the semiclassical quan-
tization around the separatrix gives rise to a very specific local level spacing given (to

leading order in N) by
2mva—1
AEBgep, = %4
log N

This scaling is however only valid for a certain number of states where the classical
dynamics is dominated by the vicinity of the hyperbolic fixed points. It turns out that the
low-lying noninteracting states have exactly this property. Thus, if the noninteracting
system is prepared at very low temperatures and the interaction is then quenched to a
finite value & > 1, the subsequent time dynamics will be strongly dominated by the local
Ehrenfest time 7, Eq. (2.67). This has been verified in [61] for the reduced one-body
density matrix, where increasing the particle number has led to a quasi-periodic time
evolution of the von Neumann entropy calculated from the time evolution of the reduced
density matrix. As it turns out, the conservation of the momentum renders the reduced
one-body density matrix diagonal, and the only nontrivial dynamics is captured by the

(2.106)
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2.2. The attractive Lieb-Liniger gas in 3-mode approximation

time evolution of the mean condensate depletion that undergoes distinct oscillations
that have also been found experimentally in the spin-1 Bose gas [204]. Here, the more
intricate evolution of a certain OTOC will be studied and discussed.

The OTOC that is used here is defined by the expectation value of the squared com-
mutator of the condensate fraction fg/N at different times:

C(t) = =N~* (¥|[20(0), fo (£)]*|¥) . (2.107)

Here, ng = &5&07 and the expectation value is taken with respect to the noninteracting
condensate |¥) = 1/m(&$)N |0), with |0) being the vacuum state. The operator choice
in Eq. (2.107) is the simplest nontrivial choice of operators in this model and it is worth
noting that, due to the conservation of particle number N and momentum K , Eq. (2.44),
and [rig(t), N] = [fg(t), K] = 0, the seemingly more general definition of the OTOC

Cij(k) = =N~ (|[:(0), ;)| ®),  dj € {=1,0,1}, (2.108)
is completely equivalent to (2.107), i.e., one has
Cij(t) = ¢;5 C(t) (2.109)

with real constants c;;.

Semiclassical short-time analysis of the OTOC

The short-time mean-field (classical) dynamics of the OTOC can be obtained by noting
that the operator ng/N corresponds to the variable z and by taking only the fist non-
vanishing order in N~! (here identifying N = N ) yields the phase space average of the
Poisson bracket

2
C(t) ~ % ({2(0), 2(t)}*)pg = % <<§;Et0))) > : (2.110)
PS

where the average should be taken using the Wigner quasi-distribution function of the
condensate. This is in complete analogy to the considerations in subsection 2.1.5 of the
introduction of chapter 2 with fi.g = 1/N, which is why the steps are not reproduced
here. Note that the Poisson bracket used here is defined by the phase space variables
(¢, z) instead of (p,ng) [c.f., Eq. (2.50)]. Without calculation, one can now expect that
the Wigner function of the non-interacting ground state will be exponentially localized
at the upper boundary of the phase space, with a localization length that scales as 1/N
in order to be compatible with the quantized orbit z = l/N that exactly reproduces
the ground state in EBK torus quantization. This is also supported by the WKB wave
function analysis presented earlier in this section, where the overlap of the interacting
states with the noninteracting condensate was exponentially small if the corresponding
quantized orbits did not meet, such that only the classical phase space close to the
upper boundary can contribute to the quantum-mechanical short-time dynamics that
are described by the truncated Wigner-like approach taken here.
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2. A semiclassical treatment of quantum critical phenomena

With this line of arguing, only the classical dynamics close to the separatrix play a role
for short times. There, the hyperbolic fixed points dominate the dynamics, introducing
an exponential sensitivity to changes in the initial conditions with a divergence rate given
by the stability exponent s of the fixed points. One can thus expect C(¢) to behave like

C(t) ~ %e”st (2.111)
for short times, with a constant ¢ that is to be determined. This is indeed true, but
there is one crucial point that was skipped in the arguments. The dynamics around a
hyperbolic fixed point is actually decoupled such that for a trajectory starting close to
the fixed point one obtains

At 9z(t) _

z(t) = z(0)e = 20(0) 0, (2.112)
if a local approximation is assumed. This would render those local contributions trivially
zero. Therefore, a closer analysis of the classical dynamics is required that covers the
whole range of relevant initial conditions.

Let us thus approximate the Hamiltonian function for small distances ( = 1 — z from
the upper boundary, while keeping the full dependence on ¢:

(g, 2) = C(1 — @cos® ). (2.113)

This linear approximation in ¢ is only valid if (1 — & cos? @) > . As we are interested in
the case & > 1, where the ¢-coordinates . of the hyperbolic fixed points are determined
by 1—a cos? p, = 0 this exactly excludes the fixed points. The philosophy of the approach
here is to approximate the classical dynamics away from the fixed point by the linear
approximation in ¢ and switching to the local hyperbolic description when the ¢ — ¢,
becomes comparable to (, i.e., the fixed point is approached. This can be summarized
in writing

0z(t) _ 0z(t) 0z(t.) o Melt—te) 0z(tc)

dp(0)  Oz(te) 0(0) 9¢(0) [y,
with some intermediate time t. where the linearization breaks down and with the second
factor evaluated using the linearized Hamiltonian function w. Here, it has been assumed
that the initial angle ¢(0) is not at one of the fixed points. Then, the trajectory will
approach the fixed point that is attractive in ¢ and thus repulsive in (. Therefore, only
the diverging solution from (2.112) close to the fixed point is used.

Let us now solve the linearized problem with the Hamiltonian function (2.113). By

using the distance ( = 1 — z from the boundary as a variable, the equations of motion
(2.51) are modified to

(2.114)

0w . 0w

C = a0 Y =—77

dp 8

subject to the initial conditions ((0) = {p and ¢(0) = @p. As can be seen, the equation
of motion for ¢ completely decouples from (. It can be solved by separation as

@ dy!
t(, o) = / — (2.116)
o o8 — 1

=acos?p—1 (2.115)
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2.2. The attractive Lieb-Liniger gas in 3-mode approximation

Before solving this equation, let us express ((¢) and its derivative with respect to g by
©(t). For the former, the energy conservation directly yields

o . _ @(0)
w=-(p = C(t)—C(O)m—CU

To get the derivative of () with respect to o one can make use of the general form of
the solution of (2.116) with

which can be used to evaluate the derivative of ((t) with respect to g, leading to

9¢
o

acos? g — 1
— 2.11
acos?p(t) —1 (2.117)

sin 2¢ — sin 2y
*407;0 ~_f ; (2.119)
cos?p — &

lin
where the explicit time dependence has been suppressed for simplicity. This solution
must be cut off at a certain distance ¢ from the fixed point located at ¢, = arccos(1/v/@),

where the solution of (2.116) will end up eventually. We can thus set ¢ = ¢, + 0 and
expand the the above result for small §. To leading order, this yields

a 2 - ] —
(| g 2eoslen + po)sinten = 00) ;1 2120)
090 |1in sin(2¢.)
The exact solution to (2.116) can be expressed as
sin(p + @) _ sin(wo + ¢e) ae (2.121)

sin(p — ¢c) B sin(po — @)
By expanding also this at ¢ = t., where t. defines the cutoff ¢(t.) = ¢. + ¢ one obtains

1 sin(pg + ¢c) 5

e Aste o
sin(2¢.) sin(go — @c)

(2.122)

Finally, combining Egs. (2.114), (2.120), and (2.122), one obtains the simple formula for
the classical instability

0 sin@po +20)

dpp " sin?(2¢,) ’
There are two details that have been put under the carpet here. First, although the
result does not depend on ¢, anymore, the calculation assumes that ¢ > t. for given
initial conditions, i.e., one has to wait a certain time t. ~ 1/A; given by Eq. (2.122),
until an exponential growth can be expected. Second, if one uses Eqgs. (2.121) and (2.120)
evaluated at t = ¢, in (2.114) without further approximation, one finds a prefactor of the
exponential that depends on the cutoff 0 explicitly. This prefactor has a singular limit for
0 — 0: for any finite J, the prefactor vanishes when the initial angle o approaches the
cutoff, a property that is not shared by the simple limiting expression (2.123). However,

(2.123)
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2. A semiclassical treatment of quantum critical phenomena

the initial value {y can be chosen arbitrarily small, such that, although we must have
¢ < 6, the cutoff can also become arbitrarily small. Moreover, comparing with the
numerically integrated classical dynamics (not shown), one finds that the result (2.123)
gives the correct prediction also for very small cutoffs (after waiting for the exponential
behavior to set in). One intuitive explanation could be that the trajectory stays close
to the fixed point for a longer time, such that the very small nonlinear contributions
have a longer time to grow to notable size. The actual reason is, however, that the
hyperbolic fixed points of the Hamiltonian @, that is only linear in (, have the same
stability properties as the original ones and can be transformed to the latter by a local
canonical transformation.

We are now in the position to predict the short-time behavior of the OTOC. However,
we need to have an estimate for the Wigner distribution for the noninteracting ground
state. Let us assume that the noninteracting ground state is exponentially localized at
z = 1 and uniform in ¢, i.e., the Wigner function has the form

Wo(p, 2) = %e_“(l_z) (2.124)

with a parameter a > 1, such that the function drops off quickly and is normalized to
one (restricting ¢ to an interval of length 7). On the other hand, the semiclassical quan-
tization rule (2.55) is exact in the free case and gives the quantized orbit corresponding

to the ground state as
1

1l—z=—. 2.125

< (2:125)

For this to be consistent with the Wigner function above we have to fix the correct
classical limit by setting

1
1
/dgo/deo(%z)z:lfﬁ = a=N=N. (2.126)
z 0
2

So, as expected, the localization length given by 1/a scales as 1/N. With this, one can
estimate the phase space average in Eq. (2.110), assuming that the trajectories stay close
to the hyperbolic fixed points for a time that is long enough that all the initial conditions
can contribute to the exponential. This cannot be guaranteed for the initial conditions
that start off close to the other fixed point at —¢., where the dynamics slows down
exponentially, but these contributions have a vanishing weight in (2.123), thus justifying

the average

(), (8
%dsoo / do Wo (o, 1 = Co) {C we)\St

/ sin?(2¢.)

Lo ) o (2.127)
N2sin?(20.) N2 \ A ' '

Ma
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2.2. The attractive Lieb-Liniger gas in 3-mode approximation

The short-time behavior of the OTOC is thus estimated semiclassically as

4
C(t) ~ (i> et (2.128)
N
So, the OTOC for the interaction quench considered here is expected to grow expo-
nentially for short times (with ¢ 2 1/)s), and moreover, by a thorough analysis of the
classical phase space, even the proportionality factor has been calculated. However, as
in chaotic systems, quantum interference will become important after a certain time. In
chaotic systems, this leads to a saturation regime after the Ehrenfest time. In contrast,
in the integrable system at hand, and with the quench of the noninteracting condensate
to the supercritical regime, one could expect that the time dynamics will be dominated
by the local Ehrenfest time (2.67) defined by the local level spacing close to the separa-
trix energy (i.e., the excited state quantum phase transition). Moreover, as the latter is
the definitional property of the Heisenberg time that sets the timescale for quantum re-
vivals, one might expect to see strong oscillations in the OTOC rather than a saturation,
even enhanced by the very regular and asymptotically equidistant spectrum.

It is, however, not obvious that only the states close to the excited state quantum phase
transition contribute to the OTOC, and this is certainly not the case for arbitrary long
times. As the classical phase-space stability analysis can be expected to become invalid
quickly after the local Ehrenfest time, the long-time dynamics can only be obtained from
quantum calculations.

Numerical simulation of the OTOC’s dynamics

For the diagonalization of the OTOC (2.107), the states
[n_1,n1,n0), n; =0,1,... (2.129)

spanning the three-mode Fock space are used. Restricting to the sector with the particle
number N and total momentum K = 0 one can label the states by a single quantum
number as

k) = |k, N — 2k, k),  k=0,1,...,|N/2]. (2.130)

These states are the energy eigenstates of the noninteracting system with energy Ej =
2k, with the condensate state now given by |0). The sectors with different K # 0 can
be treated similarly, but they are of no relevance here, as the ground state is a zero
momentum state and the operators used in the OTOC are momentum conserving.

The OTOC can then be expanded by inserting the completeness relation between the
commutators as

1 1 W2
C(t) = =71 Ollo(1), 0 (0)*[0) = 7 > [(Kl[fn(1), 70 (0)]]0)
k=0

o\ 4 LN/2]
- <N> > K (Kl (1)|0), (2.131)
k=0
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2. A semiclassical treatment of quantum critical phenomena

where switching to the operator 7y (that is identical to 7i_; in the zero-momentum
sector) yields a more natural description using

fun k) = Alk) = k|k) . (2.132)

It is thus clear that the central objects that characterize the OTOC are the time-
dependent matrix elements

no(t) = (k[n(t)|0) (2.133)
with & > 0, as the case & = 0 does not contribute to the OTOC (2.131). Thus, as
1k (0) = ng = kdgy and therefore ngo(0) = 0 for k # 0, the whole time dynamics of the
OTOC is due to the operator 7n(t) losing its diagonal form. A different interpretation
can be obtained by switching to the Schrédinger picture by introducing the propagator

Kim(t) = <z ’e*fﬂ“ m> , (2.134)
leading to forward and backward-in-time propagations,
nio(t) =Y K () nm Kmo(t) =Y Kiu(—t) 1 Kio(t). (2.135)
Im l

Here, the asterisk denotes complex conjugation. The matrix elements nyo(t) can thus
be understood as a forward propagation of the condensate, then perturbing the state by
applying the number operator 7 and propagating back in time to a different (noninter-
acting) state, which is only possible due to the “perturbation”.

One might think that, although the semiclassical analysis for short times required
taking into account the nonlinearities in the equations of motion, quantum mechanical
interference could still yield nontrivial results in a local description using a Hamiltonian

Hioe =22 + v(2¢ + $2), (2.136)

with real parameters v, v, that one would obtain from the quantization of a local de-
scription of the fixed points. Note that this Hamiltonian is a variant of the so-called
axp-model that is conjectured to have a close relation to the Riemann zeros [207]. It is
straightforward to show that the propagator for the Hamiltonian (2.136) is given by®

K(2, 2t) = (/| exp(—iHioet)|2) = e~ 5 5nb00)22' 5 (zc_ - zc_%t) . (2.137)

In other words, any basis state |z) is just accelerated away from or to the fixed point
without dispersion (depending on the sign of v), i.e.,

[6(0)) = |20) = [(t)) = A(t,z0)eT |z0e") , (2.138)

with a time dependent phase A(t, zg). Identifying z = k/N in the mean-field limit one
would then obtain
g (t) oc (2'e’t|ze) oc §(2 — 2), (2.139)

such that the OTOC would become zero in this approximation.

