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1.1. Neuropeptide Y (NPY) receptors: endogenous ligands, signalling pathway and biological 

effects 

The neuropeptide Y (NPY) receptors belong to the superfamily of G-protein coupled receptors (GPCRs) 

class A (rhodopsin-like receptors).1 Four different subtypes (Y1R,2, 3 Y2R,4-6 Y4R,7-9 and Y5R9, 10) are 

functional in human beings and distributed both in the central nervous system (CNS) and the 

periphery.11, 12 The Y6R is not functional in humans, absent in rats and proved to be functional in mice 

and rabbits.13 These receptors are activated by a family of peptides (neuropeptide Y (NPY), peptide YY 

(PYY) and pancreatic polypeptide (PP)), which share (structural) similarities such as a sequence 

comprising 36 amino acids, a large number of tyrosine residues and an amidated C-terminus (Figure 

1.1).14, 15 NPY and PYY show higher affinity towards Y1R, Y2R and Y5R compared to the Y4R, whereas 

PP binds preferentially to the Y4R.14 Porcine neuropeptide Y (pNPY) shows nearly the same affinity and 

potency compared to hNPY and is preferably used (in vitro studies) because of its higher chemical 

stability.16, 17 The amino acid sequences of the aforementioned peptides differ in position 17, whereas 

in pNPY the methionine (M) residue is replaced by a leucine (L) residue.16, 17 

 

Figure 1.1. Amino acid sequences (one letter code) of hNPY, hPYY and hPP. 

The NPY receptor subtypes (Y2R and Y4R) show sensitivity to sodium cations, which leads to a 

discrepancy in determined affinities of agonists in sodium containing and sodium-free buffers.18-20 The 

phenomenon of negative allosteric modulation of the Y4R by sodium cations has also been reported in 

the literature for other GPCRs (e.g. µOR,21 A2AR,22 PAR123, D2LR24 and β1AR25), with sodium cations 

stabilizing the inactive states of the receptors.26 Therefore, affinities of ligands at NPY receptors (Y1R, 

Y2R, Y4R and Y5R) were determined in radioligand competition binding assays in sodium-containing 

(Y1R, Y5R) or sodium-free binding buffer (Y2R, Y4R) according to published procedures (cf. Chapter 2, 

4, and 6).19, 27-29 

When the NPY receptors are activated by endogenous ligands (NPY, PYY or PP), the signalling is 

mediated by the Gi/Go α subunit, which inhibit the adenylyl cyclase (AC). As a result, the transformation 

of ATP to the second messenger cAMP is prevented.14, 30, 31 It is reported that NPY receptors can 

activate the phospholipase C (PLC), which catalyzes the production of inositol-1,4,5-trisphosphate (IP3) 

and leads to Ca2+ release from intracellular stores.31-35 The extent of the Ca2+ response is dependent on 

the cell-type.30 

The stimulation of NPY receptors (Table 1.2) by endogenous ligands (NPY, PYY, PP) has an impact on 

several biological processes that are also involved in multiple diseases: energy homeostasis (obesity, 

obesity-associated diseases),12, 36-41 circadian rhythm,42, 43 seizures (epilepsy),44, 45 pain 

modulation,46, 47 inhibition of trigeminovascular pathway (migraine),48, 49 neurodegeneration 

(Huntington’s and Alzheimer’s disease),12, 50-52 blood pressure (hypertension),53, 54 regulation of 

processes involved in tumour growth (angiogenesis, cell proliferation)55, 56 and psychotic disorders 

(anxiety, schizophrenia, alcohol abuse, depression).12, 57-60 
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Table 1.1. Overview of receptor expression (Y1R, Y2R, Y4R and Y5R) and biological effects elicited upon stimulation of the 

individual NPY receptor subtypes 

Receptor 

subtypes 

Receptor expression Biological effects 

Y1R brain, blood vessels, heart, 

kidney, gastrointestinal 

tract (GIT) 

food intake (↑), energy homeostasis (↓), regulation of blood pressure 

(vasoconstriction), anxiety (↓), seizure (↑), depression (↓), pain sensitivity (↓), 

regulation of ethanol consumption, angiogenesis, inhibition of trigeminovascular 

pathway (migraine), luteinizing hormone (LH) secretion (↑), gastrointestinal 

motility (↑) 

Y2R brain, intestine, blood 

vessels, liver, spleen, 

adipose tissue 

food intake (↓), energy homeostasis (↑), regulation of blood pressure 

(bradycardia), anxiety (↑), enhanced memory retention, bone formation 

(hypothalamic regulated), seizure (↓), depression (↑), pain sensitivity (?), 

gastrointestinal motility (↓), angiogenesis (↑), schizophrenia-related symptoms 

(↑), regulation (presynaptic autoreceptor) of NPY release (↓), neurotransmitter 

release (e.g. noradrenaline) (↓), neuroprotection (associated in patience with 

Huntington’s disease) 

Y4R brain, skeletal muscle, 

thyroid gland, GIT 

food intake (↓), anxiety (?), gastrointestinal motility (↑), LH secretion (↑), 

pancreatic secretion (↓), gall bladder contraction 

Y5R brain, intestine, ovary, 

pancreas, skeletal muscle, 

spleen 

food intake (↑), anxiety (?), seizure (?), angiogenesis (↑), regulation of circadian 

rhythm, LH secretion (↓) 

Information was collected from the following publications: Shende et al.61, Gehlert,62 Pedrazzini et al.,63 Yi et al.,11 Merten et 

al.,64 Li et al.,65 Martins-Oliveira et al.,48 Chen et al.,66 Zukowska et al.67 and Reichmann et al.12 

1.2. NPY Y1R and ligands 

The Y1R is expressed in the brain (hypothalamus, hippocampus, neocortex), in blood vessels, heart, 

kidney and the gastrointestinal tract.61, 64, 65 As the Y1R is overexpressed in different types of cancer 

(e.g. breast cancer, renal cell carcinomas, ovarian cancer),68-70 therefore labelled ligands can be used 

as imaging agents (PET-ligands).65 Furthermore, selective Y1R ligands conjugated to cytotoxic agents 

(e.g. doxorubicine) could be of potential use in the treatment of breast cancer to reduce side effects in 

tumour therapy.65, 69, 71 Several structurally diverse and selective non-peptide Y1R antagonists have 

been reported in literature (Figure 1.2). 

The (R)-argininamide-type ligand BIBP-322672 was the first selective Y1R antagonist, which was 

intended to mimic the C-terminal part of NPY. A D-alanine scan of NPY revealed the importance of the 

C-terminal amidated pentapeptide for Y1R and Y2R binding and emphasized the importance of arginine 

residues 33 and 35 for Y1R binding.73 The stereoselectivity of Y1R binding of BIBP-3226 became 

obvious, as the (S)-enantiomer of BIBP-3226 (BIBP-3435) show very low affinity against Y1R and Y2R 

(pKi < 5).74 The (R)-argininamide type hY1R antagonists BIBP-322672, and BIBO-330475 have been used 

in our group for the synthesis of molecular tools27, 76, 77 (e.g. radio- and fluorescence-labelled ligands) 

and PET ligands.78, 79 Additionally, bivalent ligands based on BIBP-3226 have been prepared as 

molecular tools to investigate Y1R dimerization.80 Nω-carbamoylation of BIBP-3226 led to the high affinity 
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ligands UR-HU-40427, 81 and UR-MK29927, the latter being the cold form of the valuable radioligand 

[3H]UR-MK299, useful for the determination of binding constants of non-labelled compounds.82 For X-

ray diffraction analysis, the hY1R was recently co-crystalized with the selective Y1R antagonists BMS-

193885 and UR-MK299.83 From the crystal structure, it became obvious that the carbamoylguanidine 

group of UR-MK299 forms a hydrogen-assisted salt bridge with D2876.59 and the diphenylacetyl residue 

showed hydrophobic interactions with F2826.54, F2866.58 and F3027.35.83 

 

Figure 1.2. Structures of selected non-peptide NPY Y1R antagonists. References: (a) Rudolf et al.,72 (b) Wieland et al.,75 

(c) Hutzler, PhD Thesis, University of Regensburg, 2001,81 (d) Keller et al.,27 (e) Poindexter et al.,84 (f) Kanatani et al.,85 

(g) Wright et al.86, (h) Hipskind et al.,87 (i) Zarrinmayeh et al.,88 (j) Leslie et al.,89 (k) Griffith et al.90 Reported Ki (IC50) values were 

converted to pKi (pIC50) values. 

1.3. NPY Y2R and ligands 

The Y2R is mostly expressed in the brain (hippocampus, thalamus, hypothalamus), intestine, postrema, 

in blood vessels, liver, spleen and adipose tissue.61, 64, 65 Beside the endogenous ligands NPY and PYY, 

several selective Y2R agonists (e.g. NPY(13-36), PYY(3-36))91-93 and non-peptide antagonists have 

been reported (Figure 1.3). The (S)-argininamide BIIE-024694 was the first non-peptide Y2R selective 

antagonist with a one-digit nanomolar binding constant determined by radioligand competition binding 

assay. A D-alanine scan of NPY (as already mentioned previously), revealed the importance of Arg35 

and Tyr36 residues for Y2R binding.73 Furthermore, site directed mutagenesis of the Y2R and docking 
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studies in a homology model of the Y2R revealed that the dibenzoazepinone moiety of BIIE-0246 binds 

in a deep hydrophobic pocket (L4.60, L5.46, L6.51) and shows interactions with TM II and VII (Y2.64, F7.35).95 

Additionally, this study demonstrated that BIIE-0246 and NPY share an interaction, which is not 

addressed by other antagonists (e.g. derivatives of CYM-9484) with the Y2R.95 The guanidine-

acylguanidine bioisosteric approach led to a series of BIIE-0246 related Y2R antagonists.96-98 These 

synthesized acylguanidines showed similar affinity and selectivity compared to the lead compound 

BIIE-0246.96-98 This was the starting point in our workgroup for the synthesis of radio-labelled (e.g. 

[3H]UR-PLN19699) , fluorescent98 and bivalent98 ligands. The Nω-acylated (S)-argininamide 

[3H]UR-PLN196 (pKd = 7.2, reported Kd value was converted to pKd value) was the first selective non-

peptide radioligand at the Y2R.99 Dissociation experiments revealed pseudo-irreversible binding of 

[3H]UR-PLN196 at the Y2R, whilst in functional assays the cold form UR-PLN196 showed 

insurmountable antagonism.99 

 

Figure 1.3. Structures of selected non-peptide NPY Y2R antagonists. References: (a) Doods et al.,94 (b) Pluym et al.,99 

(c) Dollinger et al.,100 (d) Ziemek et al.,101 (e) Mittapalli et al.,102 (f) Bonaventure et al.,103 (g) Brothers et al.,104 (h) Andres et al.,105 

(i) Shoblock et al.106 Reported Ki (IC50) values were converted to pKi (pIC50) values. 

1.4. NPY Y4R and ligands 

The Y4R is distributed in the brain, skeletal muscle, the thyroid gland and the gastrointestinal 

tract.61, 64, 65 Several peptidic NPY Y4R ligands are reported in literature (Figure 1.4). Previously Dukorn 

et al18 described an analogue of [Lys4]hPP in which methionine residues were replaced by norleucine 

([Lys4Nle17,39]hPP) to prevent oxidation of methionine residues. [Lys4Nle17,39]hPP was used as a 

precursor for fluorescence- and radio-labelling to obtain molecular tools.18 

The dimeric peptide BVD-74 is a diastereomeric mixture, which shows high affinity and selectivity for 

the Y4R as reported by Balasubramaniam et al.107 BVD-74 contains two C-terminally amidated 

pentapeptides (Tyr-Arg-Leu-Arg-Tyr-NH2) and 2,7-diaminooctanedioic acid as a linker. Kuhn et al.19 and 
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Liu et al.108 have described the stereoselective synthesis of the (2R,7R)-diaminooctanedioic acid, which 

enabled the preparation of (2R,7R)-BVD-74. The described compound (2R,7R)-BVD-74 showed 5-fold 

higher binding affinity (with respect to Ki values) to the Y4R than its diastereomer (2S,7S)-BVD-74 

(pKi = 8.6).19 Therefore, (2R,7R)-BVD-74 was used as a precursor for radio ([3H]UR-KK193) and 

fluorescence labelling (Figure 1.4).19, 108 Furthermore, Kuhn et al.19 described the synthesis of the 

heterodimeric radioligand [3H]UR-KK200. The linker in BVD-74 was replaced by non-chiral octanedioic 

acid and in one pentapeptide a Nω-carbamoylated arginine was introduced to obtain a precursor for 

radiolabelling.19 

In search for molecular tools targeting the Y4R, a fluorescently labelled hexapeptide that showed 

moderate affinity was synthesized in our group.109 

The bivalent ligands UR-MK188 and UR-MEK288, originally synthesized to target the hY1R, were the 

first described non-peptide antagonists that showed moderate affinity to the hY4R (Figure 1.5). The 

replacement of the BIBP-3226 moiety in UR-MK188 by its S-configured optical antipode BIBP-3435 led 

to the selective hY4R antagonist UR-MEK288.110 

 

Figure 1.4. Structures of selected peptidic NPY Y4R ligands. References: (a) Daniels et al.,111 (b) Parker et al.,112 (c) Berlicki et 

al.,113 (d) Dukorn et al.,18 (e) Balasubramaniam et al.,107 (f) Kuhn et al.,19 (g) Liu et al.,108 (h) Spinnler et al.109 Reported Ki (Kd) 

values were converted to pKi (pKd) values. *note also designated GR231118 and 122U91. 

Niclosamide and tBPC were reported as allosteric modulators of the hY4R by Sliwowski et al.114 and 

Schubert et al.115 These ligands increased the response induced by PP in functional assays. The 

reported EC50 values of niclosamide and tBPC were determined in an inositol phosphate (IP) 

accumulation assay (performed on COS7_Y4R-eYFP_Δ6Gαqi4-myr cells) and in a Ca2+ assay (performed 
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on COS7_Y4R-eYFP_Δ6Gαqi4-myr cells), respectively. In these assays, niclosamide or tBPC were added 

at increasing concentrations to a fixed concentration of PP that induced 20% of the maximal response 

(EC20).114, 115 

Sun et al.116 and Ewing et al.117, 118 reported a series of adipic acids and (R,R)-diaminocyclohexanes as 

hY4R ligands, termed as agonists, antagonists or modulators at the Y4R. The pharmacological data is 

inchoate, as only subset of compounds were evaluated in a cAMP assay. According to the information 

(procedures) disclosed in the patent, these ligands should be considered as agonists.116-118 

Kang et al119 (Figure 1.5) identified a series of structurally diverse agonists via homology modelling. The 

potencies of these compounds as determined in a cAMP assay (prevention of forskolin stimulated 

transformation of ATP to cAMP in HEK293/NPY4R cells) were in the double-digit micromolar range. 

 

Figure 1.5. Structures of selected non-peptide hY4R ligands (agonists, antagonists and modulators). References: (a) Keller et 

al.,110 (b) Sliwoski et al.,114 (c) Schubert et al.,115 (d) Sun et al.,116 (e) Ewing et al.,117 (f) Ewing et al.,118 (g) Kang et al.119 Reported 

pEC50 (Kb) were converted to pEC50 (Kb). *Niclosamide and tBPC increased the response induced by PP. pEC50 values of 

modulators: Increasing concentrations of the ligands were added to a constant PP concentration (EC20), that induced 20% of 

the maximal response. 

1.5. NPY Y5R and ligands 

The Y5R is expressed in the brain (hypothalamus, hippocampus), intestine, ovary, pancreas, skeletal 

muscle and spleen.61, 64, 65 A set of selective peptide Y5R agonists ([D-Trp34]-NPY, [cPP1-7, 

NPY19-23,Ala31,Aib32,Gln34]-hPP) is described in literature120, 121 and several structurally distinct non-

peptide Y5R antagonist are known (Figure 1.6). Rüeger et al.122, 123 (Rueeger et al.) reported the first 

non-peptide antagonist CGP 71683A. It was shown that food intake in rat induced by NPY was blocked 

by CGP 71683A.123, 124 However, Della Zuana et al.125 reported off-target effects (e.g. interactions with 

with cholinergic-muscarinic receptors, α2 adrenergic receptors and serotonin reuptake recognition site) 

of CGP 71683A, suggesting weight loss is likely not fully Y5R mediated.46, 124, 125 It should be noted that 

the selective Y5R antagonist MK-0577 entered clinical trials (multicentre, randomized, trial with 1661 
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obese patients, 52 weeks), but showed no relevant weight loss in obese patients.124, 126 To date, no Y5R 

antagonist has entered the market for the treatment of obesity or any other medical indication. 

 

Figure 1.6. Structures of selected non-peptide NPY Y5R antagonists. References: (a) Rüeger et al.,122 (b) Rueeger et al.,123 

(c) Walker et al.,127 (d) Packiarajan et al.,128 (e) Kawanishi et al.,129 (f) Norman et al.,130 (g) Itani et al.,131 (i) Fukami et al.,132 

(j) Fichtner et al.,133 (k) Turnbull et al.,134 (l) Sato et al.,135 (m) Della-Zuana et al.,136 (n) Islam et al.,137 (o) Kanatani et al.138 

Reported Ki (IC50) values were converted to pKi (pIC50) values. 

1.6 Scope 

Neuropeptide Y (NPY) is one of the most abundant peptides in the CNS and in the periphery, with four 

receptor subtypes (Y1R, Y2R, Y4R and Y5R) functional in humans.11, 12, 14 These NPY receptors are 

involved in many biological processes, such as food intake, seizures, stress response and circadian 

rhythm, to name but a few. Several of these biological processes are involved in diseases, such as 

metabolic syndrome, obesity and epilepsy.12, 61, 62 Furthermore, NPY receptors are overexpressed in 

several malignant tumours (e.g. breast cancer, renal cell carcinoma, ovarian cancer), which makes them 

promising targets for the diagnosis (PET-ligands) and treatment of cancers.65 For the synthesis of PET, 

radio or fluorescence ligands an extensive knowledge of receptor ligand interaction is needed, which 

can be gained by SAR studies and analyzing crystal structures of the receptor. 

The high-affinity ligand UR-MK299 was obtained by Nω-carbamoylation of the (R)-argininamide type 

hY1R antagonist BIBP-3226.27 Recently, the hY1R was co-crystallized with UR-MK299 and revealed that 

the carbamoylguanidine of UR-MK299 forms a hydrogen-assisted salt bridge with D2876.59 and the 

propionyl residue is buried in the subpocket between TM V and VI.83 This subpocket seems to be 

incompletely filled by the propionyl moiety of UR-MK299.83 The introduction of bulky moieties (e.g. 
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fluorophores) in Nω-carbamoylated (R)-argininamides and their retained affinity does not seem to be 

compatible with the binding mode of UR-MK299. 

One aim of this thesis was to answer the question of how the size (van der Waals volume) and structure 

of the carbamoyl residue of Nω-carbamoylated (R)-argininamides structurally related to UR-MK299 

effects Y1R affinity and the binding mode. Therefore, a series of (R)-argininamides had to be synthesized 

and pharmacologically characterized in radioligand binding and functional assays. The most interesting 

compounds should be investigated by induced fit docking and molecular dynamics simulations to gain 

a deeper understanding of (R)-argininamide-type ligand binding at hY1R, which is needed for the 

synthesis of novel PET or fluorescent ligands with retained affinity compared to UR-MK299. 

The (S)-argininamide BIIE-0246 was the first non-peptide Y2R antagonist.94 BIIE-0246 was adopted as 

a lead structure for the synthesis of novel precursors for fluorescence- and radio-labelling, due to its 

high affinity towards the Y2R. The pursuit of the guanidine-acyl guanidine approach led to the radioligand 

[3H]UR-PLN19699, which was the first selective non-peptide radioligand addressing the Y2R. In binding 

studies, this radioligand was displaced by pNPY in a biphasic manner, indicating that [3H]UR-PLN196 

is not suitable for the determination of binding constants of peptides. To obtain more information on 

(S)-argininamide binding at the Y2R, a different labelling strategy has to be applied. One aim of this 

approach was the discovery of new labelling sites in BIIE-0246 to obtain fluorescence or radiotracers. 

Therefore, the dipenzoazepinone moiety of BIIE-0246 should be replaced by an amino-functionalized 

benzhydryl moiety. Moreover, the replacement of the cyclopentyl moiety by an amine functionalized 

moiety could pave the way to novel labelled compounds. A new non-peptide radio- or fluorescent ligand 

could be useful for the determination of Y2R binding data. Moreover, a novel amine functionalized 

precursor could be useful for the synthesis of PET ligands. 

Ewing et al.117, 118 reported a series of (R,R)-diaminocyclohexanes, which purportedly act as agonists, 

antagonists or modulators at the hY4R. Some of the reported ligands were investigated in a cAMP assay 

as agonists, but neither Y4R affinities nor characterization as modulators were described in detail. 

Furthermore, niclosamide and tBPC were reported as first allosteric modulators at the hY4R, augmenting 

the effect of the endogenous ligand.114, 115 Addressing the Y4R by positive allosteric modulation instead 

of agonism could be a new therapeutic opportunity for the treatment of obesity. Based on the data 

published by Ewing et al.117, 118 another objective of this thesis was the synthesis of selected 

(R,R)-diaminocyclohexanes and to determine the affinities in established radioligand competition 

binding experiments and functional assays. Furthermore, the allosteric modulation of niclosamide and 

tBPC needs to be evaluated in functional assays.  



 
 

General introduction 
 

10 
 

1.7 References 

1. Joost, P.; Methner, A. Phylogenetic analysis of 277 human G-protein-coupled receptors as a 

tool for the prediction of orphan receptor ligands. Genome Biol 2002, 3, research0063.1. 

2. Larhammar, D.; Blomqvist, A. G.; Yee, F.; Jazin, E.; Yoo, H.; Wahlested, C. Cloning and 

functional expression of a human neuropeptide Y/peptide YY receptor of the Y1 type. J Biol 

Chem 1992, 267, 10935-10938. 

3. Eva, C.; Keinänen, K.; Monyer, H.; Seeburg, P.; Sprengel, R. Molecular cloning of a novel G 

protein-coupled receptor that may belong to the neuropeptide receptor family. FEBS Lett. 1990, 

271, 81-84. 

4. Rose, P. M.; Fernandes, P.; Lynch, J. S.; Frazier, S. T.; Fisher, S. M.; Kodukula, K.; Kienzle, B.; 

Seethala, R. Cloning and functional expression of a cDNA encoding a human type 2 

neuropeptide Y receptor. J Biol Chem 1995, 270, 22661-22664. 

5. Gerald, C.; Walker, M. W.; Vaysse, P. J.; He, C.; Branchek, T. A.; Weinshank, R. L. Expression 

cloning and pharmacological characterization of a human hippocampal neuropeptide Y/peptide 

YY Y2 receptor subtype. J Biol Chem 1995, 270, 26758-26761. 

6. Rimland, J. M.; Seward, E. P.; Humbert, Y.; Ratti, E.; Trist, D. G.; North, R. A. Coexpression 

with potassium channel subunits used to clone the Y2 receptor for neuropeptide Y. Mol. 

Pharmacol. 1996, 49, 387-390. 

7. Lundell, I.; Blomqvist, A. G.; Berglund, M. M.; Schober, D. A.; Johnson, D.; Statnick, M. A.; 

Gadski, R. A.; Gehlert, D. R.; Larhammar, D. Cloning of a human receptor of the NPY receptor 

family with high affinity for pancreatic polypeptide and peptide YY. J Biol Chem 1995, 270, 

29123-29128. 

8. Gregor, P.; Millham, M. L.; Feng, Y.; DeCarr, L. B.; McCaleb, M. L.; Cornfield, L. J. Cloning and 

characterization of a novel receptor to pancreatic polypeptide, a member of the neuropeptide Y 

receptor family. FEBS Lett. 1996, 381, 58-62. 

9. Gerald, C.; Walker, M. W.; Criscione, L.; Gustafson, E. L.; Batzl-Hartmann, C.; Smith, K. E.; 

Vaysse, P.; Durkin, M. M.; Laz, T. M.; Linemeyer, D. L.; Schaffhauser, A. O.; Whitebread, S.; 

Hofbauer, K. G.; Taber, R. I.; Branchek, T. A.; Weinshank, R. L. A receptor subtype involved in 

neuropeptide-Y-induced food intake. Nature 1996, 382, 168-171. 

10. Hu, Y.; Bloomquist, B. T.; Cornfield, L. J.; DeCarr, L. B.; Flores-Riveros, J. R.; Friedman, L.; 

Jiang, P.; Lewis-Higgins, L.; Sadlowski, Y.; Schaefer, J.; Velazquez, N.; McCaleb, M. L. 

Identification of a novel hypothalamic neuropeptide Y receptor associated with feeding behavior. 

J Biol Chem 1996, 271, 26315-26319. 

11. Yi, M.; Li, H.; Wu, Z.; Yan, J.; Liu, Q.; Ou, C.; Chen, M. A Promising Therapeutic Target for 

Metabolic Diseases: Neuropeptide Y Receptors in Humans. Cell. Physiol. Biochem. 2018, 45, 

88-107. 

12. Reichmann, F.; Holzer, P. Neuropeptide Y: A stressful review. Neuropeptides 2016, 55, 99-109. 

13. Larhammar, D.; Wraith, A.; Berglund, M. M.; Holmberg, S. K. S.; Lundell, I. Origins of the many 

NPY-family receptors in mammals. Peptides 2001, 22, 295-307. 

14. Michel, M. C.; Beck-Sickinger, A.; Cox, H.; Doods, H. N.; Herzog, H.; Larhammar, D.; Quirion, 

R.; Schwartz, T.; Westfall, T. XVI. International Union of Pharmacology recommendations for 



 
 

Chapter 1 
 

11 
 

the nomenclature of neuropeptide Y, peptide YY, and pancreatic polypeptide receptors. 

Pharmacol. Rev. 1998, 50, 143-50. 

15. Larhammar, D. Evolution of neuropeptide Y, peptide YY and pancreatic polypeptide. Regul. 

Pept. 1996, 62, 1-11. 

16. Martel, J. C.; Fournier, A.; St-Pierre, S.; Dumont, Y.; Forest, M.; Quirion, R. Comparative 

structural requirements of brain neuropeptide Y binding sites and vas deferens neuropeptide Y 

receptors. Mol. Pharmacol. 1990, 38, 494-502. 

17. Clark, J. T.; Sahu, A.; Kalra, P. S.; Balasubramaniam, A.; Kalra, S. P. Neuropeptide Y (NPY)-

induced feeding behavior in female rats: comparison with human NPY ([Met17]NPY), NPY 

analog ([norLeu4]NPY) and peptide YY. Regul. Pept. 1987, 17, 31-39. 

18. Dukorn, S.; Littmann, T.; Keller, M.; Kuhn, K.; Cabrele, C.; Baumeister, P.; Bernhardt, G.; 

Buschauer, A. Fluorescence- and Radiolabeling of [Lys4,Nle17,30]hPP Yields Molecular Tools for 

the NPY Y4 Receptor. Bioconjug. Chem. 2017, 28, 1291-1304. 

19. Kuhn, K. K.; Ertl, T.; Dukorn, S.; Keller, M.; Bernhardt, G.; Reiser, O.; Buschauer, A. High Affinity 

Agonists of the Neuropeptide Y (NPY) Y4 Receptor Derived from the C-Terminal Pentapeptide 

of Human Pancreatic Polypeptide (hPP): Synthesis, Stereochemical Discrimination, and 

Radiolabeling. J. Med. Chem. 2016, 59, 6045-6058. 

20. Dukorn, S. Pharmacological tools for the NPY receptors: [35S]GTPγS binding assays, luciferase 

gene reporter assays and labeled peptides PhD Thesis, University of Regensburg, 2017. 

21. Huang, W.; Manglik, A.; Venkatakrishnan, A. J.; Laeremans, T.; Feinberg, E. N.; Sanborn, A. 

L.; Kato, H. E.; Livingston, K. E.; Thorsen, T. S.; Kling, R. C.; Granier, S.; Gmeiner, P.; 

Husbands, S. M.; Traynor, J. R.; Weis, W. I.; Steyaert, J.; Dror, R. O.; Kobilka, B. K. Structural 

insights into µ-opioid receptor activation. Nature 2015, 524, 315-321. 

22. Liu, W.; Chun, E.; Thompson, A. A.; Chubukov, P.; Xu, F.; Katritch, V.; Han, G. W.; Roth, C. B.; 

Heitman, L. H.; IJzerman, A. P.; Cherezov, V.; Stevens, R. C. Structural Basis for Allosteric 

Regulation of GPCRs by Sodium Ions. Science 2012, 337, 232-236. 

23. Zhang, C.; Srinivasan, Y.; Arlow, D. H.; Fung, J. J.; Palmer, D.; Zheng, Y.; Green, H. F.; Pandey, 

A.; Dror, R. O.; Shaw, D. E.; Weis, W. I.; Coughlin, S. R.; Kobilka, B. K. High-resolution crystal 

structure of human protease-activated receptor 1. Nature 2012, 492, 387-392. 

24. Neve, K. A.; Cumbay, M. G.; Thompson, K. R.; Yang, R.; Buck, D. C.; Watts, V. J.; DuRand, C. 

J.; Teeter, M. M. Modeling and Mutational Analysis of a Putative Sodium-Binding Pocket on the 

Dopamine D2 Receptor. Mol. Pharmacol. 2001, 60, 373-381. 

25. Miller-Gallacher, J. L.; Nehmé, R.; Warne, T.; Edwards, P. C.; Schertler, G. F. X.; Leslie, A. G. 

W.; Tate, C. G. The 2.1 Å Resolution Structure of Cyanopindolol-Bound β1-Adrenoceptor 

Identifies an Intramembrane Na+ Ion that Stabilises the Ligand-Free Receptor. PLOS ONE 

2014, 9, e92727. 

26. Katritch, V.; Fenalti, G.; Abola, E. E.; Roth, B. L.; Cherezov, V.; Stevens, R. C. Allosteric sodium 

in class A GPCR signaling. Trends Biochem. Sci. 2014, 39, 233-244. 

27. Keller, M.; Weiss, S.; Hutzler, C.; Kuhn, K. K.; Mollereau, C.; Dukorn, S.; Schindler, L.; 

Bernhardt, G.; König, B.; Buschauer, A. Nω-Carbamoylation of the Argininamide Moiety: An 

Avenue to Insurmountable NPY Y1 Receptor Antagonists and a Radiolabeled Selective High-



 
 

General introduction 
 

12 
 

Affinity Molecular Tool ([3H]UR-MK299) with Extended Residence Time. J. Med. Chem. 2015, 

58, 8834-8849. 

28. Moser, C.; Bernhardt, G.; Michel, J.; Schwarz, H.; Buschauer, A. Cloning and functional 

expression of the hNPY Y5 receptor in human endometrial cancer (HEC-1B) cells. Can. J. 

Physiol. Pharmacol. 2000, 78, 134-42. 

29. Ziemek, R.; Schneider, E.; Kraus, A.; Cabrele, C.; Beck-Sickinger, A. G.; Bernhardt, G.; 

Buschauer, A. Determination of Affinity and Activity of Ligands at the Human Neuropeptide Y 

Y4 Receptor by Flow Cytometry and Aequorin Luminescence. J. Recept. Signal Transduct. Res. 

2007, 27, 217-233. 

30. Holliday, N. D.; Michel, M. C.; Cox, H. M. NPY Receptor Subtypes and Their Signal 

Transduction. In Neuropeptide Y and Related Peptides, Michel, M. C., Ed. Springer Berlin 

Heidelberg: Berlin, Heidelberg, 2004; pp 45-73. 

31. Persaud, S. J.; Bewick, G. A. Peptide YY: more than just an appetite regulator. Diabetologia 

2014, 57, 1762-1769. 

32. Aakerlund, L.; Gether, U.; Fuhlendorff, J.; Schwartz, T. W.; Thastrup, O. Y1 receptors for 

neuropeptide Y are coupled to mobilization of intracellular calcium and inhibition of adenylate 

cyclase. FEBS Lett. 1990, 260, 73-78. 

33. Motulsky, H. J.; Michel, M. C. Neuropeptide Y mobilizes Ca2+ and inhibits adenylate cyclase in 

human erythroleukemia cells. American Journal of Physiology-Endocrinology and Metabolism 

1988, 255, E880-E885. 

34. Criscione, L.; Rigollier, P.; Batzl-Hartmann, C.; Rüeger, H.; Stricker-Krongrad, A.; Wyss, P.; 

Brunner, L.; Whitebread, S.; Yamaguchi, Y.; Gerald, C.; Heurich, R. O.; Walker, M. W.; Chiesi, 

M.; Schilling, W.; Hofbauer, K. G.; Levens, N. Food intake in free-feeding and energy-deprived 

lean rats is mediated by the neuropeptide Y5 receptor. J. Clin. Invest. 1998, 102, 2136-2145. 

35. Grouzmann, E.; Meyer, C.; Bürki, E.; Brunner, H. Neuropeptide Y Y2 receptor signalling 

mechanisms in the human glioblastoma cell line LN319. Peptides 2001, 22, 379-386. 

36. Loh, K.; Herzog, H.; Shi, Y.-C. Regulation of energy homeostasis by the NPY system. Trends 

Endocrinol. Metab. 2015, 26, 125-135. 

37. Zhang, L.; Nguyen, A. D.; Lee, I. C. J.; Yulyaningsih, E.; Riepler, S. J.; Stehrer, B.; Enriquez, R. 

F.; Lin, S.; Shi, Y. C.; Baldock, P. A.; Sainsbury, A.; Herzog, H. NPY modulates PYY function in 

the regulation of energy balance and glucose homeostasis. Diabetes Obes Metab 2012, 14, 

727-736. 

38. Li, J.-B.; Asakawa, A.; Terashi, M.; Cheng, K.; Chaolu, H.; Zoshiki, T.; Ushikai, M.; Sheriff, S.; 

Balasubramaniam, A.; Inui, A. Regulatory effects of Y4 receptor agonist (BVD-74D) on food 

intake. Peptides 2010, 31, 1706-1710. 

39. Qi, Y.; Fu, M.; Herzog, H. Y2 receptor signalling in NPY neurons controls bone formation and 

fasting induced feeding but not spontaneous feeding. Neuropeptides 2016, 55, 91-97. 

40. Olza, J.; Gil-Campos, M.; Leis, R.; Rupérez, A. I.; Tojo, R.; Cañete, R.; Gil, Á.; Aguilera, C. M. 

Influence of variants in the NPY gene on obesity and metabolic syndrome features in Spanish 

children. Peptides 2013, 45, 22-27. 



 
 

Chapter 1 
 

13 
 

41. Aerts, E.; Geets, E.; Sorber, L.; Beckers, S.; Verrijken, A.; Massa, G.; Van Hoorenbeeck, K.; 

Verhulst, S. L.; Van Gaal, L. F.; Van Hul, W. Evaluation of a Role for NPY and NPY2R in the 

Pathogenesis of Obesity by Mutation and Copy Number Variation Analysis in Obese Children 

and Adolescents. Ann. Hum. Genet. 2018, 82, 1-10. 

42. Soscia, S. J.; Harrington, M. E. Neuropeptide Y does not reset the circadian clock in NPY Y2−/− 

mice. Neurosci. Lett. 2005, 373, 175-178. 

43. Gribkoff, V. K.; Pieschl, R. L.; Wisialowski, T. A.; van den Pol, A. N.; Yocca, F. D. Phase Shifting 

of Circadian Rhythms and Depression of Neuronal Activity in the Rat Suprachiasmatic Nucleus 

by Neuropeptide Y: Mediation by Different Receptor Subtypes. J. Neurosci. 1998, 18, 3014-

3022. 

44. Colmers, W. F.; El Bahh, B. Neuropeptide Y and Epilepsy. Epilepsy Curr 2003, 3, 53-58. 

45. Vezzani, A.; Sperk, G. Overexpression of NPY and Y2 receptors in epileptic brain tissue: an 

endogenous neuroprotective mechanism in temporal lobe epilepsy? Neuropeptides 2004, 38, 

245-252. 

46. Diaz-delCastillo, M.; Woldbye, D. P. D.; Heegaard, A. M. Neuropeptide Y and its Involvement in 

Chronic Pain. Neuroscience 2018, 387, 162-169. 

47. Hua, X. Y.; Boublik, J. H.; Spicer, M. A.; Rivier, J. E.; Brown, M. R.; Yaksh, T. L. The 

antinociceptive effects of spinally administered neuropeptide Y in the rat: systematic studies on 

structure-activity relationship. J. Pharmacol. Exp. Ther. 1991, 258, 243-248. 

48. Martins-Oliveira, M.; Akerman, S.; Tavares, I.; Goadsby, P. J. Neuropeptide Y inhibits the 

trigeminovascular pathway through NPY Y1 receptor: implications for migraine. Pain 2016, 157, 

1666-1673. 

49. Strother, L. C.; Srikiatkhachorn, A.; Supronsinchai, W. Targeted Orexin and Hypothalamic 

Neuropeptides for Migraine. Neurotherapeutics 2018, 15, 377-390. 

50. Kloster, E.; Saft, C.; Akkad, D. A.; Epplen, J. T.; Arning, L. Association of age at onset in 

Huntington disease with functional promoter variations in NPY and NPY2R. J. Mol. Med. 2014, 

92, 177-184. 

51. Croce, N.; Gelfo, F.; Ciotti, M. T.; Federici, G.; Caltagirone, C.; Bernardini, S.; Angelucci, F. NPY 

modulates miR-30a-5p and BDNF in opposite direction in an in vitro model of Alzheimer disease: 

a possible role in neuroprotection? Mol. Cell. Biochem. 2013, 376, 189-195. 

52. Duarte-Neves, J.; Pereira de Almeida, L.; Cavadas, C. Neuropeptide Y (NPY) as a therapeutic 

target for neurodegenerative diseases. Neurobiol. Dis. 2016, 95, 210-224. 

53. Capurro, D.; Huidobro-Toro, J. P. The involvement of neuropeptide Y Y1 receptors in the blood 

pressure baroreflex: studies with BIBP 3226 and BIBO 3304. Eur. J. Pharm. 1999, 376, 251-

255. 

54. Abrahamsson, C. Neuropeptide Y1- and Y2-Receptor-Mediated Cardiovascular Effects in the 

Anesthetized Guinea Pig, Rat, and Rabbit. J. Cardiovasc. Pharmacol. 2000, 36, 451-458. 

55. Tilan, J.; Kitlinska, J. Neuropeptide Y (NPY) in tumor growth and progression: Lessons learned 

from pediatric oncology. Neuropeptides 2016, 55, 55-66. 



 
 

General introduction 
 

14 
 

56. Medeiros, P. J.; Al-Khazraji, B. K.; Novielli, N. M.; Postovit, L. M.; Chambers, A. F.; Jackson, D. 

N. Neuropeptide Y stimulates proliferation and migration in the 4T1 breast cancer cell line. Int. 

J. Cancer 2012, 131, 276-286. 

57. Giesbrecht, C. J.; Mackay, J. P.; Silveira, H. B.; Urban, J. H.; Colmers, W. F. Countervailing 

Modulation of Ih by Neuropeptide Y and Corticotrophin-Releasing Factor in Basolateral 

Amygdala As a Possible Mechanism for Their Effects on Stress-Related Behaviors. J. Neurosci. 

2010, 30, 16970-16982. 

58. Stadlbauer, U.; Langhans, W.; Meyer, U. Administration of the Y2 Receptor Agonist PYY3-36 in 

Mice Induces Multiple Behavioral Changes Relevant to Schizophrenia. Neuropsychopharmacol. 

2013, 38, 2446-2455. 

59. Pleil, K. E.; Rinker, J. A.; Lowery-Gionta, E. G.; Mazzone, C. M.; McCall, N. M.; Kendra, A. M.; 

Olson, D. P.; Lowell, B. B.; Grant, K. A.; Thiele, T. E.; Kash, T. L. NPY signaling inhibits extended 

amygdala CRF neurons to suppress binge alcohol drinking. Nat. Neurosci. 2015, 18, 545-552. 

60. Morales-Medina, J. C.; Dumont, Y.; Quirion, R. A possible role of neuropeptide Y in depression 

and stress. Brain Res. 2010, 1314, 194-205. 

61. Shende, P.; Desai, D. Physiological and Therapeutic Roles of Neuropeptide Y on Biological 

Functions. In Cell Biology and Translational Medicine, Volume 7: Stem Cells and Therapy: 

Emerging Approaches, Turksen, K., Ed. Springer International Publishing: Cham, 2020; pp 37-

47. 

62. Gehlert, D. R. Introduction to the reviews on neuropeptide Y. Neuropeptides 2004, 38, 135-40. 

63. Pedrazzini, T.; Pralong, F.; Grouzmann, E. Neuropeptide Y: the universal soldier. Cell. Mol. Life 

Sci. 2003, 60, 350-77. 

64. Merten, N.; Beck-Sickinger, A. G. Molecular ligand-receptor interaction of the NPY/PP peptide 

family. In NPY Family of Peptides in Neurobiology, Cardiovascular and Metabolic Disorders: 

from Genes to Therapeutics, Zukowska, Z.; Feuerstein, G. Z., Eds. Birkhäuser Basel: Basel, 

2006; pp 35-62. 

65. Li, J.; Tian, Y.; Wu, A. Neuropeptide Y receptors: a promising target for cancer imaging and 

therapy. Regener. Biomater. 2015, 2, 215-219. 

66. Chen, C. H.; Stephens, R. L., Jr.; Rogers, R. C. PYY and NPY: control of gastric motility via 

action on Y1 and Y2 receptors in the DVC. Neurogastroenterol. Motil. 1997, 9, 109-16. 

67. Zukowska, Z.; Feuerstein, G. Z. Future directions and therapeutic perspectives for 

NPY/PYYbased anti-inflammatory and tumor suppressor drugs. In The NPY Family of Peptides 

in Immune Disorders, Inflammation, Angiogenesis and Cancer, Zukowska, Z.; Feuerstein, G. 

Z., Eds. Birkhäuser Basel: Basel, 2005; pp 251-253. 

68. Reubi, J. C.; Gugger, M.; Waser, B.; Schaer, J. C. Y1-mediated effect of neuropeptide Y in 

cancer: breast carcinomas as targets. Cancer Res. 2001, 61, 4636-41. 

69. Körner, M.; Reubi, J. C. NPY receptors in human cancer: A review of current knowledge. 

Peptides 2007, 28, 419-425. 

70. Zhang, L.; Bijker, M. S.; Herzog, H. The neuropeptide Y system: Pathophysiological and 

therapeutic implications in obesity and cancer. Pharmacol. Ther. 2011, 131, 91-113. 



 
 

Chapter 1 
 

15 
 

71. Hoppenz, P.; Els-Heindl, S.; Kellert, M.; Kuhnert, R.; Saretz, S.; Lerchen, H.-G.; Köbberling, J.; 

Riedl, B.; Hey-Hawkins, E.; Beck-Sickinger, A. G. A Selective Carborane-Functionalized 

Gastrin-Releasing Peptide Receptor Agonist as Boron Delivery Agent for Boron Neutron 

Capture Therapy. J. Org. Chem. 2020, 85, 1446-1457. 

72. Rudolf, K.; Eberlein, W.; Engel, W.; Wieland, H. A.; Willim, K. D.; Entzeroth, M.; Wienen, W.; 

Beck-Sickinger, A. G.; Doods, H. N. The first highly potent and selective non-peptide 

neuropeptide Y Y1 receptor antagonist: BIBP3226. Eur. J. Pharmacol. 1994, 271, R11-3. 

73. Beck-Sickinger, A. G.; Weland, H. A.; Wittneben, H.; Willim, K.-D.; Rudolf, K.; Jung, G. Complete 

L-Alanine Scan of Neuropeptide Y Reveals Ligands Binding to Y1 and Y2 Receptors with 

Distinguished Conformations. Eur. J. Biochem. 1994, 225, 947-958. 

74. Wieland, H. A.; Willim, K. D.; Entzeroth, M.; Wienen, W.; Rudolf, K.; Eberlein, W.; Engel, W.; 

Doods, H. N. Subtype selectivity and antagonistic profile of the nonpeptide Y1 receptor 

antagonist BIBP 3226. J. Pharmacol. Exp. Ther. 1995, 275, 143-149. 

75. Wieland, H. A.; Engel, W.; Eberlein, W.; Rudolf, K.; Doods, H. N. Subtype selectivity of the novel 

nonpeptide neuropeptide YY1 receptor antagonist BIBO3304 and its effect on feeding in 

rodents. Br. J. Pharmacol. 1998, 125, 549-555. 

76. Keller, M.; Bernhardt, G.; Buschauer, A. [3H]UR-MK136: A Highly Potent and Selective 

Radioligand for Neuropeptide Y Y1 Receptors. ChemMedChem 2011, 6, 1566-1571. 

77. Keller, M.; Erdmann, D.; Pop, N.; Pluym, N.; Teng, S.; Bernhardt, G.; Buschauer, A. Red-

fluorescent argininamide-type NPY Y1 receptor antagonists as pharmacological tools. Bioorg. 

Med. Chem. 2011, 19, 2859-78. 

78. Keller, M.; Maschauer, S.; Brennauer, A.; Tripal, P.; Koglin, N.; Dittrich, R.; Bernhardt, G.; 

Kuwert, T.; Wester, H.-J.; Buschauer, A.; Prante, O. Prototypic 18F-Labeled Argininamide-Type 

Neuropeptide Y Y1R Antagonists as Tracers for PET Imaging of Mammary Carcinoma. ACS 

Med. Chem. Lett. 2017, 8, 304-309. 

79. Maschauer, S.; Ott, J. J.; Bernhardt, G.; Kuwert, T.; Keller, M.; Prante, O. 18F-labelled triazolyl-

linked argininamides targeting the neuropeptide Y Y1R for PET imaging of mammary carcinoma. 

Sci Rep 2019, 9, 12990. 

80. Keller, M.; Teng, S.; Bernhardt, G.; Buschauer, A. Bivalent Argininamide-Type Neuropeptide Y 

Y1 Antagonists Do Not Support the Hypothesis of Receptor Dimerisation. ChemMedChem 2009, 

4, 1733-1745. 

81. Hutzler, C. Synthesis and pharmacological activity of new neuropeptide Y receptor ligands: from 

N,N-disubstituted alkanamides to highly potent argininamide-type Y1 antagonists. PhD Thesis, 

University of Regensburg, 2001. 

82. Keller, M.; Weiss, S.; Hutzler, C.; Kuhn, K. K.; Mollereau, C.; Dukorn, S.; Schindler, L.; 

Bernhardt, G.; Konig, B.; Buschauer, A. N-Carbamoylation of the Argininamide Moiety: An 

Avenue to Insurmountable NPY Y1 Receptor Antagonists and a Radiolabeled Selective High-

Affinity Molecular Tool ([3H]UR-MK299) with Extended Residence Time. J. Med. Chem. 2015, 

58, 8834-49. 

83. Yang, Z.; Han, S.; Keller, M.; Kaiser, A.; Bender, B. J.; Bosse, M.; Burkert, K.; Kogler, L. M.; 

Wifling, D.; Bernhardt, G.; Plank, N.; Littmann, T.; Schmidt, P.; Yi, C.; Li, B.; Ye, S.; Zhang, R.; 



 
 

General introduction 
 

16 
 

Xu, B.; Larhammar, D.; Stevens, R. C.; Huster, D.; Meiler, J.; Zhao, Q.; Beck-Sickinger, A. G.; 

Buschauer, A.; Wu, B. Structural basis of ligand binding modes at the neuropeptide Y Y1 

receptor. Nature 2018, 556, 520-524. 

84. Poindexter, G. S.; Bruce, M. A.; LeBoulluec, K. L.; Monkovic, I.; Martin, S. W.; Parker, E. M.; 

Iben, L. G.; McGovern, R. T.; Ortiz, A. A.; Stanley, J. A.; Mattson, G. K.; Kozlowski, M.; Arcuri, 

M.; Antal-Zimanyi, I. Dihydropyridine Neuropeptide Y Y1 Receptor Antagonists. Bioorg. Med. 

Chem. Lett. 2002, 12, 379-382. 

85. Kanatani, A.; Kanno, T.; Ishihara, A.; Hata, M.; Sakuraba, A.; Tanaka, T.; Tsuchiya, Y.; Mase, 

T.; Fukuroda, T.; Fukami, T.; Ihara, M. The Novel Neuropeptide Y Y1 Receptor Antagonist J-

104870: A Potent Feeding Suppressant with Oral Bioavailability. Biochem. Biophys. Res. 

Commun. 1999, 266, 88-91. 

86. Wright, J.; Bolton, G.; Creswell, M.; Downing, D.; Georgic, L.; Heffner, T.; Hodges, J.; 

MacKenzie, R.; Wise, L. 8-amino-6-(arylsulphonyl)-5-nitroquinolines: novel nonpeptide 

neuropeptide Y1 receptor antagonists. Bioorg. Med. Chem. Lett. 1996, 6, 1809-1814. 

87. Hipskind, P. A.; Lobb, K. L.; Nixon, J. A.; Britton, T. C.; Bruns, R. F.; Catlow, J.; Dieckman-

McGinty, D. K.; Gackenheimer, S. L.; Gitter, B. D.; Iyengar, S.; Schober, D. A.; Simmons, R. M. 

A.; Swanson, S.; Zarrinmayeh, H.; Zimmerman, D. M.; Gehlert, D. R. Potent and Selective 1,2,3-

Trisubstituted Indole NPY Y-1 Antagonists. J. Med. Chem. 1997, 40, 3712-3714. 

88. Zarrinmayeh, H.; Zimmerman, D. M.; Cantrell, B. E.; Schober, D. A.; Bruns, R. E.; 

Gackenheimer, S. L.; Ornstein, P. L.; Hipskind, P. A.; Britton, T. C.; Gehlert, D. R. Structure-

activity relationship of a series of diaminoalkyl substituted benzimidazole as neuropeptide Y Y1 

receptor antagonists. Bioorg. Med. Chem. Lett. 1999, 9, 647-652. 

89. Leslie, C. P.; Fabio, R. D.; Bonetti, F.; Borriello, M.; Braggio, S.; Forno, G. D.; Donati, D.; Falchi, 

A.; Ghirlanda, D.; Giovannini, R.; Pavone, F.; Pecunioso, A.; Pentassuglia, G.; Pizzi, D. A.; 

Rumboldt, G.; Stasi, L. Novel carbazole derivatives as NPY Y1 antagonists. Bioorg. Med. Chem. 

Lett. 2007, 17, 1043-1046. 

90. Griffith, D. A.; Hargrove, D. M.; Maurer, T. S.; Blum, C. A.; De Lombaert, S.; Inthavongsay, J. 

K.; Klade, L. E.; Mack, C. M.; Rose, C. R.; Sanders, M. J.; Carpino, P. A. Discovery and 

evaluation of pyrazolo[1,5-a]pyrimidines as neuropeptide Y1 receptor antagonists. Bioorg. Med. 

Chem. Lett. 2011, 21, 2641-2645. 

91. Cabrele, C.; Beck-Sickinger, A. G. Molecular characterization of the ligand–receptor interaction 

of the neuropeptide Y family. J. Pept. Sci. 2000, 6, 97-122. 

92. Dumont, Y.; Fournier, A.; St-Pierre, S.; Quirion, R. Characterization of neuropeptide Y binding 

sites in rat brain membrane preparations using [125I][Leu31,Pro34]peptide YY and [125I]peptide 

YY3-36 as selective Y1 and Y2 radioligands. J. Pharmacol. Exp. Ther. 1995, 272, 673-80. 

93. Balasubramaniam, A.; Joshi, R.; Su, C.; Friend, L. A.; James, J. H. Neuropeptide Y (NPY) Y2 

receptor-selective agonist inhibits food intake and promotes fat metabolism in mice: Combined 

anorectic effects of Y2 and Y4 receptor-selective agonists. Peptides 2007, 28, 235-240. 

94. Doods, H.; Gaida, W.; Wieland, H. A.; Dollinger, H.; Schnorrenberg, G.; Esser, F.; Engel, W.; 

Eberlein, W.; Rudolf, K. BIIE0246: A selective and high affinity neuropeptide Y Y2 receptor 

antagonist. Eur. J. Pharm. 1999, 384, R3-R5. 



 
 

Chapter 1 
 

17 
 

95. Burkert, K.; Zellmann, T.; Meier, R.; Kaiser, A.; Stichel, J.; Meiler, J.; Mittapalli, G. K.; Roberts, 

E.; Beck-Sickinger, A. G. A Deep Hydrophobic Binding Cavity is the Main Interaction for Different 

Y2R Antagonists. ChemMedChem 2017, 12, 75-85. 

96. Pluym, N.; Brennauer, A.; Keller, M.; Ziemek, R.; Pop, N.; Bernhardt, G.; Buschauer, A. 

Application of the Guanidine–Acylguanidine Bioisosteric Approach to Argininamide-Type NPY 

Y2 Receptor Antagonists. ChemMedChem 2011, 6, 1727-1738. 

97. Brennauer, A. Acylguanidines as bioisosteric groups in argininamide-type neuropeptide Y Y1 

and Y2 receptor antagonists: synthesis, stability and pharmacological activity. PhD Thesis, 

University of Regensburg, 2006. 

98. Pluym, N. Application of the Guanidine-Acylguanidine Bioisosteric Approach to NPY Y2 

Receptors Antagonists: Bivalent, Radiolabeled and Fluorescent Pharmacological Tools. PhD 

Thesis, University of Regensburg, 2011. 

99. Pluym, N.; Baumeister, P.; Keller, M.; Bernhardt, G.; Buschauer, A. [3H]UR-PLN196: A Selective 

Nonpeptide Radioligand and Insurmountable Antagonist for the Neuropeptide Y Y2 Receptor. 

ChemMedChem 2013, 8, 587-593. 

100. Dollinger, H.; Esser, F.; Mihm, G.; Rudolf, K.; Schnorrenberg, G.; Gaida, W.; Doods, N. H. Neue 

substituierte Aminosäurederivate, Verfahren zu ihrer Herstellung und diese Verbindungen 

enthaltene pharmazeutische Zusammensetzungen. DE19816929A1, 1998. 

101. Ziemek, R.; Brennauer, A.; Schneider, E.; Cabrele, C.; Beck-Sickinger, A. G.; Bernhardt, G.; 

Buschauer, A. Fluorescence- and luminescence-based methods for the determination of affinity 

and activity of neuropeptide Y2 receptor ligands. Eur. J. Pharm. 2006, 551, 10-18. 

102. Mittapalli, G. K.; Vellucci, D.; Yang, J.; Toussaint, M.; Brothers, S. P.; Wahlestedt, C.; Roberts, 

E. Synthesis and SAR of selective small molecule neuropeptide Y Y2 receptor antagonists. 

Bioorg. Med. Chem. Lett. 2012, 22, 3916-3920. 

103. Bonaventure, P.; Nepomuceno, D.; Mazur, C.; Lord, B.; Rudolph, D. A.; Jablonowski, J. A.; 

Carruthers, N. I.; Lovenberg, T. W. Characterization of N-(1-Acetyl-2,3-dihydro-1H-indol-6-yl)-

3-(3-cyano-phenyl)-N-[1-(2-cyclopentyl-ethyl)-piperidin-4yl]acrylamide (JNJ-5207787), a Small 

Molecule Antagonist of the Neuropeptide Y Y2 Receptor. J. Pharmacol. Exp. Ther. 2004, 308, 

1130-1137. 

104. Brothers, S. P.; Saldanha, S. A.; Spicer, T. P.; Cameron, M.; Mercer, B. A.; Chase, P.; 

McDonald, P.; Wahlestedt, C.; Hodder, P. S. Selective and Brain Penetrant Neuropeptide Y Y2 

Receptor Antagonists Discovered by Whole-Cell High Throughput Screening. Mol. Pharmacol. 

2009, mol.109.058677. 

105. Andres, C. J.; Antal Zimanyi, I.; Deshpande, M. S.; Iben, L. G.; Grant-Young, K.; Mattson, G. K.; 

Zhai, W. Differentially functionalized diamines as novel ligands for the NPY2 receptor. Bioorg. 

Med. Chem. Lett. 2003, 13, 2883-2885. 

106. Shoblock, J. R.; Welty, N.; Nepomuceno, D.; Lord, B.; Aluisio, L.; Fraser, I.; Motley, S. T.; Sutton, 

S. W.; Morton, K.; Galici, R.; Atack, J. R.; Dvorak, L.; Swanson, D. M.; Carruthers, N. I.; Dvorak, 

C.; Lovenberg, T. W.; Bonaventure, P. In vitro and in vivo characterization of JNJ-31020028 (N-

(4-{4-[2-(diethylamino)-2-oxo-1-phenylethyl]piperazin-1-yl}-3-fluorophenyl)-2-pyridin-3-



 
 

General introduction 
 

18 
 

ylbenzamide), a selective brain penetrant small molecule antagonist of the neuropeptide Y Y2 

receptor. J. Psychopharmacol. 2009, 208, 265. 

107. Balasubramaniam, A.; Mullins, D. E.; Lin, S.; Zhai, W.; Tao, Z.; Dhawan, V. C.; Guzzi, M.; Knittel, 

J. J.; Slack, K.; Herzog, H.; Parker, E. M. Neuropeptide Y (NPY) Y4 Receptor Selective Agonists 

Based on NPY(32−36):  Development of an Anorectic Y4 Receptor Selective Agonist with 

Picomolar Affinity. J. Med. Chem. 2006, 49, 2661-2665. 

108. Liu, M.; Mountford, S. J.; Richardson, R. R.; Groenen, M.; Holliday, N. D.; Thompson, P. E. 

Optically Pure, Structural, and Fluorescent Analogues of a Dimeric Y4 Receptor Agonist Derived 

by an Olefin Metathesis Approach. J. Med. Chem. 2016, 59, 6059-6069. 

109. Spinnler, K.; von Krüchten, L.; Konieczny, A.; Schindler, L.; Bernhardt, G.; Keller, M. An Alkyne-

functionalized Arginine for Solid-Phase Synthesis Enabling “Bioorthogonal” Peptide 

Conjugation. ACS Med. Chem. Lett. 2020, 11, 334-339. 

110. Keller, M.; Kaske, M.; Holzammer, T.; Bernhardt, G.; Buschauer, A. Dimeric argininamide-type 

neuropeptide Y receptor antagonists: Chiral discrimination between Y1 and Y4 receptors. Bioorg. 

Med. Chem. 2013, 21, 6303-6322. 

111. Daniels, A. J.; Matthews, J. E.; Slepetis, R. J.; Jansen, M.; Viveros, O. H.; Tadepalli, A.; 

Harrington, W.; Heyer, D.; Landavazo, A.; Leban, J. J. High-affinity neuropeptide Y receptor 

antagonists. Proc. Natl. Acad. Sci. USA 1995, 92, 9067-9071. 

112. Parker, E. M.; Babij, C. K.; Balasubramaniam, A.; Burrier, R. E.; Guzzi, M.; Hamud, F.; Gitali, 

M.; Rudinski, M. S.; Tao, Z.; Tice, M.; Xia, L.; Mullins, D. E.; Salisbury, B. G. GR231118 

(1229U91) and other analogues of the C-terminus of neuropeptide Y are potent neuropeptide Y 

Y1 receptor antagonists and neuropeptide Y Y4 receptor agonists. Eur. J. Pharm. 1998, 349, 97-

105. 

113. Berlicki, Ł.; Kaske, M.; Gutiérrez-Abad, R.; Bernhardt, G.; Illa, O.; Ortuño, R. M.; Cabrele, C.; 

Buschauer, A.; Reiser, O. Replacement of Thr32 and Gln34 in the C-Terminal Neuropeptide Y 

Fragment 25–36 by cis-Cyclobutane and cis-Cyclopentane β-Amino Acids Shifts Selectivity 

toward the Y4 Receptor. J. Med. Chem. 2013, 56, 8422-8431. 

114. Sliwoski, G.; Schubert, M.; Stichel, J.; Weaver, D.; Beck-Sickinger, A. G.; Meiler, J. Discovery 

of Small-Molecule Modulators of the Human Y4 Receptor. PLOS ONE 2016, 11, e0157146. 

115. Schubert, M.; Stichel, J.; Du, Y.; Tough, I. R.; Sliwoski, G.; Meiler, J.; Cox, H. M.; Weaver, C. 

D.; Beck-Sickinger, A. G. Identification and Characterization of the First Selective Y4 Receptor 

Positive Allosteric Modulator. J. Med. Chem. 2017, 60, 7605-7612. 

116. Sun, C.; Ewing, W. R.; Bolton, S. A.; Gu, Z.; Huang, Y.; Murugesan, N.; Zhu, Y. Substituted 

adipic acid amides and uses thereof. WO 2012/125622 A1, 2012. 

117. Ewing, W. R.; Zhu, Y.; Sun, C.; Huang, Y.; Sivasamban, M.; Karatholuvhu. Diaminocyclohexane 

compounds and uses thereof. US 2013/0184262 A1, 2013. 

118. Ewing, W. R.; Zhu, Y.; Sun, C.; Huang, Y.; Sivasamban, M.; Karatholuvhu; Bolton, S. A.; 

Pasunoori, L.; Mandal, S. K.; Sher, P. M. Diaminocyclohexane compounds and uses thereof. 

US 2013/0184284 A1, 2013. 



 
 

Chapter 1 
 

19 
 

119. Kang, N.; Wang, X.-L.; Zhao, Y. Discovery of small molecule agonists targeting neuropeptide 

Y4 receptor using homology modeling and virtual screening. Chem Biol Drug Des 2019, 94, 

2064-2072. 

120. Cabrele, C.; Langer, M.; Bader, R.; Wieland, H. A.; Doods, H. N.; Zerbe, O.; Beck-Sickinger, A. 

G. The first selective agonist for the neuropeptide YY5 receptor increases food intake in rats. J 

Biol Chem 2000, 275, 36043-8. 

121. Parker, E. M.; Balasubramaniam, A.; Guzzi, M.; Mullins, D. E.; Salisbury, B. G.; Sheriff, S.; 

Witten, M. B.; Hwa, J. J. [D-Trp34] neuropeptide Y is a potent and selective neuropeptide Y Y5 

receptor agonist with dramatic effects on food intake☆. Peptides 2000, 21, 393-399. 

122. Rüeger, H.; Schmidlin, T.; Rigollier, P.; Yamaguchi, Y.; Tintelnot‐Blomley, M.; Schilling, W.; 

Criscione, L.; Mah, R. 2-amino quinazoline derivatives as npy receptor antagonists. 

WO1997020823A2, 1997. 

123. Rueeger, H.; Rigollier, P.; Yamaguchi, Y.; Schmidlin, T.; Schilling, W.; Criscione, L.; Whitebread, 

S.; Chiesi, M.; Walker, M. W.; Dhanoa, D.; Islam, I.; Zhang, J.; Gluchowski, C. Design, synthesis 

and SAR of a series of 2-substituted 4-amino-quinazoline neuropeptide Y Y5 receptor 

antagonists. Bioorg. Med. Chem. Lett. 2000, 10, 1175-1179. 

124. MacNeil, D. J. NPY Y1 and Y5 receptor selective antagonists as anti-obesity drugs. Current 

topics in medicinal chemistry 2007, 7, 1721-33. 

125. Della Zuana, O.; Sadlo, M.; Germain, M.; Félétou, M.; Chamorro, S.; Tisserand, F.; de Montrion, 

C.; Boivin, J. F.; Duhault, J.; Boutin, J. A.; Levens, N. Reduced food intake in response to CGP 

71683A may be due to mechanisms other than NPY Y5 receptor blockade. Int. J. Obes. Relat. 

Metab. Disord. 2001, 25, 84-94. 

126. Erondu, N.; Gantz, I.; Musser, B.; Suryawanshi, S.; Mallick, M.; Addy, C.; Cote, J.; Bray, G.; 

Fujioka, K.; Bays, H.; Hollander, P.; Sanabria-Bohórquez, S. M.; Eng, W.; Långström, B.; 

Hargreaves, R. J.; Burns, H. D.; Kanatani, A.; Fukami, T.; MacNeil, D. J.; Gottesdiener, K. M.; 

Amatruda, J. M.; Kaufman, K. D.; Heymsfield, S. B. Neuropeptide Y5 receptor antagonism does 

not induce clinically meaningful weight loss in overweight and obese adults. Cell Metabolism 

2006, 4, 275-282. 

127. Walker, M. W.; Wolinsky, T. D.; Jubian, V.; Chandrasena, G.; Zhong, H.; Huang, X.; Miller, S.; 

Hegde, L. G.; Marsteller, D. A.; Marzabadi, M. R.; Papp, M.; Overstreet, D. H.; Gerald, C. P. G.; 

Craig, D. A. The Novel Neuropeptide Y Y5 Receptor Antagonist Lu AA33810 [N-[[trans-4-[(4,5-

Dihydro[1]benzothiepino[5,4-d]thiazol-2-yl)amino]cyclohexyl]methyl]-methanesulfonamide] 

Exerts Anxiolytic- and Antidepressant-Like Effects in Rat Models of Stress Sensitivity. J. 

Pharmacol. Exp. Ther. 2009, 328, 900-911. 

128. Packiarajan, M.; Marzabadi, M. R.; Desai, M.; Lu, Y.; Noble, S. A.; Wong, W. C.; Jubian, V.; 

Chandrasena, G.; Wolinsky, T. D.; Zhong, H.; Walker, M. W.; Wiborg, O.; Andersen, K. 

Discovery of Lu AA33810: A highly selective and potent NPY5 antagonist with in vivo efficacy 

in a model of mood disorder. Bioorg. Med. Chem. Lett. 2011, 21, 5436-5441. 

129. Yasyuki Kawanishi; Hideyuki Takenaka; Kohji Hanasaki; Okada, T. NPY Y5 antagonist. US 

2004/0180964 A1, 2004. 



 
 

General introduction 
 

20 
 

130. Norman, M. H.; Chen, N.; Chen, Z.; Fotsch, C.; Hale, C.; Han, N.; Hurt, R.; Jenkins, T.; Kincaid, 

J.; Liu, L.; Lu, Y.; Moreno, O.; Santora, V. J.; Sonnenberg, J. D.; Karbon, W. Structure−Activity 

Relationships of a Series of Pyrrolo[3,2-d]pyrimidine Derivatives and Related Compounds as 

Neuropeptide Y5 Receptor Antagonists. J. Med. Chem. 2000, 43, 4288-4312. 

131. Itani, H.; Ito, H.; Sakata, Y.; Hatakeyama, Y.; Oohashi, H.; Satoh, Y. Novel Potent Antagonists 

of Human Neuropeptide Y Y5 Receptors. Part 3: 7-Methoxy-1-hydroxy-1-substituted Tetraline 

Derivatives. Bioorg. Med. Chem. Lett. 2002, 12, 799-802. 

132. Takehiro Fukami; Akio Kanatani; Akane Ishihara; Yasuyuki Ishii; Toshiyuki Takahashi; Yuji 

Haga; Toshihiro Sakamoto; Ito, T. Novel Spiro Compounds. WO2001014376A1, 2001. 

133. Fichtner, M.; Lee, E.; Tomlinson, E.; Scott, D.; Cornelius, P.; Patterson, T. A.; Carpino, P. A. 

Discovery and evaluation of spirocyclic derivatives as antagonists of the neuropeptide Y5 

receptor. Bioorg. Med. Chem. Lett. 2012, 22, 2738-2743. 

134. Turnbull, A. V.; Ellershaw, L.; Masters, D. J.; Birtles, S.; Boyer, S.; Carroll, D.; Clarkson, P.; 

Loxham, S. J. G.; McAulay, P.; Teague, J. L.; Foote, K. M.; Pease, J. E.; Block, M. H. Selective 

Antagonism of the NPY Y5 Receptor Does Not Have a Major Effect on Feeding in Rats. Diabetes 

2002, 51, 2441-2449. 

135. Sato, N.; Takahashi, T.; Shibata, T.; Haga, Y.; Sakuraba, A.; Hirose, M.; Sato, M.; Nonoshita, 

K.; Koike, Y.; Kitazawa, H.; Fujino, N.; Ishii, Y.; Ishihara, A.; Kanatani, A.; Fukami, T. Design 

and Synthesis of the Potent, Orally Available, Brain-Penetrable Arylpyrazole Class of 

Neuropeptide Y5 Receptor Antagonists. J. Med. Chem. 2003, 46, 666-669. 

136. Della-Zuana, O.; Revereault, L.; Beck-Sickinger, A.; Monge, A.; Caignard, D. H.; Fauchère, J. 

L.; Henlin, J. M.; Audinot, V.; Boutin, J. A.; Chamorro, S.; Félétou, M.; Levens, N. A potent and 

selective NPY Y5 antagonist reduces food intake but not through blockade of the NPY Y5 

receptor. Int. J. Obes. 2004, 28, 628-639. 

137. Islam, I.; Dhanoa, D.; Finn, J.; Du, P.; Walker, M. W.; Salon, J. A.; Zhang, J.; Gluchowski, C. 

Discovery of potent and selective small molecule NPY Y5 receptor antagonists. Bioorg. Med. 

Chem. Lett. 2002, 12, 1767-1769. 

138. Kanatani, A.; Ishihara, A.; Iwaasa, H.; Nakamura, K.; Okamoto, O.; Hidaka, M.; Ito, J.; Fukuroda, 

T.; MacNeil, D. J.; Van der Ploeg, L. H. T.; Ishii, Y.; Okabe, T.; Fukami, T.; Ihara, M. L-152,804: 

Orally Active and Selective Neuropeptide Y Y5 Receptor Antagonist. Biochem. Biophys. Res. 

Commun. 2000, 272, 169-173. 

 



 

 

Chapter 2 

 

Argininamide-type neuropeptide Y Y1 receptor antagonists:  

the nature of Nω-carbamoyl substituents determines Y1R binding mode and 

affinity 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Prior to the submission of the thesis this chapter was published in cooperation with partners (schemes, tables, figures 

and text may differ from published version): Buschmann, J.; Seiler, T.; Bernhardt, G.; Keller, M.; Wifling, D. 

Argininamide-type neuropeptide Y Y1 receptor antagonists: the nature of Nω-carbamoyl substituents determines Y1R 

binding mode and affinity. RSC Med. Chem. 2020, 11, 274-282 DOI: 10.1039/C9MD00538B – adopted by permission 

of The Royal Society of Chemistry 

 Jonas Buschmann (2.23-2.34, 2.38, 2.41, 2.56-2.75 and 2.76) and Theresa Seiler (2.39, 2.42, 2.53-2.55) performed the 

synthesis, analytical characterization, competition binding, functional experiments and analyzed the data. David Wifling 

performed molecular docking, molecular dynamics simulations and processed the data.  

 The preparatory work of Theresa Sailer was performed during her Master Thesis (University of Regensburg, 2016) 

 Jonas Buschmann, David Wifling, Max Keller and Günther Bernhardt wrote the manuscript.  

 The authors thank Brigitte Wenzl, Maria Beer-Krön, Susanne Bollwein, Elvira Schreiber and Lydia Schneider for their 

excellent technical assistance, Christoph Müller for providing 2.4, and the Leibniz Rechenzentrum (LRZ) in Munich for 

providing software (Schrödinger suite) and computing resources. 

  



 
Argininamide-type neuropeptide Y Y1 receptor antagonists: 

the nature of Nω carbamoyl substituents determines Y1R binding mode and affinity 
 

22 
 

2.1. Introduction 

Neuropeptide Y (NPY) receptors belong to the class A of G-protein coupled receptors (GPCRs).1 The 

four functionally expressed subtypes in man (Y1R, Y2R, Y4R and Y5R) are distributed in the central 

nervous system and in the periphery.2 They are activated by the endogenous peptides neuropeptide Y 

(NPY), peptide YY (PYY) and pancreatic polypeptide (PP). The NPY Y1R has been shown to be 

overexpressed in a number of different cancers (e.g. breast cancer).3, 4 Labelled Y1R ligands have 

therefore been proposed as potential tumour imaging agents.5 The first described selective non-peptidic 

Y1R antagonist BIBP-3226 (2.1, Table 2.1) has a binding affinity in the low nanomolar range.6 

Carbamoylation of the guanidine moiety of 2.1 led to UR-MK299 (2.2, Table 2.1), a Y1R antagonist with 

picomolar affinity,7 that was recently co-crystallized with the NPY Y1R.3 In the crystal structure, the 

carbamoylguanidine group of 2.2 forms a hydrogen-assisted salt bridge with D2876.59. The propionyl 

group of the carbamoyl residue is buried in the sub-pocket formed between TM helices V and VI, this 

pocket appears to be incompletely filled (Figure 2.1).3 This finding is in agreement with the high Y1R 

affinity (albeit lower compared to 2.2) of (R)-argininamides possessing slightly larger carbamoyl residues 

than found in 2.2 (e.g. compounds 2.3-2.5, Table 2.1).7, 8 However, the experimentally determined 

binding mode of 2.2 is incompatible with the attachment of very bulky groups to the guanidine group of 

2.1; fluorophores (2.7 and 2.8) or alternative carbamoyl residues (2.9) have low Y1R affinities (Table 

2.1). 

 

Figure 2.1. Extended view of the orthosteric binding pocket of the Y1R occupied by 2.2 (ball and stick representation) (PDB ID: 

5ZBQ3). The carbamoyl residue of 2.2 occupies a subpocket (oval area), located between TM helices V and VI. The crystal 

structure was post processed by addition of hydrogen atoms, minimization, etc.; see experimental section 2.4.5.2 and 2.4.5.3. 

In order to address the question how the size and structure of the carbamoyl residue of Nω-

carbamoylated argininamides, structurally related to 2.2 and 2.3, effects Y1R affinity and the binding 

mode (as determined by competition binding and functional studies at the Y1R) a series of 

Nω-carbamoylated (R)-argininamides bearing carbamoyl residues of different sizes were synthesized 
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and pharmacologically characterized. The Y1R binding mode of selected compounds was studied by 

induced-fit docking and molecular dynamics (MD) simulations.  

Table 2.1. Structures and Y1R affinities of reported (R)-argininamides 2.1-2.9. 

 

compound Ref. R pKi 

2.1 (BIBP-3226) a, b 
 

9.00 

2.2 (UR-MK299) a 

 

10.11 

2.3 (UR-MK136) a, c 

 

8.92 

2.4 a 

 

9.25 

2.5 a 

 

8.16 

2.6 a 

 

7.39 

2.7 d 

 

6.82 

2.8 a 

 

<6.00 

2.9 a 

 

6.40 

References: (a) Keller et al.,7 these authors determined affinities of 2.1-2.6, 2.8 and 2.9 by use 

of [3H]2.2 (cfinal = 0.15 nM, Kd = 0.044 nM7) and SK-N-MC cells; (b) Rudolf et al.;6 (c) Keller et 

al.;8 (d) Keller et al.,9 these authors determined affinity of 2.7 by use of [3H]UR-MK114 

(Kd = 1.2 nM, cfinal = 1.5 nM) and SK-N-MC cells. Reported Ki values were converted to pKi 

values. 
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These studies suggest that reported fluorescent (R)-argininamide-type Y1R ligands (labelled via Nω-

carbamoyl residues), exhibiting Ki values (Y1R) between 20 and 150 nM,9 2.10 bind to the Y1R in a 

different manner compared to 2.2. 

2.2. Results and discussion 

2.2.1. Synthesis 

 

Scheme 2.1. Synthesis of the Nω-carbamoylated (R)-argininamides 2.53-2.76 and 78. Reagents and conditions: (a) DCC, 

CH2Cl2, THF or DMF, 30-86%; (b) THF, 100%; (c) triphosgene, DIPEA, 50-71%; (d) (1) CH2Cl2, HgCl2, DIPEA, (2) TFA/CH2Cl2 

1:1, 45-68%; (e) DIPEA, DMF, 21-84%; (f) DCC, DIPEA, DMF, 16-29%; (g) DCC, DMF, 9-16%; (h) (1) DIPEA, DMF, 

(2) CH2Cl2/TFA 1:1, 46%; (i) DMSO; (j) DIPEA, DMF, 22%. 

The Nω-carbamoylated (R)-argininamides 2.53-2.76 and 2.78 were prepared as follows (note: the 

assignment of the numbers of target compounds 2.53-2.76, and 2.78 was guided by the size of the 

carbamoyl residue (Table 2.1) and not by their synthetic accessibility outlined in Scheme 2.1): the 
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carboxylic acids 2.10-2.20 were transformed to the respective succinimidyl esters 2.23-2.33 in the 

presence of DCC, and trifluoroacetic acid anhydride (2.21) was treated with N-hydroxysuccinimide 

(2.22) to obtain succinimidyl ester 2.34 (Scheme 2.1). 

Treatment of tert-butyl (2-aminoethyl)carbamate (2.36) or tert-butyl (3-aminopropyl)carbamate (2.37) 

with triphosgene gave isocyanates as intermediates, which were converted to the isothiourea derivatives 

2.38 and 2.39 by the addition of 2.35 to the reaction mixture. The amine-functionalized 

(R)-argininamides 2.41 and 2.42 were obtained by guanidinylation of amine 2.40 using 2.38 and 2.39, 

respectively, and subsequent removal of the Boc and tert-butyl groups by treatment with TFA (Scheme 

2.1). 

The target compounds 2.53-2.55, 2.58 and 2.66-2.76 were synthesized by treatment of amines 2.41 or 

2.42 with the succinimidyl esters 2.23, 2.24, 2.26-2.34 or 2.43-2.45 (Scheme 2.1). Compounds 2.56 and 

2.57 were synthesized by amide bond formation between 2.41 and the carboxylic acids 2.46 and 2.47, 

respectively, using DCC as coupling reagent (Scheme 2.1). Compounds 2.59, 2.60 and 2.63-2.65 were 

synthesized from 2.41 and the carboxylic acids 2.48-2.52 according to the same procedure, but without 

the addition of DIPEA. Compound 2.61 was obtained by acylation of 2.41 using 2.25 and subsequent 

deprotection (Scheme 2.1). Alcohol 2.62 was isolated as degradation product of 2.60 after 6 months of 

storage of a 10 mM solution of 2.60 in DMSO at -20 °C. Compound 2.78 was synthesized by coupling 

of 2.41 with the pyrylium dye Py-510, 11 (2.77) according to a procedure reported previously by Keller et 

al.9 Chemical stabilities of compounds 2.56, 2.58-2.61, 2.63 and 2.68 were proven in aqueous solution, 

pH 7, at room temperature over 24 h (Experimental section 2.4.3 and Chapter 8, 8.1.5.). 

2.2.2. Competition binding and functional studies 

Results from Y1R competition binding experiments, performed in intact SK-N-MC cells using [3H]2.2 as 

radioligand, are summarized in Table 2.2. Elongation by two methylene groups (2.3) has been reported 

to result in an approximately 30-fold decrease in affinity.12 The replacement of the propionyl group in 2.2 

by mono- (2.56, 2.59, 2.60, 2.64 and 2.65), di- (2.57) or tri- (2.58) halogenated acetyl or propionyl 

residues, as well as by amino (2.61) or hydroxy (2.62) functionalized acetyl residues did not significantly 

affect Y1R affinity. Whereas the introduction of an acryl (2.63) or 2-methylpropionyl (2.66) residues 

followed the same trend, the more bulky 2,2-dimethylpropionyl residue in compound 2.67 led to an 

around 1000-fold decrease in Y1R affinity compared to 2.2 (Table 2.2). In the series of compounds 

bearing aliphatic rings of increasing size (from cyclopropane to cyclohexane, 2.68-2.71), Y1R affinity 

decreased considerably (up to 5000-fold compared to 2.2) in the case of the cyclopentyl (2.70) and 

cyclohexyl (2.71) groups (Tables 2.1 and 2.2; competition binding curves shown in Figure 2.2 A). The 

insertion of a methylene group between the aliphatic ring and the amide group in 2.71, resulting in 2.72, 

even led to a further decrease in Y1R affinity (> 20,000-fold compared to 2.2; Tables 2.1, 2.2 and Figure 

2.2 A). Interestingly, replacement of the aliphatic rings in 2.71 and 2.72 by a phenyl moiety (2.73 and 

2.75) resulted in an approx. 10-fold increase in Y1R affinity (Table 2.2, Figure 2.2 C). Surprisingly, the 

introduction of a second benzene ring in 2.75, leading to 2.76, did not alter binding affinity, and, 

moreover, the introduction of a bulky pyridinium-type fluorescent dye (2.78) even resulted in a slightly 

higher affinity compared to 2.75/2.76 (Table 2.2, Figure 2.2 C). 
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Figure 2.2. (A, C) Displacement curves of [3H]2.2 (cfinal = 0.15 nM, Kd = 0.044 nM) obtained from competition binding studies 

with (A) 2.68-2.72, 2.73-2.76, (C) 2.78 and reference compound 2.2 in Y1R-expressing SK-N-MC cells. (B, D) Concentration 

dependent inhibition curves obtained from the Fura-2 Ca2+ assay in intact HEL cells. The intracellular Ca2+ mobilization was 

induced by 10 nM pNPY after pre-incubation of the cells with (B) 2.68-2.72, (D) 2.73-2.76, respectively, for 15 min or the 

reference compound 2.2 for 20 min. (A-D) Data of compound 2.2 were taken from Keller et. al.7  

Y1R antagonism (pKb values) of 2.56-2.76, determined in a Fura-2 Ca2+ assay in HEL cells (inhibition of 

the intracellular Ca2+ mobilization induced by 10 nM pNPY), reflected the trends observed in the 

competition binding studies. However, the pKb values proved to be consistently slightly higher than the 

pKi values (Table 2; inhibition curves shown in Figure 2.2 B, 2.2 D). It is notable that, modification of the 

carbamoyl substituent did not affect the mode of action of the Y1R ligands, i.e. all compounds behaved 

as neutral antagonists. 
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Table 2.2. Y1 Receptor affinities (pKi) and antagonism (pKb) of the synthesized Nω-carbamoylated (R)-argininamides, determined 

by equilibrium competition binding with [3H]2.2 and in the Fura-2 Ca2+ assay, respectively. 

 

Compound n R pKi ± SEMa pIC50 ± SEM / pKb ± SEMb 

2.53 1 
 

10.23 ± 0.06 n.d. 

2.54 2 
 

10.20 ± 0.05 n.d. 

2.55 2  10.13 ± 0.04 n.d. 

2.56 1  10.50 ± 0.04 10.26 ± 0.04 / - 

2.57 1 

 
10.17 ± 0.07 9.96 ± 0.12 / - 

2.58 1 

 
10.15 ± 0.06 9.90 ± 0.05 / - 

2.59 1  10.28 ± 0.04 10.10 ± 0.04 / - 

2.60 1  9.90 ± 0.07 10.21 ± 0.01 / 11.08 ± 0.01 

2.61 1  9.62 ± 0.03 9.55 ± 0.03 / 10.43 ± 0.03 

2.62 1  9.84 ± 0.05 10.04 ± 0.10 / 10.92 ± 0.10 

2.63 1  9.95 ± 0.07 9.73 ± 0.05 / 10.61 ± 0.05 

2.64 1 
 9.42 ± 0.05 9.23 ± 0.08 / - 

2.65 1 
 9.16 ± 0.10 9.39 ± 0.10 / 10.27 ± 0.10 

2.66 1 

 
9.51 ± 0.09 10.18 ± 0.12 / 11.06 ± 0.12 

2.67 1 

 
7.34 ± 0.11 7.84 ± 0.08 / 8.71 ± 0.08 

2.68 1 

 
8.93 ± 0.12 9.62 ± 0.10 / 10.50 ± 0.10 

2.69 1 

 
8.96 ± 0.05 9.62 ± 0.09 / 10.49 ± 0.09 

2.70 1 

 
7.28 ± 0.07 8.12 ± 0.15 / 9.00 ± 0.15 
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Table 2.2 continued. 

Compound n R pKi ± SEMa pIC50 ± SEM / pKb ± SEMb 

2.71 1 

 
6.42 ± 0.07 7.51 ± 0.01 / 8.39 ± 0.01 

2.72 1 

 
5.67 ± 0.05 6.34 ± 0.18 / 7.22 ± 0.18 

2.73 1 
 

7.25 ± 0.11 7.94 ± 0.03 / 8.82 ± 0.03 

2.74 1 

 

6.53 ± 0.07 7.79 ± 0.02 / 8.67 ± 0.02 

2.75 1  6.52 ± 0.06 7.02 ± 0.04 / 7.90 ± 0.04 

2.76 1 

 
6.53 ± 0.01 6.28 ± 0.20 / 7.16 ± 0.20 

2.78 1 n.a. 6.99 ± 0.04 n.d. 

aRadioligand competition binding assay with [3H]2.2 (cfinal = 0.15 nM, Kd = 0.044 nM7) in intact SK-N-MC cells. Mean values ± 

SEM from at least three independent experiments, each performed in triplicate. bAntagonistic activities as determined in a Fura-2 

Ca2+ assay in intact HEL cells.13, 14 Intracellular Ca2+ mobilization was induced by 10 nM pNPY after pre-incubation of the cells 

with the antagonist for 15 min.7 pKb values are excluded, if the slope factor of the inhibition curve (four parameter logistic fit) was 

significantly different from unity (P ≤ 0.05, see Chapter 8, Table 8.1) and not close (< -1.25 or > -0.75) to unity, as a steep slope 

factor might be indicative of a more complex interaction not purely following the law of mass action. Mean values ± SEM from at 

least three independent experiments performed in singlet. n.d.: not determined. n.a.: not applicable. 

2.2.3. Correlation of pKi values with van der Waals volumes of the carbamoyl residues 

For compounds 2.2-2.6 and 2.53-2.75, the experimentally determined pKi values and the calculated van 

der Waals volumes of the respective carbamoyl residues showed an inverse correlation (R2 = 0.84) 

between the size of the carbamoyl residue and the Y1R affinity of the respective (R)-argininamide-type 

Y1R antagonists (Figure 2.3). By contrast, both, 2.1, which is unsubstituted at the guanidine group, and 

compounds bearing large carbamoyl residues (2.7, 2.9, 2.76, 2.78), appeared to be outliers in the 

regression analysis (Figure 2.3). For 2.1, a much higher pKi value would have been expected, and for 

2.7, 2.9, 2.76 and 2.78 much lower values (Figure 2.3). Consequently, the attachment of small 

carbamoyl residues to the guanidine moiety (Nω) of 2.1 (see compounds 2.2, 2.4, 2.53-2.66) led to a 

significant (up to more than one order of magnitude) increase in Y1R affinity (Tables 2.1, 2.2 and Figure 

2.3). By contrast, increasing van der Waals volumes of the carbamoyl residues (see compounds 2.3, 

2.5, 2.6 and 2.67-2.75; Tables 2.1, 2.2 and Figure 2.3) affected Y1R binding. However, exceeding a 

critical volume (212 Å3) of the carbamoyl substituent (in compound 2.72), Y1R affinity did not further 

decrease, but even increased (compounds 2.7, 2.9, 2.76 and 2.78; Tables 2.1, 2.2 and Figure 2.3). In 

order to find a molecular explanation for this phenomenon, computational studies were performed. 



 
 

Chapter 2 
 

29 
 

 

Figure 2.3. Correlation between the experimentally determined ligand (2.2-2.6 and 2.53-2.75) pKi values and calculated van der 

Waals volumes of the respective carbamoyl residues. Two types of outliers (squares) were observed: (1) (R)-argininamide 2.1, 

devoid of a carbamoyl substituent, supposed to bind in the same orientation as 2.2, but unable to occupy the subpocket between 

TM V and VI (Figure 2.1); (2) compounds 2.7, 2.9, 2.76 and 2.78, bearing bulkier carbamoyl moieties than 2.72, considered to 

bind to the Y1R in a totally different orientation compared to 2.2. 

2.2.4. Induced-fit docking and molecular dynamics (MD) simulations 

To shed light on the binding modes of the most striking compounds (2.1-2.3, 2.68, 2.72, 2.76, 2.78) and 

to get insight into the molecular interactions leading to differences in Y1R affinities, we performed MD 

simulations (2.1-2.3) and induced-fit docking (2.68, 2.72, 2.76, 2.78) (Figure 2.4). All compounds 

showed the favorable hydrogen-assisted salt bridge (2.1-2.3, 2.68, 2.76, 2.78) or hydrogen bond (2.72) 

between the carbamoylguanidine moiety and D2876.59 in cluster 1 of the MD simulations (2.1-2.3) or the 

lowest free energy (MM-GBSA score) binding poses of induced-fit docking (2.68, 2.72, 2.76, 2.78) 

(Figure 3B, 3E-F, 3H-I, 3K-L). It is notable that when comparing the Y1R affinity of 2.5 with its congener 

2.6 (methylated at the carbamoyl nitrogen, see Table 1), it becomes obvious that the carbamoyl N-H 

group is involved in binding. In addition to the interaction with D2876.59, the carbamoylguanidine moiety 

of most compounds (2.2, 2.3, 2.68, 2.76, 2.78) simultaneously forms a hydrogen-assisted salt bridge 

with D200ECL2 (Figure 3E-F, 3H, 3K-L). By contrast, the guanidine moiety of 2.1 was either in contact 

with D2876.59 or D200ECL2 in the MD simulation (cf. Chapter 8, Figure 8.1). Interestingly, in addition to 

the interaction with the carbamoylguanidine moiety of the ligands, D200ECL2 showed an intra-molecular 

salt bridge with R208ECL2, which was most pronounced in the case of 2.2 (Figure 2.4 E). 
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Figure 2.4. Cluster 1 binding poses of MD simulations (2 µs) of the Y1R (inactive state, PDB ID: 5ZBQ15) bound to (A, B, orange) 

2.1, (D, E, grey) 2.2 or (G, H, purple) 2.3, and lowest free energy (MM-GBSA) conformations of (F, blue) 2.68, (I, cyan) 2.72, (J, 

K, green) 2.76 and (L, magenta) 2.78 obtained by induced-fit docking to the Y1R. (C) (R)-Argininamide core structure. In A, D, 

G and J, the space within the subpocket between TM helices V and VI of the orthosteric binding pocket is highlighted with a blue 

surface/ mesh illustration. Amino acids involved in H-bonding or salt bridges (indicated as yellow dashed lines), π-π interactions 

(green dashed lines) or cation-π interactions (magenta dashed lines) with the ligands are labeled: Y1002.64 (π-π): in B; Y1002.64 

(HB): in E, F, K; F1734.60 (π-π): in K; Q177ECL2 (HB): in F, I; F199ECL2 (π-π): in F; D200ECL2 (HB, SB): in E, F, H, K, L; F202ECL2 

(CAT-π): in E; T2125.39 (HB): in I, K; Q2195.46 (HB): in L; N2836.55 (HB): in B, F, I, K, L; T2846.56 (HB): in F; F2866.58 (π-π): in B; 

D2876.59 (HB, SB): in B, E, F, H, K, L; D2876.59 (HB): in I; N2997.32 (HB): in F, H, I; F3027.35 (π-π): in H. Amino acids involved in 

intra-molecular H-bonding or salt bridges (indicated as yellow dashed lines) are labeled: in B, R208ECL2–D2876.59 (HB, SB); in E, 

D200ECL2-R208ECL2 (HB, SB), T2125.39–D2876.59 (HB). HB = hydrogen bond. SB = salt bridge. CAT = cation. 
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Further specific (non-hydrophobic) interactions between amino acids of the Y1R and the ligands were 

hydrogen bonds (Y1002.64 (2.2, 2.68, 2.76), Q177ECL2 (2.68, 2.72), T2125.39 (2.2, 2.72, 2.76), Q2195.46 

(2.78), N2836.55 (2.1, 2.68, 2.72, 2.76, 2.78), T2846.56 (2.68), N2997.32 (2.3, 2.68, 2.72)), π-π (Y1002.64 

(2.1), F1734.60 (2.76), F199ECL2 (2.68), F2866.58 (2.1), F3027.35 (2.3)) or cation-π contacts (F202ECL2 (2.2)) 

(Figure 2.4). 

In MD simulations, reference compound 2.1, bearing no carbamoyl substituent at the guanidine group, 

showed a binding mode (Figure 2.4 A, 2.4 B) comparable to that of 2.2 (Figure 2.4 D, 2.4 E). However, 

in contrast to 2.2, 2.3, 2.68 and 2.72, (R)-argininamide 2.1 did not occupy the subpocket between TM 

helices V and VI due to absence of the guanidine group substituent (Figure 2.4 A-B and 2.4 D-I). 

2.3. Conclusion 

A series of (R)-argininamide-type Y1R antagonists, bearing different carbamoyl residues (small (2.53-

2.69) vs. bulky (2.70-2.76 and 2.78), cyclic (2.68-2.76 and 2.78) vs. acyclic (2.53-2.67)) at the guanidine 

group, were synthesized. Up to a critical size, the increase in size of the carbamoyl side chain (e.g. 

compound 2.72), correlated inversely with Y1R affinity (pKi values: 5.67-10.50), indicating that the van 

der Waals volume of considerably larger carbamoyl substituents than in reference compound 2.2 is too 

large to allow the occupation of the sub-pocket located between TM helix V and TM helix VI (Figure 2.5). 

