Synthesis and pharmacological characterization of argininamide-type neuropeptide \mathbf{Y} (NPY) Y_{1} and Y_{2} receptor antagonists and synthesis of non-peptide potential NPY Y_{4} receptor ligands

Dissertation
zur Erlangung des Doktorgrades der Naturwischenschaften
(Dr. rer. nat.)
an der Fakultät für Chemie und Pharmazie an der Universität Regensburg
vorgelegt von
Jonas Buschmann
aus Aachen

Die vorliegende Arbeit entstandt in der Zeit von April 2015 bis April 2020 unter der Leitung von Herrn Prof Dr. Günther Bernhardt und Prof. Dr. Armin Buschauer (verstorben am 18.07.2017) am Institut für Pharmazie der Fakultät für Chemie und Pharmazie der Universität Regensburg.

Das Promotionsgesuch wurde eingereicht am: 12.06.2020

Tag der mündlichen Prüfung:
Vorsitzender des Prüfungsausschusses:
Erstgutachter:
Zweitgutachter:
3. Prüfer:
24.07.2020

Prof. Dr. Dominik Horinek
Prof. Dr. Günther Bernhardt
Prof. Dr. Bernhard Wünsch (WWU Münster)
Prof. Dr. Sigurd Elz

Publication (published prior to the submission of the thesis)

Buschmann, J.; Seiler, T.; Bernhardt, G.; Keller, M.; Wifling, D. Argininamide-type neuropeptide Y Y_{1} receptor antagonists: the nature of N^{ω}-carbamoyl substituents determines $\mathrm{Y}_{1} \mathrm{R}$ binding mode and affinity. RSC Med. Chem. 2020, 11, 274-282.

Poster presentations

Buschmann, J; Bauer, T.; Keller, M.; Bernhardt, G.; Buschauer, A. Synthesis and characterization of neuropeptide Y (NPY) Y_{1} receptor antagonists related to UR-MK299. $8^{\text {th }}$ International Summerschool "Medicinal Chemistry" 2016, Regensburg, Germany.

Buschmann, J; Bauer, T.; Keller, M.; Bernhardt, G.; Buschauer, A. In search for new molecular tools for the neuropeptide Y (NPY) Y_{1} and Y_{2} receptor based on argininamide-type ligands. Frontiers in Medicinal Chemistry, 2018, Jena, Germany.

Buschmann, J; Bauer T; Fricke, F; Müller, C; Keller, M; Bernhardt, G.; Buschauer, A. SAR of URMK299 derived argininamide-type neuropeptide Y (NPY) Y_{1} receptor antagonists and synthesis of potential NPY Y_{2} receptor radioligands. $9^{\text {th }}$ International Summerschool "Medicinal Chemistry" 2018, Regensburg, Germany.

Buschmann, J.; Bauer, T.; Keller, M.; Bernhardt, G.; Buschauer, A. Argininamide-type neuropeptide Y (NPY) Y_{1} and Y_{2} receptor antagonists: SAR at the $Y_{1} R$ and synthesis of potential molecular tools for the $Y_{2} R$. DPhG Annual Meeting 2018, Hamburg, Germany.

Acknowledgements and declarations of collaborations

An dieser Stelle möchte ich mich bedanken bei:

Herrn Prof. Dr. Günther Bernhardt für seine wissenschaftlichen Ratschläge vor allem bei biologischen Testungen, die gute Betreuung, die Hilfe beim Schreiben des Manuskripts (Vgl. Chapter 2) und die konstruktive Kritik bei der Durchsicht der Arbeit.

Herrn Prof. Dr. Armin Buschauer (verstorben am 18.07.2017) für die Möglichkeit der Mitarbeit an einem interessanten und anspruchsvollen Forschungsprojekt, sowie seine wissenschaftlichen Förderungen.

Herrn Dr. David Wifling für die Übernahme der Senior-Autorenschaft, der Hilfe beim Schreiben des Manuskripts sowie der Durchführung der "Molecular-Docking" und "Molecular-Dynamics" Simulationen (Vgl. Chapter 2).

Herrn Dr. Max Keller für die wissenschaftlichen Ratschläge, die Organisierung von Synthese und Lehrstuhlseminaren, die Hilfe beim Schreiben des Manuskripts (Vgl. Chapter 2) und die konstruktive Kritik bei der Durchsicht der Arbeit.

Frau Theresa Sailer (geb. Bauer) für die Synthese folgender Verbindungen 2.39, 2.42, 2.53-2.55 und der pharmakologischen charakteriaserung folgender Verbindungen 2.53-2.55 im Rahmen Ihrer Masterarbeit (Universität Regensburg, 2016) (Vgl. Chapter 2).

Herrn Lukas Grätz für für die Charakterisierung des Fluoreszenzliganden 4.58 (Sättigungsexperimente, Experimente zur Kinetik) (Vgl Chapter 4, Chapter 5) und die Bindungsexperimente von pNPY. Die Kultivierung der Zellen und das Einarbeiten von Frau Maria Beer-Krön in den BRET Bindungsexperimente.

Frau Carina Höring für für die Durchführung des "miniG Protein recruitment assays" und die Charakterisierung von pNPY, 4.1 und 4.75. Ebenso für die Unterstützung bei der Kultivierung der Zellen, so dass ich die weitere Verbindungen in Ihrem Testsystem charakterisieren konnte (Vgl. Chapter 4).

Herrn Dr. Timo Littmann für die Hilfe beim Erlernen des " β-Arrestin2 recruitment assays" (Vgl. Chapter 3, Chapter 4, Chapter 5) und den Radioliganden-Bindungsexperimenten am Y2R (Vgl. Chapter 4, Chapter 5).

Herrn Christoph Müller für seine wissenschaftlichen Ratschläge und die Synthese von Verbindung 2.4 (Vgl. Chapter 2, Chapter 5).

Frau Lisa Sauer und Dr. Stefanie Michaelis für die Hilfe bei der Durchführung der KonfokalmikroskopieExperimente.

Frau Dr. Stefanie Dukorn für die Kultivierung verschiedener Zelllinien und die Beantwortung vieler Fragen bezüglich Radioligandenbindungsexperimenten am $Y_{2} R$.

Meinen engagierten Forschungspraktikanten Maria Deichner, Alexander Reichle, Alexander Hubmann, Simon Scheuerer und Florian Fricke und Wahlpflichtfachstudenten Sebastian Prien und Markus Scheiblecker für die Unterstützung bei zahlreichen Synthesen.

Frau Brigitte Wenzl für die Kultivierung verschiedener Zelllinien und die Durchführung zahlreicher Radioligand Bindungsstudien am $\mathrm{Y}_{1} \mathrm{R}$ (Vgl. Chapter 2, Chapter 3, Chapter 4, Chapter 5).

Frau Elvira Schreiber für die tatkräftige Unterstützung bei der Durchführung von Fura-2 Ca^{2+} assays (Chapter 2).

Frau Susanne Bollwein für die Kultivierung verschiedener Zelllnien und die Hilfe bei der Durchführung von Radioligandenbindungsexperimenten an $Y_{2} R$ und $Y_{5} R$.

Frau Maria Beer-Krön für die Kultivierung verschiedener Zelllinien und die Hilfe bei der Durchführung der BRET Bindungs-Experimente (Vgl. Chapter 4, Chapter 5).

Frau Lydia Schneider für die Unterstützung bei der Durchführung von Fura-2 Ca^{2+} assays (Chapter 2) und Radioligand-Bindungsexperimenten am $\mathrm{Y}_{5} R$ (Chapter 4).

Den Mitarbeitern der Zentralen Analytik für die Durchführung der NMR-Spektroskopie, Massenspektrometrie, Elementaranalysen und Röntgenstrukturanalyse. Insbesondere Herrn Fritz Kastner, der zahlreiche NMR spektren aufgenommen hat.

Den Mitarbeitern Feinmechanische Werkstatt Chemie \& Pharmazie für die Anfertigung der Absaugbrücke und Herrn Andreas Graf für die Bereitstellung der technischen Zeichnungen.

Herrn Peter Richthammer für die netten Gespräche und seine Hilfsbereitschaft bei der Lösung technischer Probleme jeder Art.

Allen Mitgliedern des Lehrstuhls für Ihre Kollegialität und das gute Arbeitsklima.
Mein besonder Dank gilt Christoph Müller, Xueke She (Coco), Matthias Scholler, José-Esteban Olbreque Balboa, Adam Konieczny, Sabrina Biselli, Timo Littmann, Edith Bartole, Lukas Grätz, JianfeiWan, Frauke Antoni, Carina Höring, Katharina Tropmann, Lisa Schindler, Lisa Forster, Ulla Seibel und Andrea Pegoli für Persönliche Unterstützung und aufmunternde Gespräche.

Ein besonder Dank gilt Christoph Müller, Lukas Wirth, Simon Scheuerer, Lukas Grätz für die gemeinsamen Abende an der Uni oder in Stadt mit einem kühlen Bier.

Ich möchte mich herzlichst bei Herrn Dr. Alastair Donald für die kritische Durchsicht der vorliegenden Arbeit, die vielen wertvollen Kommentare sowie die sprachlichen Hinweise bedanken. Ebenso möchte ich Herrn Dr. Michael Gruß für die Hinweise und Kommentare bezüglich Kristallstrukuren (Vgl. Chapter 6) danken.

Abschließend möchte ich mich bei meinen Eltern, meiner Schwester Hannah und meinem Bruder Simon für Ihre Unterstützung über die letzten 5 Jahre bedanken. An dieser Stelle sei auch Werner und Lis gedankt. Ebenso möchte ich mich bei Arber Shima bedanken, der mir bei einigen Formatierungsproblemen geholfen hat und in den letzten 5 Jahren zu einem guten Freund geworden ist.

Contents

1. General introduction1
1.1. Neuropeptide Y (NPY) receptors: endogenous ligands, signalling pathway and biological effects 2
1.2. NPY $Y_{1} R$ and ligands 3
1.3. NPY $Y_{2} R$ and ligands4
1.4. NPY $\mathrm{Y}_{4} R$ and ligands 5
1.5. NPY $\mathrm{Y}_{5} R$ and ligands 7
1.6. Scope 8
1.7. References 10
2. Argininamide-type neuropeptide $Y Y_{1}$ receptor antagonists: the nature of $\boldsymbol{N}^{\boldsymbol{\omega}}$-carbamoyl substituents determines $Y_{1} R$ binding mode and affinity 21
2.1. Introduction 22
2.2. Results and discussion 24
2.2.1. Synthesis 24
2.2.2. Competition binding and functional studies 25
2.2.3. Correlation of $\mathrm{p} K_{\mathrm{i}}$ values with van der Waals volumes of the carbamoyl residues 28
2.2.4. Induced fit docking and molecular dynamics (MD) simulations 29
2.3. Conclusion 31
2.4. Experimental section 32
2.4.1. General experimental conditions 32
2.4.2. Synthesis protocols and analytical data 33
2.4.3. Investigation of the chemical stability of 2.56, 2.58-2.61, 2.63 and 2.68 52
2.4.4. Pharmacological methods: radioligand competition binding assay in SK-N-MC cells and Fura-2 Ca^{2+} assay 52
2.4.4.1. Radioligand competition binding assay in SK-N-MC cells 52
2.4.4.2. Fura-2 Ca^{2+} assay 52
2.4.5. Screening for pan-assay interference compounds (PAINS) 52
2.4.6. Computational chemistry 52
2.4.6.1. Receptor and ligand preparation 52
2.4.6.2. Induced-fit docking 53
2.4.6.3. Molecular dynamics (MD) simulation 53
2.4.7. Calculation of van der Waals volumes 53
2.4.8. Data analysis 54
2.5. References 55
3. Additional characterization of argininamide-type neuropeptide $Y Y_{1}$ receptor antagonists presented in chapter 2: β arrestin2 recruitment, $Y_{1} R$ selectivity and investigation of potential irreversibly binding ligands 59
3.1. Introduction 60
3.2. Results and discussion 60
3.2.1. Pharmacological methods: $Y_{1} R$ antagonism ($p K_{b}$) in a β-arrestin2 recruitment assay, NPY Y_{1} R subtype selectivity and potential irreversibly binding ligands (2.60 and 2.63) 60
3.2.1.1. Determination of $p K_{b}$ values in a β-arrestin2 recruitment assay 60
3.2.1.2. NPY $Y_{1} R$ subtype selectivity 62
3.2.1.3. Investigation on potential irreversibly binding ligands (2.60 and 2.63) 63
3.3. Conclusion 68
3.4. Experimental section 69
3.4.1. General experimental conditions 69
3.4.2. Investigation of chemical stability of compounds 2.60 and 2.63 in presence of 2-mercaptoethanol 69
3.4.3. Pharmacological methods: cell culture, β-arrestin2 recruitment assay ($Y_{1} R$), saturation binding assay, radioligand binding assay for $h Y_{4} R$ and $h Y_{5} R$ 69
3.4.3.1. Cell culture 69
3.4.3.2. $\quad \beta$-Arrestin2 recruitment assay ($\mathrm{Y}_{1} \mathrm{R}$) 70
3.4.3.3. Saturation binding assay 71
3.4.3.4. Radioligand binding assay for $h Y_{4} R$ and $h Y_{5} R$ 71
3.4.4. Data analysis 72
3.5. References 73
4. Synthesis, pharmacological characterization and application of the fluorescent (S)-argininamide-type $\mathrm{h} \mathrm{Y}_{2} \mathrm{R}$ antagonist UR-jb264 (4.58) 75
4.1. Introduction 76
4.2. Results and discussion 78
4.2.1. Synthesis 78
4.2.2. Investigation of the chemical stability of $4.50,4.51$ and 4.58 83
4.2.3. Fluorescence properties 84
4.2.4. Pharmacological methods: $\mathrm{Y}_{2} R$ affinity ($\mathrm{p} K_{\mathrm{i}}$) and antagonism ($\mathrm{p} K_{b}$) of synthesized (S)-argininamides, application of 4.58 to BRET based binding assays and confocal microscopy, NPY Y2R subtype selectivity 86
4.2.4.1. Radioligand binding assay in HEK293T hY 2 R + β Arr2 cells 86
4.2.4.2. Determination of $p K_{b}$ values in a β-arrestin2 recruitment assay 89
4.2.4.3. Determination of $p K_{b}$ values in a miniG protein recruitment assay 91
4.2.4.4. Application of $\mathbf{4 . 5 8}$ to BRET based binding assays 92
4.2.4.5. Application of $\mathbf{4 . 5 8}$ to confocal microscopy 98
4.2.4.6. NPY $\mathrm{Y}_{2} R$ subtype selectivity 99
4.3. Conclusion 100
4.4. Experimental section 101
4.4.1. General experimental conditions 101
4.4.2. Synthesis protocols and analytical data 102
4.4.3. Investigation of the chemical stability of $4.50,4.51$ and 4.58 129
4.4.4. Fluorescence properties 130
4.4.5. Pharmacological methods: cell culture, crystal violet assay, saturation and competition binding experiments with [$\left.{ }^{3} \mathrm{H}\right]$ propionyl-pNPY in HEK293T β Arr2 $+\mathrm{Y}_{2} \mathrm{R}$ cells, β-arrestin2 recruitment assay ($\mathrm{Y}_{2} \mathrm{R}$), miniG protein recruitment assay, BRET based binding assay, confocal microscopy and radioligand binding assay for $h Y_{1} R, h Y_{4} R$ and $h Y_{5} R$ 130
4.4.5.1. Cell culture 130
4.4.5.2. Crystal violet assay 131
4.4.5.3. Saturation and competition binding with [$\left.{ }^{3} \mathrm{H}\right]$ propionyl-pNPY in HEK293T β Arr2 + Y2R cells 132
4.4.5.4. $\quad \beta$-Arrestin2 recruitment assay $\left(\mathrm{Y}_{2} \mathrm{R}\right)$ 133
4.4.5.5. MiniG protein recruitment assay 134
4.4.5.6. BRET based binding assay 134
4.4.5.7. Confocal microscopy 135
4.4.5.8. Radioligand binding assay for $h Y_{1} R, h Y_{4} R$ and $h Y_{5} R$ 136
4.4.6. Data analysis 136
4.5. References 138
5. In search for labelled $Y_{2} R$ antagonists: synthesis and pharmacological characterization of labelling precursors and "cold" forms of potential $Y_{2} R$ radioligands obtained by modification of the (S)-argininamide BIIE-0246 at the dibenzoazepinone moiety 145
5.1. Introduction 146
5.2. Results and discussion 147
5.2.1. Synthesis 147
5.2.2. Investigation of the chemical stability of 4.23, 4.24, 4.27, 5.9, 5.30 and 5.32 149
5.2.3. Pharmacological methods: $\mathrm{Y}_{2} R$ affinity ($\mathrm{p} K_{\mathrm{i}}$) and antagonism ($\mathrm{p} K_{\mathrm{b}}$) of synthesized (S)-argininamides 150
5.2.3.1. Determination of $p K_{i}$ values in a radioligand binding assay in HEK293T $\mathrm{hY} \mathrm{Y}_{2} \mathrm{R}+$
β Arr2 cells 151
5.2.3.2. Determination of $p K_{i}$ values in a BRET based binding assay 152
5.2.3.3. Determination of $p K_{b}$ values in a β-arrestin2 recruitment assay 153
5.2.3.4. NPY $Y_{2} R$ subtype selectivity 154
5.3. Conclusion 155
5.4. Experimental section 156
5.4.1. General experimental conditions 156
5.4.2. Synthesis protocols and analytical data 157
5.4.3. Investigation of the chemical stability of 4.23, 4.24, 4.27, 5.9, 5.30 and 5.32 171
5.4.4. Pharmacological methods: cell culture, radioligand competition binding assay on HEK293T β Arr2 $+Y_{2}$ R cells, BRET based binding assay and β-arrestin2 recruitment assay $\left(Y_{2} R\right)$, radioligand binding assay for $h Y_{1} R$, $h Y_{4} R$ and $h Y_{5} R$ 171
5.4.4.1. Cell culture 171
5.4.4.2. Radioligand competition binding assay in HEK293T β Arr2 $+Y_{2} R$ cells 171
5.4.4.3. BRET based binding assay 171
5.4.4.4. $\quad \beta$-Arrestin2 recruitment assay ($\mathrm{Y}_{2} \mathrm{R}$) 171
5.4.4.5. Radioligand binding assay for $h Y_{1} R, h Y_{4} R$ and $h Y_{5} R$ 171
5.4.5. Data analysis 171
5.5. References 172
6. Synthesis and pharmacological investigation of substituted (R, R)-diaminocyclohexanes as potential non-peptide ligands for the $h Y_{4} R$ 175
6.1. Introduction 176
6.2. Results and discussion 178
6.2.1. Annotation concerning stereochemistry 178
6.2.2. Synthesis 178
6.2.3. Pharmacological methods: investigations of test compounds in a radioligand binding assay, an aequorin Ca^{2+} assay and a cytotoxicity assay (live/dead staining) 183
6.2.3.1. Displacement studies of investigated compounds in a radioligand competition binding assay on $\mathrm{CHO}-\mathrm{h} \mathrm{Y}_{4} \mathrm{R}-\mathrm{G}_{\text {qi5-mtAEQ cells }}$ 184
6.2.3.2. Modulatory effects of test compounds on the action of hPP in an aequorin Ca^{2+} assay 185
6.2.3.3. Investigation of cytotoxicity by ethidium bromide/acridine orange staining (live/dead staining) 187
6.3. Conclusion 187
6.4. Experimental section 189
6.4.1. General experimental conditions 189
6.4.2. Synthesis protocols and analytical data 190
6.4.3. X-Ray crystallography of compounds $(R, R, S)-6.6 \mathrm{~b}$ and $(R)-6.17$ 208
6.4.3.1. $\quad \mathrm{X}$-Ray crystallography of compounds $(R, R, S)-6.6 \mathrm{~b}$ 208
6.4.3.2. X-Ray crystallography of $(R)-6.17$ 210
6.4.4. Pharmacological methods: cell culture, radioligand competition binding assay in $\mathrm{CHO}-\mathrm{h} \mathrm{Y}_{4} \mathrm{R}-\mathrm{G}_{\text {qi5-mtAEQ cells, }}$ aequorin Ca^{2+} assay, ethidium bromide/acridine orange staining (live/dead staining) 212
6.4.4.1. Cell culture 212
6.4.4.2. Radioligand competition binding assay in $\mathrm{CHO}-\mathrm{hY} 4$ R-Gais-mtAEQ cells 212
6.4.4.3. Aequorin Ca^{2+} assay 212
6.4.4.4. Ethidium bromide/acridine orange staining (live/dead staining) 213
6.4.5. Data analysis 213
6.5. References 215
7. Summary 219
8. Appendix 223
8.1. Chapter 2. 224
8.1.1. Supplementary figure 8.1 224
8.1.2. Supplementary table 8.1 225
8.1.3. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectra of compounds 2.53-2.76 226
8.1.4. RP-HPLC purity chromatograms (220 nm) of compounds 2.53-2.76 and 2.78 250
8.1.5. Investigation of the chemical stability of compounds 2.58-2.61, 2.63 and $\mathbf{2 . 6 8}$ 255
8.1.5.1. Supplementary figure 8.2 255
8.1.5.2. Supplementary figure 8.3 256
8.2. Chapter 4 257
8.2.1. Supplementary figure 8.4 257
8.2.2. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of compounds 4.1, 4.5, 4.23, 4.24, 4.27, 4.32, 4.50, 4.51 and 4.75 258
8.2.3. RP-HPLC purity chromatograms (220 nm) of compounds 4.1, 4.5, 4.23, 4.24, 4.27, 4.32, 4.50, 4.51, 4.58, 4.59, 4.61, 4.62 and 4.75 270
8.3. Chapter 5 273
8.3.1. Investigation of the chemical stability of compounds 5.9 and 5.30 273
8.3.1.1. Supplementary figure 8.5 274
8.3.2. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectra of compounds 5.9, 5.12, 5.20 and 5.29-5.32 271
8.3.3. RP-HPLC purity chromatograms (220 nm) of compounds 5.9, 5.12, 5.20 and 5.29-5.32 285
8.4. Chapter 6. 287
8.4.1. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of compounds $\left(R, R, S^{*}\right)-\mathbf{6 . 6 a},(R, R, S)-\mathbf{6 . 6 b}$, $\left(R, R, S^{*}\right)-6.7 \mathbf{a},\left(R, R, S^{*}\right)-6.6 \mathbf{b}, 6.7,6.9,6.12,6.13,\left(S^{*}\right)-6.18 \mathbf{a},\left(S^{*}\right)-6.18 \mathbf{b}$, 6.34-6.44, 6.47 and 6.48 287
8.4.2. RP-HPLC purity chromatograms (220 nm) of compounds (R, R, S^{*}) $-\mathbf{6 . 6 a}$, $(R, R, S)-6.6 \mathrm{~b},\left(R, R, S^{*}\right)-6.7 \mathbf{a},\left(R, R, S^{*}\right)-6.6 \mathrm{~b}, 6.7,6.9,6.12,6.13,\left(S^{*}\right)-6.18 \mathbf{a}$, $\left(S^{*}\right)-6.18 b, 6.34-6.44,6.47$ and 6.48 310
8.4.3. Crystal data of compounds $(R, R, S)-6.6 \mathbf{a}$ and $(R)-17$ 314
8.4.3.1. Crystal data of (R, R, S)-6.6a 314
8.4.3.2. Crystal data of $(R)-6.17$ 321
8.5. Abbreviations 329
8.6. References 333

Chapter 1

General introduction

1.1. Neuropeptide Y (NPY) receptors: endogenous ligands, signalling pathway and biological effects

The neuropeptide Y (NPY) receptors belong to the superfamily of G-protein coupled receptors (GPCRs) class A (rhodopsin-like receptors). ${ }^{1}$ Four different subtypes ($Y_{1} R,{ }^{2,3} Y_{2} R,{ }^{4-6} Y_{4} R,,^{7-9}$ and $Y_{5} R^{9,}{ }^{10}$) are functional in human beings and distributed both in the central nervous system (CNS) and the periphery. ${ }^{11,12}$ The $Y_{6} R$ is not functional in humans, absent in rats and proved to be functional in mice and rabbits. ${ }^{13}$ These receptors are activated by a family of peptides (neuropeptide Y (NPY), peptide YY (PYY) and pancreatic polypeptide (PP)), which share (structural) similarities such as a sequence comprising 36 amino acids, a large number of tyrosine residues and an amidated C -terminus (Figure
 PP binds preferentially to the $\mathrm{Y}_{4} \mathrm{R}$. ${ }^{14}$ Porcine neuropeptide Y (pNPY) shows nearly the same affinity and potency compared to hNPY and is preferably used (in vitro studies) because of its higher chemical stability. ${ }^{16,17}$ The amino acid sequences of the aforementioned peptides differ in position 17, whereas in pNPY the methionine (M) residue is replaced by a leucine (L) residue. ${ }^{16,17}$

YPSKPDNPGEDAPAEDMARYYSALRHYINLITRQRY-NH2	hNPY
YPIKPEAPGEDASPEELNRYYASLRHYLNLVTRQRY-NH	hPYY
APLEPVYPGDNATPEQMAQYAADLRRYINMLTRPRY-NH	
hPP	

Figure 1.1. Amino acid sequences (one letter code) of hNPY, hPYY and hPP.
The NPY receptor subtypes ($\mathrm{Y}_{2} \mathrm{R}$ and $\mathrm{Y}_{4} \mathrm{R}$) show sensitivity to sodium cations, which leads to a discrepancy in determined affinities of agonists in sodium containing and sodium-free buffers. ${ }^{18-20}$ The phenomenon of negative allosteric modulation of the $Y_{4} R$ by sodium cations has also been reported in the literature for other GPCRs (e.g. $\mu O R,{ }^{21} A_{2 A R},{ }^{22} P A R 1{ }^{23}$, $D_{2 L R}{ }^{24}$ and $\beta_{1} A R^{25}$), with sodium cations stabilizing the inactive states of the receptors. ${ }^{26}$ Therefore, affinities of ligands at NPY receptors $\left(Y_{1} R\right.$, $\mathrm{Y}_{2} \mathrm{R}, \mathrm{Y}_{4} \mathrm{R}$ and $\mathrm{Y}_{5} \mathrm{R}$) were determined in radioligand competition binding assays in sodium-containing $\left(Y_{1} R, Y_{5} R\right)$ or sodium-free binding buffer $\left(Y_{2} R, Y_{4} R\right)$ according to published procedures (cf. Chapter 2, 4, and 6). ${ }^{19,27-29}$

When the NPY receptors are activated by endogenous ligands (NPY, PYY or PP), the signalling is mediated by the G_{i} / G_{0} a subunit, which inhibit the adenylyl cyclase (AC). As a result, the transformation of ATP to the second messenger cAMP is prevented. ${ }^{14,30,31}$ It is reported that NPY receptors can activate the phospholipase C (PLC), which catalyzes the production of inositol-1,4,5-trisphosphate (IP_{3}) and leads to Ca^{2+} release from intracellular stores. ${ }^{31-35}$ The extent of the Ca^{2+} response is dependent on the cell-type. ${ }^{30}$

The stimulation of NPY receptors (Table 1.2) by endogenous ligands (NPY, PYY, PP) has an impact on several biological processes that are also involved in multiple diseases: energy homeostasis (obesity, obesity-associated diseases), ${ }^{12,}{ }^{36-41}$ circadian rhythm, ${ }^{42,} 43$ seizures (epilepsy), ${ }^{44,}{ }^{45}$ pain modulation, ${ }^{46, ~} 47$ inhibition of trigeminovascular pathway (migraine), ${ }^{48,} 49$ neurodegeneration (Huntington's and Alzheimer's disease), ${ }^{12, ~ 50-52 ~ b l o o d ~ p r e s s u r e ~(h y p e r t e n s i o n), ~}{ }^{53,} 54$ regulation of processes involved in tumour growth (angiogenesis, cell proliferation) ${ }^{55,56}$ and psychotic disorders (anxiety, schizophrenia, alcohol abuse, depression). ${ }^{12,57-60}$

Table 1.1. Overview of receptor expression ($Y_{1} R, Y_{2} R, Y_{4} R$ and $Y_{5} R$) and biological effects elicited upon stimulation of the individual NPY receptor subtypes

Receptor subtypes	Receptor expression	Biological effects
$Y_{1} R$	brain, blood vessels, heart, kidney, gastrointestinal tract (GIT)	food intake (\uparrow), energy homeostasis (\downarrow), regulation of blood pressure (vasoconstriction), anxiety (\downarrow), seizure (\uparrow), depression (\downarrow), pain sensitivity $(\downarrow$), regulation of ethanol consumption, angiogenesis, inhibition of trigeminovascular pathway (migraine), luteinizing hormone (LH) secretion (\uparrow), gastrointestinal motility (\uparrow)
$\mathrm{Y}_{2} \mathrm{R}$	brain, intestine, blood vessels, liver, spleen, adipose tissue	food intake (\downarrow), energy homeostasis (\uparrow), regulation of blood pressure (bradycardia), anxiety (\uparrow), enhanced memory retention, bone formation (hypothalamic regulated), seizure (\downarrow), depression (\uparrow), pain sensitivity (?), gastrointestinal motility (\downarrow), angiogenesis (\uparrow), schizophrenia-related symptoms (\uparrow), regulation (presynaptic autoreceptor) of NPY release (\downarrow), neurotransmitter release (e.g. noradrenaline) (\downarrow), neuroprotection (associated in patience with Huntington's disease)
$Y_{4} \mathrm{R}$	brain, skeletal muscle, thyroid gland, GIT	food intake (\downarrow), anxiety (?), gastrointestinal motility (\uparrow), LH secretion (\uparrow), pancreatic secretion (\downarrow), gall bladder contraction
$\mathrm{Y}_{5} \mathrm{R}$	brain, intestine, ovary, pancreas, skeletal muscle, spleen	food intake (\uparrow), anxiety (?), seizure (?), angiogenesis (\uparrow), regulation of circadian rhythm, LH secretion (\downarrow)

Information was collected from the following publications: Shende et al. ${ }^{61}$, Gehlert, ${ }^{62}$ Pedrazzini et al., ${ }^{63}$ Yi et al., ${ }^{11}$ Merten et al. ${ }^{64}$ Li et al., ${ }^{65}$ Martins-Oliveira et al., ${ }^{48}$ Chen et al., ${ }^{66}$ Zukowska et al. ${ }^{67}$ and Reichmann et al. ${ }^{12}$

1.2. $N P Y Y_{1} R$ and ligands

The $Y_{1} R$ is expressed in the brain (hypothalamus, hippocampus, neocortex), in blood vessels, heart, kidney and the gastrointestinal tract. ${ }^{61,64,65}$ As the $Y_{1} R$ is overexpressed in different types of cancer (e.g. breast cancer, renal cell carcinomas, ovarian cancer), ${ }^{68-70}$ therefore labelled ligands can be used as imaging agents (PET-ligands). ${ }^{65}$ Furthermore, selective $Y_{1} R$ ligands conjugated to cytotoxic agents (e.g. doxorubicine) could be of potential use in the treatment of breast cancer to reduce side effects in tumour therapy. ${ }^{65,69,71}$ Several structurally diverse and selective non-peptide $Y_{1} R$ antagonists have been reported in literature (Figure 1.2).

The (R)-argininamide-type ligand BIBP- 3226^{72} was the first selective $Y_{1} R$ antagonist, which was intended to mimic the C-terminal part of NPY. A D-alanine scan of NPY revealed the importance of the C-terminal amidated pentapeptide for $Y_{1} R$ and $Y_{2} R$ binding and emphasized the importance of arginine residues 33 and 35 for $Y_{1} R$ binding. ${ }^{73}$ The stereoselectivity of $Y_{1} R$ binding of BIBP-3226 became obvious, as the (S)-enantiomer of BIBP-3226 (BIBP-3435) show very low affinity against $Y_{1} R$ and $Y_{2} R$ $\left(\mathrm{p} K_{\mathrm{i}}<5\right) .^{74}$ The (R)-argininamide type $\mathrm{hY} \mathrm{Y}_{1} \mathrm{R}$ antagonists BIBP-322672, and BIBO-330475 have been used in our group for the synthesis of molecular tools ${ }^{27,76,77}$ (e.g. radio- and fluorescence-labelled ligands) and PET ligands. ${ }^{78,79}$ Additionally, bivalent ligands based on BIBP-3226 have been prepared as molecular tools to investigate $Y_{1} R$ dimerization. ${ }^{80} N^{\omega}$-carbamoylation of BIBP-3226 led to the high affinity
ligands UR-HU-404 ${ }^{27,81}$ and UR-MK29927, the latter being the cold form of the valuable radioligand $\left[{ }^{3} \mathrm{H}\right]$ UR-MK299, useful for the determination of binding constants of non-labelled compounds. ${ }^{82}$ For Xray diffraction analysis, the $h Y_{1} R$ was recently co-crystalized with the selective $Y_{1} R$ antagonists BMS193885 and UR-MK299.83 From the crystal structure, it became obvious that the carbamoylguanidine group of UR-MK299 forms a hydrogen-assisted salt bridge with D2876.59 and the diphenylacetyl residue showed hydrophobic interactions with F282 ${ }^{6.54}$, F286 ${ }^{6.58}$ and F302 ${ }^{7.35} .{ }^{83}$

BMS-193885, $\mathrm{p} K_{\mathrm{i}}=8.48^{e}$

$\mathrm{J}-104870, \mathrm{p} K_{\mathrm{i}}=9.59^{\mathrm{f}}$

PD160170, $\mathrm{p} K_{\mathrm{i}}=7.32^{9}$

Figure 1.2. Structures of selected non-peptide NPY $Y_{1} R$ antagonists. References: (a) Rudolf et al., ${ }^{72}$ (b) Wieland et al., ${ }^{75}$ (c) Hutzler, PhD Thesis, University of Regensburg, 2001, ${ }^{81}$ (d) Keller et al., ${ }^{27}$ (e) Poindexter et al., ${ }^{84}$ (f) Kanatani et al., ${ }^{85}$ (g) Wright et al. ${ }^{86}$, (h) Hipskind et al., ${ }^{87}$ (i) Zarrinmayeh et al., ${ }^{88}$ (j) Leslie et al., ${ }^{89}$ (k) Griffith et al. ${ }^{90}$ Reported K_{i} (IC C_{50}) values were converted to $\mathrm{p} K_{\mathrm{i}}\left(\mathrm{pIC}_{50}\right)$ values.

1.3. $\quad N P Y Y_{2} R$ and ligands

The $Y_{2} R$ is mostly expressed in the brain (hippocampus, thalamus, hypothalamus), intestine, postrema, in blood vessels, liver, spleen and adipose tissue. ${ }^{61,64,65}$ Beside the endogenous ligands NPY and PYY, several selective $Y_{2} R$ agonists (e.g. NPY(13-36), PYY(3-36) $)^{91-93}$ and non-peptide antagonists have been reported (Figure 1.3). The (S)-argininamide BIIE-024694 was the first non-peptide $\mathrm{Y}_{2} R$ selective antagonist with a one-digit nanomolar binding constant determined by radioligand competition binding assay. A D-alanine scan of NPY (as already mentioned previously), revealed the importance of Arg ${ }^{35}$ and Tyr^{36} residues for $\mathrm{Y}_{2} \mathrm{R}$ binding. ${ }^{73}$ Furthermore, site directed mutagenesis of the $Y_{2} R$ and docking
studies in a homology model of the $Y_{2} R$ revealed that the dibenzoazepinone moiety of BIIE-0246 binds in a deep hydrophobic pocket ($L^{4.60}, L^{5.46}, L^{6.51}$) and shows interactions with TM II and VII ($\left.Y^{2.64}, F^{7.35}\right) .{ }^{95}$ Additionally, this study demonstrated that BIIE-0246 and NPY share an interaction, which is not addressed by other antagonists (e.g. derivatives of CYM-9484) with the $\mathrm{Y}_{2} \mathrm{R}$. ${ }^{95}$ The guanidineacylguanidine bioisosteric approach led to a series of BIIE-0246 related $Y_{2} R$ antagonists. ${ }^{96-98}$ These synthesized acylguanidines showed similar affinity and selectivity compared to the lead compound BIIE-0246. ${ }^{96-98}$ This was the starting point in our workgroup for the synthesis of radio-labelled (e.g. $\left[{ }^{3} \mathrm{H}\right]$ UR-PLN196 ${ }^{99}$) , fluorescent ${ }^{98}$ and bivalent ${ }^{98}$ ligands. The N^{ω}-acylated (S)-argininamide [$\left.{ }^{3} \mathrm{H}\right]$ UR-PLN196 ($\mathrm{p} K_{d}=7.2$, reported K_{d} value was converted to $\mathrm{p} K_{d}$ value) was the first selective nonpeptide radioligand at the $\mathrm{Y}_{2} \mathrm{R}$. ${ }^{99}$ Dissociation experiments revealed pseudo-irreversible binding of $\left[{ }^{3} \mathrm{H}\right]$ UR-PLN196 at the Y_{2} R, whilst in functional assays the cold form UR-PLN196 showed insurmountable antagonism. ${ }^{99}$

Figure 1.3. Structures of selected non-peptide NPY $Y_{2} R$ antagonists. References: (a) Doods et al. ${ }^{94}$ (b) Pluym et al., ${ }^{99}$ (c) Dollinger et al., ${ }^{100}$ (d) Ziemek et al., ${ }^{101}$ (e) Mittapalli et al., ${ }^{102}$ (f) Bonaventure et al., ${ }^{103}$ (g) Brothers et al., ${ }^{104}$ (h) Andres et al., ${ }^{105}$ (i) Shoblock et al. ${ }^{106}$ Reported $K_{\mathrm{i}}\left(\mathrm{IC}_{50}\right)$ values were converted to $\mathrm{p} K_{\mathrm{i}}\left(\mathrm{pIC}_{50}\right)$ values.

1.4. $\quad N P Y Y_{4} R$ and ligands

The $Y_{4} R$ is distributed in the brain, skeletal muscle, the thyroid gland and the gastrointestinal tract. ${ }^{61,64,65}$ Several peptidic NPY Y_{4} R ligands are reported in literature (Figure 1.4). Previously Dukorn et al ${ }^{18}$ described an analogue of [Lys $\left.{ }^{4}\right] h P P$ in which methionine residues were replaced by norleucine ([Lys $\left.{ }^{4} \mathrm{Nle}^{17,39}\right] \mathrm{hPP}$) to prevent oxidation of methionine residues. [Lys $\left.{ }^{4} \mathrm{Nle}^{17,39}\right] \mathrm{hPP}$ was used as a precursor for fluorescence- and radio-labelling to obtain molecular tools. ${ }^{18}$

The dimeric peptide BVD-74 is a diastereomeric mixture, which shows high affinity and selectivity for the $\mathrm{Y}_{4} \mathrm{R}$ as reported by Balasubramaniam et al. ${ }^{107}$ BVD-74 contains two C-terminally amidated pentapeptides (Tyr-Arg-Leu-Arg-Tyr-NH2) and 2,7-diaminooctanedioic acid as a linker. Kuhn et al. ${ }^{19}$ and

Liu et al. ${ }^{108}$ have described the stereoselective synthesis of the $(2 R, 7 R)$-diaminooctanedioic acid, which enabled the preparation of $(2 R, 7 R)$-BVD-74. The described compound ($2 R, 7 R$)-BVD-74 showed 5 -fold higher binding affinity (with respect to K_{i} values) to the $Y_{4} R$ than its diastereomer ($2 S, 7 S$)-BVD-74 ($\mathrm{p} K_{\mathrm{i}}=8.6$). ${ }^{19}$ Therefore, $(2 R, 7 R)$-BVD-74 was used as a precursor for radio ($\left.{ }^{3} \mathrm{H}\right] \mathrm{UR}-\mathrm{KK} 193$) and fluorescence labelling (Figure 1.4). ${ }^{19,108}$ Furthermore, Kuhn et al. ${ }^{19}$ described the synthesis of the heterodimeric radioligand $\left[{ }^{3} \mathrm{H}\right]$ UR-KK200. The linker in BVD-74 was replaced by non-chiral octanedioic acid and in one pentapeptide a N^{ω}-carbamoylated arginine was introduced to obtain a precursor for radiolabelling. ${ }^{19}$

In search for molecular tools targeting the $Y_{4} R$, a fluorescently labelled hexapeptide that showed moderate affinity was synthesized in our group. ${ }^{109}$

The bivalent ligands UR-MK188 and UR-MEK288, originally synthesized to target the $h Y_{1} R$, were the first described non-peptide antagonists that showed moderate affinity to the $\mathrm{h} \mathrm{Y}_{4} \mathrm{R}$ (Figure 1.5). The replacement of the BIBP-3226 moiety in UR-MK188 by its S-configured optical antipode BIBP-3435 led to the selective $h Y_{4} R$ antagonist UR-MEK288. ${ }^{110}$

Figure 1.4. Structures of selected peptidic NPY $Y_{4} R$ ligands. References: (a) Daniels et al., ${ }^{111}$ (b) Parker et al., ${ }^{112}$ (c) Berlicki et al., ${ }^{113}$ (d) Dukorn et al., ${ }^{18}$ (e) Balasubramaniam et al., ${ }^{107}$ (f) Kuhn et al., ${ }^{19}$ (g) Liu et al., ${ }^{108}(\mathrm{~h})$ Spinnler et al. ${ }^{109}$ Reported $K_{\mathrm{i}}\left(K_{\mathrm{d}}\right)$ values were converted to $\mathrm{p} K_{\mathrm{i}}\left(\mathrm{p} K_{\mathrm{d}}\right)$ values. *note also designated GR231118 and 122 U 91.

Niclosamide and tBPC were reported as allosteric modulators of the hY4R by Sliwowski et al. ${ }^{114}$ and Schubert et al. ${ }^{115}$ These ligands increased the response induced by PP in functional assays. The reported EC_{50} values of niclosamide and tBPC were determined in an inositol phosphate (IP) accumulation assay (performed on COS7_Y4R-eYFP_ $\Delta 6 \mathrm{Gaqiq-myr}$ cells) and in a Ca ${ }^{2+}$ assay (performed
on COS7_Y4R-eYFP_ ${ }^{\text {C6Gqqi4-myr }}$ cells), respectively. In these assays, niclosamide or tBPC were added at increasing concentrations to a fixed concentration of PP that induced 20% of the maximal response (EC_{20}). ${ }^{114,115}$

Sun et al. ${ }^{116}$ and Ewing et al. ${ }^{117,118}$ reported a series of adipic acids and (R, R)-diaminocyclohexanes as $h Y_{4} R$ ligands, termed as agonists, antagonists or modulators at the $Y_{4} R$. The pharmacological data is inchoate, as only subset of compounds were evaluated in a cAMP assay. According to the information (procedures) disclosed in the patent, these ligands should be considered as agonists. ${ }^{116-118}$

Kang et al ${ }^{119}$ (Figure 1.5) identified a series of structurally diverse agonists via homology modelling. The potencies of these compounds as determined in a cAMP assay (prevention of forskolin stimulated transformation of ATP to cAMP in HEK293/NPY4R cells) were in the double-digit micromolar range.

Niclosamide, $\mathrm{pEC}_{50}{ }^{*}=6.2^{\mathrm{b}}$

tBPC, $\mathrm{pEC}_{50}{ }^{*}=5.3^{\mathrm{c}}$

$\mathrm{pEC} 50=8.3^{\mathrm{d}}$

$\mathrm{pEC} 50=7.1^{\mathrm{e}}$

$\mathrm{pEC}_{50}=9.0^{\mathrm{f}}$

ZCL-1355, $\mathrm{pEC}_{50}=4.2^{\mathrm{g}}$

Figure 1.5. Structures of selected non-peptide $\mathrm{h}_{4} R$ ligands (agonists, antagonists and modulators). References: (a) Keller et al., ${ }^{110}$ (b) Sliwoski et al., ${ }^{114}$ (c) Schubert et al., ${ }^{115}$ (d) Sun et al., ${ }^{116}$ (e) Ewing et al., ${ }^{117}$ (f) Ewing et al., ${ }^{118}$ (g) Kang et al. ${ }^{119}$ Reported $\mathrm{pEC}_{50}\left(K_{\mathrm{b}}\right)$ were converted to $\mathrm{pEC}_{50}\left(K_{\mathrm{b}}\right)$. *Niclosamide and tBPC increased the response induced by PP. pEC ${ }_{50}$ values of modulators: Increasing concentrations of the ligands were added to a constant PP concentration (E_{20}), that induced 20% of the maximal response.

1.5. $\quad N P Y Y_{5} R$ and ligands

The $\mathrm{Y}_{5} \mathrm{R}$ is expressed in the brain (hypothalamus, hippocampus), intestine, ovary, pancreas, skeletal muscle and spleen. ${ }^{61,64,65} \mathrm{~A}$ set of selective peptide $\mathrm{Y}_{5} \mathrm{R}$ agonists ([D-Trp $\left.{ }^{34}\right]$-NPY, [cPP ${ }^{1-7}$, NPY $\left.{ }^{19-23}, \mathrm{Ala}^{31}, \mathrm{Aib}^{32}, \mathrm{Gln}^{34}\right]$-hPP) is described in literature ${ }^{120,121}$ and several structurally distinct nonpeptide $Y_{5} R$ antagonist are known (Figure 1.6). Rüeger et al. ${ }^{122,123}$ (Rueeger et al.) reported the first non-peptide antagonist CGP 71683A. It was shown that food intake in rat induced by NPY was blocked by CGP 71683A. ${ }^{123,124}$ However, Della Zuana et al. ${ }^{125}$ reported off-target effects (e.g. interactions with with cholinergic-muscarinic receptors, α_{2} adrenergic receptors and serotonin reuptake recognition site) of CGP 71683A, suggesting weight loss is likely not fully $Y_{5} R$ mediated. ${ }^{46,124,125}$ It should be noted that the selective $Y_{5} R$ antagonist MK-0577 entered clinical trials (multicentre, randomized, trial with 1661
obese patients, 52 weeks), but showed no relevant weight loss in obese patients. ${ }^{124,126}$ To date, no $\mathrm{Y}_{5} R$ antagonist has entered the market for the treatment of obesity or any other medical indication.

CGP 71683A, $\mathrm{plC}_{50}=8.5^{\mathrm{a}, \mathrm{b}}$

FR 233118, $\mathrm{plC}_{50}=9.2^{\mathrm{g}}$

$\mathrm{plC}_{50}=8.6^{1}$

LU AA33810, $\mathrm{p} K_{\mathrm{i}}=8.82^{\mathrm{c}, \mathrm{d}}$

$\mathrm{plC}_{50}=8.7^{\mathrm{h}}$

$\mathrm{plC}_{50}=9.7^{\mathrm{e}}$

MK-0577 $\mathrm{p} K_{\mathrm{i}}=8.8^{\mathrm{i}, \mathrm{j}}$

$\mathrm{plC}_{50}=9.5$

NPY 5RA972, $\mathrm{plC}_{50}=8.5^{k}$

NTNCB, $\mathrm{p} K_{\mathrm{i}}=8.1^{\mathrm{n}}$

$\mathrm{L}-152,804, \mathrm{plC}_{50}=7.6^{\circ}$

Figure 1.6. Structures of selected non-peptide NPY $Y_{5} R$ antagonists. References: (a) Rüeger et al., ${ }^{122}$ (b) Rueeger et al., ${ }^{123}$ (c) Walker et al., ${ }^{127}$ (d) Packiarajan et al., ${ }^{128}$ (e) Kawanishi et al., ${ }^{129}$ (f) Norman et al., ${ }^{130}$ (g) Itani et al., ${ }^{131}$ (i) Fukami et al., ${ }^{132}$ (j) Fichtner et al., ${ }^{133}(\mathrm{k})$ Turnbull et al., ${ }^{134}$ (I) Sato et al., ${ }^{135}(\mathrm{~m})$ Della-Zuana et al., ${ }^{136}(\mathrm{n})$ Islam et al., ${ }^{137}$ (o) Kanatani et al. ${ }^{138}$ Reported $K_{\mathrm{i}}\left(\mathrm{IC}_{50}\right)$ values were converted to $\mathrm{p} K_{\mathrm{i}}\left(\mathrm{plC}_{50}\right)$ values.

1.6 Scope

Neuropeptide Y (NPY) is one of the most abundant peptides in the CNS and in the periphery, with four
 involved in many biological processes, such as food intake, seizures, stress response and circadian rhythm, to name but a few. Several of these biological processes are involved in diseases, such as metabolic syndrome, obesity and epilepsy. ${ }^{12,61,62}$ Furthermore, NPY receptors are overexpressed in several malignant tumours (e.g. breast cancer, renal cell carcinoma, ovarian cancer), which makes them promising targets for the diagnosis (PET-ligands) and treatment of cancers. ${ }^{65}$ For the synthesis of PET, radio or fluorescence ligands an extensive knowledge of receptor ligand interaction is needed, which can be gained by SAR studies and analyzing crystal structures of the receptor.

The high-affinity ligand UR-MK299 was obtained by N^{ω}-carbamoylation of the (R)-argininamide type hY ${ }_{1}$ R antagonist BIBP-3226. ${ }^{27}$ Recently, the $\mathrm{hY}{ }_{1} \mathrm{R}$ was co-crystallized with UR-MK299 and revealed that the carbamoylguanidine of UR-MK299 forms a hydrogen-assisted salt bridge with D2876.59 and the propionyl residue is buried in the subpocket between TM V and VI. ${ }^{83}$ This subpocket seems to be incompletely filled by the propionyl moiety of UR-MK299.83 The introduction of bulky moieties (e.g.
fluorophores) in N^{ω}-carbamoylated (R)-argininamides and their retained affinity does not seem to be compatible with the binding mode of UR-MK299.

One aim of this thesis was to answer the question of how the size (van der Waals volume) and structure of the carbamoyl residue of N^{ω}-carbamoylated (R)-argininamides structurally related to UR-MK299 effects $Y_{1} R$ affinity and the binding mode. Therefore, a series of (R)-argininamides had to be synthesized and pharmacologically characterized in radioligand binding and functional assays. The most interesting compounds should be investigated by induced fit docking and molecular dynamics simulations to gain a deeper understanding of (R)-argininamide-type ligand binding at $h Y_{1} R$, which is needed for the synthesis of novel PET or fluorescent ligands with retained affinity compared to UR-MK299.

The (S)-argininamide BIIE-0246 was the first non-peptide $Y_{2} R$ antagonist. ${ }^{94}$ BIIE-0246 was adopted as a lead structure for the synthesis of novel precursors for fluorescence- and radio-labelling, due to its high affinity towards the $\mathrm{Y}_{2} R$. The pursuit of the guanidine-acyl guanidine approach led to the radioligand $\left[{ }^{3} \mathrm{H}\right]$ UR-PLN196 ${ }^{99}$, which was the first selective non-peptide radioligand addressing the $\mathrm{Y}_{2} \mathrm{R}$. In binding studies, this radioligand was displaced by pNPY in a biphasic manner, indicating that [$\left.{ }^{3} \mathrm{H}\right]$ UR-PLN196 is not suitable for the determination of binding constants of peptides. To obtain more information on (S)-argininamide binding at the $Y_{2} R$, a different labelling strategy has to be applied. One aim of this approach was the discovery of new labelling sites in BIIE-0246 to obtain fluorescence or radiotracers. Therefore, the dipenzoazepinone moiety of BIIE-0246 should be replaced by an amino-functionalized benzhydryl moiety. Moreover, the replacement of the cyclopentyl moiety by an amine functionalized moiety could pave the way to novel labelled compounds. A new non-peptide radio- or fluorescent ligand could be useful for the determination of $Y_{2} R$ binding data. Moreover, a novel amine functionalized precursor could be useful for the synthesis of PET ligands.

Ewing et al. ${ }^{117,118}$ reported a series of (R, R)-diaminocyclohexanes, which purportedly act as agonists, antagonists or modulators at the $h Y_{4} R$. Some of the reported ligands were investigated in a cAMP assay as agonists, but neither $Y_{4} R$ affinities nor characterization as modulators were described in detail. Furthermore, niclosamide and tBPC were reported as first allosteric modulators at the $h Y_{4} R$, augmenting the effect of the endogenous ligand. ${ }^{114,115}$ Addressing the $Y_{4} R$ by positive allosteric modulation instead of agonism could be a new therapeutic opportunity for the treatment of obesity. Based on the data published by Ewing et al. ${ }^{117,118}$ another objective of this thesis was the synthesis of selected (R, R)-diaminocyclohexanes and to determine the affinities in established radioligand competition binding experiments and functional assays. Furthermore, the allosteric modulation of niclosamide and tBPC needs to be evaluated in functional assays.

1.7 References

1. Joost, P.; Methner, A. Phylogenetic analysis of 277 human G-protein-coupled receptors as a tool for the prediction of orphan receptor ligands. Genome Biol 2002, 3, research0063.1.
2. Larhammar, D.; Blomqvist, A. G.; Yee, F.; Jazin, E.; Yoo, H.; Wahlested, C. Cloning and functional expression of a human neuropeptide $\mathrm{Y} /$ peptide YY receptor of the Y 1 type. J Biol Chem 1992, 267, 10935-10938.
3. Eva, C.; Keinänen, K.; Monyer, H.; Seeburg, P.; Sprengel, R. Molecular cloning of a novel G protein-coupled receptor that may belong to the neuropeptide receptor family. FEBS Lett. 1990, 271, 81-84.
4. Rose, P. M.; Fernandes, P.; Lynch, J. S.; Frazier, S. T.; Fisher, S. M.; Kodukula, K.; Kienzle, B.; Seethala, R. Cloning and functional expression of a cDNA encoding a human type 2 neuropeptide Y receptor. J Biol Chem 1995, 270, 22661-22664.
5. Gerald, C.; Walker, M. W.; Vaysse, P. J.; He, C.; Branchek, T. A.; Weinshank, R. L. Expression cloning and pharmacological characterization of a human hippocampal neuropeptide $\mathrm{Y} /$ peptide YY Y2 receptor subtype. J Biol Chem 1995, 270, 26758-26761.
6. Rimland, J. M.; Seward, E. P.; Humbert, Y.; Ratti, E.; Trist, D. G.; North, R. A. Coexpression with potassium channel subunits used to clone the Y_{2} receptor for neuropeptide Y . Mol. Pharmacol. 1996, 49, 387-390.
7. Lundell, I.; Blomqvist, A. G.; Berglund, M. M.; Schober, D. A.; Johnson, D.; Statnick, M. A.; Gadski, R. A.; Gehlert, D. R.; Larhammar, D. Cloning of a human receptor of the NPY receptor family with high affinity for pancreatic polypeptide and peptide YY. J Biol Chem 1995, 270, 29123-29128.
8. Gregor, P.; Millham, M. L.; Feng, Y.; DeCarr, L. B.; McCaleb, M. L.; Cornfield, L. J. Cloning and characterization of a novel receptor to pancreatic polypeptide, a member of the neuropeptide Y receptor family. FEBS Lett. 1996, 381, 58-62.
9. Gerald, C.; Walker, M. W.; Criscione, L.; Gustafson, E. L.; Batzl-Hartmann, C.; Smith, K. E.; Vaysse, P.; Durkin, M. M.; Laz, T. M.; Linemeyer, D. L.; Schaffhauser, A. O.; Whitebread, S.; Hofbauer, K. G.; Taber, R. I.; Branchek, T. A.; Weinshank, R. L. A receptor subtype involved in neuropeptide-Y-induced food intake. Nature 1996, 382, 168-171.
10. Hu, Y.; Bloomquist, B. T.; Cornfield, L. J.; DeCarr, L. B.; Flores-Riveros, J. R.; Friedman, L.; Jiang, P.; Lewis-Higgins, L.; Sadlowski, Y.; Schaefer, J.; Velazquez, N.; McCaleb, M. L. Identification of a novel hypothalamic neuropeptide Y receptor associated with feeding behavior. J Biol Chem 1996, 271, 26315-26319.
11. Yi, M.; Li, H.; Wu, Z.; Yan, J.; Liu, Q.; Ou, C.; Chen, M. A Promising Therapeutic Target for Metabolic Diseases: Neuropeptide Y Receptors in Humans. Cell. Physiol. Biochem. 2018, 45, 88-107.
Reichmann, F.; Holzer, P. Neuropeptide Y: A stressful review. Neuropeptides 2016, 55, 99-109.
12. Larhammar, D.; Wraith, A.; Berglund, M. M.; Holmberg, S. K. S.; Lundell, I. Origins of the many NPY-family receptors in mammals. Peptides 2001, 22, 295-307.
Michel, M. C.; Beck-Sickinger, A.; Cox, H.; Doods, H. N.; Herzog, H.; Larhammar, D.; Quirion, R.; Schwartz, T.; Westfall, T. XVI. International Union of Pharmacology recommendations for
the nomenclature of neuropeptide Y , peptide YY , and pancreatic polypeptide receptors. Pharmacol. Rev. 1998, 50, 143-50.
13. Larhammar, D. Evolution of neuropeptide Y, peptide YY and pancreatic polypeptide. Regul. Pept. 1996, 62, 1-11.

Martel, J. C.; Fournier, A.; St-Pierre, S.; Dumont, Y.; Forest, M.; Quirion, R. Comparative structural requirements of brain neuropeptide Y binding sites and vas deferens neuropeptide Y receptors. Mol. Pharmacol. 1990, 38, 494-502.

Clark, J. T.; Sahu, A.; Kalra, P. S.; Balasubramaniam, A.; Kalra, S. P. Neuropeptide Y (NPY)induced feeding behavior in female rats: comparison with human NPY ([Met $\left.{ }^{17}\right]$ NPY), NPY analog ([norLeu4]NPY) and peptide YY. Regul. Pept. 1987, 17, 31-39.

Dukorn, S.; Littmann, T.; Keller, M.; Kuhn, K.; Cabrele, C.; Baumeister, P.; Bernhardt, G.; Buschauer, A. Fluorescence- and Radiolabeling of [Lys $\left.{ }^{4}, \mathrm{Nle}^{17,30}\right] h P P$ Yields Molecular Tools for the NPY Y 4 Receptor. Bioconjug. Chem. 2017, 28, 1291-1304.

Kuhn, K. K.; Ertl, T.; Dukorn, S.; Keller, M.; Bernhardt, G.; Reiser, O.; Buschauer, A. High Affinity Agonists of the Neuropeptide Y (NPY) Y 4 Receptor Derived from the C-Terminal Pentapeptide of Human Pancreatic Polypeptide (hPP): Synthesis, Stereochemical Discrimination, and Radiolabeling. J. Med. Chem. 2016, 59, 6045-6058.
Dukorn, S. Pharmacological tools for the NPY receptors: $\left[{ }^{35} \mathrm{~S}\right]$ GTPyS binding assays, luciferase gene reporter assays and labeled peptides PhD Thesis, University of Regensburg, 2017.
Huang, W.; Manglik, A.; Venkatakrishnan, A. J.; Laeremans, T.; Feinberg, E. N.; Sanborn, A. L.; Kato, H. E.; Livingston, K. E.; Thorsen, T. S.; Kling, R. C.; Granier, S.; Gmeiner, P.; Husbands, S. M.; Traynor, J. R.; Weis, W. I.; Steyaert, J.; Dror, R. O.; Kobilka, B. K. Structural insights into μ-opioid receptor activation. Nature 2015, 524, 315-321.
Liu, W.; Chun, E.; Thompson, A. A.; Chubukov, P.; Xu, F.; Katritch, V.; Han, G. W.; Roth, C. B.; Heitman, L. H.; IJzerman, A. P.; Cherezov, V.; Stevens, R. C. Structural Basis for Allosteric Regulation of GPCRs by Sodium lons. Science 2012, 337, 232-236.

Zhang, C.; Srinivasan, Y.; Arlow, D. H.; Fung, J. J.; Palmer, D.; Zheng, Y.; Green, H. F.; Pandey, A.; Dror, R. O.; Shaw, D. E.; Weis, W. I.; Coughlin, S. R.; Kobilka, B. K. High-resolution crystal structure of human protease-activated receptor 1. Nature 2012, 492, 387-392.
Neve, K. A.; Cumbay, M. G.; Thompson, K. R.; Yang, R.; Buck, D. C.; Watts, V. J.; DuRand, C. J.; Teeter, M. M. Modeling and Mutational Analysis of a Putative Sodium-Binding Pocket on the Dopamine D2 Receptor. Mol. Pharmacol. 2001, 60, 373-381.
Miller-Gallacher, J. L.; Nehmé, R.; Warne, T.; Edwards, P. C.; Schertler, G. F. X.; Leslie, A. G. W.; Tate, C. G. The $2.1 \AA$ Resolution Structure of Cyanopindolol-Bound β_{1}-Adrenoceptor Identifies an Intramembrane Na^{+}Ion that Stabilises the Ligand-Free Receptor. PLOS ONE 2014, 9, e92727.
Katritch, V.; Fenalti, G.; Abola, E. E.; Roth, B. L.; Cherezov, V.; Stevens, R. C. Allosteric sodium in class A GPCR signaling. Trends Biochem. Sci. 2014, 39, 233-244.
Keller, M.; Weiss, S.; Hutzler, C.; Kuhn, K. K.; Mollereau, C.; Dukorn, S.; Schindler, L.; Bernhardt, G.; König, B.; Buschauer, A. N ${ }^{\omega}$-Carbamoylation of the Argininamide Moiety: An Avenue to Insurmountable NPY Y_{1} Receptor Antagonists and a Radiolabeled Selective High-

Affinity Molecular Tool ([3H]UR-MK299) with Extended Residence Time. J. Med. Chem. 2015, 58, 8834-8849.
28. Moser, C.; Bernhardt, G.; Michel, J.; Schwarz, H.; Buschauer, A. Cloning and functional expression of the hNPY Y_{5} receptor in human endometrial cancer (HEC-1B) cells. Can. J. Physiol. Pharmacol. 2000, 78, 134-42.
29. Ziemek, R.; Schneider, E.; Kraus, A.; Cabrele, C.; Beck-Sickinger, A. G.; Bernhardt, G.; Buschauer, A. Determination of Affinity and Activity of Ligands at the Human Neuropeptide Y Y4 Receptor by Flow Cytometry and Aequorin Luminescence. J. Recept. Signal Transduct. Res. 2007, 27, 217-233.
Holliday, N. D.; Michel, M. C.; Cox, H. M. NPY Receptor Subtypes and Their Signal Transduction. In Neuropeptide Y and Related Peptides, Michel, M. C., Ed. Springer Berlin Heidelberg: Berlin, Heidelberg, 2004; pp 45-73.
31. Persaud, S. J.; Bewick, G. A. Peptide YY: more than just an appetite regulator. Diabetologia 2014, 57, 1762-1769.
Aakerlund, L.; Gether, U.; Fuhlendorff, J.; Schwartz, T. W.; Thastrup, O. Y Y_{1} receptors for neuropeptide Y are coupled to mobilization of intracellular calcium and inhibition of adenylate cyclase. FEBS Lett. 1990, 260, 73-78.
Motulsky, H. J.; Michel, M. C. Neuropeptide Y mobilizes Ca^{2+} and inhibits adenylate cyclase in human erythroleukemia cells. American Journal of Physiology-Endocrinology and Metabolism 1988, 255, E880-E885.
Criscione, L.; Rigollier, P.; Batzl-Hartmann, C.; Rüeger, H.; Stricker-Krongrad, A.; Wyss, P.; Brunner, L.; Whitebread, S.; Yamaguchi, Y.; Gerald, C.; Heurich, R. O.; Walker, M. W.; Chiesi, M.; Schilling, W.; Hofbauer, K. G.; Levens, N. Food intake in free-feeding and energy-deprived lean rats is mediated by the neuropeptide Y5 receptor. J. Clin. Invest. 1998, 102, 2136-2145.
Grouzmann, E.; Meyer, C.; Bürki, E.; Brunner, H. Neuropeptide Y Y2 receptor signalling mechanisms in the human glioblastoma cell line LN319. Peptides 2001, 22, 379-386.
Loh, K.; Herzog, H.; Shi, Y.-C. Regulation of energy homeostasis by the NPY system. Trends Endocrinol. Metab. 2015, 26, 125-135.
Zhang, L.; Nguyen, A. D.; Lee, I. C. J.; Yulyaningsih, E.; Riepler, S. J.; Stehrer, B.; Enriquez, R. F.; Lin, S.; Shi, Y. C.; Baldock, P. A.; Sainsbury, A.; Herzog, H. NPY modulates PYY function in the regulation of energy balance and glucose homeostasis. Diabetes Obes Metab 2012, 14, 727-736.
38. Li, J.-B.; Asakawa, A.; Terashi, M.; Cheng, K.; Chaolu, H.; Zoshiki, T.; Ushikai, M.; Sheriff, S.; Balasubramaniam, A.; Inui, A. Regulatory effects of Y4 receptor agonist (BVD-74D) on food intake. Peptides 2010, 31, 1706-1710.
Qi, Y.; Fu, M.; Herzog, H. Y2 receptor signalling in NPY neurons controls bone formation and fasting induced feeding but not spontaneous feeding. Neuropeptides 2016, 55, 91-97.
Olza, J.; Gil-Campos, M.; Leis, R.; Rupérez, A. I.; Tojo, R.; Cañete, R.; Gil, Á.; Aguilera, C. M. Influence of variants in the NPY gene on obesity and metabolic syndrome features in Spanish children. Peptides 2013, 45, 22-27.
41. Aerts, E.; Geets, E.; Sorber, L.; Beckers, S.; Verrijken, A.; Massa, G.; Van Hoorenbeeck, K.; Verhulst, S. L.; Van Gaal, L. F.; Van Hul, W. Evaluation of a Role for NPY and NPY2R in the Pathogenesis of Obesity by Mutation and Copy Number Variation Analysis in Obese Children and Adolescents. Ann. Hum. Genet. 2018, 82, 1-10.

Soscia, S. J.; Harrington, M. E. Neuropeptide Y does not reset the circadian clock in NPY Y2-/mice. Neurosci. Lett. 2005, 373, 175-178.
43. Gribkoff, V. K.; Pieschl, R. L.; Wisialowski, T. A.; van den Pol, A. N.; Yocca, F. D. Phase Shifting of Circadian Rhythms and Depression of Neuronal Activity in the Rat Suprachiasmatic Nucleus by Neuropeptide Y: Mediation by Different Receptor Subtypes. J. Neurosci. 1998, 18, 30143022.

Colmers, W. F.; El Bahh, B. Neuropeptide Y and Epilepsy. Epilepsy Curr 2003, 3, 53-58.
45. Vezzani, A.; Sperk, G. Overexpression of NPY and Y2 receptors in epileptic brain tissue: an endogenous neuroprotective mechanism in temporal lobe epilepsy? Neuropeptides 2004, 38, 245-252.

Diaz-delCastillo, M.; Woldbye, D. P. D.; Heegaard, A. M. Neuropeptide Y and its Involvement in Chronic Pain. Neuroscience 2018, 387, 162-169.
47. Hua, X. Y.; Boublik, J. H.; Spicer, M. A.; Rivier, J. E.; Brown, M. R.; Yaksh, T. L. The antinociceptive effects of spinally administered neuropeptide Y in the rat: systematic studies on structure-activity relationship. J. Pharmacol. Exp. Ther. 1991, 258, 243-248.
48. Martins-Oliveira, M.; Akerman, S.; Tavares, I.; Goadsby, P. J. Neuropeptide Y inhibits the trigeminovascular pathway through NPY Y_{1} receptor: implications for migraine. Pain 2016, 157, 1666-1673.
49. Strother, L. C.; Srikiatkhachorn, A.; Supronsinchai, W. Targeted Orexin and Hypothalamic Neuropeptides for Migraine. Neurotherapeutics 2018, 15, 377-390.
50. Kloster, E.; Saft, C.; Akkad, D. A.; Epplen, J. T.; Arning, L. Association of age at onset in Huntington disease with functional promoter variations in NPY and NPY2R. J. Mol. Med. 2014, 92, 177-184.
51. Croce, N.; Gelfo, F.; Ciotti, M. T.; Federici, G.; Caltagirone, C.; Bernardini, S.; Angelucci, F. NPY modulates miR-30a-5p and BDNF in opposite direction in an in vitro model of Alzheimer disease: a possible role in neuroprotection? Mol. Cell. Biochem. 2013, 376, 189-195.
Duarte-Neves, J.; Pereira de Almeida, L.; Cavadas, C. Neuropeptide Y (NPY) as a therapeutic target for neurodegenerative diseases. Neurobiol. Dis. 2016, 95, 210-224.
53. Capurro, D.; Huidobro-Toro, J. P. The involvement of neuropeptide $Y \mathrm{Y}_{1}$ receptors in the blood pressure baroreflex: studies with BIBP 3226 and BIBO 3304. Eur. J. Pharm. 1999, 376, 251255.

Abrahamsson, C. Neuropeptide Y1- and Y2-Receptor-Mediated Cardiovascular Effects in the Anesthetized Guinea Pig, Rat, and Rabbit. J. Cardiovasc. Pharmacol. 2000, 36, 451-458. Tilan, J.; Kitlinska, J. Neuropeptide Y (NPY) in tumor growth and progression: Lessons learned from pediatric oncology. Neuropeptides 2016, 55, 55-66.
56. Medeiros, P. J.; Al-Khazraji, B. K.; Novielli, N. M.; Postovit, L. M.; Chambers, A. F.; Jackson, D. N . Neuropeptide Y stimulates proliferation and migration in the 4 T 1 breast cancer cell line. Int. J. Cancer 2012, 131, 276-286.
57. Giesbrecht, C. J.; Mackay, J. P.; Silveira, H. B.; Urban, J. H.; Colmers, W. F. Countervailing Modulation of I_{h} by Neuropeptide Y and Corticotrophin-Releasing Factor in Basolateral Amygdala As a Possible Mechanism for Their Effects on Stress-Related Behaviors. J. Neurosci. 2010, 30, 16970-16982.
58. Stadlbauer, U.; Langhans, W.; Meyer, U. Administration of the Y2 Receptor Agonist PYY 3-36 in Mice Induces Multiple Behavioral Changes Relevant to Schizophrenia. Neuropsychopharmacol. 2013, 38, 2446-2455.
59. Pleil, K. E.; Rinker, J. A.; Lowery-Gionta, E. G.; Mazzone, C. M.; McCall, N. M.; Kendra, A. M.; Olson, D. P.; Lowell, B. B.; Grant, K. A.; Thiele, T. E.; Kash, T. L. NPY signaling inhibits extended amygdala CRF neurons to suppress binge alcohol drinking. Nat. Neurosci. 2015, 18, 545-552. Morales-Medina, J. C.; Dumont, Y.; Quirion, R. A possible role of neuropeptide Y in depression and stress. Brain Res. 2010, 1314, 194-205.
61. Shende, P.; Desai, D. Physiological and Therapeutic Roles of Neuropeptide Y on Biological Functions. In Cell Biology and Translational Medicine, Volume 7: Stem Cells and Therapy: Emerging Approaches, Turksen, K., Ed. Springer International Publishing: Cham, 2020; pp 3747.
62. Gehlert, D. R. Introduction to the reviews on neuropeptide Y. Neuropeptides 2004, 38, 135-40.
63. Pedrazzini, T.; Pralong, F.; Grouzmann, E. Neuropeptide Y: the universal soldier. Cell. Mol. Life Sci. 2003, 60, 350-77.
64. Merten, N.; Beck-Sickinger, A. G. Molecular ligand-receptor interaction of the NPY/PP peptide family. In NPY Family of Peptides in Neurobiology, Cardiovascular and Metabolic Disorders: from Genes to Therapeutics, Zukowska, Z.; Feuerstein, G. Z., Eds. Birkhäuser Basel: Basel, 2006; pp 35-62.
65. Li, J.; Tian, Y.; Wu, A. Neuropeptide Y receptors: a promising target for cancer imaging and therapy. Regener. Biomater. 2015, 2, 215-219.
66. Chen, C. H.; Stephens, R. L., Jr.; Rogers, R. C. PYY and NPY: control of gastric motility via action on Y1 and Y2 receptors in the DVC. Neurogastroenterol. Motil. 1997, 9, 109-16.
67. Zukowska, Z.; Feuerstein, G. Z. Future directions and therapeutic perspectives for NPY/PYYbased anti-inflammatory and tumor suppressor drugs. In The NPY Family of Peptides in Immune Disorders, Inflammation, Angiogenesis and Cancer, Zukowska, Z.; Feuerstein, G. Z., Eds. Birkhäuser Basel: Basel, 2005; pp 251-253.
68. Reubi, J. C.; Gugger, M.; Waser, B.; Schaer, J. C. Y 1 -mediated effect of neuropeptide Y in cancer: breast carcinomas as targets. Cancer Res. 2001, 61, 4636-41.
69. Körner, M.; Reubi, J. C. NPY receptors in human cancer: A review of current knowledge. Peptides 2007, 28, 419-425.
70. Zhang, L.; Bijker, M. S.; Herzog, H. The neuropeptide Y system: Pathophysiological and therapeutic implications in obesity and cancer. Pharmacol. Ther. 2011, 131, 91-113.
71. Hoppenz, P.; Els-Heindl, S.; Kellert, M.; Kuhnert, R.; Saretz, S.; Lerchen, H.-G.; Köbberling, J.; Riedl, B.; Hey-Hawkins, E.; Beck-Sickinger, A. G. A Selective Carborane-Functionalized Gastrin-Releasing Peptide Receptor Agonist as Boron Delivery Agent for Boron Neutron Capture Therapy. J. Org. Chem. 2020, 85, 1446-1457.
72. Rudolf, K.; Eberlein, W.; Engel, W.; Wieland, H. A.; Willim, K. D.; Entzeroth, M.; Wienen, W.; Beck-Sickinger, A. G.; Doods, H. N. The first highly potent and selective non-peptide neuropeptide Y Y Y_{1} receptor antagonist: BIBP3226. Eur. J. Pharmacol. 1994, 271, R11-3.
73. Beck-Sickinger, A. G.; Weland, H. A.; Wittneben, H.; Willim, K.-D.; Rudolf, K.; Jung, G. Complete L-Alanine Scan of Neuropeptide Y Reveals Ligands Binding to Y_{1} and Y_{2} Receptors with Distinguished Conformations. Eur. J. Biochem. 1994, 225, 947-958.
74. Wieland, H. A.; Willim, K. D.; Entzeroth, M.; Wienen, W.; Rudolf, K.; Eberlein, W.; Engel, W.; Doods, H. N. Subtype selectivity and antagonistic profile of the nonpeptide Y1 receptor antagonist BIBP 3226. J. Pharmacol. Exp. Ther. 1995, 275, 143-149.

Wieland, H. A.; Engel, W.; Eberlein, W.; Rudolf, K.; Doods, H. N. Subtype selectivity of the novel nonpeptide neuropeptide YY1 receptor antagonist BIBO3304 and its effect on feeding in rodents. Br. J. Pharmacol. 1998, 125, 549-555.

Keller, M.; Bernhardt, G.; Buschauer, A. [$\left.{ }^{3} \mathrm{H}\right]$ UR-MK136: A Highly Potent and Selective Radioligand for Neuropeptide $Y Y_{1}$ Receptors. ChemMedChem 2011, 6, 1566-1571.
77. Keller, M.; Erdmann, D.; Pop, N.; Pluym, N.; Teng, S.; Bernhardt, G.; Buschauer, A. Redfluorescent argininamide-type NPY Y_{1} receptor antagonists as pharmacological tools. Bioorg. Med. Chem. 2011, 19, 2859-78.

Keller, M.; Maschauer, S.; Brennauer, A.; Tripal, P.; Koglin, N.; Dittrich, R.; Bernhardt, G.; Kuwert, T.; Wester, H.-J.; Buschauer, A.; Prante, O. Prototypic ${ }^{18}$ F-Labeled Argininamide-Type Neuropeptide $Y Y_{1} R$ Antagonists as Tracers for PET Imaging of Mammary Carcinoma. ACS Med. Chem. Lett. 2017, 8, 304-309.
79. Maschauer, S.; Ott, J. J.; Bernhardt, G.; Kuwert, T.; Keller, M.; Prante, O. ${ }^{18}$ F-labelled triazolyllinked argininamides targeting the neuropeptide $Y Y_{1} R$ for PET imaging of mammary carcinoma. Sci Rep 2019, 9, 12990.
80. Keller, M.; Teng, S.; Bernhardt, G.; Buschauer, A. Bivalent Argininamide-Type Neuropeptide Y Y_{1} Antagonists Do Not Support the Hypothesis of Receptor Dimerisation. ChemMedChem 2009, 4, 1733-1745.
81. Hutzler, C. Synthesis and pharmacological activity of new neuropeptide Y receptor ligands: from N, N-disubstituted alkanamides to highly potent argininamide-type Y_{1} antagonists. PhD Thesis, University of Regensburg, 2001.

Keller, M.; Weiss, S.; Hutzler, C.; Kuhn, K. K.; Mollereau, C.; Dukorn, S.; Schindler, L.; Bernhardt, G.; Konig, B.; Buschauer, A. ${ }^{\omega}$ - - Carbamoylation of the Argininamide Moiety: An Avenue to Insurmountable NPY Y_{1} Receptor Antagonists and a Radiolabeled Selective HighAffinity Molecular Tool ([3] ${ }^{3} \mathrm{H}$ UR-MK299) with Extended Residence Time. J. Med. Chem. 2015, 58, 8834-49.
83. Yang, Z.; Han, S.; Keller, M.; Kaiser, A.; Bender, B. J.; Bosse, M.; Burkert, K.; Kogler, L. M.; Wifling, D.; Bernhardt, G.; Plank, N.; Littmann, T.; Schmidt, P.; Yi, C.; Li, B.; Ye, S.; Zhang, R.;

Xu, B.; Larhammar, D.; Stevens, R. C.; Huster, D.; Meiler, J.; Zhao, Q.; Beck-Sickinger, A. G.; Buschauer, A.; Wu, B. Structural basis of ligand binding modes at the neuropeptide $Y Y_{1}$ receptor. Nature 2018, 556, 520-524.
84. Poindexter, G. S.; Bruce, M. A.; LeBoulluec, K. L.; Monkovic, I.; Martin, S. W.; Parker, E. M.; Iben, L. G.; McGovern, R. T.; Ortiz, A. A.; Stanley, J. A.; Mattson, G. K.; Kozlowski, M.; Arcuri, M.; Antal-Zimanyi, I. Dihydropyridine Neuropeptide Y Y ${ }_{1}$ Receptor Antagonists. Bioorg. Med. Chem. Lett. 2002, 12, 379-382.
85. Kanatani, A.; Kanno, T.; Ishihara, A.; Hata, M.; Sakuraba, A.; Tanaka, T.; Tsuchiya, Y.; Mase, T.; Fukuroda, T.; Fukami, T.; Ihara, M. The Novel Neuropeptide Y Y 1 Receptor Antagonist J104870: A Potent Feeding Suppressant with Oral Bioavailability. Biochem. Biophys. Res. Commun. 1999, 266, 88-91.

Wright, J.; Bolton, G.; Creswell, M.; Downing, D.; Georgic, L.; Heffner, T.; Hodges, J.; MacKenzie, R.; Wise, L. 8-amino-6-(arylsulphonyl)-5-nitroquinolines: novel nonpeptide neuropeptide Y1 receptor antagonists. Bioorg. Med. Chem. Lett. 1996, 6, 1809-1814.
87. Hipskind, P. A.; Lobb, K. L.; Nixon, J. A.; Britton, T. C.; Bruns, R. F.; Catlow, J.; DieckmanMcGinty, D. K.; Gackenheimer, S. L.; Gitter, B. D.; Iyengar, S.; Schober, D. A.; Simmons, R. M. A.; Swanson, S.; Zarrinmayeh, H.; Zimmerman, D. M.; Gehlert, D. R. Potent and Selective 1,2,3Trisubstituted Indole NPY Y-1 Antagonists. J. Med. Chem. 1997, 40, 3712-3714.

Zarrinmayeh, H.; Zimmerman, D. M.; Cantrell, B. E.; Schober, D. A.; Bruns, R. E.; Gackenheimer, S. L.; Ornstein, P. L.; Hipskind, P. A.; Britton, T. C.; Gehlert, D. R. Structureactivity relationship of a series of diaminoalkyl substituted benzimidazole as neuropeptide Y Y1 receptor antagonists. Bioorg. Med. Chem. Lett. 1999, 9, 647-652.
Leslie, C. P.; Fabio, R. D.; Bonetti, F.; Borriello, M.; Braggio, S.; Forno, G. D.; Donati, D.; Falchi, A.; Ghirlanda, D.; Giovannini, R.; Pavone, F.; Pecunioso, A.; Pentassuglia, G.; Pizzi, D. A.; Rumboldt, G.; Stasi, L. Novel carbazole derivatives as NPY Y1 antagonists. Bioorg. Med. Chem. Lett. 2007, 17, 1043-1046.

Griffith, D. A.; Hargrove, D. M.; Maurer, T. S.; Blum, C. A.; De Lombaert, S.; Inthavongsay, J. K.; Klade, L. E.; Mack, C. M.; Rose, C. R.; Sanders, M. J.; Carpino, P. A. Discovery and evaluation of pyrazolo[1,5-a]pyrimidines as neuropeptide Y 1 receptor antagonists. Bioorg. Med. Chem. Lett. 2011, 21, 2641-2645.
91. Cabrele, C.; Beck-Sickinger, A. G. Molecular characterization of the ligand-receptor interaction of the neuropeptide Y family. J. Pept. Sci. 2000, 6, 97-122.

Dumont, Y.; Fournier, A.; St-Pierre, S.; Quirion, R. Characterization of neuropeptide Y binding sites in rat brain membrane preparations using [$\left.{ }^{125 I}\right]\left[\right.$ Leu ${ }^{31}$, Pro $\left.^{34}\right]$ peptide $Y Y$ and [${ }^{125 I}$]peptide $Y Y_{3-36}$ as selective Y_{1} and Y_{2} radioligands. J. Pharmacol. Exp. Ther. 1995, 272, 673-80.

Balasubramaniam, A.; Joshi, R.; Su, C.; Friend, L. A.; James, J. H. Neuropeptide Y (NPY) Y2 receptor-selective agonist inhibits food intake and promotes fat metabolism in mice: Combined anorectic effects of Y_{2} and Y_{4} receptor-selective agonists. Peptides 2007, 28, 235-240.
Doods, H.; Gaida, W.; Wieland, H. A.; Dollinger, H.; Schnorrenberg, G.; Esser, F.; Engel, W.; Eberlein, W.; Rudolf, K. BIIE0246: A selective and high affinity neuropeptide $\mathrm{Y} \mathrm{Y}_{2}$ receptor antagonist. Eur. J. Pharm. 1999, 384, R3-R5.
95. Burkert, K.; Zellmann, T.; Meier, R.; Kaiser, A.; Stichel, J.; Meiler, J.; Mittapalli, G. K.; Roberts, E.; Beck-Sickinger, A. G. A Deep Hydrophobic Binding Cavity is the Main Interaction for Different $\mathrm{Y}_{2} \mathrm{R}$ Antagonists. ChemMedChem 2017, 12, 75-85.
96. Pluym, N.; Brennauer, A.; Keller, M.; Ziemek, R.; Pop, N.; Bernhardt, G.; Buschauer, A. Application of the Guanidine-Acylguanidine Bioisosteric Approach to Argininamide-Type NPY Y2 Receptor Antagonists. ChemMedChem 2011, 6, 1727-1738.
97. Brennauer, A. Acylguanidines as bioisosteric groups in argininamide-type neuropeptide $\mathrm{Y} \mathrm{Y}_{1}$ and Y_{2} receptor antagonists: synthesis, stability and pharmacological activity. PhD Thesis, University of Regensburg, 2006.
98. Pluym, N. Application of the Guanidine-Acylguanidine Bioisosteric Approach to NPY Y_{2} Receptors Antagonists: Bivalent, Radiolabeled and Fluorescent Pharmacological Tools. PhD Thesis, University of Regensburg, 2011.
Pluym, N.; Baumeister, P.; Keller, M.; Bernhardt, G.; Buschauer, A. [$\left.{ }^{3} \mathrm{H}\right]$ UR-PLN196: A Selective Nonpeptide Radioligand and Insurmountable Antagonist for the Neuropeptide Y Y Receptor. ChemMedChem 2013, 8, 587-593.
100. Dollinger, H.; Esser, F.; Mihm, G.; Rudolf, K.; Schnorrenberg, G.; Gaida, W.; Doods, N. H. Neue substituierte Aminosäurederivate, Verfahren zu ihrer Herstellung und diese Verbindungen enthaltene pharmazeutische Zusammensetzungen. DE19816929A1, 1998.
101. Ziemek, R.; Brennauer, A.; Schneider, E.; Cabrele, C.; Beck-Sickinger, A. G.; Bernhardt, G.; Buschauer, A. Fluorescence- and luminescence-based methods for the determination of affinity and activity of neuropeptide Y_{2} receptor ligands. Eur. J. Pharm. 2006, 551, 10-18.
102. Mittapalli, G. K.; Vellucci, D.; Yang, J.; Toussaint, M.; Brothers, S. P.; Wahlestedt, C.; Roberts, E. Synthesis and SAR of selective small molecule neuropeptide Y Y2 receptor antagonists. Bioorg. Med. Chem. Lett. 2012, 22, 3916-3920.
103. Bonaventure, P.; Nepomuceno, D.; Mazur, C.; Lord, B.; Rudolph, D. A.; Jablonowski, J. A.; Carruthers, N. I.; Lovenberg, T. W. Characterization of N-(1-Acetyl-2,3-dihydro-1H-indol-6-yl)-3-(3-cyano-phenyl)-N-[1-(2-cyclopentyl-ethyl)-piperidin-4yl]acrylamide (JNJ-5207787), a Small Molecule Antagonist of the Neuropeptide Y Y2 Receptor. J. Pharmacol. Exp. Ther. 2004, 308, 1130-1137.
104. Brothers, S. P.; Saldanha, S. A.; Spicer, T. P.; Cameron, M.; Mercer, B. A.; Chase, P.; McDonald, P.; Wahlestedt, C.; Hodder, P. S. Selective and Brain Penetrant Neuropeptide Y Y2 Receptor Antagonists Discovered by Whole-Cell High Throughput Screening. Mol. Pharmacol. 2009, mol.109.058677.
105. Andres, C. J.; Antal Zimanyi, I.; Deshpande, M. S.; Iben, L. G.; Grant-Young, K.; Mattson, G. K.; Zhai, W. Differentially functionalized diamines as novel ligands for the NPY 2 receptor. Bioorg. Med. Chem. Lett. 2003, 13, 2883-2885.
106. Shoblock, J. R.; Welty, N.; Nepomuceno, D.; Lord, B.; Aluisio, L.; Fraser, I.; Motley, S. T.; Sutton, S. W.; Morton, K.; Galici, R.; Atack, J. R.; Dvorak, L.; Swanson, D. M.; Carruthers, N. I.; Dvorak, C.; Lovenberg, T. W.; Bonaventure, P. In vitro and in vivo characterization of JNJ-31020028 (N-(4-\{4-[2-(diethylamino)-2-oxo-1-phenylethyl]piperazin-1-yl\}-3-fluorophenyl)-2-pyridin-3-
ylbenzamide), a selective brain penetrant small molecule antagonist of the neuropeptide $Y Y_{2}$ receptor. J. Psychopharmacol. 2009, 208, 265.
107. Balasubramaniam, A.; Mullins, D. E.; Lin, S.; Zhai, W.; Tao, Z.; Dhawan, V. C.; Guzzi, M.; Knittel, J. J.; Slack, K.; Herzog, H.; Parker, E. M. Neuropeptide Y (NPY) Y4 Receptor Selective Agonists Based on NPY(32-36): Development of an Anorectic Y_{4} Receptor Selective Agonist with Picomolar Affinity. J. Med. Chem. 2006, 49, 2661-2665.
108. Liu, M.; Mountford, S. J.; Richardson, R. R.; Groenen, M.; Holliday, N. D.; Thompson, P. E. Optically Pure, Structural, and Fluorescent Analogues of a Dimeric Y_{4} Receptor Agonist Derived by an Olefin Metathesis Approach. J. Med. Chem. 2016, 59, 6059-6069.
109. Spinnler, K.; von Krüchten, L.; Konieczny, A.; Schindler, L.; Bernhardt, G.; Keller, M. An Alkynefunctionalized Arginine for Solid-Phase Synthesis Enabling "Bioorthogonal" Peptide Conjugation. ACS Med. Chem. Lett. 2020, 11, 334-339.
110. Keller, M.; Kaske, M.; Holzammer, T.; Bernhardt, G.; Buschauer, A. Dimeric argininamide-type neuropeptide Y receptor antagonists: Chiral discrimination between Y_{1} and Y_{4} receptors. Bioorg. Med. Chem. 2013, 21, 6303-6322.
111. Daniels, A. J.; Matthews, J. E.; Slepetis, R. J.; Jansen, M.; Viveros, O. H.; Tadepalli, A.; Harrington, W.; Heyer, D.; Landavazo, A.; Leban, J. J. High-affinity neuropeptide Y receptor antagonists. Proc. Natl. Acad. Sci. USA 1995, 92, 9067-9071.
112. Parker, E. M.; Babij, C. K.; Balasubramaniam, A.; Burrier, R. E.; Guzzi, M.; Hamud, F.; Gitali, M.; Rudinski, M. S.; Tao, Z.; Tice, M.; Xia, L.; Mullins, D. E.; Salisbury, B. G. GR231118 (1229U91) and other analogues of the C-terminus of neuropeptide Y are potent neuropeptide Y Y_{1} receptor antagonists and neuropeptide $Y Y_{4}$ receptor agonists. Eur. J. Pharm. 1998, 349, 97105.
113. Berlicki, Ł.; Kaske, M.; Gutiérrez-Abad, R.; Bernhardt, G.; Illa, O.; Ortuño, R. M.; Cabrele, C.; Buschauer, A.; Reiser, O. Replacement of Thr ${ }^{32}$ and Gln ${ }^{34}$ in the C-Terminal Neuropeptide Y Fragment $25-36$ by cis-Cyclobutane and cis-Cyclopentane β-Amino Acids Shifts Selectivity toward the Y_{4} Receptor. J. Med. Chem. 2013, 56, 8422-8431.
114. Sliwoski, G.; Schubert, M.; Stichel, J.; Weaver, D.; Beck-Sickinger, A. G.; Meiler, J. Discovery of Small-Molecule Modulators of the Human Y_{4} Receptor. PLOS ONE 2016, 11, e0157146.
115. Schubert, M.; Stichel, J.; Du, Y.; Tough, I. R.; Sliwoski, G.; Meiler, J.; Cox, H. M.; Weaver, C. D.; Beck-Sickinger, A. G. Identification and Characterization of the First Selective Y_{4} Receptor Positive Allosteric Modulator. J. Med. Chem. 2017, 60, 7605-7612.
116. Sun, C.; Ewing, W. R.; Bolton, S. A.; Gu, Z.; Huang, Y.; Murugesan, N.; Zhu, Y. Substituted adipic acid amides and uses thereof. WO 2012/125622 A1, 2012.
117. Ewing, W. R.; Zhu, Y.; Sun, C.; Huang, Y.; Sivasamban, M.; Karatholuvhu. Diaminocyclohexane compounds and uses thereof. US 2013/0184262 A1, 2013.
118. Ewing, W. R.; Zhu, Y.; Sun, C.; Huang, Y.; Sivasamban, M.; Karatholuvhu; Bolton, S. A.; Pasunoori, L.; Mandal, S. K.; Sher, P. M. Diaminocyclohexane compounds and uses thereof. US 2013/0184284 A1, 2013.
119. Kang, N.; Wang, X.-L.; Zhao, Y. Discovery of small molecule agonists targeting neuropeptide Y4 receptor using homology modeling and virtual screening. Chem Biol Drug Des 2019, 94, 2064-2072.
120. Cabrele, C.; Langer, M.; Bader, R.; Wieland, H. A.; Doods, H. N.; Zerbe, O.; Beck-Sickinger, A. G. The first selective agonist for the neuropeptide $Y Y_{5}$ receptor increases food intake in rats. J Biol Chem 2000, 275, 36043-8.
121. Parker, E. M.; Balasubramaniam, A.; Guzzi, M.; Mullins, D. E.; Salisbury, B. G.; Sheriff, S.; Witten, M. B.; Hwa, J. J. [D-Trp ${ }^{34}$] neuropeptide Y is a potent and selective neuropeptide $\mathrm{Y} \mathrm{Y}_{5}$ receptor agonist with dramatic effects on food intake $\underset{\text { r. }}{ }$. Peptides 2000, 21, 393-399.
122. Rüeger, H.; Schmidlin, T.; Rigollier, P.; Yamaguchi, Y.; Tintelnot-Blomley, M.; Schilling, W.; Criscione, L.; Mah, R. 2-amino quinazoline derivatives as npy receptor antagonists. WO1997020823A2, 1997.
123. Rueeger, H.; Rigollier, P.; Yamaguchi, Y.; Schmidlin, T.; Schilling, W.; Criscione, L.; Whitebread, S.; Chiesi, M.; Walker, M. W.; Dhanoa, D.; Islam, I.; Zhang, J.; Gluchowski, C. Design, synthesis and SAR of a series of 2-substituted 4-amino-quinazoline neuropeptide $\mathrm{Y} \mathrm{Y}_{5}$ receptor antagonists. Bioorg. Med. Chem. Lett. 2000, 10, 1175-1179.
124. MacNeil, D. J. NPY Y1 and Y5 receptor selective antagonists as anti-obesity drugs. Current topics in medicinal chemistry 2007, 7, 1721-33.
125. Della Zuana, O.; Sadlo, M.; Germain, M.; Félétou, M.; Chamorro, S.; Tisserand, F.; de Montrion, C.; Boivin, J. F.; Duhault, J.; Boutin, J. A.; Levens, N. Reduced food intake in response to CGP 71683A may be due to mechanisms other than NPY Y5 receptor blockade. Int. J. Obes. Relat. Metab. Disord. 2001, 25, 84-94.
126. Erondu, N.; Gantz, I.; Musser, B.; Suryawanshi, S.; Mallick, M.; Addy, C.; Cote, J.; Bray, G.; Fujioka, K.; Bays, H.; Hollander, P.; Sanabria-Bohórquez, S. M.; Eng, W.; Långström, B.; Hargreaves, R. J.; Burns, H. D.; Kanatani, A.; Fukami, T.; MacNeil, D. J.; Gottesdiener, K. M.; Amatruda, J. M.; Kaufman, K. D.; Heymsfield, S. B. Neuropeptide Y5 receptor antagonism does not induce clinically meaningful weight loss in overweight and obese adults. Cell Metabolism 2006, 4, 275-282.
127. Walker, M. W.; Wolinsky, T. D.; Jubian, V.; Chandrasena, G.; Zhong, H.; Huang, X.; Miller, S.; Hegde, L. G.; Marsteller, D. A.; Marzabadi, M. R.; Papp, M.; Overstreet, D. H.; Gerald, C. P. G.; Craig, D. A. The Novel Neuropeptide Y Y ${ }_{5}$ Receptor Antagonist Lu AA33810 [N-[[trans-4-[(4,5-Dihydro[1]benzothiepino[5,4-d]thiazol-2-yl)amino]cyclohexyl]methyl]-methanesulfonamide] Exerts Anxiolytic- and Antidepressant-Like Effects in Rat Models of Stress Sensitivity. J. Pharmacol. Exp. Ther. 2009, 328, 900-911.
128. Packiarajan, M.; Marzabadi, M. R.; Desai, M.; Lu, Y.; Noble, S. A.; Wong, W. C.; Jubian, V.; Chandrasena, G.; Wolinsky, T. D.; Zhong, H.; Walker, M. W.; Wiborg, O.; Andersen, K. Discovery of Lu AA33810: A highly selective and potent NPY5 antagonist with in vivo efficacy in a model of mood disorder. Bioorg. Med. Chem. Lett. 2011, 21, 5436-5441.
129. Yasyuki Kawanishi; Hideyuki Takenaka; Kohji Hanasaki; Okada, T. NPY Y5 antagonist. US 2004/0180964 A1, 2004.
130. Norman, M. H.; Chen, N.; Chen, Z.; Fotsch, C.; Hale, C.; Han, N.; Hurt, R.; Jenkins, T.; Kincaid, J.; Liu, L.; Lu, Y.; Moreno, O.; Santora, V. J.; Sonnenberg, J. D.; Karbon, W. Structure-Activity Relationships of a Series of Pyrrolo[3,2-d]pyrimidine Derivatives and Related Compounds as Neuropeptide Y5 Receptor Antagonists. J. Med. Chem. 2000, 43, 4288-4312.
131. Itani, H.; Ito, H.; Sakata, Y.; Hatakeyama, Y.; Oohashi, H.; Satoh, Y. Novel Potent Antagonists of Human Neuropeptide Y Y5 Receptors. Part 3: 7-Methoxy-1-hydroxy-1-substituted Tetraline Derivatives. Bioorg. Med. Chem. Lett. 2002, 12, 799-802.
132. Takehiro Fukami; Akio Kanatani; Akane Ishihara; Yasuyuki Ishii; Toshiyuki Takahashi; Yuji Haga; Toshihiro Sakamoto; Ito, T. Novel Spiro Compounds. WO2001014376A1, 2001.
133. Fichtner, M.; Lee, E.; Tomlinson, E.; Scott, D.; Cornelius, P.; Patterson, T. A.; Carpino, P. A. Discovery and evaluation of spirocyclic derivatives as antagonists of the neuropeptide Y 5 receptor. Bioorg. Med. Chem. Lett. 2012, 22, 2738-2743.
134. Turnbull, A. V.; Ellershaw, L.; Masters, D. J.; Birtles, S.; Boyer, S.; Carroll, D.; Clarkson, P.; Loxham, S. J. G.; McAulay, P.; Teague, J. L.; Foote, K. M.; Pease, J. E.; Block, M. H. Selective Antagonism of the NPY Y5 Receptor Does Not Have a Major Effect on Feeding in Rats. Diabetes 2002, 51, 2441-2449.
135. Sato, N.; Takahashi, T.; Shibata, T.; Haga, Y.; Sakuraba, A.; Hirose, M.; Sato, M.; Nonoshita, K.; Koike, Y.; Kitazawa, H.; Fujino, N.; Ishii, Y.; Ishihara, A.; Kanatani, A.; Fukami, T. Design and Synthesis of the Potent, Orally Available, Brain-Penetrable Arylpyrazole Class of Neuropeptide Y5 Receptor Antagonists. J. Med. Chem. 2003, 46, 666-669.
136. Della-Zuana, O.; Revereault, L.; Beck-Sickinger, A.; Monge, A.; Caignard, D. H.; Fauchère, J. L.; Henlin, J. M.; Audinot, V.; Boutin, J. A.; Chamorro, S.; Félétou, M.; Levens, N. A potent and selective NPY Y_{5} antagonist reduces food intake but not through blockade of the NPY Y_{5} receptor. Int. J. Obes. 2004, 28, 628-639.
137. Islam, I.; Dhanoa, D.; Finn, J.; Du, P.; Walker, M. W.; Salon, J. A.; Zhang, J.; Gluchowski, C. Discovery of potent and selective small molecule NPY Y5 receptor antagonists. Bioorg. Med. Chem. Lett. 2002, 12, 1767-1769.
138. Kanatani, A.; Ishihara, A.; Iwaasa, H.; Nakamura, K.; Okamoto, O.; Hidaka, M.; Ito, J.; Fukuroda, T.; MacNeil, D. J.; Van der Ploeg, L. H. T.; Ishii, Y.; Okabe, T.; Fukami, T.; Ihara, M. L-152,804: Orally Active and Selective Neuropeptide Y Y5 Receptor Antagonist. Biochem. Biophys. Res. Commun. 2000, 272, 169-173.

Chapter 2

Argininamide-type neuropeptide $\mathrm{Y} \mathrm{Y}_{1}$ receptor antagonists: the nature of $\boldsymbol{N}^{\boldsymbol{\omega}}$-carbamoyl substituents determines $Y_{1} R$ binding mode and affinity

Note: Prior to the submission of the thesis this chapter was published in cooperation with partners (schemes, tables, figures and text may differ from published version): Buschmann, J.; Seiler, T.; Bernhardt, G.; Keller, M.; Wifling, D. Argininamide-type neuropeptide $Y Y_{1}$ receptor antagonists: the nature of N^{ω}-carbamoyl substituents determines $Y_{1} R$ binding mode and affinity. RSC Med. Chem. 2020, 11, 274-282 DOI: 10.1039/C9MD00538B - adopted by permission of The Royal Society of Chemistry

Jonas Buschmann (2.23-2.34, 2.38, 2.41, 2.56-2.75 and 2.76) and Theresa Seiler (2.39, 2.42, 2.53-2.55) performed the synthesis, analytical characterization, competition binding, functional experiments and analyzed the data. David Wifling performed molecular docking, molecular dynamics simulations and processed the data.

The preparatory work of Theresa Sailer was performed during her Master Thesis (University of Regensburg, 2016)
Jonas Buschmann, David Wifling, Max Keller and Günther Bernhardt wrote the manuscript.
The authors thank Brigitte Wenzl, Maria Beer-Krön, Susanne Bollwein, Elvira Schreiber and Lydia Schneider for their excellent technical assistance, Christoph Müller for providing 2.4, and the Leibniz Rechenzentrum (LRZ) in Munich for providing software (Schrödinger suite) and computing resources.

2.1. Introduction

Neuropeptide Y (NPY) receptors belong to the class A of G-protein coupled receptors (GPCRs). ${ }^{1}$ The four functionally expressed subtypes in man ($Y_{1} R, Y_{2} R, Y_{4} R$ and $Y_{5} R$) are distributed in the central nervous system and in the periphery. ${ }^{2}$ They are activated by the endogenous peptides neuropeptide Y (NPY), peptide YY (PYY) and pancreatic polypeptide (PP). The NPY $Y_{1} R$ has been shown to be overexpressed in a number of different cancers (e.g. breast cancer). ${ }^{3,4}$ Labelled $Y_{1} R$ ligands have therefore been proposed as potential tumour imaging agents. ${ }^{5}$ The first described selective non-peptidic $Y_{1} R$ antagonist BIBP-3226 (2.1, Table 2.1) has a binding affinity in the low nanomolar range. ${ }^{6}$ Carbamoylation of the guanidine moiety of 2.1 led to UR-MK299 (2.2, Table 2.1), a $Y_{1} R$ antagonist with picomolar affinity, ${ }^{7}$ that was recently co-crystallized with the NPY $Y_{1} R .^{3}$ In the crystal structure, the carbamoylguanidine group of 2.2 forms a hydrogen-assisted salt bridge with D2876.59. The propionyl group of the carbamoyl residue is buried in the sub-pocket formed between TM helices V and VI , this pocket appears to be incompletely filled (Figure 2.1). ${ }^{3}$ This finding is in agreement with the high $Y_{1} R$ affinity (albeit lower compared to 2.2) of (R)-argininamides possessing slightly larger carbamoyl residues than found in 2.2 (e.g. compounds 2.3-2.5, Table 2.1).7. 8 However, the experimentally determined binding mode of $\mathbf{2 . 2}$ is incompatible with the attachment of very bulky groups to the guanidine group of 2.1; fluorophores (2.7 and 2.8) or alternative carbamoyl residues (2.9) have low $Y_{1} R$ affinities (Table 2.1).

Figure 2.1. Extended view of the orthosteric binding pocket of the $Y_{1} R$ occupied by 2.2 (ball and stick representation) (PDB ID: $5 Z B Q^{3}$). The carbamoyl residue of $\mathbf{2 . 2}$ occupies a subpocket (oval area), located between TM helices V and VI . The crystal structure was post processed by addition of hydrogen atoms, minimization, etc.; see experimental section 2.4.5.2 and 2.4.5.3.

In order to address the question how the size and structure of the carbamoyl residue of N^{ω} carbamoylated argininamides, structurally related to 2.2 and 2.3, effects $Y_{1} R$ affinity and the binding mode (as determined by competition binding and functional studies at the $Y_{1} R$) a series of N^{ω}-carbamoylated (R)-argininamides bearing carbamoyl residues of different sizes were synthesized
and pharmacologically characterized. The $\mathrm{Y}_{1} \mathrm{R}$ binding mode of selected compounds was studied by induced-fit docking and molecular dynamics (MD) simulations.

Table 2.1. Structures and $Y_{1} R$ affinities of reported (R)-argininamides 2.1-2.9.

2.1 (BIBP-3226) 2.2 (UR-MK299)

References: (a) Keller et al., ${ }^{7}$ these authors determined affinities of 2.1-2.6, 2.8 and $\mathbf{2 . 9}$ by use of $\left[{ }^{3} \mathrm{H}\right] 2.2$ (cinal $=0.15 \mathrm{nM}, K_{d}=0.044 \mathrm{nM}^{7}$) and SK-N-MC cells; (b) Rudolf et al.; ${ }^{6}$ (c) Keller et al.; ${ }^{8}$ (d) Keller et al., ${ }^{9}$ these authors determined affinity of 2.7 by use of ${ }^{3} \mathrm{H}$ H]UR-MK114 $\left(K_{\mathrm{d}}=1.2 \mathrm{nM}, \mathrm{c}_{\text {final }}=1.5 \mathrm{nM}\right.$) and SK-N-MC cells. Reported K_{i} values were converted to $\mathrm{p} K_{\mathrm{i}}$ values.

These studies suggest that reported fluorescent (R)-argininamide-type $Y_{1} R$ ligands (labelled via N^{ω} carbamoyl residues), exhibiting K_{i} values ($\left.\mathrm{Y}_{1} \mathrm{R}\right)$ between 20 and $150 \mathrm{nM},{ }^{9} \mathbf{2 . 1 0}$ bind to the $\mathrm{Y}_{1} \mathrm{R}$ in a different manner compared to $\mathbf{2 . 2}$.

2.2. Results and discussion

2.2.1. Synthesis

$2.60 \xrightarrow{\mathrm{i}}$

2.16, 2.29, 2.68

Scheme 2.1. Synthesis of the N^{ω}-carbamoylated (R)-argininamides 2.53-2.76 and 78. Reagents and conditions: (a) DCC, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, THF or DMF, 30-86\%; (b) THF, 100%; (c) triphosgene, DIPEA, $50-71 \%$; (d) (1) $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{HgCl}_{2}$, DIPEA, (2) TFA/CH2Cl 1:1, 45-68\%; (e) DIPEA, DMF, 21-84\%; (f) DCC, DIPEA, DMF, 16-29\%; (g) DCC, DMF, 9-16\%; (h) (1) DIPEA, DMF, (2) $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ TFA 1:1, 46\%; (i) DMSO; (j) DIPEA, DMF, 22%.

The N^{ω}-carbamoylated (R)-argininamides 2.53-2.76 and 2.78 were prepared as follows (note: the assignment of the numbers of target compounds $\mathbf{2 . 5 3 - 2 . 7 6}$, and 2.78 was guided by the size of the carbamoyl residue (Table 2.1) and not by their synthetic accessibility outlined in Scheme 2.1): the
carboxylic acids 2.10-2.20 were transformed to the respective succinimidyl esters 2.23-2.33 in the presence of DCC, and trifluoroacetic acid anhydride (2.21) was treated with N -hydroxysuccinimide (2.22) to obtain succinimidyl ester 2.34 (Scheme 2.1).

Treatment of tert-butyl (2-aminoethyl)carbamate (2.36) or tert-butyl (3-aminopropyl)carbamate (2.37) with triphosgene gave isocyanates as intermediates, which were converted to the isothiourea derivatives 2.38 and 2.39 by the addition of 2.35 to the reaction mixture. The amine-functionalized (R)-argininamides 2.41 and 2.42 were obtained by guanidinylation of amine 2.40 using 2.38 and $\mathbf{2 . 3 9 , ~}$ respectively, and subsequent removal of the Boc and tert-butyl groups by treatment with TFA (Scheme 2.1).

The target compounds $\mathbf{2 . 5 3 - 2 . 5 5}, 2.58$ and 2.66-2.76 were synthesized by treatment of amines 2.41 or 2.42 with the succinimidyl esters 2.23, 2.24, 2.26-2.34 or 2.43-2.45 (Scheme 2.1). Compounds 2.56 and 2.57 were synthesized by amide bond formation between 2.41 and the carboxylic acids 2.46 and 2.47, respectively, using DCC as coupling reagent (Scheme 2.1). Compounds 2.59, 2.60 and 2.63-2.65 were synthesized from 2.41 and the carboxylic acids 2.48-2.52 according to the same procedure, but without the addition of DIPEA. Compound 2.61 was obtained by acylation of 2.41 using 2.25 and subsequent deprotection (Scheme 2.1). Alcohol $\mathbf{2 . 6 2}$ was isolated as degradation product of $\mathbf{2 . 6 0}$ after 6 months of storage of a 10 mM solution of $\mathbf{2 . 6 0}$ in DMSO at $-20^{\circ} \mathrm{C}$. Compound 2.78 was synthesized by coupling of 2.41 with the pyrylium dye Py-510,11 (2.77) according to a procedure reported previously by Keller et al. ${ }^{9}$ Chemical stabilities of compounds 2.56, 2.58-2.61, 2.63 and 2.68 were proven in aqueous solution, pH 7 , at room temperature over 24 h (Experimental section 2.4.3 and Chapter 8, 8.1.5.).

2.2.2. Competition binding and functional studies

Results from Y_{1} R competition binding experiments, performed in intact SK-N-MC cells using $\left[{ }^{3} \mathrm{H}\right] 2.2$ as radioligand, are summarized in Table 2.2. Elongation by two methylene groups (2.3) has been reported to result in an approximately 30 -fold decrease in affinity. ${ }^{12}$ The replacement of the propionyl group in 2.2 by mono- (2.56, 2.59, 2.60, 2.64 and 2.65), di- (2.57) or tri- (2.58) halogenated acetyl or propionyl residues, as well as by amino (2.61) or hydroxy (2.62) functionalized acetyl residues did not significantly affect $Y_{1} R$ affinity. Whereas the introduction of an acryl (2.63) or 2-methylpropionyl (2.66) residues followed the same trend, the more bulky 2,2-dimethylpropionyl residue in compound 2.67 led to an around 1000 -fold decrease in $Y_{1} R$ affinity compared to 2.2 (Table 2.2). In the series of compounds bearing aliphatic rings of increasing size (from cyclopropane to cyclohexane, 2.68-2.71), $Y_{1} R$ affinity decreased considerably (up to 5000-fold compared to 2.2) in the case of the cyclopentyl (2.70) and cyclohexyl (2.71) groups (Tables 2.1 and 2.2; competition binding curves shown in Figure 2.2 A). The insertion of a methylene group between the aliphatic ring and the amide group in 2.71, resulting in 2.72, even led to a further decrease in $Y_{1} R$ affinity ($>20,000$-fold compared to 2.2; Tables 2.1, 2.2 and Figure 2.2 A). Interestingly, replacement of the aliphatic rings in 2.71 and 2.72 by a phenyl moiety (2.73 and 2.75) resulted in an approx. 10-fold increase in $Y_{1} R$ affinity (Table 2.2, Figure 2.2 C). Surprisingly, the introduction of a second benzene ring in $\mathbf{2 . 7 5}$, leading to $\mathbf{2 . 7 6}$, did not alter binding affinity, and, moreover, the introduction of a bulky pyridinium-type fluorescent dye (2.78) even resulted in a slightly higher affinity compared to 2.75/2.76 (Table 2.2, Figure 2.2 C).

Figure 2.2. (A, C) Displacement curves of $\left[{ }^{3} \mathrm{H}\right] 2.2$ (ctinal $=0.15 \mathrm{nM}, K_{\mathrm{d}}=0.044 \mathrm{nM}$) obtained from competition binding studies with (A) 2.68-2.72, 2.73-2.76, (C) $\mathbf{2 . 7 8}$ and reference compound $\mathbf{2 . 2}$ in $\mathrm{Y}_{1} R$-expressing SK-N-MC cells. (B, D) Concentration dependent inhibition curves obtained from the Fura-2 Ca^{2+} assay in intact HEL cells. The intracellular Ca^{2+} mobilization was induced by 10 nM pNPY after pre-incubation of the cells with (B) 2.68-2.72, (D) 2.73-2.76, respectively, for 15 min or the reference compound $\mathbf{2 . 2}$ for 20 min . (A-D) Data of compound $\mathbf{2 . 2}$ were taken from Keller et. al. ${ }^{7}$
$Y_{1} R$ antagonism ($\mathrm{p} K_{b}$ values) of 2.56-2.76, determined in a Fura-2 Ca^{2+} assay in HEL cells (inhibition of the intracellular Ca^{2+} mobilization induced by 10 nM pNPY), reflected the trends observed in the competition binding studies. However, the $\mathrm{p} K_{b}$ values proved to be consistently slightly higher than the $\mathrm{p} \mathrm{K}_{\mathrm{i}}$ values (Table 2; inhibition curves shown in Figure $2.2 \mathrm{~B}, 2.2 \mathrm{D}$). It is notable that, modification of the carbamoyl substituent did not affect the mode of action of the $Y_{1} R$ ligands, i.e. all compounds behaved as neutral antagonists.

Table 2.2. Y_{1} Receptor affinities ($\mathrm{p} K_{\mathrm{i}}$) and antagonism ($\mathrm{p} K_{\mathrm{b}}$) of the synthesized N^{ω}-carbamoylated (R)-argininamides, determined by equilibrium competition binding with $\left[{ }^{3} \mathrm{H}\right] 2.2$ and in the Fura-2 Ca^{2+} assay, respectively.

Compound	n	R	$\mathrm{p} K_{\mathrm{i}} \pm$ SEM $^{\text {a }}$	$\mathrm{plC}_{50} \pm$ SEM / p $K_{\mathrm{b}} \pm \mathrm{SEM}^{\mathrm{b}}$
2.53	1	$\xi^{\mathrm{CH}_{3}}$	10.23 ± 0.06	n.d.
2.54	2	$\xi^{\mathrm{CH}_{3}}$	10.20 ± 0.05	n.d.
2.55	2	约 CH_{3}	10.13 ± 0.04	n.d.
2.56	1	ह\%	10.50 ± 0.04	$10.26 \pm 0.04 /-$
2.57	1		10.17 ± 0.07	$9.96 \pm 0.12 /-$
2.58	1	${ }_{\xi}^{F} X_{F}^{F}$	10.15 ± 0.06	$9.90 \pm 0.05 /-$
2.59	1	$\xi \mathrm{Cl}$	10.28 ± 0.04	$10.10 \pm 0.04 /-$
2.60	1	\% Br	9.90 ± 0.07	$10.21 \pm 0.01 / 11.08 \pm 0.01$
2.61	1	NH_{2}	9.62 ± 0.03	$9.55 \pm 0.03 / 10.43 \pm 0.03$
2.62	1	\% OH	9.84 ± 0.05	$10.04 \pm 0.10 / 10.92 \pm 0.10$
2.63	1	S	9.95 ± 0.07	$9.73 \pm 0.05 / 10.61 \pm 0.05$
2.64	1	Cll	9.42 ± 0.05	$9.23 \pm 0.08 /-$
2.65	1	国 ${ }^{\text {ar }}$	9.16 ± 0.10	$9.39 \pm 0.10 / 10.27 \pm 0.10$
2.66	1		9.51 ± 0.09	$10.18 \pm 0.12 / 11.06 \pm 0.12$
2.67	1	ξ	7.34 ± 0.11	$7.84 \pm 0.08 / 8.71 \pm 0.08$
2.68	1	ξ_{ξ}	8.93 ± 0.12	$9.62 \pm 0.10 / 10.50 \pm 0.10$
2.69	1	\square	8.96 ± 0.05	$9.62 \pm 0.09 / 10.49 \pm 0.09$
2.70	1		7.28 ± 0.07	$8.12 \pm 0.15 / 9.00 \pm 0.15$

Table 2.2 continued.