9The derivation was performed using the Feynman path integral. As the propagators for quadratic
Hamiltonians are well-understood, the proof is omitted here.
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2.2. The attractive Lieb-Liniger gas in 3-mode approximation

One should thus work either with the full semiclassical approximation for the propaga-
tors Ky as in [177] or with the exact numerical solutions, which requires the calculation
of the eigensystem of the interacting Hamiltonian for the time evolution. Here, the sec-
ond approach will be taken. As the matrix elements ny; are only needed for [ = 0, they
can then be very efficiently calculated by successive multiplications of matrices with a
single vector, where only the matrix for the change between the noninteracting and in-
teracting basis is not sparse (but is needed four times). For moderate particle numbers
N < 10* this can be done on a normal desktop computer without approximation. If one
needs to go to higher particle numbers one can do so by truncating both bases in a way
that is inspired by the semiclassical analysis. For this one first uses the fact that the
condensate state |0) only overlaps with a number of states around the separatrix that
scales logarithmically with the particle number, such that the time evolution of this state
requires only a few interacting states that lie close to the separatrix. In a phase space
picture, the Wigner function of the time evolved state will then only be spread along
the separatrix, dropping off quickly away from it. Now, the application of the number
operator n could, in principle, smear out this phase-space distribution. However, the
highest order effect in the effective Planck constant is a multiplication of the phase-space
distribution with z, i.e., a redistribution of the weight, but not changing the shape of
the Wigner function, such that it is still exponentially small away from the separatrix.
One should thus expect that the overlap of the so-obtained state with interacting states
away from the separatrix is small such that in the overall calculation, only the states
close to the separatrix play a role.

This way of arguing might sound inconsistent for the following two reasons: First,
the Wigner function does not represent the state itself but the density matrix that it
defines. This is cured by the fact that we are actually only interested in the absolute
values |no(t)|?, which can be written as the expectation value via

ko (8)1? = Tx {po(t) Rk ()R} , (2.140)

with the density matrices p(t) of the time evolved states e *H* |k), such that a Wigner
mapping is well defined. Second, one should be very careful using an argument based on
a small Planck constant in a calculation that aims on the effects beyond the semiclassical
regime. However, one can put the argument in a different way by stating that for any
(fixed) time t, the quenched time evolution of the noninteracting states is calculated
exactly (for all k), but the contributions of the interacting states far from the separatrix
are projected out in a final overlap calculation, such that they could have been dropped
from the beginning. Moreover, one sees that only the states |k) that have a non-vanishing
overlap with the states close to the separatrix contribute, such that one can introduce a
cutoff in k, that can be estimated semiclassically from the minimum in z of the separatrix.
This cutoff is very efficient for couplings & 2 1, where the separatrix is small. However,
as it scales linearly with the particle number, it is less important than the cutoff in the
interacting basis, that can be chosen logarithmic in N. The actual number of states that
have to be used has to be determined by varying the cutoff. Figure 2.9 shows the relative
error 7;(t) in the OTOC when the number of states is truncated to N; = |ilog N| for
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2. A semiclassical treatment of quantum critical phenomena

[N =1000] [V = 10000]
102 4 \J 100
105 1
=
< 108
001
10
-3 —5 a=19 o
1014
12 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 12 3 4 5 0 1 2 3 4 5

t/T t/T

Figure 2.9: The relative error in the OTOC when using only N; = |ilog N| energy
eigenstates around the separatrix energy. The left three plots show the error for & = 1.9,
having acceptable convergence already for i = 1. For & = 1.05, where the separatrix is
small, one needs to take more states into account.

different particle numbers and two different values of the coupling. The truncation is
performed by shifting the whole spectrum with the separatrix energy by subtracting
Eyep from the Hamiltonian and then calculating the NN; smallest eigenvalues and the
corresponding states. For the calculation of the error, the full diagonalization of the
Hamiltonian has also been calculated. As can be seen, the relative error decreases
exponentially with ¢, which allows for a remarkable reduction of computational effort.
This works best if @ is well beyond the critical value, where i = 1 gives already reasonable
results for later times. For o 2 1, one should take into account a larger number of
interacting states (note the different scales of the vertical axes). But in the latter case,
the separatrix has only a very small extent in the classical phase space, c.f. Fig. 2.3, such
that one can use a small cutoff in the states |k).

The OTOC can thus be calculated very efficiently in this model for quite large particle
numbers, the bottleneck being the approximate diagonalization around the separatrix.
Due to the simple form of the Hamiltonian as a tridiagonal matrix, it has been pushed
up to N = 107. Although it would be possible to go to even larger numbers, the
particle numbers N < 105 seem to be sufficient to uncover the nontrivial large-N scaling
behavior. Figure 2.10 shows the OTOC, Eq. (2.107) for various particle numbers ranging
from N = 10 to N = 10° and for & = 2. The time is measured in units of the local
Ehrenfest time scale (2.67) including finite-size corrections [61],

128(&—1)2) Ca-1

TZ% [logN—i—l—f—log( 2(E-a) = log(a —1)], (2.141)
and the number of states around the separatrix has been cutoff to |15log N |, which is
expected to be much larger than required. After a fast initial growth, the OTOC reaches
a maximum, but then, at around the local Ehrenfest time, it drops down several orders
of magnitude. This behavior repeats in a quasiperiodic pattern, getting more and more
pronounced with increasing particle number. As the first (exponential) growth of the
OTOC is commonly viewed as a signature of scrambling of information, one can view
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Figure 2.10: Time evolution of the OTOC C(t), Eq. (2.107), for various particle num-
bers and @ = 2. C(t) exhibits distinct, approximately 7-periodic oscillations, where
7, Eq. (2.141) is the local Ehrenfest time. The inset shows the initial growth of C(¢)
approaching the semiclassical prediction, Eq. (2.128).

the quasiperiodic revivals as unscrambling of the information. This unscrambling can
only occur if the system comes back very close to its initial configuration at (or close
to) multiples of the local Ehrenfest time as it is suggested by the nearly-equidistant
level spacing. One can also observe that the strength of the revivals get smaller with
time, eventually approaching a quasi-saturated regime, where, as the Ehrenfest time and
the Heisenberg time coincide in this model, oscillations due to the quantum nature of
the system are present at any time. However, it seems that the mean saturation value
is of the same order of magnitude for all particle numbers. The plot in the inset inset
verifies the short-time behavior by collapsing the results for different particle numbers by
assuming that the formula (2.128) holds for times smaller than half the local Ehrenfest
time. Note that the semiclassical prediction for the prefactor is verified perfectly.

The unscrambling behavior seen in the OTOC is in strong contrast to the expected
OTOC time evolution for a chaotic system, saturating at around the Ehrenfest time,
with fluctuations that are small due to the irregular frequency spectrum. Eventually,
recurrences can be enforced by the discreteness of the spectrum at around the Heisenberg
time, but this time scale is typically algebraic in the (effective) Plank constant and is
very large compared to the Ehrenfest time.

By directly calculating the OTOC, one uses less information than is actually generated
on the fly as the individual matrix elements nyo(t) are summed up. Directly looking at
the latter reveals a very interesting behavior. Figure 2.11 shows a logarithmic plot of
the first six absolute squares |ngo(t)|? for N = 10* and & = 3.9. Tt shows that only
n10(t) grows with the rate 25 predicted for the OTOC and completely dominates the
short-time behavior in the overall sum. However, a much more interesting finding is that
one also finds exponential growth for £ > 1, with rates that are integer multiples of 2.
And, as if this is not enough, even the their prefactors are consistent with a power law,
such that they tend to meet in a single point. Formally, one finds that the short-time
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Figure 2.11: Left: ~Short-time behavior of the squared matrix elements |ngx(t)|?,
Eq. (2.133), for N = 10* and @ = 3.9 and for 1 < k < 6 (dots connected by solid
lines) on a logarithmic scale. The dashed lines are given by N~2(a/\s)%e?**st, showing
that the matrix elements no(t) grow with a rate proportional to k. Right: Collapse of
the no(t) for 1 < k < 8 using Eq. (2.143). The finite constant values at ¢t =0 for k > 5
(and beyond) are due to the numerical precision (~ 10716) of the matrix elements noy (¢)
and indicate that the respective values are effectively zero there.

behavior of the matrix elements of the number operator 7 is very well described by

(F) =[] e

such that they are not independent for short times. The last equation can be rewritten
in in the scaling form

(8 ] = (@) i (2 o

such that only the left hand side of the equation depends on k. The last scaling in
(2.143) originates from the dominance of the ¥ = 1 term for short times ¢ < log N/
and the short-time prediction for the OTOC, Eq. (2.128), together with the expansion
of C(t) into the functions ngk(t). Thus, a more accurate short-time approximation of
the OTOC (2.107) is given by

keut 2k kecut & 4 k
k2 n ~Y k2 (—) et 2.144
SN RO DY [ o (2144

k=1

where a cutoff ke, < [IN/2] was introduced that controls the “order” of approximation.
The second approximation is only valid for some intermediate times, where the expo-
nential approximation is justified. So, in this respect, the semiclassical short-time result
(2.128) is just the first order approximation with ke, = 1 of an expansion into powers
of exponential functions.
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2.2. The attractive Lieb-Liniger gas in 3-mode approximation

Unfortunately, a theoretical explanation of this behavior has not been found yet.
However, there are some hints that might help solving this problem. The reader might
have noticed the large value of the interaction used in Fig. 2.11. One reason for this value
is to demonstrate that also the semiclassical prediction for the prefactor (G/\s)* ~ 1.72
in the equations is accurate. This could be better demonstrated at couplings close to
& = 1, where this prefactor diverges. However, the universal behavior breaks down (at
least for N < 10%) when approaching this point (not shown). As this is the point where
the two hyperbolic fixed points in the classical phase space come close to each other, any
local description would have to take into account both fixed points. Conversely, the fact
that the scaling (2.143) is valid for larger couplings, where the hyperbolic fixed points
are well separated, could hint at a general feature of (isolated) hyperbolic fixed points.

The form of the short-time behavior of C(t) as a power series in e*st strongly resembles
the Ansatz

1 1 1 1 e)‘t e)‘t 2
F(t) = a)ptx;(0)pxi()ptx;(0)p1) ~ Co + Crr + O <W) +... (2145)
for the (regularized) thermal OTOC of Majorana operators Yy in a (quenched) disorder
average in the Sachdev-Ye-Kitaev model [174], that is motivated from a diagrammatic
approach that includes summing up certain classes of diagrams [208]. A closer analysis of
the applicability of the approach to the model at hand could shed light on the mechanism
leading to the observed behavior of the matrix elements ngy.

2.2.5. Perturbation with external potential

We have seen in the last subsection, that an interaction quench of the noninteracting
condensate leads to a quasi-periodic behavior of the out-of-time-ordered correlator that
can be interpreted as successive scrambling and unscrambling of the information about
the initial configuration of the system. However, as the retrieval of the information on
the initial state is due to the dynamics close to a separatrix, one should ask the question
about the robustness of the phenomenon against integrability breaking. In the classical
mean-field description one should expect that a small external perturbation of the system
should manifest itself dominantly in the vicinity of the separatrix [42]. To be more
specific, if a trajectory comes close to a hyperbolic fixed points, the classical forces in the
equations of motion get arbitrarily small, while the dynamics slow down exponentially,
such that a small perturbation can have a large effect, leading to a stochastic layer
around the separatrix. On the other hand, a hidden renormalization group, that exists
around the (perturbed) hyperbolic fixed points [209], suggests that the local Ehrenfest
time 7, Eq. (2.67) might still play an important role, as it has exactly the analytic form
of the required time renormalization.

The simplest way to get a nonintegrable extension of the 3-mode model considered
here is obtained by breaking the conservation of the momentum K, Eq. (2.43). This can
be done by adding the perturbation

W = 2 [af(@r +a-) + (@f +af o (2.146)

129



2. A semiclassical treatment of quantum critical phenomena

to the Hamiltonian (2.42). It corresponds to an external potential of the form cos(f) on
the ring in three-mode approximation. This perturbation has also been used to study
the finite-size effects on the collapse of the wave function [194], as for finite particle
numbers, the lowest energy eigenstates of the different momentum sectors have a finite
gap with the unperturbed ground state, such that a finite perturbation is needed for a
localization of the state. If this finite critical perturbation value 4. ~ N2 is exceeded, a
Gaussian momentum distribution is assumed, centered around the unperturbed ground
state with K = 0. However, for the excited state quantum phase transition, the effect
of such a perturbation has not been investigated in detail, and it is not clear, how the
dynamics after an interaction quench as considered above are affected. One possible
scenario is that the number of states that have a finite overlap with the noninteracting
ground state is strongly increased by the additional degree of freedom and the extension
of the quantum mechanical eigenstates along the stochastic layer in classical phase space.
However, for finite perturbations, there should also be a regime, where the effect of the
perturbation can be included via a perturbative expansion.

In the following, only a few results are presented that were obtained in a Bachelor
project by Dominik Hahn under supervision of the author of this thesis. In the classical
analysis, the perturbation leads to an additional term in the scaled Hamiltonian (2.48),

Awy(p, 2, 01,1) = 7\@ [\/1 —z+lcos(p—p) +V1—z—lcos(p+ )|, (2.147)

such that the conjugate angle ¢; to | = K/ N is not cyclic anymore and the momentum
[ is not conserved. To investigate the classical dynamics one can make use of Poincaré
sections, i.e., by plotting only the (directed) intersections of the classical trajectories
with a manifold of codimension one in phase-space (that is not parallel to the flow) [42].
There are different choices for the surface, with the most common one being the plane
defined by the cyclic angles from the unperturbed model that corresponds to the broken
symmetry in the perturbed model, usually guaranteeing (point-like) intersections in the
unperturbed case. This would suggest that one should take the plane defined by ¢; = ;9
and find all the points on a trajectory where the angle ¢; crosses this plane in the same
direction. However, this choice is not very good in the case at hand, as the angle ¢; is
stationary in the unperturbed case for [ = 0, as can be seen from the equation of motion
for ¢; in the unperturbed case

. ow lcos2p 10
= — _——— 5 0. 2.148
N gy (2.148)

For this reason, a different choice was made that is also better suited for comparison
with the unperturbed case. By choosing the surface [ = 0 for the Poincaré map the
unperturbed case is degenerate, as the trajectory does not leave this plane. However,
any finite perturbation 7 renders the intersections point-like due to Aw, and is thus
suited for the analysis. Figure 2.12 shows an overlay of many Poincaré maps for different
energies and for & = 1.9 and v = 0.01. The reason for showing many different energies
is that the available regions in the surface of section with constant energy are small for
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Figure 2.12: Overlay of different Poincaré surfaces of section. Different colors correspond
to different energies. The initial values are | = 0 and random initial values in z, ¢ and
1. As the random initial conditions did not hit the chaotic region, more random initial
values were used in a € = 0.1 window around the right fixed point, two of them being
shown in the plot.

v < 1 and become one-dimensional for v — 0, reproducing the integrable case. This is
the drawback of using the unconventional surface of section [ = 0. One can clearly see,
that the perturbation is so small that most of the invariant tori are preserved. However,
in the region around the separatrix of the unperturbed model, one can see a small chaotic
layer, as expected. This should manifest itself in the OTOC that is very sensitive to this
region.