Induced-fit docking and MD simulations suggest that, (R)-argininamides bearing very bulky carbamoyl 

residues (e.g. fluorescent ligand 2.78) bind in an inverted mode (compared to 2.2), accompanied by a 

moderate recovery of Y1R affinity (pKi of 2.78: 6.99). The present study revealed that the subpocket of 

the Y1R, perfectly occupied by the carbamoyl residue of the high affinity Y1R antagonist 2.2,15 cannot 

harbour large moieties such as fluorescent dyes. High affinity fluorescent ligands for the Y1R derived 

from 2.2 will, therefore require a labelling strategy directed to positions other than the carbamoyl residue, 

e.g. the diphenyl acetyl moiety pointing towards the receptor surface.  
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2.4. Experimental section 

2.4.1. General experimental conditions 

The following reagents and solvents (analytical grade) were purchased from commercial suppliers and 

used without further purification: CH2Cl2, DMF (Fisher Scientific, Schwerte, Germany); DCC, TFA, 

HgCl2, 2.10, 2.11, 2.13-2.20, 2.22 and 2.46-2.51 (Sigma Aldrich, Taufkirchen, Germany); triphosgene 

and 2.21 (TCI, Eschborn, Germany); DIPEA, 2.36 (ABCR, Karlsruhe, Germany); 2.52 (Merck, 

Darmstadt, Germany). For pharmacological characterization, pNPY was purchased from Synpeptide 

(Shanghai, China). 

Compounds 2.1216, 2.3514, 2.3717, 2.4018, 2.4419, 2.4520 and 2.7710, 11 were synthesized as previously 

described. 

Column chromatography was performed using Merck Geduran 60 silica gel (0.063-0.200 mm) or Merck 

flash silica gel 60 (0.040-0.063 mm). For thin layer chromatography, TLC sheets ALUGRAM Xtra SIL 

G/UV254 from Macherey-Nagel GmbH & Co. KG (Düren, Germany) were used. Compounds were 

detected by irradiation with UV light (254 nm), and staining was performed with ninhydrin. 

Acetonitrile (HPLC grade), used for HPLC, was purchased from Sigma-Aldrich. Millipore water was used 

for eluents of analytical and preparative HPLC. Compounds 2.41, 2.42, 2.53-2.76 and 2.78 were purified 

by a preparative HPLC-system from Knauer (Berlin, Germany) consisting of two pumps (K-1800) and a 

detector (K-2001). A Kinetex XB C18, 5 µm, 250 x 21 mm (Phenomenex, Aschaffenburg, Germany) 

served as RP-column at a flow rate of 18 mL/min. All injected solutions were filtered with syringe filters 

(0.45 µm). The mobile phase contained the solvents A (0.1% aq TFA) and B (acetonitrile). The detection 

wavelength was 220 nm. Acetonitrile was removed from the eluates at 40 °C under reduced pressure. 

The eluates, containing isolated compounds, were lyophilized using a Christ alpha 2-4 LD (Martin Christ 

Gefriertrocknungsanlagen, Osterode am Harz, Germany) or a Scanvac CoolSafe 100-9 (Labogene, 

Alleroed, Denmark) lyophilization apparatus equipped with a Vacuubrand RZ rotary vane vacuum pump 

(Vacuubrand, Wertheim, Germany). 

The purity of compounds 2.53-2.65, 2.73 and 2.78 was determined by analytical HPLC (RP-HPLC) on 

a 1100 series system from Agilent Technologies (Santa Clara, CA USA) composed of a Degasser 

(G1379A), a Binary Pump (G1312A), a Diode Array Detector (G1315A), a thermostated Column 

Compartment (G1316A) and an Autosampler (G1329A). A Phenomenex Kinetex 5u XB-C18 100A, 

250 x 4.6 mm was used as stationary phase. The flow rate was 1 mL/min, the detection wavelength was 

set to 220 nm (compound 2.78 was additionally detected at 480 nm), the oven temperature was set to 

30 °C and the injection volume was 50 µL. Mixtures of solvents A (0.1% aq TFA) and B (acetonitrile) 

were used as mobile phase. The following gradient was applied: Method A: 0-25 min, A/B 90:10–5:95; 

25-35 min, 5:95. Analytical HPLC analysis of compounds 2.66-2.72 and 2.74-2.76 was performed on a 

system from Merck-Hitachi composed of a Pump (L-6200A), an Interface (D600 IF), an Autosampler 

(AS-2000) and an UV-Detector (L-4000A). A Phenomenex Kinetex 5u XB-C18 100A, 250 x 4.6 mm 

(Phenomenex) was used as stationary phase. The flow rate was 0.8 mL/min, the detection wavelength 

was set to 200 nm, the oven temperature was set to 30 °C and the injection volume was 35 µL. A mixture 

of solvents A (0.05% aq TFA) and B (acetonitrile supplemented with 0.05% TFA) was used as mobile 
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phase. The following gradients were applied: Method B: 0-25 min, A/B 90:10–5:95; 25-35 min, 5:95 and 

Method C: 0-30 min, 95:5–20:80; 30-32 min, 20:80–5:95; 32-42 min, 5:95. 

Deuterated solvents for NMR spectroscopy (DMSO-d6, CDCl3) were obtained from Deutero (Kastellaun, 

Germany) in ampoules (1 mL). NMR spectra were recorded on a Bruker Avance 300 (1H, 300 MHz; 13C, 

75 MHz), a Bruker Avance III 400 (1H, 400 MHz; 13C, 101 MHz) and a Bruker Avance 600 with cryogenic 

probe (1H, 600 MHz; 13C, 150 MHz) (Bruker, Karlsruhe, Germany). Chemical shifts are given in ppm 

and were referenced to the solvent residual peak (DMSO-d6, at 2.50 ppm (1H-NMR) and at 39.52 ppm 

(13C-NMR); CDCl3, at 7.26 ppm (1H-NMR) and at 77.16 ppm (13C-NMR)).21 The coupling constants (J) 

are given in Hertz (Hz). The splitting of the signals is described as follows: s = singlet, bs = broad singlet, 

d = doublet, t = triplet, q = quartet, m = multiplet. 

Mass spectrometry (HRMS) analysis was performed either on an Agilent 6540 UHD Accurate-Mass Q-

TOF LC/MS system (Agilent Technologies) using an electrospray source (ESI) or on an Agilent 

GC7890A GC/MS system (Agilent Technologies) using an atmospheric pressure chemical ionization 

(APCI) source. 

Stock solutions were prepared in DMSO at concentrations of 2 mM (2.78) or 10 mM. 

2.4.2. Synthesis protocols and analytical data 

General synthesis procedures 

General procedure A. The precursors 2.41 or 2.42 were dissolved in DMF, and DIPEA was added. 

The succinimidyl esters 2.23-2.33, 2.43-2.45, except 2.34, were dissolved in DMF and added to the 

solution of 2.41 or 2.42. The reaction mixture was stirred at rt for 1-2 h. 10% aq TFA (10 equiv.) was 

added and the product was isolated by preparative HPLC. 

General procedure B. A freshly prepared solution of the carboxylic acids 2.48-2.52 and DCC in DMF 

(0.5 mL) was added dropwise to a solution of 2.41 in DMF (1 mL) and the mixture was stirred at rt for 

2-3 h. The precipitate was removed by filtration and the product purified by preparative HPLC. 

General procedure C. In contrast to general procedure B, DIPEA (2.5 equiv.) was added to the solution 

of 2.41 in DMF, along with the carboxylic acid 2.46 or 2.47. 

 

Succinimidyl 2-methylpropionate (2.23).22 A solution of DCC (0.89 g, 4.31 mmol) in CH2Cl2 (1 mL) 

and a solution of 2-methylpropionic acid (2.10) (369 µL, 3.98 mmol) in CH2Cl2 (1 mL) were added 

dropwise to an ice-cold solution of 2.22 (0.46 g, 4.00 mmol) in CH2Cl2 (6 mL) and DMF (0.4 mL). The 

reaction mixture was stirred on an ice bath for 2 h and then at rt overnight. The precipitate was removed 

by filtration, and the solid was washed (3x) with CH2Cl2. The filtrate was then washed with a saturated 

solution of NaHCO3 (100 mL) and the organic phase was dried over Na2SO4. The solvent was removed 

by evaporation, the residue was taken up in CH2Cl2 and crystallization, initiated by the addition of light 

petroleum, afforded 2.23 as a white solid (0.22 g, 1.19 mmol, 30%). 1H-NMR (300 MHz, CDCl3): δ (  m) 

1.32 (d, J = 7.0 Hz, 6H), 2.82 (s, 4H, interfering with the next signal), 2.88 (septet, J = 7.0 Hz ,1H). 
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13C-NMR (75 MHz, CDCl3): δ (  m) 1 . , 25.7,  1. , 1  . , 172.2. HRMS (APCI): m/z [M+H]+ calcd. for 

[C8H12NO4]+ 186.0761, found 186.0765. C8H11NO4 (185.18). 

 

Succinimidyl 2,2-dimethylpropionate (2.24).23 A solution of DCC (1.13 g, 5.48 mmol) in CH2Cl2 

(1 mL) and a solution of 2,2-dimethylpropionic acid (2.11) (0.50 g, 4.90 mmol) in CH2Cl2 (1 mL) were 

added dropwise to an ice-cold solution of 2.22 (0.46 g, 4.00 mmol) in CH2Cl2 (6 mL) and DMF (0.4 mL). 

The reaction mixture was stirred on an ice bath for 2 h and then at rt overnight. The precipitate was 

removed by filtration, and the solid was washed (3x) with CH2Cl2. The filtrate was washed with a 

saturated solution of NaHCO3 (100 mL), and the organic phase was dried over Na2SO4. The solvent 

was removed by evaporation, the residue was taken up in CH2Cl2 and crystallization, initiated by the 

addition of light petroleum, afforded 2.24 as a white solid (0.28 g, 1.41 mmol, 35%). 1H-NMR (400 MHz, 

CDCl3): δ (  m) 1. 7 (s,  H), 2.7 -2.84 (m, 4H). 13C-NMR (101 MHz, CDCl3): δ (  m) 25.7, 27.1,   .5, 

169.3, 173.5. HRMS (APCI): m/z [M+H]+ calcd. for [C9H14NO4]+ 200.0917, found 200.0918. C9H13NO4 

(199.21). 

 

Succinimidyl N-Boc-glycinate (2.25).24 DCC (0.61 g, 2.97 mmol) was dissolved in CH2Cl2 and added 

dropwise to an ice-cold solution of 2.22 (0.34 g, 2.97 mmol) and N-Boc-glycinate (12) (0.40 g, 

2.28 mmol) in CH2Cl2 (10 mL). The reaction mixture was stirred on an ice bath for 2 h. The precipitate 

was separated by filtration, and the solid was washed (3x) with CH2Cl2. The filtrate was washed with a 

saturated solution of NaHCO3 (2x 75 mL), and the organic phase was dried over Na2SO4. The solvent 

was removed by evaporation at reduced pressure to give 2.25 as a white solid (0.53 g, 1.95 mmol, 86%). 

1H-NMR (400 MHz, DMSO-d6): δ (  m) 1.   (s,  H), 2. 1 (s,  H),  .0  (d, J = 6.2 Hz, 2H), 7.48 (t, 

J = 6.1 Hz, 1H). 13C-NMR (101 MHz, DMSO-d6): δ (  m) 25. , 2 .1,   . , 7 . , 155. , 1  . , 170.0. 

HRMS (APCI): m/z [M+NH4]+ calcd. for [C11H20N3O6]+ 290.1347, found 290.1350. C11H16N2O6 (272.26). 

 

Succinimidyl benzoate (2.26).25 DCC (1.10 g, 5.33 mmol) was dissolved in THF (10 mL) and added 

dropwise to an ice-cold solution of 2.22 (0.82 g, 3.13 mmol) and benzoic acid (2.13) (0.50 g, 4.09 mmol) 

in THF (30 mL). The reaction mixture was stirred on an ice bath for 2 h and then at rt overnight. The 

precipitate was removed by filtration, and the solid was washed (2x) with THF (5 mL). The filtrate was 

dried over Na2SO4 and evaporated at reduced pressure. The crude product was purified by column 

chromatography (eluent: CH2Cl2/MeOH 97:3) to give 2.26 as white solid (0.59 g, 2.69 mmol, 86%). 

1H-NMR (300 MHz, DMSO-d6): δ (  m) 2. 0 (s,  H), 7. 2-7.70 (m, 2H), 7.80-7.88 (m, 1H), 8.07-8.14 
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(m, 2H). 13C-NMR (75 MHz, DMSO-d6): δ (  m) 25. , 12 . , 12 . 5, 12 .  , 1 5.5, 1 1.7, 170.2. 

HRMS (APCI): m/z [M+H]+ calcd. for [C11H10NO4]+ 220.0604, found 220.0608. C11H9NO4 (219.20). 

 

Succinimidyl phenylacetate (2.27).26 A solution of DCC (0.84 g, 4.07 mmol) in DMF (1 mL) and a 

solution of 2-phenylacetic acid (2.14) (0.50 g, 3.67 mmol) in DMF (1 mL) were added dropwise to an 

ice-cold solution of 2.22 (0.36 g 7.12 mmol) in DMF (4 mL). The reaction mixture was stirred on an ice 

bath for 2 h and then at rt overnight. The precipitate was removed by filtration, and the solid was washed 

(5x) with DMF (1 mL). The filtrate was poured into a saturated NaHCO3 solution (75 mL), and the 

aqueous phase was extracted with ethyl acetate (3x 75 mL). The combined organic phases were 

washed (2x) with water, dried over MgSO4, and evaporated under reduced pressure. The crude product 

was purified by column chromatography (eluent: light petroleum/ethyl acetate 1:2) to give 2.27 as white 

solid (0.61 g, 2.62 mmol, 84%). 1H-NMR (300 MHz, CDCl3): δ (  m) 2. 1 (s,  H),  .   (s, 2H), 7.2 -

7.41 (m, 5H). 13C-NMR (75 MHz, CDCl3): δ (  m) 25.7,  7.7, 127. , 12 .0, 12 . , 1 1.5, 1  . , 1  .1. 

HRMS (APCI): m/z [M+H]+ calcd. for [C12H12NO4]+ 234.0761, found 234.0765. C12H11NO4 (233.22). 

 

Succinimidyl diphenylacetate (2.28).18 DCC (1.08 g, 5.23 mmol) was dissolved in CH2Cl2 (1 mL) and 

added dropwise to an ice-cold solution of 2.22 (0.36 g, 3.1 mmol) and diphenyl acetic acid (2.15) (0.20 g, 

0.94 mmol) in CH2Cl2 (10 mL). The reaction mixture was stirred on an ice bath for 2 h. The precipitate 

was removed by filtration and the solid was washed (3x) with CH2Cl2. The filtrate was washed with a 

saturated solution of NaHCO3 (3x 100 mL) and the organic phase was dried over Na2SO4. The solvent 

was evaporated at reduced pressure and the crude product was purified by column chromatography 

(eluent light petroleum/ethyl acetate 2:1 to 1:1) to give 2.28 as a white solid (0.50 g, 1.62 mmol, 72%). 

1H-NMR (400 MHz, CDCl3): δ (  m) 2.   (s,  H), 5.25 (s, 1H), 7.1 -7.31 (m, 10H). 13C-NMR (101 MHz, 

CDCl3): δ (  m) 25.7, 5 .1, 12 .00, 12 .7 , 12 .  , 1  . , 1  .2, 1  .0. HRMS (APCI): m/z [M+H]+ 

calcd. for [C18H16NO4]+ 310.1074, found 310.1075. C18H15NO4 (309.32). 

 

Succinimidyl cyclopropanecarboxylate (2.29).27 A solution of DCC (0.93 g, 4.51 mmol) in CH2Cl2 

(1 mL) and a solution of cyclopropane carboxylic acid (2.16) (324 µL, 4.07 mmol) in CH2Cl2 (1 mL) were 

added dropwise to an ice-cold solution of 2.22 (0.48 g, 4.17 mmol) in CH2Cl2 (6 mL) and DMF (0.4 mL). 

The reaction mixture was stirred on an ice bath for 2 h and then at rt overnight. The precipitate was 

removed by filtration, and the solid was washed (3x) with CH2Cl2. The filtrate was washed with a 

saturated solution of NaHCO3 (100 mL), and the organic phase was dried over Na2SO4. The solvent 

was removed by evaporation, the residue was taken up in CH2Cl2 and crystallization, initiated by the 
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addition of light petroleum, afforded 2.29 as a white solid (0.33 g, 1.80 mmol, 43%). 1H-NMR (400 MHz, 

CDCl3): δ (  m) 1.05-1.24 (m, 4H), 1.81-194 (m, 1H), 2.80 (s, 4H). 13C-NMR (101 MHz, CDCl3): δ (  m) 

10.3, 10.6, 25.6, 169.4, 170.3. HRMS (APCI): m/z [M+H]+ calcd. for [C8H10NO4]+ 184.0604, found 

184.0606. C8H9NO4 (183.16). 

 

Succinimidyl cyclobutanecarboxylate (2.30).28 A solution of DCC (0.81 g, 3.93 mmol) in ethyl acetate 

(1 mL) and a solution of cyclobutanecarboxylic acid (2.17) (335 µL, 3.50 mmol) in ethyl acetate (1 mL) 

were added dropwise to an ice-cold solution of 2.22 (0.35 g, 3.04 mmol) in ethyl acetate (6 ml) and DMF 

(0.4 mL). The reaction mixture was stirred on an ice bath for 2 h and then at rt overnight. The precipitate 

was removed by filtration, and the solid was washed (3x) with CH2Cl2. The filtrate was washed with a 

saturated solution of NaHCO3 (100 mL), and the organic phase was dried over Na2SO4. The solvent 

was removed by evaporation, the residue was taken up in CH2Cl2 and crystallization, initiated by the 

addition of light petroleum, afforded 2.30 as a white solid (0.22 g, 1.11 mmol, 37%). 1H-NMR (300 MHz, 

CDCl3): δ (  m) 1.  -2.14 (m, 2H), 2.30-2.53 (m, 4H), 2.78-2.89 (m, 4H), 3.37-3.51 (m, 1H). 13C-NMR 

(75 MHz, CDCl3): δ (  m) 1 . , 25.5, 25. ,  5.2, 1  .5, 170.7. HRMS (APCI): m/z [M+H]+ calcd. for 

[C9H12NO4]+ 198.0761, found 198.0764. C9H11NO4 (197.19). 

 

Succinimidyl cyclopentanecarboxylate (2.31). A solution of DCC (0.70 g, 3.39 mmol) in ethyl acetate 

(1 mL) and a solution of cyclopentanecarboxylic acid (2.18) (333 µL, 3.07 mmol) in ethyl acetate (1 mL) 

were added dropwise to an ice-cold solution of 2.22 (0.35 g, 3.04 mmol) in ethyl acetate (6 ml) and DMF 

(0.4 mL). The reaction mixture was stirred on an ice bath for 2 h and then at rt overnight. The precipitate 

was removed by filtration, and the solid was washed (3x) with CH2Cl2. The filtrate was washed with a 

saturated solution of NaHCO3 (100 mL), and the organic phase was dried over Na2SO4. The solvent 

was removed by evaporation, the residue was taken up in CH2Cl2 and crystallization, initiated by the 

addition of light petroleum, afforded 2.31 as a white solid (0.33 g, 1.56 mmol, 51%). 1H-NMR (300 MHz, 

CDCl3): δ (  m) 1.5 -1.79 (m, 4H), 1.89-2.09 (m, 4H), 2.78-2.88 (m, 4H), 2.97-3.11 (m, 1H). 13C-NMR 

(75 MHz, CDCl3): δ (  m) 25.7, 2 .0,  0. ,  0.7, 1  .5, 172.0. HRMS (APCI): m/z [M+NH4]+ calcd. for 

[C10H17N2O4]+ 229.1183, found 229.1187. C10H13NO4 (211.22). 

 

Succinimidyl cyclohexanecarboxylate (2.32).28, 29 A solution of DCC (0.77 g, 3.73 mmol) in ethyl 

acetate (1 mL) and a solution of cyclohexanecarboxylic acid (2.19) (0.36 g, 2.81 mmol) in ethyl acetate 

(1 mL) were dropped to an ice-cold solution of 2.22 (0.41 g, 3.56 mmol) in ethyl acetate (6 mL) and DMF 

(0.4 mL). The reaction mixture was stirred on an ice bath for 2 h and then at rt overnight. The precipitate 
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was removed by filtration and the solid was washed (3x) with CH2Cl2. The filtrate was washed with a 

saturated solution of NaHCO3 (100 mL), and the organic phase was dried over Na2SO4. The solvent 

was removed by evaporation, the residue was taken up in CH2Cl2 and crystallization, initiated by the 

addition of light petroleum, afforded 2.32 as a white solid (0.40 g, 1.67 mmol, 59%). 1H-NMR (300 MHz, 

DMSO-d6): δ (  m) 1.1 -1.62 (m, 7H), 1.64-1.75 (m, 2H), 1.86-1.96 (m, 2H), 2.80 (s, 4H). 13C-NMR 

(75 MHz, DMSO-d6): δ (  m) 2 . , 25.0, 25.5, 2 . ,   . , 170. , 170. . HRMS (APCI): m/z [M+NH4]+ 

calcd. for [C11H19N2O4]+ 243.1339, found 243.1346. C11H15NO4 (225.24). 

 

Succinimidyl cyclohexylacetate (2.33). A solution of DCC (0.58 g, 2.81 mmol) in CH2Cl2 (1 mL) and 

a solution of cyclohexylacetic acid (2.20) (0.36 g, 2.53 mmol) in CH2Cl2 (1 mL) were added dropwise to 

an ice-cold solution of 2.22 (0.29 g, 2.52 mmol) in CH2Cl2 (6 mL) and DMF (0.4 mL). The reaction mixture 

was stirred on an ice bath for 2 h and then at rt overnight. The precipitate was removed by filtration, and 

the solid was washed (3x) with CH2Cl2. The filtrate was washed with a saturated solution of NaHCO3 

(100 mL), and the organic phase was dried over Na2SO4. The solvent was removed by evaporation, the 

residue was taken up in CH2Cl2 and crystallization, initiated by the addition of light petroleum, afforded 

2.33 as a white solid (0.25 g, 1.04 mmol, 41%). 1H-NMR (300 MHz, CDCl3): δ (  m) 0.  -1.33 (m, 5H), 

1.62-1.92 (m, 6H), 2.46 (d, J = 6.7 Hz, 2H), 2.83 (s, 4H). 13C-NMR (75 MHz, CDCl3): δ (  m) 25. , 2 .1, 

26.2, 33.0, 35.1, 38.8, 168.1, 169.5. HRMS (APCI): m/z [M+NH4]+ calcd. for [C12H21N2O4]+ 257.1496, 

found 257.1506. C12H17NO4 (239.27). 

 

Succinimidyl trifluoroacetate (2.34).30 2.22 (0.35 g, 3.04 mmol) was dissolved in THF (6 mL), 

trifluoroacetic acid anhydride (2.21) (0.90 mL, 6.38 mmol) was added dropwise and the solution stirred 

at rt for 3 h. After evaporation of the solvent, toluene (3 mL) was added and evaporated (3x) to obtain 

2.34 as a white solid (0.64 g, 3.04 mmol, 100%). 1H-NMR (300 MHz, DMSO-d6): δ (ppm) 2.59 (s, 4H). 

C6H4F3NO4 (211.10). 

 

N-tert-Butoxycarbonyl-N′-[2(tert-butoxycarbonylamino)ethyl]aminocarbonyl-S-methylisothio-

urea (2.38).7, 31 A solution of tert-butyl (2-aminoethyl)carbamate (2.36) (0.62 g, 3.87 mmol) and DIPEA 

(1.91 mL, 11.2 mmol) in anhydrous CH2Cl2 (7 mL) was added dropwise to an ice-cold solution of 

triphosgene (0.57 g, 1.92 mmol) in anhydrous CH2Cl2 (5 mL). The reaction mixture was stirred at rt for 

30 min, N-Boc-S-methylisothiourea (2.35) (0.79 g, 4.93 mmol) was added, and after 1.5 h, the solvent 

was removed by evaporation at reduced pressure. The product was purified directly by column 

chromatography (eluent CH2Cl2/ethyl acetate 98:2 to 90:10) to give 2.38 as a white solid (1.03 g, 

2.74 mmol, 71%). 1H-NMR (300 MHz, DMSO-d6): δ (  m) 1. 7 (s, 9H), 1.44 (s, 9H), 2.28 (s, 3H), 2.97-
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3.11 (m, 4H), 6.82 (t, J = 5.2 Hz, 1H), 7.72 (t, J = 5.3 Hz, 1H), 12.32 (br s, 1H). 13C-NMR (75 MHz, 

DMSO-d6): δ (  m) 1 .5, 27.5, 2 .1,   .5,   . , 77. ,  2.1, 150.1, 155. , 1 1.5, 1  . . HRMS (ESI): 

m/z [M+H]+ calcd. for [C15H29N4O5S]+ 377.1853, found 377.1866. C15H28N4O5S (376.47). 

 

N-tert-Butoxycarbonyl-N′-[3(tert-butoxycarbonylamino)propyl]aminocarbonyl-S-methyl-

isothiourea (2.39).31 A solution of tert-butyl (3-aminopropyl)carbamate (2.37) (5.00 g, 28.7 mmol) and 

DIPEA (14.7 mL, 86.1 mmol) in anhydrous CH2Cl2 (50 mL) was added dropwise to an ice-cold solution 

of triphosgene (4.26 g, 14.4 mmol) in anhydrous CH2Cl2 (45 mL). The reaction mixture was stirred at rt 

for 30 min, N-Boc-S-methylisothiourea (2.35) (6.55 g, 34.4 mmol) was added, and after 2 h, the solvent 

was removed by evaporation at reduced pressure. The product was directly purified by column 

chromatography (eluent CH2Cl2/ethyl acetate 98:2 to 96:4; eluent light petroleum/ethyl acetate 87:13 to 

82:18) to give 2.39 as a yellowish oil (5.56 g, 14.2 mmol, 50%). 1H-NMR (400 MHz, DMSO-d6): δ (  m) 

1.37 (s, 9H), 1.44 (s, 9H), 1.50-1.60 (m, 2H), 2.28 (s, 3H), 2.87-2.97 (m, 2H), 2.99-3.07 (m, 2H), 6.76 (t, 

J = 6.8 Hz, 1H)), 7.73 (t, J = 5.8 Hz, 1H), 12.39 (br s, 1H). 13C-NMR (101 MHz, DMSO-d6): δ (  m) 1 . , 

27.6, 28.2, 29.5, 37.1, 37.7, 77.4, 82.1, 150.2, 155.6, 161.9, 164.8. HRMS (ESI): m/z [M+H]+ calcd. for 

[C16H30N4O5SNa]+ 413.1829, found 413.1832. C16H30N4O5S (390.50). 

 

(R)-Nα-Diphenylacetyl-Nω-(aminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide 

bis(hydrotrifluoroacetate) (2.41).7 (R)-N′-(4-tert-Butoxybenzyl)-Nα-(2,2-diphenylacetyl)ornithinamide 

(2.40) (1.31 g, 3.49 mmol) and N-tert-butoxycarbonyl-N′-[2(tert-butoxycarbonylamino)ethyl]amino-

carbonyl-S-methylisothiourea (2.38) (1.50 g, 3.08 mmol) were dissolved in CH2Cl2 (30 mL). HgCl2 

(1.26 g, 4.62 mmol) and DIPEA (1.31 mL, 7.70 mmol) were added and the mixture was stirred at rt for 

1 h to afford the crude product, that was purified directly by column chromatography (eluent CH2Cl2/ethyl 

acetate 1:1). The purified product was dissolved in CH2Cl2 (7.5 mL), the reaction mixture was cooled to 

0 °C and TFA (7.5 mL) was added. After 1 h, the mixture was allowed to warm to rt, then stirred 

overnight. The solvent was evaporated, and the crude product was purified by HPLC (gradient: 0-35 

min, A/B 85:15–38:62, tR = 16 min) to give 2.41 as a fluffy white solid (372.11 mg, 47 mmol, 68%). 

1H-NMR (600 MHz, DMSO-d6): δ (  m) 1.  -1.50 (m, 2H), 1.51-1.58 (m, 1H), 1.64-1.72 (m, 1H), 2.93 

(br s, 2H), 3.18-3.26 (m, 2H), 3.33-3.38 (m, 2H), 4.09-4.20 (m, 2H), 4.30-4.36 (m, 1H), 5.13 (s, 1H), 

6.65-6.69 (m, 2H), 6.98-7.02 (m, 2H), 7.20-7.25 (m, 2H), 7.26-7.31 (m, 8H), 7.61 (br s, 1H), 7.89 (br s, 

3H), 8.36 (t, J = 5.7 Hz, 1H), 8.42-8.65 (br s, 2H, interfering with the next signal), 8.49 (d, J = 8.1 Hz, 

1H), 9.05 (br s, 1H), 9.33 (br s, 1H), 10.81 (br s, 1H). 13C-NMR (151 MHz, DMSO-d6): δ (  m) 2 . , 

29.4, 37.2, 38.5, 40.4, 41.6, 52.3, 55.9, 115.0, 117.0 (q, J = 297.1 Hz) (TFA), 126.57, 126.61, 128.17, 

128.21, 128.40, 128.50, 128.52, 129.13, 140.3, 140.5, 153.7, 154.4, 156.3, 158.9 (q, J = 31.6 Hz) (TFA), 
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170.97, 171.04. HRMS (ESI): m/z [M+H]+ calcd. for [C30H38N7O4]+ 560.2980, found 560.2986. 

C30H37N7O4 × C4H2F6O4 (559.67 + 228.05). 

 

(R)-Nα-Diphenylacetyl-Nω-(aminopropyl)aminocarbonyl(4-hydroxybenzyl)argininamide 

bis(hydrotrifluoroacetate) (2.42).32 (R)-N′-(4-tert-Butoxybenzyl)-Nα-(2,2-diphenylacetyl)ornithinamide 

(2.40) (150 mg, 0.31 mmol) and N-tert-butoxycarbonyl-N′-[3(tert-butoxycarbonylamino)propyl]amino-

carbonyl-S-methylisothiourea (2.39) (132 mg, 0.34 mmol) were dissolved in CH2Cl2 (30 mL). HgCl2 

(126 mg, 0.46 mmol) and DIPEA (100 mg, 0.76 mmol) were added and the mixture was stirred at rt 

overnight to afford the crude product, that was purified by column chromatography (eluent CH2Cl2/ethyl 

acetate 10:1 to 1:1). The purified product was dissolved in a mixture (10.5 mL) of CH2Cl2, TFA and water 

(1:1:0.1). Afterwards, CH2Cl2 (20 mL) was added, the organic solvent was evaporated (2x) at reduced 

pressure, and the crude product was purified by HPLC (gradient: 0-35 min, A/B 85:15–38:62, 

tR = 19 min) to obtain 2.42 as a fluffy white solid (112 mg, 0.14 mmol, 45%). 1H-NMR (600 MHz, DMSO-

d6): δ (  m) 1.  -1.50 (m, 2H), 1.50-1.60 (m, 1H), 1.63-1.79 (m, 3H), 2.77-2.88 (m, 2H), 3.14-3.26 (m, 

4H), 4.10-4.21 (m, 2H), 4.29-4.38 (m, 1H), 5.13 (s, 1H), 6.64-6.71 (m, 2H), 6.98-7.03 (m, 2H), 7.18-7.24 

(m, 2H), 7.26-7.34 (m, 8H), 7.67 (br s, 1H), 7.87 (br s, 3H), 8.37 (t, J = 5.5 Hz, 1H), 8.41-8.61 (m, 3H), 

9.03 (br s, 1H), 9.36 (br s, 1H), 10.78 (br s, 1H). 13C-NMR (151 MHz, DMSO-d6): δ (  m) 2 . , 27. , 

29.4, 36.5, 36.7, 40.4, 41.7, 52.4, 56.0, 115.0, 117.0 (q, J = 298.4 Hz) (TFA), 126.59, 126.62, 128.18, 

128.22, 128, 4, 128.52, 128.57, 129.2, 140.3, 140.5, 153.8, 154.1, 156.3, 159.2 (q, J = 32.1 Hz) (TFA), 

171.04, 171.08. HRMS (ESI): m/z [M+H]+ calcd. for [C31H40N7O4]+ 574.3136, found 574.3142. 

C31H39N7O4 × C4H2F6O4 (573.70 + 228.05). 

 

(R)-Nα-Diphenylacetyl-Nω-(acetylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide 

hydrotrifluoroacetate (2.53). Compound 2.53 was prepared using general procedure A, the reactants 

2.41 (34.6 mg, 43.9 µmol), succinimidyl acetate (2.43) (7.3 mg, 32.5 µmol), DIPEA (29 µL, 166 µmol) 

and the solvent DMF (300 µL). Purification by preparative HPLC (gradient: 0-35 min, A/B 85:15–45:55, 

tR = 20 min) afforded 2.53 as a fluffy white solid (22.4 mg, 31.3 µmol, 71%). 1H-NMR (600 MHz, 

DMSO-d6): δ (  m) 1.  -1.50 (m, 2H), 1.51-1.61 (m, 1H), 1.64-1.72 (m, 1H), 1.80 (s, 3H), 3.10-3.27 (m, 

6H), 4.09-4.20 (m, 2H), 4.31-4.37 (m, 1H), 5.13 (s, 1H), 6.65-6.71 (m, 2H), 6.98-7.03 (m, 2H), 7.19-7.25 

(m, 2H), 7.26-7.33 (m, 8H), 7.50-7.56 (m, 1H), 7.90-8.00 (m, 1H), 8.36 (t, J = 5.8 Hz , 1H), 8.43 (br s, 

2H, interfering with two surrounding signals), 8.49 (d, J = 8.1 Hz, 1H), 8.96 (br s, 1H), 9.31 (br s, 1H), 
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10.25 (br s, 1H). 13C-NMR (151 MHz, DMSO-d6): δ (  m) 22. , 2 . , 2 . ,   .1,   .1,  0. ,  1. , 52.3, 

55.9, 115.0, 115.7 (TFA), 117.6 (TFA), 126.57, 126.61, 128.17, 128.21, 128.42, 128.50, 128.53, 129.1, 

140.3, 140.5, 153.6, 153.9, 156.3, 158.9 (q, J = 33.2 Hz) (TFA), 169.6, 170.99, 171.03. RP-HPLC 

(Method A, 220 nm): 100% (tR = 11.8 min, k = 3.5). HRMS (ESI): m/z [M+H]+ calcd. for [C32H40N7O5]+ 

602.3085, found 602.3092. C32H39N7O5 × C2HF3O2 (601.71 + 114.02). 

 

(R)-Nα-Diphenylacetyl-Nω-(acetylylaminopropyl)aminocarbonyl(4-hydroxybenzyl)argininamide 

hydrotrifluoroacetate (2.54). Compound 2.54 was prepared using general procedure A, the reactants 

2.42 (26.3 mg, 32.8 µmol), succinimidyl acetate (2.43) (5.1 mg, 32 µmol), DIPEA (22 µL, 126 µmol) and 

the solvent DMF (300 µL). Purification by preparative HPLC (gradient: 0-35 min, A/B 85:15–45:55, 

tR = 20 min) afforded 2.54 as a fluffy white solid (15.7 mg, 18.6 µmol, 57%). 1H-NMR (600 MHz, 

DMSO-d6): δ (  m) 1.  -1.50 (m, 2H), 1.52-1.60 (m, 3H), 1.64-1.72 (m, 1H), 1.80 (s, 3H), 3.03-3.08 (m, 

2H), 3.08-3.13 (m, 2H), 3.16-3.24 (m, 2H), 4.10-4.20 (m, 2H), 4.31-4.37 (m, 1H), 5.13 (s, 1H), 6.66-6.69 

(m, 2H), 6.98-7.02 (m, 2H), 7.19-7.25 (m, 2H), 7.26-7.31 (m, 8H), 7.49 (t, J = 5.1 Hz, 1H), 7.88 (t, 

J = 5.4 Hz, 1H), 8.36 (t, J = 5.8 Hz, 1H), 8.40 (br s, 2H, interfering with two surrounding signals), 8.49 

(d, J = 8.0 Hz, 1H), 8.94 (br s, 1H), 9.30 (br s, 1H), 10.16 (br s, 1H). 13C-NMR (151 MHz, DMSO-d6): δ 

(ppm) 22.6, 24.6, 29.2, 29.4, 36.0, 37.0, 40.3, 41.6, 52.3, 55.9, 115.0, 115.4 (TFA), 117.4 (TFA), 126.57, 

126.60, 128.17, 128.20, 128.42, 128.50, 128.53, 129.1, 140.3, 140.5, 153.6, 153.7, 156.3, 158.7 (q, 

J = 34.0 Hz) (TFA), 169.3, 170.99, 171.03. RP-HPLC (Method A, 220 nm): 100% (tR = 11.9 min, k = 

3.6). HRMS (ESI): m/z [M+H]+ calcd. for [C33H42N7O5]+ 616.3242, found 616.3250. C33H41N7O5 × 

C2HF3O2 (615.74 + 114.02). 

 

(R)-Nα-Diphenylacetyl-Nω-(propionylaminopropyl)aminocarbonyl(4-hydroxybenzyl)argininamide 

hydrotrifluoroacetate (2.55). Compound 2.55 was prepared using general procedure A, the reactants 

2.42 (26.3 mg, 32.8 µmol), succinimidyl propionate (2.44) (6.1 mg, 35.6 µmol), DIPEA (22 µL, 126 µmol) 

and the solvent DMF (300 µL). Purification by preparative HPLC (gradient: 0-35 min, A/B 85:10–45:55, 

tR = 22 min) afforded 2.55 as a fluffy white solid (17.5 mg, 23.5 µmol, 72%). 1H-NMR (600 MHz, 

DMSO-d6): δ (ppm) 0.99 (t, J = 7.6 Hz, 3H), 1.36-1.50 (m, 2H), 1.50-1.60 (m, 3H), 1.64-1.72 (m, 1H), 

2.07 (q, J = 7.6 Hz, 2H), 3.04-3.13 (m, 4H), 3.16-3.23 (m, 2H), 4.10-4.20 (m, 2H), 4.31-4.37 (m, 1H), 

5.13 (s, 1H), 6.66-6.70 (m, 2H), 6.99-7.02 (m, 2H), 7.19-7.25 (m, 2H), 7.26-7.31 (m, 8H), 7.50 (br s, 1H), 

7.80 (t, J = 5.5 Hz, 1H), 8.36 (t, J = 5.8 Hz, 1H), 8.41 (br s, 2H, interfering with two surrounding signals), 
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8.49 (d, J = 8.1 Hz, 1H), 8.95 (br s, 1H), 9.31 (br s, 1H, interfering with previous signal), 10.21 (br s, 1H). 

13C-NMR (151 MHz, DMSO-d6): δ (ppm) 10.0, 24.6, 28.5, 29.28, 29.42, 35.9, 37.0, 40.3, 41.6, 52.3, 

55.9, 115.0, 115.5 (TFA), 117.5 (TFA), 126.57, 126.60, 128.16, 128.20, 128.42, 128.50, 128.53, 129.1, 

140.3, 140.5, 153.63, 153.71, 156.3, 158.8 (q, J = 33.6 Hz) (TFA), 170.99, 171.03, 170.07. RP-HPLC 

(Method A, 220 nm): 99% (tR = 12.4 min, k = 3.8). HRMS (ESI): m/z [M+H]+ calcd. for [C34H44N7O5]+ 

630.3398, found 630.3403. C34H43N7O5 × C2HF3O2 (629.76 + 114.02). 

 

(R)-Nα-Diphenylacetyl-Nω-(2-fluoroacetylaminoethyl)aminocarbonyl(4-hydroxybenzyl)arginina-

mide hydrotrifluoroacetate (2.56). Compound 2.56 was prepared using general procedure C and the 

reactants 2.41 (99.71 mg, 126.6 µmol), 2-fluoroacetic acid (2.46) (28.99 mg, 371.5 µmol), DIPEA 

(55 µL, 315.7 µmol), DCC (39.44 mg, 191.2 µmol). Purification by preparative HPLC (gradient: 0-35 min, 

A/B 85:15–38:62, tR = 21 min) afforded 2.56 as a fluffy white solid (26.6 mg, 36.3 µmol, 29%). 1H-NMR 

(600 MHz, DMSO-d6): δ (  m) 1.  -1.49 (m, 2H), 1.50-1.58 (m, 1H), 1.64-1.71 (m, 1H), 3.17-3.26 (m, 

6H), 4.09-4.18 (m, 2H), 4.30-4.35 (m, 1H), 4.78 (d, J = 47.1 Hz, 2H), 5.12 (s, 1H), 6.65-6.68 (m, 2H), 

6.98-7.01 (m, 2H), 7.18-7.24 (m, 2H), 7.27-7.30 (m, 8H), 7.56 (br s, 1H), 8.26 (t, J = 5.0 Hz, 1H), 8.35 

(t, J = 5.8 Hz, 1H), 8.44 (br s, 2H, interfering with two surrounding signals), 8.48 (d, J = 8.1 Hz, 1H), 8.97 

(br s, 1H), 9.31 (br s, 1H), 10.36 (br s, 1H). 13C-NMR (150 MHz, DMSO-d6): δ (  m) 2 . , 2 . ,  7. , 

38.8, 40.4, 41.6, 52.3, 55.9, 80.0 (d, J = 180.4 Hz), 115.0, 116.0 (TFA), 118.0 (TFA), 126.58, 126.62, 

128.17, 128.22, 128.43, 128.51, 128.54, 129.1, 140.3, 140.5, 153.7, 154.0, 156.3, 159.0 (q, J = 32.2 Hz) 

(TFA), 167.5 (d, J = 18.2 Hz), 171.01, 171.05. RP-HPLC (Method A, 220 nm): 98% (tR = 12.6 min, k = 

3.9). HRMS (ESI): m/z [M+H]+ calcd. for [C32H39FN7O5]+ 620.2991, found 620.2999. C32H38FN7O5 × 

C2HF3O2 (619.70 + 114.02). 

 

(R)-Nα-Diphenylacetyl-Nω-(2,2-difluoroacetylaminoethyl)aminocarbonyl(4-hydroxybenzyl)-

argininamide hydrotrifluoroacetate (2.57). Compound 2.57 was prepared using general procedure C 

and the reactants 2.41 (66.4 mg, 84.3 µmol), 2,2-difluoroacetic acid (2.47) (15 µL, 238.4 µmol), DIPEA 

(36 µL, 206.7 µmol), DCC (26.3 mg, 127.5 µmol). Purification by preparative HPLC (gradient: 0-35 min, 

A/B 85:15–38:62, tR = 21 min) afforded 2.57 as a fluffy white solid (10.0 mg, 13.3 µmol, 16%). 1H-NMR 

(600 MHz, DMSO-d6): δ (  m) 1. 5-1.48 (m, 2H), 1.49-1.57 (m, 1H), 1.63-1.70 (m, 1H), 3.17-3.27 (m, 

6H), 4.08-4.19 (m, 2H), 4.30-4.35 (m, 1H), 5.12 (s, 1H), 6.19 (t, J = 53.7 Hz, 1H), 6.64-6.69 (m, 2H), 

6.97-7.00 (m, 2H), 7.18-7.24 (m, 2H), 7.25-7.31 (m, 8H), 7.58 (br s, 1H), 8.35 (t, J = 5.7 Hz, 1H), 8.44 
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(br s, 2H, interfering with two surrounding signals), 8.48 (d, J = 8.1 Hz, 1H), 8.86 (t, J = 5.1 Hz, 1H), 8.94 

(br s, 1H), 9.30 (br s, 1H), 10.23 (br s, 1H). 13C-NMR (150 MHz, DMSO-d6): δ (  m) 2 . , 2 . ,   .2, 

38.4, 40.3, 41.6, 52.3, 55.9, 108.5 (t, J = 247.2 Hz), 115.0, 116.1 (TFA), 118.1 (TFA), 126.56, 126.60, 

128.16, 128.20, 128.41, 128.49, 128.52, 129.1, 140.3, 140.5, 153.6, 153.9, 156.3, 158.6 (q, J = 31.4 Hz) 

(TFA), 162.6 (t, J = 25.1 Hz), 170.97, 171.02. RP-HPLC (Method A, 220 nm): 98% (tR = 12.8 min, k = 

4.0). HRMS (ESI): m/z [M+H]+ calcd. for [C32H38F2N7O5]+ 638.2897, found 638.2905. C32H37F2N7O5 × 

C2HF3O2 (637.69 + 114.02). 

 

(R)-Nα-Diphenylacetyl-Nω-(trifluoroacetylaminoethyl)aminocarbonyl(4-hydroxybenzyl)arginina-

mide hydrotrifluoroacetate (2.58). Compound 2.58 was prepared using general procedure A, the 

reactants 2.41 (30 mg, 38.1 µmol), succinimidyl trifluoroacetate (2.34) (20 mg, 88.3 µmol), DIPEA 

(20 µL, 114.8 µmol) and the solvent DMF (100 µL). Purification by preparative HPLC (gradient: 0-30 

min, A/B 85:15–38:62, tR = 19) afforded 2.58 as a fluffy white solid (6.24 mg, 8.1 µmol, 21%). 1H-NMR 

(600 MHz, DMSO-d6): δ (  m) 1.36-1.49 (m, 2H), 1.50-1.58 (m, 1H), 1.63-1.71 (m, 1H), 3.17-3.23 (m, 

2H), 3.24-3.28 (m, 2H), 3.29-3.32 (m, 2H), 4.08-4.21 (m, 2H), 4.30-4.37 (m, 1H), 5.12 (s, 1H), 6.66-6.69 

(m, 2H), 6.98-7.02 (m, 2H), 7.20-7.25 (m, 2H), 7.27-7.30 (m, 8H), 7.61 (t, J = 5.5 Hz, 1H), 8.36 (t, 

J = 5.9 Hz, 1H), 8.44 (br s, 2H, interfering with two surrounding signals), 8.48 (d, J = 8.1 Hz, 1H), 8.91 

(br s, 1H), 9.30 (br s, 1H), 9.48 (t, J = 5.2 Hz, 1H), 10.17 (br s, 1H). 13C-NMR (150 MHz, DMSO-d6): δ 

(ppm) 24.6, 29.4, 36.5, 38.1, 38.9, 40.4, 41.6, 52.3, 56.0, 114.96 (TFA), 115.03, 116.9 (TFA), 117.1 (q, 

J = 298.6 Hz), 126.58, 126.61, 128.17, 128.21, 128.42, 128.51, 128.56, 129.1, 140.3, 140.5, 153.7, 

154.2, 156.5, 156.8 (the last signals belong to a quartet that is not fully resolved), 158.8 (q, J = 31.7 Hz) 

(TFA), 171.04, 171.07. RP-HPLC (Method A, 220 nm): 98% (tR = 13.6 min, k = 4.3). HRMS (ESI): m/z 

[M+H]+ calcd. for [C32H37F3N7O5]+ 656.2803, found 656.2814. C32H36F3N7O5 × C2HF3O2 (655.68 + 

114.02). 

 

(R)-Nα-Diphenylacetyl-Nω-(2-chloroacetylaminoethyl)aminocarbonyl(4-hydroxybenzyl)arginina-

mide hydrotrifluoroacetate (2.59). Compound 2.59 was prepared using general procedure B and the 

reactants 2.41 (106.74 mg, 135.5 µmol), 2-chloroacetic acid (2.48) (37.4 mg, 395.8 µmol), DCC (38 mg, 

184.2 µmol). Purification by preparative HPLC (gradient: 0-30 min, A/B 85:15–38:62, tR = 18 min) 

afforded 2.59 as a fluffy white solid (16.61 mg, 22.14 µmol, 16%). 1H-NMR (600 MHz, DMSO-d6): δ 

(ppm) 1.37-1.50 (m, 2H), 1.51-1.58 (m, 1H), 1.64-1.73 (m, 1H), 3.17-3.24 (m, 6H), 4.05 (s, 2H), 4.10-
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4.20 (m, 2H), 4.31-4.36 (m, 1H), 5.13 (s, 1H), 6.65-6.70 (m, 2H), 6.98-7.02 (m, 2H), 7.19-7.25 (m, 2H), 

7.26-7.32 (m, 8H), 7.56 (br s, 1H), 8.31-8.35 (m, 1H), 8.36 (t, J = 5.8 Hz, 1H), 8.45 (br s, 2H, interfering 

with two surrounding signals), 8.49 (d, J = 8.1 Hz, 1H), 8.96 (br s, 1H), 9.31 (br s, 1H), 10.32 (br s, 1H). 

13C-NMR (150 MHz, DMSO-d6): δ (ppm) 24.6, 29.4, 38.6, 38.7, 40.3, 41.6, 42.6, 52.3, 55.9, 115.01, 

115.9 (TFA), 117.9 (TFA), 126.56, 126.61, 128.16, 128.21, 128.42, 128.50, 128.53, 129.13, 140.3, 

140.5, 153.6, 153.9, 156.3, 158.8 (q, J = 32.5 Hz) (TFA), 166.3, 170.98, 171.03. RP-HPLC (Method A, 

220 nm): 100% (tR = 12.8 min, k = 4.0). HRMS (ESI): m/z [M+H]+ calcd. for [C32H39ClN7O5]+ 636.2696, 

found 636.2699. C32H38ClN7O5 × C2HF3O2 (636.15 + 114.02). 

 

(R)-Nα-Diphenylacetyl-Nω-(2-bromoacetylaminoethyl)aminocarbonyl(4-hydroxybenzyl)arginina-

mide hydrotrifluoroacetate (2.60). Compound 60 was prepared using general procedure B and the 

reactants 2.41 (93.44 mg, 118.6 µmol), 2-bromoacetic acid (2.49) (37.5 mg, 269.9 µmol), DCC 

(31.1 mg, 150.7 µmol). Purification by preparative HPLC (gradient: 0-30 min, A/B 85:15–38:62, 

tR = 19 min) afforded 2.60 as a fluffy white solid (15.40 mg, 19.4 µmol, 16%). 1H-NMR (600 MHz, 

DMSO-d6): δ (  m) 1. 7-1.50 (m, 2H), 1.51-1.58 (m, 1H), 1.64-1.73 (m, 1H), 3.17-3.24 (m, 6H), 3.85 (s, 

2H), 4.10-4.20 (m, 2H), 4.31- 4.36 (m, 1H), 5.13 (s, 1H), 6.65-6.70 (m, 2H), 6.98-7.02 (m, 2H), 7.19-

7.25 (m, 2H), 7.26-7.32 (m, 8H), 7.56 (br s, 1H), 8.31-8.35 (m, 1H), 8.36 (t, J = 5.8 Hz, 1H), 8.45 (br s, 

2H, interfering with two surrounding signals), 8.49 (d, J = 8.1 Hz, 1H), 8.97 (br s, 1H), 9.31 (br s, 1H), 

10.32 (br s, 1H). 13C-NMR (150 MHz, DMSO-d6): δ (  m) 2 . , 2 . 0, 2 .  ,   .  ,   .7 ,  0. ,  1.  

52.3, 55.9, 115.0, 126.56, 126.61, 128.16, 128.21, 128.42, 128.50, 128.52, 129.13, 140.3, 140.5, 153.6, 

153.9, 156.3, 158.8 (q, J = 32.9 Hz), 166.5, 170.97, 171.03. RP-HPLC (Method A, 220 nm): 99% 

(tR = 12.9 min, k = 4.0). HRMS (ESI): m/z [M+H]+ calcd. for [C32H39BrN7O5]+ 680.2191, found 680.2193. 

C32H38BrN7O5 × C2HF3O2 (680.60 + 114.02). 

 

(R)-Nα-Diphenylacetyl-Nω-(glycinylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide 

bis(hydrotrifluoroacetate) (2.61). Compound 2.61 was prepared using general procedure A, the 

reactants 2.41 (41.4 mg, 52.6 µmol), succinimidyl N-Boc-glycinate (2.25) (17.6 mg, 64.6 µmol), DIPEA 

(35 µL, 200.9 µmol) and the solvent DMF (1 mL) Additionally, the crude product was poured into a 

solution of 100 mL water (5% acetonitrile, 0.5% TFA). After lyophilization, the crude product was 

dissolved in a mixture (2 mL) of CH2Cl2 and TFA (1:1) and stirred at rt for 2 h. The solvent was 

evaporated, and the crude product purified by preparative HPLC (gradient: 0-30 min, A/B 85:15–40:60, 
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tR = 15 min) which afforded 2.61 as a fluffy white solid (20.5 mg, 24.4 µmol, 46%). 1H-NMR (600 MHz, 

DMSO-d6): δ (  m) 1.  -1.50 (m, 2H), 1.51-1.58 (m, 1H), 1.64-1.72 (m, 1H), 3.17-3.26 (m, 6H), 3.53 (s, 

2H), 4.09-4.19 (m, 2H), 4.31-4.36 (m, 1H), 5.13 (s, 1H), 6.66-6.70 (m, 2H), 6.98-7.02 (m, 2H), 7.19-7.25 

(m, 2H), 7.26-7.31 (m, 8H), 7.64 (br s, 1H), 8.08 (br s, 3H), 8.36 (t, J = 5.7 Hz, 1H), 8.42-8.56 (m, 4H), 

9.02 (br s, 1H), 9.34 (br s, 1H), 10.73 (br s, 1H). 13C-NMR (150 MHz, DMSO-d6): δ (  m) 2 . , 2 . , 

38.3, 38.7, 40.0, 40.3, 41.6, 52.3, 55.9, 115.0, 116.1 (TFA), 118.0 (TFA), 126.58, 126.61, 128.17, 

128.21, 128.41, 128.51, 128.54, 129.1, 140.3, 140.5, 153.7, 154.1, 156.3, 158.9 (q, J = 31.7 Hz) (TFA), 

166.2, 171.01, 171.06. RP-HPLC (Method A, 220 nm): 96% (tR = 10.9 min, k = 3.2). HRMS (ESI): m/z 

[M+H]+ calcd. for [C32H41N8O5]+ 617.3194, found 617.3205. C32H40N8O5 × C4H2F6O4 (616.31 + 228.04). 

 

(R)-Nα-Diphenylacetyl-Nω-(2-hydroxyacetylaminoethyl)aminocarbonyl(4-hydroxybenzyl)arginin-

amide hydrotrifluoroacetate (2.62). Under assay conditions, 2.60 is stable for 24 h. Degradation of 

compound 2.60 led to a 2:1 mixture of 2.60 and 2.62 after 6 months. Purification by preparative HPLC 

(gradient: 0-30 min, A/B 85:15–38:62, tR = 15 min) afforded 2.62 as a fluffy white solid. 1H-NMR 

(600 MHz, DMSO-d6): δ (  m) 1. 5-1.49 (m, 2H), 1.50-1.58 (m, 1H), 1.64-1.72 (m, 1H), 3.17-3.25 (m, 

6H), 3.81 (s, 2H), 4.09-4.20 (m, 2H), 4.31-4.36 (m, 1H), 5.12 (s, 1H), 5.50 (br s, 1H), 6.50-6.70 (m, 2H), 

6.98-7.02 (m, 2H), 7.20-7.25 (m, 2H), 7.26-7.30 (m, 8H), 7.52 (br s, 1H), 7.88 (t, J = 5.2 Hz, 1H), 8.36 

(t, J = 5.8 Hz, 1H), 8.40 (br s, 2H, interfering with two surrounding signals), 8.48 (d, J = 8.1 Hz, 1H), 8.89 

(br s, 1H), 9.29 (br s, 1H), 9.89 (br s, 1H). 13C-NMR (150 MHz, DMSO-d6): δ (  m) 2 . , 2 . ,  7.7, 

39.1, 40.3, 41.6 52.3, 55.9, 61.4, 115.0, 126.57, 126.61, 128.16, 128.20, 128.41, 128.49, 128.50, 129.1, 

140.3, 140.4, 153.5, 153.8, 156.3, 158.3 (q, J = 31.6 Hz) (TFA), 170.95, 171.00, 172.3. RP-HPLC 

(Method A, 220 nm): 96% (tR = 11.5 min, k = 3.5). HRMS (ESI): m/z [M+H]+ calcd. for [C32H40N7O6]+ 

618.3035, found 618.3038. C32H39N7O5 × C2HF3O2 (617.71 + 114.02). 

 

(R)-Nα-Diphenylacetyl-Nω-(acrylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide 

hydrotrifluoroacetate (2.63). Compound 2.63 was prepared using general procedure B and the 

reactants 2.41 (97.33 mg, 123.5 µmol), acrylic acid (2.52) (20 µL, 291.4 µmol), DCC (25 mg, 

121.2 µmol). Purification by preparative HPLC (gradient: 0-30 min, A/B 85:15–40:60, tR = 18 min) 

afforded 2.63 as a fluffy white solid (9.0 mg, 12.4 µmol, 10%). 1H-NMR (600 MHz, DMSO-d6): δ (  m) 

1.36-1.50 (m, 2H), 1.50-1.58 (m, 1H), 1.63-1.72 (m, 1H), 3.18-3.23 (m, 4H), 3.23-3.27 (m, 2H), 4.09-

4.20 (m, 2H), 4.30-4.36 (m, 1H), 5.16 (s, 1H), 5.59 (dd, 2J = 2.1 Hz, 3J = 10.1 Hz, 1H), 6.08 (dd, 
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2J = 2.1 Hz, 3J = 17.1 Hz, 1H), 6.20 (dd, 2J = 10.1 Hz, 3J = 17.1 Hz, 1H), 6.65-6.70 (m, 2H), 6.98-7.03 

(m, 2H), 7.19-7.25 (m, 2H), 7.26-7.32 (m, 8H), 7.56 (br s, 1H), 8.23 (t, J = 5.3 Hz, 1H), 8.36 (t, J = 5.8 Hz, 

1H), 8.44 (br s, 2H, interfering with two surrounding signals), 8.49 (d, J = 8.1 Hz, 1H), 8.96 (br s, 1H), 

9.31 (br s, 1H), 10.18 (br s, 1H). 13C-NMR (150 MHz, DMSO-d6): δ (  m) 2 . , 2 . ,   .1,   .0,  0. , 

41.6, 52.3, 55.9, 115.0, 125.3, 126.56, 126.60, 128.16, 128.20, 128.41, 128.49, 128.52, 129.1, 131.6, 

140.3, 140.5, 153.6, 153.9, 156.3, 158.4 (q, J = 32.1 Hz) (TFA), 165.0, 170.97, 171.02. RP-HPLC 

(Method A, 220 nm): 98% (tR = 12.4 min, k = 3.8). HRMS (ESI): m/z [M+H]+ calcd. for [C33H40N7O5]+ 

614.3085, found 614.3089. C33H39N7O5 × C2HF3O2 (613.72 + 114.02). 

 

(R)-Nα-Diphenylacetyl-Nω-(3-chloropropanoylaminoethyl)aminocarbonyl(4-hydroxybenzyl)-

argininamide hydrotrifluoroacetate (2.64). Compound 2.64 was prepared using general procedure B 

and the reactants 2.41 (101.15 mg, 128.4 µmol), 3-chloropropionic acid (2.50) (20.31 mg, 187.2 µmol), 

DCC (33.02 mg, 160 µmol). Purification by preparative HPLC (gradient: 0-35 min, A/B 85:15–38:62, 

tR = 21 min) afforded 2.64 as a white solid fluffy (9.16 mg, 12.0 µmol, 9%). 1H-NMR (600 MHz, 

DMSO-d6): δ (  m) 1.  -1.50 (m, 2H), 1.51-1.59 (m, 1H), 1.64-1.72 (m, 1H), 2.56 (t, J = 6.4 Hz, 2H), 

3.14-3.23 (m, 6H), 3.77 (t, J = 6.4 Hz, 2H), 4.09-4.20 (m, 2H), 4.31-4.37 (m, 1H), 5.13 (s, 1H), 6.65-6.70 

(m, 2H), 6.98-7.02 (m, 2H), 7.19-7.26 (m, 2H), 7.26-7.32 (m, 8H), 7.51 (br s, 1H), 8.12 (br s, 1H), 8.36 

(t, J = 5.8 Hz, 1H), 8.44 (br s, 2H, interfering with two surrounding signals), 8.49 (d, J = 8.1 Hz, 1H), 8.97 

(br s, 1H), 9.32 (br s, 1H), 10.34 (br s, 1H). 13C-NMR (150 MHz, DMSO-d6): δ (  m) 2 . , 2 . ,   .1, 

38.3, 39.1, 40.3, 40.9, 41.6, 52.3, 55.9, 115.0, 116.0 (TFA), 118.0 (TFA), 126.56, 126.60, 128.16, 

128.20, 128.41, 128.49, 128.52, 129.13, 140.3, 140.5, 153.6, 153.9, 156.3, 158.7 (q, J = 31.6 Hz) (TFA), 

169.2, 170.98, 171.03. RP-HPLC (Method A, 220 nm): 96% (tR = 12.8 min, k = 4.0). HRMS (ESI): m/z 

[M+H]+ calcd. for [C33H41ClN7O5]+ 650.2852, found 650.2854. C33H40ClN7O5 × C2HF3O2 (650.18 + 

114.02). 

 

(R)-Nα-Diphenylacetyl-Nω-(3-bromopropanoylaminoethyl)aminocarbonyl(4-hydroxybenzyl)-

argininamide hydrotrifluoroacetate (2.65). Compound 2.65 was prepared using general procedure B 

and the reactants 2.41 (97.3 mg, 123.5 µmol), 3-bromopropionic acid (2.51) (80 mg, 522.9 µmol), DCC 

(30 mg, 145.4 µmol). Purification by preparative HPLC (gradient: 0-35 min, A/B 85:15–38:62, 

tR = 21 min) afforded 2.65 as a fluffy white solid (12.0 mg, 14.8 µmol, 12%). 1H-NMR (600 MHz, 

DMSO-d6): δ (  m) 1. 5-1.49 (m, 2H), 1.49-1.57 (m, 1H), 1.63-1.71 (m, 1H), 2.67 (t, J = 6.5 Hz, 2H), 
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3.14-3.22 (m, 6H), 3.63 (t, J = 6.5 Hz, 2H), 4.09-4.20 (m, 2H), 4.31-4.36 (m, 1H), 5.13 (s, 1H), 6.66-6.69 

(m, 2H), 6.99-7.02 (m, 2H), 7.20-7.25 (m, 2H), 7.26-7.31 (m, 8H), 7.48-7.52 (m, 1H), 8.10-8.13 (m, 1H), 

8.36 (t, J = 5.8 Hz, 1H), 8.42 (br s, 2H, interfering with two surrounding signals), 8.48 (d, J = 8.48 Hz, 

1H), 8.93 (br s, 1H), 9.30 (br s, 1H), 10.14 (br s, 1H). 13C-NMR (150 MHz, DMSO-d6): δ (  m) 2 . , 

29.36, 29.40, 38.1, 38.5, 38.9, 40.3, 41.6 52.3, 55.9, 115.0, 126.57, 126.60, 128.16, 128.20, 128.41, 

128.49, 128.51, 129.1, 140.3, 140.5, 153.6, 153 .8, 156.3, 158.6 (q, J = 33.4 Hz) (TFA), 169.5, 170.96, 

171.02. RP-HPLC (Method A, 220 nm): 97% (tR = 13.0 min, k = 4.1). HRMS (ESI): m/z [M+H]+ calcd. 

for [C32H41BrN7O5]+ 694.2347, found 694.2355. C33H40BrN7O5 × C2HF3O2 (694.63 + 114.02). 

 

(R)-Nα-Diphenylacetyl-Nω-(2-methylpropionylaminoethyl)aminocarbonyl(4-hydroxybenzyl)-

argininamide hydrotrifluoroacetate (2.66). Compound 2.66 was prepared using general procedure A, 

the reactants 2.41 (30.98 mg, 39.3 µmol), succinimidyl 2-methylpropionate (2.23) (7.76 mg, 41.9 µmol), 

DIPEA (20 µL, 114.8 µmol) and the solvent DMF (100 µL). Purification by preparative HPLC (gradient: 

0-30 min, A/B 85:15–38:62, tR = 17 min) afforded 2.66 as a fluffy white solid (24.54 mg, 33.0 µmol, 84%). 

1H-NMR (600 MHz, DMSO-d6): δ (  m) 0.   (d, J = 6.9 Hz, 6H), 1.36-1.50 (m, 2H), 1.51-1.58 (m, 1H), 

1.64-1.72 (m, 1H), 2.32 (septet, J = 6.9 Hz, 1H), 3.12-3.18 (m, 4H), 3.18-3.23 (m, 2H), 4.10-4.20 (m, 

2H), 4.31-4.36 (m, 1H), 5.13 (s, 1H), 6.66-6.70 (m, 2H), 6.99-7.02 (m, 2H), 7.19-7.25 (m, 2H), 7.26-7.30 

(m, 8H), 7.49 (br s, 1H), 7.81-7.84 (m, 1H), 8.36 (t, J = 5.8 Hz, 1H), 8.44 (br s, 2H, interfering with two 

surrounding signals), 8.49 (d, J = 8.1 Hz, 1H), 8.97 (br s, 1H), 9.31 (br s, 1H), 10.33 (br s, 1H). 13C-NMR 

(151 MHz, DMSO-d6): δ (  m) 1 .5, 2 . , 2 . ,   .1,   .0,   .1,  0. ,  1. , 52. , 55. , 115.0, 115.7 

(TFA), 117.7 (TFA), 126.56, 126.60, 128.16, 128.20, 128.41, 128.49, 128.52, 129.13, 140.3, 140.5, 

153.6, 153.9, 156.3, 158.8 (q, J = 33.1 Hz) (TFA), 170.97, 171.03, 173.0. RP-HPLC (Method B, 

220 nm): 99% (tR = 15.8 min, k = 4.5). HRMS (ESI): m/z [M+H]+ calcd. for [C34H44N7O5]+ 630.3398, found 

630.3410. C34H43N7O5 × C2HF3O2 (629.76 + 114.02). 

 

(R)-Nα-Diphenylacetyl-Nω-(2,2-dimethylpropionylaminoethyl)aminocarbonyl(4-hydroxybenzyl)-

argininamide hydrotrifluoroacetate (2.67). Compound 2.67 was prepared using general procedure A, 

the reactants 2.41 (31.06 mg, 39.4 µmol), succinimidyl 2,2-dimethylpropionate (2.24) (14.09 mg, 

70.7 µmol), DIPEA (20 µL, 114.8 µmol) and the solvent DMF (100 µL). Purification by preparative HPLC 

(gradient: 0-30 min, A/B 90:10–30:70, tR = 19 min) afforded 2.67 as a fluffy white solid (26.60 mg, 

35.1 µmol, 89%). 1H-NMR (600 MHz, DMSO-d6): δ (  m) 1.0  (s,  H), 1.  -1.50 (m, 2H), 1.50-1.59 (m, 
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1H), 1.63-1.72 (m, 1H), 3.13-3.23 (m, 6H), 4.09-4.20 (m, 2H), 4.31-4.37 (m, 1H), 5.13 (s, 1H), 6.65-6.70 

(m, 2H), 6.98-7.02 (m, 2H), 7.19-7.25 (m, 2H), 7.26-7.32 (m, 8H), 7.47 (br s, 1H), 7.52-7.57 (m, 1H), 

8.36 (t, J = 5.8 Hz, 1H), 8.43 (br s, 2H, interfering with two surrounding signals), 8.49 (d, J = 8.0 Hz, 1H), 

8.97 (s, 1H), 9.31 (br s, 1H), 10.38 (s, 1H). 13C-NMR (150 MHz, DMSO-d6): δ (  m) 2 . , 27. , 2 . , 

38.0, 38.5, 39.01, 40.3, 41.6, 52.3, 55.9, 115.0, 115.7 (TFA), 117.7 (TFA), 126.57, 126.60, 128.16, 

128.20, 128.41, 128.50, 128.53, 129.13, 140.3, 140.5, 153.7, 154.0, 156.3, 158.9 (q, J = 32.8 Hz) (TFA), 

170.98, 171.03, 177.9. RP-HPLC (Method B, 220 nm): 99% (tR = 17.5 min, k = 5.1). HRMS (ESI): m/z 

[M+H]+ calcd. for [C35H46N7O5]+ 644.3555, found 644.3570. C35H45N7O5 × C2HF3O2 (643.79 + 114.02). 

 

(R)-Nα-Diphenylacetyl-Nω-(cyclopropoylaminoethyl)aminocarbonyl(4-hydroxybenzyl)arginina-

mide hydrotrifluoroacetate (2.68). Compound 2.68 was prepared using general procedure A, the 

reactants 2.41 (30.81 mg, 39.1 µmol), succinimidyl cyclopropanecarboxylate (2.29) (11.13 mg, 

60.8 µmol), DIPEA (20 µL, 114.8 µmol) and the solvent DMF (100 µL). Purification by preparative HPLC 

(gradient: 0-30 min, A/B 85:15–38:62, tR = 17 min) afforded 2.68 as a fluffy white solid (19.36 mg, 

26.1 µmol, 67%). 1H-NMR (600 MHz, DMSO-d6): δ (  m) 0. 1-0.69 (m, 4H), 1.38-1.57 (m, 4H), 1.63-

1.71 (m, 1H), 3.14-3.23 (m, 6H), 4.09-4.20 (m, 2H), 4.31-4.36 (m, 1H), 5.13 (s, 1H), 6.66-6.69 (m, 2H), 

6.99-7.01 (m, 2H), 7.20-7.25 (m, 2H), 7.27-7.30 (m, 8H), 7.54 (br s, 1H), 8.17 (s, 1H), 8.36 (t, J = 5.8 Hz, 

1H), 8.44 (br s, 2H, interfering with two surrounding signals), 8.49 (d, J = 8.1 Hz, 1H) , 8.97 (s, 1H), 9.31 

(s, 1H), 10.20 (s, 1H). 13C-NMR (151 MHz, DMSO-d6): δ (  m)  . , 1 . , 2 . , 2 . ,   .2,   . ,  0. , 

41.6, 52.3, 55.9, 115.0, 116.1 (TFA), 118.1 (TFA), 126.56, 126.60, 128.16, 128.20, 128.41, 128.49, 

128.52, 129.1, 140.3, 140.5, 153.6, 153.9, 156.3, 158.6 (q, J = 32.7 Hz) (TFA), 170.97, 171.02, 173.0. 

RP-HPLC (Method B, 220 nm): 99% (tR = 17.0 min, k = 4.9). HRMS (ESI): m/z [M+H]+ calcd. for 

[C34H42N7O5]+ 628.3242, found 628.3255. C34H41N7O5 × C2HF3O2 (627.75 + 114.02). 

 

(R)-Nα-Diphenylacetyl-Nω-(cyclobutoylaminoethyl)aminocarbonyl(4-hydroxybenzyl)arginina-

mide hydrotrifluoroacetate (2.69). Compound 2.69 was prepared using general procedure A, the 

reactants 2.41 (30.27 mg, 38.4 µmol), succinimidyl cyclobutanecorboxylate (2.30) (11.46 mg, 

63.1 µmol), DIPEA (20 µL, 114.8 µmol) and the solvent DMF (100 µL). Purification by preparative HPLC 

(gradient: 0-30 min, A/B 85:15–38:62, tR = 18 min) afforded 2.69 as a fluffy white solid (20.90 mg, 

27.7 µmol, 72%). 1H-NMR (600 MHz, DMSO-d6): δ (  m) 1. 5-1.50 (m, 2H), 1.50-1.58 (m, 1H), 1.64-

1.77 (m, 2H), 1.82-1.90 (m, 1H), 1.96-2.02 (m, 2H), 2.07-2.15 (m, 2H), 2.96 (q, J = 8.5 Hz, 1H), 3.12-



 
Argininamide-type neuropeptide Y Y1 receptor antagonists: 

the nature of Nω carbamoyl substituents determines Y1R binding mode and affinity 
 

48 
 

3.17 (m, 4H), 3.18-3.23 (m, 2H), 4.10-4.20 (m, 2H), 4.31-4.36 (m, 1H), 1.53 (s, 1H), 6.66-6.69 (m, 2H), 

6.99-7.02 (m, 2H), 7.20-7.25 (m, 2H), 7.27-7.30 (m, 8H), 7.51 (br s, 1H), 7.74 (br s, 1H), 8.36 (t, 

J = 5.8 Hz, 1H), 8.43 (br s, 2H, interfering with two surrounding signals), 8.49 (d, J = 8.1 Hz, 1H), 8.96 

(br s, 1H), 9.31 (br s, 1H), 10.24 (br s, 1H). 13C-NMR (151 MHz, DMSO-d6): δ (  m) 17.7, 2 .7, 2 . , 

36.5, 38.1, 38.7, 39.1, 40.3, 41.6, 52.3, 55.9, 115.0, 115.6 (TFA), 117.6 (TFA), 126.56, 126.60, 128.16, 

128.20, 128.41, 128.49, 128.52, 129.13, 140.3, 140.5, 153.6, 153.9, 156.3, 158.7 (q, J = 33.6 Hz) (TFA), 

170.97, 171.02, 174.3. RP-HPLC (Method B, 220 nm): 96% (tR = 16.4 min, k = 4.7). HRMS (ESI): m/z 

[M+H]+ calcd. for [C35H44N7O5]+ 642.3398, found 642.3406. C35H43N7O5 × C2HF3O2 (641.77 + 114.02). 

 

(R)-Nα-Diphenylacetyl-Nω-(cyclopentoylaminoethyl)aminocarbonyl(4-hydroxybenzyl)arginina-

mide hydrotrifluoroacetate (2.70). Compound 2.70 was prepared using general procedure A, the 

reactants 2.41 (30.82 mg, 39.1 µmol), succinimidyl cyclopentanecarboxylate (2.31) (10.13 mg, 

48.0 µmol), DIPEA (20 µL, 114.8 µmol) and the solvent DMF (100 µL). Purification by preparative HPLC 

(gradient: 0-30 min, A/B 85:15–38:62, tR = 19 min) afforded 2.70 as a fluffy white solid (15.90 mg, 

20.7 µmol, 53%). 1H-NMR (600 MHz, DMSO-d6): δ (  m) 1. 5-1.64 (m, 10H), 1.65-1.75 (m, 3H), 3.13 

(m, 4H), 3.18-3.23 (m, 2H), 4.09-4.19 (m, 2H), 4.31 (m, 1H), 5.13 (s, 1H), 6.65-6.70 (m, 2H), 6.98-7.02 

(m, 2H), 7.20-7.25 (m, 2H), 7.26-7.31 (m, 8H), 7.50 (br s, 1H), 7.86 (br s, 1H), 8.36 (t, J = 5.8 Hz, 1H), 

8.44 (br s, 2H, interfering with two surrounding signals), 8.49 (d, J = 8.1 Hz, 1H), 8.96 (br s, 1H), 9.32 

(br s, 1H), 10.27 (br s, 1H). 13C-NMR (151 MHz, DMSO-d6): δ (  m) 2 . , 25. , 2 . , 2 . ,   .1,   .1, 

40.3, 41.6, 44.3, 52.3, 55.9, 115.0, 115.7 (TFA), 117.6 (TFA), 126.56, 126.60, 128.15, 128.20, 128.41, 

128.49, 128.52, 129.13, 140.3, 140.5, 153.6, 153.9, 156.3, 158.6 (q, J = 33.2 Hz) (TFA), 170.97, 171.02, 

175.7. RP-HPLC (Method B, 220 nm): 99% (tR = 17.0 min, k = 4.9). HRMS (ESI): m/z [M+H]+ calcd. for 

[C36H46N7O5]+ 656.3555, found 656.3571. C36H45N7O5 × C2HF3O2 (655.80 + 114.02). 

 

(R)-Nα-Diphenylacetyl-Nω-(cyclohexoylaminoethyl)aminocarbonyl(4-hydroxybenzyl)arginin-

amide hydrotrifluoroacetate (2.71). Compound 2.71 was prepared using general procedure A, the 

reactants 2.41 (29.0 mg, 36.8 µmol), succinimidyl cyclohexanecarboxylate (2.32) (11.3 mg, 54.0 µmol), 

DIPEA (20 µL, 114.8 µmol) and the solvent DMF (100 µL). Purification by preparative HPLC (gradient: 

0-30 min, A/B 85:15–38:62, tR = 20.0 min) afforded 71 as a fluffy white solid (17.45 mg, 22.3 µmol, 61%). 

1H-NMR (600 MHz, DMSO-d6): δ (  m) 1.10-1.22 (m, 3H), 1.26-1.35 (m, 2H), 1.36-1.50 (m, 2H), 1.51-

1.62 (m, 2H), 1.64-1.71 (m, 5H), 2.02-2.08 (m, 1H), 3.11-3.17 (m, 4H), 3.18-3.23 (m, 2H), 4.10-4.19 (m, 



 
 

Chapter 2 
 

49 
 

2H), 4.31-4.36 (m, 1H), 5.13 (s, 1H), 6.66-6.69 (m, 2H), 6.99-7.02 (m, 2H), 7.19-7.25 (m, 2H), 7.26-7.31 

(m, 8H), 7.47 (br s, 1H), 7.75-7.80 (m, 1H), 8.36 (t, J = 5.8 Hz, 1H), 8.43 (br s, 2H, interfering with two 

surrounding signals), 8.49 (d, J = 8.1 Hz, 1H), 8.95 (br s, 1H), 9.31 (br s, 1H), 10.25 (br s, 1H). 13C-NMR 

(150 MHz, DMSO-d6): δ (  m) 2 . , 25. , 25.5, 2 .2, 2 . ,  7. ,   . ,  0. ,  1. ,   .1, 52. , 55. , 

115.0, 115.6 (TFA), 117.6 (TFA), 126.57, 126.60, 128.16, 128.20, 128.41, 128.49, 128.52, 129.1, 140.3, 

140.5, 153.6, 153.9, 156.3, 158.7 (q, J = 32.4 Hz) (TFA), 170.97, 171.02, 175.6. RP-HPLC (Method B, 

220 nm): 99% (tR = 18.0 min, k = 5.2). HRMS (ESI): m/z [M + H]+ calcd. for [C37H48N7O5]+ 670.3711, 

found 670.3722. C37H47N7O5 × C2HF3O2 (669.83 + 114.02). 

 

(R)-Nα-Diphenylacetyl-Nω-(cyclohexylacetylaminoethyl)aminocarbonyl(4-hydroxybenzyl)-

argininamide hydrotrifluoroacetate (2.72). Compound 2.72 was prepared using general procedure A, 

the reactants 2.41 (30.6 mg, 38.8 µmol), succinimidyl cyclohexylacetate (2.33) (12.7 mg, 56.9 µmol), 

DIPEA (20 µL, 114.8 µmol) and the solvent DMF (100 µL). Purification by preparative HPLC (gradient: 

0-30 min, A/B 85:15–38:62, tR = 21 min) afforded 2.72 as a fluffy white solid (15.8 mg, 19.8 µmol, 51%). 

1H-NMR (600 MHz, DMSO-d6): δ (  m) 0. 2-0.92 (m, 2H), 1.06-1.21 (m, 3H), 1.37-1.50 (m, 2H), 1.50-

1.74 (m, 8H), 1.93 (d, J = 6.9 Hz, 2H), 3.15 (br s, 4H), 3.18-3.22 (m, 2H), 4.09-4.20 (m, 2H), 4.31-4.36 

(m, 1H), 5.13 (s, 1H), 6.65-6.70 (m, 2H), 6.97-7.03 (m, 2H), 7.19-7.25 (m, 2H), 7.26-7.31 (m, 8H), 7.48 

(br s, 1H), 7.87 (br s, 1H), 8.36 (t, J = 5.8 Hz, 1H), 8.44 (br s, 2H, interfering with two surrounding 

signals), 8.49 (d, J = 8.1 Hz, 1H), 8.96 (br s, 1H), 9.31 (br s, 1H), 10.25 (s, 1H). 13C-NMR (151 MHz, 

DMSO-d6): δ (  m) 2 . , 25. , 25. , 2 . ,  2.5,   . ,  7. ,   . ,  0. ,  1. ,   . , 52. , 55. , 115.0, 

126.56, 126.59, 128.15, 128.19, 128.40, 128.49, 128.52, 129.1, 140.3, 140.5, 153.6, 153.9, 156.3, 158.7 

(q, J = 34.5 Hz) (TFA), 170.96, 171.02, 171.7. RP-HPLC (Method B, 220 nm): 100% (tR = 16.0 min, k = 

4.6). HRMS (ESI): m/z [M+H]+ calcd. for [C38H50N7O5]+ 684.3868, found 684.3887. C38H49N7O5 × 

C2HF3O2 (683.85 + 114.02). 

 

(R)-Nα-Diphenylacetyl-Nω-(benzoylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide 

hydrotrifluoroacetate (2.73). Compound 2.73 was prepared using general procedure A, the reactants 

2.41 (30.74 mg, 39.0 µmol), succinimidyl benzoate (2.26) (13 mg, 59.3 µmol), DIPEA (20 µL, 

114.8 µmol) and the solvent DMF (100 µL). Purification by preparative HPLC (gradient: 0-30 min, A/B 

85:15–40:60, tR = 21 min) afforded 2.73 as a fluffy white solid (12.0 mg, 15.4 µmol, 39%). 1H-NMR 

(600 MHz, DMSO-d6): δ (  m) 1.  -1.50 (m, 2H), 1.51-1.59 (m, 1H), 1.64-1.73 (m, 1H), 3.17-3.24 (m, 



 
Argininamide-type neuropeptide Y Y1 receptor antagonists: 

the nature of Nω carbamoyl substituents determines Y1R binding mode and affinity 
 

50 
 

2H), 3.28-3.33 (m, 2H), 3.34-3.42 (m, 2H, interfering with water signal), 4.09-4.20 (m, 2H), 4.31-4.36 

(m, 1H), 5.13 (s, 1H), 6.65-6.70 (m, 2H), 6.98-7.03 (m, 2H), 7.19-7.25 (m, 2H), 7.26-7.31 (m, 8H), 7.43-

7.48 (m, 2H), 7.50-7.55 (m, 1H), 7.58-7.64 (m, 1H), 7.82-7.87 (m, 2H), 8.36 (t, J = 5.7 Hz, 1H), 8.44 (br 

s, 2H, interfering with two surrounding signals), 8.49 (d, J = 8.0 Hz, 1H), 8.56 (t, J = 5.5 Hz, 1H), 8.96 

(br s, 1H), 9.32 (br s, 1H), 10.24 (br s, 1H). 13C-NMR (150 MHz, DMSO-d6): δ (  m) 2 . , 2 . ,   . , 

39.0, 40.3, 41.6, 52.3, 55.9, 115.0, 126.56, 126.60, 127.20, 128.16, 128.20, 128.24, 128.41, 128.49, 

128.52, 129.1, 131.2, 134.4, 140.3, 140.5, 153.6, 153.9, 156.3, 158.8 (q, J = 31.5 Hz) (TFA), 166.6, 

170.98, 171.03. RP-HPLC (Method A, 220 nm): 99% (tR = 13.7 min, k = 4.3). HRMS (ESI): m/z [M+H]+ 

calcd. for [C37H42N7O5]+ 664.3242, found 664.3250. C37H41N7O5 × C2HF3O2 (663.78 + 114.02). 

 

(R)-Nα-Diphenylacetyl-Nω-(4-fluorobenzoylaminoethyl)aminocarbonyl(4-hydroxybenzyl)arginin-

amide hydrotrifluoroacetate (2.74). Compound 2.74 was prepared using general procedure A, the 

reactants 2.41 (30.95 mg, 39.3 µmol), succinimidyl 4-fluorobenzoate (2.45) (10.21 mg, 23.4 µmol), 

DIPEA (20 µL, 114.8 µmol) and the solvent DMF (100 µL). Purification by preparative HPLC (gradient: 

0-30 min, A/B 80:20–50:50, tR = 20 min) afforded 2.74 as a fluffy white solid (13.8 mg, 17.3 µmol, 44%). 

1H-NMR (600 MHz, DMSO-d6): δ (  m) 1.  -1.49 (m, 2H), 1.51-1.58 (m, 1H), 1.64-1.72 (m, 1H), 3.17-

3.23 (m, 2H), 3.27-3.32 (m, 2H), 3.35-3.40 (m, 2H), 4.09-4.20 (m, 2H), 4.31-4.36 (m, 1H), 5.13 (s, 1H), 

6.66-6.69 (m, 2H), 6.99-7.01 (m, 2H), 7.19-7.25 (m, 2H), 7.26-7.30 (m, 10H), 7.30-7.31 (m, 1H), 7.64 

(br s, 1H), 7.89-7.93 (m, 2H), 8.36 (t, J = 5.8 Hz, 1H), 8.44 (br s, 2H, interfering with two surrounding 

signals), 8.49 (d, J = 8.1 Hz, 1H), 8.60 (t, J = 5.5 Hz, 1H), 8.96 (br s, 1H), 9.31 (br s, 1H). 13C-NMR 

(150 MHz, DMSO-d6): δ (  m) 2 . , 2 . ,   . ,   .0,  0. ,  1. , 52. , 55. , 115.0, 115.1  (d, 

J = 21.7 Hz), 126.55, 126.59, 128.14, 128.19, 128.40, 128.48, 128.51, 129.1, 129.8 (d, J = 9.0 Hz), 

130.9 (d, J = 3.0 Hz), 140.3, 140.4, 153.6, 153.9, 156.3, 158.4 (q, J = 30.7 Hz) (TFA), 163.8 (d, 

J = 248.3 Hz), 165.5, 170.97, 171.01. RP-HPLC (Method C, 220 nm): 98% (tR = 22.9 min, k = 6.9). 

HRMS (ESI): m/z [M+H]+ calcd. for [C37H41FN7O5]+ 682.3148, found 682.3157. C37H40FN7O5 × C2HF3O2 

(681.77 + 114.0 2). 

 

(R)-Nα-Diphenylacetyl-Nω-(phenylacetylaminoethyl)aminocarbonyl(4-hydroxybenzyl)arginina-

mide hydrotrifluoroacetate (2.75). Compound 2.75 was prepared using general procedure A, the 

reactants 2.41 (30.18 mg, 38.3 µmol), succinimidyl phenylacetate (2.27) (10.39 mg, 44.6 µmol), DIPEA 

(20 µL, 114.8 µmol) and the solvent DMF (100 µL). Purification by preparative HPLC (gradient: 0-30 
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min, A/B 85:15–38:62, tR = 19 min) afforded 2.75 as a fluffy white solid (19.64 mg, 24.8 µmol, 65%). 

1H-NMR (600 MHz, DMSO-d6): δ (  m) 1.  -1.51 (m, 2H), 1.51-1.59 (m, 1H), 1.64-1.73 (m, 1H), 3.14-

3.24 (m, 6H), 3.40 (s, 2H), 4.09-4.20 (m, 2H), 4.30-4.38 (m, 1H), 5.13 (s, 1H), 6.66-6.69 (m, 2H), 6.98-

7.02 (m, 2H), 7.19-7.31 (m, 15H), 7.53 (br s, 1H), 8.15 (br s, 1H), 8.36 (t, J = 5.7 Hz, 1H), 8.44 (br s, 2H, 

interfering with two surrounding signals), 8.49 (d, J = 8.0 Hz, 1H), 8.95 (br s, 1H), 9.31 (br s, 1H), 10.27 

(br s, 1H). 13C-NMR (151 MHz, DMSO-d6): δ (  m) 2 . , 2 . ,   .2,   .1,  0. ,  1. ,  2. , 52. , 55. , 

115.0, 115.8 (TFA), 117.8 (TFA), 126.3, 126.57, 126.60, 128.16, 128.20, 128.41, 128.50, 128.52, 

128.99 (two carbon signals), 129.13, 136.3, 140.3, 140.5, 153.6, 153.9, 156.3, 158.7 (q, J = 33.6 Hz) 

(TFA), 170.5, 170.98, 171.03. RP-HPLC (Method B, 220 nm): 99% (tR = 17.0 min, k = 4.9). HRMS (ESI): 

m/z [M+H]+ calcd. for [C38H44N7O5]+ 678.3398, found 678.3414. C38H43N7O5 × C2HF3O2 (677.81 + 

114.02). 

 

(R)-Nα-Diphenylacetyl-Nω-(diphenylacetylaminoethyl)aminocarbonyl(4-hydroxybenzyl)arginina-

mide hydrotrifluoroacetate (2.76). Compound 2.76 was prepared using general procedure A, the 

reactants 2.41 (35.81 mg, 45.5 µmol), succinimidyl diphenylacetate (2.28) (26 mg, 84.1 µmol), DIPEA 

(25 µL, 143.5 µmol) and the solvent DMF (100 µL). Purification by preparative HPLC (gradient: 0-30 

min, A/B 85:15–38:62, tR = 16 min) afforded 2.76 as a fluffy white solid (15 mg, 17.3 µmol, 38%). 

1H-NMR (600 MHz, DMSO-d6): δ (  m) 1. 7-1.48 (m, 2H), 1.50-1.58 (m, 1H), 1.64-1.73 (m, 1H), 3.14-

3.24 (m, 6H), 4.07-4.20 (m, 2H), 4.29-4.37 (m, 1H), 4.90 (s, 1H), 5.12 (s, 1H), 6.65-6.68 (m, 2H), 6.98-

7.01 (m, 2H), 7.18-7.24 (m, 4H), 7.26-7.29 (m, 16H), 7.49 (br s, 1H), 8.34-8.38 (m, 2H), 8.42 (br s, 2H, 

interfering with two surrounding signals), 8.49 (d, J = 8.1 Hz, 1H), 8.92 (br s, 1H), 9.30 (br s, 1H), 10.18 

(br s, 1H). 13C-NMR (150 MHz, DMSO-d6): δ (  m) 2 . , 2 . ,   . ,   .0,  0. ,  1. , 52. , 55. , 5 . , 

115.0, 116.1 (TFA), 118.1 (TFA), 126.55, 126.58 (two carbon signals), 128.14, 128.17, 128.18, 128.27, 

128.34, 128.39 (2 carb.), 128.46, 128.47, 128.49, 129.11, 140.3 (2 carb.), 140.4, 153.6, 153.9, 156.3, 

158.6 (q, J = 30.5 Hz) (TFA), 170.95, 171.01, 171.37. One aromatic carbon was not apparent. RP-HPLC 

(Method B, 220 nm): 98% (tR = 19.6 min, k = 5.8). HRMS (ESI): m/z [M+H]+ calcd. for [C44H48N7O5]+ 

754.3711, found 754.3715. C44H47N7O5 × C2HF3O2 (753.90 + 114.02). 

 

(R)-Nα-Diphenylacetyl-Nω-(4-((1E,3E)-4-(4-(dimethylamino)phenyl)buta-1,3-dienyl)-2,6-dimethyl-

pyridinioethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate trifluoro-

acetate (2.78). DIPEA (2.80 µL, 16 µmol) was added to a solution of compound 2.41 (3.19 mg, 
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4.04 µmol) in DMF (50 µL). After 5 min, the fluorescent dye Py-5 (2.77) (5.74 mg, 15.6 µmol) was added, 

and the reaction mixture was shaken for 3 h in the dark. Purification by preparative HPLC (gradient: 0-

30 min, A/B 85:15–38:62, tR = 20 min) afforded 2.78 as a red solid (0.94 mg, 0.90 µmol, 22%). RP-HPLC 

(Method A, 220 nm): 95% (tR = 14.0 min, k = 4.4). HRMS (ESI): m/z [M]∙+ calcd. for [C49H57N8O5]∙+ 

821.4497, found 821.4509. C49H57N8O4
+ × C2HF3O2 × C2F3O2

- (822.05 + 114.02 + 113.02). 

2.4.3. Investigation of the chemical stability of 2.56, 2.58-2.61, 2.63 and 2.68 

To determine the chemical stability, compounds 2.56, 2.58-2.61, 2.63 and 2.68 (100 µM) were incubated 

in buffer (10 mM HEPES, 150 mM NaCl, 5 mM KCl, 2.5 mM CaCl2∙H2O, 1.2 mM KH2PO4, 1.2 mM 

Mg2SO4∙H2O, 25 mM NaHCO3, pH 7) at rt for 24 h. The solution was diluted (1:1) with 10% aq TFA and 

the stability was monitored at 6 time intervals (0 h, 1 h, 2 h, 4 h, 8 h and 24 h) by analytical HPLC 

analysis (Method A, 220 nm). 

2.4.4. Pharmacological methods: radioligand competition binding assay in SK-N-MC cells and 

Fura-2 Ca2+ assay 

2.4.4.1. Radioligand competition binding assay in SK-N-MC cells 

All competition binding experiments at the Y1R were essentially performed as described by Keller et al.7 

using [3H]2.2 (cfinal = 0.15 nM) and SK-N-MC cells expressing the Y1R. Three independent experiments 

were performed, each in triplicate. 

2.4.4.2. Fura-2 Ca2+ assay 

The Fura-2 Ca2+ assay at the Y1R was essentially performed as described by Müller et al.13 using 10 nM 

pNPY for intracellular Ca2+ mobilization and applying a pre-incubation period of 15 min for the 

antagonists. Three independent experiments were performed, each in singlet. 