Compound	n	R	$\mathrm{p} K_{\mathrm{i}} \pm \mathrm{SEM}^{\mathrm{a}}$	$\mathrm{plC}_{50} \pm$ SEM / p $K_{\mathrm{b}} \pm \mathrm{SEM}^{\mathrm{b}}$
2.71	1		6.42 ± 0.07	$7.51 \pm 0.01 / 8.39 \pm 0.01$
2.72	1		5.67 ± 0.05	$6.34 \pm 0.18 / 7.22 \pm 0.18$
2.73	1	ξ^{Ph}	7.25 ± 0.11	$7.94 \pm 0.03 / 8.82 \pm 0.03$
2.74	1		6.53 ± 0.07	$7.79 \pm 0.02 / 8.67 \pm 0.02$
2.75	1	\%Ph	6.52 ± 0.06	$7.02 \pm 0.04 / 7.90 \pm 0.04$
2.76	1		6.53 ± 0.01	$6.28 \pm 0.20 / 7.16 \pm 0.20$
2.78	1	n.a.	6.99 ± 0.04	n.d.

 SEM from at least three independent experiments, each performed in triplicate. ${ }^{\mathrm{b}}$ Antagonistic activities as determined in a Fura-2 Ca^{2+} assay in intact HEL cells. ${ }^{13,14}$ Intracellular Ca^{2+} mobilization was induced by 10 nM pNPY after pre-incubation of the cells with the antagonist for $15 \mathrm{~min} .{ }^{7} \mathrm{p} K_{\mathrm{b}}$ values are excluded, if the slope factor of the inhibition curve (four parameter logistic fit) was significantly different from unity ($\mathrm{P} \leq 0.05$, see Chapter 8 , Table 8.1) and not close (<-1.25 or >-0.75) to unity, as a steep slope factor might be indicative of a more complex interaction not purely following the law of mass action. Mean values \pm SEM from at least three independent experiments performed in singlet. n.d.: not determined. n.a.: not applicable.

2.2.3. Correlation of $\mathrm{p} K_{\mathrm{i}}$ values with van der Waals volumes of the carbamoyl residues

For compounds 2.2-2.6 and 2.53-2.75, the experimentally determined $\mathrm{p} K_{\mathrm{i}}$ values and the calculated van der Waals volumes of the respective carbamoyl residues showed an inverse correlation ($R^{2}=0.84$) between the size of the carbamoyl residue and the $Y_{1} R$ affinity of the respective (R)-argininamide-type $Y_{1} R$ antagonists (Figure 2.3). By contrast, both, 2.1, which is unsubstituted at the guanidine group, and compounds bearing large carbamoyl residues (2.7, 2.9, 2.76, 2.78), appeared to be outliers in the regression analysis (Figure 2.3). For 2.1, a much higher $p K_{i}$ value would have been expected, and for 2.7, 2.9, 2.76 and 2.78 much lower values (Figure 2.3). Consequently, the attachment of small carbamoyl residues to the guanidine moiety $\left(N^{\omega}\right)$ of 2.1 (see compounds 2.2, 2.4, 2.53-2.66) led to a significant (up to more than one order of magnitude) increase in $Y_{1} R$ affinity (Tables 2.1, 2.2 and Figure 2.3). By contrast, increasing van der Waals volumes of the carbamoyl residues (see compounds 2.3, 2.5, 2.6 and 2.67-2.75; Tables 2.1, 2.2 and Figure 2.3) affected $Y_{1} R$ binding. However, exceeding a critical volume ($212 \AA^{3}$) of the carbamoyl substituent (in compound 2.72), $Y_{1} R$ affinity did not further decrease, but even increased (compounds 2.7, 2.9, 2.76 and 2.78; Tables 2.1, 2.2 and Figure 2.3). In order to find a molecular explanation for this phenomenon, computational studies were performed.

Figure 2.3. Correlation between the experimentally determined ligand (2.2-2.6 and 2.53-2.75) p K_{i} values and calculated van der Waals volumes of the respective carbamoyl residues. Two types of outliers (squares) were observed: (1) (R)-argininamide 2.1, devoid of a carbamoyl substituent, supposed to bind in the same orientation as $\mathbf{2 . 2}$, but unable to occupy the subpocket between TM V and VI (Figure 2.1); (2) compounds 2.7, 2.9, 2.76 and 2.78, bearing bulkier carbamoyl moieties than 2.72, considered to bind to the $Y_{1} R$ in a totally different orientation compared to 2.2.

2.2.4. Induced-fit docking and molecular dynamics (MD) simulations

To shed light on the binding modes of the most striking compounds (2.1-2.3, 2.68, 2.72, 2.76, 2.78) and to get insight into the molecular interactions leading to differences in $Y_{1} R$ affinities, we performed MD simulations (2.1-2.3) and induced-fit docking (2.68, 2.72, 2.76, 2.78) (Figure 2.4). All compounds showed the favorable hydrogen-assisted salt bridge (2.1-2.3, 2.68, 2.76, 2.78) or hydrogen bond (2.72) between the carbamoylguanidine moiety and D2876.59 in cluster 1 of the MD simulations (2.1-2.3) or the lowest free energy (MM-GBSA score) binding poses of induced-fit docking (2.68, 2.72, 2.76, 2.78) (Figure 3B, 3E-F, 3H-I, 3K-L). It is notable that when comparing the $Y_{1} R$ affinity of 2.5 with its congener 2.6 (methylated at the carbamoyl nitrogen, see Table 1), it becomes obvious that the carbamoyl N-H group is involved in binding. In addition to the interaction with D2876.59, the carbamoylguanidine moiety of most compounds (2.2, 2.3, 2.68, 2.76, 2.78) simultaneously forms a hydrogen-assisted salt bridge with D200 ${ }^{\text {ECL2 }}$ (Figure 3E-F, 3H, 3K-L). By contrast, the guanidine moiety of 2.1 was either in contact with D2876.59 or D200 ${ }^{\text {ECL2 }}$ in the MD simulation (cf. Chapter 8, Figure 8.1). Interestingly, in addition to the interaction with the carbamoylguanidine moiety of the ligands, D200ECL2 showed an intra-molecular salt bridge with R208 ${ }^{\mathrm{ECL2}}$, which was most pronounced in the case of $\mathbf{2 . 2}$ (Figure 2.4 E).

Figure 2.4. Cluster 1 binding poses of MD simulations $(2 \mu \mathrm{~s})$ of the $Y_{1} R$ (inactive state, $\mathrm{PDB} \mathrm{ID}^{\text {(} 5 Z B Q}{ }^{15}$) bound to (A, B, orange) 2.1, (D, E, grey) $\mathbf{2 . 2}$ or (G, H, purple) 2.3, and lowest free energy (MM-GBSA) conformations of (F, blue) 2.68, (I, cyan) 2.72, (J, K , green) 2.76 and (L, magenta) 2.78 obtained by induced-fit docking to the $\mathrm{Y}_{1} R$. (C$)(R)$-Argininamide core structure. In A, D, G and J, the space within the subpocket between TM helices V and $V I$ of the orthosteric binding pocket is highlighted with a blue surface/ mesh illustration. Amino acids involved in H -bonding or salt bridges (indicated as yellow dashed lines), $\pi-\pi$ interactions (green dashed lines) or cation- π interactions (magenta dashed lines) with the ligands are labeled: Y100 ${ }^{2.64}$ ($\pi-\pi$): in B; Y100 ${ }^{2.64}$ (HB): in E, F, K; F173 ${ }^{4.60}$ (т-т): in K; Q177 ${ }^{E C L 2}(H B)$: in F, I; F199 ${ }^{E C L 2}$ (т-т): in F; D200 ${ }^{\text {ECL2 }}$ (HB, SB): in E, F, H, K, L; F202 ${ }^{\text {ECL2 }}$ (CAT-T): in E; T212 ${ }^{5.39}(\mathrm{HB})$: in I, K; Q219 ${ }^{5.46}(\mathrm{HB})$: in L; N283 ${ }^{6.55}(\mathrm{HB})$: in B, F, I, K, L; T284 ${ }^{6.56}(\mathrm{HB})$: in F; F286 ${ }^{6.58}$ ($\pi-\pi$): in B; D287 ${ }^{6.59}(\mathrm{HB}, \mathrm{SB})$: in B, E, F, H, K, L; D2876.59 (HB): in I; N299 ${ }^{7.32}(\mathrm{HB})$: in F, H, I; F302 ${ }^{7.35}(\pi-\pi)$: in H. Amino acids involved in intra-molecular H-bonding or salt bridges (indicated as yellow dashed lines) are labeled: in B, R208 ${ }^{\mathrm{ECL2}}-\mathrm{D} 287^{6.59}$ (HB, SB); in E, D200 ${ }^{\mathrm{ECL2}}-\mathrm{R} 208^{\mathrm{ECL2}}(\mathrm{HB}, \mathrm{SB}), \mathrm{T} 212^{5.39}-\mathrm{D} 287^{6.59}(\mathrm{HB}) . \mathrm{HB}=$ hydrogen bond. $\mathrm{SB}=$ salt bridge $. \mathrm{CAT}=$ cation.

Further specific (non-hydrophobic) interactions between amino acids of the $Y_{1} R$ and the ligands were hydrogen bonds (Y1002.64 (2.2, 2.68, 2.76), Q177ECL2 (2.68, 2.72), T2125.39 (2.2, 2.72, 2.76), Q2195.46 (2.78), N2836.55 (2.1, 2.68, 2.72, 2.76, 2.78), T284.56 (2.68), N2997.32 (2.3, 2.68, 2.72)), т-п (Y100 ${ }^{2.64}$ (2.1), F1734.60 (2.76), F199ECL2 (2.68), F2866.58 (2.1), F302 ${ }^{7.35}(\mathbf{2} .3)$) or cation-т contacts (F202ECL2 (2.2)) (Figure 2.4).

In MD simulations, reference compound 2.1, bearing no carbamoyl substituent at the guanidine group, showed a binding mode (Figure $2.4 \mathrm{~A}, 2.4 \mathrm{~B}$) comparable to that of $\mathbf{2 . 2}$ (Figure $2.4 \mathrm{D}, 2.4 \mathrm{E}$). However, in contrast to 2.2, 2.3, 2.68 and 2.72, (R)-argininamide 2.1 did not occupy the subpocket between TM helices V and VI due to absence of the guanidine group substituent (Figure 2.4 A-B and 2.4 D-I).

2.3. Conclusion

A series of (R)-argininamide-type $Y_{1} R$ antagonists, bearing different carbamoyl residues (small (2.532.69) vs. bulky ($\mathbf{2} .70-2.76$ and 2.78), cyclic ($\mathbf{2} .68-2.76$ and 2.78) vs. acyclic ($\mathbf{2} .53-2.67$)) at the guanidine group, were synthesized. Up to a critical size, the increase in size of the carbamoyl side chain (e.g. compound 2.72), correlated inversely with $Y_{1} R$ affinity ($p K_{i}$ values: 5.67-10.50), indicating that the van der Waals volume of considerably larger carbamoyl substituents than in reference compound 2.2 is too large to allow the occupation of the sub-pocket located between TM helix V and TM helix VI (Figure 2.5). Induced-fit docking and MD simulations suggest that, (R)-argininamides bearing very bulky carbamoyl residues (e.g. fluorescent ligand 2.78) bind in an inverted mode (compared to 2.2), accompanied by a moderate recovery of $\mathrm{Y}_{1} \mathrm{R}$ affinity ($\mathrm{p} K_{\mathrm{i}}$ of 2.78: 6.99). The present study revealed that the subpocket of the $Y_{1} R$, perfectly occupied by the carbamoyl residue of the high affinity $Y_{1} R$ antagonist 2.2, ${ }^{15}$ cannot harbour large moieties such as fluorescent dyes. High affinity fluorescent ligands for the $Y_{1} R$ derived from $\mathbf{2 . 2}$ will, therefore require a labelling strategy directed to positions other than the carbamoyl residue, e.g. the diphenyl acetyl moiety pointing towards the receptor surface.

2.4. Experimental section

2.4.1. General experimental conditions

The following reagents and solvents (analytical grade) were purchased from commercial suppliers and used without further purification: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, DMF (Fisher Scientific, Schwerte, Germany); DCC, TFA, $\mathrm{HgCl}_{2}, \mathbf{2 . 1 0}, \mathbf{2 . 1 1}, \mathbf{2 . 1 3 - 2} \mathbf{2 0}, \mathbf{2}$.22 and 2.46-2.51 (Sigma Aldrich, Taufkirchen, Germany); triphosgene and 2.21 (TCI, Eschborn, Germany); DIPEA, 2.36 (ABCR, Karlsruhe, Germany); 2.52 (Merck, Darmstadt, Germany). For pharmacological characterization, pNPY was purchased from Synpeptide (Shanghai, China).

Compounds $\mathbf{2 . 1 2}{ }^{16}, \mathbf{2 . 3 5}{ }^{14}, \mathbf{2 . 3 7}{ }^{17}, \mathbf{2 . 4 0}{ }^{18}, \mathbf{2 . 4 4} \mathbf{4}^{19}, \mathbf{2 . 4 5} \mathbf{5}^{20}$ and $\mathbf{2 . 7 7}{ }^{10,11}$ were synthesized as previously described.

Column chromatography was performed using Merck Geduran 60 silica gel (0.063-0.200 mm) or Merck flash silica gel 60 ($0.040-0.063 \mathrm{~mm}$). For thin layer chromatography, TLC sheets ALUGRAM Xtra SIL G/UV254 from Macherey-Nagel GmbH \& Co. KG (Düren, Germany) were used. Compounds were detected by irradiation with UV light (254 nm), and staining was performed with ninhydrin.

Acetonitrile (HPLC grade), used for HPLC, was purchased from Sigma-Aldrich. Millipore water was used for eluents of analytical and preparative HPLC. Compounds 2.41, 2.42, 2.53-2.76 and 2.78 were purified by a preparative HPLC-system from Knauer (Berlin, Germany) consisting of two pumps (K-1800) and a detector (K-2001). A Kinetex XB C18, $5 \mu \mathrm{~m}, 250 \times 21 \mathrm{~mm}$ (Phenomenex, Aschaffenburg, Germany) served as RP-column at a flow rate of $18 \mathrm{~mL} / \mathrm{min}$. All injected solutions were filtered with syringe filters $(0.45 \mu \mathrm{~m})$. The mobile phase contained the solvents $\mathrm{A}(0.1 \%$ aq TFA) and B (acetonitrile). The detection wavelength was 220 nm . Acetonitrile was removed from the eluates at $40^{\circ} \mathrm{C}$ under reduced pressure. The eluates, containing isolated compounds, were lyophilized using a Christ alpha 2-4 LD (Martin Christ Gefriertrocknungsanlagen, Osterode am Harz, Germany) or a Scanvac CoolSafe 100-9 (Labogene, Alleroed, Denmark) lyophilization apparatus equipped with a Vacuubrand RZ rotary vane vacuum pump (Vacuubrand, Wertheim, Germany).

The purity of compounds 2.53-2.65, 2.73 and 2.78 was determined by analytical HPLC (RP-HPLC) on a 1100 series system from Agilent Technologies (Santa Clara, CA USA) composed of a Degasser (G1379A), a Binary Pump (G1312A), a Diode Array Detector (G1315A), a thermostated Column Compartment (G1316A) and an Autosampler (G1329A). A Phenomenex Kinetex 5u XB-C18 100A, $250 \times 4.6 \mathrm{~mm}$ was used as stationary phase. The flow rate was $1 \mathrm{~mL} / \mathrm{min}$, the detection wavelength was set to 220 nm (compound 2.78 was additionally detected at 480 nm), the oven temperature was set to $30^{\circ} \mathrm{C}$ and the injection volume was $50 \mu \mathrm{~L}$. Mixtures of solvents $\mathrm{A}(0.1 \%$ aq TFA) and B (acetonitrile) were used as mobile phase. The following gradient was applied: Method A: 0-25 min, A/B 90:10-5:95; 25-35 min, 5:95. Analytical HPLC analysis of compounds 2.66-2.72 and 2.74-2.76 was performed on a system from Merck-Hitachi composed of a Pump (L-6200A), an Interface (D600 IF), an Autosampler (AS-2000) and an UV-Detector (L-4000A). A Phenomenex Kinetex 5u XB-C18 100A, $250 \times 4.6 \mathrm{~mm}$ (Phenomenex) was used as stationary phase. The flow rate was $0.8 \mathrm{~mL} / \mathrm{min}$, the detection wavelength was set to 200 nm , the oven temperature was set to $30^{\circ} \mathrm{C}$ and the injection volume was $35 \mu \mathrm{~L}$. A mixture of solvents $A(0.05 \%$ aq TFA) and B (acetonitrile supplemented with 0.05% TFA) was used as mobile
phase. The following gradients were applied: Method B: 0-25 min, A/B 90:10-5:95; 25-35 min, 5:95 and Method C: 0-30 min, 95:5-20:80; 30-32 min, 20:80-5:95; 32-42 min, 5:95.

Deuterated solvents for NMR spectroscopy (DMSO- d_{6}, CDCl_{3}) were obtained from Deutero (Kastellaun, Germany) in ampoules (1 mL). NMR spectra were recorded on a Bruker Avance $300\left({ }^{1} \mathrm{H}, 300 \mathrm{MHz}\right.$; ${ }^{13} \mathrm{C}$, $75 \mathrm{MHz})$, a Bruker Avance III $400\left({ }^{1} \mathrm{H}, 400 \mathrm{MHz} ;{ }^{13} \mathrm{C}, 101 \mathrm{MHz}\right)$ and a Bruker Avance 600 with cryogenic probe (${ }^{1} \mathrm{H}, 600 \mathrm{MHz} ;{ }^{13} \mathrm{C}, 150 \mathrm{MHz}$) (Bruker, Karlsruhe, Germany). Chemical shifts are given in ppm and were referenced to the solvent residual peak (DMSO- d_{6}, at $2.50 \mathrm{ppm}\left({ }^{1} \mathrm{H}-\mathrm{NMR}\right)$ and at 39.52 ppm $\left({ }^{13} \mathrm{C}-\mathrm{NMR}\right) ; \mathrm{CDCl}_{3}$, at $7.26 \mathrm{ppm}\left({ }^{1} \mathrm{H}-\mathrm{NMR}\right)$ and at $\left.77.16 \mathrm{ppm}\left({ }^{13} \mathrm{C}-\mathrm{NMR}\right)\right) .{ }^{21}$ The coupling constants (J) are given in Hertz (Hz). The splitting of the signals is described as follows: $\mathrm{s}=$ singlet, $\mathrm{bs}=$ broad singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet.

Mass spectrometry (HRMS) analysis was performed either on an Agilent 6540 UHD Accurate-Mass QTOF LC/MS system (Agilent Technologies) using an electrospray source (ESI) or on an Agilent GC7890A GC/MS system (Agilent Technologies) using an atmospheric pressure chemical ionization (APCI) source.

Stock solutions were prepared in DMSO at concentrations of $2 \mathrm{mM}(\mathbf{2 . 7 8})$ or 10 mM .

2.4.2. Synthesis protocols and analytical data

General synthesis procedures

General procedure A. The precursors 2.41 or 2.42 were dissolved in DMF, and DIPEA was added. The succinimidyl esters 2.23-2.33, 2.43-2.45, except 2.34, were dissolved in DMF and added to the solution of $\mathbf{2 . 4 1}$ or 2.42. The reaction mixture was stirred at rt for $1-2 \mathrm{~h} .10 \%$ aq TFA (10 equiv.) was added and the product was isolated by preparative HPLC.

General procedure B. A freshly prepared solution of the carboxylic acids 2.48-2.52 and DCC in DMF $(0.5 \mathrm{~mL})$ was added dropwise to a solution of $\mathbf{2 . 4 1}$ in DMF (1 mL) and the mixture was stirred at rt for 2-3 h. The precipitate was removed by filtration and the product purified by preparative HPLC.

General procedure \boldsymbol{C}. In contrast to general procedure B, DIPEA (2.5 equiv.) was added to the solution of $\mathbf{2 . 4 1}$ in DMF, along with the carboxylic acid $\mathbf{2 . 4 6}$ or $\mathbf{2 . 4 7}$.

Succinimidyl 2-methylpropionate (2.23). ${ }^{22}$ A solution of DCC ($0.89 \mathrm{~g}, 4.31 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and a solution of 2-methylpropionic acid (2.10) (369 $\mu \mathrm{L}, 3.98 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ were added dropwise to an ice-cold solution of 2.22 ($0.46 \mathrm{~g}, 4.00 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ and DMF (0.4 mL). The reaction mixture was stirred on an ice bath for 2 h and then at rt overnight. The precipitate was removed by filtration, and the solid was washed $(3 x)$ with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was then washed with a saturated solution of $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ and the organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed by evaporation, the residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and crystallization, initiated by the addition of light petroleum, afforded 2.23 as a white solid ($0.22 \mathrm{~g}, 1.19 \mathrm{mmol}, 30 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta(\mathrm{ppm})$ $1.32(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}$), 2.82 (s, 4H, interfering with the next signal), 2.88 (septet, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})$ 18.9, 25.7, 31.8, 169.4, 172.2. HRMS (APCI): m/z[M+H]+ calcd. for $\left[\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{NO}_{4}\right]^{+}$186.0761, found 186.0765. $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{NO}_{4}$ (185.18).

Succinimidyl 2,2-dimethylpropionate (2.24). ${ }^{23}$ A solution of DCC ($1.13 \mathrm{~g}, 5.48 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1 mL) and a solution of 2,2-dimethylpropionic acid (2.11) ($0.50 \mathrm{~g}, 4.90 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1 mL) were added dropwise to an ice-cold solution of $2.22(0.46 \mathrm{~g}, 4.00 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ and DMF (0.4 mL). The reaction mixture was stirred on an ice bath for 2 h and then at rt overnight. The precipitate was removed by filtration, and the solid was washed ($3 x$) with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was washed with a saturated solution of $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$, and the organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed by evaporation, the residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and crystallization, initiated by the addition of light petroleum, afforded 2.24 as a white solid ($0.28 \mathrm{~g}, 1.41 \mathrm{mmol}, 35 \%$). ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}(400 \mathrm{MHz}$, CDCl_{3}): $\delta(\mathrm{ppm}) 1.37(\mathrm{~s}, 9 \mathrm{H}), 2.78-2.84(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 25.7,27.1,38.5$, 169.3, 173.5. HRMS (APCI): m/z [M+H]+ calcd. for $\left[\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{NO}_{4}\right]^{+}$200.0917, found 200.0918. $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{NO}_{4}$ (199.21).

Succinimidyl N-Boc-glycinate (2.25). ${ }^{24}$ DCC ($0.61 \mathrm{~g}, 2.97 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and added dropwise to an ice-cold solution of $2.22(0.34 \mathrm{~g}, 2.97 \mathrm{mmol})$ and N-Boc-glycinate (12) (0.40 g , 2.28 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The reaction mixture was stirred on an ice bath for 2 h . The precipitate was separated by filtration, and the solid was washed $(3 x)$ with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was washed with a saturated solution of $\mathrm{NaHCO}_{3}(2 x 75 \mathrm{~mL})$, and the organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed by evaporation at reduced pressure to give 2.25 as a white solid ($0.53 \mathrm{~g}, 1.95 \mathrm{mmol}, 86 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}_{6}\right): \delta(\mathrm{ppm}) 1.39(\mathrm{~s}, 9 \mathrm{H}), 2.81(\mathrm{~s}, 4 \mathrm{H}), 4.09(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{t}$, $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta(\mathrm{ppm}) 25.4,28.1,39.8,78.8,155.6,166.9,170.0$. HRMS (APCI): m/z [M+NH4]+ calcd. for [$\left.\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{6}\right]^{+}$290.1347, found 290.1350. $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{6}$ (272.26).

2.26

Succinimidyl benzoate (2.26). ${ }^{25}$ DCC ($1.10 \mathrm{~g}, 5.33 \mathrm{mmol}$) was dissolved in THF (10 mL) and added dropwise to an ice-cold solution of $2.22(0.82 \mathrm{~g}, 3.13 \mathrm{mmol})$ and benzoic acid (2.13) ($0.50 \mathrm{~g}, 4.09 \mathrm{mmol}$) in THF (30 mL). The reaction mixture was stirred on an ice bath for 2 h and then at rt overnight. The precipitate was removed by filtration, and the solid was washed ($2 x$) with THF (5 mL). The filtrate was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated at reduced pressure. The crude product was purified by column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 97: 3$) to give 2.26 as white solid ($0.59 \mathrm{~g}, 2.69 \mathrm{mmol}, 86 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}_{6}\right)$: $\delta(\mathrm{ppm}) 2.90(\mathrm{~s}, 4 \mathrm{H}), 7.62-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.80-7.88(\mathrm{~m}, 1 \mathrm{H}), 8.07-8.14$
(m, 2H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta(\mathrm{ppm}) 25.4,124.4,129.45,129.88,135.5,161.7,170.2$. HRMS (APCI): m/z [M+H]+ calcd. for $\left[\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{NO}_{4}\right]^{+}$220.0604, found 220.0608. $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NO}_{4}$ (219.20).

Succinimidyl phenylacetate (2.27). ${ }^{26}$ A solution of DCC ($0.84 \mathrm{~g}, 4.07 \mathrm{mmol}$) in DMF (1 mL) and a solution of 2-phenylacetic acid (2.14) ($0.50 \mathrm{~g}, 3.67 \mathrm{mmol}$) in DMF (1 mL) were added dropwise to an ice-cold solution of $2.22(0.36 \mathrm{~g} 7.12 \mathrm{mmol})$ in DMF (4 mL). The reaction mixture was stirred on an ice bath for 2 h and then at rt overnight. The precipitate was removed by filtration, and the solid was washed ($5 x$) with DMF (1 mL). The filtrate was poured into a saturated NaHCO_{3} solution (75 mL), and the aqueous phase was extracted with ethyl acetate ($3 x 75 \mathrm{~mL}$). The combined organic phases were washed (2 x) with water, dried over MgSO_{4}, and evaporated under reduced pressure. The crude product was purified by column chromatography (eluent: light petroleum/ethyl acetate 1:2) to give 2.27 as white solid ($0.61 \mathrm{~g}, 2.62 \mathrm{mmol}, 84 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta(\mathrm{ppm}) 2.81$ (s, 4H), $3.94(\mathrm{~s}, 2 \mathrm{H}), 7.28-$ 7.41 (m, 5H). ${ }^{13} \mathrm{C}-$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 25.7,37.7,127.9,129.0,129.4,131.5,166.9,169.1$. HRMS (APCI): m/z [M+H]+ calcd. for [$\left.\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NO}_{4}\right]^{+}$234.0761, found 234.0765. $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{4}$ (233.22).

Succinimidyl diphenylacetate (2.28). ${ }^{18} \mathrm{DCC}(1.08 \mathrm{~g}, 5.23 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and added dropwise to an ice-cold solution of $2.22(0.36 \mathrm{~g}, 3.1 \mathrm{mmol})$ and diphenyl acetic acid (2.15) (0.20 g , 0.94 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The reaction mixture was stirred on an ice bath for 2 h . The precipitate was removed by filtration and the solid was washed $(3 x)$ with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was washed with a saturated solution of $\mathrm{NaHCO}_{3}(3 \times 100 \mathrm{~mL})$ and the organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated at reduced pressure and the crude product was purified by column chromatography (eluent light petroleum/ethyl acetate $2: 1$ to $1: 1$) to give 2.28 as a white solid ($0.50 \mathrm{~g}, 1.62 \mathrm{mmol}, 72 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 2.66(\mathrm{~s}, 4 \mathrm{H}), 5.25(\mathrm{~s}, 1 \mathrm{H}), 7.18-7.31(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz}$, CDCl_{3}): $\delta(\mathrm{ppm}) 25.7,54.1,128.00,128.79,128.96,136.8,168.2,169.0$. HRMS (APCI): m/z [M+H] ${ }^{+}$ calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NO}_{4}\right]^{+} 310.1074$, found 310.1075. $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{4}$ (309.32).

Succinimidyl cyclopropanecarboxylate (2.29). ${ }^{27}$ A solution of DCC ($0.93 \mathrm{~g}, 4.51 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1 mL) and a solution of cyclopropane carboxylic acid (2.16) ($324 \mu \mathrm{~L}, 4.07 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ were added dropwise to an ice-cold solution of $2.22(0.48 \mathrm{~g}, 4.17 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ and DMF (0.4 mL). The reaction mixture was stirred on an ice bath for 2 h and then at rt overnight. The precipitate was removed by filtration, and the solid was washed ($3 x$) with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was washed with a saturated solution of $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$, and the organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed by evaporation, the residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and crystallization, initiated by the
addition of light petroleum, afforded 2.29 as a white solid ($0.33 \mathrm{~g}, 1.80 \mathrm{mmol}, 43 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, CDCl_{3}): $\delta(\mathrm{ppm})$ 1.05-1.24 (m, 4H), 1.81-194 (m, 1H), $2.80(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})$ 10.3, 10.6, 25.6, 169.4, 170.3. HRMS (APCI): m/z [M+H] ${ }^{+}$calcd. for $\left[\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{NO}_{4}\right]^{+}$184.0604, found 184.0606. $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{4}$ (183.16).

Succinimidyl cyclobutanecarboxylate (2.30). ${ }^{28}$ A solution of DCC ($0.81 \mathrm{~g}, 3.93 \mathrm{mmol}$) in ethyl acetate $(1 \mathrm{~mL})$ and a solution of cyclobutanecarboxylic acid (2.17) ($335 \mu \mathrm{~L}, 3.50 \mathrm{mmol}$) in ethyl acetate (1 mL) were added dropwise to an ice-cold solution of 2.22 ($0.35 \mathrm{~g}, 3.04 \mathrm{mmol}$) in ethyl acetate (6 ml) and DMF $(0.4 \mathrm{~mL})$. The reaction mixture was stirred on an ice bath for 2 h and then at rt overnight. The precipitate was removed by filtration, and the solid was washed ($3 x$) with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was washed with a saturated solution of $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$, and the organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed by evaporation, the residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and crystallization, initiated by the addition of light petroleum, afforded 2.30 as a white solid ($0.22 \mathrm{~g}, 1.11 \mathrm{mmol}, 37 \%$). ${ }^{\mathbf{1}} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, CDCl_{3}): $\delta(\mathrm{ppm})$ 1.93-2.14 (m, 2H), 2.30-2.53 (m, 4H), 2.78-2.89 (m, 4H), 3.37-3.51 (m, 1H). ${ }^{13} \mathbf{C}-$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 18.9,25.5,25.8,35.2,169.5,170.7$. HRMS (APCI): m/z[M+H]+calcd. for $\left[\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{NO}_{4}\right]^{+}$198.0761, found 198.0764. $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{4}$ (197.19).

Succinimidyl cyclopentanecarboxylate (2.31). A solution of DCC ($0.70 \mathrm{~g}, 3.39 \mathrm{mmol}$) in ethyl acetate $(1 \mathrm{~mL})$ and a solution of cyclopentanecarboxylic acid (2.18) (333 $\mu \mathrm{L}, 3.07 \mathrm{mmol})$ in ethyl acetate (1 mL) were added dropwise to an ice-cold solution of 2.22 ($0.35 \mathrm{~g}, 3.04 \mathrm{mmol}$) in ethyl acetate (6 ml) and DMF $(0.4 \mathrm{~mL})$. The reaction mixture was stirred on an ice bath for 2 h and then at rt overnight. The precipitate was removed by filtration, and the solid was washed $(3 x)$ with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was washed with a saturated solution of $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$, and the organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed by evaporation, the residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and crystallization, initiated by the addition of light petroleum, afforded 2.31 as a white solid ($0.33 \mathrm{~g}, 1.56 \mathrm{mmol}, 51 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, CDCl_{3}): $\delta(\mathrm{ppm})$ 1.58-1.79 (m, 4H), 1.89-2.09 (m, 4H), 2.78-2.88 (m, 4H), 2.97-3.11 (m, 1H). ${ }^{13}$ C-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 25.7,26.0,30.3,40.7,169.5,172.0$. HRMS (APCI): m/z [M+NH4] calcd. for $\left[\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{4}\right]^{+}$229.1183, found 229.1187. $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{4}$ (211.22).

Succinimidyl cyclohexanecarboxylate (2.32). ${ }^{28,}{ }^{29}$ A solution of DCC ($0.77 \mathrm{~g}, 3.73 \mathrm{mmol}$) in ethyl acetate (1 mL) and a solution of cyclohexanecarboxylic acid (2.19) ($0.36 \mathrm{~g}, 2.81 \mathrm{mmol}$) in ethyl acetate (1 mL) were dropped to an ice-cold solution of 2.22 ($0.41 \mathrm{~g}, 3.56 \mathrm{mmol}$) in ethyl acetate (6 mL) and DMF $(0.4 \mathrm{~mL})$. The reaction mixture was stirred on an ice bath for 2 h and then at rt overnight. The precipitate
was removed by filtration and the solid was washed $(3 x)$ with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was washed with a saturated solution of $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$, and the organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed by evaporation, the residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and crystallization, initiated by the addition of light petroleum, afforded 2.32 as a white solid ($0.40 \mathrm{~g}, 1.67 \mathrm{mmol}, 59 \%$). ${ }^{1} \mathbf{H}-\mathrm{NMR}(300 \mathrm{MHz}$, DMSO- d_{6}): $\delta(\mathrm{ppm})$ 1.19-1.62 (m, 7H), 1.64-1.75 (m, 2H), 1.86-1.96 (m, 2H), $2.80(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta(\mathrm{ppm}) 24.3,25.0,25.5,28.4,39.4,170.3,170.9$. HRMS (APCI): m/z [M+NH4] ${ }^{+}$ calcd. for $\left[\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4}\right]^{+}$243.1339, found 243.1346. $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{4}$ (225.24).

Succinimidyl cyclohexylacetate (2.33). A solution of DCC ($0.58 \mathrm{~g}, 2.81 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and a solution of cyclohexylacetic acid (2.20) ($0.36 \mathrm{~g}, 2.53 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ were added dropwise to an ice-cold solution of $2.22(0.29 \mathrm{~g}, 2.52 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ and DMF (0.4 mL). The reaction mixture was stirred on an ice bath for 2 h and then at rt overnight. The precipitate was removed by filtration, and the solid was washed ($3 x$) with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was washed with a saturated solution of NaHCO_{3} (100 mL), and the organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed by evaporation, the residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and crystallization, initiated by the addition of light petroleum, afforded 2.33 as a white solid ($0.25 \mathrm{~g}, 1.04 \mathrm{mmol}, 41 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})$ 0.99-1.33 (m, 5H), 1.62-1.92 (m, 6H), $2.46(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.83(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 25.8,26.1$, 26.2, 33.0, 35.1, 38.8, 168.1, 169.5. HRMS (APCI): m/z [M+NH4] calcd. for [$\left.\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4}\right]^{+}$257.1496, found 257.1506. $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{4}$ (239.27).

Succinimidyl trifluoroacetate (2.34). ${ }^{30} 2.22$ ($0.35 \mathrm{~g}, 3.04 \mathrm{mmol}$) was dissolved in THF (6 mL), trifluoroacetic acid anhydride (2.21) ($0.90 \mathrm{~mL}, 6.38 \mathrm{mmol}$) was added dropwise and the solution stirred at rt for 3 h . After evaporation of the solvent, toluene (3 mL) was added and evaporated (3 x) to obtain 2.34 as a white solid ($0.64 \mathrm{~g}, 3.04 \mathrm{mmol}, 100 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- d_{6}): $\delta(\mathrm{ppm}) 2.59(\mathrm{~s}, 4 \mathrm{H})$. $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}_{3} \mathrm{NO}_{4}$ (211.10).

N-tert-Butoxycarbonyl- \boldsymbol{N}^{\prime}-[2(tert-butoxycarbonylamino)ethyl]aminocarbonyl-S-methylisothiourea (2.38)..7,31 A solution of tert-butyl (2-aminoethyl)carbamate (2.36) ($0.62 \mathrm{~g}, 3.87 \mathrm{mmol}$) and DIPEA ($1.91 \mathrm{~mL}, 11.2 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ was added dropwise to an ice-cold solution of triphosgene ($0.57 \mathrm{~g}, 1.92 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The reaction mixture was stirred at rt for $30 \mathrm{~min}, \mathrm{~N}$-Boc-S-methylisothiourea (2.35) ($0.79 \mathrm{~g}, 4.93 \mathrm{mmol}$) was added, and after 1.5 h , the solvent was removed by evaporation at reduced pressure. The product was purified directly by column chromatography (eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ ethyl acetate $98: 2$ to $90: 10$) to give 2.38 as a white solid (1.03 g , $2.74 \mathrm{mmol}, 71 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta(\mathrm{ppm}) 1.37(\mathrm{~s}, 9 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.97-$
$3.11(\mathrm{~m}, 4 \mathrm{H}), 6.82(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 12.32(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, DMSO- d_{6}): $\delta(\mathrm{ppm}) 13.5,27.5,28.1,39.5,39.8,77.6,82.1,150.1,155.6,161.5,164.8$. HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}\right]^{+}$377.1853, found 377.1866. $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}$ (376.47).

N-tert-Butoxycarbonyl- \mathbf{N}^{\prime}-[3(tert-butoxycarbonylamino)propyl]aminocarbonyl-S-methyl-

isothiourea (2.39). ${ }^{31}$ A solution of tert-butyl (3-aminopropyl)carbamate (2.37) (5.00 g, 28.7 mmol) and DIPEA ($14.7 \mathrm{~mL}, 86.1 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added dropwise to an ice-cold solution of triphosgene ($4.26 \mathrm{~g}, 14.4 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(45 \mathrm{~mL})$. The reaction mixture was stirred at rt for $30 \mathrm{~min}, \mathrm{~N}$-Boc-S-methylisothiourea (2.35) ($6.55 \mathrm{~g}, 34.4 \mathrm{mmol}$) was added, and after 2 h , the solvent was removed by evaporation at reduced pressure. The product was directly purified by column chromatography (eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /ethyl acetate 98:2 to 96:4; eluent light petroleum/ethyl acetate 87:13 to 82:18) to give 2.39 as a yellowish oil ($5.56 \mathrm{~g}, 14.2 \mathrm{mmol}, 50 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, DMSO- d_{6}): $\delta(\mathrm{ppm})$ $1.37(\mathrm{~s}, 9 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.50-1.60(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.87-2.97(\mathrm{~m}, 2 \mathrm{H}), 2.99-3.07(\mathrm{~m}, 2 \mathrm{H}), 6.76(\mathrm{t}$, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$), $7.73(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 12.39(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta(\mathrm{ppm}) 13.6$, 27.6, 28.2, 29.5, 37.1, 37.7, 77.4, 82.1, 150.2, 155.6, 161.9, 164.8. HRMS (ESI): m/z [M+H] ${ }^{+}$calcd. for [$\left.\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{SNa}\right]^{+} 413.1829$, found 413.1832. $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}$ (390.50).

(R)- N^{α}-Diphenylacetyl- N^{ω}-(aminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide

bis(hydrotrifluoroacetate) (2.41). ${ }^{7}$ (R)- $N^{\prime \prime}$-(4-tert-Butoxybenzyl)- N^{a}-(2,2-diphenylacetyl)ornithinamide (2.40) $\quad(1.31 \mathrm{~g}, \quad 3.49 \mathrm{mmol})$ and N-tert-butoxycarbonyl- $N^{\prime \prime}$-[2(tert-butoxycarbonylamino)ethyl]amino-carbonyl-S-methylisothiourea (2.38) ($1.50 \mathrm{~g}, 3.08 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL}) . \mathrm{HgCl}_{2}$ ($1.26 \mathrm{~g}, 4.62 \mathrm{mmol}$) and DIPEA ($1.31 \mathrm{~mL}, 7.70 \mathrm{mmol}$) were added and the mixture was stirred at rt for 1 h to afford the crude product, that was purified directly by column chromatography (eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ ethyl acetate 1:1). The purified product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7.5 \mathrm{~mL})$, the reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and TFA (7.5 mL) was added. After 1 h , the mixture was allowed to warm to rt , then stirred overnight. The solvent was evaporated, and the crude product was purified by HPLC (gradient: 0-35 $\left.\mathrm{min}, \mathrm{A} / \mathrm{B} 85: 15-38: 62, t_{R}=16 \mathrm{~min}\right)$ to give 2.41 as a fluffy white solid ($372.11 \mathrm{mg}, 47 \mathrm{mmol}, 68 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right): \delta(\mathrm{ppm}) 1.36-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.72(\mathrm{~m}, 1 \mathrm{H}), 2.93$ (br s, 2H), 3.18-3.26 (m, 2H), 3.33-3.38 (m, 2H), 4.09-4.20 (m, 2H), 4.30-4.36 (m, 1H), $5.13(\mathrm{~s}, 1 \mathrm{H})$, 6.65-6.69 (m, 2H), 6.98-7.02 (m, 2H), 7.20-7.25 (m, 2H), 7.26-7.31 (m, 8H), 7.61 (br s, 1H), 7.89 (br s, $3 \mathrm{H}), 8.36(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.42-8.65(\mathrm{br} \mathrm{s}, 2 \mathrm{H}$, interfering with the next signal), $8.49(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, 1 H), 9.05 (br s, 1H), 9.33 (br s, 1H), 10.81 (br s, 1H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(151 \mathrm{MHz}\right.$, DMSO-d d_{6}) $\delta(\mathrm{ppm}) 24.6$, $29.4,37.2,38.5,40.4,41.6,52.3,55.9,115.0,117.0(q, J=297.1 \mathrm{~Hz})(T F A), 126.57,126.61,128.17$, $128.21,128.40,128.50,128.52,129.13,140.3,140.5,153.7,154.4,156.3,158.9(q, J=31.6 \mathrm{~Hz})(T F A)$,
170.97, 171.04. HRMS (ESI): m/z [M+H]+ calcd. for $\left[\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{~N}_{7} \mathrm{O}_{4}\right]^{+} 560.2980$, found 560.2986. $\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{~N}_{7} \mathrm{O}_{4} \times \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{~F}_{6} \mathrm{O}_{4}(559.67+228.05)$.

(R)- \boldsymbol{N}^{α}-Diphenylacetyl- $\boldsymbol{N}^{\boldsymbol{\omega}}$-(aminopropyl)aminocarbonyl(4-hydroxybenzyl)argininamide
bis(hydrotrifluoroacetate) (2.42). ${ }^{32}$ (R)- $N^{\prime \prime}$-(4-tert-Butoxybenzyl)- N^{a}-(2,2-diphenylacetyl)ornithinamide (2.40) ($150 \mathrm{mg}, 0.31 \mathrm{mmol}$) and N-tert-butoxycarbonyl- N^{\prime}-[3(tert-butoxycarbonylamino)propyl]amino-carbonyl-S-methylisothiourea (2.39) (132 $\mathrm{mg}, 0.34 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL}) . \mathrm{HgCl}_{2}$ ($126 \mathrm{mg}, 0.46 \mathrm{mmol}$) and DIPEA ($100 \mathrm{mg}, 0.76 \mathrm{mmol}$) were added and the mixture was stirred at rt overnight to afford the crude product, that was purified by column chromatography (eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ ethyl acetate $10: 1$ to $1: 1$). The purified product was dissolved in a mixture $(10.5 \mathrm{~mL})$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, TFA and water (1:1:0.1). Afterwards, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added, the organic solvent was evaporated (2 x) at reduced pressure, and the crude product was purified by HPLC (gradient: 0-35 min, A/B 85:15-38:62, $t_{R}=19 \mathrm{~min}$) to obtain 2.42 as a fluffy white solid ($112 \mathrm{mg}, 0.14 \mathrm{mmol}, 45 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}$, DMSO$d_{6}$): $\delta(\mathrm{ppm})$ 1.36-1.50 (m, 2H), 1.50-1.60 (m, 1H), 1.63-1.79 (m, 3H), 2.77-2.88 (m, 2H), 3.14-3.26 (m, $4 \mathrm{H}), 4.10-4.21(\mathrm{~m}, 2 \mathrm{H}), 4.29-4.38(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 6.64-6.71(\mathrm{~m}, 2 \mathrm{H}), 6.98-7.03(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.24$ (m, 2H), 7.26-7.34 (m, 8H), $7.67(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.87(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 8.37(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.41-8.61(\mathrm{~m}, 3 \mathrm{H})$, $9.03(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.36(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 10.78(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta(\mathrm{ppm}) 24.6,27.3$, 29.4, 36.5, 36.7, 40.4, 41.7, 52.4, 56.0, 115.0, 117.0 (q, $J=298.4 \mathrm{~Hz}$) (TFA), 126.59, 126.62, 128.18, 128.22, 128, 4, 128.52, 128.57, 129.2, 140.3, 140.5, 153.8, 154.1, 156.3, 159.2 ($q, J=32.1 \mathrm{~Hz}$) (TFA), 171.04, 171.08. HRMS (ESI): m/z $[M+H]^{+}$calcd. for $\left[\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{~N}_{7} \mathrm{O}_{4}\right]^{+} 574.3136$, found 574.3142 . $\mathrm{C}_{31} \mathrm{H}_{39} \mathrm{~N}_{7} \mathrm{O}_{4} \times \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{~F}_{6} \mathrm{O}_{4}(573.70+228.05)$.

(R)- N^{α}-Diphenylacetyl- \boldsymbol{N}^{ω}-(acetylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (2.53). Compound 2.53 was prepared using general procedure A, the reactants 2.41 ($34.6 \mathrm{mg}, 43.9 \mu \mathrm{~mol}$), succinimidyl acetate ($\mathbf{2 . 4 3 \text {) (} 7 . 3 \mathrm { mg } , 3 2 . 5 \mu \mathrm { mol } \text {), DIPEA (} 2 9 \mu \mathrm { L } , 1 6 6 \mu \mathrm { mol } \text {) }) ~ (2)}$ and the solvent DMF ($300 \mu \mathrm{~L}$). Purification by preparative HPLC (gradient: 0-35 min, A/B 85:15-45:55, $t_{R}=20 \mathrm{~min}$) afforded 2.53 as a fluffy white solid ($22.4 \mathrm{mg}, 31.3 \mu \mathrm{~mol}, 71 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}$, DMSO- d_{6}): $\delta(\mathrm{ppm})$ 1.36-1.50 (m, 2H), 1.51-1.61 (m, 1H), 1.64-1.72 (m, 1H), $1.80(\mathrm{~s}, 3 \mathrm{H}), 3.10-3.27(\mathrm{~m}$, $6 \mathrm{H}), 4.09-4.20(\mathrm{~m}, 2 \mathrm{H}), 4.31-4.37(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 6.65-6.71(\mathrm{~m}, 2 \mathrm{H}), 6.98-7.03(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.25$ (m, 2H), 7.26-7.33 (m, 8H), 7.50-7.56 (m, 1H), 7.90-8.00 (m, 1H), 8.36 (t, J=5.8 Hz , 1H), $8.43(\mathrm{br} \mathrm{s}$, 2 H , interfering with two surrounding signals), $8.49(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.96(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.31(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$,
10.25 (br s, 1H). ${ }^{13} \mathrm{C}-$ NMR ($151 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta(\mathrm{ppm}) 22.6,24.6,29.4,38.1,39.1,40.3,41.6,52.3$, 55.9, 115.0, 115.7 (TFA), 117.6 (TFA), 126.57, 126.61, 128.17, 128.21, 128.42, 128.50, 128.53, 129.1, 140.3, 140.5, 153.6, 153.9, 156.3, 158.9 (q, $J=33.2 \mathrm{~Hz}$) (TFA), 169.6, 170.99, 171.03. RP-HPLC (Method A, 220 nm): 100\% ($t_{R}=11.8 \mathrm{~min}, k=3.5$). HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{~N}_{7} \mathrm{O}_{5}\right]^{+}$ 602.3085, found 602.3092. $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{~N}_{7} \mathrm{O}_{5} \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(601.71+114.02)$.

(R)- N^{α}-Diphenylacetyl- N^{ω}-(acetylylaminopropyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (2.54). Compound 2.54 was prepared using general procedure A, the reactants 2.42 ($26.3 \mathrm{mg}, 32.8 \mu \mathrm{~mol}$), succinimidyl acetate (2.43) ($5.1 \mathrm{mg}, 32 \mu \mathrm{~mol}$), DIPEA ($22 \mu \mathrm{~L}, 126 \mu \mathrm{~mol}$) and the solvent DMF $(300 \mu \mathrm{~L})$. Purification by preparative HPLC (gradient: 0-35 min, A/B 85:15-45:55, $t_{R}=20 \mathrm{~min}$) afforded 2.54 as a fluffy white solid ($15.7 \mathrm{mg}, 18.6 \mu \mathrm{~mol}, 57 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}$, DMSO-d d_{6} : $\delta(\mathrm{ppm}) 1.36-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.60(\mathrm{~m}, 3 \mathrm{H}), 1.64-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 3.03-3.08(\mathrm{~m}$, $2 \mathrm{H}), 3.08-3.13(\mathrm{~m}, 2 \mathrm{H}), 3.16-3.24(\mathrm{~m}, 2 \mathrm{H}), 4.10-4.20(\mathrm{~m}, 2 \mathrm{H}), 4.31-4.37(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 6.66-6.69$ $(\mathrm{m}, 2 \mathrm{H}), 6.98-7.02(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.31(\mathrm{~m}, 8 \mathrm{H}), 7.49(\mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{t}$, $J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.40(\mathrm{br} \mathrm{s}, 2 \mathrm{H}$, interfering with two surrounding signals), 8.49 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.94 (br s, 1H), $9.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 10.16$ (br s, 1H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta$ (ppm) 22.6, 24.6, 29.2, 29.4, 36.0, 37.0, 40.3, 41.6, 52.3, 55.9, 115.0, 115.4 (TFA), 117.4 (TFA), 126.57, $126.60,128.17,128.20,128.42,128.50,128.53,129.1,140.3,140.5,153.6,153.7,156.3,158.7$ (q, $J=34.0 \mathrm{~Hz}$) (TFA), 169.3, 170.99, 171.03. RP-HPLC (Method A, 220 nm): 100\% ($t_{R}=11.9 \mathrm{~min}, k=$ 3.6). HRMS (ESI): m/z [M+H]+ calcd. for $\left[\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{~N}_{7} \mathrm{O}_{5}\right]^{+} 616.3242$, found 616.3250. $\mathrm{C}_{33} \mathrm{H}_{41} \mathrm{~N}_{7} \mathrm{O}_{5} \times$ $\mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(615.74+114.02)$.

(R)- N^{α}-Diphenylacetyl- N^{ω}-(propionylaminopropyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (2.55). Compound 2.55 was prepared using general procedure A, the reactants 2.42 (26.3 mg, $32.8 \mu \mathrm{~mol}$), succinimidyl propionate (2.44) ($6.1 \mathrm{mg}, 35.6 \mu \mathrm{~mol}$), DIPEA ($22 \mu \mathrm{~L}, 126 \mu \mathrm{~mol}$) and the solvent DMF ($300 \mu \mathrm{~L}$). Purification by preparative HPLC (gradient: 0-35 min, A/B 85:10-45:55, $t_{R}=22 \mathrm{~min}$) afforded 2.55 as a fluffy white solid ($17.5 \mathrm{mg}, 23.5 \mu \mathrm{~mol}, 72 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}$, DMSO- d_{6}): $\delta(\mathrm{ppm}) 0.99(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$, 1.36-1.50 (m, 2H), 1.50-1.60 (m, 3H), 1.64-1.72 (m, 1H), 2.07 ($q, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 3.04-3.13 (m, 4H), 3.16-3.23 (m, 2H), 4.10-4.20 (m, 2H), 4.31-4.37 (m, 1H), $5.13(\mathrm{~s}, 1 \mathrm{H}), 6.66-6.70(\mathrm{~m}, 2 \mathrm{H}), 6.99-7.02(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.31(\mathrm{~m}, 8 \mathrm{H}), 7.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $7.80(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.41$ ($\mathrm{br} \mathrm{s}, 2 \mathrm{H}$, interfering with two surrounding signals),
$8.49(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.95(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.31$ (br s, 1H, interfering with previous signal), 10.21 (br s, 1H). ${ }^{13}$ C-NMR ($151 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta(\mathrm{ppm}) 10.0,24.6,28.5,29.28,29.42,35.9,37.0,40.3,41.6,52.3$, $55.9,115.0,115.5$ (TFA), 117.5 (TFA), 126.57, 126.60, 128.16, 128.20, 128.42, 128.50, 128.53, 129.1, 140.3, 140.5, 153.63, 153.71, 156.3, 158.8 (q, $J=33.6 \mathrm{~Hz}$) (TFA), 170.99, 171.03, 170.07. RP-HPLC (Method A, 220 nm): $99 \%\left(t_{R}=12.4 \mathrm{~min}, k=3.8\right)$. HRMS $(E S I): \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{34} \mathrm{H}_{44} \mathrm{~N}_{7} \mathrm{O}_{5}\right]^{+}$ 630.3398, found 630.3403. $\mathrm{C}_{34} \mathrm{H}_{43} \mathrm{~N}_{7} \mathrm{O}_{5} \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(629.76+114.02)$.

(R)- N^{α}-Diphenylacetyl- N^{ω}-(2-fluoroacetylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (2.56). Compound 2.56 was prepared using general procedure C and the reactants 2.41 ($99.71 \mathrm{mg}, 126.6 \mu \mathrm{~mol}$), 2-fluoroacetic acid ($\mathbf{2 . 4 6)}$ ($28.99 \mathrm{mg}, 371.5 \mu \mathrm{~mol}$), DIPEA $(55 \mu \mathrm{~L}, 315.7 \mu \mathrm{~mol})$, DCC ($39.44 \mathrm{mg}, 191.2 \mu \mathrm{~mol}$). Purification by preparative HPLC (gradient: 0-35 min, A/B 85:15-38:62, $t_{R}=21 \mathrm{~min}$) afforded 2.56 as a fluffy white solid ($26.6 \mathrm{mg}, 36.3 \mu \mathrm{~mol}, 29 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($600 \mathrm{MHz}, \mathrm{DMSO}_{6}$): $\delta(\mathrm{ppm})$ 1.36-1.49 (m, 2H), 1.50-1.58 (m, 1H), 1.64-1.71 (m, 1H), 3.17-3.26 (m, $6 \mathrm{H}), 4.09-4.18(\mathrm{~m}, 2 \mathrm{H}), 4.30-4.35(\mathrm{~m}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=47.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 6.65-6.68(\mathrm{~m}, 2 \mathrm{H})$, 6.98-7.01 (m, 2H), 7.18-7.24 (m, 2H), 7.27-7.30 (m, 8H), 7.56 (br s, 1H), $8.26(t, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.35$ (t, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}$), 8.44 (br s, 2H, interfering with two surrounding signals), $8.48(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.97$ (br s, 1H), 9.31 (br s, 1H), 10.36 (br s, 1H). ${ }^{13} \mathrm{C}-$ NMR ($150 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta(\mathrm{ppm}) 24.6,29.4,37.8$, $38.8,40.4,41.6,52.3,55.9,80.0(\mathrm{~d}, ~ J=180.4 \mathrm{~Hz}$), 115.0, 116.0 (TFA), 118.0 (TFA), 126.58, 126.62, 128.17, 128.22, 128.43, 128.51, 128.54, 129.1, 140.3, 140.5, 153.7, 154.0, 156.3, 159.0 (q, $J=32.2 \mathrm{~Hz}$) (TFA), 167.5 ($d, J=18.2 \mathrm{~Hz}$), 171.01, 171.05. RP-HPLC (Method A, 220 nm): 98\% ($t_{R}=12.6 \mathrm{~min}, k=$ 3.9). HRMS (ESI): m/z [M+H]+ calcd. for $\left[\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{FN}_{7} \mathrm{O}_{5}\right]^{+} 620.2991$, found 620.2999. $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{FN}_{7} \mathrm{O}_{5} \times$ $\mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(619.70+114.02)$.

(R)- N^{α}-Diphenylacetyl- \boldsymbol{N}^{ω}-(2,2-difluoroacetylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (2.57). Compound 2.57 was prepared using general procedure C and the reactants 2.41 ($66.4 \mathrm{mg}, 84.3 \mu \mathrm{~mol})$, 2,2-difluoroacetic acid (2.47) ($15 \mu \mathrm{~L}, 238.4 \mu \mathrm{~mol}$), DIPEA $(36 \mu \mathrm{~L}, 206.7 \mu \mathrm{~mol})$, DCC ($26.3 \mathrm{mg}, 127.5 \mu \mathrm{~mol}$). Purification by preparative HPLC (gradient: 0-35 min, A/B 85:15-38:62, $\left.t_{R}=21 \mathrm{~min}\right)$ afforded 2.57 as a fluffy white solid ($10.0 \mathrm{mg}, 13.3 \mu \mathrm{~mol}, 16 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (600 MHz, DMSO-d d_{6} : $\delta(\mathrm{ppm})$ 1.35-1.48 (m, 2H), 1.49-1.57 (m, 1H), 1.63-1.70 (m, 1H), 3.17-3.27 (m, $6 \mathrm{H}), 4.08-4.19(\mathrm{~m}, 2 \mathrm{H}), 4.30-4.35(\mathrm{~m}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 6.19(\mathrm{t}, J=53.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.64-6.69(\mathrm{~m}, 2 \mathrm{H})$, 6.97-7.00 (m, 2H), 7.18-7.24 (m, 2H), 7.25-7.31 (m, 8H), 7.58 (br s, 1H), $8.35(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.44$
(br s, 2H, interfering with two surrounding signals), $8.48(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.86(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.94$ (br s, 1H), $9.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 10.23$ (br s, 1H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta(\mathrm{ppm}) 24.6,29.4,38.2$, $38.4,40.3,41.6,52.3,55.9,108.5(\mathrm{t}, \mathrm{J}=247.2 \mathrm{~Hz}$), 115.0, 116.1 (TFA), 118.1 (TFA), 126.56, 126.60, $128.16,128.20,128.41,128.49,128.52,129.1,140.3,140.5,153.6,153.9,156.3,158.6(q, J=31.4 \mathrm{~Hz})$ (TFA), $162.6(\mathrm{t}, J=25.1 \mathrm{~Hz}), 170.97$, 171.02. RP-HPLC (Method A, 220 nm): $98 \% ~\left(t_{R}=12.8 \mathrm{~min}, k=\right.$ 4.0). HRMS (ESI): m/z [M+H] ${ }^{+}$calcd. for $\left[\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{~F}_{2} \mathrm{~N}_{7} \mathrm{O}_{5}\right]^{+}$638.2897, found 638.2905. $\mathrm{C}_{32} \mathrm{H}_{37} \mathrm{~F}_{2} \mathrm{~N}_{7} \mathrm{O}_{5} \times$ $\mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(637.69+114.02)$.

(R)- N^{α}-Diphenylacetyl- N^{ω}-(trifluoroacetylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (2.58). Compound 2.58 was prepared using general procedure A, the reactants 2.41 ($30 \mathrm{mg}, 38.1 \mu \mathrm{~mol}$), succinimidyl trifluoroacetate ($\mathbf{2 . 3 4}$) ($20 \mathrm{mg}, 88.3 \mu \mathrm{~mol}$), DIPEA $(20 \mu \mathrm{~L}, 114.8 \mu \mathrm{~mol})$ and the solvent DMF $(100 \mu \mathrm{~L})$. Purification by preparative HPLC (gradient: 0-30 $\left.\min , A / B 85: 15-38: 62, t_{R}=19\right)$ afforded 2.58 as a fluffy white solid ($6.24 \mathrm{mg}, 8.1 \mu \mathrm{~mol}, 21 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($600 \mathrm{MHz}, \mathrm{DMSO}_{6}$): $\delta(\mathrm{ppm})$ 1.36-1.49 (m, 2H), 1.50-1.58 (m, 1H), 1.63-1.71 (m, 1H), 3.17-3.23 (m, $2 \mathrm{H}), 3.24-3.28(\mathrm{~m}, 2 \mathrm{H}), 3.29-3.32(\mathrm{~m}, 2 \mathrm{H}), 4.08-4.21(\mathrm{~m}, 2 \mathrm{H}), 4.30-4.37(\mathrm{~m}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 6.66-6.69$ $(\mathrm{m}, 2 \mathrm{H}), 6.98-7.02(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.30(\mathrm{~m}, 8 \mathrm{H}), 7.61(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{t}$, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 8.44 (br s, 2H, interfering with two surrounding signals), $8.48(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.91$ (br s, 1H), $9.30(b r s, 1 H), 9.48(t, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 10.17(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta$ (ppm) 24.6, 29.4, 36.5, 38.1, 38.9, 40.4, 41.6, 52.3, 56.0, 114.96 (TFA), 115.03, 116.9 (TFA), 117.1 (q, $J=298.6 \mathrm{~Hz}$), 126.58, 126.61, 128.17, 128.21, 128.42, 128.51, 128.56, 129.1, 140.3, 140.5, 153.7, $154.2,156.5,156.8$ (the last signals belong to a quartet that is not fully resolved), 158.8 (q, $J=31.7 \mathrm{~Hz}$) (TFA), 171.04, 171.07. RP-HPLC (Method A, 220 nm): $98 \% ~\left(t_{R}=13.6 \mathrm{~min}, k=4.3\right.$). HRMS (ESI): m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{32} \mathrm{H}_{3} \mathrm{~F}_{3} \mathrm{~N}_{7} \mathrm{O}_{5}\right]^{+}$656.2803, found 656.2814. $\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{~F}_{3} \mathrm{~N}_{7} \mathrm{O}_{5} \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(655.68+$ 114.02).

(R)- N^{a}-Diphenylacetyl- N^{ω}-(2-chloroacetylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (2.59). Compound 2.59 was prepared using general procedure B and the
 $184.2 \mu \mathrm{~mol})$. Purification by preparative HPLC (gradient: $0-30 \mathrm{~min}, \mathrm{~A} / \mathrm{B} 85: 15-38: 62, t_{\mathrm{R}}=18 \mathrm{~min}$) afforded 2.59 as a fluffy white solid ($16.61 \mathrm{mg}, 22.14 \mu \mathrm{~mol}, 16 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta$ (ppm) 1.37-1.50 (m, 2H), 1.51-1.58 (m, 1H), 1.64-1.73 (m, 1H), 3.17-3.24 (m, 6H), 4.05 (s, 2H), 4.10-
$4.20(\mathrm{~m}, 2 \mathrm{H}), 4.31-4.36(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 6.65-6.70(\mathrm{~m}, 2 \mathrm{H}), 6.98-7.02(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.25(\mathrm{~m}, 2 \mathrm{H})$, 7.26-7.32 (m, 8H), $7.56(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.31-8.35(\mathrm{~m}, 1 \mathrm{H}), 8.36(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.45(\mathrm{br} \mathrm{s}, 2 \mathrm{H}$, interfering with two surrounding signals), $8.49(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.96(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.31(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 10.32(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}-$ NMR ($150 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta(\mathrm{ppm}) 24.6,29.4,38.6,38.7,40.3,41.6,42.6,52.3,55.9,115.01$, 115.9 (TFA), 117.9 (TFA), 126.56, 126.61, 128.16, 128.21, 128.42, 128.50, 128.53, 129.13, 140.3, $140.5,153.6,153.9,156.3,158.8(q, J=32.5 \mathrm{~Hz})(T F A), 166.3,170.98,171.03$. RP-HPLC (Method A, $220 \mathrm{~nm}): 100 \%\left(t_{R}=12.8 \mathrm{~min}, k=4.0\right)$. HRMS (ESI): m/z [M+H]+ calcd. for [$\left.\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{ClN}_{7} \mathrm{O}_{5}\right]^{+}$636.2696, found 636.2699. $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{CIN}_{7} \mathrm{O}_{5} \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(636.15+114.02)$.

(R)- N^{a}-Diphenylacetyl- N^{ω}-(2-bromoacetylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (2.60). Compound 60 was prepared using general procedure B and the reactants 2.41 ($93.44 \mathrm{mg}, 118.6 \mu \mathrm{~mol}$), 2-bromoacetic acid (2.49) ($37.5 \mathrm{mg}, 269.9 \mu \mathrm{~mol}$), DCC $(31.1 \mathrm{mg}, 150.7 \mu \mathrm{~mol})$. Purification by preparative HPLC (gradient: 0-30 min, A/B 85:15-38:62, $t_{R}=19 \mathrm{~min}$) afforded 2.60 as a fluffy white solid ($15.40 \mathrm{mg}, 19.4 \mu \mathrm{~mol}, 16 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (600 MHz , DMSO- d_{6}): $\delta(\mathrm{ppm})$ 1.37-1.50 (m, 2H), 1.51-1.58 (m, 1H), 1.64-1.73 (m, 1H), 3.17-3.24 (m, 6H), $3.85(\mathrm{~s}$, $2 \mathrm{H}), 4.10-4.20(\mathrm{~m}, 2 \mathrm{H}), 4.31-4.36(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 6.65-6.70(\mathrm{~m}, 2 \mathrm{H}), 6.98-7.02(\mathrm{~m}, 2 \mathrm{H}), 7.19-$ $7.25(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.32(\mathrm{~m}, 8 \mathrm{H}), 7.56(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.31-8.35(\mathrm{~m}, 1 \mathrm{H}), 8.36(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.45(\mathrm{br} \mathrm{s}$, 2 H , interfering with two surrounding signals), $8.49(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.97(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.31(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 10.32 (br s, 1H). ${ }^{13}$ C-NMR (150 MHz, DMSO- d_{6}): $\delta(\mathrm{ppm}) 24.6,29.40,29.44,38.66,38.73,40.4,41.6$ $52.3,55.9,115.0,126.56,126.61,128.16,128.21,128.42,128.50,128.52,129.13,140.3,140.5,153.6$, 153.9, 156.3, 158.8 ($q, J=32.9 \mathrm{~Hz}$), 166.5, 170.97, 171.03. RP-HPLC (Method A, 220 nm): 99\% ($t_{R}=12.9 \mathrm{~min}, k=4.0$). HRMS (ESI): m/z [M+H]+ calcd. for $\left[\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{BrN}_{7} \mathrm{O}_{5}\right]^{+}$680.2191, found 680.2193. $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{BrN}_{7} \mathrm{O}_{5} \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(680.60+114.02)$.

(R)- \boldsymbol{N}^{a}-Diphenylacetyl- \boldsymbol{N}^{ω}-(glycinylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide bis(hydrotrifluoroacetate) (2.61). Compound 2.61 was prepared using general procedure A, the reactants 2.41 ($41.4 \mathrm{mg}, 52.6 \mu \mathrm{~mol}$), succinimidyl N-Boc-glycinate ($\mathbf{2 . 2 5) ~ (1 7 . 6 ~ \mathrm { mg } , 6 4 . 6 \mu \mathrm { mol }) \text { , DIPEA }}$ $(35 \mu \mathrm{~L}, 200.9 \mu \mathrm{~mol})$ and the solvent DMF (1 mL) Additionally, the crude product was poured into a solution of 100 mL water (5% acetonitrile, 0.5% TFA). After lyophilization, the crude product was dissolved in a mixture (2 mL) of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and TFA (1:1) and stirred at rt for 2 h . The solvent was evaporated, and the crude product purified by preparative HPLC (gradient: 0-30 min, A/B 85:15-40:60,
$t_{R}=15 \mathrm{~min}$) which afforded 2.61 as a fluffy white solid ($20.5 \mathrm{mg}, 24.4 \mu \mathrm{~mol}, 46 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}$, DMSO- d_{6}): $\delta(\mathrm{ppm})$ 1.36-1.50 (m, 2H), 1.51-1.58 (m, 1H), 1.64-1.72 (m, 1H), 3.17-3.26 (m, 6H), $3.53(\mathrm{~s}$, $2 \mathrm{H}), ~ 4.09-4.19(\mathrm{~m}, 2 \mathrm{H}), 4.31-4.36(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 6.66-6.70(\mathrm{~m}, 2 \mathrm{H}), 6.98-7.02(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.25$ $(\mathrm{m}, 2 \mathrm{H}), 7.26-7.31(\mathrm{~m}, 8 \mathrm{H}), 7.64(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.08(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 8.36(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.42-8.56(\mathrm{~m}, 4 \mathrm{H})$, $9.02(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.34(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 10.73(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta(\mathrm{ppm}) 24.6,29.4$, 38.3, 38.7, 40.0, 40.3, 41.6, 52.3, 55.9, 115.0, 116.1 (TFA), 118.0 (TFA), 126.58, 126.61, 128.17, $128.21,128.41,128.51,128.54,129.1,140.3,140.5,153.7,154.1,156.3,158.9(q, J=31.7 \mathrm{~Hz})$ (TFA), 166.2, 171.01, 171.06. RP-HPLC (Method A, 220 nm): $96 \% ~\left(t_{R}=10.9 \mathrm{~min}, k=3.2\right.$). HRMS (ESI): m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{32} \mathrm{H}_{41} \mathrm{~N}_{8} \mathrm{O}_{5}\right]^{+} 617.3194$, found 617.3205. $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{~N}_{8} \mathrm{O}_{5} \times \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{~F}_{6} \mathrm{O}_{4}(616.31+228.04)$.

(R)- \boldsymbol{N}^{α}-Diphenylacetyl- \boldsymbol{N}^{ω}-(2-hydroxyacetylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (2.62). Under assay conditions, $\mathbf{2 . 6 0}$ is stable for 24 h . Degradation of compound $\mathbf{2 . 6 0}$ led to a $2: 1$ mixture of $\mathbf{2 . 6 0}$ and $\mathbf{2 . 6 2}$ after 6 months. Purification by preparative HPLC (gradient: $0-30 \mathrm{~min}, \mathrm{~A} / \mathrm{B} 85: 15-38: 62$, $t_{R}=15 \mathrm{~min}$) afforded 2.62 as a fluffy white solid. ${ }^{1} \mathrm{H}$-NMR ($600 \mathrm{MHz}, \mathrm{DMSO}_{6}$): $\delta(\mathrm{ppm})$ 1.35-1.49 (m, 2H), 1.50-1.58 (m, 1H), 1.64-1.72 (m, 1H), 3.17-3.25 (m, $6 \mathrm{H}), 3.81(\mathrm{~s}, 2 \mathrm{H}), 4.09-4.20(\mathrm{~m}, 2 \mathrm{H}), 4.31-4.36(\mathrm{~m}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 5.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.50-6.70(\mathrm{~m}, 2 \mathrm{H})$, 6.98-7.02 (m, 2H), 7.20-7.25 (m, 2H), 7.26-7.30 (m, 8H), $7.52(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.88(\mathrm{t}, \mathrm{J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.36$ ($\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}$), 8.40 ($\mathrm{br} \mathrm{s}, 2 \mathrm{H}$, interfering with two surrounding signals), $8.48(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 8.89 (br s, 1H), 9.29 (br s, 1H), 9.89 (br s, 1H). ${ }^{13} \mathrm{C}-$ NMR (150 MHz , DMSO- d_{6}): $\delta(\mathrm{ppm}) 24.6,29.4,37.7$, $39.1,40.3,41.652 .3,55.9,61.4,115.0,126.57,126.61,128.16,128.20,128.41,128.49,128.50,129.1$, 140.3, 140.4, 153.5, 153.8, 156.3, 158.3 ($q, J=31.6 \mathrm{~Hz}$) (TFA), 170.95, 171.00, 172.3. RP-HPLC (Method A, 220 nm): 96\% ($t_{R}=11.5 \mathrm{~min}, k=3.5$). HRMS (ESI): m/z [M+H]+ calcd. for $\left[\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{~N}_{7} \mathrm{O}_{6}\right]^{+}$ 618.3035, found 618.3038. $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{~N}_{7} \mathrm{O}_{5} \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(617.71+114.02)$.

(R)- N^{α}-Diphenylacetyl- \boldsymbol{N}^{ω}-(acrylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (2.63). Compound 2.63 was prepared using general procedure B and the reactants 2.41 ($97.33 \mathrm{mg}, 123.5 \mu \mathrm{~mol}$), acrylic acid (2.52) ($20 \mu \mathrm{~L}, 291.4 \mu \mathrm{~mol}$), DCC (25 mg , $121.2 \mu \mathrm{~mol}$). Purification by preparative HPLC (gradient: 0-30 min, A/B 85:15-40:60, $t_{R}=18 \mathrm{~min}$) afforded 2.63 as a fluffy white solid ($9.0 \mathrm{mg}, 12.4 \mu \mathrm{~mol}, 10 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta(\mathrm{ppm})$ 1.36-1.50 (m, 2H), 1.50-1.58 (m, 1H), 1.63-1.72 (m, 1H), 3.18-3.23 (m, 4H), 3.23-3.27 (m, 2H), 4.09$4.20(\mathrm{~m}, 2 \mathrm{H}), 4.30-4.36(\mathrm{~m}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H}), 5.59\left(\mathrm{dd},{ }^{2} \mathrm{~J}=2.1 \mathrm{~Hz},{ }^{3} \mathrm{~J}=10.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.08$ (dd,
$\left.{ }^{2} J=2.1 \mathrm{~Hz},{ }^{3} J=17.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.20\left(\mathrm{dd},{ }^{2} J=10.1 \mathrm{~Hz},{ }^{3} J=17.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.65-6.70(\mathrm{~m}, 2 \mathrm{H}), 6.98-7.03$ (m, 2H), 7.19-7.25 (m, 2H), 7.26-7.32 (m, 8H), $7.56(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.23(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{t}, J=5.8 \mathrm{~Hz}$, 1 H), 8.44 (br s, 2H, interfering with two surrounding signals), 8.49 ($\mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), $8.96(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 9.31 (br s, 1H), 10.18 (br s, 1H). ${ }^{13}$ C-NMR ($150 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta(\mathrm{ppm}) 24.6,29.4,38.1,39.0,40.3$, 41.6, 52.3, 55.9, 115.0, 125.3, 126.56, 126.60, 128.16, 128.20, 128.41, 128.49, 128.52, 129.1, 131.6, 140.3, 140.5, 153.6, 153.9, 156.3, 158.4 (q, $J=32.1 \mathrm{~Hz}$) (TFA), 165.0, 170.97, 171.02. RP-HPLC (Method A, 220 nm): 98\% ($t_{R}=12.4 \mathrm{~min}, k=3.8$). HRMS (ESI): m/z [M+H]+ calcd. for $\left[\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{~N}_{7} \mathrm{O}_{5}\right]^{+}$ 614.3085, found 614.3089. $\mathrm{C}_{33} \mathrm{H}_{39} \mathrm{~N}_{7} \mathrm{O}_{5} \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(613.72+114.02)$.

(R)- \boldsymbol{N}^{α}-Diphenylacetyl- \boldsymbol{N}^{ω}-(3-chloropropanoylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (2.64). Compound 2.64 was prepared using general procedure B and the reactants 2.41 ($101.15 \mathrm{mg}, 128.4 \mu \mathrm{~mol}$), 3-chloropropionic acid ($\mathbf{2} .50$) ($20.31 \mathrm{mg}, 187.2 \mu \mathrm{~mol}$), DCC ($33.02 \mathrm{mg}, 160 \mu \mathrm{~mol}$). Purification by preparative HPLC (gradient: 0-35 min, A/B 85:15-38:62, $t_{R}=21 \mathrm{~min}$) afforded 2.64 as a white solid fluffy ($9.16 \mathrm{mg}, 12.0 \mu \mathrm{~mol}, 9 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}$, DMSO-d d_{6} : $\delta(\mathrm{ppm}) 1.36-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.72(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, 3.14-3.23 (m, 6H), 3.77 (t, J=6.4 Hz, 2H), 4.09-4.20 (m, 2H), 4.31-4.37 (m, 1H), 5.13 (s, 1H), 6.65-6.70 (m, 2H), 6.98-7.02 (m, 2H), 7.19-7.26 (m, 2H), 7.26-7.32 (m, 8H), 7.51 (br s, 1H), $8.12(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.36$ (t, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}$), 8.44 (br s, 2H, interfering with two surrounding signals), $8.49(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.97$ (br s, 1H), 9.32 (br s, 1H), 10.34 (br s, 1H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta(\mathrm{ppm}) 24.6,29.4,38.1$, 38.3, 39.1, 40.3, 40.9, 41.6, 52.3, 55.9, 115.0, 116.0 (TFA), 118.0 (TFA), 126.56, 126.60, 128.16, 128.20, $128.41,128.49,128.52,129.13,140.3,140.5,153.6,153.9,156.3,158.7(q, J=31.6 \mathrm{~Hz})(T F A)$, 169.2, 170.98, 171.03. RP-HPLC (Method A, 220 nm): $96 \% ~\left(t_{R}=12.8 \mathrm{~min}, k=4.0\right.$). HRMS (ESI): m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{33} \mathrm{H}_{41} \mathrm{CIN}_{7} \mathrm{O}_{5}\right]^{+} 650.2852$, found 650.2854. $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{ClN}_{7} \mathrm{O}_{5} \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(650.18+$ 114.02).

(R)- N^{α}-Diphenylacetyl- N^{ω}-(3-bromopropanoylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (2.65). Compound 2.65 was prepared using general procedure B and the reactants 2.41 ($97.3 \mathrm{mg}, 123.5 \mu \mathrm{~mol}$), 3-bromopropionic acid ($\mathbf{2 . 5 1) ~ (~} 80 \mathrm{mg}, 522.9 \mu \mathrm{~mol}$), DCC ($30 \mathrm{mg}, 145.4 \mu \mathrm{~mol}$). Purification by preparative HPLC (gradient: 0-35 min, A/B 85:15-38:62, $t_{R}=21 \mathrm{~min}$) afforded 2.65 as a fluffy white solid ($12.0 \mathrm{mg}, 14.8 \mu \mathrm{~mol}, 12 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}$, DMSO- d_{6}): $\delta(\mathrm{ppm})$ 1.35-1.49 (m, 2H), 1.49-1.57 (m, 1H), 1.63-1.71 (m, 1 H$), 2.67(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H})$,
3.14-3.22 (m, 6H), $3.63(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.09-4.20(\mathrm{~m}, 2 \mathrm{H}), 4.31-4.36(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 6.66-6.69$ $(\mathrm{m}, 2 \mathrm{H}), 6.99-7.02(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.31(\mathrm{~m}, 8 \mathrm{H}), 7.48-7.52(\mathrm{~m}, 1 \mathrm{H}), 8.10-8.13(\mathrm{~m}, 1 \mathrm{H})$, $8.36(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{br} \mathrm{s}, 2 \mathrm{H}$, interfering with two surrounding signals), $8.48(\mathrm{~d}, J=8.48 \mathrm{~Hz}$, 1 H), 8.93 (br s, 1H), 9.30 (br s, 1H), 10.14 (br s, 1H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}\right.$, DMSO-d d_{6}) $\delta(\mathrm{ppm}) 24.6$, 29.36, 29.40, 38.1, 38.5, 38.9, 40.3, 41.6 52.3, 55.9, 115.0, 126.57, 126.60, 128.16, 128.20, 128.41, 128.49, 128.51, 129.1, 140.3, 140.5, 153.6, $153.8,156.3,158.6$ (q, $J=33.4 \mathrm{~Hz}$) (TFA), 169.5, 170.96, 171.02. RP-HPLC (Method A, 220 nm): $97 \%\left(t_{\mathrm{R}}=13.0 \mathrm{~min}, k=4.1\right)$. HRMS (ESI): m/z[M+H]+calcd. for $\left[\mathrm{C}_{32} \mathrm{H}_{41} \mathrm{BrN}_{7} \mathrm{O}_{5}\right]^{+} 694.2347$, found 694.2355. $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{BrN}_{7} \mathrm{O}_{5} \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(694.63+114.02)$.

(R)- N^{α}-Diphenylacetyl- N^{ω}-(2-methylpropionylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (2.66). Compound 2.66 was prepared using general procedure A, the reactants 2.41 ($30.98 \mathrm{mg}, 39.3 \mu \mathrm{~mol}$), succinimidyl 2-methylpropionate ($\mathbf{2 . 2 3}$) ($7.76 \mathrm{mg}, 41.9 \mu \mathrm{~mol}$), DIPEA $(20 \mu \mathrm{~L}, 114.8 \mu \mathrm{~mol})$ and the solvent DMF $(100 \mu \mathrm{~L})$. Purification by preparative HPLC (gradient: $\left.0-30 \mathrm{~min}, \mathrm{~A} / \mathrm{B} 85: 15-38: 62, t_{R}=17 \mathrm{~min}\right)$ afforded 2.66 as a fluffy white solid ($24.54 \mathrm{mg}, 33.0 \mu \mathrm{~mol}, 84 \%$). ${ }^{1} \mathrm{H}-$ NMR ($600 \mathrm{MHz}, ~ D M S O-d_{6}$): $\delta(\mathrm{ppm}) 0.99(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.36-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.58(\mathrm{~m}, 1 \mathrm{H})$, 1.64-1.72 (m, 1H), 2.32 (septet, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.12-3.18 (m, 4H), 3.18-3.23 (m, 2H), 4.10-4.20 (m, $2 \mathrm{H}), 4.31-4.36(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 6.66-6.70(\mathrm{~m}, 2 \mathrm{H}), 6.99-7.02(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.30$ $(\mathrm{m}, 8 \mathrm{H}), 7.49(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.81-7.84(\mathrm{~m}, 1 \mathrm{H}), 8.36(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{br} \mathrm{s}, 2 \mathrm{H}$, interfering with two surrounding signals), $8.49(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.97(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.31(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 10.33(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}-\mathrm{NMR}$ ($151 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta(\mathrm{ppm}) 19.5,24.6,29.4,34.1,38.0,39.1,40.3,41.6,52.3,55.9,115.0,115.7$ (TFA), 117.7 (TFA), 126.56, 126.60, 128.16, 128.20, 128.41, 128.49, 128.52, 129.13, 140.3, 140.5, 153.6, 153.9, 156.3, $158.8(q, J=33.1 \mathrm{~Hz}$) (TFA), 170.97, 171.03, 173.0. RP-HPLC (Method B, 220 nm): $99 \%\left(t_{R}=15.8 \mathrm{~min}, k=4.5\right)$. HRMS $(E S I): m / z[M+H]^{+}$calcd. for $\left[\mathrm{C}_{34} \mathrm{H}_{44} \mathrm{~N}_{7} \mathrm{O}_{5}\right]^{+} 630.3398$, found 630.3410. $\mathrm{C}_{34} \mathrm{H}_{43} \mathrm{~N}_{7} \mathrm{O}_{5} \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(629.76+114.02)$.

(R)- N^{α}-Diphenylacetyl- N^{ω}-(2,2-dimethylpropionylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (2.67). Compound 2.67 was prepared using general procedure A, the reactants $2.41(31.06 \mathrm{mg}, 39.4 \mu \mathrm{~mol})$, succinimidyl 2,2-dimethylpropionate (2.24) (14.09 mg, $70.7 \mu \mathrm{~mol})$, DIPEA ($20 \mu \mathrm{~L}, 114.8 \mu \mathrm{~mol}$) and the solvent DMF ($100 \mu \mathrm{~L}$). Purification by preparative HPLC (gradient: 0-30 min, A/B 90:10-30:70, $t_{R}=19 \mathrm{~min}$) afforded 2.67 as a fluffy white solid (26.60 mg , $35.1 \mu \mathrm{~mol}, 89 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta(\mathrm{ppm}) 1.08(\mathrm{~s}, 9 \mathrm{H}), 1.36-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.59(\mathrm{~m}$,
$1 \mathrm{H})$, 1.63-1.72 (m, 1H), 3.13-3.23 (m, 6H), 4.09-4.20 (m, 2H), 4.31-4.37 (m, 1H), $5.13(\mathrm{~s}, 1 \mathrm{H}), 6.65-6.70$ $(\mathrm{m}, 2 \mathrm{H}), 6.98-7.02(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.32(\mathrm{~m}, 8 \mathrm{H}), 7.47(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.52-7.57(\mathrm{~m}, 1 \mathrm{H})$, $8.36(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{br} \mathrm{s}, 2 \mathrm{H}$, interfering with two surrounding signals), $8.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 8.97 (s, 1H), 9.31 (br s, 1H), 10.38 (s, 1H). ${ }^{13} \mathrm{C}-\mathrm{NMR}^{\left(150 \mathrm{MHz}, ~ D M S O-d_{6}\right): ~ \delta(p p m) 24.6, ~ 27.4, ~ 29.4, ~}$ 38.0, 38.5, 39.01, 40.3, 41.6, 52.3, 55.9, 115.0, 115.7 (TFA), 117.7 (TFA), 126.57, 126.60, 128.16, 128.20, 128.41, 128.50, 128.53, 129.13, 140.3, 140.5, 153.7, 154.0, 156.3, 158.9 (q, J=32.8 Hz) (TFA), 170.98, 171.03, 177.9. RP-HPLC (Method B, 220 nm): $99 \% ~\left(t_{R}=17.5 \mathrm{~min}, k=5.1\right.$). HRMS (ESI): m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{35} \mathrm{H}_{46} \mathrm{~N}_{7} \mathrm{O}_{5}\right]^{+} 644.3555$, found $644.3570 . \mathrm{C}_{35} \mathrm{H}_{45} \mathrm{~N}_{7} \mathrm{O}_{5} \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(643.79+114.02)$.

(R)- N^{α}-Diphenylacetyl- N^{ω}-(cyclopropoylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (2.68). Compound 2.68 was prepared using general procedure A, the reactants $2.41(30.81 \mathrm{mg}, 39.1 \mu \mathrm{~mol})$, succinimidyl cyclopropanecarboxylate (2.29) (11.13 mg, $60.8 \mu \mathrm{~mol})$, DIPEA ($20 \mu \mathrm{~L}, 114.8 \mu \mathrm{~mol}$) and the solvent DMF ($100 \mu \mathrm{~L}$). Purification by preparative HPLC (gradient: 0-30 $\mathrm{min}, \mathrm{A} / \mathrm{B} 85: 15-38: 62$, $t_{R}=17 \mathrm{~min}$) afforded 2.68 as a fluffy white solid (19.36 mg , $26.1 \mu \mathrm{~mol}, 67 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta(\mathrm{ppm})$ 0.61-0.69 (m, 4H), 1.38-1.57 (m, 4H), 1.63$1.71(\mathrm{~m}, 1 \mathrm{H}), 3.14-3.23(\mathrm{~m}, 6 \mathrm{H}), 4.09-4.20(\mathrm{~m}, 2 \mathrm{H}), 4.31-4.36(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 6.66-6.69(\mathrm{~m}, 2 \mathrm{H})$, 6.99-7.01 (m, 2H), 7.20-7.25 (m, 2H), 7.27-7.30 (m, 8H), $7.54(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.17(\mathrm{~s}, 1 \mathrm{H}), 8.36(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}$, 1 H), 8.44 (br s, 2H, interfering with two surrounding signals), $8.49(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.97(\mathrm{~s}, 1 \mathrm{H}), 9.31$ (s, 1H), 10.20 (s, 1H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right.$): $\delta(\mathrm{ppm}) 6.3,13.6,24.6,29.4,38.2,39.3,40.3$, 41.6, 52.3, 55.9, 115.0, 116.1 (TFA), 118.1 (TFA), 126.56, 126.60, 128.16, 128.20, 128.41, 128.49, 128.52, 129.1, 140.3, 140.5, 153.6, 153.9, 156.3, 158.6 (q, $J=32.7 \mathrm{~Hz}$) (TFA), 170.97, 171.02, 173.0. RP-HPLC (Method B, 220 nm): $99 \% ~\left(t_{R}=17.0 \mathrm{~min}, k=4.9\right.$). HRMS (ESI): m/z[M+H]+ calcd. for $\left[\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{~N}_{7} \mathrm{O}_{5}\right]^{+}$628.3242, found 628.3255. $\mathrm{C}_{34} \mathrm{H}_{41} \mathrm{~N}_{7} \mathrm{O}_{5} \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(627.75+114.02)$.

(R)- N^{a}-Diphenylacetyl- N^{ω}-(cyclobutoylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (2.69). Compound 2.69 was prepared using general procedure A, the reactants $2.41(30.27 \mathrm{mg}, \quad 38.4 \mu \mathrm{~mol})$, succinimidyl cyclobutanecorboxylate (2.30) (11.46 mg, $63.1 \mu \mathrm{~mol})$, DIPEA ($20 \mu \mathrm{~L}, 114.8 \mu \mathrm{~mol}$) and the solvent DMF ($100 \mu \mathrm{~L}$). Purification by preparative HPLC (gradient: 0-30 min, $A / B 85: 15-38: 62$, $t_{R}=18 \mathrm{~min}$) afforded 2.69 as a fluffy white solid (20.90 mg , $27.7 \mu \mathrm{~mol}, 72 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta(\mathrm{ppm}) 1.35-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.64-$ $1.77(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.96-2.02(\mathrm{~m}, 2 \mathrm{H}), 2.07-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.96(\mathrm{q}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.12-$
$3.17(\mathrm{~m}, 4 \mathrm{H}), 3.18-3.23(\mathrm{~m}, 2 \mathrm{H}), 4.10-4.20(\mathrm{~m}, 2 \mathrm{H}), 4.31-4.36(\mathrm{~m}, 1 \mathrm{H}), 1.53(\mathrm{~s}, 1 \mathrm{H}), 6.66-6.69(\mathrm{~m}, 2 \mathrm{H})$, 6.99-7.02 (m, 2H), 7.20-7.25 (m, 2H), 7.27-7.30 (m, 8H), $7.51(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.74(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.36(\mathrm{t}$, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}$), 8.43 (br s, 2H, interfering with two surrounding signals), $8.49(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.96$ (br s, 1H), 9.31 (br s, 1H), 10.24 (br s, 1H). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (151 MHz , DMSO-d): $\delta(\mathrm{ppm})$ 17.7, 24.7, 29.4, $36.5,38.1,38.7,39.1,40.3,41.6,52.3,55.9,115.0,115.6$ (TFA), 117.6 (TFA), 126.56, 126.60, 128.16, 128.20, 128.41, 128.49, 128.52, 129.13, 140.3, 140.5, 153.6, 153.9, 156.3, 158.7 (q, $J=33.6 \mathrm{~Hz}$) (TFA), 170.97, 171.02, 174.3. RP-HPLC (Method B, 220 nm): $96 \% ~\left(t_{R}=16.4 \mathrm{~min}, k=4.7\right.$). HRMS (ESI): m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{35} \mathrm{H}_{44} \mathrm{~N}_{7} \mathrm{O}_{5}\right]^{+} 642.3398$, found 642.3406. $\mathrm{C}_{35} \mathrm{H}_{43} \mathrm{~N}_{7} \mathrm{O}_{5} \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(641.77+114.02)$.

(R)- N^{α}-Diphenylacetyl- N^{ω}-(cyclopentoylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (2.70). Compound 2.70 was prepared using general procedure A, the reactants $2.41(30.82 \mathrm{mg}, 39.1 \mu \mathrm{~mol})$, succinimidyl cyclopentanecarboxylate (2.31) (10.13 mg, $48.0 \mu \mathrm{~mol})$, DIPEA ($20 \mu \mathrm{~L}, 114.8 \mu \mathrm{~mol}$) and the solvent DMF ($100 \mu \mathrm{~L}$). Purification by preparative HPLC (gradient: 0-30 min, A/B 85:15-38:62, $t_{R}=19 \mathrm{~min}$) afforded 2.70 as a fluffy white solid (15.90 mg , $20.7 \mu \mathrm{~mol}, 53 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta(\mathrm{ppm}) 1.35-1.64(\mathrm{~m}, 10 \mathrm{H}), 1.65-1.75(\mathrm{~m}, 3 \mathrm{H}), 3.13$ $(\mathrm{m}, 4 \mathrm{H}), 3.18-3.23(\mathrm{~m}, 2 \mathrm{H}), 4.09-4.19(\mathrm{~m}, 2 \mathrm{H}), 4.31(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 6.65-6.70(\mathrm{~m}, 2 \mathrm{H}), 6.98-7.02$ (m, 2H), 7.20-7.25 (m, 2H), 7.26-7.31 (m, 8H), $7.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.86(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.36(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 1 \mathrm{H})$, 8.44 (br s, 2H, interfering with two surrounding signals), $8.49(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.96$ (br s, 1H), 9.32 (br s, 1H), 10.27 (br s, 1H). ${ }^{13}$ C-NMR ($151 \mathrm{MHz}, ~ D M S O-d_{6}$): $\delta(\mathrm{ppm}) 24.6,25.6,29.4,29.9,38.1,39.1$, $40.3,41.6,44.3,52.3,55.9,115.0,115.7$ (TFA), 117.6 (TFA), 126.56, 126.60, 128.15, 128.20, 128.41, 128.49, 128.52, 129.13, 140.3, 140.5, 153.6, 153.9, 156.3, 158.6 ($q, J=33.2 H z$) (TFA), 170.97, 171.02 , 175.7. RP-HPLC (Method B, 220 nm): $99 \%\left(t_{R}=17.0 \mathrm{~min}, k=4.9\right.$). HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{36} \mathrm{H}_{46} \mathrm{~N}_{7} \mathrm{O}_{5}\right]^{+} 656.3555$, found $656.3571 . \mathrm{C}_{36} \mathrm{H}_{45} \mathrm{~N}_{7} \mathrm{O}_{5} \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(655.80+114.02)$.

(R)- N^{α}-Diphenylacetyl- N^{ω}-(cyclohexoylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (2.71). Compound 2.71 was prepared using general procedure A, the reactants 2.41 ($29.0 \mathrm{mg}, 36.8 \mu \mathrm{~mol}$), succinimidyl cyclohexanecarboxylate ($\mathbf{2 . 3 2)}$ ($11.3 \mathrm{mg}, 54.0 \mu \mathrm{~mol}$), DIPEA $(20 \mu \mathrm{~L}, 114.8 \mu \mathrm{~mol})$ and the solvent DMF $(100 \mu \mathrm{~L})$. Purification by preparative HPLC (gradient: $\left.0-30 \mathrm{~min}, \mathrm{~A} / \mathrm{B} 85: 15-38: 62, t_{R}=20.0 \mathrm{~min}\right)$ afforded 71 as a fluffy white solid ($17.45 \mathrm{mg}, 22.3 \mu \mathrm{~mol}, 61 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right): ~ \delta(\mathrm{ppm})$ 1.10-1.22 (m, 3H), 1.26-1.35 (m, 2H), 1.36-1.50 (m, 2H), 1.51$1.62(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.71(\mathrm{~m}, 5 \mathrm{H}), 2.02-2.08(\mathrm{~m}, 1 \mathrm{H}), 3.11-3.17(\mathrm{~m}, 4 \mathrm{H}), 3.18-3.23(\mathrm{~m}, 2 \mathrm{H}), 4.10-4.19(\mathrm{~m}$,
$2 \mathrm{H}), ~ 4.31-4.36(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 6.66-6.69(\mathrm{~m}, 2 \mathrm{H}), 6.99-7.02(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.31$ $(\mathrm{m}, 8 \mathrm{H}), 7.47(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.75-7.80(\mathrm{~m}, 1 \mathrm{H}), 8.36(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{br} \mathrm{s}, 2 \mathrm{H}$, interfering with two surrounding signals), 8.49 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.95(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.31(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 10.25(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ (150 MHz, DMSO-d ${ }^{2}$): $\delta(\mathrm{ppm}) 24.6,25.3,25.5,29.2,29.4,37.9,39.3,40.3,41.6,44.1,52.3,55.9$, $115.0,115.6$ (TFA), 117.6 (TFA), 126.57, 126.60, 128.16, 128.20, 128.41, 128.49, 128.52, 129.1, 140.3, 140.5, 153.6, 153.9, 156.3, 158.7 (q, $J=32.4 \mathrm{~Hz}$) (TFA), 170.97, 171.02, 175.6. RP-HPLC (Method B, 220 nm): $99 \%\left(t_{R}=18.0 \mathrm{~min}, k=5.2\right)$. HRMS $(E S I): \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{37} \mathrm{H}_{48} \mathrm{~N}_{7} \mathrm{O}_{5}\right]^{+} 670.3711$, found 670.3722. $\mathrm{C}_{37} \mathrm{H}_{47} \mathrm{~N}_{7} \mathrm{O}_{5} \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(669.83+114.02)$.

(R)- N^{α}-Diphenylacetyl- N^{ω}-(cyclohexylacetylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (2.72). Compound 2.72 was prepared using general procedure A, the reactants 2.41 ($30.6 \mathrm{mg}, 38.8 \mu \mathrm{~mol}$), succinimidyl cyclohexylacetate (2.33) ($12.7 \mathrm{mg}, 56.9 \mu \mathrm{~mol}$), DIPEA $(20 \mu \mathrm{~L}, 114.8 \mu \mathrm{~mol})$ and the solvent DMF $(100 \mu \mathrm{~L})$. Purification by preparative HPLC (gradient: $\left.0-30 \mathrm{~min}, \mathrm{~A} / \mathrm{B} 85: 15-38: 62, t_{R}=21 \mathrm{~min}\right)$ afforded 2.72 as a fluffy white solid ($15.8 \mathrm{mg}, 19.8 \mu \mathrm{~mol}, 51 \%$). ${ }^{1} \mathrm{H}-$ NMR $\left(600 \mathrm{MHz}, \mathrm{DMSO}_{6}\right): \delta(\mathrm{ppm})$ 0.82-0.92 (m, 2H), 1.06-1.21 (m, 3H), 1.37-1.50 (m, 2H), 1.50$1.74(\mathrm{~m}, 8 \mathrm{H}), 1.93(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.15(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 3.18-3.22(\mathrm{~m}, 2 \mathrm{H}), 4.09-4.20(\mathrm{~m}, 2 \mathrm{H}), 4.31-4.36$ $(\mathrm{m}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 6.65-6.70(\mathrm{~m}, 2 \mathrm{H}), 6.97-7.03(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.31(\mathrm{~m}, 8 \mathrm{H}), 7.48$ (br s, 1H), 7.87 (br s, 1H), $8.36(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.44$ (br s, 2H, interfering with two surrounding signals), 8.49 ($\mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 8.96 (br s, 1 H), 9.31 (br s, 1 H), $10.25(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(151 \mathrm{MHz}$, DMSO- d_{6}): $\delta(\mathrm{ppm}) 24.6,25.6,25.8,29.4,32.5,34.6,37.9,39.3,40.3,41.6,43.4,52.3,55.9,115.0$, $126.56,126.59,128.15,128.19,128.40,128.49,128.52,129.1,140.3,140.5,153.6,153.9,156.3,158.7$ (q, $J=34.5 \mathrm{~Hz}$) (TFA), 170.96, 171.02, 171.7. RP-HPLC (Method B, 220 nm): 100\% ($t_{R}=16.0 \mathrm{~min}, k=$ 4.6). HRMS (ESI): m/z [M+H] $]^{+}$calcd. for $\left[\mathrm{C}_{38} \mathrm{H}_{50} \mathrm{~N}_{7} \mathrm{O}_{5}\right]^{+}$684.3868, found 684.3887. $\mathrm{C}_{38} \mathrm{H}_{49} \mathrm{~N}_{7} \mathrm{O}_{5} \times$ $\mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(683.85+114.02)$.

(R)- N^{α}-Diphenylacetyl- N^{ω}-(benzoylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (2.73). Compound 2.73 was prepared using general procedure A, the reactants 2.41 ($30.74 \mathrm{mg}, 39.0 \mu \mathrm{~mol}$), succinimidyl benzoate (2.26) ($13 \mathrm{mg}, 59.3 \mu \mathrm{~mol}$), DIPEA ($20 \mu \mathrm{~L}$, $114.8 \mu \mathrm{~mol})$ and the solvent DMF $(100 \mu \mathrm{~L})$. Purification by preparative HPLC (gradient: 0-30 min, A/B 85:15-40:60, $t_{R}=21 \mathrm{~min}$) afforded 2.73 as a fluffy white solid ($12.0 \mathrm{mg}, 15.4 \mu \mathrm{~mol}, 39 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($600 \mathrm{MHz}, \mathrm{DMSO}_{6}$): $\delta(\mathrm{ppm})$ 1.36-1.50 (m, 2H), 1.51-1.59 (m, 1H), 1.64-1.73 (m, 1H), 3.17-3.24 (m,
$2 \mathrm{H})$, 3.28-3.33 (m, 2H), 3.34-3.42 (m, 2H, interfering with water signal), 4.09-4.20 (m, 2H), 4.31-4.36 $(\mathrm{m}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 6.65-6.70(\mathrm{~m}, 2 \mathrm{H}), 6.98-7.03(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.31(\mathrm{~m}, 8 \mathrm{H}), 7.43-$ $7.48(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.82-7.87(\mathrm{~m}, 2 \mathrm{H}), 8.36(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{br}$ $\mathrm{s}, 2 \mathrm{H}$, interfering with two surrounding signals), $8.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.56(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.96$ (br s, 1H), 9.32 (br s, 1H), 10.24 (br s, 1H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta(\mathrm{ppm}) 24.6,29.4,38.8$, 39.0, 40.3, 41.6, 52.3, 55.9, 115.0, 126.56, 126.60, 127.20, 128.16, 128.20, 128.24, 128.41, 128.49, 128.52, 129.1, 131.2, 134.4, 140.3, 140.5, 153.6, 153.9, 156.3, 158.8 (q, $J=31.5 \mathrm{~Hz}$) (TFA), 166.6, 170.98, 171.03. RP-HPLC (Method A, 220 nm): $99 \%\left(t_{R}=13.7 \mathrm{~min}, k=4.3\right.$). HRMS (ESI): m/z [M+H] ${ }^{+}$ calcd. for $\left[\mathrm{C}_{37} \mathrm{H}_{42} \mathrm{~N}_{7} \mathrm{O}_{5}\right]^{+} 664.3242$, found 664.3250. $\mathrm{C}_{37} \mathrm{H}_{41} \mathrm{~N}_{7} \mathrm{O}_{5} \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(663.78+114.02)$.

(R)- N^{α}-Diphenylacetyl- N^{ω}-(4-fluorobenzoylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (2.74). Compound 2.74 was prepared using general procedure A, the reactants 2.41 ($30.95 \mathrm{mg}, 39.3 \mu \mathrm{~mol}$), succinimidyl 4-fluorobenzoate ($\mathbf{2} .45$) ($10.21 \mathrm{mg}, 23.4 \mu \mathrm{~mol}$), DIPEA ($20 \mu \mathrm{~L}, 114.8 \mu \mathrm{~mol}$) and the solvent DMF ($100 \mu \mathrm{~L}$). Purification by preparative HPLC (gradient: $0-30 \mathrm{~min}, \mathrm{~A} / \mathrm{B} 80: 20-50: 50, t_{\mathrm{R}}=20 \mathrm{~min}$) afforded 2.74 as a fluffy white solid ($13.8 \mathrm{mg}, 17.3 \mu \mathrm{~mol}, 44 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right): \delta(\mathrm{ppm})$ 1.36-1.49 (m, 2H), 1.51-1.58 (m, 1H), 1.64-1.72 (m, 1H), 3.17$3.23(\mathrm{~m}, 2 \mathrm{H}), 3.27-3.32(\mathrm{~m}, 2 \mathrm{H}), 3.35-3.40(\mathrm{~m}, 2 \mathrm{H}), 4.09-4.20(\mathrm{~m}, 2 \mathrm{H}), 4.31-4.36(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H})$, 6.66-6.69 (m, 2H), 6.99-7.01 (m, 2H), 7.19-7.25 (m, 2H), 7.26-7.30 (m, 10H), 7.30-7.31 (m, 1H), 7.64 (br s, 1H), 7.89-7.93 (m, 2H), $8.36(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{br} \mathrm{s}, 2 \mathrm{H}$, interfering with two surrounding signals), $8.49(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.60(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.96(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.31(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($150 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta(\mathrm{ppm}) 24.6,29.4,38.8,39.0,40.3,41.6,52.3,55.9,115.0,115.14$ (d, $J=21.7 \mathrm{~Hz}$), 126.55, 126.59, 128.14, 128.19, 128.40, 128.48, 128.51, 129.1, 129.8 (d, $J=9.0 \mathrm{~Hz}$), $130.9(\mathrm{~d}, ~ J=3.0 \mathrm{~Hz}$), 140.3, 140.4, 153.6, 153.9, 156.3, 158.4 ($\mathrm{q}, J=30.7 \mathrm{~Hz}$) (TFA), 163.8 (d, $J=248.3 \mathrm{~Hz}$), 165.5, 170.97, 171.01. RP-HPLC (Method C, 220 nm): 98\% ($t_{R}=22.9 \mathrm{~min}, k=6.9$). HRMS (ESI): m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{37} \mathrm{H}_{41} \mathrm{FN}_{7} \mathrm{O}_{5}\right]^{+}$682.3148, found 682.3157. $\mathrm{C}_{37} \mathrm{H}_{40} \mathrm{FN}_{7} \mathrm{O}_{5} \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}$ $(681.77+114.02)$.

(R)- N^{α}-Diphenylacetyl- N^{ω}-(phenylacetylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (2.75). Compound 2.75 was prepared using general procedure A, the
 $(20 \mu \mathrm{~L}, 114.8 \mu \mathrm{~mol})$ and the solvent DMF $(100 \mu \mathrm{~L})$. Purification by preparative HPLC (gradient: 0-30
$\left.\mathrm{min}, \mathrm{A} / \mathrm{B} 85: 15-38: 62, t_{R}=19 \mathrm{~min}\right)$ afforded 2.75 as a fluffy white solid ($19.64 \mathrm{mg}, 24.8 \mu \mathrm{~mol}, 65 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta(\mathrm{ppm})$ 1.36-1.51 (m, 2H), 1.51-1.59 (m, 1H), 1.64-1.73 (m, 1H), 3.14$3.24(\mathrm{~m}, 6 \mathrm{H}), 3.40(\mathrm{~s}, 2 \mathrm{H}), 4.09-4.20(\mathrm{~m}, 2 \mathrm{H}), 4.30-4.38(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 6.66-6.69(\mathrm{~m}, 2 \mathrm{H}), 6.98-$ 7.02 (m, 2H), 7.19-7.31 (m, 15H), 7.53 (br s, 1H), 8.15 (br s, 1H), 8.36 (t, $J=5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 8.44 (br s, 2H, interfering with two surrounding signals), $8.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.95(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.31(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 10.27$ (br s, 1H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right.$): $\delta(\mathrm{ppm}) 24.6,29.4,38.2,39.1,40.3,41.6,42.4,52.3,55.9$, 115.0, 115.8 (TFA), 117.8 (TFA), 126.3, 126.57, 126.60, 128.16, 128.20, 128.41, 128.50, 128.52, 128.99 (two carbon signals), 129.13, 136.3, 140.3, 140.5, 153.6, 153.9, 156.3, 158.7 (q, J=33.6 Hz) (TFA), 170.5, 170.98, 171.03. RP-HPLC (Method B, 220 nm): $99 \% ~\left(t_{R}=17.0 \mathrm{~min}, k=4.9\right.$). HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{38} \mathrm{H}_{44} \mathrm{~N}_{7} \mathrm{O}_{5}\right]^{+}$678.3398, found 678.3414. $\mathrm{C}_{38} \mathrm{H}_{43} \mathrm{~N}_{7} \mathrm{O}_{5} \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(677.81+$ 114.02).

(R)- N^{a}-Diphenylacetyl- N^{ω}-(diphenylacetylaminoethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate (2.76). Compound 2.76 was prepared using general procedure A, the reactants 2.41 ($35.81 \mathrm{mg}, 45.5 \mu \mathrm{~mol}$), succinimidyl diphenylacetate ($\mathbf{2 . 2 8)}$ ($26 \mathrm{mg}, 84.1 \mu \mathrm{~mol}$), DIPEA $(25 \mu \mathrm{~L}, 143.5 \mu \mathrm{~mol})$ and the solvent DMF ($100 \mu \mathrm{~L}$). Purification by preparative HPLC (gradient: 0-30 $\mathrm{min}, \mathrm{A} / \mathrm{B} 85: 15-38: 62, t_{R}=16 \mathrm{~min}$) afforded 2.76 as a fluffy white solid ($15 \mathrm{mg}, 17.3 \mu \mathrm{~mol}, 38 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta(\mathrm{ppm}) 1.37-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.73(\mathrm{~m}, 1 \mathrm{H}), 3.14-$ $3.24(\mathrm{~m}, 6 \mathrm{H}), 4.07-4.20(\mathrm{~m}, 2 \mathrm{H}), 4.29-4.37(\mathrm{~m}, 1 \mathrm{H}), 4.90(\mathrm{~s}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 6.65-6.68(\mathrm{~m}, 2 \mathrm{H}), 6.98-$ $7.01(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.29(\mathrm{~m}, 16 \mathrm{H}), 7.49(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.34-8.38(\mathrm{~m}, 2 \mathrm{H}), 8.42(\mathrm{br} \mathrm{s}, 2 \mathrm{H}$, interfering with two surrounding signals), $8.49(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.92(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 10.18$ (br s, 1H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right.$): $\delta(\mathrm{ppm}) 24.6,29.4,38.3,39.0,40.4,41.6,52.3,55.9,56.6$, 115.0, 116.1 (TFA), 118.1 (TFA), 126.55, 126.58 (two carbon signals), 128.14, 128.17, 128.18, 128.27, 128.34, 128.39 (2 carb.), 128.46, 128.47, 128.49, 129.11, 140.3 (2 carb.), 140.4, 153.6, 153.9, 156.3, $158.6(\mathrm{q}, J=30.5 \mathrm{~Hz})(T F A), 170.95,171.01,171.37$. One aromatic carbon was not apparent. RP-HPLC (Method B, 220 nm): 98% ($t_{R}=19.6 \mathrm{~min}, k=5.8$). HRMS (ESI): m/z [M+H]+ calcd. for $\left[\mathrm{C}_{44} \mathrm{H}_{48} \mathrm{~N}_{7} \mathrm{O}_{5}\right]^{+}$ 754.3711, found 754.3715. $\mathrm{C}_{44} \mathrm{H}_{47} \mathrm{~N}_{7} \mathrm{O}_{5} \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(753.90+114.02)$.

(R)- N^{α}-Diphenylacetyl- N^{ω}-(4-((1E,3E)-4-(4-(dimethylamino)phenyl)buta-1,3-dienyl)-2,6-dimethyl-pyridinioethyl)aminocarbonyl(4-hydroxybenzyl)argininamide hydrotrifluoroacetate trifluoroacetate (2.78). DIPEA $(2.80 \mu \mathrm{~L}, 16 \mu \mathrm{~mol})$ was added to a solution of compound 2.41 (3.19 mg ,
$4.04 \mu \mathrm{~mol})$ in DMF (50 $\mu \mathrm{L}$). After 5 min , the fluorescent dye Py-5 (2.77) ($5.74 \mathrm{mg}, 15.6 \mu \mathrm{~mol}$) was added, and the reaction mixture was shaken for 3 h in the dark. Purification by preparative HPLC (gradient: 0$30 \mathrm{~min}, \mathrm{~A} / \mathrm{B} 85: 15-38: 62, t_{\mathrm{R}}=20 \mathrm{~min}$) afforded 2.78 as a red solid ($0.94 \mathrm{mg}, 0.90 \mu \mathrm{~mol}, 22 \%$). RP-HPLC (Method A, 220 nm): 95\% ($t_{R}=14.0 \mathrm{~min}, k=4.4$). HRMS (ESI): m/z [M] ${ }^{+}$calcd. for $\left[\mathrm{C}_{49} \mathrm{H}_{57} \mathrm{~N}_{8} \mathrm{O}_{5}\right]^{+}$ 821.4497, found 821.4509. $\mathrm{C}_{49} \mathrm{H}_{57} \mathrm{~N}_{8} \mathrm{O}_{4}{ }^{+} \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2} \times \mathrm{C}_{2} \mathrm{~F}_{3} \mathrm{O}_{2}^{-}(822.05+114.02+113.02)$.

2.4.3. Investigation of the chemical stability of $2.56,2.58-2.61,2.63$ and 2.68

To determine the chemical stability, compounds 2.56, 2.58-2.61, 2.63 and $2.68(100 \mu \mathrm{M})$ were incubated in buffer (10 mM HEPES, $150 \mathrm{mM} \mathrm{NaCl}, 5 \mathrm{mM} \mathrm{KCl}, 2.5 \mathrm{mM} \mathrm{CaCl} 2 \cdot \mathrm{H}_{2} \mathrm{O}, 1.2 \mathrm{mM} \mathrm{KH} \mathrm{KO}_{4}, 1.2 \mathrm{mM}$ $\mathrm{Mg}_{2} \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}, 25 \mathrm{mM} \mathrm{NaHCO} 3, \mathrm{pH} 7$) at rt for 24 h . The solution was diluted ($1: 1$) with 10% aq TFA and the stability was monitored at 6 time intervals ($0 \mathrm{~h}, 1 \mathrm{~h}, 2 \mathrm{~h}, 4 \mathrm{~h}, 8 \mathrm{~h}$ and 24 h) by analytical HPLC analysis (Method A, 220 nm).

2.4.4. Pharmacological methods: radioligand competition binding assay in SK-N-MC cells and Fura-2 Ca^{2+} assay

2.4.4.1. Radioligand competition binding assay in SK-N-MC cells

All competition binding experiments at the $Y_{1} R$ were essentially performed as described by Keller et al. ${ }^{7}$ using $\left[{ }^{3} \mathrm{H}\right] 2.2$ (Cfinal $=0.15 \mathrm{nM}$) and SK-N-MC cells expressing the $\mathrm{Y}_{1} R$. Three independent experiments were performed, each in triplicate.

2.4.4.2. Fura-2 Ca^{2+} assay

The Fura-2 Ca^{2+} assay at the $\mathrm{Y}_{1} \mathrm{R}$ was essentially performed as described by Müller et al. ${ }^{13}$ using 10 nM pNPY for intracellular Ca^{2+} mobilization and applying a pre-incubation period of 15 min for the antagonists. Three independent experiments were performed, each in singlet.