The OTOC has been calculated for various values of the perturbation v and for N =
100 and o = 1.8. A comparison is shown in Fig. 2.13. It shows that the oscillations
of the OTOC are very sensitive to the perturbation and get damped strongly for all
the values of v shown in the plot. One has to stress, however, that the oscillations
seen in the nonperturbative result in Fig. 2.13 are not directly associated with the local
Ehrenfest time 7, Eq. (2.67), as the number of particles is not large enough to clearly
see its signatures, c.f., Fig. 2.10. Although the perturbation is varied over one order of
magnitude, the mean value of the OTOC for later times seems to be rather insensitive
to the strength of the perturbation for the times shown in the plot. The inset shows
the short-time behavior of the ratio between the perturbed and unperturbed results for
the same values of v, indicating that the perturbation leads to faster initial scrambling,
reflected in a larger growth rate. However, the latter is still dominated by the classical
(in)stability exponent As &~ 1.9 of the hyperbolic fixed points of the unperturbed system.
This can be seen from the right part of Fig. 2.13, that shows the fitted difference A\ in
the growth rate from the ansatz

O, (t) = Co(t)e?2 o 2AstANE (2.149)

showing that it is one order of magnitude smaller than As;. For the fits, a window
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Figure 2.13: Left: Out-of-time ordered correlator in the perturbed model for N = 100,
& = 1.9 and various values of the perturbation « (data of Dominik Hahn is used). For
larger values of the perturbation, the oscillations of the OTOC are damped, but the
magnitude of v does not have a large effect on the saturation value for the times shown.
The inset shows the short-time behavior of the ratio of perturbed and unperturbed
OTOC, showing an additional increase due to the perturbation. Right: Comparison of
the fitted growth rate with the classical Lyapunov exponent.

around the inflection points of the ratio C(t)/Cy(t) has been used. The ansatz (2.149)
is motivated from the observation that, although the dynamics is not regular in the
stochastic layer that emerges from the separatrix, it is still the dominant feature in the
I = 0 surface, dividing two regular regions of phase space from each other. Classically
evolving an ensemble of trajectories, characterized by a phase-space distribution, close
to this region, one can expect that the distribution eventually fills a three-dimensional
region of phase space only constrained by the energy conservation and bounded by
the regular regions. But this can happen on very different time scales in the different
directions, i.e., the divergence of two nearby trajectories due to the perturbation could
be much smaller than the divergence due to the instability along the former fixed points.
This should then manifest itself in a separation of scales in the OTOC, leading to two
independent contributions to the initial scrambling rate.

This picture is strongly supported by the fact that the additional instability seems to
coincide very well with the (maximal) classical Lyapunov exponent Ar (see Fig. 2.13)
found from a long-time average over the divergence rate of two neighboring trajectories
initialized at z = 1/N and [ = 0 (and maximizing with respect to the initial conditions
in @, ¢;). The error bars come from a very slow convergence of the Lyapunov exponent
due to the strong influence of the instability around the hyperbolic fixed points. If
this apparent separation of scales persists also for larger particle numbers N, one might
expect to see signatures of the unscrambling mechanism given by the local Ehrenfest
time 7 for N — oo, that should manifest itself in a significant decrease of the OTOC at
t ~ 7. Unfortunately, the necessary numerical simulations have not been performed yet
and are left for future analysis.
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2.3. The attractive Lieb-Liniger gas in 5-mode approximation

Up to this point, we have seen that the presence of a separatrix in the mean-field picture
of the Lieb-Liniger model in three-mode approximation gives rise to an excited state
quantum phase transition that leads to an emergent universal time scale for processes
that dominantly involve the states in its vicinity. This time scale plays an important
role in the post-quench time evolution, when the system is prepared as a noninteracting
condensate state and is then quenched to finite couplings above the mean-field critical
interaction. The reason for this was found in the fact that the initial state did only
overlap with a few states around the classical separatrix energy, such that the dynamics
is dominated by the classical hyperbolic fixed points. However, all of the analysis has
been performed in the context of integrable systems, where the classical dynamics is
constrained to Lagrangian surfaces, which is also reflected the quantum dynamics. Al-
though the influence of a perturbation has been studied very briefly, adding an external
potential with a finite strength actually changes the system drastically: The quantum
phase transition in the attractive Lieb-Liniger gas breaks the translational symmetry.
Destroying this symmetry would lead to a localization of the eigenstates already without
interaction. As the (excited state) quantum phase transition is an essential ingredient
for the emergence of the universal quench dynamics found in the previous sections, one
should find a nonintegrable extension that is critical.

The three-mode approximation is the simplest nontrivial approach to uncover the
physics of the quantum phase transition of the continuum model. As one should get
better approximations by including more modes, one should also expect these refined
models to show critical behavior. Therefore, this section is dedicated to the analysis of
the extension of the model by increasing the momentum cutoff in the field operators,
Eq. (2.41), to kmax = 2, leading to a total of five modes that have to be included in the
Hamiltonian (2.42). As the conservation of the total particle number and momentum,
Eq. (2.43), is robust under the truncation, one can still restrict the quantum and (classi-
cal) mean-field analysis to fixed particle number and momentum, but the two additional
degrees of freedom render the quantum and classical dynamics much more difficult. In
fact, it is long known that, although the full model is quantum integrable, the cutoffs
introduce signatures of chaotic behavior in the nonlinear Schrodinger equation [210],
i.e., the mean field equation of the model. This also manifests itself in level repulsion
in the quantum-mechanical spectrum that can eventually lead to Wigner-Dyson level
statistics in some parts of the spectrum [211]. It should be clear that these numerically-
induced signatures of chaotic behavior are not the subject of interest here, as they have
no physical meaning. Obviously, the five-mode approximation should not be used for a
quantitative analysis of the attractive Lieb-Liniger model whenever the variation of the
cutoff introduces changes in the predictions. Therefore, as in the three-mode approxima-
tion, the analysis of the five-mode model performed here aims at a better understanding
of quantum phase transitions in a more general context, as an example of a quantum
phase transition in a model that is not completely integrable in the mean field limit.
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2.3.1. Classical phase space analysis

As discussed in subsection 2.1.2 of the introduction of this chapter, the mean-field equa-
tions can be found as the classical equations of motion defined by the Hamiltonian
function that is obtained by taking the classical limit of the quantum Hamiltonian. For
this, one should replace the quantum operators by classical variables. However, to keep
track of O(N~1) corrections one should first bring all the operator products in sym-
metric order. This yields the Wigner phase space representation of the operator(s) (or
Wigner symbol), and the classical N — oo limit can be studied in a controlled way.
The corrections should not have an influence on the classical dynamics, as the classical
equations of motion should be independent on the (effective) Planck constant, but they
play an important role in the quantization of the classical system. Although this will
not be done for the five-mode model, the corrections from symmetrization are included
here for completeness.

Symmetrizing products of creation and annihilation operators can become a very cum-
bersome task when the number of operators grow. Already at the stage of a product of
four bosonic operators, as needed to describe interactions, the direct calculation becomes
quite lengthy and should be avoided. Fortunately, one can formulate a variant of a Wick
theorem to calculate symmetrized products [212]. The statement is as follows: For n

bosonic operators /ll, ..., A,, the symmetrization of their product is defined as
~ ~ 1 ~ ~
{AvAn} == 3 Apay-- Ap, (2.150)
PeS,

where S, is the symmetric group. Defining the contraction
® e A A A A 1.4 A
ATAS = A A — {AiAj}s = §[Ai’Aj]’ (2.151)

where [, -] is the commutator, one can define the sum of k-fold contractions of a product
of operators as Ci(A1Ay---A,). For example for & = 2, n = 4 one obtains three full
contractions,

Cy(A1AgAsAdy) = ATASAS A + ATAg A3 A% + ATAs Ag AS, (2.152)

where the double bullet is only used to distinguish the two contractions. With these
definitions the following theorem holds:

Ln/2]
AAy A, =) {Ck(A1A2~~An)}S7 (2.153)
k=0

i.e., the product can be symmetrized in one step by summing over all possible (multiple)
contractions.
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Using this Wick theorem on the Hamiltonian (2.42) with the usual commutation re-
lations yields

S
k k,l,m,n

o 1 k2
+ % <{a£ak} - Z) - (2.154)
kL s &

The second line contains the corrections due to the symmetric ordering of the operators
and requires regularization if the cutoff is removed as is often the case in continuum
systems. Using the cutoff knmax = 2 and replacing the symmetrically ordered operators
by products of (complex) classical variables, c.f., Eq. (2.45), one obtains the classical
Hamiltonian function of the five-mode approximation as

2 _ _

S\ . a
Y =Y (k2 + %) Sk — 7

k=—2

2 —
25a
Z 5k+17m+n¢z¢;¢m¢n ~ g 5. (2.155)

k,l,mn=—2

with the variables ¢, = \/ﬂe*wk. The operators for the particle number and the
momentum can be treated in the same way by symmetrizing them and then replacing
the operators by complex numbers. However, as in the three-mode model, it is more
convenient to define the classical constants of motion without the quantum corrections
as

2 2
N=> m, K=Y kn. (2.156)
k=-2 k_2

One can now proceed by eliminating the constants of motion with the linear point
transformation

n 0 0 10 0 n_s
N2 12 0 0 0 1/2||n.
K2|=1-1/2 0 0 0 1/2 no |, (2.157)
N 1 1 11 1 n
K -2 -1 01 2 ny
A
0=ATp, (2.158)

where A was chosen such that the Jacobian is one and the angles ¢ can be chosen in
an interval of length 27. Note that the transformation is canonical, i.e., the angles ¢
are the conjugate angles to the new variables. Due to the conservation of N and K,
their conjugate angles drop out from H, éCI), The explicit inversion of the transformation
(2.157) then yields

N*ﬂ*?NQiK74K2.

2.159
5 5 (2.159)

ng =n, nig = Ny + Ko, Nt =
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Finally, one can rescale the coordinates as

222& lzzﬁ =
b N7 N7

K

7 2.160
~ (2.160)

to get an N-independent description of the classical dynamics analogous to the three-
mode case, with the energy per particle given by

H & 5(a-2) 25a
2 — = w(QY, 2, Vs, 22, Pl l2, 1) — — + —— — —.
~ (02,920, 22, P12 12,1) = 5 o 3

(2.161)

Here, the conjugate angles to the variable y € {z2,l2} is denoted as ¢,. The effective
Hamiltonian function w defines the classical dynamics completely. Its explicit form is
given in App. E, as it is lengthy and its properties can be discussed without considering
its exact form.

There are several remarks that one should make at this point. First, the coordinates
z, 22,1y are not completely independent, e.g., one has |la| < 29 and 229 + 2 < 1. As is
clear from the individual steps above, the effective Hamiltonian function reduces to the
result of the three-mode model when one sets zo = 0 (and thus Iy = 0). However, the
dynamics effectively takes place in a six-dimensional phase space as long as z < 1, such
that z and s can take nonzero values. Using the energy conservation one can reduce the
dimension by one, but this is not enough to use standard techniques of visualization of the
dynamics. However, we are ultimately interested in the case of zero total momentum
l = 0. In this case, there exists an additional, discrete inversion symmetry formally
given by the reversal of the single-particle momentum, i.e., by inverting the sign of the
summation index in the Hamiltonian function. The Hamiltonian always has this discrete
symmetry, but the total momentum is inverted under this operation. This symmetry for
! = 0 leads to w being symmetric with respect to the simultaneous inversion of /o and
its conjugate angle

Pl, = 02 — 0_2 — 2(91 — 9_1) (2.162)

thus making the manifold with l; = 0 and ¢, = 0 special. The derivative of w with
respect to one of these phase space coordinates then has to be antisymmetric under the
simultaneous inversion, directly implying that their dynamics, given by

Ow . ow
DLy, = ——, =——, 2.163
e alZ ? a@lQ ( )
becomes stationary at the manifold Iy = ¢, = 0. Thus, the effective phase space

dimension can be reduced by two for initial conditions in this high-symmetry manifold.
Therefore, it is possible to analyze the dynamics in this manifold with the standard
technique of Poincaré sections.

Figure 2.14 shows parts of the Poincaré maps in this high-symmetry manifold for two
different energies. There, the time evolution is integrated up to ¢ = 500 in the units
given in Eq. (2.35). For w = 0, i.e., the energy of the separatrix of the three-mode
model, a large part of the available phase space has regular dynamics, but especially
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Figure 2.14: Poincaré sections in the high-symmetry manifold with Iy = ¢;, = 0 for two
different energies and & = 1.9. The section is taken at the points ¢,, = 0 (mod4w) with
¢z, > 0 and different colors correspond to different trajectories. For w = 0 the dynamics
in the symmetry manifold has large regular structures that resemble the typical KAM
scenario of broken rational tori [42], but the dynamics close to the hyperbolic fixed point
of the three mode model (red dot) is chaotic. For w = 0.2 a large chaotic layer exists,
verifying the non-integrability of the model. The apparently missing parts of the left
plot are probably due to the detection algorithm, but this has not been checked.

when approaching the hyperbolic fixed point of the 3-mode model (red dot in the upper
right corner), one finds a chaotic layer. One should note that the plots show only a
small part of the Poincaré section. The motion in ¢ is now 27 periodic instead of -
periodic, as would be the case for zg = 0 (three-mode model). Also, one important
detail has been omitted so far: Instead of fixing the angle ¢, to zero, one finds the same
stationary behavior for ¢ = 27n with n being any integer. But for odd n this is not the
same physical point, as shifting ¢, by 27 shifts the original angles 4o only by 7. This
can also be seen in the Hamiltonian function (see App. E), where setting ¢;, = 0 and
¢, = 27 lead to different Hamiltonian functions. However, shifting both ¢;, and ¢,
by 27 yields the same physical point, c.f., Eq. (2.158), such that ¢;, = 0 and ¢}, = 27
describe the same manifold, with ¢,, ranging over an interval of 4w. Therefore, fixing
@1, = 0 or ¢, = 27 in the calculation only leads to solutions that are shifted by 27 in
¢z- To demonstrate that the m-periodicity of the three-mode model is lost, Fig. 2.15
shows the full Poincaré section for w = 0.2 and & = 1.9, i.e., the same values as in the
right plot of Fig. 2.14.

Concluding, we have found that the classical dynamics in the special manifold that
is invariant under the mirror symmetry operation, is mixed, i.e., it contains regular
and chaotic regions. Therefore, one can exclude that the five-mode model is classically
integrable and it is expected that the additional degree of freedom ¢, will render the
rest of the phase space such that there is no further (global) constant of motion for
& # 0 and the dynamics will take place in the six-dimensional phase space in general'®.
When the coupling approaches the mean-field critical value of the interaction a = 1,

However, one can get arbitrarily close to integrability in the limit & — 0.
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Figure 2.15: Full Poincaré section for & = 1.9 and w = 0.2 in the high-symmetry mani-
fold, demonstrating the 27-periodicity in ¢ in contrast to the m-periodicity in the three-
mode model.

the dynamics in the high symmetry manifold looks almost integrable, as can be seen
in Fig. 2.16. The fact that the simulation shows signatures of a separatrix suggests
that, if one can restrict the analysis to the high symmetry manifold, one can expect
separatrix dynamics and hyperbolic instability to play an important role. However, this
only applies to this special manifold, so that the initial conditions outside of it could
lead to completely different results and one can expect to also find chaotic regions there.

Before coming back to the analysis of the classical phase space, let us take a look at
the quantum mechanical spectral properties.