2.4.5. Screening for pan-assay interference compounds (PAINS) 

Screening of all target compounds for PAINS via the public tool 

http://zinc15.docking.org/patterns/home33 gave no hits except for compound 2.78 (N,N-dimethylaniline 

substructure was identified as PAIN). The identity of 2.78 was proven by HRMS and the compound 

exhibited a purity of 95%. Moreover, there are no reports on the N,N-dimethylaniline scaffold to exhibit 

Y1R affinity as shown for 2.78. Therefore, interference in the radioligand competition binding assay by 

an impurity containing an N,N-dimethylaniline scaffold can be excluded. 

2.4.6. Computational chemistry 

2.4.6.1. Receptor and ligand preparation 

The crystal structure of the inactive state Y1R bound to the antagonist 2.2 (PDB ID: 5ZBQ15) was used 

as template. Minor modifications were performed using the modeling suite SYBYL-X 2.0 (Tripos Inc., 

St. Louis, MO USA): The ICL3 loop was reconstituted by the wild-type sequence. Non-ligand and non-

receptor molecules were removed. Protein and ligand preparation (Schrödinger LLC, Portland, OR USA) 

including an assignment of protonation states were essentially performed as described in Pegoli et al.34, 

35 Disulfide bonds of the Y1R were maintained between C33N-term and C2967.29 as well as C1133.25 and 

C19845.50, and a sodium ion was placed next to D862.50. Guanidine groups and the fluorophore Py-5 

http://zinc15.docking.org/patterns/home
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were singly protonated, resulting in a net charge of +1 for 2.1-2.3, 2.68, 2.72, 2.76, and +2 for the 

fluorescence ligand 2.78. 

2.4.6.2. Induced-fit docking 

“Flexible” docking of 2.1-2.3, 2.68, 2.72, 2.76 and 2.78 to the Y1R was performed using the induced-fit 

docking module in Maestro (Schrödinger LLC). The ligands were docked within a box of 46 × 46 × 46 

Å3 around the crystallographic binding pose of 2.2. Redocking was performed in the extended precision 

mode. The resulting poses were scored using MM-GBSA (Schrödinger LLC). Amongst the most 

reasonable ligand binding poses, the pose corresponding to the lowest MM-GBSA value was selected 

as the most probable pose. For compounds 2.1-2.3, the coordinates of this pose were used as input for 

subsequent MD simulations. 

2.4.6.3. Molecular dynamics (MD) simulation 

Simulations of the Y1R bound to 2.1, 2.2 or 2.3 and trajectory analysis were essentially performed as 

described in Pegoli et. al.34 with the following modifications: The docked ligand-receptor complexes were 

aligned to the NTS1R entry (PDB ID: 4BUO36) in the orientations of proteins in membranes (OPM) 

database.37 The Desmond system builder within Maestro (Schrödinger LLC) was used to insert the 

ligand-receptor complexes into hydrated, equilibrated palmitoyloleoylphosphatidylcholine (POPC) 

bilayers, comprising about 160 POPC molecules as well as sodium chloride at a concentration of 150 

mM (net charges of the entire systems were zero). The systems contained about 78000 atoms and the 

box sizes were approximately 81 × 87 × 117 Å3. The coordinates were successively converted to 

chamber topology and coordinate files using inhouse scripts, psfgen38, htmd39 and chamber (AMBER 

2016, University of California, San Francisco, CA USA). Ligand partial charges were further optimized 

using fftk40. After minimization, the systems were heated from 0 to 100 K in the NVT ensemble during 

20 ps and from 100 to 310 K in the NPT ensemble during 100 ps, applying harmonic restraints of 

5 kcal · mol−1 · Å−1 to non-hydrogen atoms of protein and ligand. During the equilibration period (10 ns), 

harmonic restraints on receptor and ligand non-hydrogen atoms were reduced stepwise 

(0.5 kcal · mol−1 · Å−1 every 0.5 ns) to 2.5 kcal · mol−1 · Å−1 within 3 ns. While removing restraints on 

ligand atoms, harmonic restrains on receptor mainchain atoms were further reduced stepwise 

(0.5 kcal · mol−1 · Å−1 every 0.5 ns) to 0.5 kcal · mol−1 · Å−1 from 3 to 5 ns. After 5 ns, harmonic restraints 

on receptor mainchain atoms were removed, i.e. the residual equilibration period (5 ns) was run without 

restraints. The interaction cutoff was set to 9.0 Å. The final frames of the equilibration period were used 

as in ut for the simulations over 2 μs. Ligand-receptor interactions were analyzed using PLIP 1.4.2.41 

Figures showing molecular structures of the Y1R in complex with 2.1, 2.2, 2.3, 2.68, 2.72, 2.76 or 2.78 

were generated with PyMOL Molecular Graphics system, version 2.2.0 (Schrödinger LLC). 

2.4.7. Calculation of van der Waals volumes 

ChemAxon Marvin Calculator Plugins (Marvin 18.24.0, 2018, ChemAxon, http://www.chemaxon.com) 

were used to calculate the van der Waals volumes of the respective carbamoyl residues (containing a 

radical at the carbonyl group) of compounds 2.1-2.7, 2.9, 2.53-2.76 and 2.78.  

http://www.chemaxon.com/
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2.4.8. Data analysis 

The retention factor k was calculated according to following equation: k = (tR-t0)/t0 (tR = retention time; 

t0 = dead time). 

Specific binding data were plotted as % (100% = bound radioligand in the absence of competitor) over 

log(concentration competitor) and analyzed by four- arameter logistic fits (GraphPad Prism 8.0, 

GraphPad, San Diego, USA) to obtain pIC50 values, which were converted to pKi values according to 

the Cheng-Prusoff equation42 (logarithmic form) (used Kd value of [3H]2.2: 0.044 nM7). 

Relative Ca2+ responses were plotted as % against log(concentration antagonist) and analyzed by four-

 arameter logistic fits (Gra hPad Prism version  .0) to obtain   C50 values, which were converted to pKb 

values according to the Cheng-Prusoff equation42 (logarithmic form) (used EC50 value of pNPY: 

1.53 nM).  
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3.1. Introduction 

A recently published series of (R)-argininamide-type neuropeptide Y Y1 receptor antagonists (2.53-2.76 

and 2.78), investigated in radioligand competition binding studies and Fura-2 Ca2+ assay, revealed that 

the size of the Nω-carbamoyl substituent, attached at the guanidine group, considerably effects Y1R 

affinity, and, as suggested by docking studies and molecular dynamics simulations, can also alter the 

Y1R binding mode of the ligands (cf. Chapter 2).1 

 

Figure 3.1. Structures of Nω-carbamoylated (R)-argininamides hY1R antagonists 2.2 and 2.56-2.76. 

Here, in addition to functional data obtained from a Fura-2 Ca2+ assay (G-protein mediated signalling) 

(cf. Chapter 2), compounds 2.1, 2.2, 2.56-2.59, 2.61 and 2.65 were investigated in a β-arrestin2 

recruitment assay. 

Compound 2.60 proved to be unstable in DMSO during storage (6 months) at -20 °C (hydrolysis of the 

2-bromoacetyl moiety). Therefore, the question arose if the bromoacetyl residue in 2.60 can serve for a 

covalent binding of the ligand to the hY1R. To address this question, saturation binding experiments 

were performed with the Y1R radioligand [3H]UR-MK299 ([3H]2.2) at SK-N-MC cells after pre-incubation 

of the cells with 2.60. Compound 2.63, bearing an acrylamide residue (Figure 3.1), was also included in 

these studies. 

3.2. Results and discussion 

3.2.1. Pharmacological methods: Y1R antagonism (pKb) in a β-arrestin2 recruitment assay, NPY 

Y1R subtype selectivity and potential irreversibly binding ligands 

The standard antagonists 2.1 and 2.2 as well as selected Nω-carbamoylated (R)-argininamides (2.56-

2.59, 2.61 and 2.65) were investigated in the β-arrestin2 recruitment assay. Furthermore 2.56, 2.68 and 

2.72 were investigated in a radioligand competition binding assay at hY4R and hY5R. Potential covalent 

binding ligands bearing 2-bromoacetyl (2.60) or acrylamide (2.63) residues were investigated in 

saturation binding experiments. 

3.2.1.1. Determination of pKb values in a β-arrestin2 recruitment assay 

The Y1R antagonism (pKb) of (R)-argininamides 2.1, 2.2, 2.56-2.59, 2.61 and 2.65 was investigated in 

a β-arrestin2 recruitment assay in living HEK293T hY1R + βArr2 cells (Figure 3.2 and Table 3.1), as 

described in the doctoral thesis of Felixberger.2 Minor modifications were applied: β-arrestin2 

recruitment was induced by 80 nM pNPY (relative to the response observed (EC95) upon stimulation 

with pNPY) as described, and luminescence was measured as a function of time on living cells instead 

of measuring luminescence after cell lysis. 
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Antagonists 2.1, 2.2, 2.56-2.59, 2.61 and 2.65 were pre-incubated with the cells for 15 min. In the case 

of BIBP-3226 (2.1), the antagonism (pKb) observed in the β-arrestin2 recruitment assay was more than 

one order of magnitude lower as compared to its Y1R affinity (pKi), as determined in the radioligand 

binding assay (cf. Chapter 2, Table 2.1). Moreover, antagonism (pKb = 8.82; IC50 value was converted 

to pKb value) determined in the Fura-2 Ca2+ assay (inhibition of Ca2+ signal induced by 10 nM pNPY) 

described in literature3 increased compared to antagonism in the β-arrestin2 recruitment assay. The 

antagonism (pKb = 10.50) of 2.2 in the β-arrestin2 recruitment assay was in good agreement with the 

affinity (pKi = 10.11, Ki value was converted to pKi value) as determined in the radioligand binding assay 

(cf. Chapter 2, Table 2.1) and pKb value (pKb = 10.77, the pKb value of 2.2 was calculated from given 

IC50 value reported by Keller et al.,4 EC50 value of pNPY was taken from literature1) which was obtained 

in the Fura-2 Ca2+ assay (2.2 was pre-incubated for 20 min) in literature.4 

Table 3.1. Antagonism (pKb) of standard antagonists (2.1 and 2.2) and synthesized Nω-carbamoylated (R)-argininamides 2.56-

2.59, 2.61, 2.65, 2.66, 2.69 and 2.71 determined in the β-arrestin2 recruitment assay in living HEK293T hY1R + βArr2 cells. 

Compound pKb ± SEMa N Compound pKb ± SEMa N 

2.1 (BIBP-3226) 7.36 ± 0.03 3 2.61 9.58 ± 0.47 2 

2.2 (UR-MK299) 10.50 ± 0.08 3 2.65 9.34 ± 0.07 2 

2.56 10.66 ± 0.18 3 2.66 10.10 ± 0.14 3 

2.57 10.34 ± 0.08 3 2.69 10.34 0.05 3 

2.58 10.63 ± 0.12 3 2.71 6.83 ± 0.01 3 

2.59 10.72 ± 0.17 3    

aβ-Arrestin2 recruitment assay in intact HEK293T hY1R + βArr2 cells. Arrestin2 recruitment was induced by 80 nM pNPY after 

pre-incubation of the cells with the antagonist for 15 min. Mean values ± SEM from at least N independent experiments, each 

performed in triplicate.  

Additionally, the potency of pNPY (pEC50 = 8.05 ± 0.01; N = 5) was determined in a modified β-arrestin2 

recruitment assay in living HEK293T hY1R + βArr2 cells and the potency (pEC50 = 7.36) was lower 

compared to that from the procedure described in the doctoral thesis of Felixberger2 using the same cell 

line. Further investigations are needed to explain the discrepancies of pEC50 values of pNPY under both 

assay conditions. However, the obtained data determined in living HEK293T hY1R + βArr2 cells were in 

better agreement with the previously described potency of NPY (pEC50 = 8.57) as determined in a 

bimolecular fluorescence complementation assay.5 

The antagonism of selected (R)-argininamides 2.56-2.59, 2.61 and 2.65 obtained in the β-arrestin2 

recruitment assay was in good agreement with data obtained in the radioligand competition binding 

experiments and Fura-2 Ca2+ assays. The replacement of the propionyl group in 2.2 by 2-fluoroacetyl 

(2.56), 2,2-difluoroacetyl (2.57), trifluoroacetyl (2.58), 2-chloroacetyl (2.59), 2-methylpropionyl (2.66) 

and cyclopropane carbonyl (2.68) residues did not affect the antagonism (pKb) observed in a β-arrestin2 

recruitment assay, whereas the introduction of a 2-aminoacetyl (2.61) moiety is less favoured. 
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Additionally, the introduction of a bulkier aliphatic ring (cyclohexyl) in 2.71 led to a decrease in 

antagonism. 

 

Figure 3.2. (A) β-Arrestin2 recruitment elicited by pNPY (agonist mode). (B-F) Inhibition of β-arrestin2 recruitment (induced by 

80 nM pNPY) by (B) 2.1, 2.2, (C) 2.2, 2.56, 2.57, 2.58, (D) 2.2, 2.59, 2.61, 2.65 (E) 2.2, 2.66, 2.69, 2.71 (antagonist mode). All 

experiments were performed in living HEK293T hY1R + βArr2 cells. Antagonists were pre-incubated with cells for 15 min. Data 

are presented as means ± SEM from at least two independent experiments, each performed in triplicate. 

All investigated (R)-argininamides 2.56-2.59, 2.61 and 2.65 showed antagonism in the β-arrestin2 

recruitment assays as well as in the Fura-2 Ca2+ assays (cf. Chapter 2, Table 2.2 and Table 3.1). The 

replacement of the guanidine group in 2.1 through the bioisosteric Nω-carbamoyl guanidine did not lead 

to a functional bias. 

3.2.1.2. NPY Y1R subtype selectivity 

The hY1R antagonists 2.58, 2.68 and 2.72 were investigated in radioligand competition binding 

experiments on hY4 and hY5 receptors and showed no affinity towards the hY4R and the hY5R at 
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concentrations up to 10,000 nM (Table 3.2). These compounds (2.58, 2.68 and 2.72) were intended to 

bind in the same orientation as the highly Y1R selective compound 2.2 (cf. Chapter 2). The increasing 

volume of the carbamoyl residue did not result in hY4R and hY5R binding. 

Table 3.2. NPY receptor subtype preference of Nω-carbamoylated (R)-argininamides 2.56, 2.68 and 2.72. 

compound hY1R 

pKi ± SEMa 

hY4R 

pKi
b 

hY5R 

pKi
c 

2.56 10.50 ± 0.04 <5.00 <5.00 

2.68 8.93 ± 0.12 <5.00 <5.00 

2.72 5.67 ± 0.05 <5.00 <5.00 

aRadioligand competition binding assay using [3H]2.2 (cfinal = 0.15 nM, Kd = 0.044 nM) in intact SK-N-MC cells.4 Mean values ± 

SEM from at least three independent experiments, each performed in triplicate. bRadioligand competition binding assay using 

[3H]UR-KK200 (cfinal = 1.0 nM, Kd = 0.67 nM) in intact CHO-hY4R-mtAEQ-Gqi5 cells.6, 7 cRadioligand competition binding assay 

using [3H]propionyl pNPY (cfinal = 4.0 nM, Kd = 4.8 nM) in intact HEC-1B-hY5 cells.4, 8 Results from at least three independent 

experiments, each performed in triplicate (hY4R, hY5R). 

3.2.1.3. Investigation on potential irreversibly binding ligands (2.60 and 2.63) 

Due to the chemical reactivity of the 2-bromoacetyl (2.60) and the acrylamide (2.63) residues with thiols, 

these compounds could potentially bind covalently to the hY1R. Firstly, the (R)-argininamides 2.60 and 

2.63 were investigated in radioligand competition binding studies and the Fura-2 Ca2+ assay. Their 

chemical stability was also investigated in 10 mM HEPES buffer (cf. Chapter 2). Compounds 2.60 and 

2.63 proved to be stable in 10 mM HEPES buffer at rt for 24 h (no addition of 2-mercaptoethanol). In 

DMSO, 2.60 (10 mM) showed decomposition (ca 30%) at -20 °C over a period of 6 months (Figure 3.3). 

Although it is well known in the literature9 that α-halo-carbonyl compounds can be oxidized by DMSO in 

a Swern-like oxidation (Kornblum oxidation) to α-keto-aldehydes, in the present case under the applied 

conditions the α-hydroxyl compound 2.62 was isolated. 

 

Figure 3.3. RP-HPLC (220 nm) chromatogram of 2.60 stock solution in DMSO after storage at -20 °C for a period of 6 months. 

Compound 2.60 showed decomposition to 2.62. 
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The identity of 2.60 and 2.62 was determined by NMR and HRMS (cf. Chapter 2). Samples for identity 

confirmation were obtained by preparative HPLC separation of the DMSO stock solution. 

RP-HPLC (220 nm) analysis 

(R)-Argininamides 2.60 and 2.63 were investigated in buffer (10 mM HEPES, 150 mM NaCl, 5 mM KCl, 

2.5 mM CaCl2∙H2O, 1.2 mM KH2PO4, 1.2 mM Mg2SO4∙H2O, 25 mM NaHCO3, pH 7) at rt for 24 h and 

proved to be stable (cf. Chapter 2). Compound 2.60 showed decomposition in DMSO stock solution 

(Figure 3.3). Furthermore, the chemical stability of compounds 2.60 and 2.63 was investigated in the 

presence of 2-mercaptoethanol (Figure 3.4). 

 

Scheme 3.1. Formation of 3.1. Reagents and conditions: (a) 2-mercaptoethanol (cfinal = 1000 µM), 2.60 (cfinal = 100 µM), 10 mM 

HEPES buffer, pH 7. Identity of 3.1 was determined by HRMS. 

The bromoacetyl moiety of 2.60 proved to be vulnerable to nucleophilic substitution by thiols in aqueous 

solution at pH 7.0. Traces of water in the DMSO stock solution led to formation of 2.62 after 6 months. 

Compound 2.60 showed no decomposition in buffer after 24 h, when using a freshly prepared stock 

solution in DMSO. 

(R)-Argininamide 2.60 was almost transformed to 3.1 after 4 h (Figure 3.4) when using a 10-fold excess 

of 2-mercaptoethanol over 2.60. The reaction product was identified by RP-HPLC and HRMS, but the 

structure of 3.1 was not confirmed by NMR spectroscopy. It was presumed that the thiol group had a 

higher nucleophilicity than the alcohol of 2-mercaptoethanol. 

Under similar conditions, 2.63 showed no transformation in the presence of 2-mercaptoethanol and 

proved to be stable up to 24 h. These experiments give hints towards the chemical stability and reactivity 

of compounds 2.60 and 2.63 in 10 mM HEPES buffer in the presence of 2-mercaptoethanol, but do not 

allow for an extrapolation to potential reactivity inside the binding pocket of the hY1R. 
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Figure 3.4. (A-C) Chromatograms of the reversed-phase HPLC (220 nm) analysis of (A-B) 2.60 and (C) 2.63 after incubation in 

a 10 mM HEPES buffer (pH 7) with a 10-fold excess of 2-mercaptoethanol (compared to 2.60 or 2.63) at rt for up to 24 h. 

(B) Enlargement of chromatogram of the reversed-phase HPLC (220 nm) analysis of (A) 2.60, which was transformed to 3.1 

over a period of 4 h. 2.63 proved to be stable under similar conditions. 

Saturation binding 

Saturation binding experiments were performed in SK-N-MC cells using [3H]2.2. SK-N-MC cells that 

were pre-incubated (rt, 2 h) with the potential covalently binding ligands 2.60 or 2.63 applied at 

concentrations corresponding to 10-fold the respective Ki value (Figure 3.4 and Table 3.3). 
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Figure 3.5. (A-F) Representative saturation isotherms (red line) of specific hY1R binding of [3H]2.2 in intact SK-N-MC cells. 

Unspecific binding (grey line) was determined in the presence of a 500-fold excess of BIBO-3304. Cells were pre-incubated with 

(A-B) buffer (no ligand added), (C-D) 2.2 (cfinal = 0.77 nM), (E) 2.60 (cfinal = 1.2 nM) and (F) 2.63 (cfinal = 1.15 nM) for 2 h before 

washing and subsequently performing the saturation binding experiments with [3H]2.2. Control experiments with (A-B) buffer 

and (C-D) 2.2 were performed on the same day as (E-F) experiments with potential covalently binding ligands (E) 2.60 and 

(F) 2.63. The experiments were performed in triplicate. Errors of specific binding were calculated according to the Gaussian law 

of error propagation. Error bars of total (black symbols) and nonspecific (grey symbols) binding represent the SEM. 

The cells were washed twice (cells were covered with PBS buffer for 30 s) and the saturation binding 

experiment was performed as described in literature.4 The day before the experiment the cells were 

seeded from a single cell suspension (cells of the same passage). On the day of the saturation binding 

assay, cells were incubated with buffer and 2.2 (cfinal = 10-fold Ki value) as negative controls. The 

determined pKd values (Table 3.3) of [3H]2.2 (control I) were slightly lower compared to equilibrium 

dissociation constants described in literature (pKd = 10.36; Kd value was converted to pKd value).4 In 
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contrast to the described procedure4 the SK-N-MC cells were incubated for 2 h with buffer before the 

saturation binding experiment was performed. 

[3H]2.2 (linker length: two carbons) is described as a radioligand with high residence time on the receptor 

(135 min) compared to [3H]2.3 (4.8 min), differing from [3H]2.2 in the length of the spacer.4 Moreover, 

the elongation of the spacer in [3H]2.3 (linker length: four carbons) led to a decrease in affinity.4, 10 The 

SK-N-MC cells were incubated with the non-covalently binding ligand 2.2 (control II) to compare the 

results of potential covalently binding ligands 2.60 and 2.63, because a long residence time in case of 

Nω-carbamoylated (linker length: two carbons) ligands 2.60 and 2.60 was presumed. 

Firstly, both ligands (2.60 and 2.63) share the ethyl spacer with 2.2. Secondly, the bromoacetyl (2.60) 

and acrylamide (2.63) residues do not affect affinity compared to 2.2, and these ligands likely share the 

same binding mode as 2.2 (cf. Chapter 2). 

Table 3.3. Determination of pKd and Bmax values of 2.2 after incubation with buffer (control I), 2.2 (control II) and potential 

covalently binding ligands (2.60 or 2.63). 

 2.60 (N = 3) 2.63 (N = 2) 

pKd ± SEMa Bmax ± SEMb [%] pKd ± SEMa Bmax ± SEMb [%] 

control I (buffer) 9.79 ± 0.06 100 9.74 ± 0.07 100 

control II (2.2) 9.39 ± 0.03 76 ± 9 9.51 ± 0.1 67 ± 14 

ligand (2.60 or 2.63) 9.53 ± 0.07 74 ± 17 9.32 ± 0.01 54 ± 4 

aEquilibrium dissociation constant determined in SK-N-MC cells. Mean values ± SEM determined in N independent experiments, 

each performed in triplicate. bMaximum specific binding (one site fit, specific binding, GraphPad Prism 8). Bmax [%] = Bmax(control 

I, control II or ligand)/Bmax(control I)*100. Mean values ± SEM determined in N independent experiments, each performed in 

triplicate. 

The Bmax value corresponds to the maximum number of binding sides. It is apparent that the Bmax value 

decreased compared to control I (buffer), when SK-N-MC cells were incubated with potential covalently 

binding ligands (2.60 and 2.63) (Figure 3.4 and Table 3.3). Pre-incubation with the Y1R antagonist 2.2 

(control II) led to a decrease in the BMax value as well, but potential covalently binding ligands (2.60 and 

2.63) did not decrease the BMax value more than 2.2. The Nω-carbamoylated (R)-argininamide 2.2 has 

no structural element allowing for covalent binding to the receptor, which was also obvious in the recently 

resolved crystal structure.11 It can be concluded from these results that compounds 2.60 and 2.63 most 

probably do not bind covalently to the hY1R. 
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3.3. Conclusion 

The investigation of 2.1, 2.2, 2.56-2.59, 2.61 and 2.65 in the β-arrestin2 recruitment assay revealed no 

functional bias. Further investigations in the β-arrestin2 assay should focus on compounds 2.7, 2.9, 2.76 

and 2.78, for which a different binding mode was suggested. (R)-Argininamides 2.7, 2.9 and 2.76 

behaved as antagonists in the Fura-2 Ca2+ assay (G-protein mediated signalling). In conclusion, the 

inverted binding mode of these compounds (2.7, 2.9 and 2.76) may lead to a functional bias. 

Further investigation concerning the selectivity profile of Nω-carbamoylated (R)-argininamides should 

be focussed on 2.7, 2.9, 2.76 and 2.78, that do not share the binding mode of 2.2. Moreover, the affinities 

of compounds 2.56, 2.68 and 2.72 in competition radioligand binding assays were not investigated at 

the hY2R, because an appropriate hY2R binding assay was not available at that time. 

Unfortunately, the question, of whether the (R)-argininamides 2.60 and 2.63 bind covalently could not 

be answered. The saturation binding experiments revealed that after incubation of the cells with ligands 

2.60 and 2.63, the BMax value decreased compared to control I (buffer), which might suggest covalent 

binding to the receptor, however the BMax value was not significantly decreased compared to incubation 

with 2.2 (control II). Furthermore, the RP-HPLC experiments revealed that 2.60 showed reactivity 

towards nucleophiles (2-mercaptoethanol) in 10 mM HEPES buffer at pH 7. To answer the question of 

covalent binding of these ligands (2.60 and 2.63), further investigations could focus on mass 

spectrometry. Computational studies could also be performed using the resolved crystal structure of the 

hY1R. 
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3.4. Experimental section  

3.4.1. General experimental conditions 

The following reagents and solvents (analytical grade) were purchased from commercial suppliers and 

used without further purification: TFA (Sigma Aldrich. Taufkirchen, Germany, DMSO (Fisher Scientific, 

Schwerte Germany) and 2-mercaptoethanol (Merck, Darmstadt, Germany). 

Acetonitrile (HPLC grade; Sigma-Aldrich) and Millipore water were used as eluents for analytical HPLC. 

The HPLC analysis (RP-HPLC) was performed on a 1100 series system from Agilent Technologies 

(Santa Clara, CA USA) composed of a Degasser (G1379A), a Binary Pump (G1312A), a Diode Array 

Detector (G1315A), a thermostated Column Compartment (G1316A) and an Autosampler (G1329A). A 

Phenomenex Kinetex 5u XB-C18 100A, 250 x 4.6 mm was used as the stationary phase. The flow rate 

was 1 mL/min, the detection wavelength was 220 nm, the oven temperature was set to 30 °C and the 

injection volume was 50 µL. Mixtures of solvents A (0.01% aq TFA) and B (acetonitrile) were used as 

mobile phase. The following gradient was applied: 0-25 min, A/B 90:10–5:95; 25-35 min, 5:95. 

Stock solutions were prepared in DMSO at concentrations of 50 µM (2.2) and 10 mM (2.56-2.59, 2.61, 

2.65, 2.66, 2.69 and 2.71). 

3.4.2. Investigation of chemical stability of compounds 2.60 and 2.63 in the presence of 

2-mercaptoethanol 

To determine the chemical stability in presence of excess of 2-mercaptoethanol, compounds 2.60 and 

2.63 (100 µM) were incubated in buffer (10 mM HEPES, 150 mM NaCl, 5 mM KCl, 2.5 mM CaCl2∙H20, 

1.2 mM KH2PO4, 1.2 mM Mg2SO4∙H2O, 25 mM NaHCO3, pH 7) with 2-mercaptoethanol (1000 µM) at rt 

for 24 h. The solution was diluted (1:1) with 10% aq TFA and the stability monitored by analytical HPLC 

analysis (3.4.1.) at time intervals 0 h, 1 h, 2 h, 4 h, 8 h and 24 h. 

3.4.3. Pharmacological methods: cell culture, β-arrestin2 recruitment assay (Y1R), saturation 

binding assay, radioligand binding assay for hY4R and hY5R 

3.4.3.1. Cell culture 

The preparation (HEK293T βArr2 + Y1R cells2 and CHO-hY4-Gqi5-mtAEQ cells6) and cultivation 

(HEK293T βArr2 + Y1R cells,2 SK-N-MC cells,10 CHO-hY4-Gqi5-mtAEQ cells6 and HEC-1B cells8) has 

been described elsewhere. SK-N-MC cells were obtained from the American Type Culture Collection 

(Rockeville, USA). 

HEK293T βArr2 + Y1R cells were cultivated in DMEM (Sigma-Aldrich, Taufkirchen, Germany) at 37 °C 

in a water saturated atmosphere containing 5% CO2. DMEM was supplemented with L-glutamine 

(L-glutamine solution, Sigma-Aldrich; 0.584 g/mL), penicillin-streptomycin (Sigma-Aldrich; P/S, 10.000 

U/mL) and 10% (v/v) FCS (Merck Biochrom, Darmstadt, Germany), zeocin (InvivoGen, San Diego, USA; 

400 µg/mL) and G418 (Merck Biochrom; 600 µg/mL). 
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SK-N-MC cells were cultivated in EMEM (Sigma-Aldrich) at 37 °C in a water saturated atmosphere 

containing 5% CO2. EMEM was supplemented with L-glutamine (L-glutamine solution, Sigma-Aldrich; 

0.584 g/mL) and 5% (v/v) FCS (Merck Biochrom). 

Routinely performed examinations for mycoplasma contamination using the Venor GeM Mycoplasma 

Detection Kit (Minerva Biolabs, Berlin, Germany) were negative for all cell types. 

3.4.3.2. β-Arrestin2 recruitment assay (Y1R) 

The β-arrestin2 recruitment assays were performed as previously described in the dissertation of J. 

Felixberger2 with modifications: luminescence was measured as a function of time on living cells instead 

of measuring luminescence after cell lysis. 

The procedure was as follows: the day before the split-luciferase β-arrestin2 recruitment assay, the cells 

were detached by trypsinization and resuspended in Leibovitz’s L-15 medium supplemented with 5% 

FCS and HEPES (10 mM). For antagonist mode, a cell density of 1.43∙106 cells/mL was adjusted and 

70 µL of this suspension were seeded into each well of a white flat bottom 96-well plate (Cellstar, Greiner 

Bio-One, Kremsmünster Österreich) (for agonist mode: 1.25∙106 cells/mL; 80 µL). D-Luciferin (K+ salt; 

Pierce, Thermo Scientific, Regensburg, Germany) was suspended in HBSS (Gibco, Thermo Scientific) 

in a concentration of 400 mM. Further dilution of the substrate up to 10 mM in Leibovitz’s L-15 medium 

was prepared shortly prior to the experiment. The cells were cultivated at 37 °C in a water saturated 

atmosphere (no additional CO2). The dilutions of pNPY and ligands to be investigated were prepared in 

Leibovitz’s L-15 medium containing 1% BSA. 

In agonist mode, a solution of D-Luciferin (c = 10 mM, 10 µL) was added and the plate was incubated 

at 37 °C for 20 min. Baseline luminescence of the cells was recorded with an integration time of 1000 ms 

per well (10 entire plate repeats). Solutions of ligands to be investigated (10 µL; 10-fold concentrated 

compared to cfinal) was added at increasing concentrations followed by immediate measurement of 

luminescence (20 entire plate repeats with an integration time of 1000 ms). 

In antagonist mode, a solution of D-Luciferin (c = 10 mM, 10 µL) and the solutions (10 µL) of the test 

compounds (10-fold concentrated compared to cfinal) at increasing concentrations were added, and the 

plate was incubated at 37 °C for 20 min. Baseline luminescence was recorded with an integration time 

of 1000 ms per well (10 entire plate reads). Then, pNPY (c = 800 nM, 10 µL) was added followed by 

immediate measurement of luminescence (20 entire plate repeats with an integration time of 1000 ms). 

Before measuring, the plate reader was pre-heated at 37 °C. The Luminescence was measured using 

a GENios Pro (Tecan, Grödig, Austria) or an Enspire (Perkin-Elmer, Rodgau, Germany) plate reader 

with an integration time of 1000 ms per well. 

On every plate at least one triplicate of the 100% (response, corresponding to 80 nM pNPY) and the 0% 

control (neat buffer) were determined. 
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3.4.3.3. Saturation binding assay 

The synthesis of [3H]2.2 was performed as previously described.4 Saturation binding experiments using 

[3H]2.2 at intact SK-N-MC cells were performed as previously described in literature4, 10 with minor 

modifications: prior to the saturation binding experiments the cells were incubated with solutions of 2.60, 

2.63 of ligands to be investigated as well as with controls 2.2 and buffer. 

The procedure used was as follows: one or two days prior to the experiment, SK-N-MC cells were 

seeded in 24-well plates (product no. 83.3922, standard F, Sarstedt, Nümbrecht, Germany). On the day 

of the saturation binding experiments, the confluency of the cells was at least 70%, the culture medium 

was removed by suction, and cells were washed with ice-cold PBS buffer (1x). Prior to saturation binding 

experiments with [3H]2.2 in intact SK-N-MC cells, the cells were incubated with binding buffer in a volume 

of 500 µL of 2.60 (cfinal = 1200 pM) or 2.63 (cfinal = 1150 pM) for 2 h. The binding buffer contained buffer 

(10 mM HEPES, 150 mM NaCl, 5 mM KCl, 2.5 mM CaCl2∙H2O, 1.2 mM KH2PO4, 1.2 mM Mg2SO4∙H2O, 

25 mM NaHCO3, pH 7) and 1% BSA and 0.1 mg/mL of bacitracin. As control cells were additionally 

incubated with 2.2 (cfinal = 770 pM) and binding buffer on the same day for 2 h. The solutions containing 

2.2, 2.60, 2.63 or binding buffer control were removed, and the cells were washed twice with 500 µL of 

PBS buffer kept at ambient temperature (37 °C) (cells were covered with PBS buffer for 30 s for each 

washing step). The cells were covered with binding buffer (400 µL) per well. For determination of total 

binding 50 µL of buffer and solutions containing increasing concentrations (10-fold concentrated 

compared to final assay concentration (cfinal)) of [3H]2.2 were added. Unspecific binding was determined 

in the presence of 50 µL of the competitor BIBO-3304 (500-fold excess compared to radioligand ([3H]2.2) 

concentrations and solutions containing increasing concentrations (10-fold concentrated compared to 

cfinal) of [3H]2.2 were added. After incubation at rt for 90 min the binding buffer was removed, and cells 

were washed twice with PBS buffer (cells were covered with 500 µL of ice-cold PBS buffer for 30 s for 

each washing step). Next, the cells were covered with 200 µL of lysis solution (8 M urea, 3 M acetic acid 

and 1% (V/m) Triton-X-100) and shaken for 30 min. This solution was then transferred into scintillation 

vials (6 mL) containing scintillator (Rotiscint eco plus, Roth, Karlsruhe, Germany) (3 mL). The samples 

were kept in the dark for at least 1 h and the radioactivity was measured using a LS 6500 β-counter 

(Beckmann Instruments, München, Germany). 

3.4.3.4. Radioligand binding assay for hY4R and hY5R 

All competition binding experiments at the Y4R were performed as described by Kuhn et al.7 using 

[3H]UR-KK200 (cfinal = 1.0 nM, Kd = 0.67 nM7) and CHO-hY4R-Gqi5-mtAEQ cells6 expressing the Y4R (cf. 

Chapter 6). Three independent experiments were performed, each in triplicate. 

All competition binding experiments at the Y5R were essentially performed as described using 

[3H]propionyl-pNPY (cfinal = 4.0 nM, Kd = 4.8 nM) and HEC-1B cells expressing the Y5R.4, 8 At least two 

independent experiments were performed, each in triplicate.  
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3.4.4. Data analysis 

All raw data obtained in the β-arrestin2 recruitment assay were processed as follows: firstly, the 

measured luminescence after addition of agonist (20 repeats) was corrected to an average baseline 

(first 10 repeats without adding agonist; ratio = luminescence after addition of agonist/baseline 

luminescence) for each well. Secondly, the increase in luminescence (RLU) was obtained by baseline 

correction with the buffer control. The plateau value of each luminescence trace was plotted as RLU 

against log(concentration antagonist) and analysed by four-parameter logistic fits (GraphPad Prism 8.0) 

to obtain pIC50 values, which were converted to pKb values according to the Cheng-Prusoff12 equation 

(logarithmic form) (used EC50 value of pNPY: 8.93 nM). A basal luminescence (buffer control, 0%) and 

response, corresponding to 80 nM pNPY (100%) were included for normalization of the data (antagonist 

mode). In case of pNPY (agonist mode) data were normalized to the basal value (0%) and the maximal 

response of pNPY at a concentration of 3,000 nM (100%). 

Data for saturation binding experiments using [3H]2.2 were processed as follows: specific binding data 

(dpm) were plotted against the free radioligand concentration and analysed by an equation describing 

hyperbolic binding (ligand binding − one-site saturation fit, GraphPad Prism 8) to obtain Kd and Bmax 

values. The free radioligand concentration (nM) was calculated by subtracting the amount of specifically 

bound radioligand (nM) (calculated from the specifically bound radioligand in dpm, the specific activity 

of the radioligand, and the volume per well) from the total radioligand concentration.  
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Synthesis, pharmacological characterization and application of the fluorescent 

(S)-argininamide-type hY2R antagonist UR-jb264 (4.58)

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Experiments associated with BRET binding assays (preparation and cultivation of cells, saturation binding assay of 
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4.1. Introduction 

For many years fluorescent ligands have been important pharmacological tools for studying GPCRs, 

which are the largest target class in drug discovery.1-3 Generally, fluorescently labelled receptor ligands 

can be applied into various luminesence-based techniques, such as Förster resonance energy transfer 

(FRET) microscopy, fluorescence correlation spectroscopy (FCS), scanning confocal microscopy (SCM) 

and fluorescence polarization (FP) to study ligand receptor interactions.3, 4 Moreover, the use of 

fluorescent ligands is advantageous regarding the legal and waste disposal requirements compared to 

radio labelled compounds. Essentially, a fluorescent ligand comprises of three components, which are 

a pharmacophore moiety, a fluorescent dye and a linker moiety.1, 2 The design of fluorescent ligands is 

driven by the goal that introduction of a fluorophore to a known pharmacophore does not change the 

affinity, mode of action and selectivity profile.2 

Table 4.1. Structures and Y2R affinities of reported (S)-argininamides 4.1-4.5 

 

References: (a) Dautzenberg,5 Ki value was determined using [125I]PYY (cfinal = 0.10 nM, Kd = 0.08 nM) and membranes from 

SMS-KAN cells. (b) Pluym et al.,6 the reported Kd value of [3H]4.2 was determined by saturation binding experiments in live 

CHO-hY2-Giq5-mtAEQ cells and the reported Ki values of 4.2 was determined in a flow cytometric binding assay using Cy5-pNPY 

(c = 5 nM, Kd = 5.2 nM) and CHO-hY2-Giq5-mtAEQ cells. (c) Pluym, PhD Thesis, University of Regensburg, 2011,7 the Ki values 

of 4.3 and 4.4 were determined in a flow cytometric binding assay using Cy5-pNPY (cfinal = 5 nM) or Dy-635-pNPY (cfinal = 10 nM) 

and CHO-hY2-Giq5-mtAEQ cells. (d) Dollinger et al.8 (e) Ziemek et al.,9 the reported Ki value of 4.5 was determined in a flow 

cytometric binding assay using Cy5-pNPY (cfinal = 5 nM, Kd = 5.2 nM) and CHO-hY2-Giq5-mtAEQ cells. Ki (Kd) values were 

converted to Ki (pKd) values. 

Labelling of the endogenous ligand NPY (Neuropeptide Y) led to the fluorescent ligand Cy5-pNPY that 

was used in flow cytometric binding assay and flow cytometric calcium assay and showed high affinity 

to several NPY receptor subtypes (hY1R, hY2R and hY5R).9 Nevertheless, fluorescently labelled 

peptides are prone to enzymatic degradation.10, 11 Work in our group aimed towards non-peptide 

fluorescent hY1R ligands, using the guanidine-acylguanidine approach,12, 13 resulted in the synthesis of 

several fluorescent conjugates of (R)-argininamide BIBP-3226 (2.1).13 This labelling strategy according 

to the guanidine-acylguanidine bioisosteric approach was applied to the (S)-argininamide-type Y2R 
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antagonist BIIE-0246 (4.1) and led to several radio- and fluorescently labelled molecular tools (e.g. 

[3H]4.2 and 4.3) addressing the hY2R.6, 7, 14 However, this bioisosteric replacement is limited due to the 

low chemical stability of acylguanidines in particular under basic conditions.15 Therefore, a different 

strategy (guanidine-carbamoylguanidine approach I) for the labelling of ligands was applied. Nω-

carbamoylation instead of acylation of argininamides led to the high affinity hY1R antagonist 2.2, 

showing no decomposition over time in phosphate buffered saline (pH 7.0) at ambient temperature.16 

This strategy was proven for the synthesis of selective non-peptide (S)-argininamide-typ NPY hY2R 

antagonists as chemical tools (e.g. 4.4).7, 17 

 

Figure 4.1. Three approaches (I-III) to molecular tools derived from BIIE-0246 (4.1). 

For the development of novel non-peptide fluorescently labelled Y2R ligands as molecular tools, I 

decided to retain the guanidine moiety (no replacement by a carbamoylguanidine group), Nω-

carbamoylated (S)-argininamides showed unfavourable Y2R binding characteristics (e.g. pNPY showed 

noticeably lower pKi value determined with [3H]4.2 compared to affinity determined with cy5-NPY).6 In 

addition, it is suggested that the guanidine group of 4.1 shows an interaction (salt-bridge) with D6.59, 

whereas the dibenzoazepinone moiety of 4.1 is buried in a hydrophobic binding pocket (L4.60, L5.45, L6.51) 

in the orthosteric binding side.18 Both of these interactions with the Y2R (binding sites) of 4.1 were shared 

with the endogenous ligand NPY.18-21 The focus for the development of fluorescent ligands in this work 

is in search for a more favourable labelling site following approaches II and III (Figure 4.1). As already 

known, the dibenzoazepinone moiety (cf. 4.122) can be replaced by a benzhydryl moiety (cf. 4.58, 9). For 

this reason, a small library of compounds (4.23, 4.24, 4.27, 4.50 and 4.51) was synthesized (approach 

II), that were modified on the benzhydryl residue, to identify a favourable labelling side of fluorescently 

labelled compounds. Py-1 (4.60) and Py-5 (2.77) were chosen as fluorophores, because of their 

fluorescence properties and their potential application in BRET (bioluminescence resonance energy 

transfer) based binding assays.23-25 Here the synthesis of the red-emitting fluorescent ligand UR-jb264 

(4.58), the pharmacological characterization, the investigation of the chemical stability as well as its 

application in BRET based binding assay and in confocal microscopy are reported. 

Furthermore, the 2,2’-(cyclopentane-1,1-diyl)diacetamide was replaced by a 2,2’-(cyclohexane-1,1-

diyl)di-acetamide moiety, leading to compound 4.75, which is a step towards the identification of a 

potential third labelling site (approach III, Figure 4.1) in argininamide-type hY2R ligands. To address this 

labelling site, the first steps in the synthesis for amino functionalization of the 2,2’-(cyclohexane-1,1-

diyl)diacetamide moiety were performed. 
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4.2. Results and discussion 

4.2.1. Synthesis 

4-(2-Aminoethyl)-1,2-diphenyl-1,2,4-triazolidine-3,5-dione (4.10) was synthesized according to 

published procedures8 in a three-step synthesis starting from 1,2-diphenylhydrazine (4.6), which was 

treated with ethyl allophanate, giving isocyanic acid in situ, in p-xylene under reflux conditions to obtain 

1,2-diphenyl-1,2,4-triazolidine-3,5-dione (4.7) (Scheme 4.1). Intermediate 4.7 was treated with sodium 

hydride and the phthaloyl protected ethyl linker moiety (2-(2-bromoethyl)isoindoline-1,3-dione (4.8)) was 

added. Subsequently, the phthaloyl protecting group of 4.9 was removed by hydrazine to obtain amino-

functionalized 1,2-diphenyl-1,2,4-triazolidine-3,5-dione 4.10. 

 

Scheme 4.1. Synthesis of 4-(2-aminoethyl)-1,2-diphenyl-1,2,4-triazolidine-3,5-dione (4.10). Reagents and conditions: (a) ethyl 

allophanate, p-xylene, reflux, 40%; (b) (1) NaH, DMF, ice bath, (2) reflux, 42%; (c) hydrazine monohydrate, MeOH, THF, rt, 72%. 

(S)-Arginine building blocks 4.15 and 4.16 were essentially prepared as previously described by 

Dollinger et al.8 and Brennauer.17 Fmoc-Arg(Pbf)-OH (4.11) was activated in situ in the presence of 

EDC∙HCl and HOBt and amidated with amine 4.10 to form 4.12. Subsequently, the Fmoc protecting 

group was removed by use of piperidine in DMF to obtain 4.13 in good yields (Scheme 4.2). The amino 

group of 4.13 was coupled with 3,3-tetramethyleneglutaric anhydride (4.14) to afford the carboxylic acid 

4.15. Moreover, the Pbf-protecting group of intermediate 4.13 was removed by acid (TFA/water 95:5) to 

obtain the (S)-argininamide 4.16 as TFA salt after purification by preparative HPLC. 

 

Scheme 4.2. Synthesis of (S)-arginine building blocks 4.15 and 4.16. Reagents and conditions: (a) EDC∙HCl, HOBt, DMF, 93%; 

(b) DMF, piperidine, rt, 91%; (c) CH2Cl2, 99%; (d) TFA/H2O (95:5), 70%. 

Compounds 4.23 and 4.24 were synthesized from the respective methoxy substituted benzaldehydes 

4.17 or 4.18 in a three-step synthesis route (Scheme 4.3). For this purpose, 4.17 or 4.18 were converted 

to the 2- or 3- substituted methoxy benzhydryl alcohols (4.19 and 4.20) in good to excellent yields by 

Grignard reactions. For the synthesis of intermediates 4.21 and 4.22, the hydroxyl groups of the 

benzhydryl alcohols 4.19 and 4.20 were converted into good leaving groups by treatment of 4.19 or 4.20 

with sulfuryl chloride, followed by treatment with piperazine (SN reaction) under microwave conditions. 

Finally, coupling of carboxylic acid 4.15 to the secondary amines 4.21 and 4.22 by the aid of coupling 
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reagents EDC∙HCl and HOBt and subsequent treatment with aqueous TFA (Pbf deprotection) gave 4.23 

and 4.24. 

1-((4-Methoxyphenyl)(phenyl)methyl)piperazine (4.26) was synthesized from the commercially available 

ketone 4.25 by a reductive amination procedure using TiCl4 and NaBH4 (Scheme 4.3).26 

(S)-Argininamide 4.27 could not be obtained by amide bond formation between 4.15 and amine 4.26, 

because removal of the Pbf-protecting group under strong acidic conditions led to compound 4.32, that 

was identified by HRMS and RP-HPLC (Scheme 4.3). To deal with this problem, amine 4.26 was treated 

with 4.14 to obtain the carboxylic acid 4.28, that was activated with coupling reagents EDC∙HCl/HOBt 

and coupled with the (S)-argininamide 4.16, that Pbf group was already removed to form 4.27. 

The unsubstituted derivative 4.5 (Scheme 4.3) was synthesized from benzhydryl alcohol 4.29 using 

methanesulfonyl chloride for the conversion of the hydroxyl group in 4.29 to a good leaving group, 

followed by the treatment of the formed mesylate with piperazine (SN reaction) to give intermediate 4.30, 

which was subjected to amide bond formation with 4.15 and subsequent Pbf deprotection to afford 4.5 

(Scheme 4.3). 

The obtained side product 4.32 was formed by amide bond formation between 4.15 and N-Boc-

piperazine (4.31) and subsequent removal of Boc and Pbf protecting groups in TFA/water (95:5) 

(Scheme 4.3). 

 

Scheme 4.3. Synthesis of 4.5 and related compounds 4.23, 4.24, 4.27 and 4.32. Reagents and conditions: (a) (1) Mg, 

bromobenzene, THF, (2) H+/H2O, 71-93%; (b) (1) SO2Cl2, CH2Cl2, reflux, (2) piperazine, acetonitrile, microwave device (100 °C, 

30 min), 67-74%; (c) (1) EDC∙HCl, HOBt, DMF, (2) TFA/H2O 95:5, 13-18%; (d) (1) TiCl4, piperazine, CH2Cl2, (2) NaBH4, MeOH, 

23%; (e) Et3N, CH2Cl2, 79%; (f) EDC∙HCl, HOBt, DMF, 61%; (g) (1) methanesulfonyl chloride, Et3N, CH2Cl2, (2) piperazine, 

acetonitrile, microwave device (70 °C, 30 min), 52%; (h) (1) EDC∙HCl, HOBt, DMF, (2) TFA/H2O 95:5, 12%; (i) (1) EDC∙HCl, 

HOBt, DMF, (2) TFA/H2O 95:5, 37%. 

For the synthesis of fluorescently labelled compounds, the methoxy groups in 4.23 and 4.24 had to be 

replaced by an amino-functionalized linker (Scheme 4.4). For this purpose, 5-aminopentanol (4.33) was 



 
Synthesis, pharmacological characterization and application of the fluorescent 

(S)-argininamide-type hY2R antagonist UR-jb264 (4.58) 
 

80 
 

treated with Boc2O to give 4.34, which was converted to bromide 4.35 using an Appel-reaction27 

(Scheme 4.4). 

 

Scheme 4.4. Synthesis of tert-butyl (5-bromopentyl)carbamate (4.35). Reagents and conditions: (a) Boc2O, Et3N, CH2Cl2, 73%, 

(b) CBr4, PPh3, CH2Cl2, 92%. 

Amino-functionalized (S)-argininamides 4.50 or 4.51 were synthesized from 4.19 and 4.20, respectively 

(Scheme 4.5). Initially, cleavage of the methyl ether failed, for instance, for compounds 4.19-4.22 

(intended to give 4.36-4.38). The use of standard procedures, e.g. HBr or BBr3, led to the decomposition 

of starting materials. Therefore, the alcohols 4.19 and 4.20 were oxidized using PCC or pyridine-sulfur 

trioxide to obtain the ketones 4.40 and 4.41, which were demethylated in refluxing aqueous HBr solution 

(47%) to give the free phenols 4.42 and 4.43 (SN2 reaction). The phenols 4.42 and 4.43 were then 

coupled with 4.35 in DMF by use of K2CO3 to afford the Boc-protected amino-functionalized 

pentylphenylethers 4.44 and 4.45 (Williamson ether synthesis28) (Scheme 4.5).  

 

Scheme 4.5. Synthesis of amino-functionalized precursors (4.50 and 4.51) for fluorescence labelling. Reagents and conditions: 

(a) pyridine-sulfur trioxide complex, Et3N, DMSO, 39%; (b) PCC, CH2Cl2, 80%; (c) aqueous HBr (47%), AcOH, reflux, 94-100%; 

(d) K2CO3, DMF, 49-52%; (e) NaBH4, MeOH, 56%; (f) (1) methanesulfonyl chloride, Et3N, CH2Cl2, (2) piperazine, acetonitrile, 

microwave device (70 °C, 45 min), 48-66%; (g) (1) EDC∙HCl, HOBt, DMF, (2) TFA/H2O 95:5, 16-18%; (h) aqueous HBr (48%), 

AcOH, reflux, 96%; (i) K2CO3, DMF, 70%; (j) NaBH4, MeOH, 100%; (k) (1) methanesulfonyl chloride, Et3N, CH2Cl2, 

(2) piperazine, acetonitrile, microwave device (70 °C, 45 min), 49%; (l) CH2Cl2, 70% . 
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Compounds 4.44 and 4.45 were reduced with NaBH4 to obtain the corresponding alcohols 4.46 and 

4.47, which were converted to respective mesylates using methanesulfonyl chloride (Scheme 4.5). The 

mesylates were not isolated and directly treated with piperazine in a microwave reactor to afford amines 

4.48 and 4.49. These intermediates were coupled with 4.15 using EDC∙HCl and HOBt. Removal of the 

Pbf-group gave 4.50 and 4.51 as precursors for fluorescence labelling. 

The commercially available (4-methoxyphenyl)(phenyl)methanone (4.25) was treated with aqueous HBr 

(47%) to obtain the phenol 4.52. Compound 4.53 was synthesized from phenol 4.52 and bromide 4.35 

(Williamson ether synthesis28). The reduction of 4-methoxybenzophenone (4.53) by use of NaBH4 led 

to the corresponding benzhydryl alcohol 4.54, which was converted to a mesylate and coupled with 

piperazine in a microwave device. Amide bond formation between anhydride 4.14 and amine 4.55 led 

to the carboxylic acid 4.56. The synthesis of amino-functionalized (S)-argininamide 4.57 by amide bond 

formation between 4.56 and 4.16 and subsequent removal of the Boc protecting group, failed (Scheme 

4.4 and 4.5). Boc deprotection under milder acidic conditions led to compound 4.32, which was identified 

by HRMS and RP-HPLC. However, the synthesis of 4.57 was achieved by use of a different protecting 

group (instead of Boc group), that is not removed under acidic conditions. However, this synthesis 

strategy was not pursued, because the corresponding methyl ether 4.27 (Scheme 4.3) showed lower 

Y2R affinity (4.2.4.1.) compared to compounds 4.23 and 4.24. 

 

Scheme 4.6. Synthesis of fluorescently labelled compounds 4.58, 4.59, 4.60 and 4.61. Reagents and conditions: (a) DIPEA, 

DMF, 16-45%. 

The fluorescently labelled compounds 4.58, 4.59, 4.61 and 4.62 were synthesized according to a 

procedure reported13 for the synthesis of fluorescent Y1R ligands with minor modifications: Treatment of 

amines 4.50 and 4.51 with the pyrylium dyes 2.77 (Py-5) or 4.60 (Py-1) in the presence of DIPEA 

(instead of Et3N) gave the pyridinium adducts 4.58, 4.61, 4.59 and 4.62 (Scheme 4.6). 
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BIIE-0246 (4.1), representing the standard (S)-argininamide-type Y2R antagonist was synthesized 

according to published procedures8 starting from anthraquinone (4.63) (Scheme 4.7). Compound 4.63 

was transformed to amide 4.64 by a Schmidt reaction using NaN3 and conc. H2SO4. Subsequently, the 

keto group (position 11) in 4.64 was reduced by NaBH4 to obtain the secondary alcohol 4.65 as 

racemate, which was then converted to chloride 4.66 (Scheme 4.7). 11-Chloro-5,11-dihydro-6H-

dibenzo[b,e]azepin-6-one was treated with piperazine to give 4.67, which was coupled to 4.15 by amide 

bond formation under the conditions used for the synthesis of 4.23 and 4.24 from 4.21 or 4.22 and 4.15 

(Scheme 4.3). Removal of the Pbf group with TFA yielded 4.1. 

Replacement of the cyclopentyl moiety of 4.1 by a cyclohexyl moiety led to compound 4.75 (Scheme 

4.8). To prepare 4.75, compound 4.68 was converted to 2-cyanoacetamide (4.69) in an ice-cold aqueous 

ammonia solution. The condensation (Knoevenagel-condensation29) of cyclohexanone (4.70) and ethyl 

2-cyanoacetate (4.69) led to compound 4.71 (Scheme 4.8). 

 

Scheme 4.7. Synthesis of 4.1 and dibenzoazepinone precursor 4.67. Reagents and conditions: (a) (1) NaN3, conc. H2SO4, 

CH2Cl2, (2) NH3 aq, 59%; (b) NaBH4, EtOH, 82%; (c) SOCl2, CH2Cl2, reflux, 95%; (d) piperazine, dioxane, 60 °C, 77%; 

(e) (1) EDC∙HCl, HOBt, DMF, (2) TFA/H2O 95:5, 18%. 

For the synthesis of spirocyclic compound 4.72, 2-cyanoacetamide (4.69), intermediate 4.71 and a 

solution of sodium ethoxide were used. The spirocyclic 1,5-dicarbonitrile 4.72 was treated with 

concentrated sulfuric acid to obtain the dicarboxylic acid 4.73. Compound 4.13 was coupled with the 

dicarboxylic acid 4.73 using EDC∙HCl and HOBt to afford 4.74. (S)-Argininamide 4.75 was synthesized 

by amide bond formation between amine 4.67 and carboxylic acid 4.74. 

The synthetic procedure used for the preparation of 4.74 was intended to be used for the synthesis of 

compound 4.83 (Scheme 4.9). Unfortunately, this strategy failed. Firstly, the amino-group of trans-4-

aminocyclohexanol (4.76) was protected using reagent 4.77 to give 4.78, bearing a phthaloyl protecting 

group that is stable under basic and acidic conditions, for the next steps (Scheme 4.9). Oxidation of 4.78 

by use of PCC (pyridinium chlorochromate, Corey-Suggs reagent) led to 4.79 in moderate yield. For the 

subsequent Knoevenagel-condensation of 4.68 and 4.79, yielding 4.80 sodium methoxide was used 

instead of sodium ethoxide as in case for the synthesis of 4.71, as 4.79 was found to be poorly soluble 

in the solution of sodium ethoxide (Scheme 4.9). The formation of the 1,5-dicarbonitrile 4.81 was not 

possible using the same conditions as for the preparation of 4.72 (Scheme 4.8). The variation of solvents 

and bases also did not pave way to 4.81 and subsequently to 4.83. An attempt to form 4.81 in a one pot 

reaction by the use of ammonia as a gas dissolved in methanol, as described in literature30 for a non-
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amino-functionalized derivative (2,4-dioxo-9-pentyl-3-azaspiro[5.5]un-decane-1,5-dicarbonitrile), also 

failed to give the desired product. 

 

Scheme 4.8. Synthesis of 4.75. Reagents and conditions: (a) NH3 aq, 54%; (b) AcOH, NH4CH3CO2, toluene, reflux, 100%; 

(c) (1) Na, EtOH, reflux (2) HCl, H2O, rt, 38%; (d) (1) H2SO4 conc., reflux, (2) H2O, 65%; (e) EDC∙HCl, HOBt, DMF, 76%; 

(f) (1) EDC∙HCl, HOBt, DMF, (2) TFA/H2O 95:5, 11%. 

The one pot reaction led to the formation of compound 4.82, which was identified by HRMS as main 

product (Scheme 4.9). Intermediate 4.82 could not be used to prepare an amino-functionalized (S)-

argininamide 4.83. It will be subject of future studies to explore whether 4.82 can be used for the 

synthesis of fluorescently labelled hY2R ligands. 

 

Scheme 4.9. Synthesis of amino-functionalized dicarboxylic acid 4.81. Reagents and conditions. (a) K2CO3, H2O, rt, 34%; 

(b) PCC, CH2Cl2, rt, 2 h, 66%; (c) AcOH, NH4CH3CO2, toluene, reflux (d) (1) 4.69, MeOH, NH3 (g) (2) H2O, reflux, (3) conc. HCl, 

yield was not determined. 

4.2.2. Investigation of the chemical stability of 4.50, 4.51 and 4.58 

Decomposition of (S)-argininamides 4.1 and 4.5 (structures see Table 4.1) under assay-like conditions 

(aqueous buffer pH 7) has not been reported in the literature. The stability of the fluorescently (Py-5) 

labelled compound 4.58 and of its amine precursor 4.50 were investigated, as well as one amine 

precursor 4.51. In contrast to the described procedure used to investigate the stability of 
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(R)-argininamide-type Y1R antagonists (cf. 2.4.3.),31 compounds 4.50, 4.51 and 4.58 were incubated in 

the buffer, which was used for competition binding studies with [3H]propionyl-pNPY (4.2.4.). 

 

Figure 4.2. Chromatograms of the reversed-phase HPLC (220 nm) analysis of (A) 4.50, (B) 4.51 and (C) the fluorescent ligand 

4.58 after incubation in a 25 mM HEPES buffer (pH 7.0) at rt for up to 24 h. 4.50, 4.51 and 4.58 proved to be stable. 

(S)-argininamides 4.50, 4.51 and 4.58 proved to be stable in 25 mM HEPES buffer (pH 7.0, rt) over 24 h 

(Figure 4.2), which qualifies them for a pharmacological characterization in functional and binding 

assays. 

4.2.3. Fluorescence properties 

The corrected excitation and emission spectra of fluorescent ligands 4.58, 4.59, 4.61 and 4.62 (Figure 

4.3) were recorded in PBS (pH 7.4) containing 1% BSA (w/v). The concentration of the compounds was 

5 µM in each case. 
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Figure 4.3. Corrected excitation and emission spectra of compounds 4.58, 4.59, 4.61 and 4.62 at 22 °C. The fluorescent ligands 

(A) 4.58, (B) 4.59, (C) 4.60 and (D) 4.61 were dissolved in PBS containing 1% BSA (w/v). 

The Stokes shift of the Py-5 labelled fluorescent ligand 4.58 was slightly longer compared to the other 

Py-1 and Py-5 labelled compounds 4.59, 4.61 and 4.62 (Table 4.2), which is advantageous for 

application in BRET based competition binding assays described below. 

Table 4.2. Excitation and Emission maxima of compounds 4.58, 4.59, 4.61 and 4.62 in PBS (pH 7.4) containing 1% BSA (w/v) 

recorded at 22 °C. 

Compound Dyea λex [nm] λem [nm] 

4.58 2.77 (Py-5) 500 660 

4.59 2.77 (Py-5) 526 605 

4.61 4.60 (Py-1) 527 608 

4.62 4.60 (Py-1) 526 609 

aFluorescent dyes (2.77 or 4.60) used for the preparation of the fluorescent ligands 
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4.2.4. Pharmacological methods: Y2R affinity (pKi) and antagonism (pKb) of synthesized 

(S)-argininamides, application of 4.58 to BRET based binding assays and to confocal 

microscopy, NPY Y2R subtype selectivity 

In the search for a red-emitting fluorescent labelled (S)-argininamide as a molecular tool with application 

in BRET based binding assay and confocal microscopy, compounds 4.23, 4.24, 4.27, 4.50, 4.51, 4.58 

and 4.75 were investigated in equilibrium competition binding experiments. Moreover, compounds 4.1, 

4.5, 4.23, 4.24, 4.27, 4.32, 4.50, 4.51, 4.58, 4.59, 4.61, 4.62 and 4.75 were investigated in a β-arrestin2 

recruitment assay. Additionally, compounds 4.1, 4.58 and 4.75 were investigated in a miniG protein 

recruitment assay. UR-jb264 (4.58) was chosen for establishing a BRET based binding assay and for 

receptor localization by confocal microscopy. 

4.2.4.1. Radioligand binding assay in HEK293T hY2R + βArr2 cells 

Equilibrium competition binding experiments using [3H]propionyl-pNPY as radioligand were performed 

in sodium free binding buffer (25 mM HEPES, 2.5 mM CaCl2, 1 mM MgCl2, pH 7.4) in intact 

HEK293T hY2R + βArr2 cells. For the radioligand binding assay it is necessary to wash the living cells 

several times. Due to poor adherence of HEK293T cells, the 24-well (product no. 83.3922, standard F, 

Sarstedt, Nümbrecht, Germany) or 96-well (product no. 3610, Corning, Kaiserslautern, Germany) plates 

used were coated with poly-D-lysine or gelatin to improve cell adherence properties. 

Comparison of poly-D-lysine and gelatin as coating materials for 24-well and 96-well plates 

One day before the crystal violet assay, the HEK293T hY2R + βArr2 cells were seeded in coated (poly-

D-lysine or gelatin) 24-well and 96-well plates. 

 

Figure 4.4. Comparison of poly-D-lysine (PDL) and gelatin as coating reagents in 96-well (product no. 3610, Corning, 

Kaiserslautern, Germany) and 24-well (product no. 83.3922, standard F, Sarstedt, Nümbrecht, Germany) plates. (A) A 96-well 

plate was coated with PDL (48-wells) and gelatin (48-wells), whereof 8 wells contained no cells, respectively. (B) Two 24-well 

plates were coated with PDL and gelatin respectively. 40 wells were coated with PDL or gelatin and 8 wells were coated with 

PDL or galantine and contained no cells, respectively. Data represents mean value ± SEM from measured absorbance (mAU) 

at 585 nm per well. 

The next day, the medium was removed and the competition binding experiment was performed as 

described9, 32 with the distinction that no radioligand was used. Instead of CHO-hY2R-Gqi5-mtAEQ cells, 

HEK293T hY2R + βArr2 cells were used for the experiment. After the removal of the medium, the cells 

were washed with PBS and then incubated with the sodium-free binding buffer for 90 min. Afterwards 
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the medium was removed, and a crystal violet assay was performed to determine the amount of cells 

per well, in order to find a coating material, that improves the adherence of HEK293T hY2R + βArr2 cells 

to the plate material (polystyrene). In conclusion, the adherence of HEK293T hY2R + βArr2 cells could 

be improved using poly-D-lysine in 96-well plates and gelatin in 24-well plates. 

In the following, saturation and competition binding experiments were then performed in 96-well plates. 

Advantages of 96-well plates are higher throughput and a more convenient coating procedure. 

Determination of the pKd value of [3H]propionyl-pNPY by saturation binding in 

HEK293T hY2R + βArr2 cells 

 

Figure 4.5. Representative saturation isotherm (red line) of specific hY2R binding of [3H]propionyl-pNPY in intact 

HEK293T hY2R + βArr2 cells. Unspecific binding (grey line) was determined in the presence of a 200-fold excess of BIIE-0246 

(4.1). The experiments were performed in triplicate. Error bars of specific binding were calculated according to the Gaussian law 

of error propagation. Error bars of total (black symbols), and nonspecific (grey symbols) binding represent SEM. 

The radioligand [3H]propionyl-pNPY was characterized in saturation binding experiments in living 

HEK293T hY2R + βArr2 cells. The determined pKd value of 8.53 ± 0.03 was in agreement with literature9 

using [3H]propionyl-pNPY as radioligand in CHO-hY2-Giq5-mtAEQ-cells (pKd = 9.2,9 Kd value was 

converted to pKd value) in sodium free buffer (Figure 4.5) in the presence of a 200-fold excess of 4.1. 

For non-specific binding the competitor (pNPY or 4.1) was pre-incubated with cells for 15 min, before 

the radioligand was added. 

A pKd value of [3H]propionyl-pNPY in intact HEK293T hY2R + βArr2 cells using sodium containing buffer 

could not be determined, because no saturation was observed. This problem also occurred with CHO-

hY2-Giq5-mtAEQ cells as described in the thesis of S. Dukorn.33 The effect of sodium cations on ligand 

binding (allosteric modulation) has also been described by Dukorn et al.34 and Kuhn et al.32 for the Y4R. 

Beside the NPY receptors (Y2R and Y4R) this phenomenon has also been shown in literature for other 

GPCRs (e.g. µOR,35 A2AR,36 and β1AR37). An explanation for the observed discrepancies of affinities in 

radioligand binding studies and potencies in functional assays of agonists could be the stabilization of 

the inactive receptor states by sodium cations (cf. Chapter 1). 
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Determination of pKi values in equilibrium competition binding experiments with 

[3H]propionyl-pNPY 

The determined affinity of pNPY (Table 4.3) in a radioligand binding assay by use of [3H]propionyl-pNPY 

and HEK293T hY2R + βArr2 cells was in good agreement with affinity determined by S. Dukorn in her 

thesis (pKi =8.76).9 The affinity of pNPY decreased slightly compared to pKi value of 9.07 determined in 

a radioligand binding assay using [125I]PYY on COS-7 cells (transiently transfected with hY2R).38 

Table 4.3. Y2R affinities (pKi) of pNPY and BIIE-0246 (4.1) determined in equilibrium competition binding experiments. 

Compound pKi ± SEMa Reference data 

pKi 

pNPY 8.43 ± 0.35 8.76b 

BIIE-0246 (4.1) 8.06 ± 0.11 7.44c 

aRadioligand competition binding assay with [3H]propionyl-pNPY (cfinal = 4.0 nM, Kd = 2.97 nM) in intact HEK293T hY2R + βArr2 

cells. Mean values ± SEM from at least two independent experiments, each performed in triplicate. bDukorn, Phd Thesis, 

University of Regensburg, 2017,33 the Ki value was determined using [3H]propionyl-pNPY (cfinal = 1.0 nM, Kd = 1.4 nM) and CHO-

hY2-Giq5-mtAEQ cells. cDautzenberg,5 Ki value was determined using [125I]PYY (cfinal = 0.10 nM, Kd = 0.08 nM) and membranes 

from SMS-KAN cells. All reported Ki values were converted to pKi values. 

BIIE-0246 (4.1) showed the highest Y2 receptor affinity (pKi) of all investigated (S)-argininamides (4.1, 

4.23, 4.24, 4.27, 4.50, 4.51, 4.58 and 4.75 (Table 4.1) in the radioligand competition binding assay in 

HEK293T hY2 + βArr2 cells using [3H]propionyl-pNPY as radioligand (Figure 4.2, Table 4.1). 

 

Figure 4.6. Displacement curves of [3H]propionyl-pNPY (cfinal = 4 nM, Kd = 2.97 nM) obtained from competition binding studies 

with (A) 4.23, 4.24, 4.27, (B) 4.50, 4.51 and 4.58 and reference compound 4.1 in HEK293T hY2R + βArr2 cells. Data are 

presented as means ± SEM from at least two independent experiments, each performed in triplicate. 

The introduction of a methoxy substituted benzhydryl moiety (4.23, 4.24 and 4.27), instead of the 

dibenzoazepinone moiety of 4.1 led to a slight decrease in affinity, whereas 4.23 showed the highest 

affinity within the substituted compound series. Enlargement of the substituent (amino-functionalization 

in 4.50 and 4.51) led to a decrease in affinity compared to 4.23 and 4.24. The substitution pattern of the 

1-((2-methoxyphenyl)(phenyl)methyl)piperazine (4.23) and the 5-(2-(phenyl(piperazin-1-yl)methyl)-

phenoxy)pentan-1-amine (4.50) were favoured (Table 4.4) in comparison to 4.24 and 4.51, respectively. 
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Remarkably, labelling of 4.50 with Py-5, resulting in the fluorescent ligand 4.58, did not affect Y2 affinity 

compared to 4.50. 

Replacement of the cyclopentyl moiety in 4.1 by a cyclohexyl moiety, leading to compound 4.75, resulted 

in a decrease in Y2R affinity by one order of magnitude (Table 4.4). 

Table 4.4. Y2R affinities (pKi) of synthesized (S)-argininamids determined by equilibrium competition binding with 

[3H]propionyl-pNPY. 

Compound pKi ± SEMa N Compound pKi ± SEMa N 

BIIE-0246 (4.1) 8.06 ± 0.11 2 4.50 7.06 ± 0.09 4 

4.23 7.39 ± 0.13 3 4.51 6.46 ± 0.08 3 

4.24 6.81 ± 0.23 3 4.58 7.03 ± 0.09 5 

4.27 6.26 ± 0.03 3 4.75 7.03 ± 0.09 5 

aRadioligand competition binding assay with [3H]propionyl-pNPY (cfinal = 4.0 nM, Kd = 2.97 nM) in intact HEK293T hY2R + βArr2 

cells. Mean values ± SEM from at least N independent experiments, each performed in triplicate. 

4.2.4.2. Determination of pKb values in a β-arrestin2 recruitment assay 

The β-arrestin2 recruitment assay was performed as described in the thesis of Felixberger39 with minor 

modifications: β-arrestin2 recruitment was induced by 200 nM pNPY as described and luminescence 

was measured as a function of time in living HEK293T hY2R + βArr2 cells instead of measuring 

luminescence after cell lysis. Despite the described modifications in the β-arrestin2 recruitment assay 

procedure, the potency (pEC50 = 6.79 ± 0.13) of pNPY was in good agreement with the reported 

agonism (pEC50 = 6.89) in the thesis of Felixberger.39 This functional assay was used for the 

characterization of standard Y2R antagonists (BIIE-0246 (4.1), JNJ 31020028, CYM 9484, 4.5) and 

synthesized derivatives 4.23, 4.24, 4.27, 4.32, 4.50, 4.51, 4.58, 4.59, 4.61, 4.62 and 4.75 (Figure 4.6 

and Table 4.3). 

Prior to addition of the agonist pNPY, antagonists were pre-incubated with the cells for 15 min. The 

determined pKb values of 4.1, 4.23, 4.24, 4.27, 4.50, 4.51, 4.58 and 4.75 deviate from the determined 

pKi values by approximately of half an order of magnitude. An explanation for this discrepancy between 

pKi and pKb values could be the absence of sodium in the competition binding studies, but further 

investigation is required to answer this question, e.g. testing the set of compounds in different functional 

assays. 

It is important to mention that the effect of sodium has been described for agonists (difference of affinity 

and agonism) in literature (cf 4.2.4.1.)34, 36 
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Figure 4.7. (A) β-Arrestin2 recruitment elicited by pNPY (agonist mode) and (B-F) Inhibition of β-arrestin2 recruitment (induced 

by 200 nM pNPY) by (B) 4.1, CYM 9484, JNJ 31020028, 4.5, (C) 4.1, 4.23, 4.24, 4.27, (D) 4.1, 4.50, 4.51, (E) 4.1, 4.58, 4.59, 

4.61, 4.62, (F) 4.1, 4.32, 4.50 and 4.75 (antagonist mode). All experiments were performed in HEK293T hY2R + βArr2 cells. 

Cells were pre-incubated with the antagonists for 15 min. Data are presented as means ± SEM from at least three independent 

experiments, each performed in triplicate. 

The replacement of the dibenzoazepinone moiety in 4.1 by a benzhydryl moiety (4.5) led to a decrease 

in antagonism by one order of magnitude. Compound 4.32 (pKb < 5.00), which bears neither a 

dibenzoazepinone nor a benzhydryl moiety showed no antagonism. The introduction of methoxy groups 

to 4.5, resulting in compounds 4.24 (3-methoxy) and 4.27 (4-methoxy) also led to a decrease in 

antagonism, whereas 4.23, representing the 1-((2-methoxyphenyl)(phenyl)methyl) derivative showed 

no decrease in antagonism. The introduction of 5-aminopentoxy groups in positions 2 (4.50) and 3 (4.51) 

led to a decrease of antagonism compared to 4.5. Seemingly, position two in the benzhydryl moiety is 

favoured for further functionalisation. Fluorescently labelled ligands 4.58, 4.59, 4.61 and 4.62 showed 

comparable pKb values, whereas 4.58 showed the highest antagonism. Interestingly the introduction of 
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bulkier moieties, e.g. fluorophores (Py-1 or Py-5) in position 2 (4.58 and 4.61) and 3 (4.59 and 4.62) in 

the benzhydryl moiety led to no decrease in antagonism compared to 4.50 and 4.51. In consideration of 

the substitution pattern, the decrease in antagonistic activity was less pronounced for position 2 and 3 

bearing bulky substituents such as fluorophores (4.58 and 4.61; 4.59 and 4.62) is not as distinct as for 

the less bulky methoxy groups in position 2 and 3 (4.23 and 4.24). 

Table 4.5. Activity (pKb) of standard antagonists (4.1, JNJ 31020028, CYM 9484, 4.5) and synthesized (S)-argininamides 4.23, 

4.24, 4.27, 4.32, 4.50, 4.51, 4.58, 4.59, 4.61, 4.62 and 4.75 determined in the β-arrestin2 recruitment assay in living 

HEK293T hY2R + βArr2 cells. 

Compound pKb ± SEMa Compound pKb ± SEMa 

BIIE-0246 (4.1) 8.89 ± 0.16 4.50 7.54 ± 0.05 

JNJ 31020028 8.51 ± 0.16  4.51 6.74 ± 0.09 

CYM 9484 7.24 ± 0.03 4.58 7.65 ± 0.11 

4.5 7.97 ± 0.15 4.59 7.55 ± 0.18 

4.23 8.12 ± 0.17 4.61 7.23 ± 0.10 

4.24 7.17 ± 0.16 4.62 7.01 ± 0.28 

4.27 7.37 ± 0.27 4.75 8.78 ± 0.14 

4.32 <5.00   

aβ-Arrestin2 recruitment assay in intact HEK293T hY2R + βArr2 cells. Arrestin2 recruitment was induced by 200 nM pNPY after 

pre-incubation of the cells with the antagonist for 15 min. Mean values ± SEM from at least three independent experiments, each 

performed in triplicate 

The replacement of the cyclopentyl moiety in 4.1 by a cyclohexyl moiety, resulting in 4.75, had no impact 

on antagonism, whereas the replacement of the dibenzoazepinone moiety in 4.1 through a benzhydryl 

moiety (4.5) resulted in a decrease in antagonism by one order of magnitude. 

4.2.4.3. Determination of pKb values in a miniG protein recruitment assay 

The miniG protein recruitment assay in living HEK293T NlucN-miniGi/Y2R-NlucC cells (established by 

Carina Höring as part of her doctoral studies) was used to functionally characterize selected 

(S)-argininamides 4.1, 4.23, 4.58 and 4.75 (Figure 4.8, Table 4.6). The agonist pNPY showed a potency 

(pEC50 = 8.48 ± 0.08), that is in good agreement with affinity determined in radioligand binding assay 

(Table 4.3). For further characterization of 4.58 and its application in BRET based binding assay and by 

confocal microscopy, it was decided to investigate G-protein recruitment. 
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Figure 4.8. Inhibition of miniG protein recruitment (induced by 50 nM pNPY (EC50 = 3.35 nM)) by 4.1, 4.23, 4.58 and 4.75. All 

experiments were performed in living HEK293T NlucN-miniGi/Y2R-NlucC cells. Antagonists were pre-incubated with cells for 

15 min. Data are presented as means ± SEM from at least two independent experiments, each performed in triplicate. 

The determined pKb value of 4.58 is in good agreement with that from the β-arrestin2 recruitment assay 

(pKb = 7.65, Table 4.5). 

Table 4.6. Antagonism (pKb) of selected (S)-argininamids (4.1, 4.23, 4.58 and 4.75) determined in the miniG protein recruitment 

assay at living HEK293T NlucN-miniGi/Y2R-NlucC cells 

compound pKb ± SEMa N compound pKb ± SEMa N 

BIIE-0246 (4.1) 9.88 ± 0.14 4 4.58 7.92 ± 0.03 3 

4.23 8.06 ± 0.17 3 4.75 9.67 ± 0.22 2 

aMiniGi recruitment was induced by 50 nM pNPY (EC50 = 3.35 nM) after pre-incubation of the cells with the antagonist for 15 min. 

Mean values ± SEM from at least N independent experiments, each performed in triplicate. 

4.2.4.4. Application of 4.58 to BRET based competition binding assays 

The red-fluorescent (S)-argininamide-type hY2R antagonist (4.58) was applied in BRET based 

saturation and competition binding experiments. The association and dissociation of 4.58 were studied 

in living HEK293T Y2(intraNLucD197) cells. Moreover, the affinities (pKi) of standard ligands in living 

HEK293T Y2(intraNLucD197) cells (using sodium containing buffer) in 96-well plates were determined 

in the BRET based binding assay as an alternative to the determination of affinities (pKi) in radiochemical 

assays. In principle, the fluorophore of 4.58 serves as a resonance energy acceptor and the luciferase 

(NanoLuc, NLuc) as a resonance energy donor.23, 40 The Nluc is located in the extracellular loop 2 

(cloning and expression of this Y2R construct (Y2(intraNLucD197)) was performed by Lukas Grätz as 

part of his doctoral thesis). The location of the Nluc in the extracellular loop 2 is different to other 

published procedures for GPCR-Nluc fusion proteins, in which the luciferase is N-terminally tagged to 

the GPCR.41 For the determination of pKi values in BRET based binding assays, no washing steps are 

required, in contrast to radioligand competition binding experiments. HEK293T Y2(intraNLucD197) cells 

were also investigated in saturation binding experiments using the radioligand [3H]propionyl-pNPY in 

sodium-free binding buffer.  
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Determination of the pKd value of 4.58 by saturation binding in HEK293T Y2(intraNLucD197) cells 

The genetically engineered HEK293T Y2(intraNLucD197) cells were used to obtain the pKd value of 4.58 

in saturation binding experiments (pKd (sat.) = 7.75 ± 0.03). Unspecific binding was determined in the 

presence of a 100-fold excess of BIIE-0246 (4.1). The kinetics (association and dissociation) of 4.58 

was also investigated to determine the kinetically derived Kd value (Kd (kinetic) = 2.1 ± 0.4 nM). The pKd (sat) 

of 4.58 was in good agreement with pKb value determined in the β-arrestin2 (pKb(βArr2) = 7.65 ± 0.11) 

and miniG protein (pKb(miniGi) = 7.92 ± 0.03) recruitment assays (Table 4.7), which were all performed 

in sodium containing buffer. The dissociation constant of 4.58 (pKi = 7.05 ±0.09) determined using 

[3H]propionyl-pNPY in competition binding experiments performed in sodium-free buffer, showed the 

highest discrepancy compared to the pKd value determined in the BRET based binding assay (Figure 

4.9 and Table 4.7). 

Kinetics (association and dissociation) studies of 4.58 in HEK293T Y2(intraNLucD197) cells 

Kinetic studies with 4.58 (cfinal = 20 nM) in the BRET based assay revealed a relatively fast association 

(kobs [min-1] = 0.09279 ± 0.00996, kon [min-1] = 0.00420 ± 0.00050) of 4.58 to the Y2(intraNLucD197) 

receptor (Figure 4.9, B). For the determination of Kobs a monophasic association was assumed (fit: 

B(t) = B0+(Beq-B0)∙(1-e(-K
obs

∙t), non-linear regression, monophasic association, GraphPad Prism 8). This 

implies that the plateau was reached after 30 min (Figure 4.9, B, C). Therefore, the incubation time for 

saturation experiments was set to 35 min. By contrast, the incubation time for equilibrium competition 

binding experiments was set to 90 min. The incubation time for competition binding experiments was 

prolonged to guarantee that equilibrium conditions had been reached.  

4.58 showed a slow dissociation (Koff [min-1] = 0.0087 ± 0.0011) from the Y2(intraNLucD197) receptor 

corresponding to a relatively high residence time (114 min). The dissociation was incomplete after 

240 min (BPlateau = 20%; Figure 4.9, D). Nevertheless, 4.58 could be used in competition binding 

experiments for the determination of equilibrium binding constants of small Y2R ligands. For the 

determination of Koff a monophasic decay was assumed (fit: B(t) = (B0-Bplateau)∙e-K
off+Bplateau, Bplateau was 

not constrained to zero, non-linear regression, one phase decay, GraphPad Prism 8). The kinetically 

derived pKd was one order of magnitude higher compared to the pKd value determined by saturation 

binding. 

From the obtained kinetic data (dissociation) a pseudo irreversible binding of 4.58 might be concluded 

according to literature.6, 42 To confirm pseudo irreversible binding, the dissociation should be measured 

for a longer time period, but the measurable time is limited by the amount of substrate (furimazine) for 

the luciferase (NLuc). 
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Figure 4.9. (A-F) Binding characteristics of 4.58 in BRET based binding assay in intact HEK293T Y2(intraNLucD197) cells. (A) 

Representative saturation isotherm (red line) of specific hY2R binding of 4.58. Unspecific binding (grey line) was determined in 

the presence of a 100-fold excess of BIIE-0246 (4.1). The experiments were performed in triplicate. Error bars of specific binding 

were calculated according to the Gaussian law of error propagation. Error bars of total (black line), and nonspecific binding 

represent SEM. (B) Association of 4.58 (c = 20 nM) for 32 min and dissociation for 240 min in the presence of BIIE-0246 (4.1) 

(100-fold) was performed in a single experiment. Exemplary determination of kobs (0.07101 min-1) and koff (0.006616 min-1) (non-

linear regression, one phase association or decay, GraphPad Prism 8). Association rate constant kon (0.00320 min-1∙nM) was 

derived from kobs, koff and ligand concentration (kon = (kobs − koff)∙[FL]-1). Raw BRET ratio as function of time. Errors of total binding 

(red dots) and unspecific binding (grew dots) represents SEM. Exemplary determination of kinetically derived dissociation rate 

constant (Kd, kinetic = koff∙kon
-1 = 2.1 nM). (C) Representative association for 90 min of 4.58 (% specifically bound 4.58) and (D) 

dissociation for 270 min as function of time (min) for determination of kobs (0.08405 min-1) and koff (0.01041 min-1) (nonlinear 

regression, one phase association or dissociation; GraphPad Prism 8). Data represents SEM of a single experiment performed 

in triplicate. (E) Linearization of representative (C) association, ln(Beq∙(Beq-B(t))-1) versus time, slope∙(-1) = kobs = 0.08644 min-1. 

Error bars were calculated according to the Gaussian law of error propagation. (F) Linearization of representative (D) 

dissociation, ln((B(t)-Bplateau)∙(B0-Bplateau)
-1) versus time, slope = koff = 0.01024 min-1. Error bars of specific binding were calculated 

according to the Gaussian law of error propagation. 
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For further investigation of the binding kinetics of 4.58 and evaluation of the association and dissociation 

rate constants determined in BRET based binding assays, a different method (e.g. flow cytometric based 

binding assay) should be used to assess binding kinetics of 4.58. These experiments should be 

performed using cells expressing the native hY2R. 

Determination of pKi values in equilibrium competition binding experiments with 4.58 

Equilibrium competition binding experiments were performed with structurally different hY2R antagonists 

(BIIE-0246 (4.1), JNJ 31020028, CYM 9484, 4.5; Figure 4.10). The determined affinities (pKi) in BRET 

based binding assay (sodium-containing buffer) were in good agreement with the pKb values determined 

in the β-arrestin2 recruitment assay (Table 4.8), whilst JNJ 31020028 showed the highest discrepancy 

among the investigated ligands. The pKi values determined in intact HEK293T hY2R + βArr2 cells by 

use of the radioligand [3H]propionyl-pNPY showed a discrepancy compared to the pKi values 

determined in the BRET based binding assay and the pKb values determined in the β-arrestin2 

recruitment assay. Further studies are needed to investigate potential absorption of the fluorescent 

ligand (4.58)/test compounds to the plastic material (plate surface). When comparing these data, it 

should be kept in mind, that a sodium-free binding buffer was used for the radioligand competition 

binding assay and a sodium-containing buffer for BRET based competition binding studies. As described 

in the thesis of S. Dukorn33 the specific binding of the agonist [3H]propionyl-pNPY showed no saturation 

in sodium containing buffer in CHO-hY2R-Gqi5-mtAEQ cells and determined affinities in the radioligand 

binding assay were at least 10-fold higher compared to determined agonism of pNPY (with respect to 

Ki values).9, 33 The described discrepancy of ligand affinity (pKi) in the presence or absence of sodium 

cations was also described for other GPCR’s (e.g. hY4R, adenosine receptor).34, 36 Although a low Y2R 

Table 4.7. Binding characteristics of 4.58. Affinity (pKi or pKd) in radioligand competition binding experiments and BRET based 

binding assay and functional data of 4.58. Binding kinetics (HEK293T Y2(intraNLucD197) cells) of 4.58 in BRET based binding 

assay. 

pKi
a pKb(βArr2)b pKb(miniGi)

c pKd (sat.)
d kon

e 

[min-1∙nM] 

koff
f 

[min-1] 

Kd (kinetic)
g 

[nM] 

Residence 
timeh 

[min] 

7.05 ± 0.09 7.65 ± 0.11 7.92 ± 0.03 7.75 ± 0.03 0.00420 ± 0.00050 0.00874 ± 0.00112 2.1 ± 0.4 114 

aRadioligand competition binding assay with [3H]propionyl-pNPY (cfinal = 4.0 nM, Kd = 2.97 nM) in intact HEK293T hY2R + βArr2 

cells. Mean values ± SEM from at least three independent experiments, each performed in triplicate. bβ-Arrestin2 recruitment 

assay in intact HEK293T hY2R + βArr2 cells. Arrestin2 recruitment was induced by 200 nM pNPY after pre-incubation of the 

cells with the antagonist for 15 min. Mean values ± SEM from at least three independent experiments, each performed in 

triplicate. cminiG Protein recruitment was induced by 50 nM pNPY after pre-incubation of the cells with the antagonist for 15 min. 

Mean values ± SEM from at least two independent experiments, each performed in triplicate. dpKd, (sat) value determined in BRET 

based assay by saturation binding in HEK293T Y2(intraNLucD197) cells. Mean values ± SEM from at least three independent 

experiments, each performed in triplicate. eAssociation rate constant (kon) was calculated from the observed association constant 

(kobs = 0.09279 ± 0.00996 min-1). Mean values ± SEM from at least four independent experiments, each performed in triplicate, 

dissociation rate constant (koff) and ligand concentration [FL] (kon = (kobs − koff)∙[FL]-1). kon ± propagated error was calculated 

according to the Gaussian law of error propagation. fDissociation rate constant (koff) derived from three independent experiments, 

each performed in triplicate. Mean values ± SEM from at least three independent experiments, each performed in triplicate. 

gKinetically derived dissociation rate constant (Kd (kinetic) = koff∙kon
-1) ± propagated error was calculated according to the Gaussian 

law of error propagation. hResidence time (Koff
-1). 
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affinity of pNPY was anticipated due to the presence of sodium in the binding buffer, the determined 

affinity of pNPY in the BRET based binding assay was markedly lower (pKi < 6.00) (Table 4.9). At the 

concentrations used, pNPY did not fully displace 4.58. To shed light on the binding of pNPY in intact 

HEK293T Y2(intraNLucD197) cells, saturation binding by use of [3H]propionyl-pNPY was performed 

(Figure 4.10). A high unspecific binding, which was determined in the presence of a 300-fold excess 

pNPY in intact HEK293T Y2(intraNLucD197) cells in sodium-free binding buffer was observed. Due to 

high unspecific binding, the saturation binding experiment could not be evaluated. To obey the ALARA 

(as low as reasonable achievable) principle (cf. Recommendations of International Commission on 

Radiological Protection (ICRP): Publication 2643 and 10344) the amount of radioactivity in the assay was 

not increased. 

The results from these studies suggested that binding of the large ligand pNPY to the Y2(intraNLucD197) 

receptor is sterically hindered by the luciferase inserted in ECL2 of the receptor cells. Further 

investigations could focus on saturation binding experiments using a non-peptide radioligand (e.g. 

[3H]4.2). Unspecific binding may be reduced in saturation binding experiments using a small ligand with 

Y2R affinity e.g. JNJ 31020028. 

 

Figure 4.10. (A-C) Displacement curves of 4.58 (cfinal = 20 nM, Kd = 17.9 nM) obtained from competition binding studies with (A) 

BIIE-0246 (4.1), JNJ 31020028, CYM 9484, 4.5, (B) 4.1, 4.23, 4.50, (C) 4.1 and pNPY in HEK293T Y2(intraNLucD197) cells. 

Data are presented as means ± SEM from at least three independent experiments, each performed in triplicate. (D) 

Representative saturation binding experiment of total hY2R binding (black line) of [3H]propionyl-pNPY in 

HEK293T Y2(intraNLucD197) cells. Unspecific binding (grey line) was determined in the presence of 300-fold excess of pNPY. 

Two independent experiments were performed in triplicate. Error bars of specific binding were calculated according to the 

Gaussian law of error propagation. Error bars of total (black symbols), and nonspecific binding (grew symbols) represent SEM. 
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It should be noted that 4.58 belongs to the class of (S)-argininamides (e.g. 4.1 and 4.2), that have been 

reported to exhibit insurmountable Y2R antagonism.6, 45 In addition, pNPY could not fully displace the 

radioligand 4.2 and a displacement of the radioligand in a biphasic manner was assumed.6 This 

described behaviour for pNPY was not observed in the BRET based binding assay.  

Future investigations should focus on studying the binding kinetics of 4.58 in cells expressing the native 

hY2R using a flow cytometric assay. Nevertheless, the affinity of small antagonists, not structurally 

related to 4.58, can be determined in the BRET based binding assay.  

Table 4.8. Affinities (pKi) determined in radioligand competition binding (sodium-free buffer), BRET based (sodium-containing 

buffer) competition binding assays as well as agonism (pEC50) of pNPY and antagonism (pKb) in a β-arrestin2 recruitment assay 

of BIIE-0246 (4.1), JNJ 31020028, CYM 9484, 4.5, 4.23 and 4.50. 

compound pKi(BRET) ± SEMa pEC50 ± SEMb or 

pKb(βArr2) ± SEMc 

pKi ± SEMd Reference data 

(pKi/pKb) 

pNPY <6.00 6.79 ± 0.13 8.43 ± 0.35 8.76e/n.a. 

BIIE-0246 (4.1) 9.13 ± 0.15 8.89 ± 0.16 8.06 ± 0.11 7.44f/7.82g 

JNJ 31020028 9.39 ± 0.14 8.51 ± 0.16 n.d. 7.53e/8.04h 

CYM 9484 7.81 ± 0.11 7.24 ± 0.03 n.d. 7.62i/n.a. 

4.5 7.86 ± 0.10 7.97 ± 0.15 n.d. 8.18j/7.65k 

4.23 8.60 ± 0.07 8.12 ± 0.17 7.39 ± 0.13 n.a. 