2.4.5. Screening for pan-assay interference compounds (PAINS)

Screening of all target compounds for PAINS via the public tool http://zinc15.docking.org/patterns/home ${ }^{33}$ gave no hits except for compound 2.78 (N, N-dimethylaniline substructure was identified as PAIN). The identity of 2.78 was proven by HRMS and the compound exhibited a purity of 95%. Moreover, there are no reports on the N, N-dimethylaniline scaffold to exhibit $Y_{1} R$ affinity as shown for $\mathbf{2 . 7 8}$. Therefore, interference in the radioligand competition binding assay by an impurity containing an N, N-dimethylaniline scaffold can be excluded.

2.4.6. Computational chemistry

2.4.6.1. Receptor and ligand preparation

The crystal structure of the inactive state $Y_{1} R$ bound to the antagonist 2.2 (PDB ID: 5ZBQ ${ }^{15}$) was used as template. Minor modifications were performed using the modeling suite SYBYL-X 2.0 (Tripos Inc., St. Louis, MO USA): The ICL3 loop was reconstituted by the wild-type sequence. Non-ligand and nonreceptor molecules were removed. Protein and ligand preparation (Schrödinger LLC, Portland, OR USA) including an assignment of protonation states were essentially performed as described in Pegoli et al. ${ }^{34,}$ ${ }^{35}$ Disulfide bonds of the $Y_{1} R$ were maintained between C33 ${ }^{N-t e r m}$ and C2967.29 as well as C113 ${ }^{3.25}$ and C19845.50, and a sodium ion was placed next to D86 ${ }^{2.50}$. Guanidine groups and the fluorophore Py-5
were singly protonated, resulting in a net charge of +1 for 2.1-2.3, 2.68, 2.72, 2.76, and +2 for the fluorescence ligand 2.78.

2.4.6.2. Induced-fit docking

"Flexible" docking of 2.1-2.3, 2.68, 2.72, 2.76 and 2.78 to the $Y_{1} R$ was performed using the induced-fit docking module in Maestro (Schrödinger LLC). The ligands were docked within a box of $46 \times 46 \times 46$ \AA^{3} around the crystallographic binding pose of 2.2. Redocking was performed in the extended precision mode. The resulting poses were scored using MM-GBSA (Schrödinger LLC). Amongst the most reasonable ligand binding poses, the pose corresponding to the lowest MM-GBSA value was selected as the most probable pose. For compounds 2.1-2.3, the coordinates of this pose were used as input for subsequent MD simulations.

2.4.6.3. Molecular dynamics (MD) simulation

Simulations of the $Y_{1} R$ bound to 2.1, 2.2 or $\mathbf{2 . 3}$ and trajectory analysis were essentially performed as described in Pegoli et. al. ${ }^{34}$ with the following modifications: The docked ligand-receptor complexes were aligned to the NTS_{1} R entry (PDB ID: $4 \mathrm{BUO}^{36}$) in the orientations of proteins in membranes (OPM) database. ${ }^{37}$ The Desmond system builder within Maestro (Schrödinger LLC) was used to insert the ligand-receptor complexes into hydrated, equilibrated palmitoyloleoylphosphatidylcholine (POPC) bilayers, comprising about 160 POPC molecules as well as sodium chloride at a concentration of 150 mM (net charges of the entire systems were zero). The systems contained about 78000 atoms and the box sizes were approximately $81 \times 87 \times 117 \AA^{3}$. The coordinates were successively converted to chamber topology and coordinate files using inhouse scripts, psfgen ${ }^{38}$, htmd ${ }^{39}$ and chamber (AMBER 2016, University of California, San Francisco, CA USA). Ligand partial charges were further optimized using fftk ${ }^{40}$. After minimization, the systems were heated from 0 to 100 K in the NVT ensemble during 20 ps and from 100 to 310 K in the NPT ensemble during 100 ps , applying harmonic restraints of $5 \mathrm{kcal} \cdot \mathrm{mol}^{-1} \cdot \AA^{-1}$ to non-hydrogen atoms of protein and ligand. During the equilibration period (10 ns), harmonic restraints on receptor and ligand non-hydrogen atoms were reduced stepwise $\left(0.5 \mathrm{kcal} \cdot \mathrm{mol}^{-1} \cdot \AA^{-1}\right.$ every 0.5 ns) to $2.5 \mathrm{kcal} \cdot \mathrm{mol}^{-1} \cdot \AA^{-1}$ within 3 ns . While removing restraints on ligand atoms, harmonic restrains on receptor mainchain atoms were further reduced stepwise ($0.5 \mathrm{kcal} \cdot \mathrm{mol}^{-1} \cdot \AA^{-1}$ every 0.5 ns) to $0.5 \mathrm{kcal} \cdot \mathrm{mol}^{-1} \cdot \AA^{-1}$ from 3 to 5 ns . After 5 ns , harmonic restraints on receptor mainchain atoms were removed, i.e. the residual equilibration period (5 ns) was run without restraints. The interaction cutoff was set to $9.0 \AA$. The final frames of the equilibration period were used as input for the simulations over $2 \mu \mathrm{~s}$. Ligand-receptor interactions were analyzed using PLIP 1.4.2.41 Figures showing molecular structures of the $Y_{1} R$ in complex with 2.1, 2.2, 2.3, 2.68, 2.72, 2.76 or 2.78 were generated with PyMOL Molecular Graphics system, version 2.2.0 (Schrödinger LLC).

2.4.7. Calculation of van der Waals volumes

ChemAxon Marvin Calculator Plugins (Marvin 18.24.0, 2018, ChemAxon, http://www.chemaxon.com) were used to calculate the van der Waals volumes of the respective carbamoyl residues (containing a radical at the carbonyl group) of compounds 2.1-2.7, 2.9, 2.53-2.76 and 2.78.

2.4.8. Data analysis

The retention factor k was calculated according to following equation: $k=\left(t_{R}-t_{0}\right) / t_{0}\left(t_{R}=\right.$ retention time; $t_{0}=$ dead time).

Specific binding data were plotted as \% ($100 \%=$ bound radioligand in the absence of competitor) over \log (concentration competitor) and analyzed by four-parameter logistic fits (GraphPad Prism 8.0, GraphPad, San Diego, USA) to obtain plC_{50} values, which were converted to $\mathrm{p} K_{\mathrm{i}}$ values according to the Cheng-Prusoff equation ${ }^{42}$ (logarithmic form) (used K_{d} value of $\left[{ }^{3} \mathrm{H}\right] 2.2: 0.044 \mathrm{nM}^{7}$).

Relative Ca^{2+} responses were plotted as \% against log(concentration antagonist) and analyzed by fourparameter logistic fits (GraphPad Prism version 8.0) to obtain pIC_{50} values, which were converted to $p K_{b}$ values according to the Cheng-Prusoff equation ${ }^{42}$ (logarithmic form) (used EC50 value of pNPY: 1.53 nM).

2.5. References

1. Michel, M. C.; Beck-Sickinger, A.; Cox, H.; Doods, H. N.; Herzog, H.; Larhammar, D.; Quirion, R.; Schwartz, T.; Westfall, T. XVI. International Union of Pharmacology recommendations for the nomenclature of neuropeptide Y, peptide YY, and pancreatic polypeptide receptors. Pharmacol. Rev. 1998, 50, 143-50.
2. Reichmann, F.; Holzer, P. Neuropeptide Y: A stressful review. Neuropeptides 2016, 55, 99-109.
3. Zhang, L.; Bijker, M. S.; Herzog, H. The neuropeptide Y system: Pathophysiological and therapeutic implications in obesity and cancer. Pharmacol. Ther. 2011, 131, 91-113.
4. Reubi, J. C.; Gugger, M.; Waser, B.; Schaer, J. C. Y 1 -mediated effect of neuropeptide Y in cancer: breast carcinomas as targets. Cancer Res. 2001, 61, 4636-41.
5. Li, J.; Tian, Y.; Wu, A. Neuropeptide Y receptors: a promising target for cancer imaging and therapy. Regener. Biomater. 2015, 2, 215-219.
6. Rudolf, K.; Eberlein, W.; Engel, W.; Wieland, H. A.; Willim, K. D.; Entzeroth, M.; Wienen, W.; Beck-Sickinger, A. G.; Doods, H. N. The first highly potent and selective non-peptide neuropeptide Y Y 1 receptor antagonist: BIBP3226. Eur. J. Pharmacol. 1994, 271, R11-3.
7. Keller, M.; Weiss, S.; Hutzler, C.; Kuhn, K. K.; Mollereau, C.; Dukorn, S.; Schindler, L.; Bernhardt, G.; Konig, B.; Buschauer, A. ${ }^{\omega}{ }^{\omega}$-Carbamoylation of the Argininamide Moiety: An Avenue to Insurmountable NPY Y_{1} Receptor Antagonists and a Radiolabeled Selective HighAffinity Molecular Tool ([$\left.{ }^{3} \mathrm{H}\right]$ UR-MK299) with Extended Residence Time. J. Med. Chem. 2015, 58, 8834-49.
8. Keller, M.; Bernhardt, G.; Buschauer, A. [3H]UR-MK136: A Highly Potent and Selective Radioligand for Neuropeptide $Y Y_{1}$ Receptors. ChemMedChem 2011, 6, 1566-1571.
9. Keller, M.; Erdmann, D.; Pop, N.; Pluym, N.; Teng, S.; Bernhardt, G.; Buschauer, A. Redfluorescent argininamide-type NPY Y_{1} receptor antagonists as pharmacological tools. Bioorg. Med. Chem. 2011, 19, 2859-78.
10. Höfelschweiger, B. K. The Pyrylium Dyes: A New Class of Biolabels. Synthesis, Spectroscopy, and Application as Labelsand in general Protein Assay. PhD Thesis, University of Regensburg, Regensburg, 2005.
11. Wetzl, B. K.; Yarmoluk, S. M.; Craig, D. B.; Wolfbeis, O. S. Chameleon Labels for Staining and Quantifying Proteins. Angew. Chem. Int. Ed. 2004, 43, 5400-5402.
12. Keller, M.; Bernhardt, G.; Buschauer, A. [$\left.{ }^{3} \mathrm{H}\right]$ UR-MK136: a highly potent and selective radioligand for neuropeptide $Y Y_{1}$ receptors. ChemMedChem 2011, 6, 1566-71.
13. Müller, M.; Knieps, S.; Geßele, K.; Dove, S.; Bernhardt, G.; Buschauer, A. Synthesis and Neuropeptide $\mathrm{Y} \mathrm{Y}_{1}$ Receptor Antagonistic Activity of N,N-Disubstituted ω-Guanidino- and ω Aminoalkanoic Acid Amides. Arch. Pharm. (Weinheim). 1997, 330, 333-342.
14. Weiss, S.; Keller, M.; Bernhardt, G.; Buschauer, A.; Konig, B. Modular synthesis of non-peptidic bivalent NPY Y 1 receptor antagonists. Bioorg. Med. Chem. 2008, 16, 9858-66.
15. Yang, Z.; Han, S.; Keller, M.; Kaiser, A.; Bender, B. J.; Bosse, M.; Burkert, K.; Kogler, L. M.; Wifling, D.; Bernhardt, G.; Plank, N.; Littmann, T.; Schmidt, P.; Yi, C.; Li, B.; Ye, S.; Zhang, R.; Xu, B.; Larhammar, D.; Stevens, R. C.; Huster, D.; Meiler, J.; Zhao, Q.; Beck-Sickinger, A. G.;

Buschauer, A.; Wu, B. Structural basis of ligand binding modes at the neuropeptide $Y Y_{1}$ receptor. Nature 2018, 556, 520-524.
16. Gavande, N.; Kim, H.-L.; Doddareddy, M. R.; Johnston, G. A. R.; Chebib, M.; Hanrahan, J. R. Design, Synthesis, and Pharmacological Evaluation of Fluorescent and Biotinylated Antagonists of ρ_{1} GABAC Receptors. ACS Med. Chem. Lett. 2013, 4, 402-407.
17. Montero, A.; Goya, P.; Jagerovic, N.; Callado, L. F.; Meana, J. J.; Girón, R. o.; Goicoechea, C.; Martín, M. I. Guanidinium and aminoimidazolinium derivatives of N -(4-piperidyl)propanamides as potential ligands for μ opioid and I_{2}-imidazoline receptors: synthesis and pharmacological screening. Bioorg. Med. Chem. 2002, 10, 1009-1018.
Keller, M.; Pop, N.; Hutzler, C.; Beck-Sickinger, A. G.; Bernhardt, G.; Buschauer, A. Guanidine-Acylguanidine Bioisosteric Approach in the Design of Radioligands: Synthesis of a Tritium-Labeled N^{G}-Propionylargininamide ($\left[{ }^{3} \mathrm{H}\right]$-UR-MK114) as a Highly Potent and Selective Neuropeptide Y Y ${ }_{1}$ Receptor Antagonist. J. Med. Chem. 2008, 51, 8168-8172.
Wodtke, R.; Hauser, C.; Ruiz-Gómez, G.; Jäckel, E.; Bauer, D.; Lohse, M.; Wong, A.; Pufe, J.; Ludwig, F.-A.; Fischer, S.; Hauser, S.; Greif, D.; Pisabarro, M. T.; Pietzsch, J.; Pietsch, M.; Löser, R. N^{ε}-Acryloyllysine Piperazides as Irreversible Inhibitors of Transglutaminase 2: Synthesis, Structure-Activity Relationships, and Pharmacokinetic Profiling. J. Med. Chem. 2018, 61, 4528-4560.
20. Dissoki, S.; Hagooly, A.; Elmachily, S.; Mishani, E. Labeling approaches for the GE11 peptide, an epidermal growth factor receptor biomarker. Journal of Labelled Compounds and Radiopharmaceuticals 2011, 54, 693-701.
Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities. J. Org. Chem. 1997, 62, 7512-7515.
Bastian, A. A.; Marcozzi, A.; Herrmann, A. Selective transformations of complex molecules are enabled by aptameric protective groups. Nature Chemistry 2012, 4, 789.
Grochowski, E.; Jurczak, J. A New Method for the Preparation of N-Acyloxyphthalimides and NAcyloxysuccinimides. Synthesis 1977, 1977, 277-279.
Laurent, S.; Botteman, F.; Elst, L. V.; Muller, R. N. Relaxivity and Transmetallation Stability of New Benzyl-Substituted Derivatives of Gadolinium DTPA Complexes. Helv. Chim. Acta 2004, 87, 1077-1089.
Andrade, G. A.; Pistner, A. J.; Yap, G. P. A.; Lutterman, D. A.; Rosenthal, J. Photocatalytic Conversion of CO_{2} to CO Using Rhenium Bipyridine Platforms Containing Ancillary Phenyl or BODIPY Moieties. ACS Catalysis 2013, 3, 1685-1692.
Stembera, K.; Buchynskyy, A.; Vogel, S.; Knoll, D.; Osman, A. A.; Ayala, J. A.; Welzel, P. Moenomycin-Mediated Affinity Purification of Penicillin-Binding Protein 1b. ChemBioChem 2002, 3, 332-340.
27. Andrews, M. D.; Bagal, S. K.; Brown, D. G.; Gibson, K. R.; Klute, W.; Morao, I.; Omoto, K.; Ryckmans, T.; Sabnis, Y.; Skerratt, S. E.; Stupple, P. A. Pyrrolo[3,2-C]Pyridine TropomyosinRelated Kinase Inhibitors. WO2014/053968A1, 2014.
28. Wang, L.; Guillen, V. S.; Sharma, N.; Flessa, K.; Min, J.; Carlson, K. E.; Toy, W.; Braqi, S.; Katzenellenbogen, B. S.; Katzenellenbogen, J. A.; Chandarlapaty, S.; Sharma, A. New Class of

Selective Estrogen Receptor Degraders (SERDs): Expanding the Toolbox of PROTAC Degrons. ACS Med. Chem. Lett. 2018, 9, 803-808.
29. Kim, M.; Han, K.-J. Convenient Synthesis of N-Hydroxysuccinimide Esters from Carboxylic Acids Using Triphosgene. Synth. Commun. 2009, 39, 4467-4472.
30. Kerkovius, J. K.; Menard, F. A Practical Synthesis of 6,8-Difluoro-7-hydroxycoumarin Derivatives for Fluorescence Applications. Synthesis 2016, 48, 1622-1629.
31. Pluym, N.; Baumeister, P.; Keller, M.; Bernhardt, G.; Buschauer, A. [$\left.{ }^{3} \mathrm{H}\right] \mathrm{UR}$-PLN196: A Selective Nonpeptide Radioligand and Insurmountable Antagonist for the Neuropeptide $\mathrm{Y} \mathrm{Y}_{2}$ Receptor. ChemMedChem 2013, 8, 587-593.
Kuhn, K. Molecular Tools for the NPY Y 4 Receptor Derived from the C-Terminus of hPP and from Argininamide-type $Y_{1} R$ Antagonists. thesis, University of Regensburg, Regensburg, Germany, 2017.
33. Aldrich, C.; Bertozzi, C.; Georg, G. I.; Kiessling, L.; Lindsley, C.; Liotta, D.; Merz, K. M., J..; Schepartz, A.; Wang, S. The Ecstasy and Agony of Assay Interference Compounds. J. Med. Chem. 2017, 60, 2165-2168.
34. Pegoli, A.; She, X.; Wifling, D.; Hübner, H.; Bernhardt, G.; Gmeiner, P.; Keller, M. Radiolabeled Dibenzodiazepinone-Type Antagonists Give Evidence of Dualsteric Binding at the M_{2} Muscarinic Acetylcholine Receptor. J. Med. Chem. 2017, 60, 3314-3334.

Pegoli, A.; Wifling, D.; Gruber, C. G.; She, X.; Hübner, H.; Bernhardt, G.; Gmeiner, P.; Keller, M. Conjugation of Short Peptides to Dibenzodiazepinone-Type Muscarinic Acetylcholine Receptor Ligands Determines M2R Selectivity. J. Med. Chem. 2019, 62, 5358-5369.

Egloff, P.; Hillenbrand, M.; Klenk, C.; Batyuk, A.; Heine, P.; Balada, S.; Schlinkmann, K. M.; Scott, D. J.; Schutz, M.; Pluckthun, A. Structure of signaling-competent neurotensin receptor 1 obtained by directed evolution in Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, E655-62.
37. Lomize, M. A.; Lomize, A. L.; Pogozheva, I. D.; Mosberg, H. I. OPM: orientations of proteins in membranes database. Bioinformatics 2006, 22, 623-5.
38. Humphrey, W.; Dalke, A.; Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 1996, 14, 33-8, 27-8.

Doerr, S.; Harvey, M. J.; Noe, F.; De Fabritiis, G. HTMD: High-Throughput Molecular Dynamics for Molecular Discovery. J. Chem. Theory Comput. 2016, 12, 1845-52.
40. Mayne, C. G.; Saam, J.; Schulten, K.; Tajkhorshid, E.; Gumbart, J. C. Rapid parameterization of small molecules using the Force Field Toolkit. J. Comput. Chem. 2013, 34, 2757-70.
41. Salentin, S.; Schreiber, S.; Haupt, V. J.; Adasme, M. F.; Schroeder, M. PLIP: fully automated protein-ligand interaction profiler. Nucleic Acids Res. 2015, 43, W443-7.
42. Yung-Chi, C.; Prusoff, W. H. Relationship between the inhibition constant (K_{I}) and the concentration of inhibitor which causes 50 per cent inhibition (I_{50}) of an enzymatic reaction. Biochem. Pharmacol. 1973, 22, 3099-3108.

Chapter 3

Additional characterization of argininamide-type neuropeptide $Y Y_{1}$ receptor antagonists presented in chapter 2:
 β-arrestin2 recruitment, $Y_{1} R$ selectivity and investigation of potential irreversibly binding ligands

[^0] of cells and radioligand competition binding experiments at $h Y_{5} R$ and saturation binding experiments at $h Y_{1} R$.

3.1. Introduction

A recently published series of (R)-argininamide-type neuropeptide $Y Y_{1}$ receptor antagonists (2.53-2.76 and 2.78), investigated in radioligand competition binding studies and Fura-2 Ca^{2+} assay, revealed that the size of the N^{ω}-carbamoyl substituent, attached at the guanidine group, considerably effects $Y_{1} R$ affinity, and, as suggested by docking studies and molecular dynamics simulations, can also alter the $Y_{1} R$ binding mode of the ligands (cf. Chapter 2). ${ }^{1}$

Figure 3.1. Structures of N^{ω}-carbamoylated (R)-argininamides $h Y_{1} R$ antagonists 2.2 and 2.56-2.76.
Here, in addition to functional data obtained from a Fura-2 Ca^{2+} assay (G-protein mediated signalling) (cf. Chapter 2), compounds 2.1, 2.2, 2.56-2.59, 2.61 and 2.65 were investigated in a β-arrestin2 recruitment assay.

Compound 2.60 proved to be unstable in DMSO during storage (6 months) at $-20^{\circ} \mathrm{C}$ (hydrolysis of the 2-bromoacetyl moiety). Therefore, the question arose if the bromoacetyl residue in $\mathbf{2 . 6 0}$ can serve for a covalent binding of the ligand to the $h Y_{1} R$. To address this question, saturation binding experiments were performed with the $\mathrm{Y}_{1} R$ radioligand $\left[{ }^{3} \mathrm{H}\right]$ UR-MK299 $\left(\left[{ }^{[} \mathrm{H}\right] 2.2\right)$ at SK-N-MC cells after pre-incubation of the cells with 2.60. Compound 2.63, bearing an acrylamide residue (Figure 3.1), was also included in these studies.

3.2. Results and discussion

3.2.1. Pharmacological methods: $Y_{1} R$ antagonism ($p K_{b}$) in a β-arrestin2 recruitment assay, NPY $Y_{1} R$ subtype selectivity and potential irreversibly binding ligands

The standard antagonists 2.1 and 2.2 as well as selected N^{ω}-carbamoylated (R)-argininamides (2.562.59, 2.61 and 2.65) were investigated in the β-arrestin2 recruitment assay. Furthermore 2.56, 2.68 and 2.72 were investigated in a radioligand competition binding assay at $h Y_{4} R$ and $h Y_{5} R$. Potential covalent binding ligands bearing 2-bromoacetyl (2.60) or acrylamide (2.63) residues were investigated in saturation binding experiments.

3.2.1.1. Determination of $p K_{\mathrm{b}}$ values in a β-arrestin2 recruitment assay

The $Y_{1} R$ antagonism ($\mathrm{p} K_{\mathrm{b}}$) of (R)-argininamides 2.1, 2.2, 2.56-2.59, 2.61 and 2.65 was investigated in a β-arrestin2 recruitment assay in living HEK293T hY ${ }_{1} R+\beta$ Arr2 cells (Figure 3.2 and Table 3.1), as described in the doctoral thesis of Felixberger. ${ }^{2}$ Minor modifications were applied: β-arrestin2 recruitment was induced by 80 nM pNPY (relative to the response observed (EC95) upon stimulation with pNPY) as described, and luminescence was measured as a function of time on living cells instead of measuring luminescence after cell lysis.

Antagonists 2.1, 2.2, 2.56-2.59, 2.61 and 2.65 were pre-incubated with the cells for 15 min . In the case of BIBP-3226 (2.1), the antagonism ($\mathrm{p} K_{\mathrm{b}}$) observed in the β-arrestin2 recruitment assay was more than one order of magnitude lower as compared to its $Y_{1} R$ affinity ($p K_{i}$), as determined in the radioligand binding assay (cf. Chapter 2, Table 2.1). Moreover, antagonism ($\mathrm{p} K_{b}=8.82$; IC_{50} value was converted to $\mathrm{p} K_{\mathrm{b}}$ value) determined in the Fura-2 Ca^{2+} assay (inhibition of Ca^{2+} signal induced by 10 nM pNPY) described in literature ${ }^{3}$ increased compared to antagonism in the β-arrestin2 recruitment assay. The antagonism ($p K_{b}=10.50$) of 2.2 in the β-arrestin2 recruitment assay was in good agreement with the affinity ($\mathrm{p} K_{\mathrm{i}}=10.11, K_{\mathrm{i}}$ value was converted to $\mathrm{p} K_{\mathrm{i}}$ value) as determined in the radioligand binding assay (cf. Chapter 2, Table 2.1) and pK_{b} value ($\mathrm{p} K_{b}=10.77$, the $\mathrm{p} K_{b}$ value of 2.2 was calculated from given IC_{50} value reported by Keller et al., ${ }^{4}$ EC $_{50}$ value of pNPY was taken from literature ${ }^{1}$) which was obtained in the Fura-2 Ca^{2+} assay (2.2 was pre-incubated for 20 min) in literature. ${ }^{4}$

Table 3.1. Antagonism (p_{b}) of standard antagonists ($\mathbf{2 . 1}$ and $\mathbf{2 . 2}$) and synthesized N^{ω}-carbamoylated (R) -argininamides 2.562.59, 2.61, 2.65, 2.66, 2.69 and 2.71 determined in the β-arrestin2 recruitment assay in living HEK293T hY $R+\beta$ Arr2 cells.

Compound	$\mathrm{p} K_{\mathrm{b}} \pm \mathrm{SEM}^{\mathrm{a}}$	N	Compound	$\mathrm{p} K_{\mathrm{b}} \pm \mathrm{SEM}^{\mathrm{a}}$	N
2.1 (BIBP-3226)	7.36 ± 0.03	3	2.61	9.58 ± 0.47	2
2.2 (UR-MK299)	10.50 ± 0.08	3	2.65	9.34 ± 0.07	2
2.56	10.66 ± 0.18	3	2.66	10.10 ± 0.14	3
2.57	10.34 ± 0.08	3	2.69	10.340 .05	3
2.58	10.63 ± 0.12	3	2.71	6.83 ± 0.01	3
2.59	10.72 ± 0.17	3			

${ }^{a} \beta$-Arrestin2 recruitment assay in intact HEK293T hY ${ }_{1} R+\beta$ Arr2 cells. Arrestin2 recruitment was induced by 80 nM pNPY after pre-incubation of the cells with the antagonist for 15 min . Mean values \pm SEM from at least N independent experiments, each performed in triplicate.

Additionally, the potency of pNPY ($\mathrm{pEC} 50=8.05 \pm 0.01 ; \mathrm{N}=5$) was determined in a modified β-arrestin2 recruitment assay in living HEK293T hY ${ }_{1} R+\beta A r r 2$ cells and the potency ($p E C_{50}=7.36$) was lower compared to that from the procedure described in the doctoral thesis of Felixberger ${ }^{2}$ using the same cell line. Further investigations are needed to explain the discrepancies of pEC_{50} values of pNPY under both assay conditions. However, the obtained data determined in living HEK293T hY ${ }_{1} R+\beta$ Arr2 cells were in better agreement with the previously described potency of NPY ($\mathrm{pEC} 50=8.57$) as determined in a bimolecular fluorescence complementation assay. ${ }^{5}$

The antagonism of selected (R)-argininamides 2.56-2.59, 2.61 and 2.65 obtained in the β-arrestin2 recruitment assay was in good agreement with data obtained in the radioligand competition binding experiments and Fura-2 Ca^{2+} assays. The replacement of the propionyl group in 2.2 by 2-fluoroacetyl (2.56), 2,2-difluoroacetyl (2.57), trifluoroacetyl (2.58), 2-chloroacetyl (2.59), 2-methylpropionyl (2.66) and cyclopropane carbonyl (2.68) residues did not affect the antagonism ($\mathrm{p} K_{\mathrm{b}}$) observed in a β-arrestin2 recruitment assay, whereas the introduction of a 2 -aminoacetyl (2.61) moiety is less favoured.

Additionally, the introduction of a bulkier aliphatic ring (cyclohexyl) in 2.71 led to a decrease in antagonism.

Figure 3.2. (A) β-Arrestin2 recruitment elicited by pNPY (agonist mode). (B-F) Inhibition of β-arrestin2 recruitment (induced by 80 nM pNPY) by (B) 2.1, 2.2, (C) 2.2, 2.56, 2.57, 2.58, (D) 2.2, 2.59, 2.61, 2.65 (E) 2.2, 2.66, 2.69, 2.71 (antagonist mode). All experiments were performed in living HEK293T hY ${ }_{1}$ R + β Arr2 cells. Antagonists were pre-incubated with cells for 15 min . Data are presented as means \pm SEM from at least two independent experiments, each performed in triplicate.

All investigated (R)-argininamides $\mathbf{2} .56$-2.59, 2.61 and 2.65 showed antagonism in the β-arrestin2 recruitment assays as well as in the Fura-2 Ca^{2+} assays (cf. Chapter 2, Table 2.2 and Table 3.1). The replacement of the guanidine group in 2.1 through the bioisosteric N^{ω}-carbamoyl guanidine did not lead to a functional bias.

3.2.1.2. NPY $Y_{1} R$ subtype selectivity

The $h Y_{1} R$ antagonists 2.58, 2.68 and 2.72 were investigated in radioligand competition binding experiments on $h Y_{4}$ and $h Y_{5}$ receptors and showed no affinity towards the $h Y_{4} R$ and the $h Y_{5} R$ at
concentrations up to $10,000 \mathrm{nM}$ (Table 3.2). These compounds (2.58, $\mathbf{2 . 6 8}$ and 2.72) were intended to bind in the same orientation as the highly $Y_{1} R$ selective compound $\mathbf{2 . 2}$ (cf. Chapter 2). The increasing volume of the carbamoyl residue did not result in $h Y_{4} R$ and $h Y_{5} R$ binding.

Table 3.2. NPY receptor subtype preference of N^{ω}-carbamoylated (R)-argininamides 2.56, 2.68 and 2.72.

compound	hY ${ }_{1}$ R	$h Y_{4} \mathrm{R}$	$h Y_{5} \mathrm{R}$
	$\mathrm{p} K_{\mathrm{i}} \pm \mathrm{SEM}^{\mathrm{a}}$	$\mathrm{p} K_{\mathrm{i}}^{\mathrm{b}}$	$\mathrm{p} K_{\mathrm{i}}{ }^{\text {c }}$
2.56	10.50 ± 0.04	<5.00	<5.00
2.68	8.93 ± 0.12	<5.00	<5.00
2.72	5.67 ± 0.05	<5.00	<5.00

${ }^{\text {a }}$ Radioligand competition binding assay using $\left[{ }^{3} \mathrm{H}\right] 2.2$ (ctinal $=0.15 \mathrm{nM}, K_{\mathrm{d}}=0.044 \mathrm{nM}$) in intact SK-N-MC cells. ${ }^{4}$ Mean values \pm SEM from at least three independent experiments, each performed in triplicate. ${ }^{\text {b }}$ Radioligand competition binding assay using $\left[{ }^{3} \mathrm{H}\right]$ UR-KK200 ($\mathrm{c}_{\text {final }}=1.0 \mathrm{nM}, K_{\mathrm{d}}=0.67 \mathrm{nM}$) in intact CHO-hY ${ }_{4}$ R-mtAEQ-G qis cells. ${ }^{6,7}{ }^{\text {c }}$ Radioligand competition binding assay using [$\left.{ }^{3} \mathrm{H}\right]$ propionyl pNPY ($\mathrm{c}_{\text {final }}=4.0 \mathrm{nM}, K_{d}=4.8 \mathrm{nM}$) in intact HEC-1B-hY ${ }_{5}$ cells. ${ }^{4,8}$ Results from at least three independent experiments, each performed in triplicate ($h Y_{4} R, h Y_{5} R$).

3.2.1.3. Investigation on potential irreversibly binding ligands (2.60 and 2.63)

Due to the chemical reactivity of the 2-bromoacetyl (2.60) and the acrylamide (2.63) residues with thiols, these compounds could potentially bind covalently to the $h Y_{1}$ R. Firstly, the (R)-argininamides 2.60 and 2.63 were investigated in radioligand competition binding studies and the Fura-2 Ca^{2+} assay. Their chemical stability was also investigated in 10 mM HEPES buffer (cf. Chapter 2). Compounds 2.60 and 2.63 proved to be stable in 10 mM HEPES buffer at rt for 24 h (no addition of 2-mercaptoethanol). In DMSO, 2.60 (10 mM) showed decomposition (ca 30%) at $-20^{\circ} \mathrm{C}$ over a period of 6 months (Figure 3.3). Although it is well known in the literature ${ }^{9}$ that α-halo-carbonyl compounds can be oxidized by DMSO in a Swern-like oxidation (Kornblum oxidation) to α-keto-aldehydes, in the present case under the applied conditions the α-hydroxyl compound $\mathbf{2 . 6 2}$ was isolated.

Figure 3.3. RP-HPLC (220 nm) chromatogram of 2.60 stock solution in DMSO after storage at $-20^{\circ} \mathrm{C}$ for a period of 6 months. Compound $\mathbf{2 . 6 0}$ showed decomposition to $\mathbf{2 . 6 2}$.

The identity of $\mathbf{2 . 6 0}$ and 2.62 was determined by NMR and HRMS (cf. Chapter 2). Samples for identity confirmation were obtained by preparative HPLC separation of the DMSO stock solution.

RP-HPLC (220 nm) analysis

(R)-Argininamides 2.60 and 2.63 were investigated in buffer ($10 \mathrm{mM} \mathrm{HEPES}, 150 \mathrm{mM} \mathrm{NaCl}, 5 \mathrm{mM} \mathrm{KCl}$, $2.5 \mathrm{mM} \mathrm{CaCl} 2 \cdot \mathrm{H} 2 \mathrm{O}, 1.2 \mathrm{mM} \mathrm{KH} 2 \mathrm{PO}_{4}, 1.2 \mathrm{mM} \mathrm{Mg} 2 \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}, 25 \mathrm{mM} \mathrm{NaHCO} 3, \mathrm{pH} 7$) at rt for 24 h and proved to be stable (cf. Chapter 2). Compound 2.60 showed decomposition in DMSO stock solution (Figure 3.3). Furthermore, the chemical stability of compounds 2.60 and 2.63 was investigated in the presence of 2-mercaptoethanol (Figure 3.4).

Scheme 3.1. Formation of 3.1. Reagents and conditions: (a) 2-mercaptoethanol $\left(c_{\text {final }}=1000 \mu \mathrm{M}\right), \mathbf{2 . 6 0}\left(\mathrm{c}_{\text {final }}=100 \mu \mathrm{M}\right), 10 \mathrm{mM}$ HEPES buffer, pH 7. Identity of 3.1 was determined by HRMS.

The bromoacetyl moiety of $\mathbf{2 . 6 0}$ proved to be vulnerable to nucleophilic substitution by thiols in aqueous solution at pH 7.0. Traces of water in the DMSO stock solution led to formation of 2.62 after 6 months. Compound 2.60 showed no decomposition in buffer after 24 h , when using a freshly prepared stock solution in DMSO.
(R)-Argininamide 2.60 was almost transformed to 3.1 after 4 h (Figure 3.4) when using a 10 -fold excess of 2-mercaptoethanol over 2.60. The reaction product was identified by RP-HPLC and HRMS, but the structure of 3.1 was not confirmed by NMR spectroscopy. It was presumed that the thiol group had a higher nucleophilicity than the alcohol of 2-mercaptoethanol.

Under similar conditions, 2.63 showed no transformation in the presence of 2-mercaptoethanol and proved to be stable up to 24 h . These experiments give hints towards the chemical stability and reactivity of compounds 2.60 and 2.63 in 10 mM HEPES buffer in the presence of 2-mercaptoethanol, but do not allow for an extrapolation to potential reactivity inside the binding pocket of the $\mathrm{h} \mathrm{Y}_{1} \mathrm{R}$.

Figure 3.4. (A-C) Chromatograms of the reversed-phase HPLC (220 nm) analysis of (A-B) $\mathbf{2 . 6 0}$ and (C) 2.63 after incubation in
 (B) Enlargement of chromatogram of the reversed-phase HPLC (220 nm) analysis of (A) 2.60, which was transformed to 3.1 over a period of 4 h . $\mathbf{2} . \mathbf{6 3}$ proved to be stable under similar conditions.

Saturation binding

Saturation binding experiments were performed in SK-N-MC cells using [$\left.{ }^{3} \mathrm{H}\right]$ 2.2. SK-N-MC cells that were pre-incubated (rt, 2 h) with the potential covalently binding ligands $\mathbf{2 . 6 0}$ or $\mathbf{2 . 6 3}$ applied at concentrations corresponding to 10 -fold the respective K_{i} value (Figure 3.4 and Table 3.3).

Figure 3.5. (A-F) Representative saturation isotherms (red line) of specific $h Y_{1} R$ binding of $\left[{ }^{3} \mathrm{H}\right] 2.2$ in intact SK-N-MC cells. Unspecific binding (grey line) was determined in the presence of a 500-fold excess of BIBO-3304. Cells were pre-incubated with (A-B) buffer (no ligand added), (C-D) $2.2\left(c_{\text {final }}=0.77 \mathrm{nM}\right)$, (E) $2.60\left(\mathrm{c}_{\text {final }}=1.2 \mathrm{nM}\right)$ and $(F) 2.63$ ($\left.\mathrm{c}_{\text {final }}=1.15 \mathrm{nM}\right)$ for 2 h before washing and subsequently performing the saturation binding experiments with $\left[{ }^{3} \mathrm{H}\right] \mathbf{2 . 2}$. Control experiments with (A-B) buffer and (C-D) 2.2 were performed on the same day as (E-F) experiments with potential covalently binding ligands (E) 2.60 and (F) 2.63. The experiments were performed in triplicate. Errors of specific binding were calculated according to the Gaussian law of error propagation. Error bars of total (black symbols) and nonspecific (grey symbols) binding represent the SEM.

The cells were washed twice (cells were covered with PBS buffer for 30 s) and the saturation binding experiment was performed as described in literature. ${ }^{4}$ The day before the experiment the cells were seeded from a single cell suspension (cells of the same passage). On the day of the saturation binding assay, cells were incubated with buffer and 2.2 (cinal $=10$-fold K_{i} value) as negative controls. The determined $\mathrm{p} K_{d}$ values (Table 3.3) of $\left[{ }^{3} \mathrm{H}\right] 2.2$ (control I) were slightly lower compared to equilibrium dissociation constants described in literature ($\mathrm{p} K_{\mathrm{d}}=10.36 ; K_{d}$ value was converted to $\mathrm{p} K_{\mathrm{d}}$ value). ${ }^{4}$ In
contrast to the described procedure ${ }^{4}$ the SK-N-MC cells were incubated for 2 h with buffer before the saturation binding experiment was performed.
$\left[{ }^{3} \mathrm{H}\right] 2.2$ (linker length: two carbons) is described as a radioligand with high residence time on the receptor (135 min) compared to $\left[{ }^{3} \mathrm{H}\right] 2.3(4.8 \mathrm{~min})$, differing from $\left[{ }^{3} \mathrm{H}\right] 2.2$ in the length of the spacer. ${ }^{4}$ Moreover, the elongation of the spacer in $\left[{ }^{3} \mathrm{H}\right] 2.3$ (linker length: four carbons) led to a decrease in affinity. ${ }^{4,10}$ The SK-N-MC cells were incubated with the non-covalently binding ligand 2.2 (control II) to compare the results of potential covalently binding ligands $\mathbf{2 . 6 0}$ and $\mathbf{2 . 6 3}$, because a long residence time in case of N^{ω}-carbamoylated (linker length: two carbons) ligands 2.60 and 2.60 was presumed.

Firstly, both ligands ($\mathbf{2 . 6 0}$ and 2.63) share the ethyl spacer with 2.2. Secondly, the bromoacetyl (2.60) and acrylamide (2.63) residues do not affect affinity compared to $\mathbf{2 . 2}$, and these ligands likely share the same binding mode as 2.2 (cf. Chapter 2).

Table 3.3. Determination of $\mathrm{p} K_{\mathrm{d}}$ and $\mathrm{B}_{\max }$ values of 2.2 after incubation with buffer (control I), 2.2 (control II) and potential covalently binding ligands (2.60 or 2.63).

	2.60 ($\mathrm{N}=3)$		2.63 ($\mathrm{N}=2)$	
	$\mathrm{p} K_{\mathrm{d}} \pm \mathrm{SEM}^{\mathrm{a}}$	$\mathrm{B}_{\max } \pm \mathrm{SEM}^{\mathrm{b}}$ [\%]	$\mathrm{p} K_{\mathrm{d}} \pm \mathrm{SEM}^{\mathrm{a}}$	$\mathrm{B}_{\text {max }} \pm \mathrm{SEM}^{\mathrm{b}}$ [\%]
control I (buffer)	9.79 ± 0.06	100	9.74 ± 0.07	100
control II (2.2)	9.39 ± 0.03	76 ± 9	9.51 ± 0.1	67 ± 14
ligand (2.60 or $\mathbf{2 . 6 3}$)	9.53 ± 0.07	74 ± 17	9.32 ± 0.01	54 ± 4

${ }^{\text {a }}$ Equilibrium dissociation constant determined in SK-N-MC cells. Mean values \pm SEM determined in N independent experiments, each performed in triplicate. ${ }^{b}$ Maximum specific binding (one site fit, specific binding, GraphPad Prism 8). $\mathrm{B}_{\max }[\%]=\mathrm{B}_{\max }$ (control I, control II or ligand) $/ B_{\max }$ (control I)*100. Mean values \pm SEM determined in N independent experiments, each performed in triplicate.

The $B_{\max }$ value corresponds to the maximum number of binding sides. It is apparent that the $B_{\max }$ value decreased compared to control I (buffer), when SK-N-MC cells were incubated with potential covalently binding ligands ($\mathbf{2 . 6 0}$ and $\mathbf{2 . 6 3}$) (Figure 3.4 and Table 3.3). Pre-incubation with the $Y_{1} R$ antagonist 2.2 (control II) led to a decrease in the $\mathrm{B}_{\text {Max }}$ value as well, but potential covalently binding ligands ($\mathbf{2 . 6 0}$ and 2.63) did not decrease the $B_{\text {max }}$ value more than 2.2. The N^{ω}-carbamoylated (R)-argininamide 2.2 has no structural element allowing for covalent binding to the receptor, which was also obvious in the recently resolved crystal structure. ${ }^{11}$ It can be concluded from these results that compounds $\mathbf{2 . 6 0}$ and $\mathbf{2 . 6 3}$ most probably do not bind covalently to the $h Y_{1} R$.

3.3. Conclusion

The investigation of 2.1, 2.2, 2.56-2.59, $\mathbf{2 . 6 1}$ and $\mathbf{2 . 6 5}$ in the β-arrestin2 recruitment assay revealed no functional bias. Further investigations in the β-arrestin2 assay should focus on compounds 2.7, 2.9, 2.76 and 2.78, for which a different binding mode was suggested. (R)-Argininamides 2.7, 2.9 and 2.76 behaved as antagonists in the Fura-2 Ca^{2+} assay (G-protein mediated signalling). In conclusion, the inverted binding mode of these compounds (2.7, 2.9 and 2.76) may lead to a functional bias.

Further investigation concerning the selectivity profile of N^{ω}-carbamoylated (R)-argininamides should be focussed on 2.7, 2.9, 2.76 and 2.78, that do not share the binding mode of 2.2. Moreover, the affinities of compounds $2.56,2.68$ and 2.72 in competition radioligand binding assays were not investigated at the $\mathrm{h} \mathrm{Y}_{2} \mathrm{R}$, because an appropriate $\mathrm{h} \mathrm{Y}_{2} \mathrm{R}$ binding assay was not available at that time.

Unfortunately, the question, of whether the (R)-argininamides 2.60 and 2.63 bind covalently could not be answered. The saturation binding experiments revealed that after incubation of the cells with ligands 2.60 and 2.63, the $B_{\text {max }}$ value decreased compared to control I (buffer), which might suggest covalent binding to the receptor, however the $\mathrm{B}_{\text {max }}$ value was not significantly decreased compared to incubation with 2.2 (control II). Furthermore, the RP-HPLC experiments revealed that 2.60 showed reactivity towards nucleophiles (2-mercaptoethanol) in 10 mM HEPES buffer at pH 7 . To answer the question of covalent binding of these ligands (2.60 and 2.63), further investigations could focus on mass spectrometry. Computational studies could also be performed using the resolved crystal structure of the $h Y_{1} R$.

3.4. Experimental section

3.4.1. General experimental conditions

The following reagents and solvents (analytical grade) were purchased from commercial suppliers and used without further purification: TFA (Sigma Aldrich. Taufkirchen, Germany, DMSO (Fisher Scientific, Schwerte Germany) and 2-mercaptoethanol (Merck, Darmstadt, Germany).

Acetonitrile (HPLC grade; Sigma-Aldrich) and Millipore water were used as eluents for analytical HPLC. The HPLC analysis (RP-HPLC) was performed on a 1100 series system from Agilent Technologies (Santa Clara, CA USA) composed of a Degasser (G1379A), a Binary Pump (G1312A), a Diode Array Detector (G1315A), a thermostated Column Compartment (G1316A) and an Autosampler (G1329A). A Phenomenex Kinetex 5u XB-C18 100A, $250 \times 4.6 \mathrm{~mm}$ was used as the stationary phase. The flow rate was $1 \mathrm{~mL} / \mathrm{min}$, the detection wavelength was 220 nm , the oven temperature was set to $30^{\circ} \mathrm{C}$ and the injection volume was $50 \mu \mathrm{~L}$. Mixtures of solvents A (0.01% aq TFA) and B (acetonitrile) were used as mobile phase. The following gradient was applied: 0-25 min, A/B 90:10-5:95; 25-35 min, 5:95.

Stock solutions were prepared in DMSO at concentrations of $50 \mu \mathrm{M}$ (2.2) and 10 mM (2.56-2.59, 2.61, 2.65, 2.66, 2.69 and 2.71).

3.4.2. Investigation of chemical stability of compounds 2.60 and 2.63 in the presence of 2-mercaptoethanol

To determine the chemical stability in presence of excess of 2-mercaptoethanol, compounds 2.60 and $2.63(100 \mu \mathrm{M})$ were incubated in buffer (10 mM HEPES, $150 \mathrm{mM} \mathrm{NaCl}, 5 \mathrm{mM} \mathrm{KCl}, 2.5 \mathrm{mM} \mathrm{CaCl} \cdot \mathrm{H}_{2} \mathrm{O}$, $\left.1.2 \mathrm{mM} \mathrm{KH}_{2} \mathrm{PO}_{4}, 1.2 \mathrm{mM} \mathrm{Mg} 2 \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}, 25 \mathrm{mM} \mathrm{NaHCO} 3, \mathrm{pH} 7\right)$ with 2-mercaptoethanol $(1000 \mu \mathrm{M})$ at rt for 24 h . The solution was diluted (1:1) with 10% aq TFA and the stability monitored by analytical HPLC analysis (3.4.1.) at time intervals $0 \mathrm{~h}, 1 \mathrm{~h}, 2 \mathrm{~h}, 4 \mathrm{~h}, 8 \mathrm{~h}$ and 24 h .

3.4.3. Pharmacological methods: cell culture, β-arrestin2 recruitment assay ($Y_{1} R$), saturation binding assay, radioligand binding assay for $h Y_{4} R$ and $h Y_{5} R$

3.4.3.1. Cell culture

The preparation (HEK293T β Arr2 $+\mathrm{Y}_{1} \mathrm{R}$ cells ${ }^{2}$ and $\mathrm{CHO}-\mathrm{h} \mathrm{Y}_{4}-\mathrm{G}_{\mathrm{qi5}}-\mathrm{mtAEQ}$ cells ${ }^{6}$) and cultivation (HEK293T β Arr2 $+\mathrm{Y}_{1}$ R cells, ${ }^{2}$ SK-N-MC cells, ${ }^{10}$ CHO-hY ${ }_{4}-\mathrm{Gq}_{\mathrm{q} i 5}-\mathrm{mtAEQ}$ cells ${ }^{6}$ and HEC-1B cells ${ }^{8}$) has been described elsewhere. SK-N-MC cells were obtained from the American Type Culture Collection (Rockeville, USA).

HEK293T β Arr2 $+\mathrm{Y}_{1}$ R cells were cultivated in DMEM (Sigma-Aldrich, Taufkirchen, Germany) at $37^{\circ} \mathrm{C}$ in a water saturated atmosphere containing $5 \% \mathrm{CO}_{2}$. DMEM was supplemented with L-glutamine (L-glutamine solution, Sigma-Aldrich; $0.584 \mathrm{~g} / \mathrm{mL}$), penicillin-streptomycin (Sigma-Aldrich; P/S, 10.000 U / mL) and 10% (v/v) FCS (Merck Biochrom, Darmstadt, Germany), zeocin (InvivoGen, San Diego, USA; $400 \mu \mathrm{~g} / \mathrm{mL}$) and G418 (Merck Biochrom; $600 \mu \mathrm{~g} / \mathrm{mL}$).

SK-N-MC cells were cultivated in EMEM (Sigma-Aldrich) at $37^{\circ} \mathrm{C}$ in a water saturated atmosphere containing $5 \% \mathrm{CO}_{2}$. EMEM was supplemented with L-glutamine (L-glutamine solution, Sigma-Aldrich; $0.584 \mathrm{~g} / \mathrm{mL}$) and $5 \%(\mathrm{v} / \mathrm{v})$ FCS (Merck Biochrom).

Routinely performed examinations for mycoplasma contamination using the Venor GeM Mycoplasma Detection Kit (Minerva Biolabs, Berlin, Germany) were negative for all cell types.

3.4.3.2. β-Arrestin2 recruitment assay ($\mathrm{Y}_{1} \mathrm{R}$)

The β-arrestin2 recruitment assays were performed as previously described in the dissertation of J. Felixberger ${ }^{2}$ with modifications: luminescence was measured as a function of time on living cells instead of measuring luminescence after cell lysis.

The procedure was as follows: the day before the split-luciferase β-arrestin2 recruitment assay, the cells were detached by trypsinization and resuspended in Leibovitz's L-15 medium supplemented with 5\% FCS and HEPES (10 mM). For antagonist mode, a cell density of $1.43 \cdot 10^{6}$ cells $/ \mathrm{mL}$ was adjusted and $70 \mu \mathrm{~L}$ of this suspension were seeded into each well of a white flat bottom 96 -well plate (Cellstar, Greiner Bio-One, Kremsmünster Österreich) (for agonist mode: $1.25 \cdot 10^{6}$ cells $/ \mathrm{mL}$; $80 \mu \mathrm{~L}$). D-Luciferin (K^{+}salt; Pierce, Thermo Scientific, Regensburg, Germany) was suspended in HBSS (Gibco, Thermo Scientific) in a concentration of 400 mM . Further dilution of the substrate up to 10 mM in Leibovitz's L-15 medium was prepared shortly prior to the experiment. The cells were cultivated at $37^{\circ} \mathrm{C}$ in a water saturated atmosphere (no additional CO_{2}). The dilutions of pNPY and ligands to be investigated were prepared in Leibovitz's L-15 medium containing 1\% BSA.

In agonist mode, a solution of D-Luciferin ($\mathrm{c}=10 \mathrm{mM}, 10 \mu \mathrm{~L}$) was added and the plate was incubated at $37^{\circ} \mathrm{C}$ for 20 min . Baseline luminescence of the cells was recorded with an integration time of 1000 ms per well (10 entire plate repeats). Solutions of ligands to be investigated ($10 \mu \mathrm{~L} ; 10$-fold concentrated compared to Cfinal) was added at increasing concentrations followed by immediate measurement of luminescence (20 entire plate repeats with an integration time of 1000 ms).

In antagonist mode, a solution of D-Luciferin ($c=10 \mathrm{mM}, 10 \mu \mathrm{~L}$) and the solutions $(10 \mu \mathrm{~L})$ of the test compounds (10 -fold concentrated compared to Cfinal) at increasing concentrations were added, and the plate was incubated at $37^{\circ} \mathrm{C}$ for 20 min . Baseline luminescence was recorded with an integration time of 1000 ms per well (10 entire plate reads). Then, pNPY ($\mathrm{c}=800 \mathrm{nM}, 10 \mu \mathrm{~L}$) was added followed by immediate measurement of luminescence (20 entire plate repeats with an integration time of 1000 ms). Before measuring, the plate reader was pre-heated at $37^{\circ} \mathrm{C}$. The Luminescence was measured using a GENios Pro (Tecan, Grödig, Austria) or an Enspire (Perkin-Elmer, Rodgau, Germany) plate reader with an integration time of 1000 ms per well.

On every plate at least one triplicate of the 100% (response, corresponding to 80 nM pNPY) and the 0% control (neat buffer) were determined.

3.4.3.3. Saturation binding assay

The synthesis of $\left[{ }^{3} \mathrm{H}\right] 2.2$ was performed as previously described. ${ }^{4}$ Saturation binding experiments using $\left[{ }^{3} \mathrm{H}\right] 2.2$ at intact SK-N-MC cells were performed as previously described in literature ${ }^{4,10}$ with minor modifications: prior to the saturation binding experiments the cells were incubated with solutions of 2.60, 2.63 of ligands to be investigated as well as with controls 2.2 and buffer.

The procedure used was as follows: one or two days prior to the experiment, SK-N-MC cells were seeded in 24-well plates (product no. 83.3922 , standard F, Sarstedt, Nümbrecht, Germany). On the day of the saturation binding experiments, the confluency of the cells was at least 70%, the culture medium was removed by suction, and cells were washed with ice-cold PBS buffer (1x). Prior to saturation binding experiments with $\left[{ }^{3} \mathrm{H}\right] 2.2$ in intact SK-N-MC cells, the cells were incubated with binding buffer in a volume of $500 \mu \mathrm{~L}$ of $\mathbf{2 . 6 0}$ (cfinal $=1200 \mathrm{pM}$) or $\mathbf{2 . 6 3}$ ($\mathrm{C}_{\text {final }}=1150 \mathrm{pM}$) for 2 h . The binding buffer contained buffer (10 mM HEPES, $150 \mathrm{mM} \mathrm{NaCl}, 5 \mathrm{mM} \mathrm{KCl}, 2.5 \mathrm{mM} \mathrm{CaCl} 2 \cdot \mathrm{H}_{2} \mathrm{O}, 1.2 \mathrm{mM} \mathrm{KH} 2 \mathrm{PO}_{4}, 1.2 \mathrm{mM} \mathrm{Mg} \mathrm{MO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$, $25 \mathrm{mM} \mathrm{NaHCO} 3, \mathrm{pH} 7)$ and $1 \% \mathrm{BSA}$ and $0.1 \mathrm{mg} / \mathrm{mL}$ of bacitracin. As control cells were additionally incubated with 2.2 (cfinal $=770 \mathrm{pM}$) and binding buffer on the same day for 2 h . The solutions containing $\mathbf{2 . 2}$, 2.60, $\mathbf{2 . 6 3}$ or binding buffer control were removed, and the cells were washed twice with $500 \mu \mathrm{~L}$ of PBS buffer kept at ambient temperature $\left(37^{\circ} \mathrm{C}\right)$ (cells were covered with PBS buffer for 30 s for each washing step). The cells were covered with binding buffer ($400 \mu \mathrm{~L}$) per well. For determination of total binding $50 \mu \mathrm{~L}$ of buffer and solutions containing increasing concentrations (10-fold concentrated compared to final assay concentration (Cfinal)) of $\left[{ }^{3} \mathrm{H}\right] 2.2$ were added. Unspecific binding was determined in the presence of $50 \mu \mathrm{~L}$ of the competitor BIBO-3304 (500-fold excess compared to radioligand $\left(\left[{ }^{3} \mathrm{H}\right] 2.2\right)$ concentrations and solutions containing increasing concentrations (10-fold concentrated compared to Cfinal) of $\left[{ }^{3} \mathrm{H}\right] 2.2$ were added. After incubation at rt for 90 min the binding buffer was removed, and cells were washed twice with PBS buffer (cells were covered with $500 \mu \mathrm{~L}$ of ice-cold PBS buffer for 30 s for each washing step). Next, the cells were covered with $200 \mu \mathrm{~L}$ of lysis solution (8 M urea, 3 M acetic acid and $1 \%(\mathrm{~V} / \mathrm{m})$ Triton- $\mathrm{X}-100)$ and shaken for 30 min . This solution was then transferred into scintillation vials (6 mL) containing scintillator (Rotiscint eco plus, Roth, Karlsruhe, Germany) (3 mL). The samples were kept in the dark for at least 1 h and the radioactivity was measured using a LS 6500β-counter (Beckmann Instruments, München, Germany).

3.4.3.4. Radioligand binding assay for $h Y_{4} R$ and $h Y_{5} R$

All competition binding experiments at the $Y_{4} R$ were performed as described by Kuhn et al. ${ }^{7}$ using $\left[{ }^{3} \mathrm{H}\right]$ UR-KK200 (Ctinal $=1.0 \mathrm{nM}, K_{d}=0.67 \mathrm{nM}^{7}$) and CHO-hY4R-Gqi5-mtAEQ cells ${ }^{6}$ expressing the $\mathrm{Y}_{4} \mathrm{R}$ (cf. Chapter 6). Three independent experiments were performed, each in triplicate.

All competition binding experiments at the $\mathrm{Y}_{5} \mathrm{R}$ were essentially performed as described using [$\left.{ }^{3} \mathrm{H}\right]$ propionyl-pNPY ($\mathrm{c}_{\text {final }}=4.0 \mathrm{nM}, K_{d}=4.8 \mathrm{nM}$) and HEC-1B cells expressing the $\mathrm{Y}_{5} \mathrm{R}^{4,}{ }^{4,8}$ At least two independent experiments were performed, each in triplicate.

3.4.4. Data analysis

All raw data obtained in the β-arrestin2 recruitment assay were processed as follows: firstly, the measured luminescence after addition of agonist (20 repeats) was corrected to an average baseline (first 10 repeats without adding agonist; ratio = luminescence after addition of agonist/baseline luminescence) for each well. Secondly, the increase in luminescence (RLU) was obtained by baseline correction with the buffer control. The plateau value of each luminescence trace was plotted as RLU against log(concentration antagonist) and analysed by four-parameter logistic fits (GraphPad Prism 8.0) to obtain plC_{50} values, which were converted to $\mathrm{p} K_{\mathrm{b}}$ values according to the Cheng-Prusoff ${ }^{12}$ equation (logarithmic form) (used EC_{50} value of pNPY: 8.93 nM). A basal luminescence (buffer control, 0%) and response, corresponding to 80 nM pNPY (100\%) were included for normalization of the data (antagonist mode). In case of pNPY (agonist mode) data were normalized to the basal value (0%) and the maximal response of pNPY at a concentration of $3,000 \mathrm{nM}$ (100\%).

Data for saturation binding experiments using $\left[{ }^{3} \mathrm{H}\right] 2.2$ were processed as follows: specific binding data (dpm) were plotted against the free radioligand concentration and analysed by an equation describing hyperbolic binding (ligand binding - one-site saturation fit, GraphPad Prism 8) to obtain K_{d} and $B_{\max }$ values. The free radioligand concentration (nM) was calculated by subtracting the amount of specifically bound radioligand (nM) (calculated from the specifically bound radioligand in dpm, the specific activity of the radioligand, and the volume per well) from the total radioligand concentration.

3.5. References

1. Buschmann, J.; Seiler, T.; Bernhardt, G.; Keller, M.; Wifling, D. Argininamide-type neuropeptide $\mathrm{Y} \mathrm{Y}_{1}$ receptor antagonists: the nature of N^{ω}-carbamoyl substituents determines $\mathrm{Y}_{1} R$ binding mode and affinity. RSC Med. Chem. 2020, 11, 274-282.
2. Felixberger, J. Luciferase complementation for the determination of arrestin recruitment: Investigation at histamine and NPY receptors. PhD Thesis, University of Regensburg, 2014.
3. Keller, M.; Kaske, M.; Holzammer, T.; Bernhardt, G.; Buschauer, A. Dimeric argininamide-type neuropeptide Y receptor antagonists: Chiral discrimination between Y_{1} and Y_{4} receptors. Bioorg. Med. Chem. 2013, 21, 6303-6322.
4. Keller, M.; Weiss, S.; Hutzler, C.; Kuhn, K. K.; Mollereau, C.; Dukorn, S.; Schindler, L.; Bernhardt, G.; König, B.; Buschauer, A. N ${ }^{\omega}$-Carbamoylation of the Argininamide Moiety: An Avenue to Insurmountable NPY Y_{1} Receptor Antagonists and a Radiolabeled Selective HighAffinity Molecular Tool ([3H]UR-MK299) with Extended Residence Time. J. Med. Chem. 2015, 58, 8834-8849.
5. Kilpatrick, L.; Briddon, S.; Hill, S.; Holliday, N. Quantitative analysis of neuropeptide Y receptor association with β-arrestin2 measured by bimolecular fluorescence complementation. Br. J. Pharmacol. 2010, 160, 892-906.
6. Ziemek, R.; Schneider, E.; Kraus, A.; Cabrele, C.; Beck-Sickinger, A. G.; Bernhardt, G.; Buschauer, A. Determination of Affinity and Activity of Ligands at the Human Neuropeptide Y Y 4 Receptor by Flow Cytometry and Aequorin Luminescence. J. Recept. Signal Transduct. Res. 2007, 27, 217-233.
7. Kuhn, K. K.; Ertl, T.; Dukorn, S.; Keller, M.; Bernhardt, G.; Reiser, O.; Buschauer, A. High Affinity Agonists of the Neuropeptide $\mathrm{Y}(\mathrm{NPY}) \mathrm{Y}_{4}$ Receptor Derived from the C-Terminal Pentapeptide of Human Pancreatic Polypeptide (hPP): Synthesis, Stereochemical Discrimination, and Radiolabeling. J. Med. Chem. 2016, 59, 6045-6058.
8. Moser, C.; Bernhardt, G.; Michel, J.; Schwarz, H.; Buschauer, A. Cloning and functional expression of the hNPY Y_{5} receptor in human endometrial cancer (HEC-1B) cells. Can. J. Physiol. Pharmacol. 2000, 78, 134-42.
9. Kornblum, N.; Jones, W. J.; Anderson, G. J. A new and selective method of oxidation. The conversion of alkyl halides and alkyl tosylates to aldehydes. J. Am. Chem. Soc. 1959, 81, 41134114.
10. Keller, M.; Bernhardt, G.; Buschauer, A. [$\left.{ }^{3} \mathrm{H}\right]$ UR-MK136: A Highly Potent and Selective Radioligand for Neuropeptide $Y Y_{1}$ Receptors. ChemMedChem 2011, 6, 1566-1571.
11. Yang, Z.; Han, S.; Keller, M.; Kaiser, A.; Bender, B. J.; Bosse, M.; Burkert, K.; Kogler, L. M.; Wifling, D.; Bernhardt, G.; Plank, N.; Littmann, T.; Schmidt, P.; Yi, C.; Li, B.; Ye, S.; Zhang, R.; Xu, B.; Larhammar, D.; Stevens, R. C.; Huster, D.; Meiler, J.; Zhao, Q.; Beck-Sickinger, A. G.; Buschauer, A.; Wu, B. Structural basis of ligand binding modes at the neuropeptide $Y \mathrm{Y}_{1}$ receptor. Nature 2018, 556, 520-524.
12. Yung-Chi, C.; Prusoff, W. H. Relationship between the inhibition constant (K_{I}) and the concentration of inhibitor which causes 50 per cent inhibition (I_{50}) of an enzymatic reaction. Biochem. Pharmacol. 1973, 22, 3099-3108.

Chapter 4

Synthesis, pharmacological characterization and application of the fluorescent (S)-argininamide-type hY2R antagonist UR-jb264 (4.58)

Note: Experiments associated with BRET binding assays (preparation and cultivation of cells, saturation binding assay of 4.58, association and dissociation experiments of 4.58 and competition binding experiments with pNPY) were performed by Lukas Grätz within his doctoral studies.

MiniG protein recruitment assay (preparation and cultivation of cells and functional characterization of pNPY, 4.1 and 4.75) were done by Carina Höring as part of her doctoral studies.

Confocal microscopy was performed in the group of Prof Wegener (University of Regensburg). I gratefully acknowledge the help of Lisa Sauer and Dr. Stefanie Michaelis.

I gratefully acknowledge the support of Dr. Timo Littman for teaching and technical support in the β-arrestin2 recruitment assay.

I thank (Forschungspraktikanten) Alexander Reichle, Alexander Hubmann, Simon Scheuerer and Florian Fricke for support during synthesis.

Thanks are due to Brigitte Wenzl, Maria Beer-Krön, Susanne Bollwein and Lydia Schneider for excellent technical assistance (cultivation of cells, radioligand competition binding experiments at the $h Y_{1} R$ and the $h Y_{5} R$, and the BRET based binding assays).

4.1. Introduction

For many years fluorescent ligands have been important pharmacological tools for studying GPCRs, which are the largest target class in drug discovery. ${ }^{1-3}$ Generally, fluorescently labelled receptor ligands can be applied into various luminesence-based techniques, such as Förster resonance energy transfer (FRET) microscopy, fluorescence correlation spectroscopy (FCS), scanning confocal microscopy (SCM) and fluorescence polarization (FP) to study ligand receptor interactions. ${ }^{3,4}$ Moreover, the use of fluorescent ligands is advantageous regarding the legal and waste disposal requirements compared to radio labelled compounds. Essentially, a fluorescent ligand comprises of three components, which are a pharmacophore moiety, a fluorescent dye and a linker moiety. ${ }^{1,2}$ The design of fluorescent ligands is driven by the goal that introduction of a fluorophore to a known pharmacophore does not change the affinity, mode of action and selectivity profile. ${ }^{2}$

Table 4.1. Structures and $Y_{2} R$ affinities of reported (S)-argininamides 4.1-4.5

References: (a) Dautzenberg, ${ }^{5} K_{\mathrm{i}}$ value was determined using [${ }^{125}$] PYY ($\mathrm{c}_{\text {final }}=0.10 \mathrm{nM}, K_{\mathrm{d}}=0.08 \mathrm{nM}$) and membranes from SMS-KAN cells. (b) Pluym et al., ${ }^{6}$ the reported K_{d} value of $\left[{ }^{3} \mathrm{H}\right] 4.2$ was determined by saturation binding experiments in live CHO-h $\mathrm{Y}_{2}-\mathrm{G}_{\mathrm{iq} 5}-\mathrm{mtAEQ}$ cells and the reported K_{i} values of 4.2 was determined in a flow cytometric binding assay using Cy5-pNPY ($\mathrm{c}=5 \mathrm{nM}, K_{\mathrm{d}}=5.2 \mathrm{nM}$) and $\mathrm{CHO}-h \mathrm{Y}_{2}-\mathrm{G}_{\mathrm{iq} 5}-\mathrm{mtAEQ}$ cells. (c) Pluym, PhD Thesis, University of Regensburg, 2011, ${ }^{7}$ the K_{i} values of 4.3 and 4.4 were determined in a flow cytometric binding assay using Cy5-pNPY ($\mathrm{c}_{\text {final }}=5 \mathrm{nM}$) or Dy-635-pNPY ($\mathrm{c}_{\text {final }}=10 \mathrm{nM}$) and $\mathrm{CHO}-\mathrm{h} \mathrm{Y}_{2}-\mathrm{G}_{\mathrm{iq} 5}-\mathrm{mtAEQ}$ cells. (d) Dollinger et al. ${ }^{8}$ (e) Ziemek et al., ${ }^{9}$ the reported K_{i} value of 4.5 was determined in a flow cytometric binding assay using Cy5-pNPY ($\mathrm{c}_{\text {final }}=5 \mathrm{nM}, K_{\mathrm{d}}=5.2 \mathrm{nM}$) and CHO-hY ${ }_{2}-\mathrm{G}_{\mathrm{iq} 5}-\mathrm{mtAEQ}$ cells. $K_{\mathrm{i}}\left(K_{\mathrm{d}}\right)$ values were converted to $K_{\mathrm{i}}\left(\mathrm{p} K_{\mathrm{d}}\right)$ values.

Labelling of the endogenous ligand NPY (Neuropeptide Y) led to the fluorescent ligand Cy5-pNPY that was used in flow cytometric binding assay and flow cytometric calcium assay and showed high affinity to several NPY receptor subtypes ($h Y_{1} R, h Y_{2} R$ and $h Y_{5} R$). ${ }^{9}$ Nevertheless, fluorescently labelled peptides are prone to enzymatic degradation. ${ }^{10,11}$ Work in our group aimed towards non-peptide fluorescent $\mathrm{hY}{ }_{1} \mathrm{R}$ ligands, using the guanidine-acylguanidine approach, ${ }^{12,13}$ resulted in the synthesis of several fluorescent conjugates of (R)-argininamide BIBP-3226(2.1). ${ }^{13}$ This labelling strategy according to the guanidine-acylguanidine bioisosteric approach was applied to the (S)-argininamide-type $\mathrm{Y}_{2} \mathrm{R}$
antagonist BIIE-0246 (4.1) and led to several radio- and fluorescently labelled molecular tools (e.g. [$\left.{ }^{3} \mathrm{H}\right] 4.2$ and 4.3) addressing the $\mathrm{h} \mathrm{Y}_{2}$ R. ${ }^{6,7,14}$ However, this bioisosteric replacement is limited due to the low chemical stability of acylguanidines in particular under basic conditions. ${ }^{15}$ Therefore, a different strategy (guanidine-carbamoylguanidine approach I) for the labelling of ligands was applied. $N^{\omega_{-}}$ carbamoylation instead of acylation of argininamides led to the high affinity $h Y_{1} R$ antagonist 2.2, showing no decomposition over time in phosphate buffered saline (pH 7.0) at ambient temperature. ${ }^{16}$ This strategy was proven for the synthesis of selective non-peptide (S)-argininamide-typ NPY hY ${ }_{2}$ R antagonists as chemical tools (e.g. 4.4). ${ }^{7,17}$

Figure 4.1. Three approaches (I-III) to molecular tools derived from BIIE-0246 (4.1).
For the development of novel non-peptide fluorescently labelled $Y_{2} R$ ligands as molecular tools, I decided to retain the guanidine moiety (no replacement by a carbamoylguanidine group), $N^{\omega}{ }^{\omega}$ carbamoylated (S)-argininamides showed unfavourable $Y_{2} R$ binding characteristics (e.g. pNPY showed noticeably lower $p K_{i}$ value determined with $\left[{ }^{3} \mathrm{H}\right] 4.2$ compared to affinity determined with cy5-NPY). ${ }^{6}$ In addition, it is suggested that the guanidine group of 4.1 shows an interaction (salt-bridge) with $D^{6.59}$, whereas the dibenzoazepinone moiety of 4.1 is buried in a hydrophobic binding pocket ($L^{4.60}, L^{5.45}, L^{6.51}$) in the orthosteric binding side. ${ }^{18}$ Both of these interactions with the $Y_{2} R$ (binding sites) of 4.1 were shared with the endogenous ligand NPY. ${ }^{18-21}$ The focus for the development of fluorescent ligands in this work is in search for a more favourable labelling site following approaches II and III (Figure 4.1). As already known, the dibenzoazepinone moiety ($c f .4 .1^{22}$) can be replaced by a benzhydryl moiety ($c f .4 .5^{8,9}$). For this reason, a small library of compounds (4.23, 4.24, 4.27, 4.50 and 4.51) was synthesized (approach II), that were modified on the benzhydryl residue, to identify a favourable labelling side of fluorescently labelled compounds. Py-1 (4.60) and Py-5 (2.77) were chosen as fluorophores, because of their fluorescence properties and their potential application in BRET (bioluminescence resonance energy transfer) based binding assays. ${ }^{23-25}$ Here the synthesis of the red-emitting fluorescent ligand UR-jb264 (4.58), the pharmacological characterization, the investigation of the chemical stability as well as its application in BRET based binding assay and in confocal microscopy are reported.

Furthermore, the 2,2'-(cyclopentane-1,1-diyl)diacetamide was replaced by a 2,2'-(cyclohexane-1,1-diyl)di-acetamide moiety, leading to compound 4.75, which is a step towards the identification of a potential third labelling site (approach III, Figure 4.1) in argininamide-type $h Y_{2} R$ ligands. To address this labelling site, the first steps in the synthesis for amino functionalization of the 2,2'-(cyclohexane-1,1diyl)diacetamide moiety were performed.

4.2. Results and discussion

4.2.1. Synthesis

4-(2-Aminoethyl)-1,2-diphenyl-1,2,4-triazolidine-3,5-dione (4.10) was synthesized according to published procedures ${ }^{8}$ in a three-step synthesis starting from 1,2-diphenylhydrazine (4.6), which was treated with ethyl allophanate, giving isocyanic acid in situ, in p-xylene under reflux conditions to obtain 1,2-diphenyl-1,2,4-triazolidine-3,5-dione (4.7) (Scheme 4.1). Intermediate 4.7 was treated with sodium hydride and the phthaloyl protected ethyl linker moiety (2-(2-bromoethyl)isoindoline-1,3-dione (4.8)) was added. Subsequently, the phthaloyl protecting group of 4.9 was removed by hydrazine to obtain aminofunctionalized 1,2-diphenyl-1,2,4-triazolidine-3,5-dione 4.10.

Scheme 4.1. Synthesis of 4-(2-aminoethyl)-1,2-diphenyl-1,2,4-triazolidine-3,5-dione (4.10). Reagents and conditions: (a) ethyl allophanate, p-xylene, reflux, 40%; (b) (1) $\mathrm{NaH}, \mathrm{DMF}$, ice bath, (2) reflux, 42%; (c) hydrazine monohydrate, MeOH, THF, rt, 72%.
(S)-Arginine building blocks 4.15 and 4.16 were essentially prepared as previously described by Dollinger et al. ${ }^{8}$ and Brennauer. ${ }^{17}$ Fmoc-Arg(Pbf)-OH (4.11) was activated in situ in the presence of EDC $\cdot \mathrm{HCl}$ and HOBt and amidated with amine 4.10 to form 4.12. Subsequently, the Fmoc protecting group was removed by use of piperidine in DMF to obtain 4.13 in good yields (Scheme 4.2). The amino group of 4.13 was coupled with 3,3-tetramethyleneglutaric anhydride (4.14) to afford the carboxylic acid 4.15. Moreover, the Pbf-protecting group of intermediate 4.13 was removed by acid (TFA/water 95:5) to obtain the (S)-argininamide 4.16 as TFA salt after purification by preparative HPLC.

Scheme 4.2. Synthesis of (S)-arginine building blocks 4.15 and 4.16. Reagents and conditions: (a) EDC•HCI, HOBt, DMF, 93\%; (b) DMF, piperidine, rt, 91%; (c) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, 99%; (d) TFA/ $\mathrm{H}_{2} \mathrm{O}$ (95:5), 70%.

Compounds 4.23 and 4.24 were synthesized from the respective methoxy substituted benzaldehydes 4.17 or 4.18 in a three-step synthesis route (Scheme 4.3). For this purpose, $\mathbf{4 . 1 7}$ or 4.18 were converted to the 2- or 3- substituted methoxy benzhydryl alcohols (4.19 and 4.20) in good to excellent yields by Grignard reactions. For the synthesis of intermediates 4.21 and 4.22 , the hydroxyl groups of the benzhydryl alcohols 4.19 and 4.20 were converted into good leaving groups by treatment of 4.19 or $\mathbf{4 . 2 0}$ with sulfuryl chloride, followed by treatment with piperazine (S_{N} reaction) under microwave conditions. Finally, coupling of carboxylic acid 4.15 to the secondary amines 4.21 and 4.22 by the aid of coupling
reagents $\mathrm{EDC} \cdot \mathrm{HCl}$ and HOBt and subsequent treatment with aqueous TFA (Pbf deprotection) gave 4.23 and 4.24 .

1-((4-Methoxyphenyl)(phenyl)methyl)piperazine (4.26) was synthesized from the commercially available ketone 4.25 by a reductive amination procedure using TiCl_{4} and NaBH_{4} (Scheme 4.3). ${ }^{26}$ (S)-Argininamide 4.27 could not be obtained by amide bond formation between 4.15 and amine 4.26, because removal of the Pbf-protecting group under strong acidic conditions led to compound 4.32, that was identified by HRMS and RP-HPLC (Scheme 4.3). To deal with this problem, amine 4.26 was treated with 4.14 to obtain the carboxylic acid 4.28 , that was activated with coupling reagents $\mathrm{EDC} \cdot \mathrm{HCl} / \mathrm{HOBt}$ and coupled with the (S)-argininamide 4.16, that Pbf group was already removed to form 4.27.

The unsubstituted derivative 4.5 (Scheme 4.3) was synthesized from benzhydryl alcohol 4.29 using methanesulfonyl chloride for the conversion of the hydroxyl group in 4.29 to a good leaving group, followed by the treatment of the formed mesylate with piperazine (S_{N} reaction) to give intermediate 4.30, which was subjected to amide bond formation with 4.15 and subsequent Pbf deprotection to afford 4.5 (Scheme 4.3).

The obtained side product 4.32 was formed by amide bond formation between 4.15 and N -Bocpiperazine (4.31) and subsequent removal of Boc and Pbf protecting groups in TFA/water (95:5) (Scheme 4.3).

Scheme 4.3. Synthesis of 4.5 and related compounds 4.23, 4.24, 4.27 and 4.32. Reagents and conditions: (a) (1) Mg, bromobenzene, THF, (2) $\mathrm{H}^{+} / \mathrm{H}_{2} \mathrm{O}, 71-93 \%$; (b) (1) $\mathrm{SO}_{2} \mathrm{Cl}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, (2) piperazine, acetonitrile, microwave device $\left(100^{\circ} \mathrm{C}\right.$, 30 min), 67-74\%; (c) (1) EDC•HCI, HOBt, DMF, (2) TFA/H2O 95:5, 13-18\%; (d) (1) TiCl ${ }_{4}$, piperazine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, (2) $\mathrm{NaBH}_{4}, \mathrm{MeOH}$, 23%; (e) $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 79 \%$; (f) $\mathrm{EDC} \cdot \mathrm{HCl}, \mathrm{HOBt}, \mathrm{DMF}, 61 \%$; (g) (1) methanesulfonyl chloride, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, (2) piperazine, acetonitrile, microwave device ($70^{\circ} \mathrm{C}$, 30 min), 52%; (h) (1) EDC•HCl, HOBt , DMF, (2) TFA/ $\mathrm{H}_{2} \mathrm{O} 95: 5,12 \%$; (i) (1) $\mathrm{EDC} \cdot \mathrm{HCl}$, HOBt, DMF, (2) TFA/H2O 95:5, 37\%.

For the synthesis of fluorescently labelled compounds, the methoxy groups in 4.23 and 4.24 had to be replaced by an amino-functionalized linker (Scheme 4.4). For this purpose, 5 -aminopentanol (4.33) was
treated with $\mathrm{Boc}_{2} \mathrm{O}$ to give 4.34, which was converted to bromide 4.35 using an Appel-reaction ${ }^{27}$ (Scheme 4.4).

Scheme 4.4. Synthesis of tert-butyl (5-bromopentyl)carbamate (4.35). Reagents and conditions: (a) $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 73 \%$, (b) $\mathrm{CBr}_{4}, \mathrm{PPh}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 92 \%$.

Amino-functionalized (S)-argininamides 4.50 or 4.51 were synthesized from 4.19 and 4.20 , respectively (Scheme 4.5). Initially, cleavage of the methyl ether failed, for instance, for compounds 4.19-4.22 (intended to give 4.36-4.38). The use of standard procedures, e.g. HBr or BBr_{3}, led to the decomposition of starting materials. Therefore, the alcohols 4.19 and 4.20 were oxidized using PCC or pyridine-sulfur trioxide to obtain the ketones 4.40 and 4.41 , which were demethylated in refluxing aqueous HBr solution (47\%) to give the free phenols 4.42 and 4.43 ($S_{N} 2$ reaction). The phenols 4.42 and 4.43 were then coupled with 4.35 in DMF by use of $\mathrm{K}_{2} \mathrm{CO}_{3}$ to afford the Boc-protected amino-functionalized pentylphenylethers 4.44 and 4.45 (Williamson ether synthesis ${ }^{28}$) (Scheme 4.5).

Scheme 4.5. Synthesis of amino-functionalized precursors (4.50 and 4.51) for fluorescence labelling. Reagents and conditions: (a) pyridine-sulfur trioxide complex, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}, 39 \%$; (b) $\mathrm{PCC}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 80 \%$; (c) aqueous $\mathrm{HBr}(47 \%)$, AcOH , reflux, $94-100 \%$; (d) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DMF}, 49-52 \%$; (e) $\mathrm{NaBH}_{4}, \mathrm{MeOH}, 56 \%$; (f) (1) methanesulfonyl chloride, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, (2) piperazine, acetonitrile, microwave device ($70^{\circ} \mathrm{C}$, 45 min), 48-66\%; (g) (1) EDC•HCI, HOBt, DMF, (2) TFA/H2O 95:5, 16-18\%; (h) aqueous $\mathrm{HBr}(48 \%$), AcOH , reflux, 96%; (i) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DMF}, 70 \%$; (j) $\mathrm{NaBH}, \mathrm{MeOH}, 100 \%$; (k) (1) methanesulfonyl chloride, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, (2) piperazine, acetonitrile, microwave device ($70^{\circ} \mathrm{C}, 45 \mathrm{~min}$), 49%; (I) $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 70 \%$.

Compounds 4.44 and 4.45 were reduced with NaBH_{4} to obtain the corresponding alcohols 4.46 and 4.47, which were converted to respective mesylates using methanesulfonyl chloride (Scheme 4.5). The mesylates were not isolated and directly treated with piperazine in a microwave reactor to afford amines 4.48 and 4.49. These intermediates were coupled with 4.15 using EDC•HCI and HOBt . Removal of the Pbf-group gave 4.50 and 4.51 as precursors for fluorescence labelling.

The commercially available (4-methoxyphenyl)(phenyl)methanone (4.25) was treated with aqueous HBr (47%) to obtain the phenol 4.52. Compound 4.53 was synthesized from phenol 4.52 and bromide 4.35 (Williamson ether synthesis ${ }^{28}$). The reduction of 4 -methoxybenzophenone (4.53) by use of NaBH_{4} led to the corresponding benzhydryl alcohol 4.54, which was converted to a mesylate and coupled with piperazine in a microwave device. Amide bond formation between anhydride 4.14 and amine 4.55 led to the carboxylic acid 4.56. The synthesis of amino-functionalized (S)-argininamide 4.57 by amide bond formation between 4.56 and 4.16 and subsequent removal of the Boc protecting group, failed (Scheme 4.4 and 4.5). Boc deprotection under milder acidic conditions led to compound 4.32 , which was identified by HRMS and RP-HPLC. However, the synthesis of 4.57 was achieved by use of a different protecting group (instead of Boc group), that is not removed under acidic conditions. However, this synthesis strategy was not pursued, because the corresponding methyl ether 4.27 (Scheme 4.3) showed lower $Y_{2} R$ affinity (4.2.4.1.) compared to compounds 4.23 and 4.24 .

Scheme 4.6. Synthesis of fluorescently labelled compounds 4.58, 4.59, 4.60 and 4.61. Reagents and conditions: (a) DIPEA, DMF, 16-45\%.

The fluorescently labelled compounds $4.58,4.59,4.61$ and 4.62 were synthesized according to a procedure reported ${ }^{13}$ for the synthesis of fluorescent $Y_{1} R$ ligands with minor modifications: Treatment of amines 4.50 and 4.51 with the pyrylium dyes 2.77 (Py-5) or 4.60 (Py-1) in the presence of DIPEA (instead of $E t_{3} \mathrm{~N}$) gave the pyridinium adducts $4.58,4.61,4.59$ and 4.62 (Scheme 4.6).

BIIE-0246 (4.1), representing the standard (S)-argininamide-type $\mathrm{Y}_{2} \mathrm{R}$ antagonist was synthesized according to published procedures ${ }^{8}$ starting from anthraquinone (4.63) (Scheme 4.7). Compound 4.63 was transformed to amide 4.64 by a Schmidt reaction using NaN_{3} and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$. Subsequently, the keto group (position 11) in 4.64 was reduced by NaBH_{4} to obtain the secondary alcohol 4.65 as racemate, which was then converted to chloride 4.66 (Scheme 4.7). 11-Chloro-5,11-dihydro-6H-dibenzo[b,e]azepin-6-one was treated with piperazine to give 4.67, which was coupled to 4.15 by amide bond formation under the conditions used for the synthesis of 4.23 and 4.24 from 4.21 or 4.22 and 4.15 (Scheme 4.3). Removal of the Pbf group with TFA yielded 4.1.

Replacement of the cyclopentyl moiety of 4.1 by a cyclohexyl moiety led to compound 4.75 (Scheme 4.8). To prepare 4.75 , compound 4.68 was converted to 2 -cyanoacetamide (4.69) in an ice-cold aqueous ammonia solution. The condensation (Knoevenagel-condensation ${ }^{29}$) of cyclohexanone (4.70) and ethyl 2-cyanoacetate (4.69) led to compound 4.71 (Scheme 4.8).

Scheme 4.7. Synthesis of 4.1 and dibenzoazepinone precursor 4.67. Reagents and conditions: (a) (1) NaN_{3}, conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, (2) NH_{3} aq, 59%; (b) NaBH_{4}, $\mathrm{EtOH}, 82 \%$; (c) $\mathrm{SOCl}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, 95%; (d) piperazine, dioxane, $60{ }^{\circ} \mathrm{C}, 77 \%$; (e) (1) EDC•HCI, HOBt, DMF, (2) TFA/H2O 95:5, 18%

For the synthesis of spirocyclic compound 4.72, 2-cyanoacetamide (4.69), intermediate 4.71 and a solution of sodium ethoxide were used. The spirocyclic 1,5-dicarbonitrile 4.72 was treated with concentrated sulfuric acid to obtain the dicarboxylic acid 4.73. Compound 4.13 was coupled with the dicarboxylic acid 4.73 using EDC•HCl and HOBt to afford 4.74. (S)-Argininamide 4.75 was synthesized by amide bond formation between amine 4.67 and carboxylic acid 4.74.

The synthetic procedure used for the preparation of 4.74 was intended to be used for the synthesis of compound 4.83 (Scheme 4.9). Unfortunately, this strategy failed. Firstly, the amino-group of trans-4aminocyclohexanol (4.76) was protected using reagent 4.77 to give 4.78, bearing a phthaloyl protecting group that is stable under basic and acidic conditions, for the next steps (Scheme 4.9). Oxidation of 4.78 by use of PCC (pyridinium chlorochromate, Corey-Suggs reagent) led to 4.79 in moderate yield. For the subsequent Knoevenagel-condensation of 4.68 and 4.79 , yielding 4.80 sodium methoxide was used instead of sodium ethoxide as in case for the synthesis of 4.71, as 4.79 was found to be poorly soluble in the solution of sodium ethoxide (Scheme 4.9). The formation of the 1,5-dicarbonitrile 4.81 was not possible using the same conditions as for the preparation of 4.72 (Scheme 4.8). The variation of solvents and bases also did not pave way to 4.81 and subsequently to 4.83. An attempt to form 4.81 in a one pot reaction by the use of ammonia as a gas dissolved in methanol, as described in literature ${ }^{30}$ for a non-
amino-functionalized derivative (2,4-dioxo-9-pentyl-3-azaspiro[5.5]un-decane-1,5-dicarbonitrile), also failed to give the desired product.

Scheme 4.8. Synthesis of 4.75. Reagents and conditions: (a) NH_{3} aq, 54%; (b) $\mathrm{AcOH}, \mathrm{NH}_{4} \mathrm{CH}_{3} \mathrm{CO}_{2}$, toluene, reflux, 100%; (c) (1) $\mathrm{Na}, \mathrm{EtOH}$, reflux (2) $\mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 38 \%$; (d) (1) $\mathrm{H}_{2} \mathrm{SO}_{4}$ conc., reflux, (2) $\mathrm{H}_{2} \mathrm{O}, 65 \%$; (e) $\mathrm{EDC} \cdot \mathrm{HCl}, \mathrm{HOBt}, \mathrm{DMF}, 76 \%$; (f) (1) EDC•HCl, HOBt, DMF, (2) TFA/H2O 95:5, 11\%.

The one pot reaction led to the formation of compound 4.82, which was identified by HRMS as main product (Scheme 4.9). Intermediate 4.82 could not be used to prepare an amino-functionalized (S)argininamide 4.83. It will be subject of future studies to explore whether 4.82 can be used for the synthesis of fluorescently labelled $h Y_{2} R$ ligands.

Scheme 4.9. Synthesis of amino-functionalized dicarboxylic acid 4.81. Reagents and conditions. (a) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{H}_{2} \mathrm{O}$, $\mathrm{rt}, 34 \%$; (b) PCC, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, $2 \mathrm{~h}, 66 \%$; (c) $\mathrm{AcOH}, \mathrm{NH}_{4} \mathrm{CH}_{3} \mathrm{CO}_{2}$, toluene, reflux (d) (1) $4.69, \mathrm{MeOH}, \mathrm{NH}_{3}$ (g) (2) H 2 O , reflux, (3) conc. HCl , yield was not determined.

4.2.2. Investigation of the chemical stability of $4.50,4.51$ and 4.58

Decomposition of (S)-argininamides 4.1 and 4.5 (structures see Table 4.1) under assay-like conditions (aqueous buffer pH 7) has not been reported in the literature. The stability of the fluorescently (Py-5) labelled compound 4.58 and of its amine precursor 4.50 were investigated, as well as one amine precursor 4.51. In contrast to the described procedure used to investigate the stability of
(R)-argininamide-type $Y_{1} R$ antagonists (cf. 2.4.3.), ${ }^{31}$ compounds 4.50, 4.51 and 4.58 were incubated in the buffer, which was used for competition binding studies with [$\left.{ }^{3} \mathrm{H}\right]$ propionyl-pNPY (4.2.4.).

Figure 4.2. Chromatograms of the reversed-phase HPLC (220nm) analysis of (A) 4.50, (B) 4.51 and (C) the fluorescent ligand 4.58 after incubation in a 25 mM HEPES buffer (pH 7.0) at rt for up to $24 \mathrm{~h} .4 .50,4.51$ and 4.58 proved to be stable.
(S)-argininamides 4.50, 4.51 and 4.58 proved to be stable in 25 mM HEPES buffer (pH 7.0 , rt) over 24 h (Figure 4.2), which qualifies them for a pharmacological characterization in functional and binding assays.

4.2.3. Fluorescence properties

The corrected excitation and emission spectra of fluorescent ligands 4.58, 4.59, 4.61 and 4.62 (Figure 4.3) were recorded in PBS (pH 7.4) containing 1% BSA (w/v). The concentration of the compounds was $5 \mu \mathrm{M}$ in each case.

Figure 4.3. Corrected excitation and emission spectra of compounds $4.58,4.59,4.61$ and 4.62 at $22{ }^{\circ} \mathrm{C}$. The fluorescent ligands (A) 4.58 , (B) 4.59 , (C) 4.60 and (D) 4.61 were dissolved in PBS containing 1% BSA (w/v).

The Stokes shift of the Py-5 labelled fluorescent ligand 4.58 was slightly longer compared to the other Py-1 and Py-5 labelled compounds 4.59, 4.61 and 4.62 (Table 4.2), which is advantageous for application in BRET based competition binding assays described below.

Table 4.2. Excitation and Emission maxima of compounds 4.58, 4.59, 4.61 and 4.62 in $\mathrm{PBS}(\mathrm{pH} 7.4)$ containing 1% BSA (w/v) recorded at $22^{\circ} \mathrm{C}$.

Compound	Dye $^{\mathrm{a}}$	$\lambda_{\text {ex }}[\mathrm{nm}]$	$\lambda_{\mathrm{em}}[\mathrm{nm}]$
4.58	$2.77(\mathrm{Py}-5)$	500	660
4.59	$2.77(\mathrm{Py}-5)$	526	605
4.61	$4.60(\mathrm{Py}-1)$	527	608
4.62	$4.60(\mathrm{Py}-1)$	526	609

[^1]4.2.4. Pharmacological methods: $Y_{2} R$ affinity ($p K_{i}$) and antagonism ($p K_{b}$) of synthesized (S)-argininamides, application of 4.58 to BRET based binding assays and to confocal microscopy, NPY $Y_{2} R$ subtype selectivity

In the search for a red-emitting fluorescent labelled (S)-argininamide as a molecular tool with application in BRET based binding assay and confocal microscopy, compounds 4.23, 4.24, 4.27, 4.50, 4.51, 4.58 and 4.75 were investigated in equilibrium competition binding experiments. Moreover, compounds 4.1,
4.5, 4.23, 4.24, 4.27, 4.32, 4.50, 4.51, 4.58, 4.59, 4.61, 4.62 and 4.75 were investigated in a β-arrestin2 recruitment assay. Additionally, compounds $4.1,4.58$ and 4.75 were investigated in a miniG protein recruitment assay. UR-jb264 (4.58) was chosen for establishing a BRET based binding assay and for receptor localization by confocal microscopy.

4.2.4.1. Radioligand binding assay in HEK293T hY ${ }_{2}$ R + β Arr2 cells

Equilibrium competition binding experiments using $\left[{ }^{3} \mathrm{H}\right]$ propionyl-pNPY as radioligand were performed in sodium free binding buffer (25 mM HEPES, $2.5 \mathrm{mM} \mathrm{CaCl} 2,1 \mathrm{mM} \mathrm{MgCl} \mathrm{M}_{2}, \mathrm{pH} 7.4$) in intact HEK293T hY2R + β Arr2 cells. For the radioligand binding assay it is necessary to wash the living cells several times. Due to poor adherence of HEK293T cells, the 24 -well (product no. 83.3922, standard F, Sarstedt, Nümbrecht, Germany) or 96 -well (product no. 3610, Corning, Kaiserslautern, Germany) plates used were coated with poly-D-lysine or gelatin to improve cell adherence properties.

Comparison of poly-D-lysine and gelatin as coating materials for 24 -well and 96 -well plates

One day before the crystal violet assay, the HEK293ThY2R + β Arr2 cells were seeded in coated (poly-D-lysine or gelatin) 24-well and 96 -well plates.

Figure 4.4. Comparison of poly-D-lysine (PDL) and gelatin as coating reagents in 96 -well (product no. 3610, Corning, Kaiserslautern, Germany) and 24-well (product no. 83.3922, standard F, Sarstedt, Nümbrecht, Germany) plates. (A) A 96-well plate was coated with PDL (48-wells) and gelatin (48-wells), whereof 8 wells contained no cells, respectively. (B) Two 24-well plates were coated with PDL and gelatin respectively. 40 wells were coated with PDL or gelatin and 8 wells were coated with PDL or galantine and contained no cells, respectively. Data represents mean value \pm SEM from measured absorbance (mAU) at 585 nm per well.

The next day, the medium was removed and the competition binding experiment was performed as described ${ }^{9,32}$ with the distinction that no radioligand was used. Instead of CHO-hY2R-Gqi5-mtAEQ cells, HEK293T hY2R + β Arr2 cells were used for the experiment. After the removal of the medium, the cells were washed with PBS and then incubated with the sodium-free binding buffer for 90 min. Afterwards
the medium was removed, and a crystal violet assay was performed to determine the amount of cells per well, in order to find a coating material, that improves the adherence of HEK293ThY2R + β Arr2 cells to the plate material (polystyrene). In conclusion, the adherence of HEK293T hY $\mathrm{R}+\beta$ Arr2 cells could be improved using poly-D-lysine in 96 -well plates and gelatin in 24 -well plates.

In the following, saturation and competition binding experiments were then performed in 96-well plates. Advantages of 96 -well plates are higher throughput and a more convenient coating procedure.

Determination of the $\mathrm{p} K_{\mathrm{d}}$ value of $\left[{ }^{3} \mathrm{H}\right]$ propionyl-pNPY by saturation binding in HEK293T hY ${ }_{2}$ R $+\beta$ Arr2 cells

Figure 4.5. Representative saturation isotherm (red line) of specific $h Y_{2} R$ binding of $\left[{ }^{3} \mathrm{H}\right]$ propionyl-pNPY in intact HEK293T hY ${ }_{2} R+\beta$ Arr2 cells. Unspecific binding (grey line) was determined in the presence of a 200 -fold excess of BIIE-0246 (4.1). The experiments were performed in triplicate. Error bars of specific binding were calculated according to the Gaussian law of error propagation. Error bars of total (black symbols), and nonspecific (grey symbols) binding represent SEM.

The radioligand $\left[{ }^{3} \mathrm{H}\right]$ propionyl-pNPY was characterized in saturation binding experiments in living HEK293ThY ${ }_{2} R+\beta$ Arr2 cells. The determined $p K_{d}$ value of 8.53 ± 0.03 was in agreement with literature ${ }^{9}$ using $\left.{ }^{3} \mathrm{H}\right]$ propionyl-pNPY as radioligand in CHO-hY ${ }_{2}$-Giq5-mtAEQ-cells ($\mathrm{p} K_{\mathrm{d}}=9.2,{ }^{9} K_{d}$ value was converted to $p K_{d}$ value) in sodium free buffer (Figure 4.5) in the presence of a 200 -fold excess of 4.1. For non-specific binding the competitor (pNPY or 4.1) was pre-incubated with cells for 15 min , before the radioligand was added.

A pKd value of $\left[{ }^{3} \mathrm{H}\right]$ propionyl-pNPY in intact HEK293T $h Y_{2} R+\beta$ Arr2 cells using sodium containing buffer could not be determined, because no saturation was observed. This problem also occurred with CHO$h Y_{2}-G_{i q 5}-m t A E Q$ cells as described in the thesis of S. Dukorn. ${ }^{33}$ The effect of sodium cations on ligand binding (allosteric modulation) has also been described by Dukorn et al. ${ }^{34}$ and Kuhn et al. ${ }^{32}$ for the $Y_{4} R$. Beside the NPY receptors ($Y_{2} R$ and $Y_{4} R$) this phenomenon has also been shown in literature for other GPCRs (e.g. $\mu O R,{ }^{35} A_{2 A R},{ }^{36}$ and $\beta_{1} A R^{37}$). An explanation for the observed discrepancies of affinities in radioligand binding studies and potencies in functional assays of agonists could be the stabilization of the inactive receptor states by sodium cations (cf. Chapter 1).

Determination of $\mathrm{p} K_{\mathrm{i}}$ values in equilibrium competition binding experiments with [$\left.{ }^{3} \mathrm{H}\right]$ propionyl-pNPY

The determined affinity of pNPY (Table 4.3) in a radioligand binding assay by use of [$\left.{ }^{3} \mathrm{H}\right]$ propionyl-pNPY and HEK293T hY 2 R $+\beta$ Arr2 cells was in good agreement with affinity determined by S. Dukorn in her thesis $\left(p K_{i}=8.76\right) .{ }^{9}$ The affinity of pNPY decreased slightly compared to $\mathrm{p} K_{\mathrm{i}}$ value of 9.07 determined in a radioligand binding assay using [${ }^{125}$ I]PYY on COS-7 cells (transiently transfected with $\mathrm{hY} \mathrm{Y}_{2}$). ${ }^{38}$

Table 4.3. $\mathrm{Y}_{2} \mathrm{R}$ affinities $\left(\mathrm{p} K_{\mathrm{i}}\right)$ of pNPY and BIIE-0246 (4.1) determined in equilibrium competition binding experiments.

Compound	$\mathrm{pK} K_{\mathrm{i}} \pm \mathrm{SEM}^{\mathrm{a}}$	Reference data
pNPY	8.43 ± 0.35	$\mathrm{p} K_{\mathrm{i}}$
BIIE-0246 (4.1)	8.06 ± 0.11	8.76^{b}

${ }^{\text {a }}$ Radioligand competition binding assay with [$\left.{ }^{3} \mathrm{H}\right]$ propionyl-pNPY (ctinal $=4.0 \mathrm{nM}, K_{d}=2.97 \mathrm{nM}$) in intact HEK293T hY ${ }_{2} \mathrm{R}+\beta$ Arr2 cells. Mean values \pm SEM from at least two independent experiments, each performed in triplicate. ${ }^{\text {b Dukorn, Phd Thesis, }}$ University of Regensburg, 2017, ${ }^{33}$ the K_{i} value was determined using $\left[{ }^{3} \mathrm{H}\right]$ propionyl-pNPY ($\mathrm{c}_{\text {final }}=1.0 \mathrm{nM}, K_{\mathrm{d}}=1.4 \mathrm{nM}$) and CHO -
 from SMS-KAN cells. All reported K_{i} values were converted to $\mathrm{p} K_{\mathrm{i}}$ values.

BIIE-0246 (4.1) showed the highest Y_{2} receptor affinity ($\mathrm{p} K_{\mathrm{i}}$) of all investigated (S)-argininamides (4.1, 4.23, $4.24,4.27,4.50,4.51,4.58$ and 4.75 (Table 4.1) in the radioligand competition binding assay in HEK293T hY $2+\beta$ Arr2 cells using $\left[{ }^{3} \mathrm{H}\right]$ propionyl-pNPY as radioligand (Figure 4.2, Table 4.1).

Figure 4.6. Displacement curves of $\left[{ }^{3} \mathrm{H}\right]$ propionyl-pNPY ($\mathrm{C}_{\text {final }}=4 \mathrm{nM}, K_{\mathrm{d}}=2.97 \mathrm{nM}$) obtained from competition binding studies with (A) 4.23, 4.24, 4.27, (B) 4.50, 4.51 and 4.58 and reference compound 4.1 in HEK293T $h Y_{2} R+\beta A r r 2$ cells. Data are presented as means \pm SEM from at least two independent experiments, each performed in triplicate.

The introduction of a methoxy substituted benzhydryl moiety (4.23, 4.24 and 4.27), instead of the dibenzoazepinone moiety of 4.1 led to a slight decrease in affinity, whereas 4.23 showed the highest affinity within the substituted compound series. Enlargement of the substituent (amino-functionalization in 4.50 and 4.51) led to a decrease in affinity compared to 4.23 and 4.24 . The substitution pattern of the 1-((2-methoxyphenyl)(phenyl)methyl)piperazine (4.23) and the 5-(2-(phenyl(piperazin-1-yl)methyl)-phenoxy)pentan-1-amine (4.50) were favoured (Table 4.4) in comparison to 4.24 and 4.51, respectively.

Remarkably, labelling of 4.50 with Py-5, resulting in the fluorescent ligand 4.58, did not affect Y_{2} affinity compared to 4.50.

Replacement of the cyclopentyl moiety in 4.1 by a cyclohexyl moiety, leading to compound 4.75, resulted in a decrease in $Y_{2} R$ affinity by one order of magnitude (Table 4.4).

Table 4.4. $\mathrm{Y}_{2} R$ affinities ($\mathrm{p} K_{\mathrm{I}}$) of synthesized (S)-argininamids determined by equilibrium competition binding with [${ }^{3} \mathrm{H}$]propionyl-pNPY.

Compound	$\mathrm{p} K_{i} \pm \mathrm{SEM}^{\mathrm{a}}$	N	Compound	$\mathrm{pK}_{i} \pm \mathrm{SEM}^{\mathrm{a}}$	N
BIIE-0246 (4.1)	8.06 ± 0.11	2	4.50	7.06 ± 0.09	4
4.23	7.39 ± 0.13	3	4.51	6.46 ± 0.08	3
4.24	6.81 ± 0.23	3	4.58	7.03 ± 0.09	5
4.27	6.26 ± 0.03	3	4.75	7.03 ± 0.09	5

${ }^{\text {a }}$ Radioligand competition binding assay with [$\left.{ }^{3} \mathrm{H}\right]$ propionyl-pNPY (ctinal $=4.0 \mathrm{nM}, K_{d}=2.97 \mathrm{nM}$) in intact HEK293T hY ${ }_{2} R+\beta A r r 2$ cells. Mean values \pm SEM from at least N independent experiments, each performed in triplicate.

4.2.4.2. Determination of $p K_{\mathrm{b}}$ values in a β-arrestin2 recruitment assay

The β-arrestin2 recruitment assay was performed as described in the thesis of Felixberger ${ }^{39}$ with minor modifications: β-arrestin2 recruitment was induced by 200 nM pNPY as described and luminescence was measured as a function of time in living HEK293ThY ${ }_{2} R+\beta A r r 2$ cells instead of measuring luminescence after cell lysis. Despite the described modifications in the β-arrestin2 recruitment assay procedure, the potency ($\mathrm{pEC} 50=6.79 \pm 0.13$) of pNPY was in good agreement with the reported agonism ($\mathrm{pEC}_{50}=6.89$) in the thesis of Felixberger. ${ }^{39}$ This functional assay was used for the characterization of standard $Y_{2} R$ antagonists (BIIE-0246 (4.1), JNJ 31020028, CYM 9484, 4.5) and synthesized derivatives 4.23, 4.24, 4.27, 4.32, 4.50, 4.51, 4.58, 4.59, 4.61, 4.62 and 4.75 (Figure 4.6 and Table 4.3).

Prior to addition of the agonist pNPY, antagonists were pre-incubated with the cells for 15 min . The determined $p K_{b}$ values of 4.1, 4.23, 4.24, 4.27, 4.50, 4.51, 4.58 and 4.75 deviate from the determined $\mathrm{p} K_{i}$ values by approximately of half an order of magnitude. An explanation for this discrepancy between $\mathrm{p} K_{\mathrm{i}}$ and $\mathrm{p} K_{\mathrm{b}}$ values could be the absence of sodium in the competition binding studies, but further investigation is required to answer this question, e.g. testing the set of compounds in different functional assays.

It is important to mention that the effect of sodium has been described for agonists (difference of affinity and agonism) in literature (cf 4.2.4.1.) ${ }^{34,36}$

Figure 4.7. (A) β-Arrestin2 recruitment elicited by pNPY (agonist mode) and (B-F) Inhibition of β-arrestin2 recruitment (induced by 200 nM pNPY) by (B) 4.1, CYM 9484, JNJ 31020028, 4.5, (C) 4.1, 4.23, 4.24, 4.27, (D) 4.1, 4.50, 4.51, (E) 4.1, 4.58, 4.59, 4.61, 4.62, (F) 4.1, 4.32, 4.50 and 4.75 (antagonist mode). All experiments were performed in HEK293T hY ${ }_{2} R+\beta A r r 2$ cells. Cells were pre-incubated with the antagonists for 15 min . Data are presented as means \pm SEM from at least three independent experiments, each performed in triplicate.

The replacement of the dibenzoazepinone moiety in 4.1 by a benzhydryl moiety (4.5) led to a decrease in antagonism by one order of magnitude. Compound 4.32 ($p K_{b}<5.00$), which bears neither a dibenzoazepinone nor a benzhydryl moiety showed no antagonism. The introduction of methoxy groups to 4.5, resulting in compounds 4.24 (3-methoxy) and 4.27 (4-methoxy) also led to a decrease in antagonism, whereas 4.23, representing the 1-((2-methoxyphenyl)(phenyl)methyl) derivative showed no decrease in antagonism. The introduction of 5-aminopentoxy groups in positions 2 (4.50) and 3 (4.51) led to a decrease of antagonism compared to 4.5. Seemingly, position two in the benzhydryl moiety is favoured for further functionalisation. Fluorescently labelled ligands 4.58, 4.59, 4.61 and 4.62 showed comparable $p K_{b}$ values, whereas 4.58 showed the highest antagonism. Interestingly the introduction of
bulkier moieties, e.g. fluorophores (Py-1 or Py-5) in position 2 (4.58 and 4.61) and 3 (4.59 and 4.62) in the benzhydryl moiety led to no decrease in antagonism compared to 4.50 and 4.51. In consideration of the substitution pattern, the decrease in antagonistic activity was less pronounced for position 2 and 3 bearing bulky substituents such as fluorophores (4.58 and 4.61; 4.59 and 4.62) is not as distinct as for the less bulky methoxy groups in position 2 and 3 (4.23 and 4.24).

Table 4.5. Activity ($\mathrm{p} K_{\mathrm{b}}$) of standard antagonists (4.1, JNJ 31020028, CYM 9484, 4.5) and synthesized (S)-argininamides 4.23, 4.24, 4.27, 4.32, 4.50, 4.51, 4.58, 4.59, 4.61, 4.62 and 4.75 determined in the β-arrestin2 recruitment assay in living HEK293T hY ${ }_{2}$ R + β Arr2 cells.

Compound	$\mathrm{p} K_{\mathrm{b}} \pm \mathrm{SEM}^{\mathrm{a}}$	Compound	$\mathrm{pK}_{\mathrm{b}} \pm \mathrm{SEM}^{\mathrm{a}}$
BIIE-0246 (4.1)	8.89 ± 0.16	4.50	7.54 ± 0.05
JNJ 31020028	8.51 ± 0.16	4.51	6.74 ± 0.09
CYM 9484	7.24 ± 0.03	4.58	7.65 ± 0.11
4.5	7.97 ± 0.15	4.59	7.55 ± 0.18
4.23	7.17 ± 0.16	4.61	7.23 ± 0.10
4.24	7.37 ± 0.27	4.62	7.01 ± 0.28
4.27	<5.00		8.78 ± 0.14
4.32			

${ }^{a} \beta$-Arrestin2 recruitment assay in intact HEK293T hY ${ }_{2} R+\beta$ Arr2 cells. Arrestin2 recruitment was induced by 200 nM pNPY after pre-incubation of the cells with the antagonist for 15 min . Mean values \pm SEM from at least three independent experiments, each performed in triplicate

The replacement of the cyclopentyl moiety in 4.1 by a cyclohexyl moiety, resulting in 4.75 , had no impact on antagonism, whereas the replacement of the dibenzoazepinone moiety in 4.1 through a benzhydryl moiety (4.5) resulted in a decrease in antagonism by one order of magnitude.

4.2.4.3. Determination of $\mathrm{p} K_{\mathrm{b}}$ values in a miniG protein recruitment assay

The miniG protein recruitment assay in living HEK293T NlucN-miniGi/Y2R-NlucC cells (established by Carina Höring as part of her doctoral studies) was used to functionally characterize selected (S)-argininamides 4.1, 4.23, 4.58 and 4.75 (Figure 4.8, Table 4.6). The agonist pNPY showed a potency $(\mathrm{pEC} 50=8.48 \pm 0.08)$, that is in good agreement with affinity determined in radioligand binding assay (Table 4.3). For further characterization of 4.58 and its application in BRET based binding assay and by confocal microscopy, it was decided to investigate G-protein recruitment.

Figure 4.8. Inhibition of miniG protein recruitment (induced by $50 \mathrm{nM} \mathrm{pNPY}\left(\mathrm{EC}_{50}=3.35 \mathrm{nM}\right)$) by 4.1, 4.23, 4.58 and 4.75. All experiments were performed in living HEK293T NlucN-miniGi $/ Y_{2} R$-NlucC cells. Antagonists were pre-incubated with cells for 15 min . Data are presented as means \pm SEM from at least two independent experiments, each performed in triplicate.

The determined $p K_{b}$ value of 4.58 is in good agreement with that from the β-arrestin2 recruitment assay ($\mathrm{p} K_{\mathrm{b}}=7.65$, Table 4.5).

Table 4.6. Antagonism $\left(\mathrm{p} K_{\mathrm{b}}\right)$ of selected (S)-argininamids (4.1, 4.23, 4.58 and 4.75$)$ determined in the miniG protein recruitment assay at living HEK293T NlucN-miniG $/ Y_{2}$ R-NlucC cells

compound	$\mathrm{pK}_{\mathrm{b}} \pm \mathrm{SEM}^{\mathrm{a}}$	N	compound	$\mathrm{p} K_{\mathrm{b}} \pm \mathrm{SEM}^{\mathrm{a}}$	N
BIIE-0246 (4.1)	9.88 ± 0.14	4	4.58	7.92 ± 0.03	3
4.23	8.06 ± 0.17	3	4.75	9.67 ± 0.22	2

${ }^{\text {a MiniG }}{ }_{\mathrm{i}}$ recruitment was induced by 50 nM pNPY $\left(\mathrm{EC}_{50}=3.35 \mathrm{nM}\right)$ after pre-incubation of the cells with the antagonist for 15 min Mean values \pm SEM from at least N independent experiments, each performed in triplicate.

4.2.4.4. Application of 4.58 to BRET based competition binding assays

The red-fluorescent (S)-argininamide-type $h Y_{2} R$ antagonist (4.58) was applied in BRET based saturation and competition binding experiments. The association and dissociation of 4.58 were studied in living HEK293T Y_{2} (intraNLucD197) cells. Moreover, the affinities ($\mathrm{p} K_{\mathrm{i}}$) of standard ligands in living HEK293T Y_{2} (intraNLucD197) cells (using sodium containing buffer) in 96 -well plates were determined in the BRET based binding assay as an alternative to the determination of affinities ($\mathrm{p} K_{\mathrm{i}}$) in radiochemical assays. In principle, the fluorophore of $\mathbf{4 . 5 8}$ serves as a resonance energy acceptor and the luciferase (NanoLuc, NLuc) as a resonance energy donor. ${ }^{23,40}$ The Nluc is located in the extracellular loop 2 (cloning and expression of this $\mathrm{Y}_{2} R$ construct (Y_{2} (intraNLucD197)) was performed by Lukas Grätz as part of his doctoral thesis). The location of the Nluc in the extracellular loop 2 is different to other published procedures for GPCR-Nluc fusion proteins, in which the luciferase is N-terminally tagged to the GPCR. ${ }^{41}$ For the determination of $p K_{i}$ values in BRET based binding assays, no washing steps are required, in contrast to radioligand competition binding experiments. HEK293T Y_{2} (intraNLucD197) cells were also investigated in saturation binding experiments using the radioligand [$\left.{ }^{3} \mathrm{H}\right]$ propionyl-pNPY in sodium-free binding buffer.

Determination of the $\mathrm{p} K_{d}$ value of 4.58 by saturation binding in HEK293T Y_{2} (intraNLucD197) cells
The genetically engineered HEK293T Y_{2} (intraNLucD197) cells were used to obtain the $\mathrm{p} K_{d}$ value of 4.58 in saturation binding experiments $\left(\mathrm{p} K_{\mathrm{d}}(\right.$ sat.) $=7.75 \pm 0.03)$. Unspecific binding was determined in the presence of a 100-fold excess of BIIE-0246 (4.1). The kinetics (association and dissociation) of 4.58 was also investigated to determine the kinetically derived K_{d} value (K_{d} (kinetic) $=2.1 \pm 0.4 \mathrm{nM}$). The $\mathrm{p} K_{\mathrm{d}}$ (sat) of 4.58 was in good agreement with $p K_{b}$ value determined in the β-arrestin2 $\left(p K_{b}(\beta A r r 2)=7.65 \pm 0.11\right)$ and miniG protein $\left(p K_{b}\left(\right.\right.$ mini $\left.\left._{i}\right)=7.92 \pm 0.03\right)$ recruitment assays (Table 4.7), which were all performed in sodium containing buffer. The dissociation constant of 4.58 ($p K_{i}=7.05 \pm 0.09$) determined using [${ }^{3} \mathrm{H}$]propionyl-pNPY in competition binding experiments performed in sodium-free buffer, showed the highest discrepancy compared to the $\mathrm{p} K_{d}$ value determined in the BRET based binding assay (Figure 4.9 and Table 4.7).