2.3.2. Quantum-mechanical treatment

As is the case with the three-mode approximation, the five-mode model is often used for
the analysis of finite-size effects by performing the exact diagonalization of the Hamil-
tonian (for the low-lying states) [16,196]. However, one is restricted to much smaller
particle numbers, as the dimension of the relevant Hilbert space scales with the particle
number as N2 instead of N, as is the case in the three-mode approximation, where,
in addition to the linear scaling, the Hamiltonian matrix can be brought into a simple
tridiagonal form by ordering the basis appropriately. In the five-mode approximation,
the restriction to fixed particle number and momentum leads to a Fock basis that can
be labeled using three occupation numbers. Therefore, there is no (canonical) way to
order the basis states that leads to a simple structure of the Hamiltonian matrix in this
basis, making the problem much more complicated. Already at the stage of labeling the
basis, one faces a difficult problem. One could naively calculate the basis numerically
by generating a larger set of states, e.g., allowing occupations up to N in each mode
and then dropping the states that do not have the correct particle number N and the
desired momentum K. However, this would require N® intermediate states, consuming
unnecessary resources. In order to control unavoidable cutoffs that one has to introduce
for large particle numbers, a unique labeling of the states is desirable. The latter is
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Figure 2.16: Poincaré section for @ = 1.05 and w = 0.01. The dynamics looks regular
and one can clearly see evidence of a separatrix separating two different regions in phase
space. The Trajectories are sampled more frequently when they approach one of the
hyperbolic points, indicating a slowdown of the (¢, z)-dynamics.

a tedious task, but it can be performed to full generality and is given in Appendix E.
One then finds that the size of the basis in the K = 0 sector scales roughly as N?3/36.
Therefore, the bottleneck for the exact diagonalization is of the order of hundreds of
particles. For larger particle numbers, one has to find schemes for approximations.

Figure 2.17 shows the low-lying spectrum for K = 0 and N = 30 (left) and N = 250
(right). One immediately sees that one obtains a much richer spectrum as compared
with the three-mode model, that only produce a series similar to the lowest states seen
in the right plot (N = 250), that can be adiabatically connected to the lowest levels of
the rays starting at a = 0. On first glance, one might think that the additional levels can
cross these three-mode-type level series, which would hint at an additional symmetry.
However, a closer analysis of these level “crossings” reveals a small, but finite level
repulsion. This has been checked for several particle numbers and many different states,
revealing avoided crossings in all cases (although some of the gaps turned out to be
of the order 1078 and below, however still well above machine precision). Although
the gaps are very small for the low-lying spectrum, the higher excited states have a
more pronounced level repulsion and one can expect the level statistics to be far from
Poissonian, the latter characterizing generic integrable systems. In fact, it has been
shown that even in the repulsive Lieb-Liniger gas, the level statistics agree remarkably
well with the Wigner-Dyson distribution in the middle of the spectrum due to the cutoff,
i.e., the levels are essentially distributed according to random matrix theory [211]. This
agrees very well with the classical analysis of the mirror-symmetric manifold, where the
chaotic regions grow when the energy is increased. However, in the low-energy regime,
the spectrum looks rather regular.
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Figure 2.17: Low-lyings spectrum of the five-mode model for K = 0. Left: N = 30
particles. A new type of states exists, that was absent from in the three-mode model.
The states seem to cross, hinting at a symmetry, however a closer analysis reveals avoided
crossings. Right: N = 250 particles. The spectrum gets more complicated at higher
excitations but seems to have a clear structure. Certain levels get quasi-degenerate at
a>1.

2.3.3. Separation of scales and Born-Oppenheimer-type approximations

The fact that the classical dynamics is rather regular around the separatrix energy
w = 0 even for very strong interactions, c.f., Fig. 2.14, with only a small stochastic
layer that seems to emerge from the separatrix of the three-mode model, suggests that
the dynamics in the coordinates (o, z) will be strongly affected by a (coarse-grained)
hyperbolic dynamics. This means that the dynamics in (p, 2) is expected to slow down
due to this hyperbolicity, rendering the dynamics in the other coordinates much faster (if
they do not share the same hyperbolic behavior). This motivates a Born-Oppenheimer
type ansatz for separation of scales between the slow hyperbolic dynamics associated to
the separatrix and the fast dynamics in the other directions.

This can be viewed in a more general context for other systems that allow for a
mean-field description in terms of classical dynamics. A quantum phase transition is not
expected to take place in a completely chaotic, and therefore structureless phase space.
One can, at least, expect an regular “skeleton” that can separate different regions in
phase space. A phase transition should then be associated with changes in these regular
structures, i.e., the state has to be associated to different regions of phase space on either
side of the transition in order to have different quantum mechanical properties. This
could be the transition from a regular to a chaotic region, or, as is the case in the three-
mode model and will be argued to hold also for the five-mode model, is the transition
between two regular regions in phase space that are separated by a (weakly disturbed)
separatrix. Even if a separation of scales is possible, the hardest part is to identify the
fast and slow degrees of freedom. In the standard application of Born-Oppenheimer
separation of scales in molecules or solids, the very different masses of electrons and
nuclei, together with the standard form of the Hamiltonian as a quantized mechanical
problem with the position operators appearing only in the potential, render the choices
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rather obvious. Moreover, the quantum mechanical solutions of the (fast) electronic
problem is only parametrized by the positions of the nuclei, but not their momentum.

However, the classical dynamics obtained in mean-field descriptions can have a very
different structure, often with potentials that depend on both conjugate classical vari-
ables. Still, the situation can be special for critical systems. If one of the classical phase
space variables can be used as an order parameter, it has to behave differently on both
sides of the transition and, assuming that the transition is due to a separatrix, should be
sensitive to the exponential slowdown due to the hyperbolic dynamics at the transition.
Therefore, the idea is to use the variable z, that can be used as an order parameter
in the three-mode and the full model, as well as its conjugate angle as a slow degree
of freedom. This is expected to work well close to the ground state phase transition
at & ~# a = 1. As was seen in Fig. 2.14 for & = 1.9, the separatrix is replaced by a
chaotic layer for strong coupling. However, for & = 0.05 the dynamics is more regular,
and a clear signature of a separatrix can be found close to w = 0. Another reason to
choose a value close to @ = 1 is the numerical observation that the series of states that
have a counterpart in the three-mode model develop a bunching of energy levels at an
energy that lies below the other level series and are thus energetically separated, as it
can already be seen in Fig. 2.17 for N = 250.

Up to this point, classical arguments have been used to identify a slow degree of
freedom. A quantum mechanical generalized Born-Oppenheimer type approach could
be applied by using the framework of adiabatic perturbation theory [213,214]. Here,
however, the insights gained from the classical picture are used to simplify the quan-
tum calculations. The essence of the idea used here is that the characteristic energy
scale introduced by the fast dynamics is larger than the ones from the slow dynamics,
which is perfectly consistent with the level bunching at excited state quantum phase
transitions, leading to a very small energy spacing. By assuming that the fast degrees
of freedom, i.e., z3,lo and the conjugate angles get quantized to a ground state energy
E(()fam((p, z) depending on the values of the slow variables z, ¢, one could, in principle,
derive an effective model for the slow variables for finite N (being the effective inverse
Planck constant) by using the phase space representations of the states corresponding to
EéfaSt)(ap, z). However, if one is interested in the mean field limit N — oo, the situation
is simpler, as the respective states localize at the energy minimum of the fast degrees of
freedom (for fixed ¢, z) with the energy given by the classical minimum Eflf?ﬁt)(% z). As
this energy minimum can only be obtained numerically, a further refinement for finite
particle numbers, e.g., by a semiclassical quantization of the fast degrees of freedom in a
local approximation, can only be performed semi-analytically and has not been achieved
yet. Still, already at the level of the effective mean-field description and using only the
energy minimum Eg?flt) (¢, ), one can extract nontrivial information. Figure 2.18 shows
a phase space portrait of this effective description for & = 1.05 obtained from replac-
ing the phase space coordinates zs,ly and their conjugate angles by the position of the
energy minimum. The minimization has been obtained by noticing that ¢, =l = 0
solves two of the stationary conditions for a minimum and then minimizing with respect
to the coordinates ¢.,, 2o for fixed (¢, z). This leads to a unique choice of (p,,, 22) for
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Figure 2.18: Effective mean-field phase space portrait obtained from minimizing the fast
degrees of freedom (density and black contours). The red curves show the projections
of the full dynamics (initialized close to the respective manifolds) to the slow degrees of
freedom (¢, 2).

z < 1 and with 0 < ¢,, < 47. The stationary point obtained in this way has then been
verified to be a local minimum using the Hessian of the Hamiltonian function w. By
sampling the phase space (with 20 points for each of the four coordinates) for all values
of (p,z) on a regular 10 x 10 grid, it has been verified that it is a indeed the global
minimum. Using this approach, the effective phase space becomes a deformed version
of the three-mode model, with the m-periodicity in ¢ restored and with two hyperbolic
fixed points at the upper boundary that emerge for & > 1. Their stability exponents
have been obtained numerically to be

As & 0.42 (2.164)

for a = 1.05, which is very close to the three-mode result A = 2v/& — 1 ~ 0.447. Fig-
ure 2.18 also shows the projections of the full classical dynamics into the effective phase
space for trajectories that were initialized close to the manifold that it describes, showing
that they follow roughly the lines of constant energy, especially for small energies.

As can be easily shown using the explicit form of the classical Hamiltonian function
given in App. E, the quadratic expansion around the minimum in the “fast” degrees
of freedom (formally) decouples the phase space coordinates (s, z2) and (g, ,l2), with
their frequencies being comparable and of the order of weg = 6 for & = 1.05. One
should, however, note that the maximal values of the coordinates zo and ls are coupled
to each other and to z, which becomes important when z = 1 is approached, leading
to a breakdown of the harmonic approximation, as the angular directions get flat. Nev-
ertheless, the order of magnitude of the frequencies is encouraging as it is comparable
with the gap between the ground states of the individual level series seen in Fig. 2.17.
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Numerical implementation

To implement the adiabatic separation on a quantum-mechanical level, simply replacing
the creation and annihilation operators corresponding to the zero mode by complex
variables leads to a U(1)-symmetry-broken effective description for the fast degrees of
freedom with an infinite-dimensional Hilbert space, rendering this approach not suitable
for numerical diagonalization. Thus, a different approach has been taken here that
consists of a pre-diagonalization of the projections of the Hamiltonian to subspaces of
the Hilbert space H with a fixed mean condensate fraction z = fg/N. In particular, a
“good” basis is found using the subspaces

Ry = Hog—1 © Hax (2.165)
with k =1,...,N/2 (and N even for simplicity), where
Mo = {|¢) € H : afaolw) = nlv)} (2.166)

is the subspace with fixed particle number N, total momentum K = 0 and zero-mode
occupation n. This choice is motivated by the structure of the three-mode model, where
increments of the occupations ng are restricted to even numbers, and it is the minimal
choice that can capture the interplay between all the degrees of freedom. The latter
follows from the fact that fixing the occupation ng ezactly, projects out all the (off-
diagonal) parts of the Hamiltonian that couple to this mode and thus misses the whole
complexity of the problem. In the classical picture, this would correspond to dropping all
terms that depend on the corresponding angle ¢, completely decoupling the dynamics.
So, combining two different occupations of the zero mode provides the minimal necessary
information about the phase ¢.

The dimension of the space Ry scales as (N — 2k)2, such that the projections of the
Hamiltonian to Ry can be effectively diagonalized for large particle numbers, yielding
a k-dependent eigenbasis {vl(,k) :v=0,1,...} (ordered by energy) that spans Ry. The
space span({v,(,k) :k=0,1...}) may then be referred to as the v-th band. An effective
Hamiltonian is found by restricting the full Hamiltonian to the space

¢
S,g = @Span({v,(/k) v <n}), (2.167)
k=1

where a cutoff 2¢ < N in the condensate depletion has been introduced, as well as a
cutoff n controlling the number of excitations in the fast degrees of freedom taken into
account via inter-band coupling. It turns out that already for n = 0, where the effective
Hamiltonian has the same structure as for the 3-mode approximation, the low-lying
excitation spectrum around the critical point o = 1 is well described. For the numerical

calculations of the vectors v,(,k) two further cutoffs

Sy =ng+n_g < S Ay = |ng —n_g| < A (2.168)
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were introduced, where ng,n_s are the occupations of the 42 single-particle momentum
modes. The quantities Y9 and Ay correspond directly to the classical variables zo and
lo, respectively.

For K = 0, the inversion symmetry of the system allows for a further reduction of
the dimension by using the symmetric and antisymmetric states that cannot couple via
the parity-preserving Hamiltonian. For this, before diagonalizing the Ry-projections, a
projection to the symmetric subspace that contains both the interacting and noninter-
acting ground state has been performed, resulting in the vectors v(uk) being only of this
symmetry class.

Characterization of the low-lying spectrum

As has been seen in Fig. 2.17, the different level series, or bands, can be identified by
adiabatically relating them to the rays in the perturbative a@ < 1 regime. Although the
numerical scheme sketched above allows one to get to very large particle numbers, the
computational effort is still very high, such that calculating an energy flow diagram, i.e.,
the dependence of the spectrum with respect to the coupling, cannot be done for large
particle numbers to high precision, as all calculations have to be repeated if the coupling
« changes. Moreover, the adiabatic connection can only be made by coarse graining
(i-e., “by eye”), as the actual energy levels do not cross. Therefore, and for the sake of a
deeper physical understanding, it is desirable find a way to distinguish states in different
bands without knowing their functional dependence on the coupling «.

Unfortunately, due to the pre-diagonalization in the numerical scheme, the resulting
effective Hamiltonian and its eigenfunctions contain random sign factors, as the numer-
ically obtained vectors vl(,k) are only defined up to a phase or, restricting to real vectors,
up to its sign, that is randomly picked by the Arnoldi algorithm used for diagonalization.
The final eigenstates are thus useless for any further analysis, if the vectors U,(/k) are not
known, but keeping the latter quickly produces very large amounts of data that contain
far too much information. However, one can perform the stepwise projections to the
spaces Sf, for many operators simultaneously without significantly increasing the com-
putational effort (as long as they are sparse in the Fock basis), imprinting the random
signs also in these projected operators, that can then be used to analyze the properties
of the final eigenstates.

The obvious choice is to calculate, together with the effective Hamiltonian, the pro-
jected versions of the number operators. But only three of them are independent due
to the number and momentum conservation, and the restriction to inversion-symmetric
states reduces the number of independent number operators to two, e.g., g and fg. A
good choice of simple operators is given by

o, Ny = % K2 = (g — 712)?, (2.169)
as these operators are parity-symmetric, such that no information is lost due to the
symmetry projection. Note that these operators correspond to the variables z, 2o and
12 used in the classical analysis. For more generality, one might also want to include
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Figure 2.19: Left: Scatter plot of the energies and the the expectation values of N, for
the first 100 energy levels and for N = 100, o = 1.1. The color represents the expectation
values of K% Right: Scatter plot of the expectation values of Ny and K% for the same
states with the variance of (fi; +7_1)? as color code. The different scale of the latter is
due to rescaling with the particle number and is of no importance here.

products of the operators 2.169, but this has not been done, as the above operators have
turned out as a good choice to characterize the eigenstates already on the basis of the
energy eigenstate expectation values

meany,(Na) = (V| Na|tby,) ,
vary(Ka) = (Vx| K3 [vx) (2.170)
var(N1) = (gl (fn + 1)?v)

where k is a label of the eigenstate. The last variance in Eq. (2.170) has been calculated
from the projected operators (2.169) using

n+n_1= N - ZNQ —ng (2171)

and is thus not exact, but this has turned out to be irrelevant in the following.

Figure 2.19 shows scatter plots of the energy and the expectation values (2.170) for
the first 100 levels for N = 100 and o = 1.1. The left plot clearly shows that the states
have very different mean occupations in the side modes, characterized by meany(Na),
leading to distinct series in the scatter plot. However, the colors show that including the
variance in the side-mode imbalance, varg(K2), can distinguish states that lie on top of
each other. This is clarified in the right plot, where the aforementioned quantities are
plotted against each other, revealing distinct series that were lying on top of each other
in the left plot. As some of the series can overlap in the two-dimensional scatter plots,
the variance vary(N1) can be used to lift this into three dimensions.