4.50 8.03 ± 0.08 7.54 ± 0.05 7.06 ± 0.09 n.a. 

aBRET based binding assay with 4.58 (cfinal = 20 nM, Kd = 17.9 nM) in intact HEK293T Y2(intraNLucD197) cells. Mean values ± 

SEM from at least three independent experiments, each performed in triplicate. bβ-Arrestin2 recruitment of pNPY in intact 

HEK293T hY2R + βArr2 cells. Mean values ± SEM from at least three independent experiments, each performed in triplicate cβ-

Arrestin2 recruitment assay in intact HEK293T hY2R + βArr2 cells. Antagonism (pKb) was determined in the presence of 200 nM 

pNPY after pre-incubation of the cells with the antagonist for 15 min. pKb values are given in italics. Mean values ± SEM from at 

least three independent experiments, each performed in triplicate. dRadioligand competition binding assay with [3H]propionyl-

pNPY (cfinal = 4.0 nM, Kd = 2.97 nM) in intact HEK293T hY2R + βArr2 cells. Mean values ± SEM from at least two independent 

experiments, each performed in triplicate. eDukorn, Phd Thesis, University of Regensburg, 2017,33 the Ki values were determined 

using [3H]propionyl-pNPY (cfinal = 1.0 nM, Kd = 1.4 nM) and CHO-hY2-Giq5-mtAEQ cells. fDautzenberg,5 Ki value was determined 

using [125I]PYY (cfinal = 0.10 nM, Kd = 0.08 nM) and membranes from SMS-KAN cells. gPluym et al.,14 Kb value was determined 

in an aequorin assay in intact CHO-hY4-Gqi5-mtAEQ cells. Aequorin Ca2+ mobilization was induced by 70 nM pNPY, after pre-

incubation of the cells with the antagonist for 1 h. hShoblock et al.,46 the pKb value was determined in a calcium mobilization 

assay in KAN-TS cells (stably expressing a chimeric G protein Gqi5). Ca2+ was induced by 10 nM PYY (pEC50 = 8.8). iKuhn, 

Phd Thesis, University of Regensburg, 2017,47 the reported Ki value was determined in a flow cytometric binding assay using 

Cy5-pNPY (cfinal = 5 nM, Kd = 5.2 nM) and CHO-hY2-Giq5-mtAEQ cells. jZiemek et al.,9 the reported Ki value was determined in 

a flow cytometric binding assay using Cy5-pNPY (cfinal = 5 nM, Kd = 5.2 nM) and CHO-hY2-Giq5-mtAEQ cells. kZiemek et al.,9 the 

reported IC50 value was determined in an aequorin assay in intact CHO-hY4-Gqi5-mtAEQ cells. Aequorin Ca2+ mobilization was 

induced by 70 nM pNPY (EC50 = 30.9), after pre-incubation of the cells with the antagonist for 1 h. The data was previously 

reported as IC50 value and were reanalyzed to give pKi value. Reported Ki values were converted to pKi values. n.d. not 

determined. n.a. not applicable. 

The Y2R affinities of the synthesized (S)-argininamides 4.23 and 4.50 were in good agreement with data 

obtained from a β-arrestin2 recruitment assay. The affinities determined in the radioligand competition 

binding assay showed a discrepancy of around one order of magnitude compared to affinities 
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determined in a BRET binding assay. Moreover, the pKi values determined in BRET based binding 

assay were in good agreement with pKb values determined in a β-arrestin2 recruitment assay. This 

discrepancy was also observed for standard antagonists (Table 4.8). 

Table 4.9. Affinities (pKi) and potencies (pEC50) of pNPY. 

pKi(BRET)a pKi(flow-cyto)b pKi(radioligand)c pEC50(βArr1)d pEC50(βArr2)e pEC50(Aequorin)f pEC50(miniGi)
g 

< 6.00 8.92 8.43 ± 0.35 7.36 6.79 7.51 8.48 ± 0.08 

aBRET based binding assay with 4.58 (cfinal = 20 nM, Kd = 17.9 nM) in intact HEK293T Y2(intraNLucD197) cells. Mean values ± 

SEM from at least three independent experiments, each performed in triplicate. bKi value reported from Schneider et al.48 

cRadioligand competition binding assay with [3H]propionyl-pNPY (cfinal = 4.0 nM, Kd = 2.97 nM) in intact HEK293T hY2R + βArr2 

cells. Mean values ± SEM from at least two independent experiments, each performed in triplicate. d, epEC50 values reported by 

Felixberger, Phd Thesis, University of Regensburg, 2014.39 fEC50 value reported from Ziemek et al.9 gminiG Protein recruitment 

was induced by 50 nM pNPY after pre-incubation of the cells with the antagonist for 15 min. Mean values ± SEM from at least 

two independent experiments, each performed in triplicate. Reported Ki (or EC50) values were converted to pKi (or pEC50) values. 

4.2.4.5. Application of 4.58 to confocal microscopy 

For visualization of hY2R binding of 4.58 by confocal microscopy, a Nikon Eclipse 90i (Laser: λex 488 nm; 

detector: 650 nm LP (Gain 1340)) was used. HEK293T hY2R + βArr2 cells were seeded into cell culture 

dish (in 1 mL of Leibovitz’s L-15 medium containing 5% FCS).  

 

Figure 4.11. Binding of 4.58 in HEK293T hY2R + βArr2 cells. (A, D, G) Autofluorescence and total binding of 4.58 (40 nM) after 

(B) 35 min and (C) 240 min. Unspecific binding was determined in the presence of a 250-fold excess of 4.1 (E, F) or pNPY (H, 

I) after 40 min (E), 45 min (H), 235 min (F) and 240 min (I). Cells were seeded in Leibovitz’s L-15 medium containing 5% FCS. 

4.1, 4.58 and pNPY were diluted in Leibovitz’s L-15 medium containing 1% BSA. Measurement details for all images: images 

were acquired with a Nikon eclipse 90i; water immersion objective: (Nikon NIR Apo, 60×1.0w); pinhole L; laser: λex 488 nm; 

detector 650 nm LP (Gain 130). 

Dilutions of 4.58 and competitors (4.1 or pNPY) were prepared in Leibovitz’s L-15 medium containing 

1% BSA. Total binding of 4.58 was determined at a final concentration of 40 nM after incubation at rt for 



 
 

Chapter 4 
 

99 
 

35 min and 4 h. Unspecific binding was determined after simultaneously addition of a 12-fold 

concentrated solution of 4.58 (cfinal = 40 nM) and a 250-fold excess (cfinal = 10,000 nM) of 4.1 or pNPY 

after incubation at rt for 40-45 min and 235-240 min. There was a clear difference between total and 

non-specific binding using 4.1 or pNPY as competitor. 

 

Figure 4.12. Binding of 4.58 in HEK293T hY2R + βArr2 cells. Autofluorescence (A) and total binding after 35 min (B1, C1, D1) 

and after 240 min (B2). Unspecific binding was determined in the presence of a 250-fold excess of 4.1 (C2) or pNPY (D2) after 

240 min. The competitors were added after an incubation time of 35 min with the fluorescent ligand 4.58. The cells were seeded 

in L-15 medium containing 5% FCS. 4.1, 4.58 and pNPY were diluted in L-15 medium containing 1% BSA. Measurement details 

for all images: images were acquired with a Nikon eclipse 90i; water immersion objective: (Nikon NIR Apo, 60×1.0w); pinhole L; 

laser: λex 488 nm; detector 650 nm LP (Gain 130). 

After incubation of the cells with 4.58 for 35 min, high fluorescence intensity at the plasma membrane 

was obvious (Figure 4.12; B1, C1, D1). In contrast to the procedure described above, the competitor 

(4.1 or pNPY) was not added simultaneously with the fluorescent ligand 4.58, after incubation of the 

cells with 4.58 for 35 min. A membrane localization of 4.58 was still visible after 240 min in the absence 

of competitor. When BIIE-0246 (4.1) was added, no membrane localization of 4.58 was observed (Figure 

4.12; C2) after 240 min. Similarly, the use of pNPY as competitor resulted in no apparent membrane 

localization was obvious after 240 min. 

In summary, the (S)-argininamide-type fluorescent Y2R ligand 4.58 could be displaced by use of 

(S)-argininamide-type (4.1) and the peptidic ligand (pNPY) as competitors (4.1 or pNPY) in intact 

HEK293T hY2R + βArr2 cells. There was no difference between adding 4.58 and the competitor 

simultaneously or addition of the competitor after pre-incubation of the cells with 4.58 for 35 min.  

4.2.4.6. NPY Y2R subtype selectivity 

(S)-Argininamide 4.1 has been described as a highly selective hY2R antagonist in literature.22 For this 

reason subtype selectivity was investigated for the amino precursors 4.50, 4.51 and the fluorescent 
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ligand 4.58 (Table 4.10). The dibenzoazepinone-benzhydryl approach did not affect subtype selectivity 

in case of investigated compounds 4.50, 4.51 and 4.58.  

Table 4.10. NPY receptor subtype binding profile of (S)-argininamides 4.50, 4.51 and 4.58. 

Compound hY1R 

pKi
a 

hY2R 

pKi ± SEMb 

hY4R 

pKi
c 

hY5R 

pKi
d 

4.50 <5.52 7.54 ± 0.05 <5.00 <6.00 

4.51 <5.52 6.74 ± 0.09 <5.00 <5.52 

4.58 <5.00 7.65 ± 0.11 <5.00 <5.52 

aRadioligand competition binding assay using [3H]2.2 (cfinal = 0.15 nM, Kd = 0.044 nM) in intact SK-N-MC cells.16 bRadioligand 

competition binding assay with [3H]propionyl-pNPY (cfinal = 4.0 nM, Kd = 2.97 nM) in intact HEK293T hY2R + βArr2 cells. Mean 

values ± SEM from at least three independent experiments performed, each in triplicate. cRadioligand competition binding assay 

with [3H]UR-KK200 (cfinal = 1.0 nM, Kd = 0.67 nM) in intact CHO-hY4R-Gqi5-mtAEQ.32 dRadioligand competition binding assay 

using [3H]propiony-pNPY (cfinal = 4.0 nM, Kd = 4.8 nM) in intact HEC-1B-hY5 cells.16, 49 Results from 2-3 independent 

experiments, each performed in triplicate (hY1R, hY4R and hY4R). 

4.3. Conclusion 

A small library of compounds was synthesized and pharmacologically characterized. The 

dibenzoazepinone moiety (4.1) was replaced by a methoxy substituted benzhydryl moiety (4.23, 4.24 

and 4.27) This small SAR study revealed that positions 2 and 3 are suitable for amino-functionalization 

and led to the synthesis of amino precursors 4.50 (position 2) and 4.51 (position 3). Moreover, this 

established labelling approach II (Figure 4.1) showed that precursors 4.50 and 4.51 can be used for 

fluorescence labelling and this approach did not affect subtype selectivity. 

The fluorescently labelled (S)-argininamide-type selective Y2R antagonist UR-jb264 (4.58) showed Y2R 

binding and Y2R antagonistic activity in the nanomolar range. The application of 4.58 in BRET based 

binding assays (saturation and competition binding, association and dissociation studies) as well as 

confocal microscopy demonstrated that 4.58 can be used as a molecular tool, e.g. to determine Y2R 

affinities of non-labelled ligands. It should be stressed that the BRET based binding assay using 4.58 

enables the determination of Y2R affinities of (small) Y2R ligands in sodium-containing buffer, which is 

not possible in competition binding experiments with [3H]propionyl-pNPY or Cy5-pNPY due to the low 

Y2R affinity of peptidic agonists in sodium-containing buffers. 

In future studies, 4.58 should also be investigated in flow cytometric Y2R binding experiments using cells 

with native hY2R, including competition with pNPY, and these data should be compared with the data 

obtained from the BRET based binding assays. Moreover, the amine precursors 4.50 and 4.51 can be 

used for the synthesis of additional fluorescent Y2R ligands bearing fluorophores with distinct optical 

properties. Fluorescent labelled compounds 4.59, 4.61 and 4.62 should be investigated in the BRET 

based binding assay. These ligands (4.59, 4.61 and 4.62) were not investigated in a BRET based 

binding assay due to a lack of time, because affinities had not been determined in radioligand binding 

assay, but also because an appropriate hY2R binding assay was not available at that time. Moreover, 

the amount of the radioligand ([3H]propionyl-pNPY) was limited.  
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4.4. Experimental section 

4.4.1. General experimental conditions 

The following reagents and solvents (analytical grade) were purchased from commercial suppliers and 

used without further purification: CH2Cl2, DMF, THF, MeOH, toluene, DMSO, ethanol, methanesulfonyl 

chloride (Fisher Scientific, Schwerte, Germany); EDC∙HCl, HOBt, hydrazine monohydrate, piperidine, 

piperazine, TFA, CBr4, acetic acid, pyridine-sulfur trioxide complex, H2SO4, PPh3, 4.6, 4.8, 4.14, 4.25, 

4.63, 4.68, 4.70 (Sigma Aldrich, Taufkirchen, Germany); ethyl allophanate, Boc2O, PCC, 4.33, 4.76, 

4.77 (TCI, Eschborn, Germany); DIPEA, (ABCR, Karlsruhe, Germany); p-xylene, dioxane, NaH, Mg, 

SOCl2, Et3N, NaBH4, K2CO3, aqueous HBr (47%), NaN3, NH4CH3CO2, Na, 4.17, 4.18, 4.17, 4.18 (Merck, 

Darmstadt, Germany); 4.11 (Carbolution Chemicals, St. Ingbert, Germany); conc. HCl (VWR Chemicals, 

Darmstadt, Germany); ammonium hydroxide (Carl Roth, Karlsruhe, Germany). For pharmacological 

characterization, pNPY (Synpeptide, Shanghai, China), CYM 9484 (Tocris, Bristol, United Kingdom) and 

JNJ 31020028 (Biomol, Hamburg, Germany) were purchased from commercial suppliers. 

Compounds 2.7724, 25 and 4.6024, 25 were synthesized as described previously in the literature. 

Column chromatography was performed using Merck Geduran 60 silica gel (0.063-0.200 mm) or Merck 

flash silica gel 60 (0.040-0.063 mm). For thin layer chromatography, TLC sheets ALUGRAM Xtra SIL 

G/UV254 from Macherey-Nagel GmbH & Co. KG (Düren, Germany) were used. Compounds were 

detected by irradiation with UV light (254 nm or 366 nm), and staining was performed with ninhydrin or 

iodine. 

Acetonitrile (HPLC grade), used for HPLC, was purchased from Sigma-Aldrich. Millipore water was used 

for eluents for analytical and preparative HPLC. Compounds 4.23, 4.24, 4.27, 4.50, 4.51 and 4.75 were 

purified by a preparative HPLC-system from Knauer (Berlin, Germany) consisting of two pumps K-1800 

and a detector K-2001 (HPLC A). A Kinetex XB C18, 5 µm, 250 x 21 mm (Phenomenex, Aschaffenburg, 

Germany) served as RP-column at a flow rate of 18 mL/min. Compounds 4.32, 4.58, 4.59, 4.61 and 

4.62 were purified by a preparative HPLC-system from Waters (Eschborn, Germany) consisting of a 

Binary Gradient Module (Waters 2545), a detector (Waters 2489 UV/visible Detector), a manual injector 

(Waters Prep inject) and a collector (Waters Fraction Collector III) (HPLC B). A Kinetex XB C18, 5 µm, 

250 x 21 mm (Phenomenex) served as RP-column at a flow rate of 20 mL/min. All injected solutions 

were filtered with syringe filters (0.45 µm). The mobile phase contained the solvents A (0.1% aq TFA) 

and B (acetonitrile). The detection wavelength was 220 nm. The eluates, containing isolated 

compounds, were lyophilized using a Christ alpha 2-4 LD (Martin Christ Gefriertrocknungsanlagen, 

Osterode am Harz, Germany) or a Scanvac CoolSafe 100-9 (Labogene, Alleroed, Denmark) 

lyophilization apparatus equipped with a Vacuubrand RZ rotary vane vacuum pump (Vacuubrand, 

Wertheim, Germany). 

The purity of compounds 4.1, 4.5, 4.23, 4.24, 4.27, 4.50, 4.51, 4.58, 4.59, 4.61, 4.62 and 4.75 was 

determined by analytical HPLC (RP-HPLC) with a 1100 series system from Agilent Technologies (Santa 

Clara, CA USA) composed of a Degasser (G1379A), a Binary Pump (G1312A), a Diode Array Detector 

(G1315A), a thermostated Column Compartment (G1316A) and an Autosampler (G1329A). A 

Phenomenex Kinetex 5u XB-C18 100A, 250 x 4.6 mm was used as stationary phase. The flow rate was 
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1 mL/min, the detection wavelength was set to 220 nm, the oven temperature was set to 30 °C and the 

injection volume was 50 µL. Mixtures of solvents A (0.1% aq TFA) and B (acetonitrile) were used as 

mobile phase. The following gradient was applied: 0-25 min, A/B 90:10–5:95; 25-35 min, 5:95. 

Microwave reactions were carried out on a Biotage Initiator 2.0 microwave device (Biotage, Uppsala, 

Sweden) using pressure stable sealed 10-20 mL vessels. 

Deuterated solvents for NMR spectroscopy (DMSO-d6, MeOD, CDCl3) were obtained from Deutero 

(Kastellaun, Germany) in ampoules (1 mL). NMR spectra were recorded on a Bruker Avance 300 (1H, 

300 MHz; 13C, 75 MHz), a Bruker Avance III 400 (1H, 400 MHz; 13C, 101 MHz) and a Bruker Avance 

600 with cryogenic probe (1H, 600 MHz; 13C, 150 MHz) (Bruker, Karlsruhe, Germany). Chemical shifts 

are given in ppm and were referenced to the solvent residual peak (DMSO-d6, at 2.50 ppm (1H-NMR) 

and at 39.52 ppm (13C-NMR); CDCl3, at 7.26 ppm (1H-NMR) and at 77.16 ppm (13C-NMR); CD3OD, at 

3.31 ppm (1H-NMR) and at 49.00 ppm (13C-NMR)).50 The coupling constants (J) are given in Hertz (Hz). 

The splitting of the signals is described as follows: s = singlet, bs = broad singlet, d = doublet, t = triplet, 

q = quartet, m = multiplet. 

Mass spectrometry (HRMS) analysis was performed either on an Agilent 6540 UHD Accurate-Mass Q-

TOF LC/MS system (Agilent Technologies) using an electrospray source (ESI) or on an Agilent 

GC7890A GC/MS system (Agilent Technologies) using an atmospheric pressure chemical ionization 

(APCI) source. 

Elemental analysis was performed on a Vario micro cube (Elementar, Langenselbold, Germany). 

Stock solutions were prepared in DMSO at concentrations of 1 mM (4.58, 4.59, 4.60 and 4.61) or 10 mM. 

4.4.2. Synthesis protocols and analytical data 

Annotation concerning the analytical data (NMR, HPLC) of 4.23, 4.24, 4.27 and 4.50: due to the 

synthesis routes, these compounds were obtained as diastereomers, which are evident in the 1H-and 

13C-spectra (recorded in DMSO-d6 or MeOH-d4), but not in the RP-HPLC chromatograms. 

General synthesis procedures 

General procedure A for the synthesis of methoxy substituted benzhydryl alcohols 4.19 and 4.20. A 

solution of bromobenzene in anhydrous THF (75 mL) was prepared (solution A). To a dry flask, 

containing magnesium (Mg) under an argon atmosphere THF (50 mL) was added. 5-10 mL of solution 

A were added dropwise to afford phenylmagnesium bromide (Grignard reagent). If it is necessary, the 

reaction is activated by addition of iodine or bromine. Then, the remaining solution A was added 

dropwise into the reaction mixture that should boiling slightly (if necessary, the reaction mixture must be 

cooled in an ice bath). The reaction mixture was gently heated in a water bath (30 min) until the Mg was 

completely consumed. After that the organometallic solution was cooled by means of an ice bath. Under 

stirring, a solution of 2-methoxybenzaldehyde (4.17) or 3-methoxybenzaldehyde (4.18) in dry THF 

(20 mL) was added dropwise into the reaction mixture. The reaction mixture was allowed to warm to rt 

and stirred for 2 h. Then, a mixture of water and ice (50 mL) was added and a precipitate was formed 

followed by careful addition of diluted HCl (conc. HCl/water 1:1) until the solid was dissolved. The 

product was extracted from the aqueous phase with ethyl acetate (3x 100 mL), the combined organic 
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layers were dried with brine and Na2SO4 and the solvent was evaporated. The crude product was 

purified by column chromatography. 

General procedure B for the synthesis of 1-((2-methoxyphenyl)(phenyl)methyl)piperazine (4.22) and 

1-((3-methoxyphenyl)(phenyl)methyl)piperazine (4.23). 2-Methoxy(phenyl)(phenyl)methanol (4.19) or 

3-methoxyphenyl)(phenyl)methanol (4.20) was dissolved in CH2Cl2 (15 mL). Then, sulfuryl chloride was 

added and the reaction mixture was refluxed for 30 min. The solvent was evaporated, and the residue 

was dissolved in acetonitrile (10 mL) and piperazine was added followed by heating in a microwave 

device (100 °C, 30 min). The solvent was evaporated, and the crude product was purified by column 

chromatography. 

General procedure C for the synthesis of phenols 4.42, 4.43 and 4.52 by cleavage of methyl ethers. 

(4-Hydroxyphenyl)(phenyl)methanone (4.25), (2-hydroxyphenyl)(phenyl)methanone (4.40) or (3-

hydroxyphenyl)(phenyl)methanone (4.41) was dissolved in aqueous HBr (47%, 15 mL) and acetic acid 

was added until the starting material was completely dissolved. The reaction mixture was refluxed 

overnight. Then, the reaction mixture was allowed to cool to rt and was carefully poured into water 

(250 mL). The product was extracted from the aqueous phase with ethyl acetate (3x 150 mL), the 

combined organic phases were dried over Na2SO4. The organic solvent was evaporated, and light 

petroleum was added and evaporated (3x). The product was dried in vacuo and used without further 

purification. 

General procedure D for the synthesis of ethers 4.44, 4.45 and 4.53. Compound 4.42, 4.43 or 4.52 

was dissolved in DMF (5 mL) and potassium carbonate was added, and the reaction mixture was stirred 

at rt for 5 min. Under stirring, tert-butyl (5-bromopentyl)carbamate (4.35) was added and the reaction 

mixture was stirred at rt for 24 h. Then, the reaction mixture was poured into water (200 mL) and the 

product was extracted from the aqueous phase with ethyl acetate (3x 100 mL). The combined organic 

phases were dried over Na2SO4 and the organic solvent was evaporated. The crude product was purified 

by column chromatography. 

General procedure E for the synthesis of benzhydryl alcohols 4.46, 4.47 and 4.54. Compound 4.44, 

4.45 or 4.53 was dissolved in methanol (5-20 mL) and sodium borohydride was added portionwise. After 

2-4 h the solvent was evaporated, and the crude product was purified by column chromatography. 

General procedure F for the synthesis of amines 4.48, 4.49 and 4.55. Compound 4.46, 4.47 or 4.55 

and Et3N were dissolved in CH2Cl2 (6-10 mL) and the reaction mixture was stirred in an ice bath. Under 

stirring, methanesulfonyl chloride was slowly added to the mixture and the reaction mixture was stirred 

for 3-5 hours. Then, NaOH (1 N) was added to the reaction mixture and the product was extracted from 

the aqueous phase with CH2Cl2 (3x). The combined organic phases were dried over Na2SO4 and the 

organic solvent was evaporated. Then, the residue was dissolved in acetonitrile (10 mL) and piperazine 

was added and the reaction mixture was heated in a microwave device (70 °C, 45 min). The solvent 

was evaporated, and the crude product was purified by column chromatography. 

General procedure G for amide bond formation of compounds 4.1, 4.5, 4.23, 4.24, 4.32, 4.50, 4.51 and 

4.75. The carboxylic acid was dissolved in DMF (100 µL). EDC∙HCl and HOBt were added and the 

reaction mixture was stirred for 5 min. Then, the reaction mixture is poured into a solution of the 
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secondary or primary amine in DMF (100 µL) and stirred at rt overnight. The reaction mixture was poured 

into an aqueous solution (5% acetonitrile, 0.1% TFA; 100 mL). After lyophilization, the crude product 

was dissolved in a mixture of TFA and water (95:5; 5 mL) and stirred at rt overnight. Then, the reaction 

mixture is carefully poured into an aqueous solution (5% acetonitrile, 0.1% TFA; 100 mL). After 

lyophilization, the crude product was purified by preparative HPLC. 

General procedure H for the synthesis of fluorescent ligands 4.58, 4.59, 4.61 and 4.62. Amino 

precursor 4.50 or 4.51 was dissolved in DMF (50-100 µL) in a propylene micro tube (1.5 mL, Nümbrecht, 

Sarstedt) and DIPEA was added. The fluorescent dye (2.77 or 4.60) was added as a solid and the 

reaction mixture was shaken in the dark at rt for 3-5 h. The crude product was purified by preparative 

HPLC. 

 

(2S)-Nα-[2-(1-{2-Oxo-2-[4(6-oxo-6,11-dihydro-5H-dibenzo[b,e]azepin-11-yl)piperazin-1-yl]ethyl}-

cyclopentyl)acetyl]-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamide 

bis(hydrotrifluoroacetate) (4.1).8 Compound 4.1 was prepared using general procedure G and the 

reactants (S)-2-(1-(2-((1-((2-(3,5-Dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl)amino)-1-oxo-5(2-

((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-yl)amino)-2-oxoethyl)

cyclopentyl)acetic acid (4.15) (180 mg, 206 µmol), EDC∙HCl (50 mg, 261 µmol), HOBt (30 mg, 

222 µmol) and 11-(piperazin-1-yl)-5,11-dihydro-6H-dibenzo[b,e]azepin-6-one (4.67) (50 mg, 170 µmol). 

Purification by preparative HPLC A (gradient: 0-30 min, A/B 84:16–38:62, tR = 18 min) gave 4.1 as a 

fluffy white solid (35 mg, 31 µmol, 18%). 1H-NMR (600 MHz, DMSO-d6): δ (ppm) 1.30-1.69 (m, 13H), 

2.00-2.14 (m, 3H), 2.18-2.24 (m, 1H), 2.27-2.33 (m, 1H), 2.38-2.45 (m, 1H), 2.47-2.49 (m, 1H, interfering 

with solvent residual peak), 2.94-3.05 (m, 2H), 3.18-3.44 (m, 6H), 3.59 (t, J = 6.1 Hz, 2H), 4.11-4.18 (m, 

1H), 4.29 (br s, 1H), 6.77-7.44 (m, 21H), 7.46-7.54 (m, 1H), 7.62 (t, J = 5.6 Hz, 1H), 7.74 (d, J = 7.3 Hz, 

1H), 7.97 (d, J = 8.0 Hz, 1H), 8.23 (t, J = 5.8 Hz, 1H), 10.35 (s, 1H). 13C-NMR (150 MHz, 

DMSO-d6): δ (ppm), 23.31, 23.27, 25.1, 28.8, 36.2, 37.3, 37.33, 37.36, 38.4, 39.6 (overlaid by solvent 

residual peak), 40.4, 40.7, 42.9, 44.06, 44.07, 45.4, 50.8, 51.3, 51.9, 73.7, 116.2 (q, J = 294.0 Hz) (TFA), 

121.4, 122.6, 123.8, 126.7 (two carbon signals), 127.8, 128.1, 128.5, 129.0 (2 carb.), 130.0, 130.6, 

131.5, 131.6, 136.2, 136.6, 152.6, 156.8, 158.5 (q, J = 34.5 Hz) (TFA), 168.0, 170.0, 171.3, 172.0. RP-

HPLC (220 nm): 98% (tR = 15.5 min, k = 5.0). HRMS (ESI): m/z [M+H]+ calcd. for [C49H58N11O6]+ 

896.4566, found 896.4582. C49H57N11O6 × C4H2F6O4 (896.07 + 228.04). 
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(2S)-Nα-(2-{1-[2-(4-Benzhydrylpiperazin-1-yl)-2-oxoethyl]cyclopentyl}acetyl)[2-(3,5-dioxo-1,2-

diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamide bis(hydrotrifluoroacetate) (4.5).8 Compound 4.5 

was prepared using general procedure G and the reactants (S)-2-(1-(2-((1-((2-(3,5-dioxo-1,2-diphenyl-

1,2,4-triazolidin-4-yl)ethyl)amino)-1-oxo-5-(2-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfo-

nyl)guanidino)-pentan-2-yl)amino)-2-oxoethyl)cyclopentyl)acetic acid (4.15) (123 mg, 141 µmol), 

EDC∙HCl (33 mg, 172 µmol), HOBt (21 mg, 155 µmol), and 1-benzhydrylpiperazine (4.30) (41 mg, 

162 µmol). Purification by preparative HPLC B (gradient: 0-30 min, A/B 65:35–47:53, tR = 8 min) gave 

4.5 as a fluffy white solid (18 mg, 16.6 µmol, 12%). 1H-NMR (600 MHz, DMSO-d6): δ (ppm) 1.33-1.67 

(m, 13H), 2.20-2.25 (m, 1H), 2.31-2.37 (m, 1H), 2.43-2.48 (m, 1H, interfering with solvent residual peak), 

2.54-2.60 (m, 1H, interfering with solvent residual peak), 2.63-3.26 (m, 5H), 3.27-3.35 (m, 1H), 3.36-

3.41 (m, 1H), 3.43-3.68 (m, 6H, interfering with the water signal), 4.11-4.19 (m, 1H), 5.49 (br s, 1H), 

6.49-7.74 (m, 26H), 7.97 (d, J = 7.4 Hz, 1H), 8.22 (t, J = 5.7 Hz, 1H). 13C-NMR (600 MHz, 

DMSO-d6): δ (ppm) 23.3, 25.1, 28.8, 36.2, 37.3, 37.4, 38.5, 39.6 (overlaid by solvent residual peak), 

40.4, 42.7, 44.0, 51.2, 51.6, 51.9, 114.5, 116.0 (TFA), 118.0 (TFA), 118.2, 122.6, 126.7, 127.7, 129.0, 

136.5, 152.6, 156.8, 158.2 (TFA), 158.4 (TFA), 170.1, 171.3, 172.0. One carbon signal was not apparent 

(Ph2CH-). RP-HPLC (220 nm): 99% (tR = 14.0 min, k = 4.5). HRMS (ESI): m/z [M+H]+ calcd. for 

[C48H59N10O5]+ 855.4664, found 855.4673. C48H58N10O5 × C4H2F6O4 (855.06 + 228.04). 

 

1,2-Diphenyl-1,2,4-triazolidine-3,5-dione (4.7).8 1,2-Diphenylhydrazine (4.6) (2.02 g, 11 mmol) and 

ethyl allophanate (1.45 g, 11 mmol) were dissolved in p-xylene (35 mL) and the mixture was refluxed 

overnight. The reaction mixture was allowed to cool to rt and light petroleum (30 mL) was added. The 

solid was separated by filtration, washed two times with light petroleum (2x 30 mL) and dissolved in 

acetone. Insoluble components were filtered off and water was added (200 mL) leading to the formation 

of a precipitate, which was separated by filtration, washed with water (2x) and dried in vacuo. Compound 

4.7 was obtained as a pale white solid (1.12 g, 4.4 mmol, 40%). Anal. calcd. for C14H11N3O2: C 66.40, 

H 4.38, N 16.59, found: C 66.23, H 4.56, N 16.76. 1H-NMR (300 MHz, DMSO-d6): δ (ppm) 7.17-7.26 (m, 

2H), 7.33-7.40 (m, 8H), 12.08 (br s, 1H). 13C-NMR (75 MHz, DMSO-d6): δ (ppm) 122.4, 126.5, 129.1, 

136.7, 153.1. HRMS (ESI): m/z [M+H]+ calcd. for [C14H12N3O2]+ 254.0924, found 254.0927. C14H11N3O2 

(253.26). 
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4-(2-Phthalimidoethyl)-1,2-diphenyl-1,2,4-triazolidine-3,5-dione (4.9).8 1,2-Diphenyl-1,2,4-triazol-

idine-3,5-dione (4.7) (4.03 g, 15.9 mmol) was dissolved in DMF (100 mL) and the mixture was cooled in 

an ice bath. Under stirring, sodium hydride (0.71 g, 17.8 mmol, 60%, dispersion in mineral oil) was 

added portionwise. Then, 2-(2-bromoethyl)isoindoline-1,3-dione (4.8) (4.57 g, 18.0 mmol) was added to 

the reaction mixture. After the reaction mixture was refluxed for 5 h, the organic solvent was evaporated 

in vacuo (80 °C) and a saturated solution of K2CO3 (300 mL) was added. The precipitated solid was 

separated by filtration and dried in vacuo. Compound 4.9 was obtained after recrystallization from 2-

propanol as a white crystalline solid (2.83 g, 6.64 mmol, 42%). 1H-NMR (400 MHz, DMSO-d6): δ (ppm) 

3.79-3.86 (m, 2H), 3.87-3.94 (m, 2H), 7.19-7.27 (m, 2H), 7.28-7.42 (m, 8H), 7.74-7.86 (m, 4H). 13C-NMR 

(101 MHz, DMSO-d6): δ (ppm) 35.6, 38.6, 123.06, 123.11, 127.0, 129.1, 131.4, 134.5, 136.2, 152.5, 

168.0. HRMS (ESI): m/z [M+H]+ calcd. for [C24H19N4O4]+ 427.1401, found 427.1399. C24H18N4O4 

(426.43). 

Warning: The hazards associated with the thermal decomposition of sodium hydride in 

N,N-dimethylformamide is well documented in the literature,51 therefore an upscaling of the described 

procedure is not recommended. 

 

4-(2-Aminoethyl)-1,2-diphenyl-1,2,4-triazolidine-3,5-dione (4.10).8, 14 4-(2-Phthalimidoethyl)-1,2-di-

phenyl-1,2,4-triazolidine-3,5-dione (4.9) (2.53 g, 5.93 mmol) was dissolved in a mixture of methanol 

(30 mL) and THF (60 mL). Under stirring, hydrazine hydrate 50-60% (4.90 g) was added and the 

reaction mixture was stirred at rt for 24 h. The solvent was evaporated and 1 N HCl (100 mL) was added 

and the reaction mixture was stirred at rt for 2.5 hours. The pH of the mixture was adjusted to 10 with 

1N NaOH (pH 10). After the product was extracted from the aqueous phase with CH2Cl2 (3x 150 mL), 

the combined organic phases were dried over Na2SO4 and the organic solvent was evaporated. Then, 

the residue was dissolved in ethanol (125 mL) and 1 N HCl in diethyl ether (20 mL) was added. The 

solid was separated by filtration and washed with light petroleum. The obtained hydrochloride was dried 

in vacuo and dissolved in a mixture of ammonium hydroxide (50 mL) and water (100 mL). The product 

was extracted from the aqueous phase with CH2Cl2 (3x 100 mL). The combined organic phases were 

dried over Na2SO4 and the organic solvent was evaporated. The solid was dried in vacuo to give 4.10 

as a yellowish solid (1.27 g, 4.27 mmol, 72%). 1H-NMR (400 MHz, DMSO-d6): δ (ppm) 2.36 (br s, 2H, 

interfering with solvent residual peak), 2.81 (t, J = 6.3 Hz, 2H), 3.56 (t, J = 6.3 Hz, 2H), 7.17-7.29 (m, 

2H), 7.32-7.49 (m, 8H). 13C-NMR (101 MHz, DMSO-d6): δ (ppm) 39.5 (overlaid from solvent residual 

peak), 42.9, 122.5, 126.6, 129.0, 136.6, 152.9. HRMS (ESI): m/z [M+Na]+ calcd. for [C16H16N4O2Na]+ 

319.1165, found 319.1163. C16H16N4O2 (296.33). 
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(S)-Nα[(9H-Fluoren-9-yl)methyloxycarbonyl]-Nω-2,3-dihydro-2,2,4,6,7-pentamethylbenzofuran-5-

sulfonyl-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamide (4.12).14, 17 Fmoc-

Arg(Pbf)-OH (4.11) (13.20 g, 20.3 mmol) was dissolved in DMF (180 mL), 1-ethyl-3-(3-dimethylamino-

propyl)carbodiimide hydrochloride (4.63 g, 24.2 mmol) and HOBt (3.26 g, 24.1 mmol) were added to the 

mixture. The reaction mixture was stirred for 5 min before the addition of 4-(2-aminoethyl)-1,2-diphenyl-

1,2,4-triazolidine-3,5-dione (4.10) (6.00 g, 20.2 mmol). After 1 day the reaction mixture was poured in 

ethyl acetate (750 mL) and washed three times with water (3x 1000 mL). The organic phase was dried 

over Na2SO4 and the organic solvent was evaporated. The crude product was purified by column 

chromatography (eluent: CH2Cl2/MeOH 90:10) to give 4.12 as a pale white solid (17.45 g, 18.8 mmol, 

93%). 1H-NMR (400 MHz, DMSO-d6): δ (ppm) 1.19-1.69 (m, 11H), 1.99 (s, 3H), 2.44 (s, 3H), 2.90-3.00 

(m, 4H), 3.28-3.52 (m, 4H), 3.58-3.69 (m, 2H), 3.84-3.94 (m, 1H), 4.16-4.34 (m, 3H), 6.41 (br s, 1H), 

6.56-7.07 (m, 2H), 7.15-7.26 (m, 2H), 7.28-7.47 (m, 13H), 7.66-7.77 (m, 2H), 7.88 (d, J = 7.87 Hz, 2H), 

8.18 (t, J = 5.8 Hz, 1H). 13C-NMR (101 MHz, DMSO-d6): δ (ppm) 12.3, 17.6, 19.0, 25.7, 29.1, 36.1, 

40.17, 40.28 (overlaid by solvent residual peak), 40.6, 42.5, 46.7, 54.4, 65.7, 86.3, 116.3, 120.1, 122.6, 

124.3, 125.3, 126.6, 127.1, 127.6, 129.0, 131.5, 136.6, 137.3, 140.7, 143.7, 143.9, 152.6, 155.9, 156.1, 

157.5, 172.2. HRMS (ESI): m/z [M+H]+ calcd. for [C50H55N8O8S]+ 927.3858, found 927.3891. 

C50H54N8O8S (927.09). 

 

(S)-Nω-2,3-Dihydro-2,2,4,6,7-pentamethylbenzofuran-5-sulfonyl-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-

triazolidin-4-yl)ethyl]argininamide (4.13).17 (S)-Nα[(9H-Fluoren-9-yl)methyloxycarbonyl]-Nω-2,3-di-

hydro-2,2,4,6,7-pentamethylbenzofuran-5-sulfonyl-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)-

ethyl]argininamide (4.12) (12.03 g, 13.0 mmol) was dissolved in DMF (32 mL) and piperidine (8 mL, 

81.0 mmol) was added and the reaction mixture was stirred at rt overnight. The reaction mixture was 

poured into water (1.5 L) and the product was extracted from the aqueous phase with ethyl acetate (3x 

400 mL). The combined organic phases were dried over Na2SO4 and the organic solvent was 

evaporated. The crude product was purified by column chromatography (eluent: CH2Cl2/MeOH/NH3 aq 

90:9:1) to give 4.13 as a white solid (8.31 g, 11.8 mmol, 91%). 1H-NMR (400 MHz, DMSO-d6): δ (ppm) 

1.16-1.25 (m, 1H), 1.29-1.53 (m, 10H), 1.69 (br s, 1H), 1.99 (s, 3H), 2.43 (br s, 3H), 2.48 (br s, 1H, 

interfering with solvent residual peak), 2.92-3.01 (m, 5H), 3.30-3.47 (m, 3H), 3.62 (t, J = 5.6 Hz, 2H), 

6.40 (br s, 1H), 6.64 (br s, 1H), 7.15-7.26 (m, 2H), 7.32-7.41 (m, 9H), 7.95 (s, 1H); 8.13 (t, J = 6.0 Hz, 

1H). 13C-NMR (101 MHz, DMSO-d6): δ (ppm) 12.3, 17.6, 19.0, 28.3, 31.9, 36.2, 40.2 (overlaid by solvent 

residual peak), 40.3 (overlaid by solvent residual peak) 42.5, 54.6, 86.3, 116.2, 122.6, 124.3, 126.6, 
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129.0, 131.4, 134.3, 136.6, 137.3, 152.8, 156.1, 157.4, 175.7. HRMS (ESI): m/z [M+Na]+ calcd. for 

[C35H44N8O6SNa]+ 727.2997, found 727.3003. C35H44N8O6S (704.85). 

 

(S)-2-(1-(2-((1-((2-(3,5-Dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl)amino)-1-oxo-5-(2-

((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-yl)amino)-2-

oxoethyl)cyclopentyl)acetic acid (4.15).17 (S)-Nω-2,3-Dihydro-2,2,4,6,7-pentamethylbenzofuran-5-

sulfonyl-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamide (4.13) (4.55 g, 6.46 mmol) 

was dissolved in CH2Cl2 (90 mL) and cooled with an ice bath. Under stirring, 3,3-tetramethyleneglutaric 

anhydride (4.14) (1.10 g, 6.54 mmol) in CH2Cl2 (90 mL) was slowly added dropwise and the mixture was 

stirred in an ice bath. After 2 h, the reaction mixture was allowed to warm to rt and stirred overnight. The 

solvent was evaporated, and the crude product was purified by column chromatography (eluent: 

CH2Cl2/MeOH 1:0 to 9:1) to give 4.15 as a white crystalline solid (5.56 g, 6.37 mmol, 99%). 1H-NMR 

(400 MHz, DMSO-d6): δ (ppm) 1.31-1.60 (m, 18H), 2.00 (s, 3H), 2.24-2.36 (m, 3H), 2.40-2.52 (m, 7H, 

interfering with solvent residual peak), 2.91-2.98 (m, 4H), 3.30-3.37 (m, 2H), 3.39-3.46 (m, 1H), 3.54-

3.72 (m, 2H), 4.09-4.21 (m, 1H), 6.40 (s, 1H), 6.62 (s, 1H), 7.13-7.25 (m, 2H), 7.29-7.45 (m, 8H), 7.90-

7.96 (m, 1H), 8.15 (t, J = 5.9 Hz, 1H), 12.11 (br s, 1H). 13C-NMR (101 MHz, DMSO-d6): δ (ppm) 17.6, 

19.0, 23.6, 28.3, 29.1, 31.9, 36.2, 37.1, 37.2, 39.5 (overlaid by solvent residual peak), 39.8 (overlaid by 

solvent residual peak), 42.4, 42.5, 43.1, 52.1, 54.6, 86.3, 116.3, 122.6, 124.3, 126.6, 129.0, 131.5, 

134.2, 136.6, 137.3, 152.6, 156.1, 157.5, 171.2, 172.0, 173.5. HRMS (ESI): m/z [M+H]+ calcd. for 

[C44H57N8O9S]+ 873.3964, found 873.3979. C44H56N8O9S (873.04). 

 

(S)-[2-(3,5-Dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamid bis(hydrotrifluoroacetate) 

(4.16).8 (S)-Nω-2,3-Dihydro-2,2,4,6,7-pentamethylbenzofuran-5-sulfonyl-[2-(3,5-dioxo-1,2-diphenyl-

1,2,4-triazolidin-4-yl)ethyl]argininamide (4.13) (310 mg, 0.440 mmol) was dissolved in a mixture of TFA 

and water (95:5, 4 mL) and stirred at rt for 24 h. The crude product was poured into a solution of 100 mL 

water. After lyophilisation, the crude product was purified by preparative HPLC (gradient: 0-30 min, A/B 

76:24–28:72, tR = 8 min), which afforded 4.16 as a fluffy white solid (210 mg, 0.309 mmol, 70%). 

1H-NMR (400 MHz, DMSO-d6): δ (ppm) 1.41-1.56 (m, 2H), 1.60-1.76 (m, 2H), 2.94-3.04 (m, 2H), 3.27-

3.40 (m, 1H), 3.56-3.74 (m, 4H), 3.93 (br s, 2H, interfering with surrounded peaks), 7.27-7.40 (br s, 2H, 

interfering with next two peaks), 7.20-7.27 (m, 2H), 7.37-7.40 (m, 8H), 7.92 (t, J = 5.5 Hz, 1H), 8.23 (br 

s, 3H), 8.83 (t, J = 5.8 Hz, 1H). 13C-NMR (101 MHz, DMSO-d6): δ (ppm) 23.9, 28.1, 36.3, 39.8 (overlaid 

by solvent residual peak), 40.5 (overlaid by solvent residual peak). 51.9, 115.5 (TFA), 118.5 (TFA), 
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122.7, 126.8, 129.1, 136.5, 152.6, 157.0, 158.9 (q, J = 32.1 Hz) (TFA), 168.9. HRMS (ESI): m/z [M+H]+ 

calcd. for [C22H29N8O3]+ 453.2357, found 453.2358. C22H28N8O3 × C4H2F6O4 (452.52 + 228.04). 

 

(2-Methoxyphenyl)(phenyl)methanol (4.19).52, 53 Compound 4.19 was prepared using general 

procedure A and the reactants Mg (1.09 g, 44.8 mmol), bromobenzene (4.6 mL, 43.9 mmol) and 

2-methoxybenzaldehyde (4.17) (4.90 g, 36.0 mmol). The crude product was purified by column 

chromatography (eluent: light petroleum/ethyl acetate 90:10) to give 4.19 as a yellow liquid (7.02 g, 

32.8 mmol, 91%). Anal. calcd. for C14H14O2∙0.1 H2O: C 77.83, H 6.62, found: C 77.82, H 6.51. 1H-NMR 

(400 MHz, DMSO-d6): δ (ppm) 3.75 (s, 3H), 5.66 (br s, 1H), 5.99 (s, 1H), 6.89-6.99 (m, 2H), 7.13-7.28 

(m, 4H), 7.30-7.35 (m, 2H), 7.44-7.52 (m, 1H). 13C-NMR (101 MHz, DMSO-d6): δ (ppm) 55.4, 67.8, 

110.7, 120.3, 126.47, 126.48, 126.5, 127.84, 127.85, 133.7, 145.4, 155.5. HRMS (EIC): m/z [M]∙+ calcd. 

for [C14H11O2]∙+ 214.0988, found 214.0990. C14H14O2 (214.26). 

 

(3-Methoxyphenyl)(phenyl)methanol (4.20).54 Compound 4.20 was prepared using general procedure 

A and the reactants Mg (0.96 g, 39.5 mmol), bromobenzene (4.0 mL, 38.2 mmol) and 

3-methoxybenzaldehyde (4.18) (3.7 mL, 30.4 mmol). The crude product was purified by column 

chromatography (eluent: light petroleum to CH2Cl2) to give 4.20 as an orange oil (4.71 g, 22.0 mmol, 

73%). Anal. calcd. for C14H14O2: C 78.48, H 6.59, found: C 78.08, H 6.45. 1H-NMR (300 MHz, 

DMSO-d6): δ (ppm) 3.72 (s, 3H), 5.68 (d, J = 3.5 Hz, 1H), 5.90 (d, J = 3.9 Hz, 1H), 6.74-6.80 (m, 1H), 

6.91-7.01 (m, 2H), 7.16-7.24 (m, 2H), 7.26-7.33 (m, 2H), 7.36-7.42 (m, 2H). 13C-NMR (75 MHz, 

DMSO-d6): δ (ppm) 55.0, 74.2, 111.87, 111.91, 118.5, 126.2, 126.7, 128.1, 129.2, 145.6, 147.4, 159.2. 

HRMS (EIC): m/z [M]∙+ calcd. for [C14H14O2]∙+ 214.0988, found 214.0983. C14H14O2 (214.26). 

 

1-((2-Methoxyphenyl)(phenyl)methyl)piperazine (4.21).55 Compound 4.21 was prepared using 

general procedure B and the reactants (2-methoxyphenyl)(phenyl)methanol (4.19) (0.53 g, 2.47 mmol), 

sulfuryl chloride (0.7 mL, 9.65 mmol) and piperazine (0.92 g, 10.7 mmol). The crude product was 

purified by column chromatography (eluent: CH2Cl2/MeOH/NH3 aq 90:9:1) to give 4.21 as a yellow oil 

(0.47 g, 1.66 mmol, 67%). 1H-NMR (300 MHz, DMSO-d6): δ (ppm) 2.05-2.35 (m, 4H), 2.58-2.85 (m, 5H), 

3.75 (s, 3H), 4.67 (s, 1H), 6.87-6.98 (m, 2H), 7.09-7.18 (m, 2H), 7.20-7.30 (m, 2H), 7.33-7.40 (m, 2H), 

7.53-7.59 (m, 1H). 13C-NMR (101 MHz, DMSO-d6): δ (ppm) 45.7, 52.9, 55.5, 66.8, 111.2, 120.6, 126.5, 

127.4, 127.5, 127.9, 128.2, 130.5, 142.6, 156.7. HRMS (ESI: m/z [M+H]+ calcd. for [C18H23N2O]+ 

283.1805, found 283.1814. C18H22N2O (282.39). 
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1-((3-Methoxyphenyl)(phenyl)methyl)piperazine (4.22). Compound 4.22 was prepared using general 

procedure B and the reactants (3-methoxyphenyl)(phenyl)methanol (4.20) (0.52 g, 2.43 mmol), sulfuryl 

chloride (0.7 mL, 9.65 mmol) and piperazine (0.80 g, 9.29 mmol). The crude product was purified by 

column chromatography (eluent: CH2Cl2/MeOH/NH3 aq 90:9:1) to give 4.22 as a yellow oil (0.51 g, 

1.81 mmol, 74%). 1H-NMR (300 MHz, DMSO-d6): δ (ppm) 2.17-2.32 (m, 4H), 2.71-2.81 (m, 4H), 3.56 

(br s, 1H), 3.70 (s, 3H), 4.21 (s, 1H), 6.70-6.77 (m, 1H), 6.90-7.02 (m, 2H), 7.14-7.22 (m, 2H), 7.25-7.32 

(m, 2H), 7.38-7.47 (m, 2H). 13C-NMR (75 MHz, DMSO-d6): δ (ppm) 45.3, 52.2, 54.9, 75.4, 111.8, 113.4, 

119.8, 126.8, 127.7, 128.5, 129.6, 142.6, 144.5, 159.3. HRMS (ESI): m/z [M+H]+ calcd. for [C18H23N2O]+ 

283.1805, found 283.1813. C18H22N2O (282.39). 

 

(2S)-Nα-(2-{1-[2-(4-((2-Methoxyphenyl)(phenyl)methyl)piperazin-1-yl)-2-oxoethyl]cyclopentyl}-

acetyl)[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamide bis(hydrotriflouro-

acetate) (4.23). Compound 4.23 was prepared using general procedure G and the reactants (S)-2-(1-(2-

((1-((2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl)amino)-1-oxo-5-(2-((2,2,4,6,7-pentamethyl-

2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-yl)amino)-2-oxoethyl)cyclo-pentyl)acetic acid 

(4.15) (109 mg, 118 µmol), EDC∙HCl (36 mg, 188 µmol), HOBt (17 mg, 126 µmol) and 1-((2-

methoxyphenyl)(phenyl)methyl)piperazine (4.21) (39 mg, 138 µmol). Purification by preparative HPLC 

A (gradient: 0-30 min, A/B 85:15–38:62, tR = 19 min) afforded 4.23 as a fluffy white solid (23 mg, 

21 µmol, 18%). Ratio of diastereomers evident in NMR spectra recorded in MeOH-d4: 1:1. 1H-NMR 

(600 MHz, MeOH-d4): δ (ppm) 1.47-1.82 (m, 13H), 2.26-2.31 (m, 1H), 2.50-2.58 (m, 2H), 2.58-2.64 (m, 

1H), 2.97-3.27 (m, 6H), 3.41-3.47 (m, 1H), 3.53-3.60 (m, 1H), 3.61-4.21 (m, 8H), 4.22-4.27 (m, 1H), 5.69 

(s, 0.5H), 5.70 (s, 0.5H), 7.05-7.09 (m, 1H), 7.12-7.15 (m, 1H), 7.19-7.24 (m, 2H), 7.30-7.36 (m, 4H), 

7.37-7.47 (m, 8H), 7.57-7.62 (m, 1H), 7.62-7.66 (m, 2H). 1H-NMR (600 MHz, DMSO-d6) 1.32-1.67 (m, 

13H), 2.16-2.27 (m, 1H), 2.30-2.40 (m, 1H), 2.41-2.48 (m, 2H, interfering with solvent residual peak), 

2.54-2.67 (m, 2H), 2.67-3.25 (m, 6H), 3.27-3.32 (m, 1H), 3.35-3.39 (m, 1H), 3.54-3.65 (m, 3H), 3.83 (s, 

3H), 4.11-4.15 (m, 1H), 5.75 (br s, 1H), 6.89-7.14 (m, 4H), 7.19-7.26 (m, 3H), 7.27-7.50 (m, 14H), 7.50-

7.62 (m, 2H), 7.63-7.77 (m, 2H), 7.93 (d, J = 7.9 Hz, 1H), 8.20 (t, J = 5.7 Hz, 1H). 13C-NMR (150 MHz, 

MeOH-d4): 24.58, 24.62 (two carbon signals), 26.32, 26.34, 30.07, 30.12, 38.21, 38.24, 39.1, 39.2, 39.3, 

39.46, 39.49, 40.0, 41.18, 41.23, 41.9, 43.8, 44.31, 44.34, 45.59, 45.63, 52.50, 52.77, 52.86, 52.94, 

54.0, 54.1, 56.35, 56.37, 72.3, 72.4, 113.3, 117.1 (TFA), 119.0 (TFA), 122.81, 122.83, 123.52, 123.56, 

124.30, 124.32, 128.2 (2 carb.), 129.6, 129.7, 129.99, 130.04, 130.2, 130.64, 130.66, 130.74, 132.27, 

132.28, 135.50, 135.53, 137.67, 137.69, 154.5, 157.76, 157.78, 158.6, 162.4 (TFA), 162.6 (TFA), 
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172.93, 172.95, 174.68, 174.73, 174.74. RP-HPLC (220 nm): 100% (tR = 13.8 min, k = 4.4). HRMS 

(ESI): m/z [M+H]+ calcd. for [C49H61N10O6]+ 885.4770, found 885.4773. C49H60N10O6 × C4H2F6O4 (885.08 

+ 228.04). 

 

(2S)-Nα-(2-{1-[2-(4-((3-Methoxyphenyl)(phenyl)methyl)piperazin-1-yl)-2-oxoethyl]cyclopentyl}-

acetyl)[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamide bis(hydrotriflouro-

acetate) (4.24). Compound 4.24 was prepared using general procedure G and the reactants (S)-2-(1-

(2-((1-((2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl)amino)-1-oxo-5-(2-((2,2,4,6,7-penta-

methyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-yl)amino)-2-oxoethyl)cyclopentyl)-

acetic acid (4.15) (104 mg, 112 µmol), EDC∙HCl (24 mg, 125 µmol), HOBt (28 mg, 207 µmol) and 1-((3-

methoxyphenyl)(phenyl)methyl)piperazine (4.22) (34 mg, 120 µmol). Purification by preparative HPLC 

A (gradient: 0-30 min, A/B 66:34–47:53, tR = 16 min) afforded 4.23 as a fluffy white solid (16 mg, 

14 µmol, 13%). 1H-NMR (600 MHz, MeOH-d4): δ (ppm) 1.42-1.81 (m, 13H), 2.25-2.31 (m, 1H), 2.50-

2.64 (m, 3H), 2.93-3.11 (m, 4H), 3.12-3.23 (m, 2H), 3.41-3.47 (m, 1H), 3.54-3.61 (m, 1H), 3.67-3.98 (m, 

8H), 4.22-4.27 (m, 1H), 5.29 (s, 1H), 6.95-7.01 (m, 1H), 7.18-7.25 (m, 4H), 7.32-7.44 (m, 10H), 7.45-

7.50 (m, 2H), 7.60-7.70 (m, 2H). 1H-NMR (600 MHz, DMSO-d6) 1.32-1.69 (m, 13H), 2.19-2.28 (m, 1H), 

2.31-2.40 (m, 1H), 2.44-2.49 (m, 2H, interfering with solvent residual peak), 2.54-2.65 (m, 2H), 2.68-

3.22 (m, 5H), 3.27-3.33 (m, 1H), 3.35-3.43 (m, 1H), 3.44-3.72 (m, 4H), 3.75 (m, 3H), 4.11-4.17 (m, 1H), 

5.51 (br s, 1H), 6.78-7.27 (m, 7H), 7.28-7.50 (m, 14H), 7.50-7.74 (m, 4H), 7.95 (d, J = 8.0 Hz, 1H), 8.21 

(t, J = 5.6 Hz, 1H). 13C-NMR (150 MHz, MeOH-d4) 24.60, 24.63, 25.2, 26.3, 26.6, 27.0, 30.1, 38.2, 38.6 

(two carbon signals), 39.26, 39.28, 39.4, 39.5, 39.90, 39.92, 40.5, 40.9, 41.2, 41.9, 42.0, 44.1, 44.4, 

45.4, 45.6, 52.9, 53.1, 54.0, 54.2, 55.9, 76.8, 114.93, 114.97, 115.81, 115.85, 117.0 (TFA), 118.9 (TFA), 

151.15, 121.18, 124.34, 124.35, 124.5, 128.1, 128.3, 129.3 (2 carb.), 130.1, 130.2, 130.7, 130.8, 132.0 

(2 carb.), 136.1, 137.6, 137.7, 154.5, 158.6, 162.1, 162.3 (TFA), 162.5 (TFA), 172.4, 172.9, 174.1, 

174.69, 174.72. RP-HPLC (220 nm): 100% (tR = 14.2 min, k = 4.5). HRMS (ESI): m/z [M+H]+ calcd. for 

[C49H61N10O6]+ 885.4770, found 885.4779. C49H60N10O6 × C4H2F6O4 (885.08 + 228.04). 

 

1-((4-Methoxyphenyl)(phenyl)methyl)piperazine (4.26). 4-Methoxybenzophenon (4.25) (1.02 g, 

4.81 mmol) was dissolved in CH2Cl2 (30 mL) and the mixture was cooled in an ice bath. Under stirring, 

titanium tetrachloride (0.60 mL, 5.47 mmol) in CH2Cl2 (6 mL) was dropped into the mixture. Then, 

piperazine (1.63 g, 18.9 mmol) was added to the reaction mixture, which was allowed to warm to rt and 

stirred for 3 h. Sodium cyanoborohydride (0.36 g, 5.73 mmol) in methanol (10 mL) was dropped slowly 
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to the reaction mixture, which was stirred at rt overnight. After addition of 1 N NaOH (50 mL) the reaction 

mixture was stirred for 3 h and the precipitated solid was separated by filtration. The compound was 

extracted from the aqueous phase with ethyl acetate (3x 100 mL) and the combined organic phases 

were dried over Na2SO4 and the solvent was evaporated. The crude product was purified by column 

chromatography (eluent: CH2Cl2/MeOH/NH3 aq 90:9:1) to give 4.26 as a yellow oil (0.31 g, 1.10 mmol, 

23%). 1H-NMR (400 MHz, DMSO-d6): δ (ppm) 2.15-2.31 (m, 4H), 2.66-2.78 (m, 4H), 3.22 (br s, 1H), 

3.69 (s, 3H), 4.18 (s, 1H), 6.81-7.19 (m, 2H), 7.12-7.19 (m, 1H), 7.23-7.33 (m, 4H), 7.35-7.42 (m, 2H). 

13C-NMR (101 MHz, DMSO-d6): δ (ppm) 45.5, 52.6, 54.9, 75.0, 113.8, 126.6, 127.5, 128.4, 128.7, 134.7, 

143.2, 158.0. HRMS (ESI): m/z [M+H]+ calcd. for [C18H23N2O]+ 283.1805, found 283.1807. C18H22N2O 

(282.39). 

 

(2S)-Nα-(2-{1-[2-(4-((4-Methoxyphenyl)(phenyl)methyl)piperazin-1-yl)-2-oxoethyl]cyclopentyl}-

acetyl)[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamide bis(hydrotriflouro-

acetate) (4.27). 2-(1-(2-(4-((4-Methoxyphenyl)(phenyl)methyl)piperazin-1-yl)-2-oxoethyl)cyclopentyl)-

acetic acid (4.28) (29.4 mg, 64.4 µmol), EDC∙HCl (20.0 mg, 104 µmol) and HOBt (10.8 mg, 79.9 µmol) 

were dissolved in DMF (1 mL) and the reaction mixture was stirred at rt for 5 min. Under stirring, (S)-[2-

(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamid bis(hydrofluoroacetate) (4.16) (45.5 mg, 

66.9 µmol) and DIPEA (22 µL, 126 µmol) in DMF (1 mL) were added into the reaction mixture, which 

was stirred at rt overnight. Then, the reaction mixture was poured into an aqueous solution (5% 

acetonitrile, 0.1% TFA) before purification by preparative HPLC A (gradient: 0-30 min, A/B 76:24–47:53, 

tR = 13 min) afforded 4.27 as a fluffy white solid (43 mg, 39 µmol, 61%). 1H-NMR (600 MHz, MeOH-

d4): δ (ppm) 1.46-1.83 (m, 13H), 2.27-2.33 (m, 1H), 2.50-2.56 (m, 2H), 2.57-2.66 (m, 1H), 2.83-2.91 (m, 

1H), 2.96-3.12 (m, 4H), 3.14-3.25 (m, 2H), 3.41-3.47 (m, 1H), 3.52-3.60 (m, 1H), 3.72-3.83 (m, 6H), 

3.87-3.97 (m, 1H), 4.23-4.27 (m, 1H), 5.32 (s, 1H, two singlets falling together, because two 

diastereomers were evident in the spectra), 6.98-7.02 (m, 2H), 7.19-7.24 (m, 2H), 7.30-7.36 (m, 4H), 

7.37-7.43 (m, 5H), 7.45-7.50 (m, 2H), 7.55-7.60 (m, 2H), 7.64-7.68 (m, 2H). 1H-NMR (600 MHz, DMSO-

d6) 1.34-1.69 (m, 13H), 2.16-2.28 (m, 1H), 2.31-2.43 (m, 1H), 2.44-2.49 (m, 2H, interfering with solvent 

residual peak), 2.53-2.62 (m, 2H, interfering with solvent residual peak), 2.76-3.18 (m, 5H), 3.28-3.33 

(m, 1H), 3.35-3.41 (m, 1H), 3.43-3.63 (m, 4H), 3.73 (s, 3H), 4.11-4.17 (m, 1H), 5.49 (br s, 1H), 6.84-

7.68 (m, 25H), 7.94 (d, J = 7.5 Hz, 1H), 8.16-8.25 (m, 1H). 13C-NMR (150 MHz, MeOH-d4) 24.57, 24.61, 

24.7, 26.3 (two carbon signals), 30.1 (2 carb.), 36.9, 38.2, 39.2, 39.27 (2 carb.), 39.31, 39.43, 39.9 (2 

carb.), 41.2, 41.8, 43.9, 44.3, 45.6, 52.66, 52.69, 52.9 (2 carb.), 54.0 (2 carb.), 55.9, 76.5 (2 carb.), 

111.5, 116.1, 117.1 (TFA), 119.0 (TFA), 124.1, 124.3 (2 carb.), 127.30, 127.33, 128.3, 129.13, 129.14, 

130.2, 130.5, 130.8 (2 carb.), 130.99, 131.01, 136.1 (2 carb.), 137.64, 137.66, 154.45, 154.47, 158.59, 

158.64, 162.0, 162.4 (TFA), 162.7 (TFA), 162.9 (TFA), 172.9, 174.70, 174.71. RP-HPLC (220 nm): 96% 
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(tR = 14.1 min, k = 4.5). HRMS (ESI): m/z [M+H]+ calcd. for [C49H61N10O6]+ 885.4770, found 885.4776. 

C49H60N10O6 × C4H2F6O4 (885.08 + 228.04). 

 

2-(1-(2-(4-((4-Methoxyphenyl)(phenyl)methyl)piperazin-1-yl)-2-oxoethyl)cyclopentyl)acetic acid 

(4.28). 1-((4-Methoxyphenyl)(phenyl)methyl)piperazine (4.26) (0.55 g, 1.95 mmol) was dissolved in 

CH2Cl2 (7 mL) and the mixture was cooled with an ice bath. Under stirring, 3,3-tetramethyleneglutaric 

anhydride (4.14) (0.36 g, 2.14 mmol) in CH2Cl2 (4 mL) was added dropwise to the mixture over a time 

period of 5 min. The reaction mixture was allowed to warm to rt and stirred overnight at rt. The solvent 

was evaporated, and the crude product purified by column chromatography (eluent: CH2Cl2/MeOH 

90:10) to obtain 4.28 as a yellowish solid (0.70 g, 1.55 mmol, 79%). 1H-NMR (400 MHz, 

DMSO-d6): δ (ppm) 1.49-1.59 (m, 8H), 2.20-2.28 (m, 4H), 2.43 (s, 2H), 2.48 (s, 2H, interfering with 

solvent residual peak), 3.43-3.50 (m, 4H), 3.69 (s, 3H), 4.24 (s, 1H), 6.83-7.21 (m, 2H), 7.15-7.21 (m, 

1H), 7.25-7.34 (m, 4H), 7.38-7.43 (m, 2H), 11.99 (br s, 1H). 13C-NMR (101 MHz, DMSO-d6): δ (ppm) 

24.0, 37.9, 41.4, 42.2, 43.5, 45.9, 51.8, 52.3, 55.5, 74.6, 114.4, 127.2, 127.9, 129.0, 129.1, 134.9, 143.4, 

158.6, 170.0, 174.0. HRMS (ESI): m/z [M+Na]+ calcd. for [C27H34N2O4Na]+ 473.2411, found 473.2409. 

C27H34N2O4 (450.58). 

 

1-Benzhydrylpiperazine (4.30).56 Diphenylmethanol 4.29 (0.42 g, 2.28 mmol), Et3N (0.90 mL, 

6.48 mmol) were dissolved in CH2Cl2 (10 mL) and the mixture was stirred in an ice bath. Under stirring, 

methanesulfonyl chloride (250 µL, 3.23 mmol) was added into the reaction mixture. After stirring for 3 h 

the reaction mixture was poured into NaOH (1 N, 20 mL). The product was extracted from the aqueous 

phase with CH2Cl2 (3x 20 mL). Then, the combined organic phases were dried over Na2SO4, the organic 

solvent was evaporated, and the residue was dissolved in acetonitrile (10 mL). Piperazine (0.76 g, 

8.82 mmol) was added to the reaction mixture. The reaction was stirred microwave assisted for 30 min 

at 70 °C. The solvent was evaporated, and the crude product was purified by column chromatography 

(eluent: CH2Cl2/MeOH/NH3 aq 90:9:1) to give 4.30 as an oil (0.30 g, 1.19 mmol, 52%). 1H-NMR 

(400 MHz, DMSO-d6): δ (ppm) 2.12-2.33 (m, 4H), 2.41 (br s, 1H), 2.64-2.80 (m, 4H), 4.24 (s, 1H), 7.13-

7.20 (m, 2H), 7.24-7.32 (m, 4H), 7.36-7.44 (m, 4H). 13C-NMR (101 MHz, DMSO-d6): δ (ppm) 45.5, 52.6, 

75.7, 126.7, 127.6, 128.4, 142.8. HRMS (ESI): m/z [M+H]+ calcd. for [C17H21N2]+ 253.1699, found 

253.1717. C17H20N2 (252.36). 
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tert-Butyl piperazine-1-carboxylate (4.31).57 Piperazine (4.42 g, 51.3 mmol) was dissolved in CH2Cl2 

(100 mL) and Boc2O (3.20 g, 14.7 mmol) in CH2Cl2 (50 mL) was added dropwise to the solution. The 

reaction mixture was stirred at rt overnight and the solvent was evaporated. The residue was dissolved 

in water (200 mL) and the precipitate was separated by filtration. Then, the compound was extracted 

from the aqueous phase with CH2Cl2 (3x 150 mL), the combined organic phases were dried over 

Na2SO4. The organic solvent was evaporated to obtain 4.31 as an amorphous white solid (3.82 g, 

20.5 mmol, 40%). 1H-NMR (400 MHz, DMSO-d6): δ (ppm) 1.38 (s, 9H), 2.53-2.82 (m, 4H), 3.10-3.16 (br 

s, 1H), 3.17-3.26 (m, 4H). 13C-NMR (101 MHz, DMSO-d6): δ (ppm) 28.1, 45.4, 50.8, 78.5, 153.9. HRMS 

(ESI): m/z [M+H]+ calcd. for [C9H19N2O2]+ 187.1441, found 187.1439. C9H18N2O2 (186.26). 

 

(2S)-Nα-(2-{1-[2-(Piperazin-1-yl)-2-oxoethyl]cyclopentyl}acetyl)[2-(3,5-dioxo-1,2-diphenyl-1,2,4-

triazolidin-4-yl)ethyl]argininamide bis(hydrotriflouroacetate) (4.32). Compound 4.32 was prepared 

using general procedure G and the reactants (S)-2-(1-(2-((1-((2-(3,5-dioxo-1,2-diphenyl-1,2,4-

triazolidin-4-yl)ethyl)amino)-1-oxo-5-(2-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)-

guanidino)pentan-2-yl)amino)-2-oxoethyl)cyclopentyl)acetic acid (4.15) (54.2 mg, 58.5 µmol), EDC∙HCl 

(14.7 mg, 76.7 µmol), HOBt (14.7 mg, 108.8 µmol) and tert-butyl piperazine-1-carboxylate (4.31) 

(10.9 mg, 58.5 µmol). Purification by preparative HPLC B (gradient: 0-30 min, A/B 81:19–38:62, 

tR = 12 min) afforded 4.32 as a fluffy white solid (19.9 mg,21.7 µmol, 37%). 1H-NMR (600 MHz, 

DMSO-d6): δ (ppm) 1.35-1.68 (m, 12H), 2.25 (d, J = 13.7 Hz, 1H), 2.37 (d, J = 13.7 Hz, 1H), 2.47-2.49 

(m, 1H, interfering with solvent residual peak), 2.62 (d, J = 15.5 Hz, 1H), 2.95-3.14 (m, 6H), 3.29-3.36 

(m, 1H), 3.39-3.41 (m, 1H, overlaid by the water signal), 3.57-3.63 (m, 3H), 3.65-3.73 (m, 3H), 4.13-4.18 

(m, 1H), 6.96-7.54 (m, 14H), 7.77 (t, J = 5.5 Hz, 1H), 7.89 (d, J = 8.0 Hz, 1H), 8.21 (t, J = 6.1 Hz, 1H), 

9.08 (br s, 2H). 13C-NMR (150 MHz, DMSO-d6): δ (ppm) 23.36, 23.41, 25.1, 28.9, 36.2, 37.3, 37.6, 37.8, 

38.8, 39.6 (overlaid by solvent residual peak), 40.4, 42.4, 42.5, 42.7, 42.9, 43.8, 52.0, 117.1 (q, 

J = 298 Hz) (TFA), 122.7, 126.7, 129.1, 136.6, 152.6, 156.8, 158.7 (q, J = 31.6 Hz) (TFA), 170.4, 171.4, 

172.0. RP-HPLC (220 nm): 97.9% (tR = 10.4 min, k = 3.1). HRMS (ESI): m/z [M+H]+ calcd. for 

[C35H49N10O5]+ 689.3882, found 689.3885. C35H48N10O5 × C4H2F6O4 (688.83 + 228.04). 

 

tert-Butyl (5-hydroxypentyl)carbamate (4.34).58 5-Aminopentanol (4.33) (5.02 g, 48.7 mmol) and, 

Et3N (8.5 mL, 61.3 mmol) were dissolved in CH2Cl2 (200 mL). The mixture was stirred in an ice bath. 

Under stirring, Boc2O (13.05 g, 59.8 mmol) in CH2Cl2 (50 mL) was added dropwise into the mixture. 

After 1 h the reaction mixture was allowed to warm to rt and stirred overnight. The organic phase was 
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washed twice with a saturated solution of NaHCO3 (2x 200 mL), water (1x 200 mL) and brine (1x 

200 mL). The organic phase was dried over Na2SO4 and the organic solvent was evaporated. The crude 

product was purified by column chromatography (eluent: light petroleum/ethyl acetate 2:1) to give 4.34 

as a colourless oil (7.26 g, 35.7 mmol, 73%). Anal. calcd. for C10H21NO3∙0.2 H2O: C 58.06, H 10.43, N 

6.77, found: C 58.24, H 9.96, N 6.59 1H-NMR (400 MHz, DMSO-d6): δ (ppm) 1.68-1.29 (m, 2H), 1.29-

1.45 (m, 13H), 2.88 (d, J = 6.8 Hz, 2H), 3.35-3.39 (m, 2H, interfering with water signal), 4.33 (t, 

J = 5.0 Hz, 1H), 6.73 (t, J = 5.0 Hz, 1H). 13C-NMR (101 MHz, DMSO-d6): δ (ppm) 22.8, 28.3, 29.4, 32.2, 

39.9 (overlaid by solvent residual peak) 60.7, 77.3, 155.6. HRMS (ESI): m/z [M+Na]+ calcd. for 

[C10H21NO3Na]+ 226.1414, found 226.1412. C10H21NO3 (203.28). 

 

tert-Butyl (5-bromopentyl)carbamate (4.35).59 tert-Butyl (5-hydroxypentyl)carbamate (4.34) (1.00 g, 

4.92 mmol) and, PPh3 (1.93 g, 7.36 mmol) were dissolved in THF (15 mL) and the mixture was stirred 

in an ice bath. Under stirring, carbon tetrabromide (2.56 g, 7.72 mmol) in THF (15 mL) was added 

dropwise to the reaction mixture. After 4 h additional PPh3 (1.93 g, 7.36 mmol) and carbon tetrabromide 

(2.47 g, 7.45 mmol) were added and the reaction mixture was stirred at rt over night. The solvent was 

evaporated, and the crude product was purified by column chromatography (eluent: light petroleum/ethyl 

acetate 2:1) to give 4.34 as a light brown oil (1.21 g, 4.55 mmol, 92%). 1H NMR (400 MHz, 

DMSO-d6): δ (ppm) 1.32-1.43 (m, 13H), 1.74-1.86 (m, 2H), 2.86-2.94 (m, 2H), 3.50 (t, J = 6.7 Hz, 2H), 

6.70-6.80 (m, 1H). 13C NMR (101 MHz, DMSO-d6): δ (ppm) 24.8, 28.2, 28.6, 31.9, 35.0, 39.9 (overlaid 

by solvent residual peak), 77.3, 155.6. HRMS (ESI): m/z [M+H]+ calcd. for [C10H21BrNO2]+ 266.0750, 

found 266.0747. C10H20BrNO2 (266.18). 

 

(2-Methoxyphenyl)(phenyl)methanone (4.40). (2-Methoxyphenyl)(phenyl)methanol (4.19) (0.99 g, 

4.62 mmol) and Et3N (3.25 mL, 23.3 mmol) were dissolved in DMSO (20 mL). Under stirring, pyridine-

sulfur trioxide complex (3.79 g, 23.8 mmol) in DMSO (40 mL) was added dropwise into the mixture. 

Then, the reaction mixture was poured in water (800 mL). The product was extracted from the aqueous 

phase with ethyl acetate (3x 200 mL), the combined organic phases were dried over Na2SO4 and the 

organic solvent was evaporated. The crude product was purified by column chromatography (eluent: 

light petroleum/ethyl acetate 90:10) to give 4.40 as an oil (0.38 g, 1.79 mmol, 39%). Anal. calcd. for 

C14H12O2∙H2O: C 78.56, H 5.74, found: C 78.47, H 5.94. 1H-NMR (300 MHz, DMSO-d6): δ (ppm) 3.66 

(s, 3H), 7.05-7.11 (m, 1H), 7.15-7.21 (m, 1H), 7.29-7.35 (m, 1H), 7.46-7.55 (m, 3H), 7.59-7.67 (m, 1H), 

7.67-7.73 (m, 2H). 13C-NMR (75 MHz, DMSO-d6): δ (ppm) 55.5, 112.0, 120.6, 128.4, 128.6, 128.7, 

129.2, 132.0, 133.2, 137.1, 156.6, 195.7. HRMS (EIC): m/z [M]∙+ calcd. for [C14H12O2]∙+ 212.0832, found 

212.0831. C14H12O2 (212.25). 

  



 
Synthesis, pharmacological characterization and application of the fluorescent 

(S)-argininamide-type hY2R antagonist UR-jb264 (4.58) 
 

116 
 

 

(3-Methoxyphenyl)(phenyl)methanone (4.41). PCC (2.07 g, 9.60 mmol) was suspended in CH2Cl2 

(75 mL) and (2-methoxyphenyl)(phenyl)methanol (4.20) (0.99 g, 9.33 mmol) in CH2Cl2 (20 mL) was 

added dropwise to the reaction mixture. The reaction mixture was monitored by TLC and after 2 h PCC 

(0.86 g, 3.99 mmol) was added. After completion, the reaction mixture was filtered through a pad of 

silica gel. The filtrate was evaporated, and the crude product was purified by column chromatography 

(eluent: light petroleum/ethyl acetate 90:10) to give 4.41 as an oil (1.58 g, 7.44 mmol, 80%). 1H-NMR 

(300 MHz, DMSO-d6): δ (ppm) 3.81 (s, 3H), 7.21-7.29 (m, 3H), 7.43-7.50 (m, 1H), 7.51-7.59 (m, 2H), 

7.63-7.78 (m, 3H). 13C-NMR (75 MHz, DMSO-d6): δ (ppm) 55.5, 114.3, 118.8, 122.4, 128.8, 129.8, 

129.9, 133.0, 137.1, 138.5, 159.4, 195.8. HRMS (EIC): m/z [M]∙+ calcd. for [C14H13O2]∙+ 212.0832, found 

212.0830. C14H12O2 (212.25). 

 

(2-Hydroxyphenyl)(phenyl)methanone (4.42). Compound 4.42 was prepared using general 

procedure C and the reactant (2-methoxyphenyl)(phenyl)methanone (4.40) (0.89 g, 4.19 mmol). 4.42 

was obtained as an oil (0.83 g, 4.19 mmol, 100%). Anal. calcd. for C13H10O2∙H2O: C 78.06, H 5.14, 

found: C 78.15, H 5.17. 1H-NMR (300 MHz, DMSO-d6): δ (ppm) 6.90-7.04 (m, 2H), 7.32-7.40 (m, 1H), 

7.41-7.57 (m, 3H), 7.60-7.68 (m, 1H), 7.68-7.75 (m, 2H), 10.49 (s, 1H). 13C-NMR (75 MHz, 

DMSO-d6): δ (ppm) 116.8, 119.1, 124.3, 128.5, 129.2, 130.6, 132.8, 133.5, 137.4, 157.3, 197.8. HRMS 

(EIC): m/z [M+H]+ calcd. for [C13H11O2]+ 199.0754, found 199.0762. C13H10O2 (198.22). 

 

(3-Hydroxyphenyl)(phenyl)methanone (4.43). Compound 4.43 was prepared using general 

procedure C and the reactant (3-methoxyphenyl)(phenyl)methanone (4.41) (0.76 g, 3.58 mmol). 4.43 

was obtained as a grey solid (0.67 g, 3.38 mmol, 94%). Anal. calcd. for C13H10O2∙0.1 H2O: C 78.06, H 

5.14, found: C 78.10, H 5.23. 1H-NMR (300 MHz, DMSO-d6): δ (ppm) 7.03-7.10 (m, 1H), 7.11-7.18 (m, 

2H), 7.31-7.42 (m. 1H), 7.50-7.62 (m, 2H), 7.63-7.78 (m, 3H), 9.86 (s, 1H). 13C-NMR (75 MHz, 

DMSO-d6): δ (ppm) 116.0, 119.9, 120.6, 128.5, 129.5, 129.7, 132.6, 137.3, 138.3, 157.4, 195.8. HRMS 

(EIC): m/z [M]∙+ calcd. for [C13H10O2]∙+ 198.0675, found 198.0676. C13H10O2 (198.22). 

 

tert-Butyl (5-(2-benzoylphenoxy)pentyl)carbamate (4.44). Compound 4.44 was prepared using 

general procedure D and the reactants (2-hydroxyphenyl)(phenyl)methanone (4.42) (0.15 g, 

0.76 mmol), K2CO3 (0.37 g, 2.68 mmol) and tert-butyl (5-bromopentyl)(methyl)carbamate (4.35) (0.75 g, 

2.67 mmol). The crude product was purified by column chromatography (eluent: light petroleum/ethyl 
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acetate 9:1 to 8:2) to give 4.44 as an orange oil (0.44 g, 1.11 mmol, 49%). Anal. calcd. for C23H29NO4: 

C 72.04, H 7.62, N 3.65, found: C 72.08, H 7.62, N3.20. 1H-NMR (400 MHz, DMSO-d6): δ (ppm) 0.80-

0.93 (m, 2H), 1.08-1.20 (m, 2H), 1.25-1.33 (m, 2H), 1.36 (s, 9H), 2.67-2.78 (m, 2H), 3.86 (t, J = 6.1 Hz, 

2H),6.68 (t, J = 5.4 Hz, 1H), 7.02-7.17 (m, 2H), 7.32-7.38 (m, 1H), 7.44-7.56 (m, 3H), 7.58-7.69 (m, 3H). 

13C-NMR (101 MHz, DMSO-d6): δ (ppm) 22.4, 28.1, 28.3, 29.0, 39.6 (overlaid by solvent residual peak), 

67.6, 77.3, 112.7, 120.6, 128.51, 128.53, 128.9, 129.0, 132.3, 133.0, 137.8, 155.5, 156.3, 196.2. HRMS 

(ESI): m/z [M+H]+ calcd. for [C23H30NO4]+ 384.2169, found 384.2174. C23H29NO4 (383.49). 

 

tert-Butyl (5-(3-benzoylphenoxy)pentyl)carbamate (4.45). Compound 4.45 was prepared using 

general procedure D and the reactants (3-hydroxyphenyl)(phenyl)methanone (4.43) (0.49 g, 

2.47 mmol), K2CO3 (0.70 g, 5.06 mmol) and tert-butyl (5-bromopentyl)carbamate 4.35 (0.69 g, 

18.1 mmol). The crude product was purified by column chromatography (eluent: light petroleum/ethyl 

acetate 8:2) to give 4.45 as a yellow oil (0.45 g, 1.17 mmol, 47%). 1H-NMR (400 MHz, 

DMSO-d6): δ (ppm) 1.36 (s, 9H), 1.37-1.48 (m, 4H), 1.66-1.77 (m, 2H), 2.88-2.96 (m, 2H), 3.97-4.03 (m, 

2H), 6.78 (t, J = 5.5 Hz, 1H), 7.19-7.28 (m, 3H), 7.42-7.49 (m, 1H), 7.52-7.60 (m, 2H), 7.64-7.70 (m, 1H), 

7.71-7.77 (m, 2H). 13C-NMR (101 MHz, DMSO-d6): δ (ppm) 22.8, 28.3 (two carbon signals), 29.2, 40.1 

(overlaid by solvent residual peak), 67.6, 77.3, 114.7, 119.0, 122.0, 128.5, 129.6, 129.7, 132.7, 137.0, 

138.4, 155.6, 158.6, 195.5. HRMS (ESI): m/z [M+Na]+ calcd. for [C23H29NO4Na]+ 406.1989, found 

406.1993. C23H29NO4 (383.49). 

 

tert-Butyl (5-(2-(hydroxy(phenyl)methyl)phenoxy)pentyl)carbamate (4.46). Compound 4.46 was 

prepared using general procedure E and the reactants tert-butyl (5-(2-benzoylphenoxy)pentyl)-

carbamate (4.44) (0.45 g, 1.17 mmol) and NaBH4 (0.095 g, 2.51 mmol). The crude product was purified 

by column chromatography (eluent: light petroleum/ethyl acetate 7:3) to give 4.46 as a yellow oil (0.25 g, 

0.65 mmol, 56%). 1H-NMR (400 MHz, DMSO-d6): δ (ppm) 1.30-1.46 (m, 13H), 1.63-1.73 (m, 2H), 2.87-

2.96 (m, 2H), 3.90 (t, J = 6.1 Hz, 2H), 5.61 (d, J = 4.3 Hz, 1H), 5.96 (d, J = 4.3 Hz, 1H), 6.78 (t, 

J = 5.4 Hz, 1H), 6.87-6.97 (m, 2H), 7.12-7.20 (m, 2H), 7.22-7.28 (m, 2H), 7.30-7.35 (m, 2H), 7.50-7.55 

(m, 1H). 13C-NMR (101 MHz, DMSO-d6): δ (ppm) 23.0, 28.3, 28.5, 29.2, 39.9 (overlaid by solvent 

residual peak), 67.4, 68.2, 77.4, 111.3, 120.1, 126.3, 126.47, 126.50, 127.75, 127.79, 133.7, 145.4, 

154.8, 155.6. HRMS (ESI): m/z [M+Na]+ calcd. for [C23H31NO4Na]+ 408.2145, found 408.2151. 

C23H31NO4 (385.50). 

 

tert-Butyl (5-(3-(hydroxy(phenyl)methyl)phenoxy)pentyl)carbamate (4.47). Compound 4.47 was 

prepared using general procedure E and the reactants (tert-butyl (5-(3-benzoylphenoxy)pentyl)-
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carbamate (4.45) (0.45 g, 1.17 mmol and NaBH4 (95 mg, 2.51 mmol). The crude product was purified 

by column chromatography (eluent: light petroleum/ethyl acetate 7:3) to give 4.47 as a yellow oil (0.25 g, 

0.65 mmol, 56%). Anal. calcd. for C23H31NO4: C 71.66, H 8.11, N 3.63, found: C 71.59, H 7.86, N 3.41. 

1H-NMR (300 MHz, DMSO-d6): δ (ppm) 1.31-1.36 (m, 1H), 1.37 (s, 9H, interfering with surrounded 

signals), 1.38-1.49 (m, 3H), 1.60-1.74 (m, 2H), 2.86-2.99 (m, 2H), 3.89 (t, J = 6.4 Hz, 2H), 5.64 (d, 

J = 4.1 Hz, 1H), 5.86 (d, J = 4.1 Hz, 1H), 6.70-6.77 (m, 1H), 6.80 (t, J = 5.5 Hz, 1H), 6.88-6.95 (m, 2H), 

7.14-7.24 (m, 2H), 7.25-7.33 (m, 2H), 7.34-7.41 (m, 2H). 13C-NMR (75 MHz, DMSO-d6): δ (ppm) 22.9, 

28.3, 28.4, 29.3, 67.2, 74.1, 77.3, 112.35, 112.37, 118.4, 126.4, 126.7, 128.0, 129.1, 145.7, 147.4, 

155.6, 158.5. One aliphatic carbon signal was not apparent (overlaid by solvent residual peak). HRMS 

(ESI): m/z [M+Na]+ calcd. for [C23H31NO4Na]+ 408.2145, found 408.2146. C23H31NO4 (385.50). 

 

tert-Butyl (5-(2-(phenyl(piperazin-1-yl)methyl)phenoxy)pentyl)carbamate (4.48). Compound 4.48 

was prepared using general procedure F and the reactants tert-butyl (5-(2-(hydroxy(phenyl)methyl)-

phenoxy)pentyl)carbamate (4.46) (180 mg, 0.467 mmol), Et3N (150 µL, 1.08 mmol), methanesulfonyl 

chloride (100 µL, 1.29 mmol) and piperazine (165 mg, 1.92 mmol). The crude product was purified by 

column chromatography (eluent: CH2Cl2/MeOH/NH3 aq 90:9:1) to give 4.48 as a yellow oil (140 mg, 

0.31 mmol, 66%). 1H-NMR (400 MHz, DMSO-d6): δ (ppm) 1.34-1.48 (m, 13H), 1.68-1.79 (m, 2H), 2.11-

2.34 (m, 4H), 2.61-2.83 (m, 4H), 2.92-2.99 (m, 2H), 3.82-3.95 (m, 2H), 4.67 (s, 1H), 6.76-6.85 (m, 1H), 

6.86-6.98 (m, 2H), 7.08-7.19 (m, 2H), 7.22-7.29 (m, 2H), 7.30-7.39 (m, 2H), 7.49-7.61 (m, 1H). One 

exchangeable proton signal (NH-piperazine) was not apparent. 13C-NMR (101 MHz, DMSO-d6): δ (ppm) 

23.1, 28.3, 28.5, 29.2, 40.38 (overlaid by solvent residual peak), 45.0, 46.1, 52.7, 67.5, 77.3, 111.9, 

120.4, 126.6, 127.4, 127.5, 128.0, 128.2, 130.4, 142.4, 155.6, 165.1. HRMS (ESI): m/z [M+Na]+ calcd. 

for [C27H39N3O3Na]+ 476.2884, found 476.2900. C27H39N3O3 (453.63). 

 

tert-Butyl (5-(3-(phenyl(piperazin-1-yl)methyl)phenoxy)pentyl)carbamate (4.49). Compound 4.49 

was prepared using general procedure F and the reactants tert-butyl (5-(3-(hydroxy(phenyl)methyl)-

phenoxy)pentyl)carbamate (4.47) (170 mg, 0.441 mmol), Et3N (150 µL, 1.08 mmol), methanesulfonyl 

chloride (50 µL, 0.646 mmol) and piperazine (167 mg, 1.94 mmol). The crude product was purified by 

column chromatography (eluent: CH2Cl2/MeOH/NH3 aq 90:9:1) to give 4.49 as a yellow oil (96 mg, 

0.212 mmol, 48%). 1H-NMR (400 MHz, DMSO-d6): δ (ppm) 1.33-1.44 (m, 13H), 1.62-1.71 (m, 2H), 2.18-

2.35 (m, 4H), 2.41 (br s, 1H), 2.74-2.98 (m, 6H), 3.84-3.92 (m, 2H), 4.23 (s, 1H), 6.68-6.75 (m, 1H), 

6.75-6.81 (m, 1H), 6.91-7.00 (m, 2H), 7.13-7.21 (m, 2H), 7.24-7.32 (m, 2H), 7.35-7.45 (m, 2H). 13C-NMR 

(101 MHz, DMSO-d6): δ (ppm) 22.9, 28.3, 28.4, 29.3, 44.9, 51.5, 67.2, 75.2, 77.3, 112.3, 113.8, 119.7, 

126.9, 127.6, 128.5, 129.6, 142.5, 144.2, 155.6, 158.7. One aliphatic carbon signal was not apparent 
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(overlaid by solvent residual peak). HRMS (ESI): m/z [M+Na]+ calcd. for [C27H39N3O3Na]+ 476.2884, 

found 476.2879. C27H39N3O3 (453.63). 

 

(2S)-Nα-(2-{1-[2-(4-((2-((5-Aminopentyl)oxy)phenyl)(phenyl)methyl)piperazin-1-yl)-2-oxoethyl]-

cyclopentyl}acetyl)[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamide tris(hydro-

triflouroacetate) (4.50). Compound 4.50 was prepared using general procedure G and the reactants 

(S)-2-(1-(2-((1-((2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl)amino)-1-oxo-5-(2-((2,2,4,6,7-

pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-yl)amino)-2-oxoethyl)cyclo-

pentyl)acetic acid (4.15) (70 mg, 76 µmol), EDC∙HCl (20 mg, 104 µmol), HOBt (10 mg, 74 mmol) and 

tert-butyl (5-(2-(phenyl(piperazin-1-yl)methyl)phenoxy)pentyl)carbamate (4.48) (30 mg, 66 µmol). 