Kinetics (association and dissociation) studies of 4.58 in HEK293T Y_{2} (intraNLucD197) cells

Kinetic studies with 4.58 (Cfinal $=20 \mathrm{nM}$) in the BRET based assay revealed a relatively fast association ($K_{\text {obs }}\left[\mathrm{min}^{-1}\right]=0.09279 \pm 0.00996$, Kon $\left[\mathrm{min}^{-1}\right]=0.00420 \pm 0.00050$) of 4.58 to the Y_{2} (intraNLucD197) receptor (Figure 4.9, B). For the determination of $K_{\text {obs }}$ a monophasic association was assumed (fit: $B(t)=B_{0}+\left(B_{\text {eq }}-B_{0}\right) \cdot\left(1-e^{\left(-K_{\text {obs }}\right.}{ }^{t}\right)$, non-linear regression, monophasic association, GraphPad Prism 8). This implies that the plateau was reached after 30 min (Figure 4.9, B, C). Therefore, the incubation time for saturation experiments was set to 35 min . By contrast, the incubation time for equilibrium competition binding experiments was set to 90 min . The incubation time for competition binding experiments was prolonged to guarantee that equilibrium conditions had been reached.
4.58 showed a slow dissociation ($K_{\text {off }}\left[\mathrm{min}^{-1}\right]=0.0087 \pm 0.0011$) from the Y_{2} (intraNLucD197) receptor corresponding to a relatively high residence time (114 min). The dissociation was incomplete after 240 min (BPlateau $=20 \%$; Figure 4.9 , D). Nevertheless, 4.58 could be used in competition binding experiments for the determination of equilibrium binding constants of small $Y_{2} R$ ligands. For the determination of $K_{\text {off }}$ a monophasic decay was assumed (fit: $\mathrm{B}(\mathrm{t})=\left(\mathrm{B}_{0}-\mathrm{B}_{\text {plateau }}\right) \cdot e^{-} \cdot \mathrm{K}_{\text {off }}+\mathrm{B}_{\text {plateau }}, \mathrm{B}_{\text {plateau }}$ was not constrained to zero, non-linear regression, one phase decay, GraphPad Prism 8). The kinetically derived $\mathrm{p} K_{d}$ was one order of magnitude higher compared to the $\mathrm{p} K_{d}$ value determined by saturation binding.

From the obtained kinetic data (dissociation) a pseudo irreversible binding of 4.58 might be concluded according to literature. ${ }^{6,42}$ To confirm pseudo irreversible binding, the dissociation should be measured for a longer time period, but the measurable time is limited by the amount of substrate (furimazine) for the luciferase (NLuc).

Figure 4.9. (A-F) Binding characteristics of 4.58 in BRET based binding assay in intact HEK293T Y_{2} (intraNLucD197) cells. (A) Representative saturation isotherm (red line) of specific $h Y_{2} R$ binding of 4.58 . Unspecific binding (grey line) was determined in the presence of a 100-fold excess of BIIE-0246 (4.1). The experiments were performed in triplicate. Error bars of specific binding were calculated according to the Gaussian law of error propagation. Error bars of total (black line), and nonspecific binding represent SEM. (B) Association of 4.58 ($\mathrm{c}=20 \mathrm{nM}$) for 32 min and dissociation for 240 min in the presence of BIIE-0246 (4.1) (100 -fold) was performed in a single experiment. Exemplary determination of $k_{\text {obs }}\left(0.07101 \mathrm{~min}^{-1}\right)$ and $k_{\text {off }}\left(0.006616 \mathrm{~min}^{-1}\right)$ (nonlinear regression, one phase association or decay, GraphPad Prism 8). Association rate constant $k_{\text {on }}\left(0.00320 \mathrm{~min}^{-1} \cdot n \mathrm{nM}\right)$ was derived from $k_{\mathrm{obs}}, k_{\mathrm{off}}$ and ligand concentration $\left(k_{\mathrm{on}}=\left(k_{\mathrm{obs}}-k_{\mathrm{off}}\right) \cdot[F L]^{-1}\right)$. Raw BRET ratio as function of time. Errors of total binding (red dots) and unspecific binding (grew dots) represents SEM. Exemplary determination of kinetically derived dissociation rate constant ($K_{\mathrm{d} \text {, } \text { kinetic }}=\mathrm{k}_{\text {off }} \cdot \mathrm{k}_{\mathrm{on}}{ }^{-1}=2.1 \mathrm{nM}$). (C) Representative association for 90 min of 4.58 (\% specifically bound 4.58) and (D) dissociation for 270 min as function of time (min) for determination of $k_{\text {obs }}\left(0.08405 \mathrm{~min}^{-1}\right.$) and $k_{\text {off }}\left(0.01041 \mathrm{~min}^{-1}\right)$ (nonlinear regression, one phase association or dissociation; GraphPad Prism 8). Data represents SEM of a single experiment performed in triplicate. (E) Linearization of representative (C) association, $\ln \left(B_{e q} \cdot\left(B_{e q}-B(t)\right)^{-1}\right)$ versus time, slope $\cdot(-1)=k_{\text {obs }}=0.08644 \mathrm{~min}^{-1}$. Error bars were calculated according to the Gaussian law of error propagation. (F) Linearization of representative (D) dissociation, $\ln \left(\left(B(t)-B_{\text {plateau }}\right) \cdot\left(B_{0}-B_{\text {plateau }}\right)^{-1}\right)$ versus time, slope $=k_{\text {off }}=0.01024 \mathrm{~min}^{-1}$. Error bars of specific binding were calculated according to the Gaussian law of error propagation.

Table 4.7. Binding characteristics of 4.58. Affinity ($\mathrm{p} K_{\mathrm{i}}$ or $\mathrm{p} K_{\mathrm{d}}$) in radioligand competition binding experiments and BRET based binding assay and functional data of 4.58. Binding kinetics (HEK293T Y_{2} (intraNLucD197) cells) of 4.58 in BRET based binding assay.

$\mathrm{p} K_{\mathrm{i}}{ }^{\text {a }}$	$\mathrm{p} K_{\mathrm{b}}(\beta \text { Arr2 })^{\mathrm{b}}$	$\mathrm{p} K_{\mathrm{b}}\left(\text { mini }^{\mathrm{i}}\right)^{\text {c }}$	$\mathrm{p} K_{\mathrm{d} \text { (sat.) }}{ }^{\text {d }}$	$\begin{gathered} k_{0 n}{ }^{e} \\ {\left[\mathrm{~min}^{-1} \cdot \mathrm{nM}\right]} \end{gathered}$	$\begin{gathered} k_{\mathrm{off}}{ }^{\mathrm{f}} \\ {\left[\mathrm{~min}^{-1}\right]} \end{gathered}$	$\begin{gathered} K_{\mathrm{d}(\text { kinetic })^{9}}{ }^{\mathrm{g}} \\ {[\mathrm{nM}]} \end{gathered}$	Residence time ${ }^{\text {h }}$ [min]
7.05 ± 0.09	7.65 ± 0.11	7.92 ± 0.03	7.75 ± 0.03	0.00420 ± 0.00050	0.00874 ± 0.00112	2.1 ± 0.4	114

${ }^{\text {a }}$ Radioligand competition binding assay with [$\left.{ }^{3} \mathrm{H}\right]$ propionyl-pNPY ($\mathrm{c}_{\text {final }}=4.0 \mathrm{nM}, K_{\mathrm{d}}=2.97 \mathrm{nM}$) in intact HEK293T hY ${ }_{2} \mathrm{R}+\beta$ Arr2 cells. Mean values \pm SEM from at least three independent experiments, each performed in triplicate. ${ }^{\mathrm{b}} \beta$-Arrestin2 recruitment assay in intact HEK293T hY ${ }_{2} R+\beta$ Arr2 cells. Arrestin2 recruitment was induced by 200 nM pNPY after pre-incubation of the cells with the antagonist for 15 min . Mean values \pm SEM from at least three independent experiments, each performed in triplicate. ${ }^{c}$ miniG Protein recruitment was induced by 50 nM pNPY after pre-incubation of the cells with the antagonist for 15 min . Mean values \pm SEM from at least two independent experiments, each performed in triplicate. ${ }^{d} p K_{d,(s a t)}$ value determined in BRET based assay by saturation binding in HEK293T Y_{2} (intraNLucD197) cells. Mean values \pm SEM from at least three independent experiments, each performed in triplicate. ${ }^{e}$ Association rate constant ($k_{o n}$) was calculated from the observed association constant ($k_{\text {obs }}=0.09279 \pm 0.00996 \mathrm{~min}^{-1}$). Mean values \pm SEM from at least four independent experiments, each performed in triplicate, dissociation rate constant (k_{off}) and ligand concentration [FL] ($\left.k_{\mathrm{on}}=\left(k_{\mathrm{obs}}-k_{\mathrm{off}}\right) \cdot[\mathrm{FL}]^{-1}\right) . k_{\mathrm{on}} \pm$ propagated error was calculated according to the Gaussian law of error propagation. 'Dissociation rate constant ($k_{\text {off }}$) derived from three independent experiments, each performed in triplicate. Mean values \pm SEM from at least three independent experiments, each performed in triplicate. ${ }^{9}$ Kinetically derived dissociation rate constant $\left(K_{\mathrm{d} \text { (kinetic) }}=K_{\text {off }} \cdot K_{\mathrm{on}}{ }^{-1}\right) \pm$ propagated error was calculated according to the Gaussian law of error propagation. ${ }^{\mathrm{h}}$ Residence time $\left(\mathrm{K}_{\mathrm{off}}{ }^{-1}\right)$.

For further investigation of the binding kinetics of 4.58 and evaluation of the association and dissociation rate constants determined in BRET based binding assays, a different method (e.g. flow cytometric based binding assay) should be used to assess binding kinetics of 4.58. These experiments should be performed using cells expressing the native $h Y_{2} R$.

Determination of $\mathrm{p} K_{\mathrm{i}}$ values in equilibrium competition binding experiments with 4.58

Equilibrium competition binding experiments were performed with structurally different $h Y_{2} R$ antagonists (BIIE-0246 (4.1), JNJ 31020028, CYM 9484, 4.5; Figure 4.10). The determined affinities ($\mathrm{p} K_{\mathrm{i}}$) in BRET based binding assay (sodium-containing buffer) were in good agreement with the $p K_{b}$ values determined in the β-arrestin2 recruitment assay (Table 4.8), whilst JNJ 31020028 showed the highest discrepancy among the investigated ligands. The $\mathrm{p} K_{\mathrm{i}}$ values determined in intact HEK293ThY h R $+\beta$ Arr2 cells by use of the radioligand $\left[{ }^{3} \mathrm{H}\right]$ propionyl-pNPY showed a discrepancy compared to the $\mathrm{p} K_{\mathrm{i}}$ values determined in the BRET based binding assay and the $p K_{b}$ values determined in the β-arrestin2 recruitment assay. Further studies are needed to investigate potential absorption of the fluorescent ligand (4.58)/test compounds to the plastic material (plate surface). When comparing these data, it should be kept in mind, that a sodium-free binding buffer was used for the radioligand competition binding assay and a sodium-containing buffer for BRET based competition binding studies. As described in the thesis of S. Dukorn ${ }^{33}$ the specific binding of the agonist $\left[{ }^{3} \mathrm{H}\right]$ propionyl-pNPY showed no saturation in sodium containing buffer in $\mathrm{CHO}-\mathrm{h} \mathrm{Y}_{2} \mathrm{R}-\mathrm{Gq}_{\mathrm{qi}}-\mathrm{mtAEQ}$ cells and determined affinities in the radioligand binding assay were at least 10 -fold higher compared to determined agonism of pNPY (with respect to K_{i} values). ${ }^{9,33}$ The described discrepancy of ligand affinity ($\mathrm{p} K_{\mathrm{i}}$) in the presence or absence of sodium cations was also described for other GPCR's (e.g. hY4R, adenosine receptor). ${ }^{34,36}$ Although a low $\mathrm{Y}_{2} \mathrm{R}$
affinity of pNPY was anticipated due to the presence of sodium in the binding buffer, the determined affinity of pNPY in the BRET based binding assay was markedly lower ($\mathrm{p} K_{\mathrm{i}}<6.00$) (Table 4.9). At the concentrations used, pNPY did not fully displace 4.58. To shed light on the binding of pNPY in intact HEK293T Y_{2} (intraNLucD197) cells, saturation binding by use of $\left[{ }^{3} \mathrm{H}\right]$ propionyl-pNPY was performed (Figure 4.10). A high unspecific binding, which was determined in the presence of a 300 -fold excess pNPY in intact HEK293T Y 2 (intraNLucD197) cells in sodium-free binding buffer was observed. Due to high unspecific binding, the saturation binding experiment could not be evaluated. To obey the ALARA (as low as reasonable achievable) principle (cf. Recommendations of International Commission on Radiological Protection (ICRP): Publication 26^{43} and 103^{44}) the amount of radioactivity in the assay was not increased.

The results from these studies suggested that binding of the large ligand pNPY to the Y_{2} (intraNLucD197) receptor is sterically hindered by the luciferase inserted in ECL2 of the receptor cells. Further investigations could focus on saturation binding experiments using a non-peptide radioligand (e.g. [$\left.{ }^{3} \mathrm{H}\right] 4.2$). Unspecific binding may be reduced in saturation binding experiments using a small ligand with $Y_{2} R$ affinity e.g. JNJ 31020028.

Figure 4.10. (A-C) Displacement curves of 4.58 ($\mathrm{c}_{\text {final }}=20 \mathrm{nM}, K_{d}=17.9 \mathrm{nM}$) obtained from competition binding studies with (A) BIIE-0246 (4.1), JNJ 31020028, CYM 9484, 4.5, (B) 4.1, 4.23, 4.50, (C) 4.1 and pNPY in HEK293T Y (intraNLucD197) cells. Data are presented as means \pm SEM from at least three independent experiments, each performed in triplicate. (D) Representative saturation binding experiment of total $\mathrm{h} \mathrm{Y}_{2} \mathrm{R}$ binding (black line) of $\left.{ }^{3} \mathrm{H}\right]$ propionyl-pNPY in HEK293T Y_{2} (intraNLucD197) cells. Unspecific binding (grey line) was determined in the presence of 300-fold excess of pNPY. Two independent experiments were performed in triplicate. Error bars of specific binding were calculated according to the Gaussian law of error propagation. Error bars of total (black symbols), and nonspecific binding (grew symbols) represent SEM.

It should be noted that 4.58 belongs to the class of (S)-argininamides (e.g. 4.1 and 4.2), that have been reported to exhibit insurmountable $Y_{2} R$ antagonism. ${ }^{6,45}$ In addition, pNPY could not fully displace the radioligand 4.2 and a displacement of the radioligand in a biphasic manner was assumed. ${ }^{6}$ This described behaviour for pNPY was not observed in the BRET based binding assay.

Future investigations should focus on studying the binding kinetics of 4.58 in cells expressing the native $h Y_{2} R$ using a flow cytometric assay. Nevertheless, the affinity of small antagonists, not structurally related to 4.58 , can be determined in the BRET based binding assay.

Table 4.8. Affinities ($\mathrm{p} K_{\mathrm{i}}$) determined in radioligand competition binding (sodium-free buffer), BRET based (sodium-containing buffer) competition binding assays as well as agonism (pEC_{50}) of pNPY and antagonism ($\mathrm{p} K_{\mathrm{b}}$) in a β-arrestin2 recruitment assay of BIIE-0246 (4.1), JNJ 31020028, CYM 9484, 4.5, 4.23 and 4.50.

compound	$\mathrm{p} K_{\mathrm{i}}(\mathrm{BRET}) \pm \mathrm{SEM}^{\mathrm{a}}$	$\begin{gathered} \mathrm{pEC}_{50} \pm \mathrm{SEM}^{\mathrm{b}} \text { or } \\ \mathrm{pK}_{\mathrm{b}}(\beta \mathrm{Arr} 2) \pm \mathrm{SEM}^{\mathrm{c}} \end{gathered}$	$\mathrm{p} K_{\mathrm{i}} \pm \mathrm{SEM}^{\text {d }}$	Reference data ($\mathrm{p} K_{i} / \mathrm{p} K_{\mathrm{b}}$)
pNPY	<6.00	6.79 ± 0.13	8.43 ± 0.35	8.76 /n.a.
BIIE-0246 (4.1)	9.13 ± 0.15	8.89 ± 0.16	8.06 ± 0.11	$7.44^{\mathrm{f}} / 7.82^{\text {g }}$
JNJ 31020028	9.39 ± 0.14	8.51 ± 0.16	n.d.	$7.53{ }^{\text {e }} / 8.04{ }^{\text {h }}$
CYM 9484	7.81 ± 0.11	7.24 ± 0.03	n.d.	7.62 $/$ n.a.
4.5	7.86 ± 0.10	7.97 ± 0.15	n.d.	$8.18{ }^{\mathrm{j}} / 7.65^{\mathrm{k}}$
4.23	8.60 ± 0.07	8.12 ± 0.17	7.39 ± 0.13	n.a.
4.50	8.03 ± 0.08	7.54 ± 0.05	7.06 ± 0.09	n.a.

${ }^{\text {ab }}$ BRET based binding assay with 4.58 ($\mathrm{c}_{\text {final }}=20 \mathrm{nM}, K_{d}=17.9 \mathrm{nM}$) in intact HEK293T Y_{2} (intraNLucD197) cells. Mean values \pm SEM from at least three independent experiments, each performed in triplicate. ${ }^{\mathrm{b}} \beta$-Arrestin2 recruitment of pNPY in intact HEK293ThY ${ }_{2} R+\beta$ Arr2 cells. Mean values \pm SEM from at least three independent experiments, each performed in triplicate ${ }^{c} \beta$ Arrestin2 recruitment assay in intact HEK293T hY ${ }_{2} R+\beta$ Arr2 cells. Antagonism ($\mathrm{p} K_{\mathrm{b}}$) was determined in the presence of 200 nM pNPY after pre-incubation of the cells with the antagonist for 15 min . K_{b} values are given in italics. Mean values \pm SEM from at least three independent experiments, each performed in triplicate. ${ }^{d}$ Radioligand competition binding assay with [$\left.{ }^{3} \mathrm{H}\right]$ propionylpNPY ($c_{\text {final }}=4.0 \mathrm{nM}, K_{d}=2.97 \mathrm{nM}$) in intact HEK293T hY ${ }_{2} R+\beta$ Arr2 cells. Mean values \pm SEM from at least two independent experiments, each performed in triplicate. ${ }^{e}$ Dukorn, Phd Thesis, University of Regensburg, 2017, ${ }^{33}$ the K_{i} values were determined using $\left[{ }^{3} \mathrm{H}\right]$ propionyl-pNPY ($\mathrm{c}_{\text {final }}=1.0 \mathrm{nM}, K_{\mathrm{d}}=1.4 \mathrm{nM}$) and $\mathrm{CHO}-\mathrm{hY}{ }_{2}-\mathrm{G}_{\mathrm{iq} 5}-\mathrm{mtAEQ}$ cells. ${ }^{\dagger}$ Dautzenberg, ${ }^{5} K_{\mathrm{i}}$ value was determined using [$\left.{ }^{125}\right]$ PYY ($\mathrm{c}_{\text {tinal }}=0.10 \mathrm{nM}, K_{\mathrm{d}}=0.08 \mathrm{nM}$) and membranes from SMS-KAN cells. ${ }^{9}$ Pluym et al., ${ }^{14} K_{\mathrm{b}}$ value was determined in an aequorin assay in intact $\mathrm{CHO}_{-\mathrm{h}}^{4}{ }_{4}-\mathrm{G}_{\mathrm{q} i 5}-\mathrm{mtAEQ}$ cells. Aequorin Ca^{2+} mobilization was induced by 70 nM pNPY , after preincubation of the cells with the antagonist for 1 h . ${ }^{\mathrm{h}}$ Shoblock et al. ${ }^{46}$ the $\mathrm{p} K_{\mathrm{b}}$ value was determined in a calcium mobilization assay in KAN-TS cells (stably expressing a chimeric G protein Gqi5). Ca^{2+} was induced by $10 \mathrm{nM} \mathrm{PYY} \mathrm{(pEC} 50=8.8$). 'Kuhn, Phd Thesis, University of Regensburg, 2017, ${ }^{47}$ the reported K_{i} value was determined in a flow cytometric binding assay using

 reported IC_{50} value was determined in an aequorin assay in intact $\mathrm{CHO}-\mathrm{hY}_{4}-\mathrm{G}_{\mathrm{qi5}}-\mathrm{mtAEQ}$ cells. Aequorin Ca^{2+} mobilization was induced by 70 nM pNPY ($\mathrm{EC}_{50}=30.9$), after pre-incubation of the cells with the antagonist for 1 h . The data was previously reported as IC_{50} value and were reanalyzed to give pK_{i} value. Reported K_{i} values were converted to $\mathrm{p} K_{\mathrm{i}}$ values. n.d. not determined. n.a. not applicable.

The $Y_{2} R$ affinities of the synthesized (S)-argininamides 4.23 and 4.50 were in good agreement with data obtained from a β-arrestin2 recruitment assay. The affinities determined in the radioligand competition binding assay showed a discrepancy of around one order of magnitude compared to affinities
determined in a BRET binding assay. Moreover, the $\mathrm{p} K_{\mathrm{i}}$ values determined in BRET based binding assay were in good agreement with $p K_{b}$ values determined in a β-arrestin2 recruitment assay. This discrepancy was also observed for standard antagonists (Table 4.8).

Table 4.9. Affinities ($\mathrm{p} K_{\mathrm{i}}$) and potencies $\left(\mathrm{p} E C_{50}\right)$ of pNPY .

$\mathrm{pK}_{\mathrm{i}}(\mathrm{BRET})^{\mathrm{a}}$	$\mathrm{pK}_{\mathrm{i}}(\text { flow-cyto })^{\mathrm{b}}$	$\mathrm{pK}_{\mathrm{i}}(\text { radioligand })^{\mathrm{c}}$	$\mathrm{pEC}_{50}(\beta \mathrm{Arr1})^{\mathrm{d}}$	$\mathrm{pEC}_{50}(\beta \mathrm{Arr} 2)^{\mathrm{e}}$	$\mathrm{pEC}_{50}(\text { Aequorin })^{\mathrm{f}}$	$\mathrm{pEC}_{50}\left(\mathrm{minig}_{\mathrm{i}}\right)^{\mathrm{g}}$
<6.00	8.92	8.43 ± 0.35	7.36	6.79	7.51	8.48 ± 0.08

${ }^{\text {a }}$ BRET based binding assay with 4.58 ($\mathrm{c}_{\text {final }}=20 \mathrm{nM}, K_{d}=17.9 \mathrm{nM}$) in intact HEK293T Y_{2} (intraNLucD197) cells. Mean values \pm SEM from at least three independent experiments, each performed in triplicate. ${ }^{b} K_{i}$ value reported from Schneider et al. ${ }^{48}$ ${ }^{c}$ Radioligand competition binding assay with [$\left.{ }^{3} \mathrm{H}\right]$ propionyl-pNPY ($c_{\text {final }}=4.0 \mathrm{nM}, K_{d}=2.97 \mathrm{nM}$) in intact HEK293T hY ${ }_{2} \mathrm{R}+\beta$ Arr2 cells. Mean values \pm SEM from at least two independent experiments, each performed in triplicate. ${ }^{d, e} p E C_{50}$ values reported by Felixberger, Phd Thesis, University of Regensburg, $2014 .{ }^{39}{ }^{\mathrm{f}} E C_{50}$ value reported from Ziemek et al. ${ }^{9}$ gminiG Protein recruitment was induced by 50 nM pNPY after pre-incubation of the cells with the antagonist for 15 min . Mean values \pm SEM from at least two independent experiments, each performed in triplicate. Reported K_{i} (or EC_{50}) values were converted to $\mathrm{p} K_{\mathrm{i}}$ (or $\mathrm{pEC} \mathrm{C}_{50}$) values.

4.2.4.5. Application of 4.58 to confocal microscopy

For visualization of $h Y_{2} R$ binding of 4.58 by confocal microscopy, a Nikon Eclipse 90i (Laser: $\lambda_{\text {ex }} 488 \mathrm{~nm}$; detector: 650 nm LP (Gain 1340)) was used. HEK293T hY $2 R+\beta$ Arr2 cells were seeded into cell culture dish (in 1 mL of Leibovitz's L-15 medium containing 5% FCS).

Figure 4.11. Binding of 4.58 in HEK293T $h Y_{2} R+\beta$ Arr2 cells. (A, D, G) Autofluorescence and total binding of 4.58 (40 nM) after (B) 35 min and (C) 240 min . Unspecific binding was determined in the presence of a 250 -fold excess of 4.1 (E, F) or pNPY (H, I) after $40 \mathrm{~min}(E), 45 \mathrm{~min}(H), 235 \mathrm{~min}(F)$ and $240 \mathrm{~min}(I)$. Cells were seeded in Leibovitz's L-15 medium containing 5% FCS. 4.1, 4.58 and pNPY were diluted in Leibovitz's L-15 medium containing 1% BSA. Measurement details for all images: images were acquired with a Nikon eclipse 90i; water immersion objective: (Nikon NIR Apo, $60 \times 1.0 \mathrm{w}$); pinhole L; laser: $\lambda_{\text {ex }} 488 \mathrm{~nm}$; detector 650 nm LP (Gain 130).

Dilutions of 4.58 and competitors (4.1 or pNPY) were prepared in Leibovitz's L-15 medium containing 1% BSA. Total binding of 4.58 was determined at a final concentration of 40 nM after incubation at rt for

35 min and 4 h . Unspecific binding was determined after simultaneously addition of a 12 -fold concentrated solution of 4.58 ($\mathrm{C}_{\text {final }}=40 \mathrm{nM}$) and a 250 -fold excess ($\mathrm{C}_{\text {final }}=10,000 \mathrm{nM}$) of 4.1 or pNPY after incubation at rt for $40-45 \mathrm{~min}$ and 235-240 min. There was a clear difference between total and non-specific binding using 4.1 or pNPY as competitor.

Figure 4.12. Binding of 4.58 in HEK293T $h Y_{2} R+\beta A r r 2$ cells. Autofluorescence (A) and total binding after 35 min (B1, C1, D1) and after $240 \mathrm{~min}(\mathrm{~B} 2)$. Unspecific binding was determined in the presence of a 250 -fold excess of 4.1 (C2) or pNPY (D2) after 240 min . The competitors were added after an incubation time of 35 min with the fluorescent ligand 4.58 . The cells were seeded in L-15 medium containing 5\% FCS. 4.1, 4.58 and pNPY were diluted in L-15 medium containing 1% BSA. Measurement details for all images: images were acquired with a Nikon eclipse 90i; water immersion objective: (Nikon NIR Apo, $60 \times 1.0 \mathrm{w}$); pinhole L; laser: $\lambda_{\text {ex }} 488 \mathrm{~nm}$; detector 650 nm LP (Gain 130).

After incubation of the cells with 4.58 for 35 min , high fluorescence intensity at the plasma membrane was obvious (Figure 4.12; B1, C1, D1). In contrast to the procedure described above, the competitor (4.1 or pNPY) was not added simultaneously with the fluorescent ligand 4.58, after incubation of the cells with 4.58 for 35 min . A membrane localization of 4.58 was still visible after 240 min in the absence of competitor. When BIIE-0246 (4.1) was added, no membrane localization of 4.58 was observed (Figure 4.12; C2) after 240 min . Similarly, the use of pNPY as competitor resulted in no apparent membrane localization was obvious after 240 min .

In summary, the (S)-argininamide-type fluorescent $Y_{2} R$ ligand 4.58 could be displaced by use of (S)-argininamide-type (4.1) and the peptidic ligand (pNPY) as competitors (4.1 or pNPY) in intact HEK293T hY ${ }_{2} R+\beta A r r 2$ cells. There was no difference between adding 4.58 and the competitor simultaneously or addition of the competitor after pre-incubation of the cells with 4.58 for 35 min .

4.2.4.6. NPY $Y_{2} R$ subtype selectivity

(S)-Argininamide 4.1 has been described as a highly selective $h Y_{2} R$ antagonist in literature. ${ }^{22}$ For this reason subtype selectivity was investigated for the amino precursors 4.50, 4.51 and the fluorescent
ligand 4.58 (Table 4.10). The dibenzoazepinone-benzhydryl approach did not affect subtype selectivity in case of investigated compounds 4.50, 4.51 and 4.58.

Table 4.10. NPY receptor subtype binding profile of (S)-argininamides $4.50,4.51$ and 4.58 .

Compound	$\mathrm{hY} \mathrm{r}^{2}$	$\mathrm{hY} \mathrm{Y}_{2}$	$\mathrm{hY}{ }_{4} \mathrm{R}$	$\mathrm{hY} \mathrm{R}^{2}$
	$\mathrm{p} K_{\mathrm{i}}^{\mathrm{a}}$	$\mathrm{p} K_{\mathrm{i}} \pm \mathrm{SEM}^{\mathrm{b}}$	$\mathrm{p} K_{\mathrm{i}}^{\mathrm{c}}$	$\mathrm{p} K_{\mathrm{i}}^{\mathrm{d}}$
4.50	<5.52	7.54 ± 0.05	<5.00	<6.00
4.51	<5.52	6.74 ± 0.09	<5.00	<5.52
4.58	<5.00	7.65 ± 0.11	<5.00	<5.52

 competition binding assay with $\left[{ }^{3} \mathrm{H}\right]$ propionyl-pNPY ($\mathrm{c}_{\text {final }}=4.0 \mathrm{nM}, K_{d}=2.97 \mathrm{nM}$) in intact HEK293T hY ${ }_{2} \mathrm{R}+\beta$ Arr2 cells. Mean values \pm SEM from at least three independent experiments performed, each in triplicate. ${ }^{c}$ Radioligand competition binding assay with $\left[{ }^{3} \mathrm{H}\right]$ UR-KK200 ($\mathrm{c}_{\text {final }}=1.0 \mathrm{nM}, \mathrm{K}_{\mathrm{d}}=0.67 \mathrm{nM}$) in intact CHO-hY ${ }_{4}$ R- $\mathrm{G}_{\mathrm{qi} 5}-\mathrm{mtAEQ} .{ }^{32}$ d Radioligand competition binding assay using [$\left.{ }^{3} \mathrm{H}\right]$ propiony-pNPY ($\mathrm{C}_{\text {final }}=4.0 \mathrm{nM}, K_{d}=4.8 \mathrm{nM}$) in intact HEC-1B-hY ${ }_{5}$ cells. ${ }^{16,49}$ Results from 2-3 independent experiments, each performed in triplicate ($h Y_{1} R, h Y_{4} R$ and $h Y_{4} R$).

4.3. Conclusion

A small library of compounds was synthesized and pharmacologically characterized. The dibenzoazepinone moiety (4.1) was replaced by a methoxy substituted benzhydryl moiety (4.23, 4.24 and 4.27) This small SAR study revealed that positions 2 and 3 are suitable for amino-functionalization and led to the synthesis of amino precursors 4.50 (position 2) and 4.51 (position 3). Moreover, this established labelling approach II (Figure 4.1) showed that precursors 4.50 and 4.51 can be used for fluorescence labelling and this approach did not affect subtype selectivity.

The fluorescently labelled (S)-argininamide-type selective $Y_{2} R$ antagonist UR-jb264 (4.58) showed $Y_{2} R$ binding and $Y_{2} R$ antagonistic activity in the nanomolar range. The application of 4.58 in BRET based binding assays (saturation and competition binding, association and dissociation studies) as well as confocal microscopy demonstrated that 4.58 can be used as a molecular tool, e.g. to determine $Y_{2} R$ affinities of non-labelled ligands. It should be stressed that the BRET based binding assay using 4.58 enables the determination of $Y_{2} R$ affinities of (small) $Y_{2} R$ ligands in sodium-containing buffer, which is not possible in competition binding experiments with [${ }^{3} \mathrm{H}$]propionyl-pNPY or Cy5-pNPY due to the low $\mathrm{Y}_{2} \mathrm{R}$ affinity of peptidic agonists in sodium-containing buffers.

In future studies, 4.58 should also be investigated in flow cytometric $Y_{2} R$ binding experiments using cells with native $h Y_{2} R$, including competition with pNPY, and these data should be compared with the data obtained from the BRET based binding assays. Moreover, the amine precursors 4.50 and 4.51 can be used for the synthesis of additional fluorescent $Y_{2} R$ ligands bearing fluorophores with distinct optical properties. Fluorescent labelled compounds $4.59,4.61$ and 4.62 should be investigated in the BRET based binding assay. These ligands (4.59, 4.61 and 4.62) were not investigated in a BRET based binding assay due to a lack of time, because affinities had not been determined in radioligand binding assay, but also because an appropriate $h Y_{2} R$ binding assay was not available at that time. Moreover, the amount of the radioligand ([3H]propionyl-pNPY) was limited.

4.4. Experimental section

4.4.1. General experimental conditions

The following reagents and solvents (analytical grade) were purchased from commercial suppliers and used without further purification: $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{DMF}, \mathrm{THF}, \mathrm{MeOH}$, toluene, DMSO, ethanol, methanesulfonyl chloride (Fisher Scientific, Schwerte, Germany); EDC•HCI, HOBt, hydrazine monohydrate, piperidine, piperazine, TFA, CBr_{4}, acetic acid, pyridine-sulfur trioxide complex, $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{PPh}_{3}, 4.6,4.8,4.14,4.25$, 4.63, 4.68, 4.70 (Sigma Aldrich, Taufkirchen, Germany); ethyl allophanate, $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{PCC}, 4.33,4.76$, 4.77 (TCI, Eschborn, Germany); DIPEA, (ABCR, Karlsruhe, Germany); p-xylene, dioxane, $\mathrm{NaH}, \mathrm{Mg}$, $\mathrm{SOCl}_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{NaBH}_{4}, \mathrm{~K}_{2} \mathrm{CO}_{3}$, aqueous $\mathrm{HBr}(47 \%), \mathrm{NaN}_{3}, \mathrm{NH}_{4} \mathrm{CH}_{3} \mathrm{CO}_{2}, \mathrm{Na}, 4.17,4.18,4.17$, 4.18 (Merck, Darmstadt, Germany); 4.11 (Carbolution Chemicals, St. Ingbert, Germany); conc. HCl (VWR Chemicals, Darmstadt, Germany); ammonium hydroxide (Carl Roth, Karlsruhe, Germany). For pharmacological characterization, pNPY (Synpeptide, Shanghai, China), CYM 9484 (Tocris, Bristol, United Kingdom) and JNJ 31020028 (Biomol, Hamburg, Germany) were purchased from commercial suppliers.

Compounds $\mathbf{2 . 7 7} \mathbf{7}^{24,25}$ and $\mathbf{4 . 6 0}{ }^{24,25}$ were synthesized as described previously in the literature.
Column chromatography was performed using Merck Geduran 60 silica gel (0.063-0.200 mm) or Merck flash silica gel 60 (0.040-0.063 mm). For thin layer chromatography, TLC sheets ALUGRAM Xtra SIL G/UV254 from Macherey-Nagel GmbH \& Co. KG (Düren, Germany) were used. Compounds were detected by irradiation with UV light (254 nm or 366 nm), and staining was performed with ninhydrin or iodine.

Acetonitrile (HPLC grade), used for HPLC, was purchased from Sigma-Aldrich. Millipore water was used for eluents for analytical and preparative HPLC. Compounds 4.23, 4.24, 4.27, 4.50, 4.51 and 4.75 were purified by a preparative HPLC-system from Knauer (Berlin, Germany) consisting of two pumps K-1800 and a detector K-2001 (HPLC A). A Kinetex XB C18, $5 \mu \mathrm{~m}, 250 \times 21 \mathrm{~mm}$ (Phenomenex, Aschaffenburg, Germany) served as RP-column at a flow rate of $18 \mathrm{~mL} / \mathrm{min}$. Compounds 4.32, 4.58, 4.59, 4.61 and 4.62 were purified by a preparative HPLC-system from Waters (Eschborn, Germany) consisting of a Binary Gradient Module (Waters 2545), a detector (Waters 2489 UV/visible Detector), a manual injector (Waters Prep inject) and a collector (Waters Fraction Collector III) (HPLC B). A Kinetex XB C18, $5 \mu \mathrm{~m}$, $250 \times 21 \mathrm{~mm}$ (Phenomenex) served as RP-column at a flow rate of $20 \mathrm{~mL} / \mathrm{min}$. All injected solutions were filtered with syringe filters $(0.45 \mu \mathrm{~m})$. The mobile phase contained the solvents $\mathrm{A}(0.1 \% \mathrm{aq} \mathrm{TFA})$ and B (acetonitrile). The detection wavelength was 220 nm . The eluates, containing isolated compounds, were lyophilized using a Christ alpha 2-4 LD (Martin Christ Gefriertrocknungsanlagen, Osterode am Harz, Germany) or a Scanvac CoolSafe 100-9 (Labogene, Alleroed, Denmark) lyophilization apparatus equipped with a Vacuubrand RZ rotary vane vacuum pump (Vacuubrand, Wertheim, Germany).

The purity of compounds $4.1,4.5,4.23,4.24,4.27,4.50,4.51,4.58,4.59,4.61,4.62$ and 4.75 was determined by analytical HPLC (RP-HPLC) with a 1100 series system from Agilent Technologies (Santa Clara, CA USA) composed of a Degasser (G1379A), a Binary Pump (G1312A), a Diode Array Detector (G1315A), a thermostated Column Compartment (G1316A) and an Autosampler (G1329A). A Phenomenex Kinetex 5u XB-C18 100A, $250 \times 4.6 \mathrm{~mm}$ was used as stationary phase. The flow rate was
$1 \mathrm{~mL} / \mathrm{min}$, the detection wavelength was set to 220 nm , the oven temperature was set to $30^{\circ} \mathrm{C}$ and the injection volume was $50 \mu \mathrm{~L}$. Mixtures of solvents $\mathrm{A}(0.1 \%$ aq TFA) and B (acetonitrile) were used as mobile phase. The following gradient was applied: 0-25 min, A/B 90:10-5:95; 25-35 min, 5:95.

Microwave reactions were carried out on a Biotage Initiator 2.0 microwave device (Biotage, Uppsala, Sweden) using pressure stable sealed $10-20 \mathrm{~mL}$ vessels.

Deuterated solvents for NMR spectroscopy (DMSO- $d_{6}, \mathrm{MeOD}^{2} \mathrm{CDCl}_{3}$) were obtained from Deutero (Kastellaun, Germany) in ampoules (1 mL). NMR spectra were recorded on a Bruker Avance $300\left({ }^{1} \mathrm{H}\right.$, $\left.300 \mathrm{MHz} ;{ }^{13} \mathrm{C}, 75 \mathrm{MHz}\right)$, a Bruker Avance III $400\left({ }^{1} \mathrm{H}, 400 \mathrm{MHz} ;{ }^{13} \mathrm{C}, 101 \mathrm{MHz}\right)$ and a Bruker Avance 600 with cryogenic probe (${ }^{1} \mathrm{H}, 600 \mathrm{MHz} ;{ }^{13} \mathrm{C}, 150 \mathrm{MHz}$) (Bruker, Karlsruhe, Germany). Chemical shifts are given in ppm and were referenced to the solvent residual peak (DMSO- d_{6}, at $2.50 \mathrm{ppm}\left({ }^{1} \mathrm{H}-\mathrm{NMR}\right)$ and at $39.52 \mathrm{ppm}\left({ }^{13} \mathrm{C}-\mathrm{NMR}\right) ; \mathrm{CDCl}_{3}$, at $7.26 \mathrm{ppm}\left({ }^{1} \mathrm{H}-\mathrm{NMR}\right)$ and at $77.16 \mathrm{ppm}\left({ }^{13} \mathrm{C}-\mathrm{NMR}\right) ; \mathrm{CD}_{3} \mathrm{OD}$, at $3.31 \mathrm{ppm}\left({ }^{1} \mathrm{H}-\mathrm{NMR}\right)$ and at $\left.49.00 \mathrm{ppm}\left({ }^{13} \mathrm{C}-\mathrm{NMR}\right)\right) .{ }^{50}$ The coupling constants (J) are given in Hertz (Hz). The splitting of the signals is described as follows: $s=$ singlet, $b s=$ broad singlet, $d=$ doublet, $t=$ triplet, q = quartet, $m=$ multiplet.

Mass spectrometry (HRMS) analysis was performed either on an Agilent 6540 UHD Accurate-Mass QTOF LC/MS system (Agilent Technologies) using an electrospray source (ESI) or on an Agilent GC7890A GC/MS system (Agilent Technologies) using an atmospheric pressure chemical ionization (APCI) source.

Elemental analysis was performed on a Vario micro cube (Elementar, Langenselbold, Germany).
Stock solutions were prepared in DMSO at concentrations of $1 \mathrm{mM}(4.58,4.59,4.60$ and 4.61$)$ or 10 mM .

4.4.2. Synthesis protocols and analytical data

Annotation concerning the analytical data (NMR, HPLC) of 4.23, 4.24, 4.27 and 4.50 : due to the synthesis routes, these compounds were obtained as diastereomers, which are evident in the ${ }^{1} \mathrm{H}$-and ${ }^{13} \mathrm{C}$-spectra (recorded in DMSO- d_{6} or $\mathrm{MeOH}-d_{4}$), but not in the RP-HPLC chromatograms.

General synthesis procedures

General procedure A for the synthesis of methoxy substituted benzhydryl alcohols 4.19 and 4.20. A solution of bromobenzene in anhydrous THF (75 mL) was prepared (solution A). To a dry flask, containing magnesium (Mg) under an argon atmosphere THF (50 mL) was added. $5-10 \mathrm{~mL}$ of solution A were added dropwise to afford phenylmagnesium bromide (Grignard reagent). If it is necessary, the reaction is activated by addition of iodine or bromine. Then, the remaining solution A was added dropwise into the reaction mixture that should boiling slightly (if necessary, the reaction mixture must be cooled in an ice bath). The reaction mixture was gently heated in a water bath (30 min) until the Mg was completely consumed. After that the organometallic solution was cooled by means of an ice bath. Under stirring, a solution of 2-methoxybenzaldehyde (4.17) or 3-methoxybenzaldehyde (4.18) in dry THF $(20 \mathrm{~mL})$ was added dropwise into the reaction mixture. The reaction mixture was allowed to warm to rt and stirred for 2 h . Then, a mixture of water and ice (50 mL) was added and a precipitate was formed followed by careful addition of diluted HCl (conc. $\mathrm{HCl} /$ water $1: 1$) until the solid was dissolved. The product was extracted from the aqueous phase with ethyl acetate ($3 \times 100 \mathrm{~mL}$) , the combined organic
layers were dried with brine and $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated. The crude product was purified by column chromatography.

General procedure B for the synthesis of 1-((2-methoxyphenyl)(phenyl)methyl)piperazine (4.22) and 1-((3-methoxyphenyl)(phenyl)methyl)piperazine (4.23). 2-Methoxy(phenyl)(phenyl)methanol (4.19) or 3-methoxyphenyl)(phenyl)methanol (4.20) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. Then, sulfuryl chloride was added and the reaction mixture was refluxed for 30 min . The solvent was evaporated, and the residue was dissolved in acetonitrile (10 mL) and piperazine was added followed by heating in a microwave device ($100^{\circ} \mathrm{C}$, 30 min). The solvent was evaporated, and the crude product was purified by column chromatography.

General procedure C for the synthesis of phenols $4.42,4.43$ and 4.52 by cleavage of methyl ethers. (4-Hydroxyphenyl)(phenyl)methanone (4.25), (2-hydroxyphenyl)(phenyl)methanone (4.40) or (3hydroxyphenyl)(phenyl)methanone (4.41) was dissolved in aqueous $\mathrm{HBr}(47 \%, 15 \mathrm{~mL})$ and acetic acid was added until the starting material was completely dissolved. The reaction mixture was refluxed overnight. Then, the reaction mixture was allowed to cool to rt and was carefully poured into water $(250 \mathrm{~mL})$. The product was extracted from the aqueous phase with ethyl acetate ($3 x 150 \mathrm{~mL}$), the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic solvent was evaporated, and light petroleum was added and evaporated (3x). The product was dried in vacuo and used without further purification.

General procedure D for the synthesis of ethers 4.44, 4.45 and 4.53. Compound $4.42,4.43$ or 4.52 was dissolved in DMF (5 mL) and potassium carbonate was added, and the reaction mixture was stirred at rt for 5 min . Under stirring, tert-butyl (5-bromopentyl)carbamate (4.35) was added and the reaction mixture was stirred at rt for 24 h . Then, the reaction mixture was poured into water (200 mL) and the product was extracted from the aqueous phase with ethyl acetate ($3 x 100 \mathrm{~mL}$). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the organic solvent was evaporated. The crude product was purified by column chromatography.

General procedure E for the synthesis of benzhydryl alcohols 4.46, 4.47 and 4.54. Compound 4.44, 4.45 or 4.53 was dissolved in methanol $(5-20 \mathrm{~mL})$ and sodium borohydride was added portionwise. After 2-4 h the solvent was evaporated, and the crude product was purified by column chromatography.

General procedure F for the synthesis of amines 4.48, 4.49 and 4.55. Compound 4.46, 4.47 or 4.55 and $\mathrm{Et}_{3} \mathrm{~N}$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6-10 \mathrm{~mL})$ and the reaction mixture was stirred in an ice bath. Under stirring, methanesulfonyl chloride was slowly added to the mixture and the reaction mixture was stirred for $3-5$ hours. Then, $\mathrm{NaOH}(1 \mathrm{~N})$ was added to the reaction mixture and the product was extracted from the aqueous phase with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 x)$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the organic solvent was evaporated. Then, the residue was dissolved in acetonitrile (10 mL) and piperazine was added and the reaction mixture was heated in a microwave device ($70^{\circ} \mathrm{C}, 45 \mathrm{~min}$). The solvent was evaporated, and the crude product was purified by column chromatography.

General procedure G for amide bond formation of compounds 4.1, 4.5, 4.23, 4.24, 4.32, 4.50, 4.51 and 4.75. The carboxylic acid was dissolved in DMF $(100 \mu \mathrm{~L})$. EDC $\cdot \mathrm{HCl}$ and HOBt were added and the reaction mixture was stirred for 5 min . Then, the reaction mixture is poured into a solution of the
secondary or primary amine in DMF $(100 \mu \mathrm{~L})$ and stirred at rt overnight. The reaction mixture was poured into an aqueous solution (5% acetonitrile, 0.1% TFA; 100 mL). After lyophilization, the crude product was dissolved in a mixture of TFA and water (95:5; 5 mL) and stirred at rt overnight. Then, the reaction mixture is carefully poured into an aqueous solution (5\% acetonitrile, 0.1% TFA; 100 mL). After lyophilization, the crude product was purified by preparative HPLC.

General procedure H for the synthesis of fluorescent ligands 4.58, 4.59, 4.61 and 4.62. Amino precursor 4.50 or 4.51 was dissolved in DMF ($50-100 \mu \mathrm{~L}$) in a propylene micro tube (1.5 mL , Nümbrecht, Sarstedt) and DIPEA was added. The fluorescent dye (2.77 or 4.60) was added as a solid and the reaction mixture was shaken in the dark at rt for $3-5 \mathrm{~h}$. The crude product was purified by preparative HPLC.

(2S)- N^{a}-[2-(1-\{2-Oxo-2-[4(6-0xo-6,11-dihydro-5H-dibenzo[b,e]azepin-11-yl)piperazin-1-yl]ethyl\}-cyclopentyl)acetyl]-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamide
bis(hydrotrifluoroacetate) (4.1). ${ }^{8}$ Compound 4.1 was prepared using general procedure G and the reactants $\quad(S)-2-(1-(2-((1-((2-(3,5-D i o x o-1,2-d i p h e n y l-1,2,4-t r i a z o l i d i n-4-y l) e t h y l) a m i n o)-1-o x o-5(2-$ ((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-yl)amino)-2-oxoethyl) cyclopentyl)acetic acid (4.15) (180 mg, $206 \mu \mathrm{~mol}$), EDC•HCI ($50 \mathrm{mg}, 261 \mu \mathrm{~mol}$), HOBt (30 mg , $222 \mu \mathrm{~mol}$) and 11-(piperazin-1-yl)-5,11-dihydro-6 H -dibenzo[b,e]azepin-6-one (4.67) (50 mg, $170 \mu \mathrm{~mol}$). Purification by preparative HPLC A (gradient: 0-30 min, A/B 84:16-38:62, $t_{R}=18 \mathrm{~min}$) gave 4.1 as a fluffy white solid ($35 \mathrm{mg}, 31 \mu \mathrm{~mol}, 18 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right.$): $\delta(\mathrm{ppm})$ 1.30-1.69 (m, 13H), 2.00-2.14 (m, 3H), 2.18-2.24 (m, 1H), 2.27-2.33 (m, 1H), 2.38-2.45 (m, 1H), 2.47-2.49 (m, 1H, interfering with solvent residual peak), 2.94-3.05 (m, 2H), 3.18-3.44 (m, 6H), 3.59 (t, $J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.11-4.18$ (m, $1 \mathrm{H}), 4.29(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.77-7.44(\mathrm{~m}, 21 \mathrm{H}), 7.46-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.62(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, 1 H), 7.97 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 10.35$ (s, 1H). ${ }^{13} \mathrm{C}-\mathrm{NMR}(150 \mathrm{MHz}$, DMSO- d_{6}): δ (ppm), 23.31, 23.27, 25.1, 28.8, 36.2, 37.3, 37.33, 37.36, 38.4, 39.6 (overlaid by solvent residual peak), 40.4, 40.7, 42.9, 44.06, 44.07, 45.4, 50.8, 51.3, 51.9, 73.7, 116.2 (q, $J=294.0 \mathrm{~Hz}$) (TFA), 121.4, 122.6, 123.8, 126.7 (two carbon signals), 127.8, 128.1, 128.5, 129.0 (2 carb.), 130.0, 130.6, $131.5,131.6,136.2,136.6,152.6,156.8,158.5(q, J=34.5 \mathrm{~Hz})(T F A), 168.0,170.0,171.3,172.0$. RPHPLC $(220 \mathrm{~nm}): 98 \%\left(t_{R}=15.5 \mathrm{~min}, k=5.0\right)$. HRMS $(E S I): \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{49} \mathrm{H}_{58} \mathrm{~N}_{11} \mathrm{O}_{6}\right]^{+}$ 896.4566, found 896.4582. $\mathrm{C}_{49} \mathrm{H}_{57} \mathrm{~N}_{11} \mathrm{O}_{6} \times \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{~F}_{6} \mathrm{O}_{4}(896.07+228.04)$.

(2S)- N^{α}-(2-\{1-[2-(4-Benzhydrylpiperazin-1-yl)-2-oxoethyl]cyclopentyl\}acetyl)[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamide bis(hydrotrifluoroacetate) (4.5). ${ }^{8}$ Compound 4.5 was prepared using general procedure G and the reactants $(S)-2-(1-(2-((1-((2-(3,5-d i o x o-1,2-d i p h e n y)-$ 1,2,4-triazolidin-4-yl)ethyl)amino)-1-oxo-5-(2-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfo-nyl)guanidino)-pentan-2-yl)amino)-2-oxoethyl)cyclopentyl)acetic acid (4.15) (123 mg, $141 \mu \mathrm{~mol}$), EDC•HCl ($33 \mathrm{mg}, 172 \mu \mathrm{~mol}$), HOBt ($21 \mathrm{mg}, 155 \mu \mathrm{~mol}$), and 1-benzhydrylpiperazine (4.30) (41 mg , $162 \mu \mathrm{~mol})$. Purification by preparative HPLC B (gradient: 0-30 min, A/B 65:35-47:53, $t_{\mathrm{R}}=8 \mathrm{~min}$) gave 4.5 as a fluffy white solid ($18 \mathrm{mg}, 16.6 \mu \mathrm{~mol}, 12 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta(\mathrm{ppm}) 1.33-1.67$ $(\mathrm{m}, 13 \mathrm{H}), 2.20-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.48(\mathrm{~m}, 1 \mathrm{H}$, interfering with solvent residual peak), 2.54-2.60 ($\mathrm{m}, 1 \mathrm{H}$, interfering with solvent residual peak), 2.63-3.26 (m,5H), 3.27-3.35 (m, 1H), 3.36$3.41(\mathrm{~m}, 1 \mathrm{H}), 3.43-3.68(\mathrm{~m}, 6 \mathrm{H}$, interfering with the water signal), 4.11-4.19(m,1H),5.49(br s, 1H), 6.49-7.74 (m, 26H), $7.97(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{t}, J=5.7 \mathrm{~Hz}, \quad 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR} \quad(600 \mathrm{MHz}$, DMSO- d_{6}): $\delta(\mathrm{ppm}) 23.3,25.1,28.8,36.2,37.3,37.4,38.5,39.6$ (overlaid by solvent residual peak), 40.4, 42.7, 44.0, 51.2, 51.6, 51.9, 114.5, 116.0 (TFA), 118.0 (TFA), 118.2, 122.6, 126.7, 127.7, 129.0, $136.5,152.6,156.8,158.2$ (TFA), 158.4 (TFA), 170.1, 171.3, 172.0. One carbon signal was not apparent ($\mathrm{Ph} 2_{2} \underline{\mathrm{C}} \mathrm{H}-$). RP-HPLC (220 nm): $99 \% ~\left(t_{R}=14.0 \mathrm{~min}, k=4.5\right.$). HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{48} \mathrm{H}_{59} \mathrm{~N}_{10} \mathrm{O}_{5}\right]^{+} 855.4664$, found 855.4673. $\mathrm{C}_{48} \mathrm{H}_{58} \mathrm{~N}_{10} \mathrm{O}_{5} \times \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{~F}_{6} \mathrm{O}_{4}(855.06+228.04)$.

1,2-Diphenyl-1,2,4-triazolidine-3,5-dione (4.7). ${ }^{8}$ 1,2-Diphenylhydrazine (4.6) ($2.02 \mathrm{~g}, 11 \mathrm{mmol}$) and ethyl allophanate ($1.45 \mathrm{~g}, 11 \mathrm{mmol}$) were dissolved in p -xylene (35 mL) and the mixture was refluxed overnight. The reaction mixture was allowed to cool to rt and light petroleum (30 mL) was added. The solid was separated by filtration, washed two times with light petroleum ($2 \times 30 \mathrm{~mL}$) and dissolved in acetone. Insoluble components were filtered off and water was added (200 mL) leading to the formation of a precipitate, which was separated by filtration, washed with water ($2 x$) and dried in vacuo. Compound 4.7 was obtained as a pale white solid ($1.12 \mathrm{~g}, 4.4 \mathrm{mmol}, 40 \%$). Anal. calcd. for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}$: C 66.40, H 4.38, N 16.59, found: C 66.23, H 4.56, N 16.76. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta(\mathrm{ppm}) 7.17-7.26$ (m, 2H), 7.33-7.40 (m, 8H), 12.08 (br s, 1H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, ~ D M S O-\mathrm{d}_{6}\right): \delta(\mathrm{ppm}) 122.4,126.5,129.1$, 136.7, 153.1. HRMS (ESI): m/z [M+H]+ calcd. for $\left[\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{2}\right]^{+}$254.0924, found 254.0927. $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}$ (253.26).

4-(2-Phthalimidoethyl)-1,2-diphenyl-1,2,4-triazolidine-3,5-dione (4.9).8 1,2-Diphenyl-1,2,4-triazol-idine-3,5-dione (4.7) (4.03 g, 15.9 mmol) was dissolved in DMF (100 mL) and the mixture was cooled in an ice bath. Under stirring, sodium hydride ($0.71 \mathrm{~g}, 17.8 \mathrm{mmol}, 60 \%$, dispersion in mineral oil) was added portionwise. Then, 2-(2-bromoethyl)isoindoline-1,3-dione (4.8) ($4.57 \mathrm{~g}, 18.0 \mathrm{mmol}$) was added to the reaction mixture. After the reaction mixture was refluxed for 5 h , the organic solvent was evaporated in vacuo $\left(80^{\circ} \mathrm{C}\right)$ and a saturated solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(300 \mathrm{~mL})$ was added. The precipitated solid was separated by filtration and dried in vacuo. Compound 4.9 was obtained after recrystallization from 2propanol as a white crystalline solid ($2.83 \mathrm{~g}, 6.64 \mathrm{mmol}, 42 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta(\mathrm{ppm})$ 3.79-3.86 (m, 2H), 3.87-3.94 (m, 2H), 7.19-7.27 (m, 2H), 7.28-7.42 (m, 8H), 7.74-7.86 (m, 4H). ${ }^{13}$ C-NMR (101 MHz, DMSO- d_{6}): $\delta(\mathrm{ppm}) 35.6,38.6,123.06,123.11,127.0,129.1,131.4,134.5,136.2,152.5$, 168.0. HRMS (ESI): m/z [M+H]+ calcd. for $\left[\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{4}\right]^{+}$427.1401, found 427.1399. $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{4}$ (426.43).

Warning: The hazards associated with the thermal decomposition of sodium hydride in N, N-dimethylformamide is well documented in the literature, ${ }^{51}$ therefore an upscaling of the described procedure is not recommended.

4-(2-Aminoethyl)-1,2-diphenyl-1,2,4-triazolidine-3,5-dione (4.10).8, 14 4-(2-Phthalimidoethyl)-1,2-di-phenyl-1,2,4-triazolidine-3,5-dione (4.9) ($2.53 \mathrm{~g}, 5.93 \mathrm{mmol}$) was dissolved in a mixture of methanol $(30 \mathrm{~mL})$ and THF (60 mL). Under stirring, hydrazine hydrate $50-60 \%(4.90 \mathrm{~g})$ was added and the reaction mixture was stirred at rt for 24 h . The solvent was evaporated and $1 \mathrm{~N} \mathrm{HCl}(100 \mathrm{~mL})$ was added and the reaction mixture was stirred at rt for 2.5 hours. The pH of the mixture was adjusted to 10 with $1 \mathrm{~N} \mathrm{NaOH}(\mathrm{pH} 10)$. After the product was extracted from the aqueous phase with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 x 150 \mathrm{~mL})$, the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the organic solvent was evaporated. Then, the residue was dissolved in ethanol (125 mL) and 1 N HCl in diethyl ether (20 mL) was added. The solid was separated by filtration and washed with light petroleum. The obtained hydrochloride was dried in vacuo and dissolved in a mixture of ammonium hydroxide (50 mL) and water (100 mL). The product was extracted from the aqueous phase with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 x 100 \mathrm{~mL})$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the organic solvent was evaporated. The solid was dried in vacuo to give 4.10 as a yellowish solid ($1.27 \mathrm{~g}, 4.27 \mathrm{mmol}, 72 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta(\mathrm{ppm}) 2.36$ (br s, 2 H , interfering with solvent residual peak), 2.81 ($\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}$), 3.56 ($\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.17-7.29 (m, 2H), 7.32-7.49 (m, 8H). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ($101 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta(\mathrm{ppm}) 39.5$ (overlaid from solvent residual peak), 42.9, 122.5, 126.6, 129.0, 136.6, 152.9. HRMS (ESI): m/z [M+Na] calcd. for $\left[\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Na}\right]^{+}$ 319.1165, found 319.1163. $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}$ (296.33).

(S)- $N^{\alpha}[(9 H-F l u o r e n-9-y l) m e t h y l o x y c a r b o n y l]-N^{\omega}-2,3-d i h y d r o-2,2,4,6,7-p e n t a m e t h y l b e n z o f u r a n-5-~$ sulfonyl-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamide (4.12). ${ }^{14,17}$ Fmoc-Arg(Pbf)-OH (4.11) (13.20 g, 20.3 mmol) was dissolved in DMF (180 mL), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride ($4.63 \mathrm{~g}, 24.2 \mathrm{mmol}$) and HOBt ($3.26 \mathrm{~g}, 24.1 \mathrm{mmol}$) were added to the mixture. The reaction mixture was stirred for 5 min before the addition of 4-(2-aminoethyl)-1,2-diphenyl-$1,2,4$-triazolidine-3,5-dione (4.10) ($6.00 \mathrm{~g}, 20.2 \mathrm{mmol}$). After 1 day the reaction mixture was poured in ethyl acetate (750 mL) and washed three times with water ($3 x 1000 \mathrm{~mL}$). The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the organic solvent was evaporated. The crude product was purified by column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 90: 10$) to give 4.12 as a pale white solid ($17.45 \mathrm{~g}, 18.8 \mathrm{mmol}$, 93\%). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right.$): $\delta(\mathrm{ppm})$ 1.19-1.69 (m, 11H), $1.99(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.90-3.00$ $(\mathrm{m}, 4 \mathrm{H}), 3.28-3.52(\mathrm{~m}, 4 \mathrm{H}), 3.58-3.69(\mathrm{~m}, 2 \mathrm{H}), 3.84-3.94(\mathrm{~m}, 1 \mathrm{H}), 4.16-4.34(\mathrm{~m}, 3 \mathrm{H}), 6.41(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 6.56-7.07 (m, 2H), 7.15-7.26 (m, 2H), 7.28-7.47 (m, 13H), 7.66-7.77 (m, 2H), 7.88 (d, J=7.87 Hz, 2H), $8.18(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta(\mathrm{ppm}) 12.3,17.6,19.0,25.7,29.1,36.1$, 40.17, 40.28 (overlaid by solvent residual peak), $40.6,42.5,46.7,54.4,65.7,86.3,116.3,120.1,122.6$, $124.3,125.3,126.6,127.1,127.6,129.0,131.5,136.6,137.3,140.7,143.7,143.9,152.6,155.9,156.1$, 157.5, 172.2. HRMS (ESI): m/z [M+H]+ calcd. for $\left[\mathrm{C}_{50} \mathrm{H}_{55} \mathrm{~N}_{8} \mathrm{O}_{8} \mathrm{~S}^{+}\right.$927.3858, found 927.3891 . $\mathrm{C}_{50} \mathrm{H}_{54} \mathrm{~N}_{8} \mathrm{O}_{8} \mathrm{~S}$ (927.09).

(S)- $\boldsymbol{N}^{\boldsymbol{\omega}}$-2,3-Dihydro-2,2,4,6,7-pentamethylbenzofuran-5-sulfonyl-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamide (4.13). ${ }^{17}$ (S)- $N^{a}\left[\left(9 H\right.\right.$-Fluoren-9-yl)methyloxycarbonyl]- N^{ω}-2,3-di-hydro-2,2,4,6,7-pentamethylbenzofuran-5-sulfonyl-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamide (4.12) ($12.03 \mathrm{~g}, 13.0 \mathrm{mmol}$) was dissolved in DMF (32 mL) and piperidine (8 mL , 81.0 mmol) was added and the reaction mixture was stirred at rt overnight. The reaction mixture was poured into water (1.5 L) and the product was extracted from the aqueous phase with ethyl acetate ($3 x$ 400 mL). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the organic solvent was evaporated. The crude product was purified by column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}$ aq 90:9:1) to give 4.13 as a white solid ($8.31 \mathrm{~g}, 11.8 \mathrm{mmol}, 91 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta(\mathrm{ppm})$ $1.16-1.25(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.53(\mathrm{~m}, 10 \mathrm{H}), 1.69(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 2.48(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, interfering with solvent residual peak), 2.92-3.01 (m, 5H), 3.30-3.47 (m, 3H), 3.62 (t, J=5.6 Hz, 2H), 6.40 (br s, 1H), $6.64(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.15-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.41(\mathrm{~m}, 9 \mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H}) ; 8.13(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}$, 1H). ${ }^{13}$ C-NMR (101 MHz , DMSO- d_{6}): $\delta(\mathrm{ppm})$ 12.3, 17.6, 19.0, 28.3, 31.9, 36.2, 40.2 (overlaid by solvent residual peak), 40.3 (overlaid by solvent residual peak) 42.5, 54.6, 86.3, 116.2, 122.6, 124.3, 126.6,
129.0, 131.4, 134.3, 136.6, 137.3, 152.8, 156.1, 157.4, 175.7. HRMS (ESI): m/z [M+Na]+ calcd. for $\left[\mathrm{C}_{35} \mathrm{H}_{44} \mathrm{~N}_{8} \mathrm{O}_{6} \mathrm{SNa}\right]^{+} 727.2997$, found 727.3003. $\mathrm{C}_{35} \mathrm{H}_{44} \mathrm{~N}_{8} \mathrm{O}_{6} \mathrm{~S}$ (704.85).

(S)-2-(1-(2-((1-((2-(3,5-Dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl)amino)-1-oxo-5-(2-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-yl)amino)-2oxoethyl)cyclopentyl)acetic acid (4.15). ${ }^{17}$ (S)- N^{ω}-2,3-Dihydro-2,2,4,6,7-pentamethylbenzofuran-5-sulfonyl-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamide (4.13) ($4.55 \mathrm{~g}, 6.46 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(90 \mathrm{~mL})$ and cooled with an ice bath. Under stirring, 3,3-tetramethyleneglutaric anhydride (4.14) ($1.10 \mathrm{~g}, 6.54 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(90 \mathrm{~mL})$ was slowly added dropwise and the mixture was stirred in an ice bath. After 2 h , the reaction mixture was allowed to warm to rt and stirred overnight. The solvent was evaporated, and the crude product was purified by column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 1: 0$ to $9: 1$) to give 4.15 as a white crystalline solid ($5.56 \mathrm{~g}, 6.37 \mathrm{mmol}, 99 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 MHz, DMSO- d_{6}): $\delta(\mathrm{ppm})$ 1.31-1.60 (m, 18H), $2.00(\mathrm{~s}, 3 \mathrm{H}), 2.24-2.36(\mathrm{~m}, 3 \mathrm{H}), 2.40-2.52(\mathrm{~m}, 7 \mathrm{H}$, interfering with solvent residual peak), 2.91-2.98 (m, 4H), 3.30-3.37 (m, 2H), 3.39-3.46 (m, 1H), 3.54$3.72(\mathrm{~m}, 2 \mathrm{H}), 4.09-4.21(\mathrm{~m}, 1 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 7.13-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.45(\mathrm{~m}, 8 \mathrm{H}), 7.90-$ $7.96(\mathrm{~m}, 1 \mathrm{H}), 8.15(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 12.11$ (br s, 1H). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (101 MHz , DMSO-d): δ (ppm) 17.6, 19.0, 23.6, 28.3, 29.1, 31.9, 36.2, 37.1, 37.2, 39.5 (overlaid by solvent residual peak), 39.8 (overlaid by solvent residual peak), 42.4, 42.5, 43.1, 52.1, 54.6, 86.3, 116.3, 122.6, 124.3, 126.6, 129.0, 131.5, 134.2, 136.6, 137.3, 152.6, 156.1, 157.5, 171.2, 172.0, 173.5. HRMS (ESI): m/z [M+H]+ calcd. for [$\left.\mathrm{C}_{44} \mathrm{H}_{57} \mathrm{~N}_{8} \mathrm{O}_{9} \mathrm{~S}\right]^{+} 873.3964$, found 873.3979. $\mathrm{C}_{44} \mathrm{H}_{56} \mathrm{~N}_{8} \mathrm{O}_{9} \mathrm{~S}$ (873.04).

(S)-[2-(3,5-Dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamid bis(hydrotrifluoroacetate)

 (4.16). ${ }^{8} \quad(S)-N^{\omega}-2,3-D i h y d r o-2,2,4,6,7-p e n t a m e t h y l b e n z o f u r a n-5-s u l f o n y l-[2-(3,5-d i o x o-1,2-d i p h e n y l-~$ 1,2,4-triazolidin-4-yl)ethyl]argininamide (4.13) ($310 \mathrm{mg}, 0.440 \mathrm{mmol}$) was dissolved in a mixture of TFA and water (95:5, 4 mL) and stirred at rt for 24 h . The crude product was poured into a solution of 100 mL water. After lyophilisation, the crude product was purified by preparative HPLC (gradient: 0-30 min, A/B $\left.76: 24-28: 72, t_{R}=8 \mathrm{~min}\right)$, which afforded 4.16 as a fluffy white solid ($210 \mathrm{mg}, 0.309 \mathrm{mmol}, 70 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, DMSO- d_{6}): $\delta(\mathrm{ppm})$ 1.41-1.56 (m, 2H), 1.60-1.76 (m, 2H), 2.94-3.04 (m, 2H), 3.27$3.40(\mathrm{~m}, 1 \mathrm{H}), 3.56-3.74(\mathrm{~m}, 4 \mathrm{H}), 3.93(\mathrm{br} \mathrm{s}, 2 \mathrm{H}$, interfering with surrounded peaks), 7.27-7.40 (br s, 2H, interfering with next two peaks), 7.20-7.27 (m, 2H), 7.37-7.40 (m, 8H), $7.92(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{br}$ $\mathrm{s}, 3 \mathrm{H}$), $8.83(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta(\mathrm{ppm}) 23.9,28.1,36.3,39.8$ (overlaid by solvent residual peak), 40.5 (overlaid by solvent residual peak). 51.9, 115.5 (TFA), 118.5 (TFA),122.7, 126.8, 129.1, 136.5, 152.6, 157.0, 158.9 (q, $J=32.1 \mathrm{~Hz}$) (TFA), 168.9. HRMS (ESI): m/z [M+H] ${ }^{+}$ calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{8} \mathrm{O}_{3}\right]^{+} 453.2357$, found 453.2358. $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{8} \mathrm{O}_{3} \times \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{~F}_{6} \mathrm{O}_{4}$ (452.52+228.04).

(2-Methoxyphenyl)(phenyl)methanol (4.19). ${ }^{52,53}$ Compound 4.19 was prepared using general procedure A and the reactants $\mathrm{Mg}(1.09 \mathrm{~g}, 44.8 \mathrm{mmol})$, bromobenzene ($4.6 \mathrm{~mL}, 43.9 \mathrm{mmol}$) and 2-methoxybenzaldehyde (4.17) ($4.90 \mathrm{~g}, 36.0 \mathrm{mmol}$). The crude product was purified by column chromatography (eluent: light petroleum/ethyl acetate 90:10) to give 4.19 as a yellow liquid (7.02 g , $32.8 \mathrm{mmol}, 91 \%)$. Anal. calcd. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2} \cdot 0.1 \mathrm{H}_{2} \mathrm{O}: \mathrm{C} 77.83, \mathrm{H} 6.62$, found: $\mathrm{C} 77.82, \mathrm{H} 6.51 .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, ~ D M S O-d_{6}$): $\delta(\mathrm{ppm}) 3.75$ (s, 3H), 5.66 (br s, 1H), $5.99(\mathrm{~s}, 1 \mathrm{H})$, 6.89-6.99 (m, 2H), 7.13-7.28 ($\mathrm{m}, 4 \mathrm{H}$), 7.30-7.35 (m, 2H), 7.44-7.52 (m, 1H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}\right.$, DMSO-d d_{6} : $\delta(\mathrm{ppm}) 55.4,67.8$, 110.7, 120.3, 126.47, 126.48, 126.5, 127.84, 127.85, 133.7, 145.4, 155.5. HRMS (EIC): m/z [M] ${ }^{+}$calcd. for $\left[\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{O}_{2}\right]^{+}+214.0988$, found 214.0990. $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2}$ (214.26).

4.20
(3-Methoxyphenyl)(phenyl)methanol (4.20). ${ }^{54}$ Compound 4.20 was prepared using general procedure A and the reactants $\mathrm{Mg}(0.96 \mathrm{~g}, 39.5 \mathrm{mmol})$, bromobenzene ($4.0 \mathrm{~mL}, 38.2 \mathrm{mmol}$) and 3-methoxybenzaldehyde (4.18) ($3.7 \mathrm{~mL}, 30.4 \mathrm{mmol}$). The crude product was purified by column chromatography (eluent: light petroleum to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give 4.20 as an orange oil ($4.71 \mathrm{~g}, 22.0 \mathrm{mmol}$, 73%). Anal. calcd. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2}$: C 78.48, H 6.59, found: C 78.08, H 6.45. ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, DMSO-d d_{6} : $\delta(\mathrm{ppm}) 3.72(\mathrm{~s}, 3 \mathrm{H}), 5.68(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.74-6.80(\mathrm{~m}, 1 \mathrm{H})$, 6.91-7.01 (m, 2H), 7.16-7.24 (m, 2H), 7.26-7.33 (m, 2H), 7.36-7.42 (m, 2H). ${ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, DMSO- d_{6}): $\delta(\mathrm{ppm}) 55.0,74.2,111.87,111.91,118.5,126.2,126.7,128.1,129.2,145.6,147.4,159.2$. HRMS (EIC): m/z [M] ${ }^{+}$calcd. for $\left[\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2}\right]^{+}$214.0988, found 214.0983. $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2}(214.26)$.

1-((2-Methoxyphenyl)(phenyl)methyl)piperazine (4.21). ${ }^{55}$ Compound 4.21 was prepared using general procedure B and the reactants (2-methoxyphenyl)(phenyl)methanol (4.19) ($0.53 \mathrm{~g}, 2.47 \mathrm{mmol}$), sulfuryl chloride ($0.7 \mathrm{~mL}, 9.65 \mathrm{mmol}$) and piperazine ($0.92 \mathrm{~g}, 10.7 \mathrm{mmol}$). The crude product was purified by column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}$ aq $90: 9: 1$) to give 4.21 as a yellow oil ($0.47 \mathrm{~g}, 1.66 \mathrm{mmol}, 67 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}_{6}\right.$): $\delta(\mathrm{ppm}) 2.05-2.35(\mathrm{~m}, 4 \mathrm{H}), 2.58-2.85(\mathrm{~m}, 5 \mathrm{H})$, $3.75(\mathrm{~s}, 3 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 6.87-6.98(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.40(\mathrm{~m}, 2 \mathrm{H})$, 7.53-7.59 (m, 1H). ${ }^{13}$ C-NMR (101 MHz, DMSO- d_{6}): $\delta(\mathrm{ppm}) 45.7,52.9,55.5,66.8,111.2,120.6,126.5$, $127.4,127.5,127.9,128.2,130.5,142.6,156.7$. HRMS (ESI: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}\right]^{+}$ 283.1805, found 283.1814. $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}$ (282.39).

4.22

1-((3-Methoxyphenyl)(phenyl)methyl)piperazine (4.22). Compound 4.22 was prepared using general procedure B and the reactants (3-methoxyphenyl)(phenyl)methanol (4.20) ($0.52 \mathrm{~g}, 2.43 \mathrm{mmol}$), sulfuryl chloride ($0.7 \mathrm{~mL}, 9.65 \mathrm{mmol}$) and piperazine ($0.80 \mathrm{~g}, 9.29 \mathrm{mmol}$). The crude product was purified by column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}$ aq $90: 9: 1$) to give 4.22 as a yellow oil (0.51 g , $1.81 \mathrm{mmol}, 74 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta(\mathrm{ppm})$ 2.17-2.32 (m, 4H), 2.71-2.81 (m, 4H), 3.56 (br s, 1H), 3.70 (s, 3H), 4.21 (s, 1H), 6.70-6.77 (m, 1H), 6.90-7.02 (m, 2H), 7.14-7.22 (m, 2H), 7.25-7.32 (m, 2H), 7.38-7.47 (m, 2H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}\right.$, DMSO- d_{6}): $\delta(\mathrm{ppm}) 45.3,52.2,54.9,75.4,111.8,113.4$, 119.8, 126.8, 127.7, 128.5, 129.6, 142.6, 144.5, 159.3. HRMS (ESI): m/z [M+H] calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}\right]^{+}$ 283.1805, found 283.1813. $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}$ (282.39).

(2S)- N^{a}-(2-\{1-[2-(4-((2-Methoxyphenyl)(phenyl)methyl)piperazin-1-yl)-2-oxoethyl]cyclopentyl\}-acetyl)[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamide bis(hydrotriflouroacetate) (4.23). Compound 4.23 was prepared using general procedure G and the reactants (S)-2-(1-(2-((1-((2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl)amino)-1-oxo-5-(2-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-yl)amino)-2-oxoethyl)cyclo-pentyl)acetic acid (4.15) ($109 \mathrm{mg}, 118 \mu \mathrm{~mol}), \mathrm{EDC} \cdot \mathrm{HCl}(36 \mathrm{mg}, 188 \mu \mathrm{~mol})$, HOBt ($17 \mathrm{mg}, 126 \mu \mathrm{~mol}$) and 1-((2methoxyphenyl)(phenyl)methyl)piperazine (4.21) ($39 \mathrm{mg}, 138 \mu \mathrm{~mol}$). Purification by preparative HPLC A (gradient: 0-30 min, A/B 85:15-38:62, $t_{R}=19 \mathrm{~min}$) afforded 4.23 as a fluffy white solid (23 mg , $21 \mu \mathrm{~mol}, 18 \%)$. Ratio of diastereomers evident in NMR spectra recorded in MeOH- $d_{4}: 1: 1 .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($600 \mathrm{MHz}, \mathrm{MeOH}-d_{4}$): $\delta(\mathrm{ppm})$ 1.47-1.82 (m, 13H), 2.26-2.31 (m, 1H), 2.50-2.58 (m, 2H), 2.58-2.64 (m, $1 \mathrm{H})$, 2.97-3.27 (m, 6H), 3.41-3.47 (m, 1H), 3.53-3.60 (m, 1H), 3.61-4.21 (m, 8H), 4.22-4.27 (m, 1H), 5.69 $(\mathrm{s}, 0.5 \mathrm{H}), 5.70(\mathrm{~s}, 0.5 \mathrm{H}), 7.05-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.36(\mathrm{~m}, 4 \mathrm{H})$, 7.37-7.47 (m, 8H), 7.57-7.62 (m, 1H), 7.62-7.66 (m, 2H). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}\right.$, DMSO- d_{6}) 1.32-1.67 (m, 13H), 2.16-2.27 (m, 1H), 2.30-2.40 (m, 1H), 2.41-2.48 (m, 2H, interfering with solvent residual peak), 2.54-2.67 (m, 2H), 2.67-3.25 (m, 6H), 3.27-3.32 (m, 1H), 3.35-3.39 (m, 1H), 3.54-3.65 (m, 3H), 3.83 (s, $3 \mathrm{H}), 4.11-4.15(\mathrm{~m}, 1 \mathrm{H}), 5.75(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.89-7.14(\mathrm{~m}, 4 \mathrm{H}), 7.19-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.50(\mathrm{~m}, 14 \mathrm{H}), 7.50-$ 7.62 (m, 2H), 7.63-7.77 (m, 2H), 7.93 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), $8.20(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(150 \mathrm{MHz}$, $\mathrm{MeOH}-d_{4}$): 24.58, 24.62 (two carbon signals), 26.32, 26.34, 30.07, 30.12, 38.21, 38.24, 39.1, 39.2, 39.3, $39.46,39.49,40.0,41.18,41.23,41.9,43.8,44.31,44.34,45.59,45.63,52.50,52.77,52.86,52.94$, 54.0, 54.1, 56.35, 56.37, 72.3, 72.4, 113.3, 117.1 (TFA), 119.0 (TFA), 122.81, 122.83, 123.52, 123.56, 124.30, 124.32, 128.2 (2 carb.), 129.6, 129.7, 129.99, 130.04, 130.2, 130.64, 130.66, 130.74, 132.27, 132.28, 135.50, 135.53, 137.67, 137.69, 154.5, 157.76, 157.78, 158.6, 162.4 (TFA), 162.6 (TFA),
172.93, 172.95, 174.68, 174.73, 174.74. RP-HPLC (220 nm): 100\% ($t_{R}=13.8 \mathrm{~min}, k=4.4$). HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{49} \mathrm{H}_{61} \mathrm{~N}_{10} \mathrm{O}_{6}\right]^{+} 885.4770$, found 885.4773. $\mathrm{C}_{49} \mathrm{H}_{60} \mathrm{~N}_{10} \mathrm{O}_{6} \times \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{~F}_{6} \mathrm{O}_{4}(885.08$ $+228.04)$.

(2S)- N^{α}-(2-\{1-[2-(4-((3-Methoxyphenyl)(phenyl)methyl)piperazin-1-yl)-2-oxoethyl]cyclopentyl\}-acetyl)[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamide bis(hydrotriflouroacetate) (4.24). Compound 4.24 was prepared using general procedure G and the reactants (S)-2-(1-(2-((1-((2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl)amino)-1-oxo-5-(2-((2,2,4,6,7-penta-methyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-yl)amino)-2-oxoethyl)cyclopentyl)acetic acid (4.15) (104 mg, $112 \mu \mathrm{~mol})$, EDC•HCl ($24 \mathrm{mg}, 125 \mu \mathrm{~mol})$, HOBt ($28 \mathrm{mg}, 207 \mu \mathrm{~mol}$) and 1-((3methoxyphenyl)(phenyl)methyl)piperazine (4.22) ($34 \mathrm{mg}, 120 \mu \mathrm{~mol}$). Purification by preparative HPLC A (gradient: 0-30 min, A/B 66:34-47:53, $t_{R}=16 \mathrm{~min}$) afforded 4.23 as a fluffy white solid (16 mg , $14 \mu \mathrm{~mol}, 13 \%)$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{MeOH}-\mathrm{d}_{4}\right): \delta(\mathrm{ppm}) 1.42-1.81(\mathrm{~m}, 13 \mathrm{H}), 2.25-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.50-$ $2.64(\mathrm{~m}, 3 \mathrm{H})$, 2.93-3.11 (m, 4H), 3.12-3.23 (m, 2H), 3.41-3.47 (m, 1H), 3.54-3.61 (m, 1H), 3.67-3.98 (m, $8 \mathrm{H}), 4.22-4.27(\mathrm{~m}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 1 \mathrm{H}), 6.95-7.01(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.44(\mathrm{~m}, 10 \mathrm{H}), 7.45-$ $7.50(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.70(\mathrm{~m}, 2 \mathrm{H}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right)$ 1.32-1.69 (m, 13H), 2.19-2.28(m, 1H), 2.31-2.40 (m, 1H), 2.44-2.49 (m, 2 H , interfering with solvent residual peak), 2.54-2.65 (m, 2H), 2.68$3.22(\mathrm{~m}, 5 \mathrm{H}), 3.27-3.33(\mathrm{~m}, 1 \mathrm{H}), 3.35-3.43(\mathrm{~m}, 1 \mathrm{H}), 3.44-3.72(\mathrm{~m}, 4 \mathrm{H}), 3.75(\mathrm{~m}, 3 \mathrm{H}), 4.11-4.17(\mathrm{~m}, 1 \mathrm{H})$, 5.51 (br s, 1H), 6.78-7.27 (m, 7H), 7.28-7.50 (m, 14H), 7.50-7.74 (m, 4H), $7.95(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.21$ (t, J=5.6 Hz, 1H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{MeOH}-d_{4}\right) 24.60,24.63,25.2,26.3,26.6,27.0,30.1,38.2,38.6$ (two carbon signals), 39.26, 39.28, 39.4, 39.5, 39.90, 39.92, 40.5, 40.9, 41.2, 41.9, 42.0, 44.1, 44.4, $45.4,45.6,52.9,53.1,54.0,54.2,55.9,76.8,114.93,114.97,115.81,115.85,117.0$ (TFA), 118.9 (TFA), $151.15,121.18,124.34,124.35,124.5,128.1,128.3,129.3$ (2 carb.), 130.1, 130.2, 130.7, 130.8, 132.0 (2 carb.), 136.1, 137.6, 137.7, 154.5, 158.6, 162.1, 162.3 (TFA), 162.5 (TFA), 172.4, 172.9, 174.1, 174.69, 174.72. RP-HPLC (220 nm): $100 \% ~\left(t_{R}=14.2 \mathrm{~min}, k=4.5\right)$. HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{49} \mathrm{H}_{61} \mathrm{~N}_{10} \mathrm{O}_{6}\right]^{+} 885.4770$, found 885.4779. $\mathrm{C}_{49} \mathrm{H}_{60} \mathrm{~N}_{10} \mathrm{O}_{6} \times \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{~F}_{6} \mathrm{O}_{4}(885.08+228.04)$.

1-((4-Methoxyphenyl)(phenyl)methyl)piperazine (4.26). 4-Methoxybenzophenon (4.25) (1.02 g, $4.81 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and the mixture was cooled in an ice bath. Under stirring, titanium tetrachloride ($0.60 \mathrm{~mL}, 5.47 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ was dropped into the mixture. Then, piperazine ($1.63 \mathrm{~g}, 18.9 \mathrm{mmol}$) was added to the reaction mixture, which was allowed to warm to rt and stirred for 3 h . Sodium cyanoborohydride ($0.36 \mathrm{~g}, 5.73 \mathrm{mmol}$) in methanol (10 mL) was dropped slowly
to the reaction mixture, which was stirred at rt overnight. After addition of $1 \mathrm{~N} \mathrm{NaOH}(50 \mathrm{~mL})$ the reaction mixture was stirred for 3 h and the precipitated solid was separated by filtration. The compound was extracted from the aqueous phase with ethyl acetate ($3 \times 100 \mathrm{~mL}$) and the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated. The crude product was purified by column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}$ aq $90: 9: 1$) to give 4.26 as a yellow oil $(0.31 \mathrm{~g}, 1.10 \mathrm{mmol}$, 23\%). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta(\mathrm{ppm}) 2.15-2.31(\mathrm{~m}, 4 \mathrm{H}), 2.66-2.78(\mathrm{~m}, 4 \mathrm{H}), 3.22(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 3.69 (s, 3H), 4.18 (s, 1H), 6.81-7.19 (m, 2H), 7.12-7.19 (m, 1H), 7.23-7.33 (m, 4H), 7.35-7.42 (m, 2H). ${ }^{13} \mathrm{C}-$ NMR (101 MHz, DMSO- d_{6}): $\delta(\mathrm{ppm}) 45.5,52.6,54.9,75.0,113.8,126.6,127.5,128.4,128.7,134.7$, 143.2, 158.0. HRMS (ESI): m/z [M+H]+ calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}\right]^{+}$283.1805, found 283.1807. $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}$ (282.39).

(2S)- $N^{\text {a }}$-(2-\{1-[2-(4-((4-Methoxyphenyl)(phenyl)methyl)piperazin-1-yl)-2-oxoethyl]cyclopentyl\}-acetyl)[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamide bis(hydrotriflouro-
acetate) (4.27). 2-(1-(2-(4-((4-Methoxyphenyl)(phenyl)methyl)piperazin-1-yl)-2-oxoethyl)cyclopentyl)acetic acid (4.28) (29.4 mg, $64.4 \mu \mathrm{~mol})$, EDC•HCl ($20.0 \mathrm{mg}, 104 \mu \mathrm{~mol}$) and HOBt ($10.8 \mathrm{mg}, 79.9 \mu \mathrm{~mol}$) were dissolved in DMF (1 mL) and the reaction mixture was stirred at rt for 5 min . Under stirring, (S)-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamid bis(hydrofluoroacetate) (4.16) (45.5 mg, $66.9 \mu \mathrm{~mol})$ and DIPEA ($22 \mu \mathrm{~L}, 126 \mu \mathrm{~mol}$) in DMF (1 mL) were added into the reaction mixture, which was stirred at rt overnight. Then, the reaction mixture was poured into an aqueous solution (5\% acetonitrile, 0.1% TFA) before purification by preparative HPLC A (gradient: 0-30 min, A/B 76:24-47:53, $t_{R}=13 \mathrm{~min}$) afforded 4.27 as a fluffy white solid ($43 \mathrm{mg}, 39 \mu \mathrm{~mol}, 61 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}, \mathrm{MeOH}-$ $\left.d_{4}\right): \delta(\mathrm{ppm})$ 1.46-1.83 (m, 13H), 2.27-2.33 (m, 1H), 2.50-2.56 (m, 2H), 2.57-2.66 (m, 1H), 2.83-2.91 (m, $1 \mathrm{H})$, 2.96-3.12 (m, 4H), 3.14-3.25 (m, 2H), 3.41-3.47 (m, 1H), 3.52-3.60 (m, 1H), 3.72-3.83 (m, 6H), 3.87-3.97 (m, 1H), 4.23-4.27 (m, 1H), $5.32(\mathrm{~s}, 1 \mathrm{H}$, two singlets falling together, because two diastereomers were evident in the spectra), 6.98-7.02 (m, 2H), 7.19-7.24 (m, 2H), 7.30-7.36 (m, 4H), 7.37-7.43 (m, 5H), 7.45-7.50 (m, 2H), 7.55-7.60 (m, 2H), 7.64-7.68 (m, 2H). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (600 MHz , DMSOd_{6}) 1.34-1.69 (m, 13H), 2.16-2.28 (m, 1H), 2.31-2.43 (m, 1H), 2.44-2.49 (m, 2H, interfering with solvent residual peak), 2.53-2.62 ($\mathrm{m}, 2 \mathrm{H}$, interfering with solvent residual peak), 2.76-3.18 (m, 5 H), 3.28-3.33 $(\mathrm{m}, 1 \mathrm{H}), 3.35-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.43-3.63(\mathrm{~m}, 4 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 4.11-4.17(\mathrm{~m}, 1 \mathrm{H}), 5.49(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.84-$ 7.68 ($\mathrm{m}, 25 \mathrm{H}$), $7.94(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.16-8.25(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{MeOH}-\mathrm{d}_{4}\right) 24.57,24.61$, 24.7, 26.3 (two carbon signals), 30.1 (2 carb.), 36.9, 38.2, 39.2, 39.27 (2 carb.), 39.31, 39.43, 39.9 (2 carb.), 41.2, 41.8, 43.9, 44.3, 45.6, 52.66, 52.69, 52.9 (2 carb.), 54.0 (2 carb.), 55.9, 76.5 (2 carb.), 111.5, 116.1, 117.1 (TFA), 119.0 (TFA), 124.1, 124.3 (2 carb.), 127.30, 127.33, 128.3, 129.13, 129.14, 130.2, 130.5, 130.8 (2 carb.), 130.99, 131.01, 136.1 (2 carb.), 137.64, 137.66, 154.45, 154.47, 158.59, 158.64, 162.0, 162.4 (TFA), 162.7 (TFA), 162.9 (TFA), 172.9, 174.70, 174.71. RP-HPLC (220 nm): 96\%
$\left(t_{R}=14.1 \mathrm{~min}, k=4.5\right)$. HRMS $(E S I): m / z[M+H]^{+}$calcd. for $\left[\mathrm{C}_{49} \mathrm{H}_{61} \mathrm{~N}_{10} \mathrm{O}_{6}\right]^{+} 885.4770$, found 885.4776 . $\mathrm{C}_{49} \mathrm{H}_{60} \mathrm{~N}_{10} \mathrm{O}_{6} \times \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{~F}_{6} \mathrm{O}_{4}(885.08+228.04)$.

2-(1-(2-(4-((4-Methoxyphenyl)(phenyl)methyl)piperazin-1-yl)-2-oxoethyl)cyclopentyl)acetic acid (4.28). 1-((4-Methoxyphenyl)(phenyl)methyl)piperazine (4.26) ($0.55 \mathrm{~g}, 1.95 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ and the mixture was cooled with an ice bath. Under stirring, 3,3-tetramethyleneglutaric anhydride (4.14) ($0.36 \mathrm{~g}, 2.14 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was added dropwise to the mixture over a time period of 5 min . The reaction mixture was allowed to warm to rt and stirred overnight at rt. The solvent was evaporated, and the crude product purified by column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ $90: 10$) to obtain 4.28 as a yellowish solid ($0.70 \mathrm{~g}, 1.55 \mathrm{mmol}, 79 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 MHz , DMSO- d_{6}): $\delta(\mathrm{ppm})$ 1.49-1.59 (m, 8H), 2.20-2.28 (m, 4H), $2.43(\mathrm{~s}, 2 \mathrm{H}), 2.48(\mathrm{~s}, 2 \mathrm{H}$, interfering with solvent residual peak), 3.43-3.50 (m, 4H), $3.69(\mathrm{~s}, 3 \mathrm{H}), 4.24(\mathrm{~s}, 1 \mathrm{H}), 6.83-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.21(\mathrm{~m}$, $1 \mathrm{H}), 7.25-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.38-7.43(\mathrm{~m}, 2 \mathrm{H}), 11.99(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}\right.$, DMSO- d_{6}): $\delta(\mathrm{ppm})$ $24.0,37.9,41.4,42.2,43.5,45.9,51.8,52.3,55.5,74.6,114.4,127.2,127.9,129.0,129.1,134.9,143.4$, 158.6, 170.0, 174.0. HRMS (ESI): m/z [M+Na] ${ }^{+}$calcd. for $\left[\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}\right]^{+} 473.2411$, found 473.2409. $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{4}(450.58)$.

1-Benzhydrylpiperazine (4.30). ${ }^{56}$ Diphenylmethanol 4.29 ($0.42 \mathrm{~g}, 2.28 \mathrm{mmol}$), Et ${ }_{3} \mathrm{~N}$ (0.90 mL , $6.48 \mathrm{mmol})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and the mixture was stirred in an ice bath. Under stirring, methanesulfonyl chloride ($250 \mu \mathrm{~L}, 3.23 \mathrm{mmol}$) was added into the reaction mixture. After stirring for 3 h the reaction mixture was poured into $\mathrm{NaOH}(1 \mathrm{~N}, 20 \mathrm{~mL})$. The product was extracted from the aqueous phase with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. Then, the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the organic solvent was evaporated, and the residue was dissolved in acetonitrile (10 mL). Piperazine (0.76 g , 8.82 mmol) was added to the reaction mixture. The reaction was stirred microwave assisted for 30 min at $70^{\circ} \mathrm{C}$. The solvent was evaporated, and the crude product was purified by column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}$ aq $90: 9: 1$) to give 4.30 as an oil ($0.30 \mathrm{~g}, 1.19 \mathrm{mmol}, 52 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta(\mathrm{ppm})$ 2.12-2.33 (m, 4H), $2.41(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.64-2.80(\mathrm{~m}, 4 \mathrm{H}), 4.24(\mathrm{~s}, 1 \mathrm{H}), 7.13-$ $7.20(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.44(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right): \delta(\mathrm{ppm}) 45.5,52.6$, 75.7, 126.7, 127.6, 128.4, 142.8. HRMS (ESI): m/z [M+H]+ calcd. for [$\left.\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2}\right]^{+}$253.1699, found 253.1717. $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2}$ (252.36).

tert-Butyl piperazine-1-carboxylate (4.31). ${ }^{57}$ Piperazine (4.42 g, 51.3 mmol) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(100 \mathrm{~mL})$ and $\mathrm{Boc}_{2} \mathrm{O}(3.20 \mathrm{~g}, 14.7 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added dropwise to the solution. The reaction mixture was stirred at rt overnight and the solvent was evaporated. The residue was dissolved in water (200 mL) and the precipitate was separated by filtration. Then, the compound was extracted from the aqueous phase with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 150 \mathrm{~mL})$, the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic solvent was evaporated to obtain 4.31 as an amorphous white solid $(3.82 \mathrm{~g}$, $20.5 \mathrm{mmol}, 40 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta(\mathrm{ppm}) 1.38(\mathrm{~s}, 9 \mathrm{H}), 2.53-2.82(\mathrm{~m}, 4 \mathrm{H}), 3.10-3.16(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 3.17-3.26(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right): \delta(\mathrm{ppm}) 28.1,45.4,50.8,78.5,153.9$. HRMS (ESI): m/z [M+H]+ calcd. for [C9 $\left.\mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}\right]^{+}$187.1441, found 187.1439. $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$ (186.26).

(2S)- N^{α}-(2-\{1-[2-(Piperazin-1-yl)-2-oxoethyl]cyclopentyl\}acetyl)[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamide bis(hydrotriflouroacetate) (4.32). Compound 4.32 was prepared using general procedure G and the reactants (S)-2-(1-(2-((1-((2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl)amino)-1-oxo-5-(2-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)-guanidino)pentan-2-yl)amino)-2-oxoethyl)cyclopentyl)acetic acid (4.15) ($54.2 \mathrm{mg}, 58.5 \mu \mathrm{~mol}$), EDC•HCl $(14.7 \mathrm{mg}, 76.7 \mu \mathrm{~mol})$, $\mathrm{HOBt}(14.7 \mathrm{mg}, 108.8 \mu \mathrm{~mol})$ and tert-butyl piperazine-1-carboxylate (4.31) ($10.9 \mathrm{mg}, 58.5 \mu \mathrm{~mol}$). Purification by preparative HPLC B (gradient: 0-30 min, A/B 81:19-38:62, $t_{R}=12 \mathrm{~min}$) afforded 4.32 as a fluffy white solid ($19.9 \mathrm{mg}, 21.7 \mu \mathrm{~mol}, 37 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (600 MHz , DMSO- d_{6}): $\delta(\mathrm{ppm}) 1.35-1.68(\mathrm{~m}, 12 \mathrm{H}), 2.25(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.49$ ($\mathrm{m}, 1 \mathrm{H}$, interfering with solvent residual peak), $2.62(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.95-3.14 (m, 6H), 3.29-3.36 $(\mathrm{m}, 1 \mathrm{H}), 3.39-3.41(\mathrm{~m}, 1 \mathrm{H}$, overlaid by the water signal), 3.57-3.63 (m,3H), 3.65-3.73 (m,3H), 4.13-4.18 $(\mathrm{m}, 1 \mathrm{H}), 6.96-7.54(\mathrm{~m}, 14 \mathrm{H}), 7.77(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H})$, 9.08 (br s, 2H). ${ }^{13} \mathrm{C}-$ NMR ($150 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta(\mathrm{ppm}) 23.36,23.41,25.1,28.9,36.2,37.3,37.6,37.8$, 38.8, 39.6 (overlaid by solvent residual peak), 40.4, 42.4, 42.5, 42.7, 42.9, 43.8, 52.0, 117.1 (q, $J=298 \mathrm{~Hz}$) (TFA), 122.7, 126.7, 129.1, 136.6, 152.6, 156.8, 158.7 (q, $J=31.6 \mathrm{~Hz}$) (TFA), 170.4, 171.4, 172.0. RP-HPLC (220 nm): 97.9\% ($t_{R}=10.4 \mathrm{~min}, k=3.1$). HRMS $(E S I): m / z[M+H]^{+}$calcd. for $\left[\mathrm{C}_{35} \mathrm{H}_{49} \mathrm{~N}_{10} \mathrm{O}_{5}\right]^{+} 689.3882$, found 689.3885. $\mathrm{C}_{35} \mathrm{H}_{48} \mathrm{~N}_{10} \mathrm{O}_{5} \times \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{~F}_{6} \mathrm{O}_{4}(688.83+228.04)$.

tert-Butyl (5-hydroxypentyl)carbamate (4.34). ${ }^{58}$ 5-Aminopentanol (4.33) (5.02 g, 48.7 mmol) and, $\mathrm{Et}_{3} \mathrm{~N}(8.5 \mathrm{~mL}$, 61.3 mmol$)$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$. The mixture was stirred in an ice bath. Under stirring, $\mathrm{Boc}_{2} \mathrm{O}(13.05 \mathrm{~g}, 59.8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added dropwise into the mixture. After 1 h the reaction mixture was allowed to warm to rt and stirred overnight. The organic phase was
washed twice with a saturated solution of $\mathrm{NaHCO}_{3}(2 x 200 \mathrm{~mL}$), water ($1 \times 200 \mathrm{~mL}$) and brine (1 x 200 mL). The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the organic solvent was evaporated. The crude product was purified by column chromatography (eluent: light petroleum/ethyl acetate 2:1) to give 4.34 as a colourless oil (7.26 g, $35.7 \mathrm{mmol}, 73 \%$). Anal. calcd. for $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{NO}_{3} \cdot 0.2 \mathrm{H} 2 \mathrm{O}$: C $58.06, \mathrm{H} 10.43, \mathrm{~N}$ 6.77, found: C 58.24, H 9.96, N $6.59{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta(\mathrm{ppm}) 1.68-1.29(\mathrm{~m}, 2 \mathrm{H})$, 1.29$1.45(\mathrm{~m}, 13 \mathrm{H}), 2.88(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.35-3.39(\mathrm{~m}, 2 \mathrm{H}$, interfering with water signal), 4.33 (t, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, ~ D M S O-d_{6}\right): \delta(\mathrm{ppm}) 22.8,28.3,29.4,32.2$, 39.9 (overlaid by solvent residual peak) 60.7, 77.3, 155.6. HRMS (ESI): m/z [M+Na]+ calcd. for $\left[\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{Na}\right]^{+} 226.1414$, found 226.1412. $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{NO}_{3}$ (203.28).

4.35
tert-Butyl (5-bromopentyl)carbamate (4.35). ${ }^{59}$ tert-Butyl (5-hydroxypentyl)carbamate (4.34) (1.00 g, $4.92 \mathrm{mmol})$ and, $\mathrm{PPh}_{3}(1.93 \mathrm{~g}, 7.36 \mathrm{mmol})$ were dissolved in THF $(15 \mathrm{~mL})$ and the mixture was stirred in an ice bath. Under stirring, carbon tetrabromide ($2.56 \mathrm{~g}, 7.72 \mathrm{mmol}$) in THF (15 mL) was added dropwise to the reaction mixture. After 4 h additional $\mathrm{PPh}_{3}(1.93 \mathrm{~g}, 7.36 \mathrm{mmol})$ and carbon tetrabromide ($2.47 \mathrm{~g}, 7.45 \mathrm{mmol}$) were added and the reaction mixture was stirred at rt over night. The solvent was evaporated, and the crude product was purified by column chromatography (eluent: light petroleum/ethyl acetate 2:1) to give 4.34 as a light brown oil ($1.21 \mathrm{~g}, 4.55 \mathrm{mmol}, 92 \%$). ${ }^{1} \mathrm{H} \mathbf{N M R}(400 \mathrm{MHz}$, DMSO- d_{6}): $\delta(\mathrm{ppm})$ 1.32-1.43 (m, 13H), 1.74-1.86 (m, 2H), 2.86-2.94 (m, 2H), $3.50(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H})$, 6.70-6.80 (m, 1H). ${ }^{13}$ C NMR (101 MHz , DMSO- d_{6}): $\delta(\mathrm{ppm})$ 24.8, 28.2, 28.6, 31.9, 35.0, 39.9 (overlaid by solvent residual peak), 77.3, 155.6. HRMS (ESI): m/z [M+H]+ calcd. for [$\left.\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{BrNO}_{2}\right]^{+}$266.0750, found 266.0747. $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{BrNO}_{2}$ (266.18).

(2-Methoxyphenyl)(phenyl)methanone (4.40). (2-Methoxyphenyl)(phenyl)methanol (4.19) (0.99 g, $4.62 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(3.25 \mathrm{~mL}, 23.3 \mathrm{mmol})$ were dissolved in DMSO $(20 \mathrm{~mL})$. Under stirring, pyridinesulfur trioxide complex ($3.79 \mathrm{~g}, 23.8 \mathrm{mmol}$) in DMSO (40 mL) was added dropwise into the mixture. Then, the reaction mixture was poured in water (800 mL). The product was extracted from the aqueous phase with ethyl acetate ($3 \times 200 \mathrm{~mL}$), the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the organic solvent was evaporated. The crude product was purified by column chromatography (eluent: light petroleum/ethyl acetate $90: 10$) to give 4.40 as an oil ($0.38 \mathrm{~g}, 1.79 \mathrm{mmol}, 39 \%$). Anal. calcd. for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C} 78.56$, H 5.74 , found: C 78.47, H 5.94 . ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}\right): \delta(\mathrm{ppm}) 3.66$ $(\mathrm{s}, 3 \mathrm{H}), 7.05-7.11(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.59-7.67(\mathrm{~m}, 1 \mathrm{H})$, 7.67-7.73 (m, 2H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, ~ D M S O-d_{6}\right): \delta(\mathrm{ppm}) 55.5,112.0,120.6,128.4,128.6,128.7$, 129.2, 132.0, 133.2, 137.1, 156.6, 195.7. HRMS (EIC): m/z [M] ${ }^{+}$calcd. for $\left[\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2}\right]^{+}$212.0832, found 212.0831. $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2}$ (212.25).

(3-Methoxyphenyl)(phenyl)methanone (4.41). PCC ($2.07 \mathrm{~g}, 9.60 \mathrm{mmol}$) was suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (75 mL) and (2-methoxyphenyl)(phenyl)methanol (4.20) ($0.99 \mathrm{~g}, 9.33 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added dropwise to the reaction mixture. The reaction mixture was monitored by TLC and after 2 h PCC ($0.86 \mathrm{~g}, 3.99 \mathrm{mmol}$) was added. After completion, the reaction mixture was filtered through a pad of silica gel. The filtrate was evaporated, and the crude product was purified by column chromatography (eluent: light petroleum/ethyl acetate $90: 10$) to give 4.41 as an oil ($1.58 \mathrm{~g}, 7.44 \mathrm{mmol}, 80 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz, DMSO-d d_{6} : $\delta(\mathrm{ppm}) 3.81$ (s, 3H), 7.21-7.29 (m, 3H), 7.43-7.50 (m, 1H), 7.51-7.59 (m, 2H), 7.63-7.78 (m, 3H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, ~ D M S O-d_{6}\right): \delta(\mathrm{ppm}) 55.5,114.3,118.8,122.4,128.8,129.8$, 129.9, 133.0, 137.1, 138.5, 159.4, 195.8. HRMS (EIC): m/z [M] ${ }^{+}$calcd. for $\left[\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{O}_{2}\right]^{+} 212.0832$, found 212.0830. $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2}$ (212.25).

(2-Hydroxyphenyl)(phenyl)methanone (4.42). Compound 4.42 was prepared using general procedure C and the reactant (2-methoxyphenyl)(phenyl)methanone (4.40) ($0.89 \mathrm{~g}, 4.19 \mathrm{mmol}$). 4.42 was obtained as an oil ($0.83 \mathrm{~g}, 4.19 \mathrm{mmol}, 100 \%$). Anal. calcd. for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C} 78.06, \mathrm{H} 5.14$, found: C 78.15, H 5.17. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta(\mathrm{ppm})$ 6.90-7.04 (m, 2H), 7.32-7.40 (m, 1H), 7.41-7.57 (m, 3H), 7.60-7.68 (m, 1H), 7.68-7.75 (m, 2H), 10.49 (s, 1H). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (75 MHz , DMSO- d_{6}): $\delta(\mathrm{ppm}) 116.8,119.1,124.3,128.5,129.2,130.6,132.8,133.5,137.4,157.3,197.8$. HRMS (EIC): m/z [M+H]+ calcd. for $\left[\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{O}_{2}\right]^{+}$199.0754, found 199.0762. $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{2}$ (198.22).

(3-Hydroxyphenyl)(phenyl)methanone (4.43). Compound 4.43 was prepared using general procedure C and the reactant (3-methoxyphenyl)(phenyl)methanone (4.41) ($0.76 \mathrm{~g}, 3.58 \mathrm{mmol}$). 4.43 was obtained as a grey solid ($0.67 \mathrm{~g}, 3.38 \mathrm{mmol}, 94 \%$). Anal. calcd. for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{2} \cdot 0.1 \mathrm{H} \mathrm{O}: \mathrm{C} 78.06, \mathrm{H}$ 5.14, found: C 78.10, H 5.23. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta(\mathrm{ppm}) 7.03-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.18$ (m, 2H), 7.31-7.42 (m. 1H), 7.50-7.62 (m, 2H), 7.63-7.78 (m, 3H), 9.86 (s, 1H). ${ }^{13}$ C-NMR (75 MHz , DMSO- d_{6}): $\delta(\mathrm{ppm}) 116.0,119.9,120.6,128.5,129.5,129.7,132.6,137.3,138.3,157.4,195.8$. HRMS (EIC): m/z [M] ${ }^{+}$calcd. for $\left[\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{2}\right]^{+}$198.0675, found 198.0676. $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{2}$ (198.22).

tert-Butyl (5-(2-benzoylphenoxy)pentyl)carbamate (4.44). Compound 4.44 was prepared using general procedure D and the reactants (2-hydroxyphenyl)(phenyl)methanone (4.42) (0.15 g , $0.76 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.37 \mathrm{~g}, 2.68 \mathrm{mmol})$ and tert-butyl (5-bromopentyl)(methyl)carbamate (4.35) (0.75 g, $2.67 \mathrm{mmol})$. The crude product was purified by column chromatography (eluent: light petroleum/ethyl
acetate $9: 1$ to $8: 2$) to give 4.44 as an orange oil ($0.44 \mathrm{~g}, 1.11 \mathrm{mmol}, 49 \%$). Anal. calcd. for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{4}$: C 72.04, H 7.62, N 3.65, found: C 72.08, H 7.62, N3.20. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, DMSO- d_{6}): $\delta(\mathrm{ppm}) 0.80-$ $0.93(\mathrm{~m}, 2 \mathrm{H}), 1.08-1.20(\mathrm{~m}, 2 \mathrm{H}), 1.25-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}), 2.67-2.78(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{t}, J=6.1 \mathrm{~Hz}$, $2 \mathrm{H}), 6.68(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.56(\mathrm{~m}, 3 \mathrm{H}), 7.58-7.69(\mathrm{~m}, 3 \mathrm{H})$. ${ }^{13}$ C-NMR (101 MHz, DMSO- d_{6}): $\delta(\mathrm{ppm}) 22.4,28.1,28.3,29.0,39.6$ (overlaid by solvent residual peak), $67.6,77.3,112.7,120.6,128.51,128.53,128.9,129.0,132.3,133.0,137.8,155.5,156.3,196.2$. HRMS (ESI): m/z [M+H]+ calcd. for $\left[\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{NO}_{4}\right]^{+} 384.2169$, found 384.2174. $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{4}$ (383.49).

4.45
tert-Butyl (5-(3-benzoylphenoxy)pentyl)carbamate (4.45). Compound 4.45 was prepared using general procedure D and the reactants (3-hydroxyphenyl)(phenyl)methanone (4.43) (0.49 g, $2.47 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.70 \mathrm{~g}, 5.06 \mathrm{mmol})$ and tert-butyl (5-bromopentyl)carbamate 4.35 (0.69 g , $18.1 \mathrm{mmol})$. The crude product was purified by column chromatography (eluent: light petroleum/ethyl acetate $8: 2$) to give 4.45 as a yellow oil $(0.45 \mathrm{~g}, 1.17 \mathrm{mmol}, 47 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, DMSO- d_{6}): $\delta(\mathrm{ppm}) 1.36(\mathrm{~s}, 9 \mathrm{H}), 1.37-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.66-1.77(\mathrm{~m}, 2 \mathrm{H}), 2.88-2.96(\mathrm{~m}, 2 \mathrm{H}), 3.97-4.03(\mathrm{~m}$, $2 \mathrm{H}), 6.78(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.42-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.70(\mathrm{~m}, 1 \mathrm{H})$, 7.71-7.77 (m, 2H). ${ }^{13}$ C-NMR (101 MHz , DMSO- d_{6}): $\delta(\mathrm{ppm})$ 22.8, 28.3 (two carbon signals), 29.2, 40.1 (overlaid by solvent residual peak), 67.6, 77.3, 114.7, 119.0, 122.0, 128.5, 129.6, 129.7, 132.7, 137.0, 138.4, 155.6, 158.6, 195.5. HRMS (ESI): m/z [M+Na] ${ }^{+}$calcd. for $\left[\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{4} \mathrm{Na}\right]^{+} 406.1989$, found 406.1993. $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{4}$ (383.49).

tert-Butyl (5-(2-(hydroxy(phenyl)methyl)phenoxy)pentyl)carbamate (4.46). Compound 4.46 was prepared using general procedure E and the reactants tert-butyl (5-(2-benzoylphenoxy)pentyl)carbamate (4.44) ($0.45 \mathrm{~g}, 1.17 \mathrm{mmol}$) and $\mathrm{NaBH}_{4}(0.095 \mathrm{~g}, 2.51 \mathrm{mmol})$. The crude product was purified by column chromatography (eluent: light petroleum/ethyl acetate $7: 3$) to give 4.46 as a yellow oil (0.25 g , $0.65 \mathrm{mmol}, 56 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta(\mathrm{ppm}) 1.30-1.46(\mathrm{~m}, 13 \mathrm{H}), 1.63-1.73(\mathrm{~m}, 2 \mathrm{H})$, 2.87$2.96(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.61(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{t}$, $J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.87-6.97(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.55$ (m, 1H). ${ }^{13}$ C-NMR ($101 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta(\mathrm{ppm})$ 23.0, 28.3, 28.5, 29.2, 39.9 (overlaid by solvent residual peak), $67.4,68.2,77.4,111.3,120.1,126.3,126.47,126.50,127.75,127.79,133.7,145.4$, 154.8, 155.6. HRMS (ESI): m/z [M+Na] ${ }^{+}$calcd. for $\left[\mathrm{C}_{23} \mathrm{H}_{3} \mathrm{NO}_{4} \mathrm{Na}\right]^{+} 408.2145$, found 408.2151 . $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{NO}_{4}$ (385.50).

tert-Butyl (5-(3-(hydroxy(phenyl)methyl)phenoxy)pentyl)carbamate (4.47). Compound 4.47 was prepared using general procedure E and the reactants (tert-butyl (5-(3-benzoylphenoxy)pentyl)-
carbamate (4.45) ($0.45 \mathrm{~g}, 1.17 \mathrm{mmol}$ and NaBH_{4} ($95 \mathrm{mg}, 2.51 \mathrm{mmol}$). The crude product was purified by column chromatography (eluent: light petroleum/ethyl acetate $7: 3$) to give 4.47 as a yellow oil (0.25 g , 0.65 mmol, 56%). Anal. calcd. for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{NO}_{4}$: C 71.66, H 8.11, N 3.63, found: C 71.59, H 7.86, N 3.41 . ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}\right): \delta(\mathrm{ppm})$ 1.31-1.36 (m, 1H), 1.37 (s, 9H, interfering with surrounded signals), 1.38-1.49 (m, 3H), 1.60-1.74 (m, 2H), 2.86-2.99 (m, 2H), $3.89(t, J=6.4 H z, 2 H), 5.64(d$, $J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.70-6.77(\mathrm{~m}, 1 \mathrm{H}), 6.80(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.88-6.95(\mathrm{~m}, 2 \mathrm{H})$, 7.14-7.24 (m, 2H), 7.25-7.33 (m, 2H), 7.34-7.41 (m, 2H). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (75 MHz , DMSO- d_{6}): δ (ppm) 22.9, 28.3, 28.4, 29.3, 67.2, 74.1, 77.3, 112.35, 112.37, 118.4, 126.4, 126.7, 128.0, 129.1, 145.7, 147.4, 155.6, 158.5. One aliphatic carbon signal was not apparent (overlaid by solvent residual peak). HRMS (ESI): m/z [M+Na]+ calcd. for $\left[\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{NO}_{4} \mathrm{Na}\right]^{+} 408.2145$, found 408.2146. $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{NO}_{4}$ (385.50).

tert-Butyl (5-(2-(phenyl(piperazin-1-yl)methyl)phenoxy)pentyl)carbamate (4.48). Compound 4.48 was prepared using general procedure F and the reactants tert-butyl (5-(2-(hydroxy(phenyl)methyl)phenoxy)pentyl)carbamate (4.46) ($180 \mathrm{mg}, 0.467 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(150 \mu \mathrm{~L}, 1.08 \mathrm{mmol}$), methanesulfonyl chloride ($100 \mu \mathrm{~L}, 1.29 \mathrm{mmol}$) and piperazine ($165 \mathrm{mg}, 1.92 \mathrm{mmol}$). The crude product was purified by column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}$ aq $90: 9: 1$) to give 4.48 as a yellow oil (140 mg , $0.31 \mathrm{mmol}, 66 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta(\mathrm{ppm}) 1.34-1.48(\mathrm{~m}, 13 \mathrm{H}), 1.68-1.79(\mathrm{~m}, 2 \mathrm{H}), 2.11-$ $2.34(\mathrm{~m}, 4 \mathrm{H}), 2.61-2.83(\mathrm{~m}, 4 \mathrm{H}), 2.92-2.99(\mathrm{~m}, 2 \mathrm{H}), 3.82-3.95(\mathrm{~m}, 2 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 6.76-6.85(\mathrm{~m}, 1 \mathrm{H})$, 6.86-6.98 (m, 2H), 7.08-7.19 (m, 2H), 7.22-7.29 (m, 2H), 7.30-7.39 (m, 2H), 7.49-7.61 (m, 1H). One exchangeable proton signal (NH-piperazine) was not apparent. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta(\mathrm{ppm})$ 23.1, 28.3, 28.5, 29.2, 40.38 (overlaid by solvent residual peak), 45.0, 46.1, 52.7, 67.5, 77.3, 111.9, 120.4, 126.6, 127.4, 127.5, 128.0, 128.2, 130.4, 142.4, 155.6, 165.1. HRMS (ESI): m/z [M+Na]+ calcd. for $\left[\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Na}\right]^{+} 476.2884$, found 476.2900. $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{3}$ (453.63).

tert-Butyl (5-(3-(phenyl(piperazin-1-yl)methyl)phenoxy)pentyl)carbamate (4.49). Compound 4.49 was prepared using general procedure F and the reactants tert-butyl (5-(3-(hydroxy(phenyl)methyl)phenoxy)pentyl)carbamate (4.47) ($170 \mathrm{mg}, 0.441 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(150 \mu \mathrm{~L}, 1.08 \mathrm{mmol})$, methanesulfonyl chloride ($50 \mu \mathrm{~L}, 0.646 \mathrm{mmol}$) and piperazine ($167 \mathrm{mg}, 1.94 \mathrm{mmol}$). The crude product was purified by column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}$ aq 90:9:1) to give 4.49 as a yellow oil (96 mg , $0.212 \mathrm{mmol}, 48 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta(\mathrm{ppm}) 1.33-1.44(\mathrm{~m}, 13 \mathrm{H}), 1.62-1.71(\mathrm{~m}, 2 \mathrm{H}), 2.18-$ $2.35(\mathrm{~m}, 4 \mathrm{H}), 2.41$ (br s, 1H), 2.74-2.98 (m, 6H), 3.84-3.92 (m, 2H), $4.23(\mathrm{~s}, 1 \mathrm{H}), 6.68-6.75(\mathrm{~m}, 1 \mathrm{H})$, 6.75-6.81 (m, 1H), 6.91-7.00 (m, 2H), 7.13-7.21 (m, 2H), 7.24-7.32 (m, 2H), 7.35-7.45 (m, 2H). ${ }^{13}$ C-NMR (101 MHz, DMSO- d_{6}): $\delta(\mathrm{ppm}) 22.9,28.3,28.4,29.3,44.9,51.5,67.2,75.2,77.3,112.3,113.8,119.7$, 126.9, 127.6, 128.5, 129.6, 142.5, 144.2, 155.6, 158.7. One aliphatic carbon signal was not apparent
(overlaid by solvent residual peak). HRMS (ESI): m/z [M+Na] calcd. for [$\left.\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Na}\right]^{+} 476.2884$, found 476.2879. $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{3}(453.63)$.