Using the cluster detection algorithm DBSCAN implemented in Python [215,216], the
different series have then be labeled automatically (cutting off noisy parts). The result
can be seen in Fig. 2.20, where each series of states has been given a label. Note the two
outliers that have been characterized as noise. They correspond to hybrid states close
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Figure 2.20: Result of automatic state labeling using the cluster detection algorithm
DBSCAN. The cluster detection works better if the particle number is increased. Right:
Sketch of the harmonic oscillator spectrum analogy of the level series, with the gray-
shaded area representing the band structure.

to an avoided crossing. The quality of the result needed some fine-tuning for N = 100,
but for higher particle numbers, the cluster detection is quite reliable, allowing one to
directly select the states from a specific band.

One observation is that the states in the low-lying spectrum can be characterized by
three “good” quantum numbers (Na, Ko, m). The first two can be used to label the band
and the excitation within each band is then labeled by m. To be specific, the quantum
number Ny = 0,1,2,... labels the series of degenerate bands seen in the left part of
Fig. 2.19 according to meany(N3), starting from the bottom. Then, for given Na, the
quantum number K5 can be chosen as

(2.172)

I 0,2,...,Ny Ny even
7 \13,...,N; Ny odd

that are assigned to each of the degenerate bands with the same label Ny according to
the mean value of [vary(K3)]'/2 in each band. The index m then just labels the states
within each band (Na, Ls).

The above characterization of the bands with two numbers (Na, L2) reminds of a
two-dimensional harmonic oscillator spectrum that is given by the sum of two quantum
numbers Ey, = hw(ki + k2 + 1) being highly degenerate. Instead of using k1, k2 one
can label the states by N%lo = k1 + ko and le‘o = k1 — ko. The energy then depends
only on N, as is the case in the five-mode model, while the eigenstates will depend
also on Lo. The analogy is further underlined by the following two observations: First,
the energy of the lowest state [k = (N3, Lo, m = 0)] of each band depends linearly on
the Ny ~ meany, r,0(N2) (see left part of Fig. 2.19) as is the case for the harmonic
oscillator. Second, by rescaling the vertical axis in the right part of Fig. 2.19 by plotting
the square-root of Ly ~ var(K2) will give a pattern very similar to the sketch in the right
part of Fig. 2.20 that shows the pattern of quantum numbers in the two-dimensional
harmonic oscillator. Finally, by not distinguishing between positive and negative values
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of LX° one ends up exactly with the observed rules for the quantum numbers No and Lo
of the fast degrees of freedom in the five-mode model.

Therefore, this section concludes with the claim that the fast degrees of freedom
are basically two-dimensional harmonic oscillator states. Due to the mirror symmetry
that holds for K = 0, these states are combined to symmetric (and antisymmetric)
superpositions that correspond to the superpositions of harmonic oscillator states with
the same |LY°) = |k; — ko|. Tt is expected that including the antisymmetric states in
the analysis will fill up the gap of the apparently missing bands, then leading to an
indexation of the bands similar to a two-dimensional harmonic oscillator using Na, the
absolute value |Ly| and a symmetry index 41 that can distinguish the states with Lo # 0
according to their mirror symmetry. The last point is supported by the observation that
the energies of the antisymmetric states are almost degenerate with a set of levels of the
symmetric class (not shown).

2.3.4. Rigidity of (excited states) quantum phase transition

Now, being able to push the particle numbers in the five-mode model to much higher val-
ues of the order of 10* particles, we are in the position to analyze the large-N asymptotic
behavior and answer the question of whether an excited state quantum phase transition
is expected to appear in the mean-field limit. The existence of the latter led to the
distinct local Ehrenfest time scale in the three-mode model and dominated the quench
dynamics of the noninteracting condensate there. The goal here is to show that the ex-
cited state phase transition exists also in the five-mode model and that it also implies the
local Ehrenfest time as the dominant time scale in the aforementioned quench scenarios.

As a major result, the individual sub-spectra have a regular level spacing as expected
from 1D systems, with a peak in the density of states at the energy of the separatrix of the
effective phase space. This is demonstrated in Fig. 2.21, where the inverse level spacing
within the lowest sub-spectrum is shown and compared to the result from the three-
mode model. Moreover, the noninteracting condensate overlaps dominantly with states
within this peak (gray shaded curve in Fig. 2.21), indicating that the quench dynamics
of this state is dominated by only a few states around an excited state quantum phase
transition with level spacings that can be expected to be asymptotically equidistant. This
is because of the evident and remarkable similarity of the results from the three-mode
and five-mode model, that allows to transfer the analytical results of the three-mode
model to the five-mode model in this special situation of the excited state quantum
phase transition. One should note, however, that there are clearly differences in the
two models, that can already be seen from Fig. 2.21. First, the inverse level spacing
is enhanced by approximately 10% in the five-mode model. Second, and much more
important, one has more levels below the peak in the five-mode model and the ground
state of the three-mode model (not shown, as k£ > 1 in the plot) is approximately at the
energy of the k =9 excited state in the five-mode model.

The dominance of a local Ehrenfest time scale similar to the three-mode model case is
demonstrated in Fig. 2.22, where the quench dynamics after an interaction quench from
the noninteracting condensate to a coupling of @ = 1.05 is shown for different particle
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Figure 2.21: Comparison of the inverse level spacing in the three-mode model (orange)
and the first level series/band in the five-mode model for N = 5000, o = 1.05. The dots
represent the actual energy levels, and the solid lines are for better visibility (but can
be interpreted as the smooth density of states). Both models show the characteristic
logarithmic peak in the density of states. The yellow/gray shaded plot shows the squared
overlaps (multiplied by 20) of the eigenstates |i) with energy Ej, of the three-/five-mode
model with the noninteracting ground state.
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Figure 2.22: Comparison of the quench dynamics of the entropy of the reduced one-
body density matrix (top) and the OTOC (2.107) (bottom) in the five-mode (left) and
three-mode (right) model for & = 1.05 and different particle numbers. The constant Cy
facilitates the comparison in the case of the five-mode model.
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Table 2.1: Cutoffs that were used in the numerical calculations.

N 100 500 1000 1500 5000 10000
¢ 40 100 200 300 1000 2000
A 20 30 20 30 50 50
pex 40 60 40 60 100 100

numbers. The top panel shows the time evolution of the von Neumann entropy
S(t) = —Tr p(t) log p(t) (2.173)
of the reduced one-body density matrix
pig(t) = (R(t)la]a; (1), (2174)

where |U(t)) is the noninteracting condensate evolved for the time ¢ in the interacting
system. One can clearly see the emergence of the first revival at the local Ehrenfest time
7, that has been estimated from the average level spacing around the separatrix, with
the number of states taken into account scaling like log(N). The latter is consistent
with the original derivation of the local Ehrenfest time in the three-mode model [189].
Fitting the obtained values for 7 to

log N
T =

T (2.175)

for the different particle numbers, where ¢ accounts for O(1) corrections, one finds A ~
0.21, being in excellent agreement with the stability exponent Ay = 0.42, Eq. (2.164),
found in the classical analysis of the effective phase space. Although the dynamics of
the entropies look very similar, the additional modes in the five-mode approximation
lead to higher absolute values. The three-mode result uses the finite-size-corrected local
Ehrenfest time (2.141). The lower panel of Fig. 2.22 shows the out-of-time-ordered
correlator C(t), Eq. (2.107), for the five- and three-mode model, clearly showing the
signatures of unscrambling in both cases with very similar time dynamics. Although
the quantum revivals seem to be much weaker, the comparison with the OTOC in the
three-mode model shows that this is rather due to the choice of parameters leading to a
small separatrix. However, one can expect the revivals to become more pronounced for
larger particle numbers even in the OTOC, as can be seen for N = 50000 in the three-
mode case that behaves very similar to the five mode model for the particle numbers up
to N = 5000.

For the plots in Fig. 2.22, all cutoffs have been varied to check the convergence of the
results. The data presented here uses the cutoffs shown in table 2.1, where n = 80 for all
the values of N. The time evolution was approximated using the first 2000 eigenstates
of the effective Hamiltonian matrix for particle numbers N > 500 (for N = 100 all
eigenstates were used). The convergence of the results with respect to this approximation
has been checked, again, by varying the number of eigenstates.
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At this point it is not clear whether the results obtained so far for the five-mode model
can be extended to stronger couplings, where the stochastic layer around the separatrix
could lead to faster scrambling and weaker revivals.
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2.4. Summary and concluding remarks

In this chapter, a semiclassical approach to (quantum) phase transitions of the ground
state, but also excited states has been presented. After introducing the necessary tools,
the attractive one-dimensional Bose gas in three mode approximation was studied by
means of the semiclassical torus quantization of its integrable classical dynamics. It has
been shown that the ground and excited state quantum phase transitions have their
origin in the emergence of a separatrix in the classical phase space. With this, a critical
interaction can be defined — even for the finite size precursors of the phase transitions —
as the point where the associated quantized classical torus changes its structure. This
classically non-analytic change in topology eventually leads to a second order phase
transition for quantum states in the mean-field limit that can be characterized by a
sudden change in the pair correlations and the interaction energy.

For a further analysis of the system and in order to provide a tool for the direct calcula-
tion of quantum states, a simplified WKB wave-function approach was then introduced.
The latter is capable of accurately describing the states well above the transition (and is
expected to work well also well below), where it provides essentially exact results for the
quantum states, only requiring the input of a desired excitation index. As this simplified
approach breaks down exactly at the transition, a visualization of the exact quantum
dynamics in phase space has been performed using the Husimi-Q representation, show-
ing that the quantum states clearly reflect the expected quantized orbit structure away
from the separatrix, while superposition of different kinds of motion takes place close to
the separatrix. It has also been demonstrated that the non-equilibrium dynamics closely
follows the mean-field dynamics, but with clear interference phenomena showing up at
later times.

To characterize the scrambling properties of the three-mode model, the out-of-time
ordered correlator of the condensate fraction at different times has been calculated, show-
ing clear revivals after multiples of a local Ehrenfest-type time scale that can be derived
from the semiclassical quantization. These revivals reflect a mechanism of unscram-
bling at criticality, which is absent in chaotic systems and thus presents a remarkable
difference between critical behavior and chaos, despite both types of systems showing
a similar short-time behavior. In a semiclassical Truncated-Wigner type calculation, a
prediction of the exponential short-time behavior in the model has been derived ana-
lytically, that reproduces the quantum evolution almost perfectly, while being the first
term in a quickly converging power expansion of the short-time evolution of the OTOC.
While this power series has been discovered numerically, a theoretical explanation has
not been obtained yet and is the subject of further research. The analysis of the three-
mode model concluded with a short summary of the effects of an integrability-breaking
perturbation on the short- and long-time behavior of the OTOC.

In the rest of the chapter, a mainly numerical analysis of the non-integrable extension
of the previous model, obtained by taking a total of five modes into account, has been
presented and compared to the results found for the three-mode model. By analyzing
the classical mean-field limit of this model, it has been shown that there exists a four-
dimensional high-symmetry manifold that can be analyzed with the tool of Poincaré
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surfaces. One finds that the phase-space is mixed and shows large chaotic regions espe-
cially at large energies and strong coupling. In the quantum-mechanical simulations, a
numerical scheme based on the idea of an adiabatic Born-Oppenheimer type approxima-
tion has been found, that is valid in the regime close to the mean-field critical coupling
and allows for a full characterization of the low-lying states. With this, it was possible
to calculate the OTOC and the von Neumann entropy of the reduced one-body den-
sity matrix for up to N ~ 10* particles. The results clearly show a similar behavior
of scrambling and unscrambling dynamics, with the dominant time scale being of the
same form as the local Ehrenfest time found in the fully integrable three-mode model.
It is therefore concluded that the oscillatory time evolution of the OTOC and the corre-
sponding unscrambling mechanism is expected to be not a feature that is unique to the
model at hand, but applies to a wider class of systems that allow for a similar mean-field
description, and thus a specific class of of excited state quantum phase transitions.
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Summary

The two main chapters of this thesis have successfully implemented different semiclassical
methods with their individual strengths lying in different aspects.

The first chapter has put a focus on the unified description of certain classes of inter-
acting systems in thermal equilibrium using only a few parameters, however dropping the
restriction to the thermodynamic limit that is usually assumed in this context. Before
introducing semiclassical approximations, the theoretical method of quantum cluster
expansions has been reviewed at a high level of detail, with a focus on the canonical
description of few-particle systems that have been brought into experimental reach in
recent years. Although the canonical description, when compared to grand canonical
approaches, has the drawback of a combinatorial problem being introduced by the fixed
particle number, the latter is essential in few-particle systems where the equivalence of
ensembles is not valid. By reducing the combinatorial problem to recurrence formulas, a
simple way to resolve this complexity has been provided. Thereby, a generalized frame-
work for the calculation of arbitrary correlation functions in terms of finite expansions in
nonperturbative cluster diagrams has been developed that does not suffer from any com-
binatorial problems and applies also to interacting systems with multiple species. These
new techniques have then been combined with the semiclassical short-time approxima-
tion of (many-body) propagators that neglects the fluctuations in the many-body level
density, being formally valid in situations where the thermal wavelength is much smaller
than the typical extent of the system — but can be comparable to the inter-particle sepa-
ration and even exceed it, thus not limiting the approximation to the high-temperature
regime.

As a benchmark application that allows for an exact numerical treatment due to its
quantum integrability, the one dimensional repulsive Bose gas with contact interaction
has been studied in this framework. There, the nonlocal pair correlation function has
been addressed for up to five particles in the few-body regime, treating the problem
fully analytically for up to three particles. The theory has thereby proven to be very
accurate when the full cluster expansion is taken into account, being applicable down to
extremely small temperatures where the thermal wavelength becomes comparable to the
system size. The general scaling of cluster expansion in the short-time approximation
has also been demonstrated to be a powerful predictive tool: By extracting the values
of individual clusters from the numerical data of the nonlocal correlations at a single
(moderate) temperature with fixed coupling, it has been possible to accurately predict
the nonlocal correlations for all temperatures (and the same coupling) within the range
of validity, i.e., even down to the quantum degenerate regime for five particles. Apart
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from the conceptual novelty, the fully analytical results that cover the whole range
of interactions in the model are original, and even the simplest thermodynamic limit
predictions were first reported by the author, being in excellent agreement with the
numerical simulations performed by other authors.

In a second application, the cluster expansion for bosons and fermions in three di-
mensions has been addressed in nonperturbative regimes. By using only the analytical
input from the solution of the two-body problem, the mean many-body energy shifts in
a system of bosons has been predicted for moderate repulsive to resonant interactions
with a diverging scattering length. The used method has been proven to yield very
good results in the one-dimensional case with and without external confinement [60].
As the prediction is almost fully analytical it can be applied to different interactions
and particle numbers, as well as smooth external potentials with ease. Therefore, only
benchmark examples with up to 32 particles are presented in the thesis that await nu-
merical verification. As a side product, the exact result for the first virial coefficient for
the nonlocal correlations for resonant interactions has been obtained. The author is not
aware of this result having been reported in the literature. In the case of fermions a
short analysis of a spin-balanced system of four spin-1/2 fermions has been presented.
The preliminary non-perturbative results show that the transition from noninteracting
fermions across the unitary regime to the case of deeply bound bosonic molecules can
be — at least qualitatively — described on the level of the smooth level density. The
quantitative analysis requires further attention.