Purification by preparative HPLC A (gradient: 0-30 min, A/B 84:16–38:62, tR = 14 min) gave 4.50 as a 

fluffy white solid (16 mg, 12 µmol, 18%). Ratio of diastereomers evident in NMR spectra recorded in 

MeOH-d4: 1:1. 1H-NMR (600 MHz, MeOH-d4): δ (ppm) 1.45-1.81 (m, 17H), 1.83-1.94 (m, 2H), 2.27-2.33 

(m, 1H), 2.48-2.58 (m, 2H), 2.59-2.67 (m, 1H), 2.88-3.10 (m, 5H), 3.11-3.28 (m, 2H), 3.34-3.41 (m, 1H), 

3.42-3.48 (m, 1H), 3.50-3.57 (m, 1H), 3.71-4.03 (m, 5H), 4.03-4.16 (m, 1H), 4.11-4.16 (m, 1H), 4.21-

4.26 (m, 1H), 5.74 (s, 0.5H), 5.75 (s, 0.5H), 7.06-7.13 (m, 2H), 7.19-7.24 (m, 2H), 7.31-7.36 (m, 4H), 

7.36-7.48 (m, 8H), 7.59-7.64 (m, 2H), 7.75-7.80 (m, 1H). 1H-NMR (600 MHz, DMSO-d6) 1.33-1.65 (m, 

17H), 1.70-1.79 (m, 2H), 2.18-2.25 (m, 1H), 2.28-2.37 (m, 1H), 2.38-2.47 (m, 1H), 2.53-2.61 (m, 1H), 

2.75-2.83 (m, 2H), 2.94-3.02 (m, 2H), 3.26-3.32 (m, 1H), 3.34-3.39 (m, 1H), 3.49-3.79 (m, 5H), 3.88-

4.18 (m, 7H), 5.59 (br s, 1H), 6.83-7.54 (m, 23H), 7.62-7.78 (m, 2H), 7.82 (s, 3H), 7.96 (d, J = 7.8 Hz, 

1H), 8.21 (t, J = 5.5 Hz, 1H). 13C-NMR (150 MHz, MeOH-d4): δ (ppm) 23.9, 24.0, 24.57, 24.63 (two 

carbon signals), 26.31, 26.32, 28.23, 28.25, 29.54, 29.56, 30.01, 30.05, 38.25, 38.28, 39.2, 39.3, 39.36, 

39.38, 39.4, 39.9, 40.0, 40.6, 40.7, 41.15, 41.19, 41.8, 44.0, 44.29, 44.31, 45.59, 45.63, 52.7, 52.8, 53.0 

(2 carb.), 54.07, 54.11, 69.12, 69.13, 70.3, 70.4, 69.12, 69.14, 70.29, 70.43, 113.8, 118.1 (q, J = 293 Hz) 

(TFA), 122.4 (2 carb.), 123.8, 124.22, 124.24, 128.20, 128.22, 128.53, 128.58, 130.0, 130.1, 130.2, 

130.5 (2 carb.), 160.6 (2 carb.), 131.86, 131.89, 135.4, 137.65, 137.67, 154.5, 157.27, 157.31, 158.61, 

158.66, 162.7 (q, J = 35.0 Hz) (TFA), 172.91, 172.92, 174.7 (2 carb.), 174.8. RP-HPLC (220 nm): 97% 

(tR = 11.4 min, k = 3.4). HRMS (ESI): m/z [M+H]+ calcd. for [C53H70N11O6]+ 956.5505, found 956.5507. 

C53H69N11O6 × C6H3F9O6 (956.21 + 342.07). 
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(2S)-Nα-(2-{1-[2-(4-((3-((5-Aminopentyl)oxy)phenyl)(phenyl)methyl)piperazin-1-yl)-2-oxoethyl]-

cyclopentyl}acetyl)[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamide tris(hydro-

triflouroacetate) (4.51). Compound 4.51 was prepared using general procedure G and the reactants 

(S)-2-(1-(2-((1-((2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl)amino)-1-oxo-5-(2-((2,2,4,6,7-

pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-yl)amino)-2-oxoethyl)cyclo-

pentyl)acetic acid (4.15) (71 g, 77 µmol), EDC∙HCl (24 mg, 125 µmol), HOBt (18 mg, 133.2 µmol) and 

tert-butyl (5-(3-(phenyl(piperazin-1-yl)methyl)phenoxy)pentyl)carbamate (4.49) (34 mg, 75 µmol). 

Purification by preparative HPLC A (gradient: 0-35 min, A/B 66:34–47:53, tR = 8 min) gave 4.51 as a 

fluffy white solid (16 mg, 12 µmol, 16%). 1H-NMR (600 MHz, MeOH-d4): δ (ppm) 1.45-1.88 (m, 19H), 

2.26-2.31 (m, 1H), 2.49-2.56 (m, 2H), 2.58-2.63 (m, 1H), 2.91-3.12 (m, 6H), 3.13-3.25 (m, 2H), 3.42-

3.49 (m, 1H), 3.53-3.61 (m, 1H), 3.72-4.14 (m, 7H), 4.23-4.26 (m, 1H), 5.28 (s, 1H), 6.94-6.98 (m, 1H), 

7.16-7.24 (m, 3H), 7.28-7.30 (m, 1H), 7.31-7.43 (m, 10H), 7.45-7.49 (m, 2H), 7.66-7.70 (m, 2H). 1H-NMR 

(600 MHz, DMSO-d6): δ (ppm) 1.32-1.67 (m, 17H), 1.68-1.75 (m, 2H), 2.20-2.26 (m, 1H), 2.33-2.39 (m, 

1H), 2.43-2.48 (m, 1H), 2.55-2.64 (m, 1H), 2.64-2.94 (m, 5H), 2.94-3.06 (m, 3H), 3.26-3.36 (m, 1H), 

3.34-3.41 (m, 1H), 3.42-3.88 (m, 5H), 3.89-3.99 (m, 2H), 4.09-4.18 (m, 1H), 4.86 (br s, 1H), 6.78-7.44 

(m, 22H), 7.56 (br s, 2H), 7.67-7.72 (m, 1H), 7.78 (br s, 3H), 7.93-7.98 (m, 1H), 8.21 (t, J = 5.9 Hz, 1H). 

13C-NMR (150 MHz, MeOH-d4): δ (ppm) 24.1 (two carbon signals), 24.58 (2 carb.), 24.62, 26.3, 28.3, 

29.7 (2 carb.), 30.1, 38.2, 39.2, 39.4 (2 carb.), 39.9, 40.6, 41.2 (2 carb.), 41.9, 44.1 (2 carb.), 44.3 (2 

carb.), 45.64, 45.65, 52.8, 53.1, 54.0, 68.8, 76.9, 114.82, 114.85, 116.57, 116.60, 117.1 (TFA), 119.0 

(TFA), 121.46, 121.50, 124.3, 128.3, 129.3 (2 carb.), 130.2, 130.6, 130.7, 131.9, 136.2, 137.7, 154.5, 

158.6, 158.7, 161.4, 162.5 (TFA), 162.7 (TFA), 172.9, 174.7. RP-HPLC (220 nm): 100% (tR = 11.8 min, 

k = 3.6). HRMS (ESI): m/z [M+H]+ calcd. for [C53H70N11O6]+ 956.5505, found 956.5514. C53H69N11O6 × 

C6H3F9O6 (956.21 + 342.07). 

 

(4-Hydroxyphenyl)(phenyl)methanone (4.52). Compound 4.52 was prepared using general 

procedure C and the reactant (4-methoxyphenyl)(phenyl)methanone (4.25) (2.04 g, 9.61 mmol). 4.52 

was obtained as a rose solid (183 g, 9.23 mmol, 96%). 1H-NMR (300 MHz, DMSO-d6): δ (ppm) 6.86-

6.95 (m, 2H), 7.48-7.57 (m, 2H), 7.58-7.72 (m, 5H), 10.45 (s, 1H). 13C-NMR (75 MHz, 

DMSO-d6): δ (ppm) 115.3, 127.9, 128.4, 129.2, 131.8, 132.5, 138.1, 162.0, 194.3. HRMS (EIC): m/z 

[M]∙+ calcd. for [C13H10O2]∙+ 198.0675, found 198.0678. C13H10O2 (198.22). 
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tert-Butyl (5-(4-benzoylphenoxy)pentyl)carbamate (4.53). Compound 4.53 was prepared using 

general procedure D and the reactants (4-hydroxyphenyl)(phenyl)methanone (4.52) (0.16 g, 

0.81 mmol), K2CO3 (0.24 g, 1.74 mmol) and tert-butyl (5-bromopentyl)carbamate (4.35) (0.45 g, 

1.70 mmol). The crude product was purified by column chromatography (eluent: light petroleum/ethyl 

acetate 2:1) to give 4.53 as a yellow oil (0.22 g, 0.57 mmol, 70%). Anal. calcd. for C23H29NO4: C 72.04, 

H 7.62, N 3.65, found: C 71.75, H 7.23, N 3.43. 1H-NMR (300 MHz, DMSO-d6): δ (ppm) 1.37 (s, 9H), 

1.38-1.48 (m, 4H), 1.66-1.79 (m, 2H), 2.87-2.99 (m, 2H), 4.05 (t, J = 6.4 Hz, 2H), 6.81 (t, J = 5.5 Hz, 

1H), 7.02-7.13 (m, 2H), 7.49-7.59 (m, 2H), 7.61-7.77 (m, 5H). 13C-NMR (75 MHz, DMSO-d6): δ (ppm) 

22.8, 28.2, 28.3, 29.2, 39.7 (overlaid by solvent residual peak), 67.9, 77.3, 114.3, 128.4, 129.19, 129.24, 

132.1, 132.2, 137.8, 155.6, 162.5, 194.4. HRMS (ESI): m/z [M+H]+ calcd. for [C23H30NO4]+ 384.2169, 

found 384.2169. C23H29NO4 (383.49). 

 

tert-Butyl (5-(4-(hydroxy(phenyl)methyl)phenoxy)pentyl)carbamate (4.54). Compound 4.54 was 

prepared using general procedure E and the reactants (tert-butyl (5-(3-benzoylphenoxy)-

pentyl)carbamate (4.53) (100 mg, 0.26 mmol) and NaBH4 (25 mg, 0.66 mmol). The crude product was 

purified by column chromatography (eluent: light petroleum/ethyl acetate 7:3) to give 4.54 as a yellow 

oil (100 mg, 0.26 mmol, 100%). 1H-NMR (300 MHz, DMSO-d6): δ (ppm) 1.01-1.46 (m. 13H), 1.61-1.73 

(m, 2H), 2.86-2.96 (m, 2H), 3.89 (t, J = 6.4 Hz, 2H), 5.63 (s, 1H), 5.76 (s, 1H), 6.77-6.87 (m, 3H), 7.16-

7.37 (m, 7H). 13C-NMR (75 MHz, DMSO-d6): δ (ppm) 22.9, 28.3, 28.4, 29.2, 40.1 (overlaid by solvent 

residual peak), 67.3, 73.8, 77.3, 113.9, 126.1, 126.6, 127.4, 128.0, 137.7, 146.0, 155.6, 157.5. HRMS 

(ESI): m/z [M+Na]+ calcd. for [C32H31NO4Na]+ 408.2145, found 408.2153. C23H31NO4 (385.50). 

 

tert-Butyl (5-(4-(phenyl(piperazin-1-yl)methyl)phenoxy)pentyl)carbamate (4.55). Compound 4.55 

was prepared using general procedure F and the reactants tert-butyl (5-(4-(hydroxy(phenyl)methyl)-

phenoxy)pentyl)carbamate (4.54) (100 mg, 0.259 mmol), Et3N (100 µL, 0.720 mmol), methanesulfonyl 

chloride (20 µL, 0.258 mmol) and piperazine (160 mg, 1.86 mmol). The crude product was purified by 

column chromatography (eluent: CH2Cl2/MeOH/NH3 aq. 90:9:1) to give 4.55 as a yellow oil (57 mg, 

0.126 mmol, 49%). 1H-NMR (300 MHz, DMSO-d6): δ (ppm) 1.29-1.44 (m, 13H), 1.58-1.73 (m, 2H), 2.14-

2.35 (m, 4H), 2.63-2.79 (m, 4H), 2.85-2.97 (m, 2H), 3.87 (t, J = 6.3 Hz, 2H), 4.16 (s, 1H), 6.77-6.83 (m, 

3H), 7.11-7.19 (m, 1H), 7.21-7.33 (m, 4H), 7.34-7.44 (m, 2H). Exchangeable proton signal (NH-

piperazine) was not apparent. 13C-NMR (75 MHz, DMSO-d6): δ (ppm) 22.9, 28.3, 28.4, 29.2, 45.6, 52.7, 

67.2, 75.0, 77.3, 114.3, 126.6, 127.5, 128.4, 128.7, 134.6, 143.3, 155.6, 157.5. One aliphatic carbon 
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signal was not apparent (overlaid by solvent residual peak). HRMS (ESI): m/z [M+H]+ calcd. for 

[C27H40N3O3]+ 454.3064, found 454.3064. C27H39N3O3 (453.63). 

 

2-(1-(2-(4-((4-((5-((tert-Butoxycarbonyl)amino)pentyl)oxy)phenyl)(phenyl)methyl)piperazin-1-yl)-

2-oxoethyl)cyclopentyl)acetic acid (4.56). tert-Butyl (5-(4-(phenyl(piperazin-1-yl)methyl)phenoxy)-

pentyl)carbamate (4.55) (23 mg, 50.7 µmol) was dissolved in CH2Cl2 (5 mL) and the mixture was stirred 

in an ice bath. Under stirring, 3,3-tetramethylene-glutaric anhydride (4.14) (8.53 mg, 50.7 µmol) in 

CH2Cl2 (1 mL) was added dropwise to the mixture over a time period of 5 min. The reaction mixture was 

allowed to warm to rt and stirred overnight at rt. The solvent was evaporated, and the crude product was 

purified by column chromatography (eluent: CH2Cl2/MeOH 90:10) to give 4.56 as an oil (30.4 mg, 

48.8 µmol, 96%). 1H-NMR (400 MHz, DMSO-d6): δ (ppm) 1.29-1.40 (m, 12H), 1.42-1.48 (m, 3H), 1.49-

1.58 (m, 8H), 2.18-2.29 (m, 4H), 2.42 (s, 2H), 2.48 (s, 2H, interfering with solvent residual peak), 2.86-

2.95 (m, 2H), 3.40-3.53 (m, 4H), 3.88 (t, J = 6.2 Hz, 2H), 4.23 (s, 1H), 6.74-6.80 (m, 1H), 6.81-6.87 (m, 

2H), 7.14-7.22 (m, 1H), 7.25-7.33 (m, 4H), 7.38-7.44 (m, 2H), 11.98 (br s, 1H). 13C-NMR (101 MHz, 

DMSO-d6): δ (ppm) 22.8, 23.6, 28.4, 29.2, 36.8, 37.5, 36.8, 37.5, 39.7 (overlaid by solvent residual 

peak), 40.9, 43.0, 45.4, 67.2, 74.1, 77.3, 114.4, 126.7, 127.4, 128.5, 128.7, 134.2, 143.0, 155.6, 157.6, 

167.6, 169.6. HRMS (ESI): m/z [M+Na]+ calcd. for [C36H51N3O6Na]+ 644.3670, found 644.3669. 

C36H51N3O6 (621.82). 

 

(2S)-Nα-(2-{1-[2-(4-((3-((5-(4-((1E,3E)-4-(4-(Dimethylamino)phenyl)buta-1,3-dien-1-yl)-2,6-dimethyl

pyridinio)pentyl)oxy)phenyl)(phenyl)methyl)piperazin-1-yl)-2-oxoethyl]cyclopentyl}acetyl)[2-

(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamide bis(hydrotriflouroacetate) tri-

fluoroacetate (4.58). Compound 4.58 was prepared using general procedure H and the reactants 4.50 

(4.21 mg, 3.24 µmol), DIPEA (2.1 µL, 12.3 µmol) and 2.77 (3.77 mg, 10.3 µmol). Purification by 

preparative HPLC B (gradient: 0-30 min, A/B 76:24–38:62, tR = 20 min) afforded 4.58 as a fluffy red solid 

(0.954 mg, 0.611 µmol, 19%). RP-HPLC (Method A, 220 nm): 95% (tR = 14.6 min, k = 4.7). HRMS (ESI): 

m/z [M]∙+ calcd. for [C72H89N12O6]∙+ 1217.7023, found 1217.7021. C72H89N12O6
+ × C4H2F6O2 × C2F3O2

- 

(1218.58 + 228.04 + 112.02). 
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(2S)-Nα-(2-{1-[2-(4-((3-((5-(4-((1E,3E)-4-(4-(Dimethylamino)phenyl)buta-1,3-dien-1-yl)-2,6-dimethyl

pyridinio)pentyl)oxy)phenyl)(phenyl)methyl)piperazin-1-yl)-2-oxoethyl]cyclopentyl}acetyl)[2-

(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamide bis(hydrotriflouroacetate) tri-

fluoroacetate (4.59). Compound 4.59 was prepared using general procedure H and the reactants 4.51 

(4.06 mg, 3.12 µmol), DIPEA (2.2 µL, 12.9 µmol) and 2.77 (4.50 mg, 12.3 µmol). Purification by 

preparative HPLC B (gradient: 0-35 min, A/B 85:15–38:62, tR = 23 min) afforded 4.59 as a fluffy red solid 

(2.192 mg, 1.40 µmol, 45%). RP-HPLC (Method A, 220 nm): 95% (tR = 15.3 min, k = 5.0). HRMS (ESI): 

m/z [M]∙+ calcd. for [C72H89N12O6]∙+ 1217.7023, found 1217.7027. C72H89N12O6
+ × C4H2F6O2 × C2F3O2

- 

(1218.58 + 228.04 + 112.02). 

 

(2S)-Nα-(2-{1-[2-(4-((2-((5-(2,6-Dimethyl-4-(1E)-(2-(2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinoli

n-9-yl)vinyl)pyridinio)pentyl)oxy)phenyl)(phenyl)methyl)piperazin-1-yl)-2-oxoethyl]cyclopentyl}

acetyl)[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamide bis(hydrotriflouro-

acetate) trifluoroacetate (4.61). Compound 4.61 was prepared using general procedure H and the 

reactants 4.50 (4.01 mg, 3.09 µmol), DIPEA (2.2 µL, 12.9 µmoL) and 4.60 (3.01 mg, 7.65 µmol). 

Purification by preparative HPLC B (gradient: 0-35 min, A/B 85:15–38:62, tR = 27 min) afforded 4.61 as 

a fluffy red solid (2.19 mg, 1.38 µmol, 45%). RP-HPLC (Method A, 220 nm): 92% (tR = 15.8 min, k = 

5.2). HRMS (ESI): m/z [M]∙+ calcd. for [C74H91N12O6]∙+ 1243.7179, found 1243.7187. C74H91N12O6
+ × 

C4H2F6O2 × C2F3O2
- (1244.62 + 228.04 + 112.02). 
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(2S)-Nα-(2-{1-[2-(4-((3-((5-(2,6-Dimethyl-4-(1E)-(2-(2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinoli

n-9-yl)vinyl)pyridinio)pentyl)oxy)phenyl)(phenyl)methyl)piperazin-1-yl)-2-oxoethyl]cyclopentyl}

acetyl)[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamide bis(hydrotriflouro-

acetate) trifluoroacetate (4.62). Compound 4.62 was prepared using general procedure H and the 

reactants 4.51 (4.30 mg, 3.31 µmol), DIPEA (2.4 µL, 14.1 µmol) and 4.60 (2.70 mg, 6.87 µmol). 

Purification by preparative HPLC B (gradient: 0-35 min, A/B 85:15–38:62, tR = 28 min) afforded 4.62 as 

a fluffy red solid (0.817 mg, 0.515 µmol, 16%). RP-HPLC (Method A, 220 nm): 91% (tR = 16.8 min, k = 

5.5). HRMS (ESI): m/z [M]∙+ calcd. for [C74H91N12O6]∙+ 1243.7179, found 1243.7179. C74H91N12O6
+ × 

C4H2F6O2 × C2F3O2
- (1244.62 + 228.04 + 112.02). 

 

5H-Dibenzo[b,e]azepine-6,11-dione (4.64).14 Anthraquinone (4.63) (25.2 g, 121 mmol) and sodium 

azide (9.70 g, 149 mmol) were suspended in chloroform (250 mL) and cooled in an ice bath. Under 

stirring, conc. H2SO4 (72 mL) was added dropwise to the suspension. The reaction mixture was refluxed 

overnight. Then, the reaction mixture was allowed to cool to rt and added carefully to a potassium 

carbonate solution (900 mL, 10%). Consecutively, the aqueous solution was basified with ammonium 

hydroxide and a solid precipitated. The precipitate was separated by decantation and methanol (320 mL) 

was added. Then, the solid was separated by filtration and washed with Et2O. The crude product was 

purified by recrystallization from hot acetic acid. The solid was dried in vacuo (60 °C) to obtain 4.64 as 

a white solid (16.0 g, 71.6 mmol, 59%). Anal. calcd. for C14H9NO2∙0.2 H2O: C 74.13, H 4.18, N 6.18, 

found: C 74.58, H 4.13, N 6.11. 1H-NMR (300 MHz, DMSO-d6): δ (ppm) 7.17-7.26 (m, 1H), 7.31-7.37 

(m, 1H), 7.54-7.63 (m, 1H), 7.68-7.75 (m, 1H), 7.77-7.86 (m, 3H), 8.13-8.21 (m, 1H), 11.13 (br s, 1H). 

13C-NMR (75 MHz, DMSO-d6): δ (ppm) 120.4, 123.8, 128.2, 129.3, 129.6, 130.2, 131.2, 132.96, 133.13, 

133.8, 136.7, 138.2, 165.5, 192.5. HRMS (ESI): m/z [M+H]+ calcd. for [C14H10NO2]+ 224.0706; found 

224.0709. C14H9NO2 (223.23). 

 

11-Hydroxy-5,11-dihydro-6H-dibenzo[b,e]azepin-6-one (4.65).14, 60 5H-dibenzo[b,e]azepine-6,11-di-

one (4.64) (9.51 g, 42.6 mmol) was suspended in ethanol (500 mL). Under stirring, sodium borohydride 

(4.12 g, 108.9 mmol) was added portionwise to the suspension and the reaction mixture was refluxed 
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for 3 h. The volume of the organic solvent was reduced by evaporation to 150 mL and then poured into 

a saturated solution of ammonium chloride (400 mL). The aqueous solution was neutralized with conc. 

HCl. The precipitated solid was collected by filtration, washed with water (1x 100 mL), methanol (1x 

100 mL) and light petroleum (100 mL). The solid was dried in vacuo to give 4.65 as a white solid (7.90 g, 

35.1 mmol, 82%). Anal. calcd. for C14H11NO2: C 74.65, H 4.92, N 6.22, found: C 74.37, H 5.03, N 6.08. 

1H-NMR (300 MHz, DMSO-d6): δ (ppm) 5.67 (s, 1H), 6.39 (br s, 1H), 7.04-7.26 (m, 3H), 7.28-7.42 (m, 

1H), 7.45-7.83 (m, 4H), 10.53 (s, 1H). 13C-NMR (75 MHz, DMSO-d6): δ (ppm) 67.2, 120.8 (two carbon 

signals), 121.4, 122.7, 124.2, 127.1 (3 carb.), 129.5, 131.7, 134.3, 145.3, 167.9. HRMS (ESI): m/z 

[M+H]+ calcd. for [C14H12NO2]+ 226.0863, found 226.0865. C14H11NO2 (225.08). 

 

11-Chloro-5,11-dihydro-6H-dibenzo[b,e]azepin-6-one (4.66).14, 60 11-Hydroxy-5,11-dihydro-6H-

dibenzo[b,e]azepin-6-one (4.65) (7.01 g, 31.1 mmol) was suspended in chloroform (175 mL). Under 

stirring, thionyl chloride (10.0 mL, 137.8 mmol) was slowly added dropwise into the mixture. The reaction 

mixture was refluxed for 1.5 h. Then, the reaction mixture was allowed to cool to rt and the volume of 

the organic solvent was reduced and light petroleum (250 mL) was added. The precipitated solid was 

collected by filtration, washed with light petroleum (3x 100 mL) and dried in vacuo to give 4.66 as a white 

solid (7.16 g, 29.4 mmol, 95%). Anal. calcd. for C14H10ClNO: C 69.00, H 4.14, N 5.75, found: C 68.89, 

H 4.21, N 5.53. 1H-NMR (300 MHz, DMSO-d6): δ (ppm) 6.58 ( s, 1H), 7.08-7.17 (m, 1H), 7.19-7.26 (m, 

1H), 7.31-7.41 (m, 1H), 7.45-7.63 (m, 4H), 7.85-7.93 (m, 1H), 10.86 (br s, 1H). 13C-NMR (75 MHz, 

DMSO-d6): δ (ppm) 63.2, 121.7, 124.1, 126.5, 128.5, 129.4, 129.96, 129.98, 131.4, 131.5, 132.3, 136.7, 

140.3, 167.1. C14H10ClNO (243.69). 

 

11-(Piperazin-1-yl)-5,11-dihydro-6H-dibenzo[b,e]azepin-6-one (4.67).14, 61 11-Chloro-5,11-dihydro-

6H-dibenzo[b,e]azepin-6-one (4.66) (6.50 g, 26.6 mmol) was dissolved in dioxane (130 mL). Under 

stirring, piperazine (11.48 g, 133 mmol) in dioxane (250 mL) was added dropwise into the reaction 

mixture, which was heated at 60 °C while stirring for 2 h. Then, the reaction mixture was allowed to cool 

to rt, the solvent was evaporated, and the residue was dissolved in water (200 mL). The compound was 

extracted from the aqueous phase with CH2Cl2 (3x 200 mL). The combined organic phases were dried 

over Na2SO4 and the organic solvent was evaporated. The product was purified by column 

chromatography (eluent: CH2Cl2/MeOH/NH3 aq 90:9:1) to give 4.67 as a pale yellow crystalline solid 

(6.03 g, 20.5 mmol, 77%). 1H-NMR (400 MHz, DMSO-d6): δ (ppm) 1.97-2.04 (m, 4H), 2.51-2.61 (m, 4H, 

interfering with solvent residual peak), 4.16 (s, 1H), 7.00-7.08 (m, 2H), 7.17-7.24 (m, 1H), 7.29-7.40 (m, 

3H), 7.42-7.48 (m, 1H), 7.67-7.73 (m, 1H), 10.33 (br s, 1H). One exchangeable proton signal (NH-

piperazine) was not apparent. 13C-NMR (101 MHz, DMSO-d6): δ (ppm) 45.2, 51.9, 74.7, 121.2, 123.6, 
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127.69, 127.75, 128.2, 129.9, 130.4, 131.2, 131.4, 131.7, 136.2, 142.5, 168.2. HRMS (ESI): m/z [M+H]+ 

calcd. for [C18H19N3ONa]+ 316.1420, found 316.1418. C18H19N3O (293.37). 

 

2-Cyanoacetamide (4.69).62 Under stirring, ethyl cyanoacetate (4.68) (10.7 mL, 101 mmol) was added 

dropwise into an ice bath cooled solution of ammonium hydroxide (100 mL) and stirred for 2 h. The 

precipitated solid was separated by filtration and the obtained solid was washed with ice-cold ethanol 

(3x 10 mL). The solid was dried in vacuo and compound 4.69 was obtained as a white solid (4.58 g, 

54.5 mmol, 54%). 1H-NMR (300 MHz, DMSO-d6): δ (ppm) 3.58 (s, 2H), 7.33 (br s, 1H), 7.64 (br s, 1H). 

13C-NMR (75 MHz, DMSO-d6): δ (ppm) 25.4, 116.4, 164.2. HRMS (ESI): m/z [M+H]+ calcd. for 

[C3H5N2O]+ 85.0396, found 85.0400. C3H4N2O (84.08). 

 

Ethyl 2-cyano-2-cyclohexylideneacetate (4.71).63 Cyclohexanone (4.70) (5.5 mL, 53.2 mmol), ethyl 

cyanoacetate (4.68) (7.0 mL, 65.6 mmol), acetic acid (0.6 mL, 9.52 mmol) and NH4CH3COO (0.47 g, 

6.10 mmol) were dissolved in toluene (100 mL) and heated under reflux (Dean-Stark apparatus) for 7 h. 

The organic solvent was washed with water (2x 100 mL) and with a saturated NaHCO3 solution 

(100 mL). The organic solvent was dried over Na2SO4, evaporated and dried in vacuo to give 4.71 as a 

yellowish liquid (10.28 g, 53.2 mmol, 100%). 1H-NMR (400 MHz, DMSO-d6): δ (ppm) 1.25 (t, J = 7.1 Hz, 

3H), 1.56-1.69 (m, 4H), 1.69-1.77 (m, 2H), 2.57-2.66 (m, 2H), 2.89-2.97 (m, 2H), 4.22 (q, J = 7.1 Hz, 

2H). 13C-NMR (101 MHz, DMSO-d6): δ (ppm) 13.8, 24.9, 27.8, 28.1, 30.9, 36.2, 61.4, 161.4, 180.2. 

HRMS (EIC): m/z [M]∙+ calcd. for [C11H15NO2]∙+ 193.1097, found 193.1102. C11H15NO2 (193.25). 

 

2,4-Dioxo-3-azaspiro[5.5]undecane-1,5-dicarbonitrile (4.72).64 A solution of sodium ethoxide was 

freshly prepared. Sodium (0.46 g, 20 mmol) was added to a three-neck flask and ethanol (50 mL) was 

added dropwise carefully. After the reaction between sodium and ethanol was completed, 

2-cyanoacetamide (4.69) (0.48 g, 5.71 mmol) was added to the solution. The reaction mixture was 

heated under reflux for 30 min. Under stirring, ethyl 2-cyano-2-cyclohexylideneacetate (4.71) (1.00 g, 

5.17 mmol) was added and the reaction mixture was stirred and heated under reflux for 4 h. Then, the 

reaction mixture was allowed to cool to rt, the solvent was evaporated, and the residue was dissolved 

in diluted hydrochloric acid (HCl conc./water 1:5). The precipitated solid was collected by filtration and 

dried in vacuo. Compound 4.72 was obtained after recrystallization from chloroform as a white solid 

(0.450 g, 1.95 mmol, 38%). 1H-NMR (400 MHz, DMSO-d6): δ (ppm) 1.35-1.44 (m, 2H), 1.49-1.60 (m, 

6H), 1.66-1.71 (m, 2H), 4.88 (s, 2H), 12.18 (br s, 1H). 13C-NMR (101 MHz, DMSO-d6): δ (ppm) 19.8, 
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24.5, 31.5, 38.0, 45.4, 114.5, 164.1. HRMS (ESI): m/z [2M+Na]+ calcd. for [C24H26N6O4Na]+ 485.1908, 

found 485.1930. C12H13N3O2 (231.26). 

 

2,2'-(Cyclohexane-1,1-diyl)diacetic acid (4.73).30, 65 2,4-Dioxo-3-azaspiro[5.5]undecane-1,5-dicarbo-

nitrile (4.72) (450 mg, 1.95 mmol) was refluxed in a mixture of water and conc. H2SO4 (1:3; 12 mL). After 

cooling to rt, the mixture was poured into H2O (80 mL) and stirred at rt overnight. The solid was collected 

by filtration. The solid was dissolved in 1 M NaOH (100 mL) and the aqueous phase was washed with 

ethyl acetate. Then, the aqueous phase was acidified with dilute HCl and the compound was extracted 

with CH2Cl2. The organic phase was dried over Na2SO4 and the organic solvent was evaporated to give 

4.73 as a white solid (0.252 g, 1.26 mmol, 65%). 1H-NMR (300 MHz, DMSO-d6): δ (ppm) 1.30-1.49 (m, 

10H), 2.40 (s, 4H), 11.97 (br s, 2H). 13C-NMR (75 MHz, DMSO-d6): δ (ppm) 21.1, 25.6, 34.3, 35.0, 40.7, 

173.1. HRMS (ESI): m/z [M+Na]+ calcd. for [C10H16O4Na]+ 223.0941, found, 223.0947. C10H16O4 

(200.23). 

 

(S)-2-(1-(2-((1-((2-(3,5-Dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl)amino)-1-oxo-5-(2-((2,2,4,6,7

-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-yl)amino)-2-oxoethyl)-

cyclohexyl)acetic acid (4.74). 2,2'-(cyclohexane-1,1-diyl)diacetic acid (4.73) (45 mg, 0.225 mmol) was 

dissolved in CH2Cl2 (10 mL). Under stirring, EDC∙HCl (43.13 mg, 0.225 mmol) was added and the 

mixture was stirred until the solution was clear. Then, HOBt (30.4 mg, 0.225 mmol) was added and the 

mixture was stirred until the solution was clear. (S)-Nω-2,3-Dihydro-2,2,4,6,7-pentamethylbenzofuran-5-

sulfonyl[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazo-lidin-4-yl)ethyl]argininamide (4.13) (0.148 g, 

0.210 mmol) in CH2Cl2 (5 mL) was dropped slowly into the reaction mixture and stirred overnight at rt. 

The solvent was evaporated, and the crude product was purified by column chromatography (eluent: 

CH2Cl2/MeOH 95:5) to give 4.74 as a white solid (0.141 g, 0.159 mmol, 76%). 1H-NMR (300 MHz, 

DMSO-d6): δ (ppm) 1.28-1.46 (m, 18H), 1.49-1.61 (m, 1H), 1.96-2.00 (m, 2H), 2.28-2.35 (m, 3H), 2.39-

2.42 (m, 2H), 2.44-2.48 (m, 3H), 2.88-2.95 (m, 3H), 3.22-3.49 (m, 5H), 3.56-3.62 (m, 2H), 4.09-4.20 (m, 

1H), 6.39 (br s, 1H), 6.61 (br s, 1H), 7.15-7.25 (m, 2H), 7.33-7.43 (m, 8H), 7.48-7.55 (m, 1H), 7.65-7.73 

(m, 1H), 7.91-7.99 (m, 2H), 8.15 (t, J = 5.9 Hz, 1H), 12.87 (br s, 1H). 13C-NMR (101 MHz, DMSO-

d6): δ (ppm) 12.3, 17.6, 19.0, 21.0, 25.6, 28.3, 34.3, 35.1, 40.1 (overlaid by residual solvent peak), 40.6 

(overlaid by solvent residual peak), 41.7, 42.5, 52.1, 86.3, 109.7, 116.3, 119.1, 122.6, 124.3, 124.4, 

126.6, 127.2, 127.8, 129.0, 131.5, 136.6, 137.3, 152.6, 157.5, 171.0, 171.9, 173.1, 173.4. HRMS (ESI): 

m/z [M+H]+ calcd. for [C45H59N8O9S]+ 887.4120, found 887.4135. C45H58N8O9S (887.07). 
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(2S)-Nα-[2-(1-{2-Oxo-2-[4(6-oxo-6,11-dihydro-5H-dibenzo[b,e]azepin-11-yl)piperazin-1-yl]ethyl}-

cyclohexyl)acetyl]-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamide bis(hydro-

triflouroacetate) (4.75). Compound 4.75 was prepared using general procedure G and the reactants 

(S)-2-(1-(2-((1-((2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl)amino)-1-oxo-5-(2((2,2,4,6,7-

pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-yl)amino)-2-oxoethyl)cyclohexyl)

acetic acid (4.74) (76 mg, 85.7 µmol), EDC∙HCl (20 mg, 104 µmol), HOBt (19 mg, 141 µmol) and 11-

(piperazin-1-yl)-5,11-dihydro-6H-dibenzo[b,e]azepin-6-one (4.67) (38 mg, 129.5 µmol). Purification by 

preparative HPLC A (gradient: 0-30 min, A/B 85:15–19:81, tR = 21 min) afforded 4.75 as a fluffy white 

solid (11 mg, 9.66 µmol, 11%). 1H-NMR (600 MHz, DMSO-d6): δ (ppm) 1.08-1.68 (m, 15H), 1.84-2.19 

(m, 4H), 2.25-2.46 (m, 4H), 2.92-3.04 (m, 2H), 3.21-3.42 (m, 5H), 3.59 (t, J = 6.0 Hz, 2H), 4.12-4.19 (m, 

1H), 4.27 (br s, 1H), 6.55-7.47 (m, 21H), 7.47-7.52 (m, 1H), 7.55 (t, J = 5.3 Hz, 1H), 7.73 (d, J = 7.1 Hz, 

1H), 8.13 (d, J = 7.5 Hz, 1H), 8.23 (t, J = 5.7 Hz, 1H), 10.34 (s, 1H). 13C-NMR (150 MHz, DMSO-

d6): δ (ppm) 21.11, 21.14, 25.1, 25.6, 28.9, 35.27, 35.32, 35.7, 36.2, 36.23, 36.24, 39.6 (overlaid by 

solvent residual peak); 40.4, 45.8, 50.8, 51.3, 51.8, 73.6, 115.3 (TFA), 117.2 (TFA), 121.4, 122.6, 123.8, 

126.6 (2 carb.), 127.8, 128.1, 128.5, 129.0 (2 carb.), 130.0, 130.5, 131.4, 131.6, 136.2, 136.6, 152.6, 

156.7, 158.3 (q, J = 34.4 Hz) (TFA), 168.1, 169.8, 171.0, 172.0. RP-HPLC (220 nm): 99% 

(tR = 13.8 min, k = 4.4). HRMS (ESI): m/z [M+H]+ calcd. for [C50H60N11O6]+ 910.4723, found 910.4721. 

C50H59N11O6 × C4H2F6O4 (910.09 + 228.04). 

 

2-(trans-4-Hydroxycyclohexyl)isoindoline-1,3-dione (4.78).66 trans-4-Aminocyclohexan-1-ol (4.76) 

(10.0 g, 86.8 mmol) was dissolved in H2O (300 mL) and K2CO3 (36.16 g, 0.26 mol) was added and the 

reaction mixture was cooled in an ice bath. Under stirring, ethyl 1,3-dioxoisoindoline-2-carboxylate 

(4.77) (25.0 g, 45.3 mmol) in H2O (250 mL) was slowly added dropwise into the reaction mixture and 

stirred for 20 min. Then, the reaction mixture was allowed to warm to rt and stirred for 3.5 h. The 

precipitated solid was collected by filtration, washed with water and dried in vacuo. The crude product 

was purified by column chromatography (eluent: light petroleum/ethyl acetate 1:1 to 1:5) to give 4.78 as 

a white solid (11.1 g, 45.3 mmol, 52%). 1H-NMR (300 MHz, DMSO-d6): δ (ppm) 1.17-1.35 (m, 2H), 1.60-

1.73 (m, 2H), 1.85-1.96 (m, 2H), 2.04-2.23 (m, 2H), 3.38-3.53 (m, 1H), 3.87-4.04 (m, 1H), 4.65 (br s, 

1H), 7.80-7.84 (m, 4H). 13C-NMR (75 MHz, DMSO-d6): δ (ppm) 27.3, 34.6, 49.5, 68.1, 122.9, 131.4, 

134.3, 167.8. HRMS (ESI): m/z [M+H]+ calcd. for [C14H16NO3]+ 246.1125, found 246.1125. C14H15NO3 

(245.28). 
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2-(4-Oxocyclohexyl)isoindoline-1,3-dione (4.79).67 PCC (14.7 g, 68.2 mmol) was suspended in 

CH2Cl2 (300 mL) and 2-(trans-4-hydroxycyclohexyl)isoindoline-1,3-dione (4.78) (7.53 g, 30.58 mmol) in 

CH2Cl2 (100 mL) was added dropwise to the suspension. The reaction mixture was stirred at rt for 9 h. 

The solid was removed by filtration (Büchner funnel) and the filtrate was evaporated. The crude product 

was purified by column chromatography (eluent: light petroleum/ethyl acetate 1:1) to give 4.79 as a 

white solid (5.35 g, 22.0 mmol, 72%). 1H-NMR (300 MHz, DMSO-d6): δ (ppm) 1.97-2.10 (m, 2H), 2.21-

2.33 (m, 2H), 2.37-2.50 (m, 2H, interfering with solvent residual peak), 2.57-2.71 (m, 2H), 4.53-4.66 (m, 

1H), 7.80-7.85 (m, 4H). 13C-NMR (75 MHz, DMSO-d6): δ (ppm) 28.2, 39.2 (overlaid by the solvent 

residual peak), 47.5, 123.0, 131.5, 134.4, 167.7, 209.2. HRMS (ESI): m/z [M+H]+ calcd. for [C14H14NO3]+ 

244.0968, found 244.0968. C14H13NO3 (243.26). 

 

Ethyl 2-cyano-2-(4-(1,3-dioxoisoindolin-2-yl)cyclohexylidene)acetate (4.80). Ethyl cyanoacetate 

(4.68) (2.11 mL, 19.73 mmol), 2-(4-oxocyclohexyl)-isoindoline-1,3-dione (4.79) (4.8 g, 19.73 mmol), 

NH4CH3COO (152 mg, 1.97 mmol) and acetic acid (0.23 mL, 3.65 mmol) were dissolved in toluene 

(150 mL) and the reaction mixture was refluxed for 4 h. The reaction mixture was allowed to cool to rt 

and the organic phase was washed with brine (3x), dried with Na2SO4 and the solvent was removed 

under reduced pressure. The product was purified by column chromatography (eluent: light 

petroleum/ethyl acetate1:2) to give 4.80 as a white solid (4.14 g, 12.2 mmol, 62%). 1H-NMR (300 MHz, 

DMSO-d6): δ (ppm) 1.26 (t, J = 7.1 Hz, 3H), 1.94-2.47 (m, 5H), 2.62-2.78 (m, 1H), 2.87-3.00 (m, 1H), 

3.80-3.92 (m, 1H), 4.24 (q, J = 7.1 Hz, 2H), 4.37-4.51 (m, 1H), 7.79-7.91 (m, 4H). 13C-NMR (75 MHz, 

DMSO-d6): δ (ppm) 13.9, 29.06, 29.28, 29.4, 34.5, 47.7, 61.7, 102.2, 115.3, 123.0, 131.5, 134.4, 161.3, 

167.7, 177.3. HRMS (ESI): m/z [M+H]+ calcd. for [C19H19N2O4]+ 339.1339, found 339.1341. C19H18N2O4 

(338.36). 

4.4.3. Investigation of the chemical stability of compounds 4.50, 4.51 and 4.58 

To determine the chemical stability, compounds 4.50, 4.51 and 4.58 (100 µM) were incubated in buffer 

(25 mM HEPES, 2.5 mM CaCl2, 1 mM MgCl2, pH 7.4) at rt for 24 h. After incubation, the solution was 

diluted (1:1) with 10% aq TFA and the stability monitored at 6 time intervals (0 h, 1 h, 2 h, 4 h, 8 h and 

24 h) by analytical HPLC (220 nm) analysis (4.4.1.; see described method for purity control by analytical 

HPLC). 
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4.4.4. Fluorescence properties 

All emission and excitation spectra of compounds 4.58, 4.59, 4.60 and 4.61 were recorded on a Cary 

Eclipse spectrofluorimeter (Varian, Mulgrave, Victoria, Australia) in acryl cuvettes (10 x 10 mm, Sarstedt, 

Nümbrecht, Germany) at 22 °C. The photomultiplier voltage was set to 400 V throughout, the excitation 

spectra were recorded with an excitation slit of 5 nm and an emission slit of 10 nm. The emission spectra 

were recorded with an emission slit of 5 nm and an excitation slit of 10 nm. Following filter settings were 

used: “auto” (excitation filter) and “open” (emission filter). The emission starting point was set to 10 nm 

above the excitation wavelength. From every recorded emission spectrum, the corresponding reference 

spectrum was subtracted to obtain the net spectrum, that was multiplied with the corresponding lamp 

correction spectra, resulting in the corrected emission spectra. 

The stock solution of the fluorescent ligands 4.58, 4.59, 4.60 and 4.61 (1 mM) were prepared in DMSO 

and the sample solutions (5 µM) were prepared in PBS (pH 7) containing 1% (w/v) BSA (filtered before 

use with a syringe filter 0.22 µm). Sample solutions for reference spectra were prepared using PBS (pH 

7) containing 1% (w/v) BSA and the same amount of DMSO was added compared to solutions of 

fluorescent ligands (in the absence of fluorescent ligand). All solutions were freshly prepared, and they 

were stored in the dark. 

4.4.5. Pharmacological methods: cell culture, crystal violet assay, saturation and competition 

binding experiments with [3H]propionyl-pNPY in HEK293T βArr2 + Y2R cells, β-arrestin2 

recruitment assay, miniG protein recruitment assay, BRET based binding assay, 

confocal microscopy and radioligand binding assay for hY1R, hY4R and hY5R 

4.4.5.1. Cell culture 

The preparation (HEK293T βArr2 + Y2R cells39 and CHO-hY4-Gqi5-mtAEQ cells68) and cultivation 

(HEK293T βArr2 + Y2R cells,39 SK-N-MC cells,69 CHO-hY4-Gqi5-mtAEQ cells68 and HEC-1B cells49) was 

described elsewhere. SK-N-MC cells were obtained from the American Type Culture Collection 

(Rockeville, USA). 

The preparation and cultivation of HEK293T NlucN-miniGi/Y2R-NlucC cells, expressing the NlucN-

miniGi fusion and Y2R-NlucC constructs were performed by Carina Höring as part of her doctoral thesis. 

The preparation and cultivation of HEK293T Y2(intraNLucD197) cells, stably expressing the 

Y2(intraNLucD197) receptor construct were performed by Lukas Grätz as part of his doctoral thesis. 

Cells (HEK293T βArr2 + Y2R cells, HEK293T NlucN-miniGi/Y2R-NlucC cells, 

HEK293T Y2(intraNLucD197) cells) were cultivated in DMEM (Sigma-Aldrich, Taufkirchen, Germany) at 

37 °C in a water saturated atmosphere containing 5% CO2. DMEM was supplemented with L-glutamine 

(L-glutamine solution, Sigma-Aldrich; 0.584 g/mL), penicillin-streptomycin (Sigma-Aldrich; P/S, 10.000 

U/mL) and FCS (Merck Biochrom, Darmstadt, Germany; 10% (v/v)). The culture medium of 

HEK293T βArr2 + Y2R cells additionally contained zeocin (InvivoGen, San Diego, USA; 400 µg/mL) and 

G418 (Merck Biochrom; 600 µg/mL). The culture medium of HEK293T NlucN-miniGi/Y2R-NlucC cells 

additionally contained G418 (Merck Biochrom; 600 µg/mL) and puromycin (InvivoGen, San Diego, USA; 
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1 µg/mL). The culture medium of HEK293T Y2(intraNLucD197) cells additionally contained G418 (Merck 

Biochrom; 600 µg/mL). 

Routinely performed examinations for mycoplasma contamination using the Venor GeM Mycoplasma 

Detection Kit (Minerva Biolabs, Berlin, Germany) were negative for all cell types. 

4.4.5.2. Crystal violet assay 

The 24-well plates were purchased from Sarstedt (product no. 83.3922, standard F, Nümbrecht, 

Germany) and 96-well plates were purchased from Corning (product no. 3610, Kaiserslautern, 

Germany). The coating procedures with poly-D-lysine or cross-linked gelatin were performed under 

sterile conditions. 

Coating-procedure of 24-well (96-well) plates with poly-D-lysine 

Poly-D-lysine (γ-irradiated) was purchased from Sigma-Aldrich as lyophilizate, which was dissolved in 

sterile water (1 mg/mL) and every well of 24 well plate (96 well) was filled with 300 µL (100 µL) of that 

solution. After 15 min the solution was removed by suction, and every well was washed with 500 µL 

(200 µL) of sterile water. 

Coating-procedure of 24-well (96-well) plates with cross-linked gelatin 

The coating was performed as described in literature70 with modifications: every well of a 24-well 

(96-well) plate was filled with 250 µL (100 µL ) of 0.5% gelatin solution and the plates were incubated at 

rt for 2 h. The gelatin solution was removed and 250 µL (100 µL) of 2.5% glutardialdehyde solution were 

added and incubated at rt for 10 min and then removed. Every well was washed with 1 mL (300 µL) of 

sterile water (3x). The wells were filled with 1 mL (300 µL) of sterile water and the plates were incubated 

at rt overnight. The next day the water was removed, and the plate dried at rt. 

One day before a crystal violet assay, the HEK293T βArr2 + Y2R cells were detached by trypsinization 

and resuspended in Ham’s F12 medium (Sigma-Aldrich) containing 10% FCS. A density of 

1.7∙105 cells/mL was adjusted and 500 µL (200 µL) of this suspension was seeded into each well of a 

coated 24-well (Corning) (96-well; Sarstedt) plate. The cells were cultivated at 37 °C in a water saturated 

atmosphere containing 5% CO2. Before starting the experiment, the confluency of the cells was >90%. 

The culture medium was removed by dumping and cells were washed once with 500 µL (100 µL) of 

buffer (25 mM HEPES, 2.5 mM CaCl2, 1 mM MgCl2, pH 7.4) per well. The buffer was exchanged by 

500 µL (100 µL) of binding buffer (buffer containing 1% BSA and 0.1 mg/mL of bacitracin) and the plates 

were incubated for 90 min at rt. 

After the incubation in binding buffer followed by washing procedures (500 µL (100 µL) of PBS buffer 

for two times), the crystal violet assay was essentially performed in 96-well and 24-well plates as 

described in literature71 with minor modifications: the cells in 96-well plate (24-well) were fixed with 

100 µL (500 µL) of 2% glutardialdehyde at rt for 25 min. Then, the 2% glutardialdehyde solution were 

removed and 100 µL (500 µL) of a 0.02% aqueous crystal violet solution were added per well. After 

20 min the excess of crystal violet was removed by immersing the plates in a water bath for three times. 

Then every well was filled with water and incubated for 20 min. The water was removed and the cell-

associated crystal violet was dissolved in 180 µL (1000 µL) of ethanol 70% (v/v) and shaken at rt for 
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1.5 h. The absorbance was measured on an Enspire (Perkin-Elmer, Rodgau, Germany) plate reader at 

585 nm. 

4.4.5.3. Saturation and competition binding with [3H]propionyl-pNPY in HEK293T βArr2 + Y2R 

cells 

The synthesis of [3H]propionyl-pNPY was described previously.16 The radioligand competition and 

saturation binding experiments were performed as described in literature9, 32 for CHO-hY2R-Gqi5-mtAEQ 

cells9 with modifications: instead of CHO-hY2R-Gqi5-mtAEQ cells, HEK293T βArr2 + Y2R cells39, were 

used. Additionally, the cells were seeded in 96-well plates (Corning, Kaiserslautern, Germany) coated 

(4.4.5.2.) with poly-D-lysine hydrobromide (Sigma-Aldrich) solution (1 mg/mL), instead of uncoated 96-

well plates (Corning). One day before the competition or saturation binding experiments, the cells were 

detached by trypsinization and resuspended in Ham’s F12 medium (Sigma-Aldrich) containing 10% 

FCS. A density of 1.7 ∙ 105 cells/mL was adjusted and 200 µL of this suspension was seeded into each 

well of a coated 96-well plates (Corning). The cells were cultivated at 37 °C in a water saturated 

atmosphere containing 5% CO2. Before starting the experiment (competition or saturation binding), the 

confluency of the cells was >90%. The culture medium was removed by dumping and cells were washed 

once with 100 µL of buffer (25 mM HEPES, 2.5 mM CaCl2, 1 mM MgCl2, pH 7.4) per well. The buffer 

was exchanged by 80 µL of binding buffer (composed of buffer containing 1% BSA and 0.1 mg/mL of 

bacitracin). All feed solutions for competition and saturation binding experiments of test compounds and 

the radioligand were prepared in binding buffer. 

For saturation binding experiments total binding was determined by addition of 10 µL buffer and 

solutions (10 µL) containing increasing concentrations (10-fold concentrated compared to cfinal) of 

[3H]propionyl-pNPY. The unspecific binding was determined in the presence of the competitor 4.1 

(200-fold excess compared to radioligand ([3H]propionyl-pNPY) concentrations. For determination of 

unspecific binding 10 μL of competitor and solutions containing increasing concentrations (10-fold 

concentrated compared to cfinal) of [3H]propionyl-pNPY were added. 

For competition binding experiments, increasing concentrations (10-fold concentrated compared to cfinal) 

of test compounds (10 µL) were added. After 15 min, the radioligand solution (10-fold concentrated 

compared to cfinal = 4 nM) was added in every well. Non-specific binding was determined in the presence 

of 200-fold excess of pNPY and total binding in binding buffer (at least one triplicate of non-specific and 

total binding was determined on every plate). 

After 90 min of incubation (competition and saturation binding experiments) the buffer was removed by 

suction with a suction assistance device (Figure 4.13) and then the cells were washed three times with 

PBS, which was allowed to warm to rt. The cells were covered with 35 µL of lysis solution (8 M urea, 

3 M acetic acid and 1% (V/m) Triton-X-100) and shaken for 30 min. Then, 200 µL of liquid scintillator 

(Optiphase Supermix) was added and the plates were shaken in the dark for at least 3 h, before 

measuring radioactivity (dpm) with a MicroBeta2 plate counter (Perkin-Elmer, Rodgau, Germany).  
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Figure 4.13. Suction assistance device for saturation binding of [3H]propionyl-pNPY and radioligand competition binding assay 

on HEK293T βArr2 + Y2R cells. Engineering drawing (A), photo (B) and stereoscopic view of suction assistance device. 

Engineering drawing (A) and stereoscopic view were thankfully provided by Andreas Graf (Feinmechanische Werkstatt Chemie 

& Pharmazie, Universität Regensburg). 

4.4.5.4. β-Arrestin2 recruitment assay (Y2R) 

The β-arrestin2 recruitment assays were performed as described previously in the dissertation of J. 

Felixberger 39 with modifications: luminescence was measured as a function of time on living cells 

instead of measuring luminescence after cell lysis. 

The procedure was as follows: the day before the split-luciferase β-arrestin2 recruitment assay, the cells 

were detached by trypsinization and resuspended in Leibovitz’s L-15 medium supplemented with 5% 

FCS and HEPES (10 mM). For antagonist mode, a cell density of 1.43 ∙ 106 cells/mL was adjusted and 

70 µL of this suspension were seeded into each well of a white flat bottom 96-well plate (Cellstar, Greiner 

Bio-One, Kremsmünster Österreich) (for agonist mode: 1.25 ∙ 106 cells/mL; 80 µL). D-Luciferin (K+ salt; 

Pierce, Thermo Scientific, Regensburg, Germany) was suspended in HBSS (Gibco, Thermo Scientific) 

in a concentration of 400 mM. Further dilution of the substrate up to 10 mM in Leibovitz’s L-15 medium 

was prepared shortly prior to the experiment. The cells were cultivated at 37 °C in a water saturated 

atmosphere (no additional CO2). The dilutions of pNPY and ligands to be investigated were prepared in 

Leibovitz’s L-15 medium containing 1% BSA. 

In agonist mode, a solution of D-Luciferin (c = 10 mM, 10 µL) was added and the plate was incubated 

at 37 °C for 20 min. Baseline luminescence of the cells was recorded with an integration time of 1000 ms 

per well (10 entire plate repeats). Solutions of ligands to be investigated (10 µL; 10-fold concentrated 

compared to cfinal) were added at increasing concentrations followed by immediate measurement of 

luminescence (20 entire plate repeats with an integration time of 1000 ms). 

In antagonist mode, a solution of D-Luciferin (c = 10 mM, 10 µL) and the solutions (10 µL) of the test 

compounds (10-fold concentrated compared to cfinal) at increasing concentrations were added, and the 

plate was incubated at 37 °C for 20 min. Baseline luminescence was recorded with an integration time 

of 1000 ms per well (10 entire plate reads). Then, pNPY (c = 2000 nM, 10 µL) was added followed by 

immediate measurement of luminescence (20 entire plate repeats with an integration time of 1000 ms). 

Before measuring, the plate reader was pre-heated at 37 °C. The Luminescence was measured using 
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a GENios Pro (Tecan, Grödig, Austria) or an Enspire (Perkin-Elmer, Rodgau, Germany) plate reader 

with an integration time of 1000 ms per well. 

On every plate at least one triplicate of the 100% (response, corresponding to 200 nM pNPY) and the 

0% control (neat buffer) were determined. 

4.4.5.5. MiniG protein recruitment assay (ongoing doctoral thesis Carina Höring) 

The day before a split-luciferase (miniG protein recruitment) assay, the cells were detached by 

trypsinization and resuspended in Leibovitz’s L-15 medium containing 5% FCS and 10 mM HEPES. A 

density of 1.43 ∙ 106 cells/mL was adjusted for the antagonist mode and 70 µL of this suspension were 

seeded into each well of a white flat bottom 96-well plate (Cellstar, Greiner Bio-one, Kremsmünster 

Österreich) (Agonist mode: 1.25 ∙ 106 cells/mL; 80 µL). The cells were cultivated at 37 °C in a water 

saturated atmosphere (no additional CO2). The dilutions of pNPY and investigated ligands were 

prepared in Leibovitz’s L-15 medium containing 1% BSA. A solution of the luciferase substrate 

furimazine (Promega, Madison, WI, USA; Cat.-No.: N2012; 10 µL), which was diluted according to the 

manufacturer’s protocol beforehand, were added and the baseline luminescence of the cells was 

recorded with an integration time of 0.1 s per well for 30 entire plate reads using an Enspire (Perkin-

Elmer, Rodgau, Germany) plate reader. The solutions of the investigated ligand at increasing 

concentrations (10 µL) in the antagonist mode were added, and a second luminescence baseline was 

recorded with an integration time of 0.1 s for 30 entire plate repeats. Then, pNPY (cfinal = 50 nM, 10 µL) 

in the antagonist mode was added. Subsequently, the luminescence was recorded with an integration 

time of 0.1 s for 90 entire plate repeats. 

The plate reader was pre-heated at 37 °C, before measuring. On every plate at least one triplicate of 

the 100% (response, corresponding to 50 nM pNPY) and the 0% control (neat buffer) were determined.  

4.4.5.6. BRET based binding assay (ongoing doctoral thesis of Lukas Grätz) 

The day before a BRET based equilibrium binding assay, the cells were detached by trypsinization and 

resuspended in Leibovitz’s L-15 medium with 5% FCS and 10 mM HEPES (assay medium). A density 

of 1.43 ∙ 106 cells/mL (saturation and competition binding) or 1.25 ∙ 106 cells/mL (kinetic experiments) 

was adjusted and 70 µL (saturation and competition binding) or 80 µL (kinetic experiments) of these 

suspensions were seeded into each well of 96-well plates (Brand GmbH & Co. KG, Wertheim, 

Germany). Then, the cells were incubated at 37 °C in a water saturated atmosphere (no additional CO2) 

overnight to guarantee confluency (>90%) of the cells. 

For saturation binding experiments, increasing concentrations (10-fold concentrated compared to cfinal) 

of the fluorescent ligand (4.85) and competitor 4.1 (100-fold excess compared to 4.85 for unspecific 

binding) were prepared in buffer (Leibovitz’s L-15 medium containing 2% BSA and 10 mM HEPES). 

Total binding was determined by adding 10 μL of 4.58 solution and 10 μL of buffer to the cells. For 

unspecific binding 10 µL of 4.58 solution and 10 µL of the competititor 4.1 were added to the cells. Then, 

the plate was incubated at 27 °C for 30 min. A solution of the luciferase substrate furimazine (Promega, 

Madison, WI, USA; Cat.-No.: N2012; 10 µL), which was diluted according to the manufacturer’s protocol 

beforehand, was added. The measurement was started after an equilibration of 5 min. 
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Competition equilibrium binding experiments were performed as described above using the solutions of 

the investigated ligand in buffer at increasing concentrations (10 µL) and a solution of 10-fold 

concentrated fluorescent ligand compared to cfinal (4.58; cfinal = 20 nM) in buffer were added. The plate 

was incubated at 27 °C for 90 min, before the substrate furimazine (Promega; 10 µL) was added.  

For kinetic measurements 10 µL of Leibovitz’s L-15 medium (for total binding) or 4.1 (100-fold excess 

compared to 4.58 for unspecific binding) were added to the cells. Then, the substrate (furimazine) was 

added and the plate was equilibrated for 5 min inside the reader. The association was started after 

addition of 50 µL of a 3-fold concentrated solution compared to cfinal of the fluorescent ligand 4.58 

(cfinal = 20 nM) to the cells and the measurement was performed for 35-90 min. For dissociation 

experiments the cells were pre-incubated (35-90 min) with 4.58 as described above for association 

experiments. The dissociation started after addition of 50 µL of a 4-fold concentrated solution compared 

to cfinal of 4.1 (100-fold excess compared to 4.58) to the cells and the measurement was performed for 

220-280 min.  

All measurements were performed with a TECAN InfiniteLumi (Tecan) plate reader at 27 °C using a 

Blue2 NB (460 nm ± 35 nm) and the Red NB (>610 nm, longpass) filter combination or an GENios Pro 

(Tecan, Grödig, Austria) plate reader at 27 °C using the following custom made filter combination from 

Chroma (Chroma Technology Corp, Vermont, USA): Chroma AT460/50 (460 nm ± 25 nm) and the 

Chroma AT610lp (>610 nm, longpass) filter. An integration time of 100 ms was used for both plate 

readers. The integration time was increased to 500 ms, in order to reduce noise for all kinetic 

measurements. 

4.4.5.7. Confocal microscopy 

The cell culture dish was coated with poly-D-lysine (Sigma-Aldrich) prior to seeding of cells. For this 

purpose, the poly-D-lysine solution (1 mg/mL, 1 mL) was added, incubated at rt for 1 h and then washed 

with sterile water twice (2x 1 mL). 

The day before confocal microscopy studies, the HEK293T βArr2 + Y2R cells were detached by 

trypsinization and resuspended in Leibovitz’s L-15 medium with 5% FCS and 10 mM HEPES. A density 

of 0.5 ∙ 106 cells/mL was adjusted and 1 mL of this suspension was seeded in a cell culture dish 

(35 x 10 mm; Cellstar, Greiner Bio-one, Kremsmünster Österreich) The cells were then incubated at 

37 °C in a water saturated atmosphere (no additional CO2) overnight to reach full adherence of the cells.  

The fluorescent ligand 4.58 (cfinal = 40 nM; 100 µL of 11-fold concentrated compared to cfinal) was added 

into the cell dish. The image for total binding was acquired after 30 min. Then, the competitor 4.1 

(cfinal = 10,000 nM; 100 µL; 12-fold concentrated compared to cfinal) or pNPY (cfinal = 10,000 nM; 100 µL; 

12-fold concentrated compared to cfinal) was added (into the same culture dish used for total binding) 

and the image was acquired after incubation of 4 h (unspecific binding). Unspecific binding was also 

determined by adding the fluorescent ligand 4.58 (cfinal = 40 nM, 100 µL) and the competitor 4.1 

(cfinal = 10,000 nM, 100 µL) or pNPY (cfinal = 10,000 nM, 100 µL) at the same time into the culture dish. 

Then, total binding was performed by adding 4.58 (cfinal = 40 nM, 100 µL) and 100 µL Leibovitz’s L-15 

medium containing 1% BSA instead of the competitor. All feed solutions of 4.1, 4.58 and pNPY were 

prepared in Leibovitz’s L-15 medium containing 1% BSA. 
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Images were acquired with a Nikon eclipse 90i (Nikon Instruments Europe, Amstelveen, Netherlands) 

and a water immersion objective (Nikon NIR Apo, 60×1.0w) was used. The following settings were used: 

Laser λex 488 nm; Filter 650 LP; Pinhole L (102.6 µm); Gain 130. 

4.4.5.8. Radioligand binding assay for hY1R, hY4R and hY5R 

All competition binding experiments at the Y1R were essentially performed as described by Keller et al.16 

using [3H]2.2 (cfinal = 0.15 nM, Kd = 0.044 nM) and SK-N-MC cells expressing the Y1R. At least two 

independent experiments were performed, each in triplicate. 

All competition binding experiments at the Y4R were essentially performed as described by Kuhn et al.32 

using [3H]UR-KK200 (cfinal = 1.0 nM, Kd = 0.67 nM) and CHO-hY4R-Gqi5-mtAEQ cells expressing the Y4R 

(cf. Chapter 6). Three independent experiments were performed, each in triplicate. 

All competition binding experiments at the Y5R were essentially performed as described using 

[3H]propionyl-pNPY (cfinal = 4.0 nM, Kd = 4.8 nM) and HEC-1B cells expressing the Y5R.16, 49 At least two 

independent experiments were performed, each in triplicate. 

4.4.6. Data analysis 

The retention factor k was calculated according to the equation: k = (tR-t0)/t0 (tR = retention time; 

t0 = dead time). 

Specific binding data (dpm) from radioligand saturation binding experiments were plotted against the 

free radioligand concentration and analyzed by an equation describing hyperbolic binding (ligand 

binding − one-site saturation fit, GraphPad Prism 8) to obtain Kd and Bmax values. The free radioligand 

concentration (nM) was calculated by subtracting the amount of specifically bound radioligand (nM) 

(calculated from the specifically bound radioligand in dpm, the specific activity, and the volume per well) 

from the total radioligand concentration. 

Specific binding data from radioligand competition binding experiments with [3H]propionyl-pNPY 

(cfinal = 4 nM) were plotted as % (100% = bound radioligand in the absence of competitor) over 

log(concentration competitor) and analyzed by four-parameter logistic fits (GraphPad Prism 8.0, 

GraphPad, San Diego, CA USA) to obtain pIC50 values, which were converted to pKi values according 

to the Cheng-Prusoff72 equation (logarithmic form) (used Kd value of [3H]propionyl-pNPY: 2.97 nM). 

All raw data obtained in the β-arrestin2 recruitment assay were processed as follows: firstly, the 

measured luminescence after addition of agonist (20 repeats) was corrected to an average baseline 

(first 10 repeats without adding agonist; ratio = luminescence after addition of agonist/baseline 

luminescence) for each well. Secondly, the relative increase in luminescence (RLU) was obtained by 

baseline correction with the buffer control. The plateau value of each luminescence trace was plotted 

as RLU against log(concentration antagonist) and analyzed by four-parameter logistic fits (GraphPad 

Prism 8.0) to obtain pIC50 values, which were converted to pKb values according to the Cheng-Prusoff72 

equation (logarithmic form) (used EC50 value of pNPY: 168 nM). A basal luminescence (buffer control, 

0%) and response, corresponding to 200 nM pNPY (100%) were included for normalization of the data 

(antagonist mode). In case of pNPY (agonist mode) data were normalized to the basal value (0%) and 

the maximal response of pNPY at a concentration of 10,000 nM (100%). 
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All raw data obtained in the miniG protein recruitment assay were processed as follows: firstly, the 

measured luminescence after addition of agonist (90 repeats) was corrected with respect to the 

luminescence (RLU) of the last measured value (30th repeat) of the baseline (30 repeats; ratio = 

luminescence after addition of agonist/baseline). Secondly, the relative increase in luminescence (RLU) 

was obtained by baseline correction with the buffer value. The area under the curve (AUC) of each 

luminescence trace was plotted as AUC against log(concentration antagonist) and analyzed by four-

parameter logistic fits (GraphPad Prism version 8.0) to obtain pIC50 values, which were converted to pKb 

values according to the Cheng-Prusoff72 equation (logarithmic form) (used EC50 value of pNPY: 

3.35 nM). A basal luminescence (buffer control, 0%) and response, corresponding to 50 nM pNPY 

(100%) were included for subsequent normalization of the data (antagonist mode). 

All raw data obtained in the BRET based binding assay were processed as follows: the ratios of the 

acceptor emission (460 nm) and the donor luminescence (610 nm) was formed (BRET ratio). The 

“corrected BRET ratio” in saturation binding experiments was obtained by subtracting the buffer control 

from every value (baseline-correction). Specific binding data from saturation binding experiments were 

plotted against the free fluorescent ligand concentration and analyzed by an equation describing 

hyperbolic binding (one site – specific binding, GraphPad Prism 8) to obtain Kd values. Unspecific 

binding was fitted by linear regression (GraphPad Prism 8). 

The data from competition binding experiments were normalized to buffer control (0%) and a 100%-

control only containing fluorescent ligand without competitor. Specific binding data from BRET based 

competition binding experiments with 4.58 (cfinal = 20 nM) were plotted as % (100% = bound fluorescent 

ligand in the absence of competitor) over log(concentration competitor) and analyzed by four-parameter 

logistic fits (GraphPad Prism 8.0, GraphPad, San Diego, CA USA) to obtain pIC50 values, which were 

converted to pKi values according to the Cheng-Prusoff72 equation (logarithmic form) (used Kd value of 

4.58: 17.9 nM).  

The “corrected BRET ratios” in kinetic experiments was obtained by subtracting unspecific binding from 

total binding. Specific binding data from fluorescent ligand association experiments were analyzed by a 

two-parameter equation describing an exponential rise to a maximum (one phase – association, 

GraphPad Prism 8) to obtain the observed association rate constant (kobs), and the resulting plateau 

value (maximum of specifically bound fluorescent ligand) was used to calculate specifically bound 

fluorescent ligand (B) in %. Data from fluorescent ligand dissociation experiments in BRET based 

assays (% specifically bound fluorescent ligand (B) plotted over time) were analyzed by a two-parameter 

equation describing a monophasic exponential decline (one phase – decay, GraphPad Prism 8) to obtain 

dissociation rate constants (koff). The association rate constant (kon) was calculated from kobs, koff, and 

the fluorescent ligand concentration ([FL]) according to the following correlation: kon = (kobs − koff)∙[FL]-1. 

The kinetically determined dissociation rate constant (Ki (kinetic)) was determined from dissociation (koff) 

and association (kon) rate constants (Kd = koff ∙ kon
-1). Propagated errors were calculated according to the 

Gaussian law of errors. 
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In search of labelled Y2R antagonists: Synthesis and pharmacological 

characterization of labelling precursors and “cold” forms of potential Y2R 

radioligands obtained by modification of the (S)-argininamide BIIE-0246 at the 

dibenzoazepinone moiety 
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5.1. Introduction 

Over the last decade, several radioligands (Table 5.1) and their “cold” forms derived from the 

(S)-argininamide-type Y2R antagonist 4.11 by bioisosteric replacement of the guanidine group by an 

acylguanidine (4.22 and 5.12) or carbamoylguanidine (5.23, 4) moiety have been prepared in our group. 

It is notable that in contrast to the carbamoylguanidine approach, the use of acylguanidines is 

unfavourable due to the limited chemical stability of acylguanidines at neutral pH and, in particular, under 

basic conditions.5  

Table 5.1. Structures and Y2R affinities of BIIE-0246 (4.1), the structurally related radioligands [3H]4.2, [3H]5.1 and [3H]5.2 and 

the potential radioligands (“cold” forms) 4.23, 4.24 and 4.27. 

 

The binding affinities (pKi) of 4.23, 4.24 and 4.27 were determined in a radioligand competition binding assay using [3H]propionyl-

pNPY (cfinal = 4 nM, Kd = 2.97 nM) and HEK293T hY2R + βArr2 cells (cf. Chapter 4). References: (a) Dautzenberg,6 Ki value was 

determined using [125I]PYY (cfinal = 0.10 nM, Kd = 0.08 nM) and membranes from SMS-KAN cells. (b) Pluym et al.,2 the reported 

Kd value of [3H]4.2 was determined by saturation binding experiments in living CHO-hY2-Giq5-mtAEQ cells and the reported Ki 

values of 4.2 and 5.1 were determined in a flow cytometric binding assay using Cy5-pNPY (c = 5 nM, Kd = 5.4 nM) and CHO-

hY2-Giq5-mtAEQ cells. (c) Baumeister, PhD Thesis, University of Regensburg, 2014,4 the reported Kd value of [3H]5.1 was 

determined by saturation binding experiments in living CHO-hY2-Giq5-mtAEQ cells. (d) Pluym, PhD Thesis, University of 

Regensburg, 2011,3 the reported Ki value of 5.2 was determined in a flow cytometric binding assay using Cy5-pNPY (c = 5 nM, 

Kd = 5.4 nM) and CHO-hY2-Giq5-mtAEQ cells. Reported Ki (Kd) values were converted to pKi (pKd) values. n.a. not applicable. 

Notably, competition binding studies with pNPY and the radioligands [3H]4.2 and [3H]5.1 yielded 

considerably lower pKi values for pNPY compared to competition binding assays using 

[3H]propionyl-pNPY or Cy5-pNPY as labelled ligand.2, 4 In view of a more favourable hY2R radioligand, 

the synthesized and pharmacologically characterized compound 4.23 (synthesis see Chapter 4) 

represents the “cold” form of a radioligand potentially exhibiting more favourable binding characteristics 

at the Y2R. To enable tritium-labelling in the last synthesis step using commercially available [3H]methyl 

iodide or [3H]methyl nosylate (to give [3H]UR-jb206 ([3H]4.23)), a precursor is required that contains a 

phenolic hydroxy group instead of the methoxy group found in 4.23. 

The dibenzoazepinone-benzhydryl approach i.e. bioisosteric replacement of the dibenzoazepinone 

scaffold in 4.1 by a benzhydryl moiety (cf. Chapter 4), resulted in several compounds that represent 

“cold” forms of potential radioligands (4.23, 4.24 and 4.27) and an amino-functionalized precursor (4.50), 

which can be used for the synthesis of “cold” forms of potential radiotracers. In this chapter, the synthesis 
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of the phenolic precursors of 4.23, 4.24 and 4.27 and their pharmacological characterization in 

radioligand competition binding studies and β-arrestin2 recruitment assays is described. Moreover, the 

amino precursor 4.50 (synthesis described in Chapter 4) was converted to potential radioligands (“cold” 

forms) by methylation, propionylation and 2-fluoroacetylation. These derivatives were also 

pharmacologically characterized. Additionally, the chemical stability was investigated in 25 mM HEPES 

buffer (pH 7) for selected compounds. 

5.2. Results and discussion 

5.2.1. Synthesis 

The synthesis of compounds 4.15, 4.16, 4.34, 4.42, 4.43, 4.50 and 4.52 was previously described in 

chapter 4 (cf. 4.2.1.). Compounds 5.9, 5.12 and 5.20 were synthesized from the respective hydroxy 

substituted benzophenones 4.42, 4.43 and 4.52 (Scheme 5.1).  

 

Scheme 5.1. Synthesis of the phenolic precursors 5.9, 5.12 and 5.20. Reagents and conditions. (a) tert-butyldimethylsilyl 

chloride, Et3N, CH2Cl2, 53-62%; (b) NaBH4, MeOH, 89-93%; (c) (1) methanesulfonyl chloride, Et3N, CH2Cl2, (2) piperazine, 

acetonitrile, microwave device (70 °C, 30 min), 62%; (d) (1) EDC∙HCl, HOBt, DMF, (2) TFA/H2O 95:5, 16%; (e) CH2Cl2, 63%; 

(f) TBAF, THF, 100%; (g) (1) EDC∙HCl, HOBt, DMF, (2) TFA/H2O 95:5, 24%; (h) tert-butyldimethylsilyl chloride, Et3N, CH2Cl2, 

85%; (i) H2, Pd/C, MeOH, 79%; (j) benzyl bromide, K2CO3, acetonitrile, microwave device (80 °C, 1 h), 70%; (k) NaBH4, MeOH, 

95%; (l) (1) methanesulfonyl chloride ,Et3N, CH2Cl2, (2) piperazine, acetonitrile, microwave device (70 °C, 30 min), 53%; (m) H2 

(10 bar), Pd/C, MeOH, 44%; (n) (1) EDC∙HCl, HOBt, DMF, (2) TFA/H2O 95:5, 8%. 

Firstly, the phenolic hydroxy groups of 4.42, 4.43 and 4.52 were protected using tert-butylmethylsilyl 

chloride to give silyl ethers 5.3, 5.4 and 5.13 in moderate to good yields. Secondly, (3-((tert-

butyldimethylsilyl)oxy)phenyl)(phenyl)methanone (5.3) and (4-((tert-butyldimethylsilyl)oxy)phenyl)-

(phenyl)methanone (5.4) were converted to the respective alcohols (5.5 and 5.6) in excellent yields, 
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using sodium borohydride in methanol. The benzhydryl alcohols 5.5 and 5.6 were converted to the 

respective mesylates by use of methanesulfonyl chloride in dichloromethane and then treated with 

piperazine in acetonitrile (microwave device) to form amines 5.7 and 5.8. 

Compound 5.9 was obtained by amide bond formation between 5.7 and the carboxylic acid 4.14 in DMF 

at rt using EDC∙HCl and HOBt as coupling reagents (Scheme 5.1), followed by treatment with aqueous 

TFA (95:5) to cleave the Pbf and TBS protecting groups. Amine 5.8 was treated with 

3,3-tetramethylenglutaric anhydride 4.14 to form the carboxylic acid 5.10. The TBS protecting group of 

5.10 was removed in a solution of TBAF in THF to give the phenol 5.11 in moderate yield. Consecutively, 

the carboxylic acid 5.11, activated using EDC∙HCl and HOBt was coupled to (S)-arginine derivative 4.16 

to give 5.12. 

The reduction of (2-((tert-butyldimethylsilyl)oxy)phenyl)(phenyl)methanone 5.13, intended to give 5.14, 

failed using sodium borohydride. Furthermore, the compound 5.15 instead of 5.14 was obtained using 

palladium on activated charcoal and hydrogen (Scheme 5.1). Compound 5.15 was identified by 1H-/13C-

NMR and HRMS. Therefore, the phenolic hydroxy group in 4.42 was benzyl protected using benzyl 

bromide and K2CO3 in DMF (microwave device). The product, benzyl ether 5.16, was reduced to alcohol 

5.17 in excellent yields using methanol as solvent and sodium borohydride as reducing agent. 

Piperazine 5.18 was synthesized as previously described for compounds 5.7 and 5.8, starting from 

benzhydryl alcohol 5.17. Compound 5.19 was obtained by removal of the benzyl protecting group of 

5.18 using palladium on activated charcoal and hydrogen in methanol. Amide bond formation between 

4.16 and 5.19, and subsequent Pbf removal was performed as described for 4.9 and 4.12. These 

conditions gave 5.20 in low yield (Scheme 5.1). 

 

Scheme 5.2. Synthesis of N-methylated compounds 5.29 and 5.30. Reagents and conditions. (a) (1) benzaldehyde toluene, 

reflux (2) MeI, reflux, (3) H+/H2O, reflux, (4) NaOH, Boc2O, yield was not determined; (b) Boc2O, Et3N, CH2Cl2, 73%; (c) tert-

butyldimethylsilyl chloride, Et3N, CH2Cl2, 95%; (d) (1) NaH; THF, 0 °C, 15 min (2) MeI, THF, rt, 24 h, 52%; (e) TBAF, THF, 50%; 

(f) CBr4, PPh3, THF, 98%; (g) K2CO3, DMF, 52%; (h) NaBH4, MeOH, 100%; (i) (1) methanesulfonyl chloride ,Et3N, CH2Cl2, 

(2) piperazine, acetonitrile, microwave device (70 °C, 30 min), 80%; (j) (1) EDC∙HCl, HOBt, DMF, (2) TFA/H2O 95:5, 20%; 

(k) methyl 4-nitrobenzenesulfonate, K2CO3, DMF, 59%. 

For selective mono methylation of the primary amine 4.33, two strategies were applied (Scheme 5.2). 

Firstly, to avoid overalkylation, 5-aminopentanol (4.33) and benzaldehyde were heated using a Dean-

Stark apparatus to form an imine in situ, followed by the addition of methyl iodide. Consecutively, the 
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reaction mixture was acidified with aqueous HCl for hydrolysis of the imine. The aqueous phase was 

washed with diethyl ether twice, in order to remove benzaldehyde to obtain 5.21. 

Compound 5.21 could not be extracted from the aqueous phase. Therefore, the reaction mixture was 

basified with NaOH (1 N) and Boc2O was added to obtain 5.22. Unfortunately, purification of 5.22 by 

column chromatography failed. 

Due to purification problems, a second synthesis route was applied to obtain 5.22 in a four-step 

synthesis route starting from 4.33. For this purpose, tert-butyl (5-hydroxypentyl)carbamate (4.34) was 

treated with tert-butyldimethylsilyl chloride to give the silyl ether 5.23 in excellent yield. Mono-alkylation 

of 5.23 was performed using sodium hydride and methyl iodide to give 5.24 (Scheme 5.2). 

tert-Butyl (5-hydroxypentyl)(methyl)carbamate (5.22) was afforded by cleavage of the TBS group using 

TBAF. Alcohol 5.22 was then converted to the bromide (Appel reaction7). Compound 5.26 was 

synthesized in a Williamson ether synthesis from the intermediates 4.21 and 5.25. The ketone 5.26 was 

converted to alcohol 5.27 in excellent yields using NaBH4 in methanol. 

Furthermore, the synthesis of amine 5.28 was performed as already described for 5.7 and 5.8 in a two-

step synthesis. The alcohol 5.27 was converted to the mesylate and subsequently coupled with 

piperazine. Compound 5.29 was synthesized by amide bond formation as described for 5.9 and 5.20 

using coupling reagents (EDC∙HCl and HOBt) and subsequent removal of the Pbf group. 

Overalkylation of 5.29 using methyl 4-nitrobenzenesulfonate lead to 5.30 (Scheme 5.2). 

 

Scheme 5.3. Synthesis of potential “cold” forms of radiotracers 5.31 and 5.32. Reagents and conditions. (a) Et3N, DMF, 92%; 

(b) DCC, Et3N, 42%. 

Propionamide 5.31 and 2-fluoroacetamide 5.32 were synthesized from amine 4.50 by amide bond 

formation using succinimidyl propionate (2.44) and 2-fluoroacetic acid (2.46) activated by DCC, 

respectively (Scheme 5.3). Compound 5.32 represents the “cold” form of a potential Y2R PET ligand. 

5.2.2. Investigation of the chemical stability of 4.23, 4.24, 4.27, 5.30 and 5.32 

The stability of selected (S)-argininamides (4.23, 4.24, 4.27, 5.30 and 5.32) was investigated in the 

buffer (25 mM HEPES, 2.5 mM CaCl2, 1 mM MgCl2, pH 7) used for [3H]propionyl-pNPY displacement 

studies at the Y2R (cf. 4.2.4.1. and 5.2.3.1.). Compounds 4.23, 4.24, 4.27, 5.9, 5.30 and 5.32 were 

obtained as diastereomers due to the applied synthesis route. The diastereomers were not apparent in 

the chromatograms of the reversed-phase HPLC (220 nm) analysis. (S)-Argininamide-type Y2R 

antagonists 4.23, 4.24, 4.27, 5.9, 5.30 and 5.32 (100 µM) were incubated at rt for 24 h. Prior to analytical 

RP-HPLC (220 nm) analysis the solution was diluted (1:1) with 10% aq. TFA. Analyses were performed 

after 0 h, 1 h, 2 h, 4 h, 8 h and 24 h. The procedure was described in the literature8 (cf. 2.4.3.) and 

slightly modified as described in chapter 4 (cf. 4.4.2.). 
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All investigated compounds proved to be stable (chromatograms of 4.23, 4.24, 4.27, 5.9 and 5.32 see 

Figure 5.1 and cf. Figure 8.5 (8.4.1.1.) for 5.9 and 5.30) at pH 7. Future studies should investigate 

plasma stability to explore possible enzymatic degradation of the compounds. 

 

Figure 5.1. Chromatograms of the reversed-phase HPLC (220 nm) analysis of phenol ethers (A) 4.23, (B) 4.24, (C) 4.27 and 

the propionylated compound (D) 5.32 after incubation in a 25 mM HEPES buffer (pH 7.0) at rt for up to 24 h. 4.23, 4.24, 4.27 

and 5.32 proved to be stable. 

5.2.3. Pharmacological methods: Y2R affinity (pKi) and antagonism (pKb) of synthesized 

(S)-argininamides 

(S)-Argininamides 5.9, 5.12, 5.20, 5.29 and 5.31 were investigated in a competition radioligand binding 

assay to determine their Y2R affinities (5.2.3.1.). Furthermore, Y2R affinities (pKi) of compounds 4.24, 

5.29 and 5.30-5.31 were determined in a BRET based binding assay (5.2.3.2.), Y2R antagonism (pKb) 

of 5.9, 5.12, 5.20 and 5.29-5.31 was studied in a β-arrestin2 recruitment assay (5.2.3.3.). 
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5.2.3.1. Determination of pKi values in a radioligand binding assay in HEK293T hY2R + βArr2 cells 

The radioligand competition binding assay was performed according to the literature9 with minor 

modifications (cf. 4.2.4.1.) in living HEK293T hY2R + βArr2 cells10 using [3H]propionyl-pNPY 

(cfinal = 4 nM, Kd = 2.97 nM) in sodium-free binding buffer (competition binding curves shown in Figure 

5.2, pKi values summarized in Table 5.2).  

 

Figure 5.2. Displacement curves of [3H]propionyl-pNPY (cfinal = 4 nM, Kd = 2.97 nM) obtained from competition binding studies 

with (A) 4.1, 5.9, 5.12, 5.20, (B) 4.50, 5.29 and 5.31 in HEK293T hY2R + βArr2 cells. Data are presented as means ± SEM from 

at least two independent experiments, each performed in triplicate. 

The affinity (pKi) of 2-methoxysubstituted compound 4.23 was slightly lower compared to that of the 

phenolic precursor 5.20 (Table 5.2). In addition, Y2R affinities of the phenolic precursors of 3-hydroxy 

(5.9) and 4-hydroxy (5.20) substituted derivatives were higher (around one order of magnitude 

compared to the respective 3- or 4-methoxy substituted compounds). 

Table 5.2. Y2R affinities (pKi) of synthesized (S)-argininamids determined in equilibrium competition binding with 

[3H]propionyl-pNPY. 

Compound pKi ± SEMa N Compound pKi ± SEMa N 

4.1 8.06 ± 0.11 2 5.9 7.20 ± 0.20 2 

4.23 7.39 ± 0.13 3 5.12 7.77 ± 0.10 2 

4.24 6.81 ± 0.23 3 5.20 6.73 ± 0.15 3 

4.27 6.26 ± 0.03 3 5.29 7.12 ± 0.31 2 

4.50 7.06 ± 0.09 4 5.31 6.34 ± 0.08 3 

aRadioligand competition binding assay with [3H]propionyl-pNPY (cfinal = 4.0 nM, Kd = 2.97 nM) in intact HEK293T hY2R + βArr2 

cells. Mean values ± SEM from at least N independent experiments, each performed in triplicate. 

As previuosly described in chapter 4 (cf. 4.2.4.1.) and as mentioned above, the introduction of methoxy 

groups at the benzhydryl moiety led to a slight decrease in affinity. Among these methoxy substituted 

compounds (4.23, 4.24 and 4.27), the 2-methoxy substituted derivative (4.23) showed the highest 

affinity. This trend was not observed in case of the hydroxy substituted derivatives 5.9, 5.12 and 5.20. 
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The 3-hydroxy substituted compound (5.9) showed the highest affinity and the 2-hydroxy substituted 

derivative (5.20) exhibited the lowest Y2R affinity among the phenolic precursors. The introduction of 

one methyl group at the primary amino group of compound 4.50, resulting in 5.29, did not affect Y2R 

affinity. The propionylated derivative of amine precursor 4.50 (compound 5.31) showed lower Y2R 

affinity compared to 4.50. Interestingly, compound 4.58, bearing a bulky fluorescent dye instead of the 

small propionyl moiety in 5.31, displayed higher Y2R affinity than 5.31 (pKi values (hY2R): 7.03 vs. 6.32). 

5.2.3.2. Determination of pKi values in a BRET based binding assay 

 

Figure 5.3. Displacement curves of 4.58 (cfinal = 20 nM, Kd = 17.9 nM) obtained from competition binding studies with (A) 4.1, 

4.23, 4.24, (B) 4.50, and 5.30-5.32 at HEK293T Y2(intraNLucD197) cells. Data are presented as means ± SEM from at least 

three independent experiments, each performed in triplicate. 

The BRET based competition binding assay was performed in living HEK293T Y2(intraNLucD197) cells 

with 4.58 (cfinal = 20 nM, Kd = 17.9 nM) (cf. chapter 4) in sodium containing buffer (Figure 5.3 and Table 

5.3). Compound 4.23 (2-methoxy substituted) showed the highest Y2R affinity among the investigated 

(S)-argininamides (4.24, 5.29-5.31), consistent with the results obtained from the radioligand 

competition binding experiments. Furthermore, Y2R binding of 4.23 was higher compared tot hat of 4.24 

(3-methoxy substituted). 

Table 5.3. Affinities (pKi) of selected (S)-argininamides 4.1, 4.23, 4.24, 4.50 and 5.30-5.32 determined in a BRET based 

competition binding assay 

Compound pKi
a Compound pKi

a 

4.1 9.13 ± 0.15 5.30 7.83 ± 0.26 

4.23 8.60 ± 0.07 5.31 7.16 ± 0.07 

4.24 7.43 ± 0.10 5.32 7.78 ± 0.16 

4.50 8.03 ± 0.08   

aBRET based competition binding assay with 4.58 (cfinal = 20 nM, Kd = 17.9 nM) in intact HEK293T Y2(intraNLucD197) cells. 

Mean values ± SEM from at least three independent experiments performed, each in triplicate. 
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The decrease in affinity (pKi) from the dibenzoazepinone (4.1) to 2-methoxy (4.23) and 3-methoxy (4.24) 

benzhydryl derivatives demonstrated the same trend compared to pKi values determined in a radioligand 

competition binding experiments using a sodium-free buffer (Table 5.2 and Table 5.3). Y2R affinities of 

the (5-(trimethylaminio)pentyl)oxy (N-„overalkylated“) derivative 5.30, the propionylated (5.31) and the 

2-fluoroacetylated (5.32) congeners were slightly lower compared to the amine precursor 4.50. 

5.2.3.3.  Determination of pKb values in a β-arrestin2 recruitment assay 

 

Figure 5.4. (A-D) Inhibition of β-arrestin2 recruitment (induced by 200 nM pNPY) by (A) 4.1, 5.9, 5.12, 5.20, (B) 4.1, 4.23, 5.20, 

(C) 4.50, 5.31, 5.32 (D) 4.50 and 5.29-5.30. All experiments were performed in HEK293T hY2R + βArr2 cells. Cells were 

pre-incubated with the antagonists for 15 min. Data are presented as means ± SEM from at least three independent experiments, 

each performed in triplicate. 

Y2R antagonism (pKb) of (S)-argininamides 5.9, 5.20 and 5.29-5.31 was investigated in a β-arrestin2 

recruitment assay in living HEK293T hY2R + βArr2 cells (Figure 5.4 and Table 5.4). The applied 

β-arrestin2 recruitment assay was previuosly described in the thesis of Felixberger10 with minor 

modifications (cf. 4.2.4.2.): β-arrestin2 recruitment was induced by 200 nM pNPY as described and 

luminescence was measured as a function of time in live cells rather than measurement of luminescence 

after cell lysis. 

Furthermore, the Y2R antagonism (Figure 5.4) of the 2-hydroxy substituted compound 5.20 (pKb = 7.14) 

was slightly less pronounced compared to 5.9 (pKb = 7.73) and 5.12 (pKb = 7.71). Methylation of 5.20 

(yielding 4.23), resulted in a decrease in antagonism by one order of magnitude, whilst methylation of 

5.9 and 5.12 (yielding 4.24 and 4.27) led to a slight decrease in Y2R antagonism. 
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The methylated compounds 5.29 and 5.30 showed Y2R antagonism comparable to that of the amino 

precursor 4.50. Furthermore, propionylation of 4.50 (4.31) led to a decrease in antagonism, whereas 

the introduction of a 2-fluoroacetyl moiety (5.32) showed neither a decrease nor an increase in Y2R 

antagonism. 

Table 5.4. Antagonism (pKb) of (S)-argininamides 4.1, 4.23, 4.24, 4.27, 4.50, 5.9, 5.12, 5.20 and 5.29-5.31 in the β-arrestin2 

recruitment assay 

Compound pKb ± SEMa Compound pKb ± SEMa 

4.1 8.89 ± 0.16 5.12 7.71 ± 0.03 

4.23 8.12 ± 0.17 5.20 7.14 ± 0.27 

4.24 7.17 ± 0.16 5.29 7.74 ± 0.17 

4.27 7.37 ± 0.27 5.30 7.23 ± 0.18 

4.50 7.54 ± 0.05 5.31 6.73 ± 0.11 

5.9 7.73 ± 0.04 5.32 7.66 ± 0.19 

aβ-Arrestin2 recruitment assay in intact HEK293T hY2R + βArr2 cells. Arrestin2 recruitment was induced by 200 nM pNPY after 

pre-incubation of the cells with the antagonist for 15 min. Mean values ± SEM from at least three independent experiments, each 

performed in triplicate. 

The trends obtained from the β-arrestin2 recruitment assay data were in good agreement with data from 

the competition radioligand and BRET based binding assay (Table 5.2, Table 5.3, and Table 5.4). 

5.2.3.4. NPY Y2R subtype selectivity 

NPY receptor subtype selectivity data were determined for (S)-argininamides 4.23 and 4.24 (Table 5.5). 

The substitution pattern of 4.23 and 4.24 did not affect subtype selectivity compared to the parent 

compound 4.1. 

Table 5.5. NPY receptor subtype binding profile of (S)-argininamides 4.23 and 4.24. 

Compound hY1R 

pKi
a 

hY2R 

pKi ± SEMb 

hY4R 

pKi
c 

hY5R 

pKi
d 

4.23 <5.52 7.39 ± 0.13 <5.00 <5.00 

4.24 <5.52 6.81 ± 0.23 <5.00 <5.00 

aRadioligand competition binding assay using [3H]2.2 (cfinal = 0.15 nM, Kd = 0.044 nM) in intact SK-N-MC cells.11 bRadioligand 

competition binding assay using [3H]propionyl-pNPY (cfinal = 4.0 nM, Kd = 2.97 nM) in intact HEK293T hY2R + βArr2 cells (cf. 

4.2.4.1.). Mean values ± SEM from at least three independent experiments, each performed in triplicate. cRadioligand 

competition binding assay using [3H]UR-KK200 (cfinal = 1.0 nM, Kd = 0.67 nM) in intact CHO-hY4R-Gqi5-mtAEQ cells.12, 13 

dRadioligand competition binding assay using [3H]propionyl-pNPY (cfinal = 4.0 nM, Kd = 4.8 nM) in intact HEC-1B-hY5 cells.11, 14 

Results from at least 2-3 independent experiments, each performed in triplicate (hY1R, hY4R and hY5R). 
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5.3. Conclusion 

In this chapter the synthesis of phenolic precursors (5.9, 5.12 and 5.20) derived from the argininamide-

type Y2R antagonist BIIE-0246 (4.1) is described. Methylation of 5.9, 5.12 and 5.20 at the phenolic 

hydroxy group gave the “cold” forms of potential radioligands (4.23, 4.24 and 4.27; cf. Chapter 4). 