(2S)- $\boldsymbol{N}^{\mathrm{a}}$-(2-\{1-[2-(4-((2-((5-Aminopentyl)oxy)phenyl)(phenyl)methyl)piperazin-1-yl)-2-oxoethyl]-cyclopentyl\}acetyl)[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamide tris(hydrotriflouroacetate) (4.50). Compound 4.50 was prepared using general procedure G and the reactants (S)-2-(1-(2-((1-((2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl)amino)-1-oxo-5-(2-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-yl)amino)-2-oxoethyl)cyclopentyl)acetic acid (4.15) ($70 \mathrm{mg}, 76 \mu \mathrm{~mol}$), EDC•HCl ($20 \mathrm{mg}, 104 \mu \mathrm{~mol}$), HOBt ($10 \mathrm{mg}, 74 \mathrm{mmol}$) and tert-butyl (5-(2-(phenyl(piperazin-1-yl)methyl)phenoxy)pentyl)carbamate (4.48) ($30 \mathrm{mg}, \quad 66 \mu \mathrm{~mol}$). Purification by preparative HPLC A (gradient: 0-30 min, A/B 84:16-38:62, $t_{R}=14 \mathrm{~min}$) gave 4.50 as a fluffy white solid ($16 \mathrm{mg}, 12 \mu \mathrm{~mol}, 18 \%$). Ratio of diastereomers evident in NMR spectra recorded in $\mathrm{MeOH}-d_{4}: 1: 1 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{MeOH}-d_{4}\right): \delta(\mathrm{ppm}) 1.45-1.81(\mathrm{~m}, 17 \mathrm{H}), 1.83-1.94(\mathrm{~m}, 2 \mathrm{H}), 2.27-2.33$ $(\mathrm{m}, 1 \mathrm{H}), 2.48-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.59-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.88-3.10(\mathrm{~m}, 5 \mathrm{H}), 3.11-3.28(\mathrm{~m}, 2 \mathrm{H}), 3.34-3.41(\mathrm{~m}, 1 \mathrm{H})$, 3.42-3.48 (m, 1H), 3.50-3.57 (m, 1H), 3.71-4.03 (m, 5H), 4.03-4.16 (m, 1H), 4.11-4.16 (m, 1H), 4.21$4.26(\mathrm{~m}, 1 \mathrm{H}), 5.74(\mathrm{~s}, 0.5 \mathrm{H}), 5.75(\mathrm{~s}, 0.5 \mathrm{H}), 7.06-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.36(\mathrm{~m}, 4 \mathrm{H})$, 7.36-7.48 (m, 8H), 7.59-7.64 (m, 2H), 7.75-7.80 (m, 1H). ${ }^{1} \mathrm{H}$-NMR (600 MHz , DMSO-d d_{6} 1.33-1.65 (m, $17 \mathrm{H}), 1.70-1.79(\mathrm{~m}, 2 \mathrm{H}), 2.18-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.37(\mathrm{~m}, 1 \mathrm{H})$, 2.38-2.47(m,1H), 2.53-2.61(m,1H), 2.75-2.83 (m, 2H), 2.94-3.02 (m, 2H), 3.26-3.32 (m, 1H), 3.34-3.39 (m, 1H), 3.49-3.79 (m, 5H), 3.884.18 (m, 7H), 5.59 (br s, 1H), 6.83-7.54 (m, 23H), 7.62-7.78 (m, 2H), 7.82 (s, 3H), 7.96 (d, J = 7.8 Hz , 1 H), 8.21 (t, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{MeOH}-d_{4}\right): \delta(\mathrm{ppm}) 23.9,24.0,24.57,24.63$ (two carbon signals), $26.31,26.32,28.23,28.25,29.54,29.56,30.01,30.05,38.25,38.28,39.2,39.3,39.36$, $39.38,39.4,39.9,40.0,40.6,40.7,41.15,41.19,41.8,44.0,44.29,44.31,45.59,45.63,52.7,52.8,53.0$ (2 carb.), 54.07, 54.11, 69.12, 69.13, 70.3, 70.4, 69.12, 69.14, 70.29, 70.43, 113.8, 118.1 (q, J=293 Hz) (TFA), 122.4 (2 carb.), 123.8, 124.22, 124.24, 128.20, 128.22, 128.53, 128.58, 130.0, 130.1, 130.2, 130.5 (2 carb.), 160.6 (2 carb.), 131.86, 131.89, 135.4, 137.65, 137.67, 154.5, 157.27, 157.31, 158.61, 158.66, 162.7 (q, $J=35.0 \mathrm{~Hz}$) (TFA), 172.91, 172.92, 174.7 (2 carb.), 174.8. RP-HPLC (220 nm): 97\% ($t_{R}=11.4 \mathrm{~min}, k=3.4$). HRMS (ESI): m/z[M+H]+ calcd. for $\left[\mathrm{C}_{53} \mathrm{H}_{70} \mathrm{~N}_{11} \mathrm{O}_{6}\right]^{+} 956.5505$, found 956.5507. $\mathrm{C}_{53} \mathrm{H}_{69} \mathrm{~N}_{11} \mathrm{O}_{6} \times \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~F}_{9} \mathrm{O}_{6}(956.21+342.07)$.

(2S)- $\boldsymbol{N}^{\text {a }}$-(2-\{1-[2-(4-((3-((5-Aminopentyl)oxy)phenyl)(phenyl)methyl)piperazin-1-yl)-2-oxoethyl]-cyclopentyl\}acetyl)[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamide tris(hydrotriflouroacetate) (4.51). Compound 4.51 was prepared using general procedure G and the reactants (S)-2-(1-(2-((1-((2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl)amino)-1-oxo-5-(2-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-yl)amino)-2-oxoethyl)cyclopentyl)acetic acid (4.15) ($71 \mathrm{~g}, 77 \mu \mathrm{~mol}$), EDC•HCl ($24 \mathrm{mg}, 125 \mu \mathrm{~mol}$), HOBt ($18 \mathrm{mg}, 133.2 \mu \mathrm{~mol}$) and tert-butyl (5-(3-(phenyl(piperazin-1-yl)methyl)phenoxy)pentyl)carbamate (4.49) (34 mg, $75 \mu \mathrm{~mol}$). Purification by preparative HPLC A (gradient: 0-35 min, A/B 66:34-47:53, $t_{R}=8 \mathrm{~min}$) gave 4.51 as a fluffy white solid ($16 \mathrm{mg}, 12 \mu \mathrm{~mol}, 16 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{MeOH}-d_{4}\right): \delta(\mathrm{ppm}) 1.45-1.88(\mathrm{~m}, 19 \mathrm{H})$, 2.26-2.31 (m, 1H), 2.49-2.56 (m, 2H), 2.58-2.63 (m, 1H), 2.91-3.12 (m, 6H), 3.13-3.25 (m, 2H), 3.42$3.49(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.72-4.14(\mathrm{~m}, 7 \mathrm{H}), 4.23-4.26(\mathrm{~m}, 1 \mathrm{H}), 5.28(\mathrm{~s}, 1 \mathrm{H}), 6.94-6.98(\mathrm{~m}, 1 \mathrm{H})$, 7.16-7.24 (m, 3H), 7.28-7.30 (m, 1H), 7.31-7.43 (m, 10H), 7.45-7.49 (m, 2H), 7.66-7.70 (m, 2H). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (600 MHz, DMSO- d_{6}): $\delta(\mathrm{ppm})$ 1.32-1.67 (m, 17H), 1.68-1.75 (m, 2H), 2.20-2.26 (m, 1H), 2.33-2.39 (m, $1 \mathrm{H})$, 2.43-2.48 (m, 1H), 2.55-2.64 (m, 1H), 2.64-2.94 (m, 5H), 2.94-3.06 (m, 3H), 3.26-3.36 (m, 1H), 3.34-3.41 (m, 1H), 3.42-3.88 (m, 5H), 3.89-3.99 (m, 2H), 4.09-4.18 (m, 1H), $4.86(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.78-7.44$ (m, 22H), 7.56 (br s, 2H), 7.67-7.72 (m, 1H), 7.78 (br s, 3H), 7.93-7.98 (m, 1H), $8.21(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{MeOH}-d_{4}\right): \delta(\mathrm{ppm}) 24.1$ (two carbon signals), 24.58 (2 carb.), 24.62, 26.3, 28.3, 29.7 (2 carb.), 30.1, 38.2, 39.2, 39.4 (2 carb.), 39.9, 40.6, 41.2 (2 carb.), 41.9, 44.1 (2 carb.), 44.3 (2 carb.), 45.64, 45.65, 52.8, 53.1, 54.0, 68.8, 76.9, 114.82, 114.85, 116.57, 116.60, 117.1 (TFA), 119.0 (TFA), 121.46, 121.50, 124.3, 128.3, 129.3 (2 carb.), 130.2, 130.6, 130.7, 131.9, 136.2, 137.7, 154.5, 158.6, 158.7, 161.4, 162.5 (TFA), 162.7 (TFA), 172.9, 174.7. RP-HPLC (220 nm): 100\% ($t_{R}=11.8 \mathrm{~min}$, $k=3.6)$. HRMS (ESI): m/z [M+H]+ calcd. for $\left[\mathrm{C}_{53} \mathrm{H}_{70} \mathrm{~N}_{11} \mathrm{O}_{6}\right]^{+} 956.5505$, found 956.5514. $\mathrm{C}_{53} \mathrm{H}_{69} \mathrm{~N}_{11} \mathrm{O}_{6} \times$ $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~F}_{9} \mathrm{O}_{6}(956.21+342.07)$.

(4-Hydroxyphenyl)(phenyl)methanone (4.52). Compound 4.52 was prepared using general procedure C and the reactant (4-methoxyphenyl)(phenyl)methanone (4.25) ($2.04 \mathrm{~g}, 9.61 \mathrm{mmol}$). 4.52 was obtained as a rose solid ($183 \mathrm{~g}, 9.23 \mathrm{mmol}, 96 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- d_{6}): $\delta(\mathrm{ppm}) 6.86-$ $6.95(\mathrm{~m}, ~ 2 \mathrm{H}), \quad 7.48-7.57(\mathrm{~m}, ~ 2 \mathrm{H}), 7.58-7.72(\mathrm{~m}, ~ 5 \mathrm{H}), 10.45 \quad(\mathrm{~s}, ~ 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR} \quad(75 \mathrm{MHz}$, DMSO-d d_{6} : $\delta(\mathrm{ppm}) 115.3,127.9,128.4,129.2,131.8,132.5,138.1,162.0,194.3$. HRMS (EIC): m/z $[\mathrm{M}]^{+}$calcd. for $\left[\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{2}\right]^{+}$198.0675, found 198.0678. $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{2}$ (198.22).

tert-Butyl (5-(4-benzoylphenoxy)pentyl)carbamate (4.53). Compound 4.53 was prepared using general procedure D and the reactants (4-hydroxyphenyl)(phenyl)methanone (4.52) (0.16 g , $0.81 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.24 \mathrm{~g}, 1.74 \mathrm{mmol})$ and tert-butyl (5-bromopentyl)carbamate (4.35) (0.45 g , 1.70 mmol). The crude product was purified by column chromatography (eluent: light petroleum/ethyl acetate 2:1) to give 4.53 as a yellow oil ($0.22 \mathrm{~g}, 0.57 \mathrm{mmol}, 70 \%$). Anal. calcd. for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{4}$: C 72.04, H 7.62, N 3.65, found: C 71.75, H 7.23, N 3.43. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO-d d_{6} : $\delta(\mathrm{ppm}) 1.37(\mathrm{~s}, 9 \mathrm{H})$, 1.38-1.48 (m, 4H), 1.66-1.79 (m, 2H), 2.87-2.99 (m, 2H), $4.05(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{t}, J=5.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.02-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.77(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right): \delta(\mathrm{ppm})$ 22.8, 28.2, 28.3, 29.2, 39.7 (overlaid by solvent residual peak), $67.9,77.3,114.3,128.4,129.19,129.24$, 132.1, 132.2, 137.8, 155.6, 162.5, 194.4. HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{NO}_{4}\right]^{+} 384.2169$, found 384.2169. $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{4}$ (383.49).

tert-Butyl (5-(4-(hydroxy(phenyl)methyl)phenoxy)pentyl)carbamate (4.54). Compound 4.54 was prepared using general procedure E and the reactants (tert-butyl (5-(3-benzoylphenoxy)pentyl)carbamate (4.53) ($100 \mathrm{mg}, 0.26 \mathrm{mmol}$) and $\mathrm{NaBH}_{4}(25 \mathrm{mg}, 0.66 \mathrm{mmol})$. The crude product was purified by column chromatography (eluent: light petroleum/ethyl acetate $7: 3$) to give 4.54 as a yellow oil ($100 \mathrm{mg}, 0.26 \mathrm{mmol}, 100 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta(\mathrm{ppm}) 1.01-1.46(\mathrm{~m} .13 \mathrm{H}), 1.61-1.73$ (m, 2H), 2.86-2.96 (m, 2H), $3.89(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H}), 6.77-6.87(\mathrm{~m}, 3 \mathrm{H}), 7.16-$ 7.37 (m, 7H). ${ }^{13} \mathrm{C}-$ NMR ($75 \mathrm{MHz}, ~ D M S O-d_{6}$): $\delta(\mathrm{ppm})$ 22.9, 28.3, 28.4, 29.2, 40.1 (overlaid by solvent residual peak), 67.3, 73.8, 77.3, 113.9, 126.1, 126.6, 127.4, 128.0, 137.7, 146.0, 155.6, 157.5. HRMS (ESI): m/z [M+Na]+ calcd. for $\left[\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{NO}_{4} \mathrm{Na}\right]+408.2145$, found 408.2153. $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{NO}_{4}(385.50)$.

tert-Butyl (5-(4-(phenyl(piperazin-1-yl)methyl)phenoxy)pentyl)carbamate (4.55). Compound 4.55 was prepared using general procedure F and the reactants tert-butyl (5-(4-(hydroxy(phenyl)methyl)phenoxy)pentyl)carbamate (4.54) ($100 \mathrm{mg}, 0.259 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(100 \mu \mathrm{~L}, 0.720 \mathrm{mmol})$, methanesulfonyl chloride ($20 \mu \mathrm{~L}, 0.258 \mathrm{mmol}$) and piperazine ($160 \mathrm{mg}, 1.86 \mathrm{mmol}$). The crude product was purified by column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}$ aq. 90:9:1) to give 4.55 as a yellow oil (57 mg , $0.126 \mathrm{mmol}, 49 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta(\mathrm{ppm}) 1.29-1.44(\mathrm{~m}, 13 \mathrm{H}), 1.58-1.73(\mathrm{~m}, 2 \mathrm{H}), 2.14-$ $2.35(\mathrm{~m}, 4 \mathrm{H}), 2.63-2.79(\mathrm{~m}, 4 \mathrm{H}), 2.85-2.97(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{~s}, 1 \mathrm{H}), 6.77-6.83(\mathrm{~m}$, $3 H$), 7.11-7.19 (m, 1H), 7.21-7.33 (m, 4H), 7.34-7.44 (m, 2H). Exchangeable proton signal (NHpiperazine) was not apparent. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta(\mathrm{ppm}) 22.9,28.3,28.4,29.2,45.6,52.7$, $67.2,75.0,77.3,114.3,126.6,127.5,128.4,128.7,134.6,143.3,155.6,157.5$. One aliphatic carbon
signal was not apparent (overlaid by solvent residual peak). HRMS (ESI): m/z [M+H]+ calcd. for $\left[\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{~N}_{3} \mathrm{O}_{3}\right]^{+} 454.3064$, found 454.3064. $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{3}$ (453.63).

2-(1-(2-(4-((4-((5-((tert-Butoxycarbonyl)amino)pentyl)oxy)phenyl)(phenyl)methyl)piperazin-1-yl)-2-oxoethyl)cyclopentyl)acetic acid (4.56). tert-Butyl (5-(4-(phenyl(piperazin-1-yl)methyl)phenoxy)pentyl)carbamate (4.55) ($23 \mathrm{mg}, 50.7 \mu \mathrm{~mol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and the mixture was stirred in an ice bath. Under stirring, 3,3-tetramethylene-glutaric anhydride (4.14) ($8.53 \mathrm{mg}, 50.7 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added dropwise to the mixture over a time period of 5 min . The reaction mixture was allowed to warm to rt and stirred overnight at rt. The solvent was evaporated, and the crude product was purified by column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 90: 10$) to give 4.56 as an oil $(30.4 \mathrm{mg}$, $48.8 \mu \mathrm{~mol}, 96 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta(\mathrm{ppm}) 1.29-1.40(\mathrm{~m}, 12 \mathrm{H}), 1.42-1.48(\mathrm{~m}, 3 \mathrm{H}), 1.49-$ $1.58(\mathrm{~m}, 8 \mathrm{H}), 2.18-2.29(\mathrm{~m}, 4 \mathrm{H}), 2.42(\mathrm{~s}, 2 \mathrm{H}), 2.48(\mathrm{~s}, 2 \mathrm{H}$, interfering with solvent residual peak), 2.86$2.95(\mathrm{~m}, 2 \mathrm{H}), 3.40-3.53(\mathrm{~m}, 4 \mathrm{H}), 3.88(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.23(\mathrm{~s}, 1 \mathrm{H}), 6.74-6.80(\mathrm{~m}, 1 \mathrm{H}), 6.81-6.87(\mathrm{~m}$, 2H), 7.14-7.22 (m, 1H), 7.25-7.33 (m, 4H), 7.38-7.44 (m, 2H), 11.98 (br s, 1H). ${ }^{13}$ C-NMR (101 MHz , DMSO- d_{6}): $\delta(\mathrm{ppm}) 22.8,23.6,28.4,29.2,36.8,37.5,36.8,37.5,39.7$ (overlaid by solvent residual peak), 40.9, 43.0, 45.4, 67.2, 74.1, 77.3, 114.4, 126.7, 127.4, 128.5, 128.7, 134.2, 143.0, 155.6, 157.6, 167.6, 169.6. HRMS (ESI): m/z [M+Na]+ calcd. for $\left[\mathrm{C}_{36} \mathrm{H}_{51} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Na}\right]^{+}$644.3670, found 644.3669. $\mathrm{C}_{36} \mathrm{H}_{51} \mathrm{~N}_{3} \mathrm{O}_{6}$ (621.82).

(2S)- N^{α}-(2-\{1-[2-(4-((3-((5-(4-((1E,3E)-4-(4-(Dimethylamino)phenyl)buta-1,3-dien-1-yl)-2,6-dimethyl pyridinio)pentyl)oxy)phenyl)(phenyl)methyl)piperazin-1-yl)-2-oxoethyl]cyclopentyl\}acetyl)[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamide bis(hydrotriflouroacetate) trifluoroacetate (4.58). Compound 4.58 was prepared using general procedure H and the reactants 4.50 $(4.21 \mathrm{mg}, 3.24 \mu \mathrm{~mol})$, DIPEA ($2.1 \mu \mathrm{~L}, 12.3 \mu \mathrm{~mol}$) and 2.77 ($3.77 \mathrm{mg}, 10.3 \mu \mathrm{~mol}$). Purification by preparative HPLC B (gradient: 0-30 min, A/B 76:24-38:62, $t_{R}=20 \mathrm{~min}$) afforded 4.58 as a fluffy red solid ($0.954 \mathrm{mg}, 0.611 \mu \mathrm{~mol}, 19 \%$). RP-HPLC (Method A, 220 nm): 95\% ($\mathrm{t}_{\mathrm{R}}=14.6 \mathrm{~min}, k=4.7$). HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+}$calcd. for $\left[\mathrm{C}_{72} \mathrm{H}_{89} \mathrm{~N}_{12} \mathrm{O}_{6}\right]^{+}$1217.7023, found 1217.7021. $\mathrm{C}_{72} \mathrm{H}_{89} \mathrm{~N}_{12} \mathrm{O}_{6}{ }^{+} \times \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{~F}_{6} \mathrm{O}_{2} \times \mathrm{C}_{2} \mathrm{~F}_{3} \mathrm{O}_{2}^{-}$ $(1218.58+228.04+112.02)$.

(2S)- $N^{a}-(2-\{1-[2-(4-((3-((5-(4-((1 E, 3 E)-4-(4-(D i m e t h y l a m i n o) p h e n y l) b u t a-1,3-d i e n-1-y l)-2,6-d i m e t h y l ~$ pyridinio)pentyl)oxy)phenyl)(phenyl)methyl)piperazin-1-yl)-2-oxoethyl]cyclopentyl\}acetyl)[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamide bis(hydrotriflouroacetate) trifluoroacetate (4.59). Compound 4.59 was prepared using general procedure H and the reactants 4.51 $(4.06 \mathrm{mg}, 3.12 \mu \mathrm{~mol})$, DIPEA $(2.2 \mu \mathrm{~L}, 12.9 \mu \mathrm{~mol})$ and $2.77(4.50 \mathrm{mg}, 12.3 \mu \mathrm{~mol})$. Purification by preparative HPLC B (gradient: 0-35 min, A/B 85:15-38:62, $t_{R}=23 \mathrm{~min}$) afforded 4.59 as a fluffy red solid ($2.192 \mathrm{mg}, 1.40 \mu \mathrm{~mol}, 45 \%$). RP-HPLC (Method A, 220 nm): 95% ($t_{\mathrm{R}}=15.3 \mathrm{~min}, k=5.0$). HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+}$calcd. for $\left[\mathrm{C}_{72} \mathrm{H}_{89} \mathrm{~N}_{12} \mathrm{O}_{6}\right]^{+}$1217.7023, found 1217.7027. $\mathrm{C}_{72} \mathrm{H}_{89} \mathrm{~N}_{12} \mathrm{O}_{6}{ }^{+} \times \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{~F}_{6} \mathrm{O}_{2} \times \mathrm{C}_{2} \mathrm{~F}_{3} \mathrm{O}_{2}^{-}$ $(1218.58+228.04+112.02)$.

(2S)- \boldsymbol{N}^{α}-(2-\{1-[2-(4-((2-((5-(2,6-Dimethyl-4-(1E)-(2-(2,3,6,7-tetrahydro-1 H,5H-pyrido[3,2,1-ij]quinoli n-9-yl)vinyl)pyridinio)pentyl)oxy)phenyl)(phenyl)methyl)piperazin-1-yl)-2-oxoethyl]cyclopentyl\} acetyl)[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamide bis(hydrotriflouroacetate) trifluoroacetate (4.61). Compound 4.61 was prepared using general procedure H and the reactants $4.50(4.01 \mathrm{mg}, 3.09 \mu \mathrm{~mol})$, DIPEA $(2.2 \mu \mathrm{~L}, 12.9 \mu \mathrm{moL})$ and $4.60(3.01 \mathrm{mg}, 7.65 \mu \mathrm{~mol})$. Purification by preparative HPLC B (gradient: 0-35 min, A/B 85:15-38:62, $t_{R}=27 \mathrm{~min}$) afforded 4.61 as a fluffy red solid ($2.19 \mathrm{mg}, 1.38 \mu \mathrm{~mol}, 45 \%$). RP-HPLC (Method A, 220 nm): 92\% ($\mathrm{t}_{\mathrm{R}}=15.8 \mathrm{~min}, k=$ 5.2). HRMS (ESI): m/z [M] ${ }^{+}$calcd. for $\left[\mathrm{C}_{74} \mathrm{H}_{91} \mathrm{~N}_{12} \mathrm{O}_{6}\right]^{+}$1243.7179, found 1243.7187. $\mathrm{C}_{74} \mathrm{H}_{91} \mathrm{~N}_{12} \mathrm{O}_{6}{ }^{+} \times$ $\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{~F}_{6} \mathrm{O}_{2} \times \mathrm{C}_{2} \mathrm{~F}_{3} \mathrm{O}_{2}^{-}(1244.62+228.04+112.02)$.

(2S)- \boldsymbol{N}^{a}-(2-\{1-[2-(4-((3-((5-(2,6-Dimethyl-4-(1E)-(2-(2,3,6,7-tetrahydro-1 H,5H-pyrido[3,2,1-ij]quinoli n-9-yl)vinyl)pyridinio)pentyl)oxy)phenyl)(phenyl)methyl)piperazin-1-yl)-2-oxoethyl]cyclopentyl\} acetyl)[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamide bis(hydrotriflouroacetate) trifluoroacetate (4.62). Compound 4.62 was prepared using general procedure H and the reactants $4.51(4.30 \mathrm{mg}, 3.31 \mu \mathrm{~mol})$, DIPEA $(2.4 \mu \mathrm{~L}, 14.1 \mu \mathrm{~mol})$ and $4.60(2.70 \mathrm{mg}, 6.87 \mu \mathrm{~mol})$. Purification by preparative HPLC B (gradient: 0-35 min, A/B 85:15-38:62, $t_{R}=28 \mathrm{~min}$) afforded 4.62 as a fluffy red solid ($0.817 \mathrm{mg}, 0.515 \mu \mathrm{~mol}, 16 \%$). RP-HPLC (Method A, 220 nm): 91\% ($t_{R}=16.8 \mathrm{~min}, k=$ 5.5). HRMS (ESI): m/z [M] ${ }^{+}$calcd. for $\left[\mathrm{C}_{74} \mathrm{H}_{91} \mathrm{~N}_{12} \mathrm{O}_{6}\right]^{+}$1243.7179, found 1243.7179. $\mathrm{C}_{74} \mathrm{H}_{91} \mathrm{~N}_{12} \mathrm{O}_{6}{ }^{+} \times$ $\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{~F}_{6} \mathrm{O}_{2} \times \mathrm{C}_{2} \mathrm{~F}_{3} \mathrm{O}_{2}{ }^{-}(1244.62+228.04+112.02)$.

5H-Dibenzo[b,e]azepine-6,11-dione (4.64). ${ }^{14}$ Anthraquinone (4.63) ($25.2 \mathrm{~g}, 121 \mathrm{mmol}$) and sodium azide $(9.70 \mathrm{~g}, 149 \mathrm{mmol})$ were suspended in chloroform (250 mL) and cooled in an ice bath. Under stirring, conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(72 \mathrm{~mL})$ was added dropwise to the suspension. The reaction mixture was refluxed overnight. Then, the reaction mixture was allowed to cool to rt and added carefully to a potassium carbonate solution ($900 \mathrm{~mL}, 10 \%$). Consecutively, the aqueous solution was basified with ammonium hydroxide and a solid precipitated. The precipitate was separated by decantation and methanol (320 mL) was added. Then, the solid was separated by filtration and washed with $\mathrm{Et}_{2} \mathrm{O}$. The crude product was purified by recrystallization from hot acetic acid. The solid was dried in vacuo $\left(60^{\circ} \mathrm{C}\right)$ to obtain 4.64 as a white solid ($16.0 \mathrm{~g}, 71.6 \mathrm{mmol}, 59 \%$). Anal. calcd. for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{NO}_{2} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C} 74.13, \mathrm{H} 4.18, \mathrm{~N} 6.18$, found: C 74.58, H 4.13, N 6.11. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$: $\delta(\mathrm{ppm}) 7.17-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.37$ (m, 1H), 7.54-7.63 (m, 1H), 7.68-7.75 (m, 1H), 7.77-7.86 (m, 3H), 8.13-8.21 (m, 1H), 11.13 (br s, 1H). ${ }^{13} \mathrm{C}-$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta(\mathrm{ppm}) 120.4,123.8,128.2,129.3,129.6,130.2,131.2,132.96,133.13$, 133.8, 136.7, 138.2, 165.5, 192.5. HRMS (ESI): m/z [M+H] ${ }^{+}$calcd. for [$\left.\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{NO}_{2}\right]^{+}$224.0706; found 224.0709. $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{NO}_{2}$ (223.23).

11-Hydroxy-5,11-dihydro-6H-dibenzo[b,e]azepin-6-one (4.65). ${ }^{14,60} 5 \mathrm{H}$-dibenzo[b,e]azepine-6,11-dione (4.64) ($9.51 \mathrm{~g}, 42.6 \mathrm{mmol}$) was suspended in ethanol (500 mL). Under stirring, sodium borohydride $(4.12 \mathrm{~g}, 108.9 \mathrm{mmol})$ was added portionwise to the suspension and the reaction mixture was refluxed
for 3 h . The volume of the organic solvent was reduced by evaporation to 150 mL and then poured into a saturated solution of ammonium chloride (400 mL). The aqueous solution was neutralized with conc. HCl . The precipitated solid was collected by filtration, washed with water ($1 \times 100 \mathrm{~mL}$), methanol (1 x 100 mL) and light petroleum (100 mL). The solid was dried in vacuo to give 4.65 as a white solid (7.90 g , 35.1 mmol, 82\%). Anal. calcd. for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{2}$: C 74.65, H 4.92, N 6.22, found: C 74.37, H 5.03, N 6.08. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO-d d_{6}): $\delta(\mathrm{ppm}) 5.67(\mathrm{~s}, 1 \mathrm{H}), 6.39(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.04-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.42(\mathrm{~m}$, 1 H), 7.45-7.83 (m, 4H), 10.53 (s, 1H). ${ }^{13}$ C-NMR (75 MHz , DMSO- d_{6}): $\delta(\mathrm{ppm}) 67.2$, 120.8 (two carbon signals), 121.4, 122.7, 124.2, 127.1 (3 carb.), 129.5, 131.7, 134.3, 145.3, 167.9. HRMS (ESI): m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{NO}_{2}\right]^{+}$226.0863, found 226.0865. $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{2}$ (225.08).

11-Chloro-5,11-dihydro-6H-dibenzo[b,e]azepin-6-one (4.66). ${ }^{14,} 60$ 11-Hydroxy-5,11-dihydro-6H-dibenzo[b,e]azepin-6-one (4.65) ($7.01 \mathrm{~g}, 31.1 \mathrm{mmol}$) was suspended in chloroform (175 mL). Under stirring, thionyl chloride ($10.0 \mathrm{~mL}, 137.8 \mathrm{mmol}$) was slowly added dropwise into the mixture. The reaction mixture was refluxed for 1.5 h . Then, the reaction mixture was allowed to cool to rt and the volume of the organic solvent was reduced and light petroleum (250 mL) was added. The precipitated solid was collected by filtration, washed with light petroleum ($3 \times 100 \mathrm{~mL}$) and dried in vacuo to give 4.66 as a white solid (7.16 g, 29.4 mmol, 95\%). Anal. calcd. for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{CINO}$: C 69.00, H 4.14, N 5.75, found: C 68.89, H 4.21, N 5.53. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, ~ D M S O-d_{6}\right): \delta(\mathrm{ppm}) 6.58$ ($\mathrm{s}, 1 \mathrm{H}$), 7.08-7.17 (m, 1H), 7.19-7.26 (m, 1H), 7.31-7.41 (m, 1H), 7.45-7.63 (m, 4H), 7.85-7.93 (m, 1H), 10.86 (br s, 1 H). ${ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, DMSO- d_{6}): $\delta(\mathrm{ppm}) 63.2,121.7,124.1,126.5,128.5,129.4,129.96,129.98,131.4,131.5,132.3,136.7$, 140.3, 167.1. $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{CINO}$ (243.69).

11-(Piperazin-1-yl)-5,11-dihydro-6H-dibenzo[b,e]azepin-6-one (4.67). ${ }^{14,} 61$ 11-Chloro-5,11-dihydro$6 H$-dibenzo[b,e]azepin-6-one (4.66) ($6.50 \mathrm{~g}, 26.6 \mathrm{mmol}$) was dissolved in dioxane (130 mL). Under stirring, piperazine ($11.48 \mathrm{~g}, 133 \mathrm{mmol}$) in dioxane (250 mL) was added dropwise into the reaction mixture, which was heated at $60^{\circ} \mathrm{C}$ while stirring for 2 h . Then, the reaction mixture was allowed to cool to rt , the solvent was evaporated, and the residue was dissolved in water (200 mL). The compound was extracted from the aqueous phase with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 x 200 \mathrm{~mL})$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the organic solvent was evaporated. The product was purified by column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}$ aq $90: 9: 1$) to give 4.67 as a pale yellow crystalline solid ($6.03 \mathrm{~g}, 20.5 \mathrm{mmol}, 77 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right.$): $\delta(\mathrm{ppm}) 1.97-2.04(\mathrm{~m}, 4 \mathrm{H}), 2.51-2.61(\mathrm{~m}, 4 \mathrm{H}$, interfering with solvent residual peak), 4.16 (s, 1H), 7.00-7.08 (m, 2H), 7.17-7.24 (m, 1H), 7.29-7.40 (m, 3 H), 7.42-7.48 (m, 1H), 7.67-7.73 (m, 1H), $10.33(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$. One exchangeable proton signal (NHpiperazine) was not apparent. ${ }^{13}$ C-NMR (101 MHz, DMSO- d_{6}): $\delta(\mathrm{ppm}) 45.2,51.9,74.7,121.2,123.6$,
127.69, 127.75, 128.2, 129.9, 130.4, 131.2, 131.4, 131.7, 136.2, 142.5, 168.2. HRMS (ESI): m/z [M+H]+ calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{ONa}\right]^{+} 316.1420$, found 316.1418. $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}$ (293.37).

2-Cyanoacetamide (4.69). ${ }^{62}$ Under stirring, ethyl cyanoacetate (4.68) ($10.7 \mathrm{~mL}, 101 \mathrm{mmol}$) was added dropwise into an ice bath cooled solution of ammonium hydroxide (100 mL) and stirred for 2 h . The precipitated solid was separated by filtration and the obtained solid was washed with ice-cold ethanol $(3 \times 10 \mathrm{~mL})$. The solid was dried in vacuo and compound 4.69 was obtained as a white solid (4.58 g , $54.5 \mathrm{mmol}, 54 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta(\mathrm{ppm}) 3.58(\mathrm{~s}, 2 \mathrm{H}), 7.33(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.64(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}-$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta(\mathrm{ppm}) 25.4,116.4$, 164.2. HRMS (ESI): m/z [M+H]+ calcd. for [$\left.\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}\right]+85.0396$, found 85.0400. $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}$ (84.08).

Ethyl 2-cyano-2-cyclohexylideneacetate (4.71). ${ }^{63}$ Cyclohexanone (4.70) ($5.5 \mathrm{~mL}, 53.2 \mathrm{mmol}$), ethyl cyanoacetate (4.68) ($7.0 \mathrm{~mL}, 65.6 \mathrm{mmol}$), acetic acid ($0.6 \mathrm{~mL}, 9.52 \mathrm{mmol}$) and $\mathrm{NH}_{4} \mathrm{CH}_{3} \mathrm{COO}(0.47 \mathrm{~g}$, 6.10 mmol) were dissolved in toluene (100 mL) and heated under reflux (Dean-Stark apparatus) for 7 h . The organic solvent was washed with water ($2 x 100 \mathrm{~mL}$) and with a saturated NaHCO_{3} solution $(100 \mathrm{~mL})$. The organic solvent was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated and dried in vacuo to give 4.71 as a yellowish liquid ($10.28 \mathrm{~g}, 53.2 \mathrm{mmol}, 100 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, DMSO- d_{6}): $\delta(\mathrm{ppm}) 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 1.56-1.69(\mathrm{~m}, 4 \mathrm{H}), 1.69-1.77(\mathrm{~m}, 2 \mathrm{H}), 2.57-2.66(\mathrm{~m}, 2 \mathrm{H}), 2.89-2.97(\mathrm{~m}, 2 \mathrm{H}), 4.22(\mathrm{q}, J=7.1 \mathrm{~Hz}$, 2H). ${ }^{13} \mathrm{C}-$ NMR (101 MHz, DMSO- d_{6}): $\delta(\mathrm{ppm})$ 13.8, 24.9, 27.8, 28.1, 30.9, 36.2, 61.4, 161.4, 180.2. HRMS (EIC): $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+}$calcd. for $\left[\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2}\right]^{+}+193.1097$, found 193.1102. $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2}$ (193.25).

2,4-Dioxo-3-azaspiro[5.5]undecane-1,5-dicarbonitrile (4.72). ${ }^{64}$ A solution of sodium ethoxide was freshly prepared. Sodium ($0.46 \mathrm{~g}, 20 \mathrm{mmol}$) was added to a three-neck flask and ethanol (50 mL) was added dropwise carefully. After the reaction between sodium and ethanol was completed, 2-cyanoacetamide (4.69) ($0.48 \mathrm{~g}, 5.71 \mathrm{mmol}$) was added to the solution. The reaction mixture was heated under reflux for 30 min . Under stirring, ethyl 2-cyano-2-cyclohexylideneacetate (4.71) (1.00 g, 5.17 mmol) was added and the reaction mixture was stirred and heated under reflux for 4 h . Then, the reaction mixture was allowed to cool to rt, the solvent was evaporated, and the residue was dissolved in diluted hydrochloric acid (HCl conc./water $1: 5$). The precipitated solid was collected by filtration and dried in vacuo. Compound 4.72 was obtained after recrystallization from chloroform as a white solid ($0.450 \mathrm{~g}, 1.95 \mathrm{mmol}, 38 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}_{6}\right.$): $\delta(\mathrm{ppm})$ 1.35-1.44 (m, 2H), 1.49-1.60 (m, $6 \mathrm{H}), 1.66-1.71(\mathrm{~m}, 2 \mathrm{H}), 4.88(\mathrm{~s}, 2 \mathrm{H}), 12.18(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz}$, DMSO-d): $\delta(\mathrm{ppm}) 19.8$,
24.5, 31.5, 38.0, 45.4, 114.5, 164.1. HRMS (ESI): m/z [2M+Na] calcd. for [$\left.\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{Na}\right]^{+} 485.1908$, found 485.1930. $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$ (231.26).

2,2'-(Cyclohexane-1,1-diyl)diacetic acid (4.73). ${ }^{30,65}$ 2,4-Dioxo-3-azaspiro[5.5]undecane-1,5-dicarbonitrile (4.72) ($450 \mathrm{mg}, 1.95 \mathrm{mmol}$) was refluxed in a mixture of water and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(1: 3 ; 12 \mathrm{~mL})$. After cooling to rt, the mixture was poured into $\mathrm{H}_{2} \mathrm{O}(80 \mathrm{~mL})$ and stirred at rt overnight. The solid was collected by filtration. The solid was dissolved in $1 \mathrm{M} \mathrm{NaOH}(100 \mathrm{~mL})$ and the aqueous phase was washed with ethyl acetate. Then, the aqueous phase was acidified with dilute HCl and the compound was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the organic solvent was evaporated to give 4.73 as a white solid ($0.252 \mathrm{~g}, 1.26 \mathrm{mmol}, 65 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta(\mathrm{ppm})$ 1.30-1.49 (m, 10 H), 2.40 ($\mathrm{s}, 4 \mathrm{H}$), 11.97 (br s, 2H). ${ }^{13} \mathrm{C}-$ NMR (75 MHz, DMSO- d_{6}): $\delta(\mathrm{ppm}) 21.1,25.6,34.3,35.0,40.7$, 173.1. HRMS (ESI): m/z [M+Na] ${ }^{+}$calcd. for $\left[\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{Na}\right]^{+}$223.0941, found, 223.0947. $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{4}$ (200.23).

(S)-2-(1-(2-((1-((2-(3,5-Dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl)amino)-1-oxo-5-(2-((2,2,4,6,7 -pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-yl)amino)-2-oxoethyl)cyclohexyl)acetic acid (4.74). 2,2'-(cyclohexane-1,1-diyl)diacetic acid (4.73) ($45 \mathrm{mg}, 0.225 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL). Under stirring, EDC•HCl ($43.13 \mathrm{mg}, 0.225 \mathrm{mmol}$) was added and the mixture was stirred until the solution was clear. Then, $\mathrm{HOBt}(30.4 \mathrm{mg}, 0.225 \mathrm{mmol})$ was added and the mixture was stirred until the solution was clear. (S)- N^{ω}-2,3-Dihydro-2,2,4,6,7-pentamethylbenzofuran-5-sulfonyl[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazo-lidin-4-yl)ethyl]argininamide (4.13) (0.148 g, 0.210 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was dropped slowly into the reaction mixture and stirred overnight at rt. The solvent was evaporated, and the crude product was purified by column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 95: 5$) to give 4.74 as a white solid ($0.141 \mathrm{~g}, 0.159 \mathrm{mmol}, 76 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, DMSO- d_{6}): $\delta(\mathrm{ppm})$ 1.28-1.46 (m, 18H), 1.49-1.61 (m, 1H), 1.96-2.00 (m, 2H), 2.28-2.35 (m, 3H), 2.39$2.42(\mathrm{~m}, 2 \mathrm{H}), 2.44-2.48(\mathrm{~m}, 3 \mathrm{H}), 2.88-2.95(\mathrm{~m}, 3 \mathrm{H}), 3.22-3.49(\mathrm{~m}, 5 \mathrm{H}), 3.56-3.62(\mathrm{~m}, 2 \mathrm{H}), 4.09-4.20(\mathrm{~m}$, $1 \mathrm{H}), 6.39(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.61(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.15-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.43(\mathrm{~m}, 8 \mathrm{H}), 7.48-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.65-7.73$ (m, 1H), 7.91-7.99 (m, 2H), 8.15 (t, J=5.9 Hz, 1H), 12.87 (br s, 1H). ${ }^{13}$ C-NMR (101 MHz, DMSOd_{6}): $\delta(\mathrm{ppm}) 12.3,17.6,19.0,21.0,25.6,28.3,34.3,35.1,40.1$ (overlaid by residual solvent peak), 40.6 (overlaid by solvent residual peak), 41.7, 42.5, 52.1, 86.3, 109.7, 116.3, 119.1, 122.6, 124.3, 124.4, 126.6, 127.2, 127.8, 129.0, 131.5, 136.6, 137.3, 152.6, 157.5, 171.0, 171.9, 173.1, 173.4. HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{45} \mathrm{H}_{59} \mathrm{~N}_{8} \mathrm{O}_{9} \mathrm{~S}\right]^{+} 887.4120$, found 887.4135. $\mathrm{C}_{45} \mathrm{H}_{58} \mathrm{~N}_{8} \mathrm{O}_{9} \mathrm{~S}$ (887.07).

(2S)- N^{a}-[2-(1-\{2-Oxo-2-[4(6-0xo-6,11-dihydro-5H-dibenzo[b,e]azepin-11-yl)piperazin-1-yl]ethyl\}-cyclohexyl)acetyl]-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamide bis(hydrotriflouroacetate) (4.75). Compound 4.75 was prepared using general procedure G and the reactants (S)-2-(1-(2-((1-((2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl)amino)-1-oxo-5-(2((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-yl)amino)-2-oxoethyl)cyclohexyl) acetic acid (4.74) (76 mg, $85.7 \mu \mathrm{~mol})$, EDC•HCl ($20 \mathrm{mg}, 104 \mu \mathrm{~mol}$), HOBt ($19 \mathrm{mg}, 141 \mu \mathrm{~mol}$) and 11-(piperazin-1-yl)-5,11-dihydro-6H-dibenzo[b,e]azepin-6-one (4.67) ($38 \mathrm{mg}, 129.5 \mu \mathrm{~mol}$). Purification by preparative HPLC A (gradient: 0-30 min, A/B 85:15-19:81, $t_{R}=21 \mathrm{~min}$) afforded 4.75 as a fluffy white solid ($11 \mathrm{mg}, 9.66 \mu \mathrm{~mol}, 11 \%$). ${ }^{1} \mathrm{H}-$ NMR ($600 \mathrm{MHz}, ~ D M S O-d_{6}$): $\delta(\mathrm{ppm})$ 1.08-1.68 (m, 15H), 1.84-2.19 (m, 4H), 2.25-2.46 (m, 4H), 2.92-3.04 (m, 2H), 3.21-3.42 (m, 5H), 3.59 (t, J=6.0 Hz, 2H), 4.12-4.19 (m, $1 \mathrm{H}), 4.27$ (br s, 1H), 6.55-7.47 (m, 21H), 7.47-7.52 (m, 1H), $7.55(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 8.13(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 10.34(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ (150 MHz , DMSOd_{6} : $\delta(\mathrm{ppm}) 21.11,21.14,25.1,25.6,28.9,35.27,35.32,35.7,36.2,36.23,36.24,39.6$ (overlaid by solvent residual peak); $40.4,45.8,50.8,51.3,51.8,73.6,115.3$ (TFA), 117.2 (TFA), 121.4, 122.6, 123.8, 126.6 (2 carb.), 127.8, 128.1, 128.5, 129.0 (2 carb.), 130.0, 130.5, 131.4, 131.6, 136.2, 136.6, 152.6, 156.7, 158.3 (q, $J=34.4 \mathrm{~Hz}$) (TFA), 168.1, 169.8, 171.0, 172.0. RP-HPLC (220 nm): 99\% ($t_{R}=13.8 \mathrm{~min}, k=4.4$). HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{50} \mathrm{H}_{60} \mathrm{~N}_{11} \mathrm{O}_{6}\right]^{+} 910.4723$, found 910.4721 . $\mathrm{C}_{50} \mathrm{H}_{59} \mathrm{~N}_{11} \mathrm{O}_{6} \times \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{~F}_{6} \mathrm{O}_{4}(910.09+228.04)$.

2-(trans-4-Hydroxycyclohexyl)isoindoline-1,3-dione (4.78). ${ }^{66}$ trans-4-Aminocyclohexan-1-ol (4.76) ($10.0 \mathrm{~g}, 86.8 \mathrm{mmol}$) was dissolved in $\mathrm{H}_{2} \mathrm{O}(300 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(36.16 \mathrm{~g}, 0.26 \mathrm{~mol})$ was added and the reaction mixture was cooled in an ice bath. Under stirring, ethyl 1,3-dioxoisoindoline-2-carboxylate (4.77) $(25.0 \mathrm{~g}, 45.3 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(250 \mathrm{~mL})$ was slowly added dropwise into the reaction mixture and stirred for 20 min . Then, the reaction mixture was allowed to warm to rt and stirred for 3.5 h . The precipitated solid was collected by filtration, washed with water and dried in vacuo. The crude product was purified by column chromatography (eluent: light petroleum/ethyl acetate $1: 1$ to $1: 5$) to give 4.78 as a white solid (11.1 g, $45.3 \mathrm{mmol}, 52 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right): \delta(\mathrm{ppm}) 1.17-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.60-$ $1.73(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.96(\mathrm{~m}, 2 \mathrm{H}), 2.04-2.23(\mathrm{~m}, 2 \mathrm{H}), 3.38-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.87-4.04(\mathrm{~m}, 1 \mathrm{H}), 4.65(\mathrm{br} \mathrm{s}$, 1H), 7.80-7.84 (m, 4H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, ~ D M S O-d_{6}\right): \delta(\mathrm{ppm}) 27.3,34.6,49.5,68.1,122.9,131.4$, 134.3, 167.8. HRMS (ESI): m/z [M+H]+ calcd. for $\left[\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}_{3}\right]^{+} 246.1125$, found 246.1125. $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{3}$ (245.28).

2-(4-Oxocyclohexyl)isoindoline-1,3-dione (4.79). ${ }^{67}$ PCC ($14.7 \mathrm{~g}, 68.2 \mathrm{mmol}$) was suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$ and 2-(trans-4-hydroxycyclohexyl)isoindoline-1,3-dione (4.78) (7.53 g, 30.58 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added dropwise to the suspension. The reaction mixture was stirred at rt for 9 h . The solid was removed by filtration (Büchner funnel) and the filtrate was evaporated. The crude product was purified by column chromatography (eluent: light petroleum/ethyl acetate 1:1) to give 4.79 as a white solid ($5.35 \mathrm{~g}, 22.0 \mathrm{mmol}, 72 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, DMSO-d): $\delta(\mathrm{ppm}) 1.97-2.10(\mathrm{~m}, 2 \mathrm{H})$, 2.21$2.33(\mathrm{~m}, 2 \mathrm{H}), 2.37-2.50(\mathrm{~m}, 2 \mathrm{H}$, interfering with solvent residual peak), 2.57-2.71 (m, 2H), 4.53-4.66 (m, 1H), 7.80-7.85 (m, 4H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta(\mathrm{ppm})$ 28.2, 39.2 (overlaid by the solvent residual peak), 47.5, 123.0, 131.5, 134.4, 167.7, 209.2. HRMS (ESI): m/z[M+H]+ calcd. for $\left[\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}_{3}\right]^{+}$ 244.0968, found 244.0968. $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{3}$ (243.26).

Ethyl 2-cyano-2-(4-(1,3-dioxoisoindolin-2-yl)cyclohexylidene)acetate (4.80). Ethyl cyanoacetate (4.68) ($2.11 \mathrm{~mL}, 19.73 \mathrm{mmol}$), 2-(4-oxocyclohexyl)-isoindoline-1,3-dione (4.79) (4.8 g, 19.73 mmol), $\mathrm{NH}_{4} \mathrm{CH}_{3} \mathrm{COO}$ ($152 \mathrm{mg}, 1.97 \mathrm{mmol}$) and acetic acid ($0.23 \mathrm{~mL}, 3.65 \mathrm{mmol}$) were dissolved in toluene $(150 \mathrm{~mL})$ and the reaction mixture was refluxed for 4 h . The reaction mixture was allowed to cool to rt and the organic phase was washed with brine (3x), dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The product was purified by column chromatography (eluent: light petroleum/ethyl acetate1:2) to give 4.80 as a white solid ($4.14 \mathrm{~g}, 12.2 \mathrm{mmol}, 62 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, DMSO-d d_{6} : $\delta(\mathrm{ppm}) 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.94-2.47(\mathrm{~m}, 5 \mathrm{H}), 2.62-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.87-3.00(\mathrm{~m}, 1 \mathrm{H})$, 3.80-3.92 (m, 1H), 4.24 ($\mathrm{q}, ~ J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 4.37-4.51 (m, 1H), 7.79-7.91 (m, 4H). ${ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, DMSO- d_{6}): $\delta(\mathrm{ppm}) 13.9,29.06,29.28,29.4,34.5,47.7,61.7,102.2,115.3,123.0,131.5,134.4,161.3$, 167.7, 177.3. HRMS (ESI): m/z [M+H]+ calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4}\right]^{+} 339.1339$, found 339.1341. $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$ (338.36).

4.4.3. Investigation of the chemical stability of compounds $4.50,4.51$ and 4.58

To determine the chemical stability, compounds 4.50, 4.51 and $4.58(100 \mu \mathrm{M})$ were incubated in buffer (25 mM HEPES, $2.5 \mathrm{mM} \mathrm{CaCl} 2,1 \mathrm{mM} \mathrm{MgCl} 2, \mathrm{pH} 7.4$) at rt for 24 h . After incubation, the solution was diluted (1:1) with 10% aq TFA and the stability monitored at 6 time intervals ($0 \mathrm{~h}, 1 \mathrm{~h}, 2 \mathrm{~h}, 4 \mathrm{~h}, 8 \mathrm{~h}$ and 24 h) by analytical HPLC (220 nm) analysis (4.4.1.; see described method for purity control by analytical HPLC).

4.4.4. Fluorescence properties

All emission and excitation spectra of compounds $4.58,4.59,4.60$ and 4.61 were recorded on a Cary Eclipse spectrofluorimeter (Varian, Mulgrave, Victoria, Australia) in acryl cuvettes ($10 \times 10 \mathrm{~mm}$, Sarstedt, Nümbrecht, Germany) at $22^{\circ} \mathrm{C}$. The photomultiplier voltage was set to 400 V throughout, the excitation spectra were recorded with an excitation slit of 5 nm and an emission slit of 10 nm . The emission spectra were recorded with an emission slit of 5 nm and an excitation slit of 10 nm . Following filter settings were used: "auto" (excitation filter) and "open" (emission filter). The emission starting point was set to 10 nm above the excitation wavelength. From every recorded emission spectrum, the corresponding reference spectrum was subtracted to obtain the net spectrum, that was multiplied with the corresponding lamp correction spectra, resulting in the corrected emission spectra.

The stock solution of the fluorescent ligands 4.58, 4.59, 4.60 and $4.61(1 \mathrm{mM})$ were prepared in DMSO and the sample solutions ($5 \mu \mathrm{M}$) were prepared in PBS (pH 7) containing $1 \%(\mathrm{w} / \mathrm{v})$ BSA (filtered before use with a syringe filter $0.22 \mu \mathrm{~m}$). Sample solutions for reference spectra were prepared using PBS (pH 7) containing $1 \%(\mathrm{w} / \mathrm{v})$ BSA and the same amount of DMSO was added compared to solutions of fluorescent ligands (in the absence of fluorescent ligand). All solutions were freshly prepared, and they were stored in the dark.
4.4.5. Pharmacological methods: cell culture, crystal violet assay, saturation and competition binding experiments with [$\left.{ }^{3} \mathrm{H}\right]$ propionyl-pNPY in HEK293T β Arr2 $+\mathrm{Y}_{2} \mathrm{R}$ cells, β-arrestin2 recruitment assay, miniG protein recruitment assay, BRET based binding assay, confocal microscopy and radioligand binding assay for $h Y_{1} R, h Y_{4} R$ and $h Y_{5} R$

4.4.5.1. Cell culture

The preparation (HEK293T β Arr2 $+\mathrm{Y}_{2} \mathrm{R}$ cells ${ }^{39}$ and $\mathrm{CHO}-\mathrm{hY} Y_{4}-\mathrm{Gqiis}^{-m t A E Q ~ c e l l s ~}{ }^{68}$) and cultivation (HEK293T β Arr2 $+\mathrm{Y}_{2}$ R cells, ${ }^{39}$ SK-N-MC cells, ${ }^{69} \mathrm{CHO}-\mathrm{hY} 4$-Gai5-mtAEQ cells ${ }^{68}$ and HEC-1B cells ${ }^{49}$) was described elsewhere. SK-N-MC cells were obtained from the American Type Culture Collection (Rockeville, USA).

The preparation and cultivation of HEK293T NlucN-miniGi/ Y_{2} R-NlucC cells, expressing the NlucNminiGi fusion and Y_{2} R-NlucC constructs were performed by Carina Höring as part of her doctoral thesis.

The preparation and cultivation of HEK293T Y_{2} (intraNLucD197) cells, stably expressing the Y_{2} (intraNLucD197) receptor construct were performed by Lukas Grätz as part of his doctoral thesis.

Cells (HEK293T β Arr2 $+\mathrm{Y}_{2} R$ cells, HEK293T NlucN-miniGi/Y2R-NlucC cells, HEK293T Y_{2} (intraNLucD197) cells) were cultivated in DMEM (Sigma-Aldrich, Taufkirchen, Germany) at $37^{\circ} \mathrm{C}$ in a water saturated atmosphere containing $5 \% \mathrm{CO}_{2}$. DMEM was supplemented with L-glutamine (L-glutamine solution, Sigma-Aldrich; $0.584 \mathrm{~g} / \mathrm{mL}$), penicillin-streptomycin (Sigma-Aldrich; P/S, 10.000 U / mL) and FCS (Merck Biochrom, Darmstadt, Germany; 10\% (v/v)). The culture medium of HEK293T β Arr2 $+Y_{2} R$ cells additionally contained zeocin (InvivoGen, San Diego, USA; $400 \mu \mathrm{~g} / \mathrm{mL}$) and G418 (Merck Biochrom; $600 \mu \mathrm{~g} / \mathrm{mL}$). The culture medium of HEK293T NlucN-miniGi/Y2R-NlucC cells additionally contained G418 (Merck Biochrom; $600 \mu \mathrm{~g} / \mathrm{mL}$) and puromycin (InvivoGen, San Diego, USA;
$1 \mu \mathrm{~g} / \mathrm{mL}$). The culture medium of HEK293T Y_{2} (intraNLucD197) cells additionally contained G418 (Merck Biochrom; $600 \mu \mathrm{~g} / \mathrm{mL}$).

Routinely performed examinations for mycoplasma contamination using the Venor GeM Mycoplasma Detection Kit (Minerva Biolabs, Berlin, Germany) were negative for all cell types.

4.4.5.2. Crystal violet assay

The 24-well plates were purchased from Sarstedt (product no. 83.3922, standard F, Nümbrecht, Germany) and 96-well plates were purchased from Corning (product no. 3610, Kaiserslautern, Germany). The coating procedures with poly-D-lysine or cross-linked gelatin were performed under sterile conditions.

Coating-procedure of 24-well (96-well) plates with poly-D-lysine

Poly-D-lysine (γ-irradiated) was purchased from Sigma-Aldrich as lyophilizate, which was dissolved in sterile water ($1 \mathrm{mg} / \mathrm{mL}$) and every well of 24 well plate (96 well) was filled with $300 \mu \mathrm{~L}(100 \mu \mathrm{~L}$) of that solution. After 15 min the solution was removed by suction, and every well was washed with $500 \mu \mathrm{~L}$ $(200 \mu \mathrm{~L})$ of sterile water.

Coating-procedure of 24-well (96-well) plates with cross-linked gelatin

The coating was performed as described in literature ${ }^{70}$ with modifications: every well of a 24 -well (96-well) plate was filled with $250 \mu \mathrm{~L}(100 \mu \mathrm{~L})$ of 0.5% gelatin solution and the plates were incubated at rt for 2 h . The gelatin solution was removed and $250 \mu \mathrm{~L}(100 \mu \mathrm{~L})$ of 2.5% glutardialdehyde solution were added and incubated at rt for 10 min and then removed. Every well was washed with $1 \mathrm{~mL}(300 \mu \mathrm{~L})$ of sterile water (3x). The wells were filled with $1 \mathrm{~mL}(300 \mu \mathrm{~L})$ of sterile water and the plates were incubated at rt overnight. The next day the water was removed, and the plate dried at rt.

One day before a crystal violet assay, the HEK293T β Arr2 $+Y_{2} R$ cells were detached by trypsinization and resuspended in Ham's F12 medium (Sigma-Aldrich) containing 10\% FCS. A density of $1.7 \cdot 10^{5}$ cells $/ \mathrm{mL}$ was adjusted and $500 \mu \mathrm{~L}(200 \mu \mathrm{~L})$ of this suspension was seeded into each well of a coated 24 -well (Corning) (96-well; Sarstedt) plate. The cells were cultivated at $37^{\circ} \mathrm{C}$ in a water saturated atmosphere containing $5 \% \mathrm{CO}_{2}$. Before starting the experiment, the confluency of the cells was $>90 \%$. The culture medium was removed by dumping and cells were washed once with $500 \mu \mathrm{~L}(100 \mu \mathrm{~L})$ of buffer (25 mM HEPES, $2.5 \mathrm{mM} \mathrm{CaCl} 2,1 \mathrm{mM} \mathrm{MgCl} 2, \mathrm{pH} 7.4$) per well. The buffer was exchanged by $500 \mu \mathrm{~L}(100 \mu \mathrm{~L})$ of binding buffer (buffer containing 1% BSA and $0.1 \mathrm{mg} / \mathrm{mL}$ of bacitracin) and the plates were incubated for 90 min at rt .

After the incubation in binding buffer followed by washing procedures (500 $\mu \mathrm{L}(100 \mu \mathrm{~L})$ of PBS buffer for two times), the crystal violet assay was essentially performed in 96 -well and 24 -well plates as described in literature ${ }^{71}$ with minor modifications: the cells in 96 -well plate (24 -well) were fixed with $100 \mu \mathrm{~L}(500 \mu \mathrm{~L})$ of 2% glutardialdehyde at rt for 25 min . Then, the 2% glutardialdehyde solution were removed and $100 \mu \mathrm{~L}(500 \mu \mathrm{~L})$ of a 0.02% aqueous crystal violet solution were added per well. After 20 min the excess of crystal violet was removed by immersing the plates in a water bath for three times. Then every well was filled with water and incubated for 20 min . The water was removed and the cellassociated crystal violet was dissolved in $180 \mu \mathrm{~L}(1000 \mu \mathrm{~L})$ of ethanol $70 \%(\mathrm{v} / \mathrm{v})$ and shaken at rt for
1.5 h . The absorbance was measured on an Enspire (Perkin-Elmer, Rodgau, Germany) plate reader at 585 nm.

4.4.5.3. Saturation and competition binding with $\left[{ }^{3} \mathrm{H}\right]$ propionyl-pNPY in HEK293T β Arr2 $+\mathrm{Y}_{2} R$ cells

The synthesis of $\left[{ }^{3} \mathrm{H}\right]$ propionyl-pNPY was described previously. ${ }^{16}$ The radioligand competition and saturation binding experiments were performed as described in literature ${ }^{9,32}$ for $\mathrm{CHO}-\mathrm{hY} \mathrm{Y}_{2}$ - $\mathrm{Gqi}_{\mathrm{q} 5}-\mathrm{mtAEQ}$ cells ${ }^{9}$ with modifications: instead of CHO-hY2R-Gqii5-mtAEQ cells, HEK293T β Arr2 $+\mathrm{Y}_{2}$ R cells ${ }^{39}$, were used. Additionally, the cells were seeded in 96-well plates (Corning, Kaiserslautern, Germany) coated (4.4.5.2.) with poly-D-lysine hydrobromide (Sigma-Aldrich) solution ($1 \mathrm{mg} / \mathrm{mL}$), instead of uncoated 96well plates (Corning). One day before the competition or saturation binding experiments, the cells were detached by trypsinization and resuspended in Ham's F12 medium (Sigma-Aldrich) containing 10\% FCS. A density of $1.7 \cdot 10^{5}$ cells $/ \mathrm{mL}$ was adjusted and $200 \mu \mathrm{~L}$ of this suspension was seeded into each well of a coated 96 -well plates (Corning). The cells were cultivated at $37^{\circ} \mathrm{C}$ in a water saturated atmosphere containing $5 \% \mathrm{CO}_{2}$. Before starting the experiment (competition or saturation binding), the confluency of the cells was $>90 \%$. The culture medium was removed by dumping and cells were washed once with $100 \mu \mathrm{~L}$ of buffer (25 mM HEPES, $2.5 \mathrm{mM} \mathrm{CaCl} 2,1 \mathrm{mM} \mathrm{MgCl} 2, \mathrm{pH} 7.4$) per well. The buffer was exchanged by $80 \mu \mathrm{~L}$ of binding buffer (composed of buffer containing 1% BSA and $0.1 \mathrm{mg} / \mathrm{mL}$ of bacitracin). All feed solutions for competition and saturation binding experiments of test compounds and the radioligand were prepared in binding buffer.

For saturation binding experiments total binding was determined by addition of $10 \mu \mathrm{~L}$ buffer and solutions ($10 \mu \mathrm{~L}$) containing increasing concentrations (10-fold concentrated compared to cfinal) of $\left.{ }^{[3} \mathrm{H}\right]$ propionyl-pNPY. The unspecific binding was determined in the presence of the competitor 4.1 (200-fold excess compared to radioligand ($\left[{ }^{3} \mathrm{H}\right]$ propionyl-pNPY) concentrations. For determination of unspecific binding $10 \mu \mathrm{~L}$ of competitor and solutions containing increasing concentrations (10-fold concentrated compared to $\mathrm{C}_{\text {finall }}$) of $\left[{ }^{3} \mathrm{H}\right]$ propionyl-pNPY were added.

For competition binding experiments, increasing concentrations (10 -fold concentrated compared to Cfinal) of test compounds $(10 \mu \mathrm{~L})$ were added. After 15 min , the radioligand solution (10-fold concentrated compared to $\mathrm{C}_{\text {final }}=4 \mathrm{nM}$) was added in every well. Non-specific binding was determined in the presence of 200-fold excess of pNPY and total binding in binding buffer (at least one triplicate of non-specific and total binding was determined on every plate).

After 90 min of incubation (competition and saturation binding experiments) the buffer was removed by suction with a suction assistance device (Figure 4.13) and then the cells were washed three times with PBS, which was allowed to warm to rt. The cells were covered with $35 \mu \mathrm{~L}$ of lysis solution (8 M urea, 3 M acetic acid and $1 \%(\mathrm{~V} / \mathrm{m})$ Triton-X-100) and shaken for 30 min . Then, $200 \mu \mathrm{~L}$ of liquid scintillator (Optiphase Supermix) was added and the plates were shaken in the dark for at least 3 h , before measuring radioactivity (dpm) with a MicroBeta2 plate counter (Perkin-Elmer, Rodgau, Germany).

Figure 4.13. Suction assistance device for saturation binding of $\left[{ }^{3} \mathrm{H}\right]$ propionyl-pNPY and radioligand competition binding assay on HEK293T β Arr2 $+Y_{2} R$ cells. Engineering drawing (A), photo (B) and stereoscopic view of suction assistance device. Engineering drawing (A) and stereoscopic view were thankfully provided by Andreas Graf (Feinmechanische Werkstatt Chemie \& Pharmazie, Universität Regensburg).

4.4.5.4. β-Arrestin2 recruitment assay ($\mathrm{Y}_{2} \mathrm{R}$)

The β-arrestin2 recruitment assays were performed as described previously in the dissertation of J . Felixberger ${ }^{39}$ with modifications: luminescence was measured as a function of time on living cells instead of measuring luminescence after cell lysis.

The procedure was as follows: the day before the split-luciferase β-arrestin2 recruitment assay, the cells were detached by trypsinization and resuspended in Leibovitz's L-15 medium supplemented with 5\% FCS and HEPES (10 mM). For antagonist mode, a cell density of $1.43 \cdot 10^{6}$ cells $/ \mathrm{mL}$ was adjusted and $70 \mu \mathrm{~L}$ of this suspension were seeded into each well of a white flat bottom 96-well plate (Cellstar, Greiner Bio-One, Kremsmünster Österreich) (for agonist mode: $1.25 \cdot 10^{6}$ cells $/ \mathrm{mL} ; 80 \mu \mathrm{~L}$). D-Luciferin (K+ salt; Pierce, Thermo Scientific, Regensburg, Germany) was suspended in HBSS (Gibco, Thermo Scientific) in a concentration of 400 mM . Further dilution of the substrate up to 10 mM in Leibovitz's L-15 medium was prepared shortly prior to the experiment. The cells were cultivated at $37^{\circ} \mathrm{C}$ in a water saturated atmosphere (no additional CO_{2}). The dilutions of pNPY and ligands to be investigated were prepared in Leibovitz's L-15 medium containing 1\% BSA.

In agonist mode, a solution of D-Luciferin ($\mathrm{c}=10 \mathrm{mM}, 10 \mu \mathrm{~L}$) was added and the plate was incubated at $37^{\circ} \mathrm{C}$ for 20 min . Baseline luminescence of the cells was recorded with an integration time of 1000 ms per well (10 entire plate repeats). Solutions of ligands to be investigated ($10 \mu \mathrm{~L} ; 10$-fold concentrated compared to cfinal) were added at increasing concentrations followed by immediate measurement of luminescence (20 entire plate repeats with an integration time of 1000 ms).

In antagonist mode, a solution of D-Luciferin ($c=10 \mathrm{mM}, 10 \mu \mathrm{~L}$) and the solutions $(10 \mu \mathrm{~L})$ of the test compounds (10 -fold concentrated compared to Cfinal) at increasing concentrations were added, and the plate was incubated at $37^{\circ} \mathrm{C}$ for 20 min . Baseline luminescence was recorded with an integration time of 1000 ms per well (10 entire plate reads). Then, pNPY ($\mathrm{c}=2000 \mathrm{nM}, 10 \mu \mathrm{~L}$) was added followed by immediate measurement of luminescence (20 entire plate repeats with an integration time of 1000 ms). Before measuring, the plate reader was pre-heated at $37^{\circ} \mathrm{C}$. The Luminescence was measured using
a GENios Pro (Tecan, Grödig, Austria) or an Enspire (Perkin-Elmer, Rodgau, Germany) plate reader with an integration time of 1000 ms per well.

On every plate at least one triplicate of the 100% (response, corresponding to 200 nM pNPY) and the 0% control (neat buffer) were determined.

4.4.5.5. MiniG protein recruitment assay (ongoing doctoral thesis Carina Höring)

The day before a split-luciferase (miniG protein recruitment) assay, the cells were detached by trypsinization and resuspended in Leibovitz's L-15 medium containing 5\% FCS and 10 mM HEPES. A density of $1.43 \cdot 10^{6}$ cells $/ \mathrm{mL}$ was adjusted for the antagonist mode and $70 \mu \mathrm{~L}$ of this suspension were seeded into each well of a white flat bottom 96-well plate (Cellstar, Greiner Bio-one, Kremsmünster Österreich) (Agonist mode: $1.25 \cdot 10^{6}$ cells $/ \mathrm{mL} ; 80 \mu \mathrm{~L}$). The cells were cultivated at $37^{\circ} \mathrm{C}$ in a water saturated atmosphere (no additional CO_{2}). The dilutions of pNPY and investigated ligands were prepared in Leibovitz's L-15 medium containing 1% BSA. A solution of the luciferase substrate furimazine (Promega, Madison, WI, USA; Cat.-No.: N2012; $10 \mu \mathrm{~L}$), which was diluted according to the manufacturer's protocol beforehand, were added and the baseline luminescence of the cells was recorded with an integration time of 0.1 s per well for 30 entire plate reads using an Enspire (PerkinElmer, Rodgau, Germany) plate reader. The solutions of the investigated ligand at increasing concentrations $(10 \mu \mathrm{~L})$ in the antagonist mode were added, and a second luminescence baseline was recorded with an integration time of 0.1 s for 30 entire plate repeats. Then, pNPY ($C_{\text {final }}=50 \mathrm{nM}, 10 \mu \mathrm{~L}$) in the antagonist mode was added. Subsequently, the luminescence was recorded with an integration time of 0.1 s for 90 entire plate repeats.

The plate reader was pre-heated at $37^{\circ} \mathrm{C}$, before measuring. On every plate at least one triplicate of the 100% (response, corresponding to 50 nM pNPY) and the 0% control (neat buffer) were determined.

4.4.5.6. BRET based binding assay (ongoing doctoral thesis of Lukas Grätz)

The day before a BRET based equilibrium binding assay, the cells were detached by trypsinization and resuspended in Leibovitz's L-15 medium with 5% FCS and 10 mM HEPES (assay medium). A density of $1.43 \cdot 10^{6} \mathrm{cells} / \mathrm{mL}$ (saturation and competition binding) or $1.25 \cdot 10^{6} \mathrm{cells} / \mathrm{mL}$ (kinetic experiments) was adjusted and $70 \mu \mathrm{~L}$ (saturation and competition binding) or $80 \mu \mathrm{~L}$ (kinetic experiments) of these suspensions were seeded into each well of 96 -well plates (Brand GmbH \& Co. KG, Wertheim, Germany). Then, the cells were incubated at $37^{\circ} \mathrm{C}$ in a water saturated atmosphere (no additional CO_{2}) overnight to guarantee confluency ($>90 \%$) of the cells.

For saturation binding experiments, increasing concentrations (10-fold concentrated compared to cfinal) of the fluorescent ligand (4.85) and competitor 4.1 (100-fold excess compared to 4.85 for unspecific binding) were prepared in buffer (Leibovitz's L-15 medium containing 2\% BSA and 10 mM HEPES). Total binding was determined by adding $10 \mu \mathrm{~L}$ of 4.58 solution and $10 \mu \mathrm{~L}$ of buffer to the cells. For unspecific binding $10 \mu \mathrm{~L}$ of 4.58 solution and $10 \mu \mathrm{~L}$ of the competititor 4.1 were added to the cells. Then, the plate was incubated at $27^{\circ} \mathrm{C}$ for 30 min . A solution of the luciferase substrate furimazine (Promega, Madison, WI, USA; Cat.-No.: N2012; $10 \mu \mathrm{~L}$), which was diluted according to the manufacturer's protocol beforehand, was added. The measurement was started after an equilibration of 5 min .

Competition equilibrium binding experiments were performed as described above using the solutions of the investigated ligand in buffer at increasing concentrations ($10 \mu \mathrm{~L}$) and a solution of 10 -fold concentrated fluorescent ligand compared to $C_{\text {final }}\left(4.58\right.$; $\left.C_{\text {final }}=20 n M\right)$ in buffer were added. The plate was incubated at $27^{\circ} \mathrm{C}$ for 90 min , before the substrate furimazine (Promega; $10 \mu \mathrm{~L}$) was added.

For kinetic measurements $10 \mu \mathrm{~L}$ of Leibovitz's L-15 medium (for total binding) or 4.1 (100-fold excess compared to 4.58 for unspecific binding) were added to the cells. Then, the substrate (furimazine) was added and the plate was equilibrated for 5 min inside the reader. The association was started after addition of $50 \mu \mathrm{~L}$ of a 3 -fold concentrated solution compared to $\mathrm{C}_{\text {final }}$ of the fluorescent ligand 4.58 (Cfinal $=20 \mathrm{nM}$) to the cells and the measurement was performed for $35-90 \mathrm{~min}$. For dissociation experiments the cells were pre-incubated ($35-90 \mathrm{~min}$) with 4.58 as described above for association experiments. The dissociation started after addition of $50 \mu \mathrm{~L}$ of a 4 -fold concentrated solution compared to Cfinal of 4.1 (100-fold excess compared to 4.58) to the cells and the measurement was performed for 220-280 min.

All measurements were performed with a TECAN InfiniteLumi (Tecan) plate reader at $27^{\circ} \mathrm{C}$ using a Blue2 NB ($460 \mathrm{~nm} \pm 35 \mathrm{~nm}$) and the Red NB ($>610 \mathrm{~nm}$, longpass) filter combination or an GENios Pro (Tecan, Grödig, Austria) plate reader at $27^{\circ} \mathrm{C}$ using the following custom made filter combination from Chroma (Chroma Technology Corp, Vermont, USA): Chroma AT460/50 (460 nm $\pm 25 \mathrm{~nm}$) and the Chroma AT610lp (>610 nm, longpass) filter. An integration time of 100 ms was used for both plate readers. The integration time was increased to 500 ms , in order to reduce noise for all kinetic measurements.

4.4.5.7. Confocal microscopy

The cell culture dish was coated with poly-D-lysine (Sigma-Aldrich) prior to seeding of cells. For this purpose, the poly-D-lysine solution ($1 \mathrm{mg} / \mathrm{mL}, 1 \mathrm{~mL}$) was added, incubated at rt for 1 h and then washed with sterile water twice $(2 x 1 \mathrm{~mL})$.

The day before confocal microscopy studies, the HEK293T β Arr2 $+Y_{2} R$ cells were detached by trypsinization and resuspended in Leibovitz's L-15 medium with 5% FCS and 10 mM HEPES. A density of $0.5 \cdot 10^{6}$ cells $/ \mathrm{mL}$ was adjusted and 1 mL of this suspension was seeded in a cell culture dish ($35 \times 10 \mathrm{~mm}$; Cellstar, Greiner Bio-one, Kremsmünster Österreich) The cells were then incubated at $37^{\circ} \mathrm{C}$ in a water saturated atmosphere (no additional CO_{2}) overnight to reach full adherence of the cells.

The fluorescent ligand 4.58 ($\mathrm{C}_{\text {final }}=40 \mathrm{nM} ; 100 \mu \mathrm{~L}$ of 11 -fold concentrated compared to $\mathrm{C}_{\text {final }}$) was added into the cell dish. The image for total binding was acquired after 30 min . Then, the competitor 4.1 (Cfinal $=10,000 \mathrm{nM} ; 100 \mu \mathrm{~L} ; 12$-fold concentrated compared to $C_{\text {final }}$) or pNPY (Cfinal $=10,000 \mathrm{nM} ; 100 \mu \mathrm{~L}$; 12-fold concentrated compared to Cfinal) was added (into the same culture dish used for total binding) and the image was acquired after incubation of 4 h (unspecific binding). Unspecific binding was also determined by adding the fluorescent ligand 4.58 ($\mathrm{C}_{\text {final }}=40 \mathrm{nM}, 100 \mu \mathrm{~L}$) and the competitor 4.1 (Cfinal $=10,000 \mathrm{nM}, 100 \mu \mathrm{~L})$ or pNPY (Cfinal $=10,000 \mathrm{nM}, 100 \mu \mathrm{~L}$) at the same time into the culture dish. Then, total binding was performed by adding 4.58 (ctinal $=40 \mathrm{nM}, 100 \mu \mathrm{~L}$) and $100 \mu \mathrm{~L}$ Leibovitz's L-15 medium containing 1% BSA instead of the competitor. All feed solutions of 4.1, 4.58 and pNPY were prepared in Leibovitz's L-15 medium containing 1\% BSA.

Images were acquired with a Nikon eclipse 90i (Nikon Instruments Europe, Amstelveen, Netherlands) and a water immersion objective (Nikon NIR Apo, $60 \times 1.0 \mathrm{w}$) was used. The following settings were used: Laser $\lambda_{\text {ex }} 488$ nm; Filter 650 LP; Pinhole L (102.6 $\left.\mu \mathrm{m}\right)$; Gain 130.

4.4.5.8. Radioligand binding assay for $h Y_{1} R, h Y_{4} R$ and $h Y_{5} R$

All competition binding experiments at the $Y_{1} R$ were essentially performed as described by Keller et al. ${ }^{16}$ using $\left[{ }^{3} \mathrm{H}\right] 2.2$ (Cfinal $=0.15 \mathrm{nM}, K_{d}=0.044 \mathrm{nM}$) and SK-N-MC cells expressing the $\mathrm{Y}_{1} R$. At least two independent experiments were performed, each in triplicate.

All competition binding experiments at the $Y_{4} R$ were essentially performed as described by Kuhn et al. ${ }^{32}$ using [$\left.{ }^{3} \mathrm{H}\right]$ UR-KK200 (Ctinal $=1.0 \mathrm{nM}, K_{d}=0.67 \mathrm{nM}$) and CHO-hY4R-Gqi5-mtAEQ cells expressing the $\mathrm{Y}_{4} \mathrm{R}$ (cf. Chapter 6). Three independent experiments were performed, each in triplicate.

All competition binding experiments at the $Y_{5} R$ were essentially performed as described using $\left[{ }^{3} \mathrm{H}\right]$ propionyl-pNPY ($\mathrm{c}_{\text {final }}=4.0 \mathrm{nM}, K_{\mathrm{d}}=4.8 \mathrm{nM}$) and HEC-1B cells expressing the $\mathrm{Y}_{5} \mathrm{R}$. ${ }^{16,49}$ At least two independent experiments were performed, each in triplicate.

4.4.6. Data analysis

The retention factor k was calculated according to the equation: $k=\left(t_{\mathrm{R}}-t_{0}\right) / t_{0}\left(t_{\mathrm{R}}=\right.$ retention time; $t_{0}=$ dead time).

Specific binding data (dpm) from radioligand saturation binding experiments were plotted against the free radioligand concentration and analyzed by an equation describing hyperbolic binding (ligand binding - one-site saturation fit, GraphPad Prism 8) to obtain K_{d} and $B_{\max }$ values. The free radioligand concentration (nM) was calculated by subtracting the amount of specifically bound radioligand (nM) (calculated from the specifically bound radioligand in dpm, the specific activity, and the volume per well) from the total radioligand concentration.

Specific binding data from radioligand competition binding experiments with [$\left.{ }^{3} \mathrm{H}\right]$]propionyl-pNPY (Cfinal $=4 \mathrm{nM}$) were plotted as \% (100% = bound radioligand in the absence of competitor) over log(concentration competitor) and analyzed by four-parameter logistic fits (GraphPad Prism 8.0, GraphPad, San Diego, CA USA) to obtain pIC_{50} values, which were converted to $\mathrm{p} K_{\mathrm{i}}$ values according to the Cheng-Prusoff ${ }^{72}$ equation (logarithmic form) (used K_{d} value of $\left[{ }^{3} \mathrm{H}\right]$ propionyl-pNPY: 2.97 nM).

All raw data obtained in the β-arrestin2 recruitment assay were processed as follows: firstly, the measured luminescence after addition of agonist (20 repeats) was corrected to an average baseline (first 10 repeats without adding agonist; ratio = luminescence after addition of agonist/baseline luminescence) for each well. Secondly, the relative increase in luminescence (RLU) was obtained by baseline correction with the buffer control. The plateau value of each luminescence trace was plotted as RLU against log(concentration antagonist) and analyzed by four-parameter logistic fits (GraphPad Prism 8.0) to obtain pIC_{50} values, which were converted to $\mathrm{p} K_{\mathrm{b}}$ values according to the Cheng-Prusoff ${ }^{72}$ equation (logarithmic form) (used EC_{50} value of pNPY: 168 nM). A basal luminescence (buffer control, 0%) and response, corresponding to 200 nM pNPY (100\%) were included for normalization of the data (antagonist mode). In case of pNPY (agonist mode) data were normalized to the basal value (0%) and the maximal response of pNPY at a concentration of $10,000 \mathrm{nM}(100 \%)$.

All raw data obtained in the miniG protein recruitment assay were processed as follows: firstly, the measured luminescence after addition of agonist (90 repeats) was corrected with respect to the luminescence (RLU) of the last measured value ($30^{\text {th }}$ repeat) of the baseline (30 repeats; ratio $=$ luminescence after addition of agonist/baseline). Secondly, the relative increase in luminescence (RLU) was obtained by baseline correction with the buffer value. The area under the curve (AUC) of each luminescence trace was plotted as AUC against log(concentration antagonist) and analyzed by fourparameter logistic fits (GraphPad Prism version 8.0) to obtain pIC_{50} values, which were converted to $\mathrm{p} K_{b}$ values according to the Cheng-Prusoff ${ }^{2}$ equation (logarithmic form) (used EC_{50} value of pNPY: 3.35 nM). A basal luminescence (buffer control, 0%) and response, corresponding to 50 nM pNPY (100%) were included for subsequent normalization of the data (antagonist mode).

All raw data obtained in the BRET based binding assay were processed as follows: the ratios of the acceptor emission (460 nm) and the donor luminescence (610 nm) was formed (BRET ratio). The "corrected BRET ratio" in saturation binding experiments was obtained by subtracting the buffer control from every value (baseline-correction). Specific binding data from saturation binding experiments were plotted against the free fluorescent ligand concentration and analyzed by an equation describing hyperbolic binding (one site - specific binding, GraphPad Prism 8) to obtain K_{d} values. Unspecific binding was fitted by linear regression (GraphPad Prism 8).

The data from competition binding experiments were normalized to buffer control (0\%) and a 100\%control only containing fluorescent ligand without competitor. Specific binding data from BRET based competition binding experiments with 4.58 ($\mathrm{C}_{\text {final }}=20 \mathrm{nM}$) were plotted as $\% ~(100 \%=$ bound fluorescent ligand in the absence of competitor) over log(concentration competitor) and analyzed by four-parameter logistic fits (GraphPad Prism 8.0, GraphPad, San Diego, CA USA) to obtain pIC_{50} values, which were converted to $p K_{i}$ values according to the Cheng-Prusoff ${ }^{72}$ equation (logarithmic form) (used K_{d} value of 4.58: 17.9 nM).

The "corrected BRET ratios" in kinetic experiments was obtained by subtracting unspecific binding from total binding. Specific binding data from fluorescent ligand association experiments were analyzed by a two-parameter equation describing an exponential rise to a maximum (one phase - association, GraphPad Prism 8) to obtain the observed association rate constant (K_{obs}), and the resulting plateau value (maximum of specifically bound fluorescent ligand) was used to calculate specifically bound fluorescent ligand (B) in \%. Data from fluorescent ligand dissociation experiments in BRET based assays (\% specifically bound fluorescent ligand (B) plotted over time) were analyzed by a two-parameter equation describing a monophasic exponential decline (one phase - decay, GraphPad Prism 8) to obtain dissociation rate constants ($k_{\text {off }}$). The association rate constant (k_{on}) was calculated from $k_{\text {obs }}, k_{\text {off }}$, and the fluorescent ligand concentration ([FL]) according to the following correlation: $k_{\text {on }}=\left(k_{\text {obs }}-k_{\text {off }}\right) \cdot[F L]^{-1}$. The kinetically determined dissociation rate constant (K_{i} (kinetic)) was determined from dissociation ($K_{\text {off }}$) and association (K_{on}) rate constants ($K_{\mathrm{d}}=K_{\mathrm{off}} \cdot K_{o n}{ }^{-1}$). Propagated errors were calculated according to the Gaussian law of errors.

4.5. References

1. Iliopoulos-Tsoutsouvas, C.; Kulkarni, R. N.; Makriyannis, A.; Nikas, S. P. Fluorescent probes for G-protein-coupled receptor drug discovery. Expert Opin. Drug 2018, 13, 933-947.
2. Vernall, A. J.; Hill, S. J.; Kellam, B. The evolving small-molecule fluorescent-conjugate toolbox for Class A GPCRs. Br. J. Pharmacol. 2014, 171, 1073-1084.
3. Kamil, K.; Katarzyna, K.-K. Fluorescent GPCR Ligands as New Tools in Pharmacology. Curr. Med. Chem. 2008, 15, 2132-2143.
4. Kamil, J. K.; Katarzyna, K.-K. Fluorescent GPCR Ligands as New Tools in PharmacologyUpdate, Years 2008- Early 2014. Curr. Med. Chem. 2014, 21, 3962-3975.
5. Dautzenberg, F. M. Stimulation of neuropeptide Y-mediated calcium responses in human SMSKAN neuroblastoma cells endogenously expressing Y_{2} receptors by co-expression of chimeric G proteins. Biochem. Pharmacol. 2005, 69, 1493-1499.
6. Pluym, N.; Baumeister, P.; Keller, M.; Bernhardt, G.; Buschauer, A. [$\left.{ }^{3} \mathrm{H}\right] \mathrm{UR}$-PLN196: A Selective Nonpeptide Radioligand and Insurmountable Antagonist for the Neuropeptide Y Y Receptor. ChemMedChem 2013, 8, 587-593.
7. Pluym, N. Application of the Guanidine-Acylguanidine Bioisosteric Approach to NPY Y_{2} Receptors Antagonists: Bivalent, Radiolabeled and Fluorescent Pharmacological Tools. PhD Thesis, University of Regensburg, 2011.

Dollinger, H.; Esser, F.; Mihm, G.; Rudolf, K.; Schnorrenberg, G.; Gaida, W.; Doods, N. H. Neue substituierte Aminosäurederivate, Verfahren zu ihrer Herstellung und diese Verbindungen enthaltene pharmazeutische Zusammensetzungen. DE19816929A1, 1998.
9. Ziemek, R.; Brennauer, A.; Schneider, E.; Cabrele, C.; Beck-Sickinger, A. G.; Bernhardt, G.; Buschauer, A. Fluorescence- and luminescence-based methods for the determination of affinity and activity of neuropeptide Y_{2} receptor ligands. Eur. J. Pharm. 2006, 551, 10-18.
10. Cholewinski, M.; Lückel, B.; Horn, H. Degradation pathways, analytical characterization and formulation strategies of a peptide and a protein calcitonine and human growth hormone in comparison. Pharm. Acta Helv. 1996, 71, 405-419.
11. Manning, M. C.; Chou, D. K.; Murphy, B. M.; Payne, R. W.; Katayama, D. S. Stability of Protein Pharmaceuticals: An Update. Pharm. Res. 2010, 27, 544-575.

Weiss, S.; Keller, M.; Bernhardt, G.; Buschauer, A.; König, B. NG-Acyl-argininamides as NPY Y_{1} receptor antagonists: Influence of structurally diverse acyl substituents on stability and affinity. Bioorg. Med. Chem. 2010, 18, 6292-6304.

Keller, M.; Erdmann, D.; Pop, N.; Pluym, N.; Teng, S.; Bernhardt, G.; Buschauer, A. Redfluorescent argininamide-type NPY Y_{1} receptor antagonists as pharmacological tools. Bioorg. Med. Chem. 2011, 19, 2859-78.

Pluym, N.; Brennauer, A.; Keller, M.; Ziemek, R.; Pop, N.; Bernhardt, G.; Buschauer, A. Application of the Guanidine-Acylguanidine Bioisosteric Approach to Argininamide-Type NPY Y2 Receptor Antagonists. ChemMedChem 2011, 6, 1727-1738.
Brennauer, A.; Keller, M.; Freund, M.; Bernhardt, G.; Buschauer, A. Decomposition of 1-(ω aminoalkanoyl)guanidines under alkaline conditions. Tetrahedron Lett. 2007, 48, 6996-6999.
16. Keller, M.; Weiss, S.; Hutzler, C.; Kuhn, K. K.; Mollereau, C.; Dukorn, S.; Schindler, L.; Bernhardt, G.; König, B.; Buschauer, A. N^{ω}-Carbamoylation of the Argininamide Moiety: An Avenue to Insurmountable NPY Y_{1} Receptor Antagonists and a Radiolabeled Selective HighAffinity Molecular Tool ([3H]UR-MK299) with Extended Residence Time. J. Med. Chem. 2015, 58, 8834-8849.
17. Brennauer, A. Acylguanidines as bioisosteric groups in argininamide-type neuropeptide $Y Y_{1}$ and Y_{2} receptor antagonists: synthesis, stability and pharmacological activity. PhD Thesis, University of Regensburg, 2006.
18. Burkert, K.; Zellmann, T.; Meier, R.; Kaiser, A.; Stichel, J.; Meiler, J.; Mittapalli, G. K.; Roberts, E.; Beck-Sickinger, A. G. A Deep Hydrophobic Binding Cavity is the Main Interaction for Different Y_{2} R Antagonists. ChemMedChem 2017, 12, 75-85.
19. Merten, N.; Lindner, D.; Rabe, N.; Römpler, H.; Mörl, K.; Schöneberg, T.; Beck-Sickinger, A. G. Receptor subtype-specific docking of Asp6.59 with C-terminal arginine residues in Y receptor ligands. J Biol Chem 2007, 282, 7543-7551.
20. Berglund, M. M.; Fredriksson, R.; Salaneck, E.; Larhammar, D. Reciprocal mutations of neuropeptide Y receptor Y2 in human and chicken identify amino acids important for antagonist binding. FEBS Lett. 2002, 518, 5-9.
21. Kaiser, A.; Müller, P.; Zellmann, T.; Scheidt, H. A.; Thomas, L.; Bosse, M.; Meier, R.; Meiler, J.; Huster, D.; Beck-Sickinger, A. G.; Schmidt, P. Die Entfaltung der C-terminalen α-Helix des Neuropeptids Y ist entscheidend für die Bindung und Aktivierung des Y_{2}-Rezeptors. Angew. Chem. 2015, 127, 7554-7558.

Doods, H.; Gaida, W.; Wieland, H. A.; Dollinger, H.; Schnorrenberg, G.; Esser, F.; Engel, W.; Eberlein, W.; Rudolf, K. BIIE0246: A selective and high affinity neuropeptide $\mathrm{Y} \mathrm{Y}_{2}$ receptor antagonist. Eur. J. Pharm. 1999, 384, R3-R5.

England, C. G.; Ehlerding, E. B.; Cai, W. NanoLuc: A Small Luciferase Is Brightening Up the Field of Bioluminescence. Bioconjug. Chem. 2016, 27, 1175-1187.

Höfelschweiger, B. K. The Pyrylium Dyes: A New Class of Biolabels. Synthesis, Spectroscopy, and Application as Labelsand in general Protein Assay. PhD Thesis, University of Regensburg, Regensburg, 2005.

Wetzl, B. K.; Yarmoluk, S. M.; Craig, D. B.; Wolfbeis, O. S. Chameleon Labels for Staining and Quantifying Proteins. Angew. Chem. Int. Ed. 2004, 43, 5400-5402.
26. Carlson, R.; Larsson, U.; Hansson, L.; Nielsen, H. M.; Piedade, F. M.; Kady, M. M.; Christensen, S. B. Efficient Synthesis of Imines by a Modified Titanium Tetrachloride Procedure. Acta Chem. Scand. 1992, 46, 1211-1214.
27. Appel, R. Tertiary Phosphane/Tetrachloromethane, a Versatile Reagent for Chlorination, Dehydration, and P-N Linkage. Angew. Chem., Int. Ed. Engl. 1975, 14, 801-811.
28. Williamson, A. XLV. Theory of ætherification. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 1850, 37, 350-356.

Knoevenagel, E. Condensation von Malonsäure mit aromatischen Aldehyden durch Ammoniak und Amine. Ber. Dtsch. Chem. Ges. 1898, 31, 2596-2619.
30. Schmidt, W.; Vögtle, F.; Poetsch, E. Spiro units as building blocks in thermotropic liquid crystals: Synthesis and physical properties of terminally substituted spiro[5.5]undecanes. Liebigs Ann. 1995, 1995, 1319-1326.
31. Buschmann, J.; Seiler, T.; Bernhardt, G.; Keller, M.; Wifling, D. Argininamide-type neuropeptide $Y Y_{1}$ receptor antagonists: the nature of N^{ω}-carbamoyl substituents determines $Y_{1} R$ binding mode and affinity. RSC Med. Chem. 2020, 11, 274-282.
32. Kuhn, K. K.; Ertl, T.; Dukorn, S.; Keller, M.; Bernhardt, G.; Reiser, O.; Buschauer, A. High Affinity Agonists of the Neuropeptide Y (NPY) Y4 Receptor Derived from the C-Terminal Pentapeptide of Human Pancreatic Polypeptide (hPP): Synthesis, Stereochemical Discrimination, and Radiolabeling. J. Med. Chem. 2016, 59, 6045-6058.

Dukorn, S. Pharmacological tools for the NPY receptors: $\left[{ }^{35}\right.$ S]GTPyS binding assays, luciferase gene reporter assays and labeled peptides PhD Thesis, University of Regensburg, 2017.
34. Dukorn, S.; Littmann, T.; Keller, M.; Kuhn, K.; Cabrele, C.; Baumeister, P.; Bernhardt, G.; Buschauer, A. Fluorescence- and Radiolabeling of [Lys $\left.{ }^{4}, \mathrm{Nle}^{17,30}\right] \mathrm{hPP}$ Yields Molecular Tools for the NPY Y4 Receptor. Bioconjug. Chem. 2017, 28, 1291-1304.

Huang, W.; Manglik, A.; Venkatakrishnan, A. J.; Laeremans, T.; Feinberg, E. N.; Sanborn, A. L.; Kato, H. E.; Livingston, K. E.; Thorsen, T. S.; Kling, R. C.; Granier, S.; Gmeiner, P.; Husbands, S. M.; Traynor, J. R.; Weis, W. I.; Steyaert, J.; Dror, R. O.; Kobilka, B. K. Structural insights into μ-opioid receptor activation. Nature 2015, 524, 315-321.

Liu, W.; Chun, E.; Thompson, A. A.; Chubukov, P.; Xu, F.; Katritch, V.; Han, G. W.; Roth, C. B.; Heitman, L. H.; IJzerman, A. P.; Cherezov, V.; Stevens, R. C. Structural Basis for Allosteric Regulation of GPCRs by Sodium Ions. Science 2012, 337, 232-236.
37. Miller-Gallacher, J. L.; Nehmé, R.; Warne, T.; Edwards, P. C.; Schertler, G. F. X.; Leslie, A. G. W.; Tate, C. G. The $2.1 \AA$ Resolution Structure of Cyanopindolol-Bound β_{1}-Adrenoceptor Identifies an Intramembrane Na^{+}Ion that Stabilises the Ligand-Free Receptor. PLOS ONE 2014, 9, e92727.

Gerald, C.; Walker, M. W.; Vaysse, P. J.; He, C.; Branchek, T. A.; Weinshank, R. L. Expression cloning and pharmacological characterization of a human hippocampal neuropeptide Y/peptide YY Y2 receptor subtype. J Biol Chem 1995, 270, 26758-61.

Felixberger, J. Luciferase complementation for the determination of arrestin recruitment: Investigation at histamine and NPY receptors. PhD Thesis, University of Regensburg, 2014. Lohse, M. J.; Nuber, S.; Hoffmann, C. Fluorescence/Bioluminescence Resonance Energy Transfer Techniques to Study G-Protein-Coupled Receptor Activation and Signaling. Pharmacol. Rev. 2012, 64, 299-336.
41. Stoddart, L. A.; Kilpatrick, L. E.; Hill, S. J. NanoBRET Approaches to Study Ligand Binding to GPCRs and RTKs. Trends Pharmacol. Sci. 2018, 39, 136-147.

Mullins, D.; Adham, N.; Hesk, D.; Wu, Y.; Kelly, J.; Huang, Y.; Guzzi, M.; Zhang, X.; McCombie, S.; Stamford, A.; Parker, E. Identification and characterization of pseudoirreversible nonpeptide antagonists of the neuropeptide $\mathrm{Y} \mathrm{Y}_{5}$ receptor and development of a novel Y_{5}-selective radioligand. Eur. J. Pharm. 2008, 601, 1-7.

ICRP. 1977. Recommendations of the ICRP. ICRP Publication 26. Ann. ICRP 1 (3)
44. ICRP. 2007. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP 37 (2-4).
45. Dautzenberg, F. M.; Neysari, S. Irreversible Binding Kinetics of Neuropeptide Y Ligands to Y_{2} but Not to Y_{1} and Y_{5} Receptors. Pharmacology 2005, 75, 21-29.
46. Shoblock, J. R.; Welty, N.; Nepomuceno, D.; Lord, B.; Aluisio, L.; Fraser, I.; Motley, S. T.; Sutton, S. W.; Morton, K.; Galici, R.; Atack, J. R.; Dvorak, L.; Swanson, D. M.; Carruthers, N. I.; Dvorak, C.; Lovenberg, T. W.; Bonaventure, P. In vitro and in vivo characterization of JNJ-31020028 (N-(4-\{4-[2-(diethylamino)-2-oxo-1-phenylethyl]piperazin-1-yl\}-3-fluorophenyl)-2-pyridin-3ylbenzamide), a selective brain penetrant small molecule antagonist of the neuropeptide $\mathrm{Y} \mathrm{Y}_{2}$ receptor. J. Psychopharmacol. 2009, 208, 265.
47. Kuhn, K. Molecular Tools for the NPY Y4 Receptor Derived from the C-terminus of hPP and from Arginineamide-type Y_{1} R Antagonists. PhD Thesis, University of Regensburg, 2017.
48. Schneider, E.; Mayer, M.; Ziemek, R.; Li, L.; Hutzler, C.; Bernhardt, G.; Buschauer, A. A Simple and Powerful Flow Cytometric Method for the Simultaneous Determination of Multiple Parameters at G Protein-Coupled Receptor Subtypes. ChemBioChem 2006, 7, 1400-1409.
49. Moser, C.; Bernhardt, G.; Michel, J.; Schwarz, H.; Buschauer, A. Cloning and functional expression of the hNPY Y_{5} receptor in human endometrial cancer (HEC-1B) cells. Can. J. Physiol. Pharmacol. 2000, 78, 134-42.
50. Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist. Organometallics 2010, 29, 2176-2179.
51. Yang, Q.; Sheng, M.; Henkelis, J. J.; Tu, S.; Wiensch, E.; Zhang, H.; Zhang, Y.; Tucker, C.; Ejeh, D. E. Explosion Hazards of Sodium Hydride in Dimethyl Sulfoxide, N,NDimethylformamide, and N,N-Dimethylacetamide. Org. Process Res. Dev. 2019, 23, 22102217.

Ip, H.-W.; Ng, C.-F.; Chow, H.-F.; Kuck, D. Three-Fold Scholl-Type Cycloheptatriene Ring Formation around a Tribenzotriquinacene Core: Toward Warped Graphenes. J. Am. Chem. Soc. 2016, 138, 13778-13781.
53. Fan, J.; Wan, C.; Wang, Q.; Gao, L.; Zheng, X.; Wang, Z. Palladium catalyzed isomerization of alkenes: a pronounced influence of an o-phenol hydroxyl group. Org. Biomol. Chem. 2009, 7, 3168-3172.
54. Presset, M.; Paul, J.; Cherif, G. N.; Ratnam, N.; Laloi, N.; Léonel, E.; Gosmini, C.; Le Gall, E. Col-Catalyzed Barbier Reactions of Aromatic Halides with Aromatic Aldehydes and Imines. Chem. Eur. J. 2019, 25, 4491-4495.
55. Sasse, B. C.; Mach, U. R.; Leppaenen, J.; Calmels, T.; Stark, H. Hybrid approach for the design of highly affine and selective dopamine D_{3} receptor ligands using privileged scaffolds of biogenic amine GPCR ligands. Bioorg. Med. Chem. 2007, 15, 7258-7273.
56. Perlmutter, J. I.; Forbes, L. T.; Krysan, D. J.; Ebsworth-Mojica, K.; Colquhoun, J. M.; Wang, J. L.; Dunman, P. M.; Flaherty, D. P. Repurposing the Antihistamine Terfenadine for Antimicrobial Activity against Staphylococcus aureus. J. Med. Chem. 2014, 57, 8540-8562.
57. Gobbo, P.; Gunawardene, P.; Luo, W.; Workentin, M. S. Synthesis of a Toolbox of Clickable Rhodamine B Derivatives. Synlett 2015, 26, 1169-1174.
58. Flack, T.; Romain, C.; White, A. J. P.; Haycock, P. R.; Barnard, A. Design, Synthesis, and Conformational Analysis of Oligobenzanilides as Multifacial α-Helix Mimetics. Org. Lett. 2019, 21, 4433-4438.
59. Porter, N. J.; Shen, S.; Barinka, C.; Kozikowski, A. P.; Christianson, D. W. Molecular Basis for the Selective Inhibition of Histone Deacetylase 6 by a Mercaptoacetamide Inhibitor. ACS Med. Chem. Lett. 2018, 9, 1301-1305.
60. Dhainaut, A.; Regnier, G.; Atassi, G.; Pierre, A.; Leonce, S.; Kraus-Berthier, L.; Prost, J. F. New triazine derivatives as potent modulators of multidrug resistance. J. Med. Chem. 1992, 35, 24812496.
61. Waring, W. S.; Whittle, B. A. Basic dihydromorphanthridinones with anticonvulsant activity. J. Pharm. Pharmacol. 1969, 21, 520-530.

Ma, L.; Yuan, L.; Xu, C.; Li, G.; Tao, M.; Zhang, W. An Efficient Synthesis of 2-Aminothiophenes via the Gewald Reaction Catalyzed by an N-Methylpiperazine-Functionalized Polyacrylonitrile Fiber. Synthesis 2013, 45, 45-52.

Yestrepsky, B. D.; Xu, Y.; Breen, M. E.; Li, X.; Rajeswaran, W. G.; Ryu, J. G.; Sorenson, R. J.; Tsume, Y.; Wilson, M. W.; Zhang, W.; Sun, D.; Sun, H.; Larsen, S. D. Novel inhibitors of bacterial virulence: Development of 5,6-dihydrobenzo[h]quinazolin-4(3H)-ones for the inhibition of group A streptococcal streptokinase expression. Bioorg. Med. Chem. 2013, 21, 1880-1897.
64. El Batran, S. A.; Osman, A. E. N.; Ismail, M. M.; El Sayed, A. M. Synthesis and evaluation of 2,6-piperidinedione derivatives as potentially novel compounds with analgesic and other CNS activities. Inflammopharmacology 2006, 14, 62-71.
65. Cao, G.; Wu, W. Preparation method of 1,1-cyclohexanediacetic acid CN20091095241, 2009.
66. Wu, J.; He, L.; Noble, A.; Aggarwal, V. K. Photoinduced Deaminative Borylation of Alkylamines. J. Am. Chem. Soc. 2018, 140, 10700-10704.
67. Müller, S.; Webber, M. J.; List, B. The Catalytic Asymmetric Fischer Indolization. J. Am. Chem. Soc. 2011, 133, 18534-18537.
68. Ziemek, R.; Schneider, E.; Kraus, A.; Cabrele, C.; Beck-Sickinger, A. G.; Bernhardt, G.; Buschauer, A. Determination of Affinity and Activity of Ligands at the Human Neuropeptide Y Y4 Receptor by Flow Cytometry and Aequorin Luminescence. J. Recept. Signal Transduct. Res. 2007, 27, 217-233.

Keller, M.; Bernhardt, G.; Buschauer, A. [$\left.{ }^{3} \mathrm{H}\right]$ UR-MK136: A Highly Potent and Selective Radioligand for Neuropeptide $Y Y_{1}$ Receptors. ChemMedChem 2011, 6, 1566-1571.
70. Ai, H.; Mills, D. K.; Jonathan, A. S.; Jones, S. A. Gelatin-glutaraldehyde cross-linking on silicone rubber to increase endothelial cell adhesion and growth. In Vitro Cell. Dev. Biol. Anim. 2002, 38, 487-92.
71. Bernhardt, G.; Reile, H.; Birnböck, H.; Spruß, T.; Schönenberger, H. Standardized kinetic microassay to quantify differential chemosensitivity on the basis of proliferative activity. J. Cancer Res. Clin. Oncol. 1992, 118, 35-43.
72. Yung-Chi, C.; Prusoff, W. H. Relationship between the inhibition constant (K_{I}) and the concentration of inhibitor which causes 50 per cent inhibition (I_{50}) of an enzymatic reaction. Biochem. Pharmacol. 1973, 22, 3099-3108.

Chapter 5

In search of labelled $Y_{2} R$ antagonists: Synthesis and pharmacological characterization of labelling precursors and "cold" forms of potential $Y_{2} R$ radioligands obtained by modification of the (S)-argininamide BIIE-0246 at the dibenzoazepinone moiety

[^2]
5.1. Introduction

Over the last decade, several radioligands (Table 5.1) and their "cold" forms derived from the (S)-argininamide-type $\mathrm{Y}_{2} R$ antagonist 4.1^{1} by bioisosteric replacement of the guanidine group by an acylguanidine ($4 . \mathbf{2}^{2}$ and 5.1^{2}) or carbamoylguanidine ($5.2^{3,4}$) moiety have been prepared in our group. It is notable that in contrast to the carbamoylguanidine approach, the use of acylguanidines is unfavourable due to the limited chemical stability of acylguanidines at neutral pH and, in particular, under basic conditions. ${ }^{5}$

Table 5.1. Structures and $Y_{2} R$ affinities of BIIE-0246 (4.1), the structurally related radioligands $\left[{ }^{3} \mathrm{H}\right] 4.2,\left[{ }^{3} \mathrm{H}\right] 5.1$ and $\left[{ }^{3} \mathrm{H}\right] 5.2$ and the potential radioligands ("cold" forms) 4.23, 4.24 and 4.27.
(

The binding affinities ($\mathrm{p} K_{\mathrm{i}}$) of 4.23, 4.24 and 4.27 were determined in a radioligand competition binding assay using [${ }^{3} \mathrm{H}$]propionylpNPY ($c_{\text {final }}=4 \mathrm{nM}, K_{\mathrm{d}}=2.97 \mathrm{nM}$) and HEK293T hY ${ }_{2} \mathrm{R}+\beta$ Arr2 cells (cf. Chapter 4). References: (a) Dautzenberg, ${ }^{6} K_{\mathrm{i}}$ value was determined using [${ }^{125}$]PYY (ctinal $=0.10 \mathrm{nM}, K_{\mathrm{d}}=0.08 \mathrm{nM}$) and membranes from SMS-KAN cells. (b) Pluym et al., ${ }^{2}$ the reported K_{d} value of $\left[{ }^{3} \mathrm{H}\right] 4.2$ was determined by saturation binding experiments in living $\mathrm{CHO}-\mathrm{h} \mathrm{Y}_{2}-\mathrm{G}_{\mathrm{iq} 5}-\mathrm{mt} \mathrm{AEQ}$ cells and the reported K_{i} values of 4.2 and 5.1 were determined in a flow cytometric binding assay using Cy5-pNPY ($\mathrm{c}=5 \mathrm{nM}, K_{\mathrm{d}}=5.4 \mathrm{nM}$) and CHO$h Y_{2}-G_{i g 5}-m t A E Q$ cells. (c) Baumeister, PhD Thesis, University of Regensburg, 2014, ${ }^{4}$ the reported K_{d} value of $\left[{ }^{3} \mathrm{H}\right] 5.1$ was determined by saturation binding experiments in living $\mathrm{CHO}-\mathrm{h} \mathrm{Y}_{2}-\mathrm{G}_{\mathrm{ig} 5}-\mathrm{mtAEQ}$ cells. (d) Pluym, PhD Thesis, University of Regensburg, 2011, ${ }^{3}$ the reported K_{i} value of 5.2 was determined in a flow cytometric binding assay using Cy5-pNPY ($\mathrm{c}=5 \mathrm{nM}$, $K_{\mathrm{d}}=5.4 \mathrm{nM}$) and $\mathrm{CHO}-\mathrm{h} \mathrm{Y}_{2}-\mathrm{G}_{\mathrm{iq} 5}-\mathrm{mtAEQ}$ cells. Reported $K_{\mathrm{i}}\left(K_{\mathrm{d}}\right)$ values were converted to $\mathrm{p} K_{\mathrm{i}}\left(\mathrm{p} K_{\mathrm{d}}\right)$ values. n.a. not applicable.

Notably, competition binding studies with pNPY and the radioligands $\left[{ }^{3} \mathrm{H}\right] 4.2$ and $\left[{ }^{3} \mathrm{H}\right] 5.1$ yielded considerably lower $\mathrm{p} K_{\mathrm{i}}$ values for pNPY compared to competition binding assays using $\left.{ }^{3}{ }^{3} \mathrm{H}\right]$ propionyl-pNPY or Cy5-pNPY as labelled ligand. ${ }^{2,4}$ In view of a more favourable $\mathrm{hY} \mathrm{Y}_{2} \mathrm{R}$ radioligand, the synthesized and pharmacologically characterized compound 4.23 (synthesis see Chapter 4) represents the "cold" form of a radioligand potentially exhibiting more favourable binding characteristics at the $\mathrm{Y}_{2} \mathrm{R}$. To enable tritium-labelling in the last synthesis step using commercially available [$\left.{ }^{3} \mathrm{H}\right]$ methyl iodide or $\left[{ }^{3} \mathrm{H}\right]$ methyl nosylate (to give $\left[{ }^{3} \mathrm{H}\right]$ UR-jb206 $\left(\left[{ }^{[} \mathrm{H}\right] 4.23\right)$), a precursor is required that contains a phenolic hydroxy group instead of the methoxy group found in 4.23 .

The dibenzoazepinone-benzhydryl approach i.e. bioisosteric replacement of the dibenzoazepinone scaffold in 4.1 by a benzhydryl moiety (cf. Chapter 4), resulted in several compounds that represent "cold" forms of potential radioligands (4.23, 4.24 and 4.27) and an amino-functionalized precursor (4.50), which can be used for the synthesis of "cold" forms of potential radiotracers. In this chapter, the synthesis
of the phenolic precursors of 4.23, 4.24 and 4.27 and their pharmacological characterization in radioligand competition binding studies and β-arrestin2 recruitment assays is described. Moreover, the amino precursor 4.50 (synthesis described in Chapter 4) was converted to potential radioligands ("cold" forms) by methylation, propionylation and 2 -fluoroacetylation. These derivatives were also pharmacologically characterized. Additionally, the chemical stability was investigated in 25 mM HEPES buffer (pH 7) for selected compounds.

5.2. Results and discussion

5.2.1. Synthesis

The synthesis of compounds $4.15,4.16,4.34,4.42,4.43,4.50$ and 4.52 was previously described in chapter 4 (cf. 4.2.1.). Compounds 5.9, 5.12 and 5.20 were synthesized from the respective hydroxy substituted benzophenones 4.42, 4.43 and 4.52 (Scheme 5.1).