The focus of the second chapter has been on the semiclassical treatment of a certain
class of quantum critical systems and, in particular, the study of the homogeneous one-
dimensional Bose gas with attractive zero-range interaction. The latter is known to have
a critical coupling beyond which the translational symmetry gets broken by the formation
of a bright soliton. A similar transition occurs also in the momentum-truncated approx-
imations to the full model, with the simplest consisting of three momentum modes. The
classical mean field limit of this integrable three-mode model has been quantized ear-
lier [61,189] using the semiclassical torus quantization in close collaboration with the
author yielding nonperturbative analytical results on the spectral properties, also pre-
dicting a distinct Ehrenfest-type time scale that dominates the non-equilibrium time
dynamics of a quench across the quantum phase transition. Using this as a starting
point, this thesis has then further analyzed the properties of this system and some of its
extensions. A simplified but highly accurate WKB wave function approach based on the
semiclassical quantization has been developed. It is capable of reproducing the essen-
tially exact many-body quantum states in a wide energy range and for particle numbers
ranging from only ten to arbitrarily many, thus essentially solving the Schrodinger equa-
tion. The main part of the chapter was dedicated to the non-equilibrium time-dynamics
of a certain out-of-time-ordered correlator in a quench scenario starting from the nonin-
teracting condensate. A thorough analysis of the short-time behavior of this correlator
within a quasi-classical Truncated Wigner-like phase-space calculation has been used to
analytically predict an exponential growth of this out-of-time-ordered correlator. Such
a behavior is referred to as fast scrambling in the literature and is analogous to the
expected behavior in chaotic systems. But due to the existence of the distinct local
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Ehrenfest time that is expected to dominate the quantum time evolution as the single
relevant time scale, a mechanism of unscrambling has been predicted and verified in
a numerical simulation of this system, also validating the analytical prediction of the
short-time evolution. Due to the very general underlying mechanism that can be under-
stood semiclassically, this effect is conjectured to be present in a wide class of critical
models where an excited state quantum phase transition is driven by structural changes
in a mean-field classical phase space.

To provide further evidence of this conjecture, the nonintegrable extension of the the
model using two more single-particle momentum modes has been studied both in its
(classical) mean-field dynamics and quantum mechanically. Using a separation of scales
that was inspired by the insights from the classical dynamics, a sophisticated numerical
study with particle numbers well beyond the limits of brute-force diagonalization meth-
ods has shown that this nonintegrable critical model exhibits almost the same scrambling
and unscrambling dynamics, hence underlining the generality of the identified unscram-
bling mechanism.

Thus, the second chapter, on the one hand, presented high-accuracy semiclassical
results on a specific critical system in a regime that can otherwise only be treated by the
exact diagonalization method. On the other hand, it demonstrated how the knowledge
of the classical mean-field dynamics can help pushing numerical methods to otherwise
inaccessible regimes. Similar to the first chapter, it also established a certain notion
of universality in predicting a specific kind of quantum time evolution characterized by
out-of-time-ordered correlators in a whole class of systems that exhibit a similar locally
hyperbolic mean-field behavior.

Outlook

As one could think of numerous extensions to this work only the most promising are high-
lighted here. Some of them have already been outlined in more detail in the main text,
while some of the results presented here are still work in progress, especially the three-
dimensional applications of the cluster-expansion in short-time approximation. With
the first steps done into the direction of such higher-dimensional systems, the number of
possible applications has become much larger, but the additional degrees of freedom also
limit the possibility of numerical validation of the approximations. A possible way to
proceed is the numerical simulation of selected interaction potentials to compare some
of the semiclassical predictions to the full quantum theory. This could also lead to a
semi-analytical description of few-particle systems by using the numerically obtained
results for the irreducible clusters to predict the thermal expectation values for whole
classes of observables, parameter regimes, and even systems with different external po-
tentials by using the general scaling properties of the semiclassical results. With this, the
comparison with experimental and numerical findings reported in the literature could be
performed with much less effort due to the usually relatively small number of parameters
characterizing the interactions, the latter then being the only parameters that have to
be adapted. This is, of course, not possible irrespective of the system parameters, but
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covers a wide regime from close to quantum degeneracy up to high temperatures, thus
covering a large regime that is of experimental relevance.

A more direct and less ambitious extension of the results presented in the first chap-
ter could be the transfer of the (coordinate-dependent) clusters calculated in the Lieb-
Liniger model to the nonintegrable case of an external trapping potential in the spirit
of the short-time approximation. This has already been successfully implemented on
the level of the density of states [60] but the implications for the nonlocal correlation
functions have not been studied so far. Similarly, the influence of hard-wall boundary
conditions can be studied, with the advantage that this system falls again in the cate-
gory of quantum integrable systems [217], thus being a perfect benchmark system for
exploring boundary-effects on the nonlocal correlations. The generalization to multi-
ple species is less straightforward when going beyond the two-body contributions in the
semiclassical theory, as these clusters have not been calculated. But as this situation is
described by the integrable Gaudin-Yang model [108], the calculation of higher clusters
in this model should be possible with the same methods as presented here.

One should also note that the two-particle propagators in one and three dimensions
used in this work can be represented in momentum space in closed form. This can be
very useful when addressing larger homogeneous systems and could be used in the exact
cluster resummation of the single-particle density matrix presented in the end of the
first chapter. By using the full two-particle propagators in the self-consistent approach
sketched there, one might be able to obtain non-perturbative results on the momentum
distribution in the one- and three-dimensional systems at hand.

In the context of the scrambling dynamics in the three-mode model, a very interesting
behavior has been found: Although the semiclassical analysis in the three-mode model
was able to accurately predict the short-time exponential growth of the OTOC, the
numerical analysis of the model has revealed that the semiclassical result is only the
first order in a power expansion of an exponential (see section 2.2.4). This behavior
has been found recently also in the Sachdev-Ye-Kitaev model [174], despite the two
models having a very different scrambling dynamics. The theoretical description of this
behavior might therefore be of relevance in a more general context and further research is
planned. In this respect, a first step could be the systematic comparison of the behavior
found in the three-mode model to other simple critical models to find the necessary
conditions for the effect. One candidate could be a pseudo-relativistic model introduced
by the author [218] that shows similar critical behavior. This model, although being
nonintegrable, allows for a separation of scales due to criticality on an analytical level,
such that it might give deeper insights also on this subject.

Finally, the numerical analysis of the five-mode model has concentrated on the regime
close to the mean-field value of the critical coupling of the quantum phase transition.
This has been due to numerical constraints, as higher excited states are required for
larger couplings and it has proven difficult to directly access a specific energy range
in the spectrum without calculating all the states below. As the classical phase space
looks rather regular in this regime, this has, on the one hand, restricted the analysis
to a quasi-integrable case, and the question of whether excited state quantum phase
transitions exist also at larger couplings has thus not been answered to satisfaction.
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On the other hand, a quasi-integrable classical motion could also pave the way to an
analytical quantization scheme using a characterization of periodic orbits, as has been
successfully applied to the quasi-integrable configurations of the Helium atom [48].

A final conclusion

Although the most important results of this thesis have already been summarized above,
it is worth to comment on the relevance of the thesis on a different level. Naturally, some
of the new results presented in this thesis could be considered as important contributions
to the theory of few- and many-body quantum systems in their own right. Especially
some of the remarkably simple analytical results obtained here, e.g., for the non-local
correlations can be considered as an important addition to the rather small number
of available analytical results. However, the ingredients that led to some of the simple
results have been around for decades — but it required an less conventional (semiclassical)
approach to establish their direct connections. This has hopefully conveyed to the reader
the general relevance of the semiclassical methods used here: They should be considered a
valuable complement to other (standard) approaches by highlighting different aspects of
the same physics and offering new connections between otherwise (seemingly) unrelated
physical situations.
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A. Proof of equation (1.47)

To derive Eq. (1.47) we perform the trace in (O) = Tr(iN){e*'BHO}/Zj([N) in the position
basis of the Hilbert space of (anti)symmetric N-particle states

N1 Z |Pa) = —‘I’T(wl) R AEINI0) (A1)
PeSy

and insert a closure relation to rewrite Eq. (1.46) as
Nk 1 _Bh
My, x; ) = POl /sz dN2' (2)ePH|2)
+

x (2| ¥ (@) - Ul (@) U(yy) - Tlyy)|2). (A2)

The first term in the integral is exactly the symmetry-projected many-body propagator
K(iN)(z’, z;3) defined in Eq. (1.15), as the symmetry projection commutes with H and
is idempotent. The matrix element

M(z,2' @, y) = (2|01 (@1) - U (@) U(yy) - D(yy)|2)

= 0z () W ) - B () ) By B (1) - B ()I0) (A3)

can be evaluated using Wick’s theorem with the definition of a contraction A B =
AB —:AB:, where : AB: stands for normal ordering of the field operators A, B. The only
nonvanishing contractions are then

(u)* Ut (v)* = 6P (u — v), (A.4)

and Wick’s theorem states that M(z, z’, @, y) is given by the sum of all full contractions
of all the field operators. For a nonvanishing contribution, \i'(y,),z =1,...,k, has to be
contracted to the right while \illf(a:j),j =1,...,k, has to be contracted to the left. The
simplest full contraction is

k
Hﬁz(zi)'@*(wi)'}

i=1

k N
H (2 — )0y, — 2}) [[ 6Pz - 20), (A.5)

159



A. Proof of equation (1.47)

where adjacent operators are successively contracted, giving rise to the contribution

1
i) (Al)

— o [ (). @208 = —
R

N1z

in Eq. (A.2). All other full contractions can be brought to the same form under the
integral by

1. relabeling the integration variables z; and zj such that the individual contractions
have matching coordinate indexes as in (A.5) and

2. simultaneously reordering operators and coordinates in the (anti)symmetric prop-
agator, such that the minus signs in the fermionic case cancel.

Note here that the reordering of the operators is only done on a formal level to work out
the correct signs. This shows that all the N(N — 1)N! full contractions give exactly the
same contribution (A.6) to (A.2), which proves Eq. (1.47).
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B. Lieb-Liniger model

B.1. Derivation of the propagator for the extended
Lieb-Liniger gas

The symmetric wave functions of the continuum limit of the LL model are known and
can be written as [3,108]

P f(Pk, w)ei(Pk)w. (B.1)

Xe(@) = m P;:N

Here, Sy is the symmetric group acting on the index set, P is the N x N matrix
representation of the permutation P such that (Pk); = kp(), (=) is the sign of the
permutation P, and

k) :ijfklfzcsgn(asjle)' (B.2)
S (k= k)2 + 2
They obey the Schrédinger equation
R h2 2
Hxg(x) = %Xk(w) (B.3)

for the LL Hamiltonian defined in Eq. (1.172), but now with z; € R. It has been proven
in [108] that the wave functions xx form a complete set in the domain z7 < --- < a7 if
we choose k; < --- < ky and that they are normalized such that

/]R B H5 (B.4)

where the bar denotes complex conjugation. The symmetric many-body propagator is
thus given as

EM (@ at) = /D dk e 5k (@) X (@)

1 il
= i L ke e, (1.5)

where D is the domain with k; < --- < ky. The second line follows from the fact that
Xk () is an antisymmetric function with respect to exchange of any two of the k; so that
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B. Lieb-Liniger model

the integrand is a symmetric function (k2 is invariant under permutations). Using the
transitivity of the symmetric group it is straightforward to show that

3 (~D)FRf (R, &) f(Qk, x)e! R i@k
R,QeSN

= Y (D)PHETIQK, ) f(Qk. ) @) (B6)

P,QeSN

where the substitution R = Q o P~! was used. Note that the matrix representation of
two successive permutations R o S is SR, i.e., the order is reversed. The integrand in
Eq. (B.5) thus depends only on Qk so that the sum over the permutations @) gives just
a factor of N! as one can relabel the k; in each integral. The key step now is to realize
that the function f satisfies

J(Ph, P2) = (~1)" f(k,2) (B.7)

for all permutations P. This will be proven at the end of the paragraph. A simple
calculation then shows that

(1P F(P 'k, a) f(k, @) = f(k, Pa') f (K, x)
kj —ky — icsgn(z’P(].) — z’P(l))

= B.
H kj — ky —icsgn(x; — xp) (B.8)

J>l
Putting everything together one finds that the symmetric many-body propagator can be
written as in Eq. (1.173) with the effective many-body propagator (1.174).

To complete the proof one still has to show the identity (B.7). The proof is trivial
if we can show this for a permutation that interchanges only two successive numbers
m,m+ 1 for m = 1,...,N — 1, as any permutation can be written as a composition
of such exchange operations. The product of the denominators in the definition of f,
Eq. (B.2), is invariant under permutations of the k;. So one only has to consider the
product of the numerators, that one can split [after fixing m and P = (m m+ 1)] into
the factor where j =m+1,l=m

kp(m+1) = kp(m) — 1¢8g0(Tp(m+1) — TP(m))
- 7[km+l - km —ic SgIl({L'm+1 - fm)} (BQ)

and all the other factors. One now has to prove that the product of the latter is invariant
under P, as (—1)” = —1 is already accounted for in the first factor (B.9). Let us define
the set

Qp = {kp(;) — kpa) — icsgn(zpg) — zp@))li > 1} (B.10)
where the factor that has j = m + 1,1 = m is excluded. The proof is completed by
showing that Qp = Q;4: Let us choose an element in Qp. As P interchanges the sign of
j—1if and only if both j = m+1 and [ = m, it is also an element of 2;;. Together with
the fact that both sets are of the same size, this shows their identity.
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B.2. Second- and third-order interaction contributions

B.2. Second- and third-order interaction contributions

The second-order interaction contribution can easily be calculated from the propagator
for a 1D 4 potential V (z) = (h?c/m) §(z) [219,220]:

Ks(@',m;t) = Ko(2/, 2;t) + Ko(2/, ;1) (B.11)
with
Ko(2',a;t) = 1/27:;Lhte*z$§t(x’*1)2 (B.12)
and
o U
K. (2, x;t) = —/ due_“K0(|x'\ + |z| + =, 0; t>. (B.13)
0 c

Introducing center of mass and relative coordinates this results in
AK (! @;t) = Koy (R, Ry t) Ko (1, 5 t), (B.14)

where the additional indices M and p stand for the total and reduced mass that should
be used in the expressions.