Compound 4.23, which showed the highest Y2R affinity, was characterized in a number of cell based 

assays, namely a radioligand binding assay (pKi = 7.39), a BRET based binding assay (pKi = 8.60), a 

β-arrestin2 recruitment assay (pKb = 8.12) and a miniG protein recruitment assay (pKi = 8.06) (cf. 

Chapter 4) as well as in Y1R, Y4R and Y5R binding assays to study subtype selectivity (Table 5.4). With 

a pKi value of 7.39 (radioligand binding assay) the Y2R affinity of compound 4.23 is comparable to that 

of reported argininamide-type Y2R radioligands, which showed unfavourable physicochemical 

properties, limited chemical stability and unfavourable binding characteristics.2, 5 Therefore, the tritiated 

form of 4.23 would potentially represent a more favourable radiotracer compared to the reported 

radioligands. 

Additionally, the derivatization of amine precursor 4.50 led to compounds 5.29-5.32, which were 

pharmacologically characterized a potential “cold” forms of radioligands. The most promising candidate 

for radio labelling was the novel mono methylated compound 5.29, so far not described in literature, 

which was obtained in moderate yield (20%) by an established synthesis route of monoalkylation of 

4.50. Unfortunately, the established synthesis route is unsuitable for the synthesis of radioligands, 

because the labelling step should be ideally performed in the last synthesis step. Methylation of 4.50 

using e.g. methyl iodide or methyl nosylate would likely result in a mixture of mono (5.29), di and tri 

(5.30) methylated compounds, because for the synthesis of the radioligand requires an excess of 

precursor 4.50 compared to the labelling (methylation) reagent would be used. Pursuing this strategy 

would lead to issues with the separation of mono (5.29), di and tri (5.30) methylated compounds by 

HPLC. 
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5.4. Experimental section 

5.4.1. General experimental conditions (cf. 4.4.1.) 

The following reagents and solvents (analytical grade) were purchased from commercial suppliers and 

used without further purification: CH2Cl2, DMF, THF, MeOH, DMSO, methanesulfonyl chloride (Fisher 

Scientific, Schwerte, Germany); EDC∙HCl, HOBt, piperazine TFA, CBr4, PPh3, 4.14, 10% palladium on 

activated charcoal (Pd/C), TBAF (1.1 M) in solution, methyl 4-nitrobenzenesulfonate (Sigma Aldrich, 

Taufkirchen, Germany); Boc2O, benzyl bromide, tert-butyldimethylsilyl chloride (TCI, Eschborn, 

Germany); DIPEA, (ABCR, Karlsruhe, Germany); NaH, Et3N, NaBH4, K2CO3, methyl iodide (Merck, 

Darmstadt, Germany); conc. HCl (VWR Chemicals, Darmstadt, Germany); ammonium hydroxide (Carl 

Roth, Karlsruhe, Germany). For pharmacological characterization, pNPY was purchased from 

Synpeptide (Shanghai, China). 

The synthesis of compounds 4.15, 4.16, 4.34, 4.42, 4.43, 4.50 and 4.52 was described in chapter 4 (cf. 

4.4.2.). Compound 2.4415 was synthesized according to the literature procedure.  

Column chromatography was performed using Merck Geduran 60 silica gel (0.063-0.200 mm) or Merck 

flash silica gel 60 (0.040-0.063 mm). For thin layer chromatography, TLC sheets ALUGRAM Xtra SIL 

G/UV254 from Macherey-Nagel GmbH & Co. KG (Düren, Germany) were used. Compounds were 

detected by irradiation with UV light (254 nm or 366 nm), and staining was performed with ninhydrin. 

Acetonitrile (HPLC grade), used for HPLC, was purchased from Sigma-Aldrich. Millipore water was used 

for eluents for analytical and preparative HPLC. Compounds 5.9, 5.12, 5.20 and 5.29-5.31 were purified 

by a preparative HPLC-system B from Waters (Eschborn, Germany) consisting of a Binary Gradient 

Module (Waters 2545), a detector (Waters 2489 UV/visible Detector), a manual injector (Waters Prep 

inject) and a collector (Waters Fraction Collector III). A Kinetex XB C18, 5 µm, 250 x 21 mm 

(Phenomenex) served as RP-column at a flow rate of 20 mL/min. All injected solutions were filtered with 

syringe filters (0.45 µm). The mobile phase contained the solvents A (0.1% aq TFA) and B (acetonitrile). 

The detection wavelength was 220 nm. The eluates, containing isolated compounds, were lyophilized 

using a Christ alpha 2-4 LD (Martin Christ Gefriertrocknungsanlagen, Osterode am Harz, Germany) or 

a Scanvac CoolSafe 100-9 (Labogene, Alleroed, Denmark) lyophilization apparatus equipped with a 

Vacuubrand RZ rotary vane vacuum pump (Vacuubrand, Wertheim, Germany). 

The purity of compounds 5.9, 5.12, 5.20 and 5.29-5.31 was determined by analytical HPLC (RP-HPLC) 

with a 1100 series system from Agilent Technologies (Santa Clara, CA USA) composed of a Degasser 

(G1379A), a Binary Pump (G1312A), a Diode Array Detector (G1315A), a thermostated Column 

Compartment (G1316A) and an Autosampler (G1329A). A Phenomenex Kinetex 5u XB-C18 100A, 

250 x 4.6 mm was used as stationary phase. The flow rate was 1 mL/min, the detection wavelenghth 

was set to 220 nm, the oven temperature was set to 30 °C and the injection volume was 50 µL. Mixtures 

of solvents A (0.1% aq TFA) and B (acetonitrile) were used as mobile phase. The following gradient was 

applied: 0-25 min, A/B 90:10–5:95; 25-35 min, 5:95.  

Microwave reactions were carried out on a Biotage Initiator 2.0 microwave device (Biotage, Uppsala, 

Sweden) using pressure stable sealed 10-20 mL vessels. 
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Deuterated solvents for NMR spectroscopy (DMSO-d6, MeOD) were obtained from Deutero (Kastellaun, 

Germany) in ampoules (1 mL). NMR spectra were recorded on a Bruker Avance 300 (1H, 300 MHz; 13C, 

75 MHz), a Bruker Avance III 400 (1H, 400 MHz; 13C, 101 MHz) and a Bruker Avance 600 with cryogenic 

probe (1H, 600 MHz; 13C, 150 MHz) (Bruker, Karlsruhe, Germany). Chemical shifts are given in ppm 

and were referenced to the solvent residual peak (DMSO-d6, at 2.50 ppm (1H-NMR) and at 39.52 ppm 

(13C-NMR); CD3OD, at 3.31 ppm (1H-NMR) and at 49.00 ppm (13C-NMR)).16 The coupling constants (J) 

are given in Hertz (Hz). The splitting of the signals is described as follows: s = singlet, bs = broad singlet, 

d = doublet, t = triplet, q = quartet, m = multiplet. 

Mass spectrometry (HRMS) analysis was performed either on an Agilent 6540 UHD Accurate-Mass Q-

TOF LC/MS system (Agilent Technologies) using an electrospray source (ESI) or on an Agilent 

GC7890A GC/MS system (Agilent Technologies) using an atmospheric pressure chemical ionization 

(APCI) source. 

5.4.2. Synthesis protocols and analytical data 

Annotation concerning the analytical data (NMR, HPLC) of 5.9, 5.12, 5.20 and 5.29-5.32: due to the 

synthesis routes, these compounds were obtained as diastereomers, which are evident in the 1H-and 

13C-spectra (recorded in DMSO-d6 or MeOH-d4), but not in the RP-HPLC chromatograms. 

General synthesis procedure 

General procedure A (cf. 4.4.2. general procedure G) Compounds 5.9, 5.12, 5.20 and 5.29 were 

prepared by amide bond formation according to a reported procedures.17, 18 The respective carboxylic 

acid was dissolved in DMF (100 µL). EDC∙HCl and HOBt were added, and the reaction mixture was 

stirred for 5 min. Then, the mixture was poured into a solution of the secondary or primary amine in DMF 

(100 µL) and was stirred at rt overnight. The reaction mixture was poured into an aqueous solution (5% 

acetonitrile, 0.1% TFA; 100 mL). After lyophilization, the crude product was dissolved in a mixture of 

TFA and water (95:5; 5 mL) and stirred at rt overnight. Then, the reaction mixture was poured into an 

aqueous solution (5% acetonitrile, 0.1% TFA; 100 mL). After lyophilization, the crude product was 

purified by preparative HPLC. 

 

(3-((tert-Butyldimethylsilyl)oxy)phenyl)(phenyl)methanone (5.3). (3-Hydroxyphenyl)(phenyl)metha-

none (4.43) (310 mg, 1.56 mmol) was dissolved in CH2Cl2 (10 mL), Et3N (0.45 mL, 3.25 mmol) was 

added and the mixture was cooled in an ice-bath. Under stirring, tert-butyldimethylsilyl chloride (430 mg, 

2.85 mmol) in CH2Cl2 (10 mL) was dropped slowly into the mixture over a time-period of 1 h. The 

reaction mixture was allowed to warm to rt and stirred overnight. The organic solvent was evaporated, 

and the crude product was purified by column chromatography (eluent: light petroleum/ethyl acetate 

10:1) to give 5.3 as an oil (300 mg, 0.960 mmol, 62%). 1H-NMR (400 MHz, DMSO-d6): δ (ppm) 0.19 (s, 

6H), 0.94 (s, 9H), 7.11-7.19 (m, 2H), 7.27-7.36 (m, 1H), 7.41-7.47 (m, 1H), 7.52-7.58 (m, 2H), 7.64-7.77 

(m, 3H). 13C-NMR (101 MHz, DMSO-d6): δ (ppm) -4.6, 17.9, 25.5, 120.4, 122.9, 124.2, 128.5, 129.5, 
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129.9, 132.7, 136.9, 138.5, 155.0, 195.3. HRMS (APCI): m/z [M] + calcd. for [C19H24O2Si]∙+ 312.1540, 

found 312.1542. C19H24O2Si (312.48). 

 

(4-((tert-Butyldimethylsilyl)oxy)phenyl)(phenyl)methanone (5.4).19 (4-Hydroxyphenyl)(phenyl)-

methanone (4.52) (500 mg, 2.52 mmol) was dissolved in CH2Cl2 (15 mL), Et3N (0.70 mL, 5.05 mmol) 

was added and the mixture was cooled in an ice bath. Under stirring, tert-butyldimethylsilyl chloride 

(910 mg, 6.04 mmol) in CH2Cl2 (10 mL) was dropped slowly into the mixture over a time period of 1 h. 

The reaction mixture was allowed to warm to rt and was stirred overnight. The organic solvent was 

evaporated, and the crude product was purified by column chromatography (light petroleum/ethyl 

acetate 10:1) to give 5.4 as an oil (420 mg, 1.34 mmol, 53%). 1H-NMR (400 MHz, DMSO-d6): δ (ppm) 

0.24 (s, 6H), 0.95 (s, 9H), 6.97-7.02 (m, 2H), 7.51-7.57 (m, 2H), 7.61-7.73 (m, 5H). 13C-NMR (101 MHz, 

DMSO-d6): δ (ppm) -4.6, 17.9, 25.4, 119.7, 128.4, 129.2, 130.2, 132.1, 132.2, 137.6, 159.3, 194.4. 

HRMS (APCI): m/z [M] + calcd. for [C19H24O2Si]∙+ 312.1540, found 312.1539. C19H24O2Si (312.48). 

 

(3-((tert-Butyldimethylsilyl)oxy)phenyl)(phenyl)methanol (5.5). (3-((tert-Butyldimethylsilyl)oxy)-

phenyl)(phenyl)methanone (5.3) (290 mg, 0.928 mmol) was dissolved in methanol (5 mL) and sodium 

borohydride (100 mg, 2.64 mmol) was added portionwise into the mixture and stirred at rt for 3 h. The 

solvent was evaporated, and the crude product was purified by column chromatography (eluent: light 

petroleum/ethyl acetate 90:10) to give 5.5 as an oil (260 mg, 0.827 mmol, 89%). 1H-NMR (400 MHz, 

DMSO-d6): δ (ppm) 0.15 (s, 6H), 0.93 (s, 9H), 5.65 (d, J = 4.1 Hz, 1H), 5.86 (d, J = 4.1 Hz, 1H), 6.64-

6.69 (m, 1H), 6.84-6.88 (m, 1H), 6.93-6.99 (m, 1H), 7.14-7.23 (m, 2H), 7.26-7.33 (m, 2H), 7.34-7.39 (m, 

2H). 13C-NMR (101 MHz, DMSO-d6): δ (ppm) -4.5, 17.9, 25.6, 73.9, 117.6, 118.0, 119.4, 126.2, 126.7, 

128.0, 129.1, 145.6, 147.5, 154.9. HRMS (APCI): m/z [M]∙+ calcd. for [C19H26O2Si] + 314.1697, found 

314.1700. C19H26O2Si (314.50). 

 

(4-((tert-Butyldimethylsilyl)oxy)phenyl)(phenyl)methanol (5.6).20 (4-((tert-Butyldimethylsilyl)oxy)-

phenyl)(phenyl)methanone (5.4) (330 mg, 1.06 mmol) was dissolved in methanol (5 mL) and sodium 

borohydride (110 mg, 2.91 mmol) was added portionwise into the reaction mixture and stirred at rt for 

3 h. The organic solvent was evaporated, and the crude product was purified by column chromatography 

(eluent: light petroleum/ethyl acetate 90:10) to give 5.6 as an oil (310 mg, 0.986 mmol, 93%). 1H-NMR 

(400 MHz, DMSO-d6): δ (ppm) 0.16 (s, 6H), 0.94 (s, 9H), 5.64 (d, J = 3.6 Hz, 1H), 5.76-5.83 (m, 1H), 

6.72-6.84 (m, 2H), 7.16-7.42 (m, 7H). 13C-NMR (101 MHz, DMSO-d6): δ (ppm) -4.6, 17.9, 25.5, 73.8, 

119.3, 126.2, 126.6, 127.6, 128.0, 138.7, 145.9, 153.8. HRMS (APCI): m/z [M]∙+ calcd. for [C19H26O2Si]∙+ 

314.1697, found 314.1712. C19H26O2Si (314.50). 
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1-((3-((tert-Butyldimethylsilyl)oxy)phenyl)(phenyl)methyl)piperazine (5.7). (3-((tert-Butyldimethyl-

silyl)oxy)phenyl)(phenyl)methanol (5.3) (260 mg, 0.827 mmol) was dissolved in CH2Cl2 (6 mL), Et3N 

(0.40 mL, 2.88 mmol) was added and the mixture was cooled in an ice bath. Under stirring, 

methanesulfonyl chloride (96 µL, 1.24 mmol) in CH2Cl2 (1 mL) was dropped to the mixture. After 2 h the 

reaction mixture was allowed to warm to rt and stirred for 3 h. Then, 1 N NaOH (10 mL) was added and 

the product was extracted from the aqueous phase with CH2Cl2. The combined organic phases were 

dried over Na2SO4 and the solvent was evaporated. The residue was dissolved in acetonitrile (10 mL), 

piperazine (420 mg, 4.88 mmol) was added and the reaction mixture was treated in the microwave 

device (70 °C, 30 min). The organic solvent was evaporated, and the crude product was purified by 

column chromatography (eluent: CH2Cl2/MeOH/NH3 aq 90:9:1) to give 5.7 as an oil (105 mg, 

0.274 mmol, 62%). HRMS (ESI): m/z [M+H]+ calcd. for [C23H35N2OSi]+ 383.2513, found 383.2520. 

C23H34N2OSi (382.62). 

 

1-((4-((tert-Butyldimethylsilyl)oxy)phenyl)(phenyl)methyl)piperazine (5.8). (4-((tert-Butyldimethyl-

silyl)oxy)phenyl)(phenyl)methanol (5.6) (140 mg, 0.445 mmol) was dissolved in CH2Cl2 (5 mL), Et3N 

(0.20 mL, 1.44 mmol) was added and the mixture was cooled in an ice bath. Under stirring, 

methanesulfonyl chloride (56 µL, 0.723 mmol) in CH2Cl2 (1 mL) was added to the mixture. After 2 h the 

reaction mixture was allowed warm to rt and stirred for 3 h. Then, 1 N NaOH (10 mL) was added to the 

mixture and the product was extracted from the aqueous phase with CH2Cl2. The combined organic 

phases were dried over Na2SO4 and the organic solvent was evaporated. The residue was dissolved in 

acetonitrile (10 mL) and piperazine (280 mg, 3.25 mmol) was added and the reaction mixture was 

treated in the microwave device (70 °C, 30 min). The organic solvent was evaporated, and the crude 

product was purified by column chromatography (eluent: CH2Cl2/MeOH/NH3 aq. 90:9:1) to give 5.8 as 

an oil (105 mg, 0.274 mmol, 62%). 1H-NMR (400 MHz, DMSO-d6): δ (ppm) 0.14 (s, 6H), 0.91 (s, 9H), 

2.12-2.45 (m, 4H), 2.38 (s, 1H), 2.62-2.77 (m, 4H), 4.16 (s, 1H), 6.71-6.78 (m, 2H), 7.12-7.18 (m, 1H), 

7.23-7.29 (m, 4H), 7.34-7.40 (m, 2H). 13C-NMR (101 MHz, DMSO-d6): δ (ppm) -4.6, 17.8, 25.5, 45.7, 

52.7, 75.1, 119.5, 126.6, 127.6, 128.4, 128.8, 135.5, 143.1, 153.7. HRMS (ESI): m/z [M+H]+ calcd. for 

[C23H35N2OSi]+ 383.2513, found 383.2517. C23H34N2OSi (382.62). 
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(2S)-Nα-(2-{1-[2-(4-((3-Hydroxyphenyl)(phenyl)methyl)piperazin-1-yl)-2-oxoethyl]cyclopentyl}-

acetyl)[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamide bis(hydrotrifluoroa-

cetate) (5.9). Compound 5.9 was prepared according to general procedure A and the reactants 

(S)-2-(1-(2-((1-((2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl)amino)-1-oxo-5(2-((2,2,4,6,7-pen-

tamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-yl)amino)-2-oxoethyl)cyclopentyl)a-

cetic acid (4.15) (77.9 mg, 89.2 µmol), EDC∙HCl (27.2 mg, 141.9 µmol), HOBt (13.9 mg, 102.9 µmol) 

and 1-((3-((tert-Butyldimethylsilyl)oxy)phenyl)(phenyl)methyl)piperazine (5.7) (32.6 mg, 85.2 µmol). 

Purification by preparative HPLC (gradient: 0-30 min, A/B 79:21–57:43, tR = 15 min) gave 4.1 as a fluffy 

white solid (15.4 mg, 14.0 µmol, 16%). 1H-NMR (600-MHz, DMSO-d6): δ (ppm) 1.33-1.69 (m, 13H), 2.23 

(m, 1H), 2.31-2.39 (m, 1H), 2.42-2.49 (m, 1H, interfering with solvent residual peak), 2.56-2.67 (m, 1H), 

2.64-3.07 (m, 5H), 3.27-3.33 (m, 1H), 3.35-3.40 (m, 1H), 3.41-4.10 (m, 6H), 4.11-4.18 (m, 1H), 6.86-

7.48 (m, 21H), 7.58 (br s, 4H, interfering with surrounding signals), 7.64-7.68 (m, 1H), 7.92-7.98 (m, 

1H), 8.18-8.24 (m, 1H). One proton signal was not apparent ((C6H4OH)(Ph)CH-N-piperazine). 13C-NMR 

(150 MHz, DMSO-d6): δ (ppm) 23.3 (two carbon signals), 25.1, 28.8, 36.2 (2 carb.), 37.3, 37.5, 38.6, 

39.6 (overlaid by solvent residual peak), 40.4, 42.6, 43.9, 51.2, 51.5, 52.0, 74.0, 113.6, 115.5 (TFA), 

117.5 (TFA), 122.7, 126.7 (2 carb.), 127.9 (2 carb.), 129.0 (3 carb.), 129.2, 136.5, 152.6, 156.8, 158.6 

(q, J = 33.7 Hz) (TFA), 117.2, 171.3, 172.0. RP-HPLC (220 nm): 97% (tR = 12.9 min, k = 4.0). HRMS 

(ESI): m/z [M+H]+ calcd. for [C48H59N10O6]+ 871.4614, found 871.4618. C48H58N10O6 × C4H2F6O4. (870.06 

+ 228.04). 

 

2-(1-(2-(4-((4-((tert-Butyldimethylsilyl)oxy)phenyl)(phenyl)methyl)piperazin-1-yl)-2-oxoethyl)-

cyclopentyl)acetic acid (5.10). 1-((4-((tert-Butyldimethylsilyl)oxy)phenyl)(phenyl)methyl)piperazine 

(5.8) (155 mg, 0.405 mmol) was dissolved in CH2Cl2 (5 mL) and cooled using an ice-bath followed by 

addition of 3,3-tetramethyleneglutaric anhydride (4.14) (90 mg, 0.535 mmol) dissolved in CH2Cl2 (1 mL). 

After 2 h, the mixture was allowed to warm to rt and stirring was continued overnight. The solvent was 

evaporated, and the crude product was purified by column chromatography (eluent: CH2Cl2/MeOH 95:5) 

to give 5.10 as an oil (141 mg, 0.256 mmol, 63%). 1H-NMR (400 MHz, DMSO-d6): δ (ppm) 0.14 (s, 6H), 

0.91 (s, 9H), 1.49-1.57 (m, 8H), 2.17-2.28 (m, 4H), 2.42 (s, 2H), 2.47 (s, 2H, interfering with solvent 

residual peak), 3.67-3.52 (m, 4H), 4.22 (s, 1H), 6.73-6.78 (m, 2H), 7.14-7.21 (m, 1H), 7.24-7.31 (m, 4H), 

7.37-7.42 (m, 2H), 12.0 (s, 1H). 13C-NMR (101 MHz, DMSO-d6): δ (ppm) -4.6, 17.8, 23.5, 23.7, 25.5, 
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36.8, 37.5, 40.9, 41.7, 43.0, 74.1, 119.7, 126.8, 127.5, 128.5, 128.8, 135.1, 142.8, 153.9, 169.6, 173.5. 

HRMS (ESI): m/z [M+H]+ calcd. for [C32H47N2O4Si]+ 551.3300, found 551.3303. C32H46N2O4Si. (550.82). 

 

2-(1-(2-(4-((4-Hydroxyphenyl)(phenyl)methyl)piperazin-1-yl)-2-oxoethyl)cyclopentyl)acetic acid 

(5.11). 2-(1-(2-(4-((4-((tert-Butyldimethylsilyl)oxy)phenyl)(phenyl)methyl)piperazin-1-yl)-2-oxoethyl)-

cyclopentyl)acetic acid (5.10) (91 mg, 0.165 mmol) was dissolved in TBAF (1.1 M) in THF (3 mL, 

3.3 mmol) and stirred at rt for 3 h. The organic solvent was evaporated, and the crude product was 

purified by column chromatography (eluent: CH2Cl2/methanol 90:10) to give 5.11 as an oil (72 mg, 

0.165 mmol, 100%). 1H-NMR (400 MHz, DMSO-d6): δ (ppm) 1.46-1.55 (m, 8H), 2.17-2.30 (m, 4H), 2.42 

(s, 2H), 2.48 (s, 2H, interfering with solvent residual peak), 2.70-2.82 (m, 4H), 4.16 (s, 1H), 6.64-6.73 

(m, 2H), 7.14 (m, 3H), 7.25-7.32 (m, 2H), 7.36-7.43 (m, 2H), 9.30 (br s, 1H). One exchangeable proton 

signal (-COOH or -OH) was not apparent. 13C-NMR (101 MHz, DMSO-d6): δ (ppm) 20.1, 24.0, 25.5, 

37.9, 42.2, 43.5, 52.6, 74.4, 115.7, 127.2, 127.9, 128.9, 129.1, 133.1, 143.7, 156.8, 170.0, 174.0. HRMS 

(ESI): m/z [M+H]+ calcd. for [C26H33N2O4]+ 437.2435, found 437.2446. C26H32N2O4 (436.55). 

 

(2S)-Nα-(2-{1-[2-(4-((4-Hydroxyphenyl)(phenyl)methyl)piperazin-1-yl)-2-oxoethyl]cyclopentyl}-

acetyl)[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamide bis(hydrotrifluoro-

acetate) (5.12). Compound 5.12 was prepared according to general procedure A and the reactants 

2-(1-(2-(4-((4-hydroxyphenyl)(phenyl)methyl)piperazin-1-yl)-2-oxoethyl)cyclopentyl)acetic acid (5.11). 

(30.0 mg, 54.5 µmol), EDC∙HCl (12.7 mg, 66.2 µmol), HOBt (12.6 mg, 93.3 µmol) and (S)-[2-(3,5-dioxo-

1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamid bis(hydrotrifluoroacetate) (4.16) (40.9 mg, 

60.1 µmol). Additionally, DIPEA (19 µL, 109 µmol) was added to the solution of 4.16 in DMF. Purification 

by preparative HPLC (gradient: 0-30 min, A/B 71:29–38:62, tR = 10 min) gave 5.12 as a fluffy white solid 

(15.8 mg, 14.4 µmol, 24%). 1H-NMR (600 MHz, DMSO-d6): δ (ppm) 1.32-1.68 (m, 13H), 2.19-2.26 (m, 

1H), 2.31-2.38 (m, 1H), 2.43-2.48 (m, 1H, interfering with solvent residual peak), 2.54-2.60 (m, 1H), 

2.63-3.27 (m, 6H), 3.27-3.33 (m, 1H), 3.35-3.41 (m, 1H), 3.51-3.61 (m, 5H, interfering with water signal), 

4.12-4.16 (m, 1H), 5.38 (br s, 1H), 6.76 (br s, 2H), 6.86-7.62 (m, 22H), 7.68 (br s, 1H), 7.95 (d, J = 7.6 Hz, 

1H), 8.22 (t, J = 5.5 Hz, 1H), 9.72 (br s, 1H). 1H-NMR (600 MHz, MeOH-d4): δ (ppm) 1.44-1.94 (m, 13H), 

2.24-2.33 (m, 1H), 2.46-2.63 (m, 3H), 2.84-3.25 (m, 6H), 3.41-3.47 (m, 1H), 3.50-4.13 (m, 6H), 4.20-

4.27 (m, 1H), 5.17 (br s, 1H), 6.82-6.89 (m, 2H), 7.18-7.25 (m, 2H), 7.29-7.50 (m, 13H), 7.56-7.63 (m, 

2H). 13C-NMR (150 MHz, MeOH-d4): δ (ppm) 24.60, 24.64, 26.3, 30.1 (two carbon signals), 38.3, 39.3, 
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39.5, 39.6, 39.9 (2 carb.), 41.2, 41.9, 44.4 (2 carb.), 45.6, 52.6, 52.9, 54.0, 76.7 (2 carb.), 117.3, 119.2, 

142.3, 124.4, 128.3, 129.05, 129.06, 130.1, 130.23, 130.30, 130.7, 130.98, 131.00, 137.7 (2 carb.), 

154.5, 158.6, 159.8, 162.7 (TFA), 163.0 (TFA), 172.9, 174.69, 174.73. RP-HPLC (220 nm): 97% 

(tR = 12.3 min, k = 3.8). HRMS (ESI): m/z [M+H]+ calcd. for [C48H59N10O6]+ 871.4619, found 871.4615. 

C48H58N10O6 × C4H2F6O4 (870.06 + 228.04). 

 

(2-((tert-Butyldimethylsilyl)oxy)phenyl)(phenyl)methanone (5.13). (2-Hydroxyphenyl)(phenyl)-

methanone (4.42) (500 mg, 2.52 mmol) was dissolved in CH2Cl2 (15 mL), Et3N (0.70 mL, 5.05 mmol) 

was added and the mixture was cooled in an ice bath. Under stirring, tert-butyldimethylsilyl chloride 

(1.16 g, 7.70 mmol) in CH2Cl2 (10 mL) was dropped slowly into the mixture over a time period of 1 h. 

The reaction mixture was allowed to warm to rt and stirred overnight. The organic solvent was 

evaporated, and the crude product was purified by column chromatography (eluent: light petroleum/ethyl 

acetate 95:5) to give 5.13 as an oil (670 mg, 2.14 mmol, 85%). 1H-NMR (400 MHz, DMSO-d6): δ (ppm) 

0.24 (s, 6H), 0.95 (s, 9H), 6.97-7.02 (m, 2H), 7.51-7.57 (m, 2H), 7.61-7.73 (m, 5H). 13C-NMR (101 MHz, 

DMSO-d6): δ (ppm) -4.8, 17.4, 25.0, 119.4, 121.4, 128.5, 129.26, 129.31, 131.1, 131.9, 133.3, 137.1, 

152.4, 196.1. HRMS (APCI): m/z [M+H]+ calcd. for [C19H25O2Si]+ 313.1618, found 313.1617. C19H24O2Si 

(312.48). 

 

(2-Benzylphenoxy)(tert-butyl)dimethylsilane (5.15). (2-((tert Butyldimethylsilyl)oxy)phenyl)(phenyl)-

methanone (5.13) (3.05 g, 9.76 mmol) was dissolved in MeOH (150 mL). Palladium on activated 

charcoal (Pd/C; 340 mg) was added and hydrogen (H2) was bubbled (balloon) through the reaction, 

whilst stirring at rt. The reaction mixture was filtered, and the organic solvent evaporated. The crude 

product was purified by column chromatography (eluent: light petroleum/ethyl acetate 95:5) to give 5.15 

as an oil (2.31 g, 7.74 mmol, 79%). 1H-NMR (400 MHz, DMSO-d6): δ (ppm) 0.19 (s, 6H), 0.91 (s, 9H), 

3.91 (s, 2H), 6.81-6.91 (m, 2H), 7.03-7.17 (m, 5H), 7.20-7.27 (m, 2H). 13C-NMR (101 MHz, DMSO-d6): 

δ (ppm) -4.4, 17.8, 25.5, 35.3, 118.3, 121.1, 125.7, 127.3, 128.1, 128.4, 130.8, 131.0, 140.7, 152.9. 

HRMS (APCI): m/z [M+H]+ calcd. for [C19H27O2Si]+ 299.1826, found 299.1837. C19H26OSi (298.50). 

 

(2-(Benzyloxy)phenyl)(phenyl)methanone (5.16).21 (2-Hydroxyphenyl)(phenyl)methanone (4.42) 

(1.00 g, 5.04 mmol) was dissolved in acetonitrile (10 mL) and K2CO3 (2.12 g, 15.3 mmol) was added. 

After addition of benzyl bromide (0.80 mL, 6.74 mmol) the reaction mixture was treated in the microwave 

device (80 °C, 1 h). The organic solvent was evaporated, and the crude product was purified by column 

chromatography (eluent: light petroleum/ethyl acetate 95:5 to 90:10 to 75:25) to give 5.16 as a white 
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solid (1.02 g, 3.54 mmol, 70%). 1H-NMR (400 MHz, DMSO-d6): δ (ppm) 5.06 (s, 2H), 6.93-7.00 (m, 2H), 

7.08-7.15 (m, 1H), 7.16-7.22 (m, 3H), 7.24-7.29 (m, 1H), 7.36-7.42 (m, 1H), 7.49-7.58 (m, 3H), 7.62-

7.69 (m, 1H), 7.69-7.74 (m, 2H). 13C-NMR (101-MHz, DMSO-d6): δ (ppm) 69.3, 113.1, 120.9, 126.8, 

127.5, 128.1, 128.6, 128.8, 129.0, 129.1, 132.1, 133.2, 136.4, 137.5, 155.7, 196.0. HRMS (ESI): m/z 

[M+H]+ calcd. for [C20H17O2]+ 289.1223, found 289.1225. C20H16O2 (288.35). 

 

(2-(Benzyloxy)phenyl)(phenyl)methanol (5.17). (2-(Benzyloxy)phenyl)(phenyl)methanone (5.16) 

(0.45 g, 1.56 mmol) was dissolved in methanol (10 mL) and sodium borohydride (0.19 g, 5.02 mmol) 

was added portion wise and the mixture was stirred and cooled using an ice bath. Then, the reaction 

mixture was allowed to warm to rt and stirred for 2 h. The organic solvent was evaporated, and the crude 

product was purified by column chromatography (eluent: light petroleum/ethyl acetate 90:10) to give 

5.17 as an oil (0.43 g, 1.48 mmol, 95%). 1H-NMR (400 MHz, DMSO-d6): δ (ppm) 5.09 (s, 2H), 5.68 (d, 

J = 4.2 Hz, 1H), 6.03 (d, J = 4.1 Hz, 1H), 6.91-7.06 (m, 2H), 7.15-7.40 (m, 11H), 7.49-7.60 (m, 1H). 

13C-NMR (101 MHz, DMSO-d6): δ (ppm) 68.1, 69.2, 111.8, 120.5, 126.51, 126.55, 127.4, 127.69, 

127.74, 127.79, 128.3, 133.8, 137.2, 145.3, 154.4. One aromatic carbon was not apparent. HRMS (ESI): 

m/z [M+Na]+ calcd. for [C20H18O2Na]+ 313.1199, found 313.1198. C20H18O2 (290.36). 

 

1-((2-(Benzyloxy)phenyl)(phenyl)methyl)piperazine (5.18). (2-(Benzyloxy)phenyl)(phenyl)methanol 

(5.17) (290 mg, 0.999 mmol) was dissolved in CH2Cl2 (5 mL), Et3N (0.40 mL, 2.89 mmol) was added 

and the mixture was cooled using an ice bath. Under stirring, methanesulfonyl chloride (0.20 mL, 

2.58 mmol) was added. The reaction mixture was allowed to warm to rt and stirred for 2 h. Then, 1 N 

NaOH (10 mL) was added. The product was extracted from the aqueous phase with CH2Cl2 (3x 10 mL) 

and the combined organic phases were dried over Na2SO4 and the solvent was evaporated. The residue 

was dissolved in acetonitrile (10 mL) and piperazine (390 mg, 4.53 mmol) was added. The reaction 

mixture was treated in the microwave device (85 °C, 45 min) and the organic solvent was evaporated. 

The crude product was purified by column chromatography (eluent: CH2Cl2/methanol/NH3 aq. 90:9:1) to 

give 5.18 as an oil (190 mg, 0.53 mmol, 53%). 1H-NMR (400 MHz, DMSO-d6): δ (ppm) 2.12-2.34 (m, 

4H), 2.65-2.75 (m, 4H), 4.72 (s, 1H, interfering with water signal), 5.05-5.14 (m, 2H), 6.91-7.01 (m, 2H), 

7.09-7.18 (m, 2H), 7.20-7.28 (m, 2H), 7.29-7.37 (m, 3H), 7.37-7.43 (m, 4H). 7.55-7.62 (m, 1H). One 

exchangeable proton signal (NH-piperazine) was not apparent. 13C-NMR (101 MHz, DMSO-d6): δ (ppm) 

45.6, 52.7, 67.2, 69.4, 112.5, 120.8, 126.6, 127.4, 127.5, 127.6, 127.7, 128.1, 128.2, 128.4, 130.7, 

137.2, 142.3, 155.6. HRMS (ESI): m/z [M+Na]+ calcd. for [C24H26N2ONa]+ 381.1937, found 381.1932. 

C24H26N2O (358.49). 
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2-(Phenyl(piperazin-1-yl)methyl)phenol (5.19).22 1-((2-(Benzyloxy)phenyl)(phenyl)methyl)piperazine 

(5.18) (168 mg, 0.469 mmol) was dissolved in methanol (5 mL) and Pd/C (17 mg) was added and stirred 

in a reaction vessel under hydrogen atmosphere (10 bar) at rt overnight. The reaction was filtered, and 

the organic solvent was evaporated to give 5.19 as an oil (90 mg, 0.206 mmol, 44%). 1H-NMR (400 MHz, 

DMSO-d6): δ (ppm) 2.89-2.46 (m, 4H), 2.64-2.83 (m, 4H), 4.61 (s, 1H), 6.67-6.76 (m, 2H), 6.98-7.05 (m, 

1H), 7.14-7.24 (m, 3H), 7.27-7.31 (m, 2H), 7.39-7.43 (m, 1H), 11.01 (br s, 1H). One exchangeable proton 

(NH-piperazine) signal was not apparent. 13C-NMR (101 MHz, DMSO-d6): δ (ppm) 45.5, 52.2, 71.8, 

115.9, 119.0, 120.8, 127.2, 127.7, 128.1, 128.5 (two carbon signals), 141.1, 155.7. HRMS (ESI): m/z 

[M+H]+ calcd. for [C17H21N2O]+ 269.1648, found 269.1651. C17H20N2O (268.36). 

 

(2S)-Nα-(2-{1-[2-(4-((2-Hydroxyphenyl)(phenyl)methyl)piperazin-1-yl)-2-oxoethyl]cyclopentyl}-

acetyl)[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamide bis(hydrotrifluoro-

acetate) (5.20). Compound 5.20 was prepared according to general procedure A and the reactants 

(S)-2-(1-(2-((1-((2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl)amino)-1-oxo-5(2-((2,2,4,6,7-pent

amethyl-2,3-dihydrobenzo-furan-5-yl)sulfonyl)guanidino)pentan-2-yl)amino)-2-oxoethyl)cyclopentyl) 

acetic acid (4.15) (200.8 mg, 230.0 µmol), EDC∙HCl (64.6 mg, 337.0 µmol), HOBt (43.9 mg, 324.7 µmol) 

and 2-(phenyl(piperazin-1-yl)methyl)phenol (5.19). (60.0 mg, 223.6 µmol). Purification by preparative 

HPLC (gradient: 0-30 min, A/B 71:29–47:53, tR = 13 min) gave 5.20 as a fluffy white solid (20.7 mg, 

18.8 µmol, 8.4%). 1H-NMR (600 MHz, DMSO-d6): δ (ppm) 1.30-1.72 (m, 13H), 2.20-2.26 (m, 1H), 2.32-

2.39 (m, 1H), 2.43-2.48 (m, 1H, interfering with solvent residual peak), 2.55-2.62 (m, 1H), 2.64-3.07 (m, 

6H), 3.27-3.34 (m, 1H), 3.35-3.41 (m, 1H), 3.54-3.66 (m, 5H, interfering with water signal), 4.10-4.18 

(m, 1H), 5.32 (br s, 1H), 6.80-6.91 (m, 2H), 6.95-7.59 (m, 22H), 7.72 (t, J = 5.5 Hz, 1H), 7.91-7.99 (m, 

1H), 8.22 (t, J = 5.9 Hz, 1H), 10.37 (br s, 1H). 1H-NMR (600 MHz, MeOH-d4): δ (ppm) 1.42-1.91 (m, 

13H), 2.24-2.31 (m, 1H), 2.48-2.64 (m, 3H), 2.90-3.20 (m, 5H), 3.20-3.30 (m, 1H, interfering with solvent 

residual peak), 3.39-3.45 (m, 1H), 3.53-3.61 (m, 1H), 3.62-4.19 (m, 5H), 4.21-4.28 (m, 1H), 5.52 (s, 

0.5H), 5.53 (s, 0.5H, interfering with previous signal), 6.89-6.97 (m, 2H), 7.18-7.27 (m, 3H), 7.29-7.47 

(m, 12H), 7.67-7.72 (m, 2H). 13C-NMR (150 MHz, DMSO-d6): δ (ppm) 23.3 (two carbon signals), 25.1, 

28.8, 36.2 (2 carb.), 37.27, 37.31, 37.5, 38.6, 39.6 (overlaid by solvent residual peak), 40.4, 42.7, 34.92, 

51.1, 51.4, 52.0, 69.0, 116.00 (TFA), 116.05, 117.97 (TFA), 122.7, 126.7 (2 carb.), 128.2, 128.3, 128.9, 

129.0, 136.6, 152.6, 154.9, 156.8, 158.5 (q, J = 32.0 Hz) (TFA), 170.2, 171.3, 172.0. 13C-NMR 

(150 MHz, MeOH-d4) δ (ppm) 24.58, 24.62, 26.32, 26.33, 30.1, 30.2, 38.2, 38.3, 39.2, 39.29, 39.33, 

39.3, 39.49, 39.51, 40.0, 41.2, 41.3, 41.9, 44.0, 44.31, 44.35, 45.60, 45.63, 52.6, 52.7, 52.8, 52.9, 53.97, 
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54.04, 73.77, 73.81, 117.4, 121.80, 121.82, 122.2, 124.31, 124.32, 128.2, 129.66, 129.69, 130.2, 

130.50, 130.55, 130.56, 130.7 (two carbon signals), 131.8, 136.18, 136.24, 137.66, 137.68, 154.5, 

155.55, 155.57, 158.6, 162.7 (TFA), 172.94, 172.97, 174.67, 174.72, 174.74. RP-HPLC (220 nm): 98% 

(tR = 13.2 min, k = 4.1). HRMS (ESI): m/z [M+H]+ calcd. for [C48H59N10O6]+ 871.4614, found 871.4620. 

C48H58N10O6 × C4H2F6O4 (871.06 + 228.04). 

 

tert-Butyl (5-hydroxypentyl)(methyl)carbamate (5.22).23 tert-Butyl (5-((tert-butyldimethylsilyl)oxy)-

pentyl)(methyl)carbamate (5.24) (3.38 g, 10.2 mmol) was dissolved in THF (150 mL). TBAF (1.1 M) in 

THF (15 mL, 16.5 mmol) was added and the reaction mixture stirred at rt for 4 h. The organic solvent 

was evaporated, and the crude product was purified by column chromatography (eluent: light 

petroleum/ethyl acetate 1:2) to give 5.22 as an oil (1.10 g, 5.1 mmol, 50%). 1H-NMR (400 MHz, DMSO-

d6): δ (ppm) 1.16-1.30 (m, 2H), 1.38 (s, 9H), 1.40-1.49 (m, 4H), 2.74 (s, 3H), 3.13 (t, J = 7.1 Hz, 2H), 

3.38 (t, J = 6.4 Hz, 2H), 4.35 (br s, 1H). 13C-NMR (101 MHz, DMSO-d6): δ (ppm) 22.6, 27.2, 28.1, 32.2, 

33.6, 48.0, 60.6, 78.2, 154.8. HRMS (ESI): m/z [M+H]+ calcd. for [C11H24NO3]+ 218.1751, found 

218.1749. C11H23NO3 (217.31). 

 

tert-Butyl (5-((tert-butyldimethylsilyl)oxy)pentyl)carbamate (5.23).24 tert-Butyl (5-hydroxypentyl)-

carbamate (4.34) (6.12 g, 30.1 mmol) was dissolved in CH2Cl2 (200 mL), Et3N (8.5 mL, 61.3 mmol) was 

added and the mixture was cooled in an ice bath. Under stirring, tert-butyldimethylsilylchlorid (5.51 g, 

36.6 mmol) in CH2Cl2 (100 mL) was dropped slowly into the mixture over a time period of 1 h. The 

reaction mixture was allowed to warm to rt and stirred for 12 h. The organic solvent was evaporated, 

and the crude product was purified by column chromatography (eluent: light petroleum/ethyl acetate 

95:5) to give 5.23 as a white solid (9.11 g, 28.7 mmol, 95%). 1H-NMR (400 MHz, DMSO-d6): δ (ppm) 

0.02 (s, 6H), 0.86 (s, 9H), 1.20-1.34 (m, 3H), 1.36 (s, 9H), 1.38-1.47 (m, 3H), 2.85-2.93 (m, 2H), 3.55 (t, 

J = 6.4 Hz, 2H), 6.73 (t, J = 5.2 Hz, 1H). 13C-NMR (101 MHz, DMSO-d6): δ (ppm) -5.4, 17.9, 22.6, 25.77, 

25.80, 28.2, 29.3, 32.0, 62.4, 77.2, 155.5. HRMS (APCI): m/z [M+H]+ calcd. for [C16H36NO3Si]+ 318.2459, 

found 318.2466. C16H35NO3Si (317.55). 

 

tert-Butyl (5-((tert-butyldimethylsilyl)oxy)pentyl)(methyl)carbamate (5.24). tert-Butyl (5-((tert-butyl-

dimethylsilyl)oxy)pentyl)carbamate (5.23) (7.04 g, 22.2 mmol) was dissolved in THF (175 mL) and 

cooled using an ice bath. Sodium hydride (1.88 g, 47.0 mmol, 60%, dispersion in mineral oil) was added 

portionwise to the reaction mixture and stirred for 15 min. Then, MeI (2.80 mL, 45.0 mmol) was dropped 

into the mixture. After 1 h, the reaction mixture was allowed to warm to rt and stirred for 1 day. The 

solvent was evaporated, and the residue was dissolved in a saturated ammonium chloride solution 

(500 mL). The product was extracted from the aqueous phase with ethyl acetate (3x 500 mL) and the 

combined organic phases were dried over sodium sulfate and the organic solvent was evaporated. The 

crude product was purified by column chromatography (eluent: light petroleum/ethyl acetate 95:5) to 
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give 5.24 as a colourless oil (3.84 g, 11.6 mmol, 52%). 1H-NMR (400 MHz, DMSO-d6): δ (ppm) 0.02 (s, 

6H), 0.85 (s, 9H), 1.19-1.30 (m, 2H), 1.38 (s, 9H), 1.40-1.50 (m, 4H), 2.74 (s, 3H), 3.14 (t, J = 7.0 Hz, 

2H), 3.57 (t, J = 6.2 Hz, 2H). 13C-NMR (101 MHz, DMSO-d6): δ (ppm) -4.9, 18.4, 22.9, 26.3, 27.2, 27.5, 

28.5, 32.4, 34.0, 62.8, 78.6, 155.2. HRMS (ESI): m/z [M+H]+ calcd. for [C17H38NO3Si]+ 332.2615, found 

332.2626. C17H37NO3Si (331.57). 

 

tert-Butyl (5-bromopentyl)(methyl)carbamate (5.25).23 tert-Butyl (5-hydroxypentyl)(methyl)carba-

mate (5.24) (1.07 g, 4.92 mmol) and PPh3 (1.86 g, 7.09 mmol) were dissolved in THF (50 mL) and the 

mixture was cooled in an ice bath. Under stirring, carbon tetrabromide (2.36 g, 7.12 mmol) in THF 

(50 mL) was added dropwise to the mixture and stirred for 1 h. Then, the reaction mixture was allowed 

to warm to rt. After 3 h, PPh3 (1.84 g, 7.02 mmol) and carbon tetrabromide (2.35 g, 7.09 mmol) were 

added to the reaction mixture, which was stirred at rt overnight. The organic solvent was evaporated, 

and the crude product was purified by column chromatography (eluent: CH2Cl2/ethyl acetate 1:0 to 9:1) 

to give 5.25 as an oil (1.35 g, 4.82 mmol, 98%). 1H-NMR (400 MHz, DMSO-d6): δ (ppm) 1.29-1.42 (m, 

11H), 1.42-1.51 (m, 2H), 1.76-1.87 (m, 2H), 2.75 (s, 3H), 3.15 (t, J = 7.0 Hz, 2H), 3.52 (t, J = 6.8 Hz, 

2H). 13C-NMR (101 MHz, DMSO-d6): δ (ppm) 24.6, 28.0, 31.8, 33.5, 35.0, 40.2 (overlaid by solvent 

residual peak), 47.8, 78.2, 154.7. HRMS (APCI): m/z [M+H]+ calcd. for [C11H23BrNO2]+ 280.0907, found 

280.0908. C11H22BrNO2 (280.21). 

 

tert-Butyl (5-(2-benzoylphenoxy)pentyl)(methyl)carbamate (5.26). (2-Hydroxyphenyl)(phenyl)-

methanone (4.42) (0.43 g, 2.17 mmol) was dissolved in DMF (5 mL) and K2CO3 (0.59 g, 4.27 mmol) was 

added and the mixture was stirred at rt for 5 min. Under stirring, tert-butyl (5-bromopentyl)carbamate 

(5.25) (0.69 g, 18.1 mmol) was added to the mixture and stirred at rt for 24 h. The reaction mixture was 

poured in water (200 mL) and the crude product was extracted from the aqueous phase with ethyl 

acetate (3x 150 mL). The combined organic phases were dried over sodium sulfate and the organic 

solvent was evaporated. The crude product was purified by column chromatography (eluent: light 

petroleum/ethyl acetate 8:2) to give 5.26 as a yellow oil (0.45 g, 1.17 mmol, 52%). 1H-NMR (400 MHz, 

DMSO-d6): δ (ppm) 1.17-1.25 (m, 2H), 1.29-1.41 (m, 13H), 2.68 (s, 3H), 2.95 (t, J = 7.2 Hz, 2H), 3.88 (t, 

J = 5.9 Hz, 2H), 7.03-7.10 (m, 1H), 7.11-7.16 (m, 1H), 7.32-7.37 (m, 1H), 7.47-7.52 (m, 3H), 7.61-7.68 

(m, 3H). 13C-NMR (101 MHz, DMSO-d6): δ (ppm) 25.2, 26.5, 26.8, 28.0, 33.6, 47.8, 67.6, 78.1, 112.6, 

120.5, 128.4, 128.5, 129.9, 129.0, 132.2, 132.9, 137.8, 154.7, 156.2, 196.0. HRMS (ESI): m/z [M+Na]+ 

calcd. for [C24H31NO4Na]+ 420.2145, found 420.2165. C24H31NO4 (397.52). 
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tert-Butyl (5-(2-(hydroxy(phenyl)methyl)phenoxy)pentyl)(methyl)carbamate (5.27). tert-Butyl (5-

(2-benzoylphenoxy)pentyl)(methyl)carbamate (5.26) (0.246 g, 0.619 mmol) was dissolved in methanol 

(15 mL) and NaBH4 (64.3 mg, 1.70 mmol) was added portion wise and stirred at rt for 4 h. The organic 

solvent was evaporated, and the crude product was purified by column chromatography (eluent: light 

petroleum/ethyl acetate 7:3) to give 5.27 as a yellow oil (0.247 g, 0.619 mmol, 100%). 1H-NMR 

(400 MHz, DMSO-d6): δ (ppm) 1.29-1.36 (m, 2H), 1.39 (s, 9H), 1.44-1.56 (m, 2H), 1.66-1.75 (m, 2H), 

2.76 (s, 3H), 3.15 (t, J = 7.1 Hz, 2H), 3.91 (t, J = 6.3 Hz, 2H), 5.62 (d, J = 4.3 Hz, 1H), 5.97 (d, J = 4.3 Hz, 

1H), 6.87-6.97 (m, 2H), 7.13-7.20 (m, 2H), 7.22-7.28 (m, 2H), 7.30-7.35 (m, 2H), 7.52-7.57 (m, 1H). 

13C-NMR (101 MHz, DMSO-d6): δ (ppm) 22.7, 26.8, 27.1, 28.1, 28.5, 40.0 (overlaid by solvent residual 

peak), 67.3, 68.2, 78.2, 111.2, 120.1, 126.3, 126.4, 126.5, 127.7, 133.7, 145.4, 154.78, 154.80, 170.3. 

HRMS (ESI): m/z [M+Na]+ calcd. for [C24H33NO4Na]+ 422.2302, found 422.2300. C24H33NO4 (399.53). 

 

tert-Butyl methyl(5-(2-(phenyl(piperazin-1-yl)methyl)phenoxy)pentyl)carbamate (5.28). tert-Butyl 

(5-(2-(hydroxy(phenyl)methyl)phenoxy)pentyl)(methyl)carbamate (5.27) (150 mg, 0.375 mmol) was 

dissolved in CH2Cl2 (10 mL), Et3N (200 µL, 1.44 mmol) was added and the mixture was cooled in an ice 

bath. Under stirring, methanesulfonyl chloride (45 µL, 0.563 mmol) was added to the mixture. After 3 h, 

1 N NaOH (15 mL) was added to the reaction mixture. The compound was extracted from the aqueous 

phase with CH2Cl2 (3x) and the combined organic phases were dried over Na2SO4 and the organic 

solvent was evaporated. The residue was dissolved in acetonitrile (10 mL) and piperazine (230 mg, 

2.67 mmol) was added. The reaction mixture was treated in the microwave device (70 °C, 45 min) and 

the organic solvent was evaporated. The crude product was purified by column chromatography (eluent: 

CH2Cl2/MeOH/NH3 aq. 90:9:1) to give 5.28 as a yellow oil (140 mg, 0.299 mmol, 80%). 1H-NMR 

(400 MHz, DMSO-d6): δ (ppm) 1.32-1.46 (m, 11H), 1.50-1.61 (m, 2H), 1.72-1.81 (m, 2H), 2.11-2.33 (m, 

4H), 2.66-2.74 (m, 4H), 3.20 (t, J = 6.8 Hz, 2H), 3.29 (s, 3H), 3.88-3.96 (m, 2H), 4.66 (s, 1H), 6.86-6.94 

(m, 2H), 7.07-7.19 (m, 2H), 7.21-7.28 (m, 2H), 7.30-7.38 (m, 2H), 7.53-7.58 (m, 1H). One exchangeable 

proton signal (NH-piperazine) was not apparent. 13C-NMR (101 MHz, DMSO-d6): δ (ppm) 33.8, 38.3, 

39.9 (overlaid by solvent residual peak), 40.1 (overlaid by solvent residual peak), 43.9, 56.6, 58.9, 62.5, 

63.8, 78.2, 88.8, 122.2, 130.9, 137.0, 138.0, 138.4, 138.6, 138.9, 139.0, 141.6, 153.5, 165.7. HRMS 

(ESI): m/z [M+Na]+ calcd. for [C28H41N3O3Na]+ 490.3040, found 490.3033. C28H41N3O3 (467.65). 



 
In search of labelled Y2R antagonists: Synthesis and pharmacological characterization of labelling precursors and “cold” forms 

of potential Y2R radioligands obtained by modification of the (S)-argininamide BIIE-0246 at the dibenzoazepinone moiety 
 

168 
 

 

(2S)-Nα-(2-{1-[2-(4-((2-((5-(methylamino)pentyl)oxy)phenyl)(phenyl)methyl)piperazin-1-yl)-2-

oxoethyl]cyclopentyl}acetyl)[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamide 

tris(hydrotrifluoroacetate) (5.29). Compound 5.29 was prepared according to general procedure A 

and the reactants (S)-2-(1-(2-((1-((2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl)amino)-1-oxo-

5(2-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-yl)amino)-2-oxoet

hyl)cyclo-pentyl)acetic acid (4.15) (89.9 mg, 97.0 µmol), EDC∙HCl (22.4 mg, 116.8 µmol), HOBt 

(19.3 mg, 142.8 µmol) and tert-butyl methyl(5-(2-(phenyl(piperazin-1-yl)methyl)phenoxy)pentyl)-

carbamate (5.28) (44.7 mg, 95.6 µmol). Purification by preparative HPLC (gradient: 0-30 min, A/B 

81:19–38:62, tR = 14 min) gave 5.29 as a fluffy white solid (24.5 mg, 18.7 µmol, 20%). 1H-NMR 

(600 MHz, DMSO d6): δ (ppm) 1.33-1.71 (m, 17H), 1.72-1.80 (m, 2H), 2.20-2.27 (m, 1H), 2.31-2.38 (m, 

1H), 2.42-2.48 (m, 1H), 2.55-2.60 (m, 4H), 2.85-2.92 (m, 2H), 2.95-3.04 (m, 2H), 3.26-3.33 (m, 1H), 

3.35-3.41 (m, 1H), 3.46-3.74 (m, 5H), 3.89-4.06 (m, 6H), 4.12-4.16 (m, 1H), 5.30 (br s, 1H), 6.70-8.10 

(m, 26H), 8.15-8.30 (m, 1H), 8.64 (br s, 2H). 1H-NMR (600 MHz, MeOH-d4): δ (ppm) 1.46-1.79 (m, 17H), 

1.81-1.94 (m, 2H), 2.24-2.32 (m, 1H), 2.45-2.64 (m, 3H), 2.68 (s, 3H), 2.78-3.23 (m, 8H), 3.41-3.47 (m, 

1H), 3.50-3.56 (m, 1H), 3.66-3.90 (m, 5H), 4.01-4.13 (m, 2H), 4.17-4.27 (m, 1H), 5.55 (br s, 1H), 7.02-

7.10 (m, 2H), 7.19-7.24 (m, 2H), 7.30-7.44 (m, 12H), 7.52-7.58 (m, 2H), 7.70-7.74 (m, 1H). 13C-NMR 

(150 MHz, DMSO-d6): δ (ppm) 22.4, 23.3, 25.01, 25.09, 28.1, 28.9, 32.4, 36.2 (two carbon signals), 

37.2, 37.3, 37.4, 38.6, 39.6 (overlaid by solvent residual peak), 40.4, 42.7, 44.0, 48.1, 51.3, 51.6, 52.0, 

67.0, 67.4, 112.4, 113.9 (TFA), 115.9 (TFA), 117.9 (TFA), 120.8, 122.7, 126.7, 127.1, 128.5, 128.7, 

129.0, 136.6, 152.6, 155.8, 156.9, 158.6 (q, J = 32.4 Hz) (TFA), 170.1, 171.3, 172.04, 172.05. 13C-NMR 

(150 MHz, MeOH-d4): δ (ppm) 24.00, 24.01, 24.60, 24.64, 24.65, 26.31, 26.32, 26.8 (two carbon 

signals), 29.6 (2 carb.), 30.03, 30.05, 33.6, 38.32, 38.34, 39.2, 39.3, 39.39, 39.42, 39.9 (2 carb.), 41.20, 

41.24, 41.9, 44.38, 44.41, 45.66, 45.69, 50.2, 52.79, 52.85, 54.01, 54.06, 69.0, 69.9, 113.7, 117.2 (TFA), 

119.1, 122.4, 124.23, 124.25, 128.22, 128.24, 128.60, 128.63, 129.96, 130.02, 130.2, 130.3, 131.4, 

137.70, 137.71, 154.5, 157.38, 157.41, 158.6, 162.9 (TFA), 172.91, 172.92, 174.7, 174.7 (2 carb.). 

RP-HPLC (220 nm): 95% (tR = 12.0 min, k = 3.7). HRMS (ESI): m/z [M+H]+ calcd. for [C54H72N11O6]+ 

970.5662, found 970.5672. C54H71N11O6 × C6H3F9O6. (969.56 + 342.07). 
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(2S)-Nα-(2-{1-[2-(4-((2-((5-(Trimethylaminio)pentyl)oxy)phenyl)(phenyl)methyl)piperazin-1-yl)-2-

oxoethyl]cyclopentyl}acetyl)[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamide 

bis(hydrotrifluoroacetate) trifluoroacetate (5.30). (2S)-Nα-(2-{1-[2-(4-((2-((5-Aminopentyl)oxy)-

phenyl)(phenyl)methyl)piperazin-1-yl)-2-oxoethyl]-cyclopentyl}acetyl)[2-(3,5-dioxo-1,2-diphenyl-1,2,4-

triazolidin-4-yl)ethyl]argininamide tris(hydrotriflouro-acetate) (4.50) (21.5 mg, 16.2 µmol) was dissolved 

in DMF (200 µL) and K2CO3 (13.9 mg, 363.8 µmol) was added. Methyl 4-nitrobenzenesulfonate (7.6 mg, 

34.99 µmol) was added to the mixture and stirred at rt for 2 h. Then, 10% aq TFA (10 equiv.) was added 

and the mixture was directly purified by preparative HPLC (gradient: 0-30 min, A/B 71:29–57:43, 

tR = 12 min) to give 5.29 as a fluffy white solid (12.9 mg, 9.62 µmol, 59%). 1H-NMR (600 MHz, DMSO-

d6): δ (ppm) 1.36-1.82 (m, 19H), 2.19-2.25 (m, 1H), 2.30-2.36 (m, 1H), 2.39-2.47 (m, 1H, interfering with 

solvent residual peak), 2.55-2.59 (m, 1H, interfering with solvent residual peak), 2.92-3.15 (m, 10H), 

3.26-3.40 (m, 5H), 3.42-3.64 (m, 5H), 3.89-4.19 (m, 7H), 5.63 (br s, 1H), 6.92-7.55 (m, 23H), 7.62-7.80 

(m, 2H), 7.92-8.05 (m, 1H), 8.18-8.26 (m, 1H). 1H-NMR (400 MHz, MeOH-d4): δ (ppm) 1.45-1.94 (m, 

19H), 2.24-2.30 (m, 1H), 2.46-2.55 (m, 2H), 2.58-2.64 (m, 1H), 2.66-3.19 (m, 15H), 3.31-3.34 (m, 2H, 

interfering with solvent residual peak), 3.41-3.49 (m, 1H), 3.51-3.59 (m, 1H), 3.61-3.99 (m, 5H), 4.02-

4.15 (m, 2H), 4.21-4.27 (m, 1H), 5.44 (br s, 1H), 7.02-7.09 (m, 2H), 7.19-7.24 (m, 2H), 7.30-7.43 (m, 

12H), 7.50-7.56 (m, 2H), 7.68-7.72 (m, 1H). 13C-NMR (150 MHz, DMSO-d6): δ (ppm) 21.8, 22.4, 23.3, 

25.00, 25.07, 28.2, 28.9, 32.4, 36.2, 37.2, 37.4, 38.6, 39.6 (overlaid by solvent residual peak), 40.4, 

42.1, 42.7, 44.0, 48.1, 51.4, 51.8, 51.9, 52.2, 65.2, 67.3, 112.3, 116.0 (TFA), 117.9 (TFA), 120.7, 122.6, 

126.7 (two carbon signals) , 127.2, 128.3, 129.0, 136.5, 152.6, 155.8, 156.8, 158.3 (q, J = 32.0 Hz) 

(TFA), 170.1, 171.3, 172.0. RP-HPLC (220 nm): 99% (tR = 11.5 min, k = 3.5). HRMS (ESI): m/z [M]∙+ 

calcd. for [C56H76N11O6]+ 998.5975, found 998.5969. C56H76N11O6
+ × C6H2F9O6 (999.29 + 228.05 + 

113.02). 

 

(2S)-Nα-(2-{1-[2-(4-(Phenyl(2-((5-propionamidopentyl)oxy)phenyl)methyl)piperazin-1-yl)-2-oxo-

ethyl]cyclopentyl}acetyl)[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamide 

bis(hydrotrifluoroacetate) (5.31). (2S)-Nα-(2-{1-[2-(4-((2-((5-Aminopentyl)oxy)phenyl)(phenyl)methyl)-

piperazin-1-yl)-2-oxoethyl]cyclopentyl}acetyl)[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]-

argininamide tris(hydrotriflouro-acetate) (4.50) (15.2 mg, 11.7 µmol) and DIPEA (6 µL, 35.3 µmol) was 

dissolved in DMF (0.5 mL) and stirred at rt for 5 min. Succinimidyl propionate (2.44) (2 mg, 11.7 µmol) 
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was added and the reaction mixture was stirred at rt for 3 h. Then, 10% aq TFA (10 equiv.) was added 

and the mixture was purified directly by preparative HPLC (gradient: 0-30 min, A/B 76:24–38:62, 

tR = 20 min) to give 5.31 as a fluffy white solid (14.0 mg, 10.8 µmol, 92%). 1H-NMR (600 MHz, DMSO-

d6): δ (ppm) 0.97 (t, J = 7.6 Hz, 3H), 1.33-1.64 (m, 17H), 1.70-1.77 (m, 2H), 2.04 (q, J = 7.6 Hz, 2H), 

2.19-2.24 (m, 1H), 2.29-2.36 (m, 1H), 2.41-2.47 (m, 1H, interfering with solvent residual peak), 2.52-

2.60 (m, 1H, interfering with solvent residual peak), 2.94-3.02 (m, 2H), 3.03-3.10 (m, 2H), 3.26-3.32 (m, 

2H), 3.33-3.39 (m, 1H), 3.39-3.62 (m, 5H), 3.83-4.05 (m, 5H), 4.11-4.16 (m, 1H), 5.74 (br s, 1H), 6.79-

7.82 (m, 26H), 8.18-8.25 (m, 1H), 7.95 (d, J = 6.8 Hz, 1H). 1H-NMR (600 MHz, MeOH-d4): δ (ppm) 1.11 

(t, J = 7.6 Hz, 3H, -NCOCH2CH3 the triplet is overlaid by a second triplet, because two diastereomers 

are evident in the spectra), 1.43-1.95 (m, 19H), 2.17 (q, J = 7.6 Hz, 2H), 2.26-2.33 (m, 1H), 2.46-2.67 

(m, 3H), 2.87-3.29 (m, 8H, interfering with solvent residual peak), 3.41-3.48 (m, 1H), 3.53-3.61 (m, 1H), 

3.62-3.99 (m, 5H), 4.01-4.08 (m, 1H), 4.08-4.15 (m, 1H), 4.20-4.28 (m, 1H), 5.65 (s, 0.5H), 5.66 (s, 

0.5H), 7.05-7.12 (m, 2H), 7.18-7.26 (m, 2H), 7.30-7.49 (m, 12H), 7.55-7.60 (m, 2H), 7.67-7.72 (m, 1H). 

13C-NMR (150 MHz, DMSO-d6): δ (ppm) 10.0, 23.1, 23.3, 24.3, 24.9, 25.1, 25.2, 28.3, 28.6, 28.9, 29.8, 

31.5, 36.2, 37.2, 37.3, 37.4, 38.3, 38.6, 39.6 (overlaid by solvent residual peak), 40.4, 42.7, 44.0, 49.8, 

51.3, 51.9, 54.2, 66.9, 67.7, 112.3, 116.0 (TFA), 117.9 (TFA), 120.7, 122.6, 126.6, 127.2, 128.6, 129.0, 

136.6, 152.6, 155.8, 156.8, 158.3 (q, J = 32.4 Hz), 170.1, 171.3, 171.99, 172.01, 172.7. RP-HPLC 

(220 nm): 100% (tR = 14.3 min, k = 3.6). HRMS (ESI): m/z [M+H]+ calcd. for [C56H74N11O7]+ 1012.5767, 

found 1012.5776. C56H73N11O7 × C4H2F6O4 (1011.57 + 228.04). 

 

(2S)-Nα-(2-{1-[2-(4-(Phenyl(2-((5-(2-fluoroacetamido)pentyl)oxy)phenyl)methyl)piperazin-1-yl)-2-

oxo-ethyl]cyclopentyl}acetyl)[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamide 

bis(hydrotrifluoroacetate) (5.32). A freshly prepared solution of 2-fluoroacetic acid (2.44) (1.8 mg, 

23.1 µmol), EDC∙HCl (5.3 mg, 27.6 µmol), HOBt (10.3 mg, 76.2 µmol) in DMF (0.5 mL) was added 

dropwise to a solution of (2S)-Nα-(2-{1-[2-(4-((2-((5-aminopentyl)oxy)phenyl)(phenyl)methyl)-

piperazin-1-yl)-2-oxoethyl]cyclo-pentyl}acetyl)[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]-

argininamide tris(hydrotriflouro-acetate) (4.50) (34.9 mg, 26.9 µmol) and DIPEA (20 µL, 117.6 µmol) in 

DMF (1 mL). The reaction mixture was stirred at rt for 2-3 h. The product was purified by preparative 

HPLC (gradient: 0-30 min, A/B 85:15–38:62, tR = 20 min) to give 5.32 as a fluffy white solid (13.9 mg, 

11.2 µmol, 42%). 1H-NMR (600 MHz, DMSO-d6): δ (ppm) 1.33-1.68 (m, 17H), 1.70-1.82 (m, 2H), 2.17-

2.26 (m, 1H), 2.29-2.39 (m, 1H), 2.41-2.49 (m, 1H, interfering with solvent residual peak), 2.53-2.69 (m, 

2H, interfering with solvent residual peak), 2.94-3.05 (m, 3H), 3.10-3.22 (m, 3H), 3.27-3.32 (m, 1H), 

3.34-3.39 (m, 1H), 3.43-3.85 (m, 5H), 3.87-4.04 (m, 3H), 4.12-4.16 (m, 1H, interfering with water signal), 

4.77 (d, J = 47.1 Hz, 2H), 5.72 (br s, 1H), 6.76-7.86 (m, 25H), 7.95 (d, J = 7.2 Hz, 1H), 8.13-8.29 (m, 

2H). 1H-NMR (600 MHz, MeOH-d4): δ (ppm) 1.44-1.82 (m, 17H), 1.83-1.90 (m, 2H), 2.24-2.31 (m, 1H), 

2.47-2.62 (m, 3H), 2.69-3.23 (m, 6H), 3.24-3.29 (m, 1H, interfering with solvent residual peak), 3.31-
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3.35 (m, 1H), 3.41-3.48 (m, 1H), 3.50-3.57 (m, 1H), 3.60-3.99 (m, 5H), 4.00-4.06 (m, 1H), 4.07-4.14 (m, 

1H), 4.21-4.28 (m, 1H), 4.76 (d, J = 47.1 Hz, 2H, -CH2F, the doublet is overlaid by a second doublet, 

because two diastereomers are evident in the spectra), 5.53 (br s, 1H), 7.02-7.09 (m, 2H), 7.18-7.24 (m, 

2H), 7.29-7.45 (m, 12H), 7.51-7.58 (m, 2H), 7.64-7.69 (m, 1H). 13C-NMR (150 MHz, DMSO-d6): δ (ppm) 

22.9, 23.3, 25.1, 28.3, 28.78, 28.84, 36.15, 36.17, 37.23, 37.27, 37.43, 37.97, 38.7, 39.6 (overlaid by 

solvent residual peak), 40.4, 42.7, 43.9, 51.2, 51.5, 51.9, 67.6, 80.0 (d, J = 180.2 Hz), 112.5, 113.7 

(TFA), 115.7 (TFA), 117.7 (TFA), 120.8, 122.6, 126.7 (two carbon signals), 127.0 (2 carb.), 128.4, 129.0, 

136.5, 152.6, 155.8, 156.8, 158.4 (q, J = 32.9 Hz) (TFA), 166.9 (d, J = 18.1 Hz), 170.1, 171.3, 171.98, 

172.00. RP-HPLC (220 nm): 100% (tR = 13.6 min, k = 4.3). HRMS (ESI): m/z [M+H]+ calcd. for 

[C55H71FN11O7]+ 1016.5516, found 1016.5507. C55H70FN11O7 × C4H2F6O4 (1015.54 + 228.04). 

5.4.3. Investigation of the chemical stability of compounds 4.23, 4.24, 4.27, 5.9, 5.30 and 5.32 

cf. 4.4.4. 

5.4.4. Pharmacological methods: cell culture, radioligand competition binding assay in 

HEK293T βArr2 + Y2R cells, BRET based binding assay and β-arrestin2 recruitment assay (Y2R), 

radioligand binding assay for hY1R, hY4R and hY5R 

5.4.4.1. Cell culture 

cf. 4.4.5.1. 

5.4.4.2. Radioligand competition binding assay in HEK293 βArr2 + Y2R cells 

cf. 4.4.5.3. 

5.4.4.3. BRET based binding assay 

cf. 4.4.5.6. 

5.4.4.4. β-Arrestin2 recruitment assay (Y2R) 

cf. 4.4.5.4. 

5.4.4.5. Radioligand binding assay for hY1R, hY4R and hY5R 

cf. 4.4.5.8. 

5.4.5. Data analysis 

cf. 4.4.6. 
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6.1. Introduction 

The NPY hY4 receptor shows higher affinity to pancreatic polypeptide (PP) compared to NPY and is 

therefore, in this respect, different from the other receptor subtypes (hY1R, hY2R and hY5R).1 

Furthermore, the Y4R is a potential target for the treatment of obesity, because of its physiological role 

in regulation of appetite and gut function.2, 3 Therefore, there is an interest in small molecule Y4R ligands, 

particularly agonists and positive allosteric modulators.3-13 During the last decade, several non-peptide 

Y4R ligands have been reported in literature (Figure 6.1 and Table 6.1).4-11 

The bivalent ligand (R,R)-6.1, representing a dimer of the Y1R antagonist BIBP-3226, showed, in 

addition to Y1R binding, moderate to high affinity (pKi = 6.9) and antagonism (pKb = 7.7).4 Notably, the 

optical antipode of (R,R)-6.1, i.e. (S,S)-6.1 (Figure 6.1), proved to be a Y4R selective antagonist.4 An 

imidazolepropylguanidine-type histmamine receptor ligand (6.2), developed in our group, showed 

affinity and antagonism towards the hY4R,5 but further investigations revealed cytotoxicity at a 

concentration of 10 µM.14 The cytotoxic effects of compound 6.2 were determined in a kinetic crystal 

violet based chemosensitivity assay using HT-29 carcinoma cells over a period of 200 h.14 

 

Figure 6.1. Structures of reported non-peptide antagonists (6.1 and 6.2), agonists (6.3-6.8) and modulators (6.9 and 6.10) of 

the NPY Y4R (for Y4R affinities, potencies or antagonistic activities see Table 6.1). References: (a) Keller et al.,4 (b) Ziemek et 

al.,5 (c) Kang et al.,6 (d) Sun et al.,7 (e) Ewing et al.,8 (f) Ewing et al.,9 (g) Schubert et al.,11 (h) Sliwoski et al.10 

Recently, a series of Y4R agonists (e.g. 6.3 and 6.4), which showed moderate potencies, were 

discovered by computer aided drug design.6 These agonists with micromolar potency were investigated 

in a cAMP assay (prevention of forskolin stimulated transformation from ATP to cAMP) in 

HEK293/NPY4R cells. 
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Moreover, Chongqing et al.7 and Ewing et al.8, 9 have reported a series of adipic acids (6.5) and 

(R,R)-diaminocyclohexanes ((R,R,S)-6.6a and (R,R,S)-6.7a) that were considered as agonists, 

antagonists or modulators of the hY4R. According to the data (procedures) given in the patents, these 

ligands should be considered as agonists. These compounds were investigated in a cAMP assay 

(prevention of forskolin stimulated transformation from ATP to cAMP) in CHO cells. The affinities of 

compounds 6.3-6.8 for Y4R are not reported in literature. 

Table 6.1. Reported Y4R binding data (pKi), agonistic potencies (pEC50) or antagonistic activities (pKb) of reported Y4R agonists, 

antagonists or modulators (structures see Figure 6.1). 

Compound Ref. pKi pEC50/pKb 

(R,R)-6.1 (UR-M188) a 6.89 7.70 

(S,S)-6.1 (UR-MEK288) a 6.59 7.57 

6.2 b 4.17 3.88 

6.3 c n.a. 4.21 

6.4 c n.a. 4.19 

6.5 d n.a. 8.30 

6.6a e n.a. 7.09 

6.7a e n.a. n.a. 

6.8 f n.a. 9.00 

6.9 (tBPC) g <4.52 5.29 

6.10 (Niclosamide) h n.a. 6.21 

References: (a) Keller et al.;4 these authors reported Ki values (affinities determined in a flow cytometric binding assay using 

Cy5-[K4]-hPP (cfinal = 3 nM, Kd = 5.6 nM) and Kb values (antagonistic activities determined in an aequorin assay in intact 

CHO-hY4-Gqi5-mtAEQ cells. Aequorin Ca2+ mobilization was induced by 100 nM hPP (EC50 = 15.5 nM), after pre-incubation of 

the cells with the antagonists for 15 min). (b) Ziemek et al.;5 these authors reported pKi values (affinities determined in a flow 

cytometric binding assay using Cy5-[K4]-hPP (cfinal = 3 nM, Kd = 5.6 nM) and pKb values (antagonistic activities determined in an 

aequorin assay in intact CHO-hY4-Gqi5-mtAEQ cells. Aequorin Ca2+ mobilization was induced by 100 nM hPP (pEC50 = 8.07), 

after pre-incubation of the cells with the antagonists for 15 min). (c) Kang et al.;6 these authors reported EC50 values (potencies 

were determined in a cAMP assay in HEK293/NPY4R cells). (d) Sun et al.;7 these authors reported EC50 values (potencies were 

determined in a cAMP assay in CHO cells). (e) Ewing et al.,8 these authors reported EC50 values (potencies were determined in 

a cAMP assay in CHO cells). (f) Ewing et al.,9 these authors reported EC50 values (potencies were determined in a cAMP assay 

in CHO cells). (g) Schubert et al.;11 these authors reported EC50 value (modulation was investigated through potentiation of a 

PP EC20 signal response by increasing concentrations of 6.9 in a Ca2+ assay in COS7_Y4R-eYFP_Δ6Gαqi4-myr cells). (h) Sliwoski 

et al.;10 these authors reported pEC50 value (modulation was investigated through potentiation of a PP EC20 signal response by 

increasing concentrations of 6.9 in an inositol phosphate accumulation assay in COS7_Y4R-eYFP_Δ6Gαqi4-myr cells). Reported 

Ki values (EC50 or Kb) were converted to pKi values (pEC50, or pKb). n.a. not applicable. Kb values given in italics. 

Lately, the development of positive (PAM) or negative (NAM) allosteric GPCR modulators has emerged 

as an approach in drug discovery for an improved treatment of various diseases (possible reduction of 
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adverse effects).15, 16 The group of Beck-Sickinger reported tBPC (6.9) and niclosamide (6.10) as the 

first allosteric modulators for the NPY Y4R.10, 11 The pEC50 value of 6.9 (Table 6.1) was determined in 

an inositol phosphate accumulation assay through potentiation of a PP EC20 response as well as the 

effect on the pEC50 value of PP in presence of 30 µM 6.10 (shown in bar chart and concentration 

response curves).10 Additionally, the pEC50 value of 6.9 was determined in a Ca2+ assay through 

potentiation of a PP EC20 response, and an effect on potency in a β-arrestin2 recruitment assay was 

reported.11 

In this chapter, the synthesis of the reported potential Y4R agonists (R,R,S*)-6.6a and (R,R,S*)-6.7a, as 

well as the literature Y4R modulator tBPC (6.9) are described, along with an evaluation of their activities 

at the NPY Y4R (competition binding studies). Moreover, several derivatives of (R,R,S*)-6.6a and 

(R,R,S*)-6.7a were synthesized and investigated with respect to Y4R binding. Selected compounds, 

including the putative Y4R PAM niclosamide (6.10), were investigated in an aequorin Ca2+ assay. 

Additionally, the cytotoxicity of a set of compounds was investigated by ethidium bromide/acridine 

orange staining. 

6.2. Results and discussion 

6.2.1. Annotation concerning stereochemistry 

Annotation concerning stereochemistry of (R,R,S*)-6.6a, (R,R,S*)-6.7a, (R,R,S*)-6.7b: the absolute 

configurations of the stereogenic centres of the (1R,2R)-diaminocyclohexane moiety are known, 

whereas the stereogenic centres in the piperidine or pyrrolidine moiety were defined as R* or S*, as the 

absolute configuration could not be elucidated by X-ray crystallography. 

Annotation concerning the stereochemistry of (S*)-6.18a and (S*)-6.18b: the absolute configuration of 

the stereogenic centres could not be elucidated by X-ray crystallography, therefore the absolute 

configuration was defined as R* or S*. 

6.2.2. Synthesis 

(R,R)-Diaminocyclohexane (6.11) was derivatized at one of the two amine groups by use of 

isocyanatobenzene and N-(benzyloxycarbonyloxy)succinimide to form urea 6.12 and carbamate 6.13, 

respectively. Target compounds (R,R,S)-6.6a and (R,R,S)-6.7a were synthesized according to Ewing et 

al.8, 9 with minor modifications (Scheme 6.1): in these patents several different synthesis routes are 

described to afford target compounds (R,R,S)-6.6a and (R,R,S)-6.7a, however the reported 

experimental part is limited to a few representative examples. One synthesis route in the patent started 

from a racemic mixture of piperidine-3-ol ((RS)-6.14)) to form arylamine (RS)-6.15 from (RS)-6.14 and 

1-bromo-4-nitrophenylbenzene catalysed by CuI and L-proline (Ullmann-type17) in good yields. In the 

patents8, 9 the hydroxyl group of (RS)-6.15 was oxidized to a ketone 6.16 by use of pyridine-sulfur trioxide 

complex in DMSO (Parikh-Doering oxidation18). The next step of the synthesis was intended to be the 

coupling of ketone 6.16 and (R,R)-diaminocyclohexane (6.11) by use of sodium triacetoxyborohydride 

(reductive amination) and subsequent coupling with isocyanatobenzene and N-(benzyloxycarbonyloxy)-

succinimide to obtain (R,R,S)-6.6a and (R,R,S)-6.7a, respectively. In this work, the ketone 6.16 could 

not be obtained from the secondary alcohol (RS)-6.15 by use of pyridine-sulfur trioxide complex in 

DMSO or other oxidizing agents like K2Cr2O7, CrO3, MnO2 or KMnO4. Therefore, the alcohol (RS)-6.14 
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was mesylated and (RS)-6.17 was obtained in good yield after crystallization. The mesylate (RS)-6.17 

was used to alkylate amine 6.12 in a SN reaction under microwave irradiation (120 °C, 1 h) to obtain a 

diastereomeric mixture of compound 6.6a, under applied conditions, a mixture of the diastereomeric 

structural isomers 6.6b was evident (Scheme 6.1, RP-HPLC chromatograms shown in Figure 6.2 A, 6.2 

C). The formation of a highly reactive aziridine ring system at higher temperatures give rise to the mixture 

of products. Additionally, there is also the potential for neighbouring group participation, which could 

further complicate the stereochemical outcome of this transformation. 

 

Scheme 6.1. Synthesis of the (R,R)-diaminocyclohexane derivatives (R,R,S*)-6.6a and (R,R,S*)-6.7a. Reagents and conditions: 

(a) isocyanatobenzene, CH2Cl2, 16%; (b) N-(benzyloxycarbonyloxy)succinimide, CH2Cl2, 64%; (c) 1-bromo-4-nitrobenzene, 

L-proline, CuI, K2CO3, DMSO, 85%; (d) methanesulfonyl chloride, Et3N, CH2Cl2, 62%; (e) acetonitrile, microwave device (120 °C, 

1 h), yield was determined; (f) 1-bromo-4-nitrobenzene, L-proline, CuI, K2CO3, DMSO, 81%; (g) methanesulfonyl chloride, Et3N, 

CH2Cl2, 74%; (h) acetonitrile, microwave device (120 °C, 1 h), 5% ((R,R,S*)-6.6a) and 9% ((R,R,S)-6.6b); (i) acetonitrile, 

microwave device (120 °C, 1 h), 3% ((R,R,S*)-6.7a) and 8% ((R,R,S*)-6.7b). 

To circumvent the required separation of diastereomers, the starting material was changed from the 

racemate (RS)-6.14 to the enantiomerically pure building block (R)-piperidine-3-ol ((R)-6.14). (R)-6.14 

was coupled with 1-bromo-4-nitrobenzene in an Ullman-type reaction to form (R)-1-(4-

nitrophenyl)piperidine-3-ol ((R)-6.15). The secondary alcohol (R)-6.15 was transformed to the mesylate 

(R)-6.17, which was then coupled with the (R,R)-diaminocyclohexane derivatives 6.12 and 6.13, 

respectively, under microwave irradiation to form compounds (R,R,S*)-6.6a, (R,R,S)-6.6b, (R,R,S*)-

6.7a and (R,R,S*)-6.7b. The structural isomers of (R,R,S*)-6.6a and (R,R,S*)-6.7a were separated by 

preparative HPLC. The stereochemistry of constitutional isomer (R,R,S)-6.6b, was elucidated by X-ray 
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crystallography (Figure 6.3): a methanolic solution of the hydrochloride of (R,R,S)-6.6 in methanol was 

allowed to vaporize at ambient temperature to obtain crystals suitable for X-ray crystallographic analysis. 

 

Figure 6.2. RP-HPLC (Method A, 220 nm) chromatograms (A-D) of alkylation of amine 6.12 by mesylate (RS)-6.17 (A, C) and 

(R)-6.17 (B, D). tR((R,R,S*)-6.6a) = 14.6 min and tR((R,R,S*)-6.6a) = 15.0 min 

Interestingly, the structural isomers (R,R,S)-6.6b and (R,R,S*)-6.7b (containing a pyrrolidine ring rather 

than the piperidine moiety of (R,R,S*)-6.6a and (R,R,S*)-6.7a) were the main products of the substitution 

reactions (see RP-HPLC chromatograms shown in Figure 6.2 C, D). For the formation of (R,R,S)-6.6b 

and (R,R,S*)-6.7b an SN2-like reaction can be alternatively assumed, because using the 

enantiomerically pure mesylate (R)-6.17 led to a decrease in side products (Figure 6.2 C).  

(R)-6.17 was coupled with the non-chiral amine 2.36 under microwave irradiation. Subsequent Boc 

deprotection using TFA gave a mixture of structural isomers (S*)-6.18a and (S*)-6.18b (Scheme 6.2). 

The desired product of substitution (SN2-like) reaction between amine 2.36 and (R)-6.17 is amine (S*)-

6.18a, however the structural isomer (S*)-6.18b was evident in the reaction mixture. Further 

investigation should focus on configuration determination of stereogenic centres by X-ray 

crystallography. Furthermore, the presence of enantiomers of (S*)-6.18a and (S*)-6.18b needs to be 

considered, especially if non-SN2 mechanisms are involved (or double SN2 via the aziridine) that would 

lead to a retention of configuration. 
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Figure 6.3. Platon plots (A-B) and stereoview of a unit cell (C-D) of (R,R,S)-6.6b (A-C) and (R)-6.17 (B-D). Platon plot (Platon 

version 13/08/2017) of (R,R,S)-6.6b (50% probability ellipsoids) (A). Platon plot (Platon version 22/12/2019) of (R)-6.17 (50% 

probability of ellipsoids) (B). Stereoview of molecular packing (Mercury 3.7) in the unit cell of (R,R,S)-6.6b with view along c 

axis, hydrogens not shown (C). Stereoview of molecular packing (Mercury 3.7) in the unit cell of (R)-6.17 with view along a axis, 

hydrogens not shown (D). (R,R,S)-6.6b was used as HCl salt for crystallization.  

The amino groups of glycine (6.19) and γ-aminobutyric acid (6.20) were coupled with 1-fluoro-4-

nitrobenzene to form 6.21 and 6.22, respectively. The amino-functionalized carboxylic acids (6.21-6.23) 

were transformed to the respective succinimidyl esters 6.24-6.26 (Scheme 6.3).  

Arylamine 6.28 was synthesized from piperidine-4-ol (6.27) and 1-bromo-4-nitrobenzene in an Ullmann-

type reaction (compare with Scheme 6.1, compound (RS)-6.15). The secondary alcohol 6.28 was 

converted to the respective ketone in a Parikh-Doering oxidation (Scheme 6.3) in moderate yield. 

 

Scheme 6.2. Synthesis of compounds (S*)-6.18a and (S*)-6.18b. Reagents and conditions: (a) acetonitrile, microwave device 

(120 °C, 1 h), 2% ((S*)-6.18a) and 3% ((S*)-6.18b). 

Intermediate 6.31 was synthesized from benzaldehyde 6.30 and 1-((isocyanomethyl)sulfonyl)-4-

methylbenzene (van Leusen oxazole synthesis19) in good yield. The oxazole 6.31 derivative was 

converted to the respective chloride 6.32, which was coupled with amine 6.11 under microwave 

irradiation (130 °C, 1 h) to give 6.33 in moderate yield. The removal of the tert-butyl group of 6.33 by 

treatment with TFA gave 6.34 after purification by preparative HPLC (Scheme 6.3).  
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Scheme 6.3. Synthesis of substituted (R,R)-diaminocyclohexanes 6.34 and 6.35-6.44. Reagents and conditions: (a) 1-fluoro-4-

nitrobenzene, Na2CO3, dioxane/H2O , 70 °C, overnight, 55-82%; (b) DCC, DMF, rt, overnight, 63-89%; (c) 1-bromo-4-

nitrobenzene, L-proline, CuI, K2CO3, DMSO, 65 °C, 2 d, 88%; (d) pyridine sulfur-trioxide complex, Et3N, DMSO, 50%; (e) 1-

((isocyanomethyl)sulfonyl)-4-methylbenzene, K2CO3, MeOH, reflux, 4 h, 77%; (f) (1) n-BuLi, THF, -78 °C, (2) C2Cl6, -78 °C, 88%; 

(g) K2CO3, microwave device (130 °C, 45 min), 47%; (h) CH2Cl2/TFA 1:1, 46%; (i) (1) CH2Cl2, DIPEA, (2) CH2Cl2/TFA 1:1, 51%; 

(j) DIPEA, DMF, rt, 3 h, 39%; (k) DIPEA, DMF, rt, 3 h, 32%, (l) DIPEA, DMF, rt, 3 h, 25%; (m) DIPEA, DMSO, rt, 2 h, 17%; 

(n) (1) CH2Cl2, AcOH, Na2SO4 (anhydrous), (2) NaBH(OAc)3, 10%; (o) (1) CH2Cl2, AcOH, Na2SO4 (anhydrous), (2) NaBH(OAc)3, 

14%; (p) (1) CH2Cl2, AcOH, Na2SO4 (anhydrous), (2) NaBH(OAc)3, 10%; (q) CH2Cl2, DIPEA, 51%; (r) DMF, DIPEA, 12%. 

Compound 6.35 was synthesized by amide coupling between amine 6.34 and succinimidyl ester 2.25 

followed by Boc deprotection with TFA. The target compounds 6.36-6.39 were synthesized by treatment 
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of 6.34 with the succinimidyl esters 2.28 or 6.24-6.26. Compounds 6.40-6.42 were synthesized from 

ketone 6.29 and amines 6.12, 6.13 or 6.31 by formation of the imines and subsequent reduction 

(reductive amination) to give the respective amines 6.40-6.42 (Scheme 6.3). Succinimidyl ester 6.24 

was used for amide bond formation between amines 6.12 and 6.13 to obtain compounds 6.43 and 6.44 

(Scheme 6.3). 

 

Scheme 6.4. Synthesis of the (R,R)-aminocyclohexylcarbamoylguanidines 6.47 and 6.48. Reagents and conditions: 

(a) isocyanatobenzene, CH2Cl2, 55%; (b) HgCl2, DIPEA, CH2Cl2, 50%; (c) (1) Pd/C, MeOH, (2) CH2Cl2/TFA 1:1, 20%; (d) DIPEA, 

DMSO, rt, 2 h, 40%. 

Isocyanatobenzene was treated with 2.35 to form the guanidinylating reagent 6.45 in moderate yield 

(Scheme 6.4). Compound 6.46 was obtained by guanidinylation of (R,R)-diaminocyclohexane derivative 

6.13 with 6.45. The (R,R)-aminocyclohexylcarbamoylguanidine 6.47 was obtained after removal of the 

Cbz group by hydrogenation, and subsequent cleavage of the Boc group by treatment with TFA. Further 

derivatization of 6.47 by amide bond formation using succinimidylester 6.24 gave 6.48 in moderate yield. 

 

Scheme 6.5. Synthesis of 6.9 (tBPC). Reagents and conditions: (a) CsCO3, DMF, 110 °C, overnight, 74%. 

Finally, cyclohexene oxide (6.50) and the phenol 6.51 were coupled (SN reaction) to give trans-2-(4-

(tert-butyl)phenoxy)cyclohexan-1-ol (6.9) in good yields (Scheme 6.5). 

6.2.3. Pharmacological methods: investigation of test compounds in a radioligand binding 

assay, an aequorin Ca2+ assay and a cytotoxicity assay (live/dead staining). 

Compounds (R,R,S*)-6.6a, (R,R,S)-6.6b, (R,R,S*)-6.7a, (R,R,S*)-6.7b, 6.9, 6.10, 6.12, 6.13, (S*)-6.18a, 

(S*)-6.18b, 6.34-6.44, 6.47 and 6.48 were investigated in competition binding studies. Selected 

compounds ((R,R,S)-6.6b, (R,R,S*)-6.7b, niclosamide (6.10) and 6.36) were additionally investigated in 

the aequorin Ca2+ assay to elucidate modulatory effects on the action of hPP. The cytotoxicity of 

compounds 2.68, (R,R,S)-6.6b, (R,R,S*)-6.7b and niclosamide (6.10) was investigated by ethidium 

bromide/acridine orange staining of CHO-hY4R-Gqi5-mtAEQ cells. 
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6.2.3.1. Displacement studies of investigated compounds in a radioligand competition binding 

assay in CHO-hY4R-Gqi5-mtAEQ cells 

A competition binding assay was performed according to the literature20 in living CHO-hY4R-Gqi5-mtAEQ 

cells5 using [3H]UR-KK200 (cfinal = 1.0 nM, Kd = 0.67 nM20) as radioligand in sodium-free binding buffer 

(Table 6.2). The inhibitory effect of all investigated compounds ((R,R,S*)-6.6a, (R,R,S)-6.6b, (R,R,S*)-

6.7a, (R,R,S*)-6.7b, 6.9, 6.10, 6.12, 6.13, (S*)-6.18a, (S*)-6.18b, 6.34-6.44, 6.47 and 6.48) on Y4R 

binding of [3H]UR-KK200 was determined for three concentrations (3 µM, 10 µM and 30 µM). The 

investigation of higher concentrations was not feasible due to solubility limitations of the test compounds 

and possible cytotoxicity. 