Scheme 5.1. Synthesis of the phenolic precursors 5.9, 5.12 and 5.20. Reagents and conditions. (a) tert-butyldimethylsilyl chloride, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 53-62 \%$; (b) $\mathrm{NaBH}_{4}, \mathrm{MeOH}, 89-93 \%$; (c) (1) methanesulfonyl chloride, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, (2) piperazine, acetonitrile, microwave device ($70^{\circ} \mathrm{C}, 30 \mathrm{~min}$), 62%; (d) (1) EDC•HCI, HOBt , DMF, (2) TFA/ $\mathrm{H}_{2} \mathrm{O} 95: 5,16 \%$; (e) $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 63 \%$; (f) TBAF, THF, 100\%; (g) (1) EDC•HCI, HOBt, DMF, (2) TFA/H $\mathrm{H}_{2} \mathrm{O} 95: 5,24 \%$; (h) tert-butyldimethylsilyl chloride, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, 85%; (i) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, 79 \%$; (j) benzyl bromide, $\mathrm{K}_{2} \mathrm{CO}_{3}$, acetonitrile, microwave device ($80{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$), 70%; (k) $\mathrm{NaBH}_{4}, \mathrm{MeOH}$, 95%; (I) (1) methanesulfonyl chloride , $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, (2) piperazine, acetonitrile, microwave device ($70{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}$), 53%; (m) H_{2} (10 bar), $\mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, 44 \%$; (n) (1) EDC•HCl, HOBt, DMF, (2) TFA/H2O 95:5, 8\%.

Firstly, the phenolic hydroxy groups of $4.42,4.43$ and 4.52 were protected using tert-butylmethylsilyl chloride to give silyl ethers 5.3, 5.4 and 5.13 in moderate to good yields. Secondly, (3-((tertbutyldimethylsilyl)oxy)phenyl)(phenyl)methanone (5.3) and (4-((tert-butyldimethylsilyl)oxy)phenyl)(phenyl)methanone (5.4) were converted to the respective alcohols (5.5 and 5.6) in excellent yields,
using sodium borohydride in methanol. The benzhydryl alcohols 5.5 and 5.6 were converted to the respective mesylates by use of methanesulfonyl chloride in dichloromethane and then treated with piperazine in acetonitrile (microwave device) to form amines 5.7 and 5.8.

Compound 5.9 was obtained by amide bond formation between 5.7 and the carboxylic acid 4.14 in DMF at $r t$ using EDC•HCI and HOBt as coupling reagents (Scheme 5.1), followed by treatment with aqueous TFA (95:5) to cleave the Pbf and TBS protecting groups. Amine 5.8 was treated with 3,3-tetramethylenglutaric anhydride 4.14 to form the carboxylic acid 5.10. The TBS protecting group of 5.10 was removed in a solution of TBAF in THF to give the phenol 5.11 in moderate yield. Consecutively, the carboxylic acid 5.11, activated using EDC•HCl and HOBt was coupled to (S)-arginine derivative 4.16 to give 5.12.

The reduction of (2-((tert-butyldimethylsilyl)oxy)phenyl)(phenyl)methanone 5.13, intended to give 5.14, failed using sodium borohydride. Furthermore, the compound 5.15 instead of 5.14 was obtained using palladium on activated charcoal and hydrogen (Scheme 5.1). Compound 5.15 was identified by ${ }^{1} \mathrm{H}-/{ }^{13} \mathrm{C}$ NMR and HRMS. Therefore, the phenolic hydroxy group in 4.42 was benzyl protected using benzyl bromide and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in DMF (microwave device). The product, benzyl ether 5.16 , was reduced to alcohol 5.17 in excellent yields using methanol as solvent and sodium borohydride as reducing agent. Piperazine 5.18 was synthesized as previously described for compounds 5.7 and 5.8 , starting from benzhydryl alcohol 5.17. Compound 5.19 was obtained by removal of the benzyl protecting group of 5.18 using palladium on activated charcoal and hydrogen in methanol. Amide bond formation between 4.16 and 5.19, and subsequent Pbf removal was performed as described for 4.9 and 4.12. These conditions gave 5.20 in low yield (Scheme 5.1).

Scheme 5.2. Synthesis of N-methylated compounds 5.29 and 5.30. Reagents and conditions. (a) (1) benzaldehyde toluene, reflux (2) Mel, reflux, (3) $\mathrm{H}^{+} / \mathrm{H}_{2} \mathrm{O}$, reflux, (4) $\mathrm{NaOH}, \mathrm{Boc}_{2} \mathrm{O}$, yield was not determined; (b) $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 73 \%$; (c) tertbutyldimethylsilyl chloride, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 95 \%$; (d) (1) NaH ; THF, $0^{\circ} \mathrm{C}, 15 \mathrm{~min}$ (2) Mel, THF, rt, $24 \mathrm{~h}, 52 \%$; (e) TBAF, THF, 50\%; (f) $\mathrm{CBr}_{4}, \mathrm{PPh}_{3}, \mathrm{THF}, 98 \%$; (g) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DMF}, 52 \%$; (h) $\mathrm{NaBH}_{4}, \mathrm{MeOH}, 100 \%$; (i) (1) methanesulfonyl chloride , $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, (2) piperazine, acetonitrile, microwave device ($70^{\circ} \mathrm{C}, 30 \mathrm{~min}$), 80%; (j) (1) EDC•HCI, HOBt, DMF, (2) TFA/ $\mathrm{H}_{2} \mathrm{O} 95: 5,20 \%$; (k) methyl 4-nitrobenzenesulfonate, $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, 59\%.

For selective mono methylation of the primary amine 4.33, two strategies were applied (Scheme 5.2). Firstly, to avoid overalkylation, 5-aminopentanol (4.33) and benzaldehyde were heated using a DeanStark apparatus to form an imine in situ, followed by the addition of methyl iodide. Consecutively, the
reaction mixture was acidified with aqueous HCl for hydrolysis of the imine. The aqueous phase was washed with diethyl ether twice, in order to remove benzaldehyde to obtain 5.21.

Compound 5.21 could not be extracted from the aqueous phase. Therefore, the reaction mixture was basified with $\mathrm{NaOH}(1 \mathrm{~N})$ and $\mathrm{Boc}_{2} \mathrm{O}$ was added to obtain 5.22. Unfortunately, purification of 5.22 by column chromatography failed.

Due to purification problems, a second synthesis route was applied to obtain 5.22 in a four-step synthesis route starting from 4.33. For this purpose, tert-butyl (5-hydroxypentyl)carbamate (4.34) was treated with tert-butyldimethylsilyl chloride to give the silyl ether 5.23 in excellent yield. Mono-alkylation of 5.23 was performed using sodium hydride and methyl iodide to give 5.24 (Scheme 5.2). tert-Butyl (5-hydroxypentyl)(methyl)carbamate (5.22) was afforded by cleavage of the TBS group using TBAF. Alcohol 5.22 was then converted to the bromide (Appel reaction ${ }^{7}$). Compound 5.26 was synthesized in a Williamson ether synthesis from the intermediates 4.21 and 5.25 . The ketone 5.26 was converted to alcohol 5.27 in excellent yields using NaBH_{4} in methanol.

Furthermore, the synthesis of amine 5.28 was performed as already described for 5.7 and 5.8 in a twostep synthesis. The alcohol 5.27 was converted to the mesylate and subsequently coupled with piperazine. Compound 5.29 was synthesized by amide bond formation as described for 5.9 and 5.20 using coupling reagents (EDC•HCl and HOBt) and subsequent removal of the Pbf group.

Overalkylation of 5.29 using methyl 4-nitrobenzenesulfonate lead to 5.30 (Scheme 5.2).

Scheme 5.3. Synthesis of potential "cold" forms of radiotracers 5.31 and 5.32. Reagents and conditions. (a) Et $\mathrm{N}, \mathrm{DMF}, 92 \%$; (b) $\mathrm{DCC}, \mathrm{Et}_{3} \mathrm{~N}, 42 \%$.

Propionamide 5.31 and 2-fluoroacetamide 5.32 were synthesized from amine 4.50 by amide bond formation using succinimidyl propionate (2.44) and 2-fluoroacetic acid (2.46) activated by DCC, respectively (Scheme 5.3). Compound 5.32 represents the "cold" form of a potential $Y_{2} R$ PET ligand.

5.2.2. Investigation of the chemical stability of $4.23,4.24,4.27,5.30$ and 5.32

The stability of selected (S)-argininamides (4.23, 4.24, 4.27, 5.30 and 5.32) was investigated in the buffer (25 mM HEPES, $2.5 \mathrm{mM} \mathrm{CaCl} 2,1 \mathrm{mM} \mathrm{MgCl} 2, \mathrm{pH} 7$) used for [$\left.{ }^{3} \mathrm{H}\right]$ propionyl-pNPY displacement studies at the $Y_{2} R$ (cf. 4.2.4.1. and 5.2.3.1.). Compounds 4.23, 4.24, 4.27, 5.9, 5.30 and 5.32 were obtained as diastereomers due to the applied synthesis route. The diastereomers were not apparent in the chromatograms of the reversed-phase HPLC (220 nm) analysis. (S)-Argininamide-type $\mathrm{Y}_{2} \mathrm{R}$ antagonists 4.23, 4.24, 4.27, 5.9, 5.30 and $5.32(100 \mu \mathrm{M})$ were incubated at r for 24 h . Prior to analytical RP-HPLC (220 nm) analysis the solution was diluted (1:1) with 10% aq. TFA. Analyses were performed after $0 \mathrm{~h}, 1 \mathrm{~h}, 2 \mathrm{~h}, 4 \mathrm{~h}, 8 \mathrm{~h}$ and 24 h . The procedure was described in the literature ${ }^{8}$ (cf. 2.4.3.) and slightly modified as described in chapter 4 (cf. 4.4.2.).

All investigated compounds proved to be stable (chromatograms of 4.23, 4.24, 4.27, 5.9 and 5.32 see Figure 5.1 and $c f$. Figure 8.5 (8.4.1.1.) for 5.9 and 5.30) at pH 7 . Future studies should investigate plasma stability to explore possible enzymatic degradation of the compounds.

Figure 5.1. Chromatograms of the reversed-phase HPLC (220nm) analysis of phenol ethers (A) 4.23, (B) 4.24, (C) 4.27 and the propionylated compound (D) 5.32 after incubation in a 25 mM HEPES buffer (pH 7.0) at rt for up to $24 \mathrm{~h} .4 .23,4.24,4.27$ and 5.32 proved to be stable.

5.2.3. Pharmacological methods: $Y_{2} R$ affinity ($p K_{i}$) and antagonism ($p K_{b}$) of synthesized (S)-argininamides

(S)-Argininamides $5.9,5.12,5.20,5.29$ and 5.31 were investigated in a competition radioligand binding assay to determine their $Y_{2} R$ affinities (5.2.3.1.). Furthermore, $Y_{2} R$ affinities ($p K_{i}$) of compounds 4.24, 5.29 and 5.30-5.31 were determined in a BRET based binding assay (5.2.3.2.), $\mathrm{Y}_{2} R$ antagonism ($\mathrm{p} K_{\mathrm{b}}$) of $5.9,5.12,5.20$ and $5.29-5.31$ was studied in a β-arrestin2 recruitment assay (5.2.3.3.).

5.2.3.1. Determination of $p K_{i}$ values in a radioligand binding assay in HEK293ThY Y_{2} + β Arr2 cells

The radioligand competition binding assay was performed according to the literature ${ }^{9}$ with minor modifications (cf. 4.2.4.1.) in living HEK293T hY2R $+\beta A r r 2$ cells ${ }^{10}$ using $\left[{ }^{3} \mathrm{H}\right]$ propionyl-pNPY (Cfinal $=4 \mathrm{nM}, K_{d}=2.97 \mathrm{nM}$) in sodium-free binding buffer (competition binding curves shown in Figure $5.2, \mathrm{p} K_{\mathrm{i}}$ values summarized in Table 5.2).

Figure 5.2. Displacement curves of $\left[{ }^{3} \mathrm{H}\right]$ propionyl-pNPY ($\mathrm{c}_{\text {final }}=4 \mathrm{nM}, K_{d}=2.97 \mathrm{nM}$) obtained from competition binding studies with (A) 4.1, 5.9, 5.12, 5.20, (B) 4.50, 5.29 and 5.31 in HEK293T $h Y_{2} R+\beta$ Arr2 cells. Data are presented as means \pm SEM from at least two independent experiments, each performed in triplicate.

The affinity ($\mathrm{p} K_{\mathrm{i}}$) of 2-methoxysubstituted compound 4.23 was slightly lower compared to that of the phenolic precursor 5.20 (Table 5.2). In addition, $Y_{2} R$ affinities of the phenolic precursors of 3-hydroxy (5.9) and 4-hydroxy (5.20) substituted derivatives were higher (around one order of magnitude compared to the respective 3 - or 4-methoxy substituted compounds).

Table 5.2. $\mathrm{Y}_{2} R$ affinities $\left(\mathrm{p} K_{\mathrm{i}}\right)$ of synthesized (S)-argininamids determined in equilibrium competition binding with [$\left.{ }^{3} \mathrm{H}\right]$ propionyl-pNPY.

Compound	$\mathrm{p} K_{i} \pm \mathrm{SEM}^{\mathrm{a}}$	N	Compound	$\mathrm{p} K_{i} \pm \mathrm{SEM}^{\mathrm{a}}$	N
4.1	8.06 ± 0.11	2	5.9	7.20 ± 0.20	2
4.23	7.39 ± 0.13	3	5.12	7.77 ± 0.10	2
4.24	6.81 ± 0.23	3	5.20	6.73 ± 0.15	3
4.27	6.26 ± 0.03	3	5.29	7.12 ± 0.31	2
4.50	7.06 ± 0.09	4	5.31	6.34 ± 0.08	3

${ }^{\text {a }}$ Radioligand competition binding assay with $\left[{ }^{3} \mathrm{H}\right]$ propionyl-pNPY $\left(c_{\text {final }}=4.0 \mathrm{nM}, K_{d}=2.97 \mathrm{nM}\right)$ in intact HEK293T hY ${ }_{2} \mathrm{R}+\beta$ Arr2
cells. Mean values \pm SEM from at least N independent experiments, each performed in triplicate.
As previuosly described in chapter 4 (cf. 4.2.4.1.) and as mentioned above, the introduction of methoxy groups at the benzhydryl moiety led to a slight decrease in affinity. Among these methoxy substituted compounds (4.23, 4.24 and 4.27), the 2-methoxy substituted derivative (4.23) showed the highest affinity. This trend was not observed in case of the hydroxy substituted derivatives 5.9, 5.12 and 5.20.

The 3-hydroxy substituted compound (5.9) showed the highest affinity and the 2-hydroxy substituted derivative (5.20) exhibited the lowest $Y_{2} R$ affinity among the phenolic precursors. The introduction of one methyl group at the primary amino group of compound 4.50 , resulting in 5.29 , did not affect $Y_{2} R$ affinity. The propionylated derivative of amine precursor 4.50 (compound 5.31) showed lower $Y_{2} R$ affinity compared to 4.50. Interestingly, compound 4.58, bearing a bulky fluorescent dye instead of the small propionyl moiety in 5.31, displayed higher $\mathrm{Y}_{2} \mathrm{R}$ affinity than 5.31 ($\mathrm{p} K_{\mathrm{i}}$ values ($\mathrm{h} \mathrm{Y}_{2} \mathrm{R}$): 7.03 vs. 6.32).

5.2.3.2. Determination of $p K_{\mathrm{i}}$ values in a BRET based binding assay

Figure 5.3. Displacement curves of 4.58 ($\mathrm{c}_{\text {final }}=20 \mathrm{nM}, K_{d}=17.9 \mathrm{nM}$) obtained from competition binding studies with (A) 4.1, 4.23, 4.24, (B) 4.50, and 5.30-5.32 at HEK293T Y_{2} (intraNLucD197) cells. Data are presented as means \pm SEM from at least three independent experiments, each performed in triplicate.

The BRET based competition binding assay was performed in living HEK293T Y_{2} (intraNLucD197) cells with 4.58 (Cfinal $=20 \mathrm{nM}, K_{d}=17.9 \mathrm{nM}$) (cf. chapter 4) in sodium containing buffer (Figure 5.3 and Table 5.3). Compound 4.23 (2-methoxy substituted) showed the highest $Y_{2} R$ affinity among the investigated (S)-argininamides (4.24, 5.29-5.31), consistent with the results obtained from the radioligand competition binding experiments. Furthermore, $\mathrm{Y}_{2} \mathrm{R}$ binding of 4.23 was higher compared tot hat of 4.24 (3-methoxy substituted).

Table 5.3. Affinities $\left(\mathrm{p} K_{\mathrm{i}}\right)$ of selected (S)-argininamides 4.1, 4.23, 4.24, 4.50 and 5.30-5.32 determined in a BRET based competition binding assay

Compound	$\mathrm{pK}_{\mathrm{i}}^{\mathrm{a}}$	Compound	$\mathrm{p} K_{\mathrm{i}}^{\mathrm{a}}$
4.1	9.13 ± 0.15	5.30	7.83 ± 0.26
4.23	8.60 ± 0.07	5.31	7.16 ± 0.07
4.24	7.43 ± 0.10	5.32	7.78 ± 0.16
4.50	8.03 ± 0.08		

[^3]The decrease in affinity ($\mathrm{p} K_{\mathrm{i}}$) from the dibenzoazepinone (4.1) to 2-methoxy (4.23) and 3-methoxy (4.24) benzhydryl derivatives demonstrated the same trend compared to $p K_{i}$ values determined in a radioligand competition binding experiments using a sodium-free buffer (Table 5.2 and Table 5.3). $\mathrm{Y}_{2} \mathrm{R}$ affinities of the (5-(trimethylaminio)pentyl)oxy (N-„overalkylated") derivative 5.30, the propionylated (5.31) and the 2-fluoroacetylated (5.32) congeners were slightly lower compared to the amine precursor 4.50.

5.2.3.3. Determination of $p K_{b}$ values in a β-arrestin2 recruitment assay

Figure 5.4. (A-D) Inhibition of β-arrestin2 recruitment (induced by 200 nM pNPY) by (A) 4.1, 5.9, 5.12, 5.20, (B) 4.1, 4.23, 5.20, (C) 4.50, 5.31, 5.32 (D) 4.50 and 5.29-5.30. All experiments were performed in HEK293T $h Y_{2} R+\beta$ Arr2 cells. Cells were pre-incubated with the antagonists for 15 min . Data are presented as means \pm SEM from at least three independent experiments, each performed in triplicate.
$Y_{2} R$ antagonism ($\mathrm{p} K_{b}$) of (S)-argininamides 5.9, 5.20 and 5.29-5.31 was investigated in a β-arrestin2 recruitment assay in living HEK293T hY2R + β Arr2 cells (Figure 5.4 and Table 5.4). The applied β-arrestin2 recruitment assay was previuosly described in the thesis of Felixberger ${ }^{10}$ with minor modifications (cf. 4.2.4.2.): β-arrestin2 recruitment was induced by 200 nM pNPY as described and luminescence was measured as a function of time in live cells rather than measurement of luminescence after cell lysis.

Furthermore, the $Y_{2} R$ antagonism (Figure 5.4) of the 2-hydroxy substituted compound 5.20 ($\mathrm{p} K_{\mathrm{b}}=7.14$) was slightly less pronounced compared to 5.9 ($p K_{b}=7.73$) and 5.12 ($p K_{b}=7.71$). Methylation of 5.20 (yielding 4.23), resulted in a decrease in antagonism by one order of magnitude, whilst methylation of 5.9 and 5.12 (yielding 4.24 and 4.27) led to a slight decrease in $Y_{2} R$ antagonism.

The methylated compounds 5.29 and 5.30 showed $Y_{2} R$ antagonism comparable to that of the amino precursor 4.50. Furthermore, propionylation of 4.50 (4.31) led to a decrease in antagonism, whereas the introduction of a 2-fluoroacetyl moiety (5.32) showed neither a decrease nor an increase in $Y_{2} R$ antagonism.

Table 5.4. Antagonism $\left(\mathrm{p} K_{\mathrm{b}}\right)$ of (S)-argininamides 4.1, 4.23, 4.24, 4.27, 4.50, 5.9, 5.12, 5.20 and 5.29-5.31 in the β-arrestin2 recruitment assay

Compound	$\mathrm{p}_{\mathrm{b}} \pm \mathrm{SEM}^{\mathrm{a}}$	Compound	$\mathrm{p}_{\mathrm{b}} \pm \mathrm{SEM}^{\mathrm{a}}$
4.1	8.89 ± 0.16	5.12	7.71 ± 0.03
4.23	8.12 ± 0.17	5.20	7.14 ± 0.27
4.24	7.17 ± 0.16	5.29	7.74 ± 0.17
4.27	7.37 ± 0.27	5.30	7.23 ± 0.18
4.50	7.54 ± 0.05	5.31	6.73 ± 0.11
5.9	7.73 ± 0.04	5.32	7.66 ± 0.19

${ }^{\text {a }} \beta$-Arrestin2 recruitment assay in intact HEK293T hY 2 R + β Arr2 cells. Arrestin2 recruitment was induced by 200 nM pNPY after pre-incubation of the cells with the antagonist for 15 min . Mean values \pm SEM from at least three independent experiments, each performed in triplicate.

The trends obtained from the β-arrestin2 recruitment assay data were in good agreement with data from the competition radioligand and BRET based binding assay (Table 5.2, Table 5.3, and Table 5.4)

5.2.3.4. NPY $Y_{2} R$ subtype selectivity

NPY receptor subtype selectivity data were determined for (S)-argininamides 4.23 and 4.24 (Table 5.5). The substitution pattern of 4.23 and 4.24 did not affect subtype selectivity compared to the parent compound 4.1.

Table 5.5. NPY receptor subtype binding profile of (S)-argininamides 4.23 and 4.24.

Compound	$\mathrm{hY} \mathrm{P}_{1}$	$\mathrm{hY} \mathrm{R}^{2}$	$\mathrm{hY} R$	hY R
4.23	$\mathrm{p} K_{\mathrm{i}}^{\mathrm{a}}$	$\mathrm{p} K_{\mathrm{i}} \pm \mathrm{SEM}^{\mathrm{b}}$	$\mathrm{p} K_{\mathrm{i}}^{\mathrm{c}}$	$\mathrm{p} K_{\mathrm{i}}^{\mathrm{d}}$
4.24	<5.52	7.39 ± 0.13	<5.00	<5.00

${ }^{\text {a }}$ Radioligand competition binding assay using $\left[{ }^{3} \mathrm{H}\right] 2.2$ ($\mathrm{C}_{\text {final }}=0.15 \mathrm{nM}, K_{d}=0.044 \mathrm{nM}$) in intact SK-N-MC cells. ${ }^{11}$ badioligand competition binding assay using [$\left.{ }^{3} \mathrm{H}\right]$ propionyl-pNPY ($\mathrm{c}_{\text {final }}=4.0 \mathrm{nM}, K_{d}=2.97 \mathrm{nM}$) in intact HEK293T hY ${ }_{2} \mathrm{R}+\beta$ Arr2 cells (cf. 4.2.4.1.). Mean values \pm SEM from at least three independent experiments, each performed in triplicate. ${ }^{\text {chadioligand }}$ competition binding assay using [$\left.{ }^{3} \mathrm{H}\right]$ UR-KK200 ($\mathrm{c}_{\text {final }}=1.0 \mathrm{nM}, K_{\mathrm{d}}=0.67 \mathrm{nM}$) in intact CHO-hY ${ }_{4} \mathrm{R}_{-\mathrm{G}_{\mathrm{qi} 5}-\mathrm{mtAEQ}}$ cells. ${ }^{12,13}$
 Results from at least 2-3 independent experiments, each performed in triplicate ($h Y_{1} R, h Y_{4} R$ and $h Y_{5} R$).

5.3. Conclusion

In this chapter the synthesis of phenolic precursors (5.9, 5.12 and 5.20) derived from the argininamidetype $\mathrm{Y}_{2} R$ antagonist BIIE-0246 (4.1) is described. Methylation of 5.9, 5.12 and 5.20 at the phenolic hydroxy group gave the "cold" forms of potential radioligands (4.23, 4.24 and 4.27; cf. Chapter 4). Compound 4.23, which showed the highest $Y_{2} R$ affinity, was characterized in a number of cell based assays, namely a radioligand binding assay ($\mathrm{p} K_{i}=7.39$), a BRET based binding assay ($\mathrm{p} K_{\mathrm{i}}=8.60$), a β-arrestin2 recruitment assay ($\mathrm{p} K_{b}=8.12$) and a miniG protein recruitment assay ($\mathrm{p} K_{\mathrm{i}}=8.06$) (cf. Chapter 4) as well as in $Y_{1} R, Y_{4} R$ and $Y_{5} R$ binding assays to study subtype selectivity (Table 5.4). With a $p K_{i}$ value of 7.39 (radioligand binding assay) the $Y_{2} R$ affinity of compound 4.23 is comparable to that of reported argininamide-type $\mathrm{Y}_{2} \mathrm{R}$ radioligands, which showed unfavourable physicochemical properties, limited chemical stability and unfavourable binding characteristics. ${ }^{2,5}$ Therefore, the tritiated form of 4.23 would potentially represent a more favourable radiotracer compared to the reported radioligands.

Additionally, the derivatization of amine precursor 4.50 led to compounds 5.29-5.32, which were pharmacologically characterized a potential "cold" forms of radioligands. The most promising candidate for radio labelling was the novel mono methylated compound 5.29, so far not described in literature, which was obtained in moderate yield (20\%) by an established synthesis route of monoalkylation of 4.50. Unfortunately, the established synthesis route is unsuitable for the synthesis of radioligands, because the labelling step should be ideally performed in the last synthesis step. Methylation of 4.50 using e.g. methyl iodide or methyl nosylate would likely result in a mixture of mono (5.29), di and tri (5.30) methylated compounds, because for the synthesis of the radioligand requires an excess of precursor 4.50 compared to the labelling (methylation) reagent would be used. Pursuing this strategy would lead to issues with the separation of mono (5.29), di and tri (5.30) methylated compounds by HPLC.

5.4. Experimental section

5.4.1. General experimental conditions (cf. 4.4.1.)

The following reagents and solvents (analytical grade) were purchased from commercial suppliers and used without further purification: $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{DMF}, \mathrm{THF}, \mathrm{MeOH}, \mathrm{DMSO}$, methanesulfonyl chloride (Fisher Scientific, Schwerte, Germany); EDC•HCI, HOBt, piperazine TFA, $\mathrm{CBr}_{4}, \mathrm{PPh}_{3}, 4.14,10 \%$ palladium on activated charcoal (Pd/C), TBAF (1.1 M) in solution, methyl 4-nitrobenzenesulfonate (Sigma Aldrich, Taufkirchen, Germany); $\mathrm{Boc}_{2} \mathrm{O}$, benzyl bromide, tert-butyldimethylsilyl chloride (TCI , Eschborn, Germany); DIPEA, (ABCR, Karlsruhe, Germany); $\mathrm{NaH}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{NaBH}_{4}, \mathrm{~K}_{2} \mathrm{CO}_{3}$, methyl iodide (Merck, Darmstadt, Germany); conc. HCl (VWR Chemicals, Darmstadt, Germany); ammonium hydroxide (Carl Roth, Karlsruhe, Germany). For pharmacological characterization, pNPY was purchased from Synpeptide (Shanghai, China).

The synthesis of compounds $4.15,4.16,4.34,4.42,4.43,4.50$ and 4.52 was described in chapter 4 (cf. 4.4.2.). Compound $\mathbf{2 . 4 4}{ }^{15}$ was synthesized according to the literature procedure.

Column chromatography was performed using Merck Geduran 60 silica gel (0.063-0.200 mm) or Merck flash silica gel 60 ($0.040-0.063 \mathrm{~mm}$). For thin layer chromatography, TLC sheets ALUGRAM Xtra SIL G/UV254 from Macherey-Nagel GmbH \& Co. KG (Düren, Germany) were used. Compounds were detected by irradiation with UV light (254 nm or 366 nm), and staining was performed with ninhydrin.

Acetonitrile (HPLC grade), used for HPLC, was purchased from Sigma-Aldrich. Millipore water was used for eluents for analytical and preparative HPLC. Compounds 5.9, 5.12, 5.20 and 5.29-5.31 were purified by a preparative HPLC-system B from Waters (Eschborn, Germany) consisting of a Binary Gradient Module (Waters 2545), a detector (Waters 2489 UV/visible Detector), a manual injector (Waters Prep inject) and a collector (Waters Fraction Collector III). A Kinetex XB C18, $5 \mu \mathrm{~m}, 250 \times 21 \mathrm{~mm}$ (Phenomenex) served as RP-column at a flow rate of $20 \mathrm{~mL} / \mathrm{min}$. All injected solutions were filtered with syringe filters $(0.45 \mu \mathrm{~m})$. The mobile phase contained the solvents $\mathrm{A}(0.1 \%$ aq TFA) and B (acetonitrile). The detection wavelength was 220 nm . The eluates, containing isolated compounds, were lyophilized using a Christ alpha 2-4 LD (Martin Christ Gefriertrocknungsanlagen, Osterode am Harz, Germany) or a Scanvac CoolSafe 100-9 (Labogene, Alleroed, Denmark) lyophilization apparatus equipped with a Vacuubrand RZ rotary vane vacuum pump (Vacuubrand, Wertheim, Germany).

The purity of compounds $5.9,5.12,5.20$ and $5.29-5.31$ was determined by analytical HPLC (RP-HPLC) with a 1100 series system from Agilent Technologies (Santa Clara, CA USA) composed of a Degasser (G1379A), a Binary Pump (G1312A), a Diode Array Detector (G1315A), a thermostated Column Compartment (G1316A) and an Autosampler (G1329A). A Phenomenex Kinetex 5u XB-C18 100A, $250 \times 4.6 \mathrm{~mm}$ was used as stationary phase. The flow rate was $1 \mathrm{~mL} / \mathrm{min}$, the detection wavelenghth was set to 220 nm , the oven temperature was set to $30^{\circ} \mathrm{C}$ and the injection volume was $50 \mu \mathrm{~L}$. Mixtures of solvents $A(0.1 \%$ aq TFA) and B (acetonitrile) were used as mobile phase. The following gradient was applied: 0-25 min, A/B 90:10-5:95; 25-35 min, 5:95.

Microwave reactions were carried out on a Biotage Initiator 2.0 microwave device (Biotage, Uppsala, Sweden) using pressure stable sealed $10-20 \mathrm{~mL}$ vessels.

Deuterated solvents for NMR spectroscopy (DMSO- d_{6}, MeOD) were obtained from Deutero (Kastellaun, Germany) in ampoules (1 mL). NMR spectra were recorded on a Bruker Avance $300\left({ }^{1} \mathrm{H}, 300 \mathrm{MHz}\right.$; ${ }^{13} \mathrm{C}$, $75 \mathrm{MHz})$, a Bruker Avance III $400\left({ }^{1} \mathrm{H}, 400 \mathrm{MHz} ;{ }^{13} \mathrm{C}, 101 \mathrm{MHz}\right)$ and a Bruker Avance 600 with cryogenic probe (${ }^{1} \mathrm{H}, 600 \mathrm{MHz} ;{ }^{13} \mathrm{C}, 150 \mathrm{MHz}$) (Bruker, Karlsruhe, Germany). Chemical shifts are given in ppm and were referenced to the solvent residual peak (DMSO- d_{6}, at $2.50 \mathrm{ppm}\left({ }^{1} \mathrm{H}-\mathrm{NMR}\right.$) and at 39.52 ppm $\left({ }^{13} \mathrm{C}-\mathrm{NMR}\right) ; \mathrm{CD}_{3} \mathrm{OD}$, at $3.31 \mathrm{ppm}\left({ }^{1} \mathrm{H}-\mathrm{NMR}\right)$ and at $\left.49.00 \mathrm{ppm}\left({ }^{13} \mathrm{C}-\mathrm{NMR}\right)\right) .{ }^{16}$ The coupling constants (J) are given in Hertz (Hz). The splitting of the signals is described as follows: $\mathrm{s}=$ singlet, bs = broad singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet.

Mass spectrometry (HRMS) analysis was performed either on an Agilent 6540 UHD Accurate-Mass QTOF LC/MS system (Agilent Technologies) using an electrospray source (ESI) or on an Agilent GC7890A GC/MS system (Agilent Technologies) using an atmospheric pressure chemical ionization (APCl) source.

5.4.2. Synthesis protocols and analytical data

Annotation concerning the analytical data (NMR, HPLC) of 5.9, 5.12, 5.20 and 5.29-5.32: due to the synthesis routes, these compounds were obtained as diastereomers, which are evident in the ${ }^{1} \mathrm{H}$-and ${ }^{13} \mathrm{C}$-spectra (recorded in DMSO- d_{6} or $\mathrm{MeOH}-d_{4}$), but not in the RP-HPLC chromatograms.

General synthesis procedure

General procedure \boldsymbol{A} (cf. 4.4.2. general procedure G) Compounds 5.9, 5.12, 5.20 and 5.29 were prepared by amide bond formation according to a reported procedures. ${ }^{17,18}$ The respective carboxylic acid was dissolved in DMF $(100 \mu \mathrm{~L})$. EDC $\cdot \mathrm{HCl}$ and HOB were added, and the reaction mixture was stirred for 5 min . Then, the mixture was poured into a solution of the secondary or primary amine in DMF $(100 \mu \mathrm{~L})$ and was stirred at rt overnight. The reaction mixture was poured into an aqueous solution (5\% acetonitrile, 0.1% TFA; 100 mL). After lyophilization, the crude product was dissolved in a mixture of TFA and water ($95: 5 ; 5 \mathrm{~mL}$) and stirred at rt overnight. Then, the reaction mixture was poured into an aqueous solution (5% acetonitrile, 0.1% TFA; 100 mL). After lyophilization, the crude product was purified by preparative HPLC.

5.3
(3-((tert-Butyldimethylsilyl)oxy)phenyl)(phenyl)methanone (5.3). (3-Hydroxyphenyl)(phenyl)methanone (4.43) ($310 \mathrm{mg}, 1.56 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, $\mathrm{Et}_{3} \mathrm{~N}(0.45 \mathrm{~mL}, 3.25 \mathrm{mmol})$ was added and the mixture was cooled in an ice-bath. Under stirring, tert-butyldimethylsilyl chloride (430 mg , $2.85 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was dropped slowly into the mixture over a time-period of 1 h . The reaction mixture was allowed to warm to rt and stirred overnight. The organic solvent was evaporated, and the crude product was purified by column chromatography (eluent: light petroleum/ethyl acetate 10:1) to give 5.3 as an oil ($300 \mathrm{mg}, 0.960 \mathrm{mmol}, 62 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta(\mathrm{ppm}) 0.19(\mathrm{~s}$, $6 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 7.11-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.77$ (m, 3H). ${ }^{13} \mathrm{C}$-NMR ($101 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta(\mathrm{ppm})-4.6,17.9,25.5,120.4,122.9,124.2,128.5,129.5$,
129.9, 132.7, 136.9, 138.5, 155.0, 195.3. HRMS (APCI): m/z[M]+calcd. for [$\left.\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Si}\right]+312.1540$, found 312.1542. $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Si}(312.48)$.

(4-((tert-Butyldimethylsilyl)oxy)phenyl)(phenyl)methanone (5.4). ${ }^{19}$ (4-Hydroxyphenyl)(phenyl)methanone (4.52) (500 mg , 2.52 mmol) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 mL), $\mathrm{Et}_{3} \mathrm{~N}$ ($0.70 \mathrm{~mL}, 5.05 \mathrm{mmol}$) was added and the mixture was cooled in an ice bath. Under stirring, tert-butyldimethylsilyl chloride ($910 \mathrm{mg}, 6.04 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}$) was dropped slowly into the mixture over a time period of 1 h . The reaction mixture was allowed to warm to rt and was stirred overnight. The organic solvent was evaporated, and the crude product was purified by column chromatography (light petroleum/ethyl acetate $10: 1$) to give 5.4 as an oil ($420 \mathrm{mg}, 1.34 \mathrm{mmol}, 53 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta(\mathrm{ppm})$ $0.24(\mathrm{~s}, 6 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 6.97-7.02(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.73(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz}$, DMSO- d_{6}): $\delta(\mathrm{ppm})-4.6,17.9,25.4,119.7,128.4,129.2,130.2,132.1,132.2,137.6,159.3,194.4$. HRMS (APCI): m/z [M] + calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Si}\right]^{+}$312.1540, found 312.1539. $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Si}(312.48)$.

5.5
(3-((tert-Butyldimethylsilyl)oxy)phenyl)(phenyl)methanol (5.5). (3-((tert-Butyldimethylsilyl)oxy)phenyl)(phenyl)methanone (5.3) ($290 \mathrm{mg}, 0.928 \mathrm{mmol}$) was dissolved in methanol (5 mL) and sodium borohydride ($100 \mathrm{mg}, 2.64 \mathrm{mmol}$) was added portionwise into the mixture and stirred at rt for 3 h . The solvent was evaporated, and the crude product was purified by column chromatography (eluent: light petroleum/ethyl acetate $90: 10$) to give 5.5 as an oil ($260 \mathrm{mg}, 0.827 \mathrm{mmol}, 89 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 MHz , DMSO- d_{6}): $\delta(\mathrm{ppm}) 0.15(\mathrm{~s}, 6 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 5.65(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.64-$ $6.69(\mathrm{~m}, 1 \mathrm{H}), 6.84-6.88(\mathrm{~m}, 1 \mathrm{H}), 6.93-6.99(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.39(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta(\mathrm{ppm})-4.5,17.9,25.6,73.9,117.6,118.0,119.4,126.2,126.7$, 128.0, 129.1, 145.6, 147.5, 154.9. HRMS (APCI): m/z [M] ${ }^{+}$calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Si}\right]+314.1697$, found 314.1700. $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Si}(314.50)$.

(4-((tert-Butyldimethylsilyl)oxy)phenyl)(phenyl)methanol (5.6). ${ }^{20} \quad$ (4-((tert-Butyldimethylsilyl)oxy)phenyl)(phenyl)methanone (5.4) ($330 \mathrm{mg}, 1.06 \mathrm{mmol}$) was dissolved in methanol (5 mL) and sodium borohydride ($110 \mathrm{mg}, 2.91 \mathrm{mmol}$) was added portionwise into the reaction mixture and stirred at rt for 3 h . The organic solvent was evaporated, and the crude product was purified by column chromatography (eluent: light petroleum/ethyl acetate $90: 10$) to give 5.6 as an oil ($310 \mathrm{mg}, 0.986 \mathrm{mmol}, 93 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 MHz, DMSO-d d_{6}) $\delta(\mathrm{ppm}) 0.16$ (s, 6H), 0.94 (s, 9H), 5.64 (d, J = $3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.76-5.83 (m, 1H), 6.72-6.84 (m, 2H), 7.16-7.42 (m, 7H). ${ }^{13}$ C-NMR (101 MHz , DMSO- d_{6}): $\delta(\mathrm{ppm})-4.6,17.9,25.5,73.8$, 119.3, 126.2, 126.6, 127.6, 128.0, 138.7, 145.9, 153.8. HRMS (APCI): m/z [M] ${ }^{+}$calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Si}^{+}\right]^{+}$ 314.1697, found 314.1712. $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Si}(314.50)$.

1-((3-((tert-Butyldimethylsilyl)oxy)phenyl)(phenyl)methyl)piperazine (5.7). (3-((tert-Butyldimethylsilyl)oxy)phenyl)(phenyl)methanol (5.3) ($260 \mathrm{mg}, 0.827 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$, $\mathrm{Et}_{3} \mathrm{~N}$ $(0.40 \mathrm{~mL}, 2.88 \mathrm{mmol})$ was added and the mixture was cooled in an ice bath. Under stirring, methanesulfonyl chloride ($96 \mu \mathrm{~L}, 1.24 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was dropped to the mixture. After 2 h the reaction mixture was allowed to warm to rt and stirred for 3 h . Then, $1 \mathrm{~N} \mathrm{NaOH}(10 \mathrm{~mL})$ was added and the product was extracted from the aqueous phase with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated. The residue was dissolved in acetonitrile (10 mL), piperazine ($420 \mathrm{mg}, 4.88 \mathrm{mmol}$) was added and the reaction mixture was treated in the microwave device ($70^{\circ} \mathrm{C}, 30 \mathrm{~min}$). The organic solvent was evaporated, and the crude product was purified by column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}$ aq $90: 9: 1$) to give 5.7 as an oil (105 mg , $0.274 \mathrm{mmol}, 62 \%)$. HRMS (ESI): m/z [M+H]+ calcd. for $\left[\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{OSi}\right]^{+} 383.2513$, found 383.2520. $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{OSi}(382.62)$.

1-((4-((tert-Butyldimethylsilyl)oxy)phenyl)(phenyl)methyl)piperazine (5.8). (4-((tert-Butyldimethylsilyl)oxy)phenyl)(phenyl)methanol (5.6) ($140 \mathrm{mg}, 0.445 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, $\mathrm{Et}_{3} \mathrm{~N}$ $(0.20 \mathrm{~mL}, 1.44 \mathrm{mmol})$ was added and the mixture was cooled in an ice bath. Under stirring, methanesulfonyl chloride ($56 \mu \mathrm{~L}, 0.723 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added to the mixture. After 2 h the reaction mixture was allowed warm to rt and stirred for 3 h . Then, $1 \mathrm{~N} \mathrm{NaOH} \mathrm{(} 10 \mathrm{~mL}$) was added to the mixture and the product was extracted from the aqueous phase with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the organic solvent was evaporated. The residue was dissolved in acetonitrile (10 mL) and piperazine ($280 \mathrm{mg}, 3.25 \mathrm{mmol}$) was added and the reaction mixture was treated in the microwave device $\left(70^{\circ} \mathrm{C}, 30 \mathrm{~min}\right)$. The organic solvent was evaporated, and the crude product was purified by column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}$ aq. 90:9:1) to give 5.8 as an oil ($105 \mathrm{mg}, 0.274 \mathrm{mmol}, 62 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta(\mathrm{ppm}) 0.14(\mathrm{~s}, 6 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H})$, 2.12-2.45 (m, 4H), 2.38 (s, 1H), 2.62-2.77 (m, 4H), 4.16 (s, 1H), 6.71-6.78 (m, 2H), 7.12-7.18 (m, 1H), 7.23-7.29 (m, 4H), 7.34-7.40 (m, 2H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}\right.$, DMSO- d_{6}): $\delta(\mathrm{ppm})-4.6,17.8,25.5,45.7$, 52.7, $75.1,119.5,126.6,127.6,128.4,128.8,135.5,143.1,153.7$. HRMS (ESI): m/z [M+H] ${ }^{+}$calcd. for $\left[\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{OSi}\right]^{+} 383.2513$, found 383.2517. $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{OSi}$ (382.62).

(2S)- N^{α}-(2-\{1-[2-(4-((3-Hydroxyphenyl)(phenyl)methyl)piperazin-1-yl)-2-oxoethyl]cyclopentyl\}-acetyl)[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamide bis(hydrotrifluoroacetate) (5.9). Compound 5.9 was prepared according to general procedure A and the reactants (S)-2-(1-(2-((1-((2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl)amino)-1-oxo-5(2-((2,2,4,6,7-pen-tamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-yl)amino)-2-oxoethyl)cyclopentyl)acetic acid (4.15) ($77.9 \mathrm{mg}, 89.2 \mu \mathrm{~mol}$), EDC•HCl ($27.2 \mathrm{mg}, 141.9 \mu \mathrm{~mol}$), HOBt ($13.9 \mathrm{mg}, 102.9 \mu \mathrm{~mol}$) and 1-((3-((tert-Butyldimethylsilyl)oxy)phenyl)(phenyl)methyl)piperazine (5.7) (32.6 mg, $85.2 \mu \mathrm{~mol})$. Purification by preparative HPLC (gradient: 0-30 min, A/B 79:21-57:43, $t_{R}=15 \mathrm{~min}$) gave 4.1 as a fluffy white solid ($15.4 \mathrm{mg}, 14.0 \mu \mathrm{~mol}, 16 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(600-\mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): ~ \delta(\mathrm{ppm}) 1.33-1.69(\mathrm{~m}, 13 \mathrm{H}), 2.23$ $(\mathrm{m}, 1 \mathrm{H})$, 2.31-2.39 (m, 1H), 2.42-2.49 ($\mathrm{m}, 1 \mathrm{H}$, interfering with solvent residual peak), 2.56-2.67 (m, 1H), 2.64-3.07 (m, 5H), 3.27-3.33 (m, 1H), 3.35-3.40 (m, 1H), 3.41-4.10 (m, 6H), 4.11-4.18 (m, 1H), 6.86$7.48(\mathrm{~m}, 21 \mathrm{H}), 7.58$ (br s, 4H, interfering with surrounding signals), 7.64-7.68 (m, 1H), 7.92-7.98 (m, 1H), 8.18-8.24 (m, 1H). One proton signal was not apparent (($\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OH}\right)(\mathrm{Ph}) \mathrm{CH}-\mathrm{N}-$ piperazine). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (150 MHz, DMSO-d) $_{6}$: $\delta(\mathrm{ppm}) 23.3$ (two carbon signals), 25.1, 28.8, 36.2 (2 carb.), 37.3, 37.5, 38.6, 39.6 (overlaid by solvent residual peak), 40.4, 42.6, 43.9, 51.2, 51.5, 52.0, 74.0, 113.6, 115.5 (TFA), 117.5 (TFA), 122.7, 126.7 (2 carb.), 127.9 (2 carb.), 129.0 (3 carb.), 129.2, 136.5, 152.6, 156.8, 158.6 (q, $J=33.7 \mathrm{~Hz}$) (TFA), 117.2, 171.3, 172.0. RP-HPLC (220 nm): 97\% ($t_{R}=12.9 \mathrm{~min}, k=4.0$). HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{48} \mathrm{H}_{59} \mathrm{~N}_{10} \mathrm{O}_{6}\right]^{+} 871.4614$, found 871.4618. $\mathrm{C}_{48} \mathrm{H}_{58} \mathrm{~N}_{10} \mathrm{O}_{6} \times \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{~F}_{6} \mathrm{O}_{4}$. (870.06 + 228.04).

2-(1-(2-(4-((4-((tert-Butyldimethylsilyl)oxy)phenyl)(phenyl)methyl)piperazin-1-yl)-2-oxoethyl)cyclopentyl)acetic acid (5.10). 1-((4-((tert-Butyldimethylsilyl)oxy)phenyl)(phenyl)methyl)piperazine (5.8) ($155 \mathrm{mg}, 0.405 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and cooled using an ice-bath followed by addition of 3,3 -tetramethyleneglutaric anhydride (4.14) ($90 \mathrm{mg}, 0.535 \mathrm{mmol}$) dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. After 2 h , the mixture was allowed to warm to rt and stirring was continued overnight. The solvent was evaporated, and the crude product was purified by column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 95: 5$) to give 5.10 as an oil ($141 \mathrm{mg}, 0.256 \mathrm{mmol}, 63 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta(\mathrm{ppm}) 0.14(\mathrm{~s}, 6 \mathrm{H})$, 0.91 (s, 9H), 1.49-1.57 (m, 8H), 2.17-2.28 (m, 4H), $2.42(\mathrm{~s}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 2 \mathrm{H}$, interfering with solvent residual peak), 3.67-3.52 (m, 4H), 4.22 (s, 1H), 6.73-6.78 (m, 2H), 7.14-7.21 (m, 1H), 7.24-7.31 (m, 4H), 7.37-7.42 (m, 2H), 12.0 (s, 1H). ${ }^{13}$ C-NMR (101 MHz, DMSO-d ${ }_{6}$): $\delta(\mathrm{ppm})-4.6,17.8,23.5,23.7,25.5$,
$36.8,37.5,40.9,41.7,43.0,74.1,119.7,126.8,127.5,128.5,128.8,135.1,142.8,153.9,169.6,173.5$. HRMS (ESI): m/z [M+H]+ calcd. for $\left[\mathrm{C}_{32} \mathrm{H}_{47} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}\right]^{+} 551.3300$, found 551.3303. $\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}$. (550.82).

2-(1-(2-(4-((4-Hydroxyphenyl)(phenyl)methyl)piperazin-1-yl)-2-oxoethyl)cyclopentyl)acetic acid (5.11). 2-(1-(2-(4-((4-((tert-Butyldimethylsilyl)oxy)phenyl)(phenyl)methyl)piperazin-1-yl)-2-oxoethyl)cyclopentyl)acetic acid (5.10) ($91 \mathrm{mg}, 0.165 \mathrm{mmol}$) was dissolved in TBAF (1.1 M) in THF (3 mL , 3.3 mmol) and stirred at rt for 3 h . The organic solvent was evaporated, and the crude product was purified by column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ methanol $90: 10$) to give 5.11 as an oil (72 mg , $0.165 \mathrm{mmol}, 100 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta(\mathrm{ppm}) 1.46-1.55(\mathrm{~m}, 8 \mathrm{H}), 2.17-2.30(\mathrm{~m}, 4 \mathrm{H}), 2.42$ $(\mathrm{s}, 2 \mathrm{H}), 2.48(\mathrm{~s}, 2 \mathrm{H}$, interfering with solvent residual peak), 2.70-2.82 (m, 4H), 4.16 (s, 1H), 6.64-6.73 $(\mathrm{m}, 2 \mathrm{H}), 7.14(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.43(\mathrm{~m}, 2 \mathrm{H}), 9.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$. One exchangeable proton signal (-COOH or -OH) was not apparent. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right)$: $\delta(\mathrm{ppm}) 20.1,24.0,25.5$, 37.9, 42.2, 43.5, 52.6, 74.4, 115.7, 127.2, 127.9, 128.9, 129.1, 133.1, 143.7, 156.8, 170.0, 174.0. HRMS (ESI): m/z [M+H]+ calcd. for $\left[\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{4}\right]^{+} 437.2435$, found 437.2446. $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{4}(436.55)$.

(2S)- N^{α}-(2-\{1-[2-(4-((4-Hydroxyphenyl)(phenyl)methyl)piperazin-1-yl)-2-oxoethyl]cyclopentyl\}-acetyl)[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamide bis(hydrotrifluoroacetate) (5.12). Compound 5.12 was prepared according to general procedure A and the reactants 2-(1-(2-(4-((4-hydroxyphenyl)(phenyl)methyl)piperazin-1-yl)-2-oxoethyl)cyclopentyl)acetic acid (5.11). $(30.0 \mathrm{mg}, 54.5 \mu \mathrm{~mol}), \mathrm{EDC} \cdot \mathrm{HCl}(12.7 \mathrm{mg}, 66.2 \mu \mathrm{~mol})$, HOBt ($12.6 \mathrm{mg}, 93.3 \mu \mathrm{~mol}$) and (S)-[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamid bis(hydrotrifluoroacetate) (4.16) (40.9 mg, $60.1 \mu \mathrm{~mol})$. Additionally, DIPEA ($19 \mu \mathrm{~L}, 109 \mu \mathrm{~mol}$) was added to the solution of 4.16 in DMF . Purification by preparative HPLC (gradient: 0-30 min, A/B 71:29-38:62, $t_{R}=10 \mathrm{~min}$) gave 5.12 as a fluffy white solid ($15.8 \mathrm{mg}, 14.4 \mu \mathrm{~mol}, 24 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, ~ D M S O-d_{6}\right.$): $\delta(\mathrm{ppm})$ 1.32-1.68 (m, 13H), 2.19-2.26 (m, $1 \mathrm{H})$, 2.31-2.38 (m, 1H), 2.43-2.48 (m, 1H, interfering with solvent residual peak), 2.54-2.60 (m, 1H), 2.63-3.27 (m, 6H), 3.27-3.33 (m, 1H), 3.35-3.41 (m, 1H), 3.51-3.61 (m, 5 H , interfering with water signal), 4.12-4.16 (m, 1H), $5.38(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.76(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 6.86-7.62(\mathrm{~m}, 22 \mathrm{H}), 7.68(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.22(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.72(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{MeOH}-d_{4}\right): \delta(\mathrm{ppm}) 1.44-1.94(\mathrm{~m}, 13 \mathrm{H})$, 2.24-2.33 (m, 1H), 2.46-2.63 (m, 3H), 2.84-3.25 (m, 6H), 3.41-3.47 (m, 1H), 3.50-4.13 (m, 6H), 4.20$4.27(\mathrm{~m}, 1 \mathrm{H}), 5.17(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.82-6.89(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.50(\mathrm{~m}, 13 \mathrm{H}), 7.56-7.63(\mathrm{~m}$, 2H). ${ }^{13}$ C-NMR ($150 \mathrm{MHz}, \mathrm{MeOH}-d_{4}$): $\delta(\mathrm{ppm})$ 24.60, 24.64, 26.3, 30.1 (two carbon signals), 38.3, 39.3,
39.5, 39.6, 39.9 (2 carb.), 41.2, 41.9, 44.4 (2 carb.), 45.6, 52.6, 52.9, 54.0, 76.7 (2 carb.), 117.3, 119.2, $142.3,124.4,128.3,129.05,129.06,130.1,130.23,130.30,130.7,130.98,131.00,137.7$ (2 carb.), 154.5, 158.6, 159.8, 162.7 (TFA), 163.0 (TFA), 172.9, 174.69, 174.73. RP-HPLC (220 nm): 97\% $\left(t_{R}=12.3 \mathrm{~min}, k=3.8\right)$. HRMS (ESI): m/z [M+H] ${ }^{+}$calcd. for $\left[\mathrm{C}_{48} \mathrm{H}_{59} \mathrm{~N}_{10} \mathrm{O}_{6}\right]^{+} 871.4619$, found 871.4615. $\mathrm{C}_{48} \mathrm{H}_{58} \mathrm{~N}_{10} \mathrm{O}_{6} \times \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{~F}_{6} \mathrm{O}_{4}(870.06+228.04)$.

(2-((tert-Butyldimethylsilyl)oxy)phenyl)(phenyl)methanone (5.13). (2-Hydroxyphenyl)(phenyl)methanone (4.42) (500 mg , 2.52 mmol) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 mL), $\mathrm{Et}_{3} \mathrm{~N}$ ($0.70 \mathrm{~mL}, 5.05 \mathrm{mmol}$) was added and the mixture was cooled in an ice bath. Under stirring, tert-butyldimethylsilyl chloride $(1.16 \mathrm{~g}, 7.70 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was dropped slowly into the mixture over a time period of 1 h . The reaction mixture was allowed to warm to rt and stirred overnight. The organic solvent was evaporated, and the crude product was purified by column chromatography (eluent: light petroleum/ethyl acetate 95:5) to give $\mathbf{5 . 1 3}$ as an oil ($670 \mathrm{mg}, 2.14 \mathrm{mmol}, 85 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta(\mathrm{ppm})$ 0.24 (s, 6H), $0.95(\mathrm{~s}, 9 \mathrm{H}), 6.97-7.02(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.73(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz}$, DMSO- d_{6}): $\delta(\mathrm{ppm})-4.8,17.4,25.0,119.4,121.4,128.5,129.26,129.31,131.1,131.9,133.3,137.1$, 152.4, 196.1. HRMS (APCI): m/z [M+H]+ calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{Si}\right]^{+} 313.1618$, found 313.1617. $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Si}$ (312.48).

(2-Benzylphenoxy)(tert-butyl)dimethylsilane (5.15). (2-((tert Butyldimethylsilyl)oxy)phenyl)(phenyl)methanone (5.13) ($3.05 \mathrm{~g}, 9.76 \mathrm{mmol}$) was dissolved in MeOH (150 mL). Palladium on activated charcoal ($\mathrm{Pd} / \mathrm{C} ; 340 \mathrm{mg}$) was added and hydrogen $\left(\mathrm{H}_{2}\right)$ was bubbled (balloon) through the reaction, whilst stirring at rt . The reaction mixture was filtered, and the organic solvent evaporated. The crude product was purified by column chromatography (eluent: light petroleum/ethyl acetate 95:5) to give 5.15 as an oil ($2.31 \mathrm{~g}, 7.74 \mathrm{mmol}, 79 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}\right)$: $\delta(\mathrm{ppm}) 0.19(\mathrm{~s}, 6 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H})$, 3.91 (s, 2H), 6.81-6.91 (m, 2H), 7.03-7.17 (m, 5H), 7.20-7.27 (m, 2H). ${ }^{13}$ C-NMR (101 MHz, DMSO- d_{6}): $\delta(\mathrm{ppm})-4.4,17.8,25.5,35.3,118.3,121.1,125.7,127.3,128.1,128.4,130.8,131.0,140.7,152.9$. HRMS (APCI): m/z [M+H] ${ }^{+}$calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{Si}^{+}\right.$299.1826, found 299.1837. $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{OSi}(298.50)$.

5.16
(2-(Benzyloxy)phenyl)(phenyl)methanone (5.16). ${ }^{21}$ (2-Hydroxyphenyl)(phenyl)methanone $(1.00 \mathrm{~g}, 5.04 \mathrm{mmol})$ was dissolved in acetonitrile $(10 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(2.12 \mathrm{~g}, 15.3 \mathrm{mmol})$ was added. After addition of benzyl bromide $(0.80 \mathrm{~mL}, 6.74 \mathrm{mmol})$ the reaction mixture was treated in the microwave device $\left(80^{\circ} \mathrm{C}, 1 \mathrm{~h}\right)$. The organic solvent was evaporated, and the crude product was purified by column chromatography (eluent: light petroleum/ethyl acetate $95: 5$ to $90: 10$ to $75: 25$) to give 5.16 as a white
solid (1.02 g, $3.54 \mathrm{mmol}, 70 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta(\mathrm{ppm}) 5.06(\mathrm{~s}, 2 \mathrm{H}), 6.93-7.00(\mathrm{~m}, 2 \mathrm{H})$, 7.08-7.15 (m, 1H), 7.16-7.22 (m, 3H), 7.24-7.29 (m, 1H), 7.36-7.42 (m, 1H), 7.49-7.58 (m, 3H), 7.627.69 (m, 1H), 7.69-7.74 (m, 2H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101-\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta(\mathrm{ppm}) 69.3,113.1,120.9,126.8$, $127.5,128.1,128.6,128.8,129.0,129.1,132.1,133.2,136.4,137.5,155.7,196.0$. HRMS (ESI): m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{O}_{2}\right]^{+}$289.1223, found 289.1225. $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{2}$ (288.35).

(2-(Benzyloxy)phenyl)(phenyl)methanol (5.17). (2-(Benzyloxy)phenyl)(phenyl)methanone (5.16) $(0.45 \mathrm{~g}, 1.56 \mathrm{mmol})$ was dissolved in methanol (10 mL) and sodium borohydride ($0.19 \mathrm{~g}, 5.02 \mathrm{mmol}$) was added portion wise and the mixture was stirred and cooled using an ice bath. Then, the reaction mixture was allowed to warm to rt and stirred for 2 h . The organic solvent was evaporated, and the crude product was purified by column chromatography (eluent: light petroleum/ethyl acetate 90:10) to give 5.17 as an oil ($0.43 \mathrm{~g}, 1.48 \mathrm{mmol}, 95 \%$). ${ }^{1} \mathrm{H}-$ NMR (400 MHz , DMSO- d_{6}): $\delta(\mathrm{ppm}) 5.09(\mathrm{~s}, 2 \mathrm{H}), 5.68$ (d, $J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-7.06(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.40(\mathrm{~m}, 11 \mathrm{H}), 7.49-7.60(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13}$ C-NMR (101 MHz, DMSO- d_{6}): $\delta(\mathrm{ppm}) 68.1,69.2,111.8,120.5,126.51,126.55,127.4,127.69$, 127.74, 127.79, 128.3, 133.8, 137.2, 145.3, 154.4. One aromatic carbon was not apparent. HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Na}\right]^{+} 313.1199$, found 313.1198. $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{2}$ (290.36).

5.18

1-((2-(Benzyloxy)phenyl)(phenyl)methyl)piperazine (5.18). (2-(Benzyloxy)phenyl)(phenyl)methanol (5.17) (290 mg, 0.999 mmol$)$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, $\mathrm{Et}_{3} \mathrm{~N}(0.40 \mathrm{~mL}, 2.89 \mathrm{mmol})$ was added and the mixture was cooled using an ice bath. Under stirring, methanesulfonyl chloride (0.20 mL , $2.58 \mathrm{mmol})$ was added. The reaction mixture was allowed to warm to rt and stirred for 2 h . Then, 1 N $\mathrm{NaOH}(10 \mathrm{~mL})$ was added. The product was extracted from the aqueous phase with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$ and the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated. The residue was dissolved in acetonitrile (10 mL) and piperazine ($390 \mathrm{mg}, 4.53 \mathrm{mmol}$) was added. The reaction mixture was treated in the microwave device ($85^{\circ} \mathrm{C}, 45 \mathrm{~min}$) and the organic solvent was evaporated. The crude product was purified by column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ methanol $/ \mathrm{NH}_{3}$ aq. 90:9:1) to give 5.18 as an oil ($190 \mathrm{mg}, 0.53 \mathrm{mmol}, 53 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, DMSO- d_{6}): $\delta(\mathrm{ppm})$ 2.12-2.34 (m, $4 \mathrm{H}), 2.65-2.75(\mathrm{~m}, 4 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}$, interfering with water signal), 5.05-5.14(m,2H), 6.91-7.01(m,2H), 7.09-7.18 (m, 2H), 7.20-7.28 (m, 2H), 7.29-7.37 (m, 3H), 7.37-7.43 (m, 4H). 7.55-7.62 (m, 1H). One exchangeable proton signal (NH-piperazine) was not apparent. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta(\mathrm{ppm})$ $45.6,52.7,67.2,69.4,112.5,120.8,126.6,127.4,127.5,127.6,127.7,128.1,128.2,128.4,130.7$, 137.2, 142.3, 155.6. HRMS (ESI): m/z [M+Na]+ calcd. for $\left[\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{ONa}\right]^{+} 381.1937$, found 381.1932. $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}$ (358.49).

5.19

2-(Phenyl(piperazin-1-yl)methyl)phenol (5.19). ${ }^{22}$ 1-((2-(Benzyloxy)phenyl)(phenyl)methyl)piperazine (5.18) (168 mg, 0.469 mmol$)$ was dissolved in methanol (5 mL) and $\mathrm{Pd} / \mathrm{C}(17 \mathrm{mg})$ was added and stirred in a reaction vessel under hydrogen atmosphere (10 bar) at rt overnight. The reaction was filtered, and the organic solvent was evaporated to give 5.19 as an oil ($90 \mathrm{mg}, 0.206 \mathrm{mmol}, 44 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, DMSO- d_{6}): $\delta(\mathrm{ppm})$ 2.89-2.46 (m, 4H), 2.64-2.83 (m, 4H), 4.61 (s, 1H), 6.67-6.76 (m, 2H), 6.98-7.05 (m, $1 \mathrm{H})$, 7.14-7.24 (m, 3H), 7.27-7.31 (m, 2H), 7.39-7.43 (m, 1H), 11.01 (br s, 1H). One exchangeable proton (NH-piperazine) signal was not apparent. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}\right.$, DMSO- d_{6}): $\delta(\mathrm{ppm}) 45.5,52.2,71.8$, 115.9, 119.0, 120.8, 127.2, 127.7, 128.1, 128.5 (two carbon signals), 141.1, 155.7. HRMS (ESI): m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}\right]^{+}$269.1648, found 269.1651. $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$ (268.36).

(2S)- ${ }^{\text {a }}$-(2-\{1-[2-(4-((2-Hydroxyphenyl)(phenyl)methyl)piperazin-1-yl)-2-oxoethyl]cyclopentyl\}-acetyl)[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamide bis(hydrotrifluoroacetate) (5.20). Compound 5.20 was prepared according to general procedure A and the reactants (S)-2-(1-(2-((1-((2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl)amino)-1-oxo-5(2-((2,2,4,6,7-pent amethyl-2,3-dihydrobenzo-furan-5-yl)sulfonyl)guanidino)pentan-2-yl)amino)-2-oxoethyl)cyclopentyl) acetic acid (4.15) (200.8 mg, $230.0 \mu \mathrm{~mol})$, EDC•HCl ($64.6 \mathrm{mg}, 337.0 \mu \mathrm{~mol})$, $\mathrm{HOBt}(43.9 \mathrm{mg}, 324.7 \mu \mathrm{~mol})$ and 2-(phenyl(piperazin-1-yl)methyl)phenol (5.19). ($60.0 \mathrm{mg}, 223.6 \mu \mathrm{~mol}$). Purification by preparative HPLC (gradient: 0-30 min, A/B 71:29-47:53, $t_{R}=13 \mathrm{~min}$) gave 5.20 as a fluffy white solid (20.7 mg , $18.8 \mu \mathrm{~mol}, 8.4 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{DMSO}_{6}\right): \delta(\mathrm{ppm}) 1.30-1.72(\mathrm{~m}, 13 \mathrm{H}), 2.20-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.32-$ $2.39(\mathrm{~m}, 1 \mathrm{H})$, 2.43-2.48 (m, 1H, interfering with solvent residual peak), 2.55-2.62 (m, 1H), 2.64-3.07 (m, $6 \mathrm{H})$, 3.27-3.34 (m, 1H), 3.35-3.41 (m, 1H), 3.54-3.66 (m, 5H, interfering with water signal), 4.10-4.18 (m, 1H), 5.32 (br s, 1H), 6.80-6.91 (m, 2H), 6.95-7.59 (m, 22H), 7.72 (t, J=5.5 Hz, 1H), 7.91-7.99 (m, 1 H), 8.22 (t, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 10.37 (br s, 1H). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{MeOH}-d_{4}\right): \delta(\mathrm{ppm}) 1.42-1.91$ (m, $13 \mathrm{H})$, 2.24-2.31 (m, 1H), 2.48-2.64 (m, 3H), 2.90-3.20 (m, 5H), 3.20-3.30 (m, 1H, interfering with solvent residual peak), 3.39-3.45 (m, 1H), 3.53-3.61 (m, 1H), 3.62-4.19 (m, 5H), 4.21-4.28 (m, 1H), $5.52(\mathrm{~s}$, 0.5 H), $5.53(\mathrm{~s}, 0.5 \mathrm{H}$, interfering with previous signal), 6.89-6.97 (m, 2H), 7.18-7.27 (m, 3H), 7.29-7.47 (m, 12H), 7.67-7.72 (m, 2H). ${ }^{13}$ C-NMR (150 MHz, DMSO- d_{6}): δ (ppm) 23.3 (two carbon signals), 25.1, 28.8, 36.2 (2 carb.), 37.27, 37.31, 37.5, 38.6, 39.6 (overlaid by solvent residual peak), 40.4, 42.7, 34.92, 51.1, 51.4, 52.0, 69.0, 116.00 (TFA), 116.05, 117.97 (TFA), 122.7, 126.7 (2 carb.), 128.2, 128.3, 128.9, 129.0, 136.6, 152.6, 154.9, 156.8, 158.5 ($q, J=32.0 \mathrm{~Hz}$) (TFA), 170.2, 171.3, 172.0. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (150 MHz, MeOH- d_{4}) $\delta(\mathrm{ppm}) 24.58,24.62,26.32,26.33,30.1,30.2,38.2,38.3,39.2,39.29,39.33$, 39.3, 39.49, 39.51, 40.0, 41.2, 41.3, 41.9, 44.0, 44.31, 44.35, 45.60, 45.63, 52.6, 52.7, 52.8, 52.9, 53.97,
54.04, 73.77, 73.81, 117.4, 121.80, 121.82, 122.2, 124.31, 124.32, 128.2, 129.66, 129.69, 130.2, $130.50,130.55,130.56,130.7$ (two carbon signals), 131.8, 136.18, 136.24, 137.66, 137.68, 154.5, 155.55, 155.57, 158.6, 162.7 (TFA), 172.94, 172.97, 174.67, 174.72, 174.74. RP-HPLC (220 nm): 98\% $\left(t_{R}=13.2 \mathrm{~min}, k=4.1\right)$. HRMS $(\mathrm{ESI}): \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{48} \mathrm{H}_{59} \mathrm{~N}_{10} \mathrm{O}_{6}\right]^{+} 871.4614$, found 871.4620 . $\mathrm{C}_{48} \mathrm{H}_{58} \mathrm{~N}_{10} \mathrm{O}_{6} \times \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{~F}_{6} \mathrm{O}_{4}(871.06+228.04)$.

tert-Butyl (5-hydroxypentyl)(methyl)carbamate (5.22). ${ }^{23}$ tert-Butyl (5-((tert-butyldimethylsilyl)oxy)pentyl)(methyl)carbamate (5.24) (3.38 g, 10.2 mmol$)$ was dissolved in THF (150 mL). TBAF (1.1 M) in THF ($15 \mathrm{~mL}, 16.5 \mathrm{mmol}$) was added and the reaction mixture stirred at rt for 4 h . The organic solvent was evaporated, and the crude product was purified by column chromatography (eluent: light petroleum/ethyl acetate $1: 2$) to give 5.22 as an oil ($1.10 \mathrm{~g}, 5.1 \mathrm{mmol}, 50 \%) .{ }^{1} \mathbf{H}-\mathrm{NMR}(400 \mathrm{MHz}$, DMSO$\left.d_{6}\right): \delta(\mathrm{ppm})$ 1.16-1.30 (m, 2H), $1.38(\mathrm{~s}, 9 \mathrm{H}), 1.40-1.49(\mathrm{~m}, 4 \mathrm{H}), 2.74(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $3.38(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta(\mathrm{ppm}) 22.6,27.2,28.1,32.2$, 33.6, 48.0, 60.6, 78.2, 154.8. HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{11} \mathrm{H}_{24} \mathrm{NO}_{3}\right]^{+}$218.1751, found 218.1749. $\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{NO}_{3}$ (217.31).

tert-Butyl (5-((tert-butyldimethylsilyl)oxy)pentyl)carbamate (5.23). ${ }^{24}$ tert-Butyl (5-hydroxypentyl)carbamate (4.34) ($6.12 \mathrm{~g}, 30.1 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$, $\mathrm{Et}_{3} \mathrm{~N}(8.5 \mathrm{~mL}, 61.3 \mathrm{mmol})$ was added and the mixture was cooled in an ice bath. Under stirring, tert-butyldimethylsilylchlorid (5.51 g , 36.6 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was dropped slowly into the mixture over a time period of 1 h . The reaction mixture was allowed to warm to rt and stirred for 12 h . The organic solvent was evaporated, and the crude product was purified by column chromatography (eluent: light petroleum/ethyl acetate 95:5) to give 5.23 as a white solid ($9.11 \mathrm{~g}, 28.7 \mathrm{mmol}, 95 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta(\mathrm{ppm})$ 0.02 (s, 6H), $0.86(\mathrm{~s}, 9 \mathrm{H}), 1.20-1.34(\mathrm{~m}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}), 1.38-1.47(\mathrm{~m}, 3 \mathrm{H}), 2.85-2.93(\mathrm{~m}, 2 \mathrm{H}), 3.55(\mathrm{t}$, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta(\mathrm{ppm})-5.4,17.9,22.6,25.77$, 25.80, 28.2, 29.3, 32.0, 62.4, 77.2, 155.5. HRMS (APCI): m/z [M+H]+ calcd. for [$\left.\mathrm{C}_{16} \mathrm{H}_{36} \mathrm{NO}_{3} \mathrm{Si}\right]+318.2459$, found 318.2466. $\mathrm{C}_{16} \mathrm{H}_{35} \mathrm{NO}_{3} \mathrm{Si}(317.55)$.

tert-Butyl (5-((tert-butyldimethylsilyl)oxy)pentyl)(methyl)carbamate (5.24). tert-Butyl (5-((tert-butyldimethylsilyl)oxy)pentyl)carbamate (5.23) (7.04 g, 22.2 mmol) was dissolved in THF (175 mL) and cooled using an ice bath. Sodium hydride ($1.88 \mathrm{~g}, 47.0 \mathrm{mmol}, 60 \%$, dispersion in mineral oil) was added portionwise to the reaction mixture and stirred for 15 min . Then, Mel ($2.80 \mathrm{~mL}, 45.0 \mathrm{mmol}$) was dropped into the mixture. After 1 h , the reaction mixture was allowed to warm to rt and stirred for 1 day. The solvent was evaporated, and the residue was dissolved in a saturated ammonium chloride solution $(500 \mathrm{~mL})$. The product was extracted from the aqueous phase with ethyl acetate ($3 \times 500 \mathrm{~mL}$) and the combined organic phases were dried over sodium sulfate and the organic solvent was evaporated. The crude product was purified by column chromatography (eluent: light petroleum/ethyl acetate 95:5) to
give 5.24 as a colourless oil ($3.84 \mathrm{~g}, 11.6 \mathrm{mmol}, 52 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta(\mathrm{ppm}) 0.02(\mathrm{~s}$, $6 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 1.19-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}), 1.40-1.50(\mathrm{~m}, 4 \mathrm{H}), 2.74(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 3.57$ (t, J = 6.2 Hz, 2H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta(\mathrm{ppm})-4.9,18.4,22.9,26.3,27.2,27.5$, 28.5, 32.4, 34.0, 62.8, 78.6, 155.2. HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{38} \mathrm{NO}_{3} \mathrm{Si}^{+} 332.2615\right.$, found 332.2626. $\mathrm{C}_{17} \mathrm{H}_{37} \mathrm{NO}_{3} \mathrm{Si}(331.57)$.

tert-Butyl (5-bromopentyl)(methyl)carbamate (5.25). ${ }^{23}$ tert-Butyl (5-hydroxypentyl)(methyl)carbamate (5.24) ($1.07 \mathrm{~g}, 4.92 \mathrm{mmol}$) and $\mathrm{PPh}_{3}(1.86 \mathrm{~g}, 7.09 \mathrm{mmol})$ were dissolved in THF (50 mL) and the mixture was cooled in an ice bath. Under stirring, carbon tetrabromide ($2.36 \mathrm{~g}, 7.12 \mathrm{mmol}$) in THF $(50 \mathrm{~mL})$ was added dropwise to the mixture and stirred for 1 h . Then, the reaction mixture was allowed to warm to rt. After $3 \mathrm{~h}, \mathrm{PPh}_{3}(1.84 \mathrm{~g}, 7.02 \mathrm{mmol})$ and carbon tetrabromide ($2.35 \mathrm{~g}, 7.09 \mathrm{mmol}$) were added to the reaction mixture, which was stirred at rt overnight. The organic solvent was evaporated, and the crude product was purified by column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /ethyl acetate $1: 0$ to $9: 1$) to give 5.25 as an oil ($1.35 \mathrm{~g}, 4.82 \mathrm{mmol}, 98 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 MHz , DMSO- d_{6}): $\delta(\mathrm{ppm})$ 1.29-1.42 (m, $11 \mathrm{H}), 1.42-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.87(\mathrm{~m}, 2 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.52(\mathrm{t}, J=6.8 \mathrm{~Hz}$, 2H). ${ }^{13}$ C-NMR (101 MHz, DMSO- d_{6}): $\delta(\mathrm{ppm}) 24.6,28.0,31.8,33.5,35.0,40.2$ (overlaid by solvent residual peak), 47.8, 78.2, 154.7. HRMS (APCI): m/z [M+H]+ calcd. for [$\left.\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{BrNO}_{2}\right]^{+}$280.0907, found 280.0908. $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{BrNO}_{2}$ (280.21).

tert-Butyl (5-(2-benzoylphenoxy)pentyl)(methyl)carbamate (5.26). (2-Hydroxyphenyl)(phenyl)methanone (4.42) (0.43 g , 2.17 mmol) was dissolved in DMF (5 mL) and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.59 \mathrm{~g}$, 4.27 mmol) was added and the mixture was stirred at rt for 5 min . Under stirring, tert-butyl (5-bromopentyl)carbamate (5.25) ($0.69 \mathrm{~g}, 18.1 \mathrm{mmol}$) was added to the mixture and stirred at rt for 24 h . The reaction mixture was poured in water (200 mL) and the crude product was extracted from the aqueous phase with ethyl acetate $(3 \times 150 \mathrm{~mL})$. The combined organic phases were dried over sodium sulfate and the organic solvent was evaporated. The crude product was purified by column chromatography (eluent: light petroleum/ethyl acetate 8:2) to give 5.26 as a yellow oil ($0.45 \mathrm{~g}, 1.17 \mathrm{mmol}, 52 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, DMSO- d_{6}): $\delta(\mathrm{ppm})$ 1.17-1.25 (m, 2H), 1.29-1.41 (m, 13H), $2.68(\mathrm{~s}, 3 \mathrm{H}), 2.95(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{t}$, $J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.03-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.61-7.68$ (m, 3H). ${ }^{13}$ C-NMR (101 MHz, DMSO- d_{6}): $\delta(\mathrm{ppm}) 25.2,26.5,26.8,28.0,33.6,47.8,67.6,78.1,112.6$, 120.5, 128.4, 128.5, 129.9, 129.0, 132.2, 132.9, 137.8, 154.7, 156.2, 196.0. HRMS (ESI): m/z [M+Na] ${ }^{+}$ calcd. for $\left[\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{NO}_{4} \mathrm{Na}\right]^{+} 420.2145$, found 420.2165. $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{NO}_{4}$ (397.52).

tert-Butyl (5-(2-(hydroxy(phenyl)methyl)phenoxy)pentyl)(methyl)carbamate (5.27). tert-Butyl (5-(2-benzoylphenoxy)pentyl)(methyl)carbamate (5.26) ($0.246 \mathrm{~g}, 0.619 \mathrm{mmol}$) was dissolved in methanol $(15 \mathrm{~mL})$ and $\mathrm{NaBH}_{4}(64.3 \mathrm{mg}, 1.70 \mathrm{mmol})$ was added portion wise and stirred at rt for 4 h . The organic solvent was evaporated, and the crude product was purified by column chromatography (eluent: light petroleum/ethyl acetate $7: 3$) to give 5.27 as a yellow oil ($0.247 \mathrm{~g}, 0.619 \mathrm{mmol}, 100 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, ~ D M S O-d_{6}$): $\delta(\mathrm{ppm})$ 1.29-1.36 (m, 2H), $1.39(\mathrm{~s}, 9 \mathrm{H}), 1.44-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.75(\mathrm{~m}, 2 \mathrm{H})$, $2.76(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.62(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{~d}, J=4.3 \mathrm{~Hz}$, $1 \mathrm{H})$, 6.87-6.97 (m, 2H), 7.13-7.20 (m, 2H), 7.22-7.28 (m, 2H), 7.30-7.35 (m, 2H), 7.52-7.57 (m, 1H). ${ }^{13}$ C-NMR (101 MHz, DMSO- d_{6}): $\delta(\mathrm{ppm}) 22.7,26.8,27.1,28.1,28.5,40.0$ (overlaid by solvent residual peak), $67.3,68.2,78.2,111.2,120.1,126.3,126.4,126.5,127.7,133.7,145.4,154.78,154.80,170.3$. HRMS (ESI): m/z [M+Na]+ calcd. for [$\left.\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{NO}_{4} \mathrm{Na}\right]^{+} 422.2302$, found 422.2300. $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{NO}_{4}(399.53)$.

tert-Butyl methyl(5-(2-(phenyl(piperazin-1-yl)methyl)phenoxy)pentyl)carbamate (5.28). tert-Butyl (5-(2-(hydroxy(phenyl)methyl)phenoxy)pentyl)(methyl)carbamate (5.27) ($150 \mathrm{mg}, 0.375 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}), \mathrm{Et}_{3} \mathrm{~N}(200 \mu \mathrm{~L}, 1.44 \mathrm{mmol})$ was added and the mixture was cooled in an ice bath. Under stirring, methanesulfonyl chloride ($45 \mu \mathrm{~L}, 0.563 \mathrm{mmol}$) was added to the mixture. After 3 h , $1 \mathrm{~N} \mathrm{NaOH}(15 \mathrm{~mL})$ was added to the reaction mixture. The compound was extracted from the aqueous phase with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 x)$ and the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the organic solvent was evaporated. The residue was dissolved in acetonitrile (10 mL) and piperazine (230 mg , 2.67 mmol) was added. The reaction mixture was treated in the microwave device ($70^{\circ} \mathrm{C}, 45 \mathrm{~min}$) and the organic solvent was evaporated. The crude product was purified by column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}$ aq. $90: 9: 1$) to give 5.28 as a yellow oil ($140 \mathrm{mg}, 0.299 \mathrm{mmol}, 80 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 MHz, DMSO-d d_{6}): $\delta(\mathrm{ppm})$ 1.32-1.46 (m, 11H), 1.50-1.61 (m, 2H), 1.72-1.81 (m, 2H), 2.11-2.33 (m, $4 \mathrm{H}), 2.66-2.74(\mathrm{~m}, 4 \mathrm{H}), 3.20(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.88-3.96(\mathrm{~m}, 2 \mathrm{H}), 4.66(\mathrm{~s}, 1 \mathrm{H}), 6.86-6.94$ $(\mathrm{m}, 2 \mathrm{H}), 7.07-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.58(\mathrm{~m}, 1 \mathrm{H})$. One exchangeable proton signal (NH-piperazine) was not apparent. ${ }^{13} \mathbf{C}$-NMR (101 MHz , DMSO- d_{6}): δ (ppm) 33.8, 38.3, 39.9 (overlaid by solvent residual peak), 40.1 (overlaid by solvent residual peak), 43.9, 56.6, 58.9, 62.5, 63.8, 78.2, $88.8,122.2,130.9,137.0,138.0,138.4,138.6,138.9,139.0,141.6,153.5,165.7$. HRMS (ESI): m/z [M+Na] ${ }^{+}$calcd. for $\left[\mathrm{C}_{28} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Na}\right]^{+} 490.3040$, found 490.3033. $\mathrm{C}_{28} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{3}$ (467.65).

(2S)-Na-(2-\{1-[2-(4-((2-((5-(methylamino)pentyl)oxy)phenyl)(phenyl)methyl)piperazin-1-yl)-2-oxoethyl]cyclopentyl\}acetyl)[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamide tris(hydrotrifluoroacetate) (5.29). Compound 5.29 was prepared according to general procedure A and the reactants $(S)-2$-(1-(2-((1-((2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl)amino)-1-oxo-5(2-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-yl)amino)-2-oxoet hyl)cyclo-pentyl)acetic acid (4.15) ($89.9 \mathrm{mg}, 97.0 \mu \mathrm{~mol}$), EDC•HCl ($22.4 \mathrm{mg}, 116.8 \mu \mathrm{~mol}$), HOBt $(19.3 \mathrm{mg}, \quad 142.8 \mu \mathrm{~mol}) \quad$ and \quad tert-butyl methyl(5 -(2-(phenyl(piperazin-1-yl)methyl)phenoxy)pentyl)carbamate (5.28) ($44.7 \mathrm{mg}, 95.6 \mu \mathrm{~mol}$). Purification by preparative HPLC (gradient: $0-30 \mathrm{~min}, \mathrm{~A} / \mathrm{B}$ 81:19-38:62, $t_{R}=14 \mathrm{~min}$) gave 5.29 as a fluffy white solid ($24.5 \mathrm{mg}, 18.7 \mu \mathrm{~mol}, 20 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(600 \mathrm{MHz}\right.$, DMSO $\left.d_{6}\right)$: $\delta(\mathrm{ppm}) 1.33-1.71(\mathrm{~m}, 17 \mathrm{H}), 1.72-1.80(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.38(\mathrm{~m}$, 1 H), 2.42-2.48 (m, 1H), 2.55-2.60 (m, 4H), 2.85-2.92 (m, 2H), 2.95-3.04 (m, 2H), 3.26-3.33 (m, 1H), 3.35-3.41 (m, 1H), 3.46-3.74 (m, 5H), 3.89-4.06 (m, 6H), 4.12-4.16 (m, 1H), 5.30 (br s, 1H), 6.70-8.10 (m, 26H), 8.15-8.30 (m, 1H), 8.64 (br s, 2H). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{MeOH}-\mathrm{d}_{4}\right)$: $\delta(\mathrm{ppm}) 1.46-1.79(\mathrm{~m}, 17 \mathrm{H})$, 1.81-1.94 (m, 2H), 2.24-2.32 (m, 1H), 2.45-2.64 (m, 3H), 2.68 (s, 3H), 2.78-3.23 (m, 8H), 3.41-3.47 (m, 1 H), 3.50-3.56 (m, 1H), 3.66-3.90 (m, 5H), 4.01-4.13 (m, 2H), 4.17-4.27 (m, 1H), $5.55(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.02-$ $7.10(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.44(\mathrm{~m}, 12 \mathrm{H}), 7.52-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.74(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ (150 MHz, DMSO- d_{6}): $\delta(\mathrm{ppm}) 22.4,23.3,25.01,25.09,28.1,28.9,32.4,36.2$ (two carbon signals), 37.2, 37.3, 37.4, 38.6, 39.6 (overlaid by solvent residual peak), 40.4, 42.7, 44.0, 48.1, 51.3, 51.6, 52.0, 67.0, $67.4,112.4,113.9$ (TFA), 115.9 (TFA), 117.9 (TFA), 120.8, 122.7, 126.7, 127.1, 128.5, 128.7, 129.0, 136.6, 152.6, 155.8, 156.9, 158.6 (q, J=32.4 Hz) (TFA), 170.1, 171.3, 172.04, 172.05. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ($150 \mathrm{MHz}, \mathrm{MeOH}-d_{4}$): $\delta(\mathrm{ppm}) 24.00,24.01,24.60,24.64,24.65,26.31,26.32,26.8$ (two carbon signals), 29.6 (2 carb.), $30.03,30.05,33.6,38.32,38.34,39.2,39.3,39.39,39.42,39.9$ (2 carb.), 41.20, $41.24,41.9,44.38,44.41,45.66,45.69,50.2,52.79,52.85,54.01,54.06,69.0,69.9,113.7,117.2$ (TFA), 119.1, 122.4, 124.23, 124.25, 128.22, 128.24, 128.60, 128.63, 129.96, 130.02, 130.2, 130.3, 131.4, 137.70, 137.71, 154.5, 157.38, 157.41, 158.6, 162.9 (TFA), 172.91, 172.92, 174.7, 174.7 (2 carb.). RP-HPLC (220 nm): $95 \%\left(t_{R}=12.0 \mathrm{~min}, k=3.7\right.$). HRMS $(E S I): \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{54} \mathrm{H}_{72} \mathrm{~N}_{11} \mathrm{O}_{6}\right]^{+}$ 970.5662 , found $970.5672 . \mathrm{C}_{54} \mathrm{H}_{7} \mathrm{~N}_{11} \mathrm{O}_{6} \times \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~F}_{9} \mathrm{O}_{6}$. $(969.56+342.07$).

(2S)- N^{α}-(2-\{1-[2-(4-((2-((5-(Trimethylaminio)pentyl)oxy)phenyl)(phenyl)methyl)piperazin-1-yl)-2-oxoethyl]cyclopentyl\}acetyl)[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamide bis(hydrotrifluoroacetate) trifluoroacetate (5.30). (2S)- ${ }^{\alpha}$-(2-\{1-[2-(4-((2-((5-Aminopentyl)oxy)-phenyl)(phenyl)methyl)piperazin-1-yl)-2-oxoethyl]-cyclopentyl\}acetyl)[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamide tris(hydrotriflouro-acetate) (4.50) ($21.5 \mathrm{mg}, 16.2 \mu \mathrm{~mol}$) was dissolved in DMF $(200 \mu \mathrm{~L})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(13.9 \mathrm{mg}, 363.8 \mu \mathrm{~mol})$ was added. Methyl 4-nitrobenzenesulfonate (7.6 mg , $34.99 \mu \mathrm{~mol}$) was added to the mixture and stirred at rt for 2 h . Then, 10% aq TFA (10 equiv.) was added and the mixture was directly purified by preparative HPLC (gradient: 0-30 min, A/B 71:29-57:43, $t_{R}=12 \mathrm{~min}$) to give 5.29 as a fluffy white solid ($12.9 \mathrm{mg}, 9.62 \mu \mathrm{~mol}, 59 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}$, DMSO$\left.d_{6}\right): \delta(\mathrm{ppm})$ 1.36-1.82 (m, 19H), 2.19-2.25 (m, 1H), 2.30-2.36 (m, 1H), 2.39-2.47 (m, 1H, interfering with solvent residual peak), 2.55-2.59 ($\mathrm{m}, 1 \mathrm{H}$, interfering with solvent residual peak), 2.92-3.15 ($\mathrm{m}, 10 \mathrm{H}$), 3.26-3.40 (m, 5H), 3.42-3.64 (m, 5H), 3.89-4.19 (m, 7H), 5.63 (br s, 1H), 6.92-7.55 (m, 23H), 7.62-7.80 $(\mathrm{m}, 2 \mathrm{H}), 7.92-8.05(\mathrm{~m}, 1 \mathrm{H}), 8.18-8.26(\mathrm{~m}, 1 \mathrm{H}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{MeOH}-d_{4}\right): \delta(\mathrm{ppm})$ 1.45-1.94 (m, $19 \mathrm{H}), 2.24-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.58-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.66-3.19(\mathrm{~m}, 15 \mathrm{H}), 3.31-3.34(\mathrm{~m}, 2 \mathrm{H}$, interfering with solvent residual peak), 3.41-3.49 (m, 1H), 3.51-3.59 (m, 1H), 3.61-3.99 (m, 5H), 4.02$4.15(\mathrm{~m}, 2 \mathrm{H}), 4.21-4.27(\mathrm{~m}, 1 \mathrm{H}), 5.44(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.02-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.43(\mathrm{~m}$, 12 H), 7.50-7.56 (m, 2H), 7.68-7.72 (m, 1H). ${ }^{13} \mathrm{C}-$ NMR (150 MHz, DMSO- d_{6}): $\delta(\mathrm{ppm}) 21.8,22.4,23.3$, 25.00, 25.07, 28.2, 28.9, 32.4, 36.2, 37.2, 37.4, 38.6, 39.6 (overlaid by solvent residual peak), 40.4, 42.1, 42.7, 44.0, 48.1, 51.4, 51.8, 51.9, 52.2, 65.2, 67.3, 112.3, 116.0 (TFA), 117.9 (TFA), 120.7, 122.6, 126.7 (two carbon signals), 127.2, 128.3, 129.0, 136.5, 152.6, 155.8, 156.8, 158.3 ($q, J=32.0 \mathrm{~Hz}$) (TFA), 170.1, 171.3, 172.0. RP-HPLC (220 nm): 99\% ($t_{R}=11.5 \mathrm{~min}, k=3.5$). HRMS (ESI): m/z [M] ${ }^{+}$ calcd. for $\left[\mathrm{C}_{56} \mathrm{H}_{76} \mathrm{~N}_{11} \mathrm{O}_{6}\right]^{+} 998.5975$, found 998.5969. $\mathrm{C}_{56} \mathrm{H}_{76} \mathrm{~N}_{11} \mathrm{O}_{6}{ }^{+} \times \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~F}_{9} \mathrm{O}_{6}(999.29+228.05+$ 113.02).

(2S)- \boldsymbol{N}^{α}-(2-\{1-[2-(4-(Phenyl(2-((5-propionamidopentyl)oxy)phenyl)methyl)piperazin-1-yl)-2-oxo-ethyl]cyclopentyl\}acetyl)[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamide bis(hydrotrifluoroacetate) (5.31). (2S)- ${ }^{\alpha}{ }^{-}(2-\{1-[2-(4-((2-((5-A m i n o p e n t y l) o x y) p h e n y l)(p h e n y l) m e t h y l)-$ piperazin-1-yl)-2-oxoethyl]cyclopentyl\}acetyl)[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamide tris(hydrotriflouro-acetate) (4.50) $(15.2 \mathrm{mg}, 11.7 \mu \mathrm{~mol})$ and DIPEA ($6 \mu \mathrm{~L}, 35.3 \mu \mathrm{~mol})$ was dissolved in DMF (0.5 mL) and stirred at rt for 5 min . Succinimidyl propionate (2.44) ($2 \mathrm{mg}, 11.7 \mu \mathrm{~mol}$)
was added and the reaction mixture was stirred at rt for 3 h . Then, 10% aq TFA (10 equiv.) was added and the mixture was purified directly by preparative HPLC (gradient: 0-30 min, A/B 76:24-38:62, $t_{R}=20 \mathrm{~min}$) to give 5.31 as a fluffy white solid ($14.0 \mathrm{mg}, 10.8 \mu \mathrm{~mol}, 92 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}, \mathrm{DMSO}-$ d_{6}): $\delta(\mathrm{ppm}) 0.97(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.33-1.64(\mathrm{~m}, 17 \mathrm{H}), 1.70-1.77(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 2.19-2.24 ($\mathrm{m}, 1 \mathrm{H}$), 2.29-2.36 (m, 1H), 2.41-2.47 (m, 1H, interfering with solvent residual peak), 2.52$2.60(\mathrm{~m}, 1 \mathrm{H}$, interfering with solvent residual peak), 2.94-3.02 (m, 2H), 3.03-3.10 (m, 2H), 3.26-3.32 (m, $2 \mathrm{H})$, 3.33-3.39 (m, 1H), 3.39-3.62 (m, 5H), 3.83-4.05 (m, 5H), 4.11-4.16 (m, 1H), 5.74 (br s, 1H), 6.79$7.82(\mathrm{~m}, 26 \mathrm{H}), 8.18-8.25(\mathrm{~m}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{MeOH}-d_{4}\right): \delta(\mathrm{ppm}) 1.11$ ($\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{NCOCH}_{2} \mathrm{CH}_{3}$ the triplet is overlaid by a second triplet, because two diastereomers are evident in the spectra), 1.43-1.95 (m, 19H), 2.17 (q, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.26-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.67$ $(\mathrm{m}, 3 \mathrm{H})$, 2.87-3.29 ($\mathrm{m}, 8 \mathrm{H}$, interfering with solvent residual peak), 3.41-3.48 (m, 1H), 3.53-3.61 (m, 1H), 3.62-3.99 (m, 5H), 4.01-4.08 (m, 1H), 4.08-4.15 (m, 1H), 4.20-4.28 (m, 1H), $5.65(\mathrm{~s}, 0.5 \mathrm{H}), 5.66(\mathrm{~s}$, $0.5 \mathrm{H}), 7.05-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.49(\mathrm{~m}, 12 \mathrm{H}), 7.55-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.72(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13}$ C-NMR (150 MHz, DMSO- d_{6}): $\delta(\mathrm{ppm}) 10.0,23.1,23.3,24.3,24.9,25.1,25.2,28.3,28.6,28.9,29.8$, $31.5,36.2,37.2,37.3,37.4,38.3,38.6,39.6$ (overlaid by solvent residual peak), 40.4, 42.7, 44.0, 49.8, 51.3, 51.9, 54.2, 66.9, 67.7, 112.3, 116.0 (TFA), 117.9 (TFA), 120.7, 122.6, 126.6, 127.2, 128.6, 129.0, 136.6, 152.6, 155.8, 156.8, $158.3(q, J=32.4 \mathrm{~Hz}), 170.1,171.3,171.99,172.01,172.7$. RP-HPLC $(220 \mathrm{~nm}): 100 \%\left(t_{R}=14.3 \mathrm{~min}, k=3.6\right)$. HRMS $(E S I): \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{56} \mathrm{H}_{74} \mathrm{~N}_{11} \mathrm{O}_{7}\right]^{+}$1012.5767, found 1012.5776. $\mathrm{C}_{56} \mathrm{H}_{73} \mathrm{~N}_{11} \mathrm{O}_{7} \times \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{~F}_{6} \mathrm{O}_{4}(1011.57+228.04)$.

(2S)- \boldsymbol{N}^{α}-(2-\{1-[2-(4-(Phenyl(2-((5-(2-fluoroacetamido)pentyl)oxy)phenyl)methyl)piperazin-1-yl)-2-oxo-ethyl]cyclopentyl\}acetyl)[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamide bis(hydrotrifluoroacetate) (5.32). A freshly prepared solution of 2-fluoroacetic acid (2.44) (1.8 mg, $23.1 \mu \mathrm{~mol})$, EDC•HCl ($5.3 \mathrm{mg}, 27.6 \mu \mathrm{~mol}$), HOBt ($10.3 \mathrm{mg}, 76.2 \mu \mathrm{~mol}$) in DMF (0.5 mL) was added dropwise to a solution of (2S)- $N^{a-(2-\{1-[2-(4-((2-((5-a m i n o p e n t y l) o x y) p h e n y l)(p h e n y l) m e t h y l)-~}$ piperazin-1-yl)-2-oxoethyl]cyclo-pentyl\}acetyl)[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]argininamide tris(hydrotriflouro-acetate) ($\mathbf{4 . 5 0})(34.9 \mathrm{mg}, 26.9 \mu \mathrm{~mol})$ and DIPEA ($20 \mu \mathrm{~L}, 117.6 \mu \mathrm{~mol}$) in DMF (1 mL). The reaction mixture was stirred at rt for $2-3 \mathrm{~h}$. The product was purified by preparative HPLC (gradient: 0-30 min, A/B 85:15-38:62, $t_{R}=20 \mathrm{~min}$) to give 5.32 as a fluffy white solid (13.9 mg , $11.2 \mu \mathrm{~mol}, 42 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{DMSO}_{6}\right): \delta(\mathrm{ppm}) 1.33-1.68(\mathrm{~m}, 17 \mathrm{H}), 1.70-1.82(\mathrm{~m}, 2 \mathrm{H}), 2.17-$ $2.26(\mathrm{~m}, 1 \mathrm{H})$, 2.29-2.39 (m, 1H), 2.41-2.49 ($\mathrm{m}, 1 \mathrm{H}$, interfering with solvent residual peak), 2.53-2.69 (m, 2 H , interfering with solvent residual peak), 2.94-3.05 (m, 3H), 3.10-3.22 (m, 3H), 3.27-3.32 (m, 1 H), 3.34-3.39 ($\mathrm{m}, 1 \mathrm{H}$), 3.43-3.85 (m, 5 H$), 3.87-4.04(\mathrm{~m}, 3 \mathrm{H}), 4.12-4.16(\mathrm{~m}, 1 \mathrm{H}$, interfering with water signal), 4.77 (d, $J=47.1 \mathrm{~Hz}, 2 \mathrm{H}$), $5.72(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.76-7.86(\mathrm{~m}, 25 \mathrm{H}), 7.95(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.13-8.29(\mathrm{~m}$, 2H). ${ }^{1} \mathrm{H}-$ NMR ($600 \mathrm{MHz}, \mathrm{MeOH}-d_{4}$): $\delta(\mathrm{ppm})$ 1.44-1.82 (m, 17H), 1.83-1.90 (m, 2H), 2.24-2.31 (m, 1 H$)$, 2.47-2.62 (m, 3H), 2.69-3.23 (m, 6H), 3.24-3.29 (m, 1H, interfering with solvent residual peak), 3.31-
$3.35(\mathrm{~m}, 1 \mathrm{H}), 3.41-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.99(\mathrm{~m}, 5 \mathrm{H}), 4.00-4.06(\mathrm{~m}, 1 \mathrm{H}), 4.07-4.14(\mathrm{~m}$, $1 \mathrm{H}), 4.21-4.28(\mathrm{~m}, 1 \mathrm{H}), 4.76\left(\mathrm{~d}, J=47.1 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{~F}\right.$, the doublet is overlaid by a second doublet, because two diastereomers are evident in the spectra), 5.53 (br s, 1H), 7.02-7.09 (m, 2H), 7.18-7.24 (m, 2H), 7.29-7.45 (m, 12H), 7.51-7.58 (m, 2H), 7.64-7.69 (m, 1H). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (150 MHz, DMSO- d_{6}): $\delta(\mathrm{ppm})$ $22.9,23.3,25.1,28.3,28.78,28.84,36.15,36.17,37.23,37.27,37.43,37.97,38.7,39.6$ (overlaid by solvent residual peak), 40.4, 42.7, 43.9, 51.2, 51.5, 51.9, 67.6, 80.0 (d, $J=180.2 \mathrm{~Hz}$), 112.5, 113.7 (TFA), 115.7 (TFA), 117.7 (TFA), 120.8, 122.6, 126.7 (two carbon signals), 127.0 (2 carb.), 128.4, 129.0, $136.5,152.6,155.8,156.8,158.4(q, J=32.9 \mathrm{~Hz})(T F A), 166.9(\mathrm{~d}, J=18.1 \mathrm{~Hz}), 170.1,171.3,171.98$, 172.00. RP-HPLC (220 nm): $100 \% ~\left(t_{R}=13.6 \mathrm{~min}, k=4.3\right.$). HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{55} \mathrm{H}_{71} \mathrm{FN}_{11} \mathrm{O}_{7}\right]^{+}$1016.5516, found 1016.5507. $\mathrm{C}_{55} \mathrm{H}_{70} \mathrm{FN}_{11} \mathrm{O}_{7} \times \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{~F}_{6} \mathrm{O}_{4}(1015.54+228.04)$.
5.4.3. Investigation of the chemical stability of compounds $4.23,4.24,4.27,5.9,5.30$ and 5.32 cf. 4.4.4.
5.4.4. Pharmacological methods: cell culture, radioligand competition binding assay in HEK293T β Arr2 $+Y_{2} R$ cells, BRET based binding assay and β-arrestin2 recruitment assay ($Y_{2} R$), radioligand binding assay for $h Y_{1} R, h Y_{4} R$ and $h Y_{5} R$

5.4.4.1. Cell culture

cf. 4.4.5.1.
5.4.4.2. Radioligand competition binding assay in HEK293 β Arr2 $+Y_{2} R$ cells cf. 4.4.5.3.

5.4.4.3. BRET based binding assay

cf. 4.4.5.6.

5.4.4.4. β-Arrestin2 recruitment assay ($\mathrm{Y}_{2} \mathrm{R}$)

cf. 4.4.5.4.

5.4.4.5. Radioligand binding assay for $h Y_{1} R, h Y_{4} R$ and $h Y_{5} R$

cf. 4.4.5.8.

5.4.5. Data analysis

cf. 4.4.6.

5.5. References

1. Doods, H.; Gaida, W.; Wieland, H. A.; Dollinger, H.; Schnorrenberg, G.; Esser, F.; Engel, W.; Eberlein, W.; Rudolf, K. BIIE0246: A selective and high affinity neuropeptide $\mathrm{Y} \mathrm{Y}_{2}$ receptor antagonist. Eur. J. Pharm. 1999, 384, R3-R5.
2. Pluym, N.; Baumeister, P.; Keller, M.; Bernhardt, G.; Buschauer, A. [$\left.{ }^{3} \mathrm{H}\right]$ UR-PLN196: A Selective Nonpeptide Radioligand and Insurmountable Antagonist for the Neuropeptide Y Y Receptor. ChemMedChem 2013, 8, 587-593.
3. Pluym, N. Application of the Guanidine-Acylguanidine Bioisosteric Approach to NPY Y2 Receptors Antagonists: Bivalent, Radiolabeled and Fluorescent Pharmacological Tools. PhD Thesis, University of Regensburg, 2011.
4. Baumeister, P. Molecular tools for G-Protein Coupled Receptors: Synthesis, Pharmacological Characterization and $\left[{ }^{3} \mathrm{H}\right]$-Labeling of Subtype-selective Ligands for Histamine H_{4} and NPY Y_{2} Receptors. PhD Thesis, University of Regensburg, 2014.
5. Brennauer, A.; Keller, M.; Freund, M.; Bernhardt, G.; Buschauer, A. Decomposition of 1-(ω aminoalkanoyl)guanidines under alkaline conditions. Tetrahedron Lett. 2007, 48, 6996-6999.
6. Dautzenberg, F. M. Stimulation of neuropeptide Y-mediated calcium responses in human SMSKAN neuroblastoma cells endogenously expressing Y_{2} receptors by co-expression of chimeric G proteins. Biochem. Pharmacol. 2005, 69, 1493-1499.
7. Appel, R. Tertiary Phosphane/Tetrachloromethane, a Versatile Reagent for Chlorination, Dehydration, and P-N Linkage. Angew. Chem., Int. Ed. Engl. 1975, 14, 801-811.
8. Buschmann, J.; Seiler, T.; Bernhardt, G.; Keller, M.; Wifling, D. Argininamide-type neuropeptide $\mathrm{Y} \mathrm{Y}_{1}$ receptor antagonists: the nature of N^{ω}-carbamoyl substituents determines $\mathrm{Y}_{1} \mathrm{R}$ binding mode and affinity. RSC Med. Chem. 2020, 11, 274-282.
9. Ziemek, R.; Brennauer, A.; Schneider, E.; Cabrele, C.; Beck-Sickinger, A. G.; Bernhardt, G.; Buschauer, A. Fluorescence- and luminescence-based methods for the determination of affinity and activity of neuropeptide Y_{2} receptor ligands. Eur. J. Pharm. 2006, 551, 10-18.
10. Felixberger, J. Luciferase complementation for the determination of arrestin recruitment: Investigation at histamine and NPY receptors. PhD Thesis, University of Regensburg, 2014.
11. Keller, M.; Weiss, S.; Hutzler, C.; Kuhn, K. K.; Mollereau, C.; Dukorn, S.; Schindler, L.; Bernhardt, G.; König, B.; Buschauer, A. N ${ }^{\omega}$-Carbamoylation of the Argininamide Moiety: An Avenue to Insurmountable NPY Y_{1} Receptor Antagonists and a Radiolabeled Selective HighAffinity Molecular Tool ([3H]UR-MK299) with Extended Residence Time. J. Med. Chem. 2015, 58, 8834-8849.
Ziemek, R.; Schneider, E.; Kraus, A.; Cabrele, C.; Beck-Sickinger, A. G.; Bernhardt, G.; Buschauer, A. Determination of Affinity and Activity of Ligands at the Human Neuropeptide Y Y4 Receptor by Flow Cytometry and Aequorin Luminescence. J. Recept. Signal Transduct. Res. 2007, 27, 217-233.
12. Kuhn, K. K.; Ertl, T.; Dukorn, S.; Keller, M.; Bernhardt, G.; Reiser, O.; Buschauer, A. High Affinity Agonists of the Neuropeptide Y (NPY) Y 4 Receptor Derived from the C-Terminal Pentapeptide of Human Pancreatic Polypeptide (hPP): Synthesis, Stereochemical Discrimination, and Radiolabeling. J. Med. Chem. 2016, 59, 6045-6058.
13. Moser, C.; Bernhardt, G.; Michel, J.; Schwarz, H.; Buschauer, A. Cloning and functional expression of the hNPY Y_{5} receptor in human endometrial cancer (HEC-1B) cells. Can. J. Physiol. Pharmacol. 2000, 78, 134-42.
14. Wodtke, R.; Hauser, C.; Ruiz-Gómez, G.; Jäckel, E.; Bauer, D.; Lohse, M.; Wong, A.; Pufe, J.; Ludwig, F.-A.; Fischer, S.; Hauser, S.; Greif, D.; Pisabarro, M. T.; Pietzsch, J.; Pietsch, M.; Löser, R. N^{ε}-Acryloyllysine Piperazides as Irreversible Inhibitors of Transglutaminase 2: Synthesis, Structure-Activity Relationships, and Pharmacokinetic Profiling. J. Med. Chem. 2018, 61, 4528-4560.

Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist. Organometallics 2010, 29, 2176-2179.
17. Dollinger, H.; Esser, F.; Mihm, G.; Rudolf, K.; Schnorrenberg, G.; Gaida, W.; Doods, N. H. Neue substituierte Aminosäurederivate, Verfahren zu ihrer Herstellung und diese Verbindungen enthaltene pharmazeutische Zusammensetzungen. DE19816929A1, 1998.
18. Brennauer, A. Acylguanidines as bioisosteric groups in argininamide-type neuropeptide $Y_{1} Y_{1}$ and Y_{2} receptor antagonists: synthesis, stability and pharmacological activity. PhD Thesis, University of Regensburg, 2006.
19. Sugiyama, K.; Yamada, T. Precise Synthesis and Surface Characterization of EndFunctionalized Polystyrene with Perfluoroalkyl Group via Ionic Bond Formation of Diethylamino End-Group with Perfluoroalkylcarboxylic Acid. Macromol. Chem. Phys. 2017, 218, 1600444.

Misawa, T.; Dodo, K.; Ishikawa, M.; Hashimoto, Y.; Sagawa, M.; Kizaki, M.; Aoyama, H. Structure-activity relationships of benzhydrol derivatives based on 1'-acetoxychavicol acetate (ACA) and their inhibitory activities on multiple myeloma cell growth via inactivation of the NFкB pathway. Bioorg. Med. Chem. 2015, 23, 2241-2246.
21. Soldi, C.; Lamb, K. N.; Squitieri, R. A.; González-López, M.; Di Maso, M. J.; Shaw, J. T. Enantioselective Intramolecular C-H Insertion Reactions of Donor-Donor Metal Carbenoids. J. Am. Chem. Soc. 2014, 136, 15142-15145.
Schlienger, N.; Bryce, M. R.; Hansen, T. K. The Boronic Mannich Reaction in a Solid-Phase Approach. Tetrahedron 2000, 56, 10023-10030.
23. Wagner, S.; Buchgraber, P.; Klar, U.; Christ, C.; Fernandez-Montalvan, A. E.; Möwes, M.; Lienau, P.; Eis, K.; Sack, U.; Mönning, U.; Scholz, A.; Kuhnke, J.; Thede, K.; Werbeck, N.; Serrano-Wu, M.; Lemke, C.; McKinney, D.; Fitzgerald, M.; Nasveschuk, C.; Lazarski, K.; Ferrara, S. J.; Furst, L.; Wei, G.; Mccarren, P. R. Macrocyclic indole derivatives. WO2017198341A1, 2017.
24. Hernández, J. N.; Ramírez, M. A.; Martín, V. S. A New Selective Cleavage of N,N-DicarbamoylProtected Amines Using Lithium Bromide. J. Org. Chem. 2003, 68, 743-746.

Chapter 6

Synthesis and pharmacological investigation of substituted (R, R)-diaminocyclohexanes as potential non-peptide ligands for the $h Y_{4} R$

[^4]
6.1. Introduction

The NPY $h Y_{4}$ receptor shows higher affinity to pancreatic polypeptide (PP) compared to NPY and is therefore, in this respect, different from the other receptor subtypes ($h Y_{1} R, h Y_{2} R$ and $h Y_{5} R$). ${ }^{1}$ Furthermore, the $Y_{4} R$ is a potential target for the treatment of obesity, because of its physiological role in regulation of appetite and gut function. ${ }^{2,3}$ Therefore, there is an interest in small molecule $Y_{4} R$ ligands, particularly agonists and positive allosteric modulators. ${ }^{3-13}$ During the last decade, several non-peptide $Y_{4} R$ ligands have been reported in literature (Figure 6.1 and Table 6.1).4-11

The bivalent ligand $(R, R)-6.1$, representing a dimer of the $Y_{1} R$ antagonist BIBP-3226, showed, in addition to $Y_{1} R$ binding, moderate to high affinity ($\mathrm{p} K_{\mathrm{i}}=6.9$) and antagonism ($\mathrm{p} K_{b}=7.7$). ${ }^{4}$ Notably, the optical antipode of (R, R)-6.1, i.e. $(S, S)-6.1$ (Figure 6.1), proved to be a $Y_{4} R$ selective antagonist. ${ }^{4}$ An imidazolepropylguanidine-type histmamine receptor ligand (6.2), developed in our group, showed affinity and antagonism towards the $h Y_{4} R,{ }^{5}$ but further investigations revealed cytotoxicity at a concentration of $10 \mu \mathrm{M} .{ }^{14}$ The cytotoxic effects of compound 6.2 were determined in a kinetic crystal violet based chemosensitivity assay using HT-29 carcinoma cells over a period of $200 \mathrm{~h} .{ }^{14}$

Figure 6.1. Structures of reported non-peptide antagonists (6.1 and 6.2), agonists (6.3-6.8) and modulators (6.9 and 6.10) of the NPY $Y_{4} R$ (for $Y_{4} R$ affinities, potencies or antagonistic activities see Table 6.1). References: (a) Keller et al., ${ }^{4}$ (b) Ziemek et al., ${ }^{5}$ (c) Kang et al., ${ }^{6}$ (d) Sun et al., ${ }^{7}$ (e) Ewing et al., ${ }^{8}$ (f) Ewing et al., ${ }^{9}$ (g) Schubert et al., ${ }^{11}$ (h) Sliwoski et al. ${ }^{10}$

Recently, a series of $Y_{4} R$ agonists (e.g. 6.3 and 6.4), which showed moderate potencies, were discovered by computer aided drug design. ${ }^{6}$ These agonists with micromolar potency were investigated in a cAMP assay (prevention of forskolin stimulated transformation from ATP to cAMP) in HEK293/NPY4R cells.

Moreover, Chongqing et al. ${ }^{7}$ and Ewing et al. ${ }^{8,9}$ have reported a series of adipic acids (6.5) and (R, R)-diaminocyclohexanes $((R, R, S)-6.6 \mathbf{a}$ and $(R, R, S)-6.7 \mathbf{a})$ that were considered as agonists, antagonists or modulators of the $h Y_{4} R$. According to the data (procedures) given in the patents, these ligands should be considered as agonists. These compounds were investigated in a cAMP assay (prevention of forskolin stimulated transformation from ATP to cAMP) in CHO cells. The affinities of compounds 6.3-6.8 for $\mathrm{Y}_{4} \mathrm{R}$ are not reported in literature.

Table 6.1. Reported $Y_{4} R$ binding data ($\mathrm{p} K_{\mathrm{i}}$), agonistic potencies ($\mathrm{pEC} \mathrm{C}_{50}$) or antagonistic activities ($\mathrm{p} K_{\mathrm{b}}$) of reported $\mathrm{Y}_{4} R$ agonists, antagonists or modulators (structures see Figure 6.1).