The result for the third-order interaction contribution was calculated for the funda-
mental domain F defined as the region where 21 < zo < x3. The result for « or =’ in
another domain is then obtained by projecting both coordinates into F (i.e., ordering
them by size). Expressing relative and center-of-mass coordinates in units of the thermal

wavelength Ay = \/2mh?3/m through

L. = V2T V2 [ o _ 1+ T2+ 7
(F1,72,R) = (r1,r9, R) = Y22 (3 — 31,33 — B9, ———2—3) | (B.15)
AT AT 3

where the bar denotes the projection to F, the simplified result in dimensionless coor-
dinates and interaction parameter is

(3 ) _ . _ 1 3 - ~ 2 (oo} u
AKJr)(;l:/’a:’t——lhﬂ)—%exp |:—§< /_R> ; du 7ud’l)

x 1(~ ~'+U)2 (P4 27 ) + o 2 + [ ¢ 7]
exp |—u—=(f1—T9+—=) ——= |71 +F 7+ T — Ti <> T
*P a\"tTTeg) T\t LT T2 ARG

1 /. N v\ 2 1 /. _ ~ 5 3u 2 5 .
—exp [—u—z<r1+r’2+%) —E<r1+r§+2(rﬂ+r2)+%> + [F; < 7]

1 /. ~ N _ u\2 1 - _ - - 3v\?
+3exp {u 1 (7'1 + 7+ T 2?> BT ((7‘1 +79) — (FL +72) + ?&)

(B.16)

Here, the interaction strength has been rescaled to ¢ = Arc/v/8w. The above result
gets simplified if one is interested in the diagonal elements &’ = x, as is the case for
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B. Lieb-Liniger model

b(32)(r), where one has to set 1 = 0, 9 = r and integrate z3 in Eq. (B.16) over full
space. Due to the symmetry of the problem one can choose r > 0 and thus only has
to consider three different regimes z3 < 0, 0 < x3 < r, and x3 > r. This leads to
different assignments of the variables 7; in Eq. (B.15) due to the projection onto the
fundamental domain. By performing all the integrations and combining the result with
the contributions from the diagrams of lower orders in the interaction contributions one

obtains bg2> (r) = di(r) + dao(r) + d3(r) with

AT _3x2
d ) = V2e i, B.17
() -t (17
dy (A—Tf) = *2\/56752{6(2)2 erfc (£> + (ré— 1)e<6+%)2 erfc (5+ i) } (B.18)
2 2 2
— 8V2[F(7/2, —7/2) + F(0,7)], (B.19)
ds (\j\%r) = 8\/§{F5(0, )+ {2 + 267 + 262} Fx(F/2,7/2) (B.20)
- {2%5 + ?-2} F5(7/2,7/2) + [27¢ — 1]Ga(F)
4 72 7y r Y 51Ty r
+ gng*’“Z {e(i)z erf (g) + e erfe(é + 7) — @12) erfe (5 + %)} }
(B.21)
The functions Fz and Gz are defined as
Fi(z,y) = E/ du e~ 4eu—3(uta)? erfc(u + y), (B.22)
0
Gi(z) = \/gf’/ du e~ 4eu—(uta)? erf(v/3u). (B.23)
0

The indices n of the functions d,, stand for the order of the interaction contributions that
are involved, such that, e.g., di is the result for free bosons. The function b3 = béo) is
obtained from ng)(r) by using Eq. (1.39). As many of the resulting terms from second-
and third-order interaction contributions cancel after integration, only the sum of all
contributions is presented here, which is given by

1 3 2)2 - ~ .
by = Vel 5\/3 {e@’ )" erfe(2¢) — 1(6) = F5(0) (B.24)
with
_ 2 2 [ s
F,(¢) = ﬁe“*"z)cz/ du e (wtVIH20? erfc(vu). (B.25)
0

Note that F,(0) = 1—n/2 arctan(v), which can easily be proven by differentiating F,(0)
with respect to v, so that F,(0) + F,—1(0) = 1 for v > 0 and thus bg = 1/4/3 for é = 0.
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B.3. Numerical calculation and error estimates

B.3. Numerical calculation and error estimates

B.3.1. Numerical scheme for calculation of the pair correlation function

For the numerical calculation of the nonlocal pair correlation function the Bethe ansatz
solutions [108]
C(k) > ()P f(Pk,x)e i(Pk)z (B.26)
PeSN
were used, with the function f defined in (B.2) and a (real) normalization constant C'(k)
that depends on the quasimomenta that solve the coupled transcendental equations

Hk kﬂ‘ j=1,...,N. (B.27)

Let us focus only on the case ¢ > 0. In this case the logarithm of the equations (B.27) can
be taken directly and the quasimomenta are determined by a set of N ordered quantum
numbers that represent the branch of the logarithm that is used in the respective equation
(for more details see, e.g., [3,19]). The solution is then easily found via Newton’s method.
The energy of the eigenstate yg is given by

2.2
E(k) = ZT’Z . (B.28)
The nonlocal pair correlation function can now be written as
W= T ), (8.29)
k1 <-<kn
with .
o ):L2/0 dzs ...z |xe(0,7, 25, 2w (B.30)

The absolute square of the wave functions involves (N!)? terms and one could now
integrate them directly as was done in [109]. But one can reduce the problem to N! such
integrations with the help of similar manipulations as were used in Appendix B.1. This
enables one to write the absolute square of the wave function as

k(@) = C2(k) D Ugyl), (B.31)

QESN

where Q is the matrix representation of the permutation ) and

PeSN M

Here, Pr(x) is the projection of & to the fundamental domain F with z1 < --- < zn
and one can take the real part as the imaginary parts have to vanish in the overall
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B. Lieb-Liniger model

sums. The plane waves have to be integrated over full space in 3, ..., zy, which leads
to different projections in the fundamental domain. Due to the translational invariance
and inversion symmetry one can restrict the analysis to the cases where 0 < -+ < z; <
r < xjp1 < --- < L. A simple algorithm has been implemented that correctly traces out
x3 to & symbolically. The final expression that was used for the numerical calculation
is

. FEs, (1)
(N) ZQGSN Qk
Gop (1) = L=, (B.33)
2k ZQESN GQk
with the functions
Fer) = > R{AOn0 0} (B.34)
PeSn
L
Gr=Y m{ i / drhf)(r)}, (B.35)
PeSn 0
with the definition
kp 5 — kPl —1c
R = P A= (B.36)
X j 1 c
3>l
P L .
h;c )(r) = / dzs ...dzy CZ(Pkfk)Pf(z)}xlzowz:r. (B.37)
0 ;

One has to take care, as some of the sets of k; obey certain symmetries leading to
divergences in the symbolic expressions for hg: for certain permutations ). These cases
have to be treated separately, leading to a piece-wise definition of the functions Gy and
Fy, with respect to k. For the computation, the length L of the system can be completely
eliminated by rescaling the variables according to k + kL,E + EL? z + x/L,c v
cL, B+ B/L?. One may note that for N = 3 particles the integral of a plane wave can
be written

b
. bia b
/ dze™ = (b— a)e’%” sinc ( 5 am) , (B.38)

which is well defined for all values of x and thus one can use this integral for k = kp(;) —k;
for all permutations P and the respective indices 1.

B.3.2. Error estimation

This appendix aims at finding an estimate for the error that occurs if the summation
over quasi-momenta is truncated to a certain cutoff energy. Let us therefore write the
nonlocal pair correlation function as

N —1AM ()
N zW)

3 (1)

92 (B.39)
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B.3. Numerical calculation and error estimates

with AN defined by Eq. (B.29), and let us denote a cutoff in the energy by a bar at the
respective quantities. Both A (r) and Z(") are positive and monotonically increasing
with the cutoff energy. Let us further write

ANy =1 —ea()]AM(r), ZW) = (1 —ez)2z™) (B.40)

with the positive relative errors e4(r) and ez. The relative error of géN) (r) is then

1—
eg(r) = 1_67*2(;) —1= ez —ealM][L + O(ez)]. (B.41)
Using the normalization
L
/ dr AM(r)y = LzM), (B.42)
0

which also holds for the truncated objects, it is easily shown that the absolute error of
géN) (r) averages out,

L
/0 drey(r)gi™ (r) = 0. (B.43)
Now define
ooy eg(r) €4(r) >0
e (r) = { go e(i]se (B.44)
ey (r) =eg(r) —e; (r). (B.45)

As e4(r) is positive, ¢ (r) is bound from above by ez[1 + O(ez)] and one has

L TN PRI S LSRN
T dreg (r)gy '(r) = I drleg (r)lgy '(r) <
0 0

ez[1+0(ez)]  (B.46)

for the absolute error of eg(T)géN>. Thus, even though the latter could, in principle, take

large negative values down to eg(r)géN) (r) = —géN) (r) at certain points, this can only be

the case in a small region that scales with the inverse of this value and with ez, meaning
that the absolute error is smaller than ez everywhere else. However, such peaked drops
in the pair correlation-function are not expected (and do not observed), as they can be
regarded as unphysical.

In order to have an estimate for the relative error €z of Z (V) one can use the obser-
vation that the mean density of states p™)(E, ¢) in the LL model obeys p™)(E,0) >
PM(E,¢) > p™)(E,00) and use the two limits for an estimate of the error in Z(V),
As we are mainly interested in the approximation error for high temperatures, where
the sum over the exact states in the partition function converges slowly, one can make
use of the semiclassical approximations. The mean density of states is given by the

inverse Laplace transform with respect to 8 of the semiclassical partition function Z(®V),
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B. Lieb-Liniger model

Eq. (1.37). For the limits of free bosons and fermionization this can be written as

l
(N)(/B) leilN l (N <)\I’7T)

1 _ P %
- ml;(il)fv LM <FO> , (B.47)

with pg = mL?/(2rh?), where the sign stands for the limits of free bosons (4) and
(™)

fermionization (—), respectively. The numbers z’ contain the sum of diagrams cor-
responding to the partitions of N particles into [ clusters and are independent of the
temperature, as b, = (£1)"~!/\/n for the two limits. The mean density of states is

8e) = L5z “me

N l L_q
Ez
§ (D) pe Ok (B.48)
=1 2

with the gamma function I'(z). The relative error in the partition function is then
approximated by the semiclassical error

€z, (z,B) = N)/ dEp

i (i*T)N”Q@x)
21:1 1 ) (i)‘TT)Nil )

where Q(a, z) is the regularized incomplete gamma function

(B.49)

r B
Q(0.0) = L) — (B.50)

We are interested in the regime Ap < 0.5L and, for reasonably small errors, x > 10.
The Numerator in Eq. (B.49) is then dominated by the | = N term, and the error is
largest if we minimize the denominator by using the result for the fermionization limit.
This may also be seen from the fact that the ground-state energy is maximized in this
limit, maximizing the ratios e #(Fx—F0) in 7 = ¢=FFo(1 4 ¢=A(F1=Fo) L ) Thus, the
semiclassical error estimate in the fermionization limit was used as a bound for the error
at arbitrary couplings. The numerical calculations use the cutoff x = 20 for N = 3,4,
leading to éz_ < 4 x 1078 and éz_ < 8 x 1077, respectively (for all temperatures). The
results for N = 5 use x = 14 for Ay = 0.1L (€z_ < 6.2 x 1075, approximately 1.4 x 10°
to 2.5 x 10° states) and z = 22 for Ay = 0.4L (é7_ < 8.2 x 1077, approximately 250 to
1330 states), respectively, in the corresponding semiclassical approximation.
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C. Propagator for shell potential

Here, the propagator for a shell potential centered at the origin is derived for a particle
of mass u. The radial wave functions ug for the shell potential

Vir) = Z—: s (r —ry) (C.1)

centered in a sphere of radius R > rs can be written as

sin(_k(Rf'rs)) in(k <
upo(r) = Ap(R,1s) X sin(krs) sinfkr), <7, )
sin(k(R — 1)), re <r <R

(C:2)
with a normalization constant Aj that depends on the details of the potential and the
quantization condition. The latter can be written in terms of the scattering phase g
found in the main text as

tan(kR) = — tan(dp). (C.3)

The propagator (1.192) contains the product of the wave functions evaluated at different
positions, giving rise to four different contributions that have either both coordinates
on the same side or at different sides of the shell potential. It is possible to rewrite the
product of the wave functions (choosing a real normalization constant) for the different
contributions by using the quantization condition for all terms that involve trigonometric
functions of kR. This yields

e for ri,rg > r4:
eik(r1+r0)

1 —itandg

uko(rl)ukO(TU) 1 ik(ri—r ik (r1+r
v 25%6(1 0) 4 gik(rit+ro) _

} . (Ca

o for (ry —rg)(ro —1rs) < 0:

ik|ri—ro| _ atk(ri+mo)
uro(r1)uro(ro) _ [, N tandy ] 1., [ ¢ e ’ .
A? tan krg | 2 1 —itandy
e for ri,rg < rs:
ugo (1) uko(ro0) 1 tando 12 1oy [ iktrro) k(o)
= _§R wk(r1—ro) _ jtk(ri+7ro . CG
A? 1+ tan? &y tankrs | 2 [e ¢ ] (C.6)
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C. Propagator for shell potential

Here R[z] denotes the real part of z. Note that the expressions are the same for §y = 0
as they should. The normalization constant is given by

A(Ryr) = V2 { sin’(k(R — 1)) [1 - Sin(2krs)}

sin?(krg) 2krs
H(reny - TREERIILE e

The trigonometric functions could also be rewritten independently of R using the quanti-
zation condition, yielding lengthy expressions for finite R. However, as the limit R — oo
is taken eventually (carefully respecting the boundary conditions), one can replace Ay
by /2/R in this limit independently of the details of the potential.

By approximating tan do = —agsk and tan kry = krg in the limit kry < 1 one can then
follow similar steps as in [221] to replace the sum over discrete quantum numbers k by
an integral using

Stk () =2 fare, (©8)
k

such that the problem reduces to the calculation of integrals of the form

—ikag

1 [ eike _pn?
fl(zﬁ,as):; ; dk R TRy | © o, 1=0,1,2 (C.9)

Taking the real part under the integral is equivalent (up to a factor of two) to expanding
the integration to the real axis. The results for the integrals are then given in terms of
the propagator

1 Ly B = (y—a)?
K;(L)(l/7l,7ﬁ) - 271‘}742,80 2123 (Clo)
of a free particle of mass u in one dimension as
Io(z B,a5) = K{D(2,0: 5), (C11)
o0
hizf.0) = [ due KDz 0 ), (€12)
0
o] 2 2
In(z, B, as) = / due KD <z70;6 + u};as) . (C.13)
0
The full s-wave part of the propagator in short-range approximation is then
Io(r1 — 7o) + Io(r1 + 7o) — 2[1(r1 +10), 71,70 > 75,
K rsr 5,0 = 4 (1= 8) [n =) = B +00)]. 552<0, (©ag)

2
(17%:) [.[2(7‘1 77’0)*[2(7"14’7'0)]7 ry,ro < Ts.

However, for consistency, one should approximate also, e.g., ro/Ar < 1 if 7o < r5. Only
in this limit, the three expressions are the same at the boundaries that connect them.
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C.1. Connection to 1D delta-propagator

The bound state solution with energy E = —h?k?/2m can be analytically given as
—Krs sinh k1
(b) _ Ss'h s rT<Ts
U o(1) = Ay X { o, i 7 o (C.15)

where the normalization is dominated by the region outside the sphere for kry < 1 and
can be replaced by A, = v2k. Using k = 1 /as, valid for this regime, the contribution
of the bound state to the imaginary time propagator can be written as
h2
eﬂmui)(rl)ut)(ro) (C.16)
with the wave function defined above.
Using the above it is straightforward to show that in the case rg,r; > rg the s-wave
interaction correction to the propagator is given by

SK ) (03 Bua5) = 2 | KD (ry + 70,05 8) — /0 due ™ KD (r +ro,a0u; 8| (C.17)

9 M8 ri4n
+0O(—1— crg)—e2maie a (C.18)

as

where the bound state exists only for c¢rs < —1. This can be further simplified to

8K ) (1,705 B, 05) = 2K (1 + 70,0, 8) x [1— 3 gy (71 + o + 5)] (C.19)

with 7 = r;/Ar(n), § = =Ar(u)/2mas, and the function
gn(z) = 777re”2 erfc (ny/nz) . (C.20)
Here, n = 1 and n = —1 correspond to the attractive and repulsive case, respectively,
i.e., is given by n = —sgn(c). The bound state is included here automatically in the

attractive case. It is combined with the complementary error function by using the
identity
erfe(—z) = 2 — erfe(z). (C.21)

It is important to also note that, as found for the repulsive case by other authors, the
scaled interaction correction 6k(()1) can be written as a spatial derivative:

o 1 5
5KV (2, 0:5) = 20~ [1 — 59y (5 4 5)] = 7%6—7&«2%(5 +3). (C.22)

This relation can be very helpful in integrals.