Ewing et al.8 described the compounds (R,R,S*)-6.6a and (R,R,S*)-6.7a as Y4R agonists, antagonists 

or modulators, but only EC50 values obtained from a functional cAMP assay were reported. 

Table 6.2. hY4R affinities (pKi) of synthesized (R,R)-diaminocyclohexane derivatives, as determined by competition binding 

assays with [3H]UR-KK200. 

Compound pKi
a Compound pKi

a 

(R,R,S*)-6.6a <4.52 6.36 <4.52 

(R,R,S)-6.6b <4.52 6.37 <4.52 

(R,R,S*)-6.7a <5.00 6.38 <4.52 

(R,R,S*)-6.7b <4.52 6.39 <4.52 

6.9 (tBPC) <4.52 6.40 <4.52 

6.10 (Niclosamide) <4.52 6.41 <4.52 

6.12 <4.52 6.42 <4.52 

6.13 <4.52 6.43 <5.00 

(S*)-6.18a <4.52 6.44 <5.00 

(S*)-6.18b <4.52 6.47 <4.52 

6.34 <4.52 6.48 <4.52 

6.35 <4.52   

Radioligand competition binding assay with [3H]UR-KK200 (cfinal = 1.0 nM, Kd = 0.67 nM20) in intact CHO-hY4R-Gqi5-mtAEQ 

cells.20 At least two independent experiments (each performed in triplicate) were performed. 

It should be mentioned at this point that work in our group has described a discrepancy between potency 

(pEC50) and affinity (pKi) of agonists at the hY4R.20, 21 The apparent higher affinity of agonists compared 

with their potency was explained by the absence of sodium in the binding buffer used for radioligand 

competition binding experiments at hY4R.20, 21 The phenomenon of a negative allosteric modulatory 

effect of sodium ions has also been reported in literature, and shown for other GPCRs (e.g. µOR,22 
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A2AR,23 and β1AR24), whilst sodium cations stabilize the inactive state of the receptor. Whereas (R,R,S*)-

6.6a, (R,R,S)-6.6b and (R,R,S*)-6.6b showed no apparent affinity for the hY4R, (R,R,S*)-6.7a displaced 

ca. 50% of the radioligand at a concentration of 30 µM. 

tBPC (6.9) and niclosamide (6.10) demonstrated no Y4R affinity. Whilst, the results of these experiments 

were in agreement with the literature,10, 11 these compounds (6.9 and 6.10) have been reported to act 

as modulators in functional Y4R assays using PP as agonist. 

The (R,R)-diaminocyclohexanes 6.12, 6.13, 6.34, 6.35 and 6.47, as well as ethane-1,2-diamines 6.18a 

and 6.18b (series of substituted diamines) showed no affinity at the hY4R.  

Further derivatization of (R,R)-diaminocyclohexanes 6.12, 6.13 and 6.34, resulting in compounds 6.36-

6.44 (cf. Scheme 6.3), did not enhance Y4R affinity. Compounds 6.43 and 6.44 demonstrated no 

increased affinity compared to the other investigated compounds ((R,R,S*)-6.6a, (R,R,S)-6.6b, 

(R,R,S*)-6.7a, (R,R,S*)-6.7b, 6.9, 6.10, 6.12, 6.13, (S*)-6.18a, (S*)-6.18b, 6.34-6.42, 6.47 and 6.48), 

but were not soluble at concentrations higher than 10 µM. 

The introduction of a carbamoyl guanidine at the (R,R)-diaminocyclohexane moiety led to compounds 

6.47 and 6.48, which also showed no Y4R binding. 

6.2.3.2. Modulatory effects of test compounds on the action of hPP in an aequorin Ca2+ assay 

The aequorin Ca2+ assay was performed as previously described by Ziemek et al5 with minor 

modifications: on the day of the experiment the CHO-hY4R-Gqi5-mtAEQ cells were scraped from the 

culture flask rather than trypsination. The studied compounds (at a final concentration of 30 µM) were 

incubated with CHO-hY4R-Gqi5-mtAEQ cells for 30 min. 

 

Figure 6.4. hY4R agonism of hPP + 0.5% DMSO and hPP in the presence of compounds (R,R,S)-6.6b, (R,R,S*)-6.7b, 

niclosamide (6.10) and 6.36 (cfinal = 30 µM) determined in an aequorin Ca2+ assay in live CHO-hY4R-Gqi5-mtAEQ cells. Data are 

presented as means ± SEM from at least two independent experiments, each performed in triplicate. 

The aequorin Ca2+ assay was performed using intact CHO-hY4R-Gqi5-mtAEQ cells to study the potential 

modulatory effects of (R,R,S)-6.6b, (R,R,S*)-6.7b, niclosamide (6.10) and 6.36 on the action of hPP at 

the Y4R. For this purpose, the stimulatory effect of hPP was investigated in the absence (0.5% DMSO) 

and in the presence of (R,R,S)-6.6b, (R,R,S*)-6.7b, niclosamide (6.10) or 6.36, used at a concentration 

of 30 µM. Moreover, all investigated compounds showed no intrinsic activity at a concentration of 30 µM 

0

25

50

75

100

125

-10 -9 -8 -7 -6 -5

hPP

hPP + 6.10

hPP + (R,R,S)-6.6b

hPP + (R,R,S*)-6.7b

hPP + 6.36

log agonist [hPP]

%
 o

f 
m

a
x

im
a

l 
re

s
p

o
n

s
e

-



 
Synthesis and pharmacological investigation of substituted 

(R,R)-diaminocyclohexanes as potential non-peptide ligands for the hY4R 
 

186 
 

in the aequorin Ca2+ assay. The CHO-hY4R-Gqi5-mtAEQ cells were pre-incubated with the studied 

compounds for 30 min prior to addition of hPP. 

Concentration effect curves of hPP are shown in Figure 6.3 and corresponding pEC50 values are 

summarized in Table 6.3. The determined pEC50 value of hPP was in good agreement with literature 

data,5 and its intrinsic activity was not influenced in the presence of compounds (R,R,S)-6.6b and 

(R,R,S*)-6.7b. Niclosamide (6.10) was described in literature as a positive allosteric modulator (PAM) 

at the hY4R.10 In the presence of 6.10 (cfinal = 30 µM) the concentration effect curve of hPP was left 

shifted and no effect on the maximal response of hPP was observed in an inositol phosphate 

accumulation assay (in COS7_Y4R-eYFP_Δ6Gαqi4-myr cells) as reported by Sliwowski et al.10 

In the aequorin Ca2+ assay, the endogenous agonist hPP showed a slight decrease in potency and 

depression of intrinsic activity in the presence of 6.10 (Table 6.3). The obtained results must be 

scrutinized as a cytotoxic effect cannot be excluded (6.2.2.3.) (Note: 6.10 has been reported25, 26 to be 

cytotoxic). Beside the use as an oral anthelmintic drug, niclosamide has been reported to induce cell 

death in several cancer cell lines (e.g. MCF-7).25, 26 

Whilst the substituted (R,R)-diaminocyclohexane 6.36 caused no shift in potency (pEC50) of hPP, the 

intrinsic activity (α) of hPP was marginally increased by ca. 25%. The effect of compound 6.36 on the 

intrinsic activity of hPP might be too small to unambiguously classify compound 6.36 a modulator at the 

NPY Y4R. Further investigations in additional functional assays are required. 

Table 6.3. Potencies (pEC50) and intrinsic activities (α) of hPP determined in the aequorin Ca2+ assay in the presence of selected 

compounds (R,R,S)-6.6b, (R,R,S*)-6.7b, niclosamide (6.10) and 6.36 at a concentration of 30 µM. 

compound pEC50 ± SEMa α ± SEMb N 

hPP + 0.5% DMSO 7.95 ± 0.05 1 3 

hPP + (R,R,S)-6.6b 7.91 ± 0.08 1.09 ± 0.03 3 

hPP + (R,R,S*)-6.7b 7.87 ± 0.10 0.96 ± 0.12 3 

hPP + niclosamide (6.10) 8.29 ± 0.02 0.28 ± 0.20 2 

hPP + 6.36 7.89 ± 0.07 1.27 ± 0.12 3 

aAequorin Ca2+ mobilization assay in living CHO-hY4R-Gqi5-mtAEQ cells. bEfficacies (intrinsic activity, α) were calculated from 

the maximum response relative to 1 μM hPP + 0.5% DMSO (α = 1). Mean values ± SEM from at least N independent 

experiments, each performed in triplicate. 
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6.2.3.3. Investigation of cytotoxicity by ethidium bromide/acridine orange staining 

 

Figure 6.5. (A-E) Ethidium bromide/acridine orange staining of CHO-hY4R-Gqi5-mtAEQ cells (A-E). CHO-hY4R-Gqi5-mtAEQ cells 

were incubated for 30 min with (A) 3% DMSO and 30 µM of (B) niclosamide (6.10), (C) 2.68, (D) (R,R,S)-6.6b and (E) (R,R,S*)-

6.6b. Images were acquired with an Olympus BH-2 microscope using a planachromat objective (10x), filter (Fluorescein) and a 

DCM-510 ocular microscope camera (Software: ScopePhoto 3.0).  

The cytotoxicity of compounds 2.68, (R,R,S)-6.6b, (R,R,S*)-6.7b and niclosamide (6.10) in CHO-hY4R-

Gqi5-mtAEQ cells was investigated by ethidium bromide/acridine orange staining (Figure 6.5). In contrast 

to the aequorin Ca2+ assay procedure, CHO-hY4R-Gqi5-mtAEQ cells were detached by trypsinization 

(not by scratching) and were resuspended in buffer containing 10% FCS. 

Live cells with an intact membrane/membrane potential exclude ethidium bromide, whereas acridine 

orange penetrates across intact cell membranes and intercalates with the DNA. As a consequence 

nuclei of live cells, show green fluorescence. Both live and dead cells show membrane permeability for 

acridine orange, whilst ethidium bromide only show membrane permeability in dead cells, allowing one 

to distinguishing between vital (green) and dead (orange/red) cells by microscopy.27 

Compounds 2.68, (R,R,S)-6.6b and (R,R,S*)-6.7b did not damage cells. Niclosamide (6.10) induced 

cell death at a concentration of 30 µM after incubation for 30 min. The results from the ethidium 

bromide/acridine orange staining helped to explain data obtained from the aequorin Ca2+ assay 

(6.2.2.2.). Obviously, this cytotoxic effect of 6.10 led to the apparent decrease in intrinsic activity of hPP 

(Table 6.3). 

6.3. Conclusion 

Compounds (R,R,S*)-6.6a and (R,R,S)-6.7a, previously described by Ewing et al,8 were synthesized 

and pharmacologically characterized in radioligand competition binding studies. (R,R,S*)-6.6a and 

(R,R,S)-6.7a showed no affinity towards hY4R, therefore compounds (R,R,S*)-6.6a and (R,R,S)-6.7a 

were not investigated in functional assays.  

During the synthesis of compounds (R,R,S*)-6.6a and (R,R,S)-6.7a structural isomers were evident in 

the last synthesis step. The reaction could be stereochemically controlled by use of enantiomerically 
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pure mesylate ((R)-6.17), whereas structural isomers of (R,R,S*)-6.6a and (R,R,S)-6.7a are still evident 

as main products. Further investigations could focus on mechanism and optimization of reaction 

conditions to avoid structural isomers. The formation of structural isomers was not described by Ewing 

et al.,8, 9 because they used a reductive amination route on the 1-(4-nitrophenyl)piperidin-3-on, which 

does not allow for aziridine formation. 

A series of compounds with a (R,R)-diaminocyclohexane moiety ((R,R,S*)-6.6a, (R,R,S)-6.6b, 

(R,R,S*)-6.7a, (R,R,S*)-6.7b, 6.12, 6.13, 6.34-6.44, 6.47, 6.48 and a 1,2-ethanediamine moiety 

((S*)-6.18a, (S*)-6.18b) were synthesized and investigated in competition binding studies, but none 

showed Y4R affinity. 

Niclosamide (6.10) and selected compounds ((R,R,S)-6.6b, (R,R,S*)-6.7b and 6.36) were further 

investigated in the aequorin Ca2+ assay with respect to a modulatory effects on the action of hPP. The 

reported positive allosteric modulation by niclosamide (6.10) was not obvious in the aequorin Ca2+ 

assay, rather a decrease in intrinsic affinity was observed, which was likely caused by the cytotoxicity 

of 6.10. Compounds (R,R,S)-6.6b and (R,R,S*)-6.7b showed no modulatory effect in the aequorin Ca2+ 

assay on the action of hPP. Additionaly, the increase in intrinsic activity of hPP induced by compound 

6.36 was too less pronounced to definitively classify this compound as a modulator. To shed light on 

this question further investigations in different functional assays (G-protein mediated) are needed. 

Finally, the modulatory effect of 6.10 was not obvious in the aequorin Ca2+ assay, but further 

investigations are required for the evaluation of modulators at the Y4R. Firstly, another functional assay 

could be performed (e.g. miniG protein recruitment, β-arrestin2 recruitment assay) for the investigation 

of the modulatory effect on hPP. Secondly, the setup of the aequorin assay could be changed (e.g. 

potentiation of a PP EC20 response in the presence of increasing concentrations of the modulator). 

As results were disappointing, the synthesis of additional analogs and further in depth functional 

characterization of the compounds described in this chapter were discontinued. Compound 6.9 was 

published in the later stages of this thesis and therefore not functionally characterized. The recently 

resolved crystal structure28 of the hY1R in complex with UR-MK299 (2.2) could be the basis for a 

homology model of the hY4R to aid in the search for new non-peptide ligands with affinity to the hY4R.  
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6.4. Experimental section 

6.4.1. General experimental conditions 

The following reagents and solvents (analytical grade) were purchased from commercial suppliers and 

used without further purification: CH2Cl2, glycine, DMF, DMSO, MeOH, methanesulfonyl chloride (Fisher 

Scientific, Schwerte, Germany); 1-((isocyanomethyl)sulfonyl)-4-methylbenzene (Acros Organics, 

Schwerte, Germany); DCC, TFA, pyridine-sulfur trioxide complex, palladium on activated charcoal 

(Pd/C), n-BuLi, NaBH(OAc)3, acetic acid, HgCl2, isocyanatobenzene, 1-fluoro-4-nitrobenzene, 1-bromo-

4-nitrobenzene, CuI (RS)-6.14, 6.23, 6.27, (Sigma Aldrich, München, Germany); C2Cl6, 6.51 (TCI, 

Eschborn, Germany); DIPEA, 2.36, (R)-piridine-3-ol hydrochlorid ((R)-6.14∙HCl) (Abcr, Karlsruhe, 

Germany); L-proline, dioxane, Et3N, K2CO3, NaBH4, Na2SO4, MgSO4 (Merck, Darmstadt, Germany); 

(R,R)-diaminocyclohexane (Ark Pharm, Arlington Heights, USA), conc. HCl (VWR Chemicals, 

Darmstadt, Germany); Ammonium hydroxide (Carl Roth, Karlsruhe, Germany). For pharmacological 

characterization, hPP was purchased from Synpeptide (Shanghai, China). 

Compounds 2.2529 and 2.2830 were synthesized as described previously in the literature (cf. Chapter 2).  

Column chromatography was performed using Merck Gerduran 60 silica gel (0.063-0.200 mm) or Merck 

flash silica gel 60 (0.040-0.063 mm). For thin layer chromatography, TLC sheets ALUGRAM Xtra SIL 

G/UV254 from Macherey-Nagel GmbH & Co. KG (Düren, Germany) were used. Compounds were 

detected by irradiation with UV light (254 nm), and staining was performed with ninhydrin. 

Acetonitrile (HPLC grade), used for HPLC, was purchased from Sigma-Aldrich. Millipore water was used 

for eluents for analytical and preparative HPLC. Compounds (R,R,S*)-6.6a, (R,R,S)-6.6b, (R,R,S*)-6.7a, 

(R,R,S*)-6.7b, 6.9, 6.12, 6.13, 6.34-6.38 and 6.42 were purified by a preparative HPLC-system from 

Knauer (Berlin, Germany) consisting of two pumps K-1800 and a detector K-2001 (HPLC A). A Kinetex 

XB C18, 5 µm, 250 x 21 mm (Phenomenex, Aschaffenburg, Germany) served as RP-column at a flow 

rate of 18 mL/min. Compounds (S*)-6.18a, (S*)-6.18b, 6.39-6.41, 6.44, 6.47 and 6.48 were purified by 

a preparative HPLC-system from Waters (Eschborn, Germany) consisting of a Binary Gradient Module 

(Waters 2545), a detector (Waters 2489 UV/visible Detector), a manual injector (Waters Prep inject) and 

a collector (Waters Fraction Collector III) (HPLC B). A Kinetex XB C18, 5 µm, 250 x 21 mm 

(Phenomenex) served as RP-column at a flow rate of 20 mL/min. All injected solutions were filtered with 

syringe filters (0.45 µm). The mobile phase contained the solvents A (0.1% aq TFA) and B (acetonitrile). 

The detection wavelength was 220 nm. The eluates, containing isolated compounds, were lyophilized 

using a Christ alpha 2-4 LD (Martin Christ Gefriertrocknungsanlagen, Osterode am Harz, Germany) or 

a Scanvac CoolSafe 100-9 (Labogene, Alleroed, Denmark) lyophilization apparatus equipped with a 

Vacuubrand RZ rotary vane vacuum pump (Vacuubrand, Wertheim, Germany). 

The purity of compounds (R,R,S*)-6.7a, (R,R,S)-6.7b, 6.9, 6.12, 6.13, (S*)-6.18a, (S*)-6.18b, 6.34, 

6.36-6.44, 6.47 and 6.48 was determined by analytical HPLC (RP-HPLC) on a 1100 series system from 

Agilent Technologies (Santa Clara, CA USA) composed of a Degasser (G1379A), a Binary Pump 

(G1312A), a Diode Array Detector (G1315A), a thermostated Column Compartment (G1316A) and an 

Autosampler (G1329A). A Phenomenex Kinetex 5u XB-C18 100A, 250 x 4.6 mm was used as stationary 

phase. The flow rate was 1 mL/min, the oven temperature was set to 30 °C and the injection volume 
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was 50 µL. Mixtures of solvents A (0.1% aq TFA) and B (acetonitrile) were used as mobile phase. The 

following gradient was applied (Method A): 0-25 min, A/B 90:10–5:95; 25-35 min, 5:95. Analytical HPLC 

analysis of compounds (R,R,S*)-6.7a, (R,R,S*)-6.7b and 6.35 was performed on a system from Merck-

Hitachi composed of a Pump (L-6200A), an Interface (D600 IF), an Autosampler (AS-2000) and an UV-

Detector (L-4000A). A Phenomenex Kinetex 5u XB-C18 100A, 250 x 4.6 mm (Phenomenex) was used 

as stationary phase. The flow rate was 0.8 mL/min, the oven temperature was set to 30 °C, the detection 

wavelength was set to 220 nm and the injection volume was 35 µL. A mixtures of solvents A (0.05% aq 

TFA) and B (acetonitrile supplemented with 0.05% TFA) was used as mobile phase. The following 

gradient was applied (Method B): 0-25 min, A/B 90:10–5:95; 25-35 min, 5:95. 

Microwave reactions were carried out on a Biotage Initiator 2.0 microwave device (Biotage, Uppsala, 

Sweden) using pressure stable sealed 10-20 mL vessels. 

Deuterated solvents for NMR spectroscopy (DMSO-d6, MeOH-d4, CDCl3) were obtained from Deutero 

(Kastellaun, Germany) in ampoules (1 mL). NMR spectra were recorded on a Bruker Avance 300 (1H, 

300 MHz; 13C, 75 MHz), a Bruker Avance III 400 (1H, 400 MHz; 13C, 101 MHz) and a Bruker Avance 

600 with cryogenic probe (1H, 600 MHz; 13C, 150 MHz) (Bruker, Karlsruhe, Germany). Chemical shifts 

are given in ppm and were referenced to the solvent residual peak (DMSO-d6, at 2.50 ppm (1H-NMR) 

and at 39.52 ppm (13C-NMR); CDCl3, at 7.26 ppm (1H-NMR) and at 77.16 ppm (13C-NMR)).31 The 

coupling constants (J) are given in Hertz (Hz). The splitting of the signals is described as follows: s = 

singlet, bs = broad singlet, d = doublet, t = triplet, q = quartet, m = multiplet. 

Mass spectrometry (HRMS) analysis was performed either on an Agilent 6540 UHD Accurate-Mass Q-

TOF LC/MS system (Agilent Technologies) using an electrospray source (ESI) or on an Agilent 

GC7890A GC/MS system (Agilent Technologies) using an atmospheric pressure chemical ionization 

(APCI) source. 

Elemental analysis was performed on a Vario micro cube (Elementar, Langenselbold, Germany). 

Stock solutions were prepared in DMSO at concentrations 10 mM. 

6.4.2. Synthesis protocols and analytical data 

Compounds 6.12, 6.13 were purified by preparative HPLC and obtained as their TFA salts (used to 

prepare stock solutions for the pharmacological characterization). For synthesis of compounds (R,R,S*)-

6.6a, (R,R,S)-6.6b, (R,R,S*)-6.7a, (R,R,S*)-6.7b and 6.41-6.44 the free base of 6.12 and 6.13 was used. 
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1-((1R,2R)-2-(((S*)-1-(4-Nitrophenyl)piperidin-3-yl)amino)-cyclohexyl)-3-phenylurea hydrotri-

fluoroacetate ((R,R,S*)-6.6a)8 and 1-((1R,2R)-2-((((S)-1-(4-nitrophenyl)pyrrolidine-2-yl)methyl)-

amino)cyclohexyl)-3-phenylurea hydrotrifluorocetate ((R,R,S)-6.6b). 1-((1R,2R)-2-Aminocyclo-

hexyl)-3-phenylurea (6.12) (164 mg, 703 µmol) and (R)-1-(4-nitrophenyl)piperidin-3-yl methane-

sulfonate ((R)-6.17) (211 mg, 703 µmol) were dissolved in acetonitrile (10 mL) in a 20 mL reaction tube 

and heated in a microwave device (100 °C, 1 h). The organic solvent was evaporated and the crude 

mixture was purified by column chromatography (eluent: CH2Cl2/MeOH/NH3 ag 90:9:1) and then by 

preparative HPLC A (gradient: 0-30 min, A/B 68:32–52:48, tR((R,R,S*)-6.6a) = 12 min, 

tR((R,R,S*)-6.6a) = 13 min) to isolate (R,R,S*)-6.6a and (R,R,S)-6.6b as fluffy yellow solids, respectively 

((R,R,S*)-6.6a: 19.4 mg, 35 µmol, 5%; (R,R,S)-6.6b: 34.2 mg, 61.6 µmol, 9%). 

(R,R,S*)-6.6a: 1H-NMR (600 MHz, DMSO-d6): δ (ppm) 1.22-1.34 (m, 2H), 1.36-1.50 (m, 2H), 1.51-1.60 

(m, 1H), 1.66-1.81 (m, 4H), 1.88-1.94 (m, 1H), 2.08-2.16 (m, 2H), 2.96-3.04 (m, 1H), 3.14-3.22 (m, 1H), 

3.30-3.41 (m, 2H), 3.62-3.68 (m, 1H), 3.85-3.92 (m, 1H), 4.12-4.19 (m, 1H), 6.87-6.97 (m, 2H), 7.02-

7.08 (m, 2H), 7.18-7.26 (m, 2H), 7.37-7.44 (m, 2H), 8.02-8.08 (m, 2H), 8.36 (br s, 1H), 8.87 (br s, 1H), 

9.15 (s, 1H). 13C-NMR (150 MHz, DMSO-d6): δ (ppm) 22.2, 23.1, 23.8, 25.8, 27.1, 31.6, 46.9, 48.8, 50.0, 

50.6, 58.1, 113.0, 117.7, 121.3, 125.7, 128.6, 137.0, 140.1, 154.1, 155.9. RP-HPLC (Method B, 

220 nm): 94% (tR = 17.9 min, k = 5.2). HRMS (ESI): m/z [M+H]+ calcd. for [C24H32N5O3]+ 438.2500, found 

438.2507. C24H31N5O3 × C2HF3O2 (437.54 + 114.02). 

(R,R,S)-6.6b: 1H-NMR (600 MHz, DMSO-d6): δ (ppm) 1.21-1.30 (m, 2H), 1.31-1.40 (m, 1H), 1.46-1.55 

(m, 1H), 1.64-1.75 (m, 2H), 1.86-2.04 (m, 3H), 2.06-2.18 (m, 3H), 2.91-2.98 (m, 1H), 3.06-3.16 (m, 2H), 

3.16-3.25 (m, 1H), 3.49-3.54 (m, 1H), 3.72-3.79 (m, 1H), 4.23-4.28 (m, 1H), 6.76-6.83 (m, 3H), 6.90-

6.94 (m, 1H), 7.22-7.26 (m, 2H), 7.42-7.46 (m, 2H), 8.04 (d, J = 9.5 Hz, 2H), 8.40 (br s, 1H), 8.90 (br s, 

1H), 9.05 (br s, 1H). 13C-NMR (150 MHz, DMSO-d6): δ (ppm) 21.9, 23.5, 24.1, 26.4, 28.2, 32.3, 42.8, 

48.0, 49.2, 55.2, 61.0, 111.5, 117.7, 121.3, 125.9, 128.7, 136.3, 140.3, 151.1, 155.5, 158.6 (q 

J = 34.3 Hz) (TFA). RP-HPLC (Method B, 220 nm): 95% (tR = 18.4 min, k = 5.4). HRMS (ESI): m/z 

[M+H]+ calcd. for [C24H32N5O3]+ 438.2500, found 438.2519. C24H31N5O3 × C2HF3O2 (437.54 + 114.02). 
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Benzyl ((1R,2R)-2-(((S*)-1-(4-nitrophenyl)piperidin-3-yl)amino)cyclohexyl)carbamate hydrotri-

fluoroacetate8 ((R,R,S*)-6.7a) and benzyl ((1R,2R)-2-((((S*)-1-(4-nitrophenyl)pyrrolidin-2-

yl)methyl)amino)cyclohexyl)carbamate hydrotrifluoroacetate ((R,R,S*)-6.7b:). Benzyl ((1R,2R)-2-

aminocyclohexyl)carbamate (6.13) (150 mg, 604 µmol) and (R)-1-(4-nitrophenyl)piperidin-3-yl 

methanesulfonate ((R)-6.17) (181 mg, 603 µmol) were dissolved in acetonitrile (10 mL) in a 20 mL 

reaction tube and heated in a microwave device (100 °C, 1 h). The organic solvent was evaporated and 

the crude mixture was purified by column chromatography (eluent: CH2Cl2/MeOH/NH3 ag 90:9:1) and 

then by preparative HPLC A (gradient: 0-30 min, A/B 62:38–52:48, tR((R,R,S*)-6.6a) = 10 min, 

tR((R,R,S*)-6.7b) = 11 min) to isolate (R,R,S*)-6.7a and (R,R,S*)-6.7b as fluffy yellow solids, 

respectively ((R,R,S*)-6.7a: 12 mg, 21 µmol, 3%; (R,R,S*)-6.7b: 26 mg, 46 µmol, 8%). 

(R,R,S*)-6.7a: 1H-NMR (600 MHz, DMSO-d6): δ (ppm) 1.17-1.42 (m, 4H), 1.47-1.57 (m, 1H), 1.57-1.74 

(m, 3H), 1.77-1.91 (m, 2H), 2.08-2.17 (m, 2H), 2.89-2.98 (m, 1H), 3.06-3.18 (m, 1H), 3.21-3.34 (m, 2H), 

3.45-3.57 (m, 1H, interfering with water signal), 4.02 (d, J = 13.2 Hz, 1H), 4.21 (d, J = 12.9 Hz, 1H), 4.99 

(d, J = 12.5 Hz, 1H), 5.13 (d, J = 12.5 Hz, 1H), 7.04 (d, J = 9.4 Hz, 2H), 7.30-7.34 (m, 1H), 7.35-7.38 

(m, 4H), 7.47 (d, J = 8.8 Hz, 1H), 8.08 (d, J = 9.4 Hz, 2H), 8.22 (br s, 1H), 8.85 (br s, 1H). 13C-NMR 

(150 MHz, DMSO-d6): δ (ppm) 22.6, 23.3, 23.8, 26.1, 27.1, 32.0, 47.0, 48.7, 50.0, 52.1, 56.8, 65.8, 

112.9, 125.8, 127.8, 127.9, 128.4, 136.7, 137.0, 153.9, 156.2. RP-HPLC (Method A, 220 nm): 95% 

(tR = 14.9 min, k = 4.8). HRMS (ESI): m/z [M+H]+ calcd. for [C25H33N4O4]+ 453.2496, found 453.2504. 

C25H32N4O4 × C2HF3O2 (452.56 + 114.02). 

(R,R,S*)-6.7b: 1H-NMR (600 MHz, DMSO-d6): δ (ppm) 1.15-1.27 (m, 2H), 1.27-1.36 (m, 1H), 1.45-1.53 

(m, 1H), 1.61-1.67 (m, 1H), 1.68-1.75 (m, 1H), 1.83-1.89 (m, 1H), 1.90-2.08 (m, 3H), 2.08-2.14 (m, 2H), 

2.91-3.02 (m, 2H), 3.05-3.123 (m, 1H), 3.18-3.25 (m, 1H), 3.47-3.52 (m, 1H), 3.58-3.65 (m, 1H), 4.25-

4.31 (m, 1H), 5.01 (d, J = 12.5 Hz, 1H), 5.10 (d, J = 12.5 Hz, 1H), 6.82 (d, J = 9.4 Hz, 2H), 7.30-7.35 (m, 

1H), 7.35-7.39 (m, 4H), 7.48 (d, J = 9.0 Hz, 1H), 8.06 (d, J = 9.4 Hz, 2H), 8.62 (br s, 1H), 9.11 (br s, 1H). 

13C-NMR (150 MHz, DMSO-d6): δ (ppm) 21.9, 23.6, 23.8, 26.4, 28.3, 32.2, 42.9, 47.9, 50.6, 55.2, 59.9, 

65.8, 111.6, 116.1 (q, J = 29.8 Hz) (TFA), 125.9, 127.8, 127.9, 128.4, 136.3, 136.8, 151.1, 156.0, 158.4 

(q, J = 31.7 Hz) (TFA). RP-HPLC (Method A, 220 nm): 96% (tR = 15.3 min, k = 5.0). HRMS (ESI): m/z 

[M+H]+ calcd. for [C25H33N4O4]+ 453.2496, found 453.2502. C25H32N4O4 × C2HF3O2 (452.56 + 114.02). 
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trans-2-(4-(tert-Butyl)phenoxy)cyclohexan-1-ol (6.9).32, 33 4-tert-Butylphenol (6.51) (0.53 g, 

3.53 mmol) was dissolved in DMF (15 mL) and CsCO3 (2.26 g, 6.94 mmol) was added. After addition of 

cyclohexene oxide (6.50) (0.35 mL, 3.46 mmol), the reaction mixture was stirred at 110 °C overnight. 

The reaction mixture was allowed to warm to rt and poured in water (25 mL). The crude product was 

extracted from the aqueous phase with ethyl acetate (3x 120 mL). The combined organic phases were 

dried over Na2SO4 and the organic solvent was evaporated. The crude product was purified by column 

chromatography (eluent: light petroleum/ethyl acetate 90:10) and, subsequently, by preparative HPLC 

A (gradient: 0-35 min, A/B 55:45–25:75, tR = 15 min) to give 6.9 as a fluffy white solid (650 mg, 

2.62 mmol, 74%). 1H-NMR (400 MHz, CDCl3): δ (ppm) 1.22-1.47 (m, 13H), 1.69-1.80 (m, 2H), 2.06-2.21 

(m, 2H), 2.59 (s, 1H), 3.67-3.75 (m, 1H), 3.93-4.01 (m, 1H), 6.86-6.92 (m, 2H), 7.27-7.33 (m, 2H). 

13C-NMR (101 MHz, CDCl3): δ (ppm) 24.05, 24.13, 29.4, 31.6, 32.1, 34.2, 73.6, 82.4, 116.0, 126.4, 

144.1, 155.7. RP-HPLC (Method A, 220 nm): 100% (tR = 22.1 min, k = 7.5). HRMS (APCI): m/z 

[M+NH4]+ calcd. for [C16H28NO2]+ 266.2115, found 266.2115. C16H24O2 (248.37). 

 

1-((1R,2R)-2-Aminocyclohexyl)-3-phenylurea hydrotrifluoroacetate (6.12).34 (R,R)-Diaminocyclo-

hexane (6.11) (1.24 g, 10.9 mmol) was dissolved in CH2Cl2 (100 mL) and stirred at -25 °C. Under 

stirring, isocyanotobenzene (0.85 mL, 7.85 mmol) in CH2Cl2 (50 mL) was added dropwise to the reaction 

mixture. Then, the reaction mixture was allowed to warm to rt and stirred overnight. CH2Cl2 (100 mL) 

was added to the reaction mixture and the solution was filtered. The filtrate was washed with a saturated 

solution of Na2CO3 (3x 200 mL) and the organic solvent was evaporated. The crude product was purified 

by column chromatography (eluent: CH2Cl2/MeOH/NH3 aq 90:9:1) and, subsequently, by preparative 

HPLC A (gradient: 0-35 min, A/B 85:15–28:72, tR = 5 min) to give 6.12 as a fluffy white solid (0.45 g, 

1.29 mmol, 16%). 1H-NMR (600 MHz, DMSO-d6): δ (ppm) 1.21-1.42 (m, 4H), 1.65-1.73 (m, 2H), 1.82-

1.88 (m, 1H), 1.95-2.01 (m, 1H), 2.83-2.91 (m, 1H), 3.51-3.59 (m, 1H), 6.83 (d, J = 8.4 Hz, 1H), 6.87-

6.91 (m, 1H), 7.19-7.25 (m, 2H), 7.41-7.46 (m, 2H), 7.88 (br s, 3H), 8.98 (s, 1H). 13C-NMR (150 MHz, 

DMSO-d6): δ (ppm) 23.4, 24.3, 29.5, 31.7, 50.8, 54.2, 116.0 (TFA), 117.7, 118.0 (TFA), 119.9, 128.7, 

140.6, 155.4, 158.9 (q, J = 32.2 Hz) (TFA). RP-HPLC (Method A, 220 nm): 100% (tR = 9.7 min, k = 2.8). 

HRMS (ESI): m/z [M+H]+ calcd. for [C13H20N3O]+ 234.1601, found 234.1604. C13H19N3O × C2HF3O2. 

(233.32 + 114.02). 
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Benzyl ((1R,2R)-2-aminocyclohexyl)carbamate hydrotrifluoroacetate (6.13).35 (R,R)-Diaminocyclo-

hexane (6.11) (1.06 g, 9.28 mmol) was dissolved in CH2Cl2 (200 mL) and stirred at -20 °C. Under 

stirring, N-(benzyloxycarbonyloxy)succinimide (1.69 g, 6.78 mmol) in CH2Cl2 (100 mL) was added 

dropwise to the reaction mixture. Then, the reaction mixture was allowed to warm to rt and stirred 

overnight. The organic phase was washed with 1N NaOH (2x 250 mL), brine (1x 250 mL) and the 

organic solvent was evaporated. The crude product was purified by column chromatography (eluent: 

CH2Cl2/MeOH/NH3 aq 90:9:1) and, subsequently, by preparative HPLC A (gradient: 0-35 min, A/B 

76:24–28:72, tR = 7 min) to give 6.13 as a fluffy white solid (1.58 g, 4.36 mmol, 64%). 1H-NMR 

(600 MHz, DMSO-d6): δ (ppm) 1.15-1.40 (m, 4H), 1.61-1.73 (m, 2H), 1.78-1.91 (m, 1H), 1.96-2.04 (m, 

1H), 2.83-2.88 (m. 1H), 3.34-3.44 (m, 1H), 4.99 (d, J = 12.4 Hz, 1H), 5.08 (d, J = 12.4 Hz, 1H), 7.30-

7.34 (m, 1H), 7.35-7.40 (m, 5H), 7.96 (br s, 3H). 13C-NMR (150 MHz, DMSO-d6): δ (ppm) 23.4, 24.1, 

29.4, 31.5, 52.3, 53.3, 65.6, 116.2 (TFA), 118.2 (TFA), 127.8 (two carbon signals), 128.3, 136.9, 156.0, 

158.2 (q, J = 31.4 Hz) (TFA). RP-HPLC (Method A, 220 nm): 98% (tR = 8.4 min, k = 2.3). HRMS (ESI): 

m/z [M+H]+ calcd. for [C14H21N2O2]+ 249.1598, found 249.1601. C14H20N2O2 × C2HF3O2 (248.33 + 

114.02). 

 

(RS)-1-(4-Nitrophenyl)piperidin-3-ol ((RS)-6.15).9 (RS)-Piperidine-3-ol (5.01 g, 49.5 mmol) ((RS)-

6.14) and 1-bromo-4-nitrobenzene (12.02 g, 59.5 mmol) were dissolved in DMSO (100 mL). 

Additionally, L-proline (1.16 g, 10.1 mmol), CuI (0.981 g, 5.15 mmol) and K2CO3 (14.06 g, 101.7 mmol) 

were added to the reaction mixture, which was stirred at 65 °C for 2 d. Then, the reaction mixture was 

poured into ethyl acetate (700 mL). The organic phase was washed with water (6x 600 mL), dried over 

MgSO4 and the organic solvent was evaporated. The crude product was purified by column 

chromatography (eluent: light petroleum/ethyl acetate 1:2) to obtain (RS)-6.14 as an orange crystalline 

solid (9.31 g, 41.9 mmol, 85%). Anal. calcd. for C11H14N2O3: C 59.45, H 6.35, N 12.61, found: C 59.46, 

H 6.28, N 12.48. 1H-NMR (600 MHz, CDCl3): δ (ppm) 1.61-1.71 (m, 2H), 1.76-1.96 (m, 2H), 1.98-2.05 

(m, 1H), 3.17-3.22 (m, 1H), 3.22-3.27 (m, 1H), 3.49-3.55 (m, 1H), 3.69-3.74 (m, 1H), 3.87-3.93 (m, 1H), 

6.84 (d, J = 9.4 Hz, 2H), 8.10 (d, J = 9.4 Hz, 2H). 13C-NMR (151 MHz, CDCl3): δ (ppm) 22.1, 32.8, 47.8, 

54.7, 66.3, 113.1, 126.2, 138.3, 155.2. HRMS (ESI): m/z [M+H]+ calcd. for [C11H15N2O3]+ 223.1077, 

found 223.1081. C11H14N2O3 (222.24). 
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(R)-1-(4-Nitrophenyl)piperidin-3-ol ((R)-6.15). (R)-Piperidine-3-ol∙HCl (3.12 g, 23.3 mmol) 

((R)-6.14∙HCl) and 1-bromo-4-nitrobenzene (5.83 g, 28.9 mmol) were dissolved in DMSO (60 mL). 

Additionally, L-proline (0.556 g, 4.83 mmol), CuI (0.430 g, 2.26 mmol) and K2CO3 (10.77 g, 77.9 mmol) 

were added to the reaction mixture that was stirred at 65 °C for 2 d. The reaction mixture was poured 

into water (500 mL). The crude product was extracted from the aqueous phase with ethyl acetate (3x 

300 mL), dried over MgSO4 and the organic solvent was evaporated. The crude product was purified by 

column chromatography (eluent: light petroleum/ethyl acetate 1:2) to obtain (R)-6.14 as an orange 

crystalline solid (4.21 g, 18.9 mmol, 81%). 1H-NMR (300 MHz, CDCl3): δ (ppm) 1.55-1.72 (m, 2H), 1.83-

2.10 (m, 2H), 2.30 (br s, 1H), 3.14-3.30 (m, 2H), 3.47-3.60 (m, 1H), 3.70-3.77 (m, 1H), 3.84-3.94 (m, 

1H), 6.80 (d, J = 9.5 Hz, 2H), 8.04 (d, J = 9.5 Hz, 2H). 13C-NMR (75 MHz, CDCl3): δ (ppm) 22.0, 32.6, 

47.6, 54.5, 66.2, 112.9, 126.2, 137.9, 155.1. HRMS (ESI): m/z [M+H]+ calcd. for [C11H15N2O3]+ 223.1077, 

found 223.1077. C11H14N2O3 (222.24). 

 

(RS)-1-(4-Nitrophenyl)piperidin-3-yl methanesulfonate ((RS)-6.17). (RS)-1-(4-Nitrophenyl)piperidin-

3-ol ((RS)-6.14) (2.06 g, 9.27 mmol) was dissolved in CH2Cl2 (70 mL) and Et3N (1.90 mL, 13.7 mmol) 

was added and the mixture was stirred and cooled in an ice bath. Under stirring, methanesulfonyl 

chloride (1.10 mL, 14.2 mmol) in CH2Cl2 (30 mL) was dropped slowly into the reaction mixture. The 

reaction mixture was stirred at rt for 2 h. Then, CH2Cl2 (100 mL) was added into the reaction mixture. 

The organic phase was washed with 0.5 N HCl (2x 200 mL), saturated NaHCO3 solution (2x 200 mL), 

brine (1x 200 mL) and the organic phase was dried over MgSO4. The organic solvent was removed by 

evaporation, the residue was taken up in CH2Cl2 and crystallization, initiated by the addition of light 

petroleum, afforded (RS)-6.19 as dark yellow crystals (1.72 g, 5.73 mmol, 62%). Anal. calcd. for 

C12H16N2O5S: C 47.99, H 5.37, N 9.33, S 10.67, found: C 48.09, H 5.29, N 9.24, S 10.65. 1H-NMR 

(600 MHz, CDCl3): δ (ppm) 1.70-1.80 (m, 1H), 1.93-2.02 (m, 2H), 2.08-2.19 (m, 1H), 3.03 (s, 3H), 3.33-

3.41 (m, 1H), 3.47-3.53 (m, 1H), 3.56-3.61 (m, 1H), 3.78-3.83 (m, 1H), 4.81-4.88 (m, 1H), 6.86 (d, 

J = 9.4 Hz, 2H), 8.11 (d, J = 9.4 Hz, 2H). 13C NMR (151 MHz, CDCl3): δ (ppm) 21.8, 30.4, 38.8, 47.5, 

52.3, 74.6, 113.3, 126.2, 138.8, 154.5. HRMS (ESI): m/z [M+H]+ calcd. for [C12H17N2O5S]+ 301.0853, 

found 301.0858. C12H16N2O5S (300.33). 

 

(R)-1-(4-Nitrophenyl)piperidin-3-yl methanesulfonate ((R)-6.17). (R)-1-(4-Nitrophenyl)piperidin-3-ol 

((R)-6.14) (2.13 g, 9.58 mmol) was dissolved in CH2Cl2 (70 mL) and Et3N (1.90 mL, 13.7 mmol) was 

added and the mixture was stirred and cooled in an ice bath. Under stirring, methanesulfonyl chloride 



 
Synthesis and pharmacological investigation of substituted 

(R,R)-diaminocyclohexanes as potential non-peptide ligands for the hY4R 
 

196 
 

(1.05 mL, 13.6 mmol) in CH2Cl2 (30 mL) was dropped slowly into the reaction mixture. The reaction 

mixture was stirred at rt for 2 h. Then, the organic phase was washed with 0.5 N HCl (2x 200 mL), 

saturated NaHCO3 solution (2x 200 mL), brine (1x 200 mL) and the organic phase was dried over 

MgSO4. The organic solvent was removed by evaporation, the residue was taken up in CH2Cl2 and 

crystallization, initiated by the addition of light petroleum, afforded (R)-6.19 as dark yellow crystals 

(2.14 g, 7.13 mmol, 74%). 1H-NMR (300 MHz, CDCl3): δ (ppm) 1.61-1.80 (m, 1H), 1.87-2.04 (m, 2H), 

2.05-2.15 (m, 1H), 3.03 (s, 3H), 3.29-3.42 (m, 1H), 3.44-3.67 (m, 2H), 3.76-3.86 (m, 1H), 4.79-4.89 (m, 

1H), 6.84 (d, J = 9.5 Hz, 2H), 8.09 (d, J = 9.5 Hz, 2H). 13C-NMR (75 MHz, CDCl3): δ (ppm) 21.8, 30.4, 

38.7, 47.4, 52.2, 74.7, 113.2, 126.2, 138.6, 154.5. HRMS (ESI): m/z [M+H]+ calcd. for [C12H17N2O5S]+ 

301.0853, found 301.0851. C12H16N2O5S (300.33). 

 

(S*)-N1-(1-(4-Nitrophenyl)piperidin-3-yl)ethane-1,2-diamine ((S*)-6.18a) and (S*)-N1-((1-(4-nitro-

phenyl)pyrrolidine-2-yl)methyl)ethane-1,2-diamin ((S*)-6.18b). tert-Butyl (2-aminoethyl)carbamate 

(2.36) (240 mg, 1.50 mmol) and (R)-1-(4-nitrophenyl)piperidin-3-yl methanesulfonate ((R)-6.17) 

(400 mg, 1.33 mmol) were dissolved in acetonitrile (10 mL) in a 20 mL reaction tube and heated in a 

microwave device (120 °C, 1 h). The organic solvent was evaporated and the crude mixture was purified 

by column chromatography (eluent: CH2Cl2/MeOH 90:10). The purified product was dissolved in CH2Cl2 

(5 mL) and TFA (5 mL) was added dropwise to the mixture and stirred at rt overnight. The organic 

solvent was evaporated and the residue was dissolved in CH2Cl2 (10 mL) and the organic solvent was 

evaporated (3x). The crude product was purified by preparative HPLC B (gradient: 0-30 min, A/B 66:34–

38:62, tR((S*)-6.18a) = 12 min, tR((S*)-6.18b) = 13 min) to isolate (S*)-6.18a and (S*)-6.18b as fluffy 

yellow solids ((S*)-6.18a: 11.4 mg, 23.2 µmol, 2%; (S*)-6.18b: 21.4 mg, 43.5 µmol, 3%). 

(S*)-6.18a: 1H-NMR (600 MHz, DMSO-d6): δ (ppm) 1.52-1.62 (m, 1H), 1.63-1.72 (m, 1H), 1.80-1.89 (m, 

1H), 2.06-2.14 (m, 1H), 3.10-3.21 (m, 3H), 3.23-3.40 (m, 4H), 3.78-3.86 (m, 1H), 4.04-4.14 (m, 1H), 

7.06-7.11 (m, 2H), 7.90-9.60 (m, 7H). 13C-NMR (150 MHz, DMSO-d6): δ (ppm) 21.9, 26.1, 35.4, 41.4, 

46.9, 48.5, 52.5, 113.3, 116.0 (TFA), 118.0 (TFA), 125.7, 137.3, 154.3, 158.8 (q, J = 31.1 Hz) (TFA). 

RP-HPLC (Method A, 220 nm): 98% (tR = 7.5 min, k = 1.9). HRMS (ESI): m/z [M+H]+ calcd. for 

[C13H21N4O2]+ 265.1659, found 265.1660. C13H20N4O2 × C4H2F6O4 (264.33 + 228.04). 

(S*)-6.18b: 1H-NMR (600 MHz, DMSO-d6): δ (ppm) 1.94-2.12 (m, 3H), 2.15-2.21 (m, 1H), 2.99-3.06 (m, 

2H), 3.17-3.32 (m, 5H), 3.49-3.54 (m, 1H), 4.15-4.22 (m, 1H), 6.78-6.84 (m, 2H), 7.98-9.92 (m, 7H). 

13C-NMR (150 MHz, DMSO-d6): δ (ppm) 22.1, 28.0, 35.3, 44.9, 47.1, 48.1, 55.4, 111.7, 117.0 (q, 

J = 297.9 Hz) (TFA), 125.8, 136.3, 151.2, 159.1 (q, J = 32.1 Hz) (TFA). RP-HPLC (Method A, 220 nm): 

98% (tR = 7.9 min, k = 2.0). HRMS (ESI): m/z [M+H]+ calcd. for [C13H21N4O2]+ 265.1659, found 265.1661. 

C13H20N4O2 × C4H2F6O4 (264.33 + 228.04). 
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(4-Nitrophenyl)glycine (6.21).36, 37 Glycine (3.78 g, 50.4 mmol) (6.19), 1-fluoro-4-nitrobenzene (3.55 g, 

25.2 mmol and Na2CO3 (4.89 g, 46.1 mmol) were dissolved in a mixture of dioxane (42 mL) and water 

(7 mL) and stirred at 70 °C overnight. The reaction mixture was allowed to cool to rt and poured in water 

(100 mL). The aqueous phase was washed with ethyl acetate (3x 100 mL) and then acidified with 1N 

HCl. (Addition of 1N HCl was continued until no further orange solid precipitated). The compound was 

extracted from the aqueous phase with ethyl acetate (3x 200 mL) and the combined organic phases 

were dried over MgSO4. Then, the organic solvent was evaporated and 6.21 was obtained as an orange 

solid that was used in the next step without further purification (2.73 g, 13.9 mmol, 55%). Anal. calcd. 

for C8H8N2O4: C 48.98, H 4.11, N 14.28, found: C 48.98, H 4.28, N 14.18. 1H-NMR (300 MHz, DMSO-

d6): δ (ppm) 7.98 (d, J = 6.0 Hz, 2H), 6.66 (d, J = 9.4 Hz, 2H), 7.47 (t, J = 6.0 Hz, 1H), 8.00 (d, J = 9.4 Hz, 

2H), 12.83 (br s, 1H). 13C-NMR (75 MHz, DMSO-d6): 44.0, 111.2, 126.1, 136.3, 154.3, 171.5. HRMS 

(ESI): m/z [M+H]+ calcd. for [C8H9N2O4]+ 197.0557, found 197.0556. C8H8N2O4 (196.16). 

 

4-((4-Nitrophenyl)amino)butanoic acid (6.22).37, 38 4-((4-Nitrophenyl)amino)butanoic acid (7.03 g, 

68.2 mmol) (6.20), 1-fluoro-4-nitrobenzene (4.80 g, 34.0 mmol) and Na2CO3 (9.96 g, 94.0 mmol) were 

dissolved in a mixture of dioxane (15 mL) and water (85 mL) and stirred at 70 °C overnight. The reaction 

mixture was allowed to cool to rt and poured into water (200 mL). The aqueous phase was washed with 

ethyl acetate (3x 250 mL) and then acidified with 0.5 N H2SO4. (Addition of 0.5 N H2SO4 was continued 

until no further orange solid precipitated). The compound was extracted from the aqueous phase with 

ethyl acetate (3x 200 mL) and the combined organic phases were dried over MgSO4. Then, the organic 

solvent was evaporated and 6.23 was obtained as an orange solid that was used in the next step without 

further purification (6.26 g, 27.9 mmol, 82%). 1H-NMR (300 MHz, DMSO-d6): δ (ppm) 1.70-1.85 (m, 2H), 

2.33 (t, J = 7.4 Hz, 2H), 3.11-3.20 (m, 2H), 6.63 (d, J = 9.3 Hz, 2H), 7.34 (t, J = 5.4 Hz, 1H), 7.98 (d, 

J = 9.3 Hz, 2H), 12.15 (br s, 1H). 13C-NMR (75 MHz, DMSO-d6): δ (ppm) 23.8, 31.0, 41.7, 110.8, 126.3, 

135.6, 154.6, 174.2. HRMS (ESI): m/z [M+Na]+ calcd. for [C10H12N2O4Na]+ 247.0689, found 247.0695. 

C10H12N2O4 (224.22). 

 

Succinimidyl (4-nitrophenyl)glycinate (6.24). (4-Nitrophenyl)glycine (2.16 g, 11.0 mmol) (6.21) and 

N-hydroxysuccinimide (2.22) (1.31 g, 11.4 mmol) were dissolved in DMF (30 mL) and the reaction 

mixture was stirred at rt. Under stirring, a solution of DCC (2.62 g, 12.7 mmol) in DMF (5 mL) was added 

dropwise into the mixture and the reaction mixture was stirred at rt overnight. The precipitate was 

removed by filtration, and washed with DMF (50 mL). The combined organic (DMF) phases were poured 

into water (1.5 L) and the compound was extracted from the aqueous phase with ethyl acetate (3x 
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250 mL). The combined organic phases (ethyl acetate) were dried over Na2SO4 and the organic solvent 

was evaporated. The residue was dissolved in CH2Cl2 (insoluble components were filtered off) and the 

organic solvent was evaporated to give 6.24 as a bright yellow solid (2.02 g, 6.89 mmol, 63%). 1H-NMR 

(300 MHz, DMSO-d6): δ (ppm) 2.82 (s, 4H), 4.63 (d, J = 6.6 Hz, 2H), 6.74 (d, J = 9.3 Hz, 2H), 7.73 (t, 

J = 6.6 Hz, 1H), 8.03 (d, J = 9.3 Hz, 2H). 13C-NMR (75 MHz, DMSO-d6): 25.5, 41.9, 111.6, 126.0, 137.2, 

153.6, 167.0, 170.1. HRMS (ESI): m/z [M+H]+ calcd. for [C12H12N3O6]+ 294.0721, found 294.0729. 

C12H11N3O6 (293.24). 

 

Succinimidyl 4-((4-nitrophenyl)amino)butanoate (6.25). 4-((4-Nitrophenyl)amino)butanoic acid 

(6.22) (1.02 g, 4.55 mmol) and N-hydroxysuccinimide (2.22) (0.57 g, 4.95 mmol) were dissolved in DMF 

(30 mL). Under stirring, a solution of DCC (1.06 g, 5.14 mmol in DMF (5 mL) was added dropwise into 

the mixture and the reaction mixture was stirred at rt overnight. The precipitate was removed by filtration 

and washed with DMF (50 mL). The combined organic (DMF) phases were poured into water (1.5 L) 

and the compound was extracted from the aqueous phase with ethyl acetate (3x 250 mL). The combined 

organic phases (ethyl acetate) were dried over Na2SO4 and the solvent was evaporated. The residue 

was dissolved in CH2Cl2 (insoluble components were filtered off) and the solvent was evaporated to give 

6.25 as a bright yellow solid (1.30 g, 4.05 mmol, 89%). 1H-NMR (400 MHz, DMSO-d6): δ (ppm) 1.86-

1.96 (m, 2H), 2.78-2.85 (m, 6H), 3.21-3.28 (m, 2H), 3.62-6.69 (m, 2H), 7.35 (t, J = 5.5 Hz, 1H), 7.97-

8.04 (m, 2H). 13C-NMR (101 MHz, DMSO-d6): δ (ppm) 23.6, 25.5, 27.8, 41.1, 110.8, 126.3, 135.8, 154.4, 

168.8, 170.3. HRMS (ESI): m/z [M+H]+ calcd. for [C14H16N3O6]+ 322.1034, found 322.1044. C14H15N3O6 

(321.29). 

 

Succinimidyl phenylglycinate (6.26). DCC (1.55 g, 7.51 mmol) in CH2Cl2 (15 mL) was added 

dropwise into an ice-cold solution of phenylglycine (6.23) (1.04 g, 6.88 mmol) and N-hydroxysuccinimide 

(2.22) (0.78 g, 6.78 mmol) in CH2Cl2 (50 mL). The reaction mixture was allowed to warm to rt and stirred 

overnight. The precipitated solid was removed by filtration and washed with CH2Cl2. The filtrate was 

evaporated, and the residue was dissolved in CH2Cl2. The organic phase (indissoluble components 

were filtered off) was evaporated to give 6.26 as a dark yellow solid (0.647 g, 2.61 mmol, 38%). 1H-NMR 

(300 MHz, DMSO-d6): δ (ppm) 2.81 (s, 4H), 4.35 (d, J = 6.7 Hz, 2H), 6.29 (t, J = 6.7 Hz, 1H), 6.55-6.67 

(m, 3H), 7.04-7.17 (m, 2H). 13C-NMR (75 MHz, DMSO-d6): δ (ppm) 25.5, 42.4, 112.3, 116.9, 128.9, 

147.4, 167.9, 170.2. HRMS (ESI): m/z [M+H]+ calcd. for [C12H13N2O4]+ 249.0870, found 249.0871. 

C12H12N2O4 (248.24). 

  

https://www.linguee.de/englisch-deutsch/uebersetzung/indissoluble+components.html
https://www.linguee.de/englisch-deutsch/uebersetzung/indissoluble+components.html
https://www.linguee.de/englisch-deutsch/uebersetzung/indissoluble+components.html
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1-(4-Nitrophenyl)piperidin-4-ol (6.28).9, 39 Piperidin-4-ol (6.27) (3.60 g, 35.6 mmol) and 

1-bromo-4-nitro-benzene (9.10 g, 45.0 mmol) were dissolved in DMSO (100 mL). Additionally, L-proline 

(0.80 g, 6.95 mmol), CuI (0.80 g, 4.20 mmol) and K2CO3 (17.64 g, 127.6 mmol) were added to the 

reaction mixture, which was stirred at 65 °C for 2 d. The reaction mixture was poured in water (1 L) and 

the product was extracted from the aqueous phase with ethyl acetate (3x 500 mL), dried over MgSO4 

and the organic solvent was evaporated. The crude product was purified by column chromatography 

(eluent: light petroleum/ethyl acetate 1:2 to 1:3 to 0:1) to give 6.28 as a yellow crystalline solid (6.94 g, 

31.22 mmol, 88%). 1H-NMR (300 MHz, DMSO-d6): δ (ppm) 1.32-1.49 (m, 2H), 1.73-1.88 (m, 2H), 3.12-

3.30 (m, 2H), 3.66-3.90 (m, 3H), 4.79 (d, J = 4.1 Hz, 1H), 6.99 (d, J = 9.5 Hz, 2H), 8.01 (d, J = 9.5 Hz, 

2H). 13C-NMR (75 MHz, DMSO-d6): δ (ppm) 33.5, 44.4, 65.5, 112.4, 125.9, 136.1, 154.3. HRMS (ESI): 

m/z [M+H]+ calcd. for [C11H15N2O3]+ 223.1077, found 223.1081. C11H14N2O3 (222.24). 

 

1-(4-Nitrophenyl)piperidin-4-one (6.29).9, 40 1-(4-Nitrophenyl)piperidin-4-ol (6.28) (1.00 g, 4.50 mmol) 

was dissolved in DMSO (20 mL) and Et3N (3.20 mL, 23.1 mmol) was added to the reaction mixture. 

Under stirring, pyridine-sulfur trioxide complex (3.57 g, 22.4 mmol) in DMSO (15 mL) was dropped 

slowly into the mixture. Then, the reaction mixture was poured into ethyl acetate (400 mL). The organic 

phase was washed with water (6x 500 mL), brine (1x 500 mL) and dried over Na2SO4. The organic 

solvent was evaporated, and the crude product was purified by column chromatography (eluent: light 

petroleum/ethyl acetate 1:1 to 1:2) to give 6.29 as a yellow amorphous solid (0.51 g, 2.27 mmol, 50%). 

1H-NMR (300 MHz, CDCl3): δ (ppm) 2.62 (t, J = 6.3 Hz, 4H), 3.82 (t, J = 6.3 Hz, 4H), 6.84 (d, J = 9.4 Hz, 

2H), 8.14 (d, J = 9.4 Hz, 2H). 13C-NMR (101 MHz, DMSO-d6): δ (ppm) 39.4 (overlaid by solvent residual 

peak), 44.4, 112.0, 125.9, 136.6, 153.4, 207.2. HRMS (EIC): m/z [M]∙+ calcd. for [C11H12N2O3]∙+ 220.0842 

found, 220.0840. C11H12N2O3 (220.23). 

 

5-(4-(tert-Butoxy)phenyl)oxazole (6.31).9 4-(tert-Butoxy)benzaldehyde (6.30) (2.0 mL, 11.4 mmol), 

1-((isocyanomethyl)sulfonyl)-4-methylbenzene (2.46 g, 12.6 mmol) and K2CO3 (3.20 g, 23.2 mmol) 

were dissolved in methanol (20 mL) and refluxed for 4 h. The organic solvent was evaporated, and water 

was added (50 mL) to the residue. The product was extracted from the aqueous phase with ethyl acetate 

(3x 50 mL), the combined organic phases were dried over MgSO4 and the organic solvent was 

evaporated. The crude product was purified by column chromatography (eluent: light petroleum/ethyl 

acetate 1:0 to 4:1) to give 6.31 as a pale-yellow solid (1.74 g, 8.73 mmol, 77%). Anal. calcd. for 

C13H15NO2: C 71.87, H 6.96, N 6.45, found: C 71.94, H 6.93, N 6.16. 1H-NMR (600 MHz, CDCl3): δ 
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(ppm) 1.37 (s, 9H), 7.04 (d, J = 8.7 Hz, 2H), 7.26 (s, 1H, interfering with solvent residual peak), 7.56 (d, 

J = 8.7 Hz, 2H), 7.88 (s, 1H). 13C-NMR (151 MHz, CDCl3): δ (ppm) 29.0, 79.3, 120.7, 123.0, 124.5, 

125.4, 150.2, 151.7, 156.2. HRMS (EIC): m/z [M]∙+ calcd. for [C13H15NO2]∙+ 217.1097, found 217.1100. 

C13H15NO2 (217.27). 

 

5-(4-(tert-Butoxy)phenyl)-2-chlorooxazole (6.32).9 5-(4-(tert-Butoxy)phenyl)oxazole (6.31) (3.53 g, 

16.2 mmol) was dissolved in dry THF (40 mL) and stirred at -78 °C (dry ice/acetone). After addition of 

n-BuLi (7.1 mL, 76.8 mmol) the solution turned red and the reaction mixture was stirred for 2 h. Under 

stirring, C2Cl6 (5.95 g, 25.1 mmol) was added into the reaction mixture, which was stirred at -78 °C for 

2 h. The reaction mixture was allowed to warm to rt and then poured into a mixture of ice and water 

(200 mL). The compound was extracted from the aqueous phase with ethyl acetate (3x 150 mL), the 

combined organic phases were dried over MgSO4 and the organic solvent was evaporated. The crude 

product was purified by column chromatography (eluent: light petroleum/ethyl acetate 1:0 to 9:1 to 8:2) 

to give 6.32 as a yellow oil (3.59 g, 14.3 mmol, 88%). Anal. calcd. for C13H15ClNO2: C 62.03, H 5.61, N 

5.56, found: C 62.41, H 6.05, N 5.16. 1H-NMR (600 MHz, CDCl3): δ (ppm) 1.38 (s, 9H), 7.04 (d, 

J = 8.6 Hz, 2H), 7.19 (s, 1H), 7.49 (d, J = 8.6 Hz, 2H). 13C-NMR (151 MHz, CDCl3): δ (ppm) 29.0, 79.4, 

122.1, 122.5, 124.4, 125.1, 145.8, 154.0, 156.5. HRMS (ESI): m/z [M+H]+ calcd. for [C13H15ClNO2]+ 

252.0786, found 252.0792. C13H14ClNO2 (251.71). 

 

(1R,2R)-N1-(5-(4-(tert-Butoxy)phenyl)oxazol-2-yl)cyclohexane-1,2-diamine (6.33). (R,R)-Diamino-

cyclohexane (6.11) (4.67 g, 40.9 mmol) and 5-(4-(tert-butoxy)phenyl)-2-chlorooxazole (6.32) (2.06 g, 

8.18 mmol) were dissolved in DMF (30 mL) and K2CO3 (4.50 g, 32.6 mmol) was added. The reaction 

mixture (suspension) was split into three 20 mL reaction tubes (3x 10 mL) and heated in a microwave 

device (130 °C, 45 min). The combined reaction mixtures were poured into ethyl acetate (300 mL), then 

washed with water (3x 300 mL) and brine (1x 300 mL). The organic phase was dried over MgSO4 and 

the organic solvent was evaporated. The crude product was purified by column chromatography (eluent: 

CH2Cl2/MeOH 90:10 to 50:50) to give 6.33 as a solid (1.27 g, 3.84 mmol, 47%). 1H-NMR (300 MHz, 

DMSO-d6): δ (ppm) 1.15-1.25 (m, 4H), 1.29 (s, 9H), 1.59-1.75 (m, 2H), 1.86-1.95 (m, 1H), 1.95-2.05 (m, 

1H), 2.61-2.76 (m, 1H), 3.14-3.29 (m, 1H), 4.00 (br s, 2H, interfering with water signal), 6.93-7.02 (m, 

2H), 7.12 (s, 1H), 7.32-7.42 (m, 3H). 13C-NMR (75 MHz, DMSO-d6): δ (ppm) 24.3, 24.6, 28.6, 31.6, 32.9, 

53.6, 58.0, 78.2, 121.7, 122.8, 123.8, 124.2, 143.1, 153.5, 160.6. HRMS (ESI): m/z [M+H]+ calcd. for 

[C19H28N3O2]+ 330.2176, found 330.2178. C19H27N3O2 (329.44). 
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4-(2-(((1R,2R)-2-Aminocyclohexyl)amino)oxazol-5-yl)phenol bis(hydrotrifluoroacetate) (6.34). 

(1R,2R)-N1-(5-(4-(tert-Butoxy)phenyl)oxazol-2-yl)cyclohexane-1,2-diamine (6.33) (0.346 g, 1.05 mmol) 

was dissolved in CH2Cl2 (10 mL) and the mixture was stirred and cooled in an ice bath. Under stirring, 

TFA (10 mL) was added dropwise to the mixture. After 1 h, the mixture was allowed to warm to rt and 

stirred overnight. The solvent was evaporated, and the crude product was purified by preparative HPLC 

A (gradient: 0-30 min, A/B 85:15–66:34, tR = 9 min) to give 6.34 as a fluffy white solid (243 mg, 

0.485 mmol, 46%). 1H-NMR (600 MHz, DMSO-d6): δ (ppm) 1.19-1.31 (m, 2H), 1.33-1.46 (m, 2H), 1.66-

1.75 (m, 2H), 1.97-2.06 (m, 2H), 2.99-3.08 (m, 1H), 3.52-3.61 (m, 1H), 6.79-6.83 (m, 2H), 7.28 (s, 1H), 

7.34-7.39 (m, 2H), 8.07 (br s, 3H), 8.39 (br s, 1H), 9.67 (br s, 1H). One exchangeable proton signal was 

not apparent. 13C-NMR (150 MHz, DMSO-d6): δ (ppm) 23.4, 24.0, 29.5, 31.2, 53.2, 54.6, 115.2, 115.8, 

116.4 (q, J = 294.9 Hz) (TFA), 118.6, 124.4, 144.5, 157.2, 158.3, 158.6 (q, J = 33.8 Hz) (TFA). RP-

HPLC (Method A, 220 nm): 97% (tR = 6.9 min, k = 1.7). HRMS (ESI): m/z [M+H]+ calcd. for [C15H20N3O2]+ 

274.1550, found 274.1558. C15H19N3O2 × C4H2F6O4 (273.34 + 228.04). 

 

2-Amino-N-((1R,2R)-2-((5-(4-hydroxyphenyl)oxazol-2-yl)amino)cyclohexyl)acetamide bis(dihy-

drotrifluoroacetate) (6.35). 4-(2-(((1R,2R)-2-Aminocyclohexyl)amino)oxazol-5-yl)phenol bis(hydrotri-

fluoroacetate) (6.34) (94.0 mg, 188 µmol) was dissolved in CH2Cl2 (5 mL) and DIPEA (42 µL, 247 µmol) 

was added to the mixture. The reaction mixture was stirred at rt for 2 min. Under stirring, succinimidyl 

N-Boc-glycinate (2.25) (124 mg, 455 µmol) was added to the mixture and the reaction mixture stirred at 

rt for 5 min. Then, the organic solvent was evaporated and the crude product was purified by column 

chromatography (eluent: CH2Cl2/MeOH 9:1). The purified product was dissolved in CH2Cl2 (1.5 mL), the 

solution was cooled to 0 °C and and a mixture of CH2Cl2 (1 mL) and TFA (1 mL) was added dropwise. 

After 1 h, the mixture was allowed to warm to rt and stirred overnight. The solvent was evaporated, and 

the crude product was purified by preparative HPLC A (gradient: 0-30 min, A/B 85:15–66:34, 

tR = 11 min) to afford 6.35 as a fluffy white solid (45.0 mg, 109 µmol, 51%). 1H-NMR (600 MHz, DMSO-

d6): δ (ppm) 1.22-1.32 (m, 3H), 1.35-1.44 (m, 1H), 1.64-1.72 (m, 2H), 1.87-1.94 (m, 1H), 2.00-2.07 (m, 

1H), 3.33-3.53 (m, 3H), 3.67-3.75 (m, 1H), 6.79-6.84 (m, 2H), 7.34-7.39 (m, 3H), 8.00 (br s, 3H), 8.36-

8.41 (m, 1H), 8.60 (s, 1H). 9.79 (br s, 1H). One exchangeable proton signal was not apparent. 13C-NMR 

(150 MHz, DMSO-d6): δ (ppm) 24.0, 31.4, 31.7, 40.06, 40.10, 51.9, 55.8, 115.8, 116.6 (q, J = 296.0 Hz) 

(TFA), 118.1, 124.5, 144.2, 157.4, 158.1, 158.5 (q, J = 32.2 Hz) (TFA), 165.5. RP-HPLC (Method B, 



 
Synthesis and pharmacological investigation of substituted 

(R,R)-diaminocyclohexanes as potential non-peptide ligands for the hY4R 
 

202 
 

220 nm): 95% (tR = 10.2 min, k = 2.5). HRMS (ESI): m/z [M+H]+ calcd. for [C17H23N4O3]+ 331.1765, found 

331.1766. C17H22N4O3 × C4H2F6O4 (330.39 + 228.04). 

 

N-((1R,2R)-2-((5-(4-Hydroxyphenyl)oxazol-2-yl)amino)cyclohexyl)-2-((4-nitrophenyl)amino)-

acetamide hydrotrifluoroacetate (6.36). 4-(2-(((1R,2R)-2-Aminocyclohexyl)amino)oxazol-5-yl)phenol 

bis(hydrotrifluoroacetate) (6.34) (34.2 mg, 68.2 µmol) was dissolved in DMF (100 µL) and DIPEA 

(31 µL, 182.3 µmol) was added to the solution and stirred at rt for 5 min. Under stirring, succinimidyl (4-

nitrophenyl)glycinate (6.24). (40.6 mg, 138.5 µmol) was added into the reaction mixture and stirred at rt 

for 3 h. The mixture was purified by preparative HPLC A (gradient: 0-30 min, A/B 81:19–57:43, 

tR = 21 min) to give 6.36 as a fluffy yellow solid (15.0 mg, 26.5 µmol, 39%). 1H-NMR (600 MHz, DMSO-

d6): δ (ppm) 1.21-1.43 (m, 4H), 1.65-1.75 (m, 2H), 1.83-1.91 (m, 1H), 1.99-2.05 (m, 1H), 3.44-3.53 (m, 

1H), 3.67-3.77 (m, 3H), 6.47 (d, J = 8.0 Hz, 2H), 6.80-6.83 (m, 2H), 7.34-7.37 (m, 2H), 7.39 (s, 1H), 7.44 

(br s, 1H), 7.82-7.86 (m, 2H), 8.07 (d, J = 8.5 Hz, 1H), 8.90 (br s, 1H), 8.79 (br s, 1H). One exchangeable 

proton signal was not apparent. 13C-NMR (150 MHz, DMSO-d6): δ (ppm) 16.7, 18.1, 24.2, 31.6, 31.8, 

45.8, 52.0, 53.6, 56.2, 111.0, 115.4 (TFA), 115.8, 117.4 (TFA), 117.6, 124.6, 125.8, 136.2, 144.1, 154.2, 

157.6, 158.3 (q, J = 35.0 Hz) (TFA), 168.6. RP-HPLC (Method A, 220 nm): 98% (tR = 12.2 min, k = 3.7). 

HRMS (ESI): m/z [M+H]+ calcd. for [C23H26N5O5]+ 452.1928, found 452.1928. C23H25N5O5 (451.48 + 

114.02). 

 

N-((1R,2R)-2-((5-(4-Hydroxyphenyl)oxazol-2-yl)amino)cyclohexyl)-4-((4-nitrophenyl)amino)-

butanamide hydrotrifluoroacetat (6.37). 4-(2-(((1R,2R)-2-Aminocyclohexyl)amino)oxazol-5-yl)phenol 

bis(hydrotrifluoroacetate) (6.34) (35.3 mg, 70.4 µmol) was dissolved in DMF (100 µL) and DIPEA 

(31 µL, 182.3 µmol) was added to the mixture. The mixture was stirred at rt for 5 min. Under stirring, 

succinimidyl 4-((4-nitrophenyl)amino)butanoate (6.25) (45.3 mg, 148.4 µmol) was added to the reaction 

mixture. Then, the reaction mixture was stirred at rt for 3 h. The mixture was purified by preparative 

HPLC A (gradient: 0-30 min, A/B 81:19–57:43, tR = 21 min) to give 6.37 as a fluffy yellow solid 

(13.31 mg, 22.4 µmol, 32%). 1H-NMR (600 MHz, DMSO-d6): δ (ppm) 1.18-1.34 (m, 3H), 1.34-1.46 (m, 

1H), 1.60-1.74 (m, 4H), 1.80-1.88 (m, 1H), 1.98-2.09 (m, 2H), 2.10-2.20 (m, 1H), 2.93-3.05 (m, 2H), 

3.38-3.48 (m, 1H), 3.63-3.74 (m, 1H), 6.48-6.54 (m, 2H), 6.78-6.82 (m, 2H), 7.22 (br s, 1H), 7.33-7.37 

(m, 2H), 7.43 (s, 1H), 7.89 (d, J = 8.5 Hz, 1H), 7.92 (d, J = 9.3 Hz, 2H), 8.91 (br s, 1H), 9.82 (br s, 1H). 
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One exchangeable proton signal was not apparent. 13C-NMR (150 MHz, DMSO-d6): δ (ppm) 24.18, 

24.24, 24.4, 31.5, 31.7, 32.7, 41.8, 51.8, 56.7, 110.6, 112.4, 115.6 (TFA), 115.8, 117.6 (TFA), 117.63, 

124.7, 126.2, 135.5, 144.1, 154.4, 157.6, 157.7, 158.4 (q, J = 32.9 Hz) (TFA), 170.2. RP-HPLC (Method 

A, 220 nm): 97% (tR = 12.2 min, k = 3.7). HRMS (ESI): m/z [M+H]+ calcd. for [C25H30N5O5]+ 480.2241, 

found 480.2249. C25H29N5O5 × C2HF3O2 (479.54 + 114.02). 

 

N-((1R,2R)-2-((5-(4-Hydroxyphenyl)oxazol-2-yl)amino)cyclohexyl)-2-(phenylamino)acetamide 

bis(hydrotrifluoroacetate) (6.38). 4-(2-(((1R,2R)-2-Aminocyclohexyl)amino)oxazol-5-yl)phenol 

bis(hydro-trifluoroacetate) (6.34) (34.2 mg, 68.2 µmol) was dissolved in DMF (100 µL) and DIPEA 

(31 µL, 182.3 µmol) was added to the mixture. The reaction mixture was stirred at rt for 5 min. Under 

stirring, succinimidyl phenylglycinate (6.26) (37.1 mg, 149.5 µmol) was added and the reaction mixture 

was stirred at rt for 3 h. The mixture was purified by preparative HPLC A (gradient: 0-30 min, A/B 71:29–

57:43, tR = 10 min) to give 6.38 as a fluffy white solid (10.75 mg, 16.9 µmol, 25%). 1H-NMR (600 MHz, 

DMSO-d6): δ (ppm) 1.18-1.44 (m, 4H), 1.62-1.76 (m, 2H), 1.79-1.85 (m, 1H), 1.97-2.03 (m, 1H), 3.46-

3.57 (m, 3H), 3.68-3.76 (m, 1H), 5.44 (br s, 3H), 6.38-6.45 (m, 3H), 6.84-6.88 (m, 2H), 6.90-6.95 (m, 

2H), 7.38-7.41 (m, 2H), 7.44 (s, 1H),7.88 (d, J = 8.7 Hz, 1H), 9.21 (br s, 1H), 9.88 (br s, 1H). 13C-NMR 

(150 MHz, DMSO-d6): δ (ppm) 24.11, 24.18, 31.6, 31.7, 47.2, 51.8, 56.1, 110.0, 112.2, 115.3 (TFA), 

115.9, 116.5, 117.3 (TFA), 117.4, 124.8, 128.7, 144.2, 148.2, 157.1, 157.8, 158.3 (q, J = 34.3 Hz) (TFA), 

170.2. RP-HPLC (Method A, 220 nm): 97% (tR = 11.0 min, k = 3.3). HRMS (ESI): m/z [M+H]+ calcd. for 

[C23H27N4O3]+ 407.2078, found 407.2081. C23H26N4O3 (406.49 + 228.04). 

 

N-((1R,2R)-2-((5-(4-Hydroxyphenyl)oxazol-2-yl)amino)cyclohexyl)-2,2-diphenylacetamide hydro-

trifluoroacetat (6.39). 4-(2-(((1R,2R)-2-Aminocyclohexyl)amino)oxazol-5-yl)phenol bis(hydrotrifluoro-

acetate) (6.34) (30.0 mg, 109.8 µmol) was dissolved in DMSO (500 µL) and DIPEA (50 µL, 294 µmol) 

was added to the mixture. The mixture was stirred at rt for 5 min. Under stirring, succinimidyl 

diphenylacetate (2.28) (31 mg, 102 µmol) was added and the reaction mixture was stirred at rt for 2 h. 

The mixture was purified by preparative HPLC B (gradient: 0-30 min, A/B 66:34–47:53, tR = 7 min) to 

give 6.39 as a fluffy white solid (11.0 mg, 18.9 µmol, 17%). 1H-NMR (600 MHz, DMSO-d6): δ (ppm) 1.20-

1.30 (m, 3H), 1.30-1.39 (m, 1H), 1.62-1.71 (m, 2H), 1.78-1.84 (m, 1H), 1.94-2.01 (m, 1H), 3.40-3.48 (m, 

1H), 3.65-3.73 (m, 1H), 4.82 (s, 1H), 6.82-6.86 (m, 2H), 6.94-6.99 (m, 1H), 7.00-7.08 (m, 4H), 7.17-7.29 



 
Synthesis and pharmacological investigation of substituted 

(R,R)-diaminocyclohexanes as potential non-peptide ligands for the hY4R 
 

204 
 

(m, 6H), 7.32-7.36 (m, 2H), 8.24 (d. J = 8.5 Hz, 1H), 8.40 (br s, 1H), 9.75 (s, 1H). One exchangeable 

proton signal was not apparent. 13C-NMR (150 MHz, DMSO-d6): δ (ppm) 24.2, 31.74, 31.77, 52.1, 56.4, 

56.7, 115.8, 115.9 (TFA), 117.9 (TFA), 124.4, 126.2, 126.6, 127.9, 128.15, 128.16, 128.5, 140.1, 140.2, 

143.9, 157.1, 158.0 (TFA), 158.2 (TFA), 170.8. RP-HPLC (Method A, 220 nm): 98% (tR = 14.3 min, k = 

4.5). HRMS (ESI): m/z [M+H]+ calcd. for [C29H30N3O3]+ 468.2282, found 468.2289. C29H29N3O3 × 

C2HF3O2 (467.57 + 114.02). 

 

(1R,2R)-N1-(5-(4-(tert-Butoxy)phenyl)oxazol-2-yl)-N2-(1-(4-nitrophenyl)piperidin-4-yl)cyclo-

hexane-1,2-diamine bis(hydrotrifluoroacetate) (6.40). (1R,2R)-N1-(5-(4-(tert-Butoxy)phenyl)oxazol-

2-yl)cyclohexane-1,2-diamine (6.33) (88 mg, 267 µmol) and 1-(4-nitrophenol)piperidin-4-one (6.29) 

(60 mg, 273 µmol) were dissolved in CH2Cl2 (5 mL). Under stirring, acetic acid (16 µL, 280 µmol) and 

anhydrous Na2SO4 were added to the mixture. Then, the mixture was vigorously stirred at rt for 1 h. 

NaBH(OAc)3 (228 mg, 1.08 mmol) was added to the reaction mixture and the mixture was stirred at rt 

for 4 h. After addition of CH2Cl2 (50 mL) the reaction mixture was washed with water (2x 50 mL), brine 

(1x 50 mL) and the organic solvent was dried over Na2SO4. The organic solvent was evaporated. Then, 

the crude product was purified by column chromatography (eluent: CH2Cl2/MeOH/NH3 aq 90:9:1) and, 

subsequently, by preparative HPLC B (gradient: 0-30 min, A/B 57:43–38:62, tR = 8 min) to give 6.41 as 

a fluffy bright yellow solid (20.0 mg, 26.3 µmol, 10%). 1H-NMR (600 MHz, DMSO-d6): δ (ppm) 1.21-1.36 

(m, 12H), 1.36-1.47 (m, 2H), 1.49-1.58 (m, 1H), 1.68-1.82 (m, 3H), 1.93-1.99 (m, 1H), 1.99-2.05 (m, 

1H), 2.06-2.13 (m, 1H), 2.21-2.29 (m, 1H), 3.00-3.12 (m, 2H), 3.18-3.25 (m, 1H), 3.55-3.67 (m, 2H), 

4.13-4.22 (m, 2H), 6.97-7.00 (m, 2H), 7.04-7.09 (m, 2H), 7.22 (s, 1H), 7.38-7.42 (m, 2H), 7.63 (d, 

J = 8.6 Hz, 1H), 7.96 (br s, 1H, interfering with next listed signal), 8.04-8.07 (m, 2H), 8.78 (br s, 1H). 

13C-NMR (150 MHz, DMSO-d6): δ (ppm) 23.4, 23.9, 26.2, 27.0, 27.7, 28.5, 31.6, 45.2, 45.4, 51.7, 54.0, 

56.4, 78.3, 112.8, 120.6, 123.1, 123.2, 124.0, 125.9, 136.7, 144.0, 153.9, 154.0, 158.1 (q J = 43.5 Hz) 

(TFA), 159.7. RP-HPLC (Method A, 220 nm): 95% (tR = 16.0 min, k = 5.2). HRMS (ESI): m/z [M+H]+ 

calcd. for [C30H40N5O4]+ 534.3075, found 534.3080. C30H39N5O4 × C4H2F6O4 (533.67 + 228.04). 

 

1-((1R,2R)-2-((1-(4-Nitrophenyl)piperidin-4-yl)amino)cyclohexyl)-3-phenylurea hydrotrifluoro-

acetate (6.41). 1-((1R,2R)-2-Aminocyclohexyl)-3-phenylurea (6.12) (91 mg, 390 µmol) and 1-(4-

nitrophenol)piperidin-4-one (6.29) (91 mg, 413 µmol) were dissolved in CH2Cl2 (5 mL). Under stirring, 

acetic acid (23 µL, 402 µmol) and anhydrous Na2SO4 were added to the mixture. Then, the reaction 
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mixture was vigorously stirred at rt for 1 h. NaBH(OAc)3 (270 mg, 1.27 mmol) was added to the reaction 

mixture and stirred at rt for 4 h. After addition of CH2Cl2 (50 mL) the reaction mixture was washed with 

water (2x 50 mL), brine (1x 50 mL) and the organic solvent was dried over Na2SO4. Then, the organic 

solvent was evaporated. The crude product was purified by column chromatography (eluent: 

CH2Cl2/MeOH/NH3 aq 90:9:1) and, subsequently, by preparative HPLC B (gradient: 0-30 min, A/B 

66:34–38:62, tR = 8 min) to give 6.41 as a fluffy bright yellow solid (30.0 mg, 54.4 µmol, 14%). 1H-NMR 

(600 MHz, DMSO-d6): δ (ppm) 1.21-1.48 (m, 4H), 1.52-1.61 (m, 1H), 1.67-1.79 (m, 3H), 1.86-1.92 (m, 

1H), 1.99-2.09 (m, 2H), 2.14-2.20 (m, 1H), 3.01-3.08 (m, 2H), 3.09-3.17 (m, 1H), 3.53-3.60 (m, 1H), 

3.60-3.67 (m, 1H), 4.11-4.18 (m, 2H), 6.86-6.90 (m, 1H), 7.00 (d, J = 8.3 Hz, 1H), 7.03-7.06 (m, 2H), 

7.17-7.44 (m, 2H), 7.40-7.44 (m, 2H), 8.02-8.06 (m, 2H), 8.07-8.15 (m, 1H), 8.70 (br s, 1H), 9.20 (s, 1H). 

13C-NMR (150 MHz, DMSO-d6): δ (ppm) 23.2, 23.9, 26.3, 27.3, 27.6, 31.9, 45.2, 45.4, 50.7, 52.2, 57.5, 

112.8, 116.1 (TFA), 117.7, 118.1 (TFA), 121.3, 125.9, 128.6, 136.7, 140.3, 153.9, 155.9, 158.8 (q, 

J = 32.2 Hz) (TFA). RP-HPLC (Method A, 220 nm): 95% (tR = 16.7 min, k = 5.4). HRMS (ESI): m/z 

[M+H]+ calcd. for [C24H32N5O3]+ 438.2500, found 438.2507. C24H31N5O3 × C2H1F3O2 (437.54 + 114.02). 

 

Benzyl ((1R,2R)-2-((1-(4-nitrophenyl)piperidin-4-yl)amino)cyclohexyl)carbamate hydrotrifluoro-

acetate (6.42). Benzyl ((1R,2R)-2-aminocyclohexyl)carbamate (6.13) (107 mg, 431 µmol) and 1-(4-

nitrophenol)piperidin-4-one (6.29) (93 mg, 422 µmol) were dissolved in CH2Cl2 (5 mL). Under stirring, 

acetic acid (23 µL, 402 µmol) and anhydrous Na2SO4 were added to the mixture. Then, the reaction 

mixture was and vigorously stirred at rt for 1 h. NaBH(OAc)3 (271 mg, 1.28 mmol) was added to the 

reaction mixture and stirred at rt for 4 h. After addition of CH2Cl2 (50 mL) the reaction mixture was 

washed with water (2x 50 mL), brine (1x 50 mL) and the organic solvent was dried over Na2SO4. Then, 

the organic solvent was evaporated. The crude product was purified by column chromatography (eluent: 

CH2Cl2/MeOH/NH3 aq 90:9:1) and, subsequently, by preparative HPLC A (gradient: 0-30 min, A/B 

67:33–38:62, tR = 13 min) to give 6.42 as a fluffy bright yellow solid (22.8 mg, 40.2 µmol, 10%). 1H-NMR 

(600 MHz, DMSO-d6): δ (ppm) 1.18-1.27 (m, 2H), 1.27-1.42 (m, 2H), 1.48-1.57 (m, 1H), 1.63-1.89 (m, 

4H), 1.93-2.05 (m, 2H), 2.16-2.22 (m, 1H), 2.97-3.14 (m, 3H), 3.44-3.52 (m, 1H), 3.53-3.62 (m, 1H), 

4.13-4.19 (m, 2H), 4.96 (d, J = 12.4 Hz, 1H), 5.12 (d, J = 12.4 Hz, 1H), 7.07 (d, J = 9.6 Hz, 2H), 7.29-

7.33 (m, 1H), 7.34-7.42 (m, 5H), 7.94 (t, J = 9.5 Hz, 1H), 8.07 (d, J = 9.2 Hz, 2H), 8.76 (br s, 1H). 

13C-NMR (150 MHz, DMSO-d6): δ (ppm) 23.3, 23.8, 26.3, 27.0, 27.6, 32.0, 45.2, 45.4, 51.8, 51.9, 56.1, 

65.7, 112.8, 115.8 (TFA), 117.8 (TFA), 125.9, 127.9, 128.4, 136.7, 153.9, 156.0, 158.11 (q, J = 32.1 Hz) 

(TFA). RP-HPLC (Method A, 220 nm): 95% (tR = 14.6 min, k = 4.6). HRMS (ESI): m/z [M+Na]+ calcd. 

for [C25H32N4O4Na]+ 475.2316, found 475.2319. C25H32N4O4 × C2HF3O2 (452.56 + 114.02). 
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2-((4-Nitrophenyl)amino)-N-((1R,2R)-2-(3-phenylureido)cyclohexyl)acetamide (6.43). 1-((1R,2R)-

2-aminocyclohexyl)-3-phenylurea (6.12) (50.0 mg, 214 µmol) was dissolved in CH2Cl2 (8 mL) and 

DIPEA (73 µL, 429 µmol) was added to the mixture. The mixture was stirred at rt for 5 min. Under 

stirring, succinimidyl (4-nitrophenyl)glycinate (6.24) (75.7 mg, 258 µmol) was added to the reaction 

mixture and stirred at rt for 2 h. Then, the organic solvent was evaporated, and the crude product was 

purified by column chromatography (eluent: CH2Cl2/MeOH/NH3 aq 90:9:1) to obtain 6.43 as a yellow 

solid (45.0 mg, 109 µmol, 51%). 1H-NMR (600 MHz, DMSO-d6): δ (ppm) 1.18-1.32 (m, 4H), 1.61-1.69 

(m, 2H), 1.78-1.84 (m, 1H), 1.90-1.95 (m, 1H), 3.40-3.47 (m, 1H), 3.50-3.58 (m, 1H), 3.71-3.81 (m, 2H), 

5.94 (d, J = 7.8 Hz, 1H), 6.53 (d, J = 8.4 Hz, 2H), 6.86 (t, J = 7.3 Hz, 1H), 7.16-7.22 (m, 2H), 7.35 (d, 

J = 7.8 Hz, 2H), 7.43 (br s, 1H), 7.81 (d, J = 9.2 Hz, 2H), 8.00 (d, J = 8.4 Hz, 1H), 8.48 (s, 1H). 13C-NMR 

(150 MHz, DMSO-d6): δ (ppm) 24.3, 24.5, 31.9, 32.7, 45.8, 52.3, 52.4, 111.1, 117.3, 120.9, 125.9, 128.6, 

136.2, 140.5, 154.4, 155.1, 168.1. RP-HPLC (Method A, 220 nm): 98% (tR = 15.5 min, k = 5.0). HRMS 

(ESI): m/z [M+H]+ calcd. for [C21H26N5O4]+ 412.1979, found 412.1985. C21H25N5O4 (411.46). 

 

Benzyl ((1R,2R)-2-(2-((4-nitrophenyl)amino)acetamido)cyclohexyl)carbamate (6.44). Benzyl 

((1R,2R)-2-aminocyclohexyl)carbamate (6.13) (44.0 mg, 177 µmol) was dissolved in DMF (400 µL) and 

DIPEA (100 µL, 588 µmol) was added to the mixture. Then, the reaction mixture was stirred at rt for 

5 min. Under stirring, succinimidyl (4-nitrophenyl)glycinate (6.24) (65 mg, 22 µmol) was added to the 

mixture and the reaction mixture was stirred at rt for 2 h. The mixture was purified by preparative HPLC 

B (gradient: 0-30 min, A/B 67:33–47:53, tR = 7 min) to give 6.44 as a fluffy bright yellow solid (9.4 mg, 

22 µmol, 12%). 1H-NMR (600 MHz, DMSO-d6): δ (ppm) 1.13-1.28 (m, 4H), 1.59-1.68 (m, 2H), 1.76-1.85 

(m, 2H), 3.23-3.31 (m, 1H), 3.50-3.58 (m, 1H), 3.64-3.79 (m, 2H), 4.87-4.99 (m, 2H), 6.59 (d, J = 8.3 Hz, 

2H), 7.04 (d, J = 8.6 Hz, 1H), 7.24-7.37 (m, 5H), 7.44 (t, J = 5.9 Hz, 1H), 7.89 (d, J = 8.3 Hz, 1H), 7.96 

(d, J = 9.4 Hz, 2H). 13C-NMR (150 MHz, DMSO-d6): δ (ppm) 24.3, 24.4, 31.8, 32.0, 45.7, 52.3, 53.7, 

65.1, 111.2, 125.9, 127.5, 127.7, 128.3, 136.2, 137.2, 154.3, 155.9, 168.2. RP-HPLC (Method A, 

220 nm): 97% (tR = 17.7 min, k = 5.8). HRMS (ESI): m/z [M+H]+ calcd. for [C22H27N4O5]+ 427.1976, found 

427.1980. C22H26N4O5 (426.47). 
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N-tert-Butoxycarbonyl-N′-[phenyl]aminocarbonyl-S-methylisothiourea (6.45). N-Boc-S-methyl-

isothiourea (2.35) (1.16 g, 6.10 mmol) was dissolved in CH2Cl2 (20 mL) and stirred at 0 °C. Under 

stirring, isocyanatobenzene (0.75 mL, 6.93 mmol) in CH2Cl2 (5 mL) was added dropwise to the reaction 

mixture. Then, the reaction mixture was allowed to warm up to rt and stirred overnight. The organic 

solvent was evaporated, and the residue was dissolved in CH2Cl2 and evaporated (2x). The crude 

product was purified by column chromatography (eluent: CH2Cl2) to give 6.45 as a white solid (1.03 g, 

3.33 mmol, 55%). 1H-NMR (300 MHz, DMSO-d6): δ (ppm) 1.46 (s, 9H), 2.40 (s, 3H), 6.99-7.08 (m, 1H), 

7.23-7.35 (m, 2H), 7.59-7.67 (m, 2H), 9.87 8s, 1H), 12.05 (s, 1H). 13C-NMR (75 MHz, DMSO-d6): δ 

(ppm) 13.8, 27.6, 82.4, 119.2, 123.0, 128.6, 139.0, 150.1, 159.3, 166.0. HRMS (ESI): m/z [M+Na]+ calcd. 

for [C14H19N3O3SNa]+ 332.1039, found 332.1044. C14H19N3O3S (309.38). 