Compound	Ref.	$\mathrm{p} K_{\mathrm{i}}$	$\mathrm{pEC} \mathrm{C}_{50} / \mathrm{p} K_{\mathrm{b}}$
(R,R)-6.1 (UR-M188)	a	6.89	7.70
(S,S)-6.1 (UR-MEK288)	a	6.59	7.57
6.2	b	4.17	3.88
6.3	C	n.a.	4.21
6.4	c	n.a.	4.19
6.5	d	n.a.	8.30
6.6a	e	n.a.	7.09
6.7a	e	n.a.	n.a.
6.8	\dagger	n.a.	9.00
6.9 (tBPC)	g	<4.52	5.29
6.10 (Niclosamide)	h	n.a.	6.21

References: (a) Keller et al.; ${ }^{4}$ these authors reported K_{i} values (affinities determined in a flow cytometric binding assay using Cy5-[$\left.\mathrm{K}^{4}\right]$-hPP ($\mathrm{C}_{\text {tinal }}=3 \mathrm{nM}, K_{d}=5.6 \mathrm{nM}$) and K_{b} values (antagonistic activities determined in an aequorin assay in intact $\mathrm{CHO}-\mathrm{hY}_{4}-\mathrm{G}_{\mathrm{qi}}-\mathrm{mtAEQ}$ cells. Aequorin Ca^{2+} mobilization was induced by $100 \mathrm{nM} \mathrm{hPP}\left(E C_{50}=15.5 \mathrm{nM}\right)$, after pre-incubation of the cells with the antagonists for 15 min). (b) Ziemek et al.; ${ }^{5}$ these authors reported $\mathrm{p} K_{\mathrm{i}}$ values (affinities determined in a flow cytometric binding assay using Cy5-[K4]-hPP ($\mathrm{C}_{\text {final }}=3 \mathrm{nM}, K_{\mathrm{d}}=5.6 \mathrm{nM}$) and $\mathrm{p} K_{\mathrm{b}}$ values (antagonistic activities determined in an
 after pre-incubation of the cells with the antagonists for 15 min). (c) Kang et al.; 6 these authors reported EC_{50} values (potencies were determined in a cAMP assay in HEK293/NPY4R cells). (d) Sun et al.; these authors reported EC E $_{50}$ values (potencies were determined in a cAMP assay in CHO cells). (e) Ewing et al., ${ }^{8}$ these authors reported EC_{50} values (potencies were determined in a cAMP assay in CHO cells). (f) Ewing et al., ${ }^{9}$ these authors reported EC_{50} values (potencies were determined in a cAMP assay in CHO cells). (g) Schubert et al.; ${ }^{11}$ these authors reported EC_{50} value (modulation was investigated through potentiation of a PP EC 20 signal response by increasing concentrations of 6.9 in a Ca^{2+} assay in COS7_Y $\mathrm{Y}_{4} \mathrm{R}-\mathrm{eYFP} _\Delta 6 \mathrm{Ga}_{\mathrm{qi4}}$-myr cells). (h) Sliwoski et al.; ${ }^{10}$ these authors reported pEC_{50} value (modulation was investigated through potentiation of a $\mathrm{PP} \mathrm{EC}_{20}$ signal response by increasing concentrations of 6.9 in an inositol phosphate accumulation assay in COS7_Y ${ }_{4} R$-eYFP_ $\Delta 6$ Gaqia-myr cells). Reported K_{i} values (EC_{50} or K_{b}) were converted to $\mathrm{p} K_{\mathrm{i}}$ values (pEC_{50}, or $\mathrm{p} K_{\mathrm{b}}$). n.a. not applicable. K_{b} values given in italics.

Lately, the development of positive (PAM) or negative (NAM) allosteric GPCR modulators has emerged as an approach in drug discovery for an improved treatment of various diseases (possible reduction of
adverse effects). ${ }^{15,16}$ The group of Beck-Sickinger reported tBPC (6.9) and niclosamide (6.10) as the first allosteric modulators for the NPY $Y_{4} R .{ }^{10,11}$ The $^{p E C} C_{50}$ value of 6.9 (Table 6.1) was determined in an inositol phosphate accumulation assay through potentiation of a PP EC20 response as well as the effect on the pEC_{50} value of PP in presence of $30 \mu \mathrm{M} 6.10$ (shown in bar chart and concentration response curves). ${ }^{10}$ Additionally, the pEC_{50} value of 6.9 was determined in a Ca^{2+} assay through potentiation of a PP EC 20 response, and an effect on potency in a β-arrestin2 recruitment assay was reported. ${ }^{11}$

In this chapter, the synthesis of the reported potential $\mathrm{Y}_{4} \mathrm{R}$ agonists $\left(R, R, S^{*}\right)-\mathbf{6 . 6 a}$ and $\left(R, R, S^{*}\right)-6.7 \mathrm{a}$, as well as the literature $\mathrm{Y}_{4} \mathrm{R}$ modulator tBPC (6.9) are described, along with an evaluation of their activities at the NPY $Y_{4} R$ (competition binding studies). Moreover, several derivatives of (R, R, S^{*})-6.6a and $\left(R, R, S^{*}\right)-6.7$ a were synthesized and investigated with respect to $Y_{4} R$ binding. Selected compounds, including the putative $\mathrm{Y}_{4} \mathrm{R}$ PAM niclosamide (6.10), were investigated in an aequorin Ca^{2+} assay. Additionally, the cytotoxicity of a set of compounds was investigated by ethidium bromide/acridine orange staining.

6.2. Results and discussion

6.2.1. Annotation concerning stereochemistry

Annotation concerning stereochemistry of $\left(R, R, S^{*}\right)-6.6 \mathbf{a},\left(R, R, S^{*}\right)-6.7 \mathrm{a},\left(R, R, S^{*}\right)-6.7 \mathbf{b}$: the absolute configurations of the stereogenic centres of the ($1 R, 2 R$)-diaminocyclohexane moiety are known, whereas the stereogenic centres in the piperidine or pyrrolidine moiety were defined as R^{\star} or S^{\star}, as the absolute configuration could not be elucidated by X-ray crystallography.

Annotation concerning the stereochemistry of $\left(S^{*}\right)-6.18 \mathrm{a}$ and $\left(S^{*}\right)$-6.18b: the absolute configuration of the stereogenic centres could not be elucidated by X-ray crystallography, therefore the absolute configuration was defined as R^{\star} or S^{*}.

6.2.2. Synthesis

(R, R)-Diaminocyclohexane (6.11) was derivatized at one of the two amine groups by use of isocyanatobenzene and N-(benzyloxycarbonyloxy)succinimide to form urea 6.12 and carbamate 6.13, respectively. Target compounds $(R, R, S)-6.6 a$ and $(R, R, S)-6.7$ a were synthesized according to Ewing et al. ${ }^{8,9}$ with minor modifications (Scheme 6.1): in these patents several different synthesis routes are described to afford target compounds $(R, R, S)-6.6 \mathbf{a}$ and $(R, R, S)-6.7 \mathbf{a}$, however the reported experimental part is limited to a few representative examples. One synthesis route in the patent started from a racemic mixture of piperidine-3-ol ((RS)-6.14)) to form arylamine (RS)-6.15 from (RS)-6.14 and 1-bromo-4-nitrophenylbenzene catalysed by Cul and L-proline (Ullmann-type ${ }^{17}$) in good yields. In the patents ${ }^{8,9}$ the hydroxyl group of $(R S)-6.15$ was oxidized to a ketone 6.16 by use of pyridine-sulfur trioxide complex in DMSO (Parikh-Doering oxidation ${ }^{18}$). The next step of the synthesis was intended to be the coupling of ketone 6.16 and (R, R)-diaminocyclohexane (6.11) by use of sodium triacetoxyborohydride (reductive amination) and subsequent coupling with isocyanatobenzene and N-(benzyloxycarbonyloxy)succinimide to obtain $(R, R, S)-6.6$ a and $(R, R, S)-6.7 a$, respectively. In this work, the ketone 6.16 could not be obtained from the secondary alcohol ($R S$) $\mathbf{6 . 1 5}$ by use of pyridine-sulfur trioxide complex in DMSO or other oxidizing agents like $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}, \mathrm{CrO}_{3}, \mathrm{MnO}_{2}$ or KMnO_{4}. Therefore, the alcohol ($R S$)-6.14
was mesylated and ($R S$)-6.17 was obtained in good yield after crystallization. The mesylate ($R S$)-6.17 was used to alkylate amine 6.12 in a S_{N} reaction under microwave irradiation ($120{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$) to obtain a diastereomeric mixture of compound 6.6a, under applied conditions, a mixture of the diastereomeric structural isomers 6.6b was evident (Scheme 6.1, RP-HPLC chromatograms shown in Figure 6.2 A, 6.2 C). The formation of a highly reactive aziridine ring system at higher temperatures give rise to the mixture of products. Additionally, there is also the potential for neighbouring group participation, which could further complicate the stereochemical outcome of this transformation.

Scheme 6.1. Synthesis of the (R, R)-diaminocyclohexane derivatives $\left(R, R, S^{*}\right)-\mathbf{6 . 6 a}$ and $\left(R, R, S^{\star}\right)-6.7 \mathbf{a}$. Reagents and conditions: (a) isocyanatobenzene, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 16 \%$; (b) N-(benzyloxycarbonyloxy)succinimide, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 64 \%$; (c) 1-bromo-4-nitrobenzene, L-proline, CuI, $\mathrm{K}_{2} \mathrm{CO}_{3}$, $\mathrm{DMSO}, 85 \%$; (d) methanesulfonyl chloride, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 62 \%$; (e) acetonitrile, microwave device ($120^{\circ} \mathrm{C}$, 1 h), yield was determined; (f) 1-bromo-4-nitrobenzene, L -proline, Cul, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DMSO}, 81 \%$; (g) methanesulfonyl chloride, $\mathrm{Et}_{3} \mathrm{~N}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 74 \%$; (h) acetonitrile, microwave device ($120^{\circ} \mathrm{C}, 1 \mathrm{~h}$), $5 \%\left(\left(R, R, S^{*}\right)-6.6 \mathbf{a}\right.$) and $9 \%((R, R, S)-6.6 \mathbf{b})$; (i) acetonitrile, microwave device $\left(120^{\circ} \mathrm{C}, 1 \mathrm{~h}\right), 3 \%\left(\left(R, R, S^{\star}\right)-6.7 \mathbf{a}\right)$ and $8 \%\left(\left(R, R, S^{*}\right)-6.7 \mathbf{b}\right)$.

To circumvent the required separation of diastereomers, the starting material was changed from the racemate $(R S)-6.14$ to the enantiomerically pure building block (R)-piperidine-3-ol $((R)-6.14) .(R)-6.14$ was coupled with 1-bromo-4-nitrobenzene in an Ullman-type reaction to form (R)-1-(4-nitrophenyl)piperidine-3-ol $((R)-6.15)$. The secondary alcohol $(R)-6.15$ was transformed to the mesylate $(R)-6.17$, which was then coupled with the (R, R)-diaminocyclohexane derivatives 6.12 and 6.13 , respectively, under microwave irradiation to form compounds $\left(R, R, S^{\star}\right)-\mathbf{6 . 6 a},(R, R, S)-\mathbf{6 . 6 b},\left(R, R, S^{*}\right)-$ 6.7a and $\left(R, R, S^{*}\right)-6.7 \mathrm{~b}$. The structural isomers of $\left(R, R, S^{*}\right)-6.6$ a and $\left(R, R, S^{*}\right)-6.7$ a were separated by preparative HPLC. The stereochemistry of constitutional isomer $(R, R, S)-6.6 \mathbf{b}$, was elucidated by X-ray
crystallography (Figure 6.3): a methanolic solution of the hydrochloride of $(R, R, S)-6.6$ in methanol was allowed to vaporize at ambient temperature to obtain crystals suitable for X-ray crystallographic analysis.

Figure 6.2. RP-HPLC (Method A, 220 nm) chromatograms (A-D) of alkylation of amine 6.12 by mesylate (RS)-6.17 (A, C) and $(R)-6.17(\mathrm{~B}, \mathrm{D}) . \mathrm{t}_{\mathrm{R}}\left(\left(R, R, S^{*}\right)-6.6 \mathrm{a}\right)=14.6 \mathrm{~min}$ and $\mathrm{t}_{\mathrm{R}}\left(\left(R, R, S^{*}\right)-6.6 \mathrm{a}\right)=15.0 \mathrm{~min}$

Interestingly, the structural isomers $(R, R, S)-6.6 \mathrm{~b}$ and $\left(R, R, S^{*}\right)-6.7 \mathrm{~b}$ (containing a pyrrolidine ring rather than the piperidine moiety of $\left(R, R, S^{*}\right)-6.6 \mathrm{a}$ and $\left.\left(R, R, S^{\star}\right)-6.7 \mathrm{a}\right)$ were the main products of the substitution reactions (see RP-HPLC chromatograms shown in Figure $6.2 \mathrm{C}, \mathrm{D}$). For the formation of $(R, R, S)-\mathbf{6 . 6 b}$ and $\left(R, R, S^{\star}\right)-6.7 \mathrm{~b}$ an $S_{N} 2$-like reaction can be alternatively assumed, because using the enantiomerically pure mesylate $(R)-6.17$ led to a decrease in side products (Figure 6.2 C).
$(R)-6.17$ was coupled with the non-chiral amine 2.36 under microwave irradiation. Subsequent Boc deprotection using TFA gave a mixture of structural isomers (S^{*})-6.18a and (S^{*})-6.18b (Scheme 6.2). The desired product of substitution (SN2-like) reaction between amine 2.36 and $(R)-6.17$ is amine $\left(S^{\star}\right)-$ 6.18a, however the structural isomer $\left(S^{\star}\right)-6.18 \mathrm{~b}$ was evident in the reaction mixture. Further investigation should focus on configuration determination of stereogenic centres by X-ray crystallography. Furthermore, the presence of enantiomers of $\left(S^{\star}\right)-6.18 \mathrm{a}$ and $\left(S^{*}\right)-6.18 \mathrm{~b}$ needs to be considered, especially if non-SN2 mechanisms are involved (or double $S_{N} 2$ via the aziridine) that would lead to a retention of configuration.

A

C

B

D

Figure 6.3. Platon plots (A-B) and stereoview of a unit cell (C-D) of (R,R,S)-6.6b (A-C) and (R)-6.17 (B-D). Platon plot (Platon version 13/08/2017) of (R, R, S)-6.6b (50\% probability ellipsoids) (A). Platon plot (Platon version 22/12/2019) of (R)-6.17 (50\% probability of ellipsoids) (B). Stereoview of molecular packing (Mercury 3.7) in the unit cell of (R, R, S)-6.6b with view along c axis, hydrogens not shown (C). Stereoview of molecular packing (Mercury 3.7) in the unit cell of $(R)-6.17$ with view along a axis, hydrogens not shown (D). (R,R,S)-6.6b was used as HCl salt for crystallization.

The amino groups of glycine (6.19) and γ-aminobutyric acid (6.20) were coupled with 1 -fluoro-4nitrobenzene to form 6.21 and 6.22, respectively. The amino-functionalized carboxylic acids (6.21-6.23) were transformed to the respective succinimidyl esters 6.24-6.26 (Scheme 6.3).

Arylamine 6.28 was synthesized from piperidine-4-ol (6.27) and 1-bromo-4-nitrobenzene in an Ullmanntype reaction (compare with Scheme 6.1, compound (RS)-6.15). The secondary alcohol 6.28 was converted to the respective ketone in a Parikh-Doering oxidation (Scheme 6.3) in moderate yield.

Scheme 6.2. Synthesis of compounds $\left(S^{*}\right)-6.18 \mathrm{a}$ and $\left(S^{*}\right)-6.18 \mathrm{~b}$. Reagents and conditions: (a) acetonitrile, microwave device $\left(120{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}\right), 2 \%\left(\left(\mathrm{~S}^{*}\right)-6.18 \mathrm{a}\right)$ and $3 \%\left(\left(\mathrm{~S}^{*}\right)-6.18 \mathrm{~b}\right)$.

Intermediate 6.31 was synthesized from benzaldehyde 6.30 and 1-((isocyanomethyl)sulfonyl)-4methylbenzene (van Leusen oxazole synthesis ${ }^{19}$) in good yield. The oxazole 6.31 derivative was converted to the respective chloride 6.32 , which was coupled with amine 6.11 under microwave irradiation $\left(130^{\circ} \mathrm{C}, 1 \mathrm{~h}\right)$ to give 6.33 in moderate yield. The removal of the tert-butyl group of 6.33 by treatment with TFA gave $\mathbf{6 . 3 4}$ after purification by preparative HPLC (Scheme 6.3).

Scheme 6.3. Synthesis of substituted (R, R)-diaminocyclohexanes 6.34 and 6.35-6.44. Reagents and conditions: (a) 1-fluoro-4nitrobenzene, $\mathrm{Na}_{2} \mathrm{CO}_{3}$, dioxane $/ \mathrm{H}_{2} \mathrm{O}$, $70^{\circ} \mathrm{C}$, overnight, 55-82\%; (b) DCC, DMF, rt, overnight, 63-89\%; (c) 1-bromo-4nitrobenzene, L-proline, Cul, $\mathrm{K}_{2} \mathrm{CO}_{3}$, $\mathrm{DMSO}, 6{ }^{\circ} \mathrm{C}, 2 \mathrm{~d}, 88 \%$; (d) pyridine sulfur-trioxide complex, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}, 50 \%$; (e) 1-((isocyanomethyl)sulfonyl)-4-methylbenzene, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$, reflux, $4 \mathrm{~h}, 77 \%$; (f) (1) n-BuLi, THF, $-78{ }^{\circ} \mathrm{C}$, (2) $\mathrm{C}_{2} \mathrm{Cl}_{6},-78{ }^{\circ} \mathrm{C}, 88 \%$; (g) $\mathrm{K}_{2} \mathrm{CO}_{3}$, microwave device ($130^{\circ} \mathrm{C}$, 45 min), 47%; (h) $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ TFA 1:1, 46%; (i) (1) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, DIPEA, (2) $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{TFA} 1: 1,51 \%$; (j) DIPEA, DMF, rt, $3 \mathrm{~h}, 39 \%$; (k) DIPEA, DMF, rt, $3 \mathrm{~h}, 32 \%$, (I) DIPEA, DMF, rt, $3 \mathrm{~h}, 25 \%$; (m) DIPEA, DMSO, rt, $2 \mathrm{~h}, 17 \%$; (n) (1) $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{AcOH}, \mathrm{Na}_{2} \mathrm{SO}_{4}$ (anhydrous), (2) $\mathrm{NaBH}(\mathrm{OAc})_{3}, 10 \%$; (o) (1) $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{AcOH}, \mathrm{Na}_{2} \mathrm{SO}_{4}$ (anhydrous), (2) $\mathrm{NaBH}(\mathrm{OAc})_{3}$, 14%; (p) (1) $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{AcOH}, \mathrm{Na}_{2} \mathrm{SO}_{4}$ (anhydrous), (2) $\mathrm{NaBH}(\mathrm{OAc})_{3}, 10 \%$; (q) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, DIPEA, 51%; (r) DMF, DIPEA, 12%.

Compound 6.35 was synthesized by amide coupling between amine 6.34 and succinimidyl ester 2.25 followed by Boc deprotection with TFA. The target compounds 6.36-6.39 were synthesized by treatment
of 6.34 with the succinimidyl esters $\mathbf{2 . 2 8}$ or $\mathbf{6 . 2 4 - 6 . 2 6}$. Compounds $\mathbf{6 . 4 0 - 6 . 4 2}$ were synthesized from ketone 6.29 and amines 6.12 , 6.13 or 6.31 by formation of the imines and subsequent reduction (reductive amination) to give the respective amines 6.40-6.42 (Scheme 6.3). Succinimidyl ester 6.24 was used for amide bond formation between amines 6.12 and 6.13 to obtain compounds 6.43 and 6.44 (Scheme 6.3).

Scheme 6.4. Synthesis of the (R, R)-aminocyclohexylcarbamoylguanidines 6.47 and 6.48. Reagents and conditions: (a) isocyanatobenzene, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 55 \%$; (b) HgCl_{2}, DIPEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 50 \%$; (c) (1) $\mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}$, (2) $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{TFA} 1: 1,20 \%$; (d) DIPEA, DMSO, rt, 2 h, 40%.

Isocyanatobenzene was treated with 2.35 to form the guanidinylating reagent 6.45 in moderate yield (Scheme 6.4). Compound 6.46 was obtained by guanidinylation of (R, R)-diaminocyclohexane derivative 6.13 with 6.45. The (R, R)-aminocyclohexylcarbamoylguanidine 6.47 was obtained after removal of the Cbz group by hydrogenation, and subsequent cleavage of the Boc group by treatment with TFA. Further derivatization of 6.47 by amide bond formation using succinimidylester $\mathbf{6 . 2 4}$ gave $\mathbf{6 . 4 8}$ in moderate yield.

Scheme 6.5. Synthesis of 6.9 (tBPC). Reagents and conditions: (a) $\mathrm{CsCO}_{3}, \mathrm{DMF}, 110^{\circ} \mathrm{C}$, overnight, 74%.
Finally, cyclohexene oxide (6.50) and the phenol 6.51 were coupled (S_{N} reaction) to give trans-2-(4-(tert-butyl)phenoxy)cyclohexan-1-ol (6.9) in good yields (Scheme 6.5).

6.2.3. Pharmacological methods: investigation of test compounds in a radioligand binding assay, an aequorin Ca^{2+} assay and a cytotoxicity assay (live/dead staining).

Compounds $\left(R, R, S^{\star}\right)-6.6 \mathbf{a},(R, R, S)-6.6 \mathbf{b},\left(R, R, S^{\star}\right)-6.7 \mathbf{a},\left(R, R, S^{\star}\right)-6.7 \mathbf{b}, 6.9,6.10,6.12,6.13,\left(S^{\star}\right)-6.18 \mathbf{a}$, $\left(S^{*}\right)-6.18 \mathrm{~b}, 6.34-6.44,6.47$ and 6.48 were investigated in competition binding studies. Selected compounds $\left((R, R, S)-6.6 \mathrm{~b},\left(R, R, S^{*}\right)-6.7 \mathrm{~b}\right.$, niclosamide (6.10) and 6.36$)$ were additionally investigated in the aequorin Ca^{2+} assay to elucidate modulatory effects on the action of hPP. The cytotoxicity of compounds 2.68, $(R, R, S)-6.6 \mathrm{~b},\left(R, R, S^{*}\right)-6.7 \mathrm{~b}$ and niclosamide (6.10) was investigated by ethidium bromide/acridine orange staining of $\mathrm{CHO}-\mathrm{hY} 4 \mathrm{R}^{-} \mathrm{G}_{\mathrm{qi5}}-\mathrm{mt} \mathrm{AEQ}$ cells.

6.2.3.1. Displacement studies of investigated compounds in a radioligand competition binding assay in $\mathrm{CHO}-\mathrm{h} \mathrm{Y}_{4} \mathrm{R}$ - $\mathrm{G}_{\text {qi }}$-mtAEQ cells

A competition binding assay was performed according to the literature ${ }^{20}$ in living $\mathrm{CHO}-\mathrm{h} \mathrm{Y}_{4} \mathrm{R}$-Gqis-mtAEQ cells ${ }^{5}$ using [$\left.{ }^{3} \mathrm{H}\right]$ UR-KK200 (Cinal $=1.0 \mathrm{nM}, K_{d}=0.67 \mathrm{nM}^{20}$) as radioligand in sodium-free binding buffer (Table 6.2). The inhibitory effect of all investigated compounds (($\left.R, R, S^{*}\right)-6.6 \mathbf{a},(R, R, S)-6.6 \mathbf{b},\left(R, R, S^{*}\right)-$ 6.7a, $\left(R, R, S^{*}\right)-6.7 \mathbf{b}, 6.9,6.10,6.12,6.13,\left(S^{*}\right)-6.18 \mathbf{a},\left(S^{*}\right)-6.18 \mathbf{b}, 6.34-6.44,6.47$ and 6.48$)$ on $Y_{4} R$ binding of $\left[{ }^{3} \mathrm{H}\right] \mathrm{UR}$-KK200 was determined for three concentrations ($3 \mu \mathrm{M}, 10 \mu \mathrm{M}$ and $30 \mu \mathrm{M}$). The investigation of higher concentrations was not feasible due to solubility limitations of the test compounds and possible cytotoxicity.

Ewing et al. ${ }^{8}$ described the compounds (R, R, S^{*})-6.6a and (R, R, S^{*})-6.7a as $Y_{4} R$ agonists, antagonists or modulators, but only EC_{50} values obtained from a functional cAMP assay were reported.

Table 6.2. $\mathrm{h} \mathrm{Y}_{4} \mathrm{R}$ affinities $\left(\mathrm{p} K_{\mathrm{i}}\right)$ of synthesized (R, R)-diaminocyclohexane derivatives, as determined by competition binding assays with $\left[{ }^{3} \mathrm{H}\right]$ UR-KK200.

Compound	$\mathrm{p} K_{\mathrm{i}}{ }^{\text {a }}$	Compound	$\mathrm{p} K_{\mathrm{i}}{ }^{\mathrm{a}}$
$\left(R, R, S^{\star}\right)$-6.6a	<4.52	6.36	<4.52
(R,R,S)-6.6b	<4.52	6.37	<4.52
$\left(R, R, S^{*}\right)-6.7 \mathbf{a}$	<5.00	6.38	<4.52
$\left(R, R, S^{*}\right)-6.7 \mathrm{~b}$	<4.52	6.39	<4.52
6.9 (tBPC)	<4.52	6.40	<4.52
6.10 (Niclosamide)	<4.52	6.41	<4.52
6.12	<4.52	6.42	<4.52
6.13	<4.52	6.43	<5.00
$\left(S^{*}\right)-6.18 \mathrm{a}$	<4.52	6.44	<5.00
$\left(S^{\star}\right)-6.18 \mathbf{b}$	<4.52	6.47	<4.52
6.34	<4.52	6.48	<4.52
6.35	<4.52		

Radioligand competition binding assay with [$\left.{ }^{3} \mathrm{H}\right] \mathrm{UR}-\mathrm{KK} 200$ ($\mathrm{c}_{\text {final }}=1.0 \mathrm{nM}, K_{\mathrm{d}}=0.67 \mathrm{nM}^{20}$) in intact $\mathrm{CHO}-\mathrm{hY}{ }_{4} \mathrm{R}-\mathrm{G}_{\mathrm{qi5}}-\mathrm{mtAEQ}$ cells. ${ }^{20}$ At least two independent experiments (each performed in triplicate) were performed.

It should be mentioned at this point that work in our group has described a discrepancy between potency ($\mathrm{pEC} \mathrm{C}_{50}$) and affinity $\left(\mathrm{p} K_{\mathrm{i}}\right.$) of agonists at the $\mathrm{h} \mathrm{Y}_{4} \mathrm{R} .{ }^{20,}{ }^{21}$ The apparent higher affinity of agonists compared with their potency was explained by the absence of sodium in the binding buffer used for radioligand competition binding experiments at $\mathrm{hY} \mathrm{H}_{\mathrm{R}} \mathrm{R}^{20,}{ }^{21}$ The phenomenon of a negative allosteric modulatory effect of sodium ions has also been reported in literature, and shown for other GPCRs (e.g. μ OR, ${ }^{22}$
$A_{2 A} R,{ }^{23}$ and $\beta_{1} A R^{24}$), whilst sodium cations stabilize the inactive state of the receptor. Whereas $\left(R, R, S^{*}\right)$ 6.6a, (R, R, S)-6.6b and $\left(R, R, S^{*}\right)-6.6 \mathbf{b}$ showed no apparent affinity for the $\mathrm{h} \mathrm{Y}_{4} \mathrm{R},\left(R, R, S^{*}\right)-6.7 \mathrm{a}$ displaced ca. 50% of the radioligand at a concentration of $30 \mu \mathrm{M}$.
tBPC (6.9) and niclosamide (6.10) demonstrated no $\mathrm{Y}_{4} \mathrm{R}$ affinity. Whilst, the results of these experiments were in agreement with the literature, ${ }^{10,11}$ these compounds (6.9 and 6.10) have been reported to act as modulators in functional $\mathrm{Y}_{4} \mathrm{R}$ assays using PP as agonist.

The (R, R)-diaminocyclohexanes 6.12, 6.13, 6.34, 6.35 and 6.47, as well as ethane-1,2-diamines 6.18a and 6.18b (series of substituted diamines) showed no affinity at the $h Y_{4} R$.

Further derivatization of (R, R)-diaminocyclohexanes 6.12, 6.13 and 6.34, resulting in compounds 6.366.44 (cf. Scheme 6.3), did not enhance $Y_{4} R$ affinity. Compounds 6.43 and 6.44 demonstrated no increased affinity compared to the other investigated compounds $\left(\left(R, R, S^{*}\right)-6.6 \mathbf{a},(R, R, S)-6.6 \mathbf{b}\right.$, $\left(R, R, S^{\star}\right)-6.7 \mathrm{a},\left(R, R, S^{*}\right)-6.7 \mathrm{~b}, 6.9,6.10,6.12,6.13,\left(S^{\star}\right)-6.18 \mathrm{a},\left(S^{*}\right)-6.18 \mathrm{~b}, 6.34-6.42,6.47$ and 6.48), but were not soluble at concentrations higher than $10 \mu \mathrm{M}$.

The introduction of a carbamoyl guanidine at the (R, R)-diaminocyclohexane moiety led to compounds 6.47 and 6.48 , which also showed no $Y_{4} R$ binding.

6.2.3.2. Modulatory effects of test compounds on the action of hPP in an aequorin Ca^{2+} assay

The aequorin Ca^{2+} assay was performed as previously described by Ziemek et al ${ }^{5}$ with minor modifications: on the day of the experiment the $\mathrm{CHO}-\mathrm{h} \mathrm{Y}_{4} \mathrm{R}-\mathrm{G}_{\mathrm{qi}}-\mathrm{mt} A E Q$ cells were scraped from the culture flask rather than trypsination. The studied compounds (at a final concentration of $30 \mu \mathrm{M}$) were incubated with $\mathrm{CHO}-\mathrm{h} \mathrm{Y}_{4} \mathrm{R}-\mathrm{G}_{\text {qi5 }}-\mathrm{mtAEQ}$ cells for 30 min .

Figure 6.4. $\mathrm{hY}{ }_{4} \mathrm{R}$ agonism of $\mathrm{hPP}+0.5 \% \mathrm{DMSO}$ and hPP in the presence of compounds $(R, R, S)-6.6 \mathbf{b},\left(R, R, S^{*}\right)-\mathbf{6 . 7 b}$, niclosamide (6.10) and 6.36 ($\mathrm{c}_{\text {final }}=30 \mu \mathrm{M}$) determined in an aequorin Ca^{2+} assay in live $\mathrm{CHO}-\mathrm{hY} \mathrm{Y}_{4}-\mathrm{G}_{\mathrm{qis}}-\mathrm{mtAEQ}$ cells. Data are presented as means \pm SEM from at least two independent experiments, each performed in triplicate.

The aequorin Ca^{2+} assay was performed using intact $\mathrm{CHO}-\mathrm{hY}{ }_{4} \mathrm{R}-\mathrm{G}_{\mathrm{qi5}}-\mathrm{mtAEQ}$ cells to study the potential modulatory effects of $(R, R, S)-6.6 \mathrm{~b},\left(R, R, S^{\star}\right)-6.7 \mathrm{~b}$, niclosamide (6.10) and 6.36 on the action of hPP at the $Y_{4} R$. For this purpose, the stimulatory effect of hPP was investigated in the absence ($0.5 \% \mathrm{DMSO}$) and in the presence of $(R, R, S)-6.6 \mathrm{~b},\left(R, R, S^{\star}\right)-6.7 \mathrm{~b}$, niclosamide (6.10) or 6.36 , used at a concentration of $30 \mu \mathrm{M}$. Moreover, all investigated compounds showed no intrinsic activity at a concentration of $30 \mu \mathrm{M}$
in the aequorin Ca^{2+} assay. The $\mathrm{CHO}-\mathrm{h} \mathrm{Y}_{4} \mathrm{R}-\mathrm{G}_{\mathrm{qi5}}-\mathrm{mtAEQ}$ cells were pre-incubated with the studied compounds for 30 min prior to addition of hPP.

Concentration effect curves of hPP are shown in Figure 6.3 and corresponding pEC_{50} values are summarized in Table 6.3. The determined pEC_{50} value of hPP was in good agreement with literature data, ${ }^{5}$ and its intrinsic activity was not influenced in the presence of compounds (R, R, S)-6.6b and $\left(R, R, S^{*}\right)-6.7 \mathrm{~b}$. Niclosamide (6.10) was described in literature as a positive allosteric modulator (PAM) at the hY4R. ${ }^{10}$ In the presence of 6.10 (Ctinal $=30 \mu \mathrm{M}$) the concentration effect curve of hPP was left shifted and no effect on the maximal response of hPP was observed in an inositol phosphate accumulation assay (in COS7_Y4R-eYFP_D6Gaqi4-myr cells) as reported by Sliwowski et al. ${ }^{10}$

In the aequorin Ca^{2+} assay, the endogenous agonist hPP showed a slight decrease in potency and depression of intrinsic activity in the presence of 6.10 (Table 6.3). The obtained results must be scrutinized as a cytotoxic effect cannot be excluded (6.2.2.3.) (Note: $\mathbf{6 . 1 0}$ has been reported ${ }^{25,} 26$ to be cytotoxic). Beside the use as an oral anthelmintic drug, niclosamide has been reported to induce cell death in several cancer cell lines (e.g. MCF-7). ${ }^{25,} 26$

Whilst the substituted (R, R)-diaminocyclohexane 6.36 caused no shift in potency (pEC_{50}) of hPP, the intrinsic activity (a) of hPP was marginally increased by ca. 25%. The effect of compound 6.36 on the intrinsic activity of hPP might be too small to unambiguously classify compound 6.36 a modulator at the NPY $Y_{4} R$. Further investigations in additional functional assays are required.

Table 6.3. Potencies (pEC_{50}) and intrinsic activities (α) of hPP determined in the aequorin Ca^{2+} assay in the presence of selected compounds (R, R, S)-6.6b, $\left(R, R, S^{*}\right)-6.7 \mathrm{~b}$, niclosamide (6.10) and 6.36 at a concentration of $30 \mu \mathrm{M}$

compound	$\mathrm{pEC}_{50} \pm \mathrm{SEM}^{\mathrm{a}}$	$\mathrm{a} \pm \mathrm{SEM}^{\mathrm{b}}$	N
$\mathrm{hPP}+0.5 \% \mathrm{DMSO}$	7.95 ± 0.05	1	3
$\mathrm{hPP}+(R, R, S)-6.6 \mathrm{~b}$	7.91 ± 0.08	1.09 ± 0.03	3
$\mathrm{hPP}+\left(R, R, S^{*}\right)-6.7 \mathrm{~b}$	7.87 ± 0.10	0.96 ± 0.12	3
$\mathrm{hPP}+$ niclosamide (6.10)	8.29 ± 0.02	0.28 ± 0.20	2
$\mathrm{hPP}+6.36$	7.89 ± 0.07	1.27 ± 0.12	3

[^5]6.2.3.3. Investigation of cytotoxicity by ethidium bromide/acridine orange staining

Figure 6.5. (A-E) Ethidium bromide/acridine orange staining of $\mathrm{CHO}-\mathrm{h} \mathrm{Y}_{4} \mathrm{R}-\mathrm{G}_{\mathrm{qi5}}-\mathrm{mt} A E Q$ cells (A-E). CHO-hY ${ }_{4} \mathrm{R}-\mathrm{G}_{\mathrm{qi5}}-\mathrm{mtAEQ}$ cells were incubated for 30 min with $(A) 3 \%$ DMSO and $30 \mu \mathrm{M}$ of (B) niclosamide (6.10), (C) 2.68, (D) (R,R,S)-6.6b and (E) (R,R, \boldsymbol{S}^{*})6.6b. Images were acquired with an Olympus BH-2 microscope using a planachromat objective (10x), filter (Fluorescein) and a DCM-510 ocular microscope camera (Software: ScopePhoto 3.0).

The cytotoxicity of compounds 2.68 , $(R, R, S)-\mathbf{6 . 6 b},\left(R, R, S^{*}\right)-\mathbf{6 . 7 b}$ and niclosamide (6.10) in CHO-hY4R-$\mathrm{G}_{\mathrm{qi5}}-\mathrm{mtAEQ}$ cells was investigated by ethidium bromide/acridine orange staining (Figure 6.5). In contrast to the aequorin Ca^{2+} assay procedure, $\mathrm{CHO}-\mathrm{h} \mathrm{Y}_{4} \mathrm{R}-\mathrm{Gq}_{\mathrm{q} i 5}-\mathrm{mtAEQ}$ cells were detached by trypsinization (not by scratching) and were resuspended in buffer containing 10\% FCS.

Live cells with an intact membrane/membrane potential exclude ethidium bromide, whereas acridine orange penetrates across intact cell membranes and intercalates with the DNA. As a consequence nuclei of live cells, show green fluorescence. Both live and dead cells show membrane permeability for acridine orange, whilst ethidium bromide only show membrane permeability in dead cells, allowing one to distinguishing between vital (green) and dead (orange/red) cells by microscopy. ${ }^{27}$

Compounds 2.68, (R, R, S)-6.6b and (R, R, S^{*})-6.7b did not damage cells. Niclosamide (6.10) induced cell death at a concentration of $30 \mu \mathrm{M}$ after incubation for 30 min . The results from the ethidium bromide/acridine orange staining helped to explain data obtained from the aequorin Ca^{2+} assay (6.2.2.2.). Obviously, this cytotoxic effect of $\mathbf{6 . 1 0}$ led to the apparent decrease in intrinsic activity of hPP (Table 6.3).

6.3. Conclusion

Compounds $\left(R, R, S^{\star}\right)$-6.6a and $(R, R, S)-6.7 a$, previously described by Ewing et al, ${ }^{8}$ were synthesized and pharmacologically characterized in radioligand competition binding studies. (R, R, S^{*})-6.6a and $(R, R, S)-6.7$ a showed no affinity towards $\mathrm{h} \mathrm{Y}_{4} \mathrm{R}$, therefore compounds $\left(R, R, S^{*}\right)$-6.6a and $(R, R, S)-6.7 \mathrm{a}$ were not investigated in functional assays.

During the synthesis of compounds $\left(R, R, S^{*}\right)-6.6$ and $(R, R, S)-6.7$ a structural isomers were evident in the last synthesis step. The reaction could be stereochemically controlled by use of enantiomerically
pure mesylate $((R)-6.17)$, whereas structural isomers of $\left(R, R, S^{*}\right)-6.6$ and $(R, R, S)-6.7$ a are still evident as main products. Further investigations could focus on mechanism and optimization of reaction conditions to avoid structural isomers. The formation of structural isomers was not described by Ewing et al., ${ }^{8,9}$ because they used a reductive amination route on the 1-(4-nitrophenyl)piperidin-3-on, which does not allow for aziridine formation.

A series of compounds with a (R, R)-diaminocyclohexane moiety $\left(\left(R, R, S^{\star}\right)-\mathbf{6 . 6 a}, \quad(R, R, S)-\mathbf{6 . 6 b}\right.$, $\left(R, R, S^{\star}\right)-6.7 \mathbf{a},\left(R, R, S^{\star}\right)-6.7 \mathbf{b}, 6.12,6.13,6.34-6.44,6.47,6.48$ and a 1,2-ethanediamine moiety $\left(\left(S^{*}\right)-6.18 \mathrm{a},\left(S^{*}\right)-6.18 \mathrm{~b}\right)$ were synthesized and investigated in competition binding studies, but none showed $\mathrm{Y}_{4} \mathrm{R}$ affinity.

Niclosamide (6.10) and selected compounds $\left((R, R, S)-6.6 \mathbf{b},\left(R, R, S^{*}\right)-6.7 \mathbf{b}\right.$ and 6.36$)$ were further investigated in the aequorin Ca^{2+} assay with respect to a modulatory effects on the action of hPP. The reported positive allosteric modulation by niclosamide (6.10) was not obvious in the aequorin Ca^{2+} assay, rather a decrease in intrinsic affinity was observed, which was likely caused by the cytotoxicity of 6.10. Compounds $(R, R, S)-6.6 \mathrm{~b}$ and $\left(R, R, S^{*}\right)-6.7 \mathrm{~b}$ showed no modulatory effect in the aequorin Ca^{2+} assay on the action of hPP. Additionaly, the increase in intrinsic activity of hPP induced by compound 6.36 was too less pronounced to definitively classify this compound as a modulator. To shed light on this question further investigations in different functional assays (G-protein mediated) are needed.

Finally, the modulatory effect of 6.10 was not obvious in the aequorin Ca^{2+} assay, but further investigations are required for the evaluation of modulators at the $Y_{4} R$. Firstly, another functional assay could be performed (e.g. miniG protein recruitment, β-arrestin2 recruitment assay) for the investigation of the modulatory effect on hPP. Secondly, the setup of the aequorin assay could be changed (e.g. potentiation of a PP EC 20 response in the presence of increasing concentrations of the modulator).

As results were disappointing, the synthesis of additional analogs and further in depth functional characterization of the compounds described in this chapter were discontinued. Compound 6.9 was published in the later stages of this thesis and therefore not functionally characterized. The recently resolved crystal structure ${ }^{28}$ of the $h Y_{1} R$ in complex with UR-MK299 (2.2) could be the basis for a homology model of the $h Y_{4} R$ to aid in the search for new non-peptide ligands with affinity to the $h Y_{4} R$.

6.4. Experimental section

6.4.1. General experimental conditions

The following reagents and solvents (analytical grade) were purchased from commercial suppliers and used without further purification: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, glycine, DMF, DMSO, MeOH, methanesulfonyl chloride (Fisher Scientific, Schwerte, Germany); 1-((isocyanomethyl)sulfonyl)-4-methylbenzene (Acros Organics, Schwerte, Germany); DCC, TFA, pyridine-sulfur trioxide complex, palladium on activated charcoal (Pd / C), n-BuLi, $\mathrm{NaBH}(\mathrm{OAc})_{3}$, acetic acid, HgCl_{2}, isocyanatobenzene, 1-fluoro-4-nitrobenzene, 1-bromo-4-nitrobenzene, Cul ($R S$)-6.14, 6.23, 6.27, (Sigma Aldrich, München, Germany); $\mathrm{C}_{2} \mathrm{Cl}_{6}, 6.51$ (TCI, Eschborn, Germany); DIPEA, 2.36, (R)-piridine-3-ol hydrochlorid ((R)-6.14•HCI) (Abcr, Karlsruhe, Germany); L-proline, dioxane, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{NaBH}_{4}, \mathrm{Na}_{2} \mathrm{SO}_{4}, \mathrm{MgSO}_{4}$ (Merck, Darmstadt, Germany); (R, R)-diaminocyclohexane (Ark Pharm, Arlington Heights, USA), conc. HCl (VWR Chemicals, Darmstadt, Germany); Ammonium hydroxide (Carl Roth, Karlsruhe, Germany). For pharmacological characterization, hPP was purchased from Synpeptide (Shanghai, China).

Compounds $\mathbf{2 . 2 5}{ }^{29}$ and $\mathbf{2 . 2 8}{ }^{30}$ were synthesized as described previously in the literature (cf. Chapter 2).
Column chromatography was performed using Merck Gerduran 60 silica gel (0.063-0.200 mm) or Merck flash silica gel 60 ($0.040-0.063 \mathrm{~mm}$). For thin layer chromatography, TLC sheets ALUGRAM Xtra SIL G/UV254 from Macherey-Nagel GmbH \& Co. KG (Düren, Germany) were used. Compounds were detected by irradiation with UV light (254 nm), and staining was performed with ninhydrin.

Acetonitrile (HPLC grade), used for HPLC, was purchased from Sigma-Aldrich. Millipore water was used for eluents for analytical and preparative HPLC. Compounds $\left(R, R, S^{\star}\right)-6.6 \mathbf{a},(R, R, S)-\mathbf{6 . 6 b},\left(R, R, S^{\star}\right)-\mathbf{6 . 7 a}$, $\left(R, R, S^{*}\right)-6.7 \mathbf{b}, 6.9,6.12,6.13,6.34-6.38$ and 6.42 were purified by a preparative HPLC-system from Knauer (Berlin, Germany) consisting of two pumps K-1800 and a detector K-2001 (HPLC A). A Kinetex XB C18, $5 \mu \mathrm{~m}, 250 \times 21 \mathrm{~mm}$ (Phenomenex, Aschaffenburg, Germany) served as RP-column at a flow rate of $18 \mathrm{~mL} / \mathrm{min}$. Compounds $\left(S^{\star}\right)-6.18 \mathrm{a},\left(S^{\star}\right)-6.18 \mathrm{~b}, 6.39-6.41,6.44,6.47$ and 6.48 were purified by a preparative HPLC-system from Waters (Eschborn, Germany) consisting of a Binary Gradient Module (Waters 2545), a detector (Waters 2489 UV/visible Detector), a manual injector (Waters Prep inject) and a collector (Waters Fraction Collector III) (HPLC B). A Kinetex XB C18, $5 \mu \mathrm{~m}, 250 \times 21 \mathrm{~mm}$ (Phenomenex) served as RP-column at a flow rate of $20 \mathrm{~mL} / \mathrm{min}$. All injected solutions were filtered with syringe filters $(0.45 \mu \mathrm{~m})$. The mobile phase contained the solvents $\mathrm{A}(0.1 \%$ aq TFA) and B (acetonitrile). The detection wavelength was 220 nm . The eluates, containing isolated compounds, were lyophilized using a Christ alpha 2-4 LD (Martin Christ Gefriertrocknungsanlagen, Osterode am Harz, Germany) or a Scanvac CoolSafe 100-9 (Labogene, Alleroed, Denmark) lyophilization apparatus equipped with a Vacuubrand RZ rotary vane vacuum pump (Vacuubrand, Wertheim, Germany).

The purity of compounds $\left(R, R, S^{*}\right)-6.7 \mathbf{a},(R, R, S)-6.7 \mathbf{b}, 6.9,6.12,6.13,\left(S^{*}\right)-6.18 \mathbf{a},\left(S^{*}\right)-6.18 \mathbf{b}, 6.34$, 6.36-6.44, 6.47 and 6.48 was determined by analytical HPLC (RP-HPLC) on a 1100 series system from Agilent Technologies (Santa Clara, CA USA) composed of a Degasser (G1379A), a Binary Pump (G1312A), a Diode Array Detector (G1315A), a thermostated Column Compartment (G1316A) and an Autosampler (G1329A). A Phenomenex Kinetex 5u XB-C18 100A, $250 \times 4.6 \mathrm{~mm}$ was used as stationary phase. The flow rate was $1 \mathrm{~mL} / \mathrm{min}$, the oven temperature was set to $30^{\circ} \mathrm{C}$ and the injection volume
was $50 \mu \mathrm{~L}$. Mixtures of solvents $A(0.1 \%$ aq TFA) and B (acetonitrile) were used as mobile phase. The following gradient was applied (Method A): 0-25 min, A/B 90:10-5:95; 25-35 min, 5:95. Analytical HPLC analysis of compounds $\left(R, R, S^{*}\right)-6.7 \mathrm{a},\left(R, R, S^{*}\right)-6.7 \mathrm{~b}$ and 6.35 was performed on a system from MerckHitachi composed of a Pump (L-6200A), an Interface (D600 IF), an Autosampler (AS-2000) and an UVDetector (L-4000A). A Phenomenex Kinetex 5u XB-C18 100A, $250 \times 4.6 \mathrm{~mm}$ (Phenomenex) was used as stationary phase. The flow rate was $0.8 \mathrm{~mL} / \mathrm{min}$, the oven temperature was set to $30^{\circ} \mathrm{C}$, the detection wavelength was set to 220 nm and the injection volume was $35 \mu \mathrm{~L}$. A mixtures of solvents $\mathrm{A}(0.05 \% \mathrm{aq}$ TFA) and B (acetonitrile supplemented with 0.05% TFA) was used as mobile phase. The following gradient was applied (Method B): 0-25 min, A/B 90:10-5:95; 25-35 min, 5:95.

Microwave reactions were carried out on a Biotage Initiator 2.0 microwave device (Biotage, Uppsala, Sweden) using pressure stable sealed $10-20 \mathrm{~mL}$ vessels.

Deuterated solvents for NMR spectroscopy (DMSO- $d_{6}, \mathrm{MeOH}-d_{4}, \mathrm{CDCl}_{3}$) were obtained from Deutero (Kastellaun, Germany) in ampoules (1 mL). NMR spectra were recorded on a Bruker Avance $300\left({ }^{1} \mathrm{H}\right.$, $\left.300 \mathrm{MHz} ;{ }^{13} \mathrm{C}, 75 \mathrm{MHz}\right)$, a Bruker Avance III $400\left({ }^{1} \mathrm{H}, 400 \mathrm{MHz} ;{ }^{13} \mathrm{C}, 101 \mathrm{MHz}\right)$ and a Bruker Avance 600 with cryogenic probe $\left({ }^{1} \mathrm{H}, 600 \mathrm{MHz} ;{ }^{13} \mathrm{C}, 150 \mathrm{MHz}\right)$ (Bruker, Karlsruhe, Germany). Chemical shifts are given in ppm and were referenced to the solvent residual peak (DMSO- d_{6}, at $2.50 \mathrm{ppm}\left({ }^{(} \mathrm{H}-\mathrm{NMR}\right)$ and at $39.52 \mathrm{ppm}\left({ }^{13} \mathrm{C}-\mathrm{NMR}\right) ; \mathrm{CDCl}_{3}$, at $7.26 \mathrm{ppm}\left({ }^{1} \mathrm{H}-\mathrm{NMR}\right)$ and at $77.16 \mathrm{ppm}\left({ }^{13} \mathrm{C}-\mathrm{NMR}\right)$). ${ }^{31}$ The coupling constants (J) are given in Hertz (Hz). The splitting of the signals is described as follows: $\mathrm{s}=$ singlet, $\mathrm{bs}=$ broad singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet.

Mass spectrometry (HRMS) analysis was performed either on an Agilent 6540 UHD Accurate-Mass QTOF LC/MS system (Agilent Technologies) using an electrospray source (ESI) or on an Agilent GC7890A GC/MS system (Agilent Technologies) using an atmospheric pressure chemical ionization (APCI) source.

Elemental analysis was performed on a Vario micro cube (Elementar, Langenselbold, Germany).
Stock solutions were prepared in DMSO at concentrations 10 mM .

6.4.2. Synthesis protocols and analytical data

Compounds 6.12, 6.13 were purified by preparative HPLC and obtained as their TFA salts (used to prepare stock solutions for the pharmacological characterization). For synthesis of compounds (R, R, S^{\star})6.6a, $(R, R, S)-6.6 \mathrm{~b},\left(R, R, S^{\star}\right)-6.7 \mathrm{a},\left(R, R, S^{*}\right)-6.7 \mathrm{~b}$ and $6.41-6.44$ the free base of 6.12 and 6.13 was used.

1-((1R,2R)-2-(((S*)-1-(4-Nitrophenyl)piperidin-3-yl)amino)-cyclohexyl)-3-phenylurea
hydrotrifluoroacetate (($\left.\left.R, R, S^{\star}\right)-6.6 \mathrm{a}\right)^{8}$ and 1-((1R,2R)-2-((((S)-1-(4-nitrophenyl)pyrrolidine-2-yl)methyl)-amino)cyclohexyl)-3-phenylurea hydrotrifluorocetate ((R,R,S)-6.6b). 1-((1R,2R)-2-Aminocyclo-hexyl)-3-phenylurea (6.12) (164 mg, $703 \mu \mathrm{~mol}$) and (R)-1-(4-nitrophenyl)piperidin-3-yl methanesulfonate ((R)-6.17) (211 mg, $703 \mu \mathrm{~mol})$ were dissolved in acetonitrile (10 mL) in a 20 mL reaction tube and heated in a microwave device ($100^{\circ} \mathrm{C}, 1 \mathrm{~h}$). The organic solvent was evaporated and the crude mixture was purified by column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}$ ag $90: 9: 1$) and then by preparative HPLC A (gradient: 0-30 min, A/B 68:32-52:48, $\quad t_{R}\left(\left(R, R, S^{\star}\right)-6.6 a\right)=12 \mathrm{~min}$, $\left.t_{R}\left(\left(R, R, S^{*}\right)-6.6 \mathbf{a}\right)=13 \mathrm{~min}\right)$ to isolate $\left(R, R, S^{*}\right)-6.6 \mathbf{a}$ and $(R, R, S)-6.6 \mathbf{b}$ as fluffy yellow solids, respectively $\left(\left(R, R, S^{*}\right)-6.6 \mathbf{a}: 19.4 \mathrm{mg}, 35 \mu \mathrm{~mol}, 5 \% ;(R, R, S)-6.6 \mathbf{b}: 34.2 \mathrm{mg}, 61.6 \mu \mathrm{~mol}, 9 \%\right)$.
$\left(R, R, S^{*}\right)$-6.6a: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): ~ \delta(\mathrm{ppm}) 1.22-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.60$ $(\mathrm{m}, 1 \mathrm{H}), 1.66-1.81(\mathrm{~m}, 4 \mathrm{H}), 1.88-1.94(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.16(\mathrm{~m}, 2 \mathrm{H}), 2.96-3.04(\mathrm{~m}, 1 \mathrm{H}), 3.14-3.22(\mathrm{~m}, 1 \mathrm{H})$, 3.30-3.41 (m, 2H), 3.62-3.68 (m, 1H), 3.85-3.92 (m, 1H), 4.12-4.19 (m, 1H), 6.87-6.97 (m, 2H), 7.02$7.08(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.44(\mathrm{~m}, 2 \mathrm{H}), 8.02-8.08(\mathrm{~m}, 2 \mathrm{H}), 8.36(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.87(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $9.15(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta(\mathrm{ppm}) 22.2,23.1,23.8,25.8,27.1,31.6,46.9,48.8,50.0$, 50.6, 58.1, 113.0, 117.7, 121.3, 125.7, 128.6, 137.0, 140.1, 154.1, 155.9. RP-HPLC (Method B, 220 nm): $94 \%\left(t_{R}=17.9 \mathrm{~min}, k=5.2\right.$). HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]+$ calcd. for $\left[\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{5} \mathrm{O}_{3}\right]+438.2500$, found 438.2507. $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}_{3} \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(437.54+114.02)$.
(R, R, S)-6.6b: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta(\mathrm{ppm}) 1.21-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.55$ $(\mathrm{m}, 1 \mathrm{H}), 1.64-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.86-2.04(\mathrm{~m}, 3 \mathrm{H}), 2.06-2.18(\mathrm{~m}, 3 \mathrm{H}), 2.91-2.98(\mathrm{~m}, 1 \mathrm{H}), 3.06-3.16(\mathrm{~m}, 2 \mathrm{H})$, 3.16-3.25 (m, 1H), 3.49-3.54 (m, 1H), 3.72-3.79 (m, 1H), 4.23-4.28 (m, 1H), 6.76-6.83 (m, 3H), 6.90$6.94(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.46(\mathrm{~m}, 2 \mathrm{H}), 8.04(\mathrm{~d}, ~ J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.40(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.90(\mathrm{br} \mathrm{s}$, 1 H), 9.05 (br s, 1H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right.$): $\delta(\mathrm{ppm}) 21.9,23.5,24.1,26.4,28.2,32.3,42.8$, $48.0,49.2$, $55.2,61.0,111.5,117.7,121.3,125.9,128.7,136.3,140.3,151.1,155.5,158.6$ (q $J=34.3 \mathrm{~Hz}$) (TFA). RP-HPLC (Method B, 220 nm): 95\% ($t_{R}=18.4 \mathrm{~min}, k=5.4$). HRMS (ESI): m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{5} \mathrm{O}_{3}\right]^{+} 438.2500$, found 438.2519. $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}_{3} \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(437.54+114.02)$.

Benzyl ((1R,2R)-2-(((S*)-1-(4-nitrophenyl)piperidin-3-yl)amino)cyclohexyl)carbamate hydrotrifluoroacetate ${ }^{8} \quad\left(\left(R, R, S^{*}\right)-6.7 a\right) \quad$ and benzyl ((1R,2R)-2-((($\left.S^{*}\right)-1-(4-n i t r o p h e n y l) p y r r o l i d i n-2-$ yl)methyl)amino)cyclohexyl)carbamate hydrotrifluoroacetate ((R,R,S*)-6.7b:). Benzyl ((1R,2R)-2aminocyclohexyl)carbamate (6.13) ($150 \mathrm{mg}, 604 \mu \mathrm{~mol}$) and (R)-1-(4-nitrophenyl)piperidin-3-yl methanesulfonate ((R)-6.17) ($181 \mathrm{mg}, 603 \mu \mathrm{~mol}$) were dissolved in acetonitrile (10 mL) in a 20 mL reaction tube and heated in a microwave device $\left(100^{\circ} \mathrm{C}, 1 \mathrm{~h}\right)$. The organic solvent was evaporated and the crude mixture was purified by column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}$ ag 90:9:1) and then by preparative HPLC A (gradient: 0-30 min, A/B 62:38-52:48, $t_{R}\left(\left(R, R, S^{*}\right)-6.6 \mathrm{a}\right)=10 \mathrm{~min}$, $\left.t_{R}\left(\left(R, R, S^{*}\right)-6.7 \mathbf{b}\right)=11 \mathrm{~min}\right)$ to isolate $\left(R, R, S^{*}\right)-6.7 \mathbf{a}$ and $\left(R, R, S^{*}\right)-6.7 \mathbf{b}$ as fluffy yellow solids, respectively ((R,R, $\left.\left.S^{*}\right)-6.7 \mathrm{a}: 12 \mathrm{mg}, 21 \mu \mathrm{~mol}, 3 \% ;\left(R, R, S^{*}\right)-6.7 \mathrm{~b}: 26 \mathrm{mg}, 46 \mu \mathrm{~mol}, 8 \%\right)$.
(R, R, S^{*})-6.7a: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right)$: $\delta(\mathrm{ppm})$ 1.17-1.42 (m, 4H), 1.47-1.57 (m, 1H), 1.57-1.74 $(\mathrm{m}, 3 \mathrm{H}), 1.77-1.91(\mathrm{~m}, 2 \mathrm{H}), 2.08-2.17(\mathrm{~m}, 2 \mathrm{H}), 2.89-2.98(\mathrm{~m}, 1 \mathrm{H}), 3.06-3.18(\mathrm{~m}, 1 \mathrm{H}), 3.21-3.34(\mathrm{~m}, 2 \mathrm{H})$, $3.45-3.57(\mathrm{~m}, 1 \mathrm{H}$, interfering with water signal), $4.02(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.99$ (d, $J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.04$ (d, $J=9.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.38$ (m, 4H), 7.47 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}$), 8.08 (d, $J=9.4 \mathrm{~Hz}, 2 \mathrm{H}$), 8.22 (br s, 1H), 8.85 (br s, 1H). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ($150 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): δ (ppm) 22.6, 23.3, 23.8, 26.1, 27.1, 32.0, 47.0, 48.7, 50.0, 52.1, 56.8, 65.8, 112.9, 125.8, 127.8, 127.9, 128.4, 136.7, 137.0, 153.9, 156.2. RP-HPLC (Method A, 220 nm): 95\% (tR $=14.9 \mathrm{~min}, k=4.8$). HRMS (ESI): m/z [M+H] calcd. for $\left[\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{4}\right]^{+} 453.2496$, found 453.2504. $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{4} \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(452.56+114.02)$.
(R, R, S^{*})-6.7b: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right)$: $\delta(\mathrm{ppm})$ 1.15-1.27 (m, 2H), 1.27-1.36 (m, 1H), 1.45-1.53 (m, 1H), 1.61-1.67 (m, 1H), 1.68-1.75 (m, 1H), 1.83-1.89 (m, 1H), 1.90-2.08 (m, 3H), 2.08-2.14 (m, 2H), 2.91-3.02 (m, 2H), 3.05-3.123 (m, 1H), 3.18-3.25 (m, 1H), 3.47-3.52 (m, 1H), 3.58-3.65 (m, 1H), 4.254.31 ($\mathrm{m}, 1 \mathrm{H}$), 5.01 ($\mathrm{d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}$), $5.10(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.35(\mathrm{~m}$, $1 \mathrm{H}), 7.35-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.48(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.06$ (d, $J=9.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.62$ (br s, 1H), 9.11 (br s, 1H). ${ }^{13} \mathrm{C}$-NMR (150 MHz, DMSO- d_{6}): δ (ppm) 21.9, 23.6, 23.8, 26.4, 28.3, 32.2, 42.9, 47.9, 50.6, 55.2, 59.9, $65.8,111.6,116.1$ (q, J = 29.8 Hz (TFA), 125.9, 127.8, 127.9, 128.4, 136.3, 136.8, 151.1, 156.0, 158.4 ($\mathrm{q}, J=31.7 \mathrm{~Hz}$) (TFA). RP-HPLC (Method A, 220 nm): 96% ($t_{R}=15.3 \mathrm{~min}, k=5.0$). HRMS (ESI): m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{4}\right]^{+} 453.2496$, found $453.2502 . \mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{4} \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(452.56+114.02)$.

trans-2-(4-(tert-Butyl)phenoxy)cyclohexan-1-ol (6.9)..32,33 4-tert-Butylphenol (6.51) (0.53 g, 3.53 mmol) was dissolved in DMF (15 mL) and $\mathrm{CsCO}_{3}(2.26 \mathrm{~g}, 6.94 \mathrm{mmol})$ was added. After addition of cyclohexene oxide (6.50) ($0.35 \mathrm{~mL}, 3.46 \mathrm{mmol}$), the reaction mixture was stirred at $110^{\circ} \mathrm{C}$ overnight. The reaction mixture was allowed to warm to rt and poured in water (25 mL). The crude product was extracted from the aqueous phase with ethyl acetate ($3 \times 120 \mathrm{~mL}$). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the organic solvent was evaporated. The crude product was purified by column chromatography (eluent: light petroleum/ethyl acetate $90: 10$) and, subsequently, by preparative HPLC A (gradient: $0-35 \mathrm{~min}, \mathrm{~A} / \mathrm{B} 55: 45-25: 75, t_{\mathrm{R}}=15 \mathrm{~min}$) to give 6.9 as a fluffy white solid (650 mg , $2.62 \mathrm{mmol}, 74 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})$ 1.22-1.47(m,13H), 1.69-1.80(m,2H), 2.06-2.21 (m, 2H), 2.59 (s, 1H), 3.67-3.75 (m, 1H), 3.93-4.01 (m, 1H), 6.86-6.92 (m, 2H), 7.27-7.33 (m, 2H). ${ }^{13} \mathbf{C}-$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 24.05,24.13,29.4,31.6,32.1,34.2,73.6,82.4,116.0,126.4$, 144.1, 155.7. RP-HPLC (Method A, 220 nm): $100 \% ~\left(t_{R}=22.1 \mathrm{~min}, k=7.5\right.$). HRMS (APCI): m/z $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calcd. for $\left[\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{NO}_{2}\right]^{+}$266.2115, found 266.2115. $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{2}$ (248.37).

1-((1R,2R)-2-Aminocyclohexyl)-3-phenylurea hydrotrifluoroacetate (6.12). ${ }^{34}$ (R, R)-Diaminocyclohexane (6.11) ($1.24 \mathrm{~g}, 10.9 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and stirred at $-25^{\circ} \mathrm{C}$. Under stirring, isocyanotobenzene $(0.85 \mathrm{~mL}, 7.85 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added dropwise to the reaction mixture. Then, the reaction mixture was allowed to warm to rt and stirred overnight. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added to the reaction mixture and the solution was filtered. The filtrate was washed with a saturated solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(3 \times 200 \mathrm{~mL})$ and the organic solvent was evaporated. The crude product was purified by column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}$ aq $90: 9: 1$) and, subsequently, by preparative HPLC A (gradient: 0-35 min, A/B 85:15-28:72, $t_{R}=5 \mathrm{~min}$) to give 6.12 as a fluffy white solid (0.45 g , $1.29 \mathrm{mmol}, 16 \%)$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta(\mathrm{ppm}) 1.21-1.42(\mathrm{~m}, 4 \mathrm{H}), 1.65-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.82-$ $1.88(\mathrm{~m}, 1 \mathrm{H}), 1.95-2.01(\mathrm{~m}, 1 \mathrm{H}), 2.83-2.91(\mathrm{~m}, 1 \mathrm{H}), 3.51-3.59(\mathrm{~m}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.87-$ $6.91(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.88(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 8.98(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(150 \mathrm{MHz}$, DMSO-d d $_{6}$: $\delta(\mathrm{ppm}) 23.4,24.3,29.5,31.7,50.8,54.2,116.0$ (TFA), 117.7, 118.0 (TFA), 119.9, 128.7, 140.6, 155.4, 158.9 ($q, J=32.2 \mathrm{~Hz}$) (TFA). RP-HPLC (Method A, 220 nm): 100\% ($t_{R}=9.7 \mathrm{~min}, k=2.8$). HRMS (ESI): m/z [M+H] ${ }^{+}$calcd. for $\left[\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}\right]^{+}$234.1601, found 234.1604. $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O} \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}$. $(233.32+114.02)$.

Benzyl ((1R,2R)-2-aminocyclohexyl)carbamate hydrotrifluoroacetate (6.13). ${ }^{35}$ (R, R)-Diaminocyclohexane (6.11) ($1.06 \mathrm{~g}, 9.28 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ and stirred at $-20^{\circ} \mathrm{C}$. Under stirring, N-(benzyloxycarbonyloxy)succinimide ($1.69 \mathrm{~g}, 6.78 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (100 mL) was added dropwise to the reaction mixture. Then, the reaction mixture was allowed to warm to rt and stirred overnight. The organic phase was washed with 1 N NaOH ($2 x 250 \mathrm{~mL}$), brine (1 x 250 mL) and the organic solvent was evaporated. The crude product was purified by column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}$ aq 90:9:1) and, subsequently, by preparative HPLC A (gradient: 0-35 min, A/B $76: 24-28: 72$, $t_{R}=7 \mathrm{~min}$) to give 6.13 as a fluffy white solid ($1.58 \mathrm{~g}, 4.36 \mathrm{mmol}, 64 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (600 MHz, DMSO- d_{6}): $\delta(\mathrm{ppm})$ 1.15-1.40 (m, 4H), 1.61-1.73 (m, 2H), 1.78-1.91 (m, 1H), 1.96-2.04 (m, $1 \mathrm{H}), 2.83-2.88(\mathrm{~m} .1 \mathrm{H}), 3.34-3.44(\mathrm{~m}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-$ $7.34(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.40(\mathrm{~m}, 5 \mathrm{H}), 7.96$ (br s, 3H). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (150 MHz , DMSO- d_{6}): $\delta(\mathrm{ppm})$ 23.4, 24.1, $29.4,31.5,52.3,53.3,65.6,116.2$ (TFA), 118.2 (TFA), 127.8 (two carbon signals), 128.3, 136.9, 156.0, 158.2 ($q, J=31.4 \mathrm{~Hz}$) (TFA). RP-HPLC (Method A, 220 nm): 98\% ($t_{R}=8.4 \mathrm{~min}, k=2.3$). HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}\right]^{+} 249.1598$, found 249.1601. $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(248.33+$ 114.02).

(RS)-1-(4-Nitrophenyl)piperidin-3-ol ((RS)-6.15). ${ }^{9}$ (RS)-Piperidine-3-ol (5.01 g, 49.5 mmol$)((R S)$ 6.14) and 1-bromo-4-nitrobenzene ($12.02 \mathrm{~g}, 59.5 \mathrm{mmol}$) were dissolved in DMSO (100 mL). Additionally, L-proline ($1.16 \mathrm{~g}, 10.1 \mathrm{mmol}$), $\mathrm{Cul}(0.981 \mathrm{~g}, 5.15 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(14.06 \mathrm{~g}, 101.7 \mathrm{mmol})$ were added to the reaction mixture, which was stirred at $65^{\circ} \mathrm{C}$ for 2 d . Then, the reaction mixture was poured into ethyl acetate (700 mL). The organic phase was washed with water ($6 \times 600 \mathrm{~mL}$), dried over MgSO_{4} and the organic solvent was evaporated. The crude product was purified by column chromatography (eluent: light petroleum/ethyl acetate 1:2) to obtain (RS)-6.14 as an orange crystalline solid ($9.31 \mathrm{~g}, 41.9 \mathrm{mmol}, 85 \%$). Anal. calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$: C 59.45, H $6.35, \mathrm{~N} 12.61$, found: C 59.46, H 6.28, N 12.48. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 1.61-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.98-2.05$ $(\mathrm{m}, 1 \mathrm{H}), 3.17-3.22(\mathrm{~m}, 1 \mathrm{H}), 3.22-3.27(\mathrm{~m}, 1 \mathrm{H}), 3.49-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.69-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.87-3.93(\mathrm{~m}, 1 \mathrm{H})$, $6.84(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.10(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 22.1,32.8,47.8$, 54.7, 66.3, 113.1, 126.2, 138.3, 155.2. HRMS (ESI): m/z [M+H]+ calcd. for [$\left.\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3}\right]^{+}$223.1077, found 223.1081. $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$ (222.24).

(R)-6.15
(R)-1-(4-Nitrophenyl)piperidin-3-ol $\quad((\boldsymbol{R})-6.15) . \quad(R)$-Piperidine-3-ol $\cdot \mathrm{HCl} \quad(3.12 \mathrm{~g}, \quad 23.3 \mathrm{mmol})$ $((R)-6.14 \cdot \mathrm{HCl})$ and 1-bromo-4-nitrobenzene $(5.83 \mathrm{~g}, 28.9 \mathrm{mmol})$ were dissolved in DMSO (60 mL). Additionally, L-proline ($0.556 \mathrm{~g}, 4.83 \mathrm{mmol}$), $\mathrm{Cul}\left(0.430 \mathrm{~g}, 2.26 \mathrm{mmol}\right.$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(10.77 \mathrm{~g}, 77.9 \mathrm{mmol})$ were added to the reaction mixture that was stirred at $65{ }^{\circ} \mathrm{C}$ for 2 d . The reaction mixture was poured into water (500 mL). The crude product was extracted from the aqueous phase with ethyl acetate ($3 x$ 300 mL), dried over MgSO_{4} and the organic solvent was evaporated. The crude product was purified by column chromatography (eluent: light petroleum/ethyl acetate 1:2) to obtain (R)-6.14 as an orange crystalline solid ($4.21 \mathrm{~g}, 18.9 \mathrm{mmol}, 81 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta(\mathrm{ppm}) 1.55-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.83-$ $2.10(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.14-3.30(\mathrm{~m}, 2 \mathrm{H}), 3.47-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.70-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.84-3.94(\mathrm{~m}$, $1 \mathrm{H}), 6.80(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.04(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 22.0,32.6$, 47.6, 54.5, 66.2, 112.9, 126.2, 137.9, 155.1. HRMS (ESI): m/z [M+H]+ calcd. for $\left[\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3}\right]^{+} 223.1077$, found 223.1077. $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$ (222.24).

(RS)-6.17
(RS)-1-(4-Nitrophenyl)piperidin-3-yl methanesulfonate ((RS)-6.17). (RS)-1-(4-Nitrophenyl)piperidin-3-ol ((RS)-6.14) (2.06 g, 9.27 mmol$)$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.90 \mathrm{~mL}, 13.7 \mathrm{mmol})$ was added and the mixture was stirred and cooled in an ice bath. Under stirring, methanesulfonyl chloride ($1.10 \mathrm{~mL}, 14.2 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was dropped slowly into the reaction mixture. The reaction mixture was stirred at rt for 2 h . Then, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added into the reaction mixture. The organic phase was washed with $0.5 \mathrm{~N} \mathrm{HCl}(2 \times 200 \mathrm{~mL})$, saturated NaHCO_{3} solution ($2 \times 200 \mathrm{~mL}$), brine ($1 \times 200 \mathrm{~mL}$) and the organic phase was dried over MgSO_{4}. The organic solvent was removed by evaporation, the residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and crystallization, initiated by the addition of light petroleum, afforded ($R S$) -6.19 as dark yellow crystals ($1.72 \mathrm{~g}, 5.73 \mathrm{mmol}, 62 \%$). Anal. calcd. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$: C 47.99, H 5.37, N 9.33, S 10.67, found: C 48.09, H 5.29, N 9.24, S 10.65. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ 1.70-1.80 (m, 1H), 1.93-2.02 (m, 2H), 2.08-2.19 (m, 1H), $3.03(\mathrm{~s}, 3 \mathrm{H}), 3.33-$ $3.41(\mathrm{~m}, 1 \mathrm{H}), 3.47-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.56-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.78-3.83(\mathrm{~m}, 1 \mathrm{H}), 4.81-4.88(\mathrm{~m}, 1 \mathrm{H}), 6.86(\mathrm{~d}$, $J=9.4 \mathrm{~Hz}, 2 \mathrm{H}$), 8.11 ($\mathrm{d}, J=9.4 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 21.8,30.4,38.8,47.5$, 52.3, 74.6, 113.3, 126.2, 138.8, 154.5. HRMS (ESI): m/z [M+H]+ calcd. for [$\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$] 301.0853 , found 301.0858. $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ (300.33).

(R)-6.17
(R)-1-(4-Nitrophenyl)piperidin-3-yl methanesulfonate ((R)-6.17). (R)-1-(4-Nitrophenyl)piperidin-3-ol $((R)-6.14)(2.13 \mathrm{~g}, 9.58 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.90 \mathrm{~mL}, 13.7 \mathrm{mmol})$ was added and the mixture was stirred and cooled in an ice bath. Under stirring, methanesulfonyl chloride
($1.05 \mathrm{~mL}, 13.6 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was dropped slowly into the reaction mixture. The reaction mixture was stirred at rt for 2 h . Then, the organic phase was washed with $0.5 \mathrm{~N} \mathrm{HCl}(2 x 200 \mathrm{~mL})$, saturated NaHCO_{3} solution (2x 200 mL), brine ($1 \times 200 \mathrm{~mL}$) and the organic phase was dried over MgSO_{4}. The organic solvent was removed by evaporation, the residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and crystallization, initiated by the addition of light petroleum, afforded (R)-6.19 as dark yellow crystals (2.14 g, $7.13 \mathrm{mmol}, 74 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 1.61-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.87-2.04(\mathrm{~m}, 2 \mathrm{H})$, 2.05-2.15 (m, 1H), 3.03 (s, 3H), 3.29-3.42 (m, 1H), 3.44-3.67 (m, 2H), 3.76-3.86 (m, 1H), 4.79-4.89 (m, $1 \mathrm{H}), 6.84(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.09(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 21.8,30.4$, 38.7, 47.4, 52.2, 74.7, 113.2, 126.2, 138.6, 154.5. HRMS (ESI): m/z [M+H]+ calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}^{+}\right.$ 301.0853, found 301.0851. $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ (300.33).

$\left(S^{\star}\right)-N^{1}$-(1-(4-Nitrophenyl)piperidin-3-yl)ethane-1,2-diamine (($\left.\left.S^{*}\right)-6.18 \mathrm{a}\right)$ and ($\left.S^{\star}\right)-N^{1}-((1-(4-n i t r o-$ phenyl)pyrrolidine-2-yl)methyl)ethane-1,2-diamin (($\left.\left.S^{*}\right)-6.18 b\right)$. tert-Butyl (2-aminoethyl)carbamate (2.36) $\quad(240 \mathrm{mg}, \quad 1.50 \mathrm{mmol})$ and $(R)-1$-(4-nitrophenyl)piperidin-3-yl methanesulfonate $((R)-6.17)$ ($400 \mathrm{mg}, 1.33 \mathrm{mmol}$) were dissolved in acetonitrile (10 mL) in a 20 mL reaction tube and heated in a microwave device ($120^{\circ} \mathrm{C}, 1 \mathrm{~h}$). The organic solvent was evaporated and the crude mixture was purified by column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 90: 10$). The purified product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) and TFA (5 mL) was added dropwise to the mixture and stirred at rt overnight. The organic solvent was evaporated and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and the organic solvent was evaporated (3x). The crude product was purified by preparative HPLC B (gradient: 0-30 min, A/B 66:3438:62, $\left.t_{R}\left(\left(S^{*}\right)-6.18 a\right)=12 \mathrm{~min}, t_{R}\left(\left(S^{*}\right)-6.18 b\right)=13 \mathrm{~min}\right)$ to isolate $\left(S^{*}\right)-6.18 \mathrm{a}$ and $\left(S^{*}\right)-6.18 \mathrm{~b}$ as fluffy yellow solids ((S*)-6.18a: $11.4 \mathrm{mg}, 23.2 \mu \mathrm{~mol}, 2 \%$; ($\left.\left.S^{*}\right)-6.18 \mathrm{~b}: 21.4 \mathrm{mg}, 43.5 \mu \mathrm{~mol}, 3 \%\right)$.
$\left(S^{*}\right)$-6.18a: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta(\mathrm{ppm})$ 1.52-1.62 (m, 1H), 1.63-1.72 (m, 1H), 1.80-1.89 (m, $1 \mathrm{H})$, 2.06-2.14 (m, 1H), 3.10-3.21 (m, 3H), 3.23-3.40 (m, 4H), 3.78-3.86 (m, 1H), 4.04-4.14 (m, 1H), 7.06-7.11 (m, 2H), 7.90-9.60 (m, 7H). ${ }^{13}$ C-NMR (150 MHz , DMSO- d_{6}): δ (ppm) 21.9, 26.1, 35.4, 41.4, $46.9,48.5,52.5,113.3,116.0$ (TFA), 118.0 (TFA), 125.7, 137.3, $154.3,158.8$ (q, J=31.1 Hz) (TFA). RP-HPLC (Method A, 220 nm): 98% ($t_{R}=7.5 \mathrm{~min}, k=1.9$). HRMS (ESI): m/z [M+H]+ calcd. for $\left[\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{2}\right]^{+} 265.1659$, found 265.1660. $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2} \times \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{~F}_{6} \mathrm{O}_{4}(264.33+228.04)$.
$\left(S^{*}\right)$-6.18b: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta(\mathrm{ppm})$ 1.94-2.12 (m, 3H), 2.15-2.21 (m, 1H), 2.99-3.06 (m, $2 \mathrm{H})$, 3.17-3.32 (m, 5H), 3.49-3.54 (m, 1H), 4.15-4.22 (m, 1H), 6.78-6.84 (m, 2H), 7.98-9.92 (m, 7H). ${ }^{13} \mathrm{C}-$ NMR ($150 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta(\mathrm{ppm}) 22.1,28.0,35.3,44.9,47.1,48.1,55.4,111.7,117.0$ (q, $J=297.9 \mathrm{~Hz}$) (TFA), 125.8, 136.3, 151.2, 159.1 (q, $J=32.1 \mathrm{~Hz}$) (TFA). RP-HPLC (Method A, 220 nm): $98 \%\left(t_{R}=7.9 \mathrm{~min}, k=2.0\right)$. HRMS $(E S I): \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{2}\right]^{+} 265.1659$, found 265.1661 . $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2} \times \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{~F}_{6} \mathrm{O}_{4}(264.33+228.04)$.

(4-Nitrophenyl)glycine (6.21). ${ }^{36,37}$ Glycine ($3.78 \mathrm{~g}, 50.4 \mathrm{mmol}$) (6.19), 1-fluoro-4-nitrobenzene (3.55 g , 25.2 mmol and $\mathrm{Na}_{2} \mathrm{CO}_{3}(4.89 \mathrm{~g}, 46.1 \mathrm{mmol})$ were dissolved in a mixture of dioxane (42 mL) and water $(7 \mathrm{~mL})$ and stirred at $70^{\circ} \mathrm{C}$ overnight. The reaction mixture was allowed to cool to rt and poured in water $(100 \mathrm{~mL})$. The aqueous phase was washed with ethyl acetate ($3 x 100 \mathrm{~mL}$) and then acidified with 1 N HCl . (Addition of 1 N HCl was continued until no further orange solid precipitated). The compound was extracted from the aqueous phase with ethyl acetate ($3 \times 200 \mathrm{~mL}$) and the combined organic phases were dried over MgSO_{4}. Then, the organic solvent was evaporated and 6.21 was obtained as an orange solid that was used in the next step without further purification ($2.73 \mathrm{~g}, 13.9 \mathrm{mmol}, 55 \%$). Anal. calcd. for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{4}$: C 48.98, H 4.11, N 14.28, found: C 48.98, H 4.28, N 14.18. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz , DMSOd_{6}): $\delta(\mathrm{ppm}) 7.98(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=9.4 \mathrm{~Hz}$, 2H), 12.83 (br s, 1H). ${ }^{13}$ C-NMR (75 MHz , DMSO- d_{6}): 44.0, 111.2, 126.1, 136.3, 154.3, 171.5. HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{4}\right]^{+}$197.0557, found 197.0556. $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{4}$ (196.16).

4-((4-Nitrophenyl)amino)butanoic acid (6.22). ${ }^{37,38} 4$-((4-Nitrophenyl)amino)butanoic acid (7.03 g, $68.2 \mathrm{mmol})(6.20)$, 1-fluoro-4-nitrobenzene ($4.80 \mathrm{~g}, 34.0 \mathrm{mmol}$) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(9.96 \mathrm{~g}, 94.0 \mathrm{mmol}$) were dissolved in a mixture of dioxane (15 mL) and water (85 mL) and stirred at $70^{\circ} \mathrm{C}$ overnight. The reaction mixture was allowed to cool to rt and poured into water $(200 \mathrm{~mL})$. The aqueous phase was washed with ethyl acetate ($3 \times 250 \mathrm{~mL}$) and then acidified with $0.5 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$. (Addition of $0.5 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ was continued until no further orange solid precipitated). The compound was extracted from the aqueous phase with ethyl acetate $(3 \times 200 \mathrm{~mL})$ and the combined organic phases were dried over MgSO_{4}. Then, the organic solvent was evaporated and 6.23 was obtained as an orange solid that was used in the next step without further purification ($6.26 \mathrm{~g}, 27.9 \mathrm{mmol}, 82 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta(\mathrm{ppm}) 1.70-1.85(\mathrm{~m}, 2 \mathrm{H})$, $2.33(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.11-3.20(\mathrm{~m}, 2 \mathrm{H}), 6.63(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}$, $J=9.3 \mathrm{~Hz}, 2 \mathrm{H}$), $12.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta(\mathrm{ppm}) 23.8,31.0,41.7,110.8,126.3$, 135.6, 154.6, 174.2. HRMS (ESI): m/z [M+Na]+ calcd. for $\left[\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}\right]^{+} 247.0689$, found 247.0695. $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}$ (224.22).

Succinimidyl (4-nitrophenyl)glycinate (6.24). (4-Nitrophenyl)glycine ($2.16 \mathrm{~g}, 11.0 \mathrm{mmol}$) (6.21) and N-hydroxysuccinimide (2.22) ($1.31 \mathrm{~g}, 11.4 \mathrm{mmol}$) were dissolved in DMF (30 mL) and the reaction mixture was stirred at rt. Under stirring, a solution of DCC ($2.62 \mathrm{~g}, 12.7 \mathrm{mmol}$) in DMF (5 mL) was added dropwise into the mixture and the reaction mixture was stirred at rt overnight. The precipitate was removed by filtration, and washed with DMF (50 mL). The combined organic (DMF) phases were poured into water (1.5 L) and the compound was extracted from the aqueous phase with ethyl acetate (3x

250 mL). The combined organic phases (ethyl acetate) were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the organic solvent was evaporated. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (insoluble components were filtered off) and the organic solvent was evaporated to give 6.24 as a bright yellow solid ($2.02 \mathrm{~g}, 6.89 \mathrm{mmol}, 63 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz, DMSO-d $)$: $\delta(\mathrm{ppm}) 2.82(\mathrm{~s}, 4 \mathrm{H}), 4.63(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{t}$, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): 25.5,41.9,111.6,126.0,137.2$, 153.6, 167.0, 170.1. HRMS (ESI): m/z [M+H]+ calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{6}\right]^{+}$294.0721, found 294.0729. $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{6}$ (293.24).

Succinimidyl 4-((4-nitrophenyl)amino)butanoate (6.25). 4-((4-Nitrophenyl)amino)butanoic acid ($\mathbf{6 . 2 2)}$) $1.02 \mathrm{~g}, 4.55 \mathrm{mmol}$) and N -hydroxysuccinimide (2.22) ($0.57 \mathrm{~g}, 4.95 \mathrm{mmol}$) were dissolved in DMF $(30 \mathrm{~mL})$. Under stirring, a solution of DCC ($1.06 \mathrm{~g}, 5.14 \mathrm{mmol}$ in DMF (5 mL) was added dropwise into the mixture and the reaction mixture was stirred at rt overnight. The precipitate was removed by filtration and washed with DMF (50 mL). The combined organic (DMF) phases were poured into water (1.5 L) and the compound was extracted from the aqueous phase with ethyl acetate ($3 x 250 \mathrm{~mL}$). The combined organic phases (ethyl acetate) were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (insoluble components were filtered off) and the solvent was evaporated to give 6.25 as a bright yellow solid ($1.30 \mathrm{~g}, 4.05 \mathrm{mmol}, 89 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, DMSO- d_{6}): δ (ppm) 1.86$1.96(\mathrm{~m}, 2 \mathrm{H}), 2.78-2.85(\mathrm{~m}, 6 \mathrm{H}), 3.21-3.28(\mathrm{~m}, 2 \mathrm{H}), 3.62-6.69(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.97-$ $8.04(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-$ NMR (101 MHz, DMSO- $_{6}$): $\delta(\mathrm{ppm}) 23.6,25.5,27.8,41.1,110.8,126.3,135.8,154.4$, 168.8, 170.3. HRMS (ESI): m/z [M+H]+ calcd. for $\left[\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{6}\right]^{+} 322.1034$, found 322.1044. $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{6}$ (321.29).

Succinimidyl phenylglycinate (6.26). DCC ($1.55 \mathrm{~g}, 7.51 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 mL) was added dropwise into an ice-cold solution of phenylglycine (6.23) (1.04 g, 6.88 mmol) and N -hydroxysuccinimide (2.22) ($0.78 \mathrm{~g}, 6.78 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The reaction mixture was allowed to warm to rt and stirred overnight. The precipitated solid was removed by filtration and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was evaporated, and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase (indissoluble components were filtered off) was evaporated to give 6.26 as a dark yellow solid ($0.647 \mathrm{~g}, 2.61 \mathrm{mmol}, 38 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz, DMSO- d_{6}): $\delta(\mathrm{ppm}) 2.81(\mathrm{~s}, 4 \mathrm{H}), 4.35(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.29(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.55-6.67$ (m, 3H), 7.04-7.17 (m, 2H). ${ }^{13}$ C-NMR (75 MHz , DMSO- d_{6}): $\delta(\mathrm{ppm}) 25.5,42.4,112.3,116.9,128.9$, 147.4, 167.9, 170.2. HRMS (ESI): m/z [M+H]+ calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{4}\right]^{+}$249.0870, found 249.0871 . $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}$ (248.24).

6.28

1-(4-Nitrophenyl)piperidin-4-ol (6.28).9, $39 \quad$ Piperidin-4-ol (6.27) (3.60 g, 35.6 mmol) and 1-bromo-4-nitro-benzene ($9.10 \mathrm{~g}, 45.0 \mathrm{mmol}$) were dissolved in DMSO (100 mL). Additionally, L-proline ($0.80 \mathrm{~g}, 6.95 \mathrm{mmol}$), Cul ($0.80 \mathrm{~g}, 4.20 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(17.64 \mathrm{~g}, 127.6 \mathrm{mmol})$ were added to the reaction mixture, which was stirred at $65^{\circ} \mathrm{C}$ for 2 d . The reaction mixture was poured in water (1 L) and the product was extracted from the aqueous phase with ethyl acetate ($3 \times 500 \mathrm{~mL}$), dried over MgSO_{4} and the organic solvent was evaporated. The crude product was purified by column chromatography (eluent: light petroleum/ethyl acetate $1: 2$ to $1: 3$ to $0: 1$) to give 6.28 as a yellow crystalline solid (6.94 g , $31.22 \mathrm{mmol}, 88 \%)$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, ~ D M S O-d_{6}\right): \delta(\mathrm{ppm}) 1.32-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.88(\mathrm{~m}, 2 \mathrm{H}), 3.12-$ $3.30(\mathrm{~m}, 2 \mathrm{H}), 3.66-3.90(\mathrm{~m}, 3 \mathrm{H}), 4.79(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.01(\mathrm{~d}, J=9.5 \mathrm{~Hz}$, 2H). ${ }^{13}$ C-NMR (75 MHz , DMSO- d_{6}): $\delta(\mathrm{ppm}) 33.5,44.4,65.5,112.4,125.9,136.1,154.3$. HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3}\right]^{+}$223.1077, found 223.1081. $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$ (222.24).

1-(4-Nitrophenyl)piperidin-4-one (6.29). ${ }^{9,40}$ 1-(4-Nitrophenyl)piperidin-4-ol (6.28) ($1.00 \mathrm{~g}, 4.50 \mathrm{mmol}$) was dissolved in DMSO (20 mL) and $\mathrm{Et}_{3} \mathrm{~N}(3.20 \mathrm{~mL}, 23.1 \mathrm{mmol})$ was added to the reaction mixture. Under stirring, pyridine-sulfur trioxide complex ($3.57 \mathrm{~g}, 22.4 \mathrm{mmol}$) in DMSO (15 mL) was dropped slowly into the mixture. Then, the reaction mixture was poured into ethyl acetate (400 mL). The organic phase was washed with water ($6 \times 500 \mathrm{~mL}$), brine ($1 \times 500 \mathrm{~mL}$) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic solvent was evaporated, and the crude product was purified by column chromatography (eluent: light petroleum/ethyl acetate $1: 1$ to $1: 2$) to give 6.29 as a yellow amorphous solid ($0.51 \mathrm{~g}, 2.27 \mathrm{mmol}, 50 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 2.62(\mathrm{t}, J=6.3 \mathrm{~Hz}, 4 \mathrm{H}), 3.82(\mathrm{t}, J=6.3 \mathrm{~Hz}, 4 \mathrm{H}), 6.84(\mathrm{~d}, J=9.4 \mathrm{~Hz}$, $2 \mathrm{H}), 8.14(\mathrm{~d}, \mathrm{~J}=9.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta(\mathrm{ppm}) 39.4$ (overlaid by solvent residual peak), 44.4, 112.0, 125.9, 136.6, 153.4, 207.2. HRMS (EIC): m/z [M] ${ }^{+}$calcd. for $\left[\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}\right]^{+} 220.0842$ found, 220.0840. $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$ (220.23).

5-(4-(tert-Butoxy)phenyl)oxazole (6.31). ${ }^{9}$ 4-(tert-Butoxy)benzaldehyde (6.30) ($2.0 \mathrm{~mL}, 11.4 \mathrm{mmol}$), 1-((isocyanomethyl)sulfonyl)-4-methylbenzene ($2.46 \mathrm{~g}, 12.6 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(3.20 \mathrm{~g}, 23.2 \mathrm{mmol})$ were dissolved in methanol (20 mL) and refluxed for 4 h . The organic solvent was evaporated, and water was added (50 mL) to the residue. The product was extracted from the aqueous phase with ethyl acetate ($3 \times 50 \mathrm{~mL}$), the combined organic phases were dried over MgSO_{4} and the organic solvent was evaporated. The crude product was purified by column chromatography (eluent: light petroleum/ethyl acetate $1: 0$ to $4: 1$) to give 6.31 as a pale-yellow solid ($1.74 \mathrm{~g}, 8.73 \mathrm{mmol}, 77 \%$). Anal. calcd. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{2}$: C 71.87, H 6.96, N 6.45, found: C 71.94, H 6.93, N 6.16. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$
(ppm) $1.37(\mathrm{~s}, 9 \mathrm{H}), 7.04(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}$, interfering with solvent residual peak), 7.56 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), $7.88(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 29.0,79.3,120.7,123.0,124.5$, 125.4, 150.2, 151.7, 156.2. HRMS (EIC): $\mathrm{m} / \mathrm{z}[\mathrm{M}]{ }^{+}$calcd. for $\left[\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{2}\right]^{+}$217.1097, found 217.1100. $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{2}$ (217.27).

5-(4-(tert-Butoxy)phenyl)-2-chlorooxazole (6.32). ${ }^{9}$ 5-(4-(tert-Butoxy)phenyl)oxazole (6.31) (3.53 g, 16.2 mmol) was dissolved in dry THF (40 mL) and stirred at $-78^{\circ} \mathrm{C}$ (dry ice/acetone). After addition of n -BuLi ($7.1 \mathrm{~mL}, 76.8 \mathrm{mmol}$) the solution turned red and the reaction mixture was stirred for 2 h . Under stirring, $\mathrm{C}_{2} \mathrm{Cl}_{6}$ ($5.95 \mathrm{~g}, 25.1 \mathrm{mmol}$) was added into the reaction mixture, which was stirred at $-78{ }^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was allowed to warm to rt and then poured into a mixture of ice and water (200 mL). The compound was extracted from the aqueous phase with ethyl acetate ($3 \times 150 \mathrm{~mL}$), the combined organic phases were dried over MgSO_{4} and the organic solvent was evaporated. The crude product was purified by column chromatography (eluent: light petroleum/ethyl acetate 1:0 to 9:1 to 8:2) to give 6.32 as a yellow oil ($3.59 \mathrm{~g}, 14.3 \mathrm{mmol}, 88 \%$). Anal. calcd. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{ClNO}_{2}$: $\mathrm{C} 62.03, \mathrm{H} 5.61, \mathrm{~N}$ 5.56, found: C 62.41, H 6.05, N 5.16. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta(\mathrm{ppm}) 1.38$ (s, 9H), 7.04 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 29.0,79.4$, 122.1, 122.5, 124.4, 125.1, 145.8, 154.0, 156.5. HRMS (ESI): m/z [M+H]+ calcd. for $\left[\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{CINO}_{2}\right]^{+}$ 252.0786, found 252.0792. $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{ClNO}_{2}$ (251.71).

(1R,2R)- $\boldsymbol{N}^{\boldsymbol{r}}$-(5-(4-(tert-Butoxy)phenyl)oxazol-2-yl)cyclohexane-1,2-diamine (6.33). (R, R)-Diaminocyclohexane (6.11) ($4.67 \mathrm{~g}, 40.9 \mathrm{mmol}$) and 5 -(4-(tert-butoxy)phenyl)-2-chlorooxazole (6.32) (2.06 g , $8.18 \mathrm{mmol})$ were dissolved in DMF (30 mL) and $\mathrm{K}_{2} \mathrm{CO}_{3}(4.50 \mathrm{~g}, 32.6 \mathrm{mmol})$ was added. The reaction mixture (suspension) was split into three 20 mL reaction tubes ($3 \times 10 \mathrm{~mL}$) and heated in a microwave device ($130^{\circ} \mathrm{C}, 45 \mathrm{~min}$). The combined reaction mixtures were poured into ethyl acetate (300 mL), then washed with water ($3 \times 300 \mathrm{~mL}$) and brine ($1 \times 300 \mathrm{~mL}$). The organic phase was dried over MgSO_{4} and the organic solvent was evaporated. The crude product was purified by column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 90: 10$ to $50: 50$) to give 6.33 as a solid ($1.27 \mathrm{~g}, 3.84 \mathrm{mmol}, 47 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, DMSO- d_{6}): $\delta(\mathrm{ppm})$ 1.15-1.25 (m, 4H), 1.29 ($\mathrm{s}, 9 \mathrm{H}$), 1.59-1.75 (m, 2H), 1.86-1.95 (m, 1H), 1.95-2.05 (m, $1 \mathrm{H})$, 2.61-2.76 (m, 1H), 3.14-3.29 (m, 1H), $4.00(\mathrm{br} \mathrm{s}, 2 \mathrm{H}$, interfering with water signal), 6.93-7.02 (m, $2 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.42(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta(\mathrm{ppm}) 24.3,24.6,28.6,31.6,32.9$, $53.6,58.0,78.2,121.7,122.8,123.8,124.2,143.1,153.5,160.6$. HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{2}\right]^{+} 330.2176$, found 330.2178. $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2}$ (329.44).

4-(2-(((1R,2R)-2-Aminocyclohexyl)amino)oxazol-5-yl)phenol bis(hydrotrifluoroacetate) (6.34). (1R,2R)- N^{1}-(5-(4-(tert-Butoxy)phenyl)oxazol-2-yl)cyclohexane-1,2-diamine (6.33) ($0.346 \mathrm{~g}, 1.05 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and the mixture was stirred and cooled in an ice bath. Under stirring, TFA (10 mL) was added dropwise to the mixture. After 1 h , the mixture was allowed to warm to rt and stirred overnight. The solvent was evaporated, and the crude product was purified by preparative HPLC A (gradient: 0-30 min, $A / B 85: 15-66: 34, t_{R}=9 \mathrm{~min}$) to give 6.34 as a fluffy white solid (243 mg , $0.485 \mathrm{mmol}, 46 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta(\mathrm{ppm}) 1.19-1.31(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.66-$ $1.75(\mathrm{~m}, 2 \mathrm{H}), 1.97-2.06(\mathrm{~m}, 2 \mathrm{H}), 2.99-3.08(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.61(\mathrm{~m}, 1 \mathrm{H}), 6.79-6.83(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H})$, 7.34-7.39 (m, 2H), $8.07(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 8.39(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.67(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$. One exchangeable proton signal was not apparent. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta(\mathrm{ppm}) 23.4,24.0,29.5,31.2,53.2,54.6,115.2,115.8$, 116.4 ($q, J=294.9 \mathrm{~Hz}$) (TFA), 118.6, 124.4, 144.5, 157.2, 158.3, 158.6 (q, $J=33.8 \mathrm{~Hz}$) (TFA). RPHPLC (Method A, 220 nm): 97\% ($t_{R}=6.9 \mathrm{~min}, k=1.7$). HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{2}\right]^{+}$ 274.1550, found 274.1558. $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \times \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{~F}_{6} \mathrm{O}_{4}$ (273.34 + 228.04).

2-Amino- \boldsymbol{N}-((1R,2R)-2-((5-(4-hydroxyphenyl)oxazol-2-yl)amino)cyclohexyl)acetamide bis(dihydrotrifluoroacetate) (6.35). 4-(2-(((1R,2R)-2-Aminocyclohexyl)amino)oxazol-5-yl)phenol bis(hydrotrifluoroacetate) (6.34) ($94.0 \mathrm{mg}, 188 \mu \mathrm{~mol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and DIPEA ($42 \mu \mathrm{~L}, 247 \mu \mathrm{~mol}$) was added to the mixture. The reaction mixture was stirred at rt for 2 min . Under stirring, succinimidyl N-Boc-glycinate (2.25) (124 mg, $455 \mu \mathrm{~mol}$) was added to the mixture and the reaction mixture stirred at rt for 5 min . Then, the organic solvent was evaporated and the crude product was purified by column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1$). The purified product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$, the solution was cooled to $0^{\circ} \mathrm{C}$ and and a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and TFA (1 mL) was added dropwise. After 1 h , the mixture was allowed to warm to rt and stirred overnight. The solvent was evaporated, and the crude product was purified by preparative HPLC A (gradient: 0-30 min, A/B 85:15-66:34, $t_{R}=11 \mathrm{~min}$) to afford 6.35 as a fluffy white solid ($45.0 \mathrm{mg}, 109 \mu \mathrm{~mol}, 51 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}$, DMSO$\left.d_{6}\right): \delta(\mathrm{ppm})$ 1.22-1.32 (m, 3H), 1.35-1.44 (m, 1H), 1.64-1.72 (m, 2H), 1.87-1.94 (m, 1H), 2.00-2.07 (m, $1 \mathrm{H}), 3.33-3.53(\mathrm{~m}, 3 \mathrm{H}), 3.67-3.75(\mathrm{~m}, 1 \mathrm{H}), 6.79-6.84(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.39(\mathrm{~m}, 3 \mathrm{H}), 8.00(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 8.36-$ $8.41(\mathrm{~m}, 1 \mathrm{H}), 8.60(\mathrm{~s}, 1 \mathrm{H}) .9 .79(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$. One exchangeable proton signal was not apparent. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ($150 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta(\mathrm{ppm}) 24.0,31.4,31.7,40.06,40.10,51.9,55.8,115.8,116.6$ (q, $\left.J=296.0 \mathrm{~Hz}\right)$ (TFA), 118.1, 124.5, 144.2, 157.4, 158.1, 158.5 (q, $J=32.2 \mathrm{~Hz}$) (TFA), 165.5. RP-HPLC (Method B,
$220 \mathrm{~nm}): 95 \%\left(t_{R}=10.2 \mathrm{~min}, k=2.5\right)$. HRMS $(E S I): \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{3}\right]^{+} 331.1765$, found 331.1766. $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{3} \times \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{~F}_{6} \mathrm{O}_{4}(330.39+228.04)$.

N-((1R,2R)-2-((5-(4-Hydroxyphenyl)oxazol-2-yl)amino)cyclohexyl)-2-((4-nitrophenyl)amino)acetamide hydrotrifluoroacetate (6.36). 4-(2-(((1R,2R)-2-Aminocyclohexyl)amino)oxazol-5-yl)phenol bis(hydrotrifluoroacetate) (6.34) ($34.2 \mathrm{mg}, 68.2 \mu \mathrm{~mol}$) was dissolved in DMF ($100 \mu \mathrm{~L}$) and DIPEA ($31 \mu \mathrm{~L}, 182.3 \mu \mathrm{~mol}$) was added to the solution and stirred at rt for 5 min . Under stirring, succinimidyl (4nitrophenyl)glycinate (6.24). ($40.6 \mathrm{mg}, 138.5 \mu \mathrm{~mol}$) was added into the reaction mixture and stirred at rt for 3 h . The mixture was purified by preparative HPLC A (gradient: 0-30 min, A/B 81:19-57:43, $t_{R}=21 \mathrm{~min}$) to give 6.36 as a fluffy yellow solid ($\left.15.0 \mathrm{mg}, 26.5 \mu \mathrm{~mol}, 39 \%\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}$, DMSO$\left.d_{6}\right): \delta(\mathrm{ppm})$ 1.21-1.43 (m, 4H), 1.65-1.75 (m, 2H), 1.83-1.91 (m, 1H), 1.99-2.05 (m, 1H), 3.44-3.53 (m, $1 \mathrm{H}), 3.67-3.77(\mathrm{~m}, 3 \mathrm{H}), 6.47(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.80-6.83(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.44$ (br s, 1H), 7.82-7.86 (m, 2H), $8.07(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.90(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.79(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$. One exchangeable proton signal was not apparent. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta(\mathrm{ppm}) 16.7,18.1,24.2,31.6,31.8$, $45.8,52.0,53.6,56.2,111.0,115.4$ (TFA), 115.8, 117.4 (TFA), 117.6, 124.6, 125.8, 136.2, 144.1, 154.2, 157.6, 158.3 ($q, J=35.0 \mathrm{~Hz}$) (TFA), 168.6. RP-HPLC (Method A, 220 nm): 98\% ($t_{R}=12.2 \mathrm{~min}, k=3.7$). HRMS (ESI): m/z [M+H]+ calcd. for $\left[\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{5} \mathrm{O}_{5}\right]^{+} 452.1928$, found 452.1928. $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{5}(451.48+$ 114.02).

N-((1R,2R)-2-((5-(4-Hydroxyphenyl)oxazol-2-yl)amino)cyclohexyl)-4-((4-nitrophenyl)amino)butanamide hydrotrifluoroacetat (6.37). 4-(2-(((1R,2R)-2-Aminocyclohexyl)amino)oxazol-5-yl)phenol bis(hydrotrifluoroacetate) (6.34) ($35.3 \mathrm{mg}, 70.4 \mu \mathrm{~mol}$) was dissolved in DMF ($100 \mu \mathrm{~L}$) and DIPEA $(31 \mu \mathrm{~L}, 182.3 \mu \mathrm{~mol})$ was added to the mixture. The mixture was stirred at rt for 5 min . Under stirring, succinimidyl 4-((4-nitrophenyl)amino)butanoate (6.25) ($45.3 \mathrm{mg}, 148.4 \mu \mathrm{~mol}$) was added to the reaction mixture. Then, the reaction mixture was stirred at rt for 3 h . The mixture was purified by preparative HPLC A (gradient: $0-30 \mathrm{~min}, \mathrm{~A} / \mathrm{B} 81: 19-57: 43, t_{R}=21 \mathrm{~min}$) to give 6.37 as a fluffy yellow solid ($13.31 \mathrm{mg}, 22.4 \mu \mathrm{~mol}, 32 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right.$): $\delta(\mathrm{ppm})$ 1.18-1.34 (m, 3H), 1.34-1.46 (m, $1 \mathrm{H}), 1.60-1.74(\mathrm{~m}, 4 \mathrm{H}), 1.80-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.98-2.09(\mathrm{~m}, 2 \mathrm{H}), 2.10-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.93-3.05(\mathrm{~m}, 2 \mathrm{H})$, 3.38-3.48 (m, 1H), 3.63-3.74 (m, 1H), 6.48-6.54 (m, 2H), 6.78-6.82 (m, 2H), 7.22 (br s, 1H), 7.33-7.37 (m, 2H), $7.43(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.91(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$.

One exchangeable proton signal was not apparent. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}\right.$, DMSO- d_{6}): $\delta(\mathrm{ppm}) 24.18$, 24.24, 24.4, 31.5, 31.7, 32.7, 41.8, 51.8, 56.7, 110.6, 112.4, 115.6 (TFA), 115.8, 117.6 (TFA), 117.63, 124.7, 126.2, 135.5, 144.1, 154.4, 157.6, 157.7, 158.4 (q, $J=32.9 \mathrm{~Hz}$) (TFA), 170.2. RP-HPLC (Method $\mathrm{A}, 220 \mathrm{~nm}$): $97 \%\left(t_{R}=12.2 \mathrm{~min}, k=3.7\right.$). HRMS (ESI): m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{25} \mathrm{H}_{3} \mathrm{~N}_{5} \mathrm{O}_{5}\right]^{+} 480.2241$, found 480.2249. $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{5} \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(479.54+114.02)$.

N-((1R,2R)-2-((5-(4-Hydroxyphenyl)oxazol-2-yl)amino)cyclohexyl)-2-(phenylamino)acetamide bis(hydrotrifluoroacetate) (6.38). 4-(2-(((1R,2R)-2-Aminocyclohexyl)amino)oxazol-5-yl)phenol bis(hydro-trifluoroacetate) (6.34) ($34.2 \mathrm{mg}, 68.2 \mu \mathrm{~mol}$) was dissolved in DMF ($100 \mu \mathrm{~L}$) and DIPEA $(31 \mu \mathrm{~L}, 182.3 \mu \mathrm{~mol})$ was added to the mixture. The reaction mixture was stirred at rt for 5 min . Under stirring, succinimidyl phenylglycinate (6.26) ($37.1 \mathrm{mg}, 149.5 \mu \mathrm{~mol}$) was added and the reaction mixture was stirred at rt for 3 h . The mixture was purified by preparative HPLC A (gradient: 0-30 min, A/B 71:29$57: 43, t_{R}=10 \mathrm{~min}$) to give 6.38 as a fluffy white solid ($10.75 \mathrm{mg}, 16.9 \mu \mathrm{~mol}, 25 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}$, DMSO- d_{6}): $\delta(\mathrm{ppm})$ 1.18-1.44 (m, 4H), 1.62-1.76 (m, 2H), 1.79-1.85 (m, 1H), 1.97-2.03 (m, 1H), 3.46$3.57(\mathrm{~m}, 3 \mathrm{H}), 3.68-3.76(\mathrm{~m}, 1 \mathrm{H}), 5.44(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 6.38-6.45(\mathrm{~m}, 3 \mathrm{H}), 6.84-6.88(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.95(\mathrm{~m}$, $2 \mathrm{H}), 7.38-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 9.21(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.88(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($150 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta(\mathrm{ppm}) 24.11,24.18,31.6,31.7,47.2,51.8,56.1,110.0,112.2,115.3$ (TFA), $115.9,116.5,117.3$ (TFA), 117.4, 124.8, 128.7, 144.2, 148.2, 157.1, 157.8, 158.3 (q, $J=34.3 \mathrm{~Hz}$) (TFA), 170.2. RP-HPLC (Method A, 220 nm): 97% ($t_{\mathrm{R}}=11.0 \mathrm{~min}, k=3.3$). HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{O}_{3}\right]^{+} 407.2078$, found 407.2081 . $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{3}(406.49+228.04)$.

N-((1R,2R)-2-((5-(4-Hydroxyphenyl)oxazol-2-yl)amino)cyclohexyl)-2,2-diphenylacetamide hydrotrifluoroacetat (6.39). 4-(2-(((1R,2R)-2-Aminocyclohexyl)amino)oxazol-5-yl)phenol bis(hydrotrifluoroacetate) (6.34) ($30.0 \mathrm{mg}, 109.8 \mu \mathrm{~mol}$) was dissolved in DMSO ($500 \mu \mathrm{~L}$) and DIPEA ($50 \mu \mathrm{~L}, 294 \mu \mathrm{~mol}$) was added to the mixture. The mixture was stirred at rt for 5 min . Under stirring, succinimidyl diphenylacetate ($\mathbf{2 . 2 8}$) ($31 \mathrm{mg}, 102 \mu \mathrm{~mol}$) was added and the reaction mixture was stirred at rt for 2 h . The mixture was purified by preparative HPLC B (gradient: 0-30 min, A/B 66:34-47:53, $t_{R}=7 \mathrm{~min}$) to give 6.39 as a fluffy white solid ($11.0 \mathrm{mg}, 18.9 \mu \mathrm{~mol}, 17 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta(\mathrm{ppm}) 1.20-$ $1.30(\mathrm{~m}, 3 \mathrm{H}), 1.30-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.94-2.01(\mathrm{~m}, 1 \mathrm{H}), 3.40-3.48(\mathrm{~m}$, $1 \mathrm{H}), 3.65-3.73(\mathrm{~m}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 6.82-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.94-6.99(\mathrm{~m}, 1 \mathrm{H}), 7.00-7.08(\mathrm{~m}, 4 \mathrm{H}), 7.17-7.29$
(m, 6H), 7.32-7.36 (m, 2H), $8.24(\mathrm{~d} . J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.40(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.75(\mathrm{~s}, 1 \mathrm{H})$. One exchangeable proton signal was not apparent. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$: $\delta(\mathrm{ppm}) 24.2,31.74,31.77,52.1,56.4$, 56.7, 115.8, 115.9 (TFA), 117.9 (TFA), 124.4, 126.2, 126.6, 127.9, 128.15, 128.16, 128.5, 140.1, 140.2, 143.9, 157.1, 158.0 (TFA), 158.2 (TFA), 170.8. RP-HPLC (Method A, 220 nm): 98\% ($t_{R}=14.3 \mathrm{~min}, k=$ 4.5). HRMS (ESI): m/z [M+H] calcd. for $\left[\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{3}\right]^{+} 468.2282$, found 468.2289. $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{3} \times$ $\mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(467.57+114.02)$.

(1R,2R)- \boldsymbol{N}^{1}-(5-(4-(tert-Butoxy)phenyl)oxazol-2-yl)- \boldsymbol{N}^{2}-(1-(4-nitrophenyl)piperidin-4-yl)cyclo-hexane-1,2-diamine bis(hydrotrifluoroacetate) (6.40). (1R,2R)- N^{N}-(5-(4-(tert-Butoxy)phenyl)oxazol-2-yl)cyclohexane-1,2-diamine (6.33) ($88 \mathrm{mg}, 267 \mu \mathrm{~mol}$) and 1-(4-nitrophenol)piperidin-4-one (6.29) ($60 \mathrm{mg}, 273 \mu \mathrm{~mol}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. Under stirring, acetic acid ($16 \mu \mathrm{~L}, 280 \mu \mathrm{~mol}$) and anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ were added to the mixture. Then, the mixture was vigorously stirred at rt for 1 h . $\mathrm{NaBH}(\mathrm{OAc})_{3}(228 \mathrm{mg}, 1.08 \mathrm{mmol})$ was added to the reaction mixture and the mixture was stirred at rt for 4 h . After addition of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ the reaction mixture was washed with water (2 x 50 mL), brine $(1 \times 50 \mathrm{~mL})$ and the organic solvent was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic solvent was evaporated. Then, the crude product was purified by column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}$ aq $90: 9: 1$) and, subsequently, by preparative HPLC B (gradient: 0-30 min, $A / B 57: 43-38: 62$, $t_{R}=8 \mathrm{~min}$) to give 6.41 as a fluffy bright yellow solid ($20.0 \mathrm{mg}, 26.3 \mu \mathrm{~mol}, 10 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$: $\delta(\mathrm{ppm}) 1.21-1.36$ $(\mathrm{m}, 12 \mathrm{H}), 1.36-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.82(\mathrm{~m}, 3 \mathrm{H}), 1.93-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.99-2.05(\mathrm{~m}$, $1 \mathrm{H})$, 2.06-2.13 (m, 1H), 2.21-2.29 (m, 1H), 3.00-3.12 (m, 2H), 3.18-3.25 (m, 1H), 3.55-3.67 (m, 2H), 4.13-4.22 (m, 2H), 6.97-7.00 (m, 2H), 7.04-7.09 (m, 2H), 7.22 (s, 1H), 7.38-7.42 (m, 2H), 7.63 (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.96 (br s, 1H, interfering with next listed signal), 8.04-8.07 (m, 2H), $8.78(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$. ${ }^{13}$ C-NMR (150 MHz, DMSO- d_{6}): $\delta(\mathrm{ppm}) 23.4,23.9,26.2,27.0,27.7,28.5,31.6,45.2,45.4,51.7,54.0$, $56.4,78.3,112.8,120.6,123.1,123.2,124.0,125.9,136.7,144.0,153.9,154.0,158.1(q J=43.5 \mathrm{~Hz})$ (TFA), 159.7. RP-HPLC (Method A, 220 nm): 95% ($t_{\mathrm{R}}=16.0 \mathrm{~min}, k=5.2$). HRMS (ESI): m/z [M+H]+ calcd. for $\left[\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{~N}_{5} \mathrm{O}_{4}\right]^{+} 534.3075$, found 534.3080. $\mathrm{C}_{30} \mathrm{H}_{39} \mathrm{~N}_{5} \mathrm{O}_{4} \times \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{~F}_{6} \mathrm{O}_{4}$ (533.67 + 228.04).

1-((1R,2R)-2-((1-(4-Nitrophenyl)piperidin-4-yl)amino)cyclohexyl)-3-phenylurea hydrotrifluoroacetate (6.41). 1-((1R,2R)-2-Aminocyclohexyl)-3-phenylurea (6.12) (91 mg, $390 \mu \mathrm{~mol}$) and 1-(4-nitrophenol)piperidin-4-one (6.29) ($91 \mathrm{mg}, 413 \mu \mathrm{~mol}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. Under stirring, acetic acid ($23 \mu \mathrm{~L}, 402 \mu \mathrm{~mol}$) and anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ were added to the mixture. Then, the reaction
mixture was vigorously stirred at rt for $1 \mathrm{~h} . \mathrm{NaBH}(\mathrm{OAc})_{3}(270 \mathrm{mg}, 1.27 \mathrm{mmol})$ was added to the reaction mixture and stirred at rt for 4 h . After addition of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ the reaction mixture was washed with water ($2 \times 50 \mathrm{~mL}$), brine ($1 \times 50 \mathrm{~mL}$) and the organic solvent was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Then, the organic solvent was evaporated. The crude product was purified by column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}$ aq 90:9:1) and, subsequently, by preparative HPLC B (gradient: 0-30 min, A/B 66:34-38:62, $t_{R}=8 \mathrm{~min}$) to give 6.41 as a fluffy bright yellow solid ($30.0 \mathrm{mg}, 54.4 \mu \mathrm{~mol}, 14 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($600 \mathrm{MHz}, \mathrm{DMSO}_{6}$): $\delta(\mathrm{ppm})$ 1.21-1.48 (m, 4H), 1.52-1.61 (m, 1H), 1.67-1.79 (m, 3H), 1.86-1.92 (m, $1 \mathrm{H})$, 1.99-2.09 (m, 2H), 2.14-2.20 (m, 1H), 3.01-3.08 (m, 2H), 3.09-3.17 (m, 1H), 3.53-3.60 (m, 1H), 3.60-3.67 (m, 1H), 4.11-4.18 (m, 2H), 6.86-6.90 (m, 1H), $7.00(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-7.06(\mathrm{~m}, 2 \mathrm{H})$, 7.17-7.44 (m, 2H), 7.40-7.44 (m, 2H), 8.02-8.06 (m, 2H), 8.07-8.15 (m, 1H), $8.70(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.20(\mathrm{~s}, 1 \mathrm{H})$. ${ }^{13}$ C-NMR ($150 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta(\mathrm{ppm}) 23.2,23.9,26.3,27.3,27.6,31.9,45.2,45.4,50.7,52.2,57.5$, 112.8, 116.1 (TFA), 117.7, 118.1 (TFA), 121.3, 125.9, 128.6, 136.7, 140.3, 153.9, 155.9, 158.8 (q, $J=32.2 \mathrm{~Hz}$) (TFA). RP-HPLC (Method A, 220 nm): $95 \%\left(t_{\mathrm{R}}=16.7 \mathrm{~min}, k=5.4\right)$. HRMS (ESI): m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{5} \mathrm{O}_{3}\right]^{+} 438.2500$, found 438.2507. $\mathrm{C}_{24} \mathrm{H}_{3} \mathrm{~N}_{5} \mathrm{O}_{3} \times \mathrm{C}_{2} \mathrm{H}_{1} \mathrm{~F}_{3} \mathrm{O}_{2}(437.54+114.02)$.