C.1. Connection to 1D delta-propagator

The imaginary time propagator for a particle of mass u in a potential

szﬁé(l)m C.23
s(a) = 5560 ) (©23)
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C. Propagator for shell potential

is found to be

KW

5#(1‘13%0;/876) = K;(/})('Tl:x();ﬁ) +(5Klsl>($171‘0;676)7 (C24)

with

6K;<11)('r171’0;57 C) = 7\/0‘ duoiuK/(J‘l)(‘mll + |$0|7 72“/@ ﬂ)

¢ h282 .
— O(—c) Sl oSl Haol)
(o)

= —KWM (21 + 20,0; 8) x 394 (1 + &2 + ), (C.25)

with § = cA\p(p)/4m. This gives the relation between the s-wave (attractive) interaction
correction in 3D and the interaction correction in 1D as

8 ) (r1,m0; B, as) = 2 | (11,703 B, —2/ag) — K (r1, 703 B, 00) | - (C.26)
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D. Inverse Laplace transform of special
functions

This appendix derives the inverse Laplace transformations for the functions that appear
in the QCE.

D.1. Function definitions

The following functions appear in the cluster expansions:

o Fey(s) = s e erfe (/s),

2 o 5)?
—sfnes/ dz e~ (12H+V5) erf(vz),

™ Jo

. GI(s) =

e 2
o HIAM (5) = 7"0“"/ dz e~ (1+5) erf(A\z) erf(pz).
0

2 3
ﬁé
The parameter n could be any real number, but its absolute value can be absorbed
into v, A, and p by substitution, such that one only has to perform the calculations
for n = 1. The above functions cannot be further simplified. However, their inverse
Laplace transform can be given in terms of elementary functions.

D.2. Laplace transform identities and recursive formula

The following identities for the two-sided (inverse) Laplace transform of a function F(s)
are useful

o £ [FO(9)] (1) = (0L ()] (),
o L7 EF ()] (1) = L7 [F(s)] (¢ + ),

o L1 as :i -1 x i
£ P (0 = 5 [P ()

Here, F (”)(S) denotes the nth derivative with respect to s. An useful explicit identity
for the inverse Laplace transform for rational exponents of s can be given as

L [s7] () = 0 n > 0. (D.1)
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D. Inverse Laplace transform of special functions

There is another, nonstandard identity that is used in the following at several stages.
Consider any function of the form

F,(s) =s"Fy(s), n>0. (D.2)
Then one easily finds the recursion
1 —n 1 L]
Fraa(s) = - (~Fa(s) + 5By (s) = - (~Fa(e) + F(s)) (D.3)
introducing the definition
E(s) = s_"% [s"Fn(s)]- (D.4)

The recursion relation (D.3) is solved by

1 d\"7 n—1 d n—Il—1
R0 = T | (-12) RO+ >ro (-1)  molp o9
where the sum runs over real numbers in steps of one and
1, n €N,
=—n+1-— = D.6
y=n+1-[n] {n—m, N (D.6)

Here, [-] and |-| are the ceiling and floor functions, respectively. If the inverse Laplace
transform of the functions are denoted by their lower case symbols, this is translated
into

n—1
falt) = %n) DOE 1 (0 + Y T2 () (D.7)
I=y
or, written as a sum over integer numbers,
n—y
fa(t) = ﬁ {F(v)t”‘”fv(t) +y Tn- k)t’“‘lfﬁk(t)} ‘ (D.8)
k=1

This identity is useful if the inverse Laplace transforms f2(t) of the functions F(s) are
known. Then the inverse Laplace transform f, () is expressed only in terms of known
functions and the single function f,(t). In the QCE only v = 1 and v = 1/2 are relevant,
corresponding to integer and half integer values of n.

D.3. Calculation of the inverse Laplace transforms

The steps for calculation the inverse Laplace transforms are the same for all the cal-
culations. First, for each function, one defines the related function (F,, standing for
FCn / Gn /Hn) B

() =eFu() (D.9)
that comes without the factor e®. Then, equation (D.8) is used for those functions.
Finally, the result is re-expressed in terms of the inverse Laplace transforms of the
original functions.
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D.3. Calculation of the inverse Laplace transforms

D.3.1. The function Fc,

The function Fe,, has been treated already in [221]. However, with the definitions above
one can directly give the result here and the steps are thus repeated here to show the
general line of calculation. The function Fc,, satisfies

Fep(s) = s~ % erfc(y/s) = —saes, (D.10)

The inverse Laplace transform is thus

fef (1) = £ [Fel(5)] (1) = 7%.4;1 [ e-n =22 (z v 7)2 (D.11)
2
and the inverse Laplace transform fc,,(¢) of Fe,(s) is given by
fen(t) = £ [Fcn(s)] (t) (D.12)

= ﬁ {F(v)t"7 fe, () + nir(n — k)tEt fc;k(t)} : (D.13)
k=1

Finally, the inverse Laplace transform of Fc,(s) is given by

fen(e) = L7 {es Fcn(s)] (6) = £} [Fcn(s)] (e+1)
n—y

= {I‘( V(e +1)" 7 feq ( +ZF n—k e+1)k_1fc;k(c+1)}

5
=

n)

1 BCIOE SR k=1 n—k—1
- 1) 1)k—1en—
m){ (e + 1" e, ﬁzlf(n e
(D.14)
For (half) integer n the function fc, is given by
foy (e) = % @e(-?f for(e) = %arctan(ﬁ)(-)(e). (D.15)
D.3.2. The function G,
Let us first identify
G () = GW(s) (D.16)

and start with the inverse Laplace transform of this function. As the steps are identical
to the steps for Fc,(s), only the results are presented. The function GS{')(S) satisfies

. 1 v s
s |a—s 1(v) — _ R
e [e Gy (s)] N Fcn+% (1—1—1/2) . (D.17)
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D. Inverse Laplace transform of special functions

With this one can perform the same steps as above to find

g(e) = Fi{rm(e 1" g, ()

(n)
n-y fc .1 ((1 + V2)€)
v n—Fk+3
_ 7 T(n — 1 k—1 2 1
7 ; (n—k)(e+1) (e (D.18)
with
ﬁ% X %arctan (1/ H_%), v = %,
s0=0,T t ) o (D.19)
= larctan(v) — arctan T (e), y=1
For the case n = —1 one finds
GO (5) = GV 42es " erf Vs (D.20)
n n 1+I/2
— oW raesm _gerim (2 )'w Vs (D.21)
=G, e’s e 1.2 Cn, 1.2 .
leading to the general result
g (e) = g (e)
Oe+1) - vz A\ (1+2)e+1
+ 2@(*77) {F(n)(ﬁ + ].) — 1+ 1/2 fC” T .
(D.22)

Note that the last term is not defined for » = 0, but in this case one has gr(:]’") (e)=0

by definition.
D.3.3. The function H,
The function Hgl"’)"“)(s) can be either treated directly for both 7 by using
_ . A view) (s
s s H(n,)\,p) § — 7i (np/V1+ A D.2
¢ [e T I ﬁ(1+A2)"+1G"+% 1+ X2 +hou, (D.23)

however, it should be computationally cheaper to represent it directly in terms of the
known functions and

HOFLAM) (5) = HOM) (s). (D.24)

This yields after a few pages of calculation

H{) () = n H () £+ 20(-n) [e"s™ 4+ DX () 4 DEV ()], (D25)
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D.3. Calculation of the inverse Laplace transforms

with

D<m>(s):( Nt )"emgﬁvlﬂux:?)((A2+u2)s>

1+>‘2+/’L2 1+)\2+M2
)\2 noos /\2
—-(14_A2) TR Fc(l_%§2) (D.26)

The inverse Laplace transform for M >(3) yields

R (e) = B (e) + BV (o) (D.27)

as the symmetric combination of

() 1 n—y ()
h =—T D" 7h
o (€) ) { (7)(e+1)"7hy"(e)
\/ 2
A "_VF k 1 k’*lgg‘u_/k*l;\ ) ((L+2%¢) D.2
,ﬁ; (n—Fk)e+1) S U: (D.28)
The function BE//\’“ )(e) has only been calculated for v = 1/2 so far, yielding
=) O(e) 2 i 7 1+e
N _ z 2y - S — . (D2
1 (e) NN X arctan <)\> arctan NWIFa 2T e (D.29)
Finally, the inverse Laplace transform of the function Dﬁl)"” >(s) is given by
) (¢) = A2 42\ gS§\/1+A2+#2) T+ 4+ X+ e
" L+ A2+ p? A? + p?
A2\ T4 (1+X)e
Thus, putting everything together, the inverse Laplace transform of HSM’# )(s) is given
by
b0 = 5 [BM () + BV (o)
Oe+1) ne1 | 0w (N
+20(—n) W(E + )"+ d)H (e) + AV (e) | - (D.31)

D.3.4. Other transforms

One can also find the inverse Laplace transform of the square of the functions Fc, relevant
for the QCE(2). Defining
Fe,a(s) = s " Fc}(s), (D.32)
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D. Inverse Laplace transform of special functions

one obtains with the same methods as above for its inverse Laplace transform

1 n—-y
fena(e) = m{r('}/)(e—i—ﬂ 7 fe, o(e) \/_Zr n—k)(e+2)F~ an(e)},
(D.33)
with the starting functions for half integer and integer n being
[1— 2arctan (Ve +1)] O(c) v=1,
foya(e) =9 e, —arctan( €(€+2)) 1 (D.34)
VaVet2 T

These starting functions can be found by convolution of the functions fc, with each

other. The same can be done for arbitrary k for the functions Fc% ) defined analogously,

relating the powers k to lower powers k — 1 recursively, with the only complication being
in the starting functions, that might not be closed form expressions but have to be
calculated numerically.

D.4. Application to the cluster expansion

D.4.1. QCE(1)

As the inter- and intra-cycle diagrams have the same value, they do not have to be

(

calculated separately. The coefficient functions gli’d>7 Eq. (1.236), involve functions

b (e) = L7 [s*’Hau(s)} €, k= %. (D.35)
By using the relations derived above one directly obtains
b(k)( ) — ,l v e 7% @( ) f(ﬂ) ( )
e PR v \Fﬁwzrk %) ‘ \F kot

1 (n) )
_5(1+V) |:gk11 (1+ ) k’ll 1+U2
k—1 v € U €

where the upper sign, together with 17 = 1 represents the repulsive case, and the lower
sign represents the attractive case above (n = 1) and below (n = —1) the resonance. For
simplicity, the new function fcﬁﬁ has been defined as

(e+1)" 1

fe5?)(e) = nfea(e) +20(=1) —p7 5

Oe+1). (D.37)
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D.4. Application to the cluster expansion

D.4.2. QCE(2) for 4 particles

The QCE(2) parts of the functions Azlw’d) in 1.5.4 that are not trivially given by QCE(1)

diagrams are

524 (5) = 32 x 47 2a2(s), (D.38)
641 (s) = —32 x 474 4G (45) — WP 45)]. (D.39)
They contribute to the functions gl(N’d) as
_ e+ 2)¢
3080 (€) = 8¢ L tear1a(e) + O(-n) [ntearate+ 1) + 20 19|V (D.a0)
Td+1)
4D\ qoe—d [ D) (€Y 4 01VD) (€
59\t (e) = —128¢ |:g%+1 (4) n", (4)} , (D.41)

in terms of the functions defined in the previous sections.
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E. Five-mode approximation

E.1. Classical Hamiltonian function

The classical Hamiltonian function in five mode approximation can be explicitly written
in terms of the variables nyg, 0 as

+n_1y/n_gngcos(f_a + 6y — 20_1) + ng\/n_anz cos(6_z + 02 — 26)
+ noy/n_ing cos(0-1 + 01 — 26p) + niy/nona cos(6p + 02 — 201)
+ 2/n_1ningng cos(Bp + 61 — 62 — 0_1)
+2\/n_nin_anacos(f1 +60_1 — 6y — 0_3)
+2\/n_ningn_zcos(0_1 + 6y — 01 — 0_3)
] (E.1)

By using the coordinate transformation given in the main text one obtains

21 1—2—-2%\2 [1-4\?
2ol g () ()

_ %{[1 —z—2z—( 7412)]\/@005 (¢+ w>
+[1—2z—22+ (1 —4l)]\/2(22 + l2) cos ((p + %QTW)
+ 22@005(280 - 0.,)

+ /(1 —2—22)2 — (I — 4ly)2x
2 c0s(2¢) + 24/ 22 + 13 cos(pz,)

. (folz @zg +Solz
+2v/z(z2 —12) cos | ¢ — —=—T2 ) 4+ 24/2(22 + l2) cos

w=172+622+%
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E. Five-mode approximation

Setting | = Iy = ¢, = 0 yields

w=1—2+6z2 —

Ny el

1
{1 — 22 —222 - 5(1 —z— 222)2} — Qzz9co8(2¢ — ¥z,)

—a(l—z—229) [% cos(2¢) + 22 cos(pz,)

+ V222 (cos(p + 92, /2) + 2 cos(p — 2, /2)) (E3)

for the effective Hamiltonian in the high-symmetry surface discussed in the main text.

E.2. Basis characterization for numerical diagonalization

The basis in the five-mode approximation can become extremely large even when the
conservation of particle number N and momentum K is taken into account. Therefore it
is very useful to have a direct prescription for building the basis that does not produce any
additional Fock states, especially when one can apply truncations on the fly. Moreover,
when one wants to calculate only a certain block of the Hamiltonian or another operator,
this prescription can speed up the calculation enormously. Two such prescriptions have
been developed that are equivalent, but lead to different ordering and allow for direct
truncation in different ways. It is assumed that K > 0, as the basis for K < 0 can be
obtained from this case by changing ny — n_y for all —2 < k < 2.

The ordering ny — n_s — ny

This prescription is very useful for direct hierarchical truncations in the modes nio,
followed by ni. Any allowed state is obtained by successively choosing

N+ &
max{QK—N}gngg{ QQJ, (E.4)
N-K+n
max{0,3ng — K — N} <n_y < {%J , (E.5)
N+K+n_o—
max{07K72(n27n,2)}§n1§{ tRn 3”2J. (E.6)

182



E.2. Basis characterization for numerical diagonalization

The ordering ng — nz2 — ni/n_s

This prescription is useful in the calculation of individual blocks of constant ng. Define
n = N — ng, then, for K > 0 one has to successively choose

K
n -+ %
max {6",L+1? K- n} S ng S 2 - 52(7L71),K7 (ES)
K -3 2 K—4
ax {0, [%1 } << M%J . (E.9)

Here, d,4 is the Kronecker delta. These rules are also valid for K = 0 if the case n =1
is excluded in the first line. The last line can be replaced by

- K
max {7,312 — K —n} <n_» <2 {%W—%J +7, (E.10)
where n_s has to increase in steps of two and
vy=n+K+ny (mod2) (E.11)

takes the values 0 and 1.

As one might expect, the proofs of these relations are tedious, involving many different
cases. The proof will be omitted here, but can be performed by writing down the
normal-ordered generators of all particle and momentum conserving operators that are
not diagonal (they are given by products of four bosonic operators) and then applies
them to an allowed state to find all possible states.
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