 

Benzyl ((1R,2R)-2-(3-(2-tert-butoxycarbonyl)(phenylcarbamoyl)guanidino)cyclohexyl)carbamate 

(6.46). Benzyl ((1R,2R)-2-aminocyclohexyl)carbamate (6.13) (0.35 g, 1.41 mmol) and N-tert-butoxy-

carbonyl-N′-[benzene]aminocarbonyl-S-methylisothiourea (6.45) (0.49 g, 1.58 mmol) were dissolved in 

CH2Cl2 (10 mL). Under stirring, HgCl2 (0.57 g, 2.10 mmol) and DIPEA (0.60 mL, 3.53 mmol) were added 

and the mixture was stirred at rt for 4 h. The solid was separated by filtration and the filtrate was 

evaporated. The crude product was purified by column chromatography (eluent: light petroleum/ethyl 

acetate 5:1) to give 6.46 as an oil (0.36 g, 70.6 µmol, 50%). 1H-NMR (400 MHz, DMSO-d6): δ (ppm) 

1.22-1.34 (m, 4H), 1.41-1.46 (m, 9H, due two slow rotation of C-N bond of Boc group two inferring 

signals (singulets) were evident in the spectra), 1.59-1.75 (m, 2H), 1.78-1.92 (m, 1H), 2.09-2.14 (m, 1H), 

3.37-3.51 (m, 1H), 3.73-3.93 (m, 1H), 4.90 (d, J = 12.9 Hz, 1H), 5.11 (d, J = 12.9 Hz, 1H), 6.91-6.97 (m, 

1H), 7.20-7.39 (m, 8H), 7.58 (d, J = 7.8 Hz, 2H), 7.97-8.14 (m, 1H), 9.20 (s, 1H), 12.17 (s, 1H). 13C-NMR 

(151 MHz, DMSO-d6): δ (ppm) 24.3, 27.6, 28.1, 30.7, 31.5, 53.8, 64.9, 82.4, 118.7, 121.9, 127.0, 127.3, 

127.5, 128.2, 128.4, 128.8, 137.4, 140.1, 152.1, 155.9, 162.5. HRMS (ESI): m/z [M+Na]+ calcd. for 

[C27H35N5O5Na]+ 532.2530, found 532.2534. C27H35N5O5 (509.61). 

 

1-(Amino(((1R,2R)-2-aminocyclohexyl)amino)methylene)-3-phenylurea bis(hydrotrifluoro-

acetate) (6.47). Compound 6.46 (173 mg, 0.339 mmol) was dissolved in MeOH (10 mL) and palladium 

on activated charcoal (Pd/C) (30 mg) was added. A constant stream of hydrogen (H2) was bubbled 

through the reaction mixture at rt for 1 h. The catalyst Pd/C was removed by filtration and the organic 

solvent was evaporated. The residue was dissolved in CH2Cl2 (5 mL) and stirred under ice bath cooling. 
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Under stirring, TFA (5 mL) was dropped into the reaction mixture. The organic solvent was evaporated 

and CH2Cl2 (10 mL) was added. Then, the organic solvent was evaporated and the crude product was 

purified by preparative HPLC B (gradient: 0-30 min, A/B 71:29–38:62, tR = 14 min) to give 6.47 as a 

fluffy white solid (34.5 mg, 68.5 µmol ,20%). 1H-NMR (600 MHz, DMSO-d6): δ (ppm) 1.22-1.48 (m, 4H), 

1.67-1.77 (m, 2H), 1.92-1.99 (m, 1H), 2.01-2.07 (m, 1H), 3.17-3.30 (m, 1H), 3.67-3.78 (m, 1H), 7.06-

7.18 (m, 1H), 7.35 (t, J = 7.5 Hz, 2H), 7.47 (d, J = 7.5 Hz, 2H), 8.13 (s, 3H), 8.68 (s, 2H), 9.04 (s, 1H), 

10.09 (s, 1H), 10.77 (s, 1H). 13C-NMR (150 MHz, DMSO-d6): δ (ppm) 23.0, 23.5, 29.5, 31.1, 52.4, 52.9, 

117.0 (q, J = 298.2 Hz) (TFA), 119.7, 124.0, 129.0, 137.5, 151.6, 153.7, 159.1 (q, J = 32.1 Hz) (TFA). 

RP-HPLC (Method A, 220 nm): 98% (tR = 8.0 min, k = 2.1). HRMS (ESI): m/z [M+H]+ calcd. for 

[C14H22N5O]+ 276.1819, found 276.1822. C14H21N5O × C4H2F6O4 (275.36 + 228.04). 

 

2-((4-Nitrophenyl)amino)-N-((1R,2R)-2-(2-(phenylcarbamoyl)guanidino)cyclohexyl)acetamide 

hydrotrifluoroacetate (6.48). 1-(Amino(((1R,2R)-2-aminocyclohexyl)amino)methylene)-3-phenylurea 

bis(hydrotrifluoroacetate) (6.47) (32.65 mg, 64.86 µmol) was dissolved in DMSO (1 mL) and DIPEA 

(37 µL, 212 µmol) was added. Under stirring, succinimidyl (4-nitrophenyl)glycinate (6.24) (25.73 mg, 

87.74 µmol) was added to the reaction mixture. The reaction mixture was shaken in a microcentrifuge 

tube (1.5 mL) at rt for 2 h. The crude product was purified by preparative HPLC B (gradient: 0-30 min, 

A/B 71:29–38:62, tR = 14 min) to give 6.48 as a fluffy bright yellow solid (14.79 mg, 26.06 μmol, 40%). 

1H-NMR (600 MHz, DMSO-d6): δ (ppm) 1.21-1.40 (m, 4H), 1.62-1.72 (m, 2H), 1.77-1.85 (m, 1H), 1.92-

2.00 (m, 1H), 3.48-3.59 (m, 1H), 3.70-3.85 (m, 3H), 6.51-6.64 (m, 2H), 7.10 (t, J = 7.20 Hz, 1H), 7.33 (t, 

J = 7.6 Hz, 2H), 7.38-7.55 (m, 3H), 7.94 (d, J = 9.0 Hz, 2H), 8.10 (d, J = 8.2 Hz, 1H), 8.54 (br s, 2H), 

8.71-8.80 (m, 1H), 9.89 (s, 1H), 10.20 (br s, 1H). 13C-NMR (150 MHz, DMSO-d6): δ (ppm) 23.7, 24.0, 

31.1, 31.6, 45.8, 51.2, 54.4, 111.0, 116.1 (TFA), 118.1 (TFA), 119.7, 123.9, 125.8, 128.9, 136.4, 137.4, 

151.5, 153.1, 154.3, 159.1 (q, J = 31.7 Hz) (TFA), 168.8. RP-HPLC (Method A, 220 nm): 99% 

(tR = 12.9 min, k = 4.0). HRMS (ESI): m/z [M+H]+ calcd. for [C22H28N7O4]+ 454.2197, found 454.2202. 

C22H27N7O4 × C2HF3O2 (453.50 + 114.02). 

6.4.3. X-Ray crystallography of compounds (R,R,S)-6.6b and (R)-6.17 

6.4.3.1. X-Ray crystallography of compounds (R,R,S)-6.6b 

Single clear yellow prism crystals of (R,R,S)-6.6b were obtained according to following procedure: the 

TFA salt of (R,R,S)-6.6b (15 mg) was dissolved in methanol (2 mL) and HCl in methanol (TCI, Eschborn, 

Germany; 5-10%; 3 mL) was added and the volatiles were evaporated (4x). The obtained residue was 

dried in vacuo and dissolved in methanol (1 mL). The solution was allowed to slowly concentrate at 

ambient temperature. 
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Table 6.4. Crystal data and structure refinement of (R,R,S)-6.6b 

Formula C24H32ClN5O3 Z 2 

Dcalc./ g cm-3 1.289 Z' 1 

 / mm-1 1.222 Wavelength/Å 1.39222 

Formula Weight 473.99 Radiation type Cu Kβ 

Colour clear yellow min / 
° 3.818 

Shape plate max / 
° 58.863 

Size / mm3 0.18×0.15×0.06 Measured Refl. 30702 

T / K 122.96(11) Independent Refl. 4660 

Crystal System monoclinic Reflections Used 4310 

Flack Parameter -0.005(6) Rint 0.0427 

Hooft Parameter -0.009(6) Parameters 298 

Space Group P21 Restraints 1 

a / Å 5.5823(2) Largest Peak 0.215 

b / Å 15.1245(4) Deepest Hole -0.194 

c / Å 14.5029(4) GooF 1.072 

 / ° 90 wR2 (all data) 0.0732 

 / ° 94.173(2) wR2 0.0707 

  / ° 90 R1 (all data) 0.0366 

V / Å3 1221.23(6) R1 0.0317 

 

A suitable crystal (0.18×0.15×0.06) mm3 was selected and mounted on a MiTeGen holder (Jena 

Bioscience, Jena, Germany) with oil using a GV1000 diffractometer (Agilent Technologies, Santa Clara, 

USA) with Titan S2 CCD detector. The crystal was kept at T = 122.96(11) K during data collection. The 

structure was solved with the ShelXT41 solution program using the intrinsic phasic methods and by using 

Olex242 as the graphical interface. The model was refined with ShelXL43 (version 2016/6) using full 

matrix least squares minimization. 

Data were measured using  scans and Cu Kβ radiation. The total number of runs and images was 

based on the strategy calculation from the program CrysAlisPro (Agilent Technologies). The maximum 

resolution that was achieved was  = 58.863 . Cell parameters were retrieved using the CrysAlisPro 
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(Agilent Technologies) software and refined using CrysAlisPro (Agilent Technologies) on 13758 

reflections, 45% of the observed reflections. Data reduction was performed using the CrysAlisPro 

(Agilent Technologies) software, which corrects for Lorentz polarisation. The final completeness is 

99.90% out to 58.863° in . The absorption coefficient µ of this material is 1.222 mm-1 at this wavelength 

( = 1.39222) and the minimum and maximum transmissions are 0.823 and 1.000. The Flack parameter 

was refined to -0.005(6). Determination of absolute structure using Bayesian statistics on Bijvoet 

differences using the Olex2 results in -0.009(6). 

Crystal data of (R,R,S)-6.6b see 8.5.3.1.: Fractional atomic coordinates (×104) and equivalent isotropic 

displacement parameters (Å2×103) for (R,R,S)-6.6a. Ueq is defined as 1/3 of the trace of the 

orthogonalised Uij (cf. Table 8.3). Anisotropic displacement parameters (×104) for (R,R,S)-6.6a. The 

anisotropic displacement factor exponent takes the form: -22[h2a*2 × U11+ ... +2hka* × b* × U12] (cf. Table 

8.4). Bond lengths in Å for (R,R,S)-6.6a (cf. Table 8.5). Bond angles in ° for (R,R,S)-6.6a (cf. Table 8.6) 

and hydrogen fractional atomic coordinates (×104) and equivalent isotropic displacement parameters 

(Å2×103) for (R,R,S)-6.6a. Ueq is defined as 1/3 of the trace of the orthogonalised Uij (cf. Table 8.7). 

6.4.3.2. X-Ray crystallography of (R)-6.17 

Single clear yellow prism crystals of (R)-6.17 were obtained according to following procedure: cf. 6.4.2. 

synthesis protocols and analytical data 

Table 6.5. Crystal data and structure refinement of (R)-6.17 

Formula C12H16N2O5S Z 2 

Dcalc ./ g cm-3 1.421 Z' 1 

 / mm-1 2.258 Wavelength/Å 1.54184 

Formula Weight 300.33 Radiation type Cu K 

Colour clear yellow min / 
° 3.461 

Shape prism max / 
° 76.344 

Size / mm3 0.29×0.11×0.10 Measured Refl. 8519 

T / K 294(4) Indipendent Refl. 2888 

Crystal System monoclinic Refl's with I > 2(I) 2761 

Flack Parameter -0.004(8) Rint 0.0180 

Hooft Parameter -0.006(6) Parameters 183 

Space Group P21 Restraints 1 

a / Å 5.32850(10) Largest Peak 0.130 

b / Å 10.3138(3) Deepest Hole -0.125 



 
 

Chapter 6 
 

211 
 

Table 6.5 continued. 

c / Å 12.9123(4) Goof 1.039 

 / ° 90 wR2 (all data) 0.0800 

 / ° 98.477(3) wR2 0.0782 

 / ° 90 R1 (all data) 0.0294 

V / Å3 701.87(3) R1 0.0279 

 

A suitable crystal with dimensions (0.29×0.11×0.10) mm3 was selected and mounted on a MiTeGen 

holder (Jena Bioscience) with oil using a SuperNova diffractometer (Agilent Technologies) with Atlas 

CCD detector. The crystal was kept at a T = 294(4) K during data collection. The structure was solved 

with the ShelXT41 solution program using dual methods and by using Olex242 as the graphical interface. 

The model was refined with ShelXL43 (version 2018/3) using full matrix least squares minimization on 

F2. 

Data were measured using  scans and Cu K radiation. The diffraction pattern was indexed and the 

total number of runs and images was based on the strategy calculation from the program CrysAlisPro 

1.171.41.47a (Rigaku Europe, Neu-Isenburg, Germany). The maximum resolution that was achieved 

was  = 76.344°. The diffraction pattern was indexed and the total number of runs and images was 

based on the strategy calculation from the program CrysAlisPro 1.171.41.47a (Rigaku Europe). The unit 

cell was refined using CrysAlisPro 1.171.41.47a (Rigaku Europe) on 5092 reflections, 60% of the 

observed reflections. Data reduction, scaling and absorption corrections were performed using 

CrysAlisPro 1.171.41.47a (Rigaku Europe). The final completeness is 99.90% out to 76.344° in . A 

gaussian absorption correction was performed using CrysAlisPro 1.171.41.47a (Rigaku Europe). The 

absorption coefficient  of this material is 2.258 mm-1 at this wavelength ( = 1.54184 Å) and the 

minimum and maximum transmissions are 0.699 and 1.000. The Flack parameter was refined to -

0.004(8). Determination of absolute structure using Bayesian statistics on Bijvoet differences using the 

Olex2 results in -0.006(6). 

Crystal data of (R)-6.17 see 8.5.3.2.: Fractional atomic coordinates (×104) and equivalent isotropic 

displacement parameters (Å2×103) for (R)-6.17. Ueq is defined as 1/3 of the trace of the orthogonalised 

Uij (cf. Table 8.8), anisotropic displacement parameters (×104) for (R)-6.17. The anisotropic 

displacement factor exponent takes the form: -22[h2a*2 × U11+ ... +2hka* × b* × U12] (cf. Table 8.9), bond 

lengths in Å for (R)-6.17 (cf. Table 8.10), bond angles in ° for (R)-6.17 (cf. Table 8.11), torsion angles 

in ° for (R)-6.17 (cf. Table 8.12) and hydrogen fractional atomic coordinates (×104) and equivalent 

isotropic displacement parameters (Å2×103) for (R)-6.17. Ueq is defined as 1/3 of the trace of the 

orthogonalised Uij (cf. Table 8.13). 
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6.4.4. Pharmacological methods: cell culture, radioligand competition binding assay in CHO-

hY4R-Gqi5-mtAEQ cells, aequorin Ca2+ assay, ethidium bromide/acridine orange staining 

(live/dead staining) 

6.4.4.1. Cell culture 

Cultivation of CHO-hY4R-Gqi5-mtAEQ cells was performed according to literature.5 CHO-hY4R-Gqi5-

mtAEQ cells were cultivated in nutrient mixture Ham’s F12 medium (Sigma Aldrich) at 37 °C in a water 

saturated atmosphere containing 5% CO2. Ham’s F12 medium was supplemented with G418 (Merck 

Biochrom; 400 µg/mL), hygromycin (InvivoGen, San Diego, USA; 250 µg/mL), zeocin (InvivoGen, San 

Diego, USA; 250 µg/mL) and 10% (v/v) FCS (Merck Biochrom, Darmstadt, Germany). 

Routinely performed examinations for mycoplasma contamination using the Venor GeM Mycoplasma 

Detection Kit (Minerva Biolabs, Berlin, Germany) were negative for all cell types. 

6.4.4.2. Radioligand competition binding assay in CHO-hY4R-Gqi5-mtAEQ cells 

The synthesis of [3H]UR-KK200 (cfinal = 1.0 nM, Kd = 0.67 nM) was described previously.20 The 

equilibrium competition binding experiments were performed in intact CHO-hY4R-Gqi5-mtAEQ cells as 

described in the literature.20 

On the day of the experiment cells were scraped off the culture flask, resuspended in sodium-free buffer 

(25 mM HEPES, 2.5 mM CaCl2, 1 mM MgCl2, pH 7) containing 1% BSA and 0.1 mg/mL of bacitracin 

and a density of 500,000 cells/mL was adjusted. Increasing concentrations (10-fold concentrated 

compared to final assay concentration) of investigated ligands (20 µL) were added to the Primaria 96-

well plate (Corning Life Science, Oneonta, USA). The radioligand solution (10-fold concentrated 

compared to cfinal = 1 nM) was added in every well and subsequently 160 µL of the prepared cell 

suspension (500,000 cells/mL) was added. All dilutions of radio- and investigated ligands were prepared 

in sodium-free buffer (25 mM HEPES, 2.5 mM CaCl2, 1 mM MgCl2, pH 7) containing 1% BSA and 

0.1 mg/mL of bacitracin. After incubation at rt for 90 min, the bound and free radioligand ([3H]UR-KK200) 

were separated by filtration through glass microfiber filters (GF/C filters) (Whatman, Maidstone, UK) by 

use of Brandel Harvester (Brandel, Gaithersburg, USA). Before use, the GF/C filters were treated with 

0.3% polyethyleneimine solution for 20 min. The filter was stamped out (every well) and transferred to 

a 96-well plate 1450-401 (Perkin-Elmer, Rodgau, Germany). Before measuring the radioactivity (dpm) 

with a MicroBeta2 plate counter (Perkin-Elmer, Rodgau, Germany), 200 µl of a scintillation cocktail 

(Rotiscint eco plus) was added and the plates were shaken in the dark for at least 3 h. 

Non-specific binding was determined in the presence of a 200-fold excess of hPP and total binding in 

buffer (At least one triplicate of non-specific and total binding was determined on every plate).  

6.4.4.3. Aequorin Ca2+ assay 

The aequorin Ca2+ assay was performed in CHO-hY4R-Gqi5-mtAEQ cells as described in literature5 with 

minor modifications: on the day of the experiment the CHO-hY4R-Gqi5-mtAEQ cells were scraped from 
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the culture flask rather than trypsination. The studied compounds (at a final concentration of 30 µM) 

were incubated with CHO-hY4R-Gqi5-mtAEQ cells for 30 min. 

The procedure was as follows: on the same day of the experiment, CHO-hY4R-Gqi5-mtAEQ cells were 

scraped of the culture flask and resuspended in loading buffer (120 mM NaCl, 5 mM KCl, 2 mM MgCl2, 

1.5 mM CaCl2, 25 mM HEPES and 10 glucose, pH 7.4). A density of 1 ∙ 107 cells/mL was adjusted and 

coelenterazine h (Biotrend, Köln, Germany; c = 1 mM in methanol) was added (cfinal = 2 µM) followed by 

incubation in the dark for 2 h. The cell suspension was diluted with loading buffer (120 mM NaCl, 5 mM 

KCl, 2 mM MgCl2, 1.5 mM CaCl2, 25 mM HEPES and 10 glucose, pH 7.4) containing 1% BSA and 

0.1 mg/mL of bacitracin to obtain a cell density of 500,000 cells/mL and the cell suspension was kept 

under gentle stirring in the dark for further 3 h. Then, ligands (R,R,S)-6.6b, (R,R,S*)-6.7b, niclosamide 

(6.10) or 6.36 (cfinal = 30 µM) were added to the cell suspension, followed by incubation under gentle 

stirring in the dark for 30 min. This suspension (162 µL) was added (with injection unit of GENios Pro 

plate reader) to increasing concentrations of hPP (18 µL) in a white 96-well plate (Greiner Bio-One, 

Frickenhausen, Germany). The luminescence was recorded for 43 s, before adding (with injection unit) 

20 µL of a 1% Triton-X-100 solution (the luminescence was recorded for additional 22 s). Dilutions of 

compounds (R,R,S)-6.6b, (R,R,S*)-6.7b, niclosamide (6.10), 6.36 and hPP were prepared in buffer 

(120 mM NaCl, 5 mM KCl, 2 mM MgCl2, 1.5 mM CaCl2, 25 mM HEPES and 10 glucose, pH 7.4) 

containing 1% BSA and 0.1 mg/mL of bacitracin. 

On every experiment day (R,R,S)-6.6b, (R,R,S*)-6.7b, niclosamide (6.10) and 6.36 were investigated 

in a concentration of 30 µM without hPP. Additionally, a dose response curve of hPP (0.5% DMSO) was 

investigated in the absence of (R,R,S)-6.6b, (R,R,S*)-6.7b, niclosamide (6.10) and 6.36. The plates 

were measured using a GENios Pro (Tecan, Grödig, Austria) plate reader. 

6.4.4.4. Ethidium bromide/acridine orange staining (live/dead staining) 

On the same day of the experiment, CHO-hY4R-Gqi5-mtAEQ cells were detached by trypsinization and 

resuspended in buffer (120 mM NaCl, 5 mM KCl, 2 mM MgCl2, 1.5 mM CaCl2, 25 mM HEPES and 

10 glucose, pH 7.4) containing 5% FCS and 0.1 mg/mL of bacitracin. The cell density was adjusted to 

500,000 cells/mL. The CHO-hY4R-Gqi5-mtAEQ cells were incubated with compounds 2.68, 

(R,R,S)-6.6b, (R,R,S*)-6.7b and niclosamide (6.10) (each 30 µM, 2 mL) in the dark for 30 min. A cell 

suspension, which contained the same amount of DMSO served as control. Then, the cell suspensions 

were resuspended in PBS (1 mL) and 200 µL of ethidium bromide/acridine orange solution (50 µg/mL 

ethidium bromide and 50 µg/mL acridine orange in PBS) was added for staining (the solutions were 

incubated in the dark for 10 min). The cell viability was determined with an Olympus BH-2 microscope 

(Olympus, Hamburg, Germany) with a planachromat 10x objective (Olympus; NA 0.25), filter 

(Fluorescein, Olympus) and a DCM-510 ocular microscope camera (OCS.tec, Neuching, Germany). 

Following software was used: ScopePhoto 3.0 (ScopeTeck, Hangzhou, Zhejiang Provnce, PR China) 

6.4.5. Data analysis 

The retention factor k was calculated according to the following equation: k = (tR-t0)/t0 (tR = retention 

time; t0 = dead time). 
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Data obtained from aequorin Ca2+ assay were processed following literature5 procedures: the area under 

the curve (AUC) of emitted luminescence peak, caused by agonist hPP, and emitted luminescence 

caused by unloading the remaining aequorin by cell lysis (addition of Triton X solution) were determined 

using Sigma Plot 12.5 (Systat Software, Chicago, USA). The fractional luminescence was normalized 

(100% = fractional bioluminescence obtained from 1 μM hPP, 0% = basal effect in the absence of hPP, 

GraphPad Prism 8.0). Relative responses were plotted as % against log(hPP) and analyzed by four-

parameter logistic fits (GraphPad Prism version 8.0) to obtain pEC50 values. Efficacies α were calculated 

from the maximum response relative to 1 μM hPP (α = 1). 

  



 
 

Chapter 6 
 

215 
 

6.5. References 

1. Lundell, I.; Blomqvist, A. G.; Berglund, M. M.; Schober, D. A.; Johnson, D.; Statnick, M. A.; 

Gadski, R. A.; Gehlert, D. R.; Larhammar, D. Cloning of a human receptor of the NPY receptor 

family with high affinity for pancreatic polypeptide and peptide YY. J Biol Chem 1995, 270, 

29123-29128. 

2. Zhang, L.; Bijker, M. S.; Herzog, H. The neuropeptide Y system: Pathophysiological and 

therapeutic implications in obesity and cancer. Pharmacol. Ther. 2011, 131, 91-113. 

3. Yulyaningsih, E.; Zhang, L.; Herzog, H.; Sainsbury, A. NPY receptors as potential targets for 

anti-obesity drug development. Br. J. Pharmacol. 2011, 163, 1170-1202. 

4. Keller, M.; Kaske, M.; Holzammer, T.; Bernhardt, G.; Buschauer, A. Dimeric argininamide-type 

neuropeptide Y receptor antagonists: Chiral discrimination between Y1 and Y4 receptors. Bioorg. 

Med. Chem. 2013, 21, 6303-6322. 

5. Ziemek, R.; Schneider, E.; Kraus, A.; Cabrele, C.; Beck-Sickinger, A. G.; Bernhardt, G.; 

Buschauer, A. Determination of Affinity and Activity of Ligands at the Human Neuropeptide Y 

Y4 Receptor by Flow Cytometry and Aequorin Luminescence. J. Recept. Signal Transduct. Res. 

2007, 27, 217-233. 

6. Kang, N.; Wang, X.-L.; Zhao, Y. Discovery of small molecule agonists targeting neuropeptide 

Y4 receptor using homology modeling and virtual screening. Chem Biol Drug Des 2019, 94, 

2064-2072. 

7. Sun, C.; Ewing, W. R.; Bolton, S. A.; Gu, Z.; Huang, Y.; Murugesan, N.; Zhu, Y. Substituted 

adipic acid amides and uses thereof. WO 2012/125622 A1, 2012. 

8. Ewing, W. R.; Zhu, Y.; Sun, C.; Huang, Y.; Sivasamban, M.; Karatholuvhu. Diaminocyclohexane 

compounds and uses thereof. US 2013/0184262 A1, 2013. 

9. Ewing, W. R.; Zhu, Y.; Sun, C.; Huang, Y.; Sivasamban, M.; Karatholuvhu; Bolton, S. A.; 

Pasunoori, L.; Mandal, S. K.; Sher, P. M. Diaminocyclohexane compounds and uses thereof. 

US 2013/0184284 A1, 2013. 

10. Sliwoski, G.; Schubert, M.; Stichel, J.; Weaver, D.; Beck-Sickinger, A. G.; Meiler, J. Discovery 

of Small-Molecule Modulators of the Human Y4 Receptor. PLOS ONE 2016, 11, e0157146. 

11. Schubert, M.; Stichel, J.; Du, Y.; Tough, I. R.; Sliwoski, G.; Meiler, J.; Cox, H. M.; Weaver, C. 

D.; Beck-Sickinger, A. G. Identification and Characterization of the First Selective Y4 Receptor 

Positive Allosteric Modulator. J. Med. Chem. 2017, 60, 7605-7612. 

12. Balasubramaniam, A.; Mullins, D. E.; Lin, S.; Zhai, W.; Tao, Z.; Dhawan, V. C.; Guzzi, M.; Knittel, 

J. J.; Slack, K.; Herzog, H.; Parker, E. M. Neuropeptide Y (NPY) Y4 Receptor Selective Agonists 

Based on NPY(32−36):  Development of an Anorectic Y4 Receptor Selective Agonist with 

Picomolar Affinity. J. Med. Chem. 2006, 49, 2661-2665. 

13. Sainsbury, A.; Shi, Y.-C.; Zhang, L.; Aljanova, A.; Lin, Z.; Nguyen, A. D.; Herzog, H.; Lin, S. Y4 

receptors and pancreatic polypeptide regulate food intake via hypothalamic orexin and brain-

derived neurotropic factor dependent pathways. Neuropeptides 2010, 44, 261-268. 

14. Kaske, M. In Search for Potent and Selective NPY Y4 Receptor Ligands: Acylguanidines, 

Argininamides and Peptide Analogs. PhD Thesis, University of Regensburg, 2012. 



 
Synthesis and pharmacological investigation of substituted 

(R,R)-diaminocyclohexanes as potential non-peptide ligands for the hY4R 
 

216 
 

15. Wootten, D.; Christopoulos, A.; Sexton, P. M. Emerging paradigms in GPCR allostery: 

implications for drug discovery. Nat. Rev. Drug Discov. 2013, 12, 630-644. 

16. Christopoulos, A. Advances in G Protein-Coupled Receptor Allostery: From Function to 

Structure. Mol. Pharmacol. 2014, 86, 463. 

17. Xie, X.; Cai, G.; Ma, D. CuI/l-Proline-Catalyzed Coupling Reactions of Aryl Halides with 

Activated Methylene Compounds. Org. Lett. 2005, 7, 4693-4695. 

18. Parikh, J. R.; Doering, W. v. E. Sulfur trioxide in the oxidation of alcohols by dimethyl sulfoxide. 

J. Am. Chem. Soc. 1967, 89, 5505-5507. 

19. van Leusen, A. M.; Hoogenboom, B. E.; Siderius, H. A novel and efficient synthesis of oxazoles 

from tosylmethylisocyanide and carbonyl compounds. Tetrahedron Lett. 1972, 13, 2369-2372. 

20. Kuhn, K. K.; Ertl, T.; Dukorn, S.; Keller, M.; Bernhardt, G.; Reiser, O.; Buschauer, A. High Affinity 

Agonists of the Neuropeptide Y (NPY) Y4 Receptor Derived from the C-Terminal Pentapeptide 

of Human Pancreatic Polypeptide (hPP): Synthesis, Stereochemical Discrimination, and 

Radiolabeling. J. Med. Chem. 2016, 59, 6045-6058. 

21. Dukorn, S.; Littmann, T.; Keller, M.; Kuhn, K.; Cabrele, C.; Baumeister, P.; Bernhardt, G.; 

Buschauer, A. Fluorescence- and Radiolabeling of [Lys4,Nle17,30]hPP Yields Molecular Tools for 

the NPY Y4 Receptor. Bioconjug. Chem. 2017, 28, 1291-1304. 

22. Huang, W.; Manglik, A.; Venkatakrishnan, A. J.; Laeremans, T.; Feinberg, E. N.; Sanborn, A. 

L.; Kato, H. E.; Livingston, K. E.; Thorsen, T. S.; Kling, R. C.; Granier, S.; Gmeiner, P.; 

Husbands, S. M.; Traynor, J. R.; Weis, W. I.; Steyaert, J.; Dror, R. O.; Kobilka, B. K. Structural 

insights into µ-opioid receptor activation. Nature 2015, 524, 315-321. 

23. Liu, W.; Chun, E.; Thompson, A. A.; Chubukov, P.; Xu, F.; Katritch, V.; Han, G. W.; Roth, C. B.; 

Heitman, L. H.; IJzerman, A. P.; Cherezov, V.; Stevens, R. C. Structural Basis for Allosteric 

Regulation of GPCRs by Sodium Ions. Science 2012, 337, 232-236. 

24. Miller-Gallacher, J. L.; Nehmé, R.; Warne, T.; Edwards, P. C.; Schertler, G. F. X.; Leslie, A. G. 

W.; Tate, C. G. The 2.1 Å Resolution Structure of Cyanopindolol-Bound β1-Adrenoceptor 

Identifies an Intramembrane Na+ Ion that Stabilises the Ligand-Free Receptor. PLOS ONE 

2014, 9, e92727. 

25. Li, Y.; Li, P.-K.; Roberts, M. J.; Arend, R. C.; Samant, R. S.; Buchsbaum, D. J. Multi-targeted 

therapy of cancer by niclosamide: A new application for an old drug. Cancer Lett. 2014, 349, 8-

14. 

26. Deitrick, J.; Pruitt, W. M. Chapter Two - Wnt/β Catenin-Mediated Signaling Commonly Altered 

in Colorectal Cancer. In Progress in Molecular Biology and Translational Science, Pruitt, K., Ed. 

Academic Press: 2016; Vol. 144, pp 49-68. 

27. Liu, K.; Liu, P. C.; Liu, R.; Wu, X. Dual AO/EB staining to detect apoptosis in osteosarcoma cells 

compared with flow cytometry. Med Sci Monit Basic Res 2015, 21, 15-20. 

28. Yang, Z.; Han, S.; Keller, M.; Kaiser, A.; Bender, B. J.; Bosse, M.; Burkert, K.; Kogler, L. M.; 

Wifling, D.; Bernhardt, G.; Plank, N.; Littmann, T.; Schmidt, P.; Yi, C.; Li, B.; Ye, S.; Zhang, R.; 

Xu, B.; Larhammar, D.; Stevens, R. C.; Huster, D.; Meiler, J.; Zhao, Q.; Beck-Sickinger, A. G.; 

Buschauer, A.; Wu, B. Structural basis of ligand binding modes at the neuropeptide Y Y1 

receptor. Nature 2018, 556, 520-524. 



 
 

Chapter 6 
 

217 
 

29. Laurent, S.; Botteman, F.; Elst, L. V.; Muller, R. N. Relaxivity and Transmetallation Stability of 

New Benzyl-Substituted Derivatives of Gadolinium DTPA Complexes. Helv. Chim. Acta 2004, 

87, 1077-1089. 

30. Keller, M.; Pop, N.; Hutzler, C.; Beck-Sickinger, A. G.; Bernhardt, G.; Buschauer, A. 

Guanidine−Acylguanidine Bioisosteric Approach in the Design of Radioligands: Synthesis of a 

Tritium-Labeled NG-Propionylargininamide ([3H]-UR-MK114) as a Highly Potent and Selective 

Neuropeptide Y Y1 Receptor Antagonist. J. Med. Chem. 2008, 51, 8168-8172. 

31. Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. NMR Chemical Shifts of Common Laboratory Solvents 

as Trace Impurities. J. Org. Chem. 1997, 62, 7512-7515. 

32. Basavaiah, D.; Krishna, P. R.; Bharathi, T. K. A convenient enantioselective synthesis of trans-

2-aryloxycyclohexan-1-ols using pig liver acetone powder (PLAP) as biocatalyst. Tetrahedron: 

Asymmetry 1995, 6, 439-454. 

33. Naidu, A. B.; Ganapathy, D.; Sekar, G. Copper(I)-Catalyzed Intramolecular Caryl-O Bond-

Forming Cyclization for the Synthesis of 1,4-Benzodioxines and Its Application in the Total 

Synthesis of Sweetening Isovanillins. Synthesis 2010, 2010, 3509-3519. 

34. Bied, C.; Moreau, J. J. E.; Wong Chi Man, M. Chiral amino-urea derivatives of (1R,2R)-1,2-

diaminocyclohexane as ligands in the ruthenium catalysed asymmetric reduction of aromatic 

ketones by hydride transfer. Tetrahedron: Asymmetry 2001, 12, 329-336. 

35. Minarini, A.; Marucci, G.; Bellucci, C.; Giorgi, G.; Tumiatti, V.; Bolognesi, M. L.; Matera, R.; 

Rosini, M.; Melchiorre, C. Design, synthesis, and biological evaluation of pirenzepine analogs 

bearing a 1,2-cyclohexanediamine and perhydroquinoxaline units in exchange for the 

piperazine ring as antimuscarinics. Bioorg. Med. Chem. 2008, 16, 7311-7320. 

36. Specklin, S.; Decuypere, E.; Plougastel, L.; Aliani, S.; Taran, F. One-Pot Synthesis of 1,4-

Disubstituted Pyrazoles from Arylglycines via Copper-Catalyzed Sydnone–Alkyne 

Cycloaddition Reaction. J. Org. Chem. 2014, 79, 7772-7777. 

37. Downham, R.; Sibley, G. E. M.; Payne, L. J.; Edwards, P.; davies, G. M. 2-[(2-Substituted)-

Indolizin-3-yl]-2- oxo-acetamide derivatives as antifungal agents. US 8,604,029 B2, 2013. 

38. Sedlák, M.; Hejtmánková, L.; Kas̆parová, P.; Kaválek, J. Kinetics and mechanism of formation 

and decomposition of substituted 1-phenylpyrrolidin-2-ones in basic medium. J. Phys. Org. 

Chem. 2002, 15, 165-173. 

39. Taylor, E. C.; Skotnicki, J. S. A Convenient Synthesis of 1-Aryl-4-piperidones. Synthesis 1981, 

1981, 606-608. 

40. Samuels, H. H.; Abagyan, R.; Schapira, M.; Totrov, M.; Raaka, B. M.; Wilson, S. R.; Fan, L.; 

Zhou, Z. Hydrazide compounds as thyroid hormone receptor modulators and uses thereof. US 

8,394,811 B2, 2013. 

41. Sheldrick, G. SHELXT - Integrated space-group and crystal-structure determination. Acta Cryst. 

2015, 71, 3-8. 

42. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a 

complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 

339-341. 

43. Sheldrick, G. Crystal structure refinement with SHELXL. Acta Crystallogr. C. 2015, 71, 3-8. 



 



Chapter 7 

 

Summary 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Prior to the submission of the thesis parts of this chapter were published in cooperation with partners (schemes, tables, 

figures and text may differ from published version): Buschmann, J.; Seiler, T.; Bernhardt, G.; Keller, M.; Wifling, D. 

Argininamide-type neuropeptide Y Y1 receptor antagonists: the nature of Nω-carbamoyl substituents determines Y1R 

binding mode and affinity. RSC Med. Chem. 2020, 11, 274-282 DOI: 10.1039/C9MD00538B – adopted by permission 

of The Royal Society of Chemistry 

 cf. note of Chapter 2  

 



 
 

Summary 
 

220 
 

Neuropeptide Y (NPY), peptide YY (PYY) and pancreatic polypeptide (PP) share similarities, such as a 

sequence comprising 36 amino acids and an amidated C-terminus, which activate NPY receptors. 

These receptors belong to class A (rhodopsin-like receptors) of G-protein coupled receptors (GPCRs),1 

which are distributed in the central nervous system (CNS) and as well in the periphery.2 In humans four 

(Y1R, Y2R, Y4R and Y5R) different subtypes are functional and their stimulation leads to several 

biological effects, which are involved in several dysfunctions such as dislocation of energy homeostasis, 

seizure, neurodegeneration and psychotic disorders.2-4 Furthermore, the overexpression of NPY 

receptors in different tumuors (e.g. overexpression of Y1R in breast cancer) make them a promising 

target for cancer imaging and therapy.5 

The (R)-argininamide-type Y1R antagonist UR-MK299 (2.2) was recently co-crystallized with the hY1R 

and revealed that the Nω-carbamoyl substituent (van der Waals volume: 139 Å3) is deeply buried in the 

receptor, occupying a hydrophobic pocket that is not completely filled.6, 7 (R)-Argininamides 2.53-2.76 

and 2.78, derived from 2.2 and 2.3 were synthesized and pharmacologically characterized (e.g. 

radioligand competition binding assay, Fura-2 Ca2+ assay). The propionyl group in 2.2 was replaced by 

several acyl residues (cyclic, acyclic and aromatic). In addition the ethylene spacer in 2.2 was replaced 

by a propylene spacer bearing acetyl or propionyl moieties. A decrease in Y1R affinity was observed 

with increasing size of the carbamoyl residue (minimal pKi = 5.67). When the van der Waals volume 

(212 Å3) of the side chain reached a critical size, the binding mode of argininamide-type ligands inverted 

and the carbamoyl side chain was located at the surface of the receptor. These findings were supported 

by induced-fit docking and molecular dynamics simulations (cf. Chapter 2). 

Additionally, selected (R)-argininamides 2.1, 2.2, 2.56-2.59, 2.61 and 2.65 were investigated in a 

β-arrestin2 recruitment assay. Compounds 2.58, 2.68 and 2.72 were supposed to share a similar binding 

mode to 2.2, however the increasing size of the carbamoyl residue of these ligands did not result in 

hY4R and hY5R binding. Additionally, potential irreversibly binding compounds 2.60 and 2.63 identified 

by model chemical reactivity experiments with 2-mercaptoethanol were investigated in saturation 

binding experiments with [3H]2.2 as radioligand. However, covalent binding of 2.60 and 2.63 to the hY1R 

could neither be confirmed nor excluded (cf. Chapter 3). 

The (S)-argininamide BIIE-0246 (4.1) was the first selective hY2R antagonist known from the literature8 

and acylation of the guanidine group of 4.1 led to [3H]UR-PLN196 ([3H]4.2),9 which was the first non-

peptide hY2R radioligand synthesized in our group. In a further project, the replacement of the 

benzoazepinone moiety of 4.1 by an amino functionalized benzhydryl group led to compounds 4.50 and 

4.51 with binding affinities in the nanomolar range. Derived from 4.50, the red-emitting fluorescent ligand 

UR-jb264 (4.58) was synthesized. 4.58 was successfully used in a BRET based binding assay as an 

alternative to radioligand binding with [3H]propionyl-pNPY as a tracer for the determination of binding 

constants of Y2R ligands. Additionally, 4.58 was applied in confocal microscopy (cf. Chapter 4).  

Compound 4.23 derived from (S)-argininamide 4.5 is the cold form of a potential radioligand. To explore 

the feasibility of future tritium labelling of 4.23 by methylation (e.g. with methyl iodide or methyl nosylate) 

in the last synthetic step, the phenolic precursor 5.20 was synthesized. Furthermore, the amine 

precursor 4.50 was propionylated (5.31), 2-fluoroacetylated (5.32), mono- (5.29) and tri- (5.30) alkylated 

to obtain additional cold forms of potential radioligands (cf. Chapter 5). 
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Ewing et al.10, 11 reported a series of (R,R)-diaminocyclohexanes, which were classified as agonists 

antagonists or modulators. These authors evaluated just a subset of compounds at the hY4R in a cAMP 

accumulation assay. In a third project, selected compounds were synthesized and investigated in 

competition binding experiments at the hY4R, established in our group. Unfortunately, the compounds 

showed no affinity in competition binding experiments. Additionally, selected compounds were 

investigated in an aequorin assay and showed neither potency nor modulatory effects on the action of 

hPP. Niclosamide (6.10) was described as the first allosteric modulator at the hY4R,12 but the reported 

results could not be reproduced in the aequorin assay using live CHO-hY4-Gqi5-mtAEQ cells. Live/dead 

staining of the cells revealed that niclosamide (6.10) proved to be cytotoxic at the used concentrations, 

compromising the results of functional assays with live cells (cf. Chapter 6). 

First and foremost, this thesis contributes to a deeper insight on the binding mode of Nω-carbamoylated 

(R)-argininamide at Y1R, which may help to design and prepare further novel molecular tools such as 

fluorescence labelled or PET ligands. Furthermore, the synthesis of amine precursor 4.50 enables the 

synthesis of fluorescent ligand 4.58, which could be used for the determination of binding constants of 

non-labelled compounds. 
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8.1. Chapter 2 

8.1.1. Supplementary figure 8.1 

 

Figure 8.1. Time-course illustrations of the 2-µs MD simulations of the Y1R (inactive state, PDB ID: 5ZBQ1) bound to 2.1 (A), 

2.2 (B) or 2.3 (C) showing superimposed snap shots collected every 100 ns. 
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8.1.2. Supplementary table 8.1 

Table 8.1. Slope factors (Hill slope) of compounds 2.53-2.76 and 2.78 determined by equilibrium competition binding with [3H]2.2 

and in the Fura-2 Ca2+ assay, respectively. 

com-

pound 
slope ± SEMa 

(competition binding) 

slope ± SEMb 

(Fura-2 Ca2+) 

com-

pound 
slope ± SEMa 

(competition binding) 

slope ± SEMb 

(Fura-2 Ca2+) 

2.53 -1.05 ± 0.07 n.d. 2.66 -1.17 ± 0.08 -1.17 ± 0.11 

2.54 -1.06 ± 0.03 n.d. 2.67 -0.97 ± 0.05 -1.30 ± 0.21 

2.55 -0.97 ± 0.10 n.d. 2.68 -1.02 ± 0.09 -0.96 ± 0.07 

2.56 -1.27 ± 0.10 -2.36 ± 0.09** 2.69 -1.00 ± 0.07 -1.07 ± 0.24 

2.57 -1.25 ± 0.06* -1.92 ± 0.09** 2.70 -1.03 ± 0.14 -1.13 ± 0.30 

2.58 -1.08 ± 0.08 -2.17 ± 0.15** 2.71 -1.00 ± 0.04 -1.02 ± 0.05 

2.59 -1.17 ± 0.03* -1.74 ± 0.22* 2.72 -0.98 ± 0.07 -1.19 ± 0.12 

2.60 -1.03 ± 0.09 -1.79 ± 0.29 2.73 -0.91 ± 0.16 -0.99 ± 0.07 

2.61 -1.02 ± 0.01 -0.79 ± 0.07 2.74 -0.90 ± 0.03* -0.83 ± 0.01** 

2.62 -1.01 ± 0.08 -1.39 ± 0.21 2.75 -0.89 ± 0.06 -0.86 ± 0.12 

2.63 -1.10 ± 0.18 -1.27 ± 0.16 2.76 -0.82 ± 0.08 -1.00 ± 0.11 

2.64 -0.89 ± 0.05 -0.69 ± 0.07* 2.78 -1.17 ± 0.03* n.d. 

2.65 -0.81 ± 0.07 -0.83 ± 0.04    

aSlope factors of the four-parameter logistic fit (GraphPad Prism 8) obtained from analysis of radioligand competition binding 

data. Mean values ± SEM from at least three independent experiments, each performed in triplicate. bSlope factors of the four-

parameter logistic fit (GraphPad Prism 8) obtained from analysis of the Fura-2 Ca2+ data. Mean values ± SEM from at least three 

independent experiments performed in singlet. *Slope significantly different from unity, P ≤ 0.05 (one sample, two-tailed t-test). 

**Slope significantly different from unity, P ≤ 0.01 (one sample, two-tailed t-test). n.d.: not determined. 
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8.1.3. 1H-NMR and 13C-NMR spectra of compounds 2.53-2.76 

 
1H-NMR (600 MHz) of compound 2.53 (DMSO-d6) 

 
13C-NMR (150 MHz) of compound 2.53 (DMSO-d6) 



 
 

Chapter 8 
 

227 
 

 
1H-NMR (600 MHz) of compound 2.54 (DMSO-d6) 

 
13C-NMR (150 MHz) of compound 2.54 (DMSO-d6) 
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1H-NMR (600 MHz) of compound 2.55 (DMSO-d6) 

 
13C-NMR (150 MHz) of compound 2.55 (DMSO-d6) 
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1H-NMR (600 MHz) of compound 2.56 (DMSO-d6) 

 
13C-NMR (150 MHz) of compound 2.56 (DMSO-d6) 



 
 

Appendix 
 

230 
 

 
1H-NMR (600 MHz) of compound 2.57 (DMSO-d6) 

 
13C-NMR (150 MHz) of compound 2.57 (DMSO-d6) 
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1H-NMR (600 MHz) of compound 2.58 (DMSO-d6) 

 
13C-NMR (150 MHz) of compound 2.58 (DMSO-d6) 
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1H-NMR (600 MHz) of compound 2.59 (DMSO-d6)
 

 

13C-NMR (150 MHz) of compound 2.59 (DMSO-d6)
 



 
 

Chapter 8 
 

233 
 

 

1H-NMR (600 MHz) of compound 2.60 (DMSO-d6)
 

 

13C-NMR (150 MHz) of compound 2.60 (DMSO-d6)
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1H-NMR (600 MHz) of compound 2.61 (DMSO-d6)
 

 

13C-NMR (150 MHz) of compound 2.61 (DMSO-d6)
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1H-NMR (600 MHz) of compound 2.62 (DMSO-d6)
 

 

13C-NMR (150 MHz) of compound 2.62 (DMSO-d6)
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1H-NMR (600 MHz) of compound 2.63 (DMSO-d6)
 

 

13C-NMR (150 MHz) of compound 2.63 (DMSO-d6)
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1H-NMR (600 MHz) of compound 2.64 (DMSO-d6)
 

 

13C-NMR (150 MHz) of compound 2.64 (DMSO-d6)
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1H-NMR (600 MHz) of compound 2.65 (DMSO-d6)
 

 

13C-NMR (150 MHz) of compound 2.65 (DMSO-d6)
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1H-NMR (600 MHz) of compound 2.66 (DMSO-d6)
 

 

13C-NMR (150 MHz) of compound 2.66 (DMSO-d6)
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1H-NMR (600 MHz) of compound 2.67 (DMSO-d6)
 

 

13C-NMR (150 MHz) of compound 2.67 (DMSO-d6)
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1H-NMR (600 MHz) of compound 2.68 (DMSO-d6)
 

 

13C-NMR (150 MHz) of compound 2.68 (DMSO-d6)
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1H-NMR (600 MHz) of compound 2.69 (DMSO-d6)
 

 

13C-NMR (150 MHz) of compound 2.69 (DMSO-d6)
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1H-NMR (600 MHz) of compound 2.70 (DMSO-d6)
 

 

13C-NMR (150 MHz) of compound 2.70 (DMSO-d6)
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1H-NMR (600 MHz) of compound 2.71 (DMSO-d6)
 

 

13C-NMR (150 MHz) of compound 2.71 (DMSO-d6)
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1H-NMR (600 MHz) of compound 2.72 (DMSO-d6)
 

 

13C-NMR (150 MHz) of compound 2.72 (DMSO-d6)
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1H-NMR (600 MHz) of compound 2.73 (DMSO-d6)
 

 

13C-NMR (150 MHz) of compound 2.73 (DMSO-d6)
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1H-NMR (600 MHz) of compound 2.74 (DMSO-d6)
 

 

13C-NMR (150 MHz) of compound 2.74 (DMSO-d6)
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1H-NMR (600 MHz) of compound 2.75 (DMSO-d6)
 

 

13C-NMR (150 MHz) of compound 2.75 (DMSO-d6)
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1H-NMR (600 MHz) of compound 2.76 (DMSO-d6)
 

 

13C-NMR (150 MHz) of compound 2.76 (DMSO-d6)
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8.1.4. RP-HPLC purity chromatograms (220 nm) of compounds 2.53-2.76 and 2.78 

  

RP-HPLC (220 nm) chromatogram of 2.53 RP-HPLC (220 nm) chromatogram of 2.54 

  

RP-HPLC (220 nm) chromatogram of 2.55 RP-HPLC (220 nm) chromatogram of 2.56 

  

RP-HPLC (220 nm) chromatogram of 2.57 RP-HPLC (220 nm) chromatogram of 2.58 
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RP-HPLC (220 nm) chromatogram of 2.59 RP-HPLC (220 nm) chromatogram of 2.60 

  

RP-HPLC (220 nm) chromatogram of 2.61 RP-HPLC (220 nm) chromatogram of 2.62 

  

RP-HPLC (220 nm) chromatogram of 2.63 RP-HPLC (220 nm) chromatogram of 2.64 
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RP-HPLC (220 nm) chromatogram of 2.65 RP-HPLC (220 nm) chromatogram of 2.66 

  

RP-HPLC (220 nm) chromatogram of 2.67 RP-HPLC (220 nm) chromatogram of 2.68 

  

RP-HPLC (220 nm) chromatogram of 2.69 RP-HPLC (220 nm) chromatogram of 2.70 
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RP-HPLC (220 nm) chromatogram of 2.71 RP-HPLC (220 nm) chromatogram of 2.72 

  

RP-HPLC (220 nm) chromatogram of 2.73 RP-HPLC (220 nm) chromatogram of 2.74 

  

RP-HPLC (220 nm) chromatogram of 2.75 RP-HPLC (220 nm) chromatogram of 2.76 
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RP-HPLC (220 nm) chromatogram of 2.78 RP-HPLC (480 nm) chromatogram of 2.78 
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8.1.5. Investigation of the chemical stability of compounds 2.56, 2.58-2.61, 2.63 and 2.68 

8.1.5.1. Supplementary figure 8.2 

 

Figure 8.2. (A-D) Chromatograms of the reversed-phase HPLC analysis of (A) 2.56, (B) 2.58, (C) 2.59 and (D) 2.60 after 

incubation in a 10 mM HEPES buffer (pH 7.0) at rt for up to 24 h. 2.56, 2.58, 2.59 and 2.60 proved to be stable. 
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8.1.5.2. Supplementary Figure 8.3 

 

Figure 8.3. (A-C) Chromatograms of the reversed-phase HPLC analysis of (A) 2.61, (B) 2.63 and (C) 2.68 after incubation in a 

10 mM HEPES buffer (pH 7.0) at rt for up to 24 h. 2.61, 2.63 and 2.68 proved to be stable. 
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8.2. Chapter 4 

8.2.1. Supplementary figure 8.4 

 

Figure 8.4. (A-E) Additional binding characteristics of 4.58 in BRET based binding assay in intact HEK293T Y2(intraNLucD197) 

cells. Association for (A, C) 90 min and (E) 30 min of 4.58 (% specifically bound 4.58) and dissociation for (B) 240 min 

(BPlateau = 13.9%) and (D) 220 min (BPlateau = 27.4%) as function of time (min) for determination of kobs and koff (nonlinear 

regression, one phase association or dissociation; Graphpad Prism 8). Data represents SEM of a single experiment performed 

in triplicate. 
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8.2.2. 1H-NMR and 13C-NMR spectra of compounds 4.1, 4.5, 4.23, 4.24, 4.27, 4.32, 4.50, 4.51 and 

4.75 

 
1H-NMR (600 MHz) of compound 4.1 (DMSO-d6) 

 
13C-NMR (150 MHz) of compound 4.1 (DMSO-d6) 
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1H-NMR (600 MHz) of compound 4.5 (DMSO-d6)
 

 
13C-NMR (150 MHz) of compound 4.5 (DMSO-d6) 
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1H-NMR (600 MHz) of compound 4.23 (DMSO-d6) 

 

1H-NMR (600 MHz) of compound 4.23 (MeOH-d4)
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13C-NMR (150 MHz) of compound 4.23 (MeOH-d4)
 

 

1H-NMR (600 MHz) of compound 4.24 (DMSO-d6)
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1H-NMR (600 MHz) of compound 4.24 (MeOH-d4)
 

 

13C-NMR (150 MHz) of compound 4.24 (MeOH-d4)
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1H-NMR (600 MHz) of compound 4.27 (DMSO-d6)
 

 

1H-NMR (600 MHz) of compound 4.27 (MeOH-d4)
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13C-NMR (150 MHz) of compound 4.27 (MeOH-d4)
 

 

1H-NMR (600 MHz) of compound 4.32 (DMSO-d6)
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13C-NMR (150 MHz) of compound 4.32 (DMSO-d6)
 

 

1H-NMR (600 MHz) of compound 4.50 (DMSO-d6)
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1H-NMR (600 MHz) of compound 4.50 (MeOH-d4)
 

 

13C-NMR (150 MHz) of compound 4.50 (MeOH-d4)
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1H-NMR (600 MHz) of compound 4.51 (DMSO-d6)
 

 

1H-NMR (600 MHz) of compound 4.51(MeOH-d4)
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13C-NMR (150 MHz) of compound 4.51 (MeOH-d4)
 

 

*-1H-NMR (600 MHz) of compound 4.75 (DMSO-d6)
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13C-NMR (150 MHz) of compound 4.75 (DMSO-d6)
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8.2.3. RP-HPLC purity chromatograms (220 nm) of compounds 4.1, 4.5, 4.23, 4.24, 4.27, 4.32, 

4.50, 4.51, 4.58, 4.59, 4.61, 4.62 and 4.75 

  

RP-HPLC (220 nm) chromatogram of 4.1 RP-HPLC (220 nm) chromatogram of 4.5 

  

RP-HPLC (220 nm) chromatogram of 4.23 RP-HPLC (220 nm) chromatogram of 4.24 

  

RP-HPLC (220 nm) chromatogram of 4.27 RP-HPLC (220 nm) chromatogram of 4.32 
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RP-HPLC (220 nm) chromatogram of 4.50 RP-HPLC (220 nm) chromatogram of 4.51 

  

RP-HPLC (220 nm) chromatogram of 4.58 RP-HPLC (220 nm) chromatogram of 4.59 

  

RP-HPLC (220 nm) chromatogram of 4.61 RP-HPLC (220 nm) chromatogram of 4.62 
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RP-HPLC (220 nm) chromatogram of 4.75  
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8.3. Chapter 5 

8.3.1. Investigation of the chemical stability of compounds 5.9 and 5.30 

8.3.1.1. Supplementary figure 8.5 

 

Figure 8.5. (A-B) Chromatograms of the reversed-phase HPLC analysis of (A) 5.9 and (B) 5.30 after incubation in a 25 mM 

HEPES buffer (pH 7.0) at rt for up to 24 h. 5.9 and 5.30 proved to be stable. 
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8.3.1. 1H-NMR and 13C-NMR spectra of compounds 5.9, 5.12, 5.20 and 5.29-5.32 

 
1H-NMR (600 MHz) of compound 5.9 (DMSO-d6) 

 
13C-NMR (150 MHz) of compound 5.9 (DMSO-d6) 
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1H-NMR (600 MHz) of compound 5.12 (DMSO-d6) 

 
1H-NMR (600 MHz) of compound 5.12 (MeOH-d4) 
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13C-NMR (150 MHz) of compound 5.12 (MeOH-d4) 

 
1H-NMR (600 MHz) of compound 5.20 (DMSO-d6) 
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1H-NMR (600 MHz) of compound 5.20 (MeOH-d4) 

 
13C-NMR (150 MHz) of compound 5.20 (DMSO-d6) 
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13C-NMR (150 MHz) of compound 5.20 (MeOH-d4) 

 
1H-NMR (600 MHz) of compound 5.29 (DMSO-d6) 
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1H-NMR (600 MHz) of compound 5.29 (MeOH-d4) 

 
13C-NMR (150 MHz) of compound 5.29 (DMSO-d6) 
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13C-NMR (150 MHz) of compound 5.29 (MeOH-d4) 

 
1H-NMR (600 MHz) of compound 5.30 (DMSO-d6) 
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1H-NMR (600 MHz) of compound 5.30 (MeOH-d4) 

 
13C-NMR (150 MHz) of compound 5.30 (DMSO-d6) 
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1H-NMR (600 MHz) of compound 5.31 (DMSO-d6) 

 
1H-NMR (600 MHz) of compound 5.31 (MeOH-d4) 



 
 

Chapter 8 
 

283 
 

 

13C-NMR (150 MHz) of compound 5.31 (DMSO-d6)
 

 

1H-NMR (600 MHz) of compound 5.32 (DMSO-d6)
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1H-NMR (600 MHz) of compound 5.32 (MeOH-d4)
 

 

13C-NMR (150 MHz) of compound 5.32 (DMSO-d6)
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8.3.3. RP-HPLC purity chromatograms of (220 nm) compounds 5.9, 5.12, 5.20 and 5.29-5.32 

  

RP-HPLC (220 nm) chromatogram of 5.9 RP-HPLC (220 nm) chromatogram of 5.12 

  

RP-HPLC (220 nm) chromatogram of 5.20 RP-HPLC (220 nm) chromatogram of 5.29 

  

RP-HPLC (220 nm) chromatogram of 5.30 RP-HPLC (220 nm) chromatogram of 5.31 
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RP-HPLC (220 nm) chromatogram of 5.32  
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8.4. Chapter 6 

8.4.1. 1H-NMR and 13C-NMR spectra of compounds (R,R,S*)-6.6a, (R,R,S)-6.6b, (R,R,S*)-6.7a, 

(R,R,S*)-6.6b, 6.7, 6.9, 6.12, 6.13, (S*)-6.18a, (S*)-6.18b, 6.34-6.44, 6.47 and 6.48 

 

1H-NMR (600 MHz) of compound (R,R,S*)-6.6a (DMSO-d6) 
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13C-NMR (150 MHz) of compound (R,R,S*)-6.6a (DMSO-d6) 

 

1H-NMR (600 MHz) of compound (R,R,S)-6.6b (DMSO-d6) 
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13C-NMR (150 MHz) of compound (R,R,S)-6.6b (DMSO-d6) 

 

1H-NMR (600 MHz) of compound (R,R,S*)-6.7a (DMSO-d6) 
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13C-NMR (150 MHz) of compound (R,R,S*)-6.7a (DMSO-d6) 

 

1H-NMR (600 MHz) of compound (R,R,S*)-6.7b (DMSO-d6) 
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13C-NMR (150 MHz) of compound (R,R,S*)-6.7b (DMSO-d6) 

 

1H-NMR (400 MHz) of compound 6.9 (DMSO-d6) 
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13C-NMR (101 MHz) of compound 6.9 (DMSO-d6) 

 

1H-NMR (600 MHz) of compound 6.12 (DMSO-d6) 
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13C-NMR (150 MHz) of compound 6.12 (DMSO-d6) 

 

1H-NMR (600 MHz) of compound 6.13 (DMSO-d6) 
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13C-NMR (150 MHz) of compound 6.13 (DMSO-d6) 

 

1H-NMR (600 MHz) of compound (S*)-6.18a (DMSO-d6) 
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13C-NMR (150 MHz) of compound (S*)-6.18a (DMSO-d6) 

 

1H-NMR (600 MHz) of compound (S*)-6.18b (DMSO-d6) 



 
 

Appendix 
 

296 
 

 

13C-NMR (150 MHz) of compound (S*)-6.18b (DMSO-d6) 

 

1H-NMR (600 MHz) of compound 6.34 (DMSO-d6) 
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13C-NMR (150 MHz) of compound 6.34 (DMSO-d6) 

 

1H-NMR (600 MHz) of compound 6.35 (DMSO-d6) 
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13C-NMR (150 MHz) of compound 6.35 (DMSO-d6) 

 

1H-NMR (600 MHz) of compound 6.36 (DMSO-d6)
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13C-NMR (150 MHz) of compound 6.36 (DMSO-d6)
 

 

1H-NMR (600 MHz) of compound 6.37 (DMSO-d6)
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13C-NMR (150 MHz) of compound 6.37 (DMSO-d6)
 

 

1H-NMR (600 MHz) of compound 6.38 (DMSO-d6)
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13C-NMR (150 MHz) of compound 6.38 (DMSO-d6)
 

 

1H-NMR (600 MHz) of compound 6.39 (DMSO-d6)
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13C-NMR (150 MHz) of compound 6.39 (DMSO-d6)
 

 

1H-NMR (600 MHz) of compound 6.40 (DMSO-d6)
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13C-NMR (150 MHz) of compound 6.40 (DMSO-d6)
 

 

1H-NMR (600 MHz) of compound 6.41 (DMSO-d6)
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13C-NMR (150 MHz) of compound 6.41 (DMSO-d6)
 

 

1H-NMR (600 MHz) of compound 6.42 (DMSO-d6)
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13C-NMR (150 MHz) of compound 6.42 (DMSO-d6)
 

 

1H-NMR (600 MHz) of compound 6.43 (DMSO-d6)
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13C-NMR (150 MHz) of compound 6.43 (DMSO-d6)
 

 

1H-NMR (600 MHz) of compound 6.44 (DMSO-d6)
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13C-NMR (150 MHz) of compound 6.44 (DMSO-d6)
 

 

1H-NMR (600 MHz) of compound 6.47 (DMSO-d6)
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13C-NMR (150 MHz) of compound 6.47 (DMSO-d6)
 

 

1H-NMR (600 MHz) of compound 6.48 (DMSO-d6)
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13C-NMR (150 MHz) of compound 6.48 (DMSO-d6)
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8.4.2. RP-HPLC purity chromatograms (220 nm) of compounds (R,R,S*)-6.6a, (R,R,S)-6.6b, 

(R,R,S*)-6.7a, (R,R,S*)-6.6b, 6.7, 6.9, 6.12, 6.13, (S*)-6.18a, (S*)-6.18b, 6.34-6.44, 6.47 and 

6.48 

  

RP-HPLC (220 nm) chromatogram of (R,R,S*)-6.6a RP-HPLC (220 nm) chromatogram of (R,R,S)-6.6b 

  

RP-HPLC (220 nm) chromatogram of (R,R,S*)-6.7a RP-HPLC (220 nm) chromatogram of (R,R,S)-6.7b 

  

RP-HPLC (220 nm) chromatogram of 6.9 RP-HPLC (220 nm) chromatogram of 6.12 
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RP-HPLC (220 nm) chromatogram of 6.13 RP-HPLC (220 nm) chromatogram of (S*)-6.18a 

  

RP-HPLC (220 nm) chromatogram of (S*)-6.18b RP-HPLC (220 nm) chromatogram of 6.34 

  

RP-HPLC (220 nm) chromatogram of 6.35 RP-HPLC (220 nm) chromatogram of 6.36 
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RP-HPLC (220 nm) chromatogram of 6.37 RP-HPLC (220 nm) chromatogram of 6.38 

  

RP-HPLC (220 nm) chromatogram of 6.39 RP-HPLC (220 nm) chromatogram of 6.40 

  

RP-HPLC (220 nm) chromatogram of 6.41 RP-HPLC (220 nm) chromatogram of 6.42 
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RP-HPLC (220 nm) chromatogram of 6.43 RP-HPLC (220 nm) chromatogram of 6.44 

  

RP-HPLC (220 nm) chromatogram of 6.47 RP-HPLC (220 nm) chromatogram of 6.48 
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8.4.3. Crystal data of compounds (R,R,S)-6.6a and (R)-17 

8.4.3.1. Crystal data of (R,R,S)-6.6a 

C24H32ClN5O3, Mr = 473.99, monoclinic, P21 (No. 4), a = 5.5823(2) Å, b = 15.1245(4) Å, 

c = 14.5029(4) Å,  = 94.173(2)°,  =  = 90°, V = 1221.23(6) Å3, T = 122.96(11) K, Z = 2, Z' = 1, 

(Cu Kβ) = 1.222, 30702 reflections measured, 4660 unique (Rint = 0.0427) which were used in all 

calculations. The final wR2 was 0.0732 (all data) and R1 was 0.0317 (I > 2(I)). 

Table 8.3: Fractional atomic coordinates (×104) and equivalent isotropic displacement parameters 

(Å2×103) for (R,R,S)-6.6a. Ueq is defined as 1/3 of the trace of the orthogonalised Uij. 

Atom x y z Ueq 

Cl(1) 5693.9(12) 2828.7(4) 9551.4(5) 39.54(17) 

O(3) 4422(3) 5381.4(12) 8181.1(11) 31.6(4) 

N(5) 3125(4) 6769.0(14) 8525.9(14) 31.4(5) 

O(1) 4763(4) 5393.0(16) 2826.3(12) 47.9(5) 

N(2) 9360(4) 3483.1(15) 6375.2(14) 30.5(5) 

N(3) 8225(4) 4399.9(14) 8674.1(13) 25.3(4) 

N(4) 6116(4) 6115.6(14) 9442.8(14) 29.4(5) 

O(2) 2609(5) 5942.4(18) 3858.9(16) 71.8(8) 

N(1) 4233(5) 5458.7(18) 3630.0(16) 43.4(6) 

C(18) 4565(4) 6047.7(17) 8687.0(17) 28.0(5) 

C(4) 8100(5) 3968.1(18) 5710.6(16) 30.7(6) 

C(19) 1347(5) 6887.7(17) 7791.0(18) 31.0(6) 

C(3) 8632(5) 3902.0(19) 4774.8(17) 35.2(6) 

C(10) 8668(5) 3438.3(16) 7329.5(16) 26.5(5) 

C(20) 1428(5) 6466.9(19) 6939.6(18) 36.3(6) 

C(7) 11050(5) 2780(2) 6168.2(17) 34.8(6) 

C(13) 10885(5) 4343.3(19) 10087.2(17) 33.0(6) 

C(2) 7381(5) 4387(2) 4102.3(17) 36.9(6) 

C(17) 7285(4) 5381.7(17) 9955.6(16) 27.2(5) 

C(11) 9764(5) 4209.2(17) 7900.6(16) 29.2(6) 
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Table 8.3 continued. 

Atom x y z Ueq 

C(1) 5558(5) 4943(2) 4337.4(17) 36.6(6) 

C(9) 9617(5) 2538.3(17) 7667.1(18) 33.1(6) 

C(8) 11808(5) 2397(2) 7116.6(19) 38.6(7) 

C(12) 9320(4) 4948.5(17) 9465.2(16) 26.6(5) 

C(5) 6241(5) 4547.5(19) 5925.9(18) 36.2(6) 

C(14) 11773(5) 4779(2) 11000.3(18) 35.0(6) 

C(24) -529(5) 7459(2) 7928(2) 39.4(7) 

C(15) 9633(5) 5101.4(19) 11494.8(17) 34.7(6) 

C(16) 8223(5) 5764.1(18) 10894.8(17) 32.0(6) 

C(22) -2273(5) 7176(2) 6395(2) 44.2(7) 

C(21) -397(6) 6611(2) 6255(2) 42.4(7) 

C(6) 4986(6) 5023(2) 5248.0(18) 40.0(7) 

C(23) -2309(5) 7606(2) 7233(2) 45.4(8) 

 

Table 8.4. Anisotropic displacement parameters (×104) for (R,R,S)-6.6a. The anisotropic displacement factor exponent takes the 

form: -22[h2a*2 × U11+ ... +2hka* × b* × U12] 

Atom U11 U22 U33 U23 U13 U12 

Cl(1) 43.3(4) 31.8(3) 43.8(4) 9.9(3) 5.3(3) -5.4(3) 

O(3) 36.2(10) 26.4(9) 31.6(9) -5.1(8) -1.2(7) -2.2(8) 

N(5) 35.6(12) 26.7(11) 31.6(11) -4.0(9) 0.2(9) 2.7(10) 

O(1) 53.1(13) 64.0(14) 25.6(10) 9.6(10) -4.3(9) -6.6(11) 

N(2) 38.3(12) 30.1(12) 23(1) -3.5(9) 2.5(9) 7.2(10) 

N(3) 29.2(10) 22.9(10) 23.9(9) -3.3(8) 2.9(8) -3.4(9) 

N(4) 35.6(12) 22.5(11) 29.7(11) -4.2(9) 0.1(9) 0.0(9) 

O(2) 95(2) 77.9(19) 42.3(13) 12.6(13) -0.3(13) 44.6(17) 

N(1) 51.8(15) 45.5(15) 31.6(12) 4.8(11) -6.4(11) 1.5(13) 
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Table 8.4 continued. 

Atom U11 U22 U33 U23 U13 U12 

C(18) 28.2(13) 29.4(14) 26.9(12) 0.4(11) 5.3(10) -4.6(11) 

C(4) 39.7(16) 28.3(14) 23.9(12) -2(1) 1.5(11) -0.5(12) 

C(19) 32.9(14) 26.5(14) 33.4(14) 5.2(11) 1.6(11) -2.8(11) 

C(3) 43.5(16) 36.2(15) 26.5(13) -2.7(11) 6.0(11) 3.7(13) 

C(10) 33.0(14) 26.6(13) 19.9(11) -2.7(10) 2.5(10) 0.1(11) 

C(20) 42.8(16) 36.4(16) 29.8(13) 5.9(12) 2.9(12) 2.3(13) 

C(7) 39.7(14) 33.4(14) 31.9(13) -5.5(12) 6.1(11) 7.6(13) 

C(13) 31.7(13) 34.7(16) 32.5(13) -8.1(12) 0.5(11) 1.0(12) 

C(2) 45.4(16) 42.9(17) 22.6(12) -0.6(12) 4.3(11) -2.2(14) 

C(17) 28.7(13) 26.0(13) 27.2(12) -2.5(11) 2.8(10) -1.9(11) 

C(11) 37.3(14) 25.8(14) 25.3(12) -3.1(10) 8(1) -3.3(11) 

C(1) 47.6(17) 36.4(15) 24.9(12) 2.9(11) -2.8(12) 1.5(13) 

C(9) 45.5(16) 25.8(14) 27.9(13) -1(1) 2.4(12) 0.2(12) 

C(8) 45.4(16) 34.5(15) 35.8(15) -0.1(12) 2.6(12) 13.1(13) 

C(12) 27.3(13) 28.1(13) 24.7(11) -7.6(10) 3.4(10) -6.5(11) 

C(5) 47.0(16) 38.5(16) 23.1(12) -2.3(11) 2.0(11) 9.5(13) 

C(14) 32.3(14) 39.6(16) 32.4(13) -7.0(12) -2.1(11) 0.5(12) 

C(24) 35.5(15) 44.2(17) 38.7(15) -0.9(13) 4.5(12) 1.9(13) 

C(15) 32.9(14) 45.7(17) 25.3(12) -5.7(11) 0.6(11) -3.0(12) 

C(16) 33.4(14) 32.9(15) 30.2(13) -7.9(11) 5.0(11) -4.0(12) 

C(22) 38.8(16) 53.3(19) 39.7(16) 14.9(14) -3.4(13) -10.1(15) 

C(21) 53.3(19) 42.7(18) 31.2(14) 7.3(12) 2.0(13) -5.2(14) 

C(6) 48.7(17) 41.7(17) 29.4(13) -0.3(12) 0.8(12) 12.4(14) 

C(23) 32.0(15) 54(2) 50.7(18) 10.6(14) 2.4(13) 4.1(13) 
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Table 8.5. Bond lengths in Å for (R,R,S)-6.6a. 

Atom Atom Length/Å 

O(3) C(18) 1.246(3) 

N(5) C(18) 1.365(3) 

N(5) C(19) 1.414(3) 

O(1) N(1) 1.227(3) 

N(2) C(4) 1.365(3) 

N(2) C(10) 1.465(3) 

N(2) C(7) 1.466(3) 

N(3) C(11) 1.490(3) 

N(3) C(12) 1.509(3) 

N(4) C(18) 1.350(3) 

N(4) C(17) 1.463(3) 

O(2) N(1) 1.229(3) 

N(1) C(1) 1.449(4) 

C(4) C(3) 1.414(3) 

C(4) C(5) 1.411(4) 

C(19) C(20) 1.393(4) 

C(19) C(24) 1.383(4) 

C(3) C(2) 1.371(4) 

C(10) C(11) 1.532(3) 

C(10) C(9) 1.528(4) 

C(20) C(21) 1.387(4) 

C(7) C(8) 1.524(4) 

C(13) C(12) 1.517(4) 

C(13) C(14) 1.529(4) 

C(2) C(1) 1.382(4) 
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Table 8.5 continued. 

Atom Atom Length/Å 

C(17) C(12) 1.531(3) 

C(17) C(16) 1.536(3) 

C(1) C(6) 1.386(4) 

C(9) C(8) 1.523(4) 

C(5) C(6) 1.369(4) 

C(14) C(15) 1.518(4) 

C(24) C(23) 1.381(4) 

C(15) C(16) 1.510(4) 

C(22) C(21) 1.378(4) 

C(22) C(23) 1.380(4) 

 

Table 8.6. Bond angles in ° for (R,R,S)-6.6a. 

Atom Atom Atom Angle/° 

C(18) N(5) C(19) 127.1(2) 

C(4) N(2) C(10) 122.3(2) 

C(4) N(2) C(7) 123.4(2) 

C(10) N(2) C(7) 112.2(2) 

C(11) N(3) C(12) 117.06(19) 

C(18) N(4) C(17) 126.2(2) 

O(1) N(1) O(2) 122.6(2) 

O(1) N(1) C(1) 118.9(2) 

O(2) N(1) C(1) 118.5(2) 

O(3) C(18) N(5) 122.3(2) 

O(3) C(18) N(4) 123.3(2) 

N(4) C(18) N(5) 114.4(2) 
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Table 8.6 continued. 

Atom Atom Atom Angle/° 

N(2) C(4) C(3) 120.4(2) 

N(2) C(4) C(5) 121.8(2) 

C(5) C(4) C(3) 117.8(2) 

C(20) C(19) N(5) 122.9(2) 

C(24) C(19) N(5) 117.9(2) 

C(24) C(19) C(20) 119.1(3) 

C(2) C(3) C(4) 120.9(3) 

N(2) C(10) C(11) 110.7(2) 

N(2) C(10) C(9) 103.56(19) 

C(9) C(10) C(11) 112.9(2) 

C(21) C(20) C(19) 119.5(3) 

N(2) C(7) C(8) 103.39(19) 

C(12) C(13) C(14) 113.1(2) 

C(3) C(2) C(1) 119.8(2) 

N(4) C(17) C(12) 114.0(2) 

N(4) C(17) C(16) 106.0(2) 

C(12) C(17) C(16) 110.9(2) 

N(3) C(11) C(10) 108.9(2) 

C(2) C(1) N(1) 120.0(2) 

C(2) C(1) C(6) 120.9(3) 

C(6) C(1) N(1) 119.1(3) 

C(8) C(9) C(10) 103.3(2) 

C(9) C(8) C(7) 103.8(2) 

N(3) C(12) C(13) 107.7(2) 

N(3) C(12) C(17) 108.38(19) 
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Table 8.6 continued. 

Atom Atom Atom Angle/° 

C(13) C(12) C(17) 113.4(2) 

C(6) C(5) C(4) 120.9(2) 

C(15) C(14) C(13) 109.3(2) 

C(23) C(24) C(19) 120.6(3) 

C(16) C(15) C(14) 109.6(2) 

C(15) C(16) C(17) 113.0(2) 

C(21) C(22) C(23) 118.8(3) 

C(22) C(21) C(20) 121.3(3) 

C(5) C(6) C(1) 119.8(3) 

C(22) C(23) C(24) 120.7(3) 

 

Table 8.7. Hydrogen fractional atomic coordinates (×104) and equivalent isotropic displacement 

parameters (Å2×103) for (R,R,S)-6.6a. Ueq is defined as 1/3 of the trace of the orthogonalised Uij. 

Atom x y z Ueq 

H(5) 3321.08 7197.91 8913.38 38 

H(3A) 7762.95 3886.18 8902.41 30 

H(3B) 6908.29 4675.35 8440.6 30 

H(4) 6448.15 6640.28 9641.72 35 

H(3) 9847.41 3524.03 4613.31 42 

H(10) 6913.65 3452.08 7335.34 32 

H(20) 2697.29 6091.85 6830.81 44 

H(7A) 12419.05 3018.18 5875.77 42 

H(7B) 10274.41 2335.73 5767.24 42 

H(13A) 12260.76 4160.7 9762.27 40 

H(13B) 9976.46 3816.91 10218.09 40 

H(2) 7758.09 4342.65 3489.89 44 
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Table 8.7 continued. 

Atom x y z Ueq 

H(17) 6072.1 4931.29 10060.52 33 

H(11A) 11374.81 4056.7 8145.41 35 

H(11B) 9864.08 4728.49 7512.74 35 

H(9A) 10063.45 2548.28 8326 40 

H(9B) 8429.74 2078.41 7536.33 40 

H(8A) 12186.77 1773.07 7072.59 46 

H(8B) 13196.22 2706.15 7398.88 46 

H(12) 10324.66 5411.17 9219.42 32 

H(5A) 5861.78 4607.1 6536.72 43 

H(14A) 12686.91 4355.52 11385.8 42 

H(14B) 12815.08 5272.61 10881.65 42 

H(24) -593.05 7745.51 8492.61 47 

H(15A) 8611.54 4604.91 11626 42 

H(15B) 10183.84 5374.57 12077.14 42 

H(16A) 9240.87 6269.16 10791.57 38 

H(16B) 6872.49 5971.26 11219.88 38 

H(22) -3492.28 7266.24 5932.36 53 

H(21) -353.19 6321.18 5691.44 51 

H(6) 3754.98 5399.17 5397.94 48 

H(23) -3544.98 7999.81 7330.71 55 

 

8.5.3.2. Crystal data of (R)-6.17 

C12H16N2O5S, Mr = 300.33, monoclinic, P21 (No. 4), a = 5.32850(10) Å, b = 10.3138(3) Å, 

c = 12.9123(4) Å,  = 98.477(3)°,  =  = 90°, V = 701.87(3) Å3, T = 294(4) K, Z = 2, Z' = 1, 

(Cu K) = 2.258, 8519 reflections measured, 2888 unique (Rint = 0.0180) which were used in all 

calculations. The final wR2 was 0.0800 (all data) and R1 was 0.0279 (I > 2(I)). 
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Table 8.8. Fractional atomic coordinates (×104) and equivalent isotropic displacement parameters 

(Å2×103) for (R)-6.17. Ueq is defined as 1/3 of the trace of the orthogonalised Uij. 

Atom x y z Ueq 

S1 6625.8(9) 2711.3(6) 5121.9(4) 57.21(17) 

O3 7597(3) 2653(2) 6324.9(11) 56.3(3) 

O1 7604(5) 1655(3) 4608(2) 89.0(7) 

O2 3964(3) 2860(3) 5045.5(16) 82.9(6) 

N1 10716(4) 3685(3) 8178.0(16) 63.5(5) 

N2 4664(6) 8081(3) 8352(3) 91.0(9) 

C7 9160(4) 4730(3) 8184.9(17) 55.0(5) 

O4 4919(7) 8994(4) 7739(3) 123.1(11) 

O5 3232(6) 8122(4) 9010(3) 124.3(12) 

C10 6151(5) 6919(3) 8282(2) 67.0(6) 

C9 5927(5) 5901(3) 8937(2) 70.1(7) 

C8 7393(5) 4812(3) 8900.0(19) 63.3(6) 

C12 9303(5) 5788(3) 7513(2) 63.4(6) 

C11 7842(6) 6871(3) 7561(2) 70.1(7) 

C2 10175(4) 2160(3) 6709(2) 61.0(6) 

C6 10748(6) 2621(4) 8927(2) 78.0(7) 

C3 11701(4) 3283(3) 7235(2) 65.3(6) 

C4 9885(7) 1054(3) 7443(3) 82.8(9) 

C5 9067(7) 1518(3) 8471(3) 80.8(8) 

C1 7939(7) 4145(4) 4736(3) 83.1(9) 

 

  



 
 

Chapter 8 
 

323 
 

Table 8.9. Anisotropic displacement parameters (×104) for (R)-6.17. The anisotropic displacement factor exponent takes the form:  

-22[h2a*2 × U11+ ... +2hka* × b* × U12] 

Atom U11 U22 U33 U23 U13 U12 

S1 49.0(3) 70.7(3) 53.4(3) -3.8(3) 12.42(17) -4.2(3) 

O3 50.6(7) 67.3(8) 52.9(7) 1.5(8) 13.8(5) 11.4(8) 

O1 94.2(15) 97.3(17) 76.7(14) -28.6(13) 15.9(12) 4.5(13) 

O2 47.5(8) 131.0(19) 70.4(11) 2.7(13) 8.8(7) -2.8(13) 

N1 64.0(11) 77.2(14) 49.1(10) 1.8(9) 7.3(9) 6.7(10) 

N2 89.4(16) 98(2) 78.9(17) -34.4(15) -10.9(14) 23.8(15) 

C7 51.0(10) 71.0(13) 41.5(10) -5.3(9) 1.5(8) -4.7(10) 

O4 135(3) 96.8(19) 133(3) 6.4(19) 7(2) 45.5(19) 

O5 125(2) 140(3) 109(2) -48.4(19) 22.9(17) 43(2) 

C10 67.0(14) 75.6(16) 54.4(13) -18.4(11) -4.6(11) 7.7(12) 

C9 66.9(14) 92.4(18) 52.5(13) -22.0(12) 13.5(11) -1.3(13) 

C8 69.4(14) 76.3(15) 45.8(11) -4.0(10) 14.1(10) -5.9(12) 

C12 62.1(13) 77.3(16) 52.1(12) 0.0(11) 13.1(10) 0.1(11) 

C11 76.6(15) 71.5(16) 59.8(15) 2.4(11) 2.2(12) 3.8(13) 

C2 54.3(11) 65.5(13) 65.5(14) 1.0(11) 16.8(10) 20.5(10) 

C6 78.5(14) 94.7(19) 58.3(13) 19.2(17) 1.6(11) 21.1(18) 

C3 48.3(11) 86.7(16) 62.1(13) 0.6(12) 12.0(10) 11.7(11) 

C4 98(2) 63.4(15) 89(2) 12.3(14) 20.0(17) 30.2(15) 

C5 95(2) 74.4(17) 74.2(18) 30.3(15) 16.3(15) 21.0(16) 

C1 79.8(18) 93(2) 74.9(19) 25.1(16) 6.2(15) -14.0(16) 

 

Table 8.10. Bond lengths in Å for (R)-6.17. 

Atom Atom Length/Å 

S1 O3 1.5644(15) 

S1 O1 1.414(2) 

S1 O2 1.4155(17) 

S1 C1 1.739(3) 

O3 C2 1.480(3) 
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Table 8.10 continued. 

 Atom Atom Length/Å 

N1 C7 1.360(4) 

N1 C6 1.461(4) 

N1 C3 1.455(3) 

N2 O4 1.250(5) 

N2 O5 1.223(5) 

N2 C10 1.447(4) 

C7 C8 1.415(3) 

C7 C12 1.403(4) 

C10 C9 1.365(5) 

C10 C11 1.388(4) 

C9 C8 1.373(4) 

C12 C11 1.368(4) 

C2 C3 1.517(4) 

C2 C4 1.505(4) 

C6 C5 1.513(5) 

C4 C5 1.533(5) 

 

Table 8.11. Bond angles in ° for (R)-6.17 

Atom Atom Atom Angle/° 

O3 S1 C1 103.22(15) 

O1 S1 O3 110.18(15) 

O1 S1 O2 119.04(17) 

O1 S1 C1 109.20(18) 

O2 S1 O3 104.77(10) 

O2 S1 C1 109.21(19) 
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Table 8.11 continued. 

Atom Atom Atom Angle/° 

C2 O3 S1 120.06(14) 

C7 N1 C6 122.6(2) 

C7 N1 C3 121.8(2) 

C3 N1 C6 111.6(3) 

O4 N2 C10 118.2(3) 

O5 N2 O4 123.4(3) 

O5 N2 C10 118.4(4) 

N1 C7 C8 121.1(2) 

N1 C7 C12 121.6(2) 

C12 C7 C8 117.3(2) 

C9 C10 N2 119.9(3) 

C9 C10 C11 120.9(3) 

C11 C10 N2 119.2(3) 

C10 C9 C8 120.3(2) 

C9 C8 C7 120.6(3) 

C11 C12 C7 121.6(2) 

C12 C11 C10 119.3(3) 

O3 C2 C3 107.3(2) 

O3 C2 C4 107.1(2) 

C4 C2 C3 113.2(3) 

N1 C6 C5 111.0(2) 

N1 C3 C2 110.9(2) 

C2 C4 C5 112.2(2) 

C6 C5 C4 110.1(3) 
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Table 8.12. Torsion angles in ° for (R)-6.17 

Atom Atom Atom Atom Angle/° 

S1 O3 C2 C3 114.5(2) 

S1 O3 C2 C4 -123.6(2) 

O3 C2 C3 N1 66.5(3) 

O3 C2 C4 C5 -70.4(4) 

O1 S1 O3 C2 34.7(3) 

O2 S1 O3 C2 163.8(2) 

N1 C7 C8 C9 176.5(2) 

N1 C7 C12 C11 -176.2(2) 

N1 C6 C5 C4 56.4(3) 

N2 C10 C9 C8 -177.8(2) 

N2 C10 C11 C12 178.1(2) 

C7 N1 C6 C5 95.7(3) 

C7 N1 C3 C2 -99.6(3) 

C7 C12 C11 C10 -0.9(4) 

O4 N2 C10 C9 180.0(3) 

O4 N2 C10 C11 1.6(4) 

O5 N2 C10 C9 0.2(4) 

O5 N2 C10 C11 -178.1(3) 

C10 C9 C8 C7 0.2(4) 

C9 C10 C11 C12 -0.2(4) 

C8 C7 C12 C11 1.5(4) 

C12 C7 C8 C9 -1.2(4) 

C11 C10 C9 C8 0.5(4) 

C2 C4 C5 C6 -49.5(4) 

C6 N1 C7 C8 -2.7(4) 
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Table 8.12 continued. 

Atom Atom Atom Atom Angle/° 

C6 N1 C7 C12 174.8(3) 

C6 N1 C3 C2 58.3(3) 

C3 N1 C7 C8 152.8(2) 

C3 N1 C7 C12 -29.6(4) 

C3 N1 C6 C5 -62.0(3) 

C3 C2 C4 C5 47.7(4) 

C4 C2 C3 N1 -51.5(3) 

C1 S1 O3 C2 -81.9(3) 

 

Table 8.13. Hydrogen fractional atomic coordinates (×104) and equivalent isotropic displacement 

parameters (Å2×103) for (R)-6.17. Ueq is defined as 1/3 of the trace of the orthogonalised Uij. 

Atom x y z Ueq 

H9 4775.66 5945.89 9411.99 84 

H8 7222.74 4122.21 9348.45 76 

H12 10418.74 5752.11 7023.9 76 

H11 7980.16 7567.72 7115.56 84 

H2 10966.99 1846.7 6117.63 73 

H6A 10164.57 2933.73 9558.4 94 

H6B 12472.73 2309.08 9114.44 94 

H3A 13461.67 3024.58 7414.89 78 

H3B 11630.51 4007.28 6752.51 78 

H4A 11487.64 597.02 7597.04 99 

H4B 8632.09 450.53 7102.27 99 

H5A 7315.88 1805.45 8341.86 97 

H5B 9184.23 805.51 8966.22 97 

H1A 7432.99 4852.65 5142.1 125 
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Table 8.13 continued. 

Atom x y z Ueq 

H1B 7352.08 4297.22 4007.52 125 

H1C 9755 4075.41 4847.04 125 
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8.5. Abbreviations 

AcOH acetic acid 

aq aqueous 

a.u. arbitrary unit 

Anal. Combustion elemental analysis 

APCI atmospheric pressure chemical ionization 

Boc tert-butoxycarbonyl 

Bq bequerel 

br s broad singulet  

Bmax maximum number of binding sides 

Bn benzyl 

BSA Bovine serum albumin 

BRET bioluminescence energy transfer 

c concentration 

Cbz benzyloxycarbonyl 

CHO cells Chinese hamster ovary cells 

CH2Cl2 dichloromethane 

COSY correlated spectroscopy 

°C degrees Celsius 

d doublet 

δ chemical shift in parts per million 

DCC N,N’-dicyclohexylcarbodiimide 

DIPEA N,N-diisopropylethylamine 

DMEM Dulbecco’s modified eagle medium 

DMF N,N’-dimethylformamide 

DMSO dimethylsulfoxide 

dpm disintegrations per minute  

EC50 agonist concentration which induces 50% of the maximum response 

EDC∙HCl 1-ethyl-3-(3-dimethylaminopropyl)carbodiimid hydrochloride 

ESI Electrospray ionization 
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Et3N triethylamine 

EtOAc ethyl acetate 

Et2O diethyl ether 

EtOH ethanol 

FCS fetal calf serum 

Fmoc 9-fluorenylmethoxycarbonyl 

FRET Förster resonance energy transfer 

h hour(s) 

GPCR G-protein coupled receptor 

G418 geneticin 

HBSS Hank’s balanced salt solution 

HEC-1b human endometrial carcinoma cells 

HEK293 human embryonic kidney cells 

HEL cells human erythroleukemia cells 

HEPES 2-(4-(2-hydroxyethyl)-1-piperazinyl)ethanesulfonic acid 

HMBC heteronuclear multiple bond correlation 

HPLC high-performance liquid chromatography 

hPP human pancreatic polypeptide 

HOBt 1-hydroxybenzotriazole 

HR-MS high resolution mass spectrometry 

HSQC heteronuclear single quantum coherence 

IC50 inhibitor concentration which supresses 50% of an agonist induced effect or 

displaces 50% of labelled ligand from the binding side 

J coupling constant in NMR spectroscopy (Hz) 

k retention factor 

Kb dissociation rate constant derived from a functional assay 

Kd dissociation rate constant derived from a saturation binding assay 

Ki dissociation constant derived from a competition binding assay 

kobs observed association constant 

koff dissociation rate constant 
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kon association rate constant 

L-15 Leibovitz’s L-15 medium 

m multiplet 

M molar (mol ∙ L-1) 

MeOH methanol 

min minute 

m/z mass to charge ratio 

M+ parent molecular ion 

NHS N-hydroxysuccinimide 

NMR nuclear magnetic resonance 

NOESY nuclear Overhauser effect spectroscopy 

NLuc Nanoluc 

(p)NPY (porcine) neuropeptide Y 

on over night 

Pbf 2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl 

PBS phosphate buffered saline 

PCC pyridiniumchlorochromate 

PET positron emission tomography 

Ph phenyl 

PYY peptide YY 

q quartet 

RP reversed phase 

rt room temperature 

SAR Structure-activity relationship 

s singlet 

SEM standard error of the mean 

t time or triplet 

tBu tert-butyl 

TBS tert-Butyldimethylsilyl 

TLC thin layer chromatography 
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TFA trifluoroacetic acid 

THF tetrahydrofurane 

tR retention time 

t1/2 half time 

UV ultraviolet 

YxR NPY receptor subtypes (X = 1, 2, 4, 5) 
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