Benzyl ((1R,2R)-2-((1-(4-nitrophenyl)piperidin-4-yl)amino)cyclohexyl)carbamate hydrotrifluoroacetate (6.42). Benzyl ((1R,2R)-2-aminocyclohexyl)carbamate (6.13) (107 mg, $431 \mu \mathrm{~mol}$) and 1-(4-nitrophenol)piperidin-4-one (6.29) (93 mg, $422 \mu \mathrm{~mol}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. Under stirring, acetic acid ($23 \mu \mathrm{~L}, 402 \mu \mathrm{~mol}$) and anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ were added to the mixture. Then, the reaction mixture was and vigorously stirred at rt for $1 \mathrm{~h} . \mathrm{NaBH}(\mathrm{OAc})_{3}(271 \mathrm{mg}, 1.28 \mathrm{mmol})$ was added to the reaction mixture and stirred at rt for 4 h . After addition of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ the reaction mixture was washed with water $(2 \times 50 \mathrm{~mL})$, brine $(1 \times 50 \mathrm{~mL})$ and the organic solvent was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Then, the organic solvent was evaporated. The crude product was purified by column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}$ aq 90:9:1) and, subsequently, by preparative HPLC A (gradient: 0-30 min, A/B 67:33-38:62, $t_{R}=13 \mathrm{~min}$) to give 6.42 as a fluffy bright yellow solid ($22.8 \mathrm{mg}, 40.2 \mu \mathrm{~mol}, 10 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($600 \mathrm{MHz}, ~ D M S O-d_{6}$): $\delta(\mathrm{ppm})$ 1.18-1.27 (m, 2H), 1.27-1.42 (m, 2H), 1.48-1.57 (m, 1H), 1.63-1.89 (m, $4 \mathrm{H}), 1.93-2.05(\mathrm{~m}, 2 \mathrm{H}), 2.16-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.97-3.14(\mathrm{~m}, 3 \mathrm{H}), 3.44-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.62(\mathrm{~m}, 1 \mathrm{H})$, 4.13-4.19 (m, 2H), $4.96(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-$ $7.33(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.42(\mathrm{~m}, 5 \mathrm{H}), 7.94(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.76(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$. ${ }^{13}$ C-NMR (150 MHz, DMSO- d_{6}): $\delta(\mathrm{ppm}) 23.3,23.8,26.3,27.0,27.6,32.0,45.2,45.4,51.8,51.9,56.1$, $65.7,112.8,115.8$ (TFA), 117.8 (TFA), 125.9, 127.9, 128.4, 136.7, 153.9, 156.0, 158.11 ($q, J=32.1 \mathrm{~Hz}$) (TFA). RP-HPLC (Method A, 220 nm): 95\% ($t_{\mathrm{R}}=14.6 \mathrm{~min}, k=4.6$). HRMS (ESI): m/z[M+Na] ${ }^{+}$calcd. for $\left[\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Na}\right]^{+} 475.2316$, found 475.2319. $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{4} \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(452.56+114.02)$.

2-((4-Nitrophenyl)amino)- \boldsymbol{N}-((1R,2R)-2-(3-phenylureido)cyclohexyl)acetamide (6.43). 1-((1R,2R)-2-aminocyclohexyl)-3-phenylurea (6.12) ($50.0 \mathrm{mg}, 214 \mu \mathrm{~mol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ and DIPEA ($73 \mu \mathrm{~L}, 429 \mu \mathrm{~mol}$) was added to the mixture. The mixture was stirred at rt for 5 min . Under stirring, succinimidyl (4-nitrophenyl)glycinate (6.24) ($75.7 \mathrm{mg}, 258 \mu \mathrm{~mol}$) was added to the reaction mixture and stirred at rt for 2 h . Then, the organic solvent was evaporated, and the crude product was purified by column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}$ aq $90: 9: 1$) to obtain 6.43 as a yellow solid ($45.0 \mathrm{mg}, 109 \mu \mathrm{~mol}, 51 \%$). ${ }^{1} \mathrm{H}-$ NMR ($600 \mathrm{MHz}, ~ D M S O-d_{6}$): $\delta(\mathrm{ppm}) 1.18-1.32$ (m, 4H), 1.61-1.69 $(\mathrm{m}, 2 \mathrm{H}), 1.78-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.95(\mathrm{~m}, 1 \mathrm{H}), 3.40-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.71-3.81(\mathrm{~m}, 2 \mathrm{H})$, $5.94(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.00(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.48(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ (150 MHz, DMSO- d_{6}): $\delta(\mathrm{ppm}) 24.3,24.5,31.9,32.7,45.8,52.3,52.4,111.1,117.3,120.9,125.9,128.6$, 136.2, 140.5, 154.4, 155.1, 168.1. RP-HPLC (Method A, 220 nm): $98 \%\left(t_{\mathrm{R}}=15.5 \mathrm{~min}, k=5.0\right)$. HRMS (ESI): m/z [M+H]+ calcd. for $\left[\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{5} \mathrm{O}_{4}\right]^{+} 412.1979$, found 412.1985. $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{4}$ (411.46).

6.44

Benzyl ((1R,2R)-2-(2-((4-nitrophenyl)amino)acetamido)cyclohexyl)carbamate (6.44). Benzyl ((1R,2R)-2-aminocyclohexyl)carbamate (6.13) (44.0 mg, $177 \mu \mathrm{~mol})$ was dissolved in DMF ($400 \mu \mathrm{~L}$) and DIPEA ($100 \mu \mathrm{~L}, 588 \mu \mathrm{~mol}$) was added to the mixture. Then, the reaction mixture was stirred at rt for 5 min . Under stirring, succinimidyl (4-nitrophenyl)glycinate (6.24) ($65 \mathrm{mg}, 22 \mu \mathrm{~mol}$) was added to the mixture and the reaction mixture was stirred at rt for 2 h . The mixture was purified by preparative HPLC B (gradient: 0-30 min, A/B 67:33-47:53, $t_{R}=7 \mathrm{~min}$) to give 6.44 as a fluffy bright yellow solid $(9.4 \mathrm{mg}$, $22 \mu \mathrm{~mol}, 12 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{DMSO}_{6}\right.$): $\delta(\mathrm{ppm}) 1.13-1.28(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.85$ $(\mathrm{m}, 2 \mathrm{H}), 3.23-3.31(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.64-3.79(\mathrm{~m}, 2 \mathrm{H}), 4.87-4.99(\mathrm{~m}, 2 \mathrm{H}), 6.59(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.04(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.37(\mathrm{~m}, 5 \mathrm{H}), 7.44(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.96$ (d, $J=9.4 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right.$): $\delta(\mathrm{ppm}) 24.3,24.4,31.8,32.0,45.7,52.3,53.7$, 65.1, 111.2, 125.9, 127.5, 127.7, 128.3, 136.2, 137.2, 154.3, 155.9, 168.2. RP-HPLC (Method A, 220 nm): 97\% ($t_{R}=17.7 \mathrm{~min}, k=5.8$). HRMS (ESI): m/z [M+H]+ calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{O}_{5}\right]+427.1976$, found 427.1980. $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{5}$ (426.47).

N-tert-Butoxycarbonyl- N^{\prime}-[phenyl]aminocarbonyl-S-methylisothiourea (6.45). $\quad N$-Boc-S-methylisothiourea (2.35) ($1.16 \mathrm{~g}, 6.10 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and stirred at $0^{\circ} \mathrm{C}$. Under stirring, isocyanatobenzene ($0.75 \mathrm{~mL}, 6.93 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added dropwise to the reaction mixture. Then, the reaction mixture was allowed to warm up to rt and stirred overnight. The organic solvent was evaporated, and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and evaporated (2x). The crude product was purified by column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give 6.45 as a white solid (1.03 g , $3.33 \mathrm{mmol}, 55 \%)$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta(\mathrm{ppm}) 1.46(\mathrm{~s}, 9 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 6.99-7.08(\mathrm{~m}, 1 \mathrm{H})$, 7.23-7.35 (m, 2H), 7.59-7.67 (m, 2H), $9.878 \mathrm{~s}, 1 \mathrm{H}$), 12.05 ($\mathrm{s}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (75 MHz , DMSO- d_{6}): δ (ppm) 13.8, 27.6, 82.4, 119.2, 123.0, 128.6, 139.0, 150.1, 159.3, 166.0. HRMS (ESI): m/z [M+Na] ${ }^{+}$calcd. for $\left[\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{SNa}\right]^{+} 332.1039$, found 332.1044. $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ (309.38).

Benzyl ((1R,2R)-2-(3-(2-tert-butoxycarbonyl)(phenylcarbamoyl)guanidino)cyclohexyl)carbamate (6.46). Benzyl ((1R,2R)-2-aminocyclohexyl)carbamate (6.13) ($0.35 \mathrm{~g}, 1.41 \mathrm{mmol}$) and N-tert-butoxy-carbonyl- N^{\prime}-[benzene]aminocarbonyl-S-methylisothiourea (6.45) ($0.49 \mathrm{~g}, 1.58 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. Under stirring, $\mathrm{HgCl}_{2}(0.57 \mathrm{~g}, 2.10 \mathrm{mmol})$ and DIPEA ($0.60 \mathrm{~mL}, 3.53 \mathrm{mmol}$) were added and the mixture was stirred at rt for 4 h . The solid was separated by filtration and the filtrate was evaporated. The crude product was purified by column chromatography (eluent: light petroleum/ethyl acetate $5: 1$) to give 6.46 as an oil ($0.36 \mathrm{~g}, 70.6 \mu \mathrm{~mol}, 50 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta(\mathrm{ppm})$ 1.22-1.34 (m, 4H), 1.41-1.46 (m, 9H, due two slow rotation of C-N bond of Boc group two inferring signals (singulets) were evident in the spectra), 1.59-1.75 (m, 2H), 1.78-1.92 (m, 1H), 2.09-2.14 (m, 1H), 3.37-3.51 (m, 1H), 3.73-3.93 (m, 1H), 4.90 (d, $J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-6.97(\mathrm{~m}$, $1 \mathrm{H}), 7.20-7.39(\mathrm{~m}, 8 \mathrm{H}), 7.58(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.97-8.14(\mathrm{~m}, 1 \mathrm{H}), 9.20(\mathrm{~s}, 1 \mathrm{H}), 12.17(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ (151 MHz, DMSO- d_{6}): $\delta(\mathrm{ppm}) 24.3,27.6,28.1,30.7,31.5,53.8,64.9,82.4,118.7,121.9,127.0,127.3$, 127.5, 128.2, 128.4, 128.8, 137.4, 140.1, 152.1, 155.9, 162.5. HRMS (ESI): m/z [M+Na] ${ }^{+}$calcd. for $\left[\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{Na}\right]+532.2530$, found 532.2534. $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{~N}_{5} \mathrm{O}_{5}$ (509.61).

1-(Amino(((1R,2R)-2-aminocyclohexyl)amino)methylene)-3-phenylurea bis(hydrotrifluoro-

acetate) (6.47). Compound $6.46(173 \mathrm{mg}, 0.339 \mathrm{mmol})$ was dissolved in $\mathrm{MeOH}(10 \mathrm{~mL})$ and palladium on activated charcoal (Pd / C) $(30 \mathrm{mg})$ was added. A constant stream of hydrogen $\left(\mathrm{H}_{2}\right)$ was bubbled through the reaction mixture at rt for 1 h . The catalyst Pd / C was removed by filtration and the organic solvent was evaporated. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and stirred under ice bath cooling.

Under stirring, TFA (5 mL) was dropped into the reaction mixture. The organic solvent was evaporated and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added. Then, the organic solvent was evaporated and the crude product was purified by preparative HPLC B (gradient: 0-30 min, A/B 71:29-38:62, $t_{R}=14 \mathrm{~min}$) to give 6.47 as a fluffy white solid ($34.5 \mathrm{mg}, 68.5 \mu \mathrm{~mol}, 20 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}\right.$, DMSO- d_{6}): $\delta(\mathrm{ppm}) 1.22-1.48(\mathrm{~m}, 4 \mathrm{H})$, 1.67-1.77 (m, 2H), 1.92-1.99 (m, 1H), 2.01-2.07 (m, 1H), 3.17-3.30 (m, 1H), 3.67-3.78 (m, 1H), 7.06$7.18(\mathrm{~m}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.13(\mathrm{~s}, 3 \mathrm{H}), 8.68(\mathrm{~s}, 2 \mathrm{H}), 9.04(\mathrm{~s}, 1 \mathrm{H})$, $10.09(\mathrm{~s}, 1 \mathrm{H}), 10.77(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-$ NMR ($\left.150 \mathrm{MHz}, ~ D M S O-d_{6}\right): \delta(\mathrm{ppm}) 23.0,23.5,29.5,31.1,52.4,52.9$, 117.0 ($q, J=298.2 \mathrm{~Hz}$) (TFA), 119.7, 124.0, 129.0, 137.5, 151.6, 153.7, 159.1 ($q, J=32.1 \mathrm{~Hz}$) (TFA). RP-HPLC (Method A, 220 nm): 98\% ($t_{R}=8.0 \mathrm{~min}, k=2.1$). HRMS (ESI): m/z [M+H]+ calcd. for [$\left.\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~N}_{5} \mathrm{O}\right]^{+} 276.1819$, found 276.1822. $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O} \times \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{~F}_{6} \mathrm{O}_{4}(275.36+228.04)$.

2-((4-Nitrophenyl)amino)- \boldsymbol{N}-((1R,2R)-2-(2-(phenylcarbamoyl)guanidino)cyclohexyl)acetamide hydrotrifluoroacetate (6.48). 1-(Amino(((1R,2R)-2-aminocyclohexyl)amino)methylene)-3-phenylurea bis(hydrotrifluoroacetate) (6.47) ($32.65 \mathrm{mg}, 64.86 \mu \mathrm{~mol}$) was dissolved in DMSO (1 mL) and DIPEA $(37 \mu \mathrm{~L}, 212 \mu \mathrm{~mol})$ was added. Under stirring, succinimidyl (4-nitrophenyl)glycinate (6.24) (25.73 mg, $87.74 \mu \mathrm{~mol})$ was added to the reaction mixture. The reaction mixture was shaken in a microcentrifuge tube (1.5 mL) at rt for 2 h . The crude product was purified by preparative HPLC B (gradient: 0-30 min, A/B 71:29-38:62, tR = 14 min) to give 6.48 as a fluffy bright yellow solid ($14.79 \mathrm{mg}, 26.06 \mu \mathrm{~mol}, 40 \%$). ${ }^{1} \mathrm{H}-$ NMR (600 MHz, DMSO- d_{6}): $\delta(\mathrm{ppm})$ 1.21-1.40 (m, 4H), 1.62-1.72 (m, 2H), 1.77-1.85 (m, 1H), 1.92$2.00(\mathrm{~m}, 1 \mathrm{H}), 3.48-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.70-3.85(\mathrm{~m}, 3 \mathrm{H}), 6.51-6.64(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{t}, \mathrm{J}=7.20 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.94(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.10(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.54(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$, 8.71-8.80 (m, 1H), $9.89(\mathrm{~s}, 1 \mathrm{H}), 10.20(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}\right.$, DMSO- d_{6}): $\delta(\mathrm{ppm}) 23.7,24.0$, 31.1, 31.6, 45.8, 51.2, 54.4, 111.0, 116.1 (TFA), 118.1 (TFA), 119.7, 123.9, 125.8, 128.9, 136.4, 137.4, 151.5, 153.1, $154.3,159.1$ ($q, J=31.7 \mathrm{~Hz}$) (TFA), 168.8. RP-HPLC (Method A, 220 nm): 99\% $\left(t_{R}=12.9 \mathrm{~min}, k=4.0\right)$. HRMS $(E S I): m / z[M+H]^{+}$calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{7} \mathrm{O}_{4}\right]^{+} 454.2197$, found 454.2202 . $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{7} \mathrm{O}_{4} \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(453.50+114.02)$.

6.4.3. X-Ray crystallography of compounds $(R, R, S)-6.6 \mathrm{~b}$ and $(R)-6.17$

6.4.3.1. X-Ray crystallography of compounds $(R, R, S)-6.6 \mathrm{~b}$

Single clear yellow prism crystals of $(R, R, S)-6.6 \mathrm{~b}$ were obtained according to following procedure: the TFA salt of $(R, R, S)-\mathbf{6 . 6 b}(15 \mathrm{mg})$ was dissolved in methanol $(2 \mathrm{~mL})$ and HCl in methanol (TCI, Eschborn, Germany; $5-10 \%$; 3 mL) was added and the volatiles were evaporated (4 x). The obtained residue was dried in vacuo and dissolved in methanol (1 mL). The solution was allowed to slowly concentrate at ambient temperature.

Table 6.4. Crystal data and structure refinement of $(\boldsymbol{R}, \boldsymbol{R}, \mathbf{S})-\mathbf{6} .6 \mathrm{~b}$

Formula	$\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{ClN}_{5} \mathrm{O}_{3}$	Z	2
$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}^{-3}$	1.289	Z'	1
μ / mm^{-1}	1.222	Wavelength/Å	1.39222
Formula Weight	473.99	Radiation type	$\mathrm{Cu} \mathrm{K}{ }_{\beta}$
Colour	clear yellow	$\Theta_{\text {min }} 1^{\circ}$	3.818
Shape	plate	$\Theta_{\max } 1^{\circ}$	58.863
Size / mm ${ }^{3}$	$0.18 \times 0.15 \times 0.06$	Measured Refl.	30702
T/K	122.96(11)	Independent Refl.	4660
Crystal System	monoclinic	Reflections Used	4310
Flack Parameter	-0.005(6)	$R_{\text {int }}$	0.0427
Hooft Parameter	-0.009(6)	Parameters	298
Space Group	$\mathrm{P} 2_{1}$	Restraints	1
a / \AA	5.5823(2)	Largest Peak	0.215
b / \AA	15.1245(4)	Deepest Hole	-0.194
c / A	14.5029(4)	GooF	1.072
$\alpha 1^{\circ}$	90	$w R_{2}$ (all data)	0.0732
$\beta 1^{\circ}$	94.173(2)	$w R_{2}$	0.0707
$\gamma 1{ }^{\circ}$	90	R_{1} (all data)	0.0366
V / \AA^{3}	1221.23(6)	R_{1}	0.0317

A suitable crystal $(0.18 \times 0.15 \times 0.06) \mathrm{mm}^{3}$ was selected and mounted on a MiTeGen holder (Jena Bioscience, Jena, Germany) with oil using a GV1000 diffractometer (Agilent Technologies, Santa Clara, USA) with Titan S2 CCD detector. The crystal was kept at $T=122.96$ (11) K during data collection. The structure was solved with the ShelXT ${ }^{41}$ solution program using the intrinsic phasic methods and by using Olex2 ${ }^{42}$ as the graphical interface. The model was refined with ShelXL ${ }^{43}$ (version 2016/6) using full matrix least squares minimization.

Data were measured using ω scans and $\mathrm{Cu} \mathrm{K}_{\beta}$ radiation. The total number of runs and images was based on the strategy calculation from the program CrysAlisPro (Agilent Technologies). The maximum resolution that was achieved was $\Theta=58.863$. Cell parameters were retrieved using the CrysAlisPro
(Agilent Technologies) software and refined using CrysAlisPro (Agilent Technologies) on 13758 reflections, 45% of the observed reflections. Data reduction was performed using the CrysAlisPro (Agilent Technologies) software, which corrects for Lorentz polarisation. The final completeness is 99.90% out to 58.863° in Θ. The absorption coefficient μ of this material is $1.222 \mathrm{~mm}^{-1}$ at this wavelength ($\lambda=1.39222$) and the minimum and maximum transmissions are 0.823 and 1.000. The Flack parameter was refined to $-0.005(6)$. Determination of absolute structure using Bayesian statistics on Bijvoet differences using the Olex2 results in -0.009 (6).

Crystal data of (R, R, S)-6.6b see 8.5.3.1.: Fractional atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $(R, R, S)-6.6 a$. $U_{\text {eq }}$ is defined as $1 / 3$ of the trace of the orthogonalised $U_{i j}$ (cf. Table 8.3). Anisotropic displacement parameters $\left(\times 10^{4}\right)$ for $(R, R, S)-6.6 \mathbf{a}$. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} \times U_{11}+\ldots+2 h k a^{*} \times b^{*} \times U_{12}\right]$ (cff. Table 8.4). Bond lengths in \AA A for (R, R, S)-6.6a (cf. Table 8.5). Bond angles in ${ }^{\circ}$ for (R, R, S)-6.6a (cf. Table 8.6) and hydrogen fractional atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for (R, R, S) $-6.6 \mathbf{a}$. $U_{e q}$ is defined as $1 / 3$ of the trace of the orthogonalised $U_{i j}$ (cf. Table 8.7).

6.4.3.2. X-Ray crystallography of $(R)-6.17$

Single clear yellow prism crystals of $(R)-6.17$ were obtained according to following procedure: cf. 6.4.2. synthesis protocols and analytical data

Table 6.5. Crystal data and structure refinement of (R)-6.17

Formula	$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$	Z	2
$D_{\text {calc }} / \mathrm{g} \mathrm{cm}^{-3}$	1.421	Z'	1
μ / mm^{-1}	2.258	Wavelength/Å	1.54184
Formula Weight	300.33	Radiation type	$\mathrm{Cu} \mathrm{K}{ }_{\alpha}$
Colour	clear yellow	$\Theta_{\text {min }} /{ }^{\circ}$	3.461
Shape	prism	$\Theta_{\max } /{ }^{\circ}$	76.344
Size / mm ${ }^{3}$	$0.29 \times 0.11 \times 0.10$	Measured Refl.	8519
T/K	294(4)	Indipendent Refl.	2888
Crystal System	monoclinic	Refl's with I > 2(I)	2761
Flack Parameter	-0.004(8)	$R_{\text {int }}$	0.0180
Hooft Parameter	-0.006(6)	Parameters	183
Space Group	$P 2_{1}$	Restraints	1
a / \AA	5.32850(10)	Largest Peak	0.130
b / \AA	10.3138(3)	Deepest Hole	-0.125

Table 6.5 continued.

c / \AA	$12.9123(4)$	Goof	1.039
$\alpha /^{\circ}$	90	$w R_{2}$ (all data)	0.0800
$\beta /^{\circ}$	$98.477(3)$	$w R_{2}$	0.0782
$\gamma /^{\circ}$	90	R_{1} (all data)	0.0294
$\mathrm{~V} / \AA^{3}$	$701.87(3)$	R_{1}	0.0279

A suitable crystal with dimensions $(0.29 \times 0.11 \times 0.10) \mathrm{mm}^{3}$ was selected and mounted on a MiTeGen holder (Jena Bioscience) with oil using a SuperNova diffractometer (Agilent Technologies) with Atlas CCD detector. The crystal was kept at a $T=294(4) \mathrm{K}$ during data collection. The structure was solved with the ShelXT ${ }^{41}$ solution program using dual methods and by using Olex2 ${ }^{42}$ as the graphical interface. The model was refined with ShelXL ${ }^{43}$ (version 2018/3) using full matrix least squares minimization on F^{2}.

Data were measured using ω scans and $\mathrm{Cu} \mathrm{K}_{\alpha}$ radiation. The diffraction pattern was indexed and the total number of runs and images was based on the strategy calculation from the program CrysAlisPro 1.171.41.47a (Rigaku Europe, Neu-Isenburg, Germany). The maximum resolution that was achieved was $\Theta=76.344^{\circ}$. The diffraction pattern was indexed and the total number of runs and images was based on the strategy calculation from the program CrysAlisPro 1.171.41.47a (Rigaku Europe). The unit cell was refined using CrysAlisPro 1.171.41.47a (Rigaku Europe) on 5092 reflections, 60% of the observed reflections. Data reduction, scaling and absorption corrections were performed using CrysAlisPro 1.171.41.47a (Rigaku Europe). The final completeness is 99.90% out to 76.344° in Θ. A gaussian absorption correction was performed using CrysAlisPro 1.171.41.47a (Rigaku Europe). The absorption coefficient μ of this material is $2.258 \mathrm{~mm}^{-1}$ at this wavelength ($\lambda=1.54184 \AA$) and the minimum and maximum transmissions are 0.699 and 1.000. The Flack parameter was refined to $0.004(8)$. Determination of absolute structure using Bayesian statistics on Bijvoet differences using the Olex2 results in -0.006(6).

Crystal data of $(R)-6.17$ see 8.5.3.2.: Fractional atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $(R)-6.17$. Ueq is defined as $1 / 3$ of the trace of the orthogonalised U_{ij} (cf. Table 8.8), anisotropic displacement parameters $\left(\times 10^{4}\right)$ for $(R)-6.17$. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} \times U_{11}+\ldots+2 h k a^{*} \times b^{*} \times U_{12}\right]$ (cf. Table 8.9), bond lengths in \AA for (R)-6.17 (cf. Table 8.10), bond angles in ${ }^{\circ}$ for $(R)-6.17$ (cf. Table 8.11), torsion angles in ${ }^{\circ}$ for $(R)-6.17$ (cf. Table 8.12) and hydrogen fractional atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $(R)-6.17 . U_{e q}$ is defined as $1 / 3$ of the trace of the orthogonalised $U_{i j}$ (cf. Table 8.13).

6.4.4. Pharmacological methods: cell culture, radioligand competition binding assay in CHO$h Y_{4} R$ - $\mathrm{G}_{\mathrm{qi5}}-\mathrm{mt} \mathrm{AEQ}$ cells, aequorin Ca^{2+} assay, ethidium bromide/acridine orange staining (live/dead staining)

6.4.4.1. Cell culture

Cultivation of $\mathrm{CHO}-\mathrm{h} \mathrm{Y}_{4} \mathrm{R}-\mathrm{G}_{\mathrm{qij}}-\mathrm{mtAEQ}$ cells was performed according to literature. ${ }^{5} \mathrm{CHO}-\mathrm{hY} \mathrm{Y}_{\mathrm{R}} \mathrm{R}-\mathrm{G}_{\mathrm{qij}}-$ mtAEQ cells were cultivated in nutrient mixture Ham's F 12 medium (Sigma Aldrich) at $37^{\circ} \mathrm{C}$ in a water saturated atmosphere containing $5 \% \mathrm{CO}_{2}$. Ham's F12 medium was supplemented with G418 (Merck Biochrom; $400 \mu \mathrm{~g} / \mathrm{mL}$), hygromycin (InvivoGen, San Diego, USA; $250 \mu \mathrm{~g} / \mathrm{mL}$), zeocin (InvivoGen, San Diego, USA; $250 \mu \mathrm{~g} / \mathrm{mL}$) and 10\% (v/v) FCS (Merck Biochrom, Darmstadt, Germany).

Routinely performed examinations for mycoplasma contamination using the Venor GeM Mycoplasma Detection Kit (Minerva Biolabs, Berlin, Germany) were negative for all cell types.

6.4.4.2. Radioligand competition binding assay in $\mathrm{CHO}-\mathrm{h} \mathrm{Y}_{4} \mathrm{R}-\mathrm{G}_{\mathrm{q} i 5}-\mathrm{mtAEQ}$ cells

The synthesis of $\left[{ }^{3} \mathrm{H}\right]$ UR-KK200 (Cfinal $=1.0 \mathrm{nM}, K_{d}=0.67 \mathrm{nM}$) was described previously. ${ }^{20}$ The equilibrium competition binding experiments were performed in intact $\mathrm{CHO}-\mathrm{hY} \mathrm{Y}_{4} \mathrm{R}-\mathrm{G}_{\text {qis-mt }} \mathrm{mtAE}$ cells as described in the literature. ${ }^{20}$

On the day of the experiment cells were scraped off the culture flask, resuspended in sodium-free buffer (25 mM HEPES, $2.5 \mathrm{mM} \mathrm{CaCl} 2,1 \mathrm{mM} \mathrm{MgCl} 2, \mathrm{pH} 7$) containing 1% BSA and $0.1 \mathrm{mg} / \mathrm{mL}$ of bacitracin and a density of 500,000 cells $/ \mathrm{mL}$ was adjusted. Increasing concentrations (10 -fold concentrated compared to final assay concentration) of investigated ligands ($20 \mu \mathrm{~L}$) were added to the Primaria 96well plate (Corning Life Science, Oneonta, USA). The radioligand solution (10-fold concentrated compared to Cinal $=1 \mathrm{nM}$) was added in every well and subsequently $160 \mu \mathrm{~L}$ of the prepared cell suspension (500,000 cells $/ \mathrm{mL}$) was added. All dilutions of radio- and investigated ligands were prepared in sodium-free buffer (25 mM HEPES, $2.5 \mathrm{mM} \mathrm{CaCl} 2,1 \mathrm{mM} \mathrm{MgCl} 2, \mathrm{pH} 7$) containing $1 \% \mathrm{BSA}$ and $0.1 \mathrm{mg} / \mathrm{mL}$ of bacitracin. After incubation at rt for 90 min , the bound and free radioligand ($\left.{ }^{[3} \mathrm{H}\right]$ UR-KK200) were separated by filtration through glass microfiber filters (GF/C filters) (Whatman, Maidstone, UK) by use of Brandel Harvester (Brandel, Gaithersburg, USA). Before use, the GF/C filters were treated with 0.3% polyethyleneimine solution for 20 min . The filter was stamped out (every well) and transferred to a 96 -well plate 1450-401 (Perkin-Elmer, Rodgau, Germany). Before measuring the radioactivity (dpm) with a MicroBeta2 plate counter (Perkin-Elmer, Rodgau, Germany), 200μ l of a scintillation cocktail (Rotiscint eco plus) was added and the plates were shaken in the dark for at least 3 h .

Non-specific binding was determined in the presence of a 200 -fold excess of hPP and total binding in buffer (At least one triplicate of non-specific and total binding was determined on every plate).

6.4.4.3. Aequorin Ca^{2+} assay

The aequorin Ca^{2+} assay was performed in $\mathrm{CHO}-\mathrm{h} \mathrm{Y}_{4} \mathrm{R}-\mathrm{G}_{\mathrm{qi5}}-\mathrm{mtAEQ}$ cells as described in literature ${ }^{5}$ with minor modifications: on the day of the experiment the $\mathrm{CHO}-\mathrm{h} \mathrm{Y}_{4} \mathrm{R}-\mathrm{Gqqis}^{\mathrm{q}}-\mathrm{mtAEQ}$ cells were scraped from
the culture flask rather than trypsination. The studied compounds (at a final concentration of $30 \mu \mathrm{M}$) were incubated with $\mathrm{CHO}-\mathrm{hY} 4_{4} \mathrm{R}_{\mathrm{q}}^{\mathrm{q} i 5} \mathrm{mtAEQ}$ cells for 30 min .

The procedure was as follows: on the same day of the experiment, CHO-hY4R-Gqi5-mtAEQ cells were scraped of the culture flask and resuspended in loading buffer ($120 \mathrm{mM} \mathrm{NaCl}, 5 \mathrm{mM} \mathrm{KCl}, 2 \mathrm{mM} \mathrm{MgCl}$, $1.5 \mathrm{mM} \mathrm{CaCl} 2,25 \mathrm{mM}$ HEPES and 10 glucose, pH 7.4). A density of $1 \cdot 10^{7}$ cells $/ \mathrm{mL}$ was adjusted and coelenterazine h (Biotrend, Köln, Germany; $c=1 \mathrm{mM}$ in methanol) was added (Cfinal $=2 \mu \mathrm{M}$) followed by incubation in the dark for 2 h . The cell suspension was diluted with loading buffer ($120 \mathrm{mM} \mathrm{NaCl}, 5 \mathrm{mM}$ $\mathrm{KCl}, 2 \mathrm{mM} \mathrm{MgCl} 2,1.5 \mathrm{mM} \mathrm{CaCl} 2,25 \mathrm{mM}$ HEPES and 10 glucose, pH 7.4) containing 1% BSA and $0.1 \mathrm{mg} / \mathrm{mL}$ of bacitracin to obtain a cell density of 500,000 cells $/ \mathrm{mL}$ and the cell suspension was kept under gentle stirring in the dark for further 3 h . Then, ligands $(R, R, S)-\mathbf{6 . 6} \mathbf{b},\left(R, R, S^{*}\right)-\mathbf{6 . 7 b}$, niclosamide (6.10) or 6.36 ($\mathrm{C}_{\text {final }}=30 \mu \mathrm{M}$) were added to the cell suspension, followed by incubation under gentle stirring in the dark for 30 min . This suspension ($162 \mu \mathrm{~L}$) was added (with injection unit of GENios Pro plate reader) to increasing concentrations of hPP ($18 \mu \mathrm{~L}$) in a white 96 -well plate (Greiner Bio-One, Frickenhausen, Germany). The luminescence was recorded for 43 s , before adding (with injection unit) $20 \mu \mathrm{~L}$ of a 1% Triton-X-100 solution (the luminescence was recorded for additional 22 s). Dilutions of compounds $(R, R, S)-6.6 \mathrm{~b},\left(R, R, S^{*}\right)-6.7 \mathrm{~b}$, niclosamide (6.10), 6.36 and hPP were prepared in buffer ($120 \mathrm{mM} \mathrm{NaCl}, 5 \mathrm{mM} \mathrm{KCl}, 2 \mathrm{mM} \mathrm{MgCl}, 1.5 \mathrm{mM} \mathrm{CaCl}$, 25 mM HEPES and 10 glucose, pH 7.4) containing 1% BSA and $0.1 \mathrm{mg} / \mathrm{mL}$ of bacitracin.

On every experiment day $(R, R, S)-6.6 \mathbf{b},\left(R, R, S^{\star}\right)-6.7 \mathbf{b}$, niclosamide (6.10) and 6.36 were investigated in a concentration of $30 \mu \mathrm{M}$ without hPP. Additionally, a dose response curve of hPP ($0.5 \% \mathrm{DMSO}$) was investigated in the absence of $(R, R, S)-6.6 \mathrm{~b},\left(R, R, S^{*}\right)-6.7 \mathrm{~b}$, niclosamide (6.10) and 6.36 . The plates were measured using a GENios Pro (Tecan, Grödig, Austria) plate reader.

6.4.4.4. Ethidium bromide/acridine orange staining (live/dead staining)

On the same day of the experiment, $\mathrm{CHO}-\mathrm{hY} 4 \mathrm{R}-\mathrm{G}_{\mathrm{q} i 5}-\mathrm{mtAEQ}$ cells were detached by trypsinization and resuspended in buffer ($120 \mathrm{mM} \mathrm{NaCl}, 5 \mathrm{mM} \mathrm{KCl}, 2 \mathrm{mM} \mathrm{MgCl} 2,1.5 \mathrm{mM} \mathrm{CaCl} 2,25 \mathrm{mM}$ HEPES and 10 glucose, pH 7.4) containing 5% FCS and $0.1 \mathrm{mg} / \mathrm{mL}$ of bacitracin. The cell density was adjusted to 500,000 cells $/ \mathrm{mL}$. The $\mathrm{CHO}-h Y_{4} \mathrm{R}^{2} \mathrm{G}_{\mathrm{q} i 5}-\mathrm{mtAEQ}$ cells were incubated with compounds 2.68, $(R, R, S)-6.6 \mathbf{b},\left(R, R, S^{*}\right)-6.7 \mathbf{b}$ and niclosamide (6.10) (each $30 \mu \mathrm{M}, 2 \mathrm{~mL}$) in the dark for 30 min . A cell suspension, which contained the same amount of DMSO served as control. Then, the cell suspensions were resuspended in PBS $(1 \mathrm{~mL})$ and $200 \mu \mathrm{~L}$ of ethidium bromide/acridine orange solution $(50 \mu \mathrm{~g} / \mathrm{mL}$ ethidium bromide and $50 \mu \mathrm{~g} / \mathrm{mL}$ acridine orange in PBS) was added for staining (the solutions were incubated in the dark for 10 min). The cell viability was determined with an Olympus $\mathrm{BH}-2$ microscope (Olympus, Hamburg, Germany) with a planachromat 10x objective (Olympus; NA 0.25), filter (Fluorescein, Olympus) and a DCM-510 ocular microscope camera (OCS.tec, Neuching, Germany). Following software was used: ScopePhoto 3.0 (ScopeTeck, Hangzhou, Zhejiang Provnce, PR China)

6.4.5. Data analysis

The retention factor k was calculated according to the following equation: $k=\left(t_{\mathrm{R}}-t_{0}\right) / t_{0}\left(t_{\mathrm{R}}=\right.$ retention time; $t_{0}=$ dead time).

Data obtained from aequorin Ca^{2+} assay were processed following literature ${ }^{5}$ procedures: the area under the curve (AUC) of emitted luminescence peak, caused by agonist hPP, and emitted luminescence caused by unloading the remaining aequorin by cell lysis (addition of Triton X solution) were determined using Sigma Plot 12.5 (Systat Software, Chicago, USA). The fractional luminescence was normalized (100% = fractional bioluminescence obtained from $1 \mu \mathrm{M} \mathrm{hPP}, 0 \%=$ basal effect in the absence of hPP, GraphPad Prism 8.0). Relative responses were plotted as \% against log(hPP) and analyzed by fourparameter logistic fits (GraphPad Prism version 8.0) to obtain pEC_{50} values. Efficacies α were calculated from the maximum response relative to $1 \mu \mathrm{M} \mathrm{hPP}(\alpha=1)$.

6.5. References

1. Lundell, I.; Blomqvist, A. G.; Berglund, M. M.; Schober, D. A.; Johnson, D.; Statnick, M. A.; Gadski, R. A.; Gehlert, D. R.; Larhammar, D. Cloning of a human receptor of the NPY receptor family with high affinity for pancreatic polypeptide and peptide YY. J Biol Chem 1995, 270, 29123-29128.
2. Zhang, L.; Bijker, M. S.; Herzog, H. The neuropeptide Y system: Pathophysiological and therapeutic implications in obesity and cancer. Pharmacol. Ther. 2011, 131, 91-113.
3. Yulyaningsih, E.; Zhang, L.; Herzog, H.; Sainsbury, A. NPY receptors as potential targets for anti-obesity drug development. Br. J. Pharmacol. 2011, 163, 1170-1202.
4. Keller, M.; Kaske, M.; Holzammer, T.; Bernhardt, G.; Buschauer, A. Dimeric argininamide-type neuropeptide Y receptor antagonists: Chiral discrimination between Y_{1} and Y_{4} receptors. Bioorg. Med. Chem. 2013, 21, 6303-6322.
5. Ziemek, R.; Schneider, E.; Kraus, A.; Cabrele, C.; Beck-Sickinger, A. G.; Bernhardt, G.; Buschauer, A. Determination of Affinity and Activity of Ligands at the Human Neuropeptide Y Y4 Receptor by Flow Cytometry and Aequorin Luminescence. J. Recept. Signal Transduct. Res. 2007, 27, 217-233.
6. Kang, N.; Wang, X.-L.; Zhao, Y. Discovery of small molecule agonists targeting neuropeptide Y4 receptor using homology modeling and virtual screening. Chem Biol Drug Des 2019, 94, 2064-2072.
7. Sun, C.; Ewing, W. R.; Bolton, S. A.; Gu, Z.; Huang, Y.; Murugesan, N.; Zhu, Y. Substituted adipic acid amides and uses thereof. WO 2012/125622 A1, 2012.
8. Ewing, W. R.; Zhu, Y.; Sun, C.; Huang, Y.; Sivasamban, M.; Karatholuvhu. Diaminocyclohexane compounds and uses thereof. US 2013/0184262 A1, 2013.
9. Ewing, W. R.; Zhu, Y.; Sun, C.; Huang, Y.; Sivasamban, M.; Karatholuvhu; Bolton, S. A.; Pasunoori, L.; Mandal, S. K.; Sher, P. M. Diaminocyclohexane compounds and uses thereof. US 2013/0184284 A1, 2013.
10. Sliwoski, G.; Schubert, M.; Stichel, J.; Weaver, D.; Beck-Sickinger, A. G.; Meiler, J. Discovery of Small-Molecule Modulators of the Human Y4 Receptor. PLOS ONE 2016, 11, e0157146.
11. Schubert, M.; Stichel, J.; Du, Y.; Tough, I. R.; Sliwoski, G.; Meiler, J.; Cox, H. M.; Weaver, C. D.; Beck-Sickinger, A. G. Identification and Characterization of the First Selective Y4 Receptor Positive Allosteric Modulator. J. Med. Chem. 2017, 60, 7605-7612.
12. Balasubramaniam, A.; Mullins, D. E.; Lin, S.; Zhai, W.; Tao, Z.; Dhawan, V. C.; Guzzi, M.; Knittel, J. J.; Slack, K.; Herzog, H.; Parker, E. M. Neuropeptide Y (NPY) Y4 Receptor Selective Agonists Based on NPY(32-36): Development of an Anorectic Y_{4} Receptor Selective Agonist with Picomolar Affinity. J. Med. Chem. 2006, 49, 2661-2665.
13. Sainsbury, A.; Shi, Y.-C.; Zhang, L.; Aljanova, A.; Lin, Z.; Nguyen, A. D.; Herzog, H.; Lin, S. Y4 receptors and pancreatic polypeptide regulate food intake via hypothalamic orexin and brainderived neurotropic factor dependent pathways. Neuropeptides 2010, 44, 261-268.
14. Kaske, M. In Search for Potent and Selective NPY Y_{4} Receptor Ligands: Acylguanidines, Argininamides and Peptide Analogs. PhD Thesis, University of Regensburg, 2012.
15. Wootten, D.; Christopoulos, A.; Sexton, P. M. Emerging paradigms in GPCR allostery: implications for drug discovery. Nat. Rev. Drug Discov. 2013, 12, 630-644.
Christopoulos, A. Advances in G Protein-Coupled Receptor Allostery: From Function to Structure. Mol. Pharmacol. 2014, 86, 463.
16. Xie, X.; Cai, G.; Ma, D. Cul/-Proline-Catalyzed Coupling Reactions of Aryl Halides with Activated Methylene Compounds. Org. Lett. 2005, 7, 4693-4695.
17. Parikh, J. R.; Doering, W. v. E. Sulfur trioxide in the oxidation of alcohols by dimethyl sulfoxide. J. Am. Chem. Soc. 1967, 89, 5505-5507.
van Leusen, A. M.; Hoogenboom, B. E.; Siderius, H. A novel and efficient synthesis of oxazoles from tosylmethylisocyanide and carbonyl compounds. Tetrahedron Lett. 1972, 13, 2369-2372.
Kuhn, K. K.; Ertl, T.; Dukorn, S.; Keller, M.; Bernhardt, G.; Reiser, O.; Buschauer, A. High Affinity Agonists of the Neuropeptide Y (NPY) Y 4 Receptor Derived from the C-Terminal Pentapeptide of Human Pancreatic Polypeptide (hPP): Synthesis, Stereochemical Discrimination, and Radiolabeling. J. Med. Chem. 2016, 59, 6045-6058.
18. Dukorn, S.; Littmann, T.; Keller, M.; Kuhn, K.; Cabrele, C.; Baumeister, P.; Bernhardt, G.; Buschauer, A. Fluorescence- and Radiolabeling of [Lys $\left.{ }^{4}, \mathrm{Nle}^{17,30}\right] \mathrm{hPP}$ Yields Molecular Tools for the NPY Y4 Receptor. Bioconjug. Chem. 2017, 28, 1291-1304.
Huang, W.; Manglik, A.; Venkatakrishnan, A. J.; Laeremans, T.; Feinberg, E. N.; Sanborn, A. L.; Kato, H. E.; Livingston, K. E.; Thorsen, T. S.; Kling, R. C.; Granier, S.; Gmeiner, P.; Husbands, S. M.; Traynor, J. R.; Weis, W. I.; Steyaert, J.; Dror, R. O.; Kobilka, B. K. Structural insights into μ-opioid receptor activation. Nature 2015, 524, 315-321.
Liu, W.; Chun, E.; Thompson, A. A.; Chubukov, P.; Xu, F.; Katritch, V.; Han, G. W.; Roth, C. B.; Heitman, L. H.; IJzerman, A. P.; Cherezov, V.; Stevens, R. C. Structural Basis for Allosteric Regulation of GPCRs by Sodium lons. Science 2012, 337, 232-236.
Miller-Gallacher, J. L.; Nehmé, R.; Warne, T.; Edwards, P. C.; Schertler, G. F. X.; Leslie, A. G. W.; Tate, C. G. The $2.1 \AA$ Resolution Structure of Cyanopindolol-Bound $\beta 1$-Adrenoceptor Identifies an Intramembrane Na^{+}Ion that Stabilises the Ligand-Free Receptor. PLOS ONE 2014, 9, e92727.
19. Li, Y.; Li, P.-K.; Roberts, M. J.; Arend, R. C.; Samant, R. S.; Buchsbaum, D. J. Multi-targeted therapy of cancer by niclosamide: A new application for an old drug. Cancer Lett. 2014, 349, 814.
20. Deitrick, J.; Pruitt, W. M. Chapter Two - Wnt/ß Catenin-Mediated Signaling Commonly Altered in Colorectal Cancer. In Progress in Molecular Biology and Translational Science, Pruitt, K., Ed. Academic Press: 2016; Vol. 144, pp 49-68.
21. Liu, K.; Liu, P. C.; Liu, R.; Wu, X. Dual AO/EB staining to detect apoptosis in osteosarcoma cells compared with flow cytometry. Med Sci Monit Basic Res 2015, 21, 15-20.
22. Yang, Z.; Han, S.; Keller, M.; Kaiser, A.; Bender, B. J.; Bosse, M.; Burkert, K.; Kogler, L. M.; Wifling, D.; Bernhardt, G.; Plank, N.; Littmann, T.; Schmidt, P.; Yi, C.; Li, B.; Ye, S.; Zhang, R.; Xu, B.; Larhammar, D.; Stevens, R. C.; Huster, D.; Meiler, J.; Zhao, Q.; Beck-Sickinger, A. G.; Buschauer, A.; Wu, B. Structural basis of ligand binding modes at the neuropeptide $Y Y_{1}$ receptor. Nature 2018, 556, 520-524.
23. Laurent, S.; Botteman, F.; Elst, L. V.; Muller, R. N. Relaxivity and Transmetallation Stability of New Benzyl-Substituted Derivatives of Gadolinium DTPA Complexes. Helv. Chim. Acta 2004, 87, 1077-1089.
24. Keller, M.; Pop, N.; Hutzler, C.; Beck-Sickinger, A. G.; Bernhardt, G.; Buschauer, A. Guanidine-Acylguanidine Bioisosteric Approach in the Design of Radioligands: Synthesis of a Tritium-Labeled N^{G}-Propionylargininamide ($\left[{ }^{3} \mathrm{H}\right]-$ UR-MK114) as a Highly Potent and Selective Neuropeptide Y Y ${ }_{1}$ Receptor Antagonist. J. Med. Chem. 2008, 51, 8168-8172.
25. Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities. J. Org. Chem. 1997, 62, 7512-7515.
Basavaiah, D.; Krishna, P. R.; Bharathi, T. K. A convenient enantioselective synthesis of trans-2-aryloxycyclohexan-1-ols using pig liver acetone powder (PLAP) as biocatalyst. Tetrahedron: Asymmetry 1995, 6, 439-454.
26. Naidu, A. B.; Ganapathy, D.; Sekar, G. Copper(I)-Catalyzed Intramolecular Caryl-O BondForming Cyclization for the Synthesis of 1,4-Benzodioxines and Its Application in the Total Synthesis of Sweetening Isovanillins. Synthesis 2010, 2010, 3509-3519.
27. Bied, C.; Moreau, J. J. E.; Wong Chi Man, M. Chiral amino-urea derivatives of (1R,2R)-1,2diaminocyclohexane as ligands in the ruthenium catalysed asymmetric reduction of aromatic ketones by hydride transfer. Tetrahedron: Asymmetry 2001, 12, 329-336.
28. Minarini, A.; Marucci, G.; Bellucci, C.; Giorgi, G.; Tumiatti, V.; Bolognesi, M. L.; Matera, R.; Rosini, M.; Melchiorre, C. Design, synthesis, and biological evaluation of pirenzepine analogs bearing a 1,2-cyclohexanediamine and perhydroquinoxaline units in exchange for the piperazine ring as antimuscarinics. Bioorg. Med. Chem. 2008, 16, 7311-7320.
Specklin, S.; Decuypere, E.; Plougastel, L.; Aliani, S.; Taran, F. One-Pot Synthesis of 1,4Disubstituted Pyrazoles from Arylglycines via Copper-Catalyzed Sydnone-Alkyne Cycloaddition Reaction. J. Org. Chem. 2014, 79, 7772-7777.
29. Downham, R.; Sibley, G. E. M.; Payne, L. J.; Edwards, P.; davies, G. M. 2-[(2-Substituted)-Indolizin-3-yl]-2- oxo-acetamide derivatives as antifungal agents. US 8,604,029 B2, 2013.
30. Sedlák, M.; Hejtmánková, L.; Kašparová, P.; Kaválek, J. Kinetics and mechanism of formation and decomposition of substituted 1-phenylpyrrolidin-2-ones in basic medium. J. Phys. Org. Chem. 2002, 15, 165-173.
31. Taylor, E. C.; Skotnicki, J. S. A Convenient Synthesis of 1-Aryl-4-piperidones. Synthesis 1981, 1981, 606-608.
32. Samuels, H. H.; Abagyan, R.; Schapira, M.; Totrov, M.; Raaka, B. M.; Wilson, S. R.; Fan, L.; Zhou, Z. Hydrazide compounds as thyroid hormone receptor modulators and uses thereof. US 8,394,811 B2, 2013.
33. Sheldrick, G. SHELXT - Integrated space-group and crystal-structure determination. Acta Cryst. 2015, 71, 3-8.
34. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339-341.
35. Sheldrick, G. Crystal structure refinement with SHELXL. Acta Crystallogr. C. 2015, 71, 3-8.

Chapter 7

Summary

Note: Prior to the submission of the thesis parts of this chapter were published in cooperation with partners (schemes, tables, figures and text may differ from published version): Buschmann, J.; Seiler, T.; Bernhardt, G.; Keller, M.; Wifling, D. Argininamide-type neuropeptide $Y Y_{1}$ receptor antagonists: the nature of N^{ω}-carbamoyl substituents determines $Y_{1} R$ binding mode and affinity. RSC Med. Chem. 2020, 11, 274-282 DOI: 10.1039/C9MD00538B - adopted by permission of The Royal Society of Chemistry

Neuropeptide Y (NPY), peptide YY (PYY) and pancreatic polypeptide (PP) share similarities, such as a sequence comprising 36 amino acids and an amidated C-terminus, which activate NPY receptors. These receptors belong to class A (rhodopsin-like receptors) of G-protein coupled receptors (GPCRs), ${ }^{1}$ which are distributed in the central nervous system (CNS) and as well in the periphery. ${ }^{2}$ In humans four $\left(Y_{1} R, Y_{2} R, Y_{4} R\right.$ and $\left.Y_{5} R\right)$ different subtypes are functional and their stimulation leads to several biological effects, which are involved in several dysfunctions such as dislocation of energy homeostasis, seizure, neurodegeneration and psychotic disorders. ${ }^{2-4}$ Furthermore, the overexpression of NPY receptors in different tumuors (e.g. overexpression of $Y_{1} R$ in breast cancer) make them a promising target for cancer imaging and therapy. ${ }^{5}$

The (R)-argininamide-type $\mathrm{Y}_{1} \mathrm{R}$ antagonist UR-MK299 (2.2) was recently co-crystallized with the $h \mathrm{Y}_{1} \mathrm{R}$ and revealed that the N^{ω}-carbamoyl substituent (van der Waals volume: $139 \AA^{3}$) is deeply buried in the receptor, occupying a hydrophobic pocket that is not completely filled. ${ }^{6,7}$ (R)-Argininamides 2.53-2.76 and 2.78, derived from 2.2 and 2.3 were synthesized and pharmacologically characterized (e.g. radioligand competition binding assay, Fura-2 Ca^{2+} assay). The propionyl group in 2.2 was replaced by several acyl residues (cyclic, acyclic and aromatic). In addition the ethylene spacer in 2.2 was replaced by a propylene spacer bearing acetyl or propionyl moieties. A decrease in $Y_{1} R$ affinity was observed with increasing size of the carbamoyl residue (minimal $p K_{\mathrm{i}}=5.67$). When the van der Waals volume ($212 \AA^{3}$) of the side chain reached a critical size, the binding mode of argininamide-type ligands inverted and the carbamoyl side chain was located at the surface of the receptor. These findings were supported by induced-fit docking and molecular dynamics simulations (cf. Chapter 2).

Additionally, selected (R)-argininamides 2.1, 2.2, 2.56-2.59, 2.61 and 2.65 were investigated in a β-arrestin2 recruitment assay. Compounds 2.58, 2.68 and 2.72 were supposed to share a similar binding mode to 2.2, however the increasing size of the carbamoyl residue of these ligands did not result in $h Y_{4} R$ and $h Y_{5} R$ binding. Additionally, potential irreversibly binding compounds $\mathbf{2 . 6 0}$ and $\mathbf{2 . 6 3}$ identified by model chemical reactivity experiments with 2-mercaptoethanol were investigated in saturation binding experiments with $\left[{ }^{3} \mathrm{H}\right] 2.2$ as radioligand. However, covalent binding of $\mathbf{2 . 6 0}$ and $\mathbf{2 . 6 3}$ to the $\mathrm{h} \mathrm{Y}_{1} \mathrm{R}$ could neither be confirmed nor excluded (cf. Chapter 3).

The (S)-argininamide BIIE-0246 (4.1) was the first selective $h Y_{2} R$ antagonist known from the literature ${ }^{8}$ and acylation of the guanidine group of 4.1 led to $\left[{ }^{3} \mathrm{H}\right] \mathrm{UR}$-PLN196 $\left(\left[{ }^{3} \mathrm{H}\right] 4.2\right),{ }^{9}$ which was the first nonpeptide $h Y_{2} R$ radioligand synthesized in our group. In a further project, the replacement of the benzoazepinone moiety of 4.1 by an amino functionalized benzhydryl group led to compounds 4.50 and 4.51 with binding affinities in the nanomolar range. Derived from 4.50, the red-emitting fluorescent ligand UR-jb264 (4.58) was synthesized. 4.58 was successfully used in a BRET based binding assay as an alternative to radioligand binding with $\left[{ }^{3} \mathrm{H}\right]$ propionyl-pNPY as a tracer for the determination of binding constants of $\mathrm{Y}_{2} \mathrm{R}$ ligands. Additionally, 4.58 was applied in confocal microscopy (cf. Chapter 4).

Compound 4.23 derived from (S)-argininamide 4.5 is the cold form of a potential radioligand. To explore the feasibility of future tritium labelling of 4.23 by methylation (e.g. with methyl iodide or methyl nosylate) in the last synthetic step, the phenolic precursor 5.20 was synthesized. Furthermore, the amine precursor 4.50 was propionylated (5.31), 2-fluoroacetylated (5.32), mono- (5.29) and tri- (5.30) alkylated to obtain additional cold forms of potential radioligands (cf. Chapter 5).

Ewing et al. ${ }^{10,11}$ reported a series of (R, R)-diaminocyclohexanes, which were classified as agonists antagonists or modulators. These authors evaluated just a subset of compounds at the $\mathrm{h} \mathrm{Y}_{4} \mathrm{R}$ in a cAMP accumulation assay. In a third project, selected compounds were synthesized and investigated in competition binding experiments at the $\mathrm{h} \mathrm{Y}_{4} \mathrm{R}$, established in our group. Unfortunately, the compounds showed no affinity in competition binding experiments. Additionally, selected compounds were investigated in an aequorin assay and showed neither potency nor modulatory effects on the action of hPP. Niclosamide (6.10) was described as the first allosteric modulator at the $\mathrm{h} \mathrm{Y}_{4},{ }^{12}$ but the reported results could not be reproduced in the aequorin assay using live $\mathrm{CHO}-\mathrm{hY}_{4}-\mathrm{G}_{\mathrm{qi}}-\mathrm{mtAEQ}$ cells. Live/dead staining of the cells revealed that niclosamide (6.10) proved to be cytotoxic at the used concentrations, compromising the results of functional assays with live cells (cf. Chapter 6).

First and foremost, this thesis contributes to a deeper insight on the binding mode of N^{ω}-carbamoylated (R)-argininamide at $Y_{1} R$, which may help to design and prepare further novel molecular tools such as fluorescence labelled or PET ligands. Furthermore, the synthesis of amine precursor 4.50 enables the synthesis of fluorescent ligand 4.58 , which could be used for the determination of binding constants of non-labelled compounds.

References

1. Joost, P.; Methner, A. Phylogenetic analysis of 277 human G-protein-coupled receptors as a tool for the prediction of orphan receptor ligands. Genome Biol 2002, 3, research0063.1.
2. Reichmann, F.; Holzer, P. Neuropeptide Y: A stressful review. Neuropeptides 2016, 55, 99-109.
3. Michel, M. C.; Beck-Sickinger, A.; Cox, H.; Doods, H. N.; Herzog, H.; Larhammar, D.; Quirion, R.; Schwartz, T.; Westfall, T. XVI. International Union of Pharmacology recommendations for the nomenclature of neuropeptide Y , peptide $\mathrm{Y} Y$, and pancreatic polypeptide receptors. Pharmacol. Rev. 1998, 50, 143-50.
4. Zhang, L.; Bijker, M. S.; Herzog, H. The neuropeptide Y system: Pathophysiological and therapeutic implications in obesity and cancer. Pharmacol. Ther. 2011, 131, 91-113.
5. Li, J.; Tian, Y.; Wu, A. Neuropeptide Y receptors: a promising target for cancer imaging and therapy. Regener. Biomater. 2015, 2, 215-219.
6. Yang, Z.; Han, S.; Keller, M.; Kaiser, A.; Bender, B. J.; Bosse, M.; Burkert, K.; Kogler, L. M.; Wifling, D.; Bernhardt, G.; Plank, N.; Littmann, T.; Schmidt, P.; Yi, C.; Li, B.; Ye, S.; Zhang, R.; Xu, B.; Larhammar, D.; Stevens, R. C.; Huster, D.; Meiler, J.; Zhao, Q.; Beck-Sickinger, A. G.; Buschauer, A.; Wu, B. Structural basis of ligand binding modes at the neuropeptide $Y Y_{1}$ receptor. Nature 2018, 556, 520-524.
7. Keller, M.; Weiss, S.; Hutzler, C.; Kuhn, K. K.; Mollereau, C.; Dukorn, S.; Schindler, L.; Bernhardt, G.; König, B.; Buschauer, A. N ${ }^{\omega}$-Carbamoylation of the Argininamide Moiety: An Avenue to Insurmountable NPY Y_{1} Receptor Antagonists and a Radiolabeled Selective HighAffinity Molecular Tool ([3H]UR-MK299) with Extended Residence Time. J. Med. Chem. 2015, 58, 8834-8849.
8. Doods, H.; Gaida, W.; Wieland, H. A.; Dollinger, H.; Schnorrenberg, G.; Esser, F.; Engel, W.; Eberlein, W.; Rudolf, K. BIIE0246: A selective and high affinity neuropeptide $\mathrm{Y} \mathrm{Y}_{2}$ receptor antagonist. Eur. J. Pharm. 1999, 384, R3-R5.
9. Pluym, N.; Baumeister, P.; Keller, M.; Bernhardt, G.; Buschauer, A. [3H]UR-PLN196: A Selective Nonpeptide Radioligand and Insurmountable Antagonist for the Neuropeptide Y Y Receptor. ChemMedChem 2013, 8, 587-593.
10. Ewing, W. R.; Zhu, Y.; Sun, C.; Huang, Y.; Sivasamban, M.; Karatholuvhu. Diaminocyclohexane compounds and uses thereof. US 2013/0184262 A1, 2013.
11. Ewing, W. R.; Zhu, Y.; Sun, C.; Huang, Y.; Sivasamban, M.; Karatholuvhu; Bolton, S. A.; Pasunoori, L.; Mandal, S. K.; Sher, P. M. Diaminocyclohexane compounds and uses thereof. US 2013/0184284 A1, 2013.
12. Sliwoski, G.; Schubert, M.; Stichel, J.; Weaver, D.; Beck-Sickinger, A. G.; Meiler, J. Discovery of Small-Molecule Modulators of the Human Y4 Receptor. PLOS ONE 2016, 11, e0157146.

Chapter 8

Appendix

[^6]
8.1. Chapter 2

8.1.1. Supplementary figure 8.1

Figure 8.1. Time-course illustrations of the $2-\mu \mathrm{s}$ MD simulations of the $Y_{1} R$ (inactive state, PDB ID: 5ZBQ ${ }^{1}$) bound to 2.1 (A), 2.2 (B) or 2.3 (C) showing superimposed snap shots collected every 100 ns.

8.1.2. Supplementary table 8.1

Table 8.1. Slope factors (Hill slope) of compounds 2.53-2.76 and 2.78 determined by equilibrium competition binding with $\left[{ }^{3} \mathrm{H}\right] \mathbf{2 . 2}$ and in the Fura-2 Ca^{2+} assay, respectively.

compound	slope \pm SEM $^{\text {a }}$ (competition binding)	$\begin{aligned} & \text { slope } \pm \text { SEM }^{b} \\ & \left(\text { Fura- } 2 \mathrm{Ca}^{2+}\right. \text {) } \end{aligned}$	compound	slope \pm SEM $^{\text {a }}$ (competition binding)	$\begin{aligned} & \text { slope } \pm \mathrm{SEM}^{\mathrm{b}} \\ & \left(\text { Fura- } 2 \mathrm{Ca}^{2+}\right. \text {) } \end{aligned}$
2.53	-1.05 ± 0.07	n.d.	2.66	-1.17 ± 0.08	-1.17 ± 0.11
2.54	-1.06 ± 0.03	n.d.	2.67	-0.97 ± 0.05	-1.30 ± 0.21
2.55	-0.97 ± 0.10	n.d.	2.68	-1.02 ± 0.09	-0.96 ± 0.07
2.56	-1.27 ± 0.10	$-2.36 \pm 0.09^{* *}$	2.69	-1.00 ± 0.07	-1.07 ± 0.24
2.57	-1.25 ± 0.06 *	$-1.92 \pm 0.09^{* *}$	2.70	-1.03 ± 0.14	-1.13 ± 0.30
2.58	-1.08 ± 0.08	$-2.17 \pm 0.15^{* *}$	2.71	-1.00 ± 0.04	-1.02 ± 0.05
2.59	$-1.17 \pm 0.03^{*}$	$-1.74 \pm 0.22^{*}$	2.72	-0.98 ± 0.07	-1.19 ± 0.12
2.60	-1.03 ± 0.09	-1.79 ± 0.29	2.73	-0.91 ± 0.16	-0.99 ± 0.07
2.61	-1.02 ± 0.01	-0.79 ± 0.07	2.74	$-0.90 \pm 0.03^{*}$	$-0.83 \pm 0.01^{* *}$
2.62	-1.01 ± 0.08	-1.39 ± 0.21	2.75	-0.89 ± 0.06	-0.86 ± 0.12
2.63	-1.10 ± 0.18	-1.27 ± 0.16	2.76	-0.82 ± 0.08	-1.00 ± 0.11
2.64	-0.89 ± 0.05	$-0.69 \pm 0.07{ }^{*}$	2.78	$-1.17 \pm 0.03^{*}$	n.d.
2.65	-0.81 ± 0.07	-0.83 ± 0.04			

aslope factors of the four-parameter logistic fit (GraphPad Prism 8) obtained from analysis of radioligand competition binding data. Mean values \pm SEM from at least three independent experiments, each performed in triplicate. ${ }^{\text {b }}$ Slope factors of the fourparameter logistic fit (GraphPad Prism 8) obtained from analysis of the Fura-2 Ca^{2+} data. Mean values \pm SEM from at least three independent experiments performed in singlet. *Slope significantly different from unity, $P \leq 0.05$ (one sample, two-tailed t-test). ${ }^{* *}$ Slope significantly different from unity, $P \leq 0.01$ (one sample, two-tailed t-test). n.d.: not determined.
8.1.3. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectra of compounds 2.53-2.76

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound 2.54 (DMSO- \boldsymbol{d}_{6})

${ }^{13} \mathrm{C}$-NMR (150 MHz) of compound 2.54 (DMSO- d_{6})

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound $2.55\left(\mathrm{DMSO}-d_{6}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound 2.59 (DMSO- d_{6})

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound $2.60\left(\mathrm{DMSO}-d_{6}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound $2.62\left(\mathrm{DMSO}-d_{6}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound 2.64 (DMSO-d d_{6})

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound 2.65 (DMSO- d_{6})

${ }^{13} \mathrm{C}$-NMR (150 MHz) of compound 2.65 (DMSO- \boldsymbol{d}_{6})

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound 2.66 (DMSO- d_{6})

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound 2.69 (DMSO- d_{6})

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound $2.70\left(\mathrm{DMSO}-d_{6}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound 2.72 (DMSO- d_{6})

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound 2.74 (DMSO- d_{6})

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound 2.75 (DMSO- d_{6})

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound 2.76 (DMSO- d_{6})

8.1.4. RP-HPLC purity chromatograms (220 nm) of compounds 2.53-2.76 and 2.78

RP-HPLC (220 nm) chromatogram of 2.53

RP-HPLC (220 nm) chromatogram of 2.55

RP-HPLC (220 nm) chromatogram of 2.57

RP-HPLC (220 nm) chromatogram of 2.54

RP-HPLC (220 nm) chromatogram of 2.56

RP-HPLC (220 nm) chromatogram of 2.58

RP-HPLC (220 nm) chromatogram of 2.59

RP-HPLC (220 nm) chromatogram of 2.61

RP-HPLC (220 nm) chromatogram of 2.63

RP-HPLC (220 nm) chromatogram of 2.60

RP-HPLC (220 nm) chromatogram of 2.62

RP-HPLC (220 nm) chromatogram of 2.64

RP-HPLC (220 nm) chromatogram of 2.65

RP-HPLC (220 nm) chromatogram of 2.67

RP-HPLC (220 nm) chromatogram of 2.69

RP-HPLC (220 nm) chromatogram of 2.66

RP-HPLC (220 nm) chromatogram of 2.68

RP-HPLC (220 nm) chromatogram of 2.70

RP-HPLC ($\mathbf{2 2 0} \mathbf{n m}$) chromatogram of 2.71

RP-HPLC ($\mathbf{(2 2 0 ~ n m}$) chromatogram of 2.73

RP-HPLC ($\mathbf{2 2 0} \mathrm{nm}$) chromatogram of 2.75

RP-HPLC ($\mathbf{2 2 0} \mathbf{n m}$) chromatogram of 2.72

RP-HPLC ($\mathbf{2 2 0} \mathbf{~ n m}$) chromatogram of 2.74

RP-HPLC (220 nm) chromatogram of 2.76

RP-HPLC (220 nm) chromatogram of 2.78

RP-HPLC (480 nm) chromatogram of 2.78
8.1.5. Investigation of the chemical stability of compounds 2.56, 2.58-2.61, 2.63 and 2.68

8.1.5.1. Supplementary figure 8.2

Figure 8.2. (A-D) Chromatograms of the reversed-phase HPLC analysis of (A) 2.56, (B) 2.58, (C) 2.59 and (D) 2.60 after incubation in a 10 mM HEPES buffer (pH 7.0) at rt for up to 24 h . 2.56, 2.58, 2.59 and 2.60 proved to be stable.

8.1.5.2. Supplementary Figure 8.3

Figure 8.3. (A-C) Chromatograms of the reversed-phase HPLC analysis of (A) 2.61, (B) $\mathbf{2 . 6 3}$ and (C) $\mathbf{2 . 6 8}$ after incubation in a 10 mM HEPES buffer (pH 7.0) at rt for up to 24 h. 2.61, 2.63 and 2.68 proved to be stable.

8.2. Chapter 4

8.2.1. Supplementary figure 8.4

Figure 8.4. (A-E) Additional binding characteristics of 4.58 in BRET based binding assay in intact HEK293T Y_{2} (intraNLucD197) cells. Association for (A, C) 90 min and (E) 30 min of 4.58 (\% specifically bound 4.58) and dissociation for (B) 240 min ($B_{\text {Plateau }}=13.9 \%$) and (D) 220 min ($B_{\text {Plateau }}=27.4 \%$) as function of time (min) for determination of $k_{\text {obs }}$ and $k_{\text {off }}$ (nonlinear regression, one phase association or dissociation; Graphpad Prism 8). Data represents SEM of a single experiment performed in triplicate.
8.2.2. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of compounds 4.1, 4.5, 4.23, 4.24, 4.27, 4.32, 4.50, 4.51 and 4.75

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound 4.1 (DMSO- d_{6})

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound $4.5\left(\mathrm{DMSO}-d_{6}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound 4.23 (DMSO- \boldsymbol{d}_{6})

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound $4.23\left(\mathrm{MeOH}-\mathrm{d}_{4}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound 4.24 (DMSO- d_{6})

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound $4.24\left(\mathrm{MeOH}-d_{4}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound 4.27 (DMSO- d_{6})

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound $4.27\left(\mathrm{MeOH}-d_{4}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound 4.32 (DMSO-d d_{6})

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound 4.50 (DMSO- d_{6})

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound $4.50\left(\mathrm{MeOH}-d_{4}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound 4.51 (DMSO- d_{6})

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound $\mathbf{4 . 5 1 (\mathrm { MeOH } - d _ { 4 })}$

8.2.3. RP-HPLC purity chromatograms (220 nm) of compounds 4.1, 4.5, 4.23, 4.24, 4.27, 4.32, 4.50, 4.51, 4.58, 4.59, 4.61, 4.62 and 4.75

RP-HPLC (220 nm) chromatogram of 4.1

RP-HPLC (220 nm) chromatogram of 4.23

RP-HPLC (220 nm) chromatogram of 4.27

RP-HPLC (220 nm) chromatogram of 4.5

RP-HPLC (220 nm) chromatogram of 4.24

RP-HPLC ($\mathbf{2 2 0} \mathbf{n m}$) chromatogram of 4.32

RP-HPLC (220 nm) chromatogram of 4.50

RP-HPLC (220 nm) chromatogram of 4.58

RP-HPLC (220 nm) chromatogram of 4.61

RP-HPLC (220 nm) chromatogram of 4.51

RP-HPLC (220 nm) chromatogram of 4.59

RP-HPLC (220 nm) chromatogram of 4.62

RP-HPLC (220 nm) chromatogram of 4.75

8.3. Chapter 5

8.3.1. Investigation of the chemical stability of compounds 5.9 and 5.30

8.3.1.1. Supplementary figure 8.5

Figure 8.5. (A-B) Chromatograms of the reversed-phase HPLC analysis of (A) 5.9 and (B) 5.30 after incubation in a 25 mM HEPES buffer (pH 7.0) at rt for up to 24 h. $\mathbf{5 . 9}$ and $\mathbf{5 . 3 0}$ proved to be stable.
8.3.1. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectra of compounds $5.9,5.12,5.20$ and 5.29-5.32

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound 5.9 (DMSO- d_{6})

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound 5.12 (DMSO- d_{6})

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound $5.12\left(\mathrm{MeOH}-\mathrm{d}_{4}\right)$

MeOH

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound $5.20\left(\mathrm{DMSO}-d_{6}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound $5.20\left(\mathrm{MeOH}-d_{4}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound $5.29\left(\mathrm{DMSO}^{-} d_{6}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound $5.29\left(\mathrm{MeOH}-d_{4}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}(150 \mathrm{MHz})$ of compound $5.29\left(\mathrm{MeOH}-\mathrm{d}_{4}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound 5.30 (DMSO- d_{6})

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound $5.30\left(\mathrm{MeOH}-d_{4}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound 5.31 (DMSO- \boldsymbol{d}_{6})

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound 5.31 ($\mathrm{MeOH}-\mathrm{d}_{4}$)

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound $5.32\left(\mathrm{DMSO}^{-} \mathrm{d}_{6}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound $5.32\left(\mathrm{MeOH}-d_{4}\right)$

8.3.3. RP-HPLC purity chromatograms of (220 nm) compounds $5.9,5.12,5.20$ and $5.29-5.32$

RP-HPLC (220 nm) chromatogram of 5.9

RP-HPLC (220 nm) chromatogram of 5.20

RP-HPLC (220 nm) chromatogram of 5.30

RP-HPLC (220 nm) chromatogram of 5.12

RP-HPLC (220 nm) chromatogram of 5.29

RP-HPLC (220 nm) chromatogram of 5.31

RP-HPLC (220 nm) chromatogram of 5.32

8.4. Chapter 6

8.4.1. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of compounds $\left(R, R, S^{\star}\right)-6.6 \mathrm{a},(R, R, S)-6.6 \mathrm{~b},\left(R, R, S^{\star}\right)-6.7 \mathrm{a}$, $\left(R, R, S^{\star}\right)-6.6 \mathrm{~b}, 6.7,6.9,6.12,6.13,\left(S^{\star}\right)-6.18 \mathrm{a},\left(S^{\star}\right)-6.18 \mathrm{~b}, 6.34-6.44,6.47$ and 6.48

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound ($\mathrm{R}, \mathrm{R}, \mathrm{S}^{*}$)-6.6a (DMSO- d_{σ})

${ }^{13} \mathrm{C}-\mathrm{NMR}(150 \mathrm{MHz})$ of compound $\left(R, R, S^{\star}\right)$-6.6a (DMSO- d_{6})

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound (R, R, S)-6.6b (DMSO- d_{6})

${ }^{13} \mathrm{C}$-NMR (150 MHz) of compound (R, R, S) -6.6b (DMSO- d_{6})

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound (R, R, S^{*})-6.7a (DMSO- d_{6})

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound $\left(R, R, S^{\star}\right)-6.7 \mathrm{~b}\left(\mathrm{DMSO}-d_{6}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}(150 \mathrm{MHz})$ of compound (R, R, S^{*})-6.7b (DMSO- d_{6})

${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})$ of compound 6.9 (DMSO- d_{6})

${ }^{13} \mathrm{C}$-NMR (101 MHz) of compound 6.9 (DMSO- d_{6})

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound 6.12 (DMSO- d_{6})

${ }^{13} \mathrm{C}$-NMR (150 MHz) of compound 6.12 (DMSO- d_{6})

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound 6.13 (DMSO- d_{6})

${ }^{13} \mathrm{C}-\mathrm{NMR}(150 \mathrm{MHz})$ of compound 6.13 (DMSO- d_{6})

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound $\left(\mathrm{S}^{*}\right)$-6.18a (DMSO- d_{6})

${ }^{13} \mathrm{C}-\mathrm{NMR}(150 \mathrm{MHz})$ of compound $\left(S^{\star}\right)-6.18 \mathrm{a}\left(\mathrm{DMSO}-d_{6}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound $\left(S^{\star}\right)$-6.18b (DMSO- d_{6})

${ }^{13} \mathrm{C}$-NMR (150 MHz) of compound $\left(S^{*}\right)-6.18 \mathrm{~b}$ (DMSO- d_{6})

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound 6.35 (DMSO- d_{6})

${ }^{13} \mathrm{C}$-NMR (150 MHz) of compound 6.35 (DMSO- d_{6})

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound 6.37 (DMSO- d_{6})

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound 6.38 (DMSO- d_{6})

${ }^{13} \mathrm{C}$-NMR (150 MHz) of compound 6.38 (DMSO- d_{6})

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound 6.39 (DMSO- d_{6})

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound 6.40 (DMSO- d_{6})

${ }^{13} \mathrm{C}$-NMR (150 MHz) of compound 6.40 (DMSO- d_{6})

6.41

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound 6.41 (DMSO- d_{6})

${ }^{13} \mathrm{C}-\mathrm{NMR}(150 \mathrm{MHz})$ of compound 6.41 (DMSO- d_{6})

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound 6.42 (DMSO- d_{6})

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound 6.43 (DMSO- d_{6})

${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of compound $6.44\left(\mathrm{DMSO}-d_{6}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}(150 \mathrm{MHz})$ of compound 6.44 (DMSO- d_{6})

8.4.2. RP-HPLC purity chromatograms (220 nm) of compounds (R, R, S^{*})-6.6a, $(R, R, S)-6.6 \mathrm{~b}$, $\left(R, R, S^{\star}\right)-6.7 \mathrm{a},\left(R, R, S^{\star}\right)-6.6 \mathrm{~b}, 6.7,6.9,6.12,6.13,\left(S^{\star}\right)-6.18 \mathrm{a},\left(S^{\star}\right)-6.18 \mathrm{~b}, 6.34-6.44,6.47$ and 6.48

RP-HPLC (220 nm) chromatogram of (R, R, S^{*})-6.6a

RP-HPLC (220 nm) chromatogram of (R, R, S^{\star})-6.7a

RP-HPLC (220 nm) chromatogram of 6.9

RP-HPLC (220 nm) chromatogram of (R,R,S)-6.6b

RP-HPLC (220 nm) chromatogram of (R,R,S)-6.7b

RP-HPLC (220 nm) chromatogram of 6.12

RP-HPLC (220 nm) chromatogram of 6.13

RP-HPLC (220 nm) chromatogram of (\mathbf{S}^{\star})-6.18b

RP-HPLC (220 nm) chromatogram of 6.35

RP-HPLC (220 nm) chromatogram of (S^{\star})-6.18a

RP-HPLC (220 nm) chromatogram of 6.34

RP-HPLC (220 nm) chromatogram of 6.36

RP-HPLC (220 nm) chromatogram of 6.37

RP-HPLC (220 nm) chromatogram of 6.39

RP-HPLC (220 nm) chromatogram of 6.41

RP-HPLC (220 nm) chromatogram of 6.38

RP-HPLC (220 nm) chromatogram of 6.40

RP-HPLC (220 nm) chromatogram of 6.42

RP-HPLC ($\mathbf{2 2 0} \mathrm{nm}$) chromatogram of 6.43

RP-HPLC (220 nm) chromatogram of 6.47

RP-HPLC ($\mathbf{2 2 0} \mathbf{~ n m}$) chromatogram of 6.44

RP-HPLC (220 nm) chromatogram of 6.48

8.4.3. Crystal data of compounds $(R, R, S)-6.6 \mathrm{a}$ and $(R)-17$

8.4.3.1. Crystal data of (R, R, S)-6.6a

$\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{CIN}_{5} \mathrm{O}_{3}, \quad M_{r}=473.99$, monoclinic, $\mathrm{P} 2{ }_{1}$ (No. 4), $\mathrm{a}=5.5823(2) \AA, \quad \mathrm{b}=15.1245(4) \AA$, $\mathrm{c}=14.5029(4) \AA, \beta=94.173(2)^{\circ}, \alpha=\gamma=90^{\circ}, \quad V=1221.23(6) \AA^{3}, T=122.96(11) \mathrm{K}, Z=2, Z^{\prime}=1$, $\mu\left(\mathrm{Cu} \mathrm{K}_{\beta}\right)=1.222,30702$ reflections measured, 4660 unique ($R_{\text {int }}=0.0427$) which were used in all calculations. The final $w R_{2}$ was 0.0732 (all data) and R_{1} was $0.0317(\mathrm{I}>2(\mathrm{I})$).

Table 8.3: Fractional atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $(R, R, S)-6.6 \mathbf{a}$. $U_{\text {eq }}$ is defined as $1 / 3$ of the trace of the orthogonalised $U_{i j}$.

Atom	x	y	z	$U_{\text {eq }}$
$\mathrm{Cl}(1)$	5693.9(12)	2828.7(4)	9551.4(5)	39.54(17)
O(3)	4422(3)	5381.4(12)	8181.1(11)	31.6(4)
N(5)	3125(4)	6769.0(14)	8525.9(14)	31.4(5)
$\mathrm{O}(1)$	4763(4)	5393.0(16)	2826.3(12)	47.9(5)
N(2)	9360(4)	3483.1(15)	6375.2(14)	30.5(5)
N(3)	8225(4)	4399.9(14)	8674.1(13)	25.3(4)
N(4)	6116(4)	6115.6(14)	9442.8(14)	29.4(5)
$\mathrm{O}(2)$	2609(5)	5942.4(18)	3858.9(16)	71.8(8)
$N(1)$	4233(5)	5458.7(18)	3630.0(16)	43.4(6)
C(18)	4565(4)	6047.7(17)	8687.0(17)	28.0(5)
$\mathrm{C}(4)$	8100(5)	3968.1(18)	5710.6(16)	30.7(6)
C(19)	1347(5)	6887.7(17)	7791.0(18)	31.0(6)
C(3)	8632(5)	3902.0(19)	4774.8(17)	35.2(6)
C(10)	8668(5)	3438.3(16)	7329.5(16)	26.5(5)
C(20)	1428(5)	6466.9(19)	6939.6(18)	36.3(6)
C(7)	11050(5)	2780(2)	6168.2(17)	34.8(6)
C(13)	10885(5)	4343.3(19)	10087.2(17)	33.0(6)
C (2)	7381(5)	4387(2)	4102.3(17)	36.9(6)
C(17)	7285(4)	5381.7(17)	9955.6(16)	27.2(5)
C(11)	9764(5)	4209.2(17)	7900.6(16)	29.2(6)

Table 8.3 continued.

Atom	X	y	z	$U_{e q}$
C(1)	5558(5)	4943(2)	4337.4(17)	36.6(6)
C(9)	9617(5)	2538.3(17)	7667.1(18)	33.1(6)
C(8)	11808(5)	2397(2)	7116.6(19)	38.6(7)
C(12)	9320(4)	4948.5(17)	9465.2(16)	26.6(5)
C(5)	6241(5)	4547.5(19)	5925.9(18)	36.2(6)
C(14)	11773(5)	4779(2)	11000.3(18)	35.0(6)
C(24)	-529(5)	7459(2)	7928(2)	39.4(7)
C(15)	9633(5)	5101.4(19)	11494.8(17)	34.7(6)
C(16)	8223(5)	5764.1(18)	10894.8(17)	32.0(6)
C(22)	-2273(5)	7176(2)	6395(2)	44.2(7)
C(21)	-397(6)	6611(2)	6255(2)	42.4(7)
C(6)	4986(6)	5023(2)	5248.0(18)	40.0(7)
C(23)	-2309(5)	7606(2)	7233(2)	45.4(8)

Table 8.4. Anisotropic displacement parameters $(\times 104)$ for $(R, R, S)-6.6 \mathbf{a}$. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} \times U_{11}+\ldots+2 h k a^{*} \times b^{*} \times U_{12}\right]$

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
$\mathrm{Cl}(1)$	$43.3(4)$	$31.8(3)$	$43.8(4)$	$9.9(3)$	$5.3(3)$	$-5.4(3)$
$\mathrm{O}(3)$	$36.2(10)$	$26.4(9)$	$31.6(9)$	$-5.1(8)$	$-1.2(7)$	$-2.2(8)$
$\mathrm{N}(5)$	$35.6(12)$	$26.7(11)$	$31.6(11)$	$-4.0(9)$	$0.2(9)$	$2.7(10)$
$\mathrm{O}(1)$	$53.1(13)$	$64.0(14)$	$25.6(10)$	$9.6(10)$	$-4.3(9)$	$-6.6(11)$
$\mathrm{N}(2)$	$38.3(12)$	$30.1(12)$	$23(1)$	$-3.5(9)$	$2.5(9)$	$7.2(10)$
$\mathrm{N}(3)$	$29.2(10)$	$22.9(10)$	$23.9(9)$	$-3.3(8)$	$2.9(8)$	$-3.4(9)$
$\mathrm{N}(4)$	$35.6(12)$	$22.5(11)$	$29.7(11)$	$-4.2(9)$	$0.1(9)$	$0.0(9)$
$\mathrm{O}(2)$						

Table 8.4 continued.

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
C(18)	28.2(13)	29.4(14)	26.9(12)	0.4(11)	5.3(10)	-4.6(11)
C(4)	39.7(16)	28.3(14)	23.9(12)	-2(1)	1.5(11)	-0.5(12)
C(19)	32.9(14)	26.5(14)	33.4(14)	5.2(11)	1.6(11)	-2.8(11)
C(3)	43.5(16)	36.2(15)	26.5(13)	-2.7(11)	6.0(11)	3.7(13)
C(10)	33.0(14)	26.6(13)	19.9(11)	-2.7(10)	2.5(10)	0.1(11)
C(20)	42.8(16)	36.4(16)	29.8(13)	5.9(12)	2.9(12)	2.3(13)
C(7)	39.7(14)	33.4(14)	31.9(13)	-5.5(12)	6.1(11)	7.6(13)
C(13)	31.7(13)	34.7(16)	32.5(13)	-8.1(12)	0.5(11)	1.0(12)
C(2)	45.4(16)	42.9(17)	22.6(12)	-0.6(12)	4.3(11)	-2.2(14)
C(17)	28.7(13)	26.0(13)	27.2(12)	-2.5(11)	2.8(10)	-1.9(11)
C(11)	37.3(14)	25.8(14)	25.3(12)	-3.1(10)	8(1)	-3.3(11)
$\mathrm{C}(1)$	47.6(17)	36.4(15)	24.9(12)	2.9(11)	-2.8(12)	1.5(13)
C(9)	45.5(16)	25.8(14)	27.9(13)	-1(1)	2.4(12)	0.2(12)
C(8)	45.4(16)	34.5(15)	35.8(15)	-0.1(12)	2.6(12)	13.1(13)
$\mathrm{C}(12)$	27.3(13)	28.1(13)	24.7(11)	-7.6(10)	3.4(10)	-6.5(11)
C(5)	47.0(16)	38.5(16)	23.1(12)	-2.3(11)	2.0(11)	$9.5(13)$
C(14)	32.3(14)	39.6(16)	32.4(13)	-7.0(12)	-2.1(11)	0.5(12)
C(24)	35.5(15)	44.2(17)	38.7(15)	-0.9(13)	4.5(12)	1.9(13)
C(15)	32.9(14)	45.7(17)	25.3(12)	$-5.7(11)$	0.6(11)	-3.0(12)
C(16)	33.4(14)	32.9(15)	30.2(13)	-7.9(11)	5.0(11)	-4.0(12)
C(22)	38.8(16)	53.3(19)	39.7(16)	14.9(14)	-3.4(13)	-10.1(15)
C(21)	53.3(19)	42.7(18)	31.2(14)	7.3(12)	2.0(13)	-5.2(14)
C(6)	48.7(17)	41.7(17)	29.4(13)	-0.3(12)	0.8(12)	12.4(14)
C(23)	32.0(15)	54(2)	50.7(18)	10.6(14)	2.4(13)	4.1(13)

Table 8.5. Bond lengths in \AA for $(R, R, S)-\mathbf{6 . 6 a}$.

Atom	Atom	Length/Å
$\mathrm{O}(3)$	C(18)	1.246(3)
N(5)	C(18)	1.365(3)
N(5)	C(19)	1.414(3)
$\mathrm{O}(1)$	$N(1)$	1.227(3)
N(2)	C(4)	1.365(3)
N(2)	C(10)	1.465(3)
N(2)	C(7)	1.466(3)
N(3)	C(11)	1.490(3)
N(3)	C(12)	1.509(3)
N(4)	C(18)	1.350(3)
N(4)	C(17)	1.463(3)
$\mathrm{O}(2)$	$N(1)$	1.229(3)
N(1)	C(1)	1.449(4)
C(4)	C(3)	1.414(3)
C(4)	C(5)	1.411(4)
C(19)	C(20)	1.393(4)
C(19)	C(24)	1.383(4)
C(3)	C(2)	1.371(4)
C(10)	C(11)	1.532(3)
C(10)	C(9)	1.528(4)
C(20)	C(21)	1.387(4)
C(7)	C(8)	1.524(4)
C(13)	C(12)	1.517(4)
C(13)	C(14)	1.529(4)
C(2)	C(1)	1.382(4)

Table 8.5 continued.

Atom	Atom	Length/A
$\mathrm{C}(17)$	$\mathrm{C}(12)$	$1.531(3)$
$\mathrm{C}(17)$	$\mathrm{C}(16)$	$1.536(3)$
$\mathrm{C}(1)$	$\mathrm{C}(6)$	$1.386(4)$
$\mathrm{C}(9)$	$\mathrm{C}(8)$	$1.523(4)$
$\mathrm{C}(5)$	$\mathrm{C}(6)$	$1.369(4)$
$\mathrm{C}(24)$	$\mathrm{C}(15)$	$1.518(4)$
$\mathrm{C}(15)$	$\mathrm{C}(16)$	$1.381(4)$
$\mathrm{C}(22)$	$\mathrm{C}(21)$	$1.510(4)$
	$\mathrm{C}(23)$	$1.380(4)$

Table 8.6. Bond angles in ${ }^{\circ}$ for $(R, R, S)-6.6 a$.

Atom	Atom	Atom	Angle/
$\mathrm{C}(18)$	$\mathrm{N}(5)$	$\mathrm{C}(19)$	$127.1(2)$
$\mathrm{C}(4)$	$\mathrm{N}(2)$	$\mathrm{C}(10)$	$122.3(2)$
$\mathrm{C}(4)$	$\mathrm{N}(2)$	$\mathrm{C}(7)$	$123.4(2)$
$\mathrm{C}(10)$	$\mathrm{N}(2)$	$\mathrm{C}(7)$	$112.2(2)$
$\mathrm{C}(11)$	$\mathrm{N}(3)$	$\mathrm{C}(12)$	$117.06(19)$
$\mathrm{C}(18)$	$\mathrm{N}(4)$	$\mathrm{C}(17)$	$126.2(2)$
$\mathrm{O}(1)$	$\mathrm{N}(1)$	$\mathrm{O}(2)$	$122.6(2)$
$\mathrm{O}(1)$	$\mathrm{N}(1)$	$\mathrm{C}(1)$	$118.9(2)$
$\mathrm{O}(2)$	$\mathrm{N}(1)$	$\mathrm{C}(1)$	$118.5(2)$
$\mathrm{O}(3)$	$\mathrm{C}(18)$	$\mathrm{N}(5)$	$122.3(2)$
$\mathrm{N}(4)$	$\mathrm{C}(18)$	$\mathrm{N}(5)$	$114.4(2)$

Table 8.6 continued.

Atom	Atom	Atom	Angle/ ${ }^{\circ}$
N(2)	C(4)	C(3)	120.4(2)
$N(2)$	C(4)	C(5)	121.8(2)
C(5)	C(4)	C(3)	117.8(2)
C(20)	C(19)	$N(5)$	122.9(2)
C(24)	C(19)	$N(5)$	117.9(2)
C(24)	C(19)	C(20)	119.1(3)
C(2)	C(3)	C(4)	120.9(3)
$N(2)$	C(10)	C(11)	110.7(2)
$N(2)$	C(10)	C(9)	103.56(19)
C(9)	C(10)	C(11)	112.9(2)
C(21)	C(20)	C(19)	119.5(3)
$N(2)$	C(7)	C(8)	103.39(19)
C(12)	C(13)	C(14)	113.1(2)
C(3)	C(2)	C(1)	119.8(2)
N(4)	C(17)	C(12)	114.0(2)
N(4)	C(17)	C(16)	106.0(2)
C(12)	C(17)	C(16)	110.9(2)
$N(3)$	C(11)	C(10)	108.9(2)
C(2)	C(1)	N(1)	120.0(2)
C(2)	C(1)	C(6)	120.9(3)
C(6)	C(1)	$N(1)$	119.1(3)
C(8)	C(9)	C(10)	103.3(2)
C(9)	C(8)	C(7)	103.8(2)
N(3)	C(12)	C(13)	107.7(2)
$N(3)$	C(12)	C(17)	108.38(19)

Table 8.6 continued.

Atom	Atom	Atom	Angle/
$\mathrm{C}(13)$	$\mathrm{C}(12)$	$\mathrm{C}(17)$	$113.4(2)$
$\mathrm{C}(6)$	$\mathrm{C}(5)$	$\mathrm{C}(4)$	$120.9(2)$
$\mathrm{C}(15)$	$\mathrm{C}(14)$	$\mathrm{C}(13)$	$109.3(2)$
$\mathrm{C}(23)$	$\mathrm{C}(24)$	$\mathrm{C}(19)$	$120.6(3)$
$\mathrm{C}(16)$	$\mathrm{C}(15)$	$\mathrm{C}(14)$	$109.6(2)$
$\mathrm{C}(15)$	$\mathrm{C}(16)$	$\mathrm{C}(17)$	$113.0(2)$
$\mathrm{C}(21)$	$\mathrm{C}(22)$	$\mathrm{C}(23)$	$118.8(3)$
$\mathrm{C}(22)$	$\mathrm{C}(21)$	$\mathrm{C}(20)$	$121.3(3)$
$\mathrm{C}(5)$	$\mathrm{C}(6)$	$\mathrm{C}(1)$	$119.8(3)$
$\mathrm{C}(22)$	$\mathrm{C}(23)$	$\mathrm{C}(24)$	$120.7(3)$

Table 8.7. Hydrogen fractional atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $(R, R, S)-6.6 \mathbf{a}$. $U_{e q}$ is defined as $1 / 3$ of the trace of the orthogonalised $U_{i j}$.

Atom	x	y	z	$U_{\text {eq }}$
$\mathrm{H}(5)$	3321.08	7197.91	8913.38	38
$\mathrm{H}(3 \mathrm{~A})$	7762.95	3886.18	8902.41	30
H(3B)	6908.29	4675.35	8440.6	30
H(4)	6448.15	6640.28	9641.72	35
H(3)	9847.41	3524.03	4613.31	42
H(10)	6913.65	3452.08	7335.34	32
H(20)	2697.29	6091.85	6830.81	44
H(7A)	12419.05	3018.18	5875.77	42
H(7B)	10274.41	2335.73	5767.24	42
H(13A)	12260.76	4160.7	9762.27	40
H(13B)	9976.46	3816.91	10218.09	40
$\mathrm{H}(2)$	7758.09	4342.65	3489.89	44

Table 8.7 continued.

Atom	x	y	z	$U_{e q}$
H(17)	6072.1	4931.29	10060.52	33
$H(11 A)$	11374.81	4056.7	8145.41	35
H(11B)	9864.08	4728.49	7512.74	35
H(9A)	10063.45	2548.28	8326	40
H(9B)	8429.74	2078.41	7536.33	40
$\mathrm{H}(8 \mathrm{~A})$	12186.77	1773.07	7072.59	46
H(8B)	13196.22	2706.15	7398.88	46
H(12)	10324.66	5411.17	9219.42	32
H(5A)	5861.78	4607.1	6536.72	43
H(14A)	12686.91	4355.52	11385.8	42
H(14B)	12815.08	5272.61	10881.65	42
H(24)	-593.05	7745.51	8492.61	47
$H(15 A)$	8611.54	4604.91	11626	42
H(15B)	10183.84	5374.57	12077.14	42
H(16A)	9240.87	6269.16	10791.57	38
H(16B)	6872.49	5971.26	11219.88	38
H(22)	-3492.28	7266.24	5932.36	53
H(21)	-353.19	6321.18	5691.44	51
H(6)	3754.98	5399.17	5397.94	48
H(23)	-3544.98	7999.81	7330.71	55

8.5.3.2. Crystal data of (R)-6.17

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}, \quad M_{r}=300.33$, monoclinic, $P 2_{1}$ (No. 4), $\mathrm{a}=5.32850(10) \AA, \quad \mathrm{b}=10.3138(3) \AA$, $\mathrm{c}=12.9123(4) \AA, \quad \beta=98.477(3)^{\circ}, \quad \alpha=\gamma=90^{\circ}, \quad V=701.87(3) \AA^{3}, \quad T=294(4) \mathrm{K}, \quad Z=2, \quad Z^{\prime}=1$, $\mu\left(\mathrm{Cu} \mathrm{K}_{\alpha}\right)=2.258$, 8519 reflections measured, 2888 unique ($R_{\text {int }}=0.0180$) which were used in all calculations. The final $w R_{2}$ was 0.0800 (all data) and R_{1} was $0.0279(1>2(\mathrm{I}))$.

Table 8.8. Fractional atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $(R)-6.17$. $U_{\text {eq }}$ is defined as $1 / 3$ of the trace of the orthogonalised $U_{i j}$.

Atom	x	y	z	$U_{\text {eq }}$
S1	6625.8(9)	2711.3(6)	5121.9(4)	57.21(17)
O3	7597(3)	2653(2)	6324.9(11)	56.3(3)
01	7604(5)	1655(3)	4608(2)	89.0(7)
O2	3964(3)	2860(3)	5045.5(16)	82.9(6)
N1	10716(4)	3685(3)	8178.0(16)	63.5(5)
N2	4664(6)	8081(3)	8352(3)	91.0(9)
C7	9160(4)	4730(3)	8184.9(17)	55.0(5)
O4	4919(7)	8994(4)	7739(3)	123.1(11)
O5	3232(6)	8122(4)	9010(3)	124.3(12)
C10	6151(5)	6919(3)	8282(2)	67.0(6)
C9	5927(5)	5901(3)	8937(2)	70.1(7)
C8	7393(5)	4812(3)	8900.0(19)	63.3(6)
C12	9303(5)	5788(3)	7513(2)	63.4(6)
C11	7842(6)	6871(3)	7561(2)	70.1(7)
C2	10175(4)	2160(3)	6709(2)	61.0(6)
C6	10748(6)	2621(4)	8927(2)	78.0(7)
C3	11701(4)	3283(3)	7235(2)	65.3(6)
C4	9885(7)	1054(3)	7443(3)	82.8(9)
C5	9067(7)	1518(3)	8471(3)	80.8(8)
C1	7939(7)	4145(4)	4736(3)	83.1(9)

Table 8.9. Anisotropic displacement parameters $\left(\times 10^{4}\right)$ for $(R)-6.17$. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} \times U_{11}+\ldots+2 h k a^{*} \times b^{*} \times U_{12}\right]$

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
S1	49.0(3)	70.7(3)	53.4(3)	-3.8(3)	12.42(17)	-4.2(3)
O3	50.6(7)	67.3(8)	52.9(7)	1.5(8)	13.8(5)	11.4(8)
O1	94.2(15)	97.3(17)	76.7(14)	-28.6(13)	15.9(12)	4.5(13)
O 2	47.5(8)	131.0(19)	70.4(11)	2.7(13)	8.8(7)	$-2.8(13)$
N1	64.0(11)	77.2(14)	49.1(10)	1.8(9)	7.3(9)	6.7(10)
N2	89.4(16)	98(2)	78.9(17)	-34.4(15)	-10.9(14)	23.8(15)
C7	51.0(10)	71.0(13)	41.5(10)	-5.3(9)	1.5(8)	-4.7(10)
O4	135(3)	96.8(19)	133(3)	$6.4(19)$	7(2)	45.5(19)
O5	125(2)	140(3)	109(2)	-48.4(19)	22.9(17)	43(2)
C10	67.0(14)	75.6(16)	54.4(13)	-18.4(11)	-4.6(11)	7.7(12)
C9	66.9(14)	92.4(18)	52.5(13)	-22.0(12)	13.5(11)	-1.3(13)
C8	69.4(14)	76.3(15)	45.8(11)	-4.0(10)	14.1(10)	-5.9(12)
C12	62.1(13)	77.3(16)	52.1(12)	0.0(11)	13.1(10)	0.1(11)
C11	76.6(15)	71.5(16)	59.8(15)	2.4(11)	2.2(12)	3.8(13)
C2	54.3(11)	65.5(13)	65.5(14)	1.0(11)	16.8(10)	20.5(10)
C6	78.5(14)	94.7(19)	58.3(13)	19.2(17)	1.6(11)	21.1(18)
C3	48.3(11)	86.7(16)	62.1(13)	0.6(12)	12.0(10)	11.7(11)
C4	98(2)	63.4(15)	89(2)	12.3(14)	20.0(17)	30.2(15)
C5	95(2)	74.4(17)	74.2(18)	30.3(15)	16.3(15)	21.0(16)
C1	79.8(18)	93(2)	74.9(19)	25.1(16)	6.2(15)	-14.0(16)

Table 8.10. Bond lengths in \AA for (R)-6.17.

Atom	Atom	Length/A
S1	O3	$1.5644(15)$
S1	O1	$1.414(2)$
S1	O2	$1.4155(17)$
S1	C1	$1.739(3)$
O3	C2	$1.480(3)$

Table 8.10 continued.

Atom	Atom	Length/Å
N1	C7	1.360(4)
N1	C6	1.461(4)
N1	C3	1.455(3)
N2	O4	1.250(5)
N2	O5	1.223(5)
N2	C10	1.447(4)
C7	C8	1.415(3)
C7	C12	1.403(4)
C10	C9	1.365(5)
C10	C11	1.388(4)
C9	C8	1.373(4)
C12	C11	1.368(4)
C2	C3	1.517(4)
C2	C4	1.505(4)
C6	C5	1.513(5)
C4	C5	1.533(5)

Table 8.11. Bond angles in ${ }^{\circ}$ for $(R)-6.17$

Atom	Atom	Atom	Angle ${ }^{\circ}$
O3	S1	C1	$103.22(15)$
O1	S1	O3	$110.18(15)$
O1	S1	O2	$119.04(17)$
O2	S1	O3	$104.77(10)$
O2	S1	C1	$109.21(19)$

Table 8.11 continued.

Atom	Atom	Atom	Angle ${ }^{\circ}$
C2	O3	S1	120.06(14)
C7	N1	C6	122.6(2)
C7	N1	C3	121.8(2)
C3	N1	C6	111.6(3)
O4	N2	C10	118.2(3)
O5	N2	O4	123.4(3)
O5	N2	C10	118.4(4)
N1	C7	C8	121.1(2)
N1	C7	C12	121.6(2)
C12	C7	C8	117.3(2)
C9	C10	N2	119.9(3)
C9	C10	C11	120.9(3)
C11	C10	N2	119.2(3)
C10	C9	C8	120.3(2)
C9	C8	C7	120.6(3)
C11	C12	C7	121.6(2)
C12	C11	C10	119.3(3)
O3	C2	C3	107.3(2)
O3	C2	C4	107.1(2)
C4	C2	C3	113.2(3)
N1	C6	C5	111.0(2)
N1	C3	C2	110.9(2)
C2	C4	C5	112.2(2)
C6	C5	C4	110.1(3)

Table 8.12. Torsion angles in ${ }^{\circ}$ for (R)-6.17

Atom	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
S1	O3	C2	C3	114.5(2)
S1	O3	C2	C4	-123.6(2)
O3	C2	C3	N1	66.5(3)
O3	C2	C4	C5	-70.4(4)
O1	S1	O3	C2	34.7(3)
O2	S1	O3	C2	163.8(2)
N1	C7	C8	C9	176.5(2)
N1	C7	C12	C11	-176.2(2)
N1	C6	C5	C4	56.4(3)
N2	C10	C9	C8	-177.8(2)
N2	C10	C11	C12	178.1(2)
C7	N1	C6	C5	95.7(3)
C7	N1	C3	C2	-99.6(3)
C7	C12	C11	C10	-0.9(4)
O4	N2	C10	C9	180.0(3)
O4	N2	C10	C11	1.6(4)
O5	N2	C10	C9	0.2(4)
O5	N2	C10	C11	-178.1(3)
C10	C9	C8	C7	0.2(4)
C9	C10	C11	C12	-0.2(4)
C8	C7	C12	C11	1.5(4)
C12	C7	C8	C9	-1.2(4)
C11	C10	C9	C8	0.5(4)
C2	C4	C5	C6	-49.5(4)
C6	N1	C7	C8	-2.7(4)

Table 8.12 continued.

Atom	Atom	Atom	Atom	Angle/
C6	N1	C7	C12	$174.8(3)$
C6	N1	C3	C2	$58.3(3)$
C3	N1	C7	C8	$152.8(2)$
C3	N1	C7	C12	$-29.6(4)$
C3	N1	C6	C5	$-62.0(3)$
C3	C2	C4	C5	$47.7(4)$
C4	C2	C3	N1	$-51.5(3)$
C1	S1	O3	C2	$-81.9(3)$

Table 8.13. Hydrogen fractional atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $(R)-6.17 . U_{e q}$ is defined as $1 / 3$ of the trace of the orthogonalised $U_{i j}$.

Atom	x	y	z	$U_{e q}$
H9	4775.66	5945.89	9411.99	84
H8	7222.74	4122.21	9348.45	76
H12	10418.74	5752.11	7023.9	76
H11	7980.16	7567.72	7115.56	84
H2	10966.99	1846.7	6117.63	73
H6A	10164.57	2933.73	9558.4	94
H6B	12472.73	2309.08	9114.44	94
H3A	13461.67	3024.58	7414.89	78
H3B	11630.51	4007.28	6752.51	78
H4A	11487.64	597.02	7597.04	99
H4B	8632.09	450.53	7102.27	99
H5A	7315.88	1805.45	8341.86	97
H5B	9184.23	805.51	8966.22	97
H1A	7432.99	4852.65	5142.1	125

Table 8.13 continued.

Atom	x	y	z	$U_{\text {eq }}$
H1B	7352.08	4297.22	4007.52	125
H1C	9755	4075.41	4847.04	125

8.5. Abbreviations

AcOH	acetic acid
aq	aqueous

a.u. arbitrary unit

Anal. Combustion elemental analysis
$\mathrm{APCI} \quad$ atmospheric pressure chemical ionization

Boc tert-butoxycarbonyl
$\mathrm{Bq} \quad$ bequerel
br s broad singulet
$B_{\max }$
$B n$
BSA
BRET

C
Cbz
CHO cells \quad Chinese hamster ovary cells
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ dichloromethane
COSY correlated spectroscopy
${ }^{\circ} \mathrm{C}$
d
δ
DCC $\quad N, N$-dicyclohexylcarbodiimide
DIPEA $\quad \mathrm{N}, \mathrm{N}$-diisopropylethylamine
DMEM Dulbecco's modified eagle medium
DMF $\quad N, N$-dimethylformamide
DMSO dimethylsulfoxide
dpm disintegrations per minute
$\mathrm{EC}_{50} \quad$ agonist concentration which induces 50% of the maximum response
EDC $\cdot \mathrm{HCl} \quad$ 1-ethyl-3-(3-dimethylaminopropyl)carbodiimid hydrochloride
ESI Electrospray ionization

$\mathrm{Et}_{3} \mathrm{~N}$	triethylamine
EtOAc	ethyl acetate
$\mathrm{Et}_{2} \mathrm{O}$	diethyl ether
EtOH	ethanol
FCS	fetal calf serum
Fmoc	9-fluorenylmethoxycarbonyl
FRET	Förster resonance energy transfer
h	hour(s)
GPCR	G-protein coupled receptor
G418	geneticin
HBSS	Hank's balanced salt solution
HEC-1b	human endometrial carcinoma cells
HEK293	human embryonic kidney cells
HEL cells	human erythroleukemia cells
HEPES	2-(4-(2-hydroxyethyl)-1-piperazinyl)ethanesulfonic acid
HMBC	heteronuclear multiple bond correlation
HPLC	high-performance liquid chromatography
hPP	human pancreatic polypeptide
HOBt	1-hydroxybenzotriazole
HR-MS	high resolution mass spectrometry
HSQC	heteronuclear single quantum coherence
IC_{50}	inhibitor concentration which supresses 50\% of an agonist induced effect or displaces 50% of labelled ligand from the binding side
J	coupling constant in NMR spectroscopy (Hz)
k	retention factor
K_{b}	dissociation rate constant derived from a functional assay
K_{d}	dissociation rate constant derived from a saturation binding assay
K_{i}	dissociation constant derived from a competition binding assay
Kobs	observed association constant
Koff	dissociation rate constant

$k_{\text {on }}$	association rate constant
L-15	Leibovitz's L-15 medium
m	multiplet
M	molar ($\mathrm{mol} \cdot \mathrm{L}^{-1}$)
MeOH	methanol
min	minute
m/z	mass to charge ratio
M^{+}	parent molecular ion
NHS	N-hydroxysuccinimide
NMR	nuclear magnetic resonance
NOESY	nuclear Overhauser effect spectroscopy
NLuc	Nanoluc
(p)NPY	(porcine) neuropeptide Y
on	over night
Pbf	2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl
PBS	phosphate buffered saline
PCC	pyridiniumchlorochromate
PET	positron emission tomography
Ph	phenyl
PYY	peptide YY
q	quartet
RP	reversed phase
rt	room temperature
SAR	Structure-activity relationship
s	singlet
SEM	standard error of the mean
t	time or triplet
$t \mathrm{Bu}$	tert-butyl
TBS	tert-Butyldimethylsilyl
TLC	thin layer chromatography

TFA	trifluoroacetic acid
THF	tetrahydrofurane
t_{R}	retention time
$t_{1 / 2}$	half time
UV	ultraviolet
$Y_{x} R$	NPY receptor subtypes $(X=1,2,4,5)$

8.6. References

1. Yang, Z.; Han, S.; Keller, M.; Kaiser, A.; Bender, B. J.; Bosse, M.; Burkert, K.; Kogler, L. M.; Wifling, D.; Bernhardt, G.; Plank, N.; Littmann, T.; Schmidt, P.; Yi, C.; Li, B.; Ye, S.; Zhang, R.; Xu, B.; Larhammar, D.; Stevens, R. C.; Huster, D.; Meiler, J.; Zhao, Q.; Beck-Sickinger, A. G.; Buschauer, A.; Wu, B. Structural basis of ligand binding modes at the neuropeptide $Y Y_{1}$ receptor. Nature 2018, 556, 520-524.

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die aus anderen Quellen direkt oder indirekt übernommenen Daten und Konzepte sind unter Angabe des Literaturzitats gekennzeichnet.

Einige der experimentellen Arbeiten wurden in Zusammenarbeit mit anderen Personen durchgeführt. Entsprechende Vermerke befinden sich in den entsprechenden Kapiteln (Chapter 2-6). Eine detaillierte Auflistung aller Kooperationen enthält zudem der Abschnitt "Acknoledgements and declaration of collaborations".

Weitere Personen waren an der inhaltlich-materiellen Herstellung der vorliegenden Arbeit nicht beteiligt. Insbesondere habe ich hierfür nicht die entgeltliche Hilfe eines Promotionsberaters oder anderer Personen in Anspruch genommen. Niemand hat von mir weder unmittelbar noch mittelbar geldwerte Leistungen für Arbeiten erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ähnlicher Form einer anderen Prüfungsbehörde vorgelegt.

Regensburg, den

[^0]: Note: \quad Thanks are due to Maria Beer-Krön, Susanne Bollwein and Brigitte Wenzl for excellent technical assistance (cultivation

[^1]: ${ }^{\text {a }}$ Fluorescent dyes ($\mathbf{2 . 7 7}$ or $\mathbf{4 . 6 0}$) used for the preparation of the fluorescent ligands

[^2]: Note: I gratefully acknowledge the help of Dr. Timo Littman for teaching the β-arrestin2 recruitment assay.
 The preparation and cultivation of cells for the BRET based binding assay is part of the ongoing doctoral thesis of Lukas Grätz (cf. Chapter 4)

 I gratefully acknowledge the support of my research students (Forschungspraktikanten) Alexander Reichle, Alexander Hubmann, Simon Scheuerer and Florian Fricke during synthesis.

 Thanks are due to Brigitte Wenzl, Maria Beer-Krön, Susanne Bollwein and Lydia Schneider for excellent technical assistance (cultivation of cells, radioligand competition binding experiments at $h Y_{1} R$ and $h Y_{5} R$, and BRET based competition binding assays).

[^3]: ${ }^{\text {a BRET }}$ based competition binding assay with 4.58 ($\mathrm{c}_{\text {final }}=20 \mathrm{nM}, K_{d}=17.9 \mathrm{nM}$) in intact HEK293T Y_{2} (intraNLucD197) cells. Mean values \pm SEM from at least three independent experiments performed, each in triplicate.

[^4]: Note:
 I gratefully acknowledge the support of my research students (Forschungspraktikanten) Florian Fricke and Maria Deichner during synthesis.

 Thanks are due to Dr. Stefanie Dukorn, Susanne Bollwein and Dita Fritsch for excellent technical assistance (cultivation of cells).

 X-ray crystallography of compounds $(R)-6.17$ and $(R, R, S)-6.6 \mathrm{~b}$ were performed by the Central Analytical Services (Faculty of Chemistry and Pharmacy).

[^5]: ${ }^{\text {a }}$ Aequorin Ca^{2+} mobilization assay in living $\mathrm{CHO}-\mathrm{hY}_{4} \mathrm{R}-\mathrm{G}_{\mathrm{q} i 5}-\mathrm{mtAEQ}$ cells. ${ }^{\mathrm{b}}$ Efficacies (intrinsic activity, α) were calculated from the maximum response relative to $1 \mu \mathrm{M}$ hPP $+0.5 \%$ DMSO ($\alpha=1$). Mean values \pm SEM from at least N independent experiments, each performed in triplicate.

[^6]: Note: Prior to the submission of the thesis parts of this chapter (cf. 8.1.) were published in cooperation with partners (schemes, tables, figures and text may differ from published version): Buschmann, J.; Seiler, T.; Bernhardt, G.; Keller, M.; Wifling, D. Argininamide-type neuropeptide $\mathrm{Y} \mathrm{Y}_{1}$ receptor antagonists: the nature of N^{ω}-carbamoyl substituents determines $Y_{1} R$ binding mode and affinity. RSC Med. Chem. 2020, 11, 274-282 DOI: 10.1039/C9MD00538B - adopted by permission of The Royal Society of Chemistry
 cf. note of Chapter 